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Chapter 1

Introduction

This thesis presents a collection of studies that use laboratory experiments to

investigates how changes in the rules of an auction or its environment can affect

its outcome. The auctions studied vary from a simple auction-like setting,

where the optimization problem is an individual-choice task, to a complex

market with sequential multi-unit auctions and opportunities for resale. The

experimental results indicate limitations of existing theories or provide helpful

insights for the market designer.

In the ancient times auctions were used for selling wives and slaves, mine

concessions, war booty, and various kinds of commodities (Klemperer 2004).

More recently they have become an omnipresent trading instrument used in

C2C transactions (usually via online auction platforms), private and public

procurement of goods and services, as well as regulated markets, such as those

for electricity and for emission permits (Klemperer 1999; Krishna 2002). This

surge in the application of auctions in a variety of context has a number of

explanations, including the rapid development of information technologies, ad-

vances in the fields of game theory and experimental economics, as well as the

willingness of politicians to adopt auctions instead of subjective competitive

hearings and inherently inefficient lotteries that were previously used to reg-

ulate the allocation of goods and services (Kittsteiner and Ockenfels 2006;

Milgrom 2004).

However, given the well established theoretical, empirical, and anecdotal

evidence about the way even subtle changes in the auction context or auction
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rules can affects its outcome1, the spread of auctions has created not only

opportunities but challenges, as well. While information technologies have

decreased the costs of conducting and participating in an auction substan-

tially (Greiner et al. 2012), by resolving the necessity for physical presence

of the bidders in online auctions, they have created a new strategic environ-

ment, where the number of competitors as well as their characteristics are

surrounded by uncertainty (Chen, Katuscak and Ozdenoren 2007). Further-

more, the proliferation of auctions in private procurement, where, among many

other complexities, the buyer can have long-standing relationships with (one

of) the suppliers (Arozamena and Weinschelbaum 2009; Walker 1999), has

increased the importance of understanding how such relationships can be ac-

counted for in the rules of the auction. Finally, as regulators started adopting

auctions to allocate licenses and to organize new markets, such as those for

emission permits, the high complexity of the market environment has made it

necessary to supplement insights from economic analysis with computational

and experimental analysis (Roth 2002).

Some of the questions that arise through the spread of auctions to these new

environments are: How does uncertainty (in online auctions) affect behavior?

Is one particular auction design more suitable than another for allowing the

buyer to account for her existing relationships with (one of) the suppliers?

Would theoretically equivalent auctions interact identically with a subsequent

market?

This thesis uses theoretical and experimental tools to address these ques-

tions. Theoretical analysis helps to develop the intuition behind different de-

sign choices and isolate particular effects (Kittsteiner and Ockenfels 2006).

However, reality is often too complex, so that a tractable formal analysis is

possible only under certain assumptions and simplifications of the real world.

Furthermore, formal analysis alone may be incapable of providing the practi-

tioners with clear recommendations (see, for example, the analysis in Ockenfels

(2009) concerning the optimal frequency of auctions in the European Emission

1For an overview of theoretical research, see Klemperer (1999) and Krishna (2002), for
example. For an overview of empirical research on the effect of auction rules in online auc-
tions, see Ockenfels, Reiley and Sadrieh (2006) and Greiner, Ockenfels and Sadrieh (2012).
For an overview of experimental research, see Kagel (1995) and Kagel and Levin (2011). For
selected examples of anecdotal evidence, see Klemperer (2002) and Milgrom (2004).
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Trading System). Hence, insights from empirical and experimental approaches

are often needed to validate the theoretical predictions in more complex sit-

uations that are closer to reality. While empirical analysis with field data is

helpful, it is not always possible (before a market has been created, for exam-

ple) or feasible (due to unclear causal relationships)(Kittsteiner and Ockenfels

2006; Lusk and Shogren 2007). Laboratory experiments allow the researcher

to study causal effects in a highly controlled environment with real (bound-

edly rational) agents taking the decisions. Laboratory experiments have, thus,

become an important complement to theoretical and empirical analysis with

field data, especially with regard to investigating the applicability and limits

of existing theories and testing key features of new market mechanism before

they come into existence in an environment that closely resembles the field

environment (Kittsteiner and Ockenfels 2006; Roth 1995).2

The experimental studies presented here complement the existing theoret-

ical and empirical literature that addresses the questions mentioned above.

The first study (Chapter 2) investigates what impact uncertainty about one’s

competitiveness has on bidding behavior. The second one (Chapter 3) com-

pares how two mechanisms for favoritism affect the auction outcome. And the

third one (Chapter 4) studies the effects of the frequency of auctions for the

allocation of emission permits as well as free allocation on the efficiency of an

emission trading market, which is designed to closely mirror the properties of

the European Emission Trading System. The first two experiments reveal lim-

itations of existing theories, while the last one provides helpful insights about

the way theoretically equivalent mechanisms perform in an environment with

resale opportunities.

The payoff-maximizing bid in a first-price sealed-bid auction optimizes the

trade-off between the surplus achieved upon winning and the probability to

win. The probability to win for any given bid depends on a number of charac-

teristics of one’s competitors, which are often not known. In online auctions,

for example, where bidders are geographically dispersed and anonymous, ambi-

2For example, one of the contributions of the early literature on experimental auctions
reviewed in Kagel (1995) was rejecting the well-known revenue equivalence theorem, while
Holt, Shobe, Burtraw, Palmer and Goeree (2007) tested a variety of designs for the auction-
ing of emission permits within the Regional Greenhouse Gas Initiative in the US before one
was implemented.
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guity may surround the number of rivals as well as their valuations. Similarly,

in laboratory auctions, bidders who interact for the first time will be uncertain

about the bidding strategies of their opponents.

Chapter 2, therefore, provides theoretical and experimental analysis of bid-

ding behavior in a simple, auction-like environment with and without ambigu-

ity. In particular, participants are required to submit bids for a fictitious good.

Their bid competes against computerized bids, the exact distribution of which

is either known or not known. The optimization problem is, thus, indepen-

dent of common and consistent beliefs required in the majority of the auction

literature and makes it possible to eliminate other sources of ambiguity, such

as uncertainty about the bidding strategies of one’s competitors. We observe

that bids in the ambiguous environment are significantly lower than those in

the environment without ambiguity, thus, rejecting the predictions of standard

ambiguity theories. By adapting Goeree, Holt and Palfrey (2002)’s analysis of

the effect of nonlinear probability weighting on bidding behavior to account for

ambiguity preferences according to Klibanoff, Marinacci and Mukerji (2005)’s

model of smooth ambiguity, we demonstrate that a combination of pessimistic

beliefs and nonlinear probability weighting can organize the empirical findings.

While the majority of the auction literature assumes that the seller and

the bidders have no prior relationships, this is often not the case. A pre-

auction agreement between the seller and one of the bidders may exist and

affect the rules of the auction. Such agreements usually put the bidder in a

more favorable position relative to her competitors and can therefore serve to

extract rents from the non-preferred bidders (Choi 2009) and as protection of

established relationships (Walker 1999). The experimental study presented in

Chapter 3, thus, investigates how favoritism in auctions can be used to increase

the rents the seller and the preferred bidder extract from the other bidders.

Two forms of favoritism are compared to a standard first-price auction. The

first one, among practitioners also known as “last call”, gives the preferred

bidder the right of first refusal. Hence, she can win the auction by matching

the highest bid of the other bidders. The second one optimizes the seller and

the preferred bidder’s expected surplus by awarding the good to the other bid-

ders only if their bids exceed an optimal reserve price. Both mechanisms are

formally studied in Burguet and Perry (2009) and predicted to increase the

4



seller and the preferred bidder’s joint surplus. However, the optimal mecha-

nism requires that the seller learns the preferred bidder’s valuations. She does

so via an incentive compatible elicitation mechanism, which turns out to lack

robustness to boundedly rational behavior.

The experimental results support part of the theoretical predictions – the

auction revenue and the payoff of the other bidders deteriorate as a result of

favoritism. However, the results also show some limitations of Burguet and

Perry (2009)’s formal analysis, which requires risk-neutral bidders and truth-

telling under the the optimal mechanism. In particular, only the mechanism

with the right of first refusal increases the joint surplus of the seller and the

preferred bidder and the auction revenue deteriorates more under the opti-

mal mechanism than under the auction with the right of first refusal. It is

shown that the results can be organized by accounting for risk aversion and

for boundedly rational behavior.

Finally, Chapter 4 presents the results of an economic experiment that stud-

ies behavior in repeated multi-unit auctions with a resale market. Whereas

the first two studies are concerned with relatively simple environments, where

the complexity of the real world is highly reduced, this one attempts to closely

mirror the design of an existing market – the European Emission Trading Sys-

tem. By considering the majority of design aspects of this particular emissions

trading market, it investigates the effect of auctions and free allocation on

the efficiency of the environmental instrument. The theoretical predictions

are based on a multi-stage competitive equilibrium model. The free allocation

mirrors the average allocation in one of the auction treatments, thus allowing

us to investigate the direct effect of handing out permits for free rather than

against a payment.

The theoretical analysis does not predict any differences in the final allo-

cation and the development of markets with different allocation mechanisms.

We find only partial support for the theoretical predictions. The allocative

efficiency before trade is not significantly different between markets with more

and markets with less frequent auctioning. Furthermore, the method of alloca-

tion – for free or against in payment – does not seem to influence the allocative

efficiency after trade. However, the method of allocation has significant effects

on the ability of the emission trading market to induce cost-efficient emission
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reduction. Less frequent auctioning leads to higher allocative efficiency after

trade, lower price variability, and lower compliance costs than more frequent

auctioning. Free allocation leads to even lower price variability and compli-

ance costs. However, it transfers wealth from the regulator to the regulated

firms and its practical design bears a number of contentious issues, such as how

closures and new entries should be dealt with, for example (Neuhoff, Martinez

and Sato 2006). Hence, when choosing the method of allocation, the regulator

needs to take these factors into account.

The content of Chapter 2 and Chapter 4 was created as a result of joint

projects. The study on ambiguity was conducted in collaboration with Vitali

Gretschko and Axel Ockenfels. Under the guidance of Axel Ockenfels, I de-

veloped the research idea, the motivation for the study, and the experimental

design. I also gathered the experimental data and conducted the statistical

analysis. Vitali Gretschko provided the formal analysis. Axel Ockenfels con-

tributed to the design of the instructions, in particular to the wording and

choice of information in the ambiguity treatment. He also guided me with

very helpful suggestions about the emphasis in the review of related literature

and the focus of the statistical analysis. The study on allocation mechanisms

in emissions trading markets was conducted as a joint project with Veronika

Grimm. The research idea arose during my graduate studies and became more

specific during my first year as a post-graduate, also thanks to the close collab-

oration with Veronika Grimm. She contributed to the study with very helpful

suggestions regarding its structure, its motivation and the literature review,

as well as the organization of the statistical analysis. She also developed most

of the formal analysis.
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Chapter 2

Nonexpected Utility and

Bidding Behavior in First-Price

Auctions With(out) Ambiguity

The content of the following chapter was produced in collaboration with Vitali

Gretschko and Axel Ockenfels.

2.1 Introduction

Deciding on a bid in an auction is a complex process, often driven by

uncertainty and ambiguity. A bidder’s assessment about her competitors’

willingness-to-pay may be very subjective and the distribution of bids that

she faces ambiguous. In a laboratory experiment, we study how ambiguity

about competing bids affects bidding behavior in a simple auction-like envi-

ronment, where ambiguity is operationalized in the spirit of Ellsberg (1961)

as unmeasurable uncertainty or missing information.1 We find that bids in

the ambiguous environment are significantly different from those in the non-

ambiguous environment and show that these differences are not driven by aver-

sion to ambiguity – as common wisdom may suggest – but by an interaction

effect between ambiguity tastes and beliefs, on the one hand, and nonlinear

1Note that one strand of the early literature operationalizes ambiguity as “uncertainty
with second order probabilities”, where probabilities are drawn from a set of known distri-
bution functions with known probabilities of realization. For discussion of the terminology
see Camerer and Weber (1992).
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probability weighting, on the other.

Firms that participate in auctions spend considerable amount of time and

money to determine the optimal bid. In order to place a bid in a first-price

auction, more than just one’s own valuation for the object has to be taken into

account. Beliefs about the distribution of bids of the competing bidders are

required for the optimization process. If the same group of bidders competes

repeatedly for similar objects, those beliefs can become accurate. However, in

many contexts bidders do not have accurate beliefs about their competitors.

For example, Chen et al. (2007) point out that in online auctions, where there

is no physical presence and the bidders can be geographically dispersed, the

number of bidders as well as their valuations are often unknown. Furthermore,

in a setting with heterogeneous, boundedly rational competitors interacting for

the first time, even when a bidder is informed about the distribution of her

competitors’ valuations, the subjective beliefs and risk preferences behind their

bidding strategies may be ambiguous.

To investigate how ambiguity affects behavior, we run a laboratory exper-

iment, which has a simple and parsimonious setup. Each bidder decides on

her bid in an individual-choice task framed as a first-price auction. She knows

that she is facing three symmetric computerized competitors, that the bids of

these competitors are uniformly distributed, and that the lowest possible bid

is 0. In the first treatment she also knows the highest possible bid. In the

second treatment she has no information about the highest possible bid.

We find that bids are significantly lower if the highest possible computerized

bid is ambiguous. We demonstrate that expected utility theory and established

theories of ambiguity aversion are incapable of explaining this result since

they do not predict any differences between the treatments in the particular

experimental setup.2 The intuition behind this result is that in a symmetric

first-price auction the optimal bid in an increasing equilibrium is conditional

on the fact that the bidder has the highest valuation in the auction. Competing

bids that are associated with valuations higher than the valuation of the bidder

do not affect the optimal bid. Hence, a variation of the highest possible bid

should not have an effect as long as it is consistent with symmetry. Given that

2We assume that the highest possible computer bid is sufficiently high to avoid discussion
of corner solutions.
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ambiguity theories make a statement about how subjective beliefs regarding

ambiguous parameters, i.e., the highest possible bid, are formed and weighted,

they also do not predict any treatment differences in our experimental setup.3

To explain the results, we incorporate smooth ambiguity preferences in the

sense of Klibanoff et al. (2005) in a model of non-expected utility. While

the highest possible computerized bid does not affect the optimal bid of an

expected utility maximizer, it does affect the winning probability for any given

bid and thereby the way a non-expected utility maximizer accounts for this

probability in her optimization problem. Under the assumption of nonlinear

probability weighting as axiomized by Prelec (1998), this translates into into

relatively higher bids if the winning probability is believed to be rather high,

and into relatively lower bids if the winning probability is believed to be rather

low. We demonstrate that such combination of nonlinear probability weighting

with ambiguity aversion and pessimistic beliefs can organize the experimental

results.

Previous studies on the impact of ambiguity on the auction outcome have

focused on unknown distributions within known bounds of a given support

(Bose and Daripa 2009; Chen et al. 2007; Lo 1998; Salo and Weber 1995).

Under these conditions, ambiguity aversion in the sense of Gilboa and Schmei-

dler (1989) is predicted to lead to higher bids. Experimental studies com-

pare bidding behavior in (potentially) asymmetric auctions, where all bids are

submitted by human competitors. Güth, Selten and Ivanova-Stenzel (2003)

do not find any significant differences between bidding against a competitor

whose valuation stems from a known distribution as opposed to an unknown

distribution. In conclusion, they question the role of beliefs in the bid submis-

sion process. Chen et al. (2007) find that bids are significantly lower under

the ambiguous environment, which, given the prediction of their equilibrium

model, would suggest ambiguity-loving preferences. However, they point out

that such behavior may also be the result of ambiguity aversion and myopic be-

liefs and recommend further explicit studies. Our experimental design allows

3Note that theories of bounded rationality, such as the impulse balance theory (Neuge-
bauer and Selten 2006; Ockenfels and Selten 2005; Selten 2004) and theories of regret
(Engelbrecht-Wiggans and Katok 2007; Filiz-Ozbay and Ozbay 2007), are also incapable
of explaining the differences in behavior we observe. They are based on the assumption that
deviations from the optimal risk-neutral bid arise as a result of opportunity costs, which do
not depend on ambiguity about the highest possible competing bid.
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us to address this issue by studying behavior in a situation where the best reply

depends only on first-order beliefs. Additionally, our data suggests that con-

trary to Güth et al.’s conclusion, beliefs about the distribution of opponents’

bids and with it beliefs about winning probabilities affect the decision-making

process.4

This study contributes to the existing theoretical and empirical literature

on ambiguity by providing formal analysis of the joint effect of ambiguity and

nonlinear probability weighting on bidding behavior and empirical support for

this joint effect. Furthermore, the experimental design, where the auction is

presented as an individual-choice task, allows us, firstly, to exclude any un-

controlled ambiguity, which may arise endogenously from competing against

human bidders, and, secondly, to resolve any potentially contradicting predic-

tions between equilibrium and myopic behavior.

The rest of the paper is organized as follows. In Section 2.2 we describe the

experimental design and procedure. In Section 2.3, we develop the theoretical

predictions based on a model of non-expected utility that combines Klibanoff

et al.’s model of smooth ambiguity and Prelec (1998)’s axiomization of non-

expected probability weighting. In the subsequent Section 2.4, we present the

results of our experiment, and the last section concludes.

2.2 Experimental Design and Procedure

We study the effect of ambiguity on bidding behavior in a simple individual-

choice experiment, in which one human bidder competes for an indivisible

good against three computer-simulated bids. Valuations of all competitors

are uniformly distributed on [0, 100].5 In the treatment without ambiguity, in

the following referred to as INFO, participants are informed about the exact

distributions of the computerized bids and their own valuations. In the treat-

ment with ambiguity, in the following referred to as NOINFO, participants

are informed only about the lower bound and the uniformity of the respective

4This result is indirectly related to findings in Armantier and Treich (2009) that overbid-
ding in first-price auctions can be partially explained by incorrect beliefs about the proba-
bilities to win for any given bid.

5Valuations are decimal numbers with up to two digits after the decimal point. For
tractability all theoretical analysis assumes continuous distribution. This inconsistency be-
tween the formal analysis and the practical implementation is a common but unavoidable
problem in the literature on experimental auctions.
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distributions. The individual choice is framed as a first-price sealed-bid auc-

tion, in which the highest bid wins and the winner receives a payoff equal to

the difference between her valuation and her bid. In case of a tie, the winner is

randomly determined. The computer-simulated bids correspond to the optimal

bid in a risk-neutral setting, which equals three fourths of the valuation.

In September 2010 and January 2011 we ran a total of four sessions – two for

each treatment. No subject participated in more than one session. The sessions

were held in the Cologne Laboratory for Economic Research. Participants were

students at the University of Cologne with various backgrounds. They were

recruited via ORSEE (Greiner 2004) and did not have any prior experience

with experimental first-price auctions. The experiment was programmed and

conducted with the software z-Tree (Fischbacher 2007). Upon entering the lab,

participants were randomly assigned to a computer terminal. They received

written instructions and were encouraged to ask questions in case of doubt.

Questions were privately answered. The individual-choice task was repeated

over 20 rounds, with one auction per round and new independent draws for

all values. After each auction, participants were informed about whether or

not they received the good, about the auction price, and about their own

payoff. At the end of the experiment, participants responded to a questionnaire

on demographical data and on their experience with laboratory experiments

and auctions in general.6 They could also briefly comment on their bidding

strategy. After all participants had finished answering the questions, they

were privately paid the sum of their earnings over the 20 rounds plus a show-

up fee of EUR 2.5. A total of 64 students participated in the INFO and 62

in the NOINFO treatment. Each session took about 45 minutes to complete

(including the payment stage). The average payoff was EUR 8.53 (SD = 5.04),

without any significant differences between the two treatments.

We employed computerized competitors to avoid a setting, in which even

with full information about the valuations of one’s opponents, bidders may face

6We do not find any significant demographical differences between the subject pools with
one exception – significantly more participants in NOINFO reported to have taken a class
in game theory in comparison to INFO (p = 0.001 for a two-sided t-test). However, as
Table 2.3 in the appendix shows, no effect of this variable on the final payoff is found in any
Ordinary Least Squares regression model that controls for the average valuation over the
20 rounds (and any number of additional control variables, such as gender, field of studies,
etc). Hence, we can safely attribute all differences in bidding behavior reported below to
the treatment effect.
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ambiguity about their opponents’ bidding strategies. Hence, employing com-

puterized competitors allows us to control the exact level of ambiguity and

investigate its effect in a noise-free environment not influenced by interper-

sonal interaction, where factors such as spite (Morgan, Stiglitz and Reis 2003)

and inequality aversion (Ockenfels and Selten 2005), for example, could affect

behavior. Furthermore, facing non-human competitors simplifies the decision

problem from an equilibrium decision to a payoff-maximizing individual-choice

task and resolves the requirement for consistency between actions and proba-

bilistic beliefs of all interacting parties. Experience from previous experiments

on bidding against computerized opponents in auction(-like) environments sug-

gests that the use of computerized instead of human competitors does not affect

the qualitative results (Dorsey and Razzolini 2003; Engelbrecht-Wiggans and

Katok 2009; Harrison 1989; Neugebauer and Selten 2006; Walker, Smith and

Cox 1987).

2.3 Theoretical Analysis

In this section we demonstrate how the experimental design allows us to

investigate the role of nonlinear probability weighting in auctions with am-

biguity. In particular, we show that neither expected utility, nor ambiguity

aversion, nor ambiguity tastes alone predict any treatment effects, while non-

linear probability weighting together with ambiguity preferences do so. On

the basis of empirical evidence concerning the general form of the probabil-

ity weighting function and the typical tastes and beliefs under ambiguity, we

derive predictions about the expected between-treatment differences.

Consider a setting in which a bidder decides on an optimal bid in a first-price

sealed-bid auction. Her valuation for the auctioned object is x and she is either

informed that the bid of each of her N competitors is uniformly distributed

on [0, 1] or that the bid of each of her competitors is uniformly distributed on

[0, b̄] without any further information on b̄. Let u denote the von Neumann-

Morgenstern utility function of the bidder and µ her subjective probability

distribution of b̄.
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Expected Utility

First, suppose the bidder is an expected-utility maximizer. If the bidder knows

that the bids of her competitors are uniformly distributed on [0, 1], her optimal

bid is the solution to

max
b

bNu(x− b). (2.1)

Suppose u and x are such that (2.1) has a unique interior solution.7 The

first-order condition of this optimization problem is

NbN−1u(x− b)− bNu′(x− b) = 0. (2.2)

If, on the other hand, the bidder is only informed that the bids of her com-

petitors are uniformly distributed on [0, b̄] without any information on b̄, her

optimal bid given her subjective probability distribution solves the following

optimization problem:

max
b

∫ ∞

−∞

bN

b̄N
u(x− b)dµ(b̄). (2.3)

Suppose a unique interior solution exists. The first-order condition of this

optimization problem is

∫ ∞

−∞

NbN−1

b̄N
u(x− b)−

bN

b̄N
u′(x− b)dµ(b̄) = 0

⇔

∫ ∞

−∞

NbN−1u(x− b)− bNu′(x− b)dµ(b̄) = 0

⇔NbN−1u(x− b)− bNu′(x− b) = 0.

