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Dumbrăviţa I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2.1 Geographical and archeological setting . . . . . . . . . . . . . . . . . 161

6.2.2 The lithic material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.3 Thermoluminescence dating of heated artefacts . . . . . . . . . . . . . . . . 167

6.3.1 Preparation and measurement parameters of TL samples . . . . . . 168

6.3.2 Measurement protocols used for TL dating . . . . . . . . . . . . . . 169

6.3.2.1 Multiple-aliquot additive-dose technique (MAAD) . . . . . 169

6.3.2.2 Single-aliquot regenerative-dose technique (SAR) . . . . . . 169

6.3.2.3 Single-aliquot regeneration and added dose technique (SARA)170

6.3.2.4 Alpha-efficiency determination using the SAR protocol . . 170

6.4 Optically stimulated luminescence dating of sediments . . . . . . . . . . . . 170

6.4.1 Preparation and measurement parameters . . . . . . . . . . . . . . . 171

6.4.2 Measurement protocol used for OSL dating . . . . . . . . . . . . . . 171

6.5 Dose rate determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.6 Dating results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.6.1 Dosimetry results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.6.2 Thermoluminescence behavior of samples . . . . . . . . . . . . . . . 173

6.6.3 TL dose recovery tests . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.6.4 TL ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.6.5 OSL ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.7.1 TL ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.7.2 OSL ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.7.3 Archeological and paleoanthropological implications . . . . . . . . . 182

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7 Applied dating: Further case studies from Paleolithic sites 193

7.1 General measurement parameters and procedures . . . . . . . . . . . . . . . 193

7.2 Vale Boi (Portugal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.2.1 Geographical and archeological setting of the site . . . . . . . . . . . 195

7.2.2 Methods for dose and dose rate determination . . . . . . . . . . . . 196

7.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.2.4 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . 198

viii



Contents

7.3 Sodmein Cave (Egypt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.3.1 Geographical and archeological setting of the site . . . . . . . . . . . 201

7.3.2 Methods for dose and dose rate determination . . . . . . . . . . . . 203

7.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.3.4 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.4 Las Palomas (Spain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.4.1 Geographical and archeological setting of the site . . . . . . . . . . . 209

7.4.2 Methods for dose and dose rate determination . . . . . . . . . . . . 210

7.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.4.4 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . 211

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8 Summary and discussion 217

8.1 Types of dated events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

8.2 The role of the internal dose rate for silex dating . . . . . . . . . . . . . . . 220

8.3 New approaches for silex dating: single-aliquot protocols and optically sti-

mulated signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

8.4 Applied TL dating of heated lithics: achievements and problems . . . . . . 226

8.5 Outlook: spatially resolved dating of silex . . . . . . . . . . . . . . . . . . . 229

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

9 Abstract 235

10 Kurzzusammenfassung 239

Appendices 245

A Supplementary material of publications 245

A.1 Supplementary material for Chapter 2 . . . . . . . . . . . . . . . . . . . . . 245

A.2 Supplementary material for Chapter 3 . . . . . . . . . . . . . . . . . . . . . 250

A.3 Supplementary material for Chapter 4 . . . . . . . . . . . . . . . . . . . . . 254

A.4 Supplementary material for Chapter 5 . . . . . . . . . . . . . . . . . . . . . 258

A.4.1 LM-OSL signal deconvolution of silex samples . . . . . . . . . . . . . 258

A.4.2 Anti-Stokes shifted luminescence . . . . . . . . . . . . . . . . . . . . 262

A.4.3 Fading tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

A.4.4 Residual TL after OSL readout . . . . . . . . . . . . . . . . . . . . . 265

A.5 Supplementary material for Chapter 6 . . . . . . . . . . . . . . . . . . . . . 266

A.5.1 Glow curves and dose response curves of multiple-aliquot additive-

dose protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

A.5.2 Apparent equivalent dose plotted against added dose (SARA protocol)267

A.5.3 Photographs of examples of sample type 1 and sample type 2 . . . . 268

A.5.4 Rejection of type 2 samples . . . . . . . . . . . . . . . . . . . . . . . 268

ix



Contents

A.5.5 Preheat plateau test for OSL fine grain samples . . . . . . . . . . . . 270

A.5.6 TL dating results of type 2 TL samples . . . . . . . . . . . . . . . . 271

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

B Dose recovery tests 273

B.1 Dose recovery tests using multiple-aliquot additive-dose (MAAD) protocols 274

B.1.1 Ultraviolet emission (∼ 340± 40 nm) . . . . . . . . . . . . . . . . . . 274

B.1.2 Ultraviolet-blue emission (∼ 410± 30 nm) . . . . . . . . . . . . . . . 275

B.2 Dose recovery tests using single-aliquot regenerative-dose (SAR) protocols . 276

B.2.1 Blue emission (475± 25 nm) . . . . . . . . . . . . . . . . . . . . . . . 276

B.2.2 Red emission (630± 30 nm) . . . . . . . . . . . . . . . . . . . . . . . 279

C Supplementary measurement data of dated silex samples 283

C.1 Vale Boi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

C.1.1 Plateau tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

C.1.2 Dose recovery tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

C.1.3 Plots of equivalent dose versus corrected natural signal . . . . . . . . 288

C.2 Sodmein Cave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

C.2.1 Plateau tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

C.2.2 Dose recovery tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

C.2.3 Plots of equivalent dose versus corrected natural signal . . . . . . . . 291

C.3 Las Palomas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

C.3.1 Plateau tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

C.3.2 Plots of equivalent dose versus corrected natural signal . . . . . . . . 295

D Contribution to the manuscripts 297

Acknowledgments 299

x



List of Figures

1.1 Compilation of various silex raw materials . . . . . . . . . . . . . . . . . . . 6

1.2 SEM and optical microscope images of radiolaria . . . . . . . . . . . . . . . 8

1.3 Recrystallization of amorphous opal-A to macrocrystalline quartz . . . . . . 9

1.4 Signs of heat alteration of dated silex samples . . . . . . . . . . . . . . . . . 10

1.5 Growth and resetting of the latent luminescence signal . . . . . . . . . . . . 12

1.6 TL glow curve of a γ-irradiated limestone sample . . . . . . . . . . . . . . . 13

1.7 Formation of energy bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8 Molecular structure of amorphous SiO2 . . . . . . . . . . . . . . . . . . . . 17

1.9 Distribution of electronic states in crystalline and amorphous solids . . . . . 17

1.10 Energy band diagram with traps and recombination centers showing charge

transfer processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.11 Configurational coordinate diagram . . . . . . . . . . . . . . . . . . . . . . . 23

1.12 Influence of sensitivity changes on dose determination . . . . . . . . . . . . 25

1.13 TL spectrum of a Cretaceous flint sample . . . . . . . . . . . . . . . . . . . 26

1.14 Photo-stimulated emission spectrum of flint . . . . . . . . . . . . . . . . . . 28

1.15 Influence of thermal quenching on glow curve position and shape . . . . . . 31

1.16 Simulated TL and LM-OSL curves of first- and second-order kinetics . . . . 33

1.17 Decay series of 232Th, 235U and 238U . . . . . . . . . . . . . . . . . . . . . . 35

1.18 Illustration of radiation with different ionization densities . . . . . . . . . . 38

1.19 Alpha-particle attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.20 Energie loss of α-particles with covered distance . . . . . . . . . . . . . . . . 41

1.21 Typical γ-spectrum of a sediment sample . . . . . . . . . . . . . . . . . . . 46

1.22 Spatial variability of γ-radiation . . . . . . . . . . . . . . . . . . . . . . . . 50

1.23 Equivalent dose determination using multiple-aliquot protocols . . . . . . . 53

1.24 Equivalent dose determination using the SAR protocol . . . . . . . . . . . . 54

1.25 Heating and De-plateau test . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1.26 Generalized working steps for TL age determination of heated silex . . . . . 59

2.1 Natural and regenerated TL signals from single steel and Al discs for dif-

ferent detection wavelengths . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.2 Results of the experiment to measure the influence of grain coverage on

unwanted signal contributions of used Al discs (UV detection range) . . . . 79

2.3 TL dose response curves of steel and Al discs for different emissions . . . . 80

xi



List of Figures

2.4 Growth of spurious and 250 Gy regenerated UVTL signals of Al discs with

air (oxygen) exposure duration . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.5 Natural (0 Gy) and regenerated OSL signals of single steel and Al discs after

preheat (260 ◦C for 10 s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.6 Dose response of residual UVTL after blue optical stimulation for one Al disc 84

2.7 PTTL measurement in the UV of an Al disc after a β-dose of 250 Gy was

given . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.1 A sketch of the prepared silex thick sections and the mounted polycarbonate

detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.2 Simulations of three types of point fields . . . . . . . . . . . . . . . . . . . . 98

3.3 Beta-autoradiography images and color scans of nine selected silex samples 100

3.4 Optical microscope images of etched track detectors . . . . . . . . . . . . . 104

3.5 Classification of the α-track patterns and the relationship between track

distribution and measured field intensity . . . . . . . . . . . . . . . . . . . . 105

4.1 Generalized components constituting the samples . . . . . . . . . . . . . . . 120

4.2 Measured concentrations of K, Rb, U and Th in different sample domains . 121

4.3 Ratio of element concentrations determined by bulk analyses of the speci-

mens normalized to LA-ICP-MS measurements of the silex component only 125

5.1 LM-OSL curves of silex samples . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 LM-OSL pulse annealing data of sample M3 . . . . . . . . . . . . . . . . . . 142

5.3 Pulse annealing data of the varying heating rate method for sample M3 . . 145

5.4 Thermal stability of OSL component 1 of samples M3 and M27 in relation

to TL peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5 OSL dose response curves of silex samples . . . . . . . . . . . . . . . . . . . 147

5.6 Results of the preheat dose recovery test . . . . . . . . . . . . . . . . . . . . 149

6.1 Map of SW Romania, showing the Banat region and adjacent countries . . 162

6.2 Main section 86/221S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.3 Horizontal (upper chart) and vertical (lower chart) view of the excavated
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1 Introduction

Paleolithic archeological research has to rely on finds that endure thousands of years, and

mostly the only relicts found during excavations are of lithic nature. Based exclusively

on information derived from lithic artefact collections, archeological periods (technocom-

plexes) are distinguished for which a distinct type of artefact morphology is characteristic

(Hahn 1991; Trachsel 2008). Excavations yielding human fossils along with stone tools

in the same layer suggest that the artefacts were indeed produced by these people, and this

allows a direct linkage of a certain artefact inventory to a certain species of human beings.

For instance, Mousterian finds are associated with the presence of Neanderthals (homo

sapiens neanderthalensis) in Western and Central Europe, based on the find situation at

the sites Zafarraya in Spain (Hublin et al. 1995) or Pech-de-l’Azé I in France (Soressi

et al. 2007), and Aurignacian assemblages are assumed to have been produced by anatom-

ically modern humans (AMH, homo sapiens sapiens), as deduced from the excavations at

the site Les Cottés in France (Talamo et al. 2012). It is further assumed that this direct

correlation holds true not only for the type locality, but is applicable to wider areas as

well. Although such correlated fossil and lithic finds are necessary to evidence an affiliation

of technocomplexes to any form of hominids, information (1) on the age of the lithics and

(2) on spatial diffusion or disappearance of certain artefact types and thus species of ho-

minids is bound to numerical dating that provides age constraints of archeological deposits.

Chronological information, however, is often difficult to obtain with the most commonly

applied radiocarbon dating method, especially in Lower and Middle Paleolithic contexts,

which are beyond the range of radiocarbon dating. Furthermore, organic material required

for radiocarbon dating is often absent in arid or semi-arid environments. Dating methods

making use of radiation damages are suitable not only to provide age information on cer-

tain parts of animals and human beings (e.g. corals and tooth enamel) by electron spin

resonance (ESR), but also on lithic material by luminescence techniques. While optically

stimulated luminescence (OSL) can be used to date underlying and overlying sedimen-

tary deposits and sometimes deposition of the find layer itself, thermoluminescence (TL)

allows determining the time of the firing event of heated lithic materials. In contrast to

radiocarbon dating or the bracketing dates of a find layer obtained with OSL, the TL

method applied on heated artefacts (or rocks in general) is considered to yield direct dates

of events caused by prehistoric humans, e.g. lighting of a campfire.
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1 Introduction

Whereas accidental use of natural fire by humans goes back farther than 1 Mio. years in

Africa (James 1989), evidence and chronological constraint of first intentional use of fire

is difficult to adduce (Richter 2007b). Especially in Europe, the adoption of controlled

use of fire seems to have taken place considerably late (∼ 300–400 ka ago) (Roebroeks

& Villa 2011). The importance of fire for mankind becomes clear as it not just provides

warmth and light, but also enables the cooking of food which is seen as playing a major

role in human evolution (Clark & Harris 1985; Carmody & Wrangham 2009). To

directly link an event dated by TL – e.g. the heating of a lithic fragment – to human

agency, the basic assumption is the frequent and intentional use of fire. Otherwise, the

determined age could be that of an accidentally occurring natural fire as well, e.g. induced

by a lightning. While in cave sites a lack of inflammable materials suggests a human cause

of fire, open-air sites should preferably show an undisturbed and confined hearth to be

able to exclude the impact of natural fires. However, the presence of heated along with

unheated artefacts within the same strata or a clustering of heated ones can also be seen

as a strong indication of anthropogenic campfires. With good reasons, the last heating of

artefacts in most archeological contexts may thus be attributed to contemporary human

occupancy of the site.

The oldest fossils of AMH, the species which we are part of, were found in Ethiopia

and date back to ∼ 190 ka using the 40Ar/39Ar method (McDougall et al. 2005; Flea-

gle et al. 2008). These finds strengthen the “Out of Africa II” theory whose principle

is the dispersal of modern humans from its origin in Eastern Africa all over the world

(Eswaran 2002), in contrast to the “multi-regional” model according to which – in simple

terms – AMH evolved simultaneously from several regional branches of preceding hominid

forms (Wolpoff et al. 2000). The “Out of Africa II” hypothesis forms the basis of the

Collaborative Research Center (CRC) 806 (“Our Way to Europe – Culture-Environment

Interaction and Human Mobility in the Late Quaternary”). This project investigates the

dispersal of AMH out of Africa into Europe along two corridors from which one – the

Eastern trajectory via the Near East and the Balkan – is evidenced, while the other route

– the Western trajectory, comprising a transition of the Sahara and the Street of Gibral-

tar – is still a matter of debate. Climatic conditions and their impact on environment,

resources and habitats are thought to be a driving factor influencing the spread or retreat

of AMH. To combine environmental and archeological data and thus elucidate any corre-

lations between them, numerical dates of both records are indispensable. For the reasons

quoted above, thermoluminescence dating of heated artefacts takes an important position

to provide such information and to contribute to a crucial question of mankind. In the

context of the CRC 806, the present work is concerned with methodological aspects of TL

dating of heated siliceous rocks and aims to make this method feasible also in complex

archeological contexts, especially in the event of “problematic” silex samples. Representing

the regional focus of the CRC 806, several sites along the Eastern and Western trajectory

or adjacent regions yielded heated artefacts to be dated in the course of case studies.
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1.1 Aims of this study

Several TL dating studies from Paleolithic sites yielded data sets from the same archeolo-

gical layer with large variability of obtained ages of individual artefacts (Mercier et al.

2007b; Richter et al. 2007; Valladas et al. 2008). This scatter of individual TL data is

partly attributed to differing internal dose rates between samples, but also seen as caused

by heterogeneities in environmental radiation fields. It is because of radiation hot spots

present in the dated samples that Tribolo et al. (2006) had to deal with an increased

uncertainty range of obtained ages. These and other studies suggest that the correct assess-

ment of the internal dose rate and allowance for non-uniformity may play a significant role

in overcoming part of the considerable scatter and uncertainty levels of TL dates (Malik

et al. 1973; Valladas 1985; Selo et al. 2009). Indeed, taking into account the difference

of uranium, thorium and potassium contents by factors of 10 or more (Mercier et al.

2007a) between single samples which are supposed to originate from the same raw material

source, there is a priori no reason to assume radioisotopes to be uniformly spread in one

sample. In contrast to the environmental radiation field that cannot be fully preserved

during excavation, the internal configuration of radiative emitters remains intact until the

specimen reaches the laboratory and is subjected to mechanical preparation. Consequently,

internal dosimetric effects can be studied in detail. Therefore, a notable part of this work

is concerned with the issue of the homogeneity of the internally induced radiation field of

various silex samples and the resulting influence on TL ages. Especially if the luminescence

sensitivity of the material changes with the local radioelement concentration, ages derived

from average dose estimates and average dose rates of mixed sample material are expected

to comprise systematic errors. In order to recognize difficulties associated with internal

dosimetry, it is further aimed for developing a test method in the course of single-aliquot

regenerative-dose measurement protocols.

Apart from issues related to the internal radiation field of silex samples, this thesis

focusses on further potential sources of error and scatter. In the early years of TL dat-

ing, possible contributions of the sample holders to the detected luminescence signal were

investigated – often termed “spurious” or “parasite” TL (Berger et al. 1982; Aitken

1985b) –, but have fallen into oblivion during the past decades so that most laboratories

are unaware of that problem. A study of thermally and optically stimulated luminescence

of a variety of sample holders thus serves to estimate the degree of interference of para-

site signals and those of the sample itself. By selecting appropriate cleaning procedures

and sample holders with negligible luminescence emission, it is expected to reduce both

systematic and random errors of the determined radiation dose.

While OSL is routinely applied in luminescence dating of sediments, the potential of

this method for heated silex has been poorly studied up to present (Poolton et al.

1995; Richter & Temming 2006). Signal resetting by heating instead of bleaching may

have the potential to also take advantage of so-called slow -components from which some
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are characterized by high saturation dose levels, enabling the dating of older samples.

The parallel determination of several dates by different luminescence stimulation modes

(TL and OSL) and various detection wavelengths (e.g. UV-OSL and red or blue TL)

further opens up the possibility to generate multiple ages per silex specimen. This allows

conclusions to be drawn on the signal stability of used emissions and the general reliability

of the dating results. The present work thus contains basic investigations on OSL signal

composition of silex, the components’ thermal stabilities and their suitability for dating.

Since the method of artefact dating by TL has not been applied before at the Cologne

luminescence laboratory, one has to make sure that systematic errors introduced during

sample preparation and measurement can be ruled out. This will be tested by recovering

known radiation doses given to zeroed geological as well as archeological silex samples

and applying the routine sample preparation and measurement procedures. A cross-check

of TL data with an independent method (radiocarbon dating) will be carried out for

samples from a Gravettian find layer. Furthermore, in a second step, the findings from

the dosimetric investigations will then be applied to heated silex samples from different

archeological contexts.

In summary, the main focus of the present study is a methodological one. As a central

aim, it focusses on the reduction of systematic and random errors in the TL dating process

of heated silex. Based on the previous considerations, this work addresses the following

questions:

1. Do spurious luminescence signals contribute significantly to the uncertainty of lumi-

nescence data?

2. Are omnipresent impurities in silex related to gradients in the internal radiation

field?

3. Is it possible to recognize and quantify internal heterogeneity and to account for it

to improve accuracy and precision of TL ages?

4. Are single-aliquot procedures suitable for providing information on malign influence

of non-uniform dose rate and for discrimination between affected samples and those

yielding valid ages?

5. How is the composition of the OSL signal of silex and can slow -components increase

the dating limit?

The following part of the introduction summarizes specific luminescence-related features

of silex, and the basic principles and mechanisms of luminescence dating are presented.

Here, focus is set on issues being of particular relevance for TL of silex, e.g. α-radiation and

its efficiency in luminescence production. The detailed information on this item is presented

with having in mind its significance for evaluating internal dose rate properties. Since

fundamental processes of luminescence generation (Section 1.3.2.2) and the mathematical
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description of TL and OSL curve shapes (Section 1.3.2.4) provide the background for the

comprehension of the OSL study or aspects of applied dating (e.g. Chapters 5 and 6), these

topics are given detailed attention. The main luminescence emissions of silex (respectively

quartz) are also introduced, because ages based on several TL emissions will be compared

in the course of the applied dating studies.

1.2 General characteristics of silex

Predictable knapping properties of the raw material are a prerequiste for the produc-

tion of high-quality stone-tools. These features are particularly provided by rocks showing

conchoidal fracture which goes along with isotropy of working properties. Due to their

directional cleavage, macrocrystalline rocks are far less suitable for tool processing than

amorphous or microcrystalline materials. The compactness and the resistance to weather-

ing are characteristic of silex and, accordingly, most of the stone artefacts excavated from

Paleolithic sites consist of any type of silex. The general features and diagenesis of silex

will be shortly described in the following.

1.2.1 Terminology

The terminology associated with the types of raw materials used for tool production is

obfuscating and follows different criteria and local variations. An international or standard-

ized system, either from the archeological or from a mineralogical or geological point of

view, does not exist. Expressions appearing in this context comprise flint, chert, hornstone,

jasper, agate, chalcedony, opal, quartzite, radiolarite, silcrete and many more. Distinction

can be made with respect to the rock’s composition, how it was formed or when it was

formed. Referring to the latter possibility, chemically and petrographically identical ma-

terial is termed differently according to its geological origin. For instance, this is the case

for flint (Cretaceous) and hornstone (Jurassic) (Floss 2003; Graetsch & Grünberg

2012). Mercier et al. (1995) and Aitken (1985b) see flint as a form of chert found in

chalk layers, whereas chert is defined as made up mainly of chalcedony. However, unequi-

vocal subdivision in terms of mineralogical composition is hampered by smooth transitions

between constitutive phases. Unambiguous identification of mineral phases is related to

considerable analytical efforts and thus mostly not feasible in the context of archeological

research. The conditions of formation may also play a role in nomenclature as is the case for

radiolarite. While some scholars often subsume all varieties of amorphous/microcrystalline

siliceous rocks under the expression “flint”, Americans prefer the term “chert” and French

the name “silex” (Richter et al. 1999). In this work, the latter term – silex – is chosen to

summarize all forms and varieties of silica studied, also because this expression involves

literally the main component of all these materials, i.e. silica (SiO2).
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Figure 1.1: Compilation of various silex raw materials. (a) Tabular hornstone (Upper Juras-
sic) from Abensberg-Arnhofen, Germany; (b) Banded flint (Jurassic) from the Holy Cross Moun-
tains, Poland; (c) Radiolarite from Gemsteltal-Widderstein (Kleinwalsertal), Austria; (d) Radio-
larite from Gemsteltal-Widderstein/Bärenkopf, Kleinwalsertal, Austria; (e) Trigonodus hornstone
(Middle Triassic) from Dinkelberg, Germany; (f) Close-up of chalcedony from Romania, showing
Fe-Mn-oxy-hydroxide inclusions (see Section 4.3.5).
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1.2.2 Constituents and diagenesis

Composition and formation regimes of silex may considerably determine the luminescence

characteristics and thus the value of the age information. As will be evident in the following

chapters, impurities play an important role in this respect. Therefore, basic information

on constituents and diagenesis of silex will be given here.

Silex can either occur as nodules or as (banded) layers of several centimeters thickness.

Main components of siliceous rocks are SiO2, water and CaCO3, while further contribu-

tions come from minor and trace elements, foreign phases in cracks, inclusions and organic

matter, summarized as impurities (Micheelsen 1966). Infrared-spectroscopy has shown

that water in silex may be present as molecular water or in form of hydroxyl groups and

is quoted to amount to ∼ 0.5–2 wt.% in chalcedony (Graetsch et al. 1985; Okrusch

& Matthes 2005), but can reach concentrations up to 20 wt.% in opal (Okrusch &

Matthes 2005). As suspected by Andersen (1982), water penetrating through cracks in

the rock is able to carry impurities into the rock or, vice versa, may leach out considerable

amounts of trace elements. Trace elements account for the colors observed for various sil-

ices, including all shades of grey, red, yellow, ochre, brown and dark green to almost black.

Some specimens illustrating the huge variety of textures and colors are shown in Fig 1.1.

A striking characteristic of most silices is a white coating or rind which is either cortex

or patina. The cortex is the boundary layer of silex and host rock and of similar compo-

sition as the silex. Patina, however, forms by weathering of silex without cortex: Silica is

leached from the outer part of the rock and leaves cavities which may subsequently be

filled by precipitation of siliceous solutions, causing the white appearance (Rottländer

1975; Graetsch & Grünberg 2012).

Going into detail, the siliceous components of silex can be divided into amorphous opal

(SiO2 · nH2O) and fibrous or grainy microcrystalline SiO2 (chalcedony, jasper) (Floss

2003; Okrusch & Matthes 2005). Empirical studies on the grain size of the microcrys-

talline phase quote values of 2–30 µm for Danish flint, while these grains are composed of

piles of plates with a thickness of ∼ 59 nm (Micheelsen 1966), and a range of crystallite

sizes of ∼ 30–55 nm for various flints and ∼ 30–200 nm for diverse chert samples, derived

by X-ray diffractometry (Graetsch & Grünberg 2012). Based on the resolution of a

specific X-ray diffraction peak, Murata & Norman (1976) proposed a crystallinity index

which is seen as a function of crystal size and ranges from < 1 up to > 10. On this scale,

silex samples mostly yield values of < 1 up to 3, while also values of > 8 are reported for

American chert samples. Macrocrystalline quartz always has a crystallinity index value of

> 8.5. The broadening of reflection peaks in X-ray diffractometry is generally attributed

to small crystallite size or microstrain induced by lattice imperfections (Markl 2008;

Graetsch & Grünberg 2012). Thus, the relatively larger the amorphous component of

a silex sample, the more diffuse will the quartz reflection peak be (see Fig. 1.3).

Silices may form in various environments and thus exhibit different diagenetic path-

ways. Chemical disequilibrium in chalk deposits leads to redistribution of silica delivered
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Figure 1.2: SEM and optical microscope images of radiolaria. (a) SEM image taken from Markl
(2008). (b) cross-section of a fossilized radiolaria found in sample O4 during LA-ICP-MS analysis
(see Chapter 4). The red circles on the photo visualize the beam diameters (in µm) of the laser
and serve here as a scale. Both images have approximately the same scaling.

by skeletons of marine organisms and to the formation of silica gel concretions (pers.

comm. Dr. Rolf Hollerbach, Institute of Geology and Mineralogy, University of Cologne,

2011). In marine milieus of the Paleozoic, siliceous matter was provided by diatoms and

radiolaria, whose skeletons are made up of amorphous silica (opal-A). Their accumulation

and decay forms the basis of diatomite and radiolarite (Markl 2008). Opal may also

be formed by precipitation from hydrothermal solutions or in volcanic settings as a de-

cay product of young volcanic rocks (Okrusch & Matthes 2005). The initial stages of

biogenic amorphous SiO2 are not in thermodynamic equilibrium and marine silica then

undergo the following transition path (Markl 2008; Graetsch & Grünberg 2012):

opal-A → opal-CT → opal-C → quartz

Opal-CT shows initial signs of a long-range order and thus microcrystallinity, whereas CT

stands for the cristobalite-tridymite structure. Further cristallization yields opal-C and

finally quartz with macroscopical crystal structure. At least theoretically, during this pro-

cess the water content decreases and the crystal size increases and so does the crystallinity

index. Hence, the degree of crystallinity should be an indicator of geological age. However,

since the transition from amorphous to macrocrystalline SiO2 is dependent not only on

time, but also on burial depth (pressure), chemical environment and impurities and since

it may take different paths of diagenesis and involve various precurser phases, this relation-

ship does not hold true in all cases, as exposed in Graetsch & Grünberg (2012) and

references therein. Non-marine forms of silices may have undergone different processes of

formation, e.g. metamorphism in the case of Devonian quartzite (Floss 2003). Due to the

simultaneity of transformation processes (see also Fig. 1.3), most siliceous rocks are made

up of multiple phases, including mostly microcrystalline constituents (e.g. chalcedony) and

amorphous components (opal-A) (Markl 2008).
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1.2 General characteristics of silex

Figure 1.3: Recrystallization of amorphous opal-A to macrocrystalline quartz. (a) Transition from
opal-A via opal-CT to quartz. These processes go along with increasing crystal size what affects
the shape of the peaks observed in X-ray diffractograms (b). Modified from Markl (2008).

1.2.3 Heat alteration

Thermoluminescence dating is only applicable to sufficiently heated silex (>∼ 350–400 ◦C).

Therefore, recognition of heating of a sample by visual indicators is of great importance for

the selection of potential candidates for dating. According to Purdy & Brooks (1971),

Mercier et al. (1995), Richter (2007b) and Richter et al. (2011), optical signs of heat

treatment include

1. Crazing, cracking or craquelation. These patterns of cracks at the surface are

probably caused by thermal expansion and contraction. Severe and rapid heating

might result in fragmentation, shattering or even explosion of the sample due to

internal water evaporation.

2. Vitreous luster

3. Characteristic uneven planes of fracture which differ from weathered surfaces

or cleavage faces caused by knapping.

4. Potlids, i.e. hollow moulds of a size of several mm. According to Weymouth &

Williamson (1951), as cited in Richter et al. (2011), they occur during heating

rather than cooling due to evaporation of molecular (at ∼ 100 ◦C) and hydroxyl water

(at ∼ 365 ◦C).
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5. Color change to red or reddish. This process has been attributed to the oxidation

of Fe(II) to Fe(III) and occurs at temperatures above ∼ 250 ◦C (Purdy & Brooks

1971). Black coloration due to carbonization of organic impurities has been reported

by Rottländer (1989), as cited in Richter et al. (2011).

Figure 1.4: Signs of heat alteration of archeological silex samples. (a) Sample PRC3 from
Praia Rei Cortiço, Portugal: potlids, slight craquelation and dark discoloration. (b) Sample LP4
from Las Palomas, Spain: potlids and slight reddish/pinkish discoloration. (c) Sample Rom27
from Româneşti-Dumbrăviţa I, Romania: Potlids, craquelation and prominent color change from
ochre/brown (raw material) to dark red.

The presence of one of the listed indicators provides not necessarily evidence of heating,

as weathering or freezing may cause these features as well (Richter et al. 2011). In the

event that more of these attributes are observed for a sample, however, this is a strong

indication that it has been heated. Furthermore, the temperature reached during heating

cannot be deduced from external signs, except for the color change that seems to occur

at certain temperatures for some specific raw materials (see Section 6.2.2). Corresponding

to the huge variety of siliceous materials, the “response” to heating differs from sample to

sample. Whether or not certain signs of heat treatment are present is further dependent on

the heating rate and the duration of heating. Additionally, the temperatures necessary to

reset the TL signal and to cause signs of heat alteration can be provided by direct exposure

to fire only. Even small sediment layers of a thickness of a few centimeters are sufficient

to shield the heat of a hearth from the buried lithics, which in turn strengthens the direct

correlation between heating of the artefacts and occupation of the site (Campbell et al.

1995; Werts & Jahren 2007).

As far as the heating of lithic material is related to human activities, the way they

were fired – by accident or intentionally – is not crucial for the pure dating application.

Richter (2007b) argues for accidental fire impact in most cases. This did not change

until the Solutrean in which period regular signs of heat alteration have been related to

the technique of tempering. Other sources, however, already attributed Neanderthals a

fire-management comparable to that of AMH (Roebroeks & Villa 2011). Tempering

includes controlled and slow heating of raw material what is said to improve the chipping

properties to enable the use of medium- or bad-quality materials for elaborated tools, as is

characteristic e.g. for the Solutrean (Hahn 1991). A study of Purdy & Brooks (1971) on
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Florida cherts suggests that temperatures of 350–400 ◦C maintained for“sustained periods”

result in melting of impurity phases which are seen as a flux for the SiO2 microcrystals.

Thus, the microcrystals are bound closer together after heating, accompagnied by an

improvement of knapping properties.

1.3 Luminescence dating of heated silex

Luminescence dating is based on time-dependent storage of energy in insulators. Imparting

ionizing radiation causes a separation of charge – and thus an overall increase of potential

energy – that can be maintained over periods of time sufficient to date Middle and Upper

Paleolithic events. Here, naturally occurring radionuclides (mainly those from uranium,

thorium and potassium) play a major role: they supply energy/ionizing radiation via

their radiative decay. The longer a sample, for instance a silex artefact, is exposed to

environmental radiation of surrounding sediment, the higher will the accrued radiation

dose be, which is proportional to the age of the dated event. The sample thus acts as

dosimeter. Considering silex in particular, radiation coming from the sample itself has to

be accounted for as well, due to non-negligible amounts of radioactive elements within

the specimen. The stored energy can be released in the form of light (luminescence) by

stimulation with either light or heat. The luminescence signal is hence set to zero. Knowing

the rate with which dose is delivered (dose rate) and the functional relationship between

dose and luminescence output allows calculating the time elapsed since storage began.

This explanation requires a close relation of processes which reset the accumulated

dose (or, in other words, the “luminescence clock”) and the event of interest actually

to be dated (see Fig. 1.5). Several mechanisms are capable of zeroing the luminescence

signal: Heat (volcanic events, fire exposure, frictional heat), light (sunlight exposure) and

pressure/shock (e.g. earthquakes). In addition, the time of mineral formation is inherently

connected with the absence of any latent luminescence signal (Wagner 1995). Of special

interest for the scope of this work is signal erasure by heat, since fired siliceous material is

often found in the context of archeological sites, especially in hearths. From the distribution

of these finds and various signs of heat impact (e.g. the spatial correlation of heated lithics

with fire-related discoloration of underlying sediments) it may be inferred that the heating

is closely connected to human use of fire and is unlikely to have happened during natural

fires (Richter 2007a; Richter et al. 2009). Thermoluminescence thus facilitates a means

to directly date past human actvitity and the occupation of Paleolithic sites.

1.3.1 History, trends and applications of silex dating

The use of minerals as radiation dosimeters for dating purposes was first suggested by

Daniels et al. (1953) in their path-breaking publication dealing with “Thermolumines-

cence as a research tool”. At this time, only signal resetting by heat was known and it

was seen as possible to estimate “the dates at which limestones and ancient pottery were
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Figure 1.5: Growth and resetting of the latent luminescence signal. Modified from Richter
(2007a).

heated to high temperatures” (Daniels et al. 1953: 349). The authors further highlight

the potential of TL for correlating sediment strata by comparing their TL fingerprints, i.e.

their specific TL glow curves (recorded luminescence versus heating temperature). The

use of luminescence as a dosimetric means has only been possible with the development of

highly sensitive measurement devices that are able to register very low amounts of light,

e.g. the photomultiplier (Aitken 1985b). First measurements of TL from burnt ceramics

were made in the early 1960s by Kennedy & Knopff (1960) and at the University of

Bern by Grögler et al. (1960).

Basic research on “regenerated TL” (Göksu & Fremlin 1972), which is here used to

describe the spurious TL recorded after annealing the sample, prepared the ground for the

first application of TL in dating of heated silex artefacts. The method and dates presented

in the Science publication of Göksu et al. (1974) demonstrated the applicability of the

approach which yielded ages for heated silex from Middle and Upper Paleolithic sites and

the Bronze Age compatible with radiocarbon ages, stratigraphy and cultural attribution.

Besides success in application, the authors illustrated and discussed general considerations

and difficulties in regard to material properties, sample preparation, measurement proce-

dures as well as main sources of error. Initial TL measurements on heated silex artefacts

were conducted using thin slices of the interior parts of the specimen (Göksu & Frem-

lin 1972; Göksu et al. 1974; Aitken & Wintle 1977; Melcher & Zimmerman 1977).

One of the reasons for utilizing slices (mostly of 1 mm thickness or less) is explained by

Göksu & Fremlin (1972): grinding or crushing of the sample could at first result in tri-
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Figure 1.6: TL glow curve of a γ-irradiated limestone sample. The temperature-axis is inverted
(see the plotted heating ramp), 0 = 0 ◦C, 100 = 500 ◦C, heating rate 0.8 K s−1. From Daniels
et al. (1953).

boluminescence and, secondly, in an increase of surface having contact to the environment

(air, water), leading to the unwanted effect of spurious TL. Disadvantages, however, were

related to the heterogeneity of the slices in terms of opacity and dosimetry (e.g. determi-

nation of the α-efficiency) (Aitken & Wintle 1977). Valladas (1978) found out that

the spurious TL, obviously generated by residual carbonates within the sample, can be

eliminated by acid treatment of the crushed sample with diluted HCl. Since then, exclu-

sively crushed or ground samples have been used for measurements. Effects of mechanical

treatments (grinding, crushing) on the luminescence signals of the samples have not been

detected so far (Huxtable 1982; Aitken 1985b).

Melcher & Zimmerman (1977) approached the question of sufficient TL signal de-

pletion through ancient heating by comparing the TL of heated silex with that of raw

material. As visual appearance and optical indication of firing are (mostly) only qualita-

tive features, this article introduced a numerical assessment of the ancient temperature

reached. Other methods to estimate the heating temperature were presented by Valladas

(1981), Göksu et al. (1989) and Michab et al. (1998). Göksu et al. (1989) consider the

110 ◦C TL peak and its temperature-induced sensitization to be an appropriate means for

this test. During the 1990s, two papers on TL emission spectra of silex were published

(Martini et al. 1999; Richter et al. 1999), amending early investigations of Bailiff

et al. (1977) and Wintle & Aitken (1977) and confirming a strong orange-red emission

for most silex samples. This emission, however, has been disregarded until recently (see

below). Further methodological aspects such as TL signal saturation effects, fitting of dose

response data (Mercier 1991; Mercier et al. 1992) or determination of the α-efficiency

(Valladas 1988; Tribolo et al. 2001) were published by the members of the French silex

dating group in Gif-sur-Yvette.
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A crucial point in the evolution of luminescence dating was the discovery that light

can also be used for stimulation (optically stimulated luminescence, OSL). This opened

up the possibility of sediments being dated more precisely, as a direct measurement of

the optically sensitive luminescence signal was now feasible (Huntley et al. 1985). In

principal, it should be possible to use OSL for silex dating as well, because heat (> 350–

400 ◦C) is expected to erase all bleachable signal components. Only two studies have so

far dealt with OSL properties of silex: Poolton et al. (1995) carried out spectrometric

measurements and presented the fundamental differences between OSL from silex and from

macro-crystalline quartz, but concluded from pulse annealing experiments that the thermal

stability of the OSL signal is insufficient to be used for dating; Richter & Temming

(2006) found poor reproducibility of a given laboratory dose in dose recovery tests using

OSL. Nevertheless, OSL was applied to heated quartzite fragments to determine both the

equivalent dose and the α-efficiency (Tribolo et al. 2001; Tribolo et al. 2003). The

authors found, however, discrepancies between TL reference ages and the OSL ages which

they attributed to accidental bleaching of the stones during sampling.

For determination of the equivalent dose (De) – the laboratory dose that induces the

same luminescence output as the natural dose –, usually the multiple-aliquot additive-dose

approach (see Section 1.3.4.1) has been used, in order to circumvent influences of sensi-

tivity changes occurring during repeated heating and/or irradiation. Non-linear increase

of the first (additive) dose response curve at low doses is accounted for by constructing a

second (regenerated) glow curve (Aitken 1985b; Valladas 1985; Mercier et al. 1995).

Given the development of single-aliquot regenerative-dose (SAR) protocols in OSL dat-

ing of sediments since the early 1990s (Duller 1991; Mejdahl & Bøtter-Jensen 1994;

Murray et al. 1997; Murray & Wintle 2000), only quite recently SAR procedures have

been applied to silex as well (Richter & Krbetschek 2006). The authors made use of

low sensitivity changes observed for the red TL (RTL) emission of silex during repeated

heating and irradiation and presented a protocol with a reduced number of regeneration

points. More details on De determination will be given in Section 1.3.4.

A first overall summary of the state of the art of TL dating in general is given by the

book of Aitken (1985b). The knowledge of TL dating of heated silex in particular was

summarized first in a paper by Valladas (1985); other publications followed a few years

later by Valladas (1992), Mercier et al. (1995) and, most recently, by Richter et al.

(2000), Richter (2007a) and Wintle (2008).

Numerous case studies have proven the importance and prominence of TL dates of

heated artefacts. Particularly in the Levant, TL chronologies shed light on Middle Pale-

olithic occupational sequences and the question of simultaneous occurrence of AMH and

Neanderthals. Among the most important dates collected in this region are those con-

cerned with Quafzeh Cave (Israel, ∼ 90–100 ka) (Valladas et al. 1988) and Es-Skhul

(Israel, ∼ 120 ka) (Mercier et al. 1993) which provide age estimates of heated lithics

associated with AMH. The youngest ages related to the presence of Neanderthals were
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determined at Kebara and Amud Cave (Israel, ∼ 50–60 ka) (Valladas et al. 1987; Val-

ladas et al. 1999), giving a temporal overlap with the presence of AMH of several 10 ka.

Going back further in time, Mercier et al. (2007a) dated 77 single artefacts excavated

at Hayonim Cave (Israel) and could establish a detailed chronology reaching from ∼ 125–

230 ka. Other TL dating studies of Mediterranean sites include those of Sodmein Cave

(Egypt, Middle Paleolithic, ∼ 120 ka) (Mercier et al. 1999), Theopetra Cave (Greece,

Middle Paleolithic, ∼ 130 ka) (Valladas et al. 2007) and Rhafas Cave (Morocco, Middle

Paleolithic, ∼ 60–90 ka) (Mercier et al. 2007b), to name just a few. Indications for the

antiquity of modern human behaviour were brought about by TL dating of heated Middle

Stone Age quartzite and silcrete remains at Blombos Cave (South Africa) to about 74 ka

by Tribolo et al. (2006).

However, not just Mediterranean sites provided heated lithics suitable for TL dating.

Direct age estimates for the occupation of sites yielded important information on the

temporal and spatial distribution of Neanderthals and the invasion of AMH into Europe.

Important TL-dated Lower and Middle Paleolithic sites in France are e.g. Combe Grenal

(∼ 44–113 ka) (Bowman & Seeley 1978; Bowman & Sieveking 1983), Les Forêts and

Jiboui (∼ 93 and 52 ka, respectively; in combination with ESR) (Duttine et al. 2005) and

Bérigoule (∼ 54–111 ka) (Richter et al. 2007). Huxtable & Jacobi (1982) dated the

Mesolithic site at Longmoor Inclosure (East Hampshire, UK) to ∼ 8–10 ka, in agreement

with radiocarbon ages (obtained in the early 1980s) and showing the applicability of the

method to comparatively young sites. A comprehensive study of 14C, ESR and TL dating

was presented by Richter et al. (2000) for Upper Paleolithic layers in the Geißenklösterle

Cave (Germany). Disagreement of TL and radiocarbon ages for the Aurignacian level are

explained by the lack of appropriate 14C calibration. Furthermore, TL dates of heated

artefacts were obtained for the Eastern European sites of Piekary IIa (Poland, ∼ 39 ka)

(Mercier et al. 2003) which are compatible with OSL ages of well-bleached grains from

the same layer, and for the site of Brno-Bohunice (Czech Republic) (Richter et al. 2009).

Here, the occupation layer was dated both by TL of heated artefacts and OSL of sediments

to 48± 2 ka and 59± 6 ka, respectively.

The case studies given here represent, however, just a small selection; more examples

for the application of the TL method can be found in the reviews by Valladas (1992),

Mercier et al. (1995), Richter (2007a) and Wintle (2008).

1.3.2 Physical basics of luminescence in crystalline and amorphous SiO2

Luminescence as a mineralogical and biological phenomenon has been known for several

thousands of years (Harvey 1957). By heating certain minerals, light of different colors

is emitted, which cannot be attributed to incandescence and is thus referred to as “cold

light”. However, only with the development of solid state physics a plausible explanation

of the processes “behind the scenes” could be found; a full and all-encompassing theory

is nevertheless still outstanding. The basic principles of charge transfer responsible for

luminescence emissions in minerals will be outlined in the following sections.
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1.3.2.1 The energy band model

In isolated atoms, electronic states have clearly defined energies. If many atoms are brought

together to form a crystal lattice, the vicinity of the atoms causes the electrons to tunnel

from one atom to the other. Thus, the duration of stay of a valence electron “in” its mother

atom is limited and according to Heisenberg’s uncertainty principle for energy and time,

the originally sharp energy states broaden. The probability of tunneling for electrons in

the inner shells of an atom is much lower, and hence is also the broadening of the energy

states. In view of the entire crystal, defined energy states emerge into quasi-continuous

energy bands where each band contains a number of electronic states equal to the number

of lattice constituents (therefore “quasi-continuous”). At T = 0 K, all energy states with

E < EF are filled, and all states with E > EF are empty, with EF being the Fermi energy

or Fermi level. This sharp edge of the distribution of filled states is smoothened at higher

temperatures and the product of state density and Fermi-Dirac distribution (applicable

for electrons as they are fermions) governs the occupation of states (Meschede & Vogel

2006).

Figure 1.7: Formation of energy bands. Discrete electronic energy states (E1, E2) emerge into
quasi-continuous energy bands as the atomic distance is reduced. At the equilibrium distance (d0),
the resulting energy bands are separated by a forbidden zone of size Eg. Modified and redrawn
from Ibach & Lüth (2009).

As quantum-mechanical calculations (Demtröder 2005; Kittel 2006) and the above

considerations show, there is a band gap or energy gap Eg between the energy bands

which results directly from the periodicity of the lattice and its potential (Fig. 1.7). The

location of EF within the system of energy bands determines the electric conductivity and

divides materials into conductors, semi-conductors and insulators. In case of conductors,
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Figure 1.8: Molecular structure of amorphous SiO2. SiO4 tetrahedra (a) are connected to each
other by shared O atoms with bonding angles α (b). Due to the lacking long-range order of amor-
phous materials, the bonding angles vary in between connected molecules (c). From Demtröder
(2005).

crystalline

amorphous

Figure 1.9: Distribution of electronic states in crystalline and
amorphous solids, here shown for silicon. Clearly defined band
edges separate valence and conduction band in case of crys-
talline Si, while varying bonding angles lead to band tails reach-
ing into the band gap for amorphous Si. Dangling bonds are re-
sponsible for the creation of electronic states in the band gap.
The situation may be similar for amorphous and microcrystal-
line SiO2, except for dangling bonds which are expected to be
saturated by O atoms. D(E) describes the density of states as
a function of energy. Modified from Demtröder (2005).
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EF lies within an energy band (which is then only partly filled with electrons), whereas

it is located in the band gap for semi-conductors (Eg ∼ 1–2.5 eV) and insulators (Eg >

2.5 eV) (Yukihara & McKeever 2011). The energy gap of quartz is ∼ 8.5 eV (Bailey &

McKeever in prep.). Of interest for the luminescence process are only the highest band

filled with electrons (valence band) and the lowest empty band (conduction band).

In ideal crystals, the edges of valence and conduction band are sharply defined and for

electrons it is forbidden to enter the band gap (zero probability of finding an electron there

since there is no solution of the Schrödinger equation in this energy interval). In contrast,

amorphous and to a certain extent microcrystalline SiO2 misses a long-range order of

atoms, while a short-range order (next neighbors) is still given by the configuration of

SiO4 tetrahedra (Fig. 1.8). The amorphous character is related to varying bonding angles

of the molecules and local shifts in energy what finally leads to valence and conduction

band tails reaching into the band gap (Poolton et al. 1995; Demtröder 2005).

Deviations from the perfect crystal structure are prerequisites for the occurrence of lumi-

nescence. In fact, the regular and well-ordered configuration of atoms in crystals is always

disturbed to a certain extent. These aberrations from the ideal lattice structure (termed

as defects) occur at concentrations in the range 10−8–10−7 and can form due to chemical

or physical treatments, exposure to ionizing radiation or already at time of mineral growth

(Wagner 1995). In general, there are three groups of defects to be distinguished (Mahesh

et al. 1989; Kittel 2006):

� Vacancies (Schottky defects): An atom is removed from its place and leaves a

vacant lattice position. Even in a perfect crystal, there is always a certain number

of vacancies at thermal equilibrium (for T > 0 K). Common vacancies in quartz are

E′ centers, i.e. types of oxygen vacancies (Preusser et al. 2009).

� Interstitials (Frenkel defects): An atom is removed from its place and occupies an

interstitial site. As for Schottky defects, interstitial atoms occur always at T > 0 K.

� Substitutions: An atom of the regular lattice structure is replaced by an atom

of similar atomic radius, e.g. substitution of Si4+ by Al3+ in quartz. Apart from

Al3+, only a limited range of ions (Ga3+, Fe3+, Ge4+, Ti4+ and P5+) is capable

of subsituting Si4+, owing to its small ionic radius. For charge compensation, alkali

ions such as H+, Li+ or Na+ are incorporated along the channels of the c-axis in

the quartz lattice. The concentration of substitutional atoms in minerals is closely

related to the conditions of mineral formation (Krbetschek et al. 1997; Preusser

et al. 2009).

The types of defects listed here are point defects, i.e. are restricted to singular dis-

placements only. These defects are most relevant for the occurrence of luminescence (Kr-

betschek et al. 1997). Other lattice defects can be of larger dimensions, such as lattice
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translations, edge dislocations or the inclusion of foreign minerals (impurities). Further-

more, the crystal surface itself can also be regarded as an extensive defect. Gradients in

concentrations of point defects lead to temperature-dependent diffusion of defects within

the crystal (Demtröder 2005; Kittel 2006). All types of defects have in common that

their presence is connected to a region of net charge within the crystal that is capable

of attracting free charge carriers (electrons or defect electrons). For instance, an oxygen

vacancy in quartz causes a positive net charge, and charge compensation is achieved by

trapping a negatively charged electron.

With respect to the energy band model, defects account for the creation of discrete

energy levels within the forbidden zone that can be occupied by electrons or defect electrons

(holes). Whether defect sites are occupied by electrons or holes is determined by the

position of the Fermi level EF which lies in between the valence and conduction band for

quartz. Below EF , electrons are abundant (all electronic states are filled) and losing an

electron – being equal to attracting a hole – is more likely than gaining another electron.

Therefore, near the valence band edge defect sites act as hole trapping sites (Fig 1.10).

Inversely, trapping sites above EF and near the conduction band edge attract electrons,

thus termed as electron traps (Bailey & McKeever in prep.).

Naturally occurring amorphous SiO2 phases, such as silex materials being of concern

for this study, are often found in combination with fibrous or grainy microcrystalline

structures. Moreover, silex is known to be a very impure mineral, influenced by additional

organic impurities and crystal water (see Section 1.2), for which reasons the exact band

configuration and the luminescence behavior are difficult to predict and presumably prone

to large variations between samples.

The basic mechanisms of charge transfer underlying the generation of luminescence can

be illustrated in idealized form using the energy band model. While the system of charge

movements is understandable either by electrons or holes as mobile charge carriers, focus

will be set on electrons here for the ease of explanation. Initially, none of the trapping

sites is occupied and all valence electrons are bound to atoms, i.e. are located in the

valence band. Ionizing radiation (e.g. α-, β- or γ-radiation, X-rays) is able to detach

valence electrons from the atomic union, and they may gain enough energy to be lifted

into the delocalized band (conduction band) where they can move freely through the

compound. The missing electron leaves a hole that can similarly propagate through the

valence band. Most of the electrons immediately return to the valence band and recombine

with holes. Through interactions and collisions with atoms and impurities, the electrons in

the conduction band gradually slow down, lose energy, and some of them become trapped,

if the potential energy of Coulombic attraction of the defect exceeds the kinetic energy of

the electron. The energy needed to overcome this potential determines the thermal lifetime

of the trap which is defined as the average time τ an electron is expected to be caught in

the trap. Assuming first-order kinetics (no retrapping of electrons after their release), the

basic charge rate equations give (Aitken 1985b; Bailey & McKeever in prep.):
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1.3 Luminescence dating of heated silex

τ = s−1 · e
E
kT (1.1)

where s (in s−1) is a frequency factor (describing the interaction of lattice and electron),

E (in eV) the thermal activation energy needed to release the electron from the trap to

the conduction band (also called “trap depth”), k Boltzmann’s constant and T (in K)

the temperature. The lifetime τ at the estimated burial temperature has to be at least

ten times the period to be dated for the thermal loss of electrons to be < 5 % (Aitken

1985b). The decisive parameters for the lifetime are therefore the trap depth E, indicated

in the energy band diagram by the distance of the trap to the conduction band edge, and

the frequency factor s. Wintle & Aitken (1977) reported a lifetime of ∼ 50 Ma for the

∼ 370 ◦C peak in flint which is sufficient to allow dating back to the beginning of the Middle

Paleolithic. Correspondingly, holes can be trapped at defects with negative net charge –

then referred to as hole traps – with equal conditions for their lifetimes. With supply

of sufficient external energy (stimulation with heat or light), the trapped electrons may

escape to the conduction band and recombine either with holes in the valence band or with

trapped holes. However, thermal eviction applies to trapped holes in the same way as to

trapped electrons; therefore hole traps suited for recombination (then called recombination

sites or centers) have to exhibit sufficient thermal stability and are thus located towards

the mid-gap region in the energy band scheme (Yukihara & McKeever 2011). The

transition of an electron from an excited state of the recombination site to the ground

state yields the luminescence (see Section 1.3.2.2). There is also the possibility of electrons

to become retrapped; in this case second-order kinetics must be considered. Finally, with

all electrons having recombined with holes either in the valence band or at recombination

sites, the initial state is restored.

Apart from recombination centers giving luminescence (L-centers), thermally stable so-

called “killer centers” or K-centers lead to radiationless recombination (see Fig. 1.10). In

addition, Zimmerman (1971b) postulated thermally unstable reservoir centers (R-centers)

which compete for holes with L-centers. It is obvious that the amount of recorded lumines-

cence not just depends on the number of released electrons, but to a high degree also on

absolute concentration and relative abundance of activated (i.e. occupied by a hole) L-, R-

and K-centers and their individual properties. Accordingly, each variation in population

density of both traps and the various kinds of centers, e.g. in the course of light or heat

exposure or irradiation, affects the light output per administered unit dose of radiation.

These sensitivity changes of the dosimeter have to be monitored throughout the measure-

ment procedure to avoid errors in the estimate of De. Based on the work of Zimmerman

(1971b), subsequent empirical studies and models (Wintle & Murray 1999; Li 2001;

Bailey 2001) made use of R-centers to explain sensitivity changes induced by irradiation

and thermal treatment. Following this theory, R-centers compete for holes with L-centers

during irradiation, thus reducing luminescence sensitivity compared to the state of com-
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plete absence of R-centers. This effect is referred to as dose quenching and its magnitude

is related to the relative abundance of L- and R-centers and their hole trapping probabili-

ties. Bailey et al. (2005) suggested to frequently interrupt prolonged artificial irradiation

by preheat steps (pulsed irradiation) to empty the R-centers and avoid pronounced dose

quenching at high doses. In a more general way, heating the sample is thought to release

holes from R-centers and to transfer them into L-centers which are then activated, causing

an increase of sensitivity (thermal activation).

In summary, the basic scheme of the energy band model, as illustrated in Fig. 1.10, is

able to explain some essential features of TL and OSL (e.g. the glow curve shape), but

fails to account for the entire variety of luminescence characteristics observed for SiO2.

Extension of the model may help to increase the field of explicable phenomena, such as the

inclusion of reservoir centers to model sensitivity changes. Another approach adds deep,

thermally disconnected electron traps to the band model which serve to explain supralinear

dose response at low doses via trap competition effects (Fäın et al. 1994). Although the

energy band model is by far the most widely used one, it should not be omitted that

there are other approaches/models seeking to explain the luminescence phenomenon in

insulators, such as the defect pair model (Itoh et al. 2002; Preusser et al. 2009).

1.3.2.2 The process of luminescence production – a more detailed view

Phenomena such as luminescence emission of recombination centers, Stokes shift and ther-

mal quenching can be explained qualitatively by the configurational coordinate diagram

(Mahesh et al. 1989; Gaft et al. 2005; Bailey & McKeever in prep.). This model takes

into account the adaption of the potential energy of ground state and excited state of the

center considering its next neighbors, in comparison to the case of the perfect mineral

structure (i.e. the absence of the center).

The presence of a defect means a change in the charge configuration, to which the direct

neighbors and the respective ion itself adjust and take a new position of equilibrium. The

equilibrium positions of ground and excited states may differ and are indicated by the

configurational coordinates Q0 and Q1 in Fig. 1.11. Exemplarily, this figure shows the

potential energy (approximated by parabolic functions) of the ground and one excited

state of the entire molecule. Excited states are characterized by more extended electronic

wave functions, corresponding to less curvature of the potential curve. The recombination

process includes at first the trapping of a delocalized electron to an excited state of the

center (A). Since the probability of losing energy by generation of phonons is four orders

of magnitude larger than by emitting photons (Gaft et al. 2005), the electron relaxes

nonradiative to the lowest vibrational energy level of the excited state (transition A→ B).

