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Summary 

 

 

In their natural environment, plants live in a close association with a large variety of 
microorganisms. A number of these microorganisms can be detrimental to plants 
and are considered as potential pathogens. In order to ward off these pathogens, 
plants have developed a highly effective and dynamic immune system.  

As a first line of defense, plants recognize the presence of microbes through the 
perception of molecular structures typical of a microbial class, termed microbe-
associated molecular patterns (MAMPs). In Arabidopsis, the Leu-rich repeat 
receptor-like kinases FLS2 and EFR recognize the bacterial MAMPs flagellin and 
EF-Tu (and their bioactive epitopes flg22 and elf18), respectively. Perception of 
these MAMPs triggers defense responses that restrict microbial invasion and 
growth. However, the molecular basis of MAMP-triggered immunity (MTI) is still 
largely unknown. As MTI functionally links to and provides an evolutionary basis for 
different branches of plant immunity, it is instrumental for the understanding of 
plant-microbe interactions.  

The work presented here aimed at the identification of molecular components of 
MTI. A forward-genetic screen revealed priority in sweet life (psl) mutants that show 
de-repressed anthocyanin accumulation in the presence of elf18 or flg22. PSL2 was 
identified as the single-copy Arabidopsis UDP-glucose:glycoprotein 
glucosyltranseferase (UGGT), whereas PSL25 most likely identifies the Arabidopsis 
endoplasmic reticulum (ER) Glucosidase I. These are components of an ER protein 
quality control (ERQC) pathway that ensures proper folding and maturation of 
membrane-resident and secreted proteins. These and other ERQC components are 
required for the generation of functional EFR. 

PSL36 was identified as a novel allele of EIN2 (ETHYLENE INSENSITIVE2), a 
central regulator of the ethylene(ET) pathway. Loss of EIN2 function results in 
pronounced defects in FLS2 and EFR signaling outputs. Whereas ET signaling is 
crucial for FLS2 expression, EFR steady-state levels are unaltered in ein2 plants. 
These data point to a role for ET in post-recognition signaling by EFR. The 
identification of a set of EFR-triggered genes that depend on ET-signaling for their 
full activation reveals possible mechanisms of signal integration during MTI. 
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Zusammenfassung 

 

Pflanzen leben in der Natur in einer engen Verbindung mit einer großen Vielfalt an 
Mikroorganismen. Viele dieser Mikroorganismen können die Pflanzen schädigen 
und werden daher als potentielle Pathogene betrachtet. Um diese Pathogene 
abzuwehren, haben die Pflanzen ein hoch effizientes und dynamisches 
Immunsystem entwickelt.  

Als die erste Abwehrlinie erkennen Pflanzen Mikroben anhand von molekularen 
Strukturen die spezifisch für Mikroben sind, sogenannte, Mikroben-assoziierte 
molekulare Muster (MAMM). In Arabidopsis erkennen die Rezeptor-Kinasen FLS2 
und EFR die MAMMs flagellin und EF-Tu (beziehungsweise ihre bioaktiven Epitope 
flg22 und elf18). Erkennung dieser MAMMs löst eine Immunantwort aus, die das 
Eindringen und Ausbreitung der Mikroben einschränkt. Jedoch ist die molekulare 
Grundlage dieser MAMMs-induzierten Resistenz (MIR) größtenteils unbekannt. Da 
MIR mit weiteren Ebenen des pflanzlichen Immunsystems eng verknüpft ist und ihre 
evolutionäre Grundlage stellt, ist die Erforschung des MIR entscheidend für das 
Verständnis des Zusammenlebens von Pflanzen und Mikroben. 

Die hier vorgestellte Arbeit hatte das Ziel molekulare Komponenten des MIR zu 
identifizieren. Eine genetische Sichtung identifizierte die „priority in sweet life (psl)“ 
Mutanten, die eine Aufhebung der Anthocyanin-Unterdrückung durch elf18 oder 
flg22 zeigen. PSL2 wurde als Arabidopsis UDP-glucose:glycoprotein 
glucosyltranseferase (UGGT) identifiziert, und PSL25 identifiziert höchst 
wahrscheinlich die im Endoplasmatischem Retikulum lokalisierte Glucosidase I. 
Diese sind Komponenten des ER Protein Qualitätskontroll-Mechanismus (ERQK), 
die die korrekte Faltung und Reifung von sekretierten und Membran-gebundenen 
Proteinen sichert. Diese und andere ERQK Komponenten werden für die 
Generierung eines funktionalen EFR benötigt.  

PSL36 wurde als ein neuer Allel von EIN2 (ETHYLENE INSENSITIVE2) identifiziert, 
das ein zentraler Regulator des Ethylen(ET) Signalweges ist. Ein disfunktionaler 
EIN2 resultiert in gestörten Antworten von FLS2 und EFR. ET spielt eine 
entscheidende Rolle für die Expression von FLS2, EFR Akkumulation ist jedoch 
unverändert in ein2 Mutanten. Dies deutet auf eine Rolle von ET für die 
Signalfunktion von EFR hin. Wir identifizierten eine Reihe von EFR-induzierten 
Genen, die einen funktionierenden ET-Signalweg für ihre Aktivierung benötigen. 
Dies könnte zur Entdeckung von wichtigen Signalmechanismen des MIR führen. 
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1. Introduction 

 

In the nature, plants exist in close association with a large variety of microbes. 

Some of these microbes can propagate on certain host plants and cause 

disease symptoms, thus they are considered as pathogens. Based on their 

lifestyle and infection strategies, these pathogenic microbes can be classified 

as necrotrophs or biotrophs (Dangl and Jones 2001, Glazebrook 2005). 

Necrotrophs first kill plant cells and subsequently feed on the dead material. 

Biotrophs keep their hosts alive and retrieve nutrients from living cells. 

However, many pathogens display an intermediate lifestyle and are referred 

to as hemibiotrophs (Dangl and Jones 2001, Glazebrook 2005). 

In order to prevent colonization by microbes, plants developed an effective 

immune system. As a consequence, most plant species are resistant to most 

microbes. This phenomen is called nonhost resistance and describes the 

resistance of a plant species against all strains of a non-adapted pathogen 

(Nurnberger and Lipka 2005). In contrast to vertebrates, plants lack 

specialized immune cells and rely on the innate immunity of each cell. This 

implies a tight coordination of defense responses with other physiological 

processes in plant cells.  

The plant immune system largely relies on two classes of immune sensors 

that recognize two types of microbial signatures. The first class of immune 

receptors recognizes conserved molecules that are present in most microbes 

but absent in plants, and induces a defense response that limits pathogen 

growth (Segonzac and Zipfel 2011). Adapted pathogens however developed 

virulence strategies to suppress this basal defense and can thus proliferate in 

their host plants. Deployment of effector proteins into plant cell represents a 

major pathogenicity strategy (Block and Alfano 2011). The second class of 

plant immune receptors specifically recognizes the presence of these 

effectors and activates a more robust immune response that eventually 

terminates the pathogens growth  
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(Chisholm et al. 2006, Jones and Dangl 2006, Bent and Mackey 2007, Tsuda 

and Katagiri 2010).  

Activation of defense responses confers enhanced immunity not only at the 

infection site, but also in distant tissues. It has been long noted that a primary 

infection renders plants more resistant to a secondary infection at distant 

leaves. This phenomenon was termed systemic acquired resistance (SAR) 

(Durrant and Dong 2004). 

 

1.1  MAMP-triggered immunity 

Microbe-associated molecular patterns (MAMPs, also called PAMPs for 

pathogen associated molecular patterns) are molecules that are conserved in 

many microbial species and normally not present in the plant body. Known 

MAMPs include the bacterial proteins flagellin, elongation factor-Tu (EF-Tu), 

Ax21 and cold shock protein, as well as constituents of the bacterial cell wall, 

such as lipopolysaccharides (LPS) and peptidoglycans (PGN). Other known 

MAMPs are fungal chitin and pep13 from oomycetes (Boller and Felix 2009, 

Nurnberger et al. 2004, Segonzac and Zipfel 2011). The molecules that are 

recognized as MAMPs typically exert an important function for the fitness of 

the microbes. Consequently, MAMPs tolerate little variation of their structure 

and are considered as slow-evolving (Jones and Dangl 2006). Nevertheless, 

MAMPs are not invariable and can be altered in order to prevent their 

recognition, as shown for flagellin from Xanthomonas strains (Sun et al. 

2006).  

MAMP-receptors (termed pattern recognition receptors, PRRs) identified to 

date in plants are restricted to membrane anchored proteins with a putative 

extracellular domain containing leucine-rich-repeats (LRRs) or LysM-motifs 

(Boller and Felix 2009, Zipfel 2008). Bacterial flagellin is perceived by the 

receptor-like kinase (RLK) FLAGELLIN SENSING 2 (FLS2) in most plant 

species. EF-Tu is recognized by the related RLK EF-TU RECEPTOR (EFR).  
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However, in contrast to flagellin, EF-Tu recognition has been noted only in 

Brassicaceae, showing differential phylogenetic distribution of PRRs. 

Recognition of MAMPs leads to a state of enhanced cellular immunity that 

restricts the invasion and/or propagation of potential pathogenic microbes, 

termed MAMP-triggered immunity (MTI). Interestingly, MTI is active against a 

broad spectrum of pathogens with different lifestyles (Boller and Felix 2009). 

Activation of MTI by different PRRs triggers a stereotypical set of 

physiological responses that are detectable within seconds/minutes and 

hours/days. Early responses include rapid generation of reactive oxidative 

species (ROS spiking), activation of Mitogen-activated kinases (MAPKs), and 

Ca2+ influx, and are followed by a massive transcriptional reprogramming that 

typically results in accumulation of antimicrobial compounds and cell-wall 

reinforcements with callose (Nurnberger et al. 2004, Boller and Felix 2009, 

Nicaise et al. 2009). However, the contribution of the individual defense 

responses to the establishment of MTI is in the most cases still unclear. 

 

1.2  Effector-triggered immunity 

The importance of MTI is illustrated by the finding that pathogenic microbes 

often actively suppress or evade MTI in order to successfully infect plants 

(Gohre and Robatzek 2008, Block and Alfano 2011). Suppression of plant 

defense responses is mediated by the action of effector proteins (Chisholm et 

al. 2006, Block and Alfano 2011). Bacterial pathogens deliver effector 

proteins into plant cells by a needle-like structure called the type III secretion 

system (TTSS). Upon their delivery, TTSS effectors interact with and modify 

multiple defense components, thereby manipulating the host to the pathogens 

advantage. It has been shown that two unrelated bacterial TTSS effectors, 

AvrPto and AvrPtoB target the PRRs FLS2 and EFR and their interacting 

partner (Xiang et al. 2008, Gohre et al. 2008, Shan et al. 2008). 

The recognition of effectors is mediated by another class of immune-

receptors, called Resistance (R) proteins. R proteins are modular proteins,  
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consisting of domains, such as an LRR-domain, a nucleotide-binding (NB)-

domain and an N-terminal coiled-coil (CC) or Toll/Interleukin-1 receptor (TIR) 

domain. Most R-proteins are intracellular proteins, however a subset of R-

proteins have an extracellular domain (for example the Cf-family). The 

successful recognition of an effector by a matching R-protein triggers an 

immune response, termed effector-triggered immunity (ETI) (Jones and 

Dangl, 2006, Tsuda and Katagiri, 2010). In this case, the recognized effector 

is called an avirulence (Avr) protein. The recognition of effectors can be either 

direct through physical interaction between effector and R-protein, or indirect 

through sensing the effectors actions (the guard hypothesis; Dangl and Jones 

2001). It is thought that co-evolution between host plants and pathogenic 

microorganisms results in the development of novel effectors, which in turn 

triggers the development of matching R proteins (Chisholm et al. 2006, Jones 

and Dangl 2006, Bent and Mackey 2007). 

Defense responses induced during ETI show significant overlap with those 

that are activated during MTI (Nurnberger et al. 2004, Bent and Mackey 

2007). However, the kinetics and amplitude of the induced responses often 

differ between MTI and ETI (Tsuda and Katagiri 2010). It is generally 

accepted that defense-responses induced by ETI are more robust than those 

activated during MTI. Furthermore, in contrast to MTI ETI is often associated 

with localized programmed cell death, termed the hypersensitive response 

(HR). However, recent reports demonstrate that the induction of HR is not 

essential for the activation of robust immunity during ETI (Slootweg et al. 

2010, Heidrich et al. 2011). This raises the question, what actually stops 

pathogen growth in most cases? 
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Figure 1.  The conceptual framework of plant immunity connecting MAMP 
recognition, effector action and effector recognition. Modified from Dodds and 
Rathjen, Nature Reviews 2010 
Plant PRRs recognize MAMPs and initiate MTI that is suppressed by effector 
proteins. R proteins, such as the here shown NB-LRR recognize the presence of the 
effector and induce ETI. 

 

1.3  MTI as a basis for ETI, SAR and nonhost resistance 

For long time the significance of MAMP recognition for overall plant disease 

resistance was doubtful. However, work on the flagellin perception system in 

Arabidopsis revealed several important features of MTI (Gomez-Gomez and 

Boller 2000). Most importantly, genetic evidence was obtained for the role of 

flagellin perception in limiting bacterial growth, by showing that loss of the 

flagellin receptor FLS2 increased susceptibility to adapted bacterial 

pathogens (Zipfel et al. 2004).  

 

 



 Introduction 
	  

6	  
	  

 

Later, it was shown that flagellin recognition also plays a role in limiting 

growth of non-adapted bacterial pathogens, thereby demonstrating a role for 

MTI in nonhost resistance (Li et al .2007). This notion was further supported 

by the cloning of FLS2 as a major QTL for nonhost-resistance of Arabidopsis 

against the bean pathogen Pseudomonas syringae pathovar phaseolicola 

(Forsyth et al. 2010). Interestingly, SAR is induced also by exogenous 

application of MAMPs, suggesting that MTI activation is sufficient to enhance 

immunity in systemic tissues (Mishina et al. 2007). Furthermore, it was shown 

that transcriptome changes during MTI and ETI significantly overlap (Navarro 

et al. 2004). A possible direct link between ETI and MTI signaling was 

revealed in barley-powdery mildew interactions. Upon its activation, the R-

protein MLA10 interacts with transcriptional repressors and thereby de-

represses MAMP-responsive genes (Shen et al. 2007). In conclusion, MTI 

functionally links to other immune branches in plants, and might provide a 

basis for their activation. The more important it becomes to understand the 

mechanisms regulating MAMP perception and signaling. 

 

1.4  Damage-associated molecular patterns (DAMPs) 

As MAMPs are equally present in pathogenic and non-pathogenic microbes, it 

has been hypothesized that the innate immunity of vertebrates responds to 

MAMPs in the context of additional signals, the so called patterns of 

pathogenesis, in order to distinguish pathogenic microbes from commensale 

microorganisms (Vance et al. 2009). 

Likewise, plants perceive in addition to non-self structures such as MAMPs 

also endogenous elicitors known as DAMPs (damage-associated molecular 

patterns).  These endogenous elicitors are generated and/or released as a 

consequence of cellular damage caused by a pathogen attack, e.g. cell wall 

fragments (Boller and Felix 2009, Ferrari et al. 2007). Immuno-stimulatory 

peptides that are encoded in the plant genome and are activated in response 

to pathogens or wounding, e.g. systemin from tomato or PROPEP1 to 6 from 

Arabidopsis, might represent such DAMPs (Boller 2005, Ryan et al. 2007).  
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1.5  Perception of bacterial flagellin and Elongation Factor-Tu 
in Arabidopsis 

The best characterized MAMP-perception systems in Arabidopsis are those 

that recognize the bacterial proteins flagellin and elongation factor-Tu (EF-

Tu). The bioactive epitopes reside in the conserved N-termini of flagellin and 

Ef-TU, and are termed flg22 and elf18, respectively. Exogenous application of 

flg22 and elf18 is sufficient to trigger immune responses in Arabidopsis (Felix 

et al 1999, Kunze et al. 2004). Furthermore, pre-treatment with flg22 or elf18 

renders plants more resistant to a subsequent challenge by pathogens, thus 

induces MTI (Zipfel et al. 2004, Kunze et al. 2004).  

Flg22 and elf18 are perceived by the receptor-like kinases (RLKs) FLS2 and 

EFR, respectively (Gomez et al. 2000, Zipfel et al. 2006). FLS2 and EFR are 

highly related in their module structure, as both belong to the same subclade 

of the LRR-RLK family that consists of an N-terminal LRR domain, a single 

transmembrane domain and a C-terminal kinase domain. Importantly, 

perception of these MAMPs seems to be highly specific, as known flg22- and 

elf18-induced responses are entirely dependent on FLS2 and EFR, 

respectively. Not only FLS2 but also EFR seems to be critical for overall host 

immunity, since loss of this PRR in Arabidopsis efr mutants results in 

increased susceptibility to both adapted and non-adapted strains of bacteria 

(Zipfel et al. 2006, Nekrasov et al. 2009, Saijo et al. 2009).  

