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Abstract 

The molybdenum cofactor (Moco) is an essential component present in nearly all domains of 

life. In mammals, Moco is part of four currently known enzymes and constitutes a crucial 

redox-active center involved in a number of fundamental cellular reactions. Moco-dependent 

enzymes are present in the cytosol but also in or at mitochondria, where Moco is integrated 

into sulfite oxidase (SO) and the mitochondrial amidoxime-reducing component (mARC), 

respectively. The family of mitochondrial Moco-enzymes is of particular interest considering 

the cytosolic synthesis of enzymes and cofactor, which requires a coordinated mitochondrial 

transport and assembly process. In the current study, the mitochondrial maturations of SO 

and mARC1 were thus analyzed to obtain a mechanistic understanding of the processes 

starting with the cytosolic syntheses of apo-proteins all the way to the formation of the 

mature mitochondrial enzymes.  

The first part of this work uncovered the cellular assembly of SO, a soluble protein of the 

mitochondrial intermembrane space, and revealed a Moco-dependent mitochondrial 

targeting mechanism. In spite of its functional bipartite N-terminal targeting signal, about 70% 

of SO mislocalized to the cytosol if Moco was not present. Following the identification of SO 

processing by the inner membrane peptidase (IMP) complex, prevention of this cleavage and 

thus anchoring of SO in the inner mitochondrial membrane resulted in an efficient 

mitochondrial targeting even in absence of Moco. SO was thereby identified to undergo a 

reverse translocation to the cytosol in absence of Moco, which is required to trap SO in the 

intermembrane space and to constitute in addition a vectorial driving force for completion of 

SO translocation across the TOM complex. The integration of Moco is not only essential for 

correct sub-mitochondrial localization, but also a prerequisite for in vivo heme integration and 

homodimerization of SO. In conclusion, the identified molecular hierarchy of SO maturation 

represents a novel link between the canonical pre-sequence pathway and folding-trap 

mechanisms of mitochondrial import.  

The other mitochondrial Moco-enzyme mARC1 was recently discovered and its sub-

mitochondrial localization had remained unclear. In the second part of this study, mARC1 

was shown to be localized to the outer mitochondrial membrane. As a result of the 

translocation process, the C-terminal catalytic core of the protein remains exposed to the 

cytosol and confers an N(in)-C(out) membrane orientation of mARC1. This localization is 

mediated by the N-terminal domain of the enzyme, being composed of a classical but weak 

N-terminal targeting signal and a downstream transmembrane domain. Thereby, the 

transmembrane domain of mARC1 is sufficient for mitochondrial targeting, while the N-

terminal targeting signal seems to function as a supportive receptor for the outer 

mitochondrial membrane. According to its localization and targeting mechanism, mARC1 is 

classified as a novel signal-anchored protein. Considering the membrane integration of 

mARC1, an SO-similar demand of Moco for mitochondrial retention of mARC1 is not required 

and its N-terminal targeting motifs are sufficient for adequate mitochondrial localization. 

During mitochondrial import, mARC1 is not processed and membrane integration proceeds 

membrane potential independently but requires external ATP, which finally results in the 

assembly of mARC1 into high-oligomeric protein complexes.                                                  
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Zusammenfassung 

Der Molybdän-Cofaktor (Moco) ist ein essentieller Bestandteil in allen Organismenreichen. In 

Säugetieren bildet Moco ein wichtiges redox-aktives Zentrum von bisher vier bekannten 

Enzymen und ist dadurch an einer Vielzahl fundamentaler, zellulärer Reaktionen beteiligt. 

Moco-abhängige Enzyme liegen sowohl im Zytosol als auch in Mitochondrien vor, wobei 

Moco hier in die Sulfitoxidase (SO) und in die mitochondriale Amidoxim-reduzierende 

Komponente (mARC) eingebaut ist. Unter Berücksichtigung der zytosolischen Synthese von 

Moco, SO und mARC ist die Familie der mitochondrialen Moco-Enzyme dabei von 

besonderem Interesse, da diese einen koordinierten mitochondrialen Transport und einen 

entsprechend regulierten Reifungsprozess der beiden Enzyme verlangt. In dieser Arbeit 

wurden die mitochondrialen Reifungsprozesse von SO und mARC analysiert, um ein 

mechanistisches Verständnis dieser Prozesse zu erlangen.  

Im ersten Teil wurden dabei hierarchische Stufen zur zellulären Reifung der SO aufgedeckt. 

SO ist ein lösliches Protein des mitochondrialen Intermembranraums und zeigte dabei eine 

Moco-abhängige mitochondriale Lokalisierung. Ungeachtet der zweigeteilten N-terminalen 

mitochondrialen Zielsequenz wurden in Abwesenheit von Moco etwa 70% des Enzyms im 

Zytosol detektiert. Nachdem die Innere-Membran-Peptidase (IMP) als SO-prozessierende 

Protease identifiziert wurde, konnte eine über Mutationen verhinderte Prozessierung und 

damit eine Verankerung der SO in der inneren Membran eine vollständige mitochondriale 

Lokalisation auch in Abwesenheit von Moco erreichen. Dieses Experiment belegte, dass die 

SO einer reversen Translokation in Richtung Zytosol unterliegt, wenn Moco nicht eingebaut 

werden kann. Moco ist dabei für die Initiierung der SO-Faltung verantwortlich und verhindert 

dadurch zum einen den Rücktransport ins Zytoplasma und greift dadurch zum anderen auch 

aktiv in die Translokation der SO ein, indem die Faltung eine zusätzliche vektoriell getriebene 

Kraft für die vollständige Translokation in den Intermembranraum darstellt. Der Einbau des 

Moco ist nicht nur für die Lokalisation der SO essentiell, sondern auch eine Voraussetzung 

für den Einbau des Häm-Cofaktors und die Homodimerisierung der SO. Insgesamt stellt die 

dargestellte molekulare Hierarchie der SO-Reifung eine neue Verbindung zwischen dem 

kanonischen Prä-Sequenz Importweg und faltungsabhängigen Importmechanismen dar.  

Das mitochondriale Moco-Enzym mARC1 wurde erst kürzlich entdeckt, wobei seine sub-

mitochondriale Lokalisation unklar blieb. Im zweiten Teil dieser Arbeit konnte nun die 

Assoziation von mARC1 mit der mitochondrialen Außenmembran demonstriert werden. Als 

Resultat des Translokationsprozesses bleibt die C-terminale katalytische Domäne dem 

Zytosol exponiert und verleiht mARC1 eine N(innen)-C(außen) Membrankonformation. Diese 

Lokalisation wird über die N-terminale Domäne des Enzyms gesteuert, welche aus einem 

klassischen aber schwachen N-terminalen Ziel-Signal und einer folgenden 

Transmembrandomäne besteht. Die Transmembrandomäne ist dabei hinreichend für die 

Lokalisation, wobei das Ziel-Signal als unterstützender Rezeptor für die mitochondriale 

Außenmembran zu dienen scheint. Sowohl die Lokalisation als auch der 

Transportmechanismus klassifizieren mARC1 dabei als ein neues Signal-verankertes 

Protein. Aufgrund der Membranverankerung von mARC1 ist der Einbau des Moco kein 

essentieller Bestandteil des Translokationsprozesses, welcher ausschließlich von den beiden 

N-terminalen Motiven gesteuert wird. Während des Importprozesses wird mARC1 nicht 

prozessiert und der Membraneinbau erfolgt unabhängig vom Membranpotential, erfordert 

jedoch die externe Zufuhr von ATP. Dies führt final zur Integration von mARC1 in hoch-

oligomere Proteinkomplexe in der Außenmembran.    
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1 Introduction 

1.1 Molybdenum and Moco 

Molybdenum (Mo) belongs to the group of transition metals and constitutes an essential 

trace element for animals, plants and microorganisms. In nature, Mo occurs in different 

chemical compounds and exhibits a rich coordination and redox chemistry, as illustrated by 

its extended spectrum of oxidation states ranging from –ll to +Vl. Therefore, Mo depicts a 

potent catalyst of a large variety of redox reactions in biological systems. Although Mo is of 

very low abundance in the cell, its uptake requires an adequate and efficient mechanism to 

guarantee a constant supply of Mo. Amongst different forms and oxidation states of Mo 

occurring in nature, the molybdate anion (MoO4
-2) constitutes the only Mo compound that 

organisms can acquire from their environment (Llamas et al., 2011). While bacteria mediate 

uptake of molybdate by means of a high-affinity ATP-binding-cassette transporter (Maupin-

Furlow et al., 1995), a homologous system has not been found in eukaryotes, yet. Instead, 

plants contain two different molybdate transporters referred to as MOT1 and MOT2, showing 

distant relations to sulfate transporters of the SULTR family (Tejada-Jimenez et al., 2007). 

Animals lack MOT1, while recently, MOT2 was identified as the first molybdate transporter in 

animals (Tejada-Jimenez et al., 2011). 

Upon its successful uptake from the environment, Mo is complexed by a pterin 

compound to build the biologically active molybdenum cofactor (Moco). Moco is composed of 

a tricyclic pterin coordinating Mo via a dithiol group within the third pyrano ring. With the 

exception of bacterial nitrogenase, in which a unique iron-molybdenum cofactor confers 

catalytic activity, all other Mo-dependent enzymes contain a pterin type cofactor (Hille, 1996). 

Eukaryotic Moco occurs in two different forms that share a common backbone but differ in 

the coordination of Mo. In one variant, Mo is covalently bound to a conserved cysteine 

residue of the Moco binding domain (Figure 1.1 A), while in the other variant instead a third 

terminal sulfur ligand is bound to Mo with the cofactor remaining non-covalently bound to the 

respective protein (Figure 1.1 B) (Schwarz and Mendel, 2006). Integration of Mo into both 

types of Moco permits the positioning of Mo within the protein active site, thus controlling its 

redox behavior on the one hand and aligning the pterin ring system for electron transfer from 

or to Mo on the other hand (Mendel, 2007). In respect to its involvement in electron transfer, 

the pterin moiety is fully reduced and thus believed to be prone to oxidation. In addition, the 

isolated coordination of Mo by means of the dithiol group is fragile, finally resulting in 

destabilization of Moco in protein free environments (Rajagopalan and Johnson, 1992). 

Consequently, Moco was assumed not to occur free in the cell but rather to be associated 

rapidly with its respective target-enzymes.   
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1.2 Moco synthesis 

The biosynthesis of Moco is highly conserved from bacteria to eukaryotes and is composed 

of four enzymatic steps (Figure 1.2), which are catalyzed by six gene products in eukaryotes.  

 The first step of the Moco synthesis cascade starts out from GTP, which is converted 

to cyclic pteranopterin monophosphate (cPMP) by two proteins (MOCS1A and MOCS1B in 

humans) in a complex reaction mechanism. MOCS1A contains two [4Fe-4S] clusters and 

belongs to the group of S-adenosyl-methionine dependent radical enzymes (Hanzelmann et 

al., 2004). Although the overall mechanism of cPMP synthesis is not fully understood, 

MOCS1A and MOCS1B are believed to build a complex with S-adenosyl-methionine and 

GTP (Hanzelmann et al., 2002) to generate cPMP as a fully reduced tetrahydro-

pteranopterin backbone (Santamaria-Araujo et al., 2012). The subcellular localization of both 

MOCS proteins have remained uncharacterized in mammals, their N-terminal mitochondrial 

targeting signals however strongly suggest the synthesis of cPMP to take place in 

mitochondria. Moreover, the plant homologues Cnx2 and Cnx3 have been exclusively 

detected in mitochondria (Teschner et al., 2010).  

 The second step of Moco synthesis occurs in the cytosol, suggesting that cPMP is 

exported from mitochondria to become converted to the next intermediate. In plants, the 

inner mitochondrial membrane transporter Atm3 has been shown to be involved in the export 

of cPMP to the cytosol (Teschner et al., 2010). Following its mitochondrial export, two sulfur 

atoms are transferred to cPMP to build molybdopterin (MPT) dithiolate. This reaction is 

 

A B 

Figure 1.1 Structures of two eukaryotic types of Moco. Within eukaryotic enzymes, Mo is 

either (A) covalently connected to a conserved cysteine or (B) non-covalently bound to the 

protein and instead exposing a third terminal sulfur ligand. Figure modified from (Mendel and 

Bittner, 2006). 
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catalyzed by MPT-synthase, a hetero-tetrameric complex consisting of two large (MOCS2A 

in humans) and two small (MOCS2B in humans) subunits. While the large subunits mediate 

oligomerization, the small subunits each carry a single sulfur atom as thiocarboxylates being 

sequentially transferred to cPMP (Gutzke et al., 2001). Following the completion of a reaction 

cycle, the small subunits dissociate from the MPT-synthase and transiently bind to the 

MOCS3 protein, where they are re-sulfurated in an ATP-dependent reaction (Matthies et al., 

2004). 

 The third and fourth steps of the Moco synthesis pathway are catalyzed by gephyrin 

in humans. Gephyrin is composed of an N-terminal G-domain and a C-terminal E-domain, 

which are both involved in separate reactions during the last steps of Moco synthesis 

(Schwarz and Mendel, 2006). First, the G-domain binds and adenylates MPT in an Mg2+ and 

ATP dependent manner, yielding MPT-AMP as the last intermediate of the Moco synthesis 

pathway. The reaction mechanism was uncovered in plants and revealed the binding of MPT 

to the homologous Cnx1G protein and the subsequent transfer of AMP to the terminal 

phosphate of MPT (Llamas et al., 2004). In the last step of Moco synthesis, Mo is attached to 

the dithiolate of the MPT backbone by the gephyrin E-domain. As again first discovered for 

the plant protein, MPT-AMP is hydrolyzed by the homologous Cnx1E protein and Mo is 

simultaneously transferred to the MPT dithiolate, finally resulting in the formation of Moco 

(Llamas et al., 2006).  

 

Figure 1.2 Human Moco biosynthesis. 

Structures of all intermediates are given and 

names are depicted in red. Catalyzing 

proteins are colored green. Step 1 occurs in 

mitochondria and is schematized accordingly. 

The in vivo sulfur source for MOCS3 (X-S) is 

not known. SAM, S-adenosyl-methionine. 

GEPH, gephyrin. See text for details. 



Dissertation Julian Klein                                                                                          Introduction 

 

4 
 

1.3 Moco dependent enzymes 

Following the completion of its synthesis, Moco becomes incorporated into a multitude of 

different Mo-enzymes to fulfill its biological function. More than 50 Moco-dependent enzymes 

were described so far, most of them catalyzing redox reactions that are important for the 

global cycles of nitrogen, carbon and sulfur (Schwarz et al., 2009). The majority of these 

proteins exclusively occur in prokaryotes, while to date five Moco-dependent enzymes are 

known in eukaryotes.  

One of these enzymes, nitrate reductase (NR), is solely present in plants and fungi 

and plays a key role during nitrogen assimilation by catalyzing the reduction of nitrate to 

nitrite. Moco is covalently bound by a conserved cysteine as depicted in figure 1.1 A. Apart 

from Moco, NR requires the integration of a cytochrome b5 type heme and a FAD-cofactor as 

well as homodimerization to achieve catalytic activity. Thereby, electrons are transferred 

from NAD(P)H to FAD and via heme to the Moco domain, which harbors the active site 

where nitrate is reduced.  

Animals do not have a NR, while they comprise a subset of four other Moco enzymes, 

which can be classified into two groups according to their active site structure as well as sub-

cellular distributions. The first group is composed of the cytosolic proteins aldehyde oxidase 

(AO) and xanthine oxidoreductase (XOR), both sharing the terminal sulfide group, while 

mitochondria constitute the second site of Moco-activity and harbor sulfite oxidase (SO) as 

well as the mitochondrial amidoxime reducing component (mARC 1+2), each having a 

cysteine linked Moco in their active site (Chamizo-Ampudia et al., 2011, Rajapakshe et al., 

2011).   

 

1.3.1 Mammalian cytosolic Moco enzymes 

AO and XOR can be grouped according to their cytosolic localizations, but they also share 

significant structural and functional similarities. Both proteins contain Moco within their C-

terminal domains, which also mediate homodimerization in each case. In contrast to NR and 

mitochondrial molybdoenzymes, Moco is not covalently bound by a protein derived 

conserved cysteine, but instead contains a third terminal sulfido group as illustrated in figure 

1.1 B. This sulfur atom is added to the cofactor by the enzyme Moco sulfurase in a final 

maturation step (Hille et al., 2011). As additional redox active domains, AO and XOR contain 

N-terminal [2Fe-2S] clusters and a central FAD domain to build the conserved tripartite 

structure of the AO/XOR enzyme family.   
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 AO acts on a large array of substrates, but the general types of reactions imply 

hydroxylation of heterocycles and oxidation of aldehydes to the corresponding carboxylic 

acids (Garattini et al., 2008). Mechanistically, substrates are oxidized in the substrate binding 

pocket at the Mo-center. Electrons are transferred from Moco via the [2Fe-2S] clusters to 

FAD. During electron transfer, the [2Fe-2S] clusters act as electron sinks to store reducing 

equivalents during catalysis (Hille, 2002). While the human genome harbors a single AO 

gene, other vertebrates contain several different AO isoforms. Physiological functions of AO 

are poorly understood, an AO knockout mouse however revealed a function in the 

biosynthesis of retinoic acid (Terao et al., 2009). Furthermore, mammalian AOs represent an 

import drug-metabolizing system in the cytoplasm of hepatic cells. Thereby, AOs are 

proposed to act in concert with the microsomal cytochrome P450 system and to activate or 

inactivate various types of drugs and toxic compounds (Garattini et al., 2008).  

 XOR resembles AO in respect to structure and reaction mechanism, but catalyzes the 

hydroxylation of a different subset of substrates, which is much better defined as for AO. 

XOR mediates the oxidation of hypoxanthine to xanthine and the downstream reaction of 

xanthine to uric acid (Hille and Nishino, 1995). XOR exists in two forms, as xanthine 

dehydrogenase (XDH), constituting the primary gene product, and as xanthine oxidase (XO), 

arising from XDH by formation of internal disulfide bonds. While XD favors NAD+ as a 

primary electron acceptor, XO does not bind NAD+ and instead transfers electrons to O2. 

Therefore, numerous reactive oxygen species (ROS) are formed, that are proposed to 

function in the innate immune response (Vorbach et al., 2003) and together with the 

antioxidant uric acid act in the regulation of the cellular redox potential (Droge, 2002). While 

no isolated forms of AO-deficiency are known, inactive XOR, either occurring in response to 

mutations in the XOR gene (Ichida et al., 1997) or secondary caused by the loss of Moco-

sulfurase (Ichida et al., 2001), results in xanthinuria. The symptoms of the disease are not 

lethal, but affected patients suffer from xanthine stones due to elevated levels of xanthine. 

 

1.3.2 Mammalian mitochondrial Moco enzymes 

1.3.2.1 Sulfite oxidase 

Sulfite oxidase (SO) is generally referred to as the most important eukaryotic Moco enzyme, 

as its depletion results in a severe neurodegenerative phenotype (see chapter 1.3.2.2 for 

details). SO catalyzes the essential oxidation of toxic sulfite to nonhazardous sulfate and 

thereby mediates the final step in the oxidative degradation of the sulfur-containing amino 

acids methionine and cysteine (Figure 1.3 A).  
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In contrast to AO and XOR, SO covalently binds Moco by a conserved cysteine in the 

central domain of the protein. Furthermore, Moco is deeply buried within the protein, forming 

numerous stabilizing hydrogen bonds to several residues of the central Moco-binding 

domain, as illustrated by the chicken SO crystal structure (Figure 1.3 B) (Kisker et al., 1997). 

To become catalytically active, SO requires the integration of a cytochrome b5 type heme as 

a second metal containing cofactor. Although not covalently attached to the protein, heme is 

stably integrated into the N-terminal domain of SO with two conserved histidines 

symmetrically coordinating the heme iron (Kisker et al., 1997). In analogy to structurally 

related plant NR and also both cytosolic Moco enzymes, SO undergoes homodimerization 

mediated by a large interface of the C-terminal domain. Upon the integration of both 

cofactors and homodimerization, SO is catalytically active and ready for sulfite oxidation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Reaction mechanism and crystal structure of animal SO. (A) Sulfite is oxidized at the 

Mo-active site of SO (depicted in blue with all three domains) and sulfate is released. The two 

electrons are sequentially transferred to the b5 heme and cytochrome c as the final electron acceptor. 

Monomeric SO is depicted for simplicity. (B) Crystal structure of mature chicken liver SO. The N-

terminal heme domain is depicted in red, the central Moco domain in yellow and the C-terminal 

dimerization domain in green. Moco and heme are shown in ball-stick representations. The gray 

dotted lines connect the metal centers of the cofactors, the red dotted lines indicate a loop region, 

which is weakly defined in the electron density. Figure modified from (Kisker et al., 1997).  

 

A 
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Sulfite oxidation takes place in the mitochondrial intermembrane space (IMS) in 

mammals, where cytochrome c is reduced as the physiological and final electron acceptor. 

The catalytic mechanism of mammalian SO starts with the oxidation of sulfate at the Mo-

active site to generate a two-electron reduced Mo(IV) state (Hille, 1994). In a one-electron 

transfer reaction, b5 heme is reduced to generate the EPR visible Mo(V)/Fe(II) intermediate 

of SO (Astashkin et al., 2002). This part is referred to as the reductive half reaction, resulting 

in the release of sulfate and the formation of fully reduced SO. In the oxidative half reaction, 

the electron is passed to cytochrome c to build a one electron reduced Mo(V)/Fe(III) form of 

the enzyme. In analogy to the first electron transfer reaction from the Mo center to 

cytochrome c, the second electron is transferred to a second equivalent of cytochrome c to 

regenerate the fully oxidized Mo(VI)/Fe(III) form of SO (Feng et al., 2007). As a multi-redox 

center enzyme, SO performs rapid electron transfer between Mo- and heme-domain to 

achieve an efficient oxidation of sulfite (Pacheco et al., 1999). However, the crystal structure 

of chicken SO revealed a comparatively large distance of ~32Å between both domains 

(Kisker et al., 1997). This conflict has led to the proposal of domain movements prior to 

electron transfer in order to bring Mo- and heme-domain in closer proximity. Consistently, the 

electron transfer rate of SO was shown to be dependent on solution viscosity and dropped in 

the presence of increasing concentrations of sucrose or polyethylene-glycol (Feng et al., 

2002).  

SO is mainly present in the liver as the predominant site of methionine and cysteine 

catabolism, but it is also abundant heart, kidney and to a lesser extent in brain to ensure 

comprehensive protection from sulfite accumulation (Moriwaki et al., 1997). Using 

cytochrome c as the final electron acceptor of the sulfite oxidation, SO is localized in the IMS 

of mitochondria as a soluble enzyme (Ito, 1971). As most mitochondrial proteins, SO is 

synthesized in the cytosol and imported into mitochondria. The mechanism of mitochondrial 

translocation of SO was investigated by pioneer work of Ono and Ito in the early 1980’s. 

While the presence of ribosomes on the surface of mitochondria suggested a co-translational 

import of some precursors (Kellems et al., 1975, Ades and Butow, 1980), the translation of 

SO was demonstrated to take place on free ribosomes in the cytosol, indicating a post-

translational import of SO (Ono et al., 1982). Following its translation, SO was shown to enter 

mitochondria ATP- and membrane potential-dependently and the inner mitochondrial 

membrane was found to be involved in the translocation process (Ono and Ito, 1982b). 

Import of SO is accompanied by processing, as illustrated by a truncated mature enzyme 

compared to the precursor during in vitro mitochondrial import experiments (Ono and Ito, 

1984). Upon completion of import, the half-life of SO was measured to last between three 

and four days (Ono and Ito, 1982a).  
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 The significance of sulfite oxidation is not restricted to animals, but also an important 

reaction in plants and bacteria. In plants, a protein homologous to animal SO was discovered 

(Eilers et al., 2001). Its primary and crystal structure however revealed a number of 

differences to animal SO, as plant SO (PSO) lacks a heme cofactor and Moco thus 

constitutes the only redox center of the enzyme (Schrader et al., 2003). Accordingly, PSO 

does not use cytochrome c but instead molecular oxygen as a physiological electron 

acceptor with the corresponding reaction taking place in peroxisomes. Bacteria oxidize sulfite 

by means of a sulfite dehydrogenase, a heterodimer of a large Mo-binding subunit and a 

small heme c-containing subunit (Kappler et al., 2000). While the sulfite dehydrogenase 

sequence is not related to mammalian SO, the heme c containing subunit revealed structural 

similarities to the b5 heme domain of mammalian SO (Kappler and Bailey, 2005). 

1.3.2.2 Sulfite oxidase- and Moco-deficiency 

The physiological relevance of SO is displayed by a severe neurodegenerative disorder 

termed isolated SO-deficiency, rapidly evolving in absence of functional SO. Affected 

patients suffer from neurological abnormalities such as microcephaly, mental retardation and 

seizures, usually accompanied by death in early infancy (Figure 1.4). The disease follows an 

autosomal recessive trait and is very rare, with less than 30 described cases in the literature 

(Johnson et al., 2002, Tan et al., 2005). SO-deficiency either occurs in response to mutations 

in the SO gene or based on a secondary loss of activity caused by mutations in one of the 

four genes involved in Moco biosynthesis. The latter causes a simultaneous loss of all five 

mammalian Moco enzymes with the corresponding disease termed Moco-deficiency 

(Schwarz, 2005). The clinical symptoms of Moco-deficiency are however hardly 

distinguishable from those of isolated SO-deficiency, demonstrating the loss of SO to be the 

predominant cause of the pathophysiology in Moco-deficiency and SO to be the most 

important Moco enzyme in humans.  

 In absence of functional SO, sulfite initially accumulates in the liver as the main site of 

methionine and cysteine catabolism and subsequently spreads out the entire body via the 

blood circulation and finally reaches the brain. The pathogenesis of SO- and Moco-deficiency 

is not completely understood and may derive from sulfite toxicity, a lack of sulfate or the 

accumulation of sulfur-containing compounds that are formed in response to excessive 

sulfite accumulation. Sulfite is a strong nucleophile breaking disulfide bridges and thereby 

affecting numerous proteins and cellular functions. In addition, sulfite exposure to mouse 

neuronal cells was shown to increase reactive oxygen species (ROS) and to simultaneously 

decrease intracellular ATP production. The concomitant inhibition of glutamate 

dehydrogenase by sulfite led to the proposal of a general neuronal energy deficit during SO 
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deficiency, resulting in neuronal ischemia followed by brain lesions, as seen in most patients 

(Zhang et al., 2004).  

Accumulation of sulfite within the cells also leads to the excess formation of sulfur 

compounds like s-sulfocysteine, a structural analog of glutamate potentially contributing to 

neuronal death by hyperactivating NMDA-receptors (Olney et al., 1975, Salman et al., 2002). 

Finally, inactive SO causes a cellular deficit of sulfate, which is required for the 

synthesis of myelin stabilizing sulfatides in the brain. A lack of sulfate was thus proposed to 

result in myelin destabilization and the following neurologic dysfunctions observed upon SO-

deficiency. Characterizations of neuropathological changes in isolated SO-deficiency 

however revealed normal sulfatide levels, contradicting a deficiency of sulfate to be the 

primary cause of the SO-deficiency symptoms (Rosenblum, 1968).   

    

 

 

 

 

  

 

Efficient therapeutic treatments of isolated SO-deficiency are not available so far, 

given that a cellular enzyme replacement therapy as the most obvious and promising 

solution would fail due to inefficient cellular uptake of externally applied SO. The 

mitochondrial localization of SO increases this problem and would interfere with successful 

sub-cellular sorting of cofactor loaded and folded SO upon a hypothetical cellular uptake. 

