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Zusammenfassung 

Das Sympathische Nervensystem der Gnathostomata ist ein Teil des 

autonomen Nervensystems und ist an der unwillentlichen Steuerung der 

inneren Organe und der Aufrechterhaltung der Homöosthase des Körpers 

beteiligt. Dabei stimuliert es durch seine ergotrope Wirkung die 

Stressreaktionen des Körpers. 

Die Neuronen des Sympathikus sind Derivate der Neuralleiste. Die Zellen 

der Neuralleiste sind pluripotent und dadurch gekennzeichten, dass sie im 

Laufe der Embryonalentwicklung durch den Organismus wandern und 

dabei die Anlage verschiedener Gewebe bilden, wie zum Beispiel 

sensorische Neurone, Neurone des autonomen Nervensystems, Glia, 

Melanozyten, Nebennierenmark und außerdem im Kopfbereich Knochen, 

Knorpel, Bindegewebe und Muskeln. 

Neunaugen sind Vertreter der Agnatha und somit basale, kieferlose 

Vertebraten, die kambrischen Fossilien ähneln. Neunaugen besitzen 

Neuralleistenzellen und auch die meisten Neuralleistenderivate, aber 

ihnen fehlt der sympathische Grenzstrang – Truncus sympathicus. 

Obwohl ein Truncus sympathicus nicht vorhanden ist, wurden 

verschiedene Zelltypen beschrieben, welche in Neunaugen sympathische 

Funktionen übernehmen. 

Um das Verständnis der Evolution und der Entwicklung des 

Sympathischen Nervensystems zu erhellen, wurden Antikörperfärbungen, 

Zellmarkierungen mittels DiI und in-situ-Hybridisierungen durchgeführt. 

Anfärbungen mittels eines pan-neuronalen Antikörpers und 

Zellmarkierungen mit DiI bestätigten die Existenz von Spinalganglien und 

enterischen Ganglien in Neunaugen. In-situ-Hybridisierungen in 

Neunaugenembryonen mit spezifischen Sonden für Markergene des 

Sympathischen Nervensystems, Ascl1, dHand und Phox2b, zeigten die 

Expression dieser Gene in verschiedenen Geweben in denen auch eine 
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entsprechende Expression bei Gnathostomata bekannt ist. Jedoch wurde 

keine Expression in Bereichen, in denen sich bei Gnathostomata 

Strukturen des Sympathischen Nervensystems befinden, detektiert. 

Insgesamt wurde mit keiner der drei angewandten Methoden 

sympathische Ganglienzellen oder Zellen, die als Vorläuferzellen des 

Sympathikus angesehen werden könnten, gefunden. 

Das Fehlen eines Truncus sympathicus in Neunaugen führte zu der 

Hypothese, dass eine cis-regulatorische Umregulierung bereits 

vorhandener Gene zu der Entstehung des Sympatischen Nervensystems 

in Wirbeltieren beigetragen haben könnte. Zur Überprüfung dieser 

Hypothese wurden drei konservierte nicht-kodierende Elemente mithilfe 

von Reporter-Expressions-Experimentes in Haushuhn und Neunage 

verglichen. Ein konserviertes nicht-kodierendes Element, welches 

proximal im Phox2b-Promoter liegt, führte zu Expression im Haushuhn. Im 

Gegensatz dazu war dieses Element bei dem Test der drei Elemente in 

Neunaugen inaktiv. Allerdings war in Neunaugen von den drei getesteten 

Elementen eine andere Sequenz im ersten Intron aktiv. 

Überraschenderweise führten die zwei unterschiedlichen Elemente in 

beiden Arten zu Expression in vergleichbaren Geweben. Keins der drei 

getesteten Elemente zeigte Expression in sympathischen Neuronen oder 

Ganglien. Das Interspezies-Experiment hat gezeigt, dass Regionen aus 

dem Genom des Haushuhn in der Lage sind, in Neunaugen 

Transkriptionsfaktoren zu rekrutieren und Expression zu erzeugen. 

Diese Arbeit bestätigt, dass sowohl der Truncus sympathikus, als auch 

andere periphere sympathische Neuronen in Neunaugen fehlen. Es ist 

eine plausible Annahme, dass Änderungen der cis-regulatorischen 

Verschaltungen zu der evolutiven Rekrutierung von Neuralleistenzellen zu 

Vorläufern des Sympathischen Nervensystems führten. Im Folgenden wird 
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anhand der neuen Erkenntnisse und der bereits vorhanden Literatur die 

Evolution des Sympathischen Nervensystems dikutiert. 
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Abstract 

In Gnathostomata, the sympathetic nervous system is a branch of the 

autonomic nervous system and it is responsible for the unconscious 

control of the inner organs. It mainly conveys stress responses, the so 

called “flight or fight” reaction. 

Sympathetic neurons are derivatives of the neural crest, a pluripotent 

embryological cell lineage that has migratory capabilities. Neural crest 

cells give rise to various tissues, for example sensory neurons, autonomic 

neurons, glia, melanocytes, cells of the adrenal medulla as well as the 

bone, cartilage, connective tissue and muscle cells of the head. 

Lampreys are jawless basal vertebrates, Agnatha, that resemble 

Cambrian era fossils. Lampreys do have neural crest cells and most of 

their derivatives, but lack a commissural sympathetic chain. Despite the 

absence of a definite sympathetic ganglion chain, different cell types of 

endocrine cells were reported to implement sympathetic functions in 

lampreys.  

To shed light on the evolution and development of the sympathetic 

nervous system, immunohistochemistry, DiI cell tracing and in-situ 

hybridization experiments were carried out. Staining with a pan-neuronal 

antibody as well as the DiI cell labeling in lampreys confirmed the 

presence of dorsal root and enteric ganglia. In-situ hybridizations with 

probes against the sympathetic nervous system marker genes Ascl1, 

dHand and Phox2b, visualized transcripts of these genes in various 

tissues that correspond to the known expression of these genes in 

gnathostomes, except for expression in sites where sympathetic ganglia 

would be expected. None of the three different techniques detected 

sympathetic ganglia cells or cells that could be regarded as sympathetic 

precursor cells. 
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The absence of a commissural sympathetic chain in lampreys led to the 

hypothesis that redeployment of genes within the gene regulatory network 

for sympathetic neuron differentiation contributed to the appearance of the 

sympathetic nervous system. To test this hypothesis the cis-regulatory 

activity of three conserved non-coding elements was compared in lamprey 

and chicken using a reporter expression assay. A conserved non-coding 

element lying directly proximal to the chicken Phox2b promoter showed 

expression in the chicken. In contrast, this element was silent when the 

same three sequences were tested in lamprey. The only element which 

gave rise to expression in lamprey was a different one, which is spanning 

the first intron. Surprisingly the two different conserved non-coding 

elements drove expression in corresponding tissues in both species. None 

of the tested elements showed expression in sympathetic neurons or 

ganglia. The interspecies experiment showed that chicken genomic 

regions can successfully recruit transcription factors and drive expression 

in the lamprey.  

This study confirms that a commissural sympathetic chain and peripheral 

sympathetic neurons are absent in lampreys. It is a plausible scenario that 

changes in cis-regulatory linkages led to the evolutionary deployment of 

neural crest cells as precursors for sympathetic neurons. 

Hence, the evolution of the sympathetic nervous system is discussed 

based on the presented results and in the light of previous publications. 

  

 



  
Page 

11 

 

  

General Introduction 

Lampreys 

Lampreys are agnathans (jawless vertebrates). Together with hagfishes 

they comprise a sister group to the gnathostomes (jawed vertebrates) also 

called “cyclostomes” referring to their round mouths and the absence of 

jaws. Although controversy remains on the question if lampreys and 

hagfishes are monophyletic (Cyclostome hypothesis) or if lampreys are 

closer to the gnathostomes (Vertebrate hypothesis) then the hagfishes 

(Kuraku, Hoshiyama et al. 1999; Osorio and Retaux 2008). It is mostly 

anatomical data suggesting a closer relationship between lampreys and 

gnathostomes, but upcoming and growing genetic evidence seems to 

support a monophyly of hagfishes and lampreys (Heimberg, Cowper-Sal-

lari et al. 2010). 

Today there are 38 known lamprey species. The most studied species are 

the sea lamprey Petromyzon marinus and the Japanese lamprey 

Lethenteron japonicum (Shimeld and Donoghue 2012). Lampreys have an 

eel-like body shape and they possess many essential vertebrate 

characteristics. The 360-million-year-old fossil from the Devonian, 

Priscomyzon riniensis (Gess, Coates et al. 2006), is the oldest definite 

lamprey fossil discovered so far. Fossil records for Agnatha date back to 

the early Cambrian (Gess, Coates et al. 2006; Janvier 2006) and fossils 

that are morphologically lamprey-like were dated back 540 million-years to 

510 million-years  (D-G. Shu 1999). The fossils prove the parasitic lifestyle 

of lampreys at least for the last 360 million years (Gess, Coates et al. 

2006).  

The lifecycle of sea lampreys is very peculiar (Figure 1). The embryos 

grow to a larval stage called ammocoetes, worm-like larva that burrow 

themselves in sediments of slow streaming fresh water streams with only 
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their head above the ground to filter-feed from the streaming water. 

Initially the ammocoetes were thought to be an independent species which 

was called Ammocoetes branchialis. The larval stage lasts for 3 to 8 years 

and ends with the metamorphosis (3 – 10 month) to the adult lamprey. 

The adult lampreys then migrate into lakes or the sea and live for 1 - 4 

years before they migrate up the streams to spawn and die (Osorio and 

Retaux 2008). Until their migration into freshwater streams for spawning 

most lamprey species live as ectoparasites on fish (Shimeld and 

Donoghue 2012). There are a few lamprey species that are living 

exclusively in freshwater and that do not feed as ectoparasites. The 

European brook lamprey Lampetra planeri for example stays in the 

freshwater streams as a filter feeding ammocoete and stops feeding 

during and after the metamorphose (Hardisty 1951). 
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Figure 1: Lifecycle of the sea lamprey (Petromyzon marinus) (Osorio and Retaux 

2008) 

Despite their vertebrate characteristics lampreys lack some key features 

like paired appendages, the commissural sympathetic chain and jaws 

(Sauka-Spengler and Bronner-Fraser 2008).  

As basal vertebrates, lampreys and hagfishes occupy a phylogenetic 

position, which is critical for understanding evolution of vertebrate traits.  

However, lampreys offer a significant advantage for developmental 

studies over hagfishes due to the accessibility and ease of obtaining 

embryos for experimental manipulation (Holland 2007; Shimeld and 

Donoghue 2012).  

