Supramolekulare Polymere mit chiralen Cobalt-Komplexen

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Thomas Justus Liebig

aus Leverkusen

Köln

2012

Berichterstatter/in:

Prof. Dr. U. Ruschewitz Prof. Dr. A. Klein

Vorsitzender:

Beisitzer:

Dr. I. Pantenburg

Prof. Dr. L. Bohatý

Tag der letzten mündlichen Prüfung:

19.10.2012

Die Wissenschaft fängt eigentlich erst da an interessant zu werden, wo sie aufhört.

Justus von Liebig

Die experimentellen Untersuchungen für die vorliegende Arbeit wurden von März 2009 bis August 2012 im Department für Chemie der Universität zu Köln unter Anleitung von Professor Dr. Uwe Ruschewitz durchgeführt.

Kurzzusammenfassung

Durch Umsetzung der chiralen Komplexe $[Co(en)_3]I_3$ bzw. $[Co(sep)]Cl_3$ mit Silber- oder Bleicarboxylaten konnten elf neue supramolekulare Polymerverbindungen, davon acht in azentrischen Raumgruppen, synthetisiert und mit Hilfe der Röntgeneinkristallstrukturanalyse charakterisiert werden. In sieben Verbindungen konnte der $[Co(en)_3]^{3+}$ -Komplex als SBU (*secondary building unit*) eingebaut werden. Vier weitere Verbindungen konnten auf Basis des $[Co(sep)]^{3+}$ -Komplexes hergestellt werden. Als typische Koordinationsumgebungen der Komplexe konnten T-förmige Geometrien im Fall des $[Co(en)_3]^{3+}$ -Komplexes und trigonal planare Geometrien im Fall des $[Co(sep)]^{3+}$ -Komplexes gefunden werden. Dies hat entscheidenden Einfluss auf die Topologie der resultierenden Netzwerke.

In den Kristallstrukturen der Verbindungen des Typs $\frac{1}{\infty} \left\{ \Lambda - [\operatorname{Co}(en)_3]_2 \operatorname{L}_3 \right\}$ mit L = EDC²⁻, BDC²⁻ (EDC = Fumarat; BDC = Terephthalat) kann ein leiterartiges eindimensionales Strukturfragment beobachtet werden. Die $[\operatorname{Co}(en)_3]^{3+}$ -Komplexe sind über lineare rigide Linker-Anionen zu 4³-Netzwerken verknüpft. Sonderfälle stellen die Verbindung $\frac{2}{\infty} \left\{ [\operatorname{Co}(en)_3] \operatorname{ADC}_{3/2} \right\} \cdot 4 \operatorname{H}_2 O$ mit zu zweidimensionalen Schichten verknüpften Leiterfragmenten und $\frac{2}{\infty} \left\{ [\operatorname{Co}(en)_3] \operatorname{BTC} \right\} \cdot 5,55 \operatorname{H}_2 O$ mit dem trifunktionellen Trimesatanion und dem daraus folgenden Aufbau zweidimensionaler 6³-Netzwerke dar.

Durch Anwesenheit von NO_3^{-} -Anionen konnten Verbindungen des Typs ${}^{3}_{\infty} \left\{ [Co(en)_3] L(NO_3) \right\} \cdot 2 H_2 O$ mit $L = EDC^{2-}$, BSA²⁻ erhalten werden. Die Nitratanionen koordinieren verbrückend am Stickstoff-Kohlenstoffgerüst des Komplexes unter Aufbau einer T-förmigen Geometrie. Dies führt zur Ausprägung entsprechender Doppelstränge, die über die Linker in die anderen beiden Raumrichtungen zu einem 3D-Netzwerk verknüpft sind.

Aufgrund der nahezu kugelsymmetrischen Abschirmung des zentralen Co^{3+} -Atoms zeigen die SBUs der Verbindungen des Typs ${}_{\infty}^{1} \{ [Co(sep)]_{2} L_{3} \}$ mit $L = EDC^{2-}$, BDC²⁻, BSA²⁻ eine trigonal planare Geometrie, die zum Aufbau eines zweidimensionalen 6³-Netzwerkes führt. Eine Ausnahme bildet die Verbindung ${}_{\infty}^{1} \{ \Lambda - [Co(sep)] PDC (HPDC) \} \cdot 5 H_{2}O$, in der nicht vollständig deprotonierte Malonsäureanionen zum Aufbau einer eindimensionalen helikalen Struktur führen.

Abstract

By reaction of the chiral complexes $[Co(en)_3]I_3$ and $[Co(sep)]Cl_3$ with silver and lead carboxylates eleven new supramolecular coordination polymeres, eight of them crystallizing in acentric space groups, were synthesised and their crystal structures were solved and refined from X-ray single crystal diffraction data. In seven compounds the $[Co(en)_3]^{3+}$ complex was assembled as SBU. Four further compounds are based on the $[Co(sep)]^{3+}$ complex. Typical geometries of the coordination spheres are T-shaped in case of the $[Co(en)_3]^{3+}$ complex and trigonal planar in case of the $[Co(sep)]^{3+}$ complex. This influences the topology of the resulting networks.

In the crystal structures of the compounds of type ${}_{\infty}^{1} \left\{ \Lambda - [\operatorname{Co}(en)_{3}]_{2} \operatorname{L}_{3} \right\}$ with $L = \operatorname{EDC}^{2-}$, BDC^{2-} the $[\operatorname{Co}(en)_{3}]^{3+}$ complexes are connected via linear rigid bridging ligand anions, forming a ladder-like 4^{3} topology. Exceptions are ${}_{\infty}^{2} \left\{ [\operatorname{Co}(en)_{3}]\operatorname{ADC}_{3/2} \right\} \cdot 4 \operatorname{H}_{2}\operatorname{O}$ with two-dimensional layers formed by linked ladder-like fragments and ${}_{\infty}^{2} \left\{ [\operatorname{Co}(en)_{3}]\operatorname{BTC} \right\} \cdot 5,55 \operatorname{H}_{2}\operatorname{O}$ with the trifunctional trimesic acid anion resulting in a 2D topology with 6^{3} nets.

In the presence of NO_3^- -anions compounds of type ${}^2_{\infty} \{ [Co(en)_3] L(NO_3) \} \cdot 2 H_2O$ with $L = EDC^{2-}$, BSA²⁻ were obtained. The nitrate anions connect the nitrogencarbon-shell forming a T-shaped geometry. This results in double strands, linked via bridging ligand anions in the other spatial directions to form a three-dimensional network.

Due to its spherical shielding around the central Co^{3+} atom, the SBUs of ${}^{1}_{\infty}$ { $[Co(sep)]_{2} L_{3}$ }-type compounds with L = EDC²⁻, BDC²⁻, BSA²⁻ exhibit trigonal planar geometries, thus forming 6³ networks. In contrast to these three compounds, the partial deprotonation of malonic acid leads to a one-dimensional helical structure in ${}^{1}_{\infty}$ { Λ -[Co(sep)] PDC (HPDC)} $\cdot 5 H_{2}O$.

Inhaltsverzeichnis

1	Ein	leitung und Intention	1		
	1.1	Linker	4		
	1.2	Der Tris-1,2-Ethylendiamin-Cobalt(III)- Komplex	5		
	1.3	Clathrochelate	7		
	1.4	Intention	8		
2	Un	Untersuchungsmethoden			
	2.1	Charakterisierung	9		
	2.	1.1 Einkristalldiffraktometrie	9		
	2.	1.2 Röntgenpulverdiffraktometrie	11		
	2.	1.3 Synchrotron-Pulverdiffraktometrie	13		
	2.	1.4 Polarimetrie	14		
	2.	1.5 UV-VIS-Spektroskopie	15		
	2.	1.6 IR-Spektroskopie (MIR)	16		
	2.	1.7 Elementaranalyse	17		
3	Erg	Ergebnisse und Diskussion 1			
	3.1	Nomenklatur der Verbindungen	19		
	3.2	$eq:Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	21		
	3.1	2.1 Azentrische Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate	23		
		${}^{1}_{\infty} \left\{ \Lambda - [\operatorname{Co}(\operatorname{en})_{3}]_{2} \text{EDC}_{3} \right\} \cdot 11,25 \operatorname{H}_{2} O \dots \dots \dots \dots \dots \dots \dots \dots \dots $	23		
		$ {}^{1}_{\infty} \left\{ \Lambda - [\operatorname{Co}(\operatorname{en})_{3}]_{2} BDC_{3} \right\} \cdot 20 \operatorname{H}_{2}O \ldots \ldots$	30		
	3.	2.2 Azentrische Tris-1,2-Éthylendiamin-Cobalt(III)-Nitrat-Carboxylate	36		
		${}_{\infty}^{2} \left\{ \left[\operatorname{Co}(en)_{3} \right] L(NO_{3}) \right\} \cdot 2 \operatorname{H}_{2}O \operatorname{mit} L = \operatorname{EDC}^{2\text{-}}, \operatorname{BSA}^{2\text{-}} \ldots \ldots \ldots \ldots \ldots$	37		
	3.	2.3 Zentrosymmetrische Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate	47		
		${}_{\infty}^{2} \left\{ [Co(en)_{3}]ADC_{3/2} \right\} \cdot 4 H_{2}O$	47		
		$ {}^{1}_{\infty} \left\{ [\mathrm{Co(en)_{3}}] \mathrm{BDC}_{3/2} \right\} \cdot 10 \mathrm{H_{2}O} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	54		
		$^{2}_{\infty}$ { [Co(en) ₃]BTC } \cdot 5,55 H ₂ O	60		
	3.3	Sepulchrat-Cobalt(III)-Carboxylate	66		

	$\begin{array}{l} 3.3.1 \ Azentrische \ Sepulchrat-Cobalt(III)-Carboxylate \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	67 67 73 78 84
4	Zusammenfassung und Ausblick 4.1 Strukturfragmente 4.1.1 Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate 4.1.2 Tris-1,2-Ethylendiamin-Cobalt(III)-Nitrat-Carboxylate 4.1.3 Sepulchrat-Cobalt(III)-Carboxylate 4.2 Ausblick	 89 90 91 93 94 96
5	Experimenteller Teil	99
	5.1 Allgemeines	99
	5.1.1 Verwendete Chemikalien	99
	5.2 Synthesemethoden \ldots	101
	$5.2.1$ Racemattrennung \ldots	101
	5.2.2 Präzipitationsreaktionen	101
	5.2.3 Isothermes Verdampfen	102
	5.3 Synthese	103
	5.3.1 Synthese der Edukte	103
	5.4 Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate	110
	5.4.1 Azentrische Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate	110
	$ {}^{1}_{\infty} \left\{ \Lambda - [\operatorname{Co}(\operatorname{en})_{3}]_{2} \mathrm{EDC}_{3} \right\} \cdot 11,25 \mathrm{H}_{2} \mathrm{O} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	110
	$ \sum_{\infty} \left\{ \Lambda - [Co(en)_3]_2 BDC_3 \right\} \cdot 20 H_2 O \dots $	110
	5.4.2 Azentrische Tris-1,2-Ethylendiamin-Cobalt(III)-Nitrat-Carboxylate	111
	${}_{\infty}^{2} \left\{ \Delta - [\mathrm{Co(en)}_{3}] \mathrm{EDC} (\mathrm{NO}_{3}) \right\} \cdot 2 \mathrm{H}_{2}\mathrm{O} \ldots \ldots$	111
	${}^{2}_{\infty}$ { Λ -[Co(en) ₃] BSA (NO ₃) } $\cdot 2 H_{2}O$	111
	5.4.3 Zentrosymmetrische Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate .	112
	${}_{\infty}^{1} \left\{ [Co(en)_3] ADC_{3/2} \right\} \cdot 4 H_2 O \dots $	112
	$ \frac{1}{2} \left\{ \left[\text{Co(en)}_3 \right] \text{BDC}_{3/2} \right\} \cdot 10 \text{ H}_2 \text{O} \dots \dots$	112
	$^{2}_{2}$ { [Co(en) ₃]BTC } \cdot 11,23 H ₂ O	113
	5.5 Sepulchrat-Cobalt(III)-Carboxylate	114
	5.5.1 Azentrische Sepulchrat-Cobalt(III)-Carboxylate	114

${}_{\infty}^{2} \left\{ \Lambda - [\operatorname{Co}(\operatorname{sep})]_{2} \operatorname{EDC}_{3} \right\} \cdot 10 \operatorname{H}_{2} \operatorname{O} \ldots \ldots$	114
$ \sum_{\infty}^{2} \left\{ \Lambda - [\operatorname{Co(sep)}] \operatorname{BDC}_{3/2} \right\} \cdot 10 \operatorname{H}_{2} \operatorname{O} \ldots \ldots$	114
${}^{2}_{\infty} \left\{ \Lambda - [\operatorname{Co}(\operatorname{sep})]_{2} \operatorname{BSA}_{3} \right\} \cdot 15 \operatorname{H}_{2} \operatorname{O} \ldots \ldots$	115
$ {}^{1}_{\infty} \left\{ \Lambda - [Co(sep)] PDC (HPDC) \right\} \cdot 5 H_{2}O \dots \dots$	115
Literaturverzeichnis	117
6 Appendix	121
6.1 Tris-1,2-Ethylendiamino-Cobalt(III)-Carboxylate	121
6.1.1 Azentrische Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate	121
${}_{\infty}^{1} \left\{ \Lambda - [\mathrm{Co(en)}_{3}]_{2} \mathrm{EDC}_{3} \right\} \cdot 11,25 \mathrm{H}_{2} \mathrm{O} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	121
$ \stackrel{1}{\propto} \left\{ \Lambda - [\operatorname{Co}(\operatorname{en})_3]_2 \operatorname{BDC}_3 \right\} \cdot 20 \operatorname{H}_2 \operatorname{O} \ldots \ldots$	134
6.1.2 Azentrische Tris-1,2-Ethylendiamin-Cobalt(III)-Nitrat-Carboxylate	148
${}_{\infty}^{2} \left\{ \Delta - [\operatorname{Co}(\operatorname{en})_{3}] \operatorname{EDC}(\operatorname{NO}_{3}) \right\} \cdot 2 \operatorname{H}_{2} \operatorname{O} \ldots \ldots$	148
${}^{2}_{\infty}$ $\left\{ \Lambda - [Co(en)_{3}] BSA(NO_{3}) \right\} \cdot 2 H_{2}O \dots \dots$	155
6.1.3 Zentrosymmetrische Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate	162
${}_{\infty}^{2} \left\{ [Co(en)_{3}]ADC_{3/2} \right\} \cdot 4 H_{2}O$	162
$ {}^{1}_{\infty} \left\{ [\mathrm{Co(en)_{3}}] \mathrm{BDC}_{3/2} \right\} \cdot 10 \mathrm{H_{2}O} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	169
${}^{2}_{\infty}$ { [Co(en) ₃]BTC } \cdot 5,55 H ₂ O	177
6.2 Sepulchrat-Cobalt(III)-Carboxylate	189
6.2.1 Azentrische Sepulchrat-Cobalt(III)-Carboxylate	189
${}_{\infty}^{2} \left\{ \Lambda - [\mathrm{Co(sep)}]_{2} \mathrm{EDC}_{3} \right\} \cdot 16 \mathrm{H}_{2} \mathrm{O} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	189
${}^{2}_{\infty} \left\{ \Lambda - [\operatorname{Co}(\operatorname{sep})] \operatorname{BDC}_{3/2} \right\} \cdot 10 \operatorname{H}_{2} \operatorname{O} \ldots \ldots$	204
${}^{2}_{\infty}$ { Λ -[Co(sep)] ₂ BSA ₃ } \cdot 15 H ₂ O	214
$ \stackrel{1}{\propto} \left\{ \Lambda - [Co(sep)] PDC (HPDC) \right\} \cdot 5 H_2 O \dots $	242

Dank

Abkürzungen und Synonyme

Abb.	Abbildung
ADC^{2-}	Acetylendicarboxylat ($C_4O_4^{2-}$)
BDC^{2} -	Terephthalat $(C_8H_4O_4^{2-})$
bipy	Bipyridin $(C_{10}H_8N_2)$
BSA^{2-}	Succinat $(C_4H_4O_4^{2-})$
BTC^{3-}	Trimesat $(C_9H_3O_6^{3-})$
ca.	lat. circa für: "ungefähr", "annähernd"
DMF	Dimethylformamid (C_3H_7NO)
DMSO	Dimethylsulfoxid (C_2H_6OS)
dtc	Diethyldithiocarbamat ($C_5H_{10}NS_2$)
EDC^{2} -	Fumarat ($C_4H_2O_4^{2-}$)
en	Ethylendiamin/ Ethan-1,2-diamin $(\mathrm{C_2H_8N_2})$
et al.	lat. et alii für "und andere"
FIR	ferne Infrarotstrahlung
GooF	Goodness of Fit
hkl	Millersche Indizes
INA ⁻	Isonicotinat ($C_6H_5NO_2^-$)
int.	intern
IPDS	Imaging Plate Diffraction System
konz.	konzentriert
L	Ligand
max	maximal
min	minimal
mind.	mindestens
MIR	mittlere Infrarotstrahlung
MOF	metal-organic frameworks
NIR	nahe Infrarotstrahlung
NLO	nicht-lineare optische Effekte
Ø	Durchmesser
RT	Raumtemperatur
SBU	secondary building unit
sep	Sepulchrat
Tab.	Tabelle
vgl.	vergleiche

1 Einleitung und Intention

In den letzten Jahren spielte die gezielte Synthese von Verbindungen mit definierten Netzwerkstrukturen zunehmend eine große Rolle[1-4]. Vor allem Supramolekulare Verbindungen und Koordinationspolymere werden in diesem Kontext unterschieden^[5,6]. Für letztere werden auch die Bezeichnungen MOCNs (metal-organic coordination networks) oder MOFs (metal-organic frameworks) verwendet.^[6,7]. Ob die permanente Porosität der Strukturen und damit die Möglichkeit zur Aufnahme von Gastmolekülen Voraussetzung für die Bezeichnung "MOF" ist, wird zur Zeit von der International Union of Pure and Applied Chemistry (IUPAC) diskutiert.^[8-10] Beide Verbindungsklassen weisen einen modularen Aufbau aus geeigneten Strukturfragmenten, eine Art chemischer Setzkasten, auf. Die Auswahl geeigneter Bausteine mit besonderen strukturdirigierenden Eigenschaften steht dabei im Vordergrund. Schmidt et al. führten 1971 für dieses Vorgehen den Begriff des crystal engineerings $ein^{[11]}$. Im Jahr 1989 konkretisierte Desiraju die Definition und bezeichnet das crystal engineering frei übersetzt als "das Verständnis der intermolekularen Wechselwirkungen im Kontext kristalliner Packung und die Anwendung dieses Verständnisses zum Design neuer Festkörper mit gewünschten physikalischen und chemischen Eigenschaften"^[12]. Bekannt aus der klassischen organischen Chemie führt der Weg dabei über einen retrosynthetischen Ansatz^[13]. Die einzelnen Bausteine gliedern sich in die sogenannten Tektone^[14], also funktionelle Moleküle oder Metallzentren, und die Knotenpunkten zwischen diesen Bausteinen, die sogenannten $Synthone^{[15]}$, die heute meist als SBU (secondary building unit) bezeichnet werden. Supramolekulare Verbindungen und Koordinationspolymere unterschieden sich hauptsächlich durch die Art der chemischen Wechselwirkung zwischen diesen Bausteinen. In Koordinationspolymeren wird der Selbstorganisationsprozess durch koordinative Bindungen gelenkt, während in supramolekularen Verbindungen gerichtete Wasserstoffbrücken und andere intermolekulare Wechselwirkungen den Aufbau verschiedener Topologien ermöglichen^[16,17]. Trotz dieser Unterscheidung ist das Ziel beider Disziplinen oft dasselbe: Der Aufbau definierter ein- und mehrdimensionaler Netzwerke in kristallinen Festkörpern^[18].

Die "unendliche" Verknüpfung in verschiedenen Dimensionalitäten erfolgt in Koordinationspolymeren dabei über zwei Arten von Bausteinen: anorganische Knotenpunkte, meist Metallzentren, und so genannte Linker, rigide organische Moleküle mit mindestens zwei terminalen funktionellen Gruppen. Die Klasse der Linkermoleküle wird in Kapitel 1.1 genauer vorgestellt. Als Knotenpunkte dienen häufig Metallkationen der Übergangsmetalle^[19–22], seltener ist der Einsatz von Hauptgruppenelementen^[23,24]. Auch Metall-Oxo-Cluster können die Funktion der SBU übernehmen, wie beispielsweise in MOF-5.^[8]

Da im Bereich der supramolekularen Verbindungen nicht zwangsläufig ein Metallzentrum vorliegen muss, ist diese Klasse von Verbindungen deutlich inhomogener. Im Gegensatz zu den Koordinationspolymeren sind hier zusätzlich Beispiele für homomolekulare Verbindungen bekannt^[17,25,26]. Das prominenteste Beispiel ist an dieser Stelle sicher die Benzol-1,3,5-tricarbonsäure (Trivialname: Trimesinsäure), in deren Kristallstruktur die einzelnen Moleküle über Wasserstoffbrücken an den terminalen Carboxylatfunktionen verbunden sind^[27]. Jedoch gibt es gerade im Bereich der supramolekularen Verbindungen auch Beispiele für Metall-Komplexe als Knotenpunkte, an denen die Verknüpfung in der zweiten Koordinationssphäre erfolgt^[28,29].

Die strukturellen Analogien beider Verbindungklassen können gut in den Kristallstrukturen der supramolekularen Verbindung $Pt(HINA)_2 (INA)_2 \cdot 2 H_2O$ mit $INA = Isonicotinat und dem Koordinationspolymer Zn(4,4'-bipy)_2SiF_6 \cdot 2 H_2O$ mit 4,4'-bipy=4,4'-Bipyridin beobachtet werden.^[5,30,31] In beiden Verbindungen erfolgt eine quadratische Verknüpfung der Metallzentren über Pyridin-Derivate, wie in Abbildung 1.1 gegenübergestellt.

Abb. 1.1: Vergleichbare quadratische Netzwerke in der supramolekularen Verbindung $Pt(HINA)_2 (INA)_2 \cdot 2 H_2 O^{[30]}$ (links) und dem Koordinationspolymer $Zn(4,4'-bipy)_2 SiF_6 \cdot 2 H_2 O^{[31]}$ (rechts).

Neben diesen strukturellen Merkmalen schaffen in beiden Verbindungsklassen Eigenschaften wie Chiralität, Magnetismus, Leitfähigkeit, Lumineszenz, Spin-Crossover-Verhalten, Porosität, katalytische Eigenschaften und nicht-lineare optische Effekte (NLO) großes Interesse für die anwendungsorientierte Forschung und den industriellen Einsatz.^[6,24,32,33]

Für die heute bekannte Vielfalt der Topologien und Eigenschaften der Verbindungen mit definierten Netzwerkstrukturen sind oft die eingesetzten Linkermoleküle verantwortlich.^[6] Wenig Aufmerksamkeit wurde bisher der Variation der Knotenpunkte beigemessen. Da azentrisch kristallisierende Verbindungen häufig nicht-lineare optische Effekte zeigen^[34–36], liegt der gezielten Einbau chiraler Template nahe^[37]. Dies eröffnet völlig neue Möglichkeiten im Bereich der Funktionalisierung von Materialien. Als Präkursor (lat. *praecursor* für Vorläufer) bieten sich die chiralen Cobalt-Komplexe [Co(en)₃]I₃ und [Co(sep)]Cl₃ auf Grund des guten synthetischen Zugangs an. Diese Komplexe werden in Kapitel 1.2 und Kapitel 1.3 genauer vorgestellt.

1 Einleitung und Intention

1.1 Linker

Als Linkermoleküle eignen sich rigide, organische, multidentate Liganden, die über terminale funktionelle Gruppen verfügen. Häufig werden Di- oder Tricarbonsäuren wie die Acetylendicarbonsäure, die Terephthalsäure oder die Trimesinsäure eingesetzt. Definitionsgemäß muss nach Janiak *et al.* mindestens ein Kohlenstoffatom zwischen den Donoratomen liegen, so dass das Oxalsäureanion einen der kürzesten Vertreter darstellt^[6].

In Abbildung 1.2 sind die in dieser Arbeit verwendeten Linkermoleküle gegenübergestellt.

Abb. 1.2: Auswahl typischer Di- bzw. Tricarbonsäuren, deren Anionen in dieser Arbeit als Linker verwendet wurden. 1. Malonsäure, 2. Bernsteinsäure, 3. Fumarsäure, 4. Acetylendicarbonsäure, 5. Terephthalsäure und 6. Trimesinsäure. Mit Ausnahme der Bernsteinsäure weisen alle Säureanionen eine hohe Rigidität auf.

1.2 Der Tris-1,2-Ethylendiamin-Cobalt(III)- Komplex

Im Jahr 1893 revolutionierte Alfred Werner die damals tief in einer Krise steckende Koordinationschemie mit einer neuen Theorie zur Anordnung der Atome in einem Komplex.

Abb. 1.3: $[Co(en)_3]^{3+}$ in "wire and sticks"-Darstellung (links) und Valenzstrichschreibweise (rechts).

Diese Theorie gründete sich auf den Untersuchungen von Jørgensen an verschiedenen Komplexverbindungen.^[38] Später untersuchten Werner *et al.* den Einfluss dreier identischer chelatisierender Liganden auf die optische Aktivität der daraus erhaltenen Cobalt-Komplexverbindungen. In diesem Zuge gelang im Jahr 1912 die Synthese eines racemischen Gemisches des Tris-1,2-Ethylendiamin-Cobalt-Komplexes und dessen Trennung in die reinen Enatiomere^[39]. Das zentrale Cobalt-Atom ist in diesem Komplex von drei chelatisierenden Ethylendiamin-Molekülen umgeben (Abbildung 1.3). Die Stickstoff-Atome ergeben dabei ein fast ideales oktaedrisches Ligandenfeld.

Abb. 1.4: Stereoisomere des $[Co(en)_3]^{3+}$ -Komplexes. Links Λ -Konfiguration (Linkshelix), rechts Δ -Konfiguration (Rechtshelix).

Aufgrund der d⁶-low-spin-Elektronenkonfiguration des Komplexes ist dieser kinetisch inert und damit konfigurationsstabil. Dies folgt aus der Vollbesetzung des t_{2g} -Elektronenniveaus. Es

1 Einleitung und Intention

liegt somit keine Jahn-Teller-Verzerrung vor, was die Bindungsabstände, die in einem Bereich von 195 pm bis 198 pm liegen, bestätigen. Die Koordination der Ethylendiamin-Moleküle kann dabei in zwei differierenden enantiomeren Konfigurationen erfolgen. Die Anordnung der Ethylendiamin-Moleküle entlang der dreizähligen Achse des Komplexes kann als Helix beschrieben werden, die abhängig von der Drehrichtung mit den griechischen Buchstaben Λ (Linkshelix) bzw. Δ (Rechtshelix) unterschieden werden^[40]. In Abbildung 1.4 sind die möglichen Stereoisomere schematisch dargestellt.

Die optimierte Synthese des Komplexes gelang Broomhead *et al.* nach einer asymmetrischen Syntheseroute durch Aktivkohle-katalysierte Oxidation von Co(II)-Salzen in Gegenwart einer Ethylendiamin/Wasser/Ethanol-Lösung mit Luftsauerstoff. Durch fraktionierte Kristallisation mit chiralen Salzen der Weinsäure, z.B. Barium-L(+)-tartrat oder Ammonium-D(-)-tartrat, können aus dem erhaltenen Racemat die reinen Diastereomere gewonnen werden. Durch Abspaltung des chiralen Auxiliars können dann die reinen Enantiomere erhalten werden.^[41]

1.3 Clathrochelate

1.3 Clathrochelate

Clathrochelate (lat. *clathro* für "gitterartig" /griech. *chele* für "Krebsschere") bezeichnen in der Koordinationschemie mehrzähnige Liganden, die ein Metallion einkapseln. Sie sind Kryptanden wie Kryptofix 222 und der Klasse der Kronenether, beispielsweise [18]Krone-6, sehr ähnlich. Die Bindung des Metallions erfolgt durch koordinative Bindungen und kann als deutlich stärker als die gewöhnlicher chelatisierender Liganden angesehen werden.^[42] Die Synthese des in dieser Arbeit verwendeten (1,3,6,8,10,13,16,19-Octaaza-bicyclo[6.6.6]icosan)-cobalt(III)-Komplexes, Trivialname *Sepulchrat*, erfolgt auf Basis des in Kapitel 1.2 vorgestellten Tris-1,2-Ethylendiamin-Cobalt(III)- Komplexes als Templat. Durch Umsetzung von $[Co(en)_3]^{3+}$ -halogenidsalzen mit 37 %iger Formaldehyd- und verdünnter Ammoniak-Lösung in Anwesenheit von Litiumcarbonat können $[Co(sep)]^{3+}$ -Komplexe synthetisiert werden^[43]. Die Überkappung der Komplexe mit zwei N(CH₂)₃-Einheiten erfolgt dabei unter Erhalt der stereochemischen Konfiguration, so dass auch hier Λ (Linkshelix)- bzw. Δ (Rechtshelix)-Konfigurationen möglich sind. Das Stickstoff-Kohlenstoff-Gerüst des Sepulchrates hat dabei nahezu D₃- Symmetrie. In Abbildung 1.5 sind Kristallstruktur und Valenzstrichschreibweise des Sepulchrat-Cobalt(III)-Komplexes gegenübergestellt. Gut zu erkennen ist die käfigartige Umgebung des *Co*-Atoms.

Abb. 1.5: [Co(sep)]³⁺ in "wire and sticks"-Darstellung (links) und Valenzstrichschreibweise (rechts).

1.4 Intention

Ziel der vorliegenden Arbeit ist die gezielte Synthese und strukturelle Charakterisierung neuer azentrischer Hybridmaterialien auf Basis bekannter chiraler Cobalt-Komplexe und rigider Dibzw. Tri-Carbonsäureanionen. Die Wahl fiel auf den Tris-1,2-Ethylendiamin-Cobalt-Komplex, der bereits 1912 von Werner *et al.*^[39] in der Literatur beschrieben wurde. Obwohl der Komplex eine starke sterische Abschirmung des zentralen Cobalt-Atoms aufweist, sollte er als chirales Zentrum in azentrischen supramolekularen Verbindungen dienen können. Besonderes Interesse bestand in der strukturdirigierenden Wirkung der ladungsneutralen Ligandenhülle aus Ethylendiamin-Molekülen.

Auf den Tris-1,2-Ethylendiamin-Cobalt(III)-Komplex aufbauend kann der Sepulchrat-Cobalt(III)-Komplex durch Überkappung mit zwei $N(CH_2)_3$ -Einheiten hergestellt werden. Durch Einsatz dieses Komplexes soll der Einfluss einer noch stärkeren sterischen Abschirmung des zentralen Cobalt-Atoms und deren Einfluss auf den Aufbau metall-organischer Netzwerke untersucht werden.

Durch die Wahl der Linkermoleküle sollte einerseits die Vergleichbarkeit der Verbindungen ermöglicht werden, zum anderen sollte der Einfluss variierender Rigidität (Acetylendicarboxylat $ADC^{2-} > Fumarat EDC^{2-} > Succinat BSA^{2-}$; vgl. Abbildung 1.6) auf Packungseffekte in den Kristallstrukturen untersucht werden.

Abb. 1.6: Abnehmende Rigidität der Anionen der Acetylendicarbonsäure, Fumarsäure und Bernsteinsäure von links nach rechts.

2 Untersuchungsmethoden

2.1 Charakterisierung

2.1.1 Einkristalldiffraktometrie

Die Präparation von Einkristallen erfolgte auf Grund der differierenden Beschaffenheit auf verschiedenen Wegen.

Luftstabile Einkristalle wurden unter einem Mikroskop im Gegenlicht ausgewählt, mit wenig Hochvakuum-Schlifffett in einem Mark-Röhrchen ($\emptyset = 0,3$ mm) fixiert und anschließend mit einem Tropfen Pizein versiegelt. Die Qualität des Kristalls wurde teilweise durch Untersuchung mit einer Präzessionskamera überprüft. Das Mark-Röhrchen mit dem Kristall wurde anschließend auf einem Goniometerkopf feinjustiert.

Sensible Einkristalle wurden in einem Tropfen Mutterlauge unter einem viskosen Poly-(chlortrifluor-ethylen)-Öl (Uvasol[®], Merck KGaA) auf einem Objektträger mit Vertiefung ausgewählt, in ein hochviskoses Öl (Paratone-N[®], Hampton Research) überführt und mit einer Schlaufe (loop, $\emptyset = 0.5 \text{ mm}$) sofort in die Stickstoff-Kühlung des STOE-Diffraktometers (IPDS II, Mo-K α_1 -Strahlung ($\lambda = 71,073 \text{ pm}$), Graphit-Monochromator) gebracht. Die Schlaufe mit dem Kristall wurde anschließend auf einem Goniometerkopf feinjustiert.

Computergesteuerte Motoren können den Einkristall so ausrichten, dass eine gewünschte Netzebene unter Erfüllung der Braggschen Bedingung den einfallenden Primärstrahl beugt. Registriert werden die Reflexe dann bei den verwendeten Gerätetypen über Bildplatten, sogenannten *imaging plates* oder ortsempfindlichen Flächendetektoren. Die *image plate* speichert ein latentes Bild in einer europiumdotierten Bariumhalogenidschicht. Bedingt durch die höhere Absorption der Iodide wird seit etwa 20 Jahren BaFBr_{0,85}I_{0,15}:Eu²⁺ anstelle des BaFBr:Eu²⁺ verwendet. Durch von Röntgenquanten initiierte Oxidation der Europiumionen gelangen Elektronen in sogenannte Farbzentren (Elektronenfehlstellen). Beim Ausleseprozess wird durch rotes Laserlicht ($\lambda = 658$ nm) über photostimulierte Lumineszenz eine Rekombination eines ausgesendeten Photons mit Eu³⁺ ermöglicht.

2 Untersuchungsmethoden

Abb. 2.1: Aufnahme eines Kristalls der Verbindung ${}_{\infty}^{1} \{ [Co(en)_3]BDC_{3/2} \} \cdot 10 H_2O$ in einer Schlaufe im Diffraktometer

Die Vermessung der Kristalle erfolgte mit den STOE-Diffraktometern IPDS I, IPDS II und IPDS 2T (Mo-K α_1 -Strahlung ($\lambda = 71,073 \text{ pm}$), Graphit-Monochromator) bei Raumtemperatur bzw. Tieftemperatur (Schlaufe) sowie an einem Diffraktometer des Typs Nonius Kappa CCD (Mo-K α_1 -Strahlung ($\lambda = 71,073 \text{ pm}$)). Die Messdaten wurden mit Hilfe der Software STOE X-Area^[44] bzw. Nonius COLLECT^[45] verarbeitet. Die Auswertung der Daten erfolgte mit dem Programmpaket WinGX^[46]. Mit den enthaltenen Programmen SIR2004^[47] und SHELXL-97^[48] gelang über direkte Methoden die Strukturlösung sowie die anschließende sukzessive Verfeinerung. Die Programme X-Shape^[49] und X-Red^[50] dienten der Optimierung der Kristallflächen und der numerischen Absorptionskorrektur.

Aufgrund der Absorption von Röntgenstrahlen in Materie muss die Größe von Einkristallen bzw. der Durchmesser von Pulverproben in einem bestimmten Bereich liegen. Das Lambert-Beersche Gesetz der Absorption lautet:

$$I_1 = I_0 \cdot e^{(-\mu \cdot d)}$$
 (2.1)

mit:

$I_0 =$	Intensität der einfallenden Röntgenstrahlung
$I_1 =$	Intensität der transmittierten Röntgenstrahlung
d =	Dicke des Kristalls
$\mu =$	Intensitätsschwächungskoeffizient

Die optimale bzw. maximale Größe des Kristalls ergibt sich aus Gleichung 2.2 bzw. Gleichung 2.3:

$$d_{opt.} = \frac{2}{\mu} \tag{2.2}$$

$$d_{max.} = \frac{3}{\mu} \tag{2.3}$$

Es gibt Faktoren, die die Güte der Übereinstimmung von F- und F²- Werten für das theoretische F_C und für die experimentellen F_O - Werte bestimmen. Diese werden als R-/ R_1 -Werte (für ,residuals') bezeichnet. Ferner gibt es noch die gewichteten ω R-/ ω R₂- Werte. Im Idealfall sollten die R- Werte ca. 0,01, die R₂- Werte ungefähr 0,05 betragen. Ein weiteres Kriterium stellt der S- Wert dar (S = GooF = Goodness of Fit), der idealerweise bei einem Wert von 1 liegt. Die Berechnungen der Gütefaktoren für die Strukturlösung erfolgen über die Gleichungen 2.4 – 2.6:

$$R_1 = \frac{\sum_{hkl} ||F_O| - |F_C||}{\sum_{hkl} |F_O|}$$
(2.4)

$$\omega R_2 = \sqrt{\frac{\sum_{hkl} \omega (F_O^2 - F_C^2)}{\sum_{hkl} \omega (F_O^2)^2}}$$
(2.5)

$$GooF = S = \sqrt{\frac{\sum_{hkl} \omega ||F_O|^2 - |F_C|^2|^2}{m - n}}$$
(2.6)

mit:

 $\begin{array}{lll} m = & Zahl \; der \; Reflexe \\ n = & Zahl \; der \; Parameter \\ \omega = & Wichtung \\ F_O = & Größen \; der \; beobachteten \; (observed) \; Strukturfaktoren \\ F_C = & Größen \; der \; berechneten \; (calculated) \; Strukturfaktoren \\ \end{array}$

Die Positionen der Wasserstoffatome des Ethylendiamins bzw. des Sepulchratgerüsts und der Säureanionen wurden anhand der Molekülgeometrie berechnet und reitend verfeinert. Protonen an Wassermolekülen wurden frei verfeinert, sofern sie lokalisiert werden konnten. Die Visualisierung der Kristallstrukturen erfolgte mit dem Programm Diamond^[51].

2.1.2 Röntgenpulverdiffraktometrie

Beugungsuntersuchungen wurden an folgenden Röntgenpulverdiffraktometern durchgeführt:

- Huber Image Foil Guinier Camera 670, Guinier-Geometrie mit Cu-Kα₁-Strahlung, Ge-Monochromator und Bildplattendetektor (Scanbreite: 0 < 2Θ < 100°)
- STOE STADI P Transmissionsdiffraktometer, Debye-Scherrer-Geometrie mit Cu-K α_1 -Strahlung, *Ge*-Monochromator und linearer PSD (Scanbreite: $0 < 2\Theta < 140^{\circ}$)
- Huber Image Foil Guinier Camera 670, Guinier-Geometrie mit Mo-Kα₁-Strahlung, Ge-Monochromator und Bildplattendetektor (Scanbreite: 0 < 2Θ < 100°)

Dabei boten die Diffraktometer mit Cu-K α_1 -Strahlung die Möglichkeit, sowohl Kapillaren als auch Flachpräparate zu vermessen. Dazu wurden die zu messenden Proben in einem Achatmörser fein pulverisiert und entweder in ein Mark-Röhrchen aus Lindemann-Glas der Firma Müller ($\emptyset = 0,3 \text{ mm}$ und 0,5 mm) gefüllt und mit einem Tropfen Pizein versiegelt oder zwischen zwei Folien (Haushaltsfolie oder verstreckte Polyacetatfolie der Fima STOE) in einen Transmissionshalter eingespannt. Abbildung 2.2 zeigt den Röntgen-Strahlengang ausgehend von dem Linien-Focus der Röntgenröhre bis zur *image plate* in einem Diffraktometer des Typs Huber Image Foil Guinier Camera 670.

Abb. 2.2: Röntgen-Strahlengang in einem Diffraktometer des Typs Huber Image Foil Guinier Camera 670. 1. Röntgenröhre, 2. *Ge*-Monochromator, 3. Probe, 4. Bildplatte (*image plate*).

Für die Auswertung der erhaltenen Messdaten wurde das Programmpaket STOE WinX-POW $^{[52]}$ verwendet.

2.1.3 Synchrotron-Pulverdiffraktometrie

Beugungsuntersuchungen mit Synchrotronstrahlung wurden an der Dortmunder Elektronenspeicherring-Anlage (DELTA) mit Elektronenflüssen von 120 mA durchgeführt. Über einen supraleitenden asymmetrischen Wiggler (SAW2) wurde an der Beamline 9 hochenergetische Röntgenstrahlung mit einer Wellenlänge von $\lambda = 55,1155 \text{ pm}$ (22,5 keV) erzeugt. Durch Verwendung eines Si(311) Doppeleinkristall-Monochromators konnte eine Auflösung von $\Delta E/E = 10^{-4}$ realisiert werden. Die Messzeit betrug 120 s. Zur Registrierung des Reflexmusters wurde ein ortsempfindlicher Flächendetektor des Typs MAR 345 ($\emptyset = 345 \text{ mm}$, Pixelgröße = 100 μ m) der Firma Marresearch, Norderstedt, verwendet. Die zu messenden Proben wurden in einem Achatmörser fein pulverisiert, in ein Mark-Röhrchen aus Lindemann-Glas der Firma Müller ($\emptyset = 0,5 \text{ mm}$) gefüllt und mit einem Tropfen Pizein versiegelt.

Abb. 2.3: Strahlengang an der Dortmunder Elektronenspeicherring-Anlage (DELTA) und Lage der verwendeten Beamline. 1. Elektronenquelle (Gun), 2. Linearbeschleuniger (Linac), 3. Booster-Synchrotron (BoDo), 4. supraleitender asymmetrischer Wiggler (SAW), 5. Beamline 9.

2.1.4 Polarimetrie

Der spezifische Drehwinkel für die Natrium-D-Line ($\lambda = 589 \,\mathrm{nm}$) wässriger Lösungen der zu untersuchenden Substanzen wurde in einem Polarimeter des Typs Perkin Elmer 343+ gemessen. In einem kleinen Maßkolben wurden 20 mg der zu untersuchenden Substanz in 2 mL hochreinem Milli-Q-H₂O gelöst, in die Messzelle definierter Schichtdicke (d = 100 mm) überführt und auf 20 °C temperiert. Das Polarimeter besteht aus einer Natrium-Spektrallampe, einem prismatischen Polarisator und einem prismatischen Analysator, die mechanisch gegeneinander verdreht werden können. Zunächst wird der Analysator auf einem Winkel von 0° gestellt, ein Photomultiplier detektiert die maximale Helligkeit. Bringt man eine optisch aktive Substanz in den Strahl tritt kein Licht durch. Durch Nachdrehen des Analysators bis zum Punkt der maximale Helligkeit kann der Drehwinkel der Substanz bestimmt werden. Dieser kann mit Gleichung 2.7 in den spezifischen Drehwinkel umgerechnet werden.

$$[a]_{\lambda}^{T} = \frac{\alpha}{c \cdot l} \tag{2.7}$$

mit:

a =spezifischer Drehwinkel $\alpha =$ gemessener Drehwinkelc =Konzentration der Probel =Länge der KüvetteT =Temperatur $\lambda =$ Wellenlänge des polarisierten Lichts

In Abbildung 2.4 ist die Anordnung der Bauteile und der Strahlengang durch ein Polarimeter dargestellt.

Abb. 2.4: Anordnung der Bauteile und der Strahlengang durch ein Polarimeter. 1. Lichtquelle (*Na*-Spektrallampe, $\lambda = 589$ nm), 2. Filter, 3. Blende, 4. Polarisator, 5. Probe, 6. Analysator, 7. Photomultiplier, 8. Motor.

2.1.5 UV-VIS-Spektroskopie

Zur Charakterisierung der Cobalt-Komplexe in Lösung wurde auf die UV-VIS-Spektroskopie zurückgegriffen. Die Messungen wurden in einem Gerät des Typs Hitachi U-2900 UV-VIS Spektrophotometer durchgeführt. Die zu untersuchende, stark verdünnte wässrige Komplex-Lösung wurde in eine Glasküvette gegeben und in den Strahlengang des Gerätes gebracht. Der Messbereich betrug 300-600 nm. Als Strahlungsquelle dienen eine Deuterium-Entladungslampe und eine Wolfram-Lampe, deren Licht über einen Spiegel zusammengefasst wird. Um den gesamten UV-VIS-Bereich abzudecken, erfolgt der Wechsel der Lampen bei 360 nm. Das Licht trifft danach auf einen konkaven Gitter-Monochromator zur Auswahl der Wellenlänge und wird anschließend durch einen Sektorenspiegel in einen Mess- bzw. Referenzstrahl geteilt. Nach Durchdringen der Probe/ Referenz erfolgt die Detektion mit Hilfe eines Photomultipliers. Die quantitative Auswertung des Spektrums erfolgt auf Basis des Lambert-Beerschen-Gesetzes in der Form von Gleichung 2.8.

$$lg(\frac{I_0}{I_1}) = \epsilon_{\lambda} \cdot c \cdot d \tag{2.8}$$

mit:

Die Auswertung der erhaltenen Spektren erfolgte mit dem Programm gnuplot 4.6^[53]. In Abbildung 2.5 ist die Anordnung der Bauteile und der Strahlengang durch ein UV-VIS Spektrophotometer des Typs Hitachi U-2900 dargestellt. Die Zuordnung der Banden erfolgt mit einschlägiger Literatur^[54,55].

Abb. 2.5: Anordnung der Bauteile und der Strahlengang durch ein UV-VIS Spektrophotometer des Typs Hitachi U-2900. 1. Deuterium-Entladungslampe, 2. Wolfram-Lampe, 3. Spiegel, 4. konkaver Gitter-Monochromator, 5. Sektorenspiegel, 6. Probe/ Referenz, 7. Photomultiplier.

2.1.6 IR-Spektroskopie (MIR)

Zur Charakterisierung der erhaltenen Verbindungen im Festkörper wurde auf die IR-Spektroskopie zurückgegriffen. Die Messungen wurden mit einem Gerät des Typs Bruker IFS 66v/S-Spektrometer durchgeführt. Es können nahe (NIR), mittlere (MIR) und ferne Infrarot-Strahlung (FIR) unterschieden werden. Die zu untersuchende Substanz wurde mit KBr homogen gemörsert und bei einem Druck von 1 kbar zu einer klaren Tablette gepresst. Dieser KBr-Pressling wurde in den Strahlengang des Spektrometers gebracht. Durch Bestrahlung eines Moleküls mit IR-Strahlung können verschiedene Arten von Schwingungen, unter anderem Valenz- und Deformationsschwingungen, angeregt werden. In den so erhaltenen Absorptionsspektren können nach Fourier-Transformation charakteristische Banden für typische Schwingungen verschiedener funtioneller Gruppen beobachtet werden. Als IR-Quelle dient ein Silicium-Carbid-Glowbar (SiC). Das Licht der IR-Quelle trifft durch eine Optik auf einen Strahlteiler, der die ankommende Strahlung idealerweise hälftig verteilt. Strahl 1 wird auf den festen Spiegel gelenkt und trifft anschließend wieder auf den Strahlteiler. Strahl 2 trifft auf den beweglichen Spiegel und trifft anschließend wieder auf den Strahlteiler. Die erhaltenen kohärenten Strahlen weisen einen Gangunterschied von $\Delta = 2x$ auf und interferieren. Der über den beweglichen Spiegel modulierte Strahl tritt durch die Probe und wird mit Hilfe eines Detektors aus mit

L-Alanin dotiertem deuterierten Triglycinsulfat (DLaTGS) ausgelesen. Die Spiegelposition kann sehr genau mit einem *HeNe*-Laser bestimmt werden. Nach Fourier-Transformation wird das IR-Spektrum erhalten. Zur Auswertung der erhaltenen Spektren und Lagen der Banden wurde auf das Programm Spekwin32^[56] zurückgegriffen. Die Zuordnung der Banden erfolgt mit einschlägiger Literatur^[57].

Abb. 2.6: Anordnung der Bauteile und der Strahlengang durch das Michelson-Interferometer in einem IR-Spektrometer des Typs Bruker IFS 66v/S. 1. SiC-Globar, 2. Strahlteiler, 3. beweglicher Spiegel, 4. fester Spiegel, 5. Probe, 6. DLaTGS-Detektor

2.1.7 Elementarianalyse

Zur Bestimmung der prozentualen Anteile der Elemente Kohlenstoff, Wasserstoff, Stickstoff und Schwefel der erhaltenen Verbindungen wurde auf die Elementaranalyse zurückgegriffen. Die Messungen wurden mit einem Gerät des Typs CNHS Euro EA 3000 Analyzer der Firma HEKAtech GmbH durchgeführt. Die zu messenden Proben wurden in einem Achatmörser fein pulverisiert, 1-2 mg in einer Zinnkartusche eingewogen und anschließend im Gerät unter Sauerstoffatomsphäre verbrannt. Die Reaktionsprodukte Kohlenstoffdioxid (CO₂), Wasser (H₂O) und Schwefeldioxid (SO₂) wurden gaschromatographisch getrennt und mit einem Wärmeleitfähigkeitsdetektor analysiert. Enthaltene Stickoxide (NO_x) müssen zuvor zu Stickstoff (N₂) reduziert werden.

3 Ergebnisse und Diskussion

3.1 Nomenklatur der Verbindungen

Auf Grund der komplexen Strukturen soll im folgenden Abschnitt gesondert auf die Systematik der Atomnummerierung eingegangen werden. Den Knotenpunkt aller Verbindungen bilden verschiedene Cobaltkomplexe, deren zentrale Co^{3+} -Atome gewöhnlich durchnummeriert werden. Die oktaedrisch koordinierenden Ethylendiaminmoleküle erhalten die Label N1 - N6 bzw. bei weiteren Komplexen in der asymmetrischen Einheit die folgenden Sechserblöcke. Die Kohlenstoffatome der Ethylenbrücken erhalten die Zahl der angrenzenden Stickstoffatome. Die Wasserstoffatome erhalten ebenfalls die Zahl des Nachbaratoms ergänzt durch Großbuchstaben. Dabei sind jeweils zwei Atome mit aufeinander folgenden Buchstaben an ein Atom gebunden, z.B. H1A und H1B an Atom N1, wie in Abbildung 3.1 links dargestellt. Im Fall der Sepulchratverbindungen entfällt ein Wasserstoffatom an den Stickstoffatomen, die verbleibenden werden ohne Buchstaben nummeriert. Die Stickstoffatome der Sepulchratkappen werden fortlaufend im Anschluss an die Ethylendiamin-Stickstoffatoms und einen eigenen Nummernkreis von 1 beginnend. Beispielsweise ist N7 mit C71, C72 und C73 verbunden (vgl. Abbildung 3.1 rechts).

Abb. 3.1: Nummerierung des ersten Ethylendiaminmoleküls (links) und der Sepulchratkappe (rechts).

Die entsprechenden Wasserstoffatome werden auf Basis der Kohlenstoffnummer wie zuvor beschrieben nummeriert. Die Carboxylatkohlenstoffatome der Linkermoleküle werden im Anschluss an die Kohlenstoffatome der Komplexe fortlaufend nummeriert. Weitere Kohlenstoffatome der Linker werden mit der Zahl des ersten Carboxylatkohlenstoffatoms und nachgestellter fortlaufender Nummer benannt. Für ein Fumarsäureanion würde sich dadurch das Schema C13-C131-C132-C14 ergeben. Eine Terephthalsäureanion mit den terminalen Carboxylatkohlenstoffatomen C13 und C14 erhält am aromatischen Kohlenstoffring die Nummern C131-C136. Die Sauerstoffatome der Carboxylatfunktion erhalten die Nummer des Kohlenstoffatoms und einen Buchstaben, z.B. C13 mit O13A und O13B. Im Text werden die Cobaltkomplexe mit Hilfe der Nummer des zentralen Co^{3+} -Atoms benannt. Linkermoleküle werden anhand der Nummer der terminalen Carboxylatkohlenstoffatome getrennt durch einen Schrägstrich (*solidus*) beschrieben. Das Fumarsäureanion mit der Kohlenstoffkette C13-C132-C14 wird folglich im Fließtext als C13/C14 beschrieben.

In den erhaltenen Verbindungen können die Wechselwirkungen oft mit typischen koordinativen Bindungen an Metallkationen verglichen werden, da verwandte Topologie vorliegen. Die Carboxylatfunktionen der Linkermoleküle zeigen z.B. Wasserstoffbrücken-Wechselwirkungen mit den Protonen der chelatisierenden Ethylendiaminmoleküle der *Co*-Komplexe, die bidentat verbrückenden Koordinationsmodi in typischen Koordinationspolymeren nicht unähnlich sind. In den folgenden Strukturbeschreibungen wird daher der *Co*-Komplex zum besseren Verständnis der vorliegenden Wechselwirkungen als eine Einheit mit den Eigenschaften des zentralen *Co*-Ions gesehen. Dies ermöglicht die Verwendung der bei den Koordinationspolymeren üblichen Fachtermini zur Beschreibung der vorliegenden Koordination. In Abbildung 3.2 sind die häufigsten, auf Wasserstoffbrücken basierenden Linker-Komplex-Wechselwirkungen der hier beschriebenen Verbindungen gegenübergestellt.

Abb. 3.2: Typische Koordinationsmodi in den erhaltenen Verbindungen. V.l.n.r. monodentat, monodentat verbrückend, bidentat verbrückend, tridentat verbrückend, μ_2 -anti-Koordination.
3.2 Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate

Die Verbindungen im folgenden Kapitel eint der Tris-1,2-Ethylendiamin-Cobalt(III)-Komplex als Knotenpunkt. Die Umsetzung von $[Co(en)_3]^{3+}$ -halogenidsalzen mit Blei- und Silbercarboxylaten ermöglicht einen einfachen synthetischen Zugang zu neuen supramolekularen Polymeren. Die sterische Abschirmung des Co³⁺-Ions im Komplex hat dabei entscheidenden Einfluss auf den Aufbau der vorliegenden Netzwerkverbindungen.

Abb. 3.3: Darstellung der Koordinationssphäre um den zentralen $[Co(en)_3]^{3+}$ -Komplex zur Verdeutlichung der T-förmigen Geometrie. Die gelbe Kugel mit einem Durchmesser von 200 pm wird in folgenden Abbildungen der reduzierten Darstellung des Komplexes dienen.

Zum besseren Verständnis der Strukturen wird im Folgenden auf das points of extension-Konzept von Omar M. Yaghi und Michael O'Keeffe zurückgegriffen^[58]. Dabei werden Carboxylatfunktionen auf die Lage des Kohlenstoffatoms reduziert und diese in Relation zum zentralen Komplexatom betrachtet. Bezogen auf die hier behandelten Verbindungen ergeben sich zwei kürzere und ein längerer Abstand zwischen den Kohlenstoffatomen der über Wasserstoffbrücken gebundenden Carboxylate und dem zentralen Cobaltion. Der Längenunterschied liegt in der Größenordnung von 20 pm. In Abbildung 3.3 ist zu erkennen, dass die kürzer gebundenen Carboxylatfunktionen nahezu spiegelsymmetrisch zueinander angeordnet sind. Die dritte Carboxylatfunktion weist eine zu den anderen beiden rechtwinklige Orientierung auf. Die Geometrie der SBU kann insgesamt als T-förmig angesehen werden. Die logische Konsequenz ist der Aufbau leiterartiger Netzwerke, wie sie in allen hier vorgestellten $[Co(en)_3]^{3+}$ -Carboxylaten beobachtet werden können. Abhängig von der

Reinheit der eingesetzten Enantiomere wurden neben azentrischen Verbindungen auch zentrosymmetrische Verbindungen erhalten, die in Kapitel 3.2.3 vorgestellt werden. Zur Nummerierung der Atome wurde auf das in Kapitel 3.1 vorgestellte Schema zurückgegriffen. Ein besseres Verständnis der erhaltenen Strukturen ermöglicht in einigen Abbildungen die reduzierte Darstellung der *Co*-Komplexe als gelbe Kugeln mit einem Durchmesser von 200 pm. Die Lage der Strukturfragmente zueinander ermöglicht die Betrachtung des Cobalt-Kohlenstoff-Netzwerkes im Sinne des *points of extension*-Konzeptes.

3.2.1 Azentrische Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate

${}^{1}_{\infty} \left\{ \Lambda \text{-}[\mathrm{Co(en)_3}]_2 \mathrm{EDC_3} \right\} \cdot 11,25 \, \mathrm{H_2O}$

Durch Umsetzung von Λ -[Co(en)₃]I₃ mit einem leichten Überschuss Ag₂EDC in wässriger Suspension konnte nach Filtration eine orangefarbene Lösung erhalten werden, in der nach einigen Wochen tief-orange Kristalle entstanden sind (Abbildung 3.4).

Abb. 3.4: Mikroskopische Aufnahme eines in perfluoriertem Öl isolierten Einkristalls der Verbindung ${}^1_\infty \big\{ \Lambda \ [Co(en)_3]_2 EDC_3 \big\} \cdot 11,25 H_2O$

Die Verbindung ${}_{\infty}^{1}$ { Λ -[Co(en)_3]_2EDC_3} · 11,25 H₂O kristallisiert monoklin in der azentrischen Raumgruppe $P2_1$ (Nr. 4) mit zwei Formeleinheiten pro Elementarzelle. Die Gitterkonstanten betragen a=888,6(2) pm, b=2116,4(2) pm, c=1270,1(1) pm und β =103,42(1)°. Die asymmetrische Einheit mit Blick auf die Ebene (1 2 1) ist in Abbildung 3.5 dargestellt. Zwei kristallografisch unabhängige [Co(en)_3]³⁺-Komplexe sowie drei Fumarsäuranionen sind in der asymmetrischen Einheit enthalten. Die 11,25 Kristallwassermoleküle werden für die Strukturdiskussion vernachlässigt. Die Cobaltatome *Co1* und *Co2* sind chelatisierend von drei Ethylendiaminmolekülen umgeben, die im Sinne einer Linkshelix angeordnet sind. Damit liegen die Cobaltkomplexe in der Λ -Konfiguration vor. Die Fumarsäureanionen *C15/C16* bilden mit den *Co1*-Komplexen Stränge entlang der kristallografischen c-Achse. Die Carboxylatfunktionen mit den Sauerstoffatomen *O15A* und *O15B* bzw. *O16A* und *O16B* koordinieren demnach tridentat verbrückend an die Wasserstoffatome *H3A* und *H2A* bzw. *H5A* sowie *H1A* bzw. *H4A* und *H6A*.

Die Fumarsäureanionen C17/C18 bilden mit den Co2-Komplexen analog Stränge entlang der kristallografischen c-Achse. Die Carboxylatfunktionen koordinieren mit den Sauerstoffatomen O17B monodentat verbrückend an die Wasserstoffatome H7A und H11A. Ausgehend von den Carboxylatsauerstoffatomen O18A und O18B kann die Koordination an die Wasserstoffatome H8A und H10A als bidentat verbrückend angesehen werden. Die beiden kristallografisch

Abb. 3.5: ORTEP-Darstellung der asymmetrischen Einheit der Verbindung ${}^{1}_{\infty} \{\Lambda - [Co(en)_3]_2 EDC_3\} \cdot 11,25 H_2O$ mit thermischen Ellipsoiden (50% Wahrscheinlichkeit) und Atomnummerierung. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

unabhängigen Stränge sind über das Fumarsäureanion C13/C14 zwischen den Co1- und Co2-Komplexen zu leiterartigen Netzwerken verknüpft. Dabei erfolgt die Verknüpfung bidentat über Wasserstoffbrücken ausgehend von den Sauerstoffatomen der Carboxylatfunktionen an die Protonen H2B (O13A) und H6B (O13B) bzw. H10B (O14A) und H11B (O14B) der Stickstoffatome der Ethylendiaminmoleküle. Auf diese Weise ist jeder Komplex mit drei weiteren Komplexen verbunden. Das isolierte, leiterartige Strukturmotiv mit reduzierter Komplexdarstellung ist in Abbildung 3.6 wiedergegeben.

Abb. 3.6: Leiterartiges Strukturfragment in der Kristallstruktur von ${}^{1}_{\infty} \{ \Lambda - [Co(en)_3]_2 EDC_3 \} \cdot 11,25 H_2O$ in "wire and sticks"-Darstellung. Um das Verknüpfungsmuster besser hervorzuheben, wurde der $[Co(en)_3]^{3+}$ -Komplex als gelbe Kugel mit einem Durchmesser von 200 pm dargestellt (vgl. Abbildung 3.3). Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Die Winkel Linkermolekülen Co1zwischen den betragen für das C14, Co1, C15 = $95,4(1)^{\circ};$ C14, Co1, C16 = $81,8(1)^{\circ};$ Atom: ۷ \checkmark \measuredangle C15, Co1, C16 = 177,0(1)°. Für das Co2-Atom wurden folgende Winkel bestimmt: \measuredangle C13, Co2, C17 = 81,6(1)°; \measuredangle C13, Co2, C18 = 92,2(1)°; \measuredangle C17, Co2, C18 = 173,6(1)°. Die Bindungslängen der Wasserstoffbrücken erstrecken sich von 183,8(3) pm bis 219,7(3) pm und liegen somit in einem Bereich mittlerer Bindungsstärke und beruhen größtenteils auf elektrostatischen Wechselwirkungen^[59]. Die kürzesten und damit stärksten Wasserstoffbrücken sind jeweils ausgehend von den Carboxylatsauerstoffatomen O15A und O16B entlang des Co1-Komplexstrangs zu finden.

Die Lage und Längen der Wasserstoffbrücken sind für die Koordinationsumgebung des Co1-Atoms in Abbildung 3.7 abgebildet. Das daraus entstehende leiterartige Strukturmotiv verläuft entlang der kristallografischen c-Achse. Dabei bilden die Fumarsäureanionen C15/C16 mit den Komplexen Co1 bzw. die Fumarsäureanionen C17/C18 mit den Komplexen Co2 die Holme der Leiter. Die Sprossen werden durch das Fumarsäureanion C13/C14 dargestellt. Ausgehend von den Co-Atomlagen können Flächen im Inneren der Leiter mit einer Größe von $1,62 \cdot 10^6$ pm² gemessen werden. Diese Messgröße wird im Folgenden dem Vergleich der verschiedenen Verbindungen dienen. Die Co1-Fumaratkette ist leicht entlang der c-Achse gegen die Co2-Fumaratkette verschoben. Für die daraus resultierende rhombische Verzerrung kann ein Winkel von 77° ermittelt werden. Bei Betrachtung der Carboxylatkohlenstoffatome in der Koordinationsumgebung des zentralen Co-Atoms, wie in Abbildung 3.7 dargestellt, ist gut die T-förmige Geometrie zu erkennen.

Abb. 3.7: Strukturbestimmende Wasserstoffbrücken (links) und relevante Co-C-Abstände(rechts) in der Verbindung ${}_{\infty}^{1} \{ \Lambda - [Co(en)_3]_2 EDC_3 \} \cdot 11,25 H_2O$. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Die beiden gegenüberliegenden Fumarsäureanionen weisen dabei die kürzeren Co-C-Abstände auf. Weitere strukturelle Einzelheiten sind in Tabelle 3.1 zusammengefasst. In der gesamten Struktur ergeben sich zwei kristallografisch verschiedene Leiterfragmente, die in einem Winkel von 71,9° zueinander angeordnet sind. Die einzelnen Fragmente sind dabei entweder um 37,8° oder um -34,1° aus der Ebene (010) gekippt. In Abbildung 3.8 ist die sich daraus ergebende Stapelfolge des Typs AB entlang der kristallografischen b-Achse gezeigt. Die dreidimensionale Verknüpfung der einzelnen Strukturfragmente erfolgt durch Kristallwassermoleküle über weitere Wasserstoffbrücken. Der hohe Anteil dieses Kristallwassers erklärt die Unbeständigkeit der Verbindung nach Verlassen der Mutterlauge. Erhaltene Kristalle lassen sich nur in der Mutterlauge oder unter perfluoriertem Öl handhaben. Die Strukturlösung gelang mit dem Programm SIR2004^[47]. Die Verfeinerung führte zu einer sehr guten Übereinstimmung zwischen Struktur und Modell mit R1_{all data} = 0,0447, ω R2_{all data} = 0,0989 und R_{int} = 0,0600. Dies zeigt auch der Gütefaktor GooF = 1,05. Die Schwingungsellipsoide zeigen keine Auffälligkeiten und liegen in der erwarteten Größenordnung. Die kristallografischen Daten und Details zur Strukturlösung bzw. Verfeinerung sind in Tabelle 6.1 im Appendix zusammengefasst.

Abb. 3.8: Stapelfolge der Leiterfragmente in der Kristallstruktur von ${}^{1}_{\infty} \{ \Lambda - [Co(en)_3]_2 EDC_3 \} \cdot 11,25 H_2 O$ auf Basis des *points of extension*-Konzeptes(*Co-/ C*-Lagen)

Die Elementaranalyse zeigt, dass durch das Trocknen der Substanz bei 60 °C für 24 h $5,\!25$ Kristallwassermoleküle abgegeben wurden.

Elementgehalt in % (berechnet für 6 H_2O bzw. 11,25 H_2O):

 $\begin{array}{l} {\bf C}\ 30,\!96\ (31,\!04),\ {\bf H}\ 7,\!73\ (7,\!16),\ {\bf N}\ 19,\!02\ (18,\!10).\\ {\bf C}\ 30,\!96\ (28,\!17),\ {\bf H}\ 7,\!73\ (7,\!54),\ {\bf N}\ 19,\!02\ (16,\!43). \end{array}$

In Abbildung 3.9 ist das MIR-Spektrum der getrockneten Verbindung dargestellt. Die Absorptionsbanden bei 1547 cm⁻¹ (ν_{as}) und 1369 cm⁻¹ (ν_{s}) können den asymmetrischen und symmetrischen Schwingungen der Carboxylatfunktion des Fumarsäureanions zugeordnet werden. Das Absorptionsmuster im *fingerprint*-Bereich stimmt sehr gut mit dem Muster der reinen Fumarsäure überein. Die breite strukturierte Absorptionsbande zwischen 3640 cm⁻¹ und 2990 cm⁻¹ deutet auf O-H-, N-H-Valenzschwingungen und Kristallwasser hin. Die Banden bei 2982 cm⁻¹ und 3069 cm⁻¹ können C-H-Valenzschwingungen zugeordnet werden. Da die Verbindung nach Entfernen des Kristallwassers röntgenamorph ist, konnten keine weiteren Messungen zur Bestimmung der Phasenreinheit durchgeführt werden.

3 Ergebnisse und Diskussion

Abb. 3.9: MIR-Spektrum der getrockneten Verbindung $_{\infty}^{1} \left\{ \Lambda \text{-}[\text{Co}(\text{en})_{3}]_{2}\text{EDC}_{3} \right\} \cdot 11,25\,\text{H}_{2}\text{O}$

Tab. 3.1: Ausgewählte interatomare Abstände/pm, Winkel/° und relevante Wasserstoffbrückenbindungen/pm der Verbindung $\frac{1}{\infty} \{ \Lambda - [Co(en)_3]_2 EDC_3 \} \cdot 11,25 H_2 O \}$

Co1 - C14	466,8(3)	O13A - C13 - O13B	124,1(3)
Co1 - C15	442,7(3)	O14A - C14 - O14B	124,7(3)
Co1 - C16	443,3(3)	O15A - C15 - O15B	123,7(3)
Co2 - C13	460, 6(3)	O16A - C16 - O16B	123,4(3)
Co2 - C17	442,4(3)	O17A - C17 - O17B	122,8(3)
Co2 - C18	440,8(3)	O18A - C18 - O18B	123,2(3)
		C13 - C131 - C132	123,4(3)
O13A - H10B	205,4(3)	C131 - C132 - C14	122,9(3)
O13B-H5E	197(3)	C15 - C151 - C152	125,0(2)
O13B- H11B	199,7(3)	C151 - C152 - C16	123,2(2)
O14A-H2B	200,2(3)	C17 - C171 - C172	123,8(2)
O14B-H6B	201,7(3)	C171 - C172 - C18	125,3(2)
O15A-H2F	182(3)	C14 - Co1 - C15	95,4(1)
O15A-H3A	195,2(2)	C14 - Co1 - C16	81,8(1)
O15B-H4E	196(3)	C15 - Co1 - C16	177,0(1)
O15B-H9E	200(3)	C13 - Co2 - C17	81,6(1)
O15B-H2A	212,9(3)	C13 - Co2 - C18	92,2(1)
O15B-H5A	219,7(3)	C17 - Co2 - C18	$173,\!6(1)$
O16A - H1E	186(3)		
O16A - H4A	207,4(3)	Co1 - N2	196,1(3)
O16A - H1A	215,9(3)	Co1 - N3	196,7(2)
O16B-H6F	182(3)	Co1 - N6	196,9(2)
O16B-H6A	200,1(2)	Co1 - N5	197,0(3)
O17A - H7F	184(3)	Co1 - N4	197,1(3)
O17B-H7A	207,6(2)	Co1 - N1	197,2(3)
O18A - H11F	197(4)	Co2 - N12	196,3(3)
O18A - H10A	202,4(2)	Co2 - N7	196,6(3)
O18B- H8E	183,8(3)	Co2 - N11	196,7(3)
O18B-H8A	207,5(2)	Co2 - N9	196,7(3)
		Co2 - N10	196,8(3)
		Co2 - N8	197,3(3)

3 Ergebnisse und Diskussion

$_{\infty}^{1} \Big\{ \Lambda \text{-} [\mathrm{Co}(\mathrm{en})_{3}]_{2} \mathrm{BDC}_{3} \Big\} \cdot 20 \, \mathrm{H}_{2} \mathrm{O}$

Durch Fällung von AgI aus einer $[Co(en)_3]I_3$ und einen leichten Überschuss Ag₂BDC enthaltenden Suspension konnte nach Filtration eine orangefarbene Lösung erhalten werden, in der nach einigen Wochen gelb-orange Kristalle entstanden. Die mikroskopische Aufnahme eines Einkristalls der Verbindung ist in Abbildung 3.10 gezeigt.

Abb. 3.10: Mikroskopische Aufnahme eines in perfluoriertem Öl isolierten Einkristalls der Verbindung $\frac{1}{\infty} \left\{ \Lambda - [Co(en)_3]_2 BDC_3 \right\} \cdot 20 H_2 O$

Die Verbindung kristallisiert triklin in der azentrischen Raumgruppe *P1* (Nr.1) mit einer Formeleinheit pro Elementarzelle. Es konnten die Gitterkonstanten a = 1071,30(5) pm, b = 1152,20(5) pm, c = 1355,80(6) pm, α = 70,415(4)°, β = 85,157(1)° und γ = 80,418(4)° ermittelt werden. Die asymmetrische Einheit setzt sich aus zwei kristallografisch unabhängigen [Co(en)₃]³⁺-Komplexen und drei verbrückenden Terephthalsäureanionen zusammen (Abbildung 3.11). Die 20 Kristallwassermoleküle werden für die Strukturdiskussion vernachlässigt. Die Cobaltatome *Co1* und *Co2* sind jeweils oktaedrisch von Stickstoffatomen der Ethylendiaminmoleküle umgeben, dabei erfolgt die Anordnung der Ethylenbrücken im Sinne der Λ -Konfiguration links-helikal. Analog der Verbindung $\frac{1}{\infty} \{ \Lambda$ -[Co(en)₃]₂EDC₃ $\} \cdot 11,25$ H₂O bilden die Terephthalsäureanionen *C17/C18* mit den *Co1*-Komplexen bzw. die Terephthalsäureanionen *C13/C14* mit den *Co2*-Komplexen Stränge entlang der Achse [0 $\bar{1}$ 1], die über die Terephthalsäureanionen *C15/C16* zu leiterartigen Strukturfragmenten verknüpft werden.

Die Carboxylatfunktionen koordinieren tridentat verbrückend an die Wasserstoffatome H4A (O17A) bzw. H5A und H1A (O17B) sowie H3A (O18A) bzw. H6A und H2A (O18B). Die Terephthalsäureanionen C13/C14 bilden mit den Co2-Komplexen analog Stränge entlang der Achse $[0\bar{1}1]$. Die Carboxylatfunktionen koordinieren tridentat verbrückend an die Wasserstoffatome H7A und H10A (O13A) bzw. H11A (O13B) sowie H8A und H12A (O14B)

Abb. 3.11: ORTEP-Darstellung der asymmetrischen Einheit der Verbindung ${}_{\infty}^{1} \{ \Lambda - [Co(en)_3]_2 BDC_3 \} \cdot 20 H_2 O$ mit thermischen Ellipsoiden (50% Wahrscheinlichkeit) und Atomnummerierung. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

bzw. H9A (O14A). Die Verknüpfung der beiden kristallografisch unabhängigen Stränge über das Terephthalsäure-Anion C15/C16 über Wasserstoffbrücken ausgehend von den Carboxylatfunktionen an die Protonen H11B (O15A) und H9B (O15B) bzw. H5B (O16A) und H3B (O16B) der Stickstoffatome der Ethylendiaminmoleküle kann als bidentat verbrückend angesehen werden. Auf diese Weise ist jeder Komplex mit drei weiteren Komplexen verbunden. Die aromatischen Sechsringe des Terephthalsäure-Anions liegen dabei in der aufgespannten Ebene (vgl. Abbildung 3.12). Die Bindungslängen der Wasserstoffbrücken liegen zwischen 194,3(7) pm bis 228,8(5) pm und somit in einem Bereich mittlerer Bindungsstärke. Die kürzesten Wasserstoffbrücken sind jeweils ausgehend von den diagonal über das Terephthalatmolekül angeordneten Carboxylatsauerstoffatomen O15A und O16B des Terephthalsäureanions C15/C16zu finden. Dies liegt in der hier vorliegenden rhombischen Verzerrung der Leiterstruktur von $85,9^{\circ}$ und der ausgeprägten Rigidität des Terephthalsäureanions begründet.

Exemplarisch für beide *Co*-Komplexe sind die Lagen und Längen der Wasserstoffbrücken für die Koordinationsumgebung des *Co1*-Atoms in Abbildung 3.13 gezeigt. Sterische Spannungen auf Grund des starren Terephtalsäureanions zeigen sich auch in den Längen der

Abb. 3.12: 4^3 -Netzwerk der Kristallstruktur von ${}_{\infty}^1 \left\{ \Lambda - [\operatorname{Co}(en)_3]_2 \operatorname{BDC}_3 \right\} \cdot 20 \operatorname{H}_2 \operatorname{O}$ in "wire and sticks"-Darstellung. Um das Verknüpfungsmuster besser hervorzuheben wurde der $[\operatorname{Co}(en)_3]^{3+}$ -Komplex als gelbe Kugel mit einem Durchmesser von 200 pm dargestellt (vgl. Abbildung 3.3). Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Wasserstoffbrücken. So sind die längeren Brücken zwischen den der Leitermitte zugewandten Sauerstoffatomen O17A und O18A des Linkermoleküls C17/C18 bzw. O13B und O14B des Linkermoleküls C13/C14 zu finden. Bei Betrachtung der Carboxylatkohlenstoffatome in der Koordinationsumgebung des zentralen Co-Atoms, wie in Abbildung 3.13 dargestellt, ist gut die T-förmige Koordination zu erkennen. Die beiden gegenüberliegenden Terephthalsäure-Anionen weisen dabei die kürzeren Co-C-Abstände auf. Ausgehend von den Co-Atomlagen können Flächen mit einer Größe von $1,94 \cdot 10^6 \,\mathrm{pm}^2$ gemessen werden. Die Winkel zwischen den Linkermolekülen betragen für das Co1-Atom: \measuredangle C28, Co1, C35 = 99,3(1)°; \measuredangle C28, Co1, C36 = $89.9(1)^{\circ}$: \measuredangle C35, Co1, C36 = 170,0(1)^{\circ}. Für das Co2-Atom können folgende Winkel bestimmt werden: \measuredangle C19, Co2, C20 = 171,2(1)°; \measuredangle C19, Co2, C27 = 96,0(1)°; \measuredangle C20, Co2, C27 = $91.3(1)^{\circ}$. Weitere strukturelle Einzelheiten sind in Tabelle 3.2 zusammengefasst. Die einzelnen Leiterfragmente folgen einer Stapelfolge des Typs AA entlang der kristallografischen a-Achse und sind, wie in Abbildung 3.14 zu sehen, um 20,15° aus der Ebene (100) gekippt. Die Verbindung $\frac{1}{\infty} \{ \Lambda - [Co(en)_3]_2 BDC_3 \} \cdot 20 H_2 O$ neigt zu einer leichten Abgabe des enthaltenen Kristallwassers bei Verlassen der Mutterlauge, was zu einem raschen Verlust der Kristallinität führt. Dies beruht auf der dreidimensionalen Verknüpfung der einzelnen Strukturfragmente durch das enthaltene Kristallwasser mittels Wasserstoffbrücken. Erhaltene Kristalle lassen sich nur in der Mutterlauge oder unter perfluoriertem Öl handhaben.

Abb. 3.13: Strukturbestimmende Wasserstoffbrücken (links) und relevante Co-C-Abstände in der Verbindung ${}_{\infty}^{1} \{ \Lambda - [Co(en)_3]_2 BDC_3 \} \cdot 20 H_2 O$ (rechts). Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Die Lösung der Struktur gelang problemlos mit dem Programm SIR2004^[47]. Die Verfeinerung führte zu leicht erhöhten Werten für die Übereinstimmung zwischen Struktur und Modell mit R1_{all data} = 0,0698, ω R2_{all data} = 0,1894 und R_{int} = 0,0650. Der Gütefaktor GooF = 1,04 unterstützt die Richtigkeit der vorliegenden Strukturlösung. Die Schwingungsellipsoide der Atome *C33* und *C34* zeigen eine leichte Deformation, alle anderen Schwingungsellipsoide liegen in der erwarteten Größenordnung. Die kristallografischen Daten und Details zur Strukturlösung bzw. Verfeinerung sind in Tabelle 6.6 im Appendix zusammengefasst.

Abb. 3.14: Stapelfolge der Leiterfragmente in der Kristallstruktur von ${}_{\infty}^{1} \left\{ \Lambda - [Co(en)_3]_2 BDC_3 \right\} \cdot 20 H_2 O$ auf Basis des *points of extension*-Konzeptes(Co-/ C-Lagen)

Die Elementaranalyse zeigt, dass durch das Trocknen der Substanz bei 60 °C für 24 h18Kristallwassermoleküle abgegeben wurden.

Elementgehalt in % (berechnet für 2 H_2O bzw. 20 H_2O):

C 42,44 (42,95), H 7,69 (6,41), N 17,14 (16,70). C 42,44 (32,49), H 7,69 (7,57), N 17,14 (12,63).

In Abbildung 3.15 ist das MIR-Spektrum der getrockneten Verbindung dargestellt. Die Absorptionsbanden bei 1566 cm⁻¹ (ν_{as}) und 1375 cm⁻¹ (ν_{s}) können den asymmetrischen und symmetrischen Schwingungen der Carboxylatfunktion des Terephthalsäureanions zugeordnet werden. Das Absorptionsmuster im *fingerprint*-Bereich stimmt sehr gut mit dem Muster der reinen Terephthalsäure überein. Die breite strukturierte Absorptionsbande zwischen 3600 cm⁻¹ und 2500 cm⁻¹ deutet auf O-H-, N-H-Valenzschwingungen und Kristallwasser hin. Die Banden bei 2980 cm⁻¹ und 3092 cm⁻¹ können C-H-Valenzschwingungen zugeordnet werden. Da die Verbindung nach Entfernen des Kristallwasser röntgenamorph ist, konnten keine weiteren Messungen zur Bestimmung der Phasenreinheit durchgeführt werden.