Thus, the optimal bid does not depend on b̄ – it is the same in both cases

and ambiguity does not affect the bidding behavior of an expected utility

maximizer.

Ambiguity Aversion

Expected utility theory cannot explain behavior in many situations (see Machina

2008, for a brief review of related literature). Given that the treatment vari-

7If, for example, b̄ is sufficiently low, a corner solution also exists, such that b = b̄.
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ation concerns ambiguity about the distribution of competing bids, it is rea-

sonable to expect attitudes towards ambiguity to affect the bidding behavior.

However, in the following we show that a departure from expected utility that

accounts for ambiguity tastes and beliefs in the individual-choice task does not

change the optimal bid. More formally, consider the smooth model of decision

making under ambiguity that was introduced by Klibanoff et al. (2005). The

optimal bid then solves the following optimization problem:

max
b

∫ ∞

−∞

φ

(

bN

b̄N
u(x− b)

)

dµ(b̄). (2.4)

Herein φ is a strictly increasing mapping from R+ to R+. The curvature of

φ corresponds to the subject’s attitude towards ambiguity.8 The first-order

condition can be written as

∫ ∞

−∞

φ′
(

bN

b̄N
u(x− b)

)(

NbN−1

b̄N
u(x− b)−

bN

b̄N
u′(x− b)

)

dµ(b̄) = 0

⇔

∫ ∞

−∞

φ′
(

bN

b̄N
u(x− b)

)

dµ(b̄)
(

NbN−1u(x− b)− bNu′(x− b)
)

= 0. (2.5)

As φ is an increasing function, (2.5) is true if and only if (2.2) is true for

any belief function dµ(b̄). It follows that ambiguity aversion does not affect

the optimal bid. This result is fairly intuitive as we have shown that the

optimal bid is independent of the subjective belief about b̄. Attitudes towards

ambiguity are reflected in attitudes towards different distributions of b̄. Hence,

neither ambiguity tastes, nor beliefs about b̄ are predicted to have an impact

on the bidding decision.9

Nonlinear Probability Weighting

Another departure from expected utility theory concerns the way different

objectively known probabilities affect the decision making process. It is well

established in the psychological literature that subjects tend to put decision

8Ambiguity-averse (loving) attitude corresponds to a concave (convex) φ, neutrality to-
wards ambiguity is given by a linear φ as modeled above.

9The same logic applies to other models of ambiguity aversion. In particular, it can be
shown that it holds in the widely applied model of Gilboa and Schmeidler (1989) for any
finite beliefs about b̄. However, the analysis above is based on Klibanoff et al.’s model due
to its differentiability and tractability.
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weights on probabilities when taking decisions under uncertainty. They act

as if the probabilities over outcomes were transformed with some nonlinear

weighting function. This kind of nonlinear probability weighting has been

brought forward as an explanation for overbidding in first-price auctions by

Goeree, Holt and Palfrey (2002) and Armantier and Treich (2009). In what

follows, we adapt the model used by Goeree et al. to account for ambiguity

tastes and beliefs and show that, in contrast to a model based on ambigu-

ity aversion alone, a model that incorporates subjective probability weighting

yields an optimal bid which is different in the ambiguous setting.

If the bidder knows that the bids of each of her competitors are uniformly

distributed on [0, 1] and weights the probabilities of winning in a nonlinear

manner, the optimal bid solves

max
b

w(bN)u(x− b). (2.6)

Herein w(·) denotes the probability weighting function. The first-order condi-

tion for this problem can be written as

NbN−1w′(bN)u(x− b)− w(bN)u′(x− b) = 0

⇔NbN−1u(x− b)−
w(bN)

w′(bN)
u′(x− b) = 0. (2.7)

In case the distribution of the bids of the other bidders is ambiguous, the

optimal bid solves10

max
b

∫ ∞

−∞

φ

(
w

(
bN

b̄N

)
u(x− b)

)
dµ(b̄). (2.8)

In this case the first-order condition is

∫ ∞

−∞

φ′(w

(
bN

b̄N

)
u(x− b))

(NbN−1

b̄N
w′
(
bN

b̄N

)
u(x− b)− w

(
bN

b̄N

)
u′(x− b)

)
dµ(b̄) = 0,

10Herein φ is defined as in the previous section.
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which is equivalent to

∫ ∞

−∞

φ′(w

(
bN

b̄N

)
u(x− b))

(
NbN−1u(x− b)−

w
(

bN

b̄N

)
b̄N

w′
(

bN

b̄N

) u′(x− b)
)
dµ(b̄) = 0.

(2.9)

Substituting the solution to (2.6) in (2.9) suggests that whether or not the

optimal bid with and without ambiguity is the same depends on φ, w and µ.

Hence, unless w is linear, bids in both situations will not coincide.

By making some additional assumptions about the preferences under ambi-

guity and the form of w based on well established empirical evidence, we can

derive more precise predictions about the expected differences in bidding be-

havior. Firstly, in line with the general literature on behavior under ambiguity,

we assume ambiguity-averse bidders (see Camerer and Weber 1992). Secondly,

following the flavor of Gilboa and Schmeidler (1989)’s maximin model, where

the decision maker optimizes the worst possible outcome, we assume that un-

der ambiguity beliefs about b̄ are pessimistic.11 This general assumption is

supported by the observation that when tastes and beliefs are explicitly ac-

counted for, pessimistic beliefs are required in addition to ambiguity aversion

to explain the high ambiguity premium observed in insurance and investment

markets (Chateauneuf, Eichberger and Grant 2007).12 Thirdly, we assume that

the probability weighting function is shaped like an inverted ”‘S”’, concave for

low probabilities and convex for high probabilities.13 Probability weighting

functions with such shape overweight low probabilities and underweight high

probabilities. The following two-parameter functional form generates a family

of functions that includes all inverted ”‘S-shaped”’ functions:

w(p) = exp(−β(−ln(p))α), (2.10)

11With increasing ambiguity, Gilboa and Schmeidler’s model predicts deterioration of
the payoff via the worst possible (imaginable) case regardless of the parameter measuring
ambiguity attitudes. This can be interpreted as pessimistic beliefs.

12A somewhat less direct support is found in Heath and Tversky (1991), where a nega-
tive relationship is observed between subjective confidence about one’s ability to estimate
unknown probabilities and the reluctance to make ambiguous bets. An ambiguously-averse
bidder should care little about the level of ambiguity unless higher ambiguity is associated
with more pessimistic beliefs.

13In what follows, we will use the functional form axiomized by Prelec (1998). He also
shows that this functional form fits most of the empirical evidence on nonlinear probability
weighting.
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where α and β are positive parameters that determine the shape of the weight-

ing function. We can now state the following result.

Lemma 2.1 Let α 6= 1, bI := argmaxb w(b
N)u(x− b) and

v(b, b̄) := NbN−1u(x− b)−
w
(

bN

b̄N

)
b̄N

w′
(

bN

b̄N

) u′(x− b). (2.11)

The following holds true. If

∫ ∞

1

φ′(w

(
bN

b̄N

)
u(x− b))v(bI , b̄)dµ(b̄)

>

∫ 1

0

φ′(w

(
bN

b̄N

)
u(x− b))v(bI , b̄)dµ(b̄), (2.12)

the optimal bid when the bidder faces ambiguity is lower than without ambi-

guity, i.e.

bI > bA = argmax
b

∫ ∞

−∞

φ

(
w

(
bN

b̄N

)
u(x− b)

)
dµ(b̄).

Proof The proof is relegated to the appendix. �

The interpretation of Lemma 2.1 is straightforward: the larger b̄, the lower

the chance for the bidder to win ex-ante. When small probabilities are over-

weighted, the trade-off between a subjectively increased probability to win

and rents received upon winning is maximized at a lower objective probability.

Hence, if a bidder believes that the probability to face a rather high b̄ is large,

this overweighting causes her to bid less in the presence of ambiguity. Ambi-

guity preferences enter this reasoning through expression (2.12). First, if the

bidder is ambiguity-averse, φ is concave and hence φ′ is decreasing. It follows

that φ′(w
(

bN

b̄N

)
u(x − b)) is increasing in b̄. Therefore, she overweights larger

realizations of b̄ and (2.12) is more likely to hold true. Second, if the bidder has

pessimistic beliefs, µ(b̄) places more mass on less advantageous realizations of

b̄ and (2.12) is more likely to hold true. Note that regardless of the ambiguity

tastes, pessimistic beliefs about b̄ are required if (2.12) is to be fulfilled.
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Given the empirically motivated assumptions above, Lemma 2.1 yields the

following prediction about the bidding behavior in the two experimental treat-

ments.

Hypothesis 2.1 The optimal bid when the bidder faces ambiguity (NOINFO)

is lower than without ambiguity (INFO).

2.4 Experimental Results

In this section, we report the results for the treatments INFO and NOINFO

described above with upper bound of the uniform distribution equal to 100.

To circumvent potential robustness problems, which may arise through the

sensitivity of the relative bids to the height of the respective valuation, in

the following, we report analysis of median values for each participant. Fur-

thermore, in the questionnaire participants in the INFO treatment frequently

report that for valuations above 3/4 of the support they played ’safe’ by bid-

ding (at least) the maximum bid of the computerized opponents. To account

for potential bias in the data such behavior might cause, we provide separate

analysis for bids on valuations from the total support and on valuations, for

which no ’safe play’ is available.14

Table 2.1 gives an overview of the median relative bids at the beginning, at

the end, and throughout the whole experiment. The round number refers

to the respective independent repetition of the individual-choice task (e.g.

independent auction). Bids in the initial rounds are especially interesting,

since they were submitted before subjects in NOINFO could gather any (or

sufficient) information about the upper bound of the support of the computer

bids.

In line with results from standard experiments on bidding in first-price

auctions, with the exception of the last 5 rounds in the NOINFO treatment,

all of the medians reported in Table 2.1 are significantly different from the

risk-neutral best reply (p< 0.05 and lower for two-sided t-tests). Also in line

with experimental results in Güth et al. (2003) and Chen et al. (2007), relative

14Two of the participants in the INFO treatment systematically submitted bids above
their valuations despite the explicit note in the instructions that such bids may lead to
losses, which they will have to pay for. When their bids are excluded from the data on
suspicion of malicious behavior, the results remain qualitatively the same.
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Table 2.1: Median Relative Bids
All Rounds Round 1 Round 1-5 Round 16-20 Na

Valuations ≤ .75∗b All ≤ .75∗b All ≤ .75∗b All ≤ .75∗b All
INFO 0.871 0.853 0.815 0.813 0.852 0.833 0.886 0.866 64

(0.091) (0.068) (0.197) (0.187) (0.125) (0.012) (0.181) (0.084)

NOINFO 0.818 0.818 0.734 0.747 0.794 0.794 0.843 0.831 62
(0.098) (0.087) (0.178) (0.200) (0.112) (0.109) (0.159) (0.096)

p-valuesb 0.001 0.001 0.068 0.004 0.006 0.005 0.168 0.008

Legend: a Nr. of independent observations for all valuations; b two-sided t-test for between-treatment differences.

Note: Standard deviation across subjects in parenthesis.

bids in the NOINFO treatment are significantly lower than relative bids in

the INFO treatment.15 Especially in the first and in the first five rounds,

when respectively no and little information about the upper bound of the

rivals’ support is available, more overbidding (in absolute terms) is observed

in the INFO treatment. The differences are robust to the separate analysis for

valuations within the distribution of the computer bids, for which ’safe play’

is not possible.

Result 2.1 Participants’ bids are significantly lower in the NOINFO than in

the INFO treatment.

This result rejects the predictions of the expected utility theory and the

smooth ambiguity model in Section 2.3. To investigate the relative role of

ambiguity tastes and beliefs, let us consider the effect of repetition on bidding

behavior. Table 2.2, which presents the results of random effects estimates of

the bidding function clustered on the subject level, supports the results about

the effects of repetition presented in Table 2.1. In line with standard theo-

retical predictions, the intercept is not significantly different from zero. The

slope of the bidding function is significantly different from 0.75 (p < 0.001). In

the first five rounds, there is strong and significant negative effect of NOINFO

on the intercept. An effect of NOINFO on the slope of the bidding function

is present only in the model with valuations within the distribution of the

computer bids, where it is relatively small and only marginally significant.

Hence, between-treatment differences seem to be driven mainly by different

intercepts rather than different slopes of the bidding function. Furthermore,

15Differences in Güth et al. are not significant but qualitatively in the same direction as
those reported here.
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between-treatment differences on the intercept remain marginally significant in

the next five rounds and then disappear, suggesting that bidding in the treat-

ments becomes more alike. The regression estimates, therefore, support the

observation in Table 2.1 that, especially in the initial rounds, bids in NOINFO

are significantly lower than those in INFO.

Table 2.2: The Effect of Repetition on Submitted Bids

Variable Valuations ≤ .75∗b̄ All valuations
Coef. Std. Err. p-value Coef. Std. Err. p-value

Valuation 0.868 0.012 0.000 0.806 0.009 0.000
NOINFO -2.133 0.845 0.012 -2.922 0.948 0.002
Valuation*NOINFO -0.030 0.016 0.063 -0.006 0.014 0.674
Rounds 6-10 0.100 0.547 0.854 0.573 0.627 0.361
Rounds 11-15 0.020 0.663 0.976 0.561 0.645 0.385
Rounds 16-20 0.971 0.919 0.291 1.174 0.863 0.174
Rounds 6-10*NOINFO 1.910 0.984 0.052 1.899 1.039 0.068
Rounds 11-15*NOINFO 1.406 0.953 0.140 1.565 1.025 0.127
Rounds 16-20*NOINFO 0.819 1.128 0.468 0.823 1.153 0.475
Constant -0.550 0.710 0.438 1.098 0.771 0.154
Nr. of observations 1885 2520
Nr. clusters 126 126
Random Effects
R2 within 0.920 0.927
R2 between 0.594 0.701
R2 overal 0.899 0.912

Note: Robust random effects estimates clustered on the subject level.

The experimental results in Table 2.1 and Table 2.2 suggest that bids in

the NOINFO treatment increase more rapidly than those in the INFO treat-

ment. Given that individual ambiguity tastes – i.e., φ’s form – remain constant

over time, (2.12) suggests that the different effects of repetition on the bidding

function can be ascribed to changes in the beliefs about b̄. Since b̄ is constant

over all 20 rounds, any feedback on winning or loosing (to a given computer-

ized bid) allows the participants to update their beliefs about it. The more

accurate these beliefs, the less differences between the treatments. The lower

bids in NOINFO, therefore, indicate that without any information about the

upper bound of the bids of their competitors, subjects tend to form pessimistic

beliefs – i.e., they place more mass on larger upper bounds. This increases the

share of bids, for which the winning probabilities are overweighted, leading to

lower subjectively optimal bids. Interestingly, in the very first round, when

no information about the upper bound of support of the computer bids is
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available, there is significant underbidding in the NOINFO treatment (t-test

p < 0.05). This suggests even stronger overestimation of disadvantageous b̄’s.

Note that our interpretation of the lower bids in the ambiguous environ-

ment differs from the one in Chen et al. (2007), where they are attributed to

ambiguity-loving attitudes. However, as the authors note, ambiguity-loving in

the strategic environment of an auction can have different interpretation from

ambiguity attitudes in individual-choice experiments.

2.5 Conclusion

This study contributes to an increasing experimental practice to study be-

havior in auctions in a highly controlled environment, which resolves issues

of equilibrium play and interpersonal preferences and allows us to focus on

the effect of a small environmental change on bidding behavior. In this we

demonstrate that ambiguity-averse bidders who form pessimistic beliefs about

their competition may in response decrease their bids.

Moreover, our findings add evidence to the importance of accounting for

nonlinear probability weighting when analyzing data from experimental auc-

tions. To our knowledge, only few studies on bidding behavior in first-price

auctions have explicitly controlled for participants’ beliefs about their proba-

bilities to win with a certain bid (see Armantier and Treich 2009; Kirchkamp

and Reiß 2011). Given that Armantier and Treich (2009) show that accounting

for nonlinear probability weighting can lead to different interpretation of the

experimental results, we hope that it will receive more attention in the future

when theories of bidding behavior are tested in the laboratory.
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2.6 Appendix

2.6.1 Proof of Lemma 2.1

Proof Observe first that

w
(

bN

b̄N

)
b̄N

w′
(

bN

b̄N

) =
−ln

(
bN

b̄N

)1−β
bN

αβ
.

It follows that v(b, b̄) is single-crossing from above in b and hence
∫∞
−∞

φ′(w
(

bN

b̄N

)
u(x−

b))v(b, b̄)dµ(b̄) is single-crossing from above for all b > 0. Moreover,

−ln
(

bN

b̄N

)1−β
bN

αβ

is increasing in b̄ and hence v(b, b̄) is decreasing in b̄. Together with v(bI , 1) = 0

it follows that

∫ ∞

1

φ′(w

(
bN

b̄N

)
u(x− b))v(bI , b̄)dµ(b̄)

>

∫ 1

0

φ′(w

(
bN

b̄N

)
u(x− b))v(bI , b̄)dµ(b̄)

⇒

∫ ∞

−∞

φ′(w

(
bN

b̄N

)
u(x− b))v(bI , b̄)dµ(b̄) < 0.

As
∫∞
−∞

φ′(w
(

bN

b̄N

)
u(x− b))v(b, b̄)dµ(b̄) is single-crossing from above, the opti-

mal bA must be smaller than bI . This completes the proof. �
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2.6.2 Additional Results

Table 2.3: OLS Estimates of Determinants of the Final Payoff

Variable (I) (II) (III)
NOINFO 0.397 0.388 1.056
Class in Game Theory 10.344* 4.34 4.688
NOINFO*Class in Game Theory -10.139 -3.673 -4.775
Avg. Valuation 0.424*** 0.482***
NOINFO*Avg. Valuation -0.003 -0.066
Additional Controlsa X
Intercept 8.242*** -13.134** -16.304***
N 126 126 126
F 1.43 12.4 5.28
R2 0.034 0.341 0.418

Legend: * p<0.05; ** p<0.01; *** p<0.001; a Additional controls were gen-
der, student at the Faculty of Social and Economic Studies, self-reported
experience with economic experiments, and self-reported experience with
auctions.

2.6.3 Instructions

In the following the instructions for the INFO treatment are provided. It is

indicated where they differ for the NOINFO treatment. Welcome and thank

you for participating in this experiment! Please read these instructions care-

fully. We kindly ask you to refrain from talking to the other participants or

communicating with them in any other way. Please raise your hand if you have

any questions. The experimenter will then come to you and answer them. All

participants have received the same instructions.

General Information

In this experiment you will be able to earn money depending on your deci-

sions. During the experiment your profits will be calculated in Experimental

Currency Units (ECU). 9 ECUs are equivalent to 1 Euro. At the end of the

experiment your profits will be converted into Euros and paid out to you in
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addition to a 2.50 Euro show-up fee. Your decisions as well as your profits will

be treated confidentially: no other participant will be informed about them.

Game Structure

In this experiment you will be able to purchase a fictitious good in each of

20 auctions. With you three programmed robots submit bids, so that there

are four bidders (you and the three bidding robots) in every auction. If in an

auction you submit the highest bid, you will win the fictitious good and pay

the price you offered in return. If you do not submit the highest bid, you won’t

receive or pay anything.

What is the fictive good’s value?

The exact value of the fictitious good varies between auctions and bidders. At

the beginning of each auction, before you make your bid, you are informed

about your valuation, i.e., the amount in ECU you will receive in case you win

the auction. Your valuation is determined by chance and will be a number

with two decimal places, between 0.00 ECU and 100.00 ECU [NOINFO: and a

maximum number of ECU’s you do not know]. Every number is equally likely.

Before each new auction, your valuation will be determined by chance.

How high is my profit?

In case you have made the highest bid in the auction, you win the fictitious

good. Your profit is your valuation of the fictitious good in ECU minus your

bid. (If you win the auction with a bid which is higher than your valuation,

you will suffer losses. Possible losses will be set off against the 2.50 Euro show-

up fee. At the end of the experiment you will have to pay for any losses which

exceed your show-up fee.) If your bid is lower than the highest bid of the three

bidding robots in the auction, you do not receive any payoff for this auction. If

two or more bids are equal, the winner of the auction is determined by chance.

Your profits over all 20 auctions are cumulated at the end of the experiment,

converted according to the exchange rate above, and paid to you in addition

to the show-up fee.
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How do the three bidding robots bid?

In each auction there are four bidders – you and the three robots. The robots

are programmed to make a bid between 0.00 ECU and 75.00 ECU [NOINFO:

and a maximum number of ECU’s you do not know]. Every number is equally

likely. Before each new auction, the robots’ bids will be determined accord-

ing to this random principle, independently from one another and from your

valuation.

What feedback do I receive after the auction?

After each auction you will be informed whether or not you have won the

auction, the auction price (i.e., the highest bid) and your profit in this auction.

Final remarks

All auctions are relevant for your final payoff. Please raise your hand if you

have any questions.
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Chapter 3

Favoritism in Auctions with

Risk-Averse Bidders

3.1 Introduction

In many situation a seller and an uninformed buyer, hereafter referred to as

“preferred”, can increase their joint surplus by making a mutually beneficial

pre-auction agreement that determines the rules of a subsequent auction, in

which the buyer competes with other buyers. The agreement will be such that

the rules of the subsequent auction will more accurately reflect the seller and

the preferred bidder’s joint opportunity costs from selling the good to one of

the other buyers, thus allowing them to avoid jointly unprofitable trades and

to extract more rents from the other buyers (Hua 2007). Burguet and Perry

(2009, hereafter BP09) study formally two such agreements of auctions with

favoritism. The first one allows the preferred bidder to match the highest rivals’

bid after the final bidding round is over – a so called “last call” or “right of

first refusal”.1 This competitive advantage increases the preferred bidder’s ex

ante surplus at the expense of the regular bidders and the seller. However, the

benefit she obtains exceeds the seller’s losses in revenue, thus leading to higher

joint surplus. The second agreement maximizes the expected joint surplus via

an optimal mechanism, such that the preferred bidder reports her valuation

to the seller who then awards the good via an auction with an optimal reserve

1Note that the term “right of first refusal” has a number of definitions and applications.
For some examples, see Walker (1999). Here, it will be used in the described auction context.
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price.