There are two different staging tables available for lamprey embryos, the 

one of Tahara for Lampetra reissneri (Tahara 1988) and the one of Piavis 

for Petromyzon marinus (Piavis 1961). Piavis categorized the early 

development starting from the ovulated but unfertilized egg to the first 

larval stage into 19 stages. His stages are defined by morphological 
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hallmarks. The 19 Piavis stages occur over a period of 35 – 40 days and 

are therefore not detailed enough for genetic studies. In this study lamprey 

embryos are staged by “embryonic days” (E) meaning the days after 

fertilization of the egg.    

 

Neural Crest 

Neural crest cells are a vertebrate specific population of migratory and 

multipotent precursors. They were first identified in the developing chicken 

embryo by Wilhelm His in 1868 (His 1868). The extant Agnatha, lampreys 

and hagfishes also possess neural crest cells (McCauley and Bronner-

Fraser 2006; Ota, Kuraku et al. 2007).  

Neural crest cells undergo 4 phases (Figure 2), induction, delamination, 

migration and, differentiation. The induction phase was traditionally 

thought to start at the time of neural tube closure, but is now proven to 

start at early gastrula stage and last until the closure of the neural tube. 

The induction phase is characterized by two important steps. First, the 

early induction phase when the prospective neural crest cells are induced 

during the open neural plate stage and second, the late phase that is 

required for neural crest cells to maintain their identity after the neural tube 

closure (Aybar and Mayor 2002; Stuhlmiller and Garcia-Castro 2012). 

After closure of the neural tube the neural crest cells start to delaminate in 

a rostral to caudal pattern (Sauka-Spengler and Bronner-Fraser 2008). 

The delamination of neural crest cells from the neural epithelium requires 

an epithelial - mesenchymal transition. This is a process of drastic 

changes in cell shape and cell-cell interactions. From the formation of an 

epithelium in which cells have an apical-basal polarity and strong cell-cell 

interactions via tight junctions, cadherin based adherens junctions and 

gap junctions, delaminating neural crest cells change to cells with no 
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apical-basal cell polarity, but filopodia and the ability to interact with the 

extracellular matrix (Duband, Monier et al. 1995; Hay 2005; Radisky 

2005). 

The neural crest cells that have undergone the epithelial – mesenchymal 

transition start their migration along defined pathways throughout the 

embryos body. The mechanism of path finding varies between the 

different subpopulations of the neural crest. The mechanisms employed 

involve cell-cell attraction, cell-cell inhibition, repellent signals from the 

surrounding tissues as well as attracting signals from target tissues (Clay 

and Halloran 2010).  

After reaching their target sites neural crest cells start differentiating. 

Neural crest cells give rise to a multitude of differentiated cell types, for 

example sensory neurons, autonomic neurons, glia, melanocytes, cells of 

the adrenal medulla as well as the bone, cartilage, connective tissue and 

muscle cells of the head (Le Douarin 1982; Graham 2003). 

The exact time point of fate restriction towards certain derivatives varies 

between the different neural crest cells. Even before migration starts the 

pool of migrating cells consists of pluripotent neural crest stem cells as 

well as fate restricted progenitors (Mundell and Labosky 2011). The exact 

niche for neural crest cell pluripotency and differentiation is under 

intensive investigation since adult neural crest stem cells could be of great 

therapeutic value (Delfino-Machin, Chipperfield et al. 2007).  
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Figure 2: Developmental steps of neural crest formation (Sauka-Spengler and 

Bronner-Fraser 2008) 

 

The neural crest is subdivided into different populations namely the 

cranial, the vagal including the cardiac which is sometimes regarded as an 

independent population and the trunk neural crest. Some researchers also 

regard the lumbo-sacral neural crest as an individual neural crest 

population (Kuo and Erickson 2010) citations ). All populations of neural 

crest cells migrate along distinct and defined pathways and give rise to 

specific cell types.  

The cranial crest cells migrate predominantly between the ectoderm and 

the underlying mesoderm which is called the dorsolateral pathway 
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(Tosney 1982; Gans and Northcutt 1983). The most obvious derivatives of 

the cranial crest are the facial skeleton, cartilage and connective tissue of 

the head as well as its contribution to the fore- and midbrain, but it also 

gives rise to melanocytes, neurons and glial cells (Noden 1978; Le 

Douarin, Brito et al. 2007).  

The vagal neural crest contributes to the neurons and glia cells of the 

peripheral nervous system and melanocytes, too (Reedy, Faraco et al. 

1998; Reedy, Faraco et al. 1998; Kuo and Erickson 2011) and it is the 

main population that gives rise to the neurons and glia cells of the enteric 

nervous system. For a long time the vagal neural crest was thought to be 

the sole population of neural crest cells that gives rise to enteric neurons 

(Yntema and Hammond 1954; Le Douarin and Teillet 1973; Epstein, 

Mikawa et al. 1994; Burns, Champeval et al. 2000; Burns and Le Douarin 

2001; Burns, Delalande et al. 2002).  

The cardiac crest is a subpopulation of the vagal neural crest. It appears 

in chick from the post-otic brain to somite level three and the name is 

derived from the major contribution of the cardiac crest to formation of the 

outflow tract as well as the septation of the heart and the parasympathetic 

innervation of the heart. Additional derivatives are the smooth muscle 

tunics of the great arteries, the connective tissue of the thymus, the thyroid 

and parathyroid, the articopulmonary septum and melanocytes (Kuo and 

Erickson 2010). 

The trunk neural crest gives rise to sensory and sympathetic ganglia, the 

adrenal medulla and melanocytes (Bronner 2012). The neural crest cells 

of the trunk migrate along two main routes, the cells contributing to the 

dorsal root and sympathetic ganglia migrate along the ventromedial path 

whereas the melanocytes use the dorsolateral path underneath the 

ectoderm (Theveneau and Mayor 2011). 

The lumbo-sacral crest is a subpopulation of the neural crest, arising 

caudally to the somite 28 in chick that was mainly drawn attention to when 
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it was discovered to give rise to enteric neurons. The in vivo contribution 

and relevance still needs to be elucidated, but Burns and Le Douarin 

(Burns and Douarin 1998) have shown that in major portions of the 

intestine there is less than 1 neuron out of 1000 of lumbo-sacral neural 

crest origin as opposed to vagal neural crest origin.  

The neural crest gives rise to a plethora of important tissues and 

structures. All impairments of these neural crest derivatives are 

categorized as neurochristopathies including malformations and cancers 

(Etchevers, Amiel et al. 2006). Among the most common 

neurochristopathies in pediatric practice are impairments of the autonomic 

nervous system including Hirschsprung’s disease and neuroblastoma. 

Neuroblastoma is the most common extracranial malignant tumor in 

childhood with an incidence of 10 per 1 million children and these tumors 

arise from the sympathetic nervous system and the adrenal medulla 

(Maris and Matthay 1999). Hirschsprung’s disease is a malformation of the 

enteric nervous system characterized by an absence of neurons in the 

distal-most part of the gut. The incidence is 1 in 5000 live births (Amiel, 

Sproat-Emison et al. 2008). Neurochristopathies are as manifold as the 

neural crest derivatives and include birth defects of the facial structures, 

like oral clefts or Waardenburg syndrome (Kouskoura, Fragou et al. 2011), 

defects of cardiac crest formation like congenital heart disease (Stoller 

and Epstein 2005) or reduced vagal neural crest migration leading to 

Hirschsprung’s disease (Sullivan 1996). Misregulation of the gene 

regulatory network that forms the neural crest often leads to the formation 

of cancer like neuroblastoma or schwannoma (Etchevers, Amiel et al. 

2006).   

In evolution bona fide neural crest cells allowed for the “new head” as 

initially described by Gans and Northcutt as the key evolutionary step of 

vertebrates to develop from filter feeding to a predatory lifestyle (Gans and 

Northcutt 1983; Northcutt 2005).  
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Previous studies have shown that lampreys possess neural crest cells and 

most neural crest derivatives (Braun 1996; Northcutt 1996; McCauley and 

Bronner-Fraser 2006; Osorio and Retaux 2008), like cartilage, pigment 

cells and neurons. 

Sauka-Spengler and Bronner-Fraser carried out a comprehensive study 

on the gene regulatory network of the lamprey neural crest and compared 

it with the one in gnathostomes (Figure 3). Interestingly, there is a strong 

conservation in deployment of factors and regulatory modules at the level 

of patterning signals, neural plate border specifiers and neural crest 

specifiers. At the level of the neural crest effector genes and for some 

neural crest specifier genes differences were observed. A shared proximal 

part of the gene regulatory network in lampreys and gnathostomes 

suggests a conservation since the split of the two infraphyla which is dated 

500 million years ago (Sauka-Spengler and Bronner-Fraser 2008). 

 

 

Figure 3: The neural crest gene regulatory network in gnathostomes (A) and 

lamprey (B) (Sauka-Spengler and Bronner-Fraser 2008). The gene regulatory 

network is comprised of spatially and temporally distinct regulatory modules. 
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The sympathetic nervous system 

The peripheral nervous system (PNS) of jawed vertebrates is subdivided 

into a somatic and an autonomic nervous system. The somatic nervous 

system is described as the “voluntary nervous system”, the autonomic 

nervous system in contrast is the “visceral nervous system” and it can be 

further subdivided into the parasympathetic, sympathetic and enteric 

nervous system. Nowadays the enteric nervous system is often regarded 

as an independent nervous system, also called the second brain, because 

it can carry out some of its functions in the absence of input from the CNS 

(Gershon 2005). They innervate peripheral structures of the body via 

motor neurons running from the central nervous system (CNS) to the 

effector tissues and relay information back via sensory neurons to the 

central nervous system (Figure 4). The autonomic nervous system uses 

two groups of motor neurons for transmitting signals from the CNS to the 

effector. The first group is made of the preganglionic neurons that 

emanate from the CNS and run into a ganglion. In the ganglion they relay 

the stimulus to the postganglionic neuron which runs into the effector 

tissue. In the parasympathetic nervous system both, the pre- and 

postganglionic neurons use acetylcholine as a neurotransmitter.  

However, nowadays a few exceptions are discovered, for example a few 

postganglionic parasympathetic neurons that use nitric oxide as their 

neurotransmitter (Balligand, Kobzik et al. 1995). In the sympathetic 

nervous system acetylcholine is used in pre- and postganglionic neurons 

only for the innervation of the sweat glands. The other sympathetic 

preganglionic neurons use acetylcholine, too, but the postganglionic 

neurons use noradrenaline as their neurotransmitter. The use of 

noradrenaline as primary neurotransmitter in the PNS is unique to the 

sympathetic nervous system. Another exception in the sympathetic 

nervous system is the innervation of the adrenal gland. It is directly 
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innervated by a preganglionic fiber without going through a ganglion and 

therefore the adrenal gland also receives an acetylcholine signal. Through 

sympathetic stimulation, the adrenal gland itself secretes noradrenaline 

and adrenaline into the bloodstream. Therefore it can be regarded as a 

paraganglionic structure which systemically activates catecholamine 

receptors throughout the body. 

