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Summary 

Two related Arabidopsis thaliana transcription factors, WRKY18 and WRKY40, are induced 

upon infection with the obligate biotrophic powdery mildew, Golovinomyces orontii (G. 

orontii), during early stages of infection. WRKY18 and WRKY40 negatively regulate host 

resistance as wrky18wrky40 double mutants are resistant towards this fungus. Differential 

expression of hormone biosynthesis and response genes between susceptible wildtype and 

resistant wrky18wrky40 plants suggested a crucial role of hormone signaling during G. orontii 

infection. Investigating the potential contribution of hormonal changes to resistance during 

this plant-pathogen-interaction is one focus of this thesis. Although hormone measurements 

did not reveal major differences between susceptible wildtype and resistant wrky18wrky40 

plants, genetic studies demonstrated that SA biosynthesis is indispensable for resistance. 

Besides hormone-dependent defense responses, secondary metabolites, such as the indol-

glucosinolate 4MI3G (4-Methoxyindol-3-ylmethylglucosinolat), have been shown to 

contribute to antifungal defense. Elevated levels of 4MI3G in infected wrky18wrky40 plants 

indicate a potential role of this compound in resistance towards G. orontii. 

Whereas WRKY18 and WRKY40 are negative regulators of resistance towards G. orontii, 

this was not the case for other powdery mildews. Hence, wrky18wrky40 mutants do not 

exhibit a broad-spectrum but rather specific resistance towards G. orontii infection. 

Furthermore, comprehensive wrky18wrky40 infection studies including different biotrophic, 

hemi-biotrophic and necrotrophic pathogens revealed a positive role of WRKY18 and 

WRKY40 in effector-triggered resistance towards avirulent Pseudomonas syringae DC3000 

expressing the AvrRPS4 effector gene. This response appears to be highly specific since it 

was not observed with bacteria expressing other tested Avr genes. 

To further dissect roles of WRKY18 and WRKY40 in plant immunity and to uncover potential 

direct target genes of these transcription factors, global expression analyses of wrky18 and 

wrky40 single mutants upon G. orontii were performed. Overall, WRKY18 and WRKY40 

function partly redundantly, but regulate highly diverse sets of genes. Direct binding of 

potential direct target genes will be analyzed by ChIP-PCR employing the newly generated 

WRKY18-HA complementation line. First results demonstrated WRKY18 feedback 

regulation on its own gene and the WRKY40 gene during G. orontii infection. 

In addition, a yeast 2-hybrid screen against a pathogen-induced cDNA-library revealed 

potential interaction partners of WRKY18 and WRKY40 that co-localize to the plant cell 

nucleus. In conclusion, this thesis contributes to further understanding the roles of WRKY18 

and WRKY40 in plant immunity. 
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Zusammenfassung 

Eine Infektion von Arabidopsis thaliana mit dem obligat biotrophen Mehltaupilz 

Golovinomyces orontii (G. orontii) induziert in der frühen Phase des Infektionsprozesses die 

Expression von zwei verwandten Transkriptionsfaktoren, WRKY18 und WRKY40. 

WRKY18 und WRKY40 haben einen negativ regulierenden Einfluss auf die Resistenz des 

Wirts, da wrky18wrky40 Doppelmutanten resistent gegen diesen Pilz sind. Ein Schwerpunkt 

dieser Arbeit war die Untersuchung eines potentiellen Beitrags hormoneller Unterschiede 

während dieser Pflanzen-Pathogen Interaktion. Gene, welche in der Hormonbiosynthese und 

–antwort involviert sind, werden zwischen anfälligen Wildtyp und resistenten wrky18wrky40 

Pflanzen unterschiedlich exprimiert. Dies deutet auf eine entscheidende Rolle von Hormon-

Transduktionswegen während der Mehltau-Infektion hin. Obwohl Hormonmessungen keine 

signifikanten Unterschiede zwischen anfälligen Wildtyp und resistenten Mutanten zeigten, 

konnte durch genetische Studien bewiesen werden, dass SA-Biosynthese für die beobachtete 

Resistenz unerlässlich ist. Neben solchen Hormon-abhängigen Abwehrreaktionen können 

auch sekundäre Pflanzenmetabolite, wie das Indol-Glucosinolat 4-Methoxyindol-3-

ylmethylglucosinolat (4MI3G), zu einer Pilz-Abwehr beitragen. Erhöhte 4MI3G-Werte in 

infizierten wrky18wrky40 Pflanzen deuten auf eine Rolle dieser Verbindung für die 

beobachtete Resistenz gegenüber G. orontii hin.  

Während WRKY18 und WRKY40 negative Regulatoren der Resistenz gegenüber G. orontii 

sind, wurde dieser Effekt für andere gestestete Mehltaupilze nicht beobachtet. Somit weisen 

wrky18wrky40 Mutanten keine Breitband-Resistenz gegenüber Mehltaupilzen, sondern 

vielmehr eine speziefische Resistenz gegen G. orontii auf. Darüber hinaus zeigten 

umfangreiche Infektions-Studien, die sowohl biotrophe und hemi-biotrophe, als auch 

nekrotrophe Pathogene umfassten, dass WRKY18 und WRKY40 eine positive Rolle in 

Effektor-vermittelter Resistenz gegen das avirulente Bakterium Pseudomonas syringae 

DC3000 AvrRPS4 einnehmen. Auch diese Immunantwort scheint hochspezifisch zu sein, da 

nach Infektion mit anderen getesteten avirulenten Bakterien keine verstärkte Anfälligkeit von 

wrky18wrky40 Mutanten beobachtet werden konnte.  

Ein weiterer Schwerpunkt dieser Arbeit war es potentielle Zielgene dieser 

Transkriptionsfaktoren zu identifizieren. Dazu wurden umfassende Expressionsstudien mit 

wrky18 und wrky40 Einzelmutanten nach G. orontii Infektion durchgeführt. Allgemein 

betrachtet agieren WRKY18 und WRKY40 teilweise funktional redundant, regulieren aber 

deutlich unterschiedliche Gruppen von Genen. In den Expressionsstudien identifizierte 

Kandidaten-Gene können mit Hilfe der neu generierten WRKY18-HA 
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Komplementationslinie auf direkte Bindung durch WRKY18 untersucht werden. Erste 

Ergebnisse konnten bereits WRKY18 ‚Feedback‘-Regulation des eigenen Gens und des 

WRKY40 Gens während G. orontii Infektion zeigen. 

Des Weiteren wurden in einem Yeast 2-hybrid-Screen gegen eine Pathogen-induzierte cDNA-

Bibliothek potentielle Interaktionspartner von WRKY18 und WRKY40 identifiziert, die im 

pflanzlichen Zellkern co-lokalisieren. 

Insgesamt trägt diese Arbeit zu einem weiterführenden Verständnis der Rolle von WRKY18 

und WRKY40 in der pflanzlichen Immunabwehr bei.  
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1. Introduction 

1.1. The plant immune system 

1.1.1 Non-host resistance 

Plants are exposed to a multitude of pathogenic influences from the environment, including 

microbial pathogens, nematodes and insects. Combating these constant threats is essential for 

plants to ensure survival and reproduction. Plant pathogens are generally classified into 

biotrophic and necrotrophic pathogens, dependent on their feeding style (Glazebrook, 2005). 

While biotrophs entirely rely on living host cells and its metabolites, necrotrophs derive 

nutrients from dead plant tissue. Additionally, hemibiotrophic pathogens behave as both 

biotrophs and necrotrophs depending on the stage of their life cycle or the conditions they 

find themselves in. Some pathogens employ natural openings like stomata or wound sites to 

enter plant tissue and proliferate in the apoplast. Others employ specialized structures to 

penetrate and invade plant cells. Although potential pathogens have established various life 

styles and infection strategies, only a small number is actually able to infect plants 

successfully (Lipka et al., 2010; Nurnberger and Lipka, 2005). These pathogens are termed 

adapted as they have evolved mechanisms to overcome plant defense. In contrast, non-

adapted pathogens fail to efficiently infect plants successfully.  

Resistance of an entire plant species against all genetic variants of a non-adapted pathogen 

species is termed non-host resistance (NHR) and represents the most robust form of plant 

immunity (Lipka et al., 2008; Thordal-Christensen, 2003). NHR involves both constitutive 

barriers like the plant cell-wall but also inducible reactions, including the generation of 

reactive oxygen species (ROS), transcriptional reprogramming and the production of 

antimicrobial compounds (Nurnberger and Lipka, 2005). However, adapted pathogens that 

are able to infect a plant have evolved strategies to overcome the repertoire of protective 

mechanisms that should prevent its colonization and reproduction, representing the hallmark 

of basic compatibility (Lipka et al., 2008). Apart from preformed physical or chemical 

barriers, inducible defense reactions depend on the recognition of pathogenic threats by the 

plant. 

1.1.2. MAMP-triggered immunity 

Perception of pathogens that evade constitutive plant defenses is essentially dependent on 

plant membrane-resident pattern recognition receptors (PRRs). These receptors are 

characterized by the presence of an extracellular ligand-binding domain, a single membrane 

spanning domain and an intercellular kinase-signaling domain (Lipka et al., 2008; Segonzac 



Introduction  

2 

 

and Zipfel, 2011). More than 400 of these receptor-like kinases (RLKs) are present in the 

model plant Arabidopsis thaliana (Arabidopsis) but only few have been characterized in 

detail. RLKs can be subdivided into groups based on the composition of their extracellular 

ligand-binding domain. Besides LysM domains or epidermal growth factor (EGF)-like 

repeats, the largest group of RLKs contains leucine-rich repeat (LRR) motifs as extracellular 

recognition domain and a serine/threonine kinase-signaling domain, mediating activation of 

downstream signaling events following activation (De Lorenzo et al., 2011; Lipka et al., 

2008).  

This first active layer of plant immunity is based on the discrimination of self and non-self-

structures by detecting molecular components that are structurally highly conserved across a 

wide range of microbes and are normally not present in the host (Chisholm et al., 2006; 

Dodds and Rathjen, 2010). Perception of these slow-evolving microbe associated molecular 

patterns (MAMPS) by PRRs triggers downstream cell-autonomous responses leading to 

MAMP-triggered immunity (MTI). Best studied is the membrane-associated RLK FLS2 that 

is the Arabidopsis flagellin receptor, recognizing parts of the bacterial flagella (Gomez-

Gomez and Boller, 2002). A 22 amino-acid peptide highly conserved in the amino terminus of 

flagellin is sufficient for receptor activation (Felix et al., 1999). Flagellin binding induces 

rapid ion fluxes across the plasma membrane, ROS and nitric oxide (NO) production and the 

induction of defense hormone pathways. It further involves the activation of mitogen-

activated (MAP) kinase cascades leading to signal transduction to the plant-cell nucleus 

culminating in transcriptional reprogramming of defense related genes and ideally resulting in 

the induction of MTI (Asai et al., 2002; Chinchilla et al., 2007; Chisholm et al., 2006; Lipka 

et al., 2008; Meszaros et al., 2006). Another characterized PRR in Arabidopsis is the LysM-

RLK CERK1 that binds the fungal cell wall component chitin and is required for its 

perception (Petutschnig et al., 2010). Cerk1 mutants exhibit increased susceptibility towards 

fungal pathogens but also to bacteria, indicating that CERK1 also perceives another yet 

unidentified bacterial MAMP (Gimenez-Ibanez et al., 2009; Petutschnig et al., 2010). 

However, CERK1 and its induced phosphorylation upon ligand-binding are required for early 

defense responses and downstream signaling.   

Although effective and durable in NHR, MAMP-induced defense responses in compatible 

plant-pathogen interactions are insufficient to stop infection. Nonetheless, it is referred to as 

basal resistance and forms an effective mechanism against the majority of potential plant 

pathogens (Nurnberger and Lipka, 2005). 
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1.1.3. Effector-triggered immunity 

Some pathogens have evolved the ability to evade MTI by secreting specific effector 

molecules that suppress or interfere with the induction of MAMP-triggered immune 

responses. The bacterial type III secretion system (TTSS) enables the hemibiotrophic bacteria 

Pseudomonas syringae (P.syringae) to deliver effector proteins into the plant cell and achieve 

immune suppression using various strategies. By manipulating receptor signaling, blocking 

RNA pathways and vesicle trafficking and altering organelle function, P.syringae is able to 

successfully infect the plant (Block and Alfano, 2011). Moreover, fungal or oomycete 

parasites deliver effector molecules via a specialized infection structure, the haustorium, 

which invaginates the plasma membrane of epidermal cells (Panstruga and Dodds, 2009). 

Coevolution of plants and pathogens has subsequently led to the acquisition of plant proteins 

encoded by resistance genes (R-genes) that recognize pathogenic effectors. As this 

recognition usually occurs in a specific genetically defined pair-wise association between 

pathogen effector- and plant R-genes, this mechanism has been referred to as gene-for-gene 

resistance (Flor, 1971; Glazebrook, 2005; Keen, 1990). In general, NB-LRR proteins can 

recognize pathogen effectors either by direct physical interaction or indirectly by perceiving 

effector presence through an accessory protein. The latter is mediated by monitoring 

modifications of proteins, which may be effector virulence targets or structural mimics of 

those, termed decoys (guard/decoy model) (Dodds and Rathjen, 2010).  

Most R-genes encode for a ‘nucleotide-binding site plus leucine-rich repeat’ (NB-LRR) class 

of proteins, which can be subdivided into two main classes based on their deduced N-terminal 

structures (Dangl and Jones, 2001). Some R-proteins contain a domain with homology to the 

Drosophila Toll and mammalian interleukin 1 receptors (TIR-NB-LRR), whereas others have 

a coiled-coil domain (CC-NB-LRR) at the amino-terminus. It is generally accepted, that 

resistance mediated by TIR-NB-LRR class proteins depend on the lipase-like protein 

ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), whereas CC-type NB-LRR-mediated 

resistance is EDS1 independent but dependent on the plasma membrane anchored NON-

RACE SPECIFIC DISEASE RESISTANCE (NDR1) (Aarts et al., 1998; Falk et al., 1999; 

Moreau et al., 2012). One well-studied example of R-gene mediated resistance is the 

interaction between Arabidopsis Columbia-0 (Col-0) plants with the avirulent bacterial strain 

P.syringae DC3000 expressing the avirulence gene AvrRPS4. Secretion of the effector protein 

AvrRPS4 via the TTSS leads to a perception of the respective effector by the plant TIR-NB-

LRR protein RPS4, resulting in resistance towards this bacterial strain (Gassmann et al., 1999; 

Heidrich et al., 2011). Similar to MTI, perception of effectors by a cognate R-protein induces 
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a set of downstream events. Activation of signaling pathways, hormonal changes and 

transcriptional reprogramming result in a specific and robust effector-triggered immunity 

(ETI). Although activation of MTI and ETI triggers the induction of similar sets of genes and 

utilizes common signaling pathways, MTI is thought to provide a rather transient response 

and vulnerable immunity, whereas defense responses in ETI are more prolonged and robust 

against pathogenic perturbations (Tsuda and Katagiri, 2010). Together, MTI and ETI are 

interconnected parts of innate immunity in plants, although MTI may form the first active 

response to microbial perception (Chisholm et al., 2006). Thus, ETI forms a second layer of 

defense that constitutes a specific mechanism of the plant innate immune system to perceive 

and subsequently antagonize invading pathogens. However, one common feature of both MTI 

and ETI is the induction of hormone pathways that have been demonstrated to play pivotal 

roles for defense against pathogenic threats (Glazebrook, 2005; Tsuda et al., 2009). Infection 

of plants with diverse pathogens or pathogen-mimicking molecules results in changes in the 

level of different phytohormones involved in responses to abiotic and biotic stresses (Bari and 

Jones, 2009). 

  

1.2. Plant hormones and secondary metabolites in plant defense 

Jasmonic acid (JA), salicylic acid (SA) and ethylene (ET) are three key plant hormones 

essential for the regulation of plant defense against pathogenic attacks (Thomma et al., 2001). 

JA is generally viewed as a signaling molecule in the defense against necrotrophic pathogens 

that usually kill the plant for nutrient acquisition, whereas SA is required for an effective 

defense against biotrophs and hemibiotrophs. In Arabidopsis biosynthesis of the small 

phenolic compound SA is based on the conversion of the primary metabolite chorismate via 

two distinct enzymatic pathways (Vlot et al., 2009). While only a small fraction of pathogen-

induced SA is produced via a series of enzymatic steps initially catalyzed by 

PHENYLALANINE AMMONIA LYASE (PAL), the main proportion of SA is synthesized 

by a two-step catalytic process involving isochorismate. Chorismate is converted by the 

ISOCHORISMATE SYNTHASE 1 (ICS1) to isochorismate and further processed by 

ISOCHORISMATE PYRUVATE LYASE (IPL) to SA. ICS1 mutants are severely 

compromised in pathogen-induced SA production and resistance and are therefore also 

referred to as SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2) (Garcion et al., 2008).  

A major component of salicylic acid-mediated signaling during pathogenic attack is EDS1, 

acting upstream of SA in basal resistance to adapted biotrophic pathogens and R gene-

mediated ETI (Gassmann et al., 1999; Wiermer et al., 2005). Nevertheless, expression of 
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EDS1 and its sequence-related interaction partner PHYTOALEXIN DEFICIENT 4 (PAD4) is 

induced upon SA accumulation (Jirage et al., 1999). Downstream signaling of the SA 

pathway is highly dependent on the function of NON-EXPRESSOR OF PATHOGENESIS-

RELATED GENES 1 (NPR1). NPR1 occurs in the cytosol where it plays a role in the 

crosstalk between SA and JA, as well as in the nucleus where it functions in SA-mediated 

induction of PATHOGENESIS-RELATED 1 (PR1), a marker gene for SA-dependent defense 

responses (Mou et al., 2003; Vlot et al., 2009). SA accumulation upon biotic and abiotic 

stresses leads to the induction of PR gene expression, the establishment of systemic-acquired 

resistance (SAR), a plant immune response induced systemically in plant tissue upon local 

pathogen infection (Durrant and Dong, 2004), and contributes to the rapid local cell death 

termed the hypersensitive response (HR).  

Another plant defense hormone is jasmonic acid (JA), belonging to the jasmonate class of 

plant hormones. Jasmonates are involved in the regulation of various developmental processes 

as well as responses to different biotic and abiotic stimuli (Fonseca et al., 2009). Derived from 

α-linolenic acid, JA is generated through a series of reactions in the chloroplast and 

peroxisome and is converted to a variety of derivatives. α-linolenic acid is processed by 

lipoxygenase 2 (LOX2), allene oxide synthase (AOS) and allene oxide cyclase (AOC) to 12-

oxo-phytodienoic acid (OPDA), that is exported from the chloroplast by an unknown 

mechanism (Wasternack and Kombrink). Import to the peroxisome is mediated by an ABC 

transporter COMATOSE 1 (CTS1) presumably supported by an ion-trapping mechanism. 

Once in the peroxisome, OPDA is further processed via several enzymatic reactions, 

including the OPDA REDUCTASE 3 (OPR3), to JA. Finally, the amino acid conjugate 

synthase JASMONATE RESISTANT 1 (JAR1) catalyzes the conjunction of isoleucine (Ile) 

to JA that has recently been described as the molecularly active form of this hormone 

(Fonseca et al., 2009; Staswick et al., 2002). Perception of JA is based on the binding of JA-

Ile to the Skp1-Cullin-F-box protein (SCF) CORONATINE INSENSITIVE 1 (COI1), 

designated the SCF
COI1

 complex. Like JAR1 mutants, coi1 plants exhibit a strong JA 

insensitivity (Staswick et al., 2002; Xu et al., 2002).  

Precise regulation of these hormone pathways is essential for an effective and well-defined 

response to biotic and abiotic stresses. A new class of proteins, the so-called jasmonate-ZIM-

domain proteins (JAZ), has recently attracted attention as negative regulators of the JA 

pathway (Chini et al., 2009). In a non-induced situation, the basic-loop-helix-leucine zipper 

transcription factor MYC2 is bound by homo- or heterodimers of JAZ proteins suppressing 

the transcription of certain JA responsive genes. Upon biotic or abiotic stimuli, JAR1 converts 
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JA to JA-Ile that is perceived by the SCF
COI1

 complex. This leads to an ubiquitination of JAZ 

proteins by the SCF
COI1

 complex and subsequent degradation of the JAZ repressors by the 

26S-proteasome. SCF
COI1

 in combination with JA-Ile and JAZ is currently viewed as the 

major JA receptor complex (Sheard et al.; Yan et al., 2009). The role of COII-mediated JAZ 

degradation is analogous to the auxin signaling pathway through the receptor F-box protein 

TIR1, which promotes auxin-dependent turnover of the AUX/IAA transcriptional repressors 

(Kepinski and Leyser, 2005).  

Besides the transcriptional de-repression and resulting JA response upon specific stimuli, JAZ 

gene expression is also induced, leading to a contemporary termination of JA response gene 

expression via a negative regulatory feedback-loop mechanism. Key marker genes of the JA 

response pathway are VEGETATIVE STORAGE PROTEIN 2 (VSP2) and PLANT DEFENSIN 

1.2 (PDF1.2) that are strongly up-regulated upon JA accumulation (Leon-Reyes et al., 2010; 

Spoel et al., 2009).  

The ET and JA pathways are thought to operate mainly synergistically during plant defense as 

both hormones induce similar subsets of defense-related genes upon pathogen challenge (Bari 

and Jones, 2009). It has been shown that the transcription factor ethylene-response-factor 1 

(ERF1) positively regulates JA and ET signaling and that MYC2 also regulates the interaction 

between JA- and ET-mediated defense signaling (Bari and Jones, 2009; Lorenzo et al., 2003). 

The fact that the JA/ET and SA defense pathways are often mutually antagonistic (Chisholm 

et al., 2006) underlines the complexity of plant defense regulation. However, the analysis of 

plant signaling networks, including the JA/ET and SA signaling pathways, revealed 

synergistic relationships between different hormone pathways (sectors) for MTI, whereas 

compensatory effects were observed during ETI upon biotrophic challenge (Tsuda et al., 

2009; Yamasaki et al., 2005).  

Besides plant hormones, plant secondary metabolites play important roles in plant defense 

(Sonderby et al.). Glucosinolates are sulfur-rich secondary metabolites with economically 

important roles in human nutrition and biological roles in plant defense. The Arabidopsis 

cytochrome P450 monooxygenase CYP81F2 is essential for the accumulation of tryptophan-

derived 4-methoxyindol-3-ylmethylglucosiolate (4MI3G) upon pathogen challenge. 4MI3G is 

further activated by an atypical myrosinase PEN2 for antifungal defense (Bednarek et al., 

2009). CYP81F2 mutants impaired in pathogen-induced 4MI3G accumulation are more 

susceptible to non-adapted fungal pathogens. PEN2 and the PEN2 CYP81F2 double mutant 

showed indistinguishable resistance phenotypes compared to CYP81F2 single mutants, 

indicating that CYP81F2 and PEN2 act in a common pathway (Bednarek et al., 2009). 
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CYP81F2 expression was also found to be induced after challenge with an adapted powdery 

mildew (Pandey et al., 2010), indicating that 4MI3G or its derivatives are also involved in 

defense during compatible plant-pathogen interactions. 

Global expression analysis suggests that pathogens elicit an interconnected network of 

signaling cascades between MTI and ETI, showing the existence of a complex and highly 

regulated web of regulatory molecules comprising transcriptional activators and repressors 

(Eulgem and Somssich, 2007; Kalde et al., 2003; Pandey et al., 2010). Several transcription 

factor (TF) families involved in the regulation of gene expression upon pathogen challenge 

have attracted recent attention. The WRKY family of transcriptional regulators has been 

shown to regulate various developmental processes but prominently regulate gene expression 

during plant defense responses. Expression analyses revealed the induction of several WRKY 

genes after pathogen infection, treatment with pathogen effectors or by hormones triggering 

defense responses (Eulgem et al., 1999; Pandey et al., 2010; Xu et al., 2006).  

  

1.3. WRKY transcription factors 

The WRKY family comprises 74 expressed genes in Arabidopsis and represents one of the 

largest transcription factor families in higher plants (Eulgem and Somssich, 2007; Rushton et 

al., 2010). All WRKY proteins contain at least one highly conserved WRKYGQK amino acid 

motif and a zinc-finger motif forming the characteristic WRKY domain, responsible for 

binding of specific DNA elements. These binding sites share an invariant nucleotide 

composition, called the W-box (T/C-TGAC-T/C), that is specifically bound by WRKY 

proteins, although alternative binding sites have been identified (Ciolkowski et al., 2008; 

Pandey and Somssich, 2009). To ensure a certain degree of binding specificity, analyses have 

demonstrated that nucleotides directly adjacent to the W-box determine binding preferences 

of different WRKY proteins (Rushton et al., 2010).  

WRKY transcription factors are divided into three groups based on the number of WRKY 

domains and the structure of their C-terminal zinc-finger motifs. Group I WRKY proteins 

contain two WRKY domains, whereas group II and III have a single WRKY domain. These 

groups are further subdivided with respect to the structure of their primary amino acid 

sequence (Rushton et al., 2010). WRKY proteins are integrated in a complex interconnected 

web of transcriptional activators and repressors. It has been shown that several members act 

as both repressors and activators in different plant processes (Miao et al., 2008). Moreover, 

WRKY proteins are involved in the transcriptional regulation of their own genes or of other 

WRKY members and show considerable rates of functional redundancy between individual 



Introduction  

8 

 

members (Pandey et al., 2010; Rushton et al., 2010). Regarding the large number of WRKY 

genes in Arabidopsis and the fact that some WRKY proteins form homo-and heterodimers 

(Eulgem, 2006; Xu et al., 2006) puts further complexity to the regulatory web of WRKY 

transcription factors.  

To date, WRKY genes have not been found in yeast or animals but are present in the non-plant 

unicellular eukaryote Giardia lamblia, an early-diverging protozoan parasite that colonizes 

the intestinal tract of higher animals (Pan et al., 2009). Moreover, one WRKY gene was found 

in the eukaryote Dictostelium discoideum, a slime mold more closely related to the lineage of 

fungi and animals than to green plants, indicating an early origin of WRKY genes in primitive 

organisms representing the earliest branching among extant eukaryotes (Zhang and Wang, 

2005). Alternatively it is conceivable that horizontal gene transfer may be the reason for their 

existence in these organisms. However, through duplication events and with an ongoing 

increase in complexity accompanied by the need for an excess of transcriptional regulation, 

WRKY genes have greatly expanded in higher plants (Pan et al., 2009; Rushton et al., 2010; 

Zhang and Wang, 2005).  

In Arabidopsis, it has been demonstrated that WRKY genes play pivotal roles in seed and 

embryo development (Luo et al., 2005), auxin distribution during root development 

(Grunewald et al., 2012), plant senescence (Rushton, Somssich et al. 2010) and in regulating 

morphological processes during trichome formation (Johnson, Kolevski et al. 2002). 

Furthermore in rice (Oryza sativa, Os), WRKY factors have been shown to be involved in 

seed dormancy and germination (Rushton et al., 2010), whereas in Medicago truncatula these 

TF negatively regulated pith secondary wall formation, with mutants showing increased stem 

biomass (Wang et al., 2010). Besides the regulation of developmental processes, the main 

focus of WRKY research examines the role of WRKY genes in plant immunity as the last 15 

years of WRKY research have demonstrated their outstanding role in transcriptional 

regulation of plant immune responses (Rushton et al., 2010).    

1.3.1. WRKY transcription factors in plant defense 

Over the past decade numerous global expression profiling studies in Arabidopsis have 

revealed that a large set of the WRKY gene family is responsive to pathogen challenge. In 

addition, promoter analyses revealed the over-representation of WRKY TF binding-sites in 

numerous Arabidopsis defense-related genes indicating an important role of zinc-finger-type 

WRKY transcription factors in the regulation of plant defense (Eulgem and Somssich, 2007). 

Within the past five years unequivocal evidence has been obtained supporting the crucial role 

of WRKY TFs in the regulation of plant defense mechanisms particularly in Arabidopsis but 
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also in other plant species (Eulgem et al., 2000; Eulgem and Somssich, 2007; Hwang et al., 

2011; Ulker and Somssich, 2004; Zhang and Wang, 2005) and the analysis of specific WRKY 

proteins has just begun (Birkenbihl et al., 2012; Lippok et al., 2007; Ulker et al., 2007; Xu et 

al., 2006; Zheng et al., 2006).  

The rice genome encodes more than 100 WRKY genes (Ramamoorthy et al., 2008; Shimono et 

al., 2012).Several of them have been associated with defense against the compatible rice blast 

fungus Magnaporthe grisea (M. grisea), causing serious yield losses and posing a constant 

threat to rice supplies (Qiu et al., 2007; Shimono et al., 2012; Zhang et al., 2008). OsWRKY45 

expression is induced upon SA treatment and infection with M. grisea. Also treatment with 

the SA-analog benzothiadizole (BTH), but not MeJA or gibberellin, strongly increased 

OsWRKY45 transcript abundance (Shimono et al., 2007). Overexpression of OsWRKY45 leads 

to an enhanced resistance against the rice blast fungus, whereas Oswrky45 mutant plants did 

not reveal increased susceptibility. However, pre-treatment of rice plants with BTH results in 

induced resistance towards M. grisea, which is negated in OsWRKY45 knockdown plants, 

suggesting a role of OsWRKY45 in the SA signaling pathway (Shimono et al., 2012; Shimono 

et al., 2007). The lack of OsWRKY45-dependent resistance towards M. grisea in the absence 

of BTH-treatment is presumably caused by a time lag. Upon pathogen treatment, OsWRKY45 

expression is up-regulated 2-3 days after infection, whereas it is rapidly induced 24 h after 

BTH treatment. It likely requires OsWRKY45 expression prior to, or in the early phase of 

fungal infection to exert an effective defense against M. grisea and its induction by plant 

activators like BTH (Shimono et al., 2012; Shimono et al., 2007).  

