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II Abstract 

In mammals the O-mannosylation is a rare protein modification found only on 

proteins from muscles, brain and peripheral nerves. Although increased levels were 

detected in brain tissue only a few proteins have been identified to carry O-mannosyl 

glycans so far. However, their O-mannosylation does not account for the high amount 

present in brain. In humans defects in the O-mannosylation pathway lead to severe 

malformations of muscles, eyes and brain revealing the importance of this 

modification. The pathogenic mechanism of these diseases, called 

dystroglycanopathies, was only analyzed for α-dystroglycan in more detail whose 

defective glycosylation can explain the muscle but not the brain phenotype. 

In this work new O-mannosylated proteins were identified in mammalian brain using 

an unbiased proteomics approach. Neurofascin isoform 186 from mouse brain was 

shown to carry O-mannosyl glycans as well as the lecticans brevican, neurocan and 

versican from murine and bovine brain. Thus, the O-mannosylation was shown to be 

similar among different mammalian species. Since the lecticans are highly expressed 

in brain, finally the high amount of O-mannosylation in brain can be explained. In 

addition, new insights into the pathogenic mechanism of dystroglycanopathies were 

gained. Because neurofascin and the lecticans play important roles in the 

stabilization of the extracellular matrix around neurons and in the establishment of 

specialized microdomains impairment of their functions by a defective 

O-mannosylation might explain the brain-specific symptoms. 

 

 

 

 

 

 

 

 

 

 



I Index 

XI 
 

II Zusammenfassung 

Die O-Mannosylierung stellt in Säugetieren eine seltene Proteinmodifikation dar, 

welche bisher nur auf Proteinen aus Muskeln, Gehirn und peripherem Nervengewebe 

gefunden wurde. Obwohl im Gehirn größere Mengen der O-Mannoseglykane 

nachgewiesen wurden, konnten bisher nur wenige O-mannosylierte Proteine 

identifiziert werden. Deren O-Mannose-Modifikation kann den hohen Anteil im Gehirn 

nicht erklären. Im Menschen führen Fehler in der Biosynthese der O-Mannosylierung 

zu schwerwiegenden Fehlbildungen der Muskeln, der Augen und des Gehirns, was 

die Wichtigkeit dieser Modifizierung verdeutlicht. Der genaue Krankheits-

mechanismus, welcher den Dystroglykanopathien zugrunde liegt, wurde bisher nur 

anhand von α-Dystroglykan näher untersucht. Dessen fehlerhafte Glykosylierung 

kann den Muskel- nicht aber den Gehirn-Phänotyp erklären. 

In der vorliegenden Arbeit wurden mittels eines unvoreingenommenen 

Proteinfraktionierungsverfahrens weitere O-mannosylierte Proteine aus 

Säugetiergehirn identifiziert. Dabei wurde die O-Mannosylierung sowohl auf der 

Neurofaszin-Spleißvariante 186 aus Maushirn als auch auf den Lektikanen Brevikan, 

Neurokan und Versikan aus Maus- bzw. Rinderhirn gefunden. Auf diese Weise 

konnte gezeigt werden, dass die O-Mannose-Modifikation sich in den verschiedenen 

Säugetieren ähnelt. Da die Lektikane im Gehirn in großen Mengen exprimiert 

werden, kann mit deren Modifikation nun auch der insgesamt hohe Anteil der 

O-Mannose-Glykane im Gehirn erklärt werden. Außerdem konnten neue Einblicke in 

den Mechanismus gewonnen werden, welcher den Dystroglykanopathien zugrunde 

liegt. Da Neurofaszin und die Lektikane wichtige Funktionen in der Stabilisierung der 

extrazellulären Matrix rund um Neuronen und in der Etablierung spezialisierter 

Mikrodomänen spielen könnte eine Beeinträchtigung ihrer Funktion durch eine 

fehlende O-Mannosylierung die Gehirn-spezifischen Krankheitssymptome erklären. 
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1 Introduction 

1.1 Protein glycosylation 

Glycosylation is the most common and at the same time the most complex 

posttranslational modification of proteins (Wopereis et al., 2006). It is thought that 

over 50 percent of all proteins are modified with a variety of different glycan 

structures (Apweiler et al., 1999) which vary greatly depending on the species, tissue, 

developmental state and physiological condition. The importance of glycosylation 

becomes apparent in the fact that one to two percent of all human genes encode 

enzymes involved in protein glycosylation (Brooks, 2009). 

The glycan moieties are transferred onto the protein by specialized 

glycosyltransferases which utilize nucleotide or lipid activated sugars as donor 

substrates (Moremen et al., 2012). Most of these enzymes are located in the rough 

endoplasmic reticulum (ER) and the Golgi apparatus which is why mainly secretory 

proteins are glycosylated. These are proteins that are transferred through the 

secretory pathway to the cell surface where they get exported or anchored to the 

plasma membrane or the extracellular matrix (ECM) (Lehle et al., 2006). 

In mammals ten different monosaccharide building blocks are utilized for the 

generation of linear or branched glycan chains consisting of two to several hundred 

sugar units (Brooks, 2004). Not all possible structures occur in nature because of (a) 

the sequential action of glycosyltransferases during the maturation of a protein on its 

way from the ER via the Golgi to the cell surface and (b) the competition between 

multiple enzymes. Still glycans are highly diverse (Spiro, 2002). Since not every 

potential glycosylation site of a protein is modified and different structures can be 

attached to the same site of glycoprotein molecules microheterogeneity is observed 

(Brooks, 2004). With this high grade of diversity glycosylation leads to a further 

magnitude of complexity in biological macromolecules (Lommel & Strahl, 2009). 

The ten monosaccharides used in mammalian glycosylation are fucose (Fuc), 

galactose (Gal), glucose (Glc), N-acetylgalactosamine (GalNAc), N-acetyl-

glucosamine (GlcNAc), glucuronic acid (GlcA), iduronic acid (IdoA), mannose (Man), 

sialic acid (SA) and xylose (Xyl). These are linked to the protein by four different 

linkage types depicted in Figure 1 (Moremen et al., 2012). In N-glycosylation (see 

1.1.1) the glycan is attached via an amide bond to asparagine (Asn) side chains 

while in O-glycosylation (detailed description in 1.1.2) the saccharides are 
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glycosidically linked to hydroxyl groups of amino acid side chains. Much more 

uncommon is the C-mannosylation in which Man is bound to tryptophan by a C-C 

linkage (Löffler et al., 1996). Alternatively, glycans can act as a linker between the 

protein backbone and the glycosylphosphatidylinositol (GPI) anchor. 

 

 

Figure 1: Major classes of vertebrate glycan structures. Depicted are the three classes of N-linked 
glycans: high-mannose-, complex- and hybrid-type and the seven classes of O-linked glycans: mucin-
type, O-Man, O-Gal, O-GlcNAc, O-Glc, O-Fuc and the glycosaminoglycan modification. In addition, 
C-mannosylation and GPI-anchor modification are shown. From (Moremen et al., 2012). 

 

For a long time the functional importance of protein glycosylation remained poorly 

understood but eventually it became evident that the lack of individual 

glycosyltransferases can cause severe congenital defects (Lehle et al., 2006). 

Because of their ubiquitous and complex nature the biological functions of glycans 

are highly diverse and can range from subtle roles to those that are crucial for 

development, growth and function of an organism (Varki & Lowe, 2009). Glycans 

have structural and modulatory functions, for example support of protein folding, 
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protection against degradation and enhancement of hydrophilicity. Also, they act as 

recognition moieties in protein/protein interactions and thereby they facilitate cell/cell 

and cell/matrix interactions, fertilization and signaling (Wopereis et al., 2006). 

Intracellularly, dynamic GlcNAc modification serves as a regulatory switch similar to 

phosphorylation thereby influencing transcriptional regulation, proteasome-mediated 

protein degradation and cellular stress signaling. Glycosylation plays a role in viral 

and bacterial infection since these pathogens sometimes recognize and bind to 

glycan epitopes (Nizet & Esko, 2009). On the one hand changes in protein 

glycosylation lead to a variety of diseases, for example to dystroglycanopathies 

(detailed description in 1.3.2), on the other hand glycosylation changes arise from 

other diseases, for example from cancer (Brooks, 2009). 

All in all the variable and dynamic nature of glycosylation provides a powerful way to 

generate biological diversity and complexity beyond the genetic code. 

 

1.1.1 N-Glycosylation 

The Asn-linked glycosylation is the most prevalent form of a glycan-protein bond 

(Spiro, 2002). Because of its conserved ER and Golgi located biosynthetic pathway 

N-glycosylation is found only on secreted and membrane-bound proteins. Ovalbumin 

was the first described N-glycosylated protein (Johansen et al., 1961) but nowadays 

many proteins are known including plasma proteins, hormones, enzymes, cell 

surface receptors and immunoglobulins. 

In eukaryotes the synthesis of N-glycans starts with the assembly of a glycan core 

(Glc3Man9GlcNAc2) onto a lipid anchor at the cytosolic side of the ER membrane. 

This process is referred to as the asparagine-linked glycosylation (ALG) pathway 

(Burda & Aebi, 1999). After the re-orientation to the luminal side of the ER the 

oligosaccharide is transferred to Asn side chains of the nascent protein by the multi 

subunit enzyme oligosaccharyl transferase (OST) (Moremen et al., 2012). Mostly Asn 

residues in the consensus sequence Asn-Xaa-Ser/Thr (with Xaa being any amino 

acid beside Pro) are modified (Marshall, 1974). Since only about 66 percent of all 

sequons are glycosylated (Apweiler et al., 1999), further structural requirements have 

to be fulfilled which are currently not completely understood. 

After trimming of the core glycan by different glycosidases it can be elongated into 

various structures in the Golgi in a protein- and tissue-specific manner. In general, 

three types of N-glycans are discriminated (see Figure 1): high-mannose-type 
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glycans, complex-type glycans and hybrid-type glycans which show characteristics of 

both of the two other types. 

Special functions of N-glycosylation are the sorting of lysosomal proteins via the 

mannose-6-phosphate pathway and the quality control regarding correct folding of 

secretory proteins before they are transferred to the Golgi (Lehle et al., 2006). 

 

1.1.2 O-Glycosylation 

In contrast to N-glycans which consist of up to 30 sugar moieties, most O-glycans are 

much smaller. At the same time they are extremely diverse since up to seven 

different monosaccharides can be attached to all hydroxy amino acids (Ser, Thr, Tyr, 

Hyl, Hyp) although the most commonly modified are Ser and Thr (Wopereis et al., 

2006). Most O-glycans are further elongated into linear or branched structures. The 

initial step, the attachment of the first sugar to a hydroxyl group of a target protein, 

takes place post-transcriptionally in the late ER or in the Golgi where mostly 

nucleotide activated monosaccharides are used as donors. Based on the sugar 

directly attached to the protein O-glycans are classified into seven groups (see Figure 

1). 

In addition to the most common mucin-type O-glycosylation (see 1.1.2.1) – which is 

characterized by a Ser- or Thr-bound GalNAc (Hang & Bertozzi, 2005) – the 

galactosylation of Hyl in collagens and the reversible O-GlcNAc modification of 

cytosolic and nuclear proteins (Hart, 1997) are described in detail. O-Fucosylation 

which is involved in protein-protein interaction, O-glucosylation and O-mannosylation 

(described in detail in 1.2) are less common in mammals. Moreover, the 

glycosaminoglycan (GAG) modification (see 1.1.3) is often counted among 

O-glycosylation since most types are attached to Ser residues of the target protein. 

 

1.1.2.1 Mucin-type O-glycosylation 

A wide variety of glycoproteins are modified by mucin-type O-glycosylation (Spiro, 

2002). Typically, these glycans occur accumulated in special protein domains called 

mucin domains (Perez-Vilar & Hill, 1999) and can account for more than 50 percent 

of the glycoprotein’s molecular weight. The first GalNAc moiety is transferred to 

Ser/Thr residues by polypeptide-N-acetylgalactosaminyltransferases (ppGalNAcTs) 

(Ten Hagen et al., 2003) and is elongated by downstream glycosyltransferases to 
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generate a series of eight core structures (Hang & Bertozzi, 2005). These core 

O-linked glycans can be further modified to generate complex oligosaccharides 

whereby the occurrence of the different structures depends mainly on the type of 

tissue in which they are expressed (Brockhausen et al., 2009). In contrast to N-linked 

glycosylation mucin-type modification lacks a known amino acid consensus 

sequence (Jensen et al., 2010) which also applies to most of the other 

O-glycosylation types. But it could be shown that the presence of Pro near the 

glycosylation site is beneficial for the O-GalNAc modification (O'Connell et al., 1992).  

Mucin-type O-glycosylation plays an important role in proteins called mucins. This is 

why highly O-glycosylated peptide stretches rich in Ser, Thr and Pro are usually 

called mucin domains. Mucins are highly O-glycosylated proteins present at the outer 

surfaces of the digestive, genital and respiratory systems (Wopereis et al., 2006). 

The glycans present on mucins are able to bind high amounts of water so that they 

form a mucous layer which serves as a protective coating with antibacterial 

properties. 

 

1.1.3 Glycosaminoglycan modification 

Glycosaminoglycans are long linear polysaccharides containing a disaccharide 

repeat of an amino sugar (GalNAc or GlcNAc) and a uronic acid (GlcA or IdoA) or 

Gal (Esko et al., 2009). Often, they are additionally modified by numerous sulfations 

which, together with the uronic acid moieties, evoke the polyanionic nature of GAGs 

and result in a high grade of heterogeneity. 

The simplest GAG is hyaluronan (formerly called hyaluronic acid, HA) which is 

composed of up to 25,000 repeats of GlcNAc and GlcA (depicted in Figure 2) and is 

not modified any further. HA is not attached to a core protein instead it is released 

into the extracellular space after its synthesis at the plasma membrane (Hascall & 

Esko, 2009). With this, HA is the only GAG synthesized in the cytoplasm while the 

growing polymer is extruded from the cell. Different sizes of HA appear to have 

distinct physiological functions including hydration of tissues, providing of elasticity 

and creation of cell free spaces for cell migration (Preston & Sherman, 2011). 

Most GAGs are attached to Ser residues of proteoglycan core proteins via the linker 

glycan Gal-Gal-Xyl (see Figure 2) including chondroitin sulfate (CS), dermatan sulfate 

(DS), heparan sulfate (HS) and heparin. Only keratan sulfate (KS) is bound in a 

different manner since it is linked through N-glycosylation (type I) or core 2 
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O-glycosylation (type II) (Wopereis et al., 2006). A large number of core proteins 

have been identified which can be modified with just one GAG chain or with more 

than 100 chains (Esko et al., 2009). GAG modification is initiated in the ER by the 

transfer of Xyl to Ser residues. In the Golgi the core is elongated by the sequential 

action of highly specialized glycosyltransferases, epimerases and sulfotransferases. 

GAGs bind large volumes of water and with this the proteoglycans can provide 

resilience or resistance to compression. In addition, GAGs also play a role in 

nonspecific protein interactions. For example they adhere to soluble polypeptide 

growth factors through electrostatic interactions thereby concentrating the growth 

factors in a defined space (Wopereis et al., 2006). 