 

 

 

Figure 4: Drawing of the sympathetic (red) and parasympathetic (blue) nervous 

system from Grays Anatomy plate 839 (Gray 1918).  

 

Sympathetic ganglia form a chain of ganglia alongside the spinal cord that 

extends from the upper neck down to the coccyx and is situated ventral 

and lateral to the spinal cord. Innervation to the commissural chain of 
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ganglia always comes from the spinal nerves of the spinal cord and not 

from the encephalon (Gray 1918). 

All of these sensory, motor and autonomic ganglia are mainly neural crest 

derived features, except for a contribution of cranial placodes to the 

sensory ganglia of the head (D'Amico-Martel and Noden 1983). 

 

Gene regulatory networks 

One concept of how morphological structures are established in 

ontogenesis describes developmental processes as the result of the 

formation of gene regulatory networks (GRN). In the era of genomics and 

proteomics large datasets describing regulatory states are being 

generated that enable to unravel the complex interdependence of genes 

and the important role of cis-regulatory regions (Davidson and Erwin 

2006). The observation that one gene is often deployed in the formation of 

various embryological traits deprecated the “one gene one trait” idea. 

Amongst other factors, for example chromatin structure, posttranslational 

regulation or epigenetics, the GRN theory is a widely accepted concept to 

explain how one gene functions in different spatial and temporal contexts. 

Therefore, genes have to be able to respond to different transcription 

factors.     

GRNs are defined by such cis-regulatory linkages of transcription factor 

genes, which ultimately define the regulatory states of embryonic tissues 

(Davidson 2006). These networks have a modular structure comprised by 

sub-circuits in different hierarchical order. The sub-circuits that are most 

resistant to evolutionary changes are called “kernels” and consist of highly 

conserved regulatory interactions. Kernels lay the basis for cis-regulatory 

linkages in the development of embryological structures. The regulation 

and interdependence in a kernel is so sensitive that a single non-
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functional prevents the formation of the particular body part. Sub-circuits 

that are in the periphery of the GRN can be variable, for example the sub-

circuit that controls pigmentation (Silver, Hou et al. 2006). 

Generally there are two different modes through which GRNs are altered 

to form new or more specialized traits during the course of evolution. One 

way to form a new trait is the augmentation of new genes and gene 

interactions into a pre-existing GRN. The second mode is the 

redeployment of an entire GRN sub-circuit for a new function. These sub-

circuits of GRNs bear special evolutionary relevance. They are called 

“GRN plug-ins” and are defined as sub-circuits that are frequently 

redeployed in different parts of the GRN, but keep their internal structure 

(Erwin and Davidson 2009). Two examples for this second mechanism are 

described by Reed et al. and by Dinwiddie et al. (Dinwiddie and Rachootin 

2011; Reed, Papa et al. 2011). Both found a new trait formed by the 

redeployment of the GRN sub-circuit around the optix gene. Reed et al. 

found that the optix containing sub-circuit underlying eye formation is also 

activated in a different spatio-temporal context, controlling the red 

pigmentation of the butterfly (Heliconius) wing. Dinwiddie and colleagues 

discovered that this sub-circuit around the master regulator optix is 

responsible for the formation of ommatidia on the tip of the wings of the 

females of extinct midges (Eohelea petrunkevitchi).   

The GRN in embryos of the lamprey underlying the formation and 

differentiation of neural crest cells is remarkably similar to that of higher 

vertebrates. Sauka-Spengler and Bronner-Fraser could demonstrate that 

the proximal portion of the neural crest GRN, the patterning signals, the 

border specifiers, the neural plate specifiers as well as most of the neural 

crest specifiers are conserved between lamprey and chicken (Figure 3). 

There are four prominent signaling molecules that represent the patterning 

signals in gnathostomes, namely BMP, FGF, Wnt and Delta/Notch. The 

three genes BMP, Wnt and Delta/Notch were tested in the lamprey and 
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found to carry out equivalent functions. Guérin et al. (Guerin, d'Aubenton-

Carafa et al. 2009) describe the early expression of lamprey FGFs in 

detail and these fit in with a pattern signaling role for FGF in lamprey, too. 

The four analyzed genes of the border specifier gene regulatory network 

are the same in lamprey and gnathostomes, namely Pax3/7, Msx, Dlx and 

Zic.  

The neural crest specifiers are transcription factors that render the cells 

bona fide neural crest progenitors conveying the ability to delaminate and 

migrate. Id, c-Myc, AP-2 and Snail, as the early neural crest specifiers and 

FoxD3, SoxE and with concessions also Twist and Ets-1, as the late 

neural crest specifiers are members of a conserved gene regulatory 

network. The neural crest effector genes analyzed by Sauka-Spengler and 

Bronner-Fraser (Sauka-Spengler and Bronner-Fraser 2008), Col2a1, Npn, 

Robo, Ngn, Cad type I&II and c-ret, are present in a pattern temporally 

similar to the one in gnathostomes, but the interactions in this GRN sub-

circuit differ.     

These differences become apparent among the neural crest derivatives, 

as lampreys lack some key neural crest structures including dentine, bone 

and sympathetic chain ganglia (Baker 2008; Sauka-Spengler and 

Bronner-Fraser 2008; Martin, Bumm et al. 2009).  

There are a few well described transcription factors that are required for 

the formation of a sympathetic nervous system in developing embryos 

(Figure 5). These can be used as markers for sympathetic neurons. The 

transcription factors include Phox2b, Ascl1, and dHand (Huber 2006).  
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Figure 5: The gene regulatory network of sympathoadrenal cells (Huber 2006). 

These interactions are inferred from gene knockout studies. The dashed lines 

depict a required interaction for maintenance. 

Ascl1 (achaete-scute homolog 1 formerly Ash1) is a bHLH transcription 

factor generally required for development of autonomic neurons. It induces 

expression of pan-neuronal genes in neural crest precursor cells of the 

peripheral nerve, but does not specify subtype specific expression of 

tyrosine hydroxylase (TH) or dopamine--hydroxylase (DBH), the 

enzymes responsible for the catalyzing synthesis of the neurotransmitter 

nor-epinephrine (Lo, Johnson et al. 1991).  

Phox2b is a homeodomain transcription factor and it is also required for 

autonomic neurogenesis and, in a feedback loop, is required for 

maintenance of Ascl1 expression (Pattyn, Morin et al. 1997; Rychlik, 

Hsieh et al. 2005).  

dHand, a bHLH transcription factor and another determinant of the 

sympathetic lineage, promotes the proliferation and differentiation of 

sympathetic neuron precursors into noradrenergic neurons. Over-
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expression of dHand upregulates Phox2b, TH and DBH.  Its own 

expression depends on Phox2b, but not Ascl1 (Schmidt, Lin et al. 2009). 

 

Evolution of the sympathetic nervous system 

It has been reported that lampreys lack the commissural sympathetic 

chain that all gnathostomes possess (Figure 6) (Nicol 1952). While 

anatomical data on the absence of a chain of sympathetic ganglia in 

lampreys is convincing it is still unknown what type of sympathetic cells or 

what level of sympathetic precursors they do possess. Lampreys are 

reported to have direct sympathetic innervation from fibers, analogous to 

the preganglionic fibers, to the terminal plexus. This mode of innervation is 

similar to the situation in amphioxus (Johnels 1956). Additionally some 

authors argue that lampreys and hagfishes have chromaffin-like cells 

along the blood vessels, the heart and the cloaca, but their interpretation 

of these cells varies. 

Chromaffin cells were historically given their name for their affinity to 

chrome that was used as a stain. These cells are catecholaminergic 

endocrine cells. Johnels proposed that these cells are innervated via the 

ventral and dorsal roots and are therefore analogous to postganglionic 

neurons (Johnels 1956), whereas Gibbins stated that a connection to the 

CNS is not certain yet and that the chromaffin cells might represent more 

distant evolutionary precursors to the gnathostome sympathetic nervous 

system (Gibbins 1994). 
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Figure 6: Drawing of the structure of a typical spinal nerve from Grays Anatomy 

plate 799 (Gray 1918).   1. Somatic efferent 2. Somatic afferent 3.,4.,5. Sympathetic 

efferent 6.,7. Sympathetic afferent 

 

Several findings suggest the existence of cells from the sympathetic 

lineage in lampreys: the presence of several neurotransmitters, most 

importantly acetylcholine and noradrenaline as well as DNA sequence 

data from lampreys that uncovers the presence of two adrenergic 

receptors, specifically a beta-adrenoreceptor A and a beta-adrenoreceptor 

B. Beta-adrenergic receptors are a class of G-protein coupled receptors 

that are targeted by catecholamines, especially adrenalin and 

noradrenaline. This highly relates the beta-adrenergic receptors to the 

sympathetic nervous system in gnathostomes (Scofield, Deupree et al. 

2002).  

Owsiannikof (1883) and Lignon (1979) reported a sympathetic ganglion 

comprised of small intensely fluorescent cells (SIF cells) adjacent to the 

heart in adult lampreys (Owsiannikof 1883; Lignon 1979). SIF cells posses 

endocrine function by their capability to store and release catecholamines 
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from their granules and they can function as interneurons (Elfvin, Lindh et 

al. 1993). In vertebrates the vagus nerve, a nerve of the parasympathetic 

nervous system, innervates almost all internal organs including the heart. 

The heart of hagfishes is an exception as it is aneural, no innervation from 

the parasympathetic or sympathetic nervous system could be detected 

(Jensen 1965). The heart of larval lamprey lacks the vagal innervation 

observed in the adult (Carlson 1906). The vagus nerve is cardioinhibitory 

in all gnathostomes, but not in lampreys. There are different hypotheses to 

explain this finding. One hypothesis claims that the vagus nerve is 

innervating a sympathetic ganglion adjacent to the lamprey heart 

(Burnstock 1969) or chromaffin cells inside the heart (Fänge 1963) and 

thus induces the release of cardioexcitatory catecholamines. Another 

hypothesis to explain this finding was proposed by Fänge et al. (Fänge 

1963), by suggesting that the vagus nerve of lampreys could contain 

adrenergic nerve fibers, as it does in Myxine. Or the adrenergic fibers 

could be distinct from the vagus nerve, but enter the vagi from the spinal 

outflow as suggested by Peters (Peters 1963). Otorii reported that 

acetylcholine accelerates the isolated heart of a lamprey (Entosphenus), 

whereas adrenaline retards heart rate frequency (Otorii 1953) thus 

explaining the excitatory attribute of the vagus nerve in lamprey. This 

finding was confirmed in Lampretra fluviatilis and Lampetra planeri by 

Augustinsson et al. (Augustinsson, Fange et al. 1956). Itina (Itina 1959) 

proposed that the lamprey heart is accelerated by the vagus innervation, 

because the cardiac muscle resembles skeletal muscles of higher 

vertebrates more closely than their striated cardiac muscles and therefore 

acetylcholine would have an excitatory effect.   

