Kurzzusammenfassung

Der Schwerpunkt dieser Arbeit liegt auf der Synthese und Charakterisierung von Koordinationspolymeren mit fluorierten Carboxylaten. Insgesamt werden elf neue Verbindungen vorgestellt, die auf den Anionen der 2,4,6-Trifluorbenzoesäure (HtfB), der 2-Fluortrimesinsäure (H₃mfBTC) und der 2,4,6-Trifluortrimesinsäure (H₃pfBTC) basieren.

Fünf dieser Verbindungen enthalten das tfB⁻-Anion als strukturellen Baustein. Hierbei handelt es sich um ${}^{1}_{\infty}$ [Li(tfB)_{3/3}(H₂O)_{1/1}] (P2₁, Z=2, **1**), ${}^{2}_{\infty}$ [Cs(tfB)_{2/2}(HtfB)_{3/3}] (P2₁/c, Z=4, **2**), ${}^{1}_{\infty}$ [Ag(tfB)_{2/2}(H₂O)_{2/2}] (C2/c, Z=8, **3**), ${}^{1}_{\infty}$ [Cu(tfB)_{2/1}(H₂O)_{4/2}] (P1, Z=1, **4**) und ${}^{0}_{\infty}$ [Cu(tfB)_{4/2}(MeOH)_{1/1}] (P2₁/c, Z=4, **5**).

Bei den Verbindungen 1 bis 4 handelt es sich um Koordinationspolymere, die Stränge (1, 3, 4) oder wellenartige Schichten (2) ausbilden. In 1 und 2 werden die Metallkationen über den 2,4,6-Trifluorbenzoatliganden verbrückt, während in 3 und 4 die Verbrückung über koordinierende Wassermoleküle erfolgt. Des Weiteren findet man in 4 und 5 dimere Ag₂- bzw. Cu₂-Einheiten mit kurzen Metall-Metall-Abständen. In 5 bildet sich das "paddlewheel"-Strukturmotiv aus.

Darüberhinaus gelangen erstmals die Synthesen der Monokaliumsalze von 2-Fluortrimesinsäure $\binom{3}{m}$ [K(H₂mfBTC)_{6/6}], 6) und 2,4,6-Trifluorbenzol-1,3,5-tricarbonsäure $\binom{3}{\infty}$ [K(H₂pfBTC)_{6/6}], 8). Die Produkte konnten dabei phasenrein synthetisiert und strukturell durch Einkristalldiffraktometrie charakterisiert werden. Bisher waren Kristallstrukturen von Verbindungen, die das mfBTC³⁻- und das pfBTC³⁻-Anion enthalten, in der Literatur unbekannt. Die Kristallstrukturen der beiden Verbindungen sind miteinander verwandt und kristallisieren in den azentrischen Raumgruppen Pc ($\mathbf{6}, Z=2$) und Cc ($\mathbf{8}, Z=4$). Der Vergleich des thermischen Verhaltens zeigt, dass 6, entgegen den Erwartungen, eine höhere thermische Stabilität als 8 aufweist.

Darüberhinaus konnte mit ${}^{3}_{\infty}$ [Cu₁₄(mfBTC)₈(Py)₁₂(H₂O)₄(OH)₄] (P2₁/c, Z=1, 7) eine weitere Verbindung beschrieben werden, die das mfBTC³⁻-Anion als Linker enthält. In 7 werden dimere und pentamere Einheiten über das mfBTC³⁻-Anion zu Schichten verbrückt, die wiederum durch ein weiteres mfBTC³⁻-Anion zu einem dreidimensionalen Netzwerk verknüpft werden.

Verbindung **8** diente als Edukt für drei weitere Verbindungen, die das pfBTC³⁻-Anion enthalten. Hierbei handelt es sich um ${}_{\infty}^{3}$ [K_{2,5}(H_{0,5}pfBTC)(H₂O)₂] (PĪ, Z=2, **9**), ${}_{\infty}^{1}$ [Sc(pfBTC)_{3/3}(H₂O)_{3/1}] · 4 H₂O (PĪ, Z=2, **10**) und ${}_{\infty}^{2}$ [Cu₃(pfBTC)₂(Py)₄(H₂O)₄] (PĪ, Z=2, **11**). Diese Verbindungen kristallisieren ebenfalls röntgenografisch phasenrein und konnten mittels Einkristallstrukturanalyse beschrieben werden.