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                                             1. Introduction�
 

 

1. The Dictyostelium actin cytoskeleton 

 

The actin cytoskeleton of a cell is required for the establishment and maintenance of the cell 

morphology, motility, cell-cell and cell-substratum interactions, cytokinesis, intracellular 

transport processes, development and signal transduction. The multiplicity of these actin-

related processes require the existence of actin in a variety of complex, dynamic structures, 

which are regulated by actin-binding proteins. Some of these actin-binding proteins facilitate 

the assembly of actin filaments into a three-dimensional meshwork by crosslinking or 

bundling the actin filaments, whereas others regulate filament turnover or remodel the actin 

cytoskeleton in response to external signals. Dictyostelium discoideum, an amoeboid cell is 
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an excellent model system for studying the macromolecular events coincident with and 

necessary for the reorganization of the actin network. It is a simple eukaryotic 

microorganism that lives as a natural phagocyte and feeds on yeast and bacteria. It divides as 

separate individuals as long as food is available. However, when starved, development is 

initiated and cells aggregate by chemotaxis in response to relayed cAMP signals to construct 

a slug, which further gives rise to a fruiting body consisting of spore cells resting on a 

slender stalk. The development of Dictyostelium is relatively simple and can be easily 

investigated with all the experimental techniques that are commonly used in developmental 

biology. Since the organism is haploid, mutants can easily be isolated and scored using the 

unique combination of the cell biological and molecular genetic approaches. Moreover, the 

actin cytoskeleton of Dictyostelium harbours essentially all classes of actin-binding proteins 

that had been found throughout eukaryotes making it valuable for investigating structures 

and functions of cytoskeleton proteins.  

 

2. LIM domain: structure and function 

 

In the last decade, a conserved cysteine rich sequence motif, LIM domain, has been 

identified in many different species in cytoskeleton-associated proteins as well as in a variety 

of other proteins including transcription factors and proto-oncogene products. The LIM 

motif was first identified in three developmentally regulated transcription factors, 

Caenorhabditis elegans Lin-11, rat Isl-1, and C. elegans Mec-3, from which the term LIM is 

derived (Freyd et al., 1990, Karlsson et al., 1990, Pfaff et al., 1996, Way and Chalfie, 1988). 

The LIM domain displays the consensus amino acid sequence CX2CX16-23HX2CX2CX2CX16-

21CX2-3(C/H/D) (Freyd et al., 1990; Crawford et al., 1994). Biochemical and biophysical 

data reveal that a LIM domain is a specific zinc-binding sequence that displays a striking 

structural similarity to the DNA-binding domains of the GR and GATA-1 transcription 

factors. The two zinc finger-like modules that constitute a LIM domain are responsible for 

binding to two zinc atoms via two tetrahedral metal coordinating centres established by the 

conserved cysteine, histidine and aspartic acid residues of the LIM consensus (Figure 1a). 

Zinc coordination is required to stabilize the secondary and the tertiary structure of the LIM 

domain to generate a binding interface for protein or nucleic acid (Kosa et al., 1994; 

Michelsen et al., 1994; Perez-Alvarado et al., 1994). Although LIM domains bind zinc ions 
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and show structural similarity to zinc fingers, evidences available to date favour a role in 

protein-protein interactions rather than DNA binding (Feuerstein et al., 1994; Sanchez-

Garcia and Rabbitts, 1994; Schmeichel and Beckerle, 1994; Dawid et al., 1995). LIM 

domains have been observed to function as modular protein-binding interfaces and, in this 

capacity, are thought to influence subcellular protein localization and regulate protein 

function (Schmeichel and Beckerle, 1994). 

 

The NMR structure of the cysteine rich intestinal protein (CRIP), a single LIM domain 

containing protein is shown in Figure 1b. The two zinc fingers that constitute a LIM domain 

represent separate structural entities that are held together in a particular configuration by 

hydrophobic interactions. Both finger-like modules of the CRIP are constituted by two 

antiparallel β-sheets. The N-terminal module is followed by a tight turn that forms the linker 

to the following module. At the C-terminus of the second module, the β-sheets are followed 

by a short α-helix (Perez-Alvarado et al., 1996). The solution structure of the C-terminal 

LIM domain of CRP2 is similar to that described for CRIP (Konrat et al., 1997). Recently, 

the solution structures of the entire CRP1 and CRP2 molecules have been solved (Konrat et 

al., 1998; Yao et al., 1999). The solution structure of the CRP2 molecule is shown in Figure 

1c. The structure of the N-terminal LIM domain within the whole protein is very similar to 

that of the isolated C-terminal segment (Konrat et al., 1997; Konrat et al., 1998). The two 

LIM domains form independent structural units that are held together by the linker region, 

which is disordered in solution, and there are no apparent interactions between the N- and C-

terminal LIM domains. This charcteristic confers both lateral and rotational freedom on the 

LIM domains and supports the notion that the proteins with multiple LIM domains may 

function as adapter molecules arranging two or more protein constituents into a 

macromolecular complex. 

 

LIM domain proteins are widely distributed in nature differing in the number of LIM 

domains, position of the LIM domains and the presence of other functional domains besides 

the LIM domain, such as homeodomain, protein kinase domain and motifs involved in 

protein-protein interactions. Thus, the LIM domain is capable of functioning in a variety of 

molecular contexts. 
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Figure 1. LIM domain structure. (a) Depicts the double-zinc finger motif of the LIM 
domain. (b) The solution structure of the cysteine rich intestinal protein, CRIP (Perez-
Alvarado et al., 1996). β-sheets are shown in yellow, α-helix in violet and the zinc-ions are 
depicted with violet balls. Positions of the conserved cysteine and histidine residues are 
indicated. (c) The solution structure of CRP2 (Konrat et al., 1998). The two LIM domains of 
CRP2 form independent structural units that are held together by the linker region, which is 
disordered in solution, and there are no apparent interactions between the N- and C-terminal 
LIM domains. β-sheets are shown in green, α-helix in red and the zinc-ions are depicted 
with violet balls. 
 

3. Classification of LIM proteins 

 

The LIM domain proteins do not form a functional family, rather a variety of quite dissimilar 

proteins share domains that can be classified as similar by sequence comparison. The LIM 

domain proteins have been classified into 3 different groups (Figure 2) based on the 

sequence relationship among the LIM domains and on the overall structure of the proteins 

(Dawid et al., 1998).  

 

Group 1 proteins always contain paired LIM domains near the N-terminus. The N-terminal 

LIM domains fall into one sequence class (class A), while the second LIM domains form a 

a
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b
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distinct sequence class (class B). Group 1 proteins include (i) LIM-only proteins, LMOs 

(Rhomboitin/TTG), (ii) proteins that contain a DNA-binding homeodomain besides LIM 

domains (LHX proteins), and (iii) proteins possessing a kinase domain in addition to LIM 

domains (LIM-kinases or LIMKs). All the three founder LIM proteins Lin-11, Isl-1 and 

Mec-3 belong to the LHX subgroup of group 1 LIM proteins. The group 1 proteins are 

primarily nuclear, however, some can be found in the cytoplasm also, e.g., the LHX protein 

XLIM1/LHX1 and LIMKs (Smolich et al., 1997; Dawid et al., 1998).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Classification of LIM domain proteins (Dawid et al., 1998). LIM domains are 
shown in grey; glycine-rich regions in group 2 proteins are shown in black. HD represents 
the homeodomain region in LIM-homeodomain (LHX) proteins; kinase represents the 
kinase-domain in LIM-kinase proteins (LIMK). A, B, C and D are the different sequence 
classes of LIM domains. 
 

Group 2 proteins consist of one or two copies of a single sequence type of LIM domain 

(class C) and the distance between the LIM domains is larger than found in the group 1 LIM 

proteins. These proteins are composed largely of LIM domains without additional structural 

or functional motifs; all, except a few, contain a short glycine-rich domain after each LIM 

domain. These proteins are primarily cytoplasmic, however, this distinction is not rigid. For 

example, CRPs are distributed in the nucleus and the cytoplasm (Arber and Caroni, 1996). 

Group 3 proteins contain different numbers of LIM domains located at the C-terminus. The 

LIM domains of proteins included in this group are more heterogenous in sequence than 

group 1 and 2 LIM domains and most of the LIM domains in this group can be assigned to a 
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sequence class (class D). Members of this group include zyxin, paxillin and enigma. Group 3 

proteins are also primarily cytoplasmic, however, zyxin is known to shuttle between the 

cytoplasm and the nucleus by virtue of its nuclear export signal (Beckerle, 1997; Nix and 

Beckerle, 1997).  

 

LIM domain containing proteins are key players in organization of the cytoskeleton and a 

number of fundamental pathways controlling cell proliferation and differentiation 

(summarised in Figure 3). Discussed below are some of the cytoskeleton associated LIM 

domain containing proteins.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Role of different LIM domain containing proteins in various cellular 
processes (modified from Bach, 2000). 
 

4. LIM proteins associated with the actin cytoskeleton 

 

Two LIM-kinases, LIMK1 and LIMK2 have been identified in mammals so far (Okano et 

al., 1995; Stanyon and Bernard, 1999). Experimental evidences available to date 

demonstrate a central cytoplasmic role of LIMK1 in the organization of the actin 

cytoskeleton. LIMK1 catalyses phosphorylation of a N-terminal serine residue of cofilin (a 
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small actin-binding protein of the actin-depolymerising-factor family), thereby inactivating 

its F-actin-depolymerising activity and leading to accumulation of actin filaments and 

aggregates (Arber et al., 1998; Yang et al., 1998). The N-terminal region of LIMK1 

comprising LIM domains and a PDZ domain has been reported to influence the LIM-kinase 

activity (Edwards and Gill, 1999).  

 

Several LIM domain containing proteins belonging to group 2 and 3 are associated with the 

cytoskeleton, for example CRPs, zyxin and paxillin. CRPs (CRP1, CRP2 and CRP3) have 

been shown to homodimerize, a reaction mediated by either of its two LIM domains, but not 

by an inter-LIM domain sequence fragment (Feuerstein et al., 1994). Each of the three CRPs 

has been shown to be associated with elements of the actin cytoskeleton, as all are capable of 

directly interacting with an actin cross-linking protein α-actinin and zyxin (Sadler et al., 

1992; Schmeichel and Beckerle, 1994; Louis et al., 1997; Pomies et al., 1997). Both α-

actinin and zyxin are important regulators of the organization of the actin cytoskeleton. The 

gene disruption studies in the mouse have confirmed the requirement for CRP3/MLP in 

cytoarchitectural organization. Mice that lack the CRP3/MLP gene show disruption of the 

cytoarchitecture of both cardiac and skeletal muscle and developed dilated cardiomyopathy 

with hypertrophy and heart failure after birth (Arber et al., 1997). Zyxin, which exhibits an 

extensive proline-rich region at its N-terminus and three LIM domains at its C-terminus, is a 

low abundance phosphoprotein localized at the sites of integrin-dependent attachment to the 

extracellular matrix, that is, the adhesion plaque (Crawford and Beckerle, 1991; Sadler et al., 

1992). Protein-protein interactions mediated by CRP1 and zyxin at the adhesion plaques are 

depicted in Figure 4. It has been demonstrated that Zyxin interacts with members of the CRP 

family of LIM proteins by its most N-terminal LIM domain, indicating that LIM domains 

function as a unit mediating specific protein-protein interactions (Schmeichel and Beckerle, 

1994). The sequence information required for α-actinin binding of CRP1 is confined to an 

18 residue sequence occurring within the protein’s N-terminal glycine-rich repeat that 

follows the N-terminal LIM domain of CRP1 (Harper et al., 2000). However, the binding 

site for zyxin on CRP1 is not contained within a single contiguous sequence of amino acids, 

rather the interaction appears to rely on the coordinate action of sequences found in both of 

CRP1’s component LIM domains (Schmeichel and Beckerle, 1998).  
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Figure 4. A schematic representation of the protein-protein interactions mediated by 
the LIM domain proteins at the adhesion plaque (model proposed by Pomies et al., 1997, 
with slight modifications).� ������ ����	
���� 
���� ��������� 	���� �	������� -actinin, Vav, and 
may recruit Ena/VASP family members and thus profilin and actin monomers to these sites; 
thus participating in the regulation of actin assembly dynamics. Abbreviations: (Z) zyxin; 
���������������� 	�����	��������� � -��� -actinin; (P) profilin; (V) vinculin; (X) other CRP1 
binding partners; (PM) plasma membrane; (ECM) extracellular matrix. LIM1 and LIM2 are 
the N- and C-terminal LIM domains of the CRP1, respectively. 
 

Although, all the three CRPs reveal functional conservation since all are associated with 

elements of the actin cytoskeleton (zyxin and α-actinin), all show a divergent pattern of gene 

expression. CRP1 expression is detected in a variety of tissues enriched in smooth muscle, 

CRP2 expression is restricted to arteries and fibroblasts and CRP3 (also known as muscle 

LIM protein, MLP) is dominant in heart and skeletal muscle (Louis et al., 1997). Therefore, 

the three CRP family members might perform similar functions in different muscle 

derivatives. Recently, CRP3/MLP has been demonstrated to specifically interact through its 

C-terminal LIM domain with the cytoskeletal protein βI-spectrin. Interestingly, the 

CRP3/MLP related proteins CRP1 and CRP2 do not bind spectrin, thereby providing an 

important distinction between the individual CRP family members (Flick and Konieczny, 

2000).  

 

Paxillin is another group 3 LIM domain protein found in focal adhesions. Paxillin exhibits 

four LIM domains at its C-terminus and a proline-rich domain at its N-terminus. Paxillin 
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also shows the presence of several potential phosphorylation sites. At its N-terminus, 

paxillin has binding sites for Vinculin, an adhesion complex molecule and for focal adhesion 

tyrosine kinase, FAK (Turner and Miller, 1994; Bellis et al., 1995; Schaller and Parsons, 

1995; Brown et al., 1996). Although paxillin was initially believed to localize at focal 

adhesions through binding to Vinculin, recent reports indicate that LIM domains of paxillin 

regulate paxillin’s focal adhesion localization (Brown et al., 1996; Brown et al., 1998). 

Brown et al. (1998) identified that LIM domains (LIM2 and LIM3) of paxillin have the 

capacity to serve as binding sites for, and substrates of serine/threonine protein kinases. 

Paxillin’s LIM domain phosphorylation was observed to regulate the availability of paxillin 

to integrate into focal adhesions upon cell adhesion. In addition, constitutive LIM domain 

phosphorylation significantly potentiated the ability of cells to adhere to fibronectin, 

suggesting that paxillin may contribute directly to the transmittance of signals from the 

cytoplasm to the external environment (inside-out signalling) (Brown et al., 1998). Thus 

paxillin functions as a unique adapter protein involved in regulating various functions of the 

focal adhesion. 

 

5. LIM domain containing proteins of Dictyostelium discoideum 

 

Recently, two LIM domain containing proteins DdLim and LIM2 have been isolated from 

Dictyostelium (Prassler et al., 1998; Chien et al., 2000). DdLim contains a single LIM 

domain at its N-terminus, whereas LIM2 exhibits five LIM domains at its C-terminus. The 

pattern of expression of DdLim and LIM2 is developmentally regulated, as both show 

elevated levels of transcription during early stages of development. Both the proteins have 

been observed to localize at the newly formed membrane extensions in motile cells. It is 

believed that DdLim acts as an adapter protein at the cytoskeleton-membrane interface 

where it is involved in a receptor mediated Rac1-signalling pathway that leads to actin 

polymerization and ultimately cell motility (Prassler et al., 1998). LIM2 behaves as a 

regulatory protein that functions to control reorganization of the actin cytoskeleton during 

cell motility and chemotaxis, since Dictyostelium cells deficient in LIM2 protein aggregate 

poorly and arrest at the mound stage of development (Chien et al., 2000). Thus the two 

known LIM domain proteins of Dictyostelium are playing important roles in the 

rearrangement of the actin cytoskeleton.  
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6. Overview 

 

Ever increasing numbers of LIM proteins are being implicated in cytoskeletal regulation in 

many organisms. The biological roles of LIM proteins are highly diverse, however, the 

common theme of LIM domain function is the mediation of specific protein-protein 

interactions. It seems clear that the protein-protein interactions mediated by LIM domains 

are of fundamental and regulatory importance for many biological processes in the cell that 

require the formation of multiprotein complexes. Adhesion plaques are examples of such 

multiprotein complexes in which several LIM domain proteins have an important role. Much 

less is known about the specific biological functions of LIM domains. The identification and 

characterization of more LIM domain proteins in diverse cell systems and deciphering the 

cellular functions of these proteins will, undoubtedly, help in elucidating new and exciting 

basic biological mechanisms. As part of this approach we present characterization of 

DLIM1, a novel LIM domain containing protein of Dictyostelium, with the aim of 

understanding its cellular functions by investigating its subcellular localization and 

involvement in cytoskeleton-dependent processes using a green fluorescent protein (GFP)-

tagged version of DLIM1; mapping domains that influence the subcellular localization of 

DLIM1; investigating its interaction with actin; and generating mutant cells that lack DLIM1 

and characterizing phenotypes of the DLIM1− cells. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

                                             2. Materials and Methods�
 

 

1. Materials 
 
1.1. Laboratory materials 
 

Cellophane sheet, Dry ease     Novex  
Centrifuge tubes, 15 ml, 50 ml    Greiner 
Coverslips (glass), ∅  12 mm, ∅  18 mm, ∅  55 mm   Assistent 
Corex tube, 15 ml, 50 ml     Corex 
Cryo tube, 1 ml      Nunc 
Electroporation cuvette, 2 mm electrode gap   Bio-Rad 
Gel-drying frames      Novex 
Hybridisation bag      Life technologies 
Microcentrifuge tube, 1.5 ml, 2.2 ml    Sarstedt 
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Micropipette, 1-20 µl, 10-200 µl, 100-1,000 µl  Gilson 
Micropipette tips      Greiner 
Multi-channel pipette      Finnigan 
Needles (sterile), 18G–27G      Terumo, Microlance 
Nitrocellulose membrane, BA85    Schleicher and Schuell 
Nitrocellulose-round filter, BA85, ∅  82 mm   Schleicher and Schuell 
Nylon membrane, Biodyne B     Pall 
Parafilm       American National Can 
Pasteur pipette, 145 mm, 230 mm    Brand, Volac 
PCR softtubes, 0.2 ml      Biozym 
Petri dish (35 mm, 60 mm, 100 mm)    Falcon 
Petri dish (90 mm)      Greiner 
Plastic cuvette, semi-micro     Greiner 
Plastic pipettes (sterile), 1 ml, 2 ml, 5 ml, 10 ml, 25 ml Greiner 
Quartz cuvette, Infrasil     Hellma  
Quartz cuvette, semi-micro     Perkin Elmer 
Saran wrap       Dow 
Scalpels (disposable), Nr. 10, 11, 15, 21   Feather 
Slides, 76 x 26 mm      Menzel 
Syringes (sterile), 1 ml, 5 ml, 10 ml, 20 ml   Amefa, Omnifix 
Syringe filters (Acrodisc), 0.2 µm, 0.45 µm   Gelman Sciences 
Tissue culture flasks, 25 cm2, 75 cm2, 175 cm2  Nunc 
Tissue culture dishes, 6 wells, 24 wells, 96 wells  Nunc 
Whatman 3MM filter paper     Whatman 
X-ray film, X-omat AR-5, 18 x 24 mm, 535 x 43 mm Kodak 

 

1.2. Instruments and equipments 
 

Centrifuges (microcentrifuges): 
Centrifuge 5417 C    Eppendorf 
Centrifuge Sigma    B. Braun Biotech Instruments 
Cold centrifuge Biofuge fresco  Heraeus Instruments 

Centrifuges (table-top, cooling, low speed): 
Centrifuge CS-6R    Beckman 
Centrifuge RT7    Sorvall 
Centrifuge Allegra 21R   Beckman 

Centrifuges (cooling, high speed): 
Beckman Avanti J25    Beckman 
Sorvall RC 5C plus    Sorvall 

Centrifuge-rotors:  
JA-10      Beckman 
JA-25.50     Beckman  
SLA-1500     Sorvall 
SLA-3000     Sorvall 
SS-34      Sorvall 

Dounce homogeniser, 10 ml     B. Braun 
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Electrophoresis power supply, Power-pac-200, -300  Bio-Rad 
Electroporation unit, Gene-Pulser    Bio-Rad 
ELISA reader       Lab Systems 
Freezer (-80°C)      Nunc 
Freezer (-20°C)      Siemens, Liebherr 
Gel-documentation unit     MWG-Biotech 
Heating block, DIGI-Block JR    neoLab 
Heating block, Dry-Block DB x 20    Techne 
Hybridising oven      Hybaid  
Ice machine       Ziegra 
Incubators:  
  CO2-incubator, BBD 6220, BB 6220  Heraeus 
  CO2-incubator, WTC Binder   Biotran 
  Incubator, microbiological   Heraeus 
  Incubator with shaker, Lab-Therm  Kuehner 
Laminar flow, Hera Safe (HS 12)    Heraeus 
Magnetic stirrer, MR 3001 K     Heidolph 
Microscopes: 

Light microscope, CH30   Olympus 
Light microscope, DMIL   Leica 
Light microscope, CK2   Olympus 
Fluorescence microscope, DMR  Leica 
Fluorescence microscope, 1X70  Olympus 
Confocal laser scan microscope, DM/IRBE Leica 
Stereomicroscope, SZ4045TR  Olympus 

Oven, conventional      Heraeus 
PCR machine, PCR-DNA Engine PTC-2000   MJ Research 
pH-Meter       Knick 
Refrigerator       Liebherr 
Semi-dry blot apparatus, Trans-Blot SD   Bio-Rad 
Shakers       GFL, Kuehner 
Sonicator, Ultra turrax T25 basic    IKA Labortechnik 
Sonicator (water bath), Sonorex RK 52   Bandelin 
Speed-vac concentrator, DNA 110    Savant 
Spectrophotometer, Ultraspec 2000, UV/visible  Pharmacia Biotech 
Ultracentrifuges: 
  Optima TLX     Beckman 
  Optima L-70K     Beckman 
Ultracentrifuge-rotors: 
  TLA 45     Beckman 
  TLA 100.3     Beckman 
  SW 41      Beckman 
UV-crosslinker, UVC 500     Hoefer 
UV- transilluminator, TFS-35 M     Faust 
Vortex, REAX top      Heidolph 
Waterbath       GFL 
X-ray-film developing machine, FPM-100A   Fujifilm 
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1.3. Kits 

 
Nucleobond AX      Macherey-Nagel 
NucleoSpin Extract 2 in 1     Macherey-Nagel 
Nucleotrap       Macherey-Nagel 
Original TA Cloning      Invitrogen 
pGEM-T Easy       Promega 
Qiagen Midi- and Maxi-prep     Qiagen 
Stratagene Prime It II      Stratagene 

 

1.4. Enzymes, antibodies, substrates, inhibitors and antibiotics 

 
Enzymes used in the molecularbiology experiments: 
Calf Intestinal Alkaline Phosphatase (CIAP)   Boehringer 
Deoxyribonuclease I (DNase I)    Boehringer  
Klenow fragment      Boehringer 
Lysozyme       Sigma 
Proteinase K       Sigma 
Restriction endonucleases     Amersham, Life technologies,  

New England Biolabs 
Reverse transcriptase, Superscript II    Life technologies 
Ribonuclease H (RNase H)     Boehringer  
Ribonuclease A (RNase A)     Sigma 
S1-nuclease       Amersham 
T4 DNA ligase      Boehringer 

Taq-polymerase      Life technologies/Boehringer  
 
Primary antibodies: 
Goat anti-GST antibody     Pharmacia 
Mouse anti-actin monoclonal antibody, Act 1-7  Simpson et al., 1984  
Mouse anti-GFP monoclonal antibody, K3-184-2    unpublished 
Mouse anti-RGS(H)4 antibody    Qiagen 
Rabbit anti-GFP antibody, Living colour peptide  Clontech 
 
Secondary antibodies: 
Goat anti-mouse IgG, peroxidase conjugated   Sigma 
Goat anti-mouse IgG, alkaline phosphatase conjugated Sigma 
Goat anti-rabbit IgG, peroxidase conjugated   Sigma 
Mouse anti-goat IgG, alkaline phosphatase conjugated Sigma  
Mouse anti-goat IgG, peroxidase conjugated    Sigma 
Sheep anti-mouse IgG, Cy3 conjugated   Sigma 
 
Substrates: 
BCIP/NBT       Promega 
pNPP, Sigma Fast tablet sets, 5ml, 20 ml   Sigma  
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Inhibitors: 
Diethylpyrocarbonate (DEPC)    Sigma 
Leupeptin       Sigma 
Pepstatin       Sigma 
Phenylmethylsulphonylfluoride (PMSF)   Sigma 

 
Antibiotics: 
Ampicillin       Gruenenthal 
Blasticidin S       ICN Biomedicals 
Chloramphenicol      Sigma 
Dihydrostreptomycinsulphate     Sigma 
Geneticin (G418)      Life technologies 
Kanamycin       Sigma, Biochrom 
Tetracyclin       Sigma 

 

1.5. Chemicals and reagents 

 
Most of the chemicals and reagents were obtained either from Sigma, Fluka, Difco, Merck, 
Roche, Roth or Serva. Those chemicals or reagents that were obtained from companies other 
than those mentioned here are listed below: 
 
Acetic acid (98-100%)     Riedel-de-Haen 
Acrylamide (Protogel: 30:0,8 AA/Bis-AA)   National Diagnostics 
Agar-Agar (BRC-RG)      Biomatic 
Agarose (Electrophoresis Grade)    Life technologies 
Caesium chloride      Biomol  
Chloroform       Riedel-de-Haen 
Dimethylformamide      Riedel-de-Haen 
Ethanol       Riedel-de-Haen 
Glycerine       Riedel-de-Haen 
Glycine       Riedel-de-Haen 
Isopropypl-β-D-thiogalactopyranoside (IPTG)  Loewe Biochemica 
Methanol       Riedel-de-Haen 
Morpholino propane sulphonic acid (MOPS)   Gerbu 
N- [2-Hydroxyethyl] piperazine-N’-2- 

-ethanesulfonic acid (HEPES)    Biomol  
Peptone       Oxoid 
Sodium hydroxide      Riedel-de-Haen 
Yeast extract       Oxoid 
 
Radiolabelled nucleotide: 
α-32P-deoxyadenosine triphosphate, (10 mCi/ml)  Amersham 

 

 



2. Materials and Methods  18 

1.6. Media and buffers 

 
All media and buffers were prepared with deionised water filtered through an ion-exchange 

unit (Membra Pure). The media and buffers were sterilized by autoclaving at 120ºC and 

antibiotics were added to the media after cooling to approx. 50ºC. For making agar plates, a 

semi-automatic plate-pouring machine (Technomat) was used. 

 

1.6.1. Media and buffers for Dictyostelium culture 

 
AX2-medium, pH 6.7: 
(Claviez et al., 1982)     7.15 g yeast extract 
     14.3 g peptone (proteose)  

   18.0 g maltose 
     0.486 g KH2PO4 
     0.616 g Na2HPO4.2H2O 
     add H2O to make 1 liter 
 
Phosphate agar plates, pH 6.0: 
     9 g agar 
     add Soerensen phosphate buffer, pH 6.0 to make 1 liter 
 
Salt solution:      
(Bonner, 1947)   10 mM NaCl 

10 mM KCl 
2.7 mM CaCl2 

 
Starvation buffer, pH 6.5: 
(Shaulsky et al., 1998)  10 mM MES, pH 6.5 
     10 mM NaCl 
     10 mM KCl 
     1 mM CaCl2 

     1 mM MgSO4 
 
SM agar plates, pH 6.5: 
(Sussman, 1951)   9 g agar 
     10 g peptone 
     10 g glucose 

1 g yeast extract 
     1 g MgSO4.7H2O 
     2.2 g KH2PO4 
     1 g K2HPO4 
     add H2O to make 1 liter 
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Soerensen phosphate buffer, pH 6.0:  
(Malchow et al., 1972)  2 mM Na2HPO4 
     14.6 mM KH2PO4 

 
1.6.2. Media for E. coli culture 

 
LB medium, pH 7.4: 
(Sambrook et al., 1989)  10 g bacto-tryptone 

5 g yeast extract 
10 g NaCl 
adjust to pH 7.4 with 1 N NaOH 
add H2O to make 1 liter 

 
For LB agar plates, 0.9% (w/v) agar was added to the LB medium and the medium was then 

autoclaved. For antibiotic selection of E. coli transformants, 50 mg/l ampicillin, kanamycin 

or chloramphenicol was added to the autoclaved medium after cooling it to approx. 50ºC. 

For blue/white selection of E. coli transformants, 10 µl 0.1 M IPTG and 30 µl X-gal solution 

(2% in dimethylformamide) was plated per 90 mm plate and the plate was incubated at 37ºC 

for at least 30 min before using.  

 
SOC medium, pH 7.0: 

(Sambrook et al., 1989)  20 g bacto-tryptone 
5 g yeast extract 
10 mM NaCl 
2.5 mM KCl 
dissolve in 900 ml deionised H2O 
adjust to pH 7.0 with 1 N NaOH 

The medium was autoclaved, cooled to approx. 50ºC 
and then the following solutions, which were 
separately sterilized by filtration (glucose) or 
autoclaving, were added: 

10 mM MgCl2.6H2O 
10 mM MgSO4.7H2O 
20 mM Glucose 
add H2O to make 1 liter 

 
1.6.3. Media for hybridoma cells 
 

Freezing medium: 80 ml Normal media 
 10 ml foetal calf serum, heat inactivated (Roche) 
 10 ml DMSO, hybri-max (Sigma) 
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3x HAT medium: 572 ml Normal media 
 36 ml 50x HAT supplement (Biochrom) 
 
1x HAT medium: 572 ml Normal media 
 12 ml 50x HAT supplement (Biochrom) 
 
1x HT medium: 572 ml Normal media 
 12 ml 50x HT supplement (Biochrom) 
 
Normal media (NM): 500 ml RPMI 1640 (Biochrom) 
 55 ml Foetal calf serum, heat-inactivated (Roche) 
 11 ml Kanamycin, 5 mg/ml 
 ��������� -mercaptoethanol, freshly made  
 
RPMI 1640: Readymade RPMI 1640 medium (1x) containing 25 

mM HEPES, 0.532 g/l L-glutamine, 5.5 g/l NaCl, 5 
mg/l phenol-red and 2.0 g/l NaHCO3 was obtained 
from the company Biochrom. 

 
RPMI 1640 (w/o HEPES, Same as RPMI 1640 except that it is without HEPES 
w/o glutamine): and L-glutamine. It was obtained readymade (1x) from 

the company Biochrom. 
 

1.6.4. Buffers and other solutions 

 

The buffers and solutions that were commonly used during the course of this study are 

mentioned below- 

 
Hepes-phenol: 1 kg phenol was melted at 60ºC in a water-bath and 

equilibrated with 1 vol. of 1 M Hepes, pH 7.5. The 
equilibrated phenol was aliquoted in 50 ml Falcon 
tubes and stored at –20ºC. 

 
10x MOPS (pH 7.0/ pH 8.0):  41.9 g MOPS 
     16.7 ml 3 M sodium acetate  
     20 ml 0.5 M EDTA 
     add H2O to make 1 liter 
 
10x NCP-Puffer (pH 8.0):  12.1 g Tris/HCl 
     87.0 g NaCl 
     5.0 ml Tween 20 
     2.0 g sodium azide 
     add H2O to make 1 liter    
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PBG (pH 7.4):    0.5 % bovine serum albumin 
     0.1 % gelatin (cold-water fish skin) 
     in 1x PBS, pH 7.4 
 
1x PBS (pH 7.4):   8.0 g NaCl 

0.2 g KH2PO4  
1.15 g Na2HPO4 

0.2 g KCl 
dissolve in 900 ml deionised H2O 
adjust to pH 7.4 
add H2O to make 1 liter, autoclave 
 

1.2 M Phosphate buffer (pH 6.8): 1.2 M Na2HPO4, pH 9.1 was mixed with 1.2 M 
NaH2PO4, pH 4.02 in the ratio of 2:1. 

 
20x SSC (pH 7.0):   3 M NaCl 
     0.3 M sodium citrate 
 
TE buffer (pH 8.0):   10 mM Tris/HCl, pH 8.0 
     1 mM EDTA, pH 8.0 
 
Tris-phenol: 1 kg phenol was melted at 60ºC in a water-bath and 

equilibrated with 1 vol. of 1 M Tris/HCl, pH 8.0. The 
equilibrated phenol was aliquoted in 50 ml Falcon tubes 
and stored at –20ºC. 

 
10x TAE buffer (pH 8.3):  27.22 g Tris 
     13.6 g sodium acetate  
     3.72 g EDTA 
     add H2O to make 1 liter 

 

1.7. Biological materials 
 
Bacterial strains: 

E. coli BL21 (DE)  Studier and Moffat, 1986 
 E. coli DH5α   Hanahan, 1983 

E. coli M15[pREP4]  Qiagen 
E. coli MC1061  Wertman et al., 1986 
E. coli Y1088   Young and Davis, 1983    

 E. coli XL1 blue  Bullock et al., 1987 
 Klebsiella aeorgenes  Williams and Newell, 1976 

 
Dictyostelium discoideum strain: 

AX2-214   An axenically growing derivative of wild strain, NC-4  
(Raper, 1935). Commonly referred to as AX2. 
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1.8. Plasmids 
 

pBsr��	�   Adachi et al., 1994 
pCR-2.1   Kit: Invitrogen  
pDEXRH   Faix et al., 1992 
pGEM-IRES-GFP-Stop A gift from Dr. A. Hofmann 
pGEM-T Easy   Kit: Promega 
pGEX-2T   Pharmacia Biotech 
pIC20H   Marsh et al., 1984 
pLITMUS29   New England Biolabs 
pQE30    Qiagen 
 

1.9. Oligonucleotide primers 

 
The oligonucleotide primers were designed on the basis of sequence information available 

and ordered for synthesis to MWG Biotech company. Following is a list of the primers used 

for PCR or sequence analysis or both during the course of the present investigation. The 

position and orientation of the primers are indicated in the text when discussed.  