Abb. 3.15: MIR-Spektrum der getrockneten Verbindung $\frac{1}{\infty} \left\{ \Lambda - [Co(en)_3]_2 BDC_3 \right\} \cdot 20 H_2 O$

Tab. 3.2:Ausgewählte interatomare Abstände/pm, Winkel/° und relevante Wasserstoffbrücken-
bindungen/pm der Verbindung $\frac{1}{\infty} \left\{ \Lambda - [Co(en)_3]_2 BDC_3 \right\} \cdot 20 H_2 O$

bindange	m/pm and γ or pm and ∞ (m (ee(en)3]2BB e3 j 20 H2	0
Co1 - C28	464,1(9)	O1 - C19 - O2	124,5(3)
Co1 - C35	439,5(6)	O3 - C20 - O4	124,3(3)
Co1 - C36	441,6(6)	O5 - C27 - O6	123,6(3)
Co2 - C19	439,4(6)	O7 - C28 - O8	123,2(3)
Co2 - C20	440,8(6)	O9 - C35 - O10	122,8(3)
Co2 - C27	466,3(8)	O11 - C36 - O12	123,4(3)
		C28 - Co1 - C35	99,3(1)
O13A - H8A	198,4(4)	C28 - Co1 - C36	89,9(1)
O13B - H9A	205,8(4)	C35 - Co1 - C36	170,0(1)
O14A - H7A	207,0(4)	C19-Co2-C20	171,2(1)
O14B - H10A	205,7(6)	C19-Co2-C27	96,0(1)
O15A - H11B	194,3(7)	$\mathrm{C20}-\mathrm{Co2}-\mathrm{C27}$	91,3(1)
O15B - H9B	204,7(6)		
O16A - H5B	211,1(7)	Co1 - N3	195,0(4)
O16B - H3B	196,1(6)	Co1 - N4	195,2(4)
O17A - H4A	201,3(4)	Co1 - N6	195,4(3)
O17B - H1A	200,3(4)	Co1 - N2	195,5(5)
O18A - H3A	209,8(7)	Co1 - N1	196,4(4)
O18A - H6A	220,0(6)	Co1 - N5	197,1(4)
O18B - H2A	198,6(5)	Co2 - N9	193,2(7)
		Co2 - N12	194,2(6)
		Co2 - N11	194,8(6)
		Co2 - N7	195,8(7)
		Co2 - N10	196,9(6)
		Co2 - N8	197,3(7)

3.2.2 Azentrische Tris-1,2-Ethylendiamin-Cobalt(III)-Nitrat-Carboxylate

Zusätzlich zu den in Kapitel 3.2.1 beschriebenen Bausteinen $[Co(en)_3]^{3+}$ und Dicarboxylat enthalten die Verbindungen in diesem Kapitel Nitrat-Anionen. Die Verbindungen fielen bei der Umsetzung von $[Co(en)_3]^{3+}$ -Halogenidsalzen mit Silbercarboxylaten als Nebenprodukte an und sind auf Verunreinigungen der Edukte mit NO_3^- zurückzuführen. Neben einem Tris-1,2-ethylendiamin-Cobalt(III)-Fumarat-Nitrat-Dihydrat wurde auch eine Verbindung analoger Zusammensetzung durch die Umsetzung des Silbersalzes der Bernsteinsäure mit dem $[Co(en)_3]^{3+}$ -Komplex erhalten. Bei Betrachtung der Zusammensetzung, der kristallografischen Daten und der Verknüpfung der einzelnen Strukturelemente liegt die Vermutung nahe, dass es sich um isostrukturelle Verbindungen handelt. Die detaillierte Analyse der enantiomeren Konfiguration des *Co*-Komplexes und der Koordinationsmodi zeigt aber, dass dies nicht der Fall ist. Im Folgenden sollen nun die Gemeinsamkeiten und die Unterschiede der beiden erhaltenen Verbindungen in Bezug auf ihre Kristallstrukturen vorgestellt werden.

Abb. 3.16: Darstellung der Koordinationssphäre um den zentralen $[Co(en)_3]^{3+}$ -Komplex zur Verdeutlichung der T-förmigen Anordnung der Nitratanionen. Die grüne Kugel mit einem Durchmesser von 200 pm wird in den folgenden Abbildungen der reduzierten Darstellung des Komplexes dienen.

$${}_{\infty}^{2} \left\{ \left[\mathrm{Co(en)}_{3} \right] \mathrm{L} \left(\mathrm{NO}_{3} \right) \right\} \cdot 2 \, \mathrm{H}_{2} \mathrm{O} \text{ mit } \mathrm{L} = \mathrm{EDC}^{2\text{-}}, \, \mathrm{BSA}^{2\text{-}}$$

Durch Umsetzung von Δ - bzw. Λ -[Co(en)₃]I₃ mit einem leichten Überschuss Ag₂L (mit L = EDC²⁻, BSA²⁻) in wässriger Suspension konnte nach Filtration eine orangefarbene Lösung erhalten werden, in der nach einigen Wochen tieforange Kristalle entstanden. Die Verbindungen des Typs $^{2}_{\infty}$ {[Co(en)₃]L(NO₃)} · 2 H₂O kristallisieren monoklin in der azentrischen Raumgruppe C2 (Nr. 5) mit vier Formeleinheiten pro Elementarzelle. Die Gitterkonstanten der erhaltenen Kristalle sind in Tabelle 3.3 gegenübergestellt.

$\infty [\Pi [OO(CII)3] D$	511(1103)] 21120	(reenes)
Kristallsystem	monoklin	monoklin
Raumgruppe	C2 (Nr.5)	$C\mathcal{2} $ (Nr.5)
Konfiguration	Δ	Λ
Formeleinheiten Z	4	4
Gitterkonstanten /pm	a = 1804, 3(1)	a = 1821,7(1)
	b = 1173, 4(1)	b = 1172, 2(1)
	c = 1001, 0(1)	c = 1017,0(1)
/°	$\alpha = 90$	$\alpha = 90$
	$\beta = 120,189(3)$	$\beta = 122,312(4)$
	$\gamma = 90$	$\gamma = 90$
Volumen $/nm^3$	1,8319(3)	1,8353(1)
Dichte /g·cm ⁻³	1,636	1,633

Tab. 3.3: Kristallografische Daten der Verbindungen ${}_{\infty}^{2} \left\{ \Delta - [Co(en)_{3}] EDC(NO_{3}) \right\} \cdot 2 H_{2}O(links)$ und ${}_{\infty}^{2} \left\{ \Lambda - [Co(en)_{3}] BSA(NO_{3}) \right\} \cdot 2 H_{2}O(rechts)$

Die asymmetrische Einheit der Verbindung ${}_{\infty}^{2} \{ \Delta - [Co(en)_{3}] EDC (NO_{3}) \} \cdot 2 H_{2}O$ mit Blick entlang der kristallografischen a-Achse ist in Abbildung 3.17 dargestellt.

In der asymmetrischen Einheit sind zwei kristallografisch unabhängige $[Co(en)_3]^{3+}$ -Komplexe, ein Säure-Dianion und zwei Nitrat-Anionen enthalten. Sowohl die *Co*-Atome der Komplexe als auch die Stickstoffatome der Nitrat-Anionen liegen auf speziellen Lagen. Eingeteilt in funktionelle Gruppen gilt die allgemeine Summenformel $C_6H_{24}CoN_6 \cdot C_4H_XO_4 \cdot NO_3 \cdot 2H_2O$ mit x = 2 für EDC²⁻ und x = 4 für BSA²⁻. Die zwei enthaltenen Kristallwassermoleküle werden für die Strukturdiskussion zunächst vernachlässigt und am Ende dieses Abschnittes genauer diskutiert. Die Kobaltatome *Co1* und *Co2* sind chelatisierend von drei Ethylendiaminmolekülen umgeben, die im Sinne einer Rechtshelix in der Verbindung Tris-1,2-ethylendiamin-Cobalt(III)-Fumarat-Nitrat angeordnet sind und entsprechen damit der Δ -Konfiguration. Die Verbindung Tris-1,2-ethylendiamin-Cobalt(III)-Succinat-Nitrat zeigt die Anordnung einer Linkshelix. Damit liegen die Kobaltkomplexe in der Λ -Konfiguration vor. Unabhängig von der Konfiguration der *Co*-Komplexe sind die *Co1*- und *Co2*-Komplexe über die Nitrat-Anionen *N7* und *N8* durch Wasserstoffbrücken zu Doppelsträngen entlang der kristallografischen c-Achse verbunden.

Abb. 3.17: ORTEP-Darstellung der asymmetrischen Einheit der Verbindung ${}_{\infty}^{2} \left\{ \Delta - [Co(en)_{3}] EDC(NO_{3}) \right\} \cdot 2 H_{2}O$ mit thermischen Ellipsoiden (50% Wahrscheinlichkeit) und Atomnummerierung

Das Verknüpfungsmuster ist in Abbildung 3.18 exemplarisch für beide Verbindungen dargestellt.

An dieser Stelle zeigt sich der Einfluss der differierenden Konfiguration der Co-Komplexe. In Abbildung 3.18 sind die Verknüpfungsmuster der Verbindungen ${}_{\infty}^{2} \{ \Delta - [Co(en)_{3}] EDC (NO_{3}) \} \cdot 2 H_{2}O$ und ${}_{\infty}^{2} \{ \Lambda - [Co(en)_{3}] BSA (NO_{3}) \} \cdot 2 H_{2}O$ gegenübergestellt. Es ist gut zu erkennen, dass zwei kristallografisch unabhängige Nitrat-Anionen vorliegen, die sich primär durch die Koordinationsmodi unterscheiden. Das Nitrat-Anion N7 koordiniert in der Verbindung ${}_{\infty}^{2} \{ \Delta - [Co(en)_{3}] EDC (NO_{3}) \} \cdot 2 H_{2}O$ über die Sauerstoffatome O7D und O7D' an zwei Komplexe Co1 (linear) monodentat im Sinne einer μ_{2} -anti-Koordination und einen Komplex Co2 monodentat verbrückend. Das Nitrat-Anion N8 koordiniert bidentat verbrückend über die Sauerstoffatome O8D und O8D' an den Co1-Komplex. Weiterhin werden die Komplexe Co1 und Co2 im Sinn einer η^{1} -O-Brücke über die Sauerstoffatome O8D verbunden. Die Winkel zwischen den zentralen Co-Atomen betragen dabei $\measuredangle N7, Co1, N7' = 166, 8(1)^{\circ}$ und zweimal $\measuredangle N7, Co1, N8 = 83, 4(1)^{\circ}$ für den Co1-Komplex. Für den Co2-Komplex können Winkel von $\measuredangle N8, Co2, N8' = 158, 4(1)^{\circ}$ und zweimal $\measuredangle N8, Co2, N7 = 79, 2(1)^{\circ}$ bestimmt werden. In der Verbindung ${}_{\infty}^{2} \{ \Lambda - [Co(en)_{3}] BSA (NO_{3}) \} \cdot 2 H_{2}O$ ist mit Blick auf die Ebene (010) zu

Abb. 3.18: Vergleich des Verknüpfungsmusters über die NO_3 -Anionen der Verbindungen ${}_{\infty}^2 \left\{ \Delta - [\operatorname{Co}(en)_3] \operatorname{EDC}(\operatorname{NO}_3) \right\} \cdot 2 \operatorname{H}_2 O$ (links) und ${}_{\infty}^2 \left\{ \Lambda - [\operatorname{Co}(en)_3] \operatorname{BSA}(\operatorname{NO}_3) \right\} \cdot 2 \operatorname{H}_2 O$ (rechts) mit Blick auf die Ebene (010). Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

erkennen, dass die Nitrat-Anionen exakt um 180° gedreht erscheinen. Die Koordination erfolgt entsprechend umgekehrt. Das Nitrat-Anion N7 koordiniert bidentat verbrückend über die Sauerstoffatome O7D und O7D' an den Co1-Komplex sowie im Sinn einer η^1 -O-Brücke über die Sauerstoffatome O8D und O8D'. Das Nitrat-Anion N8 koordiniert über die Sauerstoffatome O8D und O8D'. Das Nitrat-Anion N8 koordiniert über die Sauerstoffatome O8D und O8D'. Das Nitrat-Anion N8 koordiniert über die Sauerstoffatome O8D und O8D' an zwei Komplexe Co1 (linear) monodentat im Sinne einer μ_2 -anti-Koordination und an einen Komplex Co2 monodentat verbrückend.

Die Winkel zwischen den zentralen Co-Atomen betragen dabei $\measuredangle N7, Co1, N7' = 160,5(1)^{\circ}$ und zweimal $\measuredangle N7, Co1, N8 = 80,3(1)^{\circ}$ für den Co1-Komplex. Für den Co2-Komplex können Winkel von $\measuredangle N8, Co2, N8' = 166,6(1)^{\circ}$ und zweimal $\measuredangle N8, Co2, N7 = 83,3(1)^{\circ}$ bestimmt werden.

Die Lage und Längen der Wasserstoffbrücken sind für die Koordinationsumgebung des Co1und Co2-Atoms für die Verbindung $^{2}_{\infty} \{ \Delta - [Co(en)_{3}] EDC(NO_{3}) \} \cdot 2H_{2}O$ in Abbildung 3.19 und für die Verbindung $^{2}_{\infty}$ { Λ -[Co(en)₃] BSA (NO₃) } \cdot 2 H₂O in Abbildung 3.20 dargestellt. Die Bindungslängen der Wasserstoffbrücken erstrecken sich von 184,1(5) pm bis 218,3(2) pm und liegen somit in einem Bereich mittlerer Bindungsstärke und beruhen größtenteils auf elektrostatischen Wechselwirkungen^[59]. Jeder Co1-Komplex ist zudem jeweils mit zwei Co2-Komplexen nahezu linear entlang der Achse [103] über Wasserstoffbrücken mit Fumaratbzw. Succinatanionen zu Strängen verbunden (vgl. Abbildung 3.21). Die Verknüpfung erfolgt dabei im Sinn einer bidentat verbrückenden Koordination ausgehend von den Carboxylatfunktionen der Linkermoleküle an die Protonen H4B (O7B) und H6B (O7A) sowie H2B (O8B) und H3B (O8A) für die Verbindung $^{2}_{\infty}$ { Δ -[Co(en)₃] EDC (NO₃) } \cdot 2 H₂O. In der Verbindung $_{\infty}^{2}\left\{ \,\Lambda\text{-}[\mathrm{Co(en)_{3}}]\,\mathrm{BSA}\,(\mathrm{NO_{3}})\right\} \cdot2\,\mathrm{H_{2}O}$ wird eine bidentat verbrückenden Koordination ausgehend von den Carboxylatfunktionen der Linkermoleküle an die Protonen $H_{4A}(O7A)$ und $H_{6A}(O7B)$ sowie H1A (O8A) und H3A (O8B) beobachtet. Die Winkel zwischen den Linkermolekülen und dem zentralen Co-Atom sind dabei mit ~ 170° nicht exakt linear, wodurch ein leicht wellenartiger Verlauf der Stränge entsteht.

Abb. 3.19: Strukturbestimmende Wasserstoffbrücken und deren Längen in der Verbindung ${}_{\infty}^{2} \left\{ \Delta - [Co(en)_3] EDC(NO_3) \right\} \cdot 2 H_2O$. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Abb. 3.20: Strukturbestimmende Wasserstoffbrücken und deren Längen in der Verbindung $^{2}_{\infty} \{ \Lambda - [Co(en)_{3}] BSA(NO_{3}) \} \cdot 2 H_{2}O$. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Auf diese Weise sind die $Co-NO_3$ -Doppelstränge über die Säureanionen dreidimensional miteinander verknüpft. Im Gegensatz zu den bisher vorgestellten Verbindungen weisen die Verbindungen in diesem Kapitel einen geringen Wasseranteil von zwei Molekülen pro Formeleinheit auf. Diese Wassermoleküle koordinieren bidentat verbrückend über Wasserstoffbrücken an die Co-Komplexe. Es können mittlere Wasserstoffbrücken mit Längen zwischen 184,1(5) pm und 213,6(5) pm beobachtet werden. Weitere strukturelle Einzelheiten sind in Tabelle 3.4 und Tabelle 3.5 zusammengefasst. Bei Betrachtung des Stickstoffatoms der Nitratanionen und der beiden Wassermoleküle liegt eine trigonal planare Koordinationsumgebung vor. Die Mittelpunktwinkel zwischen den Liganden und dem zentralen Co^{3+} -Atom liegen bei ~ 120°. Die Abstände zwischen der zentralen Co^{3+} -Lage und den Sauerstoff-Lagen der Wassermoleküle liegen bei ungefähr 389 pm. In Abbildung 3.22 ist die Anordnung der koordinierenden Wassermoleküle um den Co1- bzw. Co2-Komplex im Linker-Komplex-Strang exemplarisch für die Kristallstruktur der Verbindung $\frac{2}{\infty} {\Delta-[Co(en)_3] EDC(NO_3)} \cdot 2H_2O$ dargestellt.

Abb. 3.21: Verknüpfungsmuster der Komplexe in der Verbindung ${}_{\infty}^{2} \left\{ \Delta - [Co(en)_{3}] EDC(NO_{3}) \right\} \cdot 2 H_{2}O$ über die Linker-Anionen entlang der Achse [103] über Wasserstoffbrücken.

Abb. 3.22: Anordnung der koordinierenden Wassermoleküle um den *Co1*-Komplex (links) und den *Co2*-Komplex (rechts) mit Blick auf den Linker-Komplex-Strang entlang der Achse [103] in der Kristallstruktur der Verbindungen $^2_{\infty} \{ \Delta$ -[Co(en)₃] EDC (NO₃) $\} \cdot 2 H_2O$

Die einzelnen Nitrat-Cobalt-Komplex-Doppelstränge sind entlang der Achse [$\bar{1}$ 01] mit einer Stapelfolge des Typs AB angeordnet. Die Anordnung der Strukturfragmente und die Stapelfolge sind in Abbildung 3.23 mit Blick entlang der kristallografischen c- (links) und b-Achse (rechts) dargestellt. Die Strukturlösung der beiden Verbindungen gelang jeweils mit dem Programm SIR2004^[47]. Die Verfeinerung führte zu einer sehr guten Übereinstimmung zwischen Struktur und Modell. Für die Verbindung ${}^{2}_{\infty} \{ \Delta$ -[Co(en)₃] EDC (NO₃) $\} \cdot 2 H_2O$ konnten R-Werte von R1_{all data} = 0,0396, $\omega R2_{all data}$ = 0,0868, R_{int} = 0,0330 und ein Gütefaktor GooF = 1,02 erhalten werden. Für die Verbindung ${}^{2}_{\infty} \{ \Lambda$ -[Co(en)₃] BSA (NO₃) $\} \cdot 2 H_2O$ konnten R-Werte von R1_{all data} = 0,0600, $\omega R2_{all data}$ = 0,1620, R_{int} = 0,0500 und ein Gütefaktor GooF = 1,08 erhalten werden. Die Schwingungsellipsoide zeigen keine Auffälligkeiten und liegen in der erwarteten Größenordnung. Die kristallografischen Daten und Details zur Strukturlösung bzw. Verfeinerung sind in Tabelle 6.11 und Tabelle 6.16 im Appendix zusammengefasst.

Die Elementaranalysen zeigten starke Abweichungen von den berechneten Werten. Dies deutet auf eine teilweise Zersetzung bei der Trocknung ($60 \,^{\circ}$ C für 24 h) hin.

 $^{2}_{\infty}$ { Δ -[Co(en)₃] EDC (NO₃) } · 2 H₂O: Elementgehalt in % (berechnet für kein bzw. 2 H₂O):

C 30,96 (28,92), **H** 7,71 (6,31), **N** 19,19 (23,61). **C** 30,96 (26,62), **H** 7,71 (6,70), **N** 19,19 (21,73).

 $^{2}_{\infty}$ { Λ -[Co(en)₃] BSA (NO₃)} · 2 H₂O: Elementgehalt in % (berechnet für kein bzw. 2 H₂O):

C 31,09 (28,78), H 8,42 (6,76), N 19,58 (23,50). C 31,09 (26,50), H 8,42 (7,12), N 19,58 (21,63).

Abb. 3.23: Stapelfolge der Strukturfragmente in der Kristallstruktur der Verbindungen des Typs $^{2}_{\infty} \{ [Co(en)_{3}] L(NO_{3}) \} \cdot 2 H_{2}O$ mit Blick entlang der kristallografischen c-Achse (links) und der kristallografischen b-Achse (rechts). Die Nitrat-Cobalt-Komplex-Doppelstränge sind violett dargestellt.

In Abbildung 3.24 und Abbildung 3.25 sind die MIR-Spektren der getrockneten Verbindungen ${}^{2}_{\infty}$ { Δ -[Co(en)₃] EDC (NO₃)}·2H₂O und ${}^{2}_{\infty}$ { Λ -[Co(en)₃] BSA (NO₃)}·2H₂O dargestellt. Die Absorptionsbanden bei 1535 cm⁻¹ (ν_{as}) bzw. 1529 cm⁻¹ (ν_{as}) und 1369 cm⁻¹ (ν_{s}) bzw. 1406 cm⁻¹ (ν_{s}) können den asymmetrischen und symmetrischen Schwingungen der Carboxylatfunktion der Dicarbonsäureanionen zugeordnet werden. Das Absorptionsmuster im *fingerprint*-Bereich stimmt sehr gut mit dem Muster der reinen Säuren überein. Die breite strukturierte Absorptionsbande zwischen 3200 cm⁻¹ und 2900 cm⁻¹ deutet auf O-H-, N-H-Valenzschwingungen und Kristallwasser hin. Die Banden bei 2984 cm⁻¹ und 3069 cm⁻¹ bzw. bei 2982 cm⁻¹ und 3096 cm⁻¹ können C-H-Valenzschwingungen zugeordnet werden. Da die Verbindungen nach Entfernen des Kristallwassers röntgenamorph sind, konnten keine weiteren Messungen zur Bestimmung der Phasenreinheit durchgeführt werden.

Abb. 3.24: MIR-Spektrum der getrockneten Verbindung $_{\infty}^{2}\left\{ \,\Delta\text{-}[\mathrm{Co(en)_{3}}]\,\mathrm{EDC}\,(\mathrm{NO_{3}})\right\} \cdot 2\,\mathrm{H}_{2}\mathrm{O}$

Abb. 3.25: MIR-Spektrum der getrockneten Verbindung $_{\infty}^{2}\left\{ \,\Lambda \text{-}[\mathrm{Co(en)_{3}}]\,\mathrm{BSA}\,(\mathrm{NO_{3}})\right\} \cdot 2\,\mathrm{H_{2}O}$

Tab. 3.4: Ausgewählte interatomare Abstände/pm, Winkel/° und relevante Wasserstoffbrückenbindungen/pm der Verbindung $^{2}_{\infty}$ { Δ -[Co(en)₃] EDC (NO₃) } · 2 H₂O.

gen/ph	If def verbindung $\infty \{ \Delta - [Co(en$	$[3]$ EDU $(103) \int 21120$.	
Co1 - C8	453,3(2)	O7A - C7 - O7B	123,9(3)
Co1 - N7	503,9(1)	O8A - C8 - O8B	123,5(3)
Co1 - N8	470,9(4)	O7C - N7 - O7D	119,9(1) 2x
Co1 - O1	387,8(3)	O7D - N7 - O7D'	120,2(1)
Co2 - C7	470,8(3)	O8C - N8 - O8D	120,8(1)
Co2 - N7	508,2(4)	O8D - N8 - O8D'	118,5(1) 2x
Co2 - N8	509,5(1)	C7 - C71 - C72	124,3(3)
Co2 - O2	390,8(3)	C71 - C72 - C8	124,2(3)
		C8 - Co1 - C8'	169,4(1)
O7A - H1E	185(4)	C7 - Co2 - C7	170,9(1)
O7A - H5B	209,0(2)	N7 - Co1 - N7'	166,8(1)
O7B - H4B	194,9(3)	N7 - Co1 - N8	83,4(1) 2x
O7C - H5A	204,5(2)	N8 - Co2 - N8'	158,4(1)
O7C - H5A	204,5(2)	N7 - Co2 - N8	79,2(1) 2x
O8A - H3B	211,2(2)	O1 - Co1 - N8	121,5(1)
O8B - H2F	185(4)	O1 - Co1 - O1'	117,1(1) 2x
O8B - H2B	212,5(3)	O2 - Co2 - N7	121,7(1)
O8D - H1A	197,7(2)	O2 - Co2 - O2'	116,5(1) 2x
O8D - H6B	218,3(2)		
O1 - H3A	204,5(2)	Co1 - N2	196,0(2)
O1 - H2A	209,9(3)	Co1 - N3	196,2(2)
O2 - H6A	201,9(2)	Co1 - N1	197,2(2)
O2 - H4A	209,4(3)	Co2 - N4	196,3(2)
		Co2 - N5	196,8(2)
		Co2 - N6	196,8(3)

gen/ph	If def verbindung $\infty \int M^{-}[OO(en)]$	$[3] DSA (103) \int 2 1120.$	
Co1 - C7	461,9(7)	O7A - C7 - O7B	123,4(7)
Co1 - N7	516,0(2)	O8A - C8 - O8B	123,4(8)
Co1 - N8	$501,\!5(9)$	O7C - N7 - O7D	122,6(4) 2x
Co1 - O1	389,7(8)	O7C - N7 - O7C'	114,9(5)
Co2 - C8	449,7(7)	O8C - N8 - O8D	121,8(3)
Co2 - N7	474,1(1)	O8D - N8 - O8D'	116,4(5) 2x
Co2 - N8	512,0(1)	C7 - C71 - C72	115,8(6)
Co2 - O2	389,6(8)	C71 - C72 - C8	115,8(6)
		C7 - Co1 - C7'	168,0(1)
O7A - H4A	204,2(4)	C8 - Co2 - C8'	166,5(1)
O7B - H5A	184,1(5)	N7 - Co1 - N7'	160,5(1)
O7C - H1B	197,0(5)	N7 - Co1 - N8	80,3(1) 2x
O8A - H2A	213,6(5)	N8 - Co2 - N8'	166, 6(1)
O8B - H3A	206,5(4)	N7 - Co2 - N8	83,3(1) 2x
O8C - H4B	208,4(7)	O1 - Co1 - N8	121,2(1)
O8C - H4B	208,4(7)	O1 - Co1 - O1'	117,7(2) 2x
O1 - H6B	197,1(4)	O2 - Co2 - N7	120,9(1)
O1 - H5B	206,5(5)	O2 - Co2 - O2'	118,2(2) 2x
O2 - H3B	206,7(3)		
O2 - H2B	213,0(5)	Co1 - N3	194,0(4)
		Co1 - N2	196,7(3)
		Co1 - N1	199,7(4)
		Co2 - N4	194,6(4)
		Co2 - N6	195,8(7)
		Co2 - N5	197,8(4)

Tab. 3.5: Ausgewählte interatomare Abstände/pm, Winkel/° und relevante Wasserstoffbrückenbindungen/pm der Verbindung $^{2}_{\infty}$ { Λ -[Co(en)₃] BSA (NO₃)} · 2 H₂O.

3.2.3 Zentrosymmetrische

Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate

Neben den in Kapitel 3.2.1 vorgestellten azentrischen Verbindungen konnten auch eine Reihe zentrosymmetrischer Verbindungen erhalten werden. Die Synthese erfolgte dabei durch Einsatz eines racemischen Gemisches des $[Co(en)_3]^{3+}$ -Komplexes als Edukt. Durch die Insertion eines Inversionszentrums halbieren sich die Summenformeln im Vergleich zu den zuvor diskutierten Verbindungen. In den folgenden Verbindungen liegt der linearer Linker nur zur Hälfte in der asymmetrischen Einheit vor und wird durch das Inversionszentrum komplettiert. Solche Linkermoleküle werden in den entsprechenden Abbildungen vervollständigt und die betroffenen Atome durch Transparenz kenntlich gemacht.

${}^2_{\infty} \Big\{ [Co(en)_3] ADC_{3/2} \Big\} \cdot 4 H_2 O$

Durch Umsetzung von $[Co(en)_3]I_3$ mit einem leichten Überschuss PbADC in wässriger Suspension konnte nach Filtration eine orangefarbene Lösung erhalten werden, in der nach einigen Wochen orange Kristalle entstanden. Die Verbindung $^2_{\infty}\{[Co(en)_3]ADC_{3/2}\} \cdot 4 \text{H}_2\text{O}$ kristallisiert triklin in der zentrosymmetrischen Raumgruppe $P\overline{1}$ (Nr. 2, Z=2) mit den Gitterkonstanten a=856,5(1) pm, b=1086,7(2) pm, c=1235,2(2) pm, α =87,53(2)°, β =72,56(2)° und γ =71,34(2)°. Die asymmetrische Einheit mit Blick entlang der b-Achse ist in Abbildung 3.26 dargestellt.

Abb. 3.26: ORTEP-Darstellung der asymmetrischen Einheit der Verbindung ${}_{\infty}^{2} \left\{ [Co(en)_{3}]ADC_{3/2} \right\} \cdot 4 H_{2}O$ mit thermischen Ellipsoiden (50% Wahrscheinlichkeit) und Atomnummerierung

3 Ergebnisse und Diskussion

In der asymmetrischen Einheit sind ein $[Co(en)_3]^{3+}$ -Komplex und eineinhalb Acetylendicarboxylat-Anionen enthalten. Die vier enthaltenen Kristallwassermoleküle werden für die Strukturdiskussion vernachlässigt. Die Verbindung $^2_{\infty}\{[Co(en)_3]ADC_{3/2}\} \cdot 4 H_2O$ weist keine Chiralität auf, was entsprechende Messungen der optischen Aktivität bestätigen. Die jeweils drei chelatisierenden Ethylendiaminmoleküle koordinieren bedingt durch das Inversionszentrum sowohl links- als auch rechtshelikal und entsprechen damit der Λ - bzw. Δ -Konfiguration. Die Verknüpfung der Komplexe unterscheidet sich von den in Kapitel 3.2.1 vorgestellten Verbindungen. Zwei Komplexe werden hier durch zwei Carboxyaltfunktionen C7 und C7' der Linker im Sinne einer μ_2 -anti-Koordination über Wasserstoffbrücken zu dimeren Einheiten verbunden. Die dimeren Co-Komplex-Einheiten bilden mit dem Acetylendicarbonsäure-Anion C7/C8 Doppelstränge, die entlang der speziellen Achse $[10\bar{1}]$ verlaufen. Die Verknüpfung erfolgt dabei ausgehend von dem Carboxylatsauerstoff O7Aals monodentat verbrückende Koordination an die Wasserstoffatome H2D und H3D. Das Sauerstoffatom O8B koordiniert monodentat an das Wasserstoffatom H5C.

Abb. 3.27: Strukturbestimmende Wasserstoffbrücken in der Verbindung $^2_{\infty} \{ [Co(en)_3]ADC_{3/2} \} \cdot 4 H_2O.$ Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Abb. 3.28: Relevante Co-C-Abstände in der Verbindung $^{2}_{\infty} \{ [Co(en)_{3}]ADC_{3/2} \} \cdot 4 H_{2}O$. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Die Dimere sind über das Acetylendicarbonsäureanion C9/C9' zweidimensional zu einem 4⁴-Netzwerk verknüpft. Ausgehend von den Carboxylatsauerstoffatomen erfolgt die Verknüpfung bidentat verbrückend an die Wasserstoffatome H4D (O9A) und H5D (O9B). Der Abstand der zentralen Co-Atome Co1 und Co1' liegt bei 700 pm. Die Bindungslängen der Wasserstoffbrücken erstrecken sich von 188(5) pm bis 215,6(3) pm, liegen somit in einem Bereich mittlerer Bindungsstärke und beruhen größtenteils auf elektrostatischen Wechselwirkungen^[59]. Die kürzesten und damit stärksten Wasserstoffbrücken sind ausgehend von den Carboxylatsauerstoffatomen O9A und O9B des bidentat koordinierenden Acetylendicarbonsäure-Anions C9/C9' zu den Wasserstoffatomen H4D und H3C zu finden. Eine schwache Wasserstoffbrücke kann zwischen O8B und H5A beobachtet werden. Diese Carboxylatfunktion koordiniert monodentat an den Co-Komplex. Die Lage und Längen der Wasserstoffbrücken sind für die Koordinationsumgebung des Co1-Atoms in Abbildung 3.27 und in Abbildung 3.28 abgebildet.

Die T-förmige Anordnung der Linker um die *Co*-Komplexe bleibt dabei weitestgehend erhalten. Jeder Komplex ist über Acetylendicarboxylate mit drei weiteren Komplexmolekülen verbunden. Das Strukturmotiv der Leiter mit Flächengrößen von $1,68 \cdot 10^6 \text{ pm}^2$ bezogen auf die Lage der *Co*-Atome kann auch hier beobachtet werden. Die Winkel zwischen den Linkermolekülen betragen für das *Co1*-Atom: \measuredangle *C7*, *Co1*, *C8* = 160,3(1)°; \measuredangle *C7*, *Co1*, *C8* = 90,1(1)°; \measuredangle *C8*, *Co1*, *C9* = 101,9(1)°. Die Holme benachbarter Fragmente sind dabei durch die dimere Verknüpfung zu einer Schicht verbunden. Die gebildeten Schichten verlaufen parallel der Ebene (010) und weisen eine AA-Stapelfolge entlang der kristallografischen b-Achse auf. In Abbildung 3.30 ist die Stapelfolge entlang der kristallografischen a- (links) bzw. c-Achse (rechts) dargestellt.

Abb. 3.29: 4⁴-Netzwerk in der Kristallstruktur von ${}^{2}_{\infty} \{ [Co(en)_{3}]ADC_{3/2} \} \cdot 4H_{2}O$ in "wire and sticks" - Darstellung. Um das Verknüpfungsmuster besser hervorzuheben, wurde der $[Co(en)_{3}]^{3+}$ -Komplex als gelbe Kugel mit einem Durchmesser von 200 pm dargestellt (vgl. Abbildung 3.3). Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Die einzelnen Doppelstränge sind leicht gegeneinander verschoben, der daraus resultierende Winkel der rhombischen Verzerrung beträgt 85°. Eine repräsentativer Ausschnitt des isolierten Netzwerkes mit reduzierter Komplexdarstellung ist in Abbildung 3.29 wiedergegeben.

Abb. 3.30: Stapelfolge der Netzwerke in der Kristallstruktur von $^{2}_{\infty} \{ [Co(en)_{3}]ADC_{3/2} \} \cdot 4H_{2}O$ entlang der a-Achse (links) und der c-Achse (rechts)

Weitere strukturelle Einzelheiten sind in Tabelle 3.6 zusammengefasst. Die dreidimensionale Verknüpfung der einzelnen Strukturfragmente erfolgt durch Kristallwassermoleküle über weitere Wasserstoffbrücken. Die Strukturlösung gelang mit dem Programm SIR2004^[47]. Die

Verfeinerung führte zu einer mäßigen Übereinstimmung zwischen Struktur und Modell mit $R1_{all data} = 0,1051$, $\omega R2_{all data} = 0,0769$ und $R_{int} = 0,1220$. Dies zeigt auch der Gütefaktor GooF = 0,74. Die Schwingungsellipsoide zeigen keine Auffälligkeiten und liegen in der erwarteten Größenordnung. Die kristallografischen Daten und Details zur Strukturlösung bzw. Verfeinerung sind in Tabelle 6.21 im Appendix zusammengefasst.

Ein mit Synchrotronstrahlung ($\lambda = 55,1155 \text{ pm}/22,5 \text{ keV}$) aufgenommenes Röntgenpulverdiffraktogramm ist in Abbildung 3.31 im Vergleich mit einem aus der Kristallstruktur erstellten theoretischen Diffraktogramm aufgetragen. Die Reflexlagen zeigen eine gute Übereinstimmung mit den theoretischen Daten.

Abb. 3.31: Röntgenpulverdiffraktogramm der Verbindung $^2_{\infty} \{ [Co(en)_3]ADC_{3/2} \} \cdot 4 H_2O$ (violett) im Vergleich mit aus der Kristallstruktur erzeugten theoretischen Daten (grau)

Die Verbindung $^{2}_{\infty}$ {[Co(en)₃]ADC_{3/2} } · 4 H₂O konnte somit phasenrein erhalten werden. Dies bestätigt auch die Elementaranalyse, lediglich der Kohlenstoffwert zeigt eine Abweichung von ca. 1%.

Elementgehalt in %(berechnet): C 28,78 (30,07), H 6,68 (6,73), N 17,52 (17,53).

3 Ergebnisse und Diskussion

In Abbildung 3.32 ist das MIR-Spektrum der getrockneten Verbindung $^{2}_{\infty}\{[\mathrm{Co(en)_{3}}]\mathrm{ADC}_{3/2}\}\cdot4\,\mathrm{H_{2}O}\ \ \mathrm{dargestellt}.\ \ \mathrm{Die}\ \ \mathrm{Absorptions banden}\ \ \mathrm{bei}\ \ 1618\,\mathrm{cm^{-1}}\ \ (\nu_{\mathrm{as}})$ und $1327 \,\mathrm{cm}^{-1}$ (ν_{s}) können den asymmetrischen und symmetrischen Schwingungen der Carboxylatfunktion des Acetylendicarboxylates zugeordnet werden. Das Absorptionsmuster im fingerprint-Bereich stimmt sehr gut mit dem Muster der reinen Acetylendicarbonsäure überein. Die breite strukturierte Absorptionsbande zwischen $3600\,{\rm cm}^{-1}$ und $2600\,{\rm cm}^{-1}$ deutet auf O-H-, N-H-Valenzschwingungen und Kristallwasser hin. Die Banden bei $3099 \,\mathrm{cm}^{-1}$ und $3211 \,\mathrm{cm}^{-1}$ können C-H-Valenzschwingungen zugeordnet werden.

Abb. 3.32: MIR-Spektrum der getrockneten Verbindung $^2_\infty \left\{ [\mathrm{Co}(\mathrm{en})_3]\mathrm{ADC}_{3/2} \right\} \cdot 4\,\mathrm{H_2O}$

Tab. 3.6: Ausgewählte interatomare Abstände/pm, Winkel/° und relevante Wasserstoffbrückenbindungen/pm der Verbindung ${}^{2}_{\infty} \{ [Co(en)_{3}]ADC_{3/2} \} \cdot 4H_{2}O$

bindung	gen/pm der verbindung $\frac{1}{2}$ {[Co	$D(en)_3 ADC_{3/2} > 4 H_2O$	
Co1 - C7	434,9(5)	O7A - C7 - O7B	125,0(4)
Co1 - C8	488,0(5)	O8A - C8 - O8B	127,6(6)
Co1 - C9	457,4(6)	O9A - C9 - O9B	127,5(5)
Co1 - Co1	697,0(2)	C7 - C71 - C72	177,5(5)
		C71 - C72 - C8	177,2(5)
O7A - H2D	215,4(3)	C9 - C91 - C91'	175,9(6) 2x
O7B - H4C	215,6(3)	C7 - Co1 - C8	160,3(1)
O7B - H6C	218,2(4)	C7 - Co1 - C9	90,1(1)
O8A - H1E	188(5)	C8 - Co1 - C9	101,9(1)
O8A - H1F	194(4)		
O8B - H3F	188(5)	Co1 - N1	195,6(5)
O9A - H4D	210,9(5)	Co1 - N2	196,4(4)
O9B - H5D	196,5(4)	Co1 - N3	196,4(3)
		Co1 - N4	196,9(4)
		Co1 - N5	195,4(4)
		Co1 - N6	195,1(3)

3 Ergebnisse und Diskussion

${}^1_\infty \Big\{ [\mathrm{Co(en)_3}]\mathrm{BDC}_{3/2} \Big\} \cdot 10 \,\mathrm{H_2O}$

Durch Fällung von AgI aus einer $[Co(en)_3]I_3$ und einen leichten Überschuss $[Ag(en)][Ag(BDC)] \cdot H_2O$ enthaltenden Suspension konnte nach Filtration eine orangefarbene Lösung erhalten werden, in der nach einigen Wochen gelb-orange Kristalle entstanden. Die mikroskopische Aufnahme eines Einkristalls der Verbindung ist in Abbildung 3.33 gezeigt.

Abb. 3.33: Mikroskopische Aufnahme eines in perfluoriertem Öl isolierten Einkristalls der Verbindung ${}_{\infty}^{1}\left\{ [Co(en)_{3}]BDC_{3/2} \right\} \cdot 10 \, H_{2}O$

Die Verbindung ${}_{\infty}^{1} \{ [Co(en)_3] BDC_{3/2} \} \cdot 10 H_2O$ kristallisiert triklin in der zentrosymmetrischen Raumgruppe $P\bar{1}$ (Nr.2) mit einer Formeleinheit pro Elementarzelle. Es konnten die Gitterkonstanten a = 1069,8(2) pm, b = 1145,4(2) pm, c = 1367,3(3) pm, $\alpha = 70,38(1)^{\circ}$, $\beta = 85,24(1)^{\circ}$ und $\gamma = 79,01(2)^{\circ}$ ermittelt werden. Die asymmetrische Einheit setzt sich aus einem $[Co(en)_3]^{3+}$ -Komplex und 1,5 verbrückenden Terephthalsäure-Anionen zusammen. Das Terephthalsäureanion C9/C9' liegt dabei nur zur Hälfte in der asymmetrischen Einheit und wurde zur bessern Übersicht in Abbildung 3.34 transparent vervollständigt. Die zehn enthaltenen Kristallwassermoleküle werden für die Strukturdiskussion vernachlässigt. Die Verbindung ${}_{\infty}^{1} \{ [Co(en)_3] BDC_{3/2} \} \cdot 10 H_2O$ kann als zentrosymmetrische Variante der in Kapitel 3.2.1 auf Seite 23 vorgestellten Verbindung ${}_{\infty}^{1} \{ \Lambda \cdot [Co(en)_3]_2 BDC_3 \} \cdot 20 H_2O$ angesehen werden. Das Kobaltatom Co1 ist oktaedrisch von Stickstoffatomen der Ethylendiaminmolekülen ungeben, dabei erfolgt die Anordnung der Ethylenbrücken inversionsbedingt links- bzw. rechtshelikal, die damit der Λ - bzw. Δ -Konfiguration entsprechen. Jeder dieser Komplexe ist durch die Terephthalsäure-Anionen C7/C8 und C9/C9' mit drei weiteren Komplexen über Wasserstoffbrücken verbunden.

Die Verknüpfung erfolgt bidentat oder tridentat über Wasserstoffbrücken ausgehend von den Sauerstoffatomen der Carboxylatfunktionen an die Protonen der Stickstoffatome der Ethylendiaminmoleküle mit Bindungslängen der Wasserstoffbrücken zwischen 194,9(4) pm bis

Abb. 3.34: ORTEP-Darstellung der asymmetrischen Einheit der Verbindung ${}_{\infty}^{1} \{ [Co(en)_3]BDC_{3/2} \} \cdot 10 H_2O$ mit thermischen Ellipsoiden (50% Wahrscheinlichkeit) und Atomnummerierung. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

212,6(4) pm und liegen somit in einem Bereich mittlerer Bindungsstärke^[59]. Die Terephthalsäure-Anionen C7/C8 bildet mit den Co-Komplexen Stränge, die über die Terephthalsäure-Anionen C9/C9' zu leiterartigen Fragmenten verknüpft werden. Die Carboxylatfunktionen C7 bzw. C9 koordinieren bidentat verknüpfend an die Wasserstoffatome H3B (O7A) und H5B (O7B) bzw. H2A (O9B) und H3A (O9A). Die Carboxylatfunktionen mit den Sauerstoffatomen O8A bzw. O8B koordinieren tridentat verbrückenden an die Wasserstoffatome H2B und H4B bzw. H6B. Die aromatischen Kohlenstoffringe der Terephthalat-Linker liegen planar in der aufgespannten Ebene (vgl. Abbildung 3.36) und weisen dabei keine Torsion der Carboxylatfunktionen auf. Das Strukturmotiv der Leiter weist eine geringe rhombische Verzerrung mit einem Winkel von $86,3^{\circ}$ auf. Aufgrund der ausgeprägten Rigidität des Terephthalsäure-Anionen hat dies entscheidenden Einfluss auf die verschiedenen Koordinationsmodi der Carboxylatfunktionen. Die kürzesten Wasserstoffbrücken sind jeweils ausgehend von den diagonal über das Terephthalatmolekül angeordneten Carboxylatsauerstoffatomen O9A und O9A' des Terephthalsäure-Anions C9/C9' zu finden. Für die Koordinationsumgebung des Co-Komplexes sind die Lagen und Längen der Wasserstoffbrücken in Abbildung 3.35 gezeigt.

Abb. 3.35: Strukturbestimmende Wasserstoffbrücken (links) und relevante Co-C-Abstände (rechts) in der Verbindung $\frac{1}{\infty} \{ [Co(en)_3]BDC_{3/2} \} \cdot 10 H_2O$. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Bei Betrachtung der Carboxylatkohlenstoffatome in der Koordinationsumgebung des zentralen *Co*-Atoms, wie in Abbildung 3.35 dargestellt, ist gut die T-förmige Koordination zu erkennen. Die beiden gegenüberliegenden Terephtalsäure-Anionen weisen dabei die kürzeren *Co-C*-Abstände auf. Die Winkel zwischen den Linkermolekülen betragen für das *Co1*-Atom: $\measuredangle C7, Co1, C8 = 170,0(1)^{\circ}; \measuredangle C7, Co1, C8 = 91,7(1)^{\circ}; \measuredangle C8, Co1, C9 = 96,6(1)^{\circ}$. Weitere strukturelle Einzelheiten sind in Tabelle 3.7 zusammengefasst. Die Verbindung ${}^{1}_{\infty}\{[Co(en)_{3}]BDC\} \cdot 10 H_{2}O$ neigt zu einer leichten Abgabe des enthaltenen Kristallwassers bei Verlassen der Mutterlauge, was zu einem raschen Verlust der Kristallinität führt. Dies beruht auf der dreidimensionalen Verknüpfung der einzelnen Strukturfragmente durch das enthaltene Kristallwasser mittels Wasserstoffbrücken. Erhaltene Kristalle lassen sich nur in der Mutterlauge oder unter perfluoriertem Öl handhaben. Die Lösung der Struktur gelang problemlos mit dem Programm SIR2004^[47].

Abb. 3.36: Leiterartiges Strukturfragment in der Kristallstruktur von $\frac{1}{\infty} \{ [Co(en)_3]BDC_{3/2} \} \cdot 10 H_2O$ in "wire and sticks"-Darstellung. Um das Verknüpfungsmuster besser hervorzuheben, wurde der $[Co(en)_3]^{3+}$ -Komplex als gelbe Kugel mit einem Durchmesser von 200 pm dargestellt (vgl. Abbildung 3.3). Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Die Verfeinerung führte zu erhöhten Werten für die Übereinstimmung zwischen Struktur und Modell mit R1_{all data} = 0,1796, ω R2_{all data} = 0,3372 und GooF = 0,79. Die Schwingungsellipsoide der Atome liegen in der erwarteten Größenordnung. Die einzelnen Leiter-Fragmente sind sind um 19,82° aus der Ebene (100) gekippt. In Abbildung 3.37 ist die sich daraus ergebende Stapelfolge des Typs AA entlang der kristallografischen a-Achse gezeigt. Die dreidimensionale Verknüpfung der einzelnen Strukturfragmente erfolgt durch Kristallwassermoleküle über weitere Wasserstoffbrücken. Die kristallografischen Daten und Details zur Strukturlösung bzw. Verfeinerung sind in Tabelle 6.26 im Appendix zusammengefasst.

In Abbildung 3.38MIR-Spektrum der getrockneten ist dasVerbindung ${}_{\infty}^{1}$ {[Co(en)₃]BDC_{3/2}} · 10 H₂O gezeigt. Die Absorptionsbanden bei 1568 cm⁻¹ (ν_{as}) und $1375 \,\mathrm{cm}^{-1}$ (ν_{s}) können den asymmetrischen und symmetrischen Schwingungen der Carboxylatfunktion des Terephthalsäure-Anions zugeordnet werden. Das Absorptionsmuster im fingerprint-Bereich stimmt sehr gut mit dem Muster der reinen Terephthalsäure überein. Die breite strukturierte Absorptionsbande zwischen $3500 \,\mathrm{cm}^{-1}$ und $2600 \,\mathrm{cm}^{-1}$ deutet auf O-H-, N-H-Valenzschwingungen und Kristallwasser hin. Die Banden bei $2980 \,\mathrm{cm}^{-1}$ und $3096 \,\mathrm{cm}^{-1}$ können C-H Valenzschwingungen zugeordnet werden. Da die Verbindung nach Entfernen des Kristallwasser röntgenamorph ist, konnten keine weiteren Messungen zur Bestimmung der Phasenreinheit durchgeführt werden.

Abb. 3.37: Stapelfolge der Leiterfragmente in der Kristallstruktur von $\frac{1}{\infty} \left\{ [Co(en)_3] BDC_{3/2} \right\} \cdot 10 H_2O$

Abb. 3.38: MIR-Spektrum der getrockneten Verbindung $^1_\infty \left\{ [{\rm Co(en)_3}] {\rm BDC}_{3/2} \right\} \cdot 10 \, {\rm H_2O}$

Tab. 3.7: Ausgewählte interatomare Abstände/pm, Winkel/° und relevante Wasserstoffbrückenbindungen/pm der Verbindung $\frac{1}{\infty} \left\{ [Co(en)_3] BDC_{3/2} \right\} \cdot 10 \, H_2O$

billaulig	$\sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j$	$5(61)_{3} D C_{3/2} \int 10 H_{2} C_{3/2}$	
Co1 - C7	442,9(4)	O7A - C7 - O7B	122,9(5)
Co1 - C8	440,6(4)	O8A - C8 - O8B	123,9(4)
Co1 - C9	466,3(6)	O9A - C9 - O9B	123,2(4)
		C7 - Co1 - C8	170,0(1)
O7A - H3B	199,0(3)	C7 - Co1 - C9	91,7(1)
O7B - H5B	199,1(3)	C8 - Co1 - C9	96,6(1)
O8A - H4B	200,9(3)		
O8B - H6B	203,3(3)	Co1 - N1	196,7(4)
O9A - H3A	194,9(4)	Co1 - N2	197,9(4)
O9B - H2A	212,6(4)	Co1 - N3	195,0(4)
		Co1 - N4	195,9(0)
		Co1 - N5	196,5(5)
		Co1 - N6	197,6(4)

$^{2}_{\infty}\left\{ [\mathrm{Co(en)}_{3}]\mathrm{BTC} \right\} \cdot 5,55 \,\mathrm{H_{2}O}$

Durch Umsetzung von [NH₄][Ag₅(BTC)₂ (NH₃)₂ (H₂O)₂] · H₂O mit einem leichten Unterschuss [Co(en)₃]I₃ in wässriger Suspension konnte nach Filtration eine orangefarbene Lösung erhalten werden, in der nach einigen Wochen orange Kristalle entstanden. Die Verbindung $^{2}_{\infty}$ {[Co(en)₃]BTC } · 5,55 H₂O kristallisiert monoklin in der zentrosymmetrischen Raumgruppe $P2_{1}/c$ (Nr. 4) mit zwei Formeleinheiten pro Elementarzelle. Die Gitterkonstanten wurden mit a = 1660,0(2) pm , b = 1600,3(1) pm, c = 1980,8(1) pm und β = 72,56(2)° bestimmt. Die asymmetrische Einheit mit Blick auf die Ebene (0 2 3) ist in Abbildung 3.39 dargestellt.

Abb. 3.39: ORTEP-Diagramm der asymmetrischen Einheit der Verbindung ${}_{\infty}^{2} \{ [Co(en)_{3}]BTC \} \cdot 5,55 H_{2}O$ mit thermischen Ellipsoiden (50% Wahrscheinlichkeit) und Atomnummerierung. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

In der asymmetrischen Einheit sind zwei $[Co(en)_3]^{3+}$ -Komplexe und zwei Trimesinsäure-Anionen enthalten. Die enthaltenen Kristallwassermoleküle werden für die Strukturdiskussion vernachlässigt. Die Kobaltatome *Co1* und *Co2* sind jeweils oktaedrisch von Stickstoffatomen der Ethylendiaminmolekülen umgeben. Die jeweils drei chelatisierenden Ethylendiaminmoleküle koordinieren analog den anderen Verbindungen in diesem Kapitel inversionsbedingt links- und rechtshelikal und entsprechen damit der Λ - bzw. Δ -Konfiguration. Messungen der optischen Aktivität der Verbindung $^2_{\infty}{[Co(en)_3]BTC} \cdot 5,55 H_2O$ zeigen dementsprechend keine Chiralität. Im Gegensatz zu den bisher vorgestellten Verbindungen ist das Trimesinsäure-Anion ein trifunktioneller Linker, das Verhältnis von Komplex-Kationen zu Linker-Anionen beträgt demnach im vorliegenden Fall 1:1. Jeder Komplex ist über drei Trimesinsäure-Anionen durch Wasserstoffbrücken mit sechs weiteren Komplexen verbunden und vice versa. Die T-förmige Koordinationsumgebung des *Co*-Komplexes und die trigonale Struktur des Linkermoleküls führen dabei zu einer Verzerrung des aufgebauten zweidimensionalen 6^3 -Netzwerkes. Diese bedingt verschiedene Koordinationsmodi der Carboxylatfunktionen beruhend auf sterischen Effekten. Es können drei Typen unterschieden werden. Die Carboxylatfunktionen mit den Sauerstoffatomen *O13A* bzw. *O17A* koordinieren monodentat verbrückendend an die Wasserstoffatome *H1B* und *H6B* bzw. *H7A* und *H9A*. Die Verknüpfung zwischen den Carboxylatfunktionen *C15* bzw. *C16* und den Wasserstoffatomen *H7A* und *H12B* bzw. *H1A* und *H3A* kann als bidentat verbrückend angesehen werden. Die Carboxylatfunktionen *C14* bzw. *C18* binden tridentat verknüpfend an die Wasserstoffatome *H8A*, *H12A* (*O14A*) und *H10A* (*O14B*) bzw. *H3B*, *H5B* (*O18B*) und *H2B* (*O18A*).

Abb. 3.40: Strukturbestimmende Wasserstoffbrücken (links) und relevante Co-C-Abstände (rechts) in der Verbindung $^{2}_{\infty}$ { [Co(en)₃]BTC } \cdot 5,55 H₂O. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Neben den differierenden Koordinationsmodi weisen die Carboxylatfunktionen der Trimesinsäure-Anionen unterschiedliche Torsionswinkel bezogen auf das aromatische Kohlenstoffgerüst auf. Dabei können die größten Winkel an den Carboxylatfunktionen C17 mit $\measuredangle O17A, C17, C163, C162 = 24(1)^{\circ}$ und C18 mit $\measuredangle O18B, C18, C165, C166 = 31(1)^{\circ}$ beobachtet werden. Die Bindungslängen der Wasserstoffbrücken erstrecken sich von 198,0(5) pm bis 214,2(6) pm, liegen somit in einem Bereich mittlerer Bindungstärke und beruhen größtenteils auf elektrostatischen Wechselwirkungen^[59]. Die Lage und Längen der Wasserstoffbrücken sind für die Koordinationsumgebung des Co1-Atoms in Abbildung 3.40 abgebildet. Ein Ausschnitt des isolierten Netzwerkes mit reduzierter Komplexdarstellung ist in Abbildung 3.41 dargestellt.

Abb. 3.41: 6³-Netzwerk in der Kristallstruktur von ${}^{2}_{\infty} \{ [Co(en)_{3}]BTC \} \cdot 5,55 H_{2}O$ in "wire and sticks" - Darstellung. Um das Verknüpfungsmuster besser hervorzuheben, wurde der $[Co(en)_{3}]^{3+}$ -Komplex als gelbe Kugel mit einem Durchmesser von 200 pm dargestellt (vgl. Abbildung 3.3). Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Weitere strukturelle Einzelheiten sind in Tabelle 3.8 zusammengefasst. Das Strukturmotiv des Netzwerkes kann mit dem verzerrten Fugenverlauf einer Backsteinmauer verglichen werden. Die Flächengröße kann damit zu $1,05 \cdot 10^6 \text{ pm}^2$ bezogen auf die Lage der Co-Atome und die Zentren der Linkermoleküle bestimmt werden. Die Winkel zwischen den Linkermolekülen betragen für das Co1-Atom: \measuredangle C13, Co1, C15 = 97,8(1)°; \measuredangle C13, Co1, C18 = 173,6(1)°; \measuredangle C15, Co1, C18 = 75,8(1)°. Für das Co2-Atom konnten folgende Winkel gefunden werden: \measuredangle C14, Co2, C16 = $84,7(1)^{\circ}$; \measuredangle C14, Co2, C17 = 176,7(1)^{\circ}; \measuredangle C16, Co2, C17 = 95,0(1)^{\circ}. Die gebildeten Schichten verlaufen parallel der Ebene (101) und weisen eine AA-Stapelfolge entlang der Achse [101] auf. Der Abstand der einzelnen Schichten beträgt ca. 850 pm. In Abbildung 3.42 ist die Stapelfolge und Lage der isolierten Schichten mit Blick auf die Ebene $(30\bar{4})$ dargestellt. Durch die nicht planare Verknüpfung der einzelnen Bausteine resultiert ein Wellenmuster entlang der kristallografischen b-Achse mit einer Amplitude von ca. 200 pm. Die dreidimensionale Verknüpfung der einzelnen Strukturfragmente erfolgt durch Wasserstoffbrücken über die Kristallwassermoleküle. Trotz der geringen Stabilität der Verbindung konnte ein Messkristall ausgewählt und die Struktur bestimmt werden. Die Strukturlösung gelang mit dem Programm SIR2004^[47]. Die Verfeinerung führte zu einer befriedigenden Übereinstimmung zwischen Struktur und Modell mit R1_{all data} = 0,1693, ω R2_{all data} = 0,3057 und R_{int} = 0,1250. Dies zeigt auch der Gütefaktor GooF = 0,90. Die Schwingungsellipsoide der Gerüstatome zeigen mit Ausnahme der Kohlenstoffatome C11 und C12 keine Auffälligkeiten und liegen in der erwarteten Größenordnung. Die kristallografischen Daten und Details zur Strukturlösung bzw. Verfeinerung sind in Tabelle 6.31 im Appendix zusammengefasst.

Abb. 3.42: Stapelfolge der wellenartigen Schichten in der Kristallstruktur von ${}_{\infty}^{2} \{ [Co(en)_3]BTC \} \cdot 5,55 H_2O$ entlang der Achse [101]. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

MIR-Spektrum der Verbindung In Abbildung 3.43 ist das getrockneten ${}_{\infty}^{2}$ {[Co(en)₃]BTC } \cdot 5,55 H₂O dargestellt. Die Absorptionsbanden bei 1556 cm⁻¹ (ν_{as}) und $1360 \,\mathrm{cm}^{-1}$ (ν_{s}) können den asymmetrischen und symmetrischen Schwingungen der Carboxylatfunktion des Trimesinsäureanions zugeordnet werden. Das Absorptionsmuster im fingerprint-Bereich stimmt sehr gut mit dem Muster der reinen Trimesinsäure überein. Die breite strukturierte Absorptionsbande zwischen $3600 \,\mathrm{cm}^{-1}$ und $2600 \,\mathrm{cm}^{-1}$ deutet auf O-H-, N-H-Valenzschwingungen und Kristallwasser hin. Die Banden bei $3097 \,\mathrm{cm}^{-1}$ und $3211 \,\mathrm{cm}^{-1}$ können C-H Valenzschwingungen zugeordnet werden. Da die Verbindung nach Entfernen des Kristallwassers röntgenamorph ist, konnten keine weiteren Messungen zur Bestimmung der Phasenreinheit durchgeführt werden.

Abb. 3.43: MIR-Spektrum der getrockneten Verbindung $_{\infty}^{2}\left\{ [\mathrm{Co(en)_{3}}]\mathrm{BTC}\right\} \cdot 5{,}55\,\mathrm{H}_{2}\mathrm{O}$

Tab. 3.8: Ausgewählte interatomare Abstände /pm, Winkel /° und relevante Wasserstoffbrückenbindungen/pm der Verbindung $^{2}_{\infty}$ { [Co(en)₃]BTC } \cdot 5,55 H₂O

0. /1	· · · · · · · · · · · · · · · · · · ·) / -	
Co1 - C13	483,2(7)	O13A - C13 - O13B	$124,\overline{6}(6)$
Co1 - C15	464, 4(7)	O14A - C14 - O14B	122,5(7)
Co1 - C18	441,2(8)	O15A - C15 - O15B	123,7(7)
Co2 - C14	445,7(9)	O16A - C16 - O16B	123,8(8)
Co2 - C16	467,0(8)	O17A - C17 - O17B	122,1(6)
Co2 - C17	480,1(7)	O18A - C18 - O18B	125,4(7)
		C13 - Co1 - C15	97,8(1)
O13A - H6D	199,2(5)	C13 - Co1 - C18	173,6(1)
O13A - H1D	211,0(5)	C15 - Co1 - C18	75,8(1)
O14B - H10C	200,2(7)	C14 - Co2 - C16	84,7(1)
O15A - H1C	201,8(5)	C14 - Co2 - C17	176,7(1)
O15B - H3C	198,0(5)	C16 - Co2 - C17	95,0(1)
O16A - H12D	199,0(7)		
O16B - H7D	207,7(7)	Co1 - N1	197,5(7)
O17A - H9C	204,5(6)	Co1 - N2	195,8(6)
O17A - H7C	205,2(6)	Co1 - N3	195,8(7)
O18A - H2D	207,3(6)	Co1 - N4	198,1(6)
O18B - H5D	211,5(7)	Co1 - N5	198,1(7)
O18B - H3D	214,2(6)	Co1 - N6	195,8(7)
		Co2 - N7	194,7(8)
		Co2 - N8	190,8(8)
		Co2 - N9	199(1)
		Co2 - N10	200,2(8)
		Co2 - N11	197,5(8)
		Co2 - N12	191(1)

3.3 Sepulchrat-Cobalt(III)-Carboxylate

Durch Umsetzung von $[Co(en)_3]^{3+}$ -Halogenidsalzen mit 37%iger Formaldehydlösung und verdünnter NH₃-Lösung in Anwesenheit von Li₂CO₃ können $[Co(sep)]^{3+}$ -Komplexe synthetisiert werden. Die Überkappung der Komplexe erfolgt dabei unter Erhalt der stereochemischen Konfiguration. Durch Fällung der Halogenidionen mit Silbercarboxylaten können daraus neue supramolekulare Polymere erhalten werden. Im Vergleich zu den $[Co(en)_3]^{3+}$ -Komplexen liegt hier eine erhöhte sterische Abschirmung des zentralen Co^{3+} -Atoms vor. Die Lage der kürzesten Wasserstoffbrücken verschiebt sich folglich zu einer trigonal planaren Geometrie mit Mittelpunktwinkeln von ~120°, wird das *points of extension*-Konzept zu Grunde gelegt^[58]. Die Abstände zwischen dem Co^{3+} -Atom und den Kohlenstoffatomen der Carboxylatfunktionen liegen bei ca. 455 pm. Die Kombination von trigonalen Knotenpunkten und rigiden Linkermolekülen ermöglicht den Aufbau von 6³-Netzwerken. Flächengrößen zwischen 4,3 · 10⁶ pm² und 5,8 · 10⁶ pm² aufgespannt von den *Co*-Ionen begünstigen dabei Durchdringungsnetzwerke. Koordinationsphäre und Geometrie der SBU ist in Abbildung 3.44 dargestellt.

Abb. 3.44: Darstellung der Koordinationssphäre um den zentralen [Co(sep)]³⁺-Komplex zur Verdeutlichung der trigonalen Geometrie. Die blaue Kugel mit einem Durchmesser von 200 pm wird in den folgenden Abbildungen der reduzierten Darstellung des Komplexes dienen.

3.3.1 Azentrische Sepulchrat-Cobalt(III)-Carboxylate

$_{\infty}^{2} \left\{ \Lambda - [Co(sep)]_{2} EDC_{3} \right\} \cdot 16 H_{2}O$

Die Verbindung ${}^{2}_{\infty}$ { Λ -[Co(sep)]₂EDC₃ } · 16 H₂O kristallisiert monoklin in der azentrischen Raumgruppe $P2_{1}$ (Nr. 4) mit zwei Formeleinheiten pro Elementarzelle. Die Gitterkonstanten betragen a = 1356,0(1) pm, b = 1680,3(1) pm, c = 1420,9(1) pm und $\beta = 110,782(3)^{\circ}$. Die asymmetrische Einheit mit Blick auf die Ebene (11 $\overline{5}$ 3) ist in Abbildung 3.45 dargestellt.

Abb. 3.45: ORTEP-Darstellung der asymmetrischen Einheit der Verbindung $^2_{\infty} \{\Lambda - [Co(sep)]_2 EDC_3\} \cdot 16 H_2 O$ mit thermischen Ellipsoiden (50% Wahrscheinlichkeit) und Atomnummerierung. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Neben drei Fumarsäureanionen sind in der asymmetrischen Einheit zwei kristallografisch unabhängige $[Co(en)_3]^{3+}$ -Komplexe enthalten. Die 16 enthaltenen Kristallwassermoleküle werden für die Strukturdiskussion vernachlässigt. Die Cobaltatome *Co1* und *Co2* sind von einem Stickstoff-Kohlenstoff-Käfig eingefasst. Dieser besteht aus drei chelatisierenden Ethylendiaminmolekülen in linkshelikaler Anordnung (Λ -Konfigurationen), die von zwei N(CH₂)₃-Gruppen überkappt werden. Jeder *Co1*-Komplex ist dabei über die Fumarsäureanionen *C17/C18*, *C19/C20* und *C21/C22* mit jeweils drei *Co2*-Komplex verbunden und bildet so ein zweidimensionales 6³-Netzwerk. Ausgehend von den Carboxylatsauerstoffatomen erfolgt dabei die Verknüpfung bidentat verbrückend über Wasserstoffbrücken zu den Protonen H3~(O18A) und H2~(O18B), H5~(O19A) und H4~(O19B) sowie H6~(O22A) und H1~(O22B) der Stickstoffatome des Co1-Komplexes. Für den Co2-Komplexe erfolgt der Aufbau der Koordinationsumgebung über die Carboxylatsauerstoffatome bidentat verbrückend an die Wasserstoffatome H9~(O17A) und H12~(O17B), H13~(O20A) und H10~(O20B) sowie H11~(O21A) und H14~(O21B). Die Wasserstoffbrückenbindungen können mit Abständen von 186,4(6) pm bis 219,0(8) pm im Bereich mittlerer Stärke eingeordnet werden und beruhen größtenteils auf elektrostatischen Wechselwirkungen^[59]. Die Lage und Längen der Wasserstoffbrücken sind für die Koordinationsumgebung des Co1-Atoms in Abbildung 3.46 abgebildet.

Abb. 3.46: Strukturbestimmende Wasserstoffbrücken (links) und relevante Co-C-Abstände (rechts) in der Verbindung $^2_{\infty} \{ \Lambda - [Co(sep)]_2 EDC_3 \} \cdot 16 H_2O$. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Die Betrachtung der Koordinationsumgebung des zentralen *Co*-Atoms insbesondere die Anordnung der Carboxylatkohlenstoffatome zeigt deutlich die trigonal planare Geometrie, wie bereits in Abbildung 3.44 beschrieben. Die drei betreffenden Abstände liegen dabei zwischen 454,8 pm und 456,5 pm. Die Winkel zwischen den Linkermolekülen betragen für das *Co1*-Atom: $\measuredangle C18, Co1, C19 = 121,1(2)^{\circ}; \measuredangle C18, Co1, C22 = 122,9(3)^{\circ}; \measuredangle C19, Co1, C22 = 114,1(2)^{\circ}.$ Für das *Co2*-Atom können folgende Winkel bestimmt werden: $\measuredangle C17, Co2, C20 = 116,1(2)^{\circ}; \measuredangle C17, Co2, C21 = 123,6(2)^{\circ}; \measuredangle C20, Co2, C21 = 119,8(2)^{\circ}.$ Da das *Co1*-Atom nicht exakt auf der von den Carboxylatkohlenstoffatomen aufgespannten Ebene liegt, addieren sich die Winkel nicht genau auf 360°. Der Flächeninhalt der hexagonalen Waben auf Basis der *Co³⁺*-Atomen beträgt $4,3 \cdot 10^6$ pm². Zur Berechnung der Größe der von den Co-Atomen eingeschlossenen Fläche wurde auf Gleichung 3.1 zur Berechnung des Flächeninhaltes eines Sechseckes mit a = *Co1-Co2* -Abstand zurückgegriffen.

$$A = \frac{3}{2} \cdot a^2 \sqrt{3} \tag{3.1}$$

Die Kristallstruktur enthält zwei baugleiche kristallografisch verschiedene 6^3 -Netzwerke, die in einem Winkel von 52° zueinander angeordnet sind und einander durchdringen. Ein Ausschnitt eines der Netzwerke mit reduzierter Komplexdarstellung ist in Abbildung 3.47 gezeigt.

Abb. 3.47: 6^3 -Netzwerk in der Kristallstruktur von ${}^2_{\infty} \{ \Lambda - [Co(sep)]_2 EDC_3 \} \cdot 16 H_2O$ in "wire and sticks"-Darstellung. Um das Verknüpfungsmuster besser hervorzuheben, wurde der $[Co(sep)]^{3+}$ -Komplex als blaue Kugel mit einem Durchmesser von 200 pm dargestellt. Die Spitzen zeigen die Lage der Stickstoffatome der Überkappung an (vgl. Abbildung 3.44). Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Jedes Netzwerk für sich folgt dabei einer AA-Stapelfolge. Die Schnittgeraden beider Netzwerke liegen parallel zu der Gerade $[10\bar{1}]$. Die Lage der beiden Netzwerke zueinander und die Durchdringung sind exemplarisch in Abbildung 3.48 veranschaulicht. Weitere strukturelle Einzelheiten sind in Tabelle 3.9 zusammengefasst. Die dreidimensionale Verknüpfung der einzelnen Strukturfragmente erfolgt über weitere Wasserstoffbrücken durch Kristallwassermoleküle. Der hohe Anteil an Kristallwasser erklärt die Unbeständigkeit der Verbindung nach Verlassen der Mutterlauge. Einkristalle konnten nur unter perfluoriertem Öl gehandhabt werden.

Die Strukturlösung gelang mit dem Programm SIR2004^[47]. Die Verfeinerung führte zu einer guten Übereinstimmung zwischen Struktur und Modell mit R1_{all data} = 0,1301, ω R2_{all data} = 0,2430 und R_{int} = 0,0470. Insgesamt liegt eine zufriedenstellende Lösung vor, die durch den Gütefaktor GooF = 1,003 bestätigt wird. Die Schwingungsellipsoide zeigen keine Auffälligkeiten und liegen in der erwarteten Größenordnung. Die kristallografischen Daten und Details zur Strukturlösung bzw. Verfeinerung sind in Tabelle 6.36 im Appendix zusammengefasst.

Abb. 3.48: Durchdringung der Wabennetzwerke in der Kristallstruktur von ${}^2_{\infty} \left\{ \Lambda - [Co(sep)]_2 EDC_3 \right\} \cdot 16 H_2O$

In Abbildung 3.49dasMIR-Spektrum der getrockneten Verbindung ist $^{2}_{\infty}$ { Λ -[Co(sep)]₂EDC₃ } · 16 H₂O gezeigt. Die Absorptionsbanden bei 1574 cm⁻¹ (ν_{as}) und $1366 \,\mathrm{cm}^{-1}$ (ν_{s}) können den asymmetrischen und symmetrischen Schwingungen der Carboxylatfunktion des Fumarsäureanions zugeordnet werden. Das Absorptionsmuster im fingerprint-Bereich stimmt sehr gut mit dem Muster der reinen Fumarsäure überein. Die breite strukturierte Absorptionsbande zwischen $3600 \,\mathrm{cm}^{-1}$ und $2500 \,\mathrm{cm}^{-1}$ deutet auf O-H-, N-H-Valenzschwingungen und Kristallwasser hin. Die Banden bei $2845 \,\mathrm{cm}^{-1}$ und $3063 \,\mathrm{cm}^{-1}$ können C-H-Valenzschwingungen zugeordnet werden. Da die Verbindung nach dem Trocknen röntgenamorph ist, konnten keine weiteren Messungen zur Bestimmung der Phasenreinheit durchgeführt werden.

Abb. 3.49: MIR-Spektrum der getrockneten Verbindung $_{\infty}^{2}\left\{ \Lambda \text{-}[\mathrm{Co(sep)}]_{2}\mathrm{EDC}_{3}\right\} \cdot 16\,\mathrm{H}_{2}\mathrm{O}$

Tab. 3.9: Ausgewählte interatomare Abstände/pm, Winkel/° und relevante Wasserstoffbrückenbindungen/pm der Verbindung $\frac{2}{\infty} \{ \Lambda - [Co(sep)]_2 EDC_3 \} \cdot 16 H_2 O$

Sindang	∞ (1 [ee(sep)]222 e3j 101120	
Co1 - C18	455,3(2)	O17A - C17 - O17B	122,7(1)
Co1 - C19	458,1(7)	O18A - C18 - O18B	124,7(1)
Co1 - C22	454,5(2)	O19A - C19 - O19B	123,8(1)
Co2 - C17	460,2(1)	O20A - C20 - O20B	125,6(1)
Co2 - C20	454,2(7)	O21A - C21 - O21B	127,5(1)
Co2 - C21	453,3(2)	O22A - C22 - O22B	119,6(1)
		C18 - Co1 - C19	121,1(2)
O17A - H9	193,4(8)	C18 - Co1 - C22	122,9(3)
O17B - H12	194(1)	C19 - Co1 - C22	114,1(2)
O18A - H3	219,0(8)	C17 - Co2 - C20	116,1(2)
O18B - H2	188,3(9)	C17 - Co2 - C21	123,6(2)
O19A - H5	187,4(5)	C20 - Co2 - C21	119,8(2)
O19B - H4	187,4(5)		
O20A - H13	186,4(6)	Co1 - N1	197,4(6)
O20B - H10	190,9(5)	Co1 - N2	196,2(7)
O21A - H11	194(1)	Co1 - N3	199,1(7)
O21B - H14	207,9(9)	Co1 - N4	198,7(7)
O22A - H6	199(1)	Co1 - N5	198,5(7)
O22B - H1	201(1)	Co1 - N6	199,3(7)
		Co2 - N9	196,5(7)
		Co2 - N10	198,3(7)
		Co2 - N11	196,4(6)
		Co2 - N12	200,7(7)
		Co2 - N13	196,0(7)
		Co2 - N14	198,2(7)
			· /

$_{\infty}^{2} \Big\{ \operatorname{\Lambda-[Co(sep)]BDC}_{3/2} \Big\} \cdot 10 \operatorname{H_{2}O}$

Die Verbindung ${}^2_{\infty}$ { Λ -[Co(sep)] BDC_{3/2} } · 10 H₂O kristallisiert orthorhombisch in der azentrischen Raumgruppe *I 2 2 2* (Nr. 23) mit acht Formeleinheiten pro Elementarzelle. Die Gitterkonstanten betragen a = 1143,9(1) pm, b = 2353,8(2) pm und c = 3348,0(3) pm mit $\alpha = \beta = \gamma = 90^{\circ}$.

Abb. 3.50: Mikroskopische Aufnahme eines in perfluoriertem Öl isolierten Einkristalls der Verbindung $^2_{\infty} \{ \Lambda - [Co(sep)] BDC_{3/2} \} \cdot 10 H_2O$. Gut zu erkennen ist der beginnende Zersetzungsprozess des nicht mit Öl bedeckten Teil des Kristalls.

Die asymmetrische Einheit mit Blick auf die Ebene (154) ist in Abbildung 3.51 dargestellt.

Abb. 3.51: ORTEP-Darstellung der asymmetrischen Einheit der Verbindung $^{2}_{\infty} \{\Lambda - [Co(sep)] BDC_{3/2}\} \cdot 10 H_{2}O$ mit thermischen Ellipsoiden (50% Wahrscheinlichkeit) und Atomnummerierung. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

In der asymmetrischen Einheit sind neben einem [Co(sep)]³⁺-Komplex eineinhalb Terephthal-

säureanionen enthalten. Das Terephthalsäureanion C11/C11' wurde transparent vervollständigt. Die zehn enthaltenen Kristallwassermoleküle werden für die Strukturdiskussion vernachlässigt. Drei chelatisierende Ethylendiaminmoleküle in linkshelikaler A-Konfiguration bilden mit zwei N(CH₂)₃-Kappen einen Stickstoff-Kohlenstoff-Komplexkäfig, dessen Zentralatom das Cobaltatom *Co1* ist. Jeder *Co*-Komplex ist dabei durch die Linkermoleküle *C9/C10* und C11/C11' trigonal planar mit drei weiteren Komplexen über Wasserstoffbrücken zu einem zweidimensionalen 6³-Netzwerk verbunden. Ausgehend von den Carboxylatsauerstoffatomen erfolgt dabei die Verknüpfung bidentat verbrückend über Wasserstoffbrücken zu den Protonen *H3* (*O9A*) und *H6* (*O9B*), *H4* (*O10A*) und *H1* (*O10B*) sowie *H5* (*O11A*) und *H2* (*O11B*) der Stickstoffatome des *Co1*-Komplexes. Die Wasserstoffbrückenbindungen können mit Abständen von 190,1(4) pm bis 207,4(4) pm im Bereich mittlerer Stärke eingeordnet werden und beruhen größtenteils auf elektrostatischen Wechselwirkungen^[59]. Die Lagen und Längen der Wasserstoffbrücken sind für die Koordinationsumgebung des *Co1*-Atoms in Abbildung 3.52 abgebildet.

Abb. 3.52: Strukturbestimmende Wasserstoffbrücken (links) und relevante Co-C-Abstände (rechts) in der Verbindung $^{2}_{\infty} \{ \Lambda - [Co(sep)] BDC_{3/2} \} \cdot 10 H_{2}O.$

Bei Betrachtung der Koordinationssphäre nach dem points of extension-Konzept^[58] kann deutlich die trigonal planare Koordinationsumgebung des Sepulchrat-Komplexes beobachtet werden (vgl. Abbildung 3.44). Die Abstände des zentralen Co^{3+} -Atoms zu den Carboxylatkohlenstoffatomen liegen zwischen 460,0(5) pm und 466,8(5) pm. Die Winkel zwischen den Linkermolekülen betragen dabei für das Co1-Atom: $\measuredangle C9, Co1, C10 = 112,7(1)^{\circ}$; $\measuredangle C9, Co1, C11 = 119,0(1)^{\circ}$; $\measuredangle C10, Co1, C11 = 127,2(1)^{\circ}$. Da das Co1-Atome nicht exakt auf der von den Carboxylatkohlenstoffatomen aufgespannten Ebene liegt addieren sich die Winkel nicht genau auf 360°. Der Flächeninhalt der hexagonalen Waben auf Basis der Co^{3+} -Atome beträgt $5,8 \cdot 10^{6}$ pm². Die Kristallstruktur enthält zwei baugleiche, kristallografisch aber verschiedene 6^{3} -Netzwerke, die in einem Winkel von 88,6° zueinander angeordnet sind und einander durchdringen. Ein Ausschnitt eines Netzwerkes mit reduzierter Komplexdarstellung ist in Abbildung 3.53 gezeigt.

Abb. 3.53: 6^3 -Netzwerk in der Kristallstruktur von ${}_{\infty}^2 \{ \Lambda - [Co(sep)] BDC_{3/2} \} \cdot 10 H_2O$ in "wire and sticks"-Darstellung. Um das Verknüpfungsmuster besser hervorzuheben, wurde der $[Co(sep)]^{3+}$ -Komplex als blaue Kugel mit einem Durchmesser von 200 pm dargestellt. Die Spitzen zeigen die Lage der Stickstoffatome der Überkappung an (vgl. Abbildung 3.44).