The quantized vibrational energy levels of each state are drawn as horizontal lines. From

B, further vibrational loss of energy is not possible and the electron undergoes a transition

to C, yielding a photon (luminescence). Due to the comparatively low mass of the electron,

the electronic relaxation is very fast in relation to the reaction of the ionic configuration;
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1.3 Luminescence dating of heated silex
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Figure 1.11: Configurational coordinate diagram. Electronic transitions related to photon absorp-
tion or emission are depicted as solid arrows, nonradiative transitions as dashed and oscillating
arrows. See main text for further details. Modified from Gaft et al. (2005).

that is why the transition B → C may be indicated as a vertical arrow (Frank-Condon

principle). Finally, the pathway C → D, accompanied by phonon emission, brings the

electron to the lowest energy level of the ground state. From there, it can be excited back

to A by light absorption, and the cycle is repeated. Prompt luminescence emission during

optical stimulation – termed as photoluminescence – is characterized by the emission energy

being lower than the excitation energy (Yukihara & McKeever 2011). This effect is

known as Stokes shift and can be directly deduced from the different lengths of absorption

and emission arrows in Fig. 1.11 (Krbetschek et al. 1997; Gaft et al. 2005; Bailey &

McKeever in prep.).

The configurational coordinate diagram further illustrates the existence and width of

absorption and emission bands. In the lowest vibrational energy level of each state, the

electron can be found anywhere along the horizontal line between the potential walls

and, consequently, undergo the luminescence-emitting transition from different horizontal

positions. The probability of finding an electron at a certain location at a certain time

is given by the respective wave function of the state, with the highest probability in the

middle (i.e. Q0 and Q1 in Fig. 1.11). Transitions from different points on the lowest levels

result in different energies of absorbed and emitted photons, providing an explanation for

the spectral width of absorption and emission bands (Mahesh et al. 1989; Gaft et al.

2005).

Wintle (1975) first decribed the effect of thermal quenching in quartz, which is in

general defined as the decrease of luminescence efficiency with rising temperature, caused

by increase of nonradiative transitions. Picking up the configurational coordinate diagram,
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increasing thermal stimulation energy causes an electron in an excited state to take higher

energetic levels. With sufficiently high temperature, it can finally reach the level of point

F where both potential curves intersect. It is now possible for the electron to relax to the

ground state nonradiatively, i.e. by exclusive emission of phonons. The factor η expressing

the luminescence efficiency is exponentially dependent on temperature, as far as only one

type of center is regarded (Wintle 1975):

η(T ) =
1

1 +K · exp
(
−W
kT

) , (1.2)

with K being a dimensionless factor and W the thermal activation energy. By inspection

of Fig. 1.11, it is further clear that the likelyhood for thermal quenching changes with

the distance Q0 – Q1: A small distance correlates with low thermal quenching and a large

lateral displacement results in increased thermal quenching. The physical background of

differences in horizontal offset of ground and excited state is the “strength of the coupling”,

describing the degree to which the defect ion is bound to its neighbors and is able to relax

after photon absorption or emission. With final reference to Fig. 1.11, it is obvious that

samples of the weak coupling case will also show small Stokes shift and less thermal

quenching (Gaft et al. 2005; Yukihara & McKeever 2011; Bailey & McKeever in

prep.).

An alternative model for the explanantion of thermal quenching to the one outlined

above (Mott-Seitz model) is the Schön-Klasens model. According to that, thermal insta-

bility of recombination centers causes a temperature-dependent decrease of luminescence

intensity (Yukihara & McKeever 2011).

When it comes to applied dating, sensitivity changes are the main obstacle to apply

regenerative-dose measurements (see Section 1.3.4 and Chapter 7). If not adequately cor-

rected, sensitivity changes due to heating, bleaching or irradiation lead to dose over- or

underestimation, as sketched in Fig. 1.12. Usually, sensitivity changes are monitored and

accounted for by the response to a constant test dose in the course of the measurement

procedure (Murray et al. 1997; Murray & Wintle 2000). As a temperature-dependent

process, thermal quenching affects high-temperature TL peaks, and this may be prob-

lematic for samples yielding low signal levels on the one hand or measurement conditions

entailing increased background levels on the other hand (e.g. red TL). To increase the

signal-to-noise ratio, it may thus be advantageous to shift the signal of interest towards

lower temperatures, for instance by using low heating rates (see Section B.2.2 and Fig. B.5).

1.3.2.3 Overview of luminescence emissions of silex and associated defects

From the preceding sections, it follows that the type of recombination center controls the

energy of the emitted photon (and thus the wavelength and color of luminescence). Spec-

tral measurements thus serve to identify the causative defects. Beside early investigations
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1.3 Luminescence dating of heated silex

Luminescence 
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Natural 
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Dcorrect Doverest. Dunderest. 

Figure 1.12: Influence of sensitivity changes on dose determination. Using the single-aliquot
regenerative-dose (SAR) protocol, a dose response curve is constructed, on which the natural
luminescence signal is projected to give the equivalent dose (De). Black circles and the fitted dose
response curve represent the case of zero sensitivity changes, leading to the correct dose Dcorrect.
If, however, the sensitivity of the sample increases (grey circles) or decreases (black rings) during
the measurement sequence, the dose is either under- or overestimated, respectively.

using different filter combinations (Wintle & Aitken 1977; Huxtable 1982), only few

studies concerned with spectrally resolved luminescence measurements of silex have been

published up to now (Bailiff et al. 1977; Martini et al. 1999; Richter et al. 1999).

Furthermore, the attribution of observed emission bands to distinct defects in silex has not

been attempted so far. The similarities between the emission patterns of silex and quartz,

however, gives rise to the hypothesis that close analogies may be found between the type

of defects involved in both materials (Rink et al. 1993). The main emissions of TL and

OSL and their associated defects will be listed in the following.

Thermoluminescence

Ultraviolet emission (∼ 320–380 nm). This band is recorded in all types of investi-

gated samples; Martini et al. (1999) further detected an ultraviolet (UV) emission at

∼ 260–330 nm in Italian flint. The corresponding glow curves were observed to peak at

∼ 100 ◦C and ∼ 360 ◦C, however strongly depending on the samples and the heating rate

used (Martini et al. 1999; Richter et al. 1999). The electrons released from traps of

increasing depths during heating are supposed to recombine all at the same center. While

Richter et al. (1999) doubted the suitability of this emission for dating due to mea-

sured athermal signal loss (fading) and its light sensitivity (also at red light laboratory
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conditions), a series of TL ages from various Paleolithic sites was obtained using a fil-

ter with maximum transmission at 380 nm (Mercier et al. 1999; Mercier et al. 2007a;

Valladas et al. 1999; Valladas et al. 2008). Combined electron spin resonance (ESR)

and TL measurements of quartz suggested the UV emission at ∼ 380 nm to come from

recombination at [H3O4]0 or [AlO4/M+]0 centers, while for emission with slightly higher

energies also oxygen vacancies are discussed as possible origin (Alonso et al. 1983; Yang

& McKeever 1990; Rink et al. 1993; Itoh et al. 2002).

Wavelength [nm]

Te
m
pe
ra
tu
re
 [°
C
]

Figure 1.13: TL spectrum of a Cretaceous flint sample. The contour plot shows the three main
TL emissions (UV, blue and orange-red). The sample was annealed and irradiated with 2 kGy prior
to the spectral measurement. The spectrum itself is not corrected for instrumental response, that
is why the red emissions appear to be of lower intensity than those in the UV and blue. From
Richter et al. (1999).

Blue emission (∼ 430–500 nm). Being a common emission in silex, its peak positions in

the glow curve are roughly similar to those of the UV band for the samples investigated.

However, for a few samples additional peaks in the temperature range 200–320 ◦C or

overlapping peaks with variable intensities between samples are reported (Martini et

al. 1999; Richter et al. 1999). The centers proposed for giving rise to the broad blue

emission in quartz include a self-trapped exciton emission at ∼ 450 nm (Stevens Kalceff

& Phillips 1995) and the [AlO4]0 center in the range 470–500 nm (McKeever 1991).

Orange-red emission (∼ 580–640 nm). Orange-red TL (henceforth RTL) was recorded

for all samples under study in Martini et al. (1999) and Richter et al. (1999), but was

completely lacking for silex samples from Romania investigated in the frame of this work

(see Section 6.3.2.2). While the samples in the aforementioned studies show RTL peak

positions in the range 100–300 ◦C, a peak at ∼ 380 ◦C was observed for Baltic flint and
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1.3 Luminescence dating of heated silex

various other samples at ∼ 630 nm (pers. observation). Richter et al. (1999) proposed

the orange-red emissions at ∼ 250 ◦C for dating of “low heated silex”. Usually, the orange-

red signal is the dominant one in the spectrum, but is mostly “quenched” during regular

TL measurements if no red-sensitive photomultiplier is used, due to the low quantum

efficiency (in the order of 1 % at 600 nm) at high wavelengths of conventional photomul-

tipliers attached to the luminescence readers (Fattahi & Stokes 2000b). Furthermore,

the orange-red band is known to have saturation dose levels far exceeding those of the UV

and blue bands: Fattahi & Stokes (2000a) report values for the characteristic satura-

tion dose D0 of 6.3 kGy and continued signal growth was observed for doses up to 20 kGy

for volcanic quartz (Ganzawa & Maeda 2009) and up to 50 kGy for xenolithic quartz

(Miallier et al. 1991). The value D0 describes the dose for which the luminescence signal

reaches 1 − e−1 (∼ 63 %) of its saturation level, assuming a single saturating exponential

form of the dose response curve. Own experiments on Baltic flint veryfied the findings

of high saturation dose, yielding a D0 value of ∼ 7 kGy. Little sensitivity changes follow-

ing repeated irradiation and TL measurements led Richter & Krbetschek (2006) to

introduce a RTL single-aliquot regeneration (SAR) protocol for equivalent dose estima-

tion without the need of test dose correction. In fact, RTL sensitivity changes seem to

be sample-dependent (cf. TL samples from Sodmein Cave as illustrating examples, Sec-

tion 7.3) and their correction during the measurement procedure was applied for most of

the samples dated in the context of this study (see Chapter 7). Possible candidates for

the recombination center causing the orange-red emission in quartz are the non-bridging

oxygen hole center (NBOHC) and various precursors (Götze et al. 2001) as well as oxy-

gen vacancies (E′ centers) (Luff & Townsend 1990). Hashimoto (2008) attributes the

formation of NBOHC to two closely incorporated Al impurities whose attractive potential

breaks a Si–O–Si bond, finally causing an RTL center. This proposition correlates with his

observation of a functional relationship between Al content of quartz samples and their

RTL intensity.

Optically stimulated luminescence

Only one study was so far concerned with OSL properties of different silex materials

(Poolton et al. 1995). The authors show that the OSL emission of silex is more complex

than in the case of macrocrystalline SiO2, comprising both dose- and time-dependent and

dose- and time-independent parts. The anti-Stokes shifted dose-dependent signals are at-

tributed to the microycrystalline phase, while the dose-independent Stokes and anti-Stokes

shifted emission are supposed to arise from the amorphous phase (see also Section 1.3.2.2).

The difference of OSL features between silex and quartz is underlined by the fact that con-

tinuous absorption and emission spectra are observed rather than separate emission bands,

respectively (Fig. 1.14). Poolton et al. (1995) further observed a more rapid signal decay

of the dose-dependent component than expected for quartz and found the saturation dose
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Figure 1.14: Photo-stimulated emission spectrum of flint. Shown is the dose-independent Stokes
shifted signal component of a flint sample from Laugerie Haute (France). Excitation wavelength is
340 nm, the spectrum was corrected for instrumental response. From Poolton et al. (1995).

level D0 to lie far beyond 300 Gy. Unfortunately, the paper contains no information about

the signal integrals used for data analyses. From pulse annealing experiments, it is finally

concluded that the dose-dependent signal is related to a TL peak at ∼ 180 ◦C and is hence

not thermally stable enough for dating of Paleolithic events.

In contrast to recombination centers, information on the defects associated with certain

electron traps is much more difficult to obtain. Whilst spectrometric data recorded under

certain conditions can be used for identifying correlations between emission bands and

recombination centers, the only measurable property of a TL trap is its peak temperature

in the glow curve. The peak temperature, however, does not provide any information on

the type of defect involved (McKeever 1984; Preusser et al. 2009). Only in combination

with other methods (e.g. ESR), assignment of certain traps to specific defects is possible.

For instance, McKeever et al. (1985) attributed the mechanism responsible for the 100 ◦C

TL peak (usually“110 ◦C peak”) to a [GeO4]0 site which turns into [GeO4]− when capturing

an electron. For OSL measurements, suitable traps are selected by appropriate preheat

procedures, but the general problem of scarce information on the trap-related defects

remains. For more detailed information on emissions and associated defects, the reader

is referred to e.g. Rink et al. (1993), Krbetschek et al. (1997), Götze et al. (2001),

Preusser et al. (2009), King et al. (2011a) and King et al. (2011b).

1.3.2.4 Mathematical description of TL and OSL curves

In general, formula describing the luminescence intensity versus temperature (TL) or time

(OSL) can be obtained by solving the differential equations which represent the charge

flow between traps, centers and the delocalized bands during stimulation. For the sake of

simplicity, we regard one type of trap and one type of recombination center only (“one
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1.3 Luminescence dating of heated silex

trap/one center model”), as first introduced by Randall & Wilkins (1945). Further-

more, the shape of TL and OSL curves depends on the kinetic order, i.e. the retrapping

probability of freed electrons, and the mode of stimulation.

Thermoluminescence

Thermal stimulation is usually carried out by increasing the temperature linearly (constant

heating rate), but can also occur at a fixed temperature (isothermal TL). With respect to

the measurements made in the course of this study, only linearly ramped TL stimulation

will be considered in the following.

The change of the density of occupied electron traps n with time t is seen as controlling

the temporal course of luminescence. Provided that no retrapping occurs (first-order ki-

netics), the differential dn
dt is proportional to the density of remaining occupied traps and

to the probability of thermal eviction which is reciprocal to the electronic lifetime τ in a

trap at the current temperature (Randall & Wilkins 1945; Mahesh et al. 1989):

− dn

dt
=
n

τ
= ns · e−

E
kT (1.3)

Parameters are defined as in Section 1.3.2.1. The minus sign at the beginning is inserted

because the differential is negative (decreasing n with time) what is, however, impossible

for the right hand side of the equation. The sample is warmed with a constant heating

rate q = dT
dt what allows elimination of t. Rearrangement and separation of variables give:

dn

n
= −s

q
· e−

E
kT dT (1.4)

With initial conditions T = T0 and n = n0 at the start of heating and integration we

obtain (whereas the integral of the right hand side is not solvable analytically) (Kitis

et al. 1998):

n = n0 · exp

−s
q

T∫
T0

e−
E
kT ′ dT ′

 (1.5)

The emitted luminescence intensity I is seen as proportional to the change of the density

of occupied electron traps, i.e. I = c dn
dt (c = const.). We can combine Eq. 1.3 and 1.5,

hence:

I(T ) = c s n0 · e−
E
kT · exp

−s
q

T∫
T0

e−
E
kT ′ dT ′

 (1.6)

This equation describes the shape of a TL peak, generated by electrons released from a

single trap type that recombine at a single type of center. The probability of electron
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retrapping is assumed to be negligible, or in other words, there are much more recombi-

nation centers than traps. If, however, the concentration of traps and centers is similar,

the likelihood of a liberated electron to become retrapped is approximately equal to its

recombination, giving rise to second-order kinetics. The derivation of the formula is similar

to that shown above, and according to Garlick & Gibson (1948) one obtains for the

intensity of a second-order TL peak:

I(T ) =
c s n2

0

N
· e−

E
kT

1 +
sn0

qN

T∫
T0

e−
E
kT ′ dT ′

−2

(1.7)

where N is the concentration of all electron traps of a single type. As can be seen from

this equation, the initial trapped charge concentration n0 influences the shape of the TL

peak, not just its magnitude as in the first-order case. Therefore, peak positions that shift

with increasing n0 and hence increasing dose, are indicative of non-first-order processes.

A comparison of simulated first- and second-order TL peaks is shown in Fig. 1.16a. In

practice, estimating the order of kinetics is often hampered by closely overlapping peaks

that appear as one broad peak in the glow curve. Furthermore, there may be samples

showing TL behavior somewhere in between the two cases outlined above, i.e. neither the

conditions for first-order nor those for second-order kinetics apply. Then, general-order

kinetics must be taken into account.

It is obvious that two parameters are essential to describe the properties of an electron

trap, namely the trap depth E and the frequency factor s. Several methods have been

proposed to derive E and s from measured glow curves, e.g. the method of two heating

rates (Hoogenstraaten 1958), the initial rise method (Mahesh et al. 1989), the half-

width method (Halperin & Braner 1960), the isothermal decay method (Spooner &

Questiaux 2000) or glow curve deconvolution (Kitis et al. 1998; Subedi et al. 2012).

However, it is important to note that recently, Subedi et al. (2012) found out that thermal

quenching of glow curves may lead to erroneous results for all methods except the isother-

mal decay method, since thermal quenching alters the shape of glow curves in the high

temperature region (above ∼ 100–150 ◦C). Glow curve reconstruction – i.e. correction for

thermal quenching – circumvents this problem (Subedi et al. 2010; Subedi et al. 2012).

An example of a reconstructed TL curve of a flint sample and the influence of thermal

quenching on glow curve shape is depicted in Fig. 1.15.

Optically Stimulated Luminescence

During optical stimulation, similar conditions apply as for TL to set up the charge rate

equations. For first-order kinetics and constant stimulation intensity the “one trap/one

center model” gives (Yukihara & McKeever 2011)
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1 Introduction

− dn

dt
= n p (1.8)

with p = σΦ being the probability per unit time for an electron to be optically released

from the trap. The photoionization cross-section σ (in cm2) describes the likelihood of

optical detrapping of a captured electron as a function of stimulation energy and Φ is the

stimulation intensity. Using the relation I = c dn
dt and the exponential solution for n(t) of

Eq. 1.8, the intensity I of OSL with stimulation time t is

I(t) = c p n0 · e−pt (1.9)

In case of non-first-order kinetics, Eq. 1.8 must be expanded to account for retrapping of

freed electrons back into empty traps (Bøtter-Jensen et al. 2003):

− dn

dt
= n p− ncA(N − n) (1.10)

All parameter definitions are as before; nc denotes the momentary concentration of elec-

trons in the conduction band. From the right hand side of the equation, the proportion

of electrons is subtracted that is retrapped with the probability A per unit time. With

Am being the probability of an electron to recombine with a hole in a center, and some

simplifying assumptions (N � n, R = A/Am � n/(N − n)) the OSL decay curve of

general-order kinetics can be written as

I(t) =
p n2

0

NR

(
1− p n0 t

NR

) b
1−b

(1.11)

Here, b > 1 is the parameter indicating the order of kinetics (e.g. b = 2 for second-order).

Experimental shine-down curves of natural quartz never show strict single exponential

decay, as would be expected if the system followed first-order kinetics. Either non-first-

order processes or a linear combination of first-order curves provide possible explanations

for this observation. Bulur (1996) introduced a method of optical stimulation that enables

a more intuitive separation of involved signal components (deconvolution). Analogous to

linearly ramped TL stimulation, he suggested to linearly increase the stimulation light

intensity (linearly modulated OSL, LM-OSL), with the consequence of a successive release

of electrons from traps with increasing optical stability during measurement. Accordingly,

the resulting LM-OSL curve looks similar to a TL curve, revealing several separate or

overlapping peaks.

The initial charge rate equation for the differential change of the concentration of

trapped electrons n in case of linearly increasing stimulation light intensity is (Bulur

1996; Bøtter-Jensen et al. 2003; Yukihara & McKeever 2011)

− dn

dt
= nσ

Φmax

P
t (1.12)
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1.3 Luminescence dating of heated silex

where Φmax is the maximum stimulation intensity at the end of the measurement and P

is the total measurement time. The solution for this differential equation is a Gaussian

function. Assuming a composite signal consisting of κ first-order components, then the

resulting sum curve can be written as

I(t) = c
Φmax

P
t

κ∑
i=1

n0,i σi · exp

(
−1

2
σi

Φmax

P
t2
)

(1.13)

Setting the derivative of this equation equal to zero gives the position of the peaks in the

LM-OSL curve:

tmax,i =

√
P

σiΦmax
(1.14)

This implies that tmax only depends on the photoionization cross-section of the respective

first-order component. For a non-negligible and unknown retrapping rate, time-dependent

LM-OSL intensity of a signal composed of κ general-order components reads (Bulur 1996;

Bøtter-Jensen et al. 2003)

I(t) =
Φmax

P
t

κ∑
i=1

n0,i σi

(
(b− 1)

σi Φmax

2P
t2 + 1

) b
1−b

(1.15)
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Figure 1.16: Simulated TL and LM-OSL curves of first- and second-order kinetics. The peak max-
ima in (a) were normalized to unity. The parameters chosen for the simulation were: E = 1.78 eV,
s = 6.7 ·1014 s−1, n0 = N , q = 5 K s−1 and c = 1. Glow curves were calculated with Matlab by
solving numerically the integral in the exponent of Eq. 1.6 and 1.7. (b) Simulated LM-OSL curves
of a single component according to Eq. 1.13 and 1.15 with parameters σ = 2.5 · 10−17 cm2 and
γ = 0.01σ−1, where γt = (στ)−1.

It must be noted that Eq. 1.15 holds true for the condition n0 = N (saturated traps) only

(Bulur & Göksu 1999). Simulated LM-OSL curves for first- and second-order kinetics

are shown in Fig. 1.16. Deconvolution by curve fitting has shown the presence of 3–7
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LM-OSL components in quartz samples, named fast-, medium- and slow -components,

whereas the latter is further subdivided into slow1 -, slow2 -, ... components. The optically

most sensitive fast-component is characterized by σ ∼ 2.5 · 10−17 cm2, the optically most

resistent one by σ ∼ 2 ·10−21 cm2 (Jain et al. 2003; Singarayer & Bailey 2003). Goble

& Rittenour (2006) refer to a thermally unstable ultrafast-component which seems to be

a rare observation though. Furthermore, the photoionization cross-section is wavelength-

and temperature-dependent (Bailey 2002; Singarayer & Bailey 2003). Variations of

σ with stimulation energy can be used to selectively bleach certain components, as done

e.g. by Bailey (2010) for the fast-component which has proven to have the most suitable

properties for optical dating. Since at least one component has shown insufficient thermal

stability (Jain et al. 2003; Singarayer & Bailey 2003), careful choice of the signal part

used for dose estimation is crucial. Investigations on the components involved in the OSL

signal of silex have not been attempted so far.

1.3.3 The dose rate, its constituents and determination

The stability of a nuclide is determined by the numbers of protons (Z) and neutrons (N)

it is composed of. A quite narrow range of the numerical relation N/Z is characteristic

for stable nuclides, all others (N too large or N too small) undergo radioactive decay to

approach the stability zone. Moreover, nuclei with even numbers of Z and N are more

stable than those with uneven Z and N . Radioactive decay may change Z and N of a

nucleus, and since the number of protons is characteristic for an element, it may also lead to

a transition from one element to another. This process is non-deterministic (spontaneous)

and follows Poisson statistics. However, for macroscopical quantities, the law of exponential

decay applies. An important parameter in this context is the half-life t1/2 after which

only half on the initial mass of a nuclide remains (Demtröder 2010). Since radioactive

decay is a solely time-dependent process and independent of other state variables (e.g.

temperature or pressure), it is the underlying mechanism not just of luminescence dating

but also of other radiometric dating methods such as the α-recoil method or those based on

mother and daughter abundance of nuclides (e.g. 39Ar/40Ar) or radioactive disequilibria

(e.g. 230Th/U method) (Geyh 2005; Demtröder 2010).

If the decay product (often called daughter) itself is instable, it will undergo another

decay. This process continues until a stable end product, characterized by a maximum of

negative binding energy of the nucleons, impedes further decay. Such a sequence of stepwise

decay and transformation of elements is referred to as a decay chain (see Fig. 1.17). Almost

all naturally occurring radionuclides are part of one of three decay chains which are named

after their mother nuclides (238U, 235U and 232Th). The latter are, however, also daughters

of nuclides with a much shorter half-life (e.g. 239Pu, 240Pu or 239U), so that the original

heads of the decay chains are practically absent today (Demtröder 2010).

Since negative binding energies of nucleons increase along the decay chains, it is clear

that radioactive decay is related to the emission of energy, either as α-, β- or γ-radiation.
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Figure 1.17: Decay series of 232Th, 235U and 238U. This chart was modified from Geyh (2005)
and the half-lives taken from there and Aitken (1998).
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All of these radiation types are capable of detaching electrons from the atomic shell, leaving

an ionized atom, for which reason they are called ionizing radiation. The energy needed

to induce a latent luminescence signal is thus on the one hand derived from radiative

decay of naturally occurring U and Th (with their radionuclides 235U, 238U and 232Th)

and, additionally, from the radioactive isotopes 40K and 87Rb which are not part of a

decay chain. On the other hand, cosmic radiation contributes to the imparted energy

(dose rate) as well. Recent values of the energy release per disintegration of 40K and
87Rb isotopes and of those of the U and Th decay chains are given in Guérin et al.

(2011). The stopping power, i.e. the energy lost per unit length of path, can be used to

describe the interaction characteristics of radiation with matter in regard to the efficiency

of luminescence production.

1.3.3.1 Low stopping power radiation

Radiation types with comparatively low stopping power are, for instance, β- or γ-radiation

and X-rays or cosmic rays, i.e. streams of charged particles and of high-energetic photons

or, alternatively, electromagnetic waves. The most important decay and conversion pro-

cesses will be described below.

Beta-decay and beta-radiation

Beta radiation consists of electrons or positrons, characterized by a continuous energy

spectrum reaching from zero to Emax (several keV to several MeV, depending on the

β-emitting nuclide). A nucleus emits an electron when a neutron is transformed into a

proton. The reaction equation is as follows:

A
ZX −→ A

Z+1Y + e− + ν (1.16)

Here, X and Y are different elements, it is A = Z +N , e− represents an electron and ν an

antineutrino. The continuous energy spectrum of β-particles and observations of certain

decay properties require the antineutrino as additional reactant to maintain conservation

of energy and impetus. The average travel range of β-radiation depends on the density of

traversed matter and is about 2 mm in rocks with a density of 2.5 g cm−3 (Wagner 1995;

Aitken 1998). Due to the small rest mass of electrons, their ionization density is lower

than e.g. that of α-particles (Geyh 2005).

A symmetrical process yields positrons (e+), which are equal to electrons, but positively

charged:

A
ZX −→ A

Z−1Y + e+ + ν (1.17)

where ν is a neutrino. However, the lifetime of positrons in matter is short since they

annihilate with electrons by expelling two γ-quanta (Krieger 2007; Demtröder 2010).
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1.3 Luminescence dating of heated silex

Electron capture decay

Conversion of a proton into a neutron within the nucleus may also happen by capturing

an electron from the atomic shell (mostly the K -shell):

A
ZX + e− −→ A

Z−1Y + ν (1.18)

Electron capture does not lead to β-radiation, but yields characteristic X-rays caused

by electrons succeeding from outer shells to the empty state of one of the inner shells.

Furthermore, γ-radiation is emitted when the converted nucleus relaxes from an excited

into the ground state (Meschede & Vogel 2006; Krieger 2007; Demtröder 2010).

Gamma-radiation

This type of radiation occurs in combination with α- and β-decay and consists of photons

with energies in the range 104–107 eV (Demtröder 2010). A previous decay may have

left the nucleons in excited rotational and vibrational states from which they relax by

emitting characteristic γ-radiation/photons. Due to the intricacy of excited state configu-

rations of the nucleus, γ-emissions can show a high degree of complexity (Krieger 2007;

Demtröder 2010). During this process, Z and N do not change, because no charged par-

ticles are emitted. Having a rest mass of zero and thus low ionization density, the range

of γ-radiation in siliceous rocks (mass density as above) is about 30 cm (Aitken 1998).

Cosmic radiation

Through interaction of primary, galactic radiation (e.g. protons, α-particles, electrons)

with the earth’s atmosphere, secondary radiation (e.g. pions, neutrons, protons, myons,

electrons) is generated in form of cascades. The composition of the secondary radiation

changes with altitude, with mainly myons remaining at sea level due to absorption and

interaction of most particles in higher parts of the atmosphere (Krieger 2007). Consi-

dering further the influence of the earth’s magnetic field, the cosmic contribution to the

dose rate is consequently a function of altitude above sea level and geographic coordinates.

Long-term variations of cosmic dose rate over the period of interest (Middle and Upper

Paleolithic) are unlikely to exceed ∼ 3 % und can thus be neglected in most circumstances.

With increasing depth below surface, the cosmic radiation rapidly falls off (Prescott

& Hutton 1988; Prescott & Hutton 1994). The “weak” component of cosmic radia-

tion (electrons, photons) is absorbed in the first tens of cm of the substrate, so that for

deeper buried samples only the hard component (mainly myons) contributes to the dose

rate (Aitken 1985b). Difficulties of cosmic dose rate calculation may arise in archeological
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cave sites where the shape and thickness of the roof/abris significantly influences the myon

flux at the sampling position (Smith et al. 1997).

a) b)

Figure 1.18: Illustration of radiation with different ionization densities. (a) Imparting slightly
ionizing radiation (e.g. γ-radiation). (b) Track of an imparting particle of higher mass (e.g. α-
particle). The total number of ionizing events in each circle and thus the mean deposited dose is
equal in both figures. The small lateral tracks are caused by so-called δ-electrons which are the
result of singular events with high energy transfer. From Krieger (2007).

The types of radiation described in this section have in common that they produce

secondary electrons while traversing solid matter, and these, in turn, may cause further

ionizing events. The scattering of these electrons and the overall slightly ionizing character

of β- and γ-radiation gives rise to a roughly uniform distribution of ionizing events over

the irradiated volume (Fig. 1.18). In other words, the simultaneous ionization of micro-

scopically adjacent regions is very unlikely (Krieger 2007). By contrast, the ionization

density – defined as generated charge of one algebraic sign per volume – of radiation with

high stopping power is greater, as will be discussed in the following.

1.3.3.2 High stopping power radiation

Of all forms of radiation with high stopping power (e.g. protons, fission products), only α-

radiation delivers significant contributions in terms of dosimetry for luminescence dating.

In contrast to the quartz inclusion technique applied to sediments (Fleming 1978; Aitken

1998), the α-radiation may play a considerable role in determination of the internal dose

rate of silex. Therefore, and with regard to the dosimetry investigations in Chapters 3

and 4, the interaction characteristics of α-particles with matter and the calculation of the

effective dose rate will be outlined in more detail below.

Alpha-decay

During α-decay, a particle consisting of two protons and two neutrons (4
2He) is emitted

from a nuclei, leading to the reaction equation
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1.3 Luminescence dating of heated silex

A
ZX −→ A−4

Z−2Y + 4
2He (1.19)

The energy spectrum of α-radiation is discrete and energy and impetus conservation are

fulfilled without an additional reactant (Demtröder 2010).

The interaction of alpha-radiation with matter

Having a comparatively large mass and ionization density, α-particles deposit high amounts

of energy along the tracks they generate during impact. The rapid energy loss along a rela-

tively short track classifies α-radiation as high stopping power radiation and is responsible

for locally very high doses, in the order of 105 Gy in the core of the track (Waligórski

et al. 1986). Those α-tracks are approximately 0.1 µm in diameter and a few tens of µm

long in solids such as quartz (Zimmerman 1972; Aitken 1985b), depending on the energy

of the α-particles (Fig. 1.19). Therefore, the ionizing energy is confined to a very small

sample volume, in contrast to β- and γ-radiation. Within this cylindric volume around

the α-track, much more free charge carriers (electrons) are generated than high energetic

states (traps) are available. The bigger part of the absorbed energy can hence not be stored

in such states and is lost for subsequent luminescence emissions. In fact, many other ex-

planations of the limited ability of α-particles to induce luminescence were suggested, such

as “thermal release” (the heat in the α-track causes a release of electrons from the traps)

or “dead zones” (difference of luminescence efficiency of surface and sample interior). Zim-

merman (1972) summarizes alternative models, however the approach given here (“high

ionization/energy density”) has proven to be the most stringent one. Nevertheless, this

means the efficiency of α-radiation in luminescence production is lower than for slightly

ionizing β- and γ-radiation. Consequently, a factor expressing the α-efficiency is considered

in the age equation which will be discussed below.

On the other hand, the α-induced luminescence grows linearly up to doses for which

the luminescence after β- or γ-irradiation is long in the non-linear (saturating) part of

the growth curve (Zimmerman 1972; Aitken 1984). We can explain this with the small

sizes of the α-tracks in comparison to the sample volume. Saturation effects (and thus the

flattening of the dose response curve) begin not until the integrated α-flux is high enough

for the α-tracks to overlap. Then, the α-efficiency further decreases. In the context of

luminescence dating, very high doses must be applied to cause track overlap; Zimmerman

(1972) reports doses of 1 kGy or more for Norwegian quartz. At even higher α-doses the

energy density throughout the sample will be uniform and α- and β-induced luminescence

will grow equally (Zimmerman 1972; Mauz et al. 2006). Furthermore, it should be noted

here that Zimmerman (1972) found varying α-sensitivities for different TL peaks and a

relationship between the β-saturation dose (D0) and the α-efficiency: The higher D0 – and

thus the trap concentration – the higher will also the α-efficiency be, what can be directly

deduced from the “high energy density” concept.
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Figure 1.19: Alpha-particle attenuation. The range R of α-particles as a function of α-energy,
calculated here for pottery (density ρ = 2.6 g cm−3). From Aitken (1985b).

The systems used for alpha-efficiency determination

Generally speaking, the α-efficiency is determined by comparing the luminescence sig-

nals after laboratory α- and β-irradiation. Most laboratories use 241Am for α-irradiation,

though there are radioistopes that emit α-particles with higher energies (e.g. 242Cm, its

disadvantages such as a short half-life are discussed in Singhvi & Aitken (1978)). Having

a half-life of 432 a and α-particle energies of ∼ 5.5 MeV, 241Am is appropriate for controlled

and convenient irradiation. This isotope also shows a weak γ-emission (0.06 MeV), but it is

considered negligible in terms of deposited dose in α-thin sample layers (Aitken 1985b).

Commercially available 241Am-foils (Amersham, UK) are ∼ 1 µm thick and protected by

a 2 µm covering of Au-Pd alloy. This protective layer absorbs part of the α-energy, whereas

the absorbed energy fraction is strongly dependent on the angle with which the particle

passes through the protective layer. The longer the pathway through the covering, the

more energy is lost there. For perpendicular incidence, the α-energy is reduced to ∼ 4 MeV.

Determination of α-efficiency requires that the α-particles have enough remaining energy to

fully penetrate the sample layer. Otherwise, the luminescence recorded after β-irradiation

is received from a larger sample volume than after α-irradiation, with the consequence of

systematic errors of α-efficiency. This condition requires that only α-particles reach the

sample which hit the covering layer perpendicular or within a tolerable angle. Therefore,

in practice the distance of the source to the sample is increased with the drawback of

reduced α-flux on the sample (Aitken 1985b). For a common six position irradiation

facility (Littlemoore), Singhvi & Aitken (1978) experimentally determined this distance

to be at least 10 mm to cross the whole thickness of a “standard fine grain sample layer”

(∼ 8 µm). In order to prevent unnecessary energy loss, α-irradiation should always be

carried out evacuated (the α-range in air is about 25 mm for ∼ 4 MeV particles) (Aitken

1985b).
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Over the past four decades different concepts have evolved that account for the dif-

ferent luminescence efficiencies of α-particles in comparison to β- and γ-radiation. These

approaches will be shortly outlined below. An overview of the various concepts and their

interdependencies is also given by Aitken (1985a).

The k-value system

In this system, the amount of luminescence recorded after α-irradiation with 3.7 MeV par-

ticles with that recorded after β-irradiation is compared, giving as definition (Zimmerman

1971b; Aitken 1985a):

k3.7 =
Luminescence per Gy for 3.7 MeV α-particles

Luminescence per Gy for β-irradiation
(1.20)

For α-efficiency determination, it is important to use monoenergetic particles for the

following reason: As the particle slows down, the energy loss dE
dx in the sample is not linear,

but increases, eventually reaches a maximum (the Bragg peak) shortly before decreasing

sharply to zero when the particle comes to rest (Fig. 1.20) (Demtröder 2010; Krieger

2011). With reduced energy, an α-particle spends more time in a unit volume along the

track which results in a higher interaction cross-section of particle and traversed matter.

Since the dose in units of Gy is defined as J kg−1, the deposited dose is not constant

throughout the pathway of the α-particle. This, however, also means that the α-efficiency

(in terms of luminescence per deposited dose) varies with depth within the sample if a whole

spectrum of α-energies is used for irradiation. Furthermore, the exact sample thickness is

usually not known. Therefore, the only way of getting around those difficulties is to use

monoenergetic α-radiation in order to ‘crowd’ the Bragg peak out of the sample and to be

in the flat or moderately rising part of the Bragg curve (Fig. 1.20) (Krieger 2007).

Figure 1.20: Energie loss of α-particles with covered distance. The Bragg curves show the energy
loss dE

dx in units MeV cm−1 of α-particles per unit track length in air (atmospheric pressure, 1 bar)
for different α-energies Ek. From Demtröder (2010).

The α-energy of 3.7 MeV was the one used by Zimmerman (1972) in his basic experi-

ments, but is somehow arbitrary as long as the energy is sufficiently high for guaranteed

complete penetration of the sample layer. Clearly, in antiquity the sample received α-

radiation not monoenergetically, but as a whole spectrum reaching from 0 to 8.8 MeV,
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originating from the decay of U and Th and their daughter products. Consequently, cor-

rection is needed for the k3.7-value to be adapted to the natural spectrum, resulting in the

keff -value. The ratio keff/k3.7 is 0.80 for the U series and 0.86 for the Th series. For equal

U and Th activities, k3.7 has thus to be multiplied by 0.83 to give the corrected value for

insertion into the age equation (Zimmerman 1971a).

The a-value system

As described above, there are substantial difficulties in using the k-value system, such as

the energy dependence of the α-efficiency. Zimmerman (1971a) and Aitken & Bowman

(1975) found that the luminescence induced per unit track length is nearly independent of

α-energy as far as the particle still has more than ∼ 2 MeV on leaving the sample, and used

this fact to introduce a new value expressing the α-efficiency, the a-value. The definition

is (according to the nomenclature of Aitken (1985a)):

a =
x

13S
(1.21)

where x is the dose in Gy required to produce the same amount of luminescence as 1 minute

of irradiation with an α-source of strength S. Source strength S is now expressed in µm−2

min−1, i.e. in generated track length per unit time. The numerical factor 13 can be deduced

as follows (Aitken 1985b; Aitken 1985a): The energy loss of a 3.7 MeV α-particle is

0.21 MeV µm−1 for a density of 2.6 g cm−3. Therefore, a source of strength S generates per

minute S µm track length per µm3 sample volume, and thus deposits 0.21SMeV of energy

per minute within the sample (produced track length multiplied by energy loss per track

length). It is thus possible to calculate the absorbed dose per minute (i.e. the dose rate)

by applying that the dose D = E/m = E/(ρ · V ) and converting all units in SI units:

0.21 · S ·MeV

m · ρ
=

0.21 · S · 106 · 1.6 · 10−19 · 106

10−6 · 2.6 · 10−3
=

0.21 · S · 1.6 · 102

2.6
≈ 13 · S (1.22)

For quartz a = k3.7, as can be seen from the above calculation. When the α-efficiency

of other materials than quartz is to be determined, the ratio r of α-stopping powers of

the investigated material and quartz have to be multiplied by the k-value, whereas the

stopping power is given by ρ−1 · dE
dx :

a = r · k3.7 (1.23)

The b-value system

As we have seen in the last section, the a-value is confusing in terms of physical units. That

is why Bowman & Huntley (1984) proposed the b-value system which is more consistent

and intuitive. It also operates with the track length concept instead of deposited dose:
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b =
Luminescence per unit α-track length per unit volume

Luminescence per unit of absorbed β-dose
(1.24)

The unit of b is Gy m2. Although the a-value is, technically speaking, dimensionless, we

can relate it numerically to the b-value if the latter is expressed in units Gy µm2:

b = 13a (1.25)

Following the calculation of Bowman & Huntley (1984), an a-value of 0.03 would

correspond to a b-value of 0.39 Gyµm2, or in other words, the TL induced by a β-dose of

0.39 Gy is the same as that induced by one incident α-particle per µm2.

The Sα-system

This system, proposed and applied by the French flint dating group (Valladas & Val-

ladas 1982; Mercier et al. 1995), operates with the flux of α-particles instead of de-

posited dose. The definition is (according to the original nomenclature):

Sα =
Lα ·Dβ

φα · Lβ
(1.26)

with Lα being the luminescence after the integrated laboratory α-flux φα and Lβ the

luminescence after the laboratory β-dose Dβ. The SI unit of Sα is Gy m2. In fact, for

constant thickness of the sample layer between aliquots, each incident α-particle produces

the same amount of track length. The Sα-system is thus equivalent to the a-value and

b-value system.

Depending on the system to be used, the α-source has to be calibrated in different

manners. The k-value system requires calibration in terms of deposited energy per unit

mass (Gy), the a-value and b-value systems in terms of generated track length per unit

volume per unit time (m−2 s−1) and the Sα concept in incident α-particles per unit area

per unit time, i.e. the α-flux (m−2 s−1). However, great care has to be taken to produce

fine grain sample layers of reproducible thickness for the purpose of source calibration and

subsequent α-efficiency measurements when using one of the track length systems (a-value,

b-value, Sα).

Until the advent of an α-source at the Cologne luminescence laboratory, α-irradiation

was performed with a Littlemoore facility (241Am-foils, ∼ 200 MBq) at the University

of Bayreuth. According to their calibration in terms of deposited dose in a fine grain

layer of quartz, the correspondence of the k-value and the a-value system was used to

determine the α-efficiency for the sample series from Româneşti-Dumbrăviţa I (Chapter 6).

Calibration of the 241Am-source in Cologne was carried out against the Littlemore source

at the Heidelberg luminescence laboratory which, in turn, has been calibrated against an

α-source in Oxford. The latter has been calibrated absolutely in terms of deposited track

length as described in Aitken (1985b). The used reference material (“calibration quartz”)

was a fine grain quartz separate from Inden near Cologne (sample code IN7), which shows
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excellent reproducibility. Using comparative regenerative-dose measurements, the Cologne

α-source could thus be calibrated and gave a source strength of 0.813± 0.026 µm−2 min−1.

This allowed using the b-value system for α-efficiency determination for subsequent silex

samples.

1.3.3.3 Methods for dose rate determination

Using buried silex artefacts as radiation dosimeter, the overall dose rate can be subdivided

into internal dose rate, generated by the sample itself, and external dose rate from the

surrounding (sediment, cave walls, cosmos). The common sample preparation technique

includes the discard of the outer 2 mm shell which is influenced by external α- and β-

radiation. Therefore, only external γ- and cosmic dose rate contributions have to be taken

into account which are further assumed to be spatially homogeneous within the sample,

given the small dimension of most artefacts (a few cm) in relation to the range of γ- and

cosmic radiation. Moreover, considering internal β-emitters to be uniformly distributed,

the use of the interior part of the sample allows to assume an infinite matrix β-dose rate

(Brennan 2003), so that β-attenuation factors are not necessary.

Basically, the dose rate in a homogeneous medium may be determined with the following

methods:

� Direct measurement of the activity of a radiation type (e.g. thick-source α-counting

or β-counting) with subsequent conversion into dose rates

� Analysis of the concentration of radioactive elements (U, Th and K) in the medium

with subsequent conversion into dose rates

� Placement of highly-sensitive, integrating, artificial dosimeters into the medium at

the positions of interest

In this study, element concentrations of U, Th and K of surrounding sediment were

derived from high-resolution γ-spectrometry of homogenized and dried samples. These

were taken from a ∼ 30 cm sphere around the location of the artefact or from representative

layers nearby. Whenever practical, additional in-situ γ-dose measurements were carried out

in order to best record the radiation field present at the find spot. Due to the small size

of the dated artefacts, only limited amounts of sample material were available for internal

dose rate calculation. Hence, inductively coupled plasma mass spectrometry (ICP-MS)

served to determine the abundance of radioactive elements within the silex sample. The

methods being of relevance for applied dating in this work will be briefly described below.

Additional information about how dose rates were obtained for individual samples will

also be given in Chapter 7.
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Gamma-spectrometry

To register γ-photons emitted by the sample, a γ-spectrometer with a lead-shielded high-

purity Ge detector is used which facilitates energy dispersive and quantitative measure-

ments. Incident photons are able to detach an electron from the atomic union which, in

turn, produces further electron-hole pairs along the way through the detector, and by

means of an applied voltage the generated charge is collected. The resulting current pulse

is recorded and represents one photon impact event. Energy calibration making use of

characteristic γ-quanta of known energy is necessary to relate the current pulse to the en-

ergy of the incident photon; efficiency calibration provides a function relating the number

of recorded events to the concentration of radionuclides in the sample. For this purpose,

a standard is measured that contains well-known amounts of U, Th and K (Preusser &

Kasper 2001). Thus, the position of a recorded signal (photo-peak) on the energy axis

allows a conclusion to be drawn about the emitting isotope (daughter nuclides of the U

and Th decay chains) via their known and characteristic energy lines. At the Cologne

luminescence laboratory, the energy lines of 226Ra, 214Pb and 214Bi (238U decay chain), of
228Ac, 212Pb and 208Tl (232Th decay series) and of 40K are recorded. With the assumption

of secular radioactive equilibrium in the respective decay chain and hence equal activities

of all members, the concentration of the heads of the decay chains (U and Th) can be de-

termined. For analysis of the K content, a single and prominent energy line at ∼ 1.46 MeV

is used (Aitken 1985b). The typical shape of a γ-spectrum (see Fig. 1.21) represents two

interaction processes of the incident photon and shell electrons: (1) Transfer of the entire

energy from a photon to an electron yields sharp and characteristic lines in the spectrum

(photo-peaks); (2) single and multiple elastic scattering events of the photon results in the

broad, underlying background (Compton-spectrum) (Aitken 1985b; Krieger 2011).

In order to account for loss of 222Rn during sampling and preparation, the sample is

stored in a sealed Marinelli beaker for about one month to restore equilibrium activities

between 226Ra and 214Bi prior to analysis (Hilgers 2007). According to Preusser &

Kasper (2001), the overall measurement reproducibility of the facilities at the Cologne

luminescence laboratory is 3.4 % for U, 4.6 % for Th and 2.1 % for K. In a few cases,

the amount of surrounding sample material was not sufficient to match the minimum

mass required for analysis in Cologne. Then, low-level γ-spectrometry was carried out by

Dr. Detlev Degering at the Verein für Kernverfahrenstechnik und Analytik Rossendorf e. V.

in Dresden, Germany.

In-situ gamma-scintillometry

The scintillator probe “Automess 6150AD b” used for in-situ measurements of photon

radiation was the same as described in Hilgers (2007). The light pulses induced by γ-

and cosmic radiation are amplified by a photomultiplier, and an averaged dose rate (in
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Figure 1.21: Typical γ-spectrum of a sediment sample. This one originates from a loessic sample
taken from the excavation in Româneşti-Dumbrăviţa I, Romania, for determination of the external
dose rate of heated artefacts (see Section 6.5).

µSv h−1) of user-defined periods is obtained. Since a complete 4π-geometry of a radius

of ∼ 30 cm is covered and the actual radiation field of the undisturbed configuration of

emitters and absorbing material is recorded, in-situ γ-scintillometry is advantageous in

sampling positions where inhomogeneous dose rate distribution is expected. However, this

method is not able to detect radioactive disequilibria.

Inductively coupled plasma mass spectrometry (ICP-MS)

In general, mass-spectrometry separates and counts atoms. Therefore, the atoms of the

sample are firstly ionized what is done by inductive heating to high temperatures (several

thousand ◦C) and generation of an argon plasma. An electric field then accelerates the ions,

and they traverse a magnetic field in which they are deflected. According to their large

inertia, atoms with a high mass are subject to weaker deflection than those of compara-

tively low mass, but equal net charge. However, physical laws describing the trajectories

of the deflected atoms only allow for determination of the ratio charge/mass (q/m), not of

the atom mass alone. Care has thus to be taken to account for interfering isobar ions, i.e.

those having equal numbers of nucleons. Using a stationary ion detector, variation of the
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electric and magnetic fields facilitates the registration of atoms with different ratios q/m

(Demtröder 2005; Geyh 2005).

Especially for samples with low radioisotope content, mass-spectrometry overcomes the

need for prolonged counting of decay events. Furthermore, comparatively low amounts of

sample material (at least ∼ 250 mg) are sufficient for analysis. In this study, ICP-MS was

used to determine U, Th and K concentrations of the interior parts of silex samples in

order to calculate the internal dose rate. Measurements were carried out with a Perkin

Elmer/Sciex ELAN 6000 ICP-MS (ICP quadrupole mass- spectrometer) by Dr. Haino Uwe

Kasper at the Institute for Geology and Mineralogy of the University of Cologne. Analysis

of internal and external standards served for drift correction and as a check for the accuracy

of the data, respectively. This results in an overall measurement uncertainty of less than

± 5 %, mainly influenced by deviations from the well-known element concentrations of the

standards. An intercomparison between results from γ-spectrometry and ICP-MS, both

carried out in Cologne, supports the validity of the obtained data (Preusser & Kasper

2001). All details concerned with sample preparation for ICP-MS are given in Section 4.2.

Conversion of element concentrations to dose rates

Recent conversion factors to obtain dose rates from U, Th, K and Rb concentrations are

given by Guérin et al. (2011). They are calculated for an infinite matrix and homogeneous

absorption characteristics. The conversion factors used in this study, however, are those

from Adamiec & Aitken (1998), as they are implemented in the age calculation program

Age. These values are presented in Table 1.1. The deviations to the factors presented by

Guérin et al. (2011) are < 2 % (except for Rb), so that corresponding errors are seen as

very small, compared to uncertainties introduced e.g. by soil moisture assessment.

Table 1.1: Conversion factors for dose rate calculation, taken from Adamiec & Aitken (1998).
The values for the effective α-dose rate Ḋα,eff are already corrected for α-efficiency by use of the
track length system, assuming an a-value of 0.1. For natural U, a mass abundance of 99.28 % 238U
and 0.72 % 235U is assumed, and an atomic abundance of 116.7 ppm 40K of total K. Further, a
branching between β- and γ-disintegration of 89.3 % and 10.7 %, respectively, is used for calcula-
tions. The cosmic dose rate contribution and the impact of moisture content are not considered in
this compilation.

Element Ḋα,eff Ḋβ Ḋγ Ḋtotal Percentage of

concentration [Gy ka−1] [Gy ka−1] [Gy ka−1] [Gy ka−1] Ḋtotal

1 ppm U 0.218 0.146 0.113 0.477 28.8 %
1 ppm Th 0.0611 0.0273 0.0476 0.1360 8.2 %
1 % K 0.782 0.243 1.025 61.9 %
50 ppm Rb 0.019 0.019 1.1 %

Sum 0.2791 0.9743 0.4036 1.6570
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Specific α-flux rates (in SI units m−2 s−1) can be calculated from U and Th concentra-

tions in the sample (Valladas et al. 1988). The effective α-dose rate Ḋα,eff to be inserted

into the denominator of the age equation is obtained by multiplying Sα with the flux rates

(19400 cm−2 a−1 per ppm U and 5377 cm−2 a−1 per ppm Th, respectively). This procedure

and the single-aliquot determination of Sα is described in Tribolo et al. (2001).

1.3.3.4 Spatial and temporal dose rate variations

Variations of dose rate experienced by the sample over the burial period may result in

erroneous age estimates. The factors potentially causing temporal dose rate changes will

be briefly considered in this section, along with uncertainties which may be introduced by

analyzing bulk samples for external dose rate determination.

The self-dosing of a silex sample due to its internal dose rate can be of considerable

advantage when the long-term constancy of external dose rate data is doubted. Throughout

the dated period, silex – at least the core of the specimen used for measurements – is

regarded as geochemically stable so that the internal dose rate can be seen as constant.

Consequently, the higher the percentage of the internal to the total dose rate is, the

relatively smaller will the errors introduced by temporal changes of the external dose rate

be. For instance, if the internal dose rate makes up 80 % of the total one, any fluctuations

of the external radiation field will have considerably less impact on the resulting age than

in the case of only 10 % internal contribution (Aitken 1985b; Richter 2007a). This

argumentation implies the absence of any errors caused by non-uniformity of the internal

dose rate. Chapters 3 and 4 provide detailed experimental data with respect to the question

whether this assumption is justified or not. The following paragraphs will give an overview

of sources for environmental dose rate fluctuations.

Cosmic dose rate fluctuations

Since extraterrestrically induced changes of the cosmic dose rate may be regarded as neg-

ligible for the period of interest, the parameter controlling the cosmic contribution is the

overburden of the sample and its variations through time (beside altitude and geographic

coordinates, which are known). Accordingly, the degree of correct cosmic dose rate assess-

ment strongly depends on how precise the sedimentation rates, periods of surface stability

and perhaps also erosional phases can be reconstructed. Several scenarios of accumulation

and stagnancy of overburden were modeled by Munyikwa (2000), and Hilgers (2007)

applied this concept to dune profiles. Such an approach, however, assumes accurate know-

ledge on sedimentation history and thus a high-resolution age-depth-model, e.g. provided

by OSL. According to the findings of Hilgers (2007), significant effects of time-variant

cosmic dose rate are only expected if comparatively old layers are rapidly buried by thick

young layers. Needless to say that the here discussed variabilities of cosmic radiation lose
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impact for dominating α-, β- and γ-dose rates and in caves where the roof shields consid-

erable parts of the cosmic radiation.

Heterogeneous gamma-radiation fields

At archeological sites, non-uniformity of the γ-radiation fields within the ∼ 30 cm sphere

around the finding spot of a heated lithic is the rule rather than the exception. The find

layers are mostly of heterogeneous, sometimes organic-rich composition and differ from

the layers below and above, so that varying dose rates in these layers are expected. Cave

sites are prone to exhibit even more complicated settings, due to weathering of the abris or

roof and variable-sized blocks which have fallen down. For instance, big limestone blocks

of low radioactivity in a matrix of fine sediments may considerably reduce the γ-dose rate

received by a sample close to such a block. Three different sampling scenarios are shown

in Fig. 1.22. Because of the small size of the dated artefacts (a few cm) in relation to

the γ-range in sediment (∼ 30 cm), the internal γ-dose rate can be assumed as uniform.

Problems of gradients in the radiation field rather arise from dose rate determination using

homogenized sample material, as done by high-resolution γ-spectrometry in the laboratory.

The exact radiation geometry, caused by the specific spatial γ-emitter configuration during

burial, can hence not be reproduced. To circumvent the usage of mean γ-dose rates, it is

advisable to carry out in-situ γ-spectrometry or to employ dosimeter capsules as close

as possible to the finding spot. Archeological excavations proceed horizontally from top

to bottom, with the consequence that at least 2π (one hemisphere) of the irradiation

geometry at the finding spot is lost, if the excavators have not stored the removed material.

However, even then only mean values of the γ-dose rate can be obtained. In such cases,

vertical profiles that most closely replicate the section containing the artefact may be

sampled at corresponding depths and different lateral positions to get an approximation

of the 4π irradiation geometry at the finding spot and its horizontal variability within the

finding layer. The error of the external dose rate thus can significantly exceed the pure

measurement uncertainty (Richter 2007a). In case the documentation of the excavation

contains the exact position, size and shape of rocks, computerized reconstruction (Guibert

et al. 1998) or modeling (Brennan et al. 1997) of the actual γ-dose rate at the sample

position is possible, but complex. New approaches make use of non-invasive measurements

of γ-radiation while the excavation proceeds (Guérin & Mercier 2012).

Fluctuation of moisture content

The absorption of radiation in water is more effective than in air. Hence, the strength of

γ-radiation received by a buried silex sample depends on the degree to which the pores of

the surrounding sediment are filled with water, or, in other words, on the moisture content
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Figure 1.22: Spatial variability of γ-radiation. The γ-radiation field around the position A is ho-
mogeneous, whereas the influence of a layer with higher radioactivity (e.g. an organic-rich horizon,
shown here with dark color) leads to a higher γ-dose rate and a non-uniform radiation field at
position B. Big blocks of lower radionuclide content than the sediment matrix within the sphere of
γ-range cause local variations of radiation and an overall lower dose rate at position C. Redrawn
from Hilgers (2007).

of the sediment. The formula usually used to calculate the influence of moisture on the

γ-dose rate includes a specific attenuation factor of 1.14 (Zimmerman 1971a) and is given

by

Ḋγ,wet =
Ḋγ,dry

1 + 1.14 ·W · F
(1.27)

Here, W denotes the saturation water content (weight of water over dry weight) and F is

the average water content during burial over saturation water content W (Aitken 1985b).

The present water content of a sediment sample can easily be determined. However, this

value may not reflect the mean moisture content of the burial period which is difficult to

estimate. The uncertainty effects on the age are minimal in case of soils that have been

water saturated over the time of burial (F = 1) or in arid environments which are charac-

terized by water contents close to zero. Multiple reasons are responsible for fluctuations of

the moisture content on various time-scales: Seasonally, the soil water content follows the

annual changes in precipitation; on geological time-scales it is influenced by large-scale cli-

mate changes in the course of glacial–interglacial and stadial–interstadial cycles. Variation

in the precipitation regime might also have influence on the rise and fall of the groundwa-

ter table, while warm periods promote soil formation which goes along with weathering,

production of fine-grained material and enrichment of organic components. This again has

impact on the moisture capacity. Further mechanical interaction (compacting, selective

washout) and micro and macro soil biota may alter the grain size spectrum and porosity

and thus contribute to variations of water content through time (Hilgers 2007). It is

obvious that it is hardly possible to account for all of these factors for the period of burial.
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While an upper limit can be approximated by the size distribution of porosities (Fuchs

2001), an increased uncertainty reflecting the (mostly) poorly-known moisture content

must be assessed for each site and considered in the age equation (Aitken 1985b).