 

1.6  Signaling through FLS2 and EFR 

 

1.6.1  FLS2 and EFR immune complexes 

MAMP-mediated activation of PRRs induces a series of cellular responses 

that are detectable within seconds/minutes and hours/days (Boller and Felix  
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2009, Nicaise et al. 2009). One of the first signaling events involves the LRR-

RLK BAK1 that was initially identified for its role in brassinolide signaling 

(Nam et al. 2002). FLS2 and EFR form ligand-induced complexes with BAK1 

and other closely related RLKs belonging to the SERK (SOMATIC-

EMBRYOGENESIS RECEPTOR-LIKE KINASE) family (Chinchilla et al. 2007, 

Roux et al. 2011). This complex formation is detectable within seconds after 

MAMP application, indicating the existence of pre-formed, loose complexes 

(Schulze et al .2010). Loss of BAK1 results in reduced sensitivity to flg22 and 

elf18 that is more pronounced in bak1 serk1/bkk1 double mutants (Roux et al. 

2011). These data demonstrate requirement of BAK1 for FLS2 and EFR 

signaling and indicate functional redundancy among SERK family members. 

Besides BAK1 and other SERKs, additional interactors of FLS2 and EFR 

have been identified. The membrane-localized cytoplasmic kinases 

BOTRYTIS-INDUCED KINASE1 (BIK1) and related PBLs (for PBS1-like) 

associate with FLS2 and EFR and are phosphorylated in a PRR-dependent 

manner (Lu et al. 2010, Zhang et al. 2010). Importantly, it was shown that the 

bik1 and pbs1 mutants are impaired in MAMP-responses and MTI (Lu et al. 

2010, Zhang et al. 2010). Loss of single or multiple components of these PRR 

complexes, for example in bak1 and bik1 mutants, results in impaired cell 

death control. As the deregulated cell death in these mutants depends on SA 

and shows further similarities to an HR response, it is conceivable that the 

integrity of PRR complexes is monitored by R proteins that become activated 

when parts of theses complexes are absent. Interestingly, fls2 or efr mutants 

do not show such pleiotropic phenotypes. However, given that BAK1 

regulates responses to multiple MAMPs, it might be more crucial for MTI and 

consequently guarded more stringently than individual PRRs. 

Together, it seems that FLS2, EFR and probably other PRRs as well act as 

parts of multiprotein-complexes. However, the exact composition and 

dynamic changes of these immune-complexes upon elicitation remain to be 

addressed. Also, it is an intriguing question, how pre-recognition complexes 

are assembled. 
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1.6.2  FLS2 and EFR signaling outputs 

Application of multiple MAMPs, for example flg22 and elf18 rapidly and 

transiently activates the MAPKs 3, 4 and 6. Flg22 activates at least two 

MAPK-cascades consisting of MKK4/5-MPK3/6 and MEKK1-MKK1/2-MPK4 

(Asai et al. 2002, Suarez-Rodriguez et al. 2007, Qiu et al. 2008). However, 

functional redundancy between MPK3 and 6 and embryonic lethality of the 

mpk3 mpk6 double-mutants hampered detailed characterization of their 

contribution to MAMP-responses. Generation of reactive oxidative species, 

the so-called ROS burst represents another early MAMP output. MAMP-

induced ROS spiking is mediated by the NADPH oxidase RbohD and rbohd 

mutants are slightly but significantly more susceptible to weakly virulent 

bacteria, suggesting a role of this output for MTI (Zhang et al. 2007, 

Mersmann et al. 2010). Other early MAMP outputs are Ca2+ spiking, activation 

of ion fluxes across the plasma membrane and generation of nitric oxide (NO) 

(Boller and Felix 2009). Recent work reported distinct but overlapping roles of 

MAPKs and Calcium-dependent protein kinases (CDPKs) for flg22-induced 

transcriptional reprogramming (Boudsocq et al. 2010). These finding indicate 

a high level of complexity already at an early stage of MAMP-signaling. Cell-

wall reinforcements by the β-glucan callose comprise a late response to 

MAMPs. MAMP-induced callose deposition is dependent on the callose-

synthase PMR4 (Kim et al. 2005). However, pmr4 mutants are not only 

defective in MAMP-induced callose deposition, but also show constitutively 

upregulated SA levels. However, pmr4 pad4 double-mutants that are deficient 

in SA accumulation show slightly increased susceptibility to non-adapted 

Pseudomonas syringae pv phaseolicola when compared to the respective 

single mutants (Ham et al. 2007). This indicates a role of callose deposition in 

restricting growth of this bacterium. 

Importantly, distinct MAMPs such as flg22 and elf18 induce very similar early 

outputs. For example the set of genes induced upon MAMP perception at 

early time points (30-60 minutes) is almost identical between flg22 and elf18 

(Zipfel et al. 2006). This suggests the existence of common signaling 

pathways that integrate signaling from multiple MAMP-receptors.  
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However, it remains elusive how a single PRR can activate such a diverse 

array of outputs.  

 

1.6.3  Subcellular localization and trafficking of FLS2 

It is generally predicted that most plant PRRs would localize to the plasma 

membrane as they perceive likely extracellular structures. Indeed, FLS2 was 

localized to the PM in Arabidopsis (Robatzek et al. 2006). However, upon 

perception of its ligand, FLS2 re-localizes to mobile intracellular vesicles 

(Robatzek et al. 2006). Ligand-induced receptor internalization might 

represent a signaling mechanism and/or might contribute to signaling 

attenuation. Importantly, most early PRR signaling outputs are transiently 

activated. Recently, it was shown that FLS2 is targeted for proteosome-

mediated degradation as a mechanism for signaling attenuation (Lu et al. 

2011).  

 

1.7  ER quality control for membrane proteins 

Prolonged activation of defense responses interferes with other physiological 

processes in plants and results in growth retardation, repression of abiotic 

stress responses and/or cell death (Boller and Felix 2009, Shirasu 2009, 

Yasuda et al. 2008). Therefore, a stringent control of immune receptor 

abundance/quality can be presumed. Indeed, forward-genetic screens 

revealed the requirement of cytosolic chaperones for the accumulation of 

intracellular immune receptors of the NB-LRR class (Shirasu 2009). However, 

it is unknown whether, and if so, how such quality control serves for the 

generation and function of transmembrane MAMP receptors.  

In eukaryotic cells, membrane proteins are translocated through the 

endoplasmic reticulum (ER) to their functional site. Correct folding of proteins 

is instrumental for their propeper function, thus it is not surprising that several 

folding and quality control pathways co-operate in the ER (Aneli and Sitia  
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2008). One of the best studied ER quality control (ERQC) pathways is the 

calnexin(CNX)/calreticulin (CRT) cycle that mediates correct folding of N-

glycosylated proteins (Helenius and Aebi 2004). CNX and CRT are two 

lectins that specifically interact with proteins that carry monoglucosylated 

glycans and facilitate their correct folding (Williams 2006). The pre-assembled 

glycan chain (Glc3Man9GlcNAc2) incorporating three terminal glucose 

residues is attached to nascent polypeptides by the oligosaccharyltransferase 

(OST) complex. Subsequently, ER-resident glucosidase I and II trim two 

glucose residues and produce thereby the binding site for CRTs and CNXs. 

Glucosidase I removes the outermost glucose residue, whereas glucosdase II 

that is comprised of an α and β subunit removes the second and third glucose 

residue. Removal of the last glucose residue disrupts the binding between 

client protein and the lectins CRT and CNX. Properly folded proteins are then 

released from the ER and can be transported to their functional site. 

However, proteins that still exhibit folding defects are recognized by UDP-

glucose:glycoprotein glucosyltranseferase (UGGT) that acts as a folding 

sensor in the ER. This enzyme specifically catalyzes glucosylation of glycans 

that are attached to misfolded proteins but not to native proteins (Parodi 

2000). In this way it mediates re-glucosylation of client proteins and thereby 

re-creates the binding site for CRTs and CNXs. Thus, incompletely folded 

proteins are retained in the ER by the concerted actions of UGGT and 

CRT/CNX. The action of UGGT and glucosidase II can drive cycles of binding 

to and release from CRTs and CNXs until the client proteins is correctly 

folded or eliminated by ER-associated degradation (ERAD).  

In Arabidopsis, knowledge about this branch of ERQC is much more limited. 

Several uggt alleles were identified as allele-specific suppressors of a mutant 

version of the LRR-RLK brassinosteroid receptor BRI1 (Jin et al. 2007). 

Interestingly, this aberrant BRI1-9 receptor is retained in the ER in WT plants 

due to its misfolding, but uggt mutants allow its escape from the ERQC and 

localization to the plasma membrane despite its misfolding, where the 

partially misfolded but signaling competent receptor can exert some of its 

native functions. Furthermore, it was shown that CRT3 (one of the  
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Arabidopsis calreticulin homologs) and BIP are required for ER-retention of 

BRI1-9 (Jin et al. 2009). These results provide further evidence for UGGTs 

and CRTs function in ERQC of membrane proteins. However, it remains 

questionable whether WT BRI is a client of the UGGT/CRT chaperone 

system, since uggt and crt3 show in contrast to bri a WT-like morphology.  

Also several mutants of glucosidase I and glucosidase II homologs have been 

characterized in Arabidopsis. Mutations in glucosidase I (designated knf and 

gcs1) show lethality during seed development, revealing essential function of 

N-glycan trimming for embryo development (Boisson et al. 2001). The defects 

in these glucosidase I mutants were mostly attributed to dramatically reduced 

cellulose content, resulting in aberrant anisotropic growth (Gillmor 2002). 

Interestingly, these reports claim that most cellular functions were intact in knf 

and gcs mutants, suggesting that glucosidase I function is required only for a 

limited number of client proteins. However, the client protein involved in 

cellulose synthesis remains unknown. Interestingly, a hypomorphic 

glucosidase I allele retains viability and thus provides a tool to address 

glucosidase I functions in mature plants (Furumizu et al. 2008). These knf101 

plants are slightly smaller than WT and show defects in epidermal patterning, 

resulting in increased stomata density and root hair number. Genetic analysis 

suggest the involvement of glucosidase I in the same stomata patterning 

pathway as EPIDERMAL PATTERNING FACTOR 1 (EPF1), but the exact 

client substrate has not been identified.  

 
1.8  Phytohormone signaling  
 

The phytohormones salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) 

are pivotal regulators of plant defense responses against pathogenic 

microbes (Glazebrook 2005, Pieterse et al. 2009). A cross-talk between these 

hormone signaling pathways allows the plant to fine-tune the induction of 

defense responses against different pathogens. Mainly antagonistic  
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interactions have been reported for SA and JA, whereas JA and ET often act 

synergistically (Glazebrook 2005, Pieterse et al. 2009). Although the role of  

SA in resistance against biotrophs and JA in defense against necrotrophs has 

been demonstrated in many plant-pathogen interactions, the situation is far 

more complex and plenty of exceptions to this rule exist (Glazebrook 2005, 

Pieterse et al. 2009). 

Pathogen-induced SA is mainly derived from chorismate by the isochorismate 

synthase SID2 (SA INDUCTION DEFICIENT 2) (Wildermuth et al. 2002). SA-

induced redox changes are perceived by NPR1 (NONEXPRESSOR OF 

PATHOGENESIS-RELATED GENES1) and this leads to translocation of 

NPR1 to the nucleus where it regulates the expression of a multitude of 

genes. Importantly, not all SA-induced responses are mediated by NPR1 and 

conversely, NPR1 also regulates SA-independent processes (Pieterse and 

Van Loon 2004, Dong 2004). The lipase-like proteins EDS1 (ENHANCED 

DISEASE SUSCEPTIBILITY1) and PAD4 (PHYTOALEXIN-DEFICIENT4) are 

important regulators of SA-dependent and SA-independent immune 

responses (Wiermer et al. 2005).  

SA-levels are induced by application of flg22 in Arabidopsis, and sid2 mutants 

show partial reduction of flg22-triggered immunity to Pseudomonas syringae 

(Tsuda et al. 2008). 

The bioactive JA-isoleucine conjugate is synthesized by JAR1 (JASMONATE 

RESISTANT1). Perception of JA-Ile by the F-box COI1 (CORONATINE 

INSENSTIVE1) containing E3 ubiquitine ligase complex results in the 

degradation of JAZ (JASMONATE ZIM DOMAIN) transcriptional repressors 

and thereby triggers JA responses (Chico et al. 2008).  

 

1.8.1  Ethylene signaling 

The gaseous phytohormone ethylene (ET) regulates a variety of stress 

responses and developmental processes in plants. Among others, ET is 

involved in fruit ripening, senescence, germination, cell elongation, cell fate 

determination, wound response and pathogen defense (Wang et al.2002, Van  
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Loon et al. 2006). To ensure proper control of these processes, ET 

biosynthesis and responsiveness are tightly regulated.  

ET is synthesized from methionine through several enzyme catalyzed steps 

(Wang et al. 2002). The rate-limiting step of ethylene synthesis is the 

conversion of S-adenosyl-methionine to 1-aminocyclopropane-1-carboxylic 

acid (ACC) by ACC synthase (ACS). The subsequent conversion of ACC to 

ET is mediated by ACC oxidase (ACO). Arabidopsis encodes nine 

characterized ACS isoforms that are regulated by complex transcriptional and 

post-translational mechanisms. It has been proposed that the different ACS 

isoforms are differentially regulated and thus contribute to the multitude of ET 

responses (Wang et al. 2002, Tsuchisaka and Theologis 2004). A common 

principle seems to be a low steady-state ACS level that can be rapidly 

increased by post-translational stabilization, for example through 

phosphorylation on certain residues (Wang et al. 2002, Tatsuki and Mori 

2001). Interestingly, it was demonstrated that MPK3 and 6 target and 

phosphorylate ACS6, resulting in its stabilization and fast ET generation (Liu 

et al. 2004, Yoo et al. 2008).  

ET is perceived by a small family of 5 ET-receptors that show structural 

similarity with bacterial two-component histidine kinases (Stepanova and 

Alonso 2009, Yoo et al. 2009). Genetic studies demonstrate that the 

receptors act as negative regulators of ET responses. ET binding to its 

receptor induces an inactive conformation thereof and thus allows activation 

of downstream responses. CTR1, a Raf-like protein kinase physically 

associates with the ET-receptors ETR1 and ETR2 and negatively regulates 

ethylene responses, as demonstrated by the constitutive ET response 

phenotype of ctr1. EIN2 is a positive regulator of ET signaling that acts 

genetically downstream of CTR1 (Alonso et al. 1999). Mutations in EIN2 

result in strong ET insensitivity, thus EIN2 play essential roles in most ET-

regulated processes. Nonetheless, its biochemical function is still unknown. 

EIN2 is comprised from an N-terminal domain showing similarity to NRAMP 

metal ion transporter and a C-terminal globular domain. 
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 Recent work localized EIN2 at the ER-membrane where it interacts with ET-

receptors (Bisson et al. 2009). It seems that the C-terminal domain carries the 

ET-response inducing function, as overexpression of this domain leads to 

constitutive ET-responses (Alonso et al. 1999). ET perception and signaling 

mediates stabilization and nuclear accumulation of the transcription factors 

EIN3 and EIN3-LIKE1 and further homologs (An et al. 2010). Here, 

transcription factor cascades induce the activation of ET-responsive genes 

and thus ET outputs (Solano et al. 1998).  

Ethylene generation increases in plants upon perception of pathogen attack 

and is associated with the activation of defense responses (Broekaert et al. 

2006). However, it seems that ET differentially contributes to defense against 

pathogens with different lifestyles. Generally, ET is important for resistance 

against necrotrophs, like Alternaria brassicicola and Botrytis cinerea, and has 

no effect on disease development by biotrophs (Glazebrook 2005, Van Loon 

2006). However, there seem to be exceptions from this general rule. 

ET influences the interaction of Arabidopsis with the hemibiotrophic bacteria 

Pseudomonas syringae in complex ways. When virulent Pseudomonas 

syringae pathovar tomato DC3000 (Pst DC3000) were infiltrated into the leaf 

tissues, ein2 plants showed less symptoms but supported bacteria growth to 

similar levels as wild-type plants (Bent et al. 1992). This indicated a role for 

ET in development of yellow senescence-like symptoms, but not in controlling 

bacteria proliferation. A recent report shows enhanced resistance of ein3 eil1 

and ein2 plants to Pst. DC3000 and explains this finding by constitutive 

elevation of SA levels and responses in these plants (Chen et al. 2009). In 

contrast, etr1 and ein2 plants allow enhanced growth of virulent Pst DC3000 

and weakly virulent Pst DC3000 ∆AvrPto AvrPtoB, when the bacteria were 

applied by spray inoculation (Mersmann et al. 2010, Pieterse et al. 1998). 

