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Abstract

The generation of task-dependent and goal-directed walking behaviour requires feed-

back from leg sense organs for regulating and adapting the ongoing motor activity.

Sensory feedback from movement and force sensors influences the magnitude and the

timing of neural activity generated in the neural networks driving individual joints of

a leg. In many animals, the effects of sensory feedback on the generated motor out-

put change between posture maintenance and locomotion. These changes can occur as

reflex reversals in which sensory information, that usually counteract perturbations in

posture control, instead reinforce movements in walking. In stick insects, for example,

flexion of the femur-tibia joint is measured by the femoral chordotonal organ, which

mediates reinforcement of the stance phase motor output of the femur-tibia joint when

the locomotor system is active. Flexion signals promote flexor and inhibit extensor mo-

toneuron activity. However, the mechanisms underlying these changes are only partially

understood.

Therefore, the purpose of the present thesis was to investigate whether the process-

ing of movement and position signals of the FTi joint is task-specifically modified in the

generation of adaptive leg movements, which is required when locomotion is adapted

to changes in walking direction or in turning movements. To study the role of these

task-dependent changes in walking behaviour on the processing of local sensory sig-

nals, the generation of reflex reversals mediated by the femoral chordotonal organ in

the femur-tibia joint of the stick insect Carausius morosus was measured in a semi-intact

walking preparation. In several experimental conditions either in front, in one or both

middle or in hind legs, the femoral chordotonal organ was mechanically displaced and

the motoneuronal responses in the flexor and extensor tibia were monitored, while the

remaining legs performed either forward, backward or curve walking on a slippery sur-

face.
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I demonstrated that the occurrence of reflex reversals depends on the specific motor be-

haviour executed. While in forward walking flexion signals from the front leg fCO regu-

larly elicit reflex reversal in the tibial motoneurons, this cannot be observed in backward

walking. Similarly, during optomotor-induced curve walking, reflex reversal occurred

reliably in the middle leg on the inside of the turn, however not in the contralateral

leg on the outside of the turn. Thus, the experiments revealed that the nervous system

modulates proprioceptive reflexes in individual legs during task-specific walking adap-

tation. Furthermore, I showed that nonspiking interneurons, known to be involved in

the premotor network of the FTi joint, participate in reflex responses in both the inner

and outer middle leg during curve walking. First results show that the reflex response in

some interneuron types is altered between the inner and outer leg, while no differences

were found in others.
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Zusammenfassung

Zielgerichtete und verhaltensabhängige Fortbewegung setzt die Anpassung rhythmisch

alternierender motoneuronaler Aktivität mittels sensorischer Rückkopplung durch Pro-

priozeptoren und weitere Sinnesorgane voraus. Diese Signale von Bewegungs- und

Belastungssensoren beeinflussen die Stärke und zeitliche Abstimmung der, von rhyth-

musgenerierenden Netzwerken erzeugten, neuronalen Aktivität. In vielen Tieren än-

dern sich die Effekte der sensorischen Rückkopplung in Abhängigkeit vom Verhalt-

enszustand. Diese Änderungen können als Reflexumkehrungen auftreten. Reflexe die

zur Aufrechterhaltung der Positur dem sensorischen Eingang entgegenwirken, wirken

im Falle der aktiven Bewegung, bei gleichem sensorischen Eingangssignal verstärkend

auf den Bewegungsablauf. Dieser Mechanismus der Reflexumkehr tritt zum Beispiel

im Femur-Tibia Gelenk der Stabheuschrecke auf. Während einer aktiven Beugung des

Gelenks werden mittels eines propriozeptiven Sinnesorgans, dem femoralen Chordoto-

nalorgan, Positions- und Bewegungssignale des Femur-Tibia Gelenks gemessen. Diese

Beugungssignale führen dann, also bei aktiver Beugung, zur Verstärkung der Beugung

und verhindern gleichzeitig die Streckung des Gelenks. Die Mechanismen die diesen

Änderungen der Reflexantwort in der verhaltensabhängigen senso-motorischen Verar-

beitung unterliegen, werden bisher nur teilweise verstanden.

In dieser Arbeit soll untersucht werden, ob und wie weit die verhaltensabhängige Ver-

arbeitung sensorischer Bewegungs- und Positionssignale des femoralen Chordotonalor-

gans, im speziellen beim Vorwärts-, Rückwärts- und Kurvenlaufen, moduliert wird.

Dazu wurde die Auftretenswahrscheinlichkeit der Reflexumkehr im Femur-Tibia Ge-

lenk der Stabheuschrecke Carausius morosus in semi-intakten Präparationen untersucht.

In verschiedenen experimentellen Ansätzen wurde das femorale Chordotonalorgan im

Vorderbein, in einem oder beiden Mittelbeinen oder im Hinterbein mechanisch stim-

uliert und gleichzeitig die motoneuronale Aktivität des Femur-Tibia Gelenks gemessen,

während die übrigen Beine auf einer rutschigen Oberfläche vorwärts, rückwärts oder
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eine Kurve liefen.

Es konnte gezeigt werden, dass es verhaltensabhängige Unterschiede in der Auftretens-

wahrscheinlichkeit der Reflexumkehr gibt. Während des Vorwärtslaufens im Vorderbein

wurde die Reflexumkehr regelmäßig ausgelöst, im Hinterbein hingegen nicht. Ähn-

liches konnte während des optomotor-induzierten Kurvenlaufens gezeigt werden. Im

Mittelbein, welches sich auf der Innenseite der Kurve befand, trat die Reflexumkehr sig-

nifikant häufiger als im kontralateralen Außenbein auf. Somit konnte im laufenden Tier

eine Modifikation der Reflexverarbeitung während zielgerichteter, verhaltensabhängiger

Lokomotion nachgewiesen werden. Außerdem konnten erste Charakterisierungen Nicht-

Spikender-Interneurone, welche sowohl an der Reflexantwort im ruhenden Tier, als auch

im aktiven Tier beteiligt sind, durchgeführt werden. Es wurden Hinweise darauf gefun-

den, dass in einigen Interneuronentypen die Reflexantwort, im Innenbein und Außen-

bein unterschiedlich ist und in anderen gleich ausgeführt wird.
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1 Introduction

Task-dependent, active locomotion is of decisive importance for the survival of all ani-

mal species. In the course of evolution different locomotor strategies and also various

locomotion systems have developed along with the diversity of species and their habi-

tats. A wide range of terrestrial invertebrates and vertebrates have evolved highly adap-

tive walking gaits. Therefore, different numbers of limbs, ranging from two in humans

up to 750 in myriapoda have to be adapted to different walking terrains, body postures

and behavioural situations.

Rhythm generating networks, networks which mediate alternating leg muscle coordi-

nation, and networks for inter-limb coordination, which are modified by sensory and

neuromodulatory influences, underlie the generation of walking. Since the beginning of

the 20th century, major advances have been made in the understanding of locomotion

and the underlying processes that establish rhythmic motor patterns. Sir Charles Sher-

rington suggested that reflexes, in particular flexion and extension reflexes in spinalised

quadrupeds, are integrated in the generation and control of movement, while proprio-

ceptive sensory signals mediate phase transitions (Sherrington, 1910, 1913). At the same

time, the first suggestion of an intrinsic pattern-generating mechanism, termed half cen-

ter, arose from experiments, in which alternating muscle activities were still generated

in the absence of sensory information (Brown, 1911, 1914). The idea of these func-

tional networks was additionally underpinned by experiments, in which locomotor-like

activity seen as alternating flexor and extensor activity in spinal cats was elicited by in-

travenous injection of L-dopa (L-3,4-dihydroxyphenylalanine) (Jankowska et al., 1967).

The generation of rhythmic motor patterns was extensively studied in a variety of motor

systems in vertebrates and invertebrates leading to the commonly accepted concept of

central pattern generators (CPGs), neuronal networks which generate motor rhythms in

the absence of descending inputs from higher centers and sensory feedback (for reviews

see Bässler, 1986c; Delcomyn, 1980; Grillner, 1975, 1981, 1985; Grillner and Wallen, 1985;
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1 Introduction

Grillner and Zangger, 1979; Pearson et al., 1993; Selverston and Moulins, 1985).

Subsequently, motor patterns were found to execute different tasks with the same lo-

comotor appendages, like walking, airstepping, scratching, and paw shake in the cat

(Giuliani and Smith, 1985; Koshland and Smith, 1989; Pratt and Loeb, 1991). In chick-

ens, the same interneuronal circuits were found to establish different behavioural tasks,

like walking, scratching, and posture control (Berkinblit et al., 1978; Gelfand et al.,

1988). Furthermore, in turtles (Berkowitz, 2002, 2005), similarities between scratching

and swimming movements were found. Several studies in invertebrates reported a mul-

titude of movements performed with the same consistent motor structures (stick insect:

searching, rocking, walking, grooming (Bässler and Wegner, 1983); locust: jumping and kick-

ing (Burrows, 1995; Gynther and Pearson, 1989; Hedwig and Burrows, 1996; Heitler and

Burrows, 1977a,b); cricket: flight and stridulation (Hennig, 1990)). For example, Pflüger

and Burrows (1978) demonstrated that the same motoneurons are involved in the move-

ment generation of kicking, jumping and swimming in the locust. Interestingly, the

three different motor outputs were generated similarly. The movements started with

flexion of the FTi joint, followed by a co-contraction of flexor and extensor muscle and,

finally, a rapid extension of the tibia. However, a major problem with the half-center

organisation is that mixed-muscle synergies were found that are characterised by, at

least, a partial co-activation of antagonistic muscles, which is not in conformity with the

half-center model. Therefore, a more flexible modular concept was proposed, in which

distinct behaviours were executed by units of a small number of interneurons or groups

of functionally-related interneurons (Bässler and Büschges, 1998; Grillner, 1981; Stein

and Smith, 1997). However, it is only partially understood which modules exist and

what they are composed of.

Subsequently, researchers investigating such basic motor patterns found several mecha-

nisms involved in the tuning motor patterns. First, afferent signals from the periphery

are involved in the control of movement and posture, for example in chicks (Bekoff et al.,

1989, 1987), in the cat (Grillner and Rossignol, 1978), in stick insects (Bässler, 1986a, 1988)
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and in turtles (Stein et al., 1986). An example of this is the study carried out by Bekoff

and co-workers (1987) in which removing of sensory feedback from the legs results in

a difference of the motor output of walking and hatching. In particular, the intralimb

movements became more similar. Second, descending control signals from the brain,

which is becoming an increasingly important research area, for initiation, maintenance

and modulation of locomotion was studied extensively in vertebrates (human: Capaday

et al., 1999; Gerloff et al., 1998; Petersen et al., 1998, 2001; Schubert et al., 1997; monkey:

Eidelberg et al., 1981; Fetz and Cheney, 1980; Kobayashi and Isa, 2002; cat: Armstrong,

1986; Beloozerova and Sirota, 1993; Friel et al., 2007; Grillner, 1975; Lajoie and Drew,

2007; Shik and Orlovsky, 1976; mouse: Hagglund et al., 2010; lamprey: Shaw et al., 2010;

Smetana et al., 2010) and invertebrates (drosophila: Strausfeld, 1999; Strauss, 2002; Strauss

and Heisenberg, 1993; cockroach: Bender et al., 2010; Mu and Ritzmann, 2008a; Ridgel

et al., 2007; Ritzmann et al., 2005; Schäfer and Ritzmann, 2001). For example, in cats,

the medullary reticular formation is known to generate responses in limb extensors and

flexors that are modulated during locomotion (Drew, 1991). In addition, recent studies

in cats suggest that the posterior parietal cortex is involved in the fine-tuning of visually

guided locomotion (Lajoie and Drew, 2007). Studies in insects further support the role of

descending signals in the contol of locomotion. For example, in cockroaches, the central

body complex (CBC) and the surrounding regions affect the control of turning (Ridgel

et al., 2007). In this study, the researchers showed that lesions of the CBC or in regions

immediately surrounding the CBC, results more likely in an abnormal turning behavior

than lesions in other brain regions. Finally, neuromodulators play an important role in

the shaping of rhythmic motor output (pyloric rhythm: Hooper and Marder, 1987; feed-

ing: Kupfermann and Weiss, 1982; swimming: Sillar et al., 1998; locomotion: Brownstone

et al., 1992; Wallen and Grillner, 1987; Zagoraiou et al., 2009). In neonatal rats and mice,

recent studies using spinal cord preparations, pharmacological, and genetic approaches

identified a variety of neurotransmitters and neuromodulators and, accordingly, several

types of receptors involved in the control of locomotion. In a recent study, Zagoraiou

and co-workers (2009) found evidence that cholinergic premotor interneurons are a de-

fined class of intrinsic neuromodulatory neurons, which modulate the mouse locomotor
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1 Introduction

activity. So far, however, these different sources of modulatory influences on the lo-

comotor output that are known still fail to explain the generation of the tremendous

flexibility in locomotor behaviour sufficiently.

The variability of the environment and the challenges animals have to overcome (such

as foraging, avoidance of predators, and reproduction) requires flexibility and results in

adaptive and goal-directed motor outputs that are modifiable with regard to walking

speed, direction, and turning. Therefore, the output of pattern-generating networks,

including the CPGs, has to be modified in the generation of different motor behaviours

(reviewed in Büschges, 2005; Grillner, 1975; Marder and Bucher, 2001; Marder and Cal-

abrese, 1996; McCrea and Rybak, 2008; Orlovsky et al., 1999; Pearson et al., 1993; Pear-

son, 1995a, 2004; Rossignol et al., 2006; Zehr and Duysens, 2004). In several studies on

stepping in human infants, where descending supraspinal control is still in ongoing de-

velopment, the flexibility of the locomotor system was studied. For example, in infants

walking in various directions, mechanical disturbances elicited specific reflex responses

and a modulation in their interlimb coordination (Lamb and Yang 2000; Pang and Yang,

2000, 2002; Pang and others 2003). Researchers have shown an increased interest in

understanding the generation of task-dependent motor behaviour, such as forward and

backward locomotion (human: Choi and Bastian, 2007; Pang and Yang, 2002; cat: Buford

and Smith, 1990; lamprey: Islam et al., 2006; salamander: Ashley-Ross and Lauder, 1997;

crayfish: Ayers and Davis, 1977), turning (stick insect: Dürr, 2005; Dürr and Ebeling, 2005;

Gruhn et al., 2009; cockroach: Mu and Ritzmann, 2005; drosophila: Bender and Dickinson,

2006), gap-crossing (stick insect: Bläsing and Cruse, 2004a,b; drosophila: Pick and Strauss,

2005) and obstacle climbing (cockroach: Watson and Ritzmann, 2002; Watson et al., 2002).

For example, in lampreys, it is known that during forward swimming, periodic waves

of lateral body flexion propagate from head to tail. In a recent study, by Islam and

co-workers (2006) it was demonstrated that during backward swimming this wave is

reversed, thus forming a wave in tail-to-head direction. Similarly, during curve walking,

changes in leg kinematics, step length, directions of the legs, stepping frequencies and

the interleg coordination were described (Dürr, 2005; Dürr and Ebeling, 2005; Jander,
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1982). These studies move the question on the underlying neural mechanisms into the

focus of present neurophysiological research.

To date, several studies have provided first insights into the neuronal mechanisms un-

derlying locomotor adaptation in vertebrates (Cheng et al., 1998; Gabriel et al., 2011;

Gosgnach et al., 2006; Stein, 2005; Zagoraiou et al., 2009) and invertebrates (Akay et al.,

2007; Bender et al., 2010; Briggman et al., 2005; Lockery and Kristan, 1990; Pick and

Strauss, 2005; Ridgel et al., 2007; Ridgel and Ritzmann, 2005; Schäfer and Ritzmann,

2001). For example, in the control of locomotor speed, genetic and neurophysiological

approaches show that V1 inhibitory spinal interneurons are involved in the frequency

regulation of central pattern generated rhythm (Gosgnach et al., 2006). Also, in cock-

roaches, brain structures were identified that are involved in the control of locomotor

speed (Bender et al., 2010). In this study, it was shown that neural activity in the cen-

tral complex is correlated with the walking frequency of the cockroach and, further,

that electrical stimulation in the same area could generate and alter walking (Bender

et al., 2010). Another example of locomotor adaptation is a recent study of decision-

making processes in the leech by Briggman and co-workers (2005). In this study it was

reported that activity patterns of a small number of neurons are correlated with the

leech’s behavioural choice to swim or crawl. The authors successfully identified one

single neuron that affected this choice by injection of a hyperpolarising or depolarising

current (Briggman et al., 2005). However, there is still insufficient data to fully explain

adaptive motor behaviour. One major issue in the research on locomotion concerns the

role of sensory information. Changes in sensory feedback are an important component

of locomotor adaptation (for review Pearson et al., 1993). Several studies have identified

the role of sensory feedback, for example, in the transition from stance to swing phase in

decerebrate and spinal cats. Sensory signals from Ib afferents of the Golgi tendon organ

(GTO) in the ankle extensor muscle and afferent signals, measuring hip extension, me-

diate the transition from stance to swing at the end of the stance phase (Conway et al.,

1987; Duysens and Pearson, 1980; Gossard et al., 1994; Hiebert et al., 1996; Pearson et al.,

1992; Whelan et al., 1995; Whelan and Pearson, 1997). Further evidence, for phasic sen-
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1 Introduction

sory signals being involved in the timing of phase transition is shown for insect walking

(Büschges, 2005) and flight (Pearson and Ramirez, 1997).

In a variety of systems, the effects of sensory input during walking differ from those

seen in postural control. Commonly, these changes occur as reflex reversals (Duysens

et al., 2000). For example, during posture control, the GTOs of vertebrates generate

reflexes (Prochazka, 1996). During walking, however, these receptors tend to amplify

muscle tension in the stance phase (Pearson, 1993). Similar reflex reversals are known in

other receptors of vertebrates (human: Duysens et al., 1990; cat: Forssberg et al., 1975; rat:

Fouad and Pearson, 1997) as well as invertebrates (crayfish:DiCaprio and Clarac, 1981;

Skorupski and Sillar, 1986; locust: Burrows and Pflüger, 1988; Theophilidis and Burns,

1990; Zill, 1985; stick insect: Bässler, 1976, 1986b, 1988). In some instances, the generation

of reflex reversals depends on the phase of activity in rhythmic movements (e.g. Fouad

and Pearson, 1997; Pearson and Collins, 1993; Skorupski and Sillar, 1986). For example,

in crayfish, the thoracocoxal muscle receptor organ mediates reflexes that are known

to activate promotor MNs when active that are, however, inhibitory when the remotor

MNs are active (Skorupski and Sillar, 1986). More frequently, however, the generation

of reflex reversals depends on the behavioural state of the animal (e.g. Bässler, 1988;

Zill, 1985, for review see e.g. Büschges and El Manira, 1998; Clarac et al., 2000; Pearson,

1993). It is further known that locomotion patterns are extensively modified with re-

gard to direction of progression and during visually guided stepping (Pang and Yang,

2002). So far, there is no satisfactory explanation how such changes affect the occurrence

of reflex reversals, although their regulation must be part of the adaptation of walking

patterns (Pang and Yang, 2002; Pearson et al., 1993).

The neural mechanisms underlying reflex reversal and the flexibility of adaptive loco-

motion have been extensively studied in the stick insect’s walking system (for review see

Bässler, 1983b; Bässler and Büschges, 1998; Büschges, 2005, 2012; Büschges and Gruhn,

2008). First studies of the walking pattern and, particularly, the generation of rhythmic

leg movements in the stick insect date from the early 20th century (von Buddenbrock,

6



1921). Nowadays, increasing knowledge with regard to the control of single leg move-

ments and the underlying neuronal network architecture in stick insects is available.

The insect leg consists of five main segments: the coxa, the trochantero-femur (which

is fused in Carausius morosus), the tibia, and the segmented tarsus. Leg movements are

mainly controlled by muscles of the thorax-coxa (ThC) joint, the coxa-trochanter (CTr)

joint and the femur-tibia (FTi) joint. The muscles of the ThC joint move the leg forwards

by the protractor coxae muscle and backwards by the retractor coxae muscle. The levator

and depressor trochanteris muscles elevate and depress the leg in the CTr joint and the

flexion and extension of the FTi joint is mediated by the flexor and extensor tibiae muscles

(see Graham and Epstein, 1985. These antagonistic muscle pairs are alternately-active

during the generation of a step, which can be divided into a stance and a swing phase.