 

Name  Sequence   Analysis 

CLIM 5’ 5’-CGGAATTCGGATCCACCAATTGTCCAAAATGTGGTAAG-3’   PCR & Seq. 

CLIM 3’ 5’-GGAATTCGATATCTTAATGTAAAACTAATGCACCAGT-3’   PCR 

CLIM-P 5’ 5’-CGGAATTCGGATCCTATGATAGATTATTTAGACAAGC-3’   PCR 

DLIM1 5’ 5’-TCTGTCCAACATGCACTAAAAGAG-3’   PCR & Seq. 

DLIM1 3’ 5’-GGATCCATGTAAAACTAATGCACCAGTATTGG-3’   PCR & Seq 

DLIM1cDNA 5’ 5’-GAAGATCTAAGCTTGGATCCATGAGTTCTATCTGTCCAACATG-3’ PCR 

DLIM1cDNA 3’ 5’-TTGGACAATTGGTTGGGAATAATTG-3’   PCR 

DLIM1-U 5’-TTCACATGCTTTAACAGCTTC-3’   Seq. 

gDLIM1-I 5’-CCAATACTGGTGCATTAGTTTTACAT-3’   Seq. 

M13 reverse 5’-CAGGAAACAGCTATGAC -3’   Seq. 

NLIM 5’ 5’-CGGAATTCGGATCCATGAGTTCTATCTGTCCAACA-3’   PCR 

NLIM 3’ 5’-GGAATTCGATATCTTAATCATAATCAGTTTTGCAATA-3’   PCR 

NLIM-P 3’ 5’-GGAATTCGATATCTTAATTGGTTGGGAATAATTGAAC-3’   PCR 

SP6 universal 5’-ATTTAGGTGACACTATAG-3’   Seq. 

T7 universal 5’-TAATACGACTCACTATAGGG -3’   Seq. 
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2. Cell biological methods 

 

2.1.  Growth of Dictyostelium 

 
2.1.1. Growth in liquid nutrient medium (Claviez et al., 1982)  

 
Dictyostelium discoideum AX2 and the derived transformants were grown in liquid AX2 

medium containing dihydrostreptomycin (40 µg/ml) and other appropriate selective 

antibiotic (depending upon mutant) at 21°C either in a shaking-suspension in Erlenmeyer 

flask with shaking at 160 rpm or the cells were grown on petri dish. For all the cell 

biological works, culture was harvested at a concentration of 3-5 x 106 cells/ml. 

 

2.1.2. Growth on SM agar plates  

 
In general, Dictyostelium cells were plated onto SM agar plates overlaid with Klebsiella 

aerogenes and incubated at 21ºC for 3-4 days until Dictyostelium plaques appeared on the 

bacterial lawns. To obtain single clones of Dictyostelium, 50-200 cells were suspended in 

100 µl Soerensen phosphate buffer and plated onto Klebsiella-overlaid SM agar plates. 

Single plaques obtained after incubation at 21ºC for 3-4 days were picked up with sterile 

tooth-picks, transferred either to new Klebsiella-overlaid SM agar plates or to separate petri 

dishes in AX2 medium supplemented with dihydrostreptomycin (40 
����� 	
�� 	��������
�

(50 µg/ml) to get rid of the bacteria and any other appropriate selective antibiotic (depending 

upon mutant). 

 

2.2.  Development of Dictyostelium 

 
Development in Dictyostelium is induced by starvation. For analysis of development in 

suspension culture and on phosphate agar, cells grown to a density of 2-3 x 106 cells/ml were 

pelleted by centrifugation at 2,000 rpm (Sorvall RT7 centrifuge) for 2 min at 4ºC and were 

washed two times in equal volume of cold Soerensen phosphate buffer in order to remove all 

the nutrients present in the AX2 media. 
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2.2.1. Development in suspension culture 

 
After washing twice in Soerensen phosphate buffer, the cells were resuspended in Soerensen 

phosphate buffer at a density of 1 x 107 cells/ml and were shaken at 160 rpm and 21ºC for 

desired time periods. 

 

2.2.2. Development on phosphate-buffered agar plates or water agar plates 

 
Cells grown to a density of 2-3 x 106 cells/ml were washed twice with equal volumes of 

Soerensen phosphate buffer. 5 x 107 cells were then resuspended in 3 ml Soerensen 

phosphate buffer and evenly distributed onto phosphate-buffered agar plates (90 mm) or 

water agar plates (90 mm). The plates were air dried and any excess liquid was carefully 

aspirated without disturbing the cell layer. The plates were then incubated at 21°C. different 

stages of development were observed and the images were captured at indicated time points. 

 

2.2.3. Development on plastic surface (DeLozanne and Spudich, 1987) 

 
To observe the early stages of development of Dictyostelium, the cells were placed under 

starvation buffer on a plastic petridish. Dictyostelium cells were grown axenically to a 

density of 2-4 x 106 cells /ml. The cells were harvested and 2.8 x 106 cells were resuspended 

in 5 ml of fresh AX2 medium. The cell suspension was added to a 60 mm petridish (Falcon) 

and the cells were allowed to adhere to the plastic surface in a monolayer by incubating at 

21°C for 6 h. After 6 h, the medium was carefully replaced by Soerensen phosphate buffer or 

SAP buffer. The plate was incubated at 21°C and different stages of early development were 

observed. The images were captured at indicated time points. 

 

2.3.  Preservation of Dictyostelium 

 

2.3.1. Preservation of Dictyostelium cells 

 
Dictyostelium cells were allowed to grow densely in AX2 medium to a concentration of 4-5 

x 106 cells/ml. 9 ml of the densely grown culture was collected in a 15 ml Falcon tube on ice 

and supplemented with 1 ml Horse serum and 1 ml DMSO. The contents were mixed by 
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gentle pipetting, followed by preparing aliquots of 1 ml in cryotubes (1 ml, Nunc). The 

aliquots were incubated on ice for 60 min, followed by incubation at –20ºC for at least  2 h. 

Finally, the aliquots were transferred to –80ºC for long term storage. 

 
For reviving the frozen Dictyostelium cells, the aliquot was taken out from –80ºC and 

thawed immediately at 37ºC in a waterbath. In order to remove DMSO, the cells were 

transferred to a falcon tube containing 30 ml AX2 medium and centrifuged at 2,000 rpm 

(Sorvall RT7 centrifuge) for 2 min at 4ºC. The cell pellet was resuspended in 10 ml of AX2 

medium and 200 µl of the cell suspension was plated onto SM agar plates overlaid with 

Klebsiella, while the remaining cell suspension was transferred into a 100-mm petri dish 

(Falcon) and antibiotics were added when appropriate. Cells in the petri dish were allowed to 

recover overnight at 21ºC and the medium was changed the next day to remove the dead 

cells and the traces of DMSO, whereas, the SM agar plates coated with cell suspension and 

bacteria were incubated at 21ºC until plaques of Dictyostelium cells started to appear. 

 

2.3.2. Preservation of Dictyostelium spores 

 
Dictyostelium cells were harvested and plated onto 90 mm phosphate-buffered agar plates as 

described above (Materials and Methods, 2.2.2.). The plates were incubated at 21°C till the 

mature fruiting bodies appeared. The spores were collected from the fruiting bodies, 

resuspended in Soerensen phosphate buffer to a density of 1 x 107 to 1 x 108 spores/ml and 

aliquoted 1 ml each in cryotubes (1 ml, Nunc). After immediately freezing the spores in 

liquid nitrogen, the aliquots were transferred to –80°C for long-term storage. 

 
For germination of the frozen spores, one of the aliquots was taken out of –80°C and thawed 

quickly to room temperature. The spore suspension was resuspended in 30 ml of AX2 

medium in an Erlenmeyer flask and incubated at 21°C and 160 rpm. 

 

2.4.  Transformation of Dictyostelium cells by electroporation  

 
The electroporation method for transformation of Dictyostelium cells described by de Hostos 

et al. (1993) was followed with little modifications. Dictyostelium discoideum AX2 cells 

were grown axenically in suspension culture to a density of 2-3 x 106 cells/ml. Cell 
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suspension was incubated on ice for 20 min and centrifuged at 2,000 rpm (Sorvall RT7 

centrifuge) for 2 min at 4ºC to collect the cells. The cells were then washed with an equal 

volume of ice-cold Soerensen phosphate buffer followed by an equal volume of ice-cold 

Electroporation-buffer. After washings, the cells were resuspended in Electroporation-buffer 

at a density of 1 x 108 cells/ml. For electroporation, 20-25 µg of the plasmid DNA was added 

to 500 µl (5 x 107 cells) of the above cell suspension and the cell-DNA mixture was 

transferred to a pre-chilled electroporation cuvette (2 mm electrode gap, Bio-Rad). 

Electroporation was performed with an electroporation unit (Gene Pulser, Bio-Rad) set at 0.9 

kV and 3 µF without the pulse controller. After electroporation, the cells were immediately 

spread onto a 100-mm petri dish (Falcon) and were allowed to sit for 10 min at 21ºC. 

Thereafter, 1 ml of Healing-solution was added dropwise onto the cells and the petri dish 

was incubated at 21ºC on a shaking platform at 50 rpm for 15 min. 10 ml of AX2 medium 

was added into the petri dish and the cells were allowed to recover overnight. The next day, 

the medium was changed to the selection medium containing appropriate antibiotic. To 

select stable transformants, selection medium was replaced after every 24-48 h until the 

control plate (containing cells electroporated without any DNA) was clear of live cells. 

 
Electroporation-buffer: 0.1 M Potassium phosphate buffer: 
 100 ml 0.1 M potassium phosphate buffer  170 ml 0.1 M KH2PO4 

 17.12 g sucrose  30 ml 0.1 M K2HPO4 

 add distilled H2O to make 1 litre  adjust to pH 6.1 
 autoclave  
  
Healing-solution: 
 ���� ���������	��2 
 ���� ���������
��2 

 10 ml electroporation-buffer 

 

2.5. Determination of cell size (Rivero et al., 1996b) 

 
Dictyostelium strain AX2 and derived mutant cells were grown to a density of 2 x 106 

cells/ml. The cells were washed twice with cold Soerensen phosphate buffer and 

resuspended to a density of 1 x 107 cells /ml in Soerensen phosphate buffer supplemented 

with 20 mM EDTA. The cells were then transferred to an Erlenmeyer flask and incubated on 

a shaker (160 rpm, 21°C) for 1 h. After 1 h of incubation, essentially single spherical cells 
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were photographed using an inverted microscope (1X70, Olympus) equipped with a 40 x 

objective and a charge-coupled device (CCD) camera (CVM10, Progressive Scan, Japan) 

The diameters were determined from the prints. 

 

2.6. Viability assay of osmotically shocked cells (Rivero et al., 1996b) 

 
Axenically growing cells were harvested at a concentration of 3 x 106 cells/ml and washed 

once with cold Soerensen phosphate buffer. The cells were resuspended to a density of 3 x 

107 cells/ml in Soerensen phosphate buffer and incubated at 21°C on a shaker at 160 rpm for 

1 h. Thereafter, sorbitol was added to a final concentration of 0.4 M and the shaking was 

continued for another 2 h. After 2 h of incubation in hypertonic medium, cells were diluted 

in Soerensen phosphate buffer and 200 cells were plated onto SM plates in association with 

K. aerogenes. The plates were incubated at 21°C and after 2-4 days colonies appearing on 

plates were counted to assay the viability. 

 

2.7. Spore germination assay (Ennis and Sussman, 1975) 

 
Axenically growing Dictyostelium cells were harvested, washed twice with equal volumes of 

Soerensen phosphate buffer and plated onto 90 mm phosphate-buffered agar plates as 

described in Meterials and Methods (2.2.2.). The plates were incubated at 21°C till the 

mature fruiting bodies were visible. The spores were collected from the mature fruiting 

bodies and resuspended in Soerensen phosphate buffer at a concentration of 1 x 106 to 5 x 

107 spores/ml. The spores were then activated by heating at 45°C for 30 min. After heat 

activation, spores were diluted in Soerensen phosphate buffer and 200 spores/plate were 

plated onto SM plates overlaid with Klebsiella. The plates were incubated at 21°C till the 

Dictyostelium colonies appeared. 

 

2.8. Qualitative phototaxis assay (Wallraff and Wallraff, 1997) 

 
Dictyostelium AX2 cells and derived mutants were cultivated on Klebsiella lawns on SM 

agar plates. Using sterile tooth picks, vegetative cells from edges of the colonies growing on 

Klebsiella lawns were transferred to 90 mm water agar plates. The application point for 
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phototaxis was located in the centre of the plate. The plates were wrapped in an opaque 

black plastic sheet with a slit of ~ 3 mm and incubated at 21°C. Approximately 72 h after 

inoculation, slime trails and cellular material were blotted to nitrocellulose filter (BA85, Ø 

82 mm, Schleicher and Schuell) by keeping the filter on the plate for 1 h. Thereafter, filters 

were stained with staining solution for 5 min followed by incubation in destaining solution 

(with 2 changes) for 10-15 min to remove the excess stain. The filters exhibiting the stained 

slime trails were photographed using light microscope (Olympus) equipped with a CCD 

camera (CVM10, Progressive Scan, Japan). 

 

Staining solution: Destaining solution: 
 0.1 % amido black  25% isopropanol 
 25% isopropanol  10% acetic acid 
 10% acetic acid 

 

2.9. Analysis of agglutination (Rivero et al., 1999b) 

 
Axenically growing Dictyostelium AX2 cells and derived mutants were harvested, washed 

twice with equal volumes of Soerensen phosphate buffer and resuspended in Soerensen 

phosphate buffer to a density of 1 x 107 cells/ml. For strains with different cell size, cells 

were adjusted to the same total cell volume by resuspending them at an OD600 of 0.9 in 10 

ml Soerensen phosphate buffer. The cell suspension was then transferred to Erlenmeyer flask 

and incubated on a shaker at 160 rpm and 21°C. Samples were taken at the indicated time 

points and decrease in light scattering was measured at 600 nm. 

 

3. Molecular biological methods 

 

3.1.  Purification of plasmid DNA 

 
In general, for small cultures (1 ml) of E. coli transformants, the alkaline lysis method of 

Holmes and Quigley (1981) was used to extract plasmid DNA. This method is good for 

screening a large number of clones simultaneously for the desired recombinant plasmid. 

Briefly, single transformants were picked up from the culture plate and were grown 

overnight in 1 ml of LB media containing suitable antibiotic. Next day, the overnight grown 
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E. coli cells were pelleted by centrifugation at 6,000 rpm in a microcentrifuge for 3-5 min. 

The pellet was then resuspended completely in 250 µl STET/lysozyme buffer and the 

suspension was incubated at the room temperature for 10 min to lyse the bacterial cells. The 

bacterial lysate was boiled at 100ºC for 1 min and was then centrifuged in an eppendorf 

centrifuge at maximum rpm for 15 min at room temperature. The plasmid DNA present in 

the supernatant was precipitated by adding equal volume of isopropanol and incubating at 

room temperature for 10 min. The precipitated DNA was pelleted in the eppendorf 

centrifuge at 12,000 rpm for 15 min and the DNA pellet was washed with 70% ethanol, 

dried in the speed-vac concentrator and finally resuspended in 40 µl TE, pH 8.0 containing 

RNase A at 1 µg/ml. 

 
STET/lysozyme buffer (pH 8.0): 

50 mM Tris/HCl, pH 8.0 
50 mM EDTA 
0.5% Triton-X-100 
8.0% Sucrose 
Add lysozyme at 1 mg/ml at the time of use 

 
Alternatively, for pure plasmid preparations in small and large scales, kits provided either by 

Macherey-Nagel (Nucleobond AX kit for small scale plasmid preparations) or by Qiagen 

(Qiagen Midi- and Maxi-Prep kit for large scale plasmid preparations). These kits were used 

when the pure plasmid DNA was required for sequencing, PCR or transformation. These kits 

follow basically the same approach: first overnight culture of bacteria containing the plasmid 

is pelleted and the cells are lysed by alkaline lysis. The freed plasmid DNA is then adsorbed 

on a silica matrix, washed with ethanol, and then eluted into TE, pH 8.0. This method avoids 

the requirement of caesium chloride or phenol-chloroform steps during purification. 

 

3.2.  Digestion with restriction enzymes 

 
All restriction enzymes were obtained from NEB, Amersham or Life technologies and the 

digestions were performed in the buffer systems and temperature conditions as suggested by 

the manufacturers. The plasmid DNA was digested for 1-2 h and the chromosomal DNA for 

12-16 h. 
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3.3.  Generation of blunt ends in linearised plasmid DNA 

 
For many cloning experiments, it was necessary to convert the 5’ or 3’ extensions generated 

by restriction endonucleases into blunt ends. Repair of 5’ extensions was carried out by 

polymerase activity of the Klenow fragment, whereas repair of 3’ extensions was carried out 

by the 3’ to 5’ exonuclease activity of the Klenow fragment.  

 
Reaction-mix for 5’ extensions: Reaction-mix for 3’ extensions: 
 1-4 µg linearised DNA    1-4 µg linearised DNA  
 5 µl 10x High salt buffer   5 µl 10x High salt buffer 
 1 µl 50x dNTP-mix (each 4 mM)  2 U Klenow fragment 
  2 U Klenow fragment  add H2O to make 50 µl 
 add H2O to make 50 µl 
 
10x High salt buffer: 
 500 mM Tris/HCl, pH 7.5 
 1 M NaCl 
 100 mM MgCl2 
 10 mM DTT 

 
The reaction was carried out at 37ºC for 25-30 min. After incubation, the reaction was 

immediately stopped by inactivating the enzyme by heating to 75ºC for 10 min or by adding 

1 µl 0.5 M EDTA. This was followed by phenol/chloroform extraction and precipitation of 

DNA with 2 vol. ethanol. 

  

3.4.  Dephosphorylation of DNA fragments 

 
To avoid self-ligation of the vector having blunt ends or that has been digested with a single 

restriction enzyme, 5’ ends of the linearised plasmids were dephosphorylated by calf-

intestinal alkaline phosphatase (CIAP, Boehringer). Briefly, in a 50 µl reaction volume, 1-5 

µg of the linearised vector-DNA was incubated with 1 U calf-intestinal alkaline phosphatase 

(CIAP) in CIAP-buffer (provided by the manufacturer) at 37ºC for 30 min. The reaction was 

stopped by inactivating the enzyme by heating the reaction-mixture at 65ºC for 10 min. The 

dephosphorylated DNA was extracted once with phenol-chloroform and precipitated with 2 

vol. ethanol and 1/10 vol. 2 M sodium acetate, pH 5.2. 
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3.5. Setting up of ligation reaction  

 
DNA fragment and the appropriate linearised plasmid were mixed in approximately 

equimolar amounts. T4 DNA ligase (Life technologies/Boehringer) and ATP were added as 

indicated below and the ligation reaction was left overnight at 10-12ºC. 

 
Ligation reaction: 5x Ligation buffer:  
 Linearised vector DNA (200-400 ng)  supplied along with the T4 ligase   
 DNA-fragment  enzyme by the manufacturer 
 4 µl 5x Ligation buffer  
 �� ����������� 
 1.5 U T4 ligase 
 add H2O to make 20 µl 

 

3.6.  Isolation of Dictyostelium genomic DNA 

 
Genomic DNA from Dictyostelium was prepared according to the method described by 

Nellen et al. (1987), with slight modifications. Dictyostelium cells were allowed to grow on 

Klebsiella-covered SM plates at 21ºC. After 2-3 days, when the plates were covered with 

densely grown Dictyostelium, cells were collected in 15 ml ice-cold water, pelleted and 

washed twice with ice-cold water to get rid of Klebsiella. Alternatively, the pellet of 1 x 108 

Dictyostelium cells grown in shaking suspension was washed twice with ice-cold Soerensen 

phosphate buffer. The pellet of Dictyostelium cells was finally resuspended in 5 ml cold 

Nucleolysis buffer. The nuclei fraction was obtained by centrifugation at 3,000 rpm (Sorvall 

RT7 centrifuge) for 10 min. The nuclear pellet obtained was carefully resuspended in 1 ml 

TE, pH 8.0, with 0.5% SDS and 0.1 mg/ml proteinase K and incubated at 37ºC for 3-5 h. 

The genomic DNA was extracted twice with phenol/chloroform (1:1 v/v), precipitated by 

adding 2.5 vol. 96% ethanol and 1/10 vol. 3 M sodium acetate, pH 5.2. The DNA precipitate 

was carefully spooled with a Pasteur pipette, washed with 96% ethanol, air-dried and 

dissolved in the desired volume of TE, pH 8.0. 

 
Nucleolysis buffer: Estimation of DNA concentration: 
 10 mM magnesium acetate  1 O.D at 260 nm = 50 µg DNA 
 10 mM NaCl 
 30 mM HEPES, pH 7.5 
 10% sucrose 
 2% Nonidet P40 
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3.7.  DNA agarose gel electrophoresis 

 

Agarose gel electrophoresis was performed according to the method described by Sambrook 

et al. (1989) to resolve and purify the DNA fragments. Electrophoresis was typically 

performed with 0.7% (w/v) agarose gels in 1x TAE buffer submerged in a horizontal 

electrophoresis tank containing 1x TAE buffer at 1-5 V/cm. Only for resolving fragments 

less than 1,000 bp, 1% (w/v) agarose gels in 1x TAE buffer were used. DNA-size marker 

(Life technologies) was always loaded along with the DNA samples in order to estimate the 

size of the resolved DNA fragments in the samples. The gel was run until the bromophenol 

blue dye present in the DNA-loading buffer had migrated the appropriate distance through 

the gel. The gel was examined under UV light at 302 nm and was photographed using a gel-

documentation system (MWG-Biotech) 

 
DNA-size marker: 
 1 kb DNA Ladder (Life technologies):  12,216; 11,198; 10,180; 9,162; 8,144; 7,126; 

6,108; 5,090; 4,072; 3,054; 2,036; 1,636; 1,018; 
506; 396; 344; 298; 220; 201; 154; 134; 75 bp 

 

3.8.  Recovery of DNA fragments from agarose gel 

 
DNA fragments from restriction enzyme digests or from PCR reactions were separated by 

agarose gel electrophoresis and the gel piece containing the desired DNA fragment was 

carefully and quickly excised while observing the ethidium bromide stained gel under a UV 

transilluminator. The DNA fragment was then purified from the excised gel piece using the 

Macherey-Nagel gel elution kit (NucleoSpin Extract 2 in 1), following the method described 

by the manufacturers. 

 

3.9.  Southern blotting 

 
Southern blotting (Southern, 1975) is a technique used to transfer DNA from its position in 

an agarose gel to a nitrocellulose/nylon membrane. After transfer, the membrane can be 

hybridised with a radiolabelled probe to identify specific fragments. The ethidium bromide 

stained agarose gel was photographed using a scale under UV light to document migration of 

DNA fragments with respect to the DNA-size marker. DNA was depurinated by incubating 
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the gel in 2 vol. of 0.25 M HCl for 20 min at room temperature with gentle shaking. The gel 

was rinsed in deionised H2O to remove excess HCl and was then incubated in 2 vol. of 

denaturation solution (0.5 M NaOH, 1.5 M NaCl) for 30 min in order to denature the DNA. 

Now the transfer was performed by capillary transfer technique. Briefly, the gel was 

transferred directly from the denaturation solution to a buffer reservoir containing a 

supporting wick (made up of Whatman 3MM paper) and 20x SSC. A dry nylon membrane 

(Biodyne B membrane, Pall) of the same size as the gel was then directly placed on the 

alkaline gel. Three pieces of Whatman 3MM paper followed by blotting pads, all cut to the 

same size as the gel, were placed on top of the nylon membrane. A glass plate supporting 

approximately 500 g weight was finally kept on top of the stack and transfer of DNA to the 

membrane was allowed to proceed for overnight. Next day, position of the wells and the 

orientation of the membrane was marked before removing the membrane from the gel 

surface. The transferred DNA was then immobilized onto the membrane by baking at 80ºC 

for 1 h. After baking, the membrane was hybridised with a desired radiolabelled probe. 

 

3.10. Isolation of total RNA from Dictyostelium cells 

 
The pellet of 1 x 108 cells (harvested at growth or different stages of development) was 

washed with ice-cold DEPC-H2O (0.1% DEPC, mixed by stirring for 5-6 h, autoclaved) and 

resuspended in 10 ml 50 mM Hepes buffer, pH 7.5. To the cell suspension, 100 µl DEPC 

and 1 ml 10% SDS was added, mixed briefly, followed by immediately adding 1 vol. of 

phenol saturated with Hepes buffer, pH 7.5. The sample was then vortexed strongly and 

centrifuged at 3,000 rpm (Sorvall RT7 centrifuge) for 20 min at 4ºC. The upper aqueous 

phase was collected carefully and was extracted with an equal volume of phenol/chloroform 

(1:1 v/v), till no interphase was visible. This was followed by an extraction with an equal 

volume of chloroform and finally the RNA present in the upper aqueous phase was 

precipitated by adding 2 vol. ethanol and 1/10 vol. 2 M sodium acetate, pH 5.2 and 

incubating the samples overnight at –20ºC. Next day, the RNA was pelleted, washed with 

70% ethanol, air-dried and dissolved in the desired volume of DEPC-H2O. The 

concentration of RNA was determined by measuring the O.D260 of the solution using a 

spectrophotometer. The RNA samples were stored at –80ºC. 
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DEPC-H2O:  Estimation of RNA concentration: 
 0.1% DEPC in H20  1 O.D at 260 nm = 40 µg RNA 
 mixed by stirring for 5-6 h 
 autoclaved 

 

3.11. RNA formaldehyde-agarose gel electrophoresis 

 
The formaldehyde-agarose denaturing electrophoresis (Lehrach et al., 1977) is used for 

separation and resolution of single stranded RNA. 

 
Sample preparation for electrophoresis: 

In general, 30 µg of purified total RNA was mixed with an equal volume of RNA-sample 

buffer and denatured by heating at 65ºC for 10 min. After denaturation, the sample was 

immediately transferred to ice and 1/10 vol. of RNA-loading buffer was added. Thereafter, 

the RNA samples were loaded onto a denaturing formaldehyde-agarose gel. 

 
Formaldehyde-agarose gel preparation: 

For a total gel volume of 150 ml, 1.8 g agarose (final concentration 1.2%) was initially 

boiled with 111 ml DEPC-H2O in an Erlenmeyer flask, cooled to 60ºC and then 15 ml of 

RNA-gel-casting buffer, pH 8.0 and 24 ml of 36% formaldehyde solution were added. The 

agarose solution was mixed by swirling and poured into a sealed gel-casting chamber of the 

desired size. After the gel was completely set, denatured RNA samples were loaded and the 

gel was run in 1x RNA-gel-running buffer, pH 7.0, at 100 V until the bromophenol blue dye 

had migrated the appropriate distance through the gel. A test gel was sometimes run with 5 

µg of total RNA to check the quality of the RNA samples. In such a case, 10 µg/ml ethidium 

bromide was added to the RNA-sample buffer during sample preparation and after 

electrophoresis the gel was examined under UV light at 302 nm and was photographed using 

the gel-documentation system. 

 
10x RNA-gel-casting buffer (pH 8.0): 10x RNA-gel-running buffer (pH 7.0): 
 200 mM MOPS  200 mM MOPS 
 50 mM sodium acetate  50 mM sodium acetate 
 10 mM EDTA  10 mM EDTA 
 adjust pH 8.0 with NaOH  adjust pH 7.0 with NaOH 
 autoclaved  autoclaved 
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RNA-sample buffer: RNA-loading buffer: 
 50% formamide  50% sucrose, RNase free 
 6% formaldehyde  0.25% bromophenol blue 
 in 1x RNA-gel-casting buffer, pH 8.0  in DEPC-H2O 
 
Internal RNA-size standard: 
 26S rRNA (4.1 kb) 
 17S rRNA (1.9 kb) 

 

3.12. Northern blotting 

 
After electrophoresis, the RNA formaldehyde agarose gel was rinsed in sufficient amount of 

deionised H2O for 5 min and then equilibrated in 10x SSC for 25 min. The resolved RNA 

was then transferred from the gel to the nylon membrane (Biodyne B membrane, Pall) using 

the transfer setup as described for Southern blotting (see Materials and Methods 3.9.). After 

overnight transfer with 20x SSC, the transferred RNA was immobilised by baking the 

membrane in an oven at 80ºC for 1 h. 

 

3.13. Radiolabelling of DNA 

 
Prime-it kit (Stratagene) was used for radiolabelling of DNA fragments following the 

method suggested by the manufacturers. Briefly, 0.1-0.3 µg DNA sample was suspended in 

24 µl ddH2O (final volume). Then 10 µl of random-oligonucleotide-primer (supplied along 

with the kit) was added and the DNA template was denatured at 95ºC for 5 min. After 

denaturation, 10 µl of 5x dATP-primer� ������� ����������	� 

�!�"#� "#��$�"�%���&�� �� -32P-

ATP (Amersham) and 1 µl Klenow enzyme (5 U/µl, supplied along with the kit) was added 

and the reaction-mixture was incubated at 37ºC for 10 min. After 10 min the reaction was 

immediately stopped by adding 2 µl stop-mix (supplied along with the kit). Now the 

reaction-mixture was diluted with 100 µl TE, pH 8.0 to increase the reaction volume and the 

reaction-mixture was overlaid on a 0.9 ml Sephadex G-50 spin column (see Materials and 

Methods 3.13.1.). The free nucleotides present in the reaction-mixture were separated by 

centrifugation at 3,000 rpm (Sorvall RT7 centrifuge) for 2 min through the Sephadex G-50 

spin column and the radiolabelled DNA probe was collected in a 1.5 ml eppendorf tube. The 

purified radiolabelled DNA probe was denatured by heating at 100ºC for 10 min, cooled on 

ice and used for hybridisation of Southern- or northern-blots. 
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3.13.1. Chromatography through Sephadex G-50 spin column 

 
This technique (Sambrook et al., 1989), which employs gel filtration to separate high-

molecular weight DNA from smaller molecules, was used to segregate radiolabelled DNA 

�� ���
�
� �� �	"��� -32P-ATP. 30 g of Sephadex G-50 (Pharmacia) was slowly added to 

250 ml of TE, pH 8.0, in a 500-ml bottle and the beads were allowed to swell overnight at 

room temperature. Next day, the supernatant was decanted and was replaced with an equal 

volume of TE, pH 8.0. The beads were autoclaved and stored in a screw-capped bottle at 

4ºC. For preparation of Sephadex G-50 spin column, the swollen Sephadex G-50 beads were 

packed in a disposable 1-ml syringe plugged with sterile glass wool and the column was 

spun at 3,000 rpm (Sorvall RT7 centrifuge) for 2 min. Sephadex G-50 was added until the 

packed column volume was 0.9 ml. The column was then used for segregation of 

radiolabelled DNA probe. 

 

3.13.2. Hybridisation of Southern- or northern-blot with radiolabelled DNA probe 

 
Southern- or northern-blots were rinsed briefly with 2x SSC and incubated in a heat-sealable 

hybridisation-bag (Life technologies) in 15-20 ml of pre-hybridisation buffer for 1h at 37ºC 

on a shaking platform. After pre-hybridisation, the denatured radiolabelled DNA probe was 

added directly to the pre-hybridisation-buffer in the hybridisation-bag and the hybridisation 

was performed by incubating the blot overnight at 37ºC. After hybridisation, the blot was 

washed twice with 2x SSC/0.1% SDS for 10 min each at room temperature with gentle 

shaking followed by two washings with wash buffer for 30 min each at 37ºC with gentle 

shaking. The blot was then wrapped in a plastic wrap and autoradiography was performed by 

exposing the blot to X-ray film at –70ºC for the desired time. 

 
Pre-hybridisation/Hybridisation buffer: Wash buffer: 
 50% formamide  same contents as Pre-hybridisation/ 
 1% sodium lauryl sarcosinate  hybridisation buffer except without  
 0.2% SDS  4x Denhardt’s reagent 
 2 mM EDTA, pH 7.2 
 0.12 M phosphate buffer, pH 6.8 100x Denhardt’s reagent: 
 2x SSC  2% ficoll 400 
 4x Denhardt’s reagent  2% polyvinylpyrolidone 
   2% bovine serum albumin 
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3.14. PCR-mediated screening of Dictyostelium transformants 

 
A PCR approach was used for screening of the DLIM1− mutant cells. Briefly, AX2 cells 

were transformed with the DLIM1 gene replacement vector (see Materials and Methods, 

3.19.4.) and the transformants were selected for resistance to blasticidin (3.5 µg/ml). Single 

cell transformants were then obtained by spreader dilution of the whole pool of 

transformants onto SM plates overlaid with Klebsiella. Thereafter, the single transformants 

were picked up and grown in separate wells in a 24 well tissue culture plate in the selection 

medium (as above) that has been supplemented with streptomycin (40 µg/ml) and ampicillin 

(50 µg/ml) to get rid of the bacteria. 

 
Preparation of DNA for PCR reaction: 

After the cells had grown to confluency in the wells, cells were suspended in the medium 

present in the wells and transferred to a 1.5 ml microcentrifuge tube. The cells were then 

pelleted by centrifugation in a microcentrifuge at maximum speed for 15 s. The cells were 

washed twice with 1 ml of ice-cold H2O and resuspended in 100 µl of lysis buffer. The cells 

were then incubated at 56ºC for 45 min followed by incubation at 95ºC for 10 min to liberate 

the genomic DNA. 