 

 

Figure 2: Schematic view of the different glycosaminoglycan types. GAG chains can be modified 
by epimerization of GlcA to IdoA and by extensive O-sulfation (not shown here) or in the case of 
heparan sulfate and heparin also N-sulfation. Brackets indicate disaccharide repeat. 
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1.2 O-Mannosylation 

1.2.1 Biosynthesis and structure 

O-Mannosylation was discovered in fungi and yeast in which the majority of secreted 

and cell wall proteins is modified with O-mannose (Sentandreu & Northcote, 1968; 

Lommel & Strahl, 2009). There O-mannosylation plays an essential role in cell wall 

rigidity and cell integrity (Gentzsch & Tanner, 1996). In yeast O-mannosylation is 

initiated in the ER by the transfer of mannose from dolichylphosphate mannose (Dol-

P-Man) to Ser or Thr residues of secretory proteins. This transfer is catalyzed by 

protein mannosyltransferases (PMTs) (see Figure 3) (Haselbeck & Tanner, 1983; 

Gentzsch et al., 1995b). Several PMT proteins with possibly distinct substrate 

specificities were identified and found to mostly act as heteroduplexes (Gentzsch et 

al., 1995a). In the Golgi the core mannose is further elongated by several mannose 

moieties leading mainly to neutral linear glycans of two to seven saccharides 

(Endo, 1999). 

In mammals, O-mannosylation seemed to be an uncommon modification since it was 

only found on a limited number of glycoproteins present in nerve and muscle tissues 

so far (Nakamura et al., 2010). The core mannose is transferred to the target protein 

by a heteroduplex consisting of protein O-mannosyltransferases 1 and 2 (POMT1/2) 

in the ER (Jurado et al., 1999; Willer et al., 2002; Akasaka-Manya et al., 2006) and is 

further elongated into various linear or branched structures in the Golgi (see Figure 

3). The most prevalent O-mannosyl glycans in mammals share a common core 

structure in which the α-linked Man is elongated by GlcNAc and Gal (see Figure 4) 

(Endo, 1999). This core can additionally be modified by SA or Fuc (Smalheiser et al., 

1998). Furthermore, branched structures (Chai et al., 1999) and O-mannosyl glycans 

carrying a sulfated GlcA (called HNK-1 epitope) (Yuen et al., 1997) have been 

reported. Recently, mannose phosphorylation and further glycan modification forming 

a phosphodiester have been identified as a completely new glycan modification in 

mammals (Yoshida-Moriguchi et al., 2010). 
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Figure 3: Schematic representation of the O-mannosylation pathway of yeast (left) and 
mammals (right). Dol-P-Man is synthesized on the cytosolic face of the ER membrane and flip-flops 
into the ER lumen. Mannose is afterwards transferred to proteins entering the secretory pathway by 
members of the PMT-family. Diversification occurs in the Golgi apparatus where further chain 
elongation takes place. Modified from (Lommel & Strahl, 2009). 

 

 

Figure 4: Schematic diagram of O-mannosyl glycans found in mammals. The core structure 
Galβ1-4GlcNAcβ1-2Man-Ser/Thr is common in all O-mannosyl glycans and can be sialylated (1) or 
fucosylated (2). Also, branched structures (3) and O-mannosidically linked HNK-1 epitopes (4) have 
been described. 
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1.2.2 Elongation of the core mannose 

In mammals the extension of the core mannose in the 2-position with a GlcNAc 

moiety is catalyzed by protein mannose β-1,2-N-acetylglucosaminyl-transferase 1 

(POMGnT1) (Takahashi et al., 2001). The second GlcNAc in the 6-position which is 

present in branched structures can only be transferred to the glycan if the core 

mannose is already modified in the 2-position. This reaction is catalyzed by 

N-acetylglucosaminyltransferase IX which is highly expressed in brain and testes and 

absent in most other tissues (Inamori et al., 2004). Several potential candidates for 

enzymes adding SA, Fuc, Gal and GlcA were suggested but the exact identity is not 

yet known. It is likely that these enzymes are not specific for the O-mannosylation 

pathway but are also used in other O- and N-glycan syntheses (Nakamura et al., 

2010). 

As mentioned before the core mannose can be modified by the formation of a 

phosphodiester-bound glycan but neither the enzyme responsible for the 

phosphorylation of the core-mannose nor the exact structure of the attached 

polysaccharide are known. So far, the known or putative glycosyltransferases Large, 

fukutin and fukutin-related protein (FKRP) were shown to participate in the formation 

of this newly identified glycan epitope (Yoshida-Moriguchi et al., 2010; Willer et al., 

2012). While the enzymatic activity of Large was identified as a bifunctional xylosyl 

and glucuronyl transferase (Inamori et al., 2012a), the activities of fukutin and FKRP 

are still unclear. 

 

1.2.3 O-Mannosylated proteins 

Mammalian O-mannosylation was discovered on not otherwise specified chondroitin 

sulfate proteoglycans from rat brain in 1979 (Finne et al., 1979). However, not much 

progress in this research area was made until Chai and coworkers found out that 

30 percent of the pronase stable glycopeptides from rat brain are based on mannose 

(Chai et al., 1999). So far, only a few mammalian proteins from nerve and muscle 

tissues could be identified as O-mannosylated – namely α-dystroglycan (α-DG) of 

nerve and muscle tissues of different species (Chiba et al., 1997; Sasaki et al., 1998; 

Smalheiser et al., 1998), CD24 (Bleckmann et al., 2009), neuron specific receptor-

type protein tyrosine phosphatase β (RPTPβ) (Abbott et al., 2008) and 

RPTPζ/phosphacan (Dwyer et al., 2012). However, α-DG is the only protein in which 



1 Introduction 

10 
 

the sites and functions of the O-mannose modification were characterized in more 

detail (see 1.3.1) (Stalnaker et al., 2011b). For a long time it was assumed that α-DG 

is the main O-mannose glycan carrying component in muscle and brain but Stalnaker 

et al. could show that the conditional knockout of brain α-DG did not lead to altered 

O-mannosylation in mice brains compared to wildtype (Stalnaker et al., 2011a) 

indicating that other not yet identified O-mannosylated proteins are present in the 

brain. 

 

1.2.4 Initiation of O-mannosylation 

While some glycosylation types are initiated by a consensus motive within the amino 

acid chain at or near the glycosylation site the signals leading to O-mannosylation of 

a protein seem to be much more complex and are not fully understood. In vitro 

studies with substrates based on α-DG led to the postulation of a consensus 

sequence (Manya et al., 2007) but this motif could not be confirmed in vivo. In 2008 

Breloy et al. analyzed the sequential and structural dependence of the 

O-mannosylation of human α-DG on the basis of recombinantly expressed 

glycosylation probes of the α-DG mucin domain (Breloy et al., 2008). The authors 

showed that the O-mannosylation is controlled by the direct periphery of the 

mannosylation site (Thr clusters) and by an upstream-located structural element (cis-

controlling peptide). This peptide region appeared to be necessary but not sufficient. 

 

1.3 Pathology of O-mannosylation defects 

1.3.1 α-Dystroglycan 

As described above α-DG is one of the few identified O-mannosylated proteins and it 

is the only protein in which this modification was analyzed in more detail. 

Dystroglycan is encoded by the DAG1 gene whose product is posttranslationally 

cleaved into the extracellular α-DG and the transmembrane β-DG (Ibraghimov-

Beskrovnaya et al., 1992). While β-DG intracellularly binds to dystrophin which in turn 

attaches to the actin cytoskeleton α-DG stays noncovalently associated to β-DG (see 

Figure 5) (Barresi & Campbell, 2006). In addition, α-DG binds to various laminin G 

domain containing ECM proteins such as laminin (Ervasti & Campbell, 1993), agrin 

(Sugiyama et al., 1994), neurexin (Sugita et al., 2001) or perlecan (Talts et al., 1999; 

Cohn, 2005). With this DG establishes a link between the actin cytoskeleton and the 



1 Introduction 

11 
 

ECM which (as part of the dystrophin-glycoprotein complex (DGC)) contributes to the 

structural stability of the muscle cell membrane during cycles of contraction and 

relaxation (Campbell, 1995). In fact, disruption of the DGC leads to various types of 

muscle disorders – the congenital muscular dystrophies (CMDs) (Schachter et al., 

2004). In addition α-DG is involved in basement membrane assembly, epithelial 

polarization, nerve myelination and cell migration. 

 

 
Figure 5: Schematic view of the dystrophin-glycoprotein complex and its interaction partners. 
O-Mannosylated and mucin-type glycosylated α-DG is a central component of the DGC and serves as 
a binding partner to several ECM proteins (laminin, perlecan, agrin and neurexin) as well as a receptor 
for members of the arenavirus family (LCMV and LFV). From (Dobson et al., 2012). 

 

DG is widely expressed among all tissue-types but most abundantly in skeletal 

muscle and heart (Ibraghimov-Beskrovnaya et al., 1993). So far, O-mannosylation 

which is present in the central mucin domain of α-DG was found in nerve and muscle 

tissues whereby it was first described in bovine peripheral nerve (Chiba et al., 1997) 

and rabbit skeletal muscle (Sasaki et al., 1998). Chiba et al. also found out that intact 

O-mannosylation is a prerequisite for efficient binding to laminin and Michele et al. 

were able to show that hypoglycosylation abolished binding to laminin, agrin and 

neurexin (Michele et al., 2002). Although no mutations in the dystroglycan gene have 

been identified in any human disorder (Barresi & Campbell, 2006) the importance of 
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posttranslational processing of α-DG becomes apparent in the fact that disrupted 

O-mannosylation leads to a group of severe CMDs – called dystroglycanopathies 

(see 1.3.2 for detailed description). 

In addition to its function as ECM binding protein, α-DG also acts as receptor for 

bacterial and viral infection. Thus, Mycobacterium leprae binds laminin 2 and α-DG 

prior to infection of Schwann cells (Rambukkana et al., 1998). Lymphocytic 

choriomeningitis virus (LCMV) and Lassa fever virus (LFV) also use α-DG as a 

receptor (Cao et al., 1998) and Imperiali et al. could show that this interaction is also 

dependent on the O-mannosylation present on α-DG (Imperiali et al., 2005). 

 

1.3.2 Dystroglycanopathy 

Dystroglycanopathy belongs to the CMDs which is a heterogeneous group of 

inherited genetic diseases causing progressive weakness and wasting of skeletal 

muscle (Stalnaker et al., 2011b). CMDs can arise from many genetic mutations in a 

wide variety of muscle proteins, with laminin α-2 being the most prominent (Schessl 

et al., 2006). The underlying genetic mutations in dystroglycanopathy are found in 

genes of known or putative glycosyltransferases of the O-mannosylation pathway 

(Muntoni et al., 2004; Martin, 2007) or in accessory proteins of them (Godfrey et al., 

2011). The severe muscle phenotype of dystroglycanopathy can mostly be attributed 

to hypoglycosylation of α-DG leading to a reduction or a complete loss of its ability to 

bind laminin (Willer et al., 2003). In addition, dystroglycanopathy patients often exhibit 

brain malformations and eye abnormalities (Sparks et al., 2001 [Updated 2012]) 

which are not observed in other CMDs. Until 2007 the defects caused by 

dystroglycanopathy were commonly attributed solely to the loss of α-DG function 

(Martin, 2007). But the finding that the expression of the participating 

glycosyltransferases is not always coincident with DG expression suggests that there 

might be other glycoproteins that are modified by O-mannosylation (Martin, 2007). 

So far, mutations in seven known or putative glycosyltransferase genes have been 

identified to cause dystroglycanopathy (see Figure 6) (Dobson et al., 2012). In 

addition, mutations in two accessory proteins were found to result in a combined 

phenotype of dystroglycanopathy and congenital disorders of glycosylation (CDG) 

(Godfrey et al., 2011). Mutations in POMT1 or POMT2 lead to the severest form of 

dystroglycanopathy – the Walker-Warburg syndrome (WWS) with life expectancies of 

only up to twelve months (Beltrán-Valero de Bernabé et al., 2002; van Reeuwijk et 



1 Introduction 

13 
 

al., 2005). Typical symptoms of WWS include type II lissencephaly, muscular 

dystrophy and structural eye abnormalities. Patients with muscle-eye-brain disease 

(MEB) which can arise from mutations in the POMGnT1 gene, exhibit a similar 

phenotype as observed in WWS only less severe. The life expectancy can be up to 

twelve years of age (Yoshida et al., 2001). 

 

 
Figure 6: Schematic representation of the enzymes involved in the O-mannosylation pathway. 
Defects of their genes cause different types of dystroglycanopathies. Known or putative 
glycosyltransferases are shown in bold letters and their catalytic activities are indicated (the question 
marks indicate that either the enzymatic activity or the linkage type are unknown). The respective 
disorders caused by genetic defects are shown in italic. 

 

In addition to the mutations in known glycosyltransferases, which are responsible for 

the core structure synthesis, mutations in enzymes affecting the postphosphoryl 

modification, namely Large, fukutin and FKRP, also cause dystroglycanopathy. 

Longman et al. could show that mutations in the LARGE gene led to MDC1D which 

presented itself with severe muscular dystrophy and mental retardation (Longman et 

al., 2003). Humans also harbor the Large2 protein which has a similar activity as 

Large (Inamori et al., 2012b) but so far no mutations were found in the LARGE2 gene 

in dystroglycanopathy patients. Mutations in fukutin and FKRP were found to cause 

several disorders – namely Fukuyama CMD (FCMD), limb-girdle muscular dystrophy 

(LGMD), WWS and MDC1C (Dobson et al., 2012). Recently mutations in the ISPD 

gene were identified as a new cause of WWS (Roscioli et al., 2012; Willer et al., 

2012). The authors assumed from their tests that ISPD activity is needed for the 
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transfer of mannose onto the target protein but the exact enzymatic activity of this 

gene product remains unclear. 

In addition to the pure dystroglycanopathies two disorders affecting O-mannosylation 

and N-glycosylation were reported. Mutations in DPM2 (Barone et al., 2012) and 

DPM3 (Lefeber et al., 2009) both affect the activity of dolichyl-phosphate 

mannosyltransferase (DPM) which catalyzes the synthesis of Dol-P-Man. This in turn 

is used as substrate in N-glycosylation, O-mannosylation, C-mannosylation and 

GPI-anchor formation but the authors suspected that O-mannosylation is more 

sensitive to a reduction in Dol-P-Man and was therefore thought to be the main cause 

of the clinical features (Godfrey et al., 2011). 

So far, the underlying mutations of only about half of the patients suffering from 

dystroglycanopathy were identified and attributed to one of the genes described 

above (Dobson et al., 2012) indicating that other gene products might also be 

involved in the O-mannosylation pathway. 

 

1.4 Brain extracellular matrix 

The central nervous system (CNS) is densely packed with various cells confined by 

the bony shell of the scull leaving only a small extracellular space (Rauch, 2007). 

