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Kurzzusammenfassung

Diese theoretische Arbeit beschäftigt sich mit der Dynamik von Stufen auf viz-

inalen Oberflächen. Die physikalisch relevante Phänomenologie ist die Instabilität

der Stufenbündelung auf der Vizinalen Si(111). Dazu werden zwei Modelle unter-

sucht. Das erste ist das seit 1951 von Burton, Cabrera und Frank eingeführte und

heute als Standard geltende, in dem die quasi-statische Näherung für die Adatom-

Konzentrationen auf den Terrassen, die Stufen als nicht-transparent und der Gren-

zfall der schnellen An-/Ablagerungskinetik und der langsamen Diffusion betrachtet

werden. Bei der Herleitung der diskreten Bewegungsgleichungen berücksichtigen wir

nicht-lineare Terme von höherer Ordnung als in früheren Arbeiten. Wir fanden, dass

diese Terme für den Sublimationsfall, nicht aber für den Wachstumsfall gültig sind.

Es wurden analytische und numerische Methoden angewandt, um die Wirkung dieser

Terme auf der Dynamik der Stufen zu studieren. Für die beiden asymmetrisch wirk-

enden Effekte, der Ehrlich-Schwoebel-Effekt und der Effekt der Elektromigration,

ändert sich die aus der linearen Stabilitätsanalyse ermittelten Dispersionsrelation,

allerdings nicht im Wachstumsfall. Aufgrund der zusätzlichen nicht-linearen Terme

ist die Dynamik nicht mehr erhaltend, bzgl. des Kristallvolumens. Im Rahmen des

Kontinuumlimes der diskreten Gleichungen wird mit Hilfe des sogenannten mech-

anischen Analogons der partiellen Differentialgleichung für die beiden Asymmetrie-

Effekte eine Selektion der Steigung nahegelegt. Als Konsequenz, unterscheiden sich

die Skalenrelationen der Stufenbündelgeometrie für den Sublimationsfall stark von

denen des Wachstumsfalls. Die numerischen Simulationen der diskreten Gleichungen

bestätigen die analytischen Ergebnisse. In dem nichtlinearen Fall wird sowohl ein

Aufbrechen der Stufenbündel als auch eine eingeschränkte Vergröberung und damit

stationäre Lösungen mit begrenzter Steigung gefunden. Eine sensitive Abhängigkeit

von den Anfangsbedingungen wird beobachtet. Das zweite von uns studierte Modell

wurde kürzlich von Ranguelov und Stoyanov für den Fall von sehr hoher Stufen-

transparenz, schneller Diffusion und langsamer An-/Ablagerungskinetik eingeführt,

über die quasi-statische Näherung für die Adatom-Konzentrationen. Die analytis-

chen Ergebnisse von Ranguelov und Stoyanov wurden sowohl für den Konzentra-

tionsgradienten im Falle einer Elektromigrationskraft, als auch für die lineare Sta-

bilitätsanalyse überprüft. Quantitative Abweichungen wurden ermittelt und Kor-

rekturen angegeben. Abschließend wurden die Gleichungen numerisch simuliert und

die parametrische Abhängigkeit der maximalen Steigung im Stufenbündelungsregime

untersucht und entsprechend illustriert.



Abstract

This theoretic work deals with the dynamics of steps on vicinal surfaces, where the

bunching instability on the vicinal Si(111) is the physically relevant phenomenology.

Thereby two models are studied in detail. The first one is the standard Burton-

Cabrera-Frank model from 1951 with the quasi-static approximation for the adatom

concentrations on the terraces, considered for non-permeable steps and in the limit-

ing case of fast attachment/detachment kinetics and slow diffusion. In our derivation

of the discrete equations we take into account higher order non-linear terms, ne-

glected in the previous studies. We found, that those terms are present in the case

of sublimation, but not in the case of growth. Analytical and numerical methods are

employed in order to study the impact of these terms on the step dynamics. For both

asymmetry effects, the Ehrlich-Schwoebel effect and the effect of electromigration,

there is a change in the dispersion relation obtained from the linear stability anal-

ysis, whereas there is no such change in the case of growth. Due to the non-linear

terms, the dynamics changes from conservative to non-conservative with respect to

the crystal volume. The continuum limits of the discrete equations for both asym-

metry cases yield a hint of slope selection in the so called mechanical analog of the

partial differential equation. As a consequence, the scaling relations of the bunching

geometry in the case of sublimation differ strongly from those in the case of growth.

The numerical simulations of the discrete equations confirm these analytic results.

In the non-linear regime there is anti-coarsening or arrested coarsening of the step

bunches and thus there are stationary solutions with bounded maximal slope. A

sensitive dependence on the initial conditions is observed. The second model we

analyze was recently introduced by Ranguelov and Stoyanov. It accounts for the

case of strong transparency, fast diffusion and slow attachment/detachment kinetics.

This model goes beyond the approximation of quasi-static concentration profiles of

adatoms. Calculations in order to reproduce Ranguelov and Stoyanov’s results for

the gradient of the adatom concentration, depending on the electromigration force

as well as for the linear stability analysis were carried out. Quantitative deviations

were found and the corrections are presented. Finally, the equations are simulated

and the dependence of the maximal slope on the different input parameters in the

bunching regime is illustrated.
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1 Introduction

1.1 Motivation

Since the middle of the last century the semiconductor technology made a great

progress. An important part of this progress was achieved due to the better under-

standing of growth processes on surfaces. The theoretical description of the thermo-

dynamics and the kinetics is one of the important tools to go beyond the cooking book

of chemical recipes. On one hand, it helps to achieve improvements of the produc-

tion of desirable materials, and on the other hand, it helps to invent new electronic

devices.

The growth of crystalline materials from the gas phase is very interesting from the

conceptional point of view. It has a far from equilibrium dynamics that is governed

by thermally activated kinetic processes, whose physics depends on many parameters.

Therefore, in general, it is difficult to have a (clear) situation, where one can introduce

a model describing a system comparable one-to-one with the experiment. In an ultra

high vacuum (UHV) chamber the experimentalist can control the parameters to some

extent by using special substrates with special orientations. Based on the growth of

a few layers of different materials with different properties in the last decades arose a

new branch of the solid state physics dealing with thin films. The silicon surface with

orientation < 111 >, sometimes denominated Si(111), is a commonly used substrate

and it is therefore important to know as much about it as possible.

As one can expect, surfaces are in practice not perfectly flat. They can posses

different defects of different dimensionality. For instance, an atom (or a vacancy

of an atom) on a surface is a zero-dimensional defect, a step is a one-dimensional

defect and an island or a vacancy island is a two-dimensional defect. It is observable,

that a step and a vacancy of a step on a surface are the same object. That means

that steps should play a special role on surfaces. Indeed, on the microscopic scale

along the step edge there are atomic corner positions, called half crystal positions

or just kinks, on which, without the presence of any further effects, the attachment

and detachment of atoms does not cost additional energy1, i.e. the bond energy per

1This limit is true for cubic crystals with very large number of atoms. On a kink position the

number of saturated and unsaturated bonds is equal.
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1 Introduction

atom is equal to the separation work of an atom. This is based on the fact that for

a cubic lattice (fcc or bcc) the number of attendees and the number of absentees in

its closest neighborhood is equal. Historically, the object kink was defined and its

importance was recognized by the pioneers Kossel2 and Stranski3, in their works from

1927 and 1928 on the molecular-kinetic theory of surface growth. Before the invention

of microscopy and scanning techniques, working independently from each other, they

introduced the Terrace Step Kink (TSK) model4. The TSK approximates a surface

by an idealized infinite geometrical figure, consisting of microscopical boxes for the

particles, i.e. atoms or molecules. These boxes constitute, similar to the LEGO-play,

the crystal with flat terraces on top. The terraces are divided by monoatomic steps

containing certain numbers of kinks.

Let us consider a silicon sample in UHV chamber with reservoir of gaseous silicon

particles. When an atom from the gaseous phase is deposited on a terrace, so on

a first place it is only adsorbed, and it is, still, not a part of the solid state. Such

adsorbed atoms are called adatoms. They diffuse by hopping from one potential valley

to another and form a two-dimensional adsorption layer on the terraces. If an atom

arrives at a step, it can diffuse further along the step edge and find a kink. Then,

the so incorporated atom becomes a part of a new kink, which can be occupied by

another atom, so that the first one can not move any more. In that way, the number

of the atoms in the solid phase increases and the crystal volume as a whole increases

too. The process of increase of the volume is called growth. On the other hand, if

atoms detach from the kinks and move to the terraces and then desorb to the gaseous

phase, so we speak about crystal sublimation.

Further, it is possible, that an adatom coming from one neighboring terrace and

diffusing along the step can hop to the other neighboring terrace before finding a

kink position. In this case we speak about transparency or permeability of the steps.

Because of the interlayer transport the modeling becomes more complicated, keeping

in mind that in such cases there is a memory effect from the previous terraces being

visited by the adatom. In other words, it leads to coupling between the kinetics on

different terraces.

Before we begin with the vicinal surfaces, let us see, how monoatomic steps can

emerge on flat surfaces5. For example, by means of a nucleation process, after certain

2Kossel, Walther, Extending the Law of Bravais [M]. Nach Ges Wiss Gottingen 1927, 143.
3Stranski, Iwan N., Zur Theorie des Kristallwachstums. Z. Phys. Chem 1928, 136, 259-278.
4To that moment the theory was restricted to the thermodynamics and equilibrium shapes of grown

crystals. Sometimes TSK is called also Terrace Ledge Kink (TLK) model
5The surfaces can be classified depending on the miscut. Surface with zero slope, i.e. perfectly

flat, are called singular and stepped surfaces are called vicinal.

2



1.1 Motivation

number of atoms or molecules have nucleated, the growing nucleus forms an island.

This island is a mesoscopic object and possesses a mono atomic boundary, which is

a step with well defined step edge and some curvature. Then, the growth or the

sublimation of the island is equivalent with the expansion or the shrinking of the

closed step edge6. So, the movement of the boundary represents a change in time

of a mesoscopic object arranged by microscopic kinetic processes like: deposition,

desorption, diffusion, attachment, detachment, nucleation and so on.

But after some time, the island can meet another island and both can merge

together and then merge with third one and so on, until the entire layer is filled.

This type of growth is called layer-by-layer. There the number of islands is not

conserved. Often there are situations with second-layer nucleation, which can lead to

multi-layer growth. This happens if the nucleation process occurs on the top of an

island, before the layer is filled up.

On a non perfectly flat surface a step can emerge for example through the growth

of a screw dislocation. The rotation of the growing spiral pinned on the spiral center

is again a movement of a step edge. This idea was introduced by Frank7 in 1949 and

further developed in the classical publication by Burton, Cabrera and Frank in 1951

[4]. In that case the monoatomic height of the step is not conserved along the whole

step and an adatom can find a path to diffuse from one terrace to the other without

crossing the step edge.

In the same publication [4], the authors introduced a model for the growth on

special surfaces, which are stepped from the beginning, and on which the nucleation

processes, similar to the case with screw dislocations, can be neglected. Those are the

so called vicinal surfaces. The steps have well-defined long step edges of monoatomic

height and terraces confined by the step edges. To eliminate any confusion: We say

that a stepped surface of monoatomic steps is vicinal to a certain flat surface in

the sense, that its terraces have parallel orientation to the (perfectly) flat version.

Vicinal silicon surfaces are usually produced by cutting a silicon monocrystalline

rod under very small angle with respect to one of its symmetry axes. Because of

the lattice structure8 of the silicon, each of the resultant two parts consists of a bulk

and a stepped surface. All steps posses an orientation perpendicular to the chosen

symmetry axes. In principle, by such cuts, antisteps, disturbing a monotone step

configuration, are possible to emerge. This means that for a given surface evolution

a step and an antistep could annihilate. In the following considerations antisteps are

6Here the step is the boundary of the two dimensional defect, called island.
7Frank, F. C. Disc. Faraday Soc. no.5, 48, 67 (1949)
8bcc structure
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1 Introduction

Figure 1.1: Vicinal surface with idealized perfectly straight steps on the mesoscopic

scale

neglected, and the number of steps is taken to be a constant, M .

By varying the temperature in the UHV chamber, the silicon surface and the

gaseous environment can move away from equilibrium. The crystal will effectively

start to sublimate or grow. Similar to the case with the movement of the island

boundary, there is a collective motion of the steps in one of the two possible di-

rections, perpendicular to the step edges. Super-/undersaturation with symmetrical

adatom concentration on the terraces leads to stable growth/sublimation of the sur-

face through equidistant parallel movement of all step edges. This stable evolution

is called step-flow.

For some reason, like the Schwoebel barrier [38] or a drift of the diffusing adatoms,

called effect of electromigration [42], the concentration function of the silicon adatoms

on the terraces could have an asymmetrical form. In such cases the vicinal surface can

undergo dynamical instabilities9 like step bunching. This is a phenomenon in which

most of the steps move close to each other and form groups, called step bunches, and

there is a small number of moving steps between the bunches, called crossing steps.

This thesis is devoted to the dynamics of straight steps on vicinal sur-

faces and the step bunching instability. It is motivated by the large num-

ber of publications in the last two decades on vicinal surfaces and especially on

electromigration-induced step bunching instability (see next section). The impor-

tance of the different microscopic kinetic processes for different temperature regimes,

discussed in the next section, is still not completely understand. From the general

point of view, it is interesting to know, what are the conditions to have step bunching

instability as a non-trivial phenomenon and what kind of properties it possesses.

Finally, the considered phenomenon present self-assembled pattern formation10,

9On a vicinal surface with curved step edges there is also a step meandering instability, which is

not subject of this thesis.
10equidistant or bunched surface
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1.2 Experimental Evidence

which can be used as a substrate for more complex structures. For example, in

the case of equidistant step configuration the group of Prof. Voigtländer showed in

[40, 41] a decoration of Ge atoms on the upper sides of equidistant step edges of vicinal

Si(111)(7 × 7) surface. The Ge atoms form arrays of nanoclusters along the steps

with measurable electrical properties. In a contrary, in another experiment the step

bunching plays the important role. The group of Prof. Shvets deposited Ag atoms

on a Si(111) surface in the UHV, see Cuccureddu et al [8]. First, they prepared

the substrate by annealing at temperature 1130◦C. Then, they observed with an

Atomic Force Microscope 180 - 240 nm high step bunches, separated by around 1.5

- 2 µm wide terraces. Afterwards, they deposited the Ag atoms on the terraces and

nanowires along the bunches were formed and measured. Here, the importance of the

step bunching instability is due to a shadowing effect, when the deposition angle is

chosen to be very small. As a result the concentration of the Ag atoms is maximal on

the upper side of the bunches, while below the bunches the concentration of atoms is

very low [8].

1.2 Experimental Evidence

For the experimental study of vicinal surfaces in the UHV chamber there are some

very important measurement techniques. Firstly, the Field Ion Microscopy (FIM)

was invented by Müller in 1951 [27]. This method helps by the tracing of single

adatoms and gives some hints on the surface kinetics. Secondly, the scanning mi-

croscopy techniques provide a direct and detailed picture of the surface defects and

surface reconstructions11. The Scanning Tunneling Microscopy (STM) was developed

in the early eighties of the last century by Binnig and Rohrer [3]. The much used

Atomic Force Microscopy (AFM) is a further development of the STM and was first

constructed by Binnig, Quate and Gerber in 1986 [2]. Finally, the electron microscopy

techniques like LEEM and REM (Low Energy and Reflection Electron Microscopy),

enabled the real time observation of the stepped surfaces and so lead to better under-

standing of the evolution of steps on surfaces. With the REM one can follow single

monoatomic steps, imaged as shadow stripes in contrast to the light regions due to

the terraces.

11Because of the unsatisfied (dangling) bonds of the atoms of the top layer, the distribution of those

atoms, in general, differs from that in the bulk lattice. The different possible distributions are

called surface reconstructions and depend on the temperature. For instance, for temperatures

around 830◦C, the Si(111) surface undergo a phase transition between the 1 × 1 and 7 × 7

reconstructions [22].

5



1 Introduction

Mostly, the experimentalists try to have surfaces with less steps and prefer to avoid

the typical for sublimation high temperatures in their experimental chambers with

expensive equipments. For that reason, unfortunately, there are less experimental

studies on vicinal silicon surfaces during sublimation. For a short illustration of the

step bunching instability on vicinal Si(111) surfaces I present images from two exper-

iments in this section. The first one is the historical experiment on electromigration-

induced step bunching, done by Latyshev et al in Russia [21]. The second one is a

very recent one, published by Usov et al [45].

In the late 1980’s Latyshev et al at the Siberian university in Novosibirsk ana-

lyzed a vicinal surface of a few millimeters thick silicon specimen [21]. The misori-

entation angle of the vicinal Si(111) was measured to be 8 degrees with respect to

the flat one. They polished the specimen and after thermal oxidization they removed

the oxide by etching it in an acid. Then they heated the specimen by direct electric

current and the achieved annealing temperatures were measured by an optical py-

rometer. The presence of phase transition between the 1×1 and 7×7 reconstructions

on Si(111) at around 830◦C and the absence of pinning of the moving monotatomic

steps on impurities are criteria for the cleanness of the sample surface. The observed

results were very surprising. For different temperatures, the heating with the current

produces step bunching or debunching, depending additionally on the direction of

the current. As result they recognized three different regimes. At temperatures12

between 1050− 1250◦C and step-up current direction, the steps are ordered equidis-

tant to each other and in the opposite direction the steps form groups. This is a

very robust effect in the sense that after every switching of the current direction,

after a while, the surface relaxes to bunching or debunching. During the annealing,

the steps continue to move, and either the bunches become larger and larger, or the

distances between the steps, i.e. the terrace widths, relax to a constant value for

all terraces. The authors also observed, that initially the steps form smaller groups

and those groups coarsen with time to larger and larger bunches of steps and on the

other hand the distances between the bunches increase, too. Further, single crossing

steps13 are regularly expelled from one side of the bunch. They move through the

region with small step density, following the steps expelled before, until they reach

the next bunch. A step joining the group from one side, after some time, will leave

the bunch from the other. So, there is permanent exchange of steps and the steps

run through the bunch too, being subsequently part of all discrete stages along the

12The interval boundaries are not exact, because of the difficult measurement of surface temperature.

Those values differ from group to group.
13Note, that the steps are crossing from one bunch to another, but the steps are not crossing each

other

6



1.2 Experimental Evidence

bunch.

This dynamics is interesting enough, but then for temperatures in the intermediate

regime (1250−1350◦C), they observed a reversal of the effect, so that bunching occurs

for the step-down direction of the heating current. Finally, for temperatures larger

than 1350◦C another reversal emerges and the dependences are identical with the

first regime.

The electromigration induced step bunching on vicinal Si(111) was experimentally

studied further by other groups (see for example [47, 13]) and nowadays it is recog-

nized, that for the interval from the transition temperature around 830◦C to around

1000◦C, actually, there is another temperature regime, called Regime I in the lit-

erature. This one corresponds to the intermediate regime by Latyshev (Regime

III), see fig. 1.2, where bunching emerges for down-stairs heating current, while for

up-stairs current there is debunching.

A very recent experiment was carried out by Usov et al in Dublin [45], see fig.

1.3. They managed to change the electromigration force on the vicinal Si(111) while

keeping the chosen temperatures constant. They were interested in the moderation

of the electromigration force, whereby an initially present step bunching vanishes into

an equidistant step configuration. The shown images are measurements made for the

Regime II, but in the same publication there are also images for the Regime III,

where the behavior of relaxation is very similar. It seems that for large annealing time

the bunching still consists of a lot of bunches and that the coarsening is interrupted.

Image b) shows, that between the step bunches the crossing steps can posses a S-

form. With decreasing electric current the bunch widths become larger and the step

density in the bunches decreases, until in the last image the bunches vanish. It is

obvious, that the larger the asymmetry14 the closer the steps in the groups and the

higher the maximal slope in the bunches.

Another peculiarity similar to S-formed crossing steps was reported by Williams

et al [16]. In the late stage of coarsening of electromigration-induced bunching of

steps on Si(111) the crossing steps become more and more curved and start to form

even antibunches. Such two-dimensional effects are not describable with the simple

quasi one-dimensional models presented next.

The discovery of the reversals leads to large number of theoretical publications and

until today this phenomenon is only partially understood, see for example [42, 20,

32, 31, 43, 10, 34, 35, 36, 28, 12]

14This asymmetry is believed to be caused by the so called electromigration force, see sec. 1.3.3
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Figure 1.2: Latyshev et al [21]: A page from the historical paper by Latyshev and

coworkers. In both REM pictures the electric force has uphill direction.

In the upper REM picture the vicinal Si(111) is in the second temperature

regime (Regime III) and there is debunching, while in the lower REM

picutre - the first regime (Regime II) - we can see a number of bunches

with a few steps in between. The steps look very curly, but this results

from the chosen scales. Note that the expansion in one direction is much

larger than in the other one. The lower picture shows the directions of the

electric current in the three temperature regimes. There is no bunching

for fast alternating current.
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1.2 Experimental Evidence

Figure 1.3: Usov et al [45]: The step-bunching morphology on a Si(111) surface

created at 1130◦C by annealing with different electromigration fields. The

surface is miscut 2◦ towards the [11-2] direction. The direction of the

miscut is from left to right in all images, as shown by a stairway symbol

in (a). Darker areas correspond to step bunches. Phase AFM image of a

step-bunched Si(111) surface obtained entirely by dc annealing with: (a)

E =3.9 V/cm, (b) E =1.0 V/cm, (c) E =0.6 V/cm - the step bunches

expand and occupy most of the surface and (d) E =0.5 V/cm - the applied

electric field is below critical and is insufficient to initiate step-bunching

process. Courtesy of V. Usov
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1.3 Modeling

After the short introduction let’s proceed with the theoretical modeling of the evo-

lution of the steps during growth and sublimation. This is a complex matter and

we have to distinguish various special cases. As we will see, even for given limits

for the kinetics, the standard model solved for a number of approximations is still a

complicated highly non-linear system.

This thesis deals with two models. As already mentioned, the Burton-Cabrera-

Frank model [4] is the standard model for the step edge dynamics. The central target

here is the expansion of the equations for slow diffusion and fast attachment kinetics

to the next order non-linear terms in comparison with the previous publications

[20, 31, 32]. In the next chapter we will see, that such terms could play an important

role, despite of their small prefactors. First, I will introduce the model generally and

subsequently I will specify the studied situation.

The second model is a model for the dynamics of transparent steps in the limit

of fast diffusion and slow attachment kinetics, which was recently introduced by

Ranguelov and Stoyanov [36]. Actually, in their two previous publications [34, 35],

they started with a bit simpler models for opaque steps. Subsequently, in [36], they

extended the equations for a vicinal surface with a very strong transparency. This

work will stay in the frame of the last limit, and we will look for further particulars,

which could contribute to the theoretical description of the transparent steps on

vicinal surfaces.

1.3.1 The Geometry of Vicinal Surfaces

We can define a vicinal surface as follow:

A vicinal surface contains parallel steps of well-defined step edges of monoatomic

height h0 and terraces confined between the step edges.

Here, the steps are taken to be straight after coarse-graining to the mesoscopic

scale15, so that the M rough steps can be replaced by averaged steps with positions

xi with i ∈ [1,M ]. Secondly, the steps are taken to be much longer than the terrace

widths. For that reason we can approximate the steps as infinite long objects in order

to neglect the boundary effects, which can occur on the crystal edges. On the meso-

scopic scale, an infinitesimal movement of such average step happens instantaneously

with velocity vi =
∂xi(t)
∂t

along the whole step edge. This consideration can be used

to simplify the vicinal surface to a one-dimensional step train configuration, see fig.

15In the literature, the range of mesoscopic scale is often 100 nm to 1000 nm. The considered

structures have sizes, which could be a little bit larger than this interval, see figures 1.2 and 1.3.
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x

h

ℓi
ℓi−1

xi−1 xi xi+1

h0α

Figure 1.4: Step train of ascending monoatomic steps (of height h0) in the positive

x direction. The steps have positions xi bounding terraces of widths

ℓi = xi+1 − xi. The misorientation angle is called α.

1.4. The i-th terrace, confined between the i-th and i + 1-th steps is represented

through the time dependent terrace width ℓi(t) = xi+1(t) − xi(t). Finally, those ge-

ometrical replacements classify the following models as quasi one-dimensional sharp

step models.

The misorientation angle of the vicinal surface α is given by

tanα =
h0

ℓ
· (1.1)

Now, we can define the step density, i.e. number of steps per unite length, through

ρ =
tanα

h0

=
1

ℓ
· (1.2)

It is worth mentioning, that by changing the direction of a step train, the boundary

conditions for the adatom concentrations on the terraces should be correspondingly

modified in order to preserve the underlying physical phenomena. For the cases

with effective sublimation there is a convention in the community to use a step train

with monotonically ascending steps in the positive x direction, like in fig. 1.4. This

convention is used in the following text.

1.3.2 Kinetic Processes

For the derivation of the equations of motion, it is important to identify the micro-

scopic kinetic processes, and describe them by using mathematical language. For

more reading, see the BCF paper [4] and additionally the books by Markov [24],

Pimpinelli and Villain [30], Michely and Krug [25] and the review articles [19, 16, 26]

Keeping in mind the Terrace Step Kink model, in homoepitaxy16 we can distinguish

16Homoepitaxy is an epitaxy of only one material, i.e. the substrate and the film consist of the same

material.
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y

x

kinks

lower terrace

upper terrace

d)

c)
b)

a)

Figure 1.5: Kinetic processes on a crystal surface: a) diffusion on the terraces, b)

diffusion along the step edge, c) attachment/detachment at the step edge

and d) jumps of adatoms between two neighbored terraces.

between the following processes of adatoms: surface diffusion, diffusion along a step

edge, nucleation and clustering, attachment/detachment to the step, jump from one

terrace to the other. In the following the diffusion along the steps is taken to be very

fast, because of a high concentration of kinks17. Every adatom, which arrives at the

step edge will find almost immediately a kink, stay on it or jump to the next terrace,

or move back to the initial one. On the other hand, the formation of dimers and

more complicated clustering, leading to nucleation, are neglected.

A starting point is the general physical law, saying, that an evolution occurs in a

direction minimizing the free energy18 Φ. Here Φ has contributions from the both

phases, solid and gaseous. On the other hand, the chemical potential19 µ = ∂Φ
∂N

is the

change of the free energy when varying the number of particles. That means that

every change of the chemical potential corresponds to an excess of the free energy and

a moving away from the equilibrium. Thus µ is the driving force for the elementary

kinetic processes on the crystal surface. The difference of the chemical potential with

respect to the equilibrium value µeq is called supersaturation20 ∆µ = µ − µeq. The

17Frenkel has shown, that a monomolecular step at temperatures above the absolute zero has always

nonzero concentration of kinks, see [11]
18At this minimum the surface of the solid will have its equilibrium form.
19This is true for incompressible solids.
20Here we define the supersaturation, needed for growth. For the case of sublimation, the consid-

erations are analogous.
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1.3 Modeling

adatom density21 on the surface n depends on the chemical potential by the grand

canonical expression

n = exp(
µ

kBT
) = neq exp(

∆µ

kBT
), (1.3)

where kBT is the thermal energy. The first order expansion leads to

∆µ/kBT ≈ n− neq

neq
· (1.4)

Analogously, the gaseous silicon could be considered as ideal gas and the supersatu-

ration

∆µ/kBT ≈ P − P∞

P∞
, (1.5)

where P∞ is the equilibrium vapor pressure of an infinitely large crystal and P is

the achieved pressure. So, the change of the initial equilibrium pressure P∞ to P

changes the equilibrium concentration neq to n. Those considerations are general

for solid-fluid interfaces [24]. Now let us follow the processes, for the case that the

surface of the solid is vicinal.

Deposition The deposition flux22 F in the UHV chamber can be controlled by the

experimentalists and is on average constant on all terraces, i.e. Fi = F . The gaseous

phase is considered as an infinite source of atoms. The flux is given by the expression
P√

2πmkBT
, where m is the mass of the atoms. The number of atoms deposited directly

to the step edges is negligibly small and is not taken into account.

Desorption The desorption flux G is also measurable, but in comparison with the

deposition it is much more difficult to be controlled. The terraces are only limited

sources of atoms and the attachment kinetics are an additional disturbance. For that

reason, the G depends on the number of adatoms and the average life time of an

adatom before desorption τs = (1/νs) exp(Edes/kBT ) with desorption energy barrier

Edes and frequency factor νs. So, we can write the rate of desorption as 1/τs and the

flux from the i-th terrace as

Gi =
ni

τs
· (1.6)

21In experiment, the exact number of adatoms can not be established due to the reason that the

adatoms move (hop) relatively fast. Therefore, the natural variable is the concentration of

adatoms.
22also called flux of adsorption
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In equilibrium between the solid and gaseous phases, for given (constant) vapor su-

persaturation ∆µ, we have Fi −Gi = 0, which is equivalent to

neq = Fτs · (1.7)

Surface diffusion of Adatoms The diffusion process has a central role in a lot of

physical phenomena. For example, it is an individual or a collective process of random

walks of pedestrians. Here, the adsorbed gas is a two-dimensional many-particle

system and we have to deal with a collective two-dimensional (surface) diffusion23.

Because of the attachment/detachment kinetics the adatom concentration could be

dependent on the spatial position and on the time ni(x, t) 6= neq. A gradient in the

concentration leads to a flux

j(x, t) = −Ds∇xn(x, t), (1.8)

with direction showing from places with higher to such with lower concentration.

