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General introduction and aim of the study 

 Members of the genus Daphnia belong to the order Cladocera, and their body sizes 

ranges from 0.2 mm to 5 mm in length. 150 different species of Daphnia occur in almost all 

limnic ecosystems, ranging from acidic swamps to deep permanent lakes, shallow temporary 

ponds and even to side arms of streams and rivers. Daphnia are unselective filter feeders 

and are typically the major herbivorous grazers of algae, (cyano)bacteria and protozoa. 

Depending on the Daphnia species, the size of the ingestible food particles ranges from 0.1 

µm to 55 µm, representing the mean mesh size of the filter combs and the size of the 

carapace gape (Geller & Müller 1981; Gophen & Geller 1984). Daphnia are a major prey of 

planktivorous fish and invertebrate predators and thus provide an important link in the 

transfer of carbon and energy from primary producers (phytoplankton) to higher trophic 

levels. However, in eutrophic lakes this transfer is often constrained rather by food quality 

than by food quantity: The phytoplankton of eutrophic lakes and thus the major food source 

for Daphnia is often dominated by bloom-forming and/or filamentous cyanobacteria (Schreurs 

1992), which are also associated with harmful effects to human health and livestock 

(Carmichael 1994). Due to the formation of colonies and filaments, the particle size of 

cyanobacteria often exceeds 55 µm and is therefore not an available carbon source for 

Daphnia. Especially large-bodied Daphnia species, such as Daphnia magna and Daphnia 

pulex, suffer from clogging of their filtering apparatus and increase rejection rates when 

feeding on filamentous cyanobacteria (DeMott et al. 2001). Daphnia have to cope with 

cyanobacteria especially in late summer and early fall (Sommer et al. 1986), when the 

temperature of the epilimnion reaches its maximum (Jöhnk et al. 2008). During such times, 

cyanobacterial mass developments of the genera Microcystis, Anabaena, Oscillatoria, 

Planktothrix or Limnothrix have become a wide-spread phenomenon in freshwater 

ecosystems (Dokulil & Teubner 2000). 

 The causes for the constrained carbon transfer from cyanobacteria to Daphnia have been 

extensively investigated in the past decades. At least three major properties of cyanobacteria 

may contribute to their relatively poor quality as a food source for Daphnia: As already 

outlined above, bloom-forming cyanobacteria often exhibit filaments or colonies that can 

interfere with the filtering apparatus of Daphnia (Porter & Mcdonough 1984), which has been 

suggested as a strategy to escape from zooplankton grazing in eutrophic lakes (i.e. 

(Ghadouani et al. 2003). In addition, cyanobacteria lack sterols and have a low content of 

polyunsaturated fatty acids. This cyanobacterial deficiency in essential lipids leads to 

reduced somatic and population growth of Daphnia due to constrained carbon assimilation 
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(Von Elert 2002; Von Elert et al. 2003; Martin-Creuzburg & Von Elert 2004; Martin-Creuzburg

et al. 2008). Finally, many cyanobacteria produce secondary metabolites that are toxic for 

Daphnia and can thus reduce the fitness of Daphnia in terms of survival, growth and 

reproduction (Lürling & van der Grinten 2003; Rohrlack et al. 2003; Von Elert et al. 2012). 

 Besides microcystins, which belong to the group of heptapeptides and which are the most 

extensively studied class of cyanobacterial toxins (Sivonen & Jones 1999; Rohrlack et al.

2001), the role of cyanobacterial protease inhibitors has recently become a focus of attention. 

The most abundant protease inhibitors are depsipeptides that contain the modified amino 

acid 3-amino-6-hydroxy-2-piperidone (Von Elert et al. 2005). More than twenty 

depsipeptides, isolated from a wide range of cyanobacterial genera, have been described as 

protease inhibitors, specifically inhibiting the serine proteases chymotrypsin or trypsin 

(Gademann & Portmann 2008). Both digestive enzymes account for more than 80% of the 

proteolytic activity in the gut of D. magna (Von Elert et al. 2004) and are verified as targets 

for an inhibition by cyanobacterial inhibitors (Agrawal et al. 2005; Schwarzenberger et al.

2010). However, D. magna clones can respond to cyanobacterial inhibitors by remodeling 

their digestive enzymes and by an elevated expression of respective protease genes (Von 

Elert et al. 2012; Schwarzenberger et al. 2010). A study by Czarnecki et al. (2006) has 

demonstrated that the potential of natural seston to inhibit trypsins is comparable to that of 

pure cultures of cyanobacteria, which suggests that inhibition of Daphnia�s proteases is not 

confined to experiments with cyanobacterial cultures as food but occurs also in nature. 

However, Czarnecki et al. (2006) investigated lake seston that was sampled only at one 

particular date and thus this study did not account for possible seasonal and inter-annual 

fluctuations of cyanobacterial protease inhibition in Daphnia.  

Chapter 1 examines the question whether the inhibitory potential of natural seston on 

Daphnia�s trypsins and chymotrypsins changes seasonally. Additionally, I have investigated 

whether seasonally fluctuating protease inhibition might have impacts on the genetic diversity 

and the tolerance to cyanobacterial protease inhibitors of a co-occurring Daphnia population. 

In order to test this, seston from a hypereutrophic pond was sampled regularly over two 

successive years and analyzed for its potential to inhibit proteases of a single clone of D. 

magna under standardized laboratory conditions. Simultaneously, I isolated D. magna clones 

at two times within one season, measured the clonal diversity of the sub-population via 

microsatellite analyses and subsequently used these established clones for growth 

experiments on diets differing in the amount of cyanobacterial protease inhibitors. I 

hypothesized that seasonally fluctuating sestonic protease inhibition had led to an increase of 

the mean tolerance of the Daphnia population to cyanobacteria with protease inhibitors. 
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Several studies have already shown that Daphnia individuals or populations are able to adapt 

to the presence of toxin-producing cyanobacteria (i.e. Gustafsson & Hansson 2004). Sarnelle 

& Wilson (2005) suggested that D. pulicaria populations, exposed to high cyanobacterial 

levels over long periods of time, can adapt in terms of being more tolerant to dietary toxic 

cyanobacteria. However, chapter 1 considered for the first time the possibility of rapid 

adaptation of a natural Daphnia population to the occurrence of sestonic protease inhibition 

within one season. Specifically, I hypothesized that Daphnia clones isolated after the 

seasonal peak of sestonic protease inhibition would be more tolerant to cyanobacterial 

protease inhibitors than clones isolated before the peak. 

 Adaptation of Daphnia populations to environmental stressors is typically a result of 

microevolutionary processes. Concomitant with the occurrence of cyanobacteria in a lake 

natural selection favors those Daphnia genotypes that are better adapted to constraints 

associated with increased cyanobacterial abundances. The investigation of the origin and the 

persistence of genetic variation, which in itself is a precondition of evolutionary processes, 

provides a feasible possibility to understand how species and populations have evolved in 

response to selection. In Daphnia several target genes that are probably involved in the 

response to cyanobacterial toxins have been identified so far (i.e. Pflugmacher et al. 1998; 

Schwarzenberger et al. 2010). However, the variation of these target genes in natural 

Daphnia populations differing with respect to the coexistence with cyanobacteria has not 

been studied yet. The screening of target genes of whole populations is a crucial 

precondition to identify those functional phenotypes of expressed target genes that cause the 

difference between tolerant and sensitive Daphnia genotypes. In chapter 2 I demonstrate 

that high resolution melting analysis (HRMA) is a cost-effective and powerful tool for the rapid 

screening and genotyping of target genes from large numbers of Daphnia individuals. As a 

proof of principle for HRMA I have analyzed digestive trypsins of two D. magna populations 

from different habitats. The trypsin genes chosen for chapter 2 have been shown to be 

active in the gut of D. magna and thus constitute possible targets for an interference with 

cyanobacterial trypsin inhibitors (Schwarzenberger et al. 2010). Both D. magna populations 

probably differed in their experience with respect to cyanobacteria. One population originated 

from a pond containing toxic cyanobacteria that possibly produce protease inhibitors and the 

other from a pond without such cyanobacteria. I first sequenced pooled genomic PCR 

products of digestive trypsins genes from both populations to identify variable DNA-

sequences. In a second step, those variable DNA-sequences of trypsin loci were screened 

for SNPs in each D. magna clone from both populations using HRMA. The hypothesis was 
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that D. magna clones from ponds with cyanobacteria have undergone selection by these 

inhibitors, which has led to different trypsin alleles.  

 Besides the analyses of differences of the tolerance to cyanobacterial protease inhibitors 

within (chapter 1) and among (chapter 2) Daphnia populations, chapter 3 covers the issue 

of potential interspecific differences between two Daphnia species (D. magna and D. pulex). I 

assumed that D. magna coexist more frequently with cyanobacteria than D. pulex does. This 

putatively more frequent coexistence of cyanobacteria and D. magna might have resulted in 

an increased tolerance of D. magna to cyanobacterial protease inhibitors. Seven clones each 

of D. magna and D. pulex were isolated from different habitats in Europe and North America. 

In order to test for interspecific differences in tolerance to cyanobacteria, somatic and 

population growth rates on varying concentrations of two cyanobacterial strains were 

determined for each D. magna and D. pulex clone. Both cyanobacterial strains contained 

either chymotrypsin or trypsin inhibitors, but no microcystins. Possible differences in 

tolerance to cyanobacterial protease inhibitors might have several causes, for which I have 

tested in the chapter 3: (1) I hypothesized that high growth rates on cyanobacterial diets 

might result from high specific protease activities; therefore I determined the specific trypsin 

and chymotrypsin activity of each of the investigated D. magna and D. pulex clones. (2) I 

assumed that a higher sensitivity of Daphnia�s gut proteases might cause reduced somatic 

and population growth rates for diets with cyanobacterial protease inhibitors. Therefore I 

compared the sensitivity of gut chymotrypsins and trypsins to the respective cyanobacterial 

protease inhibitors among the different clones of each Daphnia species. 

 After considering various aspects of Daphnia�s tolerance to cyanobacterial protease 

inhibitors within (chapter 1) and among populations (chapter 2) as well as between two 

species (chapter 3), a different perspective is taken in chapter 4, which deals with 

anthropogenic long-term effects on D. galeata in Lake Constance. Due to intensive 

agriculture, phosphorus-containing detergents and the growing industry the total phosphorus 

(Ptot) concentration of Lake Constance increased more than ten-fold in the middle of the last 

century. Thus, Lake Constance underwent a period of eutrophication from the mid 1950s to 

mid 1980s leading to pronounced changes in the taxonomical composition of the 

phytoplankton community (Kümmerlin 1998). During the course of eutrophication, 

cyanobacterial genera became abundant in Lake Constance, while formerly dominating 

diatom species nearly vanished (Kümmerlin 1998). Due to a subsequent decline of the 

anthropogenic phosphorus input since 1980, concentrations of Ptot decreased over time 

(Güde et al. 1998). In the meantime Lake Constance has undergone the process of re-

oligotrophication and has become an oligotrophic one (Kümmerlin 1998); the re-
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oligotrophication went along with declining relative abundances of cyanobacteria in the 

phytoplankton community. Concomitant with changes in the phytoplankton community 

(Weider et al. 1997) noted significant genotypic shifts in the co-occurring D. galeata

population in Lake Constance. Hairston et al. (1999, 2001) have shown that these shifts went 

along with an increase of the mean tolerance of the D. galeata population to cyanobacteria. 

However, it remained unclear which target genes and metabolic pathways of the D. galeata

population were directly affected by the appearance of cyanobacteria during eutrophication. 

In order to identify the physiological mechanisms and target genes underlying the increased 

mean tolerance to cyanobacteria I have analyzed in chapter 4 the genome of three D. 

galeata populations of Lake Constance via next-generation sequencing. D. galeata resting 

eggs were isolated from three different layers of sediment cores, representing the time 

before, during and after the peak of the eutrophication of Lake Constance. The extracted 

DNA from individual resting eggs was pooled for each population separately. The genomic 

DNA of each population was subsequently analyzed via next-generation sequencing to 

determine the genetic diversity of the D. galeata population and to identify those genes and 

pathways that were mainly influenced by these environmental changes mentioned above. 

 Taken together, the four chapters of the present study cover the influence of 

cyanobacteria on Daphnia populations from different perspectives. Several studies have 

already described differences in Daphnia�s tolerance to cyanobacteria, but just a few have 

dealt with the question, which particular genes and metabolic pathways in Daphnia were 

affected by the presence of cyanobacteria. The present study considers various aspects of 

Daphnia�s tolerance to cyanobacteria within and between populations as well as between two 

Daphnia species and tries to shed light onto the physiological mechanisms of Daphnia�s 

adaptation to cyanobacterial toxins in natural populations.  
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Abstract 

 Daphnia populations often show rapid microevolutionary adaptation to environmental 

changes. Here we investigated the possibility that microevolution of Daphnia populations 

could be driven by natural sestonic protease inhibition (PI). We hypothesized that PI changes 

seasonally, which might lead to concomitant changes in tolerance to PI in a co-occurring 

Daphnia magna population. To test this, seston from a eutrophic pond was sampled regularly 

over two successive years. Extracts of these freeze-dried samples were used to determine 

their inhibitory potential (IP) on D. magna gut proteases. In the summer seston the IP against 

chymotrypsins exceeded that of spring seston 200-fold. To test for possible impacts on the 

co-existing D. magna population, we isolated clones before (spring) and after (fall) the peak 

of the IP. Microsatellite analyses revealed that the two subpopulations were genetically 

distinct. Individual exposure of three clones from each population to varying concentrations of 

a cyanobacterium that contains chymotrypsin inhibitors revealed a decrease in population 

and somatic growth rate for each clone, but no seasonal effects on Daphnia�s tolerance. To 

include maternal effects we conducted a multi-clonal competition experiment on various 

cyanobacterial concentrations. However, no evidence for seasonally increased tolerance of 

D. magna to dietary protease inhibitors could be found.  
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Introduction 

 Due to anthropogenic phosphorus loading, many lakes have undergone a period of 

eutrophication in the last decades (Correll 1998; Daniel et al. 1998). The phytoplankton of 

eutrophic lakes is usually dominated by bloom-forming species of cyanobacteria of the 

genera Microcystis, Planktothrix, Limnothrix, Anabaena or Oscillatoria (Dokulil & Teubner 

2000; Schreurs 1992). A considerable accumulation of cyanobacterial biomass can be 

observed in late summer and early fall (Sommer et al. 1986), when the temperature of the 

epilimnion reaches its maximum (Jöhnk et al. 2008). Abundances of zooplankton, especially 

of non-selective filter feeders such as Daphnia (one of the main grazers of cyanobacteria), 

are highly influenced by the presence of cyanobacteria. The increasing dominance of 

cyanobacteria has been claimed to be a major factor leading to the decline in Daphnia

abundances within and between lakes (Threlkeld 1979; Hansson et al. 2007). Although 

Daphnia populations and individuals can adapt to the presence of cyanobacteria by 

developing a higher tolerance to the occurrence of cyanobacteria (Gustafsson & Hansson 

2004; Hairston et al. 1999; Hairston et al. 2001; Sarnelle & Wilson 2005), the traits underlying 

this adaptation have not yet been fully elucidated.

 The causes for the poor assimilation of cyanobacterial carbon by Daphnia have been 

studied extensively in past decades. Three major food quality constraints have been 

revealed: (1) Cyanobacteria can be filamentous or colonial; both forms lead to mechanical 

interferences with the filtering process of daphnids (Porter & Mcdonough 1984). (2) 

Cyanobacteria lack sterols and have a low polyunsaturated fatty acid content; both are 

essential for Daphnia nutrition (Von Elert 2002; Von Elert et al. 2003). In Daphnia, this 

deficiency in lipids leads to reduced somatic growth and reproduction of daphnids due to 

constrained carbon assimilation (Von Elert & Wolffrom 2001; Martin-Creuzburg & Von Elert 

2004; Martin-Creuzburg et al. 2008). (3) Many cyanobacterial strains also contain toxins such 

as microcystins, which have a negative effect on the fitness of Daphnia (Sivonen & Jones 

1999; Rohrlack et al. 2001). However, a microcystin-free cyanobacterial strain of the genus 

Microcystis resulted in reduced growth of Daphnia, even though mechanical interferences 

and lipid deficiency could be excluded as causal factors (Lürling 2003). The reduced growth 

rates might be explained by the presence of other secondary metabolites in cyanobacteria 

that inhibit survival, growth, reproduction and/or feeding of Daphnia (Lürling & van der 

Grinten 2003; Rohrlack et al. 2003). Among such secondary metabolites, protease inhibitors 

are reported from a wide range of genera of marine and freshwater cyanobacteria. More than 

twenty depsipeptides which act as protease inhibitors have been described from different 

cyanobacteria genera (Gademann & Portmann 2008). Most of these depsipeptides 
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specifically inhibit the serine proteases chymotrypsin or trypsin: These two digestive 

enzymes are responsible for 80% of the proteolytic activity in the gut of Daphnia magna (Von 

Elert et al. 2004), and several studies indicate that cyanobacterial protease inhibitors directly 

inhibit digestive proteases of Daphnia (Agrawal et al. 2005; Schwarzenberger et al. 2010). A 

study by Czarnecki et al. (2006) has shown that the potential of natural seston to inhibit 

Daphnia trypsins is comparable to the inhibitory potential of various Microcystis strains. This 

makes it reasonable to assume that the interference of cyanobacterial protease inhibitors 

with digestive proteases of Daphnia, which had thus far only been demonstrated in 

cyanobacterial strains, occurs in nature as well. Blom et al. (2006) recently showed that 

Daphnia sp. coexisting with Planktothrix rubescens, a cyanobacterium that contains the 

trypsin inhibitor oscillapeptin J, are significantly less sensitive to oscillapeptin J than Daphnia 

sp. from lakes free of this cyanobacterium. Considering the finding that almost 60% of 17 

water blooms of cyanobacteria contained protease inhibitors (Agrawal et al. 2001), it is thus 

reasonable to assume that increased tolerance to cyanobacteria in Daphnia populations may 

be caused by enhanced tolerance to the cyanobacterial protease inhibitors. As a 

consequence, the question arises as to whether this increased tolerance at the population 

level is caused by a constant selection pressure due to cyanobacterial protease inhibitors or 

by a short-term bottleneck effect due to the seasonal occurrence of cyanobacteria. 

 We hypothesized that, in accordance with the seasonal succession of phytoplankton, the 

potential of the edible fraction of a natural seston to inhibit digestive trypsins and 

chymotrypsins in Daphnia would vary with season. This seasonality would result in increased 

frequencies of Daphnia genotypes with enhanced tolerance to cyanobacterial protease 

inhibitors.  

 In the present study we investigated whether the potential of the natural seston to inhibit 

the proteases trypsin and chymotrypsin in D. magna changed seasonally. Furthermore we 

determined the clonal diversity of two D. magna samples, isolated before and after the 

maximum of inhibitory potential in the seston, by using microsatellites in order to detect 

concurrent changes in the corresponding D. magna population. Additionally, we conducted 

growth experiments with single D. magna clones from each of the two samples on treatments 

differing in the content of cyanobacteria with protease inhibitors. To investigate competitive 

interactions and maternal effects at different cyanobacterial protease inhibitor concentrations, 

we also performed a multi-clone experiment with the same clones over many generations. 

 Specifically, our predictions were that: (1) The potential of natural seston to inhibit 

Daphnia chymotrypsins and trypsins changes seasonally. In accordance with the seasonal 
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occurrence of cyanobacteria, we expect a higher potential of the seston to inhibit proteases 

in fall than in spring; (2) D. magna clones from the fall are more tolerant to cyanobacterial 

protease inhibitors, which results in higher growth rates on cyanobacterial diets in single-

clone experiments. Potential costs of this adaption might result in lower growth rates and 

fitness on non-cyanobacterial diets. (3) D. magna clones from the fall show higher clonal 

frequency in multi-clonal experiments on a cyanobacterial diet containing protease inhibitors 

than clones from the spring. 

Material and methods 

Origin and cultivation of organisms 

 Two species of phytoplankton were used in the somatic and population growth 

experiments as well as in the competition experiment: The cyanobacterium Microcystis 

aeruginosa NIVA Cya 43 (Culture Collection of Algae, Norwegian Institute for Water 

Research) was grown in 2 l chemostates in sterile Cyano medium (Von Elert & Jüttner, 1997) 

at a dilution rate of 0.1 d-1 (20°C; illumination: 40 µmol m-2 s-1).The green algae 

Chlamydomonas sp. (Strain 56, culture collection of the Limnological Institute at the 

University of Constance) was grown in 5 l semi-continuous batch cultures (20°C; illumination: 

120 µmol m-2 s-1) by replacing 20% of the culture with fresh sterile Cyano medium every 

Monday, Wednesday and Friday in the late exponential phase of the culture. 

 The D. magna clones were isolated from the Aachener Weiher (AaW; N50° 56' 2.40", E6° 

55' 40.81"). The AaW is an urban pond of 0.04 km² and a maximum depth of 1.6 m. The AaW 

has a Secchi depth of less than one meter, and is therefore classified as a hypertrophic lake 

(Carlson 1977). Forty-seven D. magna clones were isolated on June 4, 2008 (spring 

samples) and 43 clones on September 3, 2008 (fall samples). D. magna clone B used in the 

enzyme assay originated from the Großer Binnensee, a lake in Germany (Lampert & 

Rothhaupt 1991). All clones of D. magna were cultured separately in aged, membrane-

filtered tap water and fed with saturating concentrations of C. sp. for at least three 

generations.  

Preparation of the seston samples  

 To test the potential of the edible fraction of seston (< 55 µm) in the AaW to inhibit 

proteases, samples were taken at constant intervals from spring to fall in 2007 and 2008. 
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Fifty to 80 l of surface water was screened with a 55 µm mesh. In the discharge the 

particulate fraction was then gently concentrated using a hollow-fiber filtration technique (A/G 

Technology Corp. Needham, CFP-1-D-6a, 0.1 µm mesh size). The final volume of 

approximately 0.8 l was frozen at -20°C and freeze-dried (Christ LOC-1m, LPHA 1-4). 