In a laboratory experiment I investigate the robustness of the predictions of

BP09’s formal analysis. Two bidders – one preferred and one regular – whose

independent valuations stem from a common uniform distribution, compete for

an indivisible good. Prior to the auction and before valuations have been pri-

vately learned, the preferred bidder has the opportunity to induce favoritism

by making a lump-sum payment to the seller. The regular bidder observes

whether or not the payment is made, but does not know its amount. If the

preferred bidder does not make the payment, both bidders compete in a stan-

dard first-price, sealed-bid auction. Otherwise, depending on the treatment,

one of the following auctions with favoritism is implemented. In the first treat-

ment, the regular bidder submits her bid and the preferred bidder has the right

to match it. In the second treatment, the preferred bidder reports her valua-

tion to the seller, who then awards the good to the regular bidder only if the

latter can match a reserve price that optimizes the seller’s and the preferred

bidder’s joint surplus.

The experimental results support BP09’s conjecture that both forms of fa-

voritism tend to increase the joint surplus of the seller and the preferred bidder.

They also suggest that although favoritism decreases the auction revenue, it

can benefit the seller when through the pre-auction agreement she can extract

(part of) the preferred bidder’s additional surplus. However, differences be-

tween the two forms of favoritism are observed that are not predicted by BP09’s

theoretical analysis with risk-neutral bidders. In particular, the auction with

the optimal reserve price does not extract more rents from the regular bidder

than the auction with the right of first refusal. Furthermore, favoritism with

the optimal mechanism has a stronger negative effect on the auction revenue

than favoritism with the right of first refusal. Thus, although the preferred

bidder’s payoff is higher in the first type of favoritism, the joint surplus is

not maximized under the optimal mechanism. Furthermore, relative to the

standard first price auction, the auction with the right of first refusal does not

bring about additional allocative inefficiencies. I demonstrate that accounting

for risk aversion and bounded rationality can organize these deviations from

the risk-neutral predictions.

One of the motivations for awarding a potential bidder the right of first
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refusal is the necessity to protect her ex ante investments. The right of first

refusal is, therefore, often given to commercial tenants to increase their incen-

tives to upgrade the property (Bikhchandani, Lippman and Ryan 2005), or

to investors in the form of pre-acquisition agreements (Hua 2007). Another

possible field of application could be in industries, where it is common practice

to conduct research and development of prototypes for new products in close

cooperation with one of the potential suppliers, but to award contracts for

serial production via a competitive process. In the research and development

stage, the outcome of a research project – its success as well as the properties

of the final procurement contract – is unknown. However, if the research part-

ner is promised the right of first refusal in the subsequent competitive process,

she might have greater incentives to invest in the research project, making its

success more likely.

This study is closely related to the literature on favoritism and corruption

with an exogenously determined preferred bidder. In both strands of the lit-

erature, prior to the auction one of the bidders is given the right to match

the highest rival bid and this is common knowledge. Under corruption, the

preferred bidder acquires her status in a pre-auction stage, where she bribes

a corrupt intermediary agent running the auction. Under favoritism, the pre-

ferred bidder receives the right of first refusal for free or against a payment to

the seller (Burguet and Perry 2009; Choi 2009; Hua 2007). In both cases, the

right of first refusal extracts additional rents from the non-preferred bidders

(Arozamena and Weinschelbaum 2009; Burguet and Perry 2009; Choi 2009).

Whether or not the seller benefits from granting the right of first refusal, de-

pends on her ability to collect these additional rents and on the way the right of

first refusal affects her revenue. In the context of corruption, only the interme-

diary agent can benefit from the additional rents. In the context of favoritism,

collecting the rents is usually not explicitly analyzed, with the exception of

Hua (2007) discussed below.

The effect of the right of first refusal on the auction revenue depends on

the distribution of the bidders’ valuations. If bidders are ex ante asymmetric,

then Burguet and Perry (2007) and Lee (2008) demonstrate that granting the

right of first refusal to the weaker bidder can sometimes improve the auction

revenue. However, if bidders are ex ante symmetric and the distribution of
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their valuations is regular, i.e., a bidder’s virtual valuation is increasing in her

true valuation, Arozamena and Weinschelbaum (2009) and Burguet and Perry

(2009) show that the auction revenue deteriorates as a result of granting the

right of first refusal to one of the bidders. Hence, the seller has incentives to

grant the right of first refusal only if the rents she collects in the pre-auction

stage outweigh her losses in revenue.2

Regarding the optimality of the auction rules, Arozamena and Weinschel-

baum (2006) derive the properties of any mechanism that in a setting with

independent private values would maximize the joint surplus of the seller and

the preferred bidder. They demonstrate that no auction with the right of first

refusal fulfills these properties. Hua (2007) derives the optimal direct reve-

lation mechanism in a setting with one non-preferred bidder and a preferred

bidder who has financial constraints in the pre-auction stage. If the preferred

bidder is not financially restricted, Hua’s analysis applies to the two bidder

case which is experimentally analyzed here.

The experimental literature on favoritism and corruption in auctions with

an exogenously determined preferred bidder is rather scarce. To the best of

my knowledge, an experiment by Grosskopf and Roth (2009) on the effect of

the right of first refusal in (reversed) negotiations is the only experimental

study that remotely touches upon this topic. This paper fills this gap. It

also provides an instrument for determining the division of additional surplus

between the seller and the preferred bidder. Furthermore, it investigates the

robustness of the theoretical predictions to boundedly rational behavior. In

particular, the optimal mechanism in BP09 requires truthful value revelation

by the preferred bidder. However, there is well established experimental ev-

idence that not all incentive compatible mechanisms are capable of inducing

truthful value revelation in practice. For example, bidding behavior in the

strategically equivalent English and sealed-bid, second-price auctions usually

differs, so that only the English auction provides a robust mechanism for elic-

iting bidders’ valuations (see Kagel 1995, for a review of related literature).

Given that in private procurement firms often interact repeatedly, it is rea-

2There is also vast and less related literature on corruption in auctions, where the pre-
ferred bidder is endogenously determined – i.e., after valuations have been privately an-
nounced, bidders compete for the right of first refusal. The interested reader is referred to
Lengwiler and Wolfstetter (2010) and the references therein.
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sonable to believe that suppliers, who wish to keep their negotiation power in

future interactions, would not be willing to disclose their true costs regardless

of the short-term incentive compatibility of any elicitation mechanism. The

laboratory experiment, therefore, challenges the robustness of the optimiza-

tion mechanism proposed by BP09 to (behaviorally driven) deviations from

equilibrium play.

The remainder of this paper is organized as follows. Section 3.2 reviews

BP09’s formal analysis. Section 3.3 describes the experimental design and

the subsequent Section 3.4 summarizes the theoretical predictions given the

particular experimental framework. The experimental results are presented in

Section 3.5. Section 3.6 attempts to explain the deviations between predicted

and observed behavior. Section 3.7 concludes.

3.2 Theoretical Framework

BP09 analyze the effect of both mechanisms for favoritism studied here for

N risk-neutral suppliers competing for a contract in a reversed procurement

auction. In the following, I introduce the notation and review BP09’s main re-

sults in the context of a standard (selling) auction. Furthermore, using insights

from the standard auction literature, I derive the explicit payoff functions of all

parties under the optimal mechanism described below. Deviating from BP09,

I assume that the alternative to any form of favoritism is a standard first-price

sealed-bid auction.3

N bidders – one preferred (P ) and N − 1 regular, non-preferred (Rj, j ∈

{1, 2, . . . , N − 1}) – bid for an indivisible good. Valuations are independently

drawn from a common distribution F (·), with continuous density f(·) and

support [v, v]. F (x)/f(x) is assumed to be an increasing function, s.t. the

inverse hazard rate function (1−F (x))/f(x) is decreasing and bounded.4 The

risk-neutral seller (S) does not have any outside value for the good and her

3In BP09 the optimal mechanism that maximizes the coalition’s surplus is compared to
an optimal auction that maximizes the payoff of the auctioneer alone. This deviation of the
experimental setting increases the comparability between the treatments without affecting
the general implications.

4For the analysis of the joint surplus, BP09 make an additional assumption about (1−
F (x))/f(x). However, a more general version of their result is found in Proposition 3
in Arozamena and Weinschelbaum (2009), where BP09’s result holds for any F (x)/f(x).
Hence, in the following, no additional assumptions are required.
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costs are normalized to zero. The following two games are studied.

Game 1: Favoritism with the Right of First Refusal

F (·) is common knowledge.
Stage 1 S and P negotiate a lump-sum payment from P to S and the rules

of the auction in Stage 3.
Stage 2 Valuations are privately announced. The auction rules in Stage 3

are publicly announced. The amount of the lump-sum payment, if
there is any, remains private knowledge of S and P.

Stage 3 (a) If S and P have reached an agreement in Stage 1, P has the
right of first refusal – i.e., the regular bidders submit their bids
simultaneously, P is informed about the highest price submitted by
them and offered to buy the good at this price. If P rejects the offer,
the regular bidder with the highest bid wins and pays her bid.
(b) If S and P have not reached an agreement in Stage 1, all bidders
compete in a standard first-price auction.

Game 2: Favoritism with an Optimal Mechanism

F (·) is common knowledge.
Stage 1 S and P negotiate a lump-sum payment from P to S and the rules

of the auction in Stage 3.
Stage 2.1 Valuations are privately announced. The auction rules in Stage 3

are publicly announced. The amount of the lump-sum payment, if
there is any, remains private knowledge of S and P.

Stage 2.2 (a) If S and P have reached an agreement in Stage 1, P reports her
valuation x̂ to the seller in exchange for a transfer T (x̂).
(b) If S and P have not reached an agreement in Stage 1, the game
proceeds to Stage 3 (b).

Stage 3 (a) If S and P have reached an agreement in Stage 1, the regular
bidders compete for the good in a first-price sealed-bid auction with
a commonly known reserve price r(x̂) that optimizes the joint surplus
of S and P. If none of the regular bidders’ bids is higher than or
equal to the reserve price, P receives the good and pays her reported
valuation x̂.
(b) If S and P have not reached an agreement in Stage 1, all bidders
compete in a standard first-price auction.

Denote with Πt
i(x) the expected payoff of agent i ∈ {P,Rj, S} with valua-

tion x ∈ F (·) under condition t, where t ∈ {FPA,ROFR,OM} indicates the
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auction rules in Stage 3. FPA indicates that bidders compete in a standard

first-price auction. ROFR indicates that an agreement has been reached in the

first game and P has the right of first refusal. OM indicates that an agreement

has been reached in the second game and the auction has a reserve price that

optimizes the joint surplus of S and P. Let EΠt
i(·) denote the respective ex

ante expected payoff before valuations are privately announced and β(x)t the

respective bidding strategy of a (regular) bidder with valuation x in an in-

creasing, symmetric equilibrium. Both games can be solved through backward

induction.

Proposition 3.1 In Stage 3, all bidders maximize their expected payoff given

their private and common knowledge. For N > 2 and a continuously differ-

entiable density function f(x), an increasing symmetric equilibrium exists in

every subgame, s.t.:

(i) the increasing bidding strategy of all bidders under FPA is given by

βFPA(x) =
1

F (x)N−1

∫ x

v

z(N − 1)F (z)N−2f(z) dz; (3.1)

(ii) under ROFR, P accepts the offer to buy the good at the highest price

offered by the regular bidders if her valuation is higher than this price,

and reject it otherwise, while the increasing bidding strategy of the reg-

ular bidders is such that, given a boundery condition βROFR(v) = v and

N > 2, it solves

(βROFR)′(x) =
H(βROFR(x))(N − 2)[x− βROFR(x)]

H(x)[H(βROFR(x))− (x− βROFR(x))]
, (3.2)

where H(x) = F (x)/f(x);

(iii) the increasing bidding strategy of the regular bidders under OM, when

the commonly known reserve price is r, equals

βOM(x) = r
F (r)N−2

F (x)N−2
+

1

F (x)N−2

∫ x

r

z(N − 2)F (z)N−3f(z) dz (3.3)

for x > r and 0 otherwise.

Proof (i) is a standard result in the auction literature found in Krishna

(2002, Ch. 2.3), for example. (ii) follows from the fact that P will ac-

cept the offer if her valuation is higher than the highest bid of the regular
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bidders, and will reject it otherwise.5 Hence, a regular bidder with valu-

ation x maximizes the expected payoff function ΠRj
(βROFR(x), x) = [x −

βROFR(x)]F (βROFR(x))F (x)N−2. The condition in (iii) is equivalent to the

one in (5) in BP09. (iii) is a standard result in the auction literature found in

Krishna (2002, Ch. 2.5), for example. �

Note that for N = 2 the optimization problem for the regular bidders under

ROFR is dominance solvable. A solution is provided in Section 3.4.

Proposition 3.2 Under OM, given the regular bidders’ bidding strategy and

provided that the hazard rate function f(x)/(1 − F (x)) is monotonically in-

creasing, the optimal mechanism is such that, when P reports a valuation x̂,

(i) the reserve price in Stage 3 solves

r −
1− F (r)

f(r)
= x̂, (3.4)

(ii) while in Stage 2.2, S elicits P’s valuation by paying her an incentive

compatible transfer T (x̂) =
∫ x̂

v
F (r(z))N−1 dz.

Proof Under OM, S and P have agreed to form a coalition and sell the good

via a mechanism which maximizes their joint surplus. Hence, they act as one

agent, whose valuation for the good equals the surplus of trade between the

two parties, i.e., P’s valuation.6 The proof of (i) is found in Krishna (2002,

Ch. 2.5) or Myerson (1981). The proof of (ii) is equivalent to the proof of

Proposition 5 in BP09. �

Note that r(x) is independent of the number of regular bidders. Furthermore,

for regular distributions, i.e. when x− (1− (F (x))/f(x) is an increasing func-

tion, r(x) is also an increasing function. Also note that the transfer is not

conditional on P actually winning the good.7 Due to the incentive compatibil-

ity of the elicitation mechanism, it follows that x̂ = x and r(x̂) = r(x).

5Note that P has no incentives to submit a positive bid, since any bid above the highest
bid of the regular bidders would increase the price she has to pay.

6Remember that S does not have any value for the good.
7It has been suggested to make the elicitation mechanism such that the transfer P receives

is conditional on her winning the good. However, it can be shown that such a transfer is not
incentive compatible when there are two bidders and P is risk-averse. Since risk aversion is
found to organize the experimental results better than risk neutrality, such a transfer would
not be part of a feasible mechanism.
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Proposition 3.3 The respective ex ante expected payoff of a regular bidder

Rj, j ∈ {1, 2, . . . , N − 1} in Stage 1, depending on the auction rules in Stage

3, is given by

(i)

EΠFPA
Rj

(·) =

∫ v

v

(1− F (z))F (z)N−1 dz, (3.5)

(ii)

EΠROFR
Rj

(·) =

∫ v

v

(1− F (z))F (z)N−2F (βROFR(z)) dz, (3.6)

and

(iii)

EΠOM
Rj

(·) =

∫ v

r(v)

f(x)F (x)N−2
(
xF (r−1(x))

−

∫ r−1(x)

v

βOM(x, r(z))f(z) dz

)
dx. (3.7)

where r(x) is characterized by equation (3.4).

Proof The payoffs in (i) and (ii) are equivalent to (2) and (8) in BP09, re-

spectively. The proof of (iii) is relegated to the appendix. �

Proposition 3.4 The respective ex ante expected payoff of the preferred bid-

der in Stage 1, depending on the auction rules in Stage 3 and barring any

lump-sum payments to S, is given by

(i)

EΠFPA
P (·) =

∫ v

v

(1− F (z))F (z)N−1 dz, (3.8)

(ii)

EΠROFR
P (·) =

∫ βROFR(v)

v

(1− F (z))F [(βROFR)−1(z)]N−1 dz

+

∫ v

βROFR(v)

(1− F (z)) dz, (3.9)

34



and

(iii)

EΠOM
P (·) =

∫ v

v

f(x)

∫ x

v

F (r(z))N−1 dz dx =

∫ v

v

(1− F (z))F (r(z))N−1 dz.

(3.10)

Proof (i) is equivalent to (i) in Proposition 3.3. (ii) is equivalent to (9)

in BP09 and (iii) follows from the fact the P’s ex ante expected payoff is

determined by the expected value of the elicitation transfer for all possible

realizations of her valuation. �

Proposition 3.5 The respective ex ante expected revenue of the seller in

Stage 1, depending on the auction rules in Stage 3 and barring any lump-sum

payments from P, is given by

(i)

EΠFPA
S (·) = N

∫ v

v

(1− F (z))z(N − 1)F (z)N−2f(z) dz, (3.11)

(ii)

EΠROFR
S (·) = (N − 1)

∫ v

v

f(x)βROFR(x)F (x)N−2 dx, (3.12)

and

(iii)

ΠOM
S (·) =

∫ v

v

f(x)

[
(N − 1)

(
r(x)(1− F (r(x)))F (r(x))N−2

+

∫ v

r(x)

z(1− F (z))(N − 2)F (z)N−3f(z) dz

)

+ F (r(x))N−1x−

∫ x

v

F (r(z))N−1 dz

]
dx. (3.13)

Proof (i) is a standard result for first-price sealed-bid auctions with N bid-

ders (see Krishna 2002, Ch. 2.4, for example). (ii) is equivalent to (11) in

BP09. And (iii) uses the results for the expected auction revenue in first-price

auctions with reserve prices (see Krishna 2002, Ch. 2.5), while accounting for

the randomness of r(x) and for the elicitation transfer T (x). �
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Remember that in a standard first-price auction, in an increasing, symmetric

equilibrium, the expected payoff of any bidder i ∈ {Rj, P} with valuation x is

given by8

ΠFPA
i (x) = F (x)N−1(x− βFPA(x)). (3.14)

Under OM, the expected payoff of a regular bidder with valuation x before the

reserve price r(z) is made common knowledge, can be expressed as

ΠOM
Rj

(x, r(z)) = F (x)N−2F (r−1(x))(x− E[βOM(x, r(z))|x > r(z)]).

(3.15)

Note that r(x) > x, i.e. r−1(x) < x, and βFPA(x) < βOM(x, r) for any

x ∈ F (·) \ {v} and r > v. Using the results from the propositions above

and from (3.14) and (3.15), it follows that EΠROFR
P > EΠFPA

i > EΠROFR
Rj

and ΠOM
P (·) > ΠFPA

i (·) > ΠOM
C (·), where i ∈ {P,Rj}. It is obvious that

EΠROFR
S < EΠFPA

S . The comparison of the auction revenue under FPA and

OM is not that straightforward, but in section 3.4 it is shown to deteriorate

under OM when F (x) ∼ U [v, v]. Hence, based on the outcome of the auction

alone, both forms of favoritism redistribute rents away from the seller and

the regular bidders to the preferred bidder. Arozamena and Weinschelbaum

(2009) demonstrate that ROFR increases the joint surplus of the seller and the

preferred bidder. Given its construction, OM also increases the joint surplus.

Hence, the seller would have incentives to run an auction with any of the two

forms of favoritism only if through the lump-sum payment in the negotiation

Stage 1 she manages to extract a part of this surplus that is sufficient to

outweigh her losses in revenue. BP09 note that, as long as the preferred

bidder does not face any budget or financial constraints, any redistribution

of additional surplus in the negotiation stage is individually rational. Hence,

provided that there are no financial constraints, the height of the lump-sum

payment in Stage 1, and with it the seller’s incentives to run an auction with

favoritism depend on the bargaining power of the seller and the preferred

bidder. Details are discussed in Section 3.4.

8See Krishna (2002, Ch. 2), for example.
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3.3 Experimental Design and Procedure

In a laboratory experiment, I study the effect of favoritism in a first-price

sealed-bid auction with two bidders competing for a nondivisible good. One

of the bidders is exogenously determined to be preferred. Prior to the auction

and before the bidders learn their valuations, the preferred bidder can influence

the rules of the subsequent competition by submitting a lump-sum payment to

the seller. Her willingness-to-pay to avoid competing in a standard first-price

auction is elicited via the Becker-DeGroot-Marschak-method (Becker, DeG-

root and Marschak 1964), where the actual amount of the lump-sum payment

is randomly determined. If the reported willingness-to-pay is higher than the

random amount, the preferred bidder pays the random amount and both bid-

ders compete in an auction with favoritism. Otherwise, both bidders compete

in a standard first-price sealed-bid auction. Both bidders know that one of

them is preferred and the manner in which they will compete as soon as it

has been determined. Only the preferred bidder knows her willingness-to-pay

and the randomly determined lump-sum payment for avoiding the first-price

auction.

In the first treatment, in the following referred to as T-ROFR, in the auc-

tion with favoritism the non-preferred bidder submits her bid and the preferred

bidder is allowed to match it. If she can do that, she wins the auction and pays

the bid of the non-preferred bidder. Otherwise, the non-preferred bidder wins

and pays her own bid. In the other treatment, in the following referred to as

T-OM, in the auction with favoritism the preferred bidder reports a valuation

to the auctioneer in exchange for an incentive compatible transfer as defined

in Section 3.2. The non-preferred bidder is then offered to purchase the good

at a (reserve) price that depends on the reported valuation. If she accepts that

price, she wins the auction and pays the reserve price. If she does not accept

it, the preferred bidder wins the auction and pays her reported valuation.9

Figures 3.1 and 3.2, which were also included in the instructions, depict the

possible course of one round in the T-ROFR and T-OM treatment, respec-

tively. In T-OM participants were also presented with a table that informed

9Note that when there are only two bidders, the selling mechanism with favoritism is
no longer an auction in its true sense but a take-it-or-leave-it mechanism. However, this
deviation does not affect the theoretical predictions. Therefore, the labels are chosen for
consistency with the general literature.
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them about the transfer to the preferred bidder and the reservation price for

the competing bidder resulting from different valuations reported by the pre-

ferred bidder. The experiment was neutrally framed – the auctions with fa-

voritism were referred to as “sequential play” and the first-price auctions as

“simultaneous play”.

The valuations of both bidders were random numbers with up to one digit

after the decimal point, i.i.d. on [0, 100].10 They were randomly drawn for

each round. Both bidders were privately informed about their own valuation

after the game type – sequential or simultaneous – had been determined. The

random lump-sum payment for the auction with favoritism was framed as a

price for sequential play and was drawn from a commonly known uniform

distribution with support [−10, 25]. The negative values in the support allow

me to investigate whether some participants might actually request money in

order to play sequentially.11 Also, the average expected lump-sum payment

was somewhat lower than the lump-sum payment, which would make a seller

indifferent between a standard first-price auction and the respective auction

with favoritism when bidders are risk-neutral, but it ensured that a sufficient

number of observations of auctions with favoritism could be gathered.

Upon entering the lab, participants were randomly assigned to a computer

terminal. They received written instructions and were encouraged to ask ques-

tions in case of doubt. Questions were privately answered. The role of the

preferred bidder was randomly assigned and kept throughout the experiment.

In each round participants were randomly matched to a participant with a

different role.12 At the end of each round, feedback on the auction price and

10The distribution of the valuations is thus not truly continuous but this is a common and
unavoidable problem in the majority of literature on experimental auctions.

