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Abstract

Magnetoelectric multiferroics exhibit a strong correlation of magnetism and ferro-
electricity. Among the multiferroics with a strong magnetoelectric effect many
have a chiral antiferromagnetic structure. In these materials it is possible to con-
trol the electric polarisation by an applied magnetic field and, inversely, to manip-
ulate the antiferromagnetic domains by an applied electric field. The observation
of antiferromagnetic domains requires a microscopic method, which neutron scat-
tering with polarised neutrons is particularly suitable for. This thesis reports on
neutron and X-ray measurements on several (chiral) antiferromagnetic multifer-
roics. Special attention is devoted to the switching of (chiral) antiferromagnetic
domains.

Neutron-diffraction data on the magnetic structures of the pyroxenes NaFeSi2O6

and LiFeSi2O6 are presented. LiFeSi2O6 undergoes a single magnetic phase tran-
sition below 18 K into a canted antiferromagnetic structure with the magnetic
space group P21/c

′. NaFeSi2O6 undergoes two magnetic phase transitions. Both
phases are incommensurate with propagation vector k = (0, 0.77, 0). Below 8 K a
transverse spin-density wave with moments in the ac plane sets in and below 6 K
a helix with moments remaining in the ac plane evolves. By the use of spherical
neutron polarisation analysis it is demonstrated that antiferromagnetic domains
in LiFeSi2O6 can be reversed by a combination of electric and magnetic fields. The
magnetic structure of LiFeSi2O6 gives rise to a toroidal moment. Therefore, the re-
sults are discussed in the context of manipulating toroidal domains. Furthermore,
the magnon dispersion and the spin density of LiFeSi2O6 are presented.

In many chiral multiferroics it is possible to reverse the chirality of the mag-
netic structure by an applied electric field providing the opportunity of driving
hysteresis loops (chiral ratio vs. electric field). Results of the time dependence of
this switching process in MnWO4 studied by stroboscopic techniques for polarised
neutron scattering reveal a surprisingly slow relaxation process in the time scale
of 2 ms to 30 ms and a strong temperature dependence.

Furthermore, static hysteresis loops recorded on TbMnO3 and DyMnO3 are
reported. In TbMnO3, the coercive field increases linearly with decreasing tem-
perature. In DyMnO3, driving of hysteresis loops is possible only close to the ferro-
electric phase transition. Further investigations on TbMnO3 show that the quasi-
lock-in of the magnetic propagation vector takes place at temperatures slightly
above the development of the chiral magnetic structure. In addition, the propa-
gation vector increases linearly with isotropic pressure. X-ray diffraction on single
crystals of TbMnO3 and YMn2O5 reveals that the deviation of the ions from their
centrosymmetric positions in the ferroelectric phase is beyond the resolution limit
of the performed diffraction experiments.
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Kurzzusammenfassung

Magnetoelektrische Multiferroika sind gekennzeichnet durch eine starke Wechsel-
wirkung magnetischer und ferroelektrischer Ordnung. Viele dieser Multiferroika
mit starkem magnetoelektrischem Effekt bilden eine chirale, antiferromagnetis-
che Magnetstruktur. In diesen Materialien ist es möglich, die elektrische Po-
larisation mit einem äußeren Magnetfeld, und umgekehrt, die antiferromagnetis-
chen Domänen mit einem äußeren elektrischen Feld zu schalten. Die Beobach-
tung antiferromagnetischer Domänen ist nur mit einer mikroskopischen Methode
zugänglich, wofür sich Neutronenstreuung mit polarisierten Neutronen als her-
vorragend geeignet erweist. Diese Arbeit handelt von Neutronen- und Röngen-
messungen an verschiedenen (chiralen) antiferromagnetischen Multiferroika. Das
Schalten von (chiralen) antiferromagnetischen Domänen steht im Vordergrund der
Untersuchungen.

Neutronendiffraktometrie liefert folgendes Bild von den Magnetstrukturen der
Pyroxene NaFeSi2O6 und LiFeSi2O6: In LiFeSi2O6 gibt es einen magnetischen
Phasenübergang bei 18 K unterhalb dessen eine verkantete, antiferromagnetische
Ordnung mit magnetischer Raumgruppe P21/c

′ vorliegt. In NaFeSi2O6 gibt es
zwei magnetische Phasenübergänge. Beide Phasen sind inkommensurabel mit
Propagationsvektor k = (0, 0.77, 0). Unterhalb von 8 K setzt eine transversale
Spindichtewelle mit magnetischen Momenten in der ac-Ebene ein, die sich un-
terhalb von 6 K in eine helikale Struktur verwandelt, wobei die Momente in der
ac-Ebene bleiben. Sphärische Neutronenpolarisationsanalyse zeigt, dass antifer-
romagnetische Domänen in LiFeSi2O6 mit einer Kombination von elektrischen
und magnetischen Feldern ausgerichtet werden können. Die Magnetstruktur in
LiFeSi2O6 ist toroidal. Daher werden die Ergebnisse im Zusammenhang mit der
Ausrichtung toroidaler Domänen diskutiert. Zusätzlich werden die Magnonendis-
persion und die Spindichte von LiFeSi2O6 besprochen.

In vielen chiralen Multiferroika kann die Chiralität der Magnetstruktur durch
das Anlegen eines elektrischen Feldes umgekehrt werden. Dies ermöglicht das
Aufnehmen von Hysteresekurven (chirales Verhältnis gegen elektrisches Feld). Die
Untersuchung der Zeitskala dieses Schaltprozesses in MnWO4 mit stroboskopis-
cher, polarisierter Neutronenstreuung zeigt ein überraschend langsames Schaltver-
halten im Bereich von 2 ms bis 30 ms und eine starke Temperaturabhängigkeit.

Des weiteren werden statische Hysteresekurven an TbMnO3 und DyMnO3

gezeigt. In TbMnO3 nimmt das Koerzitivfeld linear mit fallender Temperatur
zu. In DyMnO3 können Hysteresezyklen nur in der Nähe des ferroelektrischen
Phasenübergangs durchlaufen werden. Weitere Untersuchungen an TbMnO3

zeigen, dass der quasi-lock-in des magnetischen Propagationsvektors knapp ober-
halb des Einsetzens der chiralen magnetischen Ordnung stattfindet. Der Prop-
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agationsvektor verändert sich zusätzlich linear mit isotropem Druck. Röntgen-
Einkristalldiffraktometrie an TbMnO3 und DyMnO3 zeigt, dass die Auslenkung
der Ionen aus ihrer zentrosymmetrischen Lage in der ferroelektrischen Phase sehr
gering ist und unterhalb des Auflösungsvermögens der durchgeführten Messungen
liegt.
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1 Multiferroics

As the term multiferroics already reveals, it refers to materials which combine
several ferroic properties. The three ferroic properties are ferroelectricity, ferro-
magnetism, and ferroelasticity. A material is called multiferroic if two or all three
of these properties occur simultaneously in the same phase [1].