Only about 20 percent of the brain tissue volume is composed of ECM (Nicholson & 

Syková, 1998), while for example connective tissue consists to over 50 percent of 

ECM structures. In the brain different forms of ECM structures are present – the most 

remarkable being perineuronal nets (PNNs) of mature neurons and a basal lamina-

like ECM that localizes to the blood-brain barrier (Dityatev et al., 2010). The main 

components of the CNS matrix were found to be members of the lectican (detailed 

description in 1.4.1), link protein and tenascin families in addition to the GAG 

hyaluronan (Zimmermann & Dours-Zimmermann, 2008), but various other proteins 

are also present – many of them unique to the CNS. 

Due to the different types of specialized structures a high grade of heterogeneity 

throughout the brain is observed. Nonetheless, the ECM serves a rather universal 

role as a barrier for soluble and membrane associated molecules and therefore 

contributes to the clustering of these molecules in functional microdomains (Dityatev 

et al., 2010). Two examples of the ECM barrier function are the accumulation of 

cations at the nodes of Ranvier thereby ensuring proper conduction of action 
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potentials along the axon (Bekku et al., 2010) and the clustering of receptors at the 

postsynapse of synaptic contacts. Dityatev et al. could show that the interneuron 

exciting activity is regulated by the ECM present at the axon initial segment (AIS) 

(Dityatev et al., 2007). Hedstrom and colleagues found out that the cell adhesion 

molecule (CAM) neurofascin 186 (see 1.4.2) assembles the ECM at the AIS and links 

it to the cytoskeleton (Hedstrom et al., 2007). Other functions of the brain ECM are 

the protection against oxidative stress (Morawski et al., 2004) and the regulation of 

neuronal plasticity (Galtrey & Fawcett, 2007). Plasticity – the adaptability of the 

mammalian CNS (Bandtlow & Zimmermann, 2000) – plays a key role in the 

refinement of connections during development and continues to be important in the 

response to experience, age or injury in the adult CNS. 

 

1.4.1 Lecticans 

The lecticans are a family of four high molecular weight, chondroitin sulfate-bearing 

proteoglycans (see 1.1.3) which are the most abundant proteins of the ECM in the 

CNS (Howell & Gottschall, 2012). The core proteins of aggrecan, brevican, neurocan 

and versican range in size from 95 kDa to more than 300 kDa and share a common 

domain structure (see Figure 7A). Between the globular domains at the termini a 

central region of varying length is present that contains attachment sites for CS-GAG 

chains and also N- and O-glycosylation sites (Zimmermann & Dours-Zimmermann, 

2008). The high grade of glycosylation confers a rather rigid mucin-like structure to 

this domain (Bandtlow & Zimmermann, 2000). The N-terminal region, called G1, 

contains a hyaluronan and link protein binding site while the C-terminal domain, G3, 

can bind to sulfoglycolipids (Miura et al., 1999), tenascins (Aspberg et al., 1997) or 

fibulins (Olin et al., 2001). The lecticans are expressed in different isoforms and 

secreted into the extracellular space with one exception, a GPI-anchored splice 

variant of brevican (Bandtlow & Zimmermann, 2000). 

Phosphacan and RPTPβ, which were shown to be O-mannosylated, share some 

structural similarities with the lecticans (see Figure 7B). They have a globular 

N-terminal domain and a central domain that is modified by CS-GAG chains and 

O-glycosylation (Bartus et al., 2012). While RPTPβ is anchored to the plasma 

membrane phosphacan which is a splice variant of the former is released into the 

extracellular space. 
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Together the above mentioned molecules form complex networks among which the 

PNNs are the most important. These are mesh-like structures that surround the cell 

bodies and proximal dendrites of some classes of neurons (Galtrey & Fawcett, 2007) 

and mainly consist of lecticans, HA, tenascin-R and link proteins. Hyaluronan 

provides the scaffold for PNNs since it is attached to the neuronal cell surface and 

extends far into the extracellular space. Many lecticans bind to a single HA molecule 

while this interaction is stabilized by link proteins. Lecticans can be interconnected by 

tenascin-R trimers thereby crosslinking the different HA chains. There are variations 

to the basic organization due to the distinctive distribution of individual members of 

the lecticans and link proteins. At the nodes of Ranvier for example, versican splice 

variant V2 was shown to be the principal organizer (Dours-Zimmermann et al., 2009) 

while the AIS matrix is mainly dependent on brevican (Dityatev et al., 2007). 

In addition to the high amount of lecticans integrated into structural matrices, Rauch 

described the presence of free neurocan (Rauch, 2007). The author proposed that 

neurocan might act as an interaction modulator for different cell adhesion molecules. 

 

 
Figure 7: Schematic representation of the most common CNS CSPGs. (A) Lecticans are 
composed of two globular domains (G1 and G3) flanking a core protein region with GAG attachment 
sites. Aggrecan has an additional G2 domain adjacent to G1. (B) Phosphacan is a splice variant of 
RPTPβ. They both have globular N-terminal domains (CA), a CS-GAG-modified central region and a 
fibronectin type-III domain. Modified from (Bartus et al., 2012). 
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1.4.2 Neurofascin 

Neurofascin (NF) is a cell surface protein of the immunoglobulin superfamily which is 

only expressed in nervous tissue (Kriebel et al., 2012). Several splice variants of NF 

have been identified with NF155 and NF186 being the predominant ones. The 155 

kDa isoform is expressed by glia cells while NF186 is produced by neurons (Kriebel 

et al., 2011). They both consist of a short cytoplasmic tail, a single transmembrane 

intersection and a large extracellular part (see Figure 8) which is mainly composed of 

immunglobulin-like (Ig) and fibronectintype-III domains (Liu et al., 2011). The main 

difference between the two isoforms is an additional mucin-like domain present in 

NF186. 

Both variants play crucial roles in the compartmentalization of axonal proteins. While 

NF155 is required for paranodal junction assembly at the glial interface, NF186 is 

essential for the accumulation of the nodal protein complex needed for axonal 

conduction at nodes of Ranvier (Susuki & Rasband, 2008). In addition NF186 

assembles the ECM of the AIS and links it to the cytoskeleton. From their 

experiments Hedstrom et al. assume that NF186 directly binds to brevican and 

thereby assembles a specialized brevican-based ECM at the AIS (Hedstrom et al., 

2007). Intracellularly, only ankyrin G was identified as an interaction partner of NF186 

so far (Susuki & Rasband, 2008) which in turn recruits specialized sodium channels 

to the nodes of Ranvier. 

 

 
Figure 8: Schematic view of the domain composition of neurofascin. NF harbors six 
immunoglobulin-like domains (Ig) which form a horseshoe-like structure and four fibronectin type-III 
domains (Fn). In addition, NF186 comprises a highly glycosylated mucin-like domain (Liu et al., 2011). 
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1.4 Aim of this project 

Protein O-mannosylation is a rare posttranslational modification in mammals in 

general but was found in about one third of all O-glycosidically bound glycans in the 

brain. So far, only very few proteins have been identified to carry this modification 

and their O-mannosyl glycans alone cannot account for the high amount present in 

nervous tissues. In addition, patients suffering from genetic mutations of enzymes 

involved in the O-mannosylation pathway exhibit a severe neurological phenotype 

which indicates a still unknown but important role for O-mannosylation in the brain. 

Therefore, the aim of this study was the identification of new O-mannosylated 

proteins of the mammalian brain leading to new insights into the mechanism of 

initiation and the pathology of O-mannosylation defects. 

The isolation of O-mannosylated proteins ought to be accomplished from mouse and 

calf brains by means of general proteomics. Since the exposed glycan epitopes of 

mannose-based glycans are very similar to other N- and O-glycan epitopes immune 

affinity purification of O-mannosylated proteins was not possible. Therefore, a broad, 

unbiased proteomics approach was chosen in which mouse or calf brain lysates were 

to be fractionated via a newly developed sequence of preparative fractionation 

methods. The generated protein fractions should be analyzed regarding their 

O-glycan content by MALDI mass spectrometry of released O-glycans and proteins 

ought to be identified by LC-MS of tryptic peptides. Further information about the 

O-mannosylation sites was to be gained from glycopeptide analysis via LC-ESI-MS. 
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2 Materials and methods 

2.1 Materials 

All chemicals were purchased from Sigma-Aldrich or Carl Roth and were of analytical grade. 

Exceptions are marked in the text. Proteins were handled at 4°C, long time storage was at -

20°C. 

 

2.1.1 Buffers and Solutions 

2.1.1.1 Purchased buffers 

 

Buffer Manufacturer 

Dulbecco’s PBS PAA 

 

2.1.1.2 Self-made buffers 

 

SDS-PAGE  

Electrophoresis buffer (10×) 1.92 M glycine 
0.25 M Tris 
1 % (w/v) SDS 

Sample Buffer (reducing, 10×) 0.5 M TrisHCl pH = 6.8 
10 % (w/v) SDS 
50 % (v/v) glycerin 
10 % (v/v) 2-mercaptoethanol 
0.0025 % (w/v) bromphenol blue 

Stacking gel buffer (4×) 0.5 M TrisHCl pH = 6.8 

Running gel buffer (4×) 1.5 M TrisHCl pH = 8.8 

Western blot  

TBS (10×) 0.2 M TrisHCl pH = 7.4 
1.5 M NaCl 

TBST buffer 1× TBS for Western Blot 
0.1 % (v/v) TWEEN 20 

Towbin buffer (2×) 0.39 M glycine 
48 mM Tris 

Blotting buffer 1× Towbin buffer 
20 % (v/v) methanol 
0.05 % (w/v) SDS 
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Lysis and WGA affinity chromatography 

Solubilization buffer 10 mM TrisHCl pH = 7.5 
150 mM NaCl 
1 % (w/v) CHAPS or Triton X-100 

Washing buffer 10 mM TrisHCl pH = 7.5 
0.5 M NaCl 
1 % (w/v) CHAPS or Triton X-100 

Elution buffer 1 10 mM TrisHCl pH = 7.5 
150 mM NaCl 
1 % (w/v) CHAPS or Triton X-100 
0.2 M GlcNAc 

Elution buffer 2 10 mM TrisHCl pH = 3 
150 mM NaCl 
1 % (w/v) CHAPS or Triton X-100 
0.2 M GlcNAc 

Differential solubilization  

Aqueous extraction buffer 40 mM TrisHCl pH = 9.5 
1 mM DTT 
1 mM ascorbic acid 
5 mM MgCl2 

Urea/CHAPS buffer 40 mM TrisHCl pH = 9.5 
1 mM DTT 
8 M urea 
4 % (w/v) CHAPS 

Enhanced solubilization buffer 40 mM TrisHCl pH = 9.5 
1 mM DTT 
5 M urea 
2 M thiourea 
2 % (w/v) CHAPS 
2 % (w/v) SB 3-10 

SDS buffer 40 mM TrisHCl pH = 9.5 
1 % (w/v) SDS 

GPC  

GPC buffer 50 mM TrisHCl pH = 7.4 
150 mM NaCl 
0.5 % (w/v) SDS 
50 µg/ml Pefabloc SC (Merck) 

HA affinity chromatography  

HA buffer 20 mM TrisHCl pH = 8.0 
0.5 M NaCl 
10 mM EDTA 
0.25 % (w/v) CHAPS 

Sodium acetate buffer 0.1 M NaAc pH = 4.0 
0.5 M NaCl 
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TrisHCl buffer 0.1 M TrisHCl pH = 8.3 
0.5 M NaCl 

Chase buffer 50 mM TrisHCl pH = 8.0 
60 mM NaAc 

IEF  

IEF solution 2 % (w/v) CHAPS 
2 M thiourea 
7 M urea 

 

2.1.2 Protein Standards for Electrophoresis 

  

Precision Plus Dual Color Protein Standard 
(Bio-Rad) 

ColorPlus Prestained Protein Ladder, Broad 
Range (NEB) 

 

2.1.3 Antibodies 

2.1.3.1 Primary antibodies 

 

Antibody Manufacturer 

anti-neurofascin P-19 Santa Cruz 

anti-neurocan C-12 Santa Cruz 

anti-neurocan HPA036814 Sigma 
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2.1.3.2 Secondary antibodies 

 

Antibody Manufacturer 

HRP-conjugated swine 
anti-rabbit IgG P0399 

DAKO 

HRP-conjugated donkey 
anti-goat IgG sc-2020 

Santa Cruz 

 

2.2 Methods 

2.2.1 Purification of O-mannosylated proteins 

2.2.1.1 Lysis of mouse and calf brain 

Mouse brains from C57BL/6 wild type mice and calf brain pieces were homogenized on ice in 

a glass tissue grinder in solubilization buffer containing protease inhibitor cocktail (cOmplete 

Mini EDTA-free Protease Inhibitor Cocktail Tablets, Roche). Crude lysate was incubated at 

4°C on a rotary shaker for 30 min, sonicated on ice followed by centrifugation at 16,100 g for 

30 min (mouse) or 1 h (calf). The supernatant (brain lysate) was used for WGA affinity 

chromatography. 

 

2.2.1.2 WGA-agarose affinity chromatography 

The brain lysate was conveyed to an equilibrated WGA-agarose (Vector Laboratories) 

column in a circular pump driven system. On the next day the column was washed with 

solubilization buffer and with washing buffer and WGA-bound proteins (glycoproteins) were 

eluted from the lectin column with elution buffer 1 and elution buffer 2. Eluates were 

combined and the protein concentration was determined using the DC Protein Assay (Bio-

Rad) according to the manufacturer’s protocol. 

 

2.2.1.3 Differential solubilization of mouse brain proteins 

Mouse brains were homogenized on ice in a glass tissue grinder in aqueous extraction buffer 

containing protease inhibitor cocktail, sonicated on ice followed by centrifugation at 16,100 g 

for 60 min. The supernatant was subjected to a fresh tube and the pellet was washed and 

then homogenized in urea/CHAPS buffer with protease inhibitor cocktail by sonication on ice. 

After centrifugation the supernatant was transferred to a fresh tube and the pellet was 

washed and then homogenized in enhanced solubilization buffer (+ protease inhibitor 

cocktail) by sonication on ice. The remaining centrifugal pellet was solubilized in SDS buffer 
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by sonication. Supernatant concentrations were determined using the DC Protein Assay 

(Bio-Rad). Protocol modified from (Molloy et al., 1998). 

 

2.2.1.4 Fractionation of glycoproteins by GPC 

Mouse brain glycoproteins were applied to a gel permeation column (Superdex 200 

HR10/30, GE Healthcare) equilibrated with GPC buffer. Proteins were separated by size 

using a flow rate of 0.7 ml GPC buffer per min and fractionated into 9-ml fractions. After 

analysis via SDS-PAGE (see 2.2.2.1) protein-containing fractions were concentrated in 

AMICON Ultra-15 Centrifugal Filter Units (Millipore) with a molecular weight cut-off of 10 kDa. 

 

2.2.1.5 Fractionation of glycoproteins by preparative SDS-PAGE 

Up to 5 mg protein was mixed with sample buffer (10×), subjected to a gel column with a 

3.5 % stacking and a 5 % separation gel (Bio-Rad Miniprep Cell) and separated according to 

manufacturer’s protocol. Eluted proteins were fractionated into 30 fractions of 2.5 ml volume. 

After analysis via SDS-PAGE (see 2.2.2.1) protein-containing fractions were concentrated in 

AMICON Ultra-15 Centrifugal Filter Units (Millipore) with a molecular weight cut-off of 10 kDa 

or desalted using PD-10 desalting columns (GE Healthcare). 