Radioactive disequilibria

Without external influence, a decay chain reaches radioactive equilibrium, i.e. the absolute

number of decays per unit time of the daughter is the same as that of its mother. Here,

the decay rate λ is related to the half-life by λ = ln2 /t1/2. The different half-lives of the

isotopes in a decay chain imply that the abundance of the isotopes must be reciprocal to

their half-lives to maintain radioactive equilibrium, which is then characterized by equal

activity of all members. If a fraction of a chain’s constituent is removed, this balanced situ-

ation is disturbed, the overall activity of the chain decreases and hence does the associated

dose rate. The opposite mechanism applies to addition of an amount of isotopes what re-

sults in excess activity. In case the disturbance is of short-term nature only, equilibrium of

production and decay of the respective isotope is reached again after about five half-lives.

This means that radioactive disequilibria potentially having prevailed in the past cannot

be detected by analyzing the present sediment composition (Aitken 1985b). If possible,

time-dependent dose rate variations introduced by radioactive disequilibria should be ac-

counted for to avoid erroneous age results (Krbetschek et al. 1994; Olley et al. 1997;

Prescott & Hutton 1995).

Due to low geochemical mobility of Th and the relatively short half-lives of the chain

members, disequilibria in the Th decay series are not expected to be a serious problem.

Furthermore, the relative contribution of the 235U chain to the γ-radiation induced by

natural U is only 1.8 % (Guérin et al. 2011). Consequently, disequilibria in the 238U

decay series, whose members have half-lives of up to 245 ka, will have the greatest impact

on the dose rate. According to Krbetschek et al. (1994), the main reasons for radioactive

disequilibria in this chain include at first the oxidation of 234U to uranyl compounds which

are water soluble, just as is 226Ra. Secondly, 230Th is readily absorbed, leading to an

excess amount of this isotope. Finally, the gaseous diffusion of 222Rn may also induce

disequilibrium. The effect of emanation is particularly severe because ∼ 98 % of the γ-

radiation of the 238U decay series is emitted by this isotope and its descendants (Mercier

et al. 1995; Guérin et al. 2011). Organic matter is prone to be enriched in U under wet

conditions, leading to an excess amount of U in the decay chain (Geyh & Techmer 1997;

Geyh et al. 1997).

From the above explanations, it can be deduced that radioactive disequilibria are more

problematic in wet sedimentary environments. Whether the burying sediments of an ar-

cheological site are affected by any form of radioactive disequilibrium is thus dependent on

local settings, as case studies by Feathers (2002), Valladas et al. (2008) and Mercier

et al. (2007b) show. Since in-situ measurements of γ-radiation are not capable of revealing
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radioactive disequilibria, additional analysis by high-resolution γ-spectrometry is essen-

tial. At the Cologne laboratory, γ-radiation emitted during decay of the isotopes 226Ra,
214Pb and 214Bi (238U decay chain), and of 228Ac, 212Pb and 208Tl (232Th decay chain)

is measured. Deviations > 2σ of the calculated activities of these members are indicative

of radioactive disequilibrium in the lower part of the chain (226Ra and its successors).

Inconsistencies in the upper part of the 238U decay chain may be revealed by use of high-

resolution α-spectrometry (Krbetschek et al. 1994).

1.3.4 Evaluation of absorbed dose

Before the accumulated radiation dose of a silex sample can be measured, the sample

has to be prepared. Commonly, the outer surface of the sample (> 2 mm thickness) is

stripped off with a water-cooled diamond saw and the inner core is gently crushed with

a hydraulic press to the final grain (better: fragment) size of ∼ 100–200 µm (Valladas

1992; Mercier et al. 1995). Alternatively, fine grain separates (∼ 4–11 µm) may be used

for dose evaluation, which are obtained by acetone settling (Zimmerman 1972). After

treatment with 10 % HCl, the sample material is ready for measurement in the routinely

used Risø or Lexsyg luminescence readers. Further details on measurement parameters

used in this study are given in Sections 6.3.1 and 7.1 and Chapter B.

Due to the high variability of luminescence characteristics among different silex samples

(or mineral samples in general), no universally valid relationship between given dose and

luminescence output can be established. This necessitates to determine the sensitivity,

or dose response, for each sample individually. By administering different doses D and

recording the resulting TL, an empirical function TL(D) can be established, the dose

response curve or growth curve. Using this relationship, an estimate of the paleodose is

obtained by the artificial dose for which the recorded TL is equal to the natural TL. This

dose is called the equivalent dose De.

The most common methods used for De determination will be described only in their

principal functionality here. For examples of application of various measurement protocols,

the reader is referred to the case studies given in Section 1.3.1 and Chapter 7. Furthermore,

focus is set on TL protocols that were used to collect most of the data in this work. The

OSL dating procedures applied are described in Chapter 5.

1.3.4.1 Additive-dose techniques

Since it has been known that thermal treatment and irradiation may change the lumi-

nescence sensitivity of a sample, the multiple-aliquot additive-dose (MAAD) approach is

designed to reduce these influences. Increase or decrease of the sensitivity during repeated

measurements of the same aliquot – if not adequately corrected – would result in errors

in the determined De, as illustrated for regenerative-dose measurements in Fig. 1.12. To

build a MAAD dose response curve, several sets of natural aliquots therefore receive in-
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Figure 1.23: Equivalent dose determination using multple-aliquot protocols. For further details
see main text.

creasing additive β-doses (e.g. β, 2β, 3β, ...) so that this irradiation is the only laboratory

treatment prior to TL measurement. The integrated numbers of photomultiplier counts of

a thermally stable region of the glowcurve (see Section 1.3.4.3) are then plotted against

the known additive doses and the dose points fitted with an appropriate function (addi-

tive or first growth curve). This is mostly a linear, quadratic or exponentially saturating

function, depending on the dose range and the dose saturation level of the sample. For

equivalent dose determination, the fitted curve is extrapolated to negative dose values and

the (negative) intercept with the dose axis is seen as being representative of the De. Since

this method is based on extrapolation, the exact curvature of the dose response curve

at low doses is unknown. Some samples, however, have shown supralinear signal increase

at low doses which is accounted for by constructing a regenerative dose response curve

(regenerative or second growth curve) (Aitken 1985b; Valladas et al. 1999; Richter

et al. 2000; Mercier et al. 2007b). The regenerative curve is obtained by annealing part

of the sample material and irradiating several sets of aliquots with increasing β-doses.

The corrected De is then calculated by adding the supralinearity correction I (Fig. 1.23).

Especially if non-linear curve fitting is applied, it is important that the extrapolated dose

ranges of additive and regenerative curves approximately match to give valid results for

the supralinearity correction (i.e. NTL≈TL(βreg1)).

The signal scatter of individual aliquots may substantially increase the uncertainty of the

curve fit and thus the uncertainty of the De. To reduce this scatter, several normalization

procedures have been proposed, such as weight normalization, second glow, zero glow or

equal pre-dose normalization (Aitken 1985b; Franklin & Hornyak 1992). In case of
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second glow normalization, after initial TL readout a constant dose is given to all aliquots

and its response is used for normalization. In contrast, a small dose prior to the natural

TL (NTL) measurement induces a signal of the highly sensitive 110 ◦C TL peak which

is considered as proportional to the “dating” peak at higher temperatures and serves for

zero glow normalization. Application of the equal pre-dose approach requires an identical

thermal and dose history of all samples prior to a normalization dose measurement, so that

additional irradiation and heating steps for part of the aliquots are necessary (Aitken

1985b). The sucess of different normalization techniques is likely to be sample-dependent.

This topic is also discussed in Section 4.4 for silex samples.

1.3.4.2 Regenerative-dose techniques

To overcome the uncertainties introduced by extrapolation of the MAAD curve, regener-

ative methods may be applied. Using multiple aliquots, the De is estimated by projection

of the NTL signal onto the regenerative curve and the corresponding dose is read from

the dose axis. As mentioned in the last section, heating of the sample prior to regenera-

tive dosing can result in changes of the sensitivity. If both additive- and regenerative-dose

response curves are constructed, sensitivity changes caused by heating can be recognized

by differences in their slopes.

Lx/Tx 

Dose De 

Ln/Tn 

Regenerated  

curve 

Figure 1.24: Equivalent dose determination using the SAR protocol. The dose response curve
is constructed by five regeneration points, including one repeat point. The De is determined by
projection of Ln/Tn onto the fitted growth curve and reading from the dose axis. For further details
see main text.

The single-aliquot regenerative-dose (SAR) method requires in principle only one aliquot

forDe determination. Here, after readout of the natural signal (Ln), increasing regenerative

54



1.3 Luminescence dating of heated silex

Table 1.2: Measurement sequence of the SAR protocol. The general procedure is according to
Murray & Wintle (2000), but adopted to thermal instead of optical stimulation. The regenera-
tion dose Dx is increased throughout the sequence and a repeated dose point measured at the end
of the protocol.

Step Treatment Yield

1 TL measurement Ln
2 Give fixed test dose DT

3 TL measurement Tn
4 Give regeneration dose Dx

5 TL measurement Lx
6 Give fixed test dose DT

7 TL measurement Tx
8 Return to step 4

doses are given to construct a dose response curve for this aliquot. These doses have to be

chosen to enclose the expected natural dose. Sensitivity changes due to repeated heating

and irradiation are monitored by measuring the response to a constant test dose in between

the regenerative steps. Provided that the regenerated signal Lx is directly proportional to

the test dose response Tx, the growth curve can be corrected for the sensitivity changes

(or better: normalized) by dividing Lx by Tx. Through fitting of the growth curve and

projection of Ln/Tn onto this curve, the De is obtained (Fig. 1.24) (Murray & Wintle

2000). A general measurement routine of the SAR protocol is outlined in Table 1.2. If

sensitivity correction works adequately, a repeated dose point at the end of the SAR

cycle should yield the same Lx/Tx-value as the first one. The ratio of both, the recycling

ratio, should ideally be unity and is used to assess the validity of the SAR procedure

for a respective sample. A zero dose point, as usually measured in the course of OSL-

SAR protocols to register recuperation, is not included in the TL-SAR protocol, because

recuperation is not expected to be a matter when applying thermal resetting. Another

check for the suitability of the regenerative method is the dose recovery test (DRT): After

zeroing the signal, a known laboratory dose is administered, treated as unknown and

determined by the chosen measurement protocol. The degree of coincidence of given and

determined (recovered) dose within uncertainties provides a criterion for the protocol’s

validity (Richter & Temming 2006; Wintle & Murray 2006). Examples of DRT’s

performed in the course of the present thesis are given in Chapters 7 and B.

1.3.4.3 Selection of thermally stable signal parts: the plateau test

The TL glow curve usually consists of several overlapping peaks, each having a different

thermal trap depth and hence thermal stability (see Section 1.3.2.1). To be confident of

negligible thermally induced charge loss over the storage period, the thermal lifetime of a

trap must be about one order of magnitude longer than the dated time span. In contrast
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to glow curves recorded after artificial dosing, natural glow curves do not exhibit a TL

signal below ∼ 200 ◦C, due to the low thermal stability of the corresponding shallow traps.

The thermally stable region in the glow curve to be used for dating is usually detected by

application of the plateau test (Aitken 1985b).
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Figure 1.25: Heating and De-plateau test. (a) Heating plateau of a Portuguese silex sample (not
part of this thesis). (b) De-plateau of the same sample, obtained by evaluation of MAAD data
with the Analyst software (version 3.24). The measurements were conducted with a heating rate
of 2 K s−1 and using the blue filter combination centered at 410 nm.

The ratio of natural TL (NTL) of a sample and the signal after receiving an additive β-

dose (NTL +β) is plotted against temperature, which is termed heating plateau test. This

ratio yields a plateau in the thermally stable region, as exemplarily shown in Fig. 1.25a.

Assuming linear dose response and neglecting supralinearity, a first guess of the equivalent

dose can be made by means of the heating plateau test: if r = NTL
NTL+β , then the equivalent

dose is approximated by r
1−r · β (Aitken 1985b). The absence of a heating plateau in the

high-temperature region (≥ 300 ◦C) may have several reasons (Aitken 1985b; Richter

2007a):

� Presence of anomalous (athermal) fading of some signal components. This has been

reported for the UV emission (around 340 nm) of silex (Richter et al. 1999).

� Contamination of the sample with spurious TL components or foreign material. The

glow curve then clearly differs from that of a pure silex sample.

� Incomplete signal resetting during heating by ancient man.

The last item implies that the heating plateau test can also be applied to check sufficient

signal erasure during the last heating process. Incompletely heated samples, which are

useless for dating, can hence be sorted out. It must be noted that passing the plateau test

is a requirement, but is not sufficient to guarantee appropriate TL resetting. Moreover,
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there must be a notable signal increase after additive dosing to ensure the signal is not in

saturation (geological signal, r = 1 in this case). Complications with the heating plateau

test may further arise from altering of the glow curve shape after various heat treatments

(Michab et al. 1998). Therefore, the glow curves should be checked for their symmetrical

shape; any high-temperature shoulders or deviations from a Gaussian-shaped peak can be

indicative of insufficient heating in the past (Richter et al. 1999; Richter et al. 2011).

In the non-linear dose range, a sample showing overlapping peaks with varying dose

saturation characteristics would fail to yield a plateau, though adequately heated. The

De-plateau test overcomes this pitfall while giving an individual De-value for each temper-

ature interval of the glowcurve (e.g. 5 ◦C intervals). A De-plateau is thus a more reliable

indication of the stable temperature region (Berger 1994; Zöller & Blanchard 2009).

An example of a satisfactory heating and De-plateau, respectively, is shown in Fig. 1.25;

further examples of passed and failed plateau tests are given in Chapter C.

Once a stable signal part is identified, an equivalent dose can be determined by multiple-

or regenerative-dose procedures and integrating of this signal for dose response curve

construction, or, with help of appropriate software, by averaging the invidual De’s obtained

from the De-plateau test over this range.

1.3.5 Calculation of the age

The age equation in its simplest form can be written as

Age =
Equivalent dose

Dose rate
=
De

Ḋ
(1.28)

The dose rate, however, consists of several individual parts, as shown in Section 1.3.3.

Citing these separately gives

Age =
De

Ḋα,eff + Ḋβ + Ḋγ + Ḋcosmic

(1.29)

Here, Ḋα,eff is the effective α-dose rate (corrected for α-efficiency) and Ḋγ is the average

“wet” γ-dose rate during burial according to Eq. 1.27. In case of MAAD data, the De may

comprise a supralinearity correction I. The resulting age is usually quoted with its 1σ

confidence interval which means that with a probability of ∼ 68 % the true age lies within

the quoted uncertainty boundaries (assuming Gaussian distribution of the random terms).

When it comes to dating of allegedly contemporaneously heated artefacts – e.g. from

one confined find layer or a hearth –, the age is to be quoted as the error-weighted mean of

the samples’ individual ages. Therefore, however, it must be veryfied within a certain level

of significance (usually 5 %) that all ages originate from the same statistical distribution.

The χ2-test allows deciding whether this condition is fulfilled or not. By use of the error-

weighted mean, ages with smaller standard deviations σ is given more weight than those

with larger errors, leading to the following equations for the weighted mean age Ā and its

1σ confidence interval when n individual ages are averaged (Geyh 2005):
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Ā =

∑n
j=1Aj ·

1
σ2
j∑n

j=1
1
σ2
j

(1.30)

σ̄ =

√√√√ 1∑n
j=1

1
σ2
j

(1.31)

Analyses and De calculation of multiple-aliquot additive- and regenerative-dose data

sets were performed with version 3.24 of the Analyst software (Duller 2007) in this

study and the obtained standard deviations used for further age calculation. Evaluation

of SAR data was carried out with Matlab (version 2007b) in which the dose response

curve was fitted and the De obtained by solving the fit equation for y = Ln/Tn. The

1σ uncertainty includes errors due to counting statistics (assuming Poisson distribution

of photomultiplier counts), curve fitting, reproducibility of measurements (taken to be

1.5 %) and β-source calibration (5 %) (Aitken 1985b; Hilgers 2007). While the source

calibration error is technically a systematic one, it has no distinct algebraic sign so that it

has an inherent statistical nature (Kalchgruber 2002). Therefore, the error σDe may be

derived by applying the Gaussian law of error propagation to the individual errors (Geyh

2005). All dose and dose rate data with their standard deviations were inserted into the

Age program from Prof. Dr. R. Grün (version 1999) to calculate individual TL ages. To

sum up this chapter, the generalized procedure for TL dating of heated artefacts is shown

as a flowchart in Fig. 1.26.
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Figure 1.26: Generalized working steps for TL age determination of heated silex.
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1.4 Outline of thesis

The structure and basic content of the following chapters is outlined below to provide an

overview of their interrelationship.

Chapter 2 contains the study on spurious luminescence signals from sample holders.

Possible reasons for these luminescence emissions are given along with cleaning methods

for their elimination in order to measure a preferably pure signal of the sample and to

avoid systematic or random errors caused by the spurious contributions.

Chapters 3 and 4 address the question wether or not and to what extent heterogeneous

distribution of radionuclides and hence of dose rate may affect the accuray and precision

of TL dates. Several qualitative and quantitative approaches (autoradiography, LA-ICP-

MS) are applied to gain detailed knowledge on the amount and distribution of uranium,

thorium and potassium. These extensive investigations were split into two publications

with the ineluctable consequence of a partial thematic overlap of both discussion sections.

OSL properties of four silex samples are studied in detail in Chapter 5. LM-OSL mea-

surements and tests on the thermal long-term stability of the detected signal components

are investigated. For two archeological samples, the thermally most stable component was

used for age determination, and finally OSL ages are compared to ages obtained by TL.

The logical consequence of the dose rate studies is to find appropriate means to routinely

detect and circumvent malign influences of non-uniform internal dose rate, preferably in

the course of the TL measurements in-house and without the need to carry out expensive

analyses. In Chapter 6, a set of heated artefacts from Romania serves to test exem-

plarily the applicability of (1) a multi-protocol approach, i.e. the parallel use of various

TL emissions and measurement protocols and (2) a SAR protocol-based method to check

the reliability of obtained ages. Additionally, sediment OSL data of the find layer and

under- and overlying deposits were generated. After selection of valid age information, the

archeological implications of the TL and OSL dates are discussed.

Further case studies of applied dating of Middle and Early Upper Paleolithic sites are

contained in Chapter 7. The investigated sites from the Iberian Peninsula and Egypt cover

different depositional environments (open-air and cave sites) and face various problems

related to internal as well as external dosimetry.

Chapter 8 provides a conclusive summary of the results of the previous chapters. The

findings are placed in a wider context and the TL method and its benefits and shortcomings

opposed to alternative chronological methods. As an outlook, possible strategies to better

face internal dose rate issues are discussed (e.g. spatially resolved dose and dose rate

determination).
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Chapter B provides the results and a short discussion of the laboratory dose recovery

tests performed to evaluate the validity of applied sample preparation and measurement

procedures. Additional data and plots with respect to dated silex samples (Chapter 7) are

given in Chapter C.
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Bulur, E., Göksu, H. Y., 1999. Infrared (IR) stimulated luminescence from feldspars with

linearly increasing excitation light intensity. Radiation Measurements 30, 505–512.

Campbell, G., Jungbauer, J., Bristow, K., Hungerford, R., 1995. Soil temperature and

water content beneath a surface fire. Soil Science 159, 363–374.

Carmody, R. N., Wrangham, R. W., 2009. The energetic significance of cooking. Journal

of Human Evolution 57, 379–391.

Clark, J., Harris, J., 1985. Fire and its roles in early hominid lifeways. The African Ar-

chaeological Review 3, 3–27.

Daniels, F., Boyd, C. A., Saunders, D. F., 1953. Thermoluminescence as a Research Tool.

Science 117, 343–349.
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Göksu, H. Y., Fremlin, J. H., Irwin, H. T., Fryxell, R., 1974. Age determination of burned

flint by a thermoluminescent method. Science 183, 651–654.
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Abstract

Luminescence dating is a leading technique for a large spectrum of Quaternary dating

applications. Since the development of automated reader systems, handling great amounts

of samples has become possible. A large quantity of data is produced in a short time and

a detailed check of every single curve is often impractical. Therefore, it is important to

be confident in excluding any kind of unwanted signal contributions, such as those from

sample carriers. For commonly used types of steel and aluminium (Al) carriers from three

laboratories, luminescence characteristics of spurious and radiation-induced signals are

presented. TL and OSL emissions of discs show natural (Al) and regenerated thermally

stable signals in the UV, UV-blue and red detection range. These signals have characteristic

saturation doses of several hundred Gy. Furthermore, we demonstrate light insensitive

signal components and phototransferred thermoluminescence (PTTL). Due to high scatter

between discs, the proportion of unwanted disc signal contribution to the entire signal is

difficult to predict, without direct measurement. The sources of these signals are possibly

chemical compounds acting as luminophores or oxide layers (Al2O3 layers in case of Al

discs).
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2 On the luminescence signal of empty sample carriers

2.1 Introduction

Since the beginning of thermoluminescence (TL) and later optically stimulated lumines-

cence (OSL) dating much effort has been focused on avoiding unwanted signal contribu-

tions to those used for dating purposes (Aitken 1985; Aitken 1998). These contributions

can originate from the sample itself or the measurement setup, e.g. the atmosphere during

TL measurements or phosphorescence from the filters. The choice of the sample carrier

is therefore of paramount importance for measuring a clean luminescence signal from the

sample only.

The first TL measurements with relevance to recent dating applications were carried

out with samples mounted on glass plates (Daniels et al. 1953). Several other materials

were used as sample holders in the following decades, such as aluminium (Al), platinum,

nickel, steel (Bøtter-Jensen 1997), or silver (Yawata & Hashimoto 2007). Only sparse

information on the applicability of those substances is given in the literature (Berger et al.

1982; Aitken 1998). The authors report on “parasite” luminescence signals generated by

Al holders. Today, most laboratories use stainless steel or Al carriers for sample placement

in the commonly used Risø readers, usually termed as discs (flat plate) or cups (with

depression). It should be mentioned, however, that one of the first materials used for TL

dosimetric purposes was Al oxide (Al2O3) (Osvay & Biró 1980).

However, to our best knowledge, no systematic study has been published in the con-

temporary luminescence dating literature to prove the absence of parasite luminescence

for commonly used sample holders. Standard measurement protocols do not check for

unwanted signal contributions. Thus, the registered net luminescence (background sub-

tracted) is routinely attributed in its entirety to the sample.

Since we found hints on spurious (i.e. non-radiation-induced) and dose-dependent lumi-

nescence signals of a variety of different disc materials during experimental measurements,

we conducted a study to investigate the features of these potentially problematic sig-

nals and their expected influence on dose determination. Therefore, we measured various

sample carriers (Al and steel) from the luminescence laboratories in Oxford, Cologne and

Bayreuth using different stimulation methods (TL, OSL, IRSL) and detection windows

(UV: 340 ∆ 80 nm, UV-blue: 420 ∆ 30 nm, red: 625 ∆ 25 nm and 630 ∆ 30 nm). Further-

more, we examined the dose response characteristics and the bleachability of the signals

as well as the phototransferred thermoluminescence (PTTL) (Furetta 2010; Kalchgru-

ber 2002) of empty discs. An exemplary equivalent dose determination (SAR protocol,

after Murray & Wintle (2000)) of a well-studied sediment sample acts as reference

point for assessing signal interference. Finally, an alternative method for cleaning the discs

is presented and its effectiveness is tested.
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2.2 Materials and methods

2.2.1 Sample carriers

To investigate the luminescence behavior of sample carriers, three kinds of empty discs or

cups commonly employed in laboratories were tested:

1. Stainless steel discs used in Oxford and Cologne (Cr-Ni steel V4A, diameter 9.8 mm,

thickness 0.5 mm),

2. Al discs used in Oxford, Cologne and Bayreuth (unknown Al composition, diameter

9.8 mm or 9.6 mm, thickness 0.45 mm),

3. Al cups, manufactured in Bayreuth (Goodfellow Al foil, purity 99.0 %, diameter

12.0 mm, thickness 0.1 mm).

From each kind of discs or cups, at least five exemplars were measured. We chose all

discs randomly from the “clean disc box” (for the applied cleaning procedure, see below)

and measured them without further chemical and physical treatments. Regarding Al discs,

we tested both used and new discs. Al cups from Bayreuth were new, because cleaning

without damaging is difficult due to their low thickness.

2.2.2 Disc cleaning procedures

To test the effects of disc cleaning procedures on spurious and dose-dependent signals, two

methods were applied on used discs in Cologne.

1. Steel and Al discs were cleaned in an ultrasonic bath in addition to mechanical

rubbing (sponge) and washing with rinsing agent to remove remaining silicon oil.

Afterwards, the discs were flushed with distilled water and purged in acetone.

2. A mechanically more severe procedure was applied to remove the oxidized layers from

steel and Al discs. Several tens of discs were placed in a bottle of chalk suspension

and kept on the shaking table for polishing for 24 h, or 72 h if they were scrubbed

with scouring agent in advance. Washing with distilled water afterwards prevents

measuring spurious signals from carbonates. The loss in mass is negligible.

2.2.3 Measurement setup

The luminescence measurements were carried out on different Risø DA-12, DA-15 and

DA-20 readers in Cologne, Oxford and Bayreuth, equipped with a standard bialkali pho-

tomultiplier tube (EMI 9235QB). In addition, for the red detection a cooled trialkaline

photomultiplier tube (EMI 9658B) described in Fattahi & Stokes (2005) was used in

Oxford. The luminescence was measured placing the following filters consecutively between

the disc and the photomultiplier:
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2 On the luminescence signal of empty sample carriers

1. Hoya U340 (7.5 mm, 340 ∆ 80 nm),

2. Combination of Schott GG400 (3.0 mm), Corning 7-59 (2.0 mm), Schott BG39

(1.0 mm) and HA3 (4.0 mm): UV-blue detection centered at 420 nm,

3. Chroma D410/30x interference filter for UV-blue detection (410 ∆ 30 nm) for IRSL,

4. Chroma D630/60 M (630 ∆ 30 nm, Cologne) or Omega D625/DF50 (625 ∆ 25 nm,

Oxford) interference filters for red detection, respectively.

The heating rates were set to values of 2 or 5 K s−1 and the measurement chamber

was flushed with N2 for two minutes before each measurement exceeding 160 ◦C, except

where indicated otherwise. Maximum temperatures for UV TL (UVTL) and UV-blue

TL (BTL) measurements were 500 ◦C and for red TL (RTL) 450 ◦C. The background

for each measurement was recorded immediately afterwards. For OSL measurements of

the UV emissions, blue LEDs (470 ∆ 30 nm) and for IRSL measurements, infrared LEDs

(870 ∆ 40 nm) were used.

The discs received radiation doses from 90Sr/90Y β-sources delivering around 5 Gy min−1

(DA-12 and DA-15) or 7 Gy min−1 (DA-20). These dose rates are usually calculated for

mineral grains mounted on the discs and not for the discs themselves. Therefore, the dose

rates are approximations.

2.2.4 Dose response measurements

For dose response measurements, blank discs were irradiated with incremental doses up to

ca. 1 or 2 kGy and subsequently TL and OSL were measured. A standardized luminescence

efficiency value, with units cts (K Gy)−1 for TL and cts (s Gy)−1 for OSL, respectively, al-

lows comparing measurements with differing parameters, e.g. heating rate or measurement

channels (suggested by M. Krbetschek, pers. comm.). The TL signal was integrated over

the thermally stable range of 300–400 ◦C for UVTL and BTL. To avoid the influence of

increasingly noisy net signals above 350 ◦C, the integration interval for RTL was lowered

to 250–350 ◦C. The OSL/IRSL decay curves were measured at 125 ◦C read temperature

after a preheat of 260 ◦C (OSL) for 10 s and read temperatures of 50 ◦C after a preheat of

250 ◦C for 60 s or 270 ◦C for 10 s (IRSL).

2.3 Experimental details and results

2.3.1 Thermoluminescence signal

2.3.1.1 Steel discs

Steel discs from the Cologne and Oxford laboratories were heated to 500 ◦C (UVTL and

BTL) or 450 ◦C (RTL) and TL was measured first without irradiation, then after incremen-

tal β-doses. Between the dose steps, a test dose was given to record potential sensitivity
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2 On the luminescence signal of empty sample carriers

changes. No signal above background could be detected for non-irradiated steel discs ex-

cept for a small 380 ◦C peak in the blue range (Fig. 2.1). Significant TL signals resulted

from exposure to ionizing radiation. UVTL and BTL showed a strong 110 ◦C peak, whereas

for BTL this peak slightly shifts towards higher temperatures or is superposed by another

peak on its high temperature shoulder for high doses (> 1 kGy). At higher temperatures,

we observed at least two other peaks which form a broad continuously decreasing shoulder

between 150 and 300 ◦C in the UV range. Little UVTL signal is detected above 300 ◦C. A

similar shoulder occurs in the blue window, followed by a distinct peak centered at 380 ◦C

in the high temperature region. In the red detection window, steel discs are far less sen-

sitive to irradiation. We only observed signals above background noise for doses > 250 Gy

(peak at 180 ◦C).

2.3.1.2 Al carriers

We applied the same measurement routine to Al discs from the Oxford and Cologne

laboratories. In contrast to steel discs, Al discs yielded a notable TL signal without artificial

irradiation. The peak positions for this spurious signal are 480 ◦C (UV) and ≥ 500 ◦C

(UV-blue) with count rates extending from a few hundred cts K−1 in the UV and red (no

peak observable) up to several thousand cts K−1 in the blue detection window. For BTL,

however, difficulties with the background subtraction led to a negative net signal and the

“natural” peak may also suffer from this problem. The natural UVTL and BTL signal is

not depleted completely by measurements up to 500 ◦C. Hence, remaining trapped charge

appears to cause a spurious signal also in subsequent measurements (data not shown).

Following β-irradiation, the 110 ◦C UVTL peak of Al discs appears at slightly lower

temperatures in comparison to steel, due to the higher thermal conductivity of Al and

thus reduced thermal lag between heater plate and upper disc surface. We observed three

other UVTL peaks at 180, 220 and 400 ◦C for β-doses > ca. 250 Gy (Fig. 2.1). Similar to

the BTL emission of steel, Al discs yield a 110 ◦C peak that is surpassed in growth by a

peak at 140 ◦C for doses > 600 Gy. A further small BTL peak of Al is centered at 380 ◦C.

The RTL emission of Al discs is dominated by two maxima at 150 and 300 ◦C. The low

temperature peak seems to correspond to the RTL peak observed for steel discs, whereas

steel discs only show a very weak 300 ◦C peak.

The positions of the TL peaks in the various detection windows for steel and Al discs

are roughly the same for all measured discs. However, the intensities of the luminescence

emissions and the relation of peak heights vary considerably between individual discs.

We also detected low spurious TL signals in the UV range for Al cups as a slowly

growing shoulder from 200 up to 450 ◦C. Following β-irradiation up to ca. 1 kGy, we found

UVTL peaks at 110 ◦C and at around 400 ◦C for doses > 500 Gy (see supplementary data

at www.aber.ac.uk/ancient-tl, respectively in Section A.1). BTL glow curves of several Al

cups exhibit a very weak peak at 110 ◦C after the highest regeneration dose (> 1 kGy). In

general, used and cleaned Al and steel discs produce much higher spurious and regenerated

signal intensities in the UV and blue detection range than new Al cups. RTL emissions of

Al cups were not investigated.
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2.3 Experimental details and results

Fig. 2.2 presents the results of an experiment to measure the influence of grain coverage

on unwanted signal contributions of used Al discs. All signals were recorded in the UV

detection window. Fig. 2.2a shows the integrated TL (300–350 ◦C) of the spurious signal

and the regenerated signal after 50 Gy β-irradiation for 45 discs. The ratio of these signals

for each disc is plotted in Fig. 2.2b. The annealed discs were then irradiated with 50 Gy

and immediately covered with annealed quartz grains (BT781, loessic sample from Nuss-

loch, Germany, unit P4-1, 100–200 µm, heated at 500 ◦C for 1 h) using masks of different

diameter (discs 1–15: 1 mm; discs 16–30: 2 mm; discs 31–45: 8 mm). Fig. 2.2c shows the

ratio of the regenerated TL signal of grain-covered discs and uncovered discs (measured

after cleaning the discs individually afterwards). These measurements indicate that the

effect of light shielding through grain coverage is negligible. The fact that the ratio is

higher than 1 is probably a result of the cleaning procedure. Fig. 2.2d shows the ratio of

the 50 Gy irradiated quartz sample (mounted on Al discs using the same order and mask

diameters as in Fig. 2.2c) and the regenerated signal after the same dose of the same discs

without quartz layer.
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Figure 2.2: Results of the experiment to measure the influence of grain coverage on unwanted
signal contributions of used Al discs (UV detection range). Experimental conditions and detailed
descriptions are given in the text.
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2.3 Experimental details and results

2.3.1.3 Dose response

Growth curves of UVTL and BTL emissions of steel discs can be fitted to single saturating

exponentials with characteristic saturation doses (D0) of ca. 950 Gy and 1.23 kGy, respec-

tively (Fig. 2.3). For low β-doses (< 200 Gy), the dose response can be approximated with

a linear fit. In this range, the dose response amounts to about 3 cts (K Gy)−1 for UVTL

and 24 cts (K Gy)−1 for BTL. For higher doses, these values decrease due to saturation.

The RTL signals in the thermally stable region are too low to estimate their dose response.

The UVTL and BTL growth curves of Al discs show similar behavior with approximately

linear growth up to doses of 500 Gy (UVTL) and 300 Gy (BTL) and characteristic satura-

tion doses of 1.72 kGy and 970 Gy, respectively. In contrast, the RTL Al emission reveals

supralinear increase for doses < 2 kGy. Up to onset of saturation, the dose response of Al

discs can be expressed as ca. 20 cts (K Gy)−1 for UVTL, ca. 180 cts (K Gy)−1 for BTL and

ca. 4–6 cts (K Gy)−1 for RTL emissions.

Test dose monitoring shows little sensitization for steel discs and Al discs and cups. The

effect is most distinct for the 110 ◦C TL peak in the UV and blue detection window and the

BTL high temperature peaks of Al discs, but not quantifiable for other high temperature

peaks.

2.3.1.4 Growth rate of the spurious signal

As spurious and dose-dependent signals of Al discs may derive from oxide layers, the signal

response was investigated for different durations of oxygen exposure. Fresh chalk-polished

Al discs (Cologne, procedure see above) were stored in an acetone bath in a closed bottle

to prevent contact with oxygen. Batches of 5 discs were successively removed at defined

times. The remaining time to the UVTL measurements is then the oxygen exposure time.

Those were set to 10 minutes (approximated 0 days), 2, 5, 20 and 41 days. The TL signal

was integrated over the range 250–450 ◦C.

We observed no growth within measurement uncertainty up to oxygen exposure dura-

tions of 20 days, due to high scatter of the spurious TL signal between discs (Fig. 2.4a).

For longer contact with air, the discs showed a substantially increased signal. In order

to check whether there is a correlation between spurious and regenerated signal, all discs

received a β-dose of 250 Gy after initial spurious signal readout (Fig. 2.4b). We calculated

the ratio of both signals in the same temperature interval. The ratio values (regenerated

signal/spurious signal) denote high disc-to-disc scatter and suggest that both signals are

not closely correlated (data not shown). However, Fig. 2.4 indicates that longer oxygen

exposure duration generates both stronger spurious and radiation-induced TL signals.
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Figure 2.4: Growth of (a) spurious and (b) 250 Gy regenerated UVTL signals of Al discs with air
(oxygen) exposure duration. The error bars represent the standard deviation of 5 discs each.

2.3.2 Optically and infrared stimulated signals

2.3.2.1 OSL

All steel discs were preheated to 260 ◦C for 10 s at a rate of 5 K s−1 to simulate condi-

tions equal to routine OSL measurements. We observed negligible OSL signals without

artificial irradiation, but count rates up to 20 cts (s Gy)−1 for β-doses < 100 Gy (Fig. 2.5).

Pronounced scatter of signal intensity and growth between single discs is typical. Al discs

show OSL signals of about 2 cts (s Gy)−1 after a 260 ◦C preheat for 10 s up to the high-

est regeneration dose. Al cups produce OSL signal above background in the range of

10 cts (s Gy)−1 in the first one or two measurement channels after irradiation, indicating

a rapidly decaying signal component (supplementary data). As for steel discs, initial OSL

signal intensities of Al cups differ considerably from cup to cup. Due to low signal-to-noise

ratios of the test dose signals, we cannot provide any information on potential sensitivity

changes for OSL of steel and Al sample carriers.

2.3.2.2 IRSL

We also checked the IRSL signals from discs during common IRSL (feldspar) measurement

conditions. After a 270 ◦C preheat for 10 s or 250 ◦C for 60 s IRSL was measured at 50 ◦C.

Steel discs as well as Al cups completely lack IRSL signals (natural and after irradiation).

Al discs reveal a dose dependent, slowly decaying signal with count rates in the range of

2–5 cts (s Gy)−1, but no natural IRSL signal (supplementary data).

82



2.3 Experimental details and results

0 5 10 15 20
0

500

1000

1500

2000

Time [s]

O
SL

 [c
ts

/0
.1

6 
s]

a

0 5 10 15 20
0

100

200

300

400

500

600

Time [s]

O
SL

 [c
ts

/0
.1

6 
s]

b

natural
62 Gy
249 Gy
1867 Gy

natural
62 Gy
249 Gy
1876 Gy

0 200 400
0

50

100

Temperature [°C]

TL
 [c

ts
/0

.4
 s

]

Figure 2.5: Natural (0 Gy) and regenerated OSL signals of single (a) steel and (b) Al discs after
preheat (260 ◦C for 10 s). The inset in (a) shows the residual UVTL measured after β-irradiation
of 1867 Gy and 40 s blue optical stimulation (470 ∆ 30 nm). For further details, see text.

2.3.2.3 Residual TL

After OSL signal depletion and subsequent TL measurement we detected a non-bleachable

or slowly bleachable signal component at high temperatures for both steel and Al discs.

An example of the residual UVTL of a steel disc after 1867 Gy β-irradiation is shown in

the inset of Fig. 2.5a. In general, the residual UVTL signal of Al discs shows higher count

rates than that for steel discs (Fig. 2.6). Furthermore, the peak positions of natural and

regenerated residual glow curves of Al discs differ significantly. As the empty discs are

handled under room light conditions (and therefore light sensitive components should be

removed), it is probable that the 0 Gy peak in Fig. 2.1 (lower left) is identical to the 0 Gy

peak shown in Fig. 2.6. The dose response of Al residual UVTL is approximately linear

up to β-doses of 500 Gy, but shows exponential saturation for higher doses (D0 ∼ 2 kGy,

Fig. 2.6).

2.3.2.4 Photo-transferred thermoluminescence (PTTL)

For the measurement of PTTL, the discs were first irradiated with 250 Gy, twice annealed

to 500 ◦C, and subsequently two cycles of OSL and UVTL were measured without further

irradiation. The OSL signals (max. about 1500 cts s−1) of the Al discs show an initial

increase before decaying exponentially as expected from a typical OSL curve. This is

contrary to the OSL signals observed after lower preheat temperatures. Optical stimulation

induced a weak PTTL signal (ca. 60 cts K−1) with a peak at 190 ◦C (Fig. 2.7c). The dose

response of the PTTL signal was not investigated. Our results indicate that steel discs are

free from PTTL signals.
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Figure 2.6: Dose response of residual UVTL after blue optical stimulation (470 ∆ 30 nm) for 40 s
for one Al disc. The inset displays the signal growth for integrated TL (340–440 ◦C) as a function
of the regeneration dose, fitted to a single saturating exponential (y = a · (1− exp(−b · x)), where
a = 1.74E+05, b = 4.95E-04 and x is dose in Gy).

2.3.3 Influence of cleaning procedures

Since the BTL emissions of both steel and Al discs showed the strongest luminescence,

we used them as an indicator of signal reduction attributed to the chalk cleaning pro-

cedure. The polishing of steel discs with chalk reduced the spurious and dose-dependent

BTL signals by about 40–50 % but did not suppress them completely (data not shown).

Though natural signals are lacking, we still observed a prominent 110 ◦C peak of about

10 cts (K Gy)−1.

Al discs showed a natural BTL signal with a peak at 450 ◦C (ca. 100–200 cts K−1) and

a regenerated emission of 1–2 cts (K Gy)−1 after air storage of several days. Accordingly,

the disturbing signal can be effectively reduced but not fully eliminated.

2.3.4 Influence of the disc signals on De determination

In order to test the effect of unwanted signal contributions of sample discs during an

equivalent dose determination, a standard SAR protocol was carried out (Murray &

Wintle 2000) using a coarse grain quartz sample (BT781) whose reliable luminescence

characteristics are known (Zöller et al. 1988; Tissoux et al. 2010). Half of 10 steel and

half of 10 Al discs were annealed (500 ◦C for 30 s), the other half remained untreated

prior to grain deposition (aliquots of 2 mm diameter). A preheat temperature of 240 ◦C,

a cutheat of 220 ◦C and a read temperature of 125 ◦C were chosen and a hot bleach

(OSL at 280 ◦C for 40 s) was applied at the end of each SAR cycle. Excluding one outlier
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Figure 2.7: PTTL measurement in the UV of an Al disc after a β-dose of 250 Gy was given:
(a) background subtracted TL measurement up to 500 ◦C after irradiation. (b) subsequently
recorded blue stimulated OSL signal. (c) photo-transferred TL signal after optical signal deple-
tion.

(annealed steel disc no. 4, supplementary data Fig. A.3a), the mean De values determined

with natural discs are ca. 20 % (steel, n = 4) and 35 % (Al, n = 5) higher than those

measured with annealed discs (n = 5 each). This indicates that the natural disc signal

contributes verifiably to the initially measured geological signal of the sample. In addition,

the measurement uncertainty of each single De value increases substantially if the discs

are not annealed before the measurement. This effect is more distinct for steel than for Al

discs, i.e., the mean uncertainty increases by about 90 % and 72 %, respectively, if the discs

remain untreated prior to the measurement. Differences in the recycling ratio for annealed

and non-annealed discs are not significant. However, statistical validity is limited by the

small number of measured aliquots and further measurements are needed (supplementary

data).

2.4 Discussion

The striking difference of TL peak temperatures for spurious and radiation-induced sig-

nals from Al discs (Fig. 2.1) suggests that different kinds of traps are involved in charge

storage, but that potentially the same suit of recombination pathways are used owing to

the common emission band (although detailed spectral measurements would be needed in

order to confirm this). We observed several UVTL and BTL peaks between 100–400 ◦C

that cannot be distinguished without curve fitting. The RTL glow curve on the other hand

consists of only two visually distinguishable peaks, suggesting involvement of fewer types

of charge traps. In contrast to Cr-Ni steel, the charge occupation sites connected to the

spurious and the dose-dependent signal of Al both include non-bleachable (insensitive to

visible light) residual TL, suggesting that full signal erasure may only be possible by heat

treatment.

Due to the high affinity of Al to O, aluminium oxide layers build up within a few minutes

when the (hypothetically) clean disc is exposed to oxygen. These layers reach thicknesses
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of up to 30 nm on pure Al at high temperatures (> 300 ◦C) (Ostermann 2007). Diffusion

of O is then not possible anymore and the layer protects against continuing corrosion

(Bargel & Schulze 2008). Possibly, intrinsic defects of Al2O3 are responsible for part

of the luminescence signal of the Al discs.

Similar to silicon dioxide (SiO2), Al2O3 can also facilitate vacancies and interstitials

(due to impurities) in its molecular structure, such as oxygen vacancies which in quartz

act as hole traps (Kelly & Laubitz 1967; Preusser et al. 2009). Oxygen vacancies

are described in Al2O3 as well, but acting as traps for electrons instead of holes (Haka-

nen et al. 1997). The remarkable luminescence sensitivity of Al2O3 is commonly used for

dosimetric applications, where the dosimeters are additionally doped with e.g. C, Fe or

recently with Tb and Tm (Osvay & Biró 1980; Aypar 1986; Akselrod et al. 1993;

Barros et al. 2010). Luminescence properties are then, however, strongly influenced by

the elements used for doping.

Stainless steel, as used for the discs, contains small amounts of carbon and silicon which

might together form luminophores (carbides) (pers. comm. M. Krbetschek). It cannot be

excluded that those contribute to the luminescence signal of the investigated steel discs.

Furthermore, we cannot rule out that a small layer of Cr and Fe oxides (a few atom

layers thick, arising from the admixture of Cr to the alloy) on Cr-Ni steel, causes part of

the dose-dependent luminescence signal (Blasek & Weihert 1979; Bargel & Schulze

2008).

Although we observed minor dissimilarities between glow curves of steel and Al discs, the

main peaks seem to correspond for both materials and all measured emissions (Fig. 2.1).

This fact suggests that there is one common source for all disc materials.

Previous studies dealing with spurious luminescence from silicone oil revealed ambiguous

findings. In combination with Al discs, considerable spurious TL signals were found, but

not with steel discs (Murray 1981). Vandenberghe et al. (2008) reported that silicone

oil (Willy Rüsch GmbH) potentially contributes to disturbing OSL signals. In both inves-

tigations, sample carrier materials are not described in detail. In contrast, Fuchs (2001)

found silicone oil (from the same manufacturer) on Al cups to be free from spurious and

radiation-induced OSL signals. The fact that Vandenberghe et al. (2008) observed dis-

turbing signals of used and cleaned steel cups indicates that adherent silicone residues are

a potential source. This would imply that conventional cleaning techniques (as described

above) are not capable of removing silicone oil completely. As silicone is made up of sil-

icon and oxygen atoms (among others), there might be chemical reactions during heat

treatment or storage resulting in some kind of luminophore. Spurious signal levels of new

sample holders possibly depend on the cleaning procedure prior to first use (if cleaned

at all) because in some workshops lubricant oils (containing forms of silicone) might be

used for disc or cup manufacturing. Beside the technique mentioned above, there are also

alternative methods to remove silicone relics and to clean the discs, such as using propanol

or butanone (Vandenberghe et al. 2008) or short acid treatments (e.g. 1–2 % aqua regia

or diluted phosphoric acid for a few minutes).

86



2.5 Conclusions

In summary, there are two main sources potentially causing the observed disc signals:

luminescent chemical compounds of the carrier material itself, or some kind of contami-

nation resulting from grain deposition (silicone oil) that resists the cleaning procedures.

Similar glow curves for both investigated materials favor contaminations as main source.

However, further investigation is needed for conclusive determination of the origin of the

observed signals.

For TL measurements, it is clearly advisable to use Al cups of the type described above

or steel discs, despite lower thermal conductivity and higher costs for steel discs. Al discs

show lower unwanted signals with regard to OSL measurements. During our investigations

we applied relatively high β-doses. The majority of luminescence samples require less

irradiation for De determination, so that the effect of the disc signal is less pronounced.

However, when measuring very dim samples or for basic studies, one should always be

aware of the “disc problem” and its influence on weak luminescence signals.

The contribution of the disc signal to the entire recorded signal depends only weakly

on light shielding by the grain-covered area of the disc for coarse grains (Fig. 2.2), but

shielding is likely to be more effective for fine grain layers. Correction for disc influence

requires careful investigation of each individual disc, especially in the case of Al discs.

Consequently, alternative and chemically more inert disc materials (nickel, silver, rhodium,

gold etc.) should be investigated in detail.

2.5 Conclusions

Spurious and dose-dependent TL and OSL emissions from commonly used sample carriers

were investigated in this study. We observed:

1. Al discs showed significant TL and OSL signals in the UV, UV-blue and red detection

range.

2. Steel discs showed no significant spurious, but dose-induced signals in the UV and

UV-blue windows.

3. For Al cups (from Bayreuth) we found no spurious signals for UVTL and generally

low sensitivity to irradiation.

4. The provided cleaning procedures for discs (Al and steel) can reduce spurious and

dose-dependent signals, but cannot eliminate them completely.

5. For most bright samples, the influence of disc signals is expected to be negligible,

but further investigation for the case of single grain discs is needed.

These phenomena seem to be widespread among laboratories as they were observed in

at least three luminescence dating facilities and with various kinds of sample holders. How-

ever, this paper is not a comprehensive luminescence study of specific disc materials. The
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influence of spurious and dose-dependent signals on particular measurements is different

for each disc and sample and difficult to assess because of highly differing characteristics

between discs. In short, the résumé of this paper is to alert the reader to the problem of

unwanted luminescence contributions from the sample holder and to advise careful mea-

surement of these signals when measuring relatively young and/or dim samples (including

single grains).
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Abstract

A combination of two autoradiography methods was applied to investigate the radionu-

clide distribution patterns in a range of different silices. We obtained greyscale images

(β-radiation) and α-track patterns for qualitative assessment, and used a statistical ap-

proach to quantify the degree of uniformity of the radiation fields. It was found that almost

all samples are poor in potassium, thorium and uranium, and that locally high concen-

trations are present only in dark-colored veins and inclusions. Statistical analyses reveal

evidence of radionuclide clustering in more than half of the 21 specimens. Concerning

thermoluminescence dating of burnt lithics, such gradients should be taken into account

to improve precision and accuracy in cases where the external radiation is not strongly

dominating for the sample under consideration.
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3.1 Introduction

Since many rocks used for tool-making by ancient humans consist of amorphous or cryp-

tocrystalline siliceous material, most of them yield a thermoluminescence (TL) signal after

exposure to ionizing radiation. Such TL signals are used to determine the last heating of

the artefact above about 400 ◦C caused by intentional or accidental firing. The complete

zeroing of the TL signal – and therefore the previously absorbed dose – by heating is the

prerequisite for obtaining an equivalent dose representative for the time elapsed since the

heating event. Numerous studies have shown the applicability of the TL dating method to

provide age information far beyond the age range of the radiocarbon technique (Bowman

& Sieveking 1983; Mercier et al. 2003; Mercier et al. 2007a; Mercier et al. 2007b;

Valladas et al. 2007).

The range of raw materials with appropriate properties for tool-making is huge including,

for example, flint, opal, radiolarite, quartzite and hornstone. However, the terminology is

not internationally standardized and is thus often quite confusing (Floss 1994; Richter

et al. 1999). While some nomenclature is based solely on material properties, other termi-

nology also discriminates with regard to geological origin. Hence, petrographically identical

material is often called “flint” when it is of Cretaceous origin and “hornstone” when it is

assigned to the Jurassic. In this study, the more general term “silex” is used when not

referring to a specific sample. Whilst the knapping features of rocks for tool-making have

to fulfil certain conditions, the visual appearance can differ considerably in form, color (of

the bulk material as well as of irregularities), opacity and uniformity.

In contrast to most sediment samples used for luminescence dating, silex samples are

present in consolidated form. The first TL investigations of flint were carried out on thin

slices cut from the interior part of the specimen (Göksu et al. 1974) in order to avoid

unwanted triboluminescence and so-called spurious TL, both effects arising from milling or

crushing the bulk sample to powder (Göksu & Fremlin 1972). Valladas (1978) showed

that spurious TL is related to carbonates and can be suppressed by etching with dilute

HCl. Since then, only crushed samples have been used for TL measurements.

A great deal of effort has been put into the correct determination of the equivalent dose

(Valladas & Gillot 1978; Aitken 1985; Mercier 1991), whereas the calculation of

the dose rate (the absorbed dose per unit time) has mostly been based on the premise

of a simple dosimetric model. This model is predicated on the assumption of negligible

spatial differences in the internal dose rate, cf. the case studies of Valladas et al. (2007)

and Mercier et al. (2007b). However, using the crushing method, over-dispersed data

often result if the internal dose rate is spatially inhomogeneous (Mayya et al. 2006).

Tribolo et al. (2006) modeled and quantified the influence of microdosimetric effects and

calculated differences in age of about 10–30 % for uniform U distribution on the one side

and U concentration in so-called “hot spots” on the other side. Up to the present time,

several studies have dealt with the internal radionuclide content and its distribution within
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silex using different methods (e.g., fission track mapping and neutron activation analyses –

Aspinall & Feather (1972) and Valladas (1985a)), but have shown rather ambiguous

findings. Only slight differences in radionuclide content have been determined comparing

different parts of the same silex specimen (Aspinall & Feather 1972; Bowman &

Sieveking 1983; Valladas 1985b), but more severe heterogeneity is reported when the

scale is refined (Malik et al. 1973; Selo et al. 2009).

Since information about the degree of spatial homogeneity of radionuclides is of crucial

importance in order to further increase the precision of TL dating, this study is aimed at

approaching this topic by using two complementary autoradiography methods. In addition

to visual assessment by radiation-induced greyscale and track images, statistical procedures

are used to quantify the degree of uniform radionuclide distribution. The routine applied for

statistical analysis is capable of covering any user-defined spatial resolution. In summary,

we will present a comprehensive overview of internal radiation patterns of a variety of 21

different silices.

3.2 Materials and methods

3.2.1 Samples and sample preparation

The samples for this study have been selected to reflect the variety of materials of rele-

vance for tool-making purposes. On the one hand, we attempted to cover different prove-

nances/geological origin of the raw material. On the other hand, we have covered the

diversity of differently termed siliceous materials. As a consequence, this study comprises

21 specimens from Middle and Eastern Europe (Belgium, Germany, Poland, Austria, Italy,

Hungary and Romania), Jordan and Morocco, mostly of Cretaceous or Jurassic origin. In

order to study compositional differences of several samples from the same provenance,

multiple specimens from the Banat region (Romania) were investigated. A list of all the

samples is given in Table 3.1. The greater part of the samples originates from raw material

collections of archeologists, thus ensuring the archeological relevance of the samples.

The rock samples had to fulfil certain conditions for autoradiography investigations. In

order to obtain plane surfaces for accurate contact between the sample and the detec-

tion unit (image plate or track detector) for a maximum of sharpness, samples were cut

with a water-cooled diamond saw (Buehler Isomet 1000). Cortex and carbonate remains

were not removed, in order to enable examination of their radiation characteristics. After

conducting β-autoradiography, the thick sections were polished with silicon carbide for

α-autoradiography exposure.

3.2.2 Beta-autoradiography

Beta-autoradiographs of cut sections of the samples were obtained using commercially

available BAS–MS imaging plates (Fuji Photo Film Co. Ltd) and a BAS-1800 bio-imaging
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3.2 Materials and methods

analyzer system (Fujifilm Life Science Corporation), according to the technical and pro-

cedural details given in Rufer & Preusser (2009) and summarized below.

The sample was placed in direct surface contact to a radiation sensor (the imaging

plate, “IP”), in which the natural radiation emitted from the specimen gives rise to a

latent luminescence signal within the IP’s phosphor layer (Miyahara 1989; Schweizer

2001). Accumulation over time leads to a signal distribution within the IP that most closely

represents the distribution of radiation intensity of the sample’s contact surface, similar to

a photographic contact copy. Exposure of the IPs was achieved by encasing the sample in

a combination of 1 mm copper, 1 cm wood and a shielding of 5 cm radionuclide-free lead, in

order to suppress signal generation by ambient background radiation during exposure. Due

to weak signals, the exposure times were increased to 245, 263 and 456 h, respectively, for

the three batches to enhance the signal-to-noise ratio. Sample N1 was the only specimen

for which an exposure time of 123 h was sufficient. Additionally, a color scan of each silex

surface was made for direct comparison with the autoradiography results.

After removal of the samples from the IP under strongly subdued light, such as not to

impair the recorded signal, the IPs were read out by stimulation with a focused laser light

that causes a luminescence emission (photostimulated luminescence, “PSL”) of a part of

the stored signal. By linescanning over the IP, this time-variant emission can be digitized

into a greyscale image (Miyahara 1989; Rowlands 2002).

Readout was performed three times and the obtained images were aligned and stacked

in order to improve the signal-to-noise ratio (Rufer & Preusser 2009). The resulting

greyscale image is a representation of the spatially resolved β-radiation intensity along the

contact surface, as the short-range α-radiation is mostly blocked by the IP’s protective

Mylar layer. The highly penetrative γ-radiation will cause a largely uniform signal increase

(Rufer & Preusser 2009). Because point sources are being imaged with decreasing

focus with distance to the contact surface and because of the β-attenuation by the sample

itself, only β-emitters lying within a thin layer of less than 2 mm from the contact surface

contribute to the texturally resolvable part of the autoradiographic image. For visualization

and qualitative analysis, the obtained image can then be treated in any suitable way (e.g.

by enhancing the contrast, changing its dynamic range or color inversion).