Lyophilized seston was subsequently homogenized using a mortar and pestle. The resulting 

powder was thoroughly mixed. 50 mg and 100 mg of freeze-dried natural seston were 

suspended in 500 µl of 60% methanol and sonicated for 15 min followed by centrifugation (3 

min at 104 x g). The extract was separated from the residue, and the supernatant was used in 

the protease assay. 

Protease assays 

 The activities of trypsins and chymotrypsins of D. magna clone B were measured as 

according to (Von Elert et al. 2004). Six-day-old individuals were each transferred to 5 µl (per 

animal) of cold (0°C) 0.1 M phosphate buffer (pH 7.5) containing 2 mM dithiothreitol (DTT) on 

ice. 2 mM DTT in the incubation buffer was used as according to Johnston et al. (1995). 

Individuals were homogenized with a Teflon pestle, the homogenate was centrifuged (3 min 

at 1.4 x 104 x g), and the supernatant was used immediately in the enzyme assay. SuccpNA 

(N-succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanine 4-nitroanilide, Sigma, 125 µM) was 

used as a substrate for chymotrypsins, while BapNA (N-R-benzoyl-DL-arginine 4-nitroanilide 

hydrochloride, Sigma, 1.8 mM) served as a substrate for trypsins. Trypsin and chymotrypsin 

assays were performed in a potassium phosphate buffer (0.1 M, pH 7.5). The absorption was 

measured continuously for 10 min at time intervals of 30 sec at 30°C at 390 nm with a Cary 

50 photometer (Varian, Palo Alto, USA). Absorption increased linearly with time in all assays. 

The relevant parameter for the enzyme assays was the inhibition potential of the seston 

samples. To ensure comparable conditions for all protease assays, we normalized the 

protease activities to the same conversion rate of respective substrates prior to the addition 

of aliquots of the seston extracts. Five to 20 µl of different concentrations of each extracted 

seston biomass were tested for inhibition, whereas controls with 20 µl of 60% methanol had 

no effects on protease activities. The resulting protease activities were plotted as a function 

of extracted seston biomass. By fitting a sigmoidal dose response curve, the extracted 

biomass that resulted in a 50% inhibition of Daphnia protease activity (IC50) was calculated. 

Low IC50 values of the analyzed samples indicated a high inhibitory potential. 
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Microsatellite analyses 

 The population structure of the spring and the fall D. magna populations were analyzed 

using polymerase chain reactions (PCR) of six polymorphic microsatellite loci with 

subsequent DNA fragment length analyses. The PCR assay for each D. magna clone was 

performed in a final volume of 50 µl containing 50 ng of genomic DNA, 0.2 µM of respective 

forward and reverse primer (Table 1), 0.2 mM of dNTPs, 2.5 units of Taq-DNA polymerase (5 

Prime, Gaithersburg, USA) and 5 µl of corresponding 10x PCR buffer (5 Prime, Gaithersburg, 

USA). Cycling parameters were 95°C for 5 min to activate the DNA polymerase followed by 

35 cycles of denaturation for 30 s at 95°C, annealing for 30 s at respective primer Ta (Table 

1) and 30 s elongation at 72°C. Final elongation was performed afterwards for 10 min at 

72°C. After checking the success of the amplification via agarose gel electrophoresis, DNA 

fragment length analyses were performed with a 3730 DNA Analyzer (Applied Biosystems, 

Foster City, USA). 

Table 1 Microsatellite loci used to genotype the D. magna clones, the respective forward and 

reverse sequences, GenBank accession number and the corresponding annealing 

temperatures (Ta). 

Locus Primer Sequences [5� - 3�] GenBank accession Ta [°C]

DMA 12 F: AGCCAATCATCAATTCCCTC AF2919121 58 
R: AAGGTCCGAATTGGATTACG   

DMA 3 F: AAAGGAAAGCAACCGCTGC AF2919101 58 

R: AAAAGGAAGGGGAATTACCC   

DMA 14 F: GGGCAAGACACAGGTGC AF2919131 58 

R: TGGCGGCATGCTGTCTAC   

DP 162 F: CGAATCCGTTCGTCAAAAGC wfms00001662 58 

R: TGGCGGCATGCTGTCTAC   

S6-38 F: GATGTCTTGCATCAACAGTG S6-383 49 

R: AGTCAAAGGTATGACTCACC   

DMA 15 F: GTGTATTCTAAAATCGAATTTCG EU1313631 50 

R: ACGTCAATGATCTTATTATACC   

1developed by John Colbourne, unpublished  
2Colbourne et al. (2004) 
3Ortells et al. (2012) 
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Results 

 We found a seasonal variation of chymotrypsin inhibitory potential of the edible fraction of 

the AaW seston for 2007 and 2008 (Fig. 1A). In both years IC50 values decreased 

considerably in the summer, indicating a high inhibitory potential of the seston. From June to 

July 2007 a 200-fold decrease of chymotrypsin IC50 values was observed. In 2008 a 

significant decrease of IC50 was first measured for seston samples taken in August. The IC50 

values remained on a comparatively low level until the end of September. Less seasonal 

variation was observed with regard to the inhibition of D. magna trypsins. A considerable 

decrease of trypsin IC50 values was only observed in 2007 (Fig. 1B). Contemporaneous with 

the chymotrypsins, the IC50 values for trypsins decreased significantly in July 2007. The IC50 

values regarding the inhibition of trypsins remained at a low level for samples taken in 2008. 

However, seston samples taken in 2007 showed ten-fold lower IC50 values for the inhibition of 

D. magna chymotrypsins than of trypsins. The seston of 2007 showed higher overall effects 

on both chymotrypsins and trypsins than the seston of 2008 did. When C. sp. was assayed 

for comparison, inhibitory effects were found neither for chymotrypsins nor for trypsins (IC50> 

104 µg/ml). Additional information on all concentrations of extracted seston from 2007 and 

2008 that were used for the determination of the IC50 values can be found in the supporting 

material (Fig. 4-7). 

 To test for potential changes in clonal diversity of both D. magna samples, we analyzed 47 

spring and 43 fall clones by using six polymorphic microsatellite loci. We found 21 genetically 

distinct genotypes in the spring samples and 13 in the fall samples. Using exact p-values, 

allele frequencies differed significantly (p < 0.05) from Hardy-Weinberg equilibrium in three 

loci of both populations (DMA 12, DP 162 und S6-38) due to increased heterozygosity (Table 

2). Contrarily, the fall population indicates a deficit of heterozygous at loci DMA 3, DMA 14 

and DMA 15 (p < 0.05), while the spring population only deviated significantly from Hardy-

Weinberg equilibrium at locus DMA 3 (Table 2). The genetic distance between D. magna

spring and fall samples was quite low (FST = 0.005); however, both samples were significantly 

distinct (p < 0.05). 
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Figure 1 Inhibition of digestive proteases from homogenates of D. magna clone B by dry 

weight extracts of the edible fraction (< 55 µm) of seston of the AaW from different sampling 

dates. Seston samples from 2007 (black circles) and 2008 (white squares) were assessed for 

their effect on digestive chymotrypsins (A) and trypsins (B) of D. magna. Depicted are IC50

concentrations of extracted freeze-dried seston (± 95% CI). IC50 values indicate the inhibitory 

potential of the seston sample. Low IC50 values indicate a high inhibitory potential of the 

seston, which means that little freeze-dried seston was needed to inhibit 50% of D. magna

chymotrypsins. Non-overlapping 95% confidences intervals (CI) among two samples were 

assumed as significantly different. 95% CI may appear asymmetric due to log-scale of IC50

values. Where error bars are not visible, the 95% CI are smaller than symbols.
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Table 2 Observed (Ho) and expected (He) heterozygosity of the D. magna spring and fall 

samples in six polymorphic microsatellite loci, according to Hardy-Weinberg equilibrium. N: 

number of analyzed clones, Na: number of alleles. Significant differences at p < 0.05 (*) and p 

< 0.01 (**). 

Locus Population N Na He Ho p

DMA 12 Spring 47 3 0.595 0.766 0.00019**
 Fall 43 3 0.495 0.721 0.00011**

DMA 3 Spring 47 2 0.595 0.085 0.00000**

 Fall 43 2 0.477 0.000 0.00000**

DMA 14 Spring 47 2 0.485 0.426 0.69900 

 Fall 43 2 0.385 0.512 0.04160*

DP 162 Spring 47 3 0.573 0.830 0.00033**

 Fall 43 3 0.595 0.814 0.00013**

S6-38 Spring 47 2 0.374 0.489 0.04400*

 Fall 43 2 0.484 0.791 0.00000**

DMA 15 Spring 47 2 0.446 0.425 0.0971 

 Fall 43 2 0.385 0.512 0.0415

 We performed growth experiments using three different diets to check for possible 

seasonal adaptation to chymotrypsin inhibition by the seston. Three genotypes of each D. 

magna sample were kept on three different diets: Animals were fed either with pure C. sp. or 

with one of two various mixtures of C. sp. and M. aeruginosa. We found an overall effect of 

diet on somatic growth rates of each of the D. magna clones (Fig. 2A; ANOVA, S2: F2,6 = 

678.4 ; p < 0.001; S7: F2,6 = 66.83 ; p < 0.001; S15: F2,6 = 251.8 ; p < 0.001, F3: F2,6 = 219,7;

p < 0.001; F11: F2,6 = 137.7; p < 0.001; F24: F2,6 = 1052.6; p < 0.001). Somatic growth rates 

in M. aeruginosa treatments were significantly lower than in the control with pure C. sp. With 

increasing M. aeruginosa concentration, the growth rates of all tested clones decreased 

significantly (Tukey�s HSD, p < 0.05). Population growth (Fig. 2B) was also affected by diet 

(ANOVA, S2: F2,6 = 144.5; p < 0.001; S7: F2,6 = 57.0; p < 0.001; S15: F2,6 = 7.33; p < 0.001;

F3: F2,6 = 28.7; p < 0.001; F11: F2,6 = 296.3; p < 0.001; F24: F2,6 = 227.6; p < 0.001). Similar 

to the somatic growth rates, the population growth rates of clones F11, F24, S2 and S7 

decreased significantly with increasing M. aeruginosa concentration (Tukey�s HSD, p < 0.05). 

With regard to clones F3 and S15, only treatments with 20% M. aeruginosa resulted in lower 

population growth rates. The factor �season� affected neither the somatic nor the population 

growth rates. 
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Figure 2 Somatic (A) and population (B) growth rates (mean ± SD, n=3) of D. magna clones 

from the AaW on pure C. sp. and on two mixtures of C. sp. and M. aeruginosa. Clones 

labeled with �S� and �F� were isolated in spring and fall, respectively. Different significance 

levels (one Way ANOVA, Tukey�s HSD test, p < 0.05) within clones are indicated by different 

letters. 
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Table 3 Results of repeated-measurement analyses of variances of D. magna clone 

frequency in control and Microcystis treatment. Significant differences at p < 0.05 (*) and p < 

0.01. 

  SS df F P 

Clone S2 

Treatment 0.002178 1 0.8252 0.393861 

Error 0.018475 7 

Time 0.064362 2 11.2087 0.001241** 

Time x treatment 0.000936 2 0.1631 0.851125 

Error 0.040195 14 

Clone S7 

Treatment 0.143614 1 5.67122 0.048779* 

Error 0.177263 7 

Time 0.019229 2 0.73833 0.495626 

Time x treatment 0.004162 2 0.15980 0.853845 

Error 0.182306 14 

Clone S15 

Treatment 0.085287 1 3.67251 0.096844 

Error 0.162562 7 

Time 0.016339 2 0.63204 0.546011 

Time x treatment 0.004847 2 0.18750 0.831080 

Error 0.180957 14 

Clone F3 

Treatment 0.004433 1 0.63738 0.450891 

Error 0.048690 7 

Time 0.014072 2 2.22842 0.144476 

Time x treatment 0.000985 2 0.15592 0.857095 

Error 0.044204 14 

Clone F11 

Treatment 0.005287 1 1.93804 0.206508 

Error 0.019096 7 

Time 0.008627 2 4.47832 0.031372* 

Time x treatment 0.001802 2 0.93546 0.415606 

Error 0.013484 14 

Clone F24 

Treatment 0.016051 1 0.6264 0.454665 

Error 0.179381 7 

Time 0.031368 2 0.5769 0.574439 

Time x treatment 0.001483 2 0.0273 0.973145 

Error 0.380612 14     
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Figure 3 Mean frequency (± SD, n=5) of D. magna clones in the competition experiment. 

Clones were isolated from the AaW either in spring (A-C) or in fall (D-F) 2008. Black squares 

and white circles represent frequency of clones grown on pure C. sp. or on a mixture of 90% 

C. sp. and 10% M. aeruginosa after 30, 60 and 90 days. 

 In addition to the single growth experiments, a long-term experiment was performed in 

order to consider further effects due to maternal mechanisms or clonal interactions. D. 

magna clones were cultured together in two treatments differing in cyanobacteria content 

(Fig. 3). This competition experiment showed significant effects for factors �time� or �diet� on 

some of the six D. magna clones (Table 3). Clone S2 and F11 showed significantly lower 

relative abundances on day 90 than on day 30 on both pure C. sp. and on the mixture with 
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90% C. sp. and 10% M. aeruginosa (Fig. 3A, E). D. magna clone S7 was more abundant on 

the M. aeruginosa mixture than on pure C. sp. (Fig. 3B). None of the factors �time�, �diet� and 

�time x diet� had significant effects on clones S15, F3 and F24 (Fig. 3C, D, F) . To exclude 

negative effects due to food quantity, the food concentration was always kept above 0.2 mg 

C/l, the incipient limiting food level of D. magna (Porter et al. 1982). 

Discussion 

 Czarnecki et al. (2006) have recently shown that the potential for natural lake seston to 

inhibit trypsins of Daphnia was comparable to the potential of cultures of Microcystis sp. to 

inhibit trypsins. The present study showed for the first time that natural lake seston can also 

inhibit Daphnia chymotrypsins, which, in addition to trypsins, account for the largest 

proportion of proteolytic activity in the gut of D. magna (Von Elert et al. 2004). With regard to 

the well-known seasonal succession in the phytoplankton community (Sommer et al. 1986), 

our study is the first to investigate seasonal changes of the potentials of a natural lake seston 

to inhibit trypsins and chymotrypsins of D. magna. We focused on the seston fraction smaller 

than 55 µm, which constitutes the edible size fraction for daphnids (Gophen & Geller, 1984;

Hessen, 1985), and found seasonal changes in the potential of the AaW seston to inhibit D. 

magna chymotrypsins in each of two successive years. From the end of June to mid-July 

2007, this inhibitory potential increased more than 200-fold within merely three weeks. We 

found a similar pattern of chymotrypsin inhibition in 2008. Due to the lack of data about the 

phytoplankton composition in the AaW, it remains unclear whether the increase of the 

inhibitory potential was a consequence of a higher relative abundance of cyanobacteria 

containing protease inhibitors. We cannot rule out the possibility that this increase resulted 

from a relatively high cellular content of protease inhibitors within an otherwise unaltered 

phytoplankton community. Such increases of the content of particular secondary metabolites 

in response to growth conditions have already been demonstrated for microcystins in various 

Microcystis strains (Long et al. 2001; Wiedner et al. 2003). 

 In parallel with seasonal changes in the potential of the phytoplankton to inhibit proteases, 

the genetic structure of the D. magna population of the AaW changed in 2008. Microsatellite 

analyses of D. magna clones established in the laboratory showed that the spring and fall 

samples were genetically distinct. We found a decline in the number of D. magna genotypes 

from spring to fall. Due to selective differences among Daphnia clones an erosion of clonal 

diversity during the parthenogenetic phase is a common phenomenon in Daphnia
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populations (Lynch 1987; Vanoverbeke & De Meester 2010). The loss of genetic variability in 

the AaW coincided with an increase of the inhibitory potential on chymotrypsins in the seston 

and could result from natural selection due to increasing protease inhibition on D. magna

genotypes. 

 Three spring clones and three fall clones of D. magna were assayed in order to test 

whether seasonal changes in genotypes might be caused by the inhibitory potential of the 

seston on chymotrypsins. All six D. magna clones showed a significant reduction of their 

somatic growth rate with increasing cyanobacterial abundance in the food. However, only 

four of the six clones exhibited a reduction in population growth when feeding on 10% M. 

aeruginosa. Two clones showed no negative effects in population growth, even at a relative 

food abundance of 20% M. aeruginosa. This supports the data of Lürling (2003), who used 

the same strain of M. aeruginosa and reported a reduction in population growth of D. magna 

clones at a concentration of � 25% M. aeruginosa. The M. aeruginosa strain used here 

produces the chemically known chymotrypsin inhibitors Cyanopeptolin 954 and Nostopeptin 

BN920 (Von Elert et al. 2005) and contains no microcystins (Lürling 2003). The observed 

negative effect of 20% of this cyanobacterium on somatic and population growth of the six D. 

magna clones suggests that this reduction was caused by an interference of the 

cyanobacterial inhibitors with the chymotrypsins in the gut of D. magna. Evidence that this 

strain of M. aeruginosa interferes with D. magna chymotrypsins is based on several studies 

(Von Elert et al. 2005; Schwarzenberger et al. 2010). Schwarzenberger et al. (2010) reported 

that the activity of gut chymotrypsins of D. magna decreased clearly when the animals were 

fed with M. aeruginosa. Additionally, D. magna can respond with physiological plasticity to 

dietary cyanobacterial protease inhibitors by increasing the expression of the targets of these 

inhibitors, i.e. chymotrypsins, and by the expression of less-sensitive isoforms 

(Schwarzenberger et al. 2010, Von Elert et al. 2012). Clearly these regulatory responses are 

adaptive for D. magna, as they increase the capacity for protein digestion in the presence of 

dietary protease inhibitors. These specific responses in chymotrypsin expression strongly 

point at an interference of the two known chymotrypsin inhibitors with D. magna

chymotrypsins when this strain of M. aeruginosa is fed. 

 Variances in the mean tolerance to cyanobacteria of Daphnia populations over time have 

already been demonstrated. For example, Weider et al.(1997) noted significant genotypic 

shifts in the D. galeata population of Lake Constance, Germany, by collecting resting eggs 

from lake sediments dating from the mid-1960s to mid-1990s and analyzing the genotypic 

structure of the hatchlings from these resting eggs. The observed shifts in genotype 

composition were strongly correlated with changes in the trophic state of the lake. These 
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genotypic shifts were related to micro-evolutionary changes within the population in their 

ability to cope with cyanobacteria as food (Hairston et al. 1999; Hairston et al. 2001). 

However, in our single-clone growth experiments we could not confirm our hypothesis that an 

adaptation of the D. magna population to cyanobacteria in the AaW occurred over the 

seasons; clones isolated in fall 2008 did not grow better on mixtures with M. aeruginosa than 

clones isolated in spring did. 

 Gustafsson et al. (2005) have shown that D. magna can acquire a tolerance to 

cyanobacteria within a single animal�s lifetime and transfer this tolerance through maternal 

effects to the next generation. Such a maternal transfer is not accounted for in the single-

clone growth assays described above. Maternal effects are adequately considered in multi-

generational competition experiments. Such experiments have demonstrated that food 

quality determined which of several clones from the D. pulex species complex becomes 

dominant in an experimental population (Weider et al. 2005; Weider et al. 2008). Here we 

conducted such a multi-generational competition experiment, and 10% of the chymotrypsin-

inhibitor-producing cyanobacterium significantly affected the clonal composition of the 

populations. In the competition experiment the same D. magna clones as used in the single-

clone growth assays were cultured together for 90 days on either pure C. sp. or on a mixture 

of C. sp. and M. aeruginosa at saturating food levels. Two kinds of effects occurred at the 

end of the experiment: First, the relative frequency of two clones (S2, F11) decreased 

significantly, whereas three clones (F24, S2, S15) dominated the clonal compositions in both 

treatments. This is reflected in a reduction of Shannon�s diversity (data not shown). Earlier 

studies have already demonstrated that the genetic diversity in a multi-clonal competition 

experiment decreased over time under constant conditions (Weider et al. 2008; Nelson et al.

2005). The single-clone growth experiments served hereby as controls for the competition 

experiment, as the two experiments were started simultaneously with the same cohort of 

newborns. Due to the fact that all D. magna clones had positive population growth rates on 

both treatments we can rule out the possibility that the decrease in frequency of clone S2 and 

F11 resulted from a general intolerance to the different food treatments directly from the start. 

 The second effect observed in the competition experiment was the significantly higher 

frequency of D. magna clone S7 in the treatment with 10% M. aeruginosa than on the pure 

green alga C. sp.. This suggests that clone S7 has a greater potential to dominate the D. 

magna population in the presence of M. aeruginosa than in its absence. In the single-clone 

growth experiment, the somatic and population growth of clone S7 in the presence of M. 

aeruginosa did not differ from the growth of the other clones. However, the present study 

underlines earlier results (Weider et al. 2008) showing that single clone experiments cannot 
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predict the outcome of a complex competition experiment. The discrepancy in growth rates 

between single clone and competition experiments of D. magna clone S7 can be explained 

by inducible mechanisms. Increased tolerance can be transferred to the offspring via 

maternal effects, a fact that has been interpreted as an inducible defense (Gustafsson et al.

2005). It remains unclear whether this inducible tolerance results from microevolution and 

hence can only be found in D. magna clones originating from lakes containing cyanobacteria.  

 We hypothesized that D. magna clones from the fall population would show higher clonal 

frequencies in the M. aeruginosa treatment. This could not be confirmed, and thus we could 

not find any evidence that the D. magna clones isolated in fall were better adapted to 

cyanobacteria containing protease inhibitors than the spring clones were. We used three 

distinct clones of each sample, a number which might not have been sufficient to represent 

the clonal D. magna composition of the spring and the fall samples in the AaW. Possibly 

existing seasonal patterns of tolerance to cyanobacteria might be detectable by using a 

greater number of D. magna clones of each sample. In contrast to the study of Weider et al.