Furthermore, ein2 seedlings are defective in flg22-induced activation of 

several defense genes, callose deposition and accumulation of glucosinolate-

related metabolites, resulting in enhanced susceptibility to Pst DC3000 (Clay 

et al. 2009).  
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Recently, it was shown that FLS2 transcript and protein levels are strongly 

reduced in ET-pathway mutants, e.g in ein2, etr1 and ein3 eil1 (Boutrot et al. 

2010, Mersmann et al. 2010). Furthermore, binding of EIN3 to the FLS2 

promoter suggests direct ET-regulated transcriptional activation of this gene. 

These findings might explain reduced flg22-responsiveness of ET-signaling 

mutants. However, ET increases rapidly upon flg22 perception, and it remains 

elusive, whether, and if so, how this MAMP-induced ET contributes to MAMP-

signaling. 

 

 

Figure 2.  Phytohormone crosstalk during defense responses (modified from 
Pieterse et al. 2010). Negative interactions between the SA and JA pathways, and 
positive interactions between the JA and ET pathways are prevalent.  
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MTI activation by bacterial MAMPs such as flagellin involves the generation of 

SA and ET (Felix et al. 1999, Tsuda et al. 2008). Furthermore, it was shown 

that JA levels increase in response to pep13 treatment in potato (Halim et al. 

2009). Thus, SA, ET, and JA signaling can be activated during MTI (Tsuda 

and Katagiri, 2010). However, single mutations in the ET and SA pathways 

only moderately affect MTI in Arabidopsis (Zipfel et al 2004, Boutrot et al 

2010, Tsuda et al 2008). In contrast, quadruple mutants that are deficient in 

signaling mediated by SA, ET, JA and PHYTOALEXIN DEFICIENT4 (PAD4), 

show 80% reduced flg22- and elf18-triggered immunity (Tsuda et al. 2009). 

More importantly, measurement of the immunity levels in all combinatorial 

mutants indicate positive contributions of the SA, ET, JA and PAD4 pathways 

to flg22- and elf18-triggered immunity. On the other hand, numerous reports 

indicate antagonistic relationships between these phytohormone pathways 

(Glazebrook 2005). However, the underlying mechanisms that integrate these 

immune pathways for MTI activation that would often antagonize each other 

remain elusive. 
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2.  Results 
 
2.1  Receptor quality control in the endoplasmic reticulum for 
plant innate immunity 
 
 
2.1.1  MAMP perception leads to the repression of sucrose-induced 
anthocyanin accumulation in Arabidopsis seedlings 

 

Earlier studies indicate a crosstalk between MAMP perception and abiotic 

stress-induced flavonoid accumulation in plants (Lo and Nicholson, 1998; 

McLusky et al, 1999). Anthocyanins represent a major class of flavonoids that 

are induced upon sucrose stress (Solfanelli et al. 2005; Teng et al. 2005). We 

subjected Arabidopsis seedlings to sucrose stress by growing them in an MS 

medium, containing 100 mM sucrose, at which anthocyanin accumulation has 

been described to be saturated (Solfanelli et al. 2005). After 2-3 day exposure to 

the sucrose stress, anthocyanin accumulation becomes visible typically as 

purple and dark green pigmentation of cotyledons and hypocotyls (Figure 1A). 

However, simultaneous application of the bacterial MAMPs flg22 or elf18 with 

the sucrose stress represses anthocyanin accumulation (Figure 1A). This flg22 

and elf18-triggered repression of anthocyanin accumulation occurrs via the 

cognate MAMP-receptors FLS2 and EFR, respectively, as demonstrated by the 

lack of this response in the fls2 and efr mutants (Figure 1A). Our conclusions 

were largely confirmed by photometric quantification of anthocyanin contents 

(Figure 1B). Importantly, already sub-optimal MAMP doses (10 nM) led to 

significant suppression of anthocyanin  
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Figure 1. The bacterial MAMPs repress sucrose-induced anthocyanin 
accumulation. 

(A)  Arabidopsis WT (Col), fls2 and efr seedlings grown in absence (-suc) or presence 
(+suc) of sucrose and 0,5 µM flg22 or elf18. 
(B)  Anthocyanin content of seedlings grown in absence (- suc) or presence (+ suc) of 
sucrose and 0,5 µM flg22 or elf18.  
(C)  Anthocyanin content of Col seedlings grown in the presence of 100 mM sucrose 
and the indicated concentrations of flg22 or elf18. 
The image shown in Figure 1A was obtained by Dr. Yusuke Saijo. 
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accumulation, arguing against the possibility that high MAMP doses exert 

phytotoxic effects and thereby prevent anthocyanin accumulation (Figure 1C). 

Moreover, the results suggest a hierarchical relationship in which MAMP-

signaling overrides sucrose signaling irrespective their relative input levels. In 

sum, we define suppression of sucrose-induced anthocyanin accumulation as a 

characteristic MAMP signaling output that occurs in a MAMP dose-dependent 

manner and requires the earlier defined MAMP-receptors. 

 
 
2.1.2  Identification of a psl2 mutant in a genetic screen for Arabidopsis 
mutants that allow sucrose-induced anthocyanin accumulation in the 
presence of MAMPs 
 

In order to identify the molecular components of MTI, we initiated genetic 

screens for MAMP-insensitive plants in Arabidopsis. The above described 

MAMP-induced suppression of anthocyanin accumulation led to the 

development of a fast screening method, based on macroscopic inspection of 

seedling colors. We have screened > 60 000 ethylmethanesulfonate- 

mutagenized M2 seedlings for plants that are defective in this MAMP signaling 

output. This led to the identification of > 50 ‘priority in sweet life’ (psl) mutants 

that show de-repression of anthocyanin accumulation in the presence of elf18, 

but retain flg22-dependent repression, including psl2 (Figure 2A and B). All the 

psl plants identified to date do not constitutively produce anthocyanins at high 

levels (Figure 2B). We identified more than 5 complementation groups including 

novel efr alleles and non-EFR psl2 alleles. The results indicate the existence of 

separate genetic requirements between FLS2 and EFR functions. This was 

unexpected, as these PRRs are highly related in the overall module structure 

and function, and seem to activate shared signalling pathways (Zipfel et al, 

2006).  
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Figure 2. Arabidopsis non-EFR psl2 mutant is specifically impaired in EFR-
triggered immune responses 

(A)  Arabidopsis WT (gl1) and psl2-1 seedlings were grown in presence of 100 mM 
sucrose with (+ elf18) or without (- elf18) 0,5µM elf18.  
(B)  Anthocyanin content of Arabidopsis WT (gl1), psl2-1 and psl2-2 seedlings grown in 
the absence (-suc) or presence (+suc) of sucrose and 0,5 µM flg22 or elf18.  
(C)  ROS generation in leaf discs of WT, psl2-1 and efr or fls2 plants triggered by 100 
nM elf18 or flg22.  
(D)  Immunoblot analysis of MAPK activation in WT, efr, psl2-1, mpk3 and mpk6 
seedlings upon treatment with water (-), 1 µM elf18 or flg22 for the indicated times. An 
anti-activ MAPK antibody was used. Positions of molecular weight marker are indicated 
on the left.  
(E)  Callose deposition in WT, efr and psl2-1 seedlings upon treatment with water (-), 1 
µM elf18 or flg22. Shown are cotyledons after staining with Aniline blue.  
(F)  Pst DC3000 bacterial growth in leafs of 4-week-old WT, efr, psl2-1 and psl2-5 plants 
3 days after spray inoculation with bacteria at 109 cfu/ml. 	  

 

Next, we assayed psl2 plants for characteristic MAMP signaling outputs. 

Perception of elf18 and flg22 induces a rapid and transient oxidative burst, which 

is dependent on the NADPH oxidase AtRbohD (Zhang et al. 2007) in 

Arabidopsis. However, elf18-induced ROS spiking was undetectable in psl2 

plants (Figure 2C). Furthermore, psl2 seedlings showed strongly reduced 

activation of MAPK 3 and 6 in response to elf18 (Figure 2D). In order to test a 

late MAMP output, we monitored PMR4/GSL5-dependent callose deposition 

(Kim et al, 2005). Elf18-induced callose deposition was essentially non-

detectable in psl2 seedlings, as revealed by Aniline blue staining (Figure 2E). 

Thus, psl2 plants showed elf18-insensitivity in four characteristic MAMP outputs 

that are detected within minutes (such as ROS-spiking and MAPK activation) 

and hours/days (callose deposition and anthocyanin suppression), respectively. 

However, psl2 plants retain WT-like responsiveness to flg22 in all these assays 

(Figure 2A–E). This suggests that psl2 is specifically impaired in EFR mediated 

signalling upstream of the general machineries that execute those responses.  
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In order to ensure the functional significance of these observed defects in MAMP 

signalling, we have tested host immunity against phytopathogens in the psl2 

plants. Earlier studies rather suspected a role of EFR in conferring immunity to 

the virulent phytopathogenic bacterium Pseudomonas syringae pathovar tomato 

DC3000 (Pst. DC3000), as the elf18 epitope derived from these bacteria less 

efficiently induce physiological responses in Arabidopsis than E.coli derived 

elf18 (Kunze et al. 2004). However, it is not known how these epitopes are 

generated and recognized during the  

pathogen infection process, thus the responses to exogenous elf18 application 

might not mimic all aspects of EFR-recognition specificity or EFR-induced 

immunity. Indeed, it has been described that loss of EFR increases the growth of 

a less virulent strain of Pst in leaves, suggesting that EFR contributes to the 

recognition of the bacteria (Nekrasov et al. 2009). Under our conditions, the efr 

mutants reproducibly showed increased susceptibility to virulent Pst DC3000. Of 

note, we used high doses of bacteria inoculum and kept the plants under high 

humidity during the infection procedure. Thus, differences in experimental 

conditions may explain the conflicting published data (Saijo et al. 2009, 

Nekrasov et al. 2009, Haeweker et al. 2010). Consistent with the observed 

deficiency in the elf18-induced events examined, psl2 plants exhibit robust 

super- susceptibility when challenged with virulent Pst, to comparable levels to 

efr plants (Figure 2F). This supports functional requirements of PSL2 for MTI. 

Taken together, our genetic evidence identifies PSL2 as a non-receptor 

component specifically required for EFR mediated immunity. 

 

2.1.3  PSL2 is required for stable accumulation of functional EFR but not 
FLS2 
 

As psl2 plants showed vast defects in all tested responses to elf18, we 

examined possible alterations at the level of the receptor. We have generated 

specific antibodies against the C-terminal 109 amino acids of EFR and  
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Figure 3. PSL2 is required for stable accumulation of functional EFR. 

(A)  Immunoblot analysis of the microsomal membrane fraction derived from 4-week-old 
non-elicited plants with the following antibodies: anti-EFR (top panel), anti-FLS2 (middle 
panel) and anti-H+ATPase2 (AHA2) (bottom panel). Asterisks indicate cross-reacting 
bands. Positions of molecular weight markers are shown on the right.  
(B)  Analysis of EFR expression by semi-quantitative RT-PCR for the samples used in 
(A) 
(C)  In vitro chemical cross-linking of extracts from 2-week-old seedlings with the radio-
labelled elf26 or flg22 probes. Plant extracts were incubaed in the absence (-) or 
presence (+) of 10µM unlabelled competitor peptides elf18 or flg22, respectively. 
The immunoblot data in (A) was obtained by Dr. Yusuke Saijo, the expression data in 
(B) by Dr. Xunli Lu and ligand-binding data in (C) by Dr Silke Robatzek. 
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monitored the endogenous EFR protein by immunoblot analysis. An EFR-

specific band was detected in the microsomal membrane fraction, derived from 

leaves of non-elicited WT plants (Figure 3A). Its apparent size is approximately 

145 kDa which is larger than the predicted size of 113 kDa. Consistent with this 

finding, previous studies demonstrate specific binding of radiolabelled elf26 

ligand (analogous to elf18) to an approx. 150 kDa protein in the cell-free extracts 

from Arabidopsis seedlings (Kunze et al. 2004). These data indicate extensive 

post-translational modifications of the EFR protein leading to the increase of  

the apparent molecular size. Our immunoblot data revealed that the steady-state 

levels of EFR are strongly reduced in psl2 plants. However, EFR transcript levels 

are retained in psl2 like the WT plants, indicating that the mutant is impaired at a 

post-transcriptional step in the receptor biogenesis (Figure 3B). Interestingly, 

FLS2 levels are retained to WT-like levels in psl2 plants, further supporting a 

specific role of PSL2 for the EFR, but not FLS2 pathway (Figure 3A). Consistent 

with the observed decrease in EFR abundance, EFR-dependent elf26 binding, 

but not FLS2-dependent flg22 binding, is greatly diminished in the psl2 mutants 

(Figure 3C). Together, we conclude that PSL2 is required for stable 

accumulation of functional EFR. 

 

 

2.1.4  Identification of PSL2 reveals an essential function of UGGT for 
stable accumulation of EFR 
 

In order to identify the PSL2 gene, psl2-1 (in the Col-5 background carrying gl1 

mutation), was crossed to Landsberg erecta (Ler-0). The F1 progeny derived 

from this cross showed WT-like elf18 responsiveness, indicating a monogenic 

recessive nature of the psl2-1 mutation. This was further confirmed by analyzing 

the F2 generation that segregated in a 3:1 ratio between WT-like and psl2-like 

individuals. Positional cloning indicated the genomic localization of PSL2 in a 48 

kb interval at the lower arm of chromosome 1 (Figure 4A). Sequence analysis  
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Figure 4. PSL2 encodes for an Arabidopsis UGGT 

(A)  Genetic mapping of PSL2. PSL2 was mapped to a 48 kb region at the bottom of 
chromosome 1 between markers NT01 and XL20. Molecular markers and numbers of 
recombination for each marker are shown above and below the line, respectively. The 
PSL2 target interval is indicated. The position of At1g71220 that encodes for UGGT is 
indicated. 
(B)  Schematic representation of the structure of UGGT. UGGT is characterized by an 
N-terminal signal peptide, C-terminal ER retention signal, two Leu Zipper motifs and a 
catalytic domain. Positions of changes in aa in the isolated alleles for psl2 mutants are 
shown at the bottom. 
(C)  Immunoblot analysis of total protein extracts from non-elicited 2-week-old seedlings 

with anti-UGGT antibodies. A cross-reacting band is indicated with an asterisk. 
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identified a single-nucleotide mutation within At1g71220, resulting in a predicted 

amino acid exchange from aspartic acid to asparagine.  We confirmed that PSL2 

identifies At1g71220 through recovery of multiple psl2 alleles among previously 

uncharacterized psl mutants, that all show single-nucleotide mutations in 

At1g71220 (Figure 4B). 

 

At1g71220 encodes a protein of 1613 amino acids, with an N-terminal signal 

peptide that is required for the entry to the secretory pathway, and the C-terminal 

ER-retention signal, indicative of an ER luminal protein (Figure 4B). The protein 

shows sequence homology with UDP-glucose:glycoprotein glucosyltransferase 

(UGGT) from yeast,  

Drosophila and several vertebrates. Like these UGGTs, the Arabidopsis UGGT 

consists from a large N-terminal domain that shows less sequence conservation 

and is thought to recognize folding defects of client proteins, and a highly 

conserved C-terminal domain carrying the catalytic site (Parodi et al. 2000).  

 

In the Arabidopsis genome only one copy of the gene encoding UGGT is 

annotated. However, psl2 plants show no obvious effects on plant growth and 

development under our growth conditions, consistent with the earlier described 

uggt alleles in Arabidopsis (Jin et al. 2007). This is in sharp contrast to the uggt 

knockout mice that are embryonically lethal, which hampers further in-depth 

studies in a whole organism context (Anelli and Sitia, 2008). 
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Table 1. Summary of putative ps2 alleles 

A list of isolated psl mutants that show an SNP in the UGGT gene is shown, including 

the predicted effects on the protein sequence. 

allele	  name	  
	  

predicted	  effects	  on	  
UGGT	  

psl2-‐1	   D1497N	  
psl2-‐2	   E306K	  
psl2-‐3	   R1409K	  

W1443stop	  
psl2-‐4	   W1443stop	  
psl2-‐5	   truncated	  protein	  of	  

ca	  330aa	  
psl2-‐6	   G199E	  
psl2-‐7	   G531E	  
psl2-‐8	   Q693stop	  
psl2-‐9	   W1381stop	  

	  

 
 
2.1.5  Interallelic complementation between psl2 alleles 
 

Our screen for elf18 hyposensitive plants identified nine psl mutants that show 

single-nucleotide mutations in the UGGT gene (Fig 4, Table 1). The psl2-1 

mutation occurs at an aspartic acid in the putative catalytic domain that is 

conserved in all known UGGT homologs. Both psl2-3 and psl2-4 mutations 

affect the C-terminal part as well. The psl2-5 mutation resides in the 6th splice 

acceptor site and is predicted to induce a frame-shift, thereby producing a 

truncated protein of only 330 amino acids. The psl2-2 mutation occurs in the N-

terminal region, substituting a less conserved glutamic acid with lysine.  