3.2.3 Alpha-autoradiography

Alpha-autoradiography is based on α-track detection. Polycarbonate plates CR-39 from

TASL (Bristol, UK) were used as detection medium and tightly fixed with tape on the

thick sections to avoid relative movements of the sample and the polycarbonate plate. On

the basis of previous experience (Haustein 2002), the duration of exposure was set to

26 weeks. Too short or too long exposure will result in subsequent data analyses being

impeded by patterns of very low α-track density or strongly interfering tracks, respectively.

A plastic-laminated wooden box was encased in several layers of plastic foil and sealed.

This casing was assumed to be airtight and sheltered the samples during storage in order
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3 The assessment of radionuclide distribution in silex by autoradiography

to avoid continuous contamination by 222Rn. Additionally, the interior of the box was filled

with radioactively inert styrofoam plates to a maximum degree for the purpose of replacing

as much air as possible. The samples with the mounted CR-39 sheets were then placed

on top of the styrofoam plates. An additional detector sheet without a mounted sample

thick section was positioned in the box as well, to monitor the influence of remaining or

potentially trespassing 222Rn. Due to its high density, radon tends to accumulate at the

bottom of the remaining air volume in the box; that is, on top of the styrofoam plates.

The recorded α-track density of the empty detector has thus to be regarded as a measure

of the maximum local concentration of enclosed 222Rn. However, the background relevant

for the track pattern induced by the silex samples is much lower, because it is assumed

that almost all air is displaced between the CR-39 sheet and the plane level that is formed

by the thick section and its surrounding glue rim (Fig. 3.1). Consequently, an estimate of

the actual background is recorded in those parts of the detector that are in contact with

the glue rim, provided that the glue is free of any α-emitting radionuclides. If this is not

the case, the background must be considered as a maximum value in respect of the silex

samples (see also Fig. 3.1). After exposure, the CR-39 plates were developed in 7.25 N

sodium hydroxide solution at 71 ◦C for 6 h (Haustein 2002).

Figure 3.1: A sketch of the prepared silex thick sections and the mounted polycarbonate detector,
showing (a) the top view and (b) the profile of the experimental configuration, including the
mounted CR-39 plate.

Subsequently, the etched CR-39 plates were photographed section-wise with a camera

attached to an optical microscope at magnifications of 50×, and 100× for selected plates.
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3.2 Materials and methods

The single images were then digitally stitched to an image displaying the whole detector

sheet. A Matlab code was developed, which includes the CircularHough Grd function

for detection of circles in greyscale images using the Circular Hough transform (Peng

2005). This function allows identification of elliptical and circular shapes (i.e., the etched

α-tracks) and their locations, and features separate counting of overlapping tracks.

The etched α-tracks are visible on the microscope scans as black circles with different

sizes and hues, ranging continuously from intense to pale and barely observable. As the

CircularHough Grd function features thresholding of gradient magnitudes of the input

image to identify circle boundaries, very pale α-tracks not exceeding this threshold are

not recognized. Lowering of the threshold, however, leads to an increased level of count-

ing artefacts/miscounting. Ignoring pale tracks leads to a slight (but not quantifiable)

reduction of the thickness of the sample layer from which α-radiation is recorded. Since

the silex samples were cut at random positions, this fact is not considered to have any

influence on the validity of the results. Oblique incidence of α-particles on the detector

yields conical-shaped and pointed tracks. In the event that their shapes differ too much

from the ideal circular shape, they are not identified by the routine. Manual counting of

missed cones shows that they amount to < 1 % of correctly recognized tracks, so that the

associated error is considered as negligible. Additionally, severe track overlapping (“hot

spots”) sometimes leads to the “loss” of tracks in automatic counting, so that the track

numbers have to be corrected manually. Whereas a few samples (M1R, M9RII and M12R)

are free of such hot spots and miscounting is close to 0 %, other samples require additional

manual counting of tracks that are located in regions with high track density (e.g. M11, O6

and O8). One of the most extreme cases of (locally constrained) miscounting is a hot spot

in sample N1, in which only about 44 % (35 out of ∼ 80) of the α-tracks are identified. As

a consequence of intense track overlapping and interference, it is only possible to provide

an estimate of the track number, even by manual counting. All in all, 12 out of the 21

samples needed manual correction of track numbers.

Moreover, the Matlab routine can superimpose a variable-sized grid on the image and

automatically count the number of tracks in each square. Thus, analysis based on counting

statistics at different scales is facilitated. The unit used in image processing is pixels; it

can, however, be converted into absolute scales (µm or mm) for a given magnification.

3.2.4 “Homogeneity” of point distributions

With reference to previous investigations, the term “homogeneous” or “uniform” is often

used to characterize the distribution of radionuclides within rock samples (Aspinall &

Feather 1972; Malik et al. 1973; Valladas 1985b; Selo et al. 2009). These expres-

sions may be applied to non-discrete – that is, spatially continuous – features such as

the U distribution. When assessing continuous features by autoradiography, continuous

distributions are converted into point fields, in which the spatial point density is repre-

sentative of the concentration of the original quantity (e.g. the U concentration). Taking
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3 The assessment of radionuclide distribution in silex by autoradiography

into account the random process of radioactive decay, a spatially uniform concentration

of a specific radionuclide thus generates a two-dimensional random field of points; that is,

a Poisson field. Accordingly, inhomogeneous radionuclide concentrations result in more or

less clustered point fields.
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Figure 3.2: Simulations of three types of point fields. Left: the expected distribution for random
processes (Poisson field), such as the α-track distribution generated by spatially homogeneous ra-
dionuclide concentrations; middle: a point field with strong clustering, as is expected for a spatially
heterogeneous radionuclide distribution; right: a regular distribution of points.

In general, three major kinds of point fields are to be distinguished: random (Poisson),

clustered and regular. Examples of the latter are the centers of atoms in a crystal lattice or

a point field derived from a hardcore process; that is, a point field with certain minimum

distances between all points (Stoyan & Stoyan 1994). Simulations of the mentioned

classes of point fields are shown in Fig. 3.2. Through the use of statistical parameters, a

given field can be categorized in one of the three classes – as is done, for example, in animal

or vegetation ecology (e.g. King (1969) and references therein; Orlóci (1978)). In a case,

in which several subpopulations are being analyzed (counted tracks in equal-sized areas),

the decisive parameter is the index of dispersion, which is defined as D = σ2/µ, where

σ2 is the variation of count numbers in the subpopulations (variance) and µ is the mean

count number per area. For Poisson distributions, σ2 is equal to µ, and thus D = 1. Over-

dispersed (clustered) point fields yield D > 1 and under-dispersed fields D < 1, whereas

in the latter case the distribution is more regular than expected for Poisson processes.

Assignment of a given point field to a certain distribution model requires extension of D,

so that the extended index of dispersion is now I = (n− 1) · σ2/µ, where n is the number

of subpopulations (sub-areas). The two-sided χ2 test of goodness of fit can then be applied

with the assumption of random distribution (null hypothesis), where the number of degrees

of freedom is k = n− 1 (Stoyan & Stoyan 1994). On the basis of decision criteria, the

given distribution can hence be classified as random, clustered or regular for certain levels

of significance. However, regular distributions of α-tracks are not expected to be observed

here because of the genesis of the material, and hence this case is not discussed further.
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3.3 Results

3.3 Results

3.3.1 Beta-autoradiography

The images indicate that most of the siliceous materials yield only low levels of activity,

with some specimens not giving a signal above background (eight out of the 21 specimens;

Fig. 3.3 and supplementary data Figs. A.9, A.10 and A.11). For these samples (M1R,

M5R, M9RII, M11R, M12R, M15R, M17R and M20R), no statement can be made about

the radionuclide’s spatial configuration. The other sample surfaces showed mostly weak

signals slightly above background, with hardly visible internal differences in greyscale

values. An exception is sample N1: this yields by far the strongest PSL signal, which is

homogeneous and clearly traces the shape of the specimen. The background is defined here

as the recorded PSL intensity of IP regions that were not in contact to sample surfaces (see

also Fig. 3.3). Since three different exposure times were used, the background intensities

are not the same for all samples. Owing to the relatively high levels of background random

noise and the expected limited benefit, we did not perform a background subtraction in

this qualitative part of the study.

Comparing the IP images with the surface scans, we observed that variations in bulk

material color are not reflected in the β-autoradiography results for the majority of the

samples. Differences in the bulk material color are usually attributed to changes in trace

element concentrations, and the bulk color might also reflect variability in the concentra-

tion of radioactive elements (K, U and Th). We can now show that this is obviously not

the case within the sensitivity of the method. In contrast to bulk color changes, secondary

phases and inclusions could often be recognized very well on the greyscale pictures. In-

clusions are incorporated during formation of the siliceous material, whereas secondary

phases are the result of intrusion of foreign material into fissures and fractures of the silex

(veins). Samples O6 and O7, for example, exhibit clearly visible, elevated PSL signals in

their autoradiography images, which can be associated with the black or brownish veins

on the corresponding rock surface, see also Schmidt et al. (2012). Punctual inclusions

were not represented on the greyscale images in most of the cases. In addition, very fine

components such as the dark veins of O6 were not traced in original fine detail on the au-

toradiograph due to limitations in terms of imaging resolution. However, our observations

imply, for veins and inclusions, that dark regions represent high and light or transparent

zones rather low levels of ionizing radiation in the samples investigated here. Thus, there

appear to be parallels between the radiation pattern and the visual appearance.

The outer parts and rims, often consisting of the host rock such as limestone, and the

cortices of the investigated samples often show differing chemical compositions (e.g. a

lower content of SiO2) compared to the interior part, due to water loss, impregnation and

weathering (Floss 1994). These regions could not be identified on the β-autoradiographs

of most of the silices. If there were differences in β-radiation intensity between cortex and

interior part, the method is too insensitive to show them. Only one piece (M13R) showed

a substantially increased blackening of the rim (Section A.2, Fig. A.10).
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3 The assessment of radionuclide distribution in silex by autoradiography

Figure 3.3: Beta-autoradiography images and color scans of nine selected silex samples. The
exposure duration was 263 h, except for sample N1 (123 h). The light dots between the autoradio-
graphs of samples O4 and O6 are due to defects in the IP. As a result of different exposure times,
slightly different background levels appear as edges on the stitched autoradiography images (e.g.
on the left-hand side of N1). On the upper left-hand side of A2R, a small dark area is observed
on the greyscale image, which can be attributed to cortex remains (barely visible on the scan).
Furthermore, the IP signal of N1 covers a larger area than the silhouette of the rock (like a halo).
This known effect is called “bleeding” (Rufer & Preusser 2009) and affects strongly radiating
samples, as the β-radiation from inside the samples influences areas of the IP beyond the covered
surface as well.
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3.3 Results

3.3.2 Alpha-autoradiography: statistical processing

From the entire sample surface, only those regions that are usually employed for TL mea-

surements were used for the statistical analyses. Thus, the outer 2 mm rim of each sample

was digitally discarded – except for sample A2R, where the transparent silex generated

almost no tracks. Hence, the statistical approach was not applicable due to poor counting

statistics. In this case, the opaque, carbonate enriched siliceous part, laced with transpar-

ent veins (see Fig. 3.3), was subjected to track counting and statistical procedures. This

should be kept in mind with respect to Table 3.2 and Fig. 3.5 below. The area of the

analyzed sample surfaces varied between ∼ 61 mm2 and 477 mm2. Despite large apparent

differences in internal activity, the exposure time of the detector plates was sufficient to

yield track densities that enabled analyses at resolutions of 0.5 mm or lower (> 0.5 mm)

for all samples. However, some specimens (e.g. A2R, M17R and O4) would have required

prolonged exposure times for statistical analysis at resolutions below 0.5 mm (owing to

counting statistics). The mean intensity λ of the point field (the number of points or

counted tracks per unit area) of one particular sample was calculated by averaging the

intensities of 4 mm2 squares. Thus, the given uncertainties (standard deviations) reflect

the fluctuation of λ on a 2 mm scale. The range of the field intensity values (Table 3.2)

covers more than one order of magnitude, with the smallest intensity being 284± 127 cm−2

(M9RII) and the highest intensity being 13 306± 2 962 cm−2 (N1). The CR-39 detector not

covered by a sample for recording of the 222Rn-induced background in the shielding box

yields a mean intensity of 495± 147 cm−2. This means that the enclosed (or potentially

penetrating) amount of 222Rn produces intensities of α-radiation comparable to those of

the samples with the lowest internal α-activity. However, the background level relevant

for the sample-induced track pattern was estimated by determining the track density in

detector areas that were in contact to the glue rim during exposure (Fig. 3.1). As men-

tioned above, this measure is seen as representing most closely the background due to

the thin layer of remaining air (and hence 222Rn) between sample and detector. Table 3.2

shows that the estimated field intensity of the background varies from sample to sample,

obviously because of mutable distances between glue and detector. Sample O7 yields the

highest background value (124± 11 cm−2), whereas the lowest value (24± 5 cm−2) results

for sample N1. Usually, a signal is called significant when its mean minus 2σ (where σ

is the standard deviation) is larger than the mean background estimate. Following this

condition, all of the samples yield significant signals, except for M5R, O7 and O8 (due to

huge spatial variations in track density and hence large standard deviation), and M9RII

(owing to low track density in general). The values of λ and the background estimate of

all of the samples are presented in Table 3.2.

General patterns of blackening of the IP by β-radiation could be identified as corre-

sponding density patterns of tracks on the microscope images of the track detectors, while

the track pattern additionally reveals fine imbalances of α-radiation distribution. Whereas

the samples’ bulk materials show random distributions of tracks at first sight (without
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statistics), many spotty inclusions and all dark-colored veins coincide with higher track

densities. Instances are punctual clusters of tracks in samples M11, M13R, A1R, O2R, O5,

O6, O8 and N1 or the detailed mapping of the dark veins of O6, O7 and O8. Examples

of developed CR-39 plates for three samples at two different magnifications are shown

in Fig. 3.4. Similar to the results of β-autoradiography, the bulk material of all samples

(except N1) contains generally low and qualitatively uniformly distributed amounts of α-

emitting radionuclides. Dark-colored inclusions and veins, however, yield strongly elevated

radiation.

Due to file size considerations, just 50× magnification images were used for statistical

processing with Matlab. We set the lowest square length to 108 pixels, which corresponds

to 0.2 mm at a 50× magnification and equals the upper limit of the common coarse grain

size used in luminescence dating (in the case of silex, fragments are used rather than

grains in the narrow sense). Depending on the size of the investigated sample surfaces, the

number of squares varied between 1536 and 11 928 for this resolution. The distribution of

α-tracks was investigated using a total of four different grid sizes, 108 pixels (0.2 mm), 271

pixels (0.5 mm), 542 pixels (1 mm) and 1084 pixels (2 mm).

In the event that the expected track number per square (deduced from the determined

λ values) drops below 1, the assumptions for correct application of the χ2 distribution test

are no longer valid (Stoyan & Stoyan 1994). This is, however, the case for most of the

samples when the grid size is reduced to 0.2 mm. Therefore, the 0.2 mm resolution was not

included in the analyses. Furthermore, background subtraction was performed assuming

that the background estimate follows a Poisson distribution. This means that the average

background contribution was calculated for each sample and grid size and subtracted from

µ for the calculation of I. For the resolutions 0.5 mm, 1 mm and 2 mm, we calculated the

extended index of dispersion I for each sample and compared it to the tabulated χ2 values

at levels of significance of α = 0.05. The classification of all of the samples at three different

scales is plotted in Fig. 3.5a. All values of I are also shown in Table 3.2.

The classification indicates that there is a general trend of increased clustering when

the scale is refined. This can be explained by averaging effects, as the square sizes are

enlarged. The point distributions of only two samples (M17R and M20R) follow a Poisson

distribution at the coarsest resolution (2 mm). Five of the specimens (M1R, M9RII, M26R,

M4R and O5) are located close to the classification boundary as shown in Fig. 3.5a; that

is, they show only slight statistical signs of clustering. The point patterns of the remaining

samples exhibit more or less heavy clustering, depending on the calculated value of I

(Table 3.2). The distribution of counted tracks of silex surface O7 is by far the most

clustered one, exceeding the others with I values that are approximately one order of

magnitude higher at a 2 mm resolution.

For purposes of verifying and testing the applied categorization procedure, we simulated

Poisson fields of different intensities (λ ≈ 1000 cm−2 and λ ≈ 2000 cm−2) and ran them

through the above described operational sequence (details of the stimulation are provided

in Section A.2). Whilst the denser field was classified correctly at all resolutions (0.5 mm,
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3 The assessment of radionuclide distribution in silex by autoradiography

Figure 3.4: Optical microscope images of etched track detectors. (a, b) Different parts of sample
N1 at 100× magnification. Irregularities such as damage in the detector (e.g. in the central upper
part of (b)) or adherent dirt are not registered as tracks by the Matlab routine. Conical-shaped
tracks result from oblique incidence of α-particles on the detector. Small and barely visible tracks
originate from deeper inside the sample (within the α-range of about 20 mm) and have just reached
the detector. (c, d) Track patterns of samples A2R and O8, respectively, photographed at 50×
magnification.

1 mm and 2 mm), the correct result was obtained only for 1 mm resolution at low intensity.

However, the deviations of the calculated I value from the corresponding χ2 value to be

classified as a random field are less than 1 % (2 mm resolution) and less than 10 % (0.5 mm

resolution). The wrong classification might be the result of statistical fluctuation, as we

are dealing with a random process, and there is still a finite probability for a simulated

Poisson field to show slight clustering and a probability of erroneous classification (level of

significance) of 5 %. Accordingly, the same applies to the track patterns of the silex samples;

in other words, there remains a small but certain probability of incorrect allocation. The

categorization of the simulated Poisson fields is added in Fig. 3.5a (red diamonds).

Fig. 3.5b reveals that there is no significant statistical correlation between D and λ for

a given resolution; that is, between the degree of homogeneous point distribution and the

field intensity (R2 < 0.01). The quantity D is used in this context as it is normalized to

the number of squares n, so that comparison between samples is valid.
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3.4 Discussion

Despite the fact that both α- and β-autoradiography are qualitative methods, it can be

deduced from the necessity of long exposure durations of the IP and the track detectors

that the general levels of internal radioactivity of most of the investigated samples are low

compared to expected values for external radiation in most archeological environments.

Since prolonged irradiation times will lead to higher track densities in the case of CR-39

plates, this method is also applicable to weakly radiating samples. Beta-autoradiography,

however, has come close to its limits. Even longer exposure times might not be able to

enhance the signal-to-noise ratio (SNR) of the PSL signal of the IPs. As we only observed

visible gradients in internal β-activity for four out of the 21 specimens, β-autoradiography

is thus a method for qualitative assessment of the configuration of β-emitters with a

resolution of > 1 mm for samples showing (at least partly) higher internal β-activity than

the investigated silices.

Alpha-autoradiography, in contrast, has a resolution limited by the size of the etched

tracks in the detector, which have a mean size of about 25 µm when using the above

described development technique. Therefore, this method is suitable for detecting small-

scale differences in internal α-activity. With regard to cited K, U and Th concentrations

found for a range of silices (Mercier et al. 1995; Valladas et al. 1999; Richter et al.

2007), α-radiation often plays a dominant role in contributing to the internal dose rate.

Accordingly, α-autoradiography is considered to provide the more relevant results for the

aims of this investigation. However, the effective internal dose rate, which is corrected

for the lower TL production by α-radiation per Gy of β- and γ-radiation, depends on

the α-efficiency of the material (expressed as the a-value, b-value or Sα; cf. Valladas &

Valladas (1982) and Aitken (1985)). This measure can vary from sample to sample

(Mercier et al. 1995; Valladas et al. 1999; Richter et al. 2007) and presumably

within one specimen as well. Further research is needed to investigate the local variation

of α-efficiency in silex and its correlation with radionuclide/dose distribution. Previous

investigations have revealed that there is little interrelationship between TL-producing

and U-rich parts within one silex sample (Malik et al. 1973). However, as the α-efficiency

significantly influences the dosimetry for samples with non-uniform internal α-radiation,

its impact should be considered in more detail in future studies.

The statistical approach for evaluating the α-track images allows quantitative exami-

nation of the degree of uniformity in radionuclide spread. Our method of data processing

thus clearly differs from those used in previous semi-quantitative or qualitative investiga-

tions on this topic (Malik et al. 1973); see also Walton and Templer, pers. comm., cited

in Aitken (1985: 216). Automated track counting reduces the effort of manual counting

considerably and allows recording of the coordinates for each detected track. For this in-

vestigation, the smallest analyzed grid size (0.5 mm) was in the range of the coarse grain

size (∼ 0.1–0.25 mm) used for TL dating of heated silex artefacts. In this regard, gradients
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in radionuclide concentrations on a scale of ≥ 0.1 mm are vital, as they result in grain-

to-grain variations of deposited radiation dose. However, categorization by the χ2 test of

goodness of fit was not carried out for the smallest grid size (0.2 mm) due to insufficient

counting statistics (i.e., field intensity). On a smaller scale (< 0.1 mm), additional effects

such as local trap saturation have to be expected if radionuclides are present in locally high

concentrations. According to Selo et al. (2009), it seems that the uranium contributing

to the internal dose rate is situated outside the grains or crystallites that form the silex

(i.e., in the binding material). Unfortunately, we could not investigate these features here

because of restraints in the spatial resolution.

The attribution of the samples’ track pattern to regular, random or clustered distribu-

tions demonstrates that most of the silices show a tendency to form clusters. If this feature

is only weakly pronounced, it cannot be recognized on the track image by eye. Further-

more, Poisson field simulations suggest that the degree of correct classification rises with

increasing field intensity λ, owing to effects of counting statistics. Consequences for future

track detector studies would thus be longer exposure times to enhance the track density.

With regard to more direct archaeological application, the two autoradiography methods

described in this paper may provide valuable assistance in raw material sourcing. As a

supplement to trace element analyses and related chemical fingerprint approaches, charac-

teristic α- and/or β-radiation patterns, revealed by autoradiography, could enable a more

unambiguous differentiation of silex raw materials.

3.5 Conclusion

This study investigated the spatial distribution of radionuclides in a variety of silex raw

materials with archeological relevance. With respect to TL dating of burnt lithics, the

internal distribution of α- and β-emitters is one factor limiting the precision of TL ages

(Tribolo et al. 2006). We applied two autoradiography methods, based on recording either

β- or α-radiation and their respective distribution. These methods provide greyscale and

track images for direct comparison with the investigated silex surfaces.

Due to generally low internal radioactivity, β-autoradiography approached its detection

limit. Accordingly, it showed spatial gradients of β-emitters only in a few cases. Through

the provision of higher sensitivity and spatial resolution, α-autoradiography was able to

demonstrate smallscale variations in α-activity. In addition, we quantified the overall ho-

mogeneity of track distributions of each sample at different scales by statistical means. The

Matlab routine for automatic identification and counting of α-tracks yielded satisfactory

results, but there is still potential for further improvements in regard to correct detec-

tion of clustered or barely visible tracks. Despite these shortcomings, the findings can be

regarded as statistically reliable. We found that about one fourth of all samples showed (al-

most) statistical uniformity (Poisson distribution) in their track pattern, while the others

revealed more or less clear signs of radionuclide clustering. Additionally, microdosimetric
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effects are becoming even more complicated, as the local variability of α-efficiency is still

a widely unknown factor.

For technical reasons, the scales used for statistical analyses were 0.5, 1.0 and 2.0 mm,

thus slightly exceeding the common coarse grain size (∼ 0.10–0.25 mm) in TL dating.

Hence, owing to averaging effects, at least the same degree of heterogeneity/clustering has

to be expected for the coarse grain scale. Most probably, the trend to cluster increases with

decreasing scale, as can be deduced from statistical analysis at various spatial resolutions.

Clustered concentrations of radionuclides result in spatially non-uniform dose depo-

sition. Grains extracted from the vicinity of radiation hot spots or veins with elevated

radioactivity receive higher doses compared to grains located far away from high-radiation

zones. Thus, we have to expect enhanced scatter between aliquots using multiple-aliquot

protocols. Accordingly, single-aliquot regenerative methods are expected to yield over-

dispersed equivalent dose distributions. The results shown here indicate that α-emitting

radionuclides are spatially clustered in the majority of the investigated samples, poten-

tially leading to the above mentioned effects. However, the external radiation originating

from surrounding sediment is likely to exceed the internal one in most cases (sometimes

by an order of magnitude), so that the effect will be less pronounced. This might not be

true for the samples from the Banat region, which exhibit substantial differences in α- and

β-activity between bulk material on the one hand and dark veins and inclusions on the

other hand. It should be mentioned, however, that usually the samples that are selected

for TL dating are only those that are free of macroscopically visible irregularities (veins

and inclusions) and hence free of potential “contamination” by other minerals than SiO2.

The investigated specimens further demonstrate the huge variability in the visual nature

and radiation characteristics of silex raw materials.

Possible strategies to avoid problems associated with clustered internal activity consist

of discarding potentially problematic parts of the artefact (if large enough and applicable)

during sample preparation, or making use of spatially resolved TL measurements in which

regions of interest (ROIs) can be selected. Such ROIs should then preferably be free of

gradients of internal activity and, consequently, spatially resolved measurements could

allow the extraction of reliable age information from problematic samples rather than it

being necessary to discard them completely.
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Abstract

Thermoluminescence (TL) is routinely used to date heated lithic artefacts which mostly

consist of silex (a mixture of amorphous opal and microcrystalline chalcedony). Analytical

investigations of bulk samples confirmed that these materials contain considerable concen-

trations of radioactive elements, generating an internal dose rate contribution. Common

dosimetric models assume the latter to be homogeneous throughout the sample. If this

assumption would prove invalid, this will result in systematic errors in the calculated age,

especially in the course of so called “hot spots” of α-emitters (and associated local changes

in α-sensitivity) and the dose response characteristics of α-radiation. Laser ablation in-

ductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of 22 silex samples

are presented here, quantifying element concentrations at several tens analytical spots per

sample. Along with radioactive elements (K, Rb, U, Th), another 21 major, minor and

trace elements were measured in order to allow characterization of the impurities present

in most of the samples. The dataset provides a detailed picture of the spatial distribution

of radionuclides and hence of the uniformity of the internal α- and β-dose rate. It is shown

that the silex itself mostly contains low amounts of K (< 0.1 wt.%), U (< 1.0 µg g−1) and
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Th (< 0.4 µg g−1), and dosimetrically negligible Rb concentrations. Systematically higher

concentrations are obtained by ICP-MS measurements of the bulk samples. This matches

with the finding that impurities (veins, inclusions) often yield significantly elevated ra-

dionuclide concentrations, up to two orders of magnitude higher than the silex values.

These veins and inclusions, for example Ca or Mg carbonates and Fe–Mn–oxy-hydroxides,

lead to steep gradients mainly in the internal α-radiation field. Alternative approaches are

required to account for the non-uniform internal dose rate and improve the reliability of

TL dates of problematic samples.
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4.1 Introduction

When exposed to ionizing radiation, certain minerals are capable of storing part of the

absorbed energy; they act as radiation dosimeters. Events to be dated are related to the

erasure of the accumulated radiation dose (reset of the clock), for example by heat which

is accompanied by emission of light (thermoluminescence, TL). Accordingly, the amount

of measured luminescence in the laboratory is a measure of the time elapsed since the

last resetting event. Ionizing radiation is generated by naturally occurring radionuclides

(those of the elements K, U and Th and their decay products and, to a lesser degree,

Rb) in the surrounding of the dosimeter and/or within the dosimeter itself. The rate of

energy transfer (dose rate) determines the speed of luminescence signal (dose) increase

over time. As a consequence, correct dose rate determination is crucial to obtain valid age

information, since the age is calculated by dividing dose by dose rate. Especially in the case

of self-dosing (internal dose rate) of minerals, the distribution pattern of radionuclides can

have considerable impact on the effective dose rate, due to micro-scale interaction effects

of ionizing radiation and the mineral.

Analogous to quartz, SiO2 in amorphous, micro- and cryptocrystalline form can also

be used as radiation dosimeter. These materials, generally termed “silex”, were used by

ancient humans to produce tools, and frequently these tools were heated by fire, either

intentional or by accident. In case the heating temperature reached about 400–450 ◦C, the

geological luminescence signal was reset and the newly accumulated signal can be used to

estimate the time elapsed since ancient heating.

While there are established methods for dose determination by TL (Valladas & Gillot

1978; Aitken 1985; Mercier 1991; Valladas 1992; Richter & Krbetschek 2006),

only simple models are applied for internal dose rate assessment, i.e. uniform distribu-

tion of radionuclides is usually assumed in the age calculations (Mercier et al. 2007;

Richter et al. 2007). Several studies approached the question whether this assumption

is justified or not, but the spatial resolution of the methods so far employed was too

limited to allow for conclusive statements or the investigation was based on one element

only (Aspinall & Feather 1972; Malik et al. 1973; Selo et al. 2009). However, the

presence of non-uniform and/or locally high concentrations of radionuclides (“hot spots”)

entails microdosimetric effects and consequently systematic errors in the age. Tribolo

et al. (2006) studied and calculated such effects in detail for their samples from Blombos

Cave (South Africa) and obtained differences in age of up to 25 %, depending on the type

of U distribution in the samples (uniform or clustered). Therefore, knowledge about the

spatial uniformity in internal radiation is crucial to avoid microdosimetric effects on the

resulting age.

In contrast to quartz, silex samples often contain considerable amounts of radionuclides,

as shown by bulk measurements using for instance neutron activation analysis (Valladas

1985; Mercier et al. 1995). This difference is reflected by the optical appearance; whereas
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quartz is mostly white or transparent, silex appears in a variety of different colors and

textural compositions. However, most silex samples contain not just pure silica (SiO2) but

also inclusions trapped during formation and mineral phases which entered later into the

considered material.

A previous study investigated the distribution of α- and β-emitters in 21 different silex

samples, detected by autoradiography (Schmidt et al. 2013). It is shown that radionuclides

are mainly unevenly distributed and occur more or less clustered. Moreover, comparison of

the radiation patterns with visual appearance suggests that the presence of radioisotopes

is to some extent bound to minerals other than SiO2.

In this study the qualitative approach of Schmidt et al. (2013) is expanded by laser

ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) measurements on

the same samples to obtain spatially resolved, quantitative information on the concentra-

tion of all relevant radioactive elements, down to ng g−1 concentration levels. Spatially

resolved radionuclide concentrations are then opposed to ICP-MS measurements of the

bulk samples for assessing the dosimetric influence of impurities. Furthermore, along with

K, Rb, U and Th 21 major, minor and trace elements were measured by LA-ICP-MS for

geochemical characterization of the non-siliceous phases and inclusions in the specimens.

4.2 Materials and methods

The samples investigated in this study are the same as described in Schmidt et al. (2013),

except for one additional sample (T1). For covering both a wide range of different materials

and provenances 22 samples were chosen from Central and Eastern Europe (Germany,

Belgium, Poland, Austria, Italy, Hungary and Romania), Jordan and Morocco (Table 4.1).

With respect to the discussion below it is important to consider the common procedures

and protocols applied in silex dating. Sample preparation for TL measurements usually

includes crushing of the solid rock into small fragments or powder and the obtained sample

material is then treated like a granular sample during the subsequent measurement proce-

dures. Whereas single-aliquot regenerative-dose (SAR) procedures are established in opti-

cally stimulated luminescence (OSL) dating of sediments (Murray & Wintle 2000), TL

dating of heated material is widely based on multiple-aliquot additive- and/or regenerative-

dose techniques (Aitken 1985; Mercier et al. 1995; Valladas et al. 2007). The latter

often suffers from non-efficient normalization to account for aliquot-to-aliquot differences

in luminescence properties.

LA-ICP-MS allows for sequential analysis of major, minor and trace elements from a

given spot in solids with a spatial resolution of a few tens of µm. The system used here

comprises a Geolas 193 nm ArF excimer laser system (Lambda Physik) combined with an

Elan DRC-e quadrupole ICP-MS (Perkin Elmer). Optimization strategies and operating

conditions were similar to those reported in Pettke (2008). Ablation rates were tuned to

ca. 0.2 µm per pulse and laser pulse rate was set to 10 Hz. Laser beam sizes were generally
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eş
ti

,
B

an
at

,
R

om
an

ia
U

n
k
n

ow
n

T
1

F
li
n
t

B
al

ti
c

S
ea

C
re

ta
ce

ou
s

117



4 Quantification and spatial distribution of dose rate relevant elements in silex

120 µm, except for better resolution of hot spots or zonations as indicated by autoradiog-

raphy. Here, beam sizes as small as 44 µm were employed. This translates to 80 µm deep

ablation craters for 40 s signal duration. Data reduction was done with the SILLS program

(version 1.1.0)(Guillong et al. 2008) by carefully evaluating every transient signal with

special attention to the radioactive elements K, Rb, U and Th, including spike filtering.

Signal sections of homogeneous element intensities were selected for integration. SRM 610

from NIST was used as an external standard material and element abundances were calcu-

lated by summing up major element oxides to 99.5 wt.% (Halter et al. 2002). A total of

24 elements were quantified at typical precisions of ± 2 % (2 RSD external reproducibility).

Analytical precisions deteriorate when approaching the limits of detection (LOD), largely

due to increased counting statistics uncertainties; hence, element concentrations near the

respective LOD have typical analytical uncertainties of ± 30 % (Pettke 2008). In fact, for

most samples the concentrations of K, U and Th were more than an order of magnitude

above the respective detection limits, resulting in corresponding analytical uncertainties

of about ± 2 % (2 RSD). When compared to uncertainties associated with environmen-

tal dose rate determination, the errors on the element concentration determinations are

negligible and therefore not further considered.

Depending on sample size and visual appearance (e.g. silex homogeneity, inclusions), the

number of analytical spots varied from 9 to 33. Locations of analysis were guided largely by

gradients in radionuclide contents as expected from prior autoradiography. Consequently,

homogeneous domains were less intensely analyzed than inhomogeneous domains. Most

of the ablation craters had a diameter of 120 µm and a depth of about 100–120 µm what

gives an analyzed sample volume and geometry corresponding approximately to the coarse

grain size (ca. 100–200 µm) commonly used for luminescence measurements. The grain-to-

grain variations of K, U and Th concentrations can be directly related to other element

contents, thus giving a picture of their distribution within silex material investigated as

bulk for luminescence.

For digestion and liquid-mode ICP-MS measurements, 100–200 mg of powered sample

material was digested by high-PT decomposition (180 ◦C, max. 5 MPa; Loftfields PDS-6)

using in all stages Merck Suprapur® grade reagents (HF, HClO4, HNO3 and HCl). The

following procedures were carried out:

1. Digestion (I): 2.5 ml HF, 2.5 ml HClO4, 180 ◦C, max. 5 MPa (18 h)

2. Evaporation (I): 160 ◦C (4 h)

3. Addition of 4.0 ml HCl, Evaporation (II): 160 ◦C (2 h)

4. Digestion (II): 4.0 ml HCl, 130 ◦C, max. 5 MPa (12 h)

5. Addition of 4.0 ml HNO3, Evaporation (III): 160 ◦C (2 h)

6. Addition of 2.0 ml HNO3, 5.0 ml H2O, 120 ◦C

118



4.3 Results

After all evaporation steps, the residue should be nearly dry to avoid losses by sputtering

of dry material. Finally, the perfectly transparent solution was transferred with 2 % HNO3

to a 50 ml volumetric flask and stored in PP bottles. Measurements were performed with

a Perkin Elmer/Sciex ELAN 6000 ICP-MS (inductively coupled plasma quadrupole mass

spectrometer) following mainly the technique described by Dulski (2000). From the final

digestion solution (50 ml) 1–3 ml were brought to 10 ml, resulting in a dilution of up to

5000. Determinations of element concentrations were performed using Ru–Re as internal

standards (each 10 ng ml−1) for drift corrections and a three point external calibration.

Samples and procedure blanks were measured in batches of five and were bracketed by

a calibration cycle. The precision and accuracy of measurements following the described

procedure are better than ± 5 %. The accuracy of all determinations was checked using

reference materials in each set of analysis, usually 12 samples. The reference materials

(Loess-1 (Nussloch), PRI, GSR-4) were treated the same way as samples.

4.3 Results

4.3.1 Description of the surface texture

General textural features (Fig. 4.1) can be summarized as follows: Area A denotes the

bulk material (silex, i.e. a mixture of amorphous opal and micro- or cryptocrystalline

chalcedony) the specimens are composed of. The colors of the silex vary from translucent

and colorless (A2R, T1) to opaque and strongly colored, encompassing white, gray, yel-

lowish, red and brownish (M13R, N1, O2R). The samples M1R and M12R show layering

texture, very much like tree rings. Some of the samples contain abundant fragments of

bright or dark mineral phases (feature B) of variable size that are distinct from the silex

(e.g. M16R, O5). Category C comprises all textures that are associated with cracks. These

crack fillings (veins) appear as lines of variable thickness on the sample surface and can

be translucent or opaque and colored (M16R, O6). Isolated inclusions (feature D) occur

in almost all samples, but their spatial density and distribution (random or clustered)

varies considerably between samples. The sizes of inclusions range from about 300 µm

(M9RII) down to less than a few µm (A2R, T1). In some cases crusts or host rock mate-

rial (feature E) enclosing the silices were also analyzed (e.g. A2R, M16R, T1). This is of

dosimetric relevance as in some samples silex-enclosing material seems to invade the silex

interior along fissures (feature F). Furthermore, the rim can also contain siliceous material

(feature F).

4.3.2 Radionuclide concentrations in silex

Table 4.2 reports mean concentration data for K, Th and U in samples, together with

the lowest and highest concentrations measured. The relative standard deviations of the

mean values serve as indication for the variation of radionuclide concentrations in silex.

119



4 Quantification and spatial distribution of dose rate relevant elements in silex

Figure 4.1: Generalized components constituting the samples. A: silex (main component); B:
non-silex/foreign phases, included in the silex, but varying in color and/or composition; C: linear
crack fillings (veins) with different color as silex; D: small punctual inclusions: E: adherent cortex
or host rock material; F: filled fissures and cracks reaching from the cortex or host rock into the
silex. It should be noted that not all samples contain all described components.

Additionally, the estimated fractions of the surface assigned as silex (= 100 % – veins

and foreign phases) and the number of analytical spots for each specimen are given in

Table 4.2. To quantify the total internal dose rate of one particular radioactive element

(K, U or Th) on the one hand, and from α-, β- and γ-radiation on the other hand, the

respective dose rates (deduced from mean silex values) were calculated using the conversion

factors given in Adamiec & Aitken (1998). An a-value of 0.1 had to be assumed as the

determination of the α-efficiency for each sample was not possible. Since the α-efficiency

may vary significantly for different luminescence emissions (detection wavelengths) and

between samples, the computed dose rates represent approximations only (Mercier et al.

1995; Richter & Krbetschek 2006). Rubidium was not included here because of its

negligible contribution to the dose rate given the determined concentrations.

Most of the samples yield overall low radionuclide contents in the silex. Potassium

concentrations are generally< 0.1 wt.% (except for two samples), U concentrations< 1.0 µg

g−1 (except for four samples) and Th concentrations < 0.4 µg g−1 (except for one sample).

In four samples some analytical spots returned Th concentrations below the detection

limit of ca. 0.001 µg g−1. In order to determine the influence of slight color differences in

layered silex on the internal radiation, we measured element concentrations along a transect

of sample M1R. The results are shown in Fig. 4.2a and represent an example of very

low radioactivity and nearly homogeneous radionuclide distribution along the analyzed

transect. This part of sample M1R is free of veins and inclusions as illustrated in Fig. 4.2,

but dark-colored layers within the silex tend to have slightly increased U and Th values
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4.3 Results

and decreased K values. The rim (left side in Fig. 4.2a) yields elevated K concentrations,

whereas U contents faintly decrease.

Figure 4.2: Measured concentrations of K, Rb, U and Th in different sample domains. (a) shows
element profiles along a transect perpendicular to the layering of sample M1R. (b) presents el-
ement contents in six domains of sample O7. For better visualization, the circles indicating the
sampling locations are larger than the actual spot sizes of analysis (90–120 µm). Note in (b) that
the concentration of K is given in wt.%, whereas Th and U are given in µg g−1.

4.3.3 Radionuclide concentrations in veins and inclusions

Depending on the optical homogeneity and size of veins and inclusions, several analyses

were done per sample to measure their element compositions. Table 4.3 summarizes the

type of sampled components, the number of pits and the measured concentrations as well

as the lowest and highest determined values for K, Th and U. For comparison, the silex

mean values from Table 4.2 are also shown.

We observed generally high variability of K, U and Th concentrations in impurities, in

some cases covering several orders of magnitude (e.g. M9RII, N1, O6, O7). The highest K

concentration is measured in a punctual inclusion in sample M9RII (ca. 3 wt.%), while the

veins of sample O4 yield the highest Th value (> 20 µg g−1). Specimen N1 contains by far
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4.3 Results
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4 Quantification and spatial distribution of dose rate relevant elements in silex

the highest concentration of U, in the silex (ca. 11 µg g−1) as well as in spotty inclusions

(max. 240 µg g−1). Light or transparent veins are generally very low in radioactive elements.

We observed the lowest contents for the colorless veins of sample O7, with K and Th being

below the LOD and U below 0.03 µg g−1. In contrast, dark and non-transparent foreign

components of the same specimen mostly exhibited elevated values of radionuclides. The

concentrations of radioactive elements of six different textural positions of sample O7 are

shown in Fig. 4.2b, illustrating exemplarily the pronounced internal heterogeneity of K, U

and Th distribution observed for some of the investigated samples.

4.3.4 Comparison of LA-ICP-MS with bulk ICP-MS data

In previous studies ground and mixed sample powders were used for internal dose rate

determination. Due to contributions from strong-radiating veins or inclusions (hot spots)

it is expected that mixed samples yield higher radionuclide contents than the silex values

determined by LA-ICP-MS. To test this hypothesis, additional bulk ICP-MS measurements

were carried out on finely ground sample material. We investigated seven specimens and

determined their“mixed”concentrations of radioactive elements. Fig. 4.3 shows the plotted

ratios (bulk ICP-MS/LA-ICP-MS); the measured concentrations are listed in Table A.1

(Section A.3).

The significant differences in K, U and Th concentrations between single specimens are

confirmed by the ICP-MS results. Mean element contents vary by an order of magnitude

among the seven samples studied. Comparison of LA-ICP-MS and bulk ICP-MS data

reveals that the bulk mean element concentrations exceed the silex mean values in many

samples. This coincides with the observation of relatively high radionuclide concentrations

measured notably in inclusions but also in some of the veins. Enhanced scatter of K and Th

concentrations in silex – and thus large uncertainties of the LA-ICP-MS mean – suggests

comparability of the results of both methods for about half of the samples (Table A.1).

Moreover, U values overlap within 1σ uncertainty in all cases. This implies that U, which

is mostly the dominant contributor to the internal dose rate, seems to be largely located

in the silex itself and not in mineral impurities. In other words, the bulk concentrations

are increased more effectively by the amounts of K and Th in crack fillings and inclusions

than is the case for U.

The difference of concentrations determined by the two methods is most striking for

sample M26R which contains a few strong-radiating hot spots not considered for the silex

LA-ICP-MS element concentration data. These hot spots clearly account for the signifi-

cantly elevated bulk ICP-MS results. Similar influence of high-emitting zones (veins, enclo-

sures) can be inferred for the other samples. However, O6 and O8 yield partly contrasting

results, i.e. element concentrations in the silex are higher than the bulk concentrations.

These samples contain significant fractions of veins very poor in trace elements; conse-

quently, vein material may also dilute the silex element concentrations, thus lowering the

bulk concentrations.
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Figure 4.3: Ratio of element concentrations determined by bulk analyses of the specimens nor-
malized to LA-ICP-MS measurements of the silex component only. The uncertainties of each data
point (ratio) are not shown for clarity but are given in Section A.3 (Table A.1), together with all
measured values.

4.3.5 Geochemical characterization of veins and inclusions

Quartz is able to incorporate many trace elements in several ways. Si4+ can be substituted

by Ti4+, Ge4+, or by (Al3+, Fe3+, Ga3+) in combination with (Li+, P5+, H+). Incorpora-

tion of trace elements in quartz with radii significantly different from that of Si4+ is related

to extrinsic defects. For instance, small amounts of U and Th (up to ca. 0.2 µg g−1) can be

hosted in SiO2 along structural inhomogeneities (grain boundaries). Higher concentrations

of large ions are, however, coupled to non-siliceous phases or mineral inclusions.

In the following, four samples containing typical crack fillings and inclusions are con-

sidered exemplarily in more detail to characterize the impurities. By using characteristic

ratios of element abundances, we intend to identify the minerals that are associated with

increased radiogenic element concentrations revealed by autoradiography and LA-ICP-MS.

Tables A.2 and A.3 (Section A.3) present the results of the LA-ICP-MS measurements of

selected impurity components (“types”) for these samples. In addition to the concentra-

tions of 24 elements in crack fillings and inclusions, the values for the silex of each sample

are also shown as reference.

Sample M16R contains almost all types of impurity components as defined in Fig. 4.1.

Its crust has a Mg/Ca ratio of ca. 0.5, representative of dolomite (CaMg(CO3)2). The

crack fillings are of the same color as the crust, and all cracks are connected with the
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crust. Analysis of the element concentrations in the filled cracks shows that the Mg/Ca

ratio is considerably lower than in the crust. Crack fillings are thus probably composed

of CaCO3 with trace impurities of Mg, Mn and Fe, mixed with siliceous material. Sim-

ilar element concentrations were measured in the type B component of M16R, but with

less U than in the crack. The inclusion (type D) is rich in Fe, with elevated Cu and Pb

(Table A.2), favoring its composition of Fe-oxy-hydroxide weathering products. The con-

tents of radiogenic elements in the inclusion are similar to those of the silex; thus it does

not reflect a radiation hot spot. In contrast, the inclusion in sample M20R yields very

high concentrations of K, Rb, U and Th along with elevated values of almost all other

elements. High contents of P and Y suggest that a rare earth element phosphate phase

may be part of the inclusion material. The dark phase in sample O7 (Fig. 4.2b) shows a

Fe/Mn ratio characteristic for Fe–Mn-oxy-hydroxides. Similar to the inclusion in sample

M20R, this dark phase also yields metal and transition metal concentrations (Cu, Y, Zr,

La; Table A.2) far above those of the silex. The dark impurities in sample O7 amount

to some 10 % only which is demonstrated by the high proportion of Si. Furthermore, the

intensity of red color of this sample correlates well with Fe content; hence, it is identi-

fied as hematite. Type C crack fillings in sample O8 show strongly increased metal and

transition metal concentrations and a Fe/Mn ratio of ca. 1, pointing to predominance of

Fe–Mn-oxy-hydroxide compounds as well.

4.4 Discussion

Our data demonstrate that pure silex is characterized by very low concentrations of K, U

and Th, and that silex samples (the bulk archeological material) contains inclusions and

cracks/veins enriched of up to two orders of magnitude in these elements. Often, those

impurities are characterized by coloration from pale yellow or orange to brown or black,

colors that commonly derive from (Mn–)Fe-oxy-hydroxide infiltration or fillings.

Combined analyses of element abundance patterns also indicate the presence of other

minerals in some specimens, namely calcium and magnesium carbonate or rare earth

element phosphates (Tables A.2 and A.3). The infiltration pattern and crack filling textures

of these materials strongly suggest a secondary origin, for example due to weathering of

neighboring material of the silices. Redox processes are a likely mechanism for generating

the U enrichments associated with the Oxy-hydroxide precipitations.

Of crucial importance for dosimetric dating is the presence and spatial distribution

of hot spots and hot zones since they determine the internal radiation field and thus

dose deposition. In the case of negligible concentrations of hot spots/zones, the difference

to the otherwise homogeneous radiation field is small. The other extreme would be hot

spots/zones which are present at very high density and uniform distribution, so that the

radiation fields of the single spots/zones overlap. The result is again a homogeneous but

more intense radiation field. The required minimum spatial density of fillings or inclusions
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to generate a uniform internal dose rate depends on the emitted radiation type. Due to

the larger range of β-radiation, pure β-emitters (i.e. hot spots containing only K) need

minimum densities that are much smaller than in the case of the short-range α-radiation.

However, the studied silex samples (Table 4.1) are to be found somewhere in between these

extreme cases with the consequence of radiation fields characterized by more or less steep

gradients and hence unknown impact on the effective internal dose rate.

Only two samples (M1R, M17R) are pure silex, effectively lacking crack fillings and

inclusions; the other samples contain considerable amounts of impurities in highly variable

quantities and distributions. The inclusions in samples M5R, M12R and M13R are evenly

spread among the whole sample volume, so that at least for the β-component homogeneous

radiation can be assumed. Conversely, the other specimens contain impurities that occur

more or less clustered (Schmidt et al. 2013), leading to spatial differences in intensity of

α- and β-radiation within the sample.

Burbidge et al. (2009) found that the volume influenced by impurity-induced α-

radiation in Mozambican sedimentary quartz is negligible. In contrast, the investigated

silex samples mostly contain substantially higher concentrations of veins and impurities

whose spheres of radiative influence are difficult to estimate. This problem is further com-

plicated by the fact that not only pure α-emitting spots/zones have to be considered but

also β-hot spots or a mixture of both. Additionally, as demonstrated by our measure-

ments, high radionuclide concentrations in silex samples are not exclusively confined to

weaknesses and structural defects, but can also be related to intergrown phases.

The comparison of bulk ICP-MS and LA-ICP-MS values for the concentration of ra-

dioactive elements showed that bulk concentrations are slightly but systematically higher

than pure silex concentrations, due to non-silex material (impurities) rich in radionuclides.

These hot spots/zones, however, are characterized by locally very high concentrations of U

and Th with the implication that tracks generated by emitted α-particles overlap to some

extent. In general, along the tracks far more free charge carriers are generated by highly

ionizing α-radiation than high-energetic states are available. The consequences are local

saturation effects and a decrease in luminescence sensitivity because part of the energy

expended for ionization cannot be stored and is hence lost for luminescence production.

Alpha track overlapping further decreases the fraction of stored charge carriers contribut-

ing to the luminescence signal and thus the sensitivity, too, compared to the case of low

α-emitter concentrations with no track overlapping (Aitken 1984; Mauz et al. 2006).

This means, highly concentrated α-emitting radionuclides (those from U and Th and their

decay products) are far less effective in producing luminescence as they would be if uni-

formly distributed (Aitken 1985). Though, this effect is not considered when measuring

the bulk and mixed sample for dose rate determination. Accordingly, an erroneously high

dose rate leads to age underestimation. The importance of this issue is highlighted by

the fact that α-radiation is the dominant contributor to the internal dose rate for many

samples (Table 4.2).
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Moreover, the determination of the accumulated dose is usually carried out on crushed

sample material and requires measurement of several subsamples (aliquots) of each spec-

imen. The natural luminescence signal is compared to the signals measured after irradia-

tion with known laboratory doses and the equivalent dose is then obtained by curve fitting

of the dose response curve (signal intensity vs. dose) and extrapolation or interpolation

(Aitken 1985; Richter & Krbetschek 2006). Presence of hot spots/zones results in

spatially non-uniform dose deposition within the sample, so that enhanced scatter of lumi-

nescence intensity between aliquots is observed, even when measuring big aliquots. This,

in turn, gives rise to enlarged uncertainty in the curve fit and finally reduced precision

in the determined equivalent dose in case multiple-aliquot protocols are used. Normaliza-

tion procedures such as weight normalization or second glow normalization are often not

fruitful due to heterogeneous U and Th distribution and because the natural and complex

radiation field cannot be reproduced during laboratory irradiation. For instance, the oc-

currence of a grain containing a hot spot and thus yielding a high luminescence signal in

a few of the aliquots cannot be corrected for by a normalization dose. For a normalization

approach to work, the hot spot grain would have to show a sensitivity to β-radiation that

is proportional to the α-induced TL signal, for which no indications are given. However,

poor reproducibility may not be traced back solely to non-uniform radiation, but might

also possibly originate for example from irregular distribution of electron traps and/or

luminescence centers.

Another problem in the context of equivalent dose determination arises from the differ-

ence in dose response of α- and β-/γ-radiation. It is widely known that α-radiation induces

linear growth up to high doses, whereas saturation begins significantly earlier (i.e. at lower

doses) for β- and γ-radiation (Zimmerman 1972; Mercier et al. 1992). Highly-ionizing

α-radiation is confined to small cylinders of ca. 0.1 µm in diameter (Aitken 1985) and

a few µm long (the α-tracks) and within this cylinder TL is in saturation, with the con-

sequence of low luminescence efficiency. Therefore, α-induced TL is proportional to the

number of tracks as far as the tracks are not overlapping which is the case only for rela-

tively high doses (because the sample volume is much bigger than the α-tracks) or for local

hot spots, as seen above. In contrast, energy of β- and γ-radiation is comparatively spread

uniformly within the sample volume, resulting in higher luminescence efficiency but also in

earlier saturation with dose (Aitken 1984). If we consider a silex sample with significant

internal α-dose rate, we do not take into account the linear dose response caused by this α-

component when constructing a dose response curve using laboratory β-irradiation. In the

dose range where β- and γ-induced TL begins to saturate non-allowance for α-radiation

contribution will result in age underestimation in case multiple-aliquot additive-dose pro-

cedures in combination with quadratic or exponential curve fitting are used. In contrast,

regeneration dose protocols (both multiple- and single-aliquot) will lead to age overesti-

mation.

As the outermost 2 mm rim of each artefact is removed during sample preparation, the

external dose rate contributes only with its cosmic and γ-component to the total dose
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rate. Due to its high penetration range (ca. 30 cm in sediment), the γ-radiation field can

be seen as spatially uniform in the interior of the silex, because it is usually not larger

than a few cm. As a consequence, the higher the contribution of the external dose rate

to the total dose rate is, the relatively less important are the effects associated with a

spatially inhomogeneous internal dose rate. Accordingly, the uncertainties introduced by

complex internal dose rate configuration are reduced if the external dose rate is dominat-

ing (Richter 2007). Since most of the studied silex samples contain on average only low

amounts of radioisotopes, the negative effects of hot spots/zones are likely to be atten-

uated by prevailing external radiation. For example, the external dose rate (cosmic and

γ-component) of heated Banat flint artefacts (corresponding to the raw material samples

O4–O8 in this study) at their finding spots is estimated to be about 1.1 Gy ka−1. Accord-

ing to Table 4.2, this value accounts for ca. 65–90 % of the total dose rate, depending on

the sample, if only the silex-induced fraction is considered. Veins and inclusions, however,

contribute to a hardly quantifiable amount to the internal dose rate, thus increasing the

effect of internal dose rate. By contrast, this relationship inverts for sample N1. In this

case the high internal dose rate of at least 4.2 Gy ka−1 (Table 4.2) is estimated to be 5–10

times larger than the expected external dose rate. The drawback is that the external dose

rate is prone to fluctuate over archaeological time scales, for example due to changing

water content in sediment.

The above explanations point out that the accuracy and precision of TL dates of heated

silex artefacts could be enhanced significantly if the problems associated with non-uniform

internal dose rate could be solved. One possible strategy in terms of physical sample

preparation comprises magnetic separation (Porat 2006) in order to extract Fe–Mn-

oxy-hydroxides, for which our measurements showed strongly increased U and Th con-

centrations (Table A.2) and which are likely to have different luminescence properties

than silex. Parts of a rock containing such magnetic phases could then be extracted after

crushing. Hence, produced fragments (100–200 µm) that are influenced by the short-range

α-radiation (a few µm in SiO2) generated by oxy-hydroxides are removed as well. Another

approach preserves the configuration of emitters and dosimeter material and makes use

of spatially resolved luminescence detection, where a slice of the sample is produced and

its emitted luminescence is recorded by the use of imaging optics and a camera. After

luminescence signal readout the sample could be checked for the presence of high-emitting

zones/spots, for example by the use of radiography (Rufer & Preusser 2009; Schmidt

et al. 2013) or by LA-ICP-MS. In this way, regions of interest can be selected that are

far away from hot zones/spots and therefore presumably free of gradients of internal dose

rate.

4.5 Conclusions

Determination of element concentrations in numerous analytical spots in 22 silex sam-

ples using LA-ICP-MS has shown that pure silex contains mostly low amounts of ra-
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dionuclides, compared to expected environmental concentrations at archaeological sites.

Dark-colored materials, crack fillings and inclusions typically show strongly increased con-

centrations of K, U and/or Th. The spatial distribution of non-silex phases and inclusions

varies from sample to sample and their 3-dimensional occurrence is difficult to predict.