This is, the so called, Fick’s first law. The diffusion on vicinal Si(111), in contrast to

the other much studied vicinal Si(001), has a direction independent surface diffusion

constant Ds, which is taken to be constant and identical on all terraces.

If the concentration of diffusing adatoms is low, which is the case here, the col-

lective diffusion constant is identical24 to the one for one-particle diffusion. Thus

we can consider the material constant Ds = D0
s exp(−ED/kBT ), with a prefactor D0

s

depending on the attempt rate25 for an adatom to jump between the valleys of the

potential landscape, produced by the lattice atoms on the terraces. ED is the energy

barrier for diffusion. Using the well-known statistical law for the mean displacement

of a two-dimensional random walker < r2(t) >= 4Dst we can define a length scale of

the diffusion process, the so called diffusion length:

ℓD =
√

Dsτs, (1.9)

where τs is the same time scale as in the desorption process.

23Three dimensional diffusion effects, like sintering, are neglected. Such effects are typical for fluids

and soft matter systems, but they are not typical for homoepitaxy on crystalline substrates,

where the kinks are the only energetically beneficial positions for material exchange between the

two phases.
24For verification see for example [24].
25It depends on the vibration frequency ν (≈ 1013sec−1) and the size of an occupation site a, i.e.

D0
s = a2/τs = a2ν
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1.3 Modeling

Attachment/Detachment Kinetics As was mentioned in the introduction, the in-

corporation and removal of atoms to the solid phase is governed by attachment/detachment

kinetics at the steps. We include the effects of kink configurations and diffusion along

the step edge in the kinetic coefficients k± by replacing the two-dimensional surface

geometry by the one-dimensional step train. The kinetic coefficients can be different

for the atom exchange with the step, depending on the direction. For the upper/lower

terrace the coefficient is indexed by −/+. Later we will come back to this possible

asymmetry (k− 6= k+), when we discuss the Schwoebel effect. On the other hand

k± are averaged temperature dependent parameters (Arrhenius functions with the

corresponding energy barriers) and again are taken to be identical for all steps26.

The attachment/detachment kinetics provide a new length scale, the so called

kinetic lengths

ℓ± =
Ds

k±
, (1.10)

in analogy to the diffusion length. In the following we will say, that ℓD ≫ ℓ± cor-

responds to fast attachments/detachment kinetics and slow diffusion (and vice versa

for ℓD ≪ ℓ±), independently on the finite averaged terrace width ℓ.

It is important that steps are considered as reservoirs of atoms, and can be used

as sources or sinks, depending on the local equilibrium in the vicinity of the step.

Step crossing Analogous to the attachment kinetics we can define a parameter for

the strength of transparency at the steps, p. In other words, p gives the probability,

that an adatom walking along the step edge can jump to the next terrace before

finding a kink position. A corresponding length can be defined as

dp =
Ds

p
· (1.11)

In the limit of opaque steps p vanishes and dp becomes infinitely large. For the limit

of very strong transparency we can write ℓ ≫ dp.

1.3.3 Burton-Cabrera-Frank Model

The standard model for the evolution of a step train was defined by Burton, Cabr-

era and Frank in 1951 [4]. They argued, that moving steps on the vicinal crystal

surface means increasing or decreasing of the crystal volume. In order to find the

26This is plausible, because in all considered cases, there are situations of regular evolution of the

vicinal surface. Of course, all averages have to be discussed by comparison with real experimental

data.
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rate of advancement of the steps, i.e. the velocity ∂xi/∂t, we need first to find the

general solution of a balance equation for the concentration profiles of adatoms on

the terraces, see fig. 1.6. Using mass conservation at the bounding steps xi and xi+1

the constants of integration can be found and so the solutions are specified. Then,

using the Fick’s first law, we can find the fluxes from above and below the step at

position xi and finally, the superposition of those fluxes gives the searched velocity.

Mathematically, this is a moving boundaries problem27.

Dynamical Equations

The BCF model is in accordance with the above considered kinetics. First, using

Fick’s second law, we can write a diffusion equation on the i-th terrace. The time

dependence of the adatom concentration ∂ni(x, t)/∂t is given by its second spatial

derivative Ds∂
2ni(x, t)/∂x

2, which is a diffusion term with the surface diffusion con-

stant as a prefactor. This equation represents the conservation of adatoms on the

i-th terrace. Further, because of the exchange with the gaseous environment we can

extend it to the balance equation:

∂ni(x, t)

∂t
= Ds

∂2ni(x, t)

∂x2
− ni(x, t)

τs
+ F · (1.12)

In other words, the concentration on every point x ∈ [xi, xi+1] is increasing due to

the adatom deposition and decreasing due to the desorption.

For the case of pure sublimation, usually the deposition flux F is considered to

be very small in comparison to the desorption flux Gi. On the other hand in the

case of pure growth, the desorption rate 1/τs vanishes, which corresponds to τs → ∞.

Indeed, this limit means that a deposited adatom will stay so long on the surface until

it finds a step with kinks. The asymmetry between both terms, due to desorption

and deposition, will lead to different equations with eventually different linear and

non-linear behavior.

Electromigration

In section 1.2 we presented (from the experimental point of view) the phenomenon

of the electromigration-induced step bunching. Short time after the experiment of

Latyshev et al [21], Stoyanov included an additional drift term in the balance equa-

tion (1.12), to describe the electromigration effect [42]. To this aim, he used the

famous Einstein relation28, which is a relation between the diffusion coefficient and

27It is also called a Stefan’s problem
28The Einstein relation was introduced by Einstein in his historical work on Brownian motion from

1905 (Annalen der Physik 17: 549–560).
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Figure 1.6: BCF Model

the mobility ζ :

Ds = ζkBT · (1.13)

On the other hand, the mobility is defined by

ζ =
vd
Fel

, (1.14)

where Fel is the electromigration force and vd is the drift velocity.

Then the mass flux in Ficks first law is modified by the following drift term:

~jd(x, t) = n~vd = nζ ~Fel =

= Ds

~Fel

kBT
n(x, t) =: Ds

~feln(x, t) · (1.15)

The considered quasi one-dimensional model requires only the projection of ~fel in

the x-direction. f−1
el = kBT/Fel defines an additional length scale, the so called

electromigration length. It is considered to be very large in comparison with the

other length scales ℓ, ℓD, ℓ±.

The dynamical equation (1.12) changes to:

∂ni(x, t)

∂t
= Ds

[
∂2ni(x, t)

∂x2
∓ fel

∂ni(x, t)

∂x

]

− ni(x, t)

τs
+ F · (1.16)

Phenomenologically, the effect of electromigration is not completely clear. On one

hand, the heating current can direct the adatoms if they posses an effective electric

charge. The electromigration force can be written as ~Fel = qeff ~Eel, where Eel is

the electric field. The effective charge is qeff = zde with zd as the effective valence

and e the elementary charge. But, on the other hand, charged particles (inclusive

impurities) in the crystal bulk can exert a wind force on the adatoms, which is a kind

of scattering. One can use a ballistic model in order to find theoretical description

for that force. The electromigration force is due to a combination of both effects.
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Quasi-static Approximation

For vicinal surfaces of M steps, the equations (1.12) are M partial differential equa-

tions of second order with respect to the spatial coordinate x and of first order with

respect to the time t. By using the quasi-static limit for the concentration profiles,

we can eliminate the time derivative and the system will consist of M ordinary linear

non-coupled differential equations of second order.

∂ni(x, t)

∂t
= 0 · (1.17)

The general solutions ni(x) can be easily found.

This approximation is good for the situation, where the attachment/detachment

kinetics and the diffusion are fast enough in order to compensate every infinitesimal

movement of the step position. For example, if the diffusion time is given by τs =

ℓ2/Ds and the movement of the step over the terrace of width ℓ by the time scale

τst = ℓ/v, the ratio of both time scales is called Péclet number [19, 28]:

Pe =
τs
τst

(=
vℓ

Ds
) · (1.18)

Thus, the quasi-static limit we take for the case of fast attachment/detachment ki-

netics, where Pe ≪ 1.

Remark: For vicinal surfaces with very highly transparent steps, the concentra-

tions ni(x, t) are coupled much stronger. Thus, the dynamics have to be considered

beyond the quasi-static limit, see next section on the Transparency model.

Boundary Conditions

Having the general solutions ni(x) of equations (1.12) or (1.16) in the limit (1.17),

we need the constants of integration. Usually, a physical law can provide additional

equations and such a law is the mass conservation at the step edges. It represents

boundary conditions on the two neighboring steps of a terrace.

First, let us neglect transparency (p = 0). This leads to a jump in the concen-

tration profile at the step edge, i.e. n−
i (xi) 6= n+

i−1(xi), see fig. 1.7. Because of the

attachment/detachment kinetics both differ from the equilibrium value neq
i = Fτs,

which follows from the exchange equilibrium between the adlayer and the gaseous

environment. Let us define a supersaturation ∆µi corresponding to the exchange at

the i-th step. (The interface between the adlayer and the step edge, both considered

as reservoirs of atoms, stands in the vicinity of xi.)
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Figure 1.7: The adatom concentration profile at the i-th step edge for the case of

sublimation. n0
eq is constant for the whole vicinal surface. On the other

hand neq
i = n0

eq exp(∆µi/kBT ) differ from step to step, depending on the

local chemical potential ∆µi.

If the local step edge supersaturation vanishes for all steps, the local equilibrium

concentration is constant neq
i = n0

eq. Otherwise it will differ from step to step:

neq
i = n0

eq exp(∆µi/kBT ) · (1.19)

Typically, for curved steps this supersaturation is proportional to the curvature at

the i-th step κi, i. e. ∆µi/kBT ∝ κi, due to the Gibbs-Thomson capillarity formula

[24]. Here, we neglect the step curvature κi. In the next paragraph, we consider

nonzero values of the supersaturation at straight steps emerging from the effect of

step-step interactions.

Now, there is a mass conservation for the adatom transfer due the differences with

respect to the local equilibrium concentration neq
i . The mass currents are compen-

sated by the diffusion fluxes due to the local gradients of the concentration profiles

from both sides ∇ni(x → xi) and ∇ni−1(x → xi) [19]. In other words, a mass flux,

coming from the left neighboring (i-th) terrace due to the diffusion in the vicinity of

the i-th step is compensated by the local supersaturation ni(x → xi)− neq
i :

f−(x → xi) = k− [n(x → xi)− neq
i ] = −Ds∇ni(x → xi), (1.20)

and depends on the kinetic coefficient k−, which defines the velocity of incorpora-

tion/removal of atoms into/from the reservoir of the averaged step.

Now, let’s consider a terrace of width ℓ bounded by the steps on the positions

xi = −ℓ/2 and xi+1 = ℓ/2. With (1.20), follows for the fluxes f− and f+ at both
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steps (the mass conservation):

f− = Ds

[
∂n(x)

∂x
− feln(x)

]

= +k−[n(x)− neq(x)], at x = −ℓ/2,

f+ = Ds

[
∂n(x)

∂x
− feln(x)

]

= −k+[n(x)− neq(x)], at x = +ℓ/2 · (1.21)

With (1.21) the constants of integration are determined and the special solutions

for the concentration profiles are found. Again, by using Fick’s first law we can find

the mass fluxes from below (f i−1
+ ) and above (f i

−) the i-th step. The sum of both

fluxes gives the velocity of the step edge:

vi =
dxi

dt
= f i

− + f i−1
+ · (1.22)

In the boundary condition (1.21) there are two additional effects: The Ehrlich-

Schwoebel effect and the effect of step-step interactions. The first one is due to the

dependence on the direction of the attachment/detachment kinetics and the second

one is included in the equilibrium concentration neq(x).

x

h

f i−1
−

f i
−

f i−1
+

f i
+

f i+1
−

f i−2
+

xi−1 xi xi+1

vi 7−→

Figure 1.8: The velocity vi of the i-th step is given by the superposition of both fluxes

f i−1
+ and f i

−, coming from the neighboring terraces.

Ehrlich-Schwoebel Effect

In the middle of the 1960’s Ehrlich and Hudda observed the growth of tungsten on

tungsten by using Field Ion Microscopy [9]. Until that moment it was assumed, that

the steps are ideal sinks and the adatoms have unit probability to find immediately

a kink, and so to become step atoms. But they showed, that this is not always true.

Moreover, they supposed, that the probability should depend, on the one hand, on

the crystallographic orientation of the steps, and, on the other hand, on the direction

from which the adatom is approaching the step. Due to that observation, Schwoebel
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and Shipsey introduced unequal probabilities for the adatoms on both neighboring

terraces to move into the step. They model this behavior by introducing an additional

energy barrier, which the adatoms see when trying to reach the step, see fig. 1.9. Thus,

the adatoms coming from the terraces are reflected more often at the step edge.

Further, Schwoebel defined in [39] the already mentioned velocities k± and the

boundary conditions (1.21) with neq = n0
eq, neglecting the local chemical potential.

Equation (1.21) defines the kinetic lengths (as the ratio between the diffusion constant

and the kinetic coefficients). The adatom concentration jump on the right hand side

of the boundary conditions is proportional to the flux on the left hand side, which is

the slope of n, see fig. 1.7. The kinetic lengths l± are proportionality constants giving

the distances at which the adatoms view the step edge.

Nowadays, we refer to a case with kinetic coefficient k+ larger than k− as a direct

Ehrlich-Schwoebel effect [37], and, respectively to k− > k+ - as the inverse Ehrlich-

Schwoebel effect [6]. Schwoebel solved the moving boundary problem (1.22) and

showed, that the asymmetry, provided by k− 6= k+, can lead to linear instabilities

and so to morphological changes on the crystal surfaces. For the case of direct/inverse

Ehrlich-Schwoebel effect and pure sublimation/growth the calculations exhibit a step

bunching instability, see the Linear Stability Analysis in the next chapter.

V

Figure 1.9: Ehrlich-Schwoebel barrier

Step-Step Interactions

Let us come back to the local equilibrium concentration neq
i at the i-th step, needed

for the determination of the boundary conditions (1.21). As was already mentioned,

neq
i depends through (1.19) on the local chemical potential ∆µi. In order to find an

expression for ∆µi, it is necessary, for a moment, to consider the system to be in a

global equilibrium. In principle there are two contributions to the chemical potential.
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The first one is due the diffusion along the steps, which is driven by the step edge

curvature and which is incorporated already locally in the attachment/detachment

coefficients k±, but is neglected, now, in (1.19). The second and non-trivial contri-

bution, which is much more important in the case of parallel averaged straight steps

is the effect of step-step interactions.

The local fluctuations of steps on vicinal silicon surfaces were experimentally ob-

served by using STM measurements. In this manner, it was confirmed, see [16, 26],

that the energy of repulsion, i.e. potential, between two neighboring steps U(ℓ) de-

pends on the width of the terrace separating both steps according to the expression

U(ℓ) =
geff
ℓ2

, (1.23)

where geff is an effective proportionality parameter. Effective, because there are two

explanations for the nature of the repulsion: elasticity [26] and entropy [14, 26].

The elastic type of step interactions emerges as follow. The emergence of a step on

a surface leads to an elastic disturbance, which in the absence of any surface defects

is zero. On the other hand, a step bounded by two equal neighboring terraces will

be in an elastically relaxed state. The dynamics of a system with many steps in

a non-equidistant configuration will lead to an evolution which resembles the one of

coupled elastic springs. The energy of elastic repulsion between two neighboring steps

is given by U(ℓ) = A/ℓ2 [16, 26], where A ≈ Ea4 is the material dependent strength

of repulsion. E is the Young modulus and a is the atomic size.

But initially, the step-step repulsion were theoretically proposed by Gruber and

Mullins in 1967 [14] not for the elastic, but for the entropic interaction. In the

previous sections, we considered, that the steps in average are perfectly straight.

But as a matter of fact, the steps have kink positions and so, they are, at least on

an atomic scale, rough. The analysis in [14] presumes this fact and, further that

two steps can not cross each other, even if the steps are perfectly straight. This is

obvious, knowing that overhangs, from the one step above another, are energetically

unfavorable. That means that steps coming very close to each other should obey

entropic repulsion, similar to the physics of polymers. This is a thermodynamical

consequence, which will be presented here.

The full free energy of the vapor-solid system is given by

Φ(N, T ) = f s
bV (ω) + f f

b(V (Ω)− V (ω)) + Φin(T, ω), (1.24)

where f s
b and f v

b are the bulk free energy densities of the solid and vapor phases, and

the V -s are the corresponding volumes. The last term Φin(T, ω) is the free energy

due to the interface, which depends on the temperature T and the geometry, denoted
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1.3 Modeling

by ω. Φin is then given by the integral

Φin =

∫

∂ω

dAγ(~n, T ), (1.25)

where the integrand γ is the local free energy per unit area and depends on the

orientation ~n.

Now, in the frame of the reduced geometry of the vicinal surface, we consider

the interfaces, i.e. the steps, as one-dimensional fluctuating lines in the xy-plane.

First, let us look at an isolated step of length L with local deformation xi from its

averaged position x̃i along the step edge direction y. Afterwards, we will find the

deformation free energy contribution per step and then sum over all steps. Because

of the fluctuation, the infinitesimal length of the step increases from dy to ds =

dy
√
1 + (∂yxi)2. The local orientation θ fluctuates around the misorientation angle

θ̃ of the averaged step.

For the total free energy difference we can write the standard formula29

Φin
i =

∫

dy

[

γ(θ)
√

1 + (∂yxi)2 − γ(θ̃)

]

≈ 1

2
γ̃

∫

dy(∂yxi)
2, (1.26)

by using the step edge stiffness30 γ̃ ≡ γ + ∂θθγ [19].

In [14], Gruber and Mullins introduced the projected surface free energy of all steps

γ⊥ =
γ

cosα
= γ0 +

γ1 tanα

h
, (1.27)

where tanα is the surface slope defined in (1.1), γ0 is the free energy of the facet, i.e.

the terraces, and γ1 = ǫφ(α, ...) is the contribution from the steps. The constant ǫ is

the free energy for non-interacting steps. That means, that in general γ1 is not equal

to ǫ. The function φ(α, ...) represents an expansion, having two contributions: one

due to non-interacting steps and one due to step-step interactions. In other words, for

the case of independent steps, γ1 is constant, and thus φ = 1, but, when considering

the very special case of interaction (1.23), the function (1.27) takes the form

γ⊥(ρ) = γ0 + ǫρ+ f3ρ
3, (1.28)

where the last term is the contribution of the free energy due to those interactions.The

expression (1.28), considering (1.2), represents an expansion of the projected free

energy, in different orders of the step density ρ.

29This is a general formula for variation of the free energy of a one-dimensional object as a string[1].

γ̃ is called in [1] tension σ, see section 3.2.1 Path integral and statistical mechanics
30for given averaged θ̃
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The interaction free energy per step f3/ρ = f3ℓ equals the potential U(ℓ). The

question here is: what is the exact expression for f3, including both effects? This is

a non-trivial question. One possible approximative solution can be obtained when

considering a fluctuating step, confined in a region by two straight steps, see Joós et

al [17] or Pimpinelli and Villain [30].

The exact solution for the expression of f3, including both effects, elasticity and

entropy, was obtained for the case of only entropically interacting steps by Villain

and Bak [46], and the complete case of interacting steps by Jayaprakash et al [5]. The

idea here is to compare the thermodynamics of interacting steps to a one-dimensional

many-body system of spinless free fermionic quasi-particles, and so to map the prob-

lem to an exact solvable quantum mechanical problem.

The following derivation of the wanted expression for geff is taken from

the very recent review article by Misbah, Pierre-Louis and Saito[26]. For

the general conceptions of the quantum field theory, like partition function, path

integrals, and especially the concept of the second quantization, see [1]. The calcula-

tions are carried out in two steps. Firstly, the entropic repulsion can be modeled by

considering the steps as fermions and secondly, the (very special) interaction of the

fermions accounts for the elastic interaction.

A system of non-crossing steps has to obey the condition

0 ≤ x1(y) < x1(y) < . . . < xN(y) ≤ Lx, (1.29)

where xi is again the position of the i-th step, given for different y. Quantum me-

chanically we can compare the positions of the steps to the positions along a one-

dimensional chain of quasi-fermions, having in mind the Pauli exclusion.

The energy of the deformations along the N steps is given by eq. (1.26):

Edef =
1

2

N∑

m=1

∫ L

0

γ̃

kBT
[∂yxm(y)]

2dy · (1.30)

The next step is to consider all possible step deformations (configurations), obeying

(1.29). Then, by using the path integral we can write the partition function

Zint =

∫

Dx1(y) · · ·DxN(y)× exp

[

−
N∑

m=1

∫ L

0

γ̃

2kBT
[∂yxm(y)]

2dy

]

, (1.31)

with the following quantum mechanical (q.m.) correspondence:

• particle mass 7−→ γ̃/kBT ,

• Planck constant: ~ = 1,
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1.3 Modeling

• q.m. temperature 7−→ L−1,

The obtained Hamiltonian for free particles (zero potential) in the spatial represen-

tation reads:

Ĥ = −
N∑

m=1

γ̃

2kBT

∂2

∂x2
m

· (1.32)

And the partition function with (1.32) is written in the usual q.m. way:

Zint = Tre−ĤL · (1.33)

Then, going from the first into the second quantization, the Hamiltonian of the system

of free quasi-particles in diagonalized form is given by

Ĥ =
kBT

2γ̃

∑

k2â†kâk, (1.34)

where â†k and âk are the creation and annihilation ladder operators. The limited

system size is accounted for by the discrete wave numbers in the inverse space k =

2πn/Lx, where is n = 0,±1,±2 . . ..

Now L is taken to be very large, which corresponds to zero (q.m.) temperature.

In this limit, only the ground-state is important and it possesses the energy

E1 =
kBT

2γ̃

∑

k<kF

k2 → kBT

2γ̃
Ly

π2

3ℓ3
, (1.35)

where kF = πN/Lx = π/ℓ is the Fermi wave number for N fermions. Then the

interaction free energy of q.m. non-interacting particles is given by:

f3 = −kBT

LLy
lnZint =

kBT

Lx
E1 =

(πkBT )
2

6γ̃ℓ3
=

U

ℓ
=
( g

2ℓ2

) 1

ℓ
· (1.36)

Next, let us consider additionally, that the fermions are interacting pairwise with

each other by means of the elastic interaction A/ |xm − xm′ |2. Eq. (1.32) changes to

Ĥ = −
N∑

m=1

γ̃

2kBT

∂2

∂x2
m

+
A

kBT

∑

m<m′

1

|xm − xm′ |2

=
kBT

γ̃

[

−
N∑

m=1

∂2

∂x2
m

+ g̃
∑

m<m′

1

|xm − xm′ |2

]

(1.37)

with the coupling constant g̃ = 2γ̃A/(kBT )
2. The Ĥ in Eq. (1.37) is the Hamilto-

nian of a one-dimensional interacting fermion system. The eigenvalue problem was
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considered by Sutherland (1971) [44] as the one of the few exactly solvable problems

in the second quantization theory. For the ground state in the limit of very large L,

E1(g) = E1λ̃
2 was found, where λ̃ is the following function of g̃:

λ̃ =
1

2

(

1 +
√

1 + 2g̃
)

· (1.38)

Analogously to (1.36) U(ℓ) is obtained, as well as an effective value of the prefactor:

geff =
λ̃2(πkBT )

2

3γ̃
· (1.39)

Using the relation △µi/(kBT ) = ∂xU(ℓ) we find the chemical potential:

△µi

kBT
= ℓ3

∂

∂xi

[
g

2(xi−1 − xi)2
− g

2(xi − xi+1)2

]

=

= g

[
ℓ3

(xi−1 − xi)3
− ℓ3

(xi − xi+1)3

]

=

= −g

[
ℓ3

(ℓi)3
− ℓ3

(ℓi−1)3

]

, (1.40)

where g is rescaled by ℓ3 in order to be a dimensionless constant, i.e. g = 2geff/ℓ
3.

Thus, the local equilibrium concentration neq
i is a function of both neighboring terrace

widths ℓi−1 and ℓi, see eq. (1.19). In the case with equidistant steps, i .e. ℓi = ℓi−1,

the difference △µi vanishes and neq = n0
eq.

Transparency at the Steps

In the framework of the Burton-Cabrera-Frank model one can also include the trans-

parency of adatoms at the steps into the boundary conditions (1.21). The exis-

tence of a nonzero number of jumping adatoms will decrease the effect of the attach-

ment/detachment term and the flux (1.20) changes to

f− = k−[ni(x)− neq
i (x)] + p[ni(x)− ni−1(x)] ·

In our language of adatom concentrations, the new term represents the difference

in the concentrations ni(x) and ni−1(x) of the neighboring terraces ℓi and ℓi−1 at

the step xi. The proportionality factor, p, is the transparency parameter, which we

introduced in the section 1.3.2. The system (1.21) changes to

f− = Ds

[
∂ni(x)

∂x
− felni(x)

]

= +k−[ni(x)− neq
i (x)] + p[ni(x)− ni−1(x)], at x = xi,

f+ = Ds

[
∂ni(x)

∂x
− felni(x)

]

= −k+[ni(x)− neq
i (x)] + p[ni+1(x)− ni(x)], at x = xi+1,

(1.41)
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1.3 Modeling

where again ℓi = x1+1 − xi = ℓ, but ℓi−1 and ℓi+1 arise as additional parameters in

the special solution ni(x). For that reason, the inclusion of transparency in the BCF

model complicate the solutions.

1.3.4 Beyond the Quasi-static Adatom Profiles

The power of the above considered BCF model lies in the quasi-static approximation.

But, of course, this approximation is not always fulfilled and the inclusion of the

transparency makes the calculations very complicated.

This section deals with a recently introduced model by Ranguelov and Stoyanov

[36], which goes beyond the quasi-static approximation and which we call the Trans-

parency model. They argued, that in the case of fast diffusion and slow attachment

the concentrations ni(x) are considered to be constant, i.e. approximated by their

averages along the terraces, but different on each terrace ℓi. Due to sublimation,

the broader the terraces the larger the desorption flux and the smaller the constant

concentrations, because of the larger area at which the adatoms are diffusing. This

means, that the constant concentrations ni can not follow instantaneously the changes

in step positions xi, and thus (1.17) is no longer true. Ranguelov and Stoyanov called

this effect a memory effect of the adatom concentrations ni due to the history of the

terraces [34]. For an average step velocity V above a critical mean step velocity Vcr,

the memory effect becomes important and the step configuration evolves rather in a

step density wave, than in an equidistant step train. The movement of the step train

x

n

li

ni

li−1

ni−1ni−2

ni+1

xi−1 xi xi+1

Figure 1.10: The concentration profiles ni are constant and different on different ter-

races ℓi.

becomes instable, without the presence of both asymmetric effects: electromigration

and Ehrlich-Schwoebel effect.

Before the authors included the effect of step transparency[36], they considered

two other a bit simpler cases [34, 35], both in the limit of very fast diffusion, slow
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attachment/detachment kinetics and vanishing Ehrlich-Schwoebel effect (k+ = k− =

k and ℓ+ = ℓ− = dk).

The first special case is that of step-step interactions during sublimation [34]. The

model consists of two coupled equations for the terrace widths ℓi and concentration

profiles ni

dni

dt
= −ni

τs
− 2k

ℓi
ni +

k

ℓi
[neq(xi+1)− neq(xi)] ,

dℓi
dt

=
dxi+1

dt
− dxi

dt
= −kΩ{ni+1 − ni−1 + 2 [neq(xi+1)− neq(xi)]} · (1.42)

Analogously to the balance equation (1.12), ni decreases in time by means of the

desorption flux and both mass fluxes of incorporation of adatoms into the steps, and

vice versa, it increases by means of the fluxes coming from the step edges, due to the

removal of step atoms. Here, the deposition flux is neglected. The second equation

represents the difference in the velocities, i.e. the superpositions of the fluxes, for two

neighboring steps, see (1.22) and (1.21).

By using the dimensionless terrace widths ηi = ℓi/ℓ and concentration profiles

ci = ni/n
0
eq and including the contribution due to the step-step interaction into the

chemical potential, see (1.40), system (1.42) changes to

dci
dτ

= − ci
τ ′s

− 2

ηi
ci +

2

ηi
+

1

ηi
g

(
1

η3i−1

− 1

η3i+1

)

,

dηi
dτ

= −n0
eqΩ

[

ci+1 − ci−1 + 2g

(
1

η3i−1

− 2

η3i
+

1

η3i+1

)]

, (1.43)

with τ ′s = τsk/ℓ and τ = kt/ℓ. Using linear stability analysis the authors find the

condition and the critical step configuration velocity, above which the steps move in

step density waves, although there is no asymmetry effect.

In the second case [35], in addition, the (asymmetry) effect of electromigration was

taken into account. Because of the drift nature of the electromigration term, the

constant31 concentration profiles ni(t) become linear functions

ni(x, t) = ni(t) [1 +∇x(ni)x] ,

with slope proportional to fel = Fel/kBT . The instability condition from the linear

stability analysis changes, respectively, by addition of a term due to the electromi-

gration, too [35].

The next step is to consider the desired case with the effect of transparency [36].