Involvement of WRKY genes in specific defense-related plant hormone pathways was 

reported for various plant species (Atamian et al., 2012; Qiu et al., 2007; Skibbe et al., 2008; 

van Verk et al., 2011; Xie et al., 2007). In green chili pepper (Capsicum annuum, Ca), 

CaWRKY1 expression was found to be strongly induced by SA within 1-2 h after treatment 

(Oh et al., 2008). Virus-induced gene silencing of CaWRKY1 leads to reduced susceptibility 

towards the compatible bacteria Xanthomonas axonopodis pv. vesicatoria, indicating a 

negative role of CaWRKY1 for resistance in this plant-pathogen interaction.               

In Arabidopsis, positive and negative regulation of defense signaling pathways has also been 

demonstrated for WRKY33 (Birkenbihl et al., 2012; Zheng et al., 2006). This protein acts 

downstream of the MAMP-triggered signaling pathway (Andreasson et al., 2005) and is 

thought to interact with a protein, MKS1, linking the MAP kinase MPK4 with WRKY33 

within the nucleus (Qiu et al., 2008). Moreover, interaction with MKS1 has also been 

demonstrated for the WRKY33-related WRKY25 protein. It has been shown that WRKY33 
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acts in the negative regulation of the SA pathway, functions as a positive regulator in the JA-

dependent signaling pathway (Zheng et al., 2006) and is also involved in the crosstalk 

between the SA and JA pathways upon Botrytis cinerea infection (Birkenbihl et al., 2012). 

The analysis of MPK4 mutants revealed a phenotype with dwarfed plant stature, whereas 

WRKY33 mutants showed no obvious phenotype, suggesting a functional redundancy between 

the WRKY33 and WRKY25 proteins, which is a common phenomenon within the WRKY 

regulatory network. Moreover, it has been shown that Arabidopsis mutants lacking WRKY70 

function are susceptible to different bacteria, fungi and the oomycete Hyaloperonospora 

arabidopsidis (Hpa), whereas it is also crucial for the regulation of the antagonistic 

interaction between SA- and JA-mediated defense responses (Bari and Jones, 2009; Knoth et 

al., 2007). Overexpression of WRKY70 leads to a constitutive expression of SA-responsive PR 

genes and increased resistance against a biotrophic fungus, but repressed expression of JA-

responsive marker genes, such as PDF1.2 (Liu et al., 2006). Thus, WRKY70 acts as a 

positive regulator of resistance against pathogens and is also thought to function cooperatively 

with WRKY46 and WRKY53 (AbuQamar et al., 2006; Hu et al., 2012; Liu et al., 2006; Wang 

et al., 2006). Likewise, WRKY50 and WRKY51 have been shown to mediate SA- and low 

oleic acid (18:1)-dependent repression of JA signaling (Gao, Venugopal et al. 2011). Plants 

lacking the plastid-localized stearoyl-acyl carrier protein desaturase SSI2 are affected in both 

JA- and SA- signaling (Gao et al., 2011a). Ssi2 mutants have significantly reduced 18:1-

levels, accumulate high amounts of SA and PR1 transcript and exhibit enhanced resistance 

towards bacterial and oomycete pathogens. Additionally, ssi2 mutant plants are more 

susceptible to the necrotrophic fungal pathogen B.cinerea compared to wildtype plants (Nandi 

et al., 2005; Shah et al., 2001). Simultaneous knockdown of WRKY50 and WRKY51 in the ssi2 

mutant background, however, restored JA-responses and basal resistance to B.cinerea, 

suggesting WRKY50 and WRKY51 might serve as positive regulators of SA-mediated 

signaling but negative regulators of JA mediated signaling (Gao et al., 2011a). Both, WRKY50 

and WRKY51 are rapidly induced upon SA treatment, which was not observed for WRKY48 

(Dong et al., 2003). Nevertheless, WRKY48 gain-of function overexpressor plants exhibit an 

increased susceptibility phenotype when challenged with virulent hemibiotrophic bacterial 

strain P. syringae DC3000. Susceptibility was accompanied by pathogen-induced increase in 

SA levels and enhanced PR gene expression (Xing et al., 2008). On the contrary, wrky48 

mutant plants showed an increase in resistance towards this bacterial strain associated with a 

reduction of PR1 transcript abundance, suggesting WRKY48 acts as a negative regulator of 

resistance to P. syringae.      
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Also, enhanced resistance against P. syringae was observed for the single mutant wrky7, and 

the wrky11wrky17 and wrky18wrky40 double mutants (Eulgem and Somssich, 2007; Journot-

Catalino et al., 2006; Kim et al., 2006; Xu et al., 2006), describing another negative regulation 

of resistance by these WRKY TFs. Similarly, wrky18wrky40 plants also show increased 

resistance against the otherwise virulent powdery mildew Golovinomyces orontii (G. orontii) 

(Pandey et al., 2010; Shen et al., 2007).   

 

1.4. The powdery mildew fungus Golovinomyces orontii 

G. orontii belongs to the obligate biotrophic fungal plant pathogens of the phylum 

Ascomycete of the order Erysiphales. Powdery mildews have a broad spectrum of hosts 

within dicot and monocot plants and cause severe yield losses and agricultural damage. As 

biotrophic lifestyles depend on the availability of living host tissue, the fungus does not kill 

the plant. Instead, it penetrates the epidermal cell layer to gain access to required nutrients for 

completion of its asexual lifecycle (Figure 1). The classical symptom of compatible powdery 

mildew infections is a whitish, velvety powder formed mainly on infected leaf surfaces, but 

also on stems and flowers (Eichmann and Huckelhoven, 2008). After landing of an asexual  

 

 

Figure 1: Schematic illustration of the asexual lifecyle of the powdery mildew fungus G. orontii. 
After landing of a spore on the plant leaf surface, an appressorium is formed which further develops into a 

a penetration peg. After 4-12 hpi, the fungus attempts to penetrate the cuticle and cell wall of a single 

epidermal cell. In a compatible interaction, the fungus invaginates the plasma membrane and forms a 

haustorium, the fungal feeding structure within 12-24 hpi. Epiphytic growth 24-48 hpi is achieved be 

elongation of seondary hyphe, from which it infects adjacent epidermal cells. The infection cycle is 

restarted with the formation of new conidiospores that emerge from conidophores 3 days after infection 

with spreading of new spores on other plant parts or surounding plants. 
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spore on the leaf surface, an appressorium develops within the first 1-4 hours post infection, 

leading to the penetration of the epidermal cell layer 4-12 hpi mediated by a structure called 

the penetration peg. Formation of the haustorium, the fungal feeding structure 12-24 hpi 

marks the next step in the powdery mildew life cycle (Chandran et al., 2009; Eichmann and 

Huckelhoven, 2008). 

This appendage invaginates the plasma membrane, enables the fungus to acquire required 

nutrients from the penetrated host cell but also allows delivery of fungal effector molecules to 

manipulate host functions. Epiphytic growth of the fungus is attended by the formation and 

elongation of secondary hyphaes that evade further epidermal cells 24-48 hpi (Figure 1). 

Fungal development ends with the completion of its lifecycle within the next 2-5 days 

resulting in the formation of the reproduction structures known as conidiophores that contain 

conidiospores (Eichmann and Huckelhoven, 2008). Conidiospores can be subsequently spread 

by wind or animals and infect new plants or plant parts and the life cycle re-initiates.  

Defense responses of Arabidopsis against the compatible G. orontii fungus are mainly 

restricted to single cells that try to avoid nutritional exploitation by execution of HR leading 

to rapid cell-death or by the formation of papillae, enforcements of the epidermal cell wall, to 

restrict fungal penetration and growth (Eichmann and Huckelhoven, 2008). Besides the 

relatively aggressive fungus Golovinomyces orontii (Plotnikova JM, 1998), also the powdery 

mildew species Golovinomyces cichoracearum (Adam and Somerville, 1996) and 

Golovinomyces cruciferarum (Koch E, 1990) are able to successfully infect and reproduce on 

Arabidopsis Col-0 wildtype plants (Eichmann and Huckelhoven, 2008), although infection is 

less severe. However, other Arabidopsis accessions possessing the atypical R-protein 

RESISTANCE TO POWDERY MILDEW 8 (RPW8) control resistance to a broad range of 

powdery mildew pathogens (Xiao et al., 2005).  

In barley, mutations in MILDEW RESISTANT LOCUS (MLO) alleles result in a durable 

broad-spectrum resistance against all isolates of the compatible barley powdery mildew 

Blumeria graminis f. sp. hordei (Bgh) (Buschges et al., 1997). Likewise, Arabidopsis Col-0 

mlo2mlo6 mutants exhibit broad-spectrum resistance towards all three Golovinomyces 

species, demonstrating a conserved requirement of MLO for powdery mildew pathogenesis in 

monocots and dicots (Consonni et al., 2006).  

In many plant species resistance against powdery mildews is conferred by isolate-specific R-

gene mediated immunity. One example is the barley polymorphic R-gene MLA, conferring 

isolate-specific resistance to the barley powdery mildew Blumeria graminis f. sp. hordei 

(Bgh). Perception of the Bgh effector A10 by the CC-NB-LRR-type immune receptor MLA10 
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is required for physical interaction of MLA10 with two TFs, HvWRKY1 and HvWRKY2, 

leading to a de-repression of basal defense and resistance towards Bgh (Shen et al., 2007). 

Thus, transcriptional knockdown of HvWRKY1 HvWRKY2 results in an increased resistance 

against Bgh. Also, simultaneous mutations in the Arabidopsis WRKY18 and WRKY40 genes, 

sharing highest protein sequence-relatedness to HvWRKY1 and HvWRKY2, result in resistance 

towards powdery mildew G. orontii (Shen et al., 2007). However, it is still unknown whether 

wrky18wrky40 resistance towards G. orontii represents another example of broad-spectrum 

resistance against powdery mildews, as observed for e.g. mlo mutants. Moreover, WRKY18 

and WRKY40 are thought to negatively regulate resistance towards G. orontii and 

Pseudomonas syringae DC3000 by basically repressing basal defense during MTI (Pandey et 

al., 2010; Xu et al., 2006). A direct role of WRKY18 WRKY40 in ETI has not yet been 

demonstrated, although various suitable Pseudomonas strains are available to address this 

question.     

 

1.5. The bacterial pathogen Pseudomonas syringae  

Pseudomonas syringae (P.syringae) is a hemibiotrophic Gram-negative plant pathogenic 

proteobacterium with a broad host range. Strains have been classified into pathovars (pv.) 

based largely on the host of origin (Block and Alfano, 2011). P. syringae lives on the surface 

and the apoplast of host plants, but lacks the ability to penetrate the epidermal cell layer. 

Hence, it enters the plant cell via natural openings like stomata and hydathodes or through 

lesions/wound sites on the plant leaf surface (Alfano and Collmer, 1996; Gimenez-Ibanez and 

Rathjen, 2010). Strain P. syringae pv. tomato DC3000 (Pto) is the causal agent of speck 

disease in tomato and also successfully infects Arabidopsis plants. In order to infect the plant, 

Pto must overcome the plant’s innate immune system, activated by the perception of bacterial 

MAMPs, like flg22. Evasion of immune responses is accomplished partly by the biosynthesis 

of exopolysaccharides within the apoplast and the production of defense hormone analogs, 

e.g. coronatine that alter plant defense responses in a beneficial manner for the bacteria 

(Block and Alfano, 2011; Glazebrook, 2005).  

However, a key factor of Pto pathogenicity is the syringe-like TTSS, enabling the bacteria to 

deliver effector proteins directly into host cells. These effector proteins cause pathogenicity 

by manipulating the host cell immune response leading to susceptibility or they evoke an HR 

in non-host plants, resulting in rapid cell-death of the infected cell and resistance. Effectors 

that cause susceptibility were called virulence (Vir) proteins, whereas effectors eliciting 

resistance were termed avirulence (Avr) proteins. In addition, newly identified type III 
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effector proteins (T3E) are named Hop (Hrp outer protein) to genetically indicate that they are 

secreted by the TTSS. Accordingly, it has been shown that P. syringae requires proteins 

encoded by HYPERSENSITIVE RESPONSE AND PATHOGENICITY / HRP-

CONSERVED (HRP/HRC) genes for elicitation of HR in non-host or resistant plants and for 

pathogenesis in susceptible plants (Cunnac et al., 2009). HRP/HRC mutant bacteria lose 

pathogenicity and the ability to trigger HR (Block and Alfano, 2011). To date, some 

mechanisms of effector function are known. It has been shown that Pto effectors AvrPto and 

AvrPtoB target the MAMP receptor FLS2 to suppress MTI (Xiang et al., 2008). Moreover, 

the effector HopAI1 inactivates MAPKs through its phosphothreonine lyase activity and 

thereby suppresses MTI by altering MAPK-signaling (Zhang et al., 2007). However, it is 

widely believed that effectors manipulate both MTI and also ETI, if an appropriate R-protein 

is missing to confer resistance (Sohn et al., 2009). This was shown for the effector protein 

HopF2, which targets the plasma-membrane associated RPM1-INTERACTING PROTEIN 4 

(RIN4) in Arabidopsis. Plants conditionally expressing HopF2 were compromised in effective 

ETI (Wilton et al., 2010), demonstrating that MTI and ETI are targets of bacterial 

manipulation through effector proteins.  

Effector recognition by direct or indirect perception of effector presence through R proteins is 

the basis of effective ETI. One well-studied example of R-gene-mediated resistance is the 

interaction between Arabidopsis Col-0 plants expressing the TIR-NB-LRR immune receptor 

RPS4 and Pto DC3000 AvrRPS4 (Pto AvrRPS4), expressing the avirulence effector gene 

AvrRPS4, originating from P. syringae pv. pisi (Hinsch and Staskawicz, 1996). Perception of 

the AvrRPS4 effector by RPS4 leads to EDS1-dependent host-cell death and transcriptional 

reprogramming indispensable for resistance. Recent work demonstrates a direct physical 

interaction of the nucleo-cytoplasmic localized EDS1 protein with both RPS4 and AvrRPS4 

inside plant nuclei after resistance activation, whereas no interaction was found for the 

effector and cognate R-protein (Heidrich et al., 2011). Thus, EDS1 is thought to act as a 

virulence target that is guarded by R-proteins like RPS4 and required for effective defense. 

Similar to RPS4-mediated resistance, defense against Pto AvrHopA1 is based on a TIR-type 

NB-LRR protein, RPS6, also showing EDS1-dependency (Bhattacharjee et al., 2011). EDS1 

mutant Arabidopsis plants exhibit increased susceptibility towards these two bacterial strains. 

On the other hand, resistance towards the avirulent strain Pto DC3000 AvrRPM1 is EDS1-

independent and instead requires function of NDR1 (Day et al., 2006). AvrRPM1 targets 

RIN4 at the plasma membrane and mediates its phosphorylation. In a not yet clarified manner, 

CC-NB-LRR receptor protein RPM1 perceives this phosphorylation, leading to its activation 
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and effective defense, involving extensive transcriptional reprogramming (de Torres et al., 

2003; Gao et al., 2011b; Mackey et al., 2002). WRKY TFs have been shown to regulate 

immune responses towards Pto (Hu et al., 2012; Zheng et al., 2007). Also, WRKY18 and 

WRKY40 are induced after infection with different Pseudomonas strains (Xu et al., 2006), 

indicating a role for WRKY18 and WRKY40 also in the interaction with this hemibiotrophic 

bacterium. 

        

1.6. Thesis aims 

In Arabidopsis, expression of both WRKY18 and WRKY40 is induced upon G. orontii 

infection compared to wildtype plants (Supplementary Figure 1), indicating a regulatory role 

of these transcription factors during this plant-pathogen interaction (Pandey and Somssich, 

2009). Indeed, simultaneous transcriptional knockdown of WRKY18 and WRKY40 leads to 

resistance towards this biotrophic fungal pathogen, whereas both wrky18 and wrky40 single 

mutants show wildtype-like phenotypes, pointing to a functional redundancy between these 

two TFs. Resistance of wrky18wrky40 mutants is accompanied by a decrease of fungal entry 

rates constituting an increase in pre-invasive resistance as well as cell-death induction in later 

infection stages (Pandey et al., 2010; Shen et al., 2007). 

WRKY18 and WRKY40 together with WRKY60 belong to a subgroup of WRKY class II 

TFs, containing an additional leucine-zipper motif at their amino-termini. This enables the 

formation of homo- and heterodimers and puts another layer of complexity on the way these 

TFs can regulate gene expression (Xu et al., 2006).  

Although mainly located within the nucleus, WRKY18 and WRKY40 protein was recently 

reported to localize to the chloroplast envelope and interact with the Mg-chelatase subunit H 

upon ABA treatment (Shang et al., 2010). This finding, if verified, indicates that apart from 

self-association WRKY18 and WRKY40 might be involved in various other nuclear and 

extra-nuclear protein-protein interactions. Hence, identification of new potential interaction 

partners of WRKY18 and WRKY40 was one goal of this thesis. 

An important role of WRKY18 WRKY40 in early plant defense could be demonstrated in 

microarray analysis of wildtype and wrky18wrky40 plants that revealed an extensive 

transcriptional reprogramming already eight hours after infection with G. orontii (Pandey et 

al., 2010). Significant up-regulation of positive and negative regulators of defense responses 

was already observed in non-infected mutant plants, indicating direct or indirect negative 

regulation of various defense-related genes by WRKY18 and/or WRKY40. Direct binding of 

WRKY40 to promoters of target genes in vivo was demonstrated in previous studies (Pandey 
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et al., 2010), whereas WRKY18 direct target genes are yet to be identified. Hence an 

additional aim of this thesis was to further dissect the roles of WRKY18 and WRKY40 and to 

uncover potential direct target genes of these TFs, but particularly for WRKY18. 

G. orontii resistant wrky18wrky40 double mutants revealed up-regulation of several genes 

related to defense hormone pathways compared to susceptible wildtype plants (Pandey et al., 

2010). Little is known about dynamic changes of plant hormone accumulation and the 

expression of hormone pathway genes in early stages of this plant-pathogen-interaction. 

Global expression analysis demonstrated a crucial role of the SA pathway for the compatible 

interaction of G. orontii and Arabidopsis at least at later phases of the infection process 

(Chandran et al., 2009; Eichmann and Huckelhoven, 2008). Therefore, different defense-

related hormone pathways were investigated upon early infection with G. orontii and 

compared between susceptible wildtype and resistant wrky18wrky40 plants. Among the genes 

up-regulated in the wrky18wrky40 double mutant compared to wildtype plants were several 

members of the JAZ family revealing elevated transcript levels already prior to infection. 

Likewise, increased expression of the PHYTOALEXIN-DEFICIENT 3 (PAD3) gene 

catalyzing the final step in camalexin biosynthesis during G. orontii infection leads to a strong 

accumulation of this major phytoalexin in the resistant double mutant (Pandey et al., 2010). 

To better understand the effect of JA signaling during G. orontii infection with regard to 

susceptibility of wildtype and resistance of double mutant plants, JAZ gene expression was 

investigated during early G. orontii infection in both genotypes. 

Besides negative regulation of resistance towards G. orontii, only sparse knowledge about the 

role of WRKY18 and WRKY40 in other plant-pathogen interactions is available. Therefore, 

wrky18wrky40 mutants were tested against various biotrophic and necrotrophic pathogens, as 

well as addressing the question of broad-spectrum resistance of wrky18wrky40 plants towards 

powdery mildews.  

Altogether, this work contributes to the further understanding of wrky18wrky40 resistance 

towards G. orontii and attempts to broaden the view on WRKY18 and WRKY40 function in 

plant immunity.            
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2. Results 

2.1. Transcriptional activation of JAZ genes during G. orontii infection 

JAZ genes were recently shown to negatively regulate the JA signaling pathway by repressing 

the expression of JA-responsive genes. Comparative microarray analysis between wildtype 

(Col-0) and wrky18wrky40 plants revealed an up-regulation of five members of these 

transcriptional regulators already in non-challenged tissue (Pandey et al., 2010). To verify the 

up-regulation of these genes before challenging the plants with G. orontii and their 

transcriptional regulation during early stages of the infection process, qPCR analysis of JAZ 

genes was performed in an infection kinetic. All known JAZ family members were tested for 

their expression at 0, 4, 8, 12, 24 and 48 hours post infection relative to the expression in the 

non-challenged wildtype sample set to 1. All JAZ genes showed a constitutive higher 

expression in wrky18wrky40 plants at 0 hpi, with >5-fold elevated levels observed for JAZ1, 

JAZ5, JAZ7 and JAZ8 (Figure 2 A). Whereas JAZ3, JAZ4, JAZ6, JAZ11 and JAZ12 showed 

only weak inductions and only subtle differences between both genotypes during the infection 

process, other JAZ members are strongly up-regulated in the double mutant. Interestingly, 

only one gene, JAZ1, was strongly induced solely at 4 hpi, whereas JAZ2, JAZ7, JAZ8 and 

JAZ10 showed increased transcript abundance at 12 hpi. Notably, JAZ7 showed highest 

constitutive levels at 0 hpi as well as being the most strongly induced (25-fold induction) 12 

hpi compared to wildtype 0 hpi. Additionally, JAZ5 and JAZ9 showed a biphasic induction 

pattern with maximal levels reached at both 4 and 12 hpi (~8-fold higher transcript levels than 

wildtype 0 hpi plants).  

Recently, Yan and colleagues (Yan et al., 2009) described JAZ10 overexpressing seedlings as 

being insensitive towards methyl-jasmonate (MeJA) treatment, and also showing a similar 

root-phenotype as coi1 or jar1. Elevated transcript levels of almost all JAZ gene members in 

the wrky18wrky40 double mutant prior to infection raised the question of whether this mutant 

exhibits constitutive JA-insensitivity. To address this question, wildtype and wrky18wrky40 

plants were used in a MeJA root-growth assay (Figure 2 C). Col-0, WRKY18 and WRKY40 

single mutants, and wrky18wrky40 double mutants were grown on MS-agar plates containing 

different concentrations of MeJA. Because the expected JA-insensitive phenotype might be 

weaker than observed by Yan and colleagues, seedlings were grown on plates containing 0, 1, 

2.5, 5 and 12.5 μM MeJA. Root-length was determined after 10 days under long-day 

conditions and compared to JA-insensitive jar1 mutant, which served as a control. Although 

wrky18wrky40 plants exhibited elevated constitutive levels and strong induction of various 
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JAZ genes, root growth on MeJA-containing medium did not reveal a JA-insensitive 

phenotype. Even WRKY18 and WRKY40 single mutant plants in which stronger induction of 

JAZ gene expression was partially observed compared to wrky18wrky40 plants (data not 

shown) did not show any obvious root phenotype comparable to jar1. All tested genotypes 

showed a constant decrease in root-length with increasing MeJA-concentrations (Figure 2 C). 

As expected, the effect on jar1 plants was significantly weaker compared to all other 

genotypes, confirming the JA-insensitivity of this mutant and the functionality of the assay. 

From all tested JAZ genes, expression analysis of JAZ7 revealed the strongest induction in 

transcript abundance in G. orontii resistant wrky18wrky40 plants and the second highest 

induction levels in wildtype plants (Figure 2 A). If JAZ7 expression plays a negative or 

positive role in defense against G. orontii, then jaz7 plants may show differences in resistance 

or susceptibility towards this fungus. Moreover, JAZ10 when ectopically overexpressed has 

been shown to exhibit JA-insensitivity. As the JA pathway is generally associated with 

defense against necrotrophic pathogens, overexpression of JAZ10 may induce the antagonistic 

SA pathway and contribute to resistance against infection with biotrophic fungi. Hence, two 

available transgenic JAZ lines, JAZ10 overexpressing (JAZ10ox) plants and plants carrying a 

mutation in the JAZ7 (jaz7) gene, were tested with respect to altered resistance or 

susceptibility towards G. orontii, respectively.   

 Phenotypic characterization and fungal penetration counts were performed on these lines with 

susceptible Col-0 and resistant wrky18wrky40 plants included as controls (Figure 2 B). 

Neither JAZ10ox nor jaz7 plants showed any statistically significant differences in penetration 

numbers compared to wildtype plants, showing an overall penetration rate of ~80%. 

Regarding fungal proliferation, both JAZ genotypes also did not show any obvious differences 

compared to susceptible wildtype plants (Figure 2 B).  
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Figure 2: Differential expression of the JAZ gene family during early stages of G. orontii infection and 

characterization of JAZ-mutants upon G. orontii infection. (A) qPCR analysis of transcript levels of JAZ 

genes were measured after infection with G. orontii at indicated time points (hpi). After normalization to gene 

At4g26410 (Expressed protein), fold changes in transcript abundance in wildtype (Col-0, solid line) and 

wrky18wrky40 (dashed line) plants were calculated relative to untreated Col-0 samples set to 1. Error bars 

represent standard deviation (SD, n=3). (B) Characterization of JAZ10 overexpressing and jaz7 mutant plants 

upon G. orontii infection compared to susceptible wildtype (Col-0) and resistant wrky18wrky40 plants. Pictures 

were taken 7 dpi and rate of host cell entry of fungal structures was determined 48 hpi. Error bars represent SD 

(n=4). (C) Root growth assay of indicated genotypes upon treatment with different MeJA-concentrations. 

Seedlings were grown under long-day conditions on MS-phytogel plates supplemented with 0-12.5 µM MeJA 

and root length was determined 10 days after treatment. Error bars represent SD (n=20).   
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2.2. JA levels and response to early G. orontii infection 

The JA signaling pathway is generally involved in defense against necrotrophic pathogens. To 

investigate the induction of JA biosynthesis and response genes, qPCR-analyses of genes 

encoding JA pathway components were analyzed during the first 48 hours after G. orontii 

infection. Expression analysis of the JA biosynthesis gene LOX2 revealed an induction of 

transcript abundance in both wildtype and wrky18wrky40 plants upon challenge with G. 

orontii (Figure 3 A). In both genotypes, LOX2 was induced up to 8-fold compared to 

uninfected control plants. In addition, OPR3, encoding the enzyme that catalyzes the final 

step of JA biosynthesis, was also up-regulated in both genotypes. Expression of both genes, 

however, peaked at 4 hpi, with similar kinetics, although slightly higher expression in 

wrky18wrky40 plants was observed. To test whether the expression of JA biosynthesis genes 

correlate with the accumulation of the respective product, JA levels were determined 0, 4, 8, 

12, 24, 48 and 72 hpi, representing early stages of the powdery mildew infection process. 

Equal JA levels were observed for both genotypes in uninfected controls (0 hpi), followed by 

a first peak in JA accumulation at 4 hpi that did not significantly differ between susceptible 

wildtype and resistant wrky18wrky40 plants (Figure 3 B). While JA levels decreased 

subsequently during the course of infection in wrky18wrky40 until declining to control levels, 

wildtype plants accumulated twofold higher JA levels than the mutant at 24 hpi, marking the 

peak of JA accumulation. Moreover, accumulation of the bioactive form JA-Ile resembled the 

accumulation pattern of its precursor JA (Supplementary Figure 2). At 24 hpi, wildtype plants 

accumulated ~6-fold more JA-Ile than wrky18wrky40 plants. In disagreement with this 

observation, the early JA-responsive gene VSP2 and late responsive gene PDF1.2 were 

significantly higher expressed in the resistant double mutant (Figure 3 C). Whereas VSP2 

showed a strong increase in relative transcript abundance at 8 hpi, PDF1.2 expression peaked 

at 24 hpi in wrky18wrky40 plants and showed formidable fold-changes in transcript 

abundance compared to control wildtype plants (up to 100-fold). However, PDF1.2 

expression was also induced in wildtype plants up to 12-fold at 24 hpi (Figure 3 C). The 

current model of hormone signaling places the induction of downstream hormone-responsive 

genes temporally after hormone accumulation. Indeed, expression of the early responsive 

gene VSP2 in wildtype plants followed the accumulation of JA, whereas the late responsive 

gene PDF1.2 showed a delay in transcriptional induction (Figure 3 C). 
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In contrast, expression in wrky18wrky40 appeared to be more delayed with respect to JA 

accumulation. Whereas LOX2 expression did not significantly differ between wildtype and 

wrky18wrky40 plants with regard to fold-changes, a maximum of 10-fold difference in 

PDF1.2 transcript abundance and a >2-fold difference for VSP2 was observed between 

wildtype and wrky18wrky40 plants.  

Figure 3: Activation of JA-related genes and JA levels during early G. orontii infection. (A) qPCR analysis 

of the expression of JA biosynthesis genes (LOX2/OPR3) at indicated time points during early G. orontii  

infection in susceptible Col-0 (solid line) and resistant wrky18wrky40 (dashed line) plants. Error bars represent 

standard deviations (SD, n=3). Fold changes are relative to non-challenged Col-0 samples set to 1. (B) 

Accumulation of JA in susceptible Col-0 (solid line) and resistant wrky18wrky40 (dashed line) plants during the 

first 72 hours after infection with G. orontii. Error bars represent SD (n=4). (C) qPCR analysis of the expression 

of JA-responsive genes VSP2 and PDF1.2 at indicated time points during early G. orontii infection in 

susceptible Col-0 (solid line) and resistant wrky18wrky40 (dashed line) plants. Error bars represent SD (n=3).  
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In summary, only weak JA accumulation was observed for both susceptible and resistant 

genotypes during early G.orontii infection. However subtle differences were found at 24 hpi 

with wildtype plants accumulating twice as much JA compared to wrky18wrky40 plants. 