 

2.2.1.6 Hyaluronan affinity chromatography 

EAH-sepharose 4B (GE Healthcare) was equilibrated in ddH2O pH 4.5 (with HCl) and 

hyaluronic acid (Sigma, sodium salt from Streptococcus equi) dissolved in ddH2O pH 4.5 was 

added. The coupling reaction was started by the addition of solid N-ethyl-N′-(3-

dimethylaminopropyl)carbodiimide (EDC) and incubation at RT for 2 h under regular pH 

adjustment. After incubation at 4°C over night the reaction was stopped by the addition of 

1 M acetic acid and incubation at RT for 6 h. The HA-sepharose was extensively washed 

with sodium acetate buffer and TrisHCl buffer and equilibrated with HA buffer. 

A 3-ml Mobicol column was packed with 600 µl of a 50 % HA-sepharose slurry and washed 

with HA buffer. The sample (in HA buffer) was applied to the column and the flow-through 

was reapplied twice. After washing with HA buffer and HA buffer with 1 M NaCl bound 

proteins were eluted by the addition of HA buffer containing 4 M guanidine HCl. After 

incubation for 15 min the eluate was recovered. 

For chondroitinase ABC (Chase) digestion of glycosaminoglycan chains present on 

proteoglycans the proteins were precipitated by methanol/chloroform precipitation, 

resuspended in Chase buffer and incubated with Chase ABC (Sigma) at 37°C over night. 
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2.2.1.7 Fractionation of glycoproteins by IEF 

WGA-bound glycoproteins were eluted directly with IEF solution containing 0.2 M GlcNAc. 

Approximately 2 mg glycoproteins were subjected to a preparative gel-free isoelectric 

focusing on the MicroRotofor Liquid-Phase IEF Cell (Bio-Rad) according to the 

manufacturer’s instructions in 3 % BioLyte 3/10 (Bio-Rad) in IEF solution. Concentration and 

buffer exchange were achieved using ultrafiltration. 

 

2.2.2 Protein identification 

2.2.2.1 Gel electrophoresis and Western Blot 

SDS-PAGE was done according to Laemmli (Laemmli, 1970) (3 % stacking gel and 3.5 % to 

10 % or 5 % to 15 % gradient running gel) on a Mini-Protean II Electrophoresis system (Bio-

Rad). Samples were mixed with sample buffer (10×) and electrophoresis was operated in 

electrophoresis buffer (1×). SDS gels were either stained with silver according to (Vorum et 

al., 2004) or Coomassie Brilliant Blue G250. 

For mass-spectrometry compatible silver-staining according to Vorum the gel was fixated 

over night in 50 % methanol, 12 % acetic acid and 0.05 % formaldehyde. After washing with 

35 % ethanol the gel was pretreated with 0.02 % Na2S2O3 and stained in 0.2 % AgNO3 

contaning 0.076 % formaldehyde. After washing with water the staining was developed using 

6 % Na2CO3, 0.05 % formaldehyde, 0.0004 % Na2S2O3 and stopped with 50 % methanol, 

12 % acetic acid. 

Western blots were operated in a tank transfer cell (Mini Trans-Blot Cell, Bio-Rad) onto 

nitrocellulose or PVDF membranes. Membranes were blocked with 1 to 5 % milk powder in 

TBST buffer. Neurofascin was detected with anti-neurofascin P-19 (1:100 in 5 % milk powder 

in TBST). Mouse and rat neurocan were detected with anti-neurocan C-12 (1:200 in 1 % milk 

powder in TBST) and cow neurocan with anti-neurocan HPA036814 (1:500 in 5 % milk 

powder in TBST). Horseradish peroxidase (HRP)-conjugated donkey anti-goat IgG (1:5000 in 

0.5 % milk powder in TBST) or HRP-conjugated swine anti-rabbit IgG (1:2000 in 5 % milk 

powder in TBST) were used as secondary antibodies and protein-antibody conjugates were 

visualized by enhanced chemiluminescence (Roche) on X-ray films (Fuji). 

 

2.2.2.2 Protein identification by LC-MS analysis 

Protein identification by LC-MS was performed either on distinct SDS gel bands or proteins in 

solution. Proteins in solution were precipitated by methanol/chloroform precipitation as 

follows: 1 Vol of sample was mixed with 4 Vol methanol, 1 Vol chloroform and 3 Vol 

bidistilled water (ddH2O). After centrifugation at 16,100 g for 10 min the aqueous phase was 

removed without disturbing the protein containing interphase. 4 Vol methanol were added, 
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the sample was mixed thoroughly and again centrifuged at 16,100 g for 10 min. The 

supernatant was removed, the pellet resuspended in 4 Vol methanol and again centrifuged. 

Finally, the pellet was allowed to dry. In samples containing calf brain lecticans the buffer 

was exchanged to 20 % methanol using AMICON Ultra-15 Centrifugal Filter Units (Millipore) 

and subsequently the sample was dried in a SpeedVac concentrator. 

Proteins were reduced with 2.5-5 mM DL-dithiothreitol (DTT) and alkylated with 

iodoacetamide (IAA) followed by digestion with trypsin. LC-MS analysis of the peptides was 

done on an HCTultra PTM discovery system (Bruker) coupled with an online nano-LC 

system (Proxeon) with a C18 column (75 µm x 10 cm). Proteins were identified using Mascot 

search engine. For murine proteins the SwissProt database was used, for bovine proteins 

the NCBI database. 

 

2.2.3 Analysis of O-glycans and glycopeptides 

2.2.3.1 O-Glycan analysis 

Proteins were precipitated by methanol/chloroform precipitation (see 2.2.2.2) in order to 

remove salts and detergents. Calf brain proteoglycans were instead subjected to buffer 

exchange followed by drying of the sample as described in 2.2.2.2. The O-glycan chains 

were released from precipitated proteins by reductive β-elimination. For this purpose the 

glycoproteins were incubated with 1 M NaBH4 in 50 mM NaOH for 18 h at 50°C. The reaction 

was stopped on ice by adding 1 µl of acetic acid. Salt was removed with 100 µl of Dowex 

50W-X8 (Bio-Rad) in a batch procedure and excessive borate was eliminated in a stream of 

nitrogen by washing with ethanol and 1 % acetic acid in methanol. 

Permethylation of the glycan chains was done as described by Ciucanu and Kerek (Ciucanu 

& Kerek, 1984). Released glycans were dried by applying a vacuum and the exsiccator was 

flooded with argon in order to prevent water contamination. Glycans were resuspended in 

DMSO by vigorous mixing, NaOH/DMSO suspension was added and the samples were 

incubated for 30 minutes at room temperature (RT) and then frozen at -20°C. Permethylation 

was achieved by the addition of 25 µl iodomethane and incubation for 30 min. Salts were 

removed by chloroform/water extraction. Dried samples were dissolved in methanol, applied 

to a MALDI target using 2,5-dihydroxybenzoic acid (DHB) or α-cyano-4-hydroxycinnamic acid 

(HCCA) as matrix and analyzed on the ultrafleXtreme MALDI-TOF/TOF mass spectrometer 

(Bruker). Spectra were analyzed with the software Flex Analysis. 

 

2.2.3.2 Glycopeptide analysis by CID mass spectrometry 

Proteins were precipitated by methanol/chloroform precipitation (see 2.2.2.2) in order to 

remove salts and detergents. Then, proteins were reduced and alkylated as described above 
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(see 2.2.2.2) followed by digestion with trypsin and GluC. LC-MS analysis of the peptides 

was done on a PTMDiscover-System (Bruker) coupled with an online nano-LC system 

(Proxeon) and a C18 column (75 µm x 10 cm). The gradient ran from 0 – 35 % acetonitrile in 

0.1 % TFA during 30 min. Ions were scanned in a range of m/z 300 – 2,500 in MS mode and 

m/z 200 – 3,000 in MS/MS mode whereby MS/MS spectra were generated by CID 

fragmentation. Glycopeptide spectra were analyzed in detail with the Data Analysis software 

(Bruker). 

 

2.2.3.3 Glycopeptide analysis by LC-MS3 mass spectrometry 

ESI−MS3 analysis of peptides from neurofascin (generation see 2.2.3.2) was done on an 

LTQ Orbitrap Discovery system (Thermo Scientific) equipped with a Proxeon nano ESI-

source and coupled to a Proxeon Easy nLC II system. The sample was separated on an 

analytical C18 column (75 μm × 10 cm, Thermo Scientific) using gradient runs from 0 to 35 % 

acetonitrile in 0.1 % TFA during 74 min. Glycopeptide spectra were analyzed in detail with 

the Xcalibur software (Thermo Scientific). 

 

2.2.4 Recombinant expression and purification of neurocan 

2.2.4.1 Cultivation of HEK293 cells 

HEK293-EBNA cells recombinantly expressing full length rat neurocan (kindly provided by U. 

Rauch of Lund University) were cultivated in DMEM supplemented with 10 % FCS, 100 U/ml 

penicillin, 100 µg/ml streptomycin and 5 µg/ml puromycin at 37°C with 5 % CO2. For the 

collection of neurocan containing supernatant the medium was changed to FCS-free DMEM 

containing penicillin, streptomycin and puromycin, cells were incubated for 3 days and the 

supernatant was collected. Detached cells were removed by filtration through a 0.22 µm 

syringe filter and proteins were concentrated by ultrafiltration using AMICON Ultra-15 

Centrifugal Filter Units. 

 

2.2.4.2 Purification of recombinantly expressed neurocan 

The concentrated supernatant was applied to hyaluronan affinity chromatography as 

described in 2.2.1.6. 
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3 Results 

3.1 Analysis of mouse and calf brain 

3.1.1 O-Glycome of mouse and calf brain 

Although glycosylation in general is species- and tissue-specific, the O-mannose 

modification was shown to be similar among all mammals analyzed so far (Endo, 

1999). For the identification of new O-mannosylated proteins from mammalian brain, 

mouse and cow were chosen since O-mannosylation had been found in these 

animals before (Chiba et al., 1997; Grewal et al., 2001). 

In order to get an overview of the O-glycans present in murine and bovine brain the 

glycoproteins were enriched from crude lysates using wheat germ agglutinin (WGA) 

affinity chromatography. WGA is a lectin (sugar binding protein) which specifically 

binds GlcNAc and SA. Since brain proteins are highly sialylated on O- and N-glycans 

they can effectively be enriched with this lectin (see below for the efficiency of WGA 

affinity chromatography). The enriched glycoproteins were precipitated in order to 

remove salts and detergents that could interfere with the subsequent O-glycan 

analysis. Then, the O-glycans were released as glycan alditols using β-elimination, 

permethylated and analyzed via MALDI mass spectrometry (reaction scheme see 

appendix Figure 25). 

In the spectrum of the O-glycome of mouse brain (see Figure 9) the observed mass-

to-charge (m/z) values correspond to the sodium ion adducts (Na+) with a single 

positive charge. In addition, signals with an m/z difference of 36 to the regular signals 

were often observed. These may arise during the chemical glycan release or the 

permethylation reaction and represent the loss of sodium methylate. All glycan 

signals observed in this study are summarized in appendix Table 6. The O-glycans of 

mouse brain mainly showed the typical masses of mucin-type O-glycans. The mono- 

and disialylated core 1 glycans at m/z values of 895.5 and 1256.6 were confirmed by 

MS/MS as well as the sialylated core 2 structure at m/z 1344.7. Some signals were 

also found to correspond to masses of O-mannosyl glycans. By fragmentation 

analysis the signals at m/z ratios of 912.5, 1099.6 and 1910.0 were proven to 

resemble the fucosylated, sialylated and branched O-mannosyl glycans, respectively. 

A rough estimation of the relative amounts of mannose-based oligosaccharides in 

comparison to mucin-type glycans revealed that in mouse brain about 30 percent of 

the O-glycans are O-mannosyl glycans. 
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The O-glycome of calf brain showed mostly identical signals as were observed in the 

mass spectrum of mouse brain O-glycans (see appendix Figure 26 for a comparison 

between the O-glycans from mouse and calf brain). Apart from several mucin-type 

glycans, the sialylated O-mannose structure at an m/z value of 1099.6 was observed 

in calf brain. 

 

3.1.2 Fractionation of mouse brain proteins 

For the isolation of O-mannosylated proteins an unbiased fractionation approach was 

to be used since a purposive isolation, for example by immune purification, was not 

possible. Because of the similarity of the exposed glycan epitopes of O-mannose-

based glycans with other O- and N-glycans until now no antibody has been 

generated that specifically recognizes O-mannose glycans. Therefore, a suitable 

enrichment scheme consisting of different consecutive fractionation steps was to be 

developed. With this objective in mind different techniques were tested regarding 

their ability to enrich and fractionate O-mannosylated proteins from mouse brain. 

First, the solubility of O-mannosylated proteins was analyzed using sequential protein 

extraction. During sequential solubilization the proteins are partitioned by applying 

reagents with different solubilization power. Beginning with a buffered aqueous 

solution that does not affect membranes, the solubilization efficiency is increased 

stepwise through the addition of chaotropic agents and detergents (see Table 1). 

Mouse brain proteins were sequentially extracted into four fractions, the protein yield 

was determined and the O-glycans were analyzed as described before. The gentler 

extractions, namely the aqueous (1) and the urea/CHAPS extraction (2), together 

were already able to solubilize nearly 90 percent of the total proteins compared to an 

extract completely solubilized with SDS. Also, only in these fractions O-mannosyl 

glycans were observed which indicates that mainly ECM proteins and proteins which 

are lightly attached to the membrane are O-mannosylated. Hence, a mild 

solubilization using the detergents CHAPS or Triton X-100 was chosen for all 

subsequent analyses. 
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Table 1: Sequential extraction of mouse brain proteins. Extraction steps are shown with their 
expected protein content according to (Chan et al., 2002). Protein yield in percent of total protein 
content (n. d.: not determined) and results of the O-glycan analysis (+: O-mannose glycans present; -: 
O-mannose glycans not observed). 

Extraction step Proteins extracted 
Protein 

yield 
O-man 
glycans 

1. aqueous 
extraction 

easily soluble proteins (cytosolic and secreted 
proteins) 

64 % + 

2. urea/CHAPS 
extraction 

moderately soluble proteins (membrane-, 
cytoskeleton- or ECM-associated proteins) 

23 % + 

3. enhanced 
solubilization 

badly soluble proteins (membrane proteins) 

n. d. 

- 

4. SDS 
solubilization 

residual proteins - 

 

After the solubilization the glycoproteins were to be enriched using WGA affinity 

chromatography as described above. The efficacy of this glycoprotein enrichment 

was tracked via the O-glycan analysis of flow-through and eluate (see appendix 

Figure 27). In comparison to the WGA eluate (glycoprotein fraction) the flow-through 

(unbound proteins) showed no measureable glycan signals indicating that most 

glycoproteins were effectively enriched in the eluate. The silver-stained SDS-PAGE 

gel (see appendix Figure 28) demonstrates that both fractions contained a multitude 

of proteins although the glycoprotein fraction (E) harbored only proteins with 

molecular weights greater than 40 kDa. 