 

Next, UGGT steady-state accumulation was monitored in some of the psl2 

mutants by immunoblot analysis. Total protein extracts from non-elicited 

seedlings were probed with anti-UGGT antibodies raised against a recombinant  
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UGGT fragment (aa 325 to 882). Immunoblot data indicate that psl2-1 and psl2-

2 accumulate UGGT at the WT-like levels, whereas full-length UGGT was not  

 

detected in psl2-3 and psl2-4 seedling extracts (Figure 4C). These data indicate 

that the single amino acid changes in psl2-1 and psl2-2 do not affect steady-

state accumulation but another feature of UGGT function. It is interesting to note 

that previous work on mammalian UGGTs defined the aspartic acid altered in 

psl2-1 as an essential residue for the enzymatic activity (Tessier et al. 2000). 

This suggests that PSL2-1 has a defect in its enzymatic activity. 

 

Interestingly, a cross between psl2-1 and psl2-2 yielded F1 plants that show 

complementation of the psl phenotype, as typically seen in those between 

recessive mutations in distinct loci. However, an independent map-based cloning 

attempt located the psl2-2 mutation to the same chromosomal region as psl2-1, 

and subsequent DNA sequencing analysis revealed a SNP in the PSL2 locus in 

the mutant (g1754a and g1756a). This indicates that it defines another psl2 

allele. Taken together, these data point to interallelic complementation between 

psl2-1 and psl2-2. Importantly, the psl2-1 and psl2-2 mutations locate in the C-

terminal and N-terminal domains, respectively, and allow WT-like accumulation 

of UGGT (Fig.4C).  

Following this interesting finding, we extensively tested a series of the F1 

progenies generated by crossing between different psl2 alleles for their elf18 

responsiveness (summarized in Table 2). F1 plants derived from at least two 

independent crosses were subjected to elf18-induced anthocyanin repression 

and ROS spiking assays. Interestingly, the F1 hybrids between psl2-2 and psl2-4 

also restore elf18-responsiveness in both assays (Figure 5A and B). However, 

progenies from crosses between psl2-1 and the putative null allele psl2-5 

retained the elf18-insensitive phenotype of the parental lines. Similarly, F1 

seedlings derived from crosses of psl2-1 with psl2-3 showed elf18 insensitivity. 

The data indicate that psl2 mutants in the C-terminal and N-terminal domain of  
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Figure 5. Inter-allelic complementation between psl2 alleles 

(A)  psl2 mutant alleles were crossed with each other in different combinations and 
seedlings of parents and progeny were grown in the presence 100 mM sucrose and 0,5 
µM elf18. Shown are representative seedlings for each genotype. 
(B)  ROS generation triggered with 100 nM in leaf discs of the depicted plants at 100 nM 
elf18. 
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UGGT could complement each other, whereas mutants carrying a putative null 

allele or those carrying a point substitution in the same domains are not able to 

show such inter-allelic complementation of the psl2 phenotype. Interestingly,  

combining psl2-2 and psl2-3 alleles lead to complementation of a subset of 

elf18-triggered outputs. Their F1 plants restored WT-like ROS spiking in 

response to elf18, whereas they remain to be impaired in anthocyanin 

repression. Such uncoupling of early ROS spiking and late-phase anthocyanin 

suppression has been observed in the EFR pathway in several non-UGGT psl 

plants (Lu et al. 2009). 

 

 
Table 2. Summary of psl2 allelic crosses 
(+) indicates WT-like response, (-) indicates psl2-like response. 

F1	  plants	   anthocyanin	  
suppression	  

ROS	  spiking	  

psl2-‐1	  x	  psl2-‐2	   +	   +	  
psl2-‐2	  x	  psl2-‐4	   +	   +	  
psl2-‐2	  x	  psl2-‐3	   -‐	   +	  
psl2-‐1	  x	  psl2-‐5	   -‐	   -‐	  
psl2-‐1	  x	  psl2-‐3	   -‐	   -‐	  
psl2-‐1	  x	  psl2-‐6	   -‐	   -‐	  
psl2-‐3	  x	  psl2-‐6	   -‐	   -‐	  
psl2-‐4	  x	  psl2-‐6	   -‐	   -‐	  

	  

 

 
2.1.6  PSL1/CRT3 and PSL2/UGGT act in concert for EFR function 

 

The psl1 and psl2 mutants were identified in our genetic screen for elf18 

insensitive plants. Map-based cloning revealed that PSL1 encodes one of the 

three calreticulins (CRTs) in Arabidopsis, designated CRT3 (Saijo et al. 2009). In 

yeast and animal cells it has been well documented that UGGT and CRT work in 

concert as part of the ERQC machinery (Anelli and Sitia 2008). In order to verify  
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functional interactions between UGGT and CRT3, we analyzed a series of psl1 

psl2 double mutants. In contrast to psl2 alleles that were fully insensitive to elf18 

in all tested assays, weak psl1 alleles were partially and differentially impaired in  

elf18-induced responses (Saijo et al. 2009). For example, psl1-3 retains ROS 

spiking and MAPK activation to WT-like levels. However, this residual elf18 

responsiveness is fully abolished in the psl2-1 psl1-3 double mutants (not 

shown). Likewise, we could not detect increased de-repression of anthocyanin 

levels in the psl1-4 psl2-1 double mutants that combine two severely 

dysfunctional alleles (Figure 6). These data support a model in which UGGT and 

CRT3 work in concert for EFR function, presumably through the generation of 

functional EFR. 

 

 

 
Figure 6.  psl1 psl2 double mutants show no additive effects in anthocyanin 
accumulation as compared to the parental lines. 

Anthocyanin content of WT (Col), psl1-4, psl2-1 and psl1-4 psl2-1 seedlings, when 
grown in absence (-suc) or presence (+suc) of 100 mM sucrose and the indicated 
concentrations of flg22 or elf18. 
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2.2  psl25 plants show varied defects in EFR signaling 
outputs and carry a mutation in ER Glucosidase I 
 

 
2.2.1  Identification of psl25 mutants in a forward-genetic screen for 
Arabidopsis elf18-insensitive mutants 
 

We identified the psl25 mutant in the above described screens for MAMP-

insensitive plants. psl25 seedlings show strongly de-repressed anthocyanin 

accumulation in the presence of elf18, whereas flg22-mediated anthocyanin 

suppression is only slightly affected (Figure 7 A and B).  

 

We noticed that psl25 seedlings hyper-accumulate anthocyanins in response to 

exogenous sucrose (Figure 7B). This was not observed in psl2 and previously 

described psl mutants (Saijo et al. 2009, Lu et al. 2009). Furthermore, psl25 

seedlings showed several morphological alterations when compared to WT 

seedlings. Especially, the root growth of psl25 seedlings was strongly inhibited in 

the presence of high sucrose concentrations in the absence of MAMP 

application (Figure 7A). When grown on MS media containing lower 

concentrations of sucrose (25 mM), the difference between WT and psl25 roots 

were much less pronounced (data not shown). Root growth inhibition in psl25 

plants was independent of MAMP treatment (Figure 7A). Importantly, the short 

root phenotype and elf18-insensitivity co-segregated in F2 progenies from a 

cross between psl25 and Landsberg erecta (Ler) plants, indicating that the same 

mutation is responsible for both phenotypes. 
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Figure 7.  psl25 seedlings show de-repressed anthocyanin accumulation in the 
presence of elf18. 

(A)  Arabidopsis WT (gl1) and psl25 seedlings were grown in the absence (-Suc) or 
presence of 100 mM sucrose (+Suc) and 0,5 µM flg22 or elf18. 
(B)  Anthocyanin content of seedlings treated as in (A). 
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2.2.2  psl25 carries a mutation in Arabidopsis GLUCOSIDASE I 
 

To identify the PSL25 gene by map-based cloning, a mapping population was 

generated by crossing psl25 (Col background) with Ler plants. The F2 progenies 

segregated in an approximate 3:1 ratio for the WT:psl phenotype, indicating the 

monogenetic recessive nature of the mutation. Low-resolution mapping was 

conducted using a previously described set of SSLP markers (Lukowicz et al. 

2000). The psl25 phenotype co-segregated with the Col-polymorphism of a 

SSLP marker on the lower arm of chromosome 1. Further analysis of the F2 

plants showing a recombination event in this genomic region pointed to a 1500 

kb interval as genomic location for PSL25 (Figure 8A). This region contains a 

gene encoding the only predicted Arabidopsis homolog of eukaryotic ER-

resident glucosidase I (G I). Since several previously characterized psl-mutants 

were identified as components of the ER-resident protein quality control 

machinery, we presumed that the G I gene would identify PSL25. Sequence 

analysis of the G I locus in psl25 plants revealed a point-mutation resulting in an 

amino acid substitution (glycine to glutamic acid). 

 
 
2.2.3  PSL25 is required for generation of functional EFR 

 

In order to analyze possible alterations at the level of the receptor, we tested 

EFR ligand binding activity in psl25 and WT seedlings. Incubation of plant 

extracts with radiolabelled elf26 (equivalent to elf18) revealed strongly reduced 

ligand binding activity in psl25 plants (Figure 9). These data indicate that EFR 

generation or folding is impaired in psl25 plants.  
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Figure 8. Genetic mapping of PSL25.  

(A)  PSL25 was mapped to a 1500 kb region at the bottom of chromosome 1 between 
the markers F5 and F24. Molecular markers and numbers of recombination for each 
marker are shown above and below the line, respectively. The position of At1g67490 
that encodes for GLUCOSIDASE I is indicated. 
(B)  Schematic representation of the structure of GLUCOSIDASE I, characterized by an 
N-terminal signal peptide, a single transmembrane domain and a predicted catalytic 
domain is shown. The position of changes in aa in psl25 mutatnts is shown.  

 

 

 

 

 

 

 

 

 



 Results 
	  

39 
	  

 

 
 

 

Figure 9. PSL25 is required for ligand-binding activity of EFR. 

In vitro chemical cross-linking of extracts from 2-week-old seedlings with the radio-
labeled elf26 probe in the absence (-) or presence (+) of 10 µM unlabeled competitor 
peptide elf18.  

 
 
2.2.4  EFR outputs are differentially impaired in psl25 plants 

 

Next, we tested characteristic MAMP signaling outputs in psl25 plants. ROS 

spiking in response to elf18 was undetectable in pls25 leaves, whereas flg22-

triggered ROS spiking was not significantly impaired (Figure 10B). Interestingly, 

psl25 seedlings showed nearly WT-like activation of MPK3 and 6 upon elf18 and 

flg22 perception (Figure 10A). Thus, MAPK activation can occur in the absence 

of ROS spiking in the EFR pathway. Conversely, nearly WT-like MAPK-

activation is not sufficient to trigger ROS spiking in psl25 plants. These results 

indicate that EFR triggers MAPK activation and ROS spiking through separate 

signaling pathways.  
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In order to verify the functional significance of the observed defects in EFR 

signaling outputs, we challenged psl25 plants with virulent Pseudomonas 

syringae DC3000. Consistently with previous data, efr plants showed higher 

susceptibility to this pathogen under our conditions in which we use a high 

dosage of the bacteria for spray inoculation and keep the plants under high 

humidity throughout the infection procedure. Interestingly, psl25 were also 

hyper-susceptible to Pst DC3000, to a slightly higher level than efr (Figure 10D). 

This implies that G I activity is required for an EFR-independent function of 

immune branch as well. 
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Figure 10. psl25 plants are impaired in a subset of EFR-triggered responses. 

(A)  Immunoblot analysis of MAPK activation in WT (gl1), psl25 and efr seedlings upon 
treatment with water (-) or 1 µM elf18 for the indicated times. An anti-active MAPK 
antibody was used. Positions of molecular weight markers are indicated on the left. 
(B)  ROS generation in leaf discs of WT (gl1), psl25, efr and fls2 plants triggered by 100 
nM elf18 or flg22. 
(C)  Callose deposition in cotyledons of WT (gl1), psl25, efr and fls2 seedlings triggered 
by water (-), 1 µM elf18 or flg22.  
(D)  Pst DC3000 bacterial growth in leafs of 4-week-old WT (gl1), efr and psl25 plants 3 
days after spray inoculation with bacteria 109 cfu/ml.  
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2.3  Ethylene signaling regulates pre- and post-
recognition steps in MAMP-triggered immunity 
 

2.3.1  Isolation of an Arabidopsis psl36 mutant that is impaired in 
responses to elf18 and flg22 

As described in chapter 1, our forward-genetic screen has led to the 

identification of a collection of priority in sweet life (psl) mutants that de-repress 

anthocyanin accumulation in the presence of elf18, retain WT-like 

responsiveness to flg22 (Saijo et al. 2009, Lu et al. 2009). We initially isolated 

psl36 mutants as an elf18 hyposensitive psl mutant. In the presence of low 

doses of elf18, psl36 seedlings show moderate de-repression of anthocyanin 

accumulation (Figure 11B and C). Interestingly, psl36 plants show more 

pronounced anthocyanin de-repression in the presence of flg22 (Figure 11B). 

However, when treated with as high as 1 µM of flg22, psl36 seedlings show a 

detectable reduction of anthocyanin content, indicating residual flg22 

responsiveness retained in the mutant ( Figure 11D). Of the psl mutants 

identified to date, the psl36 allele is unique for the hyposensitivity to both flg22 

and elf18.  

 

2.3.2  Both FLS2- and EFR-triggered outputs are altered in psl36 plants 

We next tested whether psl36 plants are altered in different FLS2- and EFR-

triggered signalling outputs.  ROS spiking in response to flg22 and elf18 is 

reduced, albeit detectable in psl36 plants (Figure 12A). In contrast, psl36 plants 

retain WT-like activation of the MAP-kinases MPK3 and MPK6 in response to  
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Figure 11.  psl 36 seedlings are impaired in flg22- and elf18-triggered anthocyanin 
suppression. 

(A)  WT (gl1) or psl36 seedlings grown in the absence (-Suc) or presence of 100 mM 
sucrose (+Suc) without or with 50 nM flg22 (+flg22) or 50 nM elf18 (+elf18).  
(B)  Anthocyanin content of WT (gl1), psl36 and fls2 seedlings grown as described in 
(A) for 2d.  
(C)  Anthocyanin content of WT (gl1) and psl36 seedlings grown in the absence (-Suc) 
or presence of 100 mM sucrose (+Suc) without or with the indicated concentrations of 
elf18 (+Suc +elf18).  
(D)  Anthocyanin content of WT (gl1) and psl36 seedlings grown in the absence (-Suc) 
or presence of 100 mM sucrose (+Suc) without or with the indicated concentrations of 
elf18 (+Suc +elf18).  
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flg22 and elf18 (Figure 12B). Furthermore, both flg22- and elf18-triggered 

callose deposition is reduced in psl36 seedlings (Figure 12C). Together, psl36 

plants are impaired in early ROS spiking and late callose deposition upon both 

flg22 and elf18 application, despite WT-like MAPK-activation. This suggests that 

a role of PSL36 is prominent for the former two outputs as well as anthocyanin 

repression, but is dispensable for MAPK activation in both PRR pathways. Our 

data also point to a separation of signalling pathways emanating from FLS2 to 

these outputs, in good accordance with our earlier described uncoupling in the 

EFR pathway (Saijo et al. 2009, Lu et al. 2009).  

To test possible effects of the observed alterations in MAMP-signalling on plant 

immunity, we challenged psl36 plants with the virulent bacterium Pseudomonas 

syringae pv tomato (Pst) DC3000 in a spray inoculation assay. Consistent with 

the above defects in PRR-triggered immune responses, psl36 plants allow 

enhanced growth of the bacteria (Figure 12D). 

 

2.3.4  Ethylene perception and signalling is required for MAMP-triggered 
suppression of anthocyanin accumulation 

We identified the PSL36 gene by map-based cloning. Our mapping positioned 

the PSL36 locus within 1.2 Mb in the upper arm of chromosome 5 (Figure 13A). 

Among the loci in this chromosomal region, we focused on EIN2 that encodes a 

major regulator of responses to the phytohormone ethylene (ET), since a role of 

ET has been described for FLS2 function (Boutrot et al. 2010, Mersmann et al. 