11Rational players do not have any incentives to report negative willingness-to-pay. How-
ever, humans are known to care for their relative payoffs in comparison to others and to
dislike large positive as well as large negative discrepancies (see Bolton and Ockenfels 2000;
Fehr and Schmidt 1999, 2006, and the references therein). Hence, if participants have
extreme fairness preferences, they might be unwilling to compete sequentially, as sequen-
tial play increases disproportionately the expected payoff of the preferred bidder relative
to the one of the regular bidder. In the 1,800 individual decisions per treatment, negative
willingness-to-pay is observed only rarely. In T-ROFR it is driven mainly by three par-
ticipants and observed in 6.7% of the cases. In T-OM it is driven by one participant and
observed in 0.5% of the cases.

12In fact, participants were separated into groups of three preferred and three non-
preferred bidders. In each round they were randomly re-matched to a bidder with a different
role within the respective group. The instructions provided information only about the fact
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Figure 3.1: The Course of One Round in T-ROFR

that in every round one’s partner was randomly determined.
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Figure 3.2: The Course of One Round in T-OM
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one’s own payoff was provided in the first-price auctions and on one’s price and

one’s own payoff in the auctions with favoritism. The final payoff was cumu-

lated over a random half of the 60 rounds determined by the throw of a dice.

At the beginning of each half, participants received new initial endowments.

Instructions are available in the appendix.

In total, 120 students at the University of Cologne with prior experience in

economic experiments participated in four sessions – two for each treatment

– conducted in November 2011 in the Cologne Laboratory for Economic Ex-

periments. Participants were recruited via ORSEE (Greiner 2004) and the

experiment was programmed and conducted in zTree (Fischbacher 2007). One

session lasted 1.5 - 2 hours. The average earnings were 17.17 EUR in T-ROFR

and 20.73 EUR in T-OM, including a 2.50 EUR show-up fee.

3.4 Parametrization and Theoretical Predic-

tions

Table 3.1 gives an overview of the theoretical values for the ex ante expected

payoffs and the allocative efficiency when there are two bidders, whose valua-

tions stem from a continuous uniform distribution with support [v, v] = [0, 100].

Note that the calculation of the expected payoffs disregards any lump-sum pay-

ments in the negotiation stage.

With some abuse of notation let β(·) denote the bidding function in the

respective condition. The results, barring predictions about βROFR(x) and the

efficiency of allocation, follow directly from the analysis in Section 3.2 when

N = 2 and F ∼ U [v, v] is assumed. From Proposition 1 in Arozamena and

Weinschelbaum (2009), which states that the optimal bidding strategy of the

regular bidders does not change in response to the existence of a preferred

bidder as long as F (x)/f(x) is a linear function (and for F (x) ∼ U(·) this is

obviously the case), it follows that

βROFR(x) = βFPA(x) = (x+ v)/2 = (x− v)/2 + v.

The intuition behind this result is that in both cases the optimal bid is condi-

tional on the (regular) bidder having the highest valuation. She then submits
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a bid equal to the expected second highest valuation, which is the same in

both cases.

The derivation of the predictions for the allocative efficiency is relatively

straightforward. Let θt, t ∈ {FPA,ROFR,OM}, denote the expected effi-

ciency under the respective condition and π(Ω) the probability of an event Ω

occurring. Under the symmetric equilibrium of the FPA the bidder with the

highest valuation wins, i.e., θFPA = 1. ROFR and OM lead to inefficient allo-

cation whenever the preferred bidder wins despite having the lower valuation.

When the preferred bidder’s valuation equals xP , the probability that she

non-deservingly wins and ROFR leads to inefficient allocation is given by

π(ROFR inefficient, xP ) =

{
π(xP < z) for xP ≥ βROFR(v)

π(βROFR(z) < xP < z) for xP < βROFR(v)

where Z is the regular bidder’s random valuation and βROFR(v) = (v + v)/2

is her maximum possible bid, above which the preferred bidder always wins.

Accounting for the uniform distribution gives π(xP ≥ βROFR(v)) = π(xP <

βROFR(v)) = 0.5 and the following expected allocative efficiency:13

θROFR = 1− π(ROFR inefficient, xP )

= 1−

(
0.5

∫ v

v

F (z)f(z) dz + 0.5

∫ v

v

(F (z)− F (βROFR(z)))f(z) dz

)

= 1−

(
0.5

1

2
F (z)2

∣∣∣
v

v
+ 0.5

1

4
F (z)2

∣∣∣
v

v

)

= 1−
3

8
= 0.625. (3.16)

Now assume that the regular bidder’s valuation is xR and P’s valuation is the

random variable Z. The probability that the preferred bidder non-deservingly

wins and OM leads to an inefficient allocation is given by

π(OM inefficient, xR) =

{
π(z < xR) for xR < r(v)

π(z < xR < r(z)) for xR ≥ r(v)

13The calculations in (3.16) use that F (βROFR(z)) = (z−v)/2+v−v
v−v = F (z)/2.
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Accounting for the uniform distribution gives r(v) = (v + v)/2, so that

π(xR < r(v)) = π(xR ≥ r(v)) = 0.5. The resulting ex ante allocative efficiency

then equals14

θOM = 1− π(OM inefficient, xR)

= 1−

(
0.5

∫ v

v

(1− F (z))f(z) dz + 0.5

∫ v

v

(F (r(z))− F (z))f(z) dz

)

= 1−

(
0.5F (z)

∣∣∣
v

v
− 0.5

1

2
F (z)2

∣∣∣
v

v
+ 0.5

1

2
F (z)

∣∣∣
v

v
− 0.5

1

4
F (z)2

∣∣∣
v

v

)

= 1−
3

8
= 0.625. (3.17)

Note that when valuations are uniformly distributed, both forms of favoritism

lead to the same expected allocative efficiency. The optimal mechanism is

thus predicted to allow the coalition to maximize the rents extracted from the

non-preferred bidder, without causing additional deadweight losses.

Table 3.1 and the above analysis give the following predictions. Note that

these predictions do not consider any lump-sum payments in the negotiation

stage, which are discussed below.

Hypothesis 3.1 (Payoff Regular Bidder) The expected payoff of the reg-

ular bidder is lowest under OM, followed by ROFR, and then FPA.

Hypothesis 3.2 (Payoff Preferred Bidder) The expected payoff of the pre-

ferred bidder is highest under OM, followed by ROFR, and then FPA.

Hypothesis 3.3 (Auction Revenue) The expected auction revenue (elici-

tation payment under OM considered) is lower under any of the auctions with

favoritism than under the standard first-price auction. It is not significantly

different between OM and ROFR.

Hypothesis 3.4 (Joint Payoff) The expected joint payoff of the preferred

bidder and the seller is highest under OM, followed by ROFR, and then FPA.

Hypothesis 3.5 (Allocative Efficiency) The expected allocative efficiency

is lower under any of the auctions with favoritism than under the standard

first-price auction. It is not significantly different between OM and ROFR.

14The calculations in (3.17) use that F (r(z)) = F ((z + v)/2) = (z − v)/2 + (v − v)/2 =
1/2 + F (z)/2.
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The intuition behind these predictions is the following. In the FPA, a bid-

der wins the auction if and only if she has the highest valuation. Under any

mechanism with favoritism, the regular bidder can loose the auction despite

having the higher valuation. This leads to lower efficiency in the auctions with

favoritism (Hypothesis 3.5) and to redistribution of rents away from the reg-

ular bidder to the preferred bidder. Hypothesis 3.1 and Hypothesis 3.4 follow

from the fact that OM is designed to maximize this rent extraction. Favoritism

affects the expected payoffs of the seller and the preferred bidder in opposite di-

rections. As the preferred bidder receives the good with higher probability, her

ex ante expected payoff is higher in the auctions with favoritism. It is highest

under OM where she receives the total additional surplus extracted from the

competing bidder as informational rents (Hypothesis 3.2). Favoritism reduces

the expected auction revenue. Under FPA it equals the bid corresponding to

the highest valuation. Under ROFR it equals the bid of the regular bidder,

whose bid is not affected by the existence of favoritism and who may not have

the highest valuation. Hence, the expected auction revenue is lower under

ROFR than under FPA. Since all of the additional rents under OM are used

to elicit the preferred bidder’s valuation, the auction revenue is the same under

both forms of favoritism (Hypothesis 3.3).

The above analysis of the expected payoffs disregards any lump-sum pay-

ments by the preferred bidder in Stage 1. In line with the general literature on

favoritism, it finds that when the seller’s payoff is determined by the auction

revenue alone, the seller does not have any incentives to run an auction with

favoritism. However, if the seller can extract (part of) the preferred bidder’s

additional surplus arising from favoritism, her incentives to grant any form of

favoritism depend on the total payoff she receives from running the auction.

The realized distribution of surplus in the experiment is an artefact of the

experimental design, thus making a direct comparison between the seller’s

payoff under the first-price auction and her payoff under any of the auctions

with favoritism not very insightful. As noted above, provided that the preferred

bidder does not face any financial constraints, the distribution in practice will

depend on the bargaining power of the negotiating parties. In the following,

it is assumed that in Stage 1 the seller has the bargaining power. Given the

symmetric information structure in Stage 1, she makes a take-it-or-leave-it offer
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to the preferred bidder that extracts the latter’s maximum willingness-to-pay

for the auction with favoritism, who then accepts this offer. The preferred

bidder’s maximum willingness-to-pay will be such that she becomes indifferent

between paying this amount and receiving the expected payoff under an auction

with favoritism on the one hand, and not paying this amount and receiving

the expected payoff under the first-price auction on the other. The following

prediction about the maximum lump-sum payment the preferred bidder would

accept in the negotiation stage is a corollary of Hypothesis 3.2.

Hypothesis 3.6 (Maximum Willingness-To-Pay) The maximum

willingness-to-pay by a preferred bidder to avoid the standard first-price auc-

tion is higher in T-OM than in T-ROFR.

As the seller’s payoff equals the sum of her auction revenue and the rents

she extracts from the preferred bidder in the negotiation stage, the following

prediction about the maximum achievable payoff a seller who has the bargain-

ing power and extracts the preferred bidder’s maximum willingness-to-pay in

Stage 1 is a corollary of Hypotheses 3.3 and 3.6.

Hypothesis 3.7 (Achievable Payoff Seller) If the seller can extract the

preferred bidder’s total willingness-to-pay for avoiding the first-price auction,

her payoff is highest under OM, followed by ROFR, and then FPA.

3.5 Experimental Results

This section presents the experimental results. The experimental design

allows for between-subject comparison of T-ROFR and T-OM and within-

subject comparison of any of the forms of favoritism and the FPA. With ten

independent observations per treatment, I run exact non-parametric, two-sided

tests. The Wilcoxon Signed-Rank test (WSR) compares the distributions of

observed with predicted values and paired data within one treatment. The

Mann-Whitney U-test (MWU) is used for between-treatment comparisons.
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Table 3.2 gives an overview of the descriptive statistics over all 60 rounds,

together with within- and between-treatment comparisons for all hypotheses

except for Hypothesis 3.6. Except for the joint payoff in T-OM and the auction

revenue under OM, all empirical values reported in Table 3.2 are significantly

different from the theoretically predicted ones in Table 3.1 (pWSR < 0.05).15

In line with Hypothesis 3.2, the preferred bidder benefits from both forms

of favoritism. She does significantly more so in T-OM than in T-ROFR, where

the price she pays under the auction with favoritism is determined by risk-

averse regular bidders, who overbid substantially (see Section 3.6).
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Figure 3.3: Average Willingness-To-Pay for an Auction with
Favoritism (No Overbidders)

Figure 3.3 depicts the average willingness-to-pay reported by the preferred

bidders in both treatments.16 In line with Hypothesis 3.6 and the empiri-

cally observed differences between the preferred bidder’s payoff in auctions

with and without favoritism, subjects in T-OM report significantly higher

15For the variables reported in Table 3.2, significant differences between the first 30 and
the last 30 rounds are observed only for the T-OM treatment where the payoff of the pre-
ferred bidder under OM increases significantly from 30.31 ECU (SD=3.20) to 33.23 ECU
(SD=2.28) and the respective joint surplus increases from 55.80 ECU (SD=3.61) to 58.65
ECU (SD=2.33). As shown in the appendix, these differences are the result of more truthful
valuation reports after restart.

16Figure 3.3 excludes data with values higher than 25 ECU, since neither the probability
to compete in an auction with favoritism nor the possible lump-sum payment are affected by
such announcements. Including this data and capping the willingness-to-pay at 25 ECU gives
average willingness-to-pay of 14.03 ECU (SD=4.88) in T-ROFR and 19.08 ECU (SD=3.21)
in T-OM. Hence, the qualitative results remain the same.
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willingness-to-pay to avoid the first-price auctions than their counterparts in

T-ROFR (pMWU = 0.043). Both values are not significantly different from

the theoretical maximum willingness-to-pay of a risk-neutral preferred bid-

der, which equals 12.5 in T-ROFR and 16.66 in T-OM (pROFR
WSR = 0.084 and

pOM
WSR = 0.375).

The rest of the theoretical predictions enjoy only partial support. Possi-

ble reasons for the observed deviations are discussed in Section 3.6. While

the payoff of the regular bidder is significantly lower under both forms of fa-

voritism in comparison to her payoff under FPA, OM does not lead to higher

rent extraction than ROFR as was predicted in Hypothesis 3.1. Furthermore,

the experimental results do not support the prediction that the joint surplus

of the preferred bidder and the seller is increased by both forms of favoritism

and maximized under OM (Hypothesis 3.4). The average joint surplus under

OM is marginally higher than the respective joint surplus under FPA. How-

ever, it is also marginally lower than the average joint surplus under ROFR.

This provides additional support for the observation that OM is incapable of

optimizing rent extraction from the regular bidder.

When the seller does not receive any lump-sum payment from the preferred

bidder in the negotiation stage, then her payoff is determined only by the

auction revenue. In line with Hypothesis 3.3 and with the general literature

on favoritism (see McAdams and Schwarz 2007, for example), the direct effect

of this unconditional favoritism on the seller’s payoff is negative. However,

contrary to the theoretical predictions, the negative effect is higher in T-OM

than in T-ROFR. Furthermore, assuming that in the negotiation stage the

seller has the bargaining power and makes a take-it-or-leave-it offer to the

preferred bidder, such that the lump-sum payment required in exchange for

the auction for favoritism extracts all of the preferred bidder’s willingness-

to-pay, the seller’s payoff remains higher under ROFR than under OM. This

result shows that under OM the rents extracted from the regular bidder are

insufficient to outweigh the losses in revenue. Hence, contrary to Hypothesis

3.7, favoritism can benefit the seller only if it is in the form of a ROFR, but

not a OM.

Finally, the experimental results suggest that, contrary to Hypothesis 3.5,

favoritism does not necessarily impair the allocative efficiency of the auction.
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This is due to the first-price auction not being perfectly efficient. Hence, a

seller would prefer favoritism with ROFR over favoritism with OM out of both

– payoff-maximizing and allocative efficiency concerns.

3.6 Discussion

This section discusses two complementary explanations for the disparities

between the theoretical predictions and the experimental results. In fact, the

theoretical analysis in Section 3.2 is based on a couple of assumptions, which

are not fulfilled in the experimental laboratory. It is demonstrated that the

experimental results can be organized, firstly, by abandoning the assumption

of risk-neutral bidders and, secondly, by allowing the preferred bidders to be

boundedly rational and not reveal their true valuation under OM. In particu-

lar, heterogenous risk-aversion organizes the ranking of the observed auction

revenue and the allocative efficiency, while the preferred bidder’s deviations

from the optimal reporting strategy under OM explain the lack of additional

rent extraction and the relatively low joint surplus under OM.

Risk-neutral (regular) bidders should submit bids equal to half of their

valuations under FPA (and ROFR). Table 3.3 presents fixed effects estimates

for the bidding functions of the preferred bidder (I) and the regular bidder (II)

under FPA, and the regular bidder under FPA and ROFR (III). The estimates

are clustered on the observation level, with robust error terms and controls for

the effect of repetition. The baseline is the first-round bidding function under

FPA. Treatment effects are accounted for through full interaction effects.17 In

line with the theoretical predictions, the intercepts over all models are not

significantly different from 0 and the presence of favoritism does not affect the

bid of the regular bidder. However, contrary to the theoretical predictions and

in line with the experimental literature on first-price auctions, the slope of the

bidding function is significantly different from 0.5 across all models.

It is well established that risk aversion is one of the reasons for such over-

bidding.18 As shown in the appendix section, risk aversion alters behavior

17Estimating the same models with random effects shows that there is no significant
treatment effect on the intercept.

18There is a large body of literature discussing the relative importance of risk aversion
in explaining bidding behavior in first-price auctions. For an excellent if somewhat dated
overview, see Kagel (1995). Recent developments have provided a number of alternative
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Table 3.3: Fixed Effects Estimates for the Bidding Functions
under FPA and ROFR

Variable/Model (I) (II) (III)
Valuation 0.633*** 0.712*** 0.706***
T-OM∗Valuation 0.116** -0.039
ROFR 0.028
ROFR ∗Valuation 0.027
Round 0.031 0.039 0.036
T-OM∗Round -0.088* -0.111*
ROFR∗Round -0.001
Constant -0.918 0.819 0.008

N 879 879 1800
Nr. of clusters 20 20 10

R2 between 0.703 0.524 0.269
R2 within 0.895 0.844 0.854
R2 overall 0.845 0.791 0.805

Legend: * p<0.05; ** p<0.01; *** p<0.001; (I) preferred

bidder under FPA; (II) regular bidder under FPA; (III)

regular bidder under FPA and ROFR.

under FPA and ROFR, but does not change the predictions of the OM model.

In particular, when bidders are risk-averse, the optimal bids under FPA and

ROFR increase, whereas a risk-averse preferred bidder should continue to re-

port her true valuation under OM (see below). As a result, the probability

that under ROFR a preferred bidder wins the auction despite having the lower

valuation decreases, while the price she pays increases. This implies that risk

aversion reinforces the predictions in Hypothesis 3.2, namely that the payoff

of the preferred bidder is highest under OM, followed by ROFR, and then by

FPA, and decreases the negative effect of favoritism on the allocative efficiency

under ROFR, but not under OM.

Corollary 3.1 When bidders are risk-averse, the allocative efficiency under

OM is lower than the allocative efficiency under ROFR.

explanations for the frequently observed overbidding (see Andreoni, Che and Kim 2007;
Armantier and Treich 2009; Engelbrecht-Wiggans and Katok 2007; Filiz-Ozbay and Ozbay
2007, for examples of alternative behavioral explanations, such as spite, regret, and non-
linear probability weighting). However, they usually complement risk aversion and cannot
eliminate it as an explanatory variable.
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From the perspective of the seller, risk aversion leads to a higher winning

bid under FPA and a higher regular bidder’s bid under ROFR. Behavior and

revenue remain the same under OM. As a result, the expected auction revenue

is no longer equal under both forms of favoritism.

Corollary 3.2 When bidders are risk-averse, the expected auction revenue is

lowest under OM, followed by ROFR, and then by FPA.

The predictions of both corollaries are in line with the experimental results

in Table 3.2. Given that risk aversion affects the preferred bidder’s payoff

and the auction revenue in an opposite manner, its impact on the achievable

payoff of the seller and the joint surplus of the seller and the preferred bidder

is ambiguous.

Note that the corollaries do not require any assumptions about the indi-

vidual levels of risk aversion. If heterogeneity of risk preferences is accounted

for, then the bidding functions under FPA are no longer symmetric. Thus, the

bidder with the lower valuation can win the auction with a positive probability,

suggesting that the expected allocative efficiency of the FPA is no longer equal

to 1. Depending on the extent to which heterogeneous risk preferences cause

the allocative efficiency under FPA to decline, ROFR does not necessarily

harm the allocative efficiency as predicted in Hypothesis 3.5.19

So far we could establish that accounting for risk aversion organizes the ex-

perimental results concerning the auction revenue and the allocative efficiency.

However, it is still puzzling that OM does not maximize rent extraction from

the regular bidder and the preferred bidder’s and the seller’s joint surplus.

Figure 3.4, which depicts the preferred bidder’s reported valuation in relation

to their true one, throws some light on the reasons behind the inability of OM

to maximize the coalition’s surplus.

The predictions of the optimal mechanism assume that the preferred bidder

truthfully reports her valuation in Stage 2.2 of the second game. In the ap-

pendix, it is demonstrated that the elicitation mechanism is such that even a

19For example, assume that the preferred bidder is risk-neutral and has the higher valu-
ation. Then allocation under ROFR would be efficient for any level of risk-aversion of the
regular bidder. However, when the regular bidder has a sufficiently high valuation (which
is lower than the one of the preferred bidder) and is sufficiently risk-averse, then her bid in
the FPA would be higher than the preferred bidder’s bid in the FPA, leading to inefficient
allocation.
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Figure 3.4: Reported Valuations by the Preferred Bidder in
T-OM

risk-averse preferred bidder should report her true valuation. The frequent and

large deviations from the 45 degree line indicate that she only rarely reports

a valuation which is near her true value. The deviation of the reported from

the true valuation does not exceed 1 ECU in only 8.2% of the cases. More-

over, the absolute deviation exceeds 5 ECU in more than 70% of the cases.

The reported valuation is on average 4.87 ECU (SD=4.45) lower than the true

valuation, which suggests that there is a general tendency to underreport.20

As Table 3.4 and 3.5 in the appendix show, misreporting does not pay off and

therefore decreases over time. Nonetheless, in the last ten rounds, around 65%

of preferred bidders still misreport by more than 5 ECU. Hence, although sub-

jects were provided with a table that allowed them to identify truthful value

revelation as an optimal strategy, the elicitation mechanism was incapable of

inducing truth-telling. Given that the optimization properties of OM seem to

be highly dependent on the (in)ability of the elicitation mechanism to induce

truthful report revelation by boundedly rational agents, its feasibility cannot

be supported.

Given that lack of truthful value revelation is one of the drivers behind

20Note that the results may be driven by a preference for round numbers, which is a
phenomenon commonly reported in the psychological and financial markets literature (see
?, for example). In fact, while about 10.5% of the true valuations can be rounded to a
number which is a multiple of 10, 66.9% of the reported valuations are numbers which are
a multiple of 10.
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OM’s relatively bad performance, it may also be useful to analyze how ROFR

compares to an optimal mechanism where there are no informational asym-

metries between the seller and the preferred bidder in Stage 2. This would be

the case, for example, if the seller and the preferred bidder were members of

a corporate enterprize that needs to make a make-or-buy decision. When the

experimental results for ROFR are compared to the theoretical predictions for

OM, the qualitative results remain the same – under ROFR the payoff of the

preferred bidder is significantly lower than 33.33 ECU (pWSR = 0.001), the

auction revenue is significantly higher than 25.00 ECU (pWSR = 0.001), and

the joint surplus is significantly higher than 58.33 ECU (pWSR = 0.023). This

result seems to be driven by the fact, that risk aversion on the side of the reg-

ular bidder affects the auction revenue under ROFR but not under OM. Note

that this result may be an artefact of the experimental design, which due to

lack of competition among the regular bidders, does not allow us to investigate

the effect of risk aversion on their bidding strategies under OM.