The mouse brain glycoproteins were then subjected to gel permeation 

chromatography (GPC) in which proteins can be fractionated by size. Bigger proteins 

are not well retained by the gel matrix and therefore they elute prior to smaller 

proteins. In this case four protein containing fractions were generated from the 

mouse brain glycoproteins. As can be seen in the silver-stained gel in Figure 10B a 

size dependent division was achieved. O-Glycan analysis of each GPC fraction 

revealed that the O-mannosylation was present in high amounts in the first two 

fractions (F1 and F2) which contained proteins of all sizes while it was absent in the 

two fractions with smaller proteins (F3 and F4) showing that almost all 

O-mannosylated proteins can be found in the high mass range. 
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Figure 10: Mouse brain glycoprotein fractionation using gel permeation chromatography. (A) 
MALDI-TOF spectra of permethylated O-glycan alditols derived from the generated GPC fractions F1 
to F4. Signals indicated with an asterisk are derived from N- or O-glycan fragments generated by in-
source fragmentation. Monoisotopic masses corresponding to O-mannosyl glycans are underlined. 
Dashed arrows indicate signals derived by a loss of a methyl group and sodium (-36). (B) Silver-
stained SDS-PAGE gel of the GPC fractions. 

 

In another approach the mouse brain glycoproteins were fractionated by size using 

preparative SDS-PAGE. In this case twenty protein-containing fractions were 

generated (see appendix Figure 29 for an SDS-PAGE gel) and analyzed regarding 

their respective O-glycan content (summary in appendix Table 7). Only fractions 

containing proteins with SDS-PAGE mobilities greater than 100 kDa showed 

detectable O-mannosylation which is in accordance with the results of the GPC 

fractionation. Fractions F19 to F21 all showed high amounts of O-mannosyl glycans. 

Since they share a common gel band at about 190 kDa protein identification was 

performed with fraction F21. The distinct band at 190 kDa was excised and the tryptic 

peptides were analyzed via ESI-MS. The resulting Mascot scores for the mouse 

proteins are shown in Table 8 (appendix). In all Mascot results shown in this thesis 

the significance threshold for protein scores was set to 90. Contaminating keratin and 

trypsin fragments are not shown since these are not relevant in the O-mannose 

context. The predominant protein in the sample from F21 was neurofascin indicating 
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that this protein might be O-mannosylated. But other secreted proteins such as 

tenascin-R or neural cell adhesion molecule 1 (NCAM1) were also detected and 

could be modified with O-mannose. All in all, the fractions resulting from preparative 

SDS-PAGE after WGA enrichment of glycoproteins were still too complex for a 

further analysis of the fractions and a definite identification of the O-mannosylated 

proteins. 

 

3.1.3 Summary 

During the first part of this thesis the course for the actual examination was set. I was 

able to show that mouse and calf brain contain significant amounts of 

O-mannosylated proteins with the sialylated O-mannosyl tetrasaccharide being the 

prevalent O-mannose-based structure. In accordance with Chai et al., who found that 

about 30 percent of the pronase-stable glycopeptides of rabbit brain are initiated by 

mannose (Chai et al., 1999), mouse brain proteins also harbor about 30 percent of 

O-mannose oligosaccharides. Calf brain proteins contain the O-mannose 

modification to a lesser extent (20-25 percent). Still, both species seem suitable for 

the purification of O-mannosylated proteins. 

The evaluation of different fractionation methods for the efficient enrichment of 

proteins modified by O-mannosylation showed that mainly easily accessible proteins 

carry this kind of modification since they could be solubilized by mildly denaturing 

conditions. These are mainly secreted proteins and proteins weakly associated to the 

membrane. The proteins known to be O-mannosylated are consistent with this 

finding. α-DG and phosphacan both are secreted proteins whereby α-DG is attached 

to the transmembrane protein β-DG via a non-covalent linkage. CD24 is bound via a 

single GPI-anchor while RPTPβ has a single transmembrane-spanning region. All of 

these anchors can be easily solubilized. 

It has been shown that the glycoproteins of mouse brain can effectively be enriched 

using WGA affinity chromatography while no glycoproteins were detected in the 

unbound protein fraction. The GPC resulted in four protein-containing fractions of 

which the two fractions containing only small proteins did not show any 

O-mannosylation. Therefore, this technique was chosen as a prefractionation method 

in order to reduce the content of glycosylated but not O-mannose modified proteins in 

the sample applied to preparative SDS-PAGE. During preparative gel electrophoresis 

the glycoproteins were fractionated by size into twenty fractions but these fractions 
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mostly were still too complex to be suitable for further analysis. Therefore all of the 

above mentioned methods were combined. The complete fractionation scheme used 

as an unbiased approach to isolate O-mannosylated proteins is depicted in Figure 

11. 

Similar to GPC, no O-mannosylation was detected in preparative SDS-PAGE 

fractions containing proteins with apparent molecular weight below 100 kDa. These 

findings suggest that only high molecular weight proteins and highly glycosylated 

proteins are modified with O-mannose. This is also supported by the fact that the 

known O-mannosylated proteins all are highly glycosylated. Therefore they show low 

electrophoretic mobilities during SDS-PAGE. 

In these first experiments a candidate protein which might carry O-mannosyl glycans 

was identified – neurofascin. Therefore, this protein was to be purified and analyzed 

regarding potential O-mannosylation in the second part of this study. 

 

 

Figure 11: Fractionation scheme for mouse brain. After the lysis of mouse brain the glycoproteins 
are enriched using WGA affinity chromatography. These are prefractionated using gel permeation 
chromatography and the proteins from GPC fraction F2 are further fractionated by preparative SDS-
PAGE. Exemplary SDS-PAGE gels of the four GPC fractions and some preparative SDS-PAGE 
fractions are shown. 
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3.2 O-Mannosylation on neurofascin 

In the search for novel O-mannosylated proteins a BLAST analysis based on the cis-

controlling peptide needed for the initiation of the O-mannose modification on α-DG 

(Breloy et al., 2008) was performed. This analysis, optimized for short peptides, 

revealed several mammalian proteins which harbor a peptide region similar to the 

determinant in α-DG. One protein among these hits also sharing other features with 

α-DG was the neurofascin splice variant 186 (see Figure 12 for BLAST result for 

neurofascin, see appendix Table 9 for the other results): Both proteins are anchored 

to the membrane, harbor large mucin domains and were shown to establish a link 

between the cytoskeleton and the extracellular matrix. In addition, neurofascin had 

been identified as a possible O-mannosylated protein during the fractionation 

experiments (see 3.1.2). Therefore, neurofascin was chosen as a first candidate to 

be isolated from mouse brain and analyzed regarding potential O-mannosylation. 

 

 
Figure 12: BLAST analysis of the cis-controlling peptide. Depicted here are the homologies of the 
primary sequence between the peptide region of human α-DG (Query) and human neurofascin (Sbjct). 

 

3.2.1 Purification of neurofascin isoform 186 from mouse brain 

To check mouse brain for the presence of neurofascin isoform 186 Western blot 

analysis was performed (see Figure 13). As can be seen the main splice variant 

occurring in mouse brain was NF186 (about 75 percent according to imageJ 

analysis) while the other isoforms were only present in minor amounts. This shows 

that mouse brain is suitable for the purification of NF186. 

 

 

Figure 13: Western blot of whole mouse brain lysate (MB). With the anti-neurofascin antibody 
different splice variants can be observed. NF186 is the main isoform present in mouse brain (about 75 
percent) and NF155 (2 bands) and NF140 are present in minor amounts. 
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For the isolation of NF186 the glycoproteins from mouse brain lysates were enriched 

using WGA affinity chromatography and fractionated via GPC and preparative gel 

electrophoresis as depicted in the fractionation scheme in Figure 11. The 

fractionation process was performed twice (experiment (A) and experiment (B)). 

During GPC the glycoproteins were fractionated into four protein-containing fractions, 

F1 to F4 (silver-stained SDS-PAGE gels for (A) and (B) shown in appendix Figure 

30). Fraction F2 was subjected to preparative gel electrophoresis since it harbored 

proteins in the desired molecular weight range of 100 to 200 kDa. The preparative 

SDS-PAGE generated 25 protein containing fractions (see appendix Figure 31 for 

silver-stained SDS-PAGE gels (A) and (B)). Proteins with an apparent molecular 

mass of about 186 kDa were observed in the fractions F18 to F22 (A) and F15 and 

F16 (B). The gel also showed that with this fractionation protocol defined fractions 

were generated which contained only a few proteins per fraction and thus were 

suitable for further analysis. 

In order to confirm the presence of neurofascin Western blot analysis was applied to 

fraction F19 (A) and F15 to F18 (B) (see appendix Figure 31). As you can see 

positive signals were observed in fractions F19 (A) and F15 to F17 (B) so these 

fractions were analyzed in more detail. 

 

3.2.2 O-Mannosylation of neurofascin 186 

Fraction F18 of experiment (A) which showed a similar pattern in the SDS-PAGE gel 

as F19 was subjected to protein identification by LC-MS analysis of tryptic peptides 

(see insert in Figure 14 for Mascot results). The most abundant protein was 

neurofascin with a Mascot score of 921 while contaminating proteins had scores less 

than 445. Sodium/potassium-transporting ATPase and excitatory amino acid 

transporter are transmembrane proteins not relevant in the O-mannosylation context. 

The only secreted protein occurring with considerable amount in the fraction which 

was known to be glycosylated but had not yet been analyzed for potential 

O-mannosylation was NCAM1. Mouse brain NCAM1 purified by immunoprecipitation 

was kindly provided by Dr. Mühlenhoff from the Hannover Medical School. The 

protein identification of the sample revealed that NCAM1 indeed was the only 

component of the sample in addition to the immunoglobulins used for purification 

(see insert in appendix Figure 32). The O-glycan analysis showed only the core 1 

mucin-type glycan at an m/z ratio of 1256.6 and fragments of polysialic acid, 
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identified by several 361 increments which correspond to the mass of one neuraminic 

acid residue (see appendix Figure 32). The monoisotopic signal at 1098.8 

corresponds to three neuraminic acid residues without a reduced end as can be seen 

in the fragmentation analysis. Thus, NCAM1 does not carry an O-mannosyl 

modification. 

The O-glycan analysis of fraction F18 (A) (see Figure 14) showed the presence of 

O-mannosylation in the form of the fucosylated (m/z = 912.5), the sialylated (m/z = 

1099.6) and the branched (m/z = 1910.0) structures. The O-glycan structures were 

confirmed by fragmentation analysis (see Figure 15 for MS/MS of m/z = 1099.6). The 

fragmentation mainly led to ions of the B and Y series according to the nomenclature 

of Domon and Costello (Domon & Costello, 1988). While ions of the Y-series were 

mainly observed as sodium adducts the B-ions occurred primarily as proton adducts. 

All relevant signals of the O-mannose based glycan chain (NeuAcα2-3Galβ1-

4GlcNAcβ1-2Man-ol) were present for example the characteristic signal at m/z of 

724.4 of the oligosaccharide without the terminal sialic acid (Hex2HexNAc + Na+). 

The Y1-signal at m/z 275.1 corresponds to a permethylated Hexol which shows that 

the observed glycan harbors a core hexose and not a core N-acetylhexosamine. 

Thus, the glycan structure was identified as a mannose-based glycan. 
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Figure 15: Fragmentation spectrum (MS/MS) of the O-mannose derived signal at m/z = 1099.6. 
Y-ions were detected as sodium adducts, B-ions as proton adducts. The asterisk indicates matrix 
derived signals. In the fragmentation scheme of the permethylated glycan alditol NeuAcα2-3Galβ1-
4GlcNAcβ1-2Man-ol the fragmentation is indicated. 

 

3.2.3 Glycopeptide analysis of neurofascin 186 

In order to localize the O-mannosylation sites on neurofascin a suitable fraction 

(Mascot results see appendix Table 10) was digested with trypsin and GluC in order 

to generate small peptides which can be analyzed by LC-MS. These peptides were 

subjected to CID fragmentation after liquid chromatography and the generated mass 

spectra (MS/MS) were searched for glycopeptides with potential O-mannosylation by 

looking for oxonium ions with an m/z value of 528 (Hex2HexNAc + H+). Spectra with 

an additional signal at m/z 690 (Hex3HexNAc + H+) were identified as N-glycosylated 

peptides and not analyzed further. By CID fragmentation mainly the glycan chains 

are fractionated while not much information can be obtained regarding the peptide 

backbone. Therefore, glycopeptide spectra were discarded if the peptide mass could 

also correspond to one of the contaminating proteins. One glycopeptide originating 

from neurofascin could be identified as O-mannosylated (see appendix Figure 33). 

The peptide sequence could be identified by the mass of the naked peptide 
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(m/z = 2312.2) and the partial peptide fragmentation. The peptide 

LYFSNVMLQDMQTDYSCNAR has three potential O-glycosylation sites and was 

found to be modified with two O-glycans: an O-mannose glycan 

(NeuAcHex2HexNAc) and a mucin-type glycan (NeuAcHexHexNAc). These were 

assigned based on the oxonium ions of the free glycans (for example the complete 

O-mannose glycan at m/z of 819) and the glycan fragmentation ions of the 

glycopeptides. 

However, the finding of the above mentioned glycopeptide is the only result obtained 

using the CID fragmentation approach. Therefore, protein fraction F15 from 

experiment (B) which showed a high amount of neurofascin based on the Western 

blot analysis was subjected to a glycopeptide analysis using the Orbitrap system. 

This LC-ESI system allows further fragmentation of the highest MS/MS signals 

thereby generating spectra with glycan fragmentation as well as peptide 

fragmentation (MS3). The proteins of F15 were digested with trypsin and GluC and 

the resulting peptides and glycopeptides were analyzed by LC-ESI-MS/MS. The 

Mascot search of these peptides (see Table 2) revealed that neurofascin was the 

predominant component. NCAM1 which also was present in the sample had already 

been shown not to carry the O-mannosyl modification. In addition, a few other 

proteins such as neurexin and tenascin-R were present which had not yet been 

analyzed for potential O-mannosylation. Therefore, glycopeptide spectra were 

discarded if the peptide mass could also correspond to one of these proteins in case 

no conclusive MS3 data were available. 
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Table 2: Protein identification based on Mascot results of protein fraction F15 (B). 

Protein (mouse) Score 

Neurofascin 443 

Neural cell adhesion molecule 1 373 

Neurexin-1-α 325 

Sodium/potassium-transporting ATPase subunit α-1 297 

Sodium/potassium-transporting ATPase subunit α-3 254 

Tenascin-R 206 

Neurexin-3-α 164 

Neurocan core protein 161 

Neural cell adhesion molecule L1-like protein 140 

Seizure protein 6 104 

 

Many identified peptides were highly modified, almost all were carbamylated and 

several dehydrated possibly due to the multistep purification procedure under harsh 

conditions. Several peptides modified with O-mannosyl glycans were found by 

searching for MS/MS spectra containing an m/z signal of 528. The peptide NNSPITD 

(amino acids 654−660 of NF, m/z = 760.4, modified by carbamylation and 

dehydration) was found to be O-mannosylated with an appropriate MS3 spectrum 

showing the unequivocal amino acid assignment (see Figure 16). The peptide was 

modified with Hex4HexNAc4Fuc and despite the presence of a consensus sequence 

not N-glycosylated since no typical fragmentation of core HexNAc could be observed. 