A ferroic material is characterised by the fact that it forms domains which ex-
hibit a macroscopic property (e.g. magnetisation) which in turn interacts with
a related field and by means of this field can be reversed. A ferromagnetic ma-
terial possesses a spontaneous magnetisation M sp that can be switched by an
applied magnetic field H . A ferroelectric material possesses a spontaneous elec-
tric polarisation P sp that can be switched by an applied electric field E. A
ferroelastic material displays a spontaneous deformation that can be reversed by
an applied mechanical stress [2]. Often the definition of multiferroics is expanded
to include antiferromagnetic order which is characterised by ordered magnetic
moments which cancel out each other on a microscopic scale and thus prevent a
macroscopic magnetisation [3].

The topic of multiferroics gets exciting when the different order parameters do
not just coexist but also interact with each other. Nowadays most attention is
paid to the magnetoelectric coupling which describes the influence of a magnetic
field on the electric polarisation P and vice versa the influence of an electric field
on the magnetisation M . Up to the linear order this relation is given by

Pi(E,H) = P sp
i + ε0χ

el
ijEj + αijHj + . . .

µ0Mj(E,H) = µ0M
sp
j + µ0χ

mag
ij Hi + αijEi + . . .

Whereas the electric and the magnetic susceptibilities χij are symmetric the mag-
netoelectric tensor αij is not [4, 5].

The term multiferroics is used predominantly for magnetoelectric multiferroics
neglecting ferroelasticity. In spite of this the coupling between ferroelectricity and
ferroelasticity – i.e. piezoelectricity – was already discovered in 1880 by J. and
P. Curie [6] and has found indispensable technical application in electric cigarette
lighters, in microphones, and as actuators in atomic force and scanning tunneling
microscopes, to name just a few [7].

The magnetoelectric effect on the contrary – even though its existence was
pointed out by P. Curie in 1894 [8] – was predicted for Cr2O3 not before 1959
by I. Dzyaloshinskii [9] and observed by D. Astrov in 1960 [10] and G. Rado
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1 Multiferroics

et al. (1961) [11]. Not much progress was reported on that topic from then
until 2003 when research on magnetoelectric multiferroics regained substantial
interest. This increase in interest has partly to do with the realisation how useful
a magnetoelectric material with a strong magnetisation would be for applications
[12–14].

Magnetoelectric materials are often discussed in the context of data storage.
Presently, most non-volatile data storage devices exploit the magnetisation of
small grains for storing information. The magnetisation of these grains gets re-
versed by a magnetic field. Generation of magnetic fields involves an electric
current which consumes energy, produces heat, and is limited in size due to the
coils carrying the current. Conversely, the generation of an electric field requires
no constant current and solves all three problems at once. A magnetoelectric
material with a sizeable magnetisation could then be used to be written by an
electric field and read out by its magnetisation [15]. However, a suitable material
has not yet been found. Most magnetoelectrics are antiferromagnets and have
a low transition temperature. The reasons for that will be illuminated in the
following.

Before moving on, it must be distinguished between single-phase and compos-
ite multiferroics. Single-phase (magnetoelectric) multiferroics combine magnetic
and ferroelectric properties intrinsically. Composite multiferroics consist of fer-
romagnetic and ferroelectric phases which both have also a strong ferroelastic
interaction. The magnetoelectric effect is mediated by the strain which is gener-
ated in one phase by the application of an electric (magnetic) field and in turn
causes magnetisation (polarisation) in the other phase. Regarding future appli-
cations these composite multiferroics seem more promising. Anyhow, they are
not topic of this thesis which entirely deals with single-phase multiferroics. Con-
sidering fundamental physical concepts single-phase multiferroics are the more
fascinating. These concepts will be recapitulated in the following [7].

Empirically, ferroelectricity and ferromagnetism seem to exclude each other.
The reason for that is found in the microscopic origin of both phenomena. In
magnetic materials localised electrons of partly filled d or f shells of transition-
metal or rare-earth ions form localised magnetic moments. Exchange interaction
between these moments leads to their alignment. Ferroelectricity results from the
relative shifts of positive and negative ions which breaks inversion symmetry. The
microscopic origins for ferroelectricity are various [16, 17].

In classical ferroelectrics with perovskite structure (e.g. BaTiO3) the transition
metal ion is located in the centre of an O6 octahedron. The electric polarisation
is caused by an off-centre shift of the transition metal ion with empty d shell
in order to form covalent bonds with one or three of the surrounding oxygens.
Due to the empty d shell these ferroelectrics lack localised magnetic moments.
Introducing ions with partly filled d shells into such systems seems promising in
order to combine ferroelectricity and ferromagnetism (e.g. BiMnO3 or BiFeO3).
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However, the interaction of both order phenomena is weak [12, 13, 16].
The examples outlined above are so called proper ferroelectrics where structural

instability towards the polar state, associated with electron pairing, is the cause of
the ferroelectric transition. In improper ferroelectrics the ferroelectric transition
is a consequence of a more complex lattice distortion or a byproduct of another
type of ordering. An example for a complex lattice transition is the geometric
ferroelectricity in hexagonal manganites (e.g. YMnO3) where the MnO5 blocks
tilt into the polar state. An example for another type of ordering is charge order
in manganites (e.g. Pr1−xCaxMnO3) where charges order non-centrosymmetric
and induce electric polarisation [12, 16, 17].

Finally, electric polarisation can be induced by magnetic order. Obviously,
strong magnetoelectric interaction can be expected for these compounds. Most of
the magnetically induced multiferroics exhibit a spiral magnetic structure. The
magnetic order in these systems is highly frustrated and competing interactions
between the magnetic moments lead to complex magnetic structures. For that
reason the order temperature in these compounds is rather low.

The most prominent representative of such systems is TbMnO3 which was found
to be multiferroic in 2003 [18]. This discovery marks the strong rise in enthusiasm
for multiferroics. As in the case of TbMnO3, in many of these spiral multiferroics
frustration leads to a sequence of magnetic phase transitions which start with
a sinusoidal spin-density wave followed by the spiral phase. In the sinusoidal
spin-density wave phase the moments are not completely ordered. With regard
to minimising its entropy, the system has to find a way to order the remaining
moments which may result in a spiral phase. In TbMnO3 a sinusoidal spin-density
wave sets in below 42 K and spiral order sets in below 28 K [19]. TbMnO3 is further
discussed in Chapter 6.

Observations of the magnetic phase transitions in different multiferroics
(TbMnO3 [19], MnWO4 [20], Ni3V2O8 [21], CuFeO2 [22, 23]) confirm a sequence
of two second-order magnetic phase transitions. While the first requires a sin-
gle irreducible representation and is non-polar the second requires two irreducible
representations and is polar. Only the second transition breaks the remaining
symmetries and generates the ferroelectric phase [24]. NaFeSi2O6 seems to be an
exception of this rule as discussed in Chapter 4.

Spiral magnetic order is distinguished between helical and cycloidal arrange-
ment of the magnetic moments. In a helical spiral the moments rotate in a plane
perpendicular to the propagation vector while in a cycloidal spiral the propagation
vector lies within the rotation plane of the spins. Both spirals break inversion sym-
metry and may thus induce electric polarisation. A sinusoidal spin-density wave
on the contrary does not break inversion symmetry and cannot induce ferroelec-
tricity.