Compositional analyses can be used to characterize the minerals involved in crack fillings

and in inclusions. For instance, Fe–Mn-oxy-hydroxides, Ca–Mg–Fe carbonates, clays and

phosphates are constituents of some samples studied here. Zones of strongly increased

autoradiography response reveal correspondingly high amounts of radioactive elements,

causing a non-uniform internal radiation field. In terms of dosimetric dating, this gives

rise to micro-scale effects on the determined dose which are difficult to account for. The

potential consequences are enhanced data scatter and reduced accuracy and precision for

the obtained ages. To overcome these problems, magnetic separation of crushed samples

or spatially resolved dosimetry of solid samples seem to be most promising, as further

chemical preparation is hampered by intergrowth of siliceous material with contaminating

phases.
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Abstract

Unlike the well-studied optically stimulated luminescence (OSL) signal of (macrocrys-

talline) quartz, not much is known about OSL from natural amorphous and microcrys-

talline silicon dioxide. These materials – generally termed “silex” – were widely used for

prehistoric tool production, and thermoluminescence (TL) is routinely applied do date the

firing event of heated specimens. This study presents data on basic OSL characteristics

of silex such as signal composition and component-resolved thermal stability as well as

the applicability of OSL for dating of burnt lithic tools. Fitting of LM-OSL curves yielded

similar components (mostly five) as observed for quartz, with the photoionization cross-

sections being in the same order of magnitude for both materials. Three different methods

(LM-OSL pulse annealing, short-shine pulse annealing as well as the varying heating rate

method) were applied to study the thermal stability of components and allowed calculat-

ing trap parameters E and s, and hence the electron retention lifetime. Only the most

light-sensitive (“fast-like”) component proved to be of sufficient thermal stability for dat-

ing applications, as evidenced from coherent experimental results. All other components

already diminished at preheating temperatures > 200 ◦C. Pulse annealing measurements
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further indicate that electron populations sampled by OSL and those responsible for the

∼ 380 ◦C TL-“dating peak” are not identical. Dose recovery tests applying an OSL-SAR

protocol with “hot bleach” in between the regeneration cycles showed good reproducibility

of a known dose if only the initial OSL signal (∼ 0–0.5 s at 90 % LED power) is used.

Finally, obtained OSL-SAR and TL ages based on the blue TL emission are in agreement

within errors for two Middle Paleolithic archeological samples showing a “fast-like” com-

ponent. These results verify the experimental findings of sufficient long-term stability of

the initial OSL signal. Since not all silex specimens deliver a bright and stable OSL signal,

optical ages of suitable samples may serve as an additional internal check for the paleodose

estimate rather than substituting TL as a standard technique for dating of heated silex.
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5.1 Introduction

Optically stimulated luminescence (OSL) is an established method to determine the last

daylight exposure of sedimentary quartz (Preusser et al. 2008; Wintle 2008). For

dating heated quartz, both OSL and TL (thermoluminescence) have been applied, as

done for bricks (Bailiff & Holland 2000; Bailiff 2007), for archeometallurgical slags

(Haustein et al. 2003) or volcanic materials (Fattahi & Stokes 2003).

In Paleolithic archeological contexts, the heating of stone tools is often the dated event

most closely related to past human activities (see Richter et al. (2009) for discussion).

These tools mostly consist of amorphous or microcrystalline silica (henceforth termed

“silex”) showing advantageous cleavage properties. Numerous studies confirmed the appli-

cability of TL to date the last heating above ∼ 400 ◦C of Middle and Upper Paleolithic

silex artefacts (Valladas 1992; Mercier et al. 1995; Richter 2007). OSL, however,

has only sparsely been used for dating heated stones from archeological sites: Mejdahl

& Bøtter-Jensen (1994) applied a novel OSL measurement protocol to quartz stones,

bricks and ceramics; Tribolo et al. (2003) investigated heated quartzite pebbles from

Portuguese Upper Paleolithic sites. These materials (quartz, quartzite) are, however, more

crystalline than silex (including the varieties flint, chert, hornstone, radiolarite,...) mostly

used for tool production. The lacking long-range order of constitutive SiO4 tetrahedra of

the amorphous phase of silex may entail OSL properties different from those of (macro-

crystalline) quartz. This topic, however, has remained poorly studied so far. The work of

Poolton et al. (1995) includes spectral investigations and revealed both dose-dependent

and dose-independent OSL signal components of flint from sites in France, Israel and USA,

ascribed to the (micro)crystalline and the amorphous phase of the material, respectively.

By comparing OSL pulse annealing data with TL glow curves, the authors suggest the

origin of dose-dependent and time-decaying OSL to be associated with a 180 ◦C TL peak,

and therefore they doubt the long-term stability of this signal. Richter & Temming

(2006) conducted dose recovery tests of German flint and hornstone samples using an

OSL single-aliquot regenerative-dose (SAR) protocol. Due to high recuperation rates and

reduced reproducibility of the measurements, they concluded that “OSL dating of flint is

probably not possible” (Richter & Temming 2006: 823).

During the last decade, it has been confirmed that the quartz OSL signal is composed

of several distinct components featuring different bleachability (photoionization cross-

sections) and dose-response characteristics, but also varying thermal stability (Smith &

Rhodes 1994; Bailey et al. 1997; Jain et al. 2003; Singarayer & Bailey 2003). These

components are termed fast, medium and slow in order of decreasing optical decay rates.

Especially one of the slow -components (mostly named slow3 or slow4 ) of quartz is char-

acterized by high saturation dose levels which are associated with high densities of related

charge traps (Bailey et al. 1997; Bailey 2000). The presence of similar signal constituents

in silex samples would have the potential to extend the dating limit and circumvent the

problem of increased bleaching times (as experienced in sediment dating), provided that
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ancient heating completely erases this signal. Furthermore, the application of OSL-SAR

procedures on heated silex is expected to yield more precise estimates for the paleodose

owing to less severe heat treatment and thermal sensitization during regenerative mea-

surements, compared to TL. In addition, the required amount of sample material could

be decreased compared to multiple-aliquot protocols, allowing dating artefacts of smaller

size.

This study comprises linearly modulated OSL (LM-OSL) measurements and signal de-

convolution to investigate signal components and their characteristics in four different

silex samples. Most important for retrospective dosimetry, the thermal stability of signal

components was assessed using pulse annealing experiments and two different evaluation

techniques: (1) the varying heating rates method (Li et al. 1997) and (2) curve fitting of

pulse annealing data (Singarayer 2002). We then tested the performance of the ther-

mally most stable component for dating purposes by applying SAR dose recovery tests.

Finally, paleodose estimates of archeological silex samples obtained by TL are compared

to those derived from OSL-SAR measurements.

5.2 Materials and methods

5.2.1 Samples and sample preparation

Four silex samples were investigated, including two raw material samples and two heated

samples excavated at archeological sites. Geological samples comprised Orsbach flint

(sample code M3) of dark grayish-brownish appearance as well as dark-grayish Baltic

flint (sample code M27). Annealing at 450 ◦C prior to OSL measurements simulated an-

cient firing. As a reference for obtained OSL ages, archeological samples Rom16 from the

Aurignacian site Româneşti-Dumbrăviţa I, Romania, and SodTL2 from Sodmein Cave,

Egypt (see also Mercier et al. (1999) for another dating study of this site), have already

been dated by TL. The material of all samples is addressed as flint, except for Rom16

which consists of chalcedony and amorphous opal.

After removal of the outer 2 mm rim with a water-cooled diamond saw, samples were

gently crushed in a steel mortar and sieved to grain sizes of 100–200 µm. The fine grain frac-

tion (∼ 4–11 µm) was obtained by acetone settling following mainly Zimmerman (1972).

Chemical preparation comprised treatment with diluted HCl (10 %) to destroy carbonates.

Prepared coarse grain material was fixed on stainless steel discs with silicone spray (8 mm

mask); fine grains were placed as α-thin layers on stainless steel discs.

5.2.2 Instrumentation and measurement conditions

Measurements were carried out on Risø TL/OSL DA-15 and DA-20 luminescence readers

fitted with EMI 9235QB photomultiplier tubes. N2 atmosphere was used for measure-

ments > 200 ◦C. Beta-irradiation was done with 90Sr/90Y-sources delivering dose rates

of 0.11–0.15 Gy s−1 to coarse grains; α-irradiation was conducted at ∼ 10 mbar with an
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5.3 OSL signal components

241Am-source generating 0.813 µm−2 min−1 of α-tracks. Photo-stimulation was provided

by blue LEDs (470 ∆ 30 nm) with a maximum power density of ∼ 40 mW cm−2 at the

sample position. A Hoya U340 glass filter (7.5 mm) limited the detected luminescence

emissions to a transmission window between ∼ 270 and 370 nm for OSL; TL was recorded

using a Semrock BrightLine HC 475/50 interference filter (475 ∆ 50 nm). Unless stated oth-

erwise (varying heating rate method), heating rates were set to 5 K s−1 and samples were

preheated at 240 ◦C for 10 s prior to continuous-wave (CW) and LM-OSL readout which

were performed with sample temperature held constantly at 125 ◦C. Except for short-

shine experiments (Section 5.4.1.2), LED power was ramped from 0–90 % for LM-OSL

and fixed at 90 % for CW-OSL measurements. All LM-OSL measurements of silex were

carried out on a single reader to guarantee identical stimulation characteristics and thus

ensure self-consistency of the obtained dataset for determination of the photoionization

cross-section.

5.2.3 Data analysis

In the simplest model, LM-OSL curves can be described as the sum of j first-order com-

ponents (Bulur 1996; Choi et al. 2006):

ILM−OSL =

j∑
i=1

ni bi
t

P
exp

(
−bi t

2

2P

)
(5.1)

Here, n is a dimensionless factor proportional to the initially trapped charge concentration,

b = σ ·Φmax in s−1 the optical detrapping probability with σ (in cm2) being the photoion-

ization cross-section and Φmax the maximum stimulating photon flux (in s−1 cm−2), t is

measurement time in s and P the total measurement time in s. Fitting of LM-OSL curves

to first-order components was carried out with the fit LMCurve() routine implemented

in the R (R Development Core Team 2012) package “Luminescence” (version 0.1.7)

(Kreutzer et al. 2012) reverting to starting parameters for b and n deduced from pub-

lished values of quartz samples (Jain et al. 2003). These values were then transformed into

xi (peak position) and Ii (peak maximum) following the formalism in Kitis & Pagonis

(2008) (see manual of the R package for further details). The fit was seen as satisfac-

tory when the residuals did not show any structure. For fitting of pulse annealing data

with Eq. 5.2, the Origin software (version 8.5) was used. Dose estimates of CW-OSL-SAR

measurements were obtained using the Analyst software (version 3.24) (Duller 2007).

5.3 OSL signal components

LM-OSL measurements were carried out on four silex samples (M3, M27, Rom16, SodTL2)

to study their OSL signal composition. While LM-OSL signal levels are rather low, even

after regenerative doses of 500 Gy used here, the general shape of LM-OSL curves roughly

resembles those also observed for some crystalline quartz samples. Comparison of the
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background signal measured on “dead discs” (crushed silex, mounted with silicone spray

onto discs, after initial signal readout and subsequent annealing) and the LM-OSL sig-

nal of an empty disc covered with silicon spray (Fig. 5.1) confirms the presence of a

dose-independent, anti-Stokes shifted OSL signal from the sample (Poolton et al. 1995).

Tests of the signal reproducibility exclude variability between silicone-covered discs as ori-

gin of the observed rise of the LM-OSL curve towards increased stimulation time. Prompt

luminescence emission during optical stimulation can occur either with emission energy

< absorption energy (Stokes shift) or emission energy > absorption energy (anti-Stokes

shift) and is in flint attributed to the amorphous phase (Poolton et al. 1995). CW-OSL

measurements of this signal with increasing readout temperature T revealed an exponen-

tial dependence of signal intensity on temperature (for T > 150 ◦C) for three samples (M3,

M27, SodTL2), confirming an Arrhenius relation and thus a phonon-assisted process (Ra-

man scattering) (Demtröder 2005; Huntley 2006). The fact that the sum of several

exponential functions is able to describe the measured data for all samples suggests sev-

eral signal components with different activation energies (see Section A.4.2 and Figs. A.16

and A.17 for further details). To obtain the dose-dependent part of the signal for use in

dosimetry, the anti-Stokes signal was subtracted from the LM-OSL sum curve. This net

signal was then fitted with the R package “Luminescence”.

Samples M3 and SodTL2 were best fitted to five components. Detrapping probabilities b

derived from the fit as well as calculated photoionization cross-sections σ are summarized in

Table 5.1. Component-specific parameters σ of all investigated silex samples and published

quartz values are in the same order of magnitude, but differ within quoted uncertainties.

Small discrepancies between silex and quartz cross-sections might result from the fitting

process. It is, however, not sure that the same mechanisms or electron trap types are

responsible for both materials. Hence, we did not adopt the component terminology of

Jain et al. (2003) and Singarayer & Bailey (2003), but numbered them consecutively

instead (component 1, 2 etc.).

Repeated bleaching and dosing (> 2–3 regenerative cycles) induced the growth of an

easily bleachable signal component in sample Rom16, as evident from test dose monitoring

of the LM-OSL signal in between regeneration cycles. Possibly, this component is of similar

origin as the ultrafast-component sporadically detected in quartz samples (Jain et al.

2003; Singarayer & Bailey 2003; Goble & Rittenour 2006). Furthermore, especially

component 0 turned out to be problematic for the fitting routine, likely due to the increased

impact of “dead channels” at the start of the LM-OSL record; see Singarayer (2002) for

discussion. The best fit could be obtained with six components, while the fit of the first

peak (designated component 0 in Table 5.1) is still unsatisfactory (Fig. A.14).

5.4 Thermal stability of the initial OSL signal

LM-OSL measurements proved the presence of an OSL signal component in most silex

samples similar to the fast-component of crystalline quartz. The latter has shown to be
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Figure 5.1: LM-OSL curves of silex samples. (a) Comparison of regenerated LM-OSL curves of
silex (sample M3) and a Holocene alluvial or colluvial quartz sample from the Trebgasttal near
Bayreuth. Both curves are normalized to their peak maximum and shown with the background
already subtracted (for the silex sample as described in Section 5.3); measurement parameters
were as given in Section 5.2.2 for both samples. The differing positions of the first peak might be
explained by the two Risø readers used for data acquisition. (b) Regenerated sum LM-OSL curve
of sample M3 after 500 Gy β-irradiation (the same curve as shown in (a)), anti-Stokes shifted signal
contributions recorded after initial LM-OSL readout and annealing, and disc background measured
on blank discs coated with silicone spray. The net anti-Stokes signal can be obtained by subtraction
of the disc background. (c) Deconvolution to five first-order components of sample SodTL2 after
the background (including dose-independent anti-Stokes shifted signals) has been subtracted. The
residuals are shown in Fig. A.15 (Section A.4.1). (d) Natural (black) and regenerated (blue) LM-
OSL curves of sample Rom16. The anti-Stokes shifted signal and disc background are also shown;
the color legend is the same as in (b). See main text for further details.

best suited for dating of sediments due to its rapid bleaching characteristics, but also yields

sufficient thermal stability for use in dosimetry of the last several Ma (Jain et al. 2003;

Singarayer & Bailey 2003). TL dating of heated silex is usually based on the ∼ 380 ◦C

TL peak (Mercier et al. 1995) whose bleachability is not well-known (Huxtable 1981;

Poolton et al. 1995). Therefore, we studied the relationship between OSL and TL signals

using the same emission band (UV). Furthermore, in order to assess the thermal stability

of component 1 of silex samples, its lifetime was determined, derived from the fundamental

parameters E (electron trap depth) and s (frequency factor).
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5.4 Thermal stability of the initial OSL signal

5.4.1 Pulse annealing experiments

5.4.1.1 LM-OSL measurements

For samples M3, M27 and SodTL2 regenerative LM-OSL curves were recorded after giving

a 500 Gy β-dose, with increasing preheat temperatures in between the cycles (using a heat-

ing rate of 5 K s−1). Measurement of a test dose of 100 Gy after a fixed preheat of 220 ◦C

for 10 s monitored sensitivity changes. Following LM-OSL measurements, OSL readout at

240 ◦C was performed for 3600 s to empty all traps prior to the next regeneration cycle. The

relatively high regeneration doses were chosen due to the generally low signal levels and

to catch also insensitive signal components. All recorded curves were then deconvolved,

i.e. fitted to the sum of single components as described in Section 5.2.3. The remnant

trapped charge (density of trapped electrons) after increasing preheat temperatures shall

be proportional to the quantity n. Assuming first-order kinetics, the obtained pulse an-

nealing curves (remaining signal versus preheat temperature) can then be described by

the following equation (Singarayer 2002; Singarayer & Bailey 2003):

n = n0 exp

[
−skT

2

qE
exp

(
− E

kT

)
+
skT 2

0

qE
exp

(
− E

kT0

)]
(5.2)

Here, n0 is proportional to the initial charge concentration, q is the (linear) heating rate,

k Boltzmann’s constant, T the preheat temperature (in K), T0 ambient room temperature

(∼ 20 ◦C = 293 K) and E and s as described earlier. This equation was used to fit the

pulse annealing data and to determine E and s (as fit parameters) of the respective signal

component.

Fig. 5.2 shows the pulse annealing curves for each fitted component of sample M3. If

deconvolved to first-order components, the shallow and broad decay of the pulse annealing

curves of all components except component 1 indicates non-first-order kinetics of thermal

depletion (Singarayer 2002). Indeed, these curves could not be well fitted to Eq. 5.2 de-

scribing first-order pulse annealing processes. The fit was more satisfactory for component

1 of the samples which allowed extracting the parameters E and s. These values and the

corresponding lifetimes are listed in Table 5.2. Due to the onset of thermal depletion at

temperatures as low as 200 ◦C for all slowly bleachable signal components (see Fig. 5.2),

it must be inferred that these components are thermally not stable enough for dating ap-

plications spanning the Quaternary/Paleolithic (∼ 2 Ma). Owing to low count rates and

associated severe shifts in values of b of fitting results with increasing annealing temper-

atures, reliable information on the thermal stability of individual components could not

be obtained for sample Rom16. Component 0 of this sample was observed after preheat

temperatures up to 280 ◦C and appears to be thermally eroded in a similar manner as the

other components, although not examined in detail. Moreover, component 1 was obscured

by subsequent components, impeding the approach of short-shines to effectively activate

component 1 only (see next section).
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Figure 5.2: LM-OSL pulse annealing data of sample M3. The measurement procedure was as
described in Section 5.4.1.1; deconvolution was not possible for the preheat step at 380 ◦C due to
low signal levels. Only the pulse annealing data of component 1 could be fitted satisfactorily to
Eq. 5.2.

5.4.1.2 Short-shine measurements

Thermal depletion of OSL signal component 1 of samples M3, M27 and SodTL2 was addi-

tionally measured by successively increasing preheat temperatures prior to OSL measure-

ment (pulse annealing) after administering a single dose. Short-shine stimulation (0.01 s

at 30 % LED power) assured that the contribution of component 1 to the entire measured

signal was maximized, i.e. further components were considered to be negligible. Moreover,

sensitivity changes, occurring in the course of repeated irradiation and optical stimulation,

are kept to minimum using short-shines. The signal loss due to the short-shine measure-

ments was accounted for by measuring three aliquots of the same samples after a preheat

of 160 ◦C, but without further preheat steps in between the OSL measurements. The av-

erage loss, obtained by fitting an exponential function to the average decay curve, was

then used to correct the individual short-shines of the pulse annealing experiment. For the

following it is thus assumed that the signal loss can be attributed to thermal erosion only

(Li & Chen 2001).

Using short-shine measurements, two methods were applied to determine electron trap

depth E and frequency factor s of component 1. Firstly, pulse annealing curves were fit-

ted to Eq. 5.2 to derive E and s, and thus the lifetime. Here, the data obtained for a

heating rate of 0.5 K s−1 were used. Secondly, a set of short-shine pulse annealing curves

was collected using different heating rates for each curve (varying heating rate method,

142



5.4 Thermal stability of the initial OSL signal

VHM). With increasing heating rate, the pulse annealing curve shifts towards higher tem-

peratures, and the reference point to measure this shift is taken to be the temperature of

the biggest negative slope. When plotting the OSL reduction rate (i.e. the percentage of

signal reduction per ◦C, or in other words, the first derivative) against temperature, one

should obtain a “TL-like” peak whose maximum shifts with heating rate (Duller 1994).

According to Li et al. (1997) and Li & Chen (2001), the following equation relates peak

maximum Tm and heating rate q for first-order processes:

ln

(
T 2
m

q

)
=

E

kTm
+ ln

(
E

sk

)
(5.3)

All parameters are as defined for Eq. 5.2. A fit through the data points in a plot of

ln (T 2
m q
−1) versus T−1

m has a slope E k−1, from which E can be obtained. The frequency

factor is then given by s = E k−1 · exp(−c), where c is the intercept of the fit with the

y-axis.

Fig. 5.3 depicts pulse annealing curves, OSL reduction rates and a plot of ln (T 2
m q
−1)

versus T−1
m from which E and s for sample M3 were obtained. All determined trap para-

meters of both methods are quoted in Table 5.2. Satisfactory agreement of E and s values

using the VHM and fitting of pulse annealing curves is observed. Moreover, applying the

latter method to pulse annealing curves recorded with different heating rates, congruent

results are obtained within errors, confirming the validity of the approach. However, with

respect to the VHM weak OSL signals of most samples introduced a considerable amount

of data scatter so that the maximum of the OSL reduction rate (see Fig. 5.3) could not be

reliably identified for some curves. Since small variations in Tm have large effects on the

determined trap parameters, the VHM is thus considered to yield results of lower confi-

dence. Results of determined electron retention lifetimes of the three methods are shown

in Table 5.2.

The rise of the pulse annealing curve in quartz until temperatures of ∼ 240–270 ◦C (see

Figs. 5.2, 5.3 and 5.4) is attributed to thermally induced migration of holes from reservoir

into luminescence centers, explaining the observed sensitivity increase (Bailey 2001).

Several components of sensitivity change (types of reservoir centers) have been described

for the 110 ◦C TL peak of quartz, while OSL sensitivity changes in quartz related to

the 325 ◦C TL peak can be accounted for by one type of reservoir center only (Wintle

& Murray 1999; Li & Chen 2001). However, due to increased “scatter” in the OSL

reduction rate plots, parameters of the reservoir center(s) of silex could not be obtained

for the samples studied here (see Fig. 5.3).

5.4.2 Test for anomalous fading

In contrast to the well-defined edges of valence and conduction band in quartz, silex is

supposed to yield band-tail states caused by varying bonding angles of SiO4 tetrahedra of

the amorphous phase (Poolton et al. 1995; Demtröder 2005). Due to these expected

143



5 Optically stimulated luminescence of amorphous/microcrystalline SiO2 (silex)

T
a
b
le

5
.2

:
T

rap
p
a
ram

eters
E

an
d
s

for
co

m
po

n
en

t
1

o
f

silex
sa

m
p
les,

o
b
ta

in
ed

b
y

th
ree

d
iff

eren
t

m
eth

o
d

s.
U

n
certain

ties
of

d
ata

d
eriv

ed
from

fi
ttin

g
of

p
u
lse

a
n
n

ea
lin

g
cu

rv
es

are
sta

n
d
a
rd

errors
a
s

retu
rn

ed
fro

m
th

e
fi
ttin

g
ro

u
tin

e
in

O
rig

in
.

R
eten

tion
lifetim

es
τ

of
trap

p
ed

ch
arge

are
calcu

lated
for

an
a
m

b
ien

t
tem

p
era

tu
re

o
f

2
93

K
(∼

20
◦C

)
u
sin

g
th

e
rela

tio
n
τ

=
s −

1
ex

p
(E

(k
T

) −
1).

D
u
e

to
d
iffi

cu
lties

in
p

recise
d
eterm

in
ation

of
th

e
m

ax
im

u
m

O
S

L
red

u
ctio

n
rate,

th
e

V
H

M
y
ield

ed
n
o

resu
lts

fo
r

sa
m

p
le

S
o
d
T

L
2
.

V
a
ry

in
g

h
ea

tin
g

ra
te

m
eth

o
d

F
ittin

g
of

L
M

-O
S
L

p
u
lse

an
n
ealin

g
cu

rves
F

ittin
g

of
sh

ort-sh
in

e
p
u
lse

an
n

ealin
g

cu
rves

S
am

p
le

E
[eV

]
s

[s −
1]

τ
[M

a]
E

[eV
]

s
[s −

1]
τ

[M
a]

E
[eV

]
s

[s −
1]

τ
[M

a]

M
3

1
.82

1
.70
×

1
0

1
5

3
86

1.76
±

0.26
3.55

±
19.0

×
10

1
4

165
1.77

±
0.17

2.85
±

10.1
×

10
1
4

303
M

27
1
.78

4
.82
×

10
1
4

26
7

1.87
±

0.32
7.00

±
46.8

×
10

1
5

648
1.78

±
0.11

3.05
±

6.84
×

10
1
4

421
S
o
d

T
L

2
–

–
–

1.78
±

0.35
6.72

±
48.8

×
10

1
4

172
1.71

±
0.21

9.44
±

41.1
×

10
1
4

8.51

144
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Figure 5.3: Pulse annealing data of the varying heating rate method for sample M3. (a) pulse
annealing curves for heating rates as indicated in the legend. (b) OSL reduction rate as a function
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m . Trap depth E was obtained from the
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differences in energy band structure between silex and quartz, the OSL emission in the

UV of three aliquots of samples M27 and SodTL2 was tested for anomalous fading. The

fading test consisted of repeated irradiation of ∼ 200 Gy, a 260 ◦C preheat for 10 s and

increasing delay times, respectively, after which the OSL was measured. The measurement

of a test dose of ∼ 50 Gy after identical preheat conditions in between the regeneration

steps recorded sensitivity changes. For data analysis, three signal integrals (0–0.5 s, 0–

1.0 s, 3.0–4.0 s) were evaluated to account for signal components of lower bleachability

as well. Over the time span suitable for estimating long-term fading rates (in this case

> 7000 s after end of irradiation) (Visocekas 1985), no signal fading was observed within

uncertainties (Figs. A.18 and A.19).
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5 Optically stimulated luminescence of amorphous/microcrystalline SiO2 (silex)

5.4.3 Relationship between TL and OSL signals in silex samples

TL glow curves and short-shine pulse annealing curves (Section 5.4.1.2) for samples M3

and M27 are shown in Fig. 5.4. UV TL was measured separately on annealed aliquots after

receiving a β-dose of 60 Gy. Since sample Rom16 contains an easily bleachable component

0 and a dominant component 2, it was excluded from pulse annealing investigations, as

described above.
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Figure 5.4: Thermal stability of OSL component 1 of samples M3 (upper plot) and M27 (lower
plot) in relation to TL peaks. Both TL and short-shine pulse annealing OSL data (circles, left
ordinate) were recorded in the UV band using a rate of 2 K s−1 for heating and preheating. OSL
counts were normalized to the initial value, measured after a preheat of 160 ◦C. For further details
see main text.

It appears that component 1 of M3 and M27, as measured by short-shines, is not related

to the “dating peak” at 380 ◦C, because thermal erosion of the OSL signal begins at much

lower temperatures and is completed at ∼ 340 ◦C. Furthermore, there is no associated TL

peak in the temperature range in which the OSL component 1 is thermally depleted. Glow

curves recorded after 50 s CW-OSL bleaching reveal a slight reduction of the 380 ◦C peak,

compared to glow curves recorded without prior bleaching (Fig. A.20), possibly due to

sensitivity changes. This observation implies that the high temperature peak is optically

insensitive to the blue bleaching spectrum used here and is probably not related to OSL

components with lower bleachability (i.e. those which contribute to the OSL signal during
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5.5 Dose response

50 s stimulation). However, the ca. 300 ◦C TL peak of samples Rom16 and SodTL2 is

substantially reduced by (blue) optical bleaching, though not fully depleted (Fig. A.20).

5.5 Dose response

As shown above, thermal and optical excitation may stimulate different trap types which

may be present in different concentrations, with the implication of varying saturation

dose levels. Due to insufficient long-term stability of components 2–5, dose response cha-

racteristics were investigated for component 1 only. The measurement sequence included

increasing regeneration β-doses up to 1000 Gy whose LM-OSL response was recorded after

a 260 ◦C preheat (10 s), and a 30 Gy test dose correction comprising a cutheat to 240 ◦C.

Dose response curves were constructed using the values of n (being proportional to the

trapped charge related to each component) derived from deconvolution (samples M3 and

M27) or by CW-OSL measurements while using just the initial signal (sample SodTL2;

see also Section 5.6 for measurement conditions). These data could be best fitted to a

single-saturating exponential + linear function (Fig. 5.6). Although varying from sample

to sample, dose response characteristics of the stable OSL signal are similar to those of

UV-blue TL (Mercier 1991), while red TL shows signal growth up to much higher doses

(Schmidt, pers. observation). It thus seems unlikely that the use of component 1 can help

to increase the dating range.
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Figure 5.5: OSL dose response curves of silex samples fitted using a saturating exponential +
linear function. Test dose corrected regeneration points were obtained by using the parameter
n (proportional to the trapped charge concentration) derived from LM-OSL measurements and
curve fitting (M3 and M27) and from CW-OSL measurements (SodTL2) whereas in the latter case
conditions for readout and data analysis were the same as described in Section 5.6. The preheat
temperature for SodTL2 was 260 ◦C (10 s).
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5.6 Dose recovery tests

Previous results suggest sufficient thermal stability of component 1 of the OSL signal for

archeological dating. To test the suitability of this signal in retrospective dosimetry and

to find appropriate measurement parameters, dose recovery tests were performed on all

silex samples. Archeological luminescence signals were removed by heating to 450 ◦C be-

fore receiving the recovery dose; geological samples were heated twice to assure identical

measurement conditions. Measurements followed the SAR protocol given in Murray &

Wintle (2003), including a so-called “hot-bleach” (OSL stimulation for 80 s at 280 ◦C)

at the end of each regeneration cycle to reduce recuperation. OSL was measured at 90 %

LED power for 80 s and preheat temperatures varied between 220 ◦C and 280 ◦C (in 20 ◦C

increments) whereas the cutheat prior to the test dose measurement was set 20 ◦C lower

than the respective preheat temperature. Five aliquots were measured per preheat tem-

perature and the common rejection criteria were applied (recuperation > 5 %, recycling

ratio outside the range 0.9–1.1) (Murray & Wintle 2000). For archeological samples,

the recovery dose approximately met the expected paleodose (Table 5.4). Signal integra-

tion limits were set to 0–0.5 s for dose response curve construction and the background

was calculated from the integral 60–80 s.

Table 5.3: Results of the preheat DRT for all silex samples. The recovered dose is given as the
aliquots’ error-weighted mean of the preheat step most closely reproducing the given dose; n denotes
the number of accepted aliquots in relation to measured aliquots.

Sample n PH [◦C] Given dose [Gy] Recovered dose [Gy] Recovered/given dose

M3 5/5 280 60 59.6 ± 2.1 1.00
M27 4/5 240 60 57.7 ± 2.1 0.96
Rom16 5/5 260 60 59.5 ± 3.5 1.00
SodTL2 5/5 260 150 157.3 ± 4.4 1.05

Plots of De as a function of preheat temperature are shown in Fig. 5.6 for all sam-

ples. Table 5.3 summarizes the results of the DRT while only the best ratios (recovered

dose/given dose) and corresponding preheat temperatures are displayed. The given dose

could be recovered within ≤ 5 % for samples M3, M27 and SodTL2. As sample Rom16

lacks a prominent OSL component 1, the signal used for De determination comprises also

unstable components (mainly components 0 and 2 ), as deduced from pulse annealing ex-

periments. Hence, although the DRT returns promising results, the suitability of OSL

from this sample for dating is highly doubted. For dose evaluation, a preheat temperature

was chosen that yielded a measured dose closest to the recovery dose and showed the

lowest data scatter. Reference measurements using a SAR protocol without hot bleach

demonstrated considerable recuperation (in the order of 50 % of the recovery dose sig-

nal), i.e. thermal transfer of charge from optically insensitive traps to OSL traps during

148



5.7 Paleodose estimation of archeological samples

200 220 240 260 280 300
40

50

60

70

80

PH Temperature [°C]

D
e [G

y]
M3

n = 5 n = 5 n = 5 n = 5

200 220 240 260 280 300
40

50

60

70

80

PH Temperature [°C]

D
e [G

y]

M27

n = 5 n = 4 n = 4 n = 5

200 220 240 260 280 300
40

50

60

70

80

PH Temperature [°C]

D
e [G

y]

Rom16

n = 5 n = 5 n = 5 n = 4

200 220 240 260 280 300
100

120

140

160

180

200

PH Temperature [°C]

D
e [G

y]

SodTL2

n = 4 n = 1 n = 5 n = 4

Figure 5.6: Results of the preheat dose recovery test. The recovery dose is indicated in the plots
by a solid line, 10 % error bounds by dashed lines. Data points represent the error-weighted means
of the recovered dose of individual De values. The number of contributing aliquots for each preheat
temperature is given in the plots.

preheat. The decay of the signal recorded during hot bleach excluded a time-stable and

dose-independent (but temperature-dependent) anti-Stokes signal component as possible

origin (Poolton et al. 1995).

5.7 Paleodose estimation of archeological samples

Three archeological silex samples showing utilizable OSL sensitivity were chosen for com-

parison of paleodose estimates derived by TL and OSL, respectively. In addition to samples

Rom16 and SodTL2, the OSL-SAR protocol was applied to a heated flint tool (LP7) from

the karstic cave site Las Palomas, Spain; see Medianero et al. (2011) for further details

on this site. Dose recovery tests served to adjust the preheat temperature for each sample.

The TL equivalent dose (De) was measured with a multiple-aliquot additive-dose protocol

(Rom16, SodTL2) or a TL-SAR protocol (LP7, due to its small size), using in both cases

the blue emission. The accuracy of the TL-SAR protocol was thoroughly tested in the

course of dose recovery tests.
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5 Optically stimulated luminescence of amorphous/microcrystalline SiO2 (silex)

While archeological material of Rom16 showed a measurable OSL signal, high scatter of

dose points and dose oversaturation of some aliquots impeded determining an equivalent

dose for this sample. In contrast, high precision of the De of SodTL2 and LP7 resulted from

OSL measurements. Since it is known that the α-efficiency is different for TL and OSL

(Tribolo et al. 2001; Lai et al. 2008), it was determined separately for both stimulation

modes using fine grain separates. Table 5.4 summarizes the results of the TL and OSL

measurements; the ratio of TL and OSL ages for samples SodTL2 and LP7 confirms

agreement of the ages within 1σ uncertainty.

Table 5.4: Results of equivalent dose determination of archeological silex samples. The multiple-
aliquot additive-dose (MAAD) protocol (including supralinearity correction by a multiple-aliquot
regenerative-dose curve) and the TL-SAR protocol were used for TL De measurements in the blue
emission range. The b-value according to Bowman & Huntley (1984) (not to be mixed up with
the detrapping probability b) was determined by comparing the luminescence response of fine grain
samples to α- and β-irradiation, respectively. n denotes the number of accepted aliquots in relation
to measured aliquots.

OSL

Sample PH temperature [◦C] Emission n De [Gy] b-value [Gyµm−2]

SodTL2 260 UV (SAR) 9/10 103.9 ± 7.1 0.83 ± 0.13
LP7 260 UV (SAR) 11/11 30.1 ± 1.6 0.33 ± 0.03

TL Ratio TL/OSL age

Sample Emission n De [Gy] b-value [Gyµm−2]

SodTL2 Blue (MAAD) – 130.3 ± 8.3 1.85 ± 0.25 1.02 ± 0.11
LP7 Blue (SAR) 9/10 35.6 ± 1.7 1.08 ± 0.07 1.08 ± 0.15

5.8 Discussion

The OSL signal of silex samples, measured in the UV, was shown to consist of both dose-

dependent and dose-independent parts, as has also been recognized by Poolton et al.

(1995). Being of special interest for dosimetry in archeology, the dose-dependent signal was

investigated in detail by LM-OSL measurements. Three of the four studied samples showed

a prominent peak with high bleachability in the LM-OSL curve. By contrast, sample

Rom16 (opal/chalcedony) revealed an even more light-sensitive component induced either

by repeated irradiation or bleaching, as this component occurred not until the second or

third regeneration cycle and test dose monitoring confirmed its strong sensitization in the

course of SAR measurements. Assuming first-order kinetics, five components yielded the

best fit for the flint samples (M3, M27 and SodTL2) and six components for Rom16 (due

to component 0 ). The calculated photoionization cross-sections σ of the fitted components
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5.8 Discussion

differ slightly from that determined for quartz, but both lie in the same order of magnitude.

The results of LM-OSL curve fitting are very sensitive to the used model, fitting routine

and the choice of start parameters. Beside this, several other factors may influence the

determined σ values:

1. In contrast to the majority of quartz samples, silex mostly shows considerable colo-

ration (gray, brown) and thus higher opacity. This might influence absorption cha-

racteristics of stimulating and emitted light. However, since there is no systematic

shift of cross-section values comprising all components, as would be expected for

differing opacities, it is unlikely that this effect plays a major role.

2. Exact linearity of the excitation ramp is required for valid application of LM-OSL

formula. This feature was not investigated in this study, but the problem of non-linear

ramping has been detected earlier (Singarayer 2002). Depending on the shape of

excitation increase, contrasting effects on components of diverging bleachability may

result.

3. For calculation of the photo-ionization cross-section, knowledge of the exact power

density (respectively the photon flux) at the sample position is required (Choi et al.

2006). This quantity cannot be measured routinely and calculations are usually based

on manufacturer’s instructions. Deviations from this value thus introduce systematic

errors in σ determination. However, since the same reader was used for LM-OSL

measurements, the results should be self-consistent.

Of crucial importance for application in dosimetry is the long-term thermal stability

of the OSL signal. LM-OSL pulse annealing experiments prove that component 1 has a

lifetime sufficiently long to allow dating back to the beginnings of the Quaternary and

the Paleolithic. These results were obtained using three different methods for E and s

calculation, namely the curve fitting of LM-OSL and short-shine OSL pulse annealing

data as well as the varying heating rate method. The coincidence of obtained parameters

for all methods confirms (1) that during short-shine measurements only component 1 was

sampled, providing at the same time the minimum integral for thermally stable OSL signal

contributions (≥ 0–0.3 s), and (2) that component 1 follows first-order kinetics. In contrast,

all fitted components of lower bleachability (components 2–5 ) begin to thermally erode

at temperatures > 200 ◦C. Therefore, it is concluded that none of them is stable enough

for dating applications. No matter whether or not the fitting to first-order components

was justified (excluding component 1 ), the sum curve of components 2–5 follows the same

trend as individual components (approximately linear signal decrease with rising preheat

temperatures). Accordingly, fitting the first-order pulse annealing equation failed and two

possible reasons for it may be thought (Singarayer 2002). Firstly, thermal eviction of

charge from traps might not obey first-order kinetics, although the LM-OSL signal can

be fitted to first-order equations at low doses. Secondly, a distribution of trap depths E
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with very similar photoionization cross-sections will produce a first-order-like LM-OSL

peak, but thermal erosion will lead to a more continuous and less sharp decrease of pulse

annealing data, as observed for components 2–5 of the silex samples studied. The energy

band structure of amorphous SiO2 differs from that of crystalline quartz and features

dangling bonds and bandtail-states reaching into the forbidden zone (Poolton et al.

1995; Demtröder 2005). Therefore, it might be suspected that energy levels below the

conduction band are less well-defined than is the case for material with long-range order

of atoms. This supports the hypothesis of distributions of traps being responsible for the

broad and linear decay of pulse annealing curves.

The long-term stability of component 1 of the OSL signal, as derived from experiments,

was confirmed by dating results of archeological silex samples from Middle Paleolithic sites.

Both TL and OSL gave identical ages within 1σ uncertainty. When it comes to practical

issues of lithic artefact dating, the OSL-SAR protocol has the advantages of shorter mea-

surement times and – as is also the case for TL-SAR procedures (Richter & Krbetschek

2006) – lesser amounts of sample material required for De determination. This would allow

dating smaller samples than needed for the multiple-aliquot technique. If TL and OSL are

applied in combination, coherent ages can serve as an internal check on the accuracy of

the results, since different types of traps (TL, OSL) and luminescence centers (e.g. blue or

red TL and UV-OSL) are sampled (Westaway & Prescott 2012). However, a drawback

of OSL applied to silex is that only part of the investigated samples yield the stable OSL

component or OSL at all, and that the OSL sensitivity (at least in the UV) is mostly sub-

stantially lower than the blue or red TL sensitivity. This would require a thorough check

of every sample for signal composition in advance of De measurements. Therefore, OSL

may serve as a further validation of TL ages for important samples, but will probably not

replace TL as the standard technique for silex dating. Since this paper investigated the

blue-stimulated UV-OSL only, future work might address other stimulation energies and

detection bands. For instance, the use of green stimulation light is expected to reduce the

constant, anti-Stokes shifted signal contribution (Huntley 2006) and thus to enhance the

signal-to-noise ratio. Moreover, based on the observation of much brighter blue TL than

UV-TL of silex, it might be suspected that green stimulation and blue detection of OSL

can increase the number of samples with adequate signal output. Application of the SAR

protocol on further archeological samples will help to further assess the potential of OSL

for dating silex tools.

5.9 Conclusions

This study investigated OSL signal composition of silex by means of LM-OSL measure-

ments and deconvolution and addressed the thermal stability of individual components

using different methods. Our experimental results allow drawing the following conclusions:

1. LM-OSL curves of silex samples were best fitted to five components in most cases,

similar to those of quartz, but differing slightly in bleaching characteristics.
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2. Only the “fast-like” component is thermally stable enough for dating applications.

This was deduced from LM-OSL and short-shine pulse annealing measurements as

well as the varying heating rate method, which all gave consistent results for trap

parameters E and s, and thus the thermal lifetime. All other components show

comparatively low thermal stability.

3. The low thermal stability of the poorly bleachable components in silex indicates dif-

fering structures of energy bands and trapping states, compared to macrocrystalline

quartz.

4. Successful dose recovery tests suggest the general applicability of the OSL-SAR pro-

tocol on silex samples showing a “fast-like” component.

5. The agreement of TL and OSL ages obtained for two Middle Paleolithic samples

confirms our experimental findings on the stability of the “fast-like” component.

6. Since UV-OSL and red or blue TL make use of different types of traps and centers,

congruent ages may serve as an internal check for the validity of the data.
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Christoph Schmidta, Valéry Sitlivyb, Mircea Anghelinuc, Victor Chabaid, Holger Kelse,
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Abstract

Currently, absolute dates for the emergence of the Early Upper Palaeolithic and the timing

of the earliest dispersal of anatomically modern humans (AMH) into Europe are sparse.

This is especially true for regions adjoining the Eastern Mediterranean and Central Europe

with its dense clusters of sites along the Austrian and German Danube Valley. This article

makes a first step towards filling this gap and, for the first time, presents absolute ages

for the open-air site of Româneşti-Dumbrăviţa I (Banat, SW Romania) located close to

the Oase Cave where some of the oldest AMH fossils were found. A set of heated artefacts
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recently excavated from the Aurignacian layer GH3 was dated by thermoluminescence

(TL) and gives early chronometric dates for this technocomplex in Romania.

The luminescence behavior of artefact samples required the use of different multiple-

and single-aliquot measurement protocols to obtain reliable age information. In addition,

analyses of glow curves and the performance during regenerative-dose measurements al-

lowed us to distinguish two types of samples. Since one group is characterized by poor

dose reproducibility, only samples showing reliable luminescence behavior were consid-

ered for final age interpretations. As a result, we could determine that the last heating

of artefacts from GH3 happened most likely between ∼ 39 (single-aliquot age estimate)

and ∼ 45 ka ago (multiple-aliquot age estimate), with a weighted average age of the GH3

finds of 40.6± 1.5 ka (including all data). These dates were confirmed by OSL dating of

sediments of the find layer. Such an early age fits well to technological and typological

features, which place the dated lithic assemblage at the very beginning of the development

of the Aurignacian technocomplex usually seen as a proxy for the earliest wide spread

presence of AMH in Europe.
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6.1 Introduction

6.1 Introduction

The origin of anatomically modern humans (AMH) in Africa and their dispersal to Eurasia

is one of the key topics in prehistoric archeology. The human fossil record now permits

the reconstruction of a dispersal of this species from the region of origin in Northeast

Africa, where AMH is recorded as early as 200 ka (see McBrearty & Brooks (2000)

for an overview), via the Near East into Eurasia. In this scenario, Europe was peopled

considerably late, but – according to latest investigations into paleoanthropology and the

radiocarbon chronology at Grotta di Cavallo (Benazzi et al. 2011) and Kent’s Cavern

(Higham et al. 2011) – at a fast pace, but see Banks et al. (2013) and White & Pettitt

(2012) for different views on the matter. It is still an open question whether the speed of

the earliest peopling of Europe by modern humans, as it is indicated by the fossil record, is

best explained by preferred corridors of dispersal (like the Danube Valley: Conard (2002);

Conard & Bolus (2003)), or a spatially wide frontier within a “wave of advance”-model

(Eswaran 2002). In both models, the Balkans play a crucial role both in the exact dating

of the first dispersal of AMH out of Africa into Europe and in the elucidation of possible

migratory routes.

It is widely agreed that the Aurignacian and its temporal-spatial variant, the Proto-

aurignacian (Bon 2006; Teyssandier 2007), are among the earliest industries securely

produced by AMH, see Bailey et al. (2009), or for the case of the Ulluzian Benazzi et al.

(2011). These industries are dominated by the full range of Upper Paleolithic features

such as standardized microlithic implements, personal ornament and parietal art, as well

as large scale land use patterns and social networks. As the earliest chronometric dates

for the European Aurignacian (of 36.5 ka uncalBP: Zilhão (2011); or even slightly earlier:

Conard (2002); Conard & Bolus (2003); Higham et al. (2012)) are contemporaneous

to the oldest AMH fossils in Europe, it is this industry that enables the investigation of

the earliest resilient settlement of Northwestern latitudes by members of this species.

Due to its geographical position between the Balkans and Central Europe, Romania

holds a strategic position for understanding the early dispersal of AMH and for tracking

the emergence of the Aurignacian phenomenon sensu lato. This potential has already been

directly proved by the discovery of the oldest anatomically modern Human fossil remains

in Europe at Oase Cave (Peştera cu Oase, Southern Banat) in 2002, followed by direct 14C

dating to ∼ 35 ka uncalBP (40.7 ka calBP) (Trinkaus et al. 2003). Proper chronological

control plays a central role in linking the fossil finds of Oase Cave to the lithic industry

produced by the first European AMH. However, the lack of an associated archeological

context for the Oase finds, coupled with the traditional view of a long persistence of

the Middle Paleolithic and the very late Upper Paleolithic chronology documented across

Romania (Cârciumaru 1999; Păunescu 2000; Păunescu 2001), make the story exciting,

but less clear. It has remained incomplete as a narrative since no archeological context in

the area has documented, at the very least, a comparable chronology (Anghelinu et
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al. 2012). Moreover, it is precisely the chronology of the Aurignacian technocomplex in

Romania that appears as particularly deficient today.

According to the current state of knowledge (Anghelinu & Niţă in press), the Au-

rignacian in Romania is, with different degrees of certitude, to be found in several, quite

distant regions: The northeastern area, particularly along the Prut river (e.g. Mitoc-Malul

Galben: Otte et al. (2007)); along the Danube valley to the south (e.g. Ciuperceni, Vădas-

tra: Păunescu (2000)); Southern Transylvania, with the open air settlements at Poieniţă

and Malul Dinu Buzea and several unclear occurrences in cave contexts (Păunescu 2001;

Horvath 2009); the North-Western area (Oaş and Maramureş lowlands) with the sites

of Călineşti I, Călineşti II, Remetea Şomoş and Boineşti (Dobrescu 2008); and in the

South-Western part of Romania (Mogoşanu 1978), with several settlements to be dis-

cussed in further details below. All other occurrences remained undated, with the exception

of Mitoc-Malul Galben Aurignacian, which provided a rather late chronology (31–29 ka un-

calBP).

Of all mentioned areas, the Banat Aurignacian stands apart for several reasons. Apart

from their relative proximity to the Oase Cave (Fig. 6.1), the three identified settlements

here – Tincova, Coşava and Româneşti-Dumbrăviţa (Mogoşanu 1978) – provided medium

to large collections with undisputable Aurignacian features. In addition, the original ex-

cavator promptly compared the Banat occurrences with Krems-Hundssteig in Austria,

a settlement itself thought to represent an early phase of the Aurignacian technocom-

plex, currently acknowledged as the Krems-Dufour type of Aurignacian (Kozlowski 1965;

Demidenko 2000-2001; Demidenko & Otte 2007; Demidenko & Noiret 2012).

However, despite the clear similarities documented between the Banat lithic collections

and the Krems-Dufour Aurignacian, the initial estimations, based on pollen diagrams and

straight geochronological readings of the sedimentary archives (Mogoşanu 1978; Câr-

ciumaru 1989; Cârciumaru 1999), pointed to a time span considerably younger than

any known Eurasian Aurignacian occurrence: Herculane I/Tursac for the single layer at

Tincova, and Herculane II/Laugerie for the main concentration (level III) at Româneşti-

Dumbrăviţa. According to the Western-based geochronological framework used by Ro-

manian archaeologists those days, slightly changed meanwhile (Bosselin & Djindjian

2002), the Herculane I/ Tursac positive oscillation was taking place around 24.5 and 26.5 ka

uncalBP, while the Herculane II/ Laugerie episode was displaying a chronology between

18.5 ka and 19.7 ka uncalBP. Perhaps not surprising, based on the content of the lithic col-

lections, several authors questioned these initial assessments in favor of older geochronolog-

ical estimations, e.g. Arcy (Chirica et al. 1996) or Hengelo Interstadials (Băltean 2011),

or ignored them altogether (Teyssandier 2003; Teyssandier 2007; Teyssandier 2008;

Zilhão 2006). Unfortunately, the Banat Aurignacian sites, altogether lacking organic ma-

terial, have remained undated so far. It is evident that archeological and palynological

arguments are insufficient for establishing a comprehensive regional chronology as the age

of the same assemblages fluctuated from ∼ 37 ka uncalBP to ∼ 18 ka uncalBP.
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The contradiction between the information provided by the lithic collections and the

geochronological estimations based on palynology resulted in new small scale excavations

at the site Româneşti-Dumbrăviţa I in 2009 and 2010, coupled with comprehensive sedi-

mentological and tephra analyses, sampling for optically stimulated luminescence (OSL),

thermoluminescence (TL) dating, and a full reassessment of the existing lithic collection.

Several attempts were made to clarify both the relative and the absolute chronology of the

Aurignacian find layers at this settlement. A tephra layer was identified above the main

Aurignacian find layer (GH3), but a clear assignment to a known-age eruption has so far

failed (D. White, pers. comm. to M. A. 2011). While clearly converging towards a chronol-

ogy older than previously estimated, today both the archeological and sedimentological

methods used have proved to be not sufficient enough for determining more accurately the

temporal status of this industry. Fortunately, recent excavations here bore a set of heated

artefacts of sufficient size for TL dating, which is capable of providing age estimates of the

last – intentional or accidental – exposure to fire and thus most likely directly dates human

presence. We therefore present for the first time chronometric data for the Aurignacian

industry found at Româneşti-Dumbrăviţa I, obtained using multiple- as well as single-

aliquot dating protocols. The implications of an early presence of this technocomplex in

South-Western Romania are also briefly discussed.

6.2 The Aurignacian in Banat: reassessing the open-air site at

Româneşti-Dumbrăvi̧ta I

6.2.1 Geographical and archeological setting

The Paleolithic open-air site of Româneşti-Dumbrăviţa I (Timiş district) is located at the

confluence of the rivers Bega Mare and Bega Mica, occupying about 4 hectares (Fig. 6.1).

Situated on a flat, just slightly inclined top of a local river terrace (45°49’02.41” N,

22°19’15.12”E; elevation ∼ 212 m a.s.l.), the huge settlement was established at the periph-

ery of the Poiana Ruscă Mountains. These foothills of the Banat Mountains are situated

in the Eastern part of the historical region Banat, close to the edge of the Carpathian

Mountains (Kels et al. subm.). Here, a thin cover of silty and loess-like sediments was

accumulated during the last glacial period, which has been only poorly studied up to now.

The thickness of the loess cover continues to increase towards the Banat Lowland (Conea

1969; Conea et al. 1972).

At Româneşti-Dumbrăviţa I, our test drillings yielded the uppermost gravels of the

terrace in a depth of about 2.80 m below surface, followed by 30 cm of bluish-gray, clay-

ish and sandy sediments. Above that, the silt content rises towards the top. Grain size

measurements confirm the loessic character of the covering sediments. From a first profile

(Fig. 6.2) which was opened in the East of the re-excavated area (position see Fig. 6.3),

the uppermost 1.25 m were documented and described (for further details see Kels et al.
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(subm.)). For a general allocation and for the needs of archeological documentation during

the excavation, the main obvious horizons were labeled as “geological horizons” (GH) ac-

cording to field observations. All in all, four GHs were identified at Româneşti-Dumbrăviţa

I. The geology and soil development is much more complex as detailed studies in the field

and the results from the laboratory have shown. Sedimentary samples were used for dif-

ferent kind of analyses (e.g. grain sizes using a Laser Diffraction Particle Size Analyzer

and geochemical measurements like CNS-analysis, pH-value, organic carbon, CaCO3 and

multi-elemental analysis using X-Ray Fluorescence (XRF)).

Figure 6.1: Map of SW Romania, showing the Banat region and adjacent countries. The Aurig-
nacian sites of Româneşti-Dumbrăviţa and Coşava are plotted using the same symbol since they
are only 5 km from each other.

Main results show that, although the surface soil is a type of Stagnic Albeluvisol as it is

mapped as a typical soil on flat relief positions like at the Româneşti-Dumbrăviţa I site or
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depressions (Ianoş 2002; Liteanu & Ghenea 1966; Mavrocordat 1971), the surface

soil depicts a polygenetic development. Element measurements constrained a weathering

zone and a leached horizon connected to the highest artefact density of GH3. Former

weak fossil soil horizons which are not obvious in the field have been overprinted by the

weathering zone and the intense development of the surface soil. The successive building

up of the sediment cover, burying the archeological levels, reflects cyclic history: Grain size

distribution showed several sedimentary units; the presence of several fossil root channels

in different levels is connected to former paleosurfaces which seem to be eroded by fine

discordances. The changes in sedimentation are seen as a result of thin aeolian delivery of

loess, partially reworked by changes in precipitation and former events of surface run-off.

Figure 6.2: Main section 86/221S (positioning in the archeological trench is marked in Fig. 6.3)
with numbers of samples for sedimentology and geochemistry (numbers 1-23, see Kels et al.
(subm.)), including soil horizons according to FAO. Fine dots = iron patches and concretions, bigger
dots = iron-manganese patches and concretions. GH1-4 =“geological horizons” (cmp. levels of arte-
facts, 10 cm spacing of y-axis ticks), luminescence samples: OSL-1 = Rom-86-222-1 (54.6± 6.4 ka),
OSL-2 = Rom-86-221-2 (39.3± 4.6 ka), OSL-3 = Rom-86-221-3 (26.4± 3.0 ka).

F. Mogoşanu excavated the Româneşti-Dumbrăviţa I settlement in two stages (1960–

1964 and 1967–1972), opening a large area of about 450 m2 and identifying 6 archeological
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levels in a strict vertical subdivision (Mogoşanu 1972; Mogoşanu 1978; Mogoşanu

1983); see also Chirica et al. (1996), Păunescu (2001), Băltean (2011). According to

him, the Aurignacian (levels II, III, IV and V) was sandwiched between “Quartzitic Mous-

terian” and Gravettian levels. Level III provided a rich Aurignacian industry of more than

5000 artefacts, including 114 tools (end-scrapers, including carinated ones, predominate

over burins, associated with eight Dufour bladelets and some retouched blades, compris-

ing some typical Aurignacian forms). Level IV was documented on an excavated area of

20 m2 and differed from the previous one by the presence of truncated blades/flakes and a

decrease in the frequency of end-scrapers, with a corresponding increase in burins. Level

V consisted of extended but clustered work-shops with an industry rich in knapping waste

and only 38 tools, dominated by burins and with less common Aurignacian pieces.

The new excavations (Sitlivy et al. 2012; Sitlivy et al. in press), while small-scaled

(7 m2), partially changed the original picture of the settlement. They provided 7505 arte-

facts, including 19 cores and 169 tools, originating from different altitudes of GH3 (Fig. 6.3).

The high crop of finds is attributed to wet sieving of the digging, which was not applied

by Mogoşanu. Horizontally, the lithic material was dispersed equally across the entire ex-

cavated area. The Aurignacian assemblage appears indeed sandwiched between isolated

uncharacteristic quartz artefacts (Middle/Early Upper Paleolithic?), namely with lower-

most level I at the bottom (GH 4) and the Gravettian level VI at the top (GH 1 and 2).

The Aurignacian-looking inventory occurs rarely in the upper part of GH4 and continu-

ously throughout whole GH3, without sterile but with variable vertical artefact density,

suggesting repeated occupations and/or palimpsest. Lithic attributes do not show any sig-

nificant technological changes across the excavated succession. In addition, the presence

of many chips along with large items, as well as the vertical and horizontal distribution of

finds, and the technological refitting and conjoining of broken artefacts confirm that there

was little geological or hydrological sorting of the material. Burnt artefacts are common,

forming several clusters, one of which delivered 38 burnt lithics, including 8 samples for TL

dating. The assemblage from GH3 differs dramatically from Mogoşanu’s record due to the

dominance of bladelets/microblades (with often straight lateral profile obtained from pris-

matic, narrow-faced and few carinated cores) and tools produced on these small blanks

(∼ 50 % of the tool-kit), especially alternatively retouched Dufours (Fig. 6.4). Detailed

information on the lithic assemblage and its features is given in Sitlivy et al. (2012).