The transition between stance and swing phase is controlled by signals from a variety of

leg sense organs, like hair fields, the campaniform sensilla and the femoral chordotonal

organ (for review see Büschges, 2005, 2012).

Movements of the leg segments are measured by hair plates (fields) on the leg joints,

particularly of the CTr joint. These hair fields consist of groups of hair sensilla that

measure position and movement of the joint. The ventral coxal hair plate (vcxHP) com-

prises two groups of hair cells, group G1 and G2, which are located ventrally on the

coxa and detect position and movement of the ThC joint (Büschges and Schmitz, 1991;

Cruse, 1985b; Dean and Schmitz, 1992). The trochanteral hair plate (trHP) is situated on

the dorsal side of the trochanter and measures the CTr joint position (Schmitz, 1986b).

In addition, the rhombic hair plate (rHP) on the ventral trochanter was described by

Tartar (1976) and Schmitz (1986a,b). Furthermore, the levator receptor organ, an inter-

nal sense organ, located inside the coxa parallel to the levator trochanteris muscle, detects

movements of the trochanter (Schmitz and Schöwerling, 1992). It measures the length

change of the levator trochanteris muscle and acts similar to strand receptors in the lo-

cust (Bräunig and Hustert, 1985a,b). Also, the campaniform sensilla (CS) are important

leg sensors, which signal load information of the leg (Delcomyn, 1991; Hofmann and

Bässler, 1982) and cuticular stress (Hofmann and Bässler, 1982; Pringle, 1938). To date,
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1 Introduction

there are four CS groups known on the proximal leg joints. One is located on the proxi-

mal femur (fCS- femoral campaniform sensilla) and three are located on the trochanter

(trCS- trochanteral campaniform sensilla). Akay and co-workers (2001) found that sen-

sory signals of the fCS influence the activity of FTi joint motoneurons. Several studies

revealed that signals of the fCS and trCS modifies the motor output of the CTr and

ThC joint (Akay et al., 2004, 2007; Schmitz, 1993). Recently, Zill et al. (2011) identified

two groups of campaniform sensilla, group 6A and 6B located distally from the FTi joint.

In addition to these groups of exteroceptors, a further sensory proprioceptor, the femoral

chordotonal organ (fCO), is important for the control of leg movement and position.

The fCO is located dorsally in the proximal part of the femur (Bässler, 1972; Bässler

and Büschges, 1998; Field and Matheson, 1998; Kittmann and Schmitz, 1992). It extends

through the femur with a thin receptor tendon and its distal end attaches to the tibia. It

consists of two parts, of which the dorsal part contains more than 400 sensory cells and

the ventral part more than 80 (Füller and Ernst, 1973). Füller and Ernst (1973) described

the fine structure of the fCO and were able to show that every scolopidium comprises

two sensory cells, one scolopale cell, a fiber cell, and at least one sheath cell. The sensory

cells of the dorsal part of the fCO measure and control position, velocity, and accelera-

tion of the FTi joint and combinations of these signals (Büschges, 1994a; Hofmann and

Koch, 1985; Hofmann et al., 1985). In contrast, the fCO cells of the ventral part are

not involved in the adjustment of the FTi joint (Field and Pflüger, 1989; Kittmann and

Schmitz, 1992). The influence of sensory signals from the fCO has been studied under

various experimental conditions and is known to produce resistance reflexes in resting

animals that function in postural compensation (Bässler et al., 1974; for summary see

Bässler, 1993). These reflexes have been shown to change when the animal generates ac-

tive leg movements (Bässler, 1976, 1988). In such cases, afferents of the fCO that signal

joint flexion also inhibit extensor firing and assist the generation of flexor activity. These

changes represent a reflex reversal and occur as the first part of a sequence of muscle

activities termed the active reaction (AR; Bässler, 1988). Together with inter-joint influ-

ences of the fCO on motoneurons of the tarsus, the active reaction appears to assist the
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generation of stance and the subsequent transition to leg swing (Bässler, 1988). It was

also found that inter-joint reflexes were mediated by the fCO. It has been shown that

sensory signals from the fCO in the inactive and active, but stationary, animal influence

muscle activity of the adjacent CTr joint (Hess and Büschges, 1997, 1999).

Several studies have examined the underlying neural elements within the local pre-

motor network that mediate both the resistance and assistance reflexes of the fCO in a

distributed fashion (for review see Bässler and Büschges, 1998; Büschges and El Manira,

1998; Büschges and Gruhn, 2008). However, no information is currently available on

how the reflex reversal is initiated and regulated in vivo during walking and, particu-

larly, while performing task-dependent walking, such as curve or forward and backward

walking when leg movement kinematics are specifically modified to the movement task

to be executed. Several studies have demonstrated effects of descending input upon

local reflexes in insects (Knop et al., 2001; Mu and Ritzmann, 2008a; Ridgel et al., 2007).

However, these experiments were not performed in animals that were actually walking.

In the present thesis, I will present evidence for the task-specific modulation of a propri-

oceptive reflex in walking stick insects as the result of neuronal adaptation processes to

specific walking tasks. The results section of my thesis is divided into two main parts.

The first part addresses the modification of reflexes mediated by the fCO during for-

ward and backward walking. The second part focuses on the adaptation during curve

walking.

The first part of the results addresses the following questions:

1. Is there any difference in the segmental processing of fCO information during

forward and backward walking, in particular between the front and hind leg?

2. How does sensory load and position information influence the adaptation pro-

cesses in the FTi joint in forward and backward walking?

3. What are the kinematic differences in the front and hind legs of forward and

backward walking stick insects?

9



1 Introduction

4. Are the inter-joint reflexes from the fCO on the CTr joint affected by a change in

walking direction (i.e., forward and backward walking)?

The second part of the results addressed two questions:

1. Is there any difference in the task-dependent processing of fCO information during

curve walking?

2. How are these signals encoded in the premotor network of the FTi joint, in particu-

lar, in the responses of the membrane potential of nonspiking interneurons caused

by fCO stimulation during curve walking?

10



2 Materials and Methods

2.1 Animals

Experiments were performed on adult female stick insects of the species Carausius moro-

sus, Brunner (Phasmatodea) at room temperature (20 − 22◦C) under reduced light con-

ditions. Animals were obtained from a breeding colony maintained by the University

of Cologne, Germany. The colony was kept under constant conditions at temperatures

between 20◦C and 25◦C, high humidity (55 − 70%) and under an artificial 12 : 12 hours

light/dark cycle. Animals were fed with blackberry leaves (Rubus fructiosus). The exper-

imental procedures reported in the study comply with the German national and state

regulations for animal welfare and animal experiments.

2.2 Preparations and experimental design

Positioning of the experimental animal for walking and sensory stimulation

All experiments were performed on an air table (MICRO-g, TMC, Peabody, MA, USA)

surrounded by a Faraday cage. Experimental animals were positioned above a plate

(acrylic glass) at a height of about 8 - 12 mm to establish resting angles of the femur-tibia

joints (FTi) in the middle and hind legs of roughly 90◦ (Fig. 2.1, Epstein and Graham,

1983; Graham and Wendler, 1981; Gruhn et al., 2006, 2011). To ensure free stepping

movements of the tethered stick insect and to reduce the mechanical coupling between

legs via ground contact, the surface of the plate was made slippery by covering it with a

glycerine/water mix (95%/ 5%). Animals were fixated dorsal-side-up on a foam-covered

metal rod with dental cement (ProTempII, 3M ESPE, Seefeld, Germany) applied to the

meso- and metathorax (Fig. 2.1). The leg that was to be investigated was glued to an

extension of the rod. Coxa and femur of this leg were immobilized and the tibia pro-

truded over the edge of the rod extension with a fixed FTi joint angle of approximately

110◦. Depending on the experimental setup, either the front, middle or hind leg was
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2 Materials and Methods

slippery surface

foam rod

flexor EMG

fCO stimulation

clamp

paintbrush for tactile

stimulation

extracellular electrode

screen for

optomotor

stimuli

Figure 2.1: Preparation for studying re�ex reversals in stick insect walking. The stick insect is mounted
on a foam-covered metal rod above a slippery surface. Mechanical stimuli that mimic femorotibial (FTi)
joint �exion are applied to the femoral chordotonal organ (fCO) of either the front, middle (shown here)
or hind leg. Re�ex responses to fCO stimuli are monitored in recordings of the femoral nerve 2 (F2),
which innervates the tibial extensor (tib ext) and in an electromyogram (EMG) of the tibial �exor
muscle. Forward or backward walking was induced by a mechanical stimulation on the antennae or the
abdomen. Turning movements were induced by the display of optomotor stimuli. (Taken from Hellekes
et al., 2012).

immobilised. When immobilised, the front leg was fixed at a position of 45◦ anterior

with respect to the body axis, middle legs at 90◦ (Fig. 2.1) and the hind leg at 45◦ either

anterior or posterior. At the same time, all other legs were free to move. In some exper-

iments, the trochanteral and the femoral campaniform sensilla (trCS, fCS) were ablated

by pushing an insect pin through the cuticle at the location of the CS (Schmitz, 1993). For

better clarity, the different experimental conditions are displayed as simplified sketches

in the results section, indicating the walking direction as well as the leg on which the

fCO stimulation and the nerve recordings were performed.

Positioning of the experimental animal for walking and kinematic

monitoring

In a further experimental study to understand the kinematics of the front and hind leg

during forward and backward walking the animal was also fixated dorsal-side-up onto

a foam-covered metal rod by means of dental cement and positioned above a slippery

surface. Here, all legs were free to move (Fig. 2.2). The animal’s body axis and the

inspected leg were marked with dots of fluorescent dye. For this purpose, fluorescent

pigments (Dr. Kremer Farbmühle, Aichstetten, Germany) were mixed with dental ce-
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2.2 Preparations and experimental design

Figure 2.2: Preparation for studying stance phase kinematics of front and hind legs in stick insect
forward and backward walking. The stick insect is mounted on a foam-covered metal rod above a
slippery surface. Femur and tibia are marked with �uorescent pigments for leg tracking. The �exor

and extensor tibiae muscle activity and the tarsal contact were measured. Forward or backward walking
was induced by optomotor stimuli or mechanical stimulation on the antennae or the abdomen. (Taken,
with permission, from Gruhn et al., 2011)

.

ment and applied on the distal tibia, the distal femur, the head, and the pro-, meso-

and metathorax. An externally triggered high-speed video camera (Marlin F-033C, Al-

lied Vision Technologies, Stadtroda, Germany) recorded the walking animal at 100 fps

(frames per second) from above. For an additional sideward view, mirrors were placed

in a 45◦ position, either in front of the front leg or behind the hind leg, depending on

the observed leg. The fluorescent markers were illuminated with arrays of blue LEDs

(30 - 50 V DC, luminance 24 cd, Electronics Workshop, Zoological Institute, University of

Cologne). The experiments were performed under low-light conditions. A yellow filter

in front of the camera lens filtered out short wavelengths to ensure a higher contrast

for the video recordings. Furthermore, to monitor leg ground contact, a tarsal contact

signal was recorded. For this purpose, a current flow was measured between the tarsus

and the slippery surface plate. A small voltage (2.4 mV) was applied to the slippery

surface by a pulse generator (Model MS501, Electronics Workshop, Zoological Institute,

University of Cologne). An isolated copper wire (47 µm diameter) was attached to the

tibia and connected with a differential amplifier via an alligator clamp. The copper in-
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2 Materials and Methods

sulation was stripped and electrode cream (Marquette Hellige, Freiburg, Germany) was

used on the contact points to allow for proper current conduction. When the tarsus

touched the plate the electric circuit was closed and the current flow indicated stance

phase. In contrast, when the leg did not have any ground contact the circuit was opened

and no current flow was measured indicating swing phase.

Induction of stepping in different directions

Forward walking was induced by tactile stimulation of the animal’s abdomen with a

small paint brush (Fig. 2.1). Backward walking was elicited by tactile stimulation of

the head or by pulling manually on the antennae (Graham, 1985). Once stepping was

initiated, tactile stimulation was stopped. An animal was considered to be walking

forward or backward when the unrestrained legs showed forward or backward stepping

movement. In many of the backward walking experiments, walking activity was also

monitored by myographic recordings of the levator trochanteris and the retractor coxae

muscles of the middle leg to distinguish the walking direction by the different phase

relationships in forward and backward walking (Graham, 1985). Curve walking was

induced by optomotor stimulation. To this end, a vertical black-and-white stripe pattern

was projected on two screens, placed laterally in front of the stick insect (Scharstein,

1989). To elicit curve walking in the stick insects, the stripes on both screens moved

either to the right or to the left (Fig. 2.1, 2.2, Gruhn et al., 2011). Corresponding to

the location of the leg, where the fCO stimulation was performed, and relative to the

turning direction, the extremities are denoted as inner legs and outer legs throughout

this thesis). In the kinematic studies, optomotor stimulation was also used to elicit

forward walking, by progressive forward-directed stripe patterns.

Preparation for fCO stimulation

A small opening was cut dorsally into the femoral cuticle, allowing for mechanical stim-

ulation of the fCO and for extracellular recordings from tibial muscles and motor nerves

(Fig. 2.3, Büschges, 1989). The leg cavity was filled with saline (Weidler and Diecke,

1969), the apodeme of the fCO was cut and the distal ending attached to a moveable
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flexor apodeme

receptor apodeme

fCO-stimulator

elongation

flexion

relaxation

extension

femoral 
chordotonal 
organF2 hook

electrode

extensor
apodeme

nervus
cruris

F2 extensor nerve

flexor
EMG

Figure 2.3: Leg anatomy and preparation for fCO stimulation, nerve and muscle recordings. The leg
was opened dorsally and the receptor apodeme of the fCO was attached to a moveable clamp controlled
by a linear motor. Mechanical displacements of the apodeme, like an elongation (red arrow) corresponds
to upward ramp movement (red) and simulates a leg �exion (red arrow). Relaxation of the receptor
apodeme (green arrow) corresponds to downward ramp stimuli (green) and mimics a leg extension
(green arrow). Simultaneously, the extensor activity was measured by extracellular recording of the F2
extensor nerve with a hook electrode and �exor tibiae muscle activity by a �exor muscle electromyogram
(EMG).

clamp controlled by a linear motor. Mechanical displacement of the apodeme parallel

to the leg towards or away from the body were produced by applying voltages to the

motor by a stimulus generator (Electronics Workshop, Zoological Institute, University

of Cologne). The fCO was stimulated with ramp-and-hold stimuli which produced dis-

placements of 300 - 400 µm (sometimes also higher displacements of up to 670 µm) from

starting position. These displacements correspond to FTi joint angles (inner angle) from

110◦ - 60◦ or rather from 110◦ - 80◦ (Weiland et al., 1986).

Preparation for extracellular and intracellular recordings

For experiments investigating the influence of walking direction on the inter-joint pro-

cessing of fCO signals in the ThC joint, the coxa nerve branch 1 (C1), which innervates

the levator trochanteris, was recorded extracellularly in the mesothorax. In additional

experiments to investigate the processing of fCO signals during curve walking, intra-

cellular recordings of different neurons in the mesothoracic ganglion were performed.

For both experiments, the animal was prepared as previously described. Additionally,

the thorax was opened dorsally by a midline incision to gain access to the ganglion or

to the C1 nerve (Fig. 2.4). The thorax cavity was filled with stick insect saline (Weidler
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and Diecke, 1969). The gut was placed intact besides the animal, and fat and connec-

tive tissue was removed. For the intracellular recordings, the ganglion was placed on

a wax-coated holder (see also Büschges, 1989, 1990. In order to prevent movement of

the ganglion, it was fixed with small cactus needles (Nopalea dejecta). The surrounding

tissue was removed in the area of the intracellular recording. Afterwards, this region

was treated for 60 s with a proteolytic enzyme (Pronase E, Merck, Darmstadt, Germany)

to facilitate electrode penetration through the ganglion sheath. Finally, the enzyme was

washed out by repeated rinsing with saline (Weidler and Diecke, 1969) and the thorax

cavity was filled with saline.

slippery
surface

rod

flexor EMG

intracellular electrode

fCO stimulation 

extracellular electrode

screen for 
optomotor stimuli 

nervus cruris

connective

FETi
Ci1

SETi

extensor nerve recording

Figure 2.4: Preparation for studying fCO-mediated re�ex responses in the FTi joint premotor network.
Shown are the used recording devices and typical time courses of the acquired signals. Additionally to
the preparation for extracellular analyses (shown in Fig. 2.1), the mesothoracic thorax was opened and
intracellular recordings were obtained in the mesothoracic ganglion ipsilateral to the fCO stimulation.
Extracellular recordings were performed by using myographic recordings (electromyogram, EMG) of the
�exor muscle and extracellular extensor nerve recordings. In the extensor nerve recording, two excitatory
motoneurons, the fast (FETi) and slow (SETi) extensor tibiae MNs and one inhibitory MN, the common
inhibitor 1 (CI1) are identi�able.
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2.3 Electrophysiology

2.3 Electrophysiology

Extracellular Recordings

Electromyograms (EMGs)

The activity of the flexor tibiae muscles in the fixated leg was monitored via an elec-

tromyogram (EMG; Fig. 2.1, 2.3, 2.4, e.g. Gruhn et al., 2011; Rosenbaum et al., 2010).

The tips of two twisted copper wires (Elektrisola, Eckernhagen, Germany; 47 µm outer

diameter), insulated except for the tip, were inserted into small holes of the cuticle

(transfixed by insect minuten pins) in the ventral femur. In some experiments, flexor

muscle activities were measured in the proximal and in the distal part of the ventral

femur. The wires were fixated with small drops of dental cement. A silver wire was

inserted into the abdomen to obtain a reference (indifferential) signal. Wires for EMG

electrodes of the retractor coxae were placed inside the thorax anterior to the leg and for

the levator trochanteris EMGs dorsally on the anterior side of the coxa.

Extracellular nerve recordings

The activity of the extensor tibiae motoneurons was recorded extracellularly from the

femoral branch 2 (F2). The nerve was placed on a hook electrode (modified after Schmitz

et al., 1988) and insulated with silicone oil (Baysilone-Paste mittelviskos, Bayer AG,

Leverkusen, Germany). In further experiments, the motoneuronal activity of the levator

trochanteris was recorded extracellularly via hook electrodes in the thorax from the coxa

branch 1 (C1).

Intracellular recordings

Intracellular recordings were obtained from neurons involved in the femur tibia con-

trol loop. In the present thesis, only recordings from nonspiking interneurons (NSI), as

well as flexor and extensor motoneurons (MNs) are shown. The recordings were col-

lected with thin-walled borosilicate glass microelectrodes (GB100-TF8P, Science Prod-

ucts, Hofheim, Germany) from the neuropilar aborisations in the mesothoracic hemi-

ganglion, ipsilaterally to the fCO stimulation (Fig. 2.4). The microelectrodes were pulled
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on a P-1000 filament puller (Flaming/ Brown Micropipette Puller, Sutter Instruments,

Novato, USA) and filled with a solution of 3 M potassium acetate and 0.1 M potassium

chloride (3 M KAc / 100 mM KCl) and had electrode resistances between 15-25 MΩ.

Signals were amplified with an SEC-05 amplifier (NPI Electronics, Tamm, Germany) in

bridge mode (switching frequency 12-25 kHz). The extensor tibiae MNs were identified

by a one-to-one relationship of intracellularly recorded spikes compared with spikes

in the extracellular F2-nerve recording. Flexor tibiae MNs were identified by a one-to-

one relationship between the intracellular spikes and the flexor muscle potentials in

the flexor EMG. Interneurons were identified as nonspiking interneurons if they were

in accordance with the following six criteria (see also Burrows, 1981; Büschges, 1990;

Hengstenberg, 1977; Siegler, 1985; Wilson, 1981: no generation of spike by 1) fCO stim-

ulation, 2) unspecific tactile stimulation, 3) change of the behavioural state of the animal

(Bässler, 1988), 4) after a long and large hyperpolarisation, 5) during depolarisation de-

spite an increase of the amplitude of the EPSPs, and 6) also during graded effects on

the activity of postsynaptic MNs. Furthermore, the identification of the different NSIs

was accomplished by their characteristic responses to fCO stimulation and either their

excitatory or inhibitory effect on extensor MNs activity (see also Akay, 2002; Büschges,

1990; Stein and Sauer, 1998). Recordings without any stable resting membrane potential

were discarded.