Among the spiral spin arrangements especially the cycloid is known to induce
ferroelectricity. The microscopic mechanism for that involves the antisymmetric
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1 Multiferroics

Dzyaloshinskii-Moriya interaction and was considered in References [25] and [26].
The Dzyaloshinskii-Moriya interaction between neighbouring moments is given
by Dij · Si × Sj and favours non-collinear spin arrangement. The exchange in-
teraction between neighbouring moments is usually mediated via super-exchange
by oxygen ions forming bonds between pairs of transition metal ions. The bond
angle determines the angle between the spins. In order to minimise the energy
the Dzyaloshinskii-Moriya interaction can now inversely act on the bond angle
and thereby shift the oxygens away from their centrosymmetric position. This
mechanism is therefore called inverse Dzyaloshinskii-Moriya interaction. The dis-
placement of the oxygen ions leads to electric polarisation which is given by

P ∝
∑
ij

eij × (Si × Sj) (1.1)

where eij points along the connection lines of the corresponding ions [17]. For
the cycloidal spiral the connection line eij is perpendicular to the cross product
Si×Sj and a finite electric polarisation is induced. Cycloidal magnetic order can
account for ferroelectricity in RMnO3 (R = Tb, Dy, etc.) [19, 27, 28] (Chapter 6
& 7), MnWO4 [29–31] (Chapter 5), Ni3V2O8 [32] etc.

For the helical spiral eij is parallel to Si×Sj and thus no polarisation is induced
by the mechanism of Equation (1.1). Nevertheless there are examples of materials
with helical magnetic structure which exhibit ferroelectricity, among them CuFeO2

[23], Cu3Nb2O8 [33], and NaFeSi2O6 (Chapter 4). These compounds have in
common that they have a rather low crystal symmetry (1̄ or 2/m). The helical
magnetic structure further reduces the symmetry by breaking inversion and mirror
operations. The only symmetry operations in accordance with helical magnetic
structures are rotation axes. Electric polarisation is in accordance with rotation
axes as long as the polarisation is parallel to them (polar axis). Once the symmetry
operations which prevent the crystal from being ferroelectric are broken, the ions
are prone shift into a polar state and ferroelectricity sets in [23, 33].

Another mechanism, which does not require spiral magnetic order and thus can
account for ferroelectricity even in collinear spin arrangements, is the exchange
striction. The energy between neighbouring spins is given by Si · Sj. In a frus-
trated magnetic structure the exchange striction shifts ions in a way to optimise
their exchange energy. For example in a chain with nearest-neighbour ferromag-
netic and next-nearest-neighbour antiferromagnetic interaction the moments with
parallel spin will move closer together which may break inversion symmetry and
generate electric polarisation [16, 17, 34]. Exchange striction is argued to be the
predominant mechanism for ferroelectricity in YMn2O5 [34, 35]. YMn2O5 is dis-
cussed in Chapter 8.

Considering the three well established ferroic properties under their behaviour
of the inversion of space and time gives the following picture. Ferroelasticity is
invariant against space and time inversion. Ferromagnetism is invariant against
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space inversion but changes sign upon time inversion. Ferroelectricity changes
sign upon space inversion but is invariant against time inversion. It is then a
natural expansion to consider also a ferroic order parameter which breaks both
space and time inversion. Ferrotoroidicity is claimed to be the fourth ferroic order
parameter which fulfils the desired symmetry behaviour. The toroidal moment t
of a bulk material with localised magnetic moments is given by the sum over all
the magnetic moments mα and the cross product with their position vectors rα
with respect to some origin

t =
1

2

∑
α

rα ×mα

Naturally this quantity fulfils the desired symmetry behaviour. The ferrotoroidal
state can be visualised as an array of spin vortices [36, 37].

Ferrotoroidal domains in a crystal are not necessarily identical to the antifer-
romagnetic domains in the same crystal. A reversal of all magnetic moments in
an antiferromagnetic domain however results in inversion of the toroidal moment.
Therefore it is questionable whether the toroidal moment can be considered as an
independent ferroic state. In order to exhibit a toroidal moment a crystal must
have an antiferromagnetic structure which additionally breaks inversion symme-
try. Crystals with an antiferromagnetic structure known to give rise to a toroidal
moment are LiCoPO4 [38] and LiFeSi2O6 (Chapter 3).

In magnetoelectric materials it is possible to manipulate the antiferromagnetic
structure by means of an electric field. Especially in materials with spiral mag-
netic structure it is possible to reverse the sense of rotation of the spiral [39]. A
microscopic method is required for observing antiferromagnetic domains. So far
two methods are available: optical second harmonic generation (SHG) [40] and
spherical neutron-polarisation analysis. The fundamentals of polarised neutron
scattering are reviewed in detail in Chapter 2.
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1 Multiferroics
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2 Polarised Neutron Scattering

This chapter covers essential neutron-scattering formulas. Rather than giving a
general introduction on the entire theory of neutron scattering, it is restricted to
the formulas essentially used in this thesis. The main attention is thus directed to
elastic polarised neutron scattering. General knowledge of scattering theory (i.e.
elementary X-ray scattering) is assumed.

The neutron-scattering experiments presented in this thesis have been per-
formed at the Institut Laue-Langevin (ILL) in Grenoble, at the Laboratoire
Léon Brillouin (LLB) in Saclay (Paris), and at the Forschungsreaktor München II
(FRM II) in Garching.

2.1 The Structure Factor

For elastic neutron scattering the length of the wave vector is retained during the
scattering event ki = kf = 2π

λ
, i.e. the neutrons do not gain or yield energy to the

crystal. The scattering vector is defined as the momentum transfer on the crystal
due to the scattering process

Q = ki − kf (2.1)

Q = 4π sin θ
λ

. Constructive interference is achieved only when the scattering vector
is equal to a reciprocal lattice vector G

Q = G (2.2)

Equations (2.1) and (2.2) yield the Bragg equation

2k ·G = G2

which is commonly written as

2d sin θ = nλ

The intensity of the scattered neutrons I is proportional to the absolute square
of the structure factor N . The nuclear structure factor N is the Fourier transform
of the nuclei distribution, it is given by

N(Q) =
∑
j

bj eiQ·rj e−Wj(Q)
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2 Polarised Neutron Scattering

The sum runs over all nuclei j in the unit cell of the crystal. b is the coherent
scattering length of the corresponding nucleus which is in the range of 1 to 10 fm.
All values are listed in [41, 42]. The scattering length of an element depends on
the isotope and on the orientation of the nuclear spin with respect to the neutron’s
spin. It is a reasonable assumption that isotopes and nuclear spin are distributed
randomly. They can therefore not contribute to the interference effect which
assumes perfect periodicity of the scattering centres. The coherent scattering
length bc is the mean value of the scattering lengths of the element averaged over
the various possible isotopes and spin orientations. The uncorrelated distribution
of the isotopes and the spins contributes to the so called incoherent scattering
which is isotropic (i.e. it is independent of Q). Thus it adds to the background
uniformly and can be neglected for most neutron-scattering experiments.

The Debye-Waller factor e−W (Q) = exp(−Q2U
2

) = exp(−B sin2 θ
λ2 ) = exp(− B

4d2 )
describes the effect of thermal motion on the intensity of the coherent scattering.
There are two common expressions for the temperature factor which are related by
Biso = 8π2Uiso. Thermal fluctuations of the nuclei about their equilibrium position
diminish the intensity of the scattered neutrons. But where do these neutrons go?
They must still exist because the amount of incident neutrons must equal the
amount of final neurons except for absorption due to neutron capture. Due to the
statistical nature of the thermal fluctuations the crystal structure deviates from
its periodic alignment. As in the case of incoherent scattering by the different
isotopes and spins the thermal motion contributes to the background uniformly.