The technological data gathered from both old and new assemblages (for details, see

Sitlivy et al. (2012)) reflect a common trend, i.e. prevalent laminar/lamellar and oc-

casional flake production. Blade, bladelet and micro-blade production exhibits three dis-

sociated systems based on reduction of (a) prismatic, (b) narrow-faced cores (including

burin-like) and (c) carinated pieces (cores and tools). The continuity displayed by all these

reduction systems is confirmed by the blade/let scars on the working surfaces of prismatic,

narrow-faced and carinated cores (i.e., mixed blade/bladelet, bladelet/micro-blade). The

desired laminar blanks include mid-sized blades, quite long and narrow bladelets and tiny
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z [cm]

Figure 6.3: Horizontal (upper chart) and vertical (lower chart) view of the excavated square
meters in Româneşti-Dumbrăviţa I, showing the location of all lithic finds (grey dots), the dated
artefacts (black diamonds) and the sampling position of material for γ-spectrometry of GH3 (upper
plot, big grey circles). The thick black line marks the location of the stratigraphic profile shown
in Fig. 6.2. The placing of OSL samples is indicated by the black square (for detailed position of
OSL samples, see Fig. 6.2). Sample Rom140 (not plotted in the lower figure) is located at a depth
of z = 46; sample Rom35 originates from a test pit around 15 m from the excavation, but can
doubtlessly be attributed to GH3.
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micro-blades with straight/curved/twisted profiles. Debitage symmetry (on-axis) of lami-

nar blanks is a dominant feature. As indicated by lipping, bulb patterns and the invisibility

of impact points mostly direct percussion using soft stone and organic tools was applied

to the laminar production.

Figure 6.4: Selection of lithic finds at Româneşti-Dumbrăviţa I, GH3: 1 – Font-Yves point, on
bilaterally retouched bladelet; 2 – Font-Yves point, on laterally retouched micro-blade; 3 – Krems
point, on alternatively retouched micro-blade; 4, 5, 8–10, 14 – Dufour, on alternatively retouched
micro-blades; 6, 7 – pointed blades, obversely retouched; 11, 17 – Aurignacian blades; 12 – Dufour,
on alternatively retouched bladelet; 13, 15 – Dufour, on inversely retouched bladelet; 16 – carinated
core, unidirectional, sub-pyramidal. Scale: 1 bar equals 1 cm.

The general observations are in line with a rather “archaic/early” Aurignacian character

of the corresponding archeological layers. Nevertheless, compared to the old assemblages,

the assemblage composition of “micro/macro” artefacts/tools varies considerably for var-

ious reasons (e.g. different excavated surfaces and recovering methods, diverse artefact

clustering). Based on the commonly adopted approaches for the definition of Aurignacian

variability (Zilhão 2006; Teyssandier 2008; Teyssandier et al. 2010; Banks et al.

2013) Româneşti-Dumbrăviţa I, GH 3 might be evaluated as a Protoaurignacian industry,

although several features argue for an Early Aurignacian as well (see discussion below).

Moreover, bearing in mind that the “archaic” features alone cannot support a precise

chronological scenario, the “early” technological and typological characteristics should be

supported by a dating record and multidisciplinary studies.
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6.2.2 The lithic material

The majority (∼ 85–95 %) of the artefacts excavated at Româneşti-Dumbrăviţa I and all

dated samples in this study consist of so-called “Banat flint”, the source of which is not yet

identified but which may be considered to be of local or meso-local origin (Sitlivy et al.

2012). Raw material is mostly waxy, ochre-colored or brownish and slightly translucent.

While no detailed petrographic study was undertaken, microscope analyses indicate that

this type of rock is a mixture of chalcedony and amorphous opal. The density of Banat

flint is 2.5± 0.1 g cm−3 with slight variations between single samples, owing possibly to

the different proportions of opal and chalcedony. Heating experiments showed a change

in color from ochre or brown to dark red and opaque at temperatures of about 400–

450 ◦C. This color alteration is most probably related to the oxidation of Fe(II) to Fe(III),

although the temperatures required for oxidation are higher than those reported by Purdy

& Brooks (1971) and Richter (1995). In combination with other signs of heat alteration

(e.g. potlids, craquelation), the color can thus serve as a straight indicator of past heat

exposure sufficient for TL dating.

6.3 Thermoluminescence dating of heated artefacts

Thermoluminescence is an important means of dating heated lithics of archeological se-

quences. Here, the event to be dated is the last exposure to fire, and this event is closely

connected to the actual occupation of the site by prehistoric humans. The heating of

artefacts is usually related to its discard, and spatial constraint of fire impact favors the

presence of human fire places, in contrast to the vast nature of wood or grassland fire

(Richter et al. 2009). The basic principle of TL dating is time-dependent storage of

energy within the molecular structure of siliceous samples. Radioactive elements, mainly

U, Th and K, in embedding sediments and within the sample itself deliver this energy

via ionizing radiation, due to their radioactive decay. With ongoing irradiation, the stored

energy (or dose when normalized to unit mass) increases with time, and is a measure of

the time elapsed since the last resetting event, provided that the delivered energy per unit

time (the dose rate Ḋ) is known. Times of zero stored energy may be the formation of

the mineral or events that reset all previously accumulated energy such as heating above

∼ 400 ◦C (Richter et al. 2007). Part of the released energy is emitted as light that can

be measured in the laboratory while the sample is heated, giving the thermoluminescence.

For each sample, the recorded amount of light is then compared to the light emitted after

administering known doses of ionizing radiation and this then permits the determination

of an equivalent dose (De), i.e. a laboratory dose that produces the same light output as

the archeological dose. The age is then obtained by dividing De by Ḋ. More information

about TL dating in general and the measurement protocols used to determine De is given

elsewhere (Aitken 1985b; Valladas 1992; Mercier et al. 1995; Richter et al. 2007).
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From the excavations in 2009 and 2010, two artefacts from layer GH2 and eleven artefacts

from layer GH3 were chosen showing macroscopic signs of heat alteration such as potlids

or dark red color (see Section 6.2.2). One sample from GH2 could not be dated due to

poor luminescence characteristics (high data scatter, no reproducibility), and one sample

from GH3 was obviously not sufficiently heated. Owing to the small size of some artefacts

and hence scarcity of sample material, application of the conventionally used multiple-

aliquot additive-dose (MAAD) technique was not possible in all cases. Therefore, additional

measurement protocols, such as the single-aliquot regenerative-dose (SAR) and the single-

aliquot regeneration and added dose (SARA) procedure, were tested for their reliability

and applied to the samples.

6.3.1 Preparation and measurement parameters of TL samples

From all samples, the outer rim of at least 2 mm was cut away with a water-cooled diamond

saw in dimmed redlight conditions, in order to remove material that was influenced by β-

and γ-radiation from surrounding sediment and that was subjected to optical bleaching

and potential geochemical alteration (Mercier et al. 1995). The inner cores were then

gently crushed in a steel mortar with frequent sieving in between to obtain grain sizes of

100–200 µm. For determination of α-efficiency, finely ground material of ∼ 4–11 µm was

extracted by settling in acetone, following mainly Zimmerman (1972). Chemical sample

preparation consisted of treatment with 10 % HCl for carbonate destruction. For TL mea-

surements, coarse grains were deposited onto stainless steel discs (9.8 mm in diameter)

using silicone oil spray. In case of large aliquots, a monolayer of grains covered the central

8 mm (diameter) of the disc, for small aliquots the central 2 mm. Fine grains were placed

as an α-thin layer onto aluminum discs.

All TL measurements were performed on Risø TL/OSL DA-15 and TL/OSL DA-20 rea-

ders, equipped with EMI 9235QB photomultiplier tubes, in N2 atmosphere and using either

a UV-blue filter package (BG-39 + GG-400 + Corning 7-59 + Chance Pilkington HA-3),

a blue-transmitting Semrock BrightLine HC 475/50 interference filter (FWHM of 50 nm),

or a Chroma D630-60 for test of red TL emissions (FWHM of 60 nm). The transmis-

sion maximum is around 410 nm for the UV-blue combination with a FWHM of ∼ 60 nm,

but asymmetrically shaped towards higher wavelengths. Samples were β-irradiated in the

Risø readers with 90Sr/90Y-sources delivering dose rates between 0.10 and 0.11 Gy s−1.

Alpha-irradiation was performed in vacuum (10−2 mbar) in a Littlemore irradiation fa-

cility equipped with 241Am foils (5.32 mCi). During TL measurement, the samples were

heated to 450 ◦C with 2 ◦C s−1; the background was recorded afterwards and subtracted

for each measurement. Equal pre-dose second glow measurements of a fixed test dose (to

ensure identical dose history of all aliquots) served for normalization of individual aliquots

for multiple aliquot procedures (Galloway & Hong 1996).
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6.3.2 Measurement protocols used for TL dating

6.3.2.1 Multiple-aliquot additive-dose technique (MAAD)

The“standard”protocol for heated silex is the MAAD procedure (Aitken 1985b; Mercier

et al. 1995) in which initially an additive growth curve is constructed with 4–5 dose points

(first growth curve). Depending on the amount of available sample material, 3–5 aliquots

contributed to each dose point in this study. A second, regenerative growth curve, created

after annealing part of the sample material at 350 ◦C for 90 minutes (Mercier et al.

1995), allows the determination of the growth curve shape for small doses, which is not

displayed by the first growth curve (correction for supralinearity). Extrapolation of the

first growth curve to the dose axis and addition of the supralinearity correction give the

equivalent dose (De). Examples of De determination using the MAAD protocol for two

TL samples are shown in Fig. A.21 and A.22.

6.3.2.2 Single-aliquot regenerative-dose technique (SAR)

For the first time, Richter & Krbetschek (2006) applied the SAR protocol successfully

to heated silex using the red TL emission. Tests with the D630-60 filter revealed for all

samples a complete absence of red TL in this transmission window. However, TL signals

in the range 450–475 nm were detected, which in quartz probably arise from [AlO4]0 hole

centers (McKeever 1991; Rink et al. 1993). This emission was tested for its suitability

for producing reliable age estimates using a SAR protocol. To this end, dose recovery

tests were performed on a series of samples that were previously annealed to check if

a given laboratory dose in the range of the expected De can be correctly reproduced.

Additionally, a fading test served to make sure that athermal signal loss is not a problem

for this emission. The final measurement procedure included five regenerative dose steps

(Lx) enclosing the natural dose point (Ln), a recycling and a zero dose point, according

to the general structure given in Murray & Wintle (2000) for OSL measurements.

Corrections for sensitivity changes were made by interrupting the regeneration dose steps

by measurement of a fixed test dose (Tx). Determination of De was then based on the

normalized growth curve (Lx/Tx). Especially for dim samples, relatively high test doses

(in the range of the lowest regeneration dose or higher) were necessary to avoid increased

data scatter due to counting statistics. Preheating to 220 ◦C for 60 s emptied shallow traps

prior to measurement of the thermally stable signal and yielded regenerated glow curve

shapes most similar to natural glow curves. The sample was not allowed to cool down after

preheating (“stage and continue”) (Zöller & Blanchard 2009). Rejection criteria were

identical to those usually applied in OSL dating of sediments, i.e. all aliquots showing a

recycling ratio between 0.9 and 1.1 passed. Recuperation is not expected to occur in TL

dating, as is proved by growth curves typically passing through the origin. With exception

of sample Rom17, at least ten aliquots per sample, and in cases of bright samples, two

different aliquot sizes (8 and 2 mm) were measured.
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6.3.2.3 Single-aliquot regeneration and added dose technique (SARA)

As a backup and to be sure of adequate allowance of potential sensitivity changes occurring

during natural and regenerative TL readout, the SARA protocol according to Mejdahl &

Bøtter-Jensen (1994) was additionally applied to two samples. Here, equivalent doses

of natural aliquots (N) and of aliquots that received different additive laboratory β-doses

(N + β) are determined by a SAR protocol, but without test dose monitoring. These

apparent doses are then plotted against the known added doses and extrapolation of the

fit to the dose axis gives the “true”De at the intercept. Application of this routine provides

that the N + β signals are not beyond the saturation dose level and that sensitivity changes

are dose-independent and equal for all measured aliquots (Mejdahl & Bøtter-Jensen

1994; Lai et al. 2006).

6.3.2.4 Alpha-efficiency determination using the SAR protocol

Silex often contains non-negligible amounts of Th and U and therefore α-radiation con-

tributes to the total dose rate. The reduced efficiency in luminescence production of α-

radiation compared to β- or γ-radiation thus necessitates the determination of the a-value

(Aitken 1985a). Furthermore, it is known that the α-efficiency can vary from sample to

sample, between different temperature regions of the TL glow curve, and also between var-

ious TL emissions (Zimmerman 1972; Mercier et al. 1995; Richter & Krbetschek

2006; Polymeris et al. 2011). For these reasons, the a-value was determined for each

sample and recorded emission (UV-blue and blue) separately and, where two peaks were

analyzed, individually for these two plateau regions as well. In practice, annealed fine grain

material (450 ◦C for 60 minutes) was given a laboratory α-dose which was treated as un-

known and recovered using a SAR protocol with β-regeneration doses (as outlined above),

the ratio of recovered β-dose to known α-dose being the a-value (Tribolo et al. 2001;

Mauz et al. 2006; Polymeris et al. 2011). The stopping power of the dated material was

assumed to be identical to that of quartz for the ∼ 3.7 MeV α-particles used for irradiation

so that the a-value was set equal to the k-value in this study (Aitken 1985a; Lai et al.

2008). For valid application of the described procedure, two further requirements must be

met: Both α- and β-dose response are in the linear range, and the sensitivity changes asso-

ciated with the readout of the α-induced signal can be adequately corrected by a β-test

dose.

6.4 Optically stimulated luminescence dating of sediments

In addition to direct dating of the use of artefacts by TL, sediment samples for OSL dating

were taken from the find layer itself (z∼ 45–50) and from layers below (z∼ 25–30) and

above (z∼ 65–70). The location of the sampled profile within the excavated area is shown

in Fig. 6.3. OSL ages represent the time when sampled grains were covered and shaded
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by overlaying grains, i.e. the time of sedimentation. Hence, while not as directly related

to the site’s occupation as TL dates, this method provides the depositional age of the find

layer with a resolution of a few centimeters. From the loessic sediments, only the quartz

fine grain fraction (4–11 µm) was prepared and used for measurements.

6.4.1 Preparation and measurement parameters

Samples for OSL dating were extracted from sediment blocks taken from the profiles. In

dimmed red light conditions in the laboratory the outer surface was carefully removed to

discard any material exposed to daylight after sample collection. After sieving (< 40 µm),

sample material was treated with HCl (10 %) and H2O2 (10 %) to destroy carbonates and

organic material. Etching in H2SiF6 (34 %) for 7 days, followed by washing in HCl (10 %),

served to eliminate any feldspar components in the sample. Fine grains were obtained after

settling in acetone to isolate grains in the range 4–11 µm (Zimmerman 1972) which were

deposited onto aluminum discs. For age evaluation, attenuation factors of radiation within

grains according to Mejdahl (1979) and Bell (1980) were used.

6.4.2 Measurement protocol used for OSL dating

For OSL measurements, the standard SAR protocol after Murray & Wintle (2000)

was used, including the common rejection criteria (recuperation > 5 %, recycling ratio

outside 0.9–1.1). Preheat plateau tests yielded a temperature region of 220–260 ◦C with

identical dose estimates (see Fig. A.28for a representative example). For the SAR sequence,

a preheat of 240 ◦C for 10 s was thus chosen. Measurement equipment was identical to

that described in Section 6.3.1, except for a 7.5 mm Hoya U340 glass filter used for OSL

detection. Optical stimulation was carried out by blue LEDs (470 ∆ 30 nm), delivering

∼ 36 mW cm−2 at sample position. For final age calculation, an a-value of 0.035± 0.020

was used, implying a comparatively large error margin to account for dose dependencies

of α-efficiency in case of β-saturation (Mauz et al. 2006).

6.5 Dose rate determination

For external dose rate determination of TL and OSL samples, low level γ-spectrometry

was applied to finely ground sediment samples taken from three to four different depths

(z-values of 40, 55, 70 and 77 at the center of the sampled volume) and four different po-

sitions (exposed walls) within the excavation (Fig. 6.3) and a nearby geo-profile to assess

the variability of U, Th and K concentrations with depth and lateral extension. Taking

into account the ∼ 30 cm sphere of influence of γ-radiation and the homogeneity of the

deposits, sediment samples comprised at least 1400 g and were collected from various po-

sitions within this sphere. These samples are considered as being representative for the

entirety of material contributing to the artefacts’ environmental dose rate. For each dated
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artefact, the sediment sample taken most closely to the find spot was used for external

dose rate calculation, resulting in a maximum distance between both of ∼ 90 cm, except

for sample Rom35. This artefact originates from a test pit (also GH3) and the closest se-

diment sample available was ∼ 2.5 m away. Therefore, dose rate assessment for this sample

is potentially less accurate than for other samples; however, we found no indication in

field records and laboratory data pointing to this sample having received a significantly

different environmental dose rate (see also analytical results, Section 6.6.1). Attenuation

of external γ-radiation within the samples was considered according to Valladas (1985).

For every OSL sample, surrounding material was collected individually and from the direct

vicinity within the γ-range. Gamma-spectrometry allowed measuring K, U and Th con-

centrations and provides a check for present radioactive disequilibria via calculated parent

and daughter activities of decay chains. The cosmic dose rate was evaluated according to

Prescott & Hutton (1988). Owing to limited accessibility of the excavation, it was not

possible to carry out in-situ measurements of environmental dose rate. ICP-MS analyses

of material from the inner core of the artefacts (∼ 0.5 g) were carried out to calculate

the internal dose rate from determined K, U and Th concentrations using the conversion

factors given in Adamiec & Aitken (1998).

6.6 Dating results

6.6.1 Dosimetry results

The loess-like deposits of the Româneşti-Dumbrăviţa site are free from coarse compo-

nents such as gravels or blocks and organic material. Results of γ-spectrometry prove

that there is no variability (within 1σ measurement uncertainty) in radionuclide con-

centrations between the five analyzed sediment samples relevant for GH3 (Fig. 6.3 and

Table 6.2). Separate analyses of three fractions (∼ 350 g) of the same sediment samples

yielded indistinguishable radioelement concentrations and thus further confirm the radio-

metric homogeneity of the deposits. We can hence rule out substantial heterogeneities of

the external radiation field applicable for the TL samples. Equal activities of the members

of the U series, as measured by γ-spectrometry, indicate the absence of recent radioac-

tive disequilibrium. The time-averaged moisture content of the period being dated was

estimated to 20± 5 %, based on soil genesis of the site (see Section 6.2.1) and the range

of determined moisture contents of collected sediment samples, plus an increased uncer-

tainty level to account for past moisture fluctuations. Since the majority of the total dose

rate for the TL samples originates from the surrounding soil, its water content has sig-

nificant influence on TL ages because water absorbs part of the environmental radiation

that would otherwise has reached the sample. The same applies to OSL samples. A precise

reconstruction of the past (mean) moisture content is impossible, but absolute maximum

and minimum age estimates can be obtained by considering the saturation water content

and 0 % water content in the calculations. Accordingly, the ages are enhanced by ∼ 10 %
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and reduced by ∼ 15 %, respectively, depending slightly on individual sample properties.

However, both scenarios are unlikely. Employment of more likely water contents of 15 %

and 25 % as lower and upper limits results in statistically indistinguishable age estimates.

Hence, the uncertainty of ± 5 % in the assumed water content of 20 % is taken to be the

best approach to account for this unknown quantity (see also the discussion in Richter

et al. (2008)).

Concentrations of internal K, U and Th of the artefacts fluctuate by a factor of 3–4

between samples, but account for overall low internal dose rates compared to external

dose rates (12–23 % internal/total dose rate, see Table 6.3). Due to the small size of most

artefacts and the minor contribution of internal γ-radiation, its attenuation within the

sample was seen as negligible (assumption of infinite matrix dose rate). Detailed informa-

tion on determined external and internal concentrations of radioactive elements as well as

the deduced dose rates is given in Table 6.2.

6.6.2 Thermoluminescence behavior of samples

The luminescence signal of Banat flint samples is generally characterized by rather low

count rates, although varying between samples. According to the glow curve shape and

the number of peaks (recorded in the blue transmission window), we could assign every

sample to one of two sample types. Specimens of type 1 yield 3–4 observable, quite narrow

peaks, but probably contain additional peaks that would only be separable by glow curve

deconvolution. Visible peaks are centered at ∼ 90–110 ◦C, ∼ 150–180 ◦C, ∼ 270–300 ◦C and

∼ 370–390 ◦C, using a heating rate of 2 ◦C s−1, whereas the peak at 150–180 ◦C sometimes

appears as a declining shoulder towards higher temperatures. In contrast, type 2 sam-

ples show considerably weaker light output and up to 3 visually distinguishable peaks.

They occur at ∼ 90–110 ◦C, ∼ 130 ◦C and ∼ 300–320 ◦C. The shift of the maximum of the

300–320 ◦C peak towards lower temperatures with increasing dose and its general width

indicates either non-first order kinetics or the presence of a composite peak containing

components with different dose response. Examples of both sample types are shown in

Fig. 6.5. The fact that the glow curve pattern varies significantly between type 1 and

type 2 suggests different mineralogical composition, possibly also reflecting different raw

material sources. Indeed, there appears to be a correlation between the glow curve shape

and the visual nature of the samples, namely the presence or absence of dark-colored veins

and inclusions and/or pale mineral inclusions. Accordingly, type 1 samples seem to be of

purer composition than type 2 samples, although this is not evident in all cases (see also

Fig. A.24).

The difference in glow curves of the two sample types is in line with characteristic dose

response behavior, indicated by the saturation dose D0 in case the dose response follows

a single saturating exponential (Aitken 1998; Bøtter-Jensen et al. 2003). For type

1 samples, we determined D0 values of > 150–200 Gy and about 30–100 Gy for the 270–
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Figure 6.5: Characteristic TL glow curves of sample types 1 and 2, recorded in the blue trans-
mission window.

300 ◦C and the 370–390 ◦C peak, respectively. Considerably higher saturation doses were

observed for the broad 300–320 ◦C peak of type 2, lying always above 200–300 Gy and

leading to approximately linear dose response in the range covered by additive and regen-

erative measurements. The condition of De being < 2D0 for reliable dose estimation using

the SAR sequence was fulfilled for all samples (Wintle & Murray 2006). Moreover,

changes in luminescence sensitivity during repeated cycles of irradiation and TL measure-

ments (monitored by a test dose) remained generally < 20 % after 9 successions for sample

type 1, while it amounted to up to 350 % for sample type 2 (see also Figs. A.25, A.26 and

A.27). Especially for the latter samples severe sensitivity changes were recorded in the first

one or two cycles.

6.6.3 TL dose recovery tests

Table 6.1 shows the results of the SAR dose recovery tests of six silex samples. Two peaks

in the thermally stable range of sample Rom35 were investigated separately. Except for

sample Rom197 (type 2,∼ 20 % underestimation) and the high temperature peak of Rom35

(type 1, ∼ 17 % underestimation), the given dose was recovered within an acceptable limit

of 8 %, though there appears to be a general and slight tendency for dose underestimation.

Given the restricted number of samples subjected to the dose recovery test (due to sample

scarcity), at this stage no clear trend emerged whether type 1 or type 2 samples yield more

reliable dose estimates. However, it seems plausible to base the assessment of the validity

of obtained dates on the dose recovery results of the respective samples.
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Table 6.1: Results of the dose recovery test (DRT) of TL samples. Measurement details are given
in Sections 6.3.1 and 6.3.2.

Sample Type n(accepted)/ Temperature Given Recovered Ratio given/
n(total) region [◦C] dose [Gy] dosea [Gy] recovered dose

Rom35 1 4/5 270–310 70 71.8 ± 2.8 0.97
Rom35 1 5/5 340–400 70 59.7 ± 1.9 1.17
Rom55a 2 6/7 320–380 70 65.4 ± 1.9 1.07
Rom72 1 9/10 350–400 60 59.5 ± 1.1 1.01
Rom140 2 10/10 230–280 60 58.2 ± 1.1 1.03
Rom197 2 5/5 230–280 70 57.8 ± 1.3 1.21
Rom239 1 10/10 340–400 60 55.8 ± 1.0 1.08

a error-weighted average

6.6.4 TL ages

All relevant data for age calculation are summarized in Tables 6.2 and 6.3. While Ta-

ble 6.2 contains β- and γ-radiation-related information, Table 6.3 splits the obtained ages

into applied measurement protocols and TL emissions entailing a detailed report on the

respective a-values and α-dose rates.

Low saturation doses (Rom239) and sparse sample material (Rom116, Rom346) prohib-

ited the use of the MAAD protocol for every sample. One sample (Rom55) was big enough

for two parts to be analyzed independently to check the reliability of the measurement

procedures and to test for internal inhomogeneities. The temperature region used for sig-

nal integration was selected based on heating plateau tests and De(T )-plateaux, for which

examples are given in the Supplement.

The resulting ages for the only sample from GH2 agree well for MAAD and SAR proto-

cols (16.1± 1.5 and 15.2± 1.3 ka), thus proving an Epi-Gravettian age to the correspond-

ing lithic industry, initially attributed to the Gravettian technocomplex on typological

grounds. Artefacts from GH3 give MAAD ages ranging from ∼ 42 to 48 ka (type 1), with

overlapping 1σ uncertainties, while SAR type 1 dates (8 mm) encompass ages between

∼ 38 and 53 ka. By contrast, MAAD and SAR type 2 ages are substantially higher, cov-

ering the range ∼ 53–116 ka and 54–63 ka, respectively (detailed information on type 2

samples and their ages is given in the Supplement). The validity of this dataset and its

reduction towards reliable age estimates is discussed in detail in Section 6.7.1.

6.6.5 OSL ages

Preheat plateau tests for the three quartz fine grain samples gave identical results for

preheats in the range 220–260 ◦C (see Supplement). The homogeneity of the data set

allowed us to use the Common Age Model (Galbraith et al. 1999), resulting in ages of

54.6± 6.4 ka for the lowermost sample, 39.3± 4.6 ka for the find layer and 26.4± 3.0 ka for

the uppermost sample. Detailed dose and dose rate data are given in Table 6.4.
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6.7 Discussion

6.7.1 TL ages

Although Banat flint is no“common”flint in the narrow sense (as e.g. Baltic flint), rigorous

tests of investigated type 1 samples showed their satisfactory behavior as dosimeters. Glow

curve shapes of type 1 samples largely equal those from flint samples, a fading test as well as

heating- and De(T )-plateau tests proved the absence of anomalous or thermal erosion over

time of the signal used for dating, and dose recovery tests confirmed the reproducibility

of a given dose for most samples.

Since the SARA protocol monitors sensitivity changes using a different approach than

the SAR protocol, the good agreement between both ages for type 1 samples (Rom35 low

temperature peak and Rom72) confirms accurate correction of sensitivity changes. The

fact that the SARA age of the high temperature signal of sample Rom35 exceeds the SAR

age cannot be explained at present time. In general, type 2 SAR ages are systematically

higher than those of sample type 1; the probable reasons are severe and partly unsystematic

sensitivity changes observed for type 2, notably during the first TL measurements (i.e. in

the course of the measurement of the natural signal) which are obviously not correctable

by test dose monitoring. Finally, early onset of dose saturation and thus the need for

non-linear extrapolation to obtain MAAD De’s may have contributed to a reduced level

of accuracy of multiple-aliquot dates.

For the TL samples investigated in this study, the influence of systematic errors on age

related to internal dose rate characteristics is attenuated by the dominance of the external

dose rate (77–88 % of total dose rate). Notwithstanding, potential effects of significant

α-radiation contribution as well as of non-uniform internal dose rate have to be considered

when estimating the validity of the obtained ages of each sample.

Alpha contribution to the total dose rate leads to a more linear dose response because

of the high ionization density of α-radiation (Aitken 1984; Aitken 1985b; Mauz et al.

2006). Reproduction of exact natural irradiation conditions (a mixture of α-, β- and γ-

radiation) is impossible in the laboratory. Therefore, if a significant α-dose rate contributes

to the total dose rate, the β-induced laboratory growth curve will saturate at much lower

doses than does the natural, with the final consequence of age overestimation (Aitken

1984). The effective α-contribution to the total dose rate varies between 3 and 10 % for

the samples dated in this study (data not shown). We could detect neither a relationship

between linear or exponentially saturating dose response (both for MAAD and SAR pro-

tocols) and De nor a general connection between α-dose rate and De, or it is masked by

overall De scatter. Consequently, this factor is unlikely to have any significant influence

on the obtained ages.

To further investigate the dose distribution within the samples and the performance of

regenerative measurements, determined De’s for each aliquot were plotted against sensi-

tivity corrected natural signals Ln/Tn of the SAR measurements (Fig. 6.6; see Li (2001)
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6.7 Discussion

Table 6.4: Analytical data and ages of fine grain OSL samples. n denotes the number of ac-
cepted aliquots per sample. The moisture content was estimated to be 20± 5 % over burial period,
ages were calculated using the Common Age model (Galbraith et al. 1999), and an a-value of
0.035± 0.020 was applied for age calculation (see main text for further details).

Sample n K [%] Th [µg g−1] U [µg g−1] De [Gy]

Rom-86-221-1 9 1.20 ± 0.07 14.20 ± 0.91 3.60 ± 0.23 179.1 ± 9.5
Rom-86-221-2 6 1.27 ± 0.07 14.19 ± 0.90 3.79 ± 0.25 133.4 ± 7.2
Rom-86-221-3 9 1.36 ± 0.08 13.96 ± 0.88 3.85 ± 0.25 92.0 ± 4.8

Sample Ḋα,eff [Gy ka−1] Ḋβ [Gy ka−1] Ḋtotal [Gy ka−1] Age [ka]

Rom-86-221-1 0.506 ± 0.292 1.460 ± 0.089 3.281 ± 0.344 54.6 ± 6.4
Rom-86-221-2 0.519 ± 0.300 1.525 ± 0.092 3.398 ± 0.354 39.3 ± 4.6
Rom-86-221-3 0.519 ± 0.300 1.583 ± 0.097 3.485 ± 0.356 26.4 ± 3.0
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Figure 6.6: Plots of De versus Ln/Tn for three samples. The graphs show the obtained SAR
De’s of each aliquot against the sensitivity corrected natural TL signals (Ln/Tn). Samples of type
2 (Rom49, Rom118) yield large spreads of De’s and Ln/Tn’s (a, b), whereas a more narrow De

distribution and Ln/Tn range is characteristic for sample type 1 (here Rom35; c, d). For further
information, see main text.
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for an example of application to OSL data). Here, low scatter of Ln/Tn’s in line with a

narrow De distribution stands for sample homogeneity and accurate SAR performance. In

contrast, both large dispersion of De’s and Ln/Tn’s indicate either non-uniform dose dis-

tribution within the sample, poor sensitivity correction in the course of the SAR sequence

or a combination of these factors (while a spread of Ln/Tn is reflected in a corresponding

spread of De’s, i.e. a certain relation between both is expected).

Fig. 6.5 shows the respective plots for three samples, including 8 mm and 2 mm data

for Rom35. The De spread and interrelation of the depicted quantities correlate with the

categorization of the samples in types 1 and 2. Type 1 samples (two distinct TL peaks in

the high temperature region) show a significantly more clustered De distribution with one

or two outliers at maximum, whereas for type 2 samples the De values are spread more

continuously and the range of Ln/Tn is about three times larger than for type 1. Pre-

vious investigations suggest that samples from Româneşti-Dumbrăviţa I may be affected

by zones with elevated radioelement content (hot spots/zones) (Schmidt et al. 2012;

Schmidt et al. 2013). Working with both bulk dose and bulk dose rate values would thus

introduce systematic errors in age determination which are hardly to quantify, as discussed

in detail in the cited papers. In particular, the direct proportionality of dose and dose rate

cannot be maintained, as, for instance, the α-efficiency in hot spots may vary with increas-

ing dose so that the here determined a-value must not be applied. For final De calculation,

outliers according to Dixon’s outlier test (Rorabacher 1991), such as the highest De of

Rom35 in Fig.6.6 (lower left), were hence discarded because they are most likely influenced

by dose rate peaks. Since the measured bulk dose rate is, however, influenced by spatially

constrained zones with high radioelement content (to a hardly quantifiable degree), the

actual dose rate experienced by grains far away from hot spots/zones (i.e., those thought

to contribute to the remaining De distribution) is certainly lower than the measured one.

Therefore, SAR ages presented here should be regarded as minimum ages. This was seen

as the best way to handle the specificities of the TL samples.

For final age calculation and archeological interpretation, we selected only dates of sam-

ples that exhibit proper luminescence behavior and thus proved to act as reliable dosime-

ter. Therefore, samples of type 2 were rejected. The remaining data set (MAAD and SAR

ages of type 1 samples) showed one outlier (low temperature age of Rom346) accord-

ing to Dixon’s outlier test (Rorabacher 1991). Application of the Shapiro-Wilkins-test

(α = 0.05) confirmed the origin of individual dates from normally distributed data and

thus allowed calculating the weighted average of MAAD and SAR ages.

The reduced data set including only type 1 samples gives weighted average ages of

45.0± 1.5 ka (n = 3) for MAAD measurements, 40.0± 1.4 ka (8 mm, n = 6) for SAR

measurements and 45.1± 1.6 ka for the SARA protocol (n = 3). These dates partly contain

ages from two peaks of the same glow curves in case a De(T )-plateau was observed for

both peak ranges. Except for sample Rom72, SAR ages obtained for small aliquots (2 mm)

agree within uncertainty with those of large aliquots, although the average age based on
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6.7 Discussion

2 mm data only is slightly younger (38.2± 1.9 ka, n = 4). Considering both large and

small aliquots gives a SAR weighted average age of type 1 samples of 39.3± 1.1 ka, which

is statistically not discriminable from the date of large aliquots only. Furthermore, as

indicated above, SAR ages must be considered as minimum ages, because the bulk dose

rate might be overestimated due to the likely presence of radiation hot spots rich in

radioelements. This implies that the true age of the last heating of the artefacts most

probably lies in between the SAR and MAAD dates. Taking all type 1 dates together

results in a weighted average age of GH3 of 40.6± 1.5 ka.

The vertical spread from which artefacts from GH3 were excavated covers a range of

∼ 25 cm. This would imply either a succession of several find layers representing repeated

occupation over thousands of years or reworking and/or dislocation of lithics after the

initial abandonment. The latter hypothesis is supported by the fact that artefacts from

different finding depths could be refitted and the general typological uniformity of the

collection of GH3 which impedes its further division into meaningful archeological layers.

In terms of the key question of this paper – the dating of the last fire exposure of heated

artefacts and hence the time of occupation – the issue of post-depositional reworking is

of secondary importance as far as the external dose rate has not changed significantly

through time. Indeed, the measurements of the environmental radionuclide concentrations

at different burial depths (Section 6.6.1) indicate that this was not the case.

6.7.2 OSL ages

Obtained OSL ages are stratigraphically consistent. While De’s could be determined with

comparatively high precision – what is typical for fine grain samples –, the major sources

of uncertainty lie in the moisture content that cannot be estimated more precisely than

20± 5 % (Balescu et al. 2003; Timar-Gabor et al. 2011) and the error range used for

α-efficiency.

The fine grain OSL age below the find layer of 54.6± 6.4 ka fits well to obtained TL ages

and provides an upper age limit for them. This gives further confidence for excluding type

2 TL samples from which many yield dates older than the OSL age from below GH3. The

OSL age determined for the find layer (39.3± 4.6 ka, Rom-86-221-2) is in good agreement

with the TL SAR ages obtained for heated lithics of type 1, coincides with MAAD TL

ages (within 1σ uncertainty) and thus with the average age of GH3 of 40.6± 1.5 ka. Given

the well-founded assumption that optical dates represent the last daylight exposure, the

OSL age determined for the find layer provides a lower age limit for the heating event of

the artefacts. Furthermore, this date proves that conditions of environmental irradiation

did not change significantly through time, e.g. by surface re-exposure of artefacts. In this

respect, perfect coincidence is achieved between the strict TL minimum age (39 ka, SAR

protocol, including 2 mm aliquots) and the OSL age for GH3. Furthermore, agreement in

OSL ages and TL SAR ages in particular places confidence in the reliable performance

of the TL SAR measurement protocol which is not yet routinely applied in silex dating.
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Thus, both TL of heated lithics and OSL of sediments supply a coherent chronometric

placement for the Aurignacian assemblage at Româneşti-Dumbrăviţa I. For further OSL

ages of this site and their sedimentological interpretation, see Kels et al. (subm.).

6.7.3 Archeological and paleoanthropological implications

As mentioned above, the Banat Aurignacian from Tincova, Coşava and Româneşti-Dumbră-

viţa has constantly been a subject of typological comparisons, evoking a number of similar-

ities on a European scale (Mogoşanu 1972; Mogoşanu 1983; Kozlowski & Kozlowski

1975; Hahn 1977; Chirica et al. 1996; Băltean 2011; Demidenko & Noiret 2012).

The general typological structure of these inventories suggested a direct connection to the

Central and Eastern European Krems type Aurignacian (with a single conventional date

of the eponymous site of ∼ 35 ka uncalBP or 40.7 ka calBP), including Siuren I, Units H

and G (Demidenko et al. 1998; Demidenko & Otte 2007; Demidenko et al. 2012) and

Beregovo I (Usik 2008).

In the last decade, the single layered settlement at Tincova was seen as particularly

expressive for joining the Protoaurignacian phenomenon, on the basis of the dominance

of continuous blade core reduction sequences, which resulted in blades and then elon-

gated bladelets with a straight profile, modified into Krems points and Dufour sub-type

bladelets. The Protoaurignacian assignation of Tincova was reinforced by the alleged rarity

of carinated scrapers and typical Aurignacian retouch (Teyssandier 2003; Zilhão 2006;

Teyssandier et al. 2010; Tsanova et al. 2012). Partially due to the selective publish-

ing and illustration in previous works, the Româneşti-Dumbrăviţa and Coşava collections

were generally ignored. However, if one holds on strictly to the same techno-typological

perspective, the newly excavated cluster in GH3 at Româneşti-Dumbrăviţa I represents a

better candidature for an association with this technocomplex.

In fact, the newly recovered industry from GH3 at Româneşti-Dumbrăviţa I displays

more “archaic” features than Tincova or other Banat assemblages, quite visible, for in-

stance, in the core structure (only two carinated nuclei), the higher frequency of bladelet

rectilinear profiles and especially in the abundance of Dufour sub-type bladelets with alter-

nate retouch placement. Aurignacian blades and retouch are also rare. Thus, Româneşti-

Dumbrăviţa I GH3 clearly documents a bladelet/micro-blade (rather than blade) pro-

duction that matches Protoaurignacian better. The new TL data (average age of GH3

of 45.6∼ 1.6 ka) presented here strengthen this attribution, fitting in the acknowledged

chronological range of the Protoaurignacian/Early Aurignacian across Europe in calibrated

radiocarbon terms (Zilhão 2006; Higham et al. 2011; Higham et al. 2012).

Notwithstanding, as noticed throughout our studies, the Banat assemblages, especially

Româneşti-Dumbrăviţa I, also feature a combination of Proto- and Early Aurignacian

traits (Sitlivy et al. in press; Sitlivy et al. 2012). This trend was recently observed

in different regions of Europe, e.g. in perspective of the “mixed” look of the lithic as-

semblage C 4c4 at Isturitz, sandwiched between Proto- and Early Aurignacian industries
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and dated to 37,180± 420 a uncalBP (Normand & Turq 2005; Szmidt et al. 2010), or

dissociated bladelet production system in Fumane, layers A2, A3 (Broglio et al. 2005)

with new radiocarbon ages of ∼ 35.5 ka unclBP or 41.8 and 40.8 ka calBP (Higham et al.

2009; Higham et al. 2011). Further uncommon associations, such as split-base points and

Protoaurignacian lithics, were also reported (Szmidt et al. 2010). In addition, new ra-

diocarbon ages of some key sites in South-eastern and Central Europe evidence not only

a greater antiquity than previously thought, but also show that quasi-contemporaneous

industries may be quite different. For example, at Franchthi Cave, the lithic assemblages

with the CI tephra (corroborated by new ages of 35 ka uncalBP or 39–40 ka calBP) ap-

pear totally “non-Protoaurignacian” and fully Early Aurignacian/Aurignacian 1 (Douka

et al. 2011). Recent researches at Willendorf II/layer 3 evidence the early Aurignacian and

dated to around 38–39 ka uncalBP, evoking the early Aurignacian technology of South-

ern Germany (e.g. Geissenklösterle, AH III) and Aurignacian I in France, (Nigst 2006;

Nigst & Haesaerts 2012). These finds, much like the newly obtained chronology of the

Early Aurignacian at Geissenklösterle (Higham et al. 2012), seriously threaten the clear

cut techno-typological and chronological distinction between the Proto- and the Early

Aurignacian (Mellars 2006).

Inner functional variability and/or a currently underreported Aurignacian stylistic man-

ifestation might be equally responsible for the mixed technological features we also noticed

in Banat. To current knowledge, it is premature to postulate an intermediary unit, what-

ever the label used. It is worth noticing, however, that this phenomenon currently dis-

plays a comparably vast and early dispersal across Europe, partially matching both the

Protoaurignacian and the Early Aurignacian. Moreover, its chronological range appears

statistically indistinguishable from them as well.

6.8 Conclusions

Although the dated lithics provided some methodical challenges, we could show that a

multiprotocol approach allowed the determination of the firing time of some of the burnt

artefacts from GH3 at Româneşti-Dumbrăviţa I. Owing to early onset of dose satura-

tion and scarce sample material of some specimens, multiple-aliquot protocols failed in

numerous cases, and single-aliquot procedures were tested for their accuracy. Adequate

sensitivity correction throughout the measurement sequence is crucial here and, accord-

ing to the degree of successful correction, we could divide the samples into two groups.

Using further dosimetric considerations and analysis of De-Ln/Tn-plots, we were able to

distinguish valid TL ages from those ages likely influenced by systematic errors. The dated

samples were most likely heated between 39.3± 1.1 ka (weighted average of SAR type 1

ages which represents the minimum age) and 45.0± 1.5 ka ago (weighted average of MAAD

type 1 ages, practically identical to SARA type 1 ages). Consideration of all type 1 ages

gives an average age of GH3 of 40.6± 1.5 ka. This could be confirmed by quartz OSL fine

grain ages of the find layer (GH3).
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The unexpectedly old individual dates of ∼ 39–45 ka for the Aurignacian industry at

Româneşti-Dumbrăviţa I GH3 highlight the complexity and industrial variability of this

technocomplex in its initial phases. However, the recent comprehensive observations made

on the lithic collections show the vulnerability of the narrow archeological definitions of the

Proto-/Early Aurignacian, leaving their application open to debate. Although still based

on work in progress, the large series of common features linking Româneşti-Dumbrăviţa I,

Coşava and Tincova strongly suggest that the latter observation holds for the entire Banat

record. Further refining the chronological and taxonomic status of these industries would

prove crucial for the key scenarios related to the Aurignacian penetration towards Western

Europe. To current knowledge, however, on both geographical and chronological grounds,

the Banat settlements seem to occupy an intermediate position between the Balkans –

e.g. Kozarnika, ∼ 39 ka uncalBP (Sirakov et al. 2007; Tsanova et al. 2012) – and some

Central/Eastern European (e.g. Willendorf II, layer 3, Krems-Hundssteig, Beregovo I)

comparable occurrences (Protoaurignacian/Early Aurignacian).

At the same time, the recently documented chronology fits well to the wide-scaled

Eurasian scenario of AMH dispersal. More or less explicitly, given their geographical prox-

imity, the Protoaurignacian at Tincova was seen as the likely cultural proxy for the Oase

AMH finds (Zilhão 2006; Băltean 2011). It is now obvious that Româneşti-Dumbrăviţa

I, statistically overlapping the chronology of the Oase fossils (∼ 35 ka uncalBP and 40.7 ka

calBP) may claim a similar status. At minimum, the early timing for this fully Upper

Paleolithic industry, lacking any connection to the local Middle Paleolithic, reinforces the

impression of allogeny for the Aurignacian technological package in this European area.
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Grenoble.

Chirica, V., Borziac, I., Chetraru, N., 1996. Gisements du Paléolithique supérieur ancien
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Lai, Z. P., Zöller, L., Fuchs, M., Brückner, H., 2008. Alpha efficiency determination for

OSL of quartz extracted from Chinese loess. Radiation Measurements 43, 767–770.

Lai, Z., Murray, A. S., Bailey, R. M., Huot, S., Bøtter-Jensen, L., 2006. Quartz red TL

SAR equivalent dose overestimation for Chinese loess. Radiation Measurements 41, 114–

119.

Li, S.-H., 2001. Identification of well-bleached grains in the optical dating of quartz. Qua-

ternary Science Reviews 20, 1365–1370.

Liteanu, E., Ghenea, C., 1966. Cuaternarul din România. Studii tehnice şi Economice Seria
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Romanie). Dacia N.S. 16, 5–27.
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from the Mousterian site of Bérigoule, Murs, Vaucluse, France. Journal of Archaeological

Science 34, 532–539.
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7 Applied dating: Further case studies from

Paleolithic sites

From different study areas of the CRC 806, sets of heated silex artefacts were handed

out for TL dating. The time of the last heating was estimated under consideration of

the methodological results from previous chapters (especially those dealing with dose rate

distribution). Mainly three reasons promoted the use of single-aliquot regenerative-dose

(SAR) protocols instead of, or in combination with multiple-aliquot additive-dose (MAAD)

procedures. Firstly, more than half of the artefacts were too small or of “disadvantageous”

shape to extract enough material for MAAD sequences. Secondly, De distributions ob-

tained by SAR measurements helped to assess the degree to which the sample is affected

by radiation hot spots. Finally, SAR protocols allow comparing age estimates using dif-

ferent TL emissions (e.g. blue and red emissions) what provides a further check of the

validity of the results (if ages agree).

While the red TL (RTL)-SAR protocol has been tested and applied successfully to silex

artefacts (Richter & Krbetschek 2006), the method’s applicability to other emissions

such as the often dominant blue emission has not been investigated so far. To address

this topic seems the more important as there are types of siliceous materials completely

lacking an orange-red TL emission (see the samples described in Section 6.3.2.2). Since

emitted luminescence in the UV range does not show ideal properties for dating and sample

preparation (Richter et al. 1999) and is mostly of low intensity, the blue emission centered

at ∼ 475 nm and its suitability for SAR dating was studied in detail. Dose recovery tests on

archeological samples and laboratory-heated raw material served to check the accuracy and

precision of the technique. As the only samples, artefacts from the site Vale Boi (Portugal)

originate from archeological strata already dated by 14C, thus delivering independent age

control.

7.1 General measurement parameters and procedures

All silex samples were mechanically and chemically prepared as described in Section 6.3.1.

For large samples that yielded at least ∼ 0.6 g prepared material, MAAD protocols were

measured using either the UV-blue (centered at ∼ 410 nm) or the blue emission (centered

at ∼ 475 nm); transmission characteristics of the filter combinations are shown in Fig. B.1.

Details on the detected wavelengths for individual samples are given in the sections for
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Vale Boi 
Las Palomas 

Sodmein Cave 

Româneşti-Dumbrăviţa 

Figure 7.1: Study area of the CRC 806 and TL dated sites. The arrows represent the spread
of anatomically modern humans from the source region to Central Europe. The dashed arrow
indicates that this route is still a matter of debate. Map modified from www.freeworldmaps.net
(accessed 22/07/2012).

each site. Smaller artefacts were dated by use of the SAR protocol for which DRT’s on

laboratory-heated silex raw material as well as on archeological samples confirm at least

satisfactory performance using the blue emission (< 9 % deviation of recovered and given

dose, see Sections B.2.1 and C.1.2). Red TL DRT’s yielded similar results, as is described

in more detail in Section B.2.2. Since individual samples showed substantially different

amounts of sensitivity changes (with implications for the accuracy of the SAR protocol),

DRT’s were conducted for each specimen whenever enough sample material was available.

For all samples, large aliquots (8 mm diameter) were used and the heating rate was set to

5 K s−1 for UV-blue and blue TL measurements, and to 2 K s−1 for RTL measurements. All

multiple-aliquot data were normalized using the equal pre-dose second glow procedure, i.e.

all aliquots received the same cumulative β-dose prior to measurement of the normalization

dose (see also Section 6.3.2.1). For TL measurements, the OSL unit was removed from the

Risø reader to reduce the distance of the sample to the detector and thus to enlarge the

amount of collected photons.

Alpha-efficiency was determined by comparing the TL intensity (of the same tempera-

ture interval as used for De calculation) of annealed fine grain material (4–11 µm) induced

by α-radiation delivered by a monoenergetic 241Am-source with the intensity induced by
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a known dose from a 90Sr/90Y β-source. The used α-source has an activity of ∼ 30 MBq

and delivers to α-thin layers of fine grains 0.167± 0.005 Gy s−1, respectively generates

0.813± 0.026 µm−2 min−1 of α-tracks within the sample. Alpha-irradiation was performed

evacuated at ∼ 10 mbar in the Lexsyg Research reader of Freiberg Instruments. Beta-

sources of the Risø readers delivered dose rates between ∼ 0.10 and 0.15 Gy s−1 with a

calibration error of 5 %.

Finely ground material of the cores of the silex samples served to determine the internal

concentration of K, Th and U by ICP-MS, from which the internal dose rate was calculated

according to the conversion factors given in Adamiec & Aitken (1998). Sample prepara-

tion for ICP-MS analyses and measurement procedures were as described in Section 4.2.

To assess the performance of the SAR protocol and the degree of uniform dose distribu-

tion within each sample, obtained single De’s were plotted against the corrected natural

luminescence intensity (Ln/Tn). Even for idealized measurement conditions (e.g. a DRT),

a natural variation of Ln/Tn values is expected, which is reflected in a corresponding vari-

ation of De values. Comparing the spread of De’s from DRT’s on the one hand and from

natural dose measurements on the other hand allows appraising if natural De results are

“overdispersed”. In contrast to sediment samples, where overdispersion may be attributed

either to microdosimetry, postdepositional mixing, heterogeneous bleaching of grains or

a combination of these factors, overdispersion in adequately heated silex samples is ex-

pected to arise solely from non-uniform internal dose distribution caused by hot spots

or hot zones. A narrow De distribution (comparable to the DRT results) hence suggests

largely uniform internal dose distribution on the scale of the used aliquot size. It must be

noted, however, that due to limited machine capacity and low amounts of sample material

at most 10–20 aliqouts per sample could be measured, which is not enough to determine

statistical parameters, e.g. the overdispersion parameter (Galbraith & Roberts 2012).

A narrow range of observed Ln/Tn values indicates homogeneous luminescence properties

between aliquots of one sample and proper correction of sensitivity changes in the course of

the SAR sequence. A large spread of Ln/Tn between aliquots, however, denotes that there

is no common growth curve and that sensitivity correction by a test dose does not work

reliably in these cases. Examples of De-Ln/Tn-plots for DRT’s and natural dose measure-

ments of the samples from Sodmein cave are shown in Fig C.6. Additional measurement

results (heating plateau tests, results of the DRT’s and De-Ln/Tn-plots) for all samples of

the following sections are given in Chapter C.

7.2 Vale Boi (Portugal)

7.2.1 Geographical and archeological setting of the site

About 2 km from the Atlantic coast, the site (and village) Vale Boi is located in a limestone

valley in the southwestern part of the Algarve, Portugal (37◦ 05 ’23” N, 8◦ 48 ’34 ” W). The

site itself ranges from the Terrace, a plateau a few meters above the valley floor, via a
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slope to a rockshelter in a limestone outcrop at the top of the ridge (Fig. 7.2) (Bicho et al.

2003; Manne et al. 2012). Especially the Terrace locality yielded comprehensive cultural

layers from the Mousterian to the Neolithic, including Gravettian, Solutrean, Magdalenian

and Mesolithic strata. Layers 4 and 5 contain Gravettian assemblages, with layer 5 being

the earliest dated Gravettian on the Iberian Peninsula (Manne et al. 2012; Marreiros

et al. in press). The good preservation of faunal remains at this site allows studying the

diet of site occupants and related exploitation of oceanic and terrestric resources over a

period of at least 10 ka (Bicho & Haws 2008; Manne et al. 2012; Bicho & Haws 2012).

Figure 7.2: Setting and localities of the Vale Boi site. From Manne et al. (2012).

The loamy deposits of Layer 4 bore several heated, gray to dark-gray flint artefacts

which were collected for TL dating. In terms of this study, not the novelty of the date

itself is of relevance, but the fact that independent age control of the Gravettian layers is

available in form of radiocarbon dates. This enables a check of the general accuracy of the

method.

7.2.2 Methods for dose and dose rate determination

Fire exposure of the chosen artefacts was obvious from potlids, craquelation and the color

alteration towards dark gray. The four pieces having sufficient size for TL dating were

prepared according to the procedure given in Section 6.3.1. Scarcity of sample material

impeded the use of coarse grain multiple-aliquot techniques for De determination, so that
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7.2 Vale Boi (Portugal)

the TL-SAR protocol was applied to the strong emission in the blue band. The MAAD

procedure could be conducted on fine grain separates only for the two biggest samples. To

ensure the applicability of the SAR protocol to this set of samples, a DRT was carried out

as described in Section C.1.2, administering recovery doses in the range of the expected

De. Furthermore, the influence of annealing temperature and duration prior to artificial

irradiation was studied while (1) performing a cutheat to 500 ◦C or (2) holding at 400 ◦C

for 1 h.
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Figure 7.3: TL glow curves of sample VBT2 recorded in the course of the blue TL-SAR protocol.
(a) Natural and regenerated glow curves after background subtraction. (b) glow curves of a fixed
test dose of 7 Gy, recorded in between the regeneration cycles.

The site of Vale Boi exhibits a mixture of compacted loam and interspersed limestone

rocks and boulders of varying size, and thus heterogeneity of the environmental radiation

field is expected. Since the original findspots of the artefacts and their underlying deposits

have already been destroyed at the time of visit and artefact inspection, no in-situ mea-

surements of γ-radiation could be performed. Assessment of the strength of the radiation

field by dosimeters buried in exposed walls of the excavation was seen as tainted with con-

siderable uncertainties, due to the random occurrence of limestone rocks being generally

poor in radionuclides. The impossibility of reconstructing the exact irradiation geometry

of individual artefacts thus introduces a considerable level of uncertainty into the determi-

nation of the external dose rate. The best approach was seen in collecting representative

sediment samples from corresponding layers in the excavation walls for laboratory ana-

lyses. Although this approach suffers the similar shortcomings as the dosimeter method,

it additionally enables a check for radioactive disequilibria. For age calculation, the mean

of the radioelement concentrations determined for two sediment samples was used, and

an additional uncertainty of 20 % (due to their heterogeneity) was added to the standard

deviation. Based on measurements of sediment from OSL sampling and the site’s topogra-
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phy, the moisture content of the sediment (water mass over dry sediment) was assumed

to be 10 % over burial time, and an increased uncertainty level of ± 7 % accounted for

unknown moisture variations in the past.

7.2.3 Results

The results of the DRT are shown in Table C.1 and Fig. C.3. After sensitivity correc-

tion, excellent agreement could be observed between given and recovered dose. Using a

cutheat to 500 ◦C prior to artificial irradiation, the given dose could be reproduced within

1 %, while this value increases to 5 % if prolonged annealing at 400 ◦C was carried out to

erase the natural signal. The results of the heating plateau tests of samples from Vale Boi

are shown in Fig. C.2, the De as a function of temperature (De-plateau test) for sample

VBT2 in Fig. 7.4. ICP-MS analyses revealed low concentrations of K (< 0.03 wt.%), Th

(< 0.08 µg g−1) and U (< 0.16 µg g−1) for the VBT series, except for VBT5 which shows

enhanced U content, and VBT3 with radioelement contents ∼ 40–200 times larger than for

the other samples. Similar radionuclide concentrations were obtained by γ-spectrometry

of the two sediment samples from Layer 4. Secular equilibrium of the decay chains indi-

cates constancy of the Th- and U-induced dose rate; however past radioelement mobility

cannot be categorically ruled out. All analytical data as well as results of luminescence

measurements are summarized in Table 7.1.
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regenerative (dashed) dose response curves after second-glow normalization, fitted with quadratic
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7.2.4 Discussion of the results

When comparing the AMS radiocarbon data of the Gravettian find layer 4 of 29,278–

30,209 calBP (2σ) obtained for charcoal (Manne et al. 2012) and considering archeological
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7 Applied dating: Further case studies from Paleolithic sites

Figure 7.5: Profile at Vale Boi, showing the location of sample collection (Layer 4) and interspersed
limestone fragments. Photo: Dr. Nicole Klasen.

typology of the artefacts, the determined luminescence age must be seen as clearly too

young. For sample VBT3, the abnormally high values of internal K, Th and U as well

as their relative abundances indicate a systematical error either of sample preparation

(accidental inclusion of cortex or rim material, or imperfection of the chemical digestion)

or of mass-spectrometric measurements. Therefore, the determined internal dose rate was

regarded as not reliable and no age was calculated for this sample.