A hypothesis about tissues carrying out other sympathetic functions in 

lampreys suggests the presence of chromaffin cells in the wall of blood 

vessels, the kidneys and the urogenital ducts (Huber 2006). Chromaffin 

cells differentiate from the sympathoadrenal lineage of neural crest cells 
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and carry out endocrine functions. They can be distinguished 

morphologically from sympathetic neurons by the presence of large 

chromaffin granules for storage and release of catecholamines (Coupland 

1972; Coupland and Tomlinson 1989) and the inability to grow neurites.  

SIF cells, chromaffin cells and sympathetic neurons are derived from the 

same lineage of neural crest cells and therefore it is a plausible hypothesis 

that there was an evolutionary shift from SIF cells and chromaffin cells 

towards sympathetic neurons.   

 

 

Aim of the thesis 

This study aims to challenge the finding that lampreys lack a commissural 

sympathetic chain with methods of modern cellular and molecular biology 

and examine the presence of potential sympathetic precursors. The last 

studies on this topic were carried out decades ago and they were mostly 

anatomical observations. With new techniques on hand the finding that 

sympathetic ganglia are absent in lamprey and the level of potential 

sympathetic precursors can be reinvestigated.  

A first strategy is to employ immunohistochemistry. Doing antibody 

stainings for known pan-neuronal markers, like neurofilament, can help 

identify neuronal structures even if the cells were scarcely scattered and 

therefore hard to find by anatomical observations.  

A second strategy to unravel if sympathetic innervation is present in 

lampreys or absent is to do cell tracing studies of neural crest cells using 

the lipophilic dye DiI (1,1',di-octadecyl-3,3,3'3'-

tetramethylindocarbocyanine perchlorate). Sympathetic neurons are 

derivatives of the trunk neural crest and these cells can be specifically 

labeled and followed during development using DiI.  
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A third strategy is to do in-situ hybridizations for genes known to be 

important for the establishment of sympathetic neurons, like Ascl1, dHand 

and Phox2b. For the formation of sympathetic neurons all three genes are 

required and thus sympathetic neurons can only form in locations that co-

express them. 

A different approach to the topic is the comparison of the activity of gene 

regulatory sequences driving the expression of a sympathetic neuron 

marker gene in a gnathostome and lamprey. Therefore this study aims to 

find conserved non-coding elements in the sympathetic nervous system 

marker gene Phox2b that drive expression in sympathetic neurons and to 

compare these to the corresponding regions in the lamprey genome. Also 

the relevant sequences are tested in interspecies experiments to unravel if 

they can drive expression in the lamprey. 
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Results 

Neurofilament staining in the trunk region of lamprey 

Previous studies showed that lampreys posses most of the neural crest 

derivatives, but lack the commissural sympathetic chain. To unravel if 

neuronal structures that could be sympathetic neurons form in lampreys, 

antibody stainings for the neuronal marker neurofilament-m were carried 

out. Neurofilaments are special cytoskeletal elements exclusive to 

neurons, similar to the intermediate filaments of other cells. There are 

three types of neurofilaments: NF-L, NF-M and NF-H, the light, medium 

and heavy chain respectively. These three subtypes assemble as obligate 

heteropolymers and they are most abundant in the long axons of neurons 

(Lee and Cleveland 1996). 

Lampreys were fixed at embryonic day 16 (E16) or E33. Afterwards they 

were cryosectioned and the trunk sections were stained with anti-

neurofilament-m antibody. The results are displayed in Figure 7. 

At E16 there is neurofilament-m staining in the neural tube, the dorsal root 

ganglia, paired structures above the neural tube and also staining in the 

gut, which may reflect enteric ganglia. There is no neurofilament antibody 

staining in the vicinity of the dorsal aorta where sympathetic ganglia would 

be expected.  

In sections of older embryos (E33) the sites of neurofilament-m staining 

are comparable to the sites observed in E16 embryos. There is staining of 

the neural tube, the dorsal root ganglia, which appear to be bigger at E33 

and staining of potential enteric ganglia. The paired dorsal structures are 

not visible at E33. A dorsal branch of the spinal nerve growing into the 

periphery of the dorsal fin becomes visible. At this stage, there is also no 

neuronal staining in the proximity of the dorsal aorta where sympathetic 

neurons accumulate in gnathostomes to form sympathetic ganglia. 
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Figure 7: Antibody staining of lamprey embryos on E16 and E33 with the 

neurofilament-m antibody. On E16 the neurofilament-m antibody detects the neural 

tube and potential enteric ganglia. The latter cannot be determined with certainty 

due to the strong autoflourescence of the yolk (A arrow). Further, a paired 

structure above the neural tube and dorsal root ganglia (B) are detected. On E33 

the antibody also detects dorsal root ganglia, that seem to be larger in size than on 

E16, the neural tube (C) and enteric neurons (D), but the paired structure visible in 

the E16 embryo is not detected anymore. Additionally on E33 peripheral nerve 

growth is visible in the dorsal fin.  
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DiI labeling of trunk neural crest in lamprey 

In lamprey, as well as in teleosts the neural tube forms by secondary 

neurulation. A solid rod-like structure, the neural keel, transforms by 

cavitation into a tube. At E5, the neural rod elevates, gradually detaching 

from the dorsal epithelium and the first distinguishable neural crest 

precursors occur at this time.  Cavitation starts at E6, when the head 

morphologically extends and becomes visible. At the same time neural 

crest primordia appear as bulges on the dorsal side of the newly formed 

neural tube (Damas 1944; Lowery and Sive 2004; Sauka-Spengler, 

Meulemans et al. 2007). 

In gnathostomes, trunk neural crest cells migrate along two major 

pathways, dorsolaterally to form melanocytes and ventrally to give rise to 

neuronal and neuroendocrine derivatives. For example, ventrally migrating 

cells differentiate into sensory and sympathetic ganglia, as well as adrenal 

chromaffin cells and peripheral glia (Le Douarin 1982). Vagal neural crest 

cells migrate ventrolaterally to contribute to dorsal root and sympathetic 

ganglia, as well as undergoing extremely long migrations to form the entire 

enteric nervous system of the gut. 

To trace the neural crest derivatives in the lamprey, DiI was injected into 

the lumen of the neural tube of E 6.5 to E7 lamprey embryos. The 

migration of labeled cells was examined at E8 to E34. The labeled cells 

contributed to several neural crest derivatives at the trunk and vagal 

levels. These include dorsal root ganglia, the mesenchymal cells of the fin, 

as well as enteric ganglia (Figure 8).  However, no structures resembling 

sympathetic ganglia were observed at any stage. These results definitively 

show that lamprey neural crest cells fail to condense into structures similar 

to sympathetic ganglia during embryonic development. 
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Figure 8: DiI injection into the neural tube labels fin, dorsal root ganglia and enteric 

neurons. (A) and (B) show a section of a E34 lamprey embryo that was injected 

with DiI at E6 into the neural tube. In (A) there are DiI labeled neural crest cells 

migrating into the fin where they form mesenchymal cells of the fin and there also 

can be observed DiI labeled cells forming dorsal root ganglia. The close-up (C) 

shows DiI labeled neural crest cells forming dorsal root ganglia and (D) neural 

crest cells migrating into the gut to form the enteric nervous system.  

 

Gene expression analysis of sympathetic marker genes in chicken 

and lamprey embryos 

A gene regulatory network of complex interactions underlies the formation 

of the nervous system. Some major players of the gene regulatory 

network underlying the formation of the sympathetic nervous system are 

known already, like dHand, Ascl1 and Phox2b. The transcription factor 

Ascl1 is expressed in precursors of sympathetic and enteric neurons (Lo, 

Johnson et al. 1991). dHand is a transcription factor that is essential for 

proliferation differentiation of sympathetic neuron precursors (Schmidt, Lin 

et al. 2009) and Phox2b is a transcription factor that is required for 
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sympathetic, parasympathetic, and enteric neurogenesis (Pattyn, Morin et 

al. 1997; Rychlik, Hsieh et al. 2005). Therefore all sympathetic cells or 

tissues express these three genes. 

The expression of Ascl1, dHand and Phox2b was analyzed in the chicken 

embryo (Gallus gallus domesticus) as an example of a vertebrate which 

forms a sympathetic nervous system (Figure 9). The expression patterns 

were analyzed at embryonic stage HH22 (Hamburger and Hamilton 1992), 

the stage at which the dorsal root ganglia and sympathetic ganglia have 

formed (Teillet, Kalcheim et al. 1987; Lallier and Bronner-Fraser 1988).  

All three genes are expressed in a variety of tissues at that stage. Ascl1 is 

expressed in the midbrain, the diencephalon, the spinal cord and in the 

sympathetic ganglia and nerves. 

dHand transcripts can be detected in the leg mesenchyme, in the wing 

mesenchyme, in the heart, in the anterior heartfield, in the pharyngeal 

arches and clefts and in the spinal and sympathetic ganglia and nerves. 

Phox2b expression can be visualized in the cranial ganglia, in the 

hindbrain, in the spinal cord and in the sympathetic ganglia and nerves. 

All three genes, Ascl1, dHand and Phox2b, are co-expressed in the 

sympathetic ganglia and nerves at HH22. 
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Figure 9: The expression of the three marker genes for the sympathetic nervous 

system, Ascl1, dHand and Phox2b was analyzed at embryonic stage HH22 

(Hamburger and Hamilton 1992). Ascl1 is expressed in the diencephalon, in the 

spinal cord, in the midbrain, in the sympathetic ganglia and nerves. dHand is 

expressed in the leg and wing mesenchyme, in the heart, in the pharyngeal arches 

and clefts, in the anterior heartfield and in the spinal sympathetic ganglia and 

nerves. Phox2b is expressed in the hindbrain, in the cranial ganglia, in the spinal 

cord and in the spinal sympathetic ganglia and nerves.   

 

 

To examine the presence and deployment of these genes in lampreys 

during neural crest development, fragments of their lamprey orthologues 

were cloned using 5’RACE and used for in-situ hybridization.  