 
PCR conditions:  

15 µl of the processed cell suspension containing the liberated genomic DNA was used as a 

template for PCR. Reaction programme and composition of the reaction-mix are indicated: 

 
Lysis buffer: 10x PCR buffer: 
0.5% Nonidet P-40  100 mM Tris/HCl 
0.05 mg/ml proteinase K  500 mM KCl 
in 1x PCR buffer  15 mM MgCl2 

   adjust to pH 8.3 
 
Reaction-mix (50µl final volume): Reaction programme: 
 15 µl template  1-step     92ºC for 3 min 
 2.5 µl DLIM1 5’ primer (2 pmol/µl)  2-step     35 cycles of- 
 2.5 µl DLIM1 3’ primer (2 pmol/µl)                 92ºC for 1 min 
 1.0 µl dNTP-mix (10 mM each)   54ºC for 1 min 
 5.0 µl 10x PCR buffer   72ºC for 3 min 
 1.0 µl Taq polymerase (1 U/µl)  3-step 72ºC for 10 min 
 23 µl H2O  4-step 4ºC till end 
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3.15. Transformation of E. coli 

 

3.15.1. Transformation of E. coli cells by the CaCl2 method 

 
Preparation of CaCl2-competent E. coli cells: 

Overnight grown culture of E. coli (0.5 ml) was inoculated into 50 ml LB medium and 

incubated at 37ºC, 250 rpm until an OD600 of 0.4-0.6 was obtained. The bacteria were then 

pelleted at 4ºC for 10 min at 4,000 rpm (Beckman Avanti J25, rotor JA-25.50) and the 

bacterial pellet was resuspended in 20 ml of ice-cold 0.1 M CaCl2 and incubated on ice for 

15 min. The bacterial cells were again pelleted and resuspended in 2 ml of ice-cold 0.1 M 

CaCl2. These CaCl2-competent cells were stored at 4ºC for up to 1 week. Alternatively, the 

pellet of CaCl2-competent E. coli cells was resuspended in 0.1 M CaCl2/20% glycerol and 

then aliquoted 200 µl/tube. The aliquots were then quickly frozen in a dry ice/ethanol bath 

and immediately stored at –80ºC. 

 
Transformation of CaCl2-competent E. coli cells: 

Plasmid DNA (~50-100 ng of a ligase reaction or ~10 ng of a supercoiled plasmid) was 

mixed with 100-200 µl of CaCl2-competent E.coli cells and incubated on ice for 30 min. The 

cells were then heat-shocked at 42ºC for 45 s and immediately transferred to ice to cool for 2 

minutes. The cells were then mixed with 1 ml of pre-warmed (at 37ºC) SOC medium and 

incubated at 37ºC with shaking at ~150 rpm for 45 min. Finally, 100-200 µl of the 

transformation mix, or an appropriate dilution, was plated onto selection plates and the 

transformants were allowed to grow overnight at 37ºC. 

 

3.15.2. Transformation of E. coli cells by electroporation 

 
Preparation of electroporation-competent E. coli cells 

An overnight grown culture (5 ml) was inoculated into 1,000 ml of LB medium and 

incubated at 37ºC with proper aeration and shaking at 250 rpm until an OD600 of 0.4-0.6 was 

obtained. The culture was then incubated on ice for 15-20 min. Thereafter, the culture was 

transferred to pre-chilled 500-ml centrifuge bottles (Beckman) and the cells were pelleted by 

centrifugation at 4,200 rpm (Beckman Avanti J25, rotor JA-10) for 20 min at 4ºC. The 

bacterial pellet was washed twice with an equal volume of ice-cold water and the cells were 
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resuspended in 40 ml of ice-cold 10% glycerol, transferred to a pre-chilled 50-ml centrifuge 

tube and centrifuged at 4,200 rpm (Beckman Avanti J25, rotor JA-25.50) for 10 min at 4ºC. 

Finally, the cells were resuspended in equal volume of 10% chilled glycerol and aliquoted 

(50-100 µl) in 1.5-ml eppendorf tubes that have been placed in a dry ice/ethanol bath. The 

frozen aliquots were immediately transferred to –80ºC for long-term storage. 

 
Transformation of electroporation-competent E. coli cells 

Plasmid DNA (~20 ng dissolved in 5-10 µl ddH2O, no salts) was mixed with 50-100 µl 

electroporation-competent E. coli cells. The transformation mix was transferred to a 2 mm 

BioRad electroporation cuvette (pre-chilled) and the cuvette was incubated on ice for 10 

min. The DNA was then electroporated into competent E. coli cells using an electroporation 
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ml of pre-warmed (37ºC) SOC medium was added onto the transformed cells and the cells 

were incubated at 37ºC with shaking at ~150 rpm for 45 min. Finally, 100-200 µl of the 

transformation mix, or an appropriate dilution, was plated onto selection plates and the 

transformants were allowed to grow overnight at 37ºC. 

 

3.16. Glycerol stock of bacterial culture 

 
Glycerol stocks of all the bacterial strains/transformants were prepared for long-term storage. 

The culture was grown overnight in LB medium with or without the selective antibiotic 
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�-cerol in a 1.5 ml microcentrifuge tube, mixed well by 

vortexing and the tube was frozen on dry ice and stored at –80°C. 

 

3.17. DNA colony blot for screening of E. coli transformants 

 
The method of Sambrook et al. (1989) was used to screen many bacterial colonies 

simultaneously. After the bacterial colonies had grown to a diameter of 0.1-0.2 mm, the 

plates were removed from the 37ºC incubator and stored at 4ºC for 1-2 h in an inverted 

position. Thereafter a dry nitrocellulose filter (BA85, Ø82 mm, Schleicher and Schuell) was 

labelled with a ball-point pen and placed with the numbered side down, on the surface of the 

agar medium in contact with the bacterial colonies until the filter was completely wet. The 
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filter and underlying agar were then marked in three or more asymmetric locations by 

stabbing through it with a 18-gauge needle. The filter was then carefully peeled off and the 

plates were incubated at 37ºC for 4-8 h until the colonies had regenerated. The bacteria 

adhering to the filter were immediately lysed by placing the filter, colony side up, for 5 min 

on a sheet of 3MM Whatman paper that had been saturated with denaturing solution. The 

filter was then transferred to a second sheet of 3MM Whatman paper that had been saturated 

with neutralizing solution. After 5 min, the filter was transferred to a third sheet of 3MM 

Whatman paper that had been saturated with 2x SSC and placed for 5 min. While 

transferring filters from one sheet to another, care was taken to remove as much fluid as 

possible from the underside of the filter by briefly placing the filter on a dry paper towel. 

Now the filter was laid, colony side up, on a sheet of dry 3MM Whatman paper and was 

allowed to dry at room temperature for 30-60 min. Thereafter, the liberated DNA was 

immobilised onto the filter by baking the filter for 2 h at 80ºC in an oven. After baking, the 

filter was floated and submerged for 5 min in 2x SSC, followed by incubation in pre-wash 

solution at 50ºC for 30 min. Loose bacterial debris or any fragments of agarose were 

removed during incubation in the pre-wash solution by gently scrapping on the colony 

surface. Thereafter, the filter was transferred to pre-hybridisation solution with 50% 

formamide and incubated at 42ºC for 1-2 h with gentle shaking, followed by hybridisation 

with denatured radiolabelled probe as described above (Materials and Methods 3.13.2.). 

After hybridisation, the filter was washed twice with 2x SSC/0.1% SDS for 5-10 min each at 

room temperature with gentle shaking followed by two washings with 1x SSC/0.1% SDS for 

30 min each at 37ºC with gentle shaking. The filter was then wrapped in a saran wrap and 

autoradiography was performed by exposing the filter to an X-ray film for the desired time at 

–70°C. The individual colonies giving positive hybridisation signals were picked and grown. 

 
Denaturing solution:  Neutralizing solution: 
 0.5 M NaOH  1.5 M NaCl 
 1.5 M NaCl  0.5 M Tris/HCl, pH 8.0 
 
Pre-wash solution: Pre-hybridisation solution: 
 5x SSC  same as described in Materials and
 0.5% SDS  Methods (3.13.2.) 
 1 mM EDTA 
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3.18. DNA sequencing 

 
Sequencing of the PCR-amplified product or plasmid DNA was performed at the sequencing 

facility of the Centre for Molecular Medicine, University of Cologne, Cologne by modified 

dideoxy nucleotide termination method using a ‘Perkin Elmer ABI prism 377’ DNA 

sequencer. 

 

3.19. Construction of vectors 

 

3.19.1. Amplification and cloning of the partial DLIM1 cDNA 

 
Partial DLIM1 cDNA (536 bp) was amplified employing RT-PCR approach. Total RNA 

isolated from axenically growing Dictyostelium was initially treated with reverse 

transcriptase enzyme (Superscript II, Life technologies) to synthesize cDNA template. 3 µg 

of RNA was taken in a nuclease-free microcentrifuge tube and 2 µl of the oligonucleotide 

primer, p(dN)6����� ���!	��	�����" ��"��
�	�" "	��/ ����� f 12 µl. The mixture was heated to 

70°C for 10 minutes to break the secondary structures within the template, followed by 

cooling on ice to prevent secondary structures from reforming. To the above mixture, 7 µl of 

RT-mix was added and incubated at 42°C for 2 min. Then 1 µl of reverse transcriptase (200 

U/µl) was added to the tube, mixed gently by flickering and incubated further for 50 min at 

42°C followed by heating at 70°C for 15 min and cooling on ice. The mixture was then 

treated with 1 µl of RNase H for 20 min at 37°C. 

 

For amplification of cDNA synthesized by reverse transcription, 1 µl of the above mixture 

was used as a template for PCR. DLIM1 cDNA was amplified using DLIM1 5’ and DLIM1 

3’ primers (Material and methods 1.9.), which were designed on the basis of the sequence 

information (Figure 6). DLIM1 3’ primer was designed with an engineered BamHI site to 

facilitate subcloning. Reaction mix and reaction programme for PCR are indicated below. 

After amplification, the PCR product was directly cloned into the pCR2.1 vector 

(Invitrogen) as suggested by the manufacturer. The resultant vector was verified by 

sequencing both the strands using M13 reverse and T7 universal primers and designated as 

pCR-DLIM1. 
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10x PCR buffer (Life technologies): RT-mix:  
 100 mM Tris/HCl, pH 8.3  4 µl 5x RT buffer (Promega) 
 500 mM KCl  2 µl 0.1 mM DTT 
   1 µl dNTP-mix (10 mM each) 
 
Reaction-mix: Reaction programme: 
 1 µl Template  1-step     92ºC for 5 min 
 2.5 µl DLIM1 5’ primer (2 pmol/µl)  2-step     35 cycles of- 
 2.5 µl DLIM1 3’ primer (2 pmol/µl)                 92ºC for 1 min 
 5 µl 10x PCR buffer (Life technologies)   54ºC for 1 min 
 3 µl 25 mM MgCl2    72ºC for 50 s 
 1 µl dNTP-mix (10 mM each)  3-step 72ºC for 10 min 
 1 µl Taq polymerase (1 U/µl)  4-step 4ºC till end 
 add H2O to make 50 µl   

 

3.19.2. Cloning of full length DLIM1 cDNA 

 
In order to obtain a full length DLIM1 cDNA, a λgt11 cDNA library derived from growth 

phase Dictyostelium cells was screened. The DNA from the positive phages was isolated and 

subcloned. 

 
3.19.2.1. Screening of λgt11 cDNA library (Sambrook et al., 1989) 

 
Preparation of plating bacteria: 

A single bacterial colony of Y1088 cells was inoculated into 50 ml of LB medium 

supplemented with 0.2% maltose and 10 mM MgSO4. The bacteria were allowed to grow 

overnight at 37ºC on a shaker. 

 
Plating bacteriophage λgt11 cDNA library: 

The stock of the recombinant bacteriophage (λgt11 cDNA library) was appropriately diluted 

in SM. 1µl and 10 µl of the bacteriophage suspension was mixed with 100µl of the plating 

bacteria and incubated in a water-bath at 37ºC for 20 min. Now each aliquot of the infected 

bacteria was mixed with 4 ml of melted top agarose (at 50ºC) in a test tube and spread 

evenly onto pre-warmed 90 mm LB plates (at 37ºC). The plates were allowed to stand for 5 

min at room temperature to allow the top agarose to harden. The plates were then incubated 

at 37ºC for overnight or until the plaques reach a diameter of ~ 1.5 mm. The plates should 

not show confluent lysis. The plates were then transferred to 4ºC for at least an hour. 
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SM (medium for phage storage and dilution): 
100 mM NaCl 
10 mM MgSO4.7H20 
50 mM Tris/HCl, pH 8.0 
0.01% gelatin 
The solution was sterilized by autoclaving and stored at 4ºC 
 

Screening bacteriophage plaques by hybridisation: 

The DNA from the bacteriophage plaques was transferred to nitrocellulose filter (BA85, Ø82 

mm, Schleicher and Schuell) and the filters were hybridised to a 32P labelled partial DLIM1 

cDNA probe essentially according to the method described for DNA colony blot for 

screening of the bacterial transformants (Materials and Methods, 3.17.). The only exception 

being that the filters were immersed in solutions (denaturing solution followed by 

neutralization solution and 2x SSC) kept in separate trays instead of placing the filters on 

3MM Whatman papers saturated with each of these solutions as described in case of the 

DNA colony blot for screening of bacterial transformants.  

 
Picking plaques: 

The plaques giving positive hybridisation signals were picked using a Pasteur pipette 

equipped with a rubber bulb. The hard agar beneath the selected plaque was stabbed by the 

Pasteur pipette and by applying mild suction the plaque, together with the underlying agar, 

was drawn into pipette. The fragments of agar were transferred into 500 µl of SM in a 

microcentrifuge tube and incubated at room temperature for at least 2 h (or overnight at 4ºC) 

to allow the bacteriophage particles to diffuse out of the agar. An aliquot of the 

bacteriophages that elute from the agar was replated and rescreened by hybridisation until a 

single, well-isolated, positive plaque was obtained. 

 

3.19.2.2. Isolation and cloning of DLIM1 cDNA from bacteriophages 

 
Extraction of bacteriophage λ DNA: 

The bacteriophage λ was initially purified from infected bacterial culture (<1 L volume) 

following essentially the ‘Equilibrium centrifugation in caesium chloride’ protocol for small-

scale preparations of bacteriophage described by Sambrook et al. (1989). The DNA from six 
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independent purified bacteriophage preparations was then extracted according to the method 

described by Sambrook et al. (1989) and finally resuspended in desired volume of TE buffer.  

 
Isolation and cloning of DLIM1 cDNA: 

The bacteriophage λ DNA (from six independent phage plaques) was digested with EcoR1 

to liberate the cDNA inserts. The digested bacteriophage λ DNA was resolved on a 0.7% 

agarose gel, the cDNA inserts were eluted from the gel and cloned at the EcoR1 site in the 

pIC20H vector. The resultant plasmids were sequenced using T7 universal and M13 reverse 

oligonucleotide primers to obtain the sequence of full length DLIM1 cDNA. One of these 

plasmids, pIC-DLIM1cDNA-2, that contains the entire DLIM1 cDNA sequence was 

selected for further molecular biological work. 

 

3.19.3. Cloning of genomic DLIM1 DNA 

 
Genomic DNA of Dictyostelium AX2 cells was isolated and 60 µg of the DNA was digested 

overnight with EcoRI+NdeI restriction enzymes in a reaction volume of 400 µl. The digested 

genomic DNA was subjected to 15% sucrose density gradient ultracentrifugation at 30,000 

rpm (Optima L-70K, SW41 rotor, Beckman) at 15ºC for overnight. Fractions of 1 ml were 

collected after ultracentrifugation and precipitated with ethanol and finally resuspended in 50 

µl of TE buffer, pH 8.0. Out of 50 µl of DNA suspension, 15 µl was resolved in a 0.7% 

agarose gel and transferred onto nylon membrane. The membrane was hybridised using the 

partial DLIM1 cDNA (536 bp) as a probe under high stringency conditions (see Materials 

and Methods, 3.13.2.). The fraction containing a ~ 4.3 kb genomic fragment of interest was 

ligated into a pGEM-IRES-GFP-Stop vector (a gift from Dr. A. Hofmann) that had been 

digested with EcoRI and NdeI restriction enzymes and gel-eluted. EcoRI+NdeI digestion of 

the pGEM-IRES-GFP-Stop vector releases the insert ‘IRES-GFP-Stop’ and facilitates the 

elution from gel of the pGEM 5zf(+) vector backbone (Promega) from which the pGEM-

IRES-GFP-Stop vector is derived. The ligated mixture was precipitated, resuspended in 10µl 

H2O and used for transformation of competent E. coli MC1061 cells. The bacterial clones 

were screened by colony blotting (see Materials and Methods, 3.17.) using the partial 

DLIM1 cDNA as a probe. The positive clone obtained was designated as pgDLIM1 and 

sequenced using a combination of forward and reverse primers as indicated in Figure 9a.. 
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3.19.4. DLIM1 gene replacement vector 

 
For disruption of DLIM1 gene in the wild type AX2 cells, a DLIM1 gene replacement vector 

was constructed using the plasmid, pgDLIM1 containing the genomic DLIM1 fragment 

(Materials and Methods, 3.19.3.). Sequence and restriction analyses of the pgDLIM1 

plasmid revealed the presence of two HincII restriction sites, one located at 145 bp 

downstream of the DLIM1 translation start codon, another located upstream of the DLIM1 

coding region but within the genomic fragment. For construction of the DLIM1 gene 

replacement vector, a blasticidin resistance cassette was inserted at the HincII site located 

downstream of the DLIM1 translation start codon (Figure 30a). To achieve this, the 

pgDLIM1 plasmid was partially digested with HincII restriction enzyme for 6-7 min at 37ºC, 

followed by EcoRI digestion and subsequently treated with Klenow enzyme to generate 

blunt ends. The blunt-ended vector was self-ligated to destroy the HincII site located 

upstream of the DLIM1 coding region and was designated as pgDLIM1∆HincII. Now the 

pgDLIM1∆HincII plasmid was digested with HincII restriction enzyme, the 5’ overhangs 

generated were filled-in using Klenow enzyme, and the blunt-ended vector was treated with 

alkaline phosphatase. A blunt-ended 1.4 kb blasticidin resistance cassette (obtained as 

HindIII-XbaI fragment from pBsr∆Bam vector) was then ligated into the linearised and 

blunt-ended pgDLIM1∆HincII plasmid. E. coli DH5α cells were transformed with the 

ligation mixture and the clones obtained were checked for the desired insertion by colony 

blotting using the blasticidin resistance cassette as a probe. The positive clone obtained was 

verified by restriction analysis and was designated as pgDLIM1-k/o (or DLIM1 gene 

replacement construct). The DLIM1 gene replacement construct was then used for gene 

disruption in Dictyostelium wild type AX2 cells (Figure 30a). 

 

3.19.5. Vector for expression of DLIM1 as a GFP-fusion protein 

 
A vector for expression of DLIM1 as a GFP-DLIM1 fusion protein in Dictyostelium under 

the control of actin-15 promoter and actin-8 terminator was constructed using the vector 

pDEXRH (Faix et al., 1992). To facilitate subcloning in the pDEXRH vetor, the full length 

DLIM1 cDNA was obtained from pIC-ModDLIM1cDNA (Materials and Methods, 3.19.7.) 

as a XbaI+SacI fragment and cloned in the XbaI+SacI restricted pLITMUS29 vector (New 
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England Biolabs). The resultant plasmid was named as pLit-ModDLIM1cDNA. Now the full 

length DLIM1 cDNA was obtained from the pLit-ModDLIM1cDNA plasmid as a EcoRI 

fragment and was subcloned in-frame at the EcoRI site located at the C-terminus of the 

coding region of the green fluorescent protein (GFP) in the pDEXRH expression vector. The 

resulting plasmid was verified by sequencing using DLIM1-U primer (see figure 5 for 

orientation and position of the primer) and designated as pGFP-DLIM1. 

 

3.19.6. N- and C-terminal DLIM1 deletion constructs 

 
The N- and C-terminal DLIM1 deletion constructs were generated via a PCR based 

approach. Oligonucleotide primers were generated (depicted in Figure 20) to amplify 

DLIM1 cDNA sequences corresponding to a) NLIM (a.a. 1-58); b) NLIM and P-rich 

sequence (a.a. 1-111), which we refer to as NLIM-P; c) CLIM (a.a. 110-182) and d) CLIM 

and P-rich sequence (a.a. 57-182), which we refer to as CLIM-P. The primers were designed 

such that each amplified fragment was supplemented with an in-frame stop codon as well as 

flanking suitable restriction sites to facilitate subcloning (Materials and Methods, 1.9.). For 

amplification, pIC-ModDLIM1cDNA plasmid (Materials and Methods, 3.19.7.) containing 

the full-length DLIM1 cDNA was used as a template. The composition of the reaction mix 

as well as the reaction programme for PCR is similar to that described in Materials and 

Methods (3.19.1.). After amplification, the PCR product was cloned directly into the pGEM-

T Easy vector (Promega) as described by the manufacturer. The NLIM, NLIM-P, CLIM and 

CLIM-P DNA fragments were subsequently obtained from the resultant vectors (named 

pGEM-NLIM, pGEM-NLIM-P, pGEM-CLIM and pGEM-CLIM-P, respectively) as EcoRI 

fragments and subcloned in-frame at the EcoRI site located at the C-terminus of the coding 

region of GFP in the pDEXRH expression vector. The resultant vectors were designated 

pGFP-NLIM, pGFP-NLIM-P, pGFP-CLIM and pGFP-CLIM-P. 

 

3.19.7. Vector for expression of DLIM1 as a histidine-tagged protein 

 
Expression of DLIM1 as a N-terminal hexa-histidine fusion-protein in E.coli was achieved 

by subcloning the DLIM1 cDNA sequence in-frame at the multiple cloning site of the 

pQE30 expression vector (Qiagen). To achieve this, the DLIM1 cDNA sequence was 

modified using a PCR-mediated approach employing DLIM1cDNA 5’ and DLIM1cDNA 3’ 
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primers (Materials and Methods, 1.9.). The DLIM1cDNA 5’ primer was designed with 

engineered BglII, HinDIII and BamHI restriction enzyme sites to facilitate subcloning. The 

DLIM1cDNA 3’ primer corresponds to the region of the DLIM1 cDNA sequence with an 

internal MunI site (Figure 5). For amplification, pIC-DLIM1cDNA-2 plasmid DNA 

(Materials and Methods, 3.19.2.) was used as a template. The composition of the reaction 

mix as well as the reaction programme for PCR is similar to that described in Materials and 

Methods (3.19.1.). The amplified PCR product was digested with BglII+MunI restriction 

enzymes and the digested fragment was subcloned in a BamHI+MunI digested pIC-

DLIM1cDNA-2 plasmid. The resultant plasmid containing the modified DLIM1 cDNA 

sequence was verified by sequencing using M13 reverse primer and designated as pIC-

ModDLIM1cDNA. Now the full-length DLIM1 cDNA was obtained from the pIC-

ModDLIM1cDNA plasmid as a BamHI-HinDIII fragment and subcloned in a 

BamHI+HinDIII digested pQE30 expression vector (Qiagen). The resultant plasmid that 

allows the expression of DLIM1 as a N-terminal hexa-histidine fusion protein was verified 

by sequencing with DLIM1-U primer and designated as pQE30-DLIM1.  

 

 

 

 

 

Figure 5. Schematic representaion of the PCR strategy used for generation of 
restriction enzyme sites at the 5’ end of the DLIM1 cDNA. The position as well as the 
orientation of the primers used for PCR- (P2 and P3) and sequencing- (P1 and P4) analyses 
are indicated by arrows. The location of relevant restriction enzymes in the DLIM1 cDNA 
sequence and the vector backbone are also indicated. Abbreviations used for primers: P1, 
M13 reverse; P2, DLIM1cDNA 5’; P3, DLIM1cDNA 3’; P4, DLIM1-U. Putative start and 
stop codons of the DLIM1 cDNA are depicted. Sequence of the individual primers is 
mentioned in Materials and Methods (1.9.). 
 

3.19.8. Vector for expression of DLIM1 as a GST-fusion protein 

 
For expression of DLIM1 as a GST-fusion protein, pGEX-2T, a GST expression vector was 

used. The full length cDNA of DLIM1 was obtained from pIC-ModDLIM1cDNA plasmid 

as a BamHI+EcoRI fragment and subcloned in-frame in a BamHI+EcoRI restricted pGEX-

2T vector. The obtained pGEX-DLIM1 expression vector was verified by sequencing using 
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the DLIM1-U primer and electroporated into E. coli XL1 blue cells for expression of GST-

DLIM1 fusion protein.  

 

4. Biochemical methods 

 

4.1. Preparation of total protein from Dictyostelium 

 
1 x 107 to 5 x 108 Dictyostelium cells obtained from growth as well as different stages of 

development were washed once in Soerensen phosphate buffer. Total protein was prepared 

by lysing the pellet of cells in 500 µl 1x SDS sample buffer. For detection of the protein 

expression in different cell lines, equal amount of protein (equivalent to 2 x 105 cells/lane to 

1 x 107 cells/lane) was loaded onto a discontinuous SDS-polyacrylamide gel to allow for a 

quantitative comparison. 

 

4.2. SDS-polyacrylamide gel electrophoresis 

 
SDS-polyacrylamide gel electrophoresis was performed using the discontinuous buffer 

system of Laemmli (1970). Discontinuous polyacrylamide gel (10-15% resolving gel, 5% 

stacking gel) was prepared using glass-plates of 10 cm x 7.5 cm dimensions and spacers of 

0.5 cm thickness. A 12-well comb was generally used for formation of the wells in the 

stacking gel. The composition of 12 resolving and 12 stacking gels is given in the table 

below: 

 

Components Resolving gel 
10 %   12 %   15 % 

Stacking gel 
5% 

Acrylamide/Bisacrylamide (30:0.8) [ml]: 19.7 23.6 30 4.08 
1.5 M Tris/HCl, pH 8.8 [ml]: 16 16 16 - 
0.5 M Tris/HCl, pH 6.8 [ml]: - - - 2.4 
10 % SDS [µl]: 590 590 590 240 
TEMED [µl]: 23 23 23 20 
10 % APS [µl]: 240 240 240 360 
Deionised H2O [ml]: 23.5 19.6 13.2 17.16 

 

Protein solutions were mixed with suitable volumes of 2x SDS sample buffer, whereas 

protein pellets were resuspended in a suitable volume of 1x SDS sample buffer. The samples 
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were denatured by heating at 95ºC for 5 min and loaded into the wells in the stacking gel. A 

molecular weight marker, which was run simultaneously on the same gel in an adjacent well, 

was used as a standard to establish the apparent molecular weights of proteins resolved on 

SDS-polyacrylamide gels. The molecular weight markers were prepared according to 

manufacturer’s specifications. After loading the samples onto the gel, electrophoresis was 

performed in 1x gel-running buffer at a constant voltage of 100-150 V until the bromophenol 

blue dye front had reached the bottom edge of the gel or had just run out of the gel. After the 

electrophoresis, the resolved proteins in the gel were either observed by Coomassie blue 

staining or transferred onto a nitrocellulose membrane. 

 
SDS-sample buffer:    
 1x 2x    
  50 100  (mM) Tris/HCl, pH 6.8  
 2 4 (% v/v) SDS   
 10 20 (% v/v) glycerine 
 0.1 0.2 (% v/v) bromophenol blue 
 2  4 �1�/�/�� -mercaptoethanol 
 
Molecular weight markers: 10x Gel-running buffer:  
 LMW-Marker (Pharmacia)-  1.9 M glycine 
 94, 67, 43, 30, 20.1, 14.4 kD  0.25 M Tris/HCl, pH 8.8 
    1% SDS 
 SeeBlue pre-stained marker (Novex)- 
 250, 98, 64, 50, 36, 30, 16, 6, 4 kD 
 
 Pre-stained marker (Bio-Rad)- 
 208, 115, 79.5, 49.5, 34.8, 28.3, 20.4, 7.2 kD 
 

4.2.1. Coomassie blue staining of SDS-polyacrylamide gels 

 
After electrophoresis, the resolved proteins were visualised by staining the gel with 

Coomassie blue staining solution. The gel to be stained was placed in the Coomassie blue 

staining solution immediately after electrophoresis and the gel was allowed to stain at room 

temperature with gentle agitation for at least 30 min. After staining, the staining solution was 

poured off and destaining solution was added. The gel was then destained at room 

temperature with gentle agitation. For best results, the destaining solution was changed with 

fresh destaining solution several times until protein bands were clearly visible. 
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Coomassie blue staining solution: Destaining solution: 
 0.1% Coomassie blue R250  7% acetic acid 
 50% ethanol  20% ethanol 
 10% acetic acid 
 filter the solution before use 

 
4.2.2. Drying of SDS-polyacrylamide gels 

 
After destaining, the gel was immersed in gel-dry buffer for 10-15 min at room temperature. 

Two sheets of cellophane (Novex), slightly bigger than the size of the gel, were also 

immersed in gel-dry buffer. The gel was then carefully placed between two moistened sheets 

of cellophane avoiding trapping of air-bubbles, clamped between the gel-drying frames 

(Novex) and dried overnight at room temperature. 

 
Gel-drying buffer: 
 25% ethanol 
 5% glycerine 

 

4.3. Western blotting using the semi-dry method 

 
The proteins resolved by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) were 

electrophoretically transferred from the gel to a nitrocellulose membrane by using the 

method described by Towbin et al. (1979) with little modifications. The transfer was 

performed using Towbin’s buffer in a semi-dry blot apparatus (Bio-Rad) at a constant 

voltage of 10 V for 35-45 min. The instructions provided along with the semi-dry apparatus 

were followed in order to set up the transfer. 

 
Towbin’s buffer (transfer buffer): 
 39 mM glycine 
 48 mM Tris/HCl, pH 8.3 
 0.0375% SDS 
 20% methanol or ethanol 
 

4.3.1. Ponceau S staining of western blots 
 

To check for the transfer of proteins onto the nitrocellulose membrane, the membrane was 

stained in 10-15 ml of Ponceau S solution for 2-5 min at room temperature. After staining, 
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the membrane was removed from the Ponceau S solution and rinsed with deionised water to 

destain until bands of proteins were visible and the background was clear. The position of 

the constituent proteins of the molecular weight marker and/or the protein of interest was 

marked and the membrane was again washed with several changes of deionised water to 

completely remove the stain. Now the membrane carrying the transferred proteins was used 

for immunodetection (see Materials & Methods, 4.4.) of specific protein. 

 
Ponceau S solution: Ponceau S concentrate (Sigma): 
 1 ml Ponceau S concentrate (Sigma)  2% w/v Ponceau S in 30% w/v TCA  
 19 ml distilled H2O  and 30% w/v sulfosalicylic acid 
 

4.4. Immunodetection of membrane-bound proteins 

 
The western blot was immersed in blocking buffer (1x NCP) and the blocking was 

performed with gentle agitation either overnight at room temperature or for 2-3 h at room 

temperature with several changes of 1x NCP. After blocking, the blot was incubated at room 

temperature with gentle agitation with either commercially available primary antibodies at a 

proper dilution (in 1x NCP) for 1-2 h, or hybridoma-supernatant for overnight. After 

incubation with primary antibody, the blot was washed 5-6 times with 1x NCP at room 

temperature for 5 min each with repeated agitation. Following washings, the blot was 

incubated for 1 h at room temperature with a proper dilution (in 1x NCP) of enzyme 

conjugated secondary antibody directed against the primary antibody. The secondary 

antibody was conjugated with either Horse radish peroxidase (HRP) or alkaline phosphatase 

(AP). After incubation with secondary antibody, the blot was washed as described above. 

After washings, substrate reaction was carried out depending upon the enzyme coupled to 

the secondary antibody. Enzymatic chemi-luminescence (ECL) detection system (see 

Materials & Methods 4.4.1.) was used for blots incubated with HRP-conjugated secondary 

antibody, whereas, the BCIP/NBT colour development substrate reaction was used for blots 

incubated with AP-conjugated secondary antibody (see Materials & Methods 4.4.2.). 

 

4.4.1. Enzymatic chemi-luminescence (ECL) detection system 

 
The blot was incubated in ECL-detection-solution for 1-2 min and then wrapped in a saran 

wrap after removing the excess ECL-detection-solution. Now an X-ray film was exposed to 



2. Materials and Methods  52 

the wrapped membrane for 1-30 min and the film was developed to observe the 

immunolabelled protein. 

 

ECL-detection-solution:   
2 ml 1 M Tris/HCl, pH 8.0 

 200 µl 250 mM 3-aminonaphthylhydrazide in DMSO  
 89 µl 90 mM p-Coumaric acid in DMSO 
 18 ml deionised H2O 
 6.1 µl 30% H2O2 (added just before using) 

 

4.4.2. BCIP/NBT colour development substrate reaction 

 
The blot was developed using 5-bromo-4-chloro-3-indolyl-phosphate (BCIP) as a substrate 

and nitro blue tetrazolium (NBT) as a colour indicator. The blot was incubated in 10 ml of 

BCIP/NBT substrate solution at room temperature with gentle agitation for 5 min or until 

sufficient colour development has occurred. The reaction was stopped by washing the 

membrane several times with deionised water and the membrane was allowed to dry on a 

piece of blotting paper. 