The fact that MAAD and SAR ages are very similar (although not congruent) indi-

cates that the systematic error leading to age underestimation is likely not related to the

procedures used for paleodose estimation. Moreover, alteration of the α-efficiency or the

moisture content (within meaningful boundaries) does not allow for substantially older

ages. Therefore, the significant age underestimation – taking the radiocarbon data as a

reference – might be related to dose rate overestimation or accidental light bleaching of

the measured sample material. While the outer rim of each sample of at least 2–3 mm was

removed prior to further sample preparation, bleaching and thus reduction of the archeolo-

gical dose cannot be ruled out certainly. On the other hand, the small size of the Vale Boi

artefacts impeded discarding a thicker rim. Concerning the dose rate calculation, it must

be mentioned that the deposits at the Terrace are charcterized by randomly distributed

limestone blocks and fragments of different size which are poorer in radionuclides than the

soil matrix. Guibert et al. (1998) measured radionuclide concentrations of limestone of

about one magnitude smaller than in the surrounding soil. This or a similar scenario might
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7.3 Sodmein Cave (Egypt)

apply here as well, and the γ-dose rate is prone to substantial spatial variations, depending

on the configuration of limestone blocks within the ∼ 30 cm range of γ-radiation. Although

small limestone fragments were part of the analyzed γ-spectrometry samples, the potential

influence of massiv blocks in the vicinity of the dated artefact could not be accounted for.

Due to the fact that the TL samples were submitted when the excavation was already

finished, the exact irradiation geometry (position of limestone fragments and blocks rela-

tive to the TL sample) was impossible to reconstruct. To match the radiocarbon data, the

total dose rate would have to be reduced by ∼ 50 %. Taking into account the setting of the

site with abundant limestone blocks, this scenario is absolutely conceivable. These find-

ings once more point up that careful (non-invasive) radiometric measurements (Guérin

& Mercier 2012) by specialists already during excavation or sophisticated dose rate re-

construction (Guibert et al. 1998) are a fundamental prerequisite to obtain accurate age

estimates.

7.3 Sodmein Cave (Egypt)

7.3.1 Geographical and archeological setting of the site

Sodmein Cave is situated at the narrowest position along a wadi break-through in a Ter-

tiary limestone massif about 35 km northwest of Qusir (Fig 7.6) (Pricket 1979; Moey-

ersons et al. 2002). A hogback of the Thebes limestone hosts Sodmein Cave which lies

∼ 15–20 m above the present floor of Wadi Sodmein. While seepage tunnels and dripstones

indicate that karstic processes have taken action, the evolution of the cave in the present

form can be traced back to the collapse of a former cavity. About 4 m of stratified oc-

cupational deposits make Sodmein Cave to a unique site in the Eastern desert of Egypt

(Moeyersons et al. 2002).

The special relevance of Sodmein Cave becomes evident when considering its location

along a possible corridor of dispersal of anatomically modern humans from their eastern

or southern African source region northwards to the Levant (pers. comm. O. Bubenzer).

Archeological archives preserved at Sodmein Cave may thus provide valuable information

about the time of human occupation which can further be linked to climatic proxy-data

from marine, lacustrine and terrestrial archives. According to Moeyersons et al. (2002),

faunal and floral remains of the Pleistocene record enable identifying several wet periods

from which the last interglacial (isotopic stage 5e) was the most humid one. Today’s hyper-

aridity and hostile conditions in the Egyptian Sahara further emphasize the importance of

suitable climatic circumstances to promote human mobility along this route. In particular

for the objectives of the CRC 806, Sodmein Cave hence represents one of the key sites

potentially allowing to increase the rare data records east of the Nile valley.

Although discovered in the 1970’s (Pricket 1979), excavations were conducted by the

Belgian Middle Egypt Prehistoric Project (BMEPP) of the Leuven University from 1990

onwards (Vermeersch et al. 1994; Moeyersons et al. 2002). At least ten layers could
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7 Applied dating: Further case studies from Paleolithic sites

Figure 7.6: Location of Sodmein cave (26◦ 14’ 44” N, 33◦ 58’ 28” W). Satellite image from Google
Earth (GeoEye, taken 22/11/2005, accessed 08/07/2012).

be distinguished which generally contain low artefact concentrations. The stratigraphy

of a section in sector B is shown in Fig. 7.7; more details on the cave deposits can be

found in Moeyersons et al. (1996). Following Neolithic layers B and C, layer D contains

Upper Paleolithic artefacts, and charcoal from a hearth was 14C-dated to 25.2± 0.5 ka BP.

Layers E to J yield Middle Paleolithic inventories. Radiocarbon dating of charcoal from the

disconformity of layers F and G and from organic layer G gave minimum ages of ≥ 45 ka

BP and ≥ 30/≥ 44.5 ka BP, respectively (Mercier et al. 1999; Moeyersons et al. 2002).

In the lowest layer (J complex or Middle Paleolithic layer 5), near the base of layer I, a

large hearth was excavated, composed of three ash layers that merge to one broad band

towards the cave entrance. Mercier et al. (1999) dated six heated flint fragments from

two large blocks located at the Western and Eastern end of the hearth, see also Fig. 2

in Mercier et al. (1999). All six calculated TL ages are identical within measurement

uncertainties, giving a mean of 118± 8 ka and placing the occupation of Middle Paleolithic

level 5 at the beginning of isotopic stage 5. During recent excavations in the frame of the

CRC 806, further heated flint blocks were unearthed from the Middle Paleolithic hearth

in complex J and submitted for TL dating. Detailed coordinates and the locations of the

five samples are given in Table 7.2 and Fig. 7.8.
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7.3 Sodmein Cave (Egypt)

Figure 7.7: Stratigraphy of a section in sector B along 40 m north, Sodmein Cave. The relative
height in meters (RHM) refers to the grid of the excavation, the individual layers are labeled with
letters A to J. From Moeyersons et al. (2002).

7.3.2 Methods for dose and dose rate determination

Since two of the three samples were of sufficient size (> 7 g core material after removal

of the 2 mm rim), the results of two TL emissions and two measurement protocols were

compared. Both the MAAD protocol and the SAR protocol were used for equivalent dose

determination employing the blue TL emission, while the SAR procedure allowed De

calculation for the blue and the red TL emission. For the latter, DRT’s were performed as

well.

Environmental dose rates applicable to the samples were estimated by in-situ measure-

ments with a γ-probe as well as by laboratory γ-spectrometry of collected surrounding

material. The determined moisture content of collected sediment samples from layer J

(∼ 0.5 %) does certainly not represent the mean content over the entire burial time. Firstly,

the walls of the excavation have been exposed for sustained periods prior to sample collec-

tion and thus have been dried out. Secondly, OSL samples taken from the opposite wall

of the trench gave water contents of ∼ 3.5–4.5 %. For this reason, and to take into ac-

count past fluctuations in precipitation, ages were calculated assuming a water content of

4± 3 % (water mass over dry mass of the sediment). Due to the relatively large size of sam-

ples SodTL1 and SodTL2, attenuation of external γ-radiation was calculated considering

sample shape and mass according to Valladas (1985). For the small sample SodTL0,

this effect was assumed to be negligible. Rough estimates for SodTL1 – the specimen

with the highest internal dose rate – show that the amount of γ self-dosing is less than

∼ 0.03 Gy ka−1 and non-consideration would imply an error in age of < 1.5 % (Aitken

1985). It is thus disregarded in the following.
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Figure 7.8: Excavations at Sodmein Cave and location of dated flint samples. (a) Photo showing
the position of Sodmein cave in the limestone massif and above the present floor of Wadi Sodmein.
(b) Excavated square meters in sector B; for details on the excavation see e.g. Mercier et al.
(1999) or Moeyersons et al. (2002). The arrow points towards the exposed wall with the hearths
from which the samples were taken. (c) Exact locations of the flint samples; the numbers refer to
the laboratory code used; the stratigraphy of this section is shown in Fig. 2 in Mercier et al.
(1999). All photos: Dr. Alexandra Hilgers.
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7.3 Sodmein Cave (Egypt)

Table 7.2: Codes and coordinates of SodTL samples. The samples taken in 1993 (ME93/489)
and 1995 (ME95/56) are those dated by Mercier et al. (1999). Provided by courtesy of Prof. Dr.
Philip Van Peer (Catholic University of Leuven).

Year Field ID East North Elevation Ref Correlation

2010 2040 -5.78 38.16 15.08 SodTL0 Below 1993/1995 samples
2010 2041 -5.51 38.15 15.13 SodTL1 No exact correlation
2010 2042 -5.52 37.97 15.37 SodTL2 Correlates with ME95/56
2010 2043 -4.51 38.02 14.82 SodTL3 No exact correlation
2010 2044 -5.13 37.98 15.06 SodTL4 Correlates with ME95/56
2010 2045 -4.10 39.61 14.74 SodTL5 Correlates with ME93/489
1993 ME93/489 -2.57 38.11 14.38 Upper ash layer
1995 ME95/56 -5.95 38.40 15.30 Middle ash layer

7.3.3 Results

From the six samples (SodTL0–SodTL5) selected according to their grayish-pinkish ap-

pearance induced by heating, only three proved suitable for TL dating. The others were

either no flint or calcined and brittle from heating at temperatures > 540 ◦C (Richter

& Temming 2006), so that these were excluded. The heating plateau test of the remain-

ing three samples (SodTL0, SodTL1, SodTL2) indicated complete signal resetting during

heating (Fig. C.5), what was also confirmed for SodTL1 and SodTL2 by De-plateau tests

(Fig. 7.9c).

Gamma-spectrometry of surrounding sediment indicated the absence of radioactive dis-

equilibria in the U decay chain between 226Ra and 214Bi. Although the organic-rich sedi-

ments at Sodmein Cave are prone to U mobilization in connection with percolating water,

arid climatic conditions during most of the burial time as well as the protected position

beneath a rock shelter practically preclude severe U enrichment or leaching of the cave

deposits. The combined dose rate (γ and cosmic) deduced from γ-spectrometry for the

three samples is systematically higher than the in-situ measured values by about 30–50 %.

The reason for this deviation can be seen in the limestone boulders and rocks (poor in

radionuclides) that are present in the profile, but not in the sample material analyzed by

γ-spectrometry. Since the measurements conducted directly at the findspots are seen as

representing more closely the radiation actually received by the samples and since these

values are in agreement with the data collected by Mercier et al. (1999) (in-situ with

CaSO4:Dy dosimeters), age calculations are based on in-situ-measured dose rates.

The SAR DRT’s conducted for all three samples showed large differences of recorded

sensitivity changes experienced during the sequence. While sensitivity changes remained

< 15 % after eight cycles for SodTL0 and SodTL1, they reached up to 30 % (red TL) and

45 % (blue TL) for sample SodTL2. The fact that the recycling ratios of the latter sample

are always < 1 suggests the presence of sensitivity changes which cannot be corrected

for by the test dose. Indeed, the results of the DRT for SodTL2 confirm the problem of

adequate sensitivity correction because the given dose is not recovered within measure-
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Figure 7.9: MAAD measurement results for sample SodTL2. (a) Glow curves of natural aliquots
and those having received an additive dose, after second glow normalization (not all glow curves are
shown). The records show the typical TL peak at ∼ 380 ◦C also observed for samples Sod TL0 and
SodTL1. (b) Additive- and regenerative-dose response curves (red and black, respectively), fitted
with quadratic functions, using the TL signal of the plateau region. The two lowest dose points
of the regenerative curve were not used for determination of the supralinearity correction due to
reasons discussed in Section 1.3.4.1. (c) Calculated De as a function of temperature (supralinearity
correction not yet included).

ment uncertainties, but the calculated De is overestimated by ∼ 14 % for both emissions

(Table C.2). Whereas the trend for slight dose overestimation is also observed for SodTL0

and SodTL1, deviations between given and recovered dose are < 9 %, with the RTL results

being slightly more accurate than the BTL results.

Due to small sample size, only SAR ages could be obtained for SodTL0. When assuming

similar performance of the SAR protocol during De measurement of natural aliquots and

during the DRT, a slight dose overestimation must be expected. However, the ages of

SodTL0 of 120± 11 ka and 123± 15 ka for both the blue and red emission, respectively,

are in good agreement with the ages quoted by Mercier et al. (1999) for samples 95/96

from the middle ash layer. However, SodTL0 appears to originate from below the lowest

ash layer (Fig. 7.8c). In accordance with stratigraphy, samples SodTL1 and SodTL2 yield
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7.3 Sodmein Cave (Egypt)

significantly lower ages. Since these samples are larger and DRT’s were only moderately

successful, age calculations based on MAAD measurements were also performed. Both

samples give concordant ages of 86± 10 ka (SodTL1) and 87± 9 ka (SodTL2). All relevant

analytical data, measurement results and calculated ages are summarized in Table 7.3. As

the only sample from Sodmein Cave, SodTL2 delivered an OSL signal suitable for optical

dating (see Chapter 5 for details). The date of 86± 9 ka is coherent with the TL-MAAD

age of the same sample.

7.3.4 Discussion of the results

A plot of De versus sensitivity corrected natural luminescence signal (Ln/Tn) for each

sample is shown in Fig. C.6, together with the results of DRT’s. The fact that in these

plots all De-values form a plateau (within measurement uncertainties) and the effectiveness

of the second glow normalization performed in the course of the MAAD measurements

suggest a largely uniform distribution of internal radioelements. Hence, no serious errors

related to radiation hot spots are expected. However, the spread of values for Ln/Tn, as

shown in Fig. C.6, indicates that the SAR protocol works more accurately for SodTL0 than

for SodTL1 and SodTL2. For all samples, the internal dose rate makes up at least half of

the total dose rate (up to 72 % in case of SodTL2), thus reducing the errors introduced

by heterogeneity of the γ-radiation fields and past moisture fluctuations. Although both

the blue TL and the red TL-SAR give comparable results (Table 7.3), these ages must

be considered as maximum ages, because DRT’s of the SodTL samples have proven the

tendency of dose overestimation for this protocol (Table C.2). By contrast, the excellent

performance of the MAAD measurements leaves no doubt on their accuracy. From the

methodological point of view, the MAAD ages of SodTL1 and SodTL2 are thus seen as

representing better the date of the samples’ last heating than the results obtained by

the SAR protocol, which is obviously not the best choice for the studied specimens. The

same is valid also for sample SodTL0, but its small size precluded MAAD measurements.

However, since it showed less severe sensitivity changes during SAR cycles than SodTL2,

the relative amount of age overestimation is probably < 8 %, as deduced from DRT’s. The

MAAD ages are further supported by the OSL age of 86± 9 ka obtained for SodTL2 (see

Chapter 5) which is statistically indistinguishable from the TL-MAAD age.

The calculated ages are stratigraphically coherent within uncertainties. SodTL0 comes

from below the lowest ash layer and also yields the highest age of 121± 9 ka (weighted mean

of BTL and RTL SAR results). Samples SodTL1 and SodTL2 from the lower and middle

ash layer at the western end of the trench are significantly younger, while both MAAD

dates overlap within calculated uncertainty (86± 10 ka and 87± 9 ka, respectively). When

correlating the present MAAD data with the ages obtained by Mercier et al. (1999),

significant discrepancies are noticed, while SAR ages are largely in agreement with ages

from the 1990’s. Sample SodTL0 lies stratigraphically below all samples dated by Mercier

et al. (1999), but yields a comparable date with regard to their samples from the middle and
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upper ash layer. While SodTL1 is not correlated to a previously dated specimen, SodTL2

corresponds stratigraphically to sample 95/56 of Mercier et al. (1999). The latter yields

ages of ∼ 109–119 ka, which are coherent with the blue and red TL SAR ages of the present

study, but are significantly (at 1σ level) older than the MAAD and OSL ages for SodTL2

(∼ 87± 9 ka and ∼ 86± 9 ka). Possible explanations for this mismatch might be (1) the

stratigraphic indifference of the large hearth at Sodmein Cave and thus difficulties of

unambiguous sample allocation, (2) post-depositional re-location or (3) subsurface refiring

of the dated samples.

Granted that MAAD ages are accurate, the results presented here imply several oc-

cupational phases over a period of ∼ 35 ka. As noted in Mercier et al. (1999), the TL

age associated with the lowest ash band fits to TL and OSL ages of wet periods in the

Eastern Sahara (deduced from distinct lake phases). Indeed, the TL dates of SodTL sam-

ples correlate well with interglacial periods MIS 5e (SodTL0, below lowest ash layer) and

MIS 5a (SodTL1 and SodTL2, lower and middle ash layer) (Martinson et al. 1987). On

archeological grounds, the new data might support the theory that the Nubian complex

dispersed from the Nile valley into formerly arid regions during wet climatic conditions

(Van Peer 1998).

7.4 Las Palomas (Spain)

7.4.1 Geographical and archeological setting of the site

The site of Las Palomas (36◦ 59’ 5”N, 4◦ 52’ 41”W) is located near Teba (Málaga, southern

Spain) in a karst complex of the West Peñarrubia Mountains. Karstic dissolution generated

a system of caves and morphologic elements, including the main cave, several “galleries”, a

chasm called “Sima” and a doline. The continuous stratigraphic sequences preserved in Las

Palomas as well as lithic and faunal remains and thus evidence of human occupation repre-

sent promising features of this site to contribute to the archeological and climatic record of

this region. Among the investigated bones are those of rhino, red deer, wild boar, Spanish

ibex and lynx; it is, however, still unclear whether these animals were anthropogenic prey

or died in the cave for natural reasons. Most of the discovered artefacts have been knapped

on grey flint. A preliminary analysis of the lithic tools as well as further information on

geological/geographical settings and mammal remains can be found in Medianero et al.

(2011) from where also the facts in this section are taken. Investigations of the profile along

the Sima yielded several heated flint artefacts which were separated for TL dating. The

dates shall allow a first temporal assignment of the lithic finds, as no radiocarbon dates

are available up to present. All samples eventually suited for dating originated from layers

in the lower section and were sepatared from each other ∼ 2 m horizontally and ∼ 0.4 m

vertically (see Fig. 7.10); detailed coordinates are listed in Table 7.4. In addition, seven

OSL samples were collected from the middle and lower part of the Sima section which are,

however, not part of this work.
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Figure 7.10: Drawn section of the Sima at Las Palomas, showing the lowermost 2 m. The upper
part of the 6 m profile is not shown here. Squares = silex, circles = carbon, green dots = OSL
samples and positions where in-situ γ-measurements were carried out, red dots = dated silex
artefacts with numbers according to Table 7.4. Provided by courtesy of PD Dr. Martin Kehl
(University of Cologne).

7.4.2 Methods for dose and dose rate determination

All submitted TL samples (lab code LP) were too small to provide enough material for

MAAD measurements after preparation. Before application of the blue TL SAR protocol,

dose recovery tests were carried out to assess its accuracy for the Las Palomas samples.

The recovery dose was set to 40 Gy, which is in the order of the expected De, as estimated

from initial test measurements. The protocol included four regeneration doses, a zero and a

repeat point; the sensitivity-corrected dose response curve was fitted to a single saturating

exponential function (however, almost linear dose response was observed). The results are

shown in Table 7.5. Due to very low amounts of material of sample LP11, no DRT could

be conducted.

The dose rate was assessed by in-situ measurements with the γ-probe while the holes

from OSL sampling were used (see Fig 7.10). For individual TL samples, the dose rate

values determined at the locations closest to their findspots were chosen for age calcula-

tions. Since sediments in karst caves are characterized by abundant limestone rocks and

blocks of varying size, heterogeneities of the environmental radiation is expected. This was

accounted for by increasing the uncertainty of the external dose rate to cover deviations

from the measured values which the samples could have experienced in the worst case. An

additional amount of uncertainty was added corresponding to a ± 10 % moisture fluctu-

ation over burial time. Due to the small size of all dated artefacts, internal γ-absorption

was considered as negligible.
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Table 7.4: Codes and coordinates of dated Las Palomas samples. The cited coordinates refer to
the new grid of the Sima (see Fig. 7.10).

Lab code Archeological code (old/new) x y z

LP1 1602/125 998.0650 999.7669 996.8832
LP4 1671/155 998.1182 1001.7521 997.1118
LP5 1671/155 998.1182 1001.7521 997.1118
LP7 1681/(157/167/177) 1001.7770 1000.0453 997.1665
LP11 1711/164 1001.7197 999.7884 996.7173

Table 7.5: DRT results of Las Palomas samples. n denotes the number of measured aliquots (all
were accepted).

Sample n Given dose [Gy] Recovered dose [Gy] Ratio (given/recovered)

LP1 6 40 43.4 ± 1.1 0.92
LP4 6 40 40.7 ± 0.9 0.98
LP5 1 40 42.0 ± 2.6 0.95
LP7 6 40 40.4 ± 0.9 0.99

7.4.3 Results

Heating plateau tests showed that four of the nine submitted samples have not been heated

sufficiently in the past to allow TL dating (see Figs. C.7, C.8 and C.9). Dose recovery tests

suggest that the blue TL SAR protocol is suitable for paleodose estimation of the sample

series. Within quoted uncertainty, the given dose could be recovered for three of the four

tested samples, and the deviation is ∼ 8 % for LP1. Typical glow curves and dose response

behavior for Las Palomas samples is shown in Figs. 7.11 and 7.12 for one aliquot of LP5.

Gamma-spectrometry of surrounding material of three OSL samples (Fig. 7.10, samples

1, 4 and 7, the latter being not located within the drawn profile) showed the absence of

radioactive disequilibria. The calculated ages are cited in Table 7.6 and span the range of

51 ka – 84 ka.

7.4.4 Discussion of the results

While no direct comparison could be drawn between additive-dose and regenerative-dose

protocols for the Las Palomas samples, results of the DRT indicate accurate dose estimates

of archeological samples. Of course, there could have been undetected sensitivity changes

during the first heating in the laboratory, but the trend of observed sensitivity changes

during the SAR cycles render this scenario unlikely. Furthermore, the SAR protocol ap-

peared to be the only way to date the small-sized Las Palomas samples. The low scatter of
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Figure 7.11: TL glow curves of sample LP5. Congruent glow curves of the repeated dose (35 Gy,
plot a) and of the test dose (b) confirm little sensitivity changes throughout the measurement
sequence.

the samples’ individual SAR De-values suggests a quite uniform dose distribution within

the specimens (Fig. C.10), while low concentrations of K, Th and U reduce the percentage

of internal dose rate to total dose rate to 27–43 %. Since the external dose rate plays the

dominant role, its imprecise estimation – related to unknown moisture contents in the past

and the distances of artefact find spots and in-situ measurements – leads to increased 1σ

uncertainties of determined ages.
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Figure 7.12: Sensitivity-corrected dose response for sample LP5 (RR = recycling ratio).

It is unclear at this time, whether the dated TL samples come from the same cultural

layer or not. Therefore, and due to increased scatter of obtained ages, the mean was not
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calculated. Ages are not in stratigraphic order, although overlapping within uncertainties,

with sample LP5 showing the highest age (∼ 84± 12 ka). This is particularly peculiar,

since this sample was obviously found at the same spot as LP4 which yields an age ∼ 30 ka

younger. Conceivable scenarios for this discrepancy may be (1) wrong allocation of one of

the finds (LP4, LP5) during excavation or afterwards, (2) relocation of one sample within

the profile or (3) incomplete ancient heating of LP5. At present, none of these hypotheses

can be ruled out. Although rather imprecise in terms of TL ages, the data obtained for

the Middle Paleolithic silex samples from Las Palomas allow a first assessment of the time

of Neanderthal occupation of this cave site. For the dated samples, rather poor estimates

of the environmental dose rate could be obtained, limiting the overall precision of the

TL ages. However, continuing excavations may yield further heated artefacts with the

possibility of accompanying in-situ radiation measurements and thus more accurate dose

rate data.

214



References

References

Adamiec, G., Aitken, M., 1998. Dose-rate conversion factors: update. Ancient TL 16, 37–

50.

Aitken, M., 1985. Thermoluminescence dating. Academic Press, London.

Bicho, N., Stiner, M., Lindly, J., Ferring, C., Correia, J., 2003. Preliminary results of the

Upper Paleolithic site of Vale Boi, southwestern Portugal. Journal of Iberian Archaeol-

ogy 5, 51–65.

Bicho, N., Haws, J., 2008. At the land’s end: Marine resources and the importance of

fluctuations in the coastline in the prehistoric hunter–gatherer economy of Portugal.

Quaternary Science Reviews 27, 2166–2175.

Bicho, N., Haws, J., 2012. The Magdalenian in central and southern Portugal: Human

ecology at the end of the Pleistocene. Quaternary International 272-273, 6–16.

Galbraith, R. F., Roberts, R. G., 2012. Statistical aspects of equivalent dose and error

calculation and display in OSL dating: An overview and some recommendations. Qua-

ternary Geochronology 11, 1–27.
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8 Summary and discussion

This chapter intends to summarize and discuss the main results of the present thesis and to

place the findings in a wider context. Therefore, it includes at first a general classification of

dated events with focus on archeological contexts to assess the role of thermoluminescence

of heated silex in relation to the method of radiocarbon dating. After addressing the core

findings of Chapters 2–7, a short outlook is given on possible future directions of silex

dating.

8.1 Types of dated events

Any archeological research concerned with the succession and/or contemporaneity of pre-

historic inventories is paramountly reliant on chronological information. Stratigraphic ev-

idence and thus relative references alone impede the investigation and understanding of

processes of transition, advance or retreat for which the temporal dimension is the crucial

factor. Accordingly, achievement of chronometric control for archeological “information

carriers” or related environmental archives is compulsory part of analyses of prehistoric

sites. The applicability of dating methods, however, is strongly linked to the availability of

dateable material which differs among archeological periods on the one hand and between

various environmental conditions on the other hand. The validity of temporal constraints

and relations (e.g. contemporaneity of technocomplexes) depends on both the accuracy

and precision of the dates.

Dating results – i.e. ages – are not pure numbers, but are always quoted with a confidence

interval (mostly 1σ, referring to a ∼ 68.3 % probability that the true age lies within the

cited uncertainty boundaries, assuming Gaussian distribution of measurement results).

Rather than being absolute ages, chronometric dates are thus statements on probabilities.

Increasing the confidence interval (e.g. to 2σ =̂ 95.5 %) also enlarges the likelihood of

the true age to lie within the cited range. While precision is defined by the scatter of

the data, accuracy is a measure of the deviation of determined age (mean value) and the

true age (which is of course not known in most circumstances). Poor accuracy relates to

systematic (and directed) errors which can be eliminated, in contrast to precision, being

associated with undirected errors. This means that precise ages do not necessariliy have to

be accurate and, vice versa, accurate ages can be accompanied by considerable imprecision

(Geyh 2005).

The most preferred dating method in archeological contexts is the radiocarbon tech-

nique, clearly due to the high precision of the results. If the site lacks carbon-bearing
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8 Summary and discussion

material, alternative approaches are required, such as luminescence dating that is appli-

cable to omnipresent minerals like quartz and feldspar. These two dating methods shall

be used in the following to illustrate the key question concerned with the event which is

actually being dated and how this date is related to the initial question, i.e. the processes

or events we are interested in. For each date, and especially when combining ages derived

by different methods, the value of the information with regard to the original problem

must be clarified. In this context, the typology of dated events, as introduced by Dean

(1978) and discussed by Richter et al. (2009), is particularly helpful to provide a theo-

retical framework for the issues addressed above. For the sake of simplicity and to point

out the main features, this concept is reduced to the three most important terms being of

relevance for radiocarbon and luminescence dating, following Richter et al. (2009). The

dated event is the event for which the date actually applies. On the contrary, the target

event describes the event or process of archeological relevance, in most cases the occu-

pation of a site. These two types of events do not necessarily coincide on a chronological

scale, but can show considerable and sometimes unknown temporal “offsets”, as outlined

below. The dated and the target event are linked by the bridging event whose knowledge

is a prerequisite for establishing a causative relation between the obtained age and the

initial question.

Starting with radiocarbon dating, the dated event is the death of an organism. In case

of human fossils, the dated event will mostly be identical to the target event, if systematic

errors in age determination are neglected. These errors are, for instance, connected to

the contamination of collagen by modern carbon from atmospheric CO2, leading to age

underestimation (Higham 2011). The situation becomes more complex for plant remains,

charcoal in most cases. Although implicitly assumed as originating from human fireplaces,

this relation can be demonstrated in the least archeological settings. There are mainly

two factors hampering the creation of a bridging argument to relate the death of a tree

with human agency: (1) the fire could have been a natural one, or (2) the charcoal might

have been relocated prior to final deposition (either pre- or post-depositional, e.g. via

slope wash processes or bioturbation) with the implication that the 14C age measured is

not correlated to human presence at the site. Therefore, evidence for the charcoal to be

present in-situ as well as cogent indications of a spatially confined hearth are conditions

for bringing together dated and target event (Richter et al. 2009).

Apart from the difficulty to establish the bridging event for charcoal and other plant

remains, radiocarbon dating faces further methodic challenges and limitations. Thus, a

degree of accuracy is partly pretended that is actually not given. Since an all-encompassing

illustration of obstacles in radiocarbon dating clearly goes beyond the scope of this thesis,

just a few important issues considered as most relevant are listed.

1. Owing to the half life of 14C and technical limits, the dateable range goes back not

farther than ∼ 50 ka (Geyh 2005; Weninger & Jöris 2008).
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2. It is known that the atmospheric 14C concentration was not constant over the last

50 ka, leading to temporal changes in the initial 14C/12C ratio. Nonconsideration of

this fact entails errors in determined ages; therefore 14C ages have to be calibrated

in order convert the radiocarbon scale into the calendar time scale. While the re-

construction of past 14C levels is possible with dendrochronologic datasets back to

∼ 12 ka (Reimer et al. 2009), marine, atmospheric and terrestrial archives (e.g. ma-

rine cores, ice cores, corals, U-/Th-dated speleothems) allow calibration for the last

60 ka (Fairbanks et al. 2005; Weninger & Jöris 2008). The calibration curve (ra-

diocarbon ages vs. calendar ages) implies an age difference of up to several thousand

years between calibrated and uncalibrated dates. Due to ongoing research, calibration

data and thus calibrated 14C ages change with time. Being of major archeological rel-

evance, the time interval spanning the Middle to Upper Paleolithic transition (> 35 ka
14C) is characterized by a plateau in the calibration curve, thus complicating precise

calibration in this region and reducing the value of the radiocarbon technique for this

question, see Fig. 3 in Weninger & Jöris (2008). Different calibration curves and

mathematic algorithms for transformation are combined in several calibration pro-

grams (e.g. CalPal: http://www.calpal-online.de/; OxCal: http://c14.arch.ox.ac.uk;

Fairbanks: http://radiocarbon.ldeo.columbia.edu/research/radcarbcal.htm; CALIB:

http://calib.qub.ac.uk/calib/). A comparison of these programs shows that com-

puted ages differ, depending on the program and the position on the time scale. For

Holocene dates, calibration results of programs are indistinguishable, largest devi-

ations (up to ∼ 1000 a) are observed in the region 14–20 ka 14C and 30–32 ka 14C

between the Fairbanks program and the others (Weninger et al. 2007).

3. Especially for older samples, contamination of samples with modern carbon becomes

an important issue. Post-depositional mixing in case bulk samples are to be dated, or

absorption of humic acids by charcoal are examples for which the radiocarbon method

gives too young ages for the event of interest (Scharpenseel & Schiffmann 1977;

Geyh 2005). While new preparation techniques (ultrafiltration) appear to overcome

difficulties associated with degraded collagen of bone samples, considerable parts

of archeological work and interpretations are based on dates obtained with older

preparation techniques leading to underestimated ages (Weninger & Jöris 2008;

Higham 2011). Consequently, all radiocarbon dates > 30 ka should be treated with

great care and are to be interpreted as minimum ages (Geyh 2005).

The dated event in case of OSL dating of sediments is the last exposure to sunlight of

quartz or feldspar grains. Except for sediment movements directly or indirectly caused by

human action (e.g. colluvial processes as a consequence of deforestation), the dated event

is not immediately linked to the target event (time of human settlement). Moreover, the

assumption of the last light exposure to be the actually dated event might not be fully

correct if heterogeneous bleaching or bioturbation play a role. Sampling of the (mostly
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heterogeneous) archeological find layer itself is often accompanied by “lumpy” dosimetry

and reduced precision of the obtained age which further represents a mean age of the

sampled sediment column (as e.g. given by the diameter of OSL tubes used for sample

collection). Even if the first layer of sedimentary grains deposited on an abandoned site

can be seen as temporally almost identical to the abandoning, the sampling resolution for

OSL is too coarse to actually represent this event. Hence, there is no direct connection

to establish between the sedimentation (dated event) and human presence (target event).

Nonetheless, OSL samples sandwiching the find horizon can provide bracketing ages which

may help for temporal allocation of archeological strata.

The most direct connection between the dated event and the event of archeological in-

terest must be attributed to thermoluminescence dating of heated artefacts. Rapid heating

of silex usually causes mechanical damages, increased brittleness and thus often a degrada-

tion of raw material (see Section 1.2.3), so that the firing of lithics is seen as being related

to their discard and hence the actual occupation of the site. Accordingly, this method most

directly reflects human presence with dated and target event being almost congruent. Of

course, the possibility of natural fires must be taken into consideration, but several rea-

sons point to human campfires in most circumstances, as discussed in Section 1.3 and in

Richter et al. (2009). Most importantly, the temperatures of most wood and grassland

fires are too low to completely reset the TL signal, and spatially confined signs of heat

impact (burnt soil, distribution of heated artefacts) instead of their vast spread, as would

be indicative of natural fires, clearly favors an anthropogenic cause of fire (Bellomo 1993;

Richter 2007b).

8.2 The role of the internal dose rate for silex dating

In luminescence dating, the preferred condition of constant radiation fields through space

and time is given only in the rarest cases. Apart from spatial gradients of environmental

radiation, its temporal fluctuation, e.g. due to changes in moisture content or radioac-

tive disequilibria, is among the most crucial imponderabilities limiting both dating accu-

racy and precision. Unlike the majority of quartz samples, silex often contains significant

amounts of radionuclides. The resulting internal dose rate can be boon or bane: if uni-

form and comparable to or larger than the environmental one, the constancy of self-dosing

through time reduces the dependence on the – not exactly known and potentially unsteady

– external radiation. In other words, the higher the percentage of internal to total dose rate

is, the lesser will be the uncertainties related to lumpy and changing external dosimetry

(Richter 2007a). However, if internal K, Th and U are not evenly distributed among

the sample’s interior, but concentrated in so-called “hot spots” or “hot zones”, microdosi-

metric effects will mask the benefits from high internal dose rates. Using homogenized

samples (powder, grains) for measurements, the following effects are expected, while the

absolute and relative importance of each depends on the individual configuration of α-

and β-emitters within the sample:
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1. Enhanced scatter of multiple- and single-aliquot data in case of low density of hot

spots, and thus reduced precision of dates. Because the complex natural radiation

field cannot be reproduced in the laboratory, normalization procedures are not ca-

pable of fully compensating for aliquot-to-aliquot scatter.

2. High K, Th and/or U concentrations in hot spots/zones cause rapid saturation of

charge traps in their vicinity (a few tens of µm for α-radiation and ∼ 1–2 mm for

β-radiation, see Section 1.3.3). This is not accounted for by application of calculated

bulk/mean internal dose rates, leading to age underestimation.

3. Alpha-track overlap in and close around α-hot spots further decreases α-efficiency,

which is usually not considered in the course of bulk sample measurements and again

causes age underestimation.

Consequently, it becomes evident that any correlation between dose sensitivity of the

material and its radioelement distribution accounts for systematic errors of bulk lumines-

cence ages. The present thesis addressed the question whether and to what degree there

are heterogeneities of internal radiation fields of silex samples and if their characteristics

(uniformity, strength) cause the above listed effects to play a significant role. Some studies

already approached this question during the past four decades (see Sections 3.1 and 4.1

for a summary). However, these investigations were either based on one element only or

limited in their spatial resolution (e.g. comparing two halfs of one specimen). Further-

more, they covered only a few samples of silex, a material which is known to exhibit great

variability (Section 1.2). Therefore, complementary methods and modern techniques were

applied here to study both the degree of uniformity of internal radiation fields and absolute

concentrations of radioelements present in over 20 different specimens.

The imaging plates used in β-autoradiography allow taking an image of the intensity of

β-radiation at the plane surface of a cut silex sample. Resulting digitized images provide

a qualitative assessment of strength and spatial variability of β-radiation, according to

the gray-values (the α-component is completely shielded and γ-radiation causes uniform

blackening). Moreover, regions of high β-activity can be traced back by comparison of

autoradiography images and the sample surface itself. The results show that most silex

samples contain β-emitters at or below the detection limit of this method since it is difficult

to distinguish background noise from sample signals, even after prolonged exposure times.

A few samples, however, caused clearly visible black spots or lines on the autoradiographs

which can be relocated at the sample surface as dark spots or cracks, obviously filled with

foreign material (Fig. 3.3).

The record of β-homogeneity was supplemented by α-autoradiography because the latter

often plays an important or even dominant role in self-dosing. Polycarbonate plates (CR-

39), attached to the same sample surfaces as used for β-autoradiography, conserve the

impact of α-particles which are visible as α-tracks after development (etching) of the

221



8 Summary and discussion

detector. Besides qualitative evaluation of Th and U distribution, a statistical approach was

applied to determine the degree of homogeneity. This approach included a Matlab routine

for automatic track counting and localization for employing a classification method for

point fields as used also in other subjects (e.g. animal or vegetation ecology). With certain

levels of confidence, the present track field could be assigned as random (=̂ uniform Th and

U distribution) or clustered (=̂ α-hot spots or zones) for varying spatial resolutions. While

about half of the samples do not show clustered α-tracks, as assessed by visual inspection,

statistical assignment proves that the vast majority yields more or less clustered α-activity.

As expected, averaging takes effect at coarser scaling what is obvious from comparison of

the classification results of 0.5 mm, 1.0 mm and 2.0 mm resolutions (Fig. 3.5).

Finally, absolute concentrations of radioelements in the same set of silex samples were

determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

This modern technique enables determining the elemental composition down to ng g−1 lev-

els of sampled volumes as small as 1/1000 mm3, providing a detailed picture of K, Th and

U contents in the siliceous matrix, cracks and inclusions. In addition to radioelements,

more than 20 other major, minor and trace elements were measured for geochemical

characterization of impurities which are present in virtually all silex samples. The fin-

ding of autoradiography investigations could be confirmed by LA-ICP-MS measurements:

Whereas pure silex contains mostly low amounts of K (< 0.1 wt.%), Th (< 0.4 µg g−1) and

U (< 1.0 µg g−1), impurities such as filled cracks and mineral or organic inclusions yield

radioelement concentrations up to two orders of magnitude higher than those of the ma-

trix. As also evident by autoradiography, the color of impurities roughly corresponds to

radionuclide contents, i.e. dark color mostly indicates high radioactivity. To evaluate the

consequences when determining the internal dose rate from K, Th and U values of bulk

samples, comparative measurements were carried out, opposing matrix concentrations as

derived from LA-ICP-MS to bulk values obtained by ICP-MS. Except for one sample,

systematically higher bulk values were found, underlining the significance of impurities

for internal dosimetry. Among others, Fe–Mn-oxy-hydroxides, Ca or Mg carbonates, clays

and phosphates are shown to be part of sampled cracks and inclusions.

The three-dimensional distribution of impurities does not follow any regular pattern,

varies from sample to sample and is thus difficult to predict for the specimen as a whole.

However, for the majority of samples, only a small fractional volume is occupied by hot

spots/zones, implying that sample homogenization at a coarse grain scale (∼ 100–200 µm)

might not be sufficient to average out the rare occurrence of regions with highly elevated

activity, even when large aliquots (> 1000 grains) are used. In other words, measured

aliquots are expected to be influenced by hot spots to different degrees. Accordingly,

the problems listed at the beginning of this section will be of relevance, at least for a

considerable part of the studied samples.

Revisiting hypotheses/questions 2 and 3 posed in Section 1.1, the results of dosimetric

investigations prove that there are substantial gradients of internal dose rate for a notable
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part of the investigated samples, with corresponding effects on accuracy and precision of

TL ages. Therefore, alternative methods of sample preparation or measurement techniques

are required to eliminate or reduce the radiometric impact of impurities.

8.3 New approaches for silex dating: single-aliquot protocols and

optically stimulated signals

While the single-aliquot regenerative-dose (SAR) protocol is routinely applied in opti-

cal dating of sedimentary quartz, the equivalent dose (De) is mostly determined using

the multiple-aliquot additive-dose (MAAD) approach for heated silex artefacts (see Sec-

tion 1.3.4). The latter method yields valid results for homogeneous samples and well below

dose saturation. However, if these conditions are not complied, increased uncertainty may

result and De determination based on extrapolation is error-prone and requires more so-

phisticated approaches (Valladas & Gillot 1978; Mercier 1991; Mercier et al. 1992).

The motivation to study the applicability of the single-aliquot method to silex dating can

be seen in the more detailed resolution of obtained dose information. While the MAAD

evaluation returns one De value, a distribution of De values can be gathered by applying

the SAR protocol. Especially in terms of non-uniform dose distribution within the silex

sample, the more detailed information may provide valuable insights into internal dosime-

try. Furthermore, the application of the MAAD measurement routine assumes a minimum

size of the artfact to be able to extract at least 0.5–1.0 g of prepared sample material.

Indeed, a considerable part of silex artefacts dated in the course of this thesis was too

small for multiple-aliquot measurements and could only be dated by the SAR approach

(Chapter 7). The SAR protocol principally requires only one aliquot (ca. 10 mg of sample

material) for De determination. Although in practice far more than only one subsample is

measured for statistical reasons, this method allows dating samples of smaller size which

would not be dateable using MAAD protocols.

The major problem faced in SAR application is the adequate correction of sensitivity

changes occurring during repeated irradiation and heating (TL) or bleaching (OSL). Based

on only minor sensitivity changes (< 10 % for most of the measured samples) observed for

the red TL (RTL) emission of flint, Richter & Krbetschek (2006) proposed and suc-

cessfully tested a RTL SAR protocol without sensitivity monitoring and two regeneration

steps only. The red emission of silex is further known to exhibit high saturation dose levels

(see Section 1.3.2.3), making it attractive for dating older samples and to extend the date-

able age range. Own measurements, however, revealed problems related to RTL: a few silex

specimens showed an increase of test dose response of up to 80 % after 2 cycles (sample

SodTL0), confirming substantial sensitivity changes. Therefore, the RTL SAR protocol

was extended by test dose measurements in between the regeneration steps to account for

sensitivity changes. In addition, the blackbody radiation (thermal background) recorded

during RTL measurements exceeds the actual sample signal, so that poor reproducibility
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of background signals introduces additional data scatter or even precludes further analysis

of some aliquots. Section B.2.2 also adresses this topic. Moreover, samples from the site

Româneşti-Dumbrăviţa I (Romania) yielded no RTL emission at all. These reasons led to

the search for other suitable emissions for the SAR protocol. As UV luminescence signals

from silex have proven to be not well-suited for dosimetry (Richter et al. 1999; Richter

& Krbetschek 2006), the strong blue emission around 470 nm was investigated (see also

Section 1.3.2.3). Fig. B.1 shows the transmission window of the used interference filter

(HC 475/50).

The general sequence of the blue TL SAR protocol followed mainly the one usually

applied in quartz optical dating (Murray & Wintle 2000). Dose recovery tests (DRT’s)

of various silex samples (archeological as well as geological and annealed ones) served to

test the accuracy and precision of the protocol. Details and results are summarized in Sec-

tion B.2.1 and demonstrate that the given dose can be recovered within < 9 % for the two

geological and three archeological samples under investigation. Furthermore, comparison

with the results from the extended RTL SAR protocol (see above) confirms that the blue

emission produces at least equally reliable dose estimates for the studied samples. However,

direct comparison of De’s from archeological samples using blue and red SAR protocols is

not valid because α-efficiencies may be different for both emissions. In this thesis, almost

all samples were measured using more than just one detection waveband (multi-protocol

or multi-emission dating) for cross-checking protocols and obtained ages. Here, the agree-

ment of ages related to different sampled luminescence centers (those responsible for the

UV-blue, blue and red emissions) provides a confirmation of their sufficient thermal sta-

bility. Consequently, an increased level of confidence and validity of determined ages is

achieved.

The TL SAR procedure using the blue and/or red emission was applied to all archeo-

logical samples which were dated. Dose recovery tests and comparison with MAAD ages

showed that this approach is not equally suitable for all kinds of silex material. For instance,

samples from the site Româneşti-Dumbrăviţa I yielded partly poor dose reproducibility

using the blue TL SAR protocol (sample type 2, see Section 6.6.2) while excellent perfor-

mance of this protocol could be observed for samples from Vale Boi and Las Palomas. The

slight discrepancies discovered between the fine grain MAAD ages and the blue TL SAR

ages for samples VBT1 and VBT2 of 8 % and 19 %, respectively, cannot be explained at this

time. While for these samples, regenerative measurements led to higher ages than additive-

dose sequences, the situation is vice versa for artefacts from Româneşti-Dumbrăviţa I (type

1 samples); here, MAAD ages are higher than SAR ages. Age overestimation for both the

blue and red emission of samples from Sodmein Cave led to inaccurate results for this

approach, as indicated by DRT’s and comparison with MAAD ages. As the latter agree

with OSL ages (Section 7.3.3) and no problems related to severe radiation hot spots in the

samples could be evidenced to cast doubt on MAAD results, regenerative TL measure-

ments proved to yield ages systematically too old. In general, no trend became apparent
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whether the blue or the red TL emission shows more serious sensitivity changes, at least for

the samples investigated in this thesis. However, since blue luminescence mostly exceeds

the red one (based on the commonly used photomultiplier) and due to the difficulties of

reproducible backgrounds for RTL measurements, the blue TL SAR protocol is seen as

the preferable procedure. In any event, DRT’s are considered as a necessary means to as-

sess the applicability of the TL SAR protocol to the samples under study. Although there

might be sensitivity changes during readout of the natural luminescence signal (which are

not correctable by the following test dose measurement), the SAR procedure is seen as the

best approach to obtain age information, particularly for small artefacts.

Over the past decade, it has been shown that the optically stimulated luminescence

(OSL) signal of (macrocrystalline) quartz consists of several components which are related

to distinct types of trapped electron populations (Smith & Rhodes 1994; Bailey et al.

1997; Bailey 2000). These types of electron traps occur in different concentrations within

the crystal what is the reason for different saturation dose levels of the components. Espe-

cially slow -components are often characterized by comparatively high saturation doses, as

found for UV-OSL of sedimentary quartz (Bailey 2000; Singarayer & Bailey 2003).

However, in OSL dating of sediments the use of one of the slow -components is mostly

impeded by their poor bleachability. But if the luminescence signal is reset by heat instead

of light (e.g. in the case of burnt lithics), zeroing of the slow -components can be assumed

what potentially allows making use of their advantageous dose response behavior. Further

advantages of OSL in comparison to TL might lie in the less severe heat treatment in

the course of (regenerative) measurements, hence potentially less pronounced sensitivity

changes and more accurate results of SAR procedures. Therefore, one part of this thesis

addressed the topic of OSL signal composition of silex, the components’ basic properties

as well as the applicability of OSL for dating heated silex in archeological contexts.

Curve fitting was applied to LM-OSL curves to deconvolve the bulk signal of silex

samples into individual first-order components (see Section 1.3.2.4 for theoretical back-

ground). Three of the four investigated silex samples were best fitted to five components,

one sample showed an additional, heating- or radiation-induced component of very high

optical sensitivity. The bleachability of components, indicated by the value of the pho-

toionization cross-section, slightly differs from literature values, but not systematically. As

a fundamental requirement for retrospective dosimetry, the thermal stability of individ-

ual components was assessed by LM-OSL and short-shine pulse annealing experiments in

combination with curve fitting of the pulse annealing data (remaining OSL versus preheat

temperature) and the varying heating rate method (Li et al. 1997; Li 2001; Singarayer

& Bailey 2003). Indicated by thermal erosion of the OSL signal at temperatures as low as

200 ◦C, all components except the one with the best bleachability (termed component 1 )

proved to be not stable enough for dating applications spanning the Middle Paleolithic.

For component 1, however, fundamental trap parameters E and s derived from three dif-

ferent methods are in good accordance, and an electron retention lifetime was calculated
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for this component sufficiently long to be suited for dating at least the last 2 Ma. Preheat

dose recovery tests were conducted to check the general applicability of the SAR proto-

col after Murray & Wintle (2000) to silex samples. Using comparatively high preheat

temperature (260 or 280 ◦C), good agreement was achieved between given and recovered

dose, even for the sample lacking component 1. A survey among archeological, heated silex

samples showed that not all specimens yield component 1 or an OSL signal at all. How-

ever, if component 1 was present, coherent ages were obtained for two Middle Paleolithic

samples (SodTL2 and LP7) by OSL (blue stimulated and detected in the UV) on the one

hand and by TL (blue detection, MAAD and SAR, respectively) on the other hand. This

finding further proves the long-term stability of this distinct OSL component.

Experimental results of the thermal stability indicate that electron populations account-

ing for the OSL signal are not identical to that contributing to the 380 ◦C “dating peak”.

Furthermore, coherent MAAD TL ages and OSL SAR ages as well as the dose overestima-

tion observed for the TL SAR protocol (both blue and red emission) of sample SodTL2

suggest that sensitivity changes are less problematic for optical than for thermal stimula-

tion. The fact that different electron and center populations can be sampled using different

stimulation modes and detection filters opens up the possibility for an internal check of the

obtained age, as also discussed in Westaway & Prescott (2012). Since the saturation

dose of the UV OSL signal of the four investigated samples is in the same order of magni-

tude as the blue TL signal, the dating limit can probably not be enhanced using OSL. It

must be noted that the α-efficiency for UV OSL, as determined for the two archeological

samples, is significantly lower than that for blue and red TL, as also found by Tribolo

et al. (2001) for quartzite. For important samples, additional determination of the OSL

age can thus be seen as a reassuring procedure and an internal backup for the accuracy of

the TL age.

By using a photomultiplier with higher quantum efficiency and by selection of more

appropriate stimulation and detection conditions, the signal-to-noise ratio of OSL from

silex might be considerably increased. For instance, green laser stimulation in combination

with interference detection filters which are more accurately centered on the emission

peaks (e.g. 380 nm or 470 nm) would reduce Raman scattering of excitation photons (at

least for UV detection) and thus lead to higher net signal levels. In this respect, it also

remains to be tested whether comparative single grain measurements of natural dose and

administered laboratory dose (DRT) along with De-Ln/Tn-plots can provide more detailed

information about internal dose distribution within silex samples.

8.4 Applied TL dating of heated lithics: achievements and

problems

Due to less required sample material, the SAR protocol enabled dating of about 40 %

more samples in this study than would have been possible just with multiple-aliquot tech-
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niques. The TL SAR protocol has shown to work reliably for most samples, indicated by

sucessful DRT’s. In case SAR ages turned out to be not accurate, they were rejected in

the interpretation in favor of MAAD ages or, accordingly, SAR ages taken as maximum

ages (e.g. samples from Sodmein Cave). Many artefacts were at the lower size limit so

that not enough material for DRT’s was available. If, in such circumstances, only five to

seven aliquots contributed to the final De, this result is certainly less reliable than ages of

samples for which a DRT could be performed or for which additional MAAD ages could

be gathered. Nevertheless, the SAR protocol proved to be of great value to increase the

number of heated artefacts suitable for luminescence dating.

As outlined in detail in Chapters 3 and 4, non-uniformity of the internal dose rate may

result in inaccruate and imprecise age estimates. In the course of SAR TL dating of the

sample series from Româneşti-Dumbrăviţa I, it was suggested to use a plot of De versus

Ln/Tn (sensitivity corrected natural TL) as a proxy for the presence of zones within

the sample characterized by abnormally high dose rate. Accordingly, a De-plateau or a

spread of De values comparable to DRT results indicate largely uniform distribution of

radioelements. This approach, however, is valid only under the assumption that either the

hot spot concentration is comparatively low or individual aliquots carry fewer grains as to

average out differences in dose accumulated on a single grain level. Reduction of aliquot

size was mostly impeded by dim TL signals, so that it is supposed that fine imbalances of

dose distribution could not be identified. Nevertheless, substantial and spatially constraint

non-uniformities ought to be detectable by this approach. In addition, the dispersion of

values of Ln/Tn allows assessing the performance of the SAR sequence with regard to

sensitivity correction.

The problem of non-uniform internal radiation was most apparent for the samples from

Româneşti-Dumbrăviţa I. While those classified as type 2 samples (Section 6.6.2) showed

substantial dispersion of equivalent doses (compared to DRT’s), most samples of type 1

satisfied the criterion of a narrow De distribution (De-plateau within errors) to be con-

sidered for age determination of the find layer. However, selection of De values from this

plateau only (within 1σ, and discarding higher De values) in combination with a dose

rate determined on bulk sample material results in minimum ages. Thus, heterogeneous

character of the silex samples from Româneşti-Dumbrăviţa I hampered precise age de-

termination of the time of occupation, but the true age most probably lies between the

average SAR minimum age (∼ 40 ka) and the average MAAD age (∼ 45 ka). Largely uni-

form internal dose rate could be attributed to all other samples dated in this study, based

on their De-Ln/Tn-plots (Figs. C.4, C.6 and C.10). It was thus not considered necessary

to exclude any data.

The common problem faced when the external dose rate is to be assessed in excava-

tions is that the original irradiation geometry is already destroyed when the heated silex

sample for TL/OSL dating is discovered. In general, in-situ measurements of environ-

mental radiation by use of highly-sensitive artificial dosimeters (e.g. α-Al2O3:C or BeO) is
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preferred (Kalchgruber 2002; Tribolo et al. 2006; Sommer et al. 2007; Sommer et al.

2008; Schwenke 2008; Richter et al. 2010). For the samples dated in the present study,

this was not possible in all cases due to temporally limited access to the excavated sites

(Româneşti-Dumbrăviţa I) or the destruction of any sediment layers comparable to the find

layers (Vale Boi). In the event of big rocks or blocks present in archeological layers (e.g. in

caves or limestone regions), lateral gradients in γ-radiation may reach substantial extents

so that dose rates determined by buried in-situ dosimeters might not represent the “true”

values at the finding spot. For such circumstances, tedious and rather complex simulation

and reconstruction methods have been developed (Brennan et al. 1997; Guibert et al.

1998). Such simulations, however, require detailed recording of shape, size, position and

orientation of each inhomogeneity (e.g. limestone block) while excavating, being laborious

and time consuming. Guérin & Mercier (2012) propose a non-invasive/non-destructive

and successive in-situ measurement during excavation which allows reconstruction also

of heterogeneous γ-radiation fields. For archeological excavations this might be the best

approach to assess the actual environmental dose rate received by the artefact. The esti-

mation of the moisture content of artefact-bearing sediments represents a basic limitation

for increasing the accuracy and precision of a luminescence age. While the present water

content can be measured in the laboratory, this value most likely was subject to substantial

fluctuations during burial time, e.g. due to climatic changes. Upper and lower boundaries

of water content are given by dry and saturated states, but the representative mean mois-

ture content must be estimated from climatic records (if available) and/or the specific

history of the site.

The sites from which artefacts were dated in this study, entailed various and partly chal-

lenging settings with respect to environmental dose rate determination. Homogeneous loes-

sic sediments generated a uniform γ-radiation field for the dated artefacts from Româneşti-

Dumbrăviţa I, but the water content could not be contained more precisely than 20± 5 %

(Section 6.6.1). By contrast, changing moisture content over time is expected to be less

severe in cave sites, such as Las Palomas. Here, in-situ γ-probe measurements were car-

ried out at several positions in the excavated chute to best capture the radiation levels

relevant for the dated samples. However, to take into account potential temporal and lo-

cal fluctuations, an additional moisture uncertainty of 10 % was added for age calculation.

Similar conditions apply to the rock shelter Sodmein Cave with its heterogeneous deposits.

However, the moisture content could be limited more precisely to 4± 3 %, due to the fact

that the site is located in a region which has been (hyper-)arid for most of the burial

time. Limestone fragments within the occupational layers at the site Vale Boi probably

introduced severe gradients of γ-radiation which, however, could not be reconstructed be-

cause heated artefacts were handed out after excavation. The best approach possible was

to collect samples for laboratory γ-spectrometry with varying “concentrations” of lithic

fragments to assess the range of possible dose rates applicable to the artefact samples

(see Section 7.2.2). Results and comparison with radiocarbon dates obtained for charcoal
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of the Gravettian find layer show that the dose rate could obviously not be determined

correctly because TL ages are significantly younger (by ∼ 50 %) than radiocarbon data.

Other causes for this disagreement can be practically rouled out, because MAAD and

SAR protocols gave approximately identical De’s, and other influencing variables such as

the α-efficiency or the moisture content have too little impact on the calculated age as to

explain the observed discrepancies.

To conclude, the huge compositional variability of silex used for lithic tool production

requires individual assessment of dosimetry characteristics of each sample. This can be

achieved by single-aliquot measurements and inspection of the resulting De distribution

and the sensitivity-corrected natural TL of the aliquot (Ln/Tn). Of equal importance as De

determination is the careful record of environmental radiation already during excavation

of the site. The examples given in Chapter 7 illustrate that submission of heated silex

artefacts for TL dating after completion of the pit is never recommendable and leads to

valid results only in the least cases.