(2008) in which seven Daphnia clones from different lakes were used, we used six D. magna

clones originating from just one habitat. It is reasonable to assume that clones originating 

from the same population are genetically more similar with respect to traits that mediate 

tolerance to cyanobacteria than clones isolated from various populations that differ with 

respect to the prevalence of cyanobacteria. Sarnelle & Wilson (2005) demonstrated 

differences in the tolerance to cyanobacteria of D. magna clones from different habitats, 

giving evidence for local adaptation to cyanobacteria. In populations coexisting with 

cyanobacteria, less tolerant clones might have become extinct due to natural selection 

caused by the cyanobacteria. Since the selection pressure exerted by protease inhibitors 

probably already existed over several previous seasons in the AaW, sensitive genotypes 

would have been under negative selection for numerous generations and thus only be 

present in low numbers. It remains unclear how many of the D. magna genotypes of the 

spring population originated from clones that remained in the lake during the winter or 

originated from hatched ephippia in spring. Ex-ephippia genotypes constitute new genotypes 

resulting from sexual reproduction and are not under selection by food quality until hatching. 

D. magna clones freshly hatched from ephippia might thus be less tolerant to cyanobacteria. 

A high proportion of freshly hatched genotypes from ephippia in the spring should result in a 

detectably lower fitness on cyanobacterial diet compared to clones from the fall. If more 

clones of the population in spring originated from D. magna genotypes which had persisted 

over the winter, the mean selection pressure on the population due to seasonally peaking 
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protease inhibitors could be too small to cause detectable fitness differences between spring 

and fall samples. 

 The present study shows for the first time seasonal changes in the potential of a natural 

lake seston to inhibit the major digestive proteases trypsin and chymotrypsin of D. magna. 

The inhibitory potential on chymotrypsins was clearly higher in fall than in spring for each of 

two successive years. However, in single-clone growth- and competition experiments we 

could not find seasonal differences in tolerance between the D. magna spring and fall 

samples to a cyanobacterium containing chymotrypsin inhibitors. Contrary to our hypothesis, 

D. magna genotypes from the fall were not better adapted to a cyanobacterial diet containing 

protease inhibitors than genotypes from the spring were. It remains to be seen if the 

coexistence with seasonally varying dietary protease inhibitors in the AaW has led to a locally 

adapted D. magna population with such a high level of tolerance to protease inhibitors that 

seasonally peaking protease inhibitors have no detectable effects on the tolerance of D. 

magna within this population. It will be interesting to see if a comparison among D. magna

populations that exist in the presence or absence of dietary protease inhibitors provides 

evidence that seasonally occurring protease inhibitors constitute a constraint strong enough 

to lead to locally adapted populations. 
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Fig. 4 In vitro effects of increasing concentrations of extracted biomass of each seston 

sample taken in 2007 on the normalized activity of chymotrypsins of D. magna clone B. IC50

values (which indicate the inhibitory potential of a seston sample and are presented in Fig. 

1A as black circles) are based on sigmoid dose-response curves (solid lines). IC50 values 

with corresponding 95% confidence intervals (CI) were calculated using the software 

GraphPad Prism (GraphPad Software, Inc.). Note different scales of the axes. 
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values (which indicate the inhibitory potential of a seston sample and are presented in Fig. 
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Abstract 

 Determining genetic variation at the DNA level within and between natural populations is 

important for understanding the role of natural selection on phenotypic traits, but many 

techniques of screening for genetic variation are either cost intensive, not sensitive enough 

or too labor and time-consuming. Here we demonstrate high resolution melting analysis 

(HRMA) as a cost-effective and powerful tool for screening variable target genes in natural 

populations. HRMA is based on monitoring the melting of PCR amplicons. Due to saturating 

concentrations of a dye that binds at high concentrations to double-stranded DNA, it is 

possible to genotype high numbers of samples rapidly and accurately. We analyzed digestive 

trypsins of two Daphnia magna populations as an application example for HRMA. One 

population originated from a pond containing toxic cyanobacteria that possibly produce 

protease inhibitors, the other from a pond without such cyanobacteria. The hypothesis was 

that D. magna clones from ponds with cyanobacteria have undergone selection by these 

inhibitors, which has led to different trypsin alleles. We first sequenced pooled genomic PCR 

products of trypsins from both populations to identify variable DNA sequences of active 

trypsins. Secondly we screened variable DNA sequences of each D. magna clone from both 

populations for single nucleotide polymorphisms (SNPs) via HRMA. The HRMA results 

revealed that both populations exhibited phenotypic differences in the analyzed trypsins. Our 

results indicate that HRMA is a powerful genotyping tool for studying the variation of target 

genes in response to selection within and between natural Daphnia populations.
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Introduction 

 The analysis of genetic variation at the molecular level is necessary to understand the key 

mechanisms of adaptive evolution in response to selection. Due to the rapidly growing 

number of sequenced eukaryotic genomes and corresponding techniques, the possibilities 

for analyzing genotype-phenotype interactions has increased considerably in the last decade. 

In natural populations, adaptive and neutral genetic diversity have to be distinguished in this 

context, both between and within populations. The neutral genetic variation can be assessed 

relatively easy by using neutral markers such as microsatellites or allozymes. However, 

genetic variation and population differentiation of adaptive traits are not directly linked with 

neutral genetic diversity (Ohta 1992; Holderegger et al. 2006). For this reason, the variation 

in loci coding for phenotypic traits has to be determined to more properly estimate population 

differentiation in response to selection. Various approaches for screening of such loci have 

been successfully established in the past decades and can be used to analyze variation in 

populations. Conformational analyses, such as DGGE, SSCP or RSCA, are based on 

separation of PCR samples on a gel or a different matrix and require prior sample processing 

steps, which are time and labor consuming and increase the risk of contamination, because 

PCR products are exposed to the environment (Reed et al. 2007). Direct genotyping 

techniques such as chain termination sequencing or high-throughput sequencing techniques, 

like Next-Generation Sequencing, are indeed quite sensitive but still too costly for many 

large-scale population studies.  

 In the present study we describe a rapid, sensitive and cost-effective method for the 

detection of genotype variations that can be used for genotyping single individuals in 

populations: High-resolution melting analysis (HRMA). HRMA is a well established technique 

for gene scanning based on the melting curves of PCR products (Gundry et al. 2003), which 

does not require any processing, reagent addition or separations after PCR. It is based on 

monitoring the melting behavior of whole amplicons of up to 250 base pairs after a common 

PCR amplification. The characteristic dissociation (melting) behavior of each double-stranded 

DNA (dsDNA) depends mainly on its GC content, sequence length, nucleotide composition 

and strand complementarity (Ririe et al. 1997). HRMA is most commonly performed in the 

presence of a saturating concentration of a fluorescent dye that binds specifically to dsDNA 

(Wittwer et al. 2003). This binding leads to a fluorescence signal that can be detected by 

highly sensitive quantitative PCR instruments. Fluorescent dyes used for HRMA have higher 

fluorescence levels when bound to dsDNA than in an unbound state or after binding to 

single-stranded DNA (Wittwer et al. 2003). To characterize the melting curve of a DNA 

sample, the fluorescence is continuously monitored during the slow heating of the sample. 
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The temperature-dependent dissociation of the dsDNA directly results in a decrease of 

fluorescence. Detection and differentiation of distinct DNA samples relies on differences in 

the melting temperature (Tm) and the shape of the melting curve (Montgomery et al. 2007), 

so that most single nucleotide polymorphisms (SNPs) can be genotyped by HRMA. However, 

some homozygous SNP variants cannot be differentiated because they possess a similar or 

even identical melting curve shape. In particular, homozygous SNP variants of class III (C/G) 

and class IV (A/T) mutations, also known as neutral base pair changes (Gundry et al. 2008), 

can result in almost identical melting curves. In these cases, a known reference homozygous 

genotype is added to each unknown homozygous sample (Palais et al. 2005). The newly 

formed artificial heteroduplexes can subsequently be differentiated in a second melting 

analysis by the shape of the corresponding melting curves; this procedure ensures the 

complete identification of all homozygous variants.

 HRMA has been applied in numerous clinical studies and for medical molecular 

diagnostics, and has a broad range of applications (Reed et al. 2007). Another important field 

of HRMA applications is the identification of parasitic organisms such as trematodes 

(Radvansky et al. 2011), nematodes (Areekit et al. 2009) and parasitic protozoa in humans 

(Andriantsoanirina et al. 2009) and in fungal pathogens (Luchi et al. 2011). Furthermore, 

HRMA has been suggested as an alternative genotyping system for variation detection in 

neutral markers in a population, for example in swordfish (Smith et al. 2010) or garden sage 

(Mader et al. 2010), for insect species identification (Winder et al. 2011) and for 

differentiating between social forms in populations of the red imported fire ant (Oakey et al.

2011).  

 HRMA has recently been reported in the ecological literature (e.g. Smith et al. 2010; Seeb 

et al. 2011, Henri & Mouton 2012). In the present study we used HRMA in an ecological 

context to determine the genetic variation of target genes between and within two natural 

populations of the water flea Daphnia magna. In contrast to Daphnia pulex, which has 

recently become a model organism (Colbourne et al. 2011), the reference genome data for 

D. magna is still only partially available. Members of the genus Daphnia are unselective filter 

feeders of algae and cyanobacteria in freshwater ecosystems and are often the most 

important food source for planktivorous vertebrate and invertebrate predators. Daphnia is 

therefore a keystone species in the energy transfer from primary producers (phytoplankton) 

to higher trophic levels. In eutrophic lakes this energy transfer is constrained mainly by food 

quality and not by food quantity (due to relatively high abundances of cyanobacteria). Three 

major food quality constraints have been revealed for the poor assimilation of cyanobacterial 

carbon by Daphnia: (1) Mechanical interferences with the filtering process of Daphnia due to 
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colonial or filamentous forms of the cyanobacteria (Porter & Mcdonough 1984). (2) The low 

content of polyunsaturated fatty acids and the lack of sterols in cyanobacteria, both of which 

are essential for Daphnia nutrition (Von Elert 2002; Von Elert et al. 2003). (3) Many 

cyanobacterial strains also produce toxins which negatively affect the fitness of Daphnia

(Rohrlack et al. 2001; Lürling 2003). Protease inhibitors are very common among such 

cyanobacterial toxins: More than twenty depsipeptides, acting as protease inhibitors, have 

been found in cyanobacterial toxins (Gademann & Portmann 2008). These depsipeptides 

specifically inhibit the proteases chymotrypsin and trypsin, two digestive enzymes that are 

responsible for more than 80% of the proteolytic activity in the gut of Daphnia magna (Von 

Elert 2004). Studies by Agrawal et al. (2005), Schwarzenberger et al. (2010) and Von Elert et 

al. (2012) have shown a direct inhibition of the digestive proteases of Daphnia by 

cyanobacterial protease inhibitors. Furthermore, Czarnecki et al. (2006) have shown that the 

potential of natural phytoplankton to inhibit trypsins is comparable to the inhibitory potential of 

cyanobacterial strains. This strongly suggests that cyanobacterial protease inhibitors interfere 

with digestive proteases in Daphnia in nature. However, Daphnia populations can adapt to 

the presence of cyanobacteria in terms of a higher tolerance (Gustafsson & Hansson 2004; 

Hairston et al. 1999; Sarnelle & Wilson 2005). Blom et al. (2006) showed that Daphnia sp. 

coexisting with the cyanobacterium Planktothrix rubescens, which produces the trypsin 

inhibitor oscillapeptin J, are significantly more tolerant to oscillapeptin J than Daphnia sp. 

from habitats free of Planktothrix rubescens. Furthermore, Von Elert et al. (2012) have 

recently shown that a physiological plasticity at the protein level in Daphnia leads to higher 

tolerance against cyanobacterial protease inhibitors. Considering the finding that almost 60% 

of 17 water blooms of cyanobacteria contained protease inhibitors (Agrawal et al. 2001), it is 

reasonable to assume that increased tolerance to cyanobacteria in Daphnia populations may 

be the result of higher tolerance to the cyanobacterial protease inhibitors.  

 In the present study we analyzed the genetic diversity of all three digestive trypsins that 

have been shown to be active in the gut of D. magna between and within two distinct 

populations. The populations originated from ponds, which mainly differ in the presence and 

absence of toxic cyanobacteria that possibly contain protease inhibitors. The hypothesis was 

that the coexistence of D. magna with cyanobacterial trypsin inhibitors has led to selective 

pressure on digestive trypsins, resulting in differences in trypsin variability compared to a 

population existing without cyanobacteria. To test this, we established clones from each 

population under constant laboratory conditions. After DNA extractions and normalizations 

steps, we performed a polymerase chain reaction (PCR) with each clone. We subsequently 

pooled the genomic PCR-products of all digestive trypsin genes from each of the two 
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populations. The pooled PCR-products of both populations were then sequenced to 

distinguish between conserved and variable DNA sequences of active digestive trypsins. 

Then we screened the variable DNA sequences in the trypsin loci for polymorphisms by 

using HRMA with 15 single clones from each D. magna population. 

Material and methods 

Origin of Daphnia magna clones 

Fifteen D. magna clones (termed as Sn clones) were isolated from Lake Bysjön (LAT 

55.675448 LON 13.545070) in June 2010, cultivated as single clones at 20°C and are 

referred to hereafter as the Swedish population. Lake Bysjön is a hypereutrophic lake and is 

located in southern Sweden (Hansson et al. 2007). It frequently has massive cyanobacterial 

blooms (Gustafsson 2007). 

 Fifteen D. magna clones (termed as Pn clones) were isolated from a small pond in the 

Kampinoski National Park near Warsaw, Poland (LAT 52.322722 LON 20.730515) in August 

2010. The clones were cultivated as single clonal lineages at 20°C and are referred to 

hereafter as the Polish population. The ponds in Kampinoski National Park have no recorded 

cyanobacterial blooms. All D. magna clones were cultured separately in aged, membrane-

filtered tap water and fed with saturating concentration of a green alga (Chlamydomonas

sp.). 
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DNA sample preparation 

Genomic DNA of each single D. magna clone from the Swedish and the Polish population 

was extracted from at least ten adult individuals using the peqGOLD® Tissue DNA Mini Kit 

(Peqlab, Erlangen, Germany) as according to the manufacturer�s standard protocol. DNA 

concentration of each sample was determined using a NanoDrop® ND-1000 

Spectrophotometer (Thermo Scientific, Wilmington, USA) and normalized to 20 ng/µL. 

Table 1 Primer sequences (5`-3`) and corresponding melting temperature (Tm) for population 

sequencing and subsequent HRMA of the digestive trypsins 610, 208 and 152.  

Locus Primer sequences (5` - 3`) Tm (°C)

t610.1 F: GCCCATGATTGATGATGACA 57 

R: TTTGGACAAGATGTCGCTGT 57 

t610.2 F: CATCGTTGCTGGTGAACACA 58 

R: GGTGATGGAAGTAGCTCCGTA 57 

t610.3 F: GATGCCACTTGCCGTGAC 57 

R: ATGGGATTGTTGGCGAAA 57 

t610.HRM F: AGCTCCCCACTCTCGTTGA 57.5 

R: AATATCGCAAAATGAATTACCG 57 

t208.1 F: AGCTGATCCCATCCAACAGG 59.5 

R: GGAGCATCCAACTACAAAATCG 59 

t208.2 F: CGACATCTCTCTGCTCTTTGT 55 

R: TTAAATCAGGAACAAGTCAGAACA 57 

t208.3 F: TCTTCCCTTCCATGATCTGC 57 

R: GCTTCATTCGACACCGTTTT 57.5 

t208.HRM F: GATGCTCCATTGGACCTGAG 57 

R: TGATTTTGAGGTGCGTTTGA 57 

t152.1 F: AGCTGATCCCATCCAACAAG 57 

R: AATGAAGCTGGCAACACCAC 58 

t152.2 F: AGCGGCCTCGAACAGAAC 58 

R: CGGAGTGTGTCGGAGATGAT 57.5 

t152.3 F: TTGCTGGGTTTGATGCAGT 57 

R: TTGATAGGGATGGGGATGG 57.5 

t152.exon2 F: GAGTTGACGCTTCCATCCTC 57 

R: CCTGTAGTCCTCGTGGATAATGA 58.5 

t152.exon5 F: GCAGTCCGGTGGTATCATCT 57 

R: CGGACGAGATAAATGTTCCAA 58 

t152.exon6 F: TCAGGTGGTATCGACTCTTGC 57.5 

R: TGAAGTTGATTCTAGGCGTTTG 57.5 
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Sequencing and screening for SNPs 

All genes chosen for the SNP screening and the HRMA coded for digestive trypsins, 

which are active in the gut of D. magna (Schwarzenberger et al. 2010). Genome sequences 

of the trypsin genes (t610, t208, t152) were obtained from an unpublished D. magna genome 

assembly. Summaries for assembly and scaffolding are reported on the Daphnia Genomics 

Consortium webpage: https://wiki.cgb.indiana.edu/display/grp/Daphnia+magna+Genome. 

  All primers, based on these trypsin genes for screening the population for SNPs were 

designed using Primer 3 software (Rozen & Skaletsky 2000). To ensure the reliability of the 

designed primers, all primer pairs were designed with the aim to minimize the formation of 

secondary structures such as hairpins, self-dimers, cross-dimers and primer mismatches. 

Due to repetitive regions in the introns of trypsin t152 three additional primer pairs had to be 

designed to amplify and sequence the whole trypsin gene. The amplification was performed 

via polymerase chain reaction (PCR) in a final volume of 10 µL containing 10 ng of genomic 

DNA, 0.2 µmol of each primer, 10 µmol of the dNTPs, 0.25 U Taq DNA polymerase and 1 µL 

of corresponding PCR buffer (5 Prime, Hamburg, Germany). After checking the success of 

the amplification via agarose gel electrophoresis, aliquots of 1 µL PCR products of each 

single clone were pooled for the Swedish and Polish clones separately. The pooled PCR 

products from each population were then purified using a GenEluteTM PCR Clean-Up Kit 

(Sigma-Aldrich, St. Louis, USA) and sequenced via chain termination sequencing by GATC 

Biotech (Konstanz, Germany) using the ABI Big Dye Terminator Mix v3.1 on an ABI 3730xl 

DNA Analyzer (Applied Biosystems, Foster City, USA). Subsequently, the sequenced 

amplicons were screened for SNPs that affect phenotypic traits in terms of relevant amino 

acid substitutions. Additional information on the exact location of all primer pairs and the 

fragment size they amplify can be found in the supporting online material.

  

HRM analysis 

For the HRMA, primer with an amplicon size of between 100 and 200 base pairs were 

designed (Table 1), with the non-synonymous SNP towards the middle. The HRMA assay for 

each clone was performed in 96 well plates in a final volume of 25 µL containing 50 ng of 

genomic DNA, 0.3 µmol of each primer, 12.5 µL SensiMix HRMTM(Bioline, London, Great 

Britain), 1 µL of EvaGreenTM dye (Bioline, London, Great Britain) and 5 mmol MgCl2. 
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The DNA amplifications and the subsequent melting curve analyses were carried out 

using a LightCycler 480 System® (Roche Diagnostics, Risch, Switzerland) under the following 

conditions: 10 min initial polymerase activation at 95°C followed by 55 cycles of amplification, 

each including 15 s denaturation at 95°C, 10 s annealing at 57°C and 10 s extension at 72°C. 

Immediately after amplification, the products were heated to 95°C for 1 min and then cooled 

to 40°C followed by an incremental temperature increase of 0.05°C/s to a target temperature 

of 95°C. The fluorescence was monitored during the entire heating process. Data analyses 

were carried out using LightCycler 480 Gene Scanning Software® version 1.5. The melting 

curve data of the amplicons were normalized to the fluorescence (Y-axis) and temperature 

(x-axis) and grouped according to melting curve shape. However, temperature shifting 

normalization removes potential discriminatory power provided by the temperature data, but 

compensates for well-to-well temperature variations between samples. The necessity for a 

temperature normalization step mainly depends on the high resolution melting instruments 

(Herrmann et al. 2007). Due to DNA mismatches at the SNP locations, the melting process of 

heterozygous samples proceeds inconstantly resulting in a flattened melting curve with more 

than one inflection point. In contrast, the melting curve shape of homozygous samples 

indicates a consistent melting behavior with just one inflexion point (sigmoid shape). 

Homozygous samples that were identified by the number of inflection points of their melting 

curves were mixed with a known homozygous genotype followed by an additional melting 

analysis. This ensured the complete identification of all homozygous variants. Subsequently, 

one sample from each genotype was sequenced (chain-termination sequencing) in order to 

determine the genotype specific nucleotide sequence.

Results 

The sequence analysis of pooled PCR products of t152 revealed that this locus was 

polymorphic. However, only synonymous SNPs were detected, which means that trypsin 152 

was entirely conserved in terms of amino acid sequence within all clones of the Swedish and 

Polish Daphnia magna populations. With regard to trypsin 610, the sequence of pooled PCR 

products of the Swedish D. magna genotypes exhibited a single nucleotide variation coding 

for the amino acid position 119 (Fig. 1A). At this position the Swedish haplotypes contained 

the codon GAA or GCA; GAA codes for glutamic acid (Glu), GCA for alanine (Ala). Glu and 

Ala differ with respect to the characteristics of their side chains: Glu is characterized by a 

negatively charged, acidic side chain, while Ala carries a hydrophobic side chain. The Polish 
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D. magna genotypes exhibit GAA only at this position, so that T610 has Glu at this position in 

all Polish clones.  

Regarding trypsin 208 the sequence of pooled PCR products of the Swedish D. magna

genotypes exhibited a single SNP coding for the amino acid position 130 (Fig. 1B). At this 

position, Swedish haplotypes contained either the triplet codon ATG, which codes for 

methionine (Met), or ATT, which codes for isoleucine (Ile). In contrast to Ile, Met contains a 

sulfur atom and is more polar. The Polish D. magna genotypes exhibit only ATT at this 

position in t208, so that Ile shows up at position 130 in all clones. DNA primer for HRMA 

were designed with the specification that the resulting amplicons cover these variable 

nucleotide sequences in t610 and t208. Subsequently, each D. magna clone from both 

populations was genotyped individually at these variable loci via HRMA. 