Ranguelov and Stoyanov solved the (quasi-static) BCF-model with the boundary

31constant along each terrace, but not fixed in time
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Figure 1.11: The concentration profiles ni in the presence of a drift term are linear

with constant slope.

condition (1.41) in the limit of very strong transparency ℓ ≫ dp. They found, in this

limit, that the gradient

∇ni = 2n0
eq

feldp
ℓ

(1.44)

is proportional to the ratio of the transparency length dp and the electromigration

length f−1
el .

Due to the effects of transparency and electromigration, the first equation in (1.42)

becomes

dni

dt
= −ni

τs
− 2k

ℓi
ni +

k

ℓi
[neq(xi+1)− neq(xi)]−

2p

li
ni

+
p

li
ni−1 (1 + feldp) +

p

li
ni+1 (1− feldp) · (1.45)

By using the same rescaling like in (1.43), finally the system of coupled differential

equation reads, [36],

dci
dτ

= − ci
τ ′s

− 2

ηi
ci +

2

ηi
+

1

ηi
g

(
1

η3i−1

− 1

η3i+1

)

+
Pk

ηi
(ci+1 − 2ci + ci−1) +

fs
ηi
(ci−1 − ci+1),

dηi
dτ

= −n0
eqΩ

[

ci+1 − ci−1 −
fs
Pk

(ci−1 − 2ci + ci+1) + 2g

(
1

η3i+1

− 2

η3i
+

1

η3i−1

)]

, (1.46)

where the second equation is the rescaled one for the terrace widths. The prefactors

fs = feldk and Pk = p/k(≫ 1) are ratios32.

32fs is a ratio of two lengths and Pk is a ratio of two velocities
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x

ℓ
ℓ

ℓ
ℓ

ℓi+1

ℓi−2

v −→

vi −→
vi−1 −→

vi+1 −→
ℓi

ℓi−1

xi−1 xi xi+1

Figure 1.12: Perturbation of the equidistant configuration (red dotted line) of width

ℓ and constant velocity v by a disturbed configuration (black line)

1.4 Analytical Tools

1.4.1 Linear Stability Analysis

The linear stability analysis is a very important analytical tool for the study of

dynamical systems of complicated non-linear equations. Here it is used to study

dynamics of very small deviations of an initially regular configuration. In the next

chapter, where we consider the quasi-static approximation to be fulfilled, we will

meet situations of one-dimensional linear stability analysis, where the considered

system is a kind of one-dimensional oscillating lattice. The Ranguelov-Stoyanov

transparency model, considered in Chapter 3, is a non-linear system, similar to a

two-species system, where the concentrations of the species correspond to the terrace

widths ℓi and the adatom concentrations ni.

One-dimensional Fourier Space

For the vicinal geometry, the regular, stationary configuration is a step train of

equidistant steps at positions xi(t) = iℓ + vt and constant velocity33 v. We per-

turb every step edge position xi by a small time dependent disturbance

εi(t) = ε0e
iikeω(k)t, (1.47)

i.e. xi(t) = iℓ+ vt+ εi(t), see fig. 1.12.

In general, the rate ω is a function of the wave number34 k and is usually called

dispersion relation. The imaginary part Im[ω(k)] is important for the generation of

33equal for all steps
34Note, that k denotes also the kinetic coefficient in the case k+ = k− = k. In the two dimensional

case, the wave number is denoted q.
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R
e[
w
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A2>0A2=0A2<0

stable

instable

Figure 1.13: Typical curves of the real part of the growth rate Re[ω](k), shown for

three different values of A2 (A2 > 0, A2 = 0, A2 < 0) and fixed A4,

as a function of the wave number k. In the case of A2 > 0, in the

limit of very small wave number k, the growth rate has in the interval

0 < k < kmax positive values. The largest value will dominate over

all other wave numbers and defines the (inverse) wave length of the

pattern formation. In our case of straight steps, the pattern is called

step bunching (instability).
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oscillatory states, but for the stability condition one needs to consider the real part

Re[ω(k)]. In the limit of a very small wave number, k → 0, the dispersion relation35

ω(k) can be expand by Taylor series, up to fourth order, whereby the real part reads

Re[ω(k)] = A2k
2 −A4k

4, (1.48)

with coefficients A2 and A4.

The instability due to the representation (1.48) is called sometimes Type-II insta-

bility, see [7]. In fig. 1.13 we observe, that the growth rate vanishes for k = 0, and

there is a single maximum

kmax =

√

A2

2A4
, A2 > 0, A4 > 0 · (1.49)

This expression can be easily verified, by using the extremal condition ∂kRe[ω(k)]k=kmax=0.

On the one hand, for A4 → 0, kmax diverges, but on the other hand, the larger A4, the

smaller the kmax. Keeping in mind, that we consider the limit of k ≪ 1 and k > 0,

there are positive values of the dispersion, and thus instability, only in the interval

0 < k < kmax

√
2, where the largest k defines the (inverse) wave length of the pattern

formation.

To conclude: In the considered limit of very small wave number k, the instability

condition reads:

A2 > 0 · (1.50)

Therefore, A2 is the instability barrier, and if (1.50) is fulfilled the desired patten

formation of step bunching can occur. For the case A2 < 0, the initially disturbed

step train will relax back to the initial equidistant configuration.

Example: Non-interacting Steps

As example, let us consider the simplest case of vicinal surface, where the step-step

interactions are neglected and thus the fluxes in (1.21), f− and f+, are depending

only on the terrace widths. First, the equidistant step configuration is defined by

ℓi = ℓ (for i = 1..N) and all steps propagate with a constant velocity v, see (1.22).

Second, let us perturb the steps of this relaxed configuration by time dependent εi(t):

xi = iℓ+ [f−(ℓ) + f+(ℓ)]t+ εi(t), (1.51)

35or just growth rate
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where iℓ denotes the initial positions of the steps, see fig. 1.12. Now, we linearize

(1.51)

dxi

dt
≈ f−(ℓ) + f ′

−(ℓ)(εi − εi−1) + f+(ℓ) + f ′
+(ℓ)(εi+1 − εi)

.
= f−(ℓ) + f+(ℓ) +

dεi
dt

, (1.52)

which leads to a single equation for the disturbance:

dεi
dt

= f ′
−(ℓ)(εi − εi−1) + f ′

+(ℓ)(εi+1 − εi) · (1.53)

Now, with the Fourier transform (1.47) the dispersion relation reads

ω(k) = f ′
−(ℓ)(1− e−ik) + f ′

+(ℓ)(e
ik − 1) · (1.54)

Next, we Taylor expand the exp-function

ω(k) ≈ f ′
−(ℓ)

[

1−
(

1− ik +
k2

2

)]

+ f ′
+(ℓ)

[(

1 + ik − k2

2

)

− 1

]

=

= [f−(ℓ) + f+(ℓ)]
′ ik +

[
f−(ℓ)− f+(ℓ)

2

]′

k2 = A1k + A2k
2 · (1.55)

By taking into account only the real part, the instability condition (1.50) is equivalent

to

[f−(ℓ)− f+(ℓ)]
′ > 0 · (1.56)

Step-Step Interaction Term

In the next chapters, the linearization of the step-step interaction term will be utilized

several times, thus it is worthy to be presented already here:

△µi

kBT
= −g

[(
ℓ

xi+1 − xi

)3

−
(

ℓ

xi − xi−1

)3
]

≈

≈ −g

[

1− 3
εi+1 − εi

ℓ
− 1 + 3

εi − εi−1

ℓ

]

=

= −3g

ℓ
(2εi − εi+1 − εi−1) · (1.57)

Two-dimensional Fourier Space

In the model (1.42) there are 2M coupled equations for M terraces of widths ℓi and

M adatom concentrations ni on the same terraces

dℓi
dt

= θi1,
dni

dt
= θi2 · (1.58)
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Then, the non-linear functions θi1 and θi2 are linearized by using ℓi = ℓ + ∆ℓi and

ni = n0
eq + ∆ni, where ℓ and n0

eq are the non-perturbed quantities. By using the

Fourier transform ∆ℓi = eiiqℓq(t) and ∆ni = eiiq+iiφnq(t) with a phase shift φ, the

result consists (only) of two equations in the Fourier space:

dℓq
dt

= θ̃1(ℓq, nq),

dnq

dt
= θ̃2(ℓq, nq) · (1.59)

This system can be written in a matrix representation as

d~u

dt
= A~u, (1.60)

where ~u = (ℓq, nq)
T and A is 2× 2-matrix of the usual aij = ∂θ̃i/∂uj elements. Then

the stability-instability analysis reduces to an eigenvalue problem

A~uq = σq~uq, (1.61)

see [7]: Thus, the next step is to find the characteristic polynomial

0 = det(A− σqI) = σ2
q − (trA)σq + detA, (1.62)

where trA = a11 + a22 and detA = a11a22 − a12a21 are the trace and the determinant

of the matrix. Finally, the eigenvalues are given by

σ1,2 =
1

2
trA± 1

2

√

(trA)2 − 4 detA = Re[σ](q)± iIm[σ](q) · (1.63)

A stability diagram in the trA-detA plane is shown in fig. 1.14. Stability occurs only

if both real parts of σ1,2 are negative, otherwise there is instability. Again, like in

the one-dimensional case, the imaginary parts generate oscillation states. If the real

part is positive and the imaginary one is nonzero, then we speak about oscillatory

instability [7], see the (right) region above the parabola detA = 1
2
trA in fig. 1.14.

1.4.2 Continuum Limit

In first place, the continuum limit is a standard analytical procedure, which in some

cases can simplify the integration. On the other hand, there are classes of partial

differential equations, which have some similar properties, like scaling etc. Thus,

one can extract interesting behavior of the considered system, even without solving

explicitly the differential equation.

The continuum limit of the discrete step edge profile with steps at positions xi is

represented by a single smooth function h(x, t), see fig. 1.15. The evolution of a set

of M discrete equations is replaced by a single partial differential equation for h(x, t).

Mathematically, the continuum limit consists of two steps, see [20]:
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1.4 Analytical Tools

Figure 1.14: M. Cross and H. Greenside [7]: Stability diagram for the two-

dimensional problem. Above the parabola, defined by detA = 1
2
trA,

the growth rates σ1,2 are complex conjugates of one another. In the

contrary, below the parabola, σ1,2 have only real parts. Stability occurs,

when both real parts are negative.

x

h

m =
dh
dx

Figure 1.15: Continuum Limit: the stepped profile is now replaced by the smooth

height profile h(x, t) (dotted line) of local slope m(x).
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1. the so called Lagrange transform:

ℓi−1 =⇒ h(x), m(x) =
dh

dx
, (1.64)

with

ℓi−1 = xi − xi−1 ≈
h0

m(x)
; (1.65)

2. the so called Frank relation[?]:

∂h

∂t
= − h0

(xi − xi−1)

∂xi

∂t
· (1.66)

The following two very descriptive examples illustrate the procedure.

Difference of the Widths of two Neighboring Terraces (ℓi−1 − ℓi)

Let us consider, as a first example, the velocity of the i-th step to depend on the

difference of the widths of two neighboring terraces:

dxi

dt
=

Re

2
(ℓi−1 − ℓi),

where Re is a constant rate. Then, we can use the Lagrange transform

(ℓi−1 − ℓi) −→ −ℓi−1
dℓi−1

dx
−→ − h2

0

m(x)

d

dx

(
1

m(x)

)

,

and finally the Frank relation to bring both time dependences together

∂h

∂t
≈ h2

0Re

2

∂

∂x

(
1

m(x)

)

· (1.67)

Step-Step Interactions

Let us take again the term of the step-step interaction as the second example here,

where the equidistant terrace width ℓ is normalized by unity:

△µi

kBT
= g

[(
1

ℓi−1

)3

−
(
1

ℓi

)3
]

≈ −g
∂

∂x

(
1

ℓ3i−1

)

(xi − xi−1) ≈ −g
∂

∂x

(
m3

h3
0

)
h0

m
=

= − 3g

2h2
0

∂

∂x

(
m2
)
, (1.68)

see [20].
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1.4 Analytical Tools

1.4.3 Scaling

A general treatment of the scaling, with respect to universality of self organized

patterns on unstable vicinal surfaces, was discussed by Pimpinelli et al (2002) [29].

Subsequently, for the special case of step bunching instabilities during sublimation,

Krug, Tonchev, Stoyanov and Pimpinelli (KTSP) [20] introduced in 2004 two scaling

laws concerning, particularly, the minimal terrace width in the bunch, ℓmin:

H ∝ Lα, ℓmin ∝ N−γ , (1.69)

where H (= Nh0), L (= Nℓ), N and ℓ are the bunch height, the bunch width, the

number of steps and the average of terraces widths in a bunch. The values of the

exponents, α and γ, were extracted analytically in the frame of the continuum limit

and compared to the numerical simulations of the discrete equations [20]. This is the

procedure we follow in the next chapter, considering next order non-linear

(non-vanishing) terms in comparison with those, discussed by KTSP.

1.4.4 Conservation of Crystal Volume

Now, let us consider periodic boundary conditions, so that x1 ≡ xM+1 and ℓ0 ≡ ℓM .

We say that the crystal volume is conserved, if the sum over the velocities of all M

steps equals zero:
M∑

i=1

dxi

dt
=

d

dt

M∑

i=1

xi = 0 · (1.70)

In general, we can split the right hand side of a (autonomous) set of differential

equations in the following way:

dxi

dt
= ji + φi, (1.71)

where ji are called conservative terms and satisfy the condition
∑M

i=1 ji = 0, (1.70),

and φi, called non-conservative, are those terms which do not satisfy it, i.e.
∑M

i=1 φi 6=
0.

This consideration can be expressed in the continuum limit of (1.71) by

∂h

∂t
+

∂J

∂x
= C + Φ, (1.72)

where J corresponds directly to ji and is thus called a conservative term, and C +Φ

corresponds to the non-conservative φi. C is a constant non-conservative term and Φ

- the non-constant non-conservative one. Equation (1.72) is a usual one-dimensional

conservation law, if the right hand side is zero. Verification follows by integration of

(1.72) over a closed region in space36.

36Again, by considering periodic boundary conditions
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1 Introduction

1.5 Numerical Tools

Usually, analytical works on non-linear equations are extended by calculations done

on the computer and indeed, in the last decades, numerical simulations became an

irreplaceable tool for theoretical physics .

Here, the numerical investigation contains three aspects. In the first place, we deal

with the numerical integration of a system of ordinary differential equations. The

solution for a given initial condition and set of input parameters is a large set of

spatial points for each step edge at each discrete time. Thus, the plot of those points

represents the time evolution of the step train of moving steps. In the second place,

having the numerical solutions, it is important to look at the linear behavior, and

more precisely, to confirm or to reject the analytical stability-instability condition.

And, last but not least, it is reasonable to extract, what kind of pattern formation

corresponds to the instability case and how its geometrical properties depend on the

input parameters.

In general, in order to solve an initial value problem of a system of M ordinary

differential equations

dxi

dt
= fi(t, x1, ..., xM), (1.73)

one can use a method of the Runge-Kutta family [33]. The starting point is the so

called Euler method. It consists in the linear approximation of (1.73), during a very

small discrete time increment h, defined by the difference between the subsequent

times tn and tn+1. According to the Euler method, the position of some step xn
i ,

during the time interval (tn, tn+1) changes to

xn+1
i = xn

i + hf(tn, x
n
i ), (1.74)

where f is the slope [33]. The last expression is calculated by inserting the initial

condition xn
i (tn) in the corresponding equation of the system (1.73). Exactly in the

same manner, the next slope f is calculated by using as initial condition the resulting

numbers xn+1
i (tn+1), which gives the position xn+2

i at time tn+2, and so on.

However, by always taking into account the same time increment h, the integration

can lead to a large deviation from the analytical solution37. For that reason there

are improved methods, using more than one step during h. The simplest way to

implement this is to use the so called Runge-Kutta second order method, also known

37This can be shown for cases, where an analytical solution is known.
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1.5 Numerical Tools

as midpoint method [33]:

k1 = hf(tn, x
n
i ),

k2 = hf(tn +
h

2
, xn

i +
k1
2
),

xn+1
i = xn

i + k2 +O(h3) ·

The calculation is done in two steps. k1 is the change of the position when considering

the usual Euler-method for a full time step h. Then, the second change k2 has an

initial condition depending on half of the first change k1/2 and corresponds to time

increment h/2. The final position xn+1
i is given by the position increment k2 and an

error term of third order with respect to h.

Further improvement of this method can be achieved, if one considers more than

one point between xn
i and xn+1

i . An very frequently used method, for example, is

the fourth-order Runge-Kutta method [33], where one has to calculate four functions

k1(tn, x
n
i ), k2(tn + h

2
, xn

i + k1
2
), k3(tn + h

2
, xn

i + k2
2
) and k4(tn + h, xn

i + k3). Both, k2

and k3, are evaluated by considering a time point in the middle of the increment h.

Unfortunately, algorithms posses truncation errors, because of their discrete nature.

One can not just take infinitely small steps, because of the precision limits, even for

language types like float and double. Therefore, for a complicated system of non-linear

equations, where small deviation in the beginning could lead to a large deviation, it

is necessary to find a way to control the truncation error.

Adaptive Stepsize Control: One practical method to control the truncation error

is the so called Adaptive Stepsize Control [33]. It gives the opportunity to take a lot

of small steps between the xn
i and xn+1

i , where every further small step depends on

the quality of the previous one. Fehlberg38 introduced an algorithm, which operates

with embedded Runge-Kutta formula [33]. It is embedded in the sense, that for fifth

order Runga-Kutta, one has to evaluate six functions, and then uses same functions

to construct a fourth order Runge-Kutta. The difference of both expansions results

in the error for the latter.

The routine in [33] for the Adaptive Stepsize Control with the Cash-Karp param-

eters39 is called odeint. It utilizes the special routines rkqs and rkck, where the first

includes the fifth-order Runge-Kutta, checks the truncation error by calling the sec-

ond routine, which includes the Cash-Karp step, and finally gives h1 for the next

38Erwin Fehlberg, Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit

Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme, Computing (Arch.

Elektron. Rechnen), (1970) vol. 6, pp. 6171.
39It is a special choice of parameters for the embedded Runge-Kutta method [33].
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1 Introduction

time step. All three routines use the derivs routine, which defines the concrete set of

equations.

Comment: Later on, it will be discussed, which initial conditions, periodic bound-

ary conditions and geometrical functions are implemented.
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2 Non-Conserved Dynamics of

Non-Transparent Steps

2.1 Overview

After the general introduction to the problem of the step-bunching instability on

(one-dimensional) vicinal surfaces, now, we arrive at the core of this thesis. We

consider the non-conserved dynamics of non-transparent steps in the framework of

the Burton-Cabrera-Frank model within the standard quasi-static approximation.

More precisely, we are interested in the next order non-conservative terms of the

model, compared to the equations studied in detail in [20, 32, 31] for the limit

f−1
el ≫ ℓD ≫ ℓ± ≫ ℓi · (2.1)

We will start with the derivation of the equations for the more general case of

electromigration and Ehrlich-Schwoebel effect during sublimation with step-step in-

teractions and we will find the adatom concentrations ni(x) on the terraces ℓi. Then,

by using those expressions we will find the discrete equations for the step edge veloci-

ties dxi/dt and look for the instability condition as a function of the input parameters.

Additionally, for comparison, we will present the derivation of the equations with so-

lutions and linear stability analysis for the case of growth. Then, we will separate

the considerations further into two special cases with respect to the nature of the

instability:

• Ehrlich-Schwoebel effect (k+ 6= k−) and no effect of electromigration (fel = 0);

• effect of electromigration (fel 6= 0) and no Ehrlich-Schwoebel effect (k+ = k−).

In both sublimation cases the step-step interactions will under the condition (2.1)

yield the desired non-conserved non-constant terms.

Despite the large number of publications1, the experimental relevance of these

limiting cases is, from our point of view, still an open question. There are hints,

that in Regime I of the Si(111) surface the dynamics should be determined by the

1As we already mentioned, there are much more theoretical publications than experimental.
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2 Non-Conserved Dynamics of Non-Transparent Steps

second effect, i.e. electromigration-driven instability, see [42]. But the BCF-model

is the standard theoretical model and it is important to have expressions for the

physically possible situations, although, we, at that moment, are not completely sure

which of those effects is experimentally the most relevant one.

We will apply the analytical and numerical tools, introduced in the previous chap-

ter, to the derived equations. This we will do in order to find the impact of the new

(non-linear non-conservative) terms on the step evolution. The volume conservation

of the terms will be discussed in section 2.5. The continuum limit of both separate

cases will be presented in section 2.6.1. The analytical derivations will be presented

in detail in the Appendices A, B and C, so that the reader can follow and check every

step. Finally, in section 2.7 we will present the numerical simulations.

2.2 Derivation of the Discrete Equations

2.2.1 General Derivation for the Sublimation Case

Now, we start with the derivation of the discrete equations. The balance equation

(1.16) for the adatom concentration on the i-the terrace in the case of sublimation,

i.e. vanishing growth (F = 0), and in the quasi-static approximation is:

Ds

[
∂2ni(x)

∂x2
− fel

∂ni(x)

∂x

]

− ni(x)

τs

!
= 0 · (2.2)

For simplicity we rewrite it to

n′′
i − feln

′
i −
(

1

lD

)2

ni
!
= 0 · (2.3)

(2.3) is the equation of a one-dimensional damped harmonic oscillator and the general

solution is easily obtained. In this sense, the inverse electromigration length fel

can be considered to represent a damping constant. By using the standard ansatz

ni = exp(λx) we find the characteristic equation:

λ2 − felλ−
(

1

lD

)

= 0, (2.4)

with solutions

λ1,2 =
fel
2

± 1

lD

√

1 +

(
felℓD
2

)2

≈ fel
2

± 1

lD
, (2.5)

where the last approximation2 is due to the leftmost limit in (2.1). Finally the general

solution of (2.2) is

ni(x) = C i
1e

λ1x + C i
2e

λ2x · (2.6)

2Otherwise lD has to be corrected in the exponent functions by the factor
√

1 + (felℓD/2)2.
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2.2 Derivation of the Discrete Equations

In order to find the constants C i
1 and C i

2 we use the boundary conditions:

D

[
∂n(x)

∂x
− feln(x)

]

= +k−[n(x)− n−ℓ/2
eq ], at x = xi = −ℓi

2
,

D

[
∂n(x)

∂x
− feln(x)

]

= −k+[n(x)− n+ℓ/2
eq ], at x = xi+1 = +

ℓi
2
, (2.7)

see (1.21). In Appendix A we derive the following expressions:

C i
1 = +n0

eq





(

1 + △µi+1

kBT

)

β2e
−λ2ℓi

2 +
(

1 + △µi

kBT

)

α2e
λ2ℓi
2

α1β2e
(λ1−λ2)ℓi

2 − β1α2e
− (λ1−λ2)ℓi

2



 ,

C i
2 = −n0

eq





(

1 + △µi+1

kBT

)

β1e
−λ1ℓi

2 +
(

1 + △µi

kBT

)

α1e
λ1ℓi
2

α1β2e
(λ1−λ2)ℓi

2 − β1α2e
− (λ1−λ2)ℓi

2



 , (2.8)

where we use the substitutions:

α1 := −ℓ+λ2 + 1, α2 := −ℓ−λ1 + 1,

β1 := −ℓ−λ2 − 1, β2 := −ℓ+λ1 − 1 · (2.9)

With (2.6), (2.5), (2.8) and (2.9) the special solutions ni(x) are determined. We

used those ni(x) for the derivation of the velocities of the step edges. In the limit

f−1
el ≫ ℓD they read

1

Re

dxi

dt
=

1

Re

(f i
− + f i−1

+ ) = (2.10)

=

[(

ℓ+ +
felℓ

2
D

2

)

sinh ℓi
ℓD

+ ℓD cosh ℓi
ℓD

] (

1 + △µi

kBT

)

− ℓDe
− felℓi

2

(

1 + △µi+1

kBT

)

(fel(ℓ−−ℓ+)
2

+ 1) sinh ℓi
ℓD

+ ℓ−+ℓ+
ℓD

cosh ℓi
ℓD

+

+

[

(ℓ− − felℓ
2
D

2
) sinh ℓi−1

ℓD
+ ℓD cosh ℓi−1

ℓD

] (

1 + △µi

kBT

)

− ℓDe
felℓi−1

2

(

1 + △µi−1

kBT

)

(
fel(ℓ−−ℓ+)

2
+ 1
)

sinh ℓi−1

ℓD
+ ℓ−+ℓ+

ℓD
cosh ℓi−1

ℓD

,

where is Re :=
ΩDsn0

eq

ℓ2
D

.

The expressions depend on all length scales and look pretty complicated. We

continue with the limit ℓD ≫ ℓ± ≫ ℓ and consider only the first order of the small

terms. Then, in order to simplify the presentation we use some substitutions, which
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2 Non-Conserved Dynamics of Non-Transparent Steps

in the following will correspond to our input parameters:

bSE :=
ℓ− − ℓ+
ℓ− + ℓ+

,

bel := − felℓ
2
D

ℓ− + ℓ−
,

U :=
gℓ2D

ℓ− + ℓ+
· (2.11)

Here, we have to spend some words about the dimensionality of those parameters.

Having in mind, that g is dimensionless and ℓD, ℓ±, ℓi and f−1
el have the dimensionality

of a length, bSE and bel are two dimensionless parameters and U as a length. Later,

in order to make U also dimensionless, we divide it by the average length ℓ. The final

set of ordinary, coupled, differential equations is:

1

Re

dxi

dt
≈ (1 + gνi)

[
(1− bSE)

2
ℓi +

(1 + bSE)

2
ℓi−1

]

+ U(2νi − νi−1 − νi+1) +

− bel
2
[ℓi (2 + gνi+1 + gνi)− ℓi−1 (2 + gνi + gνi−1)] , (2.12)

where △µi/kBT ≡ gνi.

As was mentioned in the Introduction, the step-step interaction terms νi+1 and

νi−1 increase the coupling between the equations, i.e. dxi/dt depends not only on

the nearest neighboring terraces ℓi and ℓi−1, but also on the next terrace widths ℓi+1

and ℓi−2. The terms with prefactor bSE and bel are the terms due to the asymmetry

causing effects, and we will expect that those terms should cause the emergence of

the dynamical instability, see later section 2.3.

In this chapter, we will analyze (2.12) for the two special cases. But before we

start, let us also derive the equations for the case of growth in the same length scales

limit.

2.2.2 General Derivation for the Growth Case

The balance equation for the growth case, i.e. very large life time of the diffusing

adatoms on the terraces (n/τs ≪ F ), in the quasi-static approximation, obtained

analogously to (2.3), is

n′′
i − feln

′
i

!
= − F

Ds
· (2.13)
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2.2 Derivation of the Discrete Equations

This equation is inhomogeneous and the general solution is a sum of the general

solution of the homogeneous part and a special solution of the inhomogeneous equa-

tion. For the homogeneous part of (2.13), with the ansatz ni = exp(λx), follows the

characteristic equation:

λ(λ− fel) = 0, (2.14)

with solutions λ1 = fel and λ2 = 0. A special solution of the inhomogeneous part is

nspec,inh
i (x) =

F

felDs
x ≡ C1x · (2.15)

The so defined constant C1 is equal for all adatom concentrations.

Finally, for the general solution of the inhomogeneous equation (2.13) we find

ni(x) = C i
2e

felx + C1x+ C i
0 · (2.16)

Again, we have a set of M pairs C i
2 and C i

0, which can be specified by using the

same boundary conditions as in the case of sublimation, see (2.7). In appendix B the

pairs are determined as

C i
0 =

−χiA
+1
i − αiA

−1
i + n

+ℓi/2
eq A−1

i − n
−ℓi/2
eq A+1

i

m+A−1
i −m−A+1

i

,

C i
2 =

χim
+ + αim

− − n
+ℓi/2
eq m− + n

−ℓi/2
eq m+

m+A−1
i −m−A+1

i

, (2.17)

where

χi :=
F

Dsfel

(

ℓ− +
ℓ−felℓi

2
+

ℓi
2

)

,

αi :=
F

Dsfel

(

ℓ+ − ℓ+felℓi
2

+
ℓi
2

)

,

m± := 1− ℓ±fel, A±1
i := e±

felℓi
2 · (2.18)

Because of the structure of the expression (2.16), the velocities are independent3

of C i
2:

dxi

dt
= −ΩF

(ℓi−1 + ℓi)

2
+ ΩDsfel(C

i
0 − C i−1

0 ) · (2.19)

3In the expression n′−feln = felC
i
2 exp(felℓi)+C1−felC

i
2 exp(felℓi)−felC1x−felC0 the C2 terms

cancel each other.
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2 Non-Conserved Dynamics of Non-Transparent Steps

Thus, by using again the substitutions (2.11) and the limit (2.1) we find the final

formula:

1

Re

dxi

dt
= −ΩF

Re

(
1 + bSE

2
ℓi−1 +

1− bSE
2

ℓi

)

+ U(2νi − νi−1 − νi+1) +

− bel
2

[ℓi(2 + gνi+1 + gνi)− ℓi−1(2 + gνi + gνi−1)] · (2.20)

2.2.3 Comparison of the Discrete Equations

In this section, we compare the equations for both considered cases, see (2.12) and

(2.20). After brief examination of both equations, we can easily unify them by intro-

ducing a prefactor Pi:

1

Re

dxi

dt
= Pi

(
1 + bSE

2
ℓi−1 +

1− bSE
2

ℓi

)

+ U(2νi − νi−1 − νi+1) +

− bel
2
[ℓi(2 + gνi+1 + gνi)− ℓi−1(2 + gνi + gνi−1)] , (2.21)

and defining it as follows:

Pi := 1 + gνi, sublimation

Pi := −Fτs
n0
eq

· growth (2.22)

Therefore, there is a clear difference between growth and sublimation in the next

order equations. For the sublimation case the prefactor is no more a constant, but

is a non-linear term. This difference is produced by the balance equations (2.3) and

(2.13), which leads to the different solutions (2.12) and (2.20). In previous papers,

see [20, 32, 31], those non-linear terms were neglected, due to the reason, that g was

considered to be much smaller than one, i.e. Pi ≈ 1.