2.1.1 Magnetic Scattering

In analogy to the nuclear structure factor the magnetic structure factor for non-
modulated structures (i.e. propagation vector k = 0) is given by

M (Q) = p
∑
j

fmag
j (Q)mj eiQ·rj e−Wj(Q)

The magnetic form factor fmag(Q) represents the magnetisation distribution
within a single magnetic ion. Its values are listed in [41, 42]. m is the mag-
netic moment in units of µB. The constant p = 2.695 fm/µB relates the scattering
length for a single magnetic moment of 1µB at Q = 0 to the nuclear scattering
length b which is in the range of 1 to 10 fm. Therefore magnetic scattering is of
the same magnitude as nuclear scattering or may eventually exceed it for large
magnetic moments (∼ 10µB) as in rare earths. The magnetic interaction vector
M⊥ is the part of the magnetic structure factor M perpendicular to Q

M⊥ = Q̂× (M × Q̂) (2.3)

Only that perpendicular part contributes to the scattered intensity. The intensity
is proportional to the absolute square of the magnetic interaction vector. When
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2.2 Polarised Neutron Scattering

magnetic and nuclear scattering peaks occur in the same position (as they do for
k = 0) the coherence between the magnetic and nuclear scattering amplitudes
must be considered. In the case of unpolarised neutrons there is no coherence and
the magnetic and nuclear intensities are additive.

I = |N |2 + |M⊥|2 (2.4)

Modulated Magnetic Structures

For modulated structures (i.e. propagation vector k 6= 0) the formulas get slightly
more complicated. The magnetic moment distribution mlj can be Fourier ex-
panded

mlj =
∑
k

mkj e−i(k·Rl+φkj) (2.5)

The Fourier components mkj are in general complex vectors. The sum runs over
all propagation vectors, usually k1 = k and k2 = −k. A necessary condition for
the magnetic moments mlj to be real is m−k = m∗k, where ∗ denotes complex
conjugation. Rl is the vector which translates the origin of the direct space to the
individual unit cell of actual interest. The phase φkj = −φ−kj is not absolutely
necessary. In principle any phase between two Fourier components can be deter-
mined by the value of the components themselves. However, the equations become
more intuitive when regarding two moments which are connected by symmetry.
In a centred cell for example the phase φk = k · t relates the Fourier component
of an ion to the one translated by the centering vector t.

Lastly, the magnetic structure factor for magnetic structures with propagation
vector reads as

M (Q = G+ k) = p
∑
j

fmag
j (Q)mkj ei(Q·rj−φkj) e−Wj(Q)

This summary is based on text books [41–47].

2.2 Polarised Neutron Scattering

As mentioned earlier for unpolarised neutrons no coherence between magnetic
and nuclear scattering has to be considered. In other words useful information
can be gained by the use of polarised neutrons. Even when magnetic and nuclear
scattering peaks do not occur in the same position (k 6= 0) useful information
about the magnetic structure can be acquired by the use of polarised neutrons.

For a given axis of quantisation the neutron’s spin can be aligned either parallel
(+) or antiparallel (−). The polarisation of the neutron beam with respect to an
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2 Polarised Neutron Scattering

arbitrarily chosen axis (i = x, y, z) is then defined as

Pi =
Ni −Nī

Ni +Nī

(2.6)

where Ni is the number of neutrons with spin parallel to the axis i. In a completely
unpolarised neutron beam there are equal amounts of both spin configurations,
hence P = 0. A completely polarised beam has polarisation P = ±1.

It is useful to define a right handed, orthogonal coordinate system with respect
to the scattering vector x ‖(−Q). z is chosen to be vertical on the scattering
plane and y = z × x completes the right handed system. The usefulness of this
definition becomes immediately obvious when regarding the magnetic interaction
vector which now writes as M⊥ = (0,My,Mz)

T.
The polarisation of the incident neutron beam along some arbitrary axis is

given by P = (Px, Py, Pz)
T. The scattered intensity under the condition that the

incoming neutron beam is polarised is

I = NN∗ +M⊥ ·M ∗
⊥ + P ·M⊥N

∗ + P ·M ∗
⊥N − iP · (M⊥ ×M ∗

⊥) (2.7)

For unpolarised neutrons (P = 0) Equation (2.7) results in Equation (2.4).
In the most general case one is interested in the polarisation P ′ij of the scattered

intensity Iij along some axis j under the condition that the incident neutron
beam was polarised along i. Likewise to Equation (2.6) the scattered polarisation
is defined as

P ′ij =
Iij − Iij̄
Iij + Iij̄

(2.8)

and P ′i = (P ′ix, P
′
iy, P

′
iz)

T. The sum (Ii the scattered intensity when incident
polarisation is parallel i)

Ii = Iij + Iij̄ (2.9)

must hold as the neutron spin must be either up or down. Equation (2.8) and
Equation (2.9) yield

Iij =
1

2
(Ii + P ′ijIi) (2.10)

which is a useful expression once P ′ijIi is available. This quantity is in fact given
by

P ′I = P (NN∗ −M⊥ ·M ∗
⊥)

+M⊥(P ·M ∗
⊥) +M ∗

⊥(P ·M⊥) +M⊥N
∗ +M ∗

⊥N

− iP × (M⊥N
∗ −M ∗

⊥N) + i(M⊥ ×M ∗
⊥)

(2.11)

Equations (2.7) and (2.11) are called the Blume-Maleev equations. They
were derived simultaneously and independently by the physicists M. Blume and
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2.2 Polarised Neutron Scattering

S. Maleev et al. in the early 1960’s [48, 49]. However, for better understanding
an article of P. J. Brown [50] is recommended. Table 2.1 summarises all of the
36 possible channels of neutron-polarisation analysis. The different contributions
are classified depending on their origin as nuclear, magnetic, chiral magnetic and
nuclear magnetic interference term.

Two simple rules which in many cases are sufficient and provide greater insight
can be deduced from the complete set of equations: (I.) Components of the mag-
netic moment which are parallel to the neutron polarisation produce non-spin-flip
scattering, while those perpendicular to the neutron polarisation produce spin-flip
scattering. (II.) Hence, if the neutron polarisation is along the scattering vector,
all magnetic scattering is spin-flip scattering [51].