 The HRMA of the chosen variable DNA sequence of trypsin 610 of all 30 D. magna clones 

from the Swedish and the Polish populations revealed the presence of three different 

genotypes. From each genotype one sample was subsequently sequenced (Fig. 2A). Out of 

two polymorphic nucleotide sites within this 130 base pair fragment, one polymorphism 

(position 71) was an A/C/M variation resulting in a Glu/Ala amino acid variation, while the 

remaining nucleotide variation (position 39) was a synonymous substitution. Figure 2B shows 

the normalized melting curves of the amplified DNA fragments of all D. magna clones. 

Additional temperature shifts of the melting curves were performed in order to compensate 

for temperature variations between the wells of the LightCycler 480 System®. This resulted in 

a decrease of sensitivity, so that melting curves could mainly be discriminated by the shape 

of the curves. Nine heterozygous genotypes (GT3) exhibited well-defined melting curves that 

could be accurately distinguished from those of the homozygous genotypes. The melting 

curves of the homozygous genotypes (GT1, GT2) merged into one group due to almost 

identical shapes of the melting curves. To ensure the complete identification of all variants, 

all homozygous genotypes (identified by the sigmoid shape of the corresponding melting 

curves with just one inflexion point) were mixed with a known homozygous genotype, i.e. 

GT1 (Figs. 2C & 2D), generating heteroduplexes. After an additional melting analysis, the 

resulting melting curves had either the shape of a heterozygous or a homozygous variant 

(Fig. 2D). An unchanged homozygous melting curve indicated that the original genotype was  
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Figure 1 Procedure of determining variable parts in genes of digestive trypsins 610 (A) and 

208 (B) of the Swedish and Polish populations. Genes of digestive trypsins of single clones 

from both populations were amplified using the PCR technique. Afterwards, the PCR 

products from different clones were pooled, sequenced and then screened for SNPs which 

affect phenotypic traits in terms of relevant amino acid substitutions (for the Swedish and 

Polish populations separately). Primers for the HRMA were designed such that resulting 

amplicons cover these variable nucleotide sequences. Subsequently, melting curves of the 

amplicons of each single D. magna clone were analyzed separately via HRMA. Trypsin 152 

is not displayed due to the absence of non-synonymous nucleotide sequence variations. 
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Fig. 2. Variable parts within the PCR amplicon of the digestive trypsin gene t610 (A). The 

nucleotide variation at the second position (A/C/M) results in a phenotypic change in terms of 

an amino acid substitution (Glu/Ala). B) displays the melting curves of all D. magna clones 

from both populations after normalization of the fluorescence and correction for well-to-well 

temperature differences, revealing two homozygous (GT1 + GT2) and one heterozygous 

(GT3) genotype. C) The homozygous genotypes GT1 and GT2 could not be distinguished by 

their melting curves; after mixing GT1 and GT2 with a known homozygous genotype (GT1), 

the two genotypes could be distinguished in subsequent melting analyses (D). The last step 

was performed to ensure the complete identification of all homozygous variants. 

the homozygous genotype GT1, while a heterozygous melting curve pointed at an original 

genotype GT2. 

 Concerning trypsin 208, the HRMA of the variable amplicon revealed the presence of five 

distinct D. magna genotypes within both populations. From each genotype one sample was 

subsequently sequenced (Fig. 3A). Out of four polymorphic nucleotide sites within this 152 

base pair fragment, one nucleotide polymorphism (position 90) was a G/T/K variation 

resulting in a Met/Ile amino acid variation. The remaining nucleotide polymorphisms at 

positions 36, 51 and 69 were synonymous nucleotide substitutions. The melting curves of all 

analyzed D. magna clones were normalized for fluorescence and were temperature shifted 

(Fig. 3B). The heterozygous genotypes (GT3, GT4 and GT5) could be discriminated by the 
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shape of the respective melting curve from each other and from the curves of the 

homozygous genotypes. The sigmoidally shaped melting curves of the homozygous samples 

(GT1, GT2), as above, were not distinguishable and merged into one group. As above, the

homozygous samples were mixed with a known homozygous genotype, i.e. GT1 (Figs. 3C & 

3D). After additional melting analyses, the resulting melting curves had either the shape of a 

heterozygous or a homozygous variant (Fig. 3D). An unchanged homozygous melting curve 

indicated that the original genotype was the homozygous genotype GT1, while a 

heterozygous melting curve pointed at an original genotype GT2.  

 With regard to the Polish and the Swedish populations, the HRMA of the variable parts of 

trypsin 610 and 208 confirmed the sequence analyses of the pooled PCR products. All 15 

Polish D. magna clones exhibited the same homozygous genotype for trypsin 610 and 208, 

resulting in Glu at amino acid position 119 for trypsin 610, and Ile at amino acid position 130 

for trypsin 208 as phenotypes (Table 2). In accordance with the sequencing results of the 

pooled PCR product for t610 and t208, the genotype and respective amino acid phenotype 

distribution for trypsin 610 and trypsin 208 of the Swedish population was more diverse 

(Table 2). Combining the HRMA results of trypsin 610 and trypsin 208, five different 

genotypes leading to five trypsin phenotypes were observed for the Swedish D. magna

clones (Table 2). 

Table 2 Genotype and corresponding amino acid phenotype of trypsins 610 and 208 for each 

single clone of the Swedish (S) and the Polish (P) populations.  

Trypsin 610 Trypsin 208

D. magna clone Genotype Phenotype Genotype Phenotype

S6, S7, S14, S15, S39 GT1 Glu GT1 Met 

S8 GT2 Ala GT2 Ile 

S2 GT2 Ala GT5 Met 

S16, S22, S38 GT3 Glu/Ala GT1 Met 

S3, S4, S12, S17, S24, 

S36 

GT3 Glu/Ala GT4 Met/Ile 

P1, P3, P4, P5, P6, 

P13, P18, P19, P20, 

P22, P24, P26, P27, 

P30, P31 

GT1 Glu GT3 Ile 
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Figure 3 Variable parts within the PCR amplicon of the digestive trypsin gene 208 (t208) (A). 

The nucleotide variation at the fourth position (G/T/K) results in a phenotypic change in terms 

of an amino acid substitution (Ile/Met). B) displays the melting curves of all D. magna clones 

from both populations after normalization of the fluorescence and correction for well-to-well 

temperature differences. Due to the shape of the curves, two homozygous (GT1 and GT2) 

and three heterozygous (GT3, GT4 and GT5) genotypes could be distinguished. C) The 

homozygous genotypes GT1 and GT2 could not be discriminated by their melting curves; 

after mixing GT1 and GT2 with a known homozygous genotype (GT1), the two genotypes 

could be distinguished in subsequent melting analyses (D). The last step was performed to 

ensure the complete identification of all homozygous variants. 

Discussion 

Natural genetic variation is the fundamental basis for evolution. The study of the origin and 

persistence of genetic variation at the molecular level is a prerequisite to understand how 

species and populations have evolved in response to selection. Single nucleotide 

polymorphisms (SNPs), defined as a single base substitution at a specific locus, are the most 

abundant class of genetic variation found in eukaryotic genomes (Vignal et al. 2002). It is 

important to find reliable molecular tools for the detection of SNPs within and between natural 
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populations, because even a single nucleotide substitution in a gene that affects phenotypic 

traits can result in a complete change of the characteristics of a protein (Levan et al. 2001; 

Mandola et al. 2003).  

 The sequence of the pooled PCR products revealed that two DNA sections in trypsin 610 

and 208 were polymorphic in terms of relevant, non-synonymous nucleotide variations 

among the Swedish and the Polish D. magna populations. The results of the subsequently 

performed HRMA showed that all heterozygous genotypes were clearly distinguishable by 

the shape of the corresponding melting curves, resulting in one heterozygous genotype for 

trypsin 610 and three heterozygous genotypes for trypsin 208. However, two homozygous 

genotypes could not be distinguished in each of the two trypsins. This was due to the 

temperature variations between the wells of the LightCycler 480 System®, which resulted in 

an increase of the experimental noise. Consequently, genotypes could be discriminated by 

the shape of the respective melting curve rather than by the melting temperature. 

Homozygous genotypes finally became distinguishable after generating heteroduplexes by 

mixing each unknown homozygous genotype with a known homozygous genotype (Palais et 

al. 2005). Subsequent HRMA yielded melting curves of the artificial heteroduplexes that were 

either unchanged or exhibited the melting curve shape of a heterozygous genotype, which 

permitted conclusions about the genotype of the sample. The generating of heteroduplexes 

could alternatively be performed by consistently homozygous sample mixing (Vossen et al.

2009). 

 The final results of the HRMA regarding trypsin 610 and 208 revealed that the clonal 

diversity in the Swedish D. magna population was much higher than in the Polish population. 

All 15 Polish clones exhibited the same genotype for each of the two trypsins. This 

functionally constrained monomorphism at the two trypsin loci in the Polish D. magna

population could be a consequence of low environmental variations. In such a situation, one 

would expect that a few well-adapted clones would have been selected for. In addition, 

Matthes (2004) has demonstrated that monomorphism in a D. pulex population of a 

temporary habitat can be a consequence of founder effects. In contrast to the monomorphic 

Polish population, three genotypes for trypsin 610 and five genotypes for trypsin 208 were 

found in the Swedish D. magna population. The habitat of the Swedish clones, Lake Bysjön, 

is known to be a hypereutrophic lake with seasonally occurring cyanobacterial blooms 

(Hansson et al. 2007; Gustafsson 2007). In such hypereutrophic lakes, seasonal changes in 

the phytoplankton community might lead to altering selection factors for the zooplankton 

community, especially for non-selective filter feeders like Daphnia (DeMott 1989). This is 

especially true for bloom-forming cyanobacteria containing toxic secondary metabolites, 
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which inhibit Daphnia�s gut proteases; such cyanobacteria are more abundant in late summer 

and early fall (Dokulil & Teubner 2000; Schreurs 1992; Czarnecki et al. 2006). These 

changes in the phytoplankton community can be interpreted as being disturbances for the 

respective Daphnia community. Weider (1992) observed that the frequency of disturbances 

can have a pronounced effect on clonal diversity of a D. pulex population. In these 

experiments, a disturbance event consisted of randomly diluting the animal density in the 

experimental beakers. Weider (1992) showed that the highest level of clonal D. pulex

diversity was maintained at intermediate scales of disturbances. It is therefore reasonable to 

assume that the higher clonal diversity in the Swedish population might be a consequence of 

intermediates disturbances. However, it remains unclear whether this is a consequence of 

the altering phytoplankton community or is caused by other abiotic or biotic factors. 

 With regard to trypsin 610, all Polish clones contained a Glu at amino acid position 119, 

while 13 out of 32 Swedish haplotypes exhibited Ala at this position. It remains 

undeterminable whether this phenotypic difference between the two populations was caused 

by natural selection or by random genetic drift. Theoretically, a substitution of Glu with Ala 

could decrease the sensitivity of an enzyme to a specific inhibitor. Shi et al. (1999) have 

shown that an amino acid substitution in rat�s palmitoyltransferase of Glu with Ala did not 

affect catalytic activity, but inhibition of this mutant enzyme by a specific inhibitor was 

reduced 100-fold. Further experiments, such as heterologous expression and subsequent 

enzymatic characterization of the different isoforms, have to be performed to determine if the 

partial substitution of Glu with Ala in the Swedish D. magna population might be the 

consequence of adaptive evolution, possibly caused by cyanobacteria. 

 For trypsin 208 in the Swedish population, we found five different genotypes resulting in 

either Met or Ile as phenotypes at amino acid position 130, while all D. magna clones from 

the Polish population exhibited Ile at this position. A substitution of Ile with Met within an 

enzyme is most commonly regarded as a conservative change, because Ile and Met belong 

both to the same amino acid group with hydrophobic side chains (French & Robson 1983). 

An alignment of trypsin 208 from D. magna with trypsin from the narrow-fingered crayfish, of 

which the X-ray structure has been determined (Fodor et al. 2005; Fodor et al. 2006) 

(accession code: Q52V24, UniProt), revealed that the Met/Ile variability at amino acid 

position 130 is probably located at the surface of trypsin 208 in a beta-sheet structure. Ile is 

C-beta branched and is therefore slightly more predestinated in beta-sheets than Met (Betts 

& Russel 2003). Thus, it can be assumed that phenotypes containing an Ile at amino acid 

position 130 might be structurally a bit more stable than phenotypes containing a Met. 

However, the amino acid sequence of trypsin 208 from D. magna was less than 45% 
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identical with that of the crayfish trypsin. Additional structural comparisons were restricted by 

the absence of structure data from trypsins of closer related genera. Thus, we cannot rule out 

the possibility that the occurrence of phenotypes with Met at amino acid position 130 in 

trypsin 208 in the Swedish population was a response to selection caused by cyanobacterial 

protease inhibitors.  

 The present study has demonstrated the application of high-resolution melting analysis 

(HRMA) in population studies of Daphnia. In combination with pooled DNA sequencing 

HRMA can be used to screen for gene variants in natural populations. HRMA is a screening 

tool for the detection of unknown polymorphisms and for the identification of known 

polymorphisms in target genes of natural populations. Even single SNPs of class III (C/G) or 

class IV (A/T) mutations can be detected easily with HRMA. Its simplicity, sensitivity and 

specificity as well as its low cost could make HRMA the method of choice for screening high 

numbers of individuals in populations for variability in target genes. 
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Abstract 

 It is known that cyanobacteria negatively affect herbivores due to the production of toxins 

such as protease inhibitors. In the present study we investigated potential interspecific 

differences between two major herbivores, Daphnia magna and Daphnia pulex, in terms of 

their tolerance to cyanobacterial protease inhibitors. Seven clones each of D. magna and of 

D. pulex were isolated from different habitats in Europe and North America. To test for 

interspecific differences in tolerance to cyanobacteria, somatic and population growth rates 

on varying concentrations of two Microcystis aeruginosa strains were determined for each D. 

magna and D. pulex clone. The M. aeruginosa strains NIVA and PCC- contained either 

chymotrypsin or trypsin inhibitors, but no microcystins. Each Daphnia clone showed a 

reduction of population and somatic growth rate with increasing concentrations of NIVA. 

Mean somatic and population growth rate reductions on a diet with 20% NIVA were 

respectively 2.7-fold and 4.9-fold higher in D. pulex than in D. magna. The reduction in 

population growth on 10% PCC- was 3.2-fold higher in D. pulex than in D. magna. This 

indicates that D. magna is more tolerant to cyanobacteria with protease inhibitors than D. 

pulex. The reduction of growth rates was probably caused by an interference of 

cyanobacterial inhibitors with proteases in the gut of Daphnia, as other conceivable factors 

explaining the reduced growth could be excluded as causal factors. Protease assays 

revealed that the sensitivities of chymotrypsins and trypsins to cyanobacterial protease 

inhibitors did not differ between D. magna and D. pulex. However, D. magna exhibited a 2.3-

fold higher specific chymotrypsin activity than D. pulex, which explains the observed higher 

tolerance to cyanobacterial protease inhibitors of D. magna. The observed higher tolerance 

of D. magna to cyanobacterial protease inhibitors compared to that of D. pulex might result 

from differences in their coexistence with cyanobacteria.
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Introduction

  The frequency of cyanobacterial blooms in many marine and freshwater environments 

has increased world-wide during the last century, partly due to increasing temperatures as a 

consequence of global warming (Paerl & Huisman 2008). When the temperature of the 

epilimnion reaches its maximum in late summer and early fall (Jöhnk et al. 2008), the 

phytoplankton of eutrophic lakes and ponds is mainly dominated by bloom-forming 

cyanobacterial species of the genera Microcystis, Anabaena or Oscillatoria (Dokulil & 

Teubner 2000). Blooms of cyanobacteria are often associated with harmful effects on human 

health and livestock (Carmichael 1994). Additionally, cyanobacteria are of poor food quality 

for herbivorous zooplankton in freshwater ecosystems. Bloom-forming cyanobacteria have 

been claimed to be a major factor for a constrained mass and energy transfer from primary 

producers to higher trophic levels during eutrophication (Threlkeld 1979; Hansson et al.

2007). The herbivorous crustacean Daphnia often provides an important link for the transfer 

from primary production, e.g. from cyanobacteria, to higher trophic levels (Lampert 1987; 

Persson et al. 2007).  

 Negative relationships between bloom-forming cyanobacteria and the abundance of 

Daphnia have been discussed extensively over the years, and three major quality constraints 

of cyanobacteria as a food source have been revealed so far: (1) The occurrence of 

cyanobacterial filaments and the formation of colonies hinder ingestion by interfering with the 

filtering apparatus of Daphnia (Porter & Mcdonough 1984). (2) Compared to most green 

algae, cyanobacteria contain low levels of essential lipids such as highly unsaturated fatty 

acids and sterols, which leads to reduced somatic and population growth of Daphnia due to 

constrained carbon assimilation (Von Elert 2002; Von Elert et al. 2003; Martin-Creuzburg & 

Von Elert 2004; Martin-Creuzburg et al. 2008). (3) Many cyanobacteria produce a variety of 

bioactive secondary metabolites, such as hepatotoxins like microcystins (Sivonen & Jones 

1999) and/or protease inhibitors (Gademann & Portmann 2008; Agrawal et al. 2005; Von 

Elert et al. 2012). These compounds reduce the fitness of Daphnia in terms of survival, 

growth and reproduction (Lürling & van der Grinten 2003; Rohrlack et al. 2001). In addition to 

microcystins (which are the most extensively investigated class of cyanobacterial toxins), the 

role of protease inhibitors in herbivore/cyanobacteria interaction has recently also become a 

focus of attention. More than twenty depsipeptides have been found in different genera of 

marine and freshwater cyanobacteria (Gademann & Portmann 2008), specifically inhibiting 

the serine proteases chymotrypsin and trypsin. These two classes of proteases are the most 
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important digestive enzymes in the gut of D. magna and are responsible for more than 80% 

of the proteolytic activity (Von Elert et al. 2004).  

 Recent studies have indicated that protease inhibitors from cyanobacterial sources indeed 

interfere with Daphnia�s digestive proteases (Schwarzenberger et al. 2010; Agrawal et al.

2005) and lead to reduced somatic growth of Daphnia (Von Elert et al. 2012). It is known that 

the edible size fraction of natural phytoplankton can inhibit Daphnia�s trypsins and 

chymotrypsins (Kuster et al. 2012). This inhibitory potential of seston can be in the same 

order of magnitude as pure cyanobacterial cultures (Czarnecki et al. 2006). Hence, it is 

reasonable to assume that an interference of cyanobacterial protease inhibitors with 

Daphnia�s digestive proteases occurs in nature and is ecologically relevant.  

 However, several studies have also demonstrated that Daphnia may develop tolerances 

against cyanobacterial toxins at the population level (Sarnelle & Wilson 2005; Gustafsson & 

Hansson 2004; Hairston et al. 2001). Blom et al. (2006) have recently shown that Daphnia 

sp. coexisting with Planktothrix rubescens, a cyanobacterium that contains the trypsin 

inhibitor oscillapeptin J, is significantly more tolerant to oscillapeptin-J than Daphnia sp. from 

a lake free of this cyanobacterium. Considering the finding that almost 60% of 17 

cyanobacterial blooms contained protease inhibitors (Agrawal et al. 2001), it is reasonable to 

assume that increased tolerance to cyanobacteria in Daphnia populations may be caused by 

an enhanced tolerance to the cyanobacterial protease inhibitors. It has been suggested that 

at least two fundamental mechanisms underlie the increased tolerance to these dietary 

inhibitors: (1) Colbourne et al. (2011) have hypothesized that the ability of Daphnia to cope 

with different environmental conditions is a consequence of an elevated rate of gene 

duplications resulting in tandem gene clusters. And indeed, a surprisingly high number of 

genes of digestive serine proteases have been found in the recently published genome of D. 

pulex (Colbourne et al. 2011). (2) Von Elert et al. (2012) have shown that a physiological 

plasticity at the protein level in Daphnia in terms of remodeling the digestive enzymes leads 

to increased tolerance against cyanobacterial protease inhibitors.  

 In the present study we test for interspecific differences between two Daphnia species (D. 

magna and D. pulex) in their tolerance to cyanobacterial protease inhibitors. D. pulex and D. 

magna are both large-bodied species and frequently encountered in fishless ponds, where 

predation risks by visually feeding fish are comparatively low (Demott & Pape 2005). Due to 

the availability of full-genome data (D. pulex, Colbourne et al. 2011) or EST libraries (D. 

magna, Watanabe et al. 2005), both Daphnia species are predestinated for further ecological 

investigations and were therefore chosen for use in the present study. To determine potential 
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differences between D. pulex and D. magna in their tolerance to cyanobacteria containing 

protease inhibitors, we performed single-clone somatic and population growth experiments in 

which the clones were fed with various cyanobacterial mixtures containing trypsin or 

chymotrypsin inhibitors. Possible differences in tolerance to cyanobacterial protease 

inhibitors might have several causes and are therefore tested in the present study: (1) We 

determined the specific trypsin and chymotrypsin activity of each of the investigated D. 

magna and D. pulex clones. We hypothesized that high growth rates on cyanobacterial diets 

might result from high specific protease activities. (2) For each Daphnia clone we determined 

the sensitivity of gut chymotrypsins and trypsins to the respective cyanobacterial protease 

inhibitors. We assumed that higher sensitivity values of Daphnia�s gut proteases might cause 

reduced somatic and population growth rates for diets with cyanobacterial protease 

inhibitors.  

Materials and Methods 

Origin and cultivation of organisms 

 Two cyanobacterial strains and one green alga were used in the single-clone growth 

experiments: The cyanobacterium Microcystis aeruginosa NIVA Cya 43 (Culture Collection of 

Algae, Norwegian Institute for Water Research), subsequently labeled as �NIVA�, is known to 

contain the chymotrypsin inhibitors Cyanopeptolin 954 and Nostopeptin 920 (Von Elert et al.