The fragmentation pattern instead revealed a modification with a mucin-type glycan 

(FucHex2HexNAc3) at the serine residue and an O-mannosyl glycan (Hex2HexNAc) 

at the threonine residue as retrieved from the MS3 spectrum. 
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Three other O-mannosyl glycopeptides of neurofascin could be identified using this 

approach (see appendix Figure 34 for second example). The peptide RSGTLVINFR 

(amino acids 95-104 of NF, m/z = 1163.6 modified by carbamylation) was shown to 

be modified with the typical O-mannosyl tetrasaccharide NeuAcHex2HexNAc as 

indicated by the glycopeptide signals with the stepwise loss of the saccharide 

moieties. The peptide was identified by its naked mass (m/z = 1229.5) and partial 

fragmentation observed in the MS/MS spectrum. The other two peptides were 

FSLARTQVGSGE (amino acids 898-910 of NF, modified by Hex3HexNAc2 

corresponding to a branched O-mannose glycan) and RPRDLELTD (amino acids 

630-638 of NF, modified with NeuAcHex3HexNAc2 corresponding to mucin-type and 

O-mannose-based glycans). 

 

3.2.4 Conclusion 

In this part was shown that neurofascin from mouse brain is O-mannosylated. NF 

isoform 186 was isolated using the combined fractionation approach with only minor 

amounts of contaminating proteins. The O-glycan analysis revealed that NF186 is 

modified with fucosylated, sialylated and in minor amounts also branched 

O-mannose glycans. Also high amounts of several mucin-type glycans were found 

whereby the disialylated core 1 structure resembles the predominant modification. 

The glycopeptide analysis of endogenous protein proved to be challenging because 

of the following reasons: First, it was not possible to completely purify NF without any 

contaminating proteins so that all glycopeptide spectra had to be checked closely 

regarding the origin of the peptide. NCAM1 was a typical contaminant present in the 

NF186 fractions. O-Glycan analysis of purified NCAM1 showed that this protein is not 

modified by O-mannosylation. Instead, mainly fragments of N-glycosidically bound 

polysialic acid were detected which is possible since N-glycan fragmentation 

sometimes occurs during β-elimination. Indeed, NCAM1 was the first protein shown 

to be modified by the rare polysialic acid modification of N-glycans (Hoffman et al., 

1982). Second, the heterogeneity of glycosylation causes a low abundance of one 

specific glycopeptide species compared to a non-glycosylated peptide. Third, during 

LC-ESI-MS the presence of non-glycosylated peptides leads to a suppression of 

glycopeptide signals (Morelle et al., 2006) which results in an even further decrease 

in sensitivity. Therefore, only a few glycopeptides could be detected in each sample 

and from those only a fraction was modified with O-mannose. 
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So far, no reliable method for the efficient enrichment of O-glycosylated peptides in 

the presence of non-glycosylated peptides exists. Several methods described for the 

enrichment of N-glycopeptides were tested (data not shown) but none proved to be 

suitable for O-glycosylated peptides. The reason for this might be that the methods 

mainly rely on the hydrophilicity change caused by the attachment of an N-glycan to 

a peptide. But O-glycans are much smaller than N-glycans and therefore their 

hydrophilic properties do not dominate the overall hydrophilicity of an O-glycopeptide. 

The glycopeptide analysis led to the identification of several neurofascin-derived 

peptides modified by O-mannosylation. Surprisingly, the identified peptides did not 

originate from the mucin domain of NF186 as in the case of α-DG. Instead, 

O-mannose glycans were detected on fibronectin type-III and Ig-like domains (see 

Figure 17). These domains do not contain a region similar to the cis-controlling 

peptide of α-DG. Therefore, the signals leading to an O-mannosylation in these 

domains are unknown. The reason why no O-mannosylated peptides from the mucin 

domain were detected might be that the enzymatic digestion is hindered by the 

extensive glycosylation present in this region. In addition generated peptides would 

have been highly glycosylated and therefore hard to be analyzed by LC-MS. A 

glycopeptide analysis of the recombinantly expressed mucin domain of NF186 

revealed the presence of O-mannosyl glycans on several peptides (Pacharra et al., 

2012). Together, these results suggest that neurofascin is O-mannosylated in the 

mucin domain, possibly initiated by the cis-located determinant identified in the 

BLAST search, and outside of the mucin domain where the initiation mechanism 

remains unclear. 

 

 

Figure 17: Schematic view of the domain composition of neurofascin 186. Green circles indicate 
domains that were found to be O-mannosylated in mouse brain (Ig-like domains 1 and 2 and 
fibronectin type-III domains 7 and 10). Modified from (Liu et al., 2011). 
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3.3 O-Mannosylation of lecticans 

3.3.1 O-Glycan analysis of lecticans from mouse brain 

Apart from the analysis of neurofascin-containing fractions other mouse brain 

fractions were and analyzed regarding their O-glycosylation and protein content 

generated (see appendix Figure 35 for a gel of fractions from GPC (A) and 

preparative SDS-PAGE (B), see Figure 11 for fractionation scheme). Many of the 

higher molecular weight fractions (> 150 kDa) containing high amounts of 

O-mannosyl glycans were found to comprise brevican or neurocan or both of these 

proteins. An exemplary MALDI-MS result of one of these fractions (F24) is shown in 

Figure 36 (appendix). The O-mannose glycans at m/z ratios of 912.5, 1099.6 and 

1910.0 were confirmed by fragmentation analysis, which is depicted in Figure 37 

(appendix) for the branched structure (m/z = 1910.0). The protein identification 

revealed the presence of brevican and neurocan (see appendix insert in Figure 36) in 

this fraction but also other secreted glycoproteins were present such as tenascin-R 

which had not been analyzed regarding potential O-mannosylation. 

In an attempt to purify tenascin-R from mouse brain by immunoaffinity 

chromatography (kindly provided by Prof. Dr. Faissner from Ruhr University Bochum) 

a sample comprising the fucosylated and sialylated O-mannosyl glycans was 

obtained (see appendix Figure 38). However, the protein identification (see appendix 

Table 11) revealed that the lecticans neurocan, brevican and versican had been 

copurified. The reason for a copurification might be based on the fact that tenascin-R 

is a binding partner of all lecticans. The result shows that at least one member of this 

group of proteins (lecticans and tenascin-R) is O-mannosylated. 

In an attempt to generate a tenascin-R-free lectican sample the hyaluronic acid-

binding lecticans were purified by hyaluronan affinity chromatography of mouse brain 

lysate. The eluate showed a very high content of O-mannosyl glycans (see Figure 

18), especially the sialylated structure which exhibited a higher signal than any 

mucin-type glycan. Protein identification revealed neurocan as the only 

O-glycoprotein (see Table 3). This shows that neurocan from mouse brain is indeed 

O-mannosylated whereby the sialylated O-mannose glycan seems to be the 

prevalent O-glycan. The other copurified proteins, for example the tubulin chains, 

mostly originate from the cytoplasm and presumably bind in an unspecific manner to 

the sepharose matrix. The only secreted protein beside neurocan that could be 
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detected in the hyaluronan eluate was hyaluronan and proteoglycan link protein 1, 

which is a small protein that binds hyaluronan and the lecticans. It is responsible for 

the stabilization of the link between these molecules and therefore it is easily 

copurified together with them. 

 

Table 3: Protein identification of hyaluronan affinity-isolated mouse brain proteins. Shown are 
the Mascot scores. 

Protein (mouse) Score 
Tubulin β-2A chain 1152 
other tubulin chains 1113-764 
60S ribosomal protein L7a 388 
other ribosomal proteins 298-99 
Myelin basic protein 277 
Histone H4 202 
Neurocan core protein 155 
Hyaluronan and proteoglycan link protein 1 132 
Calcium/calmodulin-dependent protein kinase type II subunit α 122 
Glyceraldehyde-3-phosphate dehydrogenase 94 

 

 
Figure 18: O-Glycoprofile of hyaluronan affinity-isolated mouse brain proteins. The MALDI mass 
spectrum shows permethylated O-glycan alditols. Monoisotopic masses corresponding to O-mannosyl 
glycans are underlined. Glycan fragments without a reduced end are indicated with an asterisk, arrows 
indicate signals derived by a loss of a methyl group and sodium (-36 Da). 
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3.3.2 Recombinant expression of neurocan 

For further analyses of the functions of O-mannosylation a relatively high amount of 

almost pure protein would be needed. Therefore, the O-mannosylated protein 

neurocan should be expressed recombinantly in HEK293 cells. It was assumed that 

these cells are capable of O-mannosylation because Lommel et al. showed that 

POMT1 and 2 are expressed in kidney cells and show even higher mannose 

transferase activity than enzymes derived from muscle or nerve tissues (Lommel et 

al., 2008). Also, the mucin domains of α-DG and neurofascin had been successfully 

expressed in these cells and were shown to be O-mannosylated (Breloy et al., 2008; 

Pacharra et al., 2012) although to lesser degrees than the endogenous proteins. 

HEK293-EBNA cells expressing full length rat neurocan (kindly provided by Prof. 

Rauch from Lund University, Sweden) were cultivated and neurocan was purified 

from the cell supernatant using hyaluronan affinity chromatography (see Figure 19A 

for a silver-stained SDS-PAGE gel of the HA purification). The purity of the 

recombinant neurocan preparation was demonstrated by protein identification (see 

insert in Figure 20). The purified neurocan was treated with chondroitinase ABC in 

order to remove glycosaminoglycan chains (see Figure 19B) and was then subjected 

to O-glycan analysis. The O-glycan profile of recombinantly expressed neurocan (see 

Figure 20) revealed the presence of many different mucin-type glycans but no signals 

of O-mannose glycans were observed. The typical high modification with 

glycosaminoglycans was shown to be present by Western blot analysis of neurocan 

before and after digestion with chondroitinase ABC. 

 

Figure 19: Purification of recombinant Neurocan. (A) Silver-stained SDS-PAGE gel of the crude 
cell supernatant (SN) of HEK293-EBNA cells expressing rat neurocan and the hyaluronan affinity 
purified neurocan (HA-E). (B) The Western blot shows the recombinant neurocan prior to (-) and after 
(+) Chondroitinase ABC (Chase) digestion. 
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Figure 20: Analysis of recombinant neurocan. MALDI-MS of permethylated glycan alditols reveals 
only mucin-type O-glycans. Signals derived from nonreduced N-glycan fragments are indicated with 
an asterisk, dashed arrows indicate the loss of methyl and sodium (-36). The insert shows the protein 
identification by LC-MS/MS (Mascot score). 

 

3.3.3 O-Glycan analysis of calf brain lecticans 

In order to see if the lecticans were also O-mannosylated in another mammalian 

species and to upscale the purification procedure calf brain was applied instead of 

mouse brain. As the approach to purify the lecticans by hyaluronan affinity 

chromatography was not successful a multistep fractionation approach specific for 

the enrichment and fractionation of the lecticans from calf brain was developed (see 

appendix Figure 39 for fractionation scheme). Calf brain glycoproteins were enriched 

using WGA affinity chromatography as described for mouse brain. Because of the 

acidic isoelectric points of the lecticans and the acidic nature of the attached CS-

GAG chains the glycoproteins from calf brain were then subjected to preparative free-

flow isoelectric focusing (IEF). During free-flow IEF the proteins are separated into 

ten fractions according to their isoelectric points. As expected the majority of the 

proteoglycans could be recovered in the first, most acidic fraction F1 (see Table 4 for 

the protein identification). The lecticans neurocan, brevican and versican are the 

prominent components although other glycoproteins are also present. The known 

O-mannosylated proteins dystroglycan and phosphacan (also called RPTPζ) were 
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identified just as the glycoproteins that have not been analyzed regarding potential 

O-mannosylation (myelin-associated glycoprotein (MAG), seizure 6-like protein 2, 

contactin-1, chondroitin sulfate proteoglycan 5 and CD44). The hyaluronate-binding 

protein is a proteolytic product originating from versican and NCAM1 was already 

shown not to carry O-mannosyl glycans. O-Glycan analysis of this IEF fraction 

showed a high content of O-mannosyl glycans (see Figure 21) in addition to several 

mucin-type glycans. 

 

 

Figure 21: MALDI-MS of permethylated glycan alditols derived from isoelectric focusing 
fraction F1 of calf brain glycoproteins. Monoisotopic masses corresponding to O-mannosyl glycans 
are underlined. Signals derived from nonreduced N-glycan fragments are indicated with an asterisk. 
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Table 4: Protein identification of isoelectric focusing fraction F1 of calf brain glycoproteins. 
Shown are the Mascot scores. 

Protein (bovine) Score 

Neurocan core protein 1194 

Brevican core protein 1084 

Versican core protein 794 

Myelin-associated glycoprotein 660 

Myelin basic protein 401 

Seizure 6-like protein 2 318 

Contactin-1 272 

Dystroglycan 260 

Tenascin-R 207 

Receptor-type tyrosine-protein phosphatase ζ 199 

Neural cell adhesion molecule 1 194 

Chondroitin sulfate proteoglycan 5 155 

Myelin-proteolipid protein 146 

Hyaluronate-binding protein 138 

CD44 antigen 131 

L1 cell adhesion molecule 119 

 

The lectican-rich IEF fractions F1 and F2 were combined and subjected to further 

fractionation by preparative gel electrophoresis. The whole fractionation process was 

performed twice with one difference: in experiment (A) the GAG chains were 

eliminated using chondroitinase ABC (Chase) digestion prior to preparative SDS-

PAGE while in experiment (B) no digestion was performed. Due to the GAG digestion 

the proteoglycans in experiment (A) have reduced molecular weights and were 

thought to show less heterogeneity. This effect can be seen in Figure 40A (appendix) 

using the example of neurocan. While native neurocan from calf brain shows a broad 

band between 150 and 250 kDa in the Western blot its molecular weight is reduced 

to 120 kDa following Chase digestion and a distinct band can be observed indicating 

reduced heterogeneity. The silver-stained gels of the resulting SDS-PAGE fractions 

from both experiments are depicted in Figure 40B and C (appendix). From all 

presumably lectican-positive fractions the O-glycans were analyzed by MALDI-MS 

and proteins were identified using LC-ESI-MS/MS (results summarized in appendix 

Table 12). 



3 Results 

50 
 

Subsequentially, the results of the most important fractions shall be described in 

detail. In experiment (B) a fraction was identified that contained proteins with 

apparent molecular masses of 150 to 200 kDa (fraction F18 in appendix Figure 40C), 

a high content of O-mannose glycans (see Figure 22) and the lecticans versican and 

neurocan as major components. These findings indicate that at least one of these 

two lecticans from calf brain is modified by O-mannosylation. NCAM1 had already 

been shown not to carry O-mannose based oligosaccharides. MAG glycosylation was 

analyzed in fraction F14 from experiment (A) which contained MAG together with 

minor amounts of cadherin-13. O-Glycan analysis of this sample revealed that only a 

few mucin-type glycans and no O-mannosyl glycans were present (see appendix 

Figure 41). Thus, cadherin-13 and MAG were shown not to be O-mannosylated. 