Remark I: In the Introduction, we considered the coupling constant4 of the

step-step interaction g̃, defined as

g̃ =
2γ̃Ω

kBT

[23, 26]. In our study of BCF model5 we use the dimensionless parameter g = g̃/ℓ3.

Jeong and Williams report for a surface temperature around 900◦C, (i.e. in Regime

4the original notation in [26] is g
5In the next chapter about the RS transparency model, we keep the notation according to [36]

with Ã ≡ g̃, and ǫ ≡ g
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2.3 Linear Stability Analysis

I), an estimate g̃ = 0.05 eV/Å [16]. For a typical misfit around α = 1◦ and with

(1.1), we can calculate g = 5×10−5 [15]. Therefore, g much smaller than 1 is (to this

moment) the physically relevant regime.

Remark II: For the very special case of dynamics without any effects, i.e. g =

U = bel = bES = 0, the equations simplify to

1

Re

dxi

dt
=

Pi

2
(ℓi + ℓi−1),

where Pi is a constant that equals either 1 or −Fτs/n
0
eq. The sign of Pi defines the

direction of the movement of the steps. For example, in the case of negative sign, the

steps move in the negative x-direction which indeed corresponds to the case of growth,

see for example fig. 1.12. The trivial case of equidistant step edges (ℓi = ℓi−1 = ℓ)

leads to the constant velocity vi = v = PiReℓ. The letter expression defines Re as the

rate, or the inverse of the time, needed for a step edge to cross distance ℓ.

We may now ask: What is the impact of the non-constant and highly

non-linear terms on the dynamics? In the following we will try to answer this

question.

2.3 Linear Stability Analysis

Sublimation: For the case of sublimation we find the expression for the real part

of ω(k) by linearizing and Fourier transform of the equation (2.12) , both done in

appendix A, in the limit of very small k:

Re(ωsub) = Re

(
bSE
2

+ bel − 3g

)

k2 − 3ReU

ℓ
k4 · (2.23)

Combining the asymmetry parameters we define a general one

bsub = bSE + 2bel, (2.24)

which has to be positive and larger than 6g for instability. In the case of the normal

Ehrlich-Schwoebel effect (k+ > k−) the parameter bSE is positive, and otherwise neg-

ative. The electromigration parameter bel can also be positive or negative, depending

on the direction of the electromigration force. If bel is positive, the steps move in

step-down direction, which is the case for fel < 0. For a movement in step-up di-

rection the dynamics is always stable. The U term is always negative and thus it’s

contribution is always stabilizing. In experiments, the sign of bSE is constant at a

given temperature, because of the nature of the Ehrlich-Schwoebel effect as an energy

barrier. On the other hand, the experimentalist can change the direction of the direct

heating current while holding the temperature constant.

47



2 Non-Conserved Dynamics of Non-Transparent Steps
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Figure 2.1: Stability diagram in the (g,b) plane for a) growth (b ≡ bES) and b) subli-

mation (b ≡ bES). There is a clear asymmetry between both cases: The 6g

barrier in the linear stability expression appears by sublimation, but not

by growth. This is an important contribution to the general conclusion

made in [10].

Comparison to the Case of Growth: By considering the unification (2.21), we can

conclude, that the case of sublimation includes all kind of terms of the growth case,

but not vice verse. More precisely, the Ehrlich-Schwoebel term has a different sign

and prefactor, the relaxation and electromigration terms are the same, but in the case

of growth there is no analog for the non-linear gνi terms6 included in the parameter

Pi for the case of sublimation. The latter terms contribute a term proportional to 3g

in the expression for the linear stability analysis (2.23) and in the following text we

will call them the 3g terms.

Summarizing those facts, we easily7 find the real part of ωgr(k) for the growth case:

Re[ωgr] = Re

(

−Fτs
n0
eq

bSE
2

+ bel

)

k2 − 3ReU

ℓ
k4 · (2.25)

Once more, we define a general parameter

bgr = −Fτs
n0
eq

bSE + 2bel · (2.26)

The instability condition reads bgr > 0. For the terms with U and bel we obtain the

same condition as in the case of sublimation, but bSE changes sign for instability, which

corresponds to the phenomenon of the inverse Ehrlich-Schwoebel effect. Finally, as

we already pointed out, there is no 3g term in the case of growth.

6Attention: We consider this term separately from the other gνi terms included in the U term.
7For convenience, see the linearization of the terms I, II and III in Appendix A.
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2.4 Asymmetry Cases

Generalization: However, without calculation, but just combining both, growth and

sublimation, the real part of the dispersion relation leads to

Re(ω) = Re

[(

1− Fτs
n0
eq

)
bSE
2

+ bel − 3g

]

k2 − 3ReU

ℓ
k4 · (2.27)

The latter result was first given by Fok et al [10]. They considered this most general

case and derived it in the same length scales limit, i.e. (2.1). Our contribution to

relation (2.27) is, that we recognized the difference between the two special cases

due to the 3g terms, which became evident, by deriving the non-linearized equations

separately.

2.4 Asymmetry Cases

Our main goal is the description of the step-bunching instability on vicinal surfaces.

It is logical to separately discuss the general equations, not only for the different

types of the adatom exchange with the gaseous environment, but also with respect

to the different asymmetry causing effects, i.e. the reasons for instability.

In this section, we write down the equations for the last time keeping the prefactor

Pi. In the following text, we focus the analysis and numerics on the sublimation case

as this is the one, which leads to the 3g terms and thus to new physics. We begin

with considering the Ehrlich-Schwoebel effect and after that we consider the effect

of electromigration. This kind of separation leads again to different equations, but

eventually to similar dynamics, see sec. 2.7.

2.4.1 Ehrlich-Schwoebel Effect

In the case of a non-zero Ehrlich-Schwoebel effect (bSE 6= 0) and a neglected effect of

electromigration (bel = 0), the equations8 of step motion (2.21) changes to

1

Re

dxSE
i

dt
= Pi

(
1 + bSE

2
ℓi−1 +

1− bSE
2

ℓi

)

+ U(2νi − νi−1 − νi+1) · (2.28)

By means of the linear stability analysis, using (2.27), we obtain:

Re(ω) = Re

[(

1− Fτs
n0
eq

)
bSE
2

− 3g

]

k2 − 3ReU

ℓ
k4 · (2.29)

The prefactor of the quadratic term A2 is positive, if

8This is a set of discrete equations.
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2 Non-Conserved Dynamics of Non-Transparent Steps

• bSE > 6g (in the sublimation case, i.e. F → 0),

• bSE < 0 (in the growth case9, i.e. 3g = 0 and Fτs ≫ neq). Here we remind the

reader, that negative bSE corresponds to the inverse Ehrlich-Schwoebel effect.

2.4.2 Effect of Electromigration

Analogously, in the case without Ehrlich-Schwoebel effect (bSE = 0) and a non-

vanishing electromigration (bel 6= 0), equation (2.21) changes to

1

Re

dxel
i

dt
=

Pi

2
(ℓi−1 + ℓi) + U(2νi − νi−1 − νi+1) +

− bel
2
[ℓi(2 + gνi+1 + gνi)− ℓi−1(2 + gνi + gνi−1)] · (2.30)

The corresponding linear dispersion relation reads

Re(ω) = Re (bel − 3g) k2 − 3ReU

ℓ
k4, (2.31)

and A2 is positive, if

• bel > 3g (in the sublimation case, i.e. F → 0),

• bel < 0 (in the growth case, i.e. 3g = 0 and Fτs ≫ neq). Reminder, that negative

bel corresponds to electromigration force in the uphill direction.

Comment: By neglecting the (new) 3g terms, rescaling the time for sublimation by

the constant Re (by ΩF for growth) and setting Pi = 1 (rescaling U by n0
eq/Fτs in

the case of growth and setting Pi = −Fτs/n
0
eq), the equations (2.28) and (2.30) take

the simple form10

dxi

dt
= ±

(
1 + b

2
ℓi−1 +

1− b

2
ℓi

)

+ U(2νi − νi−1 − νi+1) · (2.32)

The parameter b = bsub (b = bgrn0
eq/Fτs) equals either bES (−bESFτs/n

0
eq) or 2bel or

the sum of both, depending on the asymmetry case. A2 is positive for b > 0 (b < 0)

and negative for b < 0 (b > 0). The set of differential equations (2.32) was studied

in detail in [32, 31].

9The 3g-term has no analog in the case of growth.
10Plus for sublimation and minus for growth.
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2.5 Conservation of Volume

The next question concerns the conservation of the crystal volume during the evolu-

tion of the vicinal surface. In the discrete picture this is examined by the summing

up the equations over all steps with the periodic boundary conditions x1 ≡ xM+1 and

ℓ0 ≡ ℓM . The dynamics is conservative, if the sum over one period vanishes. Due to

this condition, we can classify the terms as conservative and non-conservative.

Let us write down the sums for both asymmetry cases during sublimation, see eq.

(2.21) and (2.30),

1

Re

d

dt

M∑

i=1

xSE
i =

1

2

M∑

i=1

(ℓi−1 + ℓi) +
g

2

M∑

i=1

νi (ℓi−1 + ℓi)

+
bSE
2

M∑

i=1

(ℓi−1 − ℓi) +
gbSE
2

M∑

i=1

νi (ℓi−1 − ℓi)

+ U

M∑

i=1

(2νi − νi−1 − νi+1), (2.33)

1

Re

d

dt

M∑

i=1

xel
i =

1

2

M∑

i=1

(ℓi−1 + ℓi) +
g

2

M∑

i=1

νi (ℓi−1 + ℓi)

+ bel

M∑

i=1

(ℓi−1 − ℓi)−
gbel
2

M∑

i=1

[ℓi(νi+1 + νi)− ℓi−1(νi + νi−1)]

+ U

M∑

i=1

(2νi − νi−1 − νi+1) · (2.34)

First, let us have a look at the sum over all pairs of neighboring terrace widths

times one half

1

2

M∑

i=1

(ℓi−1 + ℓi) =

M∑

i=1

ℓi = L 6= 0 ·

This sum is non-vanishing, but independent of the step configuration. This means

that the result L stays constant and it represents exactly the constant rate at which

a surface moves laterally in one period if neglecting all other terms. Therefore, we

classify this term as a constant non-conservative one. Because of the time indepen-

dence, such terms can be canceled by a means of transformation of the equations and

their impact on the dynamics is nothing else, than adding a constant velocity.

The next term we consider is the sum over the difference in the widths of two
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2 Non-Conserved Dynamics of Non-Transparent Steps

neighboring terraces

M∑

i=1

(ℓi−1 − ℓi) = ℓ0 − ℓ1 + ℓ1 − ℓ2 + . . .+ ℓM−2 − ℓM−1 + ℓM−1 − ℓM = ℓ0 − ℓM = 0 ·

Those terms are evidently conservative. This is also true for the three terms with a

prefactor U , i.e. sums over the step-step interaction formula,

∑

i=1

νi =
1

ℓ30
− 1

ℓ31
+

1

ℓ31
− 1

ℓ32
+ . . .+

1

ℓ3M−2

− 1

ℓ3M−1

+
1

ℓ3M
− 1

ℓ3M−1

=
1

ℓ30
− 1

ℓ3M
= 0

and for the electromigration terms with a prefactor gbel

M∑

i=1

[ℓi(νi+1 + νi)− ℓi−1(νi + νi−1)] =

M∑

i=1

(νi−1 + νi) li−1 −
M∑

i=1

(νi + νi+1) li

=

M∑

i=1

(νi−1 + νi) li−1 −
M+1∑

i=2

(νi−1 + νi) li−1

= (ν0 + ν1) l0 − (νM + νM+1) lM = 0 ·

From our point of view, the most interesting of all terms are the following two types

of terms, i.e. one type corresponding to each selection of the sign,

M∑

i=1

νi (ℓi−1 ± ℓi) =
M∑

i=1

(
1

ℓ3i−1

− 1

ℓ3i

)

(ℓi−1 ± ℓi) 6= 0,

which depend on the step configuration and after every time step their sums will

posses a different value. This means that we can identify them as non-constant

non-conservative terms. At this point, we have to mention, that such terms can be

separate into two parts, a conservative and a non-conservative one. This will become

important in the next section dedicated to the continuum limit.

On the one hand side, it is clear, that those non-constant non-conservative terms

are present only in the case of sublimation, but not in the case of growth. This fact

is a second important consequence of the next order approximation, i.e. 3g terms,

apart from the bunching condition from the linear stability analysis.

The sets of differential equations for the two asymmetry effects during sublimation

posses a qualitatively different types of terms. At this state of the analysis, it is

still unclear, how far this difference can change, qualitatively and quantitatively, the

dynamics of the moving step configurations. This question will be discussed in the

numerical section.
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2.6 Continuum Limit

2.6 Continuum Limit

We continue with the analysis of the step dynamics by taking the continuum limit

of the discrete equations of motion, (2.28) and (2.30). This expansion is done as

described in [20] and in sec. 1.4.2. We begin with the derivation of the continuum

limit by using the Lagrange transform (1.65) and the Frank relation (1.66). Then,

we carry out the linear stability analysis and compare the results to the ones found

for the discrete equations. Afterwards, we consider the so called mechanical analog,

from which we will extract information about the coarsening behavior and scaling.

2.6.1 Derivation

Our goal is to find the partial differential equation (PDE) for the continuous func-

tion h(x, t), which describes the evolution in time of the height profile of the step

configuration. In general, the PDE for an autonomous system of discrete differential

equations has the form
∂h(x, t)

∂t
+

∂J

∂x
= C + Φ, (2.35)

where J and Φ include the conservative and the non-constant non-conservative part of

the terms. C is a constant term. Because of the simple transform h̃(x, t) = h(x, t)+Ct

of the height function, such constant non-conservative terms are replaceable. In this

description, term C is to be identified as the constant velocity of the whole vicinal

surface in vertical direction.

Conservative Case: For the simple case (2.32), i.e. neglecting 3g terms, the dis-

crete terms on the left hand side transform, in the continuous limit, to the following

expressions:

1

2
(ℓi−1 + ℓi) → −h0

m
+

1

m

(
m′

6m3

)′
, (2.36)

b

2
(ℓi−1 − ℓi) → 1

m

(
b

2m

)′
, (2.37)

νi → − 1

m

(
3

2
m2

)′
, (2.38)

U(2νi − νi−1 − νi+1) → − 1

m

[
3U

2

(m2)
′′

m

]′

· (2.39)

Note, that we set h0 = 1 and measure the time in Ret units. The derivations of the

limits (2.37) and (2.38) were introduced in sec 1.4.2. The limit (2.39) follows from

(2.38) in two considerations. Firstly, the derivative is a linear function, and secondly,
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2 Non-Conserved Dynamics of Non-Transparent Steps

it is a well known fact that a discrete expression of the kind 2νi−νi−1−νi+1 is minus

the second derivative of the continuous correspondence of the term νi itself. The

most complicated derivation is the one of (2.36). Details are included in Appendix

C.

To recapitulate, the terms in equation (2.35) are:

J = Jb + JC + JU = − b

2m
− m′

6m3
+

3U

2

(m2)
′′

m
, (2.40)

C = −1,

Φ = 0 · (2.41)

The constant non-conservative terms in the discrete picture provide a non-zero con-

stant non-conservative term C and a conservative term JC . The latter is called the

symmetry breaking term, see [20]. Non-constant non-conservative terms are not pre-

sented. There are two additional conservative terms. One due to the asymmetry

causing effect, called bunching term Jb, and one due to the repulsion step-step inter-

actions, called the relaxation term.

Ehrlich-Schwoebel Effect: The detailed derivation for the case with Ehrlich-Schwoebel

effect, i.e. of equation (2.28), was published in 2010, see [15]. The terms read:

JES = −bES

2m
− m′

6m3
+

3U

2

(m2)
′′

m
− 3g

2

(
m2
)
, (2.42)

ΦES = −3g

2

(
m2
)′
(
bES

2m

)′

− 3g

2

(
m2
)′
(

m′

6m3

)′

(2.43)

and, as before, C = −1. The new terms, as compared to (2.40) and (2.41), are those

due to the discrete 3g terms. In the first place, the dynamics is no more conservative

(Φ = ΦES 6= 0). Secondly, an important conservative term proportional to m2 is

provided, which, as we believe, changes qualitatively the dynamics (see next sections

of this chapter). The correspondence is as follow:

g

2
νi (ℓi−1 + ℓi) → 1

m

[
3g

2

(
m2
)
]′

− 3g

2

(
m2
)′
(

m′

6m3

)′

, (2.44)

gbES

2
(ℓi−1 − ℓi) → −3g

2

(
m2
)′
(
bES

2m

)′
· (2.45)

The limit (2.44) is a combination of equation (2.38) and (2.36). (2.45) is combination

of (2.38) and (2.37).
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2.6 Continuum Limit

Effect of Electromigration: Analogously to the previous case, we take the contin-

uous limit of (2.30) for step dynamics in the presence of electromigration. The terms

with prefactor gbel differ from (2.28) and, as we showed in sec. 2.5, those terms are

conservative and we expect that this fact is transformed to the equation for the height

profile h(x, t).

We verify this by the following short, but non-trivial, calculation:

∂xi

∂t
=

gbel
2

[(νi−1 + νi) li−1 − (νi + νi+1) li]

≈ −gbel
2

∂

∂x
[(νi−1 + νi) li−1] li−1 = −gbel

2

∂

∂x

[(
1

l3i−2

− 1

l3i

)

li−1

]

li−1

≈ gbel
2

∂

∂x

[

2
∂

∂x

(
1

l3i−1

)

l2i−1

]

li−1

≈ gbel
2

∂

∂x

[

2
∂

∂x

(
m3

h3
0

)
h2
0

m2

]
h0

m
= gbel

∂

∂x

[

3
∂

∂x
(m)

]
1

m
, (2.46)

where we used the Lagrange transformation (1.65), and the time dependence of the

height function, which we derived from the so called Frank relation (1.66):

∂h

∂t
≈ −m

∂xi

∂t
≈ − ∂

∂x

[

3gbel
∂

∂x
(m)

]

⇐⇒ ∂h

∂t
+

∂

∂x
(3gbelm

′) ≈ 0 · (2.47)

As a result, the non-conservative term Φel
b , due to the asymmetry bel, is zero and

thus (2.35) has one non-conservative non-constant term and an additional conserva-

tive term:

Jel = −bel
m

− m′

6m3
+

3U

2

(m2)
′′

m
− 3g

2

(
m2
)
+ 3gbelm

′, (2.48)

Φel = −3g

2

(
m2
)′
(

m′

6m3

)′
· (2.49)

Generalization: For completeness, we explicitly state the continuous equation for

the general case of sublimation (2.10), including both asymmetry effects:

∂h

∂t
+

∂

∂x

[

−3g

2
m2 − bES

2m
− bel

m
+ 3gbel

∂m

∂x
− 1

6m3

∂m

∂x
+

3U

2m

∂2

∂x2

(
m2
)
]

= −1− 3g

2

∂

∂x

(
m2
) ∂

∂x

[
∂
∂x
(m)

6m3

]

− 3g

2

∂

∂x

(
m2
) ∂

∂x

(
bES

2m

)

· (2.50)

This expression follows directly by combining the considerations presented above.
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2 Non-Conserved Dynamics of Non-Transparent Steps

2.6.2 Linear Stability Analysis

In order to compare both sublimation models, discrete and continuous version, we

perform a linear stability analysis for the general PDE (2.50).

Linearization We linearize the equation around the trivial solution of averaged slope

m0. This solution is then disturbed by a small time dependent εk:

h(x, t) = m0x+ Ct + εk(x, t), C = −1, (2.51)

where the index k represents the wave number. We easily find the slope function and

its derivatives:

m =
dh

dx
= m0 +

dεk
dx

, m′ =
d2εk
dx2

, . . .

The linearizations of the five different terms in the flux J are:

• the bunching term ∝ 1
m

(with prefactor bES

2
+ bel):

1

m
≈ 1

m0
− 1

m2
0

dεk
dx

=⇒ d

dx

(
1

m

)

≈ − 1

m2
0

d2εk
dx2

· (2.52)

• the symmetry braking term ∝ m′

m3 :

1

m3

dm

dx
≈ 1

m3
0

d2εk
dx2

=⇒ d

dx

(
1

m3

dm

dx

)

≈ − 1

m3
0

d3εk
dx3

· (2.53)

• the relaxation term ∝ (m2)′′

2m
:

1

2m

d2(m2)

dx2
≈ 1

2

(
1

m0

− 1

m2
0

dεk
dx

)
d

dx

(

2m0
d2εk
dx2

)

≈ d3εk
dx3

=⇒ d

dx

[
1

2m

d2

dx2
(m2)

]

≈ d4εk
dx4

· (2.54)

• the 3g term ∝ m2:

m2 ≈ m2
0 + 2m0

dεk
dx

=⇒ d

dx
m2 ≈ d

dx

(

2m0
d2εk
dx2

)

= 2m0
d2εk
dx2

· (2.55)

• the 3gbel term ∝ m′:

m′ =
d2εk
dx2

=⇒ d

dx
m′ =

d3εk
dx3

· (2.56)

The non-constant non-conservative terms are products of those conservative terms.

This means that Φ is non-linear and we can neglect it when considering the linearized

conserved terms. This fact has a consequence for the numerical study of the discrete

equations. In order to observe the effect of the non-conservative terms, one has to

deviate far from the linear, i.e. trivial, solutions.
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2.6 Continuum Limit

Dispersion Relation Analogous to the discrete case, we consider the Fourier ansatz

εk = ε0e
ikx+ω(k)t. Here the discrete product kn is replaced by the continuous expres-

sion kx.

For the spatial derivatives of the disturbance follows

dεk
dx

= ikεk =⇒ d2εk
dx2

= −k2εk,
d3εk
dx3

= −ik3εk,
d4εk
dx4

= k4εk · (2.57)

The time derivative of h is related to ω through

∂h

∂t
= −1 + ω(k)εk,

and therefore the general PDE (2.50) yields

−1 + ω(k)εk −
bsub

2m2
0

k2εk −
ik3εk
6m3

0

+ Uk4εk + 3gm0k
2εk = −1,

and hence

ω(k) =

(
bsub

2m2
0

− 3gm0

)

k2 − Uk4 +
ik3

6m3
0

· (2.58)

The real prefactors of the Taylor terms with even exponents, A2 und A4, with the

averaged values m0 = h0 = l = 1 yield the instability condition for very small wave

numbers k

bsub > 6g, (2.59)

which should be compared to the results of section 2.3.

2.6.3 Mechanical Analog and Scaling

In this section, we map the partial differential equation (2.50) to an equation of the

type of Newton’s second law. This kind of mapping is called a mechanical analog [20]

of the height profile. The function h(x, t) is considered to define the solution of the

conserved continuous equation ht + Jx = 0.

This mechanical analog was introduced by Krug-Tonchev-Stoyanov-Pimpinelli [20],

in order to find the scaling relations

ℓmin ∝ N−γ , H ∝ Lα, (2.60)

with the scaling exponents γ and α. It is applicable to a step configuration evolved

into the final stage of the coarsening of the structure formation11. One expects, that

11stationary step bunching
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2 Non-Conserved Dynamics of Non-Transparent Steps

the coarsening process continues until all bunches merge to a single one. Let this

bunch consist of N steps and have the height H = Nh0 and the width measures

L = Nℓ, where ℓ is again the average terrace width. Further important geometrical

quantities are the average slope m0 = H/L(= h0/ℓ) of the bunch and its maximal

slope mmax defined in the discrete picture through the minimal terrace width lmin =

h0/mmax.

Mapping: The mapping is the following:

U =⇒ mass of a particle,

u = m2 =⇒ spatial variable, (2.61)

x =⇒ time variable.

Thus, the parameter U and the variables u and x have a clear meaning in the me-

chanical picture.

Derivation of the Potential: Let us neglect the symmetry breaking term, the gbel

term, the non-constant non-conservative terms in (2.50), and consider the condition

for the stationary bunch ht(x, t) = C:

dJ

dx
= 0 =⇒ J ≡ −J0, with J0 > 0 · (2.62)

J0 is the (constant) stationary flux consisting of two terms:

J0 =
bsub

2m0
+

3gm2
0

2

m0=1
= (B +G) · (2.63)

Setting the average slope to m0 = 1, we introduce two constants: B = bsub/2,

quantifying the asymmetry effects, and G = 3g/2, the coupling to the 3g terms.

To simplify the calculations we replace the arbitrary positive slope m by a new

variable u = m2 =⇒ √
u = m > 0. Thus, we can rewrite (2.62) as

J0 =
B√
u
− Uu′′

2
√
u
+Gu (2.64)

and solve it for the U term:

U

2
u′′ = −J0

√
u+Gu

√
u+B

.
= −dV3g

du
· (2.65)

Equation (2.65) is the desired Newton’s second law. V3g(u) is a potential, which is

obtained from (2.65) by integration,

V3g(u) =
2

3
J0u

3/2 − 2

5
Gu5/2 −Bu · (2.66)
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Figure 2.2: Example: V (u) = sin(u) in the region u ∈ [π, 5π/2]. Note, that at u = π

the potential is taken to be infinitely large.

Example with a Sinusoidal Potential: But before we come to the analysis of the

derived potential (2.66), as an example, we consider a simple sinusoidal potential

V (u) = sin(u) in the interval [π, 5π/2], see fig. 2.2. Additionally, there is an infinite

wall at the initial u = π, at which a particle, coming from the right to the left, will be

reflected. The global maximum of the plotted part of the function is at umax = 5π/2,

and the minimum at umin = 3π/2 respectively. Now, let us consider, that for given

energy, the maximal deviation of u is u1, which lies between umin and umax. Then,

the conservation of the energy for the particle of mass U oscillating in the potential

yields

Eg = Ekin(v) + V (u)
.
= V (u1) =⇒ Uv2

2
+ sin(u) = sin(u1),

where Ekin(v) is the kinetic energy. Through inversion we find the velocity of the

particle depending on u

=⇒ v(u) =

√

2

U
[sin(u1)− sin(u)] ·

The result for the duration (a half period T/2) of motion from u = π to u1 is given

by

△x =
T

2
=

∫ u1

π

du

v(u)
· (2.67)

For this integral we study the following special cases:

1. u1 ≪ umax: The integrand is well-defined and the duration of the oscillation

can be exactly calculated.
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u

ǫ

δ umax

χ

Figure 2.3: The variable u can be transformed by a shift to χ in a region close to the

maximum. In the new small interval the integral over the whole range
∫ umax

u0=π
f(x)du is approximated by the integral

∫ δ

ǫ
g(χ)dχ.

2. u1 → umax: The velocity goes to zero as u approaches 5π/2 and therefore T

goes to infinity. Because of the form of the potential, the closer the particle

approaches the maximum at 5π/2, the more time it needs for each infinitesimal

movement. In order to define an approximate solution of the integral, we split

it into two other integrals I1 and I2:

T

2
=

∫ umax−δ

π

du

v(u)
︸ ︷︷ ︸

I1

+

∫ umax−ǫ

umax−δ

du

v(u)
︸ ︷︷ ︸

I2

I1≪I2≈
∫ umax−ǫ

umax−δ

du

v(u)
transform

= −
∫ ǫ

δ

dχ

v(χ)

=⇒ T

2
≈
∫ δ

ǫ

dχ

v(χ)
, (2.68)

where we use the substitution:

χ = umax − u, χ ∈ [ǫ, δ] =⇒ du = −dχ · (2.69)

The new variable χ is defined in an interval, which is very close to the maximum, see

fig. 2.3. Note, that the choice of the interval boundaries, ǫ and δ, defines the quality

of the approximation. In the following, for the derivation of the scaling law, we will

use the same approximation (2.68) and transformation (2.69).

Scaling Behavior: Heuristic Considerations We examine the step-bunching insta-

bility for N steps. Logically, the maximal slope u1 grows by increasing the number

of steps in the bunch. Thanks to the special form of the potential (2.66), the slope

u1, defined by the input ’energy’ will move closer and closer to umax, with every ad-

ditional step added to the bunch. But as we already know from the second situation

of the example with the sine function, plenty of time (bunch size) will be needed for

each small advance towards the maximum value, i.e. for constant average slope ℓ and

u1 → umax follows N → ∞ and L → ∞. However, if we add more steps to the bunch
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2.6 Continuum Limit

than some critical number of steps Ncr, the umax and thus the maximal slope stays

constant. For N > Ncr (2.60) above Ncr yields the trivial scaling law

α = 1, γ = 0 · (2.70)

For comparison, the model by Krug-Tonchev-Stoyanov-Pimpinelli [20] without 3g

terms yields the exponents α = 3 and γ = 2/3.