The expression patterns of the lamprey orthologues of these genes were 

analyzed at various stages from E4 to E45 to unravel their deployment 

and find the commonalities and differences compared to the gene 

expression pattern in the chicken embryo. All three genes are expressed 

in lamprey embryos. 

In-situ hybridization in lamprey embryos shows that the expression of 

dHand starts at E5 in the bilateral precursors that form the cardiac field. 

Beginning at E7 there is additional expression in the anterior portion of the 

ventral mesenchyme surrounding the endostyle (Figure 10). From E8 on 

the amount of transcript builds up in the entire ventral mesenchyme that 

surrounds the endostyle. By E12 in addition to the expression in the heart 

and the entire ventral mesenchyme, there is expression in the notochord. 
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dHand transcripts can also be detected in cardiac ganglia and the 

posterior mesoderm. Sectioning of the whole mounts revealed additional 

expression in the developing gut. 

 

 

Figure 10: dHand in-situ hybridization of lamprey embryos at various stages. The 

first expression of dHand becomes visible on E5 (A) in the precursors of the 

cardiac field (arrow). From E7 onward there is additional expression in the ventral 

mesenchyme surrounding the endostyle (B red arrow, and E) that intensifies 

through E8 (C). On E12 (D) dHand is also expressed in the cardiac ganglia, 

posterior mesoderm and in the notochord. Additional transcripts of dHand in the 

developing gut were uncovered by sectioning (F).  

 

Ascl1 starts to be expressed in the pituitary gland at E6. At E7 additional 

expression can be detected in the lens. On E11 transcripts could also be 

visualized in the trigeminal ganglion, the trigeminal nerve and in the 

notochord (Figure 11).   
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Figure 11: Ascl1 in-situ hybridization of lamprey embryos at various stages. On E6 

Ascl1 transcripts are visible in the pituitary gland (A). Additional expression in the 

lens can be observed on E7 (B). From E11 onwards transcripts of Ascl1 can be 

also detected in the trigeminal ganglion and nerve and in the notochord (C).  

 

Phox2b starts to be expressed in hindbrain motor neurons at E5. At E6 

there appears additional expression in the ventral branchial mesenchyme. 

From E9 onwards transcripts can also be detected in epibranchial ganglia 

and cranial nerves. In contrast to the expression patterns of Ascl1 and 

dHand, which are limited to the head region and the heart, apart from the 

notochord expression, Phox2b is also present in vagal crest cells 

migrating posteriorly from E9 onwards. Phox2 starts to be expressed in 

the notochord at E11. At day 12, Phox2b expression can also be detected 

in the cardiac ganglia (Figure 12).  
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Figure 12: Phox2b in-situ hybridization of lamprey embryos at various stages. The 

first Phox2b transcripts can be observed in hindbrain motor neurons (A) on E5 

followed by expression in the branchial mesenchyme (B red arrow) on E6. From E9 

onwards there are additional transcripts detected in the epibranchial ganglia, 

cranial nerves and vagal crest cells migrating posteriorly (C, red arrow). Notochord 

expression of Phox2b starts on E11 (D) and is followed by expression in cardiac 

ganglia on E12 (E arrow). The section in (F) presents the Phox2b expression in the 

cardiac ganglia, whereas (G) is a section taken more anteriorly, showing the 

transcripts detected in the hindbrain motor neurons, the epibranchial ganglia and 

the ventral branchial mesenchyme. 

 

There is no evidence for tissues corresponding to sympathetic ganglia in 

which dHand, Ascl1 and Phox2b are co-expressed.  In fact, the only site in 

which all three genes are co-expressed is in the notochord of lamprey 

embryos.  Their expression in the notochord starts at E12 for dHand and 

at E11 for Ascl1 and Phox2b.  

The results show that the expression patterns of Ascl1, dHand and 

Phox2b largely overlap with the expression patterns in the chicken, but 

there is no expression found in structures resembling sympathetic ganglia 
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or nerves. Co-expression of all three genes is a requirement for a 

sympathetic phenotype of neurons in vertebrates.  

 

Analysis of cis-regulatory changes of Phox2 expression 

The three tested marker genes, for the formation of a sympathetic nervous 

system, are expressed in the lamprey, but not in the cooperative manner 

that leads to the formation of sympathetic ganglia in gnathostomes. This 

raised the question of which the underlying gene regulatory changes are 

that led to the redeployment of Ascl1, dHand and Phox2b into a new gene 

regulatory sub-circuit. To experimentally unravel this, conserved non-

coding elements (CNEs also evolutionary conserved regions ECRs) 

associated with Phox2b were identified in the chicken. Sequences with 

regulatory functions have an evolutionary constraint and will be conserved 

across species (Aparicio, Morrison et al. 1995; Hardison 2000; 

Manzanares, Wada et al. 2000). Therefore, they can be detected by their 

strong sequence conservation across different species.  

These sequences were inserted into a reporter vector. This reporter vector 

contained the CNE of interest followed by thymidine kinase promoter 

(pTK) as a constitutively active basal promoter and the sequence for 

enhanced green fluorescent protein (eGFP).  

Three CNEs a that lie in the proximity of the chicken Phox2b promoter and 

which are highly conserved among vertebrates were tested for their 

capability to drive expression in chicken embryos. The three CNEs that 

are closest around the promoter are depicted in Figure 13. CNE 1 is a 

region of 3kb that lies 11.3kb upstream of the transcription start site, CNE 

2 spans 3,2kb and lies directly upstream, adjacent to the Phox2b promoter 

whereas the CNE 3 has a length of 900bp and spans the first intron.   
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Figure 13: Screen shot of the Phox2b chicken locus in the UCSC genome browser. 

The red boxes mark the location of the three CNEs that were experimentally tested. 

 

Transiently transgenic chicken can be obtained by injection of a plasmid 

followed by in-ovo electroporation. As a control for successful injection 

and electroporation a constitutively active H2B-cherry vector was co-

injected.  

The results are shown in Figure 14. Injecting the CNE 1 plasmid leads to 

no specific eGFP expression at the tested stages. The CNE that lies 

directly upstream of the promoter, CNE 2, drives eGFP expression in the 

cranial ganglia. So, expression of CNE 2 resembles the staining of cranial 

ganglia as seen in the Phox2b in-situ hybridizations (Figure 9). 

CNE 3, which corresponds to the first intron, shows no expression in the 

chicken embryo at the analyzed stages. 
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Figure 14: (A and B) show a HH22 chicken embryo that was injected with the 

CNE2-ptkEGFP reporter vector. The CNE2-ptkEGFP reporter drives expression in 

the cranial ganglia (B) matching parts of the Phox2b expression pattern known 

from in-situ hybridization at the same stage (C). 

 

 

In a next step, the chicken CNEs 1, 2 and 3 were cloned into a vector 

suitable for lampreys (Parker, Piccinelli et al. 2011) in order to examine if 

the chicken sequence is capable of recruiting transcription factors in the 

lamprey. The principle of parsimony suggests that the expression of 

Phox2b in equivalent tissues in chicken and lampreys is due to a 

regulation by the same transcription factors. 

This vector for lamprey injections is based on an I-sceI meganuclease 

system for genome integration. Genome integration is necessary in 

lampreys, because they do not tolerate electroporations. Also they only 

develop well, when they are injected at late one-cell stage or during two-

cell stage. For these reasons it would result in a too high dilution of the 

injected plasmids during the development of the embryo up to the time 

points of interest without the genome integration. This technology is newly 
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developed for lamprey (Parker, Piccinelli et al. 2011) and opens up the 

possibility for various functional in-vivo studies in lamprey embryos.  

The lamprey embryos were injected at late one-cell stage and monitored 

for expression of eGFP driven by the CNEs. Injection of CNE 1 and CNE 2 

did not lead to an expression of eGFP in any tissues. Lampreys that are 

injected with CNE 3 show expression around the gills, the epibranchial 

ganglia and in the cranial nerves (Figure 15). The observed eGFP 

expression pattern matches parts of the Phox2b expression pattern in the 

lamprey (Figure 12). Also the expression of Phox2b in cranial ganglia is 

analogous in the chicken and in the lamprey. This expression in cranial 

ganglia is driven by two different chicken CNEs, when comparing chicken 

and lamprey. 

Figure 15: (A and B) show an E19 lamprey 

embryo that was injected with the CNE3-

cfos-IsceI reporter vector driving 

expression in the epibranchial ganglia, 

around the gills and in the cranial nerves 

(B).  (C) shows the head region of the 

Phox2b expression pattern visualized by 

in-situ hybridization. 
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Discussion 

Morphological studies 

Antibody staining of trunk sections of lamprey embryos at E16 and E33 

with an antibody against neurofilament-m was carried out to detect all 

neuronal structures. The pan-neuronal marker did successfully stain the 

neural tube, dorsal root ganglia and enteric neurons. Therefore it is shown 

that the antibody successfully binds to neuronal structures in lampreys. 

There was no staining in the vicinity of the dorsal aorta were sympathetic 

ganglia would be expected to form. This finding supports the notion that 

lampreys lack a chain of sympathetic ganglia as reported in anatomical 

studies (Nicol 1952).  

DiI injection into the neural tube of E6 lamprey embryos followed by cell 

tracking in the developing embryo revealed the neural crest contribution to 

different embryonic tissues and organs. Neural crest cells migrated to form 

dorsal root ganglia, mesenchymal cells of the fin and enteric neurons at 

E34. At no point were neural crest cells observed ventrally past the dorsal 

root ganglia, migrating in the direction of the dorsal aorta. Thus, DiI 

injections did not detect any sympathetic neurons, as they are known from 

higher vertebrates.  

The results of the DiI injections are in agreement with the findings from the 

antibody staining with neurofilament-m. Neither DiI nor neurofilament 

staining were observed scattered throughout the lamprey body along the 

big vessels as was reported for the chromaffin cells (Gibbins 1994). This 

could be attributed to a technical drawback of the antibody staining. The 

expected scattered chromaffin cells could be masked by the very high 

autoflourescence of lamprey embryos. The DiI signal on the other hand 

fades very rapidly and is thus hard to detect in sections under the 

microscope, whereas the whole mount embryos are too opaque for the 
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expected individual cells to be observed. Another possible explanation of 

the experimental results could be that the chromaffin cells form during 

metamorphosis of the lamprey and are only present in the adult animal. 

This seems very unlikely, since there are no reports on dormant neural 

crest cells residing in the embryo, which could start a new wave of 

migration and differentiation during metamorphosis. If neural crest cells 

were to populate the wall of blood vessels already in the embryo and only 

start differentiating to chromaffin cells during metamorphosis, the DiI cell 

labeling should have uncovered these migrating neural crest cells. 