 
BCIP/NBT substrate solution: 
 66 µl 50mg/ml NBT (Promega) 
 33 µl 50mg/ml BCIP (Promega) 
 10 ml 0.1M Na2CO3, pH 10.0 

 

4.5. Expression and purification of histidine-tagged DLIM1 

 
E. coli strain M15[pREP4] cells (obtained from Qiagen) were transformed with expression 

vector pQE30-DLIM1 (Materials and Methods, 3.19.7.) for expression of DLIM1 as a 

histidine-tagged protein. Single colonies (5-10) of recombinant cells were picked and grown 

overnight in 10 ml of LB medium containing ampicillin (100 µg/ml) and kanamycin (25 

µg/ml) at 37ºC and 250 rpm. 5 ml of the overnight grown culture was inoculated into 45 ml 

of fresh LB medium containing ampicillin (100 µg/ml) and kanamycin (25 µg/ml). The 

culture was then allowed to grow at 37ºC till an OD600 of 0.5-0.6 was obtained. Now the 

induction of expression was initiated by adding IPTG. In order to standardise the conditions 

of maximum expression of the fusion protein, induction was performed with varying 
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concentrations of IPTG (0.5 mM, 1.0 mM and 2 mM final concentration) at two different 

temperature conditions (30ºC and 37ºC). Samples of 1 ml were withdrawn at different hours 

of induction (0 h, 1 h, 2 h, 3 h, 4 h, 5 h and 6 h), the cells were pelleted and resuspended in 

100 µl of 1x SDS sample buffer. The samples were denatured by heating at 95ºC for 5 min 

and 10 µl of each sample were checked on a 12% SDS-polyacrylamide gel. Expression of 

the histidine-tagged DLIM1 protein was analysed by Coomassie staining of the SDS-

polyacrylamide gel as well as by western blotting using anti-RGS(H)4 antibody (Qiagen). On 

the basis of these results large-scale expression (in 1-2 L culture volume) of histidine-tagged 

DLIM1 protein was performed. The histidine-tagged DLIM1 protein was purified from the 

soluble bacterial extracts after 5 h of induction with 2 mM IPTG at 37ºC under denaturing 

conditions using a Ni-NTA agarose column as recommended by the manufacturer (Qiagen). 

  

4.6. Expression and purification of GST-DLIM1 fusion protein 

 
E. coli strain XL1 blue cells were transformed with expression vector pGEX-DLIM1 

(Materials and Methods, 3.19.8.) for expression of DLIM1 as a glutathione S-transferase 

(GST)-fusion protein under the control of tac promoter. 

 

4.6.1. Small-scale protein expression 

 
Small-scale expression of GST-DLIM1 fusion protein was performed to check the efficiency 

of expression of various recombinant clones as well as to standardise the conditions of 

expression before proceeding for the large-scale expression and purification of GST-DLIM1 

fusion protein. Single colonies (5-10) of recombinant cells were picked and grown overnight 

in 10 ml of LB medium containing ampicillin (100 µg/ml) at 37ºC and 250 rpm. 5 ml of the 

overnight grown culture was inoculated into 45 ml of fresh LB medium containing 

ampicillin (100 µg/ml). The culture was then allowed to grow at 37ºC till an OD600 of 0.5-

0.6 was obtained. Now the induction of expression was initiated by adding IPTG. In order to 

standardise the conditions of maximum expression of the fusion protein, induction was 

performed with varying concentrations of IPTG (0.1 mM, 0.5 mM and 1.0 mM final 

concentration) at two different temperature conditions (30ºC and 37ºC). Samples of 1 ml 

were withdrawn at different hours of induction (0 h, 1 h, 2 h, 3 h, 4 h and 5 h), the cells were 
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pelleted and resuspended in 100 µl of 1x SDS sample buffer. The samples were denatured by 

heating at 95ºC for 5 min and 10 µl of each sample were checked on a 12% SDS-

polyacrylamide gel. Expression of the GST-DLIM1 fusion protein was analysed by 

Coomassie staining of the SDS-polyacrylamide gel as well as by western blotting using anti-

GST antibody.  

 

4.6.2. Large-scale protein expression 

 
Large-scale expression of GST-DLIM1 fusion protein was performed on the basis of results 

obtained with small-scale expression procedures as described above. Overnight culture was 

started with a recombinant clone, showing maximum level of expression, in 50 ml LB 

medium containing ampicillin (100 µg/ml) at 37ºC and 250 rpm. The next day, 50 ml of the 

overnight grown culture was inoculated into 450 ml fresh LB medium containing ampicillin 

(100 µg/ml) and the culture was allowed to grow at 37ºC till an OD600 of 0.5-0.6 was 

obtained. Now the induction of expression was initiated by adding 100 mM IPTG to a final 

concentration of 1.0 mM and the induction was performed for 3 h at 37ºC and 250 rpm. 

 

4.6.3. Preparation of cell homogenate 

 

After the induction, the culture was transferred to a 500 ml centrifuge bottle (Beckman) and 

the cells were collected by centrifugation at 4,000 rpm (Beckman Avanti J25, rotor JA-10) 

for 10 min at 4ºC. The pellet was resuspended in 10 ml of ice-cold lysis buffer containing 

lysozyme (1 mg/ml) and Triton X-100 (0.5%) and supplemented with fresh protease 

inhibitors, collected in a 50 ml tube and incubated on ice for 20 min. Incubation in lysis 

buffer was followed by a brief sonication (3 pulses of 10 s each with a 15 s rest between 

each pulse), keeping the tube immersed in ice. Sonication was followed by homogenisation 

using a Dounce homogeniser for 2-3 min in order to ensure complete and efficient cell lysis. 

The lysate was transferred to a pre-cooled fresh 50 ml centrifuge tube and centrifuged at 

5,000 rpm (Beckman Avanti J25, rotor JA-25.50) for 10 min at 4ºC. The supernatant was 

transferred to a fresh chilled tube and was directly used for elution of the fusion protein. 

Both the pellet as well as the supernatant were analysed for the presence of fusion protein by 

SDS-PAGE analysis and/or western blotting using anti-GST antibody. The pellet was 
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resuspended in 10 ml of lysis buffer and 100 µl of this pellet fraction was added to100 µl of 

2x SDS sample buffer. Likewise, 100 µl of the supernatant was added to 100 µl of 2x SDS 

sample buffer. The samples were then denatured by heating at 95ºC for 5 min and 10 µl of 

each sample was checked on a 12 % SDS-polyacrylamide gel. 

 
Lysis buffer: Protease inhibitors: 
 50 mM Tris/HCl, pH 7.5  1 mM PMSF 
 100 mM NaCl  1.4 µg/ml pepstatin 
 5 mM MgCl2  5.0 µg/ml leupeptin 
 0.5 % Triton X-100 
 add fresh before use- 
 1 mM DTT  
 1 mg/ml lysozyme1 mM DTT 
 protease inhibitors 

 

4.6.4. Elution of GST-DLIM1 fusion protein by affinity chromatography 

 
GST-DLIM1 fusion protein was purified from the supernatant of the cell-lysate (see 

Materials and Methods, 4.6.3.) using affinity chromatography. The supernatant (~10 ml) was 

supplemented with fresh protease inhibitors and then incubated with 500 µl of a 50% slurry 

(v/v in PBS) of glutathione agarose beads at 4ºC on a rotary wheel for 1-2 h. After 

incubation, the beads were pelleted by centrifugation at 3,000 rpm (Sorvall RT7) for 5 min at 

4ºC and the supernatant was collected in a separate tube for later SDS-PAGE analysis. The 

beads were carefully washed 4-5 times with 5 ml of cold wash buffer and finally 

resuspended in 1 ml of cold wash buffer and transferred to a 1.5 ml centrifuge tube. The 

beads were again pelleted at maximum speed in a microcentrifuge at 4ºC for 15-20 s and the 

supernatant was carefully removed. Now the GST-DLIM1 fusion protein was eluted from 

the beads by incubating the beads with 500-700 µl of release buffer on a rotary wheel at 4ºC 

for 5 min. After 5 min of incubation with the release buffer, the beads were pelleted as 

described above and the supernatant containing the eluted GST-DLIM1 fusion protein was 

carefully collected. The elution of GST-DLIM1 fusion protein from the beads was repeated 

3-4 times and the elute-fractions were collected in separate 1.5 ml centrifuge tubes and 

stored at –20ºC. Each of the elute-fractions was analysed by SDS-PAGE and/or western 

blotting using anti-GST antibody. 20 µl of 2x SDS sample buffer was added to 20 µl of each 
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elute-fractions. The sample was denatured by heating at 95ºC and 20 µl of the sample was 

loaded onto a 12% SDS-polyacrylamide gel. 

 

Release buffer: Wash buffer: 
 50 mM Tris/HCl, pH 8.0  50 mM Tris/HCl, pH 7.5 
 150 mM NaCl  100 mM NaCl 
 5 mM MgCl2  5 mM MgCl2 
 add fresh before use- 
 1 mM DTT 
 10 mM reduced glutathione 
 
50% slurry (v/v) of glutathione-agarose beads: 
 200 mg of glutathione-agarose beads (Sigma) 
 add 20 ml PBS 
 incubate on a rotary wheel at 4ºC for 1-2 h 
 wash twice with PBS (3,000 rpm, 5 min, 4ºC) 
 finally add equal volume of PBS to swollen beads 
 store at 4ºC 

 
4.6.5. Lyophilization of eluted GST-DLIM1 fusion protein 

 
The elute fractions containing the GST-DLIM1 fusion protein were pooled and dialysed 

overnight against 100 vol. 10 mM ammonium bicarbonate solution, pH 8.0, with several 

changes of dialysis buffer. The next day, the dialysate was aliquoted in five 1.5 ml tubes, 

quickly frozen on dry-ice/ethanol and lyophilized overnight in a lyophilizer (Lyovac GT 2-E, 

Finn Aqua). The lyophilised protein was dissolved in a suitable buffer before use. 

 

4.7. Expression and purification of GST 

 
GST protein was expressed in order to screen hybridoma clones secreting antibodies specific 

to the GST protein as well as for the selection of the hybridoma clones secreting antibodies 

specific to the DLIM1 part of the GST-DLIM1 fusion protein. Purified GST protein was also 

used as a control in other biochemical assays performed with GST-DLIM1 fusion protein. E. 

coli strain BL21 (DE) was transformed with a GST expression vector pGEX-2T (Pharmacia) 

and the GST protein was expressed and purified essentially according to the method 

described above (Materials and Methods, 4.6.1. to 4.6.4.). 

 
 



2. Materials and Methods  57 

4.8. Quantification of protein 

 
Colorimetric method described by Lowry et al. (1951) was used for quantification of protein. 

Protein sample (5-50 µl) and different concentrations of BSA (1-25 µg) were taken in 

separate 1.5 ml tubes and diluted with solution I to bring the final volume to 1 ml in each 

tube. After incubating the tubes at room temperature for 10 min, 100 µl of solution II was 

added to each tube, the contents in the tubes were immediately mixed by brief vortexing and 

the tubes were allowed to stand at room temperature for 20 min. Thereafter, OD of the 

sample was measured at 660 nm and the concentration of protein in the sample was 

estimated from a standard curve obtained by plotting OD660 values of 1-25 µg BSA. 

 
Solution I (freshly prepared): Solution II (freshly prepared): 
 0.2 ml 2% CuSO4.5H2O  1 vol. Folin-Ciocalteu reagent  
 0.2 ml 4% potassium sodium tartrate  2 vol. distilled H2O 
 9.6 ml 3% Na2CO3 in 0.1 N NaOH   
 

4.9. Triton X-100 extraction of Dictyostelium cells (Prassler et al., 1997) 

 
Growth phase GFP-DLIM1 expressing Dictyostelium cells were washed and resuspended in 

two volumes of lysis buffer [80 mM PIPES, pH 6.8, 30% glycerol, 0.5 mM DTT, 5 mM 

EGTA, 5 mM MgCl2, 1 mM PMSF, Protease inhibitor cocktail (10 µg/ml of each inhibitor)] 

and lysed with 1% Triton X-100 for 5 min at room temperature. Cytoskeleton associated 

proteins that are largely insoluble were pelleted at 4ºC for 3 min at 14,000 x g. The 

supernatant was carefully collected and the pellet was washed twice with lysis buffer without 

detergent and finally resuspended in original volume of lysis buffer without detergent. 

Proteins of the Triton X-100-soluble and -insoluble fractions were extracted in 2x SDS 

sample buffer and resolved on a 12% SDS-polyacrylamide gel. The resolved proteins were 

either stained with Coomassie blue or blotted onto a nitrocellulose membrane and the blot 

was subsequently labelled with anti-GFP antibody (Clontech). 

 
4.10. Actin-sedimentation assays (Prassler et al., 1997) 

 
Actin from D. discoideum AX2 cells was procured from Prof. Noegel, actin purified from 

rabbit skeletal muscle was obtained from Dr. E. Korenbaum and α-actinin was a kind gift of 
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Prof. Schleicher. GST-DLIM1, GST and α-actinin proteins were dialyzed overnight at 4ºC 

against 20 mM imidazole buffer (pH 7.0) containing 100 mM KCl and 2 mM MgCl2. All the 

proteins were centrifuged at ∼  1,25,000 x g (45,000 rpm in a TLA 45 rotor; Optima TLX 

ultracentrifuge, Beckman) for 30 min at 4ºC to remove aggregates. The actin-sedimentation 
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or rabbit skeletal muscle was polymerised in the presence or absence of GST-DLIM1 (or 

GST) by the addition of 10x concentrated polymerisation buffer (same as dialysis buffer plus 

10 mM EGTA or 2 mM CaCl2) for 1 h at room temperature. For some experiments, pre-

cleared α-actinin (4�� 
�� !	�� 	�� � 	����� " � "#�� 	��	-� ��3"����� ��
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� " � +-actin was 

determined by high-speed centrifugation at ∼  1,25,000 x g (45,000 rpm in a TLA 45 rotor; 

Optima TLX ultracentrifuge, Beckman) for 30 min at 15ºC. 80 µl of the supernatant was 

carefully collected from the top and mixed with 20 µl of 5x SDS sample buffer. The pellet 

was carefully washed with 100 µl of 1x polymerisation buffer, resuspended in 100 µl of 1x 

polymerisation buffer and mixed with 25 µl of 5x SDS sample buffer. Proteins in the 

supernatant and pellet fractions were separated by SDS-PAGE and stained with Coomassie 

blue. 

 

5. Immunological methods 

 

5.1. Generation of monoclonal antibodies 

 

5.1.1. Immunization of mice 

 
Immunization of mice with histidine-tagged DLIM1 protein: 

The partially-purified histidine-tagged DLIM1 (~ 100 µg) was resolved on a 12% SDS-

PAGE gel. The gel was immersed in a chilled 0.1 M KCl solution for 30-60 min at 4ºC to 

visualise the histidine-tagged DLIM1 protein. The gel-slice containing the histidine-tagged 

DLIM1 protein was cut out and homogenised in PBS. Two female BALB/c mice (6-7 weeks 

old) were immunized intraperitoneally with this gel suspension. The mice were boosted three 

weeks after the first immunization with the freshly prepared gel suspension as described 
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above. Two weeks later and three days before the fusion, the mice were again boosted by 

injecting the freshly prepared gel suspension. 

 
Immunization of mice with GST-DLIM1 fusion protein: 

Two female BALB/c mice (7 weeks old) were immunized intraperitoneally with purified 

GST-DLIM1 fusion protein (see Materials and Methods 4.6.5.). The first injection was 

performed with a 1:1 emul�� 
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5.1.2. Preparation of mouse feeder cells for fusion and cloning 

 
One day prior to seeding of hybridomas from cell fusion or cloning procedures, mouse 

feeder cells (macrophages and other cells) were isolated. In general, 3-5 BALB/c mice per 

fusion were sacrificed for the isolation of peritoneal feeder cells. The mouse was sacrificed 

by cervical dislocation, disinfected with 70% ethanol and then laid on a dissecting board. 

The peritoneal cavity of the mouse was exposed by snipping its skin at diaphragm level and 

pulling the skin back. Now 10 ml of cold Normal medium (NM) was injected into the 

peritoneal cavity using a 10 ml syringe and an 18 G needle and the peritoneal feeder cells 

were harvested by withdrawing as much solution as possible into the syringe. This step was 

repeated two more times and the feeder cells were collected in a pre-cooled 50 ml centrifuge 

tube. The feeder cells were then pelleted by centrifugation at 1,000 rpm for 5 min at 4°C 

(Beckman CS-6R) and the pellet was washed twice with 25 ml NM. The feeder cells were 

finally resuspended in an appropriate volume of NM or 1x HT medium.  

 

5.1.3. Fusion 

 
Three days after the last immunization, spleen cells were harvested from the immunized 

mouse and fused with myeloma cells. Two different myeloma cell lines, PAIB3Ag81 (PAI) 

and X63-Ag8.653 (Ag8) were used for fusion. On the day of fusion, both the myeloma cell 
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lines were harvested in their log phase of growth and collected in two separate 50 ml sterile 

centrifuge tubes. The cells were pelleted by centrifugation at 1,500 rpm for 5 min (Beckman 

CS-6R) and washed twice with 25 ml RPMI 1640 medium (w/o HEPES, w/o glutamine). 

After washings, both types of myeloma cells were resuspended separately at a density of 2.5 

x 106 cells/ml in 10 ml of RPMI 1640 (w/o HEPES, w/o glutamine). 

 
For isolation of spleen cells, one of the immunized mice was sacrificed by cervical 

dislocation and disinfected by immersing in 70% ethanol. The spleen was then aseptically 

removed according to standard protocols and transferred into a 60 mm petri dish containing 

5 ml of cold RPMI 1640 (w/o HEPES, w/o glutamine). Now the spleen in petridish was 

taken to a sterile hood. The surface fats and other tissues adhering to the spleen were 

carefully removed using a sterile forceps and scissors and during this process, the spleen was 

transferred 2-3 times into a fresh 60 mm petri dish containing 5 ml of cold RPMI 1640 (w/o 

HEPES, w/o glutamine). After complete removal of adipose tissues and other adhering 

tissues, the spleen was transferred to a fresh 60 mm petri dish containing 5 ml of cold RPMI 

1640 (w/o HEPES, w/o glutamine). Now the spleen was cut into small pieces with sterile 

scissors, followed by shearing the small pieces with sterile forceps. Now the cell suspension 

was collected, leaving the larger spleen pieces in the petri dish, and filtered through a sterile 

cotton-plugged syringe (10 ml). The left-over larger spleen pieces were again resuspended in 

5 ml of cold RPMI 1640 (w/o HEPES, w/o glutamine) and were gently homogenised in a 

sterile homogeniser. The homogenised suspension was then filtered through the sterile 

cotton-plugged syringe and the filtrate containing the spleen cells was collected in a 50 ml 

centrifuge tube. The spleen cells were then pelleted by centrifugation at 1,500 rpm for 5 min 

(Beckman CS-6R) and the supernatant was aspirated with a sterile pasteur pipette. The 

spleen cells were then washed twice with 25 ml of RPMI 1640 (w/o HEPES, w/o glutamine) 

and finally resuspended in 10 ml of RPMI 1640 (w/o HEPES, w/o glutamine) at a density of 

~1 x 107 cells/ml.  

 
For fusion, the spleen cells were divided into two halves and mixed with the two different 

myeloma cells (spleen cells : myeloma = 2 : 1) in separate tubes and centrifuged at 1,500 

rpm for 5 min (Beckman CS-6R). The supernatant was carefully aspirated and the pellet was 

loosened by gentle tapping and then mixed with a heat-closed Pasteur pipette. To the pellet, 

0.5 ml of pre-warmed (37°C) PEG 4,000 solution (Sigma) was added and the tube was 
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incubated at 37°C in a waterbath with gentle shaking for exactly 1 min. Thereafter, the tube 

was incubated at room temperature for 1 min and over the next 5 min, 10 ml of RPMI 1640 

(w/o HEPES, w/o glutamine) was slowly added to the tube with gentle shaking at 37°C in a 

waterbath. Now the tube was incubated on ice for 10-15 min in order to stabilise the fused 

cells. The fused cells were then pelleted by centrifugation at 1,500 rpm for 5 min (Beckman 

CS-6R) and the pellet was resuspended in 125 ml NM. Now the fused cells were added (0.5 

ml/well) to 24-well tissue culture plates that have been coated with mouse feeder cells 24 h 

prior to fusion. The plates were incubated in a CO2 incubator at 37°C with 5% CO2 and 95% 

relative humidity. The next day, selection of hybridoma cells was started by adding 0.5 ml of 

3 x HAT medium to each well and the plates were incubated for another 2 days. Thereafter, 

the medium was changed every alternate day with 1x HAT medium (1 ml/well) and the 

hybrids were grown in 1x HAT medium for 2 weeks after fusion. After 2 weeks, the medium 

was changed to HT medium and the hybrids were grown in HT medium until the completion 

of cloning procedures. 

 

5.1.4. Screening of hybridoma clones  

 
When the hybridoma cell growth had covered 10% to 50% of the surface areas of the wells, 

the hybridoma-supernatants were collected and screened for DLIM1 specific antibody 

production. Screening of hybridoma clones obtained from spleen cells of mice immunized 

with GST-DLIM1 fusion protein was performed initially by indirect enzyme linked 

immunosorbent assay (indirect ELISA) and those which gave a positive reaction in ELISA 

were further confirmed by immunoblotting. The hybridoma clones obtained from spleen 

cells of mice that were immunized with histidine-tagged DLIM1 were screened directly by 

stripe test (immunoblotting). 

 

5.1.4.1. Indirect ELISA for screening of hybridoma clones 

 
The purified GST-9:,��� ���� 
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The plate was incubated overnight at 4°C. The next day, unbound antigen was washed out by 

inverting the plate and flicking the wells, followed by 3 washings with wash buffer for 10 
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blocking buffer to each well and incubating the plates at room temperature for 1 h. After 

blocking, the plate was washed 3 times with wash buffer for 10 min each and after each 

washing, the residual liquid in the plate was removed by gently flicking the plate face down 

onto several paper towels lying on the benchtop. Now the hybridoma-supernatants to be 

�/	��	"���!����	�����" �"#��!������
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room temperature for 2 h. The incubation with hybridoma-supernatants was followed by 4 

washings with wash buffer as described 	� /��� ��"��� ���	�� !	�#�

�%� ���� ��  �� 	�$	��
��

phosphatase conjugated goat anti-mouse IgG (diluted 1:10,000 in blocking buffer) was 

added to each well and the plate was again incubated at room temperature for 1 h. Following 

incubation in secondary antibody, the plate was again washed 4 times with wash buffer as 

����������	� /��	
������ �� �� "#���#� � 
�
�������"�	"�%��-nitro phenyl phosphate (pNPP, 

Sigma) solution, was added to each well and the plate was incubated in the dark for 30 min 

to 1 h at room temperature. Hydrolysis of the pNPP substrate was detected by the 

appearance of a yellow colour and was quantitatively monitored with an ELISA-plate reader 

using a 405 nm filter. 

 
Blocking buffer: Carbonate buffer, pH 9.4: 
 5% bovine serum albumin  1.59 g Na2CO3 
 0.05% Triton X-100  0.2 g NaN3 
 0.02% NaN3  2.93 g NaHCO3 

 in 1x PBS, pH 7.4  adjust to pH 9.4 
    add deionised H2O to make 1liter 
 
Wash buffer: pNPP substrate solution: 
 0.05% Triton X-100  Sigma Fast tablet sets for 5 ml or
 0.02% NaN3  20 ml solution were used according 
 in 1x PBS, pH 7.4  to manufacturer’s specifications. 
 

5.1.4.2. Stripe test for screening of hybridoma clones 

 
Whole cell homogenate of the E. coli cells expressing the GST-DLIM1 fusion protein and 

the GST protein alone or the histidine-tagged DLIM1 protein (see Materials and Methods, 

4.5., 4.6. and 4.7.) were loaded onto a 12% SDS-polyacrylamide gel (front-running) and 

after resolving, the proteins were transferred onto a nitrocellulose membrane. After 

overnight blocking in 1x NCP buffer, the immunoblotting was performed as described in 

Materials and Methods (4.4.) except that the membrane containing the transferred protein 
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was cut into several small stripes (~30 stripes/mini-gel) and then each stripe was separately 

incubated with the hybridoma-supernatants at room temperature for overnight. The next day, 

stripes were washed 4 times with 1x NCP for 5 min each and then incubated with alkaline 

phosphatase conjugated goat anti-mouse IgG (1:5,000 in 1x NCP buffer). After usual 

washings, BCIP/NBT colour development substrate reaction was carried out.  

 

5.1.5. Cloning of hybridoma cells 

 
Hybridoma cells that were positive by ELISA and immunoblotting were selected for cloning 

in order to establish a single hybridoma cell line. The day before cloning, mouse feeder cells 

were isolated (Materials and Methods, 5.1.2.) and checked for possible contamination by 

incubating 100-)��� �� ��"#����������������
�	�<��!�������� "�"�����	"��� �� /��
�
#"��
�	��>2 

incubator at 37°C with 5% CO2 and 95% relative humidity. For cloning, 96 well microtiter 

plate was prepared by adding 3-4 drops of 1x HT medium or NM (depending upon the type 

of medium in which the hybridoma cells to be cloned are present) in A1 to A4 wells of the 

microtiter plate. Hybridoma cells to be cloned were grown to log phase in 24 well plates and 

were resuspended in 1 ml fresh 1x HT medium or NM. A drop of the hybridoma cell 

suspension was then added to the A1 well of the microtiter plate using a sterile cotton-

plugged pasteur pipette, mixed well by gentle pipetting and then transferred a drop from the 

well A1 to A2. Likewise, serial dilutions of the hybridoma cells were prepared in the wells 

A1 to A4 and then observed under the inverted microscope. The well showing 20-25 

cells/microscopic field was selected for cloning. Using a sterile cotton-plugged pasteur 

pipette, a drop of the cell suspension was carefully placed in the centre of each well of the 

microtiter plate (maximum 2-3 rows at a time to avoid drying of the drops) and the wells 

containing the drop were immediately observed under the inverted microscope. The wells 

that exhibited only one hybridoma cell/well (or per drop) were marked and filled with mouse 

feeder cell suspension. This procedure of cloning was repeated till at least 20 single-cells per 

hybridoma cell line were cloned. The microtiter plates were then covered with saran wrap 

and incubated in a CO2 incubator (37°C, 5% CO2, 95% relative humidity). After 1.5 to 2 

weeks, the wells exhibiting 10-50% confluent cell growth were assayed for specific antibody 

by checking their hybridoma supernatants by immunoblotting (Materials and Methods, 

5.1.4.2.) and fresh medium (NM or 1x HT medium) was added to the wells. The positive 
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subclones from each clone were expanded by transferring into a 24 well plate (2-3 

subclones/24 well plate to avoid cross-contamination) and the plates were incubated in a 

CO2 incubator (37°C, 5% CO2, 95% relative humidity). Medium in the 24 well plate was 

changed every second day and when the cell-growth in the well was >50% confluent, cells 

were either frozen in a cryotube (Materials and Methods, 5.1.6.) or transferred to a 25 cm2 

tissue culture flask (in 5 ml NM). From 25 cm2 tissue culture flask, the cells were transferred 

to a 75 cm2 tissue culture flask (in 10 ml NM) and then to a 175 cm2 tissue culture flask (in 

50 ml NM), each time when the cell-growth in the flask was >50% confluent. Every 

alternate day, the hybridoma supernatant was collected and fresh medium was added. 

 
5.1.6. Freezing and recovery of hybridoma cell lines 

 
Freezing of hybridoma cell lines: 

Hybridoma cells to be frozen were, in general, harvested in the log phase of growth. When 

the cell-growth in a 24 well plate or a 25 cm2 tissue culture flask was >50% confluent, the 

hybridoma supernatant was replaced with the fresh medium (1 ml/well or 5 ml/flask) in 

order to remove the dead cells. Cells were then resuspended in the medium, collected in a 

sterile 15 ml centrifuge tube and incubated on ice. After 30 min of incubation on ice, the 

cells were pelleted by centrifugation at 1,200 rpm (Beckman CS-6R) for 5 min at 4°C. The 

supernatant was aspirated and the pellet was resuspended in equal volume of cold freezing 

medium. Aliquots of 1 ml/cryotube (Nunc) were prepared and incubated overnight at –80°C 

in a thermal box to freeze the cells slowly (~2°C/min). The next day, the frozen aliquots 

were transferred to liquid nitrogen for long-term storage. 

 
Recovery of frozen cell lines: 

The cryotubes were taken out of the liquid nitrogen and immediately thawed at 37°C in a 

waterbath. In order to remove DMSO, the cells were transferred to a 15 ml centrifuge tube 

containing 12 ml of NM and centrifuged at 1,200 rpm for 5 min at 4°C. The supernatant was 

aspirated and the cell pellet was resuspended in 1 ml NM and transferred to a well in 24 well 

plate. The plate was incubated overnight at 37°C in a CO2 incubator with 5% CO2 and 95% 

relative humidity. The next day, dead cells and traces of DMSO were removed by changing 

the medium in the well. Thereafter, the cells were propagated as described earlier. 
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5.2. Indirect immunofluorescence of Dictyostelium cells 
 

5.2.1. Preparation of Dictyostelium cells 

 
Dictyostelium cells were grown in shaking culture to a density of 2-4 x 106 cells/ml. Desired 

amount of cells were collected in a centrifuge tube, washed once with Soerensen phosphate 

buffer and finally resuspended in Soerensen phosphate buffer at 1 x 106 cells/ml. 400 µl of 

the cell suspension was then pipetted onto a 18 mm acid-washed glass coverslip lying on a 

parafilm-covered glass-plate resting in a humid-box. Cells were allowed to attach to the 

glass coverslip for 15 min. Thereafter, cells attached onto the coverslip were fixed 

immediately by one of the fixation techniques described below. 

 

5.2.2. Fixation of Dictyostelium cells 

 
Described below are two fixation techniques that work well for preserving cytoskeletal 

elements in Dictyostelium. 

 
5.2.2.1. Methanol fixation 

 
After the cells have attached to the coverslip, the supernatant was aspirated and the coverslip 

was dipped instantaneously into the pre-chilled (-20ºC) methanol in a petri dish and 

incubated at –20ºC for 10 min. The coverslip was then taken out from methanol and placed 

on the parafilm in the humid-box with the cell-surface facing upwards, followed by 3 

washings (each with 500 µl of PBG, pH 7.4, for 5 min at room temperature) and 

immunolabelling as described in Materials and Methods (5.2.3.). 

 
PBG (pH 7.4):  
 0.5 % bovine serum albumin 
 0.1 % gelatin (cold-water fish skin) 
 in 1x PBS, pH 7.4 

 
5.2.2.2. Picric acid-paraformaldehyde fixation 

 
After the cells have attached to the glass coverslips, the supernatant was gently aspirated 

from the edge of the coverslip and 200 µl of freshly prepared picric acid-paraformaldehyde 
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solution was directly added onto the cell-surface of the coverslip and incubated at room 

temperature for 30 min. After incubation, the picric acid-paraformaldehyde solution was 

aspirated and the coverslip was washed once with Soerensen phosphate buffer for 5 min at 

room temperature. The coverslip was then picked up with a fine forceps and swirled in 10 

mM PIPES buffer, pH 6.0, followed by blotting off the excess solution from the coverslip 

with a tissue paper. Now the coverslip was swirled in PBS/glycine and placed on a parafilm-

covered glass-plate resting in a moist chamber with the cell-surface facing upwards. The 

coverslip was then washed with 500 µl PBS/glycine for 5 min followed by post-fixation with 

500 µl 70% ethanol for 10 min. This was followed by 2 washings with 500 µl PBS/glycine 

for 5 min each followed by 2 washings with 500 µl of PBG for 15 min each. After washings, 

the cells were immunolabelled as discussed in Materials and Methods (5.2.3.). 

 
PBS/glycine: 20 mM PIPES buffer, pH 6.0: 
 500 ml PBS  0.605 g PIPES  
 3.75 g glycine  in 100 ml distilled H2O 
 filter sterilized  adjust to pH 6.0 
 store at –20ºC  filter sterilized 
 
Picric acid-paraformaldehyde solution: 

0.4 g paraformaldehyde was dissolved in 5 ml ddH2O by stirring at 40°C and adding 3-4 

drops of 2M NaOH. After dissolving, the volume was adjusted to 7 ml with ddH2O. To this 

paraformaldehyde solution, 10 ml of 20 mM PIPES buffer, pH 6.0, and 3 ml of saturated 

picric acid was added and the pH was finally adjusted to 6.5. 

 

5.2.3. Immunolabelling of fixed cells 

 
The coverslip containing the fixed cells were incubated with 400 µl of the desired dilution 

(in PBG) of primary antibody for 1-2 h in the humid-box at room temperature. After 

incubation, the excess unattached antibody was removed by washing the coverslip 6 times 

with PBG for 5 min each. Now the coverslip was incubated for 1 h with 400 µl of a proper 

dilution (in PBG) of Cy3-conjugated secondary antibody. Following the incubation with 

secondary antibody, two washings with PBG for 5 min each followed by three washings 

with PBS for 5 min each were performed. After washings, the coverslip was mounted onto a 

glass slide (see Materials and Methods, 5.2.4.). 
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5.2.4. Mounting of coverslips 

 
After immunolabelling of the fixed cells, the coverslip was swirled once in deionised water 

and the extra water was soaked off on a soft tissue paper. Now a drop of gelvatol was placed 

to the middle of a clean glass slide and the coverslip was mounted (with the cell-surface 

facing downwards) onto the drop of gelvatol taking care not to trap any air-bubble between 

the coverslip and the glass slide. Mounted slides were then stored in the dark at 4ºC for 

overnight. Thereafter, the mounted slides were observed under a fluorescence microscope or 

confocal laser scan microscope. 

 
Gelvatol: 

2.4 g of polyvinyl alcohol (Mw 30,000-70,000; Sigma) was added to 6 g of glycerol in a 50 

ml centrifuge tube and mixed by stirring. To the mixture, 6 ml of distilled H2O was added 

and the mixture was incubated at room temperature. After several hours of incubation at 

room temperature, 12 ml of 0.2 M Tris/HCl, pH 8.5, was added and the mixture was heated 

to 50°C for 10 min with occasional mixing to completely dissolve polyvinyl alcohol. The 

solution was centrifuged at 5,100 rpm for 15 min. After centrifugation, 2.5% of diazobicyclo 

octane (DABCO), an anti-oxidant agent was added to reduce the bleaching of the 

fluorescence. The solution was aliquoted in small volumes in 1.5 ml microcentrifuge tubes 

and stored at –20°C. 

 

5.3. DAPI and phalloidin staining of fixed cells 

 
DAPI staining of Dictyostelium nuclei and phalloidin staining of Dictyostelium F-actin was 

performed simultaneously. Staining of F-actin with phalloidin demarcated the cell-boundary, 

which facilitated in determining the number of DAPI stained nuclei within a particular cell. 