Scaling Behavior: Mathematical Verification

Ekin =
2J0

3

(
u3/2
max − u3/2

)
− 2G

5

(
u5/2
max − u5/2

)
−B (umax − u) ≈

≈ J0

(

u1/2
maxχ− 1

4
u−1/2
max χ

2

)

−G

(

u3/2
maxχ− 3

4
u1/2
maxχ

2

)

− Bχ =

=
(
J0u

1/2
max −Gu3/2

max −B
)

︸ ︷︷ ︸

=0

χ+

(
3G

4
u1/2
max −

J0

4
u−1/2
max

)

χ2 ·

From the inversion of the definition of the kinetic energy Ekin(v) we find the expression

for the velocity

v(χ) =

√

2Ekin

U
≈

√

3Gu
1/2
max − J0u

−1/2
max

U
χ =: v0χ, (2.71)

where v0 is the constant part depending on the input parameters and χ is the variable

part. The latter changes again between δ and ǫ.

In the mechanical analog x corresponds to the mechanical time variable. This

means that during the interval [0, L], the particle completes one oscillation in the

potential. Here, we consider the same approximation to △x as in the example with

the sinusoidal potential:

L

2
≈

∫ δ

ǫ

dχ

v0χ
=

ln (δ/ǫ)

v0
· (2.72)

Analogously, the height of the bunch H , due to the relation △h = m △ x, is given

by the integral:

H

2
=

∫ umax

0

√
udu

v(u)
≈
∫ δ

ǫ

√
umax − χ

dχ

voχ
≈
∫ δ

ǫ

(

u1/2
max −

χ

2u
1/2
max

)
dχ

v0χ
=

=
u
1/2
max

v0
ln (δ/ǫ)− (δ − ǫ)

2v0u
1/2
max

+O
(
(δ − ǫ)2

)
· (2.73)

For δ − ǫ ≪ 1 and umax > 1 the height H/2 can be expressed by the first term. The

comparison with (2.72) yields

H ≈ Lmmax · (2.74)
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Figure 2.4: Comparison between both potentials: V3g(u) with the 3g term (dotted

line) and VKTSP(u) without the 3g term (full line). The 3g term changes

the potential from an unlimited increasing function of the slope u = m2 to

a function qualitatively similar to the sine function, in an special interval

with a maximum at umax.

The scaling exponents α =1, γ = 0 are identical to the ones found heuristically. To

conclude, for a given potential V3g, i.e. set of input parameters, the maximal slope

of the bunch stays constant, if N is larger than some Ncr. The height and the width

of the bunch are proportional to each other and the scaling exponent α is identical

to the heuristic one, α = 1, and thus also γ = 0. The latter implies that there is no

dependence between the maximal slope mmax and the number of steps in the bunch.

There is no phase transition, but rather a crossover, between both potentials in the

considered interval with (V3g) and without (VKTSP) a global maximum, see fig. 2.4.

Finally, it has to be emphasized, that the found scaling exponents have been obtained

under very strong approximations.

Derivation of the Maximal Slope below the Crossover (N < Ncr): The potential

V3g(u) =
2

3
(B +G)u3/2 − 2

5
Gu5/2 − Bu

depends on u and thus on the slope m. Let us divide both sides of the equation by

B,

Ṽ (u) :=
V3g(u)

B
=

2

3
u3/2 − u+ λ

(
2

3
u3/2 − 2

5
u5/2

)

, (2.75)
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in order to collect the input parameters in λ = G/B(= 3g/b). By using the extremal

condition

dṼ (u)

du
= u1/2

max − 1 + λ
(
u1/2
max − u3/2

max

) .
= 0, (2.76)

and with the following short calculation

⇐⇒ λ =
1− u

1/2
max

u
1/2
max − u

3/2
max

=
1− u

1/2
max

u
1/2
max (1− umax)

=
1

u
1/2
max + umax

=
1

mmax +m2
max

⇐⇒ m2
max +mmax −

1

λ
= 0 (2.77)

we find an expression for the maximal slope, depending on the input parameters:

mmax(λ) =
1

2

(√

1 +
4

λ
− 1

)

· (2.78)

mmax grows with increasing instability b and decreasing step-step interaction ampli-

tude g.

Attention: The square root formula (2.78) was derived for the very special case

of a stationary and symmetric bunch, neglecting non-constant non-conserved terms.

2.7 Numerical Simulations

As we discussed in the previous sections, the equations (2.28) and (2.30), derived

for sublimation, include on the one hand, the non-linear non-conservative 3g terms,

which have no analog in the growth case, but, on the other hand, differ from each

other, too. In this section, we present the numerical simulations of the two separate

problems of the step-bunching instability in the case of sublimation, caused either by

the electromigration effect, or by the Schwoebel barrier.

General Considerations

The dynamical equations for the movement ofM interacting steps in a one-dimensional

step train configuration (2.28) and (2.30) can be classified as two autonomous sets

of M coupled, non-linear ordinary differential equations of first order. For the nu-

merical integration, we use the standard odeint procedure of [33], see section 1.5 and

appendix D. The solutions of both of them are determined by the following four inde-

pendent (input) parameters: M is the number of steps, g is the parameter describing

the non-conserving effects, bES and bel, respectively, are the parameters describing

the present asymmetry effect and U is the relaxation parameter due to the step-step
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2 Non-Conserved Dynamics of Non-Transparent Steps

interactions. We do the simulations for a restricted interval of the parameter space:

bES ∈ [0, 1], bel ∈ [0, 0.5], U ∈ [0, 1], g ∈ [0, 1] and M < 100. Because of the assump-

tion ℓD ≫ ℓ± ≫ ℓ the dimensionless ratio gℓ/U = ℓ(ℓ− + ℓ+)/ℓ
2
D, defined through

(2.11), should be small compared to unity. In the following we will consider also

cases, for which both, gℓ and U , are of the same order. This fact has to be taken

carefully into account in comparison of the results to experimental data.

For simplicity we normalize the height of a single step h0 and the average terrace

width ℓ to unity. As a consequence the average of the slope in all step configurations

will be constant m0 = h0/ℓ = 1. Further, we normalize the time scale by the rate Re

and we will measure the time of integration in time units (t.u.). In order to neglect

finite size effects, we consider periodic boundary conditions, defined by the setting,

that the last and the first step in the configuration are direct neighbors and every

step repeats after the distance M = L (with ℓ = 1), i.e. xi +M = xi+M . Note, that

the standard odeint procedure has to be modified in order to match the targeted

periodicity on the boundaries for a one-dimensional chain of steps.

We begin the simulations with two qualitatively different types of initial conditions.

We take either an initial ’shock’ consisting of densely packed equidistant steps and

a very large terrace on the top, or a randomly disturbed equidistant step train. For

the latter one we will consider two different amplitudes of initial fluctuations: small

(0.01) and large (0.5).

For the quantitative and qualitative description of the step train, we need to

define some useful geometrical measures. A bunch of steps is defined by a re-

gion where the widths ℓi of consecutive terraces are smaller than one. A step, for

which both neighboring terraces have widths larger than one, is called a crossing

step12. Very useful definitions for the description of the bunch geometry are the

maximal slope mmax ≡ maxi{mi} and the minimal (=maximally negative) curvature

κmin ≡ mini{κi}, where

mi =
1

ℓi
, κi = −8

ℓi+1 − ℓi
(ℓi+1 + ℓi)3

·

Note, that for systems with more than one bunch, we will plot mmax and κmin for the

whole step configuration.

Another important consideration is, that we simulate and plot the positions of the

steps in a co-moving coordinate system defined by the transform x̃i(t) = xi(t) − ℓt,

where ℓ is the average velocity in the conserved limit (g = 0) and rescaled time. More

precisely all equations are subtracted by ℓ = 1, i.e. ṽi(t) = vi(t)− 1.

12Sometimes we call the crossing steps also running steps.
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2.7 Numerical Simulations

In the first subsection we present the results from the simulations of the set of

equations for the step dynamics with Ehrlich-Schwoebel effect. We will illustrate

some important qualitative statements due to the non-conservative dynamics. A

comparison to the analytical condition from the linear stability analysis will be given

as well. The important features of the non-conservativeness will recur in the case

with the electromigration effect, shown in the second subsection. Finally, in the third

subsection we will consider some special cases with respect to the parameters g and

U .

2.7.1 Non-conserved Dynamics with Ehrlich-Schwoebel Effect

First of all, we present the results from the numerical simulations of the set of equa-

tions (2.28), derived for the case with Ehrlich-Schwoebel effect during sublimation.

In order to illustrate a typical evolution of a step-train, we plot two images in fig.

2.5, for the set of parameters M = 40 steps, bES = 0.1, g = 0.001 and U = 0.004.

Those numbers were chosen arbitrarily in the considered parameter space, up to the

instability condition bES > 6g, where we expect instability. The initial condition is

the equidistant shock of very small terraces, which immediately after the beginning

of the simulation moves to a configuration of a single bunch. In fig. 2.5a) the step

train is plotted after a simulation time of 1000 t.u.. Note, that we doubled the step

train data (just by adding the same profile) for a better illustration of the form of the

step bunching. Because of the periodic boundary conditions, every step approaching

the boundary from the one side appears again on the other. Indeed, in fig. 2.5a)

there is a clear region of high step density and there is one with a few crossing steps.

However, the number of crossing steps is large relative to the cases with conservative

dynamics, i.e. without the 3g terms, and asymmetry parameter b < 1 [32]. Section

2.7.3 includes a comparison of the profiles for different g and U . The larger the num-

ber of crossing steps, the slower the change of the terrace widths ℓi through the step

train and thus, the smoother the slope m(x).

In fig. 2.5b) the time evolution of a single step of the whole step configuration

is plotted. This step was chosen arbitrarily to be the first one, i.e. with the index

i = 1. The plot x̃1 versus the time incorporates the velocity of the considered step

ṽ1 = △x̃1/(1 t.u.). More precisely, ṽ1 is the slope between two consecutive points

in the image. Note, that, because of the global subtraction of the non-transformed

vi with the average velocity v0 = 1, the plot is in the co-moving coordinate frame.

Therefore, the evolution changes direction and an oscillation from hill to bottom

and vice versa takes place. The propagation from hill to bottom corresponds to

the movement of the step thorough the bunch, where the points have high density
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Figure 2.5: Step train, consisting of 40 steps with bES = 0.1, g = 0.001, U = 0.004

and starting with an initial shock. a) Typical step train profile after 1000

t.u.. Because of the periodic boundary conditions, it is likely to have

a cut bunch. For that reason, in order to illustrate the bunching form,

we double the step profile. There is a clear bunch region of very dense

distributed steps (ℓi < ℓ = 1) and one of (a smaller number of) crossing

steps (ℓi > ℓ = 1); b) Typical time evolution of one of the steps in co-

moving coordinates. Two consecutive points correspond to the movement

of the position of the (arbitrarily chosen) first step for one time unit. Thus,

the slope between the points is the velocity of the considered step. In the

region where the steps are closer to one another the step moves slower than

the average (vi < v0 = 1) and takes consecutively the (discrete) positions

through the bunch. In the region of the reversal of the oscillation, the

velocity of the step is around the average one. The step is a crossing step

in the region with less points and velocity larger than one.
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and thus the velocity is small. The uphill propagation consists of less points, which

corresponds to the crossing region, where the step moves faster. The step occupies all

characteristic positions consecutively in one period and we can conclude, that such

a plot gives information over the evolution of the whole step configuration. Finally,

after every period of oscillation, there is a clear spatial shift to the one side. It is

due to the non-conservative dynamics, where additionally to the average velocity, a

non-linear contribution appears, see sec. 2.5.

Anti-Coarsening

By scanning the previously defined parameter space for the initial condition of a

shock, we found a very interesting behavior of the step train profiles, which was not

seen in the conservative dynamics [31, 32]. In fig. 2.6 we plot the evolution of the

first step of a step train of 80 steps with g=0.05, U=0.01 and for different strengths

of the asymmetry bES= 0.0, 0.3, 0.5 and 0.7. For bES = 0.0 the step configuration

relaxes to the linear stability form (of almost equidistant steps), where the velocity

contribution due to the non-linear non-conservative terms is not present. Indeed,

those terms become important for an increased parameter bES, which makes the

steps come closer to one another. So, the effectiveness of the step-step interactions

becomes larger. However, for bES = 0.7 and around t = 3600 t.u. an event of drastic

change of the velocity of the step appears, which gives a hint for eventual strong

change in the bunch form. But before we discuss this, let us compare the considered

evolution with the one, typical for the case without 3g terms, see fig. 2.7. On the

one hand, for vanishing 3g terms, the step position oscillates from the beginning

symmetrically around an initial point and the averaged velocity v0 stays constant.

On the other hand, the non-conservative dynamics (g=0.05) pushes the step laterally

to the right, after every oscillation with a certain shift, until the mentioned drastic

change happens. Then, the step speeds up abruptly and the shift becomes larger.

As a matter of fact, according to our numerical simulations with varying bES, g

and U , the event of drastic change is a generic feature of the dynamics. Although, it

needs different time of integration. The closer to the linear stability form, the smaller

the shifts and the more time is required for the event to happen.

In fig. 2.8 we plot, as an example for this interesting behavior, the evolution of a

step train consisting of 80 steps with the following set of parameters: bES = 0.7, g =

0.05, U = 0.05. In fig. 2.8a), the evolution of a single step is plotted and we can

observe again the abrupt change in the velocity. In fig. 2.8b) we plot all 80 steps in

the region around the event. We can see, that a small dense structure appears at

around 5230 t.u. and moves parallel to the large one with increasing length due to
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2 Non-Conserved Dynamics of Non-Transparent Steps

the decrease of the size of the large bunch. The splitting of the large bunch into two

or more smaller bunches is a phenomenon of anti-coarsening. On the contrary, the

typical coarsening corresponds to a merging of all structure elements to a final single

object in the long time limit. In fig. 2.8c) we plot the time evolution of the maximal

slope, minimal curvature and the number of bunches, for the splitting region. The

derivatives mmax and κmin experience a clear jump in that region and afterwards

relax to some new interval of oscillation. Those measures oscillate because of the

uninterrupted exchange of steps between the bunches. The steps detach a bunch

from the back side, then run to the next one and join it from the front side. The

number of bunches changes from one, before the splitting event, to five bunches in

the relaxation region of a quasi-stationary final configuration, up to residual long

wave length oscillations. The jumping (during the evolution) of the maximal slope

from one to another bunch leads to a larger amplitude of oscillation with respect

to the maximal slope in a single bunch. In fig. 2.9 we plot the step profiles from

the same simulation for different times of integration. At 4000 t.u., i.e. before the

splitting event, there is a single bunch. At 6000 t.u., shortly before the relaxation

setups, there are already four bunches and at 8000 t.u. the step profile has its final

configuration of five almost equal bunches.

To summarize: For the case with Ehrlich-Schwoebel effect during sublimation,

by beginning with the initial condition of a shock, the simulations of the equations of

motions show some important qualitative features, the non-linear non-conservative

terms shift the velocity ṽi and the co-moving observer, seeing positions x̃i, experienced

a regular spatial shift after every turn of the periodic boundary condition. The

number of running steps is larger, than in the cases of the conserved dynamics, i.e.

without the 3g terms. Further, a large single bunch splits into two or more bunches,

where the extrema of the first and the second derivatives of the profile relax to

another state of steady oscillation. We can say, that the dynamics of the steps is

anti-coarsening and there is a slope selection.

Arrested Coarsening

Next, let us perform the simulations with the initial condition, defined by a randomly

perturbed equidistant step train. In fig. 2.10 we plot the results from the simulation

for a step train of 40 steps with relaxation parameter U = 0.2. The perturbation

amplitude was taken to be strong (0.5). We vary the parameter g and set constant

bES = 0.7. In fig. 2.10a) we plot the time evolution of the global maximal slope

function mmax(t), which can be used to identify the final stationary states. In this

example, it is achieved for less than 2000 t.u.. By increasing g, the maximal slope,
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Figure 2.6: Time evolution of the first step x̃1 in a step train of 80 steps for different

strengths of the Ehrlich-Schwoebel effect, i.e. bES = 0.0, 0.3, 0.5 and

0.7, g = 0.05 and U = 0.01, starting with initial shock. For bES =

0.0 there is no asymmetry. The step train relaxes to a equidistant step

configuration. With increasing bES the step train stays in a bunched

form. The non-linear non-conserved contributions to the velocity become

important. Surprisingly, for bES = 0.7 the step changes at around 3600

t.u. drastically its velocity v1.
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Figure 2.7: Comparison of the evolution of a single step x̃1 with and without 3g

terms for bES = 0.7, M = 80 steps and U = 0.01. For g = 0.0 there is

an oscillation around a constant step position with a constant amplitude.

The presence of the 3g terms (g=0.05) with the bunching condition bES =

0.7 > 6g changes the dynamics to qualitatively different solutions.
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Figure 2.8: An example for the splitting of a large bunch in a system of 80 steps

with parameters bES = 0.7, g = 0.05, U = 0.05: a) time evolution of the

first step; b) plot of all step trajectories between 5200 t.u. and 5300 t.u.;

c) Time evolution of the globally maximal slope, the globally minimal

curvature and the number of bunches.

70



2.7 Numerical Simulations

 80

 90

 100

 110

 120

 130

 140

 150

 160

-100 -50  0  50  100

4000 t.u.
6000 t.u.
7000 t.u.
8000 t.u.

x̃

h

Figure 2.9: Comparison of the profiles for M = 80 steps, bES = 0.7, g = 0.05, U =
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analog to the previous paragraph, decreases. In fig. 2.10b)-c) we compare mmax(t)

with the number of bunches. In b) the case of the conservative dynamics is plotted,

i.e. no 3g terms. The evolution of the step train represents a typical coarsening: After

some short time of integration the number of bunches drops to (the final) 1. In fig. c),

for g = 0.7, the number of bunches varies periodically between one and two, and the

mmax oscillates correspondingly on a characteristic time scale. This behavior is very

robust and the final configuration of a single bunch no longer occurs. However, with a

further increasing of g, the period of the jumps diverges and the final quasi-stationary

state is arrested in a configuration of two bunches. Finally, a further increase of g

leads to the stable equidistant step configuration and the maximal slope becomes

mmax=1, up to long wavelength oscillations.

In fig. 2.11 we set the parameters g = 0.02 and U = 0.2 to be constants and

plot the maximal slope by varying the strength of the asymmetry. The step train

consists again of 40 steps and the initial disturbance is strong. By increasing bES, the

maximal slope increases, correspondingly to the stronger bunching, too. For bES=0.7

and 0.9 we observe again the oscillatory state of mmax due to the stationary periodic

switching between one and two bunches. Note, that by increasing the asymmetry

bES, the maximal slope increases too, but not perfectly monotonic, because of the

qualitatively different possible solutions for different bES.

In fig. 2.12 we take a closer look in the stability condition bES < 6g, discussed

analytically in sec. 2.4.2. We vary again bES for constant M =40 steps, g = 0.02
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2 Non-Conserved Dynamics of Non-Transparent Steps

and U = 0.2, but the equidistant step train is disturbed by a small amplitude of

the random generator. For bES=0.1 the step train relaxes back to the equidistant

configuration without bunching. For bES=0.2 a weak bunching occurs indeed, but it

is difficult to be seen, due to the resolution of that figure. The step experiences a

very small lateral shift and the maximal slope stays close to 1 for a long time. For

bES=0.3 and 0.4 the instability, as we can observe in the inset, sets in relatively early

and the non-linear non-conservative terms become important.

Next, we plot in fig. 2.13 two stability/instability diagrams for two different values

of U : a) large (0.2) and b) small (0.05). Thereby we vary the parameters g ∈ [0, 0.1]

with increments of △g = 0.01 and bES ∈ [0, 1] with increments of △bES = 0.1.

Both diagrams were done for step trains of 40 steps and with small and strong initial

disturbance. The thick line, defined by bES > 6g, separates the diagrams into stability

and instability regions. In 2.13a) there are solutions with one or two or periodical

switching between one and two bunches. For the case of g=0.02 and bES=0.1 the

evolution does not match for both disturbances in the considered integration time

of 8000 t.u.. Because of that, we conclude that there are bunched configurations,

for which the relaxation time to the final stationary form depends sensitively on the

initial condition. On one hand, by starting with a small disturbance, the system stays

arrested longer in the two bunch configuration. On the other hand, by starting with

a strong disturbance, it relaxes to the step train of one bunch in the typical time of

integration13. For U=0.05, see fig. 2.13b), there are also solutions with three or four

bunches, or with periodic switching between two and three, or three and four bunches,

but there are no stationary solutions with one bunch. Therefore, in general14, the

larger the ratio g/U the larger the set of qualitatively different solutions. Note, that

by increasing bES there is no perfect quantitative (mmax) and qualitative (number of

bunches) monotonicity of the evolution.

A very interesting question, given by the mechanical analog in the analytical work

in sec. 2.6.1, is: Does an upper boundary for the maximal slope by increasing the

number of steps exist? In order to answer this question we simulate the set of equa-

tions for equal g = U = 0.04, where the system does not prefer to be in stationary

periodic states of switches between different number of bunches. The strength of

the asymmetry is taken to be constant and large enough for bunching: bES = 0.4.

Thereby we change the system size M and measure the global maximal slope15 of

13Under typical time of integration we understand the time, which is needed to reach the final

stationary form for points in the parameter space, close to those considered.
14based also on numerical results we do not present here
15Because of the running steps the mmax oscillates also in the final stationary state. In order to

define a reference value of mmax and not to use the whole interval, we take its largest value
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Figure 2.10: An example of arrested coarsening starting with fluctuating initial con-

ditions of strong amplitude, for M = 40 and U = 0.2: a) mmax(t) for

bES = 0.7 and top down g = 0, 0.01, 0.02, 0.05, 0.09; b) bES = 0.7 and

g = 0; c) bES = 0.7 and g = 0.02.
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Figure 2.11: An example of arrested coarsening starting with fluctuating initial con-
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Figure 2.12: Linear stability analysis for four different bES = 0.1, 0.2, 0.3, 0.4 and

g = 0.02, U = 0.2 and M = 40 steps, with a small amplitude (0.01) of

the initial randomly disturbed step configuration. The plotted function

is the time evolution of the first step x̃1(t) for 8000 t.u.; in the inset:

comparison for the behavior of the step evolution in the initial time

interval 0-480 t.u..
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Figure 2.14: Dependence of the upper boundary of the global maximal slope mmax

on the number of steps M for g = U = 0.04, bES = 0.4 and for large and

small amplitudes of the initial random condition.

the stationary state. We do the simulations for strong and weak disturbance of the

initial equidistant step train, see fig. 2.14. On the one hand, for the strong distur-

bance the global mmax grows up to 1.96 at M = 21 steps and then jumps down to

1.60 at M = 22. Exactly by this drop of the global mmax the step train switches from

a single bunch to a configuration with two bunches. On the other hand, for a weak

initial disturbance the behavior is similar, but the jump occurs already for M = 20.

With increasing M the abrupt drop of the maximal slope repeats several times and

correspondingly the number of bunches increases after every drastic change. Finally,

in the region of 80 steps the behavior becomes less regular and depends sensitively

on the amplitude of the initial disturbance. Fig. 2.14 shows, that the splitting of

bunches is driven by the tendency of the system to keep the maximal slope below a

certain limiting value. Indeed, the analytical hint, derived for the very special case

of stationary and symmetric solution of the continuum equation, we could confirm

with the numerical simulations for large g/U = 1.

In fig. 2.15 we compare the evolution with strong and small initial disturbance at

the (first) jump of the global maximal slope in fig. 2.14, at M=21. In fig. 2.15a) we

compare the time evolution of the maximal slopes. The larger maximal slope (large

disturbance) corresponds to the one-bunch configuration, whereas the smaller one

during the last 500 t.u. of the simulation.
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Figure 2.15: An example for the dependence of the step train evolution on the initial

conditions: red color - small disturbance (0.01), green color - strong

disturbance (0.5). The step train consists of 21 steps and the parameters

are bES = 0.4 and U = 0.4 = g: a) comparison of the maximal slope

evolution; b) comparison of the profiles at 5000 t.u. c)-d) evolution of the

terrace width ℓ1 for small and strong disturbance; e) comparison of the

evolution of the number of crossing steps; f) comparison of the evolution

of the average number of steps per bunch.
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corresponds to the arrested case of two bunches, see fig. 2.15b). For M=22, as we

observe in fig. 2.14, also the evolution with large disturbance relaxes to two-bunch

configuration. This can be (partially) guessed by the prolongated oscillation of mmax

before the relaxation to the stationary state. A comparison of the time evolution

of the first terrace width ℓ1 for both initial conditions is plotted in fig. 2.15c)-d).

The step train in d) relaxes to a perfect periodic state and ℓ1 scatters less than the

two-bunches case. It is remarkable, that the number of crossing steps in both cases

is between six and seven, see fig. 2.15e). Logically, the average number of steps per

bunch differ by around factor two.

To summarize: The integration of the set of differential equations (2.28) with

the fluctuating initial condition confirmed the slope selection. It seems, that a step

train prefers to stay in a configuration with more than one bunch, but with a bounded

maximal slope. This phenomenon we may call arrested coarsening. Further, we found

that the number of qualitatively different solutions increases with the ratio g/U and

with the number of steps M . This behavior is dependent additionally on the initial

condition. There are solutions of periodic switching between different numbers of

bunches. The analytical linear stability condition bES > 6g was confirmed.

2.7.2 Non-conserved Dynamics with Effect of Electromigration

In a second step, we simulate the set of differential equations (2.30), which was

derived for the case with the effect of electromigration during sublimation. Here, we

will check the numerical results in order to compare them with those, found16 for the

case with the Ehrlich-Schwoebel effect. We did simulations in the same region of the

parameter space as in the previous subsection. Note, that, because of the factor two

in the definition of the general asymmetry parameter bsub, bel is varied between 0 and

0.5.

Anti-Coarsening

We begin with the time evolution of an initial shock of 80 steps. The input param-

eters, bel = 0.4, g = 0.05 and U = 0.05, are chosen to be close to those, used in

sec. 2.7.1. Fortunately, we could observe again the anti-coarsening effect, represented

through a splitting event of the initial large bunch. In fig. 2.16a) we plot the time

evolution of the first step in the step train. The splitting event takes place in the time

interval between 11000 t.u. and 12000 t.u., plotted in the inset. A closer inspection

of the data shows, that at 11180 t.u. the large bunch splits for the first time into a

16discussed in the previous subsection
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large and a very small bunches. The so formed small bunch disappears again after

only 4 t.u.. Then, at 11258 t.u. the event repeats with a bit longer life time of 19 t.u.

and vanishes for the second time. In fig. 2.16b) we plot all 80 steps of the step train

in the time window 11280 − 11470 t.u.. At 11333 t.u. appears the small bunch for

the third time and at 11415 t.u. for the first time arises a third bunch. Figure 2.16c)

shows the time evolution of the minimal curvature and the maximal slope, referenced

to the number of bunches. Both functions are showing clear change in the region of

the splitting, but there is a significant jump of the minimal curvature. The switching

between different number of bunches (between one and six) continues until the step

train relaxes to four bunches, see also profiles in fig. 2.17.

Arrested Coarsening

The second numerical example for the dynamics, driven by the asymmetry effect of

electromigration, is a simulation with the initially randomly disturbed equidistant

step array of 40 steps and relaxation U=0.2. By varying bel and g we run the sim-

ulation so long, until the maximal slope in the step train relaxes to a well defined

interval of oscillation, see fig. 2.18a). Then, we looked at the data and extracted

the number of bunches, exactly like in the previous section for the Ehrlich-Schwoebel

effect. In fig. 2.18b) we plot the phase diagram bel vs. g. Below the line bel = 3g

the system is in the linear stability regime and mmax differs weakly from m0=1 due

to some long wavelength oscillation. Above the stability/instability line there are

three qualitatively different solutions: a single bunch or a two-bunch or a periodic

switching between a single bunch and two-bunch configurations. Let us come back

to the fig. 2.18a). The time evolution of the maximal slope mmax is plotted for five

points of the line bel=0.35, i.e. five different values of g. For g=0.0 we observe again

the usual coarsening law with the final single bunch configuration. Analogous to the

simulations with the initial shock, there is a characteristic jump before the system

relaxes to a stationary periodic state with clearly bounded maximal slope. The larger

the g the smaller the average value of the maximum slope until for g=0.05 there is a

periodic switching between one- and two-bunches configurations. Again, mmax(t) dis-

plays the switching by the periodic jumps. For g=0.09 the step train arrives already

very close to the (linearly) stable equidistant configuration.

In Fig. 2.19 we plot, analog to the previous section, the global maximal slope vs.

the size of the system defined by the number of steps M . Again the simulations

were done for the two different amplitudes of the initial disturbance and parameters

g=U=0.04 and bel=0.2. The global maximal slope increases with M and jumps

down by every increase of the number of bunches. Thus, mmax stays below a certain
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Figure 2.16: An example for the splitting of a large bunch in a system of 80 steps

with parameters bel = 0.4, g = 0.05, U = 0.05: a) time evolution of the

first step; b) plot of all step trajectories between 11280 t.u. and 11470

t.u.; c) time evolution of the global maximal slope, the global minimal

curvature and the number of bunches.

80



2.7 Numerical Simulations

 80

 90

 100

 110

 120

 130

 140

 150

 160

-150 -100 -50  0  50

 

6000 t.u.
11500 t.u.
13000 t.u.
15000 t.u.

x̃

h

Figure 2.17: An example for the splitting of a large bunch in a system of 80 steps with

parameters bel = 0.4, g = 0.05, U = 0.05. Comparison of the profiles

after 6000 t.u., 11500 t.u., 13000 t.u. and 15000 t.u..

value and the evolution of the step train shows again an interrupted coarsening. The

sensitive dependence on the initial configuration is also present here, see forM around

70 steps.