3.7 Conclusion

This study provides empirical evidence that favoritism can increase the

joint surplus of a seller and a preferred bidder. Provided that the seller can

collect a sufficient part of the additional surplus, she benefits from granting

the right of first refusal but not from the auction with an optimal reserve

price. This study also sheds light on the feasibility of the implicit assumption

that the seller knows the preferred bidder’s valuation, which is present in some

of the literature on favoritism and corruption in auctions with a share-based

division of surplus among the coalition partners. In particular, Burguet and

Perry (2009) provide a mechanism for the elicitation of the preferred bidder’s

valuation that I show to be incentive compatible for risk-averse bidders as

well. However, in the experiment the reported valuations deviate from the true

ones. The difference between the two decreases with repetition but remains

significant. As noted in the introduction, the willingness of private companies

to reveal their true costs when they interact repeatedly with a procurer is also

questionable. Hence, more research is needed into alternative mechanisms to

form coalitions, which do not require symmetric information of the coalition

partners or whose optimization properties are more robust to deviations from
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equilibrium play.

The experimental results also suggest that even when there are no informa-

tion asymmetries between the seller and the preferred bidder, an auction with

the right of first refusal tends to outperform an auction with an optimal re-

serve price. However, this result may be driven by the particular experimental

setting, where there is only one regular bidder. As a result, the seller and the

preferred bidder can extract risk rents only in the auction with the right of

first refusal but not in the auction with the optimal reserve price, where the

regular bidder’s acceptance of the take-it-or-leave-it offer is not affected by her

risk preferences. Competition among the regular bidders may lead to different

results.

It is important to note that the experimental results rely on a couple of

critical assumptions. Firstly, in line with the general experimental literature,

the preferred bidder’s willingness-to-pay for the respective auction with fa-

voritism is elicited via the Becker-DeGroot-Marschak-method (Becker et al.

1964). However, a common problem with this instrument is that it is not

incentive compatible for decisions made under uncertainty (Horowitz 2006;

Karni and Safra 1996). As the preferred bidder’s true benefit from favoritism

is a random variable, the empirical data for the potential benefits for the seller

may therefore be unreliable.

Finally, the analysis assumes that the existence of publicly known favoritism

does not discourage the non-preferred bidders from participating in the auc-

tion. However, if bidders incur entry costs for preparing their bids, for example,

then the common knowledge of favoritism could lead to lower participation.

This in turn decreases the rents that can be extracted from the non-preferred

bidders (Walker 1999), so that they no longer outweigh the losses in auction

revenue. Future research should attempt to provide more insights on the effect

of favoritism in auctions with costly participation.
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3.8 Appendix

3.8.1 Proof of Proposition 3.3, (iii)

Proof In Stage 3 the reserve price r is commonly known. Following Krishna

(2002, Ch. 2.5), in a symmetric equilibrium with N − 1 regular bidder, the

increasing bid function equals

βOM(x) = r
F (r)N−2

F (x)N−2
+

1

F (x)N−2

∫ x

r

z(N − 2)F (z)N−3f(z) dz (3.18)

for x > r and 0 otherwise. In the symmetric, increasing equilibrium, the

expected payoff of a regular bidder Rj, j = {1, 2, . . . , N − 1}, with valuation

x is thus ΠOM
Rj

(x, r) = F (x)N−2(x− βOM(x, r)).

Before Stage 3, r is a function of P’s random valuation, giving an expected

payoff of a regular bidder with valuation x equal to

ΠOM
Rj

(x, r(z)) = F (x)N−2(x− E[βOM(x, r(z))|x > r(z)])π(x > r(z))

= F (x)N−2

(
xF (r−1(x))−

∫ r−1(x)

v

βOM(x, r(z))f(z) dz

)
. (3.19)

Thus, in Stage 1, her ex ante expected payoff is given by

EΠOM
Rj

(·) =

∫ v

r(v)

f(x)F (x)N−2
(
xF (r−1(x))

−

∫ r−1(x)

v

βOM(x, r(z))f(z) dz

)
dx. (3.20)

�

3.8.2 Bidding Functions and Allocative Efficiency with

Risk-Aversion

In the following, the bidding functions under FPA and ROFR are formally

derived. In line with Cox, Roberson and Smith (1982) and the majority of

the auction literature, a utility function in the form Ui(y) = yαi is assumed,

where y ∈ R+, αi ∈ (0, 1], and 1− αi is the measure of Arrow-Pratt constant
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relative risk aversion of player i.21 For tractability, assume that bidders share

the same risk preferences. Valuations are i.i.d. on F (x) ∼ U [v, v]. Cox

et al. show that under FPA the increasing equilibrium bid function is given

by βFPA(x, α) = (x− v)/(1 + α) + v.22

Under ROFR the regular bidder submits a bid bROFR, which maximizes her

expected utility UROFR
R (x, bROFR, α) = F (bROFR)(x − bROFR)α. With some

abuse of notation, the first-order condition equals

∂U/∂b = f(b)(x− b)α − αF (b)(x− b)α.

This first-order condition is fulfilled when

f(b)(x− b)− αF (b) = 0⇔ x− b = α(b− v)⇔ x+ αv = b(α + 1).

Rearranging this term gives βROFR(x, α) = (x − v)/(1 + α) + v, which is

identical to the equilibrium bid function in the standard first-price auction.

Hence, the bidding behavior of a risk-averse regular bidder is also not affected

by the presence of right of first refusal, when F (x) is a uniform distribution.

Furthermore, for any α ∈ (0, 1) and x ∈ F (x) \ {v} the equilibrium bidding

function with risk aversion is greater than the one without.

As noted in Section 3.6, as long as both bidders share the same risk prefer-

ences, the allocative efficiency of the first-price auction is not affected by risk

aversion. In the following, the allocative efficiency of the ROFR is derived,

where α denotes the constant relative risk aversion of the regular bidder. Note

that F (βROFR(x)) = (x−v)/(1+α)+v−v
v−v

= F (x)/(1 + α). Hence, when π(Ω) de-

notes the probability that an event Ω occurs and P’s valuation equals xP , then

π(xP > βROFR(v)) = α/(1 + α) and π(xP ≤ βROFR(v)) = 1/(1 + α).

Analogous to equation (3.16), when the regular bidder has risk preferences

such that α ∈ (0, 1), the expected allocative efficiency under ROFR is given

21Cox et al. (1982) note that due to −yU ′′i (y)/U
′

i(y) = 1− αi, the interpretation of 1− α
as Arrow-Pratt’s constant relative risk aversion is valid only when the utility function is
defined on income, but not on terminal wealth.

22Note that the solution in Cox et al. (1982) assumes that the bidding function does not
exceed some b̄. Krishna (2002), for example, shows that the equilibrium bidding strategy
with two bidders with identical risk preferences, whose values are drawn from F (x), is the
same as the equilibrium bidding strategy with two risk-neutral bidders, whose values are
drawn from a distribution Fα(x) = F (x)1/α. Hence, when b̄ = βROFR(v, α) is assumed, no
further analysis for bids above b̄ is required.
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by

θROFR(α) = 1−

[
α

1 + α

∫ v

v

F (z)f(z) dz +
1

1 + α

∫ v

v

(F (z)− F (βROFR(z)))f(z) dz

]

=
(α + 1)2 + 1

2(1 + α)2
=

1

2
+

1

2(1 + α)2
. (3.21)

It is obvious that the allocative efficiency under ROFR is higher for any

α < 1 than for α = 1. Expression (3.21) also demonstrates that for an infinitely

risk-averse regular bidder, ROFR leads to perfect allocative efficiency.

3.8.3 Misreporting under OM

Matthews (1983) demonstrates then when the regular bidder is risk-averse,

r(x) no longer optimizes the expected joint surplus of the seller and the pre-

ferred bidder (regardless of the preferred bidder’s risk preferences).23 However,

if the elicitation mechanism is such that it fulfills all requirements of Lemma 2

in Maskin and Riley (1984), its incentive compatibility remains unaffected by

the preferred bidder’s risk preferences.

Proposition 3.6 The elicitation mechanism under OM with allocation rule

F (r(x))N−1 and transfer T (x) =
∫ x

v
F (r(z))N−1 dz, where r(x) is the reserve

price defined in Section 3.2, fulfills the conditions in Lemma 2 in Maskin and

Riley (1984).

Proof Firstly, the utility function is such that U(y) is continuously differen-

tiable, U ′(y) > 0, U ′′(y) < 0, and ∂2U(y1, y2)/∂y1∂y2 ≤ 0 for every α ∈ (0, 1).

Furthermore, the probability to win F (r(x))N−1 and the transfer T (x) are non-

decreasing in x. Denote with V (x, x) = max
x̂

V (x̂, x) the maximized expected

utility, where

V (x̂, x) = F (r(x̂))N−1U(x+ T (x̂)− x̂) + (1− F (r(x̂))N−1)U(T (x̂)).

Since V (x, x) is an increasing function, Lemma 2 in Maskin and Riley (1984)

postulates that a mechanism is incentive compatible when it fulfills the follow-

23In fact, the joint surplus could be increased, if instead of a reserve price with sure
outcome, the regular bidder is offered a lottery which extracts additional rents for risk
avoidance.
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ing condition:
d

dx
V (x, x) =

∂

∂x̂
V (x, x̂). (3.22)

As V (x, x̂) = F (r(x))N−1U(x̂+T (x)−x)+(1−F (r(x))N−1)U(T (x)), the term

on the right-hand side equals

∂V (x, x̂)

∂x̂
|x̂=x = F (r(x))N−1α(x̂+ T (x)− x)α−1

= F (r(x))N−1αT (x)α−1, (3.23)

while the term on the left-hand side equals

d

dx
V (x, x) =

dT (x)α

dx
= αT (x)α−1F (r(x))N−1. (3.24)

From (3.23) and (3.24) it is obvious that the condition in (3.22) is fulfilled. �

The intuition behind this result is as follows. Due to the properties of T (x)

and F (r(x)), a risk-neutral preferred bidder does not have incentives to re-

port valuations lower than her true one. However, for any x̂ > x she incurs

costs that in expectation are higher than the benefit of the additional transfer.

Hence, x̂ = x maximizes the trade-off between the secure payment T (x) and

the expected costs (or benefits) from x− x̂. A risk-averse preferred bidder has

a higher utility from a secure payment T (x) than a lottery with the same ex-

pected payment. Hence, she would have even stronger incentives to avoid the

risk of not winning when x > x̂ or winning, but incurring costs when x < x̂.

Thus, risk aversion reinforces the pull towards x̂ = x.

Despite the theoretical incentive compatibility of the elicitation mechanism,

there is significant misreporting with absolute deviation between the reported

and true valuation equal to 17.562 ECU (SD=3.521) in the first 30 rounds

and 14.275 ECU (SD=3.303) in the second 30 rounds. Thus, although with

repetition deviations from equilibrium decrease, they do not disappear. Tables

3.4 and 3.5 support the analysis in Section 3.6.
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Table 3.4: Fixed Effects Estimates of the Effect of
Misreporting on the Preferred Bidder’s Payoff

Variable/Model (I) (II) (III)
|reported - true valuation| -0.162** -0.153** -0.159**
Valuation 0.742*** 0.705*** 0.707***
Winner 9.222*** 9.196***
Round -0.026
Constant -8.482*** -13.377*** -12.541***

N 1482 1482 1482
Nr. of clustersa 10 10 10

R2 between 0.566 0.565 0.569
R2 within 0.729 0.754 0.754
R2 overall 0.726 0.75 0.751

Legend: * p<0.05; ** p<0.01; *** p<0.001; a clustered on the observa-

tion level, with robust error terms.

Table 3.5: Fixed Effects Estimates of the Effect of Repetition
on Misreporting

Variable/Model (I)a (II)a (III)a (IV)a

Round -0.124* -0.419** -0.135** -0.446**
Round squared 0.005** 0.005**
Valuation 0.128** 0.128**
Constant 19.760*** 22.828*** 13.721*** 16.920***

N 1482 1482 1482 1482
Nr. of clustersb 10 10 10 10

R2 between 0.007 0.004 0.001 0.001
R2 within 0.024 0.033 0.096 0.106
R2 overall 0.018 0.0251 0.0745 0.0825

Legend: * p<0.05; ** p<0.01; *** p<0.001; ; a dependent variable is

|reported valuation - true valuation|; b clustered on the observation level,

with robust error terms.

3.8.4 Instructions

In the following the instructions for the experiment are provided. A [Treatment]

indicates which sections were present only in the instructions of the respective

treatment.
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Welcome and thank you for participating in this experiment! Please read

these instructions thoroughly. We kindly ask you to refrain from talking to

or in any other way communicating with other participants. We also ask

you to turn off your mobile phones. Please raise your hand if you have any

questions. The experimenter will then come to you and answer your questions.

All participants have received the same instructions.

General Information

You will be able to earn money during this experiment. Your respective amount

depends on your own decisions but also on decisions of other participants.

During the experiment your current payoff is calculated in ECU (Experimental

Currency Units). 30 ECU equals 1 Euro. At the end of the experiment your

profits will be converted into Euro according to this exchange rate and paid

out to you in cash plus a 2.50 Euro show-up fee.

This experiment is made up of two identical parts of 30 rounds respectively.

You will receive a starting credit of 100 ECU at the beginning of each part.

This amount can vary as a result of your behavior over the 30 rounds. Whether

part 1 or part 2 is relevant for your final payoff, will be determined by chance

at the end of the experiment.

In each round two persons interact with each other. We will denote one

person as “participant A” and the other as “participant B”. You will be as-

signed your role, participant A or participant B, by chance at the beginning

of the experiment. You will keep the role you have been assigned over the

entire experiment. In each round, you will be randomly matched to another

participant. The matching of participants will remain strictly anonymous.

How can I earn money?

In each of the 30 rounds of one part of the experiment, you will be able to

acquire a fictitious good. If in one round you acquire the fictitious good, the

experimenter will credit you with ECU at the end of this round. The respective

amount of ECU depends on your “valuation” of the fictitious good. For your

final payoff for the respective round other costs or credits that may arise will

be deducted or respectively added to this valuation (see below). The valuation

will vary between participants and rounds. The valuation for both participants

will be determined by chance and will be a number with one decimal place,
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between 0.0 ECU and 100.0 ECU. Each number will be equally likely. The

valuation of the other participant will be determined according to the same

rules as yours, it will be independent from your valuation, and usually it will

differ from yours. (At no time point of the experiment will you be informed

about the valuation of the other participant.)

The course of a round?

The chart on the next page illustrates the possible course of one round. The

following text outlines the individual steps in detail.

[Figure 3.1 and 3.2 were respectively displayed.]

Explanations to the chart

The price decisions of the two matched participants determine who pur-

chases the fictitious good. Participant A can influence whether the price deci-

sion is taken simultaneously or sequentially (see chart on the previous page).

Both participants learn their respective valuation as soon as the course of the

round has been determined.

If price decisions are taken simultaneously, both participants submit their

price for the fictitious good at the same time without receiving any further

information. The participant, who submit the higher price, receives the ficti-

tious good and pays the price he submitted. The other participant does not

receive the good and pays nothing. In case of a tie, who receives the fictitious

good is determined by chance.

[ROFR] If price decisions are taken sequentially, participant B submits his

price first. Participant A can then acquire the good at the price submitted by

participant B. If he turns this price down, then participant B receives the good

and pays the price he submitted.

[OM] If price decisions are taken sequentially, participant A specifies a price

between 50.0 and 100.0 ECU. Participant B can acquire the fictitious good at

this price. If he turns this price down, then participant A receives the fictitious

good and pays a price, which depends on the price he submitted, but differs from

it. Additionally, participant A is credited a fixed transfer that also depends

on the price specified for participant B, regardless of who receives the good.

The table at the end of these instructions presents the prices and the transfers

for participant A for some alternative price specifications for participant B.

Participant A can use an automatic calculator to learn the exact amounts for
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other price specifications before he commits to a certain price.

How does participant A decide on the course of a round?

At the beginning of each round, before the participants have received any

information about their valuation, participant A states the maximum amount

he is willing to pay in order for price decisions to be taken sequentially (and

not simultaneously). The actual price he has to pay is determined by chance.

The price is a number with one decimal place between -10.0 ECU and 25.0

ECU. (Note: A negative price corresponds to a credit.) Each number is equally

likely. If the amount stated by participant A is at least as high as the price

determined by chance, then price decisions are taken sequentially during this

round, and at the end of the round participant A pays the price determined by

chance. Otherwise, price decisions are taken simultaneously, and participant

A has no extra costs at the end of this round. Please note, that participant

A does not pay the price he stated, but the price determined by chance. It is,

therefore, optimal for him to consider what sequential price decision making

(instead of simultaneous price decision making) is worth to him and state this

amount as his maximum willingness-to-pay.

How high is the payoff of participant A at the end of each round?

If price decisions are taken simultaneously and participant A receives the

fictitious good, he is credited his valuation minus the price he submitted. If

price decisions are taken simultaneously and participant A does not receive the

fictitious good, then his payoff is zero.

[ROFR] If price decisions are taken sequentially, then participant A always

has to pay the price for sequential price decisions determined by chance. If he

receives the fictitious good, then he is credited his valuation minus the price

submitted by participant B. If he does not receive the fictitious good, he does

not get any credits.

[OM] If price decisions are taken sequentially, then participant A always has

to pay the price for sequential price decisions determined by chance. Addi-

tionally, he is credited the fixed transfer from the experimenter, which depends

on the price specified for participant B. If he receives the fictitious good, then

he is also credited his valuation minus the price that results from his price

specifications for participant B. If he does not receive the fictive good, he does

not get any additional credits.
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How high is the payoff of participant B at the end of each round?

[ROFR] If participant B receives the fictitious good, then he is credited his

valuation minus the price he submitted. If he does not receive the fictitious

good, his payoff equals zero. His payoff at the end of a round, thus, does not

depend on whether price decisions were taken simultaneously or sequentially.

[OM] If participant B receives the fictitious good and price decisions were

taken simultaneously, then he is credited his valuation minus the price he

stated. If participant B receives the fictitious good and price decisions were

taken sequentially, then he is credited his valuation minus the price specified by

participant A. If he does not receive the fictitious good, his payoff equals zero,

regardless of whether price decisions were taken simultaneously or sequentially.

What happens if the payoff is negative in one round?

Losses incurred in some rounds will be set off against gains in other rounds.

If the dice determines that a part of the experiment in which you have accu-

mulated losses is the part relevant for your final payoff, then these losses will

be set off against the 2.50 Euro show-up fee.

What information do I receive?

You will be informed about your own valuation once it has been determined,

and whether price decisions are taken simultaneously or sequentially and before

you have to make a price decision. Additionally, participant A is immediately

informed about the price for sequential price decisions determined by chance.

After simultaneous price decisions, you will receive the following information

at the end of each round: whether you have received the fictitious good, what

was the highest price, and how high is your payoff for this round.

After sequential price decisions, you will receive the following information at

the end of each round: the price determined by the other participant, whether

you have received the fictitious good, and how high is your payoff for this

round.

Final remarks

In total, you will play for 60 rounds. At the end of the experiment, one

participant will toss a dice and thereby determine which part of the experiment

is relevant for your final payoff (uneven number = first part, even number =
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second part). All rounds are relevant for your final payoff until the die has

been tossed at the end of the experiment. Please raise your hand if you have

any questions.
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Table 3.6: Price and Transfer for Participant A (PT A)
Depending on the Price Specified for Participant B (PT B)

Price for Price for Transfer Price for Price for Transfer Price for Price for Transfer
PT B PT A for PT A PT B PT A for PT A PT B PT A for PT A
50.0 0.0 0.0 67.0 34.0 19.9 84.0 68.0 45.6
50.5 1.0 0.5 67.5 35.0 20.6 84.5 69.0 46.4
51.0 2.0 1.0 68.0 36.0 21.2 85.0 70.0 47.3
51.5 3.0 1.5 68.5 37.0 21.9 85.5 71.0 48.1
52.0 4.0 2.0 69.0 38.0 22.6 86.0 72.0 49.0
52.5 5.0 2.6 69.5 39.0 23.3 86.5 73.0 49.8
53.0 6.0 3.1 70.0 40.0 24.0 87.0 74.0 50.7
53.5 7.0 3.6 70.5 41.0 24.7 87.5 75.0 51.6
54.0 8.0 4.2 71.0 42.0 25.4 88.0 76.0 52.4
54.5 9.0 4.7 71.5 43.0 26.1 88.5 77.0 53.3
55.0 10.0 5.3 72.0 44.0 26.8 89.0 78.0 54.2
55.5 11.0 5.8 72.5 45.0 27.6 89.5 79.0 55.1
56.0 12.0 6.4 73.0 46.0 28.3 90.0 80.0 56.0
56.5 13.0 6.9 73.5 47.0 29.0 90.5 81.0 56.9
57.0 14.0 7.5 74.0 48.0 29.8 91.0 82.0 57.8
57.5 15.0 8.1 74.5 49.0 30.5 91.5 83.0 58.7
58.0 16.0 8.6 75.0 50.0 31.3 92.0 84.0 59.6
58.5 17.0 9.2 75.5 51.0 32.0 92.5 85.0 60.6
59.0 18.0 9.8 76.0 52.0 32.8 93.0 86.0 61.5
59.5 19.0 10.4 76.5 53.0 33.5 93.5 87.0 62.4
60.0 20.0 11.0 77.0 54.0 34.3 94.0 88.0 63.4
60.5 21.0 11.6 77.5 55.0 35.1 94.5 89.0 64.3
61.0 22.0 12.2 78.0 56.0 35.8 95.0 90.0 65.3
61.5 23.0 12.8 78.5 57.0 36.6 95.5 91.0 66.2
62.0 24.0 13.4 79.0 58.0 37.4 96.0 92.0 67.2
62.5 25.0 14.1 79.5 59.0 38.2 96.5 93.0 68.1
63.0 26.0 14.7 80.0 60.0 39.0 97.0 94.0 69.1
63.5 27.0 15.3 80.5 61.0 39.8 97.5 95.0 70.1
64.0 28.0 16.0 81.0 62.0 40.6 98.0 96.0 71.0
64.5 29.0 16.6 81.5 63.0 41.4 98.5 97.0 72.0
65.0 30.0 17.3 82.0 64.0 42.2 99.0 98.0 73.0
65.5 31.0 17.9 82.5 65.0 43.1 99.5 99.0 74.0
66.0 32.0 18.6 83.0 66.0 43.9 100.0 100.0 75.0
66.5 33.0 19.2 83.5 67.0 44.7
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Chapter 4

The Effect of Different

Allocation Mechanisms in

Emissions Trading Markets

The content of the following chapter was produced in collaboration with Veronika

Grimm.

