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Abstract

The computational effort of pricing an m–th to Default Swap highly depends on the
size d of the underlying basket. Usually, d different default times are modeled, but in
many cases the evaluation only depends on the m–th smallest default time. In this
thesis we develop the distribution function Fτιm of the m–th default time by means
of copulae. With the help of this distribution we reduce the dimension of the pricing
problem from d to one and break the curse of dimensionality. In order to ensure
an efficient evaluation of Fτιm we apply suitable recursion schemes. Independently
of the chosen copula, the resulting quadrature offers a very fast convergence and a
complexity of at worstO (N2d2) by usingN nodes. If the underlyingm–th to Default
Swap does not depend on the m–th smallest default time solely, we will develop
new Monte–Carlo methods in this thesis. For this, we extend existing importance
sampling methods regarding the Gaussian copula to the usage of any Archimedean
copula. Besides the pricing of m–th to Default Swaps, other applications of the
presented methods are pricing European max/min options or calculating sensitivities
of any kind.

Kurzzusammenfassung

Der Aufwand einer m–th to Default Swap Bewertung hängt stark von der Größe d
des zugrunde liegenden Korbs ab. Gewöhnlicherweise werden hierzu d verschiedene
Ausfallzeitpunkte modelliert, in vielen Fällen hängt die Bewertung jedoch lediglich
vom m–ten Ausfallzeitpunkt ab. In dieser Arbeit leiten wir die Verteilungsfunktion
Fτιm desm–ten Ausfallzeitpunkts mittels Copulae her. Mit Hilfe dieser Verteilung ist
es möglich, die Dimension des Bewertungsproblems von d auf eins zu reduzieren und
den Fluch der Dimensionen zu brechen. Um eine effiziente Auswertung von Fτιm zu
gewährleisten, wenden wir geeignete Rekursionsschemata an. Unabhängig von der
gewählten Copula verfügt die resultierende Quadratur über eine sehr schnelle Kon-
vergenz und eine Komplexität von höchstens O (N2d2) bei N Stützstellen. Für Fälle,
in denen der zu bewertende m–th to Default Swap nicht ausschließlich vom m–ten
Ausfallzeitpunkt abhängt, entwickeln wir neue Monte–Carlo Verfahren. Hierzu er-
weitern wir existierende importance sampling Methoden bzgl. der Gauss Copula um
die Möglichkeit, jegliche Archimedische Copula anzuwenden. Neben der Bewertung
von m–th to Default Swaps können die vorgestellten Methoden zur Bewertung eu-
ropäischer Max/Min Optionen oder zur Berechnung von Sensitivitäten verwendet
werden.





Preface

In recent years, the complexity of financial markets has grown significantly. Markets
were flooded by innovative financial products, whose underlying structure was con-
spicuously more difficult than in earlier years. Unfortunately, many practitioners
neglected this fact and traded these products frequently, although they were not
able to understand the mathematical background completely or rather they were
not able to quote these products properly. In order to overcome such behavior it is
very important to develop appropriate pricing methods, which are easily calibrated
by market data.

A huge subclass of those financial products are the well–known credit derivatives.
Considering the last 10 to 15 years we observed a significantly growing popularity
of credit derivatives. Especially during the sub–prime crisis in 2007/2008 the func-
tion of contracts like Mortgage Backed Securities (MBSs), Collateralized Mortgage
Obligations (CMOs) or Collateralized Debt Obligations (CDOs) was discussed exces-
sively. However, not only the sub–prime crisis but also the current international debt
crisis within the Euro area highly illustrates the relevance of credit derivatives in
practice. Nearly every day we find terms like Credit Default Swaps (CDSs) or Basket
Default Swaps (BDSs) (or their corresponding premiums) in the banner headlines.
At present, these contracts mostly refer to certain governments, like Portugal, Italy,
Greece or Spain (also known as PIGS).

In this thesis we mainly focus on Basket Default Swaps (BDSs), which represent a
multi–dimensional generalization of the well–known Credit Default Swaps (CDSs).
Whereas a CDS protects its buyer against a certain default event of the underlying
corporation, government or bond, a BDS protects its buyer against certain default
events within a basket

A := {A1, . . . , Ad}, d ∈ N≥2

of underlying assets. The most popular example of a BDS is the widely–used m–th
to Default Swap (mBDS), which is considered in detail in this thesis. In brief, an
mBDS offers protection against the m–th default within A and hence, its payoff
only depends on the m–th smallest default time τιm .
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In order to ensure a suitable pricing of mBDSs it is essential to model the joint
distribution of default times. Due to the fact that specific baskets of assets (referring
to different obligors, governments or bonds) are less frequently traded, these joint
distributions usually cannot be deduced from market data. In contrast, CDSs on
single reference entities are traded rather liquidly, which means that the marginal
distributions of default times can be implied by market data reasonably well (cp.
[DS03]). Hence, we follow the approach suggested by Li (cp. [Li00]), who linked
the marginal distributions to a joint distribution by means of a copula function.
For this, we consider the Gaussian copula and typical Archimedean copulae in this
thesis.

To evaluate an mBDS properly we also have to establish the underlying pricing
model, see [SS01, Sch03]. According to [Li00] we mainly focus on the semi–dynamic
pricing model in this thesis. This implicates that the value of an mBDS is the expec-
tation of its discounted payoff with respect to the joint distribution of default times.
Thus, pricing an mBDS equals a d–dimensional quadrature problem. Considering
the existing pricing methods we can distinguish between two classes of algorithms.
On the one hand it is self–evident to apply a d–dimensional quadrature, i.e. the in-
tegral is approximated in each component of the joint distribution. However, these
algorithms have to cope with the so–called curse of dimensionality, which causes an
infeasible effort for an increasing dimension d. On the other hand it is possible to
use probabilistic Monte–Carlo algorithms, which draw tuples of default times with
respect to the joint distribution and approximate the expectation discretely, see for
example [MO88, ELM03, Hof08]. Furthermore, it is possible to apply importance
sampling methods in order to accelerate the convergence of these algorithms, see
[JK04, CG08, SH12b].

Although the methods mentioned above offer entirely different properties, they all
include a huge disadvantage, which is the consideration of d different default times.
In truth only the m–th smallest default time τιm is relevant and influences the pric-
ing directly. In this thesis we derive the distribution function Fτιm of the m–th
smallest default time by means of inclusion and exclusion and introduce an inno-
vative quadrature method for pricing an mBDS accordingly. Due to the fact that
Fτιm : R≥0 7→ [0, 1] is a one–dimensional mapping, we are able to break the curse of
dimensionality here. Nevertheless, the plain evaluation of distribution function Fτιm
implicates a complexity of O

(
2d
)
and creates a new curse of dimensionality. This

problem is solved efficiently by applying certain recursion schemes, which reduce the
corresponding complexity to O (d2) at worst.

Compared to existing algorithms, this new method offers a significantly better per-
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formance, meaning a higher accuracy and a lower CPU time without including
any restrictive assumptions. Additionally, the basic principle of our new method
can easily be applied to the calculation of sensitivities (also known as Greeks) and
furthermore, can be transferred to different contexts quickly, like the pricing of
high–dimensional European maximum or minimum options.

Alternatively to the quadrature method above, we also introduce two new Monte–
Carlo methods within this thesis. For this, we consider the approaches of [JK04,
CG08], which are based on the Gaussian copula, and generalize them to the appli-
cation of any Archimedean copula.

This thesis is structured as follows: In the first part we introduce basic mathematical
fundamentals, which are essential for the understanding of the second part. These
fundamentals are divided into four chapters (Chapter 1 – 4). In Chapter 1 we
present obligatory basics concerning copulae, like their proper definition and the
famous Theorem of Sklar. In Chapter 2 the reader gets to know BDSs and the
corresponding payments are explained in detail. Furthermore, we give information
regarding the marginal and the joint distribution of default times. The third chapter
of this thesis deals with different possibilities of modeling correlation by means of
copulae. On this, we present different correlation measures and structures. In the
last chapter of this part we connect the general knowledge of copulae and correlation
in order to form special classes of copulae. In particular, we introduce the Gaussian
copula and several Archimedean copulae.

In the second part of this thesis we apply the theory from Part I to the context of
pricing mBDSs. For the purpose of motivation, we firstly present a static pricing
model in Chapter 5. Afterwards, we introduce a semi–dynamic pricing model in
Chapter 6, which includes the main developments of this thesis. In Section 6.1 we
develop a formula for the distribution function Fτιm of the m–th smallest default
time and establish quadrature algorithms for pricing mBDSs accordingly. Within
this section we distinguish between different copulae and at the end of this section
we present the pricing of a Credit Linked Note, which is traded at the Stuttgart
stock exchange. Having considered these quadrature methods, we present existing
Monte–Carlo methods and develop two new methods in Section 6.2. We close this
section by giving a detailed comparison of the developed Monte–Carlo methods and
the established quadrature methods in Subsection 6.2.3.

In Section 6.3 we transfer the methods from Sections 6.1 and 6.2 to the context of
pricing multi–dimensional European maximum or minimum options. We show that
this transformation is almost straight forward and does not require any restrictive
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assumptions. In order to illustrate the relevance of this transformation we price
a 13–dimensional minimum put option at the end of this section. The underlying
basket of this option consists of 13 different DAX R© corporations, whose stock prices
satisfy the multi–dimensional Black–Scholes model. In Section 6.4 we again transfer
the methods of Sections 6.1 and 6.2. Here, we present the efficient calculation of
sensitivities regarding certain parameters which mainly influence the value of any
mBDS.

In the end of this thesis we conclude the developed achievements in Part III. We
give a detailed summary in Chapter 7 and a brief outlook in Chapter 8. Additional
information concerning different distributions, algorithms drawing certain random
numbers and further tables and figures is to be found in the appendix of this thesis,
see Part IV.

Underlying computer hardware and software

Each algorithm within this thesis is implemented in the programming language C++
and is compiled by using the compiler version “gcc (GCC) 4.1.2 20080704 (Red Hat
4.1.2-50)”. The particular CPU times for any numerical test were obtained by using
a “Dell PowerEdge R710” server, which possesses a random access memory of 96GB
and two “Intel Xeon X5570” CPUs, each with 2.93GHz (cp. [Del12]).

Cologne, July 2012 Alexander Schröter
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Part I.

Fundamentals





This first part introduces the reader to the mathematical framework of this thesis.
Essential terms are presented in detail and are defined properly. For this, we proceed
as follows:

In Chapter 1 we derive the definition of a copula and provide some useful copula
properties. Furthermore, we present a fundamental theorem concerning copulae,
which simultaneously represents their main application. For further information
regarding copulae we refer to [Joe97, Nel06].

Next, we introduce a special subclass of credit derivatives named Basket Default
Swaps in Chapter 2. On this, we analyze their corresponding payments and their de-
pendence on certain default times. Additionally, we discuss the modeling of marginal
and joint distribution of default times. A general introduction to credit derivatives
is given in [DS03, Sch03, MRW06].

The correlation describes a crucial part of pricing multi–dimensional products of
any kind and is introduced in Chapter 3. In this chapter we get to know different
correlation measures and analyze them in terms of special properties. In addition,
we introduce factor models, which appear frequently during this thesis. Important
discussions regarding the correlation are mentioned in [EMS02, ELM03].

In the last chapter of this part we establish certain copulae. We define the Gaussian
copula as well as several Archimedean copulae. Furthermore, these copulae are
analyzed regarding special properties, like correlation or symmetry. An extensive
survey of existing copulae is given in [Nel06].





1. Copulae

In this chapter we present essential basics dealing with copulae. For this, we develop
the definition of a copula at first and afterwards state the main application of copulae
by introducing the famous Theorem of Sklar (1973). Finally, we present some useful
copula properties and their application to random variables.

1.1. Introduction

Let d ∈ N≥2 denote any natural number and let R denote the set R := R∪{−∞,∞}.
A d–dimensional copula Cd (abbr.: d–copula) is a real mapping with domain DCd =
[0, 1]d and codomain ICd = [0, 1], which meets certain conditions. These conditions
are introduced by the following definitions.

Definition 1.1 (H–volume). Let H : DH 7→ [0, 1] be a real mapping, in which
DH := [A,B] := [A1, B1] × . . . × [Ad, Bd] ⊆ Rd denotes a d-dimensional interval.
Furthermore, let Wd := [a, b] ⊆ DH denote another d–dimensional interval and let
c(1), . . . , c(2d) denote the edges ofWd, which are constructed as c(k) =

(
c

(k)
1 , . . . , c

(k)
d

)

with c(k)
i ∈ {ai, bi}, i ∈ {1, . . . , d} and k ∈ {1, . . . , 2d}. Then, the H–volume V V

H with
respect to Wd is defined as

V V
H (Wd) :=

2d∑

k=1
sgn

(
c(k)

)
H
(
c(k)

)
,

in which sgn
(
c(k)

)
is given by

sgn
(
c(k)

)
:=





1, if
∣∣∣
{
c

(k)
i ∈ {c(k)

1 , . . . , c
(k)
d }|c(k)

i = ai
}∣∣∣ is even

−1, if
∣∣∣
{
c

(k)
i ∈ {c(k)

1 , . . . , c
(k)
d }|c(k)

i = ai
}∣∣∣ is odd

.

Definition 1.2 (d–increasing). Let H : DH 7→ [0, 1] be a real mapping, in which
DH := [A,B]d := [A1, B1] × . . . × [Ad, Bd] ⊆ Rd denotes a d-dimensional interval.
Then, H is called d–increasing on DH , if and only if

V V
H (Wd) ≥ 0
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holds for any d–dimensional interval Wd ⊆ DH .

Definition 1.3 (Grounded). Let H : DH 7→ [0, 1] be a real mapping, in which
DH := [A,B]d := [A1, B1] × . . . × [Ad, Bd] ⊆ Rd denotes a d-dimensional interval.
Furthermore, let the set G be defined as G := {a ∈ DH | ∃ i ∈ {1, . . . , d} : ai = Ai}.
Then, the mapping H is called grounded on DH , if and only if

∀a ∈ G : H (a) = 0

holds.

With the help of the definitions above we are able to define a d–dimensional copula
properly.

Definition 1.4 (d–copula). The d–dimensional real mapping Cd : [0, 1]d 7→ [0, 1] is
called a d–copula, if and only if the following conditions are fulfilled:

1. Cd is grounded on [0, 1]d.

2. Cd is d–increasing on [0, 1]d.

3. Cd has uniformly distributed marginals, i.e. for each i ∈ {1, . . . , d} :

∀u ∈ [0, 1] : ∀ei(u) := (1, . . . , 1, u︸︷︷︸
i–th pos.

, 1, . . . , 1)tr ∈ [0, 1]d : Cd (ei(u)) = u.

If ∂d

∂v1···∂vdCd (v1, . . . , vd) exists for any v ∈ (0, 1)d, we will call

cd (v1, . . . , vd) = ∂d

∂v1, . . . , ∂vd
Cd (v1, . . . , vd)

the copula’s density.

Except the continuity from the right, the d–copula Cd meets every condition, which
has to be fulfilled in order to form a proper probabilistic joint distribution function
on [0, 1]d.

Definition 1.5 (Distribution function, marginal distribution). Let (x1, . . . , xd)tr ∈
Rd be any vector. Then, we can state the following:

1. A d–dimensional abstract joint distribution function F : Rd 7→ [0, 1] is a map-
ping, which is grounded on Rd as well as d–increasing on Rd and additionally
meets F (∞, . . . ,∞) = 1.
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2. A d–dimensional probabilistic joint distribution function (abbr.: joint CDF)
F : Rd 7→ [0, 1] is an abstract joint distribution function, which additionally
meets

lim
x1↘x1,...,xd↘xd

F (x1, . . . , xd) = F (x1, . . . , xd) .

That is, the limit is interpreted as a component–by–component limit.

3. The i–th abstract / probabilistic marginal distribution function Fi : R 7→ [0, 1],
i ∈ {1, . . . , d}, (abbr. in the probabilistic case: MDF) of a d–dimensional
abstract / probabilistic joint distribution function F is defined by

Fi(xi) := F (∞, . . . ,∞, xi︸︷︷︸
i–th pos.

,∞, . . . ,∞).

Consequently, a d–copula is a proper abstract joint distribution function on [0, 1]d,
but technically spoken it is not a proper probabilistic joint distribution function
(joint CDF). In the following section we present an analytical relation between joint
distribution functions, copulae and marginal distribution functions with the help of
Sklar’s famous Theorem.

1.2. Theorem of Sklar

Sklar’s Theorem from 1973 illustrates the main application of copulae. It offers its
users the possibility of constructing d–dimensional joint CDFs by means of copulae
and marginal distribution functions.

Theorem 1.1 (Sklar, abstract). Let F be a d–dimensional abstract joint distribution
function with abstract marginal distribution functions F1, . . . , Fd. Then, there exists
a d–copula Čd, so that

∀x ∈ Rd : F (x1, . . . , xd) = Čd (F1 (x1) , . . . , Fd (xd)) (1.1)

holds. If F1, . . . , Fd are continuous, Čd from equation (1.1) will be unique.

And vice versa: Let Čd be any d–copula and let F1, . . . , Fd be abstract distribution
functions. Then, the d–dimensional mapping F from equation (1.1) defines a proper
d–dimensional abstract joint distribution function with abstract marginal distribution
functions F1, . . . , Fd.

Proof. For the proof we refer to [Skl73, Theorem 1].
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In the following we assume without loss of generality that the abstract / probabilistic
marginal distributions F1, . . . , Fd are continuous. This is justified by the underlying
context in Section 2.2.

The first part of Sklar’s Theorem 1.1 will remain unchanged, if we change the ab-
stract (marginal / joint) distribution functions to probabilistic ones, because any
probabilistic (marginal / joint) distribution function also represents an abstract one.
Nevertheless, in the second part of Theorem 1.1 we have to establish some restric-
tions to guarantee the applicability of probabilistic (marginal / joint) distribution
functions.

Theorem 1.2 (Sklar, probabilistic). Let F be a d–dimensional joint CDF with
MDFs F1, . . . , Fd. Then, there exists a d–copula Čd, so that

∀x ∈ Rd : F (x1, . . . , xd) = Čd (F1 (x1) , . . . , Fd (xd)) (1.2)

holds. If F1, . . . , Fd are continuous, Čd from equation (1.2) will be unique.

And vice versa: Let Čd be any continuous d–copula and let F1, . . . , Fd be CDFs.
Then, the d–dimensional mapping F from equation (1.2) defines a proper d–dimen-
sional joint CDF with MDFs F1, . . . , Fd.

Proof. The first part of Theorem 1.2 is implied by Theorem 1.1 directly. Considering
the second part we know from Theorem 1.1 that F is “at least” an abstract joint
distribution function. Consequently, we just have to show that F is continuous from
the right. For this, we use the continuity of Čd and proof the continuity (from the
right) of F by

lim
x1↘x1,...,xd↘xd

F (x1, . . . , xd) = lim
x1↘x1,...,xd↘xd

Čd (F1 (x1) , . . . , Fd (xd))

= Čd

(
lim
x1↘x1

F1 (x1) , . . . , lim
xd↘xd

Fd (xd)
)

= Čd (F1 (x1) , . . . , Fd (xd))

= F (x1, . . . , xd) ,

for any (x1, . . . , xd) ∈ Rd.

Especially for the usage of random variables the results of Theorem 1.2 are very
important because the distribution function of a random variable is of probabilistic
nature. At this, we should remark that the restriction to continuous copulae does
not cause any limitation for the further development of this thesis because most
copulae used in practice show continuity.
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Remark 1.1 (Question of the right copula). Looking at Theorem 1.2 at first sight
we have to ask the question: “Which copula is the right one?” i.e. which copula is
able to fulfill equation (1.2)? This question is of very high importance for the usage
of copulae and consequently it describes a huge area of research, which is not the
topic of this thesis. For questions regarding this area we refer to [DNR00, Mel03].
In the following we assume the knowledge of copula Čd in Theorem 1.2.

Finally, we give some additional definitions, which are useful in the following.

Definition 1.6 (Survival–copula). Let X1, . . . , Xd be real random variables with
corresponding CDFs F1 (x1) , . . . , Fd (xd), joint CDF

F (x1, . . . , xd) = Čd (F1 (x1) , . . . , Fd (xd)) , x ∈ Rd
,

and product probability measure P. Then, F1 (x1) := 1−F1 (x1) , . . . , Fd (xd) := 1−
Fd (xd) are called the survival-CDFs and F (x1, . . . , xd) := P (X1 > x1, . . . , Xd > xd)
is called the joint survival–CDF for any x ∈ Rd. Analogically to Theorem 1.2, we
can state the existence of a survival–copula Čd via

∀x ∈ Rd : F (x1, . . . , xd) = Čd

(
F 1 (x1) , . . . , F d (xd)

)

and due to [GLN+01, Theorem 1] mapping Čd defines a proper d–copula. In the
special case d = 2 we achieve equality

Č2 (v1, v2) = v1 + v2 − 1 + Č2 (1− v1, 1− v2)

for any v ∈ [0, 1]2 (cp. [Nel06, Section 2.6]).

By means of survival–copulae we are able to present a special symmetry–property
of copulae.

Definition 1.7 (Radial symmetry). Any d–copula Cd with survival–copula Cd is
called radial symmetric, if and only if

Cd (v) = Cd (v)

holds for any v ∈ [0, 1]d.

For the special case d = 2 we derive equality

C2 (v1, v2) = v1 + v2 − 1 + C2 (1− v1, 1− v2) .

This equality illustrates that in case of radial symmetry the C2–volume (cp. Def.
1.1) of [0, v1]× [0, v2] equals the C2–volume of [1−v1, 1]× [1−v2, 1]. This statement
is equivalent to

v1∫

0

v2∫

0

c2 (x, y) dxdy =
1∫

1−v1

1∫

1−v2

c2 (x, y) dxdy.
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Remark 1.2. Let X = (X1, . . . , Xd)tr denote any real random vector with MDFs
F1, . . . , Fd and joint CDF F , which are connected via equation (1.2) and d–copula
Čd. We have to remark that radial symmetry of Čd does not imply radial symmetry
of random vectorX (i.e. ∃a ∈ Rd : ∀x ∈ Rd : F (a+x) = F (a−x) cp. [Nel06, Def.
2.7.1, Theorem 2.7.2]). For this, the MDFs F1, . . . , Fd have to be radial symmetric
with respect to vector a ∈ Rd as well, i.e.

∀t ∈ R : Fi (ai + t) = F i (ai − t)

must hold for each i ∈ {1, . . . , d} (cp. [Nel06, Theorem 2.7.3]).

We can summarize the following: By means of copulae we are able to connect
different MDFs to a proper joint CDF. This fact is very useful because joint CDFs
are usually unknown at markets.

In practice copulae are often used in risk management and for the evaluation of
credit derivatives. Thereby, the joint CDF of default times is modeled with the help
of Theorem 1.2. Afterwards, we can evaluate credit portfolios or credit derivatives
by means of the resulting joint CDF.



2. Basket Default Swaps

Basket Default Swaps (abbr.: BDSs) build a special subcategory of credit deriva-
tives. The contract, which underlies any BDS, refers to a basket of risky assets.
A BDS offers its buyer protection against certain credit events within this basket.
Thus, a BDS represents an extension of the one–dimensional Credit Default Swap
(abbr.: CDS).

Let d ∈ N≥2 denote the number of different assets Ai, i ∈ {1, . . . , d}, and let

A := {A1, . . . , Ad}

denote the basket which consists of these assets. Typically, such a basket contains
credits, debt obligations, corporate bonds or government bonds. Each asset Ai
belongs to a corresponding obligor Si, which usually is a borrower, a corporate or
a government. The basket consisting of the different obligors Si, i ∈ {1, . . . , d′}, is
denoted by

S := {S1, . . . , Sd′} , d
′ ≤ d.

Furthermore, let τi, i ∈ {1, . . . , d}, denote a real random variable in the probability
space (Ωi,Bi,Pi), which represents the time of occurrence of a special credit event
with respect to asset Ai. If this credit event never arrives, we will define τi = ∞.
Thus, the random vector τ = (τ1, . . . , τd)tr represents the correlated times of occur-
rences of special credit events and is defined by means of the product probability
space (Ω,B,P). For a more detailed definition of Ωi,Bi,Pi and Ω,B,P respectively
we refer to [Fel71]. The CDF of τi is denoted by Fτi with its density fτi . Addition-
ally, the joint CDF of τ is denoted by Fτ , in which the CDFs Fτ1 , . . . , Fτd act as
MDFs.

Remark 2.1 (Special credit events). The special credit events mentioned above are
determined before signing the underlying contract. Usually, such credit events are
happenings like insolvency of the corresponding obligor Si, particular payment de-
faults or payment delays in asset Ai or a restructuring of asset Ai. In the following
we assume that the special credit event is determined as the insolvency of the cor-
responding obligor Si. Furthermore we assume that each obligor Si, i ∈ {1, . . . , d′},
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only refers to exactly one asset Ai, i ∈ {1, . . . , d}, i.e. d = d
′ . Consequently, random

variable τi represents the default time of the corresponding obligor Si.

To offer a more detailed view on the character (payments, kind of protection) of a
BDS we have to determine the nature of the underlying contract. A widely used
type of contract is the well–known m–th to Default Swap (abbr.: mBDS), m ∈
{1, . . . , d}. During a previously determined time horizon [0, T ] an mBDS offers its
buyer protection against the m-th default within basket S. A popular example of
an mBDS is the First to Default Swap (m = 1), which offers its buyer protection
against the first default within S.

Important parameters in the context of mBDSs are the following: Each asset Ai
has a nominal value Ni, their sum N = ∑d

i=1Ni is called the nominal value of the
underlying mBDS. Furthermore, each asset Ai possesses a corresponding recovery
rate Ri ∈ [0, 1], which denotes the collateralized fraction of Ni. The risk free interest
rate during the period [0, t], t ∈ R>0, is denoted by rt.

2.1. Payment flows

Usually, the payments of an mBDS can be divided into two categories, premium
payments and default payments. The buyer of an mBDS pays periodical premium
payments, whose amounts are determined before signing the contract. If m obligors
default before maturity T , the buyer will immediately receive a default payment
and will not have to pay any further premium payments. The premiums equal the
amount of sm ·N , sm ∈ R.

Let t = (t1, . . . , td)tr ∈ Rd

≥0 be any vector. Then, ι (t) denotes a permutation of the
set {1, . . . , d}, so that tι1(t) ≤ . . . ≤ tιd(t) holds. In the following we only consider t
to be the underlying vector. Therefore, we can neglect the argument t of ι (t) and
simply write ι or ιi respectively.

Definition 2.1 (Premium payment). Let us consider any m–th to Default Swap
with maturity T and underlying basket of obligors S = {S1, . . . , Sd}. Furthermore,
the periodic premium sm · N is paid at dates 0 < tPP1 < . . . < tPPκ ≤ T, κ ∈ N.
Let t = (t1, . . . , td)tr ∈ Rd

≥0 denote the default times of obligors S1, . . . , Sd. Then,
today’s (t = 0) value of the premium payment of an m-th to Default Swaps is given
by
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ΛPP
m (t) :=




j∑
i=1

smN exp
(
−rtPP

i
tPPi

)
+
(
tιm − tPPj

)
smN exp

(
−rtιm tιm

)
, tPPj ≤ tιm ≤ T ∗

κ∑
i=1

smN exp
(
−rtPP

i
tPPi

)
, else

,

in which j ∈ {0, . . . , κ}, T ∗ = min{T, tPPj+1}, tPP0 := 0 and tPPκ+1 :=∞ hold.

Definition 2.2 (Default payment). Let us consider any m–th to Default Swap with
maturity T and underlying basket of obligors S = {S1, . . . , Sd}. Furthermore, let
t = (t1, . . . , td)tr ∈ Rd

≥0 denote the default times of obligors S1, . . . , Sd. Then, today’s
(t = 0) value of the default payment of an m-th to Default Swap is given by

ΛDP
m (t) :=





(1−Rιm)Nιm exp
(
−rtιm tιm

)
, tιm ≤ T

0, else
. (2.1)

At this, Rιm denotes the recovery rate and Nιm denotes the nominal value of asset
Aιm , which causes the m-th default event.

Of course, today (t = 0) the exact default times t1, . . . , td are unknown. Thus, we
have to calculate the expectations EP

[
ΛDP
m (τ )

]
and EP

[
ΛPP
m (τ )

]
of the corresponding

payment flows. Using these expectations we are able to calculate a fair premium.

Definition 2.3 (mBDS value, fair premium). Let us consider any m–th to Default
Swap with periodic premium sm ·N and maturity T . Then, today’s (t = 0) value of
this mBDS equals the expectation

Vm := EP

[
ΛPP
m (τ1, . . . , τd)− ΛDP

m (τ1, . . . , τd)
]
.

Furthermore, today’s (t = 0) fair premium sm 6= 0 equals the expectation

sm :=
EP

[
ΛDP
m (τ1, . . . , τd)

]

EP

[
Λ̂PP
m (τ1, . . . , τd)

] ,

in which Λ̂PP
m (t) := ΛPP

m (t) /sm holds for any t ∈ Rd

≥0.

2.2. Marginal distributions of default times

The CDFs of the random variables τ1, . . . , τd can efficiently be calibrated by market
data. Especially CDS and bond markets are very helpful in this context. By this
means we can model a hazard rate hi (ti) for each obligor Si (cp. e.g. [MRW06]).
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Using hazard rate hi we are finally able to formulate the CDF of the random variable
τi via an intensity model, cp. [DS03]. Then, we can state the CDF of τi as

Fτi (ti) := Pi (τi ≤ ti) = 1− exp

−

ti∫

0

hi(u)du

 (2.2)

and its corresponding probabilistic density function (abbr.: PDF) as

fτi (ti) = hi (ti) exp

−

ti∫

0

hi(u)du



for any ti ∈ R≥0 and for each i ∈ {1, . . . , d}.

2.3. Joint distribution function of default times

In contrast to the MDFs of τ , it is almost impossible to calibrate the joint CDF
Fτ by market data because the required products on particular baskets are illiquid.
Nevertheless, due to Theorem 1.2 we know that a copula Čd exists, which is able to
state this joint CDF Fτ by means of its MDFs Fτ1 , . . . , Fτd . For this, we define Fτ
as

∀t ∈ Rd

≥0 : Fτ (t) := Čd (Fτ1 (t1) , . . . , Fτd (td)) (2.3)

with known copula Čd and known MDFs Fτ1 , . . . , Fτd . The choice of Čd is a widely
discussed problem, but is not considered in this thesis (cp. Remark 1.1). In general,
copula Čd should be chosen with respect to the context and to the user. In Chapter
4 we present a short survey of different copulae.

Considering equation (2.3) we can easily recognize that the correlation occurring
within Fτ is completely induced by copula Čd. Due to this fact it is essential to
analyze any copula regarding its implied correlation structure. We have to introduce
robust parameters for quantifying the prevailing correlation, which we get to know
in the next chapter. We close this section with a useful remark.

Remark 2.2 (Multi–dimensional marginal distributions). For any SI ⊂ S, with index
set I := {I1, . . . , Ik} ⊂ {1, . . . , d}, I1 < . . . < Ik, copula Čd induces a joint CDF
Fτ I with respect to the random vector τ I := (τj)j∈I (cp. [Nel06, Section 2.10]). Let
t := (t1, . . . , td)tr ∈ Rd

≥0 and tI := (tI1 , . . . , tIk)
tr ∈ Rk

≥0 be vectors. Then, the joint
CDF Fτ I is given by

Fτ I (tI) := Fτ
(
tI→d

)
= Čd

(
F I→d

)
= ČI

k

(
FτI1 (tI1), . . . , FτIk (tIk)

)



2.3. Joint distribution function of default times 15

in which

tI→d =
(
tI→dj

)
j∈{1,...,d}

:=




tj, j ∈ I
∞, else

and

F I→d =
(
F I→d
j

)
j∈{1,...,d}

:=
(
Fτj

(
tI→dj

))
j∈{1,...,d}

=




Fτj(tj), j ∈ I
1, else

hold. If |I| = d holds, the only possible index set will equal I = {1, . . . , d}, which
justifies the notation ČI

d =: Čd and CI
d =: Cd respectively.





3. Correlation

In addition to the MDFs, the correlation represents another crucial component,
which is essential for modeling the joint CDF of default times by means of copulae.
In order to quantify the prevailing correlation as well as possible we have to choose
a suitable correlation measure first. For this, we can find five desirable properties
in [EMS02], which a suitable correlation measure should possess. Unfortunately,
[EMS02, Proposition 3] shows that no correlation measure is able to fulfill these five
properties simultaneously.

Let ΩRV be the set of all real random variables and let X ∈ ΩRV and Y ∈ ΩRV

be elements out of this set. Furthermore, FX and FY denote their CDFs and FX,Y
denotes their joint CDF. Then, the correlation measure K : ΩRV × ΩRV 7→ [−1, 1]
should meet as many of the following five intuitive conditions as possible.

(K1) K(X, Y ) = K(Y,X) (symmetry)

(K2) K(X, Y ) ∈ [−1, 1] (scaling)

(K3) K(X, Y ) = 1⇔ FX,Y (x, y) = min {FX(x), FY (y)} (comonotony)
K(X, Y ) = −1⇔ FX,Y (x, y) = max {FX(x) + FY (y)− 1, 0} (countermonotony)

(K4) For a strictly monotonic mapping T : ΩRV 7→ ΩRV
(1):

K (T (X), Y ) =





K(X, Y ), if T is increasing

−K(X, Y ), if T is decreasing

(invariance under strict transformations)

(K5) K(X, Y ) = 0⇔ X and Y are independent (equivalence of independence)

For a better illustration of property (K3) we add: Assuming K(X, Y ) = 1 and
X < x hold, then, a unique ŷ ∈ R should exist, so that X < x ⇔ Y < ŷ and
FX(x) = FY (ŷ) = FX,Y (x, ŷ) hold. Analogically, we can state: Let Y < y hold.
(1)Use T as a real–valued mapping to apply the concept of monotonicity, cp. Example 3.1(b) for

a better understanding
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Then, a unique x̂ ∈ R should exist, so that Y < y ⇔ X < x̂ and FY (y) =
FX (x̂) = FX,Y (x̂, y) hold. Because of equality K(X, Y ) = 1 either x ≤ x̂ ∧ ŷ ≤ y

and FX,Y (x, y) = FX,Y (x, ŷ) or x > x̂ ∧ ŷ > y and FX,Y (x, y) = FX,Y (x̂, y) hold.
Consequently, FX,Y (x, y) = min {FX(x), FY (y)} follows. The joint CDF for the
special case K(X, Y ) = −1 is developed analogically.

In this thesis we discuss two different measures for modeling correlation. On the one
hand we introduce Pearson’s correlation coefficient ρ, which meets the conditions
(K1) and (K2) and on the other hand we introduce the rank correlation coefficient
Kendall’s Tau τK, which meets the conditions (K1) to (K4).

3.1. Pearson’s correlation coefficient ρ

In the following let (X1, . . . , Xd)tr be a real random vector with MDFs FX1 , . . . , FXd .

Definition 3.1 (Pearson’s correlation coefficient, correlation matrix). Pearson’s
correlation coefficient ρ

Xi,Xj
(also: correlation coefficient) of two random variables

Xi and Xj with joint CDF FXi,Xj , i, j ∈ {1, . . . , d} with i 6= j, is given by

ρ
Xi,Xj

: = Cov (Xi, Xj)√
Var (Xi)

√
Var (Xj)

= E (Xi ·Xj)− E (Xi) · E (Xj)√
Var (Xi)

√
Var (Xj)

=
∞∫

−∞

∞∫

−∞

FXi,Xj (ti, tj)− FXi (ti) · FXj (tj)√
Var (Xi)

√
Var (Xj)

dtidtj, (3.1)

in which the functions E(·), Cov(·) and Var(·) are calculated with respect to the
particular (product) probability measure of Xi and Xj. Equality (3.1) was presented
in [Hoe40] first and was proven in [DG96, Lemma 1] for example. The positive semi–
definite and symmetric matrix

Σ = (Σi,j)i,j∈{1,...,d} :=




1 ρ
X1,X2

ρ
X1,X3

· · · ρ
X1,Xd

ρ
X2,X1

1 ρ
X2,X3

· · · ρ
X2,Xd

...
. . .

. . .
. . .

...

ρ
Xd−1,X1

· · · ρ
Xd−1,Xd−2

1 ρ
Xd−1,Xd

ρ
Xd,X1

· · · ρ
Xd,Xd−2

ρ
Xd,Xd−1

1




(3.2)

is called Pearson’s correlation matrix (also: correlation matrix) of random vector
(X1, . . . , Xd)tr.

Remark 3.1 (Correlation coefficient ρ of a copula). Let Č2 be the 2–copula, so that

FXi,Xj (xi, xj) = Č2
(
FXi (xi) , FXj (xj)

)
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holds for any (xi, xj)tr ∈ R2. Then, correlation coefficient ρ
Xi,Xj

is calculated by
means of 2–copula Č2 as

ρ
Xi,Xj

=
∞∫

−∞

∞∫

−∞

Č2
(
FXi (xi) , FXj (xj)

)
− Č2 (FXi (xi) , 1) · Č2

(
1, FXj (xj)

)

√
Var (Xi)

√
Var (Xj)

dxidxj.

The correlation coefficient ρ
Xi,Xj

(and correlation matrix Σ respectively) is widely
used in practice because of its occurrence in the (multivariate) Gaussian distribution.
Nevertheless, we have to mind some disadvantages, which come along with the usage
of correlation coefficient ρ

Xi,Xj
.

By definition we know that any correlation matrix has to be positive semi–definite.
However, we can easily show that not any symmetric dependence matrix Σ′ with
Σ′i,i = 1 and Σ′i,j ∈ [−1, 1], i 6= j, is positive semi–definite and is consequently not
a proper correlation matrix. For each entry Σi,j = ρ

Xi,Xj
of a proper correlation

matrix Σ there exist bounds −1 ≤ ρmin
Xi,Xj

< 0 and 0 < ρmax
Xi,Xj

≤ 1, so that

ρ
Xi,Xj

∈
[
ρmin
Xi,Xj

, ρmax
Xi,Xj

]

holds (cp. [EMS02, Theorem 4]). Thus, if we estimate a dependence matrix Σ′ by
market data, we will not be able to ensure that the estimated dependence matrix
is a proper correlation matrix, i.e. the estimated dependence matrix could be use-
less. In [Hig02, QS07, BH10] the authors discuss this problem and present efficient
approaches to solve this problem.

A further disadvantage of Pearson’s correlation coefficient ρ
Xi,Xj

is its ignorance of
non–linear relations between Xi and Xj. It is only able to quantify linear depen-
dences. For a better illustration we introduce the following example.