2.7.3 Special cases

Before we come to the summary, let us add some words about the interplay be-

tween the relaxation terms (with prefactor U) and the non-linear non-conservative

3g terms17. Phenomenologically, both kind of terms are due to the step-step inter-

actions. In the experiments, mentioned in the introduction, the parameters g and

U are directly proportional to one another. However, the important conclusion from

the previous numerical sections with respect to both parameters is, that the larger

the ratio g/U the more complex the solutions.

In fig. 2.20a)-e) we illustrate the evolution of the step train profile for five special

cases: a) g=0.02, U=0.0; b) g=0.02, U=0.2; c) g = 10−7, U=0.0; d) g=0.0, U=0.2;

e) g=0.0, U = 10−7. The parameters bES = 0.5 and M = 40 steps are chosen to

be constant and the fluctuating initial condition is the one with the small amplitude

(0.01). The cases a) and c) correspond to vanishing U terms, where we define a

17For simplicity, we will show results only from the equations for the Ehrlich-Schwoebel effect,

because of the qualitatively similar behavior by the effect of electromigration, see the previous

two subsections
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gram, showing the number of bunches in the final state, for M = 40 and
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Figure 2.19: Dependence of the upper boundary of the globally maximal slope mmax

on the number of steps M for g = U = 0.04, bel = 0.2 and for large and

small amplitude of the initial random condition.

minimal model, that incorporates the non-linear non-conservative terms

dxi

dt
≈ (1 + gνi)

[
(1− bSE)

2
ℓi +

(1 + bSE)

2
ℓi−1

]

.

For U=0.0 and g=0.02 the step train profile changes immediately after the beginning

of the simulation to a configuration with a very large number of bunches. Analogous

to the case a), in the case c) (with a very small g = 10−7) the steps are distributed

in many small groups. But unlike case a), most of the steps are very close to one

another and the maximal slope becomes very large, up to around 200 at 8000 t.u.. On

the other hand, we can set U 6= 0.0 and change g. For g=0.02, again, we observe the

typical non-linear, non-conservative bunch form. In d), we present the bunch form

evolution in the case of conserved dynamics. As we already discussed, the case with

g = 0.0 possesses a larger maximal slope and less running steps, than the case with

non-vanishing g. Finally, in e), we illustrate the setting g=0.0 and U = 10−7. In this

case, almost all steps are grouped in a very sharp bunch, there are only one or two

crossing steps, the maximal slope diverges and the numerical integration interrupts.

In the cases, where g and U move together towards zero, we expect, that all steps

will move very close to one another, and a macrostep (g = 0, U −→ 0) or a lot of

macrosteps (U = 0, g −→ 0) will emerge.

Finally, in fig. 2.20f) the time evolution of the maximal slopes is plotted for the

considered cases. For better comparison, we plot in Appendix D six images due to the
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Figure 2.20: Five special cases of different g and U and constant bES=0.5, for which

the instability condition bES > 6g is required. The step trains consist

of M=40 and the simulations start with fluctuating initial conditions

with small amplitude (0.01): a)-e) Comparison of the profiles given for

different times of integration. a) g=0.02, U=0.0; b) g=0.02, U=0.2;

c) g = 10−7, U=0.0; d) g=0.0, U=0.2; e) g=0.0, U = 10−7; f) time

evolution of the maximal slopes for the four (non-trivial) special cases,

i.e. a)-d).
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time evolution of the maximal slope, minimal curvature, number of bunches, number

of running steps, average number of steps per bunch and the position of the first step

in the configuration for each of the four (non-trivial) special cases, i.e. a)-d).

2.8 Summary

In this chapter we considered the dynamical equations for the positions of non-

transparent steps in the framework of the standard Burton-Cabrera-Frank model.

We derived the set of coupled non-linear ordinary differential equations for both

cases, sublimation (2.12) and growth (2.19), separately, in the limit (2.1), and found

highly non-linear terms, present only for the case of sublimation. Afterwards, we

studied in detail the impact of those terms, which we called 3g, on the step dynamics

both, analytically and numerically.

First of all, we derived the real part of the dispersion relation, (2.23) and (2.25),

in the limit of very small wave numbers, i.e. k → 0. The coefficient A2 changes by a

new term, proportional to g, which represents an additional instability barrier for the

input parameters, reported already for a more general18 case [10]. Surprisingly, we

found that the 3g terms change qualitatively the dynamics from conservative to non-

conservative, with respect to the crystal volume, see sec. 2.5. Furthermore, we did a

continuum limit in the same manner as in [20] and found that the new potential V3g

in the mechanical analog, see (2.66), has a maximum, fig. 2.4, which corresponds to

the case of oscillating particle in a sine potential19, fig. 2.2, where the time needed to

reach the maximal displacement diverges. In the same way, here, the corresponding

system size, needed to reach a certain maximal slope, goes to infinity. However,

there is an upper boundary for the maximal slope, and the scaling in [20] changes

drastically, see (2.70). Finally, we did numerical simulations for both asymmetry

cases, Ehrlich-Schwoebel effect (sec. 2.7.1) and electromigration force (sec. 2.7.2)

and found, that although the terms with prefactors gbES and gbel differ qualitatively

to each other, the numerical solutions show qualitatively similar behavior for both

cases: There are solutions with an arrested coarsening, for beginning with a small

disturbance of the equidistant initial condition, fig. 2.10 and 2.18, but also such with

an anti-coarsening behavior, for starting with large shock as initial condition, fig.

2.8 and 2.16. We observed that with increasing number of steps, the system with

18the case of sublimation and growth
19considered in the interval between π and 5π/2, and a wall at π
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2 Non-Conserved Dynamics of Non-Transparent Steps

step bunching instability prefers to be in a state of two or more bunches, but not

to overcome an upper boundary of the maximal slope, fig. 2.14 and 2.19. In some

other cases, the final stationary step configuration depends sensitively on the initial

disturbance, see fig. 2.15. There are stationary solutions of oscillation between two

or more bunches, fig. 2.13 and 2.18b). For instance, two bunches can merge together,

stay for some interval together, and then split back to a two-bunch configuration,

which after some interval of time merges again, and so on. In fig. 2.10c) it is shown,

that in such a case, the geometrical and statistical measures, indeed, stay periodic in

the long time limit. Finally, we discussed some special cases for different combinations

of the parameters g and relaxation U , see fig. 2.20 and Appendix D.

86



3 Transparent Steps

3.1 Introduction

In this chapter we change from the study of the non-transparent steps with the quasi-

static adatom concentration profiles within the Burton-Cabrera-Frank model (BCF)

to a study of transparent steps within a model, recently introduced by Ranguelov

and Stoyanov (RS) [34], see 1.3.4. The latter model is appropriate to study the case

of very fast diffusion and slow attachment/detachment kinetics, as well as of the limit

of strong transparency. In general, for a step train of M terraces, this model consists

of two coupled sets of 2M non-linear discrete differential equations of the kind of

ṅi(t) = Ψn
i (ℓi, ℓi−1, ℓi+1, ni, ni−1, ni+1),

ℓ̇i(t) = Ψℓ
i(ℓi, ℓi−1, ℓi+1, ni, ni−1, ni+1), (3.1)

one for the averaged1 adatom concentrations ni and one for the terrace widths ℓi.

The (complicated) non-linear expressions Ψn
i and Ψℓ

i [36] depend on a large set of

input parameters: the inverse electromigration length fel, the dimensionless strength

of the step-step interactions2 ε(≡ g), the strength of transparency p, the number of

steps M , the equilibrium concentration n0
eq, the area of an atomic site Ω, attach-

ment/detachment coefficient k+ = k− = k (no Ehrlich-Schwoebel effect), the average

life time of an adatom before desorption τs, the diffusion constant Ds and the depo-

sition rate F .

In the special case of the relaxed (equidistant) step configuration one can consider

the averaged concentrations as constant functions in time and space. In the presence

of an electromigration drift, those constant concentrations become linear functions,

where the slope is proportional to the strength of the electromigration force, see fig-

ures 1.10, 1.11. In [36] the authors present an expression for the adatom concentration

1Like in the standard BCF model, the RS model incorporates a balance equation for the adatom

concentrations, i.e. the first equation in (3.1). But unlike the first model, the quasi-static con-

centration profiles ni(x) are replaced by time dependent averages of adatom concentrations over

the terraces ni(t).
2We keep the notation of [36], in order to avoid any confusion with the 3g and U terms, discussed

in the previous chapter.

87



3 Transparent Steps

gradient, calculated in the framework of the BCF model with the transparency terms

in the boundary conditions. In agreement with Stoyanov we review the calculations

and found a small deviation by a factor 2 in the final expression for the gradient

in the first order approximation of n(x, t). This difference is reported in sec. 3.2.

When moving away from the equidistant configuration, the spatially averaged con-

centrations are no more time independent. In the RS model the derived gradient

expression3 is used to model the exchange of adatoms with both neighboring terraces

in order to calculate the values of the (linear) concentrations on the terraces, very

close to the step edges, see sec. 1.3.4.

Next, we checked the result, given in [36] for the dispersion relation from the linear

stability analysis. The detailed calculation is given in Appendix F, while the result

is presented in sec. 3.4.

Finally, we use the knowhow, collected from the numerical simulation of the last

chapter, to simulate the RS model and gain additional information on the non-linear

behavior, see sec. 3.5. Apart from testing our analytical predictions, we will use the

numerical simulations to explore step bunching instability beyond the regime of small

deviations of the relaxed configuration.

3.2 Derivation of the Gradient

In sec. 1.3.3 we pointed out, that the effect of step transparency can be included in

the Burton-Cabrera-Frank model, just by changing the boundary conditions (1.21)

to (1.41). Therefore, before we concretize the dynamical equations of the RS trans-

parency model, let us proceed with the BCF model with transparent boundaries4, in

order to verify the expression for the gradient of the adatom concentration profiles

on the terraces, given in [36]. Let us start by listing the effects and limitations taken

into account in the derivation, discussed in the first chapter:

• the quasi-static limit: ∂n(x)
∂t

= 0;

• no Ehrlich-Schwoebel effect (k− = k+ = k and ℓ− = ℓ+ = dk =
Ds

k
);

• the only asymmetry effect is the electromigration of strength fel =
Fel

kBT
;

• the transparency of strength p and length dp =
Ds

p
;

3The so derived dynamical equations should apply only to small deviations of the terrace widths

ℓi around the average ℓ, otherwise the formula for the slope is no-more correct.
4steps
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3.2 Derivation of the Gradient

• the strong condition of uniform terrace width ℓi = ℓ for all i, with the conse-

quences:

– no step-step interactions, i.e. neq = n0
eq;

– replica of the concentration profiles on all terraces:

ni|x=xi
= ni+1|x=xi+1

ni|x=xi+1
= ni−1|x=xi

;

• the limit of strong transparency dp ≪ ℓ and dk & ℓ ·

Here, we consider the case5 of the balance equation in the quasi-static limit:

Dsn
′′(x)−Dsfeln

′(x)− n(x)

τs
+ F = 0, Ds 6= 0 · (3.2)

The general solution of the inhomogeneous equation with the corresponding gradient

has the following form:

n(x) = C1e
λ1x + C2e

λ2x + Fτs, and n′(x) = λ1C1e
λ1x + λ2C1e

λ2x, (3.3)

where nspec.
inhomog.(x) = Fτs is a special solution of the inhomogeneous equation, C1 and

C2 are the constants of integration, and λ1 = fel
2
+ ω and λ2 = fel

2
− ω, with ω =

1
ℓD

√
(
felℓD
2

)2
+ 1, are the corresponding solutions of the characteristic polynomial.

With the boundary conditions (1.41) we can determine the specified solution of

(3.3), whereby we define the jump in the profile of adatom concentration at a step to

be equal for all steps6

△ = ni|x=ℓ/2−ni|x=−ℓ/2= C1e
λ1ℓ
2 + C2e

λ2ℓ
2 + Fτs − C1e

−λ1ℓ
2 − C2e

−λ2ℓ
2 − Fτs

= 2C1 sinh(
λ1ℓ

2
) + 2C2 sinh(

λ2ℓ

2
) · (3.4)

One can simplify the expressions for C1 and C2 with help of the approximations

cosh x ≈ 1 and sinh x ≈ x, see Appendix E, so that the adatom concentration yields:

n(x) ≈ Fτs +
(felFτs)

(
λ2λ1ℓ

2
− 1

dk

)

+ fel
φ
dk

−Θλ2
φ
dk

2ωΘ
(

λ2λ1ℓ
2

− 1
dk

) eλ1x +

−
(felFτs)

(
λ2λ1ℓ

2
− 1

dk

)

+ fel
φ
dk

−Θλ1
φ
dk

2ωΘ
(

λ2λ1ℓ
2

− 1
dk

) eλ2x, (3.5)

5Also, we derive in Appendix E the special case of pure electromigration (no-desorption and no-

deposition). However, the final result in both cases is identical.
6As a consequence of the assumption of an equidistant step configuration.
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3 Transparent Steps

where φ := Fτs − n0
eq and Θ := 1 + ℓ

2dk
+ ℓ

dp
.

For the cases, where n0
eq ≈ Fτs ⇔ φ → 0, we can linearize the concentration

profile as follow:

n(x) ≈
feln

0
eq

2ω
(

1 + ℓ
2dk

+ ℓ
dp

)
(
eλ1x − eλ2x

)
+ neq =

feln
0
eqe

felx

2 sinh(ωx)

ω
(

1 + ℓ
2dk

+ ℓ
dp

) + n0
eq

≈
feln

0
eq

1 + ℓ
2dk

+ ℓ
dp

x+ n0
eq · (3.6)

The slope of n(x) in (3.6) is the desired expression for the first derivative:

n′ =
feln

0
eq

1 + ℓ
2dk

+ ℓ
dp

≈
n0
eqfeldp

ℓ
, (3.7)

where the last approximation is valid in the limit of strong transparency dp ≪ ℓ

and dk & ℓ.

Comparison of our Result to the one in [36] There is a discrepancy by factor

2 in comparison to the denominator 1 + ℓ
2dk

+ ℓ
2dp

, derived by Ranguelov-Stoyanov,

see equations (4) and (5) in [36]. This denominator leads to the formula grad(ni) ≈
2
n0
eqFeldp

kBTℓ
with the same factor 2, while our calculations yielded the factor 1, see (3.7).

3.3 Equations

The coupled system of differential equations defining the RS transparency model, see

(10) and (12) in [36], is:

dci
dτ

=
cst
τ ′s

− ci
τ ′s

− 2

ηi
ci +

2

ηi
+

1

ηi
ε

(
1

η3i−1

− 1

η3i+1

)

+

+
Pk

ηi
(ci+1 − 2ci + ci−1) +

fs
ηi
(ci−1 − ci+1) (3.8)

− 1

n0
eqΩ

dηi
dτ

= ci+1 − ci−1 −
fs
Pk

(ci−1 − 2ci + ci+1) + 2ε

(
1

η3i+1

− 2

η3i
+

1

η3i−1

)

·

Here, the equations are given in a rescaled form using the following substitutions:

fs = (Feldk)/(kBT ), τ
′
s = τsk/ℓ, τ = kt/ℓ, ηi = ℓi/ℓ, ci = ni/n

0
eq, cst = Fτs/n

0
eq,

ε = Ã/ℓ3 and Pk = p/k(≫ 1).
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3.4 Linear Stability Analysis

The first set of differential equations in (3.8) consists of the balance equations for

the averaged adatom concentrations on the terraces, see eq. (7) in [36]. ci changes

in time by adatom deposition (first term), adatom desorption (second term), adatom

exchange with the bounding steps (third, fourth and fifth terms) and with the neigh-

boring terraces (last two terms with prefactors Pk and fs) [36], where the positive and

negative signs of the terms correspond to gains or losses to the adatom concentration,

respectively.

The second set of differential equations reflects the motion of the steps similarly

to the standard BCF theory, albeit the interesting variables are not the positions

of the steps, but the terrace widths, i.e. ℓη̇i = ẋi+1 − ẋi. As a reminder, each step

velocity ẋi is a superposition of mass fluxes at the step with position xi, depending

on the differences in the adatom concentrations with respect to the concentration at

equilibrium, see eq. (2) in [36].

Correction Because of the amendment of the result for the gradient (3.7), the orig-

inal definition of fs has to be replaced by fs = (Feldk)/(2kBT )

Conservation of the Dynamics Analogous to the case of the standard BCF model,

we can sum up the equations (3.8) over one spatial period, L/ℓ =
∑M

i ℓi/ℓ, and probe

for (non-linear) non-conserved terms. A simple look in the equations already yields

the result, that although the sum over the equations for the terraces widths vanish,

the one for the concentrations does not. It is clear, that the prefactors 1/ηi make the

sum dependent on the given configuration. Thus, we conclude, that the considered

system of coupled differential equations is a (non-linear) non-conserved one.

3.4 Linear Stability Analysis

3.4.1 Linearization

By considering7 the equidistant situation ℓi = ℓi−1 = ℓ and constant ci = c0, the first

equation of (F.1) yields the expression for the relaxed adatom concentration:

0 =
cst
τ ′s

− c0
τ ′s

− 2c0 + 2 ⇒ c0 =
cst + 2τ ′s
1 + 2τ ′s

, (3.9)

around which the perturbation will be carried out, compare (13) in [36].

7For the general study of the linear stability analysis in 2D, see sec. 1.4.1, as well as [34, 35, 36].
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3 Transparent Steps

By using the first order Taylor expansions ηi = 1 + ∆ηi(τ) and ci = c0 + ∆ci(τ)

the equations in (3.8) linearize to:

− 1

n0
eqΩ

d∆ηi
dτ

= ∆ci+1 −∆ci−1 − 6ε (∆ηi+1 − 2∆ηi +∆ηi−1)

− fs
Pk

(∆ci+1 − 2∆ci +∆ci−1), (3.10)

d∆ci
dτ

≈ −∆ci
τ ′s

− 2∆ci + 2(c0 − 1)∆ηi + 3ε (∆ηi+1 −∆ηi−1)

+ Pk[∆ci−1 − 2∆ci +∆ci+1] + fs[∆ci−1 −∆ci+1],

where terms of order (∆ci)
2, (∆ηi)

2, (∆ci)(∆ηi) and higher are neglected.

3.4.2 Fourier

We now use the Fourier transform ∆ηi = eiiqηq(τ) and ∆ci = eiiq+iφcq(τ), see eq. (13)

in [36], in order to map the linearized system (3.10) into the q-space. In that space,

the system of 2M equations simplifies to only two (linear) differential equations of

first order:

dηq
dτ

= −12n0
eqΩε(1− cos q)ηq − 2n0

eqΩ

[

i sin q +
fs
Pk

(1− cos q)

]

eiφcq, (3.11)

dcq
dτ

= 2e−iφ [−(1− c0) + 3iε sin q] ηq −
[
1

τ ′s
+ 2 + 2Pk(1− cos q) + 2ifs sin q

]

cq,

both depending (non-linearly) on the wave number q. In the matrix representation,

the system (3.11) is equivalent to d−→x
dτ

= A−→x with the vector −→x = (ηq, cq)
T and the

2x2-Matrix A, consisting of the following 4 elements:

a11 = −12n0
eqΩε(1− cos q),

a12 = −2eiφn0
eqΩ

[

i sin q +
fs
Pk

(1− cos q)

]

,

a21 = 2e−iφ [−(1− c0) + 3iε sin q] ,

a22 = − (2 + 1/τ ′s)− 2Pk(1− cos q)− i2fs sin q · (3.12)

We present the detailed derivation of those elements in Appendix F.

3.4.3 Eigenvalues

Further, one can find the eigenvalues of the matrix A, denoted by σ1,2(q)=Re[σ](q)

± i Im[σ](q). Because of the exponential perturbation ansatz, only the real parts, i.e.

Taylor terms with even exponents, contribute to the stability/instability, while the
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3.4 Linear Stability Analysis

imaginary parts, i.e. Taylor terms with odd exponents, lead to oscillations, see sec:

1.4.1.

In the limit of very small wave numbers q, the real part of the eigenvalues of the

matrix defined by (3.12) up to leading fourth order, i.e. Re[σ](q) ≈ B2q
2 − B4q

4 we

derived:

B2 ≈
n0
eqΩk(1− cst)

k2(1 + 2τ ′s)

[ −6εk

(1− cst)
+ 2n0

eqΩk
(1− cst)

(1 + 2τ ′s)
+ 2fsk

]

, (3.13)

B4 ≈ Pk

k2

n0
eqΩk(1− cst)

(1 + 2τ ′s)

[
6εkτ ′s

(1− cst)
+ 3n0

eqΩk
(1− cst)

(1 + 2τ ′s)
+ 2fsk

]

·

Now, let us consider two limiting cases:

without Deposition (cst → 0 ⇔ F → 0) In eq. (15) of [36] the expressions for B2

and B4 are given. There, the authors define three velocities: one corresponding to

the drift Vdrift = (FDs)/(kBT ), one corresponding to the step-step interactions, called

critical velocity, Vcr = 6kε, and one corresponding to the velocity of the equidistant

step train during sublimation V =
n0
eqΩk

(1+2τ ′s)
.

BRS
2 ≈ V

k2

(

−Vcr +
V

2
+ Vdrift

)

, (3.14)

BRS
4 ≈ PkV

k2

[

(2τ ′s + 1)Vcr +
3V

4
+ Vdrift

]

·

In this limit our equation (3.13) yields

Bcor
2 ≈ V

k2

(

−Vcr + 4
V

2
+ 2Vdrift

)

, (3.15)

Bcor
4 ≈ PkV

k2

(

τ ′sVcr + 4
3V

4
+ 2Vdrift

)

,

where in red color we emphasize the differences to [36]. We performed numerical

simulations for the case of very small fs = 10−8 and compared both results for B2,

see table 3.1 and fig. 3.1. For ε = 10−4 the simulation confirms our result Bcor
2 , but

not BRS
2 .
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ε Bcor
2 BRS

2

1.00×10−5 1.60 ×10−6 3.59×10−7

1.00×10−4 1.11×10−6 -1.32×10−7

5.00×10−4 -1.07×10−6 -2.31×10−6

1.00×10−3 -3.80×10−6 -5.04×10−6

5.00×10−3 -2.56×10−5 -2.69×10−5

Table 3.1: Comparison of the results for the prefactor of the quadratic term in the real

part of the dispersion relation. We choose the following set of parameters:

n0
eqΩ=0.01, τ ′s=5, Pk=20, a very small fs = 10−8, and we vary ε. Bcor

2 is

the corrected prefactor and BRS
2 is the one derived by Ranguelov-Stoyanov

[36]. In fig. 3.1 we plot the evolution of the maximal slope for the same

parameters, discussed here.

with Strong Deposition (cst =
Fτs
n0
eq

≫ 1): For this case of strong deposition, the

expressions in (3.13) change to:

Bcor
2 ≈ −cst

V

k2

(
Vcr

cst
− 4cst

V

2
+ 2Vdrift

)

, (3.16)

Bcor
4 ≈ −cst

PkV

k2

(

−τ ′s
Vcr

cst
− 4cst

3V

4
+ 2Vdrift

)

·

Here, additionally to the change of prefactors in (3.15) with respect to (3.14), there is

an additional sign and a factor cst change, which can be understood as redefinition,V →
−cstV . Such a redefinition is analogous to the one for the discrete equations and dis-

persion relation, respectively, from the standard BCF model by going from the case

of pure sublimation to the case of growth, see (2.22) and (2.27).

3.5 Non-linear Regime and Step Bunching

In this section we present some images from the numerical simulations, implemented

in the same way as those in the previous chapter 2. First of all, we have to bear in

mind that the RS transparency model (3.8) is appropriate to describe only the initial

stages of coarsening. This limitation was obtained by the derivation of the formula

for the gradient of the concentration profile.

In fig. 3.2 we show the time evolution of the terrace widths in the regime of strong

step bunching, choosing values of the ratio fs, that vary over three orders of magni-

tude, fs =1, 10, 100. With increasing fs, the bunching instability becomes more and
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Figure 3.1: Time evolution of the maximal slope for M=10 terraces, close to lin-

ear stability, with n0
eqΩ=0.01, τ ′s=5, Pk=20 and fs=10−8. The prefactor

Bcor
2 from the quadratic term of the real part of the dispersion relation

depends sensitively on the parameters. As expected, for Bcor
2 > 0 the

maximal slope increases with time, while for Bcor.
2 < 0 it drops down

towards the relaxed step configuration of mmax ≈ 1. Therefore, for the

considered setting of parameters, the numerical simulations reproduce the

analytically predicted condition for stability/instability.
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more pronounced and thus the maximal slope increases too, i.e. the minimal terrace

width decreases. Indeed, for the case fs=100, we don’t observe any running step,

while for fs=10 the large bunch becomes less dense, and we observe a single running

step at a time. For fs=1, there is still just a single running step at a time, but the

velocity of the steps is much higher (k increases for decreasing fs and constant fel).

The step configuration needs less time to cross the system.

In figures 3.3a)-c) we plot the time evolution of the maximal slope, to illustrate

the bunching. We vary three of the parameters, Pk, ε and M , while we keep τ ′s=5,

n0
eqΩ=0.01 and fs=1 fixed in all simulations. In summary, with decreasing Pk and ε,

as well as with decreasing M , the maximal slope increases and thus the steps move

closer to one another. However, for M = 160, see fig. 3.3c), the long time solution

consists of two bunches.

Another non-trivial behavior, beside the multiple bunch solutions, is the pairing of

steps. It emerges, when every second terrace width becomes very small and the max-

imal slope increases fast. The pairing can stay stable for a long time, and therefore

the bunching is suppressed, despite the presence of very large values for the maximal

slope in the system.

3.6 Summary

In this short chapter we studied the transparency model, recently introduced by

Ranguelov and Stoyanov [36]. Firstly, we verified the expression for the gradient

of the concentration profiles, derived in the framework of the standard BCF model

with strong transparency. Our calculations confirmed the result in [36], up to a

factor 2. Secondly, we reviewed the results of the linear stability analysis of the

RS equations [36] and we found deviations for the prefactors B2 and B4 in the real

part of the dispersion relation. We confirmed our analytical result with numerical

simulations for the situation of very small deviation from the initial equidistant step

train configuration. Finally, we performed a few numerical simulations exploring the

non-linear dynamics in the bunching regime. There, we illustrated the time evolution

of the terraces, for various choices of fs, and of the maximal slope for various choices

of Pk, ε and M .
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Figure 3.2: The evolution of the step train of 40 terraces with n0
eqΩ=0.2, τ ′s=5,

ε=0.000075 and Pk=20, where the observer at x = 0 moves with one

of the steps: a) for fs=100 the step bunching starts immediately after

the simulation begins, there are no crossing steps; b) for fs=10 there is

a single crossing step at a time in the final quasi-stationary state; c) for

fs=1 there still is a single crossing step, but the steps move much faster

(fs ∝ fel/k).
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3 Transparent Steps
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Figure 3.3: Evolution of the maximal slope for n0
eqΩ=0.01, fs=1 and τ ′s=5: a) varying

Pk = p/k=10, 20, 30 and 40, for constant ε=0.01 and M=20 terraces; b)

varying the values of ε =0.01, 0.001, 0.0001, 0.00001 and 0.000001 for

constant Pk=20 and M=20 terraces; c) choosing M =20, 40, 80 and 160

terraces, for constant ε=0.01 and Pk=20.
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4 Summary

In this work, two models for the dynamics of steps on vicinal surfaces were studied.

The first one is the standard Burton-Cabrera-Frank model [4] for opaque steps in

the case of fast attachment/detachment kinetics and the quasi-static approximation.

The second model [36] is the one recently introduced by Ranguelov and Stoyanov for

strong transparency of the steps and fast diffusion and slow attachment/detachment

kinetics.

For the Burton-Cabrera-Frank model we took into account the next order non-

linear terms, which were neglected in the detailed studies before [20, 31, 32], and

which we call for simplicity 3g terms. We used analytical and numerical tools to study

the impact of those terms, and, from our point of view, there are some remarkable

results:

• the 3g terms are present in the differential equations for the case of sublimation,

but not for the case of growth,

• there is an additional barrier of 6g in the stability/instability condition, which

the numerical simulations confirmed,

• the nature of the dynamics changes from conservative to non-conservative with

respect to the crystal volume,

• the new gbES terms due to the Ehrlich-Schwoebel effect are non-conserved, while

the gbel terms due to the effect of electromigration are conserved,

• the mechanical analog of the PDE from the continuum limit indicates slope

selection, and thus, breakdown of the scaling laws for the bunch size L and

minimal terrace width ℓmin versus the number of steps N (or bunch height

H = Nho with fixed monoatomic height h0), which we confirmed with numerical

simulations, whereby we observe either arrested or anti-coarsening, depending

on the initial condition,

• there are numerical solutions with periodic switching between step trains of

different number of bunches,
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4 Summary

• there are different solutions for beginning the numerical integration with differ-

ent strengths of the amplitude of the initial disturbance of an equidistant step

train.

In general, the stronger the step-step interactions, the higher the impact of the 3g

terms on the dynamics. From the numerical simulations we extract the fact that, with

increasing g, the bunch slope decreases and the number of running steps increases.