8.5 Outlook: spatially resolved dating of silex

The investigations in Chapters 3 and 4 have shown that radiation fields in lots of silex sam-

ples are not homogeneous. “Conventional” sample preparation comprises the crushing and

homogenization of the sample’s interior, in combination with HCl etching to destroy car-

bonates. This technique may be advantageous for homogeneous samples. It leads, however,

to reduced accuracy and precision in case inclusions or foreign phases in the sample induce

sharp peaks of dose rate. Furthermore, it cannot be ruled out that minerals other than

SiO2 are part of the measured sample material. These may show differing luminescence

behavior and distort the determined radiation dose.

These difficulties related to the general impurity of silex ask for alternative approaches,

especially for samples with severe influence of hot spots/zones which would have to be

discarded otherwise. One possible procedure makes use of single-aliquot measurements

to obtain more detailed insights into dose distribution within the sample, as shown in

Chapter 6 and Section 8.3. Discrimination between suitable parts of a sample and regions

with radioactivity peaks can be achieved by preservation of the original configuration of

radiative elements. Instead of crushing, the specimen is cut in slices which serve both

for dose and dose rate measurements. Generally, there are two approaches for spatially

resolved luminescence measurements (Greilich 2004):

1. Spatially resolved stimulation (e.g. by a focused laser beam in case of OSL) and

detection by an integrating device (e.g. photomultiplier)

2. “Bulk” stimulation and spatially resolved detection (e.g. by a CCD-camera)

For obvious difficulties of spatially resolved heating of a slice (with sufficient resolu-

tion), option 1 is excluded for TL measurements. With regard to the second option, early
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investigations on photographing luminescence emitted by quartz date back to the 1980s

(Huntley & Kirkey 1985; Hashimoto et al. 1986). Technical and methodological devel-

opments (Duller et al. 1997; Habermann et al. 2000; Spooner 2000) paved the way for

more recent and applied studies on high resolution (HR-)OSL mainly focussing on OSL-

dating the construction of monuments and buildings via the light shielding of rock or brick

surfaces (Bailiff & Holland 2000; Greilich et al. 2005). TL was recorded using imaging

systems by Spooner (2000) and Olko et al. (2008); Clark-Balzan & Schwenninger

(2012) give a more detailed review of previous research in HR-luminescence detection.

Making use of spatially resolved detection, the recorded image of the emitted TL or OSL

from a sample slice can be processed and the De of each pixel (i.e. corresponding quadrant

on the slice) evaluated individually after a SAR procedure has been carried out. At this

point, hot spots should appear as abnormally high De values, and only those pixels are

combined to a representative matrix-De that lie within aDe-plateau region. Contaminating

phases (veins, inclusions) in a silex sample will thus not further contribute to the De

distribution. Spatially resolved luminescence detection (HR-TL/-OSL) goes along with

spatially resolved dose rate determination, to be carried out after dose measurements.

Autoradiography can be used to qualitatively and – if calibrated – quantitatively check

the investigated slice for radiation heterogeneities (see Chapter 3). However, other methods

are also applicable such as neutron-induced fission track analysis, as done by Wagner et al.

(2005), or the use of LA-ICP-MS measurements to determine radioelement concentrations

at multiple spots at the measured surface. It remains to be tested whether highly sensitive

artificial dosimeters such as Al2O3:C or BeO allow assessment of the dose rate experienced

by certain regions of interest (ROIs with De-plateau). These dosimeters would have to be

placed in direct contact to the sample surface and the evaluation afterwards be made

spatially resolved, e.g. by a CCD-camera.

However, HR-luminescence dating of rock surfaces (slices) also yields challenges. Usually,

half of the entire irradiation geometry (one hemisphere, 2π) is not accessible to dose rate

measurements, so that the missing part is assumed as being symmetrical to the investigated

slice. For the two halfs of a cut silex artefact, at least the cutting width of the sawing blade

(∼ 1 mm) is lost for further investigations. Additionally, problems related to regions with

varying opacity arise what appears relevant especially for OSL (different light absorption

properties for excitation and emitted light) and for silex samples which may show regions

with varying opacity at a small scale (see Section 1.2). Another difficulty might be the

spatially resolved determination of α-efficiency (Aitken & Wintle 1977; Greilich 2004).
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9 Abstract

Thermoluminescence (TL) dating of heated silex artefacts represents an important chrono-

metric tool for Middle to Upper Paleolithic archeological contexts. Since the firing of these

lithics can legitimately be attributed to human agency, this method provides direct age

estimates of the occupation of a site. However, in relation to other dating methods, the

precision of TL dates is comparatively low, and the often observed “overdispersion” in

ages of obviously syndepositional finds indicates additional sources of scatter mainly dis-

regarded so far. This thesis examines potential sources of both imprecision and inaccuracy

of age estimates as well as the capability of alternative approaches to overcome or reduce

these shortcomings of the TL method applied to heated silex.

Besides assessing the influence of spurious luminescence signal contributions from sample

carriers on determined dose, focus is set on investigating strength and uniformity of the

internal dose rate of silex samples and resulting effects on the age. Being constant over

burial time, self-dosing may either decrease the influence of elusive and variable external

radiation – in case of homogeneous radioelement distribution within the sample – or in-

troduce systematic errors and enhanced data scatter, if radiation is concentrated in “hot

spots”. With α- and β-autoradiography and laser ablation inductively coupled plasma mass

spectrometry (LA-ICP-MS), both qualitative and quantitative approaches served to draw

a detailed picture on presence and spatial distribution of hot spots and associated impuri-

ties in thick sections of over 20 silex specimens. While the low β-activity of most samples

is rarely visible on respective autoradiographs, recorded α-tracks revealed zones and spots

with strongly increased Th and U concentrations. Comparison of autoradiographs with

sample surfaces shows a clear relationship between track density and impurities or filled

cracks. These findings are confirmed by LA-ICP-MS: In contrast to the low radioactivity

of pure silex, most kinds of impurities are related to strongly increased radiation. If this

is not accounted for, micro-dosimetric effects may lead to random and systematic errors

in age determination.

Additionally, the performance of TL single-aliquot regenerative-dose (SAR) protocols

for dating small-sized samples and as a diagnostic tool for non-uniform dose distribution

in the samples was tested. For both the blue (∼ 475 nm) and red (∼ 630 nm) TL emission

it was found that the degree of adequate sensitivity-correction by test dose monitoring

strongly depends on the properties of individual samples. However, laboratory doses could

be well reproduced for most specimens. By comparing De distributions from natural dose

measurements and dose recovery tests and regarding the value range of sensitivity cor-

235



9 Abstract

rected natural signals (Ln/Tn), assessment of sample homogeneity and SAR dose response

behavior is enabled, respectively.

Unlike for commonly used TL, few is known about optically stimulated luminescence

(OSL) of silex. However, access to specific, optically sensitive trap populations (e.g. slow -

components) and more gentle heat treatment in the course of SAR sequences may yield

the benefits of increased saturation dose levels (and hence upper dating limits) and re-

duced systematic errors, respectively. Therefore, fundamental properties such as signal

composition and thermal long-term stability of silex OSL were studied and its applica-

bility to heated samples evaluated. First-order fitting of linearly modulated (LM-) OSL

curves showed best results for five components in most cases. Pulse annealing experiments

and the varying heating rate method, however, attested only the best bleachable compo-

nent sufficient thermal stability. Successful dose recovery tests and OSL ages in agreement

to TL ages of the same samples validate the general applicability of this OSL component

for dating. However, since not all silex varieties show an optical signal at all, this approach

may be regarded as complementary to TL and reassuring for important samples.

In the applied part of this thesis, several sets of heated artefacts from Middle and

Upper Paleolithic sites in Portugal, Spain, Romania and Egypt were TL and OSL dated.

Gravettian samples from Vale Boi (Portugal) were submitted for dating after termination

of the excavation, so that environmental radiation could not be determined accurately.

This is very likely the reason for the significant deviation between radiocarbon dates of

the same layer and TL ages, because SAR and multiple-aliquot additive-dose (MAAD)

ages of the same sample agree and other influencing variables such as the α-effciency or

the moisture content have too little impact on the calculated age as to explain the observed

discrepancies. The SAR approach allowed dating the relatively small silex samples from the

cave site Las Palomas (Spain). Here, successful dose recovery tests indicated the suitability

of the measurement procedure, and in-situ measurements of γ-radiation provided more

accurate dose rate information. As a result, TL ages between ∼ 51 and ∼ 84 ka allow a first

chronometric assessment of the formerly undated archeological remains. Artefacts from the

Aurignacian site Româneşti-Dumbrăviţa I (Romania) proved to be more problematic, as

part of them had to be discarded due to poor dose reproducibility. SAR measurements,

dose recovery tests and their detailed analyses suggested internal non-uniformities of most

samples, so that only rigorous data filtering allowed extraction of reliable age estimates.

Due to the luminescence behavior of dated samples, the occupation of the site could,

however, not be narrowed down to a range smaller than ∼ 39–45 ka, giving a weighted

average age of 40.6± 1.5 ka for the Aurignacian find layer. Furthermore, two TL emissions

(blue and red) and two protocols (SAR and MAAD) were applied to heated silex from

Sodmein Cave (Egypt). Dose recovery tests showed uncorrectable sensitivity changes of

the TL signal, rendering the TL SAR sequence inaccurate for these samples. Consequently,

age estimates are based on TL MAAD and OSL SAR data; for the smallest sample only

a TL SAR maximum age can be given. Coming from different depths of a huge hearth,
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TL ages of dated samples indicate a large time span to be condensed in the archeological

deposits, probably reaching from MIS 5e to MIS 5a.
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10 Kurzzusammenfassung

Thermolumineszenz (TL) erhitzter Silex-Artefakte stellt eine bedeutende Datierungsme-

thode für Mittel- und Jungpaläolithische Fundsituationen dar. Da die Erhitzung der Werk-

zeuge mit großer Sicherheit menschlichem Handeln zuzuschreiben ist, liefert diese Methode

direkte Alter für die prähistorische Besiedlung. In Relation zu anderen Datierungsmetho-

den weisen TL-Alter jedoch eine vergleichsweise geringe Präzision auf, und die vielfach

beobachtete Altersdivergenz von Funden aus der gleichen Schicht deutet auf zusätzliche,

bisher wenig beachtete Fehlerquellen hin.

Die vorliegende Arbeit untersucht mögliche Ursachen verringerter Genauigkeit und Präzi-

sion von TL-Altern an erhitztem Silex sowie das Potential alternativer Ansätze zur me-

thodischen Weiterentwicklung. Neben dem Einfluss von Lumineszenz-Störsignalen von

Probenträgern auf die bestimmte Dosis einer Probe stehen vor allem die Untersuchung

der Stärke und Homogenität der internen Dosisleistung von Silex sowie entsprechende

Auswirkungen auf das berechnete Alter im Mittelpunkt. Als zeitlich konstante Größe kann

die “Selbstbestrahlung” einer Probe entweder den Einfluss der oft schwer fassbaren und

veränderlichen externen Dosisleistung verringern (im Falle von homogener Radionuklid-

verteilung in der Probe) oder aber zu systematischen Fehlern und verringerter Präzision

führen, falls die Strahlung in “Hot Spots” konzentriert ist. Mit α- und β-Autoradiographie

und laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) dienten

sowohl quantitative als auch qualitative Methoden dazu, detaillierten Einblick in An-

zahl und Verteilung von Hot Spots sowie assoziierten mineralogischen Unreinheiten in

über 20 Silex-Proben zu gewinnen. Während die geringe β-Aktivität der meisten Proben

auf den Autoradiographien kaum sichtbar war, zeigte die Verteilung der α-Spuren Zonen

von deutlich erhöhtem Th- und U-Gehalt. Der Vergleich von Autoradiographien und den

Probenoberflächen weist einen klaren Zusammenhang zwischen Spurdichte und minera-

logischen Unreinheiten nach. Bestätigt werden diese Befunde durch LA-ICP-MS, wonach

reiner Silex sehr geringe Radioaktivität aufweist, die meisten Unreinheiten aber mit er-

höhter Strahlung einhergehen. Berücksichtigt man dies nicht im Datierungsprozess, können

mikrodosimetrische Effekte zu systematischen und zufälligen Fehlern bei der Altersberech-

nung führen.

Weiterhin wurde das Potential von TL single-aliquot regenerative-dose (SAR) Messpro-

tokollen zur Datierung kleiner Silex-Proben und zum Nachweis ungleichmäßiger Dosisver-

teilung im Inneren einer Probe getestet. Sowohl für die blaue (∼ 475 nm) als auch für die

rote (∼ 630 nm) TL-Emission hängt der Grad erfolgreicher Sensitivitätskorrektur mittels
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Testdosismessungen sehr stark von individuellen Probeneigenschaften ab. Für die meis-

ten Proben jedoch konnten applizierte Labordosen innerhalb der Messunsicherheit repro-

duziert werden. Der Vergleich von De-Verteilungen natürlicher Dosismessungen und von

“dose recovery tests” sowie der Wertebereich der sensitivitätskorrigierten Lumineszenzsig-

nale (Ln/Tn) erlauben eine Einschätzung der Probenhomogenität bzw. der Änderung der

Dosissensitivität zu Beginn des SAR-Zyklus.

Im Gegensatz zur TL ist nur wenig bekannt über optisch stimulierte Lumineszenz (OSL)

von Silex. Die Beprobung spezieller, optisch sensitiver Elektronenfallenpopulationen (z.B.

slow -Komponenten) und geringere thermische Einwirkungen während regenerativer Mes-

sungen könnten zum einen den Vorteil höherer Sättigungsdosen bringen (und damit den

datierbaren Zeitraum verlängern), zum anderen systematische Fehler im Zuge der Sen-

sitivitätskorrektur verringern. Deshalb wurden grundlegende Eigenschaften der OSL von

Silex, wie etwa die Zusammensetzung des Signals und dessen thermische Langzeitstabili-

tät, untersucht und die Anwendbarkeit von OSL zur Silex-Datierung getestet. Kurvenan-

passung (Kinetik erster Ordnung) von “linearly modulated” (LM-) OSL-Daten zeigte für

fünf Signalkomponenten die besten Ergebnisse. “Pulse annealing”-Experimente und die

Methode variabler Heizraten attestierten jedoch nur der optisch sensitivsten Komponente

ausreichende thermische Stabilität. Erfolgreiche “dose recovery tests” und übereinstim-

mende OSL- und TL-Alter der gleichen Probe bestätigen die generelle Anwendbarkeit

dieser Signalkomponente für die Datierung. Da jedoch nicht alle Silex-Varietäten ein OSL-

Signal zeigen, muss diese Methode als komplementär zur TL und als Rückversicherung für

wichtige Proben angesehen werden.

Als anwendungsbezogener Teil dieser Arbeit wurden mehrere Proben-Serien erhitzter

Artefakte aus Mittel- und Jungpaläolithischen Fundplätzen in Portugal, Spanien, Ru-

mänien und Ägypten mittels TL und OSL datiert. Für Gravettian-zeitliche Proben aus

Vale Boi (Portugal) konnte wegen der erfolgten Abtragung des originären Fundkontextes

die externe Dosisleistung nur unzureichend bestimmt werden. Dies ist sehr wahrschein-

lich der Grund für die signifikante Abweichung zwischen 14C-Altern der Fundschicht und

den TL-Altern, da SAR-Alter und multiple-aliquot additive-dose (MAAD)-Alter der sel-

ben Probe übereinstimmen und andere Einflussgrößen wie der Feuchtigkeitsgehalt oder

die α-Sensitivität zu geringen Einfluss auf das Alter haben, um die Unterschiede erk-

lären zu können. Die SAR-Methode erlaubte weiterhin die Datierung kleiner Artefakte

aus der Höhlenfundstelle Las Palomas (Spanien). Gute Dosisreproduzierbarkeit bestätigte

die Eignung des Protokolls für die Proben; vor-Ort Messungen ermöglichten zudem eine

genauere Quantifizierung der γ-Dosisleistung. Resultierende TL-Alter zwischen ∼ 51 und

∼ 84 ka geben eine erste chronometrische Einschätzung der vormals undatierten archäol-

ogischen Ablagerungen. Artefakte der Aurignacian-Fundstelle Româneşti-Dumbrăviţa I

(Rumänien) stellten sich als problematischer heraus, da ein erheblicher Teil der Stücke we-

gen schlechter Dosisreproduzierbarkeit verworfen werden musste. SAR-Messungen, “dose

recovery tests” sowie deren detaillierte Analysen deuteten auf heterogene Dosisleistungs-
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verteilung hin, so dass nur striktes Filtern der Daten zu zuverlässigen Altern führte. Auf-

grund der Lumineszenzeigenschaften der Proben konnte die Zeit der Besiedlung nicht

näher als ∼ 39–45 ka eingegrenzt werden, wobei sich rechnerisch ein gewichtetes Mittel von

40,6± 1,5 ka für die Aurignacian-Fundschicht ergibt. Weiterhin wurden Silex-Fundstücke

aus der Sodmein-Höhle (Ägypten) mit zwei Messprotokollen (SAR und MAAD) und zwei

verschiedenen TL-Emissionen (blau und rot) datiert. Dose recovery tests zeigten unkorri-

gierbare Sensitivitätsänderungen, so dass die SAR-Daten als ungenau zu betrachten sind.

Deshalb basieren die berechneten Alter auf TL-MAAD- und OSL-SAR-Daten; für die

kleinste Probe konnte jedoch nur ein SAR-Maximalalter angegeben werden. Die Alter der

Proben, die aus unterschiedlichen Schichten einer großen Feuerstelle stammen, weisen auf

eine chronologische Tiefe der archäologischen Ablagerungen hin, die wahrscheinlich vom

MIS 5e zum MIS 5a reicht.
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A.1 Supplementary material for Chapter 2

During the investigation of empty sample carries, several figures and plots were produced,

for which it was not possible to show them in the article. This document contains additional

fgures. It may help the interested reader to further assess the outcome of our experiments.

All experiments are described in detail in the article or in the caption of the figures. The

figures are ordered in terms of the sample carrier materials.
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Figure A.1: UVTL signal of 12 empty, used and cleaned Al discs, measured using N2 without
irradiation and background subtraction. The discs were heated up to 430 ◦C with a heating rate
of 2 K s−1. Three out of 12 discs show a remarkable peak between 200 and 300 ◦C. For one sample
a small peak at ca. 350 ◦C was recorded. The TL signal originating from the black body radiation
is negligible.
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Figure A.2: IRSL signal of three clean, empty Al discs after preheating. After measuring the
natural signal, the discs received β-doses of ca. 62, 249 and 1867 Gy.
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Figure A.3: Results of De estimation with BOSL of a loess coarse grain (100–200 µm) quartz
sample from Nussloch/Germany (sample code: BT781, compare P4-1 unit in Tissoux et al. (2010)
and Zöller et al. (1988)) for Al and steel discs. Ten discs were measured for every disc type
and divided in two subsets of five discs each. The first subset (set A) contains discs which were
annealed at 500 ◦C for 30 s previous to the De determination. For the second subset (set B) no
annealing was carried out. The figure shows the measured De (a) for steel and (c) for Al discs
and the corresponding recycling ratios (b) for steel and (d) for Al discs. The annealing procedure
slightly reduces the error of each individual De. This effect is more pronounced for steel discs than
for Al discs.
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Figure A.4: UVTL measurements without background subtraction on new, empty Al cups with
increasing β-doses up to ca. 1 kGy. The cups show a negligible 110 ◦C peak for high β-doses. The
high natural peak on the third plot results from an accidental loss of N2 during the measurement.
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Figure A.5: Measurement of the natural UVTL signal of 24 new Al cups without background sub-
traction in a N2 atmosphere. To reproduce the effect of N2 loss during the measurement (Fig. A.4)
the N2 concentration was continuously lowered during the measurement. The Al cups are free from
spurious signals if N2 is used.
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Figure A.6: Natural and regenerated TL signals without background subtraction, measured in
the blue detection window using N2. The samples were β-dosed up to ca. 1 kGy. The investigated
Al cups show no markedly natural or regenerated BTL signal.
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Figure A.7: The natural and regenerated BOSL signals, detected in the UV window, were
recorded for three Al cups at 125 ◦C for 40 s (middle row). The measurements included a pre-
heat step (200 ◦C for 10 s, upper row) before and a final TL measurement up to 430 ◦C after OSL
readout to detect photo-transferred and optically unbleachable signal contributions (lower row).
The cups were β-dosed up to ca. 1 kGy. No N2 was used. For β-doses < 500 Gy the Al cups are
free from substantial BOSL signals. For higher doses, a peak in the foremost signal channels was
detected.
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Figure A.8: The natural and regenerated IRSL signals in the blue detection range were recorded
for three Al cups in a N2 atmosphere. The measurements included a preheat step (250 ◦C for 60 s),
IRSL stimulation at 50 ◦C for 100 s and subsequent IRSL stimulation (post-IR IRSL) at 225 ◦C for
100 s (only the first 10 s of each shine down curve are shown). A TL measurement up to 430 ◦C
finished the measurement cycle. The cups were β-dosed up to ca. 1 kGy. Over the investigated dose
range the Al cups are free from IRSL signals.
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A.2 Supplementary material for Chapter 3

Figure A.9: Beta-autoradiographs and color scans of sample batch 2.

Figure A.10: Beta-autoradiographs and color scans of sample batch 3.
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Figure A.11: Beta-autoradiographs and color scans of sample batch 4.

Matlab code used for simulation of Poisson fields, slightly modified from

http://www-math.bgsu.edu/z/rfim/ (last access 15/03/2011):

m = 500; % avg number of points

s = 0;

N = -1;

while (s<m)

s = s - log(rand);

N = N + 1; % N ∼ Poisson(m)

end

a = rand(N,1); % Poisson process points in R2

b = rand(N,1);

Matlab code for identification and localization of α-tracks in scans of CR-39 detectors:

Load image and convert into gray scale

M=imread(’09_50x_aufstitch_cut2.jpg’);

R=M(:,:,1);G=M(:,:,2);B=M(:,:,3);

Y=uint8(0.299*double(R)+0.587*double(G)+0.114*double(B));

Y = 255-Y;

image(Y);colormap gray;
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fig1 = figure(1);

pos1 = get(fig1,’Position’);

imshow(Y);

axis image

Find circles

[accum, circen, cirrad] = CircularHough_Grd(Y, [0.5, 20],45,8);

Sort circle matrix (N,2) and delete identical entries (concentric circles)

crc = sortrows(circen,1);

% Sort rows of circle matrix in ascending order

crc = unique(crc,’rows’);

% delete redundant entries

Diff = length(circen)-length(crc);

% number of double counted tracks

Plot circles in the image with tracks

fig2 = figure(1);

pos2 = get(fig2,’Position’);

image(Y);colormap gray;

hold on;

plot(crc(:,1),crc(:,2),’r+’);

axis image

2D binning of the image (ROIs) of variable size

pix = 100;

% number of pixels per side of square

nx = floor(length(Y)/pix);

% number of columns that fit in image

ny = floor(length(Y(:,2))/pix);

% number of rows that fit in image

xval = crc(:,1);

yval = crc(:,2);

M = []; % Create matrix to store the xval’s

for q = 1:nx;

M = [M xval-q*pix]; % subtract pix
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if q < nx+1; % reduced xval’s now stored in M

q+1;

end;

end;

N = [];

for r = 1:ny;

N = [N yval-r*pix];

if r < ny+1;

r+1;

end;

end;

[x col] = min(abs(M));

[y row] = min(abs(N));

% find minimum of absolute values, i.e. x = pix, 2*pix etc.

% x and y should be zero or at least less than ∼ 3

% col is the cumulative number of tracks in the columns and

% the boarder marks for the ROIs

% row is not useful since the y values in the pk matrix are not

% ordered (finding the absolute minimum gives arbitrary values!)

D = [col(1,1)];

for h = 1:nx-1;

D = [D;col(:,h+1)-col(:,h)];

if h < nx-1;

h+1;

end

end

% D is vector that contains the differences between the x boarder

% marks, e.g. x2-x1, x3-x2 etc.

maxD = max(D);

Store x and y coordinates of the columns in a cell array

pkcol1 = [crc(1:col(1),1) crc(1:col(1),2)];

clear L

L(1,:) = crc(1:col(1),1),crc(1:col(1),2);

for i = 1:(length(col)-1);
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L(i+1,:) = crc(col(i):col(i+1),1),crc(col(i):col(i+1),2);

if i < length(col);

i+1;

end;

end;

% L is a cell array (dimension: length(col),2) that contains

% the x and corresponding y coordinates of the tracks

% in the first, second, third, ... column of the image

Find number of tracks in separate rows for each column

clear counts

for j = 1:nx;

for i = 1:ny;

number = find((i-1)*pix <= Lj,2(:,1) & Lj,2(:,1) <= i*pix);

counts(i,j) = length(number);

end;

end;

% counts is a matrix containing the numbers of tracks in each

% square (nx,ny)

clear err

err = round(sqrt(counts));

% poisson error, also given as matrix of the squares

Save the count matrix and the poisson error in txt-file

dlmwrite(’N1_100pix.txt’,counts,’delimiter’,’\t’,’precision’,3,...

’newline’, ’pc’);

dlmwrite(’N1_100pix.txt’, err, ’-append’,’roffset’, 1, ’delimiter’,

’\t’,...

’newline’, ’pc’);

A.3 Supplementary material for Chapter 4
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Table A.1: Numerical results of comparative LA- and bulk ICP-MS measurements of selected
silex samples.

K [wt.%]
LA 1σ uncertainty Bulk 1σ uncertainty Bulk/LA 1σ uncertainty

M5R 0.026 0.004 0.040 0.003 1.5 0.3
M12R 0.009 0.001 0.010 0.001 1.1 0.2
M17R 0.029 0.002 0.040 0.003 1.4 0.1
M26R 0.0144 0.0004 0.100 0.007 6.9 0.5
O4 0.061 0.012 0.080 0.006 1.3 0.3
O6 0.030 0.013 0.030 0.002 1.0 0.5
O8 0.17 0.16 0.100 0.007 0.6 0.6

Th [µg g−1]
LA 1σ uncertainty Bulk 1σ uncertainty Bulk/LA 1σ uncertainty

M5R 0.11 0.13 0.16 0.02 1.5 1.8
M12R 0.007 0.002 0.030 0.003 4.2 1.2
M17R 0.012 0.003 0.08 0.01 6.7 1.6
M26R 0.030 0.003 0.41 0.04 13.5 1.8
O4 0.11 0.05 0.20 0.02 1.9 0.9
O6 0.06 0.03 0.10 0.01 1.7 1.0
O8 0.22 0.39 0.29 0.03 1.3 2.4

U [µg g−1]
LA 1σ uncertainty Bulk 1σ uncertainty Bulk/LA 1σ uncertainty

M5R 0.20 0.06 0.22 0.03 1.1 0.4
M12R 0.34 0.20 0.36 0.04 1.1 0.7
M17R 0.09 0.02 0.08 0.01 0.9 0.2
M26R 0.33 0.02 0.36 0.04 1.1 0.1
O4 0.12 0.02 0.14 0.02 1.1 0.2
O6 0.68 0.16 0.86 0.10 1.3 0.3
O8 0.52 0.45 0.41 0.05 0.8 0.7

Rb [µg g−1]
LA 1σ uncertainty Bulk 1σ uncertainty Bulk/LA 1σ uncertainty

M5R 0.59 0.31 0.73 0.04 1.2 0.7
M12R 0.08 0.02 0.11 0.01 1.4 0.3
M17R 4.11 0.24 4.93 0.25 1.2 0.1
M26R 0.18 0.02 3.00 0.15 16.9 1.7
O4 1.77 0.35 1.89 0.09 1.1 0.2
O6 1.39 0.45 1.22 0.06 0.9 0.3
O8 5.32 4.85 3.34 0.17 0.6 0.6
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A.4 Supplementary material for Chapter 5

A.4.1 LM-OSL signal deconvolution of silex samples

Figure A.12: LM-OSL sum curve and fitting results of silex sample M3. Measurement parameters
and fitting procedure as described in Sections 5.2.2 and 5.2.3.
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Figure A.13: LM-OSL sum curve and fitting results of silex sample M27. Measurement parameters
and fitting procedure as described in Sections 5.2.2 and 5.2.3.
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Figure A.14: LM-OSL sum curve and fitting results of silex sample Rom16. Measurement pa-
rameters and fitting procedure as described in Sections 5.2.2 and 5.2.3. Designation of individual
components differs from that of the main text (due to automatic naming of components by the
fitting routine): component 1 in the plot corresponds to component 0, and so forth.
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Figure A.15: LM-OSL sum curve and fitting results of silex sample SodTL2. Measurement para-
meters and fitting procedure as described in Sections 5.2.2 and 5.2.3.
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A.4.2 Anti-Stokes shifted luminescence
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Figure A.16: Dose-independent OSL signal of silex sample M27 with measurement temperature.
OSL of “hot-bleached” (500 s at 280 ◦C) sample material was measured for 100 s (90 % LED power,
blue stimulation at 470 ∆ 30 nm) at increasing measurement temperatures (70–310 ◦C at 20 ◦C
increments) without any irradiation and using a 7.5 mm Hoya U340 glass filter for signal detection.
The OSL background of an empty disc is also shown. Within the shown variance, this signal did
not change up to measurement temperatures of 310 ◦C. Though not monitored, sensitivity changes
are not considered to contribute significantly to the signal increase of more than two orders of
magnitude in the course of the measurement sequence.
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Figure A.17: Arrhenius plots showing the logarithmized intensity of anti-Stokes shifted lumines-
cence (ln I) against the inverse of measurement temperature (T−1). Measurement temperature
was increased from 70 ◦C to 310 ◦C in 20 ◦C increments and OSL was measured for 100 s (90 %
LED power, blue stimulation at 470 ∆ 30 nm, detection with 7.5 mm Hoya U340 filter). Silex sam-
ples were “hot-bleached” (500 s at 280 ◦C) prior to measurement of the anti-Stokes shifted signal.
The thermal background in this detection window is (within variance) constant up to the highest
measurement temperature. The exponential dependence of anti-Stokes signal on temperature (e.g.
M3, M27) for T > 130 ◦C is in accordance with the model of thermally induced population of ex-
cited states from which charge carriers relax to the ground state, causing thus the anti-Stokes shift
(absorption energy < emission energy) (Demtröder 2005). The fact that the sum of several expo-
nential functions is suitable for fitting the data for all samples suggests several signal components
with different activation energies.
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A.4.3 Fading tests
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Figure A.18: Results of the fading test for sample M27. Sensitivity-corrected luminescence signal
intensities for three aliquots are plotted against time since laboratory irradiation. Different signal
integration intervals (0–0.5 s, 0–1.0 s, 3.0–4.0 s) were evaluated to investigate the stability of com-
ponents with lower bleachability. It should be emphasized here that the data points acquired earlier
than ∼ 7000 s after end of the irradiation cannot be used to estimate potential fading (Visocekas
1985; Aitken 1985). The region suitable for estimating fading rates is indicated in the figure by
the continuous gray bar.
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Figure A.19: Results of the fading test for sample SodTL2. Sensitivity-corrected luminescence
signal intensities for three aliquots are plotted against time since laboratory irradiation. Different
signal integration intervals (0–0.5 s, 0–1.0 s, 3.0–4.0 s) were evaluated to investigate the stability
of components with lower bleachability. It should be emphasized here that the data points ac-
quired earlier than ∼ 7000 s after end of the irradiation cannot be used to estimate potential fading
(Visocekas 1985; Aitken 1985). The region suitable for estimating fading rates is indicated in
the figure by the continuous gray bar. Unfortunately, it was not possible to extend storage times.
Although fading rates cannot be determined from this plot, it demonstrates the overall reprodu-
cibility (within errors) of the OSL signal of silex. Nevertheless, measurements for both M27 and
SodTL2 give no indication for fading.
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A.4.4 Residual TL after OSL readout
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Figure A.20: OSL decay curves and TL residuals of silex samples. Decay curves (upper left)
were recorded after 200 Gy regenerative β-doses and a 220 ◦C preheat for 60 s. Subsequent to
OSL readout, residual TL curves (green) were measured using the same emission (UV) as for OSL.
Afterwards, TL curves (200 Gy β-irradiation) were measured again without prior bleaching, termed
here as “initial TL” (blue). The curves were not corrected for sensitivity changes. The OSL decay
rate of sample Rom16 is smaller than for the other samples since component 0 is not sensitized
yet, and component 2 dominates the emission (see Section 5.3 for further information).
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A.5 Supplementary material for Chapter 6

A.5.1 Glow curves and dose response curves of multiple-aliquot additive-dose

protocol
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Figure A.21: (a) Additive-dose glow curves (shown as average of all curves per dose step with
1σ uncertainty) and De(T )-plot and (b) dose-response curves for the additive and regenerative
irradiation for sample Rom35. The large extrapolation needed to obtain an additive De introduces
additional uncertainty and renders MAAD ages less reliable than SAR ages.
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Figure A.22: (a) TL glow curves (natural and additively dosed), heating plateau and (b) dose-
response of sample Rom17. Multiple-aliquot glow curves of this sample are shown as average per
dose step with 1σ uncertainty. The temperature region 270–370 ◦C (as evident from the heating
plateau) was used to construct the dose response curves.
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A.5.2 Apparent equivalent dose plotted against added dose (SARA protocol)
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Figure A.23: Example of SARA performance of the low-temperature peak of sample Rom35.
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A.5.3 Photographs of examples of sample type 1 and sample type 2

Figure A.24: Comparison of optical appearance of sample type 1 and sample type 2. Shown is
sample Rom72 (type 1, above) and Rom118 (type 2, below).

A.5.4 Rejection of type 2 samples

The following figures demonstrate the contrasting performance of type 1 and type 2 sam-

ples when conducting TL SAR measurements. Note that in the left graph the dose response

is not corrected for sensitivity changes.
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Figure A.25: SAR performance of sample Rom72, representative for sample type 1.

0 50 100 150
0

1000

2000

3000

4000

5000

6000

7000

Dose [Gy]

in
t. 

TL
 3

20
−3

80
°C

Rom27a disc 5 dose response (475 nm)

1 2 3 4 5 6 7 8 9

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

cycle #

re
l. 

se
ns

. c
ha

ng
e

Rom27a 32 Gy testdose response

Figure A.26: SAR performance of sample Rom55a (disc 5), representative for sample type 2.
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Figure A.27: SAR performance of sample Rom55a (disc 9), showing the most severe case of
sensitivity changes observed during SAR measurements.

A.5.5 Preheat plateau test for OSL fine grain samples
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Figure A.28: Preheat plateau of fine grain OSL sample Rom86-221-2 (sample within find layer).
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B Dose recovery tests

To test the reliability and robustness of measurement protocols, dose recovery tests (DRT’s)

are commonly carried out. A known dose from a calibrated source (mostly a β- or γ-source)

is given to a zeroed aliquot and the protocol under consideration is applied in order to

determine the equivalent dose. The closer this dose is to the given dose, the better is

the protocol expected to work. There are further indicators for the appropriateness of

regenerative-dose procedures, namely the recycling ratio and – in case of optical stimula-

tion – the recuperation. The first quantity is the ratio of a dose point and a repeat point of

the same dose later in the measurement sequence and intends to check proper correction

for sensitivity changes. This value should lie between 0.9 and 1.1 for the protocol to give

accurate results. Recuperation describes the presence of a luminescence signal after a 0 Gy

regeneration dose has been administered. Since thermal stimulation to temperatures of

∼ 450 ◦C is assumed to erase the signal completely, recuperation is not expected to occur

during TL regeneration.

Table B.1: Geological samples used for dose recovery tests.

Internal code Denomination Provenance Geological origin

M3 Flint Orsbach, Germany Upper Cretaceous
M7 Flint Rullen, Belgium Upper Cretaceous
M20 Flint Caredo, Lessinian Mountains, Italy Unknown
M27 Flint Fehmarn, Baltic, Sea, Germany Cretaceous
O8 Chalcedony Banat region, Romania Unknown

In the course of the present thesis, DRT’s were carried out to evaluate the sample

preparation and measurement protocols subsequently used for the dating of archeological

samples. Geological samples were subjected to DRT’s after having been heated and receiv-

ing a β- or γ-dose. Several TL emissions were tested; the used filters and their transmission

spectra are depicted in Fig. B.1. All measurements were conducted using a Risø TL-DA 20

reader, equipped with an EMI 9235QB photomultiplier and a 90Sr/90Y β-source delivering

∼ 0.11 Gy s−1.

It must be noted that the data quoted here serve the purpose of checking the relia-

bility of measurement protocols applied to artificially heated raw material as well as the

appropriateness of sample preparation. All other DRT results are placed in the respective

section of Chapter 7 concerned with the dated site.
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Figure B.1: Transmission spectra of the filters used for the dose recovery tests. The magnitude
of transmission depends on the thickness of the filters and are here shown for the values given in
the text, except for U340 whose spectrum is shown for 4.3 mm thickness.

B.1 Dose recovery tests using multiple-aliquot additive-dose

(MAAD) protocols

The general lack of material impeded the performance of MAAD DRT’s for archeologi-

cal samples. Some samples from the site Româneşti-Dumbrăviţa I (Romania, Chapter 6)

yielded sufficient material, but their poor measurement reproducibility excluded them from

being used for testing the reliability of a protocol (as is demonstrated for raw material

sample O8 from Romania and its large uncertainty level). For DRT’s, samples were me-

chanically and chemically prepared for measurements according to the procedure given

in Section 6.3.1. Since the MAAD protocol is a well-established method (Mercier et al.

1995; Richter 2007), DRT’s were less extensive as in the case of SAR protocols. Two

different luminescence emissions were investigated.

B.1.1 Ultraviolet emission (∼ 340± 40 nm)

Three samples (M3, M27, O8) were first heated on the whole in the muffle oven at 500 ◦C

for 30 Min. to simuate ancient firing, received then a γ-dose of 71.2 or 142.4 Gy and

were measured with a MAAD protocol after usual sample preparation. The delay between

irradiation and measurement was approximately three months. One portion of the sample

material was used to construct the additive-dose response curve, i.e. the five sets of four

aliquots each were irradiated with increasing β-doses. The other portion of the sample
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B.1 Dose recovery tests using multiple-aliquot additive-dose (MAAD) protocols

material was annealed in the muffle oven (350 ◦C for 90 Min.) and the six sets of four

aliquots were given β-regeneration doses. To reduce the scatter between single aliquots,

discs were fully covered with sample material (8 mm mask). All measurements were carried

out in a N2 atmosphere with a heating rate of 5 K s−1 and a maximum heating temperature

of 450 ◦C, unless stated otherwise. Background measurement followed immediately the

measurement of the sample signal. For equivalent dose determination, the temperature

region yielding a De-plateau was chosen; Section 1.3.4.1 provides further details on the

MAAD routine; Table B.2 summarizes the results of the DRT’s.

Table B.2: Results of the MAAD DRT of geological samples. All measurements were performed
with a heating rate of 5 K s−1 and a 7.5 mm thick Hoya U340 filter between sample and photomul-
tiplier. A linear fit was used for calculating the De.

Sample Given Plateau [◦C] Recovered Supralinearity Total dose
dose [Gy] dose [Gy] correction [Gy] recovered [Gy]

M27 71.2 300–380 42.6 ± 6.7 5.9 ± 1.0 48.7 ± 7.7
M3 142.2 280–365 134.8 ± 8.3 – 134.8 ± 8.3
O8 142.2 305–390 138.3 ± 30.8 – 138.3 ± 30.8

Within measurement uncertainties, the given dose can be reproduced for samples M3 and

O8, whereas the large error of theDe of sample O8 can be attributed to poor reproducibility

and overall low signal intensities. The exact reasons why the recovered dose of sample M27

significantly underestimates the given dose remain unclear at the moment. Richter et al.

(1999) report slight fading and sensitivity to red laboratory light for the UV emission of

silex what is a possible explanation for the general tendency of dose underestimation of

this emission.

B.1.2 Ultraviolet-blue emission (∼ 410± 30 nm)

Having received the same pre-treatment as described in the last section, a MAAD DRT

was performed for sample M27 using the UV-blue emission around 410 nm. Measurement

parameters equal that of the UV measurements, the filter package, however, comprised

a 4 mm Corning 7-59, a 1 mm BG-39, a 3 mm GG-400 and a 4 mm HA-3 filter. Fig. B.2

shows the De-plateau, and evaluation of the temperature region 300–360 ◦C gives a De of

62.2± 2.0 Gy including a supralinearity correction of 8.1± 1.3 Gy. While this value is closer

to the given dose (71.2 Gy), the problem of dose underestimation persists. At the moment,

no final explanation can be given as sample preparation and measurement techniques

do obviously not differ significantly from those published in literature (Valladas 1992;

Mercier et al. 1995; Richter et al. 2008).
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Figure B.2: UV-blue MAAD De-plateau of sample M27 (DRT). For equivalent dose evaluation
the temperature region 300–360 ◦C was used.

B.2 Dose recovery tests using single-aliquot regenerative-dose

(SAR) protocols

B.2.1 Blue emission (475± 25 nm)

Geological samples M3 and M7 were treated as described in Section B.1.1. The given

doses were recovered using a TL SAR protocol and an interference filter transmitting

wavelengths of 475± 25 nm (HC 475/50). Table 1.2 contains the generalized measurement

procedure also used for DRT’s. Further measurement parameters are given in the captions

of Tables B.3 and B.4.

The results show that a given dose can be reproduced within 10 % for all measured

aliquots, but mostly with lesser deviations. A slight trend for dose underestimate is highly

visible, the reasons for which are unclear at the moment. The two samples under study

show severe sensitivity changes in the course of the SAR protocol (up to factors of 2 or more

at the end of all cycles). Although the recycling ratio indicates an appropriate correction

of sensitivity changes, it might be a shift in dose response in the course of the first TL

measurement that causes the observed underestimation. Most of the archeological samples

for which the De was measured using this emission yielded lower sensitivity changes, so

that the discrepancy between “true” and determined dose is expected to be smaller than

here.
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Table B.3: Results of the DRT of geological sample M3. The regeneration steps were 10, 18,
25, 32, 40, 0 and 25 Gy in case of a given laboratory dose of 25 Gy and 20, 35, 50, 65, 80, 0 and
50 Gy for a laboratory dose of 50 Gy. Testdoses were 10 and 20 Gy, respectively. The integrated
counts from the temperature interval 370–420 ◦C were used to construct the dose response curves
which were fitted with a single saturating exponential function. Recuperation was below 1 % for
all measured aliquots and is not quoted here.

Aliquot Given dose [Gy] Recovered dose [Gy] Recycling ratio

1 25.0 27.8 ± 1.5 0.94
2 25.0 22.3 ± 1.3 0.98
3 25.0 22.5 ± 1.2 1.01
4 25.0 24.0 ± 1.3 1.00
5 25.0 23.8 ± 1.3 0.97
6 25.0 23.5 ± 1.3 1.00
7 50.0 45.9 ± 2.4 1.03
8 50.0 48.0 ± 2.6 1.05
9 50.0 51.0 ± 2.9 1.05
10 50.0 47.7 ± 2.5 1.04

Table B.4: Results of the DRT of geological sample M7. Measurement conditions were the same
as for sample M3, except for the signal integration limits which were set to 350–400 ◦C here.

Aliquot Given dose [Gy] Recovered dose [Gy] Recycling ratio

1 25.0 24.1 ± 1.4 1.01
2 25.0 24.8 ± 1.4 1.02
3 25.0 25.2 ± 1.5 1.02
4 25.0 22.9 ± 1.2 1.03
5 25.0 24.6 ± 1.3 1.00
6 25.0 24.1 ± 1.4 1.07
7 50.0 45.8 ± 2.5 1.04
8 50.0 47.4 ± 2.5 1.04
9 50.0 46.8 ± 2.5 1.03
10 50.0 48.4 ± 2.6 1.02
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Figure B.3: Results of the DRT of samples M3 (a) and M7 (b). The first six aliquots received
initial doses of 25 Gy, the last four aliquots doses of 50 Gy. The recovered doses are shown with
their 1σ uncertainties; the dashed lines represent the given doses.
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Figure B.4: Variation of peak temperature and glow curve area with heating rate. The parameters
used for the simulated curves of first-order kinetics are the same as in the caption of Fig. 1.16,
with q being the heating rate.
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M27 were measured for each heating rate. Their individual SNR’s are shown as black squares. As a
results of peak shift along the temperature axis with increasing heating rate, the integration limits
were adjusted to the peak maximum and encompass a temperature region of 50 ◦C for all aliquots.

B.2.2 Red emission (630± 30 nm)

A technical difficulty of measuring the red TL (RTL) emission of luminescent samples is

its strong interference with blackbody radiation at high temperatures (above ∼ 300 ◦C).

Especially for dim samples, the luminescence signals are not visible in the glow curve until

the thermally induced background is subtracted. The choice of sample holders (discs) with

reproducible background is thus crucial to avoid problems of fluctuating background lev-

els and to obtain reliable RTL signals. Extensive experiments (see also Chapter 2) proved

stainless steel discs (not polished) to yield the most reproducible background measure-

ments. Therefore, this kind of discs was used for all RTL measurements.

It is well-known that the position of a TL peak on the temperature axis depends on the

heating rate: the smaller the heating rate, the lower will the peak temperature be (Fig. B.4).

Thermal lag between the disc and the sample grains may, however, counteract and shift the

peak towards higher temperatures. Moreover, background subtraction problems become

increasingly noticeable at higher peak temperatures and thus higher heating rates. On

the other hand, the area under a glow curve (cts versus T ) increases with heating rate

(Fig. B.4). While the absolute number of released photons remains the same for all heating

rates, the peaks measured with a low heating rate “glow longer” than those recorded

with a higher heating rate. Another influence is thermal quenching which reduces the

luminescence signal with increasing temperature. Only empirical data can show what effect

will dominate in the end. The crucial quantity is the signal-to-noise ratio (SNR), providing

a measure of the uncertainty due to counting statistics. RTL measurements on flint sample

M27 using different heating rates suggest that the SNR is better for lower heating rates
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B Dose recovery tests

(Fig. B.5). While thermal quenching does not appear to significantly affect glow curve areas

obtained with varying heating rates, the increasing thermal background with temperature

is the main cause of higher SNR’s at lower heating rates.

RTL measurements were conducted according to the protocol suggested by Richter

& Krbetschek (2006), however once with and once without test dose monitoring. The

results of the DRT indicate that the use of a test dose to correct for sensitivity changes

helps to improve the accuracy of measured De’s. Furthermore, the failure of the bracketing

condition leads to exclusion of a substantial part of the measured aliquots. The method

of linear interpolation between the regeneration points as suggested by Richter & Kr-

betschek (2006) is, however, not applicable if the bracketing condition is not fulfilled.

Increasing the distance of the bracketing points in relation to the expected natural TL

enhances the chance to meet the quoted condition, but also lowers the accuracy of the

data. Since the results here indicate that test dose correction appears to work well, an

alternative is to construct a dose response curve with more than two regeneration points

and to fit this curve, as is usually done in OSL SAR dating. This method was applied in

the course of the dating studies of Chapter 7.
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B Dose recovery tests
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Figure B.6: Plot of the results of RTL dose revovery tests. Both accepted and rejected aliquots of
sensitivity-corrected data are shown. Rejection criteria are the value of the recycling ratio and the
bracketing condition, as explained in the main text. Weighted mean values were calculated using
only accepted aliquots. The dashed lines respresent the recovery doses.
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C Supplementary measurement data of

dated silex samples

C.1 Vale Boi

C.1.1 Plateau tests
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Figure C.1: Heating plateau tests of Vale Boi (VBT) samples. The plots in the left column show
the glow curves of natural (NTL) and additively dosed (NTL + β) aliquots; the right column shows
the ratio NTL/NTL + β. All curves are normalized (second glow).
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C Supplementary measurement data of dated silex samples
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Figure C.2: Heating plateau tests of Vale Boi (VBT) samples. The plots in the left column show
the glow curves of natural (NTL) and additively dosed (NTL + β) aliquots; the right column shows
the ratio NTL/NTL + β. All curves are normalized (second glow).
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C.1 Vale Boi

C.1.2 Dose recovery tests

Archeological samples from the Gravettian site Vale Boi (Portugal) were subjected to a

SAR DRT (blue TL emission) after thermal removal of the paleodose. In order to study

potential effects of the duration of heating on the subsequently determined dose, one set of

three aliquots was heated to 500 ◦C (cutheat) prior to artificial dosing and measurement,

the other set heated in the muffle oven at 400 ◦C for 1 h. The results are given in Table C.1

and Fig. C.3, along with the measurement conditions. To illustrate the relatively small

impact of sensitivity changes on the resulting dose (in contrast to samples M3 and M7, see

Chapter B), the De values are quoted once without and once with sensitivity correction.
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C Supplementary measurement data of dated silex samples

T
a
b
le

C
.1

:
R

esu
lts

of
th

e
D

R
T

of
sa

m
p
les

from
V

a
le

B
o
i

(V
B

T
).

T
h
e

in
itia

l
d
o
ses

w
ere

a
d
ju

sted
to

th
e

ex
p

ected
arch

eological
d
oses

of
th

e
sam

p
les,

an
d

reg
en

era
tion

d
oses

w
ere

7
,

1
6,

2
4
,

3
2,

1
6
,

0
G

y
a
n
d

1
2
,

2
4
,

3
6
,

4
8
,

2
4
,

0
G

y,
resp

ectively.
In

teg
ra

tion
lim

its
w

ere
370–410

◦C
for

sam
p
le

V
B

T
1

an
d

3
50–

4
10

◦C
fo

r
sam

p
le

V
B

T
2

an
d

V
B

T
3
;

a
q
u
ad

ra
tic

fu
n
ctio

n
w

a
s

u
sed

to
fi
t

th
e

d
o
se

resp
o
n
se

cu
rves

(su
p
ralin

ear
grow

th
).

E
q
u

ivalen
t

d
oses

are
given

o
n
ce

w
ith

o
u
t

an
d

on
ce

w
ith

correctio
n

o
f

sen
sitiv

ity
ch

a
n

g
es

b
y

test
d
o
se

m
o
n
ito

rin
g
.

U
n
corrected

S
en

sitiv
ity

-corrected

S
a
m

p
le

A
liq

u
o
t

A
n

n
ealin

g
G

iven
R

ecovered
R

ecy
clin

g
R

ecovered
R

ecy
clin

g
d
ose

[G
y
]

d
ose

[G
y
]

ratio
d

ose
[G

y
]

ratio

V
B

T
1

1
5
00
◦C

cu
th

eat
20.0

19.4
±

1.1
0.97

19.9
±

1.0
1.01

2
5
00
◦C

cu
th

eat
20.0

19.6
±

1.0
0.98

19.9
±

1.0
1.01

3
5
00
◦C

cu
th

eat
20.0

19.8
±

1.1
0.97

20.1
±

1.0
0.98

4
4
0
0
◦C

for
1

h
20.0

18.4
±

1.0
0.97

18.2
±

1.0
0.99

5
4
0
0
◦C

for
1

h
20.0

19.5
±

1.0
1.01

20.5
±

1.0
0.99

6
4
0
0
◦C

for
1

h
20.0

20.8
±

1.1
0.94

20.6
±

1.1
1.01

V
B

T
2

1
50

0
◦C

cu
th

eat
20.0

21.2
±

1.2
0.94

20.6
±

1.1
0.96

2
5
00
◦C

cu
th

eat
20.0

20.2
±

1.1
1.00

20.2
±

1.1
0.99

3
5
00
◦C

cu
th

eat
20.0

20.2
±

1.1
0.93

19.8
±

1.1
1.00

4
4
0
0
◦C

for
1

h
20.0

18.9
±

1.0
0.97

20.0
±

1.0
0.99

5
4
0
0
◦C

for
1

h
20.0

21.5
±

1.2
0.93

21.5
±

1.2
0.97

6
4
0
0
◦C

for
1

h
20.0

22.3
±

1.3
0.94

21.8
±

1.2
0.99

V
B

T
3

1
50

0
◦C

cu
th

eat
30.0

29.3
±

1.6
0.99

30.4
±

1.6
0.97

2
5
00
◦C

cu
th

eat
30.0

28.5
±

1.6
1.01

29.9
±

1.5
1.01

3
5
00
◦C

cu
th

eat
30.0

29.1
±

1.5
0.99

29.8
±

1.5
0.99

286



C.1 Vale Boi
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Figure C.3: Plot of DRT results of VBT samples. Due to scarcity of sample material, only one
annealing treatment could be tested in case of sample VBT3. The dashed lines represent the given
doses.

287



C Supplementary measurement data of dated silex samples

C.1.3 Plots of equivalent dose versus corrected natural signal
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Figure C.4: Plots of De versus sensitivity corrected natural signal (Ln/Tn) for VBT samples.
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C.2 Sodmein Cave

C.2 Sodmein Cave

C.2.1 Plateau tests
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Figure C.5: Heating plateau tests of Sodmein Cave (SodTL) samples. The plots in the left column
show the glow curves of natural (NTL) and additively dosed (NTL + β) aliquots; the right column
shows the ratio NTL/NTL + β. All curves are normalized (second glow).

C.2.2 Dose recovery tests

Two different TL emissions (blue and red) were measured and DRT’s carried out. Mea-

surement parameters were as given in Section 7.1; the recovery dose of 150 Gy was chosen

to approximately match the expected equivalent dose.
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C Supplementary measurement data of dated silex samples
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C.2 Sodmein Cave

C.2.3 Plots of equivalent dose versus corrected natural signal
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Figure C.6: Plots of De versus sensitivity corrected natural signal (Ln/Tn) for DRT’s and natural
dose measurements of Sodmein TL samples. The solid line indicates the given laboratory dose,
dashed lines the 10 % error bounds. Although the spread in De’s is only slightly larger for natural
dose measurements (compared to DRT’s), the range of Ln/Tn values is smaller for DRT’s (except
for SodTL0). For further information and interpretation, see main text (Sections 7.1 and 7.3.4).
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C Supplementary measurement data of dated silex samples

C.3 Las Palomas

C.3.1 Plateau tests
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Figure C.7: Heating plateau tests of Las Palomas (LP) samples LP1, LP2 and LP3. The plots in
the left column show the glow curves of natural (NTL) and additively dosed (NTL + β) aliquots;
the right column shows the ratio NTL/NTL + β. All curves are normalized (second glow).
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C.3 Las Palomas
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Figure C.8: Heating plateau tests of Las Palomas (LP) samples LP4, LP5 and LP7. The plots in
the left column show the glow curves of natural (NTL) and additively dosed (NTL + β) aliquots;
the right column shows the ratio NTL/NTL + β. All curves are normalized (second glow).
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Figure C.9: Heating plateau tests of Las Palomas (LP) samples LP8, LP9 and LP11. The plots in
the left column show the glow curves of natural (NTL) and additively dosed (NTL + β) aliquots;
the right column shows the ratio NTL/NTL + β. All curves are normalized (second glow).
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C.3.2 Plots of equivalent dose versus corrected natural signal

2.9 2.95 3 3.05 3.1 3.15
35

40

45

50

Ln/Tn

D
e [G

y]

LP1

2.2 2.4 2.6 2.8 3
30

35

40

45

Ln/Tn

D
e [G

y]

LP4

4 4.5 5
40

50

60

70

80

90

Ln/Tn

D
e [G

y]

LP5

2 2.2 2.4 2.6 2.8 3
25

30

35

40

45

50

Ln/Tn

D
e [G

y]

LP7

3.4 3.6 3.8 4
40

45

50

55

60

Ln/Tn

D
e [G

y]

LP11

Figure C.10: Plots of De versus sensitivity corrected natural signal (Ln/Tn) for LP samples.
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D Contribution to the manuscripts

This thesis includes five manuscripts that were submitted or accepted for publication.

In the following, my contributions to these studies are assessed, while the quoted values

comprise an estimated uncertainty of ± 10 %.

Chapter 2

Laboratory work 50 %

Measurements 70 %

Interpretation of results 60 %

Manuscript preparation 70 %

Chapter 3

Laboratory work 60 %

Measurements 50 %

Interpretation of results 90 %

Manuscript preparation 95 %

Chapter 4

Laboratory work 0 %

Measurements 50 %

Interpretation of results 70 %

Manuscript preparation 80 %
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Chapter 5

Laboratory work 50 %

Measurements 95 %

Interpretation of results 95 %

Manuscript preparation 95 %

Chapter 6

Laboratory work 50 %

Measurements 90 %

Interpretation of results 50 %

Manuscript preparation 60 %
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mir Unterstützung bei Laborarbeiten zukommen.

Mit Dr. Sebastian Kreutzer habe ich während der letzten Jahre unzählige Telefonate

geführt; aus diesem wertvollen Gedankenaustausch heraus konnten viele Probleme gelöst
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Anden möchte ich Andreas Raithel danken.

Last but not least bin ich meiner gesamten Familie großem Dank verpflichtet. Meine

Eltern haben mich Zeit meines Lebens nach besten Möglichkeiten unterstützt und mir
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