Example 3.1 (Failures of Pearson’s correlation coefficient ρ). Let X ∼ Φ be a
normally distributed random variable (mean = 0, variance = 1, cp. Definition 4.1)
and let Y be any other real random variable.

(a) If Y = a · X + b holds, with a > 0 and b ∈ R, equality ρ
X,Y

= 1 will result.
This result is independent of coefficients a and b and is founded by the perfect
positive dependence of X and Y .

(b) If Y = a ·X3 + b holds, with a > 0 and b ∈ R, equality ρ
X,Y

= 3/
√

15 will result,
although the dependence of X and Y is still perfectly positive. However, the
dependence additionally involves non–linear relations.
Furthermore, we can observe that property (K3) is not fulfilled, because we can
easily show the implication FX,Y (x, y) = min {FX(x), FY (y)}; ρ

X,Y
= 1.



20 Chapter 3. Correlation

A common consideration of the cases (a) and (b) reveals the fact that Pear-
son’s correlation coefficient does not meet the condition (K4) neither (choose
for example a := 1, b := 0⇒ T (x) = x3).

(c) If Y = X2 holds, a further disadvantage of Pearson’s correlation coefficient will
become obvious. In this case we can state equality ρ

X,Y
= 0, although random

variables X and Y are in no way independent. Thus, in general the following
implication does not hold: ρ

X,Y
= 0⇒ X and Y are independent, which causes

a violation of the condition (K5).

If we neglect the violation of the conditions (K3) – (K5) and choose Pearson’s
correlation coefficient for quantifying the underlying correlation, it will make sense
to use (linear) factor models. Hereby, we can significantly reduce the estimation
effort.

3.1.1. (Linear) factor models

Let (X1, . . . , Xd)tr be a real random vector. Normally, the estimation of the corre-
sponding correlation matrix Σ ∈ [−1, 1]d×d causes an effort of estimating d(d− 1)/2
covariances (assuming known variances Var (Xi)). However, if the random variables
X1, . . . , Xd only depend on k < d common factors F1, . . . , Fk, it will make sense
to define these correlation coefficients with a factor model. The usage of factor
models reduces the estimation effort and makes the calculation of correlation eas-
ier. Popular factor models are Capital Asset Pricing Model (cp. [Sha64]), Arbitrage
Pricing Theory (cp. [Ros76]) and its special case Fama–French three–factor model
(cp. [FF92, FF93]).

In a linear k–factor model (according to [GS07, Section 3]) we can state

Xi :=
k∑

j=1
βi,j · Fj + ϑiεi (3.3)

for each i ∈ {1, . . . , d}, in which notations β := (βi,j) ∈ Rd×k, ϑi ≥ 0 and
Cov (Fj, Fm) = Cov (εi, Fj) = Cov (εi, εl) = 0 for j,m ∈ {1, . . . , k}, j 6= m and
l ∈ {1, . . . , d}, l 6= i, hold. Of course, F1, . . . , Fk as well as ε1, . . . , εd represent real
random variables.

Thus, we only have to estimate k · d + k different parameters (matrix β and fac-
tor variances Var (Fl), assuming known variances Var (Xi)) and can calculate the
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correlation coefficient ρ
Xi,Xj

as

ρ
Xi,Xj

= Cov (Xi, Xj)√
Var (Xi)

√
Var (Xj)

=

k∑
l=1

βi,l · βj,l · Var (Fl)
√
Var (Xi)

√
Var (Xj)

=
k∑

l=1
ρ
Xi,Fl

ρ
Xj,Fl

. (3.4)

Using the factor model above, correlation matrix Σ has the structure (also known
as k–factor–structure)

Σ = ΣF
k :=

(
ρ
Xi,Xj

)
i,j∈{1,...,d}

= diagd
(

1−
k∑

l=1
ψ2

1,l, . . . , 1−
k∑

l=1
ψ2
d,l

)
+ψ ·ψtr, (3.5)

in which notations ψ ∈ Rd×k and ψ = (ψi,l) := βi,l ·
√

Var(Fl)√
Var(Xi)

, i ∈ {1, . . . , d}, l ∈
{1, . . . , k} hold. Parameters βi,j are known as the popular β–factors or β–factor
loadings.

The problem of estimating a non–proper correlation matrix is simplified significantly
by using a factor model. For example we can ensure that ΣF

k is a proper correlation
matrix as long as

∀i ∈ {1, . . . , d} :
k∑

j=1
ψ2
i,j ≤ 1

holds (cp. [BHR10, Section 1]). In this case correlation matrix ΣF
k is the sum of two

positive semi–definite matrices and therefore a positive semi–definite matrix itself.

Example 3.2 (Factor model based on the German stock index DAX R©). For a
better illustration we introduce an example for estimating stock returns by means
of a factor model. For this let rDAX, rA, rB, rE and rS be the stock returns of the stock
index DAXK(2) and of the corporations ALV(3), BAS(4), EOAN(5) and SIE(6). In this
context the returns refer to price stock quotations, which have to be distinguished
from the performance stock quotations. If we calculate the correlation matrix of the
random vector (rA, rB, rE, rS)tr with respect to equation (3.2), we will get

Σ :=




1.0 0.71 0.79 0.72
0.71 1.0 0.60 0.81
0.79 0.60 1.0 0.61
0.72 0.81 0.61 1.0



.

(2)DAX R© – German stock index (price index)
(3)Allianz SE, Königinstraße 28, 80802 München, Germany
(4)BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
(5)E.ON, E.ON Platz 1, 40479 Düsseldorf, Germany
(6)Siemens AG, Wittelsbacherplatz 2, 80333 München, Germany
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Figure 3.1.: Daily closing prices from 29/09/2010 to 28/09/2011 (cp. Example 3.2),
100% correspond to the particular daily closing price on 29/09/2010.

For this, we used 257 day closing prices from 29/09/2010 to 28/09/2011 (cp. [com11]).
Besides this approach it is also possible to model the correlation matrix by means of
a factor model. Here we use an one–factor model, in which index return rDAX acts
as the only factor. Using this approach in connection with equations (3.3) – (3.5)
we obtain the following β–factors and correlation matrix

β =




1.23
1.14
1.07
0.98




ΣF
1 :=




1.0 0.76 0.69 0.76
0.76 1.0 0.69 0.77
0.69 0.69 1.0 0.69
0.76 0.77 0.69 1.0



≈ Σ.

The correlation matrix ΣF
1 above is a good approximation of the real correlation

matrix Σ. We have to keep in mind that we use only one factor and that the time
frame equals just one year. Furthermore, the stock returns make a very volatile
progress (cp. Figure 3.1) within this time frame, which is due to the economic
situation. Finally, we have to add that both correlation matrices are based on
historical data. Thus, the question “Which correlation matrix is more suitable for
a future pricing of m–th to Default Swaps?” has to be answered carefully.

Besides the effort reduction regarding the estimation, a correlation matrix in factor
structure (cp. equation (3.5)) offers several other advantages, for example a sim-
plified evaluation of the multivariate Gaussian distribution (cp. Definition 4.2). In
[BHR10] the authors present different approaches for transforming a given correla-
tion matrix to a new approximate correlation matrix showing a factor structure.
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3.2. Kendall’s Tau τK

A robust parameter for quantifying correlation, which is able to handle linear re-
lations as well as non–linear relations, is the rank correlation coefficient Kendall’s
Tau. Let

(
X1, . . . , Xd

)tr
and

(
X
′
1, . . . , X

′
d

)tr
denote two independently and identi-

cally distributed random vectors.

Definition 3.2 (Kendall’s Tau). The rank correlation coefficient Kendall’s Tau
(abbr.: Kendall’s τK

Xi,Xj
) with respect to random variables Xi and Xj is given by the

probability

τK
Xi,Xj

:= P
((
Xi −X

′

i

)
·
(
Xj −X

′

j

)
> 0

)
− P

((
Xi −X

′

i

)
·
(
Xj −X

′

j

)
< 0

)
,

in which P denotes the product probability measure of Xi and Xj, i, j ∈ {1, . . . , d}
with i 6= j.

Let S :=
{

(xi,1, xj,1)tr , . . . , (xi,n, xj,n)tr
}
be a given sample of random vector (Xi, Xj)tr.

Then, we can calculate Kendall’s τK
Xi,Xj

as

τK
Xi,Xj

:=
|K| −

∣∣∣K
∣∣∣

(
n
2

) ,

in which

K :=
{{

(xi,l, xj,l)tr , (xi,m, xj,m)tr
}
⊂ S

∣∣∣ (xi,l − xi,m) · (xj,l − xj,m) > 0, l < m
}

denotes the set of all concordant pairs and

K :=
{{

(xi,l, xj,l)tr , (xi,m, xj,m)tr
}
⊂ S

∣∣∣ (xi,l − xi,m) · (xj,l − xj,m) < 0, l < m
}

denotes the set of all discordant pairs.

If we use Kendall’s τK in connection with copulae, we will be able to prove the
following theorem easily.

Theorem 3.1 (Kendall’s τK with respect to copulae). Assuming the joint CDF of
random vector (Xi, Xj)tr is given by

∀ (xi, xj)tr ∈ R2 : FXi,Xj(xi, xj) = Č2
(
FXi (xi) , FXj (xj)

)
. (3.6)

Then, Kendall’s τK
Xi,Xj

is calculated via

τK
Xi,Xj

:= 4
1∫

0

1∫

0

Č2 (u, v) dČ2 (u, v) = 4
1∫

0

1∫

0

Č2 (u, v) · č2 (u, v) dudv.
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Proof. See [Nel06, Theorem 5.1.3].

Remark 3.2 (Marginal copulae). The constriction to a 2–copula in Theorem 3.1 is
not at all a restriction of generality. If we consider d different random variables
X1, . . . , Xd, whose joint CDF is given by d–copula Čd, we will be able to construct
the corresponding 2–copula from equation (3.6) as

∀vi, vj ∈ [0, 1] : Č2 (vi, vj) = Čd(1, . . . , 1, vi︸︷︷︸
i–th pos.

, 1, . . . , 1, vj︸︷︷︸
j–th pos.

, 1, . . . , 1).

Reviewing conditions (K1) – (K5) from page 17, Kendall’s τK is obviously able
to meet the conditions (K1) and (K2). Furthermore, we can show the validity of
the conditions (K3) and (K4) by using [EMS02, Theorem 3]. Nevertheless and
analogically to Pearson’s correlation coefficient ρ, Kendall’s τK is not able to meet
equivalence (K5). Only the direction “The independence of the real random variables
Xi and Xj implies τK

Xi,Xj
= 0” holds. For a violation with respect to the other

direction see Example 3.1(c).



4. Different types of copulae

In this chapter we analyze different types of copulae and present their properties
in detail. Additionally, we discuss the evaluation of different copulae and present
algorithms, which sample copula distributed random numbers. First, we introduce
two copula bounds.

Lemma 4.1 (Copula bounds). Let d ∈ N≥2 be any number and let Cd be any d–
copula (cp. Definition 1.4). Then, for any vector v ∈ [0, 1]d inequalities

max
(

1− d+
d∑

i=1
vi, 0

)
=: Ld (v) ≤ Cd(v) ≤ Ud(v) := min (v1, . . . , vd)

hold. At this, Ld (v) denotes the “Fréchet-Hoeffding lower bound” and Ud(v) denotes
the “Fréchet-Hoeffding upper bound”. Furthermore, mapping Ud represents a proper
d–copula for any d ∈ N≥2, whereas mapping Ld only describes a proper d–copula for
the choice d = 2.

Proof. See [Nel06, Theorems 2.10.11 and 2.10.12].

Another copula, which is of high importance in theory as well as in practice, is the
well–known product copula Pd. The product copula describes a proper copula for
any d ∈ N≥2 and maps any vector v ∈ [0, 1]d to the product of its entries, i.e.

Pd (v) :=
d∏

i=1
vi.

The product copula is often called “independence copula”, which is justified by the
following lemma.

Lemma 4.2 (Independence copula). Let X1, . . . , Xd be real random variables with
CDFs FX1 , . . . , FXn and joint CDF FX . Then, the following equivalence holds:

∀x ∈ Rd : FX (x1, . . . , xd) = Pd (FX1 (x1) , . . . , FXd (xd))

⇔ X1, . . . , Xd are independent.
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Figure 4.1.: Fréchet-Hoeffding lower bound L2(v), Fréchet-Hoeffding upper bound
U2(v) and product copula P2(v) for any v ∈ [0, 1]2.

Proof. See [Nel06, Theorem 2.10.13].

In Figure 4.1 a graphical illustration of the copulae above is shown for the special
case d = 2.

The most frequently used copula in practice is the well–known Gaussian copula,
which is based on the Gaussian (normal) distribution. Alternatively to the Gaussian
copula, practitioners often use Archimedean copulae as well. Hence, we briefly
introduce both types of copulae in the following sections.

4.1. Gaussian copula

Before we are able to define the Gaussian copula we have to introduce two distribu-
tions.

Definition 4.1 (Standard Gaussian distribution). Let x ∈ R be any number. Then,
the mapping

Φ(x) :=
x∫

−∞

1√
2π

exp
(
−u

2

2

)
du

is called the CDF of the standard Gaussian distribution (also: standard normal
distribution). Its PDF φ(x) := dΦ/dx is given by

φ(x) = 1√
2π

exp
(
−x

2

2

)
.

Remark 4.1 (Evaluation of CDF Φ and its inverse Φ−1). In each of the following
algorithms we use the approaches of Hastings (cp. [HWW55, AS70]) and Marsaglia
et al. (cp. [MZM94]) for evaluating the CDF Φ of the standard Gaussian distri-
bution. The corresponding inverse CDF Φ−1 is evaluated with the help of Moro’s
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algorithm (cp. [Mor95]), which can easily be improved by the application of a few
Newton steps (cp. [Gla04, Section 2.3.2]).

Definition 4.2 (Multivariate standard Gaussian distribution). Let the set Kd be
defined as

Kd :=
{
M ∈ [−1, 1]d×d

∣∣∣M pos. semi–def., M = M tr, ∀i ∈ {1, . . . , d} : Mii = 1
}
,

let x ∈ Rd be any vector and let Σ ∈ Kd be any correlation matrix. Then, the
mapping

Φd
Σ (x) :=

x1∫

−∞
· · ·

xd∫

−∞

1
(2π)

d
2
√

det Σ
exp

(
−1

2v
trΣ−1v

)
dv1 · · · dvd

is called the joint CDF of the d–dimensional standard Gaussian distribution with
Pearson’s correlation matrix Σ. The corresponding joint PDF is given by

φdΣ(x) := ∂d

∂x1 · · · ∂xd
Φd

Σ(x) = 1
(2π)

d
2
√

det Σ
exp

(
−1

2x
trΣ−1x

)
. (4.1)

By using the definitions above we are now able to define the Gaussian copula prop-
erly:

Definition 4.3 (Gaussian copula). Let Σ ∈ Kd be any correlation matrix and let
u ∈ [0, 1]d be any vector. Then, the mapping

CGau
d,Σ (u1, . . . , ud) := Φd

Σ

(
Φ−1 (u1) , . . . ,Φ−1 (ud)

)

is a proper d–copula and is called the d–dimensional Gaussian copula. Its density
function is denoted by cGau

d,Σ .

Consequently, the Gaussian copula is continuous as well as radial symmetric (cp.
Definition 1.7 and e.g. [ELM03, Section 5.2]). Furthermore, a Gaussian copula
creates a linear correlation, which is quantified by Pearson’s correlation coefficient
and which is based on the underlying correlation matrix Σ. For an illustration of
density function cGau

d,Σ we refer to Figure 4.2.

Let Xi und Xj be two real random variables, which are distributed according to
the Gaussian copula, i.e. equality FXi,Xj = CGau

2,Σ

(
FXi , FXj

)
holds. Then, we can

calculate the corresponding rank correlation coefficient Kendall’s τK
Xi,Xj

by means of

τK
Xi,Xj

:= 2
π

arcsin
(
ρ
Xi,Xj

)
, (4.2)
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in which ρ
Xi,Xj

represents the correlation matrix entry ρ
Xi,Xj

= Σ1,2 = Σ2,1 (cp.
[LMS03, Theorem 2]). We have to note that equation (4.2) simply rescales the
linear correlation to the parameter Kendall’s τK. The Gaussian copula is still not
able to create a non–linear correlation.

Nevertheless, we can easily observe the validity of the following lemma, which ex-
ploits the application of the Gaussian copula as a joint CDF

Lemma 4.3 (Special correlation properties of the Gaussian copula). Let Xi and
Xj be real random variables with CDFs FXi and FXj and with joint CDF FXi,Xj =
CGau

2,Σ

(
FXi , FXj

)
. Then, Pearson’s correlation coefficient ρ

Xi,Xj
= Σ1,2 = Σ2,1 fulfills

the conditions (K3) and (K5) from page 17.

Proof. To prove the validity of the condition (K3), we introduce an alternative
definition of the 2–dimensional Gaussian copula as in [JRR04, Section 2]. For this,
let u, v ∈ [0, 1] denote numbers and let Σ ∈ K2 denote any correlation matrix. Then,
equality

CGau
2,Σ (u, v) =

u∫

0

Φ

Φ−1 (v)− Σ12Φ−1 (w)√

1− Σ2
12


 dw

=
v∫

0

Φ

Φ−1 (u)− Σ12Φ−1 (w)√

1− Σ2
12


 dw

holds. Now, let ρ
Xi,Xj

= 1 hold. Because the term CGau
2,Σ is not well–defined in this

case we have to consider the limit value ρ
Xi,Xj

↗ 1. For this, let u, v ∈ [0, 1] be
numbers with u ≤ v. Then, we can easily prove equality

lim
ρ
Xi,Xj

↗1
CGau

2,Σ (u, v) = lim
ρ
Xi,Xj

↗1

u∫

0

Φ



Φ−1 (v)− ρ
Xi,Xj

Φ−1 (w)
√

1− ρ2
Xi,Xj


 dw = u.

Analogically, we can prove

lim
ρ
Xi,Xj

↗1
CGau

2,Σ (u, v) = lim
ρ
Xi,Xj

↗1

v∫

0

Φ



Φ−1 (u)− ρ
Xi,Xj

Φ−1 (w)
√

1− ρ2
Xi,Xj


 dw = v,

for u > v. Thus, we obtain FXi,Xj (xi, xj) = min
{
FXi (xi) , FXj (xj)

}
for any xi, xj ∈

R, i.e. property (K3) (comonotony) holds. The derivation of the countermonotony
follows analogically (consider the limit value ρ

Xi,Xj
↘ −1).

Observing Definition 4.2 in detail we can easily see the validity of the condition
(K5). Let ρ

Xi,Xj
= 0 hold. Then, we can directly show equivalences
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ρ
Xi,Xj

= 0⇔ Σ = E2

⇔ ∀xi, xj ∈ R : Φ2
Σ (xi, xj) = Φ(xi) · Φ(xj)

⇔ ∀ui, uj ∈ [0, 1] : CGau
2,Σ (ui, uj) = P2 (ui, uj)

⇔ Xi and Xj are independent, (4.3)

in which E2 denotes the 2–dimensional identity matrix. For the last equivalence
(4.3) we refer to Lemma 4.2.

Finally, the usage of Pearson’s correlation coefficient ρ in connection with the Gaus-
sian copula ensures the validity of the greatest possible number of condition (K1) –
(K5) from page 17.

4.1.1. Evaluating the Gaussian copula

Let X1, . . . , Xd be real random variables with CDFs FX1 , . . . , FXd and joint CDF

FX (x1, . . . , xd) = CGau
d,Σ (FX1 (x1) , . . . , FXd (xd))

= Φd
Σ

(
Φ−1 (FX1 (x1)) , . . . ,Φ−1 (FXd (xd))

)

=
Φ−1(FX1 (x1))∫

−∞
· · ·

Φ−1(FXd (xd))∫

−∞

1
(2π)

d
2
√

det Σ
exp

(
−1

2v
trΣ−1v

)
dv1 · · · dvd, (4.4)

in which Σ ∈ Kd denotes any correlation matrix and x ∈ Rd denotes any vector.
Thus, to evaluate the joint CDF FX we have to evaluate the d–dimensional Gaussian
copula. For this, we have to calculate the d–dimensional integral (cp. equation
(4.4)), which is known as the multivariate standard Gaussian CDF. Unfortunately,
its evaluation is in no case trivial. Only for special cases (cp. [GB09, Section 2])
there exist efficient algorithms for solving this integral. One of them is introduced
in the following theorem.

Theorem 4.1 (Evaluating a Gaussian copula with factor structure). Let X1, . . . , Xd

be real random variables with joint CDF FX (x) = CGau
d,Σ (FX1 (x1) , . . . , FXd (xd))

and CFDs FX1(x1), . . . , FXd(xd) for any vector x ∈ Rd and any correlation matrix
Σ ∈ Kd. Additionally, we assume Σ to show a factor structure (cp. Subsection
3.1.1, especially equation (3.5)), i.e. equation

Σ = ΣF
k = diagd

(
1−

k∑

l=1
ψ2

1,l, . . . , 1−
k∑

l=1
ψ2
d,l

)
+ψ ·ψtr =: D +ψ ·ψtr

holds for any ψ ∈ Rd×k and k < d. Then, the joint CDF FX is calculated as
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FX (x1, . . . , xd) = CGau
d,ΣF

k
(FX1 (x1) , . . . , FXd (xd))

=
Φ−1(FX1 (x1))∫

−∞
· · ·

Φ−1(FXd (xd))∫

−∞

1
(2π)

d
2
√

det (ΣF
k )

exp
(
−1

2v
tr
(
ΣF
k

)−1
v
)

dv1 · · · dvd

=
∫

R

· · ·
∫

R

φkEk(y)
d∏

i=1
Φ




Φ−1 (FXi (xi))−
k∑
l=1

ψi,l · yl
√
Di,i


 dy1 · · · dyk.

Here, mapping φkEk denotes the joint PDF of the k–dimensional multivariate stan-
dard Gaussian distribution (cp. equation (4.1)) and Ek denotes the k–dimensional
identity matrix.

Proof. See [CD62, Mar63] or [GB09, Section 2.3.1].

Thus, via Theorem 4.1 it is possible to evaluate the Gaussian copula in higher
dimensions efficiently. The only assumption we have to make is the application of
a k–factor structure with k � d different factors. However, in contexts, in which
this assumption is not justified, it is very helpful to draw high–dimensional random
tuples, which are distributed according to the Gaussian copula (e.g. for establishing
a Monte–Carlo integration).

4.1.2. Drawing random tuples according to the Gaussian copula

Let X1, . . . , Xd be real random variables with CDFs FX1 , . . . , FXd and joint CDF
FX (x) = CGau

d,Σ (FX1 (x1) , . . . , FXd (xd)). Furthermore, let x ∈ Rd be any vector
and let Σ ∈ Kd be any correlation matrix. The aim of this subsection is drawing
a random tuple v = (v1, . . . , vd)tr, which is distributed according to the Gaussian
copula CGau

d,Σ . Using this tuple and the transformation x̂ =
(
F−1
X1 (v1) , . . . , F−1

Xd
(vd)

)tr

we are subsequently able to create a tuple x̂ = (x̂1, . . . , x̂d)tr, which is distributed
according to the joint CDF FX .

A sequence, which creates tuples v, is shown in Algorithm 4.1 (cp. e.g. [ELM03,
MV04, Sey12]). For this, we just have to draw an independently and uniformly
distributed tuple u ∼ U [0, 1]d and have to calculate the Cholesky decomposition
of the correlation matrix Σ. Then, tuple v is calculated by a few matrix–vector
multiplications and distribution evaluations. In Figure 4.2 we show 600 different
tuples v = (v1, v2)tr ∼ CGau

2,Σ .

Remark 4.2 (Uniformly distributed random numbers ui ∼ U [0, 1]). For drawing in-
dependently and uniformly distributed random numbers ui on [0, 1] we use two
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0
v1

1
0

v2

1
0

z

5

(a) z = cGau
2,Σ1

(v1, v2)

0
v1

1
0

v2

1
0

z

11

(b) z = cGau
2,Σ2

(v1, v2)

Figure 4.2.: Density function cGau
2,Σ using correlation matrices Σ1 =

(
1.0 0.5
0.5 1.0

)
and

Σ2 =
(

1.0 0.8
0.8 1.0

)
. Additionally, 600 tuples (v1, v2)tr ∼ CGau

2,Σ1 and
(v1, v2)tr ∼ CGau

2,Σ2 are shown on top of the particular figure, which were
drawn by means of Sobol’s sequence.

different methods in this thesis. On the one hand we use the Mersenne Twister (cp.
[MN98]) for creating “pure” random numbers and on the other hand we use Sobol’s
sequences (cp. [Sob76]) for creating quasi–random numbers.

Algorithm 4.1: Drawing a tuple v = (v1, . . . , vd)tr ∼ CGau
d,Σ

Input : u = (u1, . . . , ud)tr with ui ∼ U [0, 1]
Output: v = (v1, . . . , vd)tr ∼ CGau

d,Σ

Global : d, Σ

1 for i← 1 to d do
2 zi ← Φ−1 (ui) // zi ∼ Φ

3 A←Cholesky(d,Σ) // AAtr = Σ
4 w = (w1, . . . , wd)tr ← Az

5 for i← 1 to d do
6 vi ← Φ (wi)

If the chosen correlation matrix Σ additionally shows a factor structure (cp. Sub-
section 3.1.1, especially equation (3.5)), we will be able to simplify Algorithm 4.1,
because we do not have to calculate a Cholesky decomposition anymore. Let us
assume Σ shows a k–factor structure like

Σ = ΣF
k = diagd

(
1−

k∑

l=1
ψ2

1,l, . . . , 1−
k∑

l=1
ψ2
d,l

)
+ψ ·ψtr =: D +ψ ·ψtr.
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Then, we just have to draw d+ k independently and uniformly distributed random
numbers ui and can calculate the desired tuple v ∼ CGau

d,ΣF
k
via a few matrix–vector

multiplications and distribution evaluations. We have to add that the random vari-
ables F1, . . . , Fk and ε1, . . . , εd from equation (3.3) will be independently and stan-
dard normally distributed, if we apply the Gaussian copula with underlying factor
structure. The resulting program acts analogically to Algorithm 4.1 and is shown
in Algorithm 4.2 (cp. [CG08, Section 5]).

Algorithm 4.2: Drawing a tuple v = (v1, . . . , vd)tr ∼ CGau
d,ΣF

k

Input : u′ = (u1, . . . , ud, ud+1, . . . , ud+k)tr with ui ∼ U [0, 1]
Output: v = (v1, . . . , vd)tr ∼ CGau

d,ΣF
k

Global : d, ψ

1 for i← 1 to d+ k do
2 zi ← Φ−1 (u1) // zi ∼ Φ

3 w = (w1, . . . , wd)tr ← ψ · (zd+1, . . . , zd+k)tr +D · (z1, . . . , zd)tr

4 for i← 1 to d do
5 vi ← Φ (wi)

Because of its intuitive and simple structure, which is based on the (multivariate)
standard Gaussian distribution, the Gaussian copula is widely used in practice. Ad-
ditionally, the Gaussian copula in connection with Pearson’s correlation coefficient ρ
meets the greatest possible number of conditions (K1) – (K5) (cp. page 17). Never-
theless, the Gaussian copula is not able to map non–linear relations and its efficient
evaluation requires restrictions like factor models. Due to this disadvantages we
introduce Archimedean copulae in the next section.

4.2. Archimedean copulae

Archimedean copulae represent an own type of copulae. In contrast to the Gaussian
copula Archimedean copulae do not consist of nested CDF evaluations, but they
are based on a fundamentally different approach. They consist of a chaining sum
of completely monotone functions, which can be evaluated easily. Furthermore,
they are able to create a non–linear correlation, which is why it is inevitable to use
Kendall’s τK for quantifying the prevailing correlation structure.
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Definition 4.4 (Completely monotone). A mapping g : [0,∞) 7→ R will be called
completely monotone on [0,∞), if it is continuous on [0,∞) and if additionally

∀k ∈ N ∪ {0} : ∀t ∈ (0,∞) : (−1)k dk
dsk g(s)

∣∣∣∣∣
s=t
≥ 0

holds.

This property illustrates enough information for a proper definition of an Archimedean
copula.

Definition 4.5 (Archimedean copula). Let φθ : [0, 1] 7→ [0,∞), θ ∈ Dθ ⊆ R, be
a continuous and strictly decreasing mapping with inverse mapping φ−1

θ : [0,∞) 7→
[0, 1] and the properties φθ(0) =∞ and φθ(1) = 0. Then, mapping

CArc
d,φθ

(u1, . . . , ud) := φ−1
θ (φθ (u1) + . . .+ φθ (ud)) (4.5)

is a proper d–copula for any u ∈ [0, 1]d, if and only if φ−1
θ is completely monotone

on [0,∞) (cp. [Kim74, Nel06]). In this case the d–dimensional mapping CArc
d,φθ

:
[0, 1]d 7→ [0, 1] is called Archimedean copula with generator φθ. The corresponding
copula density function is denoted by cArcd,φθ

.

Consequently, Archimedean copulae are continuous, but in general not radial sym-
metric (cp. Definition 1.7). In order to ensure a huge variety of modelings the
generators φθ are usually defined as families of functions with particular domains
θ ∈ Dθ for parameter θ. We have to note that only within these domains the com-
plete monotony is guaranteed. Widely used examples of Archimedean copulae and
their generators are shown in Table 4.1.

Copula Dθ φθ(t) φ−1
θ (t)

Clayton CCla
d,φθ

(0,∞) t−θ − 1 (1 + t)−1/θ

Frank CFra
d,φθ

(0,∞) − ln
(

exp(−θt)−1
exp(−θ)−1

)
−1
θ

ln (1− (1− exp (−θ)) exp (−t))
Gumbel CGum

d,φθ
[1,∞) (− ln (t))θ exp

(
−t1/θ

)

Table 4.1.: Examples of Archimedean copulae.

Because generators usually show a closed form, the evaluation of an Archimedean
copula is trivial in the most cases and is not discussed here. In Figure 4.3 the density
function of the well–known Clayton copula is shown.

For quantifying the correlation structure, which is created by any Archimedean
copula, we use the rank correlation coefficient Kendall’s τK (cp. Section 3.2). In
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connection with Archimedean copulae Kendall’s τK meets the conditions (K1) –
(K4) from page 17. In contrast to the usage of Pearson’s correlation coefficient ρ
in connection with the Gaussian copula, we cannot ensure equivalence (K5) for any
Archimedean copula. For calculating Kendall’s τK regarding Archimedean copulae
the following lemma is very important.

Lemma 4.4 (Kendall’s τK of any Archimedean copula). Let X1 and X2 be real ran-
dom variables, whose joint CDF is given by any Archimedean copula CArc

2,φθ according
to Theorem 1.2. Then, the rank correlation coefficient Kendall’s τK

X1,X2
is given by

τK
X1,X2

= 1 + 4
1∫

0

φθ(t)
φ
′
θ(t)

dt. (4.6)

Proof. Equation (4.6) is implicated by Theorem 3.1 and equation (4.5), see [Nel06,
Corollary 5.1.4].

With the help of the Lemma 4.4 above it is possible to calculate Kendall’s τK

analytically for certain Archimedean copulae (depending on φθ). Thus, it is also
possible to calculate a codomain IτK for any Archimedean copula representing all
possible values of τK, cp. Table 4.2.

Copula Dθ τK IτK

Clayton CCla
d,φθ

(0,∞) θ
θ+2 (0, 1)

Frank CFra
d,φθ

(0,∞) 1− 4
θ

[1−D1(θ)] (7) (0, 1)
Gumbel CGum

d,φθ
[1,∞) 1− 1

θ
[0, 1)

Table 4.2.: Calculation and codomain of Kendall’s τK with respect to selected
Archimedean copulae.

4.2.1. Drawing random tuples according to Archimedean
copulae

In this subsection we present efficient algorithms for drawing random tuples v ∼
CArc
d,φθ

, which are distributed according to any Archimedean copula (cp. also Sub-
section 4.1.2 for applying the Gaussian copula). At this, we especially consider the
Archimedean copulae from Table 4.1.

(7)cp. [BK06, Table 2], Dk(θ) denotes the Debye–function (cp. [AS70, Section 27.1])
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According to Bernstein’s famous Theorem from 1928 (cp. [Fel71, Section XIII.4]) a
function g : [0,∞) 7→ R with g(0) = 1 is completely monotone (cp. Definition 4.4),
if and only if it equals the Laplace–Stieltjes transformation of a CDF G, i.e.

∀y ∈ R≥0 : g(y) =
∫ ∞

0
exp (−yx) dG(x).

In this manner we can create an Archimedean copula out of any CDF G and vice
versa a CDF G out of any Archimedean copula (cp. [Joe97, Section 4.2]). Further-
more, we are able to establish a very simple algorithm for sampling tuples according
to Archimedean copulae (cp. [MO88, Section 5]).

LetX1, . . . , Xd be real random variables, whose joint CDF is given by any Archimedean
copula CArc

d,φθ
. Then, we can easily see that random variable Xi follows a one–factor

model, i.e. X1, . . . , Xd are conditionally independent under a known factor V Arc. In
addition, we can easily show that factor V Arc is distributed according to CDF FArc,
which is calculated via the inverse Laplace–Stieltjes transformation of the inverse
generator φ−1

θ of copula CArc
d,φθ

(cp. [MFE05, McN08]).

For creating the desired tuple v ∼ CArc
d,φθ

we consequently have to draw d indepen-
dently and uniformly distributed random numbers u1, . . . , ud ∼ U [0, 1] and a random
factor v̂Arc ∼ FArc. The corresponding program is shown in Algorithm 4.3 and the
required CDF FArc of the factor V Arc is given in Table 4.3. For sampling a random
number v̂Arc according to CDF FArc we refer to [Knu00, PFTV07, Nol12]. The
corresponding programs are shown in Appendix B as Algorithms B.2 – B.4.

Copula Factor CDF FArc of factor V Arc

CCla
d,θ V Cla Gamma distribution G1,1/θ (cp. Def. A.1)

CFra
d,θ V Fra Logarithmic distribution L1−exp(−θ) (cp. Def. A.2)

CGum
d,θ V Gum Stable distribution S

(
1
θ
, 1,

(
cos

(
π
2θ

)θ)
, 0; 1

)
(cp. Def. A.3)

Table 4.3.: CDF of factor V Arc for different Archimedean copulae.

With the help of Algorithm 4.3 we can easily and efficiently draw random tuples
distributed to any Archimedean copula. We only have to assume the knowledge of
the inverse Laplace-Stieltjes transformation of its inverse generator φ−1

θ . A huge list
of (inverse) Laplace–Stieltjes transformations is found in [OB73]. In Figure 4.3 600
different random tuples v = (v1, v2)tr ∼ CCla

2,θ are shown.
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Algorithm 4.3: Drawing a tuple v = (v1, . . . , vd)tr ∼ CArc
d,φθ

Input : u = (u1, . . . , ud)tr with ui ∼ U [0, 1]
Output: v = (v1, . . . , vd)tr ∼ CArc

d,φθ

Global : d, θ

1 Sample v̂Arc ∼ FArc // Assumption: F Arc is known
2 for i← 1 to d do
3 vi ← φ−1

θ

(− ln(ui)
v̂Arc

)
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z

3

(a) z = cCla
2,θ1

(v1, v2)
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(b) z = cCla
2,θ2

(v1, v2)

Figure 4.3.: Density function cCla2,θ using parameters θ1 = 0.4 and θ2 = 1.5. Addi-
tionally, 600 tuples (v1, v2)tr ∼ CCla

2,θ are shown on top of the particular
figure, which were drawn by means of Sobol’s sequence.



Part II.

Evaluation models based on copulae





In this part we apply the fundamental methods of Part I to different evaluation mod-
els based on copulae. Thereby, we distinguish between different types of evaluation
models as well as between different types of copulae.

Evaluation models based on copulae are frequently applied in banks, insurances or
business consultancies. Especially in risk management and in investment banking
they are widely used. Here, their area of application ranges from the modeling of
currency–, credit– or liquidity–risks to the evaluation of derivatives of any kind (e.g.
credit derivatives, stock or real options).

In any evaluation model a copula is used for modeling the joint CDF of certain
random variables (cp. Theorem 1.2). The difference between various evaluation
models takes place in the modeling and interacting of the particular MDFs (cp.
Section 2.2). The underlying random variables usually represent default times (for
modeling credit events). However, it is easily possible to expand a copula based
evaluation model to another context like option pricing (cp. Section 6.3).

The first evaluation model based on copulae was presented in [Li00], but it was only
applied to the Gaussian copula. Later on, in [SS01], this approach was generalized
to the usage of any copula. A detailed survey on different evaluation models in
connection with different copulae is found in [Sch03, MFE05].

In this thesis we firstly introduce a static evaluation model acting as a motivation for
a more complex model. After this, we present the semi–dynamic evaluation model
in detail and give numerous suggestions for improvements. Furthermore, we present
applications and some numerical tests according to this model. Finally, we give a
brief outlook to the dynamic evaluation model.





5. Motivation: The static evaluation
model

Regarding the static evaluation model we model the MDFs as discrete distribution
functions with codomains consisting of only three different values. Then, the under-
lying random variables only possess two different values. If these random variables
represent default times of obligors, they will only indicate: “default” or “no default”.
We do not consider the exact times of defaults here.

This concept is often used for evaluating homogeneous credit portfolios. In these
portfolios each asset is scaled to a fixed maturity T (typically T = 1 year) and only
the probabilities that defaults occur in this time interval [0, T ] are of interest. Based
on this information, we can easily calculate statistics like “expected loss” or “Value
at Risk”(8). This concept is not applicable for evaluating credit derivatives or similar
contracts, in which accurate default times are essential.

Let [0, T ] be any fixed time horizon and let S := {S1, . . . , Sd} be a basket of obligors.
We assume that for each obligor Si a probability of default pi is known (default
within [0, T ]). Either this probability is calculated via (cp. Section 2.2 and in detail
equation (2.2))

pi := 1− exp

−

T∫

0

hi(u)du

 (5.1)

or it is estimated by ratings or other market data (for each i ∈ {1, . . . , d}). Further-
more, we define a random variable Xi, i ∈ {1, . . . , d}, according to equation (5.1)
as

Xi :=





0, with probability 1− pi
1, with probability pi

. (5.2)

This random variable acts as an indicator whether obligor Si defaults within [0, T ]
or not. Here, 0 represents “no default” and 1 represents “default”. Consequently,

(8)For a definition of the coefficient “Value at Risk” (abbr.: VaR) cp. [Hul09]
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the CDF of Xi is given by

FXi(x) :=





0, x < 0

1− pi, 0 ≤ x < 1

1, x ≥ 1

(5.3)

for any x ∈ R. Let Čd represent the d–copula stating the joint CDF FX by means
of Sklar’s Theorem 1.2. Then, FX is given by

FX (x1, . . . , xd) = Čd (FX1 (x1) , . . . , FXd (xd)) (5.4)

= Čd








0, x1 < 0

1− p1, 0 ≤ x1 < 1

1, x1 ≥ 1

, . . . ,





0, xd < 0

1− pd, 0 ≤ xd < 1

1, xd ≥ 1




for any x ∈ Rd. Consequently, the joint CDF is a so called “step function”, whose
step heights depend on the underlying copula Čd. However, the step coordinates are
independent of the chosen copula. Additionally, we have to remark that the copula
Čd needs not to be unique, because its arguments FXi are not continuous within this
evaluation model (cp. Theorem 1.2).