Nevertheless, resistant double mutants show exaggerated responses to JA by strong induction 

of downstream JA marker genes. 

Although JA and SA are thought to act antagonistically, an impact of the SA signaling 

pathway during the early interaction of wildtype and wrky18wrky40 with G. orontii has not 

been described to date. Thus, SA measurements were performed to help elucidate its possible 

contribution to the establishment of the resistant phenotype of the wrky18wrky40 mutant. 

 

2.3. SA levels and response to early G. orontii infection 

The SA signaling pathway is generally associated with the defense against biotrophs. 

Induction of SA-responsive genes was observed for numerous biotrophic pathogens and the 

induction of crucial SA biosynthesis genes, such as SID2, marks the starting point of SA 

accumulation. Indeed, SID2 was transcriptionally upregulated in both wildtype and 

wrky18wrky40 plants after G. orontii infection (Figure 4 A). SID2 slowly starts to accumulate 

in both genotypes 24 hpi and is strongly induced 48 hpi. To confirm that elevated SID2 

expression correlates with the biosynthesis and subsequent accumulation of SA, hormone 

measurements were performed. To investigate the temporal dynamics of SA production 

during early events of powdery mildew infection, samples were taken at 0, 4, 8, 12, 24, 48 

and 72 hpi for both wildtype and wrky18wrky40 plants after G. orontii infection. Starting 

from similar basal levels, total SA accumulated to similar extent in susceptible wildtype and 

resistant wrky18wrky40 plants, revealing a > 2.5-fold increase in total SA accumulation at 48 

hpi (Figure 4 B). Accordingly, expression analysis of a robust marker gene of the SA 

signaling pathway, PR1, did not show any conspicuous differences. In both genotypes, PR1 

expression was induced 48 hpi. The SA signaling pathway is closely associated with EDS1 

signaling. Acting upstream of SA, EDS1 and its interacting partner PAD4 are major 

components of SA-mediated defense responses and essential for the perpetuation of resistance 

towards many plant pathogens. Differences in transcript abundance between resistant 

wrky18wrky40 and susceptible wildtype plants for PAD4 and EDS1 were observed during G. 

orontii infection. While transcript levels in wrky18wrky40 increased 48 hpi, expression of 

EDS1 and PAD4 in wildtype plants were considerably lower (Figure 4 A). 
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Another key component required downstream of SA for PR1 gene activation that is also 

involved in the antagonistic cross-talk between JA and SA is NPR1. Expression of NPR1 also 

showed a weak induction at 48 hpi in wrky18wrky40 plants.  

Overall, temporal analysis of SA accumulation, SA biosynthesis and response revealed 

synchronous dynamics between both SA biosynthesis and SA accumulation in wrky18wrky40 

and wildtype plants. This also held true for the expression of downstream marker gene PR1 in 

Figure 4: Activation of the SA/EDS1 signaling pathway and SA levels during early G. orontii infection.  

(A) qPCR analysis of the expression of the SA biosynthesis gene (SID2) and the SA-dependent EDS1-signaling 

pathway genes EDS1 and PAD4 at indicated time points during early G orontii infection in susceptible Col-0 

(solid lines) and resistant wrky18wrky40 plants (dashed lines). Error bars represent SD (n=3). Fold changes are 

relative to non-challenged Col-0 samples set to 1. (B) Accumulation of SA in susceptible Col-0 (solid line) and 

resistant wrky18wrky40 (dashed line) plants during the first 72 hours after infection with G. orontii. Error bars 

represent SD (n=4). (C) qPCR expression analysis of downstream SA marker genes NPR1 and PR1 at indicated 

time points during G. orontii infection in susceptible Col-0 (solid line) and resistant wrky18wrky40 (dashed line) 

plants. Error bars represent SD (n=3). Fold changes are relative to non-challenged Col-0 samples set to 1. 
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response to SA. However, it is still unclear which role SA plays for resistance towards G. 

orontii in wrky18wrky40 mutant plants. To elucidate whether SA accumulation is required for 

resistance of wrky18wrky40 plants, the double mutant was crossed with the SA-biosynthesis 

mutant sid2. 

Homozygous F3 triple mutants were grown under controlled short-day conditions. No 

obvious morphological leaf phenotype was observed for the triple mutant compared to 

wildtype Col-0 plants (Figure 5 A). To test whether resistance in wrky18wrky40 is dependent 

on SA biosynthesis gene SID2 and thereby on the observed SA accumulation, 4 weeks old 

plants were infected with G. orontii and macroscopically characterized 9 dpi (Figure 5 A).  

 

Susceptibility of wildtype Col-0 plants and sid2 single mutants was associated with successful 

reproduction of G. orontii on the leaf surface, whereas resistance of wrky18wrky40 plants was 

accompanied with occasional fungal sporulation on leaf margins but yellow necrotic leaf 

areas restricting fungal proliferation. However, wrky18wrky40sid2 triple mutants exhibited a 

wildtype-like phenotype with successful reproduction of G. orontii on the leaf surface. For 

wrky18wrky40, resistance towards G. orontii was associated with a reduction in effective host 

cell entry to ~ 60% (Figure 5 B) compared to wildtype and sid2 mutant plants showing ~80%. 

Similarly, percentage of host cell entry rate in the wrky18wrky40sid2 triple mutant was 

restored to wildtype-like levels, leading to a fungal entry rate of ~80%.                      

Figure 5: Leaf infection phenotype of wrky18wrky40sid2 triple mutants upon G. orontii infection. (A) 

Macroscopic phenotype of indicated genotypes of 4 weeks old plants before and 9 days after infection with G. 

orontii. (B) Percentage of host cell entry rate of indicated genotypes upon infection with G. orontii. Host cell 

entry rate was determined 48 hpi.  
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Apart from plant hormones, secondary metabolites have recently been shown to play a key 

role in plant defense. One metabolite catalyzed by the cytochrome P450 enzyme CYP81F2 

from tryptophan is the antifungal glucosinolate 4MI3G. Microarray analysis indicated an up-

regulation of crucial 4MI3G biosynthesis genes in wrky18wrky40 plants (Pandey et al., 2010). 

Hence, the accumulation of this secondary metabolite was determined during the course of G. 

orontii infection.       

   

2.4. Accumulation of 4MI3G during early G. orontii infection 

Activation of essential biosynthesis genes of biological active compounds is an indication for 

the synthesis of associated products. CYP81F2 expression was found to be induced in both 

susceptible wildtype and resistant wrky18wrky40 plants (Figure 6 A). Whereas wildtype 

plants showed a biphasic expression kinetics with almost 10-fold increase at 4 and 12 hpi 

during G. orontii infection, respectively, wrky18wrky40 plants accumulated 45-fold higher 

levels of CYP81F2 transcript at 12 hpi when compared to wildtype non-challenged samples, 

and >4.5-fold more transcript than wildtype infected plants at this similar time point. To 

investigate the accumulation of 4MI3G and the correlation between expression of the 

biosynthesis gene and product accumulation, 4MI3G levels were determined. Plants were 

infected with G. orontii and 4MI3G levels were measured at 0, 4, 8, 12, 24, 48 and 72 hpi. 

Indeed, wrky18wrky40 plants accumulated higher levels of 4MI3G during the first 72 hours 

after infection than wildtype plants. Additionally, resistant mutant plants showed an earlier 

accumulation of 4MI3G compared to wildtype plants and the increase was stronger. After 72 

hours, 4MI3G accumulation starts to decline in wildtype plants whereas wrky18wrky40 plants 

reveal a continuous rise up to this time point with >3-fold higher 4MI3G levels compared to 

wildtype non-challenged samples and ~25% more than in the corresponding wildtype sample 

(Figure 6 B). 

Currently no direct role for 4MI3G in defense against fungal pathogens has been reported but 

activation of 4MI3G by PEN2 is postulated to result in the accumulation of an antifungal 

compound (Bednarek et al., 2009). Thus, expression of PEN2 was monitored during G. 

orontii infection. However, expression of PEN2 was not significantly affected upon powdery 

mildew infection and no obvious differences were observed between wildtype and 

wrky18wrky40 plants (Figure 6 A). 
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2.5. G. orontii infection of wrky18 and wrky40 single mutant plants 

The two TFs WRKY18 and WRKY40 are thought to have partly redundant functions in plant 

defense. This is corroborated by the observation that only the double mutant wrky18wrky40 

exhibits a resistant phenotype towards G. orontii infection, whereas individual mutations of 

WRKY18 or WRKY40 are not sufficient to establish resistance (Pandey et al., 2010; Shen et 

al., 2007). On the other hand, constitutive expression of WRKY18 leads to an increased 

resistance against the bacteria Pto DC3000 that has not been shown for WRKY40 

overexpressing plants (Chen and Chen, 2002; Xu et al., 2006). In the same line, increased 

susceptibility towards infections with the necrotrophic fungus B. cinerea was observed for 

Figure 6: Activation of the glucosinolate pathway during early G. orontii infection. (A) qPCR anaylsis of the 

the expression of 4MI3G biosynthesis gene CYP81F2 and the 4MI3G activating gene PEN2 at indicated time 

points upon G. orontii infection in susceptible Col-0 (solid line) and resistant wrky18wrky40 (dashed line) plants. 

Fold changes are relative to non-challenged Col-0 samples set to 1. Error bars represent SD (n=3). (B) 

Accumulation of the antifungal glucosinolate 4MI3G in susceptible Col-0 and resistant wrky18wrky40 plants 

during the first 72 h of G .orontii infection at indicated time points. Asterisks (**) indicate p-value < 0.01 based 

on Student’s t-test.   



Results 

 

27 

 

WRKY40 but not for WRKY18 overexpressing plants (R. Birkenbihl, MPIPZ Cologne, 

unpublished).  

To further elucidate functions of both WRKY18 and WRKY40, a global expression analysis 

using the Affymetrix AGRONOMICS tiling array was performed. In addition to genes 

differentially regulated in uninduced state due to the lack of WRKY18 or WRKY40, genes 

that are differentially expressed between both genotypes upon pathogen challenge are of 

particular interest to dissect roles of WRKY18 and WRKY40. It was previously shown that 

WRKY18 and WRKY40 expression is rapidly induced already 4 h after infection and 

transcriptional reprogramming by these TFs occurs at early stages of the infection process 

(Pandey et al., 2010). To cover major early events of the fungal infection process, 4 weeks old 

wildtype Col-0 plants as well as wrky18 and wrky40 mutants were infected with the powdery 

mildew fungus G. orontii and leaf material was harvested prior to inoculation (0 hpi), during 

the penetration event (6 hpi) and during haustorium formation (14 hpi) in three independent 

replicates. Transcript accumulation was analyzed compared to wildtype Col-0 plants and 

genes with a fold-change ≥1.5 or ≤0.66 with and a p-value ≤0.05 were included into the 

analyses. Numbers of up- and down-regulated genes at 0, 6 and 14 hpi in wrky18 and wrky40 

mutants are depicted in Figure 7 A. Overall, 473 genes in wrky18 and 441 genes in wrky40 

mutants are differentially regulated prior to infection. A large part of the genes were down-

regulated, with wrky18 mutants showing >50% down-regulated genes. At 6 hpi, however, 

more than 3/4 of differentially regulated genes in wrky18 mutants were up-regulated, whereas 

the opposite was observed for wrky40 mutant plants upon G. orontii infection. In total, 92 out 

of 387 genes were down-regulated in wrky18 plants, whereas the majority of genes were up-

regulated. This is in contrast to only 72 out of 303 up-regulated and 231 down-regulated 

genes in wrky40 plants compared to wildtype Col-0 plants at the same time point. This 

discrepancy between the two genotypes is outweighed at 14 hpi, with a total of 245 and 247 

misregulated genes in wrky18 and wrky40 mutants, respectively, and similar ratios of up- and 

down-regulated genes. At this stage, ~1/3 of the differentially regulated genes is down-

regulated in both genotypes compared to wildtype plants at the same time point upon G. 

orontii infection. Overlaps between differentially regulated genes in wrky18 and wrky40 

mutants are illustrated by Venn-diagrams in Figure 7 B. A total of 109 genes are differentially 

regulated in both genotypes prior to infection, whereas only 20 genes are shared upon G. 

orontii infection 6 hpi. At the latest time point 14 hpi, ~20% of the misregulated genes are in 

common between wrky18 and wrky40 mutants. 
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Figure 7: Analysis of differentially regulated genes in wrky18 and wrky40 mutants upon G. orontii 

infection. Whole rosette leaves of 4 weeks old plants were harvested prior to infection (0 hpi), or 6 and 14 h 

after G. orontii infection for comparative transcriptome analysis of wrky18 and wrky40 plants using the 

AGRONOMICS microarray. All samples were analyzed in triplicates and fold-changes calculated relative to 

wildtype Col-0 samples at the same time point. Only genes ≥ 1.5-fold up or ≤ 0.66-fold down with p-value ≤ 

0.05 were included into the analysis. (A) Comparison of up- and down-regulated genes in wrky18 and wrky40 

plants relative to Col-0 plants at the same indicated time points. Total number of misregulated at the given time 

point are presented below. (B) Venn-diagrams displaying overlaps of differentially regulated genes between 

wrky18 and wrky40 at the indicated time points. (C) Functional classification of the 50 most highly induced or 

repressed genes in wrky18 and wrky40 plants upon G. orontii infection 6 hpi according to Gene Ontology 

classification (TAIR).    
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This data illustrates considerable differences in the misregulation of genes depending on the 

absence of either WRKY18 or WRKY40 compared to wildtype plants already in an 

uninduced situation and even more pronounced during the infection process 6 and 14 hpi. 

However, no considerable overlap between misregulated genes in both genotypes was 

observed.  

Functional classifications based on their biological functions of the 50 most up- or down-

regulated genes 6 hpi in wrky18 and wrky40 plants revealed a predominant association with 

defense-related processes. In contrast to wrky40 plants at 6 hpi, a large part of the genes 

induced in wrky18 mutants are related to stress, biotic and abiotic stimuli, transcription, and 

signal transduction (Figure 7 C). Nevertheless, within the 50 strongest repressed genes at 6 

hpi, more than 50% are related to response to stress, biotic and abiotic stimuli, signal 

transduction and transcription in both genotypes compared to wildtype plants, indicating a 

direct or indirect positive effect of WRKY18 and WRKY40 on these processes. However, 

within the strongest up-regulated genes in the wrky18 mutant, a noticeable multitude of 

JA/ET-related genes are induced (Table 1). Besides several members of the JAZ family of 

Table 1: Selection of genes most strikingly induced (p-value ≤ 0.05) in wrky18 plants 6 hpi G. orontii 

infection. Genes were selected based on fold-changes relative to Col-0 6 hpi. Total number of W-boxes (T/C 

TGAC T/C) and W-box-like motifs (TGAC T/C) in the promoter of each gene was counted and set in 

relationship to the promoter size, respectively.   
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JA-signaling repressors or the transcriptional repressor STZ/ZAT10, also positive regulators 

of JA- and ET-signaling (e.g. ORA47) are represented. As these genes are potential direct 

target genes of WRKY18, the number of W-box and W-box-like motifs in the promoter 

region of these genes was analyzed and is depicted in Table 1. Moreover, the number of W-

box and W-box-like sequences relative to the promoter size is shown. From the most up-

regulated genes, a sulphate deficiency-induced gene, ATSDI1, contained more than 5 W-box 

or W-box-like motifs per 1000 bp. Also JA/ET signaling related genes ERF-1 and ERF2 

revealed over-representations of WRKY cis-regulatory elements in their promoter regions, 

whereas the strongest up-regulated gene ORA47 did not reveal many W-box or W-box-like 

sequences in its promoter.  

To confirm the altered expression levels of these genes in the wrky18 mutant during G. orontii 

infection, a subset of the genes were analyzed by qPCR during the temporal progression of 

infection to account for transcript levels variations by potentially asynchronous infection in 

the microarray experiments. For this, 4 weeks old plants were infected with G. orontii and 

whole leaf samples were taken at 0, 4, 8, 12 and 24 hpi. All tested genes revealed strongly 

increased transcript abundance in wrky18 plants relative to Col-0 samples, although the 

timing and magnitude differed to the results observed on the microarrays (Figure 8). This 

indicates that the synchronicity of the infection process resulting in changes in gene 

expression was slightly altered in this set of experiments compared to those of the microarray 

experiments. 

 However, all tested genes showed elevated transcript levels already at 0 h or 4 h after 

infection, whereas only JAZ5 was also up-regulated at 8 hpi.  

Essentially, all tested genes were induced in the wrky18 mutant compared to Col-0 samples 

upon G. orontii infection, thus verifying the microarray data. Moreover, over-representation 

of W-box and W-box-like sequences in promoter regions of some of these genes make them 

good candidates for direct WRKY18 targeting. To test by chromatin immunoprecipitation 

(ChIP)-qPCR whether these genes are de facto direct targets of WRKY18, an epitope-tagged 

WRKY18 complementation line was established enabling detection of WRKY18-HA protein 

in ChIP experiments. 
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2.6. Characterization of the WRKY18 complementation line 

Microarray data revealed a broad transcriptional reprogramming in WRKY18 mutant plants 

upon infection with G. orontii. W-box sequences in promoter regions of several of the up-

regulated genes were found to be over-represented, which makes them into good potential 

candidates for direct targeting by WRKY18. Apart from binding of NPR1 and WRKY18 gene 

promoters in EMSA analyses of WRKY18 overexpressing lines (Chen and Chen, 2002), 

association of WRKY18 with regulatory regions of potential target genes has not been 

previously described. In fact, lack of specific WRKY18 antibodies hampered the 

identification of direct target genes and created the need for an epitope-tagged version of 

WRKY18. Moreover, overexpression lines often do not mimic native situations regarding 

protein levels and binding behavior.  

Figure 8: Verification of induced genes in the wrky18 mutant upon G. 

orontii infection. Expression levels of strongly induced genes in the 

wrky18 mutant based on microarray data were analyzed 0, 4, 8, 12 and 24 

h after G. orontii infection. 4 weeks old plants were infected with G. 

orontii and whole leaves were harvested at indicated time points for total 

RNA extraction and subsequent qPCR anaylses. Fold inductions are 

always relative to wildtype Col-0 samples at the same time point, to be 

comparable to the microarray data. Data was generated from one biological 

replicate to confirm microarray data.   
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Therefore, the genomic region -4428 bp to +1514 bp relative to the start codon, including the 

native WRKY18 promoter, was cloned, fused to a 3xHA-epitope tag and stably transformed 

into wrky18wrky40 double mutant plants. 

A prerequisite for further use of this complementation line was the demonstration of 

functional complementation of the infection phenotype, pathogen-inducibility of WRKY18 

expression and WRKY18-HA protein abundance (Figure 9). No obvious altered growth 

phenotypes were observed for the tested complementation line. Four weeks old plants were 

infected with G. orontii and the infection phenotype was macroscopically determined 9 dpi 

Figure 9: Characterization of the epitope-tagged WRKY18 complementation line. (A) 

Phenotypic characterization of WRKY18 complementation line 5-1 after G. orontii infection 

compared to susceptible Col-0 and resistant wrky18 wrky40 plants. Pictures were taken 9 days 

after infection. Rate of host cell entry was determined 48 h after infection. (B) qPCR analysis of 

WRKY18 expression in the WRKY18 complementation line 5-1 compared to Col-0 0, 6 and 24 h 

after G. orontii infection, and corresponding protein levels determined using an HA antibody. 
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(Figure 9 A). Transformation of resistant wrky18wrky40 plants with the epitope-tagged 

WRKY18-construct reconstituted the susceptible wildtype phenotype, demonstrating the 

functionality of this construct. This observation was additionally supported by an increase in 

fungal host cell entry rates observed 48 hpi for this complementation line compared to 

resistant wrky18wrky40 plants (Figure 9 B). To test pathogen-dependent inducibility of the 

respective construct, total RNA was isolated from wildtype Col-0 plants and WRKY18 

complementation line 5-1 prior to, or 6 h and 24 after infection with G. orontii. Expression 

analysis revealed a ~3-fold higher transcript abundance already in the uninfected 5-1 line (0 

hpi), possibly indicating multiple insertions or position effects of the transformed DNA 

construct (Figure 9 B). However, expression of WRKY18 was strongly induced in both 

genotypes 6 hpi followed by a decrease in transcript abundance 24 hpi. Although ~3-fold 

more transcripts were consistently observed for the complementation line at all time points, 

this data demonstrates pathogen-responsiveness of the respective construct. As transcript 

abundance does not necessarily correlate with protein levels and to test accessibility of the 

epitope tag for the antibody, protein abundance was tested upon G. orontii infection at 0, 6 

and 24 hpi. Similar to that observed for WRKY18 transcript, protein levels were strongly 

induced 6 hpi and subsequently declined at 24 hpi. This data demonstrates that the 

transformed WRKY18 construct is functional in planta and is inducible upon G. orontii 

infection, making the tested complementation line 5-1 suitable for further investigations.   

                   

2.7. WRKY18-HA protein binds to the WRKY18 and WRKY40 promoters 

Feedback regulation is a common feature in the highly connected transcriptional network of 

WRKY transcription factors (Eulgem and Somssich, 2007). In fact, in vitro analysis 

suggested binding of WRKY18 to W-boxes in its own promoter (Chen and Chen, 2002). To 

confirm these results in vivo and to test whether WRKY18 expression during G. orontii 

infection is possibly regulated in a (negative) feedback-loop, ChIP-qPCR was performed on 

cross-linked leaf material harvested 2 and 6 h after G. orontii infection. Different primer sets 

spanning regions containing W-box clusters upstream of the WRKY18 start codon were 

employed for qPCR amplification of chromatin immunoprecipitated material (IP) with input 

DNA (IN) serving as control. Four weeks old plants of complementation line 5-1 (5-1) and 

wrky18wrky40 (KO) mutants were used for ChIP experiments. A schematic illustration of the 

WRKY18 promoter showing also position and orientation of W-box (T/C TGAC T/C) and W-

box-like sequences (TGAC T/C) is depicted in Figure 10 A. A region ~1000 bp upstream of 

the WRKY18 start codon harboring 3 clustered W-boxes was strongly enriched in the  
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Figure 10: Direct binding of WRKY18-HA protein to the WRKY18 and WRKY40 promoters.  

Schematic illustration of W-box and W-box-like motifs in the (A) WRKY18 promoter and (B) WRKY40 

promoter. W-boxes (T/C TGAC T/C) are represented by black and W-box-like sequences (TGAC T/C) by white 

triangles at indicated positions. Triangle direction illustrates the orientation of the motifs. Open reading frames 

of the respective genes are depicted as large grey arrows. Primer sets used for ChIP-qPCR are located as shown. 

The scale is in bp relative to the translation start site (black arrow). For ChIP-qPCR, 4 weeks old wrky18wrky40 

mutant plants (KO) and WRKY18 complementation line 5-1 plants were infected with G. orontii and leaves 

harvested 0 and/or 2 and 6 hpi. Input DNA (IN) before co-immunoprecipitation and co-immunoprecipitated 

DNA using anti-HA antibodies (IP) were analysed by qPCR employing the indicated primer sets. Fold 

enrichment is depicted relative to a DNA fragment of AT4G26410 (Expressed protein). ChIP experiments were 

repeated at least twice with similar results. (C) Protein accumulation in the WRKY18 complementation line 5-1 

at 0, 2, 6 and 24 h after G. orontii infection.   



Results 

 

35 

 

chromatin immunoprecipitated material of complementation line 5-1 using the anti-HA 

antibody at 6 hpi relative to a DNA fragment of AT4G26410 (Figure 10 A).  

Already 2 hpi, a relative enrichment of ~8-fold was observed for this region. Moreover, a 

second region ~4000 bp upstream of the WRKY18 start codon containing 2 W-box-like motifs 

revealed ~4-fold enrichment 2 hpi and ~8-fold enrichment 6 hpi, whereas a third primer set 

and the input control did not show any significant enrichments.  

Also the WRKY40 promoter contains several regions of W-box and W-box-like clusters as 

illustrated in Figure 10 B. Since WRKY18 and WRKY40 are co-expressed during G. orontii 

infection and are thought to act in a partially redundant manner (Pandey et al., 2010), mutual 

regulation is also conceivable. To test whether WRKY18 might also be involved in regulating 

WRKY40 expression, different primer sets spanning regions encompassing the W-box and W-

box-like motifs were used for ChIP-qPCR analyses. Indeed, binding of WRKY18 to a region 

~5500 bp upstream of the WRKY40 start codon could be clearly demonstrated, whereas no 

significant binding was found for the control input DNA and for a second region ~3000 bp 

upstream of the WRKY40 start codon (Figure 10 B). Moreover, no binding of WRKY18 to the 

WRKY40 promoter was observed prior to G. orontii infection (0h), although low amounts of 

WRKY18-HA was already detectable in the uninfected 5-1 line (Figure 10 C). As was the 

case for the WRKY40 promoter, binding of WRKY18 to its own promoter was also dependent 

on G. orontii infection, indicating that binding of WRKY18 protein to both promoters at 2 

and 6 hpi requires de novo expression of WRKY18-HA upon pathogen challenge. This data 

suggest that WRKY18 is involved in regulating the expression of its own gene as well as that 

of WRKY40 in a pathogen dependent manner. 

 

2.8. WRKY18 and WRKY40 are positive regulators of RPS4-mediated 

resistance 

Negative regulation of resistance against pathogens is a common phenomenon of the WRKY 

gene family (Peng et al., 2008; Xing et al., 2008). Apart from negative regulation of resistance 

towards the biotrophic powdery mildew fungus G. orontii there is only sparse knowledge 

about resistance or susceptibility of wrky18wrky40 double mutants towards other pathogens. 

Xu et. al (2006) found a reduction in susceptibility against the hemibiotrophic bacterium P. 

syringae DC3000, although the observed effect was rather weak. In contrast, an increase in 

fungal biomass in infected wrky18wrky40 tissue after treatment with B. cinerea was 

described. So far, reports about infection of wrky18wrky40 plants with other P. syringae (Pto) 

strains are missing. Therefore, different Pto strains were used for infection of  
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Figure 11: wrky18wrky40 plants show a Pto DC3000 

AvrRPS4-specific phenotype. Phenotype and bacterial 

colony counts of 4 weeks old plants spray-infected (O.D. = 

0.2) with (A) Pto AvrRPS4, (B) Pto AvrRPM1 and (C) Pto 

HopA1. Eds1-2 and ndr1 mutants were included as 

susceptible controls. Pictures were taken 3 dpi (AvrRPS4 and 

AvrRPM1) and 4 dpi (HopA1). Bacterial colony counts were 

performed 0 and 3 dpi (AvrRPS4 and AvrRPM1) and 0 and 4 

dpi for HopA1. (D) Microscopic characterization of 12 days 

old wildtype Col-0 plants and wrky18wrky40 mutants upon 

spray-infection (4x104 spores /ml) with different Hpa isolates. 

Samples were taken 7 dpi and stained with trypan blue. 

Appropriate susceptible Arabidopsis ecotypes (Ler, Wa, Col-

0) controls were included.     
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wrky18wrky40 plants (Figure 11). The bacterial strain Pto DC3000 AvrRPS4 is avirulent on  

Arabidopsis Col-0 plants. Secretion of the avirulence effector protein AvrRPS4 into the plant 

cell via the TTSS is recognized by the plant’s TIR-NB-LRR-type R-protein RPS4. EDS1 

signaling downstream of receptor activation is a prerequisite step for RPS4 resistance and 

TIR-NB-LRR-mediated resistance in general, whereas CC-NB-LRR mediated resistance is 

EDS1-independent and instead requires functional NDR1 (Aarts et al., 1998). After infection 

of wrky18wrky40 plants with Pto AvrRPS4, mutant plants revealed increased susceptibility, 

accompanied with the formation of water-soaked lesions and yellow, necrotic areas, which 

were absent in resistant wildtype plants (Figure 11 A). The macroscopic phenotype was 

confirmed by increased bacterial numbers (colony forming units, cfu) observed in 

wrky18wrky40 leaves. Bacteria were more successful in colonizing wrky18wrky40 plants 

compared to wildtype plants 3 dpi. To test, whether wrky18wrky40 plants are generally 

impaired in ETI, mutants were infected with another Pto strain namely Pto AvrRPM1. 

Resistance of wildtype Col-0 plants is based on the intercellular CC-NB-LRR-type R-protein 

RPM1 that acts EDS1 independently. However, neither a phenotypic difference was observed 

for wildtype plants compared to wrky18wrky40 mutants upon Pto AvrRPM1 infection, nor 

did bacterial titer reveal a significant increase in bacterial colonization (Figure 11 B). 

Recently, Pandey et al. (2010) demonstrated binding of WRKY40 protein to a promoter 

region of EDS1. It is conceivable, that mutations in both WRKY18 and/or WRKY40 affect the 

EDS1 signaling pathway. Therefore, wrky18wrky40 plants were challenged with additional 

pathogens for which resistance is known to depend on functional EDS1 (Figure 11 D). 