2010). Indeed, our sequencing analysis of the EIN2 locus found a point 

substitution (g3915a; Figure 13A) in the EIN2 ORF sequence in the psl36 

mutant. This mutation causes a precocious stop-codon, thereby presumably 

resulting in a truncation of the EIN2 protein (Figure 13B).  
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Figure 12.  psl 36 plants show altered responses to both flg22 and elf18 and allow 
enhanced growth of virulent Pseudomonas syringae pv tomato DC3000. 

(A)  ROS spiking triggered in leaf disks of WT (gl1), psl36, efr and fls2 plants treated 
with 100 nM flg22 or 100 nM elf18.  
(B)  Immunoblot analysis of MAPK activation in WT (gl1), psl36, fls2 and efr seedlings 
upon application of water (-), 1 µM flg22 or elf18 for the indicated times. An anti-active 
MAPK antibody was used. Positions of MPK6 and MPK3 are indicated. A cross-reacting 
band is indicated with an asterisk and serves as loading control. 
(C)  Callose deposition in WT (gl1) and psl36 seedlings treated with water (-), 1 µM 
flg22 or 1 µM elf18 for 16h.  
(D)  Pst DC3000 bacterial growth in leafs of 4-week-old WT (Col and gl1), efr and psl36 
plants 4 days after spray inoculation with bacteria at 109 cfu/ml. 
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We then verified co-segregation of the mutation in the EIN2 gene with the defect 

in flg22-triggered anthocyanin suppression in the F2 population derived from 

crossing between psl36 and Col-0 plants (Table 3). These results indicate that 

PSL36 identifies EIN2.  

In the presence of 1-aminocyclopropane-1-carboxylate (ACC), a precursor of 

ethylene, WT seedlings show a characteristic ET-induced morphological 

response, called the triple response (Alonso et al. 1999). We found that psl36 

seedlings are insensitive to ACC application as well as ein2-1 plants (Figure 

13C). This verifies that the mutation identified in the EIN2 locus of psl36 plants 

defines a loss-of-function allele of EIN2. 

We verified that ein2-1, carrying a stop codon at aa 590 in the EIN2 protein, also 

shows the aforementioned psl36-like anthocyanin de-repression phenotype (Fig 

14A). We thus conclude that PSL36 identifies EIN2. 

Next, to asses a role of ET in the EFR and FLS2 pathways, we assayed earlier 

described ET perception and signalling mutants for elf18- and flg22-triggered 

anthocyanin-repression. We found that etr1-1, a dominant-negative ET-receptor 

mutant allele shows de-repressed anthocyanin accumulation in the presence of 

flg22 (Figure 13D). In contrast, ein3 mutants that affect an important TF in ET-

signalling show no clear discernable effects in this flg22 output, probably due to 

functional redundancy with EIN3-LIKE (EIL) proteins, as reported for many ET-

responses (Chao et al. 1997). Together, these data define ET-signalling as an 

essential component for flg22-triggered suppression of sucrose-induced 

anthocyanin accumulation, consistent with earlier studies describing a role of ET 

in the FLS2 pathway (Clay et al. 2009, Boutrot et al. 2010, Mersmann et al. 

2010). 
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Figure 13.  Identification of PSL36 as a novel EIN2 allele. 

(A)  Genetic mapping of PSL36. The PSL36 locus was mapped between markers N501 
and N505 at the top of chromosome 5. Sequence analysis revealed a point mutation 
(g3915a) in the 6th exon of the EIN2 gene.  
(B)  Schematic description of the structure of the EIN2 protein (1294 aa residues). The 
predicted 12 transmembrane helices are indicated by dark boxes. Positions of changes 
in aa in the ein2-1 and psl36 alleles are shown at the bottom.  
(C)  Etiolated WT, psl36 and ein2-1 seedlings grown in the presence or absence of 10 
µM ACC (1-aminocyclopropane-1- carboxylate) for 4 days. 
(D)  WT (Col), ein2-1, etr1-1 and ein3-1 seedlings grown in the absence (-) or presence 
(+) of 100 mM sucrose and 0,5 µM flg22 or elf18. 
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Table 3. Co-segregation test of the psl phenotype and the corresponding mutant 
genotype in F2 plants of the psl36 x Col cross 

    Genotype  

Cross Phenotype 
No. of plants 

tested 
+/+ +/- -/- 

psl36 x Col-0 psl 30 0 0 30 

 WT 32 18 14 0 

 

 

2.3.5  EIN2 is required for FLS2 transcript accumulation 

The observed alterations in flg22 responses prompted us to examine potential 

changes in FLS2 protein levels in ein2 plants. Immunoblot analysis of total 

protein extracts derived from non-elicited psl36 and ein2-1 plants revealed a 

great decrease in FLS2 accumulation (Figure 14A). In accordance with reduced 

FLS2 levels, also FLS2 transcripts accumulated to much lesser degree in ein2 

seedlings (Figure 14B). These results are in good agreement with earlier 

findings of a role of ethylene signalling for FLS2 expression (Boutrot et al. 2010, 

Mersmann et al. 2010).  

 

2.3.6  EFR signalling is impaired in ein2 alleles despite WT-like EFR 
accumulation 

Besides altered flg22-responsiveness, we observed pronounced defects in EFR 

outputs in ein2-1 and psl36 plants (Figure 11, 12 and 18). Thus, we examined if 

ET signalling is also required for EFR transcript/protein accumulation as 

described for FLS2. Interestingly, both EFR transcript and protein levels are not 

significantly altered in ein2-1 and psl36 plants (Figure 15A and B). These data  
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point to a role of ET in post-recognition signalling by EFR. Consistent with the 

differential regulation of the two PRR genes by ET, the FLS2 promoter is 

predicted to contain 9 potential EIN3/EIL1 binding sites, and indeed has been 

shown to be bound by EIN3 (Boutrot et al. 2010). On the other hand, only two 

such motifs are present in the EFR promoter. This might explain the differential 

contribution of ET for transcriptional control of the two PRR genes. 

 

 

Figure 14.  FLS2 protein and transcript levels are strongly reduced in ein2 plants. 

(A)  Immunoblot analysis of total protein extracts from 2-week-old non-elicited WT (Col-
0, gl1), ein2-1, psl36 and fls2 seedlings with anti-FLS2 antibodies. Non-specific bands 
(*) were used as loading controls. Positions of molecular weight markers are indicated 
on the right. Immunoblot data were obtained in collaboration with Dr. Kazue Kanehara. 
(B)  Quantitative real-time PCR analysis for FLS2 expression in 12-days-old non-elicited 
WT (Col-0, gl1), ein2-1 and psl36 seedlings. ACTIN2 gene was used for normalization.  
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Figure 15.  EFR protein and transcript levels are WT-like in ein2 plants. 

(A)  Imunoblot analysis of total protein extracts from 2-week-old non-elicited WT (Col-0, 
gl1), ein2-1, psl36 and efr plants with anti-EFR antibodies. A Coomassie blue-stained 
blot is presented as loading control. Positions of molecular weight markers are indicated 
on the right. Immunoblot data were obtained in collaboration with Dr. Kazue Kanehara. 
(B)  Semi-quantitative RT-PCR analysis for EFR expression in 12-days-old WT (Col-0), 
ein2-1 and efr seedlings, treated with water, 1 µM elf18 or 1 µM flg22 for 24 hours. The 
ACTIN2 gene was used as control for equal loading. 
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2.3.7  Genetic requirements for MAMP-triggered anthocyanin suppression 

Our finding that ein2 seedlings de-repress anthocyanin accumulation in the 

presence of flg22 and elf18 prompted us to test the involvement of other defense 

components in this MAMP response. Single mutants interfering with the JA (coi1 

and jar1) and SA (sid2, eds5, pad4, npr1, NahG) pathways, as well as two weak 

mutants of the ET-pathway did not show clear discernable effects on flg22- or 

elf18 mediated suppression of anthocyanin accumulation (Figure 16A). We 

obtain the same result with the eds1 and ndr1 seedlings. Rar1 sgt1 double 

mutants show slightly enhanced anthocyanin levels in the presence of both 

MAMPs. 

The dde2 ein2 pad4 sid2 quadruple mutants are defective in JA, ET, SA and 

PAD4 signalling sectors (Tsuda et al. 2009). We monitored anthocyanin levels in 

the quadruple and the depicted triple mutant combinations in the presence of 

flg22 or elf18. The quadruple mutant and all triple mutants carrying the ein2 

mutation were defective in flg22-induced anthocyanin suppression, whereas 

EIN2 is sufficient to restore WT-like flg22-responsiveness in the dde2 pad4 sid2 

triple mutants in this assay (Figure 16B). At the concentrations of as high as 1 

µM elf18, the quadruple and all triple mutants show WT-like anthocyanin 

suppression, demonstrating that a high dose of elf18 overcomes the 

aforementioned EIN2 requirement for EFR (Figure 16B). Thus we conclude that 

of the four components tested EIN2 predominantly contributes to FLS2-triggered 

anthocyanin suppression, but that all the four components tested are 

dispensable for EFR-triggered anthocyanin suppression in the presence of high 

doses of the ligand. This points to the existence of a fifth element that 

compensates the loss of the above four branches in the EFR pathway, of which 

the engagement requires high doses of elf18. 
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Figure 16.  Genetic requirements for MAMP-triggered suppression of anthocyanin 
accumulation. 

(A)  Anthocyanin content of WT (Col), ein1, ein2, ein4, coi1, jar1, eds5, pad4, NahG, 
sid2, rar1 sgt1b, ndr1, WT (Ler) and eds1 seedlings grown in absence (-suc) or 
presence (+suc) of 100 mM sucrose and 0,5 µM flg22 or 0,5 µM elf18. 
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(B)  Anthocyanin content of the following seedlings: Wt (Col), efr, ein2, dep = dde2 ein2 
pad4, eps = ein2 pad4 sid2, des = dde2 ein2 sid2, dps = dde2 pad4 sid2, quad = dde2 
ein2 pad4 sid2 grown in the presence of 100 mM sucrose (+suc) and 1 µM flg22 (+suc 
+flg22) or 1 µM elf18 (+suc +elf18). These data were obtained by Dr. Kazue Kanehara. 
(C)  Immunoblot analysis of total protein extracts from 2-week-old non-elicited seedlings 
with anti-FLS2 antibodies. A non-specific band (*) is shown as loading control. Positions 
of molecular weight markers are indicated on the right. These data were obtained by Dr. 
Kazue Kanehara. 
 

Previous work revealed ET-mediated regulation of FLS2 expression and 

corroborated a close link between reduced FLS2 levels and reduced flg22 

responsiveness in ET-signalling mutants. Thus, we determined FLS2 steady-

state protein levels in non-elicited seedlings by immunoblot analysis. Consistent 

with the flg22 insensitive phenotype, FLS2 levels were strongly reduced in all 

lines carrying the ein2 mutation, but WT-like in the dde2 pad4 sid2 triple mutants 

(Figure 16C). Thus, ET predominantly serves to maintain FLS2 levels 

independently of SA, JA and PAD4 functions, consistent with the earlier 

described role of EIN3 in transcriptional regulation of the FLS2 gene via direct 

binding to the FLS2 promoter (Boutrot et al. 2010). Furthermore, these data 

suggest that a reduction in FLS2 steady-state levels causes anthocyanin de-

repression in ein2 mutants, as suspected in earlier studies (Boutrot et al. 2010).  

In order to test this idea, we generated ein2 plants that express an FLS2-fusion 

protein with C-terminal tag under the control of the constitutively active CaMV 

35S-promoter, which would be active in an EIN2 independent manner. It was 

previously shown that C-terminal GFP fusions to FLS2 retain functionality 

(Robatzek et al. 2006). Interestingly, all 12 independent transgenic lines tested 

allowed flg22-mediated anthocyanin repression, thereby demonstrating that the 

CaMV 35S promoter-driven FLS2 expression overcomes the aforementioned 

requirement for an intact ET-signalling for FLS2 expression (Figure 17, shown 

are representative seedlings from two independent transgenic lines). This  
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strongly suggests that a major contribution of ET to FLS2-triggered anthocyanin 

suppression occurs at the level of FLS2 transcription. 

 

 

Figure 17.  Constitutive expression of FLS2 restores flg22-responsiveness in ein2 
plants. 

Representative images from WT, ein2-1 and two ein2-1 seedlings carrying the 
35S::FLS2-mCHERRY transgene are shown. Seedlings were grown in the presence of 
100 mM sucrose and 0,5 µM flg22. The two shown ein2-1/35S::FLS2-mCHERRY 
transgenic seedlings are derived from two independent transformation event. Analysis 
of twelve independent transgenic lines led to the same conclusion. The experiment was 
repeated twice. 

 

2.3.8  Flg22- and elf18-induced transcriptional reprogramming of defense-
related genes is diminished in ein2 plants 

MAMP perception triggers massive transcriptome reprogramming that is thought 

to contribute to the host plant immunity against potentially infectious microbes. 

Our earlier studies point to the importance of sustained rather than initial or 

transient transcriptional reprogramming as a critical step for robust MTI 

activation (Lu et al. 2009). Thus, we tested if ein2 plants show alterations in 

defense gene expression in response to these MAMPs. ERF1 is an early ET 

responsive gene encoding an AP2-domain containing transcription factor that 

regulates many ET-responses (Solano et al. 1998). MYB51 is a transcription 

factor that has been shown to regulate many glucosinolate biosynthesis-related 

genes (Gigolashvili et al. 2007). Both genes are rapidly upregulated by elf18  
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Figure 18.  Elf18-induced activation of defense-related genes is diminished in ein2 
seedlings. 

(A)  ERF1 and MYB51 expression in 2-week-old Col and ein2 seedlings upon treatment 
with water (mock) or 1 µM elf18 for 2h. Gene expression was measured by quantitative 
RT-PCR (qPCR) analysis, normalized to At4g26410 (reference gene) expression and 
plotted relative to mock-treated Col expression level. A representative data set with 
mean +/- SD of three experimental replicates is shown. We obtained a similar 
conclusion in two independent experiments. 
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(B)  PR1, PR2 and FRK1 expression in 2-week-old Col and ein2 seedlings upon 
treatment with water (mock) or 1 µM elf18 for 24h. Transcript level was measured by 
qPCR and analyzed as in (A). The experiment was repeated at least three times, with 
similar results. 
(C)  Expression of FRK1 and PROPEP2 over time in 2-week-old Col and ein2 seedlings 
upon treatment with 1 µM elf18. Gene expression was measured by qPCR and 
analyzed as in (A). The expression levels are plotted relative to Col at 0h. The 
experiment was repeated twice, with similar results. 

 

treatment in WT plants. However, ein2 seedlings are strongly impaired in this 

elf18-response (Figure 18A). This indicates the requirement of EIN2 and likely 

an intact ET-signaling for elf18-triggered induction of these genes.  

As mentioned above, our recent findings suggest that sustained activation of 

defense-related genes represents a critical step for effective MTI (Lu et al. 

2009). We measured transcript accumulation of three well characterized 

defense-marker genes, PR1, PR2 and FRK1, at 24 hours after MAMP treatment. 

Remarkably, ein2 plants showed significantly reduced PR1, PR2 and FRK1 

transcript levels as compared to WT (Figure 18B). In order to test possible 

involvement of EIN2 in early and late-phase activation of defense genes, we 

traced their activation kinetics over time upon MAMP application. PROPEP2 

encodes a putative precursor for an endogenous elicitor that is activated upon 

MAMP-treatment. WT and ein2 plants were similar in elf18-induced activation of 

PROPEP2 and FRK1 at the early time points tested. However, sustained 

activation of these genes was impaired in ein2 plants (Figure 18C). These data 

indicate a role for EIN2 (and thus ET signalling) in initial and sustained activation 

of the tested defense-related genes.  
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Next we compared between elf18- and flg22-triggered defense gene inductions 

in WT and ein2 plants. Of note, the effects of ein2 mutation on sustained 

activation of PR1, FRK1 and PROPEP2 are similar between the FLS2 and EFR 

pathways, despite their marked differences in the ET dependence for the 

expression and accumulation of the cognate receptors (Figure 19).  
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Figure 19.  ein2 plants show similar defects in flg22- and elf18-induced activation 
of defense genes. 

Expression of PR1, FRK1 and PROPEP2 in 2-week-old Col and ein2 seedlings upon 
treatment with water (mock), 1 µM flg22 or elf18 for 24h. Gene expression was 
measured by qPCR and analyzed as described for Fig. 18 (A). The experiment was 
repeated at least three times, with similar conclusion.  

 

Importantly, the ein3 eil1 double-mutant that lacks two master regulators of ET 

responsive genes, show diminished defense gene activation in response to 

elf18, demonstrating that not only EIN2 but also other components of ET 

signalling are required for transcriptional reprogramming during MTI activation 

(Figure 20).  