2.4 Data recording and evaluation

Both the intra- and the extracellularly recorded signals were amplified 100-fold by a

pre-amplifier (Electronics Workshop, Zoological Institute, University of Cologne). Sub-

sequently, the extracellular recordings were amplified 10-fold and band-pass filtered

(nerve recordings 300 Hz - 4.5 kHz / EMG recordings 30 Hz - 2 kHz) (4-Channel Am-

plifier / Signal Conditioner ModelMA102, Electronics Workshop, Zoological Institute,

University of Cologne). The voltage output of the fCO stimulator and the electrophys-

iological signals were digitised using an A/D converter (MICRO 1401k II, CED, Cam-

bridge, UK) and recorded with a sampling rate between 6.25 kHz and 12.5 kHz with

SPIKE2 (data acquisition and analysis software; version 7.01; Cambridge Electronic De-
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sign, Cambridge, UK) on a personal computer (operating system: Microsoft Windows

7). Video files were analysed using motion-tracking software (WINanalyze, Vers.1.9,

Mikromak Service, Berlin, Germany).

Analysis of extracellular recordings

To analyse extracellular nerve recordings, peristimulus time histograms (PSTHs) were

generated. For this purpose, spikes were counted from 1 s before stimulus onset (fCO

elongation) to 2 - 3 s after stimulus onset over a certain number of stimulations. To

normalise the data, the counted spikes in each bin were divided by the total number of

stimulus events. To evaluate the flexor muscle activities, EMG recordings were rectified

and smoothed (time constant 1 ms) and averages of the waveforms were generated. The

averages include the EMG signals also from 1 s before onset of fCO elongation up to 2 -

3 s after onset of the fCO elongation. With regard to differences between the location of

the EMG, as well as differences of recording quality, the flexor activity was normalised

between forward and backward walking in each animal and the relative change in the

muscle activity is given by the here defined arbitrary units (a.u.).

Analysis of intracellular recordings

To examine the reflex responses induced by fCO stimulation on the level of the involved

motoneurons and the premotor network, overdraws of the neuron membrane poten-

tial were created for all stimulations in the inner and outer leg during curve walking.

Furthermore, the changes in membrane potential during reflex reversals were analysed

by waveform averages. For averaging of the MN membrane potential, spikes were re-

moved from the intracellular recordings and replaced by a straight line (maximal5 ms

before and after the peak of the spike).

Statistical analysis

To determine the reliability of the frequency of reflex reversal, 95% confidence inter-

vals for the different experimental situations were defined (Hayes, 1988). If the con-

fidence intervals of the mean values do not overlap, the differences between the pro-
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cessing of fCO signals in the compared data are statistically significant. For further

evaluation also between different experimental conditions, the differences in the fre-

quency of reflex reversal were tested with (2 × 2) contingency tables, conducting either

a one-sided or two-sided analysis depending on the test hypothesis. The Pearson’s

chi-squared test was used, if the sample size was > 60 with the expectancy value

> 5, otherwise the Fisher’s test was used (Agresti, 1992; Sachs, 1972). P-values of

all combinations between the frequency of reflex reversal in different legs during for-

ward as well as during backward walking were determined. Furthermore, the p-values

for the differences in reflex reversal frequencies between forward and backward walk-

ing in the same leg and between the inner and outer leg during curve walking were

calculated. The statistical significance is indicated as follows: (n.s.) not significant

p > 0.05; (∗)p ≤ 0.05; (∗∗)p ≤ 0.01; (∗∗∗)p ≤ 0.001. Evaluation of the data and plotting of

the graphs were performed with Matlab R2011b, Origin Pro 8.5G and Corel Draw X4.

In the text and figures, N refers to the number of animals, and n refers to the sample

size (steps or stimuli).
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3.1 Forward and backward walking

Converging evidence from a variety of animals suggests that reinforcement of movement

is one important mechanism by which sensory feedback contributes to the generation

of the motor output for walking (for reviews see Büschges, 2005; Clarac et al., 2000).

For example, in stick insects, flexion of the femur-tibia (FTi) joint is measured by the

femoral chordotonal organ (fCO). The fCO is known to reinforce stance phase motor

output of the FTi joint when the locomotor system is active (Bässler, 1988). In active

stick insects, reinforcement of flexor activity reflects the reflex reversal of a strong re-

sistance reflex (RR). During this resistance reflex fCO elongation (indicating FTi joint

flexion) excites extensor MNs and inhibits flexor MNs in resting stick insects (Bässler,

1983a). In active animals, the same elongation of the fCO reverses this reflex, seen as

excitation in the flexor tibiae motoneurons (MNs) and as inhibition in the extensor tibiae

MNs. This reflex reversal represents the first part of the so-called active reaction (AR)

(Bässler, 1988). When the chordotonal organ signals a certain flexed-joint position, the

extensor tibiae MNs are strongly excited and the flexor tibiae activity decreases (part II of

the AR) (Bässler, 1976, 1983b, 1986a, 1988). The transition between part I and part II of

the active reaction is independent of velocity, yet position-dependent and assumed to

contribute to the stance-swing transition during walking. Furthermore, it is known that

load signals from the femoral campaniform sensilla (fCS) inhibit extensor tibiae MNs,

activate flexor tibiae MNs, and also increase the occurrence of the AR (Akay et al., 2001;

Akay and Büschges, 2006). Akay and co-workers (2007) have recently shown that the

influence of the CS signals on the thorax-coxa (ThC) joint is reversed in backward versus

forward walking, and thereby assists the generation of stance phase muscles activity in

both walking directions. With regard to the walking direction, it is also important to

mention that the individual legs, in particular front and hind legs, show different leg

kinematics during forward and backward walking. Cruse and Bartling (1995) have de-
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scribed that during forward walking, the FTi joint angle in the front leg decreases during

stance phase and increases during swing phase. In the hind leg, a functional reversal

was observed. This supports the assumption that stance and swing phase in the front

and hind legs are mediated by different activities of leg muscles. One major objective

of the present study was to investigate, if the processing of movement-related fCO sig-

nals in the individual legs differs during forward and backward walking. Furthermore,

this study attempts to determine, if the processing of fCO signals is segment-specific.

Therefore, the experiments were conducted separately in the front, middle and hind leg.

Finally, a better understanding of the kinematics during forward and backward walking

is anticipated, to correlate the sensory processing to the actual motor behaviour. Accord-

ingly, the kinematics of front and hind leg stance phases was studied for both walking

directions.

3.1.1 Influence of fCO signals on tibial MN activity in the front leg

To test whether the generation of reflex reversal depends on the walking direction, an ex-

perimental setup was used that allowed inducing animals to forward or backward walk-

ing by applying mechanical stimuli to the abdomen or antennae, respectively (Rosen-

baum, Wosnitza et al., 2010). In general, forward walking was elicited more readily than

backward walking. Sometimes, a puff of breath or a slight touch on the abdomen was

sufficient to elicit long-lasting forward walking periods. In contrast, in almost all cases of

backward walking, a continuous stimulation of the antennae was necessary to maintain

sustained stepping. In stick insects walking with five legs either forward or backward

on the slippery surface, the front leg fCO was stimulated, while the mesothoracic tibial

motoneuron activity was monitored (Fig. 3.1). In general, backward walking was charac-

terised by a higher ongoing activity in tibial extensor motoneurons compared to forward

walking. At the same time, flexor tibiae activity was diminished (Fig. 3.1 A, B). During

forward walking, elongation of the prothoracic fCO elicited a reflex reversal: extensor

motoneuron activity was terminated by imposed FTi joint flexion, while flexor motoneu-

ron activity and common inhibitor 1 (CI1) activity was initiated (Fig. 3.1 A, C). On the

contrary, reflex reversals were less often observed during backward walking (Fig. 3.1 A,
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Figure 3.1: (A) In�uence of fCO signals on the tibial MN activity in the front leg during forward and
backward walking. The femoral chordotonal organ of the front leg was displaced (fCO stim) while
monitoring the tibial extensor (tib ext (F2)) and �exor muscle activities (Flx Ti) in that leg. In the
shown sequence, the animal was walking backward and then forward. Re�ex reversals occurred during
forward walking. B) and C) Expanded traces of responses during backward (B) and forward (C) walking.
D) and E) Peri-stimulus time histograms of the �ring frequency of the tibial extensor motoneurons (top)
and recti�ed waveform averages of the �exor muscle activity (bottom) during fCO stimulation in the
front leg during backward (D) and forward (E) walking (D: n=30; E: n=30, data from one animal).
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Figure 3.2: Re�ex reversals in the front leg depend on walking direction. Bar histograms show the
frequency of re�ex reversals in the front leg's tibial muscles during displacement of the front leg fCO in
animals that were walking forward (A) and backward (B). Each histogram shows two typical experiments
(light bars) and the mean values of all experiments (dark bars; N=17). Re�ex reversals occurred during
forward, however, not during backward walking. Arrows indicate walking direction; lines designate 95%
con�dence intervals.

B). Stimuli applied to the fCO during backward walking did not show any reliable in-

fluence on the extensor activity (Fig. 3.1 A, B). This difference in forward and backward

walking becomes evident in the PST-histograms of the averaged F2 extensor nerve ac-

tivity (Fig. 3.1 D, backward; Fig. 3.1 E, forward). In backward walking stick insects the

extensor firing frequency was, in general, enhanced and slightly increased caused by the

fCO elongation (Fig. 3.1 D, top). Simultaneously, the flexor activity remained low and

no change in response to fCO stimulation was found (Fig. 3.1 D, bottom).

Additionally, to examine the differences in the processing of fCO signals in the front

leg of forward and backward walking stick insects, the frequency of reflex reversals was

quantified for both walking directions. Reflex reversals were generated in front legs of

forward walking animals in 45.5% of trials (N=17, n=589; Fig. 3.2 A), compared to 6.7%

during backward walking (N = 17; n = 293; Fig. 3.2 B). In 16 of the 17 animals, a higher

frequency of reflex reversals in forward walking than in backward walking was found

(two typical experiments are displayed in Fig. 3.2 A, B). The frequency of occurrence of

reflex reversals differed significantly between forward and backward walking in 10 of

17 animals (Fisher’s exact test).
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3.1 Forward and backward walking

3.1.2 Influence of fCO signals on tibial MN activity in the middle leg

In order to investigate the segment specificity of the processing of fCO signals during

forward and backward walking, in the following experiments the mesothoracic fCO was

stimulated and the tibial motoneuronal activities were detected. In middle legs, the dif-

ferent influences of forward and backward walking on the processing of fCO signals

were unincisive. Both, in the forward walking and in the backward walking stick insect,

reflex reversals were elicited (Fig. 3.3 A, B, C). The enlarged view of one stimulus for

each walking direction, highlights the reflex reversal during fCO elongation (Fig. 3.3 B,

C). Although the inhibition in the F2 extensor nerve upon fCO elongation in this par-

ticular animal becomes more obvious during forward walking (Fig. 3.3 E, PSTH), the

decrease in the averaged F2 spike activity is also identifiable during backward walking

(Fig. 3.3 D, PSTH). Moreover, during forward and backward walking, the averaged flexor

tibiae muscle activities increased during fCO elongation and, therefore, revealed the ac-

tivity pattern of a reflex reversal (Fig. 3.3 D, E).

The frequency of reflex reversals in the bar histograms in exemplary animals reached

a quite similar level in both walking directions (Fig. 3.4 A, B). The mean frequency of

reflex reversals in forward walking (48.7%) is approximately 10% higher than in back-

ward walking (34.4%). However, the overlap of the 95% confidence intervals indicates

that the observed numerical difference is, in fact, not statically significant. In total, only

one of seven animals showed a significant difference in the frequency of reflex reversal

between forward and backward walking. Five of seven animals showed a higher fre-

quency of reflex reversals during forward walking and two during backward walking.

In summary, in the middle leg, only in rare cases an influence of walking direction on

the probability of reflex reversals upon fCO stimulation was found.
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Figure 3.3: (A) In�uence of fCO signals on the tibial MN activity in the middle leg during forward and
backward walking. The femoral chordotonal organ was displaced (fCO stim) in the middle leg while
monitoring the tibial extensor (tib ext (F2)) and �exor muscle activities (Flx Ti) in that leg. In this
sequence, the animal was walking backward and then forward. Re�ex reversals occurred during forward
and backward walking. B) and C) Expanded traces of responses during backward (B) and forward
(C) walking. D) and E) Peri-stimulus time histograms of the �ring frequency of the tibial extensor
motoneurons (top) and recti�ed waveform averages of the �exor muscle activity (bottom) during fCO
stimulation in the middle leg during backward (D) and forward (E) walking (D: n=22; E: n=14, data
from one animal).

26



3.1 Forward and backward walking

1 2 x
0,0

0,2

0,4

0,6

0,8

1,0

 experiment

F
re

q
u
e
n
c
y

o
f
re

fl
e
x

re
v
e
rs

a
l

A B BackwardForward 

1 2 x
0,0

0,2

0,4

0,6

0,8

1,0

 experiment

F
re

q
u
e
n
c
y

o
f
re

fle
x

re
v
e
rs

a
l 28       20      121 23       18       95

p

m

m

p

m

m

Figure 3.4: Re�ex reversals in the middle leg do not depend on walking direction. Bar histograms show
the frequency of re�ex reversals in the middle leg tibial muscles during displacement of the middle leg
fCO in animals that were walking forward (A) and backward (B). Each histogram shows two exemplary
experiments (light bars) and the mean values of all experiments (dark bars; N=7). Re�ex reversals
occurred during forward and backward walking. Arrows indicate walking direction; lines designate 95%
con�dence intervals.

3.1.3 Influence of fCO signals on the tibial MN activity of the hind leg

In order to determine the role of the processing of fCO signals in hind legs while the re-

maining legs walked forward and backward, again, the activity of the F2 extensor nerve

and the flexor tibiae muscle activity were recorded and simultaneously ramp-and-hold

stimuli were applied to the fCO. During forward, as well as during backward walking,

elongation of the fCO could generate reflex reversals (Fig. 3.5 A, B, C). However, during

forward walking, only in some cases fCO elongation elicited a reflex reversal (Fig. 3.5

A). Mostly, however, the neuronal activity in the F2 extensor nerve remained high and

no inhibition during elongation was found. This is also shown in the PSTH of the av-

eraged F2 extensor nerve activity, in which only in the backward walking condition a

slight decrease of the activity, caused by the fCO elongation, becomes apparent (Fig. 3.5

E). Nonetheless, averaged flexor muscle activity increased during fCO elongation in for-

ward, as well as in backward walking (Fig. 3.5 D, E bottom).

Closer inspection of the frequency of reflex reversals during forward and backward

walking revealed only a small difference in the metathoracic processing of fCO signals

(Fig. 3.6 A, B). During forward walking, the frequency of reflex reversals did not ex-
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Figure 3.5: (A) In�uence of fCO signals on the tibial MN activity in the hind leg during forward and
backward walking. The femoral chordotonal organ was displaced (fCO stim) in the hind leg while
monitoring the tibial extensor (tib ext (F2)) and �exor muscle activities (Flx Ti) in that leg. In this
sequence, the animal was walking forward and then backward. Re�ex reversals occurred during forward
and backward walking. B) and C) Expanded traces of responses during forward (B) and backward
(C) walking. D) and E) Peri-stimulus time histograms of the �ring frequency of the tibial extensor
motoneurons (top) and recti�ed waveform averages of the �exor muscle activity (bottom) during fCO
stimulation in the hind leg during forward (D) and backward (E) walking (D: n = 28; E: n = 29, data
from one animal).
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Figure 3.6: Re�ex reversals in the hind leg depend on walking direction. Bar histograms show the
frequency of re�ex reversals in the hind leg's tibial muscles during displacement of the hind leg fCO
in animals that were walking forward (A) and backward (B). Each histogram shows two exemplary
experiments (light bars) and the mean values of all experiments (dark bars; N = 11). Re�ex reversals
occurred during backward, however, only rarely in forward walking. Arrows indicate walking direction;
lines designate 95% con�dence intervals.

ceed 20% (Fig. 3.6 A) and during backward walking, the frequency was 28% (Fig. 3.6 B).

Moreover, only in three of eleven experimental animals the frequency of reflex reversals

differed significantly between forward and backward walking. In conclusion, no notice-

able difference in the frequency of reflex reversals between the two walking directions

was observed. In four of eleven experiments, the frequency of reflex reversal was higher

in forward walking than in backward walking, whereas in six of eleven experiments

the frequency was higher in backward walking. Two of these exemplary experiments

are shown in Fig. 3.6 (A) for forward walking and in Fig. 3.6 (B) for backward walking.

Generally, in the hind leg, there was a slightly increased tendency for the generation

of reflex reversals in backward walking, compared to the forward walking condition.

However, altogether, the differences are only marginal and not significant.

3.1.4 Influence of ThC joint position on the processing of fCO signals in

tibial MNs of the hind leg

During forward and backward walking, a difference in the processing of fCO signals in

the front leg was demonstrated; in contrast, in the hind leg, only a slight influence of

walking direction was found. Furthermore, for both walking directions, the frequency of
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reflex reversal in hind legs was generally lower than in front and middle legs. Therefore,

it might be hypothesized that in the hind leg different or additional leg sensors, besides

the fCO, are involved in the control of tibial MN activity. Hair fields, in particular the

ventral coxal hair plate (vcxHP) located on the ThC joint of the leg (Bässler, 1983b; Dean

and Schmitz, 1992; Graham and Wendler, 1981), are known to detect movements of this

joint. These hair fields are formed by groups of hair sensilla (Dean and Schmitz, 1992).

The ventral coxal hair plate is composed of two groups of hair sensilla, G1 and G2. It

was shown that simulating a constant leg protraction, by fixating the ThC joint with a

clamp, results in reinforcement of the stance phase, and even, in some cases, in a con-

stant retraction, therefore, causing the leg to remain in the stance phase (Bässler, 1977).

To determine a potential influence of position signals from the ThC joint on the gen-

eration of the reflex reversal in the hind leg during forward and backward walking,

the ThC joint position was changed. Thus, the hind leg was fixated at an angle of 45◦

anterior instead of 45◦ posterior to the body axis. Simultaneously, fCO stimulation and

tibial nerve and muscle activity recordings were performed. During forward walking,

fCO elongation elicited an increase in activity in the extensor tibiae nerve (Fig. 3.7 A, B,

D), similar to the resistance reflex in the inactive animal. In backward walking, the same

fCO stimulation more likely mediates reflex reversals (Fig. 3.7 A, C, E). The difference

in the motoneuronal activities of the FTi joint in response to fCO stimulation becomes

particularly obvious in the enlarged presentation of one fCO stimulus for the situation

during forward (Fig. 3.7 B) and backward (Fig. 3.7 C) walking. Also, the extensor tibiae

nerve activity in forward walking increases on average during fCO stimulation (Fig. 3.7

D). In backward walking, fCO elongation caused only a slight increase in the extensor

activity in response to stimulus onset (Fig. 3.7 E). However, afterwards, during the hold

phase of the stimulus, the extensor discharge rate further increased (Fig. 3.7 E). The com-

plementary activity pattern to the extensor activity during fCO stimulation is given by

the averaged flexor tibiae activity, thus, only in the backward walking situation a slight

increase in the muscle activity in response to fCO stimulation was found (Fig. 3.7 E).