Therefore, mostly unsuccessful attempts to attenuate the symptoms of isolated SO-

deficiency have been reported. Low protein diets aiming in a decrease of sulfite production 

(Touati et al., 2000) or inhibition of NMDA-receptor channels to circumvent their potential 

hyperactivation during disease progression (Kurlemann et al., 1996) did however not 

sustainably improve the symptoms.  

 In contrast to isolated SO-deficiency, an efficient therapy is available for a group of 

patients suffering from Moco-deficiency. Treatment of patients with externally applied Moco 

could theoretically cure all types of Moco-deficiency, but is less likely due to the high 

A B Figure 1.4 Severe neurological 

symptoms of SO deficiency. Axial 

magnetic resonance imaging (MRI) 

scan of an isolated SO deficiency 

patient brain. (A) MRI scan 11 days 

after birth revealed a diffuse loss of 

gray-white distinction and (B) severe 

encephalomalacia and increasing 

neurodegeneration after 3.5 months. 

Figure modified from (Tan et al., 

2005).  
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instability of protein-free cofactor (Deistung and Bray, 1989). However, cPMP as the first and 

most stable precursor of the Moco synthesis pathway turned out to be able to significantly 

improve the phenotypes of patients suffering from mutations affecting the first step of Moco 

synthesis (Veldman et al., 2010).         

1.3.2.3 Mitochondrial amidoxime reducing components 

Numerous drugs and drug candidates contain strongly basic functional groups like amidines, 

which interfere with efficient absorption by the gastrointestinal tract in response to their 

protonation under physiological conditions. Therefore, a so-called prodrug principle was 

developed to enhance oral bioavailability of such molecules (Ettmayer et al., 2004). By N-

hydroxylation of certain functional groups, the latter become less basic and unprotonated 

under physiological conditions, thus increasing intestinal uptake by diffusion. These N-

hydroxylated prodrugs must then be converted to the active drug upon cellular assimilation 

by reduction and reformation of the basic functional groups. The functionality of this principle 

and its application on a wide range of different drugs implied the presence of a cellular N-

reductive system catalyzing the reduction and activation of N-hydroxlated prodrugs (Clement, 

2002).  

In mammals, outer mitochondrial membrane proteins cytochrome b5 and its reductase 

as well as a third unidentified component were shown to be involved in these prodrug 

activating reductions (Kadlubar and Ziegler, 1974, Clement et al., 1997). In a screen for the 

missing third component of the N-reductive system, Havemeyer et al. (2006) identified a 

novel mitochondrial protein annotated as MOSC2 (Moco-sulfurase C-terminal domain) 

according to its similarities to the C-terminal domain of the Moco-sulfurase, which sulfurates 

Moco in XO and AO. Due to its involvement in the reductive activation of N-hydroxylated 

prodrugs, the enzyme was termed the mitochondrial amidoxime reducing component 2 

(mARC2). The human chromosome 1 harbors a second gene in tandem orientation to 

MOSC2, revealing striking sequence similarities and being annotated as MOSC1. The 

corresponding protein was shown to have similar functions in the reduction of N-hydroxylated 

prodrugs and was hence termed mARC1 (Gruenewald et al., 2008).  

Considering the structural analogies of both mARC proteins to Moco sulfurase, their 

potential Moco incorporation was tested and thereby indeed revealed mARC1 and mARC2 to 

be novel mammalian Moco enzymes. In contrast to cytosolic animal Moco enzymes, Moco of 

both mARC proteins was shown not to contain a third terminal sulfido group (Wahl et al., 

2010). Instead, pulsed EPR spectroscopy suggested a protein derived equatorial Moco 

ligand and both mARC proteins to join the SO/NR family covalently binding Moco by a 

conserved cysteine (Rajapakshe et al., 2011). This was confirmed and extended by 
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characterizations of the Chlamydomonas reinhardtii homologue crARC, which revealed 

cysteine 252 to be essential for Moco binding and catalysis (Chamizo-Ampudia et al., 2011).   

The mARC proteins confer a number of unique traits that distinguish it from all other 

eukaryotic Moco enzymes. First, purification and oligomerization analyses revealed both 

mARC proteins to be monomeric (Wahl et al., 2010), while most other eukaryotic Moco 

enzymes require homodimerization for catalytic activity. Moreover, mARC proteins contain 

Moco as a single redox active center and do not contain any further cofactors, qualifying 

mARC as the simplest animal Moco enzyme. Instead, mARC is integrated into a three 

component enzyme system with the overall cofactor composition mirroring eukaryotic NR 

proteins (FAD, heme, Moco). Interestingly, the electrons pass from NADH to FAD containing 

cytochrome b5 reductase and via heme containing cytochrome b5 to Moco within the mARC 

subunit, which harbors the active site for substrate reduction (Figure 1.5). Thereby, not only 

cofactor composition, but also cofactor arrangement and electron flow of the N-reductive 

system are similar to NR.    

 

 

 

 

 

 

 

While many N-hydroxylated compounds were identified as substrates for native and 

recombinant mARC proteins, the physiological functions of mARC remain poorly understood. 

So far, the only known physiological role of both mARC proteins accounts for their 

involvement in the regulation of nitric oxide (NO) synthesis (Kotthaus et al., 2011). NO 

synthases catalyze the oxidation of arginine to citrulline and NO via the intermediate N-

hydroxy-arginine (NOHA). NO is an essential cellular signaling molecule with versatile 

functions in vascular homeostasis and innate immune response. However, overproduction of 

NO can cause severe diseases like ischemia or septic shocks, thus requiring a balanced 

regulation of NO synthesis (Moncada et al., 1991). Both mARC proteins were shown to be 

involved in one of those regulative mechanisms and to catalyze the reduction of NOHA to 

arginine in cooperation with cytochrome b5 and its reductase (Kotthaus et al., 2011).  

Figure 1.5 Composition and electron transfer in the N-reductive system. NADH is oxidized 

by FAD containing NADH cytochrome b5 reductase (NADH Cytb5R) and electrons are passed 

to heme integrating cytochrome b5 (Cytb5). Moco binding mARC receives electrons from Cytb5 

and reduces the substrate within the active site. 
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1.4 Mitochondrial architecture and function  

Mitochondria harbor SO and mARC and thereby exert crucial cellular functions in sulfite 

detoxification and NO synthesis regulation. These reactions however only represent a small 

fraction of the multitude of essential cellular processes and functions mitochondria are 

involved in. In addition to their central role in ATP production by oxidative phosphorylation, 

they play key roles in the metabolism of amino acids and lipids as well as in iron-sulfur 

cluster biogenesis (Lill, 2009, Osman et al., 2011). Further, mitochondria are fundamental for 

the regulation of programmed cell death and mitochondrial dysfunction is hallmark of many 

neurodegenerative diseases (Zeviani, 2004, Wang and Youle, 2009). 

 The cellular functions of mitochondria are tightly linked to its architecture, which is 

characterized by two membranes of distinct structure. The outer mitochondrial membrane 

builds the border to the cytosol and harbors voltage dependent anion channels (VDAC), 

which permit passive exchange of small molecules and metabolites between the cytosol and 

the mitochondrial IMS. The outer membrane also contains the translocase of the outer 

membrane (TOM) complex as the main entry gate for proteins, the sorting and assembly 

machinery (SAM) as well as mitofusins being involved in fusion of mitochondria.  

The inner mitochondrial membrane constitutes a significantly larger surface area than 

the outer membrane and can be divided into two main regions. The inner boundary 

membrane (IBM) is juxtaposed to the outer membrane with the diameter of the IMS not 

exceeding 2-3 nm (Neupert, 2012). The IBM is rich in proteins involved in transport of other 

proteins as well as metabolites and harbors the translocase of the inner membrane (TIM) 

complex. Invaginations of the IBM, termed cristae, form a multitude of shapes from tubular to 

lamellar structures and comprise the second compartment of the inner mitochondrial 

membrane. Cristae membranes mainly contain components of the respiratory chain and the 

F1F0-ATP-synthase. IBM and cristae membranes are connected by narrow tubular openings 

called cristae junctions, which are believed to limit diffusion between both membranes and 

between intracristae space and the remainder of the IMS (van der Laan et al., 2012). The 

mechanisms controlling the ultrastructural organization of mitochondria had remained largely 

unknown, until the mitochondrial inner-membrane organizing system (MINOS) was recently 

discovered in Saccharomyces cerevisiae (S. cerevisiae) as the first protein scaffold 

regulating mitochondrial architecture (Harner et al., 2011, Hoppins et al., 2011, von der 

Malsburg et al., 2011). This large complex is composed of at least six subunits and is 

involved in the maintenance of inner membrane organization by regulation of cristae 

morphogenesis and controlling the lateral diffusion of membrane components between IBM 

and cristae. The MINOS complex further interacts with the TOM and SAM complex of the 
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outer mitochondrial membrane and thus permits contact sites between inner and outer 

mitochondrial membranes (Neupert, 2012). Mitochondria do not only require organization 

and regulation of their internal ultrastructures, but they also build physical links to the 

endoplasmic reticulum (ER). A protein complex tethering ER and mitochondria was recently 

identified and termed ERMES (ER-mitochondria encounter structure) (Kornmann et al., 

2009). This complex is composed of transmembrane proteins residing in the ER and 

mitochondria, with proposed functions in interorganellar Ca2+ and phospholipid exchange, 

regulation of mitochondrial protein import and mitochondrial DNA maintenance (Kornmann 

and Walter, 2010).  

Mitochondria form extended and dynamic networks within the cell continually 

undergoing fusion and fission events. While mitochondrial fusion is regulated by the large 

dynamin-like GTPases MFN1 and MFN2 in the outer membrane and OPA1 in the inner 

membrane, mitochondrial fission is exerted by the dynamin related GTPase DRP1 and the 

outer membrane proteins MFF and FIS1 (Chan, 2006, Zhao et al., 2012). Balanced fusion 

and fission permit interaction of mitochondria and are fundamental to maintain their shape 

and function.    

 

1.5 Mitochondrial protein import  

The spectrum of mitochondrial functions as well as regulation of mitochondrial architecture 

depends on 1000-1500 different mitochondrial proteins present within the organelle (Baker et 

al., 2007). Although mitochondria have retained their own genome during endosymbiontic 

evolution, the majority of genes have been lost over the period of evolving from an 

endosymbiont to an organelle. Today, only ~1% of mitochondrial proteins are encoded by 

mitochondrial DNA. The remaining proteins are encoded by nuclear genes and become 

synthesized by cytosolic ribosomes. The cell has therefore developed sophisticated 

mechanisms to enable transport of proteins to and within mitochondria. 

In spite of partial co-translational protein import to mitochondria (Kellems et al., 1975, 

Ades and Butow, 1980, Knox et al., 1998), the vast majority of mitochondrial proteins are 

synthesized as cytosolic precursors and imported by post-translational mechanisms. 

Chaperons are thereby required to guide the precursor proteins to receptors at the outer 

mitochondrial membrane and to keep them in an unfolded and import competent state 

(Wiedemann et al., 2004a). Considering the complex two-membrane architecture of 

mitochondria, several protein import pathways have evolved to ensure routing towards the 

correct mitochondrial sub-compartment.  
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Mitochondrial precursor proteins can be divided into two main classes. Pre-proteins 

designated for the mitochondrial matrix and a number of proteins residing in the inner 

membrane or the IMS carry cleavable N-terminal extensions of 10-30 residues in length 

(Wiedemann et al., 2004a). These pre-sequences form amphipathic α-helices and direct the 

protein across both the TOM and TIM complexes. The second class of mitochondrial proteins 

is synthesized as non-cleavable precursors and contains internal motifs triggering 

translocation.  

Almost all mitochondrial precursors enter mitochondria via the TOM complex as the 

universal protein entry gate of the outer membrane. It consists of seven different subunits, 

which can be subdivided into three groups according to their individual functions during the 

translocation process. TOM20, TOM22 and TOM70 expose cytosolic domains and serve as 

receptors initially binding different types of precursors (Ahting et al., 1999). The general 

import channel is formed by the beta-barrel protein TOM40 (Hill et al., 1998), while the small 

proteins TOM5, TOM6 and TOM7 have TOM complex stabilizing functions and may also 

participate in the transfer of precursor proteins (Honlinger et al., 1996, Dietmeier et al., 1997, 

Kato and Mihara, 2008). Following their mitochondrial entry via the TOM complex, precursors 

diverge into different pathways in order to reach their destined mitochondrial sub-

compartment.  

 

1.5.1 Import of proteins containing cleavable pre-sequences   

Almost half of all mitochondrial precursors contain cleavable N-terminal extensions, which 

are also called matrix sequences, as they transport the N-terminus of a given protein across 

the inner membrane into the matrix (Neupert and Herrmann, 2007). After cytosolic synthesis, 

precursors are initially recognized by the outer membrane surface receptor TOM20, based 

on the hydrophobic surface of their amphipathic helix (Abe et al., 2000). Interactions to the 

negatively charged carboxy-terminus of TOM22, mediated by the positively charged helix-

surface, and binding to TOM5 trigger the subsequent transfer to the import pore TOM40 (Brix 

et al., 1997). According to the so-called binding chain hypothesis, the process of outer 

membrane translocation is driven by gradually increasing affinities between precursors and 

the mentioned TOM components (Milenkovic et al., 2007). After translocation via TOM40, the 

pre-sequence binds to the IMS domain of TOM22 (Komiya et al., 1998).  

 Following translocation through the TOM complex, pre-sequence containing 

precursors are transferred to the pre-sequence translocase of the inner membrane, the 

TIM23 complex. TIM23 constitutes the channel-forming protein and together with TIM17 
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builds the membrane embedded core of the complex. Pre-sequences leaving the TOM 

complex are recognized by the IMS domains of TIM23 and TIM50 as the primary pre-

sequence receptor at the inner membrane (Schulz et al., 2011). Insertion of precursors into 

the TIM23 channel depends on an intact membrane potential across the inner membrane, 

which constitutes an electrophoretic driving force towards the mitochondrial matrix. 

 Two main classes of proteins enter the TIM23 complex based on their cleavable pre-

sequences. The first group of proteins is destined to reach the mitochondrial matrix. The 

second class of proteins contains bipartite targeting signals with a transmembrane domain 

downstream of the pre-sequence serving as a stop-transfer signal, thus resulting in an arrest 

of translocation in the inner mitochondrial membrane. Accordingly, two different forms of the 

TIM23 complexes exist, either mediating membrane potential dependent translocation 

towards the matrix or insertion into the inner mitochondrial membrane (Figure 1.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Mitochondrial import of pre-sequence containing precursors. Proteins containing a 

cleavable pre-sequence are imported by TOM and two forms of TIM23 complexes. Inner membrane 

or IMS proteins contain a hydrophobic stop transfer signal downstream of the matrix targeting peptide 

and are membrane potential dependently imported. Matrix proteins lack transmembrane domains and 

require the ATP dependent PAM complex as an additional driving force for complete import into the 

matrix. Figure modified from (Milenkovic et al., 2007).   
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Both types share TIM23, TIM17 and TIM50 as essential core subunits of the complex. TIM21 

is a unique subunit of the so-called sorting form of the TIM23 complex, which allows lateral 

integration of precursors into the inner membrane (Milenkovic et al., 2007). The function of 

TIM21 is not completely understood, but it was shown to interact with the IMS domain of 

TOM22, suggesting a role in the interactions between TIM and TOM complexes (Chacinska 

et al., 2005). Proteins with bipartite targeting signals either remain anchored within the inner 

membrane, or they become proteolytically cleaved downstream of the transmembrane 

domain to generate a soluble IMS protein. 

Mitochondrial matrix proteins lack transmembrane domains and therefore completely 

cross the TIM23 complex. This is mediated by a different type of TIM23 complex, which does 

not contain TIM21, but instead binds the pre-sequence translocase-associated motor (PAM) 

within the mitochondrial matrix. The PAM complex consists of mitochondrial HSP70 

(mtHSP70), the nucleotide exchange factor GRPE (Mge1 in S.cerevisiae), TIM44, linking 

mtHSP70 to the TIM23 complex, and the three co-chaperons PAM16, PAM17 and PAM18. 

HSP70 thereby exerts a crucial function as a motor protein, ATP-dependently pulling the 

incoming precursor entirely towards the mitochondrial matrix. The translocation of pre-

sequence containing precursors is completed by cleavage of the matrix targeting signal by 

the mitochondrial processing peptidase (MPP) (Neupert and Herrmann, 2007). 

 

1.5.2 Import of proteins lacking cleavable pre-sequences   

Mitochondrial proteins lacking a cleavable pre-sequence retain their primary structure during 

mitochondrial transport and are targeted to the organelle by internal motifs. According to their 

designated sub-compartments and import mechanisms, these proteins can be subdivided 

into four main classes.  

1.5.2.1 Insertion of proteins into the inner membrane  

While inner membrane proteins containing a single transmembrane domain usually become 

imported based on cleavable pre-sequences as described above, multi-membrane-spanning, 

mostly carrier proteins of the inner membrane as well as membrane embedded components 

of the TIM complex are imported by the alternative TIM22 import pathway (Milenkovic et al., 

2007).  

Following their synthesis, these precursors are bound by cytosolic chaperons owing 

to their hydrophobicity and targeted to TOM70 as the primary import receptor of solute carrier 

proteins (Young et al., 2003). Upon translocation through the TOM complex, precursors are 
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bound by hexameric complexes composed of TIM9 and TIM10 and are chaperone assisted 

through their way to the soluble IMS (Curran et al., 2002, Vial et al., 2002, Baker et al., 

2009). With the help of TIM12, the precursors dock onto the carrier translocase of the inner 

membrane (TIM22 complex), which is composed of TIM22 as the essential core of the 

complex, mediating the membrane insertion of carrier proteins. In addition, TIM54 as a non-

essential accessory component and TIM18, only found in fungal mitochondria so far, 

assemble into the TIM22 complex (Milenkovic et al., 2007). Yeast succinate dehydrogenase 

subunit 3 (Sdh3) was further recently identified as a novel subunit of the TIM22 complex and 

was proposed to be involved in complex biogenesis (Gebert et al., 2011). The carrier 

proteins are inserted into the two channels of the TIM22 complex in a loop conformation, with 

the membrane potential activating TIM22 and constituting the driving force of the insertion 

(Rehling et al., 2003). Carrier proteins finally dimerize into their native state upon their 

membrane release from the TIM22 complex (Neupert and Herrmann, 2007).   

1.5.2.2 Import of small IMS proteins 

Many proteins of the mitochondrial IMS are imported based on bipartite targeting signals 

followed by downstream proteolytic cleavages as described above. However, the majority of 

IMS proteins is small and becomes imported by alternative mechanisms. These proteins are 

translocated through the TOM complex and, in respect to their size of less than 20 kDa, tend 

to bi-directionally cross the TOM complex if not folded, which also includes their reverse 

translocations to the cytosol (Lutz et al., 2003). Folding of these proteins prevents retrograde 

movements and converts the bi-directional diffusion into a vectorial process. This so-called 

folding-trap mechanism of IMS protein import is based on cofactor mediated folding (Dumont 

et al., 1988, Field et al., 2003) or the formation of intramolecular disulfide bonds. Proteins 

undergoing internal disulfide-bond formations contain conserved Cys-X3-Cys or Cys-X9-Cys 

motifs and require the MIA40 import machinery for the formation of internal disulfide bonds 

(Chacinska et al., 2004). MIA40 is an oxidoreductase and serves as a receptor for small IMS 

precursors upon their import into the IMS. Substrates and MIA40 initially form intermediate 

mixed disulfide bonds, while formation of intramolecular disulfide bonds leads to the release 

of the folded and trapped precursors in a final maturation step. This disulfide-relay system is 

accomplished by reoxidation of MIA40 mediated by the sulfhydryl oxidase ERV1 (Bottinger et 

al., 2012). 

1.5.2.3 Integration of β-barrel proteins into the outer membrane 

The outer mitochondrial membrane contains two distinct classes of integral membrane 

proteins, which are either inserted by α-helical transmembrane segments or based on 

multiple β-strands. Apart from outer mitochondrial membranes, the corresponding β-barrel 
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proteins are only present in outer membranes of chloroplasts and gram-negative bacteria, 

thus presumably reflecting the evolutionary origin of eukaryotic organelles (Walther and 

Rapaport, 2009).  

After their cytosolic synthesis, β-barrel proteins are guided to the TOM complex, 

where they become recognized by TOM20 as well as TOM22 and transported into the IMS 

via the TOM40 import channel (Walther and Rapaport, 2009). Following their translocation 

into the IMS, a number of β-barrel proteins have been shown to associate with the 

chaperone like small proteins TIM8-TIM13 or TIM9-TIM10, respectively (Hoppins and 

Nargang, 2004, Wiedemann et al., 2004b). Integration of β-barrel proteins into the outer 

membrane is mediated by the SAM (sorting and assembly machinery) / TOB (topogenesis of 

β-barrel proteins) complex of the outer mitochondrial membrane (Paschen et al., 2003, 

Wiedemann et al., 2003). In yeast, the SAM machinery is composed of three core subunits, 

with the β-barrel protein Sam50 constituting the main component and the peripherally 

associated components Sam35 and Sam37 being located at the cytosolic surface of the 

SAM complex. While Sam50 (Humphries et al., 2005) and Sam37 (Armstrong et al., 1997) 

have clear homologues in mammals, metaxin2 is proposed to be the functional homologue of 

Sam35, although direct sequence homology is lacking (Neupert and Herrmann, 2007). 

Furthermore, Mdm12 and Mmm1 were identified as yeast SAM complex subunits (Meisinger 

et al., 2007) and Mdm10 has been identified as an additional SAM subunit being specific for 

the assembly of Tom40 (Meisinger et al., 2004).  The mechanisms by which the SAM 

complex mediates membrane insertion of β-barrel proteins are poorly defined. Sam50 is 

however suggested to build a huge pore and to assist in folding of incoming β-barrel proteins, 

finally releasing them laterally into the outer membrane (Paschen et al., 2003). The MINOS 

complex, which interacts with both the TOM and the SAM complex, was recently shown to be 

also involved in β-barrel protein biogenesis, since depletion of mitofilin as the large core 

subunit of MINOS resulted in impaired  β-barrel protein membrane assembly (Bohnert et al., 

2012). 

1.5.2.4 Integration of α-helical proteins into the outer membrane 

The insertion of proteins containing single α-helical transmembrane segments into the outer 

mitochondrial membrane is only partially understood and seems to be divergent. These 

proteins either contain N- or C-terminal transmembrane segments flanked by positively 

charged residues, with the soluble core of the protein being exposed to the cytosol.  

Outer membrane proteins comprising N-terminal α-helical transmembrane domains 

are termed signal-anchored proteins according to the dual function of the hydrophobic 

segment in membrane anchoring and sorting signal. The few known members of this family, 



Dissertation Julian Klein                                                                                          Introduction 

 

19 
 

including TOM20 and TOM70, lack obvious primary sequence similarities in their N-terminal 

region, suggesting that the sorting information is delivered by a conserved structural feature. 

This was confirmed by mutagenesis studies of the N-terminal domains of signal-anchored 

proteins, indicating that a moderate degree of hydrophobicity rather than the length of the 

transmembrane segment is fundamental for correct sorting (Waizenegger et al., 2003). The 

mechanisms of outer membrane integration are not completely understood and seem not to 

follow a common principle of targeting. The import however seems to be independent on the 

primary receptors of the TOM complex and blocking of the translocation pore does not affect 

membrane insertion of the known signal-anchored proteins (Ahting et al., 2005, Meineke et 

al., 2008). Still, TOM40 was shown to play a role in the membrane integration of TOM20 and 

TOM70, which may however represent a specific requirement of these proteins as TOM 

complex subunits (Dukanovic and Rapaport, 2011). Another signal anchored protein that is 

not part of the TOM complex, the yeast signal-anchored protein OM45, has been shown to 

be inserted into the membrane independently of TOM complex subunits and other 

proteinaceous factors involved in membrane protein insertion. Instead, OM45 displayed the 

ability to acquire a transmembrane topology within artificial lipid bilayers. The specific lipid 

composition of outer mitochondrial membranes and the achieved thermodynamic gain upon 

membrane integration was therefore recently proposed to constitute the targeting information 

and driving force for insertion of this signal-anchored protein into the correct membrane 

(Merklinger et al., 2012). The proposed mechanisms of outer membrane targeting of signal-

anchored proteins are summarized in figure 1.7.    

In addition to signal-anchored proteins, the outer mitochondrial membrane contains 

proteins with a C-terminal transmembrane segment, termed tail-anchored proteins, and 

multi-spanning proteins including more than one α-helical transmembrane segment. The 

membrane insertions of tail-anchored proteins seem to be related to those of signal-

anchored proteins, with some components requiring the presence of the TOM core complex 

(Horie et al., 2003) and others being incorporated independently of the TOM components 

(Ross et al., 2009). The schematic proposals of figure 1.7 are therefore also transferable to 

tail-anchored proteins. However, the SAM complex was also suggested to be required for 

membrane insertion of TOM components with single C-terminal membrane anchors 

(Stojanovski et al., 2007). Integrations of outer membrane proteins containing multiple 

transmembrane segments were shown to require the small outer membrane protein Mim1 

(Becker et al., 2011, Papic et al., 2011). These findings were recently extended by the 

identification of Mim2, which interacts with Mim1 to build the MIM complex required for the 

insertion of multispanning outer membrane proteins (Dimmer et al., 2012).    
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1.6 Cofactors and metabolites in mitochondria  

Mitochondrial function does not only require targeted import of proteins, but also a continued 

and diversified flux of cofactors, metabolites and nucleotides into and out of mitochondria. 

The outer mitochondrial membrane contains voltage dependent anion channels (VDAC), 

which permit passive, bi-directional diffusion of molecules up to ~ 5kDa in size (Lemasters 

and Holmuhamedov, 2006). All metabolites and cofactors can hence non-specifically cross 

the outer mitochondrial membrane. In contrast, the inner mitochondrial membrane does not 

contain porins and is rich in cardiolipin, rendering the inner membrane virtually impermeable. 

The transport of solutes is instead specifically coordinated by a family of more than 50 

nuclear encoded and inner membrane embedded proteins called mitochondrial carriers. All 

of these proteins share a tripartite structure of three homologous repeats of approximately 

100 amino acids, each containing two α-helical transmembrane stretches. Mitochondrial 

carrier proteins are homodimers, with each monomer traversing the inner membrane six 

Figure 1.7 Possible import pathways of signal-anchored proteins. The transmembrane domains 

of signal-anchored proteins are presumably engaged by cytosolic factors. Insertion into the outer 

membrane can occur (a) without assistance of any other proteins or (b) mediated by a pre-existing 

TOM complex in case of TOM20 and TOM70. The TOM complex may be involved in the initial steps 

of membrane insertion or (c) TOM complex mediated assembly could occur after membrane 

insertion of the precursor. Figure modified from (Dukanovic and Rapaport, 2011). 
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times, being connected by hydrophilic loops or domains with the N- and C-termini remaining 

exposed to the IMS. The driving force of the transport is mediated by a concentration 

gradient of the solute and/or the electrochemical H+ gradient across the inner mitochondrial 

membrane (Palmieri, 2008). Prominent examples for inner membrane carriers transport 

ADP/ATP (Aquila et al., 1982), phosphate (Kolbe et al., 1984), aspartate/glutamate (Bisaccia 

et al., 1992) or ornithine (Indiveri et al., 1992).    

 

1.6.1 Heme synthesis and transport 

Mitochondria and cytosol cooperate in a large number of metabolic processes and thus 

strictly depend on inner membrane carrier proteins to ensure efficient metabolite exchanges. 