   

Tracing sympathetic structures by marker gene expression 

In-situ hybridization with probes against common sympathetic nervous 

system markers in chicken successfully detected sympathetic ganglia 

amongst other tissues.  

At HH22 Ascl1 is expressed in the mesencephalon, the diencephalon, the 

spinal cord and in the sympathetic ganglia and nerves. dHand expression 

is observed in the mesenchyme of the legs and wings, in the heart and the 

anterior heartfield, in the pharyngeal arches and clefts as well as in the 

spinal and sympathetic ganglia and nerves. 

Phox2b transcripts are detected in neuronal structures, namely the 

hindbrain, the cranial ganglia, in the spinal cord and in the sympathetic 

ganglia and nerves. 

In-situ hybridization with probes for all three neuronal genes studied 

successfully detects expression in the sympathetic ganglia and nerves of 

chick at HH22 as expected. Therefore these genes are significant marker 

to analyze the nervous system present in lampreys. 
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Using probes for the lamprey homologues of Ascl1, dHand and Phox2b in 

an in-situ hybridization experiment revealed that all three genes are 

expressed in various tissues during lamprey development.  

At E6 Ascl1 expression is detectable in the pituitary gland, in the lens (E7), 

in the anterior lip mesoderm (E10), in the notochord (E11) and in the 

cranial ganglion VI (E12).  

dHand expression is detected in the heart (E5), in the ventral 

mesenchyme surrounding the endostyle (E7), in the notochord (E12) and 

in the cardiac ganglia (E14). 

Phox2b transcripts are observed in the hindbrain motor neurons (E5), in 

the ventral branchial mesenchyme (E6), in the epibranchial ganglia and 

cranial nerves (E9). Phox2b is also expressed in the notochord (E11), in 

vagal neural crest cells that migrate posteriorly and in cardiac ganglia 

(E12).  

At no time point during the development of lamprey embryos is there any 

expression of Ascl1, dHand or Phox2b in the vicinity of the dorsal aorta, 

where sympathetic ganglia would form. The only commonality between 

the expression patterns of Ascl1, dHand and Phox2b is the expression in 

the notochord from E11 on for Ascl1 and Phox2b and from E12 on for 

dHand.  

The expression of dHand in ganglia adjacent to the heart of lamprey 

embryos is in agreement with the hypothesis of Lignon, that lampreys 

possess cardiac SIF cell aggregates that have sympathetic like endocrine 

function (Lignon 1979).  On the other hand neither Ascl1 nor Phox2 are 

present in the same cells proving that these cells are not of definite 

sympathetic lineage.  

The parasympathetic nervous system is supposed to be evolutionarily 

older than the sympathetic nervous system. It is believed that the 

parasympathetic nervous system, which is responsible for the physical 

homeostasis of the body, is a basal feature upon which the sympathetic 
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functions were added. The first sympathetic functions in evolution are 

reported in basal vertebrates, the cyclostomes, and consist of scattered 

chromaffin cells carrying out sympathetic functions in an “indirect” way. 

The chromaffin cells are described to release their catecholamines into the 

big vessels leading to a global sympathetic output. Gnathostomes are still 

capable of executing a global sympathetic response, but in addition direct 

sympathetic functions evolved, by sympathetic nerves that innervate 

specific organs or tissues (Shigei, Tsuru et al. 2001; Huber 2006). The 

chromaffin cells present in chicken and mice are dependent on the 

expression of Ascl1, dHand and Phox2b (Huber, Bruhl et al. 2002; 

Unsicker, Huber et al. 2005). At all the stages of lamprey development 

examined by in-situ hybridization no structure co-expressing all three 

genes is observed. The observed chromaffin cells in the lamprey heart 

must underlie a different genomic make-up than the analogous cells in 

gnathostomes. There is no evidence for the reported scattered chromaffin 

cells supposedly occurring throughout the lamprey body (Gibbins 1994) 

using gnathostome sympathoadrenal marker genes.  

In conclusion it can be demonstrated that no structures homologous to a 

sympathetic ganglia chain form during the embryological development of 

lamprey, confirming earlier publications (Nicol 1952). 

If the chromaffin cells or SIF cells described to be present in lamprey are 

direct precursors of a definite sympathetic nervous system is unclear. A 

more thorough investigation of the molecular identity of these cells is 

required to come to a conclusion on the evolutionary relationship between 

the chromaffin cells or SIF cells in the lamprey and true sympathetic 

neurons. The data presented suggests that a commissural sympathetic 

chain is an evolutionary novelty in the gnathostome lineage and that the 

redeployment of Ascl1, dHand and Phox2b into a new cis regulatory 

module might have facilitated this emergence.  
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Conserved non-coding elements from the Phox2b locus 

CNEs from the chicken Phox2b gene locus were cloned into a reporter 

plasmid and injected into chicken embryos. Two of the three CNEs chosen 

showed no eGFP expression. These were the more distantly upstream 

CNE and the CNE spanning the first intron. The third CNE that lies directly 

adjacent to the Phox2b promoter led to eGFP expression in cranial 

nerves.  

In lamprey on the other hand both the CNEs from the chicken genome 

that lie upstream of the transcription start site showed no expression of 

eGFP, but the CNE spanning the first intron shows expression around the 

gills, the epibranchial ganglia and in the cranial nerves. This demonstrates 

that the genomic sequence from the chicken is able to recruit transcription 

factors in the lamprey.  

The fact that two different CNEs are responsible for expression in partially 

corresponding structures in different animals raises interesting questions. 

Spatio-temporal gene expression is thought to be strongly influenced by 

cis-regulatory sequences within the gene. Only the modular regulation of 

genes allows for their full flexibility in function. The fact that enhancers and 

silencers work in an additive manner makes evolutionary changes on 

those more likely. They change only subsets of the gene expression and 

are less likely to have global deleterious effects as mutations in the gene 

itself are likely to produce (Gaunt 2012). At this point the lamprey genomic 

sequence is not available yet. Therefore, it cannot be determined if the 

effect that two different CNEs drives expression in corresponding 

structures is due to the presence of different transcription factor binding 

sites in the sequence. Another possibility is that the variance in 

transcription factors present in the studied tissues and at the studied time 

points is the cause for the different activity of the CNEs tested in chicken 

and lamprey. 
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Evolution of the sympathetic nervous system  

The differentiation of sympathetic neurons from neural crest cells is the 

result of a highly interdependent network of transcription factors (Figure 

5). None of the transcription factors is expressed in locations relevant for 

sympathoadrenal tissues in the lamprey. Unfortunately, the full lamprey 

sequence of the three genes studied is not available yet. A major 

challenge in the ongoing sequencing project is the fact that lampreys 

undergo a programmed genome rearrangement between blastula and 

gastrula stage and eliminate >20% of their genome (Smith, Antonacci et 

al. 2009). Therefore the similarity of the Ascl1, dHand and Phox2b 

lamprey loci with the loci of gnathostomes is unacquainted.  

Once the lamprey genome becomes available, the lamprey genome 

sequence will be of great value for further analysis of the transcription 

factor binding sites. A sequence alignment of the CNEs in chicken and 

lamprey would uncover the sequence variation of transcription factor 

binding sites.  

 

 

Outlook 

There is an array of very diverse experiments that would aid in describing 

the sympathetic state of lampreys more thoroughly. Cloning more CNEs 

from the Phox2b locus is required to uncover the region that drives 

expression in the sympathetic ganglia in chicken. 15 additional CNEs lie 

between the two neighboring genes of Phox2b. Once the element 

responsible for sympathetic expression is discovered, it could be broken 

down in smaller fragments and ultimately it would allow a fine mapping of 

the cis-regulatory linkages contained in the region in the chicken genome 

as compared to the lamprey genome. Sequence comparisons of the 
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correlating regions in various vertebrates and invertebrates are necessary 

steps to unravel the evolutionary steps of the makeup of the GRN 

underlying formation of the sympathetic system as it is present in 

gnathostomes. 

As a next step the size of the CNEs should be reduced step wise. In-silico 

prediction of transcription factor binding sites can be employed to define 

potentially relevant binding sites. The functionality of these binding sites 

can be tested by inserting pointmutations. This would unravel if the 

expression in the cranial nerves of chicken and lamprey are driven by the 

same transcription factors. It could also help to find out which mutations 

led to the shift in use of the transcription factor binding sites. 

Additionally the inverse interspecies experiment should be carried out. 

CNEs taken from the lamprey genome should be tested in the chicken. 

This experiment would allow testing for the lamprey CNE1, 2 and 3 

expression behaviors in chicken and lamprey. Sequence alignment of 

these CNEs could also help uncover if the difference in expression stem 

from different transcription factor binding sites present in the CNE or 

different transcription factors being present in the tissue. Until sufficient 

sequence data from the lamprey genome is available, this cannot be 

unraveled in-silico.  

Additionally, the loci of Ascl1 and dHand should be analyzed for CNEs 

and these should be tested in interspecies experiments, too. 

As a next step the expression patterns of Ascl1, dHand and Phox2b at 

various stages should be analyzed in the cephalochordate amphioxus 

(Branchiostoma lanceolatum) in order to elucidate if the expression 

pattern in the lamprey is an ancestral pattern or if it is already an 

intermediate step in the evolution of the sympathetic nervous system. 

Amphioxus is a cephalochordate and the closest invertebrate which is 

experimentally accessible. So far, sequences matching Ascl1 and dHand, 
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but no sequence homologous to the Phox2b gene of vertebrates in the 

amphioxus genome can be found in GenBank. 

Further analysis of the genomic make-up of lamprey chromaffin and/or SIF 

cells is necessary to analyze the details of the evolutionary relationship 

between these cells and definite sympathetic neurons. Chicken and 

mouse chromaffin cells are reported to express Ascl1, dHand and Phox2b 

(Huber, Bruhl et al. 2002; Unsicker, Huber et al. 2005), but these three 

genes were not expressed in the expected locations in the lamprey. One 

of the expected locations would be the heart (Fänge 1963) as it was 

previously reported to contain chromaffin cells. It appears that lamprey 

chromaffin cells are possibly an evolutionary precursor to gnathostome 

chromaffin cells. They do already have the same characteristic 

catecholamine containing granules and the affinity for chrome staining, but 

are made up from a different and unknown genetic repertoire. It would be 

very interesting to isolate these chromaffin cells from the lamprey heart 

and from gnathostomes respectively to perform molecular analysis on 

both lineages, for example a whole transcriptome analysis.  