Cells were harvested and the coverslips coated with cells were prepared as explained in 

Materials and Methods (5.2.1.). Cells were then fixed onto the coverslip by picric acid-

paraformaldehyde fixation method as discussed in Materials and Methods (5.2.2.2.). After 

fixation and usual washings, coverslips were incubated for 30 min with 400 µl of PBG 

containing DAPI (1:1,000 dil.) and TRITC-phalloidin (1:200 dil.). Thereafter, the coverslip 

was washed twice with 400 µl of PBG for 5 min each followed by three washings with 400 

µl of PBS for 5 min each. After washings, the coverslips were mounted onto the glass slides 
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(see Materials and Methods, 5.2.4) for observation under a fluorescence microscope or 

confocal laser scan microscope. 

 

5.4. Immunolabelling of GFP-DLIM1 expressing Dictyostelium cells fixed  

  during phagocytosis 

 
To correlate the localization of DLIM1 with the organization of the actin cytoskeleton during 

the process of phagocytosis, GFP-DLIM1 expressing cells were fixed during phagocytosis 

and immunolabelled with anti-actin monoclonal antibody (Act 1-7). Briefly, cells were 

prepared as explained in Materials and Methods (5.2.1.). After the cells had adhered to the 

glass coverslip, the Soerensen phosphate buffer on the coverslip was replaced with 400 µl of 

the solution containing heat-killed yeast cells diluted 1:10 in Soerensen phosphate buffer. 

Cells were incubated with yeast for different time intervals (5 min, 10 min, 15 min and 20 

min). Thereafter, the buffer on the coverslips was carefully aspirated and the cells were 

immediately fixed onto the coverslip by methanol fixation method (see Materials and 

Methods, 5.2.2.1.). After fixation and usual washings, either the coverslip was directly 

mounted onto a glass slide or the cells were first immunolabelled with anti-actin monoclonal 

antibody (Act 1-7) as described in Materials and Methods (5.2.3.), before mounting onto a 

glass slide. 

 
Preparation of heat-killed yeast cells: 

Five grams of dry yeast Saccharomyces cerevisae (Sigma) was suspended in 50 ml of PBS 

in a 100 ml Erlenmeyer flask and incubated for 30 min in a boiling waterbath with stirring. 

After boiling, the yeast cells were washed five times with PBS, followed by two washings 

with Soerensen phosphate buffer. The yeast cells were then finally resuspended in Soerensen 

phosphate buffer at a concentration of 1 x 109 yeast cells/ml. Aliquots of 1 ml and 20 ml 

were made and stored at –20ºC. 

 

6. Microscopy 

 
For conventional immunofluorescence microscopy, DAPI staining and phalloidin staining, 

the cells were observed under a fluorescence microscope (Leica DNR) equipped with a 100x 
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Neofluar objective. The images were captured by a cooled charge-coupled device (CCD) 

camera (SensiCam, PCO). Various stages of development of Dictyostelium cells were also 

visualized using the fluorescence microscope (Leica DNR) equipped with a 2.5x or 5.0x 

objective and images were captured by a cooled CCD camera (SensiCam, PCO). Visual 

inspection of GFP-DLIM1 expressing Dictyostelium cells was performed using an inverted 

fluorescence microscope (Olympus 1X70). For studying the localization of GFP-DLIM1 

fusion protein in live cells during cell locomotion, phagocytosis and endocytosis, an inverted 

confocal laser scanning microscope (Leica DM/IRBE) equipped with a 40x PL Fluotar 1.25 

oil immersion objective or a 63x PL Fluotar 1.32 oil immersion objective was used. The 

488-nm band of an argon-ion laser was used for excitation, and a 510-525-nm band-pass 

filter was used for emission. Confocal images of immunolabelled specimens were obtained 

with confocal laser scanning microscope (Leica DM/IRBE) equipped with 488-nm argon-ion 

laser for excitation of GFP fluorescence and a 568-nm krypton-ion laser for excitation of 

Cy3 fluorescence. For simultaneous acquisition of GFP and Cy3 fluorescence, the green and 

red contributions to the emission signal were separated by using a band-pass filter of 510-

525-nm and a long-pass filter of 570-nm, respectively. The images from green and red 

channels were independently attributed with colour codes and then superimposed using the 

accompanying software and converted to the TIFF format after the experiment. 

 

6.1. Live cell imaging of GFP-DLIM1 expressing Dictyostelium cells 

 
To record the distribution of GFP-DLIM1 in living cells, GFP-DLIM1 expressing cells were 

grown to a density of 2-3 x 106 cells/ml, washed in Soerensen phosphate buffer and 

resuspended at a density of 1 x 107 cells/ml. The cells were then starved for about 1 h with 

shaking. Starvation facilitated observation as it allowed the cells to digest endocytosed 

nutrient medium, which is autofluorescent. For observation, cells were initially diluted in 

Soerensen phosphate buffer at 1 x 106 cells/ml and then 500 µl of the cell suspension (5 x 

105 cells) were transferred onto a 18 mm glass coverslip glued to a plastic rim of the same 

size. Cells were allowed to adhere to the glass coverslip for 10-15 min and confocal images 

were obtained and processed as described above (Materials and Methods, 6.). 
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6.2. Imaging distribution of GFP-DLIM1 during pinocytosis 

 
For analysis of dynamics of GFP-DLIM1 during fluid phase endocytosis, coverslips 

containing GFP-DLIM1 expressing cells were prepared as described (Materials and 

Methods, 6.1.). After the cells had attached to the glass coverslip, the buffer was carefully 

aspirated and was replaced with Soerensen phosphate buffer containing 1 mg/ml TRITC-

dextran (Mw 70,000; Sigma). Confocal sections were obtained by scanning at different 

intervals in one plane using a 488-nm argon-ion laser for GFP fluorescence and a 568-nm 

krypton-ion laser for TRITC fluorescence. Details of imaging and image processing have 

been discussed in Materials and Methods (6.). 

 

6.3. Imaging distribution of GFP-DLIM1 during phagocytosis 

 
For analysis of dynamics of GFP-DLIM1 during phagocytosis, coverslips containing GFP-

DLIM1 expressing cells were prepared as described above (Materials and Methods, 6.). 

After the cells had adhered to the glass coverslips, 5-10 µl of the heat-killed, TRITC-

labelled/unlabelled yeast cells (1 x 109 yeast cells/ml) was carefully added from one edge of 

the coverslip. Immediately after the yeast cells had settled (in 2-5 min), confocal images 

were obtained as explained above (Materials and Methods, 6.). 

 
Heat-killed, TRITC-labelled yeast cells : 

For labelling, the pellet of 2 x 1010 heat-killed unlabelled yeast cells (Materials and Methods, 

5.4.) was resuspended in 20 ml of 50 mM Na2HPO4, pH 9.2, containing 2 mg of TRITC 

(Sigma) and incubated for 30 min at 37°C on a rotary shaker. After washing twice with 50 

mM Na2HPO4, pH 9.2, and four times with Soerensen phosphate buffer, aliquots of 1 x 109 

yeast cells/ml were frozen at –20°C. 

 

6.4. Imaging distribution of GFP-DLIM1 in aggregation-competent cells 

 
GFP-DLIM1 expressing cells grown to a density of 2-3 x 106 cells/ml were washed twice in 

equal volume of Soerensen phosphate buffer and resuspended at a density of 1 x 107 

cells/ml. The cells were then starved for 6 h with shaking at 250 rpm in order to make them 

aggregation-competent. Aggregation-competent cells have a typical elongated shape with a 
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well defined front and tail. After starvation for 6 h, 50 µl of the cell-suspension (5 x 105 

cells) was transferred onto a 18 mm glass coverslip (glued to a plastic rim of the same size) 

that had been pre-loaded with 200-300 µl Soerensen phosphate buffer. Cells were allowed to 

adhere to the glass coverslip for 10-15 min. After the cells had elongated, confocal images 

were obtained as explained above (Materials and Methods, 6.). 

 

7. Computer analyses 

 
Analyses of the sequences and homology searches were performed using the ‘University of 

Wisconsin’ GCG software package (Devereux et al., 1984) and different gene bank 

databases and Dictyostelium discoideum gene databases. Structural predictions and multiple 

alignment of the protein sequences were made using Expasy Tools software, accessible on 

the world-wide web. For processing images, Corel Draw version 8, Corel Photopaint, Adobe 

Illustrator, Adobe Photoshop and Microsoft Powerpoint softwares were used. Graphs and 

histograms were prepared using the Microsoft Excel software. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                             3. Results�
 

 

1. Analyses of the DLIM1 gene 
 
 
1.1. Cloning and sequence analysis of DLIM1 cDNA 

 

Sequence information for a Dictyostelium cDNA was obtained from the Tsukuba CSM 

cDNA sequencing project, University of Tsukuba, Japan (accession number SSC 504). 

Analysis of the deduced amino acid sequence revealed that the clone SSC 504 contains 

incomplete sequence information, since its start codon was missing (Figure 6). Analysis of 

the deduced amino acid sequence, however, revealed the existence of two LIM domains, 

hence the name DLIM1. 
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Figure 6. Nucleotide sequence and deduced amino acid sequence of DLIM1 cDNA. The 
clone SSC 504 (Japanese cDNA sequencing project) provided incomplete sequence 
information (upper case letters) as the start codon was missing. The full length DLIM1 
cDNA was obtained on screening a λgt11 cDNA library derived from growth phase 
Dictyostelium cells. Lower case letters represent the sequences that were missing in the clone 
SSC 504. The nucleotide sequence shows the presence of a start codon at position 60. The 
start and stop codons are shown in bold letters. The presence of two in-frame stop codons 
(indicated by asterisks) immediately upstream of the ATG, and two putative polyadenylation 
signals (shown in boxes) following the TAA stop codon, suggests that the coding region is 
complete. The deduced amino acid sequence (shown below the corresponding coding 
sequence) suggests the presence of two LIM domains, one each at its N- and C-terminus 
spanning from amino acid residues 5–56 and 112-163, respectively. The conserved cysteine 
and histidine residues of the N-terminal (bold, encircled letters) and C-terminal (bold, 
shaded and encircled letters) LIM domain are shown. The intervening sequence between the 
two LIM domains is rich in proline residues (bold and underlined letters). The position and 
orientation of oligonucleotide primers DLIM1 5’ and DLIM1 3’ used for the PCR 
amplification are indicated by the arrows above the nucleotide sequences.  

1   cggttttttttttttttttaattaatctgtcattataataacttattctt
*  *             

51  aataaaaaaatgagttctaTCTGTCCAACATGCACTAAAAGAGTTTATGC 
M  S  S  I  C P  T  C T  K  R  V  Y  A   14

101 AGCTGAAGCTGTTAAAGCATGTGAAAAACAATATCATAAATTATGTCTTC 
A  E  A  V  K  A  C  E  K  Q  Y  H K  L  C L  Q  31

151 AATGTTTCCATTGTCATAAAATCCTTCAATTAGGTCAATACTCTGAACGT

C F  H  C H  K  I  L  Q  L  G  Q  Y  S  E  R    47

201 GATGGTCAACCATATTGCAAAACTGATTATGATAGATTATTTAGACAAGC 
D  G  Q  P  Y  C K  T  D Y  D  R  L  F  R  Q  A   64

251 AGGTTACAGAGGTGGTGGTGTTGTTGCAGACAGTTTTGAACCAGCACCAA 

G  Y  R  G  G  G  V  V  A  D  S  F  E  P A  P K  81

301 AAGTTGAAACTACAACTCCAGTCGAACCAACCCCACCTCCAACTTTTTTA 
V  E  T  T  T  P V  E  P T  P  P  P T  F  L    97

351 ACACCAACTGAAGAAGTTAAAGTTCAATTATTCCCAACCAATTGTCCAAA 

T  P T  E  E  V  K  V  Q  L  F  P T  N  C P  K  114

401 ATGTGGTAAGAAAGCATACTTTAATGAACTTAAAGTTTATAACTCTCGTG 
C G  K  K  A  Y  F  N  E  L  K  V  Y  N  S  R  D 131

451 ATTGGCATAAGACTTGTTTCGCTTGTTTCTCATGTAATAAAAACTTAGTA 

W  H K  T  C F  A  C F  S  C N  K  N  L  V   147

501 AGTGGTCAATACAGTGAAAAAGAAGGTTTAATTTATTGTCCAAGATGTTA 
S  G  Q  Y  S  E  K  E  G  L  I  Y  C P  R  C Y  164

551 TCAATCTAAATTTGGTCCAAGTGGTTACACCAATACTGGTGCATTAGTTT 

Q  S  K  F  G  P  S  G  Y  T  N  T  G  A  L  V  L 181

601 TACATTAAAAAAAAtaaaatcaaaaaaaaaaaaaataaaatcaaaaaaaa
H  *                                             182

651 aaaaacg

DLIM1 5‘

DLIM1 3‘
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*  *             

51  aataaaaaaatgagttctaTCTGTCCAACATGCACTAAAAGAGTTTATGC 
M  S  S  I  C P  T  C T  K  R  V  Y  A   14

101 AGCTGAAGCTGTTAAAGCATGTGAAAAACAATATCATAAATTATGTCTTC 
A  E  A  V  K  A  C  E  K  Q  Y  H K  L  C L  Q  31

151 AATGTTTCCATTGTCATAAAATCCTTCAATTAGGTCAATACTCTGAACGT

C F  H  C H  K  I  L  Q  L  G  Q  Y  S  E  R    47

201 GATGGTCAACCATATTGCAAAACTGATTATGATAGATTATTTAGACAAGC 
D  G  Q  P  Y  C K  T  D Y  D  R  L  F  R  Q  A   64

251 AGGTTACAGAGGTGGTGGTGTTGTTGCAGACAGTTTTGAACCAGCACCAA 
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301 AAGTTGAAACTACAACTCCAGTCGAACCAACCCCACCTCCAACTTTTTTA 
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351 ACACCAACTGAAGAAGTTAAAGTTCAATTATTCCCAACCAATTGTCCAAA 

T  P T  E  E  V  K  V  Q  L  F  P T  N  C P  K  114

401 ATGTGGTAAGAAAGCATACTTTAATGAACTTAAAGTTTATAACTCTCGTG 
C G  K  K  A  Y  F  N  E  L  K  V  Y  N  S  R  D 131

451 ATTGGCATAAGACTTGTTTCGCTTGTTTCTCATGTAATAAAAACTTAGTA 

W  H K  T  C F  A  C F  S  C N  K  N  L  V   147

501 AGTGGTCAATACAGTGAAAAAGAAGGTTTAATTTATTGTCCAAGATGTTA 
S  G  Q  Y  S  E  K  E  G  L  I  Y  C P  R  C Y  164

551 TCAATCTAAATTTGGTCCAAGTGGTTACACCAATACTGGTGCATTAGTTT 

Q  S  K  F  G  P  S  G  Y  T  N  T  G  A  L  V  L 181

601 TACATTAAAAAAAAtaaaatcaaaaaaaaaaaaaataaaatcaaaaaaaa
H  *                                             182

651 aaaaacg

1   cggttttttttttttttttaattaatctgtcattataataacttattctt
*  *             

51  aataaaaaaatgagttctaTCTGTCCAACATGCACTAAAAGAGTTTATGC 
M  S  S  I  C P  T  C T  K  R  V  Y  A   14

101 AGCTGAAGCTGTTAAAGCATGTGAAAAACAATATCATAAATTATGTCTTC 
A  E  A  V  K  A  C  E  K  Q  Y  H K  L  C L  Q  31

151 AATGTTTCCATTGTCATAAAATCCTTCAATTAGGTCAATACTCTGAACGT

C F  H  C H  K  I  L  Q  L  G  Q  Y  S  E  R    47

201 GATGGTCAACCATATTGCAAAACTGATTATGATAGATTATTTAGACAAGC 
D  G  Q  P  Y  C K  T  D Y  D  R  L  F  R  Q  A   64

251 AGGTTACAGAGGTGGTGGTGTTGTTGCAGACAGTTTTGAACCAGCACCAA 

G  Y  R  G  G  G  V  V  A  D  S  F  E  P A  P K  81

301 AAGTTGAAACTACAACTCCAGTCGAACCAACCCCACCTCCAACTTTTTTA 
V  E  T  T  T  P V  E  P T  P  P  P T  F  L    97

351 ACACCAACTGAAGAAGTTAAAGTTCAATTATTCCCAACCAATTGTCCAAA 

T  P T  E  E  V  K  V  Q  L  F  P T  N  C P  K  114

401 ATGTGGTAAGAAAGCATACTTTAATGAACTTAAAGTTTATAACTCTCGTG 
C G  K  K  A  Y  F  N  E  L  K  V  Y  N  S  R  D 131

451 ATTGGCATAAGACTTGTTTCGCTTGTTTCTCATGTAATAAAAACTTAGTA 

W  H K  T  C F  A  C F  S  C N  K  N  L  V   147

501 AGTGGTCAATACAGTGAAAAAGAAGGTTTAATTTATTGTCCAAGATGTTA 
S  G  Q  Y  S  E  K  E  G  L  I  Y  C P  R  C Y  164

551 TCAATCTAAATTTGGTCCAAGTGGTTACACCAATACTGGTGCATTAGTTT 

Q  S  K  F  G  P  S  G  Y  T  N  T  G  A  L  V  L 181

601 TACATTAAAAAAAAtaaaatcaaaaaaaaaaaaaataaaatcaaaaaaaa
H  *                                             182

651 aaaaacg

DLIM1 5‘

DLIM1 3‘
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In order to obtain a full length DLIM1 cDNA, a λgt11 cDNA library derived from growth 

phase Dictyostelium cells was screened. To achieve this, DLIM1 partial cDNA was 

amplified by RT-PCR (Materials and Methods, 3.19.1.) using total RNA isolated from 

Dictyostelium AX2 cells as a template and DLIM1 specific 5’ and 3’ oligonucleotide primers 

(depicted in Figure 6). The PCR amplified product containing 536 bp partial DLIM1 cDNA 

was directly cloned into pCR2.1 (TA cloning vector, Invitrogen) and verified by sequencing 

both the strands using M13 reverse and T7 universal primers. Subsequently, the 536 bp 

partial DLIM1 cDNA was used as a probe to screen a λgt11 cDNA library derived from 

growth phase Dictyostelium cells (Materials and Methods, 3.19.2.1.). Six positive phage-

plaques were observed. DNA from the positive phages was isolated and the cDNA inserts 

were subcloned at the EcoRI site into the pIC20H vector (Materials and Methods, 3.19.2.2.). 

Sequencing was performed in both orientations using T7 universal and M13 reverse 

oligonucleotide primers. The longest cDNA clone is 657 bp long with an open reading frame 

encompassing 564 bp (Figure 6). The first ATG is located at 60 bp and most likely serves as 

a putative translation initiation codon since the sequence preceding this ATG is unusually 

rich in A and T bases, common for non-translated regions of the Dictyostelium genome 

(Kimmel and Firtel, 1983). Moreover, the sequence immediately upstream of the ATG 

exhibits two in-frame stop codons located at nucleotides 36 and 39. The coding region is 

terminated by a stop codon at nucleotide position 606, which is followed by two 

polyadenylation signals AATAAA located 4 bp and 25 bp after the stop codon.  

 

1.2. Amino acid sequence of DLIM1  

 

The full length DLIM1 cDNA (549 bp) codes for a polypeptide of 182 amino acid residues 

with an estimated molecular weight of 20 kD. Analysis of the deduced polypeptide sequence 

of DLIM1 reveals the existence of two LIM domains, one each at its N- and C-terminus 

(Figure 6), spanning from amino acid residues 5-56 and 112-163, respectively. The LIM 

motif is characterized by conserved cysteine and histidine residues that exhibit a consensus 

amino acid sequence [CX2CX16-23HX2C]-X2-[CX2CX16-21CX2(C/H/D)] (Freyd et al., 1990; 

Sadler et al., 1992). The positions of cysteine and histidine residues are invariant in this 

sequence, but the length of the loops may span from 16 to 23 amino acids. The amino acid 

sequence of the two LIM domains of DLIM1 can be represented as (CX2CX17HX2C)-X2-
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(CX2CX17CX2D/C). The N-terminal LIM domain has an aspartic acid residue at position 56, 

whereas the C-terminal LIM domain has a cysteine residue at position 163 (Figure 6). The 

presence of two LIM domains in DLIM1 that are separated by an intervening sequence of 55 

amino acids identifies DLIM1 as a group 2 LIM protein according to the classification of 

LIM domain proteins (Dawid et al., 1998). According to their classification, group 2 proteins 

contain 1 or 2 copies of a single sequence type of LIM domains, whereas group 1 proteins 

always contain paired LIM domains near the N-terminus and group 3 proteins consist of 

multiple LIM domains localized at the C-terminus. In addition, the LIM domains of DLIM1 

conform exactly to the organization of the LIM domains of other members of the group 2 

LIM proteins (CRPs and CRIP), with an intervening sequence of 17 amino acids in both the 

loops of the LIM domains of these proteins (Stronach et al., 1996). A glycine-rich region 

that normally follows the LIM domain in group 2 LIM proteins (CRPs and CRIP) is, 

however, not present in the DLIM1 protein. In DLIM1, only 4 and 3 glycine residues follow 

the N-terminal and C-terminal LIM domains, respectively. Interestingly though, the 

sequence between the two LIM domains of DLIM1 is proline-rich with 9 of the total 14 

proline residues in DLIM1 residing in this region. The functional significance of this 

proline-rich region is not known. 

 

Comparison of the entire amino acid sequence of DLIM1 to the protein databases revealed 

the highest degree of homology to members of the cysteine-rich protein (CRP) family CRP1, 

CRP2 and CRP3 (Figure 7a). Members of the CRP family have been shown to be associated 

with elements of the actin cytoskeleton as all are capable of directly interacting with α-

actinin (an actin crosslinking protein) and zyxin (a LIM domain containing adhesion plaque 

protein) (Sadler et al., 1992; Schmeichel and Beckerle, 1994; Louis et al., 1997; Pomies et 

al., 1997). The full length DLIM1 sequence exhibits 29-31% identity and 43-45% similarity 

to the three CRPs. The N-terminal LIM domain of DLIM1 is 33-35% identical to the N-

terminal LIM domains of the three CRPs, whereas the C-terminal LIM domain of DLIM1 

exhibits a slightly higher identity (42-44%) to the C-terminal LIM domains of the three 

CRPs. Cysteine-rich intestinal protein (CRIP), a single LIM domain containing protein 

belonging to group 2 (Perez-Alvarado et al., 1996), exhibits a high homology to the N-

terminal region (1-77) of DLIM1 (38% identity and 55% similarity). Moreover, the LIM 

domains of DLIM1 (N-terminal) and CRIP are 44% identical (Figure 7b). 
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(a)                         10         20         30         40         50  
                   ....|....| ....|....| ....|....| ....|....| ....|....|  
   CRP3 (human)    MPNWGGGAKC GACEKTVYHA EEIQCNGRSF HKTCFHCMAC RKALDSTTVA   
   CRP1 (chicken)  MPNWGGGKKC GVCQKAVYFA EEVQCEGSSF HKSCFLCMVC KKNLDSTTVA   
   CRP2 (chicken)  MPNWGGGNKC GACGRTVYHA EEVQCDGRSF HRCCFLCMVC RKNLDSTTVA   
   DLIM1 (Dicty.)  -----MSSIC PTCTKRVYAA EAVKACEKQY HKLCLQCFHC HKILQLGQYS   
                                                                
                            60         70         80         90        100  
                   ....|....| ....|....| ....|....| ....|....| ....|....|  
   CRP3 (human)    AHESEIYCKV CYGRRYGPKG IGYGQGAGCL STDTGEHLGL QFQQSPKPAR   
   CRP1 (chicken)  VHGDEIYCKS CYGKKYGPKG YGYGMGAGTL STDKGESLGI KYEEGQS-HR   
   CRP2 (chicken)  IHDAEVYCKS CYGKKYGPKG YGYGQGAGTL NMDRGERLGI KPESTPSPHR   
   DLIM1 (Dicty.)  ERDGQPYCKT DYDRLFRQAG Y---RGGGVV ADSFEPAPKV ETTTPVEPTP   
                                 
                            110        120        130        140       150 
                   ....|....| ....|....| ....|....| ....|....| ....|....|  
   CRP3 (human)    SVTTSNPSKF TAKFGESEKC PRCGKSVYAA EKVMGGGKPW HKTCFRCAIC   
   CRP1 (chicken)  P-TNPNASRM AQKVGGSDGC PRCGQAVYAA EKVIGAGKSW HKSCFRCAKC   
   CRP2 (chicken)  PTTNPNTSKF AQKFGGAEKC SRCGDSVYAA EKVIGAGKPW HKNCFRCAKC   
   DLIM1 (Dicty.)  PPTFLTPTEE VKVQLFPTNC PKCGKKAYFN ELKVYNSRDW HKTCFACFSC   
                                                                    
                            160        170        180        190         
                   ....|....| ....|....| ....|....| ....|....| .... 
   CRP3 (human)    GKSLESTNVT DKDGELYCKV CYAKNFGPTG IGFGGLTQQV EKKE  
   CRP1 (chicken)  GKSLESTTLA DKDGEIYCKG CYAKNFGPKG FGFGQGAGAL IHSQ  
   CRP2 (chicken)  GKSLESTTLT EKEGEIYCKG CYAKNFGPKG FGYGQGAGAL VHAQ  
   DLIM1 (Dicty.)  NKNLVSGQYS EKEGLIYCPR CYQSKFGPSG YTN---TGAL VLH-  
                                             
 
 

(b)                         10         20         30         40         50  
                   ....|....| ....|....| ....|....| ....|....| ....|....|  
   DLIM1 (Dicty.)  MSSICPTCTK RVYAAEAVKA CEKQYHKLCL QCFHCHKILQ LGQYSERDGQ   
   CRIP (human)    MP-KCPKCNK EVYFAERVTS LGKDWHRPCL KCEKCGKTLT SGGHAEHEGK   
                                                    
                            60         70         80         90        100  
                   ....|....| ....|....| ....|....| ....|....| ....|....|  
   DLIM1 (Dicty.)  PYCKT-DYDR LFRQAGYRGG GVVADSFEPA PKVETTTPVE PTPPPTFLTP   
   CRIP (human)    PYCNHPCYAA MFGPKGFGRG GAESHTFK-- ---------- ----------   
                          
 

Figure 7. Alignment of the DLIM1 amino acid sequence with several group 2 LIM 
domain containing proteins. (a) Alignment of the DLIM1 amino acid sequence with 
members of the CRP family. Residues that are identical between DLIM1 and any of the 
other members of the CRP family are shadowed in dark grey, and residues that are similar 
are shadowed in grey. Open and filled circles below the aligned sequences indicate the N- 
and C-terminal LIM consensus, respectively. (b) Alignment of the N-terminal region of 
DLIM1 with CRIP. Residues that are identical between DLIM1 and CRIP are shadowed in 
dark grey, and residues that are similar are shadowed in grey. Open circles below the aligned 
sequences indicate the N-terminal LIM consensus. Sequences were aligned using the Clustal 
W programme (Wisconsin package version 9.0). Dashes indicate gaps introduced in the 
sequence for optimal alignment. Gene bank accession numbers: CRP1, P32965; CRP2, 
P50460; CRP3, NP_003467; CRIP, 1633212. 
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1.3. Southern blot analysis of DLIM1 gene 

 

Southern blot analysis of restricted genomic DNA using the 536 bp partial DLIM1 cDNA as 

a probe was performed under high stringency conditions (Materials and Methods, 3.13.2.) to 

determine the number of copies of the DLIM1 gene as well as to check the presence of other 

related genes in the Dictyostelium genome. Genomic DNA of Dictyostelium was digested 

with various restriction enzymes (BglII, ClaI, EcoRI, NdeI, XbaI, XhoI), which do not have 

any internal restriction site in the DLIM1 cDNA. Presence of only one strong hybridisation 

signal in all the lanes suggests that DLIM1 is encoded by a single copy gene and no other 

related gene is present in the Dictyostelium discoideum genome (Figure 8a). 

 

1.4. Expression of DLIM1 specific RNA during development 

 

Dictyostelium cells grow vegetatively as unicellular amoebae when nutrients are available. 

Depletion of nutrients triggers a 24 h developmental programme leading to the formation of 

a multicellular fruiting body. This transition of cells from growth phase to the developmental 

phase is a consequence of stage specific expression that involves activation of certain genes 

and repression of others. Therefore, northern blot analysis was performed to study the 

DLIM1 gene expression during transition from single cell growth phase to multicellular 

fruiting body formation in Dictyostelium (Materials and Methods, 3.10.-3.13.). Hybridisation 

under stringent conditions with 536 bp partial DLIM1 cDNA probe revealed that DLIM1 

transcripts are more abundant during growth and early development of Dictyostelium and 

strongly decline once tight aggregates have formed (Figure 8b). 

 

1.5. Cloning and sequence analysis of DLIM1 genomic DNA 

 

In order to obtain a genomic fragment containing the entire DLIM1 gene sequences, ~ 4.3 kb 

EcoRI-NdeI restricted DLIM1 genomic DNA, which was assumed to contain the entire 

DLIM1 genomic sequence, was purified by sucrose density gradient centrifugation and 

cloned (Materials and Methods, 3.19.3.). This assumption was based on the facts that 

Southern blot analysis performed with EcoRI+NdeI restricted genomic DNA revealed a 
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single band of ~ 4.3 kb upon hybridisation with the 536 bp partial DLIM1 cDNA, which 

does not have any internal EcoRI and NdeI site (Figure 8a) and that most of the 

Dictyostelium discoideum genes are not bigger than 4.0 kb. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Southern and northern blot analyses. (a) The Southern blot probed with the 536 
bp partial DLIM1 cDNA under high stringency conditions indicates the presence of a single 
copy of the gene. For lanes 1-12, wild-type Dictyostelium genomic DNA was digested with 
BglII (1), ClaI (2), EcoRI (3), NdeI (4), XbaI (5), XhoI (6), BglII + EcoRI (7), BglII + NdeI 
(8), EcoRI + ClaI (9), EcoRI + NdeI (10), EcoRI + XbaI (11), EcoRI + XhoI (12). (b) 
Northern blot showing the expression of DLIM1 during the development of Dictyostelium. 
����� �����	� 
��� 
�� ��� 	�	��� ���� 
�����	��� ����� ��������	� �ours of development on 
phosphate-buffered agar plates) was loaded in each lane. DLIM1 transcripts are most 
abundant during growth and early development. 
 

The plasmid containing the DLIM1 genomic DNA was named pgDLIM1 and sequenced 

using a set of primers as indicated in Figure 9a. Analyses of deduced sequences reveal that 

the coding region of the DLIM1 gene spans 962 bp and is interrupted by three introns of 130 

bp, 168 bp and 118 bp, respectively (Figure 9b). Comparison of the DLIM1 genomic and 

cDNA sequences allowed confirmation of the intron-exon boundary. In addition, all the 

three introns are 86-93% AT-rich, a common feature exhibited by most Dictyostelium 

introns. Moreover, all the three introns display a consensus sequence of GTA and TAG at 
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their 5’ and 3’ ends, respectively, which is essentially similar to the 5’ and 3’ consensus 

splice sites for Dictyostelium introns as proposed by Csank et al. (1990). Two potential 

polyadenylation signals are located 4 bp and 25 bp after the stop codon. The coding region is 

flanked by sequences containing extensive homopolymeric A/T-rich stretches. Upstream of 

the DLIM1 gene locus is an ORF, which has been found homologous to an unclassified 

Dictyostelium gene in the database. The 5’ intergenic region is ~ 1.5 kb long and contains the 

DLIM1 promoter (Figure 9a). Some of the potential regulatory elements of the DLIM1 

promoter are indicated in Figure 9b. We could, however, not identify a potential TATA box 

in the DLIM1 promoter. 