The confirmation that neurocan from calf brain is indeed O-mannosylated was 

achieved with a fraction from experiment (A). Fraction F11 in which neurocan was 

found to be the only glycoprotein component (see appendix Table 13) comprised the 

sialylated O-mannose glycan with an m/z ratio of 1099.6 (see appendix Figure 42). 

Another fraction (F13) from experiment (A) contained brevican and versican among 

other proteins not relevant in this context (see insert in appendix Figure 43) and could 

be identified to harbor the sialylated O-mannose-based glycan (see appendix Figure 

43). This shows that at least one of these lecticans (brevican or versican) is modified 

by O-mannosylation. 
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In order to get more information on the O-mannosylation present in calf brain fraction 

F16 from experiment (B), which contained several O-mannosylated proteins 

(neurocan, versican, neurofascin and phosphacan (RPTPζ), see Table 5), was 

analyzed in more detail (in cooperation with Dr. Lefeber from the Radboud University 

Nijmegen, the Netherlands). The antibody IIH6 recognizes the laminin-binding 

epitope on α-DG (Ervasti & Campbell, 1993). A Western blot using this antibody 

revealed many signals in samples originating from muscle cells but no signal was 

detected in the calf brain derived sample (see Figure 23A). In addition, a laminin 

overlay assay was performed (see Figure 23B) which shows if the containing proteins 

bind laminin. But again no signal could be detected in the sample originating from 

calf brain. These findings indicate that the brain derived O-mannosylated proteins do 

not bind to laminin and accordingly that they are not modified with the laminin-binding 

glycan epitope present on α-DG from muscle. 

 

Table 5: Protein identification based on Mascot results of protein fraction F16 (experiment B). 

Protein (bovine) Score 

Neurocan core protein 1138 

Versican core protein 705 

Neural cell adhesion molecule 1 431 

Neurofascin 301 

Myelin-associated glycoprotein 270 

Hyaluronate-binding protein 251 

Excitatory amino acid transporter 1 227 

Receptor-type tyrosine-protein phosphatase ζ 227 

Tenascin-R 171 

L1 cell adhesion molecule 145 

Seizure protein 6 homolog 138 

Sodium/potassium-transporting ATPase subunit α-1 136 

Microtubule-associated protein 1B 108 

Actin, cytoplasmic 1 97 
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Figure 23: Analysis of fraction F16 from experiment (B). (A) Western blot against an O-mannose-
based glycan epitope using the IIH6 antibody. MB: myoblast, MT: myotube, L: lectican fraction F16. 
(B) Laminin overlay assay using muscle tissue (M) and the lectican fraction F16 (L). (C) Silver-stained 
SDS-PGE gel of fraction F16. 

 

3.3.4 Conclusion 

In this part I could show that the lecticans of mouse and of calf brain are modified 

with O-linked mannose. Neurocan from mouse brain and presumably also brevican 

were shown to harbor this modification. In addition, the lecticans neurocan, brevican 

and versican were found to be O-mannosylated in another mammalian species, in 

bovine brain. The fourth lectican, aggrecan, was not detected, presumably because it 

is mainly expressed in a later developmental stage (Zimmermann & Dours-

Zimmermann, 2008). 

The myelin-associated glycoprotein was shown not to be modified with O-mannose 

glycans. Together with NCAM1 and NCAM L1 it belongs to the group of closely 

related immunoglobulin-like cell adhesion molecules (Walmod et al., 2004). Since 

NCAM1 also was shown not to be O-mannosylated it is likely that NCAM L1 as well 

does not carry O-mannose based oligosaccharides. 

The recombinant expression of neurocan in HEK293-EBNA cells generated a protein 

that was modified by mucin-type but not with O-mannose glycans. This finding was 

unexpected since O-mannosyl glycans were observed on the recombinantly 

expressed mucin domains of neurofascin and α-DG (Breloy et al., 2008; Pacharra et 

al., 2012). However, it was also observed that recombinant glycoproteins expressed 

in kidney-derived cells are less modified with O-mannosylation than the respective 

endogenous proteins. The complete lack of O-mannosyl oligosaccharides on the 
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brain-specific protein neurocan expressed in kidney cells could potentially indicate 

the existence of a distinct control mechanism for O-mannosylation in brain. This 

might explain the lack of the previously described cis-controlling peptide in all 

lecticans identified as O-mannosylated. 

In order to get further insights into the lectican O-mannosylation a site-specific 

glycopeptide analysis was tried but hardly any glycopeptides were detected and no 

definite assignment of the peptides was possible (data not shown). Therefore, a 

different approach was applied to a lectican-containing sample. The IIH6 antibody 

specifically binds the mannosyl-glycan epitope on α-DG which was also shown to be 

responsible for the interaction with laminin (Ervasti & Campbell, 1993). A Western 

blot using the IIH6 antibody together with a laminin overlay assay showed that this 

specific laminin binding epitope is absent in the lecticans as well as in neurofascin 

and phosphacan. These findings indicate that the O-mannosylation of brain proteins 

plays a different role than the modification in the muscle. 
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4 Discussion and outlook 

In this study I could identify the mammalian brain protein neurofascin 186 and the 

lecticans brevican, neurocan and versican to be modified with O-mannosyl glycans. 

The lecticans are major constituents of the brain extracellular matrix (Howell & 

Gottschall, 2012) and neurofascin was shown to account for up to 0.25 percent of the 

total protein amount in brain (Kriebel et al., 2012). Together with the other known 

O-mannosylated proteins phosphacan, CD24, RPTPβ and α-DG, finally the high 

prevalence of O-mannose glycans in mammalian brain (Chai et al., 1999) can be 

explained. Figure 24 shows a schematic overview of the localization of 

O-mannosylated proteins on a neuron thereby illustrating that O-mannose-modified 

proteins are present in every functional part of the neuron. 

Indirect evidence for the O-mannosylation of the lecticans had already been provided 

before: Not otherwise specified proteoglycans from rat brain were found to be 

O-mannosylated in 1979 (Finne et al., 1979) and in 1991 Rauch et al. found 

mannose originating from rat brain chondroitin sulfate proteoglycans (Rauch et al., 

1991). Although the authors did not analyze the nature of their isolates in detail they 

might have contained the chondroitin sulfate modified lecticans and/or phosphacan 

and RPTPβ. 

 

4.1 Comparability of murine and bovine O-mannosylation to human 

protein modification 

The experiments presented here were performed using murine and bovine tissues. 

So the question is to what extent these results are transferable to human. The 

O-mannosylation of all mammals analyzed so far was found to be comparable in 

muscle and in brain (Endo, 1999) with the exception of human brain tissue which has 

not been analyzed in this context. However, the severe CNS phenotype of 

dystroglycanopathies suggests a high grade of modification in human brain. Also, 

knockout models of mice lacking enzymes of the O-mannosylation pathway (Hewitt, 

2009) share many symptoms with patients who suffer from dystroglycanopathies 

(Dobson et al., 2012) as is summarized in Table 14. The knockout mice exhibit 

muscle weakness as well as nerve and retinal defects whereby the POMT1 knockout 

is the severest form resulting in embryonic lethality. Likewise, humans suffering from 

dystroglycanopathy have severe muscular dystrophy and brain and eye 
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malformations of varying severity. WWS patients with mutations in the POMT1 gene 

possess the most serious phenotype with life expectancies of only up to 12 months. 

These similarities suggest that the structures and functions of the O-mannosyl 

modifications are akin among all mammals. Thus, it is likely that the identified 

proteins in this study are also O-mannosylated in humans. Further evidence for the 

high grade of conservation of this biosynthetic pathway is given by the fact that the 

laminin-binding O-mannosyl glycan present on muscle α-dystroglycan – as visualized 

by IIH6 staining and laminin overlay – is also present in other vertebrates, for 

example in chicken (Saito et al., 2005). 

 

4.2 Implications for dystroglycanopathy 

With the now identified O-mannosylated proteins the brain phenotype of patients with 

dystroglycanopathy finally becomes more allegeable. Since the loss of O-mannosyl 

oligosaccharides leads to severe brain symptoms it can be assumed that the 

O-mannose glycans at least partially affect the functions of these proteins. 

Neurofascin is crucial in the formation of the nodes of Ranvier and the axon initial 

segment. A knockout of neurofascin in mice (see Table 16 for a summary) resulted in 

a disorganization of the nodes leading to a drastically reduced conduction velocity of 

myelinated axons (Sherman et al., 2005). In addition, Thaxton and coworkers could 

recently show with a neuron-specific knockout model that NF186 plays a vital role in 

the organization and demarcation of nodes of Ranvier in myelinated axons (Thaxton 

et al., 2011). Although function and binding specificities of the O-glycans on 

neurofascin are still unknown we can assume that a loss of the O-mannosyl glycans 

on this protein might lead to disturbed nerve functionality. 

The lecticans play an important role in the stabilization of the brain ECM mainly by 

forming the perineuronal nets together with hyaluronan and tenascin-R. The lecticans 

were found to be interchangeable since mice lacking neurocan or brevican (see 

Table 16) were shown to be viable and fertile, and exhibited no gross anatomical 

alterations of the central nervous system (Zhou et al., 2001; Brakebusch et al., 2002). 

Even a combined knockout of the two lecticans neurocan and brevican together with 

tenascin-R and tenascin-C did not result in an obvious phenotype. Only the versican 

V2 deficiency showed a mild effect resulting in a disorganized ECM at the nodes of 
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Ranvier (Dours-Zimmermann et al., 2009). It remains to be elucidated what would be 

the result of a complete loss of CNS lecticans. 

The deletion of CD24, phosphacan or RPTPβ in mice (see Table 15) did not lead to 

obvious brain phenotypes (Nielsen et al., 1997; Harroch et al., 2000) indicating that 

these proteins also show replaceability with other ECM components. In contrast, the 

complete knockout of dystroglycan was shown to be embryonically lethal (Williamson 

et al., 1997) because of its widespread expression. A brain-specific deficiency led to 

abnormalities in nerve structure such as disorganized microvilli, changes in nodal 

composition and abnormal myelin sheath folding (Saito et al., 2003). 

These findings indicate that the O-mannosyl glycans in brain tissue are essential for 

development and function while the underlying protein core is replaceable to some 

degree. 

 

4.3 Initiation of mammalian O-mannosylation 

α-Dystroglycan was shown to be O-mannosylated at the mucin domain and the 

initiation of this modification was found to be dependent on the direct periphery of the 

O-mannosylation site and a cis-located peptide region (Breloy et al., 2008). It was 

assumed first that neurofascin would also be O-mannosylated exclusively at the 

mucin domain which harbors a peptide similar to the cis-controlling determinant of 

α-DG. Upon the recombinant expression of the NF186 mucin domain in HEK293-

EBNA cells this domain was indeed identified to carry O-mannosyl glycans (Pacharra 

et al., 2012). Peptides from the mucin domain of endogenous neurofascin from 

mouse brain were not detected by LC-MS/MS, but the protein was shown to be 

O-mannosylated on fibronectin type-III (FNIII) and Ig-like domains. These domains 

are neither rich in Ser or Thr nor do they contain a cis-controlling peptide indicating a 

completely different and yet unknown initiation mechanism. The O-mannosylation of 

an Ig domain was first shown for a recombinantly expressed immunoglobulin 

(Martinez et al., 2007). Although the sites of their O-mannosyl modification were not 

analyzed so far, phosphacan and RPTPβ contain FNIII domains and might therefore 

be O-mannosylated there. For the lecticans the exact sites of O-mannosylation could 

not be determined in this study. But they harbor Ig-like domains at their globular 

termini similar to those of neurofascin and therefore might be O-mannosylated there. 

All these proteins harbor no mucin domain comparable to α-DG confirming that the 
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O-mannosylation is not restricted to a mucin domain as was a common view among 

experts until recently. 

The lack of O-mannosyl glycans on the brain-specific protein neurocan when 

expressed in kidney derived cells (HEK) indicates a distinct control mechanism for 

O-mannosylation in brain. Further evidence for a difference in the initiation of brain 

and muscle O-mannosylation was given by the IIH6 staining and laminin overlay. A 

neurofascin, lectican and phosphacan containing sample derived from calf brain did 

not harbor the laminin-binding glycan epitope observed on muscle α-DG. This 

phosphorylated O-mannose structure was never observed in the present study which 

might show the absence of this glycan in brain. But the phosphate group is instable 

during the chemical release of O-glycans and therefore cannot be detected in 

MALDI-MS. 

 

4.4 Unresolved questions 

Although the high amount of O-mannosyl glycans in brain can finally be explained 

and the phenotype of dystroglycanopathy is better understood, some questions 

remain to be answered. The functions of O-mannosylation in the brain remain to be 

elucidated. Do O-mannose glycans confer a binding activity to the core protein as in 

the case of muscle α-DG? This question might be answered by binding studies such 

as overlay assays, ELISA or co-immunoprecipitation. The overlay assay is an easy 

way to get a first impression of potential binding. The assay was shown to be reliable 

in the binding analysis of α-DG to its laminin G-domain containing binding partners 

(Michele et al., 2002). Also, crude protein mixtures can be used, only the potential 

binding partner needs to be purified. So, the binding partner could be recombinantly 

expressed and purified while the O-mannosylated protein of interest can be partially 

purified from endogenous material. Using this strategy the interaction of neurofascin 

(before and after treatment with glycosidases) with its interaction partners neuronal 

cell adhesion molecule (NrCAM) and gliomedin could be assessed (Zonta et al., 

2008). Recently, a binding of NF to brevican and versican V2 was suggested (Dours-

Zimmermann et al., 2009; Frischknecht & Seidenbecher, 2012) which would be 

especially interesting to analyze regarding the influence of the O-mannosylation. The 

most important binding partners of the lecticans are the link proteins and tenascins. 

Here, the binding characteristics of mucin-type O-glycosylated neurocan expressed 
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in HEK293-EBNA cells could be compared to binding properties of endogenous 

neurocan purified from mammalian brain. 