We verified that the fls2 and efr mutants were fully insensitive to flg22 and elf18, 

respectively, for PROPEP2 expression. Furthermore, psl36 showed 

hyposensitivity to flg22 and elf18 as well as ein2-1, at least in PROPEP2 

activation (not shown). 

 

 

Figure 20.  The transcription factors EIN3 and EIL1 are required for elf18-induced 
defense gene activation. 
Expression of FRK1 and PROPEP2 in 2-week-old Col and ein3 eil1 seedlings upon 
treatment with water (mock) and 1 µM elf18 for 10h. Transcript levels were measured by 
qPCR and analyzed as described for Fig. 18 (A). The experiment was performed two 
times with similar results. 
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2.3.9  Genome-wide analysis of elf18-induced transcriptional 
reprogramming in ein2 plants 

Our findings point to a role for ET signalling in elf18-triggered transcriptional 

reprogramming, especially at late time points. To identify elf18-induced cellular 

processes that are controlled by ET signalling, we obtained genome-wide 

profiles for elf18-mediated transcriptome reprogramming by using ATH1 

microarray chips. Approximately 2-week-old Col-0, ein2-1 and efr seedlings 

grown in sterile liquid media were treated with elf18 for 0 and 10h. We used efr 

samples as a negative control. We identified genes that were at least twofold 

upregulated in Col, when compared to both untreated Col and elf18-treated efr 

samples. In order to identify ET-dependent genes, we focussed on genes of 

which EFR-triggered activation is more than two fold greater in Col than in ein2 

seedlings. The obtained microarray profiles with these criteria revealed 57 genes 

that are activated by EFR in an EIN2-dependent manner (Table 4). Importantly, 

PR1 and PR2 genes were among these, confirming our previous gene 

expression results obtained by quantitative RT-PCR (Figure 18B). However, 

several genes that show EIN2 dependent induction upon elf18 application in 

qPCR experiments (Figures 18, 19, 20), such as PROPEP2 and FRK1, did not 

show a more than two fold reduction in EFR-triggered induction in ein2 plants in 

the above microarray experiments. This might be due to lower sensitivity of 

microarrays in comparison to qPCR experiments.  

Next, we cross-referenced our microarray profiles with publicly available gene 

expression profiles, with a focus on the elf18-induced ET-dependent genes. 

Surprisingly, these genes have been described to be poorly responsive to 

exogenous application of ET or the ET precursor ACC (Figure 21). This was 

confirmed by our qPCR experiments that detected no significant ACC-triggered 

activation of the elf18-responsive genes tested (data not shown). In conclusion, 

although this group of genes depend on EIN2 for full activation by elf18, ET or 

ACC application alone is insufficient for their induction.  
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Table 4. List of genes that are activated by EFR in an EIN2-dependent manner  

 

GeneID

Ratio fold 
induction in Col 

vs. fold induction 
in ein2 *

TAIR annotation

AT4G28420 6,40 aminotransferase, putative; similar to SUPERROOT1, indole-glucosinolate biosynthesis process
AT1G12940 6,19 ATNRT2.5 (NITRATE TRANSPORTER2.5); nitrate transporter
AT4G37990 5,62 ELI3-2 (ELICITOR-ACTIVATED GENE 3)
AT3G57240 5,23 BG3 (BETA-1,3-GLUCANASE 3); hydrolase, hydrolyzing O-glycosyl compounds
AT4G38410 4,83 dehydrin, putative
AT1G21320 4,66 VQ motif-containing protein
AT1G66090 3,94 disease resistance protein (TIR-NBS class), putative
AT1G14550 3,63 anionic peroxidase, putative
AT1G17020 3,50 SRG1 (SENESCENCE-RELATED GENE 1); oxidoreductase
AT5G39520 3,44 unknown protein 
AT5G48175 3,16 similar to PYK10 (phosphate starvation-response 3.1)
AT4G13420 3,14 HAK5 (High affinity K+ transporter 5); potassium ion transporter
AT2G17040 3,13 ANAC036 (Arabidopsis NAC domain containing protein 36); transcription factor
AT1G02940 3,04 ATGSTF5 (Arabidopsis thaliana Glutathione S-transferase 5 (class phi)
AT2G02990 3,02 RNS1 (RIBONUCLEASE 1); endoribonuclease
AT3G61390 2,84 U-box domain-containing protein
AT3G07380 2,84 unknown protein 
AT2G27390 2,80 proline-rich family protein
AT1G49570 2,76 peroxidase, putative
AT1G73120 2,75 unknown protein
AT1G76470 2,67 cinnamoyl-CoA reductase
AT4G17670 2,65 senescence-associated protein-related
AT3G44350 2,60 ANAC061 (Arabidopsis NAC domain containing protein 61); transcription factor
AT2G30660 2,60 3-hydroxyisobutyryl-coenzyme A hydrolase, putative / CoA-thioester hydrolase, putative
AT4G17030 2,57 ATEXLB1 (ARABIDOPSIS THALIANA EXPANSIN-LIKE B1)
AT2G14610 2,57 PR1 (PATHOGENESIS-RELATED GENE 1)
AT1G22210 2,55 trehalose-6-phosphate phosphatase, putative
AT4G04500 2,53 protein kinase family protein
AT3G22231 2,51 PCC1 (PATHOGEN AND CIRCADIAN CONTROLLED 1); defense-related peptide
AT5G17760 2,43 AAA-type ATPase family protein
AT4G39950 2,42 CYP79B2 (cytochrome P450, family 79, subfamily B, polypeptide 2)
AT4G14400 2,42 ACD6 (ACCELERATED CELL DEATH 6)
AT5G61010 2,39 ATEXO70E2 (EXOCYST SUBUNIT EXO70 FAMILY PROTEIN E2)
AT3G01970 2,35 WRKY45; transcription factor
AT5G22500 2,35 acyl CoA reductase, putative / male-sterility protein, putative
AT4G34210 2,30 ASK11 (ARABIDOPSIS SKP1-LIKE 11); ubiquitin-protein ligase
AT2G43510 2,23 ATTI1 (ARABIDOPSIS THALIANA TRYPSIN INHIBITOR PROTEIN 1)
AT4G37370 2,20 CYP81D8 (cytochrome P450, family 81, subfamily D, polypeptide 8)
AT5G11210 2,19 ATGLR2.5 (Arabidopsis thaliana glutamate receptor 2.5)
AT1G16130 2,17 WAKL2 (WALL ASSOCIATED KINASE-LIKE 2)
AT3G57260 2,17 BGL2 (PATHOGENESIS-RELATED PROTEIN 2); glucan 1,3-beta-glucosidase/ hydrolase
AT2G18660 2,16 AtPNP-A; plant natriuretic peptide 
AT1G44130 2,13 nucellin protein, putative
AT1G71140 2,12 MATE efflux family protein
AT5G43580 2,12 serine-type endopeptidase inhibitor
AT1G74080 2,09 MYB122 (myb domain protein 122); DNA binding / transcription factor
AT5G48400 2,08 ATGLR1.2 (Arabidopsis thaliana glutamate receptor 1.2)
AT3G54950 2,08 PLA IIIA/PLP7 (Patatin-like protein 7)
AT1G19250 2,08 FMO1 (FLAVIN-DEPENDENT MONOOXYGENASE 1)
AT1G13590 2,08 ATPSK1 (PHYTOSULFOKINE 1 PRECURSOR)
AT2G45570 2,07 CYP76C2 (cytochrome P450, family 76, subfamily C, polypeptide 2)
AT3G60420 2,06 unknown protein 
AT5G13320 2,05 PBS3 (AVRPPHB SUSCEPTIBLE 3)
AT1G19230 2,04 respiratory burst oxidase protein E (RbohE) / NADPH oxidase
AT4G11280 2,02 ACS6 (1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID (ACC) SYNTHASE 6)
AT2G39350 2,02 ABC transporter family protein
AT4G19750 2,00 glycosyl hydrolase family 18 protein
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* Explanation to Table 4: 

Shown is the ratio between fold-induction in Col upon elf18 treatment and fold-induction 

in ein2 upon elf18 treatment for the listed genes. Fold induction refers to the relative 

difference in transcript abundance before treatment and after 10h of elf18 treatment.  

 

Interestingly, many of these EFR-activated, ET-dependent genes are associated 

with SA-mediated signalling and are reported as SA-responsive (Fig 21). We 

wondered if elf18-triggered SA accumulation or signalling is impaired in ein2 

mutants. The apparent over-representation of SA-responsive genes suggests a 

possible link between the two immune branches. To test this idea, we also 

profiled a group of genes that are induced by elf18 at comparable levels 

between WT and ein2 seedlings. These genes are thus considered as ET-

independent EFR-triggered genes. Notably, many SA-responsive genes are also 

present in this group, suggesting that the activation of the SA-responsive genes 

by EFR occurs in an ET-independent manner as well. Together, we infer from 

these data that EFR-triggered activation of SA-mediated immunity is in part, 

albeit not entirely, dependent on ET. The ET-independent activation of SA-

dependent genes during EFR-triggered immunity makes it unlikely that ET 

contributes to SA biogenesis and/or accumulation but rather suggests that ET 

modulates part of SA signalling branches. 
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log2  

Figure 21.  Expression profile of genes that are EFR-activated in a putatively     
ET-dependent (A) or ET-independent (B) manner. 

(A)  Shown are expression profiles for elf18-induced genes that are at least 2-fold 
stronger activated in Col than in ein2 (ET-dependent activation; gene list is shown in 
table 4) upon treatment with ET, AAC and SA. 
(B)  Expression profile for elf18-induced genes that show no significant difference 
between Col and ein2 (ET-independent activation; gene list is shown in suppl. table 1) in 
response to ET, ACC and SA. Due to space limitation only a subset of putatively ET-
independent genes is shown.  
The values were taken from publicly available microarray datasets, published in the 
Genevestigator databank.  
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Next, we examined gene ontology terms for the selected ET-dependent EFR-

activated genes. Interestingly, it seems that genes classified to extracellular 

compartments are significantly enriched among these ET-dependent genes, 

when compared to all elf18-activated genes or to the entire Arabidopsis genome 

(Table 5). 

	  

Table 5. Gene Ontology terms  
GO term frequencies were obtained by the program GO finder. ** and * indicate 
statistically significant enrichment compared to Arabidopsis genome. 

Gene	  Ontology	  Term	  
	  

Frequency	  among	  
EFR-‐induced,	  ET-‐dep.	  

genes	  

Frequency	  among	  all	  
EFR-‐activated	  genes	  

Frequency	  in	  the	  
whole	  genome	  

Extracellular	  region	  
	  

15,8	  %	  **	  
	  

2,7	  %	  *	   1,5	  %	  

 

Consistently with a possible role of ET-signalling in modulating extracellular 

signalling processes, we found numerous potential signalling peptides among 

our genes of interest. Notably, plant-derived short peptides were reported to act 

as signalling molecules during defense responses (Meier et al. 2008). 

Importantly, we revealed PROPEP2, one of such short-peptide encoding genes 

as ET-dependent (Figure 18, 19 and 20). It was previously reported that 

PROPEP2 contains an immuno-stimulatory epitope, termed Pep2 of which 

application activates defense-related genes in Arabidopsis (Huffaker et al. 2007). 

Based on the ET-dependent induction of the PROPEP2 gene, we hypothesized 

that the putative endogenous elicitor Pep2 acts downstream of ET as one 

mechanism to ensure sustained defense-gene activation during MTI. If Pep2 

triggered signalling acts downstream of EIN2 in such a signal amplification 

system, we would expect to see that Pep2 application activates (at least a 

subset of) ET-dependent EFR-target genes in ein2 plants. To test this idea, we 

analyzed pep2-mediated defense gene induction in WT and ein2 seedlings. 
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Pep2-mediated activation of PR1 was indistinguishable between WT and ein2 

plants (Figure 22). These data are consistent with the hypothesis that pep2 acts 

downstream of EIN2 in the EFR pathway, at least for PR1 induction. 

In order to test the connection between EFR, ET and Pep2 signaling in a greater 

detail, we tested how the aforementioned EFR-activated, ET-dependent genes 

respond to pep2 application. To this end, we analyzed gene expression profiles 

of seedlings treated with pep2 for 2h (unpublished data). Of the 57 genes that 

are activated by EFR in an ET-dependent manner, 25 genes are induced more 

than twofold upon pep2 treatment (data not shown). Of these, eight genes seem 

to be activated in an ET-independent manner, as their induction upon Pep2 was 

essentially indistinguishable between WT and ein2 seedlings, whereas nine 

genes show significant ET-dependence for their activation by Pep2. These 

results disfavour a simple model in which Pep2 acts downstream of ET in the 

EFR pathway. Rather, they point to the existence of a complex interaction 

between the Pep2 and ET pathways. 

 

Figure 22.  Pep2 treatment can trigger PR1 activation in ein2 plants. 

Expression of PR1 in 2-week-old Col and ein2 seedlings upon treatment with water 
(mock) or 1 µM pep2 for 10h. Transcript levels were measured by qPCR and analyzed 
as described for Fig 18 (A). 
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2.3.10  ein2 plants retain elf18-triggered immunity towards virulent 
Pseudomonas syringae 

The pronounced defects of ein2 plants in elf18-triggered transcriptome 

reprogramming prompted us to test possible impairment of EFR-triggered 

immunity in these mutant plants. It has been previously shown that plant 

pretreatment with elf18 reduces the propagation of Pst DC3000 (Kunze et al. 

2004). EFR-triggered immunity is defined as the decrease in bacterial growth in 

elf18-pretreated leaves as compared to water-pretreated mock leaves. Previous 

reports show detectable reduction of FLS2-triggered immunity in ein2 plants, 

whereas EFR-triggered immunity is essentially WT-like in ein2 plants (Tsuda et 

al. 2009). Under our conditions WT and ein2 plants show a clear reduction of 

bacterial growth in elf18-pretreted leaves as compared to mock leaves (Figure 

23). Thus, despite a defect in several EFR-triggered outputs in ein2 plants, EFR-

triggered immunity is largely retained in ein2 plants at least under our conditions.  

 

 
Figure 23.  ein2 plants retain WT-like elf18-triggered immunity to Pst. 

Leaves from 4-week-old WT (Col), ein2-1 and efr plants were infiltrated with water 
(mock) or 1 µM elf18 and 24h later infiltrated with Pst DC3000 at 2,5 x 104 cfu. Bacterial 
growth was measured at 3 days after infection. SDs from biological replicates within one 
experiment are shown. 
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3. Discussion 

 

3.1 ER quality control for plant innate immunity 

 

Besides the here reported identification of PSL2 as UGGT and likely 

identification of PSL25 as G I, several other ERQC components were shown to 

play a role in EFR function. Steady-state accumulation of EFR is greatly reduced 

in strongly dysfunctional alleles of CRT3, GLUCOSIDASE II β subunit and 

STT3a that is part of the oligosaccharyl-transferase complex (Saijo et al. 2009, 

Lu et al. 2009, Li et al. 2009, Nekrsov et al. 2009). Additionally, mutations in 

glucosidase II α-subunit result in reduced ligand binding activity of EFR and 

impaired responses to elf18 (Lu et al. 2009). Furthermore it was shown that 

mutations in ERD2b that is homologues to ER-retention receptors interfere with 

stable accumulation of CRT3 and thus result in reduced EFR levels and elf18 

responsiveness (Li et al. 2009). Intensive research on yeast and animal cells 

revealed the so-called CRT/CNX-cycle that involves STT3-dependent N-

glycosylation, the ER-chaperones CNX and CRT, ER-resident glucosidse I and 

glucosidase II and UGGT. Thus, these components work together in a specific 

ERQC branch that seems to be evolutionary conserved in plants and animals. In 

addition, another ERQC mechanism involving SDF2 (STROMAL DERIVED 

FACTOR2), the Hsp40 ERdj3B and likely the Hsp70 BiP is required for 

accumulation of EFR (Nekrasov et al. 2009). 

The demonstration of reduced EFR levels in these ERQC mutants strongly 

points to EFR as a client protein of this folding machinery. Consistently, it was 

shown that EFR is N-glycosylated in vivo and at least a sub-pool of EFR 

accumulates in endomembrane compartments where it could interact with  
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ERQC components (Saijo et al. 2009, Häweker et al. 2010). Furthermore, 

pharmacological inhibition of ERAD restored EFR accumulation in uggt and crt3 

mutants, indicating that ERAD prevents stable accumulation of misfolded EFR in 

these mutants (Saijo et al. 2009). 

Interestingly, psl2 and psl25, as well as other identified ERQC mutants show 

insensitivity to elf18, but retain flg22 responsiveness. Consistently, EFR levels 

are greatly reduced, whereas FLS2 levels are unaffected in these mutants. 