4.1 Introduction

As part of their strategy to curb greenhouse gas emissions governments

are increasingly adopting various forms of emissions trading. The European

Union Greenhouse Gas Emission Trading System (EU ETS), the Regional

Greenhouse Gas Initiative (RGGI) in the U.S., and the Carbon Pollution Re-

duction Schemes (CPRS) in Australia are just a few examples of its large-scale

implementation. The reason behind emissions trading’s increasing popularity

is the prevalent belief among economists that it is a highly efficient mechanism

to control greenhouse gases.1

The efficiency of a particular emissions trading market, however, depends

on the details of its market design. One of the most controversial issues is the

initial allocation mechanism for allowances. While in theory tradable emission

permits allow the regulated industry to efficiently reduce its emissions regard-

less of the initial allocation (Montgomery 1972), in practice different allocation

1While the regulator may have other goals, such as revenue maximization or transparency
of the environmental instrument, we believe efficiency to be the most important one.
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rules may lead to different outcomes. Two allocation mechanisms are usually

discussed — free allocation (called grandfathering) and auctioning. Free allo-

cation is preferred by the industry, which makes it more politically feasible.

Auctioning is favored by the majority of economists due to its transparency

and alleged efficiency (see Betz, Seifert, Cramton and Kerr 2010; Cramton and

Kerr 2002; Hepburn, Grubb, Neuhoff, Matthes and Tse 2006; Holt et al. 2007;

Ockenfels 2009), and is increasingly being used in the context of emissions

trading2, firing the discussion about a proper auction mechanism.

Although in recent years different auction formats have been used prior to

emission trading in RGGI and EU ETS it is hardly feasible to directly com-

pare the success of auctions and grandfathering using field data.3 Auctions

typically cover only a part of the allocated permits and coexist with grandfa-

thering. Still, most previous and current recommendations for auction design

are based on theoretical argumentation without any systematic empirical ev-

idence from the field or controlled experiments.4 We contribute to filling this

gap by running an experiment which investigates market performance under

two commonly recommended auction designs (Neuhoff, Matthes, Betz, Dröge,

Johnston, Kudelko, Löschel, Monjon, Mohr, Sato and Suwala 2008) and com-

pare them to a special kind of free allocation procedure. In particular, we in-

vestigate the effects of more and less frequent auctioning on the efficiency of a

secondary market for emission permits. To control for any effects caused by the

auction as a method of allocation we also run a treatment with grandfathered

permits, which is identical to the treatment with less frequent auctioning in

all respects except for the free allocation of permits.

We find that the frequency of auctioning affects the ability of the market

to deliver cost-efficient joint compliance within the system. We attribute this

observation to an interaction effect between the auction and the secondary

2At least 70% (and increasing) of the emission permits in the RGGI have already been
auctioned. A large share of the permits in the CPRS and EU ETS (up to 70% in 2020) will
be auctioned.

3Most of the auctions were single-round, sealed-bid, unform-price formats, however, they
differed in terms of their frequency and the supply-demand ratio. Auctions in RGGI take
place on quarterly basis and have been lately characterized by supply surplus, (RRGI 2012),
while auctions in EU ETS are without ex ante fixed and commonly know dates and with
significant shortage of supply (Co2-Handel.de 2012a; CO2-Handel.de 2012b).

4An exception is the design of the RGGI auctions, where Holt et al. (2007) had run a
series of experiments within the design process.
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market and to stronger overbidding in the smaller but more frequent auctions.

In addition to inducing more efficient prices, less frequent auctioning leads

to more efficient allocation after trade on the secondary markets. As a result,

total compliance cost tends to be lower if permits are auctioned less frequently.

When studying the method of allocation – for free or against a payment – we

find that it does not affect the efficiency of final allocation of permits (after

trade on secondary market). However, it influences the temporal development

of market prices as well as banking and borrowing behavior. On the one

hand, auctioning leads to earlier abatement activities, on the other hand, it

increases total compliance cost. Under all allocation rules we studied, the static

efficiency of the emissions trading system is hampered by naive abatement and

trade decisions. As a result, neither market managed to deliver nearly perfect

allocation despite the use of double auction as trading institution.

Let us briefly review the related literature. The experimental and theo-

retical literature provides abundant evidence for the effect of different design

aspects on the efficiency of an emission permit market.5 However, we are aware

of only few experiments that study the effect of different initial allocation rules

on the functioning of a subsequent trading market. Previous work that also

analyzes a secondary market includes experimental comparisons of auctioning

and grandfathering by Benz and Ehrhart (2007) and Goeree, Holt, Palmer,

Shobe and Burtraw (2010), as well as a comparison of different types of auc-

tions by Holt et al. (2007). Our work differs from those studies with respect

to the design of the grandfathering treatment, the use of increasing (instead

of constant) marginal abatement costs functions, and the trading institution

employed. In an attempt to closely mirror a real trade exchange, we use con-

tinuous double auction, which is known for its high efficiency in the lab6 as

opposed to the dynamic uniform double auction and the single-round, limit-

order, call market used in Benz and Ehrhart (2007) and Goeree et al. (2010),

respectively.

Holt et al. (2007) compare several auction types and find that sealed-bid and

5For review of experiments on banking, liability rules, and regulatory enforcement, see
Cason (2010). For the role of transaction costs, see Stavins (1995) and Cason and Gangad-
haran (2003). For the role of the trading institution, see Cason and Gangadharan (1998)
and Muller, Mestelman, Spraggon and Godby (2002).

6For examples of highly efficient continuous double auction in the context of emission
trading see Ledyard and Szakaly-Moore (1994) and Sturm (2008).
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ascending-clock auctions perform equally well. They recommend frequent auc-

tioning for reasons of planing security and liquidity constraints of generators, as

well as competition considerations. However, they do not provide experimen-

tal results that support this conjecture. Benz and Ehrhart (2007) and Goeree

et al. (2010) compare auctioning and grandfathering and find that, at least for

relatively stringent emission caps, markets with auctioned permits tend to out-

perform markets with grandfathered permits. However, in both experiments

the initial allocation before trade is endogenous in the auction treatments and

(arbitrarily) exogenous in the grandfathering treatments. Hence, the observed

differences in the final permit allocation can be due to both, the initial alloca-

tion7 as well as the allocation method. The specifics of our allocation design

allow us to disentangle these two factors.

The rest of the paper is structured as follows: In Section 4.2 we give

detailed description of our experimental design and procedure. In Section

4.3 we present a simple theoretical model and derive some hypotheses. The

experimental results are reported and discussed in Section 4.4, Section 4.5

concludes.

4.2 Experimental Design and Procedure

General Settings

We conducted a computerized trading experiment8 which was designed to

closely mirror the market settings of the EU ETS. Banking and quasi-borrowing

were allowed (see below for details). For reasons of simplicity any interaction

with a downstream market was disregarded.9

Similarly to the second phase of EU ETS, one emission permit market con-

sisted of four compliance periods. Each compliance period had the following

stages: allocation stage(s), in which permits were distributed among the mar-

ket participants according to the treatment rule; four trade and production

stages, in which participants could abate emissions and trade permits; a check

of compliance, where compliance with the emission target for the preceding

7See Stavins (1995) for a theoretical and Cason and Gangadharan (2003) for an empirical
example of when the initial, pre-trade allocation affects post-trade allocation.

8The experiment was programmed and conducted in z-Tree (Fischbacher 2007).
9For studies of the effect of different allocation rules on the downstream market see

Goeree et al. (2010) and Wr̊ake, Myers, Mandell, Holt and Burtraw (2008).
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trade and production stages was controlled and non-compliance was punished.

The exact sequence of stages in the benchmark treatment is depicted in Figure

4.1.

Figure 4.1: Sequence of Stages in the Benchmark Treatment

A compliance period always started with an allocation stage. In the bench-

mark treatment with single auctioning, A1, and in the treatment with free

allocation (or, grandfathering), G, the allocation stage was followed by a se-

quence of four consecutive trade and production stages. In the treatment with

frequent auctioning, A4, an allocation stage preceded each of the four trade

and production stages. For each trade and production stage participants re-

ceived an emission target, which was privately disclosed at the beginning of a

respective stage. Participants could meet these targets through trade of per-

mits and through abatement. Individual abatement decisions remained private

knowledge. Trading transactions were common knowledge (see below for de-

tails). Compliance for any of the stages was not required before the compliance

check stage. Participants paid a fine only for missing permits at the time of

the compliance check.10 Banking within and across compliance periods was

allowed. The amount of banked and missing permits remained private knowl-

edge. Similarly to EU ETS, we simulated quasi-borrowing by allowing for

an overlap between the compliance periods, such that (part of the) permits

10The height of the fine was equal to 2.6 times the the value of the ex ante efficient permit
price. Similarly to EU ETS, this fine did not release noncompliant participants from the
obligation to provide missing permits in the following compliance period.
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from one compliance period could be used to meet the emission target in the

preceding one.

A special characteristic of our experimental design is the information struc-

ture. The emission target of every participant was a random discrete number

independently drawn from a commonly known uniform distribution. This num-

ber varied across participants and production stages. At the beginning of each

trade and production stage participants were privately informed about their

own respective emission target. One’s future emission targets as well as the

emission target’s of one’s opponents were only known in expectation.11

Allocation Stage

In A1 the emission permits for one compliance period were sold in a single

auction. In A4 emission permits were sold in four identical auctions. In G,

similarly to the benchmark treatment, emission permits were given to par-

ticipants in one single round of free allocation per compliance period. The

overall amount of emission permits allocated for each compliance period re-

mained constant throughout the experiment and was publicly known. The

quasi-borrowing design of EU ETS was mimicked by setting the compliance

check only after allocation of all permits (in A1 and G) or one quarter of the

permits (in A4) for the subsequent compliance period had taken place.

In the auction treatments we used single-round, multi-unit, sealed-bid,

uniform-price auctions.12 Participants were required to submit demand sched-

ules for a given set of prices. Individual demand schedules were aggregated to

form a demand function, via which the auction clearing price was calculated.

Bids were served according to the individual demand functions resulting from

the demand schedules. After the auction all participants were informed about

the auction clearing price and the number of permits they had won. One’s bid

schedule and wins remained private knowledge.

In the free allocation treatment permits were distributed among traders in

a way to closely mirror the average pre-trade efficiency of allocation in A1 as

11We introduced this additional complexity in order to capture the uncertainty most
regulated firms face about their permit demand at the time of allocation. For instance, in
the energy sector variations in the availability of renewable energy also leads to uncertain
level of emissions at the time of permit allocation.

12The majority of auctions in the EU ETS and all of the RGGI auctions had this general
format.
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observed in the last compliance period.13 Participants learned the number of

permits, which they were going to receive for free each compliance period at

the beginning of the experiment. This amount did not change throughout the

experiment.

Trade and Production Stage

After being privately informed about her emission target in the respective

stage, each participant could meet this target by using permits received in the

allocation stage, using permits bought in the secondary market, and conduct-

ing individual abatement. Individual abatement incurred costs, which were on

the margin equal to the abated amount.14 In addition to a printed table in

the instructions with the marginal and total costs for any possible abatement

level, participants were informed about the respective costs by an automatic

calculator before they could commit to an abatement decision.

The trading environment in the trade and production stage was a comput-

erized, continuous double auction without any bid-ask spread-reduction rules.

Within a randomly drawn duration of a trading period15, participants could

submit bids to buy and offers to sell or accept (part of) other traders’ bids and

offers. Bids and offers were price-quantity bundles on the demand and supply

side of the market. The list of open bids and offers and the price of the most

recent transaction were public information.

Framing and Procedure

The emission trading market was framed as a market for a single input fac-

tor. In particular, participants were told that they are firms who have to

serve an exogenously given amount of delivery commitment for a final product,

which represented the emission target (in the following also called “external

demand”). They could do so by using up already available units of the input

13Note that in G permits are not grandfathered in the sense that allocation is based on
past or expected emissions. However, this method of allocation allows us to disentangle the
effects of the efficiency of pre-trade allocation and the allocation method. Additional details
are available on request.

14For simplicity, it was possible to abate all emissions of one trade and production stage.
15The duration was randomly drawn from an interval of [3.5,4.0] minutes. Uncertainty

about the exact duration of the trade and production stage creates incentives for early
trading. The uniform distribution of the possible duration was common knowledge.
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factor, e.g., emission permits, or by producing (part of) the necessary input

factor, e.g., abatement of emissions.16

Participants were students of Business and Economics or another Economics

related field at the University of Cologne. They were recruited via ORSEE

(Greiner 2004). Upon entering the lab 32 participants were randomly assigned

to one of two trading groups with 16 traders each.17 The composition of the

groups did not change throughout the experiment.

Before the beginning of the experiment participants received written in-

structions, which they read in private. Also in private, they answered ques-

tions testing their understanding of the instructions and had the possibility to

try out a simulation of the trading environment with the computer as trad-

ing partner. The whole experiment took 2.5-3 hours to complete, from which

1-1.25 were reserved for the learning stage. We gathered 5 independent ob-

servations per treatment, with a total of 240 participants – 80 per treatment.

Participants earned on average 22.86e (SD=7.13) with substantial differences

across the treatments.

4.3 Theoretical Predictions

In the appendix we develop a theoretical model that motivates the follow-

ing hypotheses. For simplicity (and partly diverging from our experimental

setting) we assume a competitive permit market and no transaction costs for

participating in the auction or the secondary market.

Hypothesis 4.1 (Compliance) All firms are compliant.

Hypothesis 4.2 (Abatement) In each trading and production stage all par-

ticipants choose the same abatement level. The abatement level depends pos-

itively on the level of aggregate realized demand, which is reflected in the

permit price. Abatement in earlier periods equals expected abatement in later

16It has been argued that a non-neutral framing would promote higher abatement levels
due to potential environmental concerns of the participants. However, lab and field exper-
iments by Ostertag, Schleich, Ehrhart, Goebes, Müller, Seifert and Küpfer (2010) for the
trade of land urbanization rights indicate that if there are any differences between practi-
tioners and students and neutral and non-neutral framing, then they are only quantitative
and insignificant. Besides, as reported below, we observe too high abatement levels despite
the neutral framing.

17One out of three sessions per treatment was conducted with one trading group, thus
making random assignment to one of two groups impossible.
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periods, given the information all participants already have on the level of

external demand (via the permit price).

Hypothesis 4.3 (Permit Price) The permit price does not depend on the

allocation procedure. The permit price depends positively on the level of

realized aggregate demand. The permit price in earlier periods equals the

expected permit price in later periods.

Hypothesis 4.4 (Permit Demand) Individual total permit demand (over

all periods) is proportional to total individual realized external demand (over

all periods).

Hypothesis 4.5 (Auction) The willingness-to-pay in the auction equals the

ex ante expected permit price, the auction price is weakly lower than this price.

The auction frequency does not affect the pre-trade allocation of permits.

Hypothesis 4.6 (Banking and Borrowing) In the case of two successive

compliance periods banking (borrowing) occurs if observed external demand

was lower (higher) than expected in the first compliance period.

Hypothesis 4.7 (Allocation) The allocation procedure does not affect the

final efficiency of allocation.

4.4 Experimental Results

In this section we first analyze the static efficiency with respect to the total

compliance costs caused by individual abatement and purchase of permits at

the observed prices. Then, we take a closer look at the efficiency of allocation

of permits and efficiency gains induced by the secondary market. Finally, we

discuss dynamic inefficiencies induced by positive levels of banking, borrowing,

and non-compliance. We compare our benchmark treatment with any of the

other two treatments using aggregate data on the group-level as one observa-

tion, unless otherwise stated. Table 4.1 presents an overview of the observed

average values for each treatment and the way they relate to the theoretically

efficient values and the benchmark treatment.18 The theoretically efficient

values were calculated according to our model presented in the appendix.

18The reported prices are a weighted average of the transaction prices over all trading
and production stages. The reported average standard deviation is over all transactions in a
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Table 4.1: Overview of the Main Variables

Treatment A4 A1 G Th. Prediction
Payoffs (in EUR) 19.90 <∗∗ 23.54 <∗ 25.15 -

(6.21) (6.25) (7.84)

Abatement level 17.48† ≈ 17.95† >∗ 16.40 16.69
(13.41) (12.10) (12.23)

Price level 21.98† >∗∗ 17.61 <∗ 18.36 16.69
(8.07) (5.03) (2.92)

Pre-trade all. efficiency 0.42† ≈ 0.44 - 0.43 -a

(0.06) (0.08) (0.00)

Post-trade all. efficiency 0.64† <∗ 0.73† ≈ 0.71† 100
(0.09) (0.03) (0.05)

Legend: † p < 0.1 for two-sided WSR-test for 6= efficient level; ∗p < 0.05, ∗∗p < 0.01, and
∗∗∗p < 0.001 for one-sided MWU-test for between-treatment differences. a no theoretical

prediction due to the existence of multiple equilibria. Note: Standard deviation across inde-

pendent groups in parenthesis.

Due to the low number of independent observations, we use the following ex-

act non-parametric tests: One-Sample Wilcoxon Signed-Rank test (WSR) for

comparison between predicted and observed values and for paired data within

one treatment; and Mann-Whitney U-test (MWU) for between-treatment com-

parisons.

Abatement Levels

In the auction treatments the observed average abatement level is significantly

different from the cost-efficient level. A cross-treatment comparison shows that

the average abatement level tends to differ between A1 and G, but not between

the auction treatments. In the following we investigate the determinants of the

individual abatement level as predicted by our theoretical model (Hypothesis

4.2). In particular, no effect of the individually observed external demand and

a positive effect of the observed permit price are expected.

Figure 4.2 depicts the average and individual abatement levels in selected

representative trading groups from all treatments. At first glance average

abatement correlates strongly with average price.19 However, the average lev-

treatment without accounting for any weighting. Multivariate Hadi’s outliers were excluded
from the calculation.

19Correlation coefficients per session vary between 0.61 and 0.89 and they are significant
at p < 0.01 and lower. Average abatement and price levels per compliance period are
significantly different only in the first two periods in A4 and in the last two in A1 (pWSR =
0.063), when permit prices are inefficiently high or low, respectively.
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Figure 4.2: Average and Individual Abatement Levels and
Permit Prices in Selected Trading Groups

els result from a combination of irrationally low and irrationally high individ-

ual levels, which differ greatly from the average price.20 Table 4.2 presents

the results of a clustered Ordinary Least Squares Model (OLS), which was

estimated for each treatment separately and shows that individual decisions

do not depend on the average observed market price. The regression equation

is as follows:

abatementgit = b0 + b1avgpricegt + b2demandgit + b3suffpermitsgit

+b4Wgi + b5Zg + b6Tgt + εgit

The indices g, i, and t denote the respective trading group, participant,

and trade and production stage. abatementgit is the observed abatement level,

avgpricegt is the observed average price at the secondary market, demand git

is the external demand participant i observed in trade and production stage

t (linear and squared), suffpermitsgit is a dummy equal to 1 if in t − 1 the

20Exogenous restriction on abatement could occur if the realized external demand, which
was uniformly distributed on [5, 55] and serves as an upper constraint for the periodical
abatement level, was lower than the observed permit price.
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participant possessed enough permits to cover her total unabated emissions

until t, Wgi and Zg are vectors of participant and group specific characteristics

respectively, Tit is a vector with dummy variables for the different trading

stages, and εgit is the error component.21 Through robust regression coefficients

we mitigate any effects of heteroskedasticity.22 The estimates are clustered on

the participant level.23

Column (OLS) shows the estimates for the complete regression model spec-

ified above with data from the whole experiment. The columns (OLS (1))

and (OLS (4)) display the results of the regression model with data from the

first and the last compliance period, respectively. Column (IV) shows the es-

timates for an instrumental variable model which corrects for the exogeneity

assumption about the average permit price.24 The last two columns present

the results of the separate IV-regression for the first and the last compliance

period, respectively. As instrument for the price we use the auction clearing

price in the preceding auction which would have occurred had participant i not

taken part in it. First-stage F-values suggest that, except for the last compli-

ance period in A1, the instrument used has good predictive power. To compare

the coefficients between the models within and across treatments, we run OLS

models with pooled data and complete interaction effects for the comparison

treatment.

Contrary to Hypothesis 4.2, the level of individual external demand has a

positive and highly significant effect on the level of abatement in all treat-

ments, whereas the effect of the average observed permit price is present only

in A1, where it decreases with learning. Also with learning the effect of indi-

vidual external demand decreases significantly in A1 but increases in A4 and

G. As a result, cross-treatment differences remain significant but change their

direction over time. These estimates contradict the observations in Figure 4.2

but support the idea that although on average abatement and price levels are

21We control whether the session of the trading group was conducted before or after noon
and for the level of self-reported experience in laboratory experiments, trading markets, and
auctions.

22White-test for heteroskedasticity is rejected for all treatments at p = 0.001.
23It has been suggested to cluster the estimates on the trading group level. However, due

to the low number of independent observations, the estimates then become unreliable. The
group dummies above should control for some of the within-group interdependencies.

24The estimates correct for the assumption that 16 participants per market are sufficient
to ensure that individual abatement does not influence total permit demand.
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Table 4.2: Determinants of the Abatement Level

a. Treatment A1a

Variable OLS OLS (1) OLS (4) (IV) IV (1) IV (4)
Avg. price 0.530*** 0.285 0.768* 0.551* 0.401 14.746
Ext. dem. 0.876*** 1.078*** 0.359* 0.876*** 1.077*** 0.298
Ext. dem. sq. -0.008*** -0.011*** -0.002 -0.008*** -0.011*** -0.001
Suff. permits -2.427** -4.464** -2.298 -2.424** -4.435** -3.437
Constant -4.952 1.024 -0.369 -8.977** -1.531 -161.351

N 1280 320 320 1280 320 320
First stage F(1,79) 392.68 770.91 0.04
R2 0.377 0.363 0.27 0.377 0.363 -5.69

b. Treatment A4a

Variable OLS OLS (1) OLS (4) (IV) IV (1) IV (4)
Avg. price 0.188 0.313 0.220 0.290 0.332 -0.066
Ext. dem. 0.689*** 0.558* 0.901*** 0.691*** 0.558** 0.898***
Ext. dem. sq. -0.005** -0.001 -0.012*** -0.005** -0.001 -0.012***
Suff. permits -3.660*** -5.428** -2.815 -3.584*** -5.411** -2.930*
Constant 3.328 -0.899 3.174 1.031 3.273 4.976

N 1280 320 320 1280 320 320
First stage F(1,79) 1801.39 1116.67 425.32
R2 0.369 0.385 0.223 0.368 0.385 0.218

b. Treatment Ga

Variable OLS OLS (1) OLS (4)
Avg. price 0.352 0.807 0.454
Ext. dem. 0.811*** 0.276 1.006***
Ext. dem. sq. -0.008*** 0.001 -0.012***
Suff. permits -1.156 -4.952** -0.325
Constant -10.365 -3.389 -7.337

N 1280 320 320

R2 0.271 0.324 0.234

Legend: * p < 0.05; ** p < 0.01; *** p < 0.001; a Nr. of clusters = 80. Note: Estimates

clustered on the subject level.
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correlated, most participants fail to perceive the role of the market price as

signal for the scarcity of permits in the market. Hence, participants tend to

wrongly base their abatement decision on the individual demand observation

instead of on the observed market price.