This indicates that a change in the ThC joint position increases the frequency of reflex
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Figure 3.7: In�uence of fCO signals on the tibial MN activity in the anterior-directed hind leg during
forward and backward walking. The femoral chordotonal organ was displaced (fCO stim) in the anterior-
directed hind leg, while monitoring the tibial extensor (tib ext (F2)) and �exor muscle activities (Flx
Ti) in that leg. A) The animal walked forward (left panel) and backward (right panel). Re�ex reversals
occurred during backward walking. B) and C) Expanded traces of responses during forward (B) and
backward (C) walking. D) and E) Peri-stimulus time histograms of the �ring frequency of the tibial
extensor motoneurons (top) and recti�ed waveform averages of the �exor muscle activity (bottom)
during fCO stimulation in the anterior-directed hind leg during forward (D) and backward (E) walking
(D: n=15; E: n=16, data from one animal).
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Figure 3.8: Re�ex reversals in the hind legs �xated anteriorly depend on the walking direction. Bar
histograms show the frequency of re�ex reversals in hind legs �xated anteriorly during fCO elongation
in animals that were walking forward (A) and backward (B). Each histogram shows two exemplary
experiments (light bars) and the mean values of all experiments (dark bars; N = 13). Re�ex rever-
sals occurred during backward, yet rarely in forward walking. Arrows indicate walking direction; lines
designate 95% con�dence intervals.

reversals during backward walking. In more than one half of the experiments (eight of

13 experiments) the frequency of reflex reversals differed significantly between forward

and backward walking (in three experiments p < 0.01; in five experiments p < 0.001).

Moreover, the frequency of reflex reversals was enhanced during backward walking,

compared to forward walking in eleven of 13 experiments. The frequency of occurrence

of two of these exemplary experiments and averages of all investigated animals (N=13)

are depicted in Fig. 3.8 for forward walking (A) and backward walking (B).

3.1.5 Influence of ThC joint position and CS ablation on the processing of

fCO signals in tibial MNs of the hind leg

It was demonstrated that during backward walking the generation of reflex reversal

was increased by changing the position of the hind leg in a 45◦ anterior directed leg

position (as discussed in the previous section). To confirm that this effect is indeed

mediated by position sensors, it was necessary to exclude that load information from

the CS are responsible for the observed differences. It has been shown previously that

sensory signals of the three fields of trochanteral campaniform sensilla (trCS), as well as

of the femoral campaniform sensilla (fCS), are changed by cuticular deformation of the
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Figure 3.9: (A) In�uence of fCO signals on the tibial MN activity in the anterior-directed hind leg with
ablated CS during forward and backward walking. The femoral chordotonal organ was displaced (fCO
stim) in the middle leg while monitoring the tibial extensor (tib ext (F2)) and �exor muscle activities
(Flx Ti) in that leg. In the �rst sequence, the animal walked forward and in the second sequence, it
walked backward. Re�ex reversals occurred during backward walking. B) and C) Expanded traces of
responses during forward (B) and backward (C) walking. D) and E) Peri-stimulus time histograms of
the �ring frequency of the tibial extensor motoneurons (top) and recti�ed waveform averages of the
�exor muscle activity (bottom) during fCO stimulation in the anterior directed hind leg with ablated
CS during forward (D) and backward (E) walking (D: n=41; E: n=24, data from one animal).
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Figure 3.10: Re�ex reversals in the hind legs �xated anteriorly depend on walking direction. Bar
histograms show the frequency of re�ex reversals in the hind legs �xated anteriorly and with ablated
CS during displacement of fCO in animals that were walking forward (A) and backward (B). Each
histogram shows two exemplary experiments (light bars) and the mean values of all experiments (dark
bars; N = 5). Re�ex reversals occurred during backward, yet rarely in forward walking. Arrows indicate
walking direction; lines designate 95% con�dence intervals.

trochanter (Delcomyn, 1991; Hofmann and Bässler, 1982; Tatar, 1976). Furthermore, load

and position information influence the change between stance and swing phase (Cruse,

1985a). Akay and Büschges (2006) was able to show that a simultaneous increase in

load information of the fCS and elongation of the fCO caused a higher frequency of

AR. In the following experiments, all four CS of the trochanter were ablated, the hind

leg was again fixated at 45◦ in the anterior-directed position, the fCO was stimulated

by ramp-and-hold stimuli, and the extracellular activity of the tibial extensor nerve

and the flexor tibiae muscle activity were recorded. As a result, elongation of the fCO

mediates a reflex reversal in backward walking, yet rarely in forward walking (Fig. 3.9

A, B, C). During forward walking, the F2 extensor nerve activity increases upon fCO

elongation and the averaged flexor muscle activity does not show any correlated activity

as a consequence of the fCO stimulation (Fig. 3.9 D). The reflex reversal in backward

walking becomes particularly obvious in the averaged PST-histograms of the extensor

tibiae activity, displaying a decrease in activity due to fCO elongation and a simultaneous

strong increase in the averaged flexor activity (Fig. 3.9 E). The emerging hypothesis that

reflex reversals occur more likely in backward walking than in forward walking, can be

supported by my empirical findings, as in three of five animals a significant difference
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3.1 Forward and backward walking

between forward and backward walking was found. Furthermore, in all experiments

(N = 5), the frequency of reflex reversals was lower in forward walking (Fig. 3.10 A)

compared to backward walking (Fig. 3.10 B).

3.1.6 Summary 1: Influence of walking direction

To summarize the influences of position and movement signals of the fCO during for-

ward and backward walking, the frequencies of all experimental conditions are dis-

played as box-and-whisker diagrams (Fig. 3.11). In the front legs, as well as in the

hind legs, the frequencies of reflex reversals differed between forward and backward

walking. Interestingly, the occurrence frequencies in the front legs are inversed to the

occurrence frequencies found in the hind legs (Fig. 3.11): the frequency of reflex rever-

sals in the front legs during forward walking is significantly (p < 0.0001) higher than in

the backward walking animal (experimental condition 1, Fig. 3.11). In contrast, in all ex-

perimental conditions of the hind legs, reflex reversals in forward walking occurred less

often than in backward walking. walking (experimental condition 3-5, Fig. 3.11). The

frequency of reflex reversals in the posterior directed hind leg was decisively more fre-

quent during backward walking than during forward walking (experimental condition

3, p = 0.0123) and was notably higher in the anterior-directed hind legs (experimental

condition 4, p = 1.19E-13). The most distinct difference in the occurrence of reflex rever-

sals during forward and backward walking in the hind legs (p = 4.05E-07) was found

in the experimental condition with the 45◦ anterior-directed hind leg and simultane-

ously ablated CS (experimental condition 5, Fig. 3.11). In the middle legs, no significant

changes between the frequency of reflex reversals in forward and backward walking

animals were detected (p = 0.0795).

3.1.7 Summary 2: Influence of segment specificity

During forward walking, the highest frequency of reflex reversals was found in the front

legs (Fig. 3.12). Even though there was a large variation of the frequency of reflex rever-

sals during forward walking in the front legs, the median was higher than in the middle

legs. Furthermore, the medians of both (front and middle legs) were higher than the
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Figure 3.11: Frequency of occurrence of re�ex reversals during forward and backward walking in front,
middle and hind legs. Whisker box plots depict all tested animals of all di�erent experimental condi-
tions during forward and backward walking. The di�erences between forward and backward walking
were tested with the chi-square test. The statistical signi�cance is denoted as follows: (n.s.) not

signi�cant p > 0.05; *p ≤ 0.05; **p ≤ 0.01;***p ≤ 0.001.. Arrows above the stick insect schematics
indicate walking directions and small black arrows highlight the investigated leg. N indicates number
of experiments and n indicates sample size (i.e., number of stimuli).

medians of all experimental conditions in the hind legs during forward walking. In

addition, the statistical tests supported the hypothesized difference in reflex reversal

frequency between the front legs, the middle legs, and the hind legs. In the hind legs,

during forward walking, the most outstanding difference of the occurrence of reflex

reversals was found between the posterior-directed hind leg and the anterior-directed

hind leg with CS ablation (p = 2.39E-04). In the forward walking stick insects, the fre-

quency of reflex reversals was decisively larger in the anterior-directed hind legs with

intact CS, than in the hind legs with ablated CS (p = 0.002). Contrary to the distribution

of frequency of reflex reversals in the different experimental conditions in forward walk-

ing, in backward walking, the lowest frequency was detected in front legs. In backward

walking stick insects, the frequency of reflex reversals varied considerably between the

front legs and all other experimental conditions (Fig. 3.13, p < 0.001). Furthermore, a

difference between the anterior-directed hind legs and the posterior-directed hind legs

(p = 0.031), as well as to hind legs with ablated CS (p = 0.021) was found. Nevertheless,

36



3.1 Forward and backward walking

0,0

0,2

0,4

0,6

0,8

1,0

 

p
ro

b
a
b
ili

ty
o
f

o
cc

u
rr

e
n
ce

o
f

A
R

p

m

m

p

m

m

p

m

m
CS

p

m

m

p

m

m

N=                    17                   7                     11                   13                     5        

                   1                 2                3               4               5                 experimental
conditions

n =                   589                121                  343                 693                 175        

***
***

***

***
***

***

**

***

*

n.s.

Figure 3.12: Frequency of occurrence of re�ex reversals during forward walking in front, middle and hind
legs. Whisker box plots depict data from all tested animals of all di�erent experimental conditions during
forward walking. The di�erences in the frequency of occurrence between the di�erent experimental
conditions during forward walking were tested with the chi-square test. The statistical signi�cance is
denoted as follows: (n.s.) not signi�cant p > 0.05; *p ≤ 0.05; **p ≤ 0.01;***p ≤ 0.001.. Arrows above
the stick insect schematics indicate walking directions and small black arrows highlight the investigated
leg. N indicates number of experiments and n indicates sample size (stimuli).

p

m

m

p

m

m

p

m

m
CS

p

m

m

p

m

m

N=                     17                      7                       11                      13                      5        

                   1                   2                  3                 4                 5                 experimental
conditions

n =                    293                    95                     259                    395                   215      

0,0

0,2

0,4

0,6

0,8

1,0

 

p
ro

b
a
b
ili

ty
o
f

o
cc

u
rr

e
n
ce

o
f

A
R ***

***
***

***
 *

 *
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in the middle legs and in all hind leg conditions, the means differ only by a maximum

range of 10%.

3.1.8 Front and hind leg stance phase kinematics during forward and

backward walking

In order to elucidate the differences of the frequency of reflex reversals in the different

legs during forward and backward walking, the correlation of the described process-

ing of flexion signals from the fCO with the corresponding stance phase kinematics

was essential. Cruse and Bartling (1995) have described the changes in the FTi joint

angle in the front leg, as well as in the hind leg, during forward walking. According

to their description, during forward walking, the FTi joint angle (inner angle) of the

front leg decreases during stance phase and increases in the swing phase. In the hind

leg, this relationship is reversed. Consequently, during stance phase, the FTi joint angle

increases. A recent study that addressed the muscle activities of the FTi joint reported

that, at least in the middle leg, the flexor tibiae and extensor tibiae muscle activities are

quite similar during forward and backward walking (Rosenbaum, Wosnitza et al., 2010).

To correlate the processing of position and movement information from the fCO during

forward and backward walking with the leg movements, we performed kinematic in-

vestigations regarding the change of the FTi joint angle during stance phase in the front

and hind legs in both walking directions (some experiments were performed under my

supervision from T. Giang (student) and C. Glowania (Bsc. student)). For the experi-

ments, animals were mounted above a slippery surface and walked with all legs either

forward or backward. Movements of the front or hind leg FTi joints were recorded by

the use of a high speed video camera. For data evaluation, the forward and backward

steps were divided into three classes, regarding an increase or a decrease of the FTi joint

angle. The first class contains steps during which the FTi joint angle decreased, which

was classified as flexion. The second class contains steps during which the stance phase

was mediated by flexion at the beginning of stance, followed by an extension of the FTi

joint. The third class contains steps during which the stance phase was achieved by FTi
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Figure 3.14: Stance phase directions in the forward and backward walking front leg. The FTi joint
angles are divided into three classes of stance phase movements: �exion, �exion and extension, and
extension. The normalized numbers of stance phase types during forward walking are shown in black
(N = 6), while phase types during backward walking are shown in grey (N = 18). Arrows in the
schemes indicate stance direction by �exion (black) and extension (grey); numbers above bars indicate
quantity of steps.

joint extension, which means enlargement of the FTi joint angle. In the forward walk-

ing front leg, stance phase was mediated by flexion of the FTi joint in more than 90% of

the steps (Fig. 3.14, black bars). In backward walking stick insects, the stance phase of

the front legs was dissimilarly accomplished. In the majority of steps the FTi joint was

flexed during stance (≈ 60%). However, stance phase was also realised by either both

FTi joint flexion and extension or exclusively FTi joint extension (Fig. 3.14, grey bars).

In backward walking hind legs, the stance kinematics was comparable to the kinematics

of the forward walking front leg. In 90% of all observed backward walking steps, stance

phases were performed by FTi joint flexion (Fig. 3.15, grey bars). However, in forward

walking hind legs, the stance phases were more diversified. This results in almost 40%

of stance phases in which the FTi joint was flexed and further 40% of the steps in which

the FTi joint was extended during stance phase (Fig. 3.15, black bars). Furthermore, in

forward walking hind legs, stance phase was performed by FTi joint flexion, followed

by an extension. However, in some steps no classification was possible (Fig. 3.15, black

bars).
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Figure 3.15: Stance phase directions in the forward and backward walking hind leg. The FTi joint
angles are divided into three classes of stance phase movements: �exion, �exion and extension, and
extension. The normalized numbers of stance phase types during forward walking are shown in black
(N = 9), while phase types during backward walking are shown in grey (N = 9). Arrows in the schemes
indicate stance direction by �exion (black) and extension (grey); numbers above bars indicate quantity
of steps.

3.1.9 Influence of walking direction on interjoint reflex response to fCO

stimulation

Previous studies reported that position and movement signals from the FTi joint pro-

cessed by the fCO have influences on the coxa-trochanter (CTr) joint (Hess and Büschges,

1997, 1999). The authors identified reflex pathways controlled by the fCO, which mod-

ulate the depressor trochanteris and levator trochanteris activity in an active and inactive

stick insect. In the inactive animal, elongation stimuli activate levator trochanteris MNs

and relaxation stimuli activate levator trochanteris, as well as depressor trochanteris MNs

(Hess and Büschges, 1997). The reflex response was also tested in an active, but not

walking animal, in which the reflex responses increase (Hess and Büschges, 1997). It

is still unknown how the fCO information is processed in the CTr joint of a walking

stick insect, in particular, during different behavioural tasks, like forward and backward

walking.

To investigate the influence of position and movement signals of the FTi joint on the
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3.1 Forward and backward walking

CTr joint during walking, the animal was again mounted above a slippery plate and the

middle leg was fixated for mechanical stimulation of the fCO. Simultaneously, extracel-

lular nerve recordings of the F2 extensor nerve and muscle recordings of the flexor tibiae

muscle were performed. To monitor the activity of the CTr joint, the mesothoracic levator

trochanteris nerve C1 was recorded extracellularly inside the thorax. In the walking stick

insect, during forward as well as during backward walking, the motoneuronal activity

in the levator trochanteris nerve increased upon fCO elongation (Fig. 3.16 A). This be-

comes particularly obvious in the enlarged presentation of one stimulus during forward

(Fig. 3.16 B) and during backward (Fig. 3.16 C) walking.

Furthermore, the averaged neuronal spike activity of the C1 nerve in six animals (Fig. 3.17

A-F) during forward (black bars) and backward (white bars) walking was increased dur-

ing elongation of the fCO. The increase in C1 frequency in forward and backward walk-

ing was similar; for example in Fig. 3.17 (B) a strong enhanced frequency was found

for both walking directions, yet in Fig. 3.17 (D) the frequency was only rarely increased.

In general, the spike activity of the C1 nerve was increased due to fCO elongation and

decreased upon fCO release (Fig. 3.17 A-F). For a closer look at the activity distribution

of the C1 during the stimulation period, the burst activity of C1 was quantified. There-

fore, the stimulus duration and the time between two stimuli were divided into eleven

time bins and each levator trochanteris burst onset was assigned to one bin class. The

fCO stimulation, during both walking directions, elicited bursting activity mainly dur-

ing elongation (Fig. 3.18 A, B; shown for two exemplary animals). In addition, for both

walking directions the levator burst on- and offset during fCO elongation was analysed.

The levator trochanteris activity started, or remained active, in approximately 40% of the

applied fCO stimuli and only in approximatly 10% the levator burst activity ended upon

fCO elongation (Fig. 3.19, N=3).
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Figure 3.16: In�uence of walking direction on the interjoint re�ex between the FTi joint and the
CTr joint in the middle leg of forward and backward walking stick insects. The mesothoracic femoral
chordotonal organ was displaced (fCO stim) in the middle leg while monitoring the tibial extensor (tib
ext (F2)) and �exor activities (FlxTi) in that leg and the neuronal activity of the levator trochanteris
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Figure 3.18: Levator trochanteris burst onset in two animals (A, B) during fCO stimulation in forward
(black bars) and backward (grey bars) walking animals. Over the stimulus period eleven bin classes
according to the elongation, holding, relaxation and time between two stimuli were used to evaluate
the levator trochanteris burst onsets.
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3.2 Curve Walking

In stick insects walking a curve, the animal must adjust its motor output in order to

generate a certain leg movement pattern that is capable of producing turning. The leg

kinematics, step length, directions of the stance phase of each leg, stepping frequencies

and the interleg coordination need to be modified to walk a curved path (Dürr, 2005;

Dürr and Ebeling, 2005; Jander, 1982). The kinematics and muscle activities of tethered

insects were investigated during optomotor-induced curve walking on a slippery surface

(Gruhn et al., 2006, 2011, 2009). Under these experimental conditions, each leg partici-

pating in curve walking can be regarded as walking on either the inside or outside of the

curve. The stance phase of a middle leg on the inner side of the curve is directed towards

the body of the animal. In contrast, a middle leg walking on the outside of the curve

pushes backward along the longitudinal axis of the animal (Gruhn et al., 2006). In order

to understand the neural basis of these adaptations responsible for the leg coordination

during curve walking, the present and recent studies (Hellekes et al., 2012; Hoffmann,

2010) investigated whether the occurrence of reflex reversal differed in the middle leg

walking on the inner or outer side of a curve. In a second set of experiments, I inves-

tigated intracellularly the physiological changes in the mesothoracic neuronal network

that controlls the FTi joint. Therefore, the physiology of identified premotor nonspiking

interneurons was analysed in middle legs that were walking on either the inside or the

outside of the curve. Their physiology was first compared between all fCO stimulations

in the leg walking on the inside or on the outside of the curve, and secondly between

only fCO stimulations which generate reflex reversals in the leg either walking on the

inside or the outside of the curve.

3.2.1 Influence of fCO signals on the tibial MN activity during curve walking

In order to analyse the influence of walking direction on the processing of fCO signals,

the animal was tethered above a slippery surface. One middle leg was fixated to stim-

ulate the mesothoracic fCO and to monitor the motoneuronal activities of the flexor and

extensor tibiae, while the animal performed optomotor-induced curve walking with the

remaining legs (Hellekes et al., 2012; Hoffmann, 2010). According to the location of
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the fixed leg, in which the fCO stimulation was performed, and relative to the turning

direction, the leg is denoted as inner or outer leg throughout this thesis (see Material

and Methods 2, Fig.3.23 B, C). The frequency of reflex reversals in the inner middle legs

(58%) was significantly higher (p < 0.001, N = 8) than in the outer leg (7.2%) (Fig.3.20,

experimental condition 1, filled boxes recent data of Hoffmann (2010)). To determine the

differences in the frequency of reflex reversal between the inner and outer middle leg,

experiments were performed in which the outer and inner middle leg were investigated

simultaneously (Fig. 3.20, experimental condition 2). In general, the frequency of reflex

reversals was significantly higher, when the left or right middle leg was an inner leg

compared to an outer leg (left leg p < 0.001; right leg p = 0.0017). To determine the dif-

ferent roles of the individual legs during curve walking, the task-dependent influences

on the processing of fCO signals were evaluated in the front legs, where fCO stimulation

was applied, while recording the tibial motoneuronal activities during curve walking.