 

(a) 

 

 

 
 
 
 
 
(b) 

-446      taaaaa attttaggtt taattttagg ttttaaacct ttccattttt  
    -400  taaaggggac caattttttt tttttttttt tttttttttt ttttgaaccc  
    -350  ttttttttta aaaagtaata ttaataatat gattttcaaa taaattatgc  
    -300  ctttgggcat aacccaaaaa gggcaaagag gattattttt gatcaaatag  
    -250  cctttttctt tgaaaatttt cccaaataaa acctcgctaa aaaaaaaaaa  
    -200  aaaaaaaaaa taaaaaaaaa ataaaaaaat ggcttttggt gggataaatt  
    -150  tttcatcaaa aacatcgcta aaaaaaatca aaatattaat aaaaaaaatt  
    -100  aaaaattaaa aaaaaaaaaa aaaaaaaaaa atcaaaatca attttatttt  
     -50  tttttttttt tatttatctg tcattattat aacttattct taataaaaaa  
       1  ATGAGTTCTA TCTGTCCAAC ATGCACTAAA AGAGTTTATG CAGCTGAAGC  
      51  TGTTAAAGCA TGTGAAAAAC AATATCATAA ATTATGTCTT CAATGTTTCC  
     101  ATTGTCATAA AATCCTTCAA TTAGGTCAAg taagtatcac aatcatttta  
     151  attaaaaaaa aaaaaataaa taaaaaaaaa aaataaaaaa aataaaaata  
     201  aatcgctaac attttttatt tttattttta tttttatttt tatttttatt  
     251  tttatttagT ACTCTGAACG TGATGGTCAA CCATATTGCA AAACTgtaaa  
     301  ttatcaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaagaa aaaaaaaaaa  
     351  gaaaaaaaaa aaaaagaatt ttaaaacaat tttttactaa ggaaatacca  
     401  aattttttaa atgaaaaaaa taaaaccaaa aaaaccaaaa ccaaaaccaa  
     451  aaccaaataa tagGATTATG ATAGATTATT TAGACAAGCA GGTTACAGAG  
     501  GTGGTGGTGT TGTTGCAGAC AGTTTTGAAC CAGCACCAAA AGTTGAAACT  
     551  ACAACTCCAG TCGAACCAAC CCCACCTCCA ACTTTTTTAA CACCAACTGA  
     601  AGAAGTTAAA GTTCAATTAT TCCCAACCAA TTGTCCAAAA TGTGGTAAGA  
     651  AAGCATACTT TAATGAACTT AAAGTTTATA ACTCTCGTGA TTGGCATAAG  
     701  ACgtatgtac tttttattta tttatttatt tcaatttatt ttcaaaaata  
     751  aaaatcaaaa aaaaaaaaaa aaaatttatt aatcaaaaaa taaaaatata  
     801  aaatataaaa taaatattag TTGTTTCGCT TGTTTCTCAT GTAATAAAAA  

ORF -X
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P6 P5P7
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0.5        2.2                          0.3  0.3           1.0 (4.3 kb )
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(kb)

Start codon

Stop codon

Start codon
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(.........Figure continued from the previous page) 
 
     851  CTTAGTAAGT GGTCAATACA GTGAAAAAGA AGGTTTAATT TATTGTCCAA  
     901  GATGTTATCA ATCTAAATTT GGTCCAAGTG GTTACACCAA TACTGGTGCA  
     951  TTAGTTTTAC ATTAAaaaaa ataaaatcaa aaaaaaaaaa aataaaatca  
    1001  aaaaacaaga ataaaatatg tgctataaaa aaataataat atttatttaa  
    1051  ataaataata aaaataaaaa atcaaaaata aaaaaaaatt aaaaaaatct  
    1101  aatataatat tttaaaatga ttaatttaaa aataaagggg ggatgaggcg  
    1151  gatatttttt tttttttgac atctaaaaat aaacaatgcc atattttttt  
    1201  ttaatttttt tttttttttt tttcaatcct tctttctttt tttttttctt  
    1251  ctttcctttt caaaaaaatt cccctaaatt ttcccagggt ccaatttttt  
    1301  tttat 

 

Figure 9. Organization of the DLIM1 gene locus. (a) Schematic representation of the 
DLIM1 gene locus. Restriction sites and estimated size of the fragments are indicated. The 
box representing the DLIM1 coding sequence is shaded and three black boxes within the 
DLIM1 coding sequence represent the intron sequences. The start and stop codons are 
indicated. X represents an unclassified open reading frame located upstream of the DLIM1 
coding sequences. The position and orientation of oligonucleotide primers used for 
sequencing, T7 universal (P1), DLIM1 5’ (P2), CLIM 5’(P3), gDLIM1-I (P4), SP6 universal 
(P5), DLIM1 3’ (P6), DLIM1-U (P7) are indicated by arrows. (b) Sequence of the DLIM1 
gene. The open reading frame (upper case letters) of the DLIM1 gene is interrupted by three 
introns (lower case letters). Putative start and stop codons are indicated in bold upper case 
letters. Two potential polyadenylation signals following the stop codon are shown in boxes. 
The 5’- and 3’- flanking sequences are shown in lower case letters. Putative regulatory 
sequences in the 5’ flanking region are underlined. 
 

 

2. Subcellular localization of DLIM1 

 

To investigate the subcellular localization of DLIM1 in Dictyostelium, two strategies were 

planned: i, expression of DLIM1 as a green fluorescent protein (GFP)-fusion protein in 

Dictyostelium, which also allows to follow the cellular dynamics of DLIM1 in vivo; ii, 

generation of DLIM1 specific monoclonal antibodies to perform immunofluorescence 

studies. 

 

2.1. Expression of DLIM1 as a GFP-fusion protein in Dictyostelium 

 

Full length DLIM1 cDNA was subcloned in frame at the C-terminus of GFP in the pDEXRH 

vector, a GFP expression vector, under the control of actin-15 promoter (Materials and 

Methods, 3.19.5.; Figure 10a). The resulting vector was introduced into Dictyostelium AX2 
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cells by electroporation and the stable transformants were selected for growth in the presence 

of 20 µg/ml G418 (Geneticin). The transformants were confirmed by visual inspection under 

a fluorescence microscope and were used for localization studies in vivo.  

 

2.1.1. Subcellular localization of GFP-DLIM1 in vegetative cells  

 

GFP-DLIM1 expressing cells were grown axenically and prepared for imaging under a 

confocal laser scan microscope (Leica DM/IRBE) as described in Materials and Methods 

(6.1.). The confocal fluorescence microscopic studies of the GFP-DLIM1 expressing cells 

clearly indicate a preferential localization of the GFP-DLIM1 fusion protein at the cell 

cortex but the distribution is not uniform (Figure 10b). A diffused fluorescence of GFP-

DLIM1 in the cytoplasm is also observed that likely manifests free GFP-DLIM1. In addition, 

we observed a significant accumulation of GFP-DLIM1 at the leading edges of the motile 

GFP-DLIM1 expressing cells (Figure 11). Occasional localization of GFP-DLIM1 in the 

nucleus was also observed (Figure 10b), the significance of which is not known. This pattern 

of distribution contrasts with the one of GFP that being evenly distributed throughout the 

cytoplasm shows no particular accumulation at specific sites (Maniak et al., 1995, Westphal 

et al., 1997). The observed accumulation of GFP-DLIM1 can, therefore, be attributed to the 

DLIM1 moiety of the fusion protein rather than the GFP-moiety.  

 

To correlate the localization of DLIM1 with the organization of the actin cytoskeleton, GFP-

DLIM1 expressing cells were fixed with cold methanol and immunostained with anti-actin 

monoclonal antibody (Act 1-7) followed by staining with Cy3 conjugated goat-anti mouse 

IgG as the secondary antibody as described in Materials and Methods (5.2.). After 

immunolabelling, the fixed cells were observed under the confocal laser scan microscope 

and the images were captured (Materials and Methods, 6). For most areas of the cells, the 

pattern of GFP-DLIM1 fluorescence coincides with that of the actin staining (Figure 12).  

 

The colocalization of GFP-DLIM1 and actin prompted us to analyse the association of 

DLIM1 with the actin cytoskeleton by extracting the Dictyostelium cells expressing GFP-

DLIM1 fusion protein with Triton X-100 (Materials and Methods, 4.9.). Triton X-100 

treatment of cells solublizes a substantial proportion of intracellular proteins, whereas the 
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insoluble fraction is enriched in cytoskeletal proteins (Prassler et al., 1998). Figure 13b 

shows an immunoblot of the Triton X-100 soluble and insoluble fractions of GFP-DLIM1 

expressing Dictyostelium cells labelled with anti-GFP antibodies (Living color peptide 

antibody, Clontech). Surprisingly, the GFP-DLIM1 fusion protein is observed in the Triton 

X-100 soluble fraction of the cell. A similar Triton X-100 soluble behaviour has been 

reported for mammalian gelsolin, an actin binding protein (Barkalow et al., 1996; Wang et 

al., 1997). To address the localization of GFP-DLIM1 with respect to actin, we next 

investigated the dynamics of GFP-DLIM1 distribution in those cellular processes in which 

the actin cytoskeleton plays a major role like pinocytosis, phagocytosis and motility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Expression of DLIM1 as a GFP-DLIM1 fusion protein in Dictyostelium. (a) 
Schematic representation of the vector allowing expression of DLIM1 as a GFP-fusion 
protein in Dictyostelium. DLIM1 was cloned in frame at the C-terminus of GFP in a 
pDEXRH vector under the control of actin-15 promoter. The actin-6 promoter controls the 
expression of Tn5 (G418 resistance gene), and the actin-8 terminator region is located 
downstream of the Tn5 coding sequence as well as the DLIM1 coding sequence. (b) 
Subcellular localization of GFP-DLIM1 fusion protein in GFP-DLIM1 expressing cells. The 
GFP-DLIM1 fusion protein accumulates to high levels at the cell cortex. Occasional 
localization of GFP-DLIM1 in the nucleus was also observed (marked with arrowheads). 
Bars, 10 m. 
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Figure 11. Localization of DLIM1 on the leading edge of the motile cell. Confocal 
sections were taken at the times indicated. The series of confocal sections indicate that GFP-
DLIM1 accumulates to high levels on the leading edge (marked with arrowheads) of the 
moti����������������� �� 
 

 

 

 

 

 

 

 

 

 

 

Figure 12. Colocalization of GFP-DLIM1 fusion protein and actin in the cell cortex. 
Immunofluorescence studies performed with GFP-DLIM1 expressing cells exhibit that the 
fluorescence pattern of GFP-DLIM1 fusion protein coincides with that of the actin staining 
for most areas of these cells. The cells were fixed with methanol and immunolabelled with 
anti-actin monoclonal antibody (Act 1-7). The GFP fluorescence pattern and the 
corresponding actin-staining images are shown. Overlay image show the colocalization of 
GFP-DLIM1 fluorescence with the actin staining in the cell-cortex. Bar, 10 m. 
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Figure 13. Triton X-100-soluble and -insoluble fractions of GFP-DLIM1 expressing 
Dictyostelium cells. Dictyostelium cells expressing GFP-DLIM1 fusion protein were lysed 
with 1% Triton X-100 in the presence of cytoskeleton-stabilizing buffer (80 mM PIPES, pH 
6.8, 30% glycerol and 5 mM MgCl2). Triton X-100-soluble and -insoluble fractions were 
separated by centrifugation at 14,000 x g for 3 min and extracted in 2x SDS sample buffer, 
(a) A Coomassie stained 12% SDS-polyacrylamide gel and (b) Immunoblot demonstrating 
the association of GFP-DLIM1 fusion protein with Triton X-100-soluble fraction. For both 
(a) and (b), proteins of the Triton X-100-soluble (lane 1), -insoluble (lane 2) fraction, and 
whole cell homogenate of GFP-DLIM1 expressing cells (lane 3) were resolved on a 12% 
SDS-polyacrylamide gel. For (b), the resolved proteins were blotted onto a nitrocellulose 
membrane and the blot was labelled with anti-GFP antibody (Living color peptide antibody, 
Clontech). Association of actin and myosin with the Triton X-100-insoluble fraction can be 
seen in the Coomassie stained gel (a). 
 

2.1.2. Localization of GFP-DLIM1 fusion protein during pinocytosis 

 

In Dictyostelium cells, macropinocytosis accounts for most of the fluid-phase uptake and 

depends on the integrity of the actin cytoskeleton, as shown by treatment of cells with 

cytochalasin A, an actin depolymerising drug (Hacker et al., 1997). We were, therefore, 

interested in investigating the dynamics of GFP-DLIM1 distribuition in Dictyostelium cells 

during fluid-phase endocytosis. Dictyostelium cells expressing GFP-DLIM1 fusion protein 

were allowed to adhere to glass coverslip, supernatant was replaced with phosphate buffer 

containing TRITC-dextran (Sigma) and confocal images were obtained to follow the 

distribution of GFP-DLIM1 fluorescence during uptake of TRITC-dextran (Materials and 

Methods, 6.2.).  
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Figure 14 represents a time series of endocytosis stages in a Dictyostelium cell expressing 

GFP-DLIM1 fusion protein. The cortical enrichment of GFP-DLIM1 is clearly apparent in 

this cell. The redistribution of GFP-DLIM1 during formation of a macropinosome can be 

followed at the site of the cell marked with an arrow. At the beginning of the sequence, a 

GFP-DLIM1 rich membrane invaginates (6 s). The protrusion of the GFP-DLIM1 rich 

membrane progresses (12 s through 36 s) until the edges of the protrusions fuse to form a 

macropinosome containing a portion of the surrounding liquid that is surrounded by a coat 

containing GFP-DLIM1 (42 s). Thereafter, GFP-DLIM1 gradually dissociates from the 

macropinosome (48 s through 1 min 18 s) to liberate the macropinosome into the cytoplasm. 

In the end (1 min 24 s and 1 min 30 s), GFP-DLIM1 completely dissociates from the 

macropinosome, though the vesicle is still present. This process is highly suggestive of an 

involvement of DLIM1 at early stages of endocytosis; on maturation of the endosome, 

DLIM1 dissociates from the endosome and returns to the cortex or remains in the cytoplasm. 

In general, GFP-DLIM1 dissociates completely from the endosome within <1 min of the 

internalisation of the endosome. 

 

2.1.3. Localization of GFP-DLIM1 during phagocytosis 

 

Phagocytosis is initiated by adhesion of a particle to the surface of a Dictyostelium cell. A 

phagocytic cup is formed at the cell surface around the particle that like fluid-phase 

endocytosis involves active rearrangement of the actin cytoskeleton. The rim of the cup 

extends around the particle resulting in the internalisation of the particle. In an attempt to 

study the dynamics of GFP-DLIM1 during phagocytosis, GFP-DLIM1 expressing cells were 

allowed to sit on a glass coverslip and challenged with TRITC-labelled yeast cells (Materials 

and Methods, 6.3.). The dynamics of GFP-DLIM1 redistribution during phagocytosis was 

followed by observing under a confocal laser scan microscope.  

 

In the sequence shown in Figure 15, a GFP-DLIM1 expressing Dictyostelium cell 

phagocytosing a yeast cell is followed. GFP-DLIM1 fusion protein was observed to 

accumulate to high levels at the phagocytic cup (0 s). Cup progression (6 s) leads to the 

formation of a coat around the yeast cell that is enriched in GFP-DLIM1 (12 s), resulting in 

engulfment of the yeast cell. Immediately after the yeast cell has been successfully ingested, 
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GFP-DLIM1 is gradually removed from the phagosome (18 s through 48 s). Like fluid-phase 

endocytosis, GFP-DLIM1 dissociates completely from the phagosomes within <1 min of the 

yeast uptake and returns to the cortex or remains in the cytoplasm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Dynamics of GFP-DLIM1 redistribution during pinocytosis. GFP-DLIM1 
cells were allowed to adhere to glass coverslips and then the supernatant was replaced by 
phosphate buffer containing TRITC-dextran. Confocal sections were taken at the times 
indicated. Note the strong enrichment of GFP-DLIM1 at the cell-cortex, and the 
redistribution of GFP-DLIM1 during the formation of the pinocytic vesicle. An arrow in the 
second panel (06 s) indicates the site of formation of a pinocytic vesicle as seen in 
subsequent images. Bar, 10 µm. 
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In the series of confocal images shown in Figure 16, attachment of a yeast cell to a GFP-

DLIM1 expressing Dictyostelium cell (0 s) leads to the accumulation of GFP-DLIM1 in the 

phagocytic cup (30 s). At the same time (30 s), a GFP-DLIM1 rich membrane invaginates 

from the cell at an area opposite to the attached yeast cell leading to the formation of a 

macropinosome rich in GFP-DLIM1 (1 min). Even during the formation of a 

macropinosome opposite to the site of attachment of the yeast cell, the phagocytic cup 

progression proceeds (1 min through 1 min 30 s). However at 1 min 30 s, the area where the 

macropinosome has formed turns into a leading edge and the phagocytic cup progression 

ceases. The accumulated GFP-DLIM1 dissociates completely from the phagocytic cup (2 

min) and the phagocyte detaches from the yeast cell (3 min 30 s), suggesting that 

relocalization of DLIM1 in phagocytic cups does not irreversibly influence the process of 

phagocytosis. The series of events shown in Figure 16 also indicate that a phagocytic cup, a 

macropinosome and a leading edge can coexist in a cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 15. Dynamics of GFP-DLIM1 redistribution during phagocytosis. GFP-DLIM1 
cells were incubated with TRITC-labelled, heat-killed yeast cells. Confocal sections were 
taken at the times (in seconds) indicated. The series of confocal sections indicate that GFP-
DLIM1 accumulates to high levels in the phagocytic cups, which progresses to form a coat 
around the yeast particle. After engulfment of the yeast particle the fusion protein gradually 
dissociates from the phagosome. An arrow in the first image (0 s) shows the yeast cell of 
interest. Bar, 10 m. 

0´´ 6´´ 12´´

18´´ 24´´ 30´´

48´´42´´36´´

0´´ 6´´ 12´´

18´´ 24´´ 30´´

48´´42´´36´´

0´´ 6´´ 12´´

18´´ 24´´ 30´´

48´´42´´36´´



3. Results                                                                                                                                  88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Dynamics of GFP-DLIM1 redistribution during unsuccessful ingestion. 
Confocal sections were obtained at the times indicated as described in the legend of Figure 
15. The series of confocal sections exhibit formation and regression of the phagocytic cup. 
Upon cessation of the phagocytic cup-progression, the accumulated GFP-DLIM1 dissociates 
completely from the cup, and the phagocyte detaches from the yeast cell. Asterisk represents 
the yeast cell of interest. Arrowhead represents the site of formation of a macropinosome (30 
s and 1 min) or a leading edge (1 min 30 s and 2 min). �������� �� 
 

To investigate the localization of GFP-DLIM1 with respect to actin during phagocytosis, 

Dictyostelium cells expressing GFP-DLIM1 fusion protein were incubated with heat-killed 

yeast cells for 10 min on a glass coverslip and immunolabelled after methanol fixation with 

anti-actin monoclonal antibody (Act 1-7) followed by labelling with Cy3 conjugated goat 

anti-mouse IgG (Materials and Methods, 5.4.). Confocal images of immunolabelled cells 

exhibit that GFP-DLIM1 is enriched at the phagocytic cup formed due to attachment of yeast 

cells to the Dictyostelium cell surface and GFP-DLIM1 fluorescence coincides with the actin 

staining (Figure 17). 
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Figure 17. Distribution of GFP-DLIM1 in GFP-DLIM1 expressing cells fixed during 
the process of phagocytosis. GFP-DLIM1 expressing cells were incubated for 10 min with 
heat-killed yeast cells and were labelled after methanol-fixation with anti-actin monoclonal 
antibody (Act 1-7). Confocal images exhibit that GFP-DLIM1 is enriched at the phagocytic 
cup during uptake of the yeast particle. The fluorescence pattern of the GFP-DLIM1 fusion 
protein at the phagocytic cups as well as the cell-cortex coincides with actin staining, which 
can be appreciated in the overlay images. The arrowheads in GFP-DLIM1 panels mark the 
position of the yeast cell being phagocytosed and arrows represent the cortical fluorescence. 
Bars, 10 µm. 
 

2.1.4. Localization of GFP-DLIM1 during exocytosis 

 

Dictyostelium cells take up all their nutrients by endocytosis. Both particle- and fluid-

containing vesicles are transiently surrounded by an actin coat. The actin coat is eventually 

shed by the vesicles as they transit through the cell leading to acidification and digestion of 

vesicle contents. The actin reassembles on the vesicles as they return to the cell cortex for 

exocytosis of the indigestible remnants (Rauchenberger et al., 1997). Dynamics of GFP-

DLIM1 distribution during exocytosis was investigated essentially according to that in case 

of phagocytosis (Materials and Methods, 6.3.), except that the GFP-DLIM1 expressing cells 

were incubated with TRITC-labelled yeast cells on a glass coverslip for about 1 h before 

obtaining confocal images. 

GFP-DLIM1 Actin OverlayGFP-DLIM1 Actin Overlay
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A GFP-DLIM1 expressing cell in which exocytosis was monitored over several minutes is 

shown in Figure 18. The first frame (0 s) shows a GFP-DLIM1 expressing Dictyostelium cell 

with two already phagocytosed yeast particles (shown with and without asterisk) and a yeast 

particle that is in contact with the cell (marked with an arrowhead). At 5 min 18 s, one of the 

phagocytosed yeast (marked with an asterisk) comes in close proximity to the cell cortex and 

the phagocytic vacuole associates with the cell cortex, which leads to the appearance of 

GFP-DLIM1 fluorescence on one edge of the membrane surrounding the yeast particle (5 

min 24 s). The GFP-DLIM1 fluorescence begins to appear on the other edge of the 

membrane surrounding the yeast particle (5 min 30 s) and starts diminishing from the site 

where it has initially appeared (5 min 36 s to 5 min 42 s). The GFP-DLIM1 protein 

continues to move on the membrane surrounding the yeast particle (5 min 48 s to 6 min 12 

s). The fusion protein disappears completely from the membrane surrounding the yeast 

particle from 6 min 30 s to 6 min 48 s, and at this stage fluorescence begins to appear on the 

region of the cell membrane that is in contact with the extracellular yeast particle (marked 

with an arrowhead). This may imply that the cell has stopped exocytosis and has started 

phagocytosing another yeast, but this was only a transient phase as at 7 min 06 s the cell 

reverses the process and starts exocytosis again which is marked by the reappearance of the 

GFP-DLIM1 fluorescence on the membrane surrounding the already phagocytosed yeast. 

The fluorescence increases at 7 min 12 s, thereafter starts diminishing (7 min 18 s to 7 min 

24 s) till it disappears again (7 min 30 s). From 7 min 06 s to 7 min 24 s, almost one-third of 

the yeast has protruded out of the cell. At 7 min 30 s, the cell again starts phagocytosing as 

seen by the reappearance of fluorescence on the phagocytic cup (marked with an arrowhead). 

The GFP-DLIM1 fluorescence disappears from the phagocytic cup and reappears on the 

membrane at the site of exocytosis (7 min 48 s) and persists there till 9 min. Simultaneously, 

from 7 min 48 s to 9 min, the cell is trying to throw out the yeast particle with almost half of 

the yeast particle still inside the cell (7 min 48 s) and approximately two-third of the yeast 

paricle protruding out of the cell (9 min). From 9 min 18 s to 10 min 24 s, the exocytosed 

yeast is still in contact with the cell and at 12 min 54 s the contact between the cell and the 

yeast is lost. The series of images shown in Figure 18 suggest that DLIM1 plays a role in 

exocytosis by possibly facilitating association of the late vacuole with the cell cortex. 
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Figure 18. Dynamics of GFP-DLIM1 redistribution during exocytosis. GFP-DLIM1 
cells were incubated with TRITC-labelled, heat-killed yeast cells for about 1 h. Confocal 
sections were obtained at the times indicated. Asterisk marks the yeast cell of interest and 
arrowhead marks the yeast that the GFP-DLIM1 expressing cell is trying to phagocytose. 
Note the accumulation of GFP-DLIM1 around the exocytotic vacuole as the cell prepares for 
exocytosis of the yeast cell. Bar, 10 µm. 
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Figure 19. Dynamics of GFP-DLIM1 during cell-motility. GFP-DLIM1 cells were 
starved for 6 h in phosphate buffer in order to make them aggregation-competent. 
Aggregation-competent cells, in general, acquire an elongated shape with a well-defined 
front and tail. Fluorescence images of an aggregation-competent cell are shown in a and b 
and their respective phase-contrast images in a’ and b’. Time series of an aggregation-
competent GFP-DLIM1 expressing cell, which is rapidly extending pseudopods, is shown in 
c. Confocal images were taken at the times indicated. GFP-DLIM1 is found to accumulate to 
high levels in the pseudopods (indicated by arrows in all images). Bars, 10 m. 
 

2.1.5. Localization of GFP-DLIM1 in motile cells 

 

On starvation, Dictyostelium enters a developmental program and during early development 

cells become aggregation-competent having the ability to sense and respond to a cAMP 

gradient. The aggregation-competent cells attain a typical elongated shape with a well 

defined tail and front. These cells are highly motile in nature and move by extension of 

pseudopods in the direction of the chemoattractant. Extensive remodelling of the actin 

network accompanies the extension of pseudopods. Dynamics of GFP-DLIM1 during 

motility was investigated in aggregation-competent cells after 6 h of starvation. (Materials 

and Methods, 6.4.).  
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Figures 19a,b show the fluorescence images of an aggregation-competent GFP-DLIM1 

expressing cell that is extending a pseudopod. The presence and location of the pseudopod, 

which is devoid of cytoplasm, can be easily distinguished in their respective phase-contrast 

images (Figures 19a’,b’). GFP-DLIM1 was found to accumulate to high levels in the 

pseudopods. Indeed the entire pseudopod is filled with the GFP-DLIM1 fluorescence. Figure 

19c shows the time series of redistribution of GFP-DLIM1 fluorescence in an aggregation-

competent GFP-DLIM1 cell that is rapidly extending pseudopods. Images at different time 

points show that GFP-DLIM1 preferentially assembles in a newly formed pseudopod of the 

motile cell, where it remains when the mass of the cell moved in the direction of the leading 

pseudopod and/or until the pseudopod retracts.  

 

2.2. N- and C-terminal DLIM1 deletion studies 

 

LIM domains function as protein-binding interfaces and, in this capacity, are thought to 

influence subcellular protein localization and regulate protein function (Schmeichel and 

Beckerle, 1994). Since the DLIM1 protein is comprised primarily of two LIM domains, we 

were interested in the possibility that the site on DLIM1 that is responsible for its 

colocalization with actin and its involvement in the dynamic processes (pinocytosis, 

phagocytosis, exocytosis and motility) might be contained within a single LIM domain. To 

address this, N- and C-terminal DLIM1 deletion constructs were generated via a PCR-based 

approach (Materials and Methods, 3.19.6.).  

 

The N- and C-terminal LIM domains of DLIM1 are referred to in the text as NLIM and 

CLIM, respectively and the intervening region between the two LIM domains that is rich in 

proline amino acid residues is referred to as P-rich sequence. The NLIM, P-rich sequence 

and CLIM regions of DLIM1 are depicted in Figure 20. Oligonucleotide primers were 

generated (depicted in Figure 20) to amplify DLIM1 cDNA sequences corresponding to a) 

the NLIM (a.a. 1-58); b) the NLIM and P-rich sequence (a.a. 1-111), which we refer to as 

NLIM-P; c) the CLIM (a.a. 110-182) and d) the CLIM and P-rich sequence (a.a. 57-182), 

which we refer to as CLIM-P. The primers were designed such that each amplified fragment 

was supplemented with an in-frame stop codon as well as flanking suitable restriction sites 

to facilitate subcloning (Materials and Methods, 1.9.). The resulting amplified DNA 
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fragments were cloned at the C-terminus of GFP in the pDEXRH expression vector under 

control of the actin-15 promoter and subsequently, the Dictyostelium cells were transformed 

by these constructs (Materials and Methods, 3.19.6.). Mutants expressing these GFP-fusion 

proteins were selected for their resistance to G418 and were used for localization studies in 

vivo. These fusion proteins are referred to in the text as GFP-NLIM, GFP-NLIM-P, GFP-

CLIM and GFP-CLIM-P (Figure 20). 

 
 

 

 

 

 

 

 

 

 

 
Figure 20. Schematic representation of terminally deleted DLIM1 proteins used for 
localization studies. Domain organization of DLIM1 is shown. NLIM and CLIM represent 
the N- and C-terminal LIM domain, respectively. P-rich seq. represents the intervening 
region between the two LIM domains that is rich in proline residues. The position and 
orientation of oligonucleotide primers used for amplification, NLIM 5’ (P1), CLIM-P 5’ 
(P2), CLIM 5’ (P3), CLIM 3’ (P4), NLIM-P 3’ (P5), NLIM 3’ (P6), are indicated by arrows. 
The primers were designed such that each amplified fragment was supplemented with an in-
frame stop codon (represented by an oval-box at the 3´-end of each fragment). The amplified 
DNA fragments were cloned at the C-terminus of GFP in a pDEXRH expression vector 
under control of the actin-15 promoter. Figures in the brackets represent amino acid residues 
that were amplified and cloned. Dictyostelum cells were transformed by these constructs and 
the mutants obtained were analyzed under a confocal microscope. 
 

Cells expressing these GFP-fusion proteins were grown axenically and prepared for imaging 

under a confocal laser scan microscope as described for GFP-DLIM1 expressing cells 

(Materials and Methods, 6.1.). The average intensity of the GFP fluorescence in our 

transformants expressing these GFP-fusion proteins was good with an exception of cells 

expressing GFP-NLIM. Only occasionally could we record cells displaying intense GFP-

NLIM fluorescence. We could not improve the intensity of the GFP-NLIM fluorescence 
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even after a second transformation attempt to select for higher copy numbers of the 

integrated expression vectors. The immunoblot shown in Figure 21 proves that GFP-NLIM 

is not present in amounts as high as seen for GFP-NLIM-P, GFP-CLIM, GFP-CLIM-P and 

GFP-DLIM1.  

 

 

 

 

 

 

 

 

 

Figure 21. Immunoblot showing the expression levels of different GFP-fusion proteins 
in Dictyostelium. Whole cell homogenate of Dictyostelium cells expressing GFP-NLIM 
(lane 1), GFP-NLIM-P (lane 2), GFP-CLIM (lane 3), GFP-CLIM-P (lane 4) and GFP-
DLIM1 (lane 5) fusion proteins was resolved on a 12% SDS-polyacrylamide gel, blotted 
onto a nitrocellulose membrane and immunolabelled with anti-GFP monoclonal anibody 
(K3-184-2). Equal amount of total cellular proteins (equivalent to 2 x 105 cells) was loaded 
in each lane. The immunoblots were processed after incubation with an appropriate HRP-
conjugated secondary antibody by ECL-detection system for visualization of the specific 
immunolabelled bands. 
 

Confocal studies performed with the cells expressing these GFP-fusion proteins (GFP-

NLIM, GFP-NLIM-P, GFP-CLIM and GFP-CLIM-P) revealed that all the four GFP-fusion 

proteins exhibit a fluorescence pattern that is identical to the parent GFP-DLIM1 fusion 

protein with a preferential localization of each of the four GFP-fusion proteins at the cell-

cortex, leading edges of the motile cells, and transient association with the macropinosomes 

(selected images are shown in Figure 22). Figure 22a shows a highly pixelled image of an 

aggregation-competent GFP-NLIM expressing Dictyostelium cell, which is due to the low 

average levels of GFP-NLIM in these cells. GFP-NLIM fluorescence can be detected in the 

pseudopod of the motile cell in addition to cytoplasmic distribution, like in the case of GFP-

DLIM1 (Figure 19). GFP-NLIM-P fluorescence can be seen around the pinocytic vesicles 

(Figure 22b), which is essentially similar to that of the GFP-DLIM1 (Figure 14). Likewise, 
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cortical enrichment of GFP-CLIM and GFP-CLIM-P (Figure 22c,d) is also identical to that 

of the parent GFP-DLIM1 fusion protein (Figure 10b). 

 

To investigate the distribution of GFP-NLIM, GFP-NLIM-P, GFP-CLIM and GFP-CLIM-P 

fusion proteins during the process of phagocytosis and to correlate it with the organization of 

the actin, cells expressing these GFP-fusion proteins were incubated with heat-killed yeast 

cells on a glass coverslip and immunolabelled after methanol fixation with anti-actin 

monoclonal antibody (Act 1-7) exactly according to the method described for GFP-DLIM1 

expressing cells (Materials and Methods, 5.4.).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Subcellular localization of GFP-NLIM, GFP-NLIM-P, GFP-CLIM and 
GFP-CLIM-P. (a) GFP-NLIM accumulates in the pseudopod (marked by arrowheads) of an 
aggregation-competent cell. (b) GFP-NLIM-P fluorescence is visible on the coat that 
surrounds the pinocytic vesicle (marked by arrowheads). (c and d) Enrichment of GFP-
CLIM (c) and GFP-CLIM-P (d) on the cell-cortex (marked by arrowheads) is visible. Bars, 
10 µm. 
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Figure 23. Distribution of GFP-NLIM, GFP-NLIM-P, GFP-CLIM and GFP-CLIM-P 
during phagocytosis. Cells expressing these terminally deleted DLIM1 proteins fused to 
GFP exhibit a fluorescence pattern that is identical to that of the parent GFP-DLIM1 fusion 
protein. All the truncated GFP-fusion proteins accumulate at the phagocytic cup (indicated 
by arrows) during uptake of the yeast cell and the fluorescence pattern of these truncated 
GFP-fusion proteins coincides with actin staining, as observed in overlay images. Bars, 10 
µm. 
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Confocal images of immunolabelled cells exhibit that all the four GFP-fused DLIM1 

deletion products are enriched at the phagocytic cups formed due to attachment of yeast cells 

to the Dictyostelium cell surface (Figure 23). Moreover, the fluorescence of all the four GFP-

fusion proteins coincided with the actin staining. This as well as the above mentioned results 

suggest that either LIM domain of DLIM1 is sufficient for its colocalization with actin and 

its involvement in the dynamic processes.  

 

3. Generation of DLIM1 specific monoclonal antibodies  

 

We were interested in generating DLIM1 specific monoclonal antibodies, which will enable 

us not only to conduct immunolocalization studies in wild-type Dictyostelium cells but also 

to identify the binding partners of DLIM1. To achieve this, DLIM1 was expressed as either a 

histidine-tagged protein or a glutathione S-transferase (GST)-fusion protein in E. coli. 

 

3.1. Expression and purification of DLIM1 as a histidine-tagged protein 

 

Expression of DLIM1 as a N-terminal hexa-histidine fusion protein in E. coli was achieved 

by subcloning the DLIM1 cDNA sequence in-frame at the multiple cloning site of the 

pQE30 expression vector obtained from Qiagen (Materials and Methods, 3.19.7.). The 

expression was found to be maximal after 5 h of induction with 2 mM IPTG at 37ºC. The 

expressed histidine-tagged DLIM1 migrated on SDS-polyacrylamide gels with a molecular 

weight of 30 kD (Figure 24a,b), which is significantly higher than the expected molecular 

weight (20 kD). We have confirmed employing mass spectroscopy that the protein migrating 

at 30 kD is indeed the histidine-tagged DLIM1 protein. The reason for this difference in the 

observed and the expected molecular weights is not known. The histidine-tagged DLIM1 

protein was soluble only in denaturing 8 M urea-containing buffer and reducing the urea 

concentration by dialysis lead to precipitation of the histidine-tagged DLIM1 protein. The 8 

M urea-soluble bacterial extract was, therefore, subjected to a Ni-NTA-agarose affinity 

column (Materials and Methods, 4.5.), which lead to the partial-purification of the histidine-

tagged DLIM1 protein (Figure 24a,b). 
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Figure 24. Purification of histidine-tagged DLIM1 protein from E. coli. (a) A Coomassie 
stained 12% SDS-polyacrylamide gel showing the partially-purified histidine-tagged DLIM1 
protein. (b) Immunoblot labelled with anti-histidine antibody (Qiagen). A 12% SDS 
polyacylamide gel was loaded with uninduced- (T0), induced- (T5) E. coli homogenate, and 
the partially-purified histidine-tagged DLIM1 protein (E) eluted from the Ni-NTA agarose 
column (Qiagen). 
 