Resistances against Hyaloperonospora arabidopsidis (Hpa) isolates EMWA and CALA is 

mediated by TIR-NB-LRR-type R-proteins and thus are EDS1-dependent (Slusarenko and 

Schlaich, 2003). Infection with none of these two isolates revealed differences in 

susceptibility between wildtype and wrky18wrky40 plants. Also, wrky18wrky40 mutants were 

as susceptible as wildtype plants when challenged with the compatible Hpa isolate EMCO 

(Figure 11 D).  

Together, this data demonstrates that increased susceptibility of wrky18wrky40 towards Pto 

AvrRPS4 appears to be highly specific and is not due to a general breakdown of EDS1 

function. To test whether WRKY18 and WRKY40 are specifically involved in the TIR-NB-

LRR signaling pathway during plant-Pto interactions, a second avirulent Pto strain HopA1 

was used for infection of wrky18wrky40 mutant and Col-0 wildtype plants. It has been shown 

that resistance of wildtype Col-0 plants towards Pto HopA1 is mediated by a TIR-NB-LRR-

type R-protein (Kim et al., 2009). However, infection of both genotypes did not reveal 
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differences in phenotype and bacterial colonization (Figure 11 C), pointing to a rather specific 

phenotype of wrky18wrky40 double mutants upon Pto AvrRPS4 infection and an opposite 

phenotypic effect of loss-of-WRKY18 and -WRKY40 function in this plant-pathogen 

interaction compared to G. orontii infection. A summary of all tested pathogen infections 

involving the wrky18wrky40 mutant is presented in the following section.   

2.8.1. Additional wrky18wrky40 plant-pathogen interactions 

Three powdery mildews of the same genus are able to successfully infect Arabidopsis Col-0 

plants. However, only robust resistance of wrky18wrky40 against G. orontii was described so 

far (Shen et al., 2007), raising the question of a whether the wrky18wrky40 double mutant 

confers broad-spectrum resistance towards all three powdery mildews, as has been reported 

for mlo2mlo6 mutant plants (Consonni et al., 2006 ). To test for susceptible or resistant 

phenotypes of wrky18wrky40 pants, different biotrophic or hemibiotrophic and necrotrophic 

pathogens were used for infection of wrky18wrky40 and control wildtype Col-0 plants (Figure 

12).  

 

 

 

 

Figure 12: Testing wrky18wrky40 plants 

with other pathogens. Four weeks old plants 

were infected with the indicated pathogens. 

Macroscopic characterization of phenotype 

was performed for all pathogens. Microscopic 

measurements were done for powdery 

mildews G. orontii (rate of host cell entry), G. 

cichoracearum and G. cruciferarum 

(conidiophore counts). Bacterial colony counts 

were performed for Pto using spray-infections 

(O.D.=0.2). B. cinerea was droplet-infected 

(5x105 spores/ml) and leaf lesion sizes were 

macroscopically compared. Susceptibilty to P. 

infestans was determined by trypan blue 

staining of droplet-infected leaves (500 

spores/µl) and Hpa infections were performed 

by spray infection (4x104 spores/ml) of 10 

days old seedlings and susceptibilty was 

determined by trypan blue staining. All 

infections were repeated at least twice with 

similar results.    
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Interestingly, wrky18wrky40 plants did not show increased resistance against biotrophic 

powdery mildews G. cichoracearum and G. cruciferarum. Both, wildtype and wrky18wrky40 

plants revealed no differences in conidiophore numbers (Supplementary Figure 4), indicating 

that these fungi can proliferate on both genotypes equally, which was further supported by 

macroscopic analyses. Conversely, but similar in both genotypes, resistance of wildtype 

plants against the necrotrophic fungus B.cinerea isolate 2100 and the oomycete P. infestans 

was not altered in wrky18wrky40 double mutants. Moreover, wildtype Col-0 and 

wrky18wrky40 plants infected with the hemibiotrophic bacterium P.syringae DC3000 showed 

comparably strong susceptibility whereas infection with the disarmed Pto strain hrcC, being 

impaired in effector delivery, resulted in a uniform resistance of both genotypes.  

To summarize, wrky18wrky40 double mutants do not exhibit a broad-spectrum resistance 

against powdery mildews. Besides G. orontii infection, the only phenotypic difference 

between wildtype and wrky18wrky40 plants was observed for infections with Pto AvrRPS4, 

apparently constituting two very specific interactions. 

In this context it is conceivable that these pathogens differentially affect wrky18wrky40 plants 

leading to susceptibility towards Pto AvrRPS4 and resistance to G. orontii infections. Both 

pathogens likely secrete a substantial repertoire of effectors into the plant cell during infection 

that alter the plants immune response (Lindeberg et al., 2009; Lindeberg et al., 2012; Spanu et 

al., 2010), possibly involving WRKY18 and/or WRKY40.            

The sequencing of the barley powdery mildew Bgh genome in 2010 (Spanu et al., 2010), and 

the draft genome assemblies of G. orontii, revealed a large set of highly species-specific 

secreted effector candidates (OECs, orontii effector candidate). Several of the identified 

OECs were shown to interfere with the plant’s immune response in ‘effector detector vector 

system’-mediated infections, leading to increased susceptibility of Arabidopsis Col-0 plants 

towards Pto strains secreting single OECs (Sohn et al., 2007). In G. orontii, however, almost 

all tested OECs are expressed at early stages of the infection process (0-12 hpi), coinciding 

with WRKY18 and WRKY40 induction in plants upon G. orontii infection. Moreover, 

localization studies demonstrated nucleo-cytoplasmic localization of most of these OECs in 

plants, turning them into potential interaction partners of WRKY18 and WRKY40. To test 

interaction of OECs with WRKY18 and WRKY40, yeast 2-hybrid analyses were performed 

(Supplementary Figure 5). Mutual co-transformation of WRKY proteins and OECs did not 

reveal any interaction in yeast, suggesting that the tested OECs probably do not directly 

interact with WRKY18 or WRKY40.      
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In the case of Pto AvrRPS4, recent work of Heidrich et. al (2011) showed direct physical 

association of the R-protein RPS4 and EDS1 as well as the secreted effector AvrRPS4 and 

EDS1 in the plant cell nucleus, demonstrating that RPS4 is involved in protein-protein 

interactions. Moreover, interaction between a R-protein and WRKY TFs is the basis for 

MLA-mediated resistance in barley upon Bgh infection (Shen et al., 2007).  

Therefore, interaction of WRKY18 and WRKY40 with RPS4 was tested in a yeast 2-hybrid 

approach. For this, full-length (aa 1-1218) and truncated versions containing only the N-

terminal TIR-domain (aa 1-185) of RPS4 were co-transformed into yeast. Additionally, the 

atypical R-protein RRS1, harboring a WRKY domain at the C-terminus, was included as a 

full-length (aa 1-1288) and as a truncated form containing only the N-terminal TIR-domain 

(aa 1-155). It has been shown that rrs1 mutants are as susceptible towards Pto AvrRPS4 

infection as RPS4 mutants (Birker et al., 2009), making RRS1 a potential partner for 

WRKY18 and WRKY40. However, no interaction was found between WRKY18 and/or 

WRKY40 with RPS4 or RRS1 in yeast 2-hybrid co-transformations (Supplementary Figure 6 

A).  

To overcome constraints of the yeast 2-hybrid system in terms of proper protein folding, 

protein modifications or subcellular localization, interaction of RPS4 and RRS1 full-length 

proteins were tested by acceptor photo bleaching (APB) in N. benthamiana epidermal cells. 

Apart from co-localization of WRKY18, WRKY40, RRS1 and RPS4 to the plant cell nucleus 

(Supplementary Figure 6 B), no direct interaction was detectable. However, it is still very 

likely that WRKY18 and/or WRKY40 are involved in still undefined protein interactions 

upon pathogen challenge. 

 

2.9. Yeast 2-hybrid screen for interaction partners of WRKY18 and 

WRKY40 

Belonging to class IIa of WRKY TFs, WRKY18 and WRKY40 contain an additional leucine-

zipper motif in the N-terminus of the protein, required for homo-and heterodimerization. 

Recently, it has been shown that WRKY18 and WRKY40 interact with a putative ABA-

receptor at the chloroplast membrane upon ABA treatment (Shang et al., 2010). Apart from 

that, no direct protein interaction partners of WRKY18 and WRKY40 are known. To 

elucidate potential new interaction partners, a yeast 2-hybrid screen using full-length 

WRKY18 and WRKY40 bait constructs was performed.  

On the one hand, WRKY18 and WRKY40 have been shown to negatively regulate resistance 

to G. orontii, on the other hand they are required for efficient regulation of ETI during Pto 
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AvrRPS4 challenge and the observed phenotype appeared to be RPS4-specific. However, no 

direct interaction of WRKY18 or WRKY40 with RPS4 was found, raising the question 

whether other P.syringae induced proteins interact with WRKY18 and/or WRKY40.  

A cDNA library (kindly provided by B. Kemmerling, Tübingen) constructed from 

Arabidopsis leaf material infected with different virulent and avirulent P.syringae strains and 

harvested at various time points after infection was used for the screening. 

In yeast, protein abundance of WRKY18 was significantly higher compared to WRKY40 

(Figure 13 A). Both proteins showed no autoactivity (did not activate the reporter construct 

alone) and thus could be included into the screening. In total, ~330.000 clones with a mating 

efficiency of ~3.3% were screened for WRKY18, whereas a mating efficiency of ~1.8% and 

~165.000 screened clones for WRKY40 were considerably lower. Two most promising 

candidates that showed interaction with WRKY18 and WRKY40 were selected for further 

analyses. A truncated version of a 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 

superfamily protein (Oxidoreductase, At2G38240) and FIBRILLIN4 (FIB4, At3G23400) 

were found to interact with WRKY18 and WRKY40 in yeast. For both candidates the 

truncated version and a full-length cDNA clone were included in the verification in yeast. 

Exemplary, verification of interaction by yeast co-transformation with WRKY18 is depicted 

in Figure 13 B. SV40 T-antigen and murine p53 proteins were included as positive controls, 

known to interact strongly in yeast (Li and Fields, 1993). Besides co-transformation with 

WRKY18 and WRKY40, candidates were also co-transformed with another nuclear-localized 

protein, SPL3, serving as negative control. No interaction of WRKY18 and WRKY40 was 

found for full-length Oxidoreductase and FIBRILLIN4 (data not shown). However, 

interaction could be verified for the truncated version of both proteins, whereas no interaction 

was found with SPL3 (Figure 13 B). Similar results were obtained for WRKY40 (data not 

shown). 

A prerequisite for direct protein interaction is the co-localization in the plant cell. To test 

whether candidate proteins co-localize with WRKY18 and WRKY40 in planta, YFP- and 

CFP-fusion proteins were cloned, transformed into A .tumefaciens and infiltrated into N. 

benthamiana leaves. Results of co-infiltration into tobacco epidermal cells are shown in 

(Figure 13 C a-c). As expected, WRKY18 and WRKY40 were localized to the plant cell 

nucleus. Indeed, also the truncated and full-length Oxidoreductase and FIBRILLIN4 proteins 

localized to the nucleus. Moreover, traces of truncated Oxidoreductase and truncated 

FIBRILLIN4 were also detected in the cytoplasm (Figure 13 a-d). Notably, truncated 

Oxidoreductase could only be localized when infiltrated alone (Figure 13 d). Although  
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Figure 13: Localization of potential protein interaction partners identified from a yeast 2-hybrid screen 

with WRKY18 and WRKY40. (A) WRKY18 and WRKY40 protein abundance in yeast. Two different optical 

densities were used for protein extraction as indicated. Empty vector (pGBKT7) and untransformed yeast strain 

Y187 were included as controls. (B) Potential WRKY18 interaction partners were co-transformed into yeast and 

plated on SD-LWH selection media. Pictures were taken from undiluted and 1:10-diluted log-phase growing 

yeast after 2 days of incubation at 30°C. As positive control, the human SV40 T-antigen (T) and murine p35 

protein (p35) (Clontech, Mountain View, USA) were included. Co-transformation of candidates with another 

nuclear-localized protein (SPL3) served as negative controls. (C) (Co-) localization of potential WRKY18 

interaction partners transiently expressed in tobacco leaves. Pictures were taken 2 days post co-infiltration. Co-

localization of YFP-tagged WRKY18 and CFP-tagged candidate proteins are shown in (a-c). Cellular 

localization of CFP-tagged truncated Oxidoreductase protein is depicted in (d). The scale bar represents 10 µm.           
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repeated several times, no signal was detectable when co-infiltrated with WRKY18 or 

WRKY40. 

Together, all tested proteins localized to the nucleus, enabling them to potentially interact 

with WRKY18 and WRKY40 in vivo. To overcome restrictions of the yeast 2-hybrid system 

in terms of protein folding, protein modifications or localization, candidate proteins were 

employed for BiFC-analysis using a Split-YFP-system. Although WRKY18 and WRKY40 

co-localize with the candidate proteins, no interactions could be detected in BiFC analyses 

(data not shown).                

2.9.1. Characterization of interaction candidate mutants 

To test whether Oxidoreductase and/or Fibrillin4 are involved in defense, T-DNA mutant 

lines were obtained, homozygous lines generated and characterized and used for infection 

with G. orontii and Pto DC3000. Interestingly, when grown under controlled short-day 

conditions, fibrillin4 (fib4) mutants exhibited a severe growth phenotype, observable already 

7 days after sowing (Figure 14 A). Fibrillin4 seedlings showed an elongated hypocotyl 

compared to wildtype Col-0 plants grown under same conditions. At later stages, fibrillin4 

plants developed elongated petioles and smaller leaves compared to Col-0 plants of the same 

age (4 weeks) (Figure 14 B).  

 

Figure 14: Phenotypic characterization of candidate interaction partners of WRKY18 and WRKY40. 

Growth phenotype of (A) 7 days old and (B) 4 weeks old FIBRILLIN4 mutant plants (fib4) compared to 

wildtype Col-0 plants. Plants were grown under controlled short-day conditions on Jiffy-pots (Jiffy, Ryomgaard, 

Denmark). (C) Four weeks old FIBRILLIN4 and Oxidoreductase mutants were infected with G. orontii and rate 

of host cell entry of fungal structures was determined 48 hpi. (D) Infection with bacterial strain P.syringae 

DC3000 pv. tomato was performed by spraying bacteria (O.D.600 = 0.2) on 4 weeks old plants. To determine 

bacterial numbers for each genotype, samples were taken 3 dpi. Hypersusceptible eds1-2 plants were included as 

control.      
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Infection of oxidoreductase and fibrillin4 mutants with G. orontii did not reveal any increase 

in resistance or susceptibility compared to susceptible wildtype Col-0 or resistant 

wrky18wrky40 plants, respectively (Figure 14 C).  

Additionally, no observable altered phenotype was found for Oxidoreductase mutant plants 

after infection with Pto DC3000. Fibrillin4 mutants, however, displayed an increased 

susceptibility towards Pto DC3000, with enhanced bacterial colonization compared to 

wildtype Col-0 plants (Figure 14 ).     
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3. Discussion 

3.1. Induction of different Arabidopsis defense hormone pathways 

upon early G. orontii infection 

Plant hormones play essential roles in the regulation of plant immune responses and defense 

against biotic and abiotic stresses (Glazebrook, 2005). Incompatible plant-microbe 

interactions display the majority of biotic stresses and plants have evolved powerful 

mechanisms to counteract constant threats from the environment. However, some pathogens 

are able to circumvent the plant immune system and establish a compatible interaction with 

their host. Previous data has shown that the obligate biotrophic powdery mildew fungus G. 

orontii colonizes wildtype Arabidopsis Col-0 plants and elicits a strong transcriptional 

reprogramming already during the first 8 hours after infection (Pandey et al., 2010). 

Moreover, G. orontii induces a large number of transcription factor coding genes including 

two members of the WRKY gene family, WRKY18 and WRKY40 (Supplementary Figure 1). 

Shen and colleagues demonstrated that wrky18wrky40 plants were resistant towards infection 

with the otherwise virulent G. orontii fungus (Shen et al., 2007) but the underlying 

mechanisms leading to resistance remain unknown. Comparative microarray analyses 

revealed a large set of genes that show constitutively elevated transcript levels under non-

challenged conditions in wrky18wrky40 compared to wildtype plants, underlining a negative 

regulatory role of WRKY18 and WRKY40 in plant immunity (Pandey et al., 2010). 

Additionally, differential regulation of several hormone-associated genes during the early 

plant-pathogen interaction was also observed, leading to the assumption that plant hormones 

may play an essential role for the formation of the resistant phenotype observed in 

wrky18wrky40 plants. 

3.1.1. WRKY18 and WRKY40 negatively regulate JAZ gene expression   

Induction of five members of the JAZ family of JA signaling repressors (JAZ1, -5, -7, -8 and -

10) in untreated wrky18wrky40 mutant plants already suggested a direct or indirect regulation 

of JAZ genes by WRKY18 and/or WRKY40 (Figure 2). JAZ gene expression has recently 

been analyzed upon application of different stimuli. Several members of the JAZ gene family 

are induced upon mechanical wounding, herbivory attack, JA-treatment or bacterial infection 

(Chini et al., 2009; Chung et al., 2008; Demianski et al., 2012; Thines et al., 2007). However, 

temporal expression studies upon challenge with the obligate biotrophic powdery mildew 

fungus G. orontii have never been investigated. This thesis provides first insights into the 

differential regulation of all JAZ family members in the course of early G. orontii infection.  
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JAZ1, -5, -7 and -8 showed elevated transcript levels already in non-challenged 

wrky18wrky40 compared to wildtype plants (Figure 2). Promoter analysis of these genes 

revealed the presence of W-box and W-box-like motifs, the cognate binding sites for WRKY 

transcription factors, pointing to a direct or indirect negative regulation of these genes by 

WRKY18 and/or WRKY40. Indeed, we could previously demonstrate protein binding of 

ectopically expressed WRKY40-HA protein to the JAZ8 promoter (Pandey et al., 2010). 

Additionally, those JAZ genes that are induced upon G. orontii infection show higher 

transcript levels in the mutant compared to wildtype plants. This was significantly observed 

for JAZ1, -5, -7, -8 and -9 showing similar expression patterns in wildtype and wrky18wrky40 

plants, but much higher relative fold-changes in the mutant upon infection (Figure 2). Hence, 

the wrky18wrky40 double mutant appears to lack efficient regulation of those JAZ genes, 

which is further supported by the presence of several W-box elements in the promoters of 

these genes, suggesting that numerous JAZ genes are directly targeted by WRKY 

transcription factors. Induced expression of JAZ genes in wrky18wrky40 plants might be an 

immediate consequence due to lack of direct repression by WRKY18 and WRKY40 or due to 

a more indirect effect by misregulation of other transcription factors, including other WRKY 

proteins, that require WRKY18 and/or WRKY40 for proper spatial and temporal action. 

However, direct evidence for a role of pathogen-triggered W-box mediated expression of JAZ 

genes remains to be demonstrated.  

In contrast, no differences in fold-induction or in their expression kinetics between 

susceptible wildtype and resistant wrky18wrky40 plants were observed for JAZ3, -4, -6, -11 

and -12 during the first 48 hours of infection, indicating no effect of loss-of WRKY18 and 

WRKY40 function for the regulation of these genes (Figure 2). Moreover, expression levels of 

JAZ3, JAZ4, JAZ6, JAZ11 and JAZ12 were considerably low, which is consistent with 

previous observations (Chung et al., 2008; Demianski et al., 2012). Interestingly, low 

transcript levels and unresponsiveness of JAZ4 and JAZ11 gene expression were similarly 

observed upon wounding, herbivory attack and bacterial and fungal infection (Chung et al., 

2008; Demianski et al., 2012), probably constituting a general characteristic of these JAZ gene 

family members or these two genes may have other functions unrelated to abiotic or biotic 

stress. Nevertheless, differences in gene expression between different stimuli were found for 

other JAZ genes (Chung et al., 2008; Demianski et al., 2012). In the case of JAZ6, enhanced 

expression was not observed during early G. orontii infection, whereas it revealed a strong 

increase in transcript abundance upon Pto DC3000 infection and a rapid induction upon 

herbivory attack and wounding. In contrast, JAZ7 was strongly induced during the G. orontii 
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infection process and after wounding, but only moderate expression was detected upon Pto or 

herbivory challenge. Significantly strong upregulation of gene expression was observed for 

JAZ9, being the most up-regulated JAZ gene upon Pto infection and herbivory attack, but also 

showing high transcript levels after wounding and G. orontii infection (Chung et al., 2008; 

Demianski et al., 2012). This illustrates that some JAZ genes are similarly responsive to 

various treatments, whereas others are specifically induced only upon certain stimuli. 

Whether these differences affect the resulting response to different challenges or constitute 

insignificant differences due to post-transcriptional- and –translational regulation or 

functional redundancy between JAZ genes remains to be investigated.  

The current model of JA signaling suggests that JAZ genes are induced in response to JA or 

JA-inducing stimuli in order to replenish the pool of JAZ proteins degraded by the SCF
COI1

-

complex and thus to attenuate signaling (Chico et al., 2008; Demianski et al., 2012). Based on 

this model it is conceivable that the induction of specific JAZ genes upon certain stimuli 

reflect the degradation of the respective JAZ protein, implicating that this protein is involved 

in regulating JA responses to the specific stimulus. Moreover, extensive co-expression 

observed upon wounding, G. orontii or Pto infection and the fact that several JAZ genes in 

Arabidopsis are the result of genomic duplication events support the idea of partial functional 

redundancy within the JAZ family members (Demianski et al., 2012; Vanholme et al., 2007). 

Analysis of mutants lacking multiple JAZ genes upon different challenges would contribute to 

further dissect the roles of individual JAZ genes.  

Recent identifications of JAZ-interacting proteins regulating various aspects of the JA 

pathway demonstrated that JAZ repressors indeed have overlapping, but finely separated 

functions in JA signaling and are also involved in crosstalk between JA and other hormone 

signaling pathways (Kazan and Manners, 2012; Niu et al., 2011). It has been shown in yeast 

2-hybrid experiments that JAZ proteins form homo-and heterodimers through interaction of 

their characteristic ZIM-domain (Chini et al., 2009). Although the biological relevance of 

dimerization has not yet been demonstrated, expression kinetics revealed co-regulated JAZ 

genes during early powdery mildew infection. JAZ1 and JAZ5 show elevated transcript levels 

at 4 hpi in the wrky18wrky40 double mutant and the same expression pattern can be observed 

in wildtype samples, although much weaker (Figure 2). Moreover, expression of JAZ9 was 

also induced at 4 hpi together with JAZ1 and Chini and colleagues demonstrated 

heterodimerization of these two JAZ proteins in yeast 2-hybrid assays (Chini et al., 2009). 

The same holds true for JAZ3 and JAZ9 with both being simultaneously up-regulated at 12 

hpi, supporting the idea of JAZ proteins acting as heterodimers. Almost all members of the 
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JAZ gene family showed elevated levels at 0 hpi in wrky18wrky40 plants, with significant 

increases observed for JAZ1, JAZ5, JAZ7 and JAZ8 (Figure 2). As it has recently been shown 

that plants ectopically expressing JAZ10 are insensitive to MeJA treatment, a root growth 

assay was performed testing wrky18wrky40 plants for MeJA insensitivity (Yan et al., 2009). 

However, no root growth phenotypes could be observed for the tested WRKY double mutants 

(Figure 2). Either expression levels of induced JAZ genes in wrky18wrky40 mutants may not 

be sufficient to effectively suppress JA responses although several JAZ genes were up-

regulated or the applied assay was not appropriate to detect a subtle suppression effect. One 

must note that in this study only changes in expression levels were studied. Thus, it cannot be 

excluded that these RNA transcript levels do not significantly alter JAZ protein levels. To 

date, no specific antibodies are available to monitor changes of individual JAZ protein 

amounts. This is a crucial issue that needs to be addressed in the future since nearly all current 

conclusions rely on extrapolations derived from expression profiling studies.  

If up-regulation of JAZ genes can alter responses to JA but also influences other plant 

hormone signaling pathways (Kazan and Manners, 2012), overexpression and mutations of 

JAZ genes may also have an effect on the infection with powdery mildew. Indeed, a role for 

JAZ repressors in mediating JA-SA antagonistic crosstalk was proposed (Chen et al., 2009; 

Kazan and Manners, 2012). The essential SA biosynthesis gene SID2 is repressed by the TFs 

ETHYLENE INSENSITIVE3 (EIN3) and ETHYLENE INSENSITIVE-LIKE1 (EIL1), which 

are in turn negatively regulated by JAZ proteins (Chen et al., 2009). Thus, JA-induced JAZ 

degradation might lead to a de-repression of EIN3 and EIL1 resulting in repression of SA 

biosynthesis (Kazan and Manners, 2012). Alternatively, pathogen-induced JAZ gene 

induction as observed in wrky18wrky40 leads to an activation of SA biosynthesis and 

signaling. Unfortunately, loss-of-function mutants for most JAZ genes are currently not 

available. Two available transgenic JAZ mutants were analyzed upon infection with G. 

orontii. No significant differences in penetration rate or fungal growth were observed between 

wildtype, jaz7 and JAZ10ox-lines. Either different JAZ proteins can compensate for loss-of 

and/or gain-of JAZ functions due to redundancy or disruption of the JA signaling pathway is 

insufficient to generate an observable phenotype.   

3.1.2. Resistant wrky18wrky40 mutants exhibit exaggerated responses to JA  

To further investigate the role of JA during G. orontii infection and to test whether differences 

in JAZ expression result in altered JA-responses, JA levels and JA-responsive genes were 

analyzed with regard to differences between susceptible wildtype and resistant wrky18wrky40 

plants during early G. orontii infection.  
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JA accumulation was biphasic in wildtype plants peaking at 4 and 24 hpi, whereas 

wrky18wrky40 did not show the second increase in JA at 24 hpi (Figure 3). Similar increases 

in wildtype and wrky18wrky40 plants at 4 hpi suggest no direct influence of elevated 

transcript levels of JAZ1, 5 and 9 at 4 hpi on the accumulation of JA. However, induction of 

JA levels may occur temporally before JAZ proteins can negatively affect JA biosynthesis. By 

this means reduced JA levels in wrky18wrky40 at 24 hpi might be caused by the strong 

upregulation of JAZ genes at 12 hpi resulting in decreased JA biosynthesis in the double 

mutant. Although only slight differences in the expression of the JA biosynthesis gene LOX2 

were observed (Figure 3), weak induction in wildtype plants together with stronger 

upregulation of JAZ genes in wrky18wrky40 plants may result in the observed difference in 

JA accumulation 24 hours after G. orontii infection. Moreover, Chung and colleagues 

proposed MYC2 as direct regulator of JAZ genes and of its own gene but not of LOX2 (Chung 

et al., 2008). This also implies a direct role of JAZ proteins in the regulation of MYC2 and 

JAZ genes, but only an indirect role in the regulation of LOX2. Although JA responses are 

partly regulated by JAZ proteins, it is difficult to draw concrete conclusions from the 

expression of JAZ genes as negative regulators of JA responses and the expression of JA-

responsive genes. Transcript abundance levels do not necessarily reflect the final amount of 

proteins being translated and biological active and functional redundancy may occur. The fact 

that myc2 mutants are not fully JA-insensitive (Lorenzo et al., 2004) also supports the idea of 

further transcription factors being involved in the regulation of JA-induced defense genes, 

which may also include WRKY transcription factors. Recent work demonstrated that, besides 

MYC2, other TFs directly interact with JAZ proteins involving MYC2-related proteins 

MYC3 and MYC4 (Niu et al., 2011) but also members of the MYB TF family (Qi et al., 

2011), which also showed significant de-regulation in wrky18wrky40 plants upon G. orontii 

infection (Pandey et al., 2010).   

In general, only a fraction of produced JA is converted into its bioactive derivative JA-Ile. 

Wildtype plants accumulated ~6-fold more JA-Ile than wrky18wrky40 24 hpi, although JA 

levels differed <2-fold between wildtype and wrky18wrky40 plants at this respective time 

point. Thus, conversion of JA to JA-Ile is more efficient in wildtype plants compared to the 

double mutant or regulatory mechanisms of JA-conversion are influenced by WRKY18 

and/or WRKY40. Although overall JA levels in wildtype and wrky18wrky40 plants were 

relatively low compared to JA levels accumulating after wound responses or infection with 

necrotrophic pathogens (Zhang and Turner, 2008), the outcomes of JA accumulation 

especially with regard to interactions with the SA hormone pathway depend on the relative 
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concentration of each hormone (Mur et al., 2006). Thus, also subtle differences or changes in 

hormone levels may affect the outcome of an infection.    

Despite rather similar JA levels, JA-responsive genes behaved significantly different in both 

genotypes upon G. orontii infection. The early JA-responsive gene VSP2, which is reported to 

be under direct regulation by MYC2 (Pieterse et al., 2009), was strongly induced 8 hpi in 

wrky18wrky40 plants whereas no JAZ gene expression was significantly up-regulated at this 

time point, enabling MYC2 to positively influence VSP2 expression (Figure 3). In contrast, 

VSP2 expression in wildtype plants was found to be remarkably moderate. Moreover, only 

weak induction of the JA-responsive gene PDF1.2, which is under negative control of MYC2 

(Pieterse et al., 2009), in wildtype plants (<10-fold) is in clear contrast to a very strong and 

abrupt transcript accumulation observed in the resistant double mutant 24 hpi (> 100-fold) 

(Figure 3). It is conceivable that wrky18wrky40 mutants exhibit an exaggerated response to 

JA characterized by the significant induction of early and late JA-responsive genes, indicating 

that WRKY18 and WRKY40 participate in the repression and/or fine-tuning of JA-responses. 