In Figure 5.1 two different joint CDFs are shown. These functions were calculated
with equation (5.4) by using two different copulae and d = 2. At this, we can easily
see that four of five shown surfaces are equivalent by definition. Only the surface
(x1, x2)tr ∈ [0, 1]2 depends on the chosen copula.

For sampling a tuple x̂ ∼ FX , which is distributed according to the joint CDF FX ,
we first have to draw a sample v ∼ Čd, which is distributed according to the chosen
copula Čd. For this, we use Algorithms 4.1 – 4.3 and afterwards we calculate x̂ as

x̂i :=





0, vi < 1− pi
1, vi ≥ 1− pi

for each i ∈ {1, . . . , d}.

Example 5.1 (Evaluating a credit portfolio). In order to apply the static evaluation
model to practice we evaluate a credit portfolio in the following. For this, we use
an exemplary credit portfolio given by ifb group AG(9). This portfolio is shown in
Table C.5 and consists of 75 obligors from the health care business. In this table
each obligor Si possesses parameters pi ∈ (0, 1) (probability of default), Ni (nominal
value) and Ri (recovery rate).
(9)ifb AG, Bayenwerft 14, 50678 Cologne, Germany
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Figure 5.1.: Joint CDF z := FX1,X2 (x1, x2) according to eq. (5.4) with d = 2,
p1 = 0.4, p2 = 0.6, Σ1,2 = Σ2,1 = 0.3 (see (a)), θ = 2.0 (see (b)) and
(x1, x2)tr ∈ [−0.5, 1.5]2.

Now, let X1, . . . , X75 denote those random variables, which indicate the defaults of
the corresponding obligors S1, . . . , S75 (cp. equation (5.2)). Their CDFs FX1 , . . . , FX75

are given by equation (5.3) and their joint CDF FX is given by equation (5.4). If
Xi indicates the default of obligor Si, the corresponding loss Li will be calculated
by Li (Xi) = Ni · (1−Ri) ·Xi. Consequently, we can calculate the total loss L of S
as the sum L (X) = ∑75

i=1 Li (Xi).

Combining these information we can calculate the expected loss of S as the expec-
tation

EP [L (X)] :=
∫

R75

L (x) dFX (x) ,

in which P represents the proper product probability measure of random vector X.

Copula ↓ Expected loss VaR
M → 1000 10000 100000 1000 10000 100000
Gauss 0.2849 0.3028 0.3020 5.0300 5.0576 5.0240
Gumbel 0.2861 0.3032 0.3024 5.7952 7.2282 7.1908

Table 5.1.: Expected loss and Value at Risk regarding the credit portfolio from Table
C.5.

In Table 5.1 we calculate the expected loss by means of two different copulae. Fur-
thermore, we calculate the Value at Risk of L with a confidence level of α = 0.99.
For this, we use a Monte–Carlo simulation, which samples tuples x̂ as described
above. We apply M simulations and a homogeneous correlation of τK = 0.4. Al-
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though the expected losses are similar to each other, it is obvious that the Value
at Risks differ significantly. This is caused by the different correlation structures of
the chosen copulae.

Due to the fact that credit portfolios normally consist of obligors with a small
probability of default (0 < pi � 1), more than half of the executed simulations
return the value L = 0. This causes a high variance of the underlying Monte–
Carlo simulation. To reduce the variance, we can easily apply variance reduction
techniques, which are introduced in Section 6.2.



6. The semi–dynamic evaluation
model

The semi–dynamic evaluation model is rather similar to the static evaluation model
discussed in Chapter 5. The crucial difference is the fact that the semi–dynamic
evaluation model is based on proper default times and not only on default indicators
as the static evaluation model.

The semi–dynamic evaluation model was introduced in [Li00] for the first time and
is widely used ever since. Analogically to the static evaluation model, the semi–
dynamic evaluation model is used for pricing credit portfolios. Additionally, we can
evaluate derivatives with payments depending on individual default times of a given
portfolio (e.g. Basket Default Swaps or m-th to Default Swaps).

Let d ∈ N≥2 be any number and let S = {S1, . . . , Sd} be a basket of obligors.
Furthermore, let τ1, . . . , τd denote real random variables, which represent the default
times of obligors S1, . . . , Sd. The CDF of τi is modeled easily with an intensity model
(cp. [DS03] and equation (2.2)) as

∀ti ∈ R≥0 : Fτi (ti) := 1− exp

−

ti∫

0

hi(u)du

 , i ∈ {1, . . . , d}. (6.1)

At this, mapping hi denotes the hazard rate of Si and is assumed to be known and
deterministic.

Now, let Fτ denote the joint CDF of random vector τ = (τ1, . . . , τd)tr and let Čd be
the d–copula that meets

∀t = (t1, . . . , td)tr ∈ Rd

≥0 : Fτ (t) = Čd (Fτ1 (t1) , . . . , Fτd (td)) . (6.2)

Then, the value Vm of anym-th to Default Swap with discounted payoff Λm (t1, . . . , td)
equals the expectation

Vm := EP [Λm (τ )] =
∞∫

0

· · ·
∞∫

0

Λm (t1, . . . , td) dFτ (t) , (6.3)

in which P denotes the product probability measure of τ .
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Remark 6.1 (Discounted payoff). In this thesis we only consider discounted pay-
offs. Therefore, we neglect the add–on “discounted” and just write “payoff” in the
following.

At first sight we can identify two possibilities for solving the integral above. On the
one hand we can use a d–dimensional quadrature, which is very inefficient for huge
dimensions d. On the other hand we can use a Monte–Carlo integration creating
tuples t̂ ∼ Fτ as follows:

1. Draw a tuple v = (v1, . . . , vd)tr ∼ Čd, which is distributed according to Čd (cp.
Algorithms 4.1 – 4.3).

2. Calculate t̂ =
(
t̂1, . . . , t̂d

)tr
as t̂i = F−1

τi
(vi) for each i ∈ {1, . . . , d}.

Unfortunately, a Monte–Carlo integration shows a significantly lower order of con-
vergence than a quadrature method. In the following Section 6.1 we present a
method, which offers a convergence like a quadrature method and a complexity (for
huge dimensions d) like a Monte–Carlo method.

6.1. The distribution of the m–th smallest default
time

As already mentioned before, with the semi–dynamic evaluation model we are able
to price products, whose value depends on the individual default times or rather
on the sequence of defaults. The most popular example for such products is the
well–known m–th to Default Swap (abbr.: mBDS, cp. Chapter 2).

Let Vm denote the value of any mBDS with payoff function Λm and let τ , Fτi and
Fτ be defined analogically to the introduction above. Then, Vm is given by

Vm : =
∞∫

0

· · ·
∞∫

0

Λm (t1, . . . , td) dFτ (t)

=
∞∫

0

· · ·
∞∫

0

Λm (t1, . . . , td) · fτ (t) dt. (6.4)

Here, mapping fτ = ∂d

∂t1···∂tdFτ denotes the joint PDF of Fτ .

In order to calculate Vm from equation (6.4), the application of a d–dimensional
quadrature seems to be obvious. Unfortunately, this approach causes infeasible effort
for huge dimensions d and is therefore neglected in the following. Alternatively, we
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develop a quadrature approach, which uses the distribution of the m–th smallest
default time and is consequently able to reduce the dimension of equation (6.4)
significantly.

Let t = (t1, . . . , td)tr be a realization of random vector τ and let ι (t) (abbr.: ι) be
a permutation of index set {1, . . . , d}, which induces tι1(t) ≤ . . . ≤ tιd(t).

We can observe that payments ΛDP
m and ΛPP

m (cp. Chapter 2) are only depending
on the m–th smallest default time tιm (we neglect the dependence on Rιm and Nιm

here). Let Λm (t1, . . . , td) be any mBDS payoff function. Then, we can simplify Λm

to
Λ̃m (tιm) := Λm (t1, . . . , td)

for any t ∈ Rd

≥0.

Remark 6.2 (Dependence on m). In fact, mapping Λ̃m (tιm) does not depend on m
itself, but only on its argument tιm . Consequently we define Λ̃ (tιm) := Λ̃m (tιm).

Definition 6.1 (Perpetual payoff). Obviously, payoff Λm(t) and also payoff Λ̃(tιm)
remain constant for any tuple t = (t1, . . . , td)tr ∈ Rd

≥0 meeting tιm > T . Thus, we
define

Λm,∞ := Λm(t)

for any t ∈ (T,∞]d and
Λ̃∞ := Λ̃(t)

for any t ∈ (T,∞]. Especially the limit values limt↗∞ Λ̃(t) and limt↘T Λ̃(t) are
included. Despite the different notation, Λm,∞ = Λ̃∞ holds, of course.

Let τιm denote the real random variable, which represents the m–th smallest default
time within S. In addition, let Fτιm denote its CDF and fτιm its PDF. The aim of
this section is the development of CDF Fτιm and the simplification of any mBDS
evaluation by means of

Vm =
∞∫

0

· · ·
∞∫

0

Λm (t1, . . . , td) dFτ (t) ?=
∞∫

0

Λ̃(t)dFτιm (t). (6.5)

In order to prove equation (6.5) we have to derive the CDF Fτιm first, which is
done by means of the famous principle of inclusion and exclusion, see the following
lemma.
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Lemma 6.1 (Principle of inclusion and exclusion). Let Mi denote the set {τi ≤ t}
(short form of {ωi ∈ Ωi|τi(ωi) ≤ t}) for any fixed t ∈ [0,∞] and i ∈ {1, . . . , d}.
Then, the CDF Fτιm of random variable τιm is given by

Fτιm (t) = P




( dm)⋃

l=1

⋂

i∈Il,|Il|=m
Il⊆{1,...,d}

Mi


 =

d∑

k=m
(−1)k−m

(
k − 1
m− 1

) ∑

I⊆{1,...,d}
|I|=k

P
(⋂

i∈I
Mi

)

=
d∑

k=m
(−1)k−m

(
k − 1
m− 1

) ∑

I⊆{1,...,d}
|I|=k

Fτ I (tk)

=
d∑

k=m
(−1)k−m

(
k − 1
m− 1

) ∑

I⊆{1,...,d}
|I|=k

ČI
k

(
FτI1 (t), . . . , FτIk (t)

)
,

in which notations τ I := (τj)j∈I and tk = (t, . . . , t)tr ∈ Rk

≥0 hold.

Proof. See pages 50ff..

Now, we are able to prove equality (6.5) with the help of Lemma 6.1. In order
to avoid the cumbersome calculation of fτιm = d

dtFτιm we introduce the following
proposition.

Proposition 6.1 (Integration by parts). Let Λ̃(t) be continuously differentiable on
(0,∞). Then, we can simplify
∞∫

0

Λ̃(t)dFτιm (t) =
∞∫

0

Λ̃(t) · fτιm (t)dt = Λ̃(t) · Fτιm (t)
∣∣∣
∞
0
−
∞∫

0

Λ̃′(t) · Fτιm (t)dt (6.6)

by means of integration by parts. Additionally, we know that payoff Λ̃(t) is constant
for any t > T (cp. Definition 6.1). Thus, we can further simplify equation (6.6) to

∞∫

0

Λ̃(t)dFτιm (t) = Λ̃(t) · Fτιm (t)
∣∣∣
∞
0
−
∞∫

0

Λ̃′(t) · Fτιm (t)dt

= lim
t↗∞

Λ̃(t) · lim
t↗∞

Fτιm (t)− Λ̃(0) · Fτιm (0)−
T∫

0

Λ̃′(t) · Fτιm (t)dt

= Λ̃∞ −
T∫

0

Λ̃′(t) · Fτιm (t)dt. (6.7)

Remark 6.3 (Continuous differentiability). To assume continuous differentiability of
Λ̃ on (0,∞) does not imply any restrictions. Usually, the payoff of an mBDS is
at least piecewise continuously differentiable. Consequently, there exists any γ ∈
N and a partition {t0 = 0, t1, . . . , tγ ≤ T, tγ+1 = ∞}, so that Λ̃ is continuously
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differentiable on (ti, ti+1) for each i ∈ {0, . . . , γ}. Then, we can define the mapping
Λ̃′i : [ti, ti + 1] 7→ R, i ∈ {0, . . . , γ} as

Λ̃′i(t) :=





lim
h↘0

Λ̃(ti+h)− lim
t↘ti

Λ̃(t)

h
, t = ti

d
dtΛ̃(t), t ∈ (ti, ti+1)

lim
h↘0

lim
t↗ti+1

Λ̃(t)−Λ̃(ti+1−h)

h
, t = ti+1

and can consequently write

Vm =
∞∫

0

Λ̃(t) · fτιm (t)dt

=
γ∑

i=0
lim
tl↘ti

lim
tu↗ti+1

tu∫

tl

Λ̃(t) · fτιm (t)dt

=
γ∑

i=0
lim
tl↘ti

lim
tu↗ti+1

Λ̃ (t)Fτιm (t)
∣∣∣∣
tu

tl

−
ti+1∫

ti

Λ̃′i(t) · Fτιm (t)dt

=
γ∑

i=1

(
lim
tu↗ti

Λ̃ (tu)− lim
tl↘ti

Λ̃ (tl)
)
Fτιm (ti)−

ti∫

ti−1

Λ̃′i(t) · Fτιm (t)dt+ Λ̃∞.

The last equality holds as long as the MDFs Fτi and d–copula Čd are continuous.

Example 6.1 (Piecewise continuously differentiable payoff). Let Vm be the value
of an mBDS with payoff Λ̃ and maturity T . Furthermore, we assume Λ̃ to be not
continuously differentiable at 0 < t1 < t2 = T . Then, we can calculate Vm as

Vm =
∞∫

0

Λ̃(t) · fτιm (t)dt

= Λ̃∞ +
(

lim
tu↗t1

Λ̃ (tu)− lim
tl↘t1

Λ̃ (tl)
)
Fτιm (t1)−

t1∫

0

Λ̃′i(t) · Fτιm (t)dt

+
(

lim
tu↗T

Λ̃ (tu)− lim
tl↘T

Λ̃ (tl)
)
Fτιm (T )−

T∫

t1

Λ̃′i(t) · Fτιm (t)dt,

in which the notation from Remark 6.3 holds.

Using Lemma 6.1 in connection with Proposition 6.1, we are finally able to prove
equation (6.5) (cp. the following Theorem 6.1). Due to the unspecified copula Čd,
this result is free of any model risk.
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Theorem 6.1 (Evaluation of m-th to Default Swaps). The value Vm of any m-th
to Default Swap with continuously differentiable payoff Λ̃ and maturity T is given
by

Vm = Λ̃∞ −
T∫

0

Λ̃′(t) · Fτιm (t)dt, (6.8)

in which Fτιm (t) is given explicitly by Lemma 6.1.

Proof. See below.

In the following we prove Lemma 6.1 as well as Theorem 6.1 starting with the special
case m = 1.

Proofs of Lemma 6.1 and Theorem 6.1

Proof (Lemma 6.1, m = 1). We have to show that

Fτι1 (t) = P
(

d⋃

l=1
Mi

)
=

d∑

k=1
(−1)k−1 ∑

I⊆{1,...,d}
|I|=k

P
(⋂

i∈I
Mi

)

holds. The first equality is trivially true because we can write

Fτι1 (t) = P (τι1 ≤ t) = P ((τ1 ∨ . . . ∨ τd) ≤ t)

= P ({τ1 ≤ t} ∪ . . . ∪ {τd ≤ t}) = P
(

d⋃

i=1
Mi

)
.

The second equality is known as the famous sieve formula of Poincaré and Sylvester,
cp. [Tak67, Theorem 2] or [Gal11, Chapter 4].

Proof (Theorem 6.1, m = 1). According to equations (6.7) and (6.8) we have to
show

∞∫

0

· · ·
∞∫

0

Λm(t1, . . . , td) · fτ1,...,τd(t1, . . . , td)dt1 · · · dtd =
∞∫

0

Λ̃(t) · fτιm (t)dt.

For a better illustration we only consider the special case d = 2 in the following.
The general case d > 2 is proven analogically.

∞∫

0

∞∫

0

Λ1(t1, t2) · fτ1,τ2(t1, t2)dt1dt2 =
∞∫

0

∞∫

t1

Λ1(t1, t2) · fτ1,τ2(t1, t2)dt2dt1

+
∞∫

0

∞∫

t2

Λ1(t1, t2) · fτ1,τ2(t1, t2)dt1dt2
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=
∞∫

0

Λ̃(t1)
∞∫

t1

fτ1,τ2(t1, t2)dt2dt1 +
∞∫

0

Λ̃(t2)
∞∫

t2

fτ1,τ2(t1, t2)dt1dt2

=
∞∫

0

Λ̃(t1)


∞∫

0

fτ1,τ2(t1, t2)dt2 −
t1∫

0

fτ1,τ2(t1, t2)dt2


 dt1

+
∞∫

0

Λ̃(t2)


∞∫

0

fτ1,τ2(t1, t2)dt1 −
t2∫

0

fτ1,τ2(t1, t2)dt1


 dt2

=
∞∫

0

Λ̃(t1)fτ1(t1)dt1 −
∞∫

0

Λ̃(t1)
t1∫

0

fτ1,τ2(t1, t2)dt2dt1

+
∞∫

0

Λ̃(t2)fτ2(t2)dt2 −
∞∫

0

Λ̃(t2)
t2∫

0

fτ1,τ2(t1, t2)dt1dt2

=
∞∫

0

Λ̃(t)dFτ1(t)−
∞∫

0

Λ̃(t1) ∂Fτ1,τ2(t1, t2)
∂t1

∣∣∣∣∣
t2=t1

dt1

+
∞∫

0

Λ̃(t)dFτ2(t)−
∞∫

0

Λ̃(t2) ∂Fτ1,τ2(t1, t2)
∂t2

∣∣∣∣∣
t1=t2

dt2

=
∞∫

0

Λ̃(t)dFτ1(t) +
∞∫

0

Λ̃(t)dFτ2(t)

−
∞∫

0

Λ̃(t)
[
∂Fτ1,τ2(t, t2)

∂t

∣∣∣∣∣
t2=t

+ ∂Fτ1,τ2(t1, t)
∂t

∣∣∣∣∣
t1=t

]
dt

=
∞∫

0

Λ̃(t)dFτ1(t) +
∞∫

0

Λ̃(t)dFτ2(t)−
∞∫

0

Λ̃(t)dFτ1,τ2(t, t)

=
∞∫

0

Λ̃(t) · d [Fτ1(t) + Fτ2(t)− Fτ1,τ2(t, t)]

Lemma 6.1=
∞∫

0

Λ̃(t) · dFτι1 (t) =
∞∫

0

Λ̃(t) · fτι1 (t)dt

Example 6.2 (First to Default Swap from [Li00]). Let V Li
1 be the value of the First

to Default Swap given in [Li00, Exhibit 6]. For this, let τ1, . . . , τd be independent
random variables and let each hazard rate hi(t) be constant and equal to each
other, h :≡ hi(t). The underlying payoff is denoted by Λ̃Li and is defined as Λ̃Li(t) =
1 · exp (−rt). Li stated the value V Li

1 as

V Li
1 = dh

r + dh
(1− exp(−T (r + dh))) , (6.9)

in which r denotes a constant risk free interest rate and T denotes any maturity.
In the following this analytical formula (6.9) is proven by using Lemma 6.1 and
Theorem 6.1.



52 Chapter 6. The semi–dynamic evaluation model

First, the joint CDF of random vector τ is given by means of the product copula
(cp. Lemma 4.2) as

Fτ (t) = Čd (Fτ1(t1), . . . , Fτd(td))

= Pd (Fτ1(t1), . . . , Fτd(td))

=
d∏

i=1
Fτi(ti)

for any t ∈ Rd

≥0. Due to the usage of constant hazard rates hi(t) ≡ h we obtain the
MDFs

F (t) := Fτ1(t) = . . . = Fτd(t) = 1− exp(−ht)

for any t ∈ R≥0. Thus, Lemma 6.1 results in

Fτι1 (t) =
d∑

k=1
(−1)k−1 ∑

I⊆{1,...,d}
|I|=k

P
(⋂

i∈I
{τi ≤ t}

)

=
d∑

k=1
(−1)k−1 ∑

I⊆{1,...,d}
|I|=k

P I
k (F (t), . . . , F (t))

=
d∑

k=1
(−1)k−1 ∑

I⊆{1,...,d}
|I|=k

F (t)k =
d∑

k=1
(−1)k−1

(
d

k

)
F (t)k

= −
d∑

k=0

(
d

k

)
(1)d−k(−F (t))k + 1 = 1− (1− F (t))d

and

fτι1 (t) = d(1− F (t))d−1 dF (t)
dt = d(exp(−ht))d−1h exp(−ht)

= hd exp(−dht)

holds. Finally, the usage of Theorem 6.1 leads to

V Li
1 =

T∫

0

exp(−rt) · fτι1 (t)dt = dh

T∫

0

exp(−t(r + dh))dt

= dh

r + dh
(1− exp(−T (r + dh))) ,

which is equivalent to equation (6.9). Alternatively to the approach above, we can
avoid the calculation of fτι1 by means of Proposition 6.1.

After considering this short example we continue with the proofs of Lemma 6.1 and
Theorem 6.1 by considering the general case of m ∈ {1, . . . , d}.
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Proof (Lemma 6.1, m ∈ {1, . . . , d}). In order to prove Lemma 6.1 for the general
case of m ∈ {1, . . . , d} we have to show

Fτιm (t) = P




( dm)⋃

l=1

⋂

i∈Il,|Il|=m
Il⊆{1,...,d}

Mi


 =

d∑

k=m
(−1)k−m

(
k − 1
m− 1

) ∑

I⊆{1,...,d}
|I|=k

P
(⋂

i∈I
Mi

)
,

in which Mi denotes the set {τi ≤ t} again. The first equality is proven in the same
way as special case m = 1 and is also trivially true. The second equality is proven by
means of the general probability theorem of [Tak67, Theorem 2] or [Gal11, Chapter
4], which states the probability of observing exactly m defaults within d obligors
by

P (# of defaults = m) = P




•⋃

l∈{1,...,( dm)}

⋂

i∈Il,|Il|=m
Il⊆{1,...,d}

Mi




=
d∑

k=m
(−1)k−m

(
k

m

) ∑

I⊆{1,...,d}
|I|=k

P
(⋂

i∈I
Mi

)
, (6.10)

in which
•⋃ denotes a disjoint union. Consequently, for calculating the probability

of observing at least m defaults within d obligors we only have to sum up equation
(6.10). This leads to

P (τιm ≤ t) = P




( dm)⋃

l=1

⋂

i∈Il,|Il|=m
Il⊆{1,...,d}

Mi


 =

d∑

j=m
P(# of defaults = j)

=
d∑

j=m

d∑

k=j
(−1)k−j

(
k

j

) ∑

I⊆{1,...,d}
|I|=k

P
(⋂

i∈I
Mi

)

=
d∑

k=m

k∑

j=m
(−1)k−j

(
k

j

) ∑

I⊆{1,...,d}
|I|=k

P
(⋂

i∈I
Mi

)

=
d∑

k=m
ck,m

∑

I⊆{1,...,d}
|I|=k

P
(⋂

i∈I
Mi

)
,

with

ck,m : =
k∑

j=m
(−1)k−j

(
k

j

)
= (−1)k−m

(
k

m

)
+ 1 +

k−1∑

j=m+1
(−1)k−j

(
k

j

)

= (−1)k−m
(
k

m

)
+ 1 +

k−1∑

j=m+1
(−1)k−j

((
k − 1
j − 1

)
+
(
k − 1
j

))

= (−1)k−m
(
k

m

)
+ 1 + (−1)k−(m+1)

(
k − 1
m

)
− 1
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= (−1)k−m
((

k

m

)
−
(
k − 1
m

))
= (−1)k−m

(
k − 1
m− 1

)
.

Proof (Theorem 6.1, m ∈ {1, . . . , d}). In order to complete the proof of Theorem
6.1 we have to show

∞∫

0

· · ·
∞∫

0

Λm(t1, . . . , td) · fτ (t1, . . . , td)dt1 · · · dtd =
∞∫

0

Λ̃(t) · fτιm (t)dt.

This can be shown by applying Lemma 6.1 with m ∈ {1, . . . , d} and proceeding
analogically to the proof of Theorem 6.1 with m = 1.

The proofs above show that we are able to simplify the pricing integral from equation
(6.4) to an one–dimensional problem for any m ∈ {1, . . . , d}. Nevertheless, we have
to pay attention to the complexity of Fτιm , which we do in the following.

6.1.1. Computational simplifications

The calculation of Fτιm consists of O
(
2d
)
function calls in the worst case. Hence,

we will only be able to calculate Fτιm straight forward, if dimension d is moderate.
A significant reduction of complexity is achieved by using radial symmetric copulae,
though.

Remark 6.4 (Reflecting the distributions). By reflecting PDFs fτ1 , . . . , fτd and payoff
Λ̃ with respect to the y–axis we can create new PDFs f̂τ1(t), . . . , f̂τd(t) with corre-
sponding CDFs F̂τ1(t) = 1 − Fτ1(−t), . . . , F̂τd(t) = 1 − Fτd(−t) and a new payoff
Λ̂(t), in which t ∈ (−∞, 0] holds.

Thus, we can state the CDF Fτιm of the m–th smallest default time by means of the
transformed CDF F̂τιd−m+1

of the (d − m + 1)–smallest default time. For a better
illustration we show the special case d = 2 and m = 1 in the following (at (∗) we
use the radial symmetry property).

V1 =
∞∫

0

Λ̃(t)fτι1 (t)dt = Λ̃∞ −
T∫

0

Λ̃′(t)Fτι1 (t)dt

= Λ̃∞ −
T∫

0

Λ̃′(t)
(
Fτ1(t) + Fτ2(t)− Č2 (Fτ1(t), Fτ2(t))

)
dt
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= Λ̃∞ − Λ̃(T ) + Λ̃(0)

+
T∫

0

Λ̃′(t)
[
1− Fτ1(t)− Fτ2(t) + Č2 (Fτ1(t), Fτ2(t))

]
dt

(∗)= Λ̃(0) +
T∫

0

Λ̃′(t)Č2 (1− Fτ1(t), 1− Fτ2(t)) dt

= Λ̂(0)−
T∫

0

Λ̂′(−t)Č2
(
F̂τ1(−t), F̂τ2(−t)

)
dt

= Λ̂(t)F̂τι2 (t)
∣∣∣
0

−∞
−

0∫

−T
Λ̂′(t)F̂τι2 (t)dt =

0∫

−∞
Λ̂(t)f̂τι2 (t)dt

Consequently it is possible to evaluate an m–th to Default Swap with exactly the
same effort as needed for the evaluation of a (d−m+ 1)–th to Default Swap. Thus,
especially the evaluation of an m–th to Default Swap with small or huge m becomes
very efficient. By using this modification we can reduce the complexity of Fτιm from
O(2d) down to O(2d−1) in the worst case.

Although Remark 6.4 discloses a significant effort reduction we have to notice that it
will not be applicable, if the underlying copula is not radial symmetric. In contrast
to this, the next remark shows a modification, which is applicable for any copula.

Remark 6.5 (Simultaneous Pricing). Due to the special structure of Fτιm we are
able to price different contracts simultaneously. Within the calculation of Vm with
respect to basket S, we can collect all required terms for the calculation of

I any k-th to Default Swaps with respect to S, k ∈ {m+ 1, . . . , d}, and

I any k-th to Default Swaps with respect to S ′ ⊂ S, k ∈ {m+ 1, . . . , d}.

Additionally, it is possible to derive an “mBDS – CDS – parity”, see the following
lemma.

Lemma 6.2 (mBDS – CDS – parity). Let S := {S1, . . . , Sd} be any basket of
obligors and let V1, . . . , Vd be the values of the particular 1–st, . . . , d–th to Default
Swaps. Furthermore, let V CDS

1 , . . . , V CDS
d denote the values of the CDS contracts

regarding the particular obligors. Then, equality

d∑

m=1
Vm =

d∑

i=1
V CDS
i (6.11)

will hold, if we assume a common payoff Λ̃.
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Proof. Consider the sum
d∑

m=1
Fτιm (t) =

d∑

m=1

d∑

k=m
(−1)k−m

(
k − 1
m− 1

) ∑

I⊆{1,...,d}
|I|=k

Fτ I (tk)

=
d∑

k=1

k∑

m=1
(−1)k−m

(
k − 1
m− 1

) ∑

I⊆{1,...,d}
|I|=k

Fτ I (tk)

=
d∑

k=1

∑

I⊆{1,...,d}
|I|=k

Fτ I (tk)
k∑

m=1
(−1)k−m

(
k − 1
m− 1

)

and exploit that
k∑

m=1
(−1)k−m

(
k − 1
m− 1

)
=

k−1∑

m=0
(−1)k−1−m

(
k − 1
m

)
= 0

holds for any k > 1. Thus, only the summand for k = 1 remains and equality
d∑

m=1
Fτιm (t) =

∑

I⊆{1,...,d}
|I|=1

Fτ I (t) =
d∑

i=1
Fτi(t),

holds for any t ∈ R≥0. The common consideration of the equation above and
Theorem 6.1 proves the assumption.

Due to the special form of Fτιm we can easily derive further parities as we can see
in the following example.

Example 6.3 (Further parities). Let S = S123 := {S1, S2, S3} be any basket of
obligors and let m = 1 hold. Then, the value V S123

1 of the underlying First to
Default Swap with respect to basket S123 is given by

V S123
1 =

∞∫

0

Λ̃(t)dFτι1 (t)

=
∞∫

0

Λ̃(t)d [Fτ1(t) + Fτ2(t) + Fτ3(t)− Fτ1,τ2(t, t)− Fτ1,τ3(t, t)− Fτ2,τ3(t, t)

+Fτ1,τ2,τ3(t, t, t)] .

This guarantees the validity of parity

V S123
1 = 1

2
(
V S12

1 + V S13
1 + V S23

1 − V S123
2

)
.

6.1.2. Special cases

In this subsection we regard special cases, which occur by applying Lemma 6.1 and
Theorem 6.1. Each special case offers huge possibilities for effort reduction and the
special case of independent default times will be of high importance later on.
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Problem: Recovery rate and nominal value

First we discuss a problem, which has been neglected so far. In Section 2.1 we
introduced some typical payments of mBDSs. Except its dependence on the m–th
smallest default time tιm , the default payment (cp. Definition 2.2) also depends on
the recovery rate Rιm (and the nominal value Nιm) of the obligor, who causes the
m–th default event (cp. equation (2.1)). Unfortunately, this dependence cannot be
included into the pricing with respect to Fτιm and payoff Λ̃.

In practice we can neglect this problem, because the recovery rate represents an
unknown parameter. This means that we have to estimate its value and due to this
we can often observe homogeneous input data like R := R1 = . . . = Rd. Further-
more, products traded at markets are often regulated, i.e. they show homogeneous
nominal values. In portfolios, which are not homogeneous, we can at least calculate
bounds for its value by inserting the lowest and highest recovery rate respectively
(analogical proceeding with respect to the nominal value).

In general we suggest a context depending application of the pricing via the m–th
smallest default time. In very inhomogeneous baskets (regarding recovery rates and
nominal values) we do not advise this technique.

Homogeneous hazard rates

If each MDF of random vector τ is based on an equal hazard rate h1 = . . . = hd =: h,
the calculation of CDF Fτιm (t) will be simplified enormously. Due to Lemma 6.1
Fτιm (t) is given by

Fτιm (t) =
d∑

k=m
(−1)k−m

(
k − 1
m− 1

) ∑

I⊆{1,...,d}
|I|=k

ČI
k

(
FτI1 (t), . . . , FτIk (t)

)
.

If h1 = . . . = hd = h holds, we will be able to simplify Fτ1(t) = . . . = Fτd(t) =: F (t)
and get

Fτιm (t) =
d∑

k=m
(−1)k−m

(
k − 1
m− 1

) ∑

I⊆{1,...,d}
|I|=k

Čk(F (t), . . . , F (t)︸ ︷︷ ︸
k elements

)

=
d∑

k=m
(−1)k−m

(
k − 1
m− 1

)(
d

k

)
Čk (F (t), . . . , F (t))

=
d∑

k=m
(−1)k−m d!

k(m− 1)!(k −m)!(d− k)!Čk (F (t), . . . , F (t)) ,

which represents an immense effort reduction.
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Independent default times

In the following we consider d different obligors S1, . . . , Sd, which default indepen-
dently of each other. Assuming this, we can simplify the calculation of Fτιm signifi-
cantly.

As we know through Lemma 6.1 and Example 6.2 the CDF Fτιm will be given by

Fτιm (t) =
d∑

k=m
(−1)k−m

(
k − 1
m− 1

) ∑

I⊆{1,...,d}
|I|=k

k∏

l=1
FτIl (t), (6.12)

if we assume independent default times. Let us now assume that we are interested
in the distribution of the first default time, i.e. m = 1 holds. Then, we can state
the following lemma.

Lemma 6.3 (Nested calculation, m = 1). If we assume independent default times
τ1, . . . , τd and a triggering event m = 1, the simplification

Fτι1 (t) =
d∑

k=1
(−1)k−1 ∑

I⊆{1,...,d}
|I|=k

k∏

l=1
FτIl (t) = ηd (τ1, . . . , τd) (t) (6.13)

will hold for any t ∈ R≥0, in which ηd (τ1, . . . , τi) (t) is defined recursively by

ηd (τ1, . . . , τi) (t) :=





(Fτi(t)− 1) ηd (τ1, . . . , τi−1) (t) + (−1)d−iFτi(t), if 0 < i ≤ d

0, else

for each i ∈ {0, . . . , d}.

Proof. The proof uses the method of induction with respect to d ∈ N≥2. In the base
clause d = 2 we get

Fτι1 (t) = Fτ1(t) + Fτ2(t)− Fτ1(t)Fτ2(t),

which is valid obviously. In the induction step we assume the validity of equation
(6.13) for a fixed d ∈ N≥2. Then, we have to prove

Fτι1 (t) =
d+1∑

k=1
(−1)k−1 ∑

I⊆{1,...,d+1}
|I|=k

k∏

l=1
FτIl (t)

!= ηd+1 (τ1, . . . , τd+1) (t), (6.14)

for any t ∈ R≥0, in which ηd+1 (τ1, . . . , τd+1) (t) is defined by
ηd+1 (τ1, . . . , τi) (t)

:=





(Fτi(t)− 1) ηd+1 (τ1, . . . , τi−1) (t) + (−1)d+1−iFτi(t), if 0 < i ≤ d+ 1

0, else
(6.15)
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for each i ∈ {0, . . . , d + 1}. For this, we decompose equation (6.14) and transform
it to

Fτι1 (t) =
d+1∑

k=1
(−1)k−1 ∑

I⊆{1,...,d+1}
|I|=k

k∏

l=1
FτIl (t)

=
d∑

k=1
(−1)k−1 ∑

I⊆{1,...,d}
|I|=k

k∏

l=1
FτIl (t) +

d+1∑

k=1
(−1)k−1 ∑

I⊆{1,...,d+1}
|I|=k, d+1∈I

k∏

l=1
FτIl (t)

=
(
−Fτd+1 + 1

)
·




d∑

k=1
(−1)k−1 ∑

I⊆{1,...,d}
|I|=k

k∏

l=1
FτIl (t)


+ Fτd+1

(∗)=
(
Fτd+1(t)− 1

)
· (−1) · ηd (τ1, . . . , τd) (t) + Fτd+1(t)

=
(
Fτd+1(t)− 1

)
· ηd+1 (τ1, . . . , τd) (t) + (−1)d+1−(d+1)Fτd+1(t)

= ηd+1 (τ1, . . . , τd+1) (t),

in which the induction hypothesis is used at equality (∗).

By means of Lemma 6.3 we achieve an enormous effort reduction for calculating Fτι1 .
We can easily count that a plain evaluation of Fτι1 via equation (6.12) requires at
least ηplaind,+ := 2d − 2 additions and ηplaind,· := 2d − 1− d multiplications. By applying
Lemma 6.3 we are able to reduce the effort to ηnestedd,+ := 2(d − 1) additions and
ηnestedd,· := d − 1 multiplications (cp. Figure 6.1), which makes this simplification
essential. For a better illustration we give an example in the following.

Example 6.4 (Independent default times, m = 1). Let d = 4, m = 1 hold and let
τ1, . . . , τ4 denote independent random variables. Applying the plain calculation of
Fτι1 via equation (6.12) and neglecting the argument t ∈ R≥0 we get

Fτι1 =Fτ1 + Fτ2 + Fτ3 + Fτ4

− (Fτ1Fτ2 + Fτ1Fτ3 + Fτ1Fτ4 + Fτ2Fτ3 + Fτ2Fτ4 + Fτ3Fτ4)

+ Fτ1Fτ2Fτ3 + Fτ1Fτ2Fτ4 + Fτ1Fτ3Fτ4 + Fτ2Fτ3Fτ4

− Fτ1Fτ2Fτ3Fτ4 .

Consequently, we have to execute 14 additions and 11 multiplications. In contrast
to this, the application of Lemma 6.3 calculates Fτι1 (t) as

Fτι1 = (Fτ4 − 1)
(

(Fτ3 − 1)
(

(Fτ2 − 1) (−Fτ1) + Fτ2

)
− Fτ3

)
+ Fτ4 ,

which requires only 6 additions and 3 multiplications.
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Figure 6.1.: Ratio of effort reduction due to Lemma 6.3.

Nevertheless, the simplification presented in Lemma 6.3 is not applicable for general
m ∈ {1, . . . , d}, because the equality of

(
m−1
m−1

)
=
(
l−1
m−1

)
for each l ∈ {m, . . . , d} is

essential for its validity. Because this equality is only valid in the special case m = 1,
we have to look for another simplification, which is valid for each m ∈ {1, . . . , d}.