One example is depicted by the synthesis of heme cofactors, which partially occurs in the 

cytosol but is completed in mitochondria. Furthermore, heme is not only incorporated into 

mitochondrial proteins, but also an essential component of a number of non-mitochondrial 

enzymes. Therefore, the heme synthesis pathway including export of the final heme cofactor 

is subject to repeated exchange of intermediates between mitochondria and cytosol.      

 The synthesis of heme (figure 1.8) initiates in mitochondria by 5-aminolevulinate-

synthase mediated condensation of glycine and succinyl CoA to form 5-aminolevulinate.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 Mammalian heme biosynthesis. All heme precursors are depicted in black 

boxes, heme as the final product is highlighted red. Green arrows indicate enzymatic 

reactions and names of catalyzing enzymes are given. Black arrows illustrate transport of 

intermediates across mitochondrial membranes. Mitochondrium is schematized in orange, 

matrix and IMS are shown.     
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The subsequent four steps of heme biogenesis take place in the cytosol, thus requiring 

mitochondrial export of 5-aminolevulinate by a currently unknown carrier. 

Coproporphyrinogen III as the final cytosolic product is re-imported into mitochondria, where 

it is first converted to protoporphyrinogen IX and further modified to protoporphyrin IX in the 

IMS. The final step of heme synthesis occurs on the matrix side of the inner mitochondrial 

membrane, where iron is inserted into protoporphyrin IX by ferrochelatase (Ajioka et al., 

2006). The carrier exporting heme to the cytosol remains unknown, while the heme-binding 

protein 1 (Taketani et al., 1998) and the ATP-binding cassette transporter M-ABC2 (Shirihai 

et al., 2000) were proposed to be involved in mitochondrial export of heme or one of its 

intermediates.   
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1.7 Aims of the current study 

The overall aim of the current study was to unravel the mechanisms underlying the cellular 

maturations of the mitochondrial Moco-enzymes SO and mARC. Considering the intrinsic 

instability of Moco and its cytosolic synthesis, the group of mitochondrial Moco-enzymes was 

of particular interest to gain insights into the open questions of cellular Moco transport and 

stabilization. 

 

The first part of this thesis focused on the dissection of SO maturation and the impact and 

stabilization of Moco. This was supposed to answer the following questions: 

1) How is the complex assembly of SO coordinated on the cellular level?  

2) Are the individual steps of SO maturation subject to a molecular hierarchy? 

3) What is the role of Moco during the maturation of SO and where do Moco and SO 

associate? 

4) Which factors trigger mitochondrial localization of SO? 

5) Which peptidase mediates processing of SO in the mitochondrial IMS? 

 

In the second part of this study, the cellular maturation of mARC1 was investigated. 

Considering its recent discovery, a number of fundamental questions have remained 

unexplored so far: 

1) Which mitochondrial sub-compartment is mARC1 residing in? 

2) How is mARC1 targeted to mitochondria and which of the five import pathways does it 

follow? 

3) What is the role of Moco for the mitochondrial localization of mARC1? 

4) What are the characteristics and requirements of the mitochondrial import of mARC1?  

5) What are similarities and differences between the mitochondrial maturations of SO and 

mARC1
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2 Results 

2.1 Assembly and maturation of mammalian SO 

The cellular assembly of SO starting with the cytosolic synthesis of the polypeptide chain all 

the way to the fully functional mitochondrial enzyme implies a complex network of several 

maturation steps. To fulfill its enzymatic activity, SO requires the integration of a cytochrome 

b5 type heme cofactor into the N-terminal part of the protein, the integration of Moco into the 

central domain, homodimerization mediated by the C-termini and the translocation from the 

cytosol to the mitochondrial IMS, accompanied by processing of the first 80 residues (Kisker 

et al., 1997). All these processes have to be precisely regulated and spatially as well as 

temporally coordinated in order to ensure an efficient maturation of the enzyme. In particular, 

the stabilization of Moco upon its cytosolic synthesis until its integration into SO remained 

ambiguous, as Moco is known to be a very unstable molecule in a protein-free environment 

(Schwarz and Mendel, 2006). In this respect, Moco was expected to require an immediate 

association with the respective apo-proteins to achieve its stabilization (Schwarz et al., 

2009). However, cytosolic folding of SO after Moco integration would interfere with the 

properties of the so far known mitochondrial import machinery. Thus, the first part of this 

study was supposed to uncover the cellular organization of the overall SO assembly process 

with a particular focus on the integration of Moco into SO and the mitochondrial transport of 

both components.  

 

2.1.1 Amplification, purification and characterization of mouse SO 

SO variants from different mammalian species are well conserved but slightly differ in their 

N-terminal domains (Figure 2.1), which represent the mitochondrial targeting sequence of the 

proteins. As confirmed by in silico prediction tools (Claros and Vincens, 1996, Kall et al., 

2004), these differences in the primary structure do however not significantly influence the 

chemical properties of this domain, suggesting similar mechanisms for the cellular maturation 

and mitochondrial transport of all mammalian SO variants. Therefore, mouse SO was 

exemplarily chosen as a representative for mammalian SO in the current study.  

After successful amplification of the SO coding sequence from a mouse cDNA library, 

SO was first characterized in vitro prior to the in vivo analysis of the SO maturation process. 

For this purpose, the SO coding sequence was cloned into the pQE80 expression vector for 

heterologous expression of the protein in Escherichia coli (E. coli). The full-length SO protein 
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contains a hydrophobic stretch of about 20 residues in the N-terminal part of the protein, 

which revealed to interfere with an efficient expression and purification from E. coli. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since mature mammalian SO lacks its first 80 residues including the hydrophobic 

stretch following mitochondrial processing (Kisker et al., 1997), a truncated variant of SO 

representing the mature protein was purified from E. coli. This protein variant was expressed 

at high yields and could be enriched to purity by means of sequential Ni-NTA affinity 

chromatography and anion-exchange chromatography (Figure 2.2 A). Expression was 

carried out in E. coli strain TP1000, which is able to synthesize the eukaryotic form of Moco 

(Palmer et al., 1996), while WT-E. coli mainly produces a nucleotide modified form of the 

cofactor. The enzymatic activity of SO requires efficient homodimerization, as monomeric 

mutant variants have been shown to be catalytically inactive (Wilson et al., 2006). The 

Figure 2.1 Multiple sequence alignment of mammalian SO variants. Alignment of mammalian SO 
sequences was conducted with CLUSTALW and images were generated with Boxshade. Residues 
are framed in black (high conservation), gray (moderate conservation) or white (no conservation). 
Protein accession numbers: NP_001029538 (Bovine SO), XP_001491902 (Horse SO), NP_000447 
(Human SO), BAD51985 (Macaque SO), NP_776094 (Mouse SO), NP_112389 (Rat SO). 
 

    



Dissertation Julian Klein                                                                                                   Results 

 

26 
 

oligomerization of purified SO was analyzed by means of HPLC based size exclusion 

chromatography, revealing the expected distribution of a major dimeric and a minor 

monomeric population of the protein (Figure 2.2 B, blue trace). Apart from the protein derived 

absorption at 280 nm, the heme cofactor mediated absorption at 413 nm was recorded 

during chromatography to assess the integration of the heme cofactor into SO. As the 

absorption of the protein at 413 nm closely followed its absorption at 280 nm, efficient heme 

cofactor integration into SO was observed (Figure 2.2 B, red trace). Next, the incorporation of 

Moco into purified SO was determined by HPLC-mediated detection of the Moco derivative 

FormA-dephospho. SO expressed from E. coli strain BL21, which does not accumulate the 

eukaryotic form of Moco, was supposed to deliver significantly less FormA-dephospho and 

was used as a negative control within the assay. The analysis revealed an approximately 

40% Moco saturation of SO expressed from E. coli TP1000, while SO expressed from strain 

BL21 showed less than 10% Moco integration (Figure 2.2 C). These results are in line with 

values reported for other Moco proteins (Fischer et al., 2006b, Gruenewald et al., 2008). 

 

 

 

 

          

 

 

 

 

 

 

 

 

The homodimerization as well as the integration of heme and Moco resulted in a catalytically 

active enzyme, which was finally determined by means of an in vitro SO activity-assay using 

cytochrome c as the final electron acceptor (Figure 2.2 D). The determined values of SO 
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Figure 2.2 Purification and character-

ization of MSO expressed in E. coli. 

(A) SO was expressed in E. coli strain 

TP1000 for 48 h at room temperature 

and purified by sequential Ni-NTA and 

anion-exchange chromatography. Purity 

of SO preparation was assessed by 12% 

SDS-PAGE and subsequent coomassie 

blue staining. (B) Oligomerization of 

purified SO was determined by HPLC 

based size exclusion chromatography. 

Absorptions were measured at 280 nm 

(blue traces) and 413 nm (red traces). 

(C) Moco saturation of 100 pmol SO 

expressed from E. coli strains TP1000 

and BL21, respectively, was determined 

by HPLC mediated detection of the 

fluorescent Moco derivative FormA. 

Error bars represent standard deviations 

(n=3). (D) Activities of purified SO 

variants from E. coli strains TP1000 and 

BL21 were determined by means of the 

sulfite:cytochrome c SO assay. Depicted 

are velocities of sulfite oxidation per mg 

SO within the reaction well. Error bars 

represent standard deviations (n=3).         

 

a
b
s
o
rb

a
n
c
e
 (

m
A

U
) 

Elution volume (ml) 

- WT-SO (A280)                

- WT-SO (A413) 



Dissertation Julian Klein                                                                                                   Results 

 

27 
 

activity are thereby consistent with SO activities described in the literature (Garrett et al., 

1998) 

 

2.1.2 Moco dependent mitochondrial localization of SO 

The steps of SO maturation described in chapter 2.1.1 result in an active enzyme in vitro. 

The assembly however becomes more complex in vivo, where both SO and Moco 

additionally require a coordinated translocation to mitochondria after their cytosolic synthesis, 

a process which was not understood so far. Premature integration of Moco into SO within the 

cytosol and the concomitant folding would interfere with mitochondrial transport of the 

complex, as only unfolded proteins can enter mitochondria across the TOM and TIM 

complexes (Neupert and Herrmann, 2007). On the other hand, Moco has been shown to be 

a very unstable molecule if not associated to the protective environment of a protein, 

suggesting an immediate association of SO and Moco in the cytosol (Schwarz and Mendel, 

2006).  

To address this conflict and to identify possible mutual impacts of SO and Moco for 

their mitochondrial translocation, SO was transiently expressed in WT and Moco-deficient 

human fibroblasts. Immunostaining using an SO specific antibody (Figure 2.3 A) revealed the 

expected exclusive mitochondrial localization in WT fibroblasts, as demonstrated by the 

complete colocalization of SO and mitochondria stained with Mitotracker Red (Figure 2.3 B). 

To analyze the cellular distribution of SO in absence of Moco, SO was expressed in human 

fibroblasts with a mutation in the MOCS1 gene. The MOCS1 proteins catalyze the first step 

of the Moco synthesis pathway by converting GTP to cPMP in mammals (Hanzelmann et al., 

2002), suggesting that MOCS1-deficient fibroblasts do not contain substantial amounts of 

Moco. While WT fibroblasts significantly reconstituted the Moco-deficient nitrate reductase in 

the nit-1 assay, MOCS1-deficient fibroblasts did not deliver any considerable amounts of 

Moco (Figure 2.3 C). Surprisingly, expression of SO in the latter Moco-deficient fibroblasts 

revealed a diffuse distribution throughout the entire cell body with no clear mitochondrial 

localization left (Figure 2.3 D). No nuclear exclusion of the SO staining was observed, which 

would point to an apparent size of less than 60 kDa as seen for other proteins that are able 

to passively enter the nucleus (Nigg, 1997). 

 To confirm that Moco binding to SO is required for the mitochondrial targeting of the 

enzyme, a mutant variant of SO was designed, which should not be able to bind Moco. In a 

report listing several cases of isolated SO deficiency, two mutations in the Moco binding 

domain of human SO were described. (Johnson et al., 2002). The first mutation affected 
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Arg309, which is involved in the binding of Moco by forming salt bridges with the phosphate 

of the pterin (Kisker et al., 1997). 

  

 

  

        

 

 

 

 

 

 

 

 

 

 

 

The described mutation to histidine at this position was proposed to prevent these 

hydrogen bond formations and to sterically interfere with surrounding residues. The second 

mutation involved Lys322, which binds the N1 as well as the 2-amino group of the pterin and 

also forms a salt bridge to the phosphate. A mutation to arginine was proposed to cause 

sterical problems in response to the larger side chain of arginine compared to lysine. Both 

mutations, R309H as well as K322R, resulted in a disease phenotype of the affected 

patients, suggesting that the activity of SO was disrupted and the integration of Moco might 

not have occurred in response to the structural problems outlined above (Johnson et al., 

2002).  

0

1

2

3

n
it
-1

 u
n
it
s
/m

g
 p

ro
te

in
 

W
T

 f
ib

ro
b
la

s
ts

 

M
O

C
S

1
-/

- 
fi
b
ro

b
la

s
ts

 

B 

WT-SO mitoTR merge 
Moco-def. fibroblasts 

D 

WT-fibroblasts 
WT-SO mitoTR merge 

C 

Figure 2.3 Moco dependent localization of SO. (A) SO was expressed in HEK-293 cells and 

total protein extract was loaded on a 12% SDS gel. Specificity of the SO-antibody was determined 

by Western blot. (B, D) SO was expressed for 48 h and detected by anti-SO immunostaining 

(green) using confocal laser scanning microscopy. Mitochondria were stained with Mitotracker Red 

CMXRos (mitoTR). Bar, 10 µm. Cartoons illustrate the status of cofactor insertion and 

oligomerization: L, leader sequence; H, heme; Mo, Moco; DD, dimerization domain. (C) Moco 

content of WT and MOCS1-deficient fibroblasts was determined by the nit-1 assay. The depicted 

values represent an average of the nit-1 activities expressed as units per mg total protein. Error 

bars represent standard deviations (n=3).     
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Given that the above mentioned mutant variants were not further characterized 

biochemically, the corresponding double mutation was introduced into mouse SO and the 

respective variant (SO-R367H-K380R) was characterized on cofactor integration and 

oligomerization in this study. SO-R367H-K380R was expressed in E. coli strain TP1000 from 

pQE80 and purified by sequential Ni-NTA and anion exchange chromatography (Figure 2.4 

A). To determine the degree of Moco integration in the mutant variant, HPLC-based FormA 

analyses were conducted. While WT-SO was saturated with at least 40% cofactor, SO-

R367H-K380R did not contain any significant amounts of Moco, demonstrating that 

mutations R367H and K380R as expected collectively interfere with efficient Moco integration 

into SO (Figure 2.4 B). Before analyzing the localization of the Moco-deficient SO variant, the 

status of oligomerization and heme cofactor integration was determined by size exclusion 

chromatography. While heme cofactor incorporation was unaffected as illustrated by the 

similar absorptions at 280 nm and 413 nm, the oligomerization behavior changed because 

SO-R367H-K380R mainly eluted as a monomer (Figure 2.4 C). These observations indicate 

that the integration of Moco into SO is a prerequisite for efficient homodimerization. 

 

    

 

 

 

 

 

 

 

 

 

 

 

In order to confirm the importance of Moco for the sub-cellular localization of SO, the 

distribution of SO-R367H-K380R was analyzed in WT-HEK-293 cells by 
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Figure 2.4 Characterization of a Moco-deficient mutant variant of SO. (A) SO-R367H-K380R 

was expressed in E. coli strain TP1000 for 48 h at room temperature. Purification occurred by 

sequential Ni-NTA and anion exchange chromatography. Purity was assessed by 12% SDS-PAGE 

and subsequent coomassie blue staining. (B) Moco content of 100 pmol WT-SO and SO-R367H-

K380R was analyzed by HPLC mediated FormA analysis. Error bars represent standard deviations 

(n=3).  (C) Oligomerization of purified SO-R367H-K380R was determined by HPLC based size 

exclusion chromatography. Absorptions were measured at 280 nm (blue traces) and 413 nm (red 

traces).    
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immunocytochemistry. WT-SO exclusively localized to mitochondria (Figure 2.5 A), while SO-

R367H-K380R was diffusely distributed within the cell (Figure 2.5 B), as previously seen for 

WT-SO in Moco-deficient cells. To quantitatively assess the degree of colocalization of SO 

and mitochondria and thus to figure out if a minor pool of SO may still be present in 

mitochondria in absence of Moco, the Pearson correlation coeffcients (PCC) were 

determined. The PCC expresses full (100%) colocalization with a number of +1, while 

separate (excluding) localization is classified by -1. Consequently, zero represents a fully 

random, non-correlated distribution. (Manders et al., 1992).  
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Figure 2.5 Cellular distribution of Moco-deficient SO. (A) WT-SO, (B) SO-R367H-K380R and 

(C) SO (Δaa 1-80) were expressed in HEK-293 cells for 48 h and detected by anti-SO immuno-

staining (green) using confocal laser scanning microscopy. Mitochondria were stained with 

Mitotracker Red CMXRos (mitoTR). Bar, 10 µm. Cartoons illustrate the status of cofactor insertion 

and oligomerization: L, leader sequence; H, heme; Mo, Moco; DD, dimerization domain. (D) 

Pearson correlation coefficients were determined by means of the Perkin Elmers VOLOCITY 

software. Error bars represent standard deviations (n=5).  
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Under WT conditions, SO and mitochondria showed an expected average PCC of 

+0.97 (Figure 2.5 D, left panel). For SO-R367H-K380R, an average PCC value of +0.59 was 

determined (Figure 2.5 D, middle panel). As a negative control, a cytosolic variant of SO 

lacking residues 1-80 was used (Figure 2.5 C) and revealed an average PCC of +0.52 

(Figure 2.5 D, right panel), indicating that the theoretically expected reading of “0” is not 

reached. Therefore, the recorded PCC values for Moco-deficient SO are in well agreement 

with the negative control.        

The determination of the PCC values confirmed the obvious mislocalization of SO in 

absence of Moco, but could not quantitatively express if any pool of Moco-deficient SO is 

present in mitochondria. The negative control, SO lacking its N-terminal mitochondrial 

targeting sequence, was not present in mitochondria but still revealed a certain degree of 

colocalization with mitochondria, as mitochondrial areas were not clearly excluded from the 

antibody staining (Figure 2.5 C). Thus, a minor mitochondrial localization was difficult to be 

identified and to be distinguished from a non-mitochondrial distribution by 

immunocytochemistry.  

To more precisely characterize the distribution of SO-R367H-K380R in the cell, the 

latter variant as well as WT-SO, each containing a C-terminal myc –tag, were expressed in 

HEK-293 cells for 48 h. Subsequently, mitochondrial and cytosolic fractions were separated 

by discontinuous density gradient centrifugation and SO variants were detected in both 

fractions by anti-myc Western blotting. Both fractions were efficiently separated, as 

demonstrated by the specific distribution of the marker proteins VDAC and gephyrin in 

mitochondrial and cytosolic fractions, respectively (Figure 2.6 A). Consistent with the 

localization data, WT-SO was exclusively detected in the mitochondrial fraction, while SO-

R367H-K380R was mainly present in the cytosolic pool (Figure 2.6 A). The Moco-deficient 

variant of SO was however also detected in the mitochondrial fraction, finally demonstrating 

that the depletion of Moco did not completely prevent the mitochondrial targeting of SO, but 

that Moco is required for an efficient localization of SO to mitochondria. Quantification of 

band intensities revealed 100% localization of WT-SO in mitochondria (given that no signal 

was found in the cytosolic fraction), while only 30% of the Moco-deficient variant was found 

to be mitochondrial and 70% remained in the cytosol. This distribution was also confirmed by 

the application of Proteinase K (PK) to whole cell extracts after expression of WT and Moco-

deficient SO variants, respectively. The sensitivity to PK was used as an alternative 

illustration of differential holo- and apo-SO distribution, since cytosolic proteins should be 

susceptible to proteolytic digestion, while mitochondrial proteins were expected to be 

protected from PK accessibility. 
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Indeed, the outer mitochondrial membrane protein MFN2 was susceptible to PK, as a 

large domain of the protein is exposed to the cytosol (Figure 2.6 B). In contrast, the IMS 

protein diablo was mainly protected from digestion. Consistent with the previous experiments 

outlined above, WT-SO was almost completely protected from PK, while SO-R367H-K380R 

was susceptible to PK-mediated hydrolysis and only a minor fraction was stabilized due to its 

mitochondrial localization (Figure 2.6 B).       

Altogether, cellular and biochemical localization studies independently pointed out 

that SO requires the integration of Moco for an efficient mitochondrial localization, whereas 

the mechanism of Moco-dependent targeting of SO to mitochondria remained to be 

elucidated. 

 

2.1.3 Mitochondrial import of SO 

The cytosolic localization of SO in absence of Moco appeared to be unexpected, since SO 

contains a predicted mitochondrial targeting signal at its N-terminus (92.6% according to 

MitoProt II), which should be sufficient for the mitochondrial localization of a protein. To 

confirm that SO indeed contains an N-terminal mitochondrial targeting signal and to 

investigate if the impact of Moco for the localization of SO is related to this domain, the first 

80 residues of SO were fused to GFP and expressed in WT and Moco-deficient fibroblasts. 

In both cases, GFP was efficiently targeted to mitochondria, confirming that SO in fact 

Figure 2.6 Western blot analysis of Moco dependent distribution of SO. (A) WT and SO-R367H-

K380R were expressed in HEK-293 cells for 48 h. Cytosolic (lane C) and mitochondrial fractions 

(lane M) were separated from each other and total amounts of protein were determined in both 

fractions. Representative amounts of mitochondrial and cytosolic protein were loaded on a 12% SDS 

gel. VDAC and gephyrin were used as mitochondrial and cytosolic markers, respectively. Myc-tagged 

SO was stained using anti-myc antibodies. Similar results were obtained in three independent 

experiments. (B) WT-SO and SO-R367H-K380R were expressed in HEK-293 cells for 48 h. Whole 

cell extracts were treated with or without PK and loaded on a 12% SDS gel. MFN2 (mitochondrial 

outer membrane marker) and diablo (IMS marker) were detected as control proteins, SO variants 

were detected via their C-terminal myc-tags. 
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contains an intrinsic and functional mitochondrial targeting signal, which functions 

independently of Moco (Figure 2.7 A, B).  

Because the targeting signal of SO was able to localize GFP to mitochondria 

efficiently and independently from the presence or absence of Moco, the question arose of 

why SO and not GFP requires Moco for its mitochondrial localization. To unravel the 

underlying mechanisms of this coherency, the impact of Moco on the mitochondrial import of 

SO was first analyzed, as the diffuse distribution of SO in absence of Moco may result from 

an impaired import to mitochondria. The targeting signal of SO is not present in the mature 

protein (Kisker et al., 1997) and, as other known N-terminal mitochondrial targeting peptides, 

cleaved following mitochondrial import (Ono and Ito, 1984). This cleavage was expected to 

result in a shift of the electrophoretic mobility, serving as a marker for successful import of 

the protein to mitochondria. 

 

 

 

 

 

 

 

 

 

 

 

 

 Therefore, WT-SO as well as the Moco-deficient SO-R367H-K380R variant was 

expressed in HEK-293 cells, while the unprocessed full-length variant was expressed in E. 

coli and subsequently purified. Western blotting against the C-terminal myc-tag revealed a 

similar molecular weight of both, the WT and the Moco-deficient variant of SO, each being 

detected at the same apparent size of approximately 53 kDa. This band size was clearly 

below the size of full-length, non-processed SO, suggesting that in HEK-293 cells, both 

Moco-def. fibroblasts 

merge mitoTR SO (1-80)-GFP 

WT-fibroblasts 

mitoTR merge SO (1-80)-GFP 

A 

B 

Figure 2.7 SO contains an N-terminal mitochondrial targeting signal. The SO leader 

sequence (L, residues 1-80) was fused to GFP and expressed in (A) WT or (B) MOCS1-

deficient fibroblasts for 48 h. Mitochondria were stained with Mitotracker Red CMXRos 

(mitoTR). Bar, 10 µm.  
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variants, WT-SO and SO-R367H-K380R, were processed in the same manner (Figure 2.8). 

Consequently, the primary mitochondrial import of SO and the subsequent cleavage of the 

mitochondrial targeting sequence are not dependent on the presence of Moco and occur 

efficiently in a Moco-deficient background.        

  

 

 

 

 

 

Ono and Ito (1984) reported an ATP- and membrane potential-dependent import of 

SO into mitochondria through the TOM and TIM machineries, while the involved peptidases 

and thus the import mechanism remained uncharacterized. Mature mouse SO lacks the first 

80 residues and contains a predicted matrix processing peptidase (MPP) cleavage site at 

position 19 of the precursor form (Claros and Vincens, 1996). The remaining part of the 

leader sequence contains a predicted, hydrophobic transmembrane stretch at position 56-72 

(Kyte and Doolittle, 1982). This signal sequence structurally resembles the mitochondrial 

targeting motifs of S. cerevisiae cytochrome b2 and the mammalian diablo protein (Figure 2.9 

A). Both proteins have been shown to be imported based on bipartite mitochondrial targeting 

signals and processed by the inner membrane peptidase (IMP) complex (Glick et al., 1993, 

Burri et al., 2005), a hetero-oligomer composed of the two catalytic subunits IMP1 and IMP2 

and a third non-catalytic subunit involved in substrate recognition. Deletion of any of the two 

catalytic subunits destabilizes and silences the complex activity (Nunnari et al., 1993, Gakh 

et al., 2002). In respect to the topological similarities of the N-terminal pre-sequences of SO 

compared to cytochrome b2 and diablo, the question arose if the IMP complex may also 

process SO.  

Thus, the human IMP1 protein was knocked down by shRNA in HEK-293 cells. For 

this purpose, sense and antisense shRNA strands complementary to an appropriate region 

(according to predictions of the Invitrogen shRNA tool) of the human IMP1 coding sequence 

were designed and each cloned into the pJET1.2 vector in fusion with the CMV promoter. 

Following transfection of sense and antisense shRNA-encoding plasmids into HEK-293 cells, 

the effects on processing of co-transfected, myc-tagged SO were examined. Significant 

knockdown of IMP1 was confirmed by Western blot, revealing only 20 % residual expression 

Figure 2.8 Moco independent mitochondrial 

processing of SO. WT-SO and SO-R367H-K380R 

were expressed in HEK-293 cells for 48 h and cell 

extracts were loaded on an 8% SDS gel. As 

control, myc-tagged, full-length SO was expressed 

in E. coli strain TP1000. Proteins were detected by 

Western blot using anti-myc primary antibodies.  
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after shRNA treatment (Figure 2.9 B). The decreased IMP levels resulted in the appearance 

of an additional band for endogenous diablo, representing the unprocessed precursor form in 

the positive control. SO of untreated cells appeared to be completely processed, while the 

shRNA-mediated IMP1 knockdown resulted in an additional accumulation of unprocessed 

SO (Figure 2.9 B). These data suggest that the IMP complex processes SO in the 

mitochondrial IMS to release it as a soluble protein.  

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.4 Retrograde translocation of SO to the cytosol in absence of Moco 

 Successful mitochondrial processing resulted in a truncated variant of WT- as well as 

of Moco-deficient SO-R367H-K380R. The primary mitochondrial import process of SO was 

thus not influenced by the presence or absence of Moco. However, a large SO proportion 

accumulated outside of mitochondria if Moco was not present. In respect to this conflict, the 

eventuality of a reverse translocation to the cytosol after mitochondrial import of Moco-

deficient SO was investigated next. The TOM complex is known to allow bi-directional 

translocation of unfolded, small proteins (<20 kDa). For example, already imported Tim13 

has been shown to re-enter the cytosol upon application of chelators that remove zinc ions 

required for its folding (Lutz et al., 2003). The import of other small proteins is converted into 

a vectorial process by the formation of internal disulfide bonds, thus being trapped by folding 

IMP1 
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B 
Figure 2.9 Processing of SO by the IMP complex. 