This is in agreement with WRKY18 and WRKY40 generally being regarded as transcriptional 

repressors (Pandey et al., 2010; Shen et al., 2007). Additionally, microarray analysis of 

wrky18 single mutants upon G. orontii infection further support this hypothesis, as several 

early JA-responsive transcriptional activators and repressors are strongly induced 6 h after G. 

orontii infection (Table 1). 

Interestingly, Arabidopsis non-host powdery mildew Bgh triggers significantly stronger 

PDF1.2 expression compared to plants infected with the adapted powdery mildew G. 

cichoracearum (Zimmerli et al., 2004). Moreover, induction of defensins was correlated with 

non-host resistance, as also the oomycete non-host potato late blight pathogen clearly 

enhanced PDF1.2 expression in wildtype plants, whereas the virulent Arabidopsis downy 

mildew pathogen did not (Zimmerli et al., 2004). It was concluded that biotrophic host 

pathogens, like G. orontii, must either fail to elicit or suppress the JA signaling transduction 

pathway in Arabidopsis wildtype plants (Wen et al., 2011; Zimmerli et al., 2004). Assuming 

the latter, it is possible that repression of JA signal transduction triggered by G. orontii is 

compromised due to loss-of WRKY18 and WRKY40, leading to a de-repression of JA 

signaling and a strong increase in PDF1.2 expression in wrky18wrky40 double mutants. 

Notably, ectopic activation of the JA signaling pathway protected Arabidopsis Col-0 plants 

against G. cichoracearum (Ellis and Turner, 2001; Zimmerli et al., 2004), suggesting that 

enhanced activation of JA signaling in wrky18wrky40 mutants may contribute to the resistant 

phenotype towards G. orontii. This would imply a potential role of JA signaling during the 
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very first stages of fungal invasion, showing VSP2 and PDF1.2 induction during the 

establishment of a fungal penetration peg (~5 hpi), subsequent penetration of the epidermal 

cell layer (~5-12 hpi) and haustorium formation (24 hpi) (Figure 1; Figure 3). Thus, it can 

also be hypothesized that repression of JA signal transduction in wildtype plants is mediated 

by haustorial-secreted fungal effectors that directly or indirectly interfere with WRKY18 

and/or WRKY40 function affecting the JA signaling pathway. At least it is conceivable that 

the early induction of JA-response marker genes may also be caused or enhanced by 

wounding responses due to the penetration of the epidermal cell layer, as wound responses 

can rapidly induce expression of these genes (Koo et al., 2009; Suza and Staswick, 2008). 

However, based on studies using the poorly adapted powdery mildew isolate G. 

cichoracearum UMSG1, Wen and colleagues proposed only minor contributions of the JA 

pathway to post-invasion resistance, as Arabidopsis JA pathway mutants were not impaired in 

post-invasive defenses (Wen et al., 2011). This fungal isolate overcomes pre-invasive 

defenses of wildtype Arabidopsis plants but its post-invasive proliferation is restricted by 

callosic encasement of the haustorial complex and the execution of HR, both appeared to be 

controlled by SA-dependent and –independent defense pathways with sid2pad4 mutants 

becoming almost fully susceptible to G. cichoracearum isolate UMSG1. Thus it can be 

hypothesized that the loss-of WRKY18- and WRKY40-dependent de-repression of JA signaling 

accounts for the observed reduction of fungal entry rate in wrky18wrky40 mutants compared 

to wildtype plants.          

Obviously, the effect of JA accumulation and signal transduction on the outcome of infection 

with G. orontii has to be genetically investigated by the analysis of JA-deficient mutants and 

the generation of appropriate triple mutants impaired in WRKY18 and WRKY40 expression 

and JA biosynthesis or perception, respectively. Along this line, JA perception mutant coi1 

revealed a significant increase in susceptibility towards adapted powdery mildew G. 

cichoracearum compared to wildtype plants (Ellis et al., 2002; Ellis and Turner, 2001), 

underlining the necessity of those analyses. Whether the host pathogen G. orontii suppresses 

or fails to elicit JA signaling in wildtype plants in contrast to wrky18wrky40 mutants remains 

elusive, as appropriate fungal mutants are so far missing.    

In summary, strong differences in the expression of JAZ genes prior to and during G. orontii 

infection suggest a role of WRKY18 and/or WRKY40 in regulating members of the JAZ gene 

family. So far, binding of WRKY40 to the JAZ8 promoter has been demonstrated (Pandey et 

al., 2010). The presence of numerous W-box motifs in promoter regions of other JAZ genes 

together with substantial differences in transcript levels point to a more general role of 
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WRKY18 and WRKY40 in the regulation of JAZ genes. Whether this regulation occurs in a 

direct or indirect way remains unclear. Chromatin-immunoprecipitation (ChIP) followed by 

qPCR analysis (ChIP-PCR) or massive parallel sequencing (ChIP-Seq) should contribute to 

answering this question. Moreover, exaggerated responses even to low JA levels in the 

wrky18wrky40 mutant compared to wildtype plants together with a considerable number of 

JA-related genes up-regulated in wrky18 single mutants provide further evidence of WRKY18 

being involved in regulating JA signaling events. Alternatively, loss-of WRKY18 and 

WRKY40 activates pathogen-dependent JA signaling or overcomes G. orontii-mediated 

suppression of JA signal transduction, leading to enhanced downstream JA marker gene 

expression. In this respect, wrky18wrky40 JA responses resemble those of non-host resistance 

against non-adapted powdery mildews and thus may be involved in mediating pre-invasion 

resistance towards G. orontii.   

3.1.3. SA is indispensable for resistance of wrky18wrky40 mutants    

G. orontii infection induces SA-dependent defense responses in Arabidopsis, with mutants in 

SA biosynthesis and signaling exhibiting enhanced susceptibility to this fungus (Dewdney et 

al., 2000; Reuber et al., 1998). Moreover, exogenous treatment with the SA analog BTH was 

found to protect susceptible plants against fungal infection (Fabro et al., 2008; Maleck et al., 

2002). This indicates that SA contributes to active defense against powdery mildews to limit 

the extent of infection. As JA and SA mostly act antagonistically (Leon-Reyes et al.; Liu et 

al., 2006; Vlot et al., 2008), one may have expected differences in SA levels and SA 

responses during G. orontii infection to account for the susceptible wildtype and resistant 

wrky18wrky40 phenotypes. Unexpectedly, both susceptible wildtype and resistant 

wrky18wrky40 plants revealed equal pathogen-induced accumulation of SA during the first 72 

h after G. orontii infection (Figure 4). Also downstream marker genes of SA signaling were 

similarly induced 48 hpi in both genotypes (Figure 4), demonstrating undisturbed correlations 

between SA accumulation and marker gene induction independent of WRKY18 and 

WRKY40. Thus, the SA signaling pathway appears to be activated at later stages of powdery 

mildew infection in both genotypes, starting 48 hours after the inoculation. At this stage the 

fungus begins to establish secondary hyphae and starts to invade adjacent epidermal cells 

(Figure 1). Previous studies have shown that the SA signaling pathway of the host plays a 

more important role at later infection stages that is after fungal penetration (Dewdney et al., 

2000; Reuber et al., 1998). This observation is consistent with a detailed study by Chandran et 

al. (2009) demonstrating the SA dependency of later stage infection processes but SA 

independency of early host responses. Also infection with the powdery mildew G. 
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cichoracearum leads to clearly elevated SA levels 48 hpi (Fabro et al., 2008), as it was 

observed for infection with G. orontii.  

Apparently, induction of SA biosynthesis, SA accumulation and downstream signaling is 

insufficient to effectively restrict fungal proliferation in wildtype plants and was similarly 

observed in resistant wrky18wrky40 mutant plants. If SA accumulation and responses did not 

differ between susceptible wildtype and resistant wrky18wrky40 plants in the course of G. 

orontii infection, SA might be dispensable for the outcome of infection. To test this, the 

wrky18wrky40sid2 triple mutant impaired in SA biosynthesis was infected with G. orontii. 

Somewhat surprisingly, wrky18wrky40sid2 plants reconstituted pre- and post-invasive 

wildtype-like phenotypes (Figure 5), clearly demonstrating that resistance mediated by loss-of 

WRKY18 and WRKY40 depend on SA biosynthesis. Interestingly, triple mutants re-constituted 

an almost wildtype-like pre-invasive phenotype with slightly reduced penetration rates 

compared to wildtype plants. This is in contrast to infection studies with non-host powdery 

mildews demonstrating only marginal effects of SA biosynthesis on pre-invasive defense in 

Arabidopsis (Lipka et al., 2005; Zimmerli et al., 2004). However, penetration rates are 

determined 48 h after fungal infection, representing the stage of secondary hyphae formation 

(Figure 1). At this time point coincident induction of SA levels and EDS1 expression was 

observed in wrky18wrky40 mutants pointing to a role of the SA and/or EDS1 signaling 

pathway also for pre-invasive defense in a loss-of WRKY18- and WRKY40-dependent manner.   

Besides increased penetration rates, triple mutants revealed wild-type like fungal proliferation 

9 dpi, demonstrating a crucial role of SA for post-invasive resistance of wrky18wrky40 

mutants. This is in agreement with recent studies reporting that SID2 and PAD4 are 

effectively required for post-invasion resistance in Arabidopsis (Wen et al., 2011). Moreover, 

previous studies associated the SA signaling pathway with late responses to adapted powdery 

mildews and found important roles of SA biosynthesis and signaling for host defense 

(Chandran et al., 2009; Dewdney et al., 2000; Lipka et al., 2005; Reuber et al., 1998; Wen et 

al., 2011).  

The resistant phenotype of wrky18wrky40 double mutants was accompanied by cell-death 

restricted to infection sites, which were not observed in wildtype plants upon infection with 

G. orontii (Figure 5). The fact that blocking SA biosynthesis suppresses the cell-death 

phenotype of wrky18wrky40 plants indicates that SA is essential for cell-death execution in 

wrky18wrky40 double mutants and thus essential for resistance. This also implies a role for 

WRKY18 and WRKY40 in negatively regulating cell-death induction, as SA is similarly 
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induced in susceptible wildtype plants without showing comparable cell-death formation upon 

G. orontii infection.      

Additionally, the SA-related EDS1 signaling pathway is not considerably induced in wildtype 

plants during G. orontii infection. In contrast, wrky18wrky40 plants accumulate EDS1, PAD4 

and NPR1 transcripts 48 hpi (Figure 4). The expression pattern of these genes is strikingly 

similar to the dynamics of SA accumulation, indicating that this signaling pathway is 

effectively activated in resistant wrky18wrky40 plants, which is in agreement with negative 

regulation of EDS1 by WRKY40 (Pandey et al., 2010). Moreover, acting upstream of SA, 

EDS1 as a key regulator of immune responses to various virulent biotrophic and hemi-

biotrophic pathogens (Falk et al., 1999; Feys et al., 2001; Lipka et al., 2005) is required for 

resistance of wrky18wrky40 plants. Recent analysis of G. orontii infected wrky18wrky40eds1 

triple mutants demonstrated that loss-of EDS1 in wrky18wrky40 double mutants restores a 

wildtype-like pre- and post-invasive phenotype (A. Töller, MPIPZ Köln, unpublished). This 

may also explain full impairment in penetration and post-invasion resistance of 

wrky18wrky40sid2 mutants, as EDS1 and SA are also involved in a positive feedback loop 

important for defense (Wiermer et al., 2005).  

On the other hand, the REDOX-RESPONSIVE-TRANSCRIPTION-FACTOR1 (RRTF1), 

which was integrated into a co-expression network upon redox-stress involving WRKY33 and 

EDS1 (Khandelwal et al., 2008) and shown to be directly regulated by WRKY40 (Pandey et 

al., 2010), is dispensable for resistance (Supplementary Figure 3). Thus, resistance of 

wrky18wrky40 double mutants towards G. orontii is dependent on SA and EDS1, although the 

role of WRKY18 and WRKY40 in affecting pathogen-triggered cell-death remains to be 

elucidated.  

3.1.4. WRKY18 and WRKY40 negatively regulate 4MI3G biosynthesis  

Strong up-regulation of glucosinolate biosynthesis gene CYP81F2 in microarray analysis 

suggested the activation of this defense-related pathway also in wrky18wrky40 upon G. 

orontii infection (Pandey et al., 2010). Indeed, detailed qPCR analysis revealed a strong 

increase in CYP81F2 transcript in the resistant double mutant during early G. orontii infection 

(Figure 6). This was reflected by enhanced levels of the respective product 4MI3G in these 

plants and a significant difference of ~25% compared to susceptible wildtype plants 72 hpi 

(Figure 6). The promoter region of CYP81F2 harbors 19 W-box and W-box-like motifs partly 

clustering in the 4000 bp upstream region of the gene, pointing to a direct regulation of this 

gene by WRKY TFs. However, preliminary ChIP-PCR analyses using the generated WRKY18 
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complementation line could not detect direct association of WRKY18 to the CYP81F2 

promoter (data not shown).   

Following the conventional biosynthesis route, 4MI3G requires activation by the atypical 

myrosinase enzyme PEN2 for antifungal activity (Bednarek et al., 2009). However, PEN2 

expression was not significantly induced and revealed no obvious difference between the two 

genotypes during G. orontii infection (Figure 6). This is in agreement with publicly available 

expression data demonstrating no remarkable PEN2 transcript induction upon various 

treatments (Genevestigator, V4), indicating a post-translational regulation of PEN2 activity.  

Interestingly, no 4MI3G increase was observed by Bednarek and colleagues (2009) in 

wildtype Col-0 plants 16 h after infection with the non-adapted powdery mildew Bgh. 

Similarly, Col-0 plants initially began to accumulate 4MI3G 12-24 h after infection with the 

adapted powdery mildew G. orontii, whereas loss-of WRKY18 WRKY40 mutants revealed an 

increase of this compound already 8 hpi (Figure 6). This suggests a pathogen-induced de-

repression of 4MI3G biosynthesis dependent on loss-of WRKY18 and WRKY40. Although no 

direct WRKY18 association to the CYP81F2 promoter was found, other regulatory proteins, 

e.g. WRKY40, may be involved in mediating WRKY18 binding to the promoter or other 

WRKY TFs regulate expression of this gene.    

A direct role of 4MI3G in antifungal defense has not yet been demonstrated. 4MI3G itself 

may have a yet unknown signaling function required for resistance of wrky18wrky40 mutants, 

as it was hypothesized to act as a signaling molecule for MAMP-induced callose formation 

(Clay et al., 2009). Alternatively, altered 4MI3G levels may result in additional activated 

compounds that may affect the outcome of the infection. In this context, PEN2 and CYP81F2 

activities were demonstrated to be required for effective defense against non-adapted powdery 

mildews and other fungal pathogens such as P. infestans or Magnaporthe oryzae (Bednarek et 

al., 2009; Maeda et al., 2009; Sanchez-Vallet et al., 2010). Sanchez-Vallet and colleagues 

(2010) demonstrated a crucial role of CYP81F2 and PEN2 for non-host resistance against the 

adapted necrotrophic fungal isolate Plectospharella cucumerina (P. cucumerina) BMM, 

whereas resistance responses to non-adapted isolates were unaffected in cyp81f2 and pen2 

mutants. On the other hand, mutations in genes CYP79B1/2 acting upstream of CYP81F2 and 

PEN2 in the Trp-derived indole-glucosinolate biosynthesis pathway revealed increased 

susceptibility also towards non-adapted isolates (Sanchez-Vallet et al., 2010). This is in 

contrast to work by Bednarek et al (2009) showing increased susceptibility towards non-

adapted powdery mildews for all of these mutants, strongly suggesting additional, PEN2-

independent, products with antifungal activity (Sanchez-Vallet et al., 2010). Nevertheless, 
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both adapted and non-adapted P.cucumerina isolates similarly trigger 4MI3G accumulation 

(Sanchez-Vallet et al., 2010). Along the same line, an essential role for 4MI3G or 4MI3G-

derived yet unknown compounds was demonstrated by the analysis of wrky18wrky40cyp81f2 

triple mutants reconstituting a susceptible, wildtype-like, phenotype after G. orontii infection 

(A. Töller, MPIPZ Köln, unpublished). Host cell entry rates of this triple mutant were restored 

to wildtype levels, suggesting a role of 4MI3G in pre-invasive defense against the powdery 

mildew fungus. This is further confirmed by successful fungal proliferation on triple mutant 

plants, underlining an important role of 4MI3G or 4MI3G-derived compounds also in post-

invasive defense, implicating that observed accumulation of 4MI3G is effectively important 

for resistance of wrky18wrky40 plants. In this context, analysis of wrky18wrky40pen2 triple 

mutants would contribute to further dissect a direct or indirect role of 4MI3G in defense 

against G. orontii.  

 

3.2. Dissecting WRKY18 and WRKY40 functions  

It has been proposed that WRKY18 and WRKY40 act at least partially redundant (Pandey et 

al., 2010; Shen et al., 2007). This holds true for defense against powdery mildew G. orontii, 

as wrky18 and wrky40 single mutants are both susceptible towards this fungal pathogen, 

whereas wrky18wrky40 double mutants are resistant (Shen et al., 2007). Thus, WRKY18 and 

WRKY40 regulate common processes that render the plant susceptible. Similarly, positive 

regulation of resistance against bacterial strain Pto DC3000 AvrRPS4 appears to be mediated 

in a redundant manner, because preliminary results showed no enhanced susceptibility of 

wrky18 or wrky40 single mutants (data not shown). On the other hand, overexpression of 

WRKY18 leads to an increased resistance against virulent Pto DC3000 that was not observed 

for WRKY40 overexpressing plants (Xu et al., 2006). In contrast, these plants were more 

susceptible against B.cinerea infection, whereas WRKY18 overexpression did not alter the 

wildtype-like resistant phenotype (R. Birkenbihl, MPIPZ Köln, unpublished). This data 

supports functional redundancy in defense responses for some pathogen challenges and 

diverse functions for others. 

3.2.1. WRKY18 and WRKY40 are functionally but not genetically redundant 

To further elucidate commonalities and differences of transcriptional regulation by WRKY18 

and WRKY40, global expression analyses upon G. orontii infection were performed. 

Interestingly, already in the unchallenged state, lack of WRKY18 or WRKY40 results in a 

tremendous transcriptional de-regulation with similar proportions of up- and down-regulated 

genes between both genotypes (Figure 7). Almost one-third of the significantly de-regulated 
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genes, with a two-fold difference in transcript abundance compared to wildtype plants at the 

same timepoint (p-value ≤ 0.05), were shared by the two TFs. This changed drastically during 

the course of infection. Most strikingly, wrky18 mutants showed an up-regulation of a 

majority of genes 6 h after G. orontii infection, whereas wrky40 plants revealed the opposite 

effect. Moreover, only a fractional amount of affected genes are commonly de-regulated in 

both genotypes (Figure 7). This indicates that upon pathogen attack WRKY18 and WRKY40 

affect distinct subsets of genes, with WRKY18 acting rather as a repressor and WRKY40 as 

an activator of expression. Notably, this observation is based on infection with the biotrophic 

powdery mildew G. orontii and may be different upon infection with other pathogens. 

Additionally, it is difficult to conclude a general repressive or activating role for these TFs, as 

repression of genes might be an indirect effect of positively regulating expression of other 

negative transcriptional regulators.  

Obviously, a large number of genes up-regulated 6 h after infection in wrky18 mutants were 

related to the JA signaling pathway or otherwise related to biotic or abiotic stresses, whereas 

wrky40 plants lack this over-representation (Figure 7). Furthermore, W-box motifs in 

promoter regions of up-regulated genes in wrky18 were highly abundant, pointing to an 

involvement of WRKY TFs in the regulation of these genes (Table 1).  

Recently, WRKY18 was shown to be inducible by MeJA treatment and overexpression 

induces VSP2 expression (Wang et al., 2008). The fact that wrky18wrky40 plants also showed 

up-regulation of VSP2 upon G. orontii infection may indicate that VSP2 is not a direct target 

of WRKY18, as suggested by Wang and colleagues (Wang et al., 2008), but rather indirectly 

affects VSP2 expression by influencing other regulators of JA signaling. In fact, wrky18 

mutants showed significant up-regulation of positive (e.g. ORA47, ERF2) and negative 

regulators (e.g. ZAT10, JAZ7) of the JA signaling pathway (Pauwels and Goossens, 2008) 

upon early G. orontii infection, pointing to a complex de-regulation of JA signaling whose 

outcome might also depend on the applied biotic or abiotic stress. Preliminary in vivo binding 

studies utilizing the WRKY18 complementation line did not reveal direct binding of the 

ZAT10, ERF2 or JAZ5 promoter by WRKY18, which might still be due to unresolved 

technical problems. Alternatively, regulation of these genes is mediated indirectly by 

WRKY18, involves other WRKY TFs or absence of WRKY40 influences binding affinity, as 

demonstrated earlier (Xu et al., 2006).  

However, WRKY18 has been suggested to positively regulate JA-mediated signaling upon 

wounding (Wang et al., 2008) but also has a positive role in SA signaling in a NPR1-

dependent manner (Wang et al., 2006). Moreover, recent data point to a role in sensing and 
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signal transduction of bacterial volatile compounds, as wrky18 mutants were less susceptible 

to growth-inhibiting volatiles of pathogenic rhizobacteria (Wenke et al., 2012). Thus 

WRKY18 appears to be an important mediator of various signaling pathways, in some cases 

acting functional redundant with WRKY40 but also regulating a significantly different set of 

genes. Based on the findings that WRKY18 and WRKY40 can form heterodimers and reveal 

differences in binding activity dependent on the presence of each other (Xu et al., 2006) it can 

be hypothesized that the transcriptional de-regulation found in wrky18 and wrky40 mutants is 

different to that found in wrky18wrky40 mutants upon G. orontii infection. This may imply 

that WRKY18 and WRKY40 individually regulate diverse sets of genes also varying in an 

activating or repressing role and heterodimers may even regulate a completely different set of 

genes. This may explain why overlaps between the wrky18 and wrky40 data sets are strikingly 

different (Figure 7) and phenotypic outcomes of infection studies are so diverse (Pandey et 

al., 2010; Wenke et al., 2012; Xu et al., 2006). Obviously, one can not rule out a role for 

WRKY60 in these regulatory processes, as it was shown that WRKY60 is also involved in 

heterodimerization with WRKY18 and WRKY40 (Xu et al., 2006). However, WRKY60 

appears to have only a minor role in transcriptional regulation since mutants and 

overexpressing lines did not show significant phenotypes upon the tested pathogen infections 

(Xu et al., 2006).     

Notably, also wrky18wrky40 double mutants were included in the global expression analysis 

upon G. orontii infection (data not shown). Unexpectedly, comparison of the new data set to 

already published data (Pandey et al., 2010) revealed only weak overlaps of de-regulated 

genes, although the same mutant line and the same fungal pathogen were employed. 

Obviously, different time points, growing conditions and the fitness of the fungus may 

influence plant defense responses, but also the fact that a different microarray technology 

(AGRONOMICS tilling array (Rehrauer et al., 2010)) was used may account for the observed 

differences of the two experiments. Almost no genes that were reproducibly induced in 

detailed infection kinetics by qPCR analysis of wrky18wrky40 mutants were also induced in 

the newly obtained wrky18wrky40 data set. This discrepancy obviously requires further 

detailed clarification, and thus will not be further discussed here.  

To summarize, WRKY18 and WRKY40 regulate an apparent diverse set of genes, especially 

in the course of G. orontii infection. Potential direct target genes of WRKY18 will be 

investigated in further analyses and should help to place WRKY18 into specific (defense) 

signaling pathways.    
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3.2.2. WRKY18 is involved in feedback regulation of its own gene and WRKY40 

Positive and negative feedback regulation is a common phenomenon in the wired web of 

WRKY TFs (Eulgem and Somssich, 2007). Auto-regulation or cross-regulation by WRKY 

TFs has been demonstrated in various previous reports (Hu et al., 2012; Rushton et al., 1996; 

Turck et al., 2004). Well-studied is the function of MAMP-induced parsley PcWRKY1 which 

was shown to be regulated by a conserved arrangement of three synergistically acting W-

boxes in its native promoter (Turck et al., 2004). Further analyses could demonstrate that in 

vivo binding of PcWRKY1 to its own promoter results in a down-regulation of PcWRKY1 

expression, thus indicating a negative feedback regulation by PcWRKY1 (Eulgem and 

Somssich, 2007; Turck et al., 2004). Concomitantly, PcWRKY1 induction leads to the 

activation of PcPR1 gene expression, showing that this factor simultaneously acts as a 

repressor on its own gene but as an activator of another gene. Similarly, auto- or cross-

regulation was suggested for Arabidopsis WRKY18 and binding of recombinant, 

overexpressed WRKY18 to three contiguous W-box motifs of its native promoter was 

demonstrated in vitro (Chen and Chen, 2002). The same motifs were now shown to be 

occupied by WRKY18 upon G. orontii infection in vivo (Figure 10), thus confirming that 

WRKY18 indeed binds to its own promoter. Moreover, WRKY18 transcript abundance and 

binding are clearly induced at early time points in response to pathogen challenge, and 

expression declined at later stages (Figure 9; Figure 10), suggesting that WRKY18 might be 

negatively regulating the expression of its own gene to avoid exaggerated defense responses. 

This is in agreement with previous studies demonstrating that overexpression of WRKY18 

leads to retarded plant growth (Chen and Chen, 2002), possibly due to a detrimental de-

regulation of defense responses. This indicates that tight regulation of pathogen-induced 

WRKY18 is essential for a balanced transcriptional reprogramming. Additionally, WRKY18 

protein was found to bind to W-box rich regions of the WRKY40 promoter in a pathogen-

dependent manner (Figure 10). In the uninduced state, WRKY18 was not found associated 

with the WRKY40 promoter, indicating that upon G. orontii infection, WRKY18 protein is 

recruited to the promoter for transcriptional regulation. Whether binding results in an 

activation or repression of WRKY40 expression remains to be determined. However, 

expression of WRKY40 in the wrky18 single mutant is more strongly induced compared to 

wildtype plants (data not shown), pointing to a repressive function of WRKY18 on WRKY40 

expression, which may again protect the plant against transcriptional imbalances. A pathogen-

induced repressive function of WRKY18 can easily be squared with data obtained from 

global expression analysis of wrky18 single mutants revealing a majority of up-regulated 
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genes 6 h after G. orontii infection (Table 1). Nevertheless, it is conceivable that other 

WRKY TFs are involved in fine-tuning WRKY18 and WRKY40 expression. For PcWRKY1, 

promoter regions were constitutively occupied with other WRKY TFs and binding of 

PcWRKY1 to its own promoter occurred at later stages after elicitation (Turck et al., 2004). 

Whether this is the case for WRKY18 and WRKY40 might be clarified by ChIP experiments 

using an anti-all-WRKY antibody that recognizes the majority of the WRKY protein family. 

Notably, binding studies were performed in the wrky18wrky40 double mutant background to 

ensure functional complementation of the recombinant WRKY18 protein but also implying 

the possibility that absence of WRKY40 influences binding behavior of WRKY18. As both 

WRKY18 and WRKY40 can form homo- and heterodimer (Xu et al., 2006), their function 

may depend on or be influenced by these associations. Homodimers and heterodimers might 

be involved in regulating different sets of genes, or act as activators in one case and repressors 

in the other case. This hypothesis is supported by in vitro analyses of Xu and colleagues (Xu 

et al., 2006), demonstrating that efficient WRKY18 and WRKY40 binding activity to an 

artificial W-box containing DNA probe indeed depended on the presence of each other. Also 

the binding affinity of WRKY18 was significantly weaker compared to WRKY40, which 

might be due to differences in W-box adjacent nucleotides (Ciolkowski et al., 2008) or 

underline a crucial role of WRKY40 for binding activity.    

Therefore, simultaneous complementation of wrky18wrky40 double mutants with 

recombinant WRKY18 and WRKY40 protein might give new insights into the role of 

dimerization of these WRKY TFs and their individual roles in plant defense. 

3.2.3. A working model for WRKY18 WRKY40-mediated susceptibility 

Mutations affecting WRKY18 and WRKY40 render Arabidopsis plants resistant towards the 

otherwise compatible biotrophic powdery mildew G. orontii, demonstrating a negative 

regulation of resistance by these two WRKY TFs (Pandey et al., 2010; Shen et al., 2007).  

In wildtype plants, WRKY18 WRKY40 transcript and protein levels are rapidly induced within 

the first 4-6 h after G. orontii infection (Supplementary Figure 1). It is noteworthy that the 

powdery mildew fungus G. orontii only penetrates and infects epidermal cells and the 

expression analyses reported in this study were performed using total leaf extracts. The 

observed alteration in transcript levels may therefore only represent a diluted expression 

intensity of both infected and uninfected host cells. So far, little is known about signaling 

initiating from the region of fungal penetration in epidermal cells to sub-epidermal mesophyll 

layers within the entire leaf. However, as this induction occurs prior to fungal penetration, the 

elicitation signal is likely derived from a MAMP stimulus or a so far unknown trigger. 
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Analysis of wrky18wrky40cerk1 triple mutants may contribute to the elucidation of the 

elicitation signal, although chitin is not solely responsible for CERK1 activation (Gimenez-

Ibanez et al., 2009; Petutschnig et al., 2010). Additionally, tissue-specific promoters 

restricting WRKY18 or WRKY40 expression either to the epidermal or the mesophyll cell- 

 

layer would contribute to decipher their cell autonomous or non-autonomous requirement for 

resistance. However, transcriptional induction of WRKY18 and WRKY40 implies a direct or 

indirect role of WRKY18 and/or WRKY40 in such processes in this specific plant-pathogen 

interaction.  