In 62% of all stimulations in the inner legs reflex reversals were generated and in 43%

in the outer legs (Fig. 3.20, experimental condition 3). In addition to fCO stimulation
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Figure 3.20: Frequency of re�ex reversals in turning front and middle legs. Whisker box plots depict
data from all tested animals of all di�erent experimental conditions during walking to the left or right
side. The di�erences between the leg on the inner side of the curve and on the outer side of the
curve were tested with the chi-square test. The statistical signi�cance is denoted as follows: (n.s.) not

signi�cant p > 0.05; *p ≤ 0.05; **p ≤ 0.01;***p ≤ 0.001. Arrows above the stick insect schematics
indicate walking directions and small black arrows highlight the investigated leg. N indicates number
of experiments and n indicates sample size (stimuli).
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and extracellular recordings, intracellular recordings were performed to investigate the

physiological changes in the mesothoracic neuronal premotor network. Even in the ex-

periments with enhanced surgery, the reflex reversal was more likely generated in the

inner leg 46% compared to the outer leg 15% (p < 0.001; N = 20, Fig. 3.20 experimental

condition 1, unfilled box plots). In summary, in all three experimental conditions (in-

cluding the condition with additional intracellular recordings) the frequency of reflex

reversal was higher in the inner leg than in the outer leg (Fig. 3.20).

3.2.2 Activity of flexor tibiae MNs during fCO stimulation in curve walking

The innervation of the flexor tibiae muscle and its function in the FTi joint control loop

is highly complex. In a recent study, Goldammer and co-workers (2012) have identi-

fied up to 25 motoneurons innervating the flexor muscle of Carausius morosus. These

are about six more flexor MNs than previously reported (Debrodt and Bässler, 1989;

Storrer et al., 1986). In studies investigating the response properties of flexor MNs due

to fCO elongation in resting stick insects, it was found that the changes in membrane

potential in different flexor MNs can differ from each other in response to the same fCO

stimulus (Debrodt and Bässler, 1989, 1990). Debrodt and Bässler (1990) found that in

Extatosoma tiaratum, fast and intermediate flexor MNs are depolarised more strongly by

fast fCO stimulation, while slow MNs are depolarised more strongly by lower stimulus

velocities. Interestingly, it was further demonstrated that flexor MNs are depolarised

most strongly during fCO relaxation, whereas fCO elongation was found to either hy-

perpolarise or depolarise flexor MNs (Debrodt and Bässler, 1990). Pfeiffer (1991) also

reported different responses of flexor MNs due to fCO stimulation in the resting stick

insect, but similar responses of slow and fast flexor MNs in the active animal. This was

also suggested from studies in inactive (Field and Burrows, 1982; Siegler, 1981) and ac-

tive locusts (Zill, 1985), in which the flexor MNs membrane potential was depolarised

in response to fCO elongation as well as relaxation.

In order to investigate the specific function of flexor MNs in the FTi joint control, the

physiological properties of flexor MNs in response to fCO stimulation were analysed
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in resting and curve walking stick insects. Interestingly, fCO stimulation in resting an-

imals elicited in 12 of 22 intracellularly recorded flexor MNs a depolarisation due to

fCO elongation and relaxation. Fig.3.21 displays exemplary data of one of these flexor

MNs. The flexor MN was identified by depolarising current injection and spike correla-

tion between the intracellular recording and the flexor EMG (Fig.3.21 A). The membrane

potential of the flexor motoneuron was depolarised by current injection and the spike

threshold was identified at approximately −41 mV by increasing the depolarised current

injection (1, 2 nA and 1, 5 nA). Important to note is the response in the membrane po-

tential of this flexor MN to fCO stimulation in the resting animal. During imposed fCO

elongation and relaxation the membrane potential was depolarised and the depolarisa-

tion increased with higher stimulus velocities (Fig.3.21 B-D). As reported by Debrodt

and Bässler (1990) in resting stick insects elongation of the fCO elicited in different flexor

MNs a depolarisation of the membrane potential as well as a hyperpolarisation. In the

conducted experiments here, the membrane potential of 8 flexor MNs (out of a total of

22) was hyperpolarised due to fCO apodeme elongation. In two recorded flexor neurons

no response to fCO stimulation was found. Relaxation of the fCO apodeme in resting
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Figure 3.21: Physiological properties of a �exor MN. (A) Identi�cation of the �exor MN by depolarising
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and then walked to the left side (inner leg). The animal was standing before and after the walking
sequence, where the fCO stimulation elicited the typical resistance re�ex. (B) In the overlays of �exor
MN membrane potential (spikes were removed) during all fCO stimulations in the inner leg (n = 12)
as well as in the averaged �exor MN potential only during stimulations where re�ex reversals occurred
(B, n = 9), a strong depolarisation in the motoneuronal �exor activity due to fCO elongation is found.
C) In the outer leg fCO stimulation did not elicit a clear response in the �exor MN membrane potential
(C, n = 22). In the �exor MN averages of four stimulation with re�ex reversals a depolarisation in the
�exor membrane potential was found (C).
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animals leads in all recorded flexor MNs (N = 22) to membrane potential depolarisa-

tion. However, during walking the membrane potential of the same flexor MN shown

in Fig. 3.21 was slightly depolarised in the outer leg and tonically depolarised in the

inner leg (Fig. 3.22 A). During both curve directions, a phasic modulation in the mem-

brane potential becomes obvious, in which in the inner leg larger phasic depolarisations

as well as large depolarisation due to fCO elongation occurred. The depolarisation of

the flexor MN potential is shown in overdraws of 12 fCO elongations in the inner leg.

This is even more obvious in the averaged potential (thick black trace, Fig. 3.22 B, top)

and in the averaged potential of fCO stimulations, where only reflex reversals occurred

(Fig. 3.22 B, bottom). However, in the membrane potential overlays of all stimuli in the

outer leg no clear response to fCO stimulation was found (overlays, Fig. 3.22 C, top).

Although reflex reversals occurred in four cases due to fCO stimulation in the outer leg,

which is seen as a depolarisation of the flexor MN (Fig. 3.22 C, bottom), the effect during

all stimulations is rare. In seven intracellular recordings performed in flexor motoneu-

rons during curve walking, the frequency of reflex reversals altered between the inner

leg (53%, n = 104) and the outer leg (14%, n = 73).

3.2.3 Activity of extensor tibiae MNs during fCO stimulation in curve

walking

The extensor tibiae muscle is innervated by the femoral branch 2 (F2), which contains two

excitatory MNs, the slow extensor tibiae (SETi) and the fast extensor tibiae (FETi) and one

inhibitory neuron the common inhibitor 1 (CI1) (Bässler, 1989).

In resting stick insects, SETi spontaneously fires at a resting FTi joint position of about

90◦. Elongation of the fCO depolarises both FETi MNs and SETi MNs and relaxation of

the fCO hyperpolarises the membrane potentials (Bässler, 1983a). Depending on their

resting membrane potential, fCO elongation elicits higher spike frequencies in SETi than

in FETi. This response, described as resistance reflex, is known to reverse in the active

animal (active reaction) (Bässler, 1973, 1976, 1986a). In active animals, fCO elongation

causes an excitation of flexor MNs and an inhibition of extensor MNs during the first

part of the AR, which also corresponds to a reflex reversal. In the second part of the
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AR a position-dependent activation of the extensor MNs and inactivation of flexor MNs

occurs.

During curve walking, the membrane potential of the extensor tibiae was more depo-

larised and the spiking frequency was higher in the outer leg compared to the inner

leg (Fig.3.23 A). A tonic depolarisation in the outer leg was also observed by Hoffmann

(2010). In the inner leg, fCO elongation elicited a reflex reversal, seen as a hyperpo-

larisation in the FETi MN and an inhibition in the extensor nerve (Fig.3.23 A, left).

The response in the FETi MN membrane potential up to fCO stimulation is depicted

in Fig. 3.23 (B), where an early latency depolarisation (see also Driesang and Büschges,

1996) is followed by a hyperpolarisation and a subsequent depolarisation. The influ-

ence of the fCO stimulation on the FETi MN membrane potential varied in the outer

leg. However, the average of 10 stimuli indicates a depolarisation elicited by fCO elon-

gation. Therefore, the averages over all stimuli show a change in the FETi membrane

potential similar to that present in the resistance reflex. However, two fCO stimulations

generated reflex reversals in the outer leg and the average of the FETi MN membrane

potential reflects an inhibition during fCO elongation (Fig.3.23 C). In general, in all four

intracellular recorded extensor tibiae MNs a clear hyperpolarisation in the inner leg due

to fCO elongation was found.
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Figure 3.23: (A) In�uence of fCO signals during turning in a fast extensor tibiae (FETi MN) in one
exemplary animal. The femoral chordotonal organ was displaced (fCO stim) in the middle leg while
monitoring the tibial extensor nerve activity (tib ext (F2)) in that leg. Motoneuronal activity during
fCO elongation in the inner leg (left panel) and in the outer leg (right panel). (B) and (C) Re�ex
reversals occurred more frequently in the inner leg than in the outer leg. B) In the overlays of the
FETi MN membrane potential during all fCO stimulations in the inner leg (n = 5) as well as in the
averaged FETi MN potential only during fCO stimulations with re�ex reversal (B bottom, n = 5) a
small depolarisation at the start of fCO elongation, followed by a hyperpolarisation is shown. In the
outer leg, fCO stimulation did not elicit a clear response in FETi MN membrane potential. However,
the average (black trace) shows a depolarisation due to fCO elongation (C, n = 22). Nevertheless, in
the FETi MN, averages of two stimulations with only re�ex reversals revealed a hyperpolarisation in
FETi MN potential during fCO elongation (C).
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3.2.4 Influence of curve walking on the processing of fCO-mediated signals

in nonspiking interneurons

The interneuronal basis of proprioceptive reflexes in the FTi joint control system is well-

studied in the locust (for review see Burrows, 1996) and in the stick insect (for review

see: Bässler, 1993; Bässler and Büschges, 1998). It is known that sensory afferents of

the fCO receive presynaptic inhibition from inputs arising from afferents of the same

sensory type of fCO afferents (Sauer et al., 1997). Furthermore, sensory afferents can

project directly or indirectly via nonspiking interneurons (NSI) or spiking interneurons,

monitoring the same movement parameters, onto MNs (Büschges, 1990; Sauer et al.,

1996, 1995). Several of the identified NSIs inhibit or excite MNs. Previous studies have

identified nonspiking interneurons, which either excite (excitatory (E) NSIs) or inhibit

(inhibitory (I) NSIs) extensor MNs that are involved in the processing of fCO signals

of the FTi joint (Akay, 2002; Büschges, 1990; Stein and Sauer, 1998). In order to un-

derstand the information processing of fCO signals in the curve walking stick insect,

intracellular recordings of nonspiking interneurons of the FTi joint premotor network

were performed. In the following section, I will present initial results of intracellular

recordings of nonspiking INs involved in the FTi joint control during curve walking.

Several nonspiking interneurons were identified by their influence on the extensor ac-

tivity due to current injection and their change in membrane potential caused by fCO

stimulation (cf. Akay, 2002; Büschges, 1990; Stein and Sauer, 1998). Subsequently, the

physiological properties of the NSIs were investigated during curve walking. For this

purpose, the membrane potential modulations in the inner and outer leg were charac-

terised for all stimulations and only for stimulations, which generated reflex reversals.

Büschges (1990) identified the nonspiking interneurons type E2 and E3, which both

were depolarised in response to elongation and hyperpolarised during relaxation of the

fCO. Apart from small differences in their morphology, E3 showed a slight, yet variable,

position-dependent depolarisation (Büschges, 1990; Sauer et al., 1997). Therefore, in this

thesis the interneurons of type E2 and E3 were classified as one group (NSI type E2/3).

First, in order to characterise the nature of the interneuron, depolarising and hyperpo-

53



3 Results

B C

a
vg

. 
N

S
I 

E
2

/3
 

p
o

te
n

tia
l

  fCO-stim

 n=2  n=4

0.5 s

 n=5

 196°/s  940°/s  2520 °/s

D

1 mV

 -56 mV -56 mV

current

tib ext (F2)

NSI E2/3

A

                   5 nA                                           -5 nA           
0.5 s

 -56 mV

SETi

 -56 mV

Figure 3.24: (A) Physiological properties of NSI type E 2/3 in a resting animal. Change in extensor

tibiae motoneuronal activity (tib ext (F2)) in response to depolarising and hyperpolarising current
injection into nonspiking interneuron E2/3. The spontaneous SETi �ring frequency increased due to
depolarising current injection and decreased during hyperpolarising current injection. B)-D) In�uence
of fCO stimulus velocity (B = 195 ◦/s, C = 940 ◦/s, D = 2520 ◦/s) on the membrane potential of NSI
E2/3 (B, n = 2; C, n = 5; D, n = 5).

larising currents were injected. The interneuron was identified as excitatory based on

the fact that depolarisation increased the firing frequency of the SETi and hyperpolaris-

ing current injection decreased SETi spiking frequency (Fig.3.24 A, cf. Büschges, 1990).

In resting animals, the response to fCO stimulation in the membrane potential of this

excitatory interneuron showed a depolarisation with fCO elongation. With higher stim-

ulus velocity the depolarisation slightly increased (Fig. 3.24 B-D, cf. Büschges, 1990).

Relaxation of the fCO induced a hyperpolarisation, which was reduced with higher

stimulus velocities (Fig. 3.24 B-D).

During curve walking, the membrane potential of the NSI E2/3 was strongly hyperpo-

larised in response to fCO elongation in the inner leg (Fig. 3.25 A). In contrast, in the

outer leg only slight changes in the membrane potential independent of fCO stimulation

become obvious (Fig. 3.25 A). In the inner leg, the prominent inhibition caused by fCO

elongation is displayed in the overlays of the membrane potential of 19 stimulations

(Fig. 3.25 B, top). The membrane potential of these NSI E 2/3 was on average also hy-

perpolarised during the stimulations with reflex reversals (Fig. 3.25 B, bottom; n = 11).
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Figure 3.25: (A) In�uence of fCO signals during turning on a mesothoracic nonspiking interneuron of
type E2/3 (NSI E2/3). The femoral chordotonal organ was displaced (fCO stim) in the middle leg while
monitoring the tibial extensor nerve activity (tib ext (F2)) and �exor muscle activities (�ex EMG) in the
same leg of one exemplary animal. During walking, the investigated leg was either a functional inner
leg (left panel) or an outer leg (right panel). (B) and (C) Averages of the membrane potential of NSI
E2/3. Top panels: overlays of the membrane potential of NSI type E2/3 during all fCO stimulations in
the inner (n = 19) and outer leg (n = 5). Bottom panels: averages of NSI E2/3 membrane potential
only during re�ex reversals caused by fCO stimulation in the inner (n = 11) and outer leg (n = 2).
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However, the inhibition was on average lower in the outer leg (Fig. 3.25 C), and mainly

based on the occurrence of two reflex reversals when that leg was on the outside of the

curve (Fig. 3.25, bottom). Thus, in the NSI type E2/3 the change in membrane poten-

tial caused by fCO elongation was reversed between resting and walking animals (cf.

Bässler and Büschges, 1990; Driesang and Büschges, 1996). Interestingly, the noticeable

inhibition during fCO elongation in the inner leg was reduced in the outer leg, which

indicates a difference in the processing of fCO signals between the inner and outer leg.

Next, the nonspiking interneuron E4 was identified in the resting stick insect by the

following criteria: first depolarising current was injected into the nonspiking interneu-

ron and an excitatory influence on the SETi activity was shown. The firing frequency

of the SETi MN increased with increasing depolarised current injection (Fig. 3.26 A,

cf. Büschges, 1990). Second, this excitatory interneuron responded to elongation and

relaxation of the fCO with a phasic depolarisation of the membrane potential. The de-
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Figure 3.26: (A) Physiological properties of NSI type E4. Change in extensor tibiae motoneuronal
activity (ext tib (F2)) in response to depolarising current injection into nonspiking interneuron E4.
The spontaneous SETi �ring frequency and the membrane potential increased due to rising depolarised
current injection. Here, the slow increase in the membrane potential was caused by a badly balanced
electrode. B)-D) In�uence of the fCO stimulus velocity (B = 96 ◦/s (elongation); 40 ◦/s (relaxation), C
= 188 ◦/s, D = 912 ◦/s) on the membrane potential of NSI E4 in the resting animal. Note the increase
in depolarisation with higher stimulus velocity due to elongation and relaxation of the fCO. n denotes
number of fCO stimuli.
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polarisation increased with higher stimulus velocities.

During fCO elongation, the depolarisation of the membrane potential in the NSI E4

was always larger than during relaxation (Fig. 3.26 B-D, Büschges, 1990) In general, the

animals in which the intracellular recordings of the nonspiking interneuron E4 were

performed, only rarely turned in both curve directions in the same experiment. There-

fore, only a qualitative representation of the membrane potential for the inner and outer

leg is given in Fig. 3.27 A. During curve walking, the membrane potential of NSI E4

in the inner leg was slightly phasic modulated compared to the outer leg, which in

general showed a more depolarised membrane potential (Fig. 3.27 A). The membrane

potential during curve walking is shown in Fig. 3.27 B, C for both walking directions.

In the overlays of the E4 membrane potential for the inner and outer leg (each five fCO

stimuli) a clear depolarisation in response to fCO elongation was identified (Fig. 3.27

B, C; cf. Driesang and Büschges, 1996). Furthermore, during reflex reversals elicited by

fCO stimulations in the inner (n=2) and outer leg (n=6) of two different animals, NSI

E4 was depolarised at the beginning of stimulus onset. About 200 ms after the onset

of the stimulus the amplitude of the depolarisation decreased. After the decrease the

membrane potential of NSI E4 becomes more variable (Fig. 3.27 D). In summary, during

curve walking, the membrane potential of the NSI E4 depolarised at the onset of fCO

elongation in the inner and outer leg. This depolarisation was also found during reflex

reversals in the inner and outer leg. However, it is not established how the NSI E4, in

general, is involved in the processing of fCO signal during curve walking, with regard

to variability between the different animals. In addition, the results are limited by a

small sample size.

Büschges (1990) was able to show that the excitatory NSIs E5 and E6 were depolarised

due to elongation and, even more, due to relaxation of the fCO. Despite their morpho-

logical and physiological similarities, NSI E6 showed a prominent position-dependent

tonical depolarisation and, thus, was classified separately (Büschges, 1990). However,

this tonic component was hardly identifiable in the intracellular recordings performed

in the present thesis. Therefore, NSI E5 and E6 were grouped together as NSI E5/6.
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Figure 3.27: (A) In�uence of fCO signals during turning on a mesothoracic nonspiking interneuron of
type E4 (NSI E4). The femoral chordotonal organ was displaced (fCO stim) in the middle leg while
monitoring the tibial extensor nerve activity (tib ext (F2)) and �exor muscle activities (�ex EMG) in
the same leg of one exemplary animal. During walking, the investigated leg was either a functional
inner leg (left panel) or an outer leg (right panel). (B) and (C) Averages of the membrane potential of
NSI E4. Top panels: overlays of the membrane potential of NSI type E4 during all fCO stimulations
in the inner (n = 7) and outer leg (n = 10). Bottom panels: averages of NSI E4 membrane potential
only during re�ex reversals caused by fCO stimulation in the inner (n = 2) and outer leg (n = 5). n
denotes number of stimuli.
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Figure 3.28: (A) Physiological properties of NSI type E5/6. Change in extensor tibiae motoneuronal
activity (ext tib (F2)) in response to depolarising current injection into nonspiking interneuron E5/6.
The spontaneous SETi �ring frequency increased due to rising depolarised current injection; high current
injection also elicited spike generation in the FETi MN. B)-D) In�uence of fCO stimulus velocity
(B = 96 ◦/s, C = 196 ◦/s, D = 937 ◦/s) on the membrane potential of NSI E5/6 in the resting animal.
Note the increase in depolarisation with higher stimulus velocity due to elongation and relaxation of
the fCO and in particular the increase in inhibitory synaptic inputs during fCO elongation. n denotes
number of fCO stimuli.