(A) Structural comparison of Smac/Diablo (M. 

musculus), cytochrome b2 (S. cerevisiae) and SO (M. 

musculus). The first and last residues of matrix 

targeting peptide (white box), hydrophobic 

downstream region (light gray box) and mature 

protein (black box) are indicated. (B) Western blot 

analysis of SO (myc-SO), diablo, VDAC and IMP1 in 

response to IMP1 knockdown. Sense and antisense 

shRNA of IMP1 as well as myc-tagged SO were co-

expressed in HEK-293 cells for 0 and 24 h, 

respectively. Mitochondria were enriched by 

differential centrifugation and extracts were loaded on 

a 12% SDS gel.  
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within the IMS (Chacinska et al., 2004). Therefore, SO may require Moco in a similar manner 

to adopt its folding and to thereby prevent a backwards translocation to the cytosol.  

To test a possible retrograde translocation of Moco-free SO, a mutant variant of SO 

was designed, which cannot be proteolytically processed by the IMP complex and should 

therefore remain anchored at the inner mitochondrial membrane, thus preventing a potential 

reverse translocation. Because the exact IMP cleavage site was not known and obvious 

consensus motifs for IMP mediated processing were not found, the SO peptide sequence 

containing the expected cleavage site (residues 66-86) was exchanged against the 

topologically similar part of the TIM50 protein (Figure 2.10 A). TIM50 is a protein of the inner 

mitochondrial membrane and is not processed by IMP, but apart from this follows an import 

pathway similar to that proposed for SO (Mokranjac et al., 2003). First, the SO-TIM50 

chimera was expressed in HEK-293 cells to investigate its susceptibility to processing by the 

IMP complex. Western blotting against the C-terminal myc-tag revealed the accumulation of 

unprocessed SO-TIM50, running at the same size as the unprocessed precursor synthesized 

in E. coli (Figure 2.10 B). Therefore, the chimeric fusion prevented IMP-mediated processing 

of SO and its full release into the IMS, but caused a permanent association of SO with the 

inner mitochondrial membrane.   
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Figure 2.10 Design of an unprocessed SO-TIM50 chimera. (A) Scheme of the proposed import 

mechanism of SO and the known mechanism of TIM50 transport to mitochondria. To avoid 

cleavage and release of soluble SO in the IMS, the region containing the putative IMP cleavage 

site in SO (residues 64-84) was exchanged against the analogous part of TIM50 (residues 66-86), 

thus creating an SO-TIM50 chimera. (B) SO–TIM50 chimera and WT-SO were expressed in HEK-

293 cells and enriched mitochondria were loaded on a 10% SDS gel to detect SO by anti-myc 

Western blot. The increased size of SO-TIM50 correlates well with the size of the unprocessed SO 

derived from E. coli TP1000. 
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 Before analyzing the impact of Moco on the cellular distribution of this variant, its 

proper enzymatic activity had to be ensured to confirm the chimeric fusion did not interfere 

with the overall structure and folding of SO. For this purpose, WT-SO and SO-TIM50 were 

expressed in HEK-293 cells and SO enzymatic activities of whole cell extracts were 

determined in comparison to non-transfected cells. Both, WT and chimeric SO revealed a 

similar increase in SO activity compared to the control, demonstrating that the exchange of 

the respective region did not critically influence the overall structure of the protein (Figure 

2.11).    

 

 

 

 

 

 

 

 

  

 Upon verifying membrane anchoring and full enzymatic activity of SO-TIM50, the 

impact of Moco on the cellular localization was determined next. The chimera was expressed 

in Moco-deficient fibroblasts, in which WT-SO showed a diffuse cellular distribution and no 

clear mitochondrial localization (compare Figure 2.3 D). In contrast, prevention of processing 

and thus anchoring of the protein at the inner mitochondrial membrane resulted in a 

complete mitochondrial localization even in absence of Moco (Figure 2.12).  

In conclusion, the necessity of Moco for the mitochondrial localization of SO can be 

overcome by artificial attachment of the protein to the inner mitochondrial membrane. Both, 

membrane attachment and cofactor integration can hence keep SO within mitochondria. 

Further, these findings suggest that SO undergoes a reverse translocation in absence of 

Moco and that Moco integration into SO initiates folding and thereby trapping of SO within 

mitochondria. 
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Figure 2.11 Similar enzymatic activities of 

WT-SO and SO-TIM50. WT-SO and SO-

TIM50 chimera were expressed in HEK-293 

cells and SO activities in crude proteins 

extracts were determined using the 

sulfite:cytochrome c SO assay. The depicted 

values correspond to the total activity of SO 

in the cuvette (10 µg protein extract). As a 

control, non-transfected HEK-293 cell 

extracts were used representing the intrinsic 

activity of HEK293 cell SO. Error bars 

represent standard deviations (n=3). 
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The data outlined above suggested a mechanism for the mitochondrial translocation 

of SO similar to Tim13 and other small proteins of the IMS. However, with a molecular weight 

of about 50 kDa as a monomer, SO appeared considerably larger than the small IMS 

proteins, which follow a folding-trap mechanism of maturation. Therefore, a retrograde 

movement of SO through the TOM complex after complete import seemed unlikely. Apart 

from small proteins of the IMS, a reverse translocation to the cytosol has been described for 

55 kDa fumarase. This protein ensures its dual cytosolic and mitochondrial localization by 

reentering the cytosol after a partial translocation across the outer mitochondrial membrane 

(Knox et al., 1998, Sass et al., 2001). In contrast to small IMS proteins, fumarase does not 

completely cross the TOM complex before reverse translocation occurs, but keeps its C-

terminus exposed to the cytosol, until folding of the latter domain triggers reverse 

translocation (Knox et al., 1998).  

In this respect, the question arose if SO completes its translocation across the outer 

mitochondrial membrane via the TOM complex in absence of Moco or if Moco integration 

may be required as an additional driving force to “pull” the protein entirely into the 

mitochondrial IMS. To address this issue, SO-TIM50 as well as the Moco-deficient variant 

SO-TIM50-R367H-K380R, each labeled with a C-terminal myc-tag, were expressed in HEK-

293 cells. Likewise WT-SO-TIM50 in Moco-deficient cells, the Moco-deficient chimera was 

efficiently targeted to mitochondria in WT cells (Figure 2.13 A). To assess if the C-terminal 

myc-tag of SO-TIM50-R367H-K380R remained exposed to the cytosol or if translocation was 

completed, mitochondria were enriched by differential centrifugation and exposed to PK 

treatment. All peptide sequences outside of mitochondria, including the C-terminal myc-tag, 

were thereby supposed to be hydrolyzed. While diablo (IMS control) levels remained 

SO-TIM50 mitoTR merge 

Moco-deficient fibroblasts 

Figure 2.12 Moco independent mitochondrial localization of SO-TIM50. The SO–TIM50 

chimera was expressed in Moco-deficient fibroblasts for 48 h and visualized by anti–SO 

immunostaining (green) using confocal laser scanning microscopy. Mitochondria were stained 

with Mitotracker Red CMXRos (mitoTR). Bar, 10 µm. Cartoon illustrates the status of cofactor 

saturation and oligomerization: L, leader sequence; H, heme; DD, dimerization domain. The 

chimeric TIM50 sequence is illustrated in gray.  
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unaffected following PK application, the cytosolic protein gephyrin became entirely 

hydrolyzed (Figure 2.13 B). 

 

                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WT-SO-TIM50 was protected from PK application, demonstrating an efficient 

translocation across the outer mitochondrial membrane. The depletion of Moco in contrast 

resulted in PK accessibility of about 30% of the myc-tagged C-termini (Figure 2.13 C). At first 

glance, this finding appeared divergent from figure 2.6 A, in which 70% of SO-R367H-K380R 
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Figure 2.13 Moco “pulls” SO across the outer mitochondrial membrane. (A) SO–TIM50-R367H-

K380R was expressed in HEK-293 cells for 48 h and visualized by anti–SO immunostaining (green) 

using confocal laser scanning microscopy. Mitochondria were stained with Mitotracker Red CMXRos 

(mitoTR). Bar, 10 µm. Cartoon illustrates the status of cofactor saturation and oligomerization: L, 

leader sequence; H, heme; DD, dimerization domain. The chimeric TIM50 sequence is illustrated in 

gray. (B) SO-TIM50 and SO-TIM50-R367H-K380R, each containing a C-terminal myc-tag, were 

expressed in HEK-293 cells and mitochondria were subsequently enriched by differential 

centrifugation. After treatment with or without Proteinase K (±PK), extracts were loaded on a 10% 

SDS-gel and subsequently stained for diablo as a mitochondrial marker and for myc-SO, using 

Western blot with the respective antibodies. Efficient PK digestion was confirmed by anti-gephyrin 

Western blotting whole cell lysate. (C) Band intensities of SO-TIM50 and diablo upon PK treatment 

were each quantified relative to the respective untreated samples. The quotients of SO-TIM50 

intensities were then determined in relation to those of diablo and depicted in the diagram. Error bars 

represent standard deviations (n=3).    
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were detected outside of mitochondria. However, anchoring of the SO-TIM50-R367H-K380R 

chimera at the inner mitochondrial membrane constituted an artificial driving force towards 

the IMS. Therefore, PK susceptibility of the Moco-deficient chimera was less strong as the 

cellular distribution of Moco-deficient SO would suggest.  

In conclusion, the mitochondrial import of SO across the outer membrane is not 

efficiently completed in absence of Moco but arrested in the TOM complex, finally resulting in 

a reverse translocation of a major SO population to the cytosol. 

 

2.1.5 The role of heme in the mitochondrial maturation of SO 

Apart from Moco, mammalian SO requires a cytochrome b5 type heme as a second 

metal cofactor for its enzymatic activity (Kisker et al., 1997). The integration of heme 

cofactors results in folding of the respective domains and has also been shown to contribute 

to trapping of proteins in the IMS of mitochondria (Dumont et al., 1988, Esaki et al., 1999). 

Therefore, it was surprising that SO was not trapped in mitochondria when Moco was not 

present and that its localization was not rescued by heme integration (Figure 2.3 D, 2.5 B).  

To analyze the role of heme for the mitochondrial localization of SO and to integrate 

this folding event into the overall maturation process, a heme-deficient mutant SO variant 

was designed next. In SO, the heme cofactor is not covalently attached, but is deeply buried 

in a hydrophobic cavity of the N-terminal domain and the iron is symmetrically coordinated by 

histidines 119 and 144 (Kisker et al., 1997). Since depletion of these histidines was expected 

to result in a loss of heme, both were exchanged against alanine using site-directed 

mutagenesis. The resulting SO-H119A-H144A variant was first expressed in E. coli strain 

TP1000 to analyze heme cofactor integration and the impact of the altered heme domain on 

Moco binding and SO oligomerization. Likewise WT- and Moco-deficient SO, SO-H119A-

H144A was efficiently purified by Ni-NTA affinity- and anion exchange chromatography 

(Figure 2.14 A). Heme integration and oligomerization of the purified variant were determined 

by HPLC-based size exclusion chromatography. The marginal remaining heme specific 

absorption at 413 nm revealed that heme cofactor integration was indeed strongly reduced 

by the exchange of the coordinating histidines and demonstrated SO-H119A-H144A to be a 

heme-deficient variant of SO (Figure 2.14 B). In contrast to the primarily monomeric Moco-

deficient SO variant, heme-deficient SO essentially eluted as a dimer, suggesting that heme 

integration is not a prerequisite for oligomerization of SO (Figure 2.14 B). As revealed by 

HPLC FormA analysis, Moco integration into SO-H119A-H144A occurred as efficient as into 
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WT-SO, confirming that binding of Moco to SO is not dependent on prior heme incorporation 

(Figure 2.14 C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 To assess the significance of heme integration on mitochondrial localization of SO, 

the heme-deficient variant was expressed in HEK-293 cells. SO-H119A-H144A exclusively 

localized to mitochondria, suggesting that the heme cofactor is dispensable for mitochondrial 

trapping and that Moco, which was present in the latter variant, is not only essential but also 

sufficient for mitochondrial retention and localization of SO (Figure 2.15).  

The mitochondrial localization of SO-H119A-H144A illustrated that heme 

incorporation and the accompanying folding of the respective domain is not essential for 

mitochondrial retention of SO, but that folding initiated by Moco integration was apparently 

sufficient. Still, the question remained why the presence of heme was not adequate to 

prevent the Moco-deficient SO variant from a reverse translocation to the cytosol. The 

integration of heme represents a folding event, which was shown to be involved in the 

transfer of cytochrome b2 across the outer mitochondrial membrane and its retention in the 

IMS (Esaki et al., 1999). Heterologous expression of SO-R367H-K380R in addition showed 

Figure 2.14 Characterization of a heme deficient mutant variant of SO. (A) SO-H119A-

H144A was expressed in E. coli strain TP1000 for 48 h at room temperature. Purification 

occurred by sequential Ni-NTA and anion exchange chromatography. Purity was assessed 

by 12% SDS-PAGE and subsequent coomassie blue staining. (B) Oligomerization of 

purified SO-H119A-H144A was determined by HPLC based size exclusion 

chromatography. Absorptions were measured at 280 nm (blue traces) and 413 nm (red 

traces). (C) Moco content of 100 pmol WT-SO and SO-H119A-H144A was analyzed by 

HPLC FormA analysis. Error bars represent standard deviations (n=3).    
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that heme cofactor integration was not strictly dependent on Moco integration in E. coli 

(Figure 2.4 C).  

 

 

 

 

 

 

 

 

 

 

 The mitochondrial localization of SO-H119A-H144A illustrated that heme 

incorporation and the accompanying folding of the respective domain is not essential for 

mitochondrial retention of SO, but that folding initiated by Moco integration was apparently 

sufficient. Still, the question remained why the presence of heme was not adequate to 

prevent the Moco-deficient SO variant from a reverse translocation to the cytosol. The 

integration of heme represents a folding event, which was shown to be involved in the 

transfer of cytochrome b2 across the outer mitochondrial membrane and its retention in the 

IMS (Esaki et al., 1999). Heterologous expression of SO-R367H-K380R in addition showed 

that heme cofactor integration was not dependent on Moco integration in E. coli (Figure 2.4 

C).  

Therefore, the principle capability of the heme cofactor for trapping the SO-heme 

domain in the IMS was analyzed. To uncouple Moco insertion from heme integration, the 

isolated heme domains of WT- as well as of SO-H119A-H144A were expressed in HEK-293 

cells. While the WT-heme domain localized to mitochondria (Figure 2.16 A), no clear 

mitochondrial localization, but rather a diffuse distribution within the entire cell body was 

observed for the heme-deficient heme domain (Figure 2.16 B). This finding suggests that in 

absence of heme, the heme domain is not folded and therefore it is able to move in a 

retrograde manner to the cytosol, as seen for full-length SO in absence of Moco.  

SO- 
H119A-H144A mitoTR merge 

HEK-293 

Figure 2.15 Heme independent mitochondrial localization of SO. SO-H119A-H144A was 

expressed in HEK-293 cells for 48 h and visualized by anti–SO immunostaining (green) using 

confocal laser scanning microscopy. Mitochondria were stained with Mitotracker Red CMXRos 

(mitoTR). Bar, 10 µm. Cartoon illustrates the status of cofactor saturation and oligomerization: L, 

leader sequence; Mo, Moco; DD, dimerization domain.  
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 In conclusion, the heme cofactor is competent for trapping the SO heme domain in 

the IMS and following heme integration, reverse translocations from mitochondria to the 

cytosol can be prohibited. Because SO was not efficiently trapped in mitochondria in 

absence of Moco, the heme cofactor seems not to be integrated into SO sufficiently in vivo, 

pointing to a hierarchy of cofactor integration starting with Moco followed by heme insertion.  

 

2.1.6 The impact of homodimerization on the mitochondrial maturation of SO 

 As a third event in the maturation of mammalian SO, homodimerization is required in 

addition to Moco and heme cofactor integration. Although not unequivocally shown in the 

literature so far, oligomerization events are conceivable to contribute to trapping mechanisms 

of mitochondrial IMS proteins. To position SO dimerization within the hierarchy of processes 

SO-heme mitoTR merge 

HEK-293 

SO-heme 
H119A-H144A mitoTR merge 

HEK-293 

A 

B 

Figure 2.16 Heme mediated trapping of the SO heme domain. (A,B) WT-SO heme domain 

(A) and heme deficient SO-H119A-H144A heme domain (B) were expressed in HEK-293 cells 

for 48 h and visualized by anti–SO immunostaining (green) using confocal laser scanning 

microscopy. Mitochondria were stained with Mitotracker Red CMXRos (mitoTR). Bar, 10 µm. 

Cartoon illustrates the status of cofactor saturation and oligomerization: L, leader sequence; H, 

heme.  
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that lead to SO maturation and to investigate the impact of dimerization on the mitochondrial 

localization of SO, a monomeric SO variant was created. This was of particular interest, 

given that Moco-deficient SO was shown to be monomeric too (Figure 2.4 C) and therefore 

the observed mislocalization of SO in absence of Moco could principally also reside from the 

monomeric nature of the resulting enzyme instead of the lack of Moco.  

In mouse SO, glycin 531 is positioned in the dimerization interface of SO and a 

patient carrying a mutation leading to a replacement to aspartate at the respective site of the 

human enzyme suffered from isolated SO deficiency (Kisker et al., 1997). Consequently, this 

mutation was later confirmed to interfere with dimerization and to cause a predominately 

monomeric enzyme (Wilson et al., 2006). To examine the role of dimerization for the 

maturation of SO, glycin 531 was replaced by aspartate using site-directed mutagenesis and 

the respective SO variant was purified from E. coli by Ni-NTA affinity- and anion exchange 

chromatography (Figure 2.17 A). To verify the monomeric nature of the resulting SO-G531D 

variant and to investigate the status of heme integration, the purified protein was analyzed by 

HPLC-based size exclusion chromatography.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17 Characterization of a monomeric mutant variant of SO. (A) SO-G531D 

was expressed in E. coli strain TP1000 for 48 h at room temperature. Purification 

occurred by sequential Ni-NTA and anion exchange chromatography. Purity was 

assessed by 12% SDS-PAGE and subsequent coomassie blue staining. (B) 

Oligomerization of purified SO-G531D was determined by HPLC based size exclusion 

chromatography. Absorptions were measured at 280 nm (blue traces) and 413 nm (red 

traces). (C) Moco content of 100 pmol WT-SO and SO-G531D was analyzed by HPLC 

FormA analysis. Error bars represent standard deviations (n=3).  
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As expected, SO-G531D mainly eluted as a monomer, confirming that the introduced 

mutation indeed interfered with homodimerization. In addition, the strong heme-specific 

absorption at 413 nm revealed an efficient integration of the heme cofactor into SO and a 

mutual independence of heme integration and dimerization during the SO maturation 

process (Figure 2.17 B). The proper integration of Moco was confirmed by HPLC-based 

FormA determination, demonstrating that Moco integration occurs also independently on 

oligomerization of SO (Figure 2.17 C).              

Next, the role of dimerization for the mitochondrial localization of SO was determined 

by expressing SO-G531D in HEK-293 cells. The monomeric variant of SO localized to 

mitochondria, demonstrating that dimerization is not required for mitochondrial retention of 

SO (Figure 2.18). This also confirms that the mislocalization of SO in absence of Moco is 

indeed due to the inaccessibility of Moco and not attributed to the secondary loss of 

homodimerization.  

 

 

 

 

 

 

 

 

 

 

Summarizing the hierarchically organized cellular SO assembly, the integration of 

Moco constitutes a central component, which is not only a prerequisite for efficient 

mitochondrial targeting of SO, but which also triggers all further downstream maturation 

events. Following its translocation to mitochondria, SO becomes processed by the IMP 

complex and integrates Moco to complete the import across the outer membrane and to 

prevent a backwards translocation to the cytosol. The integration of Moco constitutes a pre-

condition for dimerization and heme incorporation in vivo, both of which occur independent 

on each other and without any defined order.    

SO-G531D mitoTR merge 

HEK-293 

Figure 2.18 Dimerization independent mitochondrial localization of SO. SO-

G531D was expressed in HEK-293 cells for 48 h and visualized by anti–SO 

immunostaining (green) using confocal laser scanning microscopy. Mitochondria 

were stained with Mitotracker Red CMXRos (mitoTR). Bar, 10 µm. Cartoon illustrates 

the status of cofactor saturation and oligomerization: L, leader sequence; H, heme; 

Mo, Moco.  
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2.1.7 SO-independent population of Moco in mitochondria 

 The dissection and characterization of the mitochondrial maturation of SO was initially 

triggered by the knowledge that Moco is very unstable and consequently, the question was 

asked how this instability may align with the mitochondrial maturation of SO. The findings of 

the current study contradict a combined mitochondrial transport of SO and Moco, as Moco 

was required for trapping SO in the IMS, suggesting that a SO-Moco complex cannot cross 

the TOM complex. This however opens the question of how Moco is stabilized from its 

cytosolic synthesis until its mitochondrial association with SO. 

 In autotrophic organisms, Moco storage proteins have been identified, which permit 

stabilization and cofactor insertion into the respective apo-enzymes (Fischer et al., 2006b, 

Kruse et al., 2010). In animals, similar Moco-binding chaperons have however not been 

identified so far. To address the problem of Moco stabilization and transport to mitochondria, 

the amount of Moco in mitochondria was quantified and placed in relation to the amount of 

SO activity. This was supposed to unravel if mitochondria contain an SO independent 

population of Moco that might be in transit to SO or bound by a yet not known Moco storing 

component. For this purpose, WT-SO was purified from E. coli strain TP1000 as illustrated in 

figure 2.2 A and mitochondria were purified from murine liver by discontinuous density 

gradient centrifugation (Figure 2.19 A). SO activities of purified SO and purified mitochondria 

were determined by means of the sulfite:cytochrome c SO assay in vitro. In parallel, the 

amounts of Moco were measured in both fractions based on the nit-1 assay (Figure 2.19 B, 

C). For both, SO and mitochondria, dose dependent enzyme- and cofactor-activities were 

recorded with each of them showing a strong linear dependence. Finally, the fractional ratio 

between SO and cofactor activity was determined for the purified enzyme as well as the 

mitochondrial fraction. 

In mitochondria, the amount of Moco referred to SO was twice as high as for isolated 

SO, suggesting a significant pool of Moco not to be attributed to SO. A part of this fraction 

might represent free Moco, which is in transit to SO, or it could be derived from a hitherto 

unknown mitochondrial Moco-binding protein. However, a second mitochondrial Moco-

enzyme, the mitochondrial amidoxime-reducing component (mARC1 and mARC2), was 

recently discovered (Havemeyer et al., 2006) and most likely accounts for a major part of the 

SO-independent mitochondrial Moco activity.  

When assuming an approximately similar contribution of both mARC proteins and SO 

to the nit-1 based Moco activity, the mitochondrial Moco quantification does not promise the 

presence of major populations of free Moco in mitochondria or the presence of a Moco 
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storing component. Rather, these data suggest that SO and Moco immediately associate in 

mitochondria after their import to stabilize Moco and to prevent a reverse translocation of SO. 

  

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

Figure 2.19 Mitochondria contain an SO independent 

population of Moco. (A) Preparative purification of 

mitochondria from murine liver by discontinuous densitiy 

gradient centrifugation. Purity of the mitochondrial fraction 

was confirmed by VDAC staining for the mitochondrial 

fraction (M) and gephyrin staining for the cytosol (C) using 

Western blot. (B,C) SO- and nit-1 activities (representing 

transferable Moco) were determined for different amounts 

of purified SO (B) and mitochondrial protein extract (C). 

The ratio between the slopes of SO- and nit-1 activity were 

taken as a measure to estimate the relative contribution of 

transferable Moco in each fraction. Error bars represent 

standard deviations (n=3). 

A 

SO (µg) 

y = 373.18x + 0.1393 

y = 3.1085x - 0.009 
0

2

4

6

8

10

0

100

200

300

400

500

0 0.5 1 1.5

n
it
-1

 a
c
ti
v
it
y
 (

u
n
it
s
) 

S
O

 a
c
ti
v
it
y
 (

u
n
it
s
) 

B 

S
O

 a
c
ti
v
it
y
 (

u
n
it
s
) 

y = 0.6926x + 2.7255 

y = 0.0121x + 0.1907 

0

2

4

6

8

10

0

20

40

60

80

0 50 100

n
it
-1

 a
c
ti
v
it
y
 (

u
n
it
s
) 

mitochondria (µg) 

C 

M C 

VDAC  

gephyrin 

– 28 kDa 

– 100 kDa 

Slope ratio: 0.0083  Slope ratio: 0.0174  



Dissertation Julian Klein                                                                                                   Results 

 

48 
 

2.2 Mitochondrial maturation of mARC1 

In chapter 2.1.7, a significant amount of SO independent Moco was discovered in 

mitochondria. A major proportion of this fraction is presumably attributed to the recently 

discovered mitochondrial Moco proteins mARC1 and mARC2 (Havemeyer et al., 2006, 

Gruenewald et al., 2008). In respect to the novel and unexpected mechanisms examined for 

SO and to achieve a comprehensive overview of the cell biology of mitochondrial 

molybdoenzymes, the mitochondrial maturation of mARC1 was analyzed in the second part 

of this study and compared to the findings on SO.  

mARC1 was chosen as a representative for both mARC proteins, which closely 

resemble each other according to their primary structure (Figure 2.20) and secondary 

structure predictions (Mitoprot ll, Phobius, (Kyte and Doolittle, 1982)).   

 

 

 

 

 

 

 

The human MOSC1 coding sequence (NP_073583), encoding the mARC1 protein, 

was purchased from ImaGenes and amplified by PCR. Sequencing revealed two 

reproducible polymorphisms resulting in substitution of threonine 165 by alanine and 

methionine 187 by lysine. However, these polymorphisms also appear in the databases, e.g. 

as protein accessions NP073583, AAH10619 and EAW93921 and hence obviously represent 

naturally occurring polymorphisms.  

 

2.2.1 Sub-cellular localization of mARC1 

The mARC2 protein was identified and isolated from mitochondria by Havemeyer et 

al. (2006), suggesting a mitochondrial localization of mARC2. This was later confirmed by 

immunostaining in cell culture (Wahl et al., 2010) and identification of mARC2 in 

mitochondrial fractions purified from rat liver (Neve et al., 2012).  

Figure 2.20 Alignment of human 

mARC1 and mARC2. Alignment of 

human mARC1 and mARC2 was 

conducted with CLUSTALW and 

Boxshade. Residues are framed in 

black (high conservation), gray 

(moderate conservation) or white 

(no conservation). Protein 

accession numbers: NP_ 073583 

(human mARC1), NP_060368 

(human mARC2). 
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The sub-cellular localization of mARC1 was however not investigated so far, while the 

high degree of sequence similarity to mARC2 suggested a similar sub-cellular routing of both 

components. In addition, the exact localization to one of the four mitochondrial sub-

compartments was neither unambiguously shown for mARC1 nor for mARC2 so far. First, 

the sub-cellular and sub-mitochondrial localization of mARC1 was analyzed in silico with the 

aim to identify potential mitochondrial targeting signals and/or transmembrane domains 

(Claros and Vincens, 1996, Kall et al., 2004) to obtain a first indication for its localization 

(Figure 2.21). 