The initiation of brain-specific O-mannosylation is also to be investigated. To address 

this question we plan to use a “click chemistry”-based in vitro model in which azide-

linked mannose is transferred to the target proteins. After the “click-coupling” of an 

alkyne-bound label O-mannosylated proteins can be purified and the 

O-mannosylation sites can be analyzed by glycopeptide analysis. Different enzyme 

preparations can be used which contain the enzymes that are needed for the transfer 

of the mannose onto Ser or Thr of the target protein. Here, the glycosylation 

efficiency of HEK cell-derived enzyme mixtures can be compared with neuronal 

preparations. Differences in the O-mannosylation pattern of the analyzed proteins 

might lead to new insights regarding the exact sites of the O-mannosyl modification in 

nervous tissue. Similarities in the direct periphery of the identified modification sites 

might help to identify new structural elements required for brain-specific 

O-mannosylation. 
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Figure 24: Schematic view of the localization of O-mannosylated proteins on a neuron. 
O-mannosylated proteins are: NF, α-DG, phosphacan, RPTPβ, versican V2, brevican and neurocan. 
Depicted binding partners: HA, tenascin-R, α-neurexin, β-DG, NrCAM and NCAM. 
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Table 6: Summary of all mass-to-charge (m/z) values and their corresponding O-glycan 
composition observed by MALDI-MS analysis of permethylated oligosaccharides. 

m/z Composition Type 

738.4 Hex2HexNAc-ol Na+ O-GalNAc/O-Man 

895.5 NeuAcHexHexNAc-ol Na+ O-GalNAc 

912.5 FucHex2HexNAc-ol Na+ O-Man 

983.5 Hex2HexNAc2-ol Na+ O-GalNAc 

1069.6 NeuAcFucHexHexNAc-ol Na+ O-GalNAc 

1099.6 NeuAcHex2HexNAc-ol Na+ O-Man 

1157.6 FucHex2HexNAc2-ol Na+ O-GalNAc 

1256.6 NeuAc2HexHexNAc-ol Na+ O-GalNAc 

1286.6 NeuAcNeuGcHexHexNAc-ol Na+ O-GalNAc 

1344.7 NeuAcHex2HexNAc2-ol Na+ O-GalNAc/O-Man 

1432.7 Hex3HexNAc3-ol Na+ O-GalNAc 

1460.7 NeuAc2Hex2HexNAc-ol Na+ O-GalNAc 

1548.8 NeuAcHex3HexNAc2-ol Na+ O-GalNAc/O-Man 

1595.8 Hex5HexNAc2-ol Na+ O-GalNAc 

1617.8 NeuAc3HexHexNAc-ol Na+ O-GalNAc 

1705.9 NeuAc2Hex2HexNAc2-ol Na+ O-GalNAc 

1722.9 NeuAcFucHex3HexNAc2-ol Na+ O-Man 

1910.0 NeuAc2Hex3HexNAc2-ol Na+ O-Man 
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Figure 25: Reaction scheme for the release of O-glycans by β-elimination. A serine-bound 
O-mannosyl glycan is used as example. After its release the glycan is permethylated. 

 

 
Figure 26: Comparison between the O-glycome of calf (upper panel) and mouse brain (lower 
panel). The MALDI-MS spectra show permethylated glycan alditols. Monoisotopic masses 
corresponding to O-mannosyl glycans are underlined. Signals derived from nonreduced N-glycan 
fragments are indicated with an asterisk, dashed arrows indicate the loss of methyl and sodium (-36). 
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Figure 27: Comparison between the O-glycans present in the WGA flow-through (unbound 
proteins, lower panel) and the eluted glycoproteins (upper panel). The MALDI-MS spectra show 
permethylated glycan alditols. Monoisotopic masses corresponding to O-mannosyl glycans are 
underlined. Signals derived from nonreduced N-glycan fragments are indicated with an asterisk, 
dashed arrows indicate the loss of methyl and sodium (-36). 

 

 

Figure 28: Silver-stained SDS-PAGE gels of WGA flow-through (FT) and eluate (E). (A) 5-15 % 
gel is used to visualize smaller proteins. (B) 3.5-10 % gel is used to visualize the whole range of 
mouse glycoproteins. 
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Figure 29: SDS-PAGE gel of several protein fractions generated by preparative SDS-PAGE 
(stained with Coomassie Brilliant Blue).  

 

Table 7: Summary of protein size and O-mannose content of the fractions generated by 
preparative SDS-PAGE. Abbreviations: n. d.: not determined. 

Fraction Protein size / kDa O-man? 

F9 -55 no 

F10 -70 no 

F11 -90 no 

F12 -95 little 

F13 -100 little 

F14 60-120 little 

F15 60-135 little 

F16 60-160 yes 

F17 60-160 n. d. 

F18 60-200 yes 

F19 80-210 yes 

F20 80-210 yes 

F21 140-215 yes 
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Table 8: Protein identification of the gel band at 190 kDa originating from F21. Shown are the 
Mascot scores. 

Protein (mouse) Score 

Neurofascin 1589 

Tenascin-R 571 

Neural cell adhesion molecule 1 523 

Sodium/potassium-transporting ATPase subunit α-3 399 

Sodium/potassium-transporting ATPase subunit α-1 395 

Sodium/potassium-transporting ATPase subunit α-2 327 

Plexin-A4 216 

Plexin-A1 172 

Neurocan core protein 136 

Plexin-B1 131 

ADP/ATP translocase 1  91 

Neural cell adhesion molecule L1 91 

 

Table 9: BLAST search for peptides similar to the cis-controlling peptide of α-DG. Shown here 
are the results except for neurofascin which can be seen in Figure 12. 
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Figure 30: GPC fractionation of mouse brain glycoproteins. The four protein-containing fractions 
of experiment (A) and (B) are depicted in silver-stained gels. The fraction F2 (underlined) was used for 
preparative SDS-PAGE. 

 

 
Figure 31: Protein fractions generated by preparative SDS-PAGE of mouse brain glycoproteins 
after GPC. Some of the protein-containing fractions of experiments (A) and (B) are depicted in silver-
stained gels. Western blots against neurofascin show the presence of NF186 in F19 (A) and F15 to 
F17 (B). 

 



6 Appendix 

78 
 

 
Figure 32: O-Glycan analysis of permethylated O-glycan alditols from mouse NCAM1. Dashed 
arrows indicate the loss of methyl and sodium (-36) and fragments of polysialic acid are indicated with 
a star. The monoisotopic signal at 1098.8 Da (see upper insert for MS/MS) corresponds to three 
neuraminic acid residues without a reduced end. The lower insert shows the Mascot results from the 
protein identification of this NCAM1 preparation. 
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Table 10: Protein identification of the neurofascin-containing fraction used for ESI-MS/MS of 
the CID mode. Shown are the Mascot scores. 

Protein (mouse) Score 

Neurofascin 176 

Neurocan core protein 152 

Sodium/potassium-transporting ATPase subunit α-3 114 

Neural cell adhesion molecule 1 114 

Tenascin-R 90 

 

 

Figure 33: ESI-MS/MS (CID mode) of a glycopeptide from neurofascin. The O-mannosylated and 
mucin-type O-glycosylated glycopeptide LYFSNVMLQDMQTDYSCNAR is modified with 
NeuAcHexHexNAc and NeuAcHex2HexNAc (m/z = 3950.6). Oxonium ions arising from glycan 
fragmentation are indicated with an asterisk. (H: hexose; N: HexNAc, S: Sialic acid). 
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Figure 34: ESI-MS/MS of the O-mannosylated glycopeptide RSGTLVINFR from neurofascin 
modified with NeuAcHex2HexNAc (m/z 2048.8). Several amino acid fragmentations can be 
observed within the MS/MS spectrum (H: hexose; N: HexNAc, S: Sialic acid). 

 

 

Figure 35: Silver-stained SDS-PAGE gels of the mouse brain glycoprotein fractionation. 
Depicted are the protein fractions after GPC (A) and after preparative gel electrophoresis (B). GPC 
fractions F1 and F2 (underlined) were subjected to preparative SDS-PAGE. 
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Figure 36: Analysis of fraction F24 from preparative gel electrophoresis of mouse brain 
glycoproteins. The MALDI-MS spectrum shows permethylated glycan alditols. Monoisotopic masses 
corresponding to O-mannosyl glycans are underlined. Signals derived from nonreduced N-glycan 
fragments are indicated with an asterisk, dashed arrows indicate the loss of methyl and sodium 
(-36).The left insert shows the silver stained SDS-PAGE of the fraction. The right insert shows the 
Mascot results of the protein identification by ESI-MS/MS. 

 

 
Figure 37: MALDI-MS/MS of the permethylated oligosaccharide with a precursor mass of 
1910.0. The mass corresponds to the glycan composition NeuAc2Hex3HexNAc2-ol + Na

+
. The 

fragmentation pattern reveals a branched structure with a reduced core-hexose, indicating an 
O-mannosylated glycan. Signals superscripted in black resemble proton adducts while signals 
inscribed in blue are sodium adducts. The dashed arrow indicates a signal derived by a loss of 32 Da. 
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Figure 38: Analysis of the eluate from tenascin-R specific affinity chromatography. The MALDI-
MS spectrum shows the permethylated glycan alditols. Monoisotopic masses corresponding to 
O-mannosyl glycans are underlined. 

 

Table 11: Protein identification of the eluate from tenascin-R specific affinity chromatography. 
Shown are the Mascot scores. 

Protein (mouse) Score 
Tenascin-R 2029 
Brevican core protein 1078 
Serine/arginine-rich splicing factor 4 357 
Actin, aortic smooth muscle 322 
Versican core protein 311 
Neurocan core protein 304 
Dihydropyrimidinase-related protein 2 234 
Synapsin-1 217 
Hemoglobin subunit β-1 163 
Serine/arginine-rich splicing factor 2 163 
Heat shock protein HSP 90-α 127 
L-lactate dehydrogenase B chain 118 
Pyruvate kinase isozymes M1/M2 113 
Brain acid soluble protein 1 109 
Tubulin α-1A 100 

 



6 Appendix 

83 
 

 

Figure 39: Fractionation scheme for calf brain. After the lysis of calf brain the glycoproteins are 
enriched using WGA affinity chromatography. These are prefractionated using free flow isoelectric 
focusing (IEF) and the proteins from IEF fractions F1 and F2 (underlined) are further fractionated by 
preparative SDS-PAGE. Exemplary SDS-PAGE gels (silver-stained) of the some IEF and some 
preparative SDS-PAGE fractions are shown. 
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Figure 40: Calf brain-derived protein fractions generated by preparative gel electrophoresis.  
(A) Western blot of the WGA eluate from calf brain lysate with anti-neurocan antibody before (-) and 
after (+) treatment with chondroitinase ABC (Chase). (B) Silver-stained SDS-PAGE of the preparative 
gel electrophoresis fractions after isoelectric focusing (experiment A). (C) Silver-stained SDS-PAGE of 
the preparative gel electrophoresis fractions after isoelectric focusing (experiment B). 

 

Table 12: Summary of lectican-containing calf brain fractions from experiments (A) and (B). 
Presence of lecticans, other known O-mannosylated proteins, other glycoproteins that have not been 
analyzed regarding potential O-mannosylation and other non-glycosylated proteins indicated. 
Abbreviations: B: brevican, N: neurocan, V, versican, D: dystroglycan, NF: neurofascin, P: 
phosphacan, Ra: RPTPα. 

 



6 Appendix 

85 
 

 
Figure 41: Analysis of the MAG-containing fraction F14 from experiment (A). The MALDI-MS 
spectrum shows the permethylated glycan alditols. Arrows indicate signals derived by a loss of a 
methyl group and sodium (-36 Da). Signals marked by CS are a result of unspecific cleavage of 
chondroitin sulfate chains. The insert shows the results of protein identification in the respective 
fraction by ESI-MS/MS. 
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Table 13: Protein identification based on Mascot score of the lectican-containing fraction F11 
from experiment (A). 

Protein (bovine) Score 

Serum albumin 996 

Clusterin 709 

Actin, cytoplasmic 1 401 

Tubulin α-1B chain 217 

Calmodulin 198 

α-1-Acid glycoprotein 130 

Apolipoprotein D 121 

Neurocan core protein 102 

Myelin basic protein 96 

ATP synthase subunit δ, mitochondrial 93 

CD99 antigen-like protein 2 92 

 

 
Figure 42: Analysis of the lectican-containing fraction F11 from experiment (A). The MALDI-MS 
spectrum shows the permethylated glycan alditols. Monoisotopic masses corresponding to 
O-mannosyl glycans are underlined. Glycan fragments without a reduced end are indicated with an 
asterisk, arrows indicate signals derived by a loss of a methyl group and sodium (-36 Da). Signals 
marked by CS are a result of unspecific cleavage of chondroitin sulfate chains. 
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Figure 43: Analysis of the lectican-containing fraction F13 from experiment (A). The MALDI-MS 
spectrum shows the permethylated glycan alditols. Monoisotopic masses corresponding to 
O-mannosyl glycans are underlined. Glycan fragments without a reduced end are indicated with an 
asterisk, arrows indicate signals derived by a loss of a methyl group and sodium (-36 Da). Signals 
marked by CS are a result of unspecific cleavage of chondroitin sulfate chains. The insert shows the 
results of protein identification in the respective fraction by ESI-MS/MS. 
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Table 14: Summary of human phenotypes of dystroglycanopathies and phenotypes of the respective knockout in mice. 

Protein POMT1 POMGnT1 LARGE Fukutin FKRP 

Human 
phenotype 

early death (12 
months), MD, severe 

eye and brain 
malformations 

early death (12 years), 
MD, eye and brain 

malformations 

MD, eye malformations, 
abnormal neuronal 

migration 

wide range of 
phenotypes, MD, eye 
malformations, mental 

retardation 

wide range of 
phenotypes, milder MD, 

brain malformations 

Disease WWS MEB MDC1D, WWS FCMD, WWS, MEB LGMD, MDC1C 

Phenotype of 
knockout mice 

embryonic lethality 
viable, MD, CNS 

abnormalities, neuronal 
migration abnormalities 

reduced lifespan, MD, 
neuronal migration 

abnormalities, retinal 
and peripheral nerve 

defects 

embryonic lethality 
reduced lifespan, 

neuronal migration 
abnormalities 

 

Table 15: Summary of characteristics of previously known O-mannosylated proteins. 

Protein CD24 α-DG Phosphacan RPTPβ 

Expression 
widely expressed 
(blood cells, brain, 

muscle) 

widely expressed (skin, 
brain, muscle) 

CNS CNS 

Localization membrane (GPI) secreted secreted 
membrane (single 

pass) 

Glycosylation extensive O-gl O- and N-gl CS-GAG, N- and O-gl CS-GAG, N- and O-gl 

Domains rich in Ser and Thr mucin 
α-carbonic anhydrase, 

FNIII 
α-carbonic anhydrase, 

FNIII 

Phenotype of 
knockout mice 

mild phenotype 

full KO: embryonic 
lethality 

brain-specific KO: 
abnormalities in nerve 
and muscle structure 

no phenotype observed 
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Table 16: Summary of characteristics of newly identified O-mannosylated proteins. 

Protein Neurofascin 186 Aggrecan Brevican Neurocan Versican 

Expression CNS (neurons) mainly in cartilage brain brain 
widely expressed 
V2 only in brain 

Localization 
membrane (single 

pass) 
secreted 

secreted or membrane 
(GPI) 

secreted secreted 

Glycosylation O- and N-gl 
CS- and KS-GAG, N- 

and O-gl 
CS-GAG, N- and O-gl CS-GAG, N- and O-gl CS-GAG, N- and O-gl 

Domains Ig-like, FNIII, mucin 
Ig-like, C-type lectin, 

Link, Sushi 
Ig-like, EGF, C-type 
lectin, Link, Sushi 

Ig-like, EGF, C-type 
lectin, Link, Sushi 

Ig-like, EGF, C-type 
lectin, Link, Sushi 

Phenotype of 
knockout mice 

reduced life span, 
drastically reduced 

conduction velocities 

embryonic lethality, 
dwarfism 

no phenotype no phenotype 

full KO: embryonic 
lethality 

V2 KO: altered ECM at 
nodes of Ranvier 
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