It is useful to summarise the polarisations in a matrix-like notation

P ′ = (P ′x,P
′
y,P

′
z) =

 P ′xx P ′yx P ′zx
P ′xy P ′yy P ′zy
P ′xz P ′yz P ′zz

 (2.12)

with P ′i as columns. Note that just 18 of the intensity channels contribute to this
kind of matrix.
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Iij nuclear magnetic chiral magnetic nuc. magn. interference

xx = NN∗

xx̄ = M⊥ ·M ∗
⊥ − i(M⊥ ×M ∗

⊥)x
x̄x = M⊥ ·M ∗

⊥ + i(M⊥ ×M ∗
⊥)x

x̄x̄ = NN∗

yy = NN∗ + MyM
∗
y + 2<(M∗

yN)
yȳ = MzM

∗
z

ȳy = MzM
∗
z

ȳȳ = NN∗ + MyM
∗
y − 2<(M∗

yN)

zz = NN∗ + MzM
∗
z + 2<(M∗

zN)
zz̄ = MyM

∗
y

z̄z = MyM
∗
y

z̄z̄ = NN∗ + MzM
∗
z − 2<(M∗

zN)

xy = yx̄ = 1/2(NN∗ + M⊥ ·M ∗
⊥ − i(M⊥ ×M ∗

⊥)x + 2<(M∗
yN) + 2=(M∗

zN))
xȳ = ȳx̄ = 1/2(NN∗ + M⊥ ·M ∗

⊥ − i(M⊥ ×M ∗
⊥)x − 2<(M∗

yN)− 2=(M∗
zN))

x̄y = yx = 1/2(NN∗ + M⊥ ·M ∗
⊥ + i(M⊥ ×M ∗

⊥)x + 2<(M∗
yN)− 2=(M∗

zN))
x̄ȳ = ȳx = 1/2(NN∗ + M⊥ ·M ∗

⊥ + i(M⊥ ×M ∗
⊥)x − 2<(M∗

yN) + 2=(M∗
zN))

xz = zx̄ = 1/2(NN∗ + M⊥ ·M ∗
⊥ − i(M⊥ ×M ∗

⊥)x + 2<(M∗
zN)− 2=(M∗

yN))
xz̄ = z̄x̄ = 1/2(NN∗ + M⊥ ·M ∗

⊥ − i(M⊥ ×M ∗
⊥)x − 2<(M∗

zN) + 2=(M∗
yN))

x̄z = zx = 1/2(NN∗ + M⊥ ·M ∗
⊥ + i(M⊥ ×M ∗

⊥)x + 2<(M∗
zN) + 2=(M∗

yN))
x̄z̄ = z̄x = 1/2(NN∗ + M⊥ ·M ∗

⊥ + i(M⊥ ×M ∗
⊥)x − 2<(M∗

zN)− 2=(M∗
yN))

yz = zy = 1/2(NN∗ +M⊥ ·M ∗
⊥ + 2<(MyM

∗
z ) + 2<(M∗

yN) + 2<(M∗
zN))

yz̄ = z̄y = 1/2(NN∗ +M⊥ ·M ∗
⊥ − 2<(MyM

∗
z ) + 2<(M∗

yN)− 2<(M∗
zN))

ȳz = zȳ = 1/2(NN∗ +M⊥ ·M ∗
⊥ − 2<(MyM

∗
z ) − 2<(M∗

yN) + 2<(M∗
zN))

ȳz̄ = z̄ȳ = 1/2(NN∗ +M⊥ ·M ∗
⊥ + 2<(MyM

∗
z ) − 2<(M∗

yN)− 2<(M∗
zN))

Table 2.1: Intensity of all 36 possible channels of neutron-polarisation analysis. [52]
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2.2 Polarised Neutron Scattering

2.2.1 Chiral Magnetic Structures

The concept of chirality is most intuitively introduced by considering human hands
(Greek: χειρ, hand). The mirror image (enantiomorph) of the right hand is the
left hand and it is not possible to bring both hands to coincident by the use of
pure rotation or translation operations. Lord Kelvin introduced the term chirality
in 1904. Generally an object can be defined to be chiral, if it is not superposable
by pure rotation or translation on its mirror image [53].1 Chirality is an important
property in nature. Enantiomers (enantiomorphs of molecules) often smell and
taste differently.

An object is chiral, if its point group contains no symmetry elements like inver-
sions (1̄), mirrors (m), and rotoinversions (n̄). The point group must contain only
pure rotations (n). Chirality depends on the dimension of the space. A chiral
object in two dimensions, such as the palm of the hand, becomes achiral in three
dimensions, since the plane containing the two-dimensional object becomes then
a mirror symmetry.2

Before we move on to chirality of magnetic structures we must consider the ac-
tion of symmetry operations on magnetic moments. We can imagine a magnetic
moment as an infinitesimal current loop. Time inversion (1′) will therefore reverse
the direction of the current and thus the direction of the magnetic moment. In an
analogous manner we can investigate how the current loop reacts on spatial sym-
metry operations. This is a tedious exercise. The results can best be summarised
by introducing the concept of polar and axial vectors. For this purpose we write
the symmetry operation as an orthogonal 3 × 3 matrix. The symmetry opera-
tions can then be classified as proper, det(α) = 1 (real rotation), and improper,
det(α) = −1 (inversion, refection). When the vector is polar (e.g. the electric
dipole moment) it transforms as g(p) = α · p. When the vector is axial (e.g. the
magnetic dipole moment) it transforms as g(a) = det(α)α · a.

The complexity of the term chirality comes along when considering dynamical
aspects (here current loops i.e. magnetic moments) as in the following example. A
parallel arrangement of a magnetic and an electric dipole moment ↑m↑e seems to
be a chiral object as both moments become antiparallel ↓e↑m under space inver-
sion and are not superposable onto each other. However, the same configuration
can be obtained, by time inversion combined with a two-fold rotation. The former
given definition of chirality gives no clear answer how to deal with time inversion.
L. Barron introduces the term true chirality : True chirality is possessed by sys-

1In crystallography (restricted to three dimensions) it is customary to define an object as chiral,
if it is not superposable by pure rotation or translation on its image gained by inversion.
(The equivalence of both definitions becomes obvious when remembering that a mirror is a
combination of a spatial inversion and a two-fold rotation, m = 2̄.)

2If we do not distinguish any more between the palm of the hand and its back we can super-
impose the right and the left hand if we flip on hand.
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2 Polarised Neutron Scattering

tems that exist in two distinct enantiomeric states that are interconverted by space
inversion but not by time reversal combined with any proper spatial rotation [54].

When dealing with magnetic structures we have an intuitive understanding of
the sense of spin rotation. It is customary to associate this sense of spin rotation
to some value. A suitable value is the vector chirality

χ = Si × Sj

determined by two consecutive spins Si and Sj on an oriented path. The behaviour
of the vector chirality will now be discussed in regard of two most prominent
magnetic structures with a sense of rotation: the helical and the cycloidal magnetic
structure.

Helical magnetic structure means the propagation vector is perpendicular to
the plane of rotation of the magnetic moments so that the connection line of
the magnetic moments forms a helix (also referred to as screw type magnetic
structures). Space inversion produces two enantiomorphs with spins rotating in
the opposite sense around the axis of the helix. Neither time inversion nor rotation
about any axis does change the sense of spin rotation. Thus a helix shows true
chirality according to Barron. The vector chirality for both enantiomorphs has
opposite sign and is in accordance of our intuitive understanding.

Cycloidal magnetic structure means the propagation vector lies in the plane of
rotation of the magnetic moments so that the connection line of the magnetic mo-
ments forms a cycloid. Again, space inversion produces two configurations with
spins rotating in the opposite sense in the plane. However a two-fold rotation
about an axis either perpendicular to the rotation plane of the spins or parallel to
the propagation vector produces the same configuration (modulo a translation).
Obviously, such an object is not chiral. This behaviour is a consequence of the cy-
cloid being a two-dimensional object in three-dimensional space. Nevertheless it is
possible to unambiguously assign distinct vector chiralities to both configurations.

An excellent review on chirality is given by V. Simonet, M. Loire, and R. Ballou
[55].