In both susceptible wildtype and resistant wrky18wrky40 plants G. orontii infection is 

accompanied by the accumulation of SA and the activation of the respective signaling 

pathway (Figure 4). Although induced in both genotypes, SA plays a crucial role for 

resistance in the double mutant, as wildtype-like susceptibility is reconstituted in the 

Figure 15: A hypothetical working model of WRKY18 WRKY40-mediated responses to G. orontii infection. 

(A) In susceptible wildtype plants, G. orontii attack triggers an elicitation signal leading to the induction of 

WRKY18 and WRKY40 expression, accumulation of SA and the activation of the SA signaling pathway. WRKY18 

and /or WRKY40 positively regulate JA signaling by repressing negative regulators of JA-signaling. Binding of the 

EDS1 promoter down-regulates EDS1 signaling. Presence of WRKY18 and WRKY40 negatively influences 4MI3G 

and camalexin biosynthesis, culminating in successful fungal proliferation and a susceptible phenotype. (B) In 

plants simultaneously mutated in WRKY18 and WRKY40, G. orontii attack triggers an elicitation signal leading to a 

WRKY18 WRKY40 independent accumulation of SA and the activation of the SA signaling pathway. Knockdown of 

WRKY18 and WRKY40 results in an activation of JAZ gene expression and a misregulation of the JA signaling 

pathway. Activation of 4MI3G biosynthesis and accumulation of the respective product contributes to the resistant 

phenotype of wrky18wrky40 plants, whereas induced camalexin accumulation appears dispensable for 

wrky18wrky40 resistance.         
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wrky18wrky40sid2 triple mutant impaired in SA biosynthesis (Figure 5). In the course of 

infection, binding of WRKY18 protein to promoter regions of WRKY18 and WRKY40 

suggests a pathogen-dependent activation of a feedback-loop to regulate the expression of 

WRKY18 and WRKY40. Presumably, negative-feedback regulation should keep expression of 

these transcriptional regulators in a balanced level. Moreover, our recent findings 

demonstrating direct binding of WRKY40 to the promoter of JAZ8 suggests a positive 

regulation of the JA signaling pathway by WRKY40 and/or WRKY18 through repression of 

negative regulators of JA signaling (Pandey et al., 2010). That WRKY18 is also involved in a 

misregulation of the JA signaling pathway is further supported by microarray analyses of 

wrky18 single mutants upon G. orontii infections, revealing upregulation of several JA-related 

transcriptional repressors but also activators 6 h after infection (Figure 7). As a key 

component of basal resistance, EDS1 is crucial for resistance towards many pathogens, 

including fungi (Wiermer et al., 2005). It has been proposed that direct binding demonstrated 

for WRKY40 (Pandey et al., 2010) and WRKY18 (R. Birkenbihl, MPIPZ Köln, personal 

communication) to the EDS1 promoter mediates a repression of EDS1 signaling, thereby 

hampering a key node of defense against fungal pathogens (Pandey et al., 2010). Requirement 

of EDS1 signaling for successful defense against G. orontii in wrky18wrky40 plants was 

shown by the analysis of wrky18wrky40eds1 triple mutants, being as susceptible as wildtype 

plants (A. Töller, MPIPZ Köln, unpublished). Furthermore, up-regulation of indole-

glucosinolate biosynthesis gene CYP81F2 was found in wrky18wrky40 double mutants giving 

rise to a stronger accumulation of 4MI3G in resistant wrky18wrky40 compared to wildtype 

plants (Figure 6). We recently also revealed an induction of the camalexin biosynthesis gene 

PAD3 in resistant wrky18wrky40 mutants, resulting in a significant accumulation of this main 

phytoalexin (Pandey et al., 2010). Unaltered resistance of wrky18wrky40pad3 triple mutants 

demonstrated dispensability of camalexin accumulation for post-invasive resistance of 

wrky18wrky40 plants towards G. orontii infection, but revealed an important role in pre-

invasive resistance, as wrky18wrky40pad3 plants reconstituted wildtype-like penetration rates 

(A. Töller, MPIPZ Köln, unpublished).      

To summarize, susceptibility of wildtype plants is partly the consequence of G. orontii-

mediated induction of the transcriptional regulators WRKY18 and WRKY40, leading to a 

repression of negative regulators of JA signaling and the EDS1 signaling pathway. 

Additionally, accumulation of the indole-glucosinolate 4MI3G is repressed, culminating in a 

susceptible phenotype of wildtype plants. In the absence of WRKY18 and WRKY40, JAZ 

genes are induced resulting in a misregulation of JA signaling and strong induction of PDF1.2 
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expression. De-repression of EDS1 signaling and 4MI3G biosynthesis leads to a robust 

resistance towards G. orontii infection. Although pathogen induced SA accumulation in both 

genotypes is independent of WRKY18 and WRKY40, there is a clear requirement for SA in 

ultimately establishing the resistance observed in wrky18wrky40 plants.  

However, if these alterations in key defense signaling pathways in wrky18wrky40 plants have 

a general influence on resistance towards powdery mildew fungi, one would expect to observe 

broad-spectrum resistance towards other adapted powdery mildews. Notwithstanding, neither 

(increased) resistance towards G. cichoracearum nor G. cruciferarum was observed 

(Supplementary Figure 4). Based on these findings, it is conceivable that specific G. orontii 

effectors manipulate the host cell possibly by directly or indirectly targeting WRKY18 and/or 

WRKY40. In this case, WRKY18 and WRKY40 may be regarded as host susceptibility 

factors. 

 

3.3. WRKY18 and WRKY40 in other plant-pathogen interactions  

Differences in the expression of various defense-related signaling pathway genes between 

wildtype and wrky18wrky40 mutants indicate an activation of defense mechanisms that are 

effective against G. orontii. The fact that loss-of WRKY18 and WRKY40 renders Arabidopsis 

plants resistant against G. orontii infection raises the question of whether plant resistance or 

susceptibility towards other biotrophic, but also hemi-biotrophic and necrotrophic pathogens 

is also affected in wrky18wrky40 mutants.     

3.3.1. WRKY18 and WRKY40 are positive regulators of RPS4-mediated resistance 

Infections of wrky18wrky40 mutants with different virulent and avirulent bacterial strains of 

Pto DC3000 revealed a highly specific increase in susceptibility of wrky18wrky40 plants 

towards the otherwise avirulent strain Pto AvrRPS4. Resistance towards this strain is 

mediated via the TIR-NB-LRR R-protein RPS4 that forms a complex with EDS1 and thus 

mediates recognition of the bacterial effector AvrRPS4 (Heidrich et al., 2011). The RPS4-

dependent specificity of the phenotype was clearly demonstrated by the finding that not only 

infection with Pto AvrRPM1, which is mediated by a CC-NB-LRR R-protein und thus EDS1-

independent, but also by infection with pathogens, where resistance is known to be EDS1-

dependent, did not show any differences between wildtype and wrky18wrky40 plants (Figure 

11). Most strikingly, no increase in susceptibility of wrky18wrky40 plants was observed upon 

infection with the avirulent bacterial strain Pto HopA1, which is thought to require similar 

components for resistance as Pto AvrRPS4 infection (Bhattacharjee et al., 2011). 
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Data presented by Heidrich and colleagues illustrate that the R-protein RPS4 is involved in 

direct physical interactions with other proteins (Heidrich et al., 2011). Moreover, the 

WRKY18 and WRKY40 barley homologs HvWRKY1 and HvWRKY2 have been shown to 

directly interact with the isolate-specific R-protein MLA and this interaction is crucial for 

resistance towards Bgh (Shen et al., 2007). Additionally, RPS4 and the WRKY domain 

containing TIR-NB-LRR receptor RRS1 act cooperatively in AvrRPS4-triggered immunity 

(Narusaka et al., 2009). The presence of a WRKY domain and a NLS motif in RRS1 suggests 

that this R-protein is involved in perception of pathogens and might also play a direct or 

indirect role in transcriptional regulation of defense responses. This fusion protein of a TIR-

NB-LRR structure with a WRKY domain is indicative for a physical interaction of the 

proteins linked by such a domain-fusion (Lahaye, 2002). Based on such findings it is 

conceivable that WRKY18 and/or WRKY40 may actually be additional components of the 

EDS1/PAD4, RPS4, RRS1 regulatory complex required for efficient defense against this 

bacterial strain.  

However, various experiments employing full length versions of the proteins or truncated 

versions, which in the case of barley HvWRKY1 and HvWRKY2 with the CC-domain of 

MLA were sufficient to promote interaction (Shen et al., 2007), failed to detect physical 

interactions with WRKY18 and WRKY40 (Supplementary Figure 5; Supplementary Figure 

6). Since such interactions may require a post-recognition event dependent on the presence of 

the respective effector, possibly involving conformational changes and thus activation of the 

R-protein, as postulated for other NB-LRR proteins (Rairdan and Moffett, 2006; Shen et al., 

2007), FRAP analyses were also performed in tobacco leaves co-infiltrated with one of the 

WRKY TFs, RPS4 and/or RRS1 and the bacterial effector AvrRPS4. Although nuclear co-

localization was found for WRKY18, WRKY40, RPS4 and RRS1 as expected 

(Supplementary Figure 6), no direct physical interaction could be detected. Thus WRKY18 

and/or WRKY40 do not appear to directly interact with RPS4 or RRS1 irrespective of effector 

presence, or physical interaction requires additional, yet still unknown, components. It is still 

conceivable that EDS1 forms a sort of platform for protein-protein interactions/associations 

involving WRKY18 and/or WRKY40 and thus it would be interesting to test WRKY18 and 

WRKY40 interaction also with EDS1. 

Recently, Heidrich and colleagues could separate a requirement of nuclear EDS1 and RPS4 

accumulation for bacterial growth restriction from the nucleo-cytoplasmic coordination that is 

essential for programmed cell death and transcriptional resistance reinforcement upon Pto 

AvrRPS4 infection (Heidrich et al., 2011). On the basis of this knowledge, experiments 



Discussion 

 

65 

 

employing the avirulent bacterial strain Pseudomonas fluorescens (Pfo) transgenically 

expressing AvrRPS4 were initiated but preliminary results revealed no differences in cell-

death formation between wrky18wrky40 mutants and wildtype Col-0 plants upon infection (A. 

A. Töller, MPIPZ Köln, personal communication). This indicates that WRKY18 and 

WRKY40, most likely, affect nuclear processes involved in resistance. Whether these 

processes involve protein interactions therefore remains unclear. Certainly, comparative 

transcriptional analyses of wrky18wrky40 mutants upon infection with Pto AvrRPS4 or by the 

avirulent strain Pto HopA1 should further help to unravel differences in transcriptional 

reprogramming leading to the observed different phenotypes. 

3.3.2. wrky18wrky40 mutants do not exhibit a broad-spectrum resistance towards 

powdery mildews 

As described in the previous section, infection of wrky18wrky40 mutants with G. orontii 

results in a complex de-regulation of defense related signaling pathways, culminating in 

resistance towards this obligate biotrophic fungal pathogen. Besides G. orontii, two additional 

powdery mildew pathogens from the same clade are able to successfully penetrate and 

colonize Arabidopsis Col-0 plants (Eichmann and Huckelhoven, 2008).  

Thus the question arose, if loss-of WRKY18 and WRKY40 results in a general broad-spectrum 

resistance towards all three adapted powdery mildews, as it was reported for mlo2mlo6 

mutant plants (Consonni et al., 2006; Nishimura et al., 2003). This however was not the case 

since infections with G. cichoracearum and G. cruciferarum did not reveal any significant 

reductions in fungal colonization of wrky18wrky40 compared to wildtype Col-0 plants 

(Supplementary Figure 4). This clearly separates resistance mediated by loss-of WRKY18 and 

WRKY40 from other reported powdery mildew resistances. Whereas resistance towards a 

wide range of powdery mildews is conferred ecotype specifically by the RPW8 locus, 

Arabidopsis Col-0 plants lack this monogenetic trait (Xiao et al., 2005; Xiao et al., 2001; Xiao 

et al., 2004). Additionally, it was proposed that progressive differentiation of fungal infection 

structures may require diverse host target molecules (Panstruga, 2003). These compatibility 

factors, if absent in the plant, lead to a durable resistance against all pathogen species, without 

exhibiting constitutive defense activation. In this way, simultaneous mutations in Arabidopsis 

MLO2 and MLO6 confer broad-spectrum resistance towards G. cichoracearum and G. orontii 

characterized by early termination of fungal infection due to failed host cell invasion that is 

linked to host cell wall remodeling (Consonni et al., 2006). Penetration rates of mlo2mlo6 

mutants are reduced to ~30% compared to ~80% in wildtype and ~60% in wrky18wrky40 

mutant plants and resistance is obviously not accompanied by extensive host cell-death, as 
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observed for wrky18wrky40 plants. Moreover, resistant mlo mutants additionally impaired in 

SA biosynthesis do not reconstitute a susceptible phenotype comparable to that of 

wrky18wrky40sid2 triple mutants (Consonni et al., 2006). Thus the role of SA for loss-of 

MLO resistance is considerably low, whereas it is indispensable for wrky18wrky40 resistance. 

Along the same line, mutations in POWDERY MILDEW RESISTANT 4 (PMR4), encoding a 

callose synthase, leads to a SA-dependent broad-spectrum resistance associated with cell-

death execution at infection sites (Nishimura et al., 2003) and thereby resembles 

wrky18wrky40 resistance. However, resistance of pmr4 mutants is hypothesized to be based 

on enhanced activation of the SA signaling pathway and successive downregulation of JA 

signaling compared to wildtype plants, which is not observed for wrky18wrky40 resistance. 

Thus, noticeable differences exist between mlo2mlo6 and pmr4 compared to wrky18wrky40 

resistance. Nevertheless, it will be important in future studies to define whether these 

mutations affect some common nodes within the genetic network or not. The generation and 

analysis of wrky18wrky40mlo triple mutants may provide new insights into potentially 

important and distinct layers of defense that may lead to additive effects on powdery mildew 

resistance. Last but not least, it is quite evident that a major difference between these resistant 

mutants is the involvement of MLO and PMR4 in the composition of cell-wall components, 

whereas WRKY18 and WRKY40 are TFs directly involved in transcriptional reprogramming 

of defense responses. Whether WRKY18 and WRKY40 are involved in (negatively) 

mediating morphological alterations through transcriptional regulation or direct physical 

interactions with other proteins leading to enhanced resistance remains to be experimentally 

addressed. 

Another mutant conferring resistance towards the host adapted powdery mildew G. 

cichoracearum is enhanced disease resistance 1 (edr1) (Frye and Innes, 1998). Coding for a 

protein kinase with homology to mitogen activated protein kinase kinase kinases (MPAKKK), 

EDR1 negatively regulates cell-death in a SA-dependent manner upon pathogen infection 

(Christiansen et al., 2011; Frye et al., 2001). Upon infection with G. cichoracearum, edr1 

plants reveal no differences in spore germination compared to wildtype Col-0 plants but 

exhibit enhanced cell-death formation and increased post-invasive resistance (Frye and Innes, 

1998), thereby macroscopically resembling the wrky18wrky40 phenotype. Infection is 

accompanied by the induction defense-related genes, including the SA related genes PAD4 

and the downstream marker gene PR1 (Christiansen et al., 2011; Frye and Innes, 1998). 

Interestingly, global expression analysis of edr1 mutants upon powdery mildew infection 

revealed a significant number of WRKY genes being up-regulated during G. orontii infection 
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and many of the 5’ regulatory regions of up-regulated genes in the edr1 mutant were enriched 

in W-box motifs (Christiansen et al., 2011), strongly suggesting that WRKY TFs also play 

important roles in powdery mildew resistance mediated by loss-of EDR1. Notably, WRKY18 

and WRKY40 were not among the up-regulated WRKY genes and it can be hypothesized that 

either these two TFs do not play a role in edr1-mediated resistance or that WRKY18 and 

WRKY40 act downstream of EDR1 or in a different (signaling) pathway. Interestingly, edr1 

mutants do not show PDF1.2 induction upon powdery mildew infection and do not reveal an 

increased pre-invasive defense (Christiansen et al., 2011; Frye and Innes, 1998). This is in 

contrast to wrky18wrky40 mutants and underlines the hypothesis that early JA signaling 

leading to PDF1.2 induction may contribute to pre-invasive defenses in wrky18wrky40 plants. 

Based on the finding that fractions of EDR1 protein were detected in the nucleus, 

Christiansen and colleagues suggested a potential interaction of EDR1 with TFs within the 

nucleus (Lipka et al., 2005), which may also involve WRKYs. Thus, analysis of 

wrky18wrky40edr1 mutants may further contribute to the dissection of the underlying 

resistance mechanisms.   

Together, wrky18wrky40 resistance towards G. orontii appears rather specific for this plant-

pathogen interaction. Interestingly, WRKY18 and WRKY40 barley homologs HvWRKY1 and 

HvWRKY2 are involved in isolate specific R-gene mediated resistance towards barley 

powdery mildew Bgh (Shen et al., 2007). However, co-evolution of Arabidopsis and G. 

orontii is regarded as too short for the establishment of a gene-for-gene resistance system. 

Thus it is conceivable that secreted fungal effectors manipulate Arabidopsis host defenses to 

the benefit of the fungus and that this involves WRKY18 and WRKY40. A multitude of 

potentially secreted effector candidates (OEC) were recently identified in the genome of G. 

orontii (Spanu et al., 2010) that may interfere with WRKY18 and WRKY40 function to alter 

plant’s immune response. Several of them, pre-selected by their virulence function, were 

tested for direct physical interaction with WRKY18 and WRKY40. Up to now however the 

tested OECs did not reveal any interaction (Supplementary Figure 5). 

3.3.3. WRKY18 and WRKY40 interact with pathogen-induced proteins in yeast and 

co-localize in planta 

Homo- and hetero-dimerization of WRKY18 and WRKY40 in the plant cell nucleus was 

demonstrated several years ago (Xu et al., 2006). Since then, no reports about WRKY18- or 

WRKY40-protein interactions were published. However, a recent report suggests a role of 

WRKY18 and WRKY40 outside of the plant cell nucleus (Shang et al., 2010). Upon ABA 

induction, nuclear WRKY40 is recruited to the cytosol and thought to interact with the 
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potential ABA receptor, ABAR, at the chloroplast membrane. Cytoplasmic relocation of 

WRKY40 leads to a de-repression of the ABA-responsive transcription factor ABI5, resulting 

in the induction of ABA responsive genes. Although the proposed model is highly 

controversial (Antoni et al., 2011; Tsuzuki et al., 2011), a cytosolic interaction of ABAR and 

WRKY40 cannot be completely excluded since several independent molecular biology 

techniques were originally employed and yielded consistent results (Shang et al., 2010).  

The yeast 2-hybrid analyses to detect potential WRKY18 and WRKY40 interactors 

performed in this study resulted in a very limited number of candidates.  

Based on yeast studies it could be verified that WRKY18 and WRKY40 interact with 

truncated versions of FIB4 and a yet uncharacterized Oxidoreductase (AT2G38240) (Figure 

13). However, interactions were neither detected with full-length proteins in yeast nor in 

planta, which might be due to conformational alterations of the fusion-proteins. Though, co-

localization to the plant cell nucleus was demonstrated for all tested full-length proteins 

(Figure 13) and co-expression analysis revealed that the tested genes are simultaneously 

induced upon pathogen challenge, wounding or abiotic stress, although FIB4 shows only 

moderate responsiveness to those challenges (Genevestigator, V4). Nevertheless, this 

indicates that the temporal and spatial occurrence of the tested proteins would potentially 

enable physical interaction in the nucleus. 

Notably, FIB4 and the Oxidoreductase (AT2G38240) lack any known NLS motifs but 

truncated versions also partly localized to the cytosol, indicating a less efficient nuclear 

import of the truncated proteins. Oxidoreductases are common in plants with ~100 members 

identified in the Arabidopsis genome and are involved in the biosynthesis of many 

metabolites including flavonoids, gibberellins, and ethylene (Wilmouth et al., 2002).   

Infection of oxidoreductase mutant plants with the biotrophic powdery mildew G. orontii and 

the hemi-biotrophic bacteria Pto DC3000 did not reveal any increased susceptible or resistant 

phenotype, thus it is currently difficult to hypothesize a role of this Oxidoreductase in plant 

defense. However, publicly available data demonstrates that this Oxidoreductase is induced 

upon biotic and abiotic stresses (Genevestigator, V4). Moreover, wound-induced expression 

of Oxidoreductase in wildtype Col-0 plants was shown to be JA-dependent and MeJA 

treatment strongly induced Oxidoreductase expression, but an overexpression line did not 

reveal a JA-insensitive phenotype (Yan et al., 2007). The DOWNY MILDEW RESISTANT 6 

(DMR6) gene encodes for a putative 2OG-Fe(II) oxygenase of unknown function, but was 

shown to be required for susceptibility to downy mildew infection (van Damme et al., 2008). 

Interestingly, no phenotype of dmr6 plants was found upon infection with G. orontii and Pto 
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DC3000, in this sense resembling observations made with Oxidoreductase mutant plants. This 

and the fact that Oxidoreductase is highly responsive to JA support the necessity for further 

analyses of oxidoreductase mutants. Even more, interaction of Oxidoreductase with 

WRKY18 and WRKY40 by co-immunoprecipitation (Co-IP) followed by mass- spectrometry 

(MS) analysis using the established WRKY18-HA complementation line may now become 

feasible due to the increasing sensitivity of the current methodology.              

Obviously, additional proteins responsible for bridging the interaction may be involved or the 

protein requires modifications or a specific trigger. This is conceivable for FIB4, which was 

already suggested to be involved in plant disease resistance responses (Jones et al., 2006; 

Sanabria and Dubery, 2006). It was demonstrated that MAMP treatment stimulates its 

phosphorylation (Jones et al., 2006; Singh et al., 2010) and MAMP application induces the 

expression of its ortholog in tobacco, which was further shown to interact with the virulence 

protein HrpN of the potato fire blight pathogen Erwinia amylovora (Sanabria and Dubery, 

2006; Singh et al., 2010). Pathogen infections of fib4 revealed no differences between mutant 

and wildtype Col-0 plants upon biotrophic powdery mildew infection but confirmed the 

increased susceptibility towards hemi-biotrophic bacterial strain Pto DC3000 (Figure 14) 

(Singh et al., 2010). FIB4 was previously found to associate with the PSII light-harvesting 

complex and locate to plastoglobules, lipoprotein bodies attached to the thylakoids that store 

lipids, including antioxidants, carotenes and plastoquinones (Singh et al., 2010). Singh and 

colleagues demonstrated alterations in plastoglobule ultrastructure and increased sensitivity to 

oxidative stress in fib4 plants. Thus, the authors hypothesized a correlation between enhanced 

sensitivity to oxidative stress and increased susceptibility towards Pto infection, as Pto is 

known to induce ROS accumulation in host tissue via the phytotoxic virulence factor 

coronatine (Ishiga et al., 2009; Singh et al., 2010). Alternatively, the observed morphological 

phenotype of fib4 mutants found in this study, which was not yet described previously, may 

account for the observed susceptibility. The fact that the severe growth phenotype was not 

reported by Singh and colleagues may result from different growing conditions used in their 

study. This may point to a role of FIB4 in the perception of and/or response to different light 

conditions, which could be easily tested in further analyses. The presence of a conserved 

lipocalin signature in FIB4 further indicates a function in transport of lipophilic antioxidants 

upon light stresses (Singh et al., 2010). Notably, chloroplasts are location of lipid-derived JA 

biosynthesis. The committed step of JA biosynthesis is catalyzed by AOS, which is also 

associated with plastid membranes and plastoglobules (Schaller and Stintzi, 2009). Recently, 

correlation between JA insensitivity, light conditions and growth phenotypes involving 
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elongated hypocotyls were demonstrated (Kazan and Manners, 2011; Robson et al., 2010). 

Furthermore, Youssef and colleagues reported that a fibrillin subfamily (FIB1a, -1b, -2) 

conditions jasmonate production under photosynthetic stress, mediated by plastoglobule 

accumulation as the potential site for initiating chloroplast stress-related JA biosynthesis 

(Youssef et al., 2010). Whether fib4 mutants are affected in JA biosynthesis or signaling is 

highly speculative but can readily be analyzed both for hormone measurements and responses 

in fib4 mutants along with appropriate double mutants. However, the role of nuclear 

localization of FIB4 and a potential interaction with WRKY TFs remains elusive. 

 

3.4. Concluding remarks 

In conclusion this study has provided several novel insights into the role of WRKY18 and 

WRKY40 in regulating diverse responses related to plant immunity. Although valuable 

information has been gained that should certainly advance our knowledge of what these two 

transcription factors influence within the host, we are still far from fully understanding the 

specific molecular components with which they interact or the specific signaling 

pathways/subpathways they are involved in. In particular we are not yet at a stage to pinpoint 

key factors that depend on WRKY18 and/or WRKY40 functions and that are critical for the 

outcome of the interaction with G. orontii or with the bacteria Pto AvrRPS4. The fact that 

WRKY18 and WRKY40 play an important role in plant immunity towards Pto AvrRPS4 

bacteria may partly explain why they are indispensable for the host despite the fact that loss of 

these two TF genes confers strong resistance towards the powdery mildew fungus G. orontii. 

Up-regulation of numerous defense-related positive and negative regulators of defense 

signaling and the exaggerated activation of downstream maker genes in wrky18wrky40 

mutants upon pathogen challenge also points to a role of WRKY18 and WRKY40 in 

balancing and/or fine-tuning of defense responses. 

By focusing in the future on elucidating the direct targets of WRKY18 and WRKY40 during 

the infection with G. orontii and Pto AvrRPS4 we may hope to uncover some of the still 

missing vital components that are essential in determining the distinct outcomes observed in 

the host. Moreover, it is obvious that we must position these transcription factors into the 

increasing complex regulatory network of the host in order to understand how their functions 

influence, both positively and negatively, host cell responses. 
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4. Material and Methods 

The material and methods section is subdivided into two parts, listing all materials used 

within this work in the first part (4.1). This includes the list of oligonucleotides, plant lines, 

bacterial strains, pathogens, buffers and chemicals, media, solutions and enzymes. The second 

part (4.2) describes the methods applied in this work.  