One of the neurons classified as NSI E5/6 is shown in Figure 3.28 A. In the resting

stick insect, depolarisation of this interneuron increased the discharge rate of SETi ac-

tivity and induced spikes in the FETi MN (cf. Büschges, 1990). During fCO elongation

and relaxation the membrane potential of this excitatory nonspiking interneuron was

depolarised. The depolarisation during relaxation increased with increasing stimulus

velocities and showed to be always larger than during fCO elongation (Fig. 3.28 B-D, cf.

Büschges, 1990).

In one exemplary sequence of the recordings of this NSI E5/6 in the resting animal,

the membrane potential of the NSI was depolarised due to fCO elongation and relax-

ation. Simultaneously, the activities of the extensor and flexor tibiae reflected the activity

pattern of a resistance reflex (Fig. 3.29 A). When the animal started walking and the

investigated leg was the functional outer leg, a tonic depolarisation becomes apparent,

which increased in the inner leg. In the inner leg, the overlaid membrane potentials of

all stimulations (n = 19) varied in this time courses. However, a slight hyperpolarisation
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during fCO elongation and a depolarisation in response to fCO relaxation was observed

on average (Fig. 3.29 B). In contrast, in the outer leg, fCO elongation depolarised the

membrane potential of this NSI E5/6. Similar to the inner leg, relaxation of the fCO

apodeme induced a depolarisation (Fig. 3.29 Ci). Interestingly, in the recordings of NSI

E5/6 of a different animal, in which also reflex reversals occurred, fCO elongation hy-

perpolarised this NSI E5/6 in the outer leg (Fig. 3.29 Cii). During reflex reversals in the

inner leg a prominent inhibition was found (Fig. 3.29 B, bottom). Identical, during reflex

reversals in the second animal fCO elongation hyperpolarised the membrane potential

of the NSI E5/6 (Fig. 3.29 Cii, bottom). These results differ from the finding that during

the first part of the AR in active animals almost no changes in membrane potential could

be seen (Driesang and Büschges, 1996). It was further shown, that after the inhibition

the membrane potential depolarised and therefore assists the second part of the AR, as

was shown by Driesang and Büschges (1996). To sum up, in the NSI E5/6, the influence

of the processing of fCO signals in resting and curve walking animals during fCO elon-

gation is reversed, with exception of the response in the outer leg of one of the animals

shown (Fig. 3.29 Ci). In the outer leg, fCO elongation induced depolarisation as well as

hyperpolarisation in a different animal. During reflex reversals in both the inner and

outer legs, a strong inhibition was found during elongation.

Only a qualitative characterisation of the excitatory NSI type E8 was performed. NSI E8

was identified by depolarising current injection, which increased the activity of spon-

taneously firing SETi MN (Fig. 3.30 A, Stein and Sauer, 1998). In resting stick insects,

hyperpolarisation in response to fCO relaxation and elongation was found (Fig. 3.30 B-

D), Stein and Sauer, 1998). Both phasic hyperpolarisations increased with higher stim-

ulus velocities (Fig. 3.30 D). During one exemplary fCO stimulation in the inner leg a

reflex reversal was generated and the membrane potential of NSI E8 remained depo-

larised during fCO elongation (Fig. 3.30 E). In contrast, in the outer leg, the membrane

potential of the NSI E8 was hyperpolarised during one exemplary fCO elongation and

simultaneously in the extensor nerve an activity pattern similar to a resistance reflex

becomes apparent (Fig. 3.30 F). Regarding the number of fCO stimulations during curve
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Figure 3.29: (A) In�uence of fCO signals during turning on mesothoracic NSI of type E5/6 (NSI E5/6).
The femoral chordotonal organ was displaced (fCO stim) in the middle leg while monitoring the tibial
extensor nerve activity (tib ext (F2)) and �exor muscle activities (�ex EMG) in the same leg of one
exemplary animal. During walking the investigated leg was either a functional inner leg (left panel) or
an outer leg (right panel). (B) and (C) Averages of the membrane potential of NSI E5/6. Top panels:
overlays of the membrane potential of NSI type E5/6 during all fCO stimulations in the inner (n = 19)
and in the outer leg of two di�erent animals (Ci n = 5; Cii n = 12). Bottom panels: averages of NSI
E5/6 membrane potential only during re�ex reversals caused by fCO stimulation in the inner (n = 3)
and outer leg (n = 6; Cii, bottom). n denotes number of stimuli.
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walking, it remains unclear how NSI E8 is involved in the processing of fCO signals in

the inner and outer leg.

The last classified excitatory nonspiking interneurons were interneurons of the type

E9 and E10. They were also grouped together as NSI E9/10. Akay (2002) showed for

both NSI types a tonic depolarisation in response to fCO elongation. The physiological

difference between these two NSIs is the change in membrane potential caused by fCO

relaxation. NSI E9 showed a slight hyperpolarisation caused by fCO relaxation, whereas

no change in NSI E10 was found (Akay, 2002). The identification of these NSIs by this

differentiation in the two recorded interneurons shown here was not feasible. Therefore,

they were grouped as NSI E9/10. The NSI E9/10 were identified by their responses to

current injection and fCO stimulation in the resting animal. Depolarisation of NSI E9/10

increased the spontaneous activity of SETi MN (Fig. 3.31 A, cf. Akay, 2002). Further-

more, fCO elongation induced a strong tonic depolarisation and, additionally, during

fast elongation, a phasic depolarisation (Fig. 3.31 D). Relaxation of the fCO terminated

the depolarisation and caused a slight hyperpolarisation (Fig. 3.31 B-D, cf. Akay, 2002).

As shown in the resting animal, during curve walking, fCO elongation leads to a strong

tonic depolarisation in the inner as well as in the outer leg (Fig. 3.32 A). This becomes in

particular obvious in the overlays of the membrane potential for both walking directions.

On average, in the inner (Fig. 3.32 B, top) as well as in the outer leg (Fig. 3.32 C, top),

the membrane potential was position-dependently depolarised and the amplitude de-

creased in response to fCO relaxation. During reflex reversals, similar time courses were

found for both walking directions (3.32 B, C bottom). Taken together, fCO stimulation in

the resting, as well as in the curve walking animal, leads always to a position-dependent

depolarisation in the membrane potential of NSI E9/10.

In addition to the excitatory nonspiking interneurons, also the presence of inhibitory

NSIs is known in the FTi joint premotor network (Büschges, 1990). Here, inhibitory in-

terneuron I2 was recorded during curve walking. It was characterised as inhibitory by

its property to inhibit extensor firing during and after positive current injection (Fig. 3.33
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Figure 3.30: (A) Physiological properties and in�uence of fCO signals during turning in NSI type E8
in one exemplary animal. Change in extensor tibiae motoneuronal activity (ext tib (F2)) in response
to depolarising and hyperpolarising current injection into nonspiking interneuron E8. The spontaneous
SETi �ring frequency and the membrane potential increased due to rising depolarised current injection.
B)-D) In�uence of fCO stimulus velocity (B = 188 ◦/s, C = 376 ◦/s, D = 903 ◦/s) on the membrane
potential of NSI E8 in the resting animal. Note the increase in hyperpolarisation caused by increasing
stimulus velocity. (E) and (F) In�uence of fCO signals during turning on a mesothoracic nonspiking
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middle leg while monitoring the tibial extensor nerve activity (tib ext (F2)) and �exor muscle activities
(�ex EMG) in the same leg of one exemplary animal. During walking, the investigated leg was either a
functional inner leg (E) or an outer leg (F). n denotes number of fCO stimuli.
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A, cf. Büschges, 1990). In resting animals, fCO elongation and relaxation caused a de-

polarisation in the membrane potential of NSI I2. (Fig. 3.33 B-D, Büschges, 1990). The

amplitude of the depolarisation in response to fCO elongation, as well as, relaxation

increased with increasing stimulus velocities.

During curve walking, only a slight influence of fCO stimulation was found (Fig. 3.34

A). In the inner leg, as well as, in the outer leg the membrane potential of the NSI I2 was

slightly depolarised in response to fCO elongation and relaxation (Fig. 3.34 B, C; top).

During reflex reversals, the same effect was found, which is shown in the averages of

the membrane potential of NSI I2 in the inner (Fig. 3.34 B, bottom) and in the outer leg

(Fig. 3.34 B, D). In general, in the resting and walking stick insect, fCO elongation, as

well as, relaxation caused a depolarisation. Furthermore, in the inner and outer leg and

in both legs during reflex reversals, the membrane potential of NSI I2 was depolarised

in response to fCO elongation and relaxation.

Finally, an unknown inhibitory nonspiking interneuron (NSI ’I’) of the FTi joint premo-
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tor network was characterised (Fig. 3.35 A). In the resting animal, during depolarised

current injection this interneuron stopped the spontaneous SETi MN spiking activity

(Fig. 3.35 A). To characterise the physiological properties of this interneuron, in the rest-

ing animal fCO stimulations with different stimulus velocities were applied. The mem-

brane potential of this inhibitory NSI was tonically hyperpolarised by fCO elongation.

Relaxation of the fCO generated a phasic depolarisation, which increased with increas-

ing stimulus velocities (Fig. 3.35 B-D).

During curve walking, the membrane potential of this inhibitory nonspiking interneu-

ron is phasic modulated and, in general, more depolarised in the outer leg (Fig. 3.36 A).

In the inner and the outer leg, the influence of fCO stimulation was similar to the time

course of the membrane potential in the resting animal. Elongation of the fCO induced

a position-dependent hyperpolarisation in this neuron and relaxation causes a depolar-

isation (Fig. 3.36 B, C, top).

However, during reflex reversals in the inner leg, the hyperpolarisation caused by fCO

elongation occurred slightly later (Fig. 3.36 B, bottom). Interestingly, in the outer leg dur-
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Figure 3.34: (A) In�uence of fCO signals during turning on a mesothoracic nonspiking interneuron of
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ing one reflex reversal a depolarisation caused by fCO elongation was found (Fig. 3.36

C, bottom). In conclusion, in resting and curve walking animals the time course of this

inhibitory interneuron was similar, seen as a position-dependent inhibition caused by

elongation and a phasic depolarisation during relaxation. However, during reflex re-

versal, particularly in the outer leg a depolarisation, induced by fCO elongation, was

found.
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Figure 3.36: (A) In�uence of fCO signals during turning on a mesothoracic nonspiking interneuron of
type 'I' (NSI 'I'). The femoral chordotonal organ was displaced (fCO stim) in the middle leg while
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3.2.5 Summary: Influence of curve walking on the NSIs

The exemplified intracellular recordings of nonspiking interneurons during curve walk-

ing reveal first insights into the neuronal processing of fCO signals during adaptive

locomotor behaviour. All of them, known to be part of the FTi joint premotor control

network and participate in the generation of resistance reflexes and reflex reversals (cf.

Akay, 2002; Büschges, 1990; Driesang and Büschges, 1996; Stein and Sauer, 1998), were

also involved in the processing of fCO signals during curve walking. According to their

change in the membrane potential, caused by fCO elongation in the inner and outer leg,

they were classified in three groups. First, NSIs that have shown differences in their

change in membrane potential between fCO elongation in the inner and outer leg, such

as NSI E2/3 and E5/6. Second, NSIs that responded similar to fCO elongation in the

inner and outer leg as well as during reflex reversals in the inner and outer leg. The

following interneurons showed these response characteristics: NSI E4, I2, E9/10 and the

here identified inhibitory NSI ’I’. Finally the physiological properties of NSI E8 during

the processing of fCO signals in curve walking stick insects were hardly identifiable due

to the small number of fCO stimulations during curve walking.

In conclusion, all investigated NSIs known so far, showed very similar physiological

changes in the course of the membrane potential caused by fCO stimulation during

curve walking, which was reported for the active animal (Driesang and Büschges, 1996).

For a better understanding of the physiological properties of the processing of fCO

signals during curve walking, further studies should be underwent to investigate, in

particular, the course of membrane potential in the different NSIs during curve walking

and the occurrence of reflex reversals.
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How does sensorimotor processing of movement related sensory feedback contribute

to adaptive motor behaviour? The results of this dissertation demonstrate that modi-

fications in the influence and processing of movement related feedback from leg pro-

prioceptors are segment and task specific modulated for generating adaptive locomo-

tor movements dependent on the insect’s present behavioural state. Flexion signals of

the front leg fCO generated reflex reversals more frequently during forward walking

than in backward walking. In contrast, in the hind leg a higher frequency of reflex re-

versals was elicited in backward walking. These results reveal a segment-specific and

direction-dependent processing of fCO signals mediating reflexes in forward as well as

in backward walking. It was also found that during optomotor-induced curve walking,

fCO signals in the inner leg generated reflex reversals more frequently than in the outer

leg. These findings support the idea of task-dependent processing of fCO signals arising

from FTi joint movement, here in the functional context of the leg walking on the inner

or outer side of a curve.

Furthermore, the results of the kinematics analyses demonstrate that the sensory sig-

nals of the fCO consistently reinforced and enhanced the activities of the muscles that

generate force during stance. In forward and backward walking, front and hind legs

stance phases are mediated by FTi joint flexion both in the forward walking front leg

and in the backward walking hind leg. In contrast, during backward walking the front

leg stance phases are generated by flexion as well as extension of the FTi joint. In the

forward walking hind leg, it is also shown that the stance phases are performed either

by FTi joint flexion or extension.

Movement and position signals from the legs also affect the activity of interjoint coor-

dination, in which signals from the fCO detecting FTi joint movements influence mo-

toneurons controlling the CTr joint. Experiments performed in this thesis confirm the

existence of these fCO-mediated interjoint reflexes during forward and backward walk-

ing in the middle leg CTr joint.

71



4 Discussion

Finally, it has been shown that nonspiking interneurons, known to be involved in the

premotor network of the FTi joint, contribute to the reflex responses in both the inner

and outer middle leg during curve walking. In general, my thesis has shown that senso-

rimotor processing is modulated in a task and segment-specific fashion thereby assisting

the generation of adaptive motor behaviour.

4.1 Movement related reflex reversal in stick insect walking

The first studies on reflex reversals in invertebrates were done during the 1970s, where

it was shown that reflexes mediated by the stick insect’s femoral chordotonal organ can

be reversed by changes in the behavioural state (Bässler, 1976). To date, similar effects

have been demonstrated in a number of vertebrate and invertebrate locomotor systems

(for summaries see Büschges and El Manira, 1998; Clarac et al., 2000). In resting stick

insects, for example elongation of the fCO signalling flexion of the FTi joint has been

shown to produce resistance reflexes. These activate tibial extensor motoneurons and

inhibit tibial flexor motoneurons. Resistance reflexes commonly occur in legged motor

systems and constitute compensatory reactions following passive displacements, thus

ensuring postural stability (summaries in Bässler, 1993; Pearson et al., 1993). Bässler

first reported that in active animals (i.e. that showed motoneuron firing associated with

leg movements), fCO elongation, which corresponds to joint flexion, produces excita-

tion in tibial flexor motoneurons and inhibition in tibial extensor motoneurons (Bässler,

1973, 1976, 1988). This means that when the animal is actively moving, e.g., during

walking, sensory signals indicating a change in FTi joint angle, do not elicit motor ac-

tivity to resist the apparent joint movement yet, instead, assist and reinforce activity in

the muscle that would produce the joint movement. Bässler called this reflex reversal

part I of the active reaction (AR), as it was associated with a change from a resting to an

active locomotory state. This active reaction consists of two parts. During the first part,

as described above, flexion signals of the FTi joint reinforce flexor muscle activity. In

the second part, extensor MNs are position-dependently activated. The present notion

is that the active reaction assists the ongoing stance movement (part I) and then con-

tributes to the stance-swing transition (part II) during walking. Flexor motoneurons are

72



4.1 Movement related reflex reversal in stick insect walking

active in walking during the stance phases of front and middle legs. Assistance reflexes

could, therefore, serve to amplify flexor muscle tension and aid in generating support

and propulsion. Signals from the fCO could also be important in phase transitions, such

as initiation and termination of the stance phase. This idea was supported by the finding

that specific patterns of motor activity occur in a number of leg muscles during active re-

actions that are similar to those seen in phase transitions during walking (Bässler, 1986a,

1988). This implies that sensory signals from the chordotonal organ are processed by

premotor networks controlling tibial MNs. This notion has been further supported by

studies on sensory processing in local nonspiking interneurons (Bässler and Büschges,

1990; Driesang and Büschges, 1996, see section 4.3.2).

However, by now, only little was known about which signals contribute to the genera-

tion of the active locomotor state in the segmental ganglia of a walking animal (Bässler,

1993). In earlier studies, the active state was typically elicited by prolonged and repet-

itive touching of the experimental animal with a paintbrush on the abdomen, head or

antennae (Bässler, 1976, 1986a, 1988). As a result, slow and fast motoneurons inner-

vating the leg muscles were activated and generated sequences of bursts of alternating

activity in their associated antagonistic muscles. In addition, movement was observed

in the neighbouring legs or leg stumps which were free to move, as well as in the an-

tennae (Bässler, 1986a, 1988; Bässler et al., 1974). It is also important to note that many

of the previous studies on reflex reversal were performed in animals that were largely

restrained or in preparations in which the legs were either immobilized or partially re-

moved (e.g. Akay and Büschges, 2006; Bässler, 1976, 1986a, 1988; Bässler and Büschges,

1990; Driesang and Büschges, 1993). By now, one study directly demonstrated that the

AR was associated with movements at the FTi joint in the same leg (Weiland et al., 1986;

compare with Bässler, 1972, 1973; Bässler et al., 1974). In these experiments, an elec-

tronically closed FTi joint control loop was used and the animal was restrained with the

exception that the tibia was free to move. The results showed that the reflex reversal

was indeed generated when the animal executed active movements of the tibia of that

segmental leg.
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The experiments performed in this thesis and in a recently published study (Hellekes

et al., 2012) expand previous experimental approaches insofar that other legs performed

walking movements and that long-lasting tactile stimulation of the animal was omit-

ted. Additionally, changes in walking direction of the animal could easily be induced

by the use of optomotor-stimulation. In the present thesis, the frequency of occurrence

of reflex reversals was investigated in behaving animals to determine the mechanisms

controlling and modulating reflex reversals. The occurrence of a reflex reversal might be

differentially affected as part of the general mechanisms that regulate stepping in single

legs, such as those controlling the rate of walking. On the other hand, reflex reversals

might also be specifically modulated by mechanisms that are active in the functional

adaptation of leg kinematics to specific walking patterns, such as changes in direction

or turning. In the following section, I will discuss the modulation of reflex reversals in

walking stick insects with regard to the functional needs of the system for control and

adaptation of walking.

4.2 Task-dependent modulation of proprioceptive reflexes

4.2.1 Influence of fCO signals on the tibial MN activity during forward and

backward walking

The results of this thesis demonstrate that reflex reversals upon flexion signals from the

fCO could be elicited in front legs during forward walking. However, reflex reversals

were only rarely observed during backward walking (Fig. 3.1, 3.2, 3.11 experimental

condition 1). This finding clearly shows that fCO signals in the front leg are processed

differentially depending on the walking direction. A possible explanation for this might

be that the difference in processing of fCO signals in the prothoracic segment during for-

ward and backward walking entails different leg movements for these two behaviours.

Cruse and Bartling (1995) have described that during forward walking the FTi joint angle

in the front leg decreases during stance phase. To confirm this result in the experimental

conditions used here and in order to understand the stance kinematics of the front leg
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4.2 Task-dependent modulation of proprioceptive reflexes

during backward walking, the stance directions during forward and backward walking

on the slippery surface were analysed (see results 3.1.8). In 90% of the investigated for-

ward steps in the front leg, the stance phase was accompanied by flexion of the FTi joint

(Fig.3.14). This results from the fact that a forward walking front leg generates forces

during the stance phase by flexing the tibia, thereby pulling the animal forward. In con-

trast, in the backward walking condition, front leg stance movement was, in addition

to flexion of the FTi joint, also performed by FTi joint extension (Fig.3.14). In backward

walking, the tibia of the front leg is often extended, pushing the body of the animal

backwards. The difference in reflex effects of fCO elongation can, therefore, assist the

function of supporting muscles that are active during the stance phase.