 

   

 

 

 

 

 

 

The analysis of the mARC1 peptide sequence revealed the presence of a potential N-

terminal mitochondrial targeting signal and a downstream transmembrane domain with high 

probability scores. The remaining part of the protein was shown to be catalytically active in 

vitro in absence of residues 1-40 (Wahl et al., 2010), but was not predicted to contain any 

further mitochondrial targeting or transmembrane motifs and was hence termed as the 

catalytical core of the enzyme.  

Considering the mitochondrial localization of mARC2 and the predictions above, 

mARC1 was expected to be directed to mitochondria too. In order to investigate its 

localization, mARC1 was fused to GFP via its C-terminus by expression of the MOSC1 

coding sequence in the pEGFP-N1 vector. Expression of mARC1-GFP in HEK-293 cells 

revealed the expected exclusive mitochondrial localization (Figure 2.22). 

 

 

 

1-20 21-40 41-337 

Predicted N-terminal mitochondrial targeting signal: 60% according to Mitoprot ll 

Predicted transmembrane domain: 99% according to Phobius 

Catalytical core of the protein (Wahl et al., 2010)   

 

 

 

Figure 2.21 Analysis and prediction of mARC1 sequence and structural motifs. The peptide 

sequence of human mARC1 was analyzed by Mitoprot ll (http://ihg.gsf.de/ihg/mitoprot.html) and 

Phobius (http://phobius.sbc.su.se/). Cartoon represents the predicted motifs with numbers 

illustrating the involved amino acids.     

http://ihg.gsf.de/ihg/mitoprot.html
http://phobius.sbc.su.se/
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2.2.2 Localization of mARC1 within the mitochondrial compartments  

Following the confirmation of its mitochondrial targeting, the localization of mARC1 

was further investigated to finally assign it to one of the four mitochondrial subcompartments. 

Given the sequence analysis of mARC1 (Figure 2.21), a membrane association was 

predicted, which could either be the outer or inner mitochondrial membrane. However, as 

also shown for SO in the first part of this study, many mitochondrial proteins contain 

transmembrane domains in their precursor forms, which are lost during maturation in 

response to proteolytic processing, thus resulting in soluble mitochondrial proteins. The 

presence of a transmembrane domain in the precursor form does therefore not necessarily 

account for membrane spanning of the protein in its mature form.        

 To evaluate if mARC1 is either bound to a mitochondrial membrane or appears as a 

soluble protein, mitochondria were purified from HepG2 cells and mitochondrial membranes 

were separated from soluble fractions by alkaline treatment with 0.1 M Na2CO3. Thereby, 

closed vesicles or even whole organelles have been shown to be converted into open 

membrane sheets, accompanied by release of peripheral membrane- or soluble content 

proteins (Fujiki et al., 1982) . Thus, upon incubation of mitochondria in Na2CO3, centrifugation 

resulted in an accumulation of mitochondrial membrane proteins in the pellet, while soluble 

proteins of the IMS or mitochondrial matrix were supposed to remain in the supernatant. This 

was confirmed by the exclusive detection of the respective marker proteins VDAC (outer 

membrane) and COX4 (inner membrane) in the pellet fraction and by the pure accumulation 

of the soluble proteins SMAC (IMS) and HSP60 (matrix) in the supernatant (Figure 2.23). 

Following this separation protocol, endogenous mARC1 protein was only detected in the 

mARC1-GFP mitoTR merge 

HEK-293 

Figure 2.22 Mitochondrial localization of mARC1-GFP. mARC1-GFP (green) was expressed 

from pEGFP-N1 in HEK-293 cells for 48 h and visualized by means of confocal laser scanning 

microscopy. Mitochondria were stained with Mitotracker Red CMXRos (mitoTR). Bar, 10 µm. 

Cartoon illustrates the expression construct with the predicted mitochondrial targeting signal (light 

gray), the transmembrane domain (dark gray), the catalytical core (white) and GFP (green).   
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pellet fraction, demonstrating that mARC1 is membrane bound in its mature form and unlike 

SO, retaining its transmembrane domain during maturation (Figure 2.23).  

 

 

 

 

 

 

 

 

 

 Given that inner and outer membranes were not separated during Na2CO3 extraction, 

the localization of mARC1 was not finally assigned to a single mitochondrial sub-

compartment. In addition, the spatial orientation of mARC1 within the respective membrane 

was not clarified. 

 To finally resolve the exact localization and membrane topology of mARC1, external 

proteases were applied to purified mitochondria in order to interpret protein stability against 

degradation in light of protein localization. Thereby, proteins of the outer membrane 

containing a soluble cytosolic domain were supposed to be degraded, while those residing in 

the inner mitochondrial compartments were expected to be protected from protease 

accessibility. Proteins of the inner membrane exposing a soluble domain to the IMS or 

completely soluble IMS proteins should be degraded only upon specific swelling of the outer 

membrane following the application of a hypotonic solution. The inner mitochondrial 

membrane, constituting a ~2.5-fold larger surface area compared to the outer membrane in 

HeLa cells (John et al., 2005), was expected to tolerate a mild hypotonic treatment, 

suggesting that proteins of the matrix were protected from digestion even after swelling. 

 Mitochondria were purified from HeLa cells to determine the sensitivity of endogenous 

mARC1 against PK. Upon exposure of PK to intact mitochondria, the outer membrane 

protein MFN2 was degraded, while the IMS and matrix control proteins remained unaffected 

(Figure 2.24 A). Swelling of the outer membrane resulted in the additional and complete 

degradation of SMAC upon PK exposure but an ongoing stabilization of matrix-residing 

VDAC 

COX4 

SMAC 

mARC1 

P SN 

HSP60 

Figure 2.23 Association of mARC1 with 

mitochondrial membranes. Mitochondria 

were enriched from HEP-G2 cells by 

differential centrifugation and resuspended in 

0.1 M Na2CO3, pH 11.5. After 30 min 

incubation on ice, mitochondrial fractions were 

separated by centrifugation at 100.000 x g for 

60 min. Pellet (P) was directly resuspended in 

SDS loading buffer while proteins of the 

supernatant (SN) were first precipitated by 

TCA. Distribution of marker proteins and 

mARC1 was analyzed by 12% SDS PAGE 

and subsequent Western blot.      
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HSP60 was seen, demonstrating a specific swelling of the outer membrane and an intact 

inner membrane (Figure 2.24 A). Endogenous mARC1 was degraded following PK treatment 

of intact mitochondria, demonstrating its integration into the outer mitochondrial membrane 

(Figure 2.24 A).    

     

 

 

 

 

 

 

 

 

 

 

  

 

 

Notably, a proteolytic fragment of ~30 kDa of mARC1 was formed upon PK treatment 

of intact mitochondria (Figure 2.24 A), which allowed to examine the topology of mARC1 in 

the outer membrane. The truncated version may either constitute a protease protected 

fragment being exposed to the mitochondrial IMS or be exposed to the cytosol but being 

partially stable to PK application. Considering the predictions in figure 2.21 and the presence 

of the antibody epitope within residues 182-212, two orientations of mARC1 in the outer 

membrane were possible: Either, the C-terminus may be exposed to the IMS and the 20 

residues upstream of the transmembrane domain are facing the cytosol (N(out)-C(in) 

orientation), or the N-terminus may point towards the IMS while the core of the protein 

remains cytosolic (N(in)-C(out) orientation). Compared to the intensity of full-length mARC1 in 

absence of PK, the truncated fragment following PK treatment was hardly detectable. This 

36  

intact swollen 

-PK +PK +PK -PK 

matrix 
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(SMAC) 
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 -T         +T 
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A B 

Figure 2.24 mARC1 localizes to the outer mitochondrial membrane. Mitochondria were 

enriched from HeLA cells and treated with 100 µg/ml (A) PK or (B) trypsin for 10 min at 4°C. 

Swelling occurred by incubating mitochondria in 10 mM HEPES, pH 7.4 for 10 min prior to 

protease application. After protease inactivation and TCA precipitation, mitochondrial proteins 

were loaded on a Tris/Tricine gradient SDS-PAGE (8-17.5%) with subsequent Western blotting. 
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finding together with the size of the sequence preceding the transmembrane domain (2 kDa), 

which would be degraded in the event of an outside orientation, suggests that the weak 

signal at 30 kDa is derived from an incomplete degradation of the large C-terminal catalytic 

core facing the cytosol.  

To confirm the proposed N(in)-C(out) orientation of mARC1, trypsin was chosen as a 

second protease. Assuming the C-terminal core of mARC1 to be directed towards the IMS, a 

similar protease protected fragment as seen upon PK application should appear following 

trypsin treatment. Since no smaller fragment was detected after trypsin exposure (Figure 

2.24 B), the truncated fragment seen in figure 2.24 A was confirmed to form due to 

incomplete degradation by PK and demonstrated the exposure of the C-terminal core domain 

of mARC1 to the cytosol. Following trypsin application, no truncated fragments of mARC1 

were detected, although the full-length protein did not completely disappear. However, in 

analogy to the signal intensity differences between full-length and truncated mARC1 upon 

PK application, the full-length fragment appeared considerably weaker upon trypsin 

exposure, while the IMS control remained unaffected (Figure 2.24 B). This finding in 

aggregate suggests the C-terminal core of mARC1 to be tightly folded and thus to be partially 

stable to PK and trypsin mediated degradation. Taken together, both protease treatments of 

mitochondria revealed the localization of mARC1 in the outer mitochondrial membrane with 

an N(in)-C(out) orientation. 

 

2.2.3 Mitochondrial targeting of mARC1    

Upon determination of its localization and membrane orientation, the question arose of how 

mARC1 is directed to the outer mitochondrial membrane. The predictions of figure 2.21 

suggested the presence of a weak N-terminal mitochondrial targeting signal and a 

downstream transmembrane domain. To determine the functions of both motifs in 

mitochondrial translocation of mARC1, both sequence motifs were fused to GFP and 

localized in HEK-293 cells. 

First, the putative N-terminal mitochondrial targeting signal (MTS) consisting of 

residues 1-20 were fused to GFP. Expression in HEK-293 cells revealed a heterogeneous 

sub-cellular distribution of the fusion with some cells revealing a complete mitochondrial 

localization and others showing a weaker mitochondrial targeting, accompanied by a diffuse 

distribution throughout the cell (Figure 2.25 A). Statistical analyses revealed about 50% of 

the cells to display a complete and efficient mitochondrial targeting, while full-length mARC1-

GFP was exclusively targeted to mitochondria in nearly all cells (Figure 2.25 B). These 
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distributions suggested residues 1-20 to constitute a weak mitochondrial targeting signal and 

are thus in line with the predictions of MITOPROT II and the low amphipathic character with 

only two basic residues within this region.  

Given that classical MTS are usually not present in outer mitochondrial membrane 

proteins (Walther and Rapaport, 2009), the matrix-targeting ability of the N-terminal 20 

residues of mARC1 was investigated in the next step. mARC1 (Δ21-337)-GFP expressed in 

HEK-293-cells accumulated in purified mitochondria and was protected against externally 

added protease, while PK treatment after solubilization of mitochondrial membranes using 

1% Triton resulted in efficient degradation (Figure 2.25 C). Thus, residues 1-20 of mARC1 

were confirmed to constitute a classical but weak MTS, which is able to drive an attached 

marker protein to the mitochondrial matrix.  

However, mARC1 was shown not to be targeted to the mitochondrial matrix and the 

transport efficiency of the full-length protein was demonstrated to exceed the targeting 

capability of the isolated N-terminus. This suggested the presence of an additional targeting 

motif within the mARC1 protein, which would on the one hand ensure a complete 

mitochondrial localization and on the other hand induce sorting of mARC1 to the outer 

mitochondrial membrane. 

In order to analyze the combined impact of N-terminal targeting signal and the 

downstream transmembrane domain for mitochondrial targeting, residues 1-40 of mARC1 

were fused to GFP and expressed in HEK-293 cells. In contrast to the isolated N-terminal 

targeting signal, co-expression with the transmembrane domain triggered GFP translocation 

to mitochondria as efficiently as it was seen with the full-length mARC1 protein (Figure 2.25 

D). The reconstitution of the entire mitochondrial translocation upon fusion of the 

transmembrane domain thus indicated a function of the latter in mitochondrial transport of 

mARC1.  

Consistently, it could be confirmed that residues 21-40, when fused to GFP, were 

sufficient to mediate a complete mitochondrial localization, demonstrating the 

transmembrane domain to constitute a mitochondrial targeting signal on its own (Figure 2.25 

E). Thus, the mARC1 N-terminal domain contains two autonomous motifs triggering 

mitochondrial sorting of mARC1.   
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Finally, the catalytic core of mARC1 was fused to GFP and expressed in HEK-293 

cells. No mitochondrial localization was observed and instead, the construct was diffusely 

Figure 2.25 Mitochondrial 
targeting motifs of mARC1. 
(A) Sub-cellular localization of 
mARC1(Δ21-337)-GFP. (B) 
Statistical quantification of 
mitochondrial localization of 
mARC1(Δ21-337)-GFP 
compared to mARC1-GFP. 
Cells revealing a complete 
mitochondrial localization of the 
respective construct were 
counted and depicted as 
percent. Each 50 cells were 
analyzed, error bars represent 
standard deviations (n=3). (C) 
mARC1(Δ21-337)-GFP was 
expressed in HEK-293 cells for 
48 h. Mitochondria were 
enriched and treated ± 1% 
Triton for 10 min prior to the 
addition of 100 µg/ml PK for 10 
min at 4°C. After protease 
inactivation and TCA 
precipitation, mitochondrial 
proteins were loaded on a 12% 
SDS-PAGE with subsequent 
Western blotting. (D) Sub-
cellular localization of 
mARC1(Δ41-337)-GFP. (E) 
Sub-cellular localization of 
mARC1(Δ1-20,Δ41-337)-GFP. 
(F) Sub-cellular localization of 
mARC1(Δ1-40)-GFP. 
Constructs of (A), (D), (E) and 
(F) were expressed in HEK-293 
cells for 48 h and pictures were 
obtained by means of confocal 
laser scanning microscopy. 
Mitochondria were stained with 
Mitotracker Red CMXRos 
(mitoTR). Bar, 10 µm. 
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distributed within the entire cell (Figure 2.26 F). In conclusion, residues 41-337 of mARC1 do 

not contain any further mitochondrial targeting signals, suggesting that the mitochondrial 

localization of mARC1 is solely mediated by its N-terminal domain.  

Thereby, mARC1 is classified as a novel signal-anchored protein of the outer 

mitochondrial membrane, which share N-terminal transmembrane domains simultaneously 

constituting membrane anchor and targeting signal (Shore et al., 1995). 

In analogy to mARC1, SO likewise contains an N-terminal mitochondrial targeting 

motif. As illustrated in the first part of this study, the SO targeting signal itself was however 

not sufficient for mitochondrial localization, but Moco was in addition required for 

mitochondrial trapping of SO. To determine the role of Moco for the mitochondrial targeting of 

mARC1, the latter was expressed in MOCS1-deficient fibroblasts, in which SO showed a 

diffuse distribution within the cell (Figure 2.3 D). To allow immunodetection in cultured cells, 

mARC1 was expressed with a C-terminal myc-tag. In contrast to SO, mARC1 did not require 

Moco for its mitochondrial localization, but was efficiently targeted even in absence of its 

cofactor (Figure 2.26).  

 

 

 

 

 

 

 

 

 

 

 The Moco independent mitochondrial localization of mARC1 was expected in respect 

to its association with a mitochondrial membrane. The non-mitochondrial distribution of 

Moco-deficient SO was based on its solubility and could be rescued by artificial attachment 

of the protein to the inner mitochondrial membrane. Therefore, a similar demand on Moco for 

Moco-deficient fibroblasts 

mARC1-myc mitoTR merge 

Figure 2.26 Moco independent mitochondrial targeting of mARC1. mARC1-myc was expressed 

in MOSC1-deficient fibroblasts for 48 h and visualized by anti–myc immunostaining (green) using 

confocal laser scanning microscopy. Mitochondria were stained with Mitotracker Red CMXRos. Bar, 

10 µm. Cartoon illustrates the expression construct with the predicted mitochondrial targeting signal 

(light gray), the transmembrane domain (dark gray), the catalytical core (white) and the C-terminal 

myc-tag (black).   
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mitochondrial retention of mARC1 is not required and its N-terminal targeting motifs are 

sufficient for accurate mitochondrial localization. 

 

2.2.4 Mechanims of mitochondrial mARC1 import 

After identification and dissection of the internal motifs responsible for mitochondrial 

localization of mARC1, the overall import mechanism was finally characterized in vitro to 

achieve a comprehensive understanding of the mitochondrial maturation of mARC1. The 

amino terminal 20 residues of mARC1 constitute a classical but weak N-terminal MTS. 

These motifs are usually cleaved after import by mitochondrial peptidases, resulting in N-

terminal truncation of the respective mature proteins. In addition, predictions by MITOPROT 

II (Claros and Vincens, 1996) suggested the presence of a potential peptidase cleavage site 

at position 44. In order to probe a potential mitochondrial processing of mARC1, the apparent 

molecular weight of in vitro translated mARC1 was compared to that of mARC1 synthesized 

in cells using SDS-PAGE and Western blot analysis, assuming that processing will result in a 

reduced size as compared to the in vitro synthesized precursor protein. For this purpose, 

mARC1 was translated in a cell free reticulocyte lysate system and labeled by 35S-methionine 

incorporation. Thereby, untagged mARC1, containing five methionine residues, and myc-

tagged mARC1, containing two additional methionines within the tag, were synthesized to 

compare their radioactive signal intensities (Figure 2.27). 
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 The analysis of the in vitro translation revealed a considerably stronger intensity of 

myc-tagged mARC1 compared to the untagged variant, but also depicted more impurities, 

presumably representing premature translation termination or alternative sites of translation 

initiation. However, in both cases mARC1 was predominantly synthesized as the expected 

full-length precursor. The significantly bigger size of the myc-tagged precursor is attributed to 

a long C-terminal extension of this variant, which harbors a linker region and the myc-tag.     

 To investigate a possible mitochondrial processing of mARC1, untagged and myc-

tagged mARC1 were comparatively expressed in HEK-293 cells. The molecular weights of 

both variants were each compared to the respective in vitro translated precursors by Western 

blotting and revealed similar sizes of in vitro and in vivo expressed mARC1 (Figure 2.28). 

Thus, mARC1 is not processed in mitochondria and retains both identified targeting motifs 

during maturation.  

  

 

 

 

 

 

 

Detection of successful in vitro import into mitochondria is usually performed based 

on protection to external protease application or based on processing and truncation of the 

imported precursor. However, as mARC1 is exposed to the cytosol and not processed 

following successful import, mitochondrial translocation was monitored based on the 

proposed ability of mARC1 to form a complex with its electron donors cytochrome b5 

reductase and cytochrome b5 in the outer mitochondrial membrane.  

First, mARC1 complex formation was determined by expression of the protein in 

HEK-293 cells. Mitochondria were purified and extracts were loaded on Blue Native-PAGE 

(BN-PAGE) to characterize mARC1 oligomerization in the outer membrane and to thus 

define the native mARC1 protein pattern to be expected upon successful in vitro import. 

Western blot detection of the C-terminal myc-tag revealed mARC1 to reside in three high 

oligomeric protein complexes each of which of more than 350 kDa in size, while mitochondria 
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Figure 2.28 mARC1 is not processed. mARC1 

and mARC1-myc were translated in vitro as 

described in figure 2.27 and in parallel expressed in 

HEK-293 cells for 48 h. Each 4 µl lysate and 30 µg 

cell extract, respectively, were loaded on a 12% 

SDS gel with subsequent Western blotting. In vitro 

translated (IVT) mARC1 was detected by overnight 

exposure to an X-ray film, while mARC1 expressed 

in vivo was subsequently detected by anti-mARC1 

antibody staining. Images of both detections were 

merged for final size comparisons. 
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purified from untransfected cells did not show any of these signals, thus ensuring antibody 

specificity and successful transient expression of mARC1 (Figure 2.29 A).    

Successful in vitro import of mARC1 was expected to reproduce the complexes seen 

after cellular expression of the protein in HEK-293 cells. The incubation of in vitro 

synthesized precursors with purified mitochondria indeed resulted in a time-dependent 

formation of similar high-oligomeric structures, suggesting successful import of mARC1 

(Figure 2.29 B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These complexes were also detected upon depletion of the membrane potential by 

valinomycin, demonstrating, as usual for proteins residing in the outer mitochondrial 

Figure 2.29 Mitochondrial in vitro import of mARC1. (A) Mitochondria were enriched from HEK-

293 cells expressing mARC1-myc or from untransfected cells and mitochondrial proteins were 

extracted from enriched mitochondria by detergent application. Proteins were loaded on a 4-16% 

Bis-Tris acrylamide gradient BN-PAGE with subsequent western blotting. mARC1-myc containing 

complexes were detected by anti-myc antibody detection. Arrows point at high molecular weight 

bands that were also identified upon in vitro import of mARC1-myc in (B). (B) Import of in vitro 

translated mARC1-myc occurred into mitochondria purified from HEK-293 cells. Import reactions 

were performed at 37°C and stopped after 5, 15 or 45 min. Membrane potential deficient 

mitochondria (-Ψ) were obtained by the addition of 20 µg/ml valinomycin prior to the import 

reaction. After import, mitochondrial proteins were extracted by detergent application and 

subsequently loaded on a 4-16% Bis-Tris acrylamide gradient BN-PAGE, followed by western 

blotting. Radioactive signals were detected by 2 weeks exposure to an X-ray cassette. 
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membrane (Walther and Rapaport, 2009), that an intact membrane potential is not required 

for mitochondrial transport of mARC1. Since the general function of N-terminal MTS is based 

on an intact membrane potential, the membrane potential independent integration of mARC1 

into the outer mitochondrial membrane indicated that the MTS does not contribute to mARC1 

targeting in a conventional manner. Depletion of external ATP significantly decreased the 

efficiency of complex formation, illustrating that extramitochondrial ATP is required for 

mARC1 assembly into high oligomeric structures. The specificity of complex formations was 

ensured by application of mARC1-precursors in absence of mitochondria, which did not 

result in any detectable mARC1-specific oligomers (Figure 2.29 B).  

In summary, mARC1 is directed to the outer mitochondrial membrane based on its 

bipartite N-terminal targeting motif. With the transmembrane domain constituting the critical 

signal for correct sorting, mARC1 is a novel member of the small family of signal-anchored 

outer mitochondrial membrane proteins. The membrane potential independent but ATP 

requiring mechanism of membrane insertion results in an N(in)-C(out) orientation of mARC1 

and its final integration into high-oligomeric protein complexes 
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3 Discussion 

3.1 Maturation of mammalian SO 

3.1.1 Moco-dependent mitochondrial localization of SO 

The formation of functional SO implies a complex and highly organized multi-step maturation 

procedure. The transport of SO and Moco to mitochondria, the mitochondrial processing of 

SO, the integration of Moco and heme as well as homodimerization need to occur in a 

defined order to ensure efficient SO maturation.  

In the current study, Moco was identified as a key component of SO assembly, which 

does not only ensure mitochondrial localization, but also heme integration and dimerization. 

In absence of Moco, about 70% of SO was not found in mitochondria but instead 

mislocalized to the cytosol, although processing of the N-terminal targeting peptide revealed 

that the protein was initially imported into mitochondria. Since anchoring of SO in the inner 

mitochondrial membrane resulted in mitochondrial localization in absence of Moco, unfolded 

and Moco-free SO was proposed to undergo a passive backshift to the cytosol.  

Cofactor-dependent mitochondrial localization has been described earlier for 

cytochrome c, which requires the heme cofactor as well as the heme integrating cytochrome 

c heme lyase to ensure efficient localization in the mitochondrial IMS (Dumont et al., 1988, 

Nargang et al., 1988). Similarly, IMS proteins of the Mia40-dependent import pathway have 

been found outside of mitochondria in absence of Mia40 (Chacinska et al., 2004). Such a 

folding-mediated trapping of small IMS proteins has also been described for Tim13, which 

contains four conserved cysteine residues binding a zinc ion as a cofactor. Application of 

external chelators after in vitro import of Tim13 to mitochondria resulted in re-appearance of 

Tim13 outside of mitochondria and thus in reverse translocation after zinc loss and unfolding 

of the protein (Lutz et al., 2003). These retrograde movements across the TOM complex are 

possible in respect to the small size of the respective proteins on the one hand and 

considering that folding depicts the only vectorial driving force towards the IMS on the other 

hand. The TOM complex is known to be a passive translocation channel undergoing only 

weak interactions with the passing proteins (Ungermann et al., 1994). Unfolded small 

proteins therefore tend to bi-directionally diffuse through the TOM complex and thus do not 

achieve efficient mitochondrial targeting. However, all of the described proteins lack N-

terminal pre-sequences, become imported independently of the membrane potential and 

therefore belong to IMS proteins that require so-called folding-trap mechanisms for 

mitochondrial import (Neupert and Herrmann, 2007).  
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SO was in contrast shown to contain a bipartite N-terminal targeting signal and its 

molecular weight of more than 50 kDa as a monomer considerably exceeds those of the 

small IMS proteins. Furthermore, its import was shown in a previous study to be based on 

the classical pre-sequence pathway, which requires ATP and an intact membrane potential 

across the inner mitochondrial membrane (Ono and Ito, 1984). Unlike small IMS proteins, SO 

therefore receives an additional driving force for mitochondrial sorting based on its N-terminal 

targeting signal. Thus, SO combines the N-terminal bipartite targeting peptide with the ATP- 

and membrane potential-dependent translocation across the inner mitochondrial membrane 

of the members of the pre-sequence pathway with a cofactor-dependent trapping mechanism 

known for members of the folding-trap/Mia40 import pathway. 

 N-terminal targeting signals are essential elements triggering mitochondrial transport 

and depletion of the latter from the respective proteins usually prevents mitochondrial 

localization. In most cases, these motifs are not only essential, but also sufficient for 

targeting (Baker et al., 2007). The N-terminal domain of SO is also required for mitochondrial 

routing and its depletion results in cytosolic accumulation of the precursor. However, the N-

terminal sorting signal of SO was not sufficient for mitochondrial localization, given that the 

integration of Moco was additionally required for mitochondrial retention. Absence of Moco 

finally resulted in a backwards translocation to the cytosol.  

Other exceptions in which MTS are not entirely sufficient for mitochondrial sorting are 

highlighted by a number of proteins with dual subcellular localizations. A single translation 

product of the mitochondrial cysteine desulfurase Nfs1 was shown to localize to mitochondria 

and the nucleus (Naamati et al., 2009). The Nfs1 distribution mechanism was determined to 

require at least partial mitochondrial entry of all precursors. The authors proposed minor 

nuclear import, which was suggested to occur after reverse translocations of Nfs1 sub-

populations to the cytosol. Similarly, eclipsed amounts of mitochondrial aconitase were 

identified in the cytosol and were suggested to appear upon reverse translocation from 

mitochondria (Regev-Rudzki et al., 2005). In addition, a small fraction of the cytosolic 

signaling protein Ecsit was found in mitochondria, while the mechanism of its dual distribution 

remained uncharacterized (Vogel et al., 2007). The probably best understood mechanism of 

reverse translocation-mediated dual localization of a protein is displayed by fumarase. 

Fumarase is a mitochondrial matrix protein becoming imported based on a conservative N-

terminal targeting motif. A fraction of fumarase was shown to move in a retrograde fashion to 

the cytosol following its mitochondrial processing, thus resulting in a dual localization of the 

protein (Knox et al., 1998). This particular proportion, destined as the cytosolic pool, 

therefore does not completely cross the TOM complex while being in transit to the 

mitochdondria, because a C-terminal folding event outside of mitochondria constitutes a 
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reverse driving force towards the cytosol (Sass et al., 2001). These described examples 

resemble SO in a way, that all proteins contain N-terminal MTS, which not in all cases result 

in mitochondrial localization but permit reverse translocations to the cytosol. In contrast to 

SO, these retrograde movements however depict a cellular instrument to achieve dual 

subcellular localization of a single translation product. Further, folding mediated by Moco 

integration essentially contributes to mitochondrial import of SO, while C-terminal folding of 

fumarase constitutes an active driving force for backwards translocation to the cytosol. 