Jedes Netzwerk für sich folgt dabei einer AA-Stapelfolge. Die Schnittgeraden liegen parallel zur b-Achse. Die Lage der beider Netzwerke zueinander und die Durchdringung sind exemplarisch in Abbildung 3.54 veranschaulicht. Weitere strukturelle Einzelheiten sind in Tabelle 3.10 zusammengefasst. Die dreidimensionale Verknüpfung der einzelnen Strukturfragmente erfolgt über weitere Wasserstoffbrücken durch Kristallwassermoleküle. Der hohe Anteil dieses Kristallwassers erklärt die Unbeständigkeit der Verbindung nach Verlassen der Mutterlauge.

Die Strukturlösung gelang mit dem Programm SIR2004^[47]. Die Verfeinerung führte zu einer guten Übereinstimmung zwischen Struktur und Modell mit R1_{all data} = 0,1144, ω R2_{all data} = 0,1882 und R_{int} = 0,1400. Insgesamt liegt eine zufriedenstellende Lösung mit

einem Gütefaktor GooF = 0.87 vor. Die Schwingungsellipsoide zeigen keine Auffälligkeiten und liegen in der erwarteten Größenordnung. Die kristallografischen Daten und Details zur Strukturlösung bzw. Verfeinerung sind in Tabelle 6.41 im Appendix zusammengefasst.

Abb. 3.54: Durchdringung der Wabennetzwerke in der Kristallstruktur von ${}^{2}_{\infty} \left\{ \Lambda - [Co(sep)] BDC_{3/2} \right\} \cdot 10 H_{2}O.$

In Abbildung 3.55 ist dasMIR-Spektrum der getrockneten Verbindung $^{2}_{\infty}$ { Λ -[Co(sep)] BDC_{3/2}} · 10 H₂O dargestellt. Die Absorptionsbanden bei 1572 cm⁻¹ (ν_{as}) und $1364 \,\mathrm{cm}^{-1}$ (ν_{s}) können den asymmetrischen und symmetrischen Schwingungen der Carboxylatfunktion des Terephthalsäureanions zugeordnet werden. Das Absorptionsmuster im fingerprint-Bereich stimmt sehr gut mit dem Muster der reinen Terephthalsäure überein. Die breite strukturierte Absorptionsbande zwischen 3600 cm⁻¹ und 2700 cm⁻¹ deutet auf O-H-, N-H-Valenzschwingungen und Kristallwasser hin. Die Banden bei $2849 \,\mathrm{cm}^{-1}$ und $3069 \,\mathrm{cm}^{-1}$ können C-H-Valenzschwingungen zugeordnet werden. Da die Verbindung nach dem Trocknen röntgenamorph ist, konnten keine weiteren Messungen zur Bestimmung der Phasenreinheit durchgeführt werden.

Abb. 3.55: MIR-Spektrum der getrockneten Verbindung $_{\infty}^{2}\left\{ \,\Lambda\text{-}[\mathrm{Co(sep)}]\,\mathrm{BDC}_{3/2}\right\} \cdot 10\,\mathrm{H}_{2}\mathrm{O}$

Tab. 3.10: Ausgewählte interatomare Abstände/pm, Winkel/° und relevante Wasserstoffbrückenbindungen/pm der Verbindung ${}^{2}_{\infty} \{ \Lambda - [Co(sep)] BDC_{3/2} \} \cdot 10 H_{2}O$

Co1 - C9	466,8(5)	O9A - C9 - O9B	123,0(6)
Co1 - C10	460,0(5)	O10A - C10 - O10B	123,4(6)
Co1 - C11	461,5(6)	O11A - C11 - O11B	121,6(6)
		C9 - Co1 - C10	112,7(1)
O9A - H3	$193,\!3$	C9 - Co1 - C11	119,0(1)
O9B - H6	194,5	C10 - Co1 - C11	127,2(1)
O10B - H1	207,4		
O10A - H4	190,1	Co1 - N1	196,7(5)
O11B - H2	194,7	Co1 - N2	197,8(4)
O11A - H5	196,4	Co1 - N3	198,4(4)
		Co1 - N4	199,4(4)
		Co1 - N5	198,3(4)
		Co1 - N6	199,5(5)

$_{\infty}^{2} \Big\{ \Lambda \text{-} [\mathrm{Co}(\mathrm{sep})]_{2} \, \mathrm{BSA}_{3} \Big\} \cdot 15 \, \mathrm{H}_{2}\mathrm{O}$

Die Verbindung ${}^{2}_{\infty}$ { Λ -[Co(sep)]₂ BSA₃ } · 15 H₂O kristallisiert monoklin in der azentrischen Raumgruppe $P2_{1}$ (Nr. 4) mit vier Formeleinheiten pro Elementarzelle. Die Gitterkonstanten betragen a = 884,60(6) pm, b = 2582,4(2) pm, c = 2807,50(2) pm und β = 98.098(1)°. In der asymmetrischen Einheit sind neben vier [Co(sep)]³⁺-Komplexen sechs Bernsteinsäureanionen enthalten. Die asymmetrische Einheit mit Blick entlang der kristallografischen a-Achse

ist in Abbildung 3.56 dargestellt.

Abb. 3.56: ORTEP-Darstellung der asymmetrischen Einheit der Verbindung $^{2}_{\infty} \{\Lambda - [Co(sep)]_{2} BSA_{3}\} \cdot 15 H_{2}O$ mit thermischen Ellipsoiden (50% Wahrscheinlichkeit) und Atomnummerierung. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Die 15 enthaltenen Kristallwassermoleküle werden für die Strukturdiskussion vernachlässigt. Drei chelatisierende Ethylendiaminmoleküle in linkshelikaler Λ -Konfiguration bilden mit zwei N(CH₂)₃-Kappen einen Stickstoff-Kohlenstoff-Komplex-Käfig, dessen Zentralatome die Cobaltatome bilden. Jeder Co-Komplex ist durch Bernsteinsäureanionen mit drei weiteren Co-Komplexen über Wasserstoffbrücken verknüpft. Die Anordnung der Carboxylatfunktionen um jeden Komplex erfolgt dabei trigonal planar. Im Folgenden soll nun die Koordinationsumgebung des Co1-Atoms detailliert beschrieben werden. Da die Koordination der Ethylendiamin- und Succinatmoleküle um die Co-Atome 2-4 analog erfolgt sind die entsprechenden Abstände, Winkel und Längen der Wasserstoffbrücken in Tabelle 3.11 wiedergegeben und werden hier nicht genauer vorgestellt.

Ausgehend von den Carboxylatsauerstoffatomen erfolgt dabei die Verknüpfung bitentat verbrückend über Wasserstoffbrücken zu den Protonen H2 (O43A) und H5 (O43B), H1 (O46A) und H4 (O46B) sowie H3 (O54A) und H6 (O54B) der Stickstoffatome des Co1-Komplexes. Die Winkel zwischen den Linkermolekülen betragen dabei für das Co1-Atom: $\measuredangle C43, Co1, C46 = 119,3(2)^{\circ}; \measuredangle C43, Co1, C54 = 115,6(2)^{\circ}; \measuredangle C46, Co1, C54 =$ $124,5(2)^{\circ}$. Da das Co1-Atome nicht exakt auf der von den Carboxylatkohlenstoffatomen aufgespannten Ebene liegt, addieren sich die Winkel nicht genau auf 360° . Die Bindungslängen der Wasserstoffbrücken liegen dabei zwischen 188,3(8) pm und 216,0(8) pm und somit in einem Bereich mittlerer Bindungsstärke^[59]. Die Lage und Längen der Wasserstoffbrücken sind exemplarisch für die Koordinationsumgebung des Co1-Atoms in Abbildung 3.57 abgebildet.

Abb. 3.57: Strukturbestimmende Wasserstoffbrücken (links) und relevante Co-C-Abstände (rechts) in der Verbindung ${}^2_{\infty} \left\{ \Lambda - [Co(sep)]_2 BSA_3 \right\} \cdot 15 H_2O$. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Im Vergleich zu den bisher besprochenen Linkermolekülen fehlt der Bernsteinsäure die Eigenschaft der Rigidität. Die Einfachbindungen sind nahezu frei drehbar und erlauben eine deutlich dichtere Packung, als es Linker mit Doppelbindungen und aromatischen Ringen erlauben. In der Kristallstruktur der vorliegenden Verbindung können zwei verschiedene Konformationen der Bernsteinsäureanionen beobachtet werden. Die Carboxylatfunktionen sind in den Linkermolekülen C49/C52, C53/C56, C61/C64 und C65/C68 gemäß der energetisch günstigsten anti-Konformation angeordnet. Die Linkermoleküle C57/C60 und C69/C72 liegen in der sterisch ungünstigen gauche-Konformation vor. Diese Konformation in Verbindung mit der trigonal planaren Koordinationssphäre um die Co-Komplexe führt zum Aufbau eines zweidimensionalen, stark deformierten 6^3 -Netzwerkes. Die Co-Komplexe bilden über jeweils gewinkelte Anionen planare Zick-Zack-Ketten entlang der c-Achse. Diese Ketten werden über lineare Linkermoleküle an der dritten Koordinationsstelle des Co-Komplexes zu zweidimensionalen Schichten parallel zu (100) verbunden. Der Aufbau des Netzwerkes ist in Abbildung 3.58 dargestellt.

Abb. 3.58: 6³-Netzwerk in der Kristallstruktur von ${}^{2}_{\infty} \{ \Lambda - [Co(sep)]_2 BSA_3 \} \cdot 15 H_2O$ in "wire and sticks"-Darstellung (links). Um das Verknüpfungsmuster besser hervorzuheben, wurde der $[Co(sep)]^{3+}$ -Komplex als blaue Kugel mit einem Durchmesser von 200 pm dargestellt. Die Spitzen zeigen die Lage der Stickstoffatome der Überkappung an (vgl. Abbildung 3.44). Auf *Co-* und *C*-Lagen reduzierte Darstellung nach dem *points of extension*-Konzept (rechts). Verbrückende Linkermoleküle in *anti*-Konformation wurden in grau hervorgehoben. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Über Kristallwassermoleküle und Wasserstoffbrücken werden diese Strukturfragmente dreidimensional verknüpft. Die Schichten folgen dabei einer AA-Stapelfolge entlang der a-Achse, ihre Lage zueinander ist exemplarisch in Abbildung 3.59 veranschaulicht.

Die Kristalle der Verbindung $^{2}_{\infty}$ { Λ -[Co(sep)]₂ BSA₃ } · 15 H₂O erwiesen sich als äußerst instabil. Trotz aufwändiger Präparation in hochviskosem perfluorierten Öl begann sich der ausgewählte Messkristall während der Messung zu zersetzen. Dennoch gelang die Strukturlösung mit dem Programm SIR2004^[47]. Die Verfeinerung führte zu einer guten Übereinstimmung zwischen Struktur und Modell mit R1_{all data} = 0,1241, ω R2_{all data} = 0,2730 und R_{int} = 0,0410. Dies zeigt auch der Gütefaktor Goof = 1,04. Die Schwingungsellipsoide der Carboxylatfunktionen zeigen eine leichte zigarrenförmige Deformation, alle anderen Schwingungsellipsoide liegen in der erwarteten Größenordnung. Die kristallografischen Daten und Details zur Strukturlösung

Abb. 3.59: Stapelfolge der schichtförmigen Strukturfragmente in der Kristallstruktur von ${}^2_{\infty} \left\{ \Lambda - [Co(sep)]_2 BSA_3 \right\} \cdot 15 H_2O$

bzw. Verfeinerung sind in Tabelle 6.46 im Appendix zusammengefasst.

Die Elementaranalyse zeigt, dass durch das Trocknen der Substanz bei 60 °C für 24 h8Kristallwassermoleküle abgegeben wurden.

Elementgehalt in % (berechnet für 7 H_2O bzw. 15 H_2O):

C 37,10 (37,12), H 7,44 (9,13), N 19,97 (19,24). C 37,10 (33,03), H 7,44 (7,85), N 19,97 (17,12).

In Abbildung 3.60 ist das MIR-Spektrum der getrockneten Verbindung $^{2}_{\infty}$ { Λ -[Co(sep)]₂ BSA₃} · 15 H₂O dargestellt. Die Absorptionsbanden bei 1570 cm⁻¹ (ν_{as}) und $1396 \,\mathrm{cm}^{-1}$ (ν_{s}) können den asymmetrischen und symmetrischen Schwingungen der Carboxylatfunktion des Bernsteinsäureanions zugeordnet werden. Das Absorptionsmuster im fingerprint-Bereich stimmt sehr gut mit dem Muster der reinen Bernsteinsäure überein. Die breite strukturierte Absorptionsbande zwischen 3600 cm⁻¹ und 2700 cm⁻¹ deutet auf O-H-, N-H-Valenzschwingungen und Kristallwasser hin. Die Banden bei $2843 \,\mathrm{cm}^{-1}$ und $3063 \,\mathrm{cm}^{-1}$ können C-H-Valenzschwingungen zugeordnet werden. Da die Verbindung nach dem Trocknen röntgenamorph ist, konnten keine weiteren Messungen zur Bestimmung der Phasenreinheit durchgeführt werden.

Abb. 3.60: MIR-Spektrum der getrockneten Verbindung $_{\infty}^{2}\left\{ \,\Lambda\text{-}[\mathrm{Co}(\mathrm{sep})]_{2}\,\mathrm{BSA}_{3}\right\} \cdot15\,\mathrm{H}_{2}\mathrm{O}$

bindungen	/pm der Verbindung $^2_{\infty}$	Λ -[Co(sep)] ₂ BSA ₃ \cdot 15 H ₂ O	
Co1 - C49	454,2(8)	O49A - C49 - O49B	123,8(8)
Co1 - C53	464, 4(9)	O53A - C53 - O53B	$122,\!6(9)$
Co1 - C60	457,7(9)	$\rm O60A-C60-O60B$	$122,\!6(9)$
Co2 - C56	$474,\!5(9)$	O56A - C56 - O56B	116,4(9)
Co2 - C57	463,2(8)	$\rm O57A-C57-O57B$	120,5(8)
Co2 - C68	454,5(8)	O68A - C68 - O68B	$123,\!5(9)$
Co3 - C61	461,5(1)	$\rm O61A-C61-O61B$	$123,\!3(9)$
Co3 - C65	460, 4(1)	$\rm O65A-C65-O65B$	123, 2(9)
Co3 - C72	$461,\!5(1)$	O72A - C72 - O72B	124,1(9)
Co4 - C52	$458,\!6(8)$	O52A - C52 - O52B	124,1(8)
Co4 - C64	446,9(9)	O64A - C64 - O64B	$130,\!6(9)$
Co4 - C69	460,1(9)	O69A - C69 - O69B	121,4(9)
		C49 - Co1 - C53	115,6(2)
O43A - H5	204,1(5)	C49 - Co1 - C60	119,3(2)
O43B - H2	197,2(5)	C53 - Co1 - C60	124,5(2)
O44A - H40	186,5(5)	$\mathrm{C56}-\mathrm{Co1}-\mathrm{C57}$	120,2(2)
O44B - H41	206,2(5)	$\rm C56-Co1-C68$	116,0(2)

Tab. 3.11: Ausgewählte interatomare Abstände/pm, Winkel/° und relevante Wasserstoffbrückenbindungen/pm der Verbindung $\stackrel{\sim}{\sim} \{\Lambda-[Co(sep)]_2 BSA_3\} \cdot 15 H_2O$

Tab. 5.11. Fortsetzung			
$\overline{O45A - H14}$	192,9(7)	C57 - Co1 - C68	123,8(2)
O45B - H15	202,7(6)	C61 - Co1 - C65	117,5(2)
O46A - H1	197,2(8)	C61 - Co1 - C72	122,5(2)
O46B - H4	195,9(8)	C65 - Co1 - C72	120,0(2)
O47A - H37	191,2(8)	C52 - Co1 - C64	114,5(2)
O47B - H42	192,0(8)	C52 - Co1 - C69	127,2(2)
O48A - H26	$197,\!6(7)$	C64 - Co1 - C69	117,4(2)
O48B - H27	194,9(8)		
O49A - H25	190,3(8)	Co1 - N1	$198,\!6(6)$
O49B - H30	216,0(8)	Co1 - N2	197,2(8)
O50A - H16	195,3(6)	Co1 - N3	$198,\!6(8)$
O50B - H17	196,2(8)	Co1 - N4	199,0(8)
O51A - H28	197,5(8)	Co1 - N5	199,0(8)
O51B - H29	198,3(8)	Co1 - N6	$197,\!8(6)$
O52A - H39	213(1)	Co2 - N13	196,5(7)
O52B - H38	197(1)	Co2 - N14	197,1(6)
O53A - H13	208(1)	Co2 - N15	197,8(7)
O53B - H18	195(1)	Co2 - N16	199, 1(7)
O54A - H3	188,3(8)	Co2 - N17	$197,\!3(6)$
O54B - H6	200,8(8)	$\rm Co2-N18$	198,4(7)
		Co3 - N25	198,7(8)
		Co3 - N26	198,4(6)
		m Co3-N27	199,3(8)
		m Co3-N28	198,7(8)
		Co3 - N29	197, 1(7)
		Co3 - N30	196,0(8)
		Co4 - N37	200,1(6)
		Co4 - N38	198,0(7)
		Co4 - N39	196,7(7)
		Co4 - N40	$198,\!6(6)$
		Co4 - N42	$198,\!6(8)$
		Co4 - N41	199,3(7)

Tab. 3.11: Fortsetzung

${}_{\infty}^{1} \left\{ \Lambda \text{-}[\mathrm{Co(sep)}] \, \mathrm{PDC} \, (\mathrm{HPDC}) \right\} \cdot 5 \, \mathrm{H_{2}O}$

Die Verbindung ${}^{1}_{\infty} \{ \Lambda - [Co(sep)] PDC (HPDC) \} \cdot 5 H_2O$ kristallisiert monoklin in der azentrischen Raumgruppe $P2_1$ (Nr. 4) mit zwei Formeleinheiten pro Elementarzelle. Die Gitterkonstanten betragen a = 1099,9(2) pm, b = 1154,6(2) pm, c = 1104,7(1) pm und $\beta = 106,80(1)^{\circ}$.

Abb. 3.61: Mikroskopische Aufnahme eines in perfluoriertem Öl isolierten Einkristalls der Verbindung $\frac{1}{\infty} \left\{ \Lambda - [Co(sep)] PDC (HPDC) \right\} \cdot 5 H_2O.$

In der asymmetrischen Einheit sind ein $[Co(sep)]^{3+}$ -Komplex und zwei Malonsäureanionen enthalten. Die asymmetrische Einheit mit Blick entlang der c-Achse ist in Abbildung 3.62 dargestellt. Am Säureanion C11/C12 konnte dabei Restelektronendichte gefunden werden, die darauf hindeutet, dass die Carbonsäure am Sauerstoffatom O12B nicht deprotoniert ist. Es konnte ein Proton H12 in gestaffelter Anordnung berechnet werden. Der durch dieses Vorgehen erhaltene Ladungsausgleich innerhalb des erhaltenen Modells bestätigt die Richtigkeit dieser Annahme. Die fünf enthaltenen Kristallwassermoleküle werden für die Strukturdiskussion vernachlässigt. Drei chelatisierende Ethylendiaminmoleküle in linkshelikaler Λ - Konfiguration bilden mit zwei N(CH₂)₃-Kappen einen Stickstoff-Kohlenstoff-Komplex-Käfig, dessen Zentralatom das Cobaltatome Co1 ist. Zwei geometrische Faktoren haben entscheidenden Einfluss auf die Struktur der vorliegenden Verbindung. Zum einen ist das Malonsäureanion im Vergleich zu den bisher verwendeten Linker stark gewinkelt (112.5(2)°). Zum anderen besitzt ein Linkermolekül durch die Protonierung nur eine koordinativ relevante Carbonsäurefunktion.

Analog zu den bereits vorgestellten Verbindungen ist jeder *Co*-Komplex trigonal planar von drei Linkermolekülen umgeben. Das monoprotonierte Malonsäureanion C11/C12koordiniert dabei monodentat verbrückend an die Wasserstoffatome *H*4 und *H*5 (*O11B*) des Sepulchratgerüstes. Das Malonsäureanion C9/C10 verknüpft jeweils zwei $[Co(sep)]^{3+}$ -Komplexe

Abb. 3.62: ORTEP-Darstellung der asymmetrischen Einheit der Verbindung ${}_{\infty}^{1} \{ \Lambda - [Co(sep)] PDC (HPDC) \} \cdot 5 H_2 O$ mit thermischen Ellipsoiden (50% Wahrscheinlichkeit) und Atomnummerierung

bidentat verbrückend. Die Koordination erfolgt dabei ausgehend von den Sauerstoffatomen an die Wasserstoffatome H2 (*O9A*) und H3 (*O9B*) bzw. an die Wasserstoffatome H1 (*O10A*) und H6 (*O10B*). Die Anordnung der Carboxylatfunktionen um jeden Komplex erfolgt dabei, wie bereits erwähnt, trigonal planar. Die Winkel zwischen den Linkermolekülen betragen dabei für das *Co1*-Atom: \measuredangle *C9*, *Co1*, *C10* = 113,2(1)°; \measuredangle *C9*, *Co1*, *C11* = 118,6(1)°; \measuredangle *C10*, *Co1*, *C11* = 127,4(1)°. Da das *Co1*-Atom nicht exakt auf der von den Carboxylatkohlenstoffatomen aufgespannten Ebene liegt, addieren sich die Winkel nicht genau auf 360°. Die Bindungslängen der Wasserstoffbrücken liegen im Bereich von 193,0(2) pm bis 206,5(2) pm und liegen somit in einem Bereich mittlerer Bindungsstärke^[59]. Die Lagen und Längen der Wasserstoffbrücken sind für die Koordinationsumgebung des *Co1*-Atoms in Abbildung 3.63 abgebildet.

Durch den Winkel des Linkermoleküls und die Torsion der Carboxylatfunktionen von $76,8(3)^{\circ}$ erfolgt eine helikale Anordnung der Komplexe und Linker entlang der kristallografischen b-Achse. Der Blick entlang dieser Achse zeigt, dass das monoprotonierte Malonsäureanion C11/C12 wechselseitig von dieser Helix in die Ebene (101) ragt, wie in Abbildung 3.64 rechts gezeigt. Über Kristallwassermoleküle und Wasserstoffbrücken werden diese Strukturfragmente entlang der Achse [101] zu Netzwerken verbunden. Dieses Netzwerk folgt dabei einer

Abb. 3.63: Strukturbestimmende Wasserstoffbrücken (links) und relevante Co-C-Abstände (rechts) in der Verbindung $\frac{1}{\infty} \{ \Lambda - [Co(sep)] PDC (HPDC) \} \cdot 5 H_2O$. Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

AA-Stapelfolge entlang der Achse [101]. Die Lage der Stränge zueinander ist exemplarisch in Abbildung 3.65 veranschaulicht. Weitere strukturelle Einzelheiten sind in Tabelle 3.12 zusammengefasst.

Abb. 3.64: Helixstrang in der Kristallstruktur von ${}_{\infty}^{1} \{ \Lambda - [Co(sep)] PDC (HPDC) \} \cdot 5 H_2O$ in "wire and sticks"-Darstellung (links). Um das Verknüpfungsmuster besser hervorzuheben, wurde der $[Co(sep)]^{3+}$ -Komplex als blaue Kugel mit einem Durchmesser von 200 pm dargestellt. Die Spitzen zeigen die Lage der Stickstoffatome der Überkappung an (vgl. Abbildung 3.44). Anordnung der helikalen Strukturfragmente entlang der a-Achse (rechts). Zur besseren Übersicht wurden die Kristallwassermoleküle nicht abgebildet.

Trotz des relativ geringen Anteils an Kristallwasser zeigen die erhaltenen Kristalle eine hohe Unbeständigkeit nach Verlassen der Mutterlauge. Die Strukturlösung gelang mit dem Programm SIR2004^[47]. Die Verfeinerung führte zu einer sehr guten Übereinstimmung zwischen Struktur und Modell mit R1_{all data} = 0,0318, ω R2_{all data} = 0,0739 und R_{int} = 0,0420. Dies zeigt auch der Gütefaktor GooF = 1,110. Die Schwingungsellipsoide zeigen keine Auffälligkeiten und liegen in der erwarteten Größenordnung. Die kristallografischen Daten und Details zur Strukturlösung bzw. Verfeinerung sind in Tabelle 6.51 im Appendix zusammengefasst.

Abb. 3.65: Anordnung der helikalen Strukturfragmente in der Kristallstruktur von $\frac{1}{\infty} \left\{ \Lambda - [Co(sep)] PDC (HPDC) \right\} \cdot 5 H_2 O$

Die Elementaranalyse zeigt, dass durch das Trocknen der Substanz bei 60 °C für 24 h 3 Kristallwassermoleküle abgegeben wurden. Elementgehalt in % (berechnet für 2 H₂O bzw. $5 H_2O$):

C 37,10 (36,87), **H** 9,13 (6,70), **N** 19,97 (19,11). **C** 37,10 (33,76), **H** 9,13 (7,08), **N** 19,97 (17,50).

In Abbildung 3.66istdas MIR-Spektrum der getrockneten Verbindung ${}_{\infty}^{1} \{ \Lambda - [Co(sep)] PDC(HPDC) \} \cdot 5 H_2 O$ dargestellt. Die Absorptionsbanden bei 1576 cm⁻¹ $(\nu_{\rm as})$ und $1354 \,{\rm cm}^{-1}$ $(\nu_{\rm s})$ können den asymmetrischen und symmetrischen Schwingungen der Carboxylatfunktion des Malonsäureanions zugeordnet werden. Das Absorptionsmuster im fingerprint-Bereich stimmt sehr gut mit dem Muster der reinen Malonsäure überein. Die breite strukturierte Absorptionsbande zwischen $3600 \,\mathrm{cm}^{-1}$ und $2700 \,\mathrm{cm}^{-1}$ deutet auf O-H-, N-H-Valenzschwingungen und Kristallwasser hin. Die Banden bei $2841\,{\rm cm}^{-1}$ und $3059\,{\rm cm}^{-1}$ können C-H-Valenzschwingungen zugeordnet werden. Da die Verbindung nach Trocknung röntgenamorph ist, konnten keine weiteren Messungen zur Bestimmung der Phasenreinheit durchgeführt werden.

Abb. 3.66: MIR-Spektrum der getrockneten Verbindung $\frac{1}{\infty} \left\{ \Lambda - [Co(sep)] PDC (HPDC) \right\} \cdot 5 H_2O$

Tab. 3.12: Ausgewählte interatomare Abstände/pm, Winkel/° und relevante Wasserstoffbrückenbindungen/pm der Verbindung $\frac{1}{\infty} \{ \Lambda - [Co(sep)] PDC (HPDC) \} \cdot 5 H_2 O$

bindungen/pin der verbindung $\infty \left\{ \frac{1}{100} (3ep) \right\}$ De $(111DO) \left\{ \frac{1}{100} (3ep) \right\}$				
Co1 - C9	452,6(2)	O9A - C9 - O9B	123,2(2)	
Co1 - C10	464,5(2)	O10A - C10 - O10B	123,9(2)	
Co1 - C11	472,2(3)	O11A - C11 - O11B	124,9(3)	
		C9 - Co1 - C10	113,2(1)	
O9A - H2	197,4(2)	C9 - Co1 - C11	118,6(1)	
O9B - H3	198,6(2)	C10 - Co1 - C11	127,4(1)	
O10A - H1	198,4(2)			
O10B - H6	193,0(2)	Co1 - N2	197,4(2)	
O11B - H5	196,5(2)	Co1 - N6	198,0(2)	
O11B - H4	206,5(2)	Co1 - N1	198,1(2)	
		Co1 - N4	198,2(2)	
		Co1 - N5	198,7(2)	
		Co1 - N3	199,1(2)	

4 Zusammenfassung und Ausblick

Im Rahmen der vorliegenden Arbeit konnten elf neue Verbindungen synthetisiert, mit Hilfe der Röntgeneinkristallstrukturanalyse charakterisiert und IR-spektroskopisch untersucht werden. Die meisten der erhaltenen Kristalle zeigen eine ausgeprägte Unbeständigkeit nach Verlassen der Mutterlauge. Diese ließen sich ausschließlich in der Mutterlauge oder unter perfluoriertem Öl handhaben. Abbildung 4.1 zeigt eine mikroskopische Aufnahme der für die Verbindung ${}^{1}_{\infty}{\Lambda-[Co(en)_{3}]_{2}BDC_{3}} \cdot 20 H_{2}O$ erhaltenen Kristalle. Auf Grund der hohen Empfindlichkeit der Verbindungen konnte eine weiterführende Analytik nur in Ausnahmefällen durchgeführt werden.

Abb. 4.1: Kristallag
glomeration der Verbindung $\frac{1}{\infty} \left\{ \Lambda - [Co(en)_3]_2 BDC_3 \right\} \cdot 20 \, H_2O$ in perfluoriertem Ölvor der Auswahl des Messkristalls

Alle Verbindungen enthalten einen chiralen *Co*-Komplex. In sieben Verbindungen handelt es sich um den $[Co(en)_3]^{3+}$ -Komplex. Vier weitere Verbindungen konnten auf Basis des $[Co(sep)]^{3+}$ -Komplexes hergestellt werden. Da sich die eingesetzten Edukte in Bezug auf ihre enantiomere Reinheit unterschieden, kristallisierten die Verbindungen sowohl in azentrischen als auch in zentrosymmetrischen Raumgruppen. Eine Übersicht der synthetisierten Verbindungen, unter Angabe ausgesuchter kristallografischer Daten, ist in Tabelle 4.1 wiedergegeben.

4 Zusammenfassung und Ausblick

Verbindung	Kristallsystem	Raumgruppe	Ζ	$V [nm^3]$
$\frac{1}{\infty} \{ \Lambda - [Co(en)_3]_2 EDC_3 \} \cdot 11,25 H_2 O \}$	monoklin	$P2_1$	2	2,32337 (3)
${}^{1}_{\infty} \{ \Lambda - [\mathrm{Co(en)_3}]_2 \mathrm{BDC_3} \} \cdot 20 \mathrm{H_2O} \}$	$\operatorname{triklin}$	P 1	1	1,5540(1)
${}^{2}_{\infty} \left\{ \Delta - [\operatorname{Co}(\operatorname{en})_{3}] \operatorname{EDC}(\operatorname{NO}_{3}) \right\} \cdot 2 \operatorname{H}_{2} \operatorname{O}$	monoklin	C2	4	1,8319(3)
$^{2}_{\infty} \left\{ \Lambda - [\mathrm{Co(en)}_{3}] \mathrm{BSA} (\mathrm{NO}_{3}) \right\} \cdot 2 \mathrm{H}_{2}\mathrm{O}$	monoklin	C2	4	1,8353(1)
$^{2}_{\infty}$ { [Co(en) ₃]ADC _{3/2} } · 4 H ₂ O	$\operatorname{triklin}$	$P\overline{1}$	2	1,0373 (3)
$\sum_{\infty}^{1} \left\{ [Co(en)_3] BDC_{3/2} \right\} \cdot 10 H_2O$	$\operatorname{triklin}$	$P\bar{1}$	2	1,54870(5)
$^{2}_{\infty}$ { [Co(en) ₃]BTC } \cdot 5,55 H ₂ O	monoklin	$P2_1/c$	4	2,32337 (3)
$^{2}_{\infty}$ { Λ -[Co(sep)] ₂ EDC ₃ } \cdot 16 H ₂ O	monoklin	$P2_1$	2	3,0269(4)
$^{2}_{\infty}$ { Λ -[Co(sep)] BDC _{3/2} } \cdot 10 H ₂ O	orthorhombisch	I 2 2 2	8	9,0145~(2)
$^{2}_{\infty}$ { Λ -[Co(sep)] ₂ BSA ₃ } \cdot 15 H ₂ O	monoklin	$P2_1$	4	6,3495(6)
${}^{1}_{\infty} \{ \Lambda - [Co(sep)] PDC (HPDC) \} \cdot 5 H_2 O$	monoklin	$P2_1$	2	1,3430(4)

Tab. 4.1: Übersicht der synthetisierten Verbindungen mit ausgesuchten kristallografischen Daten

4.1 Strukturfragmente

Der direkte Vergleich der Koordinationssphären der *Co*-Komplexe in den vorliegenden Verbindungstypen, die Carboxylat-Nitrate aus Kapitel 3.2.2 ausgenommen, zeigt eine unterschiedlich ausgeprägte sterische Abschirmung des zentralen Co^{3+} -Ions. Der Sepulchrat-Komplex weist durch die über und unter dem zentralen *Co*-Ion angeordneten N(CH₂)₃-Kappen eine nahezu kugelsymmetrische Abschirmung auf, wohingegen der Tris-1,2-Ethylendiamin-Komplex durch die helikale Anordnung der Ethylendiamin-Moleküle an gleicher Stelle Freiraum lässt. Besonders deutlich lässt sich dies in der Kalottendarstellung erkennen. Abbildung 4.2 zeigt die beiden unterschiedlichen Stickstoff-Kohlenstoff-Komplex-Käfige um das Co^{3+} -Ion auf. Die Struktur der Komplexe hat einen bedeutenden Einfluss auf den Aufbau der erhaltenen Netzwerkstrukturen.

Abb. 4.2: Gegenüberstellung der verschiedenen *Co*-Komplexe als Kalotten-Modell mit $[Co(en)_3]^{3+}$ (links) und $[Co(sep)]^{3+}$ (rechts)

4.1.1 Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate

In den Kristallstrukturen der Verbindungen des Typs ${}^{1}_{\infty} \{ [Co(en)_3] L_{3/2} \}$ mit L = EDC²⁻, BDC²⁻ kann das eindimensionale Strukturfragment einer Leiter beobachtet werden. Die $[Co(en)_3]^{3+}$ -Komplexe sind über lineare rigide Linker zu leiterartigen Polymeren verknüpft. Jeder Komplex ist so mit drei weiteren Komplexen verbunden. Jedes *Co*-Atom ist nahezu ideal oktaedrisch von Stickstoffatomen umgeben. Durch die nach außen zeigenden Ethylenbrücken kann der gesamte Komplex auch als trigonales Prisma angesehen werden. Die sterische Abschirmung durch die chelatisierenden Ethylendiamin-Moleküle erfolgt in einer äquatorialen Ebene. Auf diese Weise werden kürzere Abstände bezogen auf das zentrale *Co*-Atom entlang der C₃-Schraubenachse ermöglicht. Die *Co*-*C*-Abstände zwischen Zentralatom und Linker betragen an dieser Stelle ~ 440 pm. Für alle weiteren *Co*-*C*-Abstände konnten Werte von ~ 460 pm bestimmt werden. Die Winkel zwischen den Dicarbonsäureanionen in der Koordinationsumgebung des *Co*-Komplexes betragen dabei etwa 90° bzw. 180°. Dies führt zu einer T-förmigen Geometrie der SBU und damit zu der oben beschriebenen leiterförmigen Anordnung. In Abbildung 4.3 sind die Koordinationsumgebung des *Co*-Komplexes und die sich daraus ergebende Leiterstruktur dargestellt.

Abb. 4.3: Koordinationssphäre der $[\rm Co(en)_3]^{3+}$ -SBU als Kalotten-Modell (links) und leiterartiges Strukturfragment in der Verbindung $\frac{1}{\infty} \left\{ \Lambda - [\rm Co(en)_3]_2 EDC_3 \right\} \cdot 11,25 \, \rm H_2O$ (rechts)

Ausgehend von den Co-Lagen konnten von den Co-Atomen eingeschlossene Flächen mit Größen zwischen $1,62 \cdot 10^6 \text{ pm}^2$ für eine Verbindung mit dem Fumarsäureanion (500 pm) und $1,94 \cdot 10^6 \text{ pm}^2$ für eine Verbindung mit dem Terephthalsäureanion (700 pm) bestimmt werden. Unterschiede zeigen sich in der Stapelfolge der einzelnen Leiterfragmente. So konnte für Tris-1,2-ethylendiamin-Cobalt-Fumarat eine AB-Stapelfolge und für Tris-1,2-Ethlendiamin-Terephthalat eine Stapelfolge des Typs AA ermittelt werden.

Einen Sonderfall stellt hier die Verbindung $^2_{\infty} \{ [Co(en)_3]ADC_{3/2} \} \cdot 4H_2O$ dar, in deren Kristallstruktur diese Leiterfragmente durch Komplex-Dimere zu zweidimensionalen Schichten

4 Zusammenfassung und Ausblick

verbunden sind. Auch hier kann eine T-förmige Koordinationsumgebung um die Komplexe beobachtet werden. Bezogen auf die *Co*-Lagen konnten hier Flächengrößen von $1,68 \cdot 10^6 \text{ pm}^2$ bestimmt werden. Die Länge des Acetylendicarbonsäureanions beträgt 526 pm. Für die *Co-C*-Abstände zwischen Zentralatom und Linker konnten Werte zwischen ~440 pm und ~490 pm bestimmt werden. Auf Grund der Dimerisierung ist eine Koordinationsstelle (C₃-Schraubenachse) sterisch gehindert, so dass die hier angreifende Carboxylatfunktion nur über eine Wasserstoffbrücke monodentat koordiniert. Daraus resultiert ein um 30 pm längerer *Co-C*-Abstand. Die Winkel zwischen den Dicarbonsäureanionen in der Koordinationsumgebung des *Co*-Komplexes sind verzerrt und weichen bis zu 10° von den Idealwerten ab. Dies führt zu einer deformierten, aber noch deutlich erkennbaren T-förmigen Geometrie der SBU. In Abbildung 4.4 sind die Koordinationsumgebungen des dimeren *Co*-Komplexes und die sich daraus ergebende Verknüpfung der Leiter zu Schichten dargestellt.

Abb. 4.4: Koordinationssphäre der $[Co(en)_3]^{3+}$ -SBU als Kalotten-Modell (links) und Lage des Komplex-Dimers in den zu Schichten verknüpfte Leitern in der Verbindung $^2_{\infty} \{ [Co(en)_3]ADC_{3/2} \} \cdot 4 H_2O$ (rechts)

Neben Verbindungen mit bifunktionellen Linkermolekülen konnte eine Verbindung mit der trifunktionellen Trimesinsäure erhalten werden. In der Verbindung $^2_{\infty} \{ [Co(en)_3]BTC \} \cdot 5,55 H_2O$ beträgt das Verhältnis von Komplex zu Linker ladungsbedingt 1:1. Daraus folgt der Aufbau eines zweidimensionalen 6³-Netzwerkes. Ausgehend von den *Co*-Lagen konnten Flächengrößen von $1,05 \cdot 10^6$ pm² für die Waben berechnet werden. Der tatsächlich zugängliche Durchmesser ist allerdings auf Grund der van-der-Waals-Radien um ein Vielfaches kleiner, was die Kalottendarstellung in Abbildung 4.5 verdeutlicht. Damit ist eine Durchdringung der Schichten stark gehindert. Trotz der Verwendung eines trifunktionellen Linkers bleibt die T-förmige Geometrie weitgehend erhalten. Die Winkel zwischen dem zentralen *Co*-Atom und den Kohlenstoffatomen der Carboxylatfunktionen weichen wenig von den Idealwerten ab. Aufgrund sterischer Spannungen, die aus den differierenden Geometrien der einzelnen Bauelementen (SBU: T-förmig; Linker: trigonal planar) entstehen, erfolgt die Koordination der Carboxylatfunktion *Co*-Abstand führt. In

Abbildung 4.5 sind neben der Koordinationsumgebung des *Co*-Komplexes auch das sich daraus ergebende Netzwerk dargestellt.

Abb. 4.5: Einzelne Wabe aus drei $[Co(en)_3]^{3+}$ -SBUs und drei Trimesatanionen als Kalotten-Modell (links) und Lage der Wabe in den 6³-Schichten der Verbindung $^2_{\infty} \{ [Co(en)_3]BTC \} \cdot 11,23 H_2O$ (rechts)

4.1.2 Tris-1,2-Ethylendiamin-Cobalt(III)-Nitrat-Carboxylate

Durch Umsetzung von [Co(en)₃]I₃ mit Silbercarboxylaten konnten in Anwesenheit von NO₃⁻- $\label{eq:lonentropy} {\rm Ionen \ Verbindungen \ des \ Typs \ }_{\infty}^{2} \big\{ [{\rm Co(en)_3}] \ L \ ({\rm NO_3}) \big\} \cdot 2 \ H_2 O \ mit \ L = \ EDC^{2\text{-}}, \ BSA^{2\text{-}} \ erhalten \ NO_3 \big\} + 2 \ H_2 O \ mit \ L = \ EDC^{2\text{-}}, \ BSA^{2\text{-}} \ erhalten \ NO_3 \big\} + 2 \ H_2 O \ mit \ L = \ EDC^{2\text{-}}, \ BSA^{2\text{-}} \ erhalten \ NO_3 \big\} + 2 \ H_2 O \ mit \ L = \ EDC^{2\text{-}}, \ BSA^{2\text{-}} \ erhalten \ NO_3 \big\} + 2 \ H_2 O \ mit \ L = \ EDC^{2\text{-}}, \ BSA^{2\text{-}} \ erhalten \ NO_3 \big\} + 2 \ H_2 O \ mit \ L = \ EDC^{2\text{-}}, \ BSA^{2\text{-}} \ erhalten \ NO_3 \big\} + 2 \ H_2 O \ mit \ L = \ EDC^{2\text{-}}, \ BSA^{2\text{-}} \ erhalten \ NO_3 \big\} + 2 \ H_2 O \ mit \ L = \ EDC^{2\text{-}}, \ BSA^{2\text{-}} \ erhalten \ NO_3 \big\} + 2 \ H_2 O \ mit \ L = \ EDC^{2\text{-}}, \ BSA^{2\text{-}} \ erhalten \ NO_3 \big\} + 2 \ H_2 O \ mit \ L = \ EDC^{2\text{-}}, \ BSA^{2\text{-}} \ erhalten \ NO_3 \big\} + 2 \ H_2 O \ mit \ L = \ EDC^{2\text{-}}, \ BSA^{2\text{-}} \ erhalten \ NO_3 \big\} + 2 \ H_2 O \ mit \ L = \ EDC^{2\text{-}}, \ BSA^{2\text{-}} \ erhalten \ NO_3 \big\} + 2 \ H_2 O \ mit \ L = \ EDC^{2\text{-}}, \ BSA^{2\text{-}} \ erhalten \ NO_3 \big\} + 2 \ H_3 O \ mit \ L = \ EDC^{2\text{-}}, \ BSA^{2\text{-}} \ erhalten \ NO_3 \big\} + 2 \ H_3 O \ mit \ L = \ EDC^{2\text{-}}, \ BSA^{2\text{-}} \ erhalten \ NO_3 \big\} + 2 \ H_3 O \ mit \ H_3 O \$ werden. Die Koordination der Dicarbonsäuren erfolgt wie oben beschrieben entlang der C₃-Schraubenachse des Co-Komplexes. Die Nitratanionen koordinieren versetzt am Stickstoff-Kohlenstoffgerüst des Komplexes ebenfalls unter Aufbau einer T-förmigen Geometrie. Dies führt zur Ausprägung entsprechender Doppelstränge, welche über die Dicarboxylate zu einem dreidimensionalen Netzwerk verknüpft sind. Die erhaltenen Verbindungen unterscheiden sich in der Konfiguration des Co-Komplexes, was Einfluss auf die Orientierung der Nitratanionen hat. Es kann eine um 180° gedrehte Anordnung in der Verbindung $^2_{\infty} \{ \Lambda - [Co(en)_3] BSA(NO_3) \} \cdot 2 H_2O(nO_3) \}$ im Vergleich zu der Verbindung $^2_{\infty} \{ \Delta$ -[Co(en)₃] EDC (NO₃) $\} \cdot 2 H_2O$ beobachtet werden. Die Co-C-Abstände zwischen Zentralatom und Linker liegen für diese Verbindungen zwischen 449 pm und 471 pm. Besonderes interessant sind hier die $Co-N(NO_3^-)$ -Abstände und die Winkel dieser zueinander. Die für die reinen Komplex-Linker-Verbindungen beschriebene verzerrte T-förmige Geometrie kann auch hier wiedergefunden werden mit Winkeln von ca. 80° bzw. 170°. Die Koordination der Carboxylatmoleküle erfolgt verzerrt linear mit Winkeln zwischen 166° und 171°. Hintergrund für diese Anordnung sind die besseren σ -Donoreigenschaften des Nitratanions im Vergleich zu dem Carboxylatlinker. In Abbildung 4.6 sind neben der Koordinationsumgebung des Co-Komplexes auch das sich daraus ergebende Netzwerk reduziert auf die N- (NO₃⁻) und Co-Lagen ($[Co(en)_3]^{3+}$) dargestellt.

Abb. 4.6: Koordinationssphäre der $[Co(en)_3]^{3+}$ -SBU als Kalotten-Modell der Verbindungen des Typs $^2_{\infty} \{ [Co(en)_3] L (NO_3) \} \cdot 2 H_2 O$ mit $L = EDC^{2-}$, BSA²⁻ (links) und leiterartiges Netzwerk der N- und Co-Lagen (rechts)

4.1.3 Sepulchrat-Cobalt(III)-Carboxylate

Als weiterer Komplex wurde $[Co(sep)]^{3+}$ eingesetzt. Aufgrund der nahezu kugelsymmetrischen Abschirmung des zentralen Co^{3+} -Ions (vgl. Abbildung 4.2) zeigen die SBUs aller Verbindungen eine trigonal planare Geometrie mit Mittelpunktwinkeln von ~ 120°. Daraus ergibt sich in drei Fällen der Aufbau eines zweidimensionalen 6³-Netzwerkes. Für die *Co-C*-Abstände konnten Werte von ~ 460 pm bestimmt werden. Je nach Verbindung und Koordinationsstelle können Abweichungen von bis zu 15 pm auftreten.

Für Verbindungen des Typs $^2_{\infty}$ { $[Co(sep)] L_{3/2}$ } mit L = EDC²⁻, BDC²⁻ konnte der Aufbau von Durchdringungsnetzwerken beobachtet werden. Dies ist auf die Rigidität der Linkermoleküle und die relativ großen Flächen mit Werten zwischen $4,3 \cdot 10^6 \text{ pm}^2$ und $5,8 \cdot 10^6 \text{ pm}^2$, bezogen auf die *Co*-Lagen, zurückzuführen. In Abbildung 4.7 sind die Koordinationsumgebung des *Co*-Komplexes und die sich daraus ergebende Netzwerkstruktur dargestellt.

Eine Ausnahme bildet die Verbindung $_{\infty}^{2} \big\{ \Lambda \text{-} [\mathrm{Co}(\mathrm{sep})]_{2} \, \mathrm{BSA}_{3} \big\} \cdot 15 \, \mathrm{H}_{2} \mathrm{O}$. Das Bernsteinsäure-

Abb. 4.7: Koordinationssphäre der $[Co(sep)]^{3+}$ -SBU als Kalotten-Modell (links) und Strukturfragment des 6³-Netzes in der Verbindung ${}_{\infty}^{2} \{ \Lambda - [Co(sep)]_{2}EDC_{3} \} \cdot 16 H_{2}O$ (rechts)

anion als Linker wird nicht durch Bauelemente wie Doppelbindungen oder aromatische Ringe versteift, was eine freie Drehbarkeit um die mittlere C-C-Bindung ermöglicht. Auf Grund verschiedener Packungseffekte liegt das Linkermolekül in der Kristallstruktur sowohl in einer *anti*-Konformation als auch einer *gauche*-Konformation vor. Ein stark verzerrtes zweidimensionales 6³-Netzwerk ist die Folge (Abbildung 4.8, links).

Auch die Verbindung ${}_{\infty}^{1}$ { Λ -[Co(sep)] PDC (HPDC) } $\cdot 5 \,\mathrm{H}_{2}\mathrm{O}$ fällt aus der Reihe. Durch den Verbleib eines Protons an einem der kristallografisch unabhängigen Malonsäureanionen ist die zweidimensionale Verknüpfung gehindert. Dies zieht verschiedene Koordinationsmodi der Linkermoleküle nach sich, worauf sich der Aufbau einer eindimensionalen helikalen Struktur gründet. In Abbildung 4.8 sind die Netzwerkstrukturen der Verbindungen ${}_{\infty}^{2}$ { Λ -[Co(sep)]₂ BSA₃ } $\cdot 15 \,\mathrm{H}_{2}\mathrm{O}$ (links) und ${}_{\infty}^{1}$ { Λ -[Co(sep)] PDC (HPDC) } $\cdot 5 \,\mathrm{H}_{2}\mathrm{O}$ (rechts) gegenübergestellt.

Abb. 4.8: Strukturfragmente der Verbindungen ${}_{\infty}^{2} \{ \Lambda - [Co(sep)]_2 BSA_3 \} \cdot 15 H_2 O$ (links) und ${}_{\infty}^{1} \{ \Lambda - [Co(sep)] PDC (HPDC) \} \cdot 5 H_2 O$ (rechts)

Es konnte gezeigt werden, dass der Einsatz chiraler *Co*-Komplexe als Synthon zum gezielten Aufbau azentrischer supramolekularer Verbindungen im Sinne des *crystal engineerings* führen kann. Durch die Wahl des Knotenpunktes war es möglich, die Topologie der erhaltenen Netzwerke zu steuern. Mit der Variation der Linkermoleküle konnte dabei entscheidender Einfluss auf die Größe der von den *Co*-Atomen eingeschlossenen Flächen genommen werden. Der hohe Wassergehalt war in vielen Fällen der limitierende Faktor bei der weitergehenden Untersuchung der erhaltenen Verbindungen, da diese extrem empfindlich gegen Wasserabgabe waren.

4.2 Ausblick

Bei der Charakterisierung der erhaltenen Verbindungen zeigte sich der hohe Gehalt an Kristallwasser als störend. Weitergehende Analytik konnte auf Grund der Unbeständigkeit der Kristalle kaum durchgeführt werden. Ziel weiterer Synthesen sollte die sukzessive Verringerung des Kristallwasseranteils sein. Dies könnte durch den Einsatz anderer polarer Lösungsmittel erreicht werden. Dem entgegen steht aber die verwendete, auf der unterschiedlichen Löslichkeit der Edukte, Produkte und Nebenprodukte in Wasser beruhende Syntheseroute. Bisher ist es nicht gelungen, den $[Co(en)_3]^{3+}$ - bzw. den $[Co(sep)]^{3+}$ -Komplex in anderen Lösungsmitteln als Wasser in Lösung zu bringen.

Tetracarbonsäuren als Linker könnten eine noch dichtere Vernetzung der Tektone bewirken. Die Verwendung von Silbersalzen der Pyromelitsäure führte zu keinem Ergebnis, da hier die sterischen Ansprüche von Komplex- und Linkermolekülen scheinbar nicht korrelieren. Der Einsatz von Silbersalzen tetraedrischer Tetracarboxylate könnte hier zielführend sein. Durch Edukte wie beispielsweise Adamantanetetracarbonsäure oder Tetrakis(4-carboxyphenyl)methan, könnte eine dreidimensionale Verknüpfung gelingen, die eine deutlich höhere Stabilität verspricht.

Die gezielte Aufgabe der Rigidität ermöglicht dichtere Packungen analog der Verbindung $^{2}_{\infty}$ { Λ -[Co(sep)]₂ BSA₃} · 15 H₂O. Silbersalze der 1,2,3,4-Butantetracarbonsäure könnten zu stark vernetzten und somit stabileren azentrischen Verbindungen führen.

Eine weitere Möglichkeit stellt die Reduzierung der Linkerlänge dar, um eine dichtere Packung der Strukturfragmente zu ermöglichen. Als vielversprechender Kandidat könnte hier die Oxalsäure dienen, die eines der kürzesten bekannten Linkermoleküle darstellt. Erste Ergebnisse bei der Umsetzung von Cobalt(II)oxalat-Dihydrat mit Ethylendiamin haben hier Keene *et al.*^[60] und bei der Umsetzung von Oxalsäure mit Cobaltoxid in Ethylendiamin Kang *et al.* erhalten^[61]. Aufgrund der Syntheseroute konnten in beiden Fällen nur zentrosymmetrische Verbindungen erhalten werden.

Auch ein gegensätzlicher Ansatz ist denkbar. Durch den Einsatz längerer Linkermoleküle könnte gezielt die Bildung von Durchdringungsnetzwerken analog den Verbindungen des Typs ${}^{1}_{\infty}\{[Co(sep)]L_{3/2}\}$ mit L = EDC²⁻, BDC²⁻ und damit eine dichtere Packung der Strukturfragmente erreicht werden. Linkermoleküle wie 2,6-Naphthalendicarbonsäure und 4,4'-Biphenyldicarbonsäure könnten hier verwendet werden. Die Umsetzung mit rac-[Co(en)_3]Cl_3 · 2 H_2O in DMSO oder DMF führte zu Schichtstrukturen^[62]. Der Einsatz enantiomerenreiner Edukte könnte hier zur Synthese stabiler azentrischer Verbindungen führen. Die Funktionalisierung der zwei N(CH₂)_3-Gruppen in den Kappen des Sepulchrat-Komplexes könnte eine Verknüpfung der für die erhaltenen Verbindungen typischen Schichtstruktur in die dritte Raumrichtung ermöglichen. Dies könnte z.B. durch Substitution des Ammoniaks in der Synthese durch Malonsäurederivate erfolgen und zu mono- bzw. idealerweise dicarboxylierten Stickstoff-Kohlenstoff-Käfigen führen.^[63] Ein zu lösendes Problem stellt an dieser Stelle ein geeigneter Ladungsausgleich der denkbaren Verbindungen dar, da im Cobalt-Komplex eine dreifach positive Ladung und an den deprotonierten Carboxylatfunktionen je eine negative Ladung vorliegen würde. Der Weg könnte über die Insertion zusätzlicher Metallzentren und Linkermoleküle führen.

5 Experimenteller Teil

5.1 Allgemeines

5.1.1 Verwendete Chemikalien

Tab. 5.1: Verwendete Chemikalien

Name	Summenformel	Hersteller	Reinheit
Aceton	C_3H_6O	k. A.	Biesterfeld
Acetylendicarbonsäure	$C_4H_2O_4$	Acros Organics	98%
Acetylendicarbonsäure	$C_4H_2O_4$	Fluka	95%
Ammoniak	$ m NH_3$	GHC Gerling,	$\geq 99,\!95\%$
		Holz & Co	
Ammonium L-(+)-tartrat	$C_4H_{12}N_2O_6$	Alfa Aesar	$\geq 98\%$
Barium(II)chlorid Hydrat	$BaCl_2 \cdot H_2O$	Merck	98%
Bernsteinsäure	$C_4H_6O_4$	Fluka	$\geq 99\%$
Blei(II)acetat	$\mathrm{C_4H_6O_4Pb}$	Merck	$\geq 98\%$
Blei(II)acetat Trihydrat	$C_4H_6O_4Pb\cdot 3\;H_2O$	Alfa Aesar	99%
D-(-)-Weinsäure	$C_4H_6O_6$	Alfa Aesar	99%
Dichlormethan	$\mathrm{CH}_{2}\mathrm{Cl}_{2}$	k. A.	Biesterfeld
Ethanol	C_5H_6O	reinst	Biesterfeld
Formaldehydlösung	CH_2O	Merck	mind. 37%
Fumarsäure	$C_4H_4O_4$	Merck	99%
Cobalt(II)sulfat Heptahydrat	$CoSO_4 \cdot 7H_2O$	Merck	99%
Cobalt(II)sulfat Heptahydrat	$CoSO_4 \cdot 7H_2O$	Acros Organics	99%
Lithiumcarbonat	Li_2CO_3	Merck	99%
Malonsäure	$C_3H_4O_4$	Fluka	$\geq 98\%$
Natriumdiethyldithiocarbamat Trihydrat	$C_2H_5S_2Na$ · 3 H_2O	Fluka	97%
Natriumdiethyldithiocarbamat Trihydrat	$C_2H_5S_2Na \cdot 3 H_2O$	Merck	99%
Natriumhydroxid	NaOH	Riedel deHaën	99%
Natriumiodid	NaI	Merck	99%
Salzsäure	HCl	k. A.	k.A.
Silbernitrat	$AgNO_3$	AppliChem	k. A.

5 Experimenteller Teil

Tab. 5.1: Fortsetzung							
Name	Summenformel	Hersteller	Reinheit				
Terephthalsäure	$C_8H_6O_4$	Merck	$\geq 98\%$				
Terephthalsäure	$C_8H_6O_4$	Alfa Aesar	98%				
Trimesinsäure	$C_9H_6O_6$	Alfa Aesar	98%				

Tab. 5.1: Fortsetzung

5.2 Synthesemethoden

5.2.1 Racemattrennung

Die Racemattrennung oder Racematspaltung beschreibt ein Verfahren zur Isolation eines reinen Enatiomeren aus einem racemischen Gemisch beider Spezies. Analoge Verfahren können auch bei nicht äquivalenten Gemischen angewandt werden (Enatiomerentrennung). Zur Trennung haben sich verschiedene präparative Verfahren etabliert. Die Trennung von D- und L-Weinsäure gelang Pasteur 1848 durch mechanische Selektion der enatiomorphen Kristalle des Natriumammonium-Salzes^[64]. Weitere Verfahren, um auch größere Mengen effizient zu trennen, sind Clathratbildung, kinetische Racemattrennung, Übergangskoordinationsverbindungen, chromatografische Verfahren und die fraktionierte Kristallisation, die in der vorliegenden Arbeit zum Einsatz kam. Das letzt genannte Verfahren nutzt die differierenden physikalischen Eigenschaften, in diesem Fall die Löslichkeit, der durch Umsetzung mit enatiomerenreinen Auxilliaren erhaltenen Diastereomere der Ausgangsverbindung aus. Broomhead *et al.* setzten zur Trennung eines racemischen Gemisches von (Λ/Δ) - $[Co(en)_3]I_3$ Ammonium-(+)-tartrat ein^[41]. Nach Abtrennung des Weinsäureanions und der Substitution durch Halogenide kann das reine Λ - $[Co(en)_3]I_3$ erhalten werden.

5.2.2 Präzipitationsreaktionen

Wird zu einer wässrigen Lösung eines Salzes AgX eine Lösung eines Salzes YCl zugegeben, fällt das schwerlösliche Silberhalogenid AgCl aus. Das Lösungsgleichgewicht wird dadurch in Richtung der Produkte verschoben.

$$AgX + YCl \longrightarrow AgCl \downarrow + XY$$

Die Fällung von Silberhalogeniden ist eine der ersten Reaktionen, mit der Studienanfänger in Grundpraktika konfrontiert werden. Im Jahr 1986 veröffentlichte Heinrich Biltz ein Buch, dass zahlreiche dieser Reaktionen zusammenfasst^[65]. Dass diese Art von Reaktionen nicht nur demonstrativen Charakter sondern auch synthetische Bedeutung haben, zeigten viele analytische und industrielle Anwendungen. So finden sich Fällungsreaktionen in der Fraktionierung, Wasseraufbereitung und Abwassertechnik, in den Fällungsanalysen und den Fällungspolymerisationen^[66]. Zahlreiche Versuche, Cobalt-Ethylendiamin-Komplexe mit typischen Linkermolekülen zu verknüpfen, scheiterten, so dass neue Syntheserouten geprüft werden mussten. Als erfolgreich erwiesen sich die quantitative Fällung der Gegenionen. So wurden zum Beispiel durch Umsetzung des Λ -[Co(en)₃]I₃ mit einem kleinen Überschuss an Silbersalzen der gewünschten Linker das Silbersalz AgI gefällt und abfiltriert. Die erhaltene Lösung konnte danach dem nächsten Schritt, dem *isothermen Verdampfen*, zugeführt werden.

5.2.3 Isothermes Verdampfen

Das isotherme (griechisch: isos = gleich; thérme = Wärme) Verdampfen ist ein Verfahren zur Kristallzüchtung bei konstanter Temperatur. Dabei hat die Temperatur und damit die Geschwindigkeit des Kristallwachstums entscheidenden Einfluss auf die Kristallqualität. Die in dieser Arbeit beschriebenen Verbindungen wurden bei Raumtemperatur über zwei bis zwölf Wochen kristallisiert. Dazu wurde das Reaktionsgemisch nach Entfernen des Niederschlags in Schnappdeckelgefäße mit perforiertem Deckel überführt (Abbildung 5.1). Um die Außentemperatur möglichst konstant zu halten, wurden die Proben abseits zu starker Zugluft und vor direkter Sonneneinstrahlung geschützt in einem Laborregal platziert. Etwaige amorphe Niederschläge wurden regelmäßig entfernt und die Ansätze in kleinere Schnappdeckelgefäße transferiert.

Abb. 5.1: Schnappdeckelgefäße mit perforiertem Deckel und Probenbeschriftung

5.3 Synthese

5.3.1 Synthese der Edukte

$Co(+)C_4H_4O_6$

In einem Becherglas wurden 7,00 g (25 mmol) $CoSO_4 \cdot 7H_2O$ in 15 mL VE-Wasser gelöst und auf 65 °C erwärmt. Unter Rühren wurde eine auf 65 °C temperierte Lösung aus 4,60 g (25 mmol) $(NH_4)_2(+)C_4H_4O_6$ in 15 mL VE-Wasser langsam eingebracht. Nach kurzer Zeit fiel ein magentafarbiger Niederschlag aus, der nach 20 min weiterem Rühren bei 65 °C und Kühlung in einem Eisbad abfiltriert wurde. Durch Waschen mit 15 mL eisgekühltem Wasser und 15 mL Aceton wurden anhaftende Eduktreste entfernt. Das Produkt wurde an Luft getrocknet und ohne weitere Aufreinigung weiterverwendet.

$$\mathrm{CoSO}_4 \cdot 7\,\mathrm{H}_2\mathrm{O} + (\mathrm{NH}_4)_2(+)\mathrm{C}_4\mathrm{H}_4\mathrm{O}_6 \xrightarrow[\mathrm{H}_2\mathrm{O}]{}\mathrm{Co}(+)\mathrm{C}_4\mathrm{H}_4\mathrm{O}_6 \downarrow \\ + (\mathrm{NH}_4)_2\mathrm{SO}_4 + 7\,\mathrm{H}_2\mathrm{O}_6 \downarrow \\ + (\mathrm{NH}_4)_2\mathrm{O}_6 \sqcup \\$$

$\Lambda\text{-}[\mathrm{Co(en)_3}]\mathrm{Cl}(+)\mathrm{C_4H_4O_6}\cdot 5\,\mathrm{H_2O}$

Die Synthese des Λ -[Co(en)₃]Cl(+)C₄H₄O₆ bzw. des Λ -[Co(en)₃]I₃-Komplexes erfolgte nach einer Vorschrift von Broomhead *et al.*^[41]. In einem 250 mL *Schlenk*-Rohr wurden 5,0 mL (75 mmol) Ethylendiamin (= en) vorgelegt und unter Rühren und Eiskühlung langsam 13 mL VE-Wasser, 8 mL Ethanol und 2,5 mL HCl konz. eingebracht. Über einen Feststofftrichter wurden 5,20 g (25 mmol) Co(+)C₄H₄O₆ und 1,00 g fein pulverisierte Aktivkohle zugegeben. Das *Schlenk*-Rohr wurde mit einem Gaseinleitungsrohr verschlossen, und mit Hilfe eines Membranpumpen-Vakuums wurde für 2 h Luft durch das Reaktionsgemisch gesaugt. Das erhaltene Kristall/Aktivkohle-Gemisch wurde abfiltriert und durch Waschen mit 20 mL 40 %iger EtOH-Lösung von anhaftenden Eduktresten befreit. Das Abtrennen der Aktivkohle erfolgte durch dreimalige Extraktion mit 25 mL heißem VE-Wasser (60 °C). Die vereinigten Extrakte wurden im Vakuum auf 15 mL eingeengt. Die unter Eiskühlung erhaltenen orangegelben Kristalle wurden abfiltriert und an Luft getrocknet. Das Produkt wurde ohne weitere Aufreinigung weiterverwendet. Es konnte ein Einkristall ausgewählt werden. Die bei der Zellbestimmung erhaltene Zelle entspricht dem erwarteten Produkt: a = 816 pm, b = 829 pm, c = 853 pm, $\alpha = 102,27^{\circ}$, $\beta = 101,16^{\circ}$ und $\gamma = 95,20^{\circ}$ [67].

$$4\operatorname{Co}(+)\operatorname{C}_{4}\operatorname{H}_{4}\operatorname{O}_{6} + 12\operatorname{en} + 4\operatorname{HCl} + \operatorname{O}_{2} + \operatorname{H}_{2}\operatorname{O} \longrightarrow 4\left[\operatorname{Co}(\operatorname{en})_{3}\right]\operatorname{Cl}(+)\operatorname{C}_{4}\operatorname{H}_{4}\operatorname{O}_{6} \cdot 5\operatorname{H}_{2}\operatorname{O} \downarrow$$

Λ -[Co(en)₃]I₃·H₂O

In einem Becherglas wurden 10,30 g (20 mmol) Λ -[Co(en)₃]Cl (+) C₄H₄O₆·5H₂O in 15 mL heißem VE-Wasser gelöst und 0,15 mL konz. NH₃-Lösung zugegeben. Unter Rühren wurde langsam eine Lösung aus 9,00 g (60 mmol) NaI in 5 mL heißem VE-Wasser zugetropft. Nach Abkühlen auf Raumtemperatur wurde die Kristallisation im Eisbad vervollständigt. Die erhaltenen Kristalle wurden abfiltriert und mit je 10 mL einer gekühlten 30 %igen NaI-Lösung, Ethanol und Aceton von anhaftenden Edukt- und Nebenproduktresten befreit. Das Produkt wurde ohne weitere Aufreinigung weiterverwendet. Es konnte ein Einkristall ausgewählt werden. Die bei der Zellbestimmung erhaltene Zelle entspricht dem erwarteten Produkt: $a = 1149,6 \text{ pm}, b = 1342,8 \text{ pm}, c = 2331,1 \text{ pm}, \alpha = 90^{\circ}, \beta = 90^{\circ}$ und $\gamma = 90^{\circ}$ [68]. In wässriger Lösung konnte ein UV-VIS-Spektrum im Bereich von 300-600 nm aufgenommen werden, das die für den [Co(en)₃]³⁺-Komplex charakteristischen Banden bei 335 nm und 466 nm zeigt^[54]. Der spezifische Drehwinkel konnte in hochreinem Milli-Q-H₂O für die Natrium-D-Line ($\lambda = 589 \text{ nm}$) mit $[a]_D^{20} = +91,5^{\circ}(1)$ bestimmt werden und stimmt gut mit dem in der Literatur angegebenen Werte von $[a]_D^{20} = +89,0^{\circ}$ überein^[41].

Λ -[Co(sep)](dtc)₃

In einem 250 mL-Dreihalskolben wurden 3,40 g (5,2 mmol) Λ -[Co(en)₃]I₃·H₂O und 4,60 g (62 mmol) Li₂CO₃ in 40 mL VE-Wasser suspendiert. Unter Rühren wurden parallel 100 mL 37% ige CH₂O-Lösung und 100 mL verd. NH₃-Lösung über 1 h zugetropft. Das Reaktionsgemisch wurde für weitere 15 min gerührt und anschließend der Feststoff abfiltriert. Das erhaltene Filtrat wurde mit einer Lösung aus 5,00 g (22 mmol) Na dtc in 100 mL VE-Wasser versetzt. Nach 30 min wurde das erhaltene Kristallgemisch abfiltriert und mit 150 mL einer 1:5 Mischung aus Dichlormethan/ *n*-Hexan zur Entfernung von Nebenprodukten gewaschen. Das Produkt wurde an Luft getrocknet und ohne weitere Aufreinigung weiterverwendet.

$$\begin{array}{l} \Lambda - [\mathrm{Co(en)}_3]\mathrm{I}_3 \cdot \mathrm{H}_2\mathrm{O} \,+\, 6\,\mathrm{CH}_2\mathrm{O} \,+\, 2\,\mathrm{NH}_3 \,+\, 3\,\mathrm{Na}\,\mathrm{dtc} \longrightarrow \\ \Lambda - [\mathrm{Co(sep)}](\mathrm{dtc})_3 \downarrow \,+\, 7\,\mathrm{H}_2\mathrm{O} \,+\, 3\,\mathrm{NaI}\,\mathrm{Co(sep)}](\mathrm{dtc})_3 \downarrow \,+\, 7\,\mathrm{H}_2\mathrm{O} \,+\, 3\,\mathrm{NaI}\,\mathrm{Co(sep)} \end{array}$$

Λ -[Co(sep)]Cl₃

In einem Becherglas wurden 3,20 g (4,0 mmol) Λ -[Co(sep)](dtc)₃ in 60 mL CH₃CN suspendiert. Unter Rühren wurden 4 mL konz. HCl zugetropft und das Reaktionsgemisch für 15 min auf 65 °C erwärmt. Der Reaktionsverlauf kann anhand der Farbänderung von rot zu gelb-orange verfolgt werden. Nach Abkühlen auf Raumtemperatur wurde der Niederschlag abfiltriert und mit 40 mL CH₃CN zur Entfernung von anhaftenden Nebenprodukten gewaschen. Das Produkt wurde an Luft getrocknet. Nach Umkristallisation aus heißem VE-Wasser konnte ein Einkristall ausgewählt und vermessen werden. Die bei der Zellbestimmung erhaltene Zelle entspricht dem erwarteten Produkt: a = 1504,5 pm, b = 1821,4 pm, c = 1518,6 pm, $\alpha = 90^{\circ}$, $\beta = 109,6^{\circ}$ und $\gamma = 90^{\circ [69]}$. In wässriger Lösung konnte ein UV-VIS-Spektrum im Bereich von 300-600 nm aufgenommen werden, das die für den [Co(sep)]⁺-Komplex charakteristischen Banden bei 340 nm und 487 nm zeigt^[55].

$$(+)[\mathrm{Co(sep)}](\mathrm{dtc})_3 + 3\,\mathrm{HCl} \xrightarrow{65\,^{\circ}\mathrm{C}}_{\mathrm{CH}_3\mathrm{CN}} (+)[\mathrm{Co(sep)}]\mathrm{Cl}_3 \downarrow + 3\,\mathrm{Hdtc}$$

 $Ba(-)C_4H_4O_6$

In einem Becherglas wurden $6,10 \text{ g} (25 \text{ mmol}) \text{ BaCl}_2 \cdot \text{H}_2\text{O}$ in 10 mL VE-Wasser gelöst und auf $90 \,^{\circ}\text{C}$ erwärmt. Unter Rühren wurde eine auf $90 \,^{\circ}\text{C}$ temperierte Lösung aus 3,50 g (25 mmol) D-Weinsäure in 10 mL VE-Wasser langsam eingebracht. Nach kurzer Zeit fiel ein weißer Niederschlag aus, der nach 20 min weiterem Rühren bei $90 \,^{\circ}\text{C}$, Neutralisation mit Ethylendiamin und Kühlung in einem Eisbad abfiltriert wurde. Durch Waschen mit warmem VE-Wasser wurden anhaftende Eduktreste entfernt. Das Produkt wurde an Luft getrocknet und ohne weitere Aufreinigung weiterverwendet.

$$\mathrm{BaCl}_2 \cdot \mathrm{H}_2\mathrm{O} + \mathrm{C}_4\mathrm{H}_6\mathrm{O}_6 \xrightarrow[\mathrm{H}_2\mathrm{O}]{} \mathrm{Ba}(-)\mathrm{C}_4\mathrm{H}_4\mathrm{O}_6 \downarrow \ + \ 2\,\mathrm{HCl} + \,\mathrm{H}_2\mathrm{O}_6$$

5 Experimenteller Teil

Δ -[Co(en)₃]Cl(-)C₄H₄O₆ · 5 H₂O

Die Synthese des Δ -[Co(en)₃]Cl(-)C₄H₄O₆ bzw. des Δ -[Co(en)₃]I₃-Komplexes erfolgte nach einer Vorschrift von Broomhead *et al.*^[70]. In einem 250 mL *Schlenk*-Rohr wurden 5,0 mL (75 mmol) Ethylendiamin (= en) vorgelegt und unter Rühren und Eiskühlung langsam 13 mL VE-Wasser und 2,5 mL HCl konz. eingebracht. Über einen Feststofftrichter wurden 2,00 g fein pulverisierte Aktivkohle und eine Lösung aus 7,00 g (25 mmol) CoSO₄·7H₂O in 10 mL VE-Wasser zugegeben. Das *Schlenk*-Rohr wurde mit einem Gaseinleitungsrohr verschlossen, und mit Hilfe eines Membranpumpen-Vakuums wurde für 2 h Luft durch das Reaktionsgemisch gesaugt. Der pH-Wert wurde mit HCl bzw. Ethylendiamin auf 7 eingestellt und das Reaktionsgemisch für 15 min in einem Wasserbad erwärmt. Nach Abkühlen auf Raumtemperatur wurde die Aktivkohle abfiltriert und 7,00 g (25 mmol) Ba(-)C₄H₄O₆ zugesetzt. Das Reaktionsgemisch wurde unter Rühren für 30 min in einem Wasserbad erwärmt. Der erhaltene Feststoff wurde abfiltriert und mit wenig warmem VE-Wasser gewaschen. Die erhaltene Lösung wurde im Vakuum auf 15 mL eingeengt. Die unter Eiskühlung erhaltenen orangegelben Kristalle wurden abfiltriert und an Luft getrocknet. Das Produkt wurde ohne weitere Aufreinigung weiterverwendet.

$$\begin{array}{l} 4\operatorname{CoSO}_4\cdot 7\operatorname{H}_2\mathrm{O}\,+\,4\operatorname{Ba}(-)\mathrm{C}_4\mathrm{H}_4\mathrm{O}_6\,+\,12\operatorname{en}\,+\,4\operatorname{HCl}\,+\,\mathrm{O}_2\,+\,\mathrm{H}_2\mathrm{O}\longrightarrow\\ & 4\left[\operatorname{Co}(\operatorname{en})_3\right]\!\mathrm{Cl}\left(-\right)\mathrm{C}_4\mathrm{H}_4\mathrm{O}_6\cdot 5\operatorname{H}_2\mathrm{O}\,+\,4\operatorname{BaSO}_4\downarrow\end{array}$$

Δ -[Co(en)₃]I₃ · H₂O

In einem Becherglas wurden 10,30 g (20 mmol) Δ -[Co(en)₃]Cl(-) C₄H₄O₆·5H₂O in 15 mL heißem VE-Wasser gelöst und 0,15 mL konz. NH₃-Lösung zugegeben. Unter Rühren wurde langsam eine Lösung aus 9,00 g (60 mmol) NaI in 5 mL heißem VE-Wasser zugetropft. Nach Abkühlen auf Raumtemperatur wurde die Kristallisation im Eisbad vervollständigt. Die erhaltenen Kristalle wurden abfiltriert und mit je 10 mL einer gekühlten 30 %igen NaI-Lösung, Ethanol und Aceton von anhaftenden Edukt- und Nebenproduktresten befreit. Das Produkt wurde ohne weitere Aufreinigung weiterverwendet. In wässriger Lösung wurde ein UV-VIS-Spektrum im Bereich von 300 - 600 nm aufgenommen, das die für den [Co(en)₃]³⁺-Komplex charakteristischen Banden bei 335 nm und 466 nm zeigt^[54]. Der spezifische Drehwinkel konnte in hochreinem Milli-Q-H₂O für die Natrium-D-Line ($\lambda = 589$ nm) mit [a]_D²⁰ = -87,2°(1) bestimmt werden und stimmt gut mit dem in der Literatur angegebenen Wert von [a]_D²⁰ = -90,0° überein^[41].