2005). NIVA was cultured in 2 l chemostates in sterile Cyano medium (Von Elert & Jüttner 

1997) at a dilution rate of 0.1 d-1 (20°C; illumination: 40 µmol m-2 s-1). M. aeruginosa PCC 

7806 Mut contains the trypsin inhibitors Cyanopeptolin A-D (Weckesser et al. 1996) and was 

grown in 0.75 l chemostates under otherwise identical conditions as NIVA. M. aeruginosa

PCC 7806 Mut is a genetically engineered microcystin synthetase knock-out mutant of M. 

aeruginosa PCC 7806 (Dittmann et al. 1997) and is subsequently labeled as �PCC-�. Neither 

M. aeruginosa strain contains microcystins. The green algae Chlamydomonas sp. (strain 56, 

culture collection of the Limnological Institute at the University of Constance) was grown in 5 l 

semi-continuous batch cultures (20°C; illumination: 120 µmol m-2 s-1) by replacing 20% of the 

culture with sterile Cyano medium every Monday, Wednesday and Friday in the late 

exponential phase of the culture. C. sp. contains neither chymotrypsin/trypsin inhibitors nor 

microcystins.  
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 Seven D. magna and seven D. pulex clones originating from different habitats (Table1) 

were used in the somatic and population growth experiments. All clones were cultured 

separately in aged, membrane-filtered tap water and fed with saturating concentrations of C.

sp. for at least three generations prior to the experiment.  

Table 1. Characterization of the Daphnia clones used in the experiment. 

Daphnia

spp. 

Clone Location Latitude Longitude Reference 

D. pulex Gerstel Germany N/A N/A. Koch et al. 2009 

D. pulex NFL3 USA N39°54' W84°55' Schaack et al. 2010 

D. pulex Gräf Germany N50°49'04" E10°42'02" Matthes 2004 

D. pulex Disp14 Canada N42°13� W83°02'  Haag et al. 2009 

D. pulex Povi113 USA N42°45� W85°21� Schaack et al. 2010 

D. pulex Giev08 Germany N51°57�48" E7°34'38"  Y. Reydelet
1

D. pulex TCO USA N43°49'48" W124°08'53" Colbourne et al. 2011 

D. magna F10 Germany N50°56'02" E6°55'41" Kuster et al. 2012 

D. magna G38 Belgium N51°04'04" E3°46'25" This study 

D. magna S15 Sweden N55°40'31" E13°32'42" Kuster & Von Elert 2012 

D. magna P6 Poland N52°19'21" E20°43'49" Kuster et al. 2012 

D. magna P The 

Netherlands 

N51°44'01" E5°08'17" De Meester 1994 

D. magna B Germany N54°19'39" E10°37'45" Lampert & Rothhaupt 1991 

D. magna W Poland N/A N/A Pijanowska et al. 1993 

1
 Y. Reydelet, personal communication, 2011 
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Somatic and population growth assays 

 Each of the 14 clones was assayed in single-clone experiments for somatic and 

population growth. Five (D. magna) to seven (D. pulex) juveniles from the same cohort of the 

third clutch and not older than 24 h were kept in 0.25 l aged and filtered tap water 

(membrane filter of 0.45 µm pore size) under constant dim light at 20°C. The animals were 

fed with non-limiting food concentrations (2 mg C/L) either of 100% C. sp. or of various 

mixtures of C. sp. and the two M. aeruginosa strains: In two treatments the animals were fed 

either with a mixture of 80% C. sp and 20% NIVA or with a mixture of 50% C. sp. and 50% 

NIVA. In one further treatment the animals were fed with a mixture of 90% C. sp. and 10% 

PCC-. Each treatment was triplicated, and animals were transferred daily into fresh water with 

saturating food concentrations. Somatic growth rates were calculated on day six as 

according to Wacker & Von Elert (2001) as 

g = [(ln (Gt) - ln (G0)]/d. 

for which (G) is the body weight of a subsample of the animals at the beginning (G0) and end 

(Gt) of the experiment. Mean individual dry weights were mean values of two individuals. 

Population growth rates were calculated from daily survival and fecundity of the first clutch by 

using Euler�s equation, 

1 = � lx � mx � e
-lx

in which lx is the survival rate and mx the size of the first clutch on day x. Population and 

somatic growth rates were calculated for each replicate and subsequently averaged to give 

the mean of the treatment. 

Preparation of cyanobacterial extracts and Daphnia homogenates 

 Freeze-dried NIVA or PCC- were thoroughly homogenized and mixed separately. 50 mg of 

the resulting powder was suspended in 500 µl of 60% methanol and sonicated for 15 min 

followed by centrifugation (3 min at 104 x g). Subsequently the supernatant was separated 

from the residue and used as extract in the protease assays. 

 Seven-day-old individuals of each of the seven D. magna and D. pulex clones grown on 

non-limiting food concentrations of C. sp. were homogenized with a Teflon pestle. The 
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homogenate was subsequently centrifuged (3 min at 1.4 x 104 x g) and the resulting 

supernatant was used immediately in the enzyme assays. 

Protease activity and protease inhibition assays 

 The activity of the proteases chymotrypsin and trypsin in homogenates of all Daphnia

clones was measured as according to Von Elert et al. (2004). The protein concentration of 

the supernatant was analyzed using a Qubit fluorometer and the appropriate Quant-iTTM

Protein Assay Kit (Invitrogen, Carlsbad, USA) according to the manufacturer�s standard 

protocol. For the protease activity and protease inhibition assays, SuccpNA (N-succinyl-L-

alanyl-L-alanyl-L-prolyl-Lphenylalanine 4-nitroanilide, Sigma, 125 �M in DMSO) was used as 

a substrate for chymotrypsins, while BapNA (N-R-benzoyl-DL-arginine 4-nitroanilide 

hydrochloride, Sigma, 1.8 mM in DMSO) served as a substrate for trypsins. Trypsin and 

chymotrypsin assays were performed in a potassium phosphate buffer (0.1 M, pH 7.5). The 

absorption change was measured continuously for 10 min at 30°C at 390 nm with a Cary 50 

photometer (Varian). Specific proteolytic activity was determined as nmol para-nitroanilide 

liberated per minute and µg protein for synthetic substrates. With regard to the chymotrypsin 

inhibition assays, homogenates of each of the D. magna and D. pulex clones were assayed 

after addition of 10 � 15 different concentrations of the NIVA extract. The resulting 

chymotrypsin activities were plotted as a function of extracted NIVA biomass per ml assay 

volume. By fitting a sigmoidal dose response curve, the concentration of extracted NIVA 

biomass which resulted in a 50% inhibition of Daphnia chymotrypsin activity (IC50) was 

calculated. The higher the IC50 values for the analyzed D. magna and D. pulex homogenates, 

the more tolerant were their respective chymotrypsins to chymotrypsin inhibitors from NIVA. 

Trypsin inhibition of the D. magna and D. pulex clones was assayed as above, except that 

different concentrations of the PCC- extract were used.  
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Data analysis 

 For the inhibition assays of each single clone of D. magna and D. pulex, the protease 

activities were plotted as a function of extracted NIVA or PCC- biomass. Resulting IC50 values 

were calculated by fitting a sigmoid dose-response curve using the software Graph Pad 

Prism (GraphPad Software, Inc.). A Student�s t-test was used to analyze the effect M. 

aeruginosa had on Daphnia�s somatic and population growth rates as well as on protease 

inhibition and specific protease activity. A significance level of p = 0.05 was applied to all 

statistical analyses. All statistical tests were performed using SigmaPlot 11 (Systat Software, 

Inc.) 

Results 

 In order to test for interspecific differences between D. pulex and D. magna with regard to 

their tolerance to cyanobacteria, we performed population and somatic growth experiments 

on four different diets. Seven clones of each species, each originating from different habitats, 

were fed either with pure C. sp. or with mixtures of C. sp. and either of two M. aeruginosa

strains, NIVA and PCC-. 

 On a mixture of 80% C. sp. and 20% NIVA, the somatic growth of D. pulex was reduced 

by 44.4% (± 6.3% SE) compared to the treatment with 100% C. sp., while D. magna�s 

somatic growth rate was reduced significantly less (16.2% ± 6.9% SE, Fig. 1A, t-test: t12= 

3.024, p<0.05). The population growth rates were similarly affected, with a reduction of 

56.1% (± 11.2% SE) for D. pulex and 11.4% (± 10.9% SE) for D. magna compared to the 

treatment with 100% C. sp. (Fig. 1C). The reduction in population growth rate was hereby 

significantly greater for D. pulex than for D. magna (t-test: t12= 3.024, p<0.05). With 

increasing NIVA concentration from 20% to 50%, the average somatic growth reduction 

increased significantly for D. pulex from 44.4% (± 6.3% SE) to 66.2% (± 5.4% SE; Fig. 1B; 

test: t12= -2.63, p<0.05), while the growth rate reduction for D. magna also increased 

significantly from 16.2% (± 6.9% SE) to 45.7% (± 6.4% SE; Fig. 1B, test: t12= -3.139, p<0.05). 

On 50% NIVA, the somatic growth rate of D. pulex was reduced significantly more than that 

of D. magna (Fig. 1B, t-test: t12= 2.466, p<0.05). With regard to the population growth rate, 

the reduction of D. pulex increased from 56.1% (± 11.2% SE) on the mixture with 20% NIVA 

to 82.5% (± 7.4% SE) in the 50% NIVA treatment (Fig. 1D, test: t12= -1.966, p=0.073). The 

population growth rate reduction for D. magna increased significantly from 11.4% (± 10.9% 
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SE) on 20% NIVA to 53.8% (± 8.3% SE) on 50% NIVA (Fig. 1D, t-test: t12= -3.102, p<0.05). 

When comparing the effects on population growth rates of the mixture with 50% NIVA, the 

reduction in D. pulex (82.5% ± 7.4% SE) was significantly greater than in D. magna (53.8% ± 

8.3% SE; Fig. 1D, t-test: t12= 2.587, p<0.05). 
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Figure 1. Reduction of relative somatic (A, B) and population (C, D) growth rates of clones of 

D. pulex (circles) and D. magna (squares) in response to different mixtures of 

Chlamydomonas sp. and Microcystis aeruginosa strain NIVA. Animals were fed either with 

80% C. sp. and 20% NIVA (A, C) or with 50% C. sp. and 50% NIVA (B, D). Grey bars 

represent the mean values (n=7). Significant differences (Student�s t-test, p < 0.05) between 

species are indicated by an asterisk. 
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Figure 2 Reduction of relative somatic (A) 

and population (B) growth rates of clones of 

D. pulex (circles) and D. magna (squares) in 

response to Microcystis aeruginosa strain 

PCC-. Animals were fed with a mixture of 

90% Chlamydomonas sp. and 10% PCC-. 

Grey bars represent mean relative growth 

rate reductions (n=7). Significant differences 

(Student�s t-test, p < 0.05) between species 

are indicated by an asterisk, while no 

differences are labeled with �n.s.�. 

Compared to the treatment with 100% C. sp., 

the average relative somatic growth rate 

reduction on a mixture with 90% C. sp. and 10% 

PCC-, was 26.7% (± 9.7% SE) for the D. pulex

clones and 8.5% (± 5.8% SE) for the D. magna 

clones (Fig. 2A); however these effects were not 

different (t-test: t12= 1,687, p=0.117). 

Considering the population growth on the same 

treatments, D. pulex exhibited significantly 

greater growth rate reductions (34.9% ± 5.9% 

SE) than D. magna (11% ± 5.9% SE; Fig. 2B; t-

test: t12= 2.878, p<0.05). 

 We furthermore quantified the specific activity 

of trypsins and chymotrypsins for each of the D. 

magna and D. pulex clones as possible causes 

for the observed differences in tolerance of the 

two species to cyanobacterial protease 

inhibitors. The specific chymotrypsin activity of 

D. magna (331.8 nmol/min/mg protein ± 44.4 

nmol/min/mg protein SE) was dramatically 

higher (+ 225%) than the activity of D. pulex

(147.4 nmol/min/mg protein ± 40.4 nmol/min/mg 

protein SE; Fig. 3A, t-test: t12= -3.073, p<0.05). 

The specific trypsin activity for D. pulex was 

45.2 nmol/min per mg protein (± 7.8 

nmol/min/mg protein SE), whereas it was 54.4 

nmol/min per mg protein (± 6.6 nmol/min/mg 

protein SE) for D. magna (Fig. 3B); however, 

these values were not different (t-test: t12= -

0.897, p=0.387).  
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Figure 3 Two possible causes for the observed differences in the sensitivity of D. magna and 

D. pulex to cyanobacterial protease inhibitors were tested: (A) specific chymotrypsin (CT) and 

(B) trypsin (T) activity of the D. pulex (circles) and D. magna clones (squares). Inhibition of 

digestive proteases from homogenates of clones of D. pulex (circles) and D. magna 

(squares): (C) effects of extracts of M. aeruginosa strains NIVA on chymotrypsins, and (D) 

effects of extracts of M. aeruginosa strains PCC- on trypsins. Depicted are IC50 values, which 

represent the concentration of extracted dry weight of cyanobacterial biomass that is required 

to cause a 50% inhibition of respective proteases. Low IC50 values indicate a high sensitivity 

of proteases from the respective Daphnia clones. Grey bars represent mean values (n=7). 

Significant differences (Student�s t-test, p < 0.05) among species are indicated by an 

asterisk; no differences are labeled with �n.s.�. 

 In order to test for possible additional causes of the interspecific differences in their 

tolerance to cyanobacterial protease inhibitors, the sensitivity of Daphnia�s trypsins and 

chymotrypsins to cyanobacterial protease inhibitors was determined. This was achieved by 

specifying the concentration of extracted cyanobacterial biomass that was needed to inhibit 
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50% (IC50) of either Daphnia�s chymotrypsins or their trypsins (Fig. 3C, D). IC50 values of the 

effects of NIVA extracts on Daphnia�s chymotrypsins were 295.6 ng/mL (± 24 ng/mL SE) for 

D. pulex and 239.8 ng/mL (± 10.5 ng/mL SE) for D. magna, although these effects were not 

different (Fig. 3C, t-test: t12= 2.136, p=0.054). When specifying the IC50 values of effects of 

PCC- extracts on Daphnia�s trypsins, no differences between D. pulex (798.7 ng/mL ± 77.7 

ng/mL SE) and D. magna (876.8 ng/mL ± 111.6 ng/mL SE) were detected (Fig. 3D, t-test: 

t12= -0.574, p=0.577). 

Discussion 

 Cyanobacterial blooms are often associated with hazards to human health and livestock, 

but are also harmful to many freshwater herbivorous grazers such as Daphnia. Owing to the 

dominance of cyanobacteria in eutrophic lakes and ponds in late summer (Jöhnk et al. 2008), 

Daphnia genotypes from these habitats have to cope more frequently with the poor food 

quality of cyanobacterial carbon than genotypes from habitats free of cyanobacterial blooms. 

The causes for the poor assimilation of cyanobacterial carbon by Daphnia have been studied 

extensively in past decades, leading to the following observations: Firstly, colonial or 

filamentous cyanobacteria can mechanically interfere with Daphnia�s filtering apparatus 

(Porter & Mcdonough 1984). Secondly, cyanobacteria lack essential sterols (Von Elert et al.

2003) and sufficient amounts of polyunsaturated fatty acids (Martin-Creuzburg et al. 2008). 

Thirdly, the production of hepaptotoxins such as microcystins can significantly reduce the 

fitness of Daphnia (Lürling & van der Grinten 2003). In the present study, all the D. pulex

clones and most of the D. magna clones showed a reduction in somatic and population 

growth at a concentration of 20% NIVA. The negative effects mentioned above can be ruled 

out as causal factors for the observed growth reductions, since the food mixtures used here 

consisted of saturating concentrations of the widely used high-quality reference food C. sp. 

Furthermore, both cyanobacterial strains as well as C. sp. were cultured as single cells and 

did not contain any microcystins. However, the somatic and population growth of some D. 

magna clones was reduced only at a concentration of 50% NIVA. This supports data of 

Lürling (2003), who used the same strain of M. aeruginosa (NIVA) and reported a reduction 

in growth of D. magna clones at a concentration of � 25% NIVA. On the mixture with PCC-, 

some D. magna clones and the majority of the D. pulex clones exhibited a reduction of 

population and somatic growth rate already at a concentration of 10%. Higher concentrations 

would probably have resulted in a significant growth reduction in all D. magna and D. pulex
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clones, since several other studies (Schwarzenberger et al. 2010; Schwarzenberger et al.

2012) have reported a clear reduction in growth of daphnids at a concentration of 20% PCC-.  

 Both M. aeruginosa strains (NIVA and PCC-) produce exclusively either the chemically 

known chymotrypsin inhibitors Cyanopeptolin 954 and Nostopeptin 920 (NIVA, Von Elert et 

al. 2005) or specific Cyanopeptolins (A-D) which are known to inhibit trypsins (PCC-, 

Weckesser et al. 1996). Thus, it is reasonable to assume that the observed somatic and 

population growth rate reduction of the D. magna and D. pulex clones in response to 

cyanobacteria was caused by a dietary inhibition of either Daphnia�s digestive chymotrypsins 

or trypsins. In this study somatic and population growth rates of D. magna and D. pulex

served as a measure of tolerance to cyanobacteria with protease inhibitors and as an 

approach to test for interspecific differences. In several cases it has been demonstrated that 

coexistence of Daphnia with toxic cyanobacteria leads to local adaptation of the Daphnia 

populations, as was evidenced by increased tolerance to cyanobacteria (Hairston et al. 1999; 

Sarnelle & Wilson 2005). These findings support the notion that the presence of 

cyanobacteria positively selects for more tolerant Daphnia genotypes.  

 In the present study we have shown for the first time that D. magna exhibits a higher 

mean tolerance to cyanobacterial protease inhibitors than D. pulex. This might result from 

general differences in their coexistence with cyanobacteria. D. pulex and D. magna are both 

large-bodied Daphnia species, and are therefore most commonly abundant in fishless or 

turbid ponds, where predation risk by visually feeding fish is comparatively low (Demott & 

Pape 2005). In contrast to D. magna, which is able to tolerate elevated temperatures of up to 

25°C (Wojtal-Frankiewicz 2012), the geographic distribution of D. pulex ranges from the 

temperate to the arctic zone (Colbourne et al. 1998). Additionally, Bengtsson (1993) has 

already shown that D. pulex usually reaches their highest densities in spring and early 

summer, while D. magna shows no clear seasonal density pattern. Cyanobacteria have, in 

general, higher temperature optima than other algal groups (Dokulil & Teubner 2000) and 

dominate the phytoplankton community mainly in late summer and early fall (Jöhnk et al.

2008). Thus, it is reasonable to assume that a coexistence of cyanobacteria with D. magna

occurs more frequently than a coexistence of cyanobacteria with D. pulex. This putatively 

more frequent coexistence of D. magna and cyanobacteria would thus result in an increased 

tolerance of D. magna to protease inhibitors from cyanobacterial sources. Microevolutionary 

adaptation of Daphnia populations to cyanobacteria has been experimentally confirmed: 

Exposure of a mixed population of several Daphnia clones to a microcystin-producing strain 

of M. aeruginosa resulted in an enhanced tolerance in subsequent generations (Gustafsson 

& Hansson 2004). Such a maternally transferred increase in tolerance of Daphnia�s offspring 
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generation has also been demonstrated for the microcystin-free M. aeruginosa strain PCC-

(Schwarzenberger & Von Elert 2012) which was also used in the present study. 

 With the aim of identifying the causes of the observed differences in Daphnia�s tolerance, 

we focused on interspecific differences in the tolerance to cyanobacterial protease inhibitors. 

Von Elert et al. (2012) have recently shown that D. magna responded to the presence of 

chymotrypsin inhibitors in the diet by a switch in the set of digestive chymotrypsins that 

resulted in more tolerant isoforms. In the present study we could not find a correlation 

between less sensitive proteases and higher growth rates. The protease inhibition assays 

revealed that the tolerance of chymotrypsins and trypsins to cyanobacterial protease 

inhibitors did not differ between D. magna and D. pulex. However, the mean specific 

chymotrypsin activity of D. magna was significantly higher than that of D. pulex. This elevated 

specific chymotrypsin activity of D. magna coincides with the less reduced somatic and 

population growth rates in the presence of chymotrypsin inhibitors, which might be a 

consequence of a more frequent coexistence of cyanobacteria and D. magna than of the 

former and D. pulex. Schwarzenberger et al. (2010) have recently shown that a clone of D. 

magna responded to dietary protease inhibitors by increased expression of protease genes. 

However, with regard to the significantly higher population growth rates of D. magna on PCC-

than those of D. pulex, we couldn�t find differences in species-specific trypsin characteristics, 

neither with respect to the specific activity nor to the respective sensitivity. Thus, we cannot 

rule out the possibility that other factors such as more efficient detoxification mechanisms in 

D. magna could be responsible for the observed higher tolerance to cyanobacterial trypsin 

inhibitors. One possibility of reducing toxic effects in Daphnia is to biotransform toxins by 

conjugation to glutathione, which has already been demonstrated for the cyanobacterial 

hepatotoxin Microcystin-LR (Pflugmacher et al. 1998). Although similar detoxification 

mechanisms of protease inhibitors in Daphnia have not been detected so far, they cannot be 

excluded as a causal factor for the higher tolerance of D. magna on diets with cyanobacterial 

trypsin inhibitors. 