The reverse translocation in absence of Moco indicated an active function of Moco for 

the mitochondrial import of SO. Consistently, a chimeric SO-TIM50 variant anchored in the 

inner mitochondrial membrane was not completely translocated across the TOM complex, 

but the C-terminal domain partially remained exposed to the cytosol if Moco was not present. 

The incorporation of Moco in contrast resulted in folding of the protein and a completion of 

the transport across the TOM complex. Therefore, two distinct mechanisms appear to drive 

SO translocation across the outer mitochondrial membrane: The N-terminal targeting signal 

directs the SO N-terminus across the outer and inner mitochondrial membrane, while the C-

terminus is not imported and remains exposed to the cytosol. The integration of Moco is 

required as a second translocation mechanism to pull the entire protein across the outer 

mitochondrial membrane. In absence of Moco, SO apparently undergoes bidirectional 

Brownian thermal motion upon cleavage by the IMP the complex, resulting in reverse 

translocation of a major population of SO. Integration of Moco seems to ratchet the Brownial 

motion and to drive translocation of the C-terminal domain across the outer membrane. Still, 

in absence of Moco, 30% of SO remained mitochondrial and was not re-exported to the 

cytosol. While the N-terminal part of SO is actively targeted towards the mitochondrial matrix, 

the remaining part of the protein requires Moco integration to shift the equilibrium of passive 

diffusion towards the IMS to complete translocation. In absence of Moco and after cleavage 

by the IMP complex, no direction is favored and SO may move towards both the cytosol and 

IMS. The mitochondrial fraction of Moco-deficient SO may therefore arise from SO arrested 

in the TOM complex and another subpopulation which randomly enters the IMS. The majority 

of SO however undergoes a complete reverse translocation to the cytosol, although not 

triggered by an apparent driving force as described for fumarase (Sass et al., 2001). The 

cytosolic accumulation of SO may occur since its N-terminal targeting signal is processed in 

mitochondria and once SO has left the TOM complex in the reverse direction, the signal for 

re-entering mitochondria is lost. Furthermore, diffusion towards the cytosol may be favored in 

respect to the narrow space between outer and inner boundary membrane, which might 

interfere with passive protein entry, as also observed for small IMS proteins mainly 

accumulating outside of mitochondria if not folded (Lutz et al., 2003, Chacinska et al., 2004).    
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The bipartite mechanism of mitochondrial import of SO resembles the translocation of 

yeast cytochrome b2 (Glick et al., 1993). In analogy to SO, cytochrome b2 contains a bipartite 

N-terminal targeting signal and is cleaved by IMP1 to generate a soluble IMS protein 

(Nunnari et al., 1993). Cytochrome b2 contains a non-covalently bound heme as a single 

cofactor, which is required during import to pull the C-terminal domain of the protein across 

the outer mitochondrial membrane. Prevention of heme integration and thus of folding of the 

heme domain resulted in an arrest of translocation within the TOM complex, while the 

incorporation of heme was required to shift the Brownian thermal motion of the C-terminal 

domain towards the IMS (Esaki et al., 1999). The mitochondrial maturation of SO and 

cytochrome b2 therefore reveal striking mechanistic parallels, with each depending on two 

distinct events, both being essential for the efficient completion of protein translocation 

towards the IMS.  

 

3.1.2 The SO import vs. other proteins with bipartite targeting signals  

The Moco-dependent mitochondrial maturation of SO depicts a novel connection between 

the classical pre-sequence pathway and folding-trap mechanisms of small IMS proteins. 

Both, N-terminal pre-sequence and cofactor-mediated trapping are required to ensure 

comprehensive mitochondrial localization of SO. As described above, a related mechanism 

was also found for yeast cytochrome b2, which resembles SO in respect to its analogous 

bipartite N-terminal targeting signal. However, such a demand on these two distinct 

mechanisms triggering a complete translocation towards the mitochondrial IMS is not 

common to all proteins containing bipartite N-terminal targeting signals, but rather unique to 

SO and cytochrome b2 as known so far.  

Therefore, the question arises of why these two proteins require two distinct 

mechanisms for targeting, while other proteins containing bipartite targeting signals are 

efficiently targeted to mitochondria solely based on their N-terminal targeting signals. 

Most IMS proteins are small and are targeted according to the folding trap pathway, 

while the sub-group of soluble proteins with bipartite targeting signals is rather small. Apart 

from SO and cytochrome b2 (Cytb2), the pro-apoptotic protein SMAC/DIABLO (Burri et al., 

2005), the soluble fraction of the dual localized yeast Mcr1 (Haucke et al., 1997), the 

apoptotic DNase endonuclease G (EndoG) (Ohsato et al., 2002, Neupert and Herrmann, 

2007) as well as the heme-synthesizing coproporphyrinogen oxidase (CPO) (Grandchamp et 

al., 1978, Neupert and Herrmann, 2007) are known IMS proteins with bipartite N-terminal 

targeting signals.  
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To address why cytochrome b2 and SO may need additional cofactor integration for 

mitochondrial transport, both proteins were compared to the pool of other proteins containing 

bipartite targeting signals. The demand on cofactor integration may be based on two 

conceivable reasons: First, the MTS of SO and cytochrome b2 may be considerably weaker 

than those of the other proteins, suggesting that the driving force exerted by the MTS might 

not be strong enough to complete translocation of the whole protein across the outer 

membrane. Second, the size of SO and cytochrome b2 might be larger, resulting in an 

incomplete translocation in spite of a functional mitochondrial targeting signal. Therefore, 

both parameters were compared among all mentioned proteins with bipartite targeting 

signals (Table 3.1). The matrix targeting capability of the proteins were thereby analyzed by 

MITOPROT II and the obtained percentages expressing the probability of matrix targeting 

were taken as an indicator for the strength of the N-terminal targeting signal (Dinur-Mills et 

al., 2008). While SO was predicted to contain a MTS with more than 90% probability, the 

MTS of cytochrome b2 revealed 83% prediction. SO and cytochrome b2 thereby achieve 

higher matrix localization scores than EndoG, Mcr1 and CPO. Since the MTS of all the 

compared proteins are sufficient for mitochondrial targeting as known so far, the scores 

obtained for SO and cytochrome b2 suggest that their MTS are likewise strong enough to 

permit complete mitochondrial import.   

 

 

 

 

 

 

 

Notably, SO and cytochrome b2 reveal a considerably larger size in their mature form 

compared to other proteins containing bipartite N-terminal targeting signals. These 

differences of more than 20 kDa could explain, why SO and cytochrome b2 may need 

cofactor integration as an additional driving force for translocation across the TOM complex. 

Since a hydrophobic stop-transfer signal arrests MTS-mediated translocation across the TIM 

complex, a long C-terminal end of the protein may not completely enter the IMS but remain 

exposed to the cytosol. Shorter C-termini may in contrast be completely imported into the 

IMS before translocation becomes arrested. The import of SO and cytochrome b2 may 

therefore represent a mechanism two ensure translocation of bigger soluble proteins into the 

Protein MTS prediction (%)1 Mature protein size (kDa) species 

SO 92.6 53 mouse 

Cytb2 82.6 57 yeast 

SMAC 98.7 24 mouse 

EndoG 76.3 27 human 

Mcr1 75 27 yeast 

CPO 60 34 human 

Tab. 3.1 Comparison of IMS proteins with bipartite N-terminal targeting signals 

1
Predictions according to Mitoprot II (Claros and Vincens, 1996) 
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narrow IMS. As the comparisons of table 3.1 and the resulting hypothesis are based on only 

few known examples of proteins with bipartite targeting signals, an experimental verification 

would be essential and could be achieved by artificially elongating the C-terminus of 

SMAC/DIABLO, for instance. According to the outlined theory, increasing the size of the 

mature protein to more than 50 kDa should interfere with complete translocation across the 

TOM complex and result in partial C-terminal exposure to the cytosol.     

 The principle stated above does however not apply to proteins with bipartite targeting 

signals, which do not become cleaved but remain anchored in the inner mitochondrial 

membrane. Yeast Yme2 contains an N-terminal targeting signal followed by a single 

transmembrane domain and is therefore expected to be imported by a similar stop transfer 

mechanism (Neupert and Herrmann, 2007). The IMS domain of the protein thereby reveals a 

molecular weight of ~60 kDa. However, Yme2 is not soluble and anchoring in the inner 

membrane accompanied by lateral diffusion of the transmembrane domain may constitute a 

driving force towards the IMS, which may be analogous to cofactor mediated trapping of 

large soluble IMS proteins. Thus, also larger inner membrane proteins may well be imported 

based on this anchor-diffusion model (Glick et al., 1991). Similarly, the anchored SO-TIM50 

chimera revealed only minor C-terminal exposure to the cytosol in absence of Moco. 

Anchoring seems in this case to replace cofactor triggered translocation across the outer 

membrane.  

 Taken together, mitochondrial proteins exposing large IMS domains and containing 

bipartite N-terminal targeting signals appear to require two distinct mechanisms for efficient 

mitochondrial import. The N-termini of these proteins are translocated based on N-terminal 

targeting signals, while the C-terminal domains seem to require additional driving forces for 

transfer across the TOM complex. The C-termini of integral inner membrane proteins may be 

imported based on the anchor-diffusion model, as already proposed by Glick et al. (1991), 

while large soluble IMS proteins seem to require cofactor-mediated folding for a vectorial 

transfer of the C-terminus across the outer membrane.  

 

3.1.3 The role of heme and dimerization in the mitochondrial maturation of SO 

In spite of several striking similarities between the assembly mechanisms of SO and 

cytochrome b2, the maturation of SO is more complex, which additionally requires integration 

of a second cytochrome b5 type heme cofactor. Therefore, and considering the related 

function of heme in the maturation of cytochrome b2, the question arose of why only Moco 

but not heme can mediate the second part of SO import by trapping the protein in the IMS.  
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Integration of heme cofactors result in folding of the respective domains and have been 

shown to contribute to trapping of cytochrome c (Dumont et al., 1988) and cytochrome b5 

(Esaki et al., 1999) in the mitochondrial IMS. These data suggest that following heme 

incorporation into proteins, reverse translocations to the cytosol are prohibited.  

Nevertheless, SO was not trapped in mitochondria when Moco was not present, 

allowing the conclusion that heme integration could not rescue SO localization or that heme 

integration was prohibited. Considering the observations of Esaki et al. (1999), the principle 

capability of the SO heme cofactor to mediate trapping was analyzed. The isolated heme 

domain was only efficiently targeted to mitochondria upon heme integration, while heme 

depletion resulted in a diffuse cellular distribution of the construct. The mechanisms 

triggering the non-mitochondrial localization of the heme domain in absence of its cofactor 

may follow the cofactor-dependent mitochondrial trapping of the small IMS proteins. After 

processing, the isolated heme domain accounts for a molecular weight of ~10 kDa and 

seems, in analogy to the small IMS proteins, to bi-directionally diffuse through the TOM 

complex if not folded. These observations confirmed that following heme-mediated folding of 

the SO heme domain, a reverse translocation to the cytosol is prevented. Thus, upon 

hypothetical integration of heme into the N-terminal heme domain in absence of Moco, at 

least the heme domain of full-length SO should remain mitochondrial. The diffuse cellular 

distribution of SO in absence of Moco in contrast suggests that SO entirely leaves 

mitochondria if Moco is not present. 

In conclusion, the heme cofactor seems not to be efficiently incorporated into SO in 

vivo if Moco is not present and therefore does not rescue the mitochondrial localization of 

SO. In contrast to the in vivo situation in HEK cells, overexpression of Moco-deficient SO in 

E. coli revealed the incorporation of heme, demonstrating that heme integration is not strictly 

dependent on prior Moco incorporation. However, recombinantely expressed SO is 

accumulating in E. coli and therefore constantly exposed to heme integration. In contrast, 

when expressed in mammalian cells, the reverse translocation from mitochondria in absence 

of Moco kinetically competes with heme integration. Assuming that heme integration is a 

kinetically less favored event in absence of Moco, SO would integrate heme in E. coli due to 

high expression and accumulation, but would not incorporate heme in vivo where the reverse 

translocation occurs presumably faster than heme integration. Given the fact that 30% of the 

Moco-deficient SO was located to mitochondria, heme integration might have occurred in 

those cases preventing the retrograde backshift of a fraction of SO in absence of Moco. 

Therefore, the presence of the apo-SO Moco binding domain appears to slow down heme 

integration significantly and ultimately Moco insertion becomes the rate limiting step in the 

overall SO maturation process. 
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Apart from prosthetic groups, oligomerization events are also conceivable to 

contribute to trapping mechanisms of proteins in the IMS. Given the fact that a monomeric 

variant of SO localized to mitochondria, oligomerization does not seem to be required for 

mitochondrial retention of SO. Since Moco-deficient SO mainly forms monomers, Moco 

integration apparently presents a prerequisite for dimerization, thus inducing structural 

rearrangements of the dimerization domain allowing oligomerization. In contrast to heme 

integration, which can occur upon overexpression in E. coli in absence of Moco, efficient 

dimerization appears to be strictly dependent on prior Moco integration.  

The overall in vivo maturation of SO therefore is subject to a molecular hierarchy. The 

integration of Moco thereby occurs first, which is in line with the crystal structure of holo SO, 

demonstrating that Moco is deeply buried within the protein (Kisker et al., 1997). In this 

respect, Moco was previously proposed to be either incorporated prior to or during 

completion of SO folding and dimerization (Mendel, 2007). Upon Moco binding, integration of 

heme and dimerization can occur efficiently, while both events do not seem to depend on 

each other, since heme deficient SO revealed adequate dimerization and monomeric SO 

displayed regular heme integration.     

 

3.1.4 Processing of SO in the IMS 

Following N-terminal translocation across the inner membrane, SO was shown in this study 

to be processed by the IMP complex in order to become released as a soluble protein. This 

was determined by shRNA mediated knockdown of the IMMP1 gene product and co-

expression of SO in HEK-293 cells. Considering the half-life of endogenous SO being 

approximately four days (Ono and Ito, 1982a), the effect of 24 h IMP1 downregulation were 

only apparent upon the transient expression of SO following transfection.   

SO far, not many other mitochondrial proteins are known to be processed by this 

protease and all hitherto characterized substrates were identified in S. cerevisiae. The only 

identified yeast substrates are the mitochondria encoded Cox2, which is co-translationally 

inserted into the inner membrane by Oxa1 prior to Imp-mediated processing (Ott and 

Herrmann, 2010), nuclear encoded Mcr1 (Hahne et al., 1994), Gut2 (Esser et al., 2004), 

cytochrome c1 and cytochrome b2 (Nunnari et al., 1993). In addition, the murine variant of 

SMAC/DIABLO was shown to be processed by the IMP complex in S. cerevisiae (Burri et al., 

2005). 

 In the current study, the identification of SO as a novel substrate of the IMP complex 

occurred in a mammalian system and therefore represents the first experimental confirmation 
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of a functional IMP complex in mammals. IMP1, which was shown by downregulation of its 

mRNA to mediate processing of SO, does not follow obvious consensus motifs for cleavage 

(Chen et al., 1999). The precise IMP cleavage site within the SO protein is unclear, while the 

unprocessed SO-TIM50 chimera suggested processing to occur between residues 66-86. 

Further, the crystallization of mature chicken SO purified from liver tissue revealed residues 

1-80 not to be present in the mature protein, suggesting IMP cleavage to take place adjacent 

to residues 80 of chicken SO (Kisker et al., 1997). 

 Cytochrome b2 was shown to be processed in two steps, with MPP mediated 

cleavage of the matrix exposed N-terminus preceding IMP cleavage in the IMS (Gasser et 

al., 1982). Such a double cleavage was suggested to occur for all proteins with bipartite 

targeting signals (Schmidt et al., 2010) and may also apply for SO maturation. This could be 

further investigated by purification of MPP and incubation with SO precursors in vitro or by 

shRNA-mediated downregulation of MPP in cell culture in order to monitor potential changes 

of the SO processing pattern. 

 Efficient IMP cleavage of cytochrome b2 is dependent on a correctly folded heme 

domain that is stabilized by the bound cofactor (Glick et al., 1993). IMP-mediated processing 

of SO in contrast does not seem to require cofactor-mediated folding but can occur before 

Moco integration into SO, since SO was released as a soluble protein from mitochondria in 

absence of Moco. Thus, integrating IMP cleavage into the hierarchy of SO assembly, Moco 

integration and processing seem to occur independent on each other. 

 

3.1.5 Moco stabilization 

As isolated Moco has been shown to be intrinsically instable (Deistung and Bray, 1989), its 

cellular transport and stabilization following its cytosolic synthesis has been subject to 

intensive debates in the past (Hille, 2002, Schwarz and Mendel, 2006, Mendel, 2007). Fast 

association of Moco with either its apo-proteins or stabilizing Moco binding proteins has been 

proposed and could occur co-translationally in the cytosol (Schwarz et al., 2009). Co-

translational integration into the family of mitochondrial Moco-enzymes would however 

interfere with mitochondrial transport and consistently, the findings of the current study 

support a selective association of SO and Moco in the mitochondrial IMS. The functional 

trapping of SO demonstrates that Moco associated with SO does not cross the TOM channel 

and remains inside mitochondria. In addition, the folded monomeric Moco-containing domain 

of SO comprises a diameter of approximately 4 nm (Kisker et al., 1997), while the diameter 

of the open pore of the TOM complex accounts for a maximum of only 2 nm (Ahting et al., 

1999). A combined import of any Moco–SO complex across the TOM pore therefore appears 
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to be very unlikely, but SO and Moco rather seem to enter mitochondria independently. In the 

cytosol, Moco association with SO presumably is prohibited by association of chaperones to 

SO, which keep the latter in an import competent state. This further raises the question of 

how Moco is stabilized during its transport to mitochondria. In the green algae 

Chlamydomonas reinhardtii, a Moco carrier protein was identified (Fischer et al., 2006a) and 

a novel class of Moco-binding proteins was recently reported for Arabidopsis thaliana (Kruse 

et al., 2010). Similar Moco-binding chaperons, which stabilize Moco and promote Moco 

insertion into apo–proteins, were however not found in animals so far. Alternatively, Moco 

may be stabilized in the reducing environment of the animal cell for some time and thereby 

passively diffuse into the mitochondrial IMS.  

The quantitative analysis of the mitochondrial Moco population revealed an 

uncharacterized pool of SO-independent Moco, which approximately corresponded to the 

same amount of Moco as bound by SO. Both mARC proteins are expected to contribute 

significantly to this population of Moco, thus potentially indicating mitochondria to lack further 

abundant Moco proteins or significant populations of free Moco. This in turn suggests a rapid 

association of Moco with its mitochondrial apo-enzymes and is in line with the proposed 

immediate association of SO and Moco to ensure trapping in the IMS. 

 

3.1.6 Assembly and maturation of SO    

The findings of the first part of this study in aggregate allowed to build a model summarizing 

the complex mitochondrial maturation of SO (Figure 3.1). SO and Moco are synthesized in 

the cytosol and become transferred to mitochondria separately.  

While Moco may enter the IMS by passive diffusion through porins of the outer 

mitochondrial membrane, SO is actively imported to mitochondria based on its bipartite N-

terminal targeting signal. The ATP- and membrane-potential dependent translocation across 

the inner mitochondrial membrane is arrested by a hydrophobic stop-transfer motif 

downstream of the N-terminal matrix signal (Ono and Ito, 1982b).  

SO is subsequently released from the inner membrane by IMP mediated cleavage to 

generate a soluble protein. In absence of Moco, this results in reverse translocation of SO to 

the cytosol, as SO translocation across the outer membrane is not completed if Moco is not 

present. Alternatively, binding of Moco initiates SO folding and constitutes an additional 

driving force for a vectorial translocation of the SO C-terminal domain across the TOM 

complex. Following Moco insertion into SO and completion of import, heme integration and 

homodimerization occur independent on each other to accomplish the hierarchical assembly 

of SO.  
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3.2 Sub-cellular localization and sorting of human mARC1 

3.2.1 Localization of mARC1 to the outer mitochondrial membrane 

In a screen for the missing third component of the pro-drug activating N-reductive system, 

mARC2 was identified as the fifth eukaryotic Moco-containing enzyme (Havemeyer et al., 

2006). It was isolated from enriched outer mitochondrial membrane fractions and 

consistently, mARC2 was recently detected in purified rat liver outer mitochondrial 

membranes (Neve et al., 2012). Contradictingly, mARC2 was also identified during a large 

scale proteomic characterization of mouse liver inner mitochondrial membranes (Da Cruz et 

al., 2003). Furthermore, the subcellular localization of a close homologue, mARC1, has not 

been studied so far. However, the high degree of similarities to mARC2 in respect to 

sequence and function strongly suggests a similar subcellular distribution of both enzymes.  

 In the second part of this work, the sub-cellular localization of mARC1 was 

determined and revealed its integration into the outer mitochondrial membrane. This was 

shown by PK and trypsin treatments of purified mitochondria, which resulted in degradation 

Figure 3.1 Assembly and maturation of mammalian SO. SO is depicted with its N-terminal 

targeting signal (black), its hydrophobic stop-transfer signal (blue), its heme domain (orange) 

and the Moco- and dimerization domain (green). See text for details. IM, inner membrane; 

IMP, inner membrane peptidase; IMS, IMS; OM, outer membrane; TOM, translocase of the 

outer membrane. 
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of mARC1 from intact mitochondria. The depletion of full-length mARC1 following PK 

exposure was accompanied by the simultaneous appearance of a truncated fragment of 

about 30 kDa. The very weak intensity of the corresponding protein band after PK treatment 

suggested, that this fragment has derived from incomplete degradation of the cytosolic C-

terminal core of mARC1, which presumably reflects the tight folding of this domain. However, 

swelling of the outer mitochondrial membrane resulted in complete degradation of mARC1 

and also prevented formation of the truncated fragment seen upon PK treatment of intact 

mitochondria. The more efficient degradation of mARC1 following outer membrane disruption 

may be attributed to the increased PK accessibility of the protein, which would be reflected 

by the concomitant degradation of the protein from both terminal ends.  

Furthermore, the size of the truncated fragment following PK treatment appears about 

5 kDa smaller than the full-length protein, while a protease protected fragment seen upon a 

hypothetic inverse N(out)-C(in) membrane orientation of mARC1 is expected to be 2 kDa 

smaller than the full-length fragment. The difference of 5 kDa may well be attributed to the 

size of the N-terminal targeting signal and the transmembrane domain, suggesting PK to 

cleave efficiently between transmembrane domain and the folded cytosolic core of the 

catalytic mARC1 domain.     

In conclusion, mARC1 was defined to expose its C-terminal core domain to the 

cytosol, while the soluble N-terminus is facing the mitochondrial IMS.  

  Assuming a similar localization of mARC1 and mARC2, these results are in line with 

the previous studies detecting mARC2 in purified outer membrane fractions (Havemeyer et 

al., 2006, Neve et al., 2012). The mitochondrial protease treatment approach conducted in 

this study in addition addressed and clarified the membrane orientation of mARC 1 and thus 

for the first time affords a comprehensive view of mARC protein localization. The enzymatic 

activity of mARC requires its integration into a three-component enzyme system, in which 

electrons are transferred from NADH cytochrome b5 reductase via cytochrome b5 to mARC 

(Wahl et al., 2010). Both, NADH cytochrome b5 reductase (Borgese and Pietrini, 1986, 

Borgese et al., 1996) as well as cytochrome b5 (Fukushima et al., 1972, Ito, 1980) are well-

known components of the outer mitochondrial membrane exposing their catalytic domains to 

the cytosol. The current findings of an N(in)-C(out) orientation of mARC1 in the outer 

mitochondrial membrane are thus in well agreement with the catalytic interplay of the three 

components, which all expose their functional domains to the cytosol to build an efficient 

inter-molecular electron transport chain.    
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3.2.2 Targeting of mARC1 to the outer mitochondrial membrane           

The localization of mARC1 to the outer mitochondrial membrane is defined by its N-terminal 

region, which is composed of a weak MTS and a downstream transmembrane domain. 

Fusion of the transmembrane domain with GFP revealed the latter to be sufficient for 

mitochondrial sorting of mARC1. Considering its N-terminal transmembrane segment, which 

is required for targeting and membrane anchoring, mARC1 is classified as a novel and only 

the fifth known signal-anchored protein. All members of this small group of proteins share 

anchoring to the outer mitochondrial membrane based on their N-terminal transmembrane 

domains (Shore et al., 1995). In analogy to mARC1, the transmembrane segment of signal-

anchored proteins is in most cases sufficient for mitochondrial targeting, which was also 

found for TOM20 (Kanaji et al., 2000) and TOM70 (Suzuki et al., 2002) as two prominent 

representatives of this protein family.  

 Although the transmembrane domain is adequate for correct sorting when fused to 

GFP and recombinantly expressed in HEK-293 cells, the N-terminus of mARC1 contains an 

additional MTS. This motif is comparatively weak, as illustrated by the inefficient 

mitochondrial sorting of a fusion of residues 1-20 to GFP and the presence of only two basic 

residues with a much less amphipathic character compared to other classical N-terminal 

MTS (Table 3.2) (Neupert and Herrmann, 2007). In previous studies, the soluble N-terminal 

domain upstream of the transmembrane segment of signal-anchored proteins was shown to 

have supportive functions by increasing the efficiency of targeting, which is primary mediated 

by the transmembrane domain. Investigations of a fusion of dihydrofolate reductase with the 

N-terminal bitopic domain of yeast Tom70 revealed the three basic residues upstream of the 

transmembrane segment to enhance the rate of outer membrane insertion (McBride et al., 

1992). In spite of similarities to the N-terminus of mARC1, the N-termini of other signal-

anchored proteins could however not be shown to be autonomous MTS. This is also 

illustrated by the parameters depicted in table 3.2, in which the soluble N-termini of all 

currently known signal-anchored proteins are compared. The parameters of the MTS of SO, 

TIM50, SMAC and cytochrome b2 (Cytb2) are also shown in the table for better comparability 

(shaded blue). 

Predictions conducted by MITOPROT II revealed the mARC1 N-terminus to constitute 

a MTS with 65% probability. This was clearly below the values calculated for SO, TIM50, 

SMAC as well as Cytb2 and is thus in line with the less number of basic residues and the 

weak mitochondrial targeting efficiency of residues 1-20 of mARC1 when fused to GFP. The 

MTS predictions of mARC1 in contrast exceed the scores obtained for the N-termini of 
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Tom70, TOM20 and OM45. Since the number of basic residues is quite similar among 

mARC1 and the latter three components and all proteins exhibit the same subcellular 

localization, the weak N-terminal MTS of mARC1 may have similar supportive functions 

during mitochondrial targeting. 

 

 

Consequently, the mARC1 N-terminus may thus function as a primary receptor for the 

outer mitochondrial membrane, as described for the analogous segments of other signal-

anchored proteins such as TOM70 and TOM20 (McBride et al., 1992, Kanaji et al., 2000, 

Suzuki et al., 2002). The similarities between the soluble N-termini of mARC1 and other 

signal-anchored proteins suggest a smooth transition between outer membrane receptor and 

weak MTS of signal-anchored proteins. In any case, the downstream transmembrane 

domain seems to ensure correct localization and to suppress potential weak matrix signals 

within the upstream segment, which do thus not affect import in a conventional manner and 

ultimately not drive the protein to the mitochondrial matrix. Yeast Mcr1 is another signal-

anchored protein with higher MTS scores than mARC1 which will be discussed later.  