$[Ag(en)][Ag(BDC)] \cdot H_2O$

Die Synthese des 1,2-Ethylendiaminsilber(I)-terephthalatosilber(I)-Monohydrat-Komplexes erfolgte nach einer Vorschrift von Zhu *et al.*^[71]. In einer lichtgeschützten Kristallisierschale wurden äquimolare Mengen 2,02 g (8,7 mmol) Ag₂O und 1,45 g (8,7 mmol) H₂BDC in 40 mL konz. NH₃-Lösung gelöst. Nach Zugabe von 1,18 mL Ethylendiamin wurde das Reaktionsgemisch lichtgeschützt zur Kristallisation gestellt. Nach wenigen Tagen konnte die Bildung von klaren Kristallen beobachtet werden. Die bei der Zellbestimmung erhaltene Zelle entspricht dem erwarteten Produkt: $a = 959,71 \text{ pm}, b = 1133,27 \text{ pm}, c = 1145,21 \text{ pm}, \alpha = 90^{\circ}, \beta = 90^{\circ}$ und $\gamma = 90^{\circ}$ ^[71].

$$\mathrm{Ag_2O} + \mathrm{H_2BDC} + \mathrm{en} \xrightarrow{\mathrm{konz.NH_3}} [\mathrm{Ag(en)}][\mathrm{Ag(BDC)}] \downarrow \ + \mathrm{H_2O}$$

$[NH_4][Ag_5(BTC)_2(NH_3)_2(H_2O)_2] \cdot H_2O$

Die Synthese des $[NH_4][Ag_5(BTC)_2(NH_3)_2(H_2O)_2] \cdot H_2O$ -Komplexes erfolgte nach einer modifizierten Vorschrift von Mak *et al.*^[72], die von Smith *et al.*^[73] 1995 optimiert wurde. Die Synthese wurde in einem größeren Maßstab durchgeführt, um ausreichende Mengen Edukt zu erhalten. In einer 100 mL Kristallisierschale wurden 1,70 g (10 mmol) AgNO₃ und 0,64 g (3 mmol) H₃BTC in 10 mL VE-H₂O suspendiert. Unter Rühren wurden 1,5 mL konz. NH₃-Lösung zur Lösung des Feststoffes zugeben. Nach weiteren 10 min Rühren wurde der Rührfisch entfernt, und das Reaktionsgemisch lichtgeschützt zur Kristallisation gestellt.

$$5\,\mathrm{AgNO}_3\,+\,2\,\mathrm{H}_3\mathrm{BTC}\xrightarrow[\mathrm{H}_2\mathrm{O}]{}\mathrm{NH}_3(\mathrm{NH}_4)[\mathrm{Ag}_5(\mathrm{BTC}_2)(\mathrm{NH}_3)_2(\mathrm{H}_2\mathrm{O})_2]\cdot\mathrm{H}_2\mathrm{O}\downarrow\ +\,5\,\mathrm{H}^+\,+\,5\,\mathrm{NO}_3^-$$

PbADC

Die Synthese des Blei(II)acetylendicarboxylates erfolgte nach einer Vorschrift von Ruschewitz *et al.*, die für die hier benötigten Mengen hoch skaliert wurde^[74]. In einem großen Achat-Mörser wurden 0,82 g (7,2 mmol) H₂ADC mit 2,66 g (8,2 mmol) Pb(CH₃COO)₂ verrieben. Das Reaktionsgemisch wurde unter dem Abzug gelagert, bis ausgetriebene Essigsäure und Kristallwasser verdunstet waren. Dieser Vorgang wurde wiederholt, bis kein Essiggeruch mehr festzustellen war. Das Produkt wurde an Luft getrocknet und ohne weitere Aufreinigung weiterverwendet. Eine Phasenanalyse mit Cu-K α_1 -Strahlung zeigt die Reinheit des erhaltenen Produktes (Abbildung 5.2).

$$\mathrm{Pb}(\mathrm{CH}_3\mathrm{COO})_2\cdot 3\,\mathrm{H}_2\mathrm{O}\,+\,\mathrm{H}_2\mathrm{ADC}\xrightarrow{\mathrm{RT}}\mathrm{Pb}\mathrm{ADC}\,+\,3\,\mathrm{H}_2\mathrm{O}\,+\,2\,\mathrm{CH}_3\mathrm{COOH}\uparrow$$

Abb. 5.2: Röntgenpulverdiffraktogramm der Verbindung PbADC (violett) gegen die theoretischen Daten (grau)

Ag-Dicarboxylate

Die Synthese der Silbercarboxylate erfolgte nach einer Vorschrift von Mohamed *et al.*, die für die hier verwendeten Carbonsäuren angepasst wurde^[75]. Es wurden 5 mmol der verwendeten Carbonsäure in 10 mL VE-Wasser suspendiert. Unter Rühren wurde bis zur vollständigen Lösung des Feststoffes tropfenweise konz. NH₃ zugegeben. Unter Lichtausschluss wurde eine Lösung aus AgNO₃ in 10 mL VE-H₂O zugegeben. Nach 30 min wurde der weiße Niederschlag abfiltriert und mit 50 mL VE-H₂O von anhaftenden Eduktresten befreit. Das Produkt wurde an Luft getrocknet und ohne weitere Aufreinigung weiterverwendet. Die Einwaagen für die durchgeführten Synthesen sind in Tabelle 5.2 zusammengefasst.

$$\mathrm{H_{2}L} + 2\,\mathrm{AgNO_{3}} + 2\,\mathrm{NH_{3}} \xrightarrow[\mathrm{H_{2}O}]{\mathrm{RT}} \mathrm{Ag_{2}L} + 2\,\mathrm{NH_{4}NO_{3}}$$

mit $L = PDC^{2-}$, EDC^{2-} , BSA^{2-} , BDC^{2-}

Tab. 5.2: Einwaagen der Synthesen der Ag-Dicarboxylate

Carbonsäure	$m_{\rm Carbonsäure}$	m_{AgNO_3}	Ausbeute
H_2PDC	$0,52 \mathrm{g} (5 \mathrm{mmol})$	$1,70 \ (10 \text{ mmol})$	$1,58\mathrm{g}~(99,4\%)$
H_2EDC	$0,58 \mathrm{g} (5 \mathrm{mmol})$	$1,70 \ (10 \text{ mmol})$	$1,\!64\mathrm{g}(99,\!5\%)$
H_2BSA	$0,59 \mathrm{g} (5 \mathrm{mmol})$	$1,70 \ (10 \text{ mmol})$	$1,\!43\mathrm{g}~(86,\!2\%)$
H_2BDC	$0,82\mathrm{g}~(5\mathrm{mmol})$	$1,70 \ (10 \text{ mmol})$	$1{,}80{\rm g}~(94{,}8\%)$

5.4 Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate

5.4.1 Azentrische Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate $_{\infty}^{1} \left\{ \Lambda - [Co(en)_{3}]_{2}EDC_{3} \right\} \cdot 11,25 H_{2}O$

In einem braunen 10 mL-Schnappdeckelglas wurden $0,62 \text{ g} (1 \text{ mmol}) \Lambda$ -[Co(en)₃]I₃ in 5 mL VE-H₂O gelöst. Die Lösung wurde in einem Wasserbad auf 60 °C erwärmt. Es wurden 0,66 g (2 mmol) feingemörsertes Ag₂EDC unter Rühren suspendiert. Der Schnappdeckel wurde aufgelegt und das Reaktionsgemisch für 3 h bei 60 °C weiter gerührt. Der entstandene Feststoff wurde abfiltriert, mit wenigen Tropfen warmen VE-H₂O gewaschen und die erhaltene Lösung in ein vorgewärmtes klares Schnappdeckelgefäß mit perforiertem Deckel zur Kristallisation gestellt. Nach einigen Wochen konnten Kristalle der Zielverbindung erhalten werden.

$$2\Lambda \text{-}[\mathrm{Co(en)}_3]\mathrm{I}_3 + 3\operatorname{Ag}_2\mathrm{EDC} \xrightarrow{60\,^\circ\mathrm{C}}_{\mathrm{H}_2\mathrm{O}} \Lambda \text{-}[\mathrm{Co(en)}_3]_2\mathrm{EDC}_3 + 6\operatorname{AgI} \downarrow$$

$$_{\infty}^{1} \Big\{ \Lambda \text{-} [\mathrm{Co}(\mathrm{en})_{3}]_{2} \mathrm{BDC}_{3} \Big\} \cdot 20 \, \mathrm{H}_{2} \mathrm{O}$$

In einem braunen 10 mL-Schnappdeckelglas wurden 0,37 g (0,6 mmol) Λ -[Co(en)₃]I₃ in 3 mL VE-H₂O gelöst. Die Lösung wurde in einem Wasserbad auf 70 °C erwärmt. Es wurden 0,76 g (2 mmol) feingemörsertes Ag₂BDC in der warmen Lösung unter Rühren suspendiert. Der Schnappdeckel wurde aufgelegt und das Reaktionsgemisch für 3 h bei 60 °C weiter gerührt. Der entstandene Feststoff wurde abfiltriert, mit wenigen Tropfen warmen VE-H₂O gewaschen und die erhaltene Lösung in ein vorgewärmtes klares Schnappdeckelgefäß mit perforiertem Deckel zur Kristallisation gestellt. Nach wenigen Tagen konnten Kristalle der Zielverbindung erhalten werden.

$$2\Lambda \text{-}[\text{Co(en)}_3]\text{I}_3 + 3\operatorname{Ag}_2\text{BDC} \xrightarrow[\text{H}_2\text{O}]{}\Lambda \text{-}[\text{Co(en)}_3]_2\text{BDC}_3 + 6\operatorname{AgI} \downarrow$$

5.4.2 Azentrische Tris-1,2-Ethylendiamin-Cobalt(III)-Nitrat-Carboxylate $^{2}_{\infty} \left\{ \Delta - [Co(en)_{3}] EDC(NO_{3}) \right\} \cdot 2 H_{2}O$

In einem 50 mL Becherglas wurden $0,31 \text{ g} (0,5 \text{ mmol}) \Delta$ - $[\text{Co}(\text{en})_3]\text{I}_3$ in 5 mL VE-H₂O gelöst. Es wurden 0,33 g (1,0 mmol) feingemörsertes Ag₂EDC in der Lösung unter Rühren suspendiert. Das Reaktionsgemisch wurde für 2 h bei 50 °C weiter gerührt. Nach Abkühlen auf Raumtemperatur wurde in Eis gekühlt. Der entstandene Feststoff wurde abfiltriert, mit wenigen Tropfen VE-H₂O gewaschen und die erhaltene Lösung in einem klaren Schnappdeckelgefäss mit perforiertem Deckel zur Kristallisation gestellt. Nach wenigen Tagen konnten Kristalle erhalten werden.

$$\Delta - [\mathrm{Co(en)}_3]\mathrm{I}_3 + \mathrm{Ag}_2\mathrm{EDC} + \mathrm{AgNO}_3 \xrightarrow[\mathrm{H}_2\mathrm{O}]{} \Delta - [\mathrm{Co(en)}_3]\mathrm{EDC(NO}_3) + 3\,\mathrm{AgI} \downarrow$$

$$_{\infty}^{2} \left\{ \Lambda - [\mathrm{Co(en)}_{3}] \mathrm{BSA}(\mathrm{NO}_{3}) \right\} \cdot 2 \mathrm{H}_{2}\mathrm{O}$$

In einem 50 mL Becherglas wurden $0,37 \text{ g} (0,6 \text{ mmol}) \Lambda$ -[Co(en)₃]I₃ in 3 mL VE-H₂O gelöst. Es wurden 0,66 g (2,0 mmol) feingemörsertes Ag₂EDC in der Lösung unter Rühren suspendiert. Das Reaktionsgemisch wurde für 1 h bei 70 °C weiter gerührt. Der entstandene Feststoff wurde in der Wärme abfiltriert, mit wenigen Tropfen warmen VE-H₂O gewaschen und die erhaltene Lösung in einem vorgewärmten klaren Schnappdeckelgefäss mit perforiertem Deckel zur Kristallisation gestellt. Nach wenigen Tagen konnten Kristalle erhalten werden.

$$\Lambda - [\mathrm{Co(en)_3}]\mathrm{I_3} + \mathrm{Ag_2BSA} + \mathrm{AgNO_3} \xrightarrow[\mathrm{H_2O}]{70\,^\circ\mathrm{C}} \Lambda - [\mathrm{Co(en)_3}]\mathrm{BSA(NO_3)} + 3\,\mathrm{AgI} \downarrow \Lambda - [\mathrm{Co(en)_3}]\mathrm{AgI} \to [\mathrm{C$$

5.4.3 Zentrosymmetrische

Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate

${}^{1}_{\infty} \left\{ \left[\mathrm{Co(en)_{3}} \right] \mathrm{ADC}_{3/2} \right\} \cdot 4 \, \mathrm{H_{2}O}$

In einem 50 mL Becherglas wurden $0,62 \text{ g} (1 \text{ mmol}) \text{ rac-}[Co(en)_3]I_3$ in 20 mL VE-H₂O gelöst. Es wurden 0,48 g (1,5 mmol) feingemörsertes Pb ADC in der Lösung unter Rühren suspendiert. Das Reaktionsgemisch wurde für 5 h bei Raumtemperatur gerührt. Der entstandene Feststoff wurde abfiltriert, mit wenigen Tropfen warmen VE-H₂O gewaschen und die erhaltene Lösung in ein 60 mL Kristallisierschale überführt, mit perforiertem Parafilm abgedeckt und zur Kristallisation stehen gelassen. Nach einigen Wochen konnten Kristalle der Zielverbindung erhalten werden.

$$2\operatorname{rac-[Co(en)_3]I_3} + 3\operatorname{PbADC} \xrightarrow[\mathrm{H_2O}]{\operatorname{RT}} 2\operatorname{[Co(en)_3]ADC_{3/2}} + 3\operatorname{PbI_2} \downarrow$$

$_{\infty}^{1} \Big\{ [\mathrm{Co}(\mathrm{en})_{3}] \mathrm{BDC}_{3/2} \Big\} \cdot 10 \, \mathrm{H_{2}O}$

Es wurden 0,46 g (1 mmol) $[Ag (en)][Ag (BDC)] \cdot H_2O$ in 5 mL EtOH unter Rühren suspendiert. Es wurde eine Lösung aus 0,43 g (0,7 mmol) *rac*- $[Co(en)_3]I_3$ in 15 mL VE-H₂O langsam zugegeben und das Reaktionsgemisch über Nacht gerührt. Der entstandene Feststoff wurde abfiltriert, mit wenigen Tropfen VE-H₂O gewaschen und die erhaltene Lösung in eine 60 mL Kristallisierschale überführt, mit perforiertem Parafilm abgedeckt und zur Kristallisation stehen gelassen. Nach einigen Wochen konnten Kristalle der Zielverbindung erhalten werden.

$$2\operatorname{rac}-[\operatorname{Co}(\operatorname{en})_3]\mathrm{I}_3\,+\,3\,[\operatorname{Ag}(\operatorname{en})][\operatorname{Ag}(\operatorname{BDC})]\xrightarrow[\mathrm{H}_2O]{\operatorname{Co}(\operatorname{en})_3}]\mathrm{BDC}_{3/2}\,+\,3\operatorname{en}\,+\,6\,\mathrm{AgI}\downarrow$$

${}^2_\infty \Big\{ [\mathrm{Co(en)_3}]\mathrm{BTC} \Big\} \cdot 11,\!23\,\mathrm{H_2O}$

In einem 50 mL Becherglas wurden $0,27 \text{ g} (0,43 \text{ mmol}) \text{ rac-}[\text{Co}(\text{en})_3]\text{I}_3$ in 7 mL VE-H₂O gelöst. Es wurden $0,23 \text{ g} (0,22 \text{ mmol}) [\text{NH}_4][\text{Ag}_5(\text{BTC})_2(\text{NH}_3)_2(\text{H}_2\text{O})_2] \cdot \text{H}_2\text{O}$ in der Lösung unter Rühren suspendiert. Das Reaktionsgemisch wurde für 10 min bei 50 °C gerührt. Der entstandene Feststoff wurde abfiltriert, mit wenigen Tropfen VE-H₂O gewaschen und die erhaltene Lösung in eine 60 mL Kristallisierschale überführt, mit perforiertem Parafilm abgedeckt und zur Kristallisation stehen gelassen. Nach einigen Wochen konnten Kristalle der Zielverbindung erhalten werden.

$$\begin{array}{l} 2\operatorname{rac}-[\operatorname{Co}(\operatorname{en})_3]\mathrm{I}_3\,+\,[\mathrm{NH}_4][\mathrm{Ag}_5(\mathrm{BTC})_2)(\mathrm{NH}_3)_2(\mathrm{H}_2\mathrm{O})_2] \xrightarrow{50\,^\circ\mathrm{C}} \\ & 2\left[\operatorname{Co}(\operatorname{en})_3\right]\mathrm{BTC}\,+\,\mathrm{NH}_4\mathrm{I}\,+\,2\,\mathrm{NH}_3\,+\,5\,\mathrm{AgI}\downarrow \end{array}$$

5.5 Sepulchrat-Cobalt(III)-Carboxylate

5.5.1 Azentrische Sepulchrat-Cobalt(III)-Carboxylate $^{2}_{\infty} \left\{ \Lambda - [Co(sep)]_{2}EDC_{3} \right\} \cdot 10 H_{2}O$

In einem braunen 10 mL-Schnappdeckelglas wurden $0.90 \text{ g} (2 \text{ mmol}) \Lambda$ -[Co(sep)]Cl₃ in 5 mL VE-H₂O gelöst. Die Lösung wurde in einem Wasserbad auf 70 °C erwärmt. Es wurden 1.32 g (5 mmol) feingemörsertes Ag₂EDC in der warmen Lösung unter Rühren suspendiert. Der Schnappdeckel wurde aufgelegt und das Reaktionsgemisch für 3 h bei 70 °C weiter gerührt. Der entstandene Feststoff wurde abfiltriert, mit wenigen Tropfen warmen VE-H₂O gewaschen und die erhaltene Lösung in ein vorgewärmtes klares Schnappdeckelgefäss mit perforiertem Deckel zur Kristallisation gestellt. Nach wenigen Tagen konnten Kristalle der Zielverbindung erhalten werden.

$$2\Lambda \text{-} [\text{Co(sep)}]\text{Cl}_3 + 3\operatorname{Ag}_2\text{EDC} \xrightarrow[\text{H}_2\text{O}]{} \Lambda \text{-} [\text{Co(sep)}]_2\text{EDC}_3 + 6\operatorname{AgCl} \downarrow$$

$_{\infty}^{2} \Big\{ \Lambda \text{-}[\mathrm{Co(sep)}] \, \mathrm{BDC}_{3/2} \Big\} \cdot 10 \, \mathrm{H_{2}O}$

In einem braunen 50 mL-Becherglas wurden $0,44 \text{ g} (1 \text{ mmol}) \Lambda$ -[Co(sep)]Cl₃ in 10 mL VE-H₂O gelöst. Die Lösung wurde in einem Wasserbad auf 60 °C erwärmt. Es wurden 0,49 g (1,3 mmol) feingemörsertes Ag₂EDC in der warmen Lösung unter Rühren suspendiert. Ein Uhrglas wurde aufgelegt und das Reaktionsgemisch für 2 h bei 60 °C weiter gerührt. Der entstandene Feststoff wurde abfiltriert, mit wenigen Tropfen warmen VE-H₂O gewaschen und die erhaltene Lösung in ein vorgewärmtes klares Schnappdeckelgefäss mit perforiertem Deckel zur Kristallisation gestellt. Nach wenigen Tagen konnten Kristalle der Zielverbindung erhalten werden.

$$2\Lambda \text{-} [\text{Co(sep)}]\text{Cl}_3 + 3\operatorname{Ag}_2\text{BDC} \xrightarrow[\text{H}_2\text{O}]{} 2\Lambda \text{-} [\text{Co(sep)}]\text{BDC}_{3/2} + 6\operatorname{AgCl} \downarrow$$

$_{\infty}^{2} \Big\{ \Lambda \text{-} [\mathrm{Co}(\mathrm{sep})]_{2} \, \mathrm{BSA}_{3} \Big\} \cdot 15 \, \mathrm{H}_{2}\mathrm{O}$

In einem braunen 10 mL-Schnappdeckelglas wurden 0,27 g (0,6 mmol) A-[Co(sep)]Cl₃ in 2 mL VE-H₂O gelöst. Die Lösung wurde in einem Wasserbad auf 70 °C erwärmt. Es wurden 0,49 g (1,3 mmol) feingemörsertes Ag₂BSA in der warmen Lösung unter Rühren suspendiert. Der Schnappdeckel wurde aufgelegt und das Reaktionsgemisch für 1 h bei 70 °C weiter gerührt. Der entstandene Feststoff wurde abfiltriert, mit wenigen Tropfen warmen VE-H₂O gewaschen und die erhaltene Lösung in ein vorgewärmtes klares Schnappdeckelgefäss mit perforiertem Deckel zur Kristallisation gestellt. Nach wenigen Tagen konnten Kristalle der Zielverbindung erhalten werden.

$$2\Lambda\text{-}\left[\mathrm{Co(sep)}\right]\mathrm{Cl}_3 + 3\,\mathrm{Ag}_2\mathrm{BSA} \xrightarrow[\mathrm{H_2O}]{70\,^\circ\mathrm{C}} \Lambda - \left[\mathrm{Co(sep)}\right]_2\mathrm{BSA}_3 + 6\,\mathrm{AgCl}\downarrow$$

${}_{\infty}^{1} \Big\{ \operatorname{\Lambda-[Co(sep)]PDC}(\operatorname{HPDC}) \Big\} \cdot 5 \operatorname{H}_{2} O$

In einem braunen 10 mL-Schnappdeckelglas wurden $0,23 \text{ g} (0,5 \text{ mmol}) \Lambda$ -[Co(sep)]Cl₃ in 2 mL VE-H₂O gelöst. Die Lösung wurde in einem Wasserbad auf 50 °C erwärmt. Es wurden 0,32 g feingemörsertes Ag₂PDC mit einer geringen Verunreinigung an AgHPDC unter Rühren suspendiert. Der Schnappdeckel wurde aufgelegt und das Reaktionsgemisch für 3 h bei 70 °C weiter gerührt. Das Reaktionsgemisch wurde im Eisbad gekühlt, der entstandene Feststoff wurde abfiltriert, mit wenigen Tropfen VE-H₂O gewaschen und die erhaltene Lösung in ein Schnappdeckelgefäss mit perforiertem Deckel zur Kristallisation gestellt. Nach wenigen Tagen konnten Kristalle der Zielverbindung erhalten werden.

$$\Lambda - [\mathrm{Co(sep)}]\mathrm{Cl}_3 \, + \, \mathrm{Ag}_2\mathrm{PDC} \, + \, \mathrm{AgHPDC} \xrightarrow[\mathrm{H}_2\mathrm{O}]{} \Lambda - [\mathrm{Co(sep)}]\mathrm{PDC(HPDC)} \, + \, 3\,\mathrm{AgCl} \downarrow \Lambda - \mathrm{AgC} \Lambda - \mathrm{AgC$$

Literaturverzeichnis

- [1] B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629–1658.
- [2] M. O'Keeffe, M. Eddaoudi, H. Li, T. Reineke, O. Yaghi, J. Solid State Chem. 2000, 152, 3–20.
- [3] S. R. Batten, R. Robson, Angew. Chem. 1998, 110, 1558–1595.
- [4] N. W. Ockwig, O. Delgado-Friedrichs, M. O'Keeffe, O. M. Yaghi, Acc. Chem. Res. 2005, 38, 176–82.
- [5] S. R. Batten, S. M. Neville, D. R. Turner, Coordination Polymers Design, Analysis and Application, RSC Publishing, Cambridge, UK, 2008.
- [6] C. Janiak, *Dalton Trans.* **2003**, 2781–2804.
- [7] C. Janiak, J. K. Vieth, New J. Chem. 2010, 34, 2366–2388.
- [8] H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276–279.
- C. Volkringer, M. Meddouri, T. Loiseau, N. Guillou, J. Marrot, G. Férey, M. Haouas, F. Taulelle, N. Audebrand, M. Latroche, *Inorg. Chem.* 2008, 47, 11892–11901.
- [10] S. S. Chui, *Science* **1999**, *283*, 1148–1150.
- [11] G. M. J. Schmidt, Pure Appl. Chem. 1971, 27, 647–678.
- [12] G. Desiraju, Crystal Engineering: The design of Organic Solids, Elsevier Ltd, Amsterdam, 1989.
- [13] V. R. Thalladi, B. S. Goud, V. J. Hoy, F. H. Allen, J. A. K. Howard, G. R. Desiraju, *Chem. Comm.* **1996**, 401–402.
- [14] M. Simard, D. Su, J. D. Wuest, J. Am. Chem. Soc. 1991, 113, 4696–4698.
- [15] G. R. Desiraju, Angew. Chem. Int. Ed. 1995, 34, 2311–2327.
- [16] M. Whitesides, E. E. Simanek, M. Gordon, Acc. Chem. Res. 1995, 28, 37–44.

- [17] G. R. Desiraju, Chem. Comm. 1997, 1475–1482.
- [18] A. M. Beatty, Coord. Chem. Rev. 2003, 246, 131–143.
- [19] M. M. Chowdhry, D. M. P. Mingos, A. J. P. White, D. J. Williams, *Technology* **1996**, 046, 899–900.
- [20] A. Deák, A. Kálmán, L. Párkányi, I. Haiduc, Acta Crystallogr. B 2001, 57, 303–310.
- [21] M. Munakata, L. P. Wu, M. Yamamoto, T. Kuroda-Sowa, M. Maekawa, J. Am. Chem. Soc. 1996, 118, 3117–3124.
- [22] A. Schuy, Dissertation Universität zu Köln 2007.
- [23] K. M. Fromm, Coord. Chem. Rev. 2008, 252, 856–885.
- [24] G. Férey, Chem. Soc. Rev. 2008, 37, 191–214.
- [25] K. Endo, T. Sawaki, M. Koyanagi, K. Kobayashi, H. Masuda, Y. Aoyama, J. Am. Chem. Soc. 1995, 117, 8341–8352.
- [26] C. M. White, M. F. Gonzalez, D. A. Bardwell, L. H. Rees, J. C. Jeffery, M. D. Ward, N. Armaroli, G. Calogero, F. Barigelletti, J. Chem. Soc. Dalton Trans. 1997, 727–736.
- [27] D. J. Duchamp, R. E. Marsh, Acta Crystallogr. B 1969, 25, 5–19.
- [28] A. D. Burrows, R. W. Harrington, M. F. Mahon, Cryst. Eng. Comm. 2000, 2, 77-81.
- [29] C.-Y. Su, Q.-G. Wang, T. C. W. Mak, B.-S. Kang, H.-Q. Liu, Chem. Comm. 1998, 1551–1552.
- [30] C. B. Aakeröy, A. M. Beatty, D. S. Leinen, Angew. Chem. Int. Ed. 1999, 38, 1815–1819.
- [31] R. W. Gable, B. F. Hoskins, R. Robson, J. Chem. Soc. Chem. Comm. 1990, 1, 1677–1678.
- [32] A. U. Czaja, N. Trukhan, U. Müller, Chem. Soc. Rev. 2009, 38, 1284–93.
- [33] U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastré, J. Mat. Chem. 2006, 16, 626–636.
- [34] T. J. Marks, M. A. Ratner, Angew. Chem. Int. Ed. 1995, 34, 155–173.
- [35] W. Nie, Adv. Mater. 1993, 5, 520–545.
- [36] N. J. Long, Angew. Chem. Int. Ed. 1995, 34, 21–38.

- [37] U. Müller, Acta Crystallogr. B 1978, 34, 1044–1046.
- [38] K.-H. Ernst, F. R. W. P. Wild, O. Blacque, H. Berke, Angew. Chem. 2011, 123, 10970– 10977.
- [39] A. Werner, Ber. Dtsch. Chem. Ges. 1912, 45, 121–130.
- [40] E. Riedel, R. Alsfasser, C. Janiak, Moderne Anorganische Chemie, 3.Aufl., de Gruyter, Berlin, 2007, p. 406.
- [41] J. A. Broomhead, F. P. Dwyer, J. Hogarth, Inorg. Synth. 1960, 6, 186–188.
- [42] Y. Z. Voloshin, N. A. Kostromina, Clathrochelates: Synthesis, Structure and Properties, Elsevier Ltd, 2002.
- [43] A. M. Sargeson, J. M. Harrowfield, A. J. Herlt, Inorg. Synth. 1980, 20, 85–86.
- [44] Stoe & Cie GmbH, X-AREA, 2002.
- [45] R. W. W. Hooft, Nonius COLLECT, 1998.
- [46] L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837–838.
- [47] M. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. Cascarano, L. D. Caro, C. Giacovazzo,
 G. Polidori, R. Spagna, J. Appl. Crystallogr. 2005, 38, 381–388.
- [48] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112–122.
- [49] Stoe & Cie GmbH, X-SHAPE, 2002.
- [50] Stoe & Cie GmbH, *X-RED*, **2002**.
- [51] K. Brandenburg, *DIAMOND*, 2011.
- [52] Stoe & Cie GmbH, *WinXPow*, **2002**.
- [53] T. Williams, C. Kelley, R. Lang, gnuplot 4.6, 2012.
- [54] J. M. Harrowfield, G. A. Lawrence, A. M. Sargeson, J. Chem. Educ. 1985, 62, 804–806.
- [55] I. I. Creaser, R. J. Geue, J. M. Harrowfield, a. J. Herlt, a. M. Sargeson, M. R. Snow, J. Springborg, J. Am. Chem. Soc. 1982, 104, 6016–6025.
- [56] F. Menges, Spekwin32 Software für optische Spektroskopie, Version 1.71.6, 2011.

- [57] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, Georg Thieme Verlag, Stuttgart, 1987.
- [58] D. J. Tranchemontagne, J. L. Mendoza-Cortés, M. O'Keeffe, O. M. Yaghi, *Chem. Soc. Rev.* 2009, 38, 1257–83.
- [59] G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, Inc., New York, 1997, p. 12.
- [60] T. D. Keene, M. B. Hursthouse, D. J. Price, Cryst. Eng. Comm. 2012, 14, 116.
- [61] J. Kang, S. Pyo, H. Yun, J. Do, Z. Kristallogr. NCS 2011, 226, 353–354.
- [62] L. Zhi-Sheng, S. Sevov, Z. Jing-Tai, Chin. J. Struct. Chem. 2011, 30, 1419–1427.
- [63] R. Geue, W. Petri, A. Sargeson, M. Snow, Aust. J. Chem. 1992, 45, 1681.
- [64] M. L. Pasteur, Ann. Chim. Phys. 1848, 24, 442–454.
- [65] H. Biltz, W. Klemm, W. Fischer, Experimentelle Einführung in die anorganische Chemie, Walter de Gruyter, Berlin, New York, 73rd ed., 1986, p. 146.
- [66] L. Hartinger, Handbuch der Abwasser- und Recyclingtechnik: f
 ür die metallverarbeitende Industrie, Fachbuchverlag Leipzig, M
 ünchen, 2nd ed., 1991, pp. 69–71.
- [67] B. Y. D. H. Templeton, A. Zalkin, H. W. Ruben, L. K. Templeton, Acta Crystallogr. B 1979, B35, 1608–1613.
- [68] P. A. Whuler, P. Spinat, C. Brouty, Acta Crystallogr. B 1980, 36, 1086–1091.
- [69] A. Bacchi, F. Ferranti, G. Pelizzi, Acta Crystallogr. C 1993, 49, 1163–1169.
- [70] J. A. Broomhead, F. P. Dwyer, J. Hogarth, Inorg. Synth. 1960, 6, 183183.
- [71] H.-L. Zhu, X.-Y. Liu, X.-J. Wang, F. Yang, A. Usman, H.-K. Fun, Z. Anorg. Allg. Chem. 2003, 629, 1986–1990.
- [72] T. Mak, W. Yip, C. Kennard, G. Smith, E. Oreilly, Aust. J. Chem. 1986, 39, 541–546.
- [73] G. Smith, A. N. Reddy, K. a. Byriel, C. H. L. Kennard, J. Chem. Soc. Dalton Trans. 1995, 3565–3570.
- [74] A. Schuy, I. Stein, U. Ruschewitz, Z. Anorg. Allgem. Chem. 2010, 636, 1026–1031.
- [75] M. A. Mohamed, S. A. A. Mansour, G. A. M. Hussien, J. Therm. Anal. 1994, 41, 405–417.

6 Appendix

6.1 Tris-1,2-Ethylendiamino-Cobalt(III)-Carboxylate

6.1.1 Azentrische Tris-1,2-Ethylendiamin-Cobalt(III)-Carboxylate ${}_{\infty}^{1} \left\{ \Lambda - [Co(en)_{3}]_{2}EDC_{3} \right\} \cdot 11,25 H_{2}O$

Tab. 6.1: Kristallographische Daten und Details der Röntgeneinkristallstrukturanalyse der Verbindung ${}^1_\infty \big\{ \Lambda \ [Co(en)_3]_2 EDC_3 \big\} \cdot 11,25 H_2O$

Summenformel	$(C_6H_{24}CoN_6)_2 \cdot (C_4O_4)_3 \cdot 11,25(H_2O)$
Molare $Masse/g \cdot mol^{-1}$	1022,83
Kristallsystem	monoklin
Raumgruppe	$P2_1$
Diffraktometer	IPDS II
Strahlung	$Mo-K\alpha$
Absorptionskorrektur	Numerisch [24]
Formeleinheiten Z	2
Gitterkonstanten /pm	a = 888,6 (2)
	b = 2116,4 (2)
	c = 1270,1 (1)
/°	$\alpha = 90$
	$\beta=103{,}42~(1)$
	$\gamma = 90$
Volumen $/nm^3$	2,32337 (3)
Dichte $/g \cdot cm^{-3}$	1,462
Kristallform	Plättchen
Kristallgröße /mm	$0.5 \ge 0.4 \ge 0.1$
Kristallfarbe	orange
h k l range	
$h_{min/max}$	-11/11
$k_{\min/\max}$	-27/27
l _{min/max}	-16/16

6 Appendix

Tab. 6.1: Fortsetzung		
$\overline{2\theta_{\max}}$	54,2°	
Reflexzahl		
gemessen	36869	
unabhängig	10310	
$\mu~/{ m mm^{-1}}$	0,8	
R-Werte:		
Io $> 2\sigma(Io)$	R1 = 0,0368	
	$\omega R2 = 0,0913$	
all data	R1 = 0.0447	
	$\omega R2 = 0,0989$	
R _{int}	0,0600	
$GooF = S_{all}$	1,05	
Zahl der verfeinerten		
Parameter	621	
F(000)	1084	
$\Delta ho_{ m min/max}$ / $e\cdot { m \AA}^{-3}$	-0,44/0,88	
Flack Parameter	0,01(1)	

Tab. 6.2: Atomlagen und isotrope oder äquivalente thermische Auslenkungsparameter $[10^{-20} \, \mathrm{m}^2]$ der Verbindung $\frac{1}{\infty} \left\{ \Lambda - [\mathrm{Co}(\mathrm{en})_3]_2 \mathrm{EDC}_3 \right\} \cdot 11,25 \, \mathrm{H}_2 \mathrm{O}$

Atom	Wyckoff- Lage	Besetzung	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
C1	2a		0,6161(4)	-0,03522(2)	0,6083(3)	
H1C	2a		0,56410	-0,07320	$0,\!62390$	0,0390
H1D	2a		0,71290	-0,03100	$0,\!66200$	0,0390
C2	2a		0,6455(4)	-0,0386(2)	$0,\!4966(3)$	
H2C	2a		0,72080	-0,07130	$0,\!49330$	0,0390
H2D	2a		0,55050	-0,04820	$0,\!44380$	0,0390
C3	2a		0,3015(3)	0,1335(2)	0,4080(2)	
H3C	2a		$0,\!19950$	$0,\!12240$	0,36550	0,0310
H3D	2a		$0,\!33560$	$0,\!17150$	$0,\!37780$	0,0310
C4	2a		0,2963(3)	0,1443(2)	0,5243(3)	
H4C	2a		0,23760	0,18210	0,53090	0,0330
H4D	2a		0,24800	$0,\!10870$	$0,\!55160$	0,0330
C5	2a		0,8413(4)	0,1689(2)	0,5154(3)	
H5C	2a		0,87490	$0,\!20970$	$0,\!49480$	0,0370

Atom	Wyckoff- Lage	Besetzung	x/a	v/b	z/c	Uiso*/Uea
H5D	2a	8	0,91290	0,13690	0,50210	0,0370
C6	2a		0,8364(4)	0,1691(2)	0,6334(3)	-)
H6C	2a		0,94000	0,17260	0,67890	0,0380
H6D	2a		0,77530	0,20440	$0,\!64880$	0,0380
C7	2a		1,2071(3)	-0,2268(2)	$0,\!9950(3)$	
H7C	2a		1,31450	-0,21500	1,00230	0,0340
H7D	2a		$1,\!18730$	-0,26540	0,95290	0,0340
C8	2a		1,1739(3)	-0,2366(2)	1,1052(2)	
H8C	2a		1,22460	-0,27470	$1,\!13820$	0,0330
H8D	2a		1,21280	-0,20110	$1,\!15200$	0,0330
C9	2a		0,6785(4)	-0,2677(2)	0,8539(3)	
H9C	2a		$0,\!65840$	-0,31020	$0,\!82550$	0,0370
H9D	2a		$0,\!61510$	-0,23850	$0,\!80370$	0,0370
C10	2a		0,6414(4)	-0,2629(2)	0,9634(3)	
H10C	2a		0,53070	-0,26630	$0,\!95650$	$0,\!0340$
H10D	2a		$0,\!69230$	-0,29650	1,01030	0,0340
C11	2a		0,8528(4)	-0,0564(2)	0,9115(3)	
H11C	2a		0,78070	-0,02540	0,87230	0,0370
H11D	2a		$0,\!95630$	-0,04490	0,90590	$0,\!0370$
C12	2a		0,8444(4)	-0,0581(2)	1,0287(2)	
H12A	2a		0,88540	-0,01930	1,06500	0,0340
H12B	2a		0,73800	-0,06290	1,03440	$0,\!0340$
C13	2a		0,4211(3)	-0,0925(2)	0,8512(3)	
C14	2a		0,0676(4)	-0,00563(2)	$0,\!6717(3)$	
C15	2a		$0,\!6268(3)$	0,0828(2)	1,1892(2)	
C16	2a		0,5795(3)	0,0954(2)	0,8778(2)	
C17	2a		0,8922(3)	-0,1817(2)	$0,\!6260(2)$	
C18	2a		0,8513(3)	-0,1818(2)	0,3131(2)	
C131	2a		0,2848(3)	-0,0499(2)	0,8118(3)	
H131	2a		0,25350	-0,02390	$0,\!86170$	$0,\!0360$
C132	2a		0,2070(3)	-0,0475(2)	0,7100(3)	
H132	2a		0,23950	-0,07280	$0,\!65950$	$0,\!0380$
C151	2a		$0,\!6550(3)$	0,0894(2)	1,0785(2)	
H151	2a		0,75710	0,09330	1,07290	$0,\!0310$
C152	2a		0,5458(3)	0,0900(2)	0,9875(2)	

Tab. 6.2: Fortsetzung

Tab.	6.2:	Fortsetzung
------	------	-------------

Atom	Wyckoff- Lage	Besetzung	x/a	y/b	z/c	$U_{\rm iso}^*/U_{\rm eq}$
H152	2a		0,44310	0,08690	0,99210	0,0320
C171	2a		0,9275(3)	-0,1805(2)	0,5155(2)	
H171	2a		1,03020	-0,17630	0,51160	0,0320
C172	2a		0,8213(3)	-0,1849(2)	0,4242(2)	
H172	2a		0,71940	-0,19050	$0,\!42910$	0,0290
N1	2a		0,5165(3)	0,0212(1)	$0,\!61002(2)$	
H1A	2a		0,52160	0,03310	$0,\!67880$	0,0300
H1B	2a		0,41740	0,01200	$0,\!57860$	0,0300
N2	2a		0,7056(3)	0,0244(1)	0,4742(2)	
H2A	2a		0,69420	0,02950	0,40240	0,0300
H2B	2a		0,80700	0,02730	0,50610	0,0300
N3	2a		0,4117(3)	0,0812(1)	0,4066(2)	
H3A	2a		0,44380	0,08220	0,34440	0,0270
H3B	2a		0,36480	0,04390	0,41040	0,0270
N4	2a		$0,\!4597(3)$	0,1514(1)	$0,\!5859(2)$	
H4A	2a		0,46650	0,14440	$0,\!65670$	0,0300
H4B	2a		$0,\!49270$	$0,\!19100$	$0,\!57810$	0,0300
N5	2a		$0,\!6813(3)$	0,1548(1)	0,45204(2)	
H5A	2a		0,68410	$0,\!14030$	$0,\!38590$	0,0300
H5B	2a		0,62340	0,19010	$0,\!44400$	0,0300
N6	2a		0,7648(3)	0,1084(1)	$0,\!6539(2)$	
H6A	2a		0,73110	0,11110	0,71530	0,0290
H6B	2a		0,83510	0,07710	$0,\!66150$	0,0290
N7	2a		1,1031(3)	-0,1755(1)	0,9408(2)	
H7A	2a		1,09240	-0,17780	$0,\!86870$	0,0310
H7B	2a		1,14440	-0,13760	0,96350	0,0310
N8	2a		1,0032(3)	-0,2422(1)	1,0913(2)	
H8A	2a		$0,\!97710$	-0,23240	$1,\!15360$	0,0290
H8B	2a		$0,\!97310$	-0,28220	1,07350	0,0290
N9	2a		0,8450(3)	-0,2519(1)	0,8679(2)	
H9A	2a		0,86310	-0,23930	$0,\!80430$	0,0310
H9B	2a		0,90330	-0,28630	$0,\!89030$	0,0310
N10	2a		$0,\!6981(3)$	-0,2003(1)	1,0091(2)	
H10A	2a		0,70800	-0,20020	1,08130	0,0290
H10B	2a		$0,\!63030$	-0,16990	0,98000	0,0290

140. 0.2	. I of the talling					
Atom	Wyckoff- Lage	Besetzung	x/a	y/b	z/c	$\mathrm{U_{iso}}^*/\mathrm{U_{eq}}$
N11	2a		0,8129(3)	-0,1202(1)	0,8656(2)	
H11A	2a		0,85180	-0,12550	0,80680	0,0290
H11B	2a		0,70950	-0,12440	0,84540	0,0290
N12	2a		$0,\!9388(3)$	-0,1132(1)	1,0781(2)	
H12C	2a		0,91320	-0,12420	$1,\!14010$	$0,\!0300$
H12D	2a		1,03990	-0,10300	$1,\!09350$	0,0300
O1	2a		0,1804(4)	0,1412(2)	0,8141(3)	
H1E	2a		0,268(3)	0,124(2)	$0,\!801(3)$	$0,\!0500$
H1F	2a		0,140(4)	0,149(2)	0,746(2)	$0,\!0500$
O2	2a		0,2027(3)	0,0482(1)	1,1065(2)	
H2E	2a		0,151(4)	0,048(2)	1,159(3)	0,0500
H2F	2a		0,294(3)	0,064(2)	1,138(3)	0,0500
O3	2a		0,2771(3)	-0,0749(1)	1,0781(2)	
H3E	2a		0,267(5)	-0,0336(9)	1,081(3)	0,0500
H3F	2a		0,346(4)	-0,079(2)	1,037(3)	0,0500
O4	2a		1,0306(3)	0,0226(2)	1,2514(2)	
H4E	2a		0,941(3)	0,037(2)	1,258(3)	0,0500
H4F	2a		1,081(4)	0,007(2)	1,315(2)	0,0500
O5	2a		0,2798(4)	-0,2238(2)	0,7046(4)	
H5E	2a		0,349(4)	-0,194(2)	0,740(3)	$0,\!0500$
H5F	2a		0,332(5)	-0,223(2)	$0,\!652(3)$	0,0500
O6	2a		0,9931(4)	0,1340(2)	0,9982(3)	
H6E	2a		1,043(4)	0,124(2)	0,944(3)	$0,\!0500$
H6F	2a		0,900(3)	0,121(2)	0,959(3)	$0,\!0500$
07	2a		$0,\!4871(3)$	-0,2323(1)	0,5166(2)	
H7E	2a		0,429(4)	-0,200(2)	$0,\!487(3)$	0,0500
H7F	2a		0,567(3)	-0,220(2)	0,566(3)	0,0500
08	2a		1,2716(3)	-0,1457(1)	0,4060(2)	
H8E	2a		1,180(3)	-0,163(2)	0,376(3)	0,0500
H8F	2a		1,329(4)	-0,144(2)	0,358(3)	0,0500
O9	2a		0,9382(5)	0,1873(2)	1,2534(3)	
H9E	2a		0,882(4)	0,151(1)	1,267(3)	0,0500
H9F	2a		0,949(5)	0,207(2)	1,321(2)	$0,\!0500$
O10	2a		0,2169(3)	-0,022(1)	0,447(2)	
H10E	2a		0,237(5)	-0,061(1)	$0,\!435(3)$	0,0500

Tab. 6.2: Fortsetzung

Atom	Wyckoff- Lage	Besetzung	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
H10F	2a		0,161(4)	-0,021(2)	0,496(3)	0,0500
O11	2a		$0,\!4555(3)$	-0,1259(2)	0,2682(2)	
H11E	2a		0,408(4)	-0,109(2)	0,204(2)	$0,\!0500$
H11F	2a		0,526(4)	-0,151(2)	0,251(3)	0,0500
O13A	2a		0,4663(3)	-0,0996(1)	0,9521(2)	
O13B	2a		$0,\!4819(3)$	-0,1192(1)	0,7829(2)	
O14A	2a		0,0276(3)	0,0039(1)	0,5700(2)	
O14B	2a		0,0021(3)	0,0178(2)	0,7391(2)	
O15A	2a		$0,\!4913(2)$	0,0864(1)	1,2020(2)	
O15B	2a		0,7450(3)	0,0762(1)	1,2662(2)	
O16A	2a		0,4649(3)	0,0957(2)	0,7981(2)	
O16B	2a		0,7159(3)	0,1007(2)	0,8691(2)	
O17A	2a		0,7599(3)	-0,1912(2)	$0,\!6366(2)$	
O17B	2a		1,0018(3)	-0,1681(2)	0,7035(2)	
O18A	2a		0,7369(3)	-0,1716(2)	0,2368(2)	
O18B	2a		$0,\!9867(3)$	-0,1876(1)	$0,\!3004(2)$	
Co1	2a		0,59027(4)	0,09028(2)	$0,\!53068(3)$	
Co2	2a		0,89975(4)	-0,18396(2)	$0,\!97550(3)$	
O20	2a	$0,\!25$	0,4635(1)	0,2268(5)	0,7981(8)	0,038(2)

Tab. 6.2: Fortsetzung

Tab. 6.3:	Anisotrope $\frac{1}{1} \left\{ \Lambda - [Co(en)] \right\}$	thermische $_{3}$ \geq EDC $_{3}$ \geq 11.2	Auslenkungsj 5 H ₂ O mit Stan	parameter dardabweichu	$[10^{-20} \text{ m}^2]$	der	Verbindung
Atom	U11	U22	U33	U12	8 U13		U23
C1	0,035(2)	0,029(2)	0,035(2)	0,007(1)	0,010	(1)	0,012(1)
C2	0,035(2)	0,023(2)	0,040(2)	0,004(1)	0,012	(1)	0,001(1)
C3	0,024(1)	0,027(2)	0,026(1)	0,003(1)	0,001	(1)	0,001(1)
C4	0,020(1)	0,030(2)	0,032(2)	0,002(1)	0,005	(1)	-0,003(1)
C5	0,023(1)	0,04(2)	0,029(2)	-0,008(1)	0,003	(1)	0,002(1)
C6	0,024(1)	0,04(2)	0,028(2)	-0,008(1)	-0,003	B(1)	-0,001(1)

0,032(2)

0,024(1)

0,032(2)

0,036(2)

0,032(2)

0,006(1)

0,003(1)

-0,002(1)

-0,003(1)

0,002(1)

0,007(1)

0,001(1)

0,004(1)

0,010(1)

0,004(1)

0,001(1)

0,001(1)

-0,003(1)

-0,002(1)

0,004(1)

C7

C8

C9

C10

C11

0,021(1)

0,021(1)

0,028(2)

0,025(1)

0,036(2)

0,033(2)

0,036(2)

0,032(2)

0,027(2)

0,024(2)

100.0101	1 of the final data					
Atom	U11	U22	U33	U12	U13	U23
C12	0,029(1)	0,027(2)	0,029(2)	0,005(1)	0,005(1)	-0,001(1)
C13	0,022(1)	0,032(2)	0,031(2)	$0,\!003(1)$	0,005(1)	0,008(1)
C14	0,027(2)	0,04(2)	0,032(2)	$0,\!010(1)$	0,009(1)	0,014(1)
C15	0,025(1)	0,027(2)	0,020(1)	$0,\!001(1)$	0,006(1)	0,003(1)
C16	0,031(2)	0,04(2)	0,020(1)	$0,\!001(1)$	0,008(1)	0,001(1)
C17	0,030(1)	0,035(2)	0,019(1)	-0,007(2)	0,006(1)	0,001(1)
C18	0,034(2)	0,027(2)	0,021(1)	$0,\!006(2)$	0,009(1)	-0,001(1)
C131	$0,\!025(1)$	0,035(2)	$0,\!031(2)$	0,007(1)	0,007(1)	0,011(1)
C132	0,023(1)	0,038(2)	0,036(2)	0,009(1)	0,012(1)	0,011(1)
C151	0,026(1)	0,031(2)	0,022(1)	$0,\!004(1)$	0,008(1)	0,001(1)
C152	0,027(1)	0,033(2)	0,022(1)	-0,002(1)	0,007(1)	-0,003(1)
C171	0,029(1)	0,031(2)	$0,\!021(1)$	0,002(1)	0,008(1)	-0,001(1)
C172	0,029(1)	0,027(2)	0,020(1)	0,001(1)	0,009(1)	0,001(1)
N1	0,027(1)	0,028(1)	$0,\!021(1)$	0,001(1)	0,006(9)	0,0035(9)
N2	0,026(1)	0,029(1)	$0,\!021(1)$	0,005(1)	0,006(9)	0,0039(9)
N3	0,024(1)	0,026(1)	0,018(1)	-0,0002(9)	0,004(8)	0,0010(9)
N4	0,024(1)	0,031(1)	$0,\!019(1)$	0,001(1)	0,004(9)	-0,0003(9)
N5	0,022(1)	0,029(1)	0,023(1)	-0,002(1)	0,004(9)	0,0023(9)
N6	0,024(1)	0,030(1)	0,020(1)	0,0018(9)	0,006(9)	0,0001(9)
N7	0,023(1)	0,033(1)	0,023(1)	-0,001(1)	0,007(9)	-0,001(1)
N8	0,024(1)	0,029(1)	0,020(1)	0,002(1)	0,006(9)	-0,0002(9)
N9	0,024(1)	0,030(1)	0,023(1)	-0,001(1)	0,006(9)	-0,0022(9)
N10	0,023(1)	0,028(1)	0,022(1)	0,002(9)	0,005(9)	-0,0002(9)
N11	0,024(1)	0,028(1)	0,020(1)	0,001(1)	0,006(9)	-0,0009(9)
N12	0,025(1)	0,027(1)	0,022(1)	-0,002(1)	0,004(9)	-0,0003(9)
O1	0,059(2)	0,081(3)	0,061(2)	0,014(2)	-0,011(2)	-0,018(2)
O2	0,028(1)	0,041(1)	0,033(1)	-0,001(1)	0,003(9)	0,001(1)
O3	0,030(1)	0,036(1)	0,032(1)	-0,002(1)	0,007(9)	-0,002(1)
O4	0,031(1)	0,074(2)	0,032(1)	0,009(1)	0,008(1)	0,002(1)
O5	0,06(2)	0,114(4)	0,094(3)	-0,042(2)	0,031(2)	-0,044(3)
O6	0,048(2)	0,036(2)	0,094(3)	-0,007(1)	-0,018(2)	0,017(2)
07	0,030(1)	0,025(1)	0,052(2)	-0,002(1)	0,001(1)	0,003(1)
08	0,032(1)	0,037(1)	0,033(1)	0,003(1)	0,007(1)	-0,001(1)
O9	0,077(2)	0,075(3)	0,082(2)	-0,028(2)	0,029(2)	0,000(2)
O10	0,028(1)	0,029(1)	0,033(1)	-0,0015(9)	0,0085(9)	0,001(9)

Tab. 6.3: Fortsetzung

0					
U11	U22	U33	U12	U13	U23
0,035(1)	0,11(3)	0,033(1)	0,019(2)	0,009(1)	0,019(2)
0,030(1)	0,046(2)	0,029(1)	0,012(1)	0,003(9)	0,01(1)
0,027(1)	0,043(1)	0,031(1)	0,009(1)	0,008(9)	0,004(1)
0,030(1)	0,057(2)	0,030(1)	0,014(1)	0,007(9)	0,012(1)
0,044(1)	0,07(2)	0,038(1)	0,032(1)	0,022(1)	0,020(1)
0,025(1)	0,050(2)	0,022(9)	0,001(1)	0,008(8)	0,002(1)
0,028(1)	0,048(2)	0,022(1)	0,004(1)	0,004(9)	0,004(1)
0,030(1)	0,13(3)	0,018(1)	-0,009(2)	0,003(9)	-0,005(2)
0,027(1)	0,062(2)	0,022(1)	0,006(1)	0,0086(9)	0,004(1)
0,030(1)	0,063(2)	0,024(1)	0,001(1)	0,0100(9)	0,001(1)
0,039(1)	0,127(3)	0,022(1)	-0,025(2)	0,006(1)	-0,010(1)
0,042(1)	0,079(2)	0,018(1)	0,024(1)	0,006(1)	0,004(1)
0,033(1)	0,046(1)	0,024(1)	-0,003(1)	0,0111(9)	-0,006(1)
0,0179(2)	0,022(2)	0,0152(2)	0,0015(1)	0,0034(1)	0,0010(1)
0,0178(2)	0,023(2)	0,0157(2)	0,0005(2)	0,0037(1)	-0,0006(2)
	$\begin{array}{c} U11\\ 0,035(1)\\ 0,030(1)\\ 0,027(1)\\ 0,030(1)\\ 0,044(1)\\ 0,025(1)\\ 0,025(1)\\ 0,028(1)\\ 0,030(1)\\ 0,030(1)\\ 0,030(1)\\ 0,039(1)\\ 0,042(1)\\ 0,033(1)\\ 0,0179(2)\\ 0,0178(2) \end{array}$	U11U22 $0,035(1)$ $0,11(3)$ $0,030(1)$ $0,046(2)$ $0,027(1)$ $0,043(1)$ $0,030(1)$ $0,057(2)$ $0,044(1)$ $0,07(2)$ $0,025(1)$ $0,050(2)$ $0,028(1)$ $0,048(2)$ $0,030(1)$ $0,13(3)$ $0,027(1)$ $0,062(2)$ $0,030(1)$ $0,063(2)$ $0,030(1)$ $0,079(2)$ $0,039(1)$ $0,079(2)$ $0,033(1)$ $0,046(1)$ $0,0179(2)$ $0,023(2)$	U11U22U33 $0,035(1)$ $0,11(3)$ $0,033(1)$ $0,030(1)$ $0,046(2)$ $0,029(1)$ $0,027(1)$ $0,043(1)$ $0,031(1)$ $0,030(1)$ $0,057(2)$ $0,030(1)$ $0,044(1)$ $0,07(2)$ $0,038(1)$ $0,025(1)$ $0,050(2)$ $0,022(9)$ $0,028(1)$ $0,048(2)$ $0,022(1)$ $0,030(1)$ $0,13(3)$ $0,018(1)$ $0,027(1)$ $0,062(2)$ $0,022(1)$ $0,030(1)$ $0,127(3)$ $0,022(1)$ $0,030(1)$ $0,127(3)$ $0,022(1)$ $0,039(1)$ $0,127(3)$ $0,022(1)$ $0,033(1)$ $0,046(1)$ $0,024(1)$ $0,0179(2)$ $0,023(2)$ $0,0157(2)$	U11U22U33U12 $0,035(1)$ $0,11(3)$ $0,033(1)$ $0,019(2)$ $0,030(1)$ $0,046(2)$ $0,029(1)$ $0,012(1)$ $0,027(1)$ $0,043(1)$ $0,031(1)$ $0,009(1)$ $0,030(1)$ $0,057(2)$ $0,030(1)$ $0,014(1)$ $0,030(1)$ $0,057(2)$ $0,030(1)$ $0,014(1)$ $0,044(1)$ $0,07(2)$ $0,038(1)$ $0,032(1)$ $0,025(1)$ $0,050(2)$ $0,022(9)$ $0,001(1)$ $0,028(1)$ $0,048(2)$ $0,022(1)$ $0,004(1)$ $0,030(1)$ $0,13(3)$ $0,018(1)$ $-0,009(2)$ $0,027(1)$ $0,062(2)$ $0,022(1)$ $0,006(1)$ $0,030(1)$ $0,127(3)$ $0,022(1)$ $-0,025(2)$ $0,042(1)$ $0,079(2)$ $0,018(1)$ $0,024(1)$ $0,033(1)$ $0,046(1)$ $0,024(1)$ $-0,003(1)$ $0,0179(2)$ $0,023(2)$ $0,0157(2)$ $0,0005(2)$	U11U22U33U12U13 $0,035(1)$ $0,11(3)$ $0,033(1)$ $0,019(2)$ $0,009(1)$ $0,030(1)$ $0,046(2)$ $0,029(1)$ $0,012(1)$ $0,003(9)$ $0,027(1)$ $0,043(1)$ $0,031(1)$ $0,009(1)$ $0,008(9)$ $0,030(1)$ $0,057(2)$ $0,030(1)$ $0,014(1)$ $0,007(9)$ $0,044(1)$ $0,07(2)$ $0,038(1)$ $0,032(1)$ $0,022(1)$ $0,025(1)$ $0,050(2)$ $0,022(9)$ $0,001(1)$ $0,008(8)$ $0,028(1)$ $0,048(2)$ $0,022(1)$ $0,004(1)$ $0,004(9)$ $0,030(1)$ $0,13(3)$ $0,018(1)$ $-0,009(2)$ $0,003(9)$ $0,027(1)$ $0,063(2)$ $0,022(1)$ $0,006(1)$ $0,0086(9)$ $0,030(1)$ $0,063(2)$ $0,024(1)$ $0,001(1)$ $0,0100(9)$ $0,039(1)$ $0,127(3)$ $0,022(1)$ $-0,025(2)$ $0,006(1)$ $0,042(1)$ $0,079(2)$ $0,018(1)$ $0,024(1)$ $0,006(1)$ $0,033(1)$ $0,046(1)$ $0,024(1)$ $-0,003(1)$ $0,0111(9)$ $0,0179(2)$ $0,023(2)$ $0,0157(2)$ $0,0005(2)$ $0,0037(1)$

Tab. 6.3: Fortsetzung

Tab. 6.4: Ausgewählte interatomare Abstände [pm] mit Standardabweichung der Verbindung $\frac{1}{\Lambda} \left\{ \Lambda - [Co(en)_3]_2 EDC_3 \right\} \cdot 11.25 H_2O$

$\infty \{ \Lambda - [CO(e) \} \}$	$[1]_{3]_{2}EDC_{3}} \cdot 11,20 \pi_{2}O$		
C1-N1	1,490(4)	C151-H151	0,93
C1-C2	1,502(5)	C152 - H152	0,93
C1-H1C	0,97	C171-C172	1,318(4)
C1-H1D	0,97	C171-H171	0,93
C2-N2	$1,\!489(4)$	C172-H172	$0,\!93$
C2-H2C	0,97	N1-Co1	1,972(2)
C2-H2D	0,97	N1-H1A	0,9
C3-N3	1,481(4)	N1-H1B	0,9
C3-C4	1,505(4)	N2-Co1	1,962(2)
C3-H3C	0,97	N2-H2A	0,9
C3-H3D	0,97	N2-H2B	0,9
C4-N4	1,489(4)	N3-Co1	1,969(2)
C4-H4C	0,97	N3–H3A	0,9
C4-H4D	0,97	N3-H3B	0,9
C5-N5	1,492(4)	N4-Co1	1,972(2)
C5-C6	1,510(4)	N4-H4A	0,9
Tab. 6.4: Fortsetzung			
-----------------------	----------	----------	-------------
C5–H5C	$0,\!97$	N4-H4B	0,9
C5-H5D	$0,\!97$	N5-Co1	1,972(2)
C6-N6	1,482(4)	N5-H5A	0,9
C6-H6C	$0,\!97$	N5-H5B	0,9
C6-H6D	$0,\!97$	N6-Co1	1,969(2)
C7-N7	1,488(4)	N6-H6A	0,9
C7-C8	1,510(4)	N6-H6B	0,9
C7-H7C	$0,\!97$	N7–Co2	1,965(2)
C7-H7D	$0,\!97$	N7–H7A	0,9
C8-N8	1,490(4)	N7-H7B	0,9
C8-H8C	$0,\!97$	N8-Co2	1,975(2)
C8-H8D	$0,\!97$	N8–H8A	0,9
C9-N9	1,486(4)	N8-H8B	0,9
C9-C10	1,505(4)	N9-Co2	1,966(2)
С9-Н9С	$0,\!97$	N9-H9A	0,9
C9-H9D	$0,\!97$	N9-H9B	0,9
C10-N10	1,487(4)	N10-Co2	1,967(2)
C10-H10C	$0,\!97$	N10-H10A	0,9
C10-H10D	$0,\!97$	N10-H10B	0,9
C11-N11	1,480(4)	N11-Co2	1,966(2)
C11-C12	1,508(4)	N11-H11A	0,9
C11-H11C	$0,\!97$	N11-H11B	0,9
C11-H11D	$0,\!97$	N12-Co2	1,963(2)
C12-N12	1,487(4)	N12-H12C	0,9
C12-H12A	$0,\!97$	N12-H12D	$0,\!9$
C12-H12B	$0,\!97$	O1-H1E	0,91(2)
C13-O13B	1,259(4)	O1–H1F	0,87(2)
C13-O13A	1,259(4)	O2-H2E	0,89(2)
C13-C131	1,499(4)	O2-H2F	0,88(2)
C14-O14B	1,245(4)	O3-H3E	0,88(2)
C14-O14A	1,273(4)	O3–H3F	$0,\!90(2)$
C14-C132	1,510(4)	O4-H4E	0,87(2)
C15-O15A	1,254(4)	O4-H4F	$0,\!90(2)$
C15-O15B	1,267(4)	O5-H5E	0,93(2)
C15 - C151	1,490(4)	O5-H5F	$0,\!90(2)$
C16-O16B	1,247(4)	O6-H6E	0,93(2)

rab. 0.1. rortbetzang			
C16-O16A	1,258(4)	O6-H6F	0,91(2)
C16 - C152	1,496(4)	O7-H7E	0,88(2)
C17-O17A	1,231(4)	O7-H7F	0,87(2)
C17-O17B	1,247(4)	O8-H8E	0,89(2)
C17-C171	1,508(4)	O8–H8F	0,89(2)
C18-O18A	1,250(4)	O9-H9E	0,95(2)
C18-O18B	1,257(4)	O9-H9F	0,95(2)
C18-C172	1,496(4)	O10-H10E	0,86(2)
C131-C132	1,318(4)	O10-H10F	0,89(2)
C131-H131	$0,\!93$	O11-H11E	0,90(2)
C132-H132	$0,\!93$	O11-H11F	0,88(2)
C151-C152	1,326(4)		

Tab. 6.4: Fortsetzung

Tab. 6.5: Ausgewählte interatomare Winkel [°] mit Standardabweichung der Verbindung ${1\over\infty}\big\{\Lambda\text{-}[\mathrm{Co(en)_3}]_2\mathrm{EDC_3}\big\}\cdot11,25\,\mathrm{H_2O}$

∞ [Π^{-} [$OO(CII)3$]21	11,201120		
N1-C1-C2	106,7(2)	C1-N1-H1B	110,
N1-C1-H1C	110,4	Co1-N1-H1B	110,
C2-C1-H1C	110,4	H1A-N1-H1B	108,4
N1-C1-H1D	110,4	C2-N2-Co1	109,(2)
C2-C1-H1D	110,4	C2-N2-H2A	109,9
H1C-C1-H1D	$108,\! 6$	Co1-N2-H2A	109,9
N2-C2-C1	106,7(3)	C2-N2-H2B	109,9
N2-C2-H2C	110,4	Co1-N2-H2B	109,9
C1-C2-H2C	110,4	H2A-N2-H2B	108,3
N2-C2-H2D	110,4	C3-N3-Co1	109,2(2)
C1-C2-H2D	110,4	C3-N3-H3A	109,8
H2C-C2-H2D	$108,\! 6$	Co1-N3-H3A	109,8
N3-C3-C4	107,3(2)	C3-N3-H3B	109,8
N3-C3-H3C	110,3	Co1-N3-H3B	109,8
С4-С3-Н3С	110,3	H3A-N3-H3B	108,3
N3-C3-H3D	110,3	C4-N4-Co1	109,2(2)
C4-C3-H3D	110,3	C4-N4-H4A	109,8
H3C-C3-H3D	108,5	Co1-N4-H4A	109,8
N4-C4-C3	106,4(2)	C4-N4-H4B	109,8
N4-C4-H4C	$110,\!4$	Co1-N4-H4B	109,8

rab. 0.0. rortbetzang			
С3-С4-Н4С	110,4	H4A-N4-H4B	108,3
N4-C4-H4D	110,4	C5-N5-Co1	108,5(2)
C3-C4-H4D	110,4	C5-N5-H5A	110,
H4C-C4-H4D	$108,\! 6$	Co1-N5-H5A	110,
N5 - C5 - C6	107,0(2)	C5-N5-H5B	110,
N5-C5-H5C	110,3	Co1-N5-H5B	110,
C6-C5-H5C	110,3	H5A-N5-H5B	108,4
N5-C5-H5D	110,3	C6-N6-Co1	108,7(2)
C6-C5-H5D	110,3	C6-N6-H6A	109,9
H5C-C5-H5D	$108,\! 6$	Co1-N6-H6A	109,9
N6 - C6 - C5	106,5(3)	C6-N6-H6B	109,9
N6-C6-H6C	110,4	Co1-N6-H6B	109,9
C5-C6-H6C	110,4	H6A-N6-H6B	108,3
N6-C6-H6D	110,4	C7-N7-Co2	109,5(2)
C5-C6-H6D	110,4	C7-N7-H7A	109,8
H6C-C6-H6D	$108,\! 6$	Co2-N7-H7A	109,8
N7-C7-C8	107,1(2)	C7-N7-H7B	109,8
N7-C7-H7C	110,3	Co2-N7-H7B	109,8
С8-С7-Н7С	110,3	H7A-N7-H7B	108,2
N7-C7-H7D	110,3	C8-N8-Co2	108,9(2)
C8-C7-H7D	110,3	C8-N8-H8A	109,9
H7C-C7-H7D	108,5	Co2-N8-H8A	109,9
N8-C8-C7	108,2(2)	C8-N8-H8B	109,9
N8-C8-H8C	110,	Co2-N8-H8B	109,9
С7-С8-Н8С	110,	H8A-N8-H8B	108,3
N8-C8-H8D	110,	C9-N9-Co2	109,0(2)
C7-C8-H8D	110,	С9-N9-Н9А	109,9
H8C-C8-H8D	108,4	Co2-N9-H9A	109,9
N9-C9-C10	107,5(3)	C9-N9-H9B	109,9
N9-C9-H9C	110,2	Co2-N9-H9B	109,9
С10-С9-Н9С	110,2	H9A-N9-H9B	108,3
N9-C9-H9D	110,2	C10-N10-Co2	108,3(2)
C10-C9-H9D	110,2	C10-N10-H10A	110,
H9C-C9-H9D	108,5	Co2-N10-H10A	110,
N10-C10-C9	107,1(3)	C10-N10-H10B	110,
N10-C10-H10C	110,3	Co2-N10-H10B	110,

Tab. 6.5: Fortsetzung

rab. 0.5. Portsetzung			
С9-С10-Н10С	110,3	H10A-N10-H10B	108,4
N10-C10-H10D	110,3	C11-N11-Co2	109,1(2)
C9-C10-H10D	110,3	C11-N11-H11A	109,9
H10C-C10-H10D	108,5	Co2-N11-H11A	109,9
N11-C11-C12	107,8(3)	C11-N11-H11B	109,9
N11-C11-H11C	110,2	Co2-N11-H11B	109,9
С12-С11-Н11С	110,2	H11A-N11-H11B	108,3
N11-C11-H11D	110,2	C12-N12-Co2	108,8(2)
C12-C11-H11D	110,2	C12-N12-H12C	109,9
H11C-C11-H11D	108,5	Co2-N12-H12C	109,9
N12-C12-C11	106,4(2)	C12-N12-H12D	109,9
N12-C12-H12A	110,5	Co2-N12-H12D	109,9
C11-C12-H12A	110,5	H12C-N12-H12D	108,3
N12-C12-H12B	110,5	H1E-O1-H1F	94(3)
C11-C12-H12B	110,5	H2E-O2-H2F	104(3)
H12A-C12-H12B	$108,\! 6$	H3E-O3-H3F	102(3)
O13B-C13-O13A	124,1(3)	H4E-O4-H4F	109(3)
O13B-C13-C131	118,9(3)	H5E-O5-H5F	87(3)
O13A-C13-C131	117,0(3)	H6E-O6-H6F	93(3)
O14B-C14-O14A	124,7(3)	H7E-O7-H7F	111(3)
O14B-C14-C132	119,5(3)	H8E-O8-H8F	109(3)
O14A-C14-C132	115,8(3)	H9E-O9-H9F	98(3)
O15A-C15-O15B	123,7(3)	H10E-O10-H10F	109(3)
O15A-C15-C151	119,6(3)	H11E-O11-H11F	103(3)
O15B-C15-C151	116,6(2)	N2-Co1-N6	92,7(1)
O16B-C16-O16A	123,4(3)	N2-Co1-N3	91,7(1)
O16B-C16-C152	119,9(3)	N6-Co1-N3	174,3(1)
O16A-C16-C152	116,7(3)	N2-Co1-N1	85,7(1)
O17A-C17-O17B	122,9(3)	N6-Co1-N1	91,9(1)
O17A-C17-C171	121,0(3)	N3-Co1-N1	92,0(1)
O17B-C17-C171	115,9(3)	N2-Co1-N4	175,2(1)
O18A-C18-O18B	123,2(3)	N6-Co1-N4	90,5(1)
O18A-C18-C172	116,6(2)	N3-Co1-N4	85,3(1)
O18B-C18-C172	120,2(3)	N1-Co1-N4	90,7(1)
C132-C131-C13	123,3(3)	N2-Co1-N5	89,8(1)
C132-C131-H131	118,3	N6-Co1-N5	85,8(1)

Tab. 6.5: Fortsetzung			
C13-C131-H131	118,3	N3-Co1-N5	90,6(1)
C131 - C132 - C14	122,9(3)	N1-Co1-N5	174,8(1)
C131-C132-H132	118,5	N4-Co1-N5	94,0(1)
C14-C132-H132	118,5	N12-Co2-N7	92,8(1)
C152 - C151 - C15	125,0(3)	N12-Co2-N9	175,6(1)
C152 - C151 - H151	117,5	N7-Co2-N9	90,2(1)
C15-C151-H151	117,5	N12-Co2-N11	85,8(1)
C151 - C152 - C16	123,3(3)	N7-Co2-N11	90,4(1)
C151 - C152 - H152	118,4	N9-Co2-N11	90,9(1)
C16 - C152 - H152	118,4	N12-Co2-N10	91,1(1)
C172-C171-C17	123,9(3)	N7-Co2-N10	175,2(1)
C172-C171-H171	118,1	N9-Co2-N10	86,1(1)
C17-C171-H171	118,1	N11-Co2-N10	92,7(1)
C171-C172-C18	125,3(3)	N12-Co2-N8	90,1(1)
C171-C172-H172	117,3	N7-Co2-N8	86,0(1)
C18-C172-H172	$117,\!3$	N9-Co2-N8	$93,\!3(1)$
C1-N1-Co1	108,51(18)	N11-Co2-N8	174,5(1)
C1-N1-H1A	110,0	N10-Co2-N8	91,1(1)
Co1-N1-H1A	110,0		

133

6 Appendix

$_{\infty}^{1} \Big\{ \ \Lambda\text{-}[\mathrm{Co}(\mathrm{en})_{3}]_{2} \mathrm{BDC}_{3} \Big\} \cdot 20 \, \mathrm{H}_{2} \mathrm{O}$

$\infty \{ M^{-}[CO(CH)_{3}]_{2}DDC_{3} \}$	
Summenformel	$(C_6H_{24}CoN_6)_2 (C_8H_4O_4)_3 \cdot 20(H_2O)$
Molare $Masse/g \cdot mol^{-1}$	1331,11
Kristallsystem	$\operatorname{triklin}$
Raumgruppe	P1
Diffraktometer	IPDS 2T
Strahlung	Mo-K α
Absorptionskorrektur	Numerisch [24]
Formeleinheiten Z	1
Gitterkonstanten /pm	a = 1071,30 (5)
	b = 1152,20 (5)
	c = 1355,80 (6)
/°	$\alpha = 70,415~(4)$
	$\beta = 85,157$ (4)
	$\gamma = 80,418 \ (4)$
Volumen /nm ³	1,5540(1)
Dichte $/g \cdot cm^{-3}$	1,422
Kristallform	Würfel
Kristallgröße /mm	$0,3 \ge 0,2 \ge 0,2$
Kristallfarbe	orange
h k l range	
$h_{\min/\max}$	-13/13
$k_{\min/\max}$	-14/14
$l_{min/max}$	-16/17
$2 heta_{\max}$	26.8°
Reflexzahl	
gemessen	15682
unabhängig	10820
$\mu \ /\mathrm{mm^{-1}}$	0,63
R-Werte:	
Io $> 2\sigma(Io)$	R1 = 0,0660
	$\omega R2 = 0.1812$
all data	R1 = 0,0698
	$\omega R2 = 0.1894$

Tab. 6.6: Kristallographische Daten und Details der Röntgeneinkristallstrukturanalyse der Verbindung $\frac{1}{\infty} \left\{ \Lambda - [Co(en)_3]_2 BDC_3 \right\} \cdot 20 H_2 O$

Tab. 6.6: Fortsetzung	
R _{int}	0,0650
$GooF = S_{all}$	1,04
Zahl der verfeinerten	
Parameter	739
F(000)	670
$\Delta ho_{ m min/max} \ /e \cdot { m \AA}^{-3}$	-0.66/1.98
Flack Parameter	0,04 (2)

b 66 Fo

Tab. 6.7: Atomlagen und isotrope oder äquivalente thermische Auslenkungsparameter $[10^{-20} \text{ m}^2]$ der Verbindung $\frac{1}{\infty} \{ \Lambda - [\text{Co}(\text{en})_3]_2 \text{BDC}_3 \} \cdot 20 \text{ H}_2 \text{O}$

Atom	Wyckoff- Lage	x/a	y/b	z/c	$\rm U_{iso}*/\rm U_{eq}$
C1	1a	0,3210(6)	0,9048(6)	0,2383(5)	
H1C	1a	0,39640	0,92240	$0,\!19430$	0,0400
H1D	1a	0,28810	0,97700	0,25930	0,0400
C2	1a	0,3528(6)	0,7939(6)	0,3324(5)	
H2C	1a	0,28280	0,78600	$0,\!38330$	0,0370
H2D	1a	$0,\!42710$	0,80160	0,36470	0,0370
C3	1a	0,4246(6)	0,5083(6)	0,1472(6)	
H3C	1a	$0,\!43480$	$0,\!43110$	$0,\!13130$	0,0470
H3D	1a	$0,\!49530$	0,50640	$0,\!18820$	$0,\!0470$
C4	1a	0,4171(6)	$0,\!6205(7)$	0,0463(6)	
H4C	1a	$0,\!49840$	$0,\!62260$	0,00900	0,0440
H4D	1a	$0,\!35440$	$0,\!61510$	0,00110	0,0440
C5	1a	-0,0022(5)	0,7328(6)	0,1417(5)	
H5C	1a	-0,06370	0,71400	$0,\!10280$	0,0350
H5D	1a	-0,02990	0,81540	$0,\!14630$	0,0350
C6	1a	0,0102(6)	$0,\!6377(6)$	0,2496(5)	
H6C	1a	-0,06620	$0,\!64750$	$0,\!29170$	0,0360
H6D	1a	0,02330	$0,\!55420$	$0,\!24520$	0,0360
C7	1a	$0,\!6786(7)$	0,7375(6)	$0,\!6037(5)$	
H7C	1a	$0,\!69590$	0,70210	0,54750	0,0460
H7D	1a	0,60050	0,79570	0,59000	0,0460
C8	1a	$0,\!6700(9)$	$0,\!6363(7)$	0,7085(5)	
H8C	1a	$0,\!60170$	$0,\!58970$	0,71060	0,0610
H8D	1a	0,74880	$0,\!57920$	0,72340	0,0610

Tab. 6.7: Fortsetzung

Atom	Wyckoff- Lage	x/a	y/b	z/c	$U_{\rm iso}^*/U_{\rm eq}$
C9	1a	$0,\!6023(6)$	$0,\!9360(7)$	0,8789(6)	
H9C	1a	$0,\!59360$	0,97180	$0,\!93490$	0,0480
H9D	1a	0,53560	$0,\!88570$	0,88710	0,0480
C10	1a	0,5991(6)	1,0338(6)	0,7754(7)	
H10C	1a	0,66200	1,08720	0,77070	0,0510
H10D	1a	0,51640	1,08470	0,76560	0,0510
C11	1a	1,0131(6)	0,8769(8)	0,7075(7)	
H11C	1a	1,07480	0,92990	0,70700	0,0600
H11D	1a	1,03280	0,84450	0,64970	0,0600
C12	1a	1,0112(7)	0,7696(9)	0,8134(7)	
H12C	1a	0,99840	0,80280	0,87110	0,0670
H12D	1a	1,09090	0,71370	0,82220	0,0670
C13	1a	0,7456(6)	0,5153(6)	1,0387(5)	
C14	1a	0,7308(6)	0,1282(6)	1,4413(5)	
C15	1a	0,9058(6)	1,0910(6)	0,8991(5)	
C16	1a	1,1146(6)	1,4290(7)	1,0540(5)	
C17	1a	0,2695(5)	1,0220(6)	0,9034(5)	
C18	1a	0,2896(8)	1,4074(8)	0,5003(5)	
C131	1a	0,7492(5)	0,4121(5)	1,1431(4)	
C132	1a	0,7100(6)	0,3007(6)	1,1505(5)	
H132	1a	$0,\!68770$	0,28740	1,09080	0,0370
C133	1a	0,7042(6)	0,2090(6)	1,2476(4)	
H133	1a	$0,\!67670$	$0,\!13470$	1,25270	0,0350
C134	1a	0,7385(6)	0,2269(6)	1,3356(5)	
C135	1a	0,7799(6)	0,3382(6)	1,3284(5)	
H135	1a	0,80460	$0,\!35060$	1,38790	0,0400
C136	1a	0,7836(6)	0,4295(6)	1,2320(5)	
H136	1a	0,80990	0,50430	1,22700	0,0410
C151	1a	0,9586(5)	1,1764(5)	0,9402(5)	
C152	1a	0,9778(6)	1,1498(6)	1,0455(5)	
H152	1a	$0,\!95440$	1,07660	1,09260	0,0360
C153	1a	1,0306(6)	1,2280(6)	1,0842(5)	
H153	1a	1,04510	1,20670	1,15520	0,0360
C154	1a	1,0605(5)	1,3384(5)	1,0133(4)	
C155	1a	1,0405(5)	1,3710(6)	0,9077(5)	

Atom	Wyckoff- Lage	x/a	y/b	z/c	$\rm U_{iso}*/\rm U_{eq}$
H155	1a	1,05920	1,44680	0,86160	0,0350
C156	1a	0,9925(6)	1,2895(6)	0,8713(4)	
H156	1a	0,98220	1,30960	0,79980	0,0310
C171	1a	0,2697(5)	1,1254(7)	0,8003(5)	
C172	1a	0,3111(6)	1,2357(6)	0,7909(5)	
H172	1a	0,33500	1,24860	0,85030	0,0350
C173	1a	0,3177(7)	1,3266(6)	0,6956(5)	
H173	1a	0,34730	1,39990	0,69070	0,0440
C174	1a	0,2800(6)	1,3099(6)	0,6056(5)	
C175	1a	0,239(1)	1,2001(9)	0,6167(7)	
H175	1a	0,21450	1,18680	0,55770	0,0830
C176	1a	0,233(1)	1,1091(9)	0,7119(7)	
H176	1a	0,20400	1,03570	0,71680	0,0800
N1	1a	0,2239(3)	0,8783(3)	0,1791(3)	
H1A	1a	0,22790	0,92560	0,11120	0,0200
H1B	1a	0,14600	0,89690	0,20520	0,0200
N2	1a	0,3779(4)	0,6833(4)	0,2963(3)	
H2A	1a	0,37120	$0,\!61370$	0,35100	0,0230
H2B	1a	0,45710	0,67680	0,26860	0,0230
N3	1a	0,3029(3)	0,5259(3)	0,2045(3)	
H3A	1a	0,31050	0,47980	0,27260	0,0210
H3B	1a	0,24220	0,50030	$0,\!17830$	0,0210
N4	1a	0,3815(3)	0,7327(4)	0,0761(3)	
H4A	1a	0,34930	0,79650	0,02090	0,0210
H4B	1a	$0,\!45030$	0,75330	0,09620	0,0210
N5	1a	0,1248(3)	0,7266(4)	0,0889(3)	
H5A	1a	0,13000	0,79790	0,03560	0,0210
H5B	1a	0,13710	0,66330	0,06270	0,0210
N6	1a	0,1209(3)	0,6585(4)	0,2976(3)	
H6A	1a	0,14920	0,58900	0,34990	0,0200
H6B	1a	0,09760	0,72070	0,32460	0,0200
N7	1a	0,7840(6)	0,7992(6)	$0,\!6134(5)$	
H7A	1a	0,78400	0,87160	0,56030	0,0600
H7B	1a	0,85820	0,75040	0,61070	0,0600
N8	1a	0,6438(6)	0,7082(6)	0,7849(5)	