In many multiferroic materials with spiral magnetic structure3 the microscopic
origin of the ferroelectricity is the inverse Dzyaloshinskii-Moriya interaction. The
direction of the electric polarisation P is given by P ∝

∑
ij eij × (Si×Sj) where

Si and Sj are the magnetic moments of neighbouring magnetic ions and eij points
along the connection line of the corresponding ions.

3Spiral magnetic structure is used as a collective term for helical, cycloidal and mixed types
of spin arrangements.
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2.2 Polarised Neutron Scattering

We recognise the term Si × Sj as the vector chirality. It is non-zero only for
non-collinear spin arrangements. In particular sinusoidal spin-density waves yield
a vanishing cross product of neighbouring magnetic moments.

Neutron scattering with polarised neutrons suggests itself for studying magnetic
structures with a non-vanishing term Si × Sj as it gives access to the so called
chiral term: −i(M⊥ ×M ∗

⊥)x. The chiral ratio is defined as

rχ =
−i(M⊥ ×M ∗

⊥)x
|M⊥|2

As we learn from Table 2.1 the chiral ratio can be measured likewise in several
channels of the neutron polarisation. The strongest intensity can be detected in
the channel Ixx̄ = |M⊥|2 − i(M⊥ ×M ∗

⊥)x and Ix̄x = |M⊥|2 + i(M⊥ ×M ∗
⊥)x:

rχ =
Ixx̄ − Ix̄x
Ixx̄ + Ix̄x

(2.13)

In order to observe the chiral term and the chiral ratio the scattering vector must
have a component perpendicular to the rotation plane of the magnetic moments.
Only if the scattering vector is exactly perpendicular to this rotation plane chiral
ratios of ±1 are possible4

2.2.2 The Flipping Ratio

When undertaking a neutron-scattering experiment with polarised neutrons the
quality of the polarisation of the incoming beam is an important factor as all
scattering results will depend on it. The polarisation was given by Equation (2.6):
Pi = Ni−Nī

Ni+Nī
. A polarisation of 1 is desired yet experimentally not obtainable,

of course. So Ni represents the number of the ’good’ neutrons whose spin is
aligned properly while Nī represents the number of the ’bad’ neutrons whose spin
is misaligned. Another frequently used quantity is the flipping ratio which is
defined as

FR =
Ni

Nī

The flipping ratio and the polarisation are connected by the following relations:

FR =
1 + P

1− P
P =

FR− 1

FR + 1

Under good experimental conditions a flipping ratio of 40 is readily achieved, but
at 20 reasonable results still can be obtained (polarisation of ∼ 0.95 and ∼ 0.90,
respectively).

4Proof: In our notation Q ‖(−x). Imagine an arbitrary spiral magnetic structure with the
scattering vector in the plane of rotation of the magnetic moments. Without loss of generality
we choose M = Mxx + Myy. Obviously M⊥ = Myy. It follows M⊥ ×M∗

⊥ = 0. Now let
the scattering vector be perpendicular to the plane of rotation: M = Myy+Mzz. It follows
M⊥ = Myy +Mzz, but now M⊥ ×M∗

⊥ = (MyM
∗
z −M∗yMz)x.
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2 Polarised Neutron Scattering

2.2.3 History of Polarised Neutrons

The existence of the neutron was predicted by E. Rutherford in 1920 in order to
explain the nuclear constitution of atoms [56]. The neutron was proposed as a
neutral particle consisting of close combination of a proton and an electron. A
concept which was elaborated in the theory of β decay of the neutron by E. Fermi
in 1934 [57]. It was J. Chadwick who experimentally verified its existence in 1932
[58, 59]. Although since its discovery it was generally accepted that the neutron
is a spin-1/2 particle [60, 61] it lasted till 1947 until an unambiguous experimental
proof was delivered [62]. The magnetic moment of the neutron was postulated
already in 1934 [63]. In 1936, short after their discovery, it was shown that neu-
trons could be diffracted by crystals [64]. It was the same year when F. Bloch
pointed out that neutrons will scatter from an atom not only on account of the
interaction of the neutron with the atomic nucleus but also on account of the inter-
action of the neutron’s magnetic moment with the magnetic moment of the atom
[65]. In 1937 J. Schwinger gave a more detailed theory on an unpolarised beam of
neutrons which will be partially polarised after being transmitted through a fer-
romagnet [66]. Experimentally this was accomplished 1938 [67, 68]. O. Halpern
and M. Johnson advanced the theory of magnetic neutron scattering and placed
special emphasis upon questions of polarisation (1937-1939) [69–71]. Again, Bloch
together with L. Alvarez determined the magnetic moment of the neutron by po-
larisation analysis in 1940 [72]. The first determination of a magnetic structure
was carried out in a pioneering experiment by C. Shull and J. Smart in 1949 on
antiferromagnetic MnO [73]. In 1951 complete polarisation of the neutron beam
by reflection of neutrons from magnetised mirrors was reported [74]. In the same
year complete polarisation by Bragg scattering on antiferromagnetic magnetite
(Fe3O4) was achieved by Shull et al. [75]. In 1959 the first measurement with po-
larised neutrons was carried out and the magnetic form factors of nickel and iron
were determined [76, 77]. In this experiment the incident neutron beam was po-
larised either parallel or antiparallel to the magnetisation of the scattering crystal
and the corresponding intensities were compared. A general theory of polarised
neutron scattering was published simultaneously and independently by the physi-
cists M. Blume and S. Maleev et al. in 1963 [48, 49]. In contrast to the former
theory by Halpern and Johnson, which was restricted to ferromagnetic and simple
antiferromagnetic structures, no restrictions were made. As a consequence inter-
esting polarisation effects in the case of scattering by spiral spin structures were
henceforth computable.

In 1969 the development of the first triple-axis spectrometer with uniaxial (lon-
gitudinal) polarisation analysis was reported by R. Moon, T. Riste and W. Koehler
[51]. They installed a polariser before and polarisation analysis behind the sample.
The direction of polarisation could be chosen to be perpendicular or parallel to
the scattering vector. Due to the need of a continuous magnetic guide field from
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2.3 Polarised Neutron-Scattering Technique

the polariser to the analyser the polarisation and analysis were always parallel
or antiparallel, hence the term uniaxial. The instrument allowed to choose the
spin state of the incident beam to be (+) or (−) and equally the spin state of the
scattered beam to be (+) or (−). This way for either polarisation axis (P ⊥ Q
or P ‖ Q) four scattering amplitudes were available.

The guide field is necessary to preserve the neutron polarisation. Without guide
field small fields as the earth’s magnetic field will disturb the original polarisation
of the beam as the neutron spin will precess about the field direction leaving only
the component along the field observable. As Moon et al. [51] already point out,
observing the scattered polarisation not in the direction of the incident polari-
sation, would require a magnetic field which changes direction precisely at the
location of the scattering centre. This is of course unfeasible. Another solution
to overcome this challenge is to install a zero-field chamber at the position of the
scattering centre. The first sophisticated experimental realisation was presented
by F. Tasset in 1989 [78]. The CRYOPAD (cryogenic polarisation-analysis device)
makes use of superconducting Meissner screens to expel any magnetic field from
the scattering centre. The guide fields before and after the scattering centre can
thus be selected independently. This way any arbitrary spin state for the incident
and the scattered beam can be achieved. In comparison to the former methods
this technique represents a great improvement. For the first time all polarisation
channels summarised in Table 2.1 were available. That is why this method is
referred to as spherical (vectorial, three-dimensional) polarisation analysis. The
setup of CRYOPAD is described in detail in Section 2.3.4.