Lemma 6.4 (Nested calculation, m ∈ {1, . . . , d}). Let τ1, . . . , τd be independent
random variables and let m ∈ {1, . . . , d} be any number. Then, for any t ∈ R≥0, we
can simplify

Fτιm (t) =
d∑

k=m
(−1)k−m

(
k − 1
m− 1

) ∑

I⊆{1,...,d}
|I|=k

k∏

l=1
FτIl (t)

=
d∑

k=m
(−1)k−m

(
k − 1
m− 1

)
· η̃(k, d− k + 1)(t), (6.16)

in which η̃(k, l)(t) is defined recursively by

η̃(k, l)(t) :=





Fτ1(t), if k = l = 1

η̃(k, l − 1)(t) + Fτl(t), if k = 1 and l > 1

η̃(k − 1, l)(t) · Fτk(t), if k > 1 and l = 1

η̃(k − 1, l)(t) · Fτk+l−1(t) + η̃(k, l − 1)(t), if k > 1 and l > 1

(6.17)

for each k ∈ {1, . . . , d} and l ∈ {1, . . . ,min{d− k + 1, d−m+ 1}}.
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Proof. For proving the assumption we just have to show

∑

I⊆{1,...,d}
|I|=k

k∏

l=1
FτIl (t) = η̃(k, d− k + 1)(t), (6.18)

which is done by applying a 2–dimensional induction regarding d ∈ N≥2 (outer induc-
tion) and k ∈ {1, . . . , d} (inner induction). Clearly spoken equation (6.18) denotes
the sum of all possible k–dimensional products with respect to any d–dimensional
basic set. For the base clause in the outer induction we consider d = 2 and obviously
get




∑
I⊆{1,2}
|I|=k

k∏
l=1

FτIl (t) = Fτ1(t) + Fτ2(t) = η̃(1, 1)(t) + Fτ2(t) = η̃(1, 2)(t), for k = 1

∑
I⊆{1,2}
|I|=k

k∏
l=1

FτIl (t) = Fτ1(t) · Fτ2(t) = η̃(1, 1)(t) · Fτ2(t) = η̃(2, 1)(t), for k = 2
.

We want to assume that equation (6.18) holds for a fixed d ∈ N>2 and each k ∈
{1, . . . , d} in order to form the outer induction hypothesis. To justify this, we have
to run an inner induction with respect to k. This induction starts with the base
clause k = 1, which leads to

∑

I⊆{1,...,d}
|I|=1

1∏

l=1
FτIl (t) =

d∑

i=1
Fτi(t) = η̃(1, d)(t)

and is valid obviously. Now we assume that equation (6.18) holds for a fixed d and
a fixed 1 < k < d (inner induction hypothesis) and have the show

∑

I⊆{1,...,d}
|I|=k+1

k+1∏

l=1
FτIl (t) = η̃(k + 1, d− k)(t).

Using some intelligent transformations we get

∑

I⊆{1,...,d}
|I|=k+1

k+1∏

l=1
FτIl (t) = Fτd(t)

∑

I⊆{1,...,d−1}
|I|=k

k∏

l=1
FτIl (t) +

∑

I⊆{1,...,d−1}
|I|=k+1

k+1∏

l=1
FτIl (t)

(∗)= Fτd(t) · η̃(k, d− k)(t) + Fτd−1(t)
∑

I⊆{1,...,d−2}
|I|=k

k∏

l=1
FτIl (t) +

∑

I⊆{1,...,d−2}
|I|=k+1

k+1∏

l=1
FτIl (t)

(∗)= Fτd(t) · η̃(k, d− k)(t) + Fτd−1 · η̃(k, d− k − 1)(t) +
∑

I⊆{1,...,d−2}
|I|=k+1

k+1∏

l=1
FτIl (t)

= . . .
(∗)=

d−k+2∑

l=d
Fτl(t) · η̃(k, l − k)(t) +

k+1∏

l=1
Fτl(t)

=
d−k+2∑

l=d
Fτl(t) · η̃(k, l − k)(t) + Fτk+1 η̃(k, 1)(t)
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= η̃(k + 1, d− k)(t),

in which the inner induction hypothesis was used at (∗). Now, we can assume the
induction hypothesis for the outer induction, i.e. equation (6.18) holds for a fixed
d ∈ N≥2 and for each k ∈ {1, . . . , d}. In order to complete the outer induction step
we finally have to show

∀k ∈ {1, . . . , d+ 1} :
∑

I⊆{1,...,d+1}
|I|=k

k∏

l=1
FτIl (t) = η̃(k, d− k + 2)(t). (6.19)

At this, we do not have to execute an inner induction because we have already done
this in the outer induction hypothesis. Thus, we can state for each k ∈ {1, . . . , d+1}

∑

I⊆{1,...,d+1}
|I|=k

k∏

l=1
FτIl (t) = Fτd+1(t)

∑

I⊆{1,...,d}
|I|=k−1

k−1∏

l=1
FτIl (t) +

∑

I⊆{1,...,d}
|I|=k

k∏

l=1
FτIl (t)

(∗)= Fτd+1(t) · η̃(k − 1, d− k + 2)(t) + η̃(k, d− k + 1)(t)

= η̃(k, d− k + 2),

which uses the outer induction hypothesis at (∗) and finally proves the assumption
(cp. equation (6.18)).

In order to give a further illustration of equation (6.16) and recursion (6.17) we can
easily verify the following statement: for each l ≤ d− k + 1 the term η̃(k, l) equals
the sum of all possible k–dimensional products of the basic set

{
Fτ1 , . . . , Fτk+l−1

}
.

Hence, for obtaining the sum of all possible k–dimensional products regarding the
basic set {Fτ1 , . . . , Fτd} we have to choose l = d− k + 1.

Although the effort reduction of Lemma 6.4 is not as significant as in Lemma 6.3,
we can still observe an immense reduction of complexity. Furthermore, by using
Lemma 6.4 (instead of Lemma 6.3) we can simultaneously calculate the value of any
m
′–th to Default Swap, with d ≥ m

′
> m, because we have already calculated each

required summand η̃(k, d − k + 1) for d ≥ k ≥ m
′
> m by evaluating Vm (cp. also

Remark 6.5).

Next, we count the number of arithmetic operations, which are required for the
calculation of Fτιm (t), in which m ∈ {1, . . . , d} and t ∈ R≥0 are fixed. Applying
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Lemma 6.4 for the calculation of Fτιm (t) we require the following function calls of η̃:

η̃(1, 1)(t) · · · η̃(1, d−m)(t) η̃(1, d−m+ 1)(t)
...

...

η̃(m, 1)(t) · · · η̃(m, d−m)(t) η̃(m, d−m+ 1)(t)
η̃(m+ 1, 1)(t) · · · η̃(m+ 1, d−m)(t)

... . .
.

η̃(d, 1)(t)

Combined with the outer sum
d∑

k=m
we get η̃nestedd,m,+ additions and η̃nestedd,m,· multiplications,

which are defined as

η̃nestedd,m,+ : =
d−m−1∑

l=0
l +m(d−m) + (d−m)

= (d−m)(d−m− 1)
2 + (d−m)(m+ 1)

= (d−m)
(
d+m+ 1

2

)

η̃nestedd,m,· : =
d−m∑

l=0
l + (m− 1)(d−m+ 1) + (d−m)

= (d−m)(d−m+ 1)
2 + (m− 1)(d−m+ 1) + (d−m)

= (d−m+ 1)d+m

2 − 1.

At this, the summand (d−m) denotes the additional arithmetic operations, which
are necessary to form Fτιm (t) out of the different function calls η̃(m, d − m +
1)(t), . . . , η̃(d, 1)(t).

If we use the plain calculation of Fτιm (t) according to the principle of inclusion and
exclusion (cp. Lemma 6.1) and store each calculated product in an intelligent way,
we will need

η̃plaind,m,+ :=
d∑

l=m

(
d

l

)
− 1

additions and

η̃plaind,m,· :=
m∑

l=2

(
d−m+ l

l

)
+

d∑

l=m+1

(
d

l

)
+ (d−m)

multiplications. For a better illustration we refer to the following example.
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Example 6.5 (Independent default times, m ∈ {1, . . . , d}). Let d = 5 and m = 3
hold and let τ1, . . . , τ5 denote independent random variables. Applying the plain
calculation of Fτι3 as in equation (6.12) and neglecting the argument t ∈ R≥0 we get

Fτι3 =Fτ1Fτ2Fτ3 + Fτ1Fτ2Fτ4 + Fτ1Fτ2Fτ5 + Fτ1Fτ3Fτ4 + Fτ1Fτ3Fτ5

+ Fτ1Fτ4Fτ5 + Fτ2Fτ3Fτ4 + Fτ2Fτ3Fτ5 + Fτ2Fτ4Fτ5 + Fτ3Fτ4Fτ5

− 3 [Fτ1Fτ2Fτ3Fτ4 + Fτ1Fτ2Fτ3Fτ5 + Fτ1Fτ2Fτ4Fτ5 + Fτ1Fτ3Fτ4Fτ5

+ Fτ2Fτ3Fτ4Fτ5 ] + 6Fτ1Fτ2Fτ3Fτ4Fτ5 .

This calculation requires 15 additions and 24 multiplications. In contrast, Lemma
6.4 calculates Fτι3 as

Fτι3 =η̃(3, 3)− 3η̃(4, 2) + 6η̃(5, 1)

=η̃(2, 3)Fτ5 + η̃(3, 2)− 3 [η̃(3, 2)Fτ5 + η̃(4, 1)] + 6 [η̃(4, 1)Fτ5 ]

= (η̃(1, 3)Fτ4 + η̃(2, 2))Fτ5 + (η̃(2, 2)Fτ4 + η̃(3, 1))

− 3 [(η̃(2, 2)Fτ4 + η̃(3, 1))Fτ5 + (η̃(3, 1)Fτ4)]

+ 6 [η̃(3, 1)Fτ4Fτ5 ]

= ((η̃(1, 2) + Fτ3)Fτ4 + (η̃(1, 2)Fτ3 + η̃(2, 1)))Fτ5
+ ((η̃(1, 2)Fτ3 + η̃(2, 1))Fτ4 + (η̃(2, 1)Fτ3))

− 3 [((η̃(1, 2)Fτ3 + η̃(2, 1))Fτ4 + (η̃(2, 1)Fτ3))Fτ5 + ((η̃(2, 1)Fτ3)Fτ4)]

+ 6 [η̃(2, 1)Fτ3Fτ4Fτ5 ]

= (((Fτ1 + Fτ2) + Fτ3)Fτ4 + ((Fτ1 + Fτ2)Fτ3 + (Fτ1Fτ2)))Fτ5
+ (((Fτ1 + Fτ2)Fτ3 + (Fτ1Fτ2))Fτ4 + ((Fτ1Fτ2)Fτ3))

− 3 [(((Fτ1 + Fτ2)Fτ3 + (Fτ1Fτ2))Fτ4 + ((Fτ1Fτ2)Fτ3))Fτ5
+ (((Fτ1Fτ2)Fτ3)Fτ4)]

+ 6 [Fτ1Fτ2Fτ3Fτ4Fτ5 ] .

and only requires 9 additions and 11 multiplications.

In Figure 6.2 we show the ratio of effort reduction by applying Lemma 6.4 and
arbitrary d ∈ N≥2 and m ∈ {1, . . . , d}. Obviously, the calculation with the help of
Lemma 6.4 is at worst as complex as the plain method (m = d). For almost any
choice of d and m the usage of Lemma 6.4 offers a huge effort reduction, though.

To sum up, we highly suggest the usage of Lemmata 6.3 and 6.4 for calculating
Fτιm (t) in case of independent random variables. These modifications offer great
possibilities for reducing the complexity of the underlying calculation for any choice
of d and m.

After considering these special cases we apply certain copulae in the following.
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Figure 6.2.: Ratio of effort reduction due to Lemma 6.4.

6.1.3. Application of the Gaussian copula

In this subsection the CDF of the m–th smallest default time is modeled by means
of the Gaussian copula. For this, let Σ denote the correlation matrix of the random
vector (τ1, . . . , τd)tr. Then, for each I = {I1, . . . , Ik} ⊆ {1, . . . , d} and for any
tI ∈ Rk

≥0 the joint CDF of random vector τ I = (τI1 , . . . , τIk)
tr is modeled by

Fτ I (tI1 , . . . , tIk) = ČI
k

(
FτI1 (tI1) , . . . , FτIk (tIk)

)

= CI,Gau
k,ΣI

k

(
FτI1 (tI1) , . . . , FτIk (tIk)

)
,

in which ΣI
k denotes the correlation matrix of the random vector τ I . The aim of

this subsection is the efficient evaluation of any mBDS via

Vm =
∞∫

0

Λ̃(t) · fτιm (t)dt = Λ̃∞ −
T∫

0

Λ̃′(t) · Fτιm (t)dt, (6.20)

in which Fτιm (t) is given by

Fτιm (t) =
d∑

k=m
(−1)k−m

(
k − 1
m− 1

) ∑

I⊆{1,...,d}
|I|=k

CI,Gau
k,ΣI

k

(
FτI1 (t), . . . , FτIk (t)

)
. (6.21)

for any t ∈ R≥0. In order to evaluate equation (6.20) efficiently we have to develop
a method, which can evaluate the term

CI,Gau
k,ΣI

k

(
FτI1 (t), . . . , FτIk (t)

)
(6.22)

efficiently. The term (6.22) denotes the k–dimensional standard Gaussian joint CDF
(cp. Definitions 4.2 and 4.3) and equals a k–dimensional integral. Applying a k–
dimensional quadrature rule would destroy the dimension reduction we have achieved
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so far. Instead we assume that Σ has the one–factor structure (cp. Subsection 3.1.1)

Σ = ΣF
1 = (ψ1, . . . , ψd)tr (ψ1, . . . , ψd) + diagd

(
1− ψ2

1, . . . , 1− ψ2
d

)
.

We could also use a k′–factor structure, k′ ∈ {2, . . . , k − 1}, but for simplicity we
choose a one–dimensional model. With the help of Theorem 4.1, we can simplify
(6.22) to the one–dimensional integral

CI,Gau
k,ΣI

k

(
FτI1 (t), . . . , FτIk (t)

)
=
∫

R

φ(y)
k∏

i=1
Φ



Φ−1
(
FτIi (t)

)
− ψIi · y√

1− ψ2
Ii


 dy. (6.23)

Next, we discuss the efficient evaluation of this integral.

Evaluating the multivariate standard Gaussian distribution

For evaluating the multivariate standard Gaussian joint CDF we use a Gauss–
Hermite quadrature (abbr.: GHQ) in the following (cp. [FH07, SK09, SH12a]).
This quadrature approximates the integral from equation (6.23) by the weighted
sum

∫

R

φ(y)
k∏

i=1
Φ



Φ−1
(
FτIi (t)

)
− ψIi · y√

1− ψ2
Ii


 dy

≈
NH∑

j=1
wj,H exp

(
y2
j,H

)
φ (yj,H)

k∏

i=1
Φ



Φ−1
(
FτIi (t)

)
− ψIi · yj,H√

1− ψ2
Ii


 (6.24)

=: N̂H


NH, k,

(
FτI1 (t), . . . , FτIk (t)

)tr
︸ ︷︷ ︸

=:u

,ψ


 ,

in which yj,H and wj,H denote NH different nodes and weights of the GHQ (cp.
[AS70, PdDKÜK83]).

For quantifying the quality of this approach we apply different values for k, NH, u
and ψ and compare the resulting approximations N̂H (NH, k,u,ψ) to each other.
For this, we use the relative error estimator

ε
′ (NH, k,u,ψ) :=

∣∣∣N̂H (NH, k,u,ψ)− N̂H (2NH, k,u,ψ)
∣∣∣

N̂H (2NH, k,u,ψ)
(6.25)

of approximation N̂H (NH, k,u,ψ). Obviously, error estimator ε′ (NH, k,u,ψ) also
offers an error bound for approximation N̂H (2NH, k,u,ψ).

In the following analysis we draw Nu,ψ = 105 independently and uniformly dis-
tributed tuples u(i) ∈ [0, 1]k and ψ(i) ∈ [−1, 1]k and calculate the approximation
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N̂H (NH, k,u,ψ) afterwards. At this, we choose k ∈ {5, 10, 20, 30} and NH ∈
{4, 8, 16, 32, 64, 128, 256}. The value N̂H (256, k,u,ψ) is assumed to be “exact”
in any approximation and consequently the relative error of any parameter tuple
(NH 6= 256, k,u,ψ) is given by

ε (NH, k,u,ψ) :=

∣∣∣N̂H (NH, k,u,ψ)− N̂H (256, k,u,ψ)
∣∣∣

N̂H (256, k,u,ψ)
. (6.26)

Additionally, the relative error of N̂H (256, k,u,ψ) is bounded by ε′ (128, k,u,ψ) =
ε (128, k,u,ψ).

Alternatively, we can substitute N̂H (256, k,u,ψ) in equation (6.26) by an “evi-
denced exact” value, which was calculated by applying an adaptive Simpson quadra-
ture (cp. [CK07]) with error bound 10−15. However, this proceeding offers similar
results by causing a considerably higher effort. For example, choosing k = 5, an
adaptive Simpson quadrature with error bound 10−15 requires about 4000 nodes and
is therefore neglected in this analysis.

The results of the analysis above are shown in Table 6.1 for k = 5 (different values
for k are shown in Tables C.1 – C.3). At this

εNH,k := 1
Nu,ψ

Nu,ψ∑

l=1
ε
(
NH, k,u

(l),ψ(l)
)

denotes the estimated mean of ε (NH, k,u,ψ), σNH,k denotes its estimated standard
deviation andMNH,k denotes its estimated median. The results are independent of
input vector u. Furthermore, it is obvious that an increasing NH and a decreasing
k improves the approximation. However, we can also observe a dependence on ψ.
This is explained as follows:

The quality of a Gauss quadrature highly depends on the smoothness of the un-
derlying function f . The smoother f is the better it is approximated by apply-
ing a Gauss quadrature. Let us consider a Gauss quadrature using N different
nodes on the interval [a, b] ⊂ R. Then, the approximation error has the structure
c(N, b, a) · f (2N) (ξ) /(2N !) (cp. [FH07, Theorem (3.6.24)]), in which c(N, b, a) is
constant for fixed N, b, a and ξ is located in [a, b].
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|ψj| ↓ NH → 4 8 16 32 64 128
≤

1 εNH,k 8.77e-02 2.98e-02 1.87e-02 4.67e-03 1.86e-03 6.94e-04
σNH,k 2.17e-01 1.24e-01 2.37e+00 6.63e-02 4.35e-02 2.37e-02
MNH,k 1.74e-02 4.08e-04 3.21e-07 9.15e-13 2.40e-15 9.04e-16

≤
0.

95 εNH,k 4.01e-02 3.25e-03 1.34e-04 1.29e-06 8.40e-10 8.38e-15
σNH,k 8.87e-02 1.43e-02 1.26e-03 3.32e-05 5.29e-08 1.28e-12
MNH,k 1.00e-02 1.38e-04 3.67e-08 5.14e-15 1.86e-15 6.94e-16

≤
0.

9 εNH,k 2.65e-02 7.63e-04 4.18e-06 3.50e-09 5.96e-14 1.10e-15
σNH,k 6.66e-02 4.77e-03 6.26e-05 2.07e-07 1.21e-11 1.19e-15
MNH,k 6.24e-03 4.92e-05 5.15e-09 2.30e-15 1.67e-15 6.73e-16

≤
0.

85 εNH,k 2.21e-02 4.45e-04 2.79e-07 1.42e-11 1.75e-15 1.07e-15
σNH,k 5.88e-02 3.96e-03 6.45e-06 8.96e-10 9.83e-16 1.14e-15
MNH,k 4.33e-03 1.98e-05 7.67e-10 1.63e-15 1.65e-15 6.60e-16

≤
0.

8 εNH,k 2.04e-02 3.82e-04 1.02e-07 6.87e-14 1.72e-15 1.04e-15
σNH,k 5.43e-02 2.81e-03 3.34e-06 4.61e-12 9.11e-16 1.10e-15
MNH,k 3.51e-03 1.05e-05 1.66e-10 1.47e-15 1.65e-15 6.57e-16

≤
0.

75 εNH,k 2.01e-02 3.95e-04 1.17e-07 5.72e-15 1.70e-15 1.00e-15
σNH,k 5.07e-02 3.23e-03 4.33e-06 1.77e-13 8.78e-16 1.05e-15
MNH,k 3.64e-03 9.84e-06 9.04e-11 1.46e-15 1.66e-15 6.44e-16

≤
0.

7 εNH,k 1.98e-02 3.92e-04 1.11e-07 5.81e-15 1.68e-15 9.76e-16
σNH,k 4.68e-02 2.45e-03 2.13e-06 1.45e-13 8.50e-16 1.01e-15
MNH,k 4.48e-03 1.45e-05 1.51e-10 1.50e-15 1.66e-15 6.36e-16

Table 6.1.: Different statistics of error estimator ε using k = 5 and Nu,ψ = 105.

To analyze the smoothness of a multidimensional standard Gaussian joint CDF we
define

f(y) : = φ(y)︸ ︷︷ ︸
=:g0(y)

k∏

j=1
Φ

uj − ψj · y√

1− ψ2
j




︸ ︷︷ ︸
=:gj(y)

=
k∏

j=0
gj(y).

Obviously, the smoothness of f depends on the smoothness of g0, . . . , gk. In general,
these functions are numerically well integrable, but within functions g1, . . . , gk we
have to pay attention to the argument

hj(y) = uj − ψj · y√
1− ψ2

j

.
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If function hj(y) shows a high gradient −ψj/
√

1− ψ2
j , then gj(y) as well as f(y) will

also show a high gradient. This behavior is passed on to any further derivative of
f , because the n–th derivative of f is given by

f (n)(y) =
∑

i∈I

(
n

i0, . . . , ik

)
k∏

j=0

∂ijgj(y)
∂yij

︸ ︷︷ ︸
=:si(y)

,

in which I denotes the set

I :=


i = {i0, . . . , ik} ∈ {0, 1, . . . , k}k+1

∣∣∣∣∣∣

k∑

j=0
ij = n





and
(

n
i0,...,ik

)
denotes the multinomialcoefficient (cp. [Maz63])

(
n

i0, . . . , ik

)
= n!
i0! · . . . · ik!

.

In many summands si(y) we consequently multiply factors like −ψj/
√

1− ψ2
j , which

causes extreme gradients of f , especially for values |ψj| ≈ 1. Hence, it makes sense
to restrict the domain of ψ to an interval Iψ ⊂ [−1, 1]k.

All in all we can sum up that in most cases a GHQ with a moderate number of nodes
NH is well suited for approximating the multidimensional standard Gaussian joint
CDF with one–factor correlation. Only in extreme cases (|ψj| ≈ 1 or k large) we
should enlarge the number of nodes or should apply other approximation methods.

Remark 6.6. Because of the high dependence on parameters k and ψ, it makes sense
to choose the number of nodes NH dynamically with respect to k and ψ. Therefore,
in the following we choose the relation shown in Table 6.2. Choosing these numbers
of nodes we can reach an average error bound of 10−14 (excepted NH = 256). If
k > 30 holds, we will choose NH = 256 without restriction.

In summary, by means of a GHQ we can efficiently evaluate the multivariate stan-
dard Gaussian joint CDF, which implies an efficient evaluation of Fτιm . For further
analyses we refer to [SH12a].

Let us now return to the evaluation of an mBDS. Using a Gaussian copula we can
state its value as

Vm =
∞∫

0

Λ̃(t) · fτιm (t)dt = Λ̃∞ −
T∫

0

Λ̃′(t) · Fτιm (t)dt, (6.27)

in which Fτιm is given by equation (6.21) and T denotes the maturity of the under-
lying contract.
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k ↓ |ψ
j
|≤

1

|ψ
j
|≤

0.
95

|ψ
j
|≤

0.
9

|ψ
j
|≤

0.
85

|ψ
j
|≤

0.
8

|ψ
j
|≤

0.
75

|ψ
j
|≤

0.
7

≤ 5 256 128 64 64 32 32 32
≤ 10 256 256 128 64 64 64 32
≤ 20 256 256 128 128 128 64 64
≤ 30 256 256 256 128 128 128 64

Table 6.2.: Suggested number of nodes NH within a GHQ, in which ψ and k are
known.

This (outer) integral is approximated by applying a Gauss–Kronrod quadrature
(abbr.: GKQ). Except the integral approximation, this quadrature is able to state
an error estimator simultaneously.

The GKQ is an extension of the Gauss–Legendre quadrature (abbr.: GLQ). Let
x

(L)
1 < . . . < x

(L)
NL

denote the NL different nodes of a GLQ. Then, a GKQ consists
of the NK different nodes x(K)

1 < . . . < x
(K)
NK

with NK = 2NL + 1 and x
(K)
j = x

(L)
j/2

for each j ∈ {2, 4, . . . , 2NL}. Although the resulting quadrature is of lower order
than a GLQ using NK different nodes, it is able to state an error estimator based
on x(L)

1 < . . . < x
(L)
NL

simultaneously.

Let Vm be the value of any mBDS, which is defined according to equation (6.27).
Then, the two–dimensional integral within Vm is approximated by using a Gauss–
Kronrod quadrature with a nested Gauss–Hermite quadrature (abbr.: GKHQ) as

Λ̃∞ − Vm =
T∫

0

Λ̃′(t) · Fτιm (t)dt

=
T∫

0

Λ̃′(t) ·
d∑

k=m
(−1)k−m

(
k − 1
m− 1

)

︸ ︷︷ ︸
=:ck,m

∑

I⊆{1,...,d}
|I|=k

CI,Gau
k,ΣI

k

(
FτI1 (t), . . . , FτIk (t)

)
dt

=
T∫

0

Λ̃′(t) ·
d∑

k=m
ck,m

∑

I⊆{1,...,d}
|I|=k

∫

R

φ(y)
k∏

i=1
Φ



Φ−1
(
FτIi (t)

)
− ψIi · y√

1− ψ2
Ii




︸ ︷︷ ︸
=:ΦIi (t,y)

dydt (6.28)

≈ T

2

NK∑

β=1
w

(K)
β Λ̃′

(
t
(K)
β

) d∑

k=m
ck,m

∑

I⊆{1,...,d}
|I|=k

NH∑

α=1

w(H)
α · φ(x(H)α )

exp
(
−
(
x
(H)
α

)2)
k∏

i=1
ΦIi

(
t
(K)
β , x(H)α

)

(6.29)

=: Λ̃∞ − V (NK,NH)
m,GKHQ,plain.
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At this, NK denotes the odd number of nodes within the GKQ and NH denotes the
number of nodes within the GHQ. Furthermore, x(H)1 , . . . , x

(H)
NH

and w
(H)
1 , . . . , w

(H)
NH

denote the nodes and weights of the GHQ and w(K)
1 , . . . , w

(K)
NK

denote the weights of
the GKQ. In addition, t(K)

1 , . . . , t
(K)
NK
∈ [0, T ]NK denote the transformed nodes of the

GKQ, which are calculated by t(K)
i =

(
x
(K)
i + 1

)
· T/2 for each i ∈ {1, . . . , NK}.

As already mentioned, within the calculation of V (NK,NH)
m,GKHQ,plain we can easily create an

approximation V
(NL,NH)
m,GLHQ,plain based on a Gauss–Legendre quadrature with a nested

Gauss–Hermite quadrature (abbr.: GLHQ). Of course this approximation has a
lower order than V (NK,NH)

m,GKHQ,plain, but it is very useful for calculating an error estimator.
For this, let w(L)

1 , . . . , w
(L)
NL

denote the weights of the GLQ. Then, V (NL,NH)
m,GLHQ,plain is given

by

Λ̃∞ − V (NL,NH)
m,GLHQ,plain : =

T

2

NL∑

β′=1
w

(L)
β′

Λ̃′
(
t
(K)
2β′
) d∑

k=m
ck,m

∑

I⊆{1,...,d}
|I|=k

NH∑

α=1

w(H)
α · φ(x(H)α )

exp
(
−
(
x
(H)
α

)2)
k∏

i=1
ΦIi

(
t
(K)
2β′ , x

(H)
α

)
(6.30)

and is calculated simultaneously to V (NK,NH)
m,GKHQ,plain. Using these two approximations

we can easily calculate a corresponding error estimator ε(NK,NH)
m,plain as (cp. [Sha08])

ε
(NK,NH)
m,plain :=

∣∣∣∣∣∣
V

(NL,NH)
m,GLHQ,plain − V (NK,NH)

m,GKHQ,plain

V
(NK,NH)
m,GKHQ,plain

∣∣∣∣∣∣
. (6.31)

This error estimator is widely used, for example within the quadrature routine
quadgk of the software package MATLAB R© (cp. [TM11]). For a detailed introduc-
tion to GKQ, GLQ and GHQ we refer to [Kro65, PdDKÜK83, KMN89, FH07, SK09]
and for an efficient calculation of x(K)

1 < . . . < x
(K)
NK

compare [Lau97, Gau04].

Complexity and implementation

Let us analyze the complexity of V (NK,NH)
m,GKHQ,plain and discuss its implementation. For

this, we reform (6.29) to

Λ̃∞ − V (NK,NH)
m,GKHQ,plain

= T

2

NK∑

β=1
w

(K)
β Λ̃′

(
t
(K)
β

)

︸ ︷︷ ︸
w̃

(K)
β

NH∑

α=1

w(H)
α · φ(x(H)α )

exp
(
−
(
x
(H)
α

)2)

︸ ︷︷ ︸
w̃

(H)
α

d∑

k=m
ck,m

∑

I⊆{1,...,d}
|I|=k

k∏

i=1
ΦIi

(
t
(K)
β , x(H)α

)
.

(6.32)

Obviously, we can now apply the same simplifications as we applied in case of
independent default times (cp. Lemmata 6.3 and 6.4). For this let η̃Φ(i, j)(t, x) be
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defined analogically to η̃(i, j)(t) in equation (6.17), with the difference that Fτi(t) is
replaced by Φi (t, x). Then, we can state

V
(NK,NH)
m,GKHQ,nested : = Λ̃∞ −

T

2

NK∑

β=1
w̃

(K)
β

NH∑

α=1
w̃(H)
α

d∑

k=m
ck,mη̃Φ(k, d− k + 1)

(
t
(K)
β , x(H)α

)

(6.33)

= V
(NK,NH)
m,GKHQ,plain

in which η̃Φ(k, l)(t, x) is defined recursively by

η̃Φ(k, l)(t, x) :=





Φ1 (t, x) , if k = l = 1

η̃Φ(k, l − 1)(t, x) + Φl(t, x), if k = 1, l > 1

η̃Φ(k − 1, l)(t, x) · Φk(t, x), if k > 1, l = 1

η̃Φ(k − 1, l)(t, x) · Φk+l−1(t, x) + η̃Φ(k, l − 1)(t, x), if k > 1, l > 1
(6.34)

for any (t, x) ∈ R≥0 × R and for each k ∈ {1, . . . , d} and l ∈ {1, . . . ,min{d − k +
1, d−m+ 1}}.

By using the simplification above the calculation of V (NK,NH)
m,GKHQ,nested requires a number

of arithmetic operations, which is estimated by O (NK ·NH · d2). In the special case
m = 1 they can even be estimated by O (NK ·NH · d) (cp. Lemma 6.3). If we
calculate V (NK,NH)

m,GKHQ,plain (cp. equation (6.32)) without using the simplifications from
Lemmata 6.3 and 6.4, we will get an overall complexity of O

(
NK ·NH · 2d

)
. If we

even neglect the usage of Fτιm and apply a d–dimensional quadrature, we will get
an overall complexity of O

(
Nd
)
, in which N denotes the number of nodes in each

direction. This tremendous effort reduction is further illustrated in Subsection 6.1.5,
in which a real credit derivative is evaluated.

Next, we discuss the implementation of equation (6.33). For reducing the CPU time
significantly we have to attend the storage of values, which are required frequently.
For this, we initialize a matrix X ∈ Rd×NK×NH as

X = (X)i,j,k := Φi

(
t
(K)
j , x

(H)
k

)
. (6.35)

before running the underlying algorithm. Additionally, we initialize vectors

w̃(K) =
(
w

(K)
1 , . . . , w

(K)
NK

)tr ∈ RNK

and w̃(H) =
(
w

(H)
1 , . . . , w

(H)
NH

)tr ∈ RNH

according to equation (6.32).
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The detailed implementation of calculating V (NK,NH)
m,GKHQ,nested is given in Algorithm 6.1.

The implementation of V (NK,NH)
m,GKHQ,plain is neglected here, because it has a higher com-

plexity than the calculation of V (NK,NH)
m,GKHQ,nested in any possible case. For the general

approach of implementing V (NK,NH)
m,GKHQ,plain we refer to the implementation of V (NK,Arc)

m,GKQ,plain

(cp. Subsection 6.1.4), which applies an analogical method.

Algorithm 6.1: Calculation of V (NK,NH)
m,GKHQ,nested

Input : X, w̃(K), w̃(H)

Output: V (NK,NH)
m,GKHQ,nested

Global : d, m, NK, NH

1 Initialize floating–point numbers E1 = E2 = E3 ← 0 and V (NK,NH)
m,GKHQ,nested ← Λ̃∞

2 for i← 1 to NK do
3 E2 ← 0
4 for j ← 1 to NH do
5 if m = 1 then
6 E3 ← CalculateProduct (X, i, j) // cp. Algorithm 6.2
7 else
8 E3 ← CalculateSum (m, X, i, j) // cp. Algorithm 6.3

9 E2 ← E2 + w̃
(H)
j · E3

10 E1 ← E1 + w̃
(K)
i · E2

11 V
(NK,NH)
m,GKHQ,nested ← V

(NK,NH)
m,GKHQ,nested − T

2 · E1

In Algorithm 6.1 we first test whether m = 1 holds or not. If it holds, we will
calculate

d∑

k=m
ck,m

∑

I⊆{1,...,d}
|I|=k

k∏

i=1
ΦIi (t, x)

in function CalculateProduct (cp. Algorithm 6.2) according to Lemma 6.3. If
m = 1 does not hold, we will have to calculate this term via function CalculateSum
in Algorithm 6.3 (according to Lemma 6.4).

Considering Algorithms 6.1 and 6.3 in detail, it is obvious that already small modi-
fications offer the opportunity to evaluate any m′–th to Default Swap with m′ > m.
In Algorithm 6.4 we show these modifications and present an algorithm, which is
able to price each m–th to Default Swap simultaneously, with m ∈ {1, . . . , d}.
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Algorithm 6.2: CalculateProduct(X, i, j)

Input : X, i, j
Output: X ∈ R
Global : d, NK, NH

1 Initialize X ← (−1)d−1X1,i,j

2 for k = 2 to k = d do
3 X ← (Xk,i,j − 1) · X + (−1)d−k · Xk,i,j

Algorithm 6.3: CalculateSum(m, X, i, j)

Input : m, X, i, j
Output: X ∈ R
Global : d, NK, NH

1 Initialize X ← 0 and Y ∈ Rd−m+1

2 for k = 1 to k = d do
3 for l = 1 to l = min{d−m+ 1, d− k + 1} do
4 if (k > 1 and l > 1) then
5 Yl ← Yl · Xk+l−1,i,j + Yl−1

6 else
7 if (k > 1 and l = 1) then
8 Yl ← Yl · Xk,i,j

9 else
10 if (k = 1 and l > 1) then
11 Yl ← Yl−1 + Xl,i,j

12 else
13 Yl ← X1,i,j

14 if k >= m then
15 X ← X + ck,mYd−k+1
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For this, let c̃k ∈ Zd be defined as

c̃k = c̃ki :=




ck,i, if k ≥ i

0, else
. (6.36)

Then, we can easily modify Algorithms 6.1 and 6.3 into vector algorithms. Finally,
Algorithm 6.4 returns the vector V (NK,NH)

GKHQ,nested =
(
V

(NK,NH)
1,GKHQ,nested, . . . , V

(NK,NH)
d,GKHQ,nested

)tr

(cp. Algorithms 6.4 and 6.5).

Algorithm 6.4: Calculation of V (NK,NH)
GKHQ,nested

Input : X, w̃(K), w̃(H)

Output: V (NK,NH)
GKHQ,nested

Global : d, NK, NH

1 Initialize floating–point vectors E1 = E2 = E3 ← 0 ∈ Rd and
V

(NK,NH)
GKHQ,nested ←

(
Λ̃∞, . . . , Λ̃∞

)tr ∈ Rd

2 for i← 1 to NK do
3 E2 ← 0
4 for j ← 1 to NH do
5 E3 ← CalculateSumVec (X, i, j)
6 E2 ← E2 + w̃

(H)
j ·E3

7 E1 ← E1 + w̃
(K)
i ·E2

8 V
(NK,NH)
GKHQ,nested ← V

(NK,NH)
GKHQ,nested − T

2 ·E1

In summary we remark that we are able to evaluate any mBDS with respect to the
Gaussian copula efficiently by means of Algorithms 6.1 to 6.5. Furthermore, the
usage of a GKQ offers the opportunity to calculate an error estimator besides. For
this, we simply have to modify Algorithms 6.1 and 6.4 by adding another variable,
which calculates V (NL,NH)

m,GLHQ,nested (cp. equation (6.30)) via a GLHQ. Afterwards we
can calculate the error estimator according to equation (6.31). Again, we highlight
that the complexity of above evaluations is bounded by O (NKNHd

2) in the worst
case.

6.1.4. Application of Archimedean copulae

Applying Archimedean copulae in order to evaluate any mBDS induces much less
difficulties than applying the Gaussian copula. Usually, it is possible to evaluate
Archimedean copulae as well as their generators in a straight forward fashion. They
do not have to be approximated.
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Algorithm 6.5: CalculateSumVec(X, i, j)

Input : X, i, j
Output: X ∈ Rm

Global : d, NK, NH

1 Initialize floating–point vectors X ← 0 and Y ∈ Rd−m+1

2 for k = 1 to k = d do
3 for l = 1 to l = d− k + 1 do
4 if (k > 1 and l > 1) then
5 Yl ← Yl · Xk+l−1,i,j + Yl−1

6 else
7 if (k > 1 and l = 1) then
8 Yl ← Yl · Xk,i,j

9 else
10 if (k = 1 and l > 1) then
11 Yl ← Yl−1 + Xl,i,j

12 else
13 Yl ← X1,i,j

14 X ← X + c̃k · Yd−k+1
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In the following we assume that the joint CDF Fτ I of random vector τ I = (τI1 , . . . , τIk)
tr

is given by

Fτ I (tI1 , . . . , tIk) = ČI
k

(
FτI1 (tI1) , . . . , FτIk (tIk)

)

= CI,Arc
k,φθ

(
FτI1 (tI1) , . . . , FτIk (tIk)

)
(6.37)

= φ−1
θ

[
φθ
(
FτI1 (tI1)

)
+ . . .+ φθ

(
FτIk (tIk)

)]

for any tI ∈ Rk

≥0 and for each I = {I1, . . . , Ik} ⊆ {1, . . . , d}. The aim of this
subsection is the efficient calculation of Vm. Here, Vm denotes the value of an mBDS
with maturity T and is given by

Vm =
∞∫

0

Λ̃(t) · fτιm (t)dt = Λ̃∞ −
T∫

0

Λ̃′(t) · Fτιm (t)dt,

with

Fτιm (t) =
d∑

k=m
(−1)k−m

(
k − 1
m− 1

) ∑

I⊆{1,...,d}
|I|=k

CI,Arc
k,φθ

(
FτI1 (t), . . . , FτIk (t)

)
(6.38)

for any t ∈ R≥0. Due to the usage of an Archimedean copula, we can approximate
Vm by applying an one–dimensional Gauss–Kronrod quadrature. Evaluating the
multivariate standard Gaussian joint CDF (cp. Subsection 6.1.3) is no challenge
anymore.