Tab. 6.7: Fortsetzung

Tab. 6.7: Fortsetzung

Atom	Wyckoff- Lage	x/a	y/b	z/c	$\rm U_{iso}*/\rm U_{eq}$
H8A	1a	$0,\!65550$	$0,\!65630$	0,85100	0,0580
H8B	1a	0,56330	0,74730	0,78020	0,0580
N9	1a	0,7243(5)	0,8642(5)	0,8780(5)	
H9A	1a	0,72720	0,79160	0,93100	0,0520
H9B	1a	0,78340	$0,\!90560$	0,88850	0,0520
N10	1a	0,6277(6)	0,9695(6)	$0,\!6880(5)$	
H10A	1a	$0,\!65400$	1,02270	0,62740	0,0590
H10B	1a	0,55870	0,94140	0,67640	0,0590
N11	1a	0,8907(5)	0,9416(6)	0,7015(5)	
H11A	1a	0,87670	0,99060	0,63490	0,0570
H11B	1a	0,88340	0,99100	0,74150	$0,\!0570$
N12	1a	0,8993(6)	$0,\!6988(6)$	0,8109(5)	
H12A	1a	0,87660	$0,\!65330$	0,87600	0,0660
H12B	1a	0,92100	0,64820	0,77210	0,0660
O13A	1a	0,7142(4)	0,4962(4)	0,9604(3)	
O13B	1a	0,7769(5)	0,6170(4)	1,0372(4)	
O14A	1a	0,6965(5)	0,0261(4)	1,4462(4)	
O14B	1a	0,7562(6)	0,1483(5)	1,5211(4)	
O15A	1a	0,8946(6)	1,1188(5)	0,8030(4)	
O15B	1a	0,8771(4)	0,9899(4)	0,9647(4)	
O16A	1a	1,1453(5)	1,5273(5)	0,9889(4)	
O16B	1a	1,1305(5)	1,3966(5)	1,1509(4)	
O17A	1a	0,2398(4)	0,9191(5)	$0,\!9069(3)$	
O17B	1a	0,3053(4)	1,0403(5)	0,9838(3)	
O18A	1a	0,2414(9)	1,3971(6)	0,4254(5)	
O18B	1a	0,3394(7)	1,5015(5)	0,4951(4)	
Co1	1a	0,25555(4)	0,70127(4)	0,19107(4)	
Co2	1a	0,76317(5)	0,83062(5)	0,74755(4)	
01	1a	0,6898(4)	0,9745(5)	1,1169(4)	
O2	1a	0,3282(5)	0,5453(5)	-0,1706(4)	
O3	1a	0,4766(4)	1,1544(4)	1,0468(4)	
O4	1a	0,5451(5)	0,3752(5)	0,9047(4)	
O5	1a	0,2685(6)	1,6517(5)	0,6212(4)	
O6	1a	0,7576(6)	-0,1225(6)	1,3246(4)	
07	1a	0,6241(4)	0,7399(4)	0,1566(4)	

 der

Verbindung

Atom	Wyckoff- Lage	x/a	y/b	z/c	$\rm U_{iso}*/\rm U_{eq}$
08	1a	0,0112(5)	0,8944(5)	0,3284(5)	
O9	1a	1,0084(6)	$0,\!6165(6)$	$0,\!6350(5)$	
O10	1a	0,3898(6)	0,821(1)	0,7683(7)	
O11	1a	1,2845(6)	0,9025(6)	0,5549(5)	
O12	1a	-0,2670(9)	$0,\!6186(8)$	0,3983(7)	
O13	1a	0,3628(5)	0,2058(6)	0,2246(6)	
O14	1a	-0,0414(8)	0,4952(7)	0,5071(5)	
O15	1a	0,916(1)	0,2644(9)	1,6000(8)	
O16	1a	1,0472(7)	1,0198(6)	0,4587(6)	
O17	1a	1,0862(6)	1,2631(6)	1,3630(5)	
O18	1a	$0,\!665(1)$	1,3314(9)	0,7349(8)	
O19	1a	0,4486(7)	1,0166(6)	0,4040(5)	
O20	1a	0,589(1)	1,467(2)	0,5386(9)	

Tab. 6.7: Fortsetzung

Tab. 6.8: Anisotrope thermische Auslenkungsparameter $[10^{-20} \text{ m}^2]$ $\frac{1}{\infty} \{ \Lambda - [Co(en)_3]_2 BDC_3 \} \cdot 20 H_2 O \text{ mit Standardabweichung} \}$

Atom	U11	U22	U33	U12	U13	U23
C1	0,050(3)	0,025(3)	0,030(3)	-0,017(2)	-0,005(2)	-0,008(2)
C2	0,046(3)	0,034(3)	0,021(3)	-0,019(3)	-0,008(2)	-0,013(2)
C3	0,029(3)	0,035(4)	0,065(5)	-0,009(2)	0,010(3)	-0,030(3)
C4	0,034(3)	0,045(4)	0,038(3)	-0,014(3)	0,016(2)	-0,022(3)
C5	0,021(2)	0,039(3)	0,029(3)	-0,006(2)	-0,003(2)	-0,014(2)
C6	0,031(3)	0,034(3)	0,026(3)	-0,018(2)	-0,005(2)	-0,005(2)
C7	0,068(4)	0,020(3)	0,023(3)	-0,014(3)	-0,011(3)	0,004(2)
C8	0,114(6)	0,027(3)	0,016(3)	-0,038(4)	-0,007(3)	-0,001(3)
C9	0,034(3)	0,057(4)	0,042(4)	-0,007(3)	-0,003(2)	-0,034(3)
C10	0,032(3)	0,025(3)	0,073(5)	-0,002(2)	0,000(3)	-0,019(3)
C11	0,029(3)	0,061(5)	0,069(5)	-0,018(3)	0,016(3)	-0,034(4)
C12	0,036(3)	0,081(6)	0,053(5)	0,012(3)	-0,019(3)	-0,032(4)
C13	0,031(3)	0,024(3)	0,017(3)	-0,008(2)	-0,002(2)	0,004(2)
C14	0,042(3)	0,020(3)	0,022(3)	-0,009(2)	-0,008(2)	0,008(2)
C15	0,039(3)	0,034(3)	0,022(3)	-0,016(2)	0,002(2)	-0,013(2)
C16	0,034(3)	0,040(4)	0,035(3)	-0,019(2)	0,004(2)	-0,020(3)
C17	0,019(2)	0,031(3)	0,023(3)	-0,005(2)	-0,001(2)	0,003(3)

Tab. 6.8: Fortsetzung

1ab. 0.0.	Fortsetzung					
Atom	U11	U22	U33	U12	U13	U23
C18	0,061(4)	0,043(4)	0,021(3)	-0,021(3)	0,001(3)	-0,006(3)
C131	0,020(2)	0,015(2)	0,024(3)	-0,006(2)	-0,002(2)	0,004(2)
C132	0,047(3)	0,023(3)	0,022(3)	-0,010(2)	-0,007(2)	-0,003(2)
C133	0,049(3)	0,024(3)	0,013(3)	-0,014(2)	-0,006(2)	0,003(2)
C134	0,036(3)	0,025(3)	0,020(3)	-0,009(2)	-0,005(2)	-0,004(2)
C135	$0,\!051(3)$	0,032(3)	0,017(3)	-0,020(3)	-0,013(2)	0,000(2)
C136	0,049(3)	0,033(3)	0,021(3)	-0,024(3)	-0,006(2)	-0,002(3)
C151	0,032(3)	0,017(3)	0,027(3)	-0,009(2)	0,001(2)	-0,004(2)
C152	$0,\!039(3)$	0,034(3)	0,019(3)	-0,017(2)	-0,003(2)	-0,005(2)
C153	$0,\!038(3)$	0,031(3)	0,021(3)	-0,010(2)	-0,002(2)	-0,007(2)
C154	0,025(2)	0,028(3)	0,024(3)	-0,013(2)	0,001(2)	-0,013(2)
C155	$0,\!030(3)$	0,027(3)	0,036(3)	-0,010(2)	0,001(2)	-0,015(3)
C156	$0,\!040(3)$	0,026(3)	0,015(2)	-0,014(2)	-0,005(2)	-0,005(2)
C171	$0,\!030(3)$	0,042(4)	0,015(3)	-0,012(2)	-0,004(2)	0,000(3)
C172	0,047(3)	0,018(3)	0,018(3)	0,000(2)	-0,002(2)	-0,003(2)
C173	0,059(4)	0,018(3)	0,031(4)	-0,005(3)	-0,004(3)	-0,006(3)
C174	$0,\!045(3)$	0,029(3)	0,022(3)	-0,022(3)	-0,003(2)	0,009(3)
C175	0,126(8)	$0,\!055(5)$	0,031(4)	-0,060(6)	-0,031(4)	0,009(4)
C176	0,101(7)	0,057(5)	0,039(5)	-0,064(5)	-0,032(4)	0,020(4)
N1	0,027(2)	0,012(2)	0,011(2)	-0,007(1)	0,001(1)	-0,001(1)
N2	0,029(2)	0,016(2)	0,013(2)	-0,014(1)	-0,004(1)	0,002(1)
N3	0,019(2)	0,014(2)	0,021(2)	-0,006(1)	-0,003(1)	-0,006(2)
N4	0,022(2)	0,022(2)	0,012(2)	-0,012(1)	0,001(1)	-0,005(1)
N5	0,021(2)	0,021(2)	0,011(2)	-0,008(1)	-0,003(1)	-0,001(1)
N6	0,024(2)	0,017(2)	0,011(2)	-0,010(1)	-0,002(1)	-0,003(1)
N7	0,075(4)	0,038(3)	0,033(3)	-0,008(3)	-0,006(3)	-0,006(2)
N8	0,060(3)	0,040(3)	0,046(3)	-0,013(2)	-0,005(3)	-0,010(3)
N9	0,054(3)	0,041(3)	0,037(3)	-0,015(2)	0,001(2)	-0,012(2)
N10	$0,\!059(3)$	0,039(3)	0,044(3)	-0,011(2)	0,000(2)	-0,003(3)
N11	0,054(3)	0,051(4)	0,034(3)	-0,012(3)	0,000(2)	-0,007(3)
N12	0,066(4)	0,048(4)	0,039(3)	-0,004(3)	-0,003(3)	-0,002(3)
O13A	0,045(2)	0,019(2)	0,021(2)	-0,011(2)	-0,004(2)	0,001(2)
O13B	0,049(3)	0,025(2)	0,028(2)	-0,017(2)	-0,007(2)	0,006(2)
O14A	0,065(3)	0,025(2)	0,021(2)	-0,020(2)	-0,003(2)	0,002(2)
O14B	0,082(3)	0,054(3)	0,017(2)	-0,044(3)	-0,003(2)	0,000(2)

100.0101	0-0000-00-0					
Atom	U11	U22	U33	U12	U13	U23
O15A	0,075(3)	0,051(3)	0,027(2)	-0,036(3)	-0,001(2)	-0,017(2)
O15B	0,052(2)	0,029(2)	0,031(2)	-0,021(2)	0,001(2)	-0,015(2)
O16A	0,052(3)	0,038(3)	0,035(2)	-0,025(2)	0,006(2)	-0,016(2)
O16B	0,064(3)	0,057(3)	0,027(2)	-0,040(3)	0,004(2)	-0,020(2)
O17A	0,043(2)	0,037(3)	0,019(2)	-0,017(2)	-0,003(2)	0,003(2)
O17B	0,047(2)	0,041(3)	0,015(2)	-0,009(2)	-0,003(2)	0,004(2)
O18A	0,168(7)	0,050(4)	0,025(3)	-0,062(4)	-0,031(3)	0,012(3)
O18B	0,104(4)	0,038(3)	0,028(3)	-0,035(3)	-0,003(3)	0,003(2)
Co1	0,0231(3)	0,0156(3)	0,0126(3)	-0,0076(2)	-0,0009(2)	-0,0017(2)
Co2	0,0274(3)	0,0154(3)	0,0128(3)	-0,0077(2)	-0,0018(2)	-0,0005(2)
01	0,041(2)	0,036(3)	0,024(2)	-0,013(2)	-0,006(2)	-0,003(2)
O2	0,056(3)	0,047(3)	0,027(3)	-0,012(2)	0,004(2)	-0,011(2)
O3	0,044(2)	0,030(3)	0,040(3)	-0,013(2)	-0,010(2)	-0,001(2)
O4	0,062(3)	0,042(3)	0,034(3)	-0,019(2)	-0,006(2)	-0,006(2)
O5	0,091(4)	0,028(3)	0,034(3)	-0,006(3)	-0,008(3)	-0,010(2)
O6	0,061(3)	0,050(3)	0,032(3)	0,001(2)	-0,018(2)	-0,007(2)
07	0,045(2)	0,036(2)	0,045(3)	-0,025(2)	0,005(2)	-0,016(2)
08	0,055(3)	0,045(3)	0,054(3)	-0,003(2)	0,012(2)	-0,023(3)
O9	$0,\!059(3)$	0,055(3)	0,054(3)	0,000(2)	0,005(2)	-0,031(3)
O10	0,051(3)	0,23(1)	0,095(6)	-0,042(5)	0,018(3)	-0,118(7)
O11	0,077(4)	0,066(4)	0,055(4)	-0,025(3)	0,015(3)	-0,033(3)
O12	0,127(7)	0,094(6)	0,077(5)	-0,062(5)	0,048(5)	-0,046(5)
O13	0,058(3)	0,040(3)	0,085(4)	-0,008(2)	0,014(3)	-0,023(3)
O14	0,108(5)	0,058(4)	0,050(4)	-0,026(4)	-0,001(3)	-0,020(3)
O15	0,284(14)	0,074(6)	0,078(6)	-0,103(8)	-0,088(7)	0,020(4)
O16	0,094(5)	0,041(3)	0,083(5)	-0,013(3)	-0,030(4)	-0,011(3)
O17	0,080(4)	0,056(4)	0,057(4)	-0,027(3)	-0,025(3)	0,003(3)
O18	0,142(8)	0,070(6)	0,107(7)	-0,019(5)	0,031(6)	-0,026(5)
O19	0,091(4)	0,053(3)	0,063(4)	-0,044(3)	0,000(3)	-0,017(3)
O20	0,134(9)	0,57(3)	0,068(6)	-0,23(2)	-0,014(6)	0,03(1)

Tab. 6.8: Fortsetzung

$\infty \int M^{-}[OO(en)]$	$[3]_{2}DDO_{3} + 20 \Pi_{2}O$		
$\overline{C1 - C2}$	148,7(9)	C132 - H132	93,0
C1 - N1	149,4(7)	C133 - C134	$136,\!6(9)$
C1 - H1C	97,0	C133 - H133	$93,\!0$
C1 - H1D	97,0	C134 - C135	$139,\!6(8)$
C2 - N2	148,9(8)	C135 - C136	137,8(9)
C2 - H2C	97,0	C135 - H135	93,0
C2 - H2D	97,0	C136 - H136	$93,\!0$
C3 - N3	148,1(7)	C151 - C152	138,2(9)
C3 - C4	153(1)	C151 - C156	140,9(8)
C3 - H3C	97,0	C152 - C153	139,4(8)
C3 - H3D	97,0	C152 - H152	$0,\!93$
C4 - N4	146,2(8)	C153 - C154	138,2(8)
C4 - H4C	97,0	C153 - H153	93,0
C4 - H4D	97,0	C154 - C155	138,0(9)
C5 - N5	148,5(6)	C155 - C156	138,0(8)
C5 - C6	$150,\!6(9)$	C155 - H155	93,0
C5 - H5C	97,0	C156 - H156	93,0
C5 - H5D	97,0	C171 - C176	137(1)
C6 - N6	148,9(6)	C171 - C172	137,7(9)
C6 - H6C	97,0	C172 - C173	136,9(9)
C6 - H6D	97,0	C172 - H172	93,0
C7 - N7	146,7(9)	C173 - C174	140(1)
C7 - C8	151,4(9)	C173 - H173	93,0
C7 - H7C	97,0	C174 - C175	136(1)
C7 - H7D	97,0	C175 - C176	137(1)
C8 - N8	151(1)	C175 - H175	93,0
C8 - H8C	97,0	C176 - H176	93,0
C8 - H8D	97,0	N1 - Co1	196, 4(4)
C9 - N9	$142,\!6(9)$	N1 - H1A	90,0
C9 - C10	148(1)	N1 - H1B	90,0
C9 - H9C	97,0	N2 - Co1	195,5(4)
C9 - H9D	97,0	N2 - H2A	90,0
C10 - N10	158(1)	N2 - H2B	90,0
C10 - H10C	97,0	N3 - Co1	195,0(4)
C10 - H10D	97,0	N3 - H3A	90,0

Tab. 6.9: Ausgewählte interatomare Abstände [pm] mit Standardabweichung der Verbindung $\frac{1}{\infty} \{ \Lambda - [Co(en)_3]_2 BDC_3 \} \cdot 20 H_2 O$

Tab. 0.9. Fortsetzung			
C11 - N11	139,0(9)	N3 - H3B	90,0
C11 - C12	155(1)	N4 - Co1	195,2(3)
C11 - H11C	97,0	N4 - H4A	90,0
C11 - H11D	97,0	N4 - H4B	90,0
C12 - N12	157(1)	N5 - Co1	197,1(3)
C12 - H12C	97,0	N5 - H5A	90,0
C12 - H12D	97,0	N5 - H5B	90,0
C13 - O13A	$123,\!6(8)$	N6 - Co1	195,4(3)
C13 - O13B	126,5(8)	N6 - H6A	90,0
C13 - C131	151,2(8)	N6 - H6B	90,0
C14 - O14B	123, 9(9)	N7 - Co2	$195,\!8(6)$
C14 - O14A	127,0(8)	N7 - H7A	90,0
C14 - C134	150,7(8)	N7 - H7B	90,0
C15 - O15A	124,3(8)	N8 - Co2	197,4(6)
C15 - O15B	127,4(8)	N8 - H8A	90,0
C15 - C151	148,5(8)	N8 - H8B	90,0
C16 - O16A	125,5(8)	N9 - Co2	193,2(6)
C16 - O16B	$125,\!8(9)$	N9 - H9A	90,0
C16 - C154	154,0(8)	N9 - H9B	90,0
C17 - O17A	126,2(8)	N10 - Co2	196, 9(6)
C17 - O17B	127,7(9)	N10 - H10A	90,0
C17 - C171	150,2(9)	N10 - H10B	90,0
C18 - O18A	123(1)	N11 - Co2	194,8(6)
C18 - O18B	126,4(9)	N11 – H11A	90,0
C18 - C174	150,0(9)	N11 – H11B	90,0
C131 - C136	$137,\!6(9)$	N12 - Co2	194,2(6)
C131 - C132	138,5(8)	N12 - H12A	90,0
C132 - C133	138,8(8)	N12 - H12B	90,0

Tab. 6.9: Fortsetzung

$\frac{1}{\infty} \{ \Lambda - [Co(en)_3]$	$]_2 BDC_3 \} \cdot 20 H_2O.$		
C2-C1-N1	108,5(4)	C155 - C156 - C151	121,4(6)
C2-C1-H1C	110,0	C155 - C156 - H156	119,3
N1-C1-H1C	110,0	C151 - C156 - H156	119,3
C2-C1-H1D	110,0	C176 - C171 - C172	118,4(6)
N1-C1-H1D	110,0	C176 - C171 - C17	119,9(7)
H1C-C1-H1D	108,4	C172 - C171 - C17	$121,\!6(6)$
C1-C2-N2	107,0(5)	C173 - C172 - C171	121,2(6)
C1-C2-H2C	$110,\!3$	C173 - C172 - H172	119,4
N2-C2-H2C	$110,\!3$	C171 - C172 - H172	119,4
C1-C2-H2D	$110,\!3$	C172 - C173 - C174	120,3(6)
N2-C2-H2D	110,3	C172 - C173 - H173	119,9
H2C-C2-H2D	$108,\! 6$	C174 - C173 - H173	119,9
N3-C3-C4	105, 1(5)	C175 - C174 - C173	117,6(6)
N3-C3-H3C	110,7	C175 - C174 - C18	121,5(7)
C4-C3-H3C	110,7	C173 - C174 - C18	120,8(6)
N3-C3-H3D	110,7	C174 - C175 - C176	122,1(8)
C4-C3-H3D	110,7	C174 - C175 - H175	119,0
H3C-C3-H3D	$108,\!8$	C176 - C175 - H175	119,0
N4-C4-C3	$107,\!5(5)$	C175 - C176 - C171	120,4(7)
N4-C4-H4C	110,2	C175 - C176 - H176	119,8
C3-C4-H4C	110,2	C171 - C176 - H176	119,8
N4-C4-H4D	110,2	C1-N1-Co1	109,3(3)
C3-C4-H4D	110,2	C1-N1-H1A	109,8
H4C-C4-H4D	108,5	Co1-N1-H1A	109,8
N5 - C5 - C6	106, 9(5)	C1-N1-H1B	109,8
N5-C5-H5C	110,3	Co1-N1-H1B	109,8
C6-C5-H5C	$110,\!3$	H1A-N1-H1B	108,3
N5-C5-H5D	110,3	C2-N2-Co1	109,4(3)
C6-C5-H5D	110,3	C2-N2-H2A	109,8
H5C-C5-H5D	$108,\! 6$	Co1-N2-H2A	109,8
N6 - C6 - C5	107,4(4)	C2-N2-H2B	109,8
N6-C6-H6C	110,2	Co1-N2-H2B	109,8
C5-C6-H6C	110,2	H2A-N2-H2B	108,2
N6-C6-H6D	110,2	C3-N3-Co1	109,7(3)
C5-C6-H6D	110,2	C3–N3–H3A	109,7

Tab. 6.10: Ausgewählte interatomare Winkel [°] mit Standardabweichung der Verbindung $\frac{1}{\infty} \{ \Lambda - [Co(en)_3]_2 BDC_3 \} \cdot 20 H_2 O.$

Tab. 0.10. For tsetzung			
H6C-C6-H6D	108,5	Co1-N3-H3A	109,7
N7-C7-C8	104,5(6)	C3-N3-H3B	109,7
N7-C7-H7C	110,9	Co1-N3-H3B	109,7
C8-C7-H7C	110,9	H3A-N3-H3B	108,2
N7-C7-H7D	110,9	C4-N4-Co1	109,2(3)
C8-C7-H7D	110,9	C4–N4–H4A	109,8
H7C-C7-H7D	108,9	Co1-N4-H4A	109,8
N8-C8-C7	$103,\!2(6)$	C4–N4–H4B	109,8
N8-C8-H8C	111,1	Co1-N4-H4B	109,8
С7-С8-Н8С	111,1	H4A-N4-H4B	108,3
N8-C8-H8D	111,1	C5-N5-Co1	109,3(3)
C7-C8-H8D	111,1	C5-N5-H5A	109,8
H8C-C8-H8D	109,1	Co1-N5-H5A	109,8
N9-C9-C10	103,2(5)	C5-N5-H5B	109,8
N9-C9-H9C	111,1	Co1-N5-H5B	109,8
С10-С9-Н9С	111,1	H5A-N5-H5B	108,3
N9-C9-H9D	111,1	C6-N6-Co1	109,5(3)
С10-С9-Н9D	111,1	C6-N6-H6A	109,8
H9C-C9-H9D	109,1	Co1-N6-H6A	109,8
C9-C10-N10	108,7(5)	C6-N6-H6B	109,8
C9-C10-H10C	110,0	Co1-N6-H6B	109,8
N10-C10-H10C	110,0	H6A-N6-H6B	108,2
C9-C10-H10D	110,0	C7-N7-Co2	108,4(5)
N10-C10-H10D	110,0	С7-N7-Н7А	110,0
H10C-C10-H10D	108,3	Co2-N7-H7A	110,0
N11-C11-C12	103,7(6)	С7-N7-Н7В	110,0
N11-C11-H11C	111,0	Co2-N7-H7B	110,0
C12-C11-H11C	111,0	H7A-N7-H7B	108,4
N11-C11-H11D	111,0	C8-N8-Co2	106,9(4)
C12-C11-H11D	111,0	C8–N8–H8A	110,3
H11C-C11-H11D	109,0	Co2–N8–H8A	110,3
C11-C12-N12	107,0(6)	C8-N8-H8B	110,3
C11-C12-H12C	110,3	Co2-N8-H8B	110,3
N12-C12-H12C	110,3	H8A-N8-H8B	108,6
C11-C12-H12D	110,3	C9-N9-Co2	112,2(4)
N12-C12-H12D	110.3	С9-N9-Н9А	109.2
	/		/

Tab. 6.10: Fortsetzung

Tab. 6.10: Fortsetzung

H12C-C12-H12D	108,6	Co2-N9-H9A	109,2
O13A-C13-O13B	123,9(6)	C9-N9-H9B	109,2
O13A-C13-C131	119,2(6)	Co2-N9-H9B	109,2
O13B-C13-C131	116,8(6)	H9A-N9-H9B	107,9
O14B-C14-O14A	121,5(6)	C10-N10-Co2	103,4(4)
O14B-C14-C134	120,0(6)	C10-N10-H10A	111,1
O14A-C14-C134	118,5(6)	Co2-N10-H10A	111,1
O15A-C15-O15B	122,8(6)	C10 - N10 - H10B	111,1
O15A-C15-C151	119,4(6)	Co2-N10-H10B	111,1
O15B-C15-C151	117,8(5)	H10A-N10-H10B	109,0
O16A-C16-O16B	124,0(6)	C11-N11-Co2	112,3(5)
O16A - C16 - C154	118,6(6)	C11-N11-H11A	109,1
O16B-C16-C154	117,4(6)	Co2-N11-H11A	109,1
O17A-C17-O17B	122,4(6)	C11-N11-H11B	109,1
O17A-C17-C171	119,4(6)	Co2-N11-H11B	109,1
O17B-C17-C171	118,1(6)	H11A-N11-H11B	107,9
O18A-C18-O18B	123,0(7)	C12-N12-Co2	104,1(5)
O18A-C18-C174	119,1(7)	C12-N12-H12A	110,9
O18B-C18-C174	117,7(6)	Co2-N12-H12A	110,9
C136-C131-C132	119,4(5)	C12-N12-H12B	110,9
C136-C131-C13	121,1(6)	Co2-N12-H12B	110,9
C132-C131-C13	119,5(6)	H12A-N12-H12B	109,0
C131-C132-C133	119,7(6)	N3-Co1-N4	85,8(2)
C131-C132-H132	120,1	N3-Co1-N6	90,0(2)
C133-C132-H132	120,1	N4-Co1-N6	173,1(2)
C134-C133-C132	120,6(6)	N3-Co1-N2	90,2(2)
C134-C133-H133	119,7	N4-Co1-N2	93,4(2)
C132-C133-H133	119,7	N6-Co1-N2	92,0(2)
C133-C134-C135	119,9(5)	N3-Co1-N1	174,9(2)
C133-C134-C14	120,8(6)	N4-Co1-N1	91,3(2)
C135-C134-C14	119,2(6)	N6-Co1-N1	93,3(2)
C136 - C135 - C134	119,1(6)	N2-Co1-N1	85,7(2)
C136-C135-H135	120,5	N3-Co1-N5	92,7(2)
C134-C135-H135	120,5	N4-Co1-N5	89,1(2)
C131-C136-C135	121,3(6)	N6-Co1-N5	85,7(2)
C131-C136-H136	119,4	N2-Co1-N5	176,3(2)

Tab. 6.10: Fortsetzung			
C135-C136-H136	119,4	N1-Co1-N5	91,5(2)
C152 - C151 - C156	117,1(5)	N9-Co2-N12	91,2(3)
C152 - C151 - C15	$122,\!6(5)$	N9-Co2-N11	94,2(2)
C156 - C151 - C15	$120,\!3(6)$	N12-Co2-N11	87,1(3)
C151 - C152 - C153	122,9(5)	N9-Co2-N7	174,2(3)
C151 - C152 - H152	$118,\! 6$	N12-Co2-N7	$93,\!3(3)$
C153 - C152 - H152	$118,\! 6$	N11-Co2-N7	89,7(3)
C154 - C153 - C152	$117,\!6(5)$	N9-Co2-N10	86,3(3)
C154 - C153 - H153	121,2	N12-Co2-N10	176,9(3)
C152-C153-H153	121,2	N11-Co2-N10	91,1(3)
C155 - C154 - C153	$121,\!9(5)$	N7-Co2-N10	$89,\!3(3)$
C155 - C154 - C16	119,2(5)	N9-Co2-N8	91,2(2)
C153 - C154 - C16	118,9(5)	N12-Co2-N8	90,0(3)
C156 - C155 - C154	119,1(5)	N11-Co2-N8	173,9(3)
C156 - C155 - H155	120,4	N7-Co2-N8	85,1(3)
C154 - C155 - H155	120,4	N10-Co2-N8	$91,\!9(3)$

147

6.1.2 Azentrische Tris-1,2-Ethylendiamin-Cobalt(III)-Nitrat-Carboxylate $^{2}_{\infty} \left\{ \Delta$ -[Co(en)₃] EDC (NO₃) $\right\} \cdot 2 H_{2}O$

Summenformel	$C_6H_{24}CoN_6 \cdot (C_4H_2O_4) \cdot NO_3 \cdot 2(H_2O)$
Molare $Masse/g \cdot mol^{-1}$	451,32
Kristallsystem	monoklin
Raumgruppe	C2
Diffraktometer	IPDS I
Strahlung	$Mo-K\alpha$
Absorptionskorrektur	Numerisch [24]
Formeleinheiten Z	4
Gitterkonstanten /pm	a = 1804,3 (1)
	b = 1173,4 (1)
	c = 1001,0 (1)
/°	$\alpha = 90$
	$\beta = 120,189$ (3)
	$\gamma = 90$
Volumen $/nm^3$	1,8319 (3)
Dichte $/g \cdot cm^{-3}$	1,636
Kristallform	Plättchen
Kristallgröße /mm	$0,4 \ge 0,4 \ge 0,2$
Kristallfarbe	orange
h k l range	
h _{min/max}	-25/18
k _{min/max}	-16/14
$l_{min/max}$	-5/14
$2 heta_{ m max}$	$30,0^{\circ}$
Reflexzahl	
gemessen	5740
unabhängig	4225
$\mu~/{ m mm^{-1}}$	1,00
R-Werte:	
Io $> 2\sigma(Io)$	R1 = 0.0345
	$\omega R2 = 0.0843$
all data	R1 = 0,0396

Tab. 6.11: Kristallographische Daten und Details der Röntgeneinkristallstrukturanalyse der Verbindung $\underline{\qquad \qquad }_{\infty}^{2} \left\{ \Delta - [Co(en)_{3}] EDC (NO_{3}) \right\} \cdot 2 H_{2}O$

	$\omega R2 = 0,0868$
R _{int}	0,033
$GooF = S_{all}$	1,02
Zahl der verfeinerten	
Parameter	263
F(000)	952
$\Delta ho_{ m min/max} \ /e \cdot { m \AA}^{-3}$	-0,56/0,34
Flack Parameter	0,01~(1)

Fortsetzung

Tab. 6.12: Atomlagen und isotrope oder äquivalente thermische Auslenkungsparameter $[10^{-20} \text{ m}^2]$ der Verbindung $^2_{\infty} \{ \Delta - [Co(en)_3] EDC (NO_3) \} \cdot 2 H_2 O$

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
C1	4c	0,3891(2)	$0,\!6073(3)$	0,0684(3)	
H1C	4c	$0,\!37050$	0,66480	$0,\!11480$	0,0220
H1D	4c	$0,\!37740$	0,53270	$0,\!09560$	0,0220
C2	4c	$0,\!6579(2)$	$0,\!6213(3)$	$0,\!1046(3)$	
H2C	4c	$0,\!64780$	0,55600	$0,\!15270$	0,0210
H2D	4c	0,71910	$0,\!62780$	$0,\!14440$	0,0210
C3	4c	0,5183(2)	0,9665(2)	0,0864(3)	
H3C	4c	$0,\!58020$	$0,\!97380$	$0,\!13940$	0,0170
H3D	4c	$0,\!49530$	1,03000	$0,\!11630$	0,0170
C4	4c	0,4748(2)	0,0201(2)	0,4127(3)	
H4C	4c	0,51320	0,01430	$0,\!37160$	0,0190
H4D	4c	$0,\!43540$	-0,04380	$0,\!37490$	0,0190
C5	4c	0,3435(2)	0,3721(3)	0,3772(3)	
H5C	4c	$0,\!30430$	$0,\!30960$	$0,\!32470$	0,0240
H5D	4c	0,31310	$0,\!44330$	$0,\!33610$	0,0240
C6	4c	$0,\!6225(2)$	0,3656(3)	0,4520(3)	
H6C	4c	$0,\!58940$	$0,\!43320$	0,40120	0,0230
H6D	4c	$0,\!66940$	$0,\!35970$	$0,\!43120$	0,0230
C7	4c	0,3181(2)	0,2201(3)	-0,0383(3)	
C8	4c	0,1771(2)	0,2702(3)	-0,4829(3)	
C71	4c	0,2695(2)	0,2047(3)	-0,2102(3)	
H71	4c	0,26910	$0,\!13260$	-0,24900	0,0210
C72	4c	0,2274(2)	$0,\!2866(3)$	-0,3100(3)	
H72	4c	0,22870	0,35920	-0,27150	0,0180

Tab. 6.12: Fortsetzung

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
N1	4c	0,4825(1)	0,6199(2)	0,1255(2)	
H1A	4c	0,50440	0,55250	$0,\!11920$	0,0170
H1B	4c	0,50990	0,64170	0,22520	0,0170
N2	4c	0,6245(1)	0,7271(2)	0,1382(2)	
H2A	4c	0,64950	0,78850	$0,\!12390$	0,0170
H2B	4c	0,63690	0,72660	0,23730	0,0170
N3	4c	0,4938(1)	0,8565(2)	0,1281(2)	
H3A	4c	0,44010	0,86130	0,11220	0,0160
H3B	4c	0,52960	0,84110	0,22870	0,0160
N4	4c	0,4270(1)	0,1290(2)	0,3650(2)	
H4A	4c	0,37920	$0,\!12340$	$0,\!37160$	0,0170
H4B	4c	0,41140	0,14450	0,26620	0,0170
N5	4c	0,4191(1)	0,3651(2)	0,3548(2)	
H5A	4c	0,44470	$0,\!43370$	0,37220	0,0190
H5B	4c	0,40210	0,34430	0,25700	0,0190
N6	4c	0,5669(1)	0,2619(2)	0,3944(2)	
H6A	4c	0,59960	0,19920	0,41430	0,0190
H6B	4c	0,53150	0,26680	0,29150	0,0190
N7	2b	1/2	$0,\!6851(3)$	1/2	
N8	2a	1/2	0,3333(3)	0	
01	4c	0,3137(1)	-0,0929(2)	-0,0111(3)	
O2	4c	0,1893(1)	0,5768(2)	-0,4810(3)	
O7A	4c	0,3291(2)	0,3190(2)	0,0183(2)	
O7B	4c	0,3457(2)	0,1305(2)	0,0418(3)	
O7C	2b	1/2	0,5772(2)	1/2	
O7D	4c	0,4736(1)	0,7379(2)	0,3766(2)	
O8A	4c	0,1485(1)	0,3597(2)	-0,5650(2)	
O8B	4c	0,1670(2)	0,1713(2)	-0,5388(3)	
O8C	2a	1/2	0,2277(2)	0	
O8D	4c	0,4705(1)	0,3880(2)	-0,1243(2)	
Co1	2a	1/2	0,73457(3)	0	
Co2	2b	1/2	0,25201(3)	1/2	
H1E	4c	0,270(2)	-0,119(4)	0,003(5)	0,05(1)
H1F	4c	0,320(2)	-0,016(2)	0,008(4)	0,04(1)
H2E	4c	$0,\!176(3)$	0,501(2)	-0,516(5)	0,06(1)

Tab. 6.12: Fortsetzung

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
H2F	4c	0,240(2)	0,595(4)	-0,475(5)	0,06(1)

Tab. 6.13:	Anisotrope ${}^{2}_{\infty} \left\{ \Delta - [Co(en)] \right\}$	thermische $_{3}$ EDC (NO ₃)	Auslenkungsp · 2 H ₂ O mit Sta	arameter [10 ndardabweichun	$e^{-20} m^2$] der	Verbindung
Atom	U11	U22	U33	U12	U13	U23
$\overline{\mathrm{C1}}$	0,019(1)	0,022(2)	0,017(1)	-0,005(1)	0,011(1)	0,000(1)
C2	0,017(1)	0,018(1)	0,017(1)	0,004(1)	0,007(1)	0,000(1)
C3	0,021(1)	0,009(1)	0,012(1)	0,001(1)	0,008(1)	-0,001(1)
C4	0,020(1)	0,013(1)	0,015(1)	-0,002(1)	0,009(1)	-0,002(1)
C5	0,015(1)	0,019(2)	0,019(1)	0,004(1)	0,004(1)	0,001(1)
C6	0,019(1)	0,019(1)	0,022(1)	-0,004(1)	0,011(1)	0,000(1)
C7	0,014(1)	0,017(2)	0,013(1)	-0,001(1)	0,007(1)	0,001(1)
C8	0,011(1)	0,023(2)	0,009(1)	0,002(1)	0,003(1)	0,000(1)
C71	0,019(1)	0,019(1)	0,011(1)	-0,003(1)	0,005(1)	-0,0024(9)
C72	0,018(1)	0,015(1)	0,013(1)	0,003(1)	0,008(1)	-0,0001(9)
N1	0,018(1)	0,0126(9)	0,011(1)	-0,0006(8)	0,0062(8)	0,0005(7)
N2	0,0135(9)	0,017(1)	0,0116(8)	0,0012(8)	0,0051(7)	-0,0016(8)
N3	0,016(1)	0,0123(9)	0,0095(9)	-0,0001(8)	0,0054(8)	-0,0009(7)
N4	0,016(1)	0,0135(9)	0,011(1)	-0,0019(8)	0,0058(8)	-0,0015(7)
N5	0,018(1)	0,012(1)	0,014(1)	-0,0001(8)	0,0053(8)	0,0000(7)
N6	0,018(1)	0,014(1)	0,0155(9)	0,0000(8)	0,0088(8)	0,0014(7)
N7	0,012(2)	0,020(2)	0,017(2)	0,00000	0,007(1)	0,00000
N8	0,024(2)	0,018(2)	0,020(2)	0,00000	0,012(1)	0,00000
01	0,020(1)	0,018(1)	0,032(1)	0,000(1)	0,0150(9)	-0,0021(9)
O2	0,020(1)	0,018(1)	0,031(1)	-0,001(1)	0,014(1)	-0,0005(9)
O7A	0,021(1)	0,018(1)	0,014(1)	0,0012(9)	0,0066(9)	-0,0036(7)
O7B	0,027(1)	0,017(1)	0,0124(9)	-0,0006(9)	0,0046(8)	0,0031(8)
O7C	0,031(2)	0,009(1)	0,046(2)	0,00000	0,014(2)	0,00000
O7D	0,031(1)	0,027(1)	0,0143(8)	0,0028(9)	0,0111(7)	0,0037(8)
O8A	0,022(1)	0,019(1)	0,014(1)	0,0001(9)	0,0036(8)	0,0045(8)
O8B	$0,\!021(1)$	0,021(1)	0,014(1)	0,0034(9)	0,0058(9)	-0,0017(8)
O8C	0,043(2)	$0,\!009(1)$	0,054(2)	0,00000	0,029(2)	0,00000
O8D	0,047(1)	$0,\!019(1)$	0,0133(9)	-0,0041(9)	0,0109(9)	-0,0002(7)
Co1	0,0110(2)	$0,\!0093(3)$	0,0076(2)	0,00000	0,0037(2)	0,00000

Tab. 6.13: Fortsetzung

Tab. 0.10. For isociating						
Atom	U11	U22	U33	U12	U13	U23
Co2	0,0122(2)	0,0105(3)	0,0076(2)	0,00000	0,0037(2)	0,00000

$\sum_{\infty} \Delta^{-[CO(eII)3]} \Delta$	$DO(1003) \int 2 \Pi_2 O$		
C1-N1	149,0(3)	N1-H1A	90,0
$C1-C2^i$	150,6(4)	N1-H1B	90,0
C1-H1C	97,0	N2-Co1	196,0(2)
C1-H1D	97,0	N2-H2A	90,0
C2-N2	149,0(4)	N2-H2B	90,0
$C2-C1^i$	150,6(4)	N3-Co1	196,2(2)
C2-H2C	97,0	N3–H3A	90,0
C2-H2D	97,0	N3-H3B	90,0
C3-N3	149,0(3)	N4-Co2	196, 3(2)
$C3-C3^i$	150,9(5)	N4-H4A	90,0
C3-H3C	97,0	N4-H4B	90,0
C3-H3D	97,0	N5-Co2	196,8(2)
C4-N4	148,0(4)	N5-H5A	90,0
$C4-C4^{ii}$	151,1(5)	N5-H5B	90,0
C4-H4C	97,0	N6-Co2	196,8(2)
C4-H4D	97,0	N6-H6A	90,0
C5-N5	149,2(4)	N6-H6B	90,0
$C5-C6^{ii}$	150,0(4)	$N7-O7D^{ii}$	124,3(3)
C5-H5C	97,0	N7-O7D	124,3(3)
C5-H5D	97,0	N7-O7C	126, 6(4)
C6-N6	$149,\!6(4)$	N8-O8C	123,9(4)
$C6-C5^{ii}$	150,0(4)	$N8-O8D^{i}$	$125,\!6(3)$
C6-H6C	97,0	N8-O8D	$125,\!6(3)$
C6-H6D	97,0	O1-H1E	91(2)
C7–O7B	126,3(4)	O1–H1F	92(2)
C7-O7A	126, 3(3)	O2-H2E	94(2)
C7-C71	149,8(4)	O2-H2F	91(2)
C8-O8B	126, 1(4)	$\rm Co1-N2^{i}$	196,0(2)
C8-O8A	127,2(4)	$\rm Co1-N3^{i}$	196,2(2)
C8-C72	150,8(4)	$\rm Co1-N1^{i}$	197,2(2)

Tab. 6.14: Fortsetzung			
C71-C72	131,8(3)	$\rm Co2-N4^{ii}$	196,3(2)
C71-H71	$93,\!0$	$\rm Co2-N5^{ii}$	196,8(2)
C72-H72	$93,\!0$	$\rm Co2-N6^{ii}$	196,8(2)
N1-Co1	197,2(2)		

Tab 6 14. Fortset

(i) 1-x, y, -z; (ii) 1-x, y, 1-z.

Tab. 6.15: Ausgewählte interatomare ${}^{2}_{\infty} \left\{ \Delta - [Co(en)_{3}] EDC(NO_{3}) \right\}$	$ \begin{array}{ll} Winkel & [^{\circ}] & mit \\ \cdot 2 H_2 O. \end{array} $	Standardabweichung der	Verbindung
N1-C1-C2 ⁱ	107,7(2)	C3–N3–H3A	109,9
N1-C1-H1C	110,2	Co1-N3-H3A	109,9
$C2^{i}-C1-H1C$	110,2	C3-N3-H3B	109,9
N1-C1-H1D	110,2	Co1-N3-H3B	109,9
$C2^{i}-C1-H1D$	110,2	H3A-N3-H3B	108,3
H1C-C1-H1D	108,5	C4-N4-Co2	109,4(2)
N2-C2-C1i	107,0(2)	C4-N4-H4A	109,8
N2-C2-H2C	110,3	Co2-N4-H4A	109,8
$C1^{i}-C2-H2C$	110,3	C4-N4-H4B	109,8
N2-C2-H2D	110,3	Co2-N4-H4B	109,8
$C1^{i}-C2-H2D$	110,3	H4A-N4-H4B	108,2
H2C-C2-H2D	108,6	C5-N5-Co2	108,7(2)
$N3-C3-C3^{i}$	$107,\!51(16)$	C5-N5-H5A	109,9
N3-C3-H3C	110,2	Co2-N5-H5A	109,9
$C3^{i}-C3-H3C$	110,2	C5-N5-H5B	109,9
N3-C3-H3D	110,2	Co2-N5-H5B	109,9
$C3^{i}-C3-H3D$	110,2	H5A-N5-H5B	108,3
H3C-C3-H3D	108,5	C6-N6-Co2	108,3(2)
$N4-C4-C4^{ii}$	106,7(2)	C6-N6-H6A	110,0
N4-C4-H4C	110,4	Co2-N6-H6A	110,0
$C4^{ii}-C4-H4C$	110,4	C6-N6-H6B	110,0
N4-C4-H4D	110,4	Co2-N6-H6B	110,0
$C4^{ii}-C4-H4D$	110,4	H6A-N6-H6B	108,4
H4C-C4-H4D	108,6	$O7D^{ii}-N7-O7D$	120,2(4)
$N5-C5-C6^{ii}$	106,7(2)	$O7D^{ii}-N7-O7C$	119,9(2)
N5-C5-H5C	110,4	O7D-N7-O7C	119,9(2)
$C6^{ii}-C5-H5C$	110,4	$O8C-N8-O8D^{i}$	120,7(2)

Tab. 6.15: Fortsetzung

Tab. 0.15. For tactzung			
N5-C5-H5D	110,4	O8C-N8-O8D	120,74(2)
$C6^{ii}-C5-H5D$	110,4	O8D ⁱ -N8-O8D	118,5(4)
H5C-C5-H5D	$108,\! 6$	H1E-O1-H1F	109,(4)
$N6-C6-C5^{ii}$	107,0(2)	H2E-O2-H2F	109,(4)
N6-C6-H6C	110,3	$N2^{i}$ -Co1-N2	$174,\!84(1)$
$C5^{ii}-C6-H6C$	110,3	N2 ⁱ -Co1-N3i	$89,\!62(8)$
N6-C6-H6D	110,3	N2-Co1-N3i	$94,\!15(9)$
$C5^{ii}-C6-H6D$	110,3	$N2^{i}$ -Co1-N3	94,15(9)
H6C-C6-H6D	$108,\! 6$	N2-Co1-N3	$89,\!62(8)$
O7B-C7-O7A	123,9(3)	$N3^{i}$ -Co1-N3	86,34(1)
O7B-C7-C71	116,5(3)	N2 ⁱ -Co1-N1i	90,75(9)
O7A-C7-C71	119,6(2)	$N2-Co1-N1^{i}$	85,72(8)
O8B-C8-O8A	123,5(2)	$N3^{i}$ -Co1-N1 ⁱ	90,08(8)
O8B-C8-C72	119,8(2)	$N3-Co1-N1^{i}$	$173,\!91(1)$
O8A-C8-C72	116,7(3)	$N2^{i}$ -Co1-N1	85,72(8)
C72-C71-C7	124,4(2)	N2-Co1-N1	90,75(9)
C72-C71-H71	117,8	$N3^{i}$ -Co1-N1	173,9(1)
C7-C71-H71	117,8	N3-Co1-N1	90,08(8)
C71-C72-C8	124,2(2)	N1 ⁱ -Co1-N1	93,9(1)
C71-C72-H72	117,9	$N4-Co2-N4^{ii}$	85,3(1)
C8-C72-H72	117,9	$N4-Co2-N5^{ii}$	177,0(1)
C1-N1-Co1	109,6(2)	$N4^{ii}$ -Co2-N5 ⁱⁱ	89,76(8)
C1-N1-H1A	109,8	N4-Co2-N5	89,76(8)
Co1-N1-H1A	109,8	$N4^{ii}$ -Co2-N5	175,0(1)
C1-N1-H1B	109,8	$N5^{ii}$ -Co2-N5	95,2(1)
Co1-N1-H1B	109,8	$N4-Co2-N6^{ii}$	$91,\!87(9)$
H1A-N1-H1B	108,2	$\rm N4^{ii}-Co2-N6^{ii}$	$93,\!09(9)$
C2-N2-Co1	109,2(2)	$N5^{ii}$ -Co2-N6 ⁱⁱ	89,50(9)
C2-N2-H2A	109,9	$N5-Co2-N6^{ii}$	$85,\!95(9)$
Co1-N2-H2A	109,9	N4-Co2-N6	$93,\!09(9)$
C2-N2-H2B	109,9	$N4^{ii}$ -Co2-N6	$91,\!87(9)$
Co1-N2-H2B	109,9	$N5^{ii}$ -Co2-N6	$85,\!95(9)$
H2A-N2-H2B	108,3	N5-Co2-N6	89,50(9)
C3-N3-Co1	109,0(2)	$N6^{ii}$ -Co2-N6	173,3(1)

(i) 1-x, y, -z; (ii) 1-x, y, 1-z.

$_{\infty}^{2} \Big\{ \operatorname{\Lambda-[Co(en)_{3}]BSA(NO_{3})} \Big\} \cdot 2 \operatorname{H_{2}O}$

$\infty \int M^{-}[OO(en)3] DSA (MO3) \int 2 H_2O$	
Summenformel	$C_6H_{24}CoN_6 \cdot (C_4H_4O_4) \cdot NO_3 \cdot 2(H_2O)$
Molare $Masse/g \cdot mol^{-1}$	451,34
Kristallsystem	monoklin
Raumgruppe	C2
Diffraktometer	IPDS I
Strahlung	Mo-K α
Absorptionskorrektur	Numerisch [24]
Formeleinheiten Z	4
Gitterkonstanten /pm	a = 1821,7 (1)
	b = 1172,2 (1)
	c = 1017,0 (1)
/°	$\alpha = 90$
	$\beta = 122,312$ (4)
	$\gamma = 90$
Volumen /nm ³	1,8353 (3)
Dichte /g·cm ⁻³	1,633
Kristallform	Plättchen
Kristallgröße /mm	$0,3 \ge 0,3 \ge 0,2$
Kristallfarbe	orange
h k l range	
$h_{\min/\max}$	-22/22
$k_{min/max}$	-14/14
$l_{min/max}$	-12/12
$2 heta_{ m max}$	$26,7^{\circ}$
Reflexzahl	
gemessen	14075
unabhängig	3886
$\mu \ /\mathrm{mm}^{-1}$	1,00
R-Werte:	
Io $> 2\sigma(Io)$	R1 = 0,0588
	$\omega R2 = 0,1601$
all data	R1 = 0,0600
	$\omega R2 = 0.1620$

Tab. 6.16: Kristallographische Daten und Details der Röntgeneinkristallstrukturanalyse der Verbindung ${}^2_\infty \left\{ \, \Lambda \text{-}[\mathrm{Co(en)_3}] \, \mathrm{BSA} \, (\mathrm{NO_3}) \right\} \cdot 2 \, \mathrm{H_2O}$

Tab. 6.16: Fortsetzung

R _{int}	0,0500
$GooF = S_{all}$	1,08
Zahl der verfeinerten	
Parameter	219
F(000)	952
$\Delta ho_{ m min/max} \ /e \cdot { m \AA}^{-3}$	-0,89/2,01
Flack Parameter	0,02(2)

Tab. 6.17: Atomlagen und isotrope oder äquivalente thermische Auslenkungsparameter $[10^{-20} \text{ m}^2]$ der Verbindung $^2_{\infty} \left\{ \Lambda - [\text{Co(en)}_3] \text{ BSA (NO}_3) \right\} \cdot 2 \text{ H}_2 \text{O}$

Atom	Wyckoff- Lage	x/a	y/b	z/c	$\rm U_{iso}*/\rm U_{eq}$
C1	4c	0,1085(3)	0,4615(5)	-0,0662(6)	
H1C	4c	0,12090	0,53490	-0,09410	0,0270
H1D	4c	$0,\!12550$	0,40220	-0,11140	0,0270
C2	4c	0,1583(3)	0,4490(5)	0,1075(5)	
H2C	4c	0,22010	$0,\!44360$	$0,\!14900$	0,0240
H2D	4c	0,14810	0,51410	$0,\!15450$	0,0240
C3	4c	-0,0204(3)	0,1032(5)	-0,0877(5)	
H3C	4c	0,00190	0,04030	-0,11810	0,0210
H3D	4c	-0,08300	$0,\!09540$	-0,14100	0,0210
C4	4c	0,1580(3)	-0,3030(5)	-0,3810(6)	0,023(1)
H4C	4c	0,19140	-0,37210	-0,33540	0,0280
H4D	4c	$0,\!19620$	-0,23780	-0,33420	0,0280
C5	4c	0,0249(3)	0,0458(5)	-0,4126(5)	
H5C	4c	0,06270	0,11180	-0,37100	0,0250
H5D	4c	-0,01450	0,04670	-0,37570	0,0250
C6	4c	-0,1172(3)	-0,3030(7)	-0,4454(6)	
H6C	4c	-0,08140	-0,37020	-0,39840	0,0390
H6D	4c	-0,16130	-0,30060	-0,41940	0,0390
C7	4c	0,3188(3)	0,3552(5)	0,9690(6)	
C8	4c	0,1802(3)	$0,\!2910(5)$	0,5193(6)	
C71	4c	0,2728(4)	0,3734(5)	0,7943(6)	
H71A	4c	0,23140	$0,\!43510$	0,76550	0,0300
H71B	4c	0,31550	0,39820	0,77120	0,0300
C72	4c	0,2254(3)	0,2724(5)	$0,\!6931(5)$	
H72A	4c	0,18240	0,24790	0,71540	0,0240

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
H72B	4c	0,26670	0,21050	0,72220	0,0240
Co1	2a	0	0,33503(5)	0	
Co2	$2\mathrm{b}$	0	-0,18612(6)	-1/2	
N1	4c	0,0156(2)	$0,\!4523(3)$	-0,1256(4)	
H1A	4c	-0,01390	$0,\!43180$	-0,22650	0,0160
H1B	4c	-0,00500	0,52010	-0,11770	0,0160
N2	4c	0,1270(2)	0,3443(3)	0,1399(4)	
H2A	4c	0,14150	0,34440	0,23960	0,0150
H2B	4c	0,15190	0,28330	$0,\!12560$	0,0150
N3	4c	0,0027(2)	0,2145(3)	-0,1281(4)	
НЗА	4c	-0,03530	0,23040	-0,22920	0,0130
H3B	4c	0,05610	0,21000	-0,11240	0,0130
N4	4c	0,0844(3)	-0,2966(4)	-0,3554(5)	
H4A	4c	0,10430	-0,27510	-0,25690	0,0400
H4B	4c	0,05920	-0,36550	-0,37130	0,0400
N5	4c	0,0761(3)	-0,0610(4)	-0,3660(6)	
H5A	4c	0,09640	-0,07660	-0,26560	0,0380
H5B	4c	0,12170	-0,05330	-0,37700	0,0380
N6	4c	-0,0617(3)	-0,1939(4)	-0,3910(5)	
H6A	4c	-0,02350	-0,19600	-0,28750	0,0400
H6B	4c	-0,09580	-0,13210	-0,41350	0,0400
N7	2a	0	-0,2619(6)	0	0,024(1)
N8	$2\mathrm{b}$	0	$0,\!3833(5)$	-1/2	
01	4c	0,3127(2)	$0,\!4849(4)$	$0,\!4858(5)$	
O2	4c	0,1857(2)	0,1642(4)	1,0083(4)	0,0255(8)
O7A	4c	0,3284(3)	0,2554(4)	1,0231(5)	
O7B	4c	0,3459(3)	0,4423(4)	1,0533(5)	
O7C	4c	-0,0374(3)	-0,3187(4)	-0,1244(5)	0,0417(9)
O7D	2a	0	-0,1618(7)	0	0,0508(16)
O8A	4c	0,1706(3)	0,3892(4)	0,4662(5)	
O8B	4c	0,1528(3)	0,2029(4)	$0,\!4343(5)$	
O8C	$2\mathrm{b}$	0	0,4873(7)	-1/2	0,0498(16)
O8D	4c	0,0221(3)	0,3285(4)	-0,3795(5)	0,0386(9)

Tab. 6.17: Fortsetzung

${}_{\infty}^{2} \left\{ \Lambda - [Co(en)_{3}] BSA(NO_{3}) \right\} \cdot 2 H_{2}O \text{ mit Standardabweichung}$						
Atom	U11	U22	U33	U12	U13	U23
C1	0,025(2)	0,023(3)	0,023(2)	-0,005(2)	0,0152(19)	0,007(2)
C2	$0,\!016(2)$	0,019(2)	$0,\!022(2)$	-0,007(2)	0,007(2)	-0,003(2)
C3	$0,\!027(2)$	0,011(2)	0,017(2)	-0,0003(19)	$0,\!0130(19)$	0,001(2)
C5	$0,\!028(2)$	0,015(3)	$0,\!015(2)$	0,001(2)	0,009(2)	-0,003(2)
C6	$0,\!020(2)$	0,055(4)	$0,\!020(2)$	-0,016(3)	0,009(2)	-0,013(3)
C7	$0,\!013(2)$	$0,\!025(3)$	$0,\!015(2)$	0,000(2)	0,006(2)	0,002(2)
C8	0,015(2)	0,023(3)	0,015(2)	-0,003(2)	0,0067(18)	-0,001(2)
C71	$0,\!031(2)$	0,024(3)	0,012(2)	-0,005(2)	0,006(2)	0,005(2)
C72	$0,\!023(2)$	0,015(2)	$0,\!020(3)$	-0,005(2)	0,009(2)	-0,004(2)
Co1	$0,\!0115(3)$	0,0072(5)	$0,\!0084(3)$	0,00000	0,0046(3)	0,00000
Co2	0,0127(4)	0,0163(6)	$0,\!0087(3)$	0,00000	0,0048(3)	0,00000
N1	$0,\!016(2)$	0,008(2)	0,017(2)	-0,001(1)	0,009(1)	0,002(1)
N2	$0,\!015(1)$	0,009(2)	$0,\!012(1)$	0,000(1)	0,006(1)	0,002(1)
N3	$0,\!013(1)$	0,006(1)	$0,\!013(1)$	0,001(1)	0,007(1)	0,001(1)
N4	$0,\!038(2)$	0,028(2)	0,029(2)	0,001(2)	0,015(2)	0,003(2)
N5	0,037(2)	0,024(2)	0,032(2)	0,000(2)	0,017(2)	-0,001(2)
N6	$0,\!039(2)$	0,027(2)	0,033(2)	0,002(2)	0,019(2)	0,000(2)
N8	0,020(2)	0,015(3)	0,016(2)	0,00000	0,011(2)	0,00000
O1	$0,\!025(2)$	0,019(2)	0,036(2)	0,002(1)	0,019(2)	-0,001(2)
O7A	0,029(2)	0,025(2)	0,018(2)	-0,004(2)	0,011(2)	0,003(2)
O7B	$0,\!034(2)$	0,024(2)	0,019(2)	-0,003(2)	0,008(2)	-0,007(2)
O8A	0,022(2)	0,021(2)	0,020(2)	-0,005(2)	0,008(2)	0,003(2)
O8B	$0,\!033(2)$	$0,\!020(2)$	0,019(2)	0,004(2)	0,007(2)	-0,003(2)

Tab. 6.18: Anisotrope thermische Auslenkungsparameter $[10^{-20} \text{ m}^2]$ der Verbindung $\frac{2}{\infty} \{ \Lambda - [\text{Co}(\text{en})_3] \text{ BSA } (\text{NO}_3) \} \cdot 2 \text{ H}_2 \text{O}$ mit Standardabweichung

$-\infty \{ \Lambda - [CO(en)_3] DSA$	$(NO_3) \cdot 2 \Pi_2 O$		
C1-N1	146,7(6)	C72-H72A	97,0
C1-C2	1501(6)	C72-H72B	97,0
C1-H1C	97,0	Co1-N3	$193,\!9(3)$
C1-H1D	97,0	$\rm Co1-N3^{i}$	$193,\!9(3)$
C2-N2	146,3(6)	Co1-N2	196,7(3)
C2-H2C	97,0	$\rm Co1-N2^{i}$	196,7(3)
C2-H2D	97,0	$\rm Co1-N1^{i}$	199,8(3)
C3-N3	149,5(6)	Co1-N1	199,8(3)
$C3-C3^i$	152,1(9)	$\rm Co2-N4^{ii}$	$194,\!6(5)$
C3-H3C	97,0	Co2-N4	$194,\!6(5)$
C3-H3D	97,0	$\rm Co2-N6^{ii}$	195,7(4)
C4-N4	149,8(7)	Co2-N6	195,7(4)
$C4-C6^{ii}$	$150,\!6(7)$	Co2-N5	197,8(5)
C4-H4C	97,0	$\mathrm{Co2-N5^{ii}}$	197,8(5)
C4-H4D	97,0	N1-H1A	90,0
C5-N5	148,0(7)	N1-H1B	90,0
$C5-C5^{ii}$	150,2(9)	N2-H2A	90,0
C5-H5C	97,0	N2-H2B	90,0
C5-H5D	97,0	N3–H3A	90,0
$C6-C4^{ii}$	150,6(7)	N3-H3B	90,0
C6-N6	153,9(8)	N4-H4A	90,0
С6-Н6С	97,0	N4-H4B	90,0
C6-H6D	97,0	N5-H5A	90,0
C7-O7B	125,3(7)	N5-H5B	90,0
C7-O7A	126,4(7)	N6-H6A	90,0
C7-C71	152,1(6)	N6-H6B	90,0
C8-O8A	124,4(7)	N7-O7D	117(1)
C8-O8B	126,5(7)	N7–O7C	125,9(6)
C8-C72	151,4(7)	$N7-O7C^{i}$	125,9(6)
C71-C72	150,2(5)	N8-O8C	122(1)
C71–H71A	97,0	$N8-O8D^{ii}$	124,4(5)
C71-H71B	97,0	N8-O8D	124,4(5)

Tab. 6.19: Ausgewählte interatomare Abstände [pm] mit Standardabweichung der Verbindung $^{2}_{\infty}$ { Λ -[Co(en)₃] BSA (NO₃) } · 2 H₂O

(i) -x, y, -z; (ii) -x, y, -1-z.

$\sum_{\infty} \frac{2}{\infty} \left\{ \Lambda - [\operatorname{Co}(\operatorname{en})_3] \operatorname{BSA}(1) \right\}$	$NO_3) \} \cdot 2 H_2O$		
N1-C1-C2	108,4(3)	$N2^{i}-Co1-N1^{i}$	84,9(1)
N1-C1-H1C	110,0	N3-Co1-N1	90,5(1)
C2-C1-H1C	110,0	$N3^{i}-Co1-N1$	173,6(1)
N1-C1-H1D	110,0	N2-Co1-N1	84,9(1)
C2-C1-H1D	110,0	$N2^{i}-Co1-N1$	90,8(1)
H1C-C1-H1D	108,4	$N1^{i}$ -Co1-N1	93,0(2)
N2-C2-C1	106,5(4)	$N4^{ii}$ -Co2-N4	$96,\!6(3)$
N2-C2-H2C	110,4	$N4^{ii}$ -Co2-N6 ⁱⁱ	90,1(2)
C1-C2-H2C	110,4	$N4-Co2-N6^{ii}$	86,4(2)
N2-C2-H2D	110,4	$N4^{ii}$ -Co2-N6	86,4(2)
C1-C2-H2D	110,4	N4-Co2-N6	90,1(2)
H2C-C2-H2D	$108,\! 6$	$\rm N6^{ii}-Co2-N6$	174,7(3)
$N3-C3-C3^{i}$	106, 8(3)	$N4^{ii}$ -Co2-N5	173,8(2)
N3-C3-H3C	110,4	N4-Co2-N5	$89,\!6(2)$
$C3^{i}-C3-H3C$	$110,\!4$	$N6^{ii}$ -Co2-N5	91,2(2)
N3-C3-H3D	$110,\!4$	N6-Co2-N5	92,7(2)
$C3^{i}-C3-H3D$	$110,\!4$	$N4^{ii}$ -Co2-N5 ⁱⁱ	89,6(2)
H3C-C3-H3D	$108,\! 6$	$N4-Co2-N5^{ii}$	173,8(2)
$N4-C4-C6^{ii}$	106, 1(4)	$N6^{ii}$ -Co2-N5 ⁱⁱ	92,7(2)
N4-C4-H4C	110,5	$N6-Co2-N5^{ii}$	91,2(2)
$C6^{ii}-C4-H4C$	110,5	$N5-Co2-N5^{ii}$	84,2(3)
N4-C4-H4D	110,5	C1-N1-Co1	108,3(3)
$C6^{ii}-C4-H4D$	110,5	C1-N1-H1A	110,0
H4C-C4-H4D	108,7	Co1-N1-H1A	110,0
$N5-C5-C5^{ii}$	104,9(3)	C1-N1-H1B	110,0
N5-C5-H5C	110,8	Co1-N1-H1B	110,0
$C5^{ii}-C5-H5C$	110,8	H1A-N1-H1B	108,4
N5-C5-H5D	110,8	C2-N2-Co1	109,5(3)
$C5^{ii}-C5-H5D$	110,8	C2-N2-H2A	109,8
H5C-C5-H5D	$108,\!8$	Co1-N2-H2A	109,8
$C4^{ii}-C6-N6$	103,8(5)	C2-N2-H2B	109,8
$C4^{ii}-C6-H6C$	111,0	Co1-N2-H2B	109,8
N6-C6-H6C	111,0	H2A-N2-H2B	108,2
$C4^{ii}-C6-H6D$	111,0	C3-N3-Co1	109,8(3)
N6-C6-H6D	111,0	C3–N3–H3A	109,7

Tab. 6.20: Ausgewählte interatomare Winkel [°] mit Standardabweichung der Verbindung $\frac{2}{\infty} \{ \Lambda - [Co(en)_3] BSA(NO_3) \} \cdot 2 H_2 O$

Tab. 6.20: Fortsetzung			
H6C-C6-H6D	109,0	Co1-N3-H3A	109,7
O7B-C7-O7A	123,0(5)	C3-N3-H3B	109,7
O7B-C7-C71	117,0(5)	Co1-N3-H3B	109,7
O7A-C7-C71	120,0(5)	H3A-N3-H3B	108,2
O8A-C8-O8B	123,1(5)	C4-N4-Co2	108,7(3)
O8A-C8-C72	120,1(5)	C4-N4-H4A	109,9
O8B-C8-C72	116,8(5)	Co2-N4-H4A	109,9
C72-C71-C7	116,5(4)	C4-N4-H4B	109,9
С72-С71-Н71А	108,2	Co2-N4-H4B	109,9
С7-С71-Н71А	108,2	H4A-N4-H4B	108,3
С72-С71-Н71В	108,2	C5-N5-Co2	108,5(3)
С7-С71-Н71В	108,2	C5-N5-H5A	110,0
H71A-C71-H71B	107,3	Co2-N5-H5A	110,0
C71-C72-C8	116,2(4)	C5-N5-H5B	110,0
С71-С72-Н72А	108,2	Co2-N5-H5B	110,0
С8-С72-Н72А	108,2	H5A-N5-H5B	108,4
С71-С72-Н72В	108,2	C6-N6-Co2	107,5(3)
С8-С72-Н72В	108,2	C6-N6-H6A	110,2
H72A-C72-H72B	$107,\!4$	Co2-N6-H6A	110,2
$N3-Co1-N3^i$	86,5(2)	C6-N6-H6B	110,2
N3-Co1-N2	94,8(1)	Co2-N6-H6B	110,2
$N3^{i}-Co1-N2$	$89,\!8(1)$	H6A-N6-H6B	108,5
$N3-Co1-N2^i$	$89,\!8(1)$	O7D-N7-O7C	121,9(4)
$N3^{i}-Co1-N2^{i}$	94,8(1)	$\rm O7D{-}N7{-}O7C^{i}$	121,9(4)
$N2-Co1-N2^{i}$	$173,\!6(2)$	$\rm O7C-N7-O7C^{i}$	116,2(7)
$N3-Co1-N1^i$	$173,\!6(1)$	O8C-N8-O8D ⁱⁱ	121,1(3)
$N3^{i}-Co1-N1^{i}$	$90,\!50(13)$	O8C-N8-O8D	121,1(3)
$N2-Co1-N1^{i}$	90,8(1)	$O8D^{ii}-N8-O8D$	117,9(6)

(i) -x, y, -z; (ii) -x, y, -1-z.

6.1.3 Zentrosymmetrische

Tris-1, 2-Ethylendiamin-Cobalt (III)-Carboxylate

$${}^2_{\infty} \Big\{ [Co(en)_3] ADC_{3/2} \Big\} \cdot 4 H_2 O$$

Tab. 6.21: Kristallographische Daten und Details der Röntgeneinkristallstrukturanalyse der Verbindung $\frac{2}{\infty} \left\{ [\mathrm{Co}(\mathrm{en})_3] \mathrm{ADC}_{3/2} \right\} \cdot 4 \operatorname{H_2O}$

Summenformel	$C_6H_{24}CoN_6 \ 1.5(C_4O_4) \cdot 4(H_2O)$
Molare $Masse/g \cdot mol^{-1}$	479,37
Kristallsystem	$\operatorname{triklin}$
Raumgruppe	ΡĪ
Diffraktometer	IPDS I
Strahlung	Mo-K α
Absorptionskorrektur	Numerisch [24]
Formeleinheiten Z	2
Gitterkonstanten /pm	a = 856,5 (1)
	b = 1086,7 (2)
	c = 1235,2 (2)
/°	$\alpha = 87.53 \ (2)$
	$\beta = 72,56$ (2)
	$\gamma = 71,34 \ (2)$
Volumen $/nm^3$	1,0373 (3)
Dichte $/g \cdot cm^{-3}$	1,535
Kristallform	Plättchen
Kristallgröße /mm	$0,3 \ge 0,2 \ge 0,2$
Kristallfarbe	orange
h k l range	
hmin/max	-10/10
kmin/max	-12/12
lmin/max	-14/14
$2\theta_{\max}$	$25,0^{\circ}$
Reflexzahl	
gemessen	8810
unabhängig	3433
$\mu \ /\mathrm{mm^{-1}}$	0,89
R-Werte:	
Io $> 2\sigma(Io)$	R1 = 0,0458
	$\omega R2 = 0,0661$

Tab. 0.21: Fortsetzung	
all data	R1 = 0,1050
	$\omega R2 = 0,0806$
R _{int}	0,1220
$GooF = S_{all}$	0,73
Zahl der verfeinerten	
Parameter	292
F(000)	506
$\Delta \rho_{ m min/max} / e \cdot { m \AA}^{-3}$	-0,61/0,44

Tab. 6.21: Fortsetzung

Tab. 6.22: Atomlagen und isotrope oder äquivalente thermische Auslenkungsparameter $[10^{-20} \text{ m}^2]$ der Verbindung $^2_{\infty} \left\{ [\text{Co(en)}_3] \text{ADC}_{3/2} \right\} \cdot 4 \text{ H}_2 \text{O}$ mit Standardabweichung

Atom	Wyckoff- Lage	x/a	y/b	m z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
C1	2i	0,6730(6)	0,3138(5)	0,3153(4)	
H1A	2i	0,57950	0,39280	0,34880	0,046(4)
H1B	2i	0,78130	0,33250	$0,\!29510$	0,046(4)
C2	2i	$0,\!6752(6)$	0,2085(4)	0,3970(4)	
H2A	2i	0,78020	$0,\!13520$	0,36930	0,046(4)
H2B	2i	$0,\!67040$	0,24010	$0,\!47050$	0,046(4)
C3	2i	0,5630(7)	-0,0926(4)	0,2081(4)	
H3A	2i	0,64140	-0,17860	0,21190	0,046(4)
H3B	2i	0,53090	-0,09100	$0,\!13900$	0,046(4)
C4	2i	$0,\!4080(7)$	-0,0633(4)	0,3077(4)	
H4A	2i	0,44080	-0,08500	$0,\!37650$	0,046(4)
H4B	2i	$0,\!33600$	-0,11400	0,30120	0,046(4)
C5	2i	$0,\!3057(7)$	0,3310(4)	0,1133(4)	
H5A	2i	0,24520	0,32990	0,05850	0,046(4)
H5B	2i	$0,\!36470$	0,39530	0,09240	0,046(4)
C6	2i	0,1802(7)	0,3655(4)	0,2295(4)	
H6A	2i	0,11190	$0,\!45690$	$0,\!23680$	0,046(4)
H6B	2i	$0,\!10250$	0,31430	$0,\!24410$	0,046(4)
C7	2i	$0,\!1136(7)$	0,1872(4)	0,5957(4)	
C8	2i	-0,1493(7)	0,3144(4)	0,9313(4)	
C9	2i	1,1296(6)	0,0491(4)	0,1001(4)	
C71	2i	0,0148(6)	0,2317(4)	0,7130(4)	
C72	2i	-0,0603(6)	0,2667(4)	0,8099(4)	

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$	
C91	2i	1,0331(6)	0,0154(5)	0,0299(4)		
N1	2i	0,6477(5)	0,2658(4)	0,2134(3)		
H1C	2i	0,74850	0,21070	$0,\!17010$	0,051(5)	
H1D	2i	$0,\!61240$	0,33320	$0,\!17180$	0,051(5)	
N2	2i	0,5217(5)	0,1684(3)	0,4068(3)		
H2C	2i	$0,\!42920$	0,22130	$0,\!45930$	0,051(5)	
H2D	2i	$0,\!54030$	0,08670	0,42990	0,051(5)	
N3	2i	0,6478(5)	0,0049(3)	0,2071(3)		
H3C	2i	0,71480	0,00860	0,13600	0,051(5)	
H3D	2i	0,71610	-0,01790	0,25250	0,051(5)	
N4	2i	0,3113(5)	0,0782(3)	0,3124(3)		
H4C	2i	0,24490	$0,\!10560$	$0,\!38420$	0,051(5)	
H4D	2i	0,24170	0,09220	0,26800	0,051(5)	
N5	2i	0,4318(5)	0,2021(3)	0,1126(3)		
H5C	2i	0,53150	$0,\!19510$	0,05770	0,051(5)	
H5D	2i	0,39100	0,14010	0,09750	0,051(5)	
N6	2i	0,2819(5)	0,3374(3)	0,3112(3)		
H6C	2i	0,21410	0,32920	0,38070	0,051(5)	
H6D	2i	0,32220	0,40350	0,31570	0,051(5)	
01	2i	-0,8173(5)	0,4557(3)	0,8490(3)		
O2	2i	-0,2678(5)	0,4193(4)	0,5711(4)		
O3	2i	-0,4640(5)	0,4135(4)	0,7961(4)		
O4	2i	-0,3174(8)	0,6148(4)	0,4123(4)		
O7A	2i	0,2509(5)	0,0920(3)	0,5813(3)		
O7B	2i	0,0595(5)	0,2450(3)	0,5179(3)		
O8A	2i	-0,0614(5)	0,3444(3)	0,9827(3)		
O8B	2i	-0,3027(5)	0,3200(3)	0,9686(3)		
O9A	2i	1,0445(5)	0,1055(3)	0,1946(3)		
O9B	2i	1,2894(4)	0,0189(3)	0,0538(3)		
Co1	2i	0,47477(9)	0,17654(6)	0,25999(6)		
H1E	2i	-0,886(6)	0,411(4)	0,901(4)	0,0500	
H1F	2i	-0,856(6)	0,527(3)	0,892(4)	0,0500	
H2E	2i	-0,146(4)	0,371(4)	0,551(4)	0,0500	
H2F	2i	-0,343(6)	0,399(5)	$0,\!639(3)$	0,0500	
H3E	2i	-0,581(4)	0,412(5)	0,823(4)	0,0500	
Tab. 0.22. For isetzung						
-------------------------	---------------	-----------	----------	--------------	----------------------------	--
Atom	Wyckoff- Lage	x/a	y/b	z/c	$\rm U_{iso}^*/\rm U_{eq}$	
H3F	2i	-0,415(6)	0,374(4)	$0,\!857(3)$	0,0500	
H4E	2i	-0,254(6)	0,585(4)	$0,\!337(3)$	0,0500	
H4F	2i	-0,298(8)	0,552(5)	$0,\!451(5)$	0,0500	

Tab. 6.22: Fortsetzung

Tab. 6.23:	Anisotrope ${}^{2}_{\infty} \{ [Co(en)_{3}] A \}$	thermische $DC_{3/2} \cdot 4H_2O$	Auslenkungspa mit Standardab	rameter	$[10^{-20} \mathrm{m}^2]$ der	Verbindung
Atom	U11	U22	U33	U12	U13	U23
C1	0,029(3)	0,042(3)	0,029(3)	-0,015(2)	-0,014(3)	0,006(2)
C2	0,035(3)	0,036(3)	0,030(3)	-0,016(2)	-0,013(3)	0,004(2)
C3	0,046(4)	0,030(3)	0,033(3)	-0,005(3)	-0,018(3)	0,001(2)
C4	0,053(4)	0,032(3)	0,036(3)	-0,023(3)	-0,018(3)	0,007(2)
C5	0,045(4)	0,032(3)	0,040(3)	-0,010(3)	-0,018(3)	0,008(2)
C6	0,040(3)	0,028(3)	0,043(3)	-0,006(2)	-0,013(3)	-0,003(2)
C7	0,035(3)	0,029(3)	0,021(3)	-0,009(2)	-0,002(3)	0,002(2)
C8	0,032(3)	0,021(3)	0,021(3)	-0,007(2)	0,000(3)	0,003(2)
C9	0,029(3)	0,041(3)	0,022(3)	-0,017(3)	-0,007(3)	0,001(2)
C71	0,031(3)	0,027(3)	0,019(3)	-0,003(2)	-0,001(2)	0,002(2)
C72	0,035(3)	0,029(3)	0,024(3)	-0,012(2)	-0,005(2)	0,004(2)
C91	0,024(3)	0,039(3)	0,020(3)	-0,015(2)	$0,\!001(2)$	-0,007(2)
N1	0,034(3)	0,036(2)	0,023(2)	-0,014(2)	-0,007(2)	0,004(2)
N2	0,024(2)	0,026(2)	0,022(2)	-0,012(2)	-0,004(2)	0,002(2)
N3	0,034(3)	0,025(2)	0,023(2)	-0,009(2)	-0,003(2)	0,002(2)
N4	0,027(3)	0,032(2)	0,019(2)	-0,010(2)	-0,004(2)	-0,001(2)
N5	0,031(3)	0,029(2)	0,019(2)	-0,011(2)	-0,007(2)	0,004(2)
N6	0,032(3)	0,024(2)	0,036(3)	-0,005(2)	-0,013(2)	-0,005(2)
01	0,042(3)	0,040(2)	0,037(2)	-0,013(2)	-0,003(2)	-0,005(2)
O2	0,043(3)	0,046(2)	0,061(3)	-0,007(2)	-0,012(2)	-0,002(2)
O3	0,039(3)	0,097(3)	0,050(3)	-0,020(3)	-0,011(2)	0,016(2)
O4	0,118(5)	0,052(3)	0,050(3)	-0,025(3)	-0,006(3)	-0,007(2)
O7A	0,036(2)	0,036(2)	0,034(2)	0,001(2)	0,002(2)	-0,003(2)
O7B	0,045(3)	0,058(2)	0,025(2)	0,005(2)	-0,007(2)	0,001(2)
O8A	0,052(3)	0,054(2)	0,032(2)	-0,024(2)	-0,011(2)	-0,006(2)
O8B	0,031(2)	0,057(2)	0,028(2)	-0,012(2)	0,003(2)	0,003(2)
O9A	0,039(2)	0,070(3)	0,024(2)	-0,021(2)	0,001(2)	-0,021(2)

Tab. 6.23: Fortsetzung

Tab. 0.20. For the characteris						
Atom	U11	U22	U33	U12	U13	U23
O9B	0,025(2)	0,050(2)	0,047(2)	-0,014(2)	-0,003(2)	-0,019(2)
Co1	0,0219(4)	0,0222(3)	0,0169(3)	-0,0079(3)	-0,0047(3)	-0,0008(3)

Tab. 6.24: Ausgewählte interatomare Abstände [pm] mit Standardabweichung der Verbindung $____{\infty}^{2} \left\{ [Co(en)_{3}]ADC_{3/2} \right\} \cdot 4 H_{2}O$

∞ [[C0(cn)]	3]11D03/2		
C1-N1	148,2(6)	C9-C91	149,0(6)
C1-C2	149,2(6)	C71 - C72	118,8(6)
C1–H1A	97,0	$C91-C91^{i}$	117,1(9)
C1–H1B	97,0	N1-Co1	$195,\!6(4)$
C2-N2	148,3(6)	N1-H1C	90,0
C2–H2A	97,0	N1-H1D	90,0
C2-H2B	97,0	N2-Co1	196,5(4)
C3-N3	146,1(6)	N2-H2C	90,0
C3-C4	147,0(6)	N2-H2D	90,0
C3–H3A	97,0	N3-Co1	196,4(4)
C3-H3B	97,0	N3-H3C	90,0
C4-N4	148,9(6)	N3-H3D	90,0
C4–H4A	97,0	N4-Co1	96,9(4)
C4-H4B	97,0	N4-H4C	90,0
C5-N5	146,9(6)	N4-H4D	90,0
C5-C6	149,0(6)	N5-Co1	195,5(4)
C5-H5A	97,0	N5-H5C	90,0
C5-H5B	97,0	N5-H5D	90,0
C6-N6	148,4(6)	N6-Co1	195,1(4)
C6-H6A	97,0	N6-H6C	90,0
C6-H6B	97,0	N6-H6D	90,0
C7-O7B	124,9(6)	O1-H1E	97(3)
C7–O7A	126,4(5)	O1–H1F	87(3)
C7-C71	145,4(6)	O2-H2E	97(3)
C8-O8B	123,8(6)	O2-H2F	96(3)
C8–O8A	123,9(6)	O3–H3E	96(3)
C8-C72	149,3(6)	O3–H3F	99(3)
C9-O9A	123,8(5)	O4-H4E	94(3)
C9-O9B	125,2(5)	O4-H4F	82(5)

(i) 2-x, -y, -z.