This historical overview follows a lecture of R. Stewart [79] and an article of
J. Schweizer [80].

2.3 Polarised Neutron-Scattering Technique

2.3.1 Polarising the Neutron Beam

There are three different methods of polarising the neutron beam which will be
described in the following.

Polarising Crystals

Ferromagnetic single crystals can be used to simultaneously polarise and
monochromatise the neutron beam. A magnetic field is applied along the crystal
perpendicular to the scattering vector to saturate the magnetic moments along
the field direction. For an unpolarised beam P = 0 the Blume-Maleev equations
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(2.7) and (2.11) yield

P ′ =
2M⊥N

|N |2 + |M⊥|2
=

2MzN

|N |2 + |Mz|2
z

The chiral term −i(M⊥ ×M ∗
⊥)x is zero for collinear structures. For centrosym-

metric and for simple collinear magnetic structures N and M⊥ are real quantities.
If the magnetic field aligns all moments along the z direction then M⊥ = Mzz.
Under the special condition that the nuclear and the magnetic scattering ampli-
tude are of the same magnitude the neutron beam is completely polarised and
by reversing the magnetic field it is possible to reverse the neutron polarisation.
Suitable crystals are iron single crystals with a special amount of 57Fe and the
following alloys Co0.92Fe0.08, Cu2MnAl (Heusler) and Fe3Si. [79, 81]

Polarising Mirrors

For small scattering angles neutrons experience refraction. The refractive index n
of a material is usually slightly smaller than 1 (e.g. 1 − n = 1.5 · 10−6 for Ni at
λ = 1 Å). From this it follows that neutrons can experience total reflection at the
boundary between the material and the vacuum for very small incident angles,
typically 0◦10′. This effect facilitates the construction of neutron guides which
allow to transport the neutrons from the reactor to the spectrometer without loss
of intensity. By slightly bending the guide it is even possible to eliminate neutrons
of higher energy and gamma rays.

For a ferromagnetic material the critical angle differs for both spin states. By
choosing a suitable angle it is indeed possible to suppress one spin state and
produce a completely polarised beam. Due to the small angle of total reflection a
mirror must be a few meters long to produce a beam of a reasonable width.

More practical polarisers can be constructed by alternating several layers of
magnetic and non-magnetic material. This way it is possible to tune the critical
angle.

A polariser for broader wavelength range can be constructed if these bilayers
exhibit a gradient in their thickness. These devices are called supermirrors. Typ-
ically they are made from layers of Fe/Si or Co/Ti. To ensure that the neutrons
are reflected at least once, the mirror can be gently bent. This device is then
called a bender. Polarising multilayers produce a beam of high polarisation. The
wavelength is restricted to exceed 2 Å however. [44, 79, 81]

Polarising Filters

Polarising filters have different transmissibility for the two spin states. This is on
account of either preferential absorption or preferential scattering. The intensity
is a trade-off between attenuation and polarisation. Although in principle there
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are different isotopes which exhibit this feature the only one of contemporary
interest is 3He because it exhibits the strongest difference in the absorption cross-
section for the two spin states. One spin state goes through the gas with strong
absorption while the other one is less absorbed. The 3He nuclei can be polarised
by optical pumping using high power lasers, followed by compression of the gas.
Due to collisions with the walls of the container and stray magnetic fields the
polarisation of the gas decreases over time. For transport and at the instrument
magnetic shielding is employed. Nevertheless the cells have to be replaced about
once a day. Usual polarisation for recharged cells is about 0.8. [81]

2.3.2 Guiding the Polarised Neutron Beam

For any experimental implementation utilising polarised neutrons, the action of
a magnetic field on the magnetic moment of the neutron has to be taken into
account. The magnetic moment of the neutron is given by µn = γns where
the gyromagnetic ratio of the neutron is γn = −2 · 1.91µN/~ = −1.83 · 108 /sT.
µN = e~/2mp = 5.05 · 10−27 J/T is the nuclear Bohr magneton. The relation of
the nuclear Bohr magneton to the (electron) Bohr magneton is µN = µB/1836.
The z component of the neutron magnetic moment amounts µn,z = γn~/2 =
−1.91µN = −9.66 · 10−27 J/T. The relation of the neutron magnetic moment to
the electron magnetic moment is µn,z = µe,z/961. [82, 83]

A magnetic field B exerts a torque T on the magnetic moment, T = µn ×B.
The time evolution of the spin is thus governed by the following equation

ds

dt
= γns×B

When the spin and the field are parallel in the beginning, the cross product is zero
and the spin is preserved. Therefore such a field is called guide field. In the other
case the spin precesses about field what can be seen from the general solution of
the equation of motion

s(t) =

 sx0 cos(ωLt) + sy0 sin(ωLt)
sx0 sin(ωLt) + sy0 cos(ωLt)

sz0


with B = Bez and the Larmor frequency ωL = γnB.

A guide field is needed to preserve the spin of the neutron. If the guide
field rotates slowly in space (mathematical this means ωL/ωB � 1 where ωB
is the rotation of the magnetic field, experimentally this can be accomplished by
ωL/ωB > 10) the spin of the neutron will follow the guide field. This is called
adiabatic rotation. On the other hand if the guide field changes non-adiabatically
(i.e. ωL/ωB � 1) the spin begins to precess about the new field direction5 [50, 80].

5The calculation for the adiabatic and non-adiabatic rotation is not provided here.
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So far the mathematical treatment was for a classical spin. For a quantum
mechanical spin just one component of the spin is preserved, whilst the other
components remain fluctuating. The classical analysis keeps valid however if the
former spin is associated with the one component of the spin which is preserved.

The quantum mechanical spin comes along with some counterintuitive features.
One easy task is to imagine a neutron whose spin is aligned along the z direction
and now will be measured along the y direction. As mentioned before a quan-
tum mechanical spin can have only one fixed component. Subsequently when
measuring this spin along the y direction its probability of the being parallel or
antiparallel y is 1/2 each.

Mathematically the probability Pz(y) of finding a spin being prepared in |z〉
along the y direction is given by the projection Pz(y) = |〈y|z〉|2. In order to cal-
culate this probability we must represent the states |y〉 and |z〉 in the eigenvectors
of their operators given by the Pauli matrices si = ~

2
σi

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
With |y〉 = 1√

2

(
−i

1

)
and |z〉 =

(
1
0

)
it follows Pz(y) = |〈y|z〉|2 = 1

2
.

2.3.3 Spin Flippers

Scattering experiments with polarised neutrons usually require turning the neu-
tron spin in the desired direction. Different devices are available. Two of them
shall be described here.