Let NK denote the number of nodes within the GKQ. Then, Vm is approximated by

Λ̃∞ − Vm =
T∫

0

Λ̃′(t) · Fτιm (t)dt

=
T∫

0

Λ̃′(t) ·
d∑

k=m
(−1)k−m

(
k − 1
m− 1

)

︸ ︷︷ ︸
=:ck,m

∑

I⊆{1,...,d}
|I|=k

CI,Arc
k,φθ

(
FτI1 (t), . . . , FτIk (t)

)
dt

=
T∫

0

Λ̃′(t) ·
d∑

k=m
ck,m

∑

I⊆{1,...,d}
|I|=k

φ−1
θ

[
φθ
(
FτI1 (t)

)
+ . . .+ φθ

(
FτIk (t)

)]
dt (6.39)

≈ T

2

NK∑

α=1
wK
α Λ̃′

(
t(K)
α

)
·

d∑

k=m
ck,m

∑

I⊆{1,...,d}
|I|=k

φ−1
θ

[
φθ
(
FτI1

(
t(K)
α

))
+ . . .+ φθ

(
FτIk

(
t(K)
α

))]

(6.40)

=: Λ̃∞ − V (NK,Arc)
m,GKQ,plain.

At this, x(K)
1 , . . . , x

(K)
NK

and w(K)
1 , . . . , w

(K)
NK

denote the nodes and weights within the
GKQ and t(K)

i =
(
x
(K)
i + 1

)
· T/2 holds for each i ∈ {1, . . . , NK}. In the following

we choose Arc ∈ {Cla,Fra,Gum} without restriction (cp. Table 4.1).
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Analogically to Subsection 6.1.3, the GKQ offers an easy possibility for calculating an
error estimator simultaneously to the approximation V (NK,Arc)

m,GKQ,plain. For this, we have
to calculate an approximation V

(NL,Arc)
m,GLQ,plain, which is based on a NL = (NK − 1) /2

–element GLQ with nodes x(L)1 = x
(K)
2 , . . . , x

(L)
NL

= x
(K)
2NL

. Then, V (NL,Arc)
m,GLQ,plain is given

by

Λ̃∞ − V (NL,Arc)
m,GLQ,plain : =

T

2

NL∑

α′=1
w

(L)
α′

Λ̃′
(
t
(K)
2α′
) d∑

k=m
ck,m

∑

I⊆{1,...,d}
|I|=k

φ−1
θ

[
φθ
(
FτI1

(
t
(K)
2α′
))

+ . . .+ φθ
(
FτIk

(
t
(K)
2α′
))]

,

in which w(L)
1 , . . . , w

(L)
NL

denote the weights of the GLQ. Finally, the error estimator
ε

(NK,Arc)
m,plain is calculated by means of

ε
(NK,Arc)
m,plain :=

∣∣∣∣∣∣
V

(NK,Arc)
m,GKQ,plain − V (NL,Arc)

m,GLQ,plain

V
(NK,Arc)
m,GKQ,plain

∣∣∣∣∣∣
. (6.41)

Complexity and implementation

If we apply an Archimedean copula for modeling the joint CDF of random vec-
tor τ , we will easily be able to estimate the overall complexity of approximation
V

(NK,Arc)
m,GKQ,plain ≈ Vm. Let NK denote the number of nodes in the underlying GKQ.

Then, the overall complexity is bounded by O
(
NK · 2d · d/2

)
, with factor d/2 de-

noting the average cardinality of any subset I.

For the implementation of this method we first have to regard equation (6.40) in
detail. It becomes obvious that term φθ

(
Fτi

(
tKα
))

is used up to 2d−1 times within
the calculation of V (NK,Arc)

m,GKQ,plain. Hence, we initialize a matrix Y ∈ Rd×NK as

∀i ∈ {1, . . . , d}, j ∈ {1, . . . , NK} : Y = (Y)i,j := φθ
(
Fτi

(
tKj
))

before we start with the underlying algorithm. Inserted in equation (6.40) we get

V
(NK,Arc)
m,GKQ,plain = Λ̃∞ −

T

2

NK∑

α=1
w(K)
α Λ̃′

(
tKα
)

︸ ︷︷ ︸
w̃

(K)
α

·
d∑

k=m
ck,m

∑

I⊆{1,...,d}
|I|=k

φ−1
θ [YI1,α + . . .+ YIk,α] ,

(6.42)

in which w̃(K) =
(
w̃

(K)
1 , . . . , w̃

(K)
NK

)tr ∈ RNK holds. The detailed implementation of
the resulting equation (6.42) is shown in Algorithm 6.6.

Additionally to Algorithm 6.6, we need two further algorithms for creating and
updating certain subsets. At this, we have to remark that an intelligent storage
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Algorithm 6.6: Calculation of V (NK,Arc)
m,GKQ,plain

Input : Y, w̃(K)

Output: V (NK,Arc)
m,GKQ,plain

Global : d, m, NK, φθ, φ−1
θ and θ

1 Initialize δ ←
(

d
bd/2c

)
and V (NK,Arc)

m,GKQ,plain ← Λ̃∞
2 Initialize matrix T ← (∅, . . . , ∅)tr ∈ {1, . . . , d}δ and vector U ← 0 ∈ Rδ

3 Initialize floating–point numbers E1 = E2 ← 0
4 for i← 1 to NK do
5 InitializeSubsets (m, T , U , Y, i) // cp. Algorithm 6.7

6 E2 ← cm,m ·
∑( dm)
l=1 φ

−1
θ (Ul)

7 for k ← m+ 1 to d do
8 UpdateSubsets (k, T , U , Y, i) // cp. Algorithm 6.8

9 E2 ← E2 + ck,m ·
∑(dk)
l=1 φ

−1
θ (Ul)

10 E1 ← E1 + w̃
(K)
i · E2

11 V
(NK,Arc)
m,GKQ,plain ← V

(NK,Arc)
m,GKQ,plain − T

2 · E1

of particular nested sums eliminates the factor d/2 within the overall complexity.
The detailed implementations of the required functions InitializeSubsets and
UpdateSubsets are shown in Algorithms 6.7 and 6.8.

Analogically to Subsection 6.1.3, we can simply implement a vectorization of Al-
gorithm 6.6. This modification is shown in Algorithm 6.9 and results in a vector
V

(NK,Arc)
GKQ,plain =

(
V

(NK,Arc)
1,GKQ,plain, . . . , V

(NK,Arc)
d,GKQ,plain

)tr
. Vector c̃k ∈ Zd, which is used in Algo-

rithm 6.9, is defined according to equation (6.36).

Besides the plain implementation in Algorithms 6.6 to 6.9, we can develop a second
technique of approximating Vm by using Archimedean copulae. Analogically to the
usage of a Gaussian copulae on pages 71ff., this method uses the factor structure,
which is offered by any Archimedean copula by definition.

In Subsection 4.2.1 we have already mentioned that any Archimedean copula is
determined uniquely by the Laplace–Stieltjes transformation of its inverse generator
φ−1
θ . This Laplace–Stieltjes transformation equals the CDF FArc of a factor V Arc

(cp. Table 4.3). Hence, default times τ1, . . . , τd are conditionally independent with
respect to this factor V Arc (cp. also Algorithm 4.3).
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Algorithm 6.7: InitializeSubsets(k, T , U, Y, i)

Input : k, T , U , Y, i
Output: T , U
Global : d, NK, NH, φθ, φ−1

θ and θ

1 Initialize (I1, . . . , Ik)← (1, . . . , k), z, h, g ∈ N and z ← 2
2 Initialize T1 ← {I1, . . . , Ik} and U1 ←

∑k
l=1 YIl,i

3 while z ≤
(
d
k

)
do // z counting the number of subsets

4 g ← k and h← z

5 while z = h do
6 if Ig + 1 ≤ d− (k − g) then
7 Ig + +
8 for l← g + 1 to k do
9 Il ← Ig + (l − g)

10 Tz ← {I1, . . . , Ik} and Uz ←
∑k
l=1 YIl,i

11 z + + and g ← k

12 else
13 g −−

Algorithm 6.8: UpdateSubsets(k, T , U, Y, i)

Input : k, T , U , Y, i
Output: T , U
Global : d, NK, NH, φθ, φ−1

θ and θ

1 Initialize T new ← T , Unew ← U , z ← 1 and g ← 1
2 Initialize (I1, . . . , Ik−1)← (T11 , . . . , T1k−1)
3 while z ≤

(
d
k

)
do // z counting the number of subsets

4 for l = Tgk−1 + 1 to l = d do
5 T new

z ← Tg ∪ {l}
6 Unew

z ← Ug + Yl,i

7 z + +

8 g + +

9 T ← T new and U ← Unew
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Algorithm 6.9: Calculation of V (NK,Arc)
GKQ,plain

Input : Y, w̃(K)

Output: V (NK,Arc)
GKQ,plain

Global : d, NK, θ, φθ, φ−1
θ

1 Initialize δ ←
(

d
bd/2c

)
and V (NK,Arc)

GKQ,plain ← Λ̃∞
2 Initialize matrix T = (∅, . . . , ∅)tr ∈ Nδ×d and vector U = 0 ∈ Rδ

3 Initialize floating–point vectors E1 = E2 = 0 ∈ Rd

4 for i← 1 to NK do
5 InitializeSubsets (1, T , U , Y, i) // cp. Algorithm 6.7
6 E21 ←

∑d
l=1 φ

−1
θ (Ul)

7 for k ← 2 to d do
8 UpdateSubsets (k, T , U , Y, i) // cp. Algorithm 6.8

9 E2 ← E2 + c̃k ·
∑(dk)
l=1 φ

−1
θ (Ul)

10 E1 ← E1 + w̃
(K)
i ·E2

11 V
(NK,Arc)
GKQ,plain ← V

(NK,Arc)
GKQ,plain − T

2 ·E1

We can state for any t ∈ R≥0

Fτ (t1, . . . , td) = CArc
d,φθ

(Fτ1 (t1) , . . . , Fτd (td)) = φ−1
θ

(
d∑

i=1
φθ (Fτi (ti))

)

= φ−1
θ

(
−

d∑

i=1
ln (Gτi (ti))

)
=
∞∫

0

fArc(v)
d∏

i=1
(Gτi (ti))v dv, (6.43)

in which Gτi denotes the CDF Gτi(t) = exp (−φθ (Fτi (ti))) and fArc denotes the
PDF of the corresponding CDF FArc. For a detailed view on the derivation above
we refer to [LG05, Section 2.3].

With the help of the transformation above it is possible to apply the same recursion
techniques as in case of independent default times (cp. Lemma 6.3, Lemma 6.4
and also Subsection 6.1.3). For this, let x(K)

1 , . . . , x
(K)
NK

and w(K)
1 , . . . , w

(K)
NK

denote the
nodes and weight of a NK–element GKQ again. Furthermore, let x(LG)

1 , . . . , x
(LG)
NLG

and w(LG)
1 , . . . , w

(LG)
NLG

denote the nodes and weight of a Gauss–Laguerre quadrature
(abbr.: GLaQ, cp. [AS70, FH07, SK09]). Then, the value Vm of an mBDS with
payoff Λ̃ and maturity T is approximated by using a GKQ with a nested GLaQ
(abbr.: GKLaQ) as
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Λ̃∞ − Vm =
T∫

0

Λ̃′(t) · Fτιm (t)dt

=
T∫

0

Λ̃′(t) ·
d∑

k=m
ck,m

∑

I⊆{1,...,d}
|I|=k

CI,Arc
k,φθ

(
FτI1 (t), . . . , FτIk (t)

)
dt

=
T∫

0

Λ̃′(t) ·
d∑

k=m
ck,m

∑

I⊆{1,...,d}
|I|=k

∞∫

0

fArc(v)
k∏

i=1

(
GτIi

(t)
)v

dvdt (6.44)

≈ T

2

NK∑

α=1
w(K)
α Λ̃′

(
t(K)
α

)

︸ ︷︷ ︸
=:w̃(K)

α

·
d∑

k=m
ck,m

∑

I⊆{1,...,d}
|I|=k

NLG∑

β=1
w

(LG)
β exp

(
x
(LG)
β

)
fArc

(
x
(LG)
β

)

︸ ︷︷ ︸
=:w̃(LG)

β

k∏

i=1

(
GτIi

(
t(K)
α

))x(LG)
β

︸ ︷︷ ︸
=:GIi

(
t
(K)
α ,x

(LG)
β

)

= T

2

NK∑

α=1
w̃(K)
α

NLG∑

β=1
w̃

(LG)
β ·

d∑

k=m
ck,m

∑

I⊆{1,...,d}
|I|=k

k∏

i=1
GIi

(
t(K)
α , x

(LG)
β

)
(6.45)

=: Λ̃∞ − V (NK,NLG,Arc)
m,GKLaQ,nested.

Obviously, equation (6.45) has the same structure as equation (6.32). Consequently,
we can directly apply recursions like equation (6.34), (6.15) or (6.17) and calculate
V

(NK,NLG,Arc)
m,GKLaQ,nested efficiently by

V
(NK,NLG,Arc)
m,GKLaQ,nested =

Λ̃∞ −
T

2

NK∑

α=1
w̃(K)
α

NLG∑

β=1
w̃

(LG)
β

d∑

k=m
ck,m · η̃G(k, d− k + 1)

(
t(K)
α , x

(LG)
β

)
, (6.46)

in which η̃G(i, j)(t, x) is defined recursively by

η̃G(k, l)(t, x) :=





G1 (t, x) , if k = l = 1

η̃G(k, l − 1)(t, x) + Gl(t, x), if k = 1, l > 1

η̃G(k − 1, l)(t, x) · Gk(t, x), if k > 1, l = 1

η̃G(k − 1, l)(t, x) · Gk+l−1(t, x) + η̃G(k, l − 1)(t, x), if k > 1, l > 1

for any (t, x) ∈ R≥0 × R≥0 and for each k ∈ {1, . . . , d} and l ∈ {1, . . . ,min{d −
k + 1, d − m + 1}}. The detailed implementation of above technique resembles
Algorithms 6.1 – 6.5 and is neglected here.

Using this modification we are able to eliminate the factor 2d within the previous
complexity estimation of V (NK,Arc)

m,GKQ,plain. However, not in any case the calculation of
V

(NK,NLG,Arc)
m,GKLaQ,nested is more efficient than the calculation of V (NK,Arc)

m,GKQ,plain, because we have
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Figure 6.3.: Different levels of ratio q = 2d
NLG·d2 , resulting from an effort comparison

between V (NK,NLG,Arc)
m,GKLaQ,nested and V (NK,Arc)

m,GKQ,plain.

to consider an additional factor NLG. Overall, the calculation of V (NK,NLG,Arc)
m,GKLaQ,nested has

a complexity of
O
(
NK ·NLG · d2

)
.

Furthermore, we have to remark that any Archimedean copula implies a different
CDF FArc, i.e. the quality of V (NK,NLG,Arc)

m,GKLaQ,nested as well as its detailed complexity (eval-
uating fArc) depend highly on the chosen Archimedean copula. In Figure 6.3 we
compare complexities O (NK ·NLG · d2) and O

(
NK · 2d

)
exemplary.

6.1.5. Application in practice: SWN Synthia 2009

In order to illustrate the relevance of the methods above in practice we price the
“Credit Linked Note” SWN Synthia 2009 (ISIN: DE000LBW47W9) of the Landes-
bank Baden–Württemberg in this subsection (cp. [LBW09a, LBW09b, LBW09c]).

This financial instrument represents a bond, whose interest and back payments
are depending on certain credit events. These credit events refer to corresponding
obligors. Here, these obligors are the corporations BAS(10) (abbr.: B), DAI(11)

(10) BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany
(11) Daimler AG, Mercedesstraße 137, 70327 Stuttgart, Germany
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(abbr.: D) and TKA(12) (abbr.: T). The term credit event denotes their insolvency,
a delay of payment in corresponding bonds or a restructuring of these bonds (cp.
[LBW09a, §5]). The corresponding bonds are corporate bonds with respect to each
obligor and their prices are denoted by BB, BD, BT.

Furthermore, N denotes the nominal value of this Credit Linked Note and rf denotes
its referenced interest rate, which is fixed to rf = 5.55% (cp. [LBW09b]). The
interest rate, which is observed at market, is denoted by rt. The date of issue tiss
equals 24/06/2009, maturity date T equals 20/06/2012 and the dates of interest
payments tz1 , tz2 , tz3 are 20/06/2010, 20/06/2011 and 20/06/2012.

The payoff ΛSyn
t̄ depends on the occurrence dates tB, tD and tT of the corresponding

credit events. If tmin := min {tB, tD, tT} > T holds, then each interest payment rf ·N
as well as the back payment N is paid. However, if tid =: tmin ≤ T, id ∈ {B, D, T},
holds, then Bid ·N is paid immediately at tmin and any further payment will fail to
appear. Even the accrued interest is not paid.

Let t̄ ∈ (tiss, T ) denote any date between issue date and maturity date. Furthermore,
let τB, τD, τT denote the random variables, which represent the occurrence dates of
the corresponding credit events and let τmin denote its minimum. The corresponding
CDFs are denoted by FτB , FτD , FτT and Fτmin . The bond price, which corresponds to
the obligor, who causes the first default event, is denoted by Bmin. Then, the value
of the underlying contract at date t = t̄ ≤ tmin is given by

V Syn
t̄ := EP

[
ΛSyn
t̄

(
τB − t̄, τD − t̄, τT − t̄

)]
,

in which ΛSyn
t̄ and Λ̃Syn

t̄ are defined as

ΛSyn
t̄ (∆tB,∆tD,∆tT) := Λ̃Syn

t̄ (∆tmin)

:=





exp (−r∆tmin∆tmin)Bmin ·N, if tiss < tmin ≤ tz1
j∑
i=1

exp
(
−r∆tzi∆tzi

)
rfN · 1{tzi>t̄}

+ exp (−r∆tmin∆tmin)Bmin ·N, if tzj < tmin ≤ tzj+1 , j ∈ {1, 2}
3∑
i=1

exp
(
−r∆tzi∆tzi

)
rfN · 1{tzi>t̄}

+ exp (−r∆T∆T )N, else

for any tmin ∈ [t̄, T ]. Additionally, notation ∆t := t− t̄ holds for t ≥ t̄ and P denotes
the product probability measure of random vector (τB, τD, τT)tr.

In the following we apply an evaluation using the distribution of the first default
event. The only problem remaining is the dependence of Λ̃Syn

t̄ on Bmin. Usually, Bmin

(12)ThyssenKrupp AG, ThyssenKrupp Allee 1, 45143 Essen, Germany
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depends on the question, which obligor causes the first default event. Therefore,
Bmin has a stochastic character. To solve this problem we assume Bmin = 0.4 to be
constant, which is often assumed in practice. For a more detailed view we refer to
Remark 6.7.

Let us assume t̄ = 20/08/2010 in the following. On this date SWN Synthia 2009
denoted at a price of 101.41 EUR (assuming a nominal value of N = 100 EUR) on
the Stuttgart stock exchange.

In order to ensure a practical evaluation we first have to model the hazard rates
hid(t), id ∈ {B,D,T} and t ∈ R≥0, of the corresponding obligors. This is done
by calculating discrete hazard rates H id

∆ti , which depend on the corresponding CDS
premiums sid∆ti , via a bootstrap–technique, i ∈ {0, . . . , n} (cp. [MRW06, 4.2.2]).
At this, {∆t0 = 0,∆t1, . . . ,∆tn} denotes any set of dates in years. Typically,
{0, 1, 2, 3, 4, 5, 7, 10} is chosen, because CDS contracts with such maturities are
traded liquidly. By means of these discrete hazard rates the proper hazard rate hid(t)
is created by hid(t) = H id

∆ti , in which ∆ti−1 ≤ t < ∆ti holds for each i ∈ {1, . . . , n}.
The CDS premiums with respect to date set {1, 2, 3, 4, 5, 7, 10} and the correspond-
ing discrete hazard rates are given in Table 6.3 (source: Bloomberg Terminal access).
The resulting CDFs Fτid(t) are shown in Figure 6.4.

id ↓ sid1 sid2 sid3 sid4 sid5 sid7 sid10

B 47.6025 57.0635 62.386 68.892 74.9885 78.2355 81.496
D 54.5525 72.5275 83.5015 94.385 102.1635 109.2245 115.349
T 237.1435 318.917 348.7925 372.7025 390.389 392.3285 397.413

H id
1 · 102 H id

2 · 102 H id
3 · 102 H id

4 · 102 H id
5 · 102 H id

7 · 102 H id
10 · 102

B 0.7934 1.1131 1.2251 1.4948 1.6952 1.4636 1.5237
D 0.9092 1.5178 1.7767 2.1596 2.2793 2.1767 2.2457
T 3.9524 6.7942 6.9438 7.6415 8.0069 6.6576 6.9765

Table 6.3.: CDS premiums of different maturities (in basis points, bp) and corre-
sponding discrete hazard rates.

In addition to the hazard rates, we still have to model the correlation and the
interest rate rt. The correlation matrix Σ was calibrated historically by considering
data from the last three years. It is given by

Σ =




1.0 0.675 0.702
0.675 1.0 0.669
0.702 0.669 1.0


 =




ψ1

ψ2

ψ3


 · (ψ1, ψ2, ψ3) +




1− ψ2
1 0 0

0 1− ψ2
1 0

0 0 1− ψ2
1


 ,
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Figure 6.4.: CDFs Fτid(t) for id ∈ {B, D, T}.

in which ψ1 = 0.675
ψ2
≈ 0.8416032, ψ2 = 0.669

ψ3
≈ 0.8020407 and ψ3 =

√
0.702·0.669

0.675 ≈
0.8341223 hold. Obviously, applying factor correlation is not a restriction in case of
d = 3. The risk free interest rate at date t̄ is shown in Table 6.4 and is based on the
corresponding LIBOR R© (London Interbank Offered Rate).

t 1 W 2 W 1 M 2 M 3 M 4 M 5 M 6 M
rt 0.59 0.62 0.70 0.79 0.96 1.03 1.11 1.21
t 7 M 8 M 9 M 10 M 11 M 1 Y 2 Y 3 Y
rt 1.26 1.31 1.36 1.40 1.44 1.49 1.55 1.64

Table 6.4.: Risk free interest rate rt in % for t in Weeks, Months and Years.

Considering all these information we can calculate the value V Syn
t̄ as

V Syn
t̄ =

∫ ∞

0
Λ̃Syn
t̄ (t)fτι1 (t)dt

=
∆tz2∫

0

Λ̃Syn
t̄ (t)fτι1 (t)dt+

∆T∫

∆tz2

Λ̃Syn
t̄ (t)fτι1 dt+

∞∫

∆T

Λ̃Syn
t̄ (t)fτι1 dt
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= lim
s↗∆tz2

(
Λ̃Syn
t̄ (s)Fτι1 (s)

)
−

∆tz2∫

0

Λ̃Syn′

t̄ (t)Fτι1 (t)dt

+ lim
s↗∆T

(
Λ̃Syn
t̄ (s)Fτι1 (s)

)
− lim

q↘∆tz2

(
Λ̃Syn
t̄ (q)Fτι1 (q)

)
−

∆T∫

∆tz2

Λ̃Syn′

t̄ (t)Fτι1 (t)dt

+ lim
s↗∞

(
Λ̃Syn
t̄ (s)Fτι1 (s)

)
− lim

q↘∆T

(
Λ̃Syn
t̄ (q)Fτι1 (q)

)
−
∞∫

∆T

Λ̃Syn′

t̄ (t)Fτι1 (t)dt
︸ ︷︷ ︸

=0

=
(

lim
s↗∆tz2

Λ̃Syn
t̄ (s)− lim

q↘∆tz2
Λ̃Syn
t̄ (q)

)
Fτι1 (∆tz2)−

∆tz2∫

0

Λ̃Syn′

t̄ (t)Fτι1 (t)dt

+
(

lim
s↗∆T

Λ̃Syn
t̄ (s)− lim

q↘∆T
Λ̃Syn
t̄ (q)

)
Fτι1 (∆T )−

∆T∫

∆tz2

Λ̃Syn′

t̄ (t)Fτι1 (t)dt

+ lim
s↗∞

Λ̃Syn
t̄ (s)

︸ ︷︷ ︸
=:Λ̃Syn

∞ =Λ̃Syn
t̄

(t), t>T

. (6.47)

For approximating this value we use the Gaussian copula as well as the Clayton
Copula in the following. At this, we differentiate between four approximations: Let
V

Syn,(NK,NH)
t̄,GKHQ,plain and V

Syn,(NK,Cla)
t̄,GKQ,plain denote the approaches, which use Lemma 6.1 in its

plain form and let V Syn,(NK,NH)
t̄,GKHQ,nested and V Syn,(NK,NLa,Cla)

t̄,GKLaQ,nested denote the methods, which use
the simplifications introduced by Lemmata 6.3 and 6.4. For calibrating the Clayton
copula we choose a correlation, which is induced by θ = 1.83.

We expect that the nested method outperforms the plain method regarding the
Gaussian copula, because we proved its dominance in any case. We further expect
that the plain method dominates with respect to the Clayton copula, because the
dimension d = 3 is moderate.

In Tables 6.5 and 6.6 the performance of the approximations V Syn,(NK,NH)
t̄,GKHQ,nested and

V
Syn,(NK,Cla)
t̄,GKQ,plain is shown. At this, we compare the error estimators ε(NK,NH)

m,nested and ε(NK,Cla)
m,plain

of the underlying GKQ, the “exact” relative errors ε, which are calculated by using
“exact” approximations (NK = 513, NH = 256), and the corresponding CPU times
in seconds. The exact approximations are given by V Syn,(513,256)

t̄,GKHQ,nested = 101.53416 EUR
and V

Syn,(513,Cla)
t̄,GKQ,plain = 102.235 EUR. Of course, these values are not approximately

equal to the market price of 101.41 EUR, but considering the plenty of parameters,
which are to be fitted, they represent very good approximations.

For choosing parameter NH we refer to Table 6.2, which suggests the choice NH = 64
(k = 3, maxi |ψi| ≈ 0.84). In deed we can observe that neither the error estimator
ε̂ nor the exact error ε changes significantly for NH > 64 (changes < 10−16). Addi-
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NH ↓ NK → 33 65 129 257

32
ε̂ 1.49273e-08 4.12052e-08 9.41537e-09 1.10695e-09
ε 3.86214e-08 9.35463e-09 1.56019e-09 2.77648e-11
sec 6.0e-03 1.2e-02 2.3e-02 4.6e-02

64
ε̂ 1.49273e-08 4.12052e-08 9.41537e-09 1.10695e-09
ε 3.86207e-08 9.35392e-09 1.55948e-09 2.70549e-11
sec 1.1e-02 2.3e-02 4.5e-02 8.8e-02

128
ε̂ 1.49273e-08 4.12052e-08 9.41536e-09 1.10695e-09
ε 3.86207e-08 9.35392e-09 1.55948e-09 2.70549e-11
sec 2.2e-02 4.3e-02 8.4e-02 1.7e-01

Table 6.5.: Error estimator ε̂ := ε
(NK,NH)
m,nested , “exact” error ε and CPU time (in sec.) of

the approximation V Syn,(NK,NH)
t̄,GKHQ,nested.

NK → 33 65 129 257
ε̂ 3.72e-08 3.92e-08 8.65e-09 8.77e-10
ε 3.86e-08 8.66e-09 1.19e-09 6.14e-11
sec 1.10e-04 2.00e-04 3.80e-04 7.40e-04

Table 6.6.: Error estimator ε̂ := ε
(NK,Cla)
m,plain , “exact” error ε and CPU time (in sec.) of

the approximation V Syn,(NK,Cla)
t̄,GKQ,plain .

tionally, we can remark that ε̂ is a good and conservative estimation of the exact
error in any case (cp. Tables 6.5 and 6.6).

Finally, in Figure 6.5 a comparison of all possible evaluation methods is shown. As
we expected, approximation V

Syn,(NK,NH)
t̄,GKHQ,nested (blue line) dominates V Syn,(NK,NH)

t̄,GKHQ,plain (red
line) lightly and approximation V Syn,(NK,Cla)

t̄,GKQ,plain (black line) dominates V Syn,(NK,NLa,Cla)
t̄,GKLaQ,nested

(green line) clearly, because of the moderate dimension d = 3.

Remark 6.7 (Recovery rate). In the beginning of this subsection we assumed Bmin =
0.4, which represents a weak point within this evaluation. Considering equation
(6.47) in detail we can see that V Syn

t̄ depends linear on Bmin, though. Consequently,
we can simply calculate approximations with respect to any Bmin ∈ [0, 1]. For
illustration we show the dependence of V Syn,(513,256)

t̄,GKHQ,nested on Bmin ∈ [0.2, 0.5] in Figure
6.6.
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6.2. Monte-Carlo methods

Alternatively to the evaluation with respect to the m–th smallest default time, we
discuss the evaluation by means of Monte–Carlo methods in this section. They will
be used if dimension d is very large or the underlying portfolio is inhomogeneous,
i.e. we cannot assume homogeneous recovery rates and nominal values.

The general approach for evaluating an mBDS by means of Monte–Carlo methods
is rather easy. Let Λm denote the payoff of an mBDS and let τ1, . . . , τd denote
the random variables, which represent the default times of obligors S1, . . . , Sd. In
addition, their CDFs are given by Fτ1 (t1) , . . . , Fτd (td) (cp. equation (6.1)) and their
joint CDF is given by Fτ (t1 . . . , td) = Čd (Fτ1 (t1) , . . . , Fτd (td)) for any t ∈ Rd

≥0 (cp.
equation (6.2)). Then, the value Vm of the underlying contract is given by (cp.
equation (6.3))

Vm :=
∞∫

0

· · ·
∞∫

0

Λm (t) dFτ (t) =
∞∫

0

· · ·
∞∫

0

Λm (t) fτ (t) dt, (6.48)

in which fτ (t) denotes the joint PDF of Fτ (t).

Consequently, a plain Monte–Carlo integration performs as follows:

1. Draw M random tuples v(j) =
(
v

(j)
1 , . . . , v

(j)
d

)tr ∼ Čd, j ∈ {1, . . . ,M}, which
are distributed according to copula Čd (cp. Algorithms 4.1 – 4.3).

2. Calculate t̂(j) =
(
t̂
(j)
1 , . . . , t̂

(j)
d

)tr
, j ∈ {1, . . . ,M} via t̂(j)i = F−1

τi

(
v

(j)
i

)
, i ∈

{1, . . . , d}.

3. Approximate Vm ≈ V M,plain
m,MC := 1

M
·
M∑
j=1

Λm

(
t̂
(j)
1 , . . . , t̂

(j)
d

)
.

Analyzing this approach in detail we have to mention a big disadvantage. The
smaller we choose maturity T and hazard rates hi the more improbable is the occur-
rence of at least m defaults within a time horizon [0, T ]. Hence, most of the random
tuples t̂(j) meet the condition t̂(j)ιm > T and result in the constant mBDS payoff
Λm,∞ := Λm (t) , t ∈ (T,∞]d (cp. Definition 6.1). Hence, we get an approximation
V M,plain
m,MC , which shows a huge variance Var

(
V M,plain
m,MC

)
(cp. Example 6.6).

Example 6.6 (Need of variance reduction). In order to illustrate the effect above
we show the payments ΛSyn

t̄

(
t
(j)
B , t

(j)
D , t

(j)
T

)
for 200 random tuples

(
t
(j)
B , t

(j)
D , t

(j)
T

)tr
,

j ∈ {1, . . . , 200}, in Figure 6.7 (cp. Subsection 6.1.5 for the underlying notation).
Random tuples

(
t
(j)
B , t

(j)
D , t

(j)
T

)tr
were drawn with respect to the Gaussian copula (cp.

Algorithm 4.1 or 4.2).
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Figure 6.7.: Payments ΛSyn
t̄

(
t
(j)
B , t

(j)
D , t

(j)
T

)
of 200 random tuples

(
t
(j)
B , t

(j)
D , t

(j)
T

)
, which

were drawn with respect to the Gaussian copula.

Considering Figure 6.7 in detail it becomes obvious that each resulting payment
ΛSyn
t̄

(
t
(j)
B , t

(j)
D , t

(j)
T

)
is located close to or exactly on one of the dashed lines, which

increases the resulting variance significantly (detailed figures concerning the variance
are given later on). At this, notations ΛSyn

∞ := ΛSyn
t̄ (T + 1, T + 1, T + 1), Λ(2) :=

exp
(
−r5/65/6

)
(Bmin + rf ) · N and Λ(1) := Bmin · N hold and V Syn

t̄ denotes the
exact value of the underlying contract (Credit linked note SWN Synthia 2009, cp.
Subsection 6.1.5).

In general it is desirable that as many tuples as possible result in a payment
Λm(t) 6= Λm,∞. Hence, we have to sample tuples t, which meet the condition
tιm ≤ T . The corresponding region for t is called the importance region. However,
we have to ensure that the expectation of the underlying Monte–Carlo simulation
remains constant. Such methods reduce the variance of the underlying simulation
significantly and are known as importance sampling methods. In the next subsec-
tions we explain these methods with respect to Gaussian and Archimedean copulae.

6.2.1. Importance sampling with respect to a Gaussian copula

Variance reduction by means of importance sampling regarding the Gaussian copula
has already been discussed in [JK04, CG08]. More precisely, the algorithm, which
is presented in the following, was developed in [JK04] and improved in [CG08].
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Let Fτ (t1, . . . , td) = CGau
d,Σ (Fτ1 (t1) , . . . , Fτd (td)) denote the joint CDF of random

vector τ for any t ∈ Rd

≥0 and let Vm denote the value of any mBDS with payoff Λm

and maturity T . Then, Vm is approximated by

Vm =
∞∫

0

· · ·
∞∫

0

Λm (t) dFτ (t) (6.49)

≈ V M,IS
m,MC,Gau : = 1

M
·
M∑

j=1
Λ̂m

(
t̂
(j)
1 , . . . , t̂

(j)
d

)
,

in which tuples
(
t̂
(j)
1 , . . . , t̂

(j)
d

)tr
are drawn by using importance sampling and Λ̂m still

has to be specified. The aim of this subsection is the development of an algorithm,
which draws tuples t̂meeting t̂ιm ≤ T and the development of a corresponding payoff
Λ̂m, which ensures an unbiased approximation.

For this, we transform Algorithm 4.1, so that its output v meets the condition t̂ιm ≤
T for t̂i = F−1

τi
(vi) , i ∈ {1, . . . , d}. For a better readability let us briefly summarize

Algorithm 4.1 again. Let u1, . . . , ud be independently and uniformly distributed on
[0, 1]d. Then, the following program sequence produces a tuple v = (v1, . . . , vd)tr,
which is distributed according to copula CGau

d,Σ .

1. zi ← Φ−1 (ui), i.e. zi ∼ Φ, i ∈ {1, . . . , d}

2. A← Cholesky(d,Σ), i.e. AAtr = Σ

3. w ← Az, i.e. w ∼ Φd
Σ

4. vi ← Φ (wi) , i ∈ {1, . . . , d}

Let ∀x ∈ Rd : fu(x) = ∏d
i=1 fi (xi) = ∏d

i=1 1{xi∈[0,1]} denote the joint PDF of u and
let Ξ(u) = t̂ denote the mapping, which includes the enumeration above (input: u
uniformly and independently distributed on [0, 1]d; output: t̂ ∼ Fτ ). In the following
we develop an importance sampling approach of the form

Vm =
∫

[0,1]d
Λm (Ξ(x)) · fu(x)dx1 · · · dxd

=
∫

[0,1]d
Λm (Ξ(x)) ·

d∏

i=1
fi (xi) dx1 · · · dxd

=
∫

[0,1]d
Λm (Ξ(x))

d∏
i=1

fi (xi)
d∏
i=1

fnewi (xi)
︸ ︷︷ ︸

:=Λ̂m(t̂)

·
d∏

i=1
fnewi (xi) dx1 · · · dxd.