3.1.1. Generation of monoclonal antibodies using histidine-tagged DLIM1 as an 

antigen 

 

The partially-purified histidine-tagged DLIM1 was resolved on SDS-polyacrylamide gel and 

the gel-slice containing the histidine-tagged DLIM1 protein was cut out and homogenised in 

PBS (Materials and Methods, 5.1.1.). Two BALB/c mice were immunized intra-peritoneally 

with this protein suspension and DLIM1 specific monoclonal antibodies were generated as 

described in Materials and Methods (5.1.). The hybridoma supernatants of the clones 

obtained were screened for DLIM1 specific antibody production by stripe tests (Materials 

and Methods, 5.1.4.2.) using whole cell homogenate of E. coli cells expressing histidine-

tagged DLIM1, Dictyostelium wild-type AX2 whole cell homogenate and whole cell 

homogenate of Dictyostelium cells expressing GFP-DLIM1 fusion protein. Fourteen putative 

positive clones obtained were subsequently subcloned to get single-cell clones. 

Unfortunately, we could not get any DLIM1 specific monoclone as none of the hybridoma 

supernatants from the monoclones obtained was able to recognise the endogenous DLIM1 
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protein as well as the GFP-DLIM1 fusion protein in Dictyostelium homogenates. Moreover, 

all the monoclones secreted antibodies that were highly non-specific and cross-reacted with 

other E. coli and Dictyostelium proteins in immunoblot analyses as well as in 

immunofluorescence tests performed with wild-type Dictyostelium cells and GFP-DLIM1 

expressing Dictyostelium cells. One of the reasons for not getting a DLIM1 specific antibody 

secreting monoclone could be the fact that we have used a gel-eluted histidine-tagged 

DLIM1 fusion protein as an antigen for immunizing the mice. We, therefore, decided to 

express DLIM1 as a GST-fusion protein in E. coli and use the purified GST-DLIM1 fusion 

protein as an antigen for immunizing the mice. 

 

3.2. Expression and purification of DLIM1 as a GST-fusion protein 

 

For the expression of DLIM1 as a GST-fusion protein in E. coli, the full length DLIM1 

cDNA was subcloned into the prokaryotic expression vector pGEX-2T (glutathione–S-

transferase gene fusion system, Pharmacia) in-frame at the C-terminus of GST (Materials 

and Methods, 3.19.8.). The GST-DLIM1 fusion protein was expressed in E. coli strain XLI 

blue at different temperature conditions (30°C and 37°C) with varying concentrations of 

IPTG (0.1 mM, 0.5 mM and 1.0 mM) (Materials and Methods, 4.6.). Maximum yield was 

obtained after 3 h of induction with 1.0 mM IPTG at 37°C. The GST-DLIM1 fusion protein 

migrated on a SDS-polyacrylamide gel with a molecular weight of 47 kD (Figure 25a,b).  

 

For purification of GST-DLIM1, bacterial cells were lysed after induction and the fusion 

protein was purified from the supernatant by affinity chromatography using glutathione-

agarose beads (Materials and Methods, 4.6.). Figure 25a shows a Coomassie-stained gel 

exhibiting different fractions of GST-DLIM1 protein eluted after binding to glutathione-

agarose beads. The presence of the GST-DLIM1 protein in the elute fractions was confirmed 

by immunoblotting (Figure 25b) using goat anti-GST antibody (Pharmacia). The purified 

fusion protein was dialysed against 10 mM ammonium-bi-carbonate to remove the salts 

present in the release buffer that had been used for elution of protein from the beads. After 

dialysis, the protein was lyophilised overnight, stored at –20ºC and resuspended in an 

appropriate buffer before use. 
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Figure 25. Expression and purification of GST-DLIM1 fusion protein. (a) A Coomassie-
stained 12% SDS-polyacrylamide gel. The gel was loaded with molecular weight marker 
(M), uninduced- (T0) and induced- (T3) E. coli homogenate, elute fractions (numbered 1 to 
5) containing GST-DLIM1 fusion protein, supernatant left after binding of GST-DLIM1 
fusion protein to the glutathione-agarose beads (S) and beads left after elution of the fusion 
protein (B). An arrow on the right indicates GST-DLIM1 fusion protein and a vertical bar on 
the right side indicates the degradation products of GST-DLIM1 fusion protein as confirmed 
by the immunoblot analysis. Apparent molecular weights (in kD) of standards are given on 
the left. (b) Immunoblot confirms the elution of GST-DLIM1 fusion protein. 12% SDS-
polyacrylamide gel was loaded with uninduced- (T0) and induced- (T3) E. coli homogenate 
and elute fraction number 1 (E1). The blot was labeled with anti-GST antibody (Pharmacia). 
An arrow on the right indicates the GST-DLIM1 fusion protein and a vertical bar on the 
right indicates degradation products of the GST-DLIM1 fusion protein. 
 

3.2.1. Generation of monoclonal antibodies using GST-DLIM1 fusion protein as an 

antigen 

 

DLIM1 specific monoclonal antibodies were generated as described in Materials and 

Methods (5.1.). The primary screening of the hybridoma supernatant for DLIM1 specific 

antibody production was performed by indirect ELISA, using purified GST-DLIM1 fusion 

protein as an antigen (Materials and Methods, 5.1.4.1.). The hybridoma supernatants that 

appeared positive by ELISA screening were further analysed by stripe tests (Materials and 

Methods, 5.1.4.2.) using whole cell homogenate of E. coli cells expressing GST and GST-

DLIM1 protein, to avoid the false positive clones that are commonly observed by ELISA.  

 

We obtained only a single clone secreting DLIM1 specific antibodies (K5-253), whereas 

several clones we tested secreted antibodies that were specific to GST protein. The DLIM1 
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specific K5-253 clone was selected for cloning in order to establish a single hybridoma cell 

line. Seventeen independent single cell clones of the mother clone K5-253 were established 

and their supernatant was analysed by immunoblotting using homogenate of GFP-DLIM1 

expressing Dictyostelium cells. Out of all the subclones screened, 4 subclones were selected 

(K5-253-3, K5-253-7, K5-253-8 and K5-253-15) based on their ability to recognise the 

GFP-DLIM1 fusion protein in Dictyostelium homogenate. The immunoblot shown in Figure 

26 demonstrates the ability of the hybridoma supernatant of two of the subclones (K5-253-3 

and K5-253-15) to recognise the GFP-DLIM1 fusion protein in the total cell homogenate 

(equivalent to 2 x 105 cells/lane) of axenically growing GFP-DLIM1 expressing 

Dictyostelium cells. However, none of the four subclones was able to recognise the 

endogenous DLIM1 protein in Dictyostelium homogenate (equivalent to 2 x 105 to 1 x 106 

cells/lane) obtained from vegetatively growing AX2 cells as well as from AX2 cells that had 

been starved for 3 h or 6 h (Figure not shown). The four selected subclones were expanded 

to generate large quantities of monoclonal antibody. Expansion of the subclones, however, 

resulted in lack of antibody production by these subclones. 

 

 

 

 

 

 

 

 

 

 

Figure 26. Immunoblot demonstrating the generation of DLIM1 specific monoclonal 
antibody. Total cellular proteins of GFP-DLIM1 expressing cells were extracted in 2x SDS 
sample buffer. The extracted proteins were resolved (equivalent to 2 x 105 cells/lane) on a 
12% SDS-polyacrylamide gel, blotted onto a nitrocellulose membrane and immunolabelled 
with anti-GFP monoclonal antibody, K3-184-2 (lane 1); hybridoma supernatant of K5-253-3 
(lane 2) and K5-253-15 (lane 3). Arrow on the right indicates GFP-DLIM1 fusion protein. 
The immunoblots were processed after incubation with an appropriate alkaline phosphatase-
conjugated secondary antibody by BCIP/NBT colour development substrate reaction system 
for visualization of the specific immunolabelled bands.  
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In our immunolocalization studies in wild-type AX2 cells and GFP-DLIM1 expressing 

Dictyostelium cells, none of the hybridoma supernatants tested (K5-253-3, K5-253-7, K5-

253-8 and K5-253-15) could recognise the endogenous DLIM1 protein in wild-type 

Dictyostelium cells. Moreover, none of the hybridoma supernatants was able to recognise the 

GFP-DLIM1 fusion protein in GFP-DLIM1 expressing cells, thus hampering further 

investigation. 

 

4. In vitro binding of DLIM1 to F-actin 

 

In our subcellular localization studies we have demonstrated that DLIM1 colocalizes with 

actin. We were, therefore, interested in investigating the binding capability of DLIM1 to 

actin in vitro. The F-actin binding activity of DLIM1 was analysed using actin sedimentation 

assays (Materials and Methods, 4.10.) in which purified GST-DLIM1 and G-actin were 

mixed and the actin polymerised by addition of 2 mM MgCl2 in imidazole buffer (pH 7.0). 

The GST-DLIM1 fusion protein was observed to partially co-sediment with filaments of α-

actin (purified from rabbit skeletal muscle; Figure 27) as well as Dictyostelium discoideum 

actin (Figure 28) even in the presence of high salt concentration (100 mM KCl). At 100 mM 

KCl concentration, actin binding efficiency of several actin-binding proteins has been 

observed to be drastically reduced, for example, α-actinin, comitin and Ddplastin (Witke, 

1991; Jung et al., 1996; Prassler et al., 1997). Controls for GST-DLIM1 alone showed that 

GST-DLIM1 remained almost completely in the supernatant in the absence of actin (Figures 

27, 28). The GST protein itself did not sediment with filaments of rabbit α-actin (Figure 27), 

thus suggesting a role for DLIM1 to bind F-actin. Interestingly, only the full length GST-

DLIM1 fusion protein was able to cosediment with F-actin, whereas the degradation 

products of GST-DLIM1 remained almost completely in the supernatant; thus demonstrating 

the specificity of the full length GST-DLIM1 fusion protein to bind to actin. 

 

Since Ca2+ is known to inhibit the binding of actin crosslinking proteins like 30 kD actin 

bundling protein, α-actinin and Ddplastin (Fechheimer and Taylor, 1984; Noegel et al., 

1987; Prassler et al., 1997), we next investigated the binding efficiency of GST-DLIM1 to 

actin filaments in the presence or absence of Ca2+. The binding of GST-DLIM1 to actin 



3. Results                                                                                                                                  104 

proved to be unaffected by the presence of 0.2 mM Ca2+ (Figure 28). We also note that 

Dictyostelium actin exhibits a lower degree of polymerisation as compared to rabbit α-actin 

(compare actin bands in supernatant and pellet fractions in Figures 27 and 28), a fact 

observed by other workers in the field as well. 

 

 

 

 

 

 

 

Figure 27. Cosedimentation assay of GST-DLIM1 with rabbit skeletal muscle actin (α-
actin). GST protein or GST-DLIM1 fusion protein was incubated with G-actin (5 µM) in 
polymerisation buffer containing 2 mM MgCl2, 100 mM KCl and 1 mM EGTA for 30 min at 
room temperature. Pellets (P) and supernatants (S) were separated by high-speed 
centrifugation, and the proteins in these fractions were analysed by SDS-PAGE in 12% gels 
and staining with Coomassie blue. Controls for GST and GST-DLIM1 alone were performed 
without the addition of G-actin in the reaction mixture. The presence (+) or absence (-) of G-
actin in the reaction mixture is indicated on the top of each lane. In the actin control, G-actin 
was polymerised in the absence of GST or GST-DLIM1. 
 

 

 

 

 

 

 

 

Figure 28. Cosedimentation assay of GST-DLIM1 with D. discoideum actin in the 
presence or absence of Ca2+. G-actin (5 µM) from D. discoideum was incubated with GST-
DLIM1 in polymerisation buffer containing 2 mM MgCl2, 100 mM KCl and either1 mM 
EGTA (- Ca2+) or 0.2 mM CaCl2 (+ Ca2+). Pellets (P) and supernatants (S) were separated by 
high-speed centrifugation, and the proteins in these fractions were analysed by SDS-PAGE 
in 12% gels and staining with Coomassie blue. Controls for GST-DLIM1 alone were 
performed without the addition of G-actin in the reaction mixture. The presence (+) or 
absence (-) of G-actin in the reaction mixture is indicated on the top of each lane. 
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Since members of the CRP family are capable of directly interacting with α-actinin (Pomies 

et al., 1997), binding of GST-DLIM1 to actin was assayed in the presence of α-actinin 

(Figure 29). We speculated that if GST-DLIM1 has the ability to interact with α-actinin, the 

simultaneous presence of the GST-DLIM1 fusion protein and α-actinin in the polymerising 

mixture might either result in the formation of a multi-protein complex between GST-

DLIM1, α-actinin and actin, which might lead to increased levels of the trapped GST-

DLIM1 fusion protein that co-sediments with the F-actin; or the interaction between GST-

DLIM1 and α-actinin might interfere in the actin-binding activity of GST-DLIM1 leading to 

reduced levels of the co-sedimented GST-DLIM1. GST-DLIM1 was observed to co-

sediment with F-actin to the same levels as observed in control actin-binding assays 

performed in the absence of α-actinin. This suggests that α-actinin does not influence the 

actin-binding efficiency of GST-DLIM1. We can, however, not rule out any direct 

interaction between DLIM1 and α-actinin under these test conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Cosedimentation assay of GST-DLIM1 with rabbit skeletal muscle actin (α-
actin) in the presence or absence of α-actinin. G-actin (5 µM) from rabbit skeletal muscle 
was incubated with GST-DLIM1 in polymerisation buffer containing 2 mM MgCl2, 100 mM 
KCl and 1 mM EGTA in the presence or absence of α-actinin. Pellets (P) and supernatants 
(S) were separated by high-speed centrifugation, and the proteins in these fractions were 
analysed by SDS-PAGE in 12% gels and staining with Coomassie blue. Controls for GST-
DLIM1 alone, actin alone and α-actinin alone are shown. The presence (+) or absence (-) of 
individual proteins in the reaction mixture is indicated on the top of each lane. 
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5. Generation of DLIM1− mutant cells  

 

To gain more insight into the function of DLIM1 in vivo, DLIM1− mutant cells were 

generated via homologous recombination. To this end, a DLIM1 gene replacement vector 

was constructed by inserting a 1.4 kb blasticidin resistance cassette within the DLIM1 

coding region of the genomic DLIM1 fragment (Materials and Methods, 3.19.4.). 

Dictyostelium AX2 cells were transformed with the DLIM1 gene replacement vector. The 

transformants were selected for growth in the presence of 3.5 µg/ml of blasticidin S in AX2 

medium and single cell colonies were obtained by plating the transformants onto SM plates 

overlaid with Klebsiella. For further analyses, 148 clones were screened for the absence of 

an intact copy of DLIM1 gene by PCR assay using lysed cells as template (Materials and 

Methods, 3.14.). The absence of a ~900 bp fragment in the amplified PCR product of 14 of 

the transformants indicated that the intact copy of the DLIM1 gene is not present in these 

transformants. The positive clones obtained after PCR assay were further confirmed by 

Southern and northern blot analyses. 

 

5.1. Molecular biological analyses for screening of DLIM1− mutant cells 

 

5.1.1. Southern blot analysis  

 

Genomic DNA was isolated from the AX2 cells and 14 of the PCR-positive transformants 

and digested with EcoRI+NdeI restriction enzymes, which do not have any internal 

restriction site in the blasticidin resistance cassette. Hybridisation analysis with 32P labelled 

full length DLIM1 cDNA (Figure 30b) revealed that a gene replacement event has occurred 

in at least 9 of these transformants, as the insertion of the 1.4 kb blasticidin resistance 

cassette causes a shift of the 4.3 kb EcoRI+NdeI fragment to a 5.7 kb fragment. 

 

5.1.2. Northern blot analysis 

 

Northern blot analysis was performed to confirm the absence of DLIM1 transcripts in 4 of 

the transformants selected on the basis of the results of Southern blot analysis. Absence of 
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DLIM1 RNA indicates that the disruption of the DLIM1 gene has occurred in all the 

transformants (Figure 30c). One of these transformants (no. 102-23) was selected for further 

cell-biological and biochemical characterizations and is referred to as DLIM1− mutant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. The generation of DLIM1− mutants. (a) Disruption of the DLIM1 gene in wild-
type AX2 cells by homologous recombination. To this end, a gene replacement vector was 
constructed by inserting a 1.4 kb blasticidin resistance (Bsr) cassette at the HincII site in the 
DLIM1 coding region. AX2 cells were transformed with this gene replacement vector and 
the transformants were screened by PCR, Southern and northern blot analyses. (b) Southern 
blot analysis of EcoRI+NdeI restricted genomic DNA of AX2 and mutant cells indicates that 
a gene replacement event has occurred, since insertion of the Bsr cassette causes the shift of 
a 4.3 kb band to a 5.7 kb band in the mutants. (c) Northern blot of total RNA (30 µg/lane) 
obtained from axenically growing AX2 cells and four of the transformants demonstrates that 
no message is present in the transformants. One of these transformants was selected for 
further cell-biological and biochemical characterizations and is referred to as DLIM1− 
mutant. Both, Southern as well as northern blots were screened with 32P labelled full length 
DLIM1 cDNA. 
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6. Characterization of DLIM1− mutant 

 

6.1. Determination of cell size 

 

Qualitative examination of cultures of the DLIM1− mutant cells grown in axenic medium 

suggested that the mutant cells were bigger in size as compared to the wild-type AX2 cells. 

For quantitative analysis, the size distribution of DLIM1− mutant cells grown in shaking 

suspension was determined (Materials and Methods, 2.5.) and compared to that of the AX2 

cells (Figure 31a,b). DLIM1− mutant cells were found to be comparatively larger, with an 

average diameter of 13 µm as compared to the wild-type AX2 cells having an average 

diameter of 11 µm. The size histogram (Figure 31b) shows that 48% of AX2 cells are 10 µm 

in diameter, whereas only 27% of DLIM1− cells have a diameter of 10 µm. Mutant cells 

exhibit a shift towards the bigger size range (12-16 µm). Only 17% of the total population of 

AX2 cells were 14 µm in diameter, while 34% of DLIM1− cells exhibited a diameter of 14 

µm. Moreover, only 0.8% of AX2 cells were 16 µm in diameter, whereas the population of 

cells with 16 µm diameter was 7% for DLIM1− mutant cells.  

 

6.2. Quantitation of nuclei 

 

As mutant cells are larger in size in comparison to the wild-type AX2 cells, studies were 

performed to determine if the increase in mutant cell-size is due to a cytokinesis defect in 

DLIM1− mutant cells. To this end, the number of nuclei/cell of DLIM1− mutant cells were 

quantitated and compared with that of the AX2 cells employing immunofluorescence studies 

using the DNA binding dye DAPI (Materials and Methods, 5.3.). Observation of the DAPI 

labelled mutant cells under the fluorescence microscope revealed that the large-sized 

DLIM1− mutant cells were multinucleated (Figure 32a,b). Quantitation of the number of 

nuclei/cell in the AX2 and mutant cells grown under shaking conditions revealed that more 

multinucleate cells are present in the cultures of DLIM1− mutant than of the wild-type AX2 

(Figure 32a’), suggesting that cytokinesis is not normal in DLIM1− mutant cells. 
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Figure 31. Size distribution of AX2 and DLIM1− cells. (a) Phase contrast images of AX2 
and DLIM1− mutant cells showing completely rounded cells that were used for measuring 
diameters. (b) Size histograms of AX2 and DLIM1− cells. Single cells were photographed 
and the diameters for 250-300 cells per strain determined from the prints. DLIM1− cells are 
bigger than the wild-type AX2 cells. Bars, 10 µm. 
 

 
Cytokinesis is believed to be facilitated by traction-mediated cytofission in cells attached to 

a substratum. This traction-mediated cytofission has been shown in Myosin II null cells, 

which are unable to form a cleavage furrow and to carry out appropriate cytokinesis (Knecht 

and Loomis, 1987; De Lozanne and Spudich, 1987; Fukui et al., 1990). In order to examine 

whether division of DLIM1− cells is also facilitated by traction-mediated cytofission, cells 

grown in suspension culture were transferred onto glass coverslips submerged in the same 

medium. The distribution of multinucleate cells was determined by DAPI staining after two 

days of continued growth on the glass surface (Figure 32b’). More binucleate and 
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multinucleate cells were observed in the cultures of DLIM1− mutant cells than of the AX2 

wild-type cells. These results are in accordance with that of the cultures grown in shaking 

suspension, indicating a mild cytokinesis defect in the DLIM1− cells. The proportion of 

multinucleate wild-type AX2 cells as well as mutant cells decreases during growth on glass 

as compared to growth in shaking suspension, indicating attachment of cells to a surface 

during axenic growth favours cell division. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Quantitation of nuclei of AX2 and mutant cells. (a and b) Fluorescence images 
after DAPI staining of the nuclei of the AX2 and mutant cells grown either in shaking 
suspension (a), or on glass coverslips (b). (a’ and b’) Histograms illustrating quantitation of 
nuclei of the AX2 and mutant cells grown either in shaking suspension (a’), or on glass 
coverslips (b’). The cells shown are representatives of all the cells in the population. For all 
the strains, nuclei of 300-400 cells were counted. Wild-type AX2 cells are mainly 
mononucleated or binucleated, whereas many DLIM1− cells also possess 4 and >4 nuclei. 
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6.3. Growth of mutant cells in axenic medium 

 

Since cell growth is a result of interplay between a variety of cellular processes involving 

rearrangements of the actin cytoskeleton, growth rate of DLIM1− mutant was determined 

and compared with that of wild-type AX2 cells. The growth patterns of AX2 and DLIM1− 

cells were investigated at 160 rpm and 21°C with starting cell densities of 5 x 105 cells/ml 

and 1 x 105 cells/ml. Under both starting cell-density conditions, no significant difference 

was observed in the growth patterns of wild-type AX2- and derived mutant cells (Figure 

33a,b). Wild-type AX2 cells attained maximum cell densities of 8.4 x 106 cells/ml and 1.1 x 

107 cells/ml with a starting density of 1 x 105 cells/ml and 5 x 105 cells/ml, respectively, 

while DLIM1− mutant cells attained maximum cell densities of 7.2 x 106 cells/ml and 1 x 107 

cells/ml on starting the cultures with 1 x 105 cells/ml and 5 x 105 cells/ml, respectively. 

Wild-type AX2 cells and mutant cells grow with the same doubling time of 11 h and 13 h in 

the cultures started with 1 x 105 cells/ml and 5 x 105 cells/ml, respectively. This suggests that 

DLIM1 is not essential for the growth under optimal conditions. 

 

6.4. Growth of mutant cells under stress conditions 

 

Since Dictyostelium discoideum lives as a natural phagocyte in soil and feeds on yeast and 

bacteria, fluctuations in the environmental temperature, humidity and osmolarity pose 

physiological challenges to growth and survival of this free-living organism. It is, therefore, 

believed that certain proteins that are not essential under optimal laboratory conditions might 

play a role under stress conditions. For this reason, growth of DLIM1− mutant cells was 

determined under conditions of temperature and osmotic stress and compared with that of 

the wild-type AX2 cells. 

 

6.4.1. Growth under temperature stress 

 

Wild-type AX2 cells and DLIM1− mutant cells were grown under conditions of low and high 

temperature stresses. Cultures of AX2- and DLIM1− mutant-cells grown at 15°C in axenic 

medium at 160 rpm with a starting density of 5 x 105 cells/ml, exhibited similar growth 
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patterns (Figure 34a). AX2 as well as DLIM1− cells attained maximum cell densities of 3.0 x 

106 cells/ml and exhibited a similar doubling time of 38 h. However, growth of DLIM1− 

mutant cells was significantly impaired when the cultures were grown at 27ºC in axenic 

medium at 160 rpm with a starting density of 5 x 105 cells/ml (Figure 34b). Under these 

conditions, AX2 cells reached cell density of 5.4 x 106 cells/ml with a doubling time of 13 h. 

The DLIM1− cells were clearly impaired showing a prolonged doubling time of 19 h and 

reduced cell density at saturation. Moreover, DLIM1− mutant cells became very small in size 

and showed rapid cell-lysis under high temperature condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 33. Growth of wild-type AX2 and mutant strains in axenic medium. (a and b) 
Cultures were inoculated with either 1 x 105 cells/ml (a), or 5 x 105 cells/ml (b), and grown 
at 21ºC with shaking at 160 rpm. Cells were counted at indicated time points. Growth is not 
impaired in the DLIM1− mutant. The data plotted here are from a single experiment, but 
similar results were obtained for three independent experiments with both the conditions. 
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Figure 34. Growth of DLIM1− mutant cells in comparison with AX2 under 
temperature stress conditions. (a and b) Cultures were inoculated with 5 x 105 cells/ml and 
grown with shaking at 160 rpm either at 15ºC (a), or at 27ºC (b). No differences in growth 
were observed when the cultures were grown at 15°C. However, growth of DLIM1− mutant 
cells was significantly impaired when grown at 27°C. The curves shown are representative 
of three independent experiments. 
 
 
6.4.2. Growth under osmotic stress 

 

Dictyostelium discoideum amoebae have developed successful means to avoid the harmful 

consequences of rapidly changing osmotic conditions in the natural habitat. Synthesis of 

stress proteins and accumulation of compatible osmolytes facilitate repair and recovery of 

cells in response to exposure of cells to high osmolarities (Kwon and Handler, 1995). 

Eukaryotic cells, in addition to these processes, can quickly respond to changes in cell 

volume by rapid reorganization of their cytoskeleton. We, therefore, observed growth of the 
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DLIM1− mutant cells in the presence of increased osmolarity. To achieve this, axenic 

medium was supplemented with either 30 mM NaCl or 115 mM sorbitol, and cultures were 

grown in axenic medium under optimal conditions (21ºC and 160 rpm) with a starting 

density of 5 x 105 cells/ml.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 35. Growth of DLIM1− mutant cells in comparison with AX2 under osmotic 
stress conditions. (a and b) Cultures were inoculated with 5 x 105 cells/ml and grown at 
21ºC with shaking at 160 rpm in axenic medium supplemented with either 30 mM NaCl (a), 
or 115 mM sorbitol (b). No significant differences in growth were observed under both the 
osmotic stress conditions. The curves shown are representative of three independent 
experiments. 
 

In the presence of 30 mM NaCl, AX2 cells were able to grow to a density of 4.3 x 106 

cells/ml at saturation with a doubling time of 18 h. Similar cell density at saturation and 
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maximum density of 7.4 x 106 cells/ml (Figure 35b). DLIM1− mutant cells exhibited no 

significant difference in their growth pattern with only slightly reduced cell density at 

saturation (6.3 x 106 cells/ml) and comparable doubling times. These results suggest that the 

growth of the DLIM1− mutant cells is not affected under conditions of increased osmolarity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Response of AX2 and mutant cells to osmotic shock. Cells were shaken in 
Soerensen phosphate buffer in the presence of 0.4 M sorbitol for 2 h, diluted in low 
osmolarity solution and plated onto SM agar plates with Klebsiella. DLIM1− mutant cells 
showed decreased viability, while wild-type AX2 cells were only slightly affected. The 
values plotted are the average of four independent experiments. In each set of experiment, 
each strain was plated onto four independent plates. Bars indicate standard deviation. 
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response of the DLIM1− mutant cells to acute osmotic shock was analysed. To this end, a 
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into a solution of low osmolarity (Materials and Methods, 2.6.). Histograms shown in Figure 
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osmotic shock led to marked reduction in the viability of DLIM1− mutant cells. AX2 cells 

showed a high viability of 81 ± 23.7%, whereas viability of DLIM1− mutant cells after 

osmotic shock was only 22.8 ± 10.6%. This indicates that the DLIM1− mutant cells are less 

tolerant to osmotic shock, which might reflect a reduced strength of the cortical cytoskeleton 

in these mutant cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. Growth on agar plates with bacteria as food source. (a ) SM agar plates with 
Klebsiella aerogenes were inoculated with wild-type AX2 and mutant cells using a tooth-
pick. (b) AX2 and mutant cells were plated onto Klebsiella overlaid SM plates by spreader 
dilution, so as to get clones arising from growth of single cells. Increase in colony diameter 
was recorded as a measure of growth rate. Under both the conditions, growth rate of 
DLIM1− cells is slightly increased. The curves shown are representative of three independent 
experiments. 
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6.6. Growth on agar plates with bacteria as food source 

 

The growth of AX2- and derived DLIM1− mutant-cells was also observed on SM agar plates 

in the presence of Klebsiella aerogenes as their food source. The cells were either inoculated 

in the centre (Figure 37a), or plated by spreader dilution to get single cell colonies of 

Dictyostelium (Figure 37b) on SM agar plates overlaid with Klebsiella aerogenes (Materials 

and Methods, 2.1.2.). The increase in colony diameter was taken as a relative measure of the 

growth rate in both the conditions. Figure 37 shows that colonies of DLIM1− cells grow 

slightly faster on Klebsiella lawns than those measured for AX2 cells.  

 

6.7. Development of mutant cells 

 

Upon starvation Dictyostelium cells undergo a developmental cycle in which single amoebae 

aggregate to form a multicellular fruiting body. This involves differentiation of 

Dictyostelium cells into spore-cells and stalk-cells and requires the sequential expression of 

developmentally regulated genes. We, therefore, decided to investigate the consequence of 

the absence of DLIM1 gene on the developmental process in the DLIM1− mutant cells. 

 

6.7.1. Development under submerged condition on plastic surface 

 

To determine the role of DLIM1 during early stages of development, wild-type AX2 cells 

and DLIM1− cells were placed in monolayer under starvation buffer on plastic petridishes 

(Materials and Methods, 2.2.3.) and the developmental stages were photographed at 

indicated time points. Figure 38 shows that wild-type AX2 cells form large aggregates by 13 

h of development. However, DLIM1− mutant cells still display streams of moving cells at 

this time point, which persist even after 16 h of development. Rather than coalescing to a 

single centre as in case of the AX2 cells, individual streams of DLIM1− mutant cells often 

fractured along their length forming smaller aggregates (18 h to 24 h). Moreover, onset of 

development in DLIM1− cells is delayed by 4-5 h (Figure 38). 
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Figure 38. Development under submerged condition on plastic surface. The cultures 
were plated in monolayers submerged under starvation buffer in plastic petridishes. The 
cultures were incubated for development at 21°C and photographed after 13 h. Wild-type 
AX2 cells form large aggregates within 13 h, while mutant cells show a delay of 4-5 h and 
make smaller aggregates. 
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6.7.2. Development on agar plates 

 

The cells can aggregate in starvation buffer under submerged conditions, while post-

aggregation development and fruiting require a solid substratum and the commonly used 

substratum to study development is agar. Therefore, developmental pattern of DLIM1− 

mutant cells was also assessed on an agar surface.  
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(......figure contd. from previous page) 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Development of wild-type AX2 and mutant cells on agar plates. Cells were 
plated on water-agar plates and allowed to undergo development at 21°C. The pictures were 
taken at indicated time points. No significant differences were observed during pre- as well 
as post-aggregative development and DLIM1− mutant cells form morphologically similar 
fruiting bodies within 21-24 h. 
 

Cells were allowed to develop on phosphate-buffered agar plates as well as on water-agar 

plates (Materials and Methods, 2.2.2.). Figure 39 shows developmental patterns of AX2 and 

DLIM1− mutant cells on water-agar plates. The delay in onset of development in DLIM1− 

cells, as seen when the DLIM1− cells were developed under submerged conditions (Figure 

38), was not observed during development on water agar plates. Both AX2 as well as 

DLIM1− cells form large streams of elongated cells (4 h) that aggregate (5 h) to make 

mounds at approximately 8 h of development. No significant differences were observed 

during post-aggregative development and mutants pass through all the stages of development 

forming morphologically similar fruiting bodies within 21-24 h. Similar results were 

observed in case of cells developed on phosphate-buffered agar plates (Figure not shown). 

The different early developmental pattern observed on agar and under submerged condition 

on plastic surface could be due to either a defect in cAMP relay signalling or substrate 

dependent adhesion. 
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Figure 40. Time course of agglutination of AX2 and DLIM1− mutant cells in shaking 
suspension. Cultures were resuspended in Soerensen phosphate buffer at the same total cell 
volume and assigned a value of 100%. At the indicated time points light scattering at 600 nm 
was measured in a spectrophotometer. Each point represents the mean of two independent 
experiments. Bars represent standard deviation. 
 

6.8. Analysis of spore germination 

 

The spores of Dictyostelium discoideum germinate in three well-defined stages: activation, 

swelling and emergence of amoebae from the swollen spores. The actin cytoskeleton has 

been observed to play a role in early steps of activation of germination. Therefore, efficiency 

of germination of DLIM1− spores was assessed by a quantitative analysis. At the end of 

development on agar, spores were randomly collected with a loop and suspended in 

Soerensen phosphate buffer. Spores were then heat-activated at 45ºC for 30 min and a 

defined number of heat-activated spores were plated on bacterial lawns. The number of 

colonies formed per plate was scored (Materials and Methods, 2.7.). No significant 

differences in the spore germination of DLIM1− mutant cells and the wild-type cells were 

observed, with viability of spores being 56-63% for AX2 as well as the DLIM1− mutant. 

 

6.9. Cell-to-cell adhesion of mutant cells 

 

Cell-adhesion assay was performed to determine if lack of DLIM1 affects the ability of the 

cells to aggregate, which might arise due to alteration in the cytoskeleton at contact sites. For 
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this, the time course of agglutination of the AX2 and mutant cells in shaking suspension was 

assessed by measuring the decrease in light scattering at 600 nm (Materials and Methods, 

2.9.). Under these conditions, aggregates are formed that recapitulate many of the 

developmental events that occur on a solid surface (Takeuchi et al., 1988). Figure 40 shows 

the scattering of light by AX2 and mutant cells in Soerensen phosphate buffer at indicated 

time points of development. Agglutination in DLIM1− mutant cells is comparable to wild-

type AX2 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41. Phototaxis assay of wild-type AX2 and DLIM1− mutant cells. The cells were 
inoculated onto water-agar plates and incubated for three days in the presence of 
unidirectional light source. The resultant slugs and slug-trails were transferred to the 
nitrocellulose filters, stained with amido black and photographed. The direction of light is 
indicated by arrows on the right. The results shown are representative of four independent 
experiments. Bar, 1 cm. 
 