Tab. 6.25: Ausgewählte ${}^{2}_{\infty}$ {[Co(en) ₃]A	interatomare Winkel $ $ $DC_{3/2} \cdot 4H_2O$	[°] mit Standardabweichung der	· Verbindung
N1-C1-C2	106,7(4)	Co1-N1-H1D	109,7
N1-C1-H1A	110,4	H1C-N1-H1D	108,2
C2-C1-H1A	110,4	C2-N2-Co1	110,5(3)
N1-C1-H1B	110,4	C2-N2-H2C	109,5
C2-C1-H1B	110,4	Co1-N2-H2C	109,5
H1A-C1-H1B	$108,\! 6$	C2-N2-H2D	109,5
N2-C2-C1	107,2(4)	Co1-N2-H2D	109,5
N2-C2-H2A	110,3	H2C-N2-H2D	108,1
С1-С2-Н2А	110,3	C3-N3-Co1	110,4(3)
N2-C2-H2B	110,3	C3-N3-H3C	$109,\! 6$
C1-C2-H2B	110,3	Co1-N3-H3C	$109,\! 6$
H2A-C2-H2B	108,5	C3-N3-H3D	$109,\! 6$
N3-C3-C4	108,8(4)	Co1-N3-H3D	$109,\! 6$
N3-C3-H3A	109,9	H3C-N3-H3D	108,1
С4-С3-Н3А	109,9	C4-N4-Co1	109,9(3)
N3-C3-H3B	109,9	C4-N4-H4C	109,7
С4-С3-Н3В	109,9	Co1-N4-H4C	109,7
НЗА-СЗ-НЗВ	108,3	C4-N4-H4D	109,7
C3-C4-N4	108,0(4)	Co1-N4-H4D	109,7
C3-C4-H4A	110,1	H4C-N4-H4D	108,2
N4-C4-H4A	110,1	C5-N5-Co1	110,1(3)
C3-C4-H4B	110,1	C5-N5-H5C	$109,\! 6$
N4-C4-H4B	110,1	Co1-N5-H5C	$109,\! 6$
H4A-C4-H4B	108,4	C5-N5-H5D	$109,\! 6$
N5 - C5 - C6	108,8(4)	Co1-N5-H5D	$109,\! 6$
N5-C5-H5A	109,9	H5C-N5-H5D	108,2
C6-C5-H5A	109,9	C6-N6-Co1	109,2(3)
N5-C5-H5B	109,9	C6-N6-H6C	109,8
C6-C5-H5B	109,9	Co1-N6-H6C	109,8
H5A-C5-H5B	108,3	C6-N6-H6D	109,8
N6 - C6 - C5	107,2(4)	Co1-N6-H6D	109,8

Tab. 6.25: Fortsetzung

rab. 0.25. For isetzung			
N6-C6-H6A	110,3	H6C-N6-H6D	108,3
С5-С6-Н6А	110,3	H1E-O1-H1F	96,0(4)
N6-C6-H6B	110,3	H2E-O2-H2F	118,0(4)
С5-С6-Н6В	110,3	H3E-O3-H3F	103,0(4)
H6A-C6-H6B	108,5	H4E-O4-H4F	106,0(5)
O7B-C7-O7A	125,2(4)	N6-Co1-N5	85,6(2)
O7B-C7-C71	118,9(4)	N6-Co1-N1	$93,\!8(2)$
O7A-C7-C71	115,9(5)	N5-Co1-N1	$90,\!6(2)$
O8B-C8-O8A	127,7(5)	N6-Co1-N3	173,0(2)
O8B-C8-C72	116,0(5)	N5-Co1-N3	91,8(2)
O8A-C8-C72	116,3(4)	N1-Co1-N3	92,8(2)
O9A-C9-O9B	127,7(5)	N6-Co1-N2	91,3(2)
O9A-C9-C91	117,5(4)	N5-Co1-N2	174,1(2)
O9B-C9-C91	114,8(4)	N1-Co1-N2	$84,\!6(2)$
C72-C71-C7	177,5(5)	N3-Co1-N2	91,8(2)
C71-C72-C8	177,3(5)	N6-Co1-N4	89,0(2)
$C91^{i}-C91-C9$	175,9(7)	N5-Co1-N4	$92,\!6(2)$
C1-N1-Co1	109,7(3)	N1-Co1-N4	176,0(2)
C1-N1-H1C	109,7	N3-Co1-N4	$84,\!6(2)$
Co1-N1-H1C	109,7	N2-Co1-N4	92,4(2)
C1-N1-H1D	109,7		

(i) 2-x, -y, -z.

$_{\infty}^{1} \Big\{ [\mathrm{Co}(\mathrm{en})_{3}] \mathrm{BDC}_{3/2} \Big\} \cdot 10 \, \mathrm{H_{2}O}$

∞ [[$(0,0,0)$] DD $(0,0,0)$] DD $(0,0,0)$	
Summenformel	$(C_6H_{24}CoN_6) (C_8H_4O_4)_{3/2} \cdot 10(H_2O)$
Molare $Masse/g \cdot mol^{-1}$	645,41
Kristallsystem	$\operatorname{triklin}$
Raumgruppe	$P\bar{1}$
Diffraktometer	IPDS II
Strahlung	Mo-K α
Absorptionskorrektur	Numerisch [24]
Formeleinheiten Z	2
Gitterkonstanten /pm	a = 1069,8(2)
	b = 1145,4(2)
	c = 1367,3(3)
/°	$\alpha = 70,38$ (1)
	$\beta = 85,24(1)$
	$\gamma = 79,01~(2)$
Volumen $/nm^3$	1,54870 (5)
Dichte /g·cm ⁻³	1,362
Kristallform	Plättchen
Kristallgröße /mm	$0,4 \ge 0,2 \ge 0,1$
Kristallfarbe	orange
h k l range	
h _{min/max}	-14/14
$k_{min/max}$	-14/15
$l_{min/max}$	-18/18
$2 heta_{ m max}$	$29,7^{\circ}$
Reflexzahl	
gemessen	80297
unabhängig	11644
$\mu \ /\mathrm{mm}^{-1}$	0,63
R-Werte:	
Io $> 2\sigma(Io)$	R1 = 0,0128
	$\omega R2 = 0,3036$
all data	R1 = 0,1796
	$\omega R2 = 0,3372$

Tab. 6.26: Kristallographische Daten und Details der Röntgeneinkristallstrukturanalyse der Verbindung $_\frac{1}{\infty} \left\{ [\mathrm{Co}(\mathrm{en})_3] \mathrm{BDC}_{3/2} \right\} \cdot 10 \, \mathrm{H_2O}$

Tab. 6.26: Fortsetzung

140. 0.20. 10105024116				
R _{int}	0,000			
$GooF = S_{all}$	0,79			
Zahl der verfeinerten				
Parameter	370			
F(000)	670			
$\Delta ho_{ m min/max}~/e\cdot{ m \AA}^{-3}$	-0,91/1,06			

Tab. 6.27: Atomlagen und isotrope oder äquivalente thermische Auslenkungsparameter $[10^{-20} \text{ m}^2]$ der Verbindung $\frac{1}{2} \{ [Co(en)_3] BDC_{3/2} \} \cdot 10 \text{ H}_2 O$

Atom	Wyckoff- Lage	x/a	y/b	m z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
C1	2i	1,0015(4)	0,1244(4)	0,7198(3)	
H1C	2i	0,98700	0,20920	0,72300	0,0370
H1D	2i	1,07860	$0,\!11300$	$0,\!67880$	$0,\!0370$
C2	2i	1,0152(5)	0,0301(4)	0,8272(3)	
H2C	2i	1,04430	-0,05400	$0,\!82370$	0,0410
H2D	2i	1,07690	0,04900	0,86530	0,0410
C3	2i	0,5856(4)	0,2642(4)	0,8172(4)	
H3C	2i	0,51590	0,26520	0,77580	0,0380
H3D	2i	0,57330	$0,\!34370$	$0,\!83050$	0,0380
C4	2i	0,5919(5)	0,1556(4)	0,9182(3)	
H4C	2i	$0,\!65360$	0,16200	$0,\!96350$	0,0370
H4D	2i	0,50940	$0,\!15670$	$0,\!95350$	0,0370
C5	2i	0,6594(5)	-0,0284(4)	$0,\!6396(3)$	
H5C	2i	0,73140	-0,02200	$0,\!59120$	$0,\!0450$
H5D	2i	$0,\!58660$	-0,03530	$0,\!60540$	$0,\!0450$
C6	2i	0,6901(5)	-0,1408(4)	0,7347(3)	
H6C	2i	0,72170	-0,21540	0,71540	0,0440
H6D	2i	$0,\!61430$	-0,15440	0,77830	0,0440
C7	2i	1,2776(4)	0,5359(4)	$0,\!6328(3)$	
C8	2i	1,3097(5)	0,5554(4)	0,7221(3)	
H8	2i	$1,\!33850$	$0,\!62900$	0,71650	0,0360
C9	2i	1,2993(5)	0,4668(4)	0,8191(3)	
H9	2i	1,31810	$0,\!48240$	$0,\!87830$	0,0340
C10	2i	1,2607(4)	0,3546(4)	0,8281(3)	
C11	2i	1,2280(5)	0,3346(4)	0,7397(3)	
H11	2i	1,20060	0,26020	0,74530	0,0410

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
C12	2i	1,2360(5)	0,4256(4)	0,6423(3)	
H12	2i	1,21300	0,41180	$0,\!58350$	0,0430
C13	2i	0,9681(4)	0,3899(4)	1,0702(3)	
H13	2i	$0,\!94670$	0,31640	$1,\!11770$	0,0330
C14	2i	0,9507(4)	0,4162(4)	0,9643(3)	
C15	2i	0,9830(4)	0,5274(4)	0,8947(3)	
H15	2i	0,97180	$0,\!54650$	0,82400	0,0330
C71	2i	1,2889(5)	0,6333(4)	0,5274(3)	
C101	2i	1,2582(4)	0,2535(4)	$0,\!9330(3)$	
C141	2i	$0,\!8996(5)$	0,3264(4)	$0,\!9263(3)$	
N1	2i	0,8908(4)	0,1040(3)	0,6713(3)	
H1A	2i	0,91480	0,03990	$0,\!64600$	0,0360
H1B	2i	0,86180	$0,\!17370$	$0,\!61850$	0,0360
N2	2i	0,8892(4)	0,0376(3)	0,8796(3)	
H2A	2i	0,87640	0,10150	$0,\!90570$	0,0360
H2B	2i	$0,\!88540$	-0,03430	$0,\!93250$	0,0360
N3	2i	0,7089(4)	0,2435(3)	0,7630(3)	
H3A	2i	0,76920	0,26760	0,79040	0,0320
H3B	2i	0,70240	$0,\!28970$	$0,\!69530$	0,0320
N4	2i	0,6305(4)	0,0367(3)	$0,\!8927(3)$	
H4A	2i	0,56210	0,01470	$0,\!87410$	0,0360
H4B	2i	0,66460	-0,02590	$0,\!94860$	0,0360
N5	2i	0,6302(4)	0,0845(3)	0,6745(3)	
H5A	2i	0,55110	0,09080	0,70250	0,0390
H5B	2i	$0,\!63440$	$0,\!15480$	$0,\!62000$	0,0390
N6	2i	0,7902(4)	-0,1153(3)	0,7923(3)	
H6A	2i	0,86790	-0,13550	0,76580	0,0380
H6B	2i	0,78800	-0,16240	$0,\!85980$	0,0380
01	2i	1,0336(5)	0,2687(4)	0,4687(3)	
O2	2i	0,9221(6)	0,4919(5)	0,6200(4)	
O3	2i	$0,\!6567(5)$	0,5559(4)	0,7637(4)	
O4	2i	0,7328(4)	0,1114(3)	0,3577(3)	
O5	2i	0,4252(7)	0,2808(10)	0,4264(4)	
O6	2i	0,2675(5)	0,1504(5)	0,5631(4)	
07	2i	0,3882(4)	0,0249(3)	0,8172(3)	

Tab. 6.27: Fortsetzung

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
08	2i	0,3170(3)	-0,2106(3)	0,8552(2)	
O9	2i	0,5341(4)	-0,3868(3)	0,9324(2)	
O10	2i	1,0098(4)	-0,1395(3)	$0,\!6527(3)$	
O10A	2i	1,2265(3)	0,1507(3)	$0,\!9363(2)$	
O10B	2i	1,2911(3)	0,2740(3)	1,0106(2)	
O14A	2i	0,8848(4)	0,3562(3)	0,8295(2)	
O14B	2i	0,8716(3)	0,2266(3)	0,9914(2)	
O71A	2i	1,2566(5)	0,6132(4)	0,4506(2)	
O71B	2i	1,3302(4)	0,7311(3)	0,5215(2)	
Co1	2i	0,75600(6)	0,06530(5)	0,77815(4)	

Verbindung

 der

Tab. 6.27: Fortsetzung

Tab. 6.28: Anisotrope thermische Auslenkungsparameter $[10^{-20} \text{ m}^2]$ ¹ {[Co(en)₂]BDC_{2/2}} · 10 H₂O mit Standardabweichung

Atom	U11	U22	U33	U12	U13	U23
C1	0,019(2)	0,039(2)	0,035(2)	-0,009(2)	0,005(2)	-0,013(2)
C2	0,030(3)	0,040(2)	0,032(2)	-0,003(2)	-0,001()	-0,012(2)
C3	0,024(3)	0,029(2)	0,041(2)	-0,003(2)	0,006(2)	-0,014(2)
C4	0,031(3)	0,035(2)	0,032(2)	-0,011(2)	0,005(2)	-0,015(2)
C5	0,055(4)	0,034(2)	0,030(2)	-0,018(2)	-0,012(2)	-0,008(2)
C6	0,056(4)	0,032(2)	0,028(2)	-0,016(2)	-0,005(2)	-0,012(2)
C7	0,035(3)	0,020(2)	0,017(2)	-0,003(2)	-0,003(2)	0,002(1)
C8	0,043(3)	0,020(2)	0,024(2)	-0,009(2)	-0,003(2)	-0,002(2)
C9	0,042(3)	0,023(2)	0,019(2)	-0,006(2)	-0,002(2)	-0,005(2)
C10	0,027(2)	0,0214(2)	0,021(2)	-0,004(2)	0,000(2)	-0,003(2)
C11	0,046(3)	0,027(2)	0,026(2)	-0,015(2)	-0,011(2)	0,003(2)
C12	0,052(3)	0,032(2)	0,023(2)	-0,018(2)	-0,009(2)	-0,002(2)
C13	0,035(3)	0,024(2)	0,025(2)	-0,010(2)	-0,002(2)	-0,006(2)
C14	0,025(3)	0,027(2)	0,026(2)	-0,006(2)	0,000(2)	-0,012(2)
C15	0,035(3)	0,030(2)	0,021(2)	-0,011(2)	-0,004(2)	-0,008(2)
C71	0,041(3)	0,028(2)	0,020(2)	-0,007(2)	-0,001(2)	-0,002(2)
C101	0,032(3)	0,022(2)	0,023(2)	-0,007(2)	-0,002(2)	-0,002(2)
C141	0,034(3)	0,029(2)	0,028(2)	-0,009(2)	-0,000(2)	-0,013(2)
N1	0,035(2)	0,029(2)	0,023(2)	-0,008(2)	0,003(2)	-0,004(1)
N2	0,040(3)	0,025(2)	0,024(2)	-0,008(2)	-0,005(2)	-0,004(1)

100.0.20.	rab. 0.20. rorbotzang							
Atom	U11	U22	U33	U12	U13	U23		
N3	0,030(2)	0,025(2)	0,023(2)	-0,007(2)	-0,003(2)	-0,004(1)		
N4	0,035(2)	0,029(2)	0,024(2)	-0,011(2)	-0,002(2)	-0,004(1)		
N5	0,043(3)	0,029(2)	0,023(2)	-0,014(2)	-0,004(2)	-0,003(2)		
N6	0,041(3)	0,027(2)	0,027(2)	-0,011(2)	0,001(2)	-0,008(2)		
O1	0,084(4)	0,062(3)	0,053(2)	-0,024(2)	-0,003(2)	-0,013(2)		
O2	0,157(6)	0,070(3)	0,074(3)	-0,063(3)	-0,049(3)	0,014(2)		
O3	0,081(4)	0,056(3)	0,094(3)	-0,016(2)	$0,\!013(3)$	-0,025(2)		
O4	$0,\!081(3)$	0,038(2)	0,034(2)	-0,001(2)	-0,011(2)	-0,008(2)		
O5	0,119(6)	0,321(1)	0,062(3)	-0,150(7)	-0,013(4)	0,015(5)		
O6	0,100(4)	0,073(3)	0,090(3)	-0,042(3)	0,040(3)	-0,042(3)		
07	0,043(2)	0,045(2)	0,045(2)	-0,018(2)	0,003(2)	-0,017(2)		
08	0,049(2)	0,037(2)	0,028(2)	-0,014(2)	-0,000(2)	-0,009(1)		
O9	0,048(2)	0,037(2)	0,037(2)	-0,013(2)	-0,004(2)	-0,005(1)		
O10	0,067(3)	0,046(2)	0,046(2)	-0,001(2)	0,009(2)	-0,021(2)		
O10A	0,043(2)	0,027(2)	0,025(2)	-0,015(1)	-0,004(1)	0,001(1)		
O10B	0,043(2)	0,028(2)	0,020(1)	-0,012(1)	-0,002(1)	-0,001(1)		
O14A	0,054(2)	0,045(2)	0,028(2)	-0,027(2)	-0,002(2)	-0,015(1)		
O14B	$0,\!053(2)$	0,032(2)	0,030(2)	-0,022(2)	0,001(2)	-0,011(1)		
O71A	0,111(4)	0,068(3)	0,020(2)	-0,056(3)	-0,008(2)	0,003(2)		
O71B	0,069(3)	0,030(2)	0,032(2)	-0,021(2)	0,000(2)	0,002(1)		
Co1	0,0264(3)	0,0180(2)	0,0165(2)	-0,0069(2)	-0,0019(2)	-0,0026(2)		

Tab. 6.28: Fortsetzung

Tab. 6.29: Ausgewählte interatomare Abstände [pm] mit Standardabweichung der Verbindung $\frac{1}{\infty} \left\{ [Co(en)_3] BDC_{3/2} \right\} \cdot 10 \, H_2O$

$\infty $ $[00(01)3$	JDDC3/2 5 10 1120		
C1-N1	149,5(6)	C12-H12	93,0
C1-C2	150,2(6)	$C13-C15^{i}$	139,2(5)
C1-H1C	97,0	C13-C14	139,7(5)
C1-H1D	97,0	C13-H13	$93,\!0$
C2-N2	147,5(6)	C14 - C15	139,5(6)
C2-H2C	97,0	C14-C141	149,9(5)
C2-H2D	97,0	$C15-C13^{i}$	139,2(5)
C3-N3	$147,\!6(6)$	C15-H15	$93,\!0$
C3-C4	$151,\!3(6)$	C71-O71A	$123,\!6(5)$
C3-H3C	97,0	C71–O71B	125,7(5)

Tab. 6.29: Fortsetzung			
C3-H3D	97,0	C101-O10B	125,2(5)
C4-N4	1.492(5)	C101-O10A	127,2(5)
C4-H4C	97,0	C141-O14B	126, 2(5)
C4-H4D	97,0	C141-O14A	126, 6(5)
C5-N5	149,4(6)	N1-Co1	196,7(4)
C5-C6	1.497(6)	N1-H1A	90,0
C5-H5C	97,0	N1-H1B	90,0
C5-H5D	97,0	N2-Co1	197,9(4)
C6-N6	150,5(6)	N2-H2A	90,0
C6-H6C	97,0	N2-H2B	90,0
C6-H6D	97,0	N3-Co1	195,1(3)
C7-C12	138,1(6)	N3–H3A	90,0
C7-C8	139,4(6)	N3-H3B	90,0
C7-C71	150,9(5)	N4-Co1	195,9(4)
C8-C9	138,4(5)	N4-H4A	90,0
С8-Н8	93,0	N4-H4B	90,0
C9-C10	138,7(5)	N5-Co1	196, 6(4)
С9-Н9	93,0	N5–H5A	90,0
C10-C11	138,6(6)	N5-H5B	90,0
C10-C101	151,2(5)	N6-Co1	197,6(4)
C11-C12	139,6(6)	N6-H6A	90,0
С11-Н11	93,0	N6-H6B	90,0

6 Appendix

(i) 2-x, 1-y, 2-z.

Tab. 6.30: Ausgewählte interatomare Winkel [°] mit Standardabweichung der Verbindung $\frac{1}{\infty} \left\{ [Co(en)_3]BDC_{3/2} \right\} \cdot 10 H_2O$

∞ [[00(01)3]-	SE 03/2 101120		
N1-C1-C2	107,8(4)	C14 - C15 - H15	119,6
N1-C1-H1C	110,2	O71A-C71-O71B	122,9(4)
C2-C1-H1C	110,2	O71A-C71-C7	118,3(4)
N1-C1-H1D	110,2	O71B-C71-C7	118,8(4)
C2-C1-H1D	110,2	O10B-C101-O10A	123,9(4)
H1C-C1-H1D	108,5	O10B-C101-C10	118,4(3)
N2-C2-C1	107,6(4)	O10A-C101-C10	117,6(3)
N2-C2-H2C	110,2	O14B-C141-O14A	123,2(4)
C1-C2-H2C	110,2	O14B-C141-C14	119,1(4)

Tab. 0.30. For tsetzung			
N2-C2-H2D	110,2	O14A-C141-C14	$1\overline{17,8(4)}$
C1-C2-H2D	110,2	C1-N1-Co1	108,4(3)
H2C-C2-H2D	108,5	C1-N1-H1A	110,0
N3-C3-C4	105,8(3)	Co1-N1-H1A	110,0
N3-C3-H3C	$110,\! 6$	C1-N1-H1B	110,0
C4-C3-H3C	$110,\! 6$	Co1-N1-H1B	110,0
N3-C3-H3D	$110,\! 6$	H1A-N1-H1B	108,4
C4-C3-H3D	$110,\! 6$	C2-N2-Co1	109,1(3)
H3C-C3-H3D	108,7	C2-N2-H2A	109,9
N4 - C4 - C3	$107,\!6(3)$	Co1-N2-H2A	109,9
N4-C4-H4C	110,2	C2-N2-H2B	109,9
C3-C4-H4C	110,2	Co1-N2-H2B	109,9
N4-C4-H4D	110,2	H2A-N2-H2B	108,3
C3-C4-H4D	110,2	C3-N3-Co1	109,1(3)
H4C-C4-H4D	108,5	C3-N3-H3A	109,9
N5 - C5 - C6	107,0(3)	Co1-N3-H3A	109,9
N5-C5-H5C	110,3	C3-N3-H3B	109,9
C6-C5-H5C	110,3	Co1-N3-H3B	109,9
N5-C5-H5D	110,3	H3A-N3-H3B	108,3
C6-C5-H5D	110,3	C4-N4-Co1	108,3(3)
H5C-C5-H5D	$108,\! 6$	C4-N4-H4A	110,0
C5-C6-N6	107,5(3)	Co1-N4-H4A	110,0
C5-C6-H6C	110,2	C4-N4-H4B	110,0
N6-C6-H6C	110,2	Co1-N4-H4B	110,0
C5-C6-H6D	110,2	H4A-N4-H4B	108,4
N6-C6-H6D	110,2	C5-N5-Co1	108,1(3)
H6C-C6-H6D	108,5	C5-N5-H5A	110,1
C12-C7-C8	118,8(3)	Co1-N5-H5A	110,1
C12-C7-C71	120,6(4)	C5-N5-H5B	110,1
C8-C7-C71	120,6(4)	Co1-N5-H5B	110,1
C9-C8-C7	121,0(4)	H5A-N5-H5B	108,4
С9-С8-Н8	119,5	C6-N6-Co1	108,6(3)
С7-С8-Н8	119,5	C6-N6-H6A	110,0
C8-C9-C10	120,0(4)	Co1-N6-H6A	110,0
С8-С9-Н9	120,0	C6-N6-H6B	110,0
С10-С9-Н9	120,0	Co1-N6-H6B	110,0

Tab. 6.30: Fortsetzung

rab. 0.50. For isetzung			
С11-С10-С9	119,4(4)	H6A-N6-H6B	108,3
C11-C10-C101	120,4(3)	N3-Co1-N4	86,26(15)
C9-C10-C101	120,2(3)	N3-Co1-N5	90,43(15)
C10 - C11 - C12	120,3(4)	N4-Co1-N5	$93,\!03(17)$
C10-C11-H11	119,8	N3-Co1-N1	89,96(16)
C12-C11-H11	119,8	N4-Co1-N1	$173,\!53(16)$
C7-C12-C11	120,4(4)	N5-Co1-N1	92,24(16)
C7-C12-H12	119,8	N3-Co1-N6	175,71(18)
C11-C12-H12	119,8	N4-Co1-N6	$91,\!30(16)$
$C15^{i}-C13-C14$	120,7(4)	N5-Co1-N6	86,17(16)
$C15^{i}-C13-H13$	119,6	N1-Co1-N6	92,79(16)
C14-C13-H13	$119,\! 6$	N3-Co1-N2	$92,\!61(15)$
C15 - C14 - C13	118,5(3)	N4-Co1-N2	88,99(16)
C15-C14-C141	120,8(3)	N5-Co1-N2	176,46(18)
C13-C14-C141	120,8(4)	N1-Co1-N2	85,93(16)
$C13^{i}-C15-C14$	120,8(4)	N6-Co1-N2	90,88(15)
$C13^{i}-C15-H15$	$119,\! 6$		
(i) 2-x, 1-y, 2-z.			

Tab. 6.30: Fortsetzung

$_{\infty}^{2} \Big\{ [\mathrm{Co(en)_{3}}] \mathrm{BTC} \Big\} \cdot 5{,}55 \,\mathrm{H_{2}O}$

∞ [[$\odot \circ (\circ i)$] \rightarrow] $\circ (\circ i)$ $2 \circ i 2 \circ$	
Summenformel	$(C_6H_{24}CoN_6)_2)(C_9H_3O_6)_2 \cdot 11,23(H_2O)$
Molare $Masse/g \cdot mol^{-1}$	1068,69
Kristallsystem	monoklin
Raumgruppe	$P2_1/c$
Diffraktometer	IPDS II
Strahlung	Mo-K α
Absorptionskorrektur	Numerisch [24]
Formeleinheiten Z	4
Gitterkonstanten /pm	a = 1660,0(2)
	b = 1600,3(1)
	c = 1980, 8(1)
/°	$\alpha = 90$
	$eta=97,\!95(1)$
	$\gamma = 90$
Volumen $/nm^3$	2,32337 (3)
Dichte /g·cm ⁻³	1,362
Kristallform	Nadel
Kristallgröße /mm	$0.6 \ge 0.2 \ge 0.1$
Kristallfarbe	orange
h k l range	
$h_{min/max}$	-21/20
k _{min/max}	-20/20
l _{min/max}	-25/25
$2 heta_{ m max}$	$27,37^{\circ}$
Reflexzahl	
gemessen	80297
unabhängig	11644
$\mu \ /\mathrm{mm}^{-1}$	0,72
R-Werte:	
Io $> 2\sigma(Io)$	R1 = 0,1128
	$\omega R2 = 0,3036$
all data	R1 = 0,1796
	$\omega R2 = 0.3372$

Tab. 6.31: Kristallographische Daten und Details der Röntgeneinkristallstrukturanalyse der Verbindung $^2_\infty \left\{ [\rm Co(en)_3] BTC \right\} \cdot 5,55 \, \rm H_2O$

Tab. 6.31: Fortsetzung

Table 0.01. For the change	
R _{int}	0,1250
$GooF = S_{all}$	0,982
Zahl der verfeinerten	
Parameter	614
F(000)	2223
$\Delta ho_{ m min/max} / e \cdot { m \AA}^{-3}$	-0,71/3,54

Tab. 6.32: Atomlagen und isotrope oder äquivalente thermische Auslenkungsparameter $[10^{-20} \text{ m}^2]$ der
Verbindung $^2_{\infty} \{ [Co(en)_3] BTC \} \cdot 5,55 H_2 O$

Atom	Wyckoff- Lage	Besetzung	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
C1	4e		0,4122(5)	0,1874(4)	0,0895(4)	
H1A	$4\mathrm{e}$		$0,\!36140$	0,21800	0,08720	0,0520
H1B	$4\mathrm{e}$		0,40040	0,12810	0,09050	$0,\!0520$
C2	$4\mathrm{e}$		$0,\!4550(5)$	0,2084(4)	0,0283(3)	
H2A	$4\mathrm{e}$		0,50130	$0,\!17180$	0,02690	$0,\!0510$
H2B	$4\mathrm{e}$		$0,\!41800$	0,20180	-0,01370	$0,\!0510$
C3	$4\mathrm{e}$		$0,\!6679(5)$	0,2600(6)	0,1966(4)	
H3A	$4\mathrm{e}$		0,72600	$0,\!25910$	$0,\!19460$	0,0700
H3B	$4\mathrm{e}$		$0,\!65250$	0,20710	0,21480	0,0700
C4	$4\mathrm{e}$		$0,\!6471(6)$	0,3308(6)	0,2410(4)	
H4A	$4\mathrm{e}$		$0,\!66790$	$0,\!31970$	0,28830	0,0760
H4B	$4\mathrm{e}$		$0,\!67060$	0,38260	$0,\!22750$	0,0760
C5	$4\mathrm{e}$		$0,\!4776(6)$	0,4882(5)	0,0941(4)	
H5A	$4\mathrm{e}$		$0,\!49170$	$0,\!54700$	0,09530	0,0670
H5B	$4\mathrm{e}$		$0,\!45070$	$0,\!47440$	0,04890	0,0670
C6	$4\mathrm{e}$		$0,\!4234(5)$	0,4690(5)	0,1464(5)	
H6A	$4\mathrm{e}$		$0,\!44820$	$0,\!48750$	$0,\!19110$	0,0670
H6B	$4\mathrm{e}$		$0,\!37140$	$0,\!49680$	$0,\!13520$	0,0670
C7	$4\mathrm{e}$		-0,0845(5)	0,3311(5)	0,0838(4)	
H7A	$4\mathrm{e}$		-0,09390	0,39100	0,08180	0,0600
H7B	$4\mathrm{e}$		-0,13650	0,30290	0,08090	0,0600
C8	$4\mathrm{e}$		-0,0387(6)	0,3033(5)	0,0255(4)	
H8A	$4\mathrm{e}$		0,00820	0,33880	0,02320	0,0660
H8B	$4\mathrm{e}$		-0,07390	0,30610	-0,01780	0,0660
C9	$4\mathrm{e}$		-0,0170(6)	0,0298(5)	0,1099(4)	
H9A	$4\mathrm{e}$		-0,04320	0,04060	0,06390	0,0670

Atom	Wyckoff- Lage	Besetzung	x/a	y/b	z/c	$\rm U_{iso}*/\rm U_{eq}$
H9B	4e		-0,00320	-0,02910	0,11400	0,0670
C10	$4\mathrm{e}$		-0,0706(5)	0,0539(5)	0,1603(4)	
H10A	$4\mathrm{e}$		-0,12180	0,02380	0,15180	0,0620
H10B	$4\mathrm{e}$		-0,04490	0,04110	0,20610	0,0620
C11	$4\mathrm{e}$		0,142(1)	0,216(1)	0,2521(9)	0,127(5)
H11A	$4\mathrm{e}$		$0,\!15050$	0,24950	0,29340	$0,\!1530$
H11B	$4\mathrm{e}$		$0,\!17370$	0,16540	0,26030	$0,\!1530$
C12	$4\mathrm{e}$		0,168(1)	0,258(1)	0,202(1)	0,154(7)
H12A	$4\mathrm{e}$		0,22430	0,24400	0,20090	0,1840
H12B	$4\mathrm{e}$		0,16580	0,31740	0,21250	0,1840
C13	$4\mathrm{e}$		0,3496(5)	0,2592(4)	0,3100(3)	
C14	$4\mathrm{e}$		0,1846(5)	0,3674(4)	0,4887(4)	
C15	$4\mathrm{e}$		0,3811(5)	0,5559(4)	0,3896(4)	
C16	$4\mathrm{e}$		0,1159(5)	0,4706(5)	0,1166(5)	
C17	$4\mathrm{e}$		0,1471(4)	0,7708(4)	0,1893(3)	
C18	$4\mathrm{e}$		0,3250(4)	0,6496(4)	0,0254(4)	
C131	$4\mathrm{e}$		0,3248(4)	0,3286(4)	0,3542(3)	
C132	$4\mathrm{e}$		0,2691(4)	0,3157(4)	0,3995(3)	
H132	$4\mathrm{e}$		0,24610	0,26310	0,40280	0,0430
C133	$4\mathrm{e}$		0,2472(4)	0,3809(4)	0,4401(3)	
C134	$4\mathrm{e}$		0,2837(4)	0,4576(4)	0,4372(3)	
H134	$4\mathrm{e}$		$0,\!27070$	0,50050	$0,\!46550$	0,0460
C135	$4\mathrm{e}$		0,3402(4)	0,4719(4)	0,3921(3)	
C136	$4\mathrm{e}$		0,3591(4)	0,4079(4)	0,3505(3)	
H136	$4\mathrm{e}$		0,39530	0,41770	0,31940	0,0490
C161	$4\mathrm{e}$		0,1579(5)	0,5545(4)	0,1139(4)	
C162	$4\mathrm{e}$		0,1370(4)	0,6203(4)	0,1520(4)	
H162	$4\mathrm{e}$		0,09750	0,61310	$0,\!18050$	0,0490
C163	$4\mathrm{e}$		0,1746(4)	0,6990(4)	0,1487(3)	
C164	$4\mathrm{e}$		0,2343(4)	0,7083(4)	0,1073(3)	
H164	$4\mathrm{e}$		0,25990	0,75980	$0,\!10530$	0,0440
C165	$4\mathrm{e}$		0,2572(4)	0,6423(4)	0,0684(3)	
C166	$4\mathrm{e}$		0,2171(4)	0,5658(4)	0,0698(4)	
H166	$4\mathrm{e}$		0,22930	0,52230	0,04180	0,0490
Co1	$4\mathrm{e}$		0,51531(6)	0,32240(5)	0,13403(4)	

Tab. 6.32: Fortsetzung

Tab. 6.32: Fortsetzung

Atom	Wyckoff- Lage	Besetzung	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
Co2	4e		0,01827(6)	0,19992(5)	0,13857(4)	
N1	$4\mathrm{e}$		0,4687(4)	0,2121(4)	0,1511(3)	
H1C	$4\mathrm{e}$		0,50870	$0,\!17400$	$0,\!15980$	0,0560
H1D	$4\mathrm{e}$		0,44180	0,21490	$0,\!18740$	0,0560
N2	$4\mathrm{e}$		0,4824(4)	0,2980(4)	0,0373(3)	
H2C	$4\mathrm{e}$		$0,\!44150$	0,33230	0,02050	$0,\!0570$
H2D	$4\mathrm{e}$		$0,\!52450$	0,30710	0,01410	$0,\!0570$
N3	$4\mathrm{e}$		0,6221(4)	0,2739(4)	0,1269(3)	
H3C	$4\mathrm{e}$		$0,\!61590$	$0,\!22490$	$0,\!10450$	$0,\!0540$
H3D	$4\mathrm{e}$		$0,\!65050$	0,30850	$0,\!10320$	$0,\!0540$
N4	$4\mathrm{e}$		0,5573(4)	0,3367(4)	0,2319(3)	
H4C	$4\mathrm{e}$		$0,\!54210$	0,38690	$0,\!24650$	0,0600
H4D	$4\mathrm{e}$		$0,\!53670$	$0,\!29680$	$0,\!25660$	0,0600
N5	$4\mathrm{e}$		0,5521(4)	0,4357(4)	0,1120(3)	
H5C	$4\mathrm{e}$		$0,\!58410$	$0,\!45760$	0,14800	0,0620
H5D	$4\mathrm{e}$		$0,\!58070$	$0,\!43340$	0,07660	0,0620
N6	$4\mathrm{e}$		0,4128(4)	0,3776(4)	0,1454(3)	
H6C	$4\mathrm{e}$		$0,\!37420$	0,36320	0,11090	0,0610
H6D	$4\mathrm{e}$		$0,\!39640$	0,36070	$0,\!18470$	0,0610
N7	$4\mathrm{e}$		-0,0323(5)	0,3085(5)	0,1470(4)	
$\rm H7C$	$4\mathrm{e}$		-0,06230	0,30700	$0,\!18150$	0,0870
H7D	$4\mathrm{e}$		$0,\!00650$	0,34750	$0,\!15670$	0,0870
N8	$4\mathrm{e}$		-0,0113(6)	0,2104(5)	0,0424(4)	
H8C	$4\mathrm{e}$		$0,\!03140$	$0,\!19740$	0,02090	0,0920
H8D	$4\mathrm{e}$		-0,05220	$0,\!17510$	0,02790	0,0920
N9	$4\mathrm{e}$		-0,0840(6)	0,1413(5)	0,1526(5)	
H9C	$4\mathrm{e}$		-0,10220	0,16170	0,19010	0,0950
H9D	$4\mathrm{e}$		-0,12240	0,15080	$0,\!11670$	0,0950
N10	$4\mathrm{e}$		$0,\!0586(5)$	0,0836(5)	0,1269(4)	
H10C	$4\mathrm{e}$		0,08930	0,08170	0,09290	0,0940
H10D	$4\mathrm{e}$		0,08860	0,06580	0,16550	0,0940
N11	$4\mathrm{e}$		$0,\!0536(6)$	0,1931(6)	0,2378(4)	
H11C	$4\mathrm{e}$		0,02390	0,22820	0,25990	0,0950
H11D	$4\mathrm{e}$		0,04620	0,14080	0,25260	0,0950
N12	$4\mathrm{e}$		0,1233(6)	0,2459(7)	$0,\!1320(5)$	

Atom	Wyckoff- Lage	Besetzung	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
H12C	4e		0,15140	0,21100	0,10840	0,1080
H12D	$4\mathrm{e}$		$0,\!11790$	$0,\!29510$	$0,\!10980$	$0,\!1080$
O13A	$4\mathrm{e}$		0,3788(3)	0,2790(3)	0,2571(2)	
O13B	$4\mathrm{e}$		0,3381(5)	$0,\!1860(3)$	0,3277(3)	
O14A	$4\mathrm{e}$		0,1616(7)	0,2968(4)	0,4959(6)	
O14B	$4\mathrm{e}$		0,1610(4)	0,4267(4)	0,5198(3)	
O15A	$4\mathrm{e}$		0,4281(3)	0,5672(3)	0,3463(3)	
O15B	$4\mathrm{e}$		0,3633(3)	$0,\!6121(3)$	0,4304(3)	
O16A	$4\mathrm{e}$		0,1406(4)	0,4119(4)	0,0836(4)	
O16B	$4\mathrm{e}$		0,0602(4)	0,4643(4)	0,1527(4)	
O17A	$4\mathrm{e}$		0,1146(4)	0,7541(3)	0,2408(3)	
O17B	$4\mathrm{e}$		0,1625(4)	0,8440(3)	0,1711(3)	
O18A	$4\mathrm{e}$		$0,\!3829(3)$	$0,\!6996(3)$	0,0460(3)	
O18B	$4\mathrm{e}$		0,3214(4)	0,6061(4)	-0,0265(3)	
O1	$4\mathrm{e}$		-0,2194(4)	0,1802(4)	0,0498(3)	
O2	$4\mathrm{e}$		0,2677(4)	0,3419(4)	0,0407(3)	
O3	$4\mathrm{e}$		-0,1407(4)	0,0981(4)	-0,0415(3)	
O4	$4\mathrm{e}$		0,5604(4)	0,4788(3)	0,3247(3)	
O5	$4\mathrm{e}$		0,3589(4)	0,3993(4)	-0,0538(3)	
O6	$4\mathrm{e}$		0,1564(8)	-0,0082(5)	0,2337(4)	
07	$4\mathrm{e}$		0,0695(5)	0,0673(6)	0,3450(6)	
O8	$4\mathrm{e}$		$0,\!3838(5)$	0,6262(4)	0,5723(3)	
O9	$4\mathrm{e}$	0,788	0,5425(4)	0,1852(4)	0,3149(3)	0,0500
O10	$4\mathrm{e}$	0,5	$0,\!6572(7)$	0,5352(7)	0,2277(5)	$0,\!052(3)$
O11	$4\mathrm{e}$	0,561	0,2246(6)	-0,0090(6)	$0,\!3738(5)$	0,0500
O12	$4\mathrm{e}$	$0,\!432$	0,0551(8)	0,2370(7)	$0,\!3970(6)$	0,0500
O13	$4\mathrm{e}$	$0,\!5$	0,5852(8)	0,5619(8)	0,2135(7)	$0,\!070(3)$
O14	$4\mathrm{e}$	$0,\!45$	0,0312(11)	$0,\!351(1)$	0,3179(9)	0,096(8)

Tab. 6.32: Fortsetzung

1ab. 0.5	² ${Co(en)_3}$	$\operatorname{BTC} \cdot 5,55 \operatorname{H}_{2}\mathrm{C}$) mit Standarda	bweichung) in j der	verbindung
Atom	U11	U22	U33	U12	U13	U23
C1	0,039(4)	0,041(4)	0,049(4)	-0,004(3)	0,007(3)	-0,003(3)
C2	0,053(5)	0,038(4)	0,034(3)	-0,008(3)	-0,001(3)	-0,005(3)
C3	0,044(5)	0,080(6)	0,048(5)	0,009(4)	-0,007(4)	0,000(4)
C4	0,058(6)	0,083(6)	0,045(5)	0,005(5)	-0,006(4)	-0,001(4)
C5	0,068(6)	0,041(4)	0,060(5)	0,011(4)	0,013(4)	0,002(3)
C6	0,048(5)	0,041(4)	0,083(6)	0,008(3)	0,017(4)	0,005(4)
C7	0,044(5)	0,048(4)	0,057(5)	0,004(3)	0,002(4)	0,004(3)
C8	0,061(5)	0,058(5)	0,044(4)	0,009(4)	0,002(4)	0,016(3)
C9	0,074(6)	0,041(4)	0,054(5)	-0,015(4)	0,016(4)	-0,004(3)
C10	0,044(5)	0,045(4)	0,066(5)	-0,004(3)	0,010(4)	0,012(4)
C13	0,046(4)	0,044(4)	0,035(4)	-0,002(3)	0,012(3)	-0,002(3)
C14	0,054(5)	0,039(4)	0,058(5)	0,002(3)	0,032(4)	0,007(3)
C15	0,048(5)	0,040(4)	0,047(4)	-0,008(3)	0,018(3)	-0,005(3)
C16	0,047(5)	0,036(4)	0,091(6)	-0,007(3)	0,039(5)	0,000(4)
C17	0,045(4)	0,042(4)	0,033(3)	-0,004(3)	0,009(3)	-0,002(3)
C18	0,037(4)	0,040(4)	0,047(4)	-0,006(3)	0,014(3)	0,001(3)
C131	0,035(4)	0,038(3)	0,030(3)	-0,001(3)	0,005(3)	-0,002(3)
C132	0,038(4)	0,038(3)	0,034(3)	-0,001(3)	0,010(3)	0,007(3)
C133	0,038(4)	0,038(3)	0,033(3)	0,002(3)	0,014(3)	0,006(3)
C134	0,043(4)	0,035(3)	0,040(4)	0,000(3)	0,015(3)	-0,001(3)
C135	0,039(4)	0,037(3)	0,042(4)	-0,005(3)	0,012(3)	-0,003(3)
C136	0,045(4)	0,045(4)	0,035(3)	-0,002(3)	0,013(3)	0,000(3)
C161	0,045(4)	0,034(4)	0,060(5)	-0,004(3)	0,017(4)	-0,001(3)
C162	0,038(4)	0,044(4)	0,043(4)	-0,006(3)	0,015(3)	0,001(3)
C163	0,035(4)	0,041(4)	0,035(3)	-0,006(3)	0,007(3)	0,000(3)
C164	0,033(4)	0,044(4)	0,033(3)	-0,004(3)	0,006(3)	0,004(3)
C165	0,039(4)	0,039(4)	0,038(4)	0,000(3)	0,009(3)	0,004(3)
C166	0,036(4)	0,045(4)	0,045(4)	-0,003(3)	0,012(3)	0,002(3)
Co1	0,0328(5)	0,0337(5)	0,0295(4)	0,0015(4)	0,0092(4)	0,0000(3)
Co2	0,0321(5)	0,0399(5)	0,0315(5)	-0,0018(4)	0,0081(4)	-0,0018(4)
N1	0,044(4)	0,054(4)	0,044(3)	0,005(3)	0,012(3)	0,004(3)
N2	0,046(4)	0,049(4)	0,049(4)	0,003(3)	0,012(3)	-0,001(3)
N3	0,047(4)	0,045(3)	0,044(3)	0,002(3)	0,010(3)	-0,004(3)
N4	0,053(4)	0,049(4)	0,047(4)	0,000(3)	0,009(3)	-0,002(3)

 $[10^{-20} \text{ m}^2]$ Tab 6.33 Anisotrope thermische Auslenkungsparameter der Verbindung

Atom	U11	U22	U33	U12	U13	U23
N5	0,057(4)	0,050(4)	0,051(4)	-0,001(3)	0,019(3)	-0,006(3)
N6	0,055(4)	0,045(3)	0,055(4)	0,014(3)	0,020(3)	0,001(3)
N7	0,078(6)	0,073(5)	0,067(5)	0,000(4)	0,016(4)	0,005(4)
N8	0,082(6)	0,078(5)	0,071(5)	-0,003(4)	0,020(5)	0,004(4)
N9	0,097(7)	0,063(5)	0,083(6)	-0,012(4)	0,034(5)	-0,005(4)
N10	0,078(6)	0,088(6)	0,071(5)	0,003(5)	0,025(5)	0,010(4)
N11	0,082(6)	0,083(6)	0,073(5)	-0,008(5)	0,012(5)	0,005(4)
N12	0,076(6)	0,124(8)	0,071(6)	-0,026(6)	0,015(5)	0,020(5)
O13A	$0,\!058(3)$	0,055(3)	0,040(3)	-0,004(3)	0,025(3)	-0,003(2)
O13B	0,148(7)	0,040(3)	0,050(3)	0,001(3)	0,051(4)	0,000(2)
O14A	$0,\!21(1)$	0,042(4)	0,21(1)	-0,033(5)	0,184(9)	-0,029(5)
O14B	0,077(4)	0,062(4)	0,070(4)	-0,017(3)	0,046(3)	-0,023(3)
O15A	0,058(4)	0,044(3)	0,065(3)	-0,015(2)	0,032(3)	-0,008(2)
O15B	$0,\!058(3)$	0,038(3)	0,066(3)	-0,003(2)	0,028(3)	-0,007(2)
O16A	0,089(5)	0,039(3)	0,151(7)	-0,012(3)	0,077(5)	-0,013(4)
O16B	0,064(4)	0,047(3)	0,111(5)	-0,016(3)	0,049(4)	-0,007(3)
O17A	0,071(4)	0,052(3)	0,051(3)	-0,009(3)	0,037(3)	-0,003(2)
O17B	0,070(4)	0,043(3)	0,043(3)	-0,002(3)	0,020(3)	0,000(2)
O18A	0,039(3)	0,047(3)	0,059(3)	-0,006(2)	0,015(2)	0,002(2)
O18B	0,067(4)	0,063(3)	0,064(4)	-0,020(3)	0,040(3)	-0,021(3)
01	0,053(4)	0,066(4)	0,052(3)	-0,009(3)	0,006(3)	-0,003(3)
O2	0,053(4)	0,067(4)	0,069(4)	-0,002(3)	0,022(3)	-0,003(3)
O3	0,064(4)	$0,\!058(3)$	0,056(3)	$0,\!000(3)$	0,008(3)	0,010(3)
O4	0,081(4)	$0,\!050(3)$	0,056(3)	$0,\!000(3)$	0,022(3)	-0,003(3)
O5	0,073(4)	0,061(4)	0,058(4)	$0,\!013(3)$	0,018(3)	0,003(3)
O6	0,25(1)	0,078(5)	0,084(6)	$0,\!053(7)$	-0,012(7)	-0,019(4)
07	$0,\!070(5)$	$0,\!125(7)$	0,22(1)	0,004(5)	0,025(6)	0,096(8)
08	$0,\!097(5)$	0,061(4)	0,064(4)	0,008(3)	0,017(4)	0,009(3)

Tab. 6.33: Fortsetzung

$\sum_{\infty} \{[C0(en)\}$	$3]D10$ $(3,35)$ H_20		
C1-N1	1,487(9)	C18-O18A	1,274(8)
C1-C2	1,52(1)	C18 - C165	1,507(9)
C1-H1A	$0,\!97$	C131-C132	$1,\!389(9)$
C1-H1B	$0,\!97$	C131-C136	1,398(9)
C2-N2	1,508(9)	C132-C133	$1,\!395(9)$
C2–H2A	$0,\!97$	C132-H132	0,93
C2-H2B	$0,\!97$	C133-C134	1,372(9)
C3-N3	1,50(1)	C134 - C135	1,402(9)
C3-C4	1,50(1)	C134-H134	0,93
C3–H3A	$0,\!97$	C135 - C136	1,378(9)
C3-H3B	$0,\!97$	C136-H136	0,93
C4-N4	1,48(1)	C161 - C162	1,37(1)
C4–H4A	$0,\!97$	C161-C166	1,41(1)
C4-H4B	$0,\!97$	C162 - C163	1,410(9)
C5-C6	$1,\!49(1)$	C162 - H162	0,93
C5-N5	1,50(1)	C163-C164	1,381(9)
C5-H5A	$0,\!97$	C164 - C165	1,39(1)
C5-H5B	$0,\!97$	C164-H164	0,93
C6-N6	$1,\!47(1)$	C165 - C166	1,40(1)
C6-H6A	$0,\!97$	C166 - H166	$0,\!93$
C6-H6B	$0,\!97$	Co1-N2	1,957(6)
C7-N7	$1,\!47(1)$	Co1-N6	1,958(6)
C7-C8	1,53(1)	Co1-N3	1,959(6)
C7-H7A	$0,\!97$	Co1-N1	1,975(6)
C7-H7B	$0,\!97$	Co1-N4	1,981(6)
C8-N8	1,58(1)	Co1-N5	1,982(6)
C8–H8A	$0,\!97$	Co2-N8	1,908(8)
C8-H8B	$0,\!97$	Co2-N12	1,913(8)
C9-C10	$1,\!48(1)$	Co2-N7	1,947(8)
C9-N10	1,52(1)	Co2-N11	1,975(9)
С9-Н9А	$0,\!97$	Co2-N9	1,993(8)
С9-Н9В	0,97	Co2-N10	2,02(9)
C10-N9	1,42(1)	N1-H1C	0,9
C10-H10A	$0,\!97$	N1-H1D	0,9
C10-H10B	0,97	N2-H2C	0,9

Tab. 6.34: Ausgewählte interatomare Abstände [pm] mit Standardabweichung der Verbindung $^2_{\infty}$ {[Co(en)₃]BTC } \cdot 5,55 H₂O

Tab. 6.34: Fortsetzung			
C11-C12	1,33(2)	N2-H2D	0,9
C11-N11	1,50(2)	N3-H3C	0,9
C11-H11A	0,97	N3-H3D	0,9
C11-H11B	0,97	N4-H4C	0,9
C12-N12	1,49(2)	N4-H4D	0,9
C12-H12A	0,97	N5-H5C	0,9
C12-H12B	0,97	N5-H5D	0,9
C13-O13B	1,245(9)	N6-H6C	0,9
C13–O13A	1,254(8)	N6-H6D	0,9
C13-C131	1,507(9)	N7-H7C	0,9
C14-O14A	1,206(9)	N7-H7D	0,9
C14-O14B	1,225(9)	N8-H8C	0,9
C14-C133	1,528(9)	N8-H8D	0,9
C15-O15A	1,250(8)	N9-H9C	0,9
C15-O15B	1,271(8)	N9-H9D	0,9
C15 - C135	1,509(9)	N10-H10C	0,9
C16-O16A	1,25(1)	N10-H10D	$0,\!9$
C16-O16B	1,249(9)	N11-H11C	0,9
C16 - C161	1,52(1)	N11-H11D	$0,\!9$
C17-O17A	1,247(8)	N12-H12C	0,9
C17-O17B	1,263(8)	N12-H12D	0,9
C17-C163	1,509(9)	O10-O13	1,26(2)
C18-O18B	1,235(9)		

Tab. 6.35: Ausgewählte interatomare Winkel [°] mit Standardabweichung der Verbindung $2 \propto \{ [Co(en)_3] BTC \} \cdot 5,55 H_2 O$

$\infty ([)]$			
N1-C1-C2	106,4(6)	C164 - C163 - C162	118,9(6)
N1-C1-H1A	110,4	C164 - C163 - C17	122,0(6)
С2-С1-Н1А	110,4	C162 - C163 - C17	119,1(6)
N1-C1-H1B	110,4	C163 - C164 - C165	121,4(6)
С2-С1-Н1В	110,4	C163 - C164 - H164	119,3
H1A-C1-H1B	$108,\! 6$	C165 - C164 - H164	119,3
N2-C2-C1	106,4(6)	C164 - C165 - C166	119,2(6)
N2-C2-H2A	110,5	C164 - C165 - C18	122,4(6)
C1-C2-H2A	110,5	C166 - C165 - C18	118,4(6)

Tab. 6.35: Fortsetzung

Tab. 0.35. Fortsetzung			
N2-C2-H2B	110,5	C165 - C166 - C161	120,0(7)
C1-C2-H2B	110,5	C165 - C166 - H166	120,0
H2A-C2-H2B	$108,\! 6$	C161 - C166 - H166	120,0
N3-C3-C4	107,4(7)	N2-Co1-N6	94,2(3)
N3-C3-H3A	110,2	N2-Co1-N3	89,1(3)
C4-C3-H3A	110,2	N6-Co1-N3	175,7(3)
N3-C3-H3B	110,2	N2-Co1-N1	85,8(3)
C4-C3-H3B	110,2	N6-Co1-N1	90, 9(3)
H3A-C3-H3B	108,5	N3-Co1-N1	92,2(3)
N4-C4-C3	106,7(7)	N2-Co1-N4	$173,\!6(3)$
N4-C4-H4A	110,4	N6-Co1-N4	91,7(3)
C3-C4-H4A	110,4	N3-Co1-N4	85,2(3)
N4-C4-H4B	110,4	N1-Co1-N4	91,7(3)
C3-C4-H4B	110,4	N2-Co1-N5	91,1(3)
H4A-C4-H4B	$108,\! 6$	N6-Co1-N5	85,0(3)
C6-C5-N5	106, 2(6)	N3-Co1-N5	92,1(3)
C6-C5-H5A	110,5	N1-Co1-N5	174,7(3)
N5-C5-H5A	110,5	N4-Co1-N5	$91,\!9(3)$
C6-C5-H5B	110,5	N8-Co2-N12	90,5(4)
N5-C5-H5B	110,5	N8-Co2-N7	87,3(4)
H5A-C5-H5B	108,7	N12-Co2-N7	94,0(4)
N6-C6-C5	106, 1(7)	N8-Co2-N11	177,0(4)
N6-C6-H6A	110,5	N12-Co2-N11	86,6(4)
С5-С6-Н6А	110,5	N7-Co2-N11	92,1(4)
N6-C6-H6B	110,5	N8-Co2-N9	94,3(4)
С5-С6-Н6В	110,5	N12-Co2-N9	173,1(4)
H6A-C6-H6B	108,7	N7-Co2-N9	91,2(4)
N7-C7-C8	106,0(7)	N11-Co2-N9	88,7(4)
N7-C7-H7A	110,5	N8-Co2-N10	90,6(4)
С8-С7-Н7А	110,5	N12-Co2-N10	91,6(4)
N7-C7-H7B	110,5	N7-Co2-N10	174,0(4)
С8-С7-Н7В	110,5	N11-Co2-N10	90,3(4)
H7A-C7-H7B	108,7	N9-Co2-N10	83,3(3)
C7-C8-N8	105,8(6)	C1-N1-Co1	108,3(4)
С7-С8-Н8А	110,6	C1-N1-H1C	110,0
N8-C8-H8A	$110,\!6$	Co1-N1-H1C	110,0
			,

Tab. 6.35: Fortsetzung			
С7-С8-Н8В	110,6	C1-N1-H1D	110,0
N8-C8-H8B	$110,\! 6$	Co1-N1-H1D	110,0
H8A-C8-H8B	108,7	H1C-N1-H1D	108,4
C10-C9-N10	105,0(7)	C2-N2-Co1	110,1(4)
С10-С9-Н9А	110,8	C2-N2-H2C	$109,\! 6$
N10-C9-H9A	110,8	Co1-N2-H2C	$109,\! 6$
С10-С9-Н9В	110,8	C2-N2-H2D	$109,\! 6$
N10-C9-H9B	110,8	Co1-N2-H2D	$109,\! 6$
Н9А-С9-Н9В	108,8	H2C-N2-H2D	108,1
N9-C10-C9	106, 6(7)	C3-N3-Co1	110,0(5)
N9-C10-H10A	110,4	C3-N3-H3C	109,7
C9-C10-H10A	110,4	Co1-N3-H3C	109,7
N9-C10-H10B	110,4	C3-N3-H3D	109,7
C9-C10-H10B	110,4	Co1-N3-H3D	109,7
H10A-C10-H10B	$108,\! 6$	H3C-N3-H3D	108,2
C12-C11-N11	113,1(16)	C4-N4-Co1	108,9(5)
C12-C11-H11A	108,9	C4-N4-H4C	109,9
N11-C11-H11A	108,9	Co1-N4-H4C	109,9
С12-С11-Н11В	108,9	C4-N4-H4D	109,9
N11-C11-H11B	108,9	Co1-N4-H4D	109,9
H11A-C11-H11B	107,8	H4C-N4-H4D	108,3
C11 - C12 - N12	117(2)	C5-N5-Co1	107,2(5)
C11-C12-H12A	108,0	C5-N5-H5C	110,3
N12-C12-H12A	108,0	Co1-N5-H5C	110,3
C11-C12-H12B	108,0	C5-N5-H5D	110,3
N12-C12-H12B	108,0	Co1-N5-H5D	110,3
H12A-C12-H12B	107,2	H5C-N5-H5D	108,5
O13B-C13-O13A	124,3(7)	C6-N6-Co1	110,1(5)
O13B-C13-C131	117,7(6)	C6-N6-H6C	$109,\! 6$
O13A-C13-C131	117,9(6)	Co1-N6-H6C	$109,\! 6$
O14A-C14-O14B	122,6(7)	C6-N6-H6D	$109,\! 6$
O14A - C14 - C133	117,4(7)	Co1-N6-H6D	$109,\! 6$
O14B-C14-C133	120,0(6)	H6C-N6-H6D	108, 1
O15A - C15 - O15B	123,7(6)	C7-N7-Co2	111,0(6)
O15A - C15 - C135	118,6(6)	C7-N7-H7C	109,4
O15B - C15 - C135	117,7(6)	Co2-N7-H7C	109,4

Tab. 6.35: Fortsetzung

O16A-C16-O16B	124,2(7)	C7-N7-H7D	109,4
O16A - C16 - C161	117,5(6)	Co2-N7-H7D	109,4
O16B-C16-C161	118,2(7)	H7C-N7-H7D	108,0
O17A-C17-O17B	124,1(6)	C8-N8-Co2	108,8(6)
O17A-C17-C163	118,0(6)	C8-N8-H8C	109,9
O17B-C17-C163	117,8(6)	Co2-N8-H8C	109,9
O18B-C18-O18A	124,6(6)	C8-N8-H8D	109,9
O18B-C18-C165	118,2(6)	Co2-N8-H8D	109,9
O18A-C18-C165	117,2(6)	H8C-N8-H8D	108,3
C132-C131-C136	118,9(6)	C10-N9-Co2	110,7(6)
C132-C131-C13	121,7(6)	C10-N9-H9C	109,5
C136-C131-C13	119,4(6)	Co2-N9-H9C	109,5
C131-C132-C133	120,6(6)	C10-N9-H9D	109,5
C131-C132-H132	119,7	Co2-N9-H9D	109,5
C133-C132-H132	119,7	H9C-N9-H9D	108,1
C134-C133-C132	119,6(6)	C9-N10-Co2	105,9(6)
C134-C133-C14	119,7(6)	C9-N10-H10C	$110,\!6$
C132-C133-C14	120,7(6)	Co2-N10-H10C	$110,\!6$
C133 - C134 - C135	120,7(6)	C9-N10-H10D	$110,\!6$
C133-C134-H134	119,6	Co2-N10-H10D	$110,\!6$
C135-C134-H134	119,6	H10C-N10-H10D	108,7
C136 - C135 - C134	119,2(6)	C11-N11-Co2	108,9(8)
C136 - C135 - C15	120,1(6)	C11-N11-H11C	109,9
C134 - C135 - C15	120,7(6)	Co2-N11-H11C	109,9
C135 - C136 - C131	120,9(6)	C11-N11-H11D	109,9
C135-C136-H136	119,5	Co2-N11-H11D	109,9
C131-C136-H136	119,5	H11C-N11-H11D	108,3
C162 - C161 - C166	119,6(6)	C12-N12-Co2	109,1(9)
C162 - C161 - C16	120,6(6)	C12-N12-H12C	109,9
C166 - C161 - C16	119,8(6)	Co2-N12-H12C	109,9
C161-C162-C163	120,9(6)	C12-N12-H12D	109,9
C161 - C162 - H162	119,5	Co2-N12-H12D	109,9
C163-C162-H162	119,5	H12C-N12-H12D	108,3

6.2 Sepulchrat-Cobalt(III)-Carboxylate

6.2.1 Azentrische Sepulchrat-Cobalt(III)-Carboxylate

 $_{\infty}^{2} \left\{ \Lambda \text{-}[\text{Co(sep)}]_{2}\text{EDC}_{3} \right\} \cdot 16 \text{ H}_{2}\text{O}$

Tab. 6.36: Kristallographische Daten und Details der Röntgeneinkristallstrukturanalyse der Verbindung ${}^2_\infty \big\{ \Lambda \text{-}[\text{Co}(\text{sep})]_2 \text{EDC}_3 \big\} \cdot 16 \, \text{H}_2 \text{O}$

Summenformel	$C_{12}H_{30}CoN_8 \cdot 1,5(C_4H_2O_4) \cdot 16(H_2O)$
Molare $Masse/g \cdot mol^{-1}$	1321,13
Kristallsystem	monoklin
Raumgruppe	P21
	IPDS I
Strahlung	Mo-K α
Absorptionskorrektur	Numerisch [24]
Formeleinheiten Z	2
Gitterkonstanten /pm	a = 1356,0 (1)
	b = 1680,3 (1)
	c = 1420,9 (1)
/°	$\alpha = 90$
	$\beta = 72,56$ (2)
	$\gamma = 90$
Volumen $/nm^3$	3,0269 (4)
Dichte $/g \cdot cm^{-3}$	1,449
Kristallform	Plättchen
Kristallgröße /mm	$0,3 \ge 0,3 \ge 0,2$
Kristallfarbe	orange
h k l range	
$h_{min/max}$	-17/17
k _{min/max}	-21/20
$l_{min/max}$	-18/14
$2 heta_{\max}$	$27,5^{\circ}$
Reflexzahl	
gemessen	19511
unabhängig	12827
$\mu \ /\mathrm{mm^{-1}}$	0,64
R-Werte:	
Io $> 2\sigma(Io)$	R1 = 0,0773

Tab. 6.36: Fortsetzung	Tab. 6.36: Fortsetzung				
	$\omega R2 = 0,1982$				
all data	R1 = 0,1252				
	$\omega R2 = 0,2229$				
R _{int}	0,0470				
$GooF = S_{all}$	0,99				
Zahl der verfeinerten					
Parameter	749				
F(000)	1344				
$\Delta ho_{ m min/max} \ /e \cdot { m \AA}^{-3}$	-0,44/0,80				
Flack Parameter	0,04(2)				

Tab. 6.37: Atomlagen und isotrope oder äquivalente thermische Auslenkungsparameter $[10^{-20} \text{ m}^2]$ der Verbindung $^2_{\infty} \left\{ \Lambda \text{-}[\text{Co(sep)}]_2 \text{EDC}_3 \right\} \cdot 16 \text{ H}_2 \text{O}$

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
C1	2a	-0,5692(7)	0,0246(4)	0,0616(6)	
H1A	2a	-0,60420	-0,02190	0,07560	0,0420
H1B	2a	-0,50410	0,00780	0,05370	0,0420
C2	2a	-0,6399(7)	0,0666(4)	-0,0320(6)	
H2A	2a	-0,65180	0,03340	-0,09090	0,0450
H2B	2a	-0,70750	0,07880	-0,02640	0,0450
C3	2a	-0,3273(6)	0,2413(4)	0,0970(6)	
H3A	2a	-0,30680	$0,\!27390$	0,15730	0,0430
H3B	2a	-0,26480	0,22940	0,08140	0,0430
C4	2a	-0,4058(6)	0,2841(4)	0,0118(6)	
H4A	2a	-0,37910	0,33630	0,00370	0,0370
H4B	2a	-0,41980	0,25450	-0,05020	0,0370
C5	2a	-0,5779(6)	0,2551(5)	0,2549(6)	
H5A	2a	-0,60560	0,20820	0,27670	0,0460
H5B	2a	-0,56080	$0,\!29450$	0,30820	0,0460
C6	2a	-0,6569(6)	0,2874(4)	0,1616(6)	
H6A	2a	-0,63230	0,33750	0,14390	0,0420
H6B	2a	-0,72310	$0,\!29690$	0,17150	0,0420
C9	2a	-0,8236(7)	0,2530(5)	0,3516(6)	
H9A	2a	-0,81310	0,24590	0,28810	0,0500
H9B	2a	-0,84030	0,20180	0,37360	0,0500
C10	2a	-0,7250(7)	0,2875(5)	$0,\!4300(7)$	

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
H10A	2a	-0,66670	0,25030	0,44470	0,0500
H10B	2a	-0,70510	$0,\!33680$	0,40610	0,0500
C11	2a	-1,0291(7)	0,4698(5)	0,3699(7)	
H11A	2a	-1,02350	0,46040	0,30460	0,0550
H11B	2a	-1,09040	0,50300	0,36090	0,0550
C12	2a	-0,9317(7)	0,5088(5)	$0,\!4391(7)$	
H12A	2a	-0,91760	0,55710	0,40870	0,0560
H12B	2a	-0,94080	0,52280	0,50180	0,0560
C13	2a	-0,9818(6)	0,2485(5)	0,5928(6)	
H13A	2a	-1,04720	$0,\!27760$	0,57980	0,0430
H13B	2a	-0,98910	$0,\!19610$	0,61810	0,0430
C14	2a	-0,8906(7)	0,2927(5)	0,6674(6)	
H14A	2a	-0,82680	0,26100	$0,\!68510$	0,0460
H14B	2a	-0,90510	0,30370	0,72820	0,0460
C17	2a	-0,8111(8)	0,4576(6)	0,2202(8)	
C18	2a	-0,6490(9)	0,5514(7)	0,0721(10)	
C19	2a	-0,4081(6)	0,4321(4)	0,2373(6)	
C20	2a	-0,2590(7)	0,6074(4)	0,4058(6)	
C21	2a	-0,087(1)	0,4704(9)	$0,\!6365(9)$	
C22	2a	-0,226(1)	0,5773(7)	0,800(1)	
C71	2a	-0,4054(7)	0,1847(5)	0,3121(6)	
H71A	2a	-0,34290	0,21630	0,34590	$0,\!0520$
H71B	2a	-0,43690	$0,\!17100$	0,36150	0,0520
C72	2a	-0,4607(7)	0,0575(4)	0,2379(7)	
H72A	2a	-0,49000	0,04840	0,29010	$0,\!0510$
H72B	2a	-0,43380	0,00700	0,22420	$0,\!0510$
C73	2a	-0,3187(6)	0,1238(5)	0,2088(6)	
H73A	2a	-0,29690	0,07220	0,19250	0,0490
H73B	2a	-0,25520	0,15410	0,24350	0,0490
C81	2a	-0,6517(6)	0,1929(5)	-0,1248(5)	
H81A	2a	-0,61340	0,20510	-0,16910	0,0410
H81B	2a	-0,71480	0,16360	-0,16360	0,0410
C82	2a	-0,5947(6)	0,3239(4)	-0,0535(6)	
H82A	2a	-0,62010	0,37270	-0,03360	0,0370
H82B	2a	-0,57020	$0,\!33650$	-0,10810	0,0370

Tab. 6.37: Fortsetzung

1		1	/1	,	TT 4/TT
Atom	Wyckoff- Lage	x/a	y/b	z/c	U_{iso}^*/U_{eq}
C83	2a	-0,7376(6)	0,2574(5)	-0,0226(7)	
H83A	2a	-0,79580	0,22080	-0,05240	0,0520
H83B	2a	-0,76740	0,30840	-0,01490	$0,\!0520$
C151	2a	-1,0489(7)	0,2130(5)	0,4108(7)	
H15A	2a	-1,02950	0,16350	0,38670	$0,\!0580$
H15B	2a	-1,10550	0,20110	$0,\!43540$	$0,\!0580$
C152	2a	-1,0182(8)	0,2751(5)	0,2753(6)	
H15E	2a	-1,05030	0,30980	0,21810	$0,\!0560$
H15F	2a	-1,00780	0,22350	0,24950	$0,\!0560$
C153	2a	-1,1239(7)	0,3397(6)	0,3534(7)	
H15C	2a	-1,17320	0,32890	0,38730	0,0580
H15D	2a	-1,16190	0,36820	$0,\!29170$	0,0580
C161	2a	-0,7811(7)	0,4117(5)	0,6727(7)	
H16A	2a	-0,79920	0,46340	0,69210	0,0550
H16B	2a	-0,74520	0,38220	0,73400	0,0550
C162	2a	-0,7436(6)	0,4780(5)	0,5376(7)	
H16C	2a	-0,68830	$0,\!48150$	0,50930	0,0470
H16D	2a	-0,75330	0,53060	0,56130	0,0470
C163	2a	-0,6691(6)	0,3523(5)	0,5966(7)	
H16E	2a	-0,63580	0,32110	0,65700	$0,\!0540$
H16F	2a	-0,61510	0,36680	0,56960	$0,\!0540$
C171	2a	-0,7767(8)	$0,\!4885(5)$	0,1387(8)	
H171	2a	-0,82400	$0,\!48670$	0,07270	0,0660
C172	2a	-0,6871(9)	0,5167(5)	0,1548(9)	
H172	2a	-0,63980	0,51710	0,22090	0,0710
C191	2a	-0,3770(6)	0,5129(4)	0,2805(6)	
H191	2a	-0,41500	0,55650	0,24590	0,0380
C192	2a	-0,2984(6)	0,5253(4)	0,3656(6)	
H192	2a	-0,26500	$0,\!48130$	0,40310	0,0410
C211	2a	-0,1673(9)	0,5110(7)	0,6718(9)	
H211	2a	-0,23700	0,51290	0,62800	0,0830
C212	2a	-0,143(1)	0,5442(8)	0,7616(9)	
H212	2a	-0,07280	$0,\!54720$	0,80300	0,0950
N1	2a	-0,5473(5)	0,0843(3)	0,1447(5)	

Tab. 6.37: Fortsetzung

H1

2a

-0,60670

0,08730

0,16030

0,0400

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
N2	2a	-0,5841(5)	0,1411(4)	-0,0403(5)	0,032(1)
H2	2a	-0,52750	$0,\!12630$	-0,05640	0,0380
N3	2a	-0,3783(5)	0,1653(3)	0,1132(5)	
H3	2a	-0,37970	$0,\!13180$	0,06250	0,0390
N4	2a	-0,5034(5)	0,2922(4)	0,0347(5)	
H4	2a	-0,48980	0,32930	0,08440	0,0370
N5	2a	-0,4815(5)	0,2342(3)	0,2321(5)	
H5	2a	-0,44810	0,28090	0,23060	0,0400
N6	2a	-0,6722(5)	0,2272(4)	0,0790(5)	
H6	2a	-0,70690	0,18490	0,09270	0,0380
N7	2a	-0,3739(5)	$0,\!1123(3)$	0,2756(5)	
N8	2a	-0,6824(5)	0,2667(3)	-0,0896(5)	0,028(1)
N9	2a	-0,9090(6)	0,3096(4)	0,3401(5)	
H9	2a	-0,89710	$0,\!35290$	0,30710	0,0510
N10	2a	-0,7512(5)	0,3019(4)	0,5204(5)	
H10	2a	-0,75180	$0,\!25380$	0,54950	0,0450
N11	2a	-1,0380(5)	0,3923(4)	0,4193(6)	
H11	2a	-1,05680	$0,\!40520$	0,47280	0,0500
N12	2a	-0,8424(5)	0,4523(4)	$0,\!4589(6)$	0,041(2)
H12	2a	-0,82840	0,44990	0,40090	0,0490
N13	2a	-0,9555(5)	0,2422(4)	0,4977(5)	
H13	2a	-0,90360	$0,\!20510$	0,50930	0,0420
N14	2a	-0,8769(5)	0,3707(4)	0,6174(5)	
H14	2a	-0,93110	0,40310	$0,\!61590$	0,0430
N15	2a	-1,0881(5)	0,2662(4)	0,3280(5)	
N16	2a	-0,7113(5)	0,4227(4)	0,6225(6)	
01	2a	-0,0218(7)	$0,\!3523(6)$	0,8754(7)	
O2	2a	-0,4199(6)	0,3621(5)	0,7675(6)	
O3	2a	-0,3167(9)	0,3501(5)	0,4927(6)	
O4	2a	-0,4251(12)	0,5804(11)	0,5530(9)	
O5	2a	-0,5249(5)	0,6964(5)	0,2822(5)	
O6	2a	-0,4527(9)	0,4211(9)	0,572(1)	
07	2a	-0,2208(7)	0,3674(10)	-0,0924(8)	
08	2a	-0,221(2)	0,2062(8)	-0,1106(12)	
O9	2a	-0,9020(9)	0,1150(7)	-0,2048(7)	

Tab. 6.37: Fortsetzung

Atom	Wyckoff- Lage	x/a	y/b	z/c	$\rm U_{iso}{}^{*}/\rm U_{eq}$
O10	2a	-1,380(1)	0,1052(7)	0,599(1)	
O11	2a	-1,2308(7)	$0,\!1876(8)$	0,5594(8)	
O12	2a	-1,094(1)	0,2079(10)	0,765(1)	
O13	2a	-0,9322(6)	0,2915(6)	0,0626(7)	
O14	2a	-1,150(2)	0,429(1)	0,1080(8)	
O15	2a	-0,8574(8)	0,4437(6)	-0,1361(7)	
O17A	2a	-0,8980(6)	0,4208(4)	0,1969(6)	
O17B	2a	-0,7522(6)	0,4716(4)	0,3119(6)	
O18A	2a	-0,6828(6)	0,5247(4)	-0,0158(7)	
O18B	2a	-0,5857(6)	0,6089(4)	0,1014(6)	
O19A	2a	-0,3717(5)	0,3716(3)	0,2918(4)	
O19B	2a	-0,4698(4)	0,4284(3)	0,1490(4)	
O20A	2a	-0,1702(5)	$0,\!6094(3)$	0,4739(4)	
O20B	2a	-0,3124(4)	0,6662(3)	0,3652(4)	
O21A	2a	-0,1247(6)	0,4188(5)	0,5710(6)	
O21B	2a	0,0076(7)	0,5007(5)	0,6665(5)	
O22A	2a	-0,2033(10)	$0,\!6003(6)$	0,8826(8)	
O22B	2a	-0,3175(9)	0,5821(6)	0,7417(8)	
Co1	2a	-0,52787(7)	0,19015(5)	0,09353(7)	
Co2	2a	-0,89710(7)	0,34427(5)	0,47580(7)	

Tab. 6.37: Fortsetzung

Tab. 6.38:	Anisotrope	thermische	Auslenkungsparameter	$[10^{-20} \mathrm{m}^2]$	der	Verbindung
	${}^2_{\infty} \left\{ \Lambda \text{-}[\text{Co(sep)}] \right\}$	$_{2}\text{EDC}_{3}$ $\} \cdot 16 \text{H}_{2}$	O mit Standardabweichung			

Atom	U11	U22	U33	U12	U13	U23
C1	0,045(5)	0,022(4)	0,033(4)	-0,009(3)	0,007(4)	-0,015(3)
C2	0,046(5)	0,026(4)	0,039(5)	0,003(3)	0,012(4)	-0,004(3)
C3	0,036(4)	0,036(4)	0,038(5)	0,001(3)	0,016(4)	-0,004(3)
C4	0,038(4)	0,029(4)	0,031(4)	-0,008(3)	0,018(4)	-0,003(3)
C5	0,047(5)	0,044(4)	0,033(5)	-0,005(4)	0,024(4)	-0,006(4)
C6	0,033(4)	0,030(4)	$0,\!050(5)$	-0,009(3)	0,024(4)	-0,012(4)
C9	0,067(6)	0,031(4)	0,040(5)	0,010(4)	$0,\!036(5)$	0,003(4)
C10	0,043(5)	0,043(4)	0,046(5)	0,016(4)	0,026(4)	0,006(4)
C11	0,058(6)	0,035(4)	0,041(5)	0,010(4)	0,015(5)	0,006(4)
C12	$0,\!059(6)$	0,029(4)	$0,\!045(5)$	0,010(4)	0,012(5)	-0,009(4)