In order to create suitable density functions fnewi , which cause at least m defaults,
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we proceed as follows. Let u1, . . . , ui−1 already be drawn or rather let t̂1, . . . , t̂i−1 be
known. Then, we can verify the following relation (cp. [CG08, Lemma 1])

pi := P (τi ≤ T |τ1, . . . , τi−1 ) = Φ




Φ−1 (Fτi(T ))−
i−1∑
j=1

Ai,jzj

Ai,i


 ,

which is easily calculated by considering Algorithm 4.1 or the enumeration above in
detail. Furthermore, we assume that within the first i− 1 default times t̂1, . . . , t̂i−1

the condition t̂j ≤ T, j ∈ {1, . . . , i− 1} was met k < m times. Then, we artificially
transform the default probability pi according to

p̃
(k)
i :=





max
(
m−k
d−i+1 , pi

)
, if k < m

pi, else
,

which obviously ensures the occurrence of at least m defaults. In order to meet
this default probability we have to transform the input random number ui. If ui
is smaller than default probability p̃(k)

i , we will artificially shift ui into the “default
area” by calculating a new input random number unewi . This new random number
unewi meets

unewi :=





piui

p̃
(k)
i

, if ui ≤ p̃
(k)
i

pi +
(1−pi)

(
ui−p̃(k)

i

)
(

1−p̃(k)
i

) , else
. (6.50)

By using this approach we can guarantee that each generated tuple t̂ meets the
condition t̂ιm ≤ T (cp. [CG08, Lemma 2]). However, in order to ensure an unbi-
ased approximation, we have to multiply each evaluated payment by a factor G (cp.
Algorithm 6.10 or [JK04, CG08]). This weight factor G results from the transfor-
mation of ui to unewi . Hereby, we transform the density function fi (xi) = 1{x∈[0,1]}

to an artificial density function

∀x ∈ [0, 1] : fnewi (xi) :=









p̃
(k)
i

pi
, if xi < pi

1−p̃(k)
i

1−pi , else
, if p̃(k)

i = m−k
d−i+1

1, else

of unewi . Thus, the weight factor G equals the product

G :=
d∏

i=1

fi (ui)
fnewi (unewi ) =

d∏

i=1

1
fnewi (unewi )

and guarantees an unbiased evaluation (cp. [CG08, Theorem 1]) via

Λ̂m

(
t̂
(j)
1 , . . . , t̂

(j)
d

)
= Λm

(
t̂
(j)
1 , . . . , t̂

(j)
d

)
·G

for any t̂ ∈ Rd
≥0.
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Remark 6.8 (Payoff transformation). The proof of [CG08, Theorem 1] assumes that
Λm,∞ = Λm (t1, . . . , td) = 0 holds in case of tιm > T , which is not valid for any
mBDS. Nevertheless, we know that at least equality

∃c ∈ R : ∀t ∈ Rd

≥0 with tιm > T : Λm (t1, . . . , td) = Λm,∞ = c

holds (cp. Definition 6.1). Hence, we can easily transform equation (6.48) according
to

Vm =
∞∫

0

· · ·
∞∫

0

Λm (t) fτ (t) dt

=
∞∫

0

· · ·
∞∫

0

(Λm (t)− c+ c) fτ (t) dt

=
∞∫

0

· · ·
∞∫

0

(Λm (t)− c)︸ ︷︷ ︸
=:Λ̄m(t)

fτ (t) dt+ c

∞∫

0

· · ·
∞∫

0

fτ (t) dt
︸ ︷︷ ︸

=1

and apply importance sampling techniques regarding payoff function Λ̄m. This result
does not depend on the underlying copula.

The implementation of the importance sampling technique above is shown in Algo-
rithm 6.10. For a more detailed description we refer to [JK04, CG08].

In case of small hazard rates hi and a short maturity T Algorithm 6.10 obviously
reduces the variance of a Monte–Carlo simulation. However, if these conditions are
not met, we will not be able to ensure that the resulting variance is smaller or
equal to the variance of a plain Monte–Carlo simulation (cp. [CG08, Figure 1]).
Furthermore, the artificial default probabilities p̃(k)

i are somewhat arbitrary, which
impairs the performance of the underlying algorithm.

Hence, we develop artificial probabilities qi in the following, which replace probabil-
ities p̃(k)

i in Algorithm 6.10 and claim to be closer to reality. For the development of
these probabilities we assume the one–factor correlation

Σ = ΣF
1 = (ψ1, . . . , ψd)tr (ψ1, . . . , ψd) + diagd

(
1− ψ2

1, . . . , 1− ψ2
d

)

= ψ ·ψtr +D

of Σ again (we could assume a k–factor structure as well, cp. equation (3.5)).
Tuple (w1, . . . , wd)tr is consequently modeled by the linear one–factor model (cp.
Subsection 3.1.1)

(w1, . . . , wd)tr = ψ · Z +D · (ε1, . . . , εd)tr , (6.51)
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Algorithm 6.10: Calculation of V M,IS
m,MC,Gau

Global : d, m, M, Σ, Λm, Fτ1 , . . . , Fτd
Output : V M,IS

m,MC,Gau

Assume: Λm,∞ = 0, otherwise consider Remark 6.8

1 V M,IS
m,MC,Gau ← 0

2 A←Cholesky(d,Σ) // AAtr = Σ
3 for l← 1 to M do
4 Sample u = (u1, . . . , ud)tr ∼ U [0, 1]d, G← 1, k ← 0
5 for i← 1 to d do

6 pi ← Φ
((

Φ−1 (Fτi(T ))−
i−1∑
j=1

Ai,jzi

)
/Ai,i

)

7 if k < m then
8 p̃

(k)
i ← max

(
m−k
d−i+1 , pi

)

9 else
10 p̃

(k)
i ← pi

11 if ui ≤ p̃
(k)
i then

12 unewi ← pi · ui/p̃(k)
i , G← G · pi/p̃(k)

i , k + +
13 else
14 unewi ← pi + (1− pi) ·

(
ui − p̃(k)

i

)
/
(
1− p̃(k)

i

)
,

G← G · (1− pi) /
(
1− p̃(k)

i

)

15 zi ← Φ−1 (unewi ) // zi ∼ Φ

16 wi ←
i∑

j=1
Ai,jzi

17 vi ← Φ (wi)
18 t̂i ← F−1

τi
(vi)

19 V M,IS
m,MC,Gau ← V M,IS

m,MC,Gau + Λm

(
t̂1, . . . , t̂d

)
·G

20 V M,IS
m,MC,Gau ← V M,IS

m,MC,Gau/M
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in which random variables Z, ε1, . . . , εd ∼ Φ are distributed independently according
to Φ.

In the following u1, . . . , ui−1 or rather the first i − 1 default times t̂1, . . . , t̂i−1 are
assumed to be known. Furthermore, let χi−1 denote the number of defaults within
the first i− 1 obligors, i.e. for exactly χi−1 default times out of the set {t̂1, . . . , t̂i−1}
the condition t̂j ≤ T holds, j ∈ {1, . . . , i− 1}. Then, the “realistic” artificial default
probability qi is given by

q
(k)
i := P (τi ≤ T |τ1, . . . , τi−1, χi−1 = k, χd ≥ m) .

For calculating q(k)
i we first calculate a probability P(k)

i , which denotes the proba-
bility of observing at least m defaults within all obligors, assuming that k defaults
have already occurred within the first i obligors. Thus, we define

P(k)
i := P (χd ≥ m |χi = k ) .

This probability can easily be calculated recursively by

P(k)
i = pi+1 · P(k+1)

i+1 + (1− pi+1) · P(k)
i+1

with the terminal condition

P(k)
d =





0, if k ∈ {0, . . . ,m− 1}
1, else

.

Using probabilities P(k)
i we can express the artificial probabilities q(k)

i as (cp. [CG08,
Section 4.1])

q
(k)
i = pi · P(k+1)

i

P(k)
i−1

.

Replacing p̃i by q(k)
i in Algorithm 6.10 would finalize the desired modification at first

sight.

Considering this modification in detail, though, it gets clear that it is not able to deal
with completely dependent assets. Let us assume that unew1 6= u1, . . . , u

new
i−1 6= ui−1

have been transformed according to q(k1)
1 , . . . , q

(ki−1)
i−1 . Then, the value pi, which has

to be calculated next, does not equal the value pi, which was used to calculate P(k)
j

and q
(k)
i−1 in the previous step. Thus, an essential condition for the application of

this method is the independence of input random numbers uj and probabilities pi
for j 6= i. This independence will only be guaranteed if and only if random variables
τ1, . . . , τd are at least conditional independent, which justifies the application of a
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factor correlation. Consequently, we also have to transform probabilities pi to the
new default probabilities

p̂i := Φ
((

Φ−1 (Fτi(T ))− ψiZ
)
/Di,i

)
,

which result from the usage of a one–factor model (cp. equation (6.51)).

The implementation of this method is shown in Algorithm 6.11. For a detailed
derivation we refer to [CG08] again, in which the authors show that the method
above reduces the variance of a Monte–Carlo simulation in any case (cp. [CG08,
Proposition 7]). The resulting approximation, which uses M different simulations,
is denoted by V M,IS+FS

m,MC,Gau.

6.2.2. Importance sampling with respect to an Archimedean
copula

Analogically to the usage of a Gaussian copula in the previous subsection, we de-
velop an importance sampling method regarding any Archimedean copula in this
subsection. For this, let Fτ (t1 . . . , td) = CArc

d,φθ
(Fτ1 (t1) , . . . , Fτd (td)) denote the joint

CDF of random vector τ , for any t ∈ Rd

≥0, and let Vm denote the value of an mBDS
with payoff Λm and maturity T . Then, value Vm is approximated by

Vm ≈ V M,IS
m,MC,Arc := 1

M
·
M∑

j=1
Λ̂m

(
t̂
(j)
1 , . . . , t̂

(j)
d

)
,

in which tuple
(
t̂
(j)
1 , . . . , t̂

(j)
d

)tr
is drawn by using importance sampling and payoff

Λ̂m still has to be specified.

A self–evident approach is the application of the importance sampling technique re-
garding the Gaussian copula (cp. Algorithm 6.10) including a corresponding density
quotient weighting. For this, let

fArcτ (t1, . . . , td) : = ∂d

∂t1 · · · ∂td
Fτ (t1 . . . , td)

= ∂d

∂t1 · · · ∂td
CArc
d,φθ

(Fτ1 (t1) , . . . , Fτd (td))

be the joint PDF of τ with respect to any Archimedean copula and let

fGau
τ (t1, . . . , td) : = ∂d

∂t1 · · · ∂td
F̃τ (t1 . . . , td)

: = ∂d

∂t1 · · · ∂td
CGau
d,Σ (Fτ1 (t1) , . . . , Fτd (td))
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Algorithm 6.11: Calculation of V M,IS+FS
m,MC,Gau

Global : d, m, M, ψ, Λm, Fτ1 , . . . , Fτd
Output : V M,IS+FS

m,MC,Gau

Assume: Λm,∞ = 0, otherwise consider Remark 6.8

1 V M,IS+FS
m,MC,Gau ← 0

2 for i← 1 to d do
3 if i < m then
4 P(i)

d ← 0
5 else
6 P(i)

d ← 1

7 for l← 1 to M do
8 Sample u = (u1, . . . , ud+1)tr ∼ U [0, 1]d+1, G← 1, k ← 0
9 Z ← Φ−1 (ud+1)

10 for i← 1 to d do
11 p̂i ← Φ ((Φ−1 (Fτi(T ))− ψiZ) /Di,i)

12 for α← d− 1 to 0 do
13 for β ← 0 to α do
14 P(β)

α ← p̂α+1P(β+1)
α+1 + (1− p̂α+1)P(β)

α+1

15 for i← 1 to d do
16 q

(k)
i ← p̂i · P(k+1)

i /P(k)
i−1

17 if ui ≤ q
(k)
i then

18 unewi ← p̂i · ui/q(k)
i , G← G · p̂i/q(k)

i , k + +
19 else
20 unewi ← p̂i + (1− p̂i) ·

(
ui − q(k)

i

)
/
(
1− q(k)

i

)

21 G← G · (1− p̂i) /
(
1− q(k)

i

)

22 zi ← Φ−1 (unewi ) // zi ∼ Φ
23 wi ← ψiZ +Di,izi

24 vi ← Φ (wi)
25 t̂i ← F−1

τi
(vi)

26 V M,IS+FS
m,MC,Gau ← V M,IS+FS

m,MC,Gau + Λm

(
t̂1, . . . , t̂d

)
·G

27 V M,IS+FS
m,MC,Gau ← V M,IS+FS

m,MC,Gau/M
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be the joint PDF of τ with respect to the Gaussian copula, t ∈ Rd

≥0. Then, Vm is
calculated by

Vm =
∞∫

0

· · ·
∞∫

0

Λm (t) · fArcτ (t) dt

=
∞∫

0

· · ·
∞∫

0

Λm (t) · f
Arc
τ (t)
fGau
τ (t)︸ ︷︷ ︸

=:ΛIS
m(t)

·fGau
τ (t) dt

=
∞∫

0

· · ·
∞∫

0

ΛIS
m (t) · fGau

τ (t) dt. (6.52)

Obviously, equation (6.52) has the same structure like equation (6.49) and is solved
efficiently by using Algorithm 6.10. This technique is working well in many cases
and is presented in detail in [SH12b]. The resulting approximation is denoted by
V M,IS
m,MC,Arc. However, depending on the underlying copula the evaluation of the joint

PDF fArcτ is very complex. Additionally, the joint PDF fGau
τ must be chosen carefully

and depending on fArcτ . Finally, a variance reducing effect will only be observed if
the quotient fArcτ

(
t̂
)
/fGau
τ

(
t̂
)
shows moderate values for any t̂ ∈ Rd

≥0.

In order to cope with these disadvantages, we are looking for another importance
sampling method with respect to any Archimedean copula. For this, we transform
Algorithm 6.11, which uses the factor structure of the underlying correlation matrix.

Due to [LG05, Section 2.3] we know that any Archimedean copula is uniquely de-
fined by the inverse Laplace–Stieltjes transformation of its inverse generator φ−1

θ .
Furthermore, this transformation represents a proper CDF, which uniquely defines
a nonlinear one–factor model (cp. also Subsection 4.2.1 and pages 81f.). Then,
with the help of Algorithm 4.3 (line 3), which already shows a nonlinear one–factor
model for copula output v1, . . . , vd, we can directly transform the input parameters
of Algorithm 6.11 to the usage of any Archimedean copula.

Let V Arc denote the random variable, which represents the factor in the one–factor
model above. Then, default probabilities p̂i, i ∈ {1, . . . , d}, are given by

p̂i : = P
(
τi ≤ T

∣∣∣V Arc
)

= P
(
F−1
τi

(vi) ≤ T
∣∣∣V Arc

)

= P
(
φ−1
θ

(
− ln (εi)
V Arc

)
≤ Fτi(T )

)
= P

(
− ln (εi)
V Arc ≤ φθ (Fτi(T ))

)

= P
(
εi ≤ exp

(
−V Arc · φθ (Fτi(T ))

))
= exp

(
−V Arc · φθ (Fτi(T ))

)
.

Additionally, the random variables v1, . . . , vd satisfy the nonlinear one–factor model

vi = φ−1
θ

(
− ln (εi)
V Arc

)
,
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in which ε1, . . . , εd ∼ U [0, 1] are distributed uniformly and independently and factor
V Arc is distributed according to distribution FArc from Table 4.3.

Using this information we can transform Algorithm 6.11 completely to the usage of
any Archimedean copula, see Algorithm 6.12. The approximation, which is calcu-
lated by using this technique, is denoted by V M,IS+FS

m,MC,Arc.

6.2.3. Academic example: Exhibit 6 and Illustration 3 from
[Li00]

In this subsection we compare the different importance sampling techniques from
Sections 6.2.1 and 6.2.2 regarding their performance. Afterwards we also compare
these techniques to different quadrature methods from Section 6.1.

Let us consider the example from [Li00, Illustration 3] in the following. In this
example a simplified mBDS with respect to d = 5 obligors is described. Their
hazard rates are assumed to be constant hi ≡ 0.1 for each i ∈ {1, . . . , 5} and their
correlation is assumed to be homogeneous ρ := ρi,j ∈ [0, 1], i, j ∈ {1, . . . , 5}, i 6= j.
Furthermore, a risk free interest rate of rt ≡ 0.1, a maturity of T = 2 and a triggering
obligor m = 1 are given. Nevertheless, in the following we change these parameters
for creating different scenarios. Only the payoff remains constant.

The payoff of the underlying contract from [Li00, Illustration 3] consists of only
one default payment (cp. Section 2.1). Within this default payment we assume a
constant recovery rate R := Ri ≡ 0 for each obligor i ∈ {1, . . . , d} and a nominal
value of N = ∑d

i=1Ni = 1. Then, the resulting payoff is given by

ΛLi
m (t1, . . . , td) := exp(−rtιm) · 1{tιm≤T} =: Λ̃Li (tιm)

for any t ∈ Rd

≥0 and the value V Li
m of the underlying contract is given by (cp.

Theorem 6.1 and Proposition 6.1)

V Li
m =

∫

Rd≥0

ΛLi
m (t) fτ (t) dt

= lim
tu↗T

Λ̃Li (tu)
︸ ︷︷ ︸

=Λ̃Li(T )

Fτιm (T )−
T∫

0

Λ̃Li′ (t)Fτιm (t) dt. (6.53)

We compare the different importance sampling techniques from Subsections 6.2.1
and 6.2.2 in the following. For this, we choose the input parameters d = 10, m = 5
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Algorithm 6.12: Calculation of V M,IS+FS
m,MC,Arc

Global : d, m, M, φθ, Λm, Fτ1 , . . . , Fτd
Output : V M,IS+FS

m,MC,Arc

Assume: Λm,∞ = 0, otherwise consider Remark 6.8

1 V M,IS+FS
m,MC,Arc ← 0

2 for i← 1 to d do
3 if i < m then
4 P(i)

d ← 0
5 else
6 P(i)

d ← 1

7 for l← 1 to M do
8 Sample u = (u1, . . . , ud)tr ∼ U [0, 1]d and V Arc ∼ FArc

9 G← 1, k ← 0
10 for i← 1 to d do
11 p̂i ← exp

(
−V Arc · φθ (Fτi(T ))

)

12 for α← d− 1 to 0 do
13 for β ← 0 to α do
14 P(β)

α ← p̂α+1P(β+1)
α+1 + (1− p̂α+1)P(β)

α+1

15 for i← 1 to d do
16 q

(k)
i ← p̂i · P(k+1)

i /P(k)
i−1

17 if ui ≤ q
(k)
i then

18 unewi ← p̂i · ui/q(k)
i , G← G · p̂i/q(k)

i , k + +
19 else
20 unewi ← p̂i + (1− p̂i) ·

(
ui − q(k)

i

)
/
(
1− q(k)

i

)

21 G← G · (1− p̂i) /
(
1− q(k)

i

)

22 vi ← φ−1
θ

(
− ln (unewi ) /V Arc

)

23 t̂i ← F−1
τi

(vi)

24 V M,IS+FS
m,MC,Arc ← V M,IS+FS

m,MC,Arc + Λm

(
t̂1, . . . , t̂d

)
·G

25 V M,IS+FS
m,MC,Arc ← V M,IS+FS

m,MC,Arc/M
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Figure 6.8.: Variances of different Monte–Carlo approximations using a Gaussian
copula with correlation matrix Σ (cp. equation (6.55)).

and r = 0.03. Additionally, the constant hazard rates are given by vector

h = (0.05, 0.01, 0.06, 0.09, 0.03, 0.1, 0.02, 0.07, 0.04, 0.08)tr (6.54)

and the correlation matrix Σ is given by vector

ψ = (ψ1, . . . , ψ10)tr

= (0.75, 0.16,−0.46,−0.93, 0.61,−0.22, 0.86, 0.34,−0.04, 0.57)tr (6.55)

via Σ = ΣF
1 = ψ ·ψtr + diag (1− ψ2

1, . . . , 1− ψ2
10).

In Figures 6.8 and 6.9 the variances regarding 30 different loops, each withM = 105

simulations, are shown. Here, maturity T remains variable for creating different
scenarios of application. Furthermore, we use different kinds of random numbers.
On the one hand we use “pure” random numbers created with Mersenne Twister
(abbr.: MT) and on the other hand we use quasi–random numbers created by means
of Sobol’s sequence (abbr.: SQ). Regarding the application of the Clayton copula
we have to remark that the usage of quasi–random numbers is not conform to the
usage of rejection Algorithm B.2. Here, we have to use the deterministic Algorithm
B.3 to conserve the structure of Sobol’s sequence.

Both variance analyses in Figures 6.8 and 6.9 show that these methods, which make
use of the factor structure, clearly outperform the other methods. Variance reduction
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Figure 6.9.: Variances of different Monte–Carlo approximations using a Clayton cop-
ula with parameter θ = 0.25.

ratios up to 103 are reached. Furthermore, it is obvious that the usage of quasi–
random numbers is preferable in this context.

In Figures C.1 and C.2 analogical analyses are shown with respect to the Frank and
Gumbel copula. However, the variances of V Li,M,IS

m,MC,Fra and V
Li,M,plain
m,MC,Gum are neglected in

these figures.

In the following we compare the above Monte–Carlo methods to the quadrature
methods presented in Section 6.1 as well. For this, we vary dimension d within
the current example. The used hazard rates as well as the required factor loads
(Gaussian copula) are given in Table C.4. Additionally, we choose a maturity of
T = 1, a risk free interest rate of rt ≡ 0.03 and a triggering obligor m = bd/4c
(Gaussian copula) or m = bd/10c (Clayton copula) respectively.

We only consider the Gaussian and the Clayton copula in the following. For calcu-
lating an “exact” value in each case, we apply a quadrature method from Subsections
6.1.3 and 6.1.4 and increase the underlying number of nodes as long as we can ob-
serve a change in the resulting value. Thus, we can calculate relative errors ε for each
method and can plot them against their corresponding CPU times (cp. Figures 6.10
and 6.11). Additional information concerning the choice of NLG within the Clayton
copula is given by Remark 6.10.
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Figure 6.10.: Comparison of different Monte–Carlo and quadrature methods using
the Gaussian copula.
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Figure 6.11.: Comparison of different Monte–Carlo and quadrature methods using
the Clayton copula.



106 Chapter 6. The semi–dynamic evaluation model

V
Li,(65,256)

m,GKHQ,nested V
Li,(65,256)

m,GKHQ,plain V Li,106,plain
m,MC,id,SQ

V
Li,(65,NLG,Cla)

m,GKLaQ,nested V
Li,(65,Cla)

m,GKQ,plain V Li,106,IS+FS
m,MC,id,SQ

10−2

100

102

104

106

2 4 8 16
Dimension d

C
PU

tim
e

in
se

c.

(a) Gaussian copula (id=Gau)

10−4

10−2

100

102

104

106

2 4 8 16
Dimension d

(b) Clayton copula (id=Cla)

Figure 6.12.: Comparison of different Monte–Carlo and quadrature methods regard-
ing CPU time and dimension d.

Remark 6.9 (Need of a higher precision). Assuming a high dimension d the calcu-
lation of certain binomial coefficients and the evaluation of η̃(l)

k result in very small
values as well as in very high values (copula depending). In order to guarantee an
accurate pricing the standard precision of the underlying CPU has to be increased.
In C++ we can use the package “The GNU Multiple Precision Arithmetic Library”
(cp. [GNU12]) for example.

In Figures 6.10 and 6.11 we can finally see the performance of each method. In any
dimension we can observe that the quadrature methods significantly outperform
the Monte–Carlo methods. Furthermore, we can note that the nested quadrature
methods clearly outperform the plain ones. Regarding the Monte–Carlo methods we
can observe the dominance of the factor correlation methods using Sobol’s sequence
again.

In order to create Figure 6.10 we used The GNU Multiple Precision Arithmetic
Library for dimensions d ≥ 70 and in order to create Figure 6.11 we used the same
library for dimensions d ≥ 30 (cp. Remark 6.9 and [GNU12]).

Finally, we show the complexity of each method regarding to the corresponding
dimension in Figure 6.12. In this figure we fix the number of nodes within the
quadrature methods to NK = 65 and NH = 256 (cp. Remark 6.10 for the choice of
NLG) and the number of simulations within the Monte–Carlo methods to M = 106.
It falls into place that the nested quadrature methods offer an overall complexity,
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which is comparable to a Monte–Carlo simulation. Additionally, these quadratures
offer a convergence, which is comparable to a plain (or d–dimensional) quadrature
(cp. Figures 6.10 and 6.11).

Remark 6.10 (Choice of NLG). Several tests have shown that it is much more efficient
to truncate the inner integral of V Li,(NK,NLG,Cla)

m,GKLaQ,nested (cp. equation (6.44)) and solve the
corresponding finite integral via a GKQ or GLQ. Thus, in Figures 6.12 and 6.11 the
GLaK has been replaced by a GKQ (using NK = 513 nodes in case of Figure 6.12).
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6.3. Excursus: European multi–asset options

Besides its application to Basket Default Swaps the theory from Section 6.1 (and
Section 6.2) is also applicable to evaluate multi–dimensional European maximum or
minimum options. Within this context we just have to replace the m–th smallest
default time by the m–th smallest stock price at t = T .

For this, let S := {S1, . . . , Sd} denote a basket of stocks (only in this section!) with
initial prices St0,1, . . . , St0,d at t = t0. In the following we assume that t0 = 0 holds,
without loss of generality. Furthermore, let ζ1, . . . , ζd denote real random variables,
which represent the stock prices of the corresponding stocks S1, . . . , Sd at t = T .
Additionally, let µ1, . . . , µd denote the deterministic growth rates of S1, . . . , Sd and
σ1, . . . , σd their volatilities.

Let us assume that the stock prices satisfy a geometric Brownian motion. Then, we
can state the CDF Fζj of ζj, j ∈ {1, . . . , d}, as (cp. [Sey12, Section 1.8])

∀ST ∈ R≥0 : Fζj (ST ) := Φ




ln
(
ST
S0,j

)
−
(
µj −

σ2
j

2

)
T

σj
√
T


 .

In the following these CDFs act as the MDFs of random vector ζ and replace CDFs
Fτj from Section 6.1.

Then, we can derive the CDF of the m–th smallest stock price at t = T (analogically
to Section 6.1) with Lemma 6.1 as

∀ST ∈ R≥0 : Fζιm (ST ) :=
d∑

k=m
ck,m

∑

I⊆{1,...,d}
|I|=k

ČI
k

(
FζI1 (ST ) , . . . , FζIk (ST )

)
,

in which Čd denotes the d–copula, which meets (cp. Theorems 1.1 and 1.2)

∀ST ∈ Rd

≥0 : Čd (Fζ1 (ST,1) , . . . , Fζd (ST,d)) = Fζ (ST,1, . . . , ST,d) .

Analogically to Theorem 6.1, we can calculate the value V opt
min/max of a d–dimensional

European max/min option with payoff Λopt
min/max (ST,1, . . . , ST,d) as (choose m = 1

for a minimum option and m = d for a maximum option)

V opt
min/max =

∞∫

0

· · ·
∞∫

0

Λopt
min/max (ST,1, . . . , ST,d) · fζ(ST,1, . . . , STd)dST,1 · · · dST,d (6.56)

=
∞∫

0

Λ̃opt (ST ) · fζιm (ST )dST . (6.57)



6.3. Excursus: European multi–asset options 109

At this, fζ and fζιm denote the PDFs of Fζ and Fζιm and payoff function Λ̃opt
min/max (ST ),

ST ∈ R≥0, depends on the underlying option type. Additionally, we have to replace
µi in equations (6.56) and (6.57) by the constant risk free interest rate rt ≡ r to
ensure a risk neutral evaluation (cp. [Sey12, Section 1.5])

Example 6.7 (Minimum call option). Assuming the underlying contract to be a
d–dimensional European minimum call option with strike price K ∈ R≥0, the payoff
function is given by

Λcall
min (ST,1, . . . , ST,d) = exp(−rT ) max{min {ST,1, . . . , ST,d} −K, 0}

⇒ Λ̃call(ST ) = exp(−rT ) max{ST −K, 0}

for any ST ∈ Rd

≥0 and ST ∈ R≥0. The corresponding option price is given by

V call
min = exp(−rT )

∞∫

K

(ST −K) · fζι1 (ST )dST .

Remark 6.11 (Problem of inhomogeneous baskets). Within this context we do not
have to mind inhomogeneous portfolios regarding recovery rate and nominal value
anymore (cp. Section 6.1.2). These parameters are not of interest any longer.

Obviously, it is possible to transfer the complete theory from Section 6.1 (and
from Section 6.2) to this new context and to evaluate high–dimensional European
max/min options efficiently. We only have to choose a copula Č with desired de-
pendence structure.

If we want to price according to the multi–dimensional Black–Scholes model (cp.
[BS73]), we will have to choose the Gaussian copula for modeling the joint CDF
Fζ . This statement is proven in the following by analyzing the special case of an
European minimum call option on two assets (d = 2).

Let V call
min denote the value of an European minimum call option regarding basket

S := {S1, S2}. Both stock prices S1 and S2 satisfy the Black–Scholes model and
their Wiener processes are correlated by ρ ∈ [−1, 1]. The value V call

min is given by (cp.
[Stu82, Hau06])

V call
min : = S0,1Φ2

−ρ1 (y1,−δ) + S0,2Φ2
−ρ2

(
y2, δ − σ

√
T
)

−K exp(−rT )Φ2
ρ

(
y1 − σ1

√
T , y2 − σ2

√
T
)

(6.58)
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with

Φ2
ρ(u, v) : =

u∫

−∞

v∫

−∞

1
2π
√

1− ρ2 exp
(
−x

2 + 2ρxy + y2

2(1− ρ)

)
dxdy

δ : =
ln
(
S0,1
S0,2

)
+ σ2

2 T

σ
√
T

y1/2 : =
ln
(
S0,1/2
K

)
+
(
r + σ1/2

2

)
T

σ1/2
√
T

σ : =
√
σ2

1 + σ2
2 − 2ρσ1σ2 ρ1/2 : = σ1/2 − ρσ2/1

σ
.

The following proposition shows that Theorem 6.1 combined with the usage of the
Gaussian copula results in the same option value V call

min as in (6.58).

Proposition 6.2 (Pricing multi–dimensional European options). Let V call
min be the

value of a two–dimensional European minimum call option on stocks S1, S2, whose
joint CDF is modeled by using the Gaussian copula with correlation coefficient ρ.
Then, V call

min is given analytically by

V call
min = exp(−rT )

∞∫

K

(ST −K) · fζι1 (ST )dST , (6.59)

in which CDF Fζι1 is given by

Fζι1 (ST ) =
ST∫

−∞
fζι1 (u)du

=
2∑

i=1
Φ




ln
(
ST
S0,i

)
−
(
r − σ2

i

2

)
T

σi
√
T




− Φ2
ρ




ln
(
ST
S0,1

)
−
(
r − σ2

1
2

)
T

σ1
√
T

,
ln
(
ST
S0,2

)
−
(
r − σ2

2
2

)
T

σ2
√
T




=: Φ (z1(ST )) + Φ (z2(ST ))− Φ2
ρ (z1(ST ), z2(ST )) .

Proof. To prove (6.59) we show its equivalence to equation (6.58). For this, we
transform equation (6.59) as follows:

exp(−rT )
∞∫

K

(ST −K) · fζι1 (ST )dST

= exp(−rT )
∞∫

K

ST

(
∂

∂z1
Φ (z1) ∂z1

∂ST
− ∂

∂z1
Φ2
ρ (z1, z2) ∂z1

∂ST

)
dST

+ exp(−rT )
∞∫

K

ST

(
∂

∂z2
Φ (z2) ∂z2

∂ST
− ∂

∂z2
Φ2
ρ (z1, z2) ∂z2

∂ST

)
dST

−K exp(−rT )
∞∫

K

∂

∂ST
Φ (z1(ST )) + ∂

∂ST
Φ (z2(ST ))− ∂

∂ST
Φ2
ρ (z1(ST ), z2(ST )) dST
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=: I1 + I2 − I3

With the notation above we show the equality of I1 and S0,1Φ2
−ρ1 (y1,−δ) in the

following:

I1 = exp(−rT )
∞∫

K

ST

(
∂

∂z1
Φ (z1) ∂z1

∂ST
− ∂

∂z1
Φ2
ρ (z1, z2) ∂z1

∂ST

)
dST

= exp(−rT )
∞∫

K

1√
2πTσ1

exp
(
−z1(ST )2

2

)

−
z2(ST )∫

−∞

1
2πσ1

√
(1− ρ2)T

exp
(
−z1(ST )2 − 2z1(ST )ρt2 + t22

2(1− ρ2)

)
dt2dST

= exp(−rT )
∞∫

K

1√
2πTσ1

exp
(
−z1(ST )2

2

)

·


1−

z2(ST )∫

−∞

1√
(1− ρ2)2π

exp
(
−(t2 − ρz1(ST ))2

2(1− ρ2)

)
dt2


 dST

{
Substitution: u2(t2) := t2 − ρz1(ST )√

1− ρ2

}

= exp(−rT )
∞∫

K

1√
2πTσ1

exp
(
−z1(ST )2

2

)

·


1−

z2(ST )−ρz1(ST )√
1−ρ2∫

−∞

1√
2π

exp
(
−u

2
2

2

)
du2


 dST

= exp(−rT )
∞∫

K

∞∫

z2(ST )−ρz1(ST )√
1−ρ2

1
2π
√
Tσ1

exp
(
−1

2
(
z1(ST )2 + u2

2

))
du2dST

{
Substitution: x1(ST ) := z1(ST )− σ1

√
T
}

= S0,1

∞∫

z1(K)−σ1
√
T

∞∫

ln
(
S0,1
S0,2

)
+σ

2 T

σ2
√

(1−ρ2)T
+x1

σ1−ρσ2
σ2
√

1−ρ2

1
2π exp

(
−1

2
(
x2

1 + u2
2

))
du2dx1

{
Substitution: v2(u2) := u2 − x1

σ1 − ρσ2

σ2
√

1− ρ2

}

= S0,1

∞∫

z1(K)−σ1
√
T

∞∫

ln
(
S0,1
S0,2

)
+σ

2 T

σ2
√

(1−ρ2)T

1
2π exp


−1

2


x2

1 +
(
v2 + x1

σ1 − ρσ2

σ2
√

1− ρ2

)2



 dv2dx1
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{
Substitution: w2(v2) := σ2

√
1− ρ2
σ

v2

}

= S0,1

∞∫

z1(K)−σ1
√
T

∞∫

ln
(
S0,1
S0,2

)
+σ

2 T

σ
√
T

1
2π

σ

σ2
√

1− ρ2

· exp
(
−1

2
σ2

σ2
2(1− ρ2)

(
x2

1 − 2x1w2

(
−σ1 − σ2ρ

σ

)
+ w2

2

))
dw2dx1

= S0,1

∞∫

−y1

∞∫

δ

1
2π
√

1− (−ρ1)2
exp

(
−x

2
1 − 2x1w2(−ρ1) + w2

2
2(1− (−ρ1)2)

)
dw2dx1

{Substitution: x (w2) := −w2, y (x1) := −x1}
= S0,1Φ2

−ρ1(y1,−δ)

Analogically to the calculation above, we can show the equality of S0,2Φ2
−ρ2(y2, δ −

σ
√
T ) and I2. Next, we show the equality of I3 and K exp(−rT )Φ2

ρ(y1−σ1
√
T , y2−

σ2
√
T ):

I3 = K exp(−rT )


∞∫

K

∂

∂ST
Φ (z1(ST )) dST +

∞∫

K

∂

∂ST
Φ (z2(ST )) dST

−
∞∫

K

∂

∂ST
Φ2
ρ (z1(ST ), z2(ST )) dST




=: K exp(−rT ) (I3,1 + I3,2 − I3,3)

Considering I3,1 in detail we get:

I3,1 = ∂

∂ST

∞∫

K

Φ (z1(ST )) dST = Φ (z1(∞))− Φ (z1(K)) =
∞∫

z1(K)

1√
2π

exp
(
−u

2
1

2

)
du1

{Substitution: t1 (u1) := −u1}

=
−z1(K)∫

−∞

1√
2π

exp
(
−t

2
1
2

)
dt1

=
−z1(K)∫

−∞

1√
2π

exp
(
−t

2
1
2

) ∞∫

−∞

1√
2π(1− ρ2)

exp
(
−(t2 − ρt1)2

2(1− ρ2)

)
dt2dt1

=
−z1(K)∫

−∞

∞∫

−∞

1
2π
√

(1− ρ2)
exp

(
−t

2
1 − 2ρt1t2 + t22

2(1− ρ2)

)
dt2dt1

= Φ2
ρ (−z1(K),∞)
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Analogically we can show equality I3,2 = Φ2
ρ (∞,−z2(K)). A detailed consideration

of I3,3 leads to:

I3,3 = ∂

∂ST

∞∫

K

Φ2
ρ (z1(ST ), z2(ST )) dST = 1− Φ2

ρ (z1(K), z2(K))

= 1−
z1(K)∫

−∞

z2(K)∫

−∞

1
2π
√

1− ρ2 exp
(
−u

2
1 − 2ρu1u2 + u2

2
2(1− ρ2)

)
du2du1

=
∞∫

−∞

∞∫

z2(K)

1
2π
√

1− ρ2 exp
(
−u

2
1 − 2ρu1u2 + u2

2
2(1− ρ2)

)
du2du1

+
∞∫

z1(K)

∞∫

−∞

1
2π
√

1− ρ2 exp
(
−u

2
1 − 2ρu1u2 + u2

2
2(1− ρ2)

)
du2du1

−
∞∫

z1(K)

∞∫

z2(K)

1
2π
√

1− ρ2 exp
(
−u

2
1 − 2ρu1u2 + u2

2
2(1− ρ2)

)
du2du1

{Substitution: t1 (u1) := −u1, t2 (u2) := −u2}

=
∞∫

−∞

−z2(K)∫

−∞

1
2π
√

1− ρ2 exp
(
−t

2
1 − 2ρt1t2 + t22

2(1− ρ2)

)
dt2dt1

+
−z1(K)∫

−∞

∞∫

−∞

1
2π
√

1− ρ2 exp
(
−t

2
1 − 2ρt1t2 + t22

2(1− ρ2)

)
dt2dt1

−
−z1(K)∫

−∞

−z2(K)∫

−∞

1
2π
√

1− ρ2 exp
(
−t

2
1 − 2ρt1t2 + t22

2(1− ρ2)

)
dt2dt1

= Φ2
ρ (∞,−z2(K)) + Φ2

ρ (−z1(K),∞)− Φ2
ρ (−z1(K),−z2(K))

If we sum up the terms I3,i, we will get

I3 = I3,1 + I3,2 − I3,3 = Φ2
ρ (−z1(K),−z2(K)) = Φ2

ρ

(
y1 − σ1

√
T , y2 − σ2

√
T
)

and consequently equality

I1 + I2 − I3 = S0,1Φ2
−ρ1 (y1,−δ) + S0,2Φ2

−ρ2

(
y2, δ − σ

√
T
)

−K exp(−rT )Φ2
ρ

(
y1 − σ1

√
T , y2 − σ2

√
T
) eq. (6.58)= V call

min

is proven.

As we have shown in the proposition above, it is possible to evaluate d–dimensional
max/min options according to the multi–dimensional Black–Scholes model. Addi-
tionally, we can model other dependence structures by choosing any different copula
than the Gaussian one. Alternatively, we can evaluate m–th min/max options,
which depend on the m–th smallest/highest stock price at t = T .
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We finish this section by calculating a practical example.