The mechanisms by which signal-anchored proteins enter the outer mitochondrial 

membrane are not completely understood. The import of TOM20 and TOM70 was however 

shown not to essentially require pre-existing primary TOM20 and TOM70 receptors (Ahting 

et al., 2005) and OM45 was recently shown to adopt a helical transmembrane conformation 

in artificial bilayers (Merklinger et al., 2012). Since signal-anchor domains of the known 

signal-anchored proteins are functionally interchangeable (Ahting et al., 2005), Dukanovic 

and Rapaport (2011) proposed a common initial membrane insertion step of all signal 

anchored proteins.  

Protein compartment size (residues)1 MTS prediction (%)2 basic residues species 

mARC1 OM 20 65 2 human 

Tom70 OM 10 35 3 yeast 

TOM20 OM 5 20 1 human 

OM45 OM 5 40 1 yeast 

Mcr1 OM/IMS 11 75 4 yeast 

SO IMS 20 92.6 4 mouse 

TIM50 IM 27 99.3 5 human 

SMAC IMS 20 97.9 4 human 

Cytb2 IMS 27 82.6 7 yeast 

Tab. 3.2 Analysis of matrix-targeting capability of different protein N-termini  

1
Soluble domains N-terminal of transmembrane segments 

2
Predictions according to Mitoprot II (Claros and Vincens, 1996) 
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While TOM20 and TOM70 are thought to require a pre-existing TOM complex for 

correct assembly after their initial membrane insertion, the TOM complex was proposed to be 

dispensable for the assembly of the other signal-anchored proteins (Dukanovic and 

Rapaport, 2011). Accordingly, mARC1 may also insert into an artificial bilayer in absence of 

the TOM complex, while its N-terminal targeting signal suggests an interaction to the primary 

import receptors TOM20 and TOM22. Potential interactions of mARC1 to the primary TOM 

import receptors could be probed in vitro following heterologous expression and purification 

of TOM20/22 fragments and mARC1, respectively. Binding could be analyzed by pull-down 

and immunoprecipitation experiments or biochemically characterized by isothermal titration 

calorimetry and surface plasmon resonance spectroscopy. Alternatively, cross-linking during 

in vitro import of mARC1 with subsequent co-immunoprecipitations could be used to identify 

interactions to any TOM components.     

These putative interactions to the primary TOM receptors seem not to be strictly 

essential, as the mARC1 transmembrane domain was shown to be an autonomous targeting 

signal, but they may increase the efficiency of targeting. Still, a fusion of the mARC1-

transmembrane domain with GFP revealed a complete mitochondrial localization in cell 

culture, indicating an efficient mitochondrial targeting even in absence of the N-terminal MTS. 

However, considering the extended two-days expression of the construct in cell culture, the 

long cellular accumulation of the construct may finally result in a comprehensive 

mitochondrial localization. This system may therefore not be sensitive enough to detect 

potential decreased mitochondrial targeting efficiencies due to the lack of a functional IMS. 

The cooperating effect of the mARC1-MTS could rather be experimentally tested by 

repeating the in vitro import experiments with a truncated mARC1 variant lacking residues 1-

20 or with a variant in which both positively charged residues of the MTS are exchanged by a 

neutral residue. The time dependent formation of the high-oligomeric complexes seen upon 

in vitro mitochondrial import could then be taken as a measure for the efficiency of complex 

formations in WT and truncated mARC1 variants.     

It is currently unknown, if signal anchored proteins become membrane inserted co- or 

post-translationally, but the N-terminal MTS of mARC1 may facilitate immediate transfer of 

the translating ribosome to mitochondria and an efficient and rapid insertion into the outer 

mitochondrial membrane.  
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3.2.3 Outer membrane targeting of mARC1 vs inner membrane sorting of SO 

A comparison of the primary structures of mARC1 and SO reveals surprising similarities, as 

both mitochondrial Moco enzymes share an N-terminal MTS followed by a hydrophobic 

transmembrane domain. Interestingly, these related N-terminal motifs confer different sub-

mitochondrial localizations of both proteins, with the transmembrane domain of SO traversing 

the inner mitochondrial membrane and mARC1 being anchored in the outer membrane.  

What are the mechanistic frameworks determining inner or outer mitochondrial 

membrane localization of SO and mARC1, respectively? And what are the parameters 

defining inner or outer membrane insertion of signal-anchored proteins and proteins with 

bipartite targeting signals in general? 

SO and mARC1 are directed to their destined membrane solely based on their N-

terminal regions, which thus also define association to the inner or outer membrane. The 

MTS were already compared in table 3.2, now the transmembrane segments of both proteins 

as well as of other signal-anchored proteins or inner membrane/IMS proteins with a bipartite 

targeting signal are compared in table 3.3. Depicted hydrophobicity scores were calculated 

with the program HydroMCalc (Tossi et al., 2002).  

 

 

 

      

 

 

 

 

 

The calculations of table 3.3 reveal the signal-anchored proteins TOM20, Tom70 and 

OM45 to contain a transmembrane segment of moderate hydrophobicity. Considering the 

lack of a functional MTS, these proteins do not receive a driving force towards the inner 

mitochondrial membrane but insert into the outer membrane. The mARC1 protein displays a 

stronger MTS prediction than other signal-anchored proteins, which appears to be balanced 

Protein Compartment Hydrophobicity1 size (residues) species 

mARC1 OM 2.4 20 human 

Tom70 OM 1.02 18 yeast 

TOM20 OM 1.71 18 human 

OM45 OM 1.43 17 yeast 

Mcr1 OM/IMS 2.01 20 yeast 

SO IMS 2.78 17 mouse 

TIM50 IM 2.77 20 human 

SMAC IMS 1.22 19 human 

Cytb2 IMS 1.38 17 yeast 

Cue1 ER 4.58 19 yeast 

Tab. 3.3 TM domain comparison between signal-anchored proteins and inner 

membrane/IMS proteins with bipartite targeting signals  

1
Predictions according to (Tossi et al., 2002) 
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by a more hydrophobic transmembrane domain, ultimately resulting in the same 

submitochondrial localization. SO and other proteins with bipartite targeting signals residing 

in the inner membrane or the IMS are characterized by even stronger N-terminal MTS. The 

hydrophobicity scores of the transmembrane domains appear divergent, with SO revealing a 

comparably strong value, while the transmembrane segments of SMAC or cytochrome b2 

depict only moderate degrees of hydrophobicity. 

Comparing mARC1 with SO or the other proteins containing bipartite targeting motifs, 

mARC1 contains a weaker MTS, which is apparently not sufficient to drive the downstream 

transmembrane motif across the outer mitochondrial membrane. A weak MTS as seen for 

mARC1 seems to result in transmembrane domain mediated insertion into the outer 

mitochondrial membrane, while, as illustrated by SO, a stronger MTS may even translocate a 

more hydrophobic transmembrane segment across the outer membrane. Targeting to the 

inner or outer mitochondrial membrane may thus be regulated by the opposing forces of 

MTS and transmembrane domain.  

In this context, yeast Mcr1 is a very interesting intermediate protein. Similar to SO and 

mARC1, Mcr1 contains an N-terminal MTS and a downstream transmembrane domain, 

which were shown to mediate dual localization of the protein to the outer membrane and to 

the IMS (Hahne et al., 1994). This is achieved by two distinct import mechanisms, with the 

intermembrane space form of Mcr1 entering the Tom40 import channel and being 

transported to the Tim23 complex, while the outer mitochondrial membrane isoform is 

inserted independent on Tom40 or the primary Tom import receptors (Meineke et al., 2008). 

These two independent mechanisms suggest that sorting of both isoforms diverge early, 

already before entering the TOM complex.  

 Notably, this dual distribution is also reflected in the parameters of tables 3.2 and 3.3. 

The MTS of Mcr1 appears to be stronger than the MTS of all other signal-anchored proteins 

including mARC1, but weaker than the motifs of the proteins with classical bipartite targeting 

signals. The hydrophobicity scores of the Mcr1 transmembrane domain likewise reveal 

intermediate values, which seem to be low enough to allow passage of a proportion of the 

proteins across the outer membrane, but also strong enough to permit retention of a sub-

population of the proteins in the outer mitochondrial membrane. Consistent with this 

hypothesis, weakening the hydrophobicity of the Mcr1 transmembrane domain by mutating 

two alanines in the middle of the hydrophobic motif against glutamine prevented outer 

membrane arrest and caused a complete IMS localization of the protein (Haucke et al., 

1997).    
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These mechanistic insights into Mcr1 trafficking further support the concept of the 

outer membrane localization of mARC1 compared to the inner membrane/IMS localization of 

SO to be controlled by the strength of the MTS and the degree of hydrophobicity within the 

downstream transmembrane domain. However, the import pathways of both Mcr1 isoforms 

are subject to two distinct mechanisms and membrane insertions of signal-anchored proteins 

are independent of the TOM complex. Further, a lateral opening of TOM40 was not observed 

so far and is under debate due to thermodynamic considerations (Rapaport, 2005). In 

aggregate, sorting of signal-anchored proteins and proteins with bipartite targeting-signals 

might be based on the strengths of the parameters shown in tables 3.2 and 3.3, while 

sensing these signals and sorting decisions must occur before translocation or membrane 

insertion, respectively, initiates.   

As only five signal-anchored proteins and a limited number of proteins with bipartite 

targeting signals are known, the quantitative significances of the analyses shown in tables 

3.2 and 3.3 are rather low. The outlined coherencies could therefore be experimentally tested 

by introducing additional basic residues into the mARC1-MTS or by exchanging the mARC1-

MTS against the stronger MTS of SO. According to the hypothesis stated above, increasing 

the strength of the mARC1-MTS would cause inner membrane targeting of the modified 

protein. Alternatively, weakening of the SO-MTS might result in a premature arrest of SO-

translocation in the outer mitochondrial membrane.   

The sorting of mARC1 and other signal-anchored proteins to the outer mitochondrial 

membrane does not only have to be differentiated from inner membrane targeting, but also 

from mislocalization to the ER. Targeting to the ER is based on strongly hydrophobic motifs 

(Hegde and Keenan, 2011). Cue1 was chosen as a representative for a signal-anchored 

protein of the ER membrane (Biederer et al., 1997) and the hydrophobicity scores depicted in 

table 3.3 reveal a significantly higher hydrophobicity of Cue1 compared to all mitochondrial 

membrane proteins. Consistent with these differences, increasing the hydrophobicity of 

transmembrane segments of signal-anchored proteins has been shown to cause 

mislocalization to the ER (Waizenegger et al., 2003). Furthermore, Merklinger et al. (2012) 

observed that insertion of OM45 into artificial lipid bilayers is significantly increased when 

exposing the protein to an outer membrane-like lipid composition compared to a bilayer with 

ER-like lipid composition. This suggests that apart from the degree of hydrophobicity, target-

membrane compositions may also constitute cellular sorting-signals for signal-anchored 

proteins. 

The cellular trafficking of mARC1 and other signal-anchored proteins thus appears to 

be subject to a fine-tuned mechanism, with minor modifications in the N-terminal domain or 

the target membrane potentially causing protein mislocalizations.  
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3.2.4 In vitro import of mARC1 

The in vitro characterization of the mitochondrial import of mARC1 revealed characteristics 

typical for proteins residing in the outer mitochondrial membrane (Dukanovic and Rapaport, 

2011). Therefore, mARC1 was not processed during import and did not require a membrane 

potential across the inner mitochondrial membrane. This is consistent with a supportive 

function of the mARC1-MTS in mediating efficient outer membrane targeting of the protein, 

rather than a conventional and membrane potential-dependent role of the MTS in 

mitochondrial import of mARC1. The depletion of external ATP from the import buffer 

however significantly interfered with successful targeting of mARC1. ATP might be required 

for the release of mARC1 from cytosolic chaperons and thereby being essential for an 

efficient integration into the outer membrane. A similar role of external ATP during 

mitochondrial import has been described earlier for other membrane-anchored proteins 

(Wachter et al., 1994).  

Interestingly, membrane integration of mARC1 resulted in the formation of high-

oligomeric complexes as depicted by BN-PAGE following in vitro import or 48 h expression of 

mARC1 in cell culture, suggesting that mARC1 is part of these complexes in its final and 

active form. Given the molecular weight of mARC1, cytochrome b5 reductase and 

cytochrome b5 (total ~90 kDa), one can speculate that these three proteins might form a 

large multimeric complex with several copies per subunit. However, mARC1 and cytochrome 

b5 reductase have been shown to be monomeric following expression in E. coli, while 

cytochrome b5 revealed the formation of homo-dimeric complexes (Wahl et al., 2010). 

Alternatively, mARC1 may be part of a so far unknown membrane-bound multienzyme 

complex hosting other yet to be identified proteins. Isolation and characterization of these 

complexes could occur by co-immunoprecipitation of mARC1 with subsequent mass-

spectrometric identifications of the co-precipitated components. The identified candidates 

could in the next steps be confirmed by appropriate and specific antibodies, which would be 

added to the mitochondrial in vitro import reactions of mARC1 prior to BN-PAGE analyses. 

Assuming a co-association of mARC1 and the respective candidate protein in the same 

complexes, addition of the antibodies should result in a shift of the complex seen on BN-

PAGE. Another strategy to confirm potential components of the high-oligomeric structures 

could involve cross-linking of the complexes with subsequent identification of the proteins by 

western blotting using specific antibodies.   

 

 



Dissertation Julian Klein                                                                                             Discussion         

 

80 
 

3.2.5 Assembly and maturation of mARC1 

In summary, the findings of the second party of this study, the mitochondrial maturation of 

mARC1, can be illustrated in a model (Figure 3.2).  

 Following its cytosolic translation, mARC1 may be bound by chaperones guiding the 

protein to the outer mitochondrial membrane and preventing the transmembrane domain 

from being exposed to the cytosol. Release from chaperones might thus represent the ATP- 

dependent step of the mitochondrial import of mARC1. Insertion into the outer mitochondrial 

membrane is triggered by the N-terminal region of mARC1, which is composed of a weak 

MTS and a downstream transmembrane domain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The MTS is supposed to function as a supportive receptor for the outer mitochondrial 

membrane and considering the known interactions of these motifs with the primary TOM 

receptors, the mARC1-MTS might initially interact with TOM20 and TOM22 to afford first 

contacts between the protein and its target membrane. The membrane insertion of mARC1 

Figure 3.2 Assembly and maturation of human mARC1. mARC1 is depicted with its N-terminal 

targeting signal (black), its transmembrane domain (blue) and its catalytic core (dark gray). mARC1 

is part of unknown multiprotein complexes (X) in the outer mitochondrial membrane. Cytochrome b5 

reductase (Cytb5R) and cytochrome b5 (Cytb5) are shown with their transmembrane domains 

(blue). See text for details. C, chaperone (green circle); F, flavin adenine dinucleotide; H, heme; IM, 

inner membrane; IMS, IMS; M, Moco; OM, outer membrane; TOM, translocase of the outer 

membrane. 
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occurs membrane potential independently and is mediated by the transmembrane domain, 

which constitutes the targeting signal and membrane anchor, thus defining mARC1 as a 

novel signal-anchored protein of the outer mitochondrial membrane. 

 Thereby, mARC1 exposes its catalytic core domain to the cytosol and presumably 

integrates Moco after insertion into the outer membrane in analogy to the unfolded 

translocation of all mitochondrial proteins. Following membrane insertion and Moco 

integration, mARC1 builds an intermolecular electron-transport chain with cytochrome b5 

reductase and cytochrome b5 but also forms high-oligomeric structures of currently unknown 

identity.    
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4 Material and methods 

4.1 Material 

4.1.1 Organisms 

Different prokaryotic and eukaryotic organisms were used during the current study. E. coli 

cells were used for plasmid amplification and protein expression and are listed in table 4.1. 

Mammalian cells were used for localization studies and protein expression and are listed in 

table 4.2., while N. crassa cells (table 4.3) were used for nit-1 reconstitution assays. 

  

Strain Reference Genotype Purpose 

DH5α (Hanahan, 1983) F-, supE44, ΔlacU169, (ɸ80lacZ  

ΔM15),  hsdR17, endA1, 

gyrA96, thi-1, relA1, recA56 

Plasmid 

amplification 

TP1000 (Palmer et al., 1996) F-, ΔlacU169, araD139, 

rpsL150, relA1, ptsF, rbsR, flbB, 

(ΔmobAB) 

Protein expression 

in E. coli 

BL21 (Weiner et al., 1994) F-, ompT, hsdS(rB-mB-), dcm+, 

Tetr, galλ (DE3), endA, The 

[argU, proL, camr] 

Protein expression 

in E. coli 

 

Strain Reference Description Purpose 

HEK-293 (Graham et al., 1977) Human embryonic 

kidney cells 

Protein localization, 

mitochondrial purification, 

general protein expression  

MOCS1-/- 

fibroblasts 

Jochen Reiss, 

University of Göttingen 

Human fibroblasts, 

ΔMOCS1 

Protein localization 

WT 

fibroblasts 

Jochen Reiss, 

University of Göttingen 

Human fibroblasts, 

WT 

Protein localization 

HEP-G2 (Knowles et al., 1980) Human liver 

carcinoma cells 

Protein localization 

HeLA cells (Scherer et al., 1953) Human cervical 

carcinoma cells 

Protein localization 

Tab. 4.1 E. coli cells used in this study 

Tab. 4.2 Mammalian cells used in this study 
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4.1.2 Plasmids 

Empty plamids (table 4.4) from different companies were used for cloning and subsequent 

expression of proteins. 

 

Plasmid Resistance Source Purpose 

pQE80 Ampicillin Qiagen Protein expression in E. coli 

pcDNA3.1 

myc/HisA 

Ampicillin Invitrogen General protein expression in 

mammalian cells, protein localization 

studies 

pEGFP-N1 Kanamycin Clontech Protein localization 

pJET1.2 Ampicillin Fermentas Expression of IMMP1l shRNA 

 

4.1.3 Enzymes and chemicals 

Enzymes for cloning and DNA modifications were purchased from Fermentas, New England 

Biolabs, Roche and Stratagene. Cell culture media and buffers were purchased from PAA 

laboratories. Chemicals and solutions were obtained from Applichem, Biomol, Fluka, Merck, 

MP Biomedicals, Promega, Riedel deHaen, Roche, Roth, Serva, Sigma-Aldrich and VWR-

Prolabo.     

 

 

 

 

 

Strain Reference Genotype/description Purpose 

nit-1 (Nason et al., 1971) FGSC : 34, allele : 34547, 

mating type : a/A linkage 

group: IR, genetic 

background : M, mutagen : UV 

nit-1 reconstitution assay 

Tab. 4.3 N. crassa cells used in this study 

Tab. 4.4 Plasmids used in this study 
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4.1.4 Antibodies 

Different primary (table 4.5) and secondary (table 4.6) antibodies from different companies 

were used for western blot detection or immunocytochemistry.  

 

Antibody Dilution Source Application 

Mouse monoclonal to SO 1:1000 Abcam Western blot, 

immunocytochemistry 

Mouse monoclonal to actin  1:400 Santa Cruz Western blot 

Rabbit polyclonal to IMMP1L 1:500 Abgent Western blot 

Rabbit polyclonal to MOSC1 1:1000 Abcam Western blot 

Rabbit polyclonal to smac/diablo 1:1000 Abcam Western blot 

Mouse monoclonal to VDAC 1:1000 Abcam Western blot 

Mouse monoclonal to gephyrin 

(3B11) 

1:20 (Smolinsky et al., 

2008) 

Western blot 

Mouse monoclonal to myc-tag 

(9E10) 

1:5 Cell supernatant Western blot, 

immunocytochemistry 

Rabbit polyclonal to GFP 1:1000 Abcam Western blot 

Mouse monoclonal to HSP60 1:2000 Biomol Western blot 

Rabbit polyclonal to MFN2 1:1000 Sigma Western blot 

Mouse monoclonal to COX4 1:500 Santa Cruz Western blot 

 

 

 

 

 

 

 

Antibody Dilution Source Purpose 

Goat anti-mouse HRP coupled 1:10000 Santa Cruz Western blot 

Donkey anti-rabbit HRP coupled 1:10000 Pierce Western blot 

Alexa Fluor 488 anti-mouse 1:200 Invitrogen Immunocytochemistry 

Tab. 4.5 Primary antibodies used in this study 

Tab. 4.6 Secondary antibodies used in this study 
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4.2 Methods 

4.2.1 Biochemical methods 

4.2.1.1 Expression of recombinant SO variants in E. coli 

Different variants of mouse SO were expressed in E. coli strain TP1000 in this study. 

Therefore, the respective plasmids were transformed into the E. coli cells, which were then 

plated on agar medium. Single colonies were selected and grown over night at 37°C in LB 

medium (10 g/l tryptone, 10 g/l NaCl, 5 g yeast extract/l) containing the respective antibiotics 

(100 µg/ml ampicillin, 25 µg/ml kanamycin). 50 ml of precultures were each added to 3l of 

main cultures, which were grown for 3 h at 25°C and 90 rpm shaking. Expressions of SO 

variants were induced by the addition of 0.1 mM IPTG and 150 µM Na-molybdate and cells 

were harvested after further 48 h incubation at 25°C and 90 rpm shaking.  

4.2.1.2 E. coli cell disruption 

E. coli cells were disrupted after expression of recombinant proteins according to the 

following protocol:  

1) Cell pellets were thawn on ice and subsequently resuspended in ~20 ml lysis buffer (100 

mM Tris pH 7.5, 300 mM NaCl, 15 mM imidazole). 

2) Cells were opened by means of the cell disruptor (Constant systems) at 2.5 kbar. 

3) The sample was sonicated on ice for 2 min to shear genomic DNA (50% interval).  

4) Finally, a 40 min centrifugation (20.000 x g) was applied to get rid of cell particles. The 

obtained crude extract (supernatant) was used for further purification steps 

 

4.2.1.3 Purification of recombinantly expressed SO variants  

 

All SO variants were expressed from pQE80 in fusion with an N-terminal His-tag. The binding 

of Nickel to histidines facilitated affinity purification of the variants by means of a Ni-NTA 

matrix. For this purpose, Ni-NTA matrix (Qiagen) was filled into a column and protein crude 

extract was loaded onto the matrix. After one step of washing with lysis buffer, the proteins 

were eluted from the matrix by the addition of an elution buffer buffer (100 mM Tris pH 7.5, 

300 mM NaCl, 400 mM imidazole). Imidazole strongly binds Nickel and removes the protein 

from the matrix. Since the eluted proteins were only enriched but not purified, an additional 

anion exchange chromatography was performed, which was used in combination with a 

Aekta FPLC system. Therefore, the Ni-NTA eluted protein was diluted 1:5 in 50 mM 

Tris/acetate pH 8.0 and applieded on a SourceQ 30ml matrix (15 µm particles, Dr. Maisch). 
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All bound proteins were stepwise eluted from the matrix by application of a salt gradient (0-1 

M NaCl) and according to their affinity to the matrix based on their negative charges.       

 

4.2.1.4 Concentration of purified proteins  

 

Purified proteins were concentrated by means of Amicon Ultra Centrifugal Filters (Millipore). 

Depending on the molecular weight of the proteins, size exclusions of 3-100 kDa were 

chosen. The centrifugations occurred at 4°C and according to the instructions of the 

manufacturer.  

 

4.2.1.5 Analytical size exclusion chromatography 

 

Size exclusion chromatography separates proteins according to their size. This can either be 

used for purification purposes or to determine the oligomerization status of a given protein. In 

the current study, size exclusion chromatography (column: ACQUITY BEH200; 1.7 µm 

particles; Waters) was used with an HPLC system (Agilent) to characterize the 

oligomerization of different SO variants. The analysis was performed as described by the 

supplier.  

 

4.2.1.6 Buffer exchange 

 

Buffer exchange was performed with PD10 columns (GE Healthcare). Therefore, the 

columns were equilibrated with the target buffer, followed by application of 2.5 ml of protein. 

Proteins were finally eluted by the addition of 3.5 ml of target buffer.   

 

4.2.1.7 Determination of protein concentration 

 

The concentration of purified proteins was determined by means of a Nanodrop 

Spectrophotometer (Thermo Scientific) based on the Lambert-Beer Law. Concentrations of 

protein crude extracts or mitochondria were determined by means of the Bradford solution, 

which is based on the binding of Coomassie Brilliant Blue G-250 (Rotiquant) to aromatic and 

basic residues of the protein. The accompanying change in absorption maxima (465 nm to 

595 nm) was determined by means of a photometer (Thermo Electron Corporation) and 

taken as a measure for the amount of protein relative to a standard protein curve.  
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4.2.1.8 SDS-PAGE 

 

Sodium-dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is performed to 

separate denatured proteins according to their electrophoretic mobility. SDS is an anionic 

detergent which denatures and negatively charges proteins. Depending on the size of the 

proteins, different amounts of SDS will bind and provide a negative charge which correlates 

to the size of the protein. Thereby, proteins will be separated in the gel according to their 

size. The gel consists of an upper stacking gel and a lower resolving gel with varying 

percentages of acrylamide (depending on the molecular weight of the proteins of interest). 

Before loading the samples on the stacking gel, they were denatured by the addition of 5x 

SDS-loading dye (50% glycerol, 3.5% SDS, 15% β-mercaptoethanol, 0.02% bromophenol 

blue) and 5 min heating at 95°C. Afterwards, the gel was stained with Coomassie Blue 

solution (40% methanol, 10% acetic acid, 0.2% Coomassie Brilliant Blue G 250) and 

destained with destaining solution (40% methanol, 10% acetic acid) or further analyzed by 

Western blot.  

 

4.2.1.9 Western blot 

 

After SDS PAGE, Western blot was used to specifically detect proteins of interest by 

immunostaining. In the current study, the proteins of the SDS gel were transferred to a 

polyvinylidifluorid (PVDF) membrane by means of a semi-dry blotting system (C.B.S. 

Scientific). The transfer was conducted with transfer buffer (25 mM Tris, 192 mM glycine, 

10% methanol) and three sheets of whatman paper on each side of the gel and membrane. 

After transfer, the membrane was blocked 1 hour with 5% milk in TBST buffer. The 

incubation with the primary and secondary antibodies occurred as recommended by the 

manufacturers. After both antibody incubations, the membrane was washed 4 times for 5 min 

with TBST. The secondary antibodies used in this study were coupled to horseradish 

peroxidase and finally visualized by SuperSignal West Pico/Femto Chemiluminescent 

substrate (Thermo Scientific). The signals were detected by means of an Enhanced 

Chemiluminescence Camera System (Decon).    

 

4.2.1.10 Blue Native-PAGE 

 

Blue Native-PAGE (BN-PAGE) was applied to separate native protein complexes according 

to their sizes. In the current study 4%-16% acrylamide gradient gels were applied. Therefore, 

4.5 ml of a 4% and 16% acrylamide solution, respectively, were each mixed with 20 µl 20% 

APS and 3 µl TEMED in a gradient gel mixer to cast the BN-gel. The stacking gel was 
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composed of 7 ml 4% acrylamide solution, 30 µl 20% APS and 10 µl TEMED. Before loading, 

the samples were supplied with 10x BN-loading dye (5% Coomassie blue G, 500 mM ε-

amino n-caproic acid, 100 mM Bis-Tris pH 7.0). All empty wells were filled with empty well 

buffer (20 mM Bis-Tris pH 7.4, 50 mM NaCl, 10% glycerol) and as a molecular weight marker 

a mix of 10 mg/ml thyroglobulin, 10 mg/ml ferritin, 10 mg/ml BSA and empty well buffer was 

used. 50 mM Bis-Tris pH 7.0 was used as the anode buffer during the run, while the cathode 

buffer was composed of 50 mM tricine, 15 mM Bis-Tris (unbuffered) and 0.02% Coomassie 

blue G. After the entry of the samples into the resolving gel, the cathode buffer was 

exchanged against a coomassie free equivalent. The gel was run at 10 mAmp and 600 volts 

at 4°C.    