Atom	U11	U22	U33	U12	U13	U23
C13	0,038(4)	0,039(4)	0,031(4)	0,001(4)	0,012(4)	0,012(3)
C14	0,044(5)	0,050(5)	0,020(4)	0,009(4)	0,013(4)	0,006(3)
C17	0,055(6)	0,054(6)	0,045(6)	0,013(5)	0,024(5)	0,010(5)
C18	$0,\!051(6)$	0,057(6)	0,079(9)	0,005(5)	0,026(6)	0,033(6)
C19	0,035(4)	0,019(3)	0,030(4)	-0,002(3)	0,005(4)	0,002(3)
C20	0,059(6)	0,027(4)	0,022(4)	-0,009(4)	0,011(4)	-0,008(3)
C21	0,09(1)	0,11(1)	0,042(7)	0,047(8)	0,047(7)	0,019(7)
C22	0,09(1)	0,063(7)	0,082(10)	0,039(7)	0,048(8)	0,013(6)
C71	0,061(5)	0,033(4)	0,030(4)	0,005(4)	0,010(4)	-0,005(4)
C72	0,054(5)	0,019(3)	0,037(5)	-0,003(3)	-0,007(4)	0,009(3)
C73	0,034(4)	0,037(4)	0,040(5)	0,004(4)	-0,001(4)	-0,009(4)
C81	0,044(4)	0,026(3)	0,019(4)	-0,003(4)	-0,004(3)	-0,004(3)
C82	0,041(4)	0,020(4)	0,025(4)	-0,007(3)	0,003(4)	0,000(3)
C83	0,033(4)	0,036(4)	0,052(6)	0,008(4)	0,004(4)	0,004(4)
C151	0,047(5)	0,045(5)	0,039(5)	-0,008(4)	-0,002(4)	0,001(4)
C152	0,066(6)	0,046(5)	0,019(4)	-0,017(4)	0,002(4)	-0,008(4)
C153	0,049(5)	0,046(5)	0,037(5)	-0,003(4)	-0,002(4)	-0,003(4)
C161	0,043(5)	0,041(5)	0,043(5)	0,004(4)	0,004(4)	-0,010(4)
C162	0,034(4)	0,031(4)	0,045(5)	-0,002(3)	0,004(4)	-0,001(4)
C163	0,030(4)	0,041(4)	0,062(6)	0,005(4)	0,012(4)	0,012(4)
C171	0,066(7)	0,042(5)	0,067(7)	0,012(5)	0,038(6)	0,025(5)
C172	0,079(8)	0,035(5)	0,077(8)	0,013(5)	0,046(6)	0,032(5)
C191	0,039(4)	0,017(3)	0,034(5)	-0,006(3)	0,009(4)	-0,003(3)
C192	0,039(4)	0,024(4)	0,034(5)	-0,008(3)	0,007(4)	0,009(3)
C211	0,072(7)	0,071(7)	0,074(8)	0,027(6)	0,039(6)	0,005(6)
C212	$0,\!095(9)$	0,092(8)	0,064(8)	0,050(7)	0,044(7)	0,011(7)
N1	0,050(4)	0,017(3)	0,036(4)	0,000(3)	0,018(3)	-0,006(3)
N3	0,035(4)	0,030(3)	0,030(4)	0,012(3)	0,009(3)	-0,001(3)
N4	0,038(4)	0,028(3)	0,028(4)	-0,001(3)	0,014(3)	0,003(3)
N5	0,044(4)	0,022(3)	0,027(4)	0,000(3)	0,006(3)	0,000(3)
N6	0,040(4)	0,024(3)	0,034(4)	-0,006(3)	0,015(3)	-0,005(3)
N7	0,043(4)	0,018(3)	0,035(4)	-0,002(3)	-0,007(3)	0,005(3)
N9	0,056(5)	0,036(4)	0,027(4)	0,000(3)	0,004(3)	0,001(3)
N10	0,038(4)	0,037(3)	0,038(4)	0,003(3)	0,015(3)	-0,004(3)
N11	0,034(4)	0,031(3)	$0,\!057(5)$	0,006(3)	0,012(4)	0,002(3)

Tab. 6.38: Fortsetzung

Atom	U11	U22	U33	U12	U13	U23
N13	0,044(4)	0,027(3)	0,036(4)	-0,002(3)	0,015(3)	0,000(3)
N14	0,039(4)	0,030(3)	0,034(4)	0,004(3)	0,007(3)	-0,008(3)
N15	0,034(4)	0,038(4)	0,026(4)	-0,002(3)	-0,009(3)	0,004(3)
N16	0,035(4)	0,028(3)	0,044(4)	-0,003(3)	-0,001(3)	-0,006(3)
01	0,083(5)	0,106(6)	0,089(6)	-0,011(5)	0,041(5)	0,002(5)
O2	0,070(5)	0,090(6)	0,074(5)	0,012(4)	0,017(4)	-0,004(4)
O3	0,19(1)	0,064(5)	0,066(6)	-0,035(6)	0,022(6)	0,003(5)
O4	0,19(1)	0,30(2)	0,081(9)	0,11(2)	0,052(9)	0,05(1)
O5	0,059(4)	0,084(5)	0,058(4)	0,009(4)	0,021(4)	0,006(4)
O6	0,101(8)	0,22(2)	0,18(1)	0,015(8)	0,089(9)	0,08(1)
07	0,068(6)	0,26(2)	0,077(7)	-0,021(7)	0,033(5)	-0,013(8)
08	0,31(2)	0,13(1)	0,21(1)	-0,07(1)	0,20(2)	-0,03(1)
O9	0,16(1)	0,139(9)	0,073(6)	-0,119(8)	0,019(6)	-0,023(6)
O10	0,15(1)	0,126(9)	0,18(1)	-0,015(8)	0,11(1)	-0,013(9)
O11	0,064(5)	0,21(1)	0,112(8)	-0,025(7)	0,030(5)	-0,077(9)
O12	0,21(1)	0,22(2)	0,13(1)	-0,13(1)	0,11(1)	-0,09(1)
O13	0,066(5)	0,130(8)	0,090(7)	-0,010(5)	0,039(5)	-0,007(6)
O14	0,38(2)	0,31(2)	0,054(7)	$0,\!30(2)$	0,03(1)	0,047(9)
O15	0,129(8)	0,091(6)	0,084(6)	-0,023(6)	0,064(6)	-0,012(5)
O17A	0,075(5)	0,065(4)	0,063(5)	0,002(4)	0,032(4)	0,012(4)
O17B	0,080(5)	0,065(5)	0,076(6)	-0,013(4)	0,024(5)	0,016(4)
O18A	0,054(4)	0,066(4)	0,078(6)	0,000(3)	0,028(4)	0,040(4)
O18B	0,081(5)	0,039(4)	0,084(6)	0,014(3)	0,050(4)	0,025(3)
O19A	0,050(4)	0,030(3)	0,037(3)	-0,011(2)	-0,004(3)	0,001(2)
O19B	0,049(3)	0,021(2)	0,032(3)	-0,001(2)	0,001(3)	-0,005(2)
O20A	0,053(4)	0,028(3)	0,037(4)	-0,013(3)	0,001(3)	0,001(2)
O20B	0,042(3)	0,023(2)	0,032(3)	-0,003(2)	0,008(3)	-0,006(2)
O21A	0,091(6)	0,071(5)	0,053(5)	0,047(4)	0,034(4)	0,012(4)
O21B	0,069(5)	0,115(6)	0,039(4)	0,052(5)	0,020(4)	0,012(4)
O22A	0,184(11)	0,096(6)	0,094(7)	0,073(7)	0,100(8)	0,031(6)
O22B	0,117(8)	0,089(6)	0,111(8)	0,019(6)	0,082(7)	-0,011(6)
Co1	0,0277(5)	0,0179(4)	0,0190(5)	-0,0003(4)	0,0062(4)	-0,0012(4)
Co2	0,0291(5)	0,0217(4)	0,0218(5)	0,0025(4)	0,0066(4)	-0,0014(4)

Tab. 6.38: Fortsetzung

$\infty \int M - [CO(sep$	$[]_{2} = D \cup_{3} \cdot 10 = 12 \cup 0$		
C1-N1	$149,\!6(9)$	C73-H73B	97,0
C1-C2	151(1)	C81-N8	145(1)
C1–H1A	97.	C81-N2	150(1)
C1-H1B	97,0	C81-H81A	97,0
C2-N2	149(1)	C81-H81B	97,0
C2-H2A	97,0	C82-N8	147,1(9)
C2-H2B	97,0	C82-N4	151(1)
C3-C4	148(1)	C82-H82A	97,0
C3-N3	151(1)	C82-H82B	97,0
C3–H3A	97,0	C83-N8	141(1)
C3-H3B	97,0	C83-N6	1.49(1)
C4-N4	147,8(9)	C83-H83A	97,0
C4–H4A	97,0	C83-H83B	97,0
C4-H4B	97,0	C151-N15	142(1)
C5-C6	148(1)	C151-N13	150(1)
C5-N5	150(1)	C151-H15A	97,0
C5-H5A	97,0	C151-H15B	97,0
C5-H5B	97,0	C152-N15	141(1)
C6-N6	151(1)	C152-N9	155(1)
C6-H6A	97,0	C152-H15E	97,0
C6-H6B	97,0	C152-H15F	97,0
C9-N9	146(1)	C153-N15	142(1)
C9-C10	152(1)	C153-N11	150(1)
С9—Н9А	97,0	C153-H15C	97,0
С9-Н9В	97,0	C153-H15D	97,0
C10-N10	147(1)	C161-N16	139(1)
C10-H10A	97,0	C161-N14	143(1)
C10-H10B	97,0	C161-H16A	97,0
C11-C12	149(1)	C161-H16B	97,0
C11-N11	151(1)	C162-N16	1461(1)
C11-H11A	97,0	C162-N12	147(1)
C11-H11B	97,0	C162-H16C	97,0
C12 - N12	149(1)	C162-H16D	97,0
C12-H12A	97,0	C163-N16	142(1)
C12-H12B	97,0	C163-N10	151(1)

Tab. 6.39: Ausgewählte interatomare Abstände [pm] mit Standardabweichung der Verbindung $\frac{2}{\infty} \{ \Lambda - [Co(sep)]_2 EDC_3 \} \cdot 16 H_2 O$

Tab. 6.39: Fortsetzung

	,		
C13-C14	151(1)	C163-H16E	97,0
C13-N13	152(1)	C163-H16F	97,0
C13-H13A	97,0	C171-C172	125(1)
C13-H13B	97,0	C171-H171	$93,\!0$
C14-N14	153(1)	C172-H172	$93,\!0$
C14-H14A	97,0	C191-C192	131(1)
C14-H14B	97,0	C191-H191	$93,\!0$
C17-O17A	127(1)	C192-H192	$93,\!0$
C17-O17B	129(1)	C211 - C212	132(2)
C17-C171	149(1)	C211-H211	93,0
C18-O18A	125(1)	C212-H212	$93,\!0$
C18-O18B	126(1)	N1-Co1	197,5(6)
C18-C172	156(1)	N1-H1	$91,\!0$
C19-O19B	$123,\!9(9)$	N2-Co1	196,1(6)
C19-O19A	126,7(9)	N2-H2	$91,\!0$
C19-C191	148,7(9)	N3-Co1	199,0(6)
C20-O20B	1.239(10)	N3-H3	$91,\!0$
C20-O20A	125(1)	N4-Co1	198,6(6)
C20 - C192	152(1)	N4-H4	$91,\!0$
C21-O21A	124(2)	N5-Co1	198,5(6)
C21-O21B	131(2)	N5-H5	$91,\!0$
C21-C211	151(1)	N6-Co1	199,3(6)
C22-O22A	117(2)	N6-H6	$91,\!0$
C22-O22B	123(2)	N9-Co2	$196,\!6(7)$
C22-C212	151(2)	N9-H9	91,0
C71-N7	145(1)	N10-Co2	198,3(6)
C71-N5	149(1)	N10-H10	91,0
C71-H71A	97,0	N11-Co2	196,4(6)
C71–H71B	97,0	N11-H11	91,0
C72-N7	144(1)	N12-Co2	2,7(7)
C72-N1	149(1)	N12-H12	91,0
C72-H72A	97,0	N13-Co2	196(6)
C72-H72B	97,0	N13-H13	91,0
C73–N7	142(1)	N14-Co2	198,2(7)
C73-N3	150(1)	N14-H14	91,0
C73–H73A	97,0		

$_{\infty}^{2} \left\{ \Lambda \text{-}[\text{Co(sep)}]_{2} \text{EDC}_{3} \right\}$	$ ightarrow 16 \mathrm{H_2O}$		
N1-C1-C2	105,5(6)	N16 - C161 - H16B	108,4
N1-C1-H1A	110,6	N14 - C161 - H16B	108,4
C2-C1-H1A	110,6	$\rm H16A{-}C161{-}H16B$	$107,\!4$
N1-C1-H1B	110,6	N16 - C162 - N12	111,4(6)
C2-C1-H1B	110,6	N16-C162-H16C	109,3
H1A-C1-H1B	108,8	N12-C162-H16C	109,3
N2-C2-C1	106, 3(7)	N16-C162-H16D	109,4
N2-C2-H2A	110,5	N12-C162-H16D	109,3
C1-C2-H2A	110,5	H16C-C162-H16D	108,0
N2-C2-H2B	110,5	N16 - C163 - N10	113,1(6)
C1-C2-H2B	110,5	N16 - C163 - H16E	109,0
H2A-C2-H2B	108,7	N10-C163-H16E	109,0
C4-C3-N3	107,5(6)	N16 - C163 - H16F	109,0
С4-С3-Н3А	110,2	N10-C163-H16F	109,0
N3-C3-H3A	110,2	$\rm H16E{-}C163{-}H16F$	107,8
C4-C3-H3B	110,2	C172-C171-C17	123(1)
N3-C3-H3B	110,2	C172-C171-H171	118,5
НЗА-СЗ-НЗВ	108,5	C17-C171-H171	118,5
N4-C4-C3	107,7(6)	C171-C172-C18	125(1)
N4-C4-H4A	110,2	C171-C172-H172	117,8
C3-C4-H4A	110,2	C18 - C172 - H172	117,8
N4-C4-H4B	110,2	C192-C191-C19	122,9(7)
C3-C4-H4B	110,2	C192-C191-H191	118,6
H4A-C4-H4B	108,5	C19-C191-H191	$118,\! 6$
C6-C5-N5	107,7(6)	C191-C192-C20	$123,\!6(7)$
C6-C5-H5A	110,2	C191-C192-H192	118,2
N5-C5-H5A	110,2	C20 - C192 - H192	118,2
C6-C5-H5B	110,2	C212-C211-C21	124(1)
N5-C5-H5B	110,2	C212-C211-H211	118,3
H5A-C5-H5B	108,5	C21-C211-H211	118,2
C5-C6-N6	107,8(6)	C211-C212-C22	123(1)
С5-С6-Н6А	110,1	C211-C212-H212	$118,\! 6$
N6-C6-H6A	110,1	C22-C212-H212	118,6
С5-С6-Н6В	110,1	C72-N1-C1	111,8(6)
<u>N6-C6-H6B</u>	110,1	C72-N1-Co1	115,6(5)

Tab. 6.40: Ausgewählte interatomare Winkel [°] mit Standardabweichung der Verbindung ${}^{2} \int \Lambda_{2} [Co(sep)]_{2} EDC_{2} + 16 H_{2}O$

Tab. 6.40: Fortsetzung

0			
H6A-C6-H6B	108,5	C1-N1-Co1	109,2(5)
N9-C9-C10	106,9(6)	C72-N1-H1	$106,\! 6$
N9-C9-H9A	110,3	C1-N1-H1	$106,\! 6$
С10-С9-Н9А	110,3	Co1-N1-H1	$106,\! 6$
N9-C9-H9B	110,3	C2-N2-C81	111,5(6)
С10-С9-Н9В	110,3	C2-N2-Co1	108,1(5)
Н9А-С9-Н9В	$108,\! 6$	C81-N2-Co1	116,7(5)
N10-C10-C9	106, 3(6)	C2-N2-H2	106,7
N10-C10-H10A	110,5	C81-N2-H2	106,7
C9-C10-H10A	110,5	Co1-N2-H2	106,7
N10-C10-H10B	110,5	C73-N3-C3	114,0(6)
C9-C10-H10B	110,5	C73-N3-Co1	115,1(5)
H10A-C10-H10B	108,7	C3-N3-Co1	107,5(4)
C12-C11-N11	105,7(7)	C73-N3-H3	$106,\! 6$
С12-С11-Н11А	110,6	C3-N3-H3	$106,\! 6$
N11-C11-H11A	$110,\! 6$	Co1-N3-H3	$106,\! 6$
С12-С11-Н11В	$110,\! 6$	C4-N4-C82	112,5(6)
N11-C11-H11B	$110,\! 6$	C4-N4-Co1	108,1(4)
H11A-C11-H11B	108,7	C82-N4-Co1	116,3(4)
N12-C12-C11	108,4(6)	C4-N4-H4	106, 4
N12-C12-H12A	110,0	C82 - N4 - H4	106,4
C11-C12-H12A	110,0	Co1-N4-H4	106,4
N12-C12-H12B	110,0	C71 - N5 - C5	112,9(6)
C11-C12-H12B	110,0	C71-N5-Co1	116,0(5)
H12A-C12-H12B	108,4	C5-N5-Co1	108,0(5)
C14-C13-N13	105,5(6)	C71 - N5 - H5	106, 4
C14-C13-H13A	$110,\! 6$	C5-N5-H5	106, 4
N13-C13-H13A	$110,\! 6$	Co1-N5-H5	106, 4
C14-C13-H13B	$110,\! 6$	C83-N6-C6	113,3(6)
N13-C13-H13B	$110,\! 6$	C83-N6-Co1	115,6(5)
H13A-C13-H13B	108,8	C6-N6-Co1	105,7(5)
C13-C14-N14	107,4(6)	C83-N6-H6	$107,\!3$
C13-C14-H14A	110,2	C6-N6-H6	107,3
N14-C14-H14A	110,2	Co1-N6-H6	107,3
C13-C14-H14B	110,2	C73-N7-C72	$113,\!3(7)$
N14-C14-H14B	110,2	C73-N7-C71	114,8(6)
Tab. 6.40: Fortsetzung			
------------------------	--------------	------------------	--------------
H14A-C14-H14B	108,5	C72-N7-C71	111,5(7)
O17A-C17-O17B	122,7(9)	C83-N8-C81	114,9(6)
O17A-C17-C171	119(1)	C83-N8-C82	113,1(6)
O17B-C17-C171	118(1)	C81-N8-C82	112,5(6)
O18A-C18-O18B	125(1)	C9-N9-C152	112,0(7)
O18A-C18-C172	121(1)	C9-N9-Co2	107,3(5)
O18B-C18-C172	114(1)	C152-N9-Co2	114,9(5)
O19B-C19-O19A	123,7(6)	С9-N9-Н9	107,4
O19B-C19-C191	117,0(6)	C152-N9-H9	$107,\!4$
O19A-C19-C191	$119,\!3(7)$	Co2-N9-H9	$107,\!4$
O20B-C20-O20A	$125,\!6(7)$	C10 - N10 - C163	112,0(6)
O20B-C20-C192	118,7(7)	C10-N10-Co2	107,7(5)
O20A-C20-C192	115,5(7)	C163-N10-Co2	115,2(5)
O21A-C21-O21B	127,4(9)	C10-N10-H10	107,2
O21A-C21-C211	115(1)	C163 - N10 - H10	107,2
O21B-C21-C211	117(1)	Co2-N10-H10	107,2
O22A-C22-O22B	120(1)	C153-N11-C11	113,1(7)
O22A - C22 - C212	121(1)	C153-N11-Co2	116,2(5)
O22B-C22-C212	119(1)	C11-N11-Co2	$108,\!6(5)$
N7-C71-N5	114,2(6)	C153-N11-H11	106, 1
N7-C71-H71A	108,7	C11-N11-H11	106, 1
N5-C71-H71A	108,7	Co2-N11-H11	106, 1
N7-C71-H71B	108,7	C162 - N12 - C12	$114,\!6(7)$
N5-C71-H71B	108,7	C162-N12-Co2	116,7(5)
H71A-C71-H71B	$107,\! 6$	C12-N12-Co2	106,8(5)
N7-C72-N1	114,8(6)	C162 - N12 - H12	$105,\!9$
N7-C72-H72A	$108,\! 6$	C12-N12-H12	$105,\!9$
N1-C72-H72A	$108,\! 6$	Co2-N12-H12	$105,\!9$
N7-C72-H72B	$108,\! 6$	C151-N13-C13	111,0(6)
N1-C72-H72B	$108,\! 6$	C151-N13-Co2	115,2(5)
H72A-C72-H72B	$107,\! 6$	C13-N13-Co2	108,4(5)
N7-C73-N3	115,5(6)	C151-N13-H13	$107,\!3$
N7-C73-H73A	108,4	C13-N13-H13	$107,\!3$
N3-C73-H73A	108,4	Co2-N13-H13	$107,\!3$
N7-C73-H73B	108,4	C161 - N14 - C14	113,1(6)
N3-C73-H73B	108,4	C161-N14-Co2	115,9(6)

Tab. 6.40: Fortsetzung

Tab. 0.40. Politsetzung			
H73A-C73-H73B	107,5	C14-N14-Co2	106,5(4)
N8-C81-N2	112,8(6)	C161-N14-H14	107,0
N8-C81-H81A	109,0	C14-N14-H14	107,0
N2-C81-H81A	109,0	Co2-N14-H14	107,0
N8-C81-H81B	109,0	C152 - N15 - C153	113,4(7)
N2-C81-H81B	109,0	C152 - N15 - C151	112,4(7)
H81A-C81-H81B	107,8	C153 - N15 - C151	113,5(7)
N8-C82-N4	112,5(5)	C161 - N16 - C163	115,8(7)
N8-C82-H82A	109,1	C161 - N16 - C162	116,8(7)
N4-C82-H82A	109,1	C163 - N16 - C162	110,3(7)
N8-C82-H82B	109,1	N2-Co1-N1	85,5(3)
N4-C82-H82B	109,1	N2-Co1-N5	174,5(3)
H82A-C82-H82B	107,8	N1-Co1-N5	90,4(3)
N8-C83-N6	114,5(6)	N2-Co1-N4	91,2(3)
N8-C83-H83A	$108,\! 6$	N1-Co1-N4	175,4(3)
N6-C83-H83A	$108,\! 6$	N5-Co1-N4	93,1(3)
N8-C83-H83B	$108,\! 6$	N2-Co1-N3	94,3(3)
N6-C83-H83B	$108,\! 6$	N1-Co1-N3	$91,\!3(3)$
H83A-C83-H83B	$107,\! 6$	N5-Co1-N3	89,5(3)
N15-C151-N13	115,7(7)	N4-Co1-N3	85,8(2)
N15-C151-H15A	108,4	N2-Co1-N6	90,1(3)
N13-C151-H15A	108,4	N1-Co1-N6	93,7(3)
N15-C151-H15B	108,4	N5-Co1-N6	$86,\!6(3)$
N13-C151-H15B	108,4	N4-Co1-N6	89,5(2)
H15A-C151-H15B	107,4	N3-Co1-N6	173,7(3)
N15-C152-N9	113,9(6)	N13-Co2-N11	92,0(3)
N15-C152-H15E	108,8	N13-Co2-N9	89,9(3)
N9-C152-H15E	108,8	N11-Co2-N9	89,5(3)
N15-C152-H15F	108,8	N13-Co2-N14	87,3(3)
N9-C152-H15F	108,8	N11-Co2-N14	95,0(3)
H15E-C152-H15F	107,7	N9-Co2-N14	174,8(3)
N15-C153-N11	114,3(7)	N13-Co2-N10	92,8(3)
N15-C153-H15C	108,7	N11-Co2-N10	173,5(3)
N11-C153-H15C	108,7	N9-Co2-N10	86,1(3)
N15-C153-H15D	108,7	N14-Co2-N10	89,6(3)
N11-C153-H15D	108,7	N13-Co2-N12	176,2(3)

Tab. 6.40: Fortsetzung			
H15C-C153-H15D	107,6	N11-Co2-N12	85,8(3)
N16-C161-N14	115,7(7)	N9-Co2-N12	93,2(3)
N16-C161-H16A	108,4	N14-Co2-N12	89,7(3)
N14-C161-H16A	108,4	N10-Co2-N12	89,7(3)

6 Appendix

$_{\infty}^{2} \Big\{ \operatorname{\Lambda-[Co(sep)]BDC}_{3/2} \Big\} \cdot 10 \operatorname{H_{2}O}$

∞ $(M-[OO(sep)] DDO_3/2 $ $(10 H_2O)$	
Summenformel	$(C_{12}H_{30}CoN_8) (C_8H_4O_4)_{3/2} \cdot 10(H_2O)$
Molare $Masse/g \cdot mol^{-1}$	831,54
Kristallsystem	orthorhombisch
Raumgruppe	I 2 2 2
Diffraktometer	IPDS II
Strahlung	Mo-K α
Absorptionskorrektur	Numerisch [24]
Formeleinheiten Z	8
Gitterkonstanten /pm	a = 1143,9 (1)
	b = 2353.8 (2)
	c = 3348,0 (3)
/°	$\alpha = 90$
	$\beta = 90$
	$\gamma = 90$
Volumen /nm ³	9,0145~(2)
Dichte $/g \cdot cm^{-3}$	1,225
Kristallform	Plättchen
Kristallgröße /mm	$0,5 \ge 0,3 \ge 0,2$
Kristallfarbe	orange
h k l range	
$h_{\min/\max}$	-14/14
$k_{min/max}$	-29/30
$l_{min/max}$	-43/42
$2 heta_{ m max}$	$27,4^{\circ}$
Reflexzahl	
gemessen	61048
unabhängig	10127
$\mu~/{ m mm^{-1}}$	0,46
R-Werte:	
Io $> 2\sigma(Io)$	R1 = 0,0698
	$\omega R2 = 0.1689$
all data	R1 = 0,1144
	$\omega R2 = 0.1882$

Tab. 6.41: Fortsetzung	
R _{int}	0,1400
$GooF = S_{all}$	0,87
Zahl der verfeinerten	
Parameter	490
F(000)	3448
$\Delta ho_{ m min/max} \ /e \cdot { m \AA}^{-3}$	-0.39/1.09
Flack Parameter	0,01 (2)

Tab. 6.42: Atomlagen und isotrope oder äquivalente thermische Auslenkungsparameter $[10^{-20} \text{ m}^2]$ der Verbindung $^2_{\infty} \left\{ \Lambda \text{-}[\text{Co(sep)}] \text{ BDC}_{3/2} \right\} \cdot 10 \text{ H}_2\text{O}$ _

Atom	Wyckoff- Lage	x/a	y/b	z/c	$U_{\rm iso}^*/U_{\rm eq}$
C1	8k	0,3343(5)	0,7135(3)	0,8755(2)	
H1A	8k	0,31200	$0,\!67410$	$0,\!87160$	0,0690
H1B	8k	0,26460	0,73550	0,88110	0,0690
C2	8k	0,4215(5)	0,7188(3)	0,9091(2)	
H2A	8k	0,48810	$0,\!69420$	$0,\!90450$	$0,\!0740$
H2B	8k	$0,\!38570$	0,70840	$0,\!93430$	$0,\!0740$
C3	8k	0,6174(5)	0,7856(3)	0,7836(2)	
H3A	8k	$0,\!65430$	0,80240	0,76030	0,0710
H3B	8k	$0,\!59070$	0,74780	0,77660	$0,\!0710$
C4	8k	0,7038(5)	0,7824(3)	0,8178(2)	
H4A	8k	0,76700	0,75650	0,81140	0,0680
H4B	8k	0,73680	$0,\!81960$	$0,\!82320$	0,0680
C5	8k	0,3803(5)	0,9110(2)	0,8564(2)	
H5A	8k	0,31530	$0,\!93420$	0,86540	$0,\!0750$
H5B	8k	$0,\!40700$	$0,\!92570$	$0,\!83090$	0,0750
C6	8k	0,4780(5)	0,9124(2)	0,8865(2)	
H6A	8k	0,50930	$0,\!95060$	$0,\!88870$	0,0700
H6B	8k	$0,\!44950$	0,90080	$0,\!91250$	0,0700
C9	8k	0,6644(5)	0,9549(2)	0,7873(2)	
C10	8k	0,9013(5)	1,1295(2)	$0,\!6955(2)$	
C11	8k	0,1828(5)	0,8405(4)	0,9408(2)	
C71	8k	0,3096(4)	0,7432(2)	0,8045(2)	
H71A	8k	0,33100	0,71730	0,78310	0,0620
H71B	8k	0,23170	0,73310	$0,\!81340$	0,0620
C72	8k	0,2647(5)	0,8426(3)	0,8165(2)	

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
H72A	8k	0,18750	0,83190	0,82570	0,0670
H72B	8k	$0,\!25750$	$0,\!87830$	$0,\!80220$	0,0670
C73	8k	0,4132(5)	0,8159(3)	0,7689(2)	
H73A	8k	0,40060	0,85210	0,75580	0,0670
H73B	8k	$0,\!43100$	0,78800	0,74850	0,0670
C81	8k	0,5605(5)	0,7902(3)	0,9378(2)	
H81A	8k	0,53920	$0,\!81970$	$0,\!95670$	0,0670
H81B	8k	$0,\!57440$	0,75570	$0,\!95290$	0,0670
C82	8k	0,7090(5)	0,7653(3)	0,8909(2)	
H82A	8k	0,70940	0,72830	$0,\!90360$	0,0770
H82B	8k	0,78910	0,77480	$0,\!88410$	0,0770
C83	8k	0,6620(5)	0,8629(2)	0,9031(2)	
H83A	8k	0,73740	$0,\!87170$	$0,\!89130$	0,0680
H83B	8k	0,65000	$0,\!88890$	0,92520	0,0680
C91	8k	0,7264(4)	$0,\!9990(3)$	0,7634(2)	
C92	8k	0,6715(5)	1,0263(3)	0,7319(2)	
H92	8k	0,59510	1,01630	0,72540	0,0690
C93	8k	0,7276(5)	1,0679(3)	0,7101(2)	
H93	8k	$0,\!68820$	1,08540	$0,\!68910$	0,0700
C94	8k	0,8415(4)	1,0840(2)	0,7187(2)	
C95	8k	0,8963(5)	1,0575(3)	0,7512(2)	
H95	8k	0,97220	1,06770	0,75810	0,0740
C96	8k	0,8381(5)	1,0159(2)	0,7732(2)	
H96	8k	0,87540	$0,\!99920$	0,79490	0,0690
C111	8k	-0,0277(5)	0,8466(4)	0,9603(2)	
H111	8k	-0,04730	$0,\!84800$	$0,\!93330$	$0,\!1050$
C112	8k	0,0879(5)	0,8459(4)	0,9714(2)	
C113	8k	0,1143(5)	0,8453(4)	1,0116(2)	
H113	8k	0,19200	$0,\!84390$	1,01970	$0,\!1080$
N1	8k	0,3951(4)	0,7359(2)	0,8391(1)	
H1	8k	0,44740	0,70890	$0,\!83140$	0,0600
N2	8k	0,4598(4)	0,7806(2)	0,9099(1)	
H2	8k	0,39850	$0,\!80130$	0,91920	0,0640
N3	8k	0,5167(4)	0,8212(2)	0,7967(1)	
H3	8k	0,54070	$0,\!85800$	0,79570	0,0580

Tab. 6.42: Fortsetzung					
Atom	Wyckoff- Lage	x/a	y/b	z/c	$\mathrm{U_{iso}}^*/\mathrm{U_{eq}}$
N4	8k	0,6380(3)	0,7618(2)	0,8529(2)	
H4	8k	$0,\!62150$	0,72440	0,84860	0,0610
N5	8k	0,3435(3)	0,8512(2)	0,8522(1)	
H5	8k	0,30080	0,84240	0,87430	0,0590
N6	8k	0,5695(4)	0,8731(2)	0,8726(1)	
H6	8k	0,60440	0,88920	0,85100	0,0600
N7	8k	0,3076(3)	0,7995(2)	0,7892(1)	
N8	8k	0,6654(4)	0,8062(2)	0,9184(1)	
01	8k	0,5121(6)	1,0568(3)	0,6266(2)	
O2	8k	0,5038(7)	0,7856(3)	0,6749(2)	
O3	8k	0,4642(5)	$0,\!6826(3)$	0,7106(2)	
O4	8k	$0,\!3858(6)$	0,9198(3)	1,0034(2)	
O5	8k	0,5915(5)	0,8923(2)	$0,\!6939(2)$	
O6	8k	0,3163(6)	0,5884(3)	0,8275(3)	
07	8k	-0,0214(9)	0,8818(5)	0,8558(2)	
08	8k	0,857(1)	0,9791(4)	0,8752(3)	
O9	8k	0,7419(7)	1,0875(3)	$0,\!6066(2)$	
O9A	8k	0,5781(4)	0,93043(2)	0,7716(1)	
O9B	8k	0,7002(4)	0,9438(2)	0,8222(1)	
O10	8k	1,0089(7)	0,7354(4)	0,9027(2)	
O10A	8k	0,8577(4)	1,1462(2)	$0,\!6635(1)$	
O10B	8k	0,9947(4)	1,1504(2)	0,7105(1)	
O11	2a	0	1,00000	1,00000	
O11A	8k	0,1548(4)	0,8324(2)	0,9044(1)	
O11B	8k	0,2888(4)	0,8447(3)	0,9516(1)	
O12	2d	0	1/2	1,00000	
O13	8k	0,754(2)	0,9963(4)	0,9509(3)	
O14	8k	0,877(1)	0,9866(5)	0,6153(4)	
O15	8k	0,111(1)	0,5744(5)	0,9457(4)	
O16	8k	$0,\!680(1)$	0,6542(5)	0,9601(3)	
O17	$4\mathrm{h}$	1/2	$0,\!607(1)$	1,00000	
Co1	8k	0,48640(5)	0,80357(3)	0,85376(2)	

	$\frac{2}{\infty} \left\{ \Lambda - \left[\operatorname{Co}(\operatorname{sep}) \right] \right\}$	$\mathbf{b})] \operatorname{BDC}_{3/2} \big\} \cdot 10^{12}$	H_2O mit Standa	rdabweichung	-	
Atom	U11	U22	U33	U12	U13	U23
C1	0,047(3)	0,064(4)	0,060(3)	-0,009(2)	0,000(3)	0,009(3)
C2	$0,\!057(3)$	0,063(4)	0,065(4)	-0,011(3)	-0,005(3)	0,016(3)
C3	0,049(3)	$0,\!073(4)$	$0,\!055(3)$	0,002(3)	0,016(3)	-0,009(3)
C4	0,044(3)	0,063(4)	0,064(4)	0,004(2)	0,012(3)	-0,004(3)
C5	0,063(3)	$0,\!056(3)$	0,069(4)	0,015(3)	0,010(3)	-0,009(3)
C6	0,063(3)	$0,\!054(3)$	0,058(3)	0,002(3)	0,005(3)	-0,006(2)
C9	$0,\!055(3)$	$0,\!051(3)$	$0,\!055(3)$	-0,004(3)	0,010(3)	$0,\!005(3)$
C10	0,047(3)	0,049(3)	0,064(4)	-0,009(2)	0,002(3)	0,002(3)
C11	0,038(3)	0,126(6)	0,053(4)	-0,004(3)	0,009(3)	0,000(4)
C71	0,033(3)	0,057(3)	0,065(3)	-0,002(2)	-0,004(2)	0,001(3)
C72	0,057(3)	0,060(3)	0,051(3)	0,016(3)	-0,004(3)	-0,004(3)
C73	0,051(3)	0,075(4)	0,043(3)	-0,002(3)	0,005(2)	0,004(3)
C81	0,054(3)	0,063(4)	0,050(3)	-0,006(2)	-0,009(2)	0,009(3)
C82	0,042(3)	0,067(4)	0,083(4)	0,010(3)	-0,018(3)	-0,006(3)
C83	0,054(3)	0,060(3)	0,057(3)	-0,005(3)	-0,004(3)	-0,004(3)
C91	0,041(3)	$0,\!050(3)$	0,060(3)	0,001(2)	0,005(2)	0,006(3)
C92	0,041(3)	0,065(3)	0,065(4)	-0,013(2)	-0,002(3)	0,011(3)
C93	0,050(3)	0,063(4)	0,062(4)	-0,008(3)	-0,005(3)	0,008(3)
C94	0,041(3)	0,045(3)	0,057(3)	-0,001(2)	0,006(2)	0,005(2)
C95	0,035(3)	0,062(4)	0,087(4)	-0,008(2)	0,001(3)	0,018(3)
C96	0,049(3)	0,055(4)	0,068(4)	0,004(2)	0,005(3)	0,014(3)
C111	0,044(3)	0,178(8)	0,040(3)	0,008(4)	0,004(3)	0,005(4)
C112	0,038(3)	0,128(6)	0,039(3)	0,004(3)	0,005(2)	0,000(3)
C113	0,036(3)	$0,\!183(8)$	0,051(4)	-0,002(4)	0,005(3)	0,001(4)
N1	0,031(2)	0,057(3)	0,062(3)	0,009(2)	0,001(2)	0,007(2)
N2	0,042(2)	0,062(3)	0,055(3)	0,000(2)	0,000(2)	0,005(2)
N3	0,038(2)	0,054(2)	0,053(2)	-0,001(2)	0,006(2)	-0,004(2)
N4	0,037(2)	0,058(2)	0,057(2)	0,000(2)	0,000(2)	-0,002(2)
N5	0,043(2)	0,055(2)	0,049(2)	0,006(2)	0,010(2)	0,004(2)
N6	0,045(2)	0,057(3)	0,048(2)	0,001(2)	0,006(2)	0,003(2)
N7	0,040(2)	0,065(3)	0,047(2)	0,008(2)	0,000(2)	-0,001(2)
N8	0,046(2)	0,064(3)	0,054(3)	-0,001(2)	-0,004(2)	-0,002(2)
01	0,097(4)	0,128(4)	0,111(4)	-0,014(4)	0,005(4)	-0,008(3)
O2	0,120(5)	0,129(5)	0,111(4)	-0,026(4)	0,012(4)	-0,024(3)

Tab. 6.43: Anisotrope thermische Auslenkungsparameter $[10^{-20} \text{ m}^2]$ der Verbindung $\frac{2}{\infty} \{ \Lambda - [\text{Co(sep)}] \text{ BDC}_{3/2} \} \cdot 10 \text{ H}_2 \text{O} \text{ mit Standardabweichung}$

100.0.10	· i oi tootzang					
Atom	U11	U22	U33	U12	U13	U23
O3	0,078(3)	0,158(6)	0,099(4)	0,027(3)	-0,011(3)	0,032(3)
O4	0,130(5)	0,147(5)	0,081(4)	-0,042(4)	0,010(4)	0,014(4)
O5	0,079(3)	0,111(4)	0,080(3)	-0,017(3)	0,001(3)	-0,001(3)
O6	0,078(4)	0,130(5)	0,199(8)	-0,014(4)	-0,002(4)	-0,040(5)
07	$0,\!180(8)$	0,31(1)	0,086(4)	0,083(9)	0,017(6)	-0,024(6)
08	0,22(1)	0,144(7)	0,166(7)	-0,010(6)	-0,078(7)	0,000(5)
O9	0,122(5)	0,155(6)	0,118(5)	-0,045(5)	0,014(4)	-0,036(4)
O9A	0,057(2)	0,077(3)	0,071(3)	-0,026(2)	-0,006(2)	0,010(2)
O9B	0,071(3)	0,083(3)	0,056(3)	-0,017(2)	0,001(2)	0,007(2)
O10	0,119(5)	0,183(7)	0,144(6)	-0,033(6)	0,021(5)	-0,055(5)
O10A	0,069(3)	0,064(2)	0,063(3)	-0,016(2)	-0,002(2)	0,007(2)
O10B	0,052(2)	0,067(2)	0,089(3)	-0,019(2)	-0,002(2)	0,015(2)
O11	0,15(2)	0,36(3)	0,143(1)	0,00000	0,00000	0,00000
O11A	0,050(2)	0,133(4)	0,047(2)	0,002(2)	0,0099(2)	-0,014(2)
O11B	0,039(2)	0,169(5)	0,065(3)	-0,001(3)	0,009(2)	-0,025(3)
O12	0,34(3)	0,24(2)	0,13(1)	0,00000	0,00000	0,00000
O13	0,91(5)	0,084(5)	$0,\!193(9)$	0,005(2)	0,15(2)	0,01(8)
O14	0,238(1)	0,18(1)	0,26(1)	0,016(9)	0,10(1)	-0,006(9)
O15	0,19(1)	0,21(1)	$0,\!21(1)$	-0,008(8)	-0,024(8)	-0,066(8)
O16	0,21(1)	0,191(9)	0,2(1)	0,063(8)	0,023(8)	0,065(8)
O17	0,21(2)	0,39(3)	0,116(9)	0,00000	$0,\!030(1)$	0,00000
Co1	0,0339(3)	$0,\!0465(3)$	$0,\!0458(3)$	$0,\!0026(3)$	$0,\!0034(3)$	0,0026(3)

Tab. 6.43: Fortsetzung

Tab. 6.44: Ausgewählte interatomare Abstände [pm] mit Standardabweichung der Verbindung $^2_\infty \left\{ \Lambda \text{-}[\mathrm{Co(sep)}]\,\mathrm{BDC}_{3/2} \right\} \cdot 10\,\mathrm{H_2O}$

	$[sep] DDC_{3/2} \cdot 10 \Pi_2 O$		
C1-N1	150,0(7)	C73-H73B	97,0
C1-C2	151,0(8)	C81-N8	141,7(7)
C1–H1A	970,0	C81-N2	150,2(7)
C1-H1B	97,0	C81-H81A	97,0
C2-N2	1519(7)	C81-H81B	97,0
C2-H2A	97,0	C82-N8	142,3(8)
C2-H2B	97,0	C82-N4	1510(7)
C3-N3	149,1(7)	C82-H82A	97,0
C3-C4	1515(9)	C82-H82B	97,0

Tab. 6.44: Fortsetzung			
С3-НЗА	97,0	C83-N8	142,9(8)
C3-H3B	97,0	C83-N6	1490(7)
C4-N4	147,7(7)	C83-H83A	97,0
C4–H4A	97,0	C83-H83B	97,0
C4–H4B	97,0	C91 - C96	137,7(8)
C5-N5	$147,\!6(7)$	C91-C92	138,3(8)
C5-C6	$150,\!6(9)$	C92-C93	138,1(8)
C5-H5A	97,0	C92-H92	93,0
C5-H5B	97,0	C93-C94	138,8(8)
C6-N6	1473(7)	C93-H93	93,0
C6-H6A	97,0	C94 - C95	140,2(8)
C6-H6B	97,0	C95 - C96	139,4(8)
C9-O9A	$125,\!8(7)$	C95 - H95	93,0
C9-O9B	$126,\!6(7)$	C96-H96	93,0
C9-C91	149,1(8)	$C111 - C113^{i}$	136,7(8)
C10-O10A	$124,\!8(7)$	C111-C112	137,4(8)
C10-O10B	$127,\!8(7)$	C111-H111	93
C10-C94	148,8(7)	C112-C113	138,1(9)
C11-O11B	$126,\!8(7)$	$C113 - C111^{i}$	136,7(8)
C11-O11A	127,4(7)	C113-H113	93,0
C11-C112	149,8(8)	N1-Co1	196,7(5)
C71-N7	141,8(8)	N1-H1	$91,\!0$
C71-N1	$152,\!6(7)$	N2-Co1	197,8(5)
C71-H71A	97,0	N2-H2	$91,\!0$
C71-H71B	97,0	N3-Co1	198,4(4)
C72-N7	145,2(7)	N3-H3	$91,\!0$
C72-N5	151,2(7)	N4-Co1	199,5(4)
C72-H72A	97,0	N4-H4	91
C72-H72B	97,0	N5-Co1	198,3(4)
C73-N7	143,9(7)	N5-H5	$91,\!0$
C73-N3	151,0(7)	N6-Co1	199,4(5)
С73-Н73А	97,0	N6-H6	$91,\!0$
(i) -x, y, 2-z.			

6 Appendix

$2 \\ \infty $ $\left\{ \Lambda - [Co(sep)] BDC \right\}$	$C_{3/2} \} \cdot 10 H_2 O$		
N1-C1-C2	105,7(4)	C92-C91-C9	121,0(5)
N1-C1-H1A	110,6	C93-C92-C91	121,4(5)
C2-C1-H1A	110,6	С93-С92-Н92	119,3
N1-C1-H1B	110,6	С91-С92-Н92	119,3
C2-C1-H1B	110,6	C92 - C93 - C94	121,3(5)
H1A-C1-H1B	108,7	C92-C93-H93	119,3
C1-C2-N2	106, 4(5)	С94-С93-Н93	119,3
C1-C2-H2A	110,4	C93 - C94 - C95	117,4(5)
N2-C2-H2A	110,4	C93-C94-C10	121,3(5)
C1-C2-H2B	110,4	C95 - C94 - C10	121,2(5)
N2-C2-H2B	110,4	C96 - C95 - C94	120,6(5)
H2A-C2-H2B	$108,\! 6$	C96 - C95 - H95	119,7
N3-C3-C4	108,0(4)	C94 - C95 - H95	119,7
N3-C3-H3A	110,1	C91 - C96 - C95	121,3(6)
С4-С3-Н3А	110,1	С91-С96-Н96	119,3
N3-C3-H3B	110,1	C95-C96-H96	119,3
С4-С3-Н3В	110,1	$C113^{i}-C111-C112$	120,8(6)
НЗА-СЗ-НЗВ	108,4	$C113^{i}-C111-H111$	$119,\! 6$
N4-C4-C3	106, 6(4)	C112-C111-H111	$119,\! 6$
N4-C4-H4A	110,4	C111-C112-C113	118,3(5)
C3-C4-H4A	110,4	C111-C112-C11	120,9(5)
N4-C4-H4B	110,4	C113-C112-C11	120,5(5)
C3-C4-H4B	110,4	$C111^{i}-C113-C112$	120,9(6)
H4A-C4-H4B	$108,\! 6$	$C111^{i}-C113-H113$	$119,\! 6$
N5 - C5 - C6	107,2(5)	C112-C113-H113	$119,\! 6$
N5-C5-H5A	110,3	C1-N1-C71	111,1(4)
C6-C5-H5A	110,3	C1-N1-Co1	109,1(3)
N5-C5-H5B	110,3	C71-N1-Co1	116,1(3)
C6-C5-H5B	110,3	C1-N1-H1	106,7
H5A-C5-H5B	108,5	C71-N1-H1	106,7
N6-C6-C5	$107,\!6(4)$	Co1-N1-H1	106,7
N6-C6-H6A	110,2	C81-N2-C2	112,1(4)
С5-С6-Н6А	110,2	C81-N2-Co1	115,7(3)
N6-C6-H6B	110,2	C2-N2-Co1	106,9(3)
С5-С6-Н6В	110,2	C81-N2-H2	107,3

Tab. 6.45: Ausgewählte interatomare Winkel $[^\circ]$ mit Standardabweichung der Verbindung

Tab. 6.45: Fortsetzung

H6A-C6-H6B	108,5	C2-N2-H2	107,3
O9A-C9-O9B	123,0(5)	Co1-N2-H2	107,3
O9A-C9-C91	117,9(5)	C3-N3-C73	112,2(4)
O9B-C9-C91	119,1(5)	C3-N3-Co1	107,5(3)
O10A-C10-O10B	123, 3(5)	C73-N3-Co1	116,1(3)
O10A-C10-C94	119,4(5)	C3-N3-H3	106,9
O10B-C10-C94	117,2(5)	С73-N3-Н3	106,9
O11B-C11-O11A	121,6(5)	Co1-N3-H3	106,9
O11B-C11-C112	119,4(6)	C4-N4-C82	112,2(4)
O11A-C11-C112	119,0(5)	C4-N4-Co1	107,0(3)
N7-C71-N1	112,9(4)	C82-N4-Co1	115,3(4)
N7-C71-H71A	109,0	C4-N4-H4	107,3
N1-C71-H71A	109,0	C82-N4-H4	107,3
N7-C71-H71B	109,0	Co1-N4-H4	107,3
N1-C71-H71B	109,0	C5 - N5 - C72	111,8(4)
H71A-C71-H71B	107,8	C5-N5-Co1	$107,\!6(3)$
N7-C72-N5	112,9(4)	C72-N5-Co1	115,9(3)
N7-C72-H72A	109,0	C5-N5-H5	107,0
N5-C72-H72A	109,0	C72-N5-H5	107,0
N7-C72-H72B	109,0	Co1-N5-H5	107,0
N5-C72-H72B	109,0	C6 - N6 - C83	112,9(4)
H72A-C72-H72B	107,8	C6-N6-Co1	106,1(3)
N7-C73-N3	112,9(4)	C83-N6-Co1	115,1(3)
N7-C73-H73A	109,0	C6-N6-H6	107,5
N3-C73-H73A	109,0	C83-N6-H6	107,5
N7-C73-H73B	109,0	Co1-N6-H6	107,5
N3-C73-H73B	109,0	C71-N7-C73	114,0(4)
H73A-C73-H73B	107,8	C71 - N7 - C72	115,6(5)
N8-C81-N2	113,7(4)	C73-N7-C72	113,0(5)
N8-C81-H81A	108,8	C81-N8-C82	114,5(5)
N2-C81-H81A	108,8	C81-N8-C83	113,0(5)
N8-C81-H81B	108,8	C82-N8-C83	114,2(5)
N2-C81-H81B	108,8	N1-Co1-N2	86,3(2)
H81A-C81-H81B	107,7	N1-Co1-N5	90,8(2)
N8-C82-N4	113,2(4)	N2-Co1-N5	93,0(2)
N8-C82-H82A	108,9	N1-Co1-N3	91,2(2)

Tab. 6.45: Fortsetzung			
N4-C82-H82A	108,9	N2-Co1-N3	176,0(2)
N8-C82-H82B	108,9	N5-Co1-N3	90,0(2)
N4-C82-H82B	108,9	N1-Co1-N6	175,1(2)
H82A-C82-H82B	107,8	N2-Co1-N6	89,9(2)
N8-C83-N6	114,4(5)	N5-Co1-N6	86,4(2)
N8-C83-H83A	108,7	N3-Co1-N6	$92,\!9(2)$
N6-C83-H83A	108,7	N1-Co1-N4	93,4(2)
N8-C83-H83B	108,7	N2-Co1-N4	90,7(2)
N6-C83-H83B	108,7	N5-Co1-N4	$174,\!6(2)$
H83A-C83-H83B	$107,\! 6$	N3-Co1-N4	86,4(2)
C96 - C91 - C92	118,0(5)	N6-Co1-N4	89,7(2)
C96-C91-C9	120,9(5)		

(i) -x, y, 2-z.

6 Appendix

$_{\infty}^{2} \Big\{ \Lambda \text{-}[\mathrm{Co}(\mathrm{sep})]_{2} \operatorname{BSA}_{3} \Big\} \cdot 15 \operatorname{H}_{2}\mathrm{O}$

$\infty \{ \Lambda - [Co(sep)]_2 DSA_3 \} \cdot 10 \Pi_2 O$	
Summenformel	$(C_{12}H_{30}CoN_8)_2 (C_4H_4O_4) \cdot 15(H_2O)$
Molare $Masse/g \cdot mol^{-1}$	1278,96
Kristallsystem	monoklin
Raumgruppe	$P2_1$
Diffraktometer	Nonius COLLECT
Strahlung	$Mo-K\alpha$
Absorptionskorrektur	Numerisch [24]
Formeleinheiten Z	4
Gitterkonstanten /pm	a = 884,60 (6)
	b = 2582,4(2)
	c = 2807,50 (2)
/°	$\alpha = 90$
	$\beta = 98,098(1)$
	$\gamma = 90$
Volumen $/nm^3$	$6,\!3495(6)$
Dichte $/g \cdot cm^{-3}$	1,338
Kristallform	Würfel
Kristallgröße /mm	$0,4 \ge 0,3 \ge 0,3$
Kristallfarbe	orange
h k l range	
h _{min/max}	-11/8
k _{min/max}	-33/21
$l_{min/max}$	-36/33
$2 heta_{ m max}$	$27,5^{\circ}$
Reflexzahl	
gemessen	25421
unabhängig	22273
$\mu \ /\mathrm{mm^{-1}}$	0,61
R-Werte:	
Io $> 2\sigma(Io)$	R1 = 0,0874
	$\omega R2 = 0,2462$
all data	R1 = 0,1241
	$\omega R2 = 0,2730$

Tab. 6.46: Kristallographische Daten und Details der Röntgeneinkristallstrukturanalyse der Verbindung $^2_\infty \big\{ \Lambda \text{-}[\mathrm{Co}(\mathrm{sep})]_2 \, \mathrm{BSA}_3 \big\} \cdot 15 \, \mathrm{H_2O}$

Tab. 6.46: Fortsetzung	
R _{int}	0,0410
$GooF = S_{all}$	1,04
Zahl der verfeinerten	
Parameter	1445
F(000)	2680
$\Delta ho_{ m min/max} \ /e \cdot { m \AA}^{-3}$	-0,70/2,72
Flack Parameter	0,03~(2)

Tab. 6.47: Atomlagen und isotrope oder äquivalente thermische Auslenkungsparameter $[10^{-20}\,\mathrm{m^2}]$ der Verbindung $_\infty^2 \big\{ \Lambda \text{-}[\mathrm{Co(sep)}]_2\,\mathrm{BSA}_3 \big\} \cdot 15\,\mathrm{H_2O}$

Atom	Wyckoff- Lage	x/a	y/b	z/c	$U_{\rm iso}^*/U_{\rm eq}$
C1	2a	1,4674(9)	0,9599(3)	0,9618(3)	
H1A	2a	1,41230	0,96600	0,92990	0,0240
H1B	2a	1,44800	0,92470	0,97130	0,0240
C2	2a	1,6365(9)	0,9683(4)	0,9619(3)	
H2A	2a	$1,\!67710$	0,94240	0,94210	0,0260
H2B	2a	$1,\!65500$	1,00230	0,94920	0,0260
C3	2a	1,4310(9)	1,0892(4)	1,0754(3)	
H3A	2a	1,36810	1,09310	1,04440	0,0280
H3B	2a	$1,\!38920$	1,11090	1,09850	0,0280
C4	2a	1,590(1)	1,1045(4)	1,0720(3)	
H4A	2a	$1,\!65120$	1,10340	$1,\!10350$	0,0300
H4B	2a	1,59310	1,13940	1,05940	0,0300
C5	2a	1,571(1)	0,9218(4)	$1,\!1253(3)$	
H5A	2a	1,56480	$0,\!88560$	$1,\!13410$	0,0290
H5B	2a	1,51490	0,94200	$1,\!14620$	0,0290
C6	2a	1,734(1)	0,9388(4)	1,1315(4)	
H6A	2a	1,79400	$0,\!91550$	$1,\!11460$	0,0300
H6B	2a	1,77620	$0,\!93890$	$1,\!16530$	0,0300
C13	2a	1,686(1)	0,8341(4)	1,2331(3)	
H13A	2a	$1,\!63280$	0,80190	$1,\!22440$	0,0300
H13B	2a	$1,\!62440$	0,86260	1,21870	0,0300
C14	2a	1,8402(10)	0,8341(3)	1,2167(3)	
H14A	2a	1,83030	0,82760	$1,\!18240$	0,0260
H14B	2a	1,88940	0,86740	1,22330	0,0260
C15	2a	1,8272(10)	$0,\!6874(3)$	1,3226(3)	

Atom	Wyckoff- Lage	x/a	y/b	z/c	U_{iso}^*/U_{eq}
H15A	2a	1,77850	0,65560	1,31010	0,0270
H15B	2a	1,82550	$0,\!68870$	$1,\!35700$	0,0270
C16	2a	1,9893(9)	$0,\!6901(3)$	1,3116(3)	
H16A	2a	$1,\!99090$	$0,\!68650$	$1,\!27730$	0,0200
H16B	2a	2,04980	$0,\!66240$	1,32800	0,0200
C17	2a	1,9041(10)	0,8490(4)	1,3980(3)	
H17A	2a	1,91610	0,84770	$1,\!43290$	0,0290
H17B	2a	$1,\!83580$	0,87730	$1,\!38700$	0,0290
C18	2a	2,0575(9)	0,8562(3)	$1,\!3808(3)$	
H18A	2a	2,09900	0,89010	$1,\!39000$	0,0240
H18B	2a	2,12900	0,83010	$1,\!39490$	0,0240
C25	2a	1,785(1)	0,4724(4)	1,5407(3)	
H25A	2a	1,76740	0,50730	1,55140	0,0340
H25B	2a	1,74770	$0,\!44820$	1,56280	0,0340
C26	2a	1,953(1)	0,4638(4)	1,5392(4)	
H26A	2a	2,01170	$0,\!47200$	1,57020	0,0330
H26B	2a	1,97190	$0,\!42780$	1,53180	0,0330
C27	2a	1,809(1)	0,6044(4)	1,4287(3)	
H27A	2a	$1,\!80450$	$0,\!63930$	$1,\!44130$	0,0290
H27B	2a	1,74420	0,60280	$1,\!39790$	0,0290
C28	2a	1,971(1)	0,5906(4)	1,4231(3)	
H28A	2a	2,03690	$0,\!59430$	$1,\!45360$	0,0330
H28B	2a	2,00790	$0,\!61290$	$1,\!39960$	0,0330
C29	2a	1,662(1)	0,4382(4)	1,3723(4)	
H29A	2a	$1,\!60970$	$0,\!43760$	$1,\!33950$	0,0370
H29B	2a	$1,\!60730$	$0,\!41550$	$1,\!39160$	0,0370
C30	2a	1,828(1)	0,4197(5)	1,3738(4)	
H30A	2a	1,83140	0,38310	$1,\!36650$	0,0500
H30B	2a	$1,\!87880$	$0,\!43880$	$1,\!35090$	$0,\!0500$
C37	2a	1,670(1)	0,3282(5)	1,2856(3)	
H37A	2a	$1,\!67570$	0,32070	$1,\!31960$	0,0490
H37B	2a	$1,\!61610$	0,36070	$1,\!27900$	0,0490
C38	2a	1,828(1)	0,3317(4)	1,2715(3)	
H38A	2a	1,88260	0,36090	$1,\!28730$	0,0350
H38B	2a	1,88520	0,30040	$1,\!28090$	0,0350

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
C39	2a	1,490(1)	0,3523(4)	1,1192(3)	
H39A	2a	1,44940	0,38630	$1,\!11010$	0,0360
H39B	2a	1,42290	0,32640	$1,\!10260$	0,0360
C40	2a	1,650(1)	0,3467(3)	$1,\!1060(3)$	
H40A	2a	1,64680	0,34710	1,07140	0,0280
H40B	2a	1,71450	$0,\!37480$	$1,\!11970$	0,0280
C41	2a	1,556(1)	0,1844(4)	1,1834(3)	
H41A	2a	1,50280	$0,\!15740$	1,16350	0,0280
H41B	2a	1,54440	$0,\!17770$	$1,\!21670$	0,0280
C42	2a	1,719(1)	$0,\!1857(3)$	1,1773(3)	
H42A	2a	1,76850	$0,\!15370$	$1,\!18900$	0,0300
H42B	2a	1,72920	$0,\!18930$	$1,\!14350$	0,0300
C43	2a	$1,\!693(1)$	0,8292(3)	1,0277(3)	
C44	2a	1,540(1)	0,7366(3)	0,9617(3)	
C45	2a	1,754(1)	$0,\!6881(3)$	1,1776(3)	
C46	2a	1,527(1)	0,6073(4)	1,0736(3)	
C47	2a	2,232(1)	$0,\!6860(4)$	1,6752(3)	
C48	2a	1,993(1)	0,6118(4)	1,5692(3)	
C49	2a	1,249(1)	0,8262(4)	1,5199(4)	
C50	2a	1,103(1)	0,7343(4)	1,4567(3)	
C51	2a	1,763(1)	0,5466(4)	1,2865(4)	
C52	2a	$1,\!633(1)$	0,4599(5)	1,2146(4)	
C53	2a	1,812(2)	0,9751(5)	1,2975(5)	
C54	2a	$1,\!638(1)$	1,0480(4)	1,2145(4)	
C71	2a	1,3306(9)	0,9222(4)	1,0677(3)	
H71A	2a	1,30320	$0,\!89700$	1,04220	0,0260
H71B	2a	1,29950	0,90830	1,09690	0,0260
C72	2a	1,2567(9)	0,9849(4)	1,0061(3)	
H72A	2a	$1,\!19300$	1,01510	$0,\!99850$	$0,\!0310$
H72B	2a	1,21620	0,95720	$0,\!98470$	$0,\!0310$
C73	2a	1,278(1)	1,0096(4)	1,0893(3)	
H73A	2a	1,26920	$0,\!99570$	$1,\!12090$	0,0370
H73B	2a	1,20070	1,03620	1,08240	0,0370
C81	2a	1,874(1)	0,9827(4)	1,0199(4)	
H81A	2a	1,94110	0,95380	1,03050	0,0340

Tab. 6.47: Fortsetzung

Tab. 6.47: Fortsetzung

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
H81B	2a	1,89910	0,99390	0,98890	0,0340
C82	2a	1,8212(9)	1,0713(4)	1,0402(3)	
H82A	2a	$1,\!84240$	1,08220	1,00880	0,0260
H82B	2a	1,85860	1,09810	1,06300	0,0260
C83	2a	$1,\!8956(9)$	1,0079(4)	1,1023(3)	
H83A	2a	1,93090	1,03610	$1,\!12390$	0,0280
H83B	2a	$1,\!96370$	0,97880	$1,\!11020$	0,0280
C191	2a	1,5763(9)	0,8345(3)	1,3109(3)	
H19A	2a	1,56820	0,86420	$1,\!33150$	0,0220
H19B	2a	$1,\!48750$	$0,\!83450$	$1,\!28630$	0,0220
C192	2a	1,6766(8)	0,7904(4)	1,3835(3)	
H19C	2a	1,66890	0,75810	1,40070	0,0300
H19D	2a	$1,\!64380$	0,81810	1,40300	0,0300
C193	2a	1,5912(9)	0,7407(4)	1,3130(3)	
H19E	2a	1,51550	0,74020	$1,\!28440$	0,0260
H19F	2a	1,57030	0,71170	1,33310	0,0260
C201	2a	2,0992(8)	0,7959(4)	1,2370(3)	
H20A	2a	$2,\!12620$	0,76550	1,21980	0,0280
H20B	2a	$2,\!11460$	$0,\!82610$	1,21770	0,0280
C202	2a	2,182(1)	0,8482(4)	1,3082(4)	
H20E	2a	$2,\!18880$	0,87690	$1,\!28640$	0,0330
H20F	2a	2,26460	0,85130	$1,\!33460$	0,0330
C203	2a	2,1997(9)	0,7532(4)	1,3110(3)	
H20C	2a	2,27960	0,75630	1,33830	0,0240
H20D	2a	2,22490	0,72400	$1,\!29190$	0,0240
C311	2a	1,5385(9)	0,4821(4)	1,4841(3)	
H31E	2a	$1,\!47240$	$0,\!45310$	$1,\!47370$	0,0310
H31F	2a	1,51460	$0,\!49330$	1,51520	0,0310
C312	2a	1,512(1)	0,5087(4)	1,4016(3)	
H31A	2a	$1,\!47830$	0,53800	$1,\!38110$	0,0320
H31B	2a	1,44020	$0,\!48060$	1,39310	0,0320
C313	2a	1,5895(9)	0,5701(4)	1,4647(4)	
H31C	2a	1,57570	0,57860	$1,\!49750$	0,0320
H31D	2a	1,54550	0,59800	$1,\!44420$	0,0320
C321	2a	2,077(1)	0,4243(4)	1,4281(4)	

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
H32E	2a	2,11100	0,39720	1,45110	0,0400
H32F	2a	2,10020	$0,\!41340$	$1,\!39690$	0,0400
C322	2a	2,1560(9)	0,4870(4)	1,4897(3)	
H32C	2a	2,21790	0,51790	$1,\!49560$	0,0260
H32D	2a	2,20220	0,46020	1,51130	0,0260
C323	2a	2,1201(9)	0,5116(4)	1,4064(3)	
H32A	2a	2,12550	$0,\!49750$	$1,\!37470$	0,0300
H32B	2a	$2,\!19620$	0,53880	$1,\!41210$	0,0300
C431	2a	1,343(1)	0,3377(4)	$1,\!1885(3)$	
H43A	2a	1,32370	0,36610	1,20940	0,0360
H43B	2a	1,26660	0,33890	1,16020	0,0360
C432	2a	1,4192(8)	0,2878(4)	1,2596(3)	
H43C	2a	1,39070	0,25680	$1,\!27570$	0,0280
H43D	2a	1,39610	0,31740	$1,\!27860$	0,0280
C433	2a	1,334(1)	0,2447(4)	1,1833(4)	
H43G	2a	1,25930	0,24780	$1,\!15470$	0,0420
H43H	2a	1,30690	0,21490	1,20130	0,0420
C434	2a	1,734(1)	0,7720(4)	1,0318(3)	
H43E	2a	1,77410	0,76420	1,06500	0,0310
H43F	2a	1,81440	0,76500	1,01240	0,0310
C435	2a	1,596(1)	0,7355(3)	1,0152(3)	
H43I	2a	$1,\!62480$	0,70020	1,02450	0,0250
H43K	2a	1,51190	0,74510	1,03230	0,0250
C441	2a	1,961(1)	0,3340(4)	1,2000(3)	0,026(2)
H44C	2a	1,97600	0,36460	$1,\!18130$	0,0310
H44D	2a	2,04270	0,33290	1,22700	0,0310
C442	2a	1,9551(9)	0,2406(3)	$1,\!1944(3)$	0,020(2)
H44E	2a	2,02330	0,24060	1,22470	0,0240
H44F	2a	1,98620	0,21260	$1,\!17500$	0,0240
C443	2a	1,8781(9)	0,2899(4)	1,1238(3)	0,0223(17)
H44A	2a	1,89300	0,25800	$1,\!10690$	0,0270
H44B	2a	1,91250	0,31820	1,10540	0,0270
C451	2a	1,725(1)	0,6558(4)	1,1331(3)	
H45A	2a	1,78360	$0,\!62410$	$1,\!13820$	0,0270
H45B	2a	1,76140	$0,\!67440$	$1,\!10690$	0,0270

Tab. 6.47: Fortsetzung

Tab. 6.47: Fortsetzung

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
C452	2a	1,554(1)	0,6414(4)	1,1175(3)	
H45C	2a	1,51630	$0,\!62390$	1,14400	0,0280
H45D	2a	$1,\!49570$	$0,\!67310$	$1,\!11110$	0,0280
C471	2a	2,192(1)	0,6563(4)	$1,\!6290(3)$	
H47A	2a	2,23240	$0,\!67510$	$1,\!60370$	0,0360
H47B	2a	2,24380	$0,\!62310$	$1,\!63250$	0,0360
C472	2a	2,029(1)	0,6469(4)	$1,\!6136(4)$	
H47C	2a	1,97810	0,68000	$1,\!60660$	0,0440
H47D	2a	$1,\!98530$	$0,\!63130$	$1,\!64010$	0,0440
C491	2a	1,2945(13)	0,7687(4)	1,5223(4)	
H49A	2a	$1,\!37250$	0,76380	1,50170	0,0520
H49B	2a	1,34090	0,76120	1,55500	0,0520
C492	2a	1,1764(14)	0,7311(4)	1,5090(4)	
H49C	2a	1,09760	0,73570	1,52940	0,0470
H49D	2a	1,21930	$0,\!69680$	1,51500	0,0470
C511	2a	1,740(2)	0,5511(5)	1,2321(4)	
H51A	2a	1,72520	0,58720	$1,\!22310$	0,0780
H51B	2a	1,83080	0,53890	$1,\!21980$	0,0780
C512	2a	1,603(2)	0,5200(5)	1,2096(5)	
H51C	2a	$1,\!58020$	0,52890	$1,\!17580$	$0,\!1070$
H51D	2a	1,51540	0,52900	$1,\!22500$	$0,\!1070$
C531	2a	1,787(2)	1,0300(4)	$1,\!3031(5)$	
H53C	2a	1,87870	1,04830	$1,\!29730$	0,0640
H53D	2a	1,77330	1,03640	$1,\!33630$	0,0640
C532	2a	1,647(2)	1,0540(5)	1,2696(4)	
H53A	2a	1,55540	1,03900	$1,\!27890$	0,0570
H53B	2a	$1,\!64510$	1,09070	$1,\!27660$	0,0570
N1	2a	1,4176(7)	0,9973(3)	0,9968(2)	
H1	2a	$1,\!41630$	1,02940	$0,\!98340$	0,0260
N2	2a	1,7119(7)	0,9639(3)	1,0134(3)	
H2	2a	1,71500	0,92950	1,02080	0,0220
N3	2a	1,4332(8)	1,0343(3)	1,0910(3)	
H3	2a	$1,\!47660$	1,03390	$1,\!12240$	0,0240
N4	2a	$1,\!6503(8)$	1,0668(3)	1,0388(2)	
H4	2a	1,60660	1,07460	1,00830	0,0240

Atom	Wyckoff- Lage	x/a	y/b	z/c	$U_{\rm iso}^*/U_{\rm eq}$
N5	2a	1,5017(8)	0,9290(3)	1,0752(3)	
H5	2a	1,54110	0,90410	1,05760	0,0260
N6	2a	1,7364(7)	0,9925(3)	1,1110(2)	
H6	2a	1,70910	1,01460	$1,\!13350$	0,0240
N7	2a	1,2472(8)	0,9696(3)	1,0552(3)	
N8	2a	1,9055(8)	1,0239(3)	1,0533(3)	
N13	2a	1,7170(8)	0,8401(3)	1,2872(2)	
H13	2a	1,75180	0,87290	$1,\!29320$	0,0270
N14	2a	1,9318(7)	0,7927(3)	1,2436(2)	
H14	2a	1,89610	0,76200	$1,\!23050$	0,0220
N15	2a	1,7465(7)	0,7338(3)	1,2983(2)	
H15	2a	1,73310	0,72760	1,26610	0,0200
N16	2a	2,0534(8)	0,7423(3)	1,3289(3)	
H16	2a	2,07210	0,74130	1,36160	0,0230
N17	2a	1,8434(7)	0,7993(3)	1,3772(2)	
H17	2a	1,89810	0,77390	$1,\!39420$	0,0200
N18	2a	2,0326(7)	0,8511(3)	1,3275(2)	
H18	2a	1,98540	0,88060	1,31560	0,0210
N19	2a	1,5760(7)	0,7883(3)	1,3388(2)	
N20	2a	2,1985(7)	0,7993(3)	1,2825(3)	
N25	2a	1,7037(8)	0,4640(3)	1,4900(3)	
H25	2a	1,70320	$0,\!42930$	$1,\!48400$	0,0270
N26	2a	1,9991(7)	$0,\!4981(3)$	1,5013(2)	
H26	2a	2,00230	$0,\!53080$	1,51360	0,0230
N27	2a	1,7572(8)	0,5675(3)	1,4618(3)	
H27	2a	1,80590	0,57570	$1,\!49160$	0,0260
N28	2a	1,9662(8)	0,5350(3)	1,4066(3)	
H28	2a	1,91840	0,53460	1,37570	0,0290
N29	2a	1,6653(7)	0,4923(3)	1,3919(3)	
H29	2a	1,69050	0,51340	1,36830	0,0270
N30	2a	1,9030(8)	$0,\!4305(3)$	1,4254(3)	
H30	2a	1,86990	0,40580	1,44460	0,0320
N31	2a	1,5064(8)	0,5231(3)	1,4508(3)	
N32	2a	2,1589(9)	0,4707(3)	1,4420(3)	
N37	2a	1,5889(7)	0,2866(3)	1,2573(2)	

Tab. 6.47: Fortsetzung

Tab. 6.47: Fortsetzung

Atom	Wyckoff- Lage	x/a	y/b	z/c	$\rm U_{iso}{}^{*}/\rm U_{eq}$
H37	2a	1,62490	0,25620	$1,\!27080$	0,0250
N38	2a	1,8091(8)	0,3382(3)	1,2190(2)	
H38	2a	1,77280	0,37070	1,21240	0,0270
N39	2a	1,5013(8)	0,3451(3)	$1,\!1730(3)$	
H39	2a	1,54170	$0,\!37460$	$1,\!18710$	0,0350
N40	2a	1,7087(7)	$0,\!2966(3)$	1,1260(2)	
H40	2a	$1,\!65920$	$0,\!27140$	$1,\!10720$	0,0240
N41	2a	1,4922(8)	0,2358(3)	1,1683(2)	
H41	2a	$1,\!47990$	$0,\!23650$	$1,\!13560$	0,0220
N42	2a	1,7922(8)	$0,\!2300(3)$	1,2047(3)	
H42	2a	1,79780	0,22230	$1,\!23650$	0,0250
N43	2a	1,3293(7)	0,2910(4)	1,2125(3)	
N44	2a	1,9716(8)	$0,\!2883(3)$	1,1704(3)	
01	2a	2,0338(8)	$0,\!8462(3)$	1,1182(3)	
O2	2a	1,0550(8)	0,8580(3)	$0,\!9895(3)$	
O3	2a	$1,\!1595(7)$	0,7544(3)	0,9952(2)	
O4	2a	1,3664(7)	$0,\!6809(3)$	1,2226(2)	
O5	2a	1,9166(7)	$0,\!6910(3)$	0,9545(3)	
O6	2a	1,5321(9)	0,7897(3)	1,1312(3)	
07	2a	2,0295(8)	$0,\!1377(3)$	1,1285(3)	
08	2a	2,0982(8)	1,1159(3)	0,9778(3)	
O9	2a	2,2861(8)	$0,\!6217(3)$	1,3748(3)	
O10	2a	1,2236(9)	0,7700(4)	1,0930(3)	
O11	2a	1,4752(8)	$0,\!6980(3)$	1,4311(3)	
O12	2a	2,371(1)	$0,\!3632(5)$	1,5110(5)	
O13	2a	1,379(1)	$0,\!6033(4)$	1,2872(3)	
O14	2a	1,068(2)	0,4030(4)	1,0953(4)	
O15	2a	2,1380(9)	$0,\!6889(4)$	1,1475(3)	
O16	2a	1,257(1)	1,0955(4)	1,2000(4)	
O17	2a	1,468(1)	0,3274(4)	1,3835(4)	
O18	2a	1,973(1)	0,2996(4)	1,3891(4)	
O19	2a	0,804(2)	0,7832(8)	1,5167(4)	
O20	2a	2,104(2)	0,5354(5)	1,1629(5)	
O21	2a	2,394(1)	0,9341(3)	1,2529(3)	
O22	2a	2,138(1)	$0,\!6035(6)$	1,0943(3)	

Atom	Wyckoff- Lage	x/a	y/b	z/c	$U_{\rm iso}^*/U_{\rm eq}$
O23	2a	2,202(1)	0,3717(6)	1,3263(5)	
O24	2a	1,383(1)	0,5515(6)	1,5733(5)	
O25	2a	$0,\!632(1)$	0,6854(6)	1,5356(6)	
O26	2a	1,154(1)	0,9263(4)	1,1779(4)	
O27	2a	1,422(1)	0,2221(4)	1,3732(4)	
O28	2a	1,670(2)	0,5800(6)	1,6311(5)	
O29	2a	2,054(1)	1,0174(4)	1,2185(3)	
O30	2a	1,155(2)	0,9847(5)	0,8808(4)	
O43A	2a	1,5608(7)	0,8430(2)	1,0128(2)	
O43B	2a	$1,\!8036(7)$	0,8612(2)	1,0397(2)	
O44A	2a	1,3988(6)	0,7328(2)	0,9485(2)	
O44B	2a	$1,\!6385(7)$	0,7385(3)	0,9331(2)	
O45A	2a	1,8903(7)	0,6999(3)	1,1921(2)	
O45B	2a	1,6491(7)	0,7050(3)	1,1984(2)	
O46A	2a	1,6347(8)	0,5941(3)	1,0526(3)	
O46B	2a	1,3907(8)	0,5949(3)	1,0588(3)	
O47A	2a	2,3731(9)	0,6960(3)	$1,\!6895(3)$	
O47B	2a	2,1309(9)	0,6973(4)	$1,\!6999(3)$	
O48A	2a	2,0906(8)	0,5916(3)	1,5502(2)	
O48B	2a	1,8454(8)	0,6048(3)	1,5562(3)	
O49A	2a	1,3595(9)	0,8597(3)	1,5295(3)	
O49B	2a	1,1168(8)	0,8386(3)	1,5092(3)	
O50A	2a	1,1868(8)	0,7441(3)	1,4263(2)	
O50B	2a	0,9672(8)	0,7258(3)	1,4469(3)	
O51A	2a	1,889(1)	0,5322(5)	1,3047(3)	
O51B	2a	1,6602(9)	0,5575(3)	1,3099(3)	
O52A	2a	1,540(2)	0,4365(5)	1,2369(6)	
O52B	2a	1,736(1)	0,4438(4)	1,1946(4)	
O53A	2a	1,717(1)	0,9491(4)	1,2712(6)	
O53B	2a	1,919(2)	0,9526(4)	1,3171(4)	
O54A	2a	1,5118(9)	1,0477(4)	1,1889(3)	
O54B	2a	1,7595(8)	1,0493(3)	1,1978(3)	
Co1	2a	1,5760(1)	$0,\!99696(5)$	1,05443(4)	
Co2	2a	1,8870(1)	0,79343(4)	1,31039(4)	
Co3	2a	1,8321(1)	0,49760(5)	1,44618(4)	

Tab. 6.47: Fortsetzung

Tab. 6.47: Fortsetzung

Atom	Wyckoff- Lage	x/a	y/b	z/c	$\rm U_{iso}{}^*/\rm U_{eq}$
Co4	2a	1,6488(1)	0,28905(5)	1,19120(4)	

Tab. 6.4	8: Anisotrope ${}^{2}_{\infty} \{ \Lambda - [Co(se$	thermische $p_{2}BSA_{3} \cdot 15I$	Auslenkungs H ₂ O mit Standa	sparameter ardabweichung	$[10^{-20} \mathrm{m}^2]$ der	Verbindung
Atom	U11	U22	U33	U12	U13	U23
$\overline{\mathrm{C1}}$	0,021(4)	0,019(5)	0,018(4)	-0,002(4)	-0,003(3)	-0,008(4)
C2	0,019(4)	0,030(5)	0,016(4)	-0,004(4)	0,000(3)	0,006(4)
C3	0,021(4)	0,022(5)	0,026(5)	0,008(4)	-0,001(3)	-0,010(4)
C4	0,028(5)	0,021(5)	0,025(5)	-0,002(4)	-0,004(4)	-0,002(4)
C5	0,030(5)	0,017(5)	0,025(5)	0,000(4)	0,000(4)	0,008(4)
C6	0,021(4)	0,021(5)	0,032(5)	0,007(4)	-0,002(4)	0,010(4)
C13	0,033(5)	0,025(5)	0,018(5)	-0,001(4)	0,006(4)	0,011(4)
C14	0,029(4)	0,017(5)	0,016(4)	0,005(4)	-0,006(3)	0,005(4)
C15	0,028(5)	0,013(5)	0,023(5)	0,004(4)	-0,010(3)	0,001(4)
C16	0,026(4)	0,011(4)	0,014(4)	0,003(3)	-0,001(3)	0,002(3)
C17	0,025(4)	0,030(5)	0,018(5)	-0,002(4)	0,003(3)	-0,008(4)
C18	0,018(4)	0,020(5)	0,020(4)	-0,008(4)	-0,003(3)	-0,013(4)
C25	0,032(5)	0,030(6)	0,024(5)	0,006(4)	0,001(4)	0,010(4)
C26	0,028(5)	0,019(5)	0,034(6)	-0,002(4)	0,001(4)	0,005(4)
C27	0,025(4)	0,019(5)	0,026(5)	-0,001(4)	-0,004(4)	-0,001(4)
C28	0,030(5)	0,024(5)	0,029(5)	-0,009(4)	0,007(4)	0,001(4)
C29	0,025(5)	0,027(6)	0,039(6)	0,002(4)	-0,001(4)	-0,017(5)
C30	0,043(6)	0,050(7)	0,029(6)	0,007(5)	-0,009(5)	-0,020(5)
C37	0,036(5)	0,073(9)	0,014(5)	-0,002(5)	0,004(4)	-0,023(5)
C38	0,032(5)	0,039(6)	0,013(4)	0,000(4)	-0,009(4)	-0,007(4)
C39	0,024(5)	0,038(6)	0,027(5)	0,011(4)	0,000(4)	0,011(5)
C40	0,024(4)	0,017(5)	0,026(5)	0,006(4)	-0,003(3)	0,006(4)
C41	0,024(4)	0,024(5)	0,019(5)	-0,010(4)	-0,002(3)	0,000(4)
C42	0,028(5)	0,016(5)	0,030(5)	-0,001(4)	0,000(4)	-0,007(4)
C43	0,026(4)	0,018(5)	0,014(4)	0,002(4)	0,003(3)	0,002(4)
C44	0,028(5)	0,014(5)	0,024(5)	0,003(4)	0,002(4)	-0,007(4)
C45	0,027(4)	0,021(5)	0,011(4)	-0,002(4)	-0,004(3)	0,004(4)
C46	0,033(5)	0,020(5)	0,016(4)	-0,003(4)	0,003(4)	-0,004(4)
C47	0,032(5)	0,035(6)	0,014(4)	0,000(4)	-0,007(4)	-0,004(4)