Example 6.8 (Minimum put option on 13 different DAX R© corporations). Let V put
min

be the value of a 13–dimensional minimum put option on 13 different DAX R© corpo-
rations S1, . . . , S13 and let ζ1, . . . , ζ13 denote the random variables, which represent
the stock prices of these corporations at t = T = 1. The initial stock prices and the
corresponding volatilities are shown in Table 6.7 and were imported from [com11].
The deterministic growth rates are only of theoretical interest and are denoted by
µ1, . . . , µ13.

i Symbol S0,i βi σi i Symbol S0,i βi σi

1 ADS(13) 53.50 0.9162 0.2399 8 HEI(20) 49.07 1.4585 0.3493
2 BAYN(14) 57.98 0.8898 0.2141 9 HEN3(21) 47.90 0.6902 0.2275
3 BEI(15) 43.90 0.5332 0.1951 10 SDF(22) 53.04 0.8689 0.2571
4 DAI(16) 50.65 1.3138 0.3103 11 MEO(23) 47.87 0.9405 0.2465
5 DBK(17) 42.57 1.1991 0.2688 12 RWE(24) 43.52 0.7432 0.2008
6 DB1(18) 55.55 1.0002 0.2479 13 SAP(25) 42.97 0.5879 0.1763
7 FME(19) 50.18 0.3417 0.1698 D DAXK(26) — 1.0000 0.1679

Table 6.7.: Daily closing prices at 05/05/2011, beta factor loadings and volatilities of
different DAX R© corporations and of the DAX R© stock index respectively.

The option value V put
min with respect to strike K is given as

V put
min =

∫ K

0
Λ̃put (ST ) · fζι1 (ST ) dST = exp(−rT )

∫ K

0
Fζι1 (ST ) dST ,

in which Λ̃put (ST ) = exp(−rT ) (K − ST ) holds for any ST ∈ R≥0.

Because each of the 13 corporations is listed in the DAX R© stock index, it is reason-
able to model their correlation by using a one–factor model, in which the DAX R©

(13)Adidas AG, Adi-Dassler-Straße 1, 91074 Herzogenaurach, Germany
(14)Bayer AG, Gebäude W 11, 51368 Leverkusen, Germany
(15)Beiersdorf AG, Unnastraße 48, 20245 Hamburg, Germany
(16)Daimler AG, Mercedesstraße 137, 70327 Stuttgart, Germany
(17)Deutsche Bank AG, Taunusanlage 12, 60325 Frankfurt am Main, Germany
(18)Deutsche Börse AG, 60485 Frankfurt am Main, Germany
(19)Fresenius Medical Care AG & Co. KGaA, 61352 Bad Homburg, Germany
(20)HeidelbergCement AG, Berliner Straße 6, 69120 Heidelberg, Germany
(21)Henkel AG & Co. KGaA, Henkelstraße 67, 40589 Düsseldorf, Germany
(22)K+S Aktiengesellschaft, Bertha-von-Suttner-Straße 7, 34131 Kassel, Germany
(23)Metro AG, Schlüterstrasse 1, 40235 Düsseldorf, Germany
(24)RWE AG, Opernplatz 1, 45128 Essen, Germany
(25)SAP AG & Co. KG, Hasso-Plattner-Ring 7, 69190 Walldorf, Germany
(26)DAX R© – German stock index (price index)



6.3. Excursus: European multi–asset options 115

stock index (with deterministic growth rate µD and volatility σD) represents the
actual factor.

For this, let ζ̃1 := ln (ζ1/S0,1) , . . . , ζ̃13 := ln (ζ13/S0,13) denote the random variables,
which represent the logarithmic stock returns of the corresponding stocks. Following
[Sey12, Section 1.8], random variables ζ̃i, i ∈ {1, . . . , 13}, are distributed according
to the Gaussian distribution with mean µ̃i and variance σ2

i

ζ̃i ∼ N
(
µi − σ2

i /2︸ ︷︷ ︸
=:µ̃i

, σ2
i

)
(6.60)

and are modeled by using the one–factor model

ζ̃i = βi · ζ̃D + ϑi · εi. (6.61)

At this, ζ̃D denotes the logarithmic index return of the DAX R© stock index, which is
also distributed according to the Gaussian distribution

ζ̃D ∼ N
(
µD − σ2

D/2︸ ︷︷ ︸
=:µ̃D

, σ2
D

)
.

Furthermore, εi ∼ Φ denotes a random variable, which meets ∀j ∈ {1, . . . , 13} j 6=
i : Cov(εi, εj) = 0 as well as Cov(εi, ζ̃D) = 0.

To fit the distribution from equation (6.60) to the factor model of equation (6.61)
with respect to the first two moments, we have to show

βi = µ̃i
µ̃D

(6.62)

and
ϑ2
i = σ2

i − β2
i · σ2

D (6.63)

However, we avoid the restriction from equation (6.62) by estimating βi directly by
market data (cp. Table 6.7). Then, we can define ϑi according to equation (6.63)
and can consequently satisfy factor model (6.61) with i ∈ {1, . . . , 13}.

This fact also offers significant advantages for estimating the correlation (cp. Sub-
section 3.1.1), because the correlation coefficient ρi,j, i, j ∈ {1, . . . , d}, i 6= j, is
given by

ρi,j = βiβjσ
2
D

σiσj
= ψi · ψj

and thus we can write the resulting correlation matrix in factor structure as

Σ = ΣF
1 = ψ ·ψtr + diag13

(
1− ψ2

1, . . . , 1− ψ2
13

)
.
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V
put,(NK,NH)

min,GKHQ,nested V
put,(NK,NH)

min,GKHQ,plain V put,M,plain
min,MC,Gau,SQ V put,M,IS+FS

min,MC,Gau,SQ
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(b) NK = 33, NH = 256, M = 107

Figure 6.13.: CPU times and relative errors ε of different quadrature and Monte–
Carlo methods for pricing a d–dimensional minimum put option, d ∈
{1, . . . , 13}.

In the current example we furthermore assume that no dividends are paid and that
a constant risk free interest rate of rt ≡ 0.03 is observed within [0, T ]. Additionally,
strike K is set to K = 40 and the desired copula is the Gaussian one.

In Figure 6.13a we apply quadrature methods V (NK,NH)
m,GKHQ,nested and V

(NK,NH)
m,GKHQ,plain as

well as Monte–Carlo methods V M,plain
m,MC,Gau,SQ and V M,IS+FS

m,MC,Gau,SQ to the context of option
pricing. The resulting convergence (cp. Figure 6.13a) is similar to the results we
obtained in previous examples.

In Figure 6.13b we additionally plot the required CPU time against the variable
dimension d ∈ {1, . . . 13}. At this, we use parameters NK = 33, NH = 256 and
M = 107, which cause relative errors of O (10−15) within the quadrature methods
and O (10−6) within the Monte–Carlo methods.
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6.4. Calculating sensitivities (“Greeks”)

Besides the evaluation of an mBDS, the calculation of its sensitivities (also known
as “Greeks”) is of major importance in practice. Especially in risk management
the sensitivities of the value to small changes in certain parameters are essential.
Questions like “How will the value of an mBDS change if the underlying hazard rate
hi changes?” or “How much equity has to exist in order to compensate a change
in the underlying risk free interest rate of 0.5%?” are daily occurrences within this
context.

Another aspect illustrating the importance of an accurate and efficient calculation
of sensitivities is its “non–tradable” character. While the values of certain credit
derivatives are often calibrated by market data or are even read off the market, this
is not possible within the context of sensitivities.

A widely used example for a sensitivity calculation is the famous delta–hedge, which
is known from option price theory, cp. [Sey12, Appendix A4].

In the following we develop different quadrature and Monte–Carlo methods for cal-
culating certain sensitivities. These methods are based on the results of Sections 6.1
and 6.2.

Let Vm denote the value of an mBDS, which is given by (cp. Theorem 6.1)

Vm =
∫

Rd

Λm (t) dFτ (t) = Λ̃∞ −
T∫

0

Λ̃′(t) · Fτιm (t)dt. (6.64)

Here, the first equality is used to establish Monte–Carlo methods and the second one
for quadrature methods. Additionally, the following theorem is of high importance
for this section.

Theorem 6.2 (Leibniz–rule). Let J1 := [l1, u1] ⊆ R and J2 := [l2, u2] ⊆ R be
compact intervals and let g : J1×J2 7→ R be any mapping. If g(x, y) is continuously
differentiable with respect to x for any fixed y ∈ J2,

d
dx

u2∫

l2

g(x, y)dy =
u2∫

l2

∂

∂x
g(x, y)dy

will hold.

Proof. We refer to [Heu83].

In [Gla04, Section 7.2] the Leibniz–rule was first applied to the calculation of sensi-
tivities within a financial background.
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6.4.1. Sensitivity with respect to the interest rate

In this subsection we establish a technique for calculating the sensitivity of Vm with
respect to the underlying interest rate rt, i.e. we have to calculate ∂Vm/∂rt. By
using equation (6.64) and Theorem 6.2 we can easily simplify this quotient to

∂Vm
∂rt

=
∫

Rd

∂Λm

∂rt
(t) dFτ (t) = ∂Λ̃∞

∂rt
−

T∫

0

Λ̃′

∂rt
(t) · Fτιm (t)dt, (6.65)

because neither the joint CDF Fτ nor the CDF of the m–th smallest default time
Fτιm depends on the interest rate rt.

In order to prove transformation (6.65) we just have to show that the payoff functions
Λm, Λ̃ and Λ̃′ are continuously differentiable with respect to rt. This proof has to
be done context–dependent, but in most cases this restriction is satisfied.

Example 6.9 (Interest–Greek of SWN Synthia 2009 ). Let V Syn
t̄ be the value of the

Credit Linked Note SWN Synthia 2009 (cp. Subsection 6.1.5). Then, payoff ΛSyn
t̄

is given by

ΛSyn
t̄ (∆tB,∆tD,∆tT) := Λ̃Syn

t̄ (∆tmin)

:=





exp (−r∆tmin∆tmin)Bmin ·N, if tiss < tmin ≤ tz1
j∑
i=1

exp
(
−r∆tzi∆tzi

)
rfN · 1{tzi>t̄}

+ exp (−r∆tmin∆tmin)Bmin ·N, if tzj < tmin ≤ tzj+1 , j ∈ {1, 2}
3∑
i=1

exp
(
−r∆tzi∆tzi

)
rfN · 1{tzi>t̄}

+ exp (−r∆T∆T )N, else

,

in which the notation from Subsection 6.1.5 remains valid. In the following we
assume a constant interest rate rt ≡ r. Then, derivatives ∂ΛSyn

t̄

∂r
, ∂Λ̃Syn

t̄

∂r
and ∂2Λ̃Syn

t̄

∂tmin∂r
are

calculated easily and sensitivity ∂V Syn
t̄

∂r
is calculated with the same effort as for V Syn

t̄ .

In Table 6.8 we show a comparison of three different methods for calculating this
sensitivity (regarding the Gaussian copula). On the one hand we calculate ∂V Syn

t̄

∂r

directly by applying equation (6.65) and a suitable quadrature method, i.e. we have
to calculate (cp. equation (6.47))
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∂V Syn
t̄

∂r
=
(

lim
s↗∆tz2

∂Λ̃Syn
t̄

∂r
(s)− lim

q↘∆tz2

∂Λ̃Syn
t̄

∂r
(q)
)
Fτι1 (∆tz2)−

∆tz2∫

0

∂Λ̃Syn′

t̄

∂r
(t)Fτι1 (t)dt

+
(

lim
s↗∆T

∂Λ̃Syn
t̄

∂r
(s)− lim

q↘∆T

∂Λ̃Syn
t̄

∂r
(q)
)
Fτι1 (∆T )−

∆T∫

∆tz2

∂Λ̃Syn′

t̄

∂r
(t)Fτι1 (t)dt

+ lim
s↗∞

∂Λ̃Syn
t̄

∂r
(s)

︸ ︷︷ ︸
= ∂Λ̃Syn

∞
∂r

.

The resulting integrals are approximated analogically to V Syn,(NK,NH)
t̄,GKHQ,nested (cp. Section

6.1.5). The corresponding approximation of ∂V
Syn
t̄

∂r
is denoted by “∂r–quad” and can

be found in Table 6.8.

On the other hand we approximate equation (6.65) by means of a Monte–Carlo
simulation. This approximation is based on the method V M,plain

m,MC,Gau,SQ and is denoted
by “∂r–MC”.

Finally, we approximate sensitivity ∂V Syn
t̄

∂r
by means of a finite differences approach,

which uses the estimator

∂V Syn
t̄

∂r
= lim

h↘0

V
Syn,(NK,NH)
t̄,GKHQ,nested(r + h)− V Syn,(NK,NH)

t̄,GKHQ,nested(r − h)
2h .

The resulting approximation is denoted by “∂r–FD”. In the applied quadrature
methods we fix the number of nodes NH = 256 within the GHQ and vary the
number of nodes NK = 2j, j ∈ {7, 8, 9}, within the GKQ. Furthermore, we also
vary the number of simulations M = 10j, j ∈ {7, 8, 9}, within the Monte–Carlo
simulation.

In Table 6.8 it is easy to see that methods ∂r–quad and ∂r–FD offer a similar
convergence. However, we have to note that method ∂r–FD needs a suitable value
for h in order to deliver good results. Furthermore, method ∂r–FD needs twice of the
CPU time ∂r–quad requires. Although the ∂r–MC only offers a slow convergence,
it has a more robust character than the ∂r–FD method, because it does not depend
on h.

Remark 6.12 (Non–constant interest rate). If the interest rate rt is not assumed to
be constant, but is calibrated by market data (analogically to Subsection 6.1.5), we
will be able to calculate sensitivities with respect to single nodes of the interest rate
analogically (cp. for example [Sch10, Section 9]).
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j h -(∂r–quad) · e-2 Sec. -(∂r–MC) · e-2 Sec. -(∂r–FD) · e-2 Sec.

7

1e-4

1.7248379084 0.16 1.7248540773 35.42

1.7248379178 0.32
1e-5 1.7248379085 0.32
1e-6 1.7248379084 0.33
1e-7 1.7248379888 0.32

8

1e-4

1.7248378422 0.32 1.7248389411 356.3

1.7248378516 0.62
1e-5 1.7248378423 0.62
1e-6 1.7248378422 0.63
1e-7 1.7248378427 0.62

9

1e-4

1.7248378484 0.61 1.7248386520 3555

1.7248378578 1.26
1e-5 1.7248378485 1.27
1e-6 1.7248378484 1.27
1e-7 1.7248378491 1.26

Table 6.8.: Comparison of different methods for calculating −∂V Syn
t̄

∂r
· 10−2 regarding

convergence and CPU time (in sec.).

6.4.2. Sensitivity with respect to the maturity

The calculation of the sensitivity with respect to maturity T represents a special
case of the previous Subsection 6.4.1. If we use the joint CDF Fτ and payoff Λm for
a Monte–Carlo simulation, we will be able to proceed completely analogically to the
subsection above. However, if we use the distribution of the m–th smallest default
time, we will additionally have to calculate a derivative with respect to a limit of
integration.

Thus, the sensitivity with respect to maturity T is given by

∂Vm
∂T

=
∫

Rd

∂Λm

∂T
(t) dFτ (t) = −Λ̃′(T )Fτιm (T ). (6.66)

Example 6.10 (Maturity–Greek of Li’s example). Let V Li
m be the value of the mBDS

from Subsection 6.2.3. Then, payoff functions ΛLi
m and Λ̃Li are given by

ΛLi
m (t) = Λ̃Li

(
tτιm

)
:= exp(−rtιm) · 1{tιm≤T}

for any t ∈ Rd

≥0. Obviously, the left hand side of equation (6.66) is not applicable
here, because derivative ∂ΛLi

m

∂T
does not exist. This means that it is not possible to

calculate the desired sensitivity directly by a Monte–Carlo simulation.

Nevertheless, this sensitivity is easily calculated by using a quadrature method.
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NH h Λ̃Li(T )Fτιm (T+h)−Fτιm (T−h)
2h Sec. V

(Li)
m (T+h)−V (Li)

m (T−h)
2h Sec.

64

1e-4 0.0015664872518878 1e-3 0.0015664872516409 0.61
1e-5 0.0015664872488970 1e-3 0.0015664872488952 0.62
1e-6 0.0015664872486130 1e-3 0.0015664872486187 0.61
1e-7 0.0015664872542947 1e-3 0.0015664872540397 0.61

128

1e-4 0.0015664872518878 2e-3 0.0015664872516404 1.20
1e-5 0.0015664872488707 2e-3 0.0015664872488681 1.20
1e-6 0.0015664872485604 2e-3 0.0015664872485645 1.20
1e-7 0.0015664872506121 3e-3 0.0015664872502450 1.21

256

1e-4 0.0015664872518862 5e-3 0.0015664872516388 2.33
1e-5 0.0015664872489023 4e-3 0.0015664872489006 2.34
1e-6 0.0015664872485078 4e-3 0.0015664872485103 2.32
1e-7 0.0015664872511381 4e-3 0.0015664872513292 2.35

Table 6.9.: Comparison of different methods for calculating ∂V Li
m

∂T
regarding conver-

gence and CPU time (in sec.).

Considering equation (6.53), sensitivity ∂V Li
m

∂T
is given by

∂V Li
m

∂T
= Λ̃Li(T )fτιm (T ). (6.67)

Hence, we have to evaluate the PDF fτιm , which is very expensive. Due to the
fact that we need this PDF only at the argument t = T , though, it makes sense to
approximate it by means of a difference quotient.

Let us assume d = 10, m = 5, r = 0.03 and T = 1. Furthermore, let h and ψ be
defined according to equations (6.54) and (6.55). For the approximation in (6.67)
we first have to approximate fτιm (T ) by

fτιm (T ) ≈ Fτιm (T + h)− Fτιm (T − h)
2h , (6.68)

in which Fτιm is approximated by means of a GHQ using NH nodes (Gaussian
copula). Alternatively to this method, we approximate the desired sensitivity by

∂V Li
m

∂T
= V Li

m (T + h)− V Li
m (T − h)

2h , (6.69)

in which V Li
m is approximated by V Li,(NK,NH)

m,GKHQ,nested. Here, the number of nodes within
the applied GKQ is fixed at NK = 513 and the number of nodes NH within the GHQ
remains variable for both estimators.

Table 6.9 shows that the convergence of both estimators is similar. However, a
comparison of the underlying CPU time offers an effort reduction factor of about
600 by using equation (6.67) and estimator (6.68).
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6.4.3. Sensitivity with respect to the hazard rate

In this subsection we calculate the sensitivity ∂Vm
∂hδ

of an mBDS value Vm with respect
to a single hazard rate hδ, δ ∈ {1, . . . , d}. This calculation clearly differs from both
techniques, which were introduced before. Hazard rate hδ is not a component of
payoffs Λm and Λ̃, but represents an important parameter of the joint CDF Fτ and
the CDF of the m-smallest default time Fτιm . In the following we assume that Fτ
and Fτιm are continuously differentiable with respect to hδ.

Then, the desired sensitivity ∂Vm
∂hδ

is calculated according to

∂Vm
∂hδ

=
∫

Rd

Λm (t) d∂Fτ
∂hδ

(t) = Λ̃∞ −
T∫

0

Λ̃′(t) · ∂Fτιm
∂hδ

(t)dt. (6.70)

For establishing a Monte–Carlo method, which approximates the integral above on
the left hand side of (6.70), we have to calculate the joint PDF fτ first and have
to differentiate it with respect to hδ afterwards. Here, this expensive technique is
neglected, we refer to [SH12b]. In the following we consider the right hand side
of equation (6.70), i.e. we establish an efficient quadrature method for calculating
∂Fτιm
∂hδ

.

For this, we assume the independence of τ1, . . . , τd again (cp. especially Subsection
6.1.2). In this case Fτιm (t) is given recursively by

Fτιm (t) =
d∑

k=m
(−1)k−m

(
k − 1
m− 1

)

︸ ︷︷ ︸
=:ck,m

∑

I⊆{1,...,d}
|I|=k

k∏

l=1
FτIl (t) =

d∑

k=m
ck · η̃(k, d− k + 1)(t)

for any t ∈ R≥0, in which η̃(k, l)(t) is defined recursively as

η̃(k, l)(t) :=





Fτ1(t), if k = l = 1

η̃(k, l − 1)(t) + Fτl(t), if k = 1 and l > 1

η̃(k − 1, l)(t) · Fτk(t), if k > 1 and l = 1

η̃(k − 1, l)(t) · Fτk+l−1(t) + η̃(k, l − 1)(t), if k > 1 and l > 1

(6.71)

for each k ∈ {1, . . . , d} and l ∈ {1, . . . ,min{d− k+ 1, d−m+ 1}} (cp. Lemma 6.4).

Remark 6.13 (Special case m = 1). The efficient calculation of Fτιm for the special
case m = 1 (cp. Lemma 6.3) is neglected here, because calculating sensitivities in
this special case is almost trivial.

For the calculation of ∂Fτιm
∂hδ

we first remark that parameter hδ only occurs within
the CDF Fτδ . Furthermore we can observe that CDF Fτδ only occurs for the choice
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k + l − 1 ≥ δ within η̃(k, l). Thus, the former recursion (6.71) can be used easily
for this new context, we just have to change it for special cases k + l − 1 = δ and
k + l − 1 > δ to the new function

η̃δ(k, l)(t) :=





∂Fτ1
∂hδ

(t), if k = l = 1 and k + l − 1 = δ

∂Fτl
∂hδ

(t), if k = 1 , l > 1 and k + l − 1 ≥ δ

η̃δ(k − 1, l)(t) · ∂Fτk
∂hδ

(t), if k > 1 , l = 1 and k + l − 1 = δ

η̃δ(k − 1, l)(t) · ∂Fτk+l−1
∂hδ

(t), if k > 1 , l > 1 and k + l − 1 = δ

(6.72)
Analogically to Subsections 6.1.3 and 6.1.4, we can apply the recursion above to any
Archimedean copula or to a Gaussian copula with a factor structure.

Example 6.11 (Hazard–Greek of Li’s example). For a better illustration of this
recursion we calculate the sensitivity ∂V Li

m

∂hδ
of the mBDS from Subsection 6.2.3. For

this, we use the Gaussian copula and the input parameter d = 10, m = 3, δ = 5,
r = 0.03 and T = 1. Additionally, ψi and hi are defined for each i ∈ {1, . . . , d}
according to equations (6.54) and (6.55).

In order to transfer recursion (6.72) to the application of the Gaussian copula we
have to adjust the definition of input matrix X ∈ Rd×NK×NH from equation (6.35) to

X′ =
(
X′
)
i,j,k

:=





Φi

(
t
(K)
j , x

(H)
k

)
, if i 6= δ

∂Φi
(
t
(K)
j ,x

(H)
k

)

∂hδ
, if i = δ

. (6.73)

Furthermore, we have to adjust Algorithm 6.3 (CalculateSum), in which the under-
lying recursion is implemented, to Algorithm 6.13 (CalculateSum2)

By using Algorithm 6.1, input matrix X′ and Algorithm CalculateSum2 we can
finally calculate the desired sensitivity ∂V Li

m

∂hδ
.

In Table 6.10 the results of the sensitivity calculation above are shown and are de-
noted by “∂hδ–quad”. Here, we proceed analogically to approximation V Li,(NK,NH)

m,GKHQ,nested

and approximate

∂V Li
m

∂hδ
= Λ̃Li(T ) · ∂Fτιm

∂hδ
(T )−

T∫

0

Λ̃Li′ (t) · ∂Fτιm
∂hδ

(t)dt (6.74)

directly. Additionally, we calculate the finite differences approximation “∂hδ–FD”
as

∂V Li
m

∂hδ
= lim

ξ↘0

V
Li,(NK,NH)
m,GKHQ,nested (hδ + ξ)− V Li,(NK,NH)

m,GKHQ,nested (hδ − ξ)
2ξ . (6.75)

At this, we vary the number of nodes NK within the GKQ and fix the number of
nodes NH = 256 within the GHQ.
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Algorithm 6.13: CalculateSum2(m, X′, i, j)

Input : m, X′ , i, j
Output: X ∈ R
Global : d, NK, NH

1 Initialize X ← 0 and Y ∈ Rd−m+1

2 for k = 1 to k = d do
3 for l = 1 to l = min{d−m+ 1, d− k + 1} do
4 if (k + l − 1 6= δ) then
5 if (k > 1 and l > 1) then
6 Yl ← Yl · X′k+l−1,i,j + Yl−1

7 else
8 if (k > 1 and l = 1) then
9 Yl ← Yl · X′k,i,j

10 else
11 if (k = 1 and l > 1) then
12 if (l > δ) then
13 Yl ← X′δ,i,j
14 else
15 Yl ← Yl−1 + X′l,i,j

16 else
17 Yl ← X′1,i,j

18 else
19 if (k > 1 and l > 1) then
20 Yl ← Yl · X′k+l−1,i,j

21 else
22 if (k > 1 and l = 1) then
23 Yl ← Yl · X′k,i,j
24 else
25 if (k = 1 and l > 1) then
26 Yl ← X′l,i,j
27 else
28 Yl ← X′1,i,j

29 if k >= m then
30 X ← X + ck,mYd−k+1
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NK ξ ∂hδ–quad Sec. ∂hδ–FD Sec.

128

1e-4

0.1219791652968754 0.29

0.1219792249129194 0.6
1e-5 0.1219791658934807 0.61
1e-6 0.1219791652996849 0.6
1e-7 0.1219791653447877 0.6

256

1e-4

0.1219791652968759 0.58

0.1219792249129194 1.22
1e-5 0.1219791658933072 1.19
1e-6 0.1219791652996849 1.21
1e-7 0.1219791653447877 1.19

512

1e-4

0.1219791652968760 1.17

0.1219792249129367 2.37
1e-5 0.1219791658934807 2.38
1e-6 0.1219791652996849 2.37
1e-7 0.1219791653447877 2.37

Table 6.10.: Comparison of different methods for calculating ∂Vm
∂hδ

regarding conver-
gence and CPU time (in sec.).

Obviously, method ∂hδ–quad clearly outperforms the other method concerning con-
vergence and CPU time. Additionally, method ∂hδ–quad does not need any input
parameter ξ and is therefore more robust than method ∂hδ–FD.

6.4.4. Sensitivity with respect to the correlation

If we want to calculate a sensitivity with respect to a correlation parameter, we will
first have to distinguish between the usage of a Gaussian copula or an Archimedean
copula.

If we choose the Gaussian copula for modeling the underlying correlation, it will
be possible to calculate the sensitivity ∂Vm

∂ψδ
with respect to any factor loading ψδ.

This is done completely analogically to the previous Subsection 6.4.3, because factor
loading ψδ only appears within Fτδ , too. Consequently, we just have to replace the

term
∂Φi
(
t
(K)
j ,x

(H)
k

)

∂hδ
in equation (6.73) by

∂Φi
(
t
(K)
j ,x

(H)
k

)

∂ψδ
. The remain of the calculation

proceeds analogically.

If we choose any Archimedean copula for modeling the underlying correlation struc-
ture, we will only be able to calculate a sensitivity ∂Vm

∂θ
with respect to parameter θ,

which controls the overall correlation within the underlying portfolio. The appear-
ance of parameter θ within Fτ and Fτιm depends crucially on the applied generator
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φθ. Usually, θ appears in nested ways frequently within Fτ and Fτιm , which makes
an analytical calculation of ∂Fτ

∂θ
and ∂Fτιm

∂θ
very difficult or even impossible. Due to

this, we suggest a calculation according to the finite differences approaches

∂Vm
∂θ
≈ V

(NK,NLG,Arc)
m,GKLaQ,nested(θ + h)− V (NK,NLG,Arc)

m,GKLaQ,nested(θ − h)
2h (6.76)

or
∂Vm
∂θ
≈ V

(NK,NLG,Arc)
m,GKQ,plain (θ + h)− V (NK,NLG,Arc)

m,GKQ,plain (θ − h)
2h (6.77)

with small h.

Remark 6.14 (Correlation–Greek (Archimedean copula)). If we use an Archimedean
copula for modeling the correlation, sensitivity ∂Vm

∂θ
will not be very meaningful or

rather it will not be scaled. Thus, it makes more sense to calculate

∂Vm
∂τK

= ∂Vm
∂θ
· ∂θ
∂τK

,

by using equations (6.76) or (6.77) in connection with Table 4.2.
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7. Summary

In the following we summarize the achievements, which were presented in the previ-
ous part. Here, we limit ourselves to the semi–dynamic pricing model from Chapter
6. In Section 6.1 we introduced the pricing of a d–dimensional mBDS as an integral
problem of the same dimension. However, considering tradable products in detail
we were able to observe that only the m–th smallest default time influences the
payments of an mBDS directly. The consideration of each single default time causes
superfluous effort.

Therefore, we developed a formula for the distribution function Fτιm of the m–th
smallest default time (cp. Lemma 6.1). With the help of this formula we were able
to transform the pricing of a d–dimensional mBDS to an one–dimensional integral
problem (cp. Theorem 6.1 and Proposition 6.1). At first sight we were able to break
the so–called curse of dimensionality here, but the appearances were deceiving.
The evaluation of Fτιm brought a complexity of O

(
2d
)
about, which implicates a

new exponential dependence on dimension d. Nevertheless, we already reduced the
complexity of pricing an mBDS from O

(
Nd
)
(using a d–dimensional quadrature

with N nodes) to O
(
N22d

)
in the worst case.

In order to overcome this exponential behavior we first developed two nested recur-
sion schemes (cp. Lemma 6.3 and 6.4) in case of independent default times. Hereby,
we were able to reduce the complexity of Fτιm to at worst O (d2). Later on we were
additionally able to apply these recursion schemes to dependent default times, whose
dependence is modeled by means of factor models. In Subsections 6.1.3 and 6.1.4
we proved the validity of this result for the application of the Gaussian copula as
well as for any Archimedean copula. Finally, the pricing of a d–dimensional mBDS
equaled a two–dimensional integral problem, whose integrand shows a complexity of
O (d2). Hence, the resulting quadrature method shows a complexity of O (N2d2). In
Subsection 6.1.5 we applied this method to the pricing of the product SWN Synthia
2009, which is traded at the Stuttgart stock exchange. The resulting performance
offered a very quick convergence and a massive effort reduction regarding a plain
evaluation of Fτιm or the application of a d–dimensional quadrature. In summary,
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we reduced the effort of an mBDS evaluation according to

O
(
Nd
)
⇓ O

(
N2 · 2d

)
⇓ O

(
N2 · d2

)

for any dimension d ∈ N≥2 and any number of nodes N ∈ N.

Further advantages of the approach above consist in its deterministic nature and its
multifunctional applicability. In Section 6.3 we showed that it is easily possible to
transfer this new technique to the context of pricing multi–dimensional European
maximum or minimum options. In addition we proved that the application of the
Gaussian copula within this context implicates a pricing regarding the famous multi–
dimensional Black–Scholes pricing model (cp. [BS73]). By using this technique
we can consequently expand the analytical formulas for 2–dimensional European
maximum or minimum options given in [Stu82, Hau06] to any dimension. We priced
a 13–dimensional European minimum put option at the end of Section 6.3 for a
better understanding.

Besides the context of option pricing we were furthermore able to transform the
pricing via Fτιm to the context of calculating sensitivities in Section 6.4. For each
sensitivity we showed a very quick convergence and a huge effort reduction compared
to existing methods. Considering the transformation to option pricing again, we can
easily calculate corresponding sensitivities like Delta, Vega or Theta.

In Section 6.2 we introduced existing Monte–Carlo methods and developed two new
methods, which accelerate the underlying simulation by using importance sampling.
For this, we transferred the knowledge of existing methods regarding the Gaussian
copula to the context of applying Archimedean copulae. In the derivation of both
methods we pointed out that they are applicable to any arbitrary Archimedean cop-
ula. Further numerical tests showed that the resulting methods offer a significantly
faster convergence and produced a clearly lower variance than a plain simulation.
Variance reduction ratios of 104 were observed.

On the whole, we developed an innovative quadrature method, which clearly outper-
forms the existing methods in terms of convergence and complexity. This method
is applicable to a Gaussian copula showing factor correlation as well as to any
Archimedean copula. Furthermore, by transferring algorithms referring to the Gaus-
sian copula, we established two newMonte–Carlo approaches regarding Archimedean
copulae. These methods dominate the existing methods conspicuously in terms of
convergence and variance. For closing this summary we briefly suggest which method
fits best to certain preconditions.



131

If the underlying copula is the Gaussian copula, we will distinguish:

1. If the correlation matrix Σ shows a factor correlation and

a) the underlying basket S is homogeneous regarding recovery rate and nom-
inal value, the best method will be the quadrature method, which applies
a nested evaluation of Fτιm , choose: V

(NK,NH)
m,GKHQ,nested. This method was

presented in this thesis for the first time.

b) the underlying basket S is inhomogeneous regarding recovery rate and
nominal value, the best method will be the Monte–Carlo method, which
applies importance sampling and exploits the factor correlation, choose:
V M,IS+FS
m,MC,Gau. This method was presented in [JK04, CG08].

2. If the correlation matrix Σ does not show a factor correlation, the best method
will be the Monte–Carlo method, which only applies importance sampling,
choose: V M,IS

m,MC,Gau. This method was presented in [JK04, CG08].

If we choose an Archimedean copula for modeling the joint CDF of default times we
will distinguish:

1. If the underlying basket S is homogeneous in terms of recovery rate and nom-
inal value and

a) the dimension d is moderate (i.e. d ≤ 8), the best method will be the
quadrature method, which applies a plain evaluation of Fτιm , choose:
V

(NK,Arc)
m,GKQ,plain. This method was presented in this thesis for the first time.

b) the dimension d is huge (i.e. d > 8), the best method will be the
quadrature method, which applies a nested evaluation of Fτιm , choose:
V

(NK,NLG,Arc)
m,GKLaQ,nested. This method was presented in this thesis for the first

time.

2. If the underlying basket S is inhomogeneous regarding recovery rate and nom-
inal value, the best method is the Monte–Carlo method, which exploits the
factor correlation of the Archimedean copula, choose: V M,IS+FS

m,MC,Arc. This method
was presented in this thesis for the first time.





8. Outlook

In this thesis we mainly considered a semi–dynamic pricing model (cp. [Li00] or
[Sch03]), which represents an extension of the static pricing model (cp. Chapter 5).
Of course each method presented in Chapter 6 can easily by applied to the static
pricing model, which is not presented within this thesis due to its simplicity. The
only modification, which has to be applied is a transformation of the underlying
MDFs Fτ1 , . . . , Fτd .

A more complex model is presented in [SS01, Sch03] and is named the dynamic
pricing model. In this model the default of obligor Si implicates a jump in the
hazard rate hj of obligor Sj for each i, j ∈ {1, . . . , d}, j 6= i. Consequently, it is not
straightforward to apply a quadrature regarding distribution Fτιm here. Of course,
the application of plain Monte–Carlo methods is possible, but they offer a poor ratio
of convergence. Hence, a remaining challenge is the transformation of the presented
importance sampling techniques to the context of a dynamic pricing model.

Finally, the efficient pricing of multi–dimensional European options calls for a cor-
responding modification to American options, which so far is not satisfying and
deserves further study.
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Appendix





A. Different distributions

Definition A.1 (Gamma distribution). The CDF of the gamma distribution G (α, ν)
with α > 0 and ν > 0 is defined by its continuous PDF

∀x ∈ R>0 : fGα,ν (x) := ανxν−1

Γ (ν) exp (−α · x) .

At this, Γ(t) denotes the gamma function, which is given by (cp. [Fel71, Section
II.2])

∀t ∈ R>0 : Γ(t) :=
∞∫

0

xt−1 exp (−x) dx.

Definition A.2 (Logarithmic distribution). The CDF of the logarithmic distribu-
tion Lξ with 0 < ξ < 1 is defined by its discrete PDF

∀x ∈ N : fLξ (x) := − ξx

x ln (1− ξ) .

Alternatively, it is defined recursively by (cp. [JKK05, Def. 7.1.1])

∀x ∈ N>1 : fLξ (x) := (x− 1)ξ
x

fLξ (x− 1) .

Definition A.3 (Stable distribution). A random variableX is distributed according
to the CDF of the Stable distribution S (α, β, γ, δ, k) if and only if X is distributed
according to

X ∼








γ · Z + δ, if α 6= 1

γ · Z +
(
δ + 2β

π
γ ln(γ)

)
, if α = 1

, if k = 1



γ ·
(
Z − β tan

(
πα
2

))
+ δ, if α 6= 1

γ · Z + δ, if α = 1
, if k = 0

,

in which Z has the characteristic function (cp. [Nol12, Definition 1.7, Definition
1.8])

E (exp (iuZ))





exp
(
−|u|α

[
1− iβ tan

(
πα
2

)
sgn(u)

])
, if α 6= 1

exp
(
−|u|

[
1 + iβ2

π
sgn(u) ln |u|

])
, if α = 1

.





B. Sampling random numbers

Algorithm B.1: Sample V ∼ Lξ, 0 < ξ < 1
Input : 0 < ξ < 1
Output: V
Note : cp. [Kem81, Algorithm LK] and Definition A.2

1 Initialize h← ln (1− ξ), x← 1 and draw u1 ∼ U [0, 1]
2 if u1 > ξ then
3 V ← x

4 else
5 Draw u2 ∼ U [0, 1] and set q ← 1− exp (u2 · h)
6 if u1 < q2 then
7 V ← b1 + ln (u1) / ln (q)c
8 else
9 if u1 > q then

10 V ← x

11 else
12 V ← 2
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Algorithm B.2: Sample V ∼ G1,ν , ν > 0
Input : ν > 0
Output: V
Note : cp. [Knu00, 3.4.1.E] and Definition A.1

1 Initialize j ← 0
2 if ν > 1 then
3 while j = 0 do
4 Draw independently distributed u1, u2, u3 ∼ U [0, 1]
5 Y ← tan (u1 · π)
6 X ← √2ν − 1 · Y + ν − 1
7 if (X > 0 and (1 + Y 2) · exp

(
(ν − 1) · ln

(
X
ν−1

)
−√2ν − 1 · Y

)
≥ u2)

then
8 V ← X, j + +

9 else
10 if ν = 1 then
11 Draw u1 ∼ U [0, 1], V ← − ln (u1)
12 else
13 if ν = 0.5 then
14 Draw u1 ∼ U [0, 1], u1 ← Φ−1 (u1) , V ← 0.5 · u2

1

15 else
16 Y ← exp(1)

ν+exp(1)

17 while j = 0 do
18 Draw independently distributed u1, u2, u3 ∼ U [0, 1]
19 if u1 < Y then
20 V ← u

1/ν
2 , X ← exp (−V )

21 else
22 V ← 1− ln (u2) , X ← V ν−1

23 if X > u3 then
24 j + +
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Algorithm B.3: Sample V ∼ G1,ν , ν ∈ N
Input : ν ∈ N
Output: V
Note : cp. [PFTV07, 7.3.10] and Definition A.1

1 Initialize V ← 1 and draw independently distributed u1, . . . , uν ∼ U [0, 1]
2 for i← 1 to ν do
3 V ← V · ui
4 V ← − ln (V )

Algorithm B.4: Sample V ∼ S (α, β, γ, δ, 1)
Input : α, β, γ, δ
Output: V
Note : cp. [Nol12, Theorem 1.19] and Definition A.3

1 Draw independently distributed u1, u2 ∼ U [0, 1]
2 Initialize Θ← π

(
u1 − 1

2

)
and W ← − ln (u2)

3 if α = 1 then

4 V ← 2
π

[(
π
2 + βΘ

)
tan (Θ)− β ln

(
Wπ

2 cos(Θ)
π
2 +βΘ

)]

5 V ← γ · V +
(
δ + 2β

π
γ ln(γ)

)

6 else
7 θ0 ← arctan

(
β tan

(
απ
2

))

8 V ← sin(α(θ0+Θ))
(cos(αθ0) cos(Θ))1/α

[
cos(αθ0+(α−1)Θ)

W

](1−α)/α

9 V ← γ · V + δ





C. Various tables and figures

C.1. Gauss–Hermite quadrature for approximating
the multivariate Gaussian distribution

|ψj| ↓ NH → 4 8 16 32 64 128

≤
1 εNH,k 2.03e-01 8.69e-02 4.10e-02 1.96e+00 1.73e-01 7.37e-02

σNH,k 3.74e-01 2.29e-01 1.66e+00 6.17e+02 3.90e+01 1.60e+01
MNH,k 7.21e-02 7.86e-03 2.34e-04 5.19e-07 9.39e-12 1.64e-15

≤
0.