In this thesis, all experiments were carried out in embryos/larva of the 

lamprey, but also additional studies in the adult lampreys are required to 

shed light on the evolution of the sympathetic nervous system. Moreover, 

the neurophysiological work needs to be repeated. The data published so 

far is highly arguable and contrasting. It would be crucial to unequivocally 

find out if the lamprey heart is indeed accelerated by acetylcholine and 

retarded by adrenaline as it was proposed earlier (Otorii 1953; 

Augustinsson, Fange et al. 1956). A different explanation of the results 

would be that the heart in those studies was accelerated because the 

acetylcholine induced the chromaffin cells in the heart to release their 

catecholamines. The fact that lamprey hearts do not react to added 

adrenaline might be explained by their phosphorylase state (Nayler and 

Howells 1965). Nayler and Howells suggested that the action of 
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adrenaline on a heart usually requires a transformation of the 

phosphorylase from the b form into the a form. They claimed that in 

lampreys endogenous amines keep most of the phosphorylase in the a 

form, thus rendering the lamprey heart insensitive to additionally added 

adrenalins. Most of these different and non-coherent hypotheses were 

carried out decades ago and should be reevaluated with modern methods. 

 

 

Conclusions  

The study presented confirmed the absence of a commissural sympathetic 

chain in lamprey embryos. How the sympathetic ganglia evolved remains 

elusive. It could be demonstrated that it is feasible to use a chicken 

sequence to recruit transcription factors in a lamprey and drive expression 

in neurons. Finding the CNEs that drive expression in the chicken 

sympathetic ganglia will be the key to analyze which different transcription 

factors are employed.  

It appears that the chromaffin cells present in the lamprey are even more 

distantly related to those of gnathostomes than initially thought. They 

microscopically resemble gnathostome chromaffin cells, but they do not 

express the three marker genes that are crucial to the differentiation of 

chromaffin cells in gnathostomes. Therefore, lampreys hold a key position 

for the understanding of the sympathetic nervous system evolution.  

The sympathetic nervous system is an impressive new feature of 

gnathostomes and it is crucial to their predatory lifestyle and adaptation 

capabilities. The evolutionarily older enteric nervous system is already 

present in lampreys as well as the parasympathetic nervous system that is 

responsible for the homeostasis. It is an exciting idea that changes in cis-

linkages led to the formation of a new GRN circuit, allowing neural crest 
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cells to differentiate into sympathetic neurons. It would be fascinating to 

uncover defined mutations that underlie the formation of this milestone in 

the vertebrate evolution. 
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Material and Methods 

Buffers and solutions 

All chemicals are obtained from Sigma-Aldrich (St Louis, Missouri, USA) if 

not otherwise specified. 

 

Bleaching solution 

0.5%  SSC 

10%  H2O2 

5%  CH3NO  

 

Blocking solution for antibody staining 

5%  donkey serum (Lampire Biological Laboratories, Pipersville, 

Pennsylvania, USA) in PBSTr 

 

Blocking solution for chicken in-situ hybridization  

10ml  sheep serum (Lampire Biological Laboratories, Pipersville, 

Pennsylvania, USA) 

10ml   Boehringer Blocking Reagent (Hoffmann - La Roche AG, Basel, 

Switzerland) 

30ml  MAB 

 

Blocking solution for lamprey in-situ hybridization 

20%  sheep serum (Lampire Biological Laboratories, Pipersville, 

Pennsylvania, USA) 

2%  Boehringer blocking reagent 

 in MABT 
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Hybridization solution 

50%  CH3NO 

1.3x  SSC pH5 

5mM  EDTA pH8 

200μg/ml tRNA 

0.2%  Tween-20 

0.5%  CHAPS 

100μg/ml Heparin 

 ddH2O 

 

5x MAB(T) 

58g  Maleic Acid 

43.5g  NaCl 

(1ml  Tween-20) 

 Tris-base until pH7.5 

ddH20 ad 1l 

 

MEM salts 

1M  MOPS pH7.4 

20mM  EGTA 

10mM  MgSO4 

 ddH2O  

 

MEMFA 

10ml  16%Formaldehyde, MeOH free 

4ml MEM salts 

ddH2O ad 40ml 
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10x MMR 

1M  NaCl 

10mM  MgSO4 

20mM  KCl 

1mM  EDTA 

50mM  HEPES 

20mM  CaCl · 2H2O 

adjust to pH 7.8 

 

NTMT 

5M  NaCl 

1M   Tris pH9.5 

2M  MgCl2 

10%  Tween-20 

 ddH2O  

 

PBS 

8g  NaCl 

0.2g  KCl 

1.44g  Na2HPO4 

0.24g  KH2PO4 

  ddH2O ad 1l 

adjust to pH to 7.4 
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PBSTr 

8g  NaCl 

0.2g  KCl 

1.44g  Na2HPO4 

0.24g  KH2PO4 

0.5% Triton-X 100 

  ddH2O ad 1l  

adjust pH to 7.4 

 

PBSTw (DEPC) 

8g  NaCl 

0.2g  KCl 

1.44g  Na2HPO4 

0.24g  KH2PO4 

0.1%  Tween-20 

  ddH2O ad 1l 

adjust pH to 7.4 

0.1%  DEPC (incubate >3hours and autoclave) 

 

Ringer solution 

6.5g  NaCl 

0.42g  KCl 

0.25g  CaCl2  

1mol NaHCO3 

ddH2O ad 1l 

 

20x SSC 

3M  NaCl 

300mM Na3C6H5O7 

pH7.0 

http://en.wikipedia.org/wiki/PH
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Antibodies 

Neurofilament-m 
Invitrogen  

(Carlsbad, California, USA) Cat # 13-0700 

Alexa 488 IgG2a 
Invitrogen  

(Carlsbad, California, USA) Cat # A21131 

DIG-AP 
Hoffmann-La Roche AG  

(Basel, Switzerland) Cat # 11093274910 

 

 

Primerlist 

All primers were obtained from Integrated DNA Technologies, Inc 

(Coralville, Iowa, USA). 

ptk fwd 5’ GTGCCAGAACATTTCTCTAT 

ptk rev 5’ GCAGCAAGCTTACTTAGATC 

Phox2bCNE1_Asp718fwd 5’ TTTGGTACCGCACGGGCTGAAATTAGAGT 

Phox2bCNE1_BglIIrev 5’ TTTAGATCTCCCTATAAGCCAGGAATAGCC 

Phox2bCNE2_Asp718fwd 5’ TTTGGTACCCTGTGACTCAGACGCAGCTC 

Phox2bCNE2_BglIIrev 5’ TTTAGATCTCCTATCGCTGATTCCTGCAT 

Phox2bCNE3_Asp718fwd 5’ TTTGGTACCCAGGGACCACCAGAGCAG 

Phox2bCNE3_BglIIrev 5’ TTTAGATCTGTTTCCGCTTCTCGTTCAAA 

 

  

Lamprey husbandry and fertilizations 

Lamprey husbandry was conducted according to the protocol given by 

Nikitina et al. (Nikitina, Bronner-Fraser et al. 2009) and is accredited by 

the Institutional Animal Care and Use Committee (IACUC, Title: ”Neural 

Crest Development in Petromyzon Marinus”, Animal Protocol Application 
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number: #1436 – 08). Mature lampreys were shipped from the Hammond 

Bay Biological Station (Millersburg, Michigan, USA).  

 

Antibody staining 

Immunostaining of lamprey embryos was performed according to the 

protocol given by Nikitina et al. (Nikitina, Bronner-Fraser et al. 2009).  

Lamprey sections were degelatinized in 42°C PBS for 10 minutes and 

subsequently washed in PBSTr 2 times for 5 minutes each. Then, the 

sections were blocked in 10% goat serum (Lampire Biological 

Laboratories, Pipersville, Pennsylvania, USA) in PBSTr at 4°C for 5 hours. 

These sections were then incubated with the neurofilament-m antibody 

(Invitrogen, Carlsbad, California, USA) at a dilution of 1:200 in blocking 

solution overnight at 4°C in a humid chamber. Afterwards the sections 

were washed 5 times for 10 minutes each with PBSTr. The secondary 

antibody, Alexa-488 anti mouse IgG2a, was diluted 1:1000 in blocking 

solution and it was incubated on the sections for 2 hours at room 

temperature in a humid chamber. 

Subsequently the excess antibody was washed of 3 times for 10 minutes 

each with PBSTr followed by 2 washes for 10 minutes each with PBS. 

The sections were mounted with Permafluor (Beckman Coulter, Brea, 

California, USA). Before applying the Permafluor the sections were dipped 

into distilled water a few times to remove the salts. Mounted sections were 

allowed to dry. 

 

DiI injections 

DiI injections were carried out following the protocol published by Nikitina 

et al. (Nikitina, Bronner-Fraser et al. 2009). Lamprey embryos were 
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dechorionated in 0.1x MMR at E5 – E7 and placed into agarose-coated 

petridishes. DiI (Invitrogen, Carlsbad, California, USA) was diluted 

0.5μg/ml in 0.3M sucrose. The DiI solution was filled into glass needles 

and injected into the lumen of the neural tube. Embryos were tested by 

fluorescence microscopy (axioscope2 Plus fluorescence microscope, 

Zeiss, Oberkochen, Germany) for successful injection. The correctly 

injected embryos were raised in petridishes containing 0.1x MMR at 18°C. 

Migration of labeled cells was monitored on a daily basis. Embryos that 

had reached the desired stage of development were fixed in 4% 

paraformaldehyde in PBS for 1 hour at room temperature.  

 

Chicken in-situ hybridizations 

Chicken probes for Ascl1, dHand and Phox2b were kindly provided by 

Hermann Rohrer (Max-Planck-Institut für Hirnforschung, Frankfurt, 

Germany).  

Chicken embryos fixed in 100% methanol were gradually washed to 

PBSTw (DEPC), followed by two washes in PBSTw (DEPC) for 10 

minutes each. The embryos were incubated for 3 hours in pre-warmed 

Hyb solution at 70°C. Subsequently the embryos were incubated 

overnight with the pre-warmed probe in Hyb solution at 70°C. Unbound 

probe was washed off with Hyb solution 2 times for 15 minutes each at 

70°C, followed by 4 washes for 45 minutes. The next washing step is 

carried out using Hyb solution and MABT mixed 1:1 at 70°C once for 30 

minutes. Thereafter the embryos were washed four times for 30 minutes 

each with MABT at room temperature. The MABT was then replaced with 

blocking solution and the embryos are incubated for 3 to 4 hours. As a 

next step the blocking solution was exchanged for Anti-digoxigenin-AP 

antibody (Hoffmann - La Roche AG, Basel, Switzerland) diluted 1:2000 in 
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blocking solution which was applied over night at 4°C. Excess antibody 

was removed with several washing steps with MABT at room temperature, 

2 times for 5 minutes, 2 times for 30 minutes and 6 times for 1 hour each, 

followed by a wash with MABT over night at 4°C. Afterwards the embryos 

were washed in NTMT 2 times for 30 minutes and then NTMT was 

exchanged to NBT/BCIP (Hoffmann - La Roche AG, Basel, Switzerland) in 

NTMT according to the manufacturer’s manual. As soon as the desired 

intensity of staining was reached, embryos were washed 3 times for 5 

minutes in PBS and re-fixed in 4% paraformaldehyde in PBS over night at 

4°C.  