During forward walking, the high frequency of occurrence of reflex reversals in the

front leg revealed that signals of joint flexion increased the activity of the tibial flexor

muscle (Fig. 3.1, 3.2). This could assist activity of the flexor muscle. In contrast, during

backward walking, the activity in the tibial extensor motoneuron was not inhibited yet,

instead, showed a modulation similar to a resistance reflex generated at rest (Fig. 3.1,

3.2). In both of these cases, the changes in joint angle enhance the activities of those

muscles that are active during stance. Thus, the sensory signals of the chordotonal

organ consistently reinforced and enhanced the activities of the muscles that generate

force during stance.

At first glance, the findings presented in this study do not seem to correspond the

experiments obtained by Nothof and Bässler (1990). These authors suggested that the

neural system generating the AR is a functional element of the pattern generator for

forward and backward walking. However, in the experiments presented here no reflex

reversal was found during backward walking in the front legs, which suggests a differ-

ence in the neural mechanisms underlying the generation of forward versus backward

walking. On closer examination, however, Nothof and Bässler (1990) stated that "the

neural system producing the AR in hind legs is a functional element of the pattern gen-

erator for forward walking (during swing phase) as well as of the pattern generator for
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backward walking (during stance phase)". In their experiments, they were able to show

that in the hind legs of forward walking animals reflex reversals were generated, albeit

less often than in front legs (Bässler, 1986b). Furthermore, they found an activation of

extensor MNs due to fCO elongation in forward walking hind legs, which is similar to

the activity pattern of a resistance reflex. Consequently, these results are consistent with

the findings of this thesis, as I demonstrated that reflex reversals in the hind leg during

forward walking could be generated by fCO elongation, which occurred, however, less

frequently than in forward walking front legs (see results 3.1.6, Fig. 3.11). It is, therefore,

plausible to assume that the sensory control of the stance phase in the forward walking

hind leg differs from that in the forward walking front leg and also from the backward

walking hind leg. Cruse and Bartling (1995) reported an increase in the FTi joint angle

during stance phase of the forward walking hind leg. In the experiments of this thesis,

these findings showed to be only partially reproducible when analysing hind leg stance

kinematic on the slippery surface (see results 3.1.8, Fig. 3.15). In fact, in the current

experiments, the stance kinematics of the forward walking hind leg showed to be quite

variable. It was shown, that in approximately 40% of the steps the stance phase was

mediated by flexion of the FTi joint and, in contrast, in further 40% of the cases the FTi

joint was extended. This suggests that the stick insect uses two different strategies for

its forward walking hind leg, given the experimental conditions used here. Either it

pulls the body forward by flexion of the FTi joint or it generates propulsion by extend-

ing the FTi joint and hence pushes the body forward. These interpretations are further

supported by experiments of Bässler and Wegner (1983), in which animals were fixated

above a treadwheel and fCO stimulation in the hind leg elicited resistance reflexes while

the other legs walked forward.

Furthermore, Nothof and Bässler (1990) reported that in the hind leg of animals lacking

the front legs (which is known to result in backward walking, see Bässler et al., 1985),

fCO elongation elicited reflex reversals in up to 80% of the stimulations and less fre-

quently increases in extensor activity, similar to activity pattern of the resistance reflex.

The presented data of experiments performed in the hind leg (see results 3.1.3,3.1.4,3.1.5)
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from my thesis also reveal that the frequency of reflex reversal in hind legs was higher

during backward walking than in forward walking. In general, however, the reflex

reversal was less often generated in the experiments conducted here than in the experi-

ments of Nothof and Bässler (1990). Several interpretations might be valid to account for

this difference. One possible explanation might be the difference in the way backward

walking was initiated. Nothof and Bässler (1990) removed the front and middle legs to

obtain backward walking in the hind legs. In the experiments performed here the front

and hind legs were intact and moved backwards. Consequently, the different number

of walking legs and hence the absence of intersegmental signals between the study of

Nothof and Bässler (1990) and the experiments of this thesis could influence the oc-

currence of reflex reversal in the hind leg (further discussed in section 4.5). Another

possible explanation for this could be the role of signals from further leg sense organs

being relevant for assisting or facilitating the generation of reflex reversal mediated by

fCO signals (further discussed in section 4.4). However, interestingly, in the hind leg

walking backwards, the animal pulls the body backwards via flexion of the FTi joint in

almost all hind leg steps (see results 3.1.8, Fig. 3.15). This result shows that there is a

weak connection between the flexion movements in the backward walking hind leg and

the stance-assisting component of the reflex reversal mediated by the fCO, with regard

to the irregular occurrence of reflex reversal in the hind leg (see results 3.1.3, Fig. 3.6,

3.11). This inconsistency may be due to the fact that additional sensory organs of the leg

are involved in the neuronal processing of stance phase generation (further discussed in

section 4.4). Nevertheless, the fact that reflex reversals in the hind leg are found more

frequently during backward walking in hind legs than during forward walking (Fig.

3.11, Nothof and Bässler, 1990) suggests that the fCO-mediated reflex reversal, at least

partially, assists the stance phase during backward walking in the hind leg. In contrast,

during forward walking, processing of fCO signals seems to function in a different way.

Interestingly, in the middle leg, there was no significant difference of the processing of

fCO signals during forward and backward walking (see results 3.1.2; Fig. 3.3, 3.4, 3.11).

This also accords with recent observations, which showed that the muscle activity of the
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flexor tibiae and extensor tibiae in the middle leg is similar during forward and backward

walking on the slippery surface (Rosenbaum, Wosnitza et al., 2010).

4.2.2 Influence of fCO signals on the tibial MN activity during curve walking

Furthermore, the effect of curve walking on the generation of reflex reversal was stud-

ied (see results 3.2). For this, experiments were performed in which the middle leg fCO

was stimulated. The neuronal activity of the extensor and the muscle activity of the

flexor were measured and all other legs exhibited curve walking. It was found, that fCO

elongation during curve walking more frequently elicited reflex reversal when the stim-

ulated leg was on the inside of the curve than on the outside of the curve (see results

3.2, Fig. 3.22, 3.23). The front and middle leg on the inner side are directed towards the

curve direction and pull the body into the curve, while the outer legs more extended

in a posterior direction pushing the body forward. This indicates that the processing

of proprioceptive signals is altered between the inner and outer legs, which could be

explained by several differences between the generated movements of legs when either

walking on the inside or the outside of a curve. Furthermore, the difference in the fre-

quency of occurrence of reflex reversals found in the inner and outer middle leg (Fig.

3.2) may be explained by the fact that in inner legs always an outside-in movement and

a shortening in the step length between the anterior extreme position (AEP) and the

posterior extreme position (PEP) was found. These mechanisms are thought to pull the

body into the curve (Gruhn et al., 2009). These pulling movements of the inner leg could

very well be established by reinforcement of flexor muscle activity as generated during

the reflex reversal. In contrast, in the outer middle and hind legs no (or merely marginal

changes) in the step length between AEP and PEP were shown. However, the placement

of the outer leg changes, which results in leg movements that push the body around

the curve. Interestingly, Hoffmann (2010) could show that in the restrained middle leg

flexion signals from the fCO did not modify tibial motoneuron activity in the outer leg

at all, not even expressing the time course of the activity pattern of the resistance re-

flex. In general, tonic motoneuronal activity in the extensor nerve of the outer leg was

observed (Hoffmann, 2010). However, these results only partially support findings of
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Rosenbaum (2008) who showed in intact stepping that there is only a slight difference

in tibial muscles activity between the inner and outer legs while curve walking.

Another interesting study by Dürr and Ebeling (2005) demonstrated that, at the begin-

ning of curve walking, leg movements on the outer side of the curve differed drastically

from the legs walking on the inner side of the curve. This could be interpreted as pro-

longed stance phases in the inner middle and hind legs. Although in the present results

of curve walking animals (sec. 3.2), no differentiation between the start of turning and

the long-lasting curve walking was considered, the prolonged stance phases reported

by Dürr and Ebeling (2005) could suggest the existence of stance assistance mechanisms

like those occurring during reflex reversals. In general, Dürr and Ebeling (2005) demon-

strated that in animals walking on an air-supported styrofoam ball, the transition from

straight to curve walking was generated by an initial change in stance direction of both

front legs followed by subsequent changes of all other legs. This leading role of the front

leg in stick insects turning movements suggested by Dürr and Ebeling (2005) is further

supported by experiments on the slippery surface (Gruhn et al., 2009) and body trajec-

tory analysis (Rosano and Webb, 2007). Therefore, it is also conceivable that the change

of sensory information from the front legs in curve walking correlates with the change

of the efficacy of the coordination rules proposed by Cruse (1990). Consequently, it was

reported that the specifics of the coordination rules is modulated context-dependent for

straight or curve walking (Dürr and Ebeling, 2005; Ebeling and Dürr, 2006). It is possi-

ble that these conditions are likely to occur under the control of local positive feedback,

which was already successfully tested in kinematics simulations and in the local joint

controllers of six-legged walking robots (Kindermann and Cruse, 2002; Schmitz et al.,

2008; Schneider et al., 2006). Thus, two mechanisms known from curve walking stick

insects could be involved in the differential processing of fCO information between the

outer and inner leg reported in the presented thesis. First, each leg is driven by a specific

motor program that depends on turning direction. This notion is supported by experi-

ments, in which animals, walking with only one or two legs, were capable of producing

leg movements similar to those in intact curve walking stick insects (Gruhn et al., 2009).
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Second, the differences of proprioceptive signalling could be due to influences of the

neighbouring walking legs (Dürr and Ebeling, 2005; Ebeling and Dürr, 2006).

In conclusion, the results of the present thesis clearly demonstrate that local informa-

tion processing of fCO signals correlates with the actual movement to be generated in

specific motor behavioural states. Furthermore, the results as well as results of Akay

and co-workers (2007) and Hellekes and co-workers (2012) demonstrate that sensory

feedback in the control of leg movements is task-specific modified to generate adaptive

leg movements required in complex walking behaviours like curve walking or forward

and backward walking. The specific adaptations in the generation of leg movements

executed in distinct walking behaviours could be explained by modifications of the ac-

tivity in the local neuronal networks affected by local sensorimotor, intersegmental and

descending signals.

4.3 The femur-tibia control network

Position and movement signals of the FTi joint measured by the fCO are processed in a

distributed fashion within the neuronal network generating the resistance reflex and the

reflex reversal (Bässler, 1993). Bässler (1993) termed this specific distributed processing

parliamentary principle (cf. Morton and Chiel, 1994, see also Kristan, 2000). It occurs on

five different levels of parallel and antagonistic neuronal interactions. First, sensory cells

of the fCO measure either separately position, velocity and acceleration of the FTi joint or

combinations of these parameters (Büschges, 1994b; Hofmann and Koch, 1985; Hofmann

et al., 1985). Sauer and co-workers have shown that the excitatory fCO-afferents were

modulated by presynaptic inhibition from inputs arising from affferents of the same typ

of sensitively. Second, NSIs receive either direct excitatory or delayed inhibitory inputs

from fCO afferents monitoring the same movement parameters (Büschges, 1990; Sauer

et al., 1996, 1995). Third, the NSIs provide in parallel excitatory or inhibitory drive onto

extensor MNs (Büschges, 1990; Driesang and Büschges, 1996; Sauer et al., 1996). Fourth,

the extensor muscle force is produced by simultaneous inhibitory (CI1) and excitatory

(FETi, SETi) tibial motoneuronal activities (Bässler and Storrer, 1980). Finally, the tibia
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movement is the net outcome of the antagonistic activities of the flexor and extensor tibiae

muscles (Bässler and Stein, 1996).

4.3.1 Tibial motoneurons generating the reflex reversal

Studies of the motoneuronal basis of the femur tibiae control loop focused mainly on

the characteristics of the extensor motoneurons (e.g. Bässler, 1983a). Due to the fact that

the innervation of the flexor tibiae is highly complex its function in the FTi joint control

was only partially studied (Debrodt and Bässler, 1989, 1990).

In the present investigations in resting animals 12 of 22 flexors were found to depo-

larise in response to fCO elongation and relaxation (Fig.3.21). Furthermore, eight flexor

MNs were hyperpolarised by fCO elongation and depolarised by relaxation. In two

further flexor MNs no change of fCO elongation was found. These findings are sup-

ported by results of Debrodt and Bässler (1990) in resting stick insects. In their studies,

it was shown that elongation of the fCO elicited in different flexor MNs depolarisation

as well as hyperpolarisation in the membrane potential. Furthermore, Pfeiffer (1991)

also reported different responses of flexor MNs due to fCO stimulation in the resting

stick insect, but similar responses of slow and fast flexor MNs in the active animal. This

was also suggested by studies in inactive (Field and Burrows, 1982; Siegler, 1981) and

active locusts (Zill, 1985), in which the flexor MNs membrane potential was depolarised

in response to fCO elongation. It was further suggested that flexor MNs have specific

roles during movement (Theophilidis and Burns, 1983, Zill and Moran, 1982). Duch

and Pflüger (1995) showed different activity patterns of flexor MNs dependent on the

performed behaviour. They found differences in the activity of flexor MNs between

horizontal walking, vertical climbing and upside-down walking. These notions indicate

a specific role of different flexor MNs dependent on the animal’s behavioural states.

Therefore, further research should be underwent to investigate the role of individual

flexor MNs in different behavioural states. Regarding this question, in the seven in-

tercellular recordings performed during curve walking the effect of the different flexor

MNs could not be observed. In the majority of flexor MNs recorded, the membrane
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potential was depolarised during fCO elongation. In these seven flexor MNs fCO elon-

gation caused in 53% of the fCO stimulations a reflex reversal in the inner leg (n = 104)

and 14% in the outer leg (n = 73). This observation supports the results shown in

Fig. 3.20 and in previously reported studies by Hoffmann (2010) and by Hellekes and

co-workers (2012). In conclusion, the difference in the processing of fCO signals in the

inner and outer leg could be verified in the flexor MNs.

The intracellular recordings in resting animals of either the slow extensor tibiae (SETi)

or the fast extensor tibiae (FETi) revealed the typical depolarisation caused by fCO elon-

gation. During relaxation of the fCO, the membrane potential was hyperpolarised, con-

gruent with the findings from Bässler (1983a). Depending on their resting membrane

potential, fCO elongation elicits higher spike frequencies in SETi than in FETi (Gabriel,

2005). During curve walking in the outer leg, the membrane potential of the extensor tib-

iae is frequently tonical depolarised and the spiking frequency is increased compared to

the inner leg (Fig.3.23 A). This was also reported by Hoffmann (2010). In the present in-

vestigations of the inner leg, fCO elongation caused a hyperpolarisation in the extensor

MNs and simultaneously an inactivation of motor units in the extensor nerve (Fig.3.23

A, left). This response is known as the first part of the active reaction (cf. Bässler, 1973,

1976, 1986a). In the second part of the AR, a position-dependent reactivation of the

extensor MNs was observed (cf. Bässler, 1973, 1976, 1986a). During curve walking in 4

intracellular recorded extensor tibiae MNs, the frequency of reflex reversal was higher in

the inner leg (33%) compared to the outer leg (16%). These results are also supported

by extracellular recordings of tibial MNs during curve walking (Hellekes et al., 2012;

Hoffmann, 2010).

4.3.2 Nonspiking interneurons involved in the generation of reflex reversal

In the following section, I will present initial results of a small set of experiments of in-

tracellular recordings of nonspiking interneurons (NSI) involved in the FTi joint control

during curve walking. The data reveal first insights about the processing of fCO signals

during curve walking, however, more experiments are needed to demonstrate the phys-
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iological properties of the NSIs in the processing of fCO signals during curve walking.

The interneuronal basis of proprioceptive reflexes in the FTi joint control system is well-

studied in the locust (for review see Burrows, 1996) and in the stick insect (for review

see: Bässler, 1993; Bässler and Büschges, 1998). Three different levels of information

processing are described. First, sensory afferents of the fCO receive presynaptic inhibi-

tion from inputs arising from afferents of the same type of fCO afferents (Sauer et al.,

1997). Second, sensory afferent can project directly onto MNs or indirectly via nonspik-

ing interneurons or spiking interneurons monitoring the same movement parameters.

(Büschges, 1990; Sauer et al., 1996, 1995). Finally, a part of the NSIs inhibit or excite sev-

eral MNs. Previous studies have identified nonspiking interneurons, which either excite

or inhibit extensor MNs and are involved in the processing of fCO signals of the FTi

joint (Akay, 2002; Büschges, 1990; Stein and Sauer, 1998). Nonspiking interneurons that

excite the extensor are termed excitatory (E) NSIs, while those inhibiting the extensor

are known as inhibitory (I) NSIs (Büschges, 1990).

In the present thesis it is demonstrated that NSIs, which are part of the FTi joint pre-

motor control network and known to participate in the generation of resistance reflexes

and reflex reversals (Akay, 2002; Büschges, 1990; Driesang and Büschges, 1996; Stein

and Sauer, 1998), are involved in the processing of fCO signals during curve walking.

In the following section, the change of the NSIs membrane potential in response to fCO

elongation during curve walking shall be discussed. According to their responses to

fCO elongation in the inner and outer leg they can be classified in three groups. First,

NSIs that have shown differences in their change in membrane potential caused by fCO

elongation in the inner and outer leg. Nonspiking interneurons of the classes NSI E2/3

and E5/6 belong to this group. Second, NSIs that responded similar to fCO elongation

in the inner and outer leg as well as during reflex reversals in the inner and outer leg.

These characteristics are found in the responses of NSI E4, NSI I2, E9/10 and the here

identified inhibitory NSI ’I’. Finally, in interneuron E8 the responses in the inner and

outer leg were hardly identifiable. This was mainly caused by a small number of fCO

stimulations during curve walking.
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In the present study, it was found that the change in membrane potential of NSI type

E2/3 during fCO elongation in resting and curve walking animals was oppositional (cf.

Bässler and Büschges, 1990; Driesang and Büschges, 1996). Providing excitatory drive to

extensor tibiae MNs, NSI E2/3 contributed to the reflex activation of the resistance reflex

in the resting stick insect (cf. Bässler and Büschges, 1990; Driesang and Büschges, 1996).

During curve walking in the inner leg, a strong inhibition in NSI E2/3 in response to

fCO elongation was found. Additionally, this strong inhibition occurred during reflex

reversal in the inner and outer leg (Fig. 3.25, sect. 3.2.4). This finding confirms that

NSI E2/3 supported the first part of the AR (Bässler and Büschges, 1990; Driesang and

Büschges, 1996). In this study a strong hyperpolarisation was shown, which occurred in

parallel with the inactivation of extensor MNs during the first part of the fCO elongation

in the active animal. In contrast, during all stimulations in the outer leg this inhibition

was strongly reduced. It seems possible that the slight inhibition, which is still observ-

able in the outer leg, is caused by two reflex reversals occurring in this leg (Fig. 3.25

C). Driesang and Büschges (1996) further reported that during the second part of the

AR, the membrane potential was depolarised simultaneously to the reactivation of the

extensor. This was also found in the inner leg (cf. Driesang and Büschges, 1996). In

their study they also demonstrated that the time course of the E2/3 membrane potential

was correlated with the time course of extensor activity (Driesang and Büschges, 1996).

This could be a possible explanation for the observed difference in the inner and outer

leg in the change of membrane potential of NSI E2/3 caused by fCO stimulation. In the

outer leg, reflex reversals were found only rarely. Additionally, an increase in tonical

motoneuronal activity was observed (Fig. 3.23 A, C top). This could explain the reduc-

tion of the inhibition in the NSI E2/3 in the outer leg. Furthermore, during leg stepping

NSI E2/3 is hyperpolarised during stance phase and depolarised during swing phase

(von Uckermann and Büschges, 2009). Therefore, different response properties of the

NSI E2/3 in the inner and outer leg correlate with differences in the stance kinematics

between the inner and outer leg during curve walking (see section 4.2.2).
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In resting animals, NSI E5/6 recorded in this thesis contribute to the resistance reflex

during fCO elongation and oppose the extensor inactivation during fCO relaxation (Fig.

