Abstract

The focus of this thesis is on the synthesis and characterization of coordination polymers containing fluorinated carboxylates. A total of eleven new compounds, based on the anions of 2,4,6-trifluorobenzoic acid (HtfB), 2-fluorotrimesic acid (H₃mfBTC) and 2,4,6-trifluorotrimesic acid (H₃pfBTC) are presented.

Five of these compounds contain the tfB⁻ anion as a structural building block. These are ${}^{1}_{\infty}$ [Li(tfB)_{3/3}(H₂O)_{1/1}] (P2₁, Z=2, **1**), ${}^{2}_{\infty}$ [Cs(tfB)_{2/2}(HtfB)_{3/3}] (P2₁/c, Z=4, **2**), ${}^{1}_{\infty}$ [Ag(tfB)_{2/2}(H₂O)_{2/2}] (C2/c, Z=8, **3**), ${}^{1}_{\infty}$ [Cu(tfB)_{2/1}(H₂O)_{4/2}] (P1, Z=1, **4**) and ${}^{0}_{\infty}$ [Cu(tfB)_{4/2}(MeOH)_{1/1}] (P2₁/c, Z=4, **5**).

Compounds 1 to 4 are coordination polymers that form strands (1, 3, 4) or corrugated layers (2). In 1 and 2 the metal cations are bridged via the 2,4,6-trifluorobenzoate ligand, whereas in 3 and 4 the bridging results from coordinating water molecules. In addition, in 4 and 5 dimeric Ag₂- or Cu₂-units with short metal-metal distances are found. In 4 the dimers are additionally bridged via coordinating water molecules, while 5 forms the "paddlewheel" structural motif.

of Furthermore, the synthesis of the mono-potassium salts 2-fluorotrimesic $\binom{3}{\infty} [K(H_2 mfBTC)_{6/6}],$ 2,4,6-trifluorobenzene-1,3,5-tricarboxylic acid 6) and acid $\binom{3}{\infty}$ [K(H₂pfBTC)_{6/6}], 8) succeeded for the first time. The products were synthesized as phase-pure compounds and structurally characterized by single-crystal structure determination. Crystal structures of compounds containing the mfBTC3- and pfBTC3anion have not been reported in the literature up to now. The crystal structures of these two compounds are related and crystallize in the acentric space groups Pc (6, Z=2) and Cc (8, Z=4). The comparison of the thermal behavior shows, contrary to expectations, that **6** exhibits a higher thermal stability than 8.

Moreover, with ${}^{3}_{\infty}$ [Cu₁₄(mfBTC)₈(Py)₁₂(H₂O)₄(OH)₄] (P2₁/c, Z=1, 7) a second compound containing the mfBTC³⁻ anion as a linker is described. In 7 dimeric and pentameric Cu units are bridged via the mfBTC³⁻ anion to form layers, which are in turn linked by a further mfBTC³⁻ anion resulting in a three dimensional network.

Compound **8** served as starting material for three other compounds that contain the pfBTC³⁻ anion, namely ${}^{3}_{\infty}[K_{5}H(pfBTC)_{2}(H_{2}O)_{4}]$ (PĪ, Z=2, **9**), ${}^{1}_{\infty}[Sc(pfBTC)_{3/3}(H_{2}O)_{3/1}] \cdot 4 H_{2}O$ (PĪ, Z=2, **10**) and ${}^{2}_{\infty}[Cu_{3}(pfBTC)_{2}(Py)_{4}(H_{2}O)_{4}]$ (PĪ, Z=2, **11**). These compounds crystallize as pure phases and were also characterized by x-ray single crystal structure analysis.