Mezei Flipper

The principle of operation of a Mezei Flipper depends on the neutron spin un-
dergoing a well-defined number of Larmor precessions in a fixed magnetic field
over a well-defined distance. On entering the magnetic coil of the Mezei flipper
the neutron is exposed to a field perpendicular to the guide field. Because the
transition to the new field is non-adiabatic the spin starts to precess about the
perpendicular field. When it exits the flipping field after performing exactly one
rotation of π the spin is flipped. It is then preserved by the guide field which
it now opposes. Neutrons of different velocities spend different precession time
inside the coil, hence Mezei flippers can be employed for monochromatic beams
only. [79, 84, 85]

Current Sheet (Dabs Foil) Flipper

Originally a foil, more advanced a grid of closely aligned copper wires, is introduced
into the neutron beam in a way that the neutrons pass through the sheet. A strong
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current in the direction of the guide field through the sheet produces a magnetic
field perpendicular to the guide field. Right on the two sides of the sheet the
magnetic field lines are of opposite direction. Because the foil is thin the neutrons
experience a non-adiabatic field change when transmitting the foil. Precession
does not occur at that point as the fields are exactly opposing. The superposition
of the guide field and the field of the foil generates an ample transition region. It
is that region which adiabatically reverses the neutron polarisation. This kind of
flipper is independent of the neutron velocity. [79, 84]

2.3.4 CRYOPAD

This section describes the setup of the CRYOPAD III (cryogenic polarisation-
analysis device) for spherical polarisation analysis. Spherical polarisation analysis
allows choosing the direction of the incident and the final polarisation indepen-
dently and thereby gives access to the full polarisation matrix (2.12). The off-
diagonal terms of the polarisation matrix yield valuable information on the nu-
clear magnetic interference. For the experimental implementation it is necessary
to separate the guide fields of the incident and the final neutrons by a zero-field
chamber at the position of the scattering centre. The guide fields define the direc-
tion of polarisation analysis and may be chosen independently. In the zero-field
chamber at the scattering centre the orientation of the spin is maintained. For
a precise measurement of the spin direction an abrupt (non-adiabatic) transition
into the zero-field region is required. This is accomplished by superconducting
Nd-Meissner screens at the beam level, Figure 2.1. In addition, the environmental

Figure 2.1: CRYOPAD III (cryogenic polarisation-analysis device) [86]

29



2 Polarised Neutron Scattering

magnetic field is expelled from the zero-field chamber by µ-metal screens.

The neutron beam is polarised vertically (z direction) by a polariser (a Heusler
monochromator at IN22 for example). The spin then gets rotated adiabatically
along the direction of the incident neuron (x direction) by a guide field parallel
ki. Then a nutator adiabatically rotates the spin into a plane transverse to the
incident neutron (yz plane). The angle between the spin and the vertical z axis
can be chosen by rotating the nutator in the yz plane. Behind the nutator the
neutron enters the region between the two Meissner screens. Upon passing the
outer Meissner screen the magnetic field changes abruptly (non-adiabatically) to
a horizontal field perpendicular to the incident neutron (y direction) produced by
a superconducting entrance coil. The neutron’s spin starts to precess about the
magnetic field. Upon passing the inner Meissner screen the Larmor precession
stops and the spin maintains its direction in the zero-field. By choosing the
nutator angle and the current in the entrace precession coil the spin of the incident
neutron can be aligned in any direction desired. After the scattering process the
neutron enters the magnetic field of the exit coil between the Meissner screens
which is decoupled from the entrance coil. The exit nutator and the guide field
adiabatically transport the neutron to the analyser. Because the direction of the
spin is unknown after scattering at the sample, only the component parallel to the
guide field is preserved while the transverse components precess about the guide
field and average to zero. [86–88]

2.4 Time-Resolved Neutron Scattering

Within the scope of this thesis for the first time the kinetics of electric field induced
switching of chiral magnetic structures was investigated. On the one hand this is of
fundamental research interest, on the other hand multiferroics are often regarded
in the context of data storage devices such as non-volatile magnetic random access
memory (RAM). For this application the writing speed is a crucial issue. The
idea of the applied technique utilising neutron scattering was to instantaneously
reverse an electric field up to ±1.5 kV/mm and detect the response of the magnetic
structure as a function of time. When one intends to employ neutron scattering for
resolving a process which takes place on the timescale of milliseconds, one faces the
problem that counting times for neutrons typically range in the timescale of several
minutes. To overcome this challenge stroboscopic neutron-scattering techniques
were developed in the group of G. Eckold [89]. With this method it is possible
to synchronise a periodically switching electric field at the sample with the count
rate of the neutron detector. The signal from the detector is recorded into time
slots by a multichannel scaler (MCS). In order to gain sufficient count rates for
each time slot the measurement is repeated periodically while the count rates of
the individual time slots are accumulated. Obviously this method is limited to
reversible processes.
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2.5 Linear Spin-Wave Theory

Time resolution is not a standard feature of most neutron spectrometers. With
little effort it is however possible to equip a standard neutron spectrometer with
time resolution. This task is especially simple when the spectrometer has two
monitors available. Monitor 1 is normally used to account for varying neutron
flux either due to fluctuations of the reactor power and – more importantly for
inelastic measurements only – where the flux may depend on the wavelength of
the incoming neutron beam. Monitor 2 is used for inelastic measurements only
and is not required for elastic measurements. The external electronics for the time
resolution is connected to the spectrometer in the following way: the signal from
the neutron detector is fed to the multichannel scaler where it is recorded into time
slots synchronised with the electric field at the sample. The input of Monitor 1 is
fed with the signal which counts the cycles of the switching process. This way the
spectrometer software can handle the number of switching cycles with no need of
modification in the spectrometer software. The signal of Monitor 1 is fed to the
input of Monitor 2 and is recorded by the spectrometer software for subsequent
correction of the neutron flux.

For the measurements in this thesis time resolution was installed on the cold
triple-axis spectrometer IN12 and IN14 (ILL) and at 4F1 (LLB). The chiral ra-
tio was obtained by measuring both spin-flip channels in x direction, compare
Equation (2.13). Both channels were measured subsequently. All time-resolved
measurements were performed in collaboration with J. Leist and G. Eckold.

2.5 Linear Spin-Wave Theory

This section describes how a magnon dispersion can be treated in terms of linear
spin-wave theory. In the Heisenberg model [90] the interaction between localised
electron spins is mediated by exchange constants Jij between neighbouring elec-
tron spins at sites i and j. Obviously Ji,j = Jj,i and Ji,i = 0. JF > 0 for ferro-
magnetic coupling and JAF < 0 for antiferromagnetic coupling. The Heisenberg-
Hamilton operator is given by

Ĥ = −
∑
i,j

Ji,jŜi · Ŝj

Each pair of neighbouring spins is counted twice in this formalism.
In the following the solution of the Heisenberg Hamiltonian will be discussed

for a simple ferromagnetic model with nearest-neighbour interaction. The Hamil-
tonian for next nearest neighbours is rewritten by the use of the ladder operators
Ŝ± = Ŝx ± iŜy.

Ĥ = −J
∑
i

∑
δ

n.n.

Ŝi · Ŝi+δ = −J
∑
i

∑
δ

n.n.

[
1

2

(
Ŝ+
i Ŝ
−
i+δ + Ŝ−i Ŝ

+
i+δ

)
+ Ŝzi Ŝ

z
i+δ

]
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2 Polarised Neutron Scattering

The eigenvalues of Ŝz are ~m where m = −S,−S + 1, . . . , S and refers to the
projection of the spin on the z direction. In the ground state all spins are parallel,
i.e. |Ψ0〉 = |S, . . . , S〉. The energy of the ground state is E0 = −NZJS2, where
N is the number