Together, these data reveal a critical role of these ERQC components for EFR, 

but not for FLS2 biogenesis. This is surprising, as the two PRRs are highly 

similar in overall structure and thus in the biochemical mode of action, and seem 

to share downstream signaling components (Boller and Felix 2009). However, 

FLS2 seems to be widely conserved among plant families, even in dicots and 

monocots, whereas elf18 responsiveness seems to be restricted to the 

Brassicaceae (Boller and Felix 2009). Thus, EFR might represent an 

evolutionarily young PRR that strictly relies on the identified ERQC components 

for its folding and maturation. On the other hand, the evolutionarily conserved 

FLS2 might have evolved its folding capacity even in the absence of these 

ERQC components. This might be achieved by the engagement of redundant 

ERQC branches in FLS2 biogenesis. It will be interesting to elucidate differences 

in EFR and FLS2 structure that could account for the differential requirement of 

ERQC components. It is unlikely that different expression levels of the two PRRs 

explain their differential dependence on the identified ERQC components, as 

EFR expression under the control of the FLS2 regulatory sequences still 

requires presence of SDF2 for stable accumulation of the receptor (Nekrasov et 

al. 2009). 

Interestingly, distinct EFR signaling outputs are differentially, rather than 

uniformly, impaired in psl25 plants. We observed partial and differential 

impairment of EFR outputs in weakly dysfunctional crt3 and gIIα alleles as well, 

despite WT-like EFR accumulation. At present it is unclear whether EFR levels  
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are reduced in psl25 plants. The impaired EFR outputs in crt3 and gIIα 

correlated with a reduction in receptor ligand-binding activity. Consistently, psl25 

plants show such a reduction in EFR ligand-binding activity. Thus, improper 

folding of the LRR domain that likely mediates ligand binding results in selective 

impairment of EFR-triggered outputs. It is possible that the observed reduced 

ligand-binding activity in these mutants is a consequence of altered stability, 

maturation, subcellular partitioning of the receptor and/or combinations thereof. 

This model predicts an intimate relationship between ERQC of the LRR domain, 

sub-cellular actions of the receptor and receptor-triggered immune signaling. 

Future studies will be required to test this model and elucidate the underlying 

mechanisms. 

Importantly, weakly dysfunctional ERQC mutants, such as psl25 can serve to 

dissect signaling outputs emanating from a single PRR. ROS spiking and callose 

deposition in response to elf18 are undetectable in psl25 mutants, despite nearly 

WT-like activation of MAPKs 3 and 6. These results rather disfavor a model in 

which MAPKs act upstream of ROS spiking proposed based on the data 

obtained in the FLS2 pathway (Zhang et al. 2007). Alternatively, there might be 

differences between the EFR and FLS2 pathways concerning the sequential 

activation of these outputs. More importantly, our data disfavor a simple 

threshold model in which, e.g., more EFR signaling fluxes are required for ROS 

generation than MAPK activation, as rejected in weak alleles of crt3 mutants 

(Saijo et al. 2009). Instead, it seems more likely that these diverse signaling 

outputs are separately activated by EFR. This suggests the existence of, at least 

in the case of EFR, parallel or multi-branched signaling pathways emanating 

from the receptor.  
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Intense research on yeast and animal cells identified molecular components and 

mechanisms of ERQC (Anelli and Sitia 2008, Helenius and Aebi 2004). 

However, this work was done almost exclusively on artificial, thus non-

physiological client proteins. In Arabidopsis, a mutated version of the 

brassinolide receptor BRI1, designated BRI1-9 was identified as a client of 

UGGT and CRT3. However, WT BRI1 does not depend on the actions of UGGT 

and CRT3, because BR responsiveness seems to be retained in these two 

ERQC mutants (Jin et al. 2007 and 2009). Thus, EFR identifies the first native 

client of the UGGT-CRT3 branch of ERQC. The availability of a mutant collection 

that interferes with ERQC function to a varied degree might facilitate the 

identification of further client proteins. The existence of such a non-EFR client 

has been predicted since uggt and stt3a mutant plants show a defect in SA-

mediated immunity in an EFR-independent manner (Saijo et al. 2009). 

Interestingly, psl25 mutants show some phenotypes that seem to be 

independent of EFR. Suppression of root growth and hyper-accumulation of 

anthocyanin in the presence of high exogenous sucrose might hint to enhanced 

sucrose or osmotic sensitivity of psl25 plants. Furthermore, previous 

characterization of a weakly dysfunctional G I allele revealed altered root growth 

and increased number of stomata in that mutant (Furumizu et al. 2008). It is 

interesting to note that psl25 plants show enhanced susceptibility to virulent 

Pseudomonas to a higher level than efr. As the bacteria were applied by spray 

inoculation onto the leaf surface and stomata provide a bacterial entry route into 

the leaf tissues (Melotto et al. 2006), it is conceivable that increased stomata 

number in psl25 would result in increased bacteria invasion and propagation. 

The generation and distribution of stomata is regulated by a complex pathway 

involving cell-cell communication through extracellular signaling peptides and 

their cell-surface LRR-receptors (Rowe and Bergmann 2010). Thus, several 

potential client proteins for G I mediated ERQC are present in this pathway. 
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3.2  Ethylene signaling regulates pre- and post-recognition steps in MAMP-
triggered immunity 

 

Induction of ET synthesis represents a hallmark of a multitude of defense 

responses (Broekaert et al 2006). However, to elucidate the role of ET during 

defense processes proved to be extremely difficult.  

The isolation of a novel ein2 allele (designated psl36) that shows impaired 

responses to flg22 and elf18 implicates a role for ET in MAMP-signaling. We 

observe pronounced defects in flg22 induced responses in psl36 and previously 

described ein2-1 plants, including ROS spiking, callose deposition, suppression 

of anthocyanin accumulation and activation of defense-related genes. 

Consistently with recent publications, we find that steady-state expression of 

FLS2 is reduced in psl36 and ein2-1 (Boutrot et al. 2010, Mersmann et al. 2010). 

It was suggested that reduced FLS2 levels explain the reduced flg22 

responsiveness detected in ET-perception and -signaling mutants (Boutrot et al. 

2010). However, to prove the causal relationship between lower FLS2 levels and 

impaired FLS2-outputs, ET-insensitive mutants that constitutively express FLS2 

need to be analyzed. We provide evidence that constitutive expression of FLS2 

by CMV-35S promoter in ein2 plants restore flg22 sensitivity (Figure 17). 

However, we only tested one FLS2 output (suppression of sucrose-induced 

anthocyanin accumulation), and future research will be needed to test if ET-

independent expression of FLS2 could restore all flg22 responses in ein2 plants. 

However, it is also possible that FLS2 accumulates to much higher levels in 

these plants, thereby overcoming a possible reduction of post-recognition 

signaling. 
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In contrast to ET-dependent expression of FLS2, EFR expression seems to be 

independent of ET-signaling, as demonstrated by WT-like EFR transcript and 

protein levels in ein2-1 and psl36 mutants (Figure 15). These data suggest 

distinct regulation of the two PRR genes by ET signaling. More importantly, ein2 

plants show significantly reduced EFR outputs despite WT-like steady-state EFR 

accumulation. Hence, EFR signaling defects in ein2 plants seem to be a 

consequence of impaired post-recognition signaling of the receptor. Thus, 

analyzing elf18-responses in ein2 mutants should provide insight into the role of 

ET in post-recognition signaling during MTI. 

Our data suggest that ET modulates EFR signaling at multiple steps. We 

previously demonstrated that sustained EFR signaling is critical for 

establishment of robust MTI (Lu et al. 2009). Importantly, ein2 seedlings are 

impaired in elf18-mediated activation of several defense genes tested (Figures 

18-20). In order to substantiate this finding, we obtained genome-wide profiles 

for elf18-mediated transcriptome reprogramming in ein2 mutants. This led to the 

identification of a set of genes that seem to depend on intact ET-signaling for 

their full activation (Table 4). Strikingly, the vast majority of these genes are not 

induced by ET or ACC treatment alone, suggesting that ET signaling activation 

is insufficient to activate these genes. Consequently, the full activation of this set 

of genes requires the presence of ET and another stimulus. This would indicate 

that ET acts as a modulator, rather than an integral component of signaling 

processes during EFR-triggered immunity. 

A number of the identified ET-dependent genes are widely associated with SA-

responses and signaling (e.g. PR1 and PR2, PBS3, FMO3). Furthermore, 

roughly the half of these ET-dependent genes is activated by exogenously 

supplied SA (Figure 21). Thus, we speculate that ET signaling interacts with SA 

signaling during EFR-triggered immunity. This interaction might result in an 

elevated expression of SA-responsive genes. However, we note that many SA-

responsive genes seem to be activated by elf18 in an ET-independent manner  
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as well. This suggests that only a subset of SA-responses is influenced by ET-

signaling. Among others, transcript levels of the SA biosynthetic enzyme 

SID2/ICS1 (Wildermuth et al. 2002) are not altered in ein2 in our microarray 

experiments. Together, it seems unlikely that elf18-mediated SA accumulation is 

impaired in ein2 seedlings.  

The interactions between the ET and SA pathways seem to be very complex, as 

they can positively or negatively influence each other in a context-dependent 

manner (Wang et al. 2002, Pieterse et al. 2009, Dong 1998). Importantly, a 

substantial set of genes seems to be co-regulated by ET- and SA-dependent 

pathways during Pseudomonas infections on Arabidopsis (Glazebrook et al. 

2003). Furthermore, in certain mutant backgrounds ET treatment potentiates SA-

dependent PR1 expression (in edr1, Frye et al. 2001) or the presence of EIN2 is 

necessary for SA accumulation (in cpr6, Clarke et al. 2001). On the other hand, 

several reports show antagonistic interactions between the SA and ET pathways 

(Chen et al. 2009). It is thus very likely, that the outcome of SA and ET 

interactions depends on the specific context. Our simplified experimental setup 

(with elf18 as single inducer) could probably highlight positive effects between 

ET and SA signaling. 

ET signaling has been implicated in cellular damage response and induction of 

cell death, for example in response to ozone (Wang et al. 2002) or in the acd5 

mutants (Greenberg et al. 2000). Consistently, we notice many genes 

associated with cellular stress responses among our identified ET-dependent 

genes (e.g. two peroxidases, several genes involved in lignin biosynthetic 

processes and WALL ASSOCIATED KINASE 2, that was suggested as a 

putative sensor of cell wall integrity (Boller and Felix 2009)). In this context it is 

interesting to note that genes encoding the components acting in the 

extracellular compartments are significantly enriched among our identified ET-

dependent genes. 
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Integration of MTI with cellular damage responses remains an important but 

underexplored aspect of plant immunity studies. So-called DAMPs might provide 

a functional link, as they are generated or activated during a pathogen attack, 

and exhibit defense-activating properties. However, DAMPs are still poorly 

defined. Plant-encoded peptides with elicitor-activity might represent DAMPs. 

Especially interesting are those that are transcriptionally upregulated during 

defense responses. Notably, we find numerous genes encoding peptides with or 

without secretion signal among the genes that are activated by EFR in an ET-

dependent manner. Furthermore, we define PROPEP2 as an ET-regulated gene 

and suggest that pep2 can restore some, but not all elf18 responses in ein2 

plants.  

It is an interesting question, by which mechanisms ET signaling contributes to 

EFR-mediated transcriptional reprogramming. Our genetic data define the 

transcription factors EIN3 and EIL1 as mediators of elf18-induced defense gene 

activation (Figure 20). ERF1 and MYB51 are important transcriptional regulators 

of ET-responses and genes of the glucosinolate metabolism pathway, 

respectively. Elf18-induced transcriptional activation of both genes is strongly 

impaired in ein2 plants (Figure 18A). It is tempting to speculate that these 

regulators are involved in elf18-induced gene expression changes, especially as 

CYP79B2, a known target of MYB51, is present among the ET-dependent 

genes. Genome-wide profiling of early elf18-induced transcriptome changes in 

ein2 mutants is expected to identify the regulators of ET-signaling outputs.  

In a previous work we showed the importance of sustained activation of EFR 

signaling for MTI, through the characterization of a weakly dysfunctional allele of 

ER glucosidase II (designated radially swollen3, rsw3) (Lu et al. 2009). rsw3 

plants retain WT-like activation of most tested elf18 responses, including ROS 

spiking, MAPK activation, callose deposition and ET generation, but fail to confer 

elf18-triggered immunity to virulent Pst DC3000. This immune-compromised 

phenotype of rsw3 correlated with a defect in sustained defense gene activation  
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and de-repressed anthocyanin accumulation. Interestingly, ein2 plants are also 

compromised in elf18-mediated sustained activation of defense genes. However, 

genome-wide profiling of elf18-induced genes revealed substantial differences 

between rsw3 and ein2 (data not shown). Furthermore, anthocyanin suppression 

is only weakly affected in ein2 seedlings, whereas rsw3 seedling show strongly 

de-repressed anthocyanin levels (Lu et al. 2009). Conversely, ein2 plants largely 

retain elf18-induced resistance, in contrast to rsw3 plants. These findings clearly 

suggest that different aspects of EFR-signaling are affected in rsw3 and ein2 

plants. 

Despite significantly altered EFR-outputs in ein2 plants, EFR-induced immunity 

to Pst. DC3000 remained largely intact (Figure 23). This can have several 

reasons. It is possible that the alterations in the elf18-responses are not 

sufficient to interfere with elf18-induced resistance. Alternatively, crosstalk with 

other defense-pathways might lead to activation of compensatory responses in 

ein2 mutants, for example as reported for increased SA levels (Chen et al. 

2009). Importantly, elf18-induced immunity was tested by pretreating plants with 

elf18, and subsequently infiltrating bacteria into the leaf tissue. However, as 

pointed out earlier, it seems that the contribution of ET signaling to resistance 

against Pst. Is most prevalent when bacteria are applied onto the leaf surface. 

Furthermore, it seems that ein2 seedlings show more pronounced defects in 

MAMP responses than adult plants. Consequently, the role of ET signaling in 

EFR-triggered immunity should be tested in seedlings in a pre-invasion manner. 

Modification of experimental procedures according to these criteria is currently 

ongoing. 
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4. Materials 
 
 
BUFFERS 
 

10X PCR buffer   100 mM Tris-HCl pH 8,4 

 500 mM KCl 

 20 mM MgCl2 

 
TAE buffer   400 mM Tris 

10 mM EDTA 

200 mM acetic acid 

pH 8.5 

 

RNA isolation kit 
RNeasy Plant Kit (QIAGEN, Hilden, Germany) 

 

DNA Isolation kit 
SIGMA RED Extract-N-Amp plant PCR kit 

 

Quick DNA isolation protocol 
Buffer A: 100 mM NaOH 

 20% Tween 20 

 

Buffer B: 100 mM Tris-HCl  pH 2,0 

 2 mM EDTA 
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DNA Isolation by Edwards method 

Edwards Buffer: 200 mM Tris-HCl  pH 7,5 

 250 mM NaCl 

 25 mM EDTA 

 0,5% SDS 

 

 
Protein lysis buffer 1  
 20 mM HEPES pH 7.5 

13 % Sucrose 

1 mM EDTA 

1 mM DTT 

1x complete protease inhibitor cocktail (Roche, Mannheim, Germany) 

 

Protein lysis buffer 2 for MAPK assays  
50 mM Tris pH 7.5 

200 mM NaCl 

1 mM EDTA 

10 mM NaF 

25 mM beta-glycerophosphate 

2 mM sodium orthovanadate 

10 % (w/v) glycerol 

0.1 mM Tween 20 

0.5 mM DTT 

1 mM PMSF 

1x complete protease inhibitor cocktail (Roche, Mannheim, Germany) 
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SDS-PAGE 
2x loading buffer    125 mM Tris-HCl pH 6.8 
    5 % SDS 

    25 % Glycerol (v/v) 

    0,025 % Bromphenol blue (w/v) 

    0.2 M DTT 

 

4 x separating gel buffer:  1,5 M Tris-HCl  pH 8,8 

   0,4% SDS 

 

 

4 x stacking gel buffer:    0,5 M Tris-HCl  pH 6,8 

   0,4% SDS 

 

Running buffer:   25 mM Tris pH 8.5 

   192 mM glycin 

   0.1% SDS 

 

Coomassie staining solution: 40% Methanol 

   10% Acetic acid 

0.1 % Coomassie Brilliant Blue  

 

Coomassie destaining solution: 20% Methanol 

   10% Acetic acid 

 

Western blot 
Transfer Buffer 15 ml  1 M NaPO4 

 5 ml   10% SDS 

 800 ml   H2O 

 200 ml   Ethanol 
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Blocking Buffer (TBST + milk): 50 mM Tris-HCl 

   150 mM NaCl 

   0.01% Tween-20 

   5% milk powder 

 

 

 
MEDIUM 
 

MS-medium 1x MS medium 4.4 g/l Murashige & Skoog 

medium incl. Vitamins and  

MES-buffer DUCHEFA 

BIOCHEME # M0255.0050 

For MS agar plates 0.8 % (w/v) plant agar (Duchefa, Haarlem, 

Netherlands) 

was added to the above medium. 