4.1. Material 

4.1.1. Oligonucleotides 

 
Table 2: Oligonucleotides used in this study 

Gene Locus Forward primer (5' - 3') 
 

Reverse primer (5' - 3') Purpose 

CYP81F2 AT5G57220 CCACGTTCTCCATCTGAAGATC GCACCAGGACACGTTCTTCG qPCR 

EDS1 AT3G48090 AAGCATGATCCGCACTCG CGAAGACACAGGGCCGTA qPCR 

Expr. Protein AT4G26410 GAGCTGAAGTGGCTTCCATGAC GGTCCGACATACCCATGATCC qPCR 

ICS1 AT1G74710 CATTGATCTATGCGGGGACAG TGGACAAAAGCTCGTACCTGAG qPCR 

PAD4 AT3G52430 GGTTCTGTTCGTCTGATGTTT GTTCCTCGGTGTTTTGAGTT qPCR 

NPR1 AT1G64280 AGGCACTTGACTCGGATGATATTG CTTCACATTGCAATATGCAACAGC qPCR 

PR1 AT2G14610 TTCTTCCCTCGAAAGCTCAA AAGGCCCACCAGAGTGTATG qPCR 

JAZ1 AT1G19180 TATATTCTACGCCGGGCAAGT TGCGATAGTAGCGATGTTGC qPCR 

JAZ2 AT1G74950 CGGTAAACTTCGAGCCTGTC AACCCCAGAAGCAAACATTG qPCR 

JAZ3 AT3G17860 AGGCAAAGGCGATAATGTTG CGACAGAGGCACGAGTATGA qPCR 

JAZ4 AT1G48500 TTCCCCCTCAGTTGACAATC CGGTTTAGCATGAGGTCCAT qPCR 

JAZ5 AT1G17380 CACCGTCTGATTTGATATGGG TCATCGTTATCCTCCCAAGC qPCR 

JAZ6 AT1G72450 GCAACATCAGGTTGTGGAACG CAACCATCTCTGGCTTGGGAG qPCR 

JAZ7 AT2G34600 GATCCTCCAACAATCCCAAA TGGTAAGGGGAAGTTGCTTG qPCR 

JAZ8 AT1G30135 CGATCGCAAGCAGAGAAATG GATCCGACCCGTTTGAGGAT qPCR 

JAZ9 AT1G70700 CAATGCAGCTCCTCGTAACA GGATTCTCCGGTCGACAAAT qPCR 

JAZ10 AT5G13220 CGAGTCGTCGATGGAGACAG CTCGAGAAAACGTTGCAGTG qPCR 

JAZ11 AT3G43440 GCCTTCCGTTGTTGTACGAT AAAGAGGAGGTGCGAGATGA qPCR 

JAZ12 AT5G20900 GCACATCTAATGTGGCATCACC CCAATCTGTCCCGTCTTTTC qPCR 

LOX2 AT3G45140 TGAATTGCAAGCTGTTGCTC GCAGAAGCTACAAGACCACC qPCR 

OPR3 AT2G06050 CGGCTATAGATCACTTGGACG GCGAGCTTTGAGCCATTAACAC qPCR 

PDF1.2 AT5G44420 ACGCACCGGCAATGGTGGAA TGCATGATCCATGTTTGGCTC qPCR 

PEN2 AT2G44490 CTTCGAGAGATTTGGGGACA CAGCAACACTAGCGCCATTA qPCR 

VSP2 AT5G24770 ACCGTTGGAAGTTGTGGAAG CCAAATCAGCCCATTGATCT qPCR 

WRKY18 AT4G31800 AAGGGACGCATAACCACTTG CCTTTCGTTTTTCTCCAACG qPCR 

WRKY40 AT1G80840 CTTGACTGTGCCGGTGACTA GAAGAAGCCATTTGCTCCAC qPCR 

     

WRKY18 AT4G31800 
GATTTTTCATTTTCGTTAAAGC GTCCGACTGAATGAGAAGTTC ChIP Set 1 

CAAATAGTAAGGGAAACTAGGA AGAAAAATTTGGACGTCATAC ChIP Set 2 
GCTTGACTCATCATCAACTTAAG GTTATGATAGTTTTAGGTCAAATG ChIP Set 3 

     

WRKY40 AT1G80840 
CGATGGTATCGTCAATTTGTC CGTGCTTAATTAGGAAGTTTAATA ChIP Set 1 

GGAAAGAATAAAGTTGTTTTCAC TGGTAGAAGACTTGAGTACCTTAG ChIP Set 2 
CTGTTAGAAAGATTAAATCAAAGG TCTTAGTTATCATTTTTCTCCG ChIP Set 3 

     

     

JAZ7 

(WiscDsLox7H11) 
AT2G34600 

AAATGCGACTTGGAACTTCG TGGTAAGGGGAAGTTGCTTG LP/RP 
AAATGCGACTTGGAACTTCG AACGTCCGCAATGTGTTATTAAGTTGTC RP/LB 
TGGTAAGGGGAAGTTGCTTG CATCAAAAACTGCGACAAGCC expression 

     
JAZ10ox AT5G13220 ATGTCGAAAGCTACCATAGAAC CTCGAGAAAACGTTGCAGTG expression 

     
FIBRILLIN4 

(SALK_122950) 
AT3G23400 

TTCTTTAGCAGCCACTTCAGC ACGGCAAATGTTCACGTAATC LP/RP 
ACGGCAAATGTTCACGTAATC GATCTCAGGGGAAAACGAAAC RP/LB 

     

Oxidoreductase 
(SAIL_268_B05) 

AT2G38240 
GTGAGAAAACTGTGCGAAAGG TGGCCAACCATAATTTCATTG LP/RP 
GTGAGAAAACTGTGCGAAAGG TAGCATCTGAATTTCATAACCAATCTCGATACAC RP/LB 
ATGGCTACATGCTGGCCTGAG AGAACGGTACTCGTCGAACC expression 
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WRKY18 
(GABI_328G03) 

AT4G31800 
CGGATTTCGTCTGATCCATT CGATTCATTTCGATGCAAAG LP/RP 
CGGATTTCGTCTGATCCATT ATATTGACCATCATACTCATTGC RP/LB 

     
WRKY40 

(SLAT collection) 
AT1G80840 

attB1-ACATGGATCAGTACTCATCCTCTTTGG TCCACCAAAGCACTTGTCTG LP/RP 
attB1-ACATGGATCAGTACTCATCCTCTTTGG GTTTTGGCCGACACTCCTTACC RP/LB 

     

     

FIBRILLIN4 AT3G23400 

attB1-ccATGGCGACTTCTTCTAC attB2-TTAAGCAATGACGAATACCC FL Donor 

attB1-ccATGGCGACTTCTTCTAC attB2-AGCAATGACGAATACCCTAAG 
FL Donor no 

Stop 
attB1-cCATAGCAGAGGTGGAATTAG attB2-TTAAGCAATGACGAATACCC Trunc. Donor 

attB1-cCATAGCAGAGGTGGAATTAG attB2-AGCAATGACGAATACCCTAAG 
Trunc. Donor 

no Stop 
     

Oxidoreductase AT2G38240 

attB1-ccAACCCTTCCAAGTGGCC attB2-TTATCTAGTTAATAACAGTGAGTCG FL Donor 

attB1-ccAACCCTTCCAAGTGGCC attB2-TCTAGTTAATAACAGTGAGTCGAC 
FL Donor no 

Stop 
attB1-atATGGCTACATGCTGGCCTG attB2-TTATCTAGTTAATAACAGTGAGTCG Trunc. Donor 

attB1-atATGGCTACATGCTGGCCTG attB2-TCTAGTTAATAACAGTGAGTCGAC 
Trunc. Donor 

no Stop 
     

SPL3 AT2G33810 
attB1-ccATGAGTATGAGAAGAAGC attB2-TTAGTCAGTTGTGCTTTTCC FL Donor 

attB1-ccATGAGTATGAGAAGAAGC attB2-GTCAGTTGTGCTTTTCC 
FL Donor no 

Stop 
     

WRKY18 AT4G31800 attB1-tcATGGACGGTTCTTCGTTTCTCG attB2-TCATGTTCTAGATTGCTCC FL Donor 
     

WRKY40 AT1G80840 attB1-taATGGATCAGTACTCATCCTCTTTGGTCG attB2-CTATTTCTCGGTATGATTCTGTTGATAC FL Donor 
     

     

pDNOR207  TCGCGTTAACGCTAGCATGGATCTC GTAACATCAGAGATTTTGAGACAC 
Insert  

sequencing 

pGADT7  TCATCGGAAGAGAGTAGT TTTTCGTTTTAAAACCTAAGAGTC 
Insert 

amplification 

pGBKT7  AGATGGTGCACGATGCACAG TAATACGACTCACTATAGGG 
Insert 

amplification 
     

 

 

 

4.1.2. Plant material 

All experiments were performed using Arabidopsis thaliana Columbia-0 (Col-0) wildtype 

plants or mutants in the Col-0 background. The WRKY18 WRKY40 double mutant was 

generated by crossing the homozygous wrky18 (GABI_328G03) and wrky40 SLAT-line as 

described earlier (Shen et al., 2007; Tissier et al., 1999). JAZ7 mutants were ordered from 

Wisconsin mutant collection (Wisc_7H11) and genotyped to identify homozygous mutant 

plants. Such plants were checked for the absence of JAZ7 transcript 1 h after wounding. 

Homozygous plants were used for further analysis. JAZ10 overexpressor (JAZ10ox) plants 

(Yan et al., 2007) were kindly provided by Dr. Edward E. Farmer (University of Lausanne) 

and checked by PCR for constitutive JAZ10 expression. FIBRILLIN4 mutants were ordered 

from SALK mutant collection (SALK_122950) and homozygous plants were identified. This 

line was already shown to be a null mutant (Singh et al., 2010). Mutants for At2g38240 

(Oxidoreductase) were ordered from NASC (SAIL_268_B05) and homozygous mutant plants 

were identified. Absence of transcript was confirmed by PCR. Triple mutants were generated 

by crossing wrky18wrky40 homozygous plants with sid2 or rrtf1 homozygous plants. Triple 

mutants were identified by PCR and used for further experiments.  
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4.1.2.1. Mutant Arabidopsis lines used in this study 

 
Table 3: Arabidopsis mutants used in this study 

 

gene accession reference/source 

wrky18wrky40 Col-0 Shen et al., 2007 

wrky18 Col-0 Shen et al., 2007 

wrky40 Col-0 Shen et al., 2007 

eds1-2 Col-0 (Ler-0)a Bartsch et al., 2006 

sid2-1 Col-0 Wildermuth et al., 2001 

jar1-1 Col-0 Staswick et al., 2002 

ndr1-1 Col-0 Century et al., 1995 

jaz10ox Col-0 Yan et al., 2007 

jaz7 Col-0 this study 

fibrillin4 Col-0 this study 

At2g38240 

(oxidoreductase) 

Col-0 this study 

a 
Ler eds1-2 allele introgressed into Col-0 genetic background (8th backcrossed generation) 

 

 

 

4.1.2.2. Arabidopsis complementation lines used in this study 

To generate the WRKY18 3xHA-tagged complementation line, the genomic region from -4428 

bp to 1514 bp relative to the start codon of WRKY18 was PCR amplified and cloned into a 

binary pPAM vector (GenBank accession AY027531) derivative carrying a hygromycin 

resistance gene (M. Roccaro, unpublished). In a second step, the stop codon was removed and 

substituted by an in-frame 3xHA-sequence. This construct was stably transformed to 

wrky18wrky40 double mutant Arabidopsis plants. 
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4.1.3. Bacterial strains 

Bacterial strains used in this study are listed in Table 4. In addition the precise bacterial strain 

and genotype are stated. 

 
Table 4: Bacterial strains used in this study 

 
name strain Genotype 

Escherichia coli DH5α 
F- f80lacZDM15 D(lacZYA-argF) U169 

deoR endA1 recA1 hsdR17 (rk
-,mk) 

sup44 thi-1 gyrA96 relA1 phoA 

Escherichia coli DB3.1 
F- gyrA462 endA D(sr1-recA) mcrB mrr 

hsdS20 (rB
-, mB

-) supE44 ara14 galK2 

lacY1 proA2 rpsL20(Smr) xyl5 Dleu mtl1 

Agrobacterium tumefaciens GV3101 PMP90RK GmR KmR RifR 

 

 

 

4.1.4. Yeast strains and cDNA library 

All yeast 2-hybrid experiments were performed using strains AH109 and Y187 (Clontech; 

Mountain View, Germany). Detailed descriptions of both strains are given blow. 

  
Table 5: Yeast strains used in this study 

 
strain genotype reference/source 

AH109 

MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4Δ, 

gal80Δ, LYS2 : : GAL1UAS-GAL1TATA-HIS3, GAL2UAS-

GAL2TATA-ADE2, URA3 : : MEL1UAS-MEL1 TATA-lacZ 

James et al., 1996; A. Holtz, 

unpublished 

Y187 

MATα, ura3-52, his3-200, ade2-101, trp1-901, 

leu2-3, 112, gal4Δ, met–, gal80Δ, URA3 : : GAL1UAS-

GAL1TATA-lacZ 

Harper et al., 1993 

 

 

The cDNA library was kindly provided by Birgit Kemmerling (Center For Plant Molecular 

Biology, University of Thübingen). In addition, Gateway-system (Invitrogen) compatible bait 

and prey vectors pGBKT7 (pGBKT7-GW) and pGADT7 (pGADT7-GW) were provided 

(frame B). cDNA library was constructed from pathogen challenged plants. 6 weeks old 

Arabidopsis Col-0 plants were infiltrated with 1x10
8
 cfu/ml of Pseudomonas syringae pv 

tomato DC3000, hrcC, AvrRPM1 and Pseudomonas syringae pv phaseolicola. Plant material 

was harvested 2, 6 and 24 h after infiltration. Library construction was performed according 
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to Clontech Matchmaker Library Construction and Screening Kit. cDNA was cloned into 

pGADT7-GW and transformed into yeast strain AH109. Transformation efficiency was 

determined (3x10
5
 cfu/3 µg pGADT7; expected according to Clontech 1x10

6
 cfu/3 µg 

pGADT7). Number of clones in the library was calculated with 5.2x10
6
.     

 

4.1.5. Pathogens 

All pathogens employed in this study are depicted in Table 6.In addition, source or reference 

is stated. 

Table 6: Pathogens used in this study 

 
Name reference/source 

Golovinomyces orontii MPIPZa 

Golovinomyces cichoracearum V. Lipka b  

Golovinomyces cruciferarum V. Lipka
 b
 

Pseudomonas syringae pv. tomato DC3000 R. Innes c  

Pseudomonas syringae pv. tomato DC3000 AvrRPS4 K. Heidrich a 

Pseudomonas syringae pv. tomato DC3000 AvrRPM1 K. Heidrich a 

Pseudomonas syringae pv. tomato DC3000 HopA1 K. Heidrich a 

Pseudomonas syringae pv. tomato DC3000 hrcC K. Shirasu d 

Hyaloperonospora arabidopsidis EMCO J. Parker a 

Hyaloperonospora arabidopsidis EMWA J. Parker a 

Hyaloperonospora arabidopsidis CALA J. Parker a 

Phytophtora infestans D. Scheel e 

Botrytis cinerea (isolate 2100) 
R.Birkenbihl a /  

Spanish Type Culture f 
a 

Max-Planck Institute for Plant Breeding Research, Cologne, Germany 
b Georg-August-University, Göttingen. Germany 
c 

Indiana University, Bloomington, Indian, USA 
d
 The Sainsbury Laboratory, John Innes Centre, Norwich, UK 

e 
Leibnitz Institute for Plant Biochemistry, Halle Germany 

f
 CollectionUniversidad de Valencia, Burjassot, Spain 

 

 

4.1.6. Vectors 

Vectors used in this study are listed in Table 7. In additional a reference or the source of the 

construct is stated. 

 
Table 7: Vectors used in this study 

 
Name reference/source 

pDONR207 Invitrogen; Heidelberg, Germany 

pGBKT7 Clontech; Mountain View, USA 

pGADT7 Clontech; Mountain View, USA 

pUC-SPYCE Walter et al., 2004 

pUC-SPYNE Walter et al., 2004 
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4.1.7. Antibodies and Enzymes 

Primary and secondary antibodies used in this study are listed in Table 8 and Table 9. 

Additionally, the source, dilution of use, reference and the purpose the antibodies were used 

for are stated. 

 

4.1.7.1. Primary and secondary antibodies 

 
Table 8: List of primary antibodies used in this study 

 
name source dilution reference/source purpose 

α-HA rabbit (polycl.) 1:5000 in 5% milk Sigma ChIP 

α-HA rat (monocl.) 1:5000 in 5% milk Roche Western 

α-myc mouse (monocl.)  1:500 in 5% milk Santa Cruz Biotechnology Western 

 

 

 

4.1.7.2. Secondary antibodies 

 
Table 9: List of secondary antibodies used in this study 

 
name label dilution reference/source purpose 

α-rat IgG HRPa 1:10.000 in 5% milk Sigma Western 

α-mouse IgG HRPa 1:5.000 in 5% milk ECL (GE Healthcare) Western 
a 

horseradish peroxidase 

 

 

 

 

4.1.7.3. Enzymes 

Restriction enzymes were purchased from New England Biolabs (NEB, Frankfurt am Main, 

Germany) and Fermentas (St. Leon-Rot, Germany). Restriction digestion was performed 

according to the manufacture’s protocol. Taq-Polymerase used for standard PCR- reactions 

was ordered from Ampliqon (Odense, Denmark) and used according to the manufacturer’s 

instructions. High accuracy Taq-Polymerase from TaKaRa (Clontech, Mountain View, USA) 

was used for generating DNA fragments for cloning according to the manufacture’s protocol.  

BP- and LR-clonase II enzyme mixes were purchased from Invitrogen (Karlsruhe, Germany) 

and used following the manufacturer’s instructions.  
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4.1.8. Antibiotics and Chemicals 

4.1.8.1. Antibiotics 

Antibiotic stock solutions (1000x) were prepared as indicated and stored at -20°C. 

 
Table 10: List of antibiotics used in this study 

 

name concentration source 

Ampicilin 50 mg/ml in H20 Roth 

Kanamycin 50 mg/ml in H20 Sigma 

Gentamycin 25 mg/ml in H20 Sigma 

Carbencilin 50 mg/ml in H20 Sigma 

Rifampicin 100 mg/ml in DMSO Sigma 

 

4.1.8.2. Chemicals 

Laboratory grade chemicals and reagents were purchased from Invitrogen (Karlsruhe, 

Germany), Merck (Darmstadt, Germany), Roth (Karlsruhe, Germany) and Sigma-Aldrich 

(München, Germany) unless stated otherwise.    

Pierce ProteinA agarose for ChIP-experiments and Pierce Western substrate were purchased 

from Thermo Fisher Scientific (Rockford, USA). 

 

4.1.9. Media, buffer and solutions 

4.1.9.1. Media 

Sterilized media was used for growing bacteria, yeast or Arabidopsis plants in vitro. For 

sterilization, media was autoclaved for 20 min at 121°C and cooled down prior adding heat 

instable antibiotics or other supplements. Heat instable compounds were filter-sterilized 

before use. Agar for agar plate preparation was purchased from Becton (Franklin Lakes, 

USA) and MS medium was ordered from Duchefa (Haarlem, Netherlands) or Sigma. 

 

Escherichia coli medium     Luria-Bertani (LB) broth or agar plates 

 

Agrobacterium tumefaciens medium   YEB broth or agar plates  

 

Pseudomonas syringae medium   NYGA broth or agar plates 

 

Arabidopsis thaliana medium ½ Murashige-Skoog (MS) medium 

including vitamins and 0.5% sucrose 

 

Saccharomyces cerevisiae (yeast) medium Prepared according to Clontech 

Matchmaker Library Construction and 

Screening Kit User Manual (Clontech, 

Mountain View, USA) 
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4.1.9.2. Buffers 

 

3xSB buffer: 

150 mM Tris 6.8 (3 ml 1M) 

6 mM EDTA (240 µl 0,5 M) 

3% SDS (6 ml 10% SDS) 

3% β-mercaptoethanol (β-MOH) (600 µl) 

24% glycerol (4,8 ml) 

0.075%  

5,31 ml H20  

10x running buffer: 

250 mM Tris (30.25 g) 

1.92 M glycin (144.29 g) 

1% SDS (10 g) 

ad 1 l H20 

 

 

Edward solution: 

200 mM Tris 7,5 pH 

250 mM NaCl 

25 mM EDTA 

0.5 % SDS 

 

10x transfer buffer: 

5.8 g TRIS 

29 g glycine 

10 ml 10% SDS (1g SDS) 

200 ml MeOH (methanol) 

ad 1 l H20 

 

PBS: 

80 g NaCl 

2 g KCl 

14.4 g Na2HPO4 

2.4 KH2PO4 

pH 7.4 (HCl) 

 

Yeast transformation buffer: 

8 ml PEG3350 (50%) 

1 ml TE (10x) 

1 ml LiAc (10x) 

 

 

Ponceau S: 

ATX Ponceau S (Fulka) 1:5 in dH20 

TE-buffer: 

10 mM TRIS 

1mM EDTA 

pH 8.0 (HCl) 

 

3x Protein loading buffer: 

150 mM TRIS 

3% SDS 

6 mM EDTA 

3% β-mercaptoethanol 

24% glycerol 

0.0075% bromphenol blue 

resolved in dH2O 

 

 

 

 

 

 



Material and Methods 

  

79 

 

4.2. Methods 

4.2.1. Maintenance and cultivation of Arabidopsis plants 

Arabidopsis thaliana seeds were sowed out on 42 mm Jiffy-7 pots (Jiffy Products, Stange, 

Norway) soaked in four liters of water containing 0.1% Wuxal fertilizer (Manna, Germany), 

to avoid unspecified pathogen infections derived from garden soil. Plants were grown for 4-5 

weeks under short-day conditions (10 hours light at 23°C/14 hours darkness at 20°C and 60% 

humidity) in closed cabinets (Schneijder chamber) until use. For pathogen infection plants 

were transferred to designated growth-chambers for the respective pathogens. See the 

‘Pathogen infections’-section for more details.  

 

4.2.1.1. Stable Arabidopsis transformation 

Stable transformation of Arabidopsis plants was performed using the floral dip method as 

described previously (Bent, 2006). Transformants were selected on MS agar plates containing 

the appropriate antibiotics.   

 

4.2.1.2. Agrobacterium tumefaciens transformation by electroporation 

A. tumefaciens strain GV3101 (pMP90 RK) was used for transformation. 50 µl of competent 

cells were mixed with 0.2-0-5 µg of plasmid DNA and transferred to a chilled 2 mm 

(electrode distance) electroporation cuvette and kept on ice. The BioRad Gene Pulse 

apparatus was set to 25 µF, 2.5 kV and 400 Ω. The cells were pulsed once at the above setting 

and 1 ml YEB was added to the cuvette. Cells were transferred to a 1.5 ml reaction tube and 

incubated for 2 h at 28°C shaking at 600 rpm. A 10 µl fraction of the transformation mixture 

was subsequently plated onto YEB agar plates containing the appropriate antibiotics and 

incubated at 28°C for 2 days. 

 

4.2.1.3. Transient expression in Nicotiana benthamiana 

For transient expression of CFP- and/or YFP-tagged constructs in N. benthamiana, fresh A. 

tumefaciens strains expressing the construct of interest were grown on YEB agar plates 

containing the appropriate antibiotics for 2 days at 28°C. Bacteria were harvested from plate 

and diluted to OD600 0.7 in infiltration medium (10 mM MES pH 6.5 and 10 mM MgCl2).  

Bacterial suspension was infiltrated into abaxial N.benthamiana leaves using a needle-less 

syringe. For localization studies, 1 ml of bacterial suspension was infiltrated, whereas for co-

localization, 0.5 ml of each construct were mixed and infiltrated subsequently. Two days after 

infiltration, plant leaves were prepared for confocal microscopy. 

Split-YFP constructs were infiltrated as described earlier by Walter et. al (2004). 
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4.2.2. Pathogen infections 

4.2.2.1 Powdery mildew infections 

Golovinomyces orontii was propagated on pad4sag101 double mutant Arabidopsis plants in 

closed cabinets (Percival chamber) under short-day conditions (10 h light/14 h darkness) with 

70% humidity and 22°C. Four weeks old plants were used for infections. All infections were 

performed by dusting without touching the plants to avoid any wound responses. A brush was 

used to spread spores (“powder”) over the plant. Infected plants were further kept under short-

day conditions in closed cabinets. Control samples (0 hpi) were always taken before 

inoculation with the fungus.  

Golovinomyces cichoracearum and Golovinomyces cruciferarum were propagated on their 

natural host plants zucchini (Gold rush) and Brassica juncea under short-day conditions (8 h 

light/16 h darkness) at 80% humidity and 22 °C. Different fungal pathogens were kept in 

individual growth chambers to avoid cross-contaminations. Infection with G. cichoracearum 

and G. cruciferarum were performed by spreading spores evenly onto 4 weeks old 

Arabidopsis plants without touching the plant. Conidiophore counts were performed 7 dpi. 

Experiments with G. cichoracearum and G.cruciferarum were performed by C. Roth at the 

University of Göttingen, Germany. 

 

4.2.2.2. Penetration counts 

Infections were achieved by dusting spores over the plants. Leaf samples were taken 48 hpi 

and chlorophyll was destained in ethanol:acetic acid solution (3:1) for at least 24 hours. To 

visualize epiphytic fungal growth, 4 leaves of one biological replicate were stained in 

Coomassie Brilliant Blue solution (45% MeOH, 10% acetic acid, 0.05% Coomassie R250) 

and prepared for microscopy. Four biological replicates (individual plants) were analyzed per 

experiment and each experiment was repeated at least twice. For fungal host cell entry rates, 

the ratio of penetrating spores that formed secondary hyphae to all spores that formed an 

appressorium was calculated. Values represent means ± SD of one representative experiment 

comprising four individual plants (n=4). 

 

4.2.2.3. Conidiophore counts 

For conidiophore counts, at least nine leaves of three individual plants (n=3) were harvested 

at 7 dpi and destained in 80% EtOH for several days. To visualize fungal structures, destained 

leaves were stained in 0.6% Coomassie Brilliant Blue solution (in 100% EtOH) and prepared 

for microscopy. Microscopy was performed using a Leica epiflourescence microscope (Leica 
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GmbH, Wetzlar, Germany). Transmitted light and filter A (BP 340-380) was used for 

conidiophore counting. This was done by determining the number of conidiophores of single 

sporulated spores at 7 dpi.    

 

4.2.2.4. Pseudomonas syringae infections 

For Pseudomonas syringae infections, bacteria were plated from glycerol stocks on fresh 

NYGA agar plates containing the appropriate antibiotics. Bacteria were grown 2 days at 28°C 

and plated again on fresh NYGA agar plates containing the appropriate antibiotics and 

incubated over night at 28 °C. Grown bacteria were harvested from plate and resuspended in 

10 mM MgCl2. Bacterial suspension was diluted to O.D.600 = 0.2 in 10 mM MgCl2 containing  

0.04% Silwet L-77. Plants were covered with sealed hoods that were sprayed with water to 

increase humidity and induce stomata opening at least 3 h before infection. Plants were 

sprayed evenly using a micro diffuser (Roth) until leaves were covered with bacterial 

suspension. The plants were covered with a sealed hood for 1 h, afterwards the hood was 

removed until leaf surface was dry. 0 dpi samples were subsequently harvested by detaching 

three leaves. Leaves were washed in 70% ethanol, followed by two washing steps in H20. 

After drying the leaves on a paper towel, one 0.7mm leaf-disc was punched from each leaf 

and collected in 2 ml reaction tubes containing 0.5 ml 10 mM MgCl2 supplemented with 

0.01% Silwet L-77. Reaction tubes were incubated shaking at 600 rpm for 1 h at 28°C. For 

each sample, a dilution series (undiluted, 10
-1

 – 10
-6

) was plated on NYGA agar plates 

containing the appropriate antibiotics. 20 µl were plated of each dilution and incubated 2 days 

at 28°C. Colonies were counted and bacterial number was calculated. Similarly, after 3 days 

under controlled short-day conditions (10 h light at 23°C / 14 h darkness at 22°C and 65% 

humidity), 3 dpi samples were harvested and leaf discs shaked in 1.5 ml MgCl2 containing 

0.01% Silwet L-77 for 1 h at 600 rpm at 28°C. For 3 dpi samples, 10 µl of each dilution was 

plated on NYGA agar plates containing the appropriate antibiotics and colonies were counted 

after 2 days incubation at 28°C. Samples taken 4 dpi were treated similarly. Values represent 

means ± SD of a representative experiment comprising four individual plants (n=4).          

 

4.2.2.5 Hyaloperonospora arabidopsisdis infections 

Hyaloperonospora arabidopsidis were propagated on Arabidopsis Col-0 eds1-2 plants. A 

concentration of 4x10
4
 spores/ml in H2O was used for infection of 10 days old plants. Infected 

plants were incubated in sealed trays under short-day conditions (10 h light/14 h darkness, 22 

°C, 70% humidity) for 7 days. Afterwards, 20-30 leaves were harvested into 10 ml reaction 
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tubes and transferred to 1:1 trypan blue – EtOH solution for staining of oomycete structures. 

Leaf samples were boiled for 5 min (with open lids) and trypan blue/EtOH solution was 

removed and exchanged by chloralhydrate for destaining plant leaves. Samples were 

incubated on a rotating shaker overnight at RT. Chloralhydrate was exchanged and samples 

were incubated another night under conditions described above. Afterwards, chloralhydrate 

was removed and 75% glycine was added to the samples. Leaf samples were prepared for 

microscopy on glass slides and pictures were taken using transmitted light microscopy. 

Infections were at least repeated twice with similar results.      

 

4.2.2.6. Phytophtora infestans infections 

Phytophtora infections were carried out with two different concentrations. Four weeks old 

plants were infected with 500 spores/µl in H20 or 50 spores/µl in H20. 10 µl were used for 

drop-infection of plant leaves. Leaf samples were harvested 3 days after inoculation and 

stained with trypan blue as described by Lipka et. al (2005). After destaining of chlorophyll, 

leaves infected with high spore-concentrations were scanned and trypan blue staining 

intensities at inoculation sites were determined using the image processing software ImageJ 

(http://rsbweb.nih.gov/ij/). Leaves infected with low spore-concentration were investigated 

using transmitted light microscopy. Infections were repeated twice with similar results. 

Phytophtora experiments were performed by L. Westphal at the Leibnitz Institute of Plant 

Biochemistry (IPB) in Halle, Germany. 

 

4.2.2.7. Botrytis cinerea infections 

For B. cinerea infections, isolate 2100 was used, which was cultivated on potato dextrose 

plates for 10 days at 22°C. Spores were collected from plate, washed and stored in 0.8% NaCl 

at a concentration of 10
7
 spores/ml at -80°C until use. For drop-inoculation of 5 weeks old 

Arabidopsis plants, spores were diluted in Vogelbuffer (in 1l: 15 g sucrose, 3 g Na-citrate, 5 g 

K2HPO4, 0.2 g MgSO4 7H2O, 0.1 g CaCl2 2H2O, 2 g NH4NO3) to 5x10
5
 spores/ml. For drop 

infections, 5 µl of diluted spores were applied to single leaves. Mock infections were 

performed using only Vogelbuffer. Plants were kept prior to and during the infection under 

sealed hoods with high humidity. B. cinerea infections were performed by R. Birkenbihl at 

the MPIPZ in Cologne, Germany.    
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4.2.3. Molecular biological methods 

4.2.3.1. Escherichia coli transformation 

Chemical transformation was carried out for transformation of E.coli cells. 10 to 100 ng 

plasmid DNA or 3 µl of BP or LR reactions (Invitrogen) were mixed with 50 µl of chemically 

competent E.coli cells and incubated on ice for 30 min. After incubation, cells were heat 

shocked by incubation for 45 sec at 42°C and subsequently put on ice for additional 2 min. 

300 µl pre-warmed LB liquid medium was added to the cells and incubated for 1 h at 37°C 

shaking at 700 rpm. Afterwards, cells were centrifuged for 1 min at 5000 rpm and pellet was 

resuspended in 100 µl LB medium. 10 and 50 µl were plated on LB agar plates containing the 

appropriate antibiotics and incubated overnight at 37°C.   