3.28, cf. Büschges, 1990). This is seen as depolarisation during elongation and relax-

ation of the fCO in the resting animal. During curve walking, fCO elongation elicited

different responses in the membrane potential of NSI E5/6 (Fig. 3.29). In the inner

leg, fCO elongation elicited a slight hyperpolarisation followed by a depolarisation (Fig.

3.29 B). In contrast, in the outer leg, recordings revealed that fCO elongation caused

a depolarisation and on the other hand a hyperpolarisation (Fig. 3.29 Ci, Cii). This

difference in the course of membrane potential between the inner and outer leg is prob-

ably related to the generation of reflex reversals in the outer leg of the second animal

(Fig. 3.29 Cii, bottom). During reflex reversal in the inner as well as in the outer leg,

a strong inhibition caused by fCO elongation was found (Fig. 3.29 B, bottom; Cii, bot-

tom). This observation differs from the results of Driesang and Büschges (1996), who

reported almost no change in the membrane potential of NSI E5/6 during the first part

of the active reaction. It is further known that in the membrane potential of NSI E5/6

depolarising and hyperpolarising inputs are superimposed during the first part of the

active reaction (Driesang and Büschges, 1996). The physiological properties could be

involved in the tuning of the membrane potential caused by fCO elongation in the in-

ner and outer legs. Furthermore, NSI E5/6 are known to receive direct excitatory and

polysynaptic inhibitory signals (Sauer et al., 1995), which can be assumed to modify the

reflex responses to fCO stimulation in different behavioural states.

During stepping, the individual membrane potentials of NSI E5 and E6 were shown

to be different (von Uckermann and Büschges, 2009). NSI E5 was depolarised during

stance phase and hyperpolarised during swing phase. In contrast, in NSI E6 a hyperpo-

larisation during stance phase and a depolarisation during swing phase was found (von

Uckermann and Büschges, 2009).

Therefore, the differences in the responses of the group NSI E5/6 between the inner and

outer leg could also result from the variations shown in the membrane potential mod-

ulation during stepping. Despite compatible with empirical findings, this explanation

remains speculative, as NSI E5 and NSI E6 were not observed individually in the present
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study. Therefore, future studies should consider neuronal staining of the investigated

NSIs to distinguish between similar NSI groups.

In resting stick insects, NSI E4 depolarise during fCO elongation and relaxation (Fig.

3.26, cf. Büschges, 1990). During curve walking, the membrane potential of the NSI E4

depolarised at the onset of fCO elongation in the inner and outer leg (Fig. 3.27). Further-

more, this initial depolarisation was also found during reflex reversals in the inner and

outer leg. The present findings are consistent with the study of Driesang and Büschges

(1996), who found three different types of time courses of the membrane potential of

NSI E4 during an active reaction. All three types show a depolarisation caused by fCO

elongation, however, their time courses possessed a high degree of variability. This re-

sult was also replicated in the experiments of this thesis (Fig. 3.27 B bottom, C bottom).

Furthermore, it is reported that NSI E4 receives direct excitatory and polysynaptic in-

hibitory signals from the fCO. Their efficacy is probably responsible for the variability

in the response to fCO stimulation in the active and also in the walking animal. In

single leg stepping, E4 is strongly depolarised during swing phase. With the onset of

the stance phase the depolarisation declined (von Uckermann and Büschges, 2009). In

conclusion, it is not justified to assume a difference in the processing of fCO signals

between the inner and outer leg.

The interneurons of group NSI E9/10, NSI I2 and the new identified NSI ’I’ showed

in all observed situation the same physiological properties. The membrane potential of

NSI E9/10 was depolarised during fCO elongation and during relaxation the course of

membrane potential decreased (Fig. 3.31, 3.32; cf. Akay, 2002). This change in mem-

brane potential was found in resting and curve walking animals. During curve walking,

this response of the membrane potential was found during all fCO stimulations and

during the stimulation with reflex reversals in the inner and outer leg. To date, during

reflex reversal, only the time course of the membrane potential for NSI E9 is known

(Akay, 2002). It was shown that the position-dependent depolarisation caused by fCO

elongation in the resting animal vanished during the active reaction (Akay, 2002). How-
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ever, in the experiments performed here, interneurons of the group E9/10 showed this

depolarisation dependent on stimulus velocity (Fig. 3.31). Therefore, it is not distin-

guishable, if the position-dependent depolarisation vanished as a consequence of the

stimulus velocity or by the actual reflex reversal. In general, neurons of the type NSI

E9/10 have presumably no contribution to the different activities of tibial motoneuron

activity found during fCO stimulation in the inner and outer leg.

During fCO elongation in the resting animal, I2 received depolarising signals from the

fCO (Fig. 3.33, cf. Büschges, 1990). NSI I2 is known to provide inhibitory drive to ex-

tensor motoneurons and, therefore, oppose the generation of the resistance reflex (Fig.

3.33, cf. Büschges, 1990). During curve walking of a stick insect, the same time course

of the membrane potentials as in the resting animal, were found (Fig. 3.34). In the inner

and outer leg and in both legs, during reflex reversal, the membrane potential of NSI

I2 was depolarised in response to fCO elongation. These findings confirm that NSI I2

supported both parts of the active reaction (cf. Bässler and Büschges, 1990; Büschges,

1990). During curve walking, no evidence of a different contribution of NSI I2 to the

processing of fCO signals in the inner and outer leg was found.

In the present studies one previously unknown inhibitory nonspiking interneuron was

found. In the resting animal, fCO elongation caused a depolarisation and, during relax-

ation, the membrane potential was depolarised (Fig. 3.35). In curve walking animals, no

difference in the response to fCO stimulation in the inner and outer leg were found (Fig.

3.36). The course of the membrane potential was similar to that observed in the resting

animal. Similarly, during fCO elongations in the inner leg, which causes reflex reversal,

the membrane potential was hyperpolarised and, during relaxation, depolarised. In the

outer leg, only one reflex reversal was generated. During this reflex reversal, the inhi-

bition started shortly later than in the inner leg. In general, however, the course of the

membrane potential was similar. In short, this neuron responds to fCO stimulation in

the inner and outer leg in the same way.
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Finally, interneuron E8 could only be characterised qualitatively. In resting animals,

fCO elongation, as well as, relaxation leads to a hyperpolarisation of the membrane

potential (Fig. 3.30, Stein and Sauer, 1998). During one fCO stimulation in the inner

leg, the inhibition during fCO elongation in the resting animal has vanished. In the

outer leg, during one fCO elongation, the inhibition is still visible. This could indicate a

difference in fCO processing during curve walking. However, regarding the number of

fCO stimulations during curve walking, it remains unclear, how NSI E8 is involved in

the processing of fCO stimulations in the inner and outer leg.

In conclusion, the alteration in membrane potential modulation of several NSIs, which

are part of the FTi joint premotor control network and known to participate in the gen-

eration of resistance reflexes and reflex reversals (Akay, 2002; Büschges, 1990; Driesang

and Büschges, 1996; Stein et al., 1998), reveal different contributions of the NSIs to the

changes in FTi joint control during curve walking. In the interneuron types E2/3 and

E5/6 first evidences for a different processing of proprioceptive signals during curve

walking was found. The findings, while preliminary, suggest further that the contribu-

tion of the NSI I2, E9/10 and ’I’ in the processing of fCO signals during curve walking is

similar. In future studies, it should be tested how the alterations in the NSIs membrane

potential are correlated with the actual extensor and flexor activity. This will also reveal

the contribution of the different NSIs to the reflex reversal and respectively to the active

reaction in a walking animal. The mechanisms underlying the differences in processing

of fCO signals during curve walking might be possible to determine in further investiga-

tions. The modulation could be first mediated by presynaptic inhibition of fCO afferents

(Burrows and Laurent, 1993; Sauer et al., 1997). Secondly, presynaptic inhibition medi-

ated by other sense organs (Stein and Schmitz, 1999) and additional influences on tibial

MNs from other leg sensors (Schmitz and Stein, 2000) (see further discussion section

4.4). Finally, the influence of intersegmental and descending signals on the modulation

of the FTi joint motor output (see further discussion section 4.5. The latter issue could

also be studied by investigating the response of NSIs to optomotor-stimulation.
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4.4 Influence of other leg sense organs

Another finding of the present study was that in hind legs a change in ThC position as

well as ablation of the campaniform sensilla (CS) altered the occurrence of reflex reversal

and, thus, the processing of fCO signals in forward and backward walking (see results

3.1.4, 3.1.5, Fig. 3.12, 3.13). It was found that during forward walking the frequency of

reflex reversal is decreased in experiments with ablated CS compared to the situation,

where the CS are intact and the hind leg position is either 45◦ posterior or anterior (Fig.

3.12). In backward walking, the highest frequency of reflex reversals in the hind leg

occurred in the 45◦ anterior-directed hind leg, which differs from the condition found in

the posterior-directed hind leg as well as to the anterior directed hind leg with ablated

CS (Fig. 3.13). Although these results clearly suggest that position information of the

ThC joint and load information of the CS could influence the frequency of the fCO-

mediated reflex reversal in the hind leg during forward and backward walking, these

data need to be interpreted cautiously with regard to the high experimental variability.

This variability can be explained as a consequence of the unspecific sensory stimulation

and the inherent inaccuracy of the applied method. However, the observed difference

between the forward walking hind leg with intact CS and with ablated CS corroborates

the results of Akay and Büschges (2006), who demonstrated that an increase in load

information signalling by the fCS leads to higher frequency of occurrence of fCO me-

diated AR. First evidence that the processing of load information is associated with the

processing of position information was provided by Cruse (1985). In this study, it was

shown that the transition between swing and stance phase is generated with regard to

the leg’s anterior extreme position and an increase of load signals. A very interesting

study of Akay and co-workers (2007), reported a segment-specific processing of load sig-

nals during forward and backward walking. In this study, an increase in load signalling

promoted the stance phase activity of the ThC joint, dependent on the walking direction.

During the stance phase in forward walking, the retractor coxae activity was increased

and in backward walking the protractor coxae exhibited increased activity. Therefore, it

is plausible that load signals during the generation of stance phase movement during

forward and backward walking also contribute to the tibial motoneuronal activity me-
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diated by the processing of fCO position signals.

The results obtained with different ThC joint positions in the hind leg, show that dur-

ing forward and backward walking the frequency of reflex reversal is higher in the 45◦

anterior-directed hind leg compared to the same position with ablated CS and the 45◦

posterior-directed hind leg (see results 3.1.4,3.1.5,Fig. 3.12, 3.13). Due to the fact that

there are only slight differences in the frequency of reflex reversal with regard to the

change in the ThC joint position, these findings might not be transferable to a ThC

joint position-dependent processing of fCO signals in forward and backward walking.

However, it is also important to mention that movements of the ThC joint are detected

by the ventral coxal hairfield (vcxHP) (Dean and Schmitz, 1992). In a very interesting

study, Bässler (1977) showed that by manipulating the ThC joint such that a constant leg

protraction was measured, the manipulated leg moves during stance phase fully back-

wards and in some experiments remains in retraction during walking of the other legs,

not switching to leg swing any more. This also accords with the here present results.

In the forward directed leg, which corresponds to a protracted leg position, the highest

frequency of reflex reversal was found, which showed that stance phase mechanisms

are supported (Fig. 3.11). Regarding further leg sense organs, several limitations due

to the experimental design need to be considered. First, the investigated leg is fixed in

a certain position, which leads to the absence of phasic sensory leg signals that would

be present during an undisturbed step cycle. Secondly, the animal was fixated, which

diminished or even eliminated load signals that are normally present when the animal

has to carry its own weight during walking. Third, the influences of tibial CS (Zill et al.,

2011) are non-existent due to the fact that the tibia is removed. Finally, the influence

of tarsal tactile hairs, which are known to influence the stance and swing cycle in the

locust Schistocerca gregaria are also non-existing. These sensors are known to initiate re-

flexes that elevate the tarsus, with involvement of nonspiking interneurons by sending

signals directly to the tarsal levator MNs (Laurent and Burrows, 1988; Laurent and Hus-

tert, 1988). We can conclude that new experimental approaches are needed to provide
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a more integrative account on the undisputedly important role of sensory contributions

in locomotion.

4.5 Intersegmental and descending control of local processing

of proprioceptive signals

The findings of the present study indicate a segment-dependent difference of sensory

processing of fCO signals during forward and backward walking (Fig. 3.12, 3.13). In

particular, the processing of fCO mediated sensory signals in the front leg differs from

the processing in middle and hind legs. During forward walking, the highest frequency

of reflex reversal was detected in the front leg compared to the middle and hind leg

(Fig. 3.12), and vice versa during backward walking (Fig. 3.13). These findings are

consistent with previous studies that have shown that the prothoracic segment and the

front leg play an important role in determining the locomotor state of the caudal seg-

mental ganglia. Ludwar and co-workers (2005a, b) demonstrated that stepping of the

front leg as well as stimulation of the prothoracic fCO produce activation of MN pools

in the deafferented, ipsilateral middle leg. The motoneuronal activity in the mesotho-

racic motoneurons was found to be modulated in phase with stepping of the front leg.

In a subsequent study, Borgmann and co-workers (2009) showed that stepping of the

front leg activates and entrains the CPG driving the ThC joint motoneurons in the ip-

silateral hemi-segment of the mesothoracic ganglion. Front leg stepping was, however,

only accompanied by a general tonic activation of leg motoneurons in all other seg-

mental ganglia of the walking system. Furthermore, recent results provide evidence

that stepping in neighbouring legs, in particular in the ipsilateral front leg, facilitates

to the generation of reflex reversal in the middle leg (Hellekes et al., 2012). However,

it is presently not clear whether the effects of the stepping front leg via intersegmen-

tal pathways affect processing of sensory inputs in local sensorimotor pathways of the

respective leg or if they affect sensorimotor processing by acting on the local walking

pattern generating networks (cf. Büschges and El Manira, 1998.

The specific modulation of the fCO-mediated reflex reversal during changes in the direc-
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tion of walking (forwards vs. backwards) and in optomotor-induced curve walking (Fig.

3.1, 3.2) could also be related to further influences of intersegmental and contralateral

signals. Intersegmental transmission of position- and velocity dependent fCO signals

between different legs was shown by pharmacological reduction of GABA-mediated

inhibition by picrotoxin (Stein et al., 2006) Contralateral influences are, for example,

shown in the hind legs, where signals between the hind legs are involved in the mutual

coordination (Graham and Wendler, 1981). Consequently, it was shown that forward

and backward movements of the hind leg altered the leg movement of the contralateral

hind leg (Wendler, 1964). Furthermore, activities in contralateral legs may have other

effects such as inhibiting swing movements in order to ensure proper alternation of legs

in walking (e.g. Cruse, 1990).

At present, it is not known which specific neuronal signals contribute to the under-

lying segmental modifications in the processing of local sensory signals from the fCO

in different behavioural states. However, several previous studies have shown that de-

scending signals from the brain can modulate local reflexes. In locusts, Knop and co-

workers (2001) demonstrated that lesioning axons of descending neurons in the ipsilat-

eral connective strongly affected the reflex effects of fCO signals on mesothoracic tibial

motoneurons. The effects of signals of FTi joint flexion were found to change from pos-

ture control to a movement control mode. Mu and Ritzmann (2008a) also found that

lesions of the rostral connections in cockroaches produce pronounced changes in the

reflex motor activity induced by proprioceptive signals in the mesothoracic leg. These

studies suggest that descending signals from the brain (the supraoesophageal and/or

the suboesophageal ganglion) can play a decisive role in determining the locomotor

state and processing of sensory inputs in the thoracic ganglia. Furthermore, the central

body complex (CBC) in the cerebral ganglion of fruit flies and cockroach is plausibly

involved in transmitting descending signals contributing to turning (Mu and Ritzmann,

2008a,b; Ridgel et al., 2007; Strauss and Heisenberg, 1993). Future studies on this topic

are definitely needed for clarification.
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4.6 Functions of reflex reversals: reinforcement of movement in

the control of walking

What specific functions do reflex reversals serve during locomotor behaviors? One func-

tion that has been postulated for reflex reversal (during ARs) is the enhancement of

motor activities (reviews in Büschges and El Manira, 1998; Duysens et al., 2000; Pearson

et al., 1993). When the fCO reflexes reverse, signals indicating joint flexion inhibit ex-

tensor firing and can activate and reinforce activity in the tibial flexor muscle. During

forward walking, this effect would enhance activity in the muscle that provides propul-

sion. In addition, during curve walking, the flexor muscle acts to pull the animal in the

direction of the turn. The increased probability of reflex reversal in the leg walking on

the inside of the curve may reflect enhancements of the mechanisms that generate force

during the turn. Thus, in both situations, the modulation of chordotonal reflexes may

reflect the utilization of sensory inputs to amplify muscle contractions and movements.

Previous accounts on the neural mechanisms underlying sensory control of leg stepping

in animals have indicated that reinforcement of movement is a significant mechanism in

the generation of terrestrial locomotion (for review see Bässler and Büschges, 1998; Cat-

taert and Ray, 2001; Clarac et al., 2000; Pearson, 1995b, 2008; Yang and Gorassini, 2006;

e.g. insects: Bässler, 1976, 1988, 1992; crustaceans: El Manira et al., 1991; Leibrock et al.,

1996; Skorupski and Sillar, 1986; cats: Gossard et al., 1994; McCrea et al., 1995; Pearson

et al., 1993; humans: Grey et al., 2007). These studies demonstrated that reinforcement of

movement by sensory feedback is state-dependent and only occurs when the locomotor

system is active (e.g. Bässler, 1988; Skorupski and Sillar, 1986). In some cases, movement

reinforcement is also phase-dependent and linked to the activity of CPGs that generate

rhythmic locomotor actions (e.g. El Manira et al., 1991; McCrea et al., 1995; Skorupski,

1992). Studies on the cat and the crayfish provided compelling evidence for specific

and detailed alterations in the activity of pathways processing sensory information un-

derlying the generation of reinforcement of movement during walking (for review see

Cattaert and Ray, 2001 (crayfish); Pearson, 1995b, 2008 (cats)). In the cat hind leg, move-

ment and force feedback reinforce stance motor output in a phase-dependent manner,

when the central neural networks, i.e. the hind leg CPGs, are active (e.g. Pearson,
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1995b, 2008). In crayfish, the mechanisms underlying reflex reversal and reinforcement

of movement have been documented in preparations expressing rhythmic motor activity

("fictive locomotion") in one or both of the proximal leg joints (e.g. Chrachri and Clarac,

1990; Skorupski and Sillar, 1986). In cats, rhythmic activity was initiated and main-

tained either by perineum stimulation, by pharmacologically treatment or by electrical

stimulation of the mesencephalic locomotor region (e.g. McCrea et al., 1995; Pearson

et al., 1993), while in the present study walking in stick insects was experimentally ini-

tiated but mainly maintained by the animal. In both preparations, in the crayfish and

cat, the pattern of motor activity generated was considered to represent forward walk-

ing. However, it is still unclear whether the generation of reinforcement of movement

is also affected by varying and adapting the specific motor behaviour (cf. Pearson, 2008).

The present study provides evidence that processing of proprioceptive information not

only depends on the behavioural state but also upon the specific locomotor task, e.g., the

control of the movement of a leg walking on the inside of a curve as compared to walk-

ing on the outside of a curve. The alterations in the control of the FTi joint movement

during forward and backward walking depends both on the walking directions and on

segmental differences between the legs. Futhermore, the investigations of NSIs known

to be part of the FTi joint control network demonstrate that these neurons are involved

in the processing of fCO signals in the curve walking stick insect. In summary, the re-

sults of this thesis demonstrate that sensory feedback in the control of leg movements

is task-specifically modified to generate adaptive leg movements required in complex

walking behaviours. Future studies are needed to identify how these task-specific mod-

ifications in the generation of leg movements during adaptative locomotor movements

are affected by local sensorimotor, intersegmental and descending signals on the level

of local neuronal networks.
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