Notably, a strong and unpredicted effect is observed for the possession of

sufficient permits to cover total unabated emissions. This effect is, however, in

line with a suggestion in Gagelmann (2008) that in order to be less dependent

on the market risk-averse buyers (sellers) of permits are expected to have higher

(lower) levels of abatement than the efficient one.

Result 4.1 (Abatement) Firms choose different abatement levels. Gener-

ally abatement in earlier periods does not equal expected abatement in later

periods, given the information all firms already have on the level of exter-

nal demand. Abatement levels depend significantly on the level of individual

external demand and on the amount of permits at hand after the allocation

stage. If permits are auctioned only once at the beginning of a compliance

period (treatment A1), abatement also depends on the current permit price

level.

Permit Prices

Table 4.3 present the average permit prices per compliance period and Figure

4.3 displays the average permit prices per trade and production stage. In the

figure the beginning of a new compliance period is indicated by its respective

number and the number of its first trade and production stage. The figure

contains auction clearing prices (in the auction treatments), as well as permit

prices in the secondary market.25

The observed average prices over all compliance periods are not significantly

different from the efficient one with the exception of A4. Hence, for A1 and G

we cannot reject the relationship between observed prices and realized aggre-

gate external demand proposed in Hypothesis 4.3. Contrary to Hypothesis 4.3

between-treatment comparison shows that the average price levels differ signif-

icantly between the treatments and seem to follow different patterns depending

25The lack of any extreme price tendencies towards the end of the experiment in all
treatments suggests that the clearing rule with a virtual aftermarket deals effectively with
end-game effects.
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Table 4.3: Average Permit Prices on the Secondary Market

Compl. A4 A1 G Efficient
period price
1 29.953† >∗∗ 20.001 ≈ 17.043 15.80

(5.429) (2.857) (1.005)

2 25.349† >∗∗ 20.033† ≈ 19.643† 16.38
(2.117) (0.872) (1.638)

3 18.986 ≈ 17.948 ≈ 19.062 16.57
(4.952) (3.257) (2.324)

4 12.947† ≈ 12.650† <∗ 17.776 18.01
(2.143) (3.921) (3.208)

Total 21.947† >∗∗ 17.605 <∗ 18.361 16.69
(2.596) (1.812) (1.828)

Legend: † p < 0.1 for two-sided WSR-test for 6= efficient level;
∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 for one-sided MWU-test

for between-treatment differences. Note: Values per compliance

period, standard deviation across independent trading groups in

parenthesis.

on the allocation procedure.

In the auction treatments prices in the first half of the experiment are

inefficiently high and decrease to an inefficiently low level in the last compliance

period. In the grandfathering treatment no such trend can be recognized. In

total, when stability of prices is measured in the standard deviation of the

permit price within each trading group, prices tend to be most stable in G,

followed by A1 and then by A4. Hence, the allocation method obviously

affects price development even in treatments with similar allocation frequency

but different allocation rules.

The relationship between auction clearing prices and subsequent permit

prices in the secondary market, on the one hand, and between auction clearing

prices and expected permit prices, on the other, is a potential explanation for

the observed price development. Due to arbitrage opportunities we would not

expect significant differences between prices in one auction and the trade and

production stage which follows it. This conjecture is confirmed for A1 and for

most of the stages in A4. However, higher than efficient auction prices affect

the initial prices in the secondary market.26 As a result in the last compliance

26The willingness-to-pay expressed by the auction clearing price is compared to the ex-
pected (efficient) price, where the reference in A1 is the average efficient price in the respec-
tive compliance period and in A4 the average price in the subsequent trade and production
stage. Contrary to Hypothesis 4.5 the willingness-to-pay in the middle two auctions in A1
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Figure 4.3: Average Prices per Trading Period

period permit prices fall below the expected permit price.

Let us briefly comment on the effects the observed price dynamics have on

abatement, banking, and borrowing decisions. We observe that high initial

auction clearing prices in A1 and (even more so) in A4 lead to high prices in

the secondary market. These in turn lead to over–abatement and inefficient

banking, which increase permit supply relative to demand in later periods.

In treatment G, on the contrary, initial prices and abatement levels are in-

efficiently low and participants tend to borrow permits from the subsequent

periods. This leads to a relative shortage of permits in later trading periods

and to increased market clearing prices.

Result 4.2 (Permit Price) The average permit price and, in particular, its

temporal development depend on the allocation procedure. In the auction

treatments prices start off inefficiently high and decrease over time. In the

grandfathering treatment the opposite relationship is observed. It cannot be

rejected that the permit price depends positively on the level of realized ag-

and in the majority of auctions in A4 is significantly higher than the ex ante efficient and
expected permit price. It is beyond the scope of this paper to analyze the reasons behind
the high auction prices. However, these results may be related to two common observations
in laboratory auctions. Firstly, overbidding in sealed bid auctions is one of the most robust
experimental results. Secondly, while it is frequently reported in sealed bid second price
auctions, it disappears in the strategically equivalent English auction, where the price paid
is more salient (see Kagel 1995, for a review of related literature). This may explain part of
the difference between the auction prices and those in the secondary market.
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gregate demand. Only with frequent auctioning it is often different from the

expected permit price in later periods.

Result 4.3 (Auction) In the initial trading periods (in A4 in particular), the

willingness-to-pay in the auction does not equal the ex ante expected permit

price. The auction clearing price is generally higher than the expected permit

price.

Efficiency of Permit Allocation

We analyze two types of allocation efficiency after the fourth compliance

stage.27 The pre-trade allocation efficiency is the efficiency of allocation as

a result of the allocation method alone. It assumes that no secondary mar-

ket exists to amend for inefficiencies of the allocation rule and disregards any

changes in the efficiency brought about by the secondary market. The post-

trade allocation efficiency corrects for such assumptions.

The reference efficient level of emission permits in the fourth compliance

period is calculated for each participant separately. It takes into account the

value of one’s external demand and assumes that through a Walrasian process

the market price reflects the total realization of individual external demands.

Participants are considered to be a post-trade (pre-trade) buyer if they hold

fewer than the efficient level of permits at the time of the fourth compliance

check, where changes through trade are (not) considered. Similarly to Cason

and Gangadharan (2003), the efficiency of allocation at any time point is de-

fined as the overall amount of permits held by all current buyers in a market

as a share of the efficient amount of permits these same buyers should possess.

The pre-trade allocation efficiency in G was exogenously set to mimic the

pre-trade allocation efficiency in the benchmark treatment.28 Hence, we ana-

lyze it only for the auction treatments. Figure 4.4 depicts the overall pre-trade

and post-trade efficiency of permit allocation across treatments, Table 4.1 gives

the descriptive statistics. Although the secondary market leads to a significant

increase of efficiency, it remains significantly lower than 100% in all treatments.

27Due to trade opportunities in the last compliance stage, no unique banking equilibrium
exists, which prescribes the number of permits each participant should hold at the end of
the previous compliance stages.

28The insignificant difference between A1 and G was unavoidable due to design constraints.
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Figure 4.4: Overall Pre-trade and Post-trade Allocation
Efficiency

A between-treatment comparison cannot reject the null Hypothesis of equal

pre-trade efficiency of allocation in the auction treatments. The post-trade

efficiency in the last compliance period in A1 tends to be higher than in A4

but it is not significantly different from the one in G.

Efficient post-trade allocation requires that individual total permit demand

is proportionate to total individual external demand (see Hypothesis 4.4). Fig-

ure 4.5 shows the relationship between the total number of permits a partic-

ipant has purchased on any of the available markets and the total external

demand she faced over the whole experiment. The relationship is significantly

positive in A1 and G with robust coefficients of the estimated regression mod-

els for the last trading period, which were clustered on the trading group level,

of 0.951 and 1.090 respectively. The slope of the regression in A4 is 0.345

and not significantly different from zero. Given the abatement cost structure,

participants should have abated about half the expected emissions. The co-

efficients in the auction treatments are not significantly different from this

benchmark. The coefficient in G is significantly different (p = 0.012). No

significant between-treatment differences could be detected.

Result 4.4 (Auction) The frequency of auctioning does not affect the pre-

trade allocation of permits. Neither infrequent, nor frequent auctioning deliv-

ers efficient permit allocation with regard to expected emission goals.
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Figure 4.5: Relationship Between Total Permit Demand And
Total External Demand

Result 4.5 (Permit Demand) In the treatments with a single allocation

stage per compliance period individual permit demand (over all periods) is

proportional to total realized external demand (over all periods).

Result 4.6 (Allocation) The frequency of allocation affects the final alloca-

tive efficiency, whereas the allocation method – for free or against a payment –

does not have a significant impact as long as the initial distribution of permits

is similar. In all treatments, the secondary market fails to deliver near-perfect

efficiency.

Inefficient Trading Patterns at the Secondary Market

The average number of transactions per participant (selling and purchasing

together) is 42.81 (SD=32.88) in A1, 47.09 (SD=32.62) in A4, and 68.94

(SD=45.18) in G, respectively. For the auction treatments we do not find

a significant difference, which is surprising since in A4 the secondary mar-

ket should be needed less for correcting inefficiencies resulting from lack of

information. We do find significant differences between the benchmark and
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the grandfathering treatment, suggesting that participants are more willing to

correct an initial allocation that they did not determine themselves.

Table 4.4: Trade Inefficiencies by Player Type

Pre-trade % Post-trade Nett Efficient N
role buyers sold amount sold amount

A1 Seller 0.41 195.45 238.61 29
( 212.28 ) ( 185.28 )

Buyer 0.69 -111.14 -135.68 51
( 81.48 ) ( 73.01 )

A4 Seller 0.47 174.80 233.26 30
( 230.31) ( 213.48 )

Buyer 0.68 -104.88 -139.96 50
( 117.15 ) ( 82.68 )

G Seller 0.49 149.69 176.21 35
( 164.66) ( 116.35 )

Buyer 0.64 -116.42 -137.05 45
( 115.49) ( 57.22)

Note: Standard deviation within one treatment in parenthesis.

To investigate the reasons for inefficient post-trade allocations despite high

trading activity, we analyze the direction of permit exchange presented in

Table 4.4. There are two sources of inefficiency: First, when traders transact

although their trade is inefficient. Second, when profitable trades are not

executed. The second row gives an overview of the share of pre-trade sellers

(buyers) who sold too many (bought too few) permits given their external

demand and as a consequence became (remained) a post-trade buyer.29 Such

role switching is the result of the first inefficiency type. The third and the

fourth row list the average number of permits which were traded in the right

direction and the respective amount which should have been traded in order to

achieve perfect efficiency. The observed differences are the result of the second

inefficiency type. Hence, markets in all treatments fail to reach full efficiency

due to both – too much and too little trade.

Banking and Borrowing

As already discussed in the previous section, we observe a tendency to over-

bank permits. This is also in line with previous experiments on emissions

29The share of pre-trade buyers who became post-trade sellers is one minus the reported
share.
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trading (Gangadharan, Farrell and Croson 2005). Table 4.5 gives an overview

of the average number of banked permits per participant for each compliance

period.

Table 4.5: Average Banked Permits

Compliance A4 A1 G Efficient
period mean mean mean level
1 6.563† ≈ 4.850† >∗ -16.025 -14.741

(40.651) (91.214) (62.442)

2 29.588† ≈ 24.588† >∗ -2.813 -12.648
(42.663) (102.665) (63.512)

3 41.963† ≈ 48.938† >∗∗ 12.250† -3.710
(73.353) (98.426 ) (67.109)

4 30.013† ≈ 38.050† >∗ 11.738 0
(102.343 ) (92.522 ) (53.069 )

Legend: † p < 0.1 for two-sided WSR-test for 6= efficient level; ∗p < 0.05,
∗∗p < 0.01, and ∗∗∗p < 0.001 for one-sided MWU-test for between-treatment

differences. Note: Values per compliance period, within-treatment standard

deviation in parenthesis.

Given the realized external demand, on average participants should have

been borrowing permits in all compliance periods. However, we observe bank-

ing in the auction treatments, which is significantly different from the efficient

borrowing level in all compliance periods. Banking in G is significantly dif-

ferent from the efficient level only in the third compliance period. As noted

above, deviations of the market price from the efficient one reflect inefficien-

cies in banking and borrowing behavior. Similar price dynamics in the auction

treatments are the result of similar banking and borrowing behavior. For de-

tails on the between-treatment comparison see Table 4.5.30

Result 4.7 (Banking and Borrowing) When permits are auctioned, a sig-

nificant amount of permits is banked, although the observed external demand

should induce borrowing. When permits are grandfathered, initial borrowing

is followed by later banking.

30One reason for inefficiently high banking in the auction treatments may be a sunk-cost
fallacy following the development of prices in these treatments. Having paid an (inefficiently)
high price for a permit, participants may fail to recognize that if prices are expected to fall
in the future, it is better to sell permits at a small loss in the current trade and production
stage, rather than at a big loss in later stages. The sunk-cost fallacy may also explain the
second type of trade inefficiencies discussed above.
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Non-Compliance

Contrary to Hypothesis 4.1, we observe frequent cases of non-compliance. The

descriptive statistics for the level and share of non-compliance in each period is

presented in Table 4.6. The first row in the table shows the average number of

missing permits, given that a participant was non-compliant. The middle row

shows the share of these missing permits from the total emissions in a BAU-

case. The last row contains the average share of non-compliant participants

from the total of 16 in one trading group.

Table 4.6: Non-compliant Permits and Participants

Compliance period Total
1 2 3 4

A1
Avg. amount of NC permits -60.125† -45.800 -62.500 -50.625 -53.913†

(41.684) (53.844) (27.577) (52.679) (45.135)

Avg. share of NC permits 0.044† 0.011 0.004 0.010 0.017†

Avg. Share of NC participants 0.100† 0.063 0.025 0.100 0.072†

A4
Avg. amount of NC permits -39.222† - -50.333 -72.750† -54.300†

(35.031) - (40.857) (71.749) (53.315)

Avg. share of NC permits 0.032† - 0.005 0.014† 0.017†

Avg. Share of NC participants 0.113† - 0.038 0.100 0.084†

G
Avg. amount of NC permits -48.000† -56.500 -43.250 -45.692 -48.056†

(31.102) (40.510) (24.226) (41.728) (35.076)

Avg. share of NC permits 0.057† 0.016 0.006 0.015 0.024†

Avg. Share of NC participants 0.016† 0.075 0.050 0.163 0.076†

Legend: †p < 0.1 for two-sided WSR-test for 6= efficient level. Note: Within-treatment

standard deviation in parenthesis.

In all treatments significantly positive non-compliance is observed, with

non-compliance rates being highest at the beginning and at the end of the

experiment. Possible reasons are therefore lack of understanding of the com-

pliance check mechanism (despite detailed instructions and a learning stage)

and shortage of funds, respectively.31

Result 4.8 (Compliance) On average noncompliance is significantly posi-

tive in all treatments.

31It was hard but not impossible to become bankrupt despite the constant flow of funds
from the fixed revenue income from the downstream product.
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4.5 Conclusion

Based on the results of an experiment, designed to closely mirror the insti-

tutional settings of the EU ETS, we show that the method of allocation may

affect the efficiency of the emissions trading system. We demonstrate that pay-

ing or not paying for emission permits does not affect the efficiency of permit

allocation after trade as long as the initial allocation of permits before trade

is fairly similar. It does affect, however, the average abatement level as well as

the dynamic efficiency of the instrument by inducing different price variability

and different distribution of abatement activities over time. Auctioning seems

to promote early rather than late abatement in comparison to free allocation

with the same distribution of permits among firms. However, auctioning also

leads to higher total compliance costs of the system and lower price stability,

which although not considered in our experiment, may have an effect on the

long-term incentives to invest in carbon-low technology. Furthermore, due to

overbidding in the auctions additional compliance costs arise, which can be

avoided through free allocation.

When comparing less to more frequent auctioning, we demonstrate that

there is a trade-off between the comfort of steady injection of liquidity, on the

one hand, and paying different prices for identical goods, on the other. The

first is usually an argument in favor of frequent auctioning brought forward by

regulated firms (and some theorists, see Hepburn et al. (2006) for an example).

The latter is typical in multiple auctions for identical goods (see Ashenfelter

1989, for an early report on this phenomenon) and is supported by our results.32

Having different prices for the same object hinders regulated firms in making

reliable investment plans. It also prevents the market from sending correct

price signals about the rentability of short-term abatement, thus compromising

the overall efficiency of the emissions trading system. In addition, frequent

auctioning affects the ability of the system to minimize joint compliance costs

by inducing lower efficiency of allocation after trade. Hence, if the regulator

chooses to allocate permits via auctioning, the experimental results would

recommend large and less frequent auctions.

32Differences of about 0.8 EUR were also observed in the Dutch and the Lithuanian
auctions of the EU ETS, which took place only a month apart (Co2-Handel.de 2012a; CO2-
Handel.de 2012b).
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In sum, we demonstrate that the method of permit allocation affects the

efficiency of the environmental instrument on multiple levels. When choos-

ing a method of allocation, the regulator should consider its impact on the

secondary market, price development, distribution of abatement decisions in

time, the ability of the market to provide efficient permit allocation, as well as

the banking and borrowing behavior resulting from all these factors.
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4.6 Appendix

4.6.1 Derivation of the Theoretical Predictions

One Compliance Period

Consider the following game, which reproduces the stages of one compliance

period.

In the first stage (e.g. the allocation stage) a regulator introduces an emis-

sion cap X and distributes emission permits according to a certain allocation

rule (either grandfathering, or auctions, or a mixture of both) among n ex ante

identical firms. We denote by gi the number of permits firm i obtains for free

and by ai the number of permits i acquires in an auction at auction price pa.

The second stage consists of T substages (e.g. trade and production stages).

In each of these substages the firms face exogenous demand Yit, i = 1, . . . , n,

t = 1, . . . , T , for a downstream product. The exogenous demand is ex ante

uncertain, e.g. Yit are independent random variables with distribution F (·)

and density f . Realized exogenous demand yit is privately observed by each

firm. We assume that the production of one unit of the downstream product

implies emission of one unit of emissions if a standard generation technology

is used. Production costs with the standard technology are normalized to 0.

Emissions can be avoided by using ”green” technology. Costs of abatement

C(rit) are increasing and convex (C ′(rit) > 0 and C ′′(rit) ≥ 0), where rit is the

number of units that is produced emission–free by firm i = 1, . . . , n in substage

t = 1, . . . , T . Any permits received in the first stage through grandfathering or

auctioning can be traded with the other firms in a common market. We denote

the price at the permit market in substage t by pet . As “dirty” production is

cost–free, firms are assumed to serve the entire external demand and receive

an exogenously fixed price py per unit of the downstream product.

In the third stage (e.g. compliance check stage) the regulator penalizes any

firm which in this stage does not possess enough permits to cover its emissions

from the second stage. The height of the fine depends on the per-unit penalty

f e and the number of missing permits Ni.

We solve the game by backwards induction. Let dit denote the permit

demand of firm i in substage t. The profit function of each firm i = 1, ..., n in
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the last substage before compliance check is given by

πiT = py
T∑

t=1

yit −
T∑

t=1

C(rit)−
T−1∑

t=1

petdit − paai

− peT (
T∑

t=1

yit −

T∑

t=1

rit − (ai + gi)−Ni)−Nif
e.

When the fine for noncompliance is greater than the permit price, the first

derivative of the profit function with respect toNi is always negative (
∂πi

∂Ni
(ri, Ni) =

peT −f e < 0 for f e > peT ). Hence, a profit maximizing firm is always compliant.

In the following we assume that the fine is high enough (as it is the case in the

experimental design), set Ni = 0 and disregard Ni in our further analysis (see

Hypothesis 4.1).

In the last substage firm i takes its demand for permits, abatement levels

and permit prices from the previous substages as given and maximizes its profit

by choosing the optimal riT . Differentiation with respect to riT yields

∂πiT

∂riT
= −C ′(riT ) + peT = 0 ⇔ peT = C ′(riT ).

Firms have identical cost structures and therefore choose the same abate-

ment levels in the last trading and production stage (see Hypothesis 4.2). Since

firms choose to be compliant, if the fine is high enough (see above), abatement

must be chosen such that emissions meet the cap:

n∑

i=1

T∑

t=1

(yit − rit) = X (4.1)

Since firms have identical costs structures, in the last substage they all

choose the same abatement level, which is equal to the permit price peT in the

last substage. It therefore holds that

riT (p
e
T ) =

n∑
i=1

(
T∑
t=1

yit −
T−1∑
t=1

rit

)
−X

n
(4.2)
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and

peT = C ′




n∑
i=1

(
T∑
t=1

yit −
T−1∑
t=1

rit

)
−X

n


 (4.3)

Thus, the permit price in the last substage depends positively on the level of

total realized external demand over all substages regardless of the allocation

mechanism (see Hypothesis 4.3).

Now let us consider substage T − 1. Since compliance is only controlled for

in the third stage, permits in T − 1 and T are perfect substitutes. Thus, in

any equilibrium it must hold that peT−1 = E[peT ]. But then firms will choose

to abate as much as they expect to abate in the last substage (see Hypothesis

4.2), i.e.

ri(T−1) = E[riT ] =

n∑
i=1

(
T−1∑
t=1

yit + E[YT ]−
T−1∑
t=1

rit

)
−X

n

=

n∑
i=1

T−1∑
t=1

yit −
n∑

i=1

T−2∑
t=1

rit

n
+ E[YT ]− ri(T−1) −

X

n

The last equality holds because firms always choose equal abatement levels,

independently of their privately observed exogenous demand. Thus, in equi-

librium it holds that

ri(T−1) =
1

2




n∑
i=1

T−1∑
t=1

yit

n
+ E[YT ]−

n∑
i=1

T−2∑
t=1

rit

n
−

X

n




and

pei(T−1) = E[peT ] = C ′



1

2




n∑
i=1

T−1∑
t=1

yit

n
+ E[YT ]−

n∑
i=1

T−2∑
t=1

rit

n
−

X

n







Since E[Yt] = E[Y ] for all t = 1, . . . , T , by way of induction it is easy to
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show for any substage k the optimal abatement level is

r∗ik =
1

T − k + 1




n∑
i=1

k∑
t=1

yit

n
+ (T − k)E[Y ]−

n∑
i=1

k−1∑
t=1

r∗it

n
−

X

n


 (4.4)

where r∗it = r∗t for all i = 1, . . . , n denotes the efficient abatement level in all

preceding stages. Note that in stage k the participants have already observed

the first k realizations of their external demand. In a competitive and fric-

tionless trading market aggregate external demand is ”revealed” in the market

clearing price at the spot market.The efficient abatement level implicitly de-

termines the efficient price level:

pe∗k = C ′ (r∗ik)

The results so far are independent of the allocation mechanism. Now, let us

finally look at the allocation stage prior to the T trade and production stages.