 As a result of continuing global warming, negative effects of toxic cyanobacteria on human 

health, livestock and the whole ecosystem will become stronger in the near future (Paerl & 

Huisman 2008). Much effort is therefore invested in preventing or controlling cyanobacterial 

blooms. Besides reducing nutrient input into lakes and ponds, the control of cyanobacterial 

blooms through biological agents including organisms such as bacteria, viruses and 

unicellular grazers has been discussed extensively in the last decades (Sigee et al. 1999; 

Tucker & Pollard 2005). Depending on initial conditions, Daphnia may also control the 

development of bloom-forming cyanobacteria and may even suppress established 
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cyanobacterial blooms (Sarnelle 2007). The present study suggests that D. magna may 

control the development of cyanobacterial blooms more efficiently than D. pulex due to 

significant differences in their tolerance to cyanobacteria with protease inhibitors. In light of 

with increasing temperatures as a consequence of global warming, our results suggest that 

toxic cyanobacterial blooms and coinciding harmful effects to the ecosystem will occur more 

frequently in lakes with D. pulex than in lakes with D. magna.  
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Abstract 

 Genetic diversity in populations of Daphnia is continually shaped by variation of abiotic 

and biotic selection factors over time. Many lakes, e.g. Lake Constance, have undergone a 

period of eutrophication due to anthropogenic phosphorus loading. Several studies have 

shown that resultant changes in the phytoplankton community have directly affected 

population densities of one of the main filter feeders of Lake Constance, Daphnia galeata. In 

order to investigate the influence of changing selection factors in Lake Constance on the 

genetic structure of the D. galeata population, we have isolated D. galeata resting eggs from 

four different layers of sediment cores, representing the time periods before, during and after 

the peak of the eutrophication and the concomitant occurrence of cyanobacteria. We have 

pooled genomic DNA from the different time periods and applied high-throughput sequencing 

with a mean coverage of 50x to each population separately. We used the data to determine 

the genes and metabolic pathways in the D. galeata population that were affected by these 

environmental changes. Our data suggests that cyanobacterial protease inhibitors and 

oxidative stress induced by microcystins from cyanobacteria have caused selective pressure 

on the respective target genes and have led to putatively adaptive population-wide genomic 

changes. 
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Introduction 

 Due to rapid human population growth within the watershed and concomitant 

anthropogenic phosphorus loading, many lakes in Europe, e.g. Lake Constance, have 

undergone a period of eutrophication in the last century (Güde et al. 1998). However, Lake 

Constance may certainly serve as an excellent example for a successful management of 

environmental problems in aquatic systems: The intensive agriculture, P-containing 

detergents as well as the growing industry resulted in a more than ten fold increase of the 

total phosphorus (Ptot) concentrations (7 to 87 µg L-1) in Lake Constance from the beginning 

of the 20th century till 1980 (Fig. 1). Due to a comprehensive sewage treatment program 

including P-precipitation and substitution of phosphorus in detergents, the phosphorus input 

into Lake Constance declined steadily since 1980 (Güde et al. 1998). This has led to re-

oligotrophication and resulted in oligotrophic conditions in Lake Constance with levels of Ptot

as low as 7 µg L-1 (Kümmerlin 1998).  
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Figure 1 annual concentration of Ptot (left Y-axis) and cyanobacterial biomass (right Y axis) in 

Lake Constance from 1960 till 2010.  
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 Concomitant with increases of the Ptot-concentration, the taxonomical composition of the 

phytoplankton community changed during the course of eutrophication. In the early 1960s 

the originally dominating diatoms of the genus Cyclotella were mainly replaced by diatoms of 

the genus Stephanodiscus (Kümmerlin 1998). At the peak of the phosphorus concentration in 

1980 cyanobacterial species, such as Anabaena planctonica and Aphanizomenon flos-

aquae, became also abundant in Lake Constance (Fig. 1). These species are generally 

regarded as indicators for eutrophic conditions in a lake (Kümmerlin & Bürgi 1989). The 

proportion of cyanobacteria increased during the period of highest phosphorus 

concentrations (1969-1979) and reached a maximum of even up to 28% (average = 13%) of 

the total phytoplankton biovolume during summer months (Hairston et al. 2001). During the 

first two decades of progressive re-oligotrophication in the mid 1980s and 1990s 

cyanobacteria became less abundant again. Ongoing increases of relative abundances of 

phytoplankton species that are indicative for oligotrophic conditions, such as Cyclotella ssp. 

(Bacillariophyceae) and Chrysophyceae, are recorded since 1986 (Kümmerlin 1998). 

 Resultant changes in the phytoplankton community of Lake Constance had also profound 

effects on the zooplankton community, e.g. on Daphnia galeata, the major herbivorous 

grazer in Lake Constance. For example, Weider et al. (1997) noted significant genotypic 

shifts in the D. galeata population in Lake Constance, by collecting resting eggs from lake 

sediments dating from the mid-1960s to mid-1990s and analyzing the genetic structure of the 

hatchlings from these resting eggs. The observed shifts in genotype composition of the D. 

galeata population were strongly correlated with changes of the total phosphorus in Lake 

Constance. Hairston et al. (1999, 2001) have shown that these shifts in genotype 

composition went along with an increase of the mean tolerance of D. galeata clones to 

cyanobacteria during the time of eutrophication and with the concomitant appearance of 

cyanobacteria. Hairston et al. (1999) provided strong experimental support for the reasoning 

that the occurrence of cyanobacteria was indeed the selective force driving the shifts in 

genotype frequency in the D. galeata population of Lake Constance observed by Weider et 

al. (1997). However, it remains unclear, which particular genes and metabolic pathways of 

the D. galeata population were directly affected by the appearance of cyanobacteria. 

 Cyanobacteria are, in general, known to be poor food for the major herbivorous grazer in 

Lake Constance, D. galeata. At least three major food quality constraints of cyanobacterial 

carbon to daphnids have been revealed so far: (1) Filamentous or colonial forms of 

cyanobacteria can cause mechanical interference with Daphnia�s filtering apparatus (Porter & 

Mcdonough 1984). (2) Cyanobacteria have low nutritional value in terms of a low content of 

polyunsaturated fatty acids and the lack of sterols; both are essential for Daphnia (Von Elert 
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2002, Von Elert et al. 2003). (3) Many cyanobacterial strains contain toxins, such as 

hepatotoxins, neurotoxins (Sivonen & Jones 1999), and/or protease inhibitors (Gademann & 

Portmann 2008, Agrawal et al. 2005, Von Elert et al. 2012). These secondary metabolites 

affect the fitness of Daphnia in terms of reduced survival, growth and/or reproduction (Lürling 

& van der Grinten 2003; Lürling et al. 2011, Kuster et al. 2012). Type and composition of 

these secondary metabolites differ from strain to strain and between natural blooms of 

cyanobacteria (Gademann & Portmann 2008, Agrawal et al. 2001). However, only a few of 

these metabolites have already been characterized in terms of their exact mode of toxicity on 

the one hand and the physiological response of Daphnia to these toxins on the other hand. In 

the case of cyanobacterial protease inhibitors, which interfere with Daphnia�s major digestive 

enzymes (chymotrypsin and trypsin, Von Elert 2004), the physiological response of Daphnia

to these inhibitors has been elucidated by showing that Daphnia remodel their digestive 

enzymes and increase expression of the respective protease genes (Von Elert et al. 2012, 

Schwarzenberger et al. 2010). Another possibility of adaptation to cyanobacterial toxins is to 

reduce the toxic effects in Daphnia by biotransformation of the toxins by conjugation to 

glutathione (GSH), which has already been demonstrated in-vitro for the cyanobacterial 

hepatotoxin microcystin-LR (MC-LR, Pflugmacher et al. 1998). Besides glutathione-s-

transferases (GSTs), which catalyze the conjugation of GSH to MCs, more than ten other 

gene families have been reported to be direct or indirect targets of this cyclic peptide at the 

cellular and molecular level in animal cells (reviewed in Campos & Vasconcelos 2010). Thus, 

the huge variety of different toxic cyanobacterial metabolites and their possible targets in 

Daphnia�s genome makes it nearly impossible to identify a priori those specific genes in a 

natural and locally adapted Daphnia population that have undergone positive selection in the 

presence of toxic cyanobacteria. With regard to the D. galeata population in Lake Constance 

a single-target gene approach is therefore not a reasonable way to identify the physiological 

mechanism of the increased tolerance to cyanobacteria. 

 Meanwhile, affordable sequencing (Shendure & Ji 2008) of whole genomes allows for 

multiple-target gene approaches. Application of next-generation sequencing at the population 

level has enabled the easy detection of single nucleotide polymorphisms (SNPs) in genomes 

population-wide. Coleman & Chishom (2010) used a population-genomic approach to 

compare two bacterial populations from two distinct ocean regions differing in the 

concentration of available phosphorus. Their results revealed that phosphorus-related genes 

from these two bacterial populations form phylogenetically distinct clusters, whereas house-

keeping genes did not. 
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 In the present study we have analyzed the genetic structure of three D. galeata

populations of Lake Constance via next-generation sequencing. As according to Weider et al.

(1997) we have isolated D. galeata resting eggs from three different layers of sediment 

cores, representing the time before, during and after the peak of the eutrophication of Lake 

Constance. We subsequently extracted the DNA from each resting egg, pooled the DNA for 

each population separately and applied next-generation sequencing with a mean coverage of 

50x. We used the data to determine the genetic diversity of the D. galeata populations. In 

order to understand the physiological mechanisms underlying the adaptation to increased 

cyanobacterial abundances we performed a genome-wide assessment of SNPs and copy 

number variations of several gene families in each of the three D. galeata populations. 

Outstanding changes in SNP frequencies can be a hint for natural selection on respective 

genes resulting in traces of a genetic bottleneck, as has already been demonstrated for 

human populations (i.e. Schmegner et al. 2005). Additionally we hypothesized that copy 

numbers of possible target genes, which might be affected by the presence of cyanobacteria, 

might have increased in the D. galeata populations during the time of eutrophication, as 

Daphnia has been shown to cope with different environmental conditions by increasing the 

rate of gene duplications (Colbourne et al. 2011). 

Materials & Methods 

Study site 

Lake Constance is a large (surface area: 571km²), deep (maximum depth: 253 m) and 

warm-monomictic lake situated at the borders of Germany, Switzerland and Austria on the 

northern edge of the Alps (Fig. 2). It consists of three water basins: the Obersee (upper lake) 

the Untersee (lower lake), and a connecting stretch of the river Rhine, called the Seerhein. 

Data on phytoplankton species identity and abundances in Lake Constance were collected 

continuously since 1957. For the years 1957-1964 no cyanobacterial species were found in 

the upper basin of Lake Constance (Hairston et al. 2001). In the following years 

cyanobacteria became common in Lake Constance and increased in abundance to mean 

summer dry weights between 1 and 2.5 g/m² (Fig. 1). Concomitant with a decrease in 

phosphorus the abundances of cyanobacteria decreased continuously after 1990 to values 

around 0.2 mg/m³.  
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Field collection, sediment dating and ephippia collecting 

 Three sediment cores were collected at 150 m depth in the upper basin of Lake 

Constance (Obersee) in late summer of 2011 (Fig. 2, N47°37'32.12" E9°26'21.96"). 

Sediments were dated by counting annual laminations including high-water phases with 

increased sedimentation. Earlier studies by Wessels et al. (1995) and Weider et al. (1997) 

have already shown that dating by annual laminations coincides with exact measurement of 

zinc concentrations and 137Cs-dating and therefore provides a very precise sediment dating. 

Three different sediment age categories were chosen representing the time before (1954-

1960), during (1974-1979) and after (1994-1999) the peak of eutrophication in Lake 

Constance. As according to Weider et al. (1997) the outer edge of each section was sliced 

away in order to avoid the possible inadvertent transfer of ephippia between layers. The 

sediment strata of all three sediment cores were subsequently sieved and screened with a 

200 µm mesh to collect the ephippia, which were then sorted by hand under a dissecting 

microscope, counted and stored in distilled water at 4°C.  

Figure 2 Map of Lake Constance, modified after Wessels (1998). The sampling site of the 

sediment cores are marked by an arrow 
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DNA extraction and high-throughput sequencing 

 130 diapausing eggs from each of the three sediment age categories were decapsulated, 

because an earlier study indicated that ephippia interfere with DNA amplification reactions 

(Pollard et al. 2003). Daphnia genotypes in ephippial eggs result from sexual recombination 

and can therefore be assumed as genetically unique. Decapsulated eggs were subsequently 

pooled for each sediment age separately. The resultant population DNA was extracted by 

using the peqGOLD® Tissue DNA Mini Kit (Peqlab, Erlangen, Germany) as according to the 

manufacturer�s standard protocol. DNA concentration of each sample was determined using 

Quant-iT� PicoGreen® dsDNA reagent (Invitrogen AG, Carlsbad, USA). The DNA extraction 

efficiency and the final genomic DNA concentration varied between all samples (1954-1960: 

1.9 ng/µl; 1974-1979: 8.7 ng/µl; 1994-1999: 4.6 ng/µl), but was sufficient to be normalized 

and to build up genome libraries for all populations using the Illumina/Solexa Genome 

Analyzer System. The D. galeata populations representing the time before (1954-1960), 

during (1974-1979) and after the eutrophication (1994-1999) are referred hereafter as 

POPpre, POPeu and POPpost, respectively. 

Single-read mapping and RPKM measures 

 Total reads of each population were blasted against an unpublished D. galeata transcrip-

tome using blastn. This reference D. galeata transcriptome consisted of expressed sequence 

tags (ESTs) derived from one inbred G100 isoclonal lineage that had been experimentally 

challenged under 15 different conditions. The transciptome consists of 29500 contigs with an 

average length of 665bp (further information on the D. galeata transcriptome can be found on 

https://wiki.cgb.indiana.edu/display/grp/Daphnia+galeata). The minimum score for a positive 

single read mapping onto the transcriptome assembly was set to 1E-30. In order to test for 

possible adaptation of the D. galeata populations to the appearance of cyanobacteria in Lake 

Constance on the level of gene copy number variations, we quantified gene levels in reads 

per kilobase of exon model per million mapped reads (RPKM, Mortazavi et al. 2008). The 

measurement of the RPKM values depicts the molar concentration of a gene after 

normalizing for length and for the total number of reads in the sample. This ensures a 

transparent comparison of gene levels both within and between population DNA samples. As 

according to Mortazavi et al. (2008) the RPKM values for each contig were calculated using 

the equation: 
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Genes with RPKM values � 10 were considered as ecologically relevant and were therefore 

included in the analysis. RPKM ratios � 2 of ecologically relevant genes between two 

populations were assumed in the present study as significantly different. If, for an ecologically 

relevant gene, the ratio of the RPKM values from two populations was � 2, the RPKM values 

were assumed as significantly different. 

SNP analysis

 Major allele frequency (MAF) refers to the frequency at which the most common allele 

occurs in a population. The MAF of each single nucleotide polymorphism (SNP) in each 

population was determined. For each population the MAF of all SNPs in each contig was 

arithmetically averaged. MAFs with coverage of at least ten reads per SNP and population 

were considered as ecologically relevant and therefore included in the analysis. 

 In order to determine changes in allele frequencies (CAF), we calculated changes of 

MAFs from POPeu and POPpost related to MAFs from POPpre for each contig separately using 

the equation:  

���� � ���
�

�

�

In which pi is the MAF for SNP i of the POPpre and qi the respective allele frequency in POPeu

or POPpost. �n� represents the total number of SNPs in a contig. This calculation was 

performed for each of the 29500 contigs and for POPeu and POPpost, separately. 

Target gene approach 

 In order to screen for possible target genes that might have been influenced by the 

elevated cyanobacterial abundance during the peak of the eutrophication of Lake Constance, 

several gene families were selected for the SNP analyses. We have analyzed genes that 

encode for proteins with functions in the processes of MC uptake, toxic effects and 
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biotransformation of secondary metabolites (Table 1). Target genes found in the literature 

were searched for homologs in D. pulex transcripts using the wfleabase database (Colbourne 

et al. 2005). Genes from D. pulex were subsequently blasted against the D. galeata

transcriptome using blastx. The minimum score for a positive blast result was set to 1E-50. 

MAFs and CAFs were calculated for each gene and averaged to give the mean of each gene 

family.  

Table 1. Characteristics of target genes used in the comparative SNP analysis 

Protein/Gene Biological function Effects of 
cyanobacterial 
toxins 

Genes in 
D. galeata  

Reference

Glutathione 
peroxidase 

lessening of formation 
of lipid hydroperoxides, 
protection from 
oxidative damage 

Detoxification of 
microcystin-LR-
induced lipid 
hydroperoxides 

4 Gehringer et al.
(2004) 

Glutathione-S-
transferase 

Contribution to 
biotransformation of 
xenobiotics, protection 
from oxidative damage 

Detoxification of 
microcystins 

17 Pflugmacher et al.
(1998) 

Mitogen 
activated 
protein kinase 
(MAPK) 

Signal transduction, 
cell proliferation and 
differentiation 

Microcystin-LR 
induced apoptosis 
through activation 
of multiple MAPK 
pathways 

5 Komatsu et al. (2007) 

Protein 
phosphatase 

Regulation of protein 
activity 

Inhibition by 
microcystins 

5 DeMott & Dhawale 
(1995) 

Elastase Protease Inhibition by 
elastase inhibitors 

11 Singh et al. (2005) 

Chymotrypsin Protease Inhibition by 
chymotrypsin 
inhibitors 

15 Von Elert et al. (2012) 

ABC-
Transporter 

Membrane transporter Increased gene 
expression induced 
by microcystin-LR 

14 Ame et al. (2009) 

NADH/NADPH 
oxidase 

Electron transfer to 
superoxide 

Microcystin-LR 
affects their 
phosphorylation 
resulting in reactive 
oxygen species 
(ROS) 

5 Nong et al. (2007) 

Trypsin Protease Inhibition by trypsin 
inhibitors 

72 Agrawal et al.(2005) 
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Data analysis 

 Kruskal-Wallis-test was used to analyze the effect of time on the MAFs of each gene 

family in each population. Analysis of variance (ANOVA) could not be used due to a non-

Gaussian distribution of the MAFs. A significance level of p = 0.05 was applied to all 

statistical analyses. All statistical tests were performed with SigmaPlot 11 (Systat Software, 

Inc.). With regard to the CAF analysis, non overlapping error bars of a gene family were 

assumed to be significantly different from the mean of all SNPs in each contig. 

Results 

 With regard to the RPKM analyses median and mean values of each of the 29500 contigs 

in all populations (POPpre, POPeu, POPpost) were quite similar (Table 2). We therefore 

assumed a permission for RPKM comparisons among all populations. 

Table 2 Summary of RPKM values for POPpre, POPeu and POPpost
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 Comparison of RPKM values between POPpre and POPeu revealed that 1003 ecologically 

relevant predicted genes differed between both populations. 318 genes were significantly 

more abundant in POPpre than in POPeu, while it was the other way around for 685 genes 

(Fig. 3). When comparing the RPKM values of POPeu and POPpost overall 444 gene were 

significantly different, out of which 166 genes were more abundant in POPpost than in POPeu, 

while 278 ecologically relevant gene models had significantly higher RPKM values in POPeu

than in POPpost (Fig. 4).  
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Figure 3 Comparison of RPKM values of the genomic DNA of D. galeata isolated from 

resting eggs from two different sediment layers, representing the time periods before (1954-

1960, x-axis) and during (1974-1979, y-axis) the peak of the eutrophication in Lake 

Constance. RPKM values depict the molar concentration of a predicted gene after 

normalizing for length and for the total number of reads in the sample. The higher the RPKM 

value, the more abundant is a gene in a population. Each red triangle represents a gene with 

a significantly higher RPKM value in the population from 1974-1979 compared to the 

population from 1954-1960. Black stars represent genes that are significantly more frequent 

in the population from 1954-1960 compared to the population from 1974-1979. Mind the log-

scale. 

 With regard to the comparison between POPpost and POPpre RPKM values of 1112 gene 

were different: 634 genes were significantly more abundant in POPpost than in POPpre, while it 

was the other way around for 478 genes (Fig. 5). One group of genes had outstandingly high 

RPKM values in all populations and was additionally significantly more abundant in POPpost

than in POPpre (genes in red circle, Fig. 4). Blasting these genes via blastx against the NCBI 

non-redundant protein sequences (http://www.ncbi.nlm.nih.gov/) revealed that each gene of 

this group resulted from mtDNA. The RPKM values obtained for mitochondrial genes were 

normalized to RPKM values of single copy genes from the same population, in order to 
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obtain estimates of the number of mitochondrial genes per cell. A subsequent one-way 

analysis of variances (ANOVA) exhibited significant differences of these normalized RPKM 

values of mitochondrial genes between the three populations (F2,27=545.051; p<0.001). 

Normalized RPKM vales of mitochondrial genes increased significantly from 164 (± 9 SE) in 

POPpre to 235 (± 13 SE) in POPeu and further on to 334 (± 12 SE) in POPpost (Fig. 6, 

p<0.001). 

RPKM 1974-1979

10 100 1000

R
P

K
M

 1
9
9

4
-1

9
9
9

10

100

1000

more frequent in 1974-1979

more frequent in 1994-1999

Figure 4 RPKM value comparisons between the genomic DNA of D. galeata DNA isolated 

from resting eggs from two different sediment layers, representing the time periods during 

(1974-1979, x-axis) and after (1994-1999, y-axis) the peak of the eutrophication in Lake 

Constance. RPKM values depict the molar concentration of a predicted gene after 

normalizing for length and for the total number of reads in the sample. The higher the RPKM 

value, the more abundant is a gene in a population. Each blue circle represents a gene with 

a significantly higher RPKM value in the population from 1994-1999 compared to the 

population from 1974-1979. With regard to the red triangles it is the other way around; these 

genes are significantly more frequent in the population from 1974-1979 compared to the 

population from 1994-1999. Mention the log transformation of both axes. 



Chapter 4 

92 

RPKM 1954-1960

10 100 1000 10000

R
P

K
M

 1
9
9

4
-1

9
9
9

10

100

1000

10000

more frequent in 1954-1960

more frequent in 1994-1999

Figure 5 Comparison of RPKM values of the genomic DNA of D. galeata DNA isolated from 

resting eggs from two different sediment layers, representing the time periods before (1954-

1960, x-axis) and after (1994-1999, y-axis) the peak of the eutrophication in Lake Constance. 