6.10. Qualitative phototaxis assay 

 

Dictyostelium discoideum cells form motile slugs after aggregation. These slugs move 

towards the source of light leaving a slime sheath behind them. The ability of the slugs of the 

DLIM1− mutant cells to perform phototactic response was analysed by a qualitative 

phototaxis assay (Materials and Methods, 2.8.). Figure 41 shows the migration paths of 

DLIM1− mutant slugs in comparison to AX2 slugs in the presence of lateral light coming 
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through a slit of 3 mm. The wild-type AX2 slugs migrate directly towards the light source. 

Though the DLIM1− slugs also migrate towards the light source, they show slight detours 

during their movement. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion 

 

 

1. DLIM1 is a group 2 LIM domain protein 

 

We have isolated and characterized a LIM domain containing protein of Dictyostelium 

discoideum, which we refer to as DLIM1. Two more LIM domain containing proteins have 

been reported from Dictyostelium, DdLim (Prassler et al., 1998) and LIM2 (Chien et al., 

2000). Both DdLim and LIM2 proteins are reported to be associated with the actin 

cytoskeleton playing a role in its rearrangement. Another cytoskeleton-associated LIM 

domain containing protein designated as DLIM2 has been identified from Dictyostelium and 

work on DLIM2 is in progress in our lab (Khurana, T., personal communication). Both 

DdLim and DLIM2 contain a single copy of LIM domain located at the N-terminus and have 
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been, therefore, classified under group 2 according to the classification proposed by Dawid 

et al. (1998). LIM2, which exhibits 5 copies of LIM domains at its C-terminus, has been 

classified as a group 3 LIM protein. DLIM1 is comprised primarily of two LIM domains that 

are separated by an intervening sequence of 55 amino acid residues. This and the 

organization of the LIM domains of DLIM1 classify DLIM1 as a group 2 LIM domain 

protein. Infact DLIM1 exhibits highest degree of homology to the LIM domain containing 

proteins belonging to group 2 (Figure 7), with the strongest overall sequence homology to 

members of the CRP family (29-31 % identity, 43-45% similarity). In contrast to the other 

group 2 family members, the LIM domains of DLIM1 are not followed by a glycine-rich 

region. DLIM1 is, however, not an only exception to this as DLIM1 shares this feature with 

a pollen specific LIM protein of Helianthus annuus, SF3 (Baltz et al., 1992). Another 

structural feature of DLIM1 protein is the presence of a proline-rich region between the two 

LIM domains (Figure 6). The functional significance of this proline-rich region is not 

known. We speculate that this proline-rich region acts as a linker region that separates the 

LIM domains in DLIM1 and confers both lateral and rotational freedom on the LIM 

domains, thereby potentially enabling DLIM1 molecules within Dictyostelium cells to 

present a wide variety of orientations for recruitment of protein partners. 

 

2. Subcellular localization of DLIM1 

 

Members of the CRP family have been observed to play a regulatory or structural role in the 

actin cytoskeleton owing to their interaction with actin-binding proteins and their 

localization at focal contacts and stress fibres in mammalian cells. The presence of the LIM 

domains in these proteins allows them to function as a template or adapter capable of 

promoting specific protein-protein interactions at the cytoskeleton (Sadler et al., 1992; Arber 

et al., 1994; Brown et al., 1998). The specificity of protein-protein interactions mediated by 

LIM domains has been demonstrated since all the three members of the CRP family are 

capable of directly interacting with zyxin and α-actinin (Sadler et al., 1992; Schmeichel and 

Beckerle, 1994; Louis et al., 1997; Pomies et al., 1997). The Dictyostelium DdLim protein 

localizes in the cell cortex and has been suggested to act as an adapter protein at the 

cytoskeleton-membrane interface where it is involved in a receptor-mediated Rac-1 

signalling pathway that leads to actin polymerisation in lamellipodia and ultimately cell 
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motility (Prassler et al., 1998). Likewise, Dictyostelium LIM2 protein is also localized in the 

cell cortex and is required for cell motility and chemotaxis (Chien et al., 2000). We were, 

therefore, interested in elucidating the subcellular localization of DLIM1 and the role it plays 

in Dictyostelium. We have investigated the intracellular localization of DLIM1 by 

expressing a green fluorescent protein (GFP)-fusion protein in Dictyostelium AX2 cells. This 

approach also allowed us to follow the dynamics of DLIM1 in vivo. 

 

2.1. DLIM1 not only colocalizes with but also binds to actin 

 

Confocal studies performed with the GFP-DLIM1 expressing cells indicate that DLIM1 is 

mainly enriched in areas of the cell cortex (Figure 10b). The cortical fluorescence of GFP-

DLIM1 always coincided with the actin staining in immunolabelled cells (Figure 12). 

DdLim, too, has been observed to colocalize with the F-actin at the cytoskeleton (Prassler et 

al., 1998). However, LIM2 is associated with the cell-cortex but it does not colocalize with 

the F-actin (Chien et al., 2000). Occasional localization of DLIM1 in the nucleus was also 

observed, the functional significance of which is yet unclear. A putative nuclear targeting 

signal (KKYGPK) has been identified in the CRPs leading to their bimodal subcellular 

distribution, initially present exclusively in nuclei of early undifferentiated muscle cells and 

later accumulating to high levels in the cytoplasm (Arber et al., 1994; Stronach et al., 1996). 

We could, however, not identify a putative nuclear targeting signal in the DLIM1 sequence. 

GFP-DdLim fusion protein has also been observed to accumulate in the nucleus. DdLim also 

does not harbour a nuclear targeting signal in its sequence (Prassler et al., 1998).  

 

Colocalization of DLIM1 and actin in our localization studies encouraged us to assess the 

binding capability of DLIM1 to actin in vitro. We have demonstrated in actin-sedimentation 

assays using a GST-DLIM1 fusion protein that DLIM1 binds to filaments of rabbit skeletal 

muscle actin (α-actin) as well as Dictyostelium discoideum actin even in the presence of high 

salt (100 mM KCl) concentration (Figures 27, 28). To our knowledge this is the first report 

demonstrating an interaction between a protein that is comprised only of LIM domains and 

actin. Though an actin-binding LIM protein (abLIM) has been reported, the domain 

responsible for an interaction between abLIM and actin has been mapped to the dematin-like 

domain present at the C-terminus of the abLIM (Roof et al., 1997). Ca2+ did not influence F-
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actin binding by DLIM1 (Figure 28). Often actin cross-linkages are disrupted in response to 

signals that cause an increase in cytoplasmic Ca2+ and three of the actin crosslinking proteins 

from Dictyostelium cells, 30 kD F-actin bundling protein, α-actinin and Ddplastin, are 

known to be inhibited by Ca2+ (Fechheimer and Taylor, 1984; Noegel et al., 1987; Prassler et 

al., 1997). However, in these instances modules on the proteins have been identified that are 

responsible for Ca2+-binding. 

 

Since members of the CRP family are capable of directly interacting with α-actinin (Pomies 

et al., 1997), we have tested an influence of the presence of α-actinin on the actin-binding 

efficiency of DLIM1 and did not observe any impact (Figure 29), though we do not rule out 

the possibility of an interaction between DLIM1 and α-actinin. A recent report demonstrated 

that the ability of CRP1 to interact with α-actinin depends on an 18-residue sequence (amino 

acid residues 62-79) occurring within the protein’s N-terminal glycine-rich repeat that 

follows the N-terminal LIM domain (Harper et al., 2000). This region has been observed to 

be both necessary and sufficient to support the association with α-actinin. Moreover, a site 

directed mutagenesis analysis of the CRP1’s binding region revealed the critical importance 

of a single lysine residue (lysine 65 of CRP1) that is required for its partnership with α-

actinin (Harper et al., 2000). DLIM1, in contrast, exhibits a very low homology to CRPs 

within this region and exhibits the presence of only 4 glycine residues as against 7 glycine 

residues of CRP1 in the 18-residue sequence that follows the N-terminal LIM domain 

(Figure 7a). Moreover, DLIM1 has a leucine residue at the position that corresponds to the 

critical lysine residue of CRP1, thus favouring our observation. 

 

2.2. DLIM1 is involved in the dynamic processes controlled by the actin  

cytoskeleton 

 

Expression of GFP-DLIM1 fusion protein in Dictyostelium has permitted the visualization in 

living cells of DLIM1 dynamics, which closely match those of actin. 

 

Dictyostelium cells take up fluid by macropinocytosis, which depends on the integrity of 

polymerised actin as demonstrated by treating the cells with cytochalasin A, an actin 
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depolymerising drug (Hacker et al., 1997). Many actin-associated proteins are also involved 

in the process of macropinocytosis, but so far dynamic studies are available only for coronin, 

DAip1 and RacF1 (Hacker et al., 1997; Konzok et al., 1999; Rivero et al., 1999a). A GFP-

DLIM1 rich membrane invaginates and the edges of the protrusion fuse to form an endocytic 

vesicle enclosing the extracellular fluid and the GFP-DLIM1 protein coats this vesicle. 

Within less than 1 min after internalization, the GFP-DLIM1 dissociates from the coat 

surrounding the vesicle although the vesicle is still present, indicating the involvement of 

DLIM1 during early steps of pinocytosis (Figure 14). An identical protein-redistribution 

pattern has been observed for GFP-coronin, GFP-DAip1 and GFP-RacF1 as they associate 

with the coat surrounding the macropinosomes during early stages of pinocytosis and, like 

GFP-DLIM1, dissociate from the coat surrounding the vesicle within less than 1 min after 

internalisation of the vesicle (Hacker et al., 1997; Konzok et al., 1999; Rivero et al., 1999a). 

 

Particle uptake or phagocytosis is a very active process in Dictyostelium involving 

rearrangement of the actin cytoskeleton and like fluid-phase endocytosis depends on the 

integrity of polymerised actin (Maniak et al., 1995; Hacker et al., 1997). As the particle 

attaches to the membrane of Dictyostelium cells, phagocytosis is induced and a phagocytic 

cup is formed by the plasma membrane in association with the actin cortex. 

Imunolocalization studies, GFP-fusions and data from knockout mutants suggest that besides 

actin, various actin-associated proteins are also involved in distinct stages of phagocytosis 

(reviewed in Noegel and Schleicher, 2000). Coronin, an actin-associated protein accumulates 

at the phagocytic cups within 45 s after attachment of a particle and separates from the 

phagosome within 1 min after ingestion is completed (Maniak et al., 1995). Besides coronin, 

myosin IB, myosin VII, ABP120/gelation factor, a 34 kD actin-bundling protein and 

Dictyostelium actin-interacting protein (DAip1) are some of the other known proteins that 

take part in phagocytosis and localize with actin at the phagocytic cup during early stages of 

phagocytosis (Fukui et al., 1989; Cox et al., 1996; Rivero et al., 1996a; Konzok et al., 1999; 

Titus, 1999). DLIM1 also seems to be involved in the early stages of phagocytosis, since 

GFP-DLIM1 fluorescence accumulates to high levels at the phagocytic cup surrounding the 

yeast particle, persists there as the cup progresses and complete uptake of the yeast occurs, 

and dissociates completely from the phagosome within 1 min of the yeast uptake (Figure 

15). This pattern of redistribution strongly resembles that observed in GFP-coronin and 
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GFP-DAip1 expressing cells (Maniak et al., 1995; Konzok et al., 1999). Moreover, 

fluorescence of GFP-DLIM1 coincides with the actin staining during phagocytosis, 

indicating that DLIM1 might play a role in the rearrangement of the actin cytoskeleton 

during phagocytosis (Figure 17). 

 

We have observed the reversibility of GFP-DLIM1 accumulation upon unsuccessful 

ingestion resulting in release of a yeast particle even after half of its body is covered by a 

phagocytic cup (Figure 16), suggesting that relocalization of GFP-DLIM1 does not 

irreversibly influence the molecular events involved in phagocytosis. This observation is in 

agreement with a zipper-mechanism proposing a local and sequential regulation of 

phagocytosis, and argues against a trigger-mechanism initiating a phagocytosis process that 

would run until phagocytosis is completed (Swanson and Baer, 1995). 

 

Besides taking part in phagocytosis and pinocytosis, DLIM1 is involved in exocytosis. We 

have observed GFP-DLIM1 fusion protein to preferentially accumulate on the membrane 

surrounding the yeast particle shortly before exocytosis of the yeast (Figure 18). We, 

therefore, conclude that DLIM1 transiently associates with the coat that surrounds particle-

containing vesicles, dissociates from the coat upon internalisation of the vesicles, but 

reassembles on the vesicles as they return to the cell cortex for exocytosis. We speculate a 

similar pattern of DLIM1 redistribution during fluid-phase exocytosis as well. Our 

observation is in accordance with that reported for coronin and actin (Rauchenberger et al., 

1997). Coronin as well as the actin cytoskeletal coat that surrounds both particle- and fluid-

containing vesicles in Dictyostelium are eventually shed by the vesicles as they transit 

through the cell. After dissociation of the cytoskeletal coat, acidification to pH 5 is followed 

by neutralization and reassembly of both actin as well coronin on the vesicles as they return 

to the cell cortex for exocytosis of the indigestible remnants (Rauchenberger et al., 1997). 

 

DLIM1 also seems to be involved in motility of the cells. Cell motility is an essential aspect 

of all the developmental stages of Dictyostelium, which involve signalling pathways and 

actin cytoskeleton. In these cells the localization of several cytoskeletal and signalling 

components during chemotaxis has been studied using GFP and immunohistochemical 

staining. It has been shown that actin, coronin, talin, cofilin and CAP transiently accumulate 
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at the leading edges of the motile Dictyostelium cells (Gerisch et al., 1995; Kreitmeier et al., 

1995; Gottwald et al., 1996; Aizawa et al., 1997; Westphal et al., 1997). Confocal studies 

performed with the vegetatively growing GFP-DLIM1 expressing cells revealed that the 

fusion-protein accumulates at the leading edge of the motile cells (Figure 11). Moreover in 

aggregation-competent GFP-DLIM1 expressing cells, which attain an elongated shape and 

rapidly extend pseudopods in the direction of the chemoattractant, the fusion-protein 

preferentially accumulates in the pseudopods of the migrating cells where it remains until the 

pseudopod is retracted and then it shifts to the newly formed pseudopod, thereby playing a 

role in cell motility (Figure 19). The cytoskeleton associated protein DdLim has also been 

observed to accumulate at the extreme membrane rims of newly formed protrusions in 

aggregation-competent cells and is involved in cell motility (Prassler et al., 1998). Taken 

together, the localization of DLIM1 in dynamic parts of the cell cortex suggests a role in the 

formation and/or stability of actin filaments. 

 

LIM domains have been demonstrated to act as a discrete protein-binding unit (Schmeichel 

and Beckerle, 1994). Since DLIM1 is comprised primarily of two LIM domains and either 

LIM domain of DLIM1 is sufficient for its involvement in the dynamic processes and its 

colocalization with actin as observed in our N- and C-terminal DLIM1 deletion studies, we 

presume that the LIM domains of DLIM1 interact with either actin or other cytoskeleton-

associated proteins that are also involved in the dynamic processes. The association of LIM 

domains with specific protein partners is now known to have a critical role in the control of 

its subcellular distribution and activity (Brown et al., 1996; Mao et al., 1997). Moreover, 

because of the capacity of individual LIM domains to dock with unique protein partners, it 

has been proposed that proteins with multiple LIM domains might act as adapter molecules 

that facilitate the assembly of biologically active protein complexes within the cell 

(Beckerle, 1997; Dawid et al., 1998). In light of this as well as our observations on 

association of DLIM1 with actin and involvement of its domains in the dynamic processes, 

we speculate that DLIM1 behaves as an adapter molecule with one of the LIM domains of 

DLIM1 specifically interacting with F-actin, while the other LIM domain may remain 

accessible to additional cytoskeleton-associated proteins. Domain mapping for actin-binding 

site on DLIM1 needs to be performed in order to support this hypothesis. 

 



4. Discussion                                                                                                                            131 

3. DLIM1− mutant analyses 

 

We have shown that DLIM1 is a single copy gene and its expression is developmentally 

regulated with DLIM1 transcripts being most abundant during growth and early 

development (Figures 8a,b), suggesting a possible role of the DLIM1 protein during cell 

growth and/or early development. To investigate the function of DLIM1 in vivo we have 

disrupted the DLIM1 gene of AX2 cells with blasiticidin S resistance cassette via 

homologous recombination. The phenotypes of the DLIM1− mutant cells are discussed 

below and a comparison of the phenotypes observed in DLIM1− mutant cells and 

DLIM2− mutant cells (Khurana, T., personal communication) is summarised in Table 1. 

 

3.1. Increase in cell-size and impaired cytokinesis 

 

DLIM1− mutant cells are larger in size as compared to AX2 cells when grown in shaking 

suspension and these large-sized mutant cells were found to be multinucleated in comparison 

to most of the uni- and bi-nucleated wild-type AX2 cells (Figures 31; 32a,a’). This suggests 

that DLIM1− mutant cells exhibit impaired cytokinesis. This phenotype of DLIM1− mutant 

cells resembles that of the single mutant cells lacking myosin II, coronin, CAP and double 

mutant cells lacking α-actinin/gelation factor (De Lozanne and Spudich, 1987; Manstein et 

al., 1989; Pollenz et al., 1992; de Hostos et al., 1993; Rivero et al., 1996b; Noegel et al., 

1999). Lack of all of these cytoskeleton-associated proteins resulted in a cytokinesis defect 

leading to large multinucleated cells. We also note that the proportion of multinucleated 

DLIM1− mutant cells decreases when the cells were shifted from suspension culture to a 

glass surface (Figure 32b’). This behaviour of mutant cells resembles that of myosin II 

deficient cells. A traction mediated rudimentary cytokinesis is observed in myosin II null 

cells when they are attached to substratum (Fukui et al., 1990). Myosin II is located in the 

cleavage furrow, supporting its role in cytokinesis (Yumura et al., 1984). However, we have 

never observed DLIM1 at the cleavage furrow in fluorescence studies performed with cells 

expressing the GFP-DLIM1 fusion protein (Results not shown).  
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3.2. Reduced growth under stress conditions and increased sensitivity to 

osmotic shock 

 

Growth of the DLIM1− mutant cells under optimal conditions in shaking suspension as well 

as on SM agar plates with bacterial food source is comparable to wild-type AX2 cells 

(Figures 33, 37). Infact colonies of DLIM1− cells grow slightly faster on Klebsiella lawns 

than those measured for AX2 cells (Figure 37). This suggests that there is not a major 

impediment to phagocytosis and pinocytosis in the DLIM1− mutant cells, which is in 

contrast to our localization studies performed with GFP-DLIM1 expressing cells that suggest 

a role for DLIM1 in these processes. However, the rate of growth in suspension culture and 

in the presence of bacteria as a food source are rather insensitive tests of pinocytosis and 

phagocytosis, respectively. Future studies on quantitation of the rates of pinocytosis and 

phagocytosis will be more conclusive. 

 

Growth of DLIM1− mutant cells under stress conditions (like low-/high-temperature or 

hyperosmotic conditions) that mimic the natural physiological challenges to growth and 

survival of this free-living organism suggested an additional role of the DLIM1 protein in 

the growth of the cells. Growth of the DLIM1− mutant cells was significantly impaired at 

high temperature (27ºC) with a significantly prolonged doubling time and reduced cell 

density at saturation (Figure 34b). DLIM1− mutant cells exhibited rapid cell-lysis under high 

temperature conditions. This suggests that the cortical cytoskeleton of the DLIM1− cells is 

not strong enough to resist the environmental stress conditions of higher temperature and 

that the DLIM1 protein may be required for maintaining the cell cortex under these 

conditions. Slow growth under conditions of reduced temperature and increased osmolarity 

has been observed in mutants lacking actin crosslinking proteins, a 34 kD actin-bundling 

protein and α-actinin, respectively (Rivero et al., 1999b). We have, however, not observed 

any significant effect on the growth of DLIM1− mutant cells under conditions of reduced 

temperature (15ºC) and hyperosmotic stress (30 mM NaCl or 115 mM sorbitol) (Table 1). In 

contrast, slow growth of DLIM2− cells under conditions of increased temperature (27°C) and 

increased osmolarity (115 mM sorbitol) has been observed (Khurana, T., personal 

communication; Table 1). 
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Since the role of a cytoskeletal protein in the cytoskeletal rearrangements elicited by 

adaptation to sustained altered osmolarity could differ from that of the acute osmotic stress, 

we tested the sensitivity of the mutant cells towards acute osmotic shock. Viability of 

DLIM1− mutant cells is markedly reduced on exposure to osmotic shock (Figure 36, Table 

1). The increased sensitivity in DLIM1− cells to osmotic shock is also in aggrement with a 

reduced strength of the cortical cytoskeleton. Severe defects in the osmoregulatory pathway 

resulting in premature cell-death under high osmotic stress has been demonstrated for cells 

that lack dokA, a member of a family of histidine kinase-like genes that play regulatory roles 

in eukaryotic cell function (Schuster et al., 1996). There are increasing evidences indicating 

that the actin cytoskeleton plays an important role in the adaptation to situations of altered 

tonicity. In yeast a rapid disassembly and redistribution of the actin cytoskeleton occurs in 

response to an osmotic stress and genetic and morphological studies performed with 

osmosensitive mutants indicate that actin-binding proteins could be involved in actin 

redistribution during osmotic shock (Chowdhury et al., 1992). Dictyostelium cells repond to 

hyperosmotic stress by shrinking spontaneously, followed by rearrangement of cytoskeletal 

proteins. The two main components of the cytoskeleton, actin and myosin II, are 

phosphorylated as a consequence of osmotic shock (Zischka et al., 1999). Disassembly of 

myosin II filaments is an essential part of the hyperosmotic stress reponse in Dictyostelium, 

which allows the cell to adopt a spherical shape and provides the mechanical strength 

necessary to resist extensive shrinkage (Kuwayama et al., 1996). The Dictyostelium 

cytoskeleton associated LIM protein, DdLim, decreases in amount in the cytoskeletal 

fraction isolated from osmotically shocked cells (Zischka et al., 1999). Exposure of DLIM2− 

cells to osmotic shock led to a marked reduction in the viability of DLIM2− cells (Khurana, 

T., personal communication; Table 1). Our results as well as these reports point to an 

interplay of the various components of the actin cytoskeleton in response to osmotic stress. 

 

3.3. Defect in early development 

 

Dictyostelium cells undergo a developmental process on deprivation of nutrients. Upon 

starvation, cells start emitting cAMP pulses and aggregate into mounds. These mounds after 

a series of morphological changes give rise to fruiting bodies. The transformation of a 

monolayer of single cells into multicellular three dimensional aggregates occurs due to 
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cytoskeleton based chemotactic motility and intercellular adhesion (Gerisch, 1987; Bozzaro 

and Ponte, 1995; Parent and Devreotes, 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the developmental pattern of mutant cells was examined on water-agar plates or 

phosphate-buffered agar plates, DLIM1− mutant cells completed the developmental cycle 

and passed through all stages of development without macroscopically evident disorders 

(Figure 39). Interestingly, the DLIM1− mutant cells exhibited a 4-5 h delay in initiation of 

development when placed under a layer of starvation buffer on a plastic surface (Figure 38). 

Moreover, under this comparatively stringent plating conditions, individual streams of 

DLIM1− cells did not coalesce to a single centre, as in case of the AX2 cells, and often 

fractured along their length forming smaller aggregates of variable size. DLIM2− mutant 

cells, however, exhibit a 4-5 h delay in the formation of aggregates on agar plates as well as 

Table 1. Summary of phenotypes observed in mutant strains

Investigated response strain

DLIM1− ∗ DLIM2−

Cell size large large

Growth 21°C wt wt

Growth 15°C wt wt

Growth 27°C impaired; ↓ density impaired; ↓ density

Growth on bacteria slightly fast slightly slow

Growth in NaCl wt slow; ↑ doubling time

Growth in sorbitol wt wt

Osmotic shock highly sensitive highly sensitive

Development on plastic defect in early defect in early
development; small development; small
aggregates aggregates

Development on agar wt defect in early 
development; small 
aggregates

Phototaxis of slugs wt; slight detours wt; slight detours

Spore viability wt wt

wt, similar to wild-type AX2 cells; ↓, reduced; ↑, increased
∗ Data for DLIM2− mutant cells was obtained from Khurana, T.,  personal 
communication
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under submerged conditions on a plastic surface (Khurana, T., personal communication; 

Table 1). This difference in early development pattern observed for DLIM1− cells on agar 

and under submerged condition on plastic surface can be attributed to either a defect in 

cAMP relay signalling or substrate dependent adhesion. We note that the cAMP signals, 

which the cells emit upon starvation and leads to the aggregation of cells, are more diffused 

when the cells are placed under a layer of starvation buffer as compared to when the cells are 

plated on agar plates. We, therefore, speculate that DLIM1− mutant cells exhibit a defect in 

cAMP relay signalling, a defect that becomes more obvious when the cells are starved under 

liquid medium. A similar phenotype has also been observed for cells that lack Darlin, a 

protein that binds to small GTPases in Dictyostelium. Darlin− cells complete all stages of 

development on agar plates, however, when starved under liquid medium the mutant cells 

were unable to form aggregation centres and streams (Vithalani et al., 1998).  

 

4. DLIM1: an overview 

 

Our results suggest that DLIM1 is involved in the regulation of the actin cytoskeleton and 

plays a role in phagocytosis, pinocytosis, exocytosis, cytokinesis and cell motility. DLIM1 

also contributes to the maintenance of the strength of the actin cytoskeleton as is evident by 

the inability of the mutant cells to grow under conditions of high temperature as well as the 

increased sensitivity of the mutant cells to osmotic shock. The accumulation of DLIM1 in 

the pseudopods of the motile cells and the phagocytic cups suggests that DLIM1 converts 

signals originating from different processes on the cell surface into activities of the 

cytoskeleton. Since chemotactic responses to cAMP are mediated through heterotrimeric G 

proteins (Devreotes, 1994) and DLIM1 assembles at the leading edge and pseudopod of a 

cell, it is tempting to assume that DLIM1 is located in a signalling pathway downstream of 

the heterotrimeric G proteins. The defect exhibited by the DLIM1− mutant cells when 

starved under liquid medium on plastic surface is in accord with this notion. To integrate 

incoming signals and to transmit them downstream to regulatory proteins of the actin 

cytoskeleton, a protein must form complexes with a number of other proteins. The LIM 

domains of DLIM1 predispose DLIM1 to act as an adapter molecule facilitating multiple 

protein-protein interactions at the cytoskeleton. We have demonstrated that DLIM1 binds to 
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F-actin and either LIM domain of DLIM1 is sufficient for its colocalization with actin. We, 

therefore, speculate that one of the LIM domains of DLIM1 interacts specifically with F-

actin, while the other LIM domain remains accessible to additional cytoskeleton-associated 

proteins. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                             5. Summary 

 

In the present study, we report the characterization of DLIM1, a novel LIM domain 

containing protein from Dictyostelium discoideum. A LIM domain is a unique double zinc-

finger sequence motif found in a diverse class of proteins including transcription factors, 

proto-oncogene products and cytoskeletal components. DLIM1 is comprised primarily of two 

LIM domains that conform exactly to the organization of LIM domains in mammalian CRPs. 

DLIM1 exists as a single-copy gene in Dictyostelium genome and its transcription is 

developmentally regulated. To investigate the role of DLIM1, we have used a green 

fluorescent protein (GFP)-tagged version of DLIM1 and studied the dynamics of subcellular 

redistribution using a confocal laser scanning microscope. GFP-DLIM1 accumulates in areas 

of the cell cortex where it colocalizes with filamentous-actin. In our study of the dynamic 
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processes, we observed that GFP-DLIM1 associates with dynamic regions of the cell cortex 

that are enriched in filamentous actin: phagocytic cups, macropinosomes, exocytic vesicles 

and pseudopods. Furthermore, we have demonstrated the ability of DLIM1 to bind to 

filamentous-actin in vitro. Subcellular localization studies performed with N- and C-terminal 

DLIM1 deletion constructs revealed that either LIM domain of DLIM1 is sufficient for its 

involvement in the dynamic processes and its colocalization with actin. Recent studies have 

established the ability of individual LIM domains to dock with unique protein partners, thus 

influencing its subcellular distribution and activity. Since DLIM1 is comprised primarily of 

two LIM domains, we speculate that DLIM1 might act as an adapter molecule with one of 

the LIM domains of DLIM1 specifically interacting with F-actin, while the other LIM 

domain may remain accessible to additional cytoskeleton-associated proteins.  

 

To gain more insight into the function of DLIM1 in vivo, cells lacking DLIM1 (DLIM1− 

mutant) were generated by means of homologous recombination. DLIM1− mutant cells 

exhibit a cytokinesis defect and are multinucleated. Growth of DLIM1− mutant cells under 

optimal conditions in shaking suspension as well as on agar plates with bacterial food source 

is normal, suggesting that there is not a major impediment to phagocytosis and pinocytosis in 

the DLIM1−  cells. The cortical strength of the DLIM1− mutant cells is reduced as is evident 

by the inability of the mutant cells to grow under high temperature as well as the increased 

sensitivity of the mutant cells to osmotic shock. DLIM1−  cells exhibit normal developmental 

pattern on agar plates giving rise to normal looking fruiting bodies bearing viable spores. 

However, when starved under a layer of starvation buffer on a plastic surface, DLIM1−  cells 

exhibit a 4-5 h delay in the initiation of development possibly because of a defect in cAMP 

relay signalling. 

 

Our results suggest that DLIM1 acts as an adapter molecule mediating interactions between 

actin filaments and cytoskeleton-associated proteins at the cortical cytoskeleton where it 

associates with dynamic structures that are formed during pinocytosis, phagocytosis, 

exocytosis and extension of pseudopods; is involved in a signalling pathway that may 

modulate the chemotactic response during early development; contributes towards the 

maintenance of the strength of the actin cytoskeleton; and plays a role in cytokinesis.  



 

 

 

 

 

 

 

 

 

 

 

 

 

                                             5. Zusammenfassung 
 

LIM-Domänen sind Sequenzmotive aus zwei Zinkfingern. Sie kommen in vielen 

verschiedenen Proteinen wie Transkriptionsfaktoren, Protoonkogenen und 

Zytoskelettkomponenten vor. DLIM1, eine neues LIM-Domänen-Protein aus Dictyostelium 

bsteht aus zwei LIM-Domänen, die hohe Ähnlichkeit zu den LIM-Domänen in den CRPs 

(Cytsein-Rich-Proteins) aus Säugern aufweisen.  

 

Um die in vivo Rolle von DLIM1 zu analysieren, haben wir die Verteilung und das 

Verhalten von GFP-DLIM1 in lebenden Zellen analysiert. GFP-DLIM1 reichert sich im 

Zellkortex in Bereichen an, die F-Aktin enthalten und lagert sich bei Aufnahme von 

Partikeln (Phagozytose) und Flüssigkeit (Makropinozytose) an die entstehenden Phagosomen 
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bzw. Pinosomen an. GFP-DLIM1-Anlagerung findet auch bei Exozytose an das Exosom 

statt, und bei der Pseudopodienbildung reichert sich DLIM1 in Pseudopodien an. 

Domänenanalyse hat gezeigt, dass sich beide LIM-Domänen als GFP-Fusionsproteine wie 

das Vollängenkonstrukt verhalten. Für DLIM1 haben wir auch zeigen können, dass es nicht 

nur mit Aktin kolokalisiert, sondern mit F-Aktin direkt interagiert und unter relativ 

stringenten Bedingungen mit F-Aktin kosedimentiert.  

 

Für LIM-Domänen wird postuliert, dass sie mit spezifischen Partnerproteinen interagieren 

und eine Adaptorfunktion besitzen. Diese Interaktionen bestimmen auch die subzelluläre 

Lokalisation. Da DLIM1 im Wesentlichen aus nur zwei LIM-Domänen besteht, könnte es 

mit einer seiner Domänen an Aktin binden, während die zweite LIM-Domäne Interaktionen 

zu weiteren Proteinen vermittelt, die möglicherweise ebenfalls Zytoskelett-assoziiert sind. 

Welche LIM-Domäne für welche Interaktion zuständig ist, muss noch geklärt werden.  

 

Generierung und Analyse einer Minusmutante für DLIM1 haben Hinweise darauf ergeben, 

dass zelluläre Eigenschaften, die mit dem Zytoskelett in Verbindung gebracht werden, in der 

Mutante beeinträchtigt sind. So haben wir einen Defekt in der Zytokinese beobachtet, der zu 

einer Zunahme von mehrkernigen Zellen führt. Ausserdem sind die Mutanten sensitiver 

gegen erhöhte Wachstumstemperaturen und gegen osmotischen Schock. Beide Defizienzen 

können auf ein geschwächtes kortikales Aktinnetzwerk zurückgeführt werden. Inwieweit und 

ob eine verzögerte Entwicklung in Submerskultur durch einen Defekt im cAMP-

Signalsystem bedingt ist, ist zu überprüfen.  

 

Zusammenfassend kann die Rolle von DLIM1 so gesehen werden, dass es auf Grund seiner 

vorgeschlagenen Adaptorfunktion Interaktionen zwischen dem Aktinnetzwerk und weiteren 

Zytoskelett-assoziierten Proteinen ermöglicht und so an einer Vielzahl von Prozessen wie 

Pinozytose, Phagozytose, Exozytose, Pseudopodienbildung und möglicherweise 

Signaltransduktionsprozessen beteiligt ist. 
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