Atom	U11	U22	U33	U12	U13	U23
C48	0,046(6)	0,038(6)	0,014(5)	-0,010(5)	-0,003(4)	-0,003(4)
C49	0,050(7)	0,017(5)	0,039(6)	0,014(5)	-0,014(5)	-0,013(5)
C50	0,026(5)	0,025(5)	0,016(5)	0,011(4)	-0,016(4)	-0,002(4)
C51	0,033(5)	0,035(6)	0,025(5)	-0,010(5)	-0,019(4)	0,005(5)
C52	0,042(6)	0,044(7)	0,036(6)	0,007(6)	0,003(5)	-0,025(6)
C53	0,051(7)	0,034(7)	0,050(7)	-0,009(6)	0,010(6)	0,019(6)
C54	0,039(6)	0,029(6)	0,040(6)	-0,003(5)	0,007(5)	0,001(5)
C71	0,024(4)	0,020(5)	0,021(5)	0,002(4)	0,001(3)	0,005(4)
C72	0,017(4)	0,023(5)	0,038(5)	-0,007(3)	0,003(4)	-0,002(4)
C73	0,022(4)	0,042(7)	0,026(5)	0,001(4)	-0,003(4)	0,000(5)
C81	0,022(4)	0,033(6)	0,032(5)	-0,006(4)	0,008(4)	0,000(4)
C82	0,020(4)	0,026(5)	0,019(4)	-0,006(4)	-0,001(3)	0,007(4)
C83	0,018(4)	0,023(5)	0,027(5)	-0,007(4)	-0,005(3)	0,000(4)
C191	0,018(4)	0,014(4)	0,021(5)	0,000(4)	0,000(3)	-0,008(4)
C192	0,011(3)	0,047(6)	0,017(4)	0,010(4)	0,001(3)	-0,006(5)
C193	0,016(4)	0,027(5)	0,021(5)	-0,003(4)	-0,002(3)	-0,003(4)
C201	0,016(4)	0,035(5)	0,019(4)	0,005(4)	0,003(3)	-0,006(4)
C202	0,019(4)	0,022(5)	0,039(6)	-0,005(4)	0,000(4)	0,008(4)
C203	0,012(4)	0,026(5)	0,022(5)	-0,004(4)	0,002(3)	0,009(4)
C311	0,016(4)	0,030(6)	0,031(5)	-0,002(4)	0,005(3)	0,008(4)
C312	0,025(4)	0,023(5)	0,030(5)	0,004(4)	-0,004(4)	-0,009(4)
C313	0,017(4)	0,022(5)	0,039(6)	0,004(4)	0,000(4)	0,002(4)
C321	0,013(4)	0,037(6)	0,049(7)	-0,003(4)	0,000(4)	-0,005(5)
C322	0,023(4)	0,022(5)	0,021(4)	0,005(4)	0,007(3)	-0,001(4)
C323	0,018(4)	0,028(6)	0,029(5)	0,001(4)	0,006(3)	0,009(4)
C431	0,015(4)	0,058(7)	0,017(5)	0,011(4)	-0,001(3)	0,004(5)
C432	0,017(4)	0,037(6)	0,015(4)	-0,006(4)	0,003(3)	0,000(4)
C433	0,017(4)	0,051(7)	0,036(6)	-0,006(4)	0,006(4)	-0,010(5)
C434	0,031(5)	0,028(5)	0,016(4)	0,005(4)	-0,006(4)	-0,006(4)
C435	0,027(4)	0,015(5)	0,021(5)	0,000(4)	0,001(3)	0,001(4)
C451	0,029(5)	0,024(5)	0,013(4)	-0,001(4)	0,001(3)	-0,002(4)
C452	0,029(5)	0,025(5)	0,014(4)	-0,001(4)	-0,007(3)	-0,002(4)
C471	0,029(5)	0,043(6)	0,016(5)	-0,003(5)	-0,002(4)	-0,008(4)
C472	0,047(6)	0,039(7)	0,021(5)	-0,023(5)	0,000(4)	-0,010(5)
C491	0,053(7)	0,022(6)	0,047(7)	0,015(5)	-0,022(5)	0,004(5)

Tab. 6.48: Fortsetzung

Tab. 6.48: Fortsetzung

Atom	U11	U22	U33	U12	U13	U23
C492	0,068(8)	0,028(6)	0,017(5)	0,015(5)	-0,010(5)	0,001(4)
C511	0,13(1)	0,031(7)	0,026(6)	-0,037(8)	-0,008(7)	0,007(5)
C512	0,18(2)	0,031(7)	0,039(8)	0,011(9)	-0,037(1)	-0,014(6)
C531	0,070(9)	0,023(6)	0,056(8)	0,002(6)	-0,032(7)	-0,016(6)
C532	0,066(8)	0,042(7)	0,034(6)	-0,004(6)	0,005(5)	-0,002(5)
N1	0,020(3)	0,024(4)	0,019(4)	0,005(4)	-0,001(3)	0,010(4)
N2	0,012(3)	0,015(4)	0,026(4)	-0,002(3)	-0,003(3)	-0,001(3)
N3	0,018(3)	0,024(4)	0,019(4)	0,000(3)	-0,002(3)	-0,002(3)
N4	0,019(3)	0,025(4)	0,016(4)	0,003(3)	-0,001(3)	0,006(3)
N5	0,021(4)	0,018(4)	0,026(4)	0,000(3)	0,003(3)	0,004(3)
N6	0,020(3)	0,020(4)	0,020(4)	0,000(3)	0,002(3)	0,005(3)
N7	0,013(3)	0,023(4)	0,030(4)	-0,002(3)	0,002(3)	0,006(3)
N8	0,017(3)	0,019(4)	0,023(4)	0,000(3)	-0,005(3)	-0,005(3)
N13	0,023(4)	0,033(5)	0,011(4)	0,000(3)	-0,003(3)	0,000(3)
N14	0,019(3)	0,020(4)	0,016(3)	-0,001(3)	0,000(2)	0,001(3)
N15	0,014(3)	0,021(4)	0,013(3)	-0,004(3)	-0,005(3)	0,000(3)
N16	0,023(4)	0,022(4)	0,012(4)	-0,004(3)	0,000(3)	0,000(3)
N17	0,013(3)	0,020(4)	0,017(3)	0,000(3)	0,000(2)	-0,002(3)
N18	0,017(3)	0,020(4)	0,014(4)	0,000(3)	0,002(3)	0,001(3)
N19	0,015(3)	0,028(4)	0,014(3)	-0,003(3)	-0,001(2)	-0,011(4)
N20	0,015(3)	0,037(5)	0,019(4)	-0,009(3)	0,002(3)	-0,002(4)
N25	0,018(3)	0,026(4)	0,023(4)	0,001(3)	0,000(3)	0,004(3)
N26	0,023(3)	0,020(4)	0,013(3)	-0,001(3)	-0,001(2)	0,009(3)
N27	0,016(3)	0,019(4)	0,029(4)	0,001(3)	0,000(3)	0,000(3)
N28	0,023(4)	0,030(5)	0,019(4)	-0,005(3)	0,004(3)	0,002(3)
N29	0,023(3)	0,023(4)	0,021(4)	-0,005(3)	0,000(3)	-0,010(3)
N30	0,022(4)	0,027(5)	0,030(4)	-0,002(3)	0,005(3)	-0,006(4)
N31	0,019(4)	0,027(5)	0,027(4)	0,003(3)	-0,008(3)	-0,004(3)
N32	0,027(4)	0,020(4)	0,028(4)	-0,002(3)	0,007(3)	-0,003(4)
N37	0,019(3)	0,022(4)	0,021(4)	-0,001(3)	-0,001(3)	-0,004(3)
N38	0,026(4)	0,029(4)	0,011(4)	0,004(3)	0,000(3)	-0,006(3)
N39	0,018(4)	0,039(5)	0,028(4)	0,009(3)	-0,003(3)	0,004(4)
N40	0,020(3)	0,021(4)	0,017(3)	-0,003(3)	-0,004(2)	0,006(3)
N41	0,019(3)	0,029(4)	0,007(3)	0,002(3)	-0,002(3)	-0,002(3)
N42	0,022(4)	0,018(4)	0,022(4)	0,002(3)	0,004(3)	0,001(3)

Atom	U11	U22	U33	U12	U13	U23
N43	0,014(3)	0,045(5)	0,026(4)	0,003(4)	-0,004(3)	-0,005(4)
N44	0,024(3)	0,026(4)	0,023(4)	-0,004(4)	-0,001(3)	0,001(4)
01	0,037(4)	0,047(5)	0,029(4)	0,013(3)	0,001(3)	-0,001(3)
O2	0,033(4)	0,043(5)	0,033(4)	0,010(3)	-0,002(3)	0,002(3)
O3	0,026(3)	0,038(4)	0,031(4)	-0,005(3)	0,006(3)	-0,011(3)
O4	0,024(3)	0,042(4)	0,029(4)	0,003(3)	-0,002(3)	-0,001(3)
O5	0,015(3)	0,043(4)	0,048(4)	0,001(3)	0,004(3)	-0,010(4)
O6	0,071(5)	0,038(5)	0,042(5)	-0,006(4)	-0,011(4)	-0,001(4)
07	0,031(4)	0,051(5)	0,036(4)	-0,003(3)	0,001(3)	-0,005(4)
08	0,032(4)	0,062(5)	0,031(4)	-0,001(4)	0,001(3)	0,006(4)
O9	0,028(4)	0,041(5)	0,066(6)	0,003(3)	0,009(3)	0,017(4)
O10	0,052(5)	0,088(7)	0,026(4)	0,025(4)	-0,010(3)	-0,013(4)
O11	0,038(4)	0,039(5)	0,083(7)	0,009(4)	0,021(4)	0,019(4)
O12	0,079(8)	0,116(1)	0,128(1)	0,023(7)	0,031(7)	0,094(9)
O13	0,052(5)	0,087(7)	0,047(5)	0,004(5)	0,006(4)	0,035(5)
O14	0,18(1)	0,075(8)	0,055(7)	-0,055(8)	-0,008(8)	0,001(6)
O15	0,046(5)	0,127(9)	0,031(5)	0,005(5)	0,008(4)	-0,021(5)
O16	0,057(6)	0,087(8)	0,077(7)	0,003(5)	-0,015(5)	0,028(6)
O17	0,063(6)	0,072(7)	0,080(7)	-0,019(5)	-0,011(5)	0,008(6)
O18	0,119(9)	0,054(7)	0,100(9)	0,018(6)	-0,051(7)	-0,019(6)
O19	0,092(9)	0,29(2)	0,066(8)	-0,034(1)	0,025(7)	0,014(1)
O20	0,13(1)	0,13(1)	0,082(9)	-0,047(9)	0,040(8)	-0,009(8)
O21	0,050(5)	0,047(5)	0,074(7)	-0,001(4)	-0,003(4)	0,004(5)
O22	0,041(5)	0,20(1)	0,050(6)	0,048(7)	-0,020(4)	-0,066(7)
O23	0,049(6)	0,169(1)	0,117(1)	-0,007(7)	0,037(6)	-0,043(9)
O24	0,057(6)	0,17(1)	0,11(1)	0,005(7)	-0,006(6)	-0,11(1)
O25	0,054(6)	0,20(2)	0,22(2)	0,055(8)	-0,061(8)	-0,18(1)
O26	0,062(6)	0,069(7)	0,069(7)	-0,017(5)	-0,004(5)	-0,012(5)
O27	0,053(5)	0,084(7)	0,084(7)	0,007(5)	0,011(5)	0,051(6)
O28	0,10(1)	0,13(1)	0,13(1)	-0,022(8)	0,040(9)	-0,04(1)
O29	0,059(5)	0,070(6)	0,056(6)	0,010(5)	-0,005(4)	0,010(5)
O30	0,12(1)	0,11(1)	0,083(8)	0,036(8)	0,012(7)	0,031(7)
O43A	0,029(3)	0,018(3)	0,036(4)	0,005(3)	-0,007(3)	-0,002(3)
O43B	0,026(3)	0,023(4)	0,028(4)	0,001(3)	-0,003(3)	-0,005(3)
O44A	0,019(3)	0,025(4)	0,022(3)	0,001(3)	-0,003(2)	0,002(3)

Tab. 6.48: Fortsetzung

100.0.10	. i oi teetzang					
Atom	U11	U22	U33	U12	U13	U23
O44B	0,024(3)	0,048(5)	0,017(3)	0,002(3)	0,002(2)	0,003(3)
O45A	0,025(3)	0,055(5)	0,028(4)	-0,003(3)	-0,002(3)	-0,027(4)
O45B	0,027(3)	0,029(4)	0,017(3)	0,001(3)	-0,001(3)	-0,010(3)
O46A	0,032(4)	0,063(6)	0,044(5)	-0,013(4)	0,016(3)	-0,032(4)
O46B	0,034(4)	0,050(5)	0,036(4)	-0,004(3)	-0,003(3)	-0,027(4)
O47A	0,044(4)	0,062(6)	0,028(4)	-0,014(4)	0,001(3)	-0,020(4)
O47B	0,046(5)	0,094(8)	$0,\!038(5)$	-0,011(4)	-0,002(4)	-0,040(5)
O48A	0,042(4)	0,040(5)	0,019(4)	-0,001(3)	-0,003(3)	-0,003(3)
O48B	0,028(4)	0,058(5)	0,038(4)	0,002(3)	-0,012(3)	-0,023(4)
O49A	0,046(5)	0,038(5)	$0,\!083(7)$	0,003(4)	-0,033(4)	-0,010(4)
O49B	0,038(4)	0,035(4)	$0,\!058(5)$	0,010(4)	-0,013(4)	-0,005(4)
O50A	0,042(4)	0,034(4)	0,024(4)	0,018(3)	-0,009(3)	0,006(3)
O50B	0,045(4)	0,027(4)	0,041(5)	-0,001(3)	-0,009(3)	0,010(3)
O51A	0,068(7)	0,150(1)	0,028(5)	0,023(6)	0,005(4)	0,002(6)
O51B	0,047(5)	0,042(5)	0,047(5)	-0,011(4)	-0,004(4)	0,016(4)
O52A	0,11(1)	0,067(8)	0,20(2)	-0,011(7)	0,07(1)	-0,047(9)
O52B	0,085(7)	0,065(7)	$0,\!066(7)$	0,020(6)	-0,018(6)	0,004(5)
O53A	0,074(8)	$0,\!059(7)$	$0,\!18(1)$	0,016(6)	0,064(9)	0,030(8)
O53B	$0,\!13(1)$	0,040(6)	$0,\!076(8)$	0,033(6)	-0,005(7)	0,012(5)
O54A	0,040(5)	0,112(8)	0,029(4)	0,007(5)	0,000(3)	-0,021(5)
O54B	0,036(4)	0,051(5)	0,030(4)	-0,022(4)	0,009(3)	-0,008(4)
Co1	0,0130(5)	0,0162(6)	0,0147(5)	-0,0005(5)	-0,0014(4)	0,0026(5)
$\mathrm{Co2}$	0,0114(5)	0,0164(6)	$0,\!0123(5)$	-0,0005(5)	-0,0009(4)	-0,0015(5)
Co3	0,0176(5)	$0,\!0153(6)$	$0,\!0203(6)$	-0,0025(5)	0,0018(4)	-0,0021(5)
Co4	0,0157(5)	$0,\!0233(7)$	0,0118(5)	0,0033(5)	-0,0030(4)	-0,0015(5)

Tab. 6.48: Fortsetzung

$\infty \{ M - [CO(sep)] \}$	$2 D S A_3 $ · $13 H_2 O$		
C1-N1	150(1)	C191-H19B	97,0
C1-C2	151(1)	C192-N19	143(1)
C1-H1A	97,0	C192-N17	153(1)
C1-H1B	97,0	C192-H19C	97,0
C2-N2	151(1)	C192-H19D	97,0
C2-H2A	97,0	C193-N19	144(1)
C2-H2B	97,0	C193-N15	150(1)
C3-C4	148(1)	C193-H19E	97,0
C3-N3	148(1)	C193-H19F	97,0
C3–H3A	97,0	C201 - N20	145(1)
C3-H3B	97,0	C201-N14	152(1)
C4-N4	150(1)	C201-H20A	97,0
C4–H4A	97,0	C201-H20B	97,0
C4–H4B	97,0	C202 - N20	147(1)
C5-N5	146(1)	C202 - N18	150(1)
C5-C6	150(1)	C202-H20E	97,0
C5-H5A	97,0	C202-H20F	97,0
C5-H5B	97,0	C203-N20	143(1)
C6-N6	150(1)	C203-N16	148(1)
C6-H6A	97,0	C203-H20C	97,0
C6-H6B	97,0	C203-H20D	97,0
C13-C14	150(1)	C311-N31	141(1)
C13-N13	152(1)	C311 - N25	152(1)
C13-H13A	97	C311-H31E	97,0
C13-H13B	97	C311-H31F	97,0
C14-N14	148(1)	C312-N31	144(1)
C14-H14A	97,0	C312 - N29	149(1)
C14-H14B	97,0	C312-H31A	97,0
C15 - N15	1506(1)	C312-H31B	97,0
C15 - C16	151(1)	C313-N31	144(1)
C15-H15A	97,0	C313-N27	1499(1)
C15-H15B	97,0	C313-H31C	97,0
C16-N16	1517(1)	C313-H31D	97,0
C16-H16A	97,0	C321-N32	143(1)
C16-H16B	97,0	C321-N30	154(1)

Tab. 6.49: Ausgewählte interatomare Abstände [pm] mit Standardabweichung der Verbindung $^2_{\infty} \{ \Lambda - [Co(sep)]_2 BSA_3 \} \cdot 15 H_2 O$

Tab. 6.49: Fortsetzung

0			
C17-N17	148(1)	C321-H32E	97,0
C17-C18	152(1)	C321-H32F	97,0
C17-H17A	97,0	C322-N32	141(1)
C17-H17B	97,0	C322-N26	150(1)
C18-N18	149(1)	C322-H32C	97,0
C18-H18A	97,0	C322-H32D	97,0
C18-H18B	97,0	C323-N32	150(1)
C25 - C26	151(1)	C323-N28	149(1)
C25 - N25	152(1)	C323-H32A	97,0
C25-H25A	97,0	C323-H32B	97,0
C25-H25B	97,0	C431-N43	140(1)
C26 - N26	149(1)	C431-N39	153(1)
C26-H26A	97,0	C431-H43A	97,0
C26-H26B	97,0	C431-H43B	97,0
C27-N27	145(1)	C432-N43	145(1)
C27 - C28	151(1)	C432-N37	151(1)
C27-H27A	97,0	C432-H43C	97,0
C27-H27B	97,0	C432-H43D	97,0
C28-N28	151(1)	C433-N43	145(1)
C28-H28A	97,0	C433-N41	153(1)
C28-H28B	97,0	C433-H43G	97,0
C29-N29	150(1)	C433-H43H	97,0
C29-C30	154(1)	C434 - C435	156(1)
C29-H29A	97,0	C434-H43E	97,0
C29-H29B	97,0	C434-H43F	$97,\!0,\!0$
C30-N30	153(1)	C435-H43I	97
C30-H30A	97,0	C435-H43K	97,0
C30-H30B	97,0	C441-N44	145(1)
C37-N37	146(1)	C441-N38	1519(1)
C37-C38	151(1)	C441-H44C	97,0
C37-H37A	97,0	C441-H44D	97,0
C37-H37B	97,0	C442-N44	142(1)
C38-N38	147(1)	C442-N42	153(1)
C38-H38A	97,0	C442-H44E	97,0
C38-H38B	97,0	C442-H44F	97,0
C39-N39	151(1)	C443-N44	144(1)

Tab. 6.49: Fortsetzung	5		
C39-C40	152(1)	C443-N40	152(1)
C39-H39A	97,0	C443-H44A	97,0
C39-H39B	97,0	C443-H44B	97,0
C40-N40	147(1)	C451 - C452	156(1)
C40-H40A	97,0	C451-H45A	97,0
C40-H40B	97,0	C451-H45B	97,0
C41-N41	148(1)	C452-H45C	97,0
C41-C42	148(1)	C452-H45D	97,0
C41-H41A	97,0	C471 - C472	146(1)
C41-H41B	97,0	C471-H47A	97,0
C42-N42	1476(1)	C471-H47B	97,0
C42-H42A	97,0	C472-H47C	97,0
C42-H42B	97,0	C472-H47D	97,0
C43-O43A	124(1)	C491 - C492	144(2)
C43-O43B	129(1)	C491-H49A	97,0
C43-C434	152(1)	C491-H49B	97,0
C44-O44A	126(1)	C492-H49C	97,0
C44-O44B	127(1)	C492-H49D	97,0
C44 - C435	151(1)	C511 - C512	151(2)
C45-O45B	124(1)	C511-H51A	97,0
C45-O45A	125(1)	C511-H51B	97,0
C45 - C451	150(1)	C512-H51C	97,0
C46-O46A	124(1)	C512-H51D	97,0
C46-O46B	126(1)	C531 - C532	157(2)
C46 - C452	151(1)	C531-H53C	97,0
C47-O47B	124(1)	C531-H53D	97,0
C47-O47A	129(1)	C532-H53A	97,0
C47-C471	150(1)	C532-H53B	97,0
C48-O48A	119(1)	N1-Co1	1986(6)
C48-O48B	132(1)	N1-H1	$91,\!0$
C48-C472	154(1)	N2-Co1	$197,\!3(7)$
C49-O49B	120(1)	N2-H2	$91,\!0$
C49-O49A	131(1)	N3-Co1	$198,\!6(7)$
C49-C491	154(1)	N3-H3	91,0
C50-O50B	122(1)	N4-Co1	199,0(7)
C50-O50A	123(1)	N4-H4	91

Tab. 6.49: Fortsetzung

C50-C492	152(1)	N5-Co1	199,1(7)
C51-O51A	121(1)	N5-H5	91,0
C51-O51B	123(1)	N6-Co1	197,7(6)
C51-C511	152(2)	N6-H6	$91,\!0$
C52-O52B	122(2)	N13-Co2	196,4(7)
C52-O52A	125(2)	N13-H13	$91,\!0$
C52 - C512	158(2)	N14-Co2	197,2(6)
C53-O53B	118(2)	N14-H14	91,0
C53-O53A	124(2)	N15-Co2	197,8(7)
C53 - C531	145(2)	N15 - H15	91,0
C54-O54B	123(1)	N16-Co2	199,1(7)
C54-O54A	124(1)	N16-H16	91,0
C54 - C532	154(2)	N17-Co2	$197,\!3(7)$
C71-N7	145(1)	N17-H17	91,0
C71-N5	151(1)	N18-Co2	198,4(7)
C71–H71A	97,0	N18-H18	$91,\!0$
C71-H71B	97,0	N25-Co3	198,7(7)
C72-N7	145(1)	N25 - H25	$91,\!0$
C72-N1	152(1)	N26-Co3	198,4(6)
C72-H72A	97,0	N26-H26	91,0
C72-H72B	97,0	N27-Co3	199,2(7)
C73–N7	141(1)	N27-H27	$91,\!0$
C73–N3	151(1)	N28-Co3	198,8(7)
С73-Н73А	97,0	N28-H28	$91,\!0$
C73-H73B	97,0	N29-Co3	197,2(7)
C81-N8	142(1)	N29-H29	91,0
C81-N2	150(1)	N30-Co3	195,9(8)
C81-H81A	97,0	N30-H30	910,0
C81-H81B	97,0	N37-Co4	2,1(7)
C82-N8	145(1)	N37-H37	91,0
C82-N4	151(1)	N38-Co4	198,0(7)
C82-H82A	97	N38-H38	91,0
C82-H82B	97,0	N39-Co4	196,7(8)
C83-N8	145(1)	N39-H39	91,0
C83-N6	152(1)	N40-Co4	198,7(7)
C83-H83A	97,0	N40-H40	91,0

Tab. 6.49: Fortsetzung				
C83-H83B	97,0	N41-Co4	199,2(7)	
C191-N19	143(1)	N41-H41	91,0	
C191-N13	150(1)	N42-Co4	198,6(7)	
С191—Н19А	97,0	N42-H42	91,0	

Tab. 6.50: Ausgewählte interatomare Winkel [°] Standardabweichung der Verbindung mit $^{2}_{\infty}$ { Λ -[Co(sep)]₂ BSA₃ } \cdot 15 H₂O N1 - C1 - C2107,0(7)C44 - C435 - C434114,5(8)N1-C1-H1A 110,3C44-C435-H43I 108, 6C2-C1-H1A110,3C434-C435-H43I 108, 6N1-C1-H1B 110,3C44-C435-H43K 108, 6C2-C1-H1B110,3C434-C435-H43K 108, 6H1A-C1-H1B108, 6H43I-C435-H43K 107,6 N2 - C2 - C1107,1(7)N44-C441-N38 112,9(7)N2-C2-H2A110,3N44-C441-H44C 109,0 C1-C2-H2A110,3N38-C441-H44C 109,0 N2-C2-H2B110,3N44-C441-H44D 109,0C1-C2-H2B110,3N38-C441-H44D 109,0 H2A-C2-H2B108,5H44C-C441-H44D 107,8C4-C3-N3 107,5(7)N44-C442-N42 113,9(7)C4-C3-H3A 110,2N44-C442-H44E 108,8N3-C3-H3A 110,2N42-C442-H44E 108,8 C4-C3-H3B110,2N44-C442-H44F 108,8N3-C3-H3B 110,2 N42-C442-H44F 108,8 108,5H3A-C3-H3BH44E - C442 - H44F107,7C3 - C4 - N4107,0(7)N44-C443-N40 114,3(7)110,3C3-C4-H4AN44-C443-H44A 108,7N4-C4-H4A 110,3108,7N40-C443-H44A C3-C4-H4B110,3N44-C443-H44B 108,7N4-C4-H4B 110,3N40-C443-H44B 108,7H4A-C4-H4B108, 6107, 6H44A - C443 - H44BN5 - C5 - C6C45 - C451 - C452114,5(7)109,9(8)N5-C5-H5A109,7 108,6C45-C451-H45A C6-C5-H5A109,7 108, 6C452-C451-H45A N5-C5-H5B109,7 C45-C451-H45B 108,6

Tab. 6.50: Fortsetzung

Ŭ			
С6-С5-Н5В	109,7	C452-C451-H45B	108,6
H5A-C5-H5B	108,2	H45A-C451-H45B	$107,\! 6$
C5-C6-N6	106,9(7)	C46 - C452 - C451	114,0(8)
C5-C6-H6A	110,3	C46-C452-H45C	$108,\!8$
N6-C6-H6A	110,3	C451 - C452 - H45C	108,8
C5-C6-H6B	110,3	C46 - C452 - H45D	108,8
N6-C6-H6B	110,3	C451 - C452 - H45D	$108,\!8$
H6A-C6-H6B	$108,\! 6$	H45C - C452 - H45D	$107,\! 6$
C14-C13-N13	105,2(7)	C472 - C471 - C47	116,0(8)
C14-C13-H13A	110,7	C472 - C471 - H47A	108,3
N13-C13-H13A	110,7	C47-C471-H47A	108,3
C14-C13-H13B	110,7	C472 - C471 - H47B	108,3
N13-C13-H13B	110,7	C47-C471-H47B	108,3
H13A-C13-H13B	$108,\!8$	H47A-C471-H47B	107,4
N14-C14-C13	107,5(7)	C471-C472-C48	114,5(9)
N14-C14-H14A	110,2	C471 - C472 - H47C	$108,\! 6$
C13-C14-H14A	110,2	C48-C472-H47C	$108,\! 6$
N14-C14-H14B	110,2	C471 - C472 - H47D	$108,\! 6$
C13-C14-H14B	110,2	C48-C472-H47D	$108,\! 6$
H14A-C14-H14B	108,5	H47C-C472-H47D	$107,\! 6$
N15-C15-C16	106,0(7)	C492-C491-C49	117,6(9)
N15-C15-H15A	110,5	C492-C491-H49A	107,9
C16-C15-H15A	110,5	C49-C491-H49A	107,9
N15-C15-H15B	110,5	C492-C491-H49B	107,9
C16 - C15 - H15B	110,5	C49-C491-H49B	107,9
H15A-C15-H15B	108,7	H49A-C491-H49B	107,2
C15-C16-N16	107, 3(7)	C491 - C492 - C50	114,2(9)
C15-C16-H16A	110,3	C491-C492-H49C	108,7
N16-C16-H16A	110,3	C50-C492-H49C	108,7
C15-C16-H16B	110,3	C491 - C492 - H49D	108,7
N16-C16-H16B	110,3	C50 - C492 - H49D	108,7
H16A-C16-H16B	108,5	H49C-C492-H49D	$107,\! 6$
N17-C17-C18	105,7(7)	C512 - C511 - C51	111(1)
N17-C17-H17A	110,6	C512 - C511 - H51A	109,3
C18-C17-H17A	$110,\! 6$	C51-C511-H51A	109,3
N17-C17-H17B	$110,\! 6$	C512 - C511 - H51B	109,3

Tab. 6.50: Fortsetzung			
C18-C17-H17B	$110,\!6$	C51-C511-H51B	109,3
H17A-C17-H17B	108,7	H51A-C511-H51B	108,0
N18-C18-C17	107,4(6)	C511 - C512 - C52	112(1)
N18-C18-H18A	110,2	C511 - C512 - H51C	109,2
C17-C18-H18A	110,2	C52-C512-H51C	109,2
N18-C18-H18B	110,2	C511 - C512 - H51D	109,2
C17-C18-H18B	110,2	C52 - C512 - H51D	109,2
H18A-C18-H18B	108,5	$\rm H51C{-}C512{-}H51D$	107,9
C26 - C25 - N25	106,9(8)	C53 - C531 - C532	116,(1)
C26-C25-H25A	110,3	C53 - C531 - H53C	108,3
N25 - C25 - H25A	110,3	C532 - C531 - H53C	108,3
C26-C25-H25B	110,3	C53 - C531 - H53D	108,3
N25-C25-H25B	110,3	C532 - C531 - H53D	108,3
$\rm H25A{-}C25{-}H25B$	$108,\! 6$	H53C-C531-H53D	107,4
N26 - C26 - C25	107,6(7)	C54 - C532 - C531	$119,\!3(11)$
N26-C26-H26A	110,2	C54 - C532 - H53A	$107,\!5$
C25 - C26 - H26A	110,2	C531 - C532 - H53A	107,5
N26-C26-H26B	110,2	C54 - C532 - H53B	$107,\!5$
C25-C26-H26B	110,2	C531 - C532 - H53B	107,5
H26A-C26-H26B	108,5	H53A-C532-H53B	107,0
N27-C27-C28	107,5(7)	C1 - N1 - C72	110,5(7)
N27-C27-H27A	110,2	C1-N1-Co1	107,1(5)
C28 - C27 - H27A	110,2	C72-N1-Co1	115,5(5)
N27-C27-H27B	110,2	C1-N1-H1	$107,\!8$
C28-C27-H27B	110,2	C72-N1-H1	$107,\!8$
H27A-C27-H27B	108,5	Co1-N1-H1	107,8
C27 - C28 - N28	105,9(7)	C81 - N2 - C2	112,2(7)
C27-C28-H28A	110,5	C81-N2-Co1	116, 1(5)
N28-C28-H28A	110,5	C2-N2-Co1	107,7(5)
C27-C28-H28B	110,5	C81-N2-H2	106,8
N28-C28-H28B	110,5	C2-N2-H2	106,8
H28A-C28-H28B	108,7	Co1-N2-H2	106,8
N29-C29-C30	107,9(8)	C3-N3-C73	115,0(7)
N29-C29-H29A	110,1	C3-N3-Co1	107, 1(5)
C30-C29-H29A	110,1	C73-N3-Co1	114,9(6)
N29-C29-H29B	110,1	C3-N3-H3	106, 4

Tab. 6.50: Fortsetzung

Tab. 0.50. For tactzung			
С30-С29-Н29В	110,1	C73-N3-H3	106,4
H29A-C29-H29B	108,4	Co1-N3-H3	106,4
N30-C30-C29	104,8(8)	C4 - N4 - C82	112,1(7)
N30-C30-H30A	110,8	C4-N4-Co1	107,1(5)
С29-С30-Н30А	110,8	C82-N4-Co1	115,1(5)
N30-C30-H30B	110,8	C4-N4-H4	$107,\!4$
C29-C30-H30B	110,8	C82-N4-H4	$107,\!4$
H30A-C30-H30B	108,9	Co1-N4-H4	$107,\!4$
N37-C37-C38	$107,\!6(8)$	C5 - N5 - C71	113,2(7)
N37-C37-H37A	110,2	C5-N5-Co1	106,4(5)
С38-С37-Н37А	110,2	C71-N5-Co1	115,3(5)
N37-C37-H37B	110,2	C5-N5-H5	107,2
С38-С37-Н37В	110,2	C71-N5-H5	107,2
H37A-C37-H37B	108,5	Co1-N5-H5	107,2
N38-C38-C37	106,9(7)	C6-N6-C83	111,5(7)
N38-C38-H38A	110,4	C6-N6-Co1	108,2(5)
C37-C38-H38A	110,4	C83-N6-Co1	115,7(5)
N38-C38-H38B	110,4	C6-N6-H6	$107,\! 0$
C37-C38-H38B	110,4	C83-N6-H6	$107,\! 0$
H38A-C38-H38B	$108,\! 6$	Co1-N6-H6	107,0
N39-C39-C40	107,5(7)	C73-N7-C71	114,3(7)
N39-C39-H39A	110,2	C73-N7-C72	$114,\!6(7)$
C40-C39-H39A	110,2	C71-N7-C72	111,5(7)
N39-C39-H39B	110,2	C81-N8-C83	112,3(7)
C40-C39-H39B	110,2	C81-N8-C82	114,8(7)
H39A-C39-H39B	108,5	C83-N8-C82	112,6(7)
N40-C40-C39	106,4(7)	C191-N13-C13	113,0(6)
N40-C40-H40A	110,4	C191-N13-Co2	116,1(6)
C39-C40-H40A	110,4	C13-N13-Co2	107,0(5)
N40-C40-H40B	110,4	C191-N13-H13	106,7
C39-C40-H40B	110,4	C13-N13-H13	106,7
H40A-C40-H40B	108,6	Co2-N13-H13	106,7
N41-C41-C42	106,5(7)	C14-N14-C201	111,8(7)
N41-C41-H41A	110,4	C14-N14-Co2	107,9(5)
C42-C41-H41A	110,4	C201-N14-Co2	116,4(5)
N41-C41-H41B	110,4	C14-N14-H14	106,7
Tab. 6.50: Fortsetzung			
------------------------	--------------	-------------------	--------------
С42-С41-Н41В	110,4	C201-N14-H14	106,7
H41A-C41-H41B	$108,\! 6$	Co2-N14-H14	106,7
N42 - C42 - C41	108,7(7)	C193 - N15 - C15	111,5(7)
N42-C42-H42A	110,0	C193 - N15 - Co2	116,0(5)
C41 - C42 - H42A	110,0	C15-N15-Co2	107,2(5)
N42-C42-H42B	110,0	C193 - N15 - H15	107,3
C41-C42-H42B	110,0	C15 - N15 - H15	107,3
H42A-C42-H42B	108,3	Co2 - N15 - H15	107,3
O43A-C43-O43B	$123,\!3(8)$	C203 - N16 - C16	111,4(7)
O43A-C43-C434	120,5(8)	C203-N16-Co2	115,7(5)
O43B-C43-C434	116, 1(7)	C16-N16-Co2	106,0(5)
O44A-C44-O44B	124,0(8)	C203 - N16 - H16	$107,\!8$
O44A - C44 - C435	117,6(8)	C16 - N16 - H16	$107,\!8$
O44B - C44 - C435	118,3(8)	Co2-N16-H16	$107,\!8$
O45B-C45-O45A	$120,\!6(8)$	C17 - N17 - C192	112,9(7)
O45B-C45-C451	122,4(8)	C17-N17-Co2	109,5(5)
O45A - C45 - C451	116,9(8)	C192-N17-Co2	114,8(5)
O46A-C46-O46B	$122,\!6(9)$	C17-N17-H17	106,3
O46A - C46 - C452	120,4(8)	C192-N17-H17	106,3
O46B - C46 - C452	117,0(8)	Co2-N17-H17	106,3
O47B-C47-O47A	$121,\!5(9)$	C18 - N18 - C202	110,9(7)
O47B-C47-C471	$120,\!3(9)$	C18-N18-Co2	108,0(5)
O47A - C47 - C471	118,0(9)	C202-N18-Co2	116,7(6)
O48A - C48 - O48B	124,4(9)	C18 - N18 - H18	106, 9
O48A - C48 - C472	123,(1)	C202-N18-H18	106, 9
O48B-C48-C472	$112,\!6(9)$	Co2-N18-H18	106, 9
O49B-C49-O49A	123,0(9)	C191 - N19 - C192	$113,\!6(8)$
O49B-C49-C491	121(1)	C191 - N19 - C193	115,3(6)
O49A-C49-C491	116,4(9)	C192-N19-C193	112,5(7)
O50B-C50-O50A	$123,\!4(8)$	C203-N20-C201	113,4(8)
O50B - C50 - C492	119(1)	C203 - N20 - C202	115,7(7)
O50A - C50 - C492	117,8(9)	C201 - N20 - C202	113,2(8)
O51A-C51-O51B	123(1)	C25 - N25 - C311	112,2(7)
O51A - C51 - C511	116(1)	C25-N25-Co3	106,4(5)
O51B-C51-C511	121(1)	C311-N25-Co3	115,0(5)
O52B-C52-O52A	131(1)	C25 - N25 - H25	107,7

Tab. 6.50: Fortsetzung

O52B - C52 - C512	115(2)	C311 - N25 - H25	107,7
O52A - C52 - C512	114(1)	Co3-N25-H25	107,7
O53B - C53 - O53A	116(1)	C26 - N26 - C322	113,3(7)
O53B - C53 - C531	124(1)	C26-N26-Co3	107,8(5)
O53A - C53 - C531	120(1)	C322-N26-Co3	116,1(5)
O54B - C54 - O54A	123(1)	C26 - N26 - H26	106,3
O54B - C54 - C532	117(1)	C322-N26-H26	106,3
O54A - C54 - C532	120(1)	Co3-N26-H26	106,3
N7-C71-N5	113,8(7)	C27 - N27 - C313	114,1(7)
N7-C71-H71A	108,8	C27-N27-Co3	108,1(6)
N5-C71-H71A	108,8	C313 - N27 - Co3	114,5(5)
N7-C71-H71B	108,8	C27 - N27 - H27	106,5
N5-C71-H71B	108,8	C313-N27-H27	106,5
H71A-C71-H71B	107,7	Co3-N27-H27	106,5
N7-C72-N1	113,8(7)	C323 - N28 - C28	113,8(7)
N7-C72-H72A	108,8	C323-N28-Co3	115,0(6)
N1-C72-H72A	108,8	C28-N28-Co3	106, 4(5)
N7-C72-H72B	108,8	C323-N28-H28	107,1
N1-C72-H72B	108,8	C28 - N28 - H28	107,1
H72A-C72-H72B	107,7	Co3-N28-H28	107,1
N7-C73-N3	114,8(8)	C312 - N29 - C29	111,1(7)
N7-C73-H73A	108,6	C312 - N29 - Co3	116, 2(5)
N3-C73-H73A	108,6	C29-N29-Co3	108,8(6)
N7-C73-H73B	108,6	C312-N29-H29	106,7
N3-C73-H73B	108,6	C29-N29-H29	106,7
H73A-C73-H73B	107,5	Co3-N29-H29	106,7
N8-C81-N2	114,5(7)	C30 - N30 - C321	109,0(8)
N8-C81-H81A	108,6	C30 - N30 - Co3	109,1(6)
N2-C81-H81A	108,6	C321-N30-Co3	115,9(6)
N8-C81-H81B	108,6	C30-N30-H30	107,5
N2-C81-H81B	108,6	C321-N30-H30	107,5
H81A-C81-H81B	107,6	Co3-N30-H30	107,5
N8-C82-N4	114,7(7)	C311-N31-C312	114,3(8)
N8-C82-H82A	108,6	C311-N31-C313	113,8(7)
N4-C82-H82A	108,6	C312-N31-C313	113,1(8)
N8-C82-H82B	108,6	C322-N32-C321	115,6(8)

Tab. 6.50: Fortsetzung			
N4-C82-H82B	$108,\! 6$	C322-N32-C323	$113,\!6(7)$
H82A-C82-H82B	$107,\! 6$	C321-N32-C323	111,1(8)
N8-C83-N6	114,1(6)	C37-N37-C432	112,0(7)
N8-C83-H83A	108,7	C37-N37-Co4	107,9(6)
N6-C83-H83A	108,7	C432-N37-Co4	115,7(5)
N8-C83-H83B	108,7	C37-N37-H37	106,9
N6-C83-H83B	108,7	C432-N37-H37	106,9
H83A-C83-H83B	$107,\! 6$	Co4-N37-H37	106,9
N19-C191-N13	112,9(7)	C38-N38-C441	111,2(7)
N19-C191-H19A	109,0	C38-N38-Co4	107,2(6)
N13-C191-H19A	109,0	C441-N38-Co4	115,9(6)
N19-C191-H19B	109,0	C38-N38-H38	107,4
N13-C191-H19B	109,0	C441-N38-H38	107,4
H19A-C191-H19B	107,8	Co4-N38-H38	107,4
N19-C192-N17	113,2(6)	C39-N39-C431	111,4(7)
N19-C192-H19C	108,9	C39-N39-Co4	107, 3(6)
N17-C192-H19C	108,9	C431-N39-Co4	$115,\!6(6)$
N19-C192-H19D	108,9	C39-N39-H39	107,4
N17-C192-H19D	108,9	C431-N39-H39	107,4
H19C-C192-H19D	107,7	Co4-N39-H39	107,4
N19-C193-N15	113,2(7)	C40-N40-C443	$112,\!6(7)$
N19-C193-H19E	108,9	C40-N40-Co4	108,1(6)
N15-C193-H19E	108,9	C443-N40-Co4	114,7(5)
N19-C193-H19F	108,9	C40-N40-H40	107,0
N15-C193-H19F	108,9	C443-N40-H40	107,0
H19E-C193-H19F	107,8	Co4-N40-H40	107,0
N20-C201-N14	112,1(6)	C41-N41-C433	$112,\!3(7)$
N20-C201-H20A	109,2	C41-N41-Co4	108,0(5)
N14-C201-H20A	109,2	C433-N41-Co4	115,4(6)
N20 - C201 - H20B	109,2	C41-N41-H41	106,9
N14-C201-H20B	109,2	C433-N41-H41	106,9
H20A - C201 - H20B	107,9	Co4-N41-H41	106,9
N20 - C202 - N18	112,1(7)	C42-N42-C442	113,2(7)
N20 - C202 - H20E	109,2	C42-N42-Co4	106,0(5)
N18 - C202 - H20E	109,2	C442-N42-Co4	114,8(5)
N20 - C202 - H20F	109,2	C42-N42-H42	107,5

Tab. 6.50: Fortsetzung

Tab. 0.00. For tactzung			
N18-C202-H20F	109,2	C442-N42-H42	107,5
H20E-C202-H20F	107,9	Co4-N42-H42	107,5
N20-C203-N16	114,2(7)	C431-N43-C432	$114,\!6(8)$
N20-C203-H20C	108,7	C431-N43-C433	115,2(8)
N16-C203-H20C	108,7	C432-N43-C433	114,4(8)
N20-C203-H20D	108,7	C442-N44-C443	111,6(7)
N16-C203-H20D	108,7	C442-N44-C441	114,2(7)
H20C-C203-H20D	$107,\! 6$	C443-N44-C441	115,0(8)
N31-C311-N25	113,7(7)	N2-Co1-N6	90, 9(3)
N31-C311-H31E	$108,\!8$	N2-Co1-N1	$86,\!8(3)$
N25-C311-H31E	$108,\!8$	N6-Co1-N1	176,7(4)
N31-C311-H31F	108,8	N2-Co1-N3	175,0(3)
N25-C311-H31F	108,8	N6-Co1-N3	92,9(3)
H31E-C311-H31F	107,7	N1-Co1-N3	89,5(3)
N31-C312-N29	113,9(7)	N2-Co1-N4	90,9(3)
N31-C312-H31A	108,8	N6-Co1-N4	90,4(3)
N29-C312-H31A	108,8	N1-Co1-N4	91,9(3)
N31-C312-H31B	108,8	N3-Co1-N4	85,9(3)
N29-C312-H31B	108,8	N2-Co1-N5	92,4(3)
H31A-C312-H31B	107,7	N6-Co1-N5	86,7(3)
N31-C313-N27	114,7(7)	N1-Co1-N5	91,0(3)
N31-C313-H31C	108,6	N3-Co1-N5	91,0(3)
N27-C313-H31C	108,6	N4-Co1-N5	175,6(3)
N31-C313-H31D	108,6	N13-Co2-N14	86,5(3)
N27-C313-H31D	108,6	N13-Co2-N17	91,4(3)
H31C-C313-H31D	107,6	N14-Co2-N17	176,1(3)
N32-C321-N30	113,2(8)	N13-Co2-N15	89,3(3)
N32-C321-H32E	108,9	N14-Co2-N15	92,0(3)
N30-C321-H32E	108,9	N17-Co2-N15	91,2(3)
N32-C321-H32F	108,9	N13-Co2-N18	93,5(3)
N30-C321-H32F	108,9	N14-Co2-N18	91.5(3)
H32E-C321-H32F	107.8	N17-Co2-N18	85,4(3)
N32-C322-N26	114.0(7)	N15-Co2-N18	175.6(3)
N32-C322-H32C	108.8	N13-Co2-N16	175.1(3)
N26-C322-H32C	108.8	N14-Co2-N16	90.1(3)
N32-C322-H32D	108.8	N17-Co2-N16	92,2(3)
	/		/ \ /

Tab. 6.50: Fortsetzung			
N26-C322-H32D	108,8	N15-Co2-N16	87,2(3)
H32C-C322-H32D	$107,\! 6$	N18-Co2-N16	90,2(3)
N32-C323-N28	114,7(7)	N30-Co3-N29	86, 8(3)
N32-C323-H32A	$108,\! 6$	N30-Co3-N26	90,2(3)
N28-C323-H32A	108,6	N29-Co3-N26	176,4(4)
N32-C323-H32B	108,6	N30 - Co3 - N25	91,9(3)
N28-C323-H32B	108,6	N29-Co3-N25	91,0(3)
H32A-C323-H32B	$107,\! 6$	N26-Co3-N25	87,0(3)
N43-C431-N39	113,0(7)	N30-Co3-N28	91,3(3)
N43-C431-H43A	109,0	N29-Co3-N28	92,4(3)
N39-C431-H43A	109,0	N26-Co3-N28	89,7(3)
N43-C431-H43B	109,0	N25-Co3-N28	175,5(3)
N39-C431-H43B	109,0	N30 - Co3 - N27	175,4(3)
H43A-C431-H43B	107,8	N29-Co3-N27	89,9(3)
N43-C432-N37	$112,\!6(6)$	N26-Co3-N27	93,2(3)
N43-C432-H43C	109,1	N25-Co3-N27	91,3(3)
N37-C432-H43C	109,1	N28-Co3-N27	85,7(3)
N43-C432-H43D	109,1	N39-Co4-N38	92,5(3)
N37-C432-H43D	109,1	N39-Co4-N42	175,6(3)
H43C - C432 - H43D	107,8	N38-Co4-N42	90,8(3)
N43-C433-N41	112,2(7)	N39-Co4-N40	86,7(3)
N43-C433-H43G	109,2	N38-Co4-N40	91,8(3)
N41-C433-H43G	109,2	N42-Co4-N40	90,3(3)
N43-C433-H43H	109,2	N39-Co4-N41	91,0(3)
N41-C433-H43H	109,2	N38-Co4-N41	175,0(3)
H43G-C433-H43H	107,9	N42-Co4-N41	85,9(3)
C43-C434-C435	$113,\!3(7)$	N40-Co4-N41	92,0(3)
C43-C434-H43E	108,9	N39-Co4-N37	90,7(3)
C435 - C434 - H43E	108,9	N38-Co4-N37	$85,\!6(3)$
C43-C434-H43F	108,9	N42-Co4-N37	$92,\!5(3)$
C435 - C434 - H43F	108,9	N40-Co4-N37	176,2(3)
H43E-C434-H43F	107,7	N41-Co4-N37	90,8(3)

6 Appendix

$_{\infty }^{1} \Big\{ \Lambda \text{-}[\mathrm{Co(sep)}] \, \mathrm{PDC} \, (\mathrm{HPDC}) \Big\} \cdot 5 \, \mathrm{H_{2}O}$

$\infty \{ \Lambda - [Oo(sep)] PDO(\Pi PDO) \} \cdot 5 \Pi_2 O$	
Summenformel	$(C_{12}H_{30}CoN_8) (C_3H_2O_4) (C_3H_3O_4) \cdot 5(H_2O)$
Molare $Masse/g \cdot mol^{-1}$	640,55
Kristallsystem	monoklin
Raumgruppe	$P2_1$
Diffraktometer	IPDS II
Strahlung	Mo-K α
Absorptionskorrektur	Numerisch [24]
Formeleinheiten Z	2
Gitterkonstanten /pm	a = 1099,9 (2)
	b = 1154.6 (2)
	c = 1104,7 (1)
/°	$\alpha = 90$
	$\beta = 106,80(1)$
	$\gamma = 90$
Volumen $/nm^3$	1,3430(4)
Dichte /g·cm ⁻³	1,584
Kristallform	Würfel
Kristallgröße /mm	$0,3 \ge 0,2 \ge 0,2$
Kristallfarbe	orange
h k l range	
h _{min/max}	-14/13
k _{min/max}	-14/14
$l_{min/max}$	-14/14
$2 heta_{ m max}$	$27,3^{\circ}$
Reflexzahl	
gemessen	16217
unabhängig	6053
$\mu \ /\mathrm{mm^{-1}}$	0,72
R-Werte:	
Io $> 2\sigma(Io)$	R1 = 0,0273
	$\omega R2 = 0.0635$
all data	R1 = 0.0318
	$\omega R2 = 0.0739$

Tab. 6.51: Kristallographische Daten und Details der Röntgeneinkristallstrukturanalyse der Verbindung $\frac{1}{\infty} \left\{ \Lambda - [Co(sep)] PDC (HPDC) \right\} \cdot 5 H_2 O$

Tab. 6.51: Fortsetzung		
R _{int}	0.0420	
$GooF = S_{all}$	1,11	
Zahl der verfeinerten		
Parameter	401	
F(000)	680	
$\Delta ho_{ m min/max} \ /e \cdot { m \AA}^{-3}$	-0.57/0.31	
Flack Parameter	0,01~(1)	

Tab. 6.51: Fortsetzung

Tab. 6.52: Atomlagen und isotrope oder äquivalente thermische Auslenkungsparameter $[10^{-20} \text{ m}^2]$ der Verbindung $\frac{1}{\infty} \left\{ \Lambda \text{-}[\text{Co(sep)}] \text{ PDC (HPDC)} \right\} \cdot 5 \text{ H}_2 \text{O}$

Atom	Wyckoff- Lage	x/a	y/b	z/c	$U_{\rm iso}^*/U_{\rm eq}$
C1	2a	0,0002(2)	0,8092(2)	0,4068(2)	
H1A	2a	-0,07100	0,79440	0,33280	0,0310
H1B	2a	-0,03160	0,84560	$0,\!47070$	0,0310
C2	2a	0,0661(2)	0,6974(2)	0,4566(2)	
H2A	2a	0,12900	0,71030	0,53750	0,0330
H2B	2a	0,00500	0,64110	$0,\!46850$	0,0330
C3	2a	0,1083(3)	0,7309(2)	0,0340(2)	
H3A	2a	0,15440	0,78910	0,00160	0,0330
H3B	2a	0,03980	0,70150	-0,03580	0,0330
C4	2a	0,1961(2)	$0,\!6338(2)$	0,0954(2)	
H4A	2a	0,14840	0,57170	0,11960	0,0330
H4B	2a	0,23930	0,60300	0,03730	0,0330
C5	2a	0,3629(2)	0,9794(2)	0,3512(2)	
H5A	2a	0,31980	1,02060	0,40340	0,0290
H5B	2a	0,41900	1,03300	0,32600	0,0290
C6	2a	0,4372(2)	$0,\!8789(2)$	0,4230(2)	
H6A	2a	$0,\!48620$	$0,\!84210$	0,37350	0,0300
H6B	2a	0,49520	0,90550	0,50200	0,0300
C9	2a	-0,1571(2)	0,5675(2)	0,1698(2)	
C10	2a	-0,2597(2)	0,4518(2)	0,3085(2)	
C11	2a	0,5103(2)	0,2817(3)	-0,0458(2)	
C12	2a	$0,\!3937(3)$	0,2652(2)	0,1244(3)	
C71	2a	-0,0110(2)	0,8951(2)	0,0923(2)	
H71A	2a	-0,01200	0,91070	0,00570	0,0330
H71B	2a	-0,09850	0,88740	0,09350	0,0330

Fortsetzung

Atom	Wyckoff- Lage	x/a	y/b	z/c	${\rm U_{iso}}^*/{\rm U_{eq}}$
C72	2a	0,0317(2)	0,9893(2)	0,2955(2)	
H72A	2a	-0,05810	0,98900	$0,\!28940$	0,0330
H72B	2a	0,06810	1,05950	0,33950	0,0330
C73	2a	0,1726(2)	1,0173(2)	0,1670(2)	
H73A	2a	$0,\!19680$	1,09320	0,20380	0,0290
H73B	2a	$0,\!17430$	1,02010	0,07980	0,0290
C81	2a	0,2229(2)	0,5577(2)	0,4143(3)	
H81A	2a	0,22180	0,54010	$0,\!49980$	0,0350
H81B	2a	$0,\!19600$	$0,\!48870$	0,36350	0,0350
C82	2a	0,4040(2)	$0,\!6813(2)$	0,4971(2)	
H82A	2a	$0,\!49430$	$0,\!68560$	0,50660	0,0310
H82B	2a	0,39340	0,66750	$0,\!58010$	0,0310
C83	2a	0,3699(3)	0,5922(2)	0,2923(3)	
H83A	2a	0,35040	0,51760	0,25080	0,0370
H83B	2a	$0,\!45870$	$0,\!60870$	0,30190	0,0370
C91	2a	-0,2708(2)	0,4947(2)	0,1755(2)	
H91A	2a	-0,34750	0,54070	$0,\!14550$	0,0330
H91B	2a	-0,27830	0,42870	$0,\!11960$	0,0330
C111	2a	0,4195(3)	0,3333(3)	0,0195(3)	
H11A	2a	$0,\!45260$	0,40820	$0,\!05310$	0,0430
H11B	2a	0,33910	0,34680	-0,04400	0,0430
N1	2a	0,09359(19)	0,8864(2)	0,3732(2)	
H1	2a	0,14630	0,91430	$0,\!44670$	0,0250
N2	2a	0,1288(2)	$0,\!65345(18)$	0,3626(2)	
H2	2a	0,06650	0,62260	$0,\!29760$	0,0260
N3	2a	0,0565(2)	0,7820(2)	0,1333(2)	
H3	2a	-0,00220	0,73130	$0,\!14560$	0,0270
N4	2a	0,2898(2)	$0,\!6834(2)$	0,2094(2)	
H4	2a	0,34360	0,72850	$0,\!18080$	0,0280
N5	2a	0,2686(2)	0,9296(2)	0,2375(2)	
H5	2a	0,31270	0,90590	$0,\!18390$	0,0260
N6	2a	0,3440(2)	0,7955(2)	0,4481(2)	
H6	2a	0,31520	0,82700	0,51020	0,0250
N7	2a	0,0453(2)	0,9921(2)	0,1700(2)	
N8	2a	0,3509(2)	0,5852(2)	0,4159(2)	

Atom	Wyckoff- Lage	x/a	y/b	z/c	$U_{\rm iso}^*/U_{\rm eq}$
01	2a	0,2435(2)	0,2490(2)	0,3843(2)	
O2	2a	0,2228(2)	0,6709(2)	-0,2104(2)	
O3	2a	-0,0018(2)	0,2984(2)	0,2827(2)	
O4	2a	-0,3141(2)	0,7473(2)	0,3612(3)	
O5	2a	-0,3312(3)	0,9669(2)	0,2664(3)	
O9A	2a	-0,0529(2)	0,5150(2)	0,1837(2)	
O9B	2a	-0,1702(2)	0,6740(2)	0,1527(2)	
O10A	2a	-0,2026(2)	0,5140(2)	0,4010(2)	
O10B	2a	-0,31194(19)	$0,\!35635(16)$	0,31877(18)	
O11A	2a	0,5317(2)	0,1747(2)	-0,0344(2)	
O11B	2a	0,5561(2)	0,3490(2)	-0,1100(2)	
O12A	2a	$0,\!3392(3)$	$0,\!3095(3)$	$0,\!1946(3)$	
O12B	2a	0,4294(3)	0,1576(2)	0,1365(2)	
H12	2a	0,46330	0,14120	0,08160	0,0810
Co1	2a	0,19728(3)	0,78835(2)	0,29397(2)	
H1E	2a	0,157(2)	0,272(4)	0,343(4)	$0,\!08(1)$
H1F	2a	0,283(4)	0,270(4)	0,319(3)	$0,\!09(2)$
H2E	2a	0,251(5)	0,595(2)	-0,225(5)	$0,\!09(2)$
H2F	2a	0,268(4)	0,730(3)	-0,241(4)	$0,\!08(1)$
H3E	2a	-0,019(4)	0,373(2)	0,241(4)	$0,\!08(1)$
H3F	2a	-0,075(3)	0,250(4)	0,259(5)	0,10(2)
H4E	2a	-0,280(3)	0,751(3)	0,455(2)	0,034(8)
H4F	2a	-0,291(7)	$0,\!684(4)$	0,316(6)	0,16(3)
H5E	2a	-0,409(3)	0,956(4)	0,205(3)	$0,\!07(1)$
H5F	2a	-0,30(1)	0,907(7)	0,329(8)	0,26(5)

Tab. 6.52: Fortsetzung

140. 0.0	$\frac{1}{\infty} \{ \Lambda - [Co(sep$	b)] PDC (HPDC	$) \cdot 5 H_2O \text{ mit } S$	Standardabweich	ung	Verbindung
Atom	U11	U22	U33	U12	U13	U23
C1	0,021(1)	0,030(2)	0,028(1)	-0,0015(9)	0,0094(9)	0,001(1)
C2	0,030(1)	0,032(1)	0,022(1)	-0,006(1)	0,009(1)	0,004(1)
C3	0,035(1)	0,031(1)	0,017(1)	-0,005(1)	0,007(1)	-0,0022(9)
C4	0,033(1)	0,024(1)	0,026(1)	-0,007(1)	0,010(1)	-0,0079(9)
C5	0,026(1)	0,021(1)	0,026(1)	-0,0052(9)	0,008(1)	-0,002(1)
C6	0,021(1)	0,025(1)	0,029(1)	-0,0041(9)	0,005(1)	-0,001(1)
C9	0,028(1)	0,030(1)	0,019(1)	-0,010(1)	0,004(1)	-0,0022(9)
C10	0,024(1)	0,025(1)	0,027(1)	0,0004(9)	0,008(1)	0,0005(9)
C11	0,022(1)	0,042(1)	0,025(1)	-0,002(1)	0,0035(8)	0,001(1)
C12	0,059(2)	0,036(2)	0,055(2)	-0,009(1)	0,034(2)	-0,006(1)
C71	0,025(1)	0,027(1)	0,024(1)	0,001(1)	-0,001(1)	0,007(1)
C72	0,028(1)	0,024(1)	0,031(1)	0,010(1)	0,008(1)	0,005(1)
C73	0,030(1)	0,017(1)	0,026(1)	-0,0009(9)	0,009(1)	0,0058(9)
C81	0,030(1)	0,019(1)	0,034(1)	-0,001(1)	0,005(1)	0,007(1)
C82	0,023(1)	0,025(1)	0,025(1)	0,006(9)	0,000(1)	0,003(9)
C83	0,034(1)	0,022(1)	0,037(2)	0,005(1)	0,011(1)	-0,003(1)
C91	0,026(1)	0,034(1)	0,023(1)	-0,0141(1)	0,005(1)	0,002(1)
C111	0,033(1)	0,035(1)	0,045(2)	-0,001(1)	0,020(1)	-0,000(1)
N1	0,020(1)	0,022(1)	0,0197(9)	0,0013(8)	0,0038(8)	0,0015(8)
N2	0,023(1)	0,021(1)	0,021(1)	-0,0015(8)	0,0030(8)	0,0019(8)
N3	0,0233(8)	0,0223(9)	0,0198(8)	-0,002(1)	0,0038(7)	0,001(1)
N4	0,028(1)	0,021(1)	0,021(1)	0,0006(8)	0,0077(9)	-0,0038(8)
N5	0,024(1)	0,019(1)	0,021(1)	-0,0020(8)	0,0070(8)	-0,0008(8)
N6	0,0204(8)	0,0202(9)	0,0216(8)	0,000(1)	0,0051(7)	-0,001(1)
N7	0,027(1)	0,023(1)	0,025(1)	0,0041(8)	0,0044(8)	0,0049(8)
N8	0,027(1)	0,0199(9)	0,031(1)	0,0043(8)	0,0045(9)	0,0010(8)
O1	0,043(1)	0,048(1)	0,060(1)	0,004(1)	0,018(1)	-0,001(1)
O2	0,040(1)	0,043(1)	0,046(1)	0,002(1)	0,010(1)	0,004(1)
O3	0,041(1)	0,046(1)	0,046(1)	-0,001(1)	0,008(9)	0,004(1)
O4	0,042(1)	0,049(1)	0,076(2)	0,006(1)	0,020(1)	-0,015(1)
O5	0,059(2)	0,057(2)	0,051(1)	-0,021(1)	0,011(1)	-0,003(1)
O9A	0,028(9)	0,038(1)	0,037(1)	-0,0059(8)	0,0118(8)	-0,0050(8)
O9B	0,037(1)	0,032(1)	0,054(1)	-0,0076(8)	0,004(1)	0,0086(9)
O10A	0,045(1)	0,0317(9)	0,0226(9)	-0,0035(8)	0,0093(8)	0,0001(7)

 $[10^{-20} \text{ m}^2]$ Tab. 6.53: Anisotrope thermische Auslenkungsparameter der Verbindung

1ab. 0.00	. Portsetzung					
Atom	U11	U22	U33	U12	U13	U23
O10B	0,044(1)	0,029(1)	0,036(1)	-0,0096(8)	0,0159(9)	0,0035(8)
O11A	0,034(1)	0,042(1)	$0,\!044(1)$	0,0089(9)	$0,\!0122(9)$	0,0021(9)
O11B	0,034(1)	0,050(1)	0,038(1)	-0,0028(9)	$0,\!0189(9)$	0,0026(9)
O12A	$0,\!139(3)$	0,059(2)	0,111(2)	-0,016(2)	0,106(2)	-0,016(2)
O12B	0,074(2)	0,048(1)	$0,\!053(1)$	0,001(1)	$0,\!039(1)$	0,009(1)
Co1	0,0179(1)	0,0162(1)	$0,\!0180(1)$	-0,0004(1)	0,00429(9)	0,0002(1)

Tab. 6.53: Fortsetzung

Tab. 6.54: Ausgewählte interatomare Abstände [pm] mit Standardabweichung der Verbindung ${1\over\infty} \big\{ \Lambda \text{-}[\mathrm{Co}(\mathrm{sep})]\,\mathrm{PDC}\,(\mathrm{HPDC}) \big\} \cdot 5\,\mathrm{H_2O}$

$\infty \int \Pi = [OO(n)]$	$[p]_{1} DO([m DO)] 0 m_{2}0$		
C1-N1	148,6(3)	C73–N5	150,6(3)
C1-C2	150,5(3)	C73–H73A	97,0
C1-H1A	97,0	C73–H73B	97,0
C1-H1B	97,0	C81-N8	143,9(3)
C2-N2	149,2(3)	C81-N2	150,9(3)
C2–H2A	97,0	C81-H81A	97,0
C2-H2B	97,0	C81-H81B	97,0
C3-N3	149,7(3)	C82-N8	144,0(3)
C3-C4	150,6(4)	C82-N6	150,3(3)
C3–H3A	97,0	C82-H82A	97,0
C3-H3B	97,0	C82-H82B	97,0
C4-N4	149,2(3)	C83–N8	144,2(4)
C4–H4A	97,0	C83-N4	150,2(3)
C4-H4B	97,0	C83–H83A	97,0
C5-N5	149,4(3)	C83-H83B	97,0
C5-C6	$150,\!6(3)$	C91-H91A	97,0
C5-H5A	97,0	C91-H91B	97,0
C5-H5B	97,0	C111-H11A	97,0
C6-N6	149,0(3)	C111-H11B	97,0
C6-H6A	97,0	N1-Co1	198,1(2)
C6-H6B	97,0	N1-H1	$91,\!0$
C9-O9B	124,5(3)	N2-Co1	197,5(2)
C9-O9A	$126,\!6(3)$	N2-H2	$91,\!0$
C9-C91	152,3(3)	N3-Co1	199,1(2)
C10-O10A	125,8(3)	N3-H3	91,0

Tab. 6.54: Fortsetzung			
C10-O10B	126,3(3)	N4-Co1	198,2(2)
C10-C91	152,1(3)	N4-H4	$91,\!0$
C11-O11B	125,2(3)	N5-Co1	198,7(2)
C11-O11A	125,7(4)	N5-H5	$91,\!0$
C11-C111	151,3(4)	N6-Co1	198,0(2)
C12-O12A	122,1(4)	N6-H6	$91,\!0$
C12-O12B	129,9(4)	O1-H1E	97(2)
C12-C111	149,3(4)	O1-H1F	98(2)
C71-N7	$143,\!6(3)$	O2-H2E	96(2)
C71-N3	$150,\!6(3)$	O2-H2F	96(2)
C71-H71A	97,0	O3-H3E	96(2)
C71–H71B	97,0	O3-H3F	95(2)
C72-N7	144,3(3)	O4-H4E	99(2)
C72-N1	150,7(3)	O4-H4F	96(2)
C72-H72A	97,0	O5-H5E	94(2)
C72-H72B	97,0	O5-H5F	96(2)
C73-N7	143,9(3)	O12B-H12	82,0

Tab. 6.55: Ausgewählte interatomare Winkel	[°]	mit	Standardabweichung	der	Verbindung
$\frac{1}{\infty} \left\{ \Lambda - [Co(sep)] PDC (HPDC) \right\} \cdot 5 H_2 O$					

∞([∘ ∘ (∞ ∘ F /]			
N1-C1-C2	108,1(2)	N4-C83-H83A	108,9
N1-C1-H1A	110,1	N8-C83-H83B	108,9
C2-C1-H1A	110,1	N4-C83-H83B	$108,\!9$
N1-C1-H1B	110,1	H83A-C83-H83B	107,7
C2-C1-H1B	110,1	C10-C91-C9	112,5(2)
H1A-C1-H1B	108,4	С10-С91-Н91А	109,1
N2 - C2 - C1	107,9(2)	C9-C91-H91A	109,1
N2-C2-H2A	110,1	С10-С91-Н91В	109,1
C1-C2-H2A	110,1	С9-С91-Н91В	109,1
N2-C2-H2B	110,1	H91A-C91-H91B	$107,\!8$
C1-C2-H2B	110,1	C12-C111-C11	$117,\!6(3)$
H2A-C2-H2B	108,4	C12-C111-H11A	$107,\!9$
N3-C3-C4	107,1(2)	С11-С111-Н11А	$107,\!9$
N3-C3-H3A	110,3	C12-C111-H11B	107,9
C4-C3-H3A	110,3	C11-C111-H11B	107,9

Tab. 6.55: Fortsetzung			
N3-C3-H3B	110,3	H11A-C111-H11B	107,2
С4-С3-Н3В	$110,\!3$	C1 - N1 - C72	$112,\!6(2)$
НЗА-СЗ-НЗВ	$108,\! 6$	C1-N1-Co1	107,2(1)
N4-C4-C3	106,9(2)	C72-N1-Co1	115,0(2)
N4-C4-H4A	110,3	C1-N1-H1	107,3
C3-C4-H4A	$110,\!3$	C72-N1-H1	107,3
N4-C4-H4B	$110,\!3$	Co1-N1-H1	107,3
C3-C4-H4B	110,3	C2 - N2 - C81	113,0(2)
H4A-C4-H4B	$108,\! 6$	C2-N2-Co1	107,7(2)
N5 - C5 - C6	$106,\!6(2)$	C81-N2-Co1	115,3(2)
N5-C5-H5A	110,4	C2-N2-H2	106,8
C6-C5-H5A	110,4	C81-N2-H2	106,8
N5-C5-H5B	110,4	Co1-N2-H2	106,8
C6-C5-H5B	110,4	C3-N3-C71	112,3(2)
H5A-C5-H5B	$108,\! 6$	C3-N3-Co1	107,8(2)
N6-C6-C5	$107,\!3(2)$	C71-N3-Co1	115,2(2)
N6-C6-H6A	110,2	C3-N3-H3	107, 1
C5-C6-H6A	110,2	C71-N3-H3	$107,\!1$
N6-C6-H6B	110,2	Co1-N3-H3	107,1
C5-C6-H6B	110,2	C4-N4-C83	112,7(2)
H6A-C6-H6B	108,5	C4-N4-Co1	108,0(2)
O9B-C9-O9A	$123,\!5(2)$	C83-N4-Co1	115,6(2)
O9B-C9-C91	119,4(2)	C4-N4-H4	106,7
O9A-C9-C91	117,1(2)	C83-N4-H4	106,7
O10A-C10-O10B	123,9(2)	Co1-N4-H4	106,7
O10A - C10 - C91	118,7(2)	C5 - N5 - C73	112,8(2)
O10B-C10-C91	117,4(2)	C5-N5-Co1	107,0(2)
O11B-C11-O11A	125,0(2)	C73-N5-Co1	115,7(2)
O11B-C11-C111	117,0(3)	C5-N5-H5	106,9
O11A-C11-C111	118,0(2)	C73-N5-H5	106,9
O12A-C12-O12B	121,7(3)	Co1-N5-H5	106,9
O12A-C12-C111	120,7(3)	C6 - N6 - C82	112,3(2)
O12B-C12-C111	$117,\!6(3)$	C6-N6-Co1	107,5(1)
N7-C71-N3	114,0(2)	C82-N6-Co1	115,9(2)
N7-C71-H71A	108,7	C6-N6-H6	106,9
N3-C71-H71A	108,7	C82-N6-H6	106,9

Tab. 6.55: Fortsetzung

Tab. 0.55. Poltsetzung			
N7-C71-H71B	108,7	Co1-N6-H6	106,9
N3-C71-H71B	108,7	C71-N7-C73	$113,\!6(2)$
H71A-C71-H71B	$107,\! 6$	C71 - N7 - C72	114,1(2)
N7 - C72 - N1	114,3(2)	C73-N7-C72	113,4(2)
N7-C72-H72A	108,7	C81-N8-C82	$113,\!3(2)$
N1-C72-H72A	108,7	C81-N8-C83	114,2(2)
N7-C72-H72B	108,7	C82-N8-C83	113,7(2)
N1-C72-H72B	108,7	H1E-O1-H1F	1,(4)
H72A-C72-H72B	$107,\! 6$	H2E-O2-H2F	112,(4)
N7-C73-N5	113,3(2)	H3E-O3-H3F	111,(4)
N7-C73-H73A	108,9	H4E-O4-H4F	120,(5)
N5-C73-H73A	108,9	H5E-O5-H5F	117,(7)
N7-C73-H73B	108,9	C12-O12B-H12	109,5
N5-C73-H73B	108,9	N2-Co1-N6	$90,\!53(9)$
H73A-C73-H73B	107,7	N2-Co1-N1	87,1(1)
N8-C81-N2	113,9(2)	N6-Co1-N1	$91,\!51(8)$
N8-C81-H81A	108,8	N2-Co1-N4	90,22(8)
N2-C81-H81A	108,8	N6-Co1-N4	$91,\!67(8)$
N8-C81-H81B	108,8	N1-Co1-N4	$175,\!84(9)$
N2-C81-H81B	108,8	N2-Co1-N5	175,73(9)
H81A-C81-H81B	107,7	N6-Co1-N5	86,46(9)
N8-C82-N6	113,3(2)	N1-Co1-N5	89,96(8)
N8-C82-H82A	108,9	N4-Co1-N5	$92,\!9(1)$
N6-C82-H82A	108,9	N2-Co1-N3	$91,\!62(9)$
N8-C82-H82B	108,9	N6-Co1-N3	$176,\!84(8)$
N6-C82-H82B	108,9	N1-Co1-N3	90, 91(8)
H82A-C82-H82B	107,7	N4-Co1-N3	86,0(9)
N8-C83-N4	113,4(2)	N5-Co1-N3	$91,\!51(9)$
N8-C83-H83A	108,9		

Dank

Mein besonderer Dank gilt meinem Doktorvater Herrn Prof. Dr. Uwe Ruschewitz für die spannende Aufgabenstellung, die hervorragende persönliche Betreuung und viel Freiheit in der Forschung und Weiterentwicklung des Arbeitskreises.

Herrn Prof. Dr. Axel Klein möchte ich für die freundliche Übernahme des zweiten Gutachtens danken.

Herrn Prof. Dr. Ladislav Bohatý danke ich für die Übernahme des Disputationsvorsitzes.

Herrn Dr. Ingo Pantenburg danke ich für die Übernahme der Schriftführung.

Weiterhin bedanke ich mich bei:

Herrn Dr. Ingo Pantenburg und Frau Ingrid Müller für die aufwendigen Einkristallmessungen und die vielen kompetenten Ratschläge auf dem Gebiet der Röntgeneinkristallstrukturanalyse

Dr. Jörg-Martin Neudörfl für schnelle unbürokratische Hilfe bei Kühlwasserproblemen in der AC und den daraus folgenden Einkristallmessungen einiger sehr empfindlicher Kristalle

Frau Malgorzata Smolarek und Herrn Peter Kliesen für die IR-Messungen

Frau Silke Kremer für die Elementaranalysen

Der Belegschaft des Arbeitskreises Klein für die hervorragende Nachbarschaft, das stets offene Ohr bei Fragen aller Art, kurzfristige Hilfe bei dringendem Ressourcenmangel, besonders wenn die Milch mal wieder knapp wurde

Meinen Praktikanten Andrea, Beatrix, Christoph, Daniel, Elena, Philipp, Sabrina, Stephan und Sandra für Ihre gute Mitarbeit an meinem Forschungsgebiet, leckere Menüs und schöne Ausstände

Meinen Arbeitskolleginnen und Arbeitskollegen des Arbeitskreises Ruschewitz für die ausgezeichnete Arbeitsatmosphäre, gemütliche Feierabende, sportliche Herausforderungen in den Mittagspausen und fachliche Unterstützung in jeder Situation

6 Appendix

Dr. Alexandra Glees, Dr. Irena Stein und Dr. Peter Held für die Unterstützung bei der Röntgeneinkristallstrukturanalyse und der Hilfe bei der Lösung einiger kniffeliger Einkristallprobleme

Daniela Hermann, Stefanie Busch, Ireneus Grzesiak, Verena Gramm und Hannelore Liebig für die detaillierte Korrektur des Typoskripts

Der Reisegruppe Lund für eine fantastische Tagung in Schweden und für die eiskalte Überraschung in Kopenhagen

Ein besonderer Dank gilt meinen beiden Mitzusammenschreibern Rainer Lamann und Stefan Liebig für eine außergewöhnliche gemeinsame Promotion, *unsere* Seminare, den schrägen Humor, spannende Kickerspiele, Kiel und insgesamt eine grandiose Zeit!

Meinen Kommilitonen und FreundenInnen Daniela, Stefanie, Robin, Kai, Martin, Micha, Andy, Felix, Stefan, meinen Turnern und dem Fanclub für das immer offene Ohr und die Unterstützung auch abseits der Chemie

Der größte Dank gilt meiner Familie, die mir während des gesamten Studiums eine unentbehrliche Stütze war. Danke, dass ihr immer an mich geglaubt habt und gerade in schweren Momenten immer für mich da wart. Meinem Bruder Stefan danke ich dafür, dass er in allen Belangen der beste Bruder ist, den man sich nur wünschen kann.

Meiner Frau Denise danke ich mit ganzem Herzen für die Unterstützung, die Motivation und dafür, dass du mir immer den Rücken freigehalten hast. Nisi, ohne dich hätte ich es nicht geschafft!

Danke!!!

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit — einschließlich Tabellen, Karten und Abbildungen —, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegt; dass sie noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen der geltenden Promotionsordnung sind mir bekannt.

Die von mir vorgelegte Dissertation ist von Prof. Dr. Uwe Ruschewitz betreut worden.

Köln, den 20. August 2012, Thomas Justus Liebig

Zur Wahrung der Priorität wurden Teile dieser Arbeit bereits publiziert:

- 1. T. J. Liebig, U. Ruschewitz, Z. Anorg. Allg. Chem. 2010, 636, 2056.
- 2. T. J. Liebig, U. Ruschewitz, Cryst. Growth Des. 2012, 12, 5402-5410.

Thomas Justus Liebig

Diplom-Chemiker, 6. Mai 1981, Leverkusen, deutsch, verheiratet. Hans-Gerhard-Str. 3 51377 Leverkusen 2° +49 173 - 63 62 147 2° +49 214 - 831 87 62 \boxtimes thomasjliebig@googlemail.com

Studium

- seit 03.2009 **Promotion** zum Thema Supramolekulare Polymere mit chiralen Cobalt-Komplexen an der Universität zu Köln, Anorganische Chemie, bei Prof. Dr. Uwe Ruschewitz
- 08.2008–02.2009 **Diplomarbeit** zum Thema *Ternäre Alkalimetalleisensulfide* an der Universität zu Köln
- 11.2006–08.2008 Hauptstudium im Fach Diplom-Chemie an der Universität zu Köln mit dem Spezialfach Anorganische Chemie, Diplom 02.2009
- 09.2001–11.2006 **Grundstudium** im Fach Diplom-Chemie an der Universität zu Köln, Vordiplom 11.2006

Fort- und Weiterbildungen

- 03.2011–01.2012 Geprüfter Projektmanager Wirtschaftschemie GDCh in Münster bei Prof. Dr. J. Leker: Unternehmensstrategien, Wettbewerbsanalyse, Produktmanagement und Innovationsmanagement in der Chemischen Industrie
 - 07.2009 7ter Kieler Workshop: Fehler, Fallen und Probleme in der Einkristallstrukturanalyse in Kiel bei PD Dr. Ch. Näther und Dr. M. Bolte

Zivildienst

12.2000–08.2001 TSV Bayer 04 Leverkusen: Durchführung von Sportkursen mit Kindern, Mitarbeit in der Haustechnik

Schulausbildung

- 09.1991–06.2000 Abitur am Freiherr-vom-Stein-Gymnasium in Leverkusen, Leistungskurse: Chemie, Kunst
- 07.1987–06.1991 Gemeinschaftsgrundschule Leverkusen

Berufliche Tätigkeiten und Praktika

seit 10.2007 Mitarbeiter der Universität zu Köln, Betreuung von Studenten in Anfänger- und Fortgeschrittenenpraktika, Betreuung und Instandhaltung verschiedener Pulverdiffraktometer