 

4.2.1.11 Sulfite:Cytochrome c assay 

 

SO activity was photometrically determined based on the increased absorption of reduced 

cytochrome c compared to the oxidized form at 550 nm. The measurements occurred at 

room temperature by means of an ELISA reader in a 96-well plate. Following components 

were mixed in the wells: 

 

8 µl 1 M Tris/Acetat pH 8.0 

10 µl 5 mM deoxycholic acid 

35 µl 0.5 mM KCN 

108 µl SuOx buffer (0.1 M Tris/acetate pH 8.0 + 0.1 mM EDTA) 

12 µl cytochrome c (10 mg/ml) 

 

Afterwards, 0-15 µl SO was added. In case less than 15 µl were added, SuOx buffer was 

used to fill the protein solution to 15 µl.  

The reaction was started by the addition of 12 µl Na-sulfite (5 mM), followed by a direct 

starting of OD measurement in the ELISA reader. 30 measurements at 550 nm in time 

intervals of 4 sec were conducted to determine the catalytic activity of SO.  

  

4.2.1.12 HPLC Form A analysis                                                                                            

 

Moco and can be detected and quantified by means of its fluorescing oxidation product Form 

A via HPLC. Moco gets oxidized to Form A in an acidic reaction with I2/Kl/HCl solution. The 

fluorescence spectra of Form A (excitation 370 nm, emission 450 nm) allow the detection of 

the component after elution from the HPLC column. 

Moco oxidation to Form A occurred as follows: 
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1) 140 µl of the sample were supplied with 17.5 µl acidic oxidation mix (1.5/2% I2/Kl solution 

in 1M HCl) and incubated at room temperature in the dark overnight. 

2) The sample was centrifuged for 5 min at 15000 rpm, the yellowish supernatant was taken. 

3) 20 µl of freshly prepared 1% ascorbic acid solution was added to the supernatant to 

reduce the residual I2.  

4) 70 µl 1M Tris (unbuffered) and 5 µl 1 M MgCl2 were added. 

5) 5 µl alkaline phosphatase (1:10 diluted in 20 mM Tris pH 8.3) was added; the reaction was 

conducted for 30 min at room temperature in the dark.  

6) Samples were centrifuged for 5 min at 21.000 x g, the supernatant was put into a new 

tube. 

7) After another 1:10 dilution, the samples were transferred into HPLC tubes to start the 

analysis. 

 

HPLC analysis was performed on a reverse phase column (250 x 4.6 mm 5 µm C18, Dr. 

Maisch GmbH). Elution of FormA occurred by application of a methanol gradient. 

 

4.2.1.13 Nit-1 assay                                                                                                                                                

 

The nit-1 assay was used to detect free Moco in mitochondrial extracts and protein solutions. 

The assay was conducted as follows: 

1) 1-20 µl protein (~2.5-50 µg) was pipetted to 19.5 µl nit-1 extract (containing 2 mM GSH) 

on ice. As a reference, one sample was not incubated with cell extracts but otherwise treated 

as all other samples.   

2) Samples were degased in a desiccator and incubated over night at 4°C in the dark.  

3) Samples were taken out of the desiccator and 1/10 volume of 1% NADPH was added, 

followed by an incubation time of 10 min at room temperature.  

4) 1.5 volumes of degased 0.1 mM FAD/0.1 mM KNO3 (1:2) was added. Samples were 

incubated for 20 min at room temperature in the dark. 

5) Samples were heated at 95°C for 5 min and subsequently cooled on ice for a few min. 

6) Finally, 2.5 volumes of SA/NED (1:1) solution were added. After 30 min of incubation at 

room temperature, samples were centrifuged and analysed in the ELISA reader at 540 nm 

on a multi-well plate.  
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4.2.1.14 TCA precipitation 

 

TCA precipitation was conducted to precipitate proteins in solution in this study. Therefore, 

20 µl of a 72% TCA solution were each added to 100 µl protein solution. After 30 min 

incubation on ice, samples were centrifuged at maximum speed for another 30 min at 4°C. 

The precipitated protein pellets were rinsed with ice cold acetone two times and each 

centrifuged for 10 min at 4°C. Finally, the pellets were dried for 20 min in the fume hood and 

resolved in 30 µl SDS loading dye by shaking at 1.600 x rpm at 50°C.     

 

 

4.2.2 Molecular biological methods 

4.2.2.1 Cloning 

For cloning, DNA fragments were first amplified by PCR from cDNA libraries or plasmid 

templates. After purification, PCR products and target vectors were digested by the 

respective restriction enzymes and ligated by means of a T4 DNA ligase. To ensure efficient 

ligation, a four to one insert:vector ratio was applied during the ligation process. The ligated 

plasmids were finally transformed into E. coli strain DH5α. Single colonies were analysed by 

colony PCR and DNA plasmids were tested on the correct sequence by restriction digest and 

sequencing (GATC Biotech AG).    

4.2.2.2 Plasmid amplification and purification 

For plasmid amplification, single colonies of E. coli strain DH5α containing the plasmid were 

grown over night in LB medium containing the appropriate antibiotics. Plasmid extraction and 

purification occurred by means of the NucleoSpin Plasmid (Macherey-Nagel) according to 

the instructions of the manufacturer.  

4.2.2.3 Site directed mutagenesis 

For the introduction of defined mutations into plasmid DNA, sense and antisense primers of 

the desired region containing the mutation were designed. The mutations were introduced by 

means of the QuikChange Lightning Site Directed Mutagenesis Kit (Stratagene) and 

according to the protocol supplied by the manufacturer.  

4.2.2.4 Fusion PCR 

Fusion of two DNA fragments occurred by fusion PCR. Therefore, both DNA fragments were 

first amplified by PCR. The forward primer for the amplification of the second fragment 
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contained 10 nucleotides at the 5’ end complementary to the 3’ end of the first fragment. 

Both PCR products were fused by seven PCR cycles with an annealing temperature 

corresponding to the overlapping part of the two fragments. Finally, the product was 

amplified by 30 cycles after the addition of the respective forward and reverse primers.    

 

4.2.3 Cell biological methods 

4.2.3.1 Cultivation of mammalian cells 

All mammalian cell types were cultivated in Dulbecco’s modified eagle medium (D-MEM) 

supplied with 10% fetal calf serum (FCS) and 2mM L-glutamate at 37°C and 10% CO2. The 

cells were adherently grown on 10 cm dishes and detached by trypsin/EDTA application 2-3 

times a week to dilute cells 1:4 or 1:8. 

4.2.3.2 Transfection of mammalian cells  

The transfection of plasmid DNA into mammalian cells occurred to transiently induce the 

expression of genes from pcDNA3.1, pEGFP-N1 or the pJET1.2 vector. HEK-293 cells as 

well as human fibroblasts were transfected with PEI (polyethylenimine, 1mg/ml, pH 7.4). For 

the transfection of a 10 cm plate, 51.2 µl PEI were added to 1ml of D-MEM medium without 

FCS and glutamate. Transfections of smaller plates were adjusted accordingly. After 

incubation for 5 min at room temperature, 12.8 µg DNA was added and incubation was 

continued for another 20 min. Finally, the mixture was added to the cells. For co-

transfections of two plasmids on a 10 cm plate, 70 µl PEI were added to 1ml of D-MEM 

medium without additives. Each 12.8 µg DNA were added and incubated as described 

above.  

4.2.3.3 shRNA mediated knockdown of gene products 

In the current study, the human IMP1 mRNA was downregulated by shRNA. Therefore, an 

appropriate RNA region was first predicted by an online shRNA design tool (Invitrogen). The 

region containing the highest probability of efficient gene product knockdown was chosen 

and sense and antisense primers representing the desired region were synthesized. In 

parallel, the CMV promoter was amplified by PCR and each fused to the sense and 

antisense fragments by fusion PCR. Finally, both constructs were separately ligated into the 

pJET1.2 vector and subsequently co-transfected into HEK-293 cells. The efficiency of 

knockdown was determined 24 h after transfection by anti-IMP1 Western blotting of the cell 

lysate.      



Dissertation Julian Klein                                                                           Material and methods                 

 

92 
 

4.2.3.4 Harvesting and disruption of mammalian cultured cells 

Cultured cells were detached by trypsin/EDTA application and pelleted for 5 min at 800 x g. 

After rinsing cells once with PBS, they were resuspended in the buffer of choice and 

sonicated two times for 20 sec. Finally, disrupted cells were centrifuged at 21.000 x g at 4°C 

for 10 min and the protein content of the supernatant was determined by means of the 

Bradford reagent. 

4.2.3.5 Microscopic preparations 

Proteins and cell organells were visualized by confocal laser microscopy and fluorescence 

microscopy in the current study. Proteins were either visualized by posttranslational fusion to 

GFP or by immunocytochemistry. In any case, HEK-293 cells or human fibroblasts were 

grown and transfected in 12-well plates on collagenized cover slips. After 48 h of protein 

expression, cells were washed three times with PBS and fixed by 20 min incubation in 4% 

paraformaldehyde. After additional three washing steps, cells expressing GFP tagged 

proteins were directly mounted on microscope slides containing a drop of Mowiol solution (20 

g Mowiol in 80 ml PBS and 40 ml glycerol containing ¼ volume bleaching protection: 2.5 g n-

propylgallat in 50 ml PBS and 50 ml glycerol). Preparations were dried over night at 37°C 

and subsequently analyzed by microscopy. Cells destined for immunocytochemistry were not 

immediately mounted after fixation but first incubated in 0.2% Tween-20 in PBS for 20 min to 

permeabilize the cells. After three steps of washing with PBS, cells were briefly incubated 

with 1% BSA and afterwards covered with the primary antibody (in PBS, concentrations 

according to the manufacturer) for one hour at 37°C. Cells were washed three times with 

PBS and incubated with the secondary antibody (1:200 dilution in PBS) for another hour at 

37°C. After three washing steps with PBS, cells were finally mounted on microscope slides 

as described above.      

4.2.3.6 Staining of mitochondria 

Mitochondria were visualized in the current study by means of Mitotracker Red CMXRos 

(Invitrogen). A 1mM stock solution in anhydrous DMSO was diluted 1:20000 in D-MEM 

medium and incubated for 2 h with the cells at 37°C prior to fixation. The dye was visualized 

by fluorescence microscopy or confocal laser microscopy by excitation at 543 nm.    

4.2.3.7 Confocal laser microscopy 

Microscopic preparations were analyzed by a Nikon Eclipse Ti confocal microscope. Green 

fluorescent dyes were excited at 488 nm, red fluorescent dyes were excited at 543 nm. 
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4.2.3.8 Determination of the Pearson Correlation Coefficient  

The Pearson Correlation Coefficient (PCC) was determined to quantify the degree of 

colocalization of two dyes in a microscopic preparation. The PCC values were determined by 

means of the Volocity software (Perkin Elmer).  

 

4.2.4 Methods to study mitochondrial localization and import of proteins 

4.2.4.1 Enrichment of mitochondria  

Mitochondria were enriched from cultured cells according to the following protocol:  

1) Cultured cells were scraped from 10 cm plates in 5 ml PBS and pelleted at 800 x g.                                      

2) Cells were resuspended in 3 ml solution A (20 mM Hepes pH 7.6, 220 mM mannitol, 70 

mM sucrose, 1 mM EDTA, 0.5 mM PMSF, 2 mg/ml fatty acid free BSA).                                           

3) The suspension was transferred to a teflon homogenizer (Sartorius) and homogenized 

with 20 strokes at 1000 rpm.                                                                                                        

4) The homogenate was centrifuged at 800 x g, 4°C for 5 min and the supernatant containing 

mitochondria was collected. 

5)  The pellet was resuspended in 3 ml solution A and steps 3-4 were repeated 1-2 times. 

6)  The supernatants were were combined and centrifuged at 12.000 x g, 4°C for 5 min. 

7) The supernatant was removed and the pellets were resuspended in 1 ml of solution B 

(solution A lacking PMSF and BSA) and centrifuged at 12.000 x g, 4°C for 5 min. 

8)  Mitochondrial pellets were carefully resuspended in an appropriate volume of solution B 

and concentrations were determined by means of the Bradford reagent.    

The enrichment of mitochondria from murine liver occurred as described above. The liver 

was cut into small pieces before pottering. 

4.2.4.2 Purification of mitochondria 

To obtain mitochondria of high purity, mitochondria were first enriched as described above. 

200-500 µl crude mitochondria were subsequently loaded on a discontinuous density 

gradient of 0.5 ml 80% (v/v) on the bottom, 2 ml 52% (v/v) in between and 2 ml 26% (v/v) 

percoll on the top in a 13 x 51 mm centrifuge tube. The 80% percoll solution was prepared by 
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mixing 4 parts 100% percoll with 1 part of 5x solution B to maintain isotonic conditions during 

the centrifugation procedure. The 52% and 26% percoll solutions were diluted from the 80% 

percoll solution with 1x solution B. The gradient was centrifuged at 23000rpm for 45 min at 

4°C in a Beckman MLS-50 rotor. The fraction containing the purified mitochondria was 

carefully aspirated from the 26%-52% interface, diluted to a final volume of 1.5 ml with 

solution B and centrifuged at 16.000 x g, 4°C for 10 min to remove residual percoll. This 

washing step was repeated once or twice. The final pellet of purified mitochondria was 

resuspended in solution B.    

4.2.4.3 Na2CO3 extraction of mitochondrial proteins 

For the separation of soluble and membrane bound mitochondrial proteins, enriched 

mitochondria were resuspended in 0.1M Na2CO3, pH 11.5 to a concentration of 0.3 mg/ml. 

Mitochondria were incubated 30 min on ice and centrifuged at 100000g for one hour at 4°C. 

The pellet was washed with H2O and resuspended in SDS loading buffer. The supernatant 

was precipitated with TCA as described above.  

4.2.4.4 Protease treatment of mitochondria 

The submitochondrial localization of proteins was determined by means of external PK and 

trypsin addition in this study. Either, the localization of endogenous proteins were 

determined, or proteins were first transiently expressed in cell culture from a plasmid. 

Mitochondria were enriched as described above and concentrated to 1 mg/ml. PK and 

trypsin were freshly prepared and dissolved in 10 mM Hepes pH 7.6 to a concentration of 5 

mg/ml. 2 µl of protease were added to 100 µl of mitochondria to obtain a final concentration 

of 100 µg/ml. The samples were incubated at 10 min on ice and inhibition of PK occurred by 

PMSF with a final concentration of 1 mM for further 10 min on ice. Trypsin was inhibited by 

means of a specific trypsin inhibitor using 30x excess of inhibitor compared to trypsin. Finally, 

mitochondrial proteins were precipitated by TCA as described above and digestions were 

analyzed by Western blot.  

4.2.4.5 Hypotonic swelling of mitochondria  

The outer mitochondrial membrane was selectively disrupted by hypotonic swelling of 

mitochondria in 10 mM Hepes pH 7.6 for 15 min at 4°C. Efficiency and selectivity of outer 

membrane disruption was examined by PK treatment and subsequent Western blotting with 

antibodies detecting marker proteins of the respective mitochondrial subcompartments.  
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4.2.4.6 In vitro translation 

Proteins were synthesized in a cell free reticulocyte lysate system as radioactive precursors 

for mitochondrial in vitro import studies. Transcription and translation occurred by means of 

the TnT Coupled Reticulocyte Lysate Systems (Promega). As a DNA template, 1 µg pcDNA 

3.1 containing the respective coding sequence was applied. In respect to the T7 promoter of 

the plasmid, transcription was conducted by a T7 RNA polymerase in the assay. The 

proteins were radioactively labeled during translation by the addition of 35S methionine 

(Hartmann Analytic). The translation occurred according to the protocol of the manufacturer 

and translation was stopped by the addition of 5x stop translation buffer (to 1x; 1.25 M 

sucrose, 10 mM methionine). The efficiency of translation was determined by SDS-PAGE 

and Western blot. The Western blot membrane was exposed to a Fuji medical X-ray film for 

12 h and the film was developed in a CURIX 80 system (AGFA).  

4.2.4.7 Mitochondrial in vitro import studies 

To study the import of a protein into mitochondria in vitro, mitochondria were first enriched 

from HEK-293 cells and the precursor protein was synthesized in vitro. Mitochondria were 

pelleted and gently resuspended in import buffer (250 mM sucrose, 5 mM magnesium 

acetate, 80 mM potassium acetate, 10 mM sodium succinate, 1 mM DTT freshly from stock, 

0.1 mM ATP pH 7.4 freshly from stock, 20 mM Hepes-KOH pH 7.6) to a final concentration of 

1 mg/ml. Import reactions were each carried out with 100 µl mitochondria and 5 µl radioactive 

precursor in 1.5 ml Eppendorf tubes at 37°C and 400 rpm shaking under eight conditions:    

A1) 5 min import reaction, +ΔΨ                                                                                                            

A2) 15 min import reaction, +ΔΨ  

A3) 45 min import reaction, +ΔΨ  

A4) 45 min import reaction, -ΔΨ (addition of 2 µl 1 mg/ml valinomycin prior to the import 

reaction) 

A5) 45 min import reaction, +ΔΨ, -ATP (preparation of import buffer without ATP) 

 

After the import reaction, samples A1-A5 were centrifuged at 12.000 x g for 5 min and rinsed 

with 150 µl import buffer lacking ATP and DTT. Pellets were resuspended in 100 µl detergent 

buffer (1% digitonin, 20mM Bis-Tris, 50mM NaCl, 10% glycerol) and incubated 30 min on ice. 

Samples were centrifuged at maximum speed and supernatants were loaded on BN-PAGE 

with subsequent Western blotting. The Western blot membrane was exposed to an X-ray 
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cassette (Fuji) for at least one week and signals were detected by a Typhoon Trio Variable 

Mode Imager (Amersham Biosciences). 
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5 Appendix 

5.1 Primers 

Name Sequence (RESTRICTION SITE), 5’→3’ Purpose 

5’FW FLMSO-GFP cccAAGCTTatgctgctgcagctatacag Cloning, SO 

3’REV MSO ohne stop1  ccgGAATTCtgggaccacctgaacatggac Cloning, SO 

5’FW ohneleaderMSO-
GFP 

cccAAGCTTatggagtcaccacggatgtactc Cloning, SO 

153-for  cagcGAGCTCatggagtcaccacggatg Cloning, SO  

154-rev ctgcagGTCGACttatgggaccacctgaac Cloning, SO  

His119Ala sense cacaaaatttgtggacctggctccaggaggaccatcaaa Mutagenesis, SO 

His119Ala antisense ttttgatggtcctcctggagccaggtccacaaattttgtg Mutagenesis, SO 

His144Ala sense gccctctatgctgtggccaaccagccccatgt Mutagenesis, SO 

His144Ala antisense acatggggctggttggccacagcatagagggc Mutagenesis, SO 

Arg367His sense catggcttccctgtacacgtggtggttcctggtg Mutagenesis, SO 

Arg367His antisense caccaggaaccaccacgtgtacagggaagccatg Mutagenesis, SO 

Lys380Arg sense tgcccgtcatgtcagatggctcggcagag Mutagenesis, SO 

Lys380Arg antisense ctctgccgagccatctgacatgacgggca Mutagenesis, SO 

Gly531Asp sense tctggaaccttcgggacgtactcagcaatgc Mutagenesis, SO 

Gly531Asp antisense gcattgctgagtacgtcccgaaggttccaga Mutagenesis, SO 

5’FW TIM50 atggcggcctcggcggctctgtt                    Cloning, SO-TIM50 

3’REV TIM50 tcagggctgcttggagcgaggcc Cloning, SO-TIM50 

5’FW 
TIMmembraneÜberhang 

gataactcaaggactattgcgctctggatcgccggtttgctc
gga 

Cloning, SO-TIM50 

3’REV TIMmembrane aaaaatatagacgatgct Cloning, SO-TIM50 

5’FW MSOTIMüberhang agcatcgtctatatttttcacaacaaccctaaaactggagtc
tgggta 

Cloning, SO-TIM50 

3’REV MSOTIM agtccttgagttatcatca Cloning, SO-TIM50 

5’FWmARC1-GFP cccAAGCTTatgggcgccgccggctcctc Cloning, mARC1 

3’REVmARC1-GFP cggGGTACCaactggcccagcaggtacacag Cloning, mARC1 

3’RevmARC1pcDNA ccgGAATTCctggcccagcaggtacacag Cloning, mARC1 

3’RevmARC1pcdnastop ccgGAATTCttactggcccagca Cloning, mARC1 

3’RevmARC1erste20 cggGGTACCaagggccgggattgcgcgagga Cloning, mARC1 

3’RevmARC1erste44 cggGGTACCaatgcgcggcgccaggcgacag Cloning, mARC1 

5’FWmARC1hydrophob cccAAGCTTatggggtggctcggggttgcc Cloning, mARC1 

5’FWmARC1ohneleader cccAAGCTTatgtggcccacgcggcgccggcg Cloning, mARC1 

Tab. 5.1 Primers used in this study 
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5.2 Constructs 

CDS Construct Restriction sites Source 

MSO  pcDNA3.1:WT-MSO HindIII+EcoRI this study 

MSO pcDNA3.1: WT-MSO, stop codon HindIII+EcoRI this study 

MSO pcDNA3.1: WT-MSO, Δaa1-80 HindIII+EcoRI this study 

MSO pcDNA3.1: WT-MSO, Δaa166-546   HindIII+EcoRI this study 

MSO  pcDNA3.1: MSO-R367H-K380R, stop codon HindIII+EcoRI this study 

MSO pcDNA3.1: MSO-R367H-H380R HindIII+EcoRI this study 

MSO  pcDNA3.1: MSO-H119A-H144A, stop codon HindIII+EcoRI this study 

MSO pcDNA3.1: MSO-H119-H144A, Δaa166-546 HindIII+EcoRI this study 

MSO pcDNA3.1: MSO-G531D, stop codon HindIII+EcoRI this study 

MSO  pcDNA3.1: WT-MSO, Δaa64-84, Insert: aa66-

86 of mouse TIM50  

HindIII+EcoRI this study 

MSO pcDNA3.1: MSO-R367H-K380R, Δaa64-84, 

Insert: aa66-86 of mouse TIM50 

HindIII+EcoRI this study 

MSO pQE80: WT-MSO, Δaa1-80 SacI+SalI this study 

MSO  pQE80: MSO-R367H-K380R, Δaa1-80 SacI+SalI this study 

MSO pQE80: MSO-H119A-H144A, Δaa1-80 SacI+SalI this study 

MSO  pQE80: MSO-G531D, Δaa1-80 SacI+SalI this study 

Human 

IMP1 

shRNA 

pJET1.2: CMV promoter fused to base pairs 

91-111 of the human IMMP1L coding 

sequence, sense sequence  

- this study 

Human 

IMP1 

shRNA 

pJET1.2: CMV promoter fused to base pairs 

91-111 of the human IMMP1L coding 

sequence, antisense sequence  

- this study 

mARC1 pcDNA3.1: WT-mARC1 HindIII+EcoRI this study 

mARC1 pcDNA3.1: WT-mARC1, stop codon HindIII+EcoRI this study 

mARC1 pcDNA3.1: WT-mARC1, Δaa1-20+stop codon HindIII+EcoRI this study 

mARC1 pcDNA3.1: WT-mARC1, Δaa1-40+stop codon HindIII+EcoRI this study 

mARC1 pEGFP-N1: WT-mARC1 HindIII+KpnI this study 

mARC1  pEGFP-N1: WT-mARC1, Δaa1-20 HindIII+KpnI this study 

mARC1 pEGFP-N1: WT-mARC1, Δaa1-40 HindIII+KpnI this study 

mARC1 pEGFP-N1: WT-mARC1, Δaa21-40 HindIII+KpnI this study 

Tab. 5.2 Constructs used in this study 
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5.3 Sequences 

5.3.1 Mouse SO: 

Depicted is the peptide sequence of MSO with highlighted individual domains:  

underlined: cleaved mitochondrial targeting sequence; (Kisker et al., 1997)    

fat: predicted N-terminal MTS; http://ihg.gsf.de/ihg/mitoprot.html   

yellow: predicted transmembrane domain; http://phobius.sbc.su.se/ 

red: heme domain; (Kisker et al., 1997) 

green: Moco domain; (Kisker et al., 1997) 

blue: dimerization domain; (Kisker et al., 1997) 

 

        10         20         30         40         50         60  

MLLQLYRSVV VRLPQAIRVK STPLRLCIQA CSTNDSLEPQ HPSLTFSDDN SRTRRWKVMG  

 

        70         80         90        100        110        120  

TLLGLGVVLV YHEHRCRASQ ESPRMYSKED VRSHNNPKTG VWVTLGSEVF DVTKFVDLHP  

 

       130        140        150        160        170        180  

GGPSKLMLAA GGPLEPFWAL YAVHNQPHVR ELLAEYKIGE LNPEDSMSPS VEASDPYADD  

 

       190        200        210        220        230        240  

PIRHPALRIN SQRPFNAEPP PELLTEGYIT PNPIFFTRNH LPVPNLDPHT YRLHVVGAPG  

 

       250        260        270        280        290        300  

GQSLSLSLDD LHKFPKHEVT VTLQCAGNRR SEMSKVKEVK GLEWRTGAIS TARWAGARLC  

 

       310        320        330        340        350        360  

DVLAQAGHRL CDSEAHVCFE GLDSDPTGTA YGASIPLARA MDPEAEVLLA YEMNGQPLPR  

 

       370        380        390        400        410        420  

DHGFPVRVVV PGVVGARHVK WLGRVSVESE ESYSHWQRRD YKGFSPSVDW DTVNFDLAPS  

 

       430        440        450        460        470        480  

IQELPIQSAI TQPQDGAIVE SGEVTIKGYA WSGGGRAVIR VDVSVDGGLT WQEAELEGEE  

 

       490        500        510        520        530        540  

QCPRKAWAWR IWQLKAQVPA EQKELNIICK AVDDSYNVQP DTVAPIWNLR GVLSNAWHRV  

 

 

HVQVVP  

 

 

 

http://phobius.sbc.su.se/
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5.3.2 Human mARC1: 

Depicted is the peptide sequence of mARC1 with its dual mitochondrial targeting signal: 

fat: N-terminal MTS; according to this study 

yellow: predicted transmembrane domain; http://phobius.sbc.su.se/  

 
 
        10         20         30         40         50         60 

MGAAGSSALA RFVLLAQSRP GWLGVAALGL TAVALGAVAW RRAWPTRRRR LLQQVGTVAQ  

 

        70         80         90        100        110        120  

LWIYPVKSCK GVPVSEAECT AMGLRSGNLR DRFWLVINQE GNMVTARQEP RLVLISLTCD  

 

       130        140        150        160        170        180  

GDTLTLSAAY TKDLLLPIKT PTTNAVHKCR VHGLEIEGRD CGEATAQWIT SFLKSQPYRL  

 

       190        200        210        220        230        240  

VHFEPHMRPR RPHQIADLFR PKDQIAYSDT SPFLILSEAS LADLNSRLEK KVKATNFRPN  

 

       250        260        270        280        290        300  

IVISGCDVYA EDSWDELLIG DVELKRVMAC SRCILTTVDP DTGVMSRKEP LETLKSYRQC  

 

       310        320        330  

DPSERKLYGK SPLFGQYFVL ENPGTIKVGD PVYLLGQ  

 
 
 
 
 
 

http://phobius.sbc.su.se/
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