RPKM values depict the molar concentration of a predicted gene after normalizing for length 

and for the total number of reads in the sample. The higher the RPKM value, the more 

abundant is a gene in a population. Each blue circle represents a gene with a significantly 

higher RPKM value in the population from 1994-1999 compared to the population from 1954-

1960. With regard to the black stars it is the other way around; these genes are significantly 

more frequent in the population from 1954-1960 compared to the population from 1994-1999. 

Mention the log transformation of both axes. The red circle indicates a group of predicted 

genes that resulted from mitochondrial DNA. 

 Concerning the MAF analyses, six out of ten target genes exhibited neither increases or 

decreases in the major allele frequencies of respective SNPs over time (Fig. 7, Kruskal-

Wallis, p > 0.05): Elastases (H2=0.130, p = 0.937), protein phosphatases (H2=1.340, p = 

0.512), mitogen-activated protein kinases (H2=2.940, p = 0.230), ABC transporter(H2=5.155, 

p = 0.076), NADPH oxidases (H2=1.580, p = 0.454), glutathione-peroxidases (H2=4.500, p = 

0.104). However, four other target genes exhibited significant effects regarding the major 

base frequencies of SNPs (Fig. 7): trypsins (H2=43.865, p � 0.001), chymotrypsins 

(H2=6.855, p � 0.05), GSTs (H2=22.633, p � 0.001) and mitochondrial genes (H2=23.094, p �

0.05) had significantly higher MAF values in POPpost than in POPpre.  
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Figure 6 Estimation of the number of mitochondrial genes per cell for each of the D. galeata

DNA from resting eggs from three different sediment layers, representing the time periods 

before (1954-1960), during (1974-1979) and after (1994-1999) the eutrophication peak in 

Lake Constance (mean ± SE, n = 10). The RPKM values obtained for mitochondrial genes 

were normalized to RPKM values of single copy genes from the same population. Different 

letters indicated significantly differences between populations (one Way ANOVA, Tukey�s 

HSD test, P<0.001). 

 The analysis of changes in major allele frequency (CAFs) of POPeu and POPpost compared 

to POPpre revealed a mean CAF of about 10.4% concerning all 29500 genes for both 

populations (Fig. 8). CAFs of gluthathione-peroxidases, NADH-oxidases, elastases and 

chymotrypsins were assumed as not to differ from the mean in both populations due to 

overlapping error bars. However, CAFs of GSTs (POPeu: 14.5% ± 0.96% SE; POPpost: 14.6% 

± 0.95% SE), ABC-transporter (POPeu: 11.4% ± 0.75% SE; POPpost: 12.3% ± 0.68% SE) and 

trypsins (POPeu: 11.96% ± 0.46% SE; POPpost: 12.06% ± 0.45% SE) were in POPeu as well 

as in POPpost significantly higher than the mean, whereas major allele frequencies of protein-

phosphatases (POPeu: 7.9% ± 1.05% SE; POPpost: 8.6% ± 1.35% SE) and mitochondrial 

genes (POPeu: 1.48% ± 0.41% SE; POPpost: 1.57% ± 0.51% SE) changed significantly less 

than the mean of all genes. Mitogen-activated protein kinases exhibited significant lower 

CAFs for POPeu (7.9% ± 2.1%), while they were not different from the mean in POPpost

(9.04% ± 1.56%).
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Figure 7 Major allele frequencies (MAFs) of SNPs within target gene families from D. galeata

DNA isolated from resting eggs from three different sediment layers, representing the time 

periods before (1954-1960), during (1974-1979) and after (1994-1999) the eutrophication 

peak in Lake Constance (mean ± SE, various n). Target gene families were selected on the 

basis of that interference of cyanobacterial secondary metabolites with the gene products 

has been reported elsewhere. High mean frequencies of major alleles indicate less variability 

within a gene family. Different letters within target gene families indicated significantly 

differences between populations (one Way ANOVA, Tukey�s HSD test, P<0.001).
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Figure 8 Changes of the major allele frequencies (CAFs) of SNPs within target gene families 

from D. galeata DNA isolated from resting eggs from two different sediment layers, 

representing the time periods during (1974-1979) and after (1994-1999) the eutrophication 

peak in Lake Constance compared to resting eggs from a sediment layer, representing the 

time period before (1954-1960) the eutrophication peak (mean ± SE, various n). The dotted 

line represents the mean frequency changes of all SNPs. Values with error bars not-

overlapping the dotted line were assumed as significantly different from the mean.
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Discussion 

 Anthropogenic phosphorus loading in the past century has led to an enhancement of 

eutrophication in many lakes in Europe (Güde et al. 1998). In Lake Constance these changes 

in the trophic state resulted in shifts in the taxonomical compositions of the phytoplankton 

favoring the abundance of cyanobacterial genera (Kümmerlin 1998). Concomitant with the 

altered phytoplankton community in Lake Constance, Weider et al. (1997) noted significant 

genotypic shifts in the D. galeata population by collecting resting eggs from lake sediments. 

In the present study we verified these genotypic population shifts by comparing RPKM values 

and SNP frequencies of the D. galeata populations before, during and after the time of 

eutrophication in Lake Constance. With regard to the RPKM-values more than twice as many 

genes changed significantly from POPpre to POPeu than from POPeu to POPpost, while the 

temporal distance of adjacent populations was the same (~ 20 years). Additionally, the higher 

mean MAFs of all genes in POPeu than in POPpre lead to the conclusion that the genotypic 

composition of the D. galeata population changed substantially as a result of changing 

environmental conditions in Lake Constance during the time of eutrophication.  

 It has been suggested that these changes in the genetic structure of the D. galeata

population were related to micro-evolutionary changes which reflected differences of the 

clones in their ability to cope with cyanobacteria as food (Hairston et al. 1999, 2001). 

Cyanobacteria are capable of producing a wide range of toxic secondary metabolites 

including hepatotoxins, neurotoxins and protease inhibitors (Wiegand & Pflugmacher 2005). 

During the time of eutrophication the species Anabaena planktonica and Aphanizomenon 

flos-aquae became abundant in Lake Constance (Kümmerlin 1998). Members of the genus 

Aphanizomenon are known to produce neurotoxins and cyanotoxins, such as 

cyclindrospermopsin (Banker et al. 1997), while Anabaena produces the neurotoxins 

anatoxin-a (Bruno et al. 1994) and MICs (Sivonen & Jones, 1999). Furthermore, Hairston et 

al. (1999) used in their study a microcystin producing strain of the genus Microcystis, which 

was originally isolated from Lake Constance in 1972, which leads to the suggestion that 

members of the genus Microcystis were also abundant in Lake Constance during the time of 

eutrophication. Therefore it is reasonable to assume that the D. galeata population of Lake 

Constance had to struggle with microcystins and other toxins from cyanobacterial sources 

during the time of eutrophication. Consequently, natural selection favored those D. galeata

genotypes that were better adapted to increasing cyanobacterial toxin concentrations leading 

to an increase of the mean tolerance of the D. galeata population to cyanobacteria, which 

has already been observed by Hairston et al. (1999, 2001). However, the respective genes 
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and metabolic pathways of the D. galeata population, which were affected by changes of the 

phytoplankton community and the occurrence of cyanobacteria, remained unclear in the 

mentioned studies. Here we found evidence that the occurrence of cyanobacterial toxins 

were contributing to the genotypic shift in the D. galeata population of Lake Constance during 

the course of eutrophication.  

 The most frequent cyanotoxins in freshwater ecosystem are the cyclic peptide toxins of 

MCs and nodularins (Chorus & Bartram 1999). MCs are potent hepatotoxins produced by a 

variety of cyanobacterial genera, such as Anabaena, Oscillatoria, Planktothrix and 

Microcystis (Chorus & Bartram) and are known to irreversibly inhibit the protein 

phosphatases PP1 and PP2A of Daphnia (DeMott & Dhawale 1995). Additionally, several 

recent reports have argued that an exposure to MCs causes the production of ROS [ e.g. 

hydrogen peroxide (H202), superoxide anion (O2
-), hydroxyl (OH�)] which leads to oxidative 

stress within animal cells resulting in lipid peroxidation and DNA damage (Ding et al. 2001, 

Amado & Monserrat 2010). Oxidative degradation of lipids and fatty acids as a result of 

oxidative stress lead to the formation of hydroperoxides, representing the end product of lipid 

peroxidation (Sharma et al. 2004). The termination of ROS-induced lipid peroxidation and the 

detoxification of hydroperoxides are therefore crucial to protect cells from oxidative stress 

(Sharma et al. 2004). Alpha class GSTs are known to play an even more important role in 

protection against lipid peroxidation than glutathione-peroxidases (Yang et al. 2002). GSTs 

can interrupt the autocatalytic chain of lipid peroxidation by reducing hydroperoxides through 

the conjugation to GSH (i.e. Yang et al. 2001).  

 GSTs probably catalyze the biotransformation of microcystins in Daphnia by conjugation 

to GSH, which has already been shown in vitro (Pflugmacher et al. 1998). The resultant 

conjugate of MC and GSH is less toxic than MC alone and has been suggested as a first 

step of the cellular detoxification mechanism (Amado & Monserrat 2010).  

 Several studies have indicated that exposure to MCs leads to higher GST activity and 

increased transcription of GST genes in animal cells (i.e. Cazenave et al. 2005, Gehringer et 

al. 2004). In the present study we demonstrated that major allele frequencies of GSTs 

changed significantly stronger during the course of eutrophication in Lake Constance than 

the mean of all other genes. Our data suggest that MICs from cyanobacterial sources led to 

elevated levels of oxidative stress in Daphnia cells during the time of eutrophication and 

increased inhibition of the protein phosphatases PP1 and PP2a. Thus it is reasonable to 

assume that the selection pressure on Daphnia�s detoxifying enzymes, such as GSTs, 

increased concomitant with the occurrence of cyanobacteria that contained toxins. As a 
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consequence, natural selection should have favored those D. galeata genotypes that 

exhibited more efficient GSTs. In addition, we observed an overall increase of the major 

allele frequencies of all genes, which indicates a decrease of the genetic diversity of the D 

galeata population in Lake Constance. Our data suggests that the loss of genetic variability 

as well as the even significantly stronger decrease in GST diversity of POPpost was a 

consequence of the occurrence of MCs from cyanobacterial sources. 

 The assumption that an increase in the abundance of cyanobacteria constitutes the major 

selection factor for the D. galeata population during the time of eutrophication, is further 

corroborated by the finding that the mtDNA in the D. galeata population increased 

concomitantly with the occurrence of cyanobacteria in Lake Constance. Several studies have 

demonstrated that MCs from cyanobacteria interact with mitochondrial components, leading 

to dysfunction of the organelle and cell apoptosis (Campos & Vasconcelos 2010, Amado & 

Monserrat 2010). In Daphnia the exposure of cells to MC-LR finally leads to broken and 

blurry mitochondria in the alimentary canal and epidermis (Chen et al. 2005). In more detail, 

MCs were suggested to disrupt the mitochondrial electron transport chain, which then favors 

the generation of ROS (Ding et al. 2002). High ROS levels coincide with dysfunctional 

mitochondria due to depolarization of the membrane potential and increased mitochondrial 

membrane permeability (Ding et al. 2000a; Ding & Ong 2003). Additionally, Mikhailov et al.

(2003) have shown that MC-LR can bind to the beta subunit of ATP-synthase, which finally 

contributes to mitochondrial membrane depolarization, disruption of mitochondrial electron 

transport chain and the generation of ROS. The depolarization of the mitochondrial 

membrane potential finally leads to the release of cytochrome c and subsequently to 

apoptosis of the cell (i.e. Zhang et al. 2007). The observed significant higher amount of 

mtDNA in POPeu than in POPprä is possibly a physiological response to cyanobacterial toxins 

and may result from two different mechanisms: Firstly, the number of mitochondria per cell 

increased in the D. galeata population during the time of eutrophication. Lee et al. (2000) 

have shown that oxidative stress induced by H2O2 results in an increase of functional 

mitochondria and mtDNA in human fibroblasts. Our data suggest that the observed increase 

might constitute a compensatory response to the enhanced disruption of mitochondria 

caused by the increased exposure to cyanobacterial toxins during the time of eutrophication. 

Secondly, the number of mtDNA copies per mitochondrium increased, while the number of 

mitochondria per cell remained constant. Several studies have indicated that exposure to 

MCs induces DNA damage in vitro and in vivo by the oxidation of purines (Juhel et al. 2007, 

Zegura et al. 2004). Liu et al. (2003) and Wang et al. (2011) have demonstrated that copy 

number changes of human mtDNA are correlated with oxidative stress. Thus, we suggest 
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that an increased mtDNA copy number might compensate for deletions in the mtDNA caused 

by increased oxidative stress. Further comparisons have to be performed to elucidate 

whether the increased ratio of mtDNA to single copy genes indicates an increase of the 

number of mitochondria per cell or an increase of mtDNA copies per mitochondrium. 

However, in POPpost the number of mtDNA per cell was the highest, even higher than in 

POPeu. D. galeata resting eggs for POPeu were isolated from the sediment layers 

representing the time period from 1974-1979. We suggest that the selection pressure on 

Daphnia�s mitochondria caused by cyanobacterial microcystins maintained till the end of the 

1980s, since the last cyanobacterial peak was recorded in 1988 (Fig. 1). We assumed that 

the maintenance of microcystins in the 1980s led to a successive linear increase of mtDNA in 

the D. galeata. Thus, the finding of highest mtDNA copy number in POPpost it not very 

surprising, since the recovery to the status of pre-eutrophication in terms of neutral evolution 

is much slower than adaptive evolution assuming that the increased amount of mitochondria 

has no disadvantage for the D. galeata population. 

 Besides significant increases of major allele frequencies (MAF) in GSTs and copy 

numbers of mtDNA, MAFs of Daphnia�s serine proteases trypsin and chymotrypsin also 

increased significantly from POPprä to POPpost. Trypsins and chymotrypsins are responsible 

for 80% of the proteolytic activity in the gut of Daphnia (Von Elert et al. 2004). Several 

studies indicate that cyanobacterial protease inhibitors directly inhibit these digestive 

proteases of Daphnia (Agrawal et al. 2005; Schwarzenberger et al. 2010) and lead to 

reduced somatic growth of Daphnia (Von Elert et al. 2012). More than twenty depsipeptides 

were found in different genera of marine and freshwater cyanobacteria (Gademann & 

Portmann 2008), specifically inhibiting the serine proteases chymotrypsin and trypsin. A 

recent study by Kuster et al. (2012) has shown that the edible size fraction of natural seston 

can inhibit Daphnia�s trypsins and chymotrypsins, and this inhibitory potential can be in the 

same order of magnitude as pure cyanobacterial cultures (Czarnecki et al. 2006). Hence, it is 

reasonable to assume that an interference of cyanobacterial protease inhibitors with 

Daphnia�s digestive proteases occurs in nature and is ecologically relevant. In the D. galeata

population of Lake Constance chymotrypsins and trypsins exhibited significantly higher 

relative changes in their major allele frequency than the mean of all SNPs. The loss of 

genetic variability in protease genes coincided with increasing abundances of cyanobacteria 

in the course of Lake Constance�s eutrophication. We suggest that this loss could result from 

natural selection due to increasing cyanobacterial protease inhibition and the extinction of 

less tolerant D. galeata genotypes. 
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 In conclusion, the here presented population genome approach renders evidence that at 

least two independent cellular mechanisms caused by cyanobacterial toxins are responsible 

for the changes of the genetic structure of the D. galeata population in Lake Constance: (1) 

MICs from cyanobacterial sources have caused increased levels of ROS, the major causes 

for oxidative stress in cells and their mitochondria. (2) Cyanobacterial inhibitors interfered 

with Daphnia�s proteases leading to an inhibition of their digestive enzymes. Life-history 

experiments with ex-ephippia hatchlings demonstrated that eutrophication in Lake Constance 

resulted in more cyanobacteria-tolerant D. galeata populations (Hairston et al. 1999). Our 

data reveals that at least two types of cyanobacterial inhibitors, protease inhibitors and MCs 

were major selective forces driving the microevolutionary changes towards a more 

cyanobacteria-tolerant D. galeata population during the time of eutrophication. 
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Concluding remarks and perspectives 

Cyanobacteria are prokaryotic photoautotrophs and belong to the most successful and 

oldest life forms on earth (Gademann & Portmann 2008). They include unicellular and 

colonial species and inhabit almost all aquatic environments as planktonic cells or bentic 

biofilms. Besides the well known association with hazards to human health and livestock 

(Carmichael 1994) cyanobacterial blooms cause substantial reductions of the fitness of 

freshwater zooplankton. Cyanobacteria have been claimed to be a major factor for a 

constrained mass and energy transfer from primary producers to primary consumers (i.e. 

daphnids, copepods) and even higher trophic levels, such as insect larvae or planktivorous 

fish. Daphnia, which is an unselective filter feeder and important herbivorous grazer in many 

lakes and ponds, has to struggle with the poor food quality of cyanobacteria due to multiple 

factors. One of these factors is the morphology of cyanobacterial cells. For example, large 

cyanobacterial filaments can resist ingestion by interfering with the filtering apparatus of 

Daphnia (DeMott et al. 2001). Additionally cyanobacteria lack sterols and contain only small 

amounts of polyunsaturated fatty acids. Such lipids are essentials for Daphnia�s nutrition, 

since daphnids cannot synthesize these compounds in sufficient amounts by itself (i.e. Von 

Elert et al. 2003, Von Elert 2002). Thirdly, cyanobacteria produce a variety of secondary 

metabolites, such as microcystins and protease inhibitors (Sivonen & Jones 1999, 

Gademann & Portmann 2008). These compounds lead to significantly reduced growth in 

Daphnia (i.e. Von Elert et al. 2012). In the growth experiments of chapter 1 and chapter 3

biochemical lipid deficiencies and negative effects of microcystins can be ruled out as causal 

factors for the observed growth reduction of Daphnia on cyanobacterial diets, since 

microcystin-free cyanobacteria were fed in mixtures with a green algal ensuring sufficient 

supply of essential lipids. Additionally, all cyanobacterial strains as well as the green alga 

were cultured as single cells and were such well ingestible. The cyanobacterial strains used 

here produced exclusively either the chemically known chymotrypsin inhibitors Cyanopeptolin 

954 and Nostopeptin BN920 (Von Elert et al. 2005) or specific cyanopeptolins (A-D), which 

are known to inhibit trypsins (Weckesser et al. 1996). Von Elert et al. (2012) have recently 

shown that the concentration of chymotrypsin inhibitors in cyanobacterial cells were four to 

five orders of magnitude higher than the concentration, which is needed to inhibit 50 % of 

Daphnia�s chymotrypsin activity. Thus, it is reasonable to assume that the observed negative 

effects on population and somatic growth were caused by an interference of the 

cyanobacterial protease inhibitors with trypsins and chymotrypsins in the gut of Daphnia. 

Both digestive enzymes are responsible for more than 80 % of the proteolytic activity in the 
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gut of D. magna (Von Elert et al. 2004). Several studies have demonstrated a direct inhibition 

of Daphnia�s trypsins and chymotrypsins by cyanobacterial inhibitors (Von Elert et al. 2005, 

Schwarzenberger et al. 2010, Agrawal et al. 2005). The data presented in chapter 1

corroborate the finding of Czarnecki et al. (2006) that an inhibition of Daphnia�s trypsins 

occurs in nature and might therefore be ecologically relevant. Furthermore, the data in 

chapter 1 show for the first time that the seston fraction smaller than 55 µm, which 

constitutes the edible size fraction for Daphnia (Gophen & Geller 1984, Hessen 1985), can 

also inhibit Daphnia�s chymotrypsins. Besides trypsins, chymotrypsins account for the largest 

proportion of proteolytic activity in the gut of D. magna (Von Elert et al. 2004). With regard to 

the well-known seasonal succession of the phytoplankton community (Sommer et al. 1986) 

chapter 1 describes for the first time seasonal changes of the potential of natural lake seston 

to inhibit both types of proteases in D. magna. The potential of the edible seston to inhibit 

chymotrypsins was up to 100-300 times higher in fall than in spring for each of the 

successive years that were analyzed, which strongly suggests that the proportion of 

cyanobacteria with protease inhibitors in the phytoplankton community of this lake increased 

significantly within each season. This coincides with the finding that cyanobacteria mass 

developments occur more frequently at the end of the season, when the temperature of the 

epilimnion reaches its maximum (Sommer et al. 1986, Jöhnk et al. 2008). 

 In parallel with seasonal changes in the potential of the natural phytoplankton to inhibit 

proteases, the genetic structure of the D. magna population changed significantly. 

Microsatellite analyses revealed that D. magna clones isolated in spring were genetically 

distinct from those isolated in fall. Additionally, the genetic diversity of the D. magna

population decreased within season. This loss of genetic variability coincided with an 

increase of the inhibitory potential on chymotrypsins in the seston and might thus result from 

natural selection due to increasing protease inhibition on D. magna genotypes. I assumed 

that this would consequently lead to an increased mean tolerance of Daphnia to 

cyanobacterial protease inhibitors by the end of the season. Blom et al. (2006) showed that 

Daphnia sp. coexisting with Planktothrix rubescens, a cyanobacterium that contains the 

trypsin inhibitor oscillapeptin J, were significantly more tolerant to this trypsin inhibitor than 

Daphnia sp. from lakes free of this cyanobacterium. However, neither in single-clone growth 

experiments nor in competition experiments I found evidence that D. magna genotypes from 

the fall were better adapted to cyanobacteria containing protease inhibitors in terms of higher 

growth rates than genotypes from the spring (chapter 1). It remains unclear whether 

seasonally peaking sestonic protease inhibition over several years had already led to a 

locally adapted D. magna population. This would result in a comparably high level of 



Concluding remarks 

108 

tolerance to cyanobacterial protease inhibitors throughout the season as has been observed 

in chapter 1. Comparisons of the tolerance of Daphnia populations that exist in the absence 

or the presence of dietary protease inhibitors could provide evidence for such a local 

adaptation of a Daphnia population to cyanobacteria, as has already been shown earlier 

(Sarnelle et al. 2005).  