95 εNH,k 8.44e-02 1.40e-02 1.01e-03 1.80e-05 3.07e-08 1.43e-12
σNH,k 1.26e-01 3.43e-02 4.69e-03 1.97e-04 8.40e-07 1.11e-10
MNH,k 3.24e-02 1.52e-03 8.68e-06 1.18e-09 3.03e-15 7.01e-16

≤
0.

9 εNH,k 4.38e-02 3.34e-03 7.54e-05 1.97e-07 1.91e-11 1.10e-15
σNH,k 7.69e-02 9.79e-03 4.81e-04 4.11e-06 1.48e-09 1.36e-15
MNH,k 1.54e-02 3.16e-04 3.77e-07 3.05e-12 1.86e-15 6.55e-16

≤
0.

85 εNH,k 2.56e-02 9.07e-04 5.83e-06 2.55e-09 3.49e-14 1.06e-15
σNH,k 5.93e-02 3.40e-03 5.48e-05 7.09e-08 5.25e-12 1.16e-15
MNH,k 7.20e-03 6.73e-05 1.82e-08 9.24e-15 1.64e-15 6.45e-16

≤
0.

8 εNH,k 1.85e-02 3.84e-04 4.78e-07 2.69e-11 1.78e-15 1.05e-15
σNH,k 5.62e-02 3.18e-03 4.99e-06 1.01e-09 1.05e-15 1.14e-15
MNH,k 3.31e-03 1.39e-05 8.49e-10 1.99e-15 1.63e-15 6.51e-16

≤
0.

75 εNH,k 1.56e-02 2.73e-04 8.93e-08 3.30e-13 1.77e-15 1.04e-15
σNH,k 5.37e-02 2.74e-03 2.34e-06 2.04e-11 9.56e-16 1.11e-15
MNH,k 1.59e-03 3.04e-06 4.13e-11 1.38e-15 1.63e-15 6.57e-16

≤
0.

7 εNH,k 1.50e-02 2.77e-04 8.86e-08 1.08e-14 1.75e-15 1.02e-15
σNH,k 5.27e-02 2.84e-03 3.28e-06 9.75e-13 9.13e-16 1.08e-15
MNH,k 8.57e-04 7.70e-07 2.31e-12 1.29e-15 1.65e-15 6.54e-16

Table C.1.: Different statistics of error estimator ε using k = 10 and Nu,ψ = 105.
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|ψj| ↓ NH → 4 8 16 32 64 128

≤
1 εNH,k 8.16e+04 3.79e-01 1.20e-01 9.99e-01 5.32e+03 1.42e+03

σNH,k 2.58e+07 4.14e+01 2.58e+00 2.15e+02 1.66e+06 4.49e+05
MNH,k 3.40e-01 1.07e-01 1.48e-02 5.01e-04 1.40e-06 4.18e-11

≤
0.

95 εNH,k 2.38e-01 6.82e-02 8.72e-03 3.17e-04 1.83e-06 5.54e-10
σNH,k 2.03e-01 8.73e-02 1.92e-02 1.47e-03 2.96e-05 2.71e-08
MNH,k 1.84e-01 3.36e-02 1.41e-03 4.81e-06 2.14e-10 1.18e-15

≤
0.

9 εNH,k 1.41e-01 2.53e-02 1.43e-03 1.29e-05 7.24e-09 6.00e-14
σNH,k 1.27e-01 3.58e-02 3.85e-03 9.51e-05 2.54e-07 6.14e-12
MNH,k 1.06e-01 1.13e-02 1.67e-04 8.17e-08 1.22e-13 6.73e-16

≤
0.

85 εNH,k 8.33e-02 9.37e-003 2.33e-04 5.03e-07 2.98e-11 9.80e-16
σNH,k 8.11e-02 1.48e-02 7.58e-04 4.26e-06 1.70e-09 1.33e-15
MNH,k 5.92e-02 3.61e-03 1.87e-05 1.35e-09 2.50e-15 6.21e-16

≤
0.

8 εNH,k 4.86e-02 3.31e-03 3.66e-05 2.09e-08 1.41e-13 9.65e-16
σNH,k 5.57e-02 6.02e-03 1.54e-04 3.71e-07 1.04e-11 1.08e-15
MNH,k 3.16e-02 1.05e-03 1.75e-06 1.90e-11 1.68e-15 6.15e-16

≤
0.

75 εNH,k 2.80e-02 1.08e-03 4.79e-06 6.45e-10 1.99e-15 9.60e-16
σNH,k 4.28e-02 2.49e-03 2.41e-05 1.49e-08 2.44e-14 1.06e-15
MNH,k 1.58e-02 2.65e-04 1.24e-07 1.54e-13 1.56e-15 6.15e-16

≤
0.

7 εNH,k 1.68e-02 3.37e-04 5.09e-07 1.46e-11 1.74e-15 9.74e-16
σNH,k 4.06e-02 1.82e-03 4.13e-06 6.99e-10 1.04e-15 1.05e-15
MNH,k 7.18e-03 5.48e-05 6.23e-09 3.00e-15 1.58e-15 6.31e-16

Table C.2.: Different statistics of error estimator ε using k = 20 and Nu,ψ = 105.
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|ψj| ↓ NH → 4 8 16 32 64 128

≤
1 εNH,k 6.78e-01 8.15e+02 1.03e+02 1.94e+04 1.26e+08 2.53e+00

σNH,k 1.59e+00 2.57e+05 3.19e+04 6.13e+06 3.72e+10 5.66e+02
MNH,k 6.04e-01 2.82e-01 7.49e-02 7.15e-03 1.18e-04 8.30e-08

≤
0.

95 εNH,k 3.96e-01 1.53e-01 2.91e-02 1.78e-03 1.89e-05 1.45e-08
σNH,k 2.57e-01 1.37e-01 4.14e-02 4.81e-03 1.40e-04 4.74e-07
MNH,k 3.68e-01 1.15e-01 1.29e-02 2.00e-04 9.30e-08 1.10e-13

≤
0.

9 εNH,k 2.65e-01 7.23e-02 7.19e-03 1.38e-04 1.94e-07 4.94e-12
σNH,k 1.77e-01 6.92e-02 1.17e-02 4.86e-04 2.18e-06 2.58e-10
MNH,k 2.40e-01 5.15e-02 2.70e-03 9.39e-06 2.68e-10 9.85e-16

≤
0.

85 εNH,k 1.77e-01 3.41e-02 1.80e-03 1.12e-05 2.45e-09 3.08e-15
σNH,k 1.24e-01 3.55e-02 3.36e-03 5.25e-05 4.87e-08 1.49e-13
MNH,k 1.57e-01 2.26e-02 5.39e-04 4.20e-07 8.33e-13 6.82e-16

≤
0.

8 εNH,k 1.16e-01 1.53e-02 4.13e-04 8.10e-07 2.15e-11 9.42e-16
σNH,k 8.69e-02 1.76e-02 9.18e-04 4.81e-06 4.86e-10 1.03e-15
MNH,k 9.89e-02 9.22e-03 9.57e-05 1.52e-08 3.70e-15 6.41e-16

≤
0.

75 εNH,k 7.20e-02 6.21e-03 8.04e-05 4.57e-08 1.89e-13 9.22e-16
σNH,k 5.95e-02 7.99e-03 2.13e-04 4.53e-07 1.65e-11 1.01e-15
MNH,k 5.84e-02 3.34e-03 1.32e-05 3.43e-10 1.79e-15 6.20e-16

≤
0.

7 εNH,k 4.28e-02 2.28e-03 1.29e-05 1.86e-09 2.31e-15 9.31e-16
σNH,k 4.12e-02 3.34e-03 4.29e-05 2.21e-08 3.65e-14 1.01e-15
MNH,k 3.22e-02 1.06e-03 1.42e-06 4.90e-12 1.54e-15 6.18e-16

Table C.3.: Different statistics of error estimator ε using k = 30 and Nu,ψ = 105.
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C.2. Input Parameters for Li’s example

i hi ψi i hi ψi i hi ψi

1 0.0787 0.516 35 0.095 0.811 68 0.0222 -0.5
2 0.025 -0.449 36 0.0438 -0.111 69 0.0225 -0.494
3 0.0711 0.379 37 0.0322 -0.32 70 0.0434 -0.119
4 0.0947 0.804 38 0.0532 0.0583 71 0.0987 0.877
5 0.00193 -0.865 39 0.0256 -0.439 72 0.0211 -0.52
6 0.0405 -0.171 40 0.00455 -0.818 73 0.0853 0.636
7 0.0251 -0.448 41 0.0505 0.00896 74 0.0284 -0.389
8 0.00227 -0.859 42 0.0696 0.353 75 0.0836 0.605
9 0.0521 0.0372 43 0.00912 -0.736 76 0.0367 -0.24
10 0.0345 -0.28 44 0.0907 0.733 77 0.0935 0.783
11 0.0274 -0.406 45 0.00309 -0.844 78 0.086 0.648
12 0.0561 0.11 46 0.0152 -0.626 79 0.0491 -0.0164
13 0.014 -0.648 47 0.0982 0.867 80 0.00221 -0.86
14 0.0544 0.0789 48 0.062 0.217 81 0.0362 -0.248
15 0.0522 0.0394 49 0.0299 -0.362 82 0.0736 0.426
16 0.0857 0.643 50 0.0361 -0.25 83 0.0519 0.0349
17 0.05 -0.000406 51 0.0481 -0.0343 84 0.0423 -0.139
18 0.0419 -0.145 52 0.0298 -0.364 85 0.0029 -0.848
19 0.0744 0.44 53 0.0285 -0.387 86 0.0909 0.737
20 0.0249 -0.451 54 0.0924 0.764 87 0.0112 -0.698
21 0.0239 -0.469 55 0.0629 0.232 88 0.098 0.864
22 0.032 -0.324 56 0.0755 0.459 89 0.0688 0.338
23 0.0911 0.739 57 0.0714 0.385 90 0.0487 -0.0228
24 0.0165 -0.603 58 0.0723 0.401 91 0.0736 0.425
25 0.0246 -0.458 59 0.00698 -0.774 92 0.0589 0.16
26 0.0198 -0.543 60 0.0487 -0.0237 93 0.0528 0.0512
27 0.0716 0.389 61 0.00889 -0.74 94 0.0456 -0.0798
28 0.0968 0.842 62 0.076 0.467 95 0.0828 0.591
29 0.0769 0.485 63 0.0424 -0.137 96 0.087 0.667
30 0.00807 -0.755 64 0.0597 0.175 97 0.0491 -0.0153
31 0.046 -0.0721 65 0.00864 -0.744 98 0.097 0.845
32 0.0257 -0.437 66 0.0273 -0.409 99 0.0889 0.7
33 0.0777 0.499 67 0.0624 0.223 100 0.0138 -0.651
34 0.0584 0.151

Table C.4.: Hazard rates and factor loadings for Li’s example from Subsection 6.2.3.
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C.3. Credit portfolio

i Ni pi 1−Ri i Ni pi 1−Ri
1 4.6164 0.0017 0.5233 39 0.1890 0.0132 0.6334
2 3.0402 0.0444 0.4008 40 0.1844 0.0296 0.6769
3 2.3508 0.0198 0.5543 41 0.1683 0.0005 0.5720
4 2.3427 0.0039 0.2953 42 0.1496 0.0132 0.5056
5 2.2087 0.0296 0.7318 43 0.1458 0.0088 0.4824
6 2.0984 0.0009 0.0448 44 0.1388 0.0296 0.2795
7 1.7929 0.0198 0.4312 45 0.1247 0.1000 0.5119
8 1.6011 0.0039 0.6334 46 0.1228 0.0026 0.6334
9 1.4852 0.0132 0.4487 47 0.1197 0.0088 0.6334
10 1.2556 0.0007 0.2763 48 0.1190 0.0088 0.7473
11 1.2530 0.0198 0.4025 49 0.1141 0.0444 0.5119
12 1.2305 0.0007 0.5714 50 0.1127 0.0296 0.6334
13 1.2015 0.0132 0.0490 51 0.0975 0.0132 0.6334
14 1.1917 0.0039 0.5543 52 0.0892 0.0296 0.2796
15 1.1532 0.0039 0.2962 53 0.0832 0.0004 0.7318
16 1.1092 0.0003 0.5543 54 0.0815 0.0088 0.5211
17 0.9810 0.0296 0.6769 55 0.0727 0.0088 0.5119
18 0.8839 0.0004 0.5497 56 0.0671 0.0004 0.5497
19 0.6993 0.0667 0.6431 57 0.0658 0.0009 0.5497
20 0.6083 0.0088 0.6769 58 0.0642 0.0132 0.6334
21 0.5468 0.0132 0.7318 59 0.0628 0.0296 0.2672
22 0.5231 0.0039 0.6334 60 0.0620 0.0026 0.6334
23 0.5167 0.0059 0.6334 61 0.0568 0.0088 0.6334
24 0.4742 0.0296 0.2928 62 0.0565 0.0059 0.7318
25 0.4430 0.0039 0.6334 63 0.0542 0.0005 0.6334
26 0.4282 0.0296 0.6769 64 0.0518 0.0012 0.5497
27 0.4263 0.0039 0.6334 65 0.0505 0.0088 0.6334
28 0.4181 0.0059 0.6334 66 0.0474 0.0198 0.6334
29 0.3710 0.0026 0.5497 67 0.0470 0.0132 0.5119
30 0.2647 0.0132 0.6334 68 0.0458 0.0012 0.5119
31 0.2536 0.0296 0.5543 69 0.0416 0.0026 0.6334
32 0.2440 0.0088 0.5478 70 0.0383 0.0667 0.5543
33 0.2412 0.0004 0.5119 71 0.0370 0.0026 0.4824
34 0.2238 0.0132 0.6303 72 0.0348 0.0009 0.7003
35 0.2199 0.0667 0.4824 73 0.0282 0.0059 0.6334
36 0.2180 0.0017 0.5119 74 0.0107 0.0444 0.6334
37 0.2033 0.0009 0.6030 75 0.0095 0.0039 0.6334
38 0.1910 0.0004 0.5119

Table C.5.: Exemplary credit portfolio of the health care business.
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C.4. Variance analyses of different Monte–Carlo
methods
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Figure C.1.: Variances of different Monte–Carlo approximations using a Frank cop-
ula with parameter θ = 1.0.
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Figure C.2.: Variances of different Monte–Carlo approximations using a Gumbel
copula with parameter θ = 1.2.



Bibliography

[AS70] Abramowitz, M. and Stegun, I.A.: Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. Dover
publications, 1970.

[BH10] Borsdorf, R. and Higham, N.J.: A Preconditioned Newton Algo-
rithm for the Nearest Correlation Matrix. IMA Journal of Numerical
Analysis, 30(1):94–107, 2010.

[BHR10] Borsdorf, R., Higham, N.J., and Raydan, M.: Computing a
Nearest Correlation Matrix with Factor Structure. SIAM Journal on
Matrix Analysis and Applications, 31:2603–2622, 2010.

[BK06] Bacigál, T. andKomornıková, M.: Fitting Archimedean Copulas
to Bivariate Geodetic Data. In Proc. COMPSTAT, pages 649–656,
2006.

[BS73] Black, F. and Scholes, M.: The Pricing of Options and Corporate
Liabilities. The journal of political economy, pages 637–654, 1973.

[CD62] Curnow, R.N. and Dunnett, C.W.: The Numerical Evaluation of
Certain Multivariate Normal Integrals. The Annals of Mathematical
Statistics, pages 571–579, 1962.

[CG08] Chen, Z. and Glasserman, P.: Fast Pricing of Basket Default
Swaps. Operations Research-Baltimore, 56(2):286–303, 2008.

[CK07] Cheney, E.W. and Kincaid, D.R.: Numerical Mathematics and
Computing. Brooks/Cole Publishing Co., 2007.

[com11] comdirect bank AG: Market Data. Website, 2011. Online
available at: http://www.comdirect.de/inf/index.html, access on
29/09/2011.

http://www.comdirect.de/inf/index.html


150 Bibliography

[Del12] Dell Computer Corporation: Dell PowerEdge R710
Rack-Server. Website, 2012. Online available at: http:
//www.dell.com/downloads/global/products/pedge/en/
server-poweredge-r710-specs-en.pdf, access on 19/04/2012.

[DG96] Dhaene, J. andGoovaerts, M.J.:Dependency of Risks and Stopp-
Loss Order. Astin Bulletin, 26(2):201–212, 1996.

[DNR00] Durrleman, V.,Nikeghbali, A., andRoncalli, T.:Which Cop-
ula is the Right One? Credit Lyonnais, 2000.

[DS03] Duffie, D. and Singleton, K. J.: Credit Risk: Pricing, Measure-
ment and Management. Princeton University Press, 2003.

[ELM03] Embrechts, P., Lindskog, F., and McNeil, A.: Modelling De-
pendence with Copulas and Applications to Risk Management. Hand-
book of heavy tailed distributions in finance, 8(1):329–384, 2003.

[EMS02] Embrechts, P., McNeil, A., and Straumann, D.: Correlation
and Dependence in Risk Management: Properties and Pitfalls. Risk
management: value at risk and beyond, pages 176–223, 2002.

[Fel71] Feller, W.: An Introduction to Probability Theory and Its Appli-
cations, volume II. Wiley Series in Probability and Mathematical
Statistics, 2nd edition, 1971.

[FF92] Fama, E.F. and French, K.R.: The Cross-Section of Expected
Stock Returns. The Journal of Finance, 47(2):427–465, 1992.

[FF93] Fama, E.F. and French, K.R.: Common Risk Factors in the Re-
turns on Stocks and Bonds. Journal of financial economics, 33(1):3–
56, 1993.

[FH07] Freund, R.W. and Hoppe, R.H.W.: Stoer/Bulirsch: Numerische
Mathematik 1. Springer Verlag, 2007.

[Gal11] Gallier, J.: Discrete Mathematics. Springer Verlag, 2011.

[Gau04] Gautschi, W.: Orthogonal Polynomials: Computation and Approx-
imation. Oxford University Press, 2004.

[GB09] Genz, A. and Bretz, F.: Computation of Multivariate Normal and
T Probabilities. Springer Verlag, 2009.

http://www.dell.com/downloads/global/products/pedge/en/server-poweredge-r710-specs-en.pdf
http://www.dell.com/downloads/global/products/pedge/en/server-poweredge-r710-specs-en.pdf
http://www.dell.com/downloads/global/products/pedge/en/server-poweredge-r710-specs-en.pdf


151

[Gla04] Glasserman, P.: Monte Carlo Methods in Financial Engineering.
Springer Verlag, 2004.

[GLN+01] Georges, P., Lamy, A.G., Nicolas, E., Quibel, G., and Ron-
calli, T.: Multivariate Survival Modelling: A Unified Approach with
Copulas. Groupe de Recherche Opérationnelle Crédit Lyonnais, 2001.

[GNU12] GNU–Project: The GNU Multiple Precision Arithmetic Library.
Website, 2012. Online available at: hhttp://gmplib.org/, access on
29/02/2012.

[GS07] Glasserman, P. and Suchintabandid, S.: Correlation Expan-
sions for CDO Pricing. Journal of Banking & Finance, 31(5):1375–
1398, 2007.

[Hau06] Haug, E.G.: The Complete Guide to Option Pricing Formulas.
McGraw-Hill Companies, 2006.

[Heu83] Heuser, H.: Lehrbuch der Analysis, volume 2. B. G. Teubner,
2nd edition, 1983.

[Hig02] Higham, N.J.: Computing the Nearest Correlation Matrix – A Prob-
lem from Finance. IMA Journal of Numerical Analysis, 22(3):329–
343, 2002.

[Hoe40] Hoeffding, W.: Massstabinvariante Korrelationstheorie. Schriften
des Mathematischen Seminars und des Instituts für Angewandte Ma-
thematik der Universität Berlin, 5:181–233, 1940. Dissertation.

[Hof08] Hofert, M.: Sampling Archimedean Copulas. Computational Statis-
tics & Data Analysis, 52(12):5163–5174, 2008.

[Hul09] Hull, J.: Options, Futures and Other Derivatives. Pearson Prentice
Hall, 7th edition, 2009.

[HWW55] Hastings, Jr., C., Wayward, J.T., and Wong, Jr., J.P.: Ap-
proximations for Digital Computers. Princeton University Press,
1955.

[JK04] Joshi, M.S. and Kainth, D.: Rapid and Accurate Development of
Prices and Greeks for n–th to Default Credit Swaps in the Li Model.
Quantitative Finance, 4(3):266–275, 2004.

hhttp://gmplib.org/


152 Bibliography

[JKK05] Johnson, N.L., Kemp, A.W., and Kotz, S.: Univariate Discrete
Distributions, volume 444. Wiley-Interscience, 2005.

[Joe97] Joe, H.: Multivariate Models and Dependence Concepts. Chapman
& Hall, 1997.

[JRR04] Jouanin, J.F., Riboulet, G., and Roncalli, T.: Financial Ap-
plications of Copula Functions. Risk Measures for the 21st Century,
pages 273–301, 2004.

[Kem81] Kemp, A.W.: Efficient Generation of Logarithmically Distributed
Pseudo-Random Variables. Applied Statistics, pages 249–253, 1981.

[Kim74] Kimberling, C.H.: A Probabilistic Interpretation Of Complete
Monotonicity. Aequationes Mathematicae, 10(2):152–164, 1974.

[KMN89] Kahaner, D., Moler, C.B., and Nash, S.: Numerical Methods
and Software. Prentice Hall, Englewood Cliffs, 1989.

[Knu00] Knuth, D.E.: Seminumerical Algorithms, volume 2 of The Art
of Computer Programming. Addison-Wesley Publishing Company,
3rd edition, 2000.

[Kro65] Kronrod, A.S.: Nodes and Weights of Quadrature Formulas:
Sixteen-Place Tables. New York: Consultants Bureau, 1965.

[Lau97] Laurie, D.P.: Calculation of Gauss-Kronrod Quadrature Rules.
Mathematics of computation, 66(219):1133–1146, 1997.

[LBW09a] Landesbank Baden-Württemberg, Zertifikate: SWN
Synthia 2009, Endgültige Bedingungen. Website, 2009. Online
available at: https://www.lbbw-markets.de/cmp-portalWAR/
ShowPropertyServlet?nodePath=%2FMarkets+Repository%2Fcmp%
2Fde%2FZertifikate%2FUpload-Dokumente%2FBasisprospekte%
2FVDE000LBW47W9.pdf, access on 05/12/2011.

https://www.lbbw-markets.de/cmp-portalWAR/ShowPropertyServlet?nodePath=%2FMarkets+Repository%2Fcmp%2Fde%2FZertifikate%2FUpload-Dokumente%2FBasisprospekte%2FVDE000LBW47W9.pdf
https://www.lbbw-markets.de/cmp-portalWAR/ShowPropertyServlet?nodePath=%2FMarkets+Repository%2Fcmp%2Fde%2FZertifikate%2FUpload-Dokumente%2FBasisprospekte%2FVDE000LBW47W9.pdf
https://www.lbbw-markets.de/cmp-portalWAR/ShowPropertyServlet?nodePath=%2FMarkets+Repository%2Fcmp%2Fde%2FZertifikate%2FUpload-Dokumente%2FBasisprospekte%2FVDE000LBW47W9.pdf
https://www.lbbw-markets.de/cmp-portalWAR/ShowPropertyServlet?nodePath=%2FMarkets+Repository%2Fcmp%2Fde%2FZertifikate%2FUpload-Dokumente%2FBasisprospekte%2FVDE000LBW47W9.pdf


153

[LBW09b] Landesbank Baden-Württemberg, Zertifikate: SWN Syn-
thia 2009, Produktdetails. Website, 2009. Online available at:
https://www.lbbw-markets.de/cmp-portalWAR/appmanager/
LBBW/Markets?_nfpb=true&_nfls=false&_pageLabel=p_
lbbw_zertifikate_hidden_superseite&lang=de&SUPERSEITE_
ISIN=DE000LBW47W9&_sourcePageLabel=LEER&holderId=
root&portletId=&query=DE000LBW47W9&startDatum=
null&endDatum=null&suche=1, access on 05/12/2011.

[LBW09c] Landesbank Baden-Württemberg, Zertifikate: SWN
Synthia 2009, Produktinformationsblatt. Website, 2009. Online
available at: https://www.lbbw-markets.de/cmp-portalWAR/
ShowPropertyServlet?nodePath=%2FMarkets+Repository%2Fcmp%
2Fde%2FZertifikate%2FUpload-Dokumente%2FTermsheets%
2FHDE000LBW47W9.pdf, access on 05/12/2011.

[LG05] Laurent, J.P. and Gregory, J.: Basket Default Swaps, CDOs
and Factor Copulas. Journal of Risk, 7(4):103–122, 2005.

[Li00] Li, D.X.: On Default Correlation: A Copula Function Approach.
Journal of Fixed Income, 9(4):43–54, 2000.

[LMS03] Lindskog, F., McNeil, A., and Schmock, U.: Kendall’s Tau for
Elliptical Distributions. Credit risk: Measurement, evaluation and
management, pages 149–156, 2003.

[Mar63] Marsaglia, G.: Expressing the Normal Distribution with Covari-
ance Matrix A+B in Terms of One with Covariance Matrix A.
Biometrika, pages 535–538, 1963.

[Maz63] Mazkewitsch, D.: The n-th Derivative of a Product. The American
Mathematical Monthly, 70(7):739–742, 1963.

[McN08] McNeil, A.: Sampling Nested Archimedean Copulas. Journal of Sta-
tistical Computation and Simulation, 78(6):567–581, 2008.

[Mel03] Melchiori, M.R.: Which Archimedean Copula Is the Right One?
Yield Curve, 37:1–20, 2003.

[MFE05] McNeil, A.J., Frey, R., and Embrechts, P.: Quantitative Risk
Management: Concepts, Techniques and Tools. Princeton University
Press, 2005.

https://www.lbbw-markets.de/cmp-portalWAR/appmanager/LBBW/Markets?_nfpb=true&_nfls=false&_pageLabel=p_lbbw_zertifikate_hidden_superseite&lang=de&SUPERSEITE_ISIN=DE000LBW47W9&_sourcePageLabel=LEER&holderId=root&portletId=&query=DE000LBW47W9&startDatum=null&endDatum=null&suche=1
https://www.lbbw-markets.de/cmp-portalWAR/appmanager/LBBW/Markets?_nfpb=true&_nfls=false&_pageLabel=p_lbbw_zertifikate_hidden_superseite&lang=de&SUPERSEITE_ISIN=DE000LBW47W9&_sourcePageLabel=LEER&holderId=root&portletId=&query=DE000LBW47W9&startDatum=null&endDatum=null&suche=1
https://www.lbbw-markets.de/cmp-portalWAR/appmanager/LBBW/Markets?_nfpb=true&_nfls=false&_pageLabel=p_lbbw_zertifikate_hidden_superseite&lang=de&SUPERSEITE_ISIN=DE000LBW47W9&_sourcePageLabel=LEER&holderId=root&portletId=&query=DE000LBW47W9&startDatum=null&endDatum=null&suche=1
https://www.lbbw-markets.de/cmp-portalWAR/appmanager/LBBW/Markets?_nfpb=true&_nfls=false&_pageLabel=p_lbbw_zertifikate_hidden_superseite&lang=de&SUPERSEITE_ISIN=DE000LBW47W9&_sourcePageLabel=LEER&holderId=root&portletId=&query=DE000LBW47W9&startDatum=null&endDatum=null&suche=1
https://www.lbbw-markets.de/cmp-portalWAR/appmanager/LBBW/Markets?_nfpb=true&_nfls=false&_pageLabel=p_lbbw_zertifikate_hidden_superseite&lang=de&SUPERSEITE_ISIN=DE000LBW47W9&_sourcePageLabel=LEER&holderId=root&portletId=&query=DE000LBW47W9&startDatum=null&endDatum=null&suche=1
https://www.lbbw-markets.de/cmp-portalWAR/appmanager/LBBW/Markets?_nfpb=true&_nfls=false&_pageLabel=p_lbbw_zertifikate_hidden_superseite&lang=de&SUPERSEITE_ISIN=DE000LBW47W9&_sourcePageLabel=LEER&holderId=root&portletId=&query=DE000LBW47W9&startDatum=null&endDatum=null&suche=1
https://www.lbbw-markets.de/cmp-portalWAR/ShowPropertyServlet?nodePath=%2FMarkets+Repository%2Fcmp%2Fde%2FZertifikate%2FUpload-Dokumente%2FTermsheets%2FHDE000LBW47W9.pdf
https://www.lbbw-markets.de/cmp-portalWAR/ShowPropertyServlet?nodePath=%2FMarkets+Repository%2Fcmp%2Fde%2FZertifikate%2FUpload-Dokumente%2FTermsheets%2FHDE000LBW47W9.pdf
https://www.lbbw-markets.de/cmp-portalWAR/ShowPropertyServlet?nodePath=%2FMarkets+Repository%2Fcmp%2Fde%2FZertifikate%2FUpload-Dokumente%2FTermsheets%2FHDE000LBW47W9.pdf
https://www.lbbw-markets.de/cmp-portalWAR/ShowPropertyServlet?nodePath=%2FMarkets+Repository%2Fcmp%2Fde%2FZertifikate%2FUpload-Dokumente%2FTermsheets%2FHDE000LBW47W9.pdf


154 Bibliography

[MN98] Matsumoto, M. and Nishimura, T.: Mersenne Twister: A
623-dimensionally Equidistributed Uniform Pseudo-Random Number
Generator. ACM Transactions on Modeling and Computer Simula-
tion (TOMACS), 8(1):3–30, 1998.

[MO88] Marshall, A.W. and Olkin, I.: Families of Multivariate Distribu-
tions. Journal of the American Statistical Association, pages 834–841,
1988.

[Mor95] Moro, B.: The Full Monte. Risk, 8(2):57–58, 1995.

[MRW06] Martin, M.R.W., Reitz, S., and Wehn, C.: Kreditderivate und
Kreditrisikomodelle. Vieweg & Teubner Verlag, 2006.

[MV04] Meneguzzo, D. and Vecchiato, W.: Copula Sensitivity in Col-
lateralized Debt Obligations and Basket Default Swaps. Journal of
Futures Markets, 24(1):37–70, 2004.

[MZM94] Marsaglia, G., Zaman, A., and Marsaglia, J.C.W.: Rapid
Evaluation of the Inverse of the Normal Distribution Function. Statis-
tics & Probability Letters, 19(4):259–266, 1994.

[Nel06] Nelsen, R.B.: An Introduction to Copulas. Springer Verlag, 2006.

[Nol12] Nolan, J. P.: Stable Distributions - Models for Heavy Tailed
Data. Birkhauser, Boston, 2012. In progress, Chapter 1 online at
academic2.american.edu/∼jpnolan.

[OB73] Oberhettinger, F. and Badii, L.: Tables of Laplace Transforms,
volume 207. Springer Verlag, 1973.

[PdDKÜK83] Piessens, R., Doncker-Kapenga, E. de, Überhuber, C.W.,
and Kahaner, D.K.: Quadpack – A Subroutine Package for Au-
tomatic Integration, volume 1 of Springer Series in Computational
Mathematics. Springer Verlag, 1983.

[PFTV07] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetter-
ling, W.T.: Numerical Recipes – The Art of Scientific Computing.
Cambridge University Press, 3rd edition, 2007.

[QS07] Qi, H. and Sun, D.: A Quadratically Convergent Newton Method for
Computing the Nearest Correlation Matrix. SIAM Journal on Matrix
Analysis and Applications, 28(2):360–385, 2007.



155

[Ros76] Ross, S.A.: The Arbitrage Theory of Capital Asset Pricing. Journal
of Economic Theory, 13(3):341–360, 1976.

[Sch03] Schönbucher, P.J.: Credit Derivatives Pricing Models: Models,
Pricing and Implementation. John Wiley & Sons Inc., 2003.

[Sch10] Schröter, A.: Copula Modelle und Modellrisiken. Diploma thesis,
University of Cologne, 2010.

[Sey12] Seydel, R.U.: Tools for Computational Finance. Springer Verlag,
5th edition, 2012.

[SH12a] Schröter, A. and Heider, P.: An Analytical Formula for Pricing
m–th to Default Swaps. Journal of Applied Mathematics and Comput-
ing, 2012. http://dx.doi.org/10.1007/s12190-012-0589-1, ac-
cepted for publication.

[SH12b] Schröter, A. and Heider, P.: Numerical Methods to Quantify the
Model Risk of Basket Default Swaps. Preprint, 2012.

[Sha64] Sharpe, W.F.: Capital Asset Prices: A Theory of Market Equilib-
rium under Conditions of Risk. The Journal of Finance, 19(3):425–
442, 1964.

[Sha08] Shampine, L.F.: Vectorized Adaptive Quadrature in Matlab. Journal
of Computational and Applied Mathematics, 211(2):131–140, 2008.

[SK09] Schwarz, H.R. and Köckler, N.: Numerische Mathematik.
Vieweg & Teubner / GWV Fachverlage GmbH, 7th edition, 2009.

[Skl73] Sklar, A.: Random Variables, Joint Distribution Functions, and
Copulas. Kybernetika, 9(6):449–460, 1973.

[Sob76] Sobol, I.M.: Uniformly Distributed Sequences with an Additional
Uniform Property. USSR Computational Mathematics and Mathe-
matical Physics, 16(5):236–242, 1976.

[SS01] Schönbucher, P. and Schubert, D.: Copula-dependent Defaults
in Intensity Models. Technical report, Department of Statistics, Fac-
ulty of Economics, Bonn University, 2001.

[Stu82] Stulz, R.M.: Options on the Minimum or the Maximum of Two
Risky Assets: Analysis and Applications. Journal of Financial Eco-
nomics, 10(2):161–185, 1982.

http://dx.doi.org/10.1007/s12190-012-0589-1


156 Bibliography

[Tak67] Takacs, L.: On the Method of Inclusion and Exclusion. Jour-
nal of the American Statistical Association, 62(317):102–113, 1967,
ISSN 0162-1459.

[TM11] The MathWorks R©, Inc.: Product Documentation MATLAB R©.
Website, 2011. Online available at: http://www.mathworks.de/
help/techdoc/, access on 18/11/2011.

http://www.mathworks.de/help/techdoc/
http://www.mathworks.de/help/techdoc/


Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt,
die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der
Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im
Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung
kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder
Universität zur Prüfung vorgelegen hat; dass sie - abgesehen von unten angegebenen
Teilpublikationen - noch nicht veröffentlicht worden ist sowie, dass ich eine solche
Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.
Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte
Dissertation ist von Herrn Priv.-Doz. Dr. Pascal Heider betreut worden.

Nachfolgend genannte Teilpublikationen liegen vor:

Schröter, A. and Heider, P.: Numerical Methods to Quantify the Model Risk of Basket
Default Swaps. Preprint, 2012, under review.

Schröter, A. and Heider, P.: An Analytical Formula for Pricing m–th to Default
Swaps. Journal of Applied Mathematics and Computing, 2012, http://dx.doi.
org/10.1007/s12190-012-0589-1, accepted for publication.

Ich versichere, dass ich alle Angaben wahrheitsgemäß nach bestem Wissen und Ge-
wissen gemacht habe und verpflichte mich, jedmögliche, die obigen Angaben betref-
fenden Veränderungen, dem Dekanat unverzüglich mitzuteilen.

.................................. .........................................................

Ort, Datum Unterschrift

http://dx.doi.org/10.1007/s12190-012-0589-1
http://dx.doi.org/10.1007/s12190-012-0589-1

	Preface
	Acknowledgment
	Contents
	List of Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	I Fundamentals
	1 Copulae
	1.1 Introduction
	1.2 Theorem of Sklar

	2 Basket Default Swaps
	2.1 Payment flows
	2.2 Marginal distributions of default times
	2.3 Joint distribution function of default times

	3 Correlation
	3.1 Pearson's correlation coefficient 
	3.1.1 (Linear) factor models

	3.2 Kendall's Tau K

	4 Different types of copulae
	4.1 Gaussian copula
	4.1.1 Evaluating the Gaussian copula
	4.1.2 Drawing random tuples according to the Gaussian copula

	4.2 Archimedean copulae
	4.2.1 Drawing random tuples according to Archimedean copulae



	II Evaluation models based on copulae
	5 Motivation: The static evaluation model
	6 The semi–dynamic evaluation model
	6.1 The distribution of the m–th smallest default time
	6.1.1 Computational simplifications
	6.1.2 Special cases
	6.1.3 Application of the Gaussian copula
	6.1.4 Application of Archimedean copulae
	6.1.5 Application in practice: SWN Synthia 2009

	6.2 Monte-Carlo methods
	6.2.1 Importance sampling with respect to a Gaussian copula
	6.2.2 Importance sampling with respect to an Archimedean copula
	6.2.3 Academic example: Exhibit 6 and Illustration 3 from [Li00]

	6.3 Excursus: European multi–asset options
	6.4 Calculating sensitivities (``Greeks'')
	6.4.1 Sensitivity with respect to the interest rate
	6.4.2 Sensitivity with respect to the maturity
	6.4.3 Sensitivity with respect to the hazard rate
	6.4.4 Sensitivity with respect to the correlation



	III Conclusion
	7 Summary
	8 Outlook

	IV Appendix
	A Different distributions
	B Sampling random numbers
	C Various tables and figures
	C.1 Approximating the multivariate Gaussian distribution
	C.2 Input Parameters for Li's example
	C.3 Credit portfolio
	C.4 Variance analyses of different Monte–Carlo methods

	Bibliography