Ex ante, i.e. before firms have privately observed any of their external demand,

the expected abatement level (and implicitly the expected permit price) is the

same for all substages t = 1, . . . , T , namely

E[rt] =
1

T

(
E

[
T∑

t=1

Yt

]
−

X

n

)
.

Hence, each firm’s ex ante expected profit is given by:

πi(1) = E

[
T∑

t=1

Yt

]
py − TC

(
1

T

(
E

[
T∑

t=1

Yt

]
−

X

n

))

− C ′

(
1

T

(
E

[
T∑

t=1

Yt

]
−

X

n

))(
X

n
− ai − gi

)
− paai

Differentiation with respect to ai yield that each firm bids at most

pa = C ′

(
1

T

(
E

[
T∑

t=1

Yt

]
−

X

n

))
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on E

[
T∑
t=1

Yt

]
− gi units in the auction (see Hypothesis 4.5).

Multiple Compliance Periods

One complete game from above represents one compliance period. Assume that

the game is repeated m times and that borrowing and banking between the

compliance periods is allowed. As long as no extreme shocks in the supply of

permits or exogenous demand for the downstream product, efficient borrowing

is possible. Hence, permits in the mT trading and production stages over all

compliance periods become perfect substitutes. The efficient permit price in

substage k = 1, . . . ,mT is then given by pe∗k (r∗t ) = C ′(r∗t ), where

r∗t =
1

mT − k + 1

(∑n
i=1

∑k
t=1 yit

n
+ (mT − k)E[Y ]−

∑n
i=1

∑k−1
t=1 r

∗
it

n
−

mX

n

)

The optimal abatement level r∗ik, allows us to calculate the optimal individual

permit demand of participant i in substage k:

d∗ik = yik − r∗ik,

and, of course, average permit demand over all stages. Note that due to the

compliance check regulations and banking and borrowing freedom in the model,

dik is not necessarily equal to the amount of permits a participant acquires in

stage k. Thus, participant i must possess
∑mT

k=1 dik permits in the end, but it is

not uniquely determined in which periods they should be acquired. Therefore,

a unique individual banking or borrowing amount from one compliance period

to the next does not exists. We call the total amount to be jointly banked

or borrowed by all participants between two compliance periods BBτ , where

τ = 1, . . . ,m33:

BB∗τ =
n∑

i=1

∑

k∈τ

dik −X.

Note that if there is an auction before each trade and production stage,

the game becomes equivalent to the basic game with one substage and mT

33Given the randomly drawn values for the external demand used in the experiment,
we find that all values of the optimal banking and borrowing are feasible in any of the
treatments.
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repetitions. The banking and borrowing conditions remain unaffected. Hence,

the results from above are independent of the number of auctions as long as

the total number of permits is equal in both allocation mechanisms.

4.6.2 Instructions

In the following the instructions for the experiment are provided. A [Treatment]

indicates which sections were present only in the instructions of the respective

treatment. Thank you for taking part in our trading experiment. Please read

these instructions carefully. Before with proceed with the experiment, we will

check your understanding by asking a few questions. Simultaneously, you

will also have the opportunity to become acquainted with the experimental

environment.

In this experiment you can earn money whereby the sum of your earnings

depends on your decisions and the decisions of others. Your earnings will be

calculated in virtual money-units “GE”. After the game is over, their Euro

value will be calculated at an exchange rate of 450 virtual units for one Euro

and you will receive this value together with a show-up-fee of 2.50 Euros.

Your situation

You and 15 other participants in the experiment will be able to trade with each

other in a market. At no time will you be told who the other 15 participants

are. Throughout the whole experiment you will be trading with the same 15

participants. Thus, the composition of your group will not change. Every

participant was given these instructions.

[A1, A4] You will receive an initial endowment of 5500 GE. You will then

have the task of serving the demand for a good. The level of the demand

will be a random number between 5 and 55. Every number has the same

probability. The demand you have to serve is independent of the demand the

other participants have to serve.

[G] You will receive an initial endowment in GE. You will be told the amount

of GE when the experiment begins. You will then have the task of serving the

demand for a good. The level of the demand will be a random number between
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5 and 55. Every number has the same probability. The demand you have to

serve is independent of the demand the other participants have to serve.

At the beginning you do not know the level of demand. It changes every

trading-period and will be disclosed to you in the information-box in the top

left hand corner of your screen (see figure at the end of these instructions). For

each unit of demand you are required to serve, you will be paid a fixed price

of 25 GE. This means that as soon as you are informed about the level of the

demand, your will receive - as an advance payment - 25 GE for every unit of

the good demanded in this trading period. You receive this advance payment

regardless of whether you have enough units of the good to serve the demand

or not.

There are altogether 16 trading periods. After every four trading-periods, we

will check if you have provided a sufficient amount of the good to serve the

demand in these four trading-periods. Should you not be able to serve the

demand, you will have to pay a fee for every missing unit of the good and

you will also have to retroactively provide any missing units. Details will be

explained later in the text.

[A1, A4] You have the following options to fulfill your demand-serving obliga-

tions:

1. You can produce units of the good by yourself;

2. You can trade units of the good in a market;

3. You can purchase units of the good in auctions organized by the experi-

menter.

[G] You have the following options to fulfill your demand-serving obligations:

1. You can produce units of the good by yourself;

2. You can trade units of the good in a market;

3. You will be allocated free units of the good by the experimenter.

These options can be combined to satisfy the given demand. Details will be

explained later in the text.
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Self-Production

When a trading period is running, you can see the production-box below the

infoformation-box (see screenshot at the end of the instructions). In this box,

you can determine the number of units you want to provide through self-

production. You can produce only once per trading-period. The amount of

your self-production cannot exceed the demand level in the respective trading-

period.

Self-production induces costs. These costs amount to 1 GE for the first pro-

duced unit, 2 GE for the second produced unit, 3 GE for the third produced

unit, and increase by 1 GE for every additional unit you produce by yourself.

The sum of the production costs over all units gives the total production costs.

The following table illustrates how the production costs are calculated.

Amount of self- Additional costs caused by Total production costs
production last produced unit for this amount

1 1 1
2 2 3
3 3 6
4 4 10
... ... ...

n n
n∑

i=1

i

If you click on the button “Calculate”, we will calculate the total costs of

production for you. In addition to that, at the end of these instructions we have

provided you with a table which gives an overview of the costs per additional

unit and the total costs.

Please keep in mind that you should make your production decision before the

respective trading-period is over.

Trading rules

Together with self-production you can serve some of the demand through trad-

ing in a market. In the market you can:

• make bids for buying an amount of the good (“bids”),

• make offers for selling an amount of the good (“asks”),

• or delete an already stated bid/ask.
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[A1, A4] Every trading period takes at least 3 minutes and 30 seconds and at

most 4 minutes. The exact time will be determined by chance. Every time

spread between 3 minutes 30 seconds and 4 minutes can occur with the same

probability. When a trading period is over, any open bid/ask will expire.

[G] Both free allocated and self-produced units can be traded. Every trading

period takes at least 3 minutes and 30 seconds and at most 4 minutes. The

exact time will be determined by chance. Every time spread between 3 minutes

30 seconds and 4 minutes can occur with the same probability. When a trading

period is over, any open bid/ask will expire.

By posting bids and asks you can trade with the other participants in your

market. Bids can only be posted if the bid’s value doesn’t exceed your dispos-

able capital. Your disposable capital is calculated by subtracting the value of

your open bids in the market from your total capital. Asks can only be posted,

if you posses at least as many units as you want to sell and these units are not

reserved for other currently open asks of yours.

You can see your “disposable capital” (German: “verfügbares Vermögen”) and

your “disposable goods” (German: “verfügbare Güter”) at the top left corner

of the trading period’s screen. At the screen’s bottom you see your currently

open bids/asks. (see screenshot at the end of the instructions)

Posting an ask

An example for an ask is “I offer 4 units for 48 GE per unit”. The ask’s price

and amount must be in whole numbers and higher than or equal to 1.

Your ask will be traded instantly, only if it is the ask with the lowest price

and if this price is equal to or lower than the price of the highest bid in the

bids’ queue. Otherwise it will be listed in the asks’ queue. Open asks are

listed on the right, upper half of the screen. (see screenshot at the end of the

instructions)

Posting a bid

An example for a bid is “I would like to buy 8 units and I offer 12 GE per

unit”. The bid’s price and amount must be in whole numbers and greater than

or equal to 1.

Your bid will be traded instantly, only if it is the bid with the highest price

and if this price is equal to or higher than the lowest ask in the asks’ queue.

Otherwise it will be listed in the bids’ queue.
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Open bids are listed on the right, lower half of the screen. (see figure at the

end of production)

Attention: In the case of instant trading, every ask you post will

be matched with precisely one bid (the highest). By the same to-

ken, every bid you post will be matched with precisely one ask (the

lowest).

Transaction price

The price will be determined in the following manner:

• If the prices of the matched bid and ask are equal, they will be traded

at this price.

• If prices differ, trade will take place at the price of the older post. Thus,

if the bid you just posted is matched with an older ask with a lower

price, the transaction will be carried out at the ask’s price. If the ask

you just posted is matched with an older bid with a higher price, the

trading transaction will be carried out at the bid’s price.

Example for the Transaction Price

Transaction amount

As in the case of instant trading every bid/ask will be matched with precisely

one older ask/bid, the amount of goods to be transacted is determined in the

following manner:

• If the bid or the ask you just posted has a lower or an equal amount to

the ask or bid it is matched with, the complete amount of your bid/ask

will be traded.
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• If the bid or the ask you just posted has a higher amount than the ask

or bid it is matched with, only the smaller amount amount of the older

ask or bid will be traded. This means that your bid or ask will be only

partly transacted. All remaining units from your offer will expire and

will not be served by other asks or bids in the queue. If you want to

trade more units, you will have to post two sequential offers.

Example for Transaction Amount of an Instant Offer

If your ask is already listed in the asks’ queue, though, and a bid, which was

posted later demands a smaller amount than the amount your ask offers, the

non-transacted part of your ask remains listed. By the same token, the rest of

your bid remains listed if it was already listed in the bids’ queue and an ask,

which was posted later, offers a smaller amount than your bid demands.

Example for Transaction Amount of a Standing Offer
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Deleting bids and asks

In the left, lower half of the screen you see a list of your posted bids and asks.

You can delete these at any time. Keep in mind that you cannot alter any

posted bids or asks – you can only delete them. Bids or asks cannot be deleted

after they have been accepted by other traders.

Rankings of bids and asks

Posted bids are listed in the bids’ queue. Posted asks are listed in the asks’

queue. Both lists are sorted by price and time of the posting. When two or

more bids/asks with the same price are listed in a queue, they are ranked by

time, the older one coming first.

In the middle you can see the price of the last transaction. If there has not

been any trading yet, you will see an “–”. A bid/ask remains in its queue until

it is deleted or accepted by another trader and, as a consequence, trade takes

place.

Self-trade

It is allowed to trade with yourself. This does not change the most recent price

being displayed and is not listed as a trade either. Trading with oneself can

be regarded as withdrawing part of your own offer.

[A1, A4] Auction rules

How to make a bid in the auction

[A1] In addition to self-production and trading, you can serve parts of the

demand by purchasing units of the good in auctions organized by the exper-

imenter. These auctions are scheduled before the control period (see picture

at the end of the instructions). Furthermore, there will be an auction at the

beginning of the experiment, before the first trading period starts. There will

not be any auctions after the last trading period, before the last control period

at the end of the experiment, though. Overall, there will be 4 auctions. In

each auction 960 units of the good will be sold.

[A4] In addition to self-production and trading, you can serve parts of the

demand by purchasing units of the good in auctions organized by the exper-

imenter. These auctions are scheduled after each trading period (see picture

at the end of the instructions). Furthermore, there will be an auction at the
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beginning of the experiment, before the first trading period starts. There will

not be any auctions after the last trading period, before the last control period

at the end of the experiment, though. Overall, there will be 16 auctions. In

each auction 240 units of the good will be sold.

You can submit bids in the auction as price-quantity combinations. We will

specify 11 prices for which you will have to state the number of units you

are willing to buy at this particular price. The stated amount for a certain

price cannot be higher than the amount for a lower price. Furthermore, only

whole numbers – starting from “0” – will be accepted as valid numbers for the

amount you wish to buy at a certain price. By clicking on “Check” you can

see if your set of auction bids is consistent with these rules without making a

binding bid schedule.

You will be given 2 minutes to state your set of requested amounts as a binding

bid schedule. Your auction bids will remain unknown for the other participants,

so that the time you make the bid will not influence in any way your chances

to win units in the auction. Only your final auction bids, which you transmit

through clicking on “Send” will be taken into account.

Calculation of the clearing price and serving the auction bids

After the auction on the basis of your auction bids your demand function

will be estimated. For every price the sum of the requested amounts by all

participants will be calculated. Then, every price-amount-combination formed

in the described way will be connected linearly. This gives the aggregated

demand function. As the figure below shows, it is decreasing.

For every price the total, aggregated requested amount by all participants

will be calculated. The price, for which the aggregated demand matches the

amount supplied by the experimenter, is the auction’s clearing price. Please,

keep in mind that this price can be between those specified by us for you to

bid on. On the basis of individual auction bid it will be calculated how many

units of the good every participant would want to buy at the clearing price.

This amount will be credited to the winners. They will pay the clearing price

for every unit.

Should the aggregated demand over all participants at the lowest price of

“0” be lower than the supply amount in the auction, surplus units would be

distributed among participants in the group proportionately to their bids at
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the price “0”. Should the aggregate demand at the highest price of “50” exceed

the supply amount in the auction, all bids at the highest price would be served

only partially.

After the end of the auction you will be informed about the auction clearing

price and the amount you bought.

Figure 4.6: Calculating the Auction Clearing Price

[G] Free allocation

In addition to self-production and trading, you can serve some of the demand

with those units the experimenter will hand you for free. These allocations are

scheduled before the control period (see picture at the end of the instructions).

Furthermore, there will be an allocation at the beginning of the experiment,

before the first trading period starts. There will not be an allocation after the

last trading period, before the last control period at the end of the experiment,

though. Overall, there will be 4 free allocations.

In each allocation 960 units of the good will be distributed amongst the par-

ticipants in your group. Each participant may receive a different amount of

free units. Each time there is a free allocation three participants will receive

14 units. Three other participants will receive 20 units. Four other partici-

pants will receive 42 units. Three other participants will receive 90 units. The

remaining three participants will receive 140 units (3 · 14 + 3 · 20 + 4 · 42 + 3 ·

90 + 3 · 140 = 960).

Before the experiment starts, the amount of free units for each participant

will be randomly chosen according to the values from above. The resulting

amount set for each participant at the beginning will not change during the
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experiment. Thus, the participant will receive this amount at each of the free

allocations.

You will be told the amount you receive along with your initial endowment

when the experiment starts.

Control and punishment

[A1, A4] Four times throughout the experiment – after every fourth trading

period – we will check whether you can serve the demand from these periods

through self-production and purchases. With this aim, the amount of goods

you provided through self-production and purchases will be compared to the

last 4 trading periods’ summed up demand. The summed up demand from the

last 4 trading periods will be subtracted from the amount of goods you have

provided up to this point. If the difference is smaller than “0”, this would

mean that you are not able to serve the demand. In this case you will be

charged 40 GE for every missing unit. This punishment will not release you

from the obligation to retroactively provide any missing units. Thus, in case

of punishment, any missing amounts will be transferred into the next period.

[G] Four times throughout the experiment – after every fourth trading period

– we will check whether you can serve the demand from these periods through

self-production, purchases and free allocations. With this aim, the amount of

goods you provided through self-production and purchases will be compared

to the last 4 trading periods’ summed up demand. The summed up demand

from the last 4 trading periods will be subtracted from the amount of goods

you have provided up to this point. If the difference is smaller than “0”, this

would mean that you are not able to serve the demand. In this case you will

be charged 40 GE for every missing unit. This punishment will not release you

from the obligation to retroactively provide any missing units. Thus, in case

of punishment any missing amounts will be transferred into the next period.

Hence, you do not have to serve every trading period’s demand by the end of

the respective trading period, but only the summed up demand of 4 trading

periods within the respective control period.

Because the experiment ends after the last control period, you will not be able

to retroactively provide any missing units. These will be sold to you at the

long-term equilibrium price. As a result, your GE capital will be decreased by
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Example for the Control Procedure

the value of the missing units. By the same token, any surplus units after the

end of the experiment will be bought from you at the long-term equilibrium

price leading to an increase of your GE capital by the value of the surplus

units.

The long-term equilibrium price is the price resulting from the best possible

combination of all participants’ purchase and self-production of units of the

good. This price is a theoretical value and cannot be influenced by any of the

participants.

Example for Credits at the End of the Experiment

[A1] Experimental procedure

The experimental procedure is identical for all participants from your group.

It is depicted in the figure below. Details on the different stages were explained

above.

There are four control periods. Every control period consists of 4 trading

periods. Before each control there is an auction. There is no auction before

the last control. Furthermore, an auction precedes the first trading period at

the beginning of the experiment. Thus, altogether there are 4x4=16 trading

periods and 4 auctions. In every auction 960 units of the good are auctioned
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Figure 4.7: Experimental Procedure [A1]

off. After each auction you receive the units you have won and your capital of

GE is charged accordingly.

At the beginning of every trading period you will be informed about the de-

mand you have to serve in this trading period. Simultaneously, you will re-

ceive an advance payment for this demand regardless of your ability to serve

it. Please note that at the beginning of every new trading period, open bids

or asks from the previous trading period expire.

Every four trading periods are followed by a control stage, which checks whether

you have met the sum of the demand of the 4 preceding trading periods. In

case of missing units you are punished. After the last control stage the missing

units will be sold to you and any surplus units will be bought from you by the

experimenter automatically.

[A4] Experimental procedure

The experimental procedure is identical for all participants from your group.

It is depicted in the figure below. Details on the different stages were explained

above.
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Figure 4.8: Experimental Procedure [A4]

There are four control periods. Every control period consists of 4 trading

periods. After each trading period there is an auction. There is no auction

before the last control. Furthermore, an auction precedes the first trading

period at the beginning of the experiment. Thus, altogether there are 4x4=16

trading periods and 16 auctions. In every auction 240 units of the good are

auctioned off. After each auction you receive the units you have won and your

capital of GE is charged accordingly.

At the beginning of every trading period you will be informed about the de-

mand you have to serve in this trading period. Simultaneously, you will re-

ceive an advance payment for this demand regardless of your ability to serve

it. Please note that at the beginning of every new trading period, open bids

or asks from the previous trading period expire.

Every four trading periods are followed by a control stage, which checks whether

you have met the sum of the demand of the 4 preceding trading periods. In

case of missing units you are punished. After the last control stage the missing

units will be sold to you and any surplus units will be bought from you by the

experimenter automatically.

[G] Experimental procedure

The experimental procedure is identical for all participants from your group.

It is depicted in the figure below. Details on the different stages were explained
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above.

Figure 4.9: Experimental Procedure [G]

There are four control periods. Every control period consists of 4 trading

periods. There is an allocation before each control. There is no allocation

before the last control. Furthermore, an allocation precedes the first trading

period at the beginning of the experiment. Thus, altogether there are 4x4=16

trading periods and 4 allocations. In every allocation 960 units of the good

are distributed amongst the participants in your group.

At the beginning of every trading period you will be informed about the de-

mand you have to serve in this trading period. Simultaneously, you will re-

ceive an advance payment for this demand regardless of your ability to serve

it. Please note that at the beginning of every new trading period, open bids

or asks from the previous trading period expire.

Every four trading periods are followed by a control stage, which checks whether

you have met the sum of the demand of the 4 preceding trading periods. In

case of missing units you are punished. After the last control stage the missing

units will be sold to you and any surplus units will be bought from you by the

experimenter automatically.
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Figure 4.10: Screenshot from the Trading and Production Stage
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Amount of Additional costs Total costs Amount of Additional costs Total costs
production caused by last of production production caused by last of production

produced unit for this amount produced unit for this amount

1 1 1 31 31 496

2 2 3 32 32 528

3 3 6 33 33 561

4 4 10 34 34 595

5 5 15 35 35 630

6 6 21 36 36 666

7 7 28 37 37 703

8 8 36 38 38 741

9 9 45 39 39 780

10 10 55 40 40 820

11 11 66 41 41 861

12 12 78 42 42 903

13 13 91 43 43 946

14 14 105 44 44 990

15 15 120 45 45 1035

16 16 136 46 46 1081

17 17 153 47 47 1128

18 18 171 48 48 1176

19 19 190 49 49 1225

20 20 210 50 50 1275

21 21 231 51 51 1326

22 22 253 52 52 1378

23 23 276 53 53 1431

24 24 300 54 54 1485

25 25 325 55 55 1540

26 26 351

27 27 378

28 28 406

29 29 435

30 30 465
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Chapter 5

Conclusion

This work presents the results of three experimental studies that investigate

how changes in the auction environment or the auction rules can affect the

auction outcome. All studies find that, if theorists want to predict the out-

come of an auction correctly, they need to account for a number of behavioral

anomalies.

In particular, Chapter 2 studies behavior in auctions with and without am-

biguity and shows that without accounting for nonlinear probability weighting,

standard theories are incapable of explaining the experimental results. Non-

linear probability weighting is a widely established behavioral phenomenon

(Prelec 1998), which has received little attention in the context of auctions.

Armantier and Treich (2009) are one of the few exceptions – they show that

when nonlinear probability weighting is controlled for, the effect of risk aversion

on overbidding decreases substantially. Chapter 2 provides another example

of the importance of nonlinear probability weighting in the context of auc-

tions, thus supporting the notion that future research on bidding behavior in

auctions should attempt to account for this behavioral phenomenon.

Chapter 3 investigates experimentally the predictions of two models of auc-

tions with favoritism studied in Burguet and Perry (2009). It also shows that

unless risk aversion and bounded rationality are accounted for, the experimen-

tal results only partially support the theoretical predictions. More importantly,

the alleged optimality of one of the mechanisms with favoritism is shown to

be highly contingent on the favored bidder behaving rationally. Hence, the

practical applicability of the optimal mechanism is contested and future re-
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search should provide optimal mechanisms more robust to boundedly rational

behavior.

Finally, the experimental study presented in Chapter 4 shows that while one

big and several smaller auctions for multiple homogenous goods lead to similar

allocation after the auctions, the prices paid differ substantially and so does

the development of an aftermarket. Although the causes for this observation

are not explicitly discussed in Chapter 4, the “declining price anomaly” we ob-

serve in the sequential auctions for homogenous goods is a commonly reported

phenomenon (see Ashenfelter 1989, for example). Risk aversion has been iden-

tified as one of its possible causes (Mezzetti 2011). Given that prior to the

introduction of the US Greenhouse Gas Initiative and the European Emission

Trading Scheme, most of the analysis regarding the auction frequency was

only theoretical, future research should also attempt to enrich the analysis of

multi-unit auctions to account for boundedly rational behavior.
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