However, by further increase of g, and more precisely of the ratio g/U , the step

dynamics becomes even more complex, where quasi-stationary solutions of periodic

switching of the statistical and geometrical quantities in the step configuration are

observed. By increasing the system size M , the numerical simulations we performed,

show that the step dynamics is marked by the confinement of the maximal slope. It

seems, that the step train prefers to stay rather in an unstable form of a bounded

slope with a lot of bunches, than to coarsen to a single final structure.

On the one hand, increasing the surface temperature, the effective sublimation

increases, too, but on the other hand, the strength of the step-step interactions de-

creases inversely, i.e. g ∝ T−1. Therefore, the effect of the non-conservative 3g terms

could be expected to be most present near the onset of sublimation at moderately

high temperatures. Summing up those considerations, we argue that our theoreti-

cal results have to be compared with an experiment, preferentially, in the so called

Regime I, rather than in the next Regime III, which indeed obeys the same direc-

tion of the electromigration force for step bunching instability like the first one.

The second model we considered is the Ranguelov-Stoyanov model. This model

was introduced, initially, for a case of non-transparent steps [34]. The main result

is the occurrence of an instability of step trains in cases without the presence of

an asymmetry effect (to the concentration profiles on the terraces). The considered

coupled system of discrete differential equations for the case of step-step interactions

and fast diffusion, see (1.42), yields an instability form, called step density waves, see

[34]. The averaged concentrations change in every time step depending on the values

of the neighboring terraces, because of the coupling due to the step-step interactions.

Therefore, the evolution of both, the terrace widths and averaged concentrations,

is dependent on the history of their values in the neighborhood. For that reason,

the underlying phenomenon for the emergence of the step density waves is called a

memory effect. The instability sets in, when the average velocity of the steps is larger

than a critical velocity, proportional to the magnitude of the step-step interactions.

In the case of transparent steps during electromigration [36], there is an additional

term in the dispersion relation, proportional to the strength of electromigration.

The latter one, if larger than the critical velocity, causes like in the case of the
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Burton-Cabrera-Frank model stability or instability, depending on the direction of

the electromigration force Fel. However, when the contribution of Fel to the dispersion

relation is much smaller than the critical one, the evolution proceeds in step density

waves with the corresponding wavelength and the coarsening of the small groups of

steps is interrupted, like in the case of the (non-conserved) BCF model. Therefore,

we can conclude, that the solutions we observed from the non-conserved dynamics

in the framework of the BCF model represent a generic behavior of a complex one-

dimensional systems of straight steps with the special non-linear expression of the

repulsive step-step interactions.

For the Ranguelov-Stoyanov transparency model we reviewed the analytical results,

given in [36]. Our calculations provide a small correction to the gradient of the

adatom concentrations on the terraces and also a correction in the final expressions

for the dispersion relation from the linear stability analysis. Those deviations are

purely quantitative and do not change qualitatively the solution of the non-linearized

equation, discussed in the same publication [36]. Nevertheless, we simulated the

equations and used the knowhow collected by the consideration of the BCF model to

illustrate the behavior of the maximal slope for the case of bunching regime. Note,

however, that the derivations were carried out for the initial stage of step evolution,

where the terrace widths do not differ much from the average value.

Although the widely accepted consideration that the phenomenon of several tem-

perature regimes on the vicinal Si(111) is due to the effect of electromigration [26],

until that moment, we can not finally reject the importance of the Ehrlich-Schwoebel

effect, typical for metals [25], but also observed on vicinal Si surfaces [37]. Therefore,

for a future comparison with experimental data, one has, at least quantitatively, to

take into account the general formula, including both asymmetry effects.

Note, that our considerations were made in the so called quasi-one-dimensional

geometry of the vicinal surface. As a consequence, two-dimensional effects like S-

formed crossing steps, found in the long time annealing [45, 16], can not be predicted.

Antisteps [16] were neglected and the number of steps in the system was always

fixed. Step bunching instability induced by pinning of steps on impurities we did not

consider either [18].
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Appendix A: Sublimation

A.1 General Solution

The balance equation (f ≡ fel),

Ds

[
∂2ni(x)

∂x2
− f

∂ni(x)

∂x

]

− ni(x)

τs

!
= 0, (A.1)

has the general solution:

ni(x) = C i
1e

λ1x + C i
2e

λ2x, (A.2)

with the (pairs of) constants, C i
1 and C i

2, and with the solutions of the characteristic

polynomial:

λ1,2 =
f

2
± 1

ℓD

√

1 +

(
fℓD
2

)2

. (A.3)

A.2 Boundary Conditions and the Constants of

Integration

We consider the boundary conditions

D

[
∂n(x)

∂x
− fn(x)

]

= +k−[n(x)− n−ℓ/2
eq ], at x = xi = − ℓ

2
,

D

[
∂n(x)

∂x
− fn(x)

]

= −k+[n(x)− n+ℓ/2
eq ], at x = xi+1 = +

ℓ

2
, (A.4)

where the equilibrium concentrations at the step edges are given by the expressions:

n−ℓ/2
eq = neq(xi) = n0

eqe
△µi
kT ≈ n0

eq

(

1 +
△µi

kT

)

,

n+ℓ/2
eq = neq(xi+1) = n0

eqe
△µi+1

kT ≈ n0
eq

(

1 +
△µi+1

kT

)

.
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Appendix A: Sublimation

We put the general solution in the boundary conditions (and C1 ≡ C i
1, C2 ≡ C i

2):

Ds

(

C1λ1e
−λ1

ℓ
2 + C2λ2e

−λ2
ℓ
2

)

− Dsf
(

C1e
−λ1

ℓ
2 + C2e

−λ2
ℓ
2

)

= +k−

[

C1e
−λ1

ℓ
2 + C2e

−λ2
ℓ
2 − n0

eq

(

1 +
△µi

kT

)]

,

Ds

(

C1λ1e
+λ1

ℓ
2 + C2λ2e

+λ2
ℓ
2

)

− Dsf
(

C1e
+λ1

ℓ
2 + C2e

+λ2
ℓ
2

)

= −k+

[

C1e
+λ1

ℓ
2 + C2e

+λ2
ℓ
2 − n0

eq

(

1 +
△µi+1

kT

)]

.

With the kinetic lengths ℓ± = Ds

k±
follows

ℓ−

[

C1(λ1 − f)e−λ1
ℓ
2 + C2(λ2 − f)e−λ2

ℓ
2

]

= C1e
−λ1

ℓ
2 + C2e

−λ2
ℓ
2 − n0

eq

(

1 +
△µi

kT

)

,

ℓ+

[

C1(λ1 − f)e+λ1
ℓ
2 + C2(λ2 − f)e+λ2

ℓ
2

]

= C1e
+λ1

ℓ
2 + C2e

+λ2
ℓ
2 − n0

eq

(

1 +
△µi+1

kT

)

.

Now, let us add both equations

C1 =
n0
eq

(
△µi+1

kT
− △µi

kT

)

− C2

{

[ℓ−(λ2 − f)− 1] e−λ2
ℓ
2 + [ℓ+(λ2 − f) + 1] eλ2

ℓ
2

}

[ℓ−(λ1 − f)− 1] e−λ1
ℓ
2 + [ℓ+(λ1 − f) + 1] eλ1

ℓ
2

.(A.5)

Here, we introduce the substitutions:

α1,2 := ℓ+(λ1,2 − f) + 1 = −ℓ+λ2,1 + 1,

β1,2 := ℓ−(λ1,2 − f)− 1 = −ℓ−λ2,1 − 1. (A.6)

Thus, we rewrite C1(C2):

=⇒ C1 =
n0
eq

(
△µi+1

kT
− △µi

kT

)

− C2

(

β2e
−λ2

ℓ
2 + α2e

λ2
ℓ
2

)

β1e
−λ1

ℓ
2 + α2e

λ1
ℓ
2

. (A.7)

Then, we put the found C1 in the first boundary condition:

ℓ−

[

C1(λ1 − f)e−λ1
ℓ
2 + C2(λ2 − f)e−λ2

ℓ
2

]

= C1e
−λ1

ℓ
2 + C2e

−λ2
ℓ
2 − n0

eq

(

1 +
△µi

kT

)

,

C2 =
−n0

eq

(
1 + △µi

kT

)
− [ℓ−(λ1 − f)− 1]C1e

−λ1
ℓ
2

[ℓ−(λ2 − f)− 1] e−λ2
ℓ
2

, (A.8)

=⇒ C2 =
−n0

eq

(
1 + △µi

kT

)
− C1β1e

−λ1
ℓ
2

β2e
−λ2

ℓ
2

. (A.9)
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A.3 Simplification

Now, we replace the expression of C2 in C1, and vice verse. Finally, the constants of

integration are as follow read:

C i
1 = +n0

eq





(

1 + △µi+1

kT

)

β2e
−λ2ℓ

2 +
(
1 + △µi

kT

)
α2e

λ2ℓ
2

α1β2e
(λ1−λ2)ℓ

2 − β1α2e
− (λ1−λ2)ℓ

2



 ,

C i
2 = −n0

eq





(

1 + △µi+1

kT

)

β1e
−λ1ℓ

2 +
(
1 + △µi

kT

)
α1e

λ1ℓ
2

α1β2e
(λ1−λ2)ℓ

2 − β1α2e
− (λ1−λ2)ℓ

2



 . (A.10)

A.3 Simplification

The fluxes at the step edge xi are:

f i
+ = −ΩDs[n

′
i(xi)− fni(xi)],

f i−1
− = +ΩDs[n

′
i−1(xi)− fni−1(xi)]. (A.11)

Therefore, we need the first derivative of the concentration ni:

n′
i(x) = λ1C

i
1e

λ1x + λ2C
i
2e

λ2x

n′
i−1(x) = λ1C

i−1
1 eλ1x + λ2C

i−1
2 eλ2x.

Then, the sum of the fluxes in (A.11) yields the velocity:

dxi

dt
= f i

− + f i−1
+ =

= − n0
eqΩDs







[(
ℓ+
ℓ2
D

+ f
2

)

2 sinh ℓi
ℓD

+ 2
ℓD

cosh ℓi
ℓD

] (
1 + △µi

kT

)
− 2

ℓD
e−

fℓi
2

(

1 + △µi+1

kT

)

(f(ℓ+−ℓ−)
2

− 1)2 sinh ℓi
ℓD

− ℓ−+ℓ+
ℓD

2 cosh ℓi
ℓD






+

− n0
eqΩDs







[

( ℓ−
ℓ2
D

− f
2
)2 sinh ℓi−1

ℓD
+ 2

ℓD
cosh ℓi−1

ℓD

] (
1 + △µi

kT

)
− 2

ℓD
e

fℓi−1
2

(

1 + △µi−1

kT

)

(
f(ℓ+−ℓ−)

2
− 1
)

2 sinh ℓi−1

ℓD
− ℓ−+ℓ+

ℓD
2 cosh ℓi−1

ℓD






,

where f−1 ≫ ℓD is the first used length scales limit. Next, let us take the limit

ℓD ≫ ℓ± ≫ ℓ with

sinh
ℓi−1

ℓD
≈ ℓi−1

ℓD
, cosh

ℓi−1

ℓD
≈ 1,

exp(±f

2
ℓi) ≈ 1± f

2
ℓi, ℓi + ℓ− + ℓ+ ≈ ℓ− + ℓ+. (A.12)

105



Appendix A: Sublimation

⇒ dxi

dt
≈

n0
eqΩD

ℓ+ + ℓ−/ℓD
[

[(
ℓ−
ℓ2D

+
f

2

)
ℓi
ℓD

+
1

ℓD

](

1 +
△µi

kT

)

− 1

ℓD

(

1− f

2
ℓi

)(

1 +
△µi+1

kT

)

+

+

[

(
ℓ+
ℓ2D

− f

2
)
ℓi−1

ℓD
+

1

ℓD

](

1 +
△µi

kT

)

− 1

ℓD

(

1 +
f

2
ℓi−1

)(

1 +
△µi−1

kT

)

]

=
n0
eqΩD

ℓ+ + ℓ−

{(

1 +
△µi

kT

)[
ℓ+ℓi−1 + ℓ−ℓi

ℓ2D
+

f

2
(ℓi − ℓi−1)

]}

+

+
n0
eqΩD

ℓ+ + ℓ−

{
f

2
ℓi

(

1 +
△µi+1

kT

)

− f

2
ℓi−1

(

1 +
△µi−1

kT

)

+ 2
△µi

kT
− △µi+1

kT
− △µi−1

kT

}

=
n0
eqΩD

ℓ2D

(

1 +
△µi

kT

)[
ℓ+ℓi−1 + ℓ−ℓi

ℓ+ + ℓ−
+

fℓ2D
ℓ+ + ℓ−

(ℓi − ℓi−1)

2

]

+

+
n0
eqΩD

ℓ2D

[
fℓ2D

ℓ+ + ℓ−

ℓi
2

(

1 +
△µi+1

kT

)

− fℓ2D
ℓ+ + ℓ−

ℓi−1

2

(

1 +
△µi−1

kT

)]

+

+
n0
eqΩD

ℓ+ + ℓ−

(

2
△µi

kT
− △µi+1

kT
− △µi−1

kT

)

=

(

1 +
△µi

kT

)

Re

[
(ℓi + ℓi−1)

2
− (ℓ+ − ℓ−)

(ℓ+ + ℓ−)

(ℓi − ℓi−1)

2

]

+

+
n0
eqΩD

ℓ+ + ℓ−

(

2
△µi

kT
− △µi+1

kT
− △µi−1

kT

)

+

+
Re

2

fℓ2D
ℓ+ + ℓ−

[

ℓi

(

2 +
△µi+1

kT
+

△µi

kT

)

− ℓi−1

(

2 +
△µi

kT
+

△µi−1

kT

)]

.

Finally, we use the substitutions:

bSE :=
ℓ− − ℓ+
ℓ− + ℓ+

, bel := − fℓ2D
ℓ− + ℓ−

U :=
gℓ2D

ℓ− + ℓ+
, Re :=

ΩDsn
0
eq

ℓ2D
,

ℓ± :=
ℓ− + ℓ+

2
∓ ℓ− − ℓ+

2
= (ℓ− + ℓ+)

1

2
(1∓ bSE), (A.13)

and find the discrete equations for the step edge velocities

dxi

dt
≈ (1 + gνi)Re

[
(1− bSE)

2
ℓi +

(1 + bSE)

2
ℓi−1

]

+ReU(2νi − νi−1 − νi+1) +

− Rebel
2

[ℓi (2 + gνi+1 + gνi)− ℓi−1 (2 + gνi + gνi−1)] , (A.14)

where △µi/kT ≡ gνi.
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A.4 Linear stability analysis

A.4 Linear stability analysis

Here, we linearize (A.14). Firstly, we consider ℓi = ℓ + εi+1 − εi, and secondly, from

the Introduction we know, that νi ≈ −3
ℓ
(2εi − εi+1 − εi−1).

Thus, the first part of the equation is

I = (1 + gνi)Re

[
(1− bSE)

2
ℓi +

(1 + bSE)

2
ℓi−1

]

≈ Re

[

1− 3g

ℓ
(2εi − εi+1 − εi−1)

] [
(1− bSE)

2
(ℓ+ εi+1 − εi) +

(1 + bSE)

2
(ℓ+ εi − εi−1)

]

= Reℓ− 3gRe(2εi − εi+1 − εi−1) +
Re

2
(εi+1 − εi−1) +

bSERe

2
(2εi − εi+1 − εi−1) +O(ε2)

≈ Reℓ+Re
εi+1 − εi−1

2
+Re

(
bSE
2

− 3g

)

(2εi − εi+1 − εi−1) (A.15)

= Reℓ+ εiRe
eik − e−ik

2
+ εiRe

(
bSE
2

− 3g

)

(2− eik − e−ik)

= Reℓ+ iεi sin(k)Re + εiRe

(
bSE
2

− 3g

)

(2− 2 cos(k))

≈ Reℓ+ εiRe(ik) + εiRe

(
bSE
2

− 3g

)

k2 +O(εik
3),

where sin(k) ≈ k and 2− 2 cos(k) ≈ k2. Then, we do the same for the second part:

II = ReU(2νi − νi−1 − νi+1)

≈ −3ReU

ℓ
(4εi − 2εi+1 − 2εi−1 − 2εi+1 + εi + εi+2 − 2εi−1 + εi + εi−2)

= −3ReU

ℓ
(6εi − 4εi+1 − 4εi−1 + εi+2 + εi−2)

= −εi
3ReU

ℓ

(
6− 4eik − 4e−ik + e2ik + e−2ik

)
(A.16)

= −εi
3ReU

ℓ
4 [cos(k)− 1]2

−εi
3ReU

ℓ
k4 +O(εik

5), (A.17)

where cos(k) ≈ 1− k2/2.
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For the third part we obtain:

III = −Rebel
2

(

2− 3g

ℓ
(2εi+1 − εi+2 − εi)−

3g

ℓ
(2εi − εi+1 − εi−1)

)

(ℓ+ εi+1 − εi)

+
Rebel
2

(

2− 3g

ℓ
(2εi−1 − εi−2 − εi)−

3g

ℓ
(2εi − εi+1 − εi−1)

)

(ℓ+ εi − εi−1)

= Rebel(2εi − εi−1 − εi+1) +
3gRebel

2
(εi+1 − εi+2 + εi − εi−1 − εi−1 − εi + εi−2 + εi+1)

= Rebel(2εi − εi−1 − εi+1) +
3gRebel

2
[2(εi+1 − εi−1)− (εi+2 − εi−2)]

= εiRebel[2− 2 cos(k)] + εi
3gRebel

2
[i sin(k)− 2i sin(2k)]

≈ εiRebelℓk
2 − iεi

9gRebel
2

k +O(εik
3), (A.18)

where sin(k)− 2 sin(2k) ≈ −3k

Here, we come back to the left side of the equation:

dxi

dt
=

d(iℓ+ vt+ εi)

dt
= v +

dεi
dt

≈ v + ω(k)εi,

where v = Reℓ is the average velocity of the undisturbed step profile.

Considering the sum of I, II and III, in the fourth order Taylor expansion, we find

the final expression for the real part of the dispersion relation

Re(ω) = Re

(
bSE
2

+ bel − 3g

)

k2 − 3ReU

ℓ
k4. (A.19)
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Appendix B: Growth

B.1 General Solution

Let us consider the balance equation for the case of growth (f ≡ fel):

Ds

(
∂2ni

∂x2
− f

∂ni

∂x

)

+ F = 0.

The general solution reads:

ni(x) = C i
2e

fx + C1x+ C i
0, C1 =

F

Dsf
. (B.1)

C i
0 and C i

2 are the constants of integrations.

B.2 Boundary Conditions and the Constants of

Integration

In the following, we set ni(x) = n(x), ℓi = ℓ, xi = −ℓ/2 and xi+1 = ℓ/2. The

boundary conditions are:

Ds

(
∂n(x)

∂x
− fn(x)

)

= +k−[n(x)− n−ℓ/2
eq ], at x = − ℓ

2
,

Ds

(
∂n(x)

∂x
− fn(x)

)

= −k+[n(x)− n+ℓ/2
eq ], at x = +

ℓ

2
, (B.2)

and the first derivative of n(x) is:

∂n

∂x
= fC2e

fx +
F

Dsf
.

Next, let us take the following substitutions:

e±f ℓ
2 = A±1, ℓ± =

Ds

k±
.

Then, let us put the general solution in the boundary conditions:

+ℓ−

(

fC2A
−1 +

F

Dsf
− fC2A

−1 +
Fℓ

Ds2
− fC0

)

= C2A
−1 − Fℓ

fDs2
+ C0 − n−ℓ/2

eq

−ℓ+

(

fC2A
+1 +

F

Dsf
− fC2A

+1 − Fℓ

Ds2
− fC0

)

= C2A
+1 +

Fℓ

fDs2
+ C0 − n+ℓ/2

eq .
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+ℓ−

(
F

Dsf
+

Fℓ

Ds2
− fC0

)

= C2A
−1 − Fℓ

fDs2
+ C0 − n−ℓ/2

eq ,

−ℓ+

(
F

Dsf
− Fℓ

Ds2
− fC0

)

= C2A
+1 +

Fℓ

fDs2
+ C0 − n+ℓ/2

eq ,

+
F

Dsf

(

ℓ− +
ℓ−fℓ

2
+

ℓ

2

)

= C2A
−1 + C0(1 + ℓ−f)− n−ℓ/2

eq ,

− F

Dsf

(

ℓ+ − ℓ+fℓ

2
+

ℓ

2

)

= C2A
+1 + C0(1− ℓ+f)− n+ℓ/2

eq .

Comment: Here, we observe that the left-hand-sides of both equations are indepen-

dent of C2. This means that, later by the determination of the fluxes, we do not need

the constant C1.

The system can be simplified by using further self-understandable substitutions:

+χ = C2A
−1 + C0m

− − n−ℓ/2
eq

−α = C2A
+1 + C0m

+ − n+ℓ/2
eq . (B.3)

Now, we add both equations in (B.3)

C2(A
−1 + A+1) + C0(m

− +m+) = χ− α + n−ℓ/2
eq + n+ℓ/2

eq ,

and find

C2 =
−C0(m

− +m+) + χ− α + n
−ℓ/2
eq + n

+ℓ/2
eq

A−1 + A+1
. (B.4)

Next, put the expression for C2 in the second equation of (B.3)

−α =
−C0(m

− +m+) + χ− α + n
−ℓ/2
eq + n

+ℓ/2
eq

A−1 + A+1
A+1 + C0m

+ − n+ℓ/2
eq

⇔ −C0(m
− +m+)A+1 + χA+1 − αA+1 + n−ℓ/2

eq A+1 + n+ℓ/2
eq A+1 + C0m

+(A−1 + A+1) =

= −αA+1 − αA−1 + n+ℓ/2
eq A+1 + n+ℓ/2

eq A−1

⇔ C0 =
−χA+1 − αA−1 + n

+ℓ/2
eq A−1 − n

−ℓ/2
eq A+1

m+A−1 −m−A+1
. (B.5)

The constant C2, by replace C0 in (B.4), reads

C2 =
χm+ + αm− − n

+ℓ/2
eq m− + n

−ℓ/2
eq m+

m+A−1 −m−A+1
. (B.6)

Both constants, C2 and C0, depend on the equilibrium adatom concentrations, and

thus, they are coupling the special solution for the terraces ℓi = xi+1 −xi, with those

for the neighboring terraces.
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B.3 Derivation of the Velocity of the i-th Step

Determination of the Neighboring Fluxes As was already mentioned the terms

with C2 annihilate each other for the both fluxes at the bounding steps

f+ = −ΩDs

(
F

Dsf
+

Fℓ

Ds2
− fC0

)

, at x = − ℓ

2
,

f− = +ΩDs

(
F

Dsf
− Fℓ

Ds2
− fC0

)

, at x = +
ℓ

2
. (B.7)

Now, we consider the two fluxes at the i-the step edge:

f i
+ = −ΩDs

(
F

Dsf
+

Fℓi
Ds2

− fC i
0

)

,

f i−1
− = +ΩDs

(
F

Dsf
− Fℓi−1

Ds2
− fC i−1

0

)

. (B.8)

Velocity Finally, the superposition of both fluxes yields the equation for the velocity

vi of the step edge at position xi

vi = f i
+ + f i−1

− =

= ΩDs

[

− F

Ds2
(ℓi−1 + ℓi) + f(C i

0 − C i−1
0 )

]

= −ΩF
(ℓi−1 + ℓi)

2
+ ΩDsf(C

i
0 − C i−1

0 ). (B.9)

Simplification For the differences C i
0 − C i−1

0 , we have to simplify (B.5) first. With

fℓ ≪ 1 follows

A±1 = A± fℓ
2 ≈ (1± fℓ

2
). (B.10)

Then, we consider the denominator of (B.5):

m+A−1 −m−A+1 ≈ (1− ℓ+f)(1−
fℓ

2
)− (1 + ℓ−f)(1 +

fℓ

2
)

= 1− fℓ

2
− ℓ+f +

ℓ+f
2ℓ

2
− 1− fℓ

2
− ℓ−f − ℓ−f

2ℓ

2
≈ −f(ℓ+ ℓ+ + ℓ−) +O(f 2).
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Analogously, for the first two terms of the numerator we find

−χA+1 − αA−1 ≈ − F

Dsf

(

ℓ− +
ℓ−fℓ

2
+

ℓ

2

)

(1 +
fℓ

2
)− F

Dsf

(

ℓ+ − ℓ+fℓ

2
+

ℓ

2

)

(1− fℓ

2
)

≈ − F

Dsf

(

ℓ− +
ℓ−fℓ

2
+

ℓ

2
+ ℓ+ − ℓ+fℓ

2
+

ℓ

2

)

= − F

Dsf

[

(ℓ− + ℓ+ + ℓ) +
fℓ

2
(ℓ− − ℓ+)

]

= − F

Dsf
(ℓ− + ℓ+ + ℓ)− Fℓ

Ds2
(ℓ− − ℓ+),

and for the last two, respectively,

Θi ≡ ni+1
eq A−1 − ni

eqA
+1 ≈ n0

eq

(

1 +
△µi+1

kT

)

(1− fℓ

2
)− n0

eq

(

1 +
△µi

kT

)

(1 +
fℓ

2
)

= n0
eq

(△µi+1

kT
− △µi

kT

)

− n0
eq

fℓi
2

(

2 +
△µi+1

kT
+

△µi

kT

)

.

This yields the constant

C i
0 ≈

− F
Dsf

(ℓ− + ℓ+ + ℓi)− Fℓi
Ds2

(ℓ− − ℓ+) + Θi

−f(ℓi + ℓ+ + ℓ−)

=
F

Dsf 2
+

− Fℓi
Ds2

(ℓ− − ℓ+) + Θi

−f(ℓi + ℓ+ + ℓ−)
. (B.11)

Now, let us consider the found difference, as well as the limit ℓi ≪ ℓ±:

ΩDsf(C
i
0 − C i−1

0 ) ≈ −ΩDs

− Fℓi
Ds2

(ℓ− − ℓ+) + Θi

(ℓi + ℓ+ + ℓ−)
+ ΩDs

−Fℓi−1

Ds2
(ℓ− − ℓ+) + Θi−1

(ℓi−1 + ℓ+ + ℓ−)

≈ −ΩF (ℓi−1 − ℓi)
(ℓ− − ℓ+)

2(ℓ+ + ℓ−)
+

n0
eqΩDs

ℓ+ + ℓ−

(

2
△µi

kT
− △µi+1

kT
− △µi−1

kT

)

+

+
n0
eqΩDs

ℓ+ + ℓ−

f

2

[

ℓi

(

2 +
△µi+1

kT
+

△µi

kT

)

− ℓi−1

(

2 +
△µi

kT
+

△µi−1

kT

)]

(B.12)

Again, let us take the substitutions A.14 and put them in the simplified terms of
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(B.5). The velocity of the step edge at position xi is

vi = −ΩF
(ℓi−1 + ℓi)

2
+ ΩDsf(C

i
0 − C i−1

0 )

≈ −ΩF
(ℓi−1 + ℓi)

2
− ΩF

bSE(ℓi−1 − ℓi)

2
+

n0
eqΩDs

ℓ+ + ℓ−

(

2
△µi

kT
− △µi−1

kT
− △µi+1

kT

)

+

+
n0
eqΩDs

ℓ+ + ℓ−

f

2

[

ℓi

(

2 +
△µi+1

kT
+

△µi

kT

)

− ℓi−1

(

2 +
△µi

kT
+

△µi−1

kT

)]

= −ΩF

(
1 + bSE

2
ℓi−1 +

1− bSE
2

ℓi

)

+ReU(2νi − νi−1 − νi+1) +

− Rebel
2

[ℓi(2 + gνi+1 + gνi)− ℓi−1(2 + gνi + gνi−1)] , (B.13)

where we replace △µi/kT by gνi.
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Appendix C: Continuum Limit of the Sum

ℓi+1 + ℓi+1 and the Relaxation Terms

Analogous to the Introduction, we use the Lagrange transform and Frank relation in

order to find the continuum limit of the considered terms.

C.1 The Sum of two Subsequent Terrace Widths

Assumption:

dxi

dt
=

1

2
(ℓi−1 + ℓi) −→ 1

m

[

h0 −
h3
0

6

∂

∂x

(
m′

m3

)]

=⇒ dh

dt
≈ −

[

h0 −
h3
0

6

∂

∂x

(
m′

m3

)]

(C.1)

Verification:

dxi

dt
=

1

2
(ℓi−1 + ℓi), and

dxi+1

dt
=

1

2
(ℓi + ℓi+1). (C.2)

Subtract both

dℓi
dt

=
dxi+1

dt
− dxi

dt
=

1

2
(ℓi+1 + ℓi − ℓi − ℓi−1) =

1

2
(ℓi+1 − ℓi−1)

(∗)
≈

(∗)
≈ 1

2

[

ℓ+ h0
∂ℓ

∂h
+ h2

0

1

2

∂2ℓ

∂h2
+ h3

0

1

6

∂3ℓ

∂h3
−
(

ℓ− h0
∂ℓ

∂h
+ h2

0

1

2

∂2ℓ

∂h2
− h3

0

1

6

∂3ℓ

∂h3

)]

≈

≈ 1

2

(

2h0
∂ℓ

∂h
+ h3

0

2

6

∂3ℓ

∂h3

)

= h0
∂

∂h

(

ℓ+ h2
0

1

6

∂2ℓ

∂h2

)

.