 

4.2.3.2. DNA isolation 

For genotyping, 10 mg plant leaf material was collected into 96-well Collection Microtubes 

(Qiagen, Hilden, Germany) containing10-15 1 mm Zirconia Beads (BioSpec). Samples were 

frozen in liquid nitrogen and homogenized using a TissueLyser (Qiagen, Hilden, Germany) 

for 30 sec at 30 strokes/sec. 400 µl extraction buffer (1% SDS, 0,5 M NaCl) was added to the 

homogenized samples and shaked again in the TissueLyser for 10 sec at 30 strokes/sec. The 

following DNA extraction was performed according to Kotchoni et. al (Kotchoni and 

Gachomo, 2009). 2 µl of extracted DNA was used for subsequent PCR analysis. 

Isolation of high quality plasmid DNA was performed using the Machery Nagel (MN, Düren, 

Germany) NucleoSpin Mini-Kit following the instructions of the manufacturer.  

       

4.2.3.3. Cloning (BP/LR reaction) 

Cloning was performed using the Invitrogen (Heidelberg, Germany) Gateway BP/LR clonase 

II-Enzyme Mix following the instructions of the manufacturer. All constructs cloned in this 

study are based on Gateway-system compatible vectors. 

  

4.2.3.4 Isolation of RNA 

Total RNA was extracted from 100 mg plant leaf material of 4-5 week old Arabidopsis plants. 

Frozen samples were homogenized with ~20 1 mm Zirconia Beads’(BioSpec) in a Mini-

BeadBeater-6 (BioSpec) for 30 seconds or using a TissueLyser (Qiagen, Hilden, Germany) 

for 30 sec at 30 strokes/sec. RNA was isolated using the TRI Reagent (Ambion) following the 

manufacturer’s protocol. Concentration and quality was determined using a NanoDrop 
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photometer (PeqLab). RNA with a 260/280 and 160/230 ratio of ~2.0 was used for cDNA 

synthesis. 

 

4.2.3.5. cDNA synthesis 

Five µg total RNA was used for cDNA synthesis with oligo-dT-primers employing the 

‘SuperScript II first-strand synthesis system for reverse-transcription PCR’ (Invitrogen) 

following the manufacturer’s protocol. cDNA was solved in 50 µl water and subsequently 

used for quantitative real-time PCR.  

 

4.2.3.6. Polymerase chain reaction (PCR) 

Standard PCR was performed using the Ampliqon (Odense, Denmark) Taq polymerase while 

amplification of DNA for cloning purpose was done with high accuracy TaKaRa Taq 

polymerase (Clontech, Mountain View, USA). The standard PCR reaction mix (Table 11) and 

thermal profile (Table 12) is depicted below.  

 

Table 11: Standard PCR reaction mix 

 

Reagent Amount 

DNA template 10-50 ng 

PCR amplification buffer 1/10 of reaction volume 

dNTP mix (dATP, dGTP, dCTP, dTTP) 0,2 mM each 

forward primer 0,5 µM 

reverse primer 0,5 µM 

Taq DNA polymerase 2,5-5 units 

sterile H2O Variable 

 

 

Table 12: Standard PCR thermal profile 

 

Step Temp. Time 

Initial denaturation 95°C 3 min. 

Denaturation 95°C 30 sec. 

Annealing 55°C 30 sec.              20-35x 

Extension 72°C 20-300 sec 

Final extension 72°C 3 min. 
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4.2.3.7. Quantitative Real-Time PCR (qPCR) 

Expression kinetics in time course experiments were performed by qPCR analyses. All qPCR 

analyses were performed with cDNA corresponding to ~15 ng RNA before reverse 

transcription on an ‘iQ5 multicolor real-time PCR detection system’ (BioRad) using ‘iQ5 

SYBR Green Ready Mix’ (BioRad). Gene-specific primers were designed using Primer3 

software (Rozen and Skaletsky, 2000) and further analyzed using NetPrimer (Premierbiosoft). 

Primers were designed with a NetPrimer rating value of 85-100, as recommended by 

Czechowski and colleagues (Czechowski et al., 2005). Expressed protein (AT4G26410) was 

used as the reference gene, as it shows very constant expression throughout various biotic and 

abiotic stresses (Czechowski et al., 2005). qPCR results were analyzed using the ΔΔCt-

method as described by Livak and colleagues (Livak and Schmittgen, 2001). Fold-changes 

were calculated relative to wildtype untreated (0 hpi) samples or to the same time point set to 

1. Data were shown as the mean +/- standard deviation (SD) from two biological and two 

technical replicates (n=2). All expression kinetics were repeated in two individual 

experiments with similar results, except for verification of microarray data, which was based 

on only one replicate.  

The standard qPCR-program is depicted in Table 13.  

 

Table 13: Standard qPCR program 

 

q-PCR program   

Initial denaturation 95°C 2 min. 

Denaturation 95°C 20 sec. 

Annealing 55°C 30 sec.       40x 

Extension 72°C 25 sec. 

Final extension 72°C 1 min. 

Melting Curve 55-95°C 10 sec.; á 0.5°C; 81x 

 

 

4.2.3.8. Microarray experiment 

For microarray analysis, total RNA was isolated from 100 mg of plant leaf tissue prior to and 

6 and 14 h after infection with G. orontii using TRI reagent following basically the 

instructions of the manufacturer with some modifications. To allow isolation of low 

molecular weight RNA (small RNAs), the volume of isopropanol was increased to 1 ml/ml 
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TRI reagent. After extraction, 25 µg total RNA was adjusted to 100 µl in DEPC water and 

used for an additional purification step using the Qiagen RNeasy-Plant Mini Kit with some 

modifications. 350 µl of RLT buffer (Qiagen) without β–mercaptoethanol was added and 

mixed well for 5 sec. Afterwards, 350 yl of 100% EtOH was added (to reach a final EtOH 

proportion of ~60%) and mixed by pipetting up and down. 750 µl of the mixture was 

transferred to RNeasy spin column and centrifuged 20 sec at 13.000 rpm. Flowthrough was 

discarded and washing step with RW1 buffer (Qiagen) was skipped, as it would remove low 

molecular RNAs. 500 µl of RPE buffer (Qiagen) containing EtOH was added to the column. 

After centrifugation for 20 sec at 13.000 rpm, flow-through was discarded and the washing 

step was repeated once. A final washing step with 500 µl 80% EtOH was performed before 

elution of RNA with DEPC water.    

For microarray analysis, high quality total RNA (50 ng) were reverse-transcribed into double-

stranded cDNA and subsequently in vitro transcribed in the presence of biotin-labeled 

nucleotides using the Affymetrix GeneChip 3’ IVT Express Kit (Affymetrix, Santa Clara, 

USA) including polyA controls as recommended by the manufacturer. Quantity and quality of 

the biotinylated cRNA was determined by using NanoDrop ND 1000 (PeqLab, Erlangen, 

Germany) and Bioanalyzer 2100 (Agilent, Böblingen, Germany). 15 µg of biotin-labeled 

cRNA samples were fragmented randomly to 35-200 bp at 94°C in Fragmentation Buffer 

(Affymetrix, P/N 901229). 

Array hybridization was carried out by mixing biotin-labeled cRNA samples with 300 µl 

Hybridization Mix (Affymetrix, P/N 900720) containing Hybridization Controls and Control 

Oligonucleotide B2 (Affymetrix, P/N 900454). Afterwards, samples were hybridized onto 

Affymetrix AGRONOMICS1 Arabidopsis tiling arrays for 16 h at 45°C. Hybridized arrays 

were washed using an Affymetrix Fluidics Station 450 running the FS450_0004 protocol. The 

Affymetrix GeneChip Scanner 3000 was used to measure fluorescence intensity emitted by 

the labeled target.  

 

4.2.3.8. Microarray data analysis 

Microarray data processing was performed by Emiel Ver Loren van Themaat at the MPIPZ in 

Cologne. Normalization and statistical analysis of the data was carried out as described by 

Irizarry and colleagues and Smyth (Irizarry et al., 2003; Smyth, 2004). Fold-changes were 

calculated by comparing the following genotypes upon G. orontii infection:  

- Col-0 0 hpi vs. wrky18 0 hpi 

- Col-0 6 hpi vs. wrky18 6 hpi 
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- Col-0 14 hpi vs. wrky18 14 hpi 

- Col-0 0 hpi vs. wrky40 0 hpi 

- Col-0 6 hpi vs. wrky40 6 hpi 

- Col-0 14 hpi vs. wrky40 14 hpi 

1.5-fold up- and 0.66-fold down-regulated genes with a p-value ≤ 0.05 were used for further 

analysis using BioVenn (http://www.cmbi.ru.nl/cdd/biovenn/) to visualize co-regulated genes. 

Moreover, Gene Ontology analysis was performed using the online tool of The Arabidopsis 

Information Resource (http://www.arabidopsis.org/tools/bulk/go/index.jsp). 

 

4.2.3.9. Chromatin immunoprecipitation (ChIP) 

For ChIP experiments, 2 g leaf material of 4-5 weeks old plants were harvested prior (0 hpi), 

2 and 6 hpi G. orontii infection, kept on ice, and subsequently processed following basically 

the protocol by Gendrel et al. (2005) with some modifications. Cross-linking of harvested leaf 

material was carried out by vacuum infiltration of 1% formaldehyde solution for 15 min, 

followed by a second 5 min vacuum infiltration. Sonication of extracted nuclei was performed 

using a Diagenode BioRuptor UCD300 T0 (Liege, Belgium) sonicator. Sonication was 

performed at 4°C and samples were additionally cooled with ice-water during the sonication 

process. Sonication was performed at high efficiency, 30 sec sonication, 30 sec pause 

(repeated 5 times). After that, ice-water was exchanged and the setup was repeated. After pre-

clearing with proteinA agarose beads, the sheared chromatin was incubated overnight with 

rabbit polyclonal HA-antibodies (Sigma) at 4°C on a nutator. Afterwards, immunocomplexes 

were collected by 2 h incubation with proteinA agarose beads and after washing, reverse 

cross-linking was performed overnight at 65°C. DNA extraction was performed by phenol-

chloroform isolation and DNA precipitated with ethanol. Input sample DNA was resolved in 

70 µl and immunoprecipitated DNA in 20 µl TE buffer pH 8.0. 10.5 µl of 1:20-dilutions were 

used for qPCR analysis. 

       

4.2.3.10. Denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

For SDS-PAGE, 100 mg of plant tissue were collected and frozen in liquid nitrogen until use. 

Frozen samples were homogenized with ~20 1 mm ‘Zirconia Beads’ (BioSpec) in a Mini-

BeadBeater-6 (BioSpec) for 30 seconds. 100 µl 2x SB-buffer were added to the frozen and 

homogenized samples and mixed rigorously. Samples were incubated for 3 min at 95°C and 

subsequently centrifuged for 2 min at 13.2 rpm. 5-30 µl of the supernatant and 10 µl of a 

prestained molecular-weight marker (Precision plus protein standard dual color; BioRad) 
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were loaded into a10-12% SDS resolving gel containing a 4% stacking gel. Gels were run in 

electrophoresis tanks (Mini-Protean 3 Cell; BioRad) in 1x running buffer for 60 min at 40 mA 

(constant) until the marker suggested a sufficient separation of the proteins. 

 

4.2.3.11. Immuno-blot analysis (Western blot) 

After proteins were separated in SDS-PAGE, gels were transferred to nitrocellulose 

membranes (Tans-Blot, BioRad). For this, the stacking gel was removed, discarded and the 

blotting apparatus (Mini-Protean 3 Cell; BioRad) was assembled according to the 

manufacturer instructions. Transfer was performed in 1x transfer buffer at 150 mA (constant) 

for 2 h. Afterwards, membranes were removed from blotting apparatus and washed for 2 min 

in H20. To check for equal protein loading, membranes were stained in Ponceau S solution for 

5 min before washed for 5 min in H2O. Stained membranes were scanned and thereafter 

destained in PBS-T (PBS+0.1% Tween20) for 10 min, before they were blocked 2 h at RT or 

overnight at 4°C slowly shaking on a rotary shaker in 5% non-fat dry milk (Roth) diluted in 

PBS-T. After blocking, blocking solution was removed and membranes washed 3 times 5 min 

in PBS-T. Primary antibodies treatment was carried out 2 h at RT or overnight at 4°C slowly 

shaking on a rotary shaker in 5% non-fat dry milk. After primary antibody treatment, 

membranes were washed 3 times 5 min in PBS-T, before a secondary antibody in 5% non-fat 

dry milk was added to the membranes and incubated 1-2 h at RT slowly shaking on a rotary 

shaker. After washing the membranes 3 times with PBS-T, HRP-conjugated secondary 

antibodies were detected by chemiluminescence, using Pierce Western substrate purchased 

from Thermo Fisher Scientific (Rockford, USA) according to the manufacturer instructions. 

Luminescence was detected by exposing the membrane to photographic film.          

 

4.2.4. Hormone and secondary metabolite measurements 

4.2.4.1. Hormone measurements 

Four week old plants were used for JA and free SA measurements. 200 mg plant leaf material 

of four individual plants was collected (n=4), frozen in liquid nitrogen and stored at -80°C 

until use. Frozen tissue was transferred to FastPrep tubes (Qbiogene) containing 900 mg 

FastPrep lysing matrix and 1 ml ethyl acetate spiked with 200 ng of D4-SA and D2-JA as 

internal standards. Samples were homogenized by reciprocal shaking (FastPrep speed 6.5) 

twice for 45 seconds each and centrifuged at 13.000 rpm for 20 minutes at 4°C. The 

supernatant was transferred to fresh 2 ml Eppendorf tubes and the extraction was once 

repeated by adding 0.5 ml ethyl acetate without internal standard to the same tissue, followed 
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by a centrifugation step at 13.000 rpm for 20 minutes at 4°C. Both supernatants were 

combined and evaporated using a vacuum concentrator until dryness at 30°C. The dried 

samples were dissolved in 500 µl 70% methanol, mixed for at least 5 minutes and 

subsequently centrifuged at 13.000 rpm for 10 minutes. 400 µl of the supernatant were 

transferred into fresh HPLC vials. SA and JA measurements were conducted on a liquid 

chromatography tandem mass spectrometry system (Varian 1200). 

 

4.2.4.2. Secondary metabolite measurements by HPLC 

200 mg of plant leaf tissue were collected and frozen in liquid nitrogen until use. 10 μl of 

DMSO per 4 mg fresh weight material and 10-30 ‘Zirconia Beads’ (BioSpec) were added to 

the samples and homogenized 30 seconds in ‘BeadBeater’ (BioSpec). Homogenized samples 

were centrifuged at 15.000 rpm at 4°C for 20 minutes and supernatants were transferred to 

HPLC well plates and used for HPLC analysis on an Agilent 1100 HPLC system equipped 

with DAD and FLD detectors. The concentration of the metabolites of interest were 

quantified on the basis of the comparison of their peak areas with those obtained during 

HPLC analyses of known amounts of the respective compound. 

  

4.2.4.3. Root growth assay 

Seeds were sterilized by two washing steps with 70 and 100% ethanol. Sterile seeds were put 

on MS Phytagel (Sigma) agar plates containing 0-12.5 µm MeJA and 0.5% sucrose. Plates 

were stored for one day at 4°C before transfer to closed growing cabinets (Percival chambers) 

under long-day conditions (14 hours light/10 hours darkness). Primary root length was 

determined after 10-12 days. MeJA-insensitive jar1 was included as a positive control 

(Staswick et al., 1992).  

 

4.2.5. Yeast 2-hybrid screening 

Yeast 2-hybrid screening was performed using the Clontech (Mountain View, USA) yeast 

strains AH109 and Y187 and a cDNA library in pGADT7-vectors were kindly provided by 

Birgit Kemmerling. WRKY18 and WRKY40 cDNA was cloned into pGBKT7 vectors as 

baits and transformed into yeast strain AH109 using LiAc-transformation. For screening 

against the cDNA-library, 50 ml liquid culture of each yeast bait was inoculated in SD-Trp 

(containing 4% glucose) and incubated overnight at 30°C shaking at 200 rpm. The next day, 1 

ml cDNA library was thawed in a water-bath at 42°C and incubated in YPDA liquid medium 

adjusted to 1 OD600/ml at 30°C at 200 rpm shaking for 1-2 h. 10 OD600 bait and 10 OD600 
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library were mixed in a 50 ml reaction tube and centrifuged for 5 min at 4000 rpm at RT. 

Supernatant was discarded and pellet was resuspended in 10 ml YPDA (containing 10% 

PEG6000), transferred to 100 ml flasks and incubated overnight at 30°C shaking at 80 rpm. 

The next day, the bait-library mix was centrifuged for 5 min at 4000 rpm at RT and 

supernatant was discarded. The pellet was resuspended in 15 ml SD-Trp-Leu-His containing 

0.05% Gelrite (Gelzan, Sigma) and added to 500 ml SD-Trp-Leu-His containing 0.05% 

Gelrite and mixed by slowly shaking the flask. For titer calculation, 10 µl were removed and 

added to 20 ml SD-Trp-Leu containing 0.05% Gelrite in a Petri-dish and incubated for 2 days 

at 30°C. Subsequently, yeast colonies were counted. The rest of the 500 ml SD-Trp-Leu-His 

Gelrite medium containing bait and prey were divided into Petri-dishes and incubated 7 days 

at 30°C.10 µl of each grown colony was removed and transferred into 100 µl SD-Trp-Leu-His 

liquid medium in a microtiter-plate. Colonies were plated on SD-Trp-Leu-His agar plates with 

and without 3AT (5 mM). Plates were incubated for 2 days at 30°C. Colonies grown on 3AT-

containing plates were used for PCR analysis and subsequent sequencing of candidate cDNA 

following the Clontech Matchmaker™ GAL4 Two-Hybrid System 3 & Libraries User 

Manual (Clontech, Mountain View, USA).     

 

4.2.5.1. LiAc yeast (Co-) transformation 

Yeast transformation was done with yeast strain Y187 or AH109. For this, 50 ml liquid 

YPDA medium was inoculated with a fresh yeast colony and incubated overnight at 30°C 

shaking at 200 rpm. The next day, yeast culture was diluted with pre-warmed YPDA to OD600 

0.25 in 50 ml liquid YPDA medium and incubated for 3 more hours at 30°C at 200 rpm. 

Yeast culture was centrifuged 1 min at 2500 rpm at RT and pellet was resuspended in 1 ml 

100 mM LiAc (in 1xTE buffer) and transferred to a fresh 1.5 ml reaction tube to make yeast 

cells competent for transformation. After centrifugation for 30 sec at 16.000 rpm, pellet was 

resuspended in 250 µl 100 mM LiAc in 1xTE buffer.  

DNA for (co-)transformation was prepared by mixing 100 ng of (each) plasmid DNA with 25 

µg herring sperm carrier DNA (Clontech) in a maximum of 10 µl and was added to 50 µl of 

freshly prepared competent yeast cells. 300 µl of yeast transformation buffer were added and 

mixed rigorously. Transformation mix was incubated for 30 min at 30°C shaking at 500 rpm 

and incubated for 15 min in a 42°C water-bath, before it was centrifuged for 30 sec at 2500 

rpm. The pellet was resuspended in 250 µl 1xTE buffer and 50 µl were plated on SD-Trp-

Leu-His agar plates and incubated for 2-3 days at 30°C until colonies appear.    
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4.2.5.2. Yeast crude protein extraction 

For protein extraction, yeast was grown in appropriate liquid SD selection media overnight at 

28°C shaking at 200 rpm. 3 ml of each cell culture was centrifuged for 1 min at 13.000 rpm 

and supernatant was discarded. The pellet was frozen in liquid nitrogen and subsequently 

incubated 95°C for 5 min. This ‘freezing/heating’- procedure was repeated 4 times. 200 µl of 

2x protein loading buffer was added to each sample, mixed and incubated again for 5 min at 

95°C. After mixing rigorously, samples were centrifuged 5 min at 13.000 rpm and used for 

SDS-PAGE. 

 

4.2.5.3. Fluorescence recovery after photobleaching (FRAP) 

Two days after co-transformation of A. tumefaciens, expressing the constructs of interest, into 

N. benthamiana leaves, freshly cut pieces of leaves were employed for FRAP analyses. FRAP 

experiments were performed by Dr. E. Schmelzer at the CeMic unit at the MPIPZ in Cologne. 

 

4.2.5.4. Confocal microscopy 

Freshly cut pieces of leaves of N. benthamiana transiently expressing YFP and GFP fusion 

proteins were imaged by a Zeiss LSM 510 Meta confocal laser scanning microscope (Carl 

Zeiss MicroImaging, Jena, Germany). The CFP and YFP fluorescence was excited with the 

Argon laser lines at 458 and 514 nm, respectively. The emission of CFP was detected 

between 465 and 520 nm and of YFP between 530 and 600 nm. Images were taken and 

processed using the Zeiss LSM software (version 3.2) and the Zeiss image examiner software 

(version 3.1). 
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5. Abbreviations 

 
% percent 

°C degree Celsius 

3’ downstream region (of a gene or sequence) 

4MI3G 4-Methoxy-indol-3-ylmethylglucosinolate 

5’ upstream region (of a gene or sequence) 

A Ampere 

ABA abscisic acid 

Avr avirulence 

bp basepair(s) 

Bgh Blumeria graminis forma specialis hordei 

C carboxy-terminal 

CC coiled-coil 

cDNA copied DNA 

CFP cyan fluorescent protein 

ChIP chromatin immunoprecipitation 

COI1 CORONATINE INSENSITIVE 1 

Col-0 Arabidopsis thaliana ecotype Columbia-0 

CYP81F2 CYTOCHROME P450, FAMILY 81 

dpi days post induction 

DNA deoxyribonucleic acid 

DMSO dimethyl sulfoxide 

dNTP deoxynucleosidetriphosphate 

dSpm defective Suppressor-mutator 

DTT dithiothreitol 

E. coli Escherichia coli 

EDS1 ENHANCED DISEASE SUSCEPTIBILITY 1 

EDTA ethylenediaminetetraacetic acid 

EIL1 ETHYLENE-INSENSITIVE3-LIKE 1 

EIN3 ETHYLENE-INSENSITIVE3 

ET ethylene 

ETI effector-triggered immunity 

EtOH ethanol 

Fig. figure 

FL full length 

flg flagellin 

FLS2 FLAGELLIN SENSING RECEPTOR 2 

g gram 

g gravity constant (9.81 ms-1) 

G. cichoracerarum Golovinomyces cichoracearum 

G. cruciferarum Golovinomyces cruciferarum 

GFP green fluorescent protein 

G. orontii Golovinomyces orontii 

h hours 

Hpa Hyaloperonsopora arabidopsidis 

hpi hours post induction 

HPLC high performance liquid chromatography 

HR hypersensitive response 

HRP horseradish peroxidase 

Hv Hordeum vulgare 

ICS1 ISOCHORISMATE SYNTHASE 1 
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Ile isoleucine 

JA/JAs jasmonic acid/jasmonates 

JA-Ile JA-isoleucine 

JAR1 JASMONATE RESISTANT 1 

JAZ1-12 JASMONATE-ZIM-DOMAIN PROTEIN 1-12 

kb kilobase(s) 

kDa kilo Dalton 

l liter 

LOX2 LIPOXYGENASE 2 

LRR leucine rich repeats 

m milli 

M molar (mol/l) 

µ micro 

MAPK mitogen activated protein kinase 

MeJA methyl-jasmonate 

MeOH methanol 

min minutes 

MLA Mildew Locus A 

MLO MILDEW RESISTANCE LOCUS O 

mRNA messenger ribonucleic acid 

MW molecular weight 

n nano 

N amino-terminal 

NaCl sodium chloride 

NPR1 NONEXPRESSER OF PR GENES 1 

OD optical density 

OEC Orontii effector candidate 

OPDA 12-oxo-phytodienoic acid 

OPR3 OXOPHYTODIENOATE-REDUCTASE 3 

ox overexpressor 

p35S 35S promoter of CaMV 

PAD3 PHYTOALEXIN DEFICIENT 3 

PAD4 PHYTOALEXIN DEFICIENT 4 

PAGE polyacrylamide gel-electrophoresis 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PDF1.2 PLANT DEFENSIN 1.2 

PEG polyethylene glycol 

PEN1-3 PENETRATION 1-3 

pH negative decimal logarithm of H+ concentration 

PMR4 POWDERY MILDEW RESISTANCE 4 

PR1 PATHOGENESIS-RELATED 1 

PRR pattern recognition receptor 

Pto Pseudomonas syringae pv. tomato 

pv. pathovar 

P value probability value 

qRT-PCR quantitative real-time PCR 

R resistance 

RLK receptor-like kinase 

RNA ribonucleic acid 

ROS reactive oxygen species 

rpm rounds per minute 

RPM1 RESISTANCE TO P. SYRINGAE PV 
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MACULICOLA 1 

RPS4 RESISTANT TO P. SYRINGAE 4 

RPS6 RESISTANT TO P. SYRINGAE 6 

RT room temperature 

RT-PCR reverse transcription-polymerase chain reaction 

SA salicylic acid 

SAG101 SENESCENCE-ASSOCIATED GENE 101 

SB sample buffer 

SD standard deviation 

SDS sodium dodecyl sulphate 

sec seconds 

SID2 SALICYLIC ACID INDUCTION DEFICIENT 2 

Taq Thermophilus aquaticus 

T-DNA transfer DNA 

TEMED N,N,N',N'-Tetramethylethylenediamine 

TF transcription factor 

TIR toll/interleukin-1 receptor 

TLR toll-like receptor 

TRIS tris-(hydroxymethyl)-aminomethan 

Trp tryptophan 

U unit 

UV ultraviolet 

V volt 

vir virulence 

VSP2 VEGETATIVE STORAGE PROTEIN 2 

WRKY18 WRKY transcription factor 18 

WRKY40 WRKY transcription factor 40 

wt wildtype 

YFP yellow fluorescent protein 
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7. Supplementary Material 

 

 

 

 
 

 

 

 

 

 

 

 

Supplementary Figure 1: Expression of WRKY18 and WRKY40 during early G. orontii infection. QPCR 

analysis of WRKY18 and WRKY40 transcript abundance during the first 48 h after G. orontii infection. Total leaf 

material of susceptible Col-0 (solid line) and resistant wrky18wrky40 (dashed line) plants was harvested at 

indicated time points. Four weeks old plants were used for the analysis and infection with G. orontii was carried 

out by spreading spores with a brush evenly over the plant. Infections were performed without touching the plant 

to avoid wound responses. Transcript abundance is relative to wildtype 0 hpi samples set to 1. Error-bars 

represent SD (n=3).  

Supplementary Figure 2: JA-Ile accumulation during early G. orontii infection. JA-Ile levels in susceptible 

wildtype Col-0 (solid line) and resistant wrky18wrky40 (dashed line) plants upon infection with G. orontii. 

Samples of 4 weeks old plants were collected during the first 72 hpi at indicated time points. Error-bars represent 

SD (n=4).  
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Supplementary Figure 3: Phenotypic characterization of wrky18wrky40rrtf1 triple mutants 

upon G. orontii infection. Four weeks old plants were infected with powdery mildew G. orontii 

and pictures were taken 10 dpi. As controls, susceptible Col-0 and resistant wrky18wrky40 

plants were included. 

Supplementary Figure 4: Conidiophore counts after G. cichoracearum and G. cruciferarum infection. 

Indicated genotypes were evenly infected without touching the plants with (A) G. cichoracearum and (B) G. 

cruciferarum and the number of condidiophores was determined as a measure of susceptibility or resistance 

towards these obligate biotrophic fungi. Four weeks old plants were used for the analysis and conidiophore 

numbers were determined 7 dpi. Edr1 and pen2 pad4 sag101 mutants served as resistant and hypersusceptible 

controls. Experiments were performed by C. Roth, University of Göttingen. Error-bars represent SD (n=3). The 

experiment was repeated twice with similar results.  

A B 
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Supplementary Figure 5: Interaction studies of WRKY18 and G. orontii effector candidates (OECs). 

WRKY18 and selected G. orontii OECs were co-transformed into yeast and tested for interaction on triple 

selection media. Human SV40 T-antigen and murine p53 proteins were included as positive controls. Pictures 

were taken 3 days after transformation and incubation at 30°C. Similar results were obtained for co-

transformation with WRKY40. 

Supplementary Figure 6: Interaction and localization studies of WRKY18 and WRKY40 with RPS4 and 

RRS1. (A) Interaction was tested by yeast co-transformation of either WRKY18 or WRKY40 with RPS4 (1218 

aa), RRS1 (1288 aa) full-length or truncated RPS4 (183 aa) or RRS1 (155 aa) cDNA clones containing only the 

TIR domain. Yeast growth on triple selection media was determined 3 days after transformation and rated 

relative to positive control of human SV40 T-antigen and murine p53 proteins known to interact strongly in 

yeast. (B) Co-localization of WRKY18 and WRKY40 with RPS4 and RRS1 in the plant cell nucleus. Either 

CFP-tagged WRKY18 or WRKY40 was co-infiltrated with YFP-tagged RPS4 or RRS1 into N.benthamiana 

epidermal cells for Acceptor Photo Bleaching analyses (APB). Apart from nucelar co-localization, no direct 

interaction could be detected. Pictures were taken 2 days after co-infiltration.   
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