 

 
NYG broth medium Bactopeptone  5 g/l 

Yeast extract   3 g/l 

Glycerol   20 ml/l 

pH 7.0 

For NYG agar plates (NGYA) 1.5 % (w/v) bacto agar (Becton, Franklin 

Lakes, USA) was added to the above broth. 
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Peptides 
As elicitor-active surrogates the peptides flg22 and elf18 from flagellin and 

bacterial Elongation-Factor Tu (EF-Tu) were used. Peptides were synthetized by 

EZBiolab Inc. (Carmel, USA) with the following sequences: flg22 – 

QRLSTGSRINSAKDDAAGLQIA and elf18 – AcSKEKFERTKPHVNVGTIG. The 

peptides are described in Felix et al. (1999) and Kunze et al. (2004). For 

receptor-ligand binding experiments, radioactively labeled elf26 and flg22 were 

used, elicitor active surrogates of Elongation-Factor Tu and  flagellin, 

respectively.  

 
 
METHODS 
 
Plant growth conditions/MAMP treatment 
For the sucrose-MAMP crosstalk assays, seeds were surface-sterilized with 70% 

ethanol, imbibed for 1-3 days at 4°C and then grown under constant light in 

liquid media containing 0,5X MS medium for 3 days, and then for further 3 days 

with or without the addition of 100 mM sucrose and MAMPs at the indicated 

concentrations. For Western blot and gene expression analysis, seedlings were 

grown on agar plates containing 0,5X MS and 25 mM sucrose for 5-6 days under 

12h light/12h dark conditions, then transferred to liquid media with 0,5X MS and 

25 mM sucrose for additional 5-6 days. For MAPK assays, seedlings were grown 

on agar plates with 0,5X MS and 25 mM sucrose for 12-14 days under 12h 

light/12h dark conditions. Plants were grown on soil under 10h light/14h dark 

conditions for 4 to 5 weeks for ROS - and bacterial inoculation assays. 
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Isolation of psl-mutants 
Ethane methyl sulfonate (EMS) mutagenized M2 seeds of Col-0 glabrous1 (gl1) 

were used for genetic screening under the conditions described above. flg22 and 

elf18 were applied at 0,5 µM each concomitantly with sucrose-containing media. 

MAMP-insensitive mutant candidates were rescued by transferring to solid MS-

medium plates. For the screening of the progeny M3 generation, flg22 and elf18 

were applied separately at 0,5 µM each. 
 

MAMP-sucrose assay 
Seeds were surface-sterilized with 70% ethanol, imbibed for 1-3 days at 4°C and 

then grown in 0,5 x MS liquid-medium in 48 well plates for 3 days. The medium 

was replaced with 0,5 x MS liquid-medium supplied with 100 mM sucrose and 

flg22/elf18 at the concentrations indicated and seedlings were grown for further 

3 days. Seedlings were grown under continuous light and 23°C.  

 

Anthocyanin isolation and measurement was performed as in Tneg et al. 2005. 

Anthocyanins were isolated by incubating seedling material from ca. 10 

seedlings 1 % (v/v) hydrochloric acid in methanol for 12h. The mixture was 

centrifuged at in 13.000 rpm for 5 minutes and the absorbance of the 

supernatant was measured at 530 and 657 nm. Relative anthocyanin 

concentrations were calculated with the formula (A530-A657/4) / g FW. 

 
MAPK assay 
For MAPK assays seedlings were grown on agar plates containing 0,5X MS and 

25 mM sucrose for 10 days under 12h light/12h dark conditions. 

Whole seedlings were treated with elf18 or flg22 at 1 µM for the indicated times. 

Total proteins were extracted using lysis buffer 2 as described (Saijo et al., 

2008) and separated by SDS-PAGE. MAPK activation was detected by 

immunoblot analysis using anti-phospho p44/p42 MAPK antibody. 
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ROS assay 
For ROS assays, leaf discs (5 mm diameter) were excised from 4-week-old 

plants and were kept overnight on water before they were transferred to 50 μl 

fresh water. Subsequently, ROS production was induced as described by Felix 

et al., 1999; by application of 100 nM elf18 or flg22, in a reaction mixture 

containing 50 μl water, 20 μM luminol (Fluka, Deisenhofen, Germany) and 1 μg 

horseradish peroxidase (Sigma-Aldrich, Deisenhofen, Germany). Luminescence 

was measured by a luminometer (Centro LB 960 microplate luminometer, 

Berthold Technologies, Wildbach, Germany). 

 
Callose assay 

Seedlings were grown on agar plates containing 0,5X MS and 25 mM sucrose 

for 10 days under 12h light/12h dark conditions. Whole seedlings were treated 

with elf18 or flg22 at 1 µM for 16-20h. Subsequently, seedlings were destained  

in 70 % EtOH and callose deposits stained with Aniline blue (described in Lipka 

et al. 2005) and cotyledons inspected under UV-light 

 

Triple response assay 
Surface-sterilized seeds were stratified for 3-5 days at 4°C, and then planted on 

half-strength MS agar plates with or without 10 µM ACC (1-aminocyclopropane-

1-carboxylate). Plates were placed vertically in dark at 22°C for 4-5 days, before 

taking pictures of representative seedlings.  

. 

 

Pathogen inoculation and growth assays 
Pseudomonas syringae pv. tomato DC3000 bacteria were grown on NYG liquid 

media supplied with Rifampicilin (Rif, 100 µg/ml) over night at 28°C. Cultures 

were collected, washed once and resuspended in sterile 10 mM MgCl2. Plants 

were sprayed with a bacterial suspension containing 109 c.f.u. ml-1 bacteria with 

0,002% Silvet L-77. 
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Infected plants were kept in a covered container for 3 days, and representative 

leaves were harvested 4 days after inoculation. A total of 12 surface-sterilized 

leaf discs (5mm diameter, 30s in 70% ethanol, followed by 30s in sterile distilled 

water) excised from 2 leaves of 6 plants per genotype were randomly separated 

into 3 pools, and then subjected to quantification of leaf bacteria. 

Leaf bacteria were quantified as follows: leaves were ground in 10 mM MgCl2. 

After grinding the samples were thoroughly vortex-mixed and diluted 1:10 

serially. Samples (10 µl out of 1 ml) were plated on NYGA + Rif (100 µg/ml) solid 

medium. Plates were placed at 28°C for 2 days and thereafter the colony-

forming units counted. Bacterial infections were performed in three independent 

experiments for each condition. 

 
 
 
Molecular biological methods 
 
Genomic DNA extraction 
Genomic DNA from Arabidopsis was isolated as described by Edwards et al. 

1991. Arabidopsis leaf tissue was ground in Edwards buffer and centrifuged at 

13,000 rpm for 5 min. The supernatant was collected and DNA was precipitated 

with isopropanol and centrifuged. The DNA pellet was washed with 70% ethanol, 

dried and resuspended in sterile water.   

 

RNA extraction and cDNA synthesis  
Total RNA from Arabidopsis seedlings was isolated using the RNeasy Plant Kit 

(QIAGEN, Hilden, Germany) according to the manual provided. cDNA was 

synthesized using 5 µg total RNA, oligo(dT) primers and the SuperScript II 

reverse transcriptase according to the manual provided (Invitrogen, Karlsruhe, 

Germany). 
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Semi-quantitative reverse transcriptase polymerase chain reaction (RT-
PCR) 
Seedlings were grown on agar plates containing 0,5X MS and 25 mM sucrose 

for 5-6 days under 12h light/12h dark conditions, then transferred to liquid media 

with 0,5X MS and 25 mM sucrose for additional 5-6 days. 

Whole seedlings were treated with 1 µM elf18 or flg22 for the indicated time and 

RNA extraction and cDNA synhesis were performed as described above. PCR 

reactions were carried out in a Peltier Thermal Cycler PTC-225 (GMI Inc., 

Ramsey, USA). A typical PCR reaction mix and thermal profile is shown below 

using 10x PCR buffer. 
Reaction mix  PCR programme  
cDNA (1:10) 2 µl Initial 95 °C 5 min 
PCR buffer (10x) 2,5 Denaturation 95 °C 30 sec 
dNTPs (10 mM) 0.5 Annealing 55 °C 30 sec      (25 x)
Forward primer (10 µM) 1 µl Extension 72 °C 1.5 min 
Reverse primer (10 µM) 1 µl Final extension 72 °C 3 min 
Taq polymerase 0.5 16 °C 5 min 
H2O ad 25 µl  
 

 

DNA fragments were subsequently separated by agarose gel electrophoresis. 

Gels were made of TAE buffer, containing 1-3 % (w/v) agarose (Bio-Budget 

Technologies, Krefeld, Germany) supplemented with ethidium bromide solution 

(1:40000). Gels were run in TAE buffer.  
 

 
Quantitative RT-PCR  
Seedlings were grown on agar plates containing 0,5X MS and 25 mM sucrose 

for 5-6 days under 12h light/12h dark conditions, then transferred to liquid media 

with 0,5X MS and 25 mM sucrose for additional 5-6 days. 

Whole seedlings were treated with 1 µM elf18 or flg22 for the indicated time and 

RNA extraction and cDNA synhesis were performed as described above. 

Quantitative RT-PCR was performed on the IQ5 real-time PCR Thermocycler 

(Bio-Rad, Hercules, USA).  
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A typical PCR reaction mix and thermal profile is shown below. Expression of the 

genes of interest was normalized to the reference gene At4g26410 encoding a 

methyltransferase and relative to the transcript abundance in Col or gl1 wild-type 

control samples, unless indicated otherwise. Calculations ere performed 

according to the comparative cycle threshold (ΔΔCt) method. The reference 

gene At4g26410 was previously described to be stably expressed upon biotic 

stresses (Czechowski et al., 2005). Three technical replicates per sample were 

included and experiments were three times independently.  
 

Reaction mix  PCR programme  
cDNA (1:10) 1 µl Initial 95 °C 2 min 
PCR buffer (10 x) 2.5 µl Denaturation 95 °C 20 sec 
dNTPs (10 mM) 0.5 µl Annealing 59 °C 30 sec          (40 x)
Forward primer (10 µM) 1 µl Extension 72 °C 25 sec 
Reverse primer (10 µM) 1 µl 95 °C 1 min 
SYBR® Green (1:3000) 1.25 µl 55 °C 1 min 
Glycerol (50 %) 4 µl Melting curve 55 – 95 ° C 10 sec; à 0.5 °C; 81 
DMSO (100 %) 0.75 µl  
Taq polymerase 0.5 µl  
H2O ad 25 µl  
 

 
 

DNA isolation 
 

Quick DNA isolation protocol (used for rough-mapping) 
Leaves from 2 week old seedlings were incubated in 50 µl Buffer A at 96°C for 

10 minutes. Thereafter, 50 µl of Buffer B was added and 2 µl of the resulting 

mixture was used as template in subsequent PCR to determine the genotype. 

 

DNA isolation for fine-mapping 
DNA isolation was performed using the DNA-isolation kit from SIGMA (SIGMA 

RED Extract-N-Amp plant PCR kit). 
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Designing DNA polymorphic sequence markers 
Molecular markers have been designed and developed based on the sequence 

polymorphism information between the Arabidopsis thaliana accessions 

Columbia (Col) and Landsberg erecta (Ler) available at 

http://www.arabidopsis.org (Jander et al. 2002). 

Primers were designed using the software Primer3. 

 

 SSLP and CAPS marker analysis 
PCR has been performed under the following conditions unless otherwise 

stated: 
PCR mixture  (25µl)                                        
10X Buffer  2,5µl 
dNTP 10µM  0,5µl 
Primer1 10µM 0,5µl 
Primer2 10µM 0,5µl 
Taq polymerase 0,5µl 
H2O   19µl 
DNA   2µl 

 

 

 

PCR program 

 

94°   3 min 

94°   30 sec 

55°   30 sec           x 45 

72°   1 min 

72°   10 min 

12°   10 min 

 

 

PCR-products were subjected to agarose gel-electrophoresis. 
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For CAPS marker analysis, PCR fragments were digested with the appropriate 

restriction enzyme and then subjected to agarose gel-electrophoresis.  

 

Sequence Analysis 
For sequence analysis, contiguous DNA fragments (contigs) covering the 

chromosomal regions with the size of approximately 2 kb each were amplified by 

PCR with the primers in table2. Purified PCR products were subjected to DNA 

sequence analysis. Polymorphism search was performed with the aid of the 

software SeqMan. 

 
 
 
Microarray experiment and data analysis  
 

Seedlings were grown on agar plates containing 0,5X MS and 25 mM sucrose 

for 5 days under 12h light/12h dark conditions, then transferred to liquid media 

with 0,5X MS and 25 mM sucrose for additional 5 days. Whole seedlings were 

treated with 1 µM elf18 for 10 hours. Seedling material was harvested before 

treatment (0 hour timepoint) and 10 hours after elf18 treatment. For each 

replicate at least 10 seedlings were included. For each genotype and timepoint 

three replicates were collected. Total RNA was extracted as described above.  

Following steps were performed at the Genome Centre at Max-Planck Institute 

for Plant Breeding Research: 

Copy RNA (cRNA) was prepared following the manufacturer's instructions 

(www.affymetrix.com/support/technical/manual/expression_manual.affx). 

Labeled cRNA transcripts were purified using the sample cleanup module 

(Affymetrix). Fragmentation of cRNA transcripts, hybridization, and scanning of 

the high-density oligonucleotide microarrays (Arabidopsis ATH1 genome array; 

Affymetrix) were performed according to the manufacturer's GeneChip 

Expression Analysis Technical Manual. Three replicates per time point and 

genotype were performed. The quality of the data was evaluated at probe level  
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by examining the arrays for spatial effects, distribution of absent and present 

calls, and the intensity of spike-in controls. The robust multiarray average 

procedure (Irizarry et al., 2003) was used to correct for background effects and 

chip effects and to summarize the probe values into probe set values, resulting in 

22,811 normalized expression values per array. R/Bioconductor (Gentleman et 

al., 2004) was used to preprocess the raw microarray data. The ANOVA 

statistical test was applied in combination with the false discovery rate test 

method to correct for the P-values (Benjamini and Hochberg, 1995).  

To identify candidate genes with potentially altered transcript accumulation in the 

ein2 mutant upon elf18 elicitation genes were selected that showed a significant 

(P ≤ 0.05) and at least 2-fold higher transcript accumulation after 10h elf18 

treatment in comparison to transcript accumulation before treatment. Genes 

were selected that show at least 2-fold higher induction in WT than in the 

negative control efr. We focussed on genes that are 2-fold stronger elf18-

induced in Col  than in ein2. Genevestigator V3 

(https://www.genevestigator.com/gv/index.jsp) was used for analysis of ET, ACC 

and SA-responsive genes. 
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Biochemical methods 
 

Ligand-receptor binding assay 
Chemical crosslinking studies were essentially performed as described in Zipfel 

et al. (2006) and Chinchilla et al. (2006). Seedlings were grown on agar plates 

containing 0,5X MS and 25 mM sucrose for 5-6 days under 12h light/12h dark 

conditions, then transferred to liquid media with 0,5X MS and 25 mM sucrose for 

additional 5-6 days. Seedling material from at least 20 seedlings was 

homogenized in liquid nitrogen and resuspended in binding buffer. Ca. 100 µl 

seedling material was incubated with 60 fmol elf26-125I-Tyr or 125I-Tyr -flg22 for 

15 minutes in the absence or presence of 10 µM competitor peptides. 

Crosslinking was achieved by the addition of 10 µl of 25 mM EGS and further 

incubation for 30 minutes. After washing with binding buffer samples were 

separated on SDS-PAGE and then visualized on a phosphoimager (Fuji 

FLA7000). 

 
Immunoblot Analysis. 
Total protein was extracted from whole seedlings in a lysis buffer containing 50 

mM Tris-HCl pH 7.0, 2% SDS, 2 mM DTT, 1 mM 4-(2-aminoethyl) 

benzenesulfonyl fluoride hydrochloride and 1x Protease Inhibitor Mixture 

(Roche) and subjected to immunoblot analysis using anti-EFR or anti-FLS2 

antibodies as described (Saijo et al. 2009). Anti-phospho p44/p42 MAPK 

antibody that specifically recognizes an active MAPK form was purchased from 

Cell Signaling Technology. The signal identity of active MPK3 and MPK6 forms 

has been verified (Saijo et al. 2009). 
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