⇐⇒ ∂

∂t

∂x

∂h
≈ ∂

∂h

(

ℓ+ h2
0

1

6

∂2ℓ

∂h2

)

(C.3)

⇐⇒ ∂x

∂t
≈ ℓ+ h2

0

1

6

∂2ℓ

∂h2
. (C.4)

The second term on the right hand side can be expressed (by using the Lagrange
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relation) as a function of the slope m:

1

6

∂2ℓ

∂h2
=

h0

6

∂

∂h

(
∂ 1

m

∂h

)

=
h0

6m

∂

∂x

(
1

m

∂ 1
m

∂x

)

=

= − h0

6m

∂

∂x

(
m′

m3

)

. (C.5)

Here we used the Taylor series:

ℓi+1 = ℓi +
∂ℓ

∂i
+

1

2

∂2

∂i2
+

1

6

∂3

∂i3
+ ..., and

∂

∂i
= h0

∂

∂h
. (∗) (C.6)

⊡

C.2 Relaxation Terms

Assumption:

∂xi

∂t
= U

(

2
△µi

kBT
− △µi−1

kBT
− △µi+1

kBT

)

=⇒ ∂h

∂t
= −3gU

2

∂

∂x

[
1

m

∂2

∂x2

(
m2
)
]

. (C.7)

Verification:

(

2
△µi

kBT
− △µi−1

kBT
− △µi+1

kBT

)

= h0

(
∂h

∂x

)−1 [
∂h

∂x
(△µi−1)−

∂h

∂x
(△µi)

]

=

= −h0ℓi−1
∂

∂x

{(
∂h

∂x

)−1
∂

∂x
[△µ(x)]

}

=

=
3g

2m

∂

∂x

{
1

m

∂

∂x

[
∂

∂x

(
m2
)
]}

. (C.8)

⊡
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Here, we show for each of the four special cases:

1. g = 10−7, U=0.0

2. g=0.0, U=0.2

3. g=0.02, U=0.2

4. g=0.02, U=0.0

with fixed bES=0.5, M=40, six images due to the time evolution of the maximal slope,

minimal curvature, number of bunches, number of running steps, average number of

steps per bunch and the position of the first step in the configuration. The simulations

we start with a fluctuating initial conditions with a small amplitude (0.01).
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Figure D.1: bES=0.5, M=40, g = 10−7, U=0.0

118



 1

 2

 3

 4

 5

 6

 7

 0  1000  2000  3000  4000  5000  6000  7000  8000

m
_m

ax

time

a)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  1000  2000  3000  4000  5000  6000  7000  8000
k

m
in

time

b)

 0

 2

 4

 6

 8

 10

 12

 14

 0  1000  2000  3000  4000  5000  6000  7000  8000

no
. o

f b
un

ch
es

time

c)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  1000  2000  3000  4000  5000  6000  7000  8000

no
. o

f r
un

ni
ng

 s
te

ps

time

d)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  1000  2000  3000  4000  5000  6000  7000  8000

av
er

. n
o.

 o
f s

te
ps

 p
er

 b
un

ch

time

e)

-35

-30

-25

-20

-15

-10

-5

 0

 0  1000  2000  3000  4000  5000  6000  7000  8000

x 1

time

f)

Figure D.2: bES=0.5, M=40, g=0.0, U=0.2
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Figure D.3: bES=0.5, M=40, g=0.02, U=0.2
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Figure D.4: bES=0.5, M=40, g=0.02, U=0.0
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Appendix E: Derivation of the Concentration

Gradient for the Ranguelov-Stoyanov

Transparency Model

E.1 Electromigration

We consider the quasi-static limit for the balance equation

Dsn
′′(x)−Dsfeln

′(x) = 0, Ds 6= 0, (E.1)

with the inverse electromigration length fel = Fel/kBT .

Easily, by using the ansatz n(x) = exp(λx), we can find the general solution

⇒ n′′(x)− feln
′(x) = 0,

⇒ λ2 − felλ = 0

λ(λ− fel) = 0 ⇒ λ1 = fel; λ2 = 0

=⇒ n(x) = C1e
felx + C2, n′(x) = felC1e

felx. (E.2)

Let us define:

△ = ni|x=ℓ/2−ni|x=−ℓ/2= C1e
+

felℓ

2 + C2 − C1e
− felℓ

2 − C2 = 2C1 sinh(
felℓ

2
).(E.3)

Taking into account the strong condition:

ni|x=xi
= ni+1|x=xi+1

,

ni|x=xi+1
= ni−1|x=xi

, (E.4)

for the differences at the positions xi = −ℓ/2 and xi+1 = ℓ/2, follows

ni−1|x=xi
−ni|x=xi

= ni|x=xi+1
−ni|x=xi

= ni|x=ℓ/2−ni|x=−ℓ/2= △,

ni|x=xi+1
−ni+1|x=xi+1

= ni|x=xi+1
−ni|x=xi

= ni|x=ℓ/2−ni|x=−ℓ/2= △. (E.5)
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The expressions in (E.5) are the last terms in the boundary conditions:

Ds

[

n′
i(−

ℓ

2
)− felni(−

ℓ

2
)

]

= +k

[

ni(−
ℓ

2
)− neq

]

− p△,

Ds

[

n′
i(+

ℓ

2
)− felni(+

ℓ

2
)

]

= −k

[

ni(+
ℓ

2
)− neq

]

− p△ . (E.6)

Comment: There is no Ehrlich-Schwoebel effect, so that k− = k+ = k!!! On the other

hand, we consider equidistant situation, so that ni
eq = ni+1

eq = neq!!!

Let us define dk =
Ds

k
and dp =

Ds

p
and rewrite E.6 to

n′
i(−

ℓ

2
)− felni(−

ℓ

2
) = +

1

dk

[

ni(−
ℓ

2
)− neq

]

− 1

dp
△,

n′
i(+

ℓ

2
)− felni(+

ℓ

2
) = − 1

dk

[

ni(+
ℓ

2
)− neq

]

− 1

dp
△ .

Next, let us replace n and n′ by (E.2), in the boundary conditions:

felC1e
− felℓ

2 − felC1e
− felℓ

2 − felC2 = +
1

dk
(C1e

− felℓ

2 + C2 − neq)−
1

dp
△,

felC1e
+

felℓ

2 − felC1e
+

felℓ

2 − felC2 = − 1

dk
(C1e

+
felℓ

2 + C2 − neq)−
1

dp
△ .

−felC2 = +
1

dk
(C1e

− felℓ

2 + C2 − neq)−
1

dp
△,

−felC2 = − 1

dk
(C1e

+
felℓ

2 + C2 − neq)−
1

dp
△ . (E.7)

Now, we subtract both equations:

0 = C1e
− felℓ

2 + C2 − neq + C1e
+

felℓ

2 + C2 − neq = 2C1 cosh(
felℓ

2
) + 2C2 − 2neq

⇒ C1 ≈ neq − C2

[

with cosh(
felℓ

2
) ≈ 1

]

. (E.8)

Then, we put expression (E.8) in the first equation of (E.7):

−fel(neq − C1) ≈ 1

dk

[

C1

(

1− felℓ

2

)

+ (neq − C1)− neq

]

− C1fell

dp

−felneq + C1fel ≈ −C1felℓ

2dk
− C1felℓ

dp
/− 1

fel

neq ≈ C1

(

1 +
ℓ

2dk
+

ℓ

dp

)

⇒ C1 ≈ neq

1 + ℓ
2dk

+ ℓ
dp

and with eq. (E.8) ⇒ C2 ≈
neq

(
ℓ

2dk
+ ℓ

dp

)

1 + ℓ
2dk

+ ℓ
dp

.

(E.9)
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E.2 Electromigration during Sublimation and Growth

Put the results for the constants (E.9) in the general solution (E.2):

=⇒ n(x) ≈
neq

(

efelx + ℓ
2dk

+ ℓ
dp

)

1 + ℓ
2dk

+ ℓ
dp

(E.10)

n(x) ≈
neq

(

felx+ 1 + ℓ
2dk

+ ℓ
dp

)

1 + ℓ
2dk

+ ℓ
dp

=
neqfel

1 + ℓ
2dk

+ ℓ
dp

x+ neq

The last approximation delivers a linear function n(x) = a1x+ a0.

Further, we consider the gradient of n(x):

n′(x) =
felneqe

felx

1 + ℓ
2dk

+ ℓ
dp

, (E.11)

and at the postion x = 0:

n′(x = 0) =
felneq

1 + ℓ
2dk

+ ℓ
dp

= a1, (E.12)

and for the limit dp ≪ ℓ and dk & ℓ we find:

n′(x = 0) =
felneqdp

ℓ
. (E.13)

E.2 Electromigration during Sublimation and Growth

We consider the quasi-statical limit for the case of sublimation and growth:

Dsn
′′(x)−Dsfeln

′(x)− n(x)

τs
+ F = 0, Ds 6= 0, (E.14)

with fel = Fel/kBT , the inverse electromigration length, and ℓD =
√
Dsτs, the diffu-

sion length.

Easily, by using the ansatz n(x) = exp(λx), we can find the general solution of the

homogeneous equation :

n′′
homog.(x)− feln

′
homog.(x)−

nhomog.(x)

ℓ2D
= 0,

⇒ λ2 − felλ− 1

ℓ2D
= 0 ⇒ λ1 =

fel
2

+ ω; λ2 =
fel
2

− ω

=⇒ nhomog.(x) = C1e
λ1x + C2e

λ2x. (E.15)
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Appendix E: Derivation of the Concentration Gradient for the RS Transparency Model

with ω = 1
ℓD

√
(
felℓD
2

)2
+ 1 ≈ 1

ℓD
. A special solution of the inhomogeneous equa-

tion reads nspec.
inhomog.(x) = Fτs. Therefore, the general solution of the inhomogeneous

equation, as well as the gradient, are:

n(x) = C1e
λ1x + C2e

λ2x + Fτs, and n′(x) = λ1C1e
λ1x + λ2C1e

λ2x (E.16)

Now, we consider again (as in the previous case) the boundary conditions, in order

to determine the constants of integration C1 and C2,

n′
i(−

ℓ

2
)− felni(−

ℓ

2
) = +

1

dk

[

ni(−
ℓ

2
)− neq

]

− 1

dp
△,

n′
i(+

ℓ

2
)− felni(+

ℓ

2
) = − 1

dk

[

ni(+
ℓ

2
)− neq

]

− 1

dp
△, (E.17)

where, again

△ = ni|x=ℓ/2−ni|x=−ℓ/2= C1e
λ1ℓ
2 + C2e

λ2ℓ
2 + Fτs − C1e

−λ1ℓ
2 − C2e

−λ2ℓ
2 − Fτs

= 2C1 sinh(
λ1ℓ

2
) + 2C2 sinh(

λ2ℓ

2
), (E.18)

see (E.4) and (E.5) Comment: There is no Ehrlich-Schwoebel effect, so that k− =

k+ = k. On the other hand, we consider equidistant situation, so that ni
eq = ni+1

eq =

neq.

λ1C1e
−λ1ℓ

2 + λ2C2e
−λ2ℓ

2 − fel

[

C1e
−λ1ℓ

2 + C2e
−λ2ℓ

2 + Fτs

]

=

= +
1

dk

[

C1e
−λ1ℓ

2 + C2e
−λ2ℓ

2 + Fτs − neq

]

− △
dp

,

λ1C1e
+

λ1ℓ
2 + λ2C2e

+
λ2ℓ
2 − fel

[

C1e
+

λ1ℓ
2 + C2e

+
λ2ℓ
2 + Fτs

]

=

= − 1

dk

[

C1e
+

λ1ℓ
2 + C2e

+
λ2ℓ
2 + Fτs − neq

]

− △
dp

.

We use in the following the relations λ1 + λ2 = fel and λ1 − λ2 = 2ω. Now, let us

define φ = Fτs − neq 6= 0!

−λ2C1e
−λ1ℓ

2 − λ1C2e
−λ2ℓ

2 − felFτs = +
1

dk

[

C1e
−λ1ℓ

2 + C2e
−λ2ℓ

2

]

+
φ

dk
− △

dp

−λ2C1e
+

λ1ℓ
2 − λ1C2e

+
λ2ℓ
2 − felFτs = − 1

dk

[

C1e
+

λ1ℓ
2 + C2e

+
λ2ℓ
2

]

− φ

dk
− △

dp
(E.19)
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E.2 Electromigration during Sublimation and Growth

Next, let us subtract both equations in (E.19):

2λ2C1 sinh(
λ1ℓ

2
) + 2λ1C2 sinh(

λ2ℓ

2
) =

2

dk
C1 cosh(

λ1ℓ

2
) +

2

dk
C2 cosh(

λ2ℓ

2
) +

2φ

dk

⇒ C1

[

λ2 sinh(
λ1ℓ

2
)− 1

dk
cosh(

λ1ℓ

2
)

]

+ C2

[

λ1 sinh(
λ2ℓ

2
)− 1

dk
cosh(

λ2ℓ

2
)

]

=
φ

dk
,

(E.20)

and define the prefactors, A and B, with C1A+ C2B = φ/dk.

In first order approximation,

A = λ2 sinh(
λ1ℓ

2
)− 1

dk
cosh(

λ1ℓ

2
) ≈ λ2λ1ℓ

2
− 1

dk
≈ − 1

dk
,

[

λ2λ1 =
f 2
el

4
− 1

ℓ2D

]

,

B = λ1 sinh(
λ2ℓ

2
)− 1

dk
cosh(

λ2ℓ

2
) ≈ λ2λ1ℓ

2
− 1

dk
≈ − 1

dk
, (E.21)

follows A = B, and thus C1 + C2 =
φ/dk
A

.

Let us add both equations in (E.19):

−2λ2C1 cosh(
λ1ℓ

2
) − 2λ1C2 cosh(

λ2ℓ

2
)− 2felFτs =

− 2

dk
C1 sinh(

λ1ℓ

2
)− 2

dk
C2 sinh(

λ2ℓ

2
)− 2△

dp
/− 1

2

⇒ felFτs = C1

[

(
1

dk
+

2

dp
) sinh(

λ1ℓ

2
)− λ2 cosh(

λ1ℓ

2
)

]

+

+ C2

[

(
1

dk
+

2

dp
) sinh(

λ2ℓ

2
)− λ1 cosh(

λ2ℓ

2
)

]

. (E.22)

Again, let us define two prefactors, E and G, by C1E +C2G = felFτs ⇒ ( (φ/dk)
A

−
C2)E + C2G = felFτs ⇒ C2(G− E) = felFτs − E(φ/dk)

A

⇒ C2 =
(felFτs)A−(φ/dk)E

(G−E)A
, and so C1 = − (felFτs)A−(φ/dk)G

(G−E)A
.

Now, we define Θ = 1+ ℓ
2dk

+ ℓ
dp

and use again λ1 = fel − λ2, and in the first order

Taylor expansion we find:

E = (
1

dk
+

2

dp
) sinh(

λ1ℓ

2
)− λ2 cosh(

λ1ℓ

2
) ≈ (

1

dk
+

2

dp
)(
λ1ℓ

2
)− λ2 = Θλ1 − fel

G = (
1

dk
+

2

dp
) sinh(

λ2ℓ

2
)− λ1 cosh(

λ2ℓ

2
) ≈ (

1

dk
+

2

dp
)(
λ2ℓ

2
)− λ1 = Θλ2 − fel

(E.23)

⇒ G− E ≈ Θλ2 − fel −Θλ1 + fel = Θ(λ2 − λ1) = −2ωΘ (E.24)
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Appendix E: Derivation of the Concentration Gradient for the RS Transparency Model

Finally, the (difference to) concentration n(x) reads:

n(x)− Fτs = C1e
λ1x + C2e

λ2x ≈

≈ −
(felFτs)

(
λ2λ1ℓ

2
− 1

dk

)

− (Θλ2 − fel)
φ
dk

−2ωΘ
(

λ2λ1ℓ
2

− 1
dk

) eλ1x +
(felFτs)

(
λ2λ1ℓ

2
− 1

dk

)

− (Θλ1 − fel)
φ
dk

−2ωΘ
(

λ2λ1ℓ
2

− 1
dk

) eλ2x

=
(felFτs)

(
λ2λ1ℓ

2
− 1

dk

)

− (Θλ2 − fel)
φ
dk

2ωΘ
(

λ2λ1ℓ
2

− 1
dk

) eλ1x −
(felFτs)

(
λ2λ1ℓ

2
− 1

dk

)

− (Θλ2 − fel)
φ
dk

2ωΘ
(

λ2λ1ℓ
2

− 1
dk

) eλ2x

=
(felFτs)

(
λ2λ1ℓ

2
− 1

dk

)

+ fel
φ
dk

−Θλ2
φ
dk

2ωΘ
(

λ2λ1ℓ
2

− 1
dk

) eλ1x −
(felFτs)

(
λ2λ1ℓ

2
− 1

dk

)

+ fel
φ
dk

−Θλ1
φ
dk

2ωΘ
(

λ2λ1ℓ
2

− 1
dk

) eλ2x.

Now, let us consider neq = Fτs ⇔ φ = 0

n(x) =
felFτs
2ωΘ

(
eλ1x − eλ2x

)
+ Fτs

=
felneq

2ω
(

1 + ℓ
2dk

+ ℓ
dp

)
(
eλ1x − eλ2x

)
+ neq (E.25)

=
felneqe

felx

2 sinh(ωx)

ω
(

1 + ℓ
2dk

+ ℓ
dp

) + neq

≈ felneq

1 + ℓ
2dk

+ ℓ
dp

x+ neq.

The last linear approximation is delivering identical result with (E.10).

The first derivative of (E.25) is:

n′(x) =
felneq

2ω
(

1 + ℓ
2dk

+ ℓ
dp

)
(
λ1e

λ1x − λ2e
λ2x
)
, (E.26)

and at the position x = 0 the gradient reads

n′(x = 0) =
felneq(λ1 − λ2)

2ω
(

1 + ℓ
2dk

+ ℓ
dp

)

n′(x = 0) =
felneq

1 + ℓ
2dk

+ ℓ
dp

= a1. (E.27)

Compare eq. (E.27) with eq. (E.12). - They are identical.
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Appendix F: Linear Stability Analysis of the

Ranguelov-Stoyanov Transparency Model

F.1 The system of equations and linearization

Ranguelov and Stoyanov derive the following coupled system of two equations (see

(10) and (12) in [36]). For cst 6= 0, the set of coupled differential equation1 is:

dci
dτ

=
cst
τ ′s

− ci
τ ′s

− 2

ηi
ci +

2

ηi
+

1

ηi
ε

(
1

η3i−1

− 1

η3i+1

)

+
Pk

ηi
(ci+1 − 2ci + ci−1) +

fs
ηi
(ci−1 − ci+1)

(F.1)

dηi
dτ

= −ne
sΩ

[

ci+1 − ci−1 −
fs
Pk

(ci−1 − 2ci + ci+1) + 2ε

(
1

η3i+1

− 2

η3i
+

1

η3i−1

)]

where τ ′s = τsK/l, τ = Kt/l, ηi = li/l, ci = ni/n
e
s, cst = Fτ/ne

s, ε =
Ã
l3
, Pk = P/K(≫

1) and fs =
Fds
kT

= fds
l
. By considering the equidistant situation, li = li−1 = l, as well

as by using the first equation, we can derive:

0 =
cst
τ ′s

− c0
τ ′s

− 2c0 + 2 ⇒ c0 =
cst + 2τ ′s
1 + 2τ ′s

. (F.2)

Now, let us linearize the system by ηi = 1 +∆ηi(τ) and ci = c0 +∆ci(τ):

1

ne
sΩ

d∆ηi
dτ

= − [c0 +∆ci+1 − c0 −∆ci−1 + 2ε (1− 3∆ηi+1 − 2 + 6∆ηi + 1− 3∆ηi−1)]

+
fs
Pk

[c0 +∆ci−1 − 2c0 − 2∆ci + c0 +∆ci+1]

= −∆ci+1 +∆ci−1 − 6ε (∆ηi+1 + 2∆ηi +∆ηi−1)

+
fs
Pk

(∆ci+1 − 2∆ci +∆ci−1), (F.3)

1In this Appendix, for the easer comparison of the calculations, we use the same notation as in

[36].
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Appendix F: Linear Stability Analysis of the RS Transparency Model

and:

d∆ci
dτ

=
cst
τ ′s

− c0 +∆ci
τ ′s

− 2(1−∆ηi)(c0 +∆ci) + 2(1−∆ηi) +

+ (1−∆ηi)ε (1− 3∆ηi−1 − 1 + 3∆ηi+1) +

+ Pk(1−∆ηi)[c0 +∆ci−1 − 2c0 − 2∆ci + c0 +∆ci+1]

+ fs(1−∆ηi)[c0 +∆ci−1 − c0 −∆ci+1]

≈ cst
τ ′s

− c0
τ ′s

− ∆ci
τ ′s

− 2c0 − 2∆ci + 2c0∆ηi + 2− 2∆ηi + 3ε (∆ηi+1 −∆ηi−1)

+ Pk(1−∆ηi)[∆ci−1 − 2∆ci +∆ci+1] + fs(1−∆ηi)[∆ci−1 −∆ci+1]

≈ −∆ci
τ ′s

− 2∆ci + 2(c0 − 1)∆ηi + 3ε (∆ηi+1 −∆ηi−1)

+ Pk[∆ci−1 − 2∆ci +∆ci+1] + fs[∆ci−1 −∆ci+1]. (F.4)

Terms of order (∆ci)
2, (∆ηi)

2, (∆ci)(∆ηi) and higher are neglected.

F.2 Fourier

Let us use ∆ηi = eijqηq(τ) and ∆ci = eijq+iφcq(τ):

eijq
dηq
dτ

= −ne
sΩ
[
eijqeiφeiqcq − eijqeiφe−iqcq + 6ε

(
−eijqeiqηq + 2eijqηq − eijqe−iqηq

)]

+ ne
sΩ

fs
Pk

eiφ
(
eijqeiqcq − 2eijqcq + eijqe−iqcq

)

eijqeiφ
dcq
dτ

= −eijqeiφcq
τ ′s

− 2eijqeiφcq + 2(c0 − 1)eijqηq + 3ε
(
eijqeiqηq − eijqe−iqηq

)

+ Pke
iφ
(
eijqeiqcq − 2eijqcq + eijqe−iqcq

)
+ fse

iφ
(
eijqe−iqcq − eijqeiqcq

)
.

Now, let us divide the first equation, by eijq, and the second, by eijqeiφ,

dηq
dτ

= −ne
sΩ

[

eiq − e−iq − fs
Pk

(
eiq − 2 + e−iq

)
]

eiφcq − ne
sΩ6ε

[
−eiq + 2− e−iq

]
ηq

dcq
dτ

=

[

− 1

τ ′s
− 2 + Pk(e

iq − 2 + e−iq) + fs(e
−iq − eiq)

]

cq

+
[
2(c0 − 1) + 3ε

(
eiq − e−iq

)]
e−iφηq, (F.5)

and further:

dηq
dτ

= −12ne
sΩε(1− cos q)ηq − 2ne

sΩ

[

i sin q +
fs
Pk

(1− cos q)

]

eiφcq (F.6)

dcq
dτ

= 2e−iφ [−(1 − c0) + 3iε sin q] ηq −
[
1

τ ′s
+ 2 + 2Pk(1− cos q) + i2fs sin q

]

cq
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F.3 Eigenvalues

So, the system is equivalent to d−→x
dτ

= A−→x , with −→x = (ηq, cq)
T and, whereby the 4

elements of the 2x2-Matrix A read

a11 = −12ne
sΩε(1− cos q),

a12 = −2eiφne
sΩ

[

i sin q +
fs
Pk

(1− cos q)

]

,

a21 = 2e−iφ [−(1− c0) + 3iε sin q] ,

a22 = − (2 + 1/τ ′s)− 2Pk(1− cos q)− i2fs sin q. (F.7)

F.3 Eigenvalues

So, the linearized equations represent a homogeneous system of two differential equa-

tions with constant coefficients. For the solution of this system let us take the ansatz:
−→x = −→x1e

s1τ +−→x2e
s2τ , so far s1 6= s2. This solution is stable when the real parts of the

eigenvalues s1 and s2 are negative. The eigenvalues, s1 and s2, are the roots of the

characteristic polynomial χ(s) = det(A− sI)
!
= 0:

Some General Notes

(a11 − s)(a22 − s)− a21a12 = 0

s2 + (−a11 − a22)s+ a11a22 − a21a12 = 0 (F.8)

and so:

⇒ s1,2 =
1

2

[

(a11 + a22)±
√

(a11 + a22)2 − 4(a11a22 − a21a12)
]

(F.9)

Because a11 and a22 are real and negative, so the real part of s2 (with the minus) will

be always nagative. The question is what about the real part of s1?

Let D = (a11 + a22)
2 − 4(a11a22 − a21a12) = (a11 − a22)

2 + 4a21a12 = Re+ iIm,

and
√
D = Real + iImag.

√
D =

√
Re+ iIm =

√
r cos θ + ir sin θ =

√
r
√
cos θ + i sin θ

=
√
r

√

eiθ + e−iθ

2
+ i

eiθ − e−iθ

2i
=

√
r
√
eiθ =

√
re

iθ
2

=
√
r cos

θ

2
+ i

√
r sin

θ

2
. (F.10)

Real =
√
r cos

θ

2

Imag =
√
r sin

θ

2
(F.11)
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and further:

Real =
√
r cos

θ

2
=

√
r

√

1 + cos θ

2
=

1√
2
[r +Re]

1
2 =

1√
2

[√

Re2 + Im2 +Re
] 1

2

=

[

Re

2

(√

1 +
Im2

Re2
+ 1

)] 1
2

(F.12)

Now consider Im ≪ Re!!!

Real ≈
[
Re

2

(

1 +
Im2

2Re2
+ 1

)] 1
2

=

[

Re

(

1 +
Im2

4Re2

)] 1
2

≈
√
Re

(

1 +
1

8

Im2

Re2

)

(F.13)

Back to the Considered Case The term a11 is real, but a22 = a22,r+ia22,i possesses

an imaginary part:

real part: a22,r = − (2 + 1/τ ′s)− 2Pk(1− cos q),

imaginary part: a22,i = −2fs sin q. (F.14)

Then,

(a11 − a22)
2 = (a11 − a22,r − ia22,i)

2

=
[
(a11 − a22,r)

2 − a222,i
]
+ i [−2(a11 − a22,r)a22,i] =⇒

real part: (a11 − a22)
2
r = (a11 − a22,r)

2 − a222,i

imaginary part: (a11 − a22)
2
i = −2(a11 − a22,r)a22,i (F.15)

What about a21a12?

a21a12 = −2eiφne
sΩ

[

i sin q +
fs
Pk

(1− cos q)

]

2e−iφ [−(1− c0) + 3iε sin q]

= 12εne
sΩ sin2 q + 4ne

sΩ
fs
Pk

(1− cos q)(1− c0)

+ i4ne
sΩ(1− c0) sin q − i12ne

sΩε
fs
Pk

sin q(1− cos q)

(F.16)

and thus:

Re = (a11 − a22)
2
r + 48εne

sΩ sin2 q + 16ne
sΩ

fs
Pk

(1− cos q)(1− c0)

Im = (a11 − a22)
2
i + 16ne

sΩ(1 − c0) sin q − 48ne
sΩε

fs
Pk

sin q(1− cos q)

= (a11 − a22)
2
i + 16ne

sΩ sin q

[

1− c0 − 3ε
fs
Pk

(1− cos q)

]

. (F.17)
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F.3 Eigenvalues

Now, let’s consider that a22,r is much larger then the other terms.

That means that 48εne
sΩ sin2 q ≪ (a11 − a22)

2
r and 16ne

sΩf(1 − cos q)(1 − c0) ≪
(a11 − a22)

2
r . Thus:

√
Re =

[

(a11 − a22)
2
r

(

1 + 48
εne

sΩ sin2 q

(a11 − a22)2r
+

16ne
sΩ

fs
Pk
(1− cos q)(1− c0)

(a11 − a22)2r

)] 1
2

≈
√

(a11 − a22)2r



1 +

[

24εne
sΩ sin2 q + 8ne

sΩ
fs
Pk
(1− cos q)(1− c0)

]

(a11 − a22)2r





=
√

(a11 − a22)2r

(

1 +
M

(a11 − a22)2r

)

, (F.18)

and also (not trivial):

1 +
Im2
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[
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√
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Now, let us evaluate the square-root function:

√
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Now, let’s go back to the real part of s1 =
1
2
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Now, let us neglect terms of order (and higher) fs/Pk, fsε and fsε/Pk:

s1,real ≈ −12ne
sΩε(1− cos q) + 4ne

sΩ
3ε sin2 q

−a22,r

+ 16(ne
sΩ)

2 sin2 q
(1− c0)

2

−(a22,r)3
+ 8ne

sΩfs sin
2 q

(1− c0)

(a22,r)
2 (F.24)

For very small q, the trigonometric functions can be evaluated in Taylor series, up

to the fourth order of q, sin q ≈ q − q3

6
, sin2 q ≈ q2 − q4

3
and 1− cos q ≈ q2
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− q4

24
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F.3 Eigenvalues

Now, let us consider the term −a22,r = (2 + 1/τ ′s) + 2Pk(
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Finally, we find the real coefficients of the Taylor expansion, to fourth order,
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