 Depending on initial conditions Daphnia may not only control the development of bloom-

forming cyanobacteria but as well suppress already established cyanobacterial blooms 

(Sarnelle 2007). The data presented in chapter 3 suggest that D. magna may control the 

development of cyanobacterial blooms more efficiently than D. pulex due to significant 

differences in their tolerance to cyanobacteria. In this case I deliberately chose cyanobacteria 

producing protease inhibitors but no microcystins, as protease inhibitors are among the most 

widespread cyanobacterial secondary metabolites and as I specifically wanted to compare 

Daphnia�s tolerance to this class of inhibitors. Protease assays revealed that the sensitivities 

of chymotrypsins and trypsins to cyanobacterial protease inhibitors did not differ between D. 

magna and D. pulex. However, D. magna exhibited a significantly higher specific 

chymotrypsin activity than D. pulex, which explains the observed higher tolerance of D. 

magna to cyanobacterial protease inhibitors. The differences in growth and chymotrypsin 

activity might result from general differences in their coexistence with cyanobacteria: 

Compared to other algal groups cyanobacteria have high temperature optima (Dokulil & 

Teubner 2000) and dominate the phytoplankton community in eutrophic lakes mainly in late 

summer and early fall (Jöhnk et al. 2008). Their important herbivorous grazers, D. magna

and D. pulex, are both most commonly abundant in fishless or turbid ponds (DeMott & Pape 

2005). D. magna is able to tolerate elevated temperatures up to 25 °C (Wojtal-Frankiewicz 

2012) and is able to increase in abundance upon nutrient enrichment and associated 

eutrophication (Verreydt et al. 2012). In contrast to D. magna the geographic distribution of 

D. pulex ranges rather from the temperate to the arctic zone (Colbourne et al. 1998). In 

addition, D. pulex usually reaches its highest densities in spring an early summer, while D. 

magna shows no clear seasonal density pattern (Bengtsson 1993). Following this line of 

reasoning, coexistence of D. magna and cyanobacteria would thus occur more frequently 

than a coexistence of cyanobacteria with D. pulex. Due to microevolutionary adaptation a 

putatively more frequent coexistence would consequently result in an increased tolerance of 

D. magna to cyanobacterial protease inhibitors. Although there is evidence that the observed 

higher mean tolerance of D. magna to cyanobacteria with protease inhibitors results indeed 

from a more frequent coexistence with cyanobacteria, a correlation has still to be established 

in extended field studies. However, as a result of continuing global warming the appearance 
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of toxic cyanobacterial blooms and their negative effects on whole ecosystems will become 

even stronger in the near future (Paerl & Huisman 2008). The data in chapter 3 suggests 

that D. magna may control the increase of cyanobacterial genera more efficiently than D. 

pulex due to significant differences in their tolerance to cyanobacteria with protease 

inhibitors. Additionally, I suggest that toxic cyanobacterial blooms and coinciding harmful 

effects to the ecosystem will occur more frequently in lakes with D. pulex than in lakes with D. 

magna. 

 The detection and identification of possible target genes in natural Daphnia populations 

that might have undergone selection by the presence of cyanobacterial protease is covered 

by chapter 2. Here I analyzed the genetic diversity of three digestive trypsins of D. magna

clones from different habitats via high resolution melting analysis (HRMA), which I introduced 

as a cost-effective and specific genotyping tool for population studies on Daphnia. The 

chosen trypsins are known to be active in the gut of Daphnia and therefore provide a 

possible target for cyanobacterial protease inhibitors (Schwarzenberger et al. 2010). One 

Daphnia population originated from a pond containing toxic cyanobacteria that possibly 

produce trypsin inhibitors and the other from a pond without such cyanobacteria. The final 

results in chapter 2 revealed that the clonal diversity of two trypsin genes was much higher 

in the D. magna population that already had experience with cyanobacteria than in the D. 

magna population without such experience. In addition, the HRMA-results revealed that both 

Daphnia populations exhibited phenotypic differences in the analyzed trypsins. Further 

growth experiments on cyanobacterial diets of several clones from both populations have to 

be performed in order to investigate whether the observed phenotypic difference of active 

trypsins are indeed a microevolutionary response to the presence of trypsin inhibitors. 

However, in chapter 2 I successfully demonstrated that even single nucleotide 

polymorphisms (SNPs) of class III (C/G) or class IV (A/T) can be easily detected with HRMA 

allowing a reliable genotyping of the analyzed Daphnia individuals. Thus, HRMA provides an 

excellent choice for screening high numbers of individuals in population studies. 

 Besides positive correlation of increasing water temperatures and the abundance of 

cyanobacteria as a result of global warming (Paerl & Huisman 2008), which has already 

discussed in chapter 3, the eutrophication of lakes caused by anthropogenic phosphorus 

loading also favors the occurrence of cyanobacterial mass developments (Jöhnk et al. 2008). 

In Lake Constance an increase of the total phosphorus (Ptot) resulted in shifts of the 

taxonomical composition of the phytoplankton favoring the abundance of cyanobacterial 

genera (Kümmerlin 1998). Concomitant with the altered phytoplankton community in Lake 

Constance the genetic structure of the co-occurring D. galeata population changed 
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significantly (Weider et al. 1997). It has been suggested that these changes were related to 

the ability of the D. galeata population to cope with cyanobacteria as food (Hairston et al.

1999, 2001). However, the physiological mechanisms underlying the increased tolerance of 

the D. galeata population to cyanobacteria after the peak of eutrophication in Lake 

Constance remained unclear in the mentioned studies. With the aim to identify these 

physiological mechanisms and genes, which were affected in Daphnia by changes of the 

phytoplankton community and the occurrence of cyanobacteria, I performed in chapter 4 a 

population genome approach in terms of sequencing genomic DNA of the D. galeata

population before, during and after the time of eutrophication. As outlined in chapter 4 I 

achieved evidence that selection, caused by cyanobacterial toxins, on at least two traits in 

Daphnia was responsible for the alteration of the genetic structure of the D. galeata

population in Lake Constance: The increased ingestion of the hepatotoxin microcystin from 

cyanobacterial sources, have led to increased generation of reactive oxygen species (ROS) 

in Daphnia cells. ROS are known to be the major causes for oxidative stress in animal cells 

leading to peroxidation of lipids and fatty acids, DNA damaging as well as to dysfunctional 

mitochondria (Amado & Monserrat 2010). Alpha class glutathione-S-transferases (GST) are 

known to play an important role in protection against microcystins and oxidative stress (Yang 

et al. 2002). GSTs catalyze the biotransformation of microcystins in Daphnia by conjugation 

to glutathione (Pflugmacher et al. 1998). The resultant conjugate is less toxic and it has been 

suggested that this constitutes the first step of cellular detoxification (Amado & Moserrat 

2010). In addition, GSTs can interrupt the autocatalytic chain of lipid peroxidation, which is a 

result of oxidative stress (Yang et al. 2001). The next-generation sequencing data in chapter 

4 revealed that the major allele frequencies of glutathione-S-transferases in the D. galeata

population changed significantly stronger during the time of eutrophication in Lake Constance 

than the mean of all other genes. This observation supports the assumption that, as a 

response to oxidative stress, caused by an increased proportion of cyanobacteria with 

microcystins in the phytoplankton community, natural selection favored those D. galeata

genotypes in Lake Constance that exhibited more efficient GSTs. Additionally, the amount of 

mitochondrial DNA increased in the D. galeata population during the time of eutrophication, 

which possibly indicates a compensation of the enhanced disruption of mitochondria due to 

increased exposure to cyanobacterial microcystins. Besides the impact of cyanobacterial 

microcystins on the genome of the D. galeata population, also cyanobacterial protease 

inhibitors probably had significant impacts on Daphnia�s genomic structure during the time of 

eutrophication, because genes of trypsins and chymotrypsins in Daphnia exhibited 

significantly higher relative changes than the mean of all genes. Taken together the data in 

chapter 4 make it reasonable to assume that protease inhibitors and oxidative stress 
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induced by microcystins were the selective forces driving the genotypic shift towards a more 

cyanobacteria-tolerant D. galeata population during the time of eutrophication. 

 Daphnia is a keystone species in the functioning of lake ecosystems and is known for its 

rapid evolutionary response to dynamic environmental stressors (Miner et al. 2012). Since 

Daphnia has recently become another model organism due to the availability of full-genome 

data (Colbourne et al. 2011) the linkage between genomics and ecology of Daphnia has 

become a focus of attention. The identification of specific genes that were related to i.e. 

climate change, predator avoidance, parasite- and toxin resistance is a prerequisite to 

understand the physiological mechanisms underlying Daphnia�s adaptation. The present 

study considers various intra- and interspecific aspects of Daphnia�s tolerance to 

cyanobacteria. This dissertation covers not only more classical ecological approaches, such 

as growth and competition experiments, but as well focuses on the analysis of specific target 

genes of Daphnia that are related to secondary metabolites of cyanobacteria. The 

introduction of high-resolution melting analysis as a cost-effective tool for genotyping a large 

number of Daphnia individuals as well as population-wide genome sequencings connected 

with pronounced bioinformatical statistics hopefully helps to elucidate some aspects in the 

linkage between genome/gene evolution and the ecology of Daphnia.
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Abstract 

 In many freshwater ecosystems Daphnia represent both, an important herbivorous grazer 

of phytoplankton and a major prey of planktivorous fish and invertebrate predators. Thus, 

Daphnia provide an important link for the transfer of energy and carbon from primary 

producers to higher trophic levels. In eutrophic lakes this transfer is often reduced by the 

occurrence of cyanobacteria that are known for their low food quality for Daphnia: 

Cyanobacteria lack essential sterols and polyunsaturated fatty acids, are often filamentous or 

colonial and contain even toxins like microcystins and protease inhibitors. Although Daphnia

populations are able to adapt to the presence of cyanobacteria, little is known about the 

physiological mechanisms and the particular genes and metabolic pathways underlying this 

adaptation. 

 The present study considers various intra- and interspecific aspects of Daphnia�s 

tolerance to cyanobacteria. Besides classical ecological approaches, such as growth and 

competition experiments, the focus of the present dissertation was the analysis of specific 

target genes of Daphnia that were related to the response to secondary metabolites of 

cyanobacteria, such as protease inhibitors and microcystins. I found here for the first time 

evidence that cyanobacterial inhibitors, interfering with Daphnia�s major gut proteases 

(chymotrypsin and trypsin), occurred in the edible fraction of natural lake seston and varied 

significantly within season. In parallel with seasonal changes in the potential of the 

phytoplankton to inhibit proteases, the genetic structure of the co-occurring D. magna

population changed significantly, which might result from natural selection due to the 

increased content of cyanobacterial protease inhibitors in the seston.  

 Depending on initial conditions Daphnia may also control the development of bloom-

forming cyanobacteria with protease inhibitors and may even suppress already established 

cyanobacterial blooms. In life-table experiments with cyanobacteria containing inhibitors of 

chymotrypsin and trypsin I investigated the tolerance of various clones of D. magna and D. 

pulex with different geographic origins. I showed that D. magna is more tolerant to 

cyanobacteria with protease inhibitors and thus may control the development of 

cyanobacterial blooms more efficiently than D. pulex. Protease assays revealed that the 

sensitivities of chymotrypsins and trypsins to cyanobacterial inhibitors did not differ between 

D. magna and D. pulex. However, D. magna exhibited a more than two times higher specific 

chymotrypsin activity than D. pulex, which explains the observed higher tolerance to 

cyanobacterial protease inhibitors of D. magna. The higher tolerance of D. magna to 
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cyanobacterial protease inhibitors compared to that of D. pulex might result from differences 

in their coexistence with cyanobacteria. 

 Adaptation of Daphnia populations to environmental stressors is typically a result of 

microevolutionary processes leading to natural selection. Determining genetic variation at the 

DNA level within and between natural Daphnia population is important for understanding the 

role of natural selection on phenotypic traits. In the present study I demonstrate that high-

resolution melting analysis (HRMA) is a cost effective and sensitive tool for screening 

variable target genes in natural Daphnia populations. HRMA is based on monitoring the 

melting of PCR-amplicons and has usually been applied in clinical studies and medical 

molecular diagnostics. As a proof of principle for the application of HRMA in Daphnia

population genetics I have analyzed the genetic variability of digestive trypsins in two D. 

magna populations. Both populations differed in their experience with respect to 

cyanobacterial trypsin inhibitors. I hypothesized that D. magna clones from ponds with 

cyanobacteria have undergone selection by these inhibitors, which has led to different trypsin 

alleles. My results revealed that both populations exhibited phenotypic difference in the 

analyzed trypsins and that HRMA is a powerful genotyping tool for screening high numbers 

of individuals in population studies. 

 The last part of my thesis considers anthropogenic long-term effects on D. galeata in Lake 

Constance, which underwent periods of eutrophication and re-oligotrophication in the last 

century. In order to investigate the influence of changing selection factors in Lake Constance 

on the genomic structure of the D. galeata population, I have isolated and pooled D. galeata

resting eggs from four different layers of sediment cores, representing the time periods 

before, during and after the peak of the eutrophication. The extracted genomic population 

DNA samples from the different time periods were sequenced with a mean coverage of 50x 

via next-generation sequencing. After mapping the total reads of each population on 

predicted genes of D. galeata, I performed a genome-wide assessment of single nucleotide 

polymorphisms (SNPs) and copy number variations of several gene families in each of the 

three D. galeata populations. The data were used to determine the genetic diversity of the D. 

galeata populations and to indentify particular target gene families and metabolic pathways 

that were influenced by the environmental changes mentioned above. The data suggest that 

cyanobacterial protease inhibitors and oxidative stress induced by microcystins from 

cyanobacteria were the selective forces contributing to the genotypic shift towards a more 

cyanobacteria-tolerant D. galeata population during the time of eutrophication. 
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Zusammenfassung 

 In vielen Seen sind Daphnien als unselektive Filtrierer einer der Hauptkonsumenten von 

pelagischen Phytoplanktern und dienen des Weiteren als Nahrungsquelle von planktivoren 

Fischen und invertebraten Räubern. Dadurch nehmen Daphnien eine Schlüsselstellung im 

Transfer von Energie und Kohlenstoff von Primärproduzenten zu höheren trophischen 

Ebenen ein. Dieser Transfer ist in eutrophen Gewässern häufig durch die Anwesenheit von 

Cyanobakterien gestört, da diese ein Futter von geringer Qualität für Daphnien darstellen. 

Cyanobakterien besitzen die Fähigkeit, Kolonien oder Filamente zu bilden, womit sie ab einer 

gewissen Größe nicht mehr von Daphnien ingestiert werden können. Des Weiteren fehlen 

Cyanobakterien Sterole und ausreichende Mengen an mehrfach ungesättigten Fettsäuren. 

Darüber hinaus können Cyanobakterien für Daphnien toxische Sekundärmetabolite, wie zum 

Beispiel Proteaseinhibitoren oder Microcystine, enthalten. Daphnienpopulationen sind in der 

Lage sich an die Anwesenheit von Cyanobakterien anzupassen; allerdings sind sowohl die 

physiologischen Mechanismen, die dieser Anpassung zugrunde liegen, als auch die 

verantwortlichen Gene und Stoffwechselwege bisher nur wenig erforscht. 

 In der vorliegenden Arbeit werden verschiedene intra- und interspezifische Aspekte 

untersucht, die sich mit der Anpassung von Daphnien an Cyanobakterien beschäftigen. 

Neben klassischen Wachstums- und Konkurrenzversuchen liegt ein Schwerpunkt dieser 

Arbeit in der Identifizierung und Analyse spezieller Zielgene aus Daphnien, von denen 

vermutet wird, dass toxische Sekundärmetabolite aus Cyanobakterien einen Selektiondruck 

auf diese Gene ausüben können. Zu diesen toxischen Sekundärmetaboliten gehören neben 

hepatotoxisch wirkenden Microcystinen auch cyanobakterielle Inhibitoren von Trypsinen und 

Chymotrypsinen. Diese beiden Proteasen sind zusammen für mehr als 80% der 

proteolytischen Aktivität im Darm von Daphnien verantwortlich. In Kapitel 1 konnte ich 

zeigen, dass das die für Daphnien freßbare Größenfraktion des Sestons eines natürlichen 

Gewässers Trypsine und Chymotrypsine inhibiert, und dass die Stärke der Inhibition starken 

saisonalen Schwankungen unterliegt. Des Weiteren konnte ich zeigen, dass sich parallel mit 

den jahreszeitlichen Schwankungen des Inhibitionsvermögens des Sestons auch die 

genetische Struktur der coexistierende D. magna Population signifikant veränderte, was eine 

Folge von natürlicher Selektion sein könnte.  

 Je nach Ausgangsbedingungen sind Daphnien in der Lage, die Entstehung 

cyanobakterieller Massenentwicklungen zu unterdrücken. In Wachstumsversuchen mit 

Cyanobakterien, die Inhibitoren gegenüber Trypsinen und Chymotrypsinen enthielten, habe 
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ich die Toleranz verschiedener D. magna und D. pulex Klone aus unterschiedlichen 

Ursprungshabitaten untersucht. Ich konnte zeigen, dass D. magna eine höhere Toleranz 

gegenüber Cyanobakterien aufweist als D. pulex. Dies lässt die Vermutung zu, dass D. 

magna die Entstehung von Cyanobakterienblüten effizienter kontrollieren kann als D. pulex. 

Enzymatische Untersuchungen ergaben, dass sich weder Chymotrypsine noch Trypsine aus 

D. magna und D. pulex hinsichtlich ihrer Sensitivitäten gegenüber cyanobakteriellen 

Inhibitoren unterschieden. Es konnte jedoch gezeigt werden, dass D. magna eine doppelt so 

hohe spezifische Chymotrypsinaktivität besitzt als D. pulex. Dies könnte ein Grund für die 

beobachtete höhere Toleranz gegenüber Cyanobakterien von D. magna im Vergleich zu D. 

pulex sein. 

 Eine Anpassung von Daphnienpopulation an veränderte Umweltbedingungen ist häufig 

eine Konsequenz von natürlicher Selektion aufgrund von Mikroevolution. Die genaue 

Bestimmung genetischer Variabilität innerhalb und zwischen Daphnienpopulation ist von 

entscheidender Bedeutung, um natürliche Selektion und deren Auswirkung auf 

phäntoypische Merkmale besser verstehen zu können. In der vorliegenden Arbeit wird die 

Methode der hochauflösenden Schmelzkurvenanalyse (high-resolution melting analysis, 

HRMA) als günstige und sensitive Alternative zu herkömmlichen Sequenzierungsmethoden 

genutzt, um genetische Variabiltät von Zielgenen effektiv analysieren zu können. HRMA 

basiert auf der exakten Analyse des Schmelzverhaltens kompletter PCR Produkte und wird 

vornehmlich in klinischen Studien sowie in der molekularen Diagnostik verwendet. Als 

Anwendungsbeispiel der HRMA wurde die genetische Variabilität verschiedener Trypsingene 

aus zwei D. magna Populationen untersucht. Eine der beiden Populationen stammte aus 

einem Gewässer ohne Cyanobakterien, während die andere Population aus einem 

Gewässer mit jährlich auftretenden Cyanobakterienblüten entstammt. Die Hypothese war, 

dass D. magna Klone aus cyanobakterienreichen Gewässern aufgrund von natürlicher 

Selektion durch Proteaseinhibitoren andere Trypsinallele aufweisen als Klone aus 

cyanobakterienfreien Gewässern. Die Ergebnisse ergaben Unterschiede in der 

Aminosäuresequenz der analysierten Trypsinen zwischen beiden D. magna Population. Im 

Allgemeinen konnte ich zeigen, dass sich die Methode der hochauflösenden 

Schmelzkurvenanalyse ideal zur Genotypisierung einer großen Anzahl von Individuen in 

Populationsanalysen eignet. 

 Der letzte Abschnitt meiner Dissertation behandelt den Einfluss anthropogener 

Langzeiteffekte auf die im Bodensee existierende D. galeata Population. Durch erhöhten 

Phosphoreintrag und nachfolgend eingeleitete Sanierungsmaßnahmen durchlief der 

Bodensee eine Phase der Eutrophierung und anschließenden Re-Oligotrophierung in der 
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zweiten Häfte des letzen Jahrhunderts. Um die Einflüsse dieser schwankenden 

Umweltbedingungen auf die genetische Struktur der D. galeata Population zu analysieren, 

wurden aus verschiedenen Schichten mehrerer Bohrkerne aus dem Sediment des 

Bodensees Dauereier von D. galeata isoliert. Die Schichten, aus denen die Dauereier 

separat isoliert wurden, entsprachen der Zeit vor, während und nach dem Höhepunkt der 

Eutrophierung des Bodensees. Anschließend wurde die DNA aus jeder Population separat 

extrahiert, mittels �Next-Generation Sequencing� analysiert und anschließend mit 

vorhandenen Transkriptomdaten von D. galeata abgeglichen. Dies ermöglichte es mir einen 

genomweiten Vergleich einzelner Nukleotidpolymorphismen (SNPs) sowie Unterschiede in 

der Anzahl der Kopien bestimmter Zielgene zwischen den einzelnen Populationen zu 

untersuchen. Die so gewonnen Daten dienten zum einen dazu, die genetische Diversität der 

D. galeata Population vor, während und nach der Eutrophierung zu messen. Des Weiteren 

sollten Zielgene und Stoffwechselwege identifiziert werden, die sich möglichweise durch sich 

wechselnden Umweltbedingungen des Bodensees in der D. galeata Population verändert 

haben. Die Analyse der Daten stützt die Vermutung, dass ein Anstieg von 

Proteaseinhibitoren sowie oxidativer Stress durch Mikrocystine, bedingt durch das im Zuge 

der Eutrophierung vermehrte Auftreten von Cyanobakterien, wichtige Selektionfaktoren 

darstellten, die zu den gefundenen genetischen Veränderungen der D. galeata Populationen 

beigetragen haben. 
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