 

Chicken injections and electroporations 

Fertilized chicken eggs were obtained from “McIntyre Poultry and fertile 

eggs” (Lakeside, California, USA). 

The handling, injections and electroporation of chicken embryos is 

described in detail by Sauka-Spengler and Barembaum (Sauka-Spengler 

and Barembaum 2008). 

Embryos were in-ovo injected and electroporated. The solution was 

injected into the neural tube at HH8 followed by immediate electroporation 

and the embryos were allowed to develop up to HH22.  

The injection solution contained 2μg/μl of the ptk-EGFP vector (Uchikawa, 

Ishida et al. 2003) including one of the CNEs, 1μg/μl of the control vector 

pCI H2B-RFP (Betancur, Bronner-Fraser et al. 2010) and, 0.1% FD&C 

food dye blue no1 (Spectra Colors Corporation, Kearny, New Jersey, 

USA) in Ringer solution. 

After reaching HH22 the embryos were removed from the egg and 

monitored using the Zeiss axioscope2 Plus fluorescence microscope 

(Zeiss, Oberkochen, Germany). 
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Lamprey in-situ probes 

The orthologs of Ascl1, dHand and Phox2b were analyzed via a 

bioinformatic survey of the lamprey genome. Lamprey probes were 

obtained through RLM-RACE using the Invitrogen GeneRacer Kit 

(Invitrogen, Carlsbad, California, USA) according to the manual. Total 

RNA was extracted from lamprey embryos utilizing the Ambion RNAquous 

kit (Ambion, Austin, Texas, USA) and then dephosphorylated with calf 

intestine phosphatase (Hoffmann - La Roche AG, Basel, Switzerland). 

Afterwards the RNA was decapped using tobacco acid pyrophosphatase. 

The GeneRacer RNA oligo was ligated and reverse transcription was 

initialized with random hexamer primers. The sequences of interest were 

amplified via touchdown PCR and cloned into TOPO TA vector according 

to the manual (Invitrogen, Carlsbad, California, USA). 

 

Lamprey in-situ hybridizations 

Whole-mount lamprey in-situ hybridizations were carried out according to 

the protocol published by Nikitina et al. (Nikitina, Bronner-Fraser et al. 

2009). 

Lamprey embryos were fixed in MEMFA for 1 hour at room temperature. 

Afterwards the embryos were bleached with bleaching solution for 10 

minutes under light. To stop the reaction the embryos were washed with 

PBSTw (DEPC) 3 times for 5 minutes each. Afterwards embryos were 

permeabilized with 20 μg/ml proteinase K in PBSTw (DEPC) for 10 

minutes followed by incubation in 2 mg/ml glycine in PBSTw (DEPC) for 

10 minutes.  
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As a next step, the embryos were postfixed with 4% paraformaldehyde in 

PBS for 20 minutes at room temperature. Subsequently the embryos were 

pre-hybridized for 3 hours in hybridization solution at 70°C and incubated 

in 1-10 μg/ml RNA probe labeled with digoxigenin in hybridization solution 

for 16 hours at 70°C. For the removal of excess probe the hybridization 

reaction was followed by washing 2 times for 15 minutes and 4 times for 

45 minutes each with hybridization solution at 70°C. The next washing 

step was carried out with hybridization solution and MABT 1:1 at 70°C for 

30 minutes followed by 4 washes MABT only at room temperature for 30 

minutes each. Embryos were blocked for 4 hours at room temperature in 

blocking solution. Anti Digoxigenin-AP antibody (Hoffmann - La Roche 

AG, Basel, Switzerland) was used 1:2000 in blocking solution over night at 

4°C. To remove excess antibody the embryos were washed with MABT 

for 2 times 5 minutes each, then 2 times 30 minutes each, and 6 times 1 

hour each at room temperature followed by an overnight wash with MABT 

at 4°C.  

MABT buffer was exchanged to NTMT buffer and washed 4 times 15 

minutes each. BM purple substrate (Hoffmann - La Roche AG, Basel, 

Switzerland) was used to obtain the color reaction. Thus the embryos 

were incubated in BM purple, covered from light, until the desired intensity 

of the staining was reached. Some embryos were allowed to “over stain” 

to make sure that regions of low signal were not overlooked. The staining 

reaction was stopped by 3 PBSTw washes for 5 minutes each. Afterwards 

the embryos were re-fixed with 4% paraformaldehyde in PBS for 2 hours 

at room temperature. 
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Embedding and sectioning of lamprey embryos 

Lamprey embryos were embedded in gelatin for cryosectioning. First, the 

embryos were washed 3 times with PBSTr for 15 minutes each, followed 

by incubation in 15% sucrose in PBS for 3 hours at room temperature. 

Afterwards, the lamprey embryos were incubated in a pre-warmed solution 

of 7.5% gelatin and 15% sucrose in PBS for 12 hours at 37°C and then in 

a 20% gelatin in PBS solution for 4 hours at 37°C. Subsequently, the 

embryos were positioned in little molds filled with 20% gelatin in PBS and 

shock-frozen in liquid nitrogen. The embedded embryos were equilibrated 

to and sectioned at -30°C with a Microm HM550 cryostat (Thermo Fisher 

Scientific, Waltham, Massachusetts, USA) with a thickness of 8μm – 

10μm. 

 

Lamprey injections 

Lampreys were injected at late one-cell stage following the protocol given 

by Parker et al. (Parker, Piccinelli et al. 2011). The chicken CNEs were 

cloned into the cFos-I-sceI-EGFP plasmid, which consists of the mouse 

cFos minimal promoter and the coding sequence for EGFP, flanked by I-

sceI restriction sites. The Plasmids DNA was isolated using the EndoFree 

Plasmid Maxi Kit (Qiagen, Hilden, Germany) according to the manual. 

Restriction digests were always set up freshly by mixing 400ng plasmid 

with 15 units I-SceI enzyme and 1x I-SceI buffer + BSA (New England 

Biolabs, Ipswich, Massachusetts, USA) in a 20μl reaction and allowing to 

digested for 40 minutes at 37°C. 2-3nl of the restriction digest were micro-

injected into the late one-cell stage lamprey embryos using a Picospritzer 

(Parker-Hannifin Corporation, Cleveland, Ohio, USA). Embryos were 

screened for GFP expression on a daily basis using the Zeiss axioscope2 

Plus fluorescence microscope (Zeiss, Oberkochen, Germany). 
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CNE chicken reporter vector 

Sequences for the CNE were obtained using the UCSC genome browser 

(http://genome.ucsc.edu/cgi-bin/hgGateway) “vertebrate multi-way 

alignment” function. Blocks of highly conserved sequence, lying between 

the two neighboring genes and outside of the coding sequence of Phox2b 

were downloaded from the annotated chicken genomic sequence. The 

Primer3 software (http://frodo.wi.mit.edu/primer3/) (Rozen and Skaletsky 

2000) was used for the primer design. For later cloning steps the 

sequence for the restrictionsite of Asp718 or Bgl II (both Invitrogen, 

Carlsbad, California, USA) were added to the forward and reverse primer 

sequence respectively and three additional thymine nucleotides were 

added to enhance the restriction.  

 The CNEs were amplified from a chicken Phox2b BAC (BACPAC 

Resource Center, Oakland, California, USA; BU464222; chEST716a20; 

261-89F23) using the “expand long template” PCR system (Hoffmann - La 

Roche AG, Basel, Switzerland) according to the manual. 

Gradient PCR Program:  1. 94°C  4 minutes 

   2. 94°C  30 seconds 

    3. 55°C - 65°C 2 minutes 

    4. 68°C  3 minutes 

    5. 68°C  10 minutes 

40 repeats of step 2 - 4. 

The amplified sequences were loaded onto an agarose gel and the bands 

of the right size were excised. DNA was isolated from the agarose gel 

piece using the Promega Wizard SV Gelextraction kit (Promega, Madison, 

Wisconsin, USA) according to the manual. Afterwards the amplified CNE 

DNA and the ptkEGFP vector were digested with the restriction enzymes 
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Asp718 and Bgl II according to the manual. The ligation of the single 

CNEs into the digested ptkEGFP vector was carried out using the NEB T4 

DNA ligase (New England Biolabs, Ipswich, Massachusetts, USA) 

following the directions of the manual. The DNA was precipitated using NF 

pellet paint (Merck KGaA, Darmstadt, Germany) according to the manual. 

Resuspended DNA was electroporated into electrocompetent One Shot 

Top 10 cells (Invitrogen, Carlsbad, California, USA) following the 

directions of the manual. 10 colonies were picked with a pipet tip for each 

CNE. The tip was dipped into 100μl ddH2O for subsequent colony PCR 

and then dipped into 2ml LB to expand the colony overnight at 37°C. For 

the colony PCR 1μl of the ddH2O were used in the PCR reaction 

aforementioned for the amplification of the CNEs. The QIAprep spin 

Miniprep Kit (Qiagen, Hilden, Germany) was used to isolate the DNA of 

the clones from which a DNA fragment of the right size could be amplified. 

A portion of the eluted DNA was adjusted to 100ng/μl and sent for 

sequencing with the ptk fwd and ptk rev primers (Laragen, Culver City, 

California, USA). The obtained sequence was blasted using the UCSC 

blat program (http://genome.ucsc.edu/cgi-bin/hgBlat) and sequences 

matching the desired CNE were used for subsequent injections into 

chicken embryos.        

 

Abreviations 

TH   Thyroxin Hydroxylase 

DBH   Dopamine-β-hydroxylase 

CNS   Central nervous system 

PNS   Peripheral nervous system 

GRN   Gene regulatory network 

E   Embryonic day 

http://genome.ucsc.edu/cgi-bin/hgBlat
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CNE   Conserved non-coding element 

pTK   Promoter Thymidine kinase 

eGFP   Enhanced green fluorescent protein 

ddH2O  Double distilled water 

NBT/BCIP nitro blue tetrazolium chloride/5-Bromo-4-chloro-3-indolyl 

phosphate 

 

http://en.wikipedia.org/wiki/Nitro_blue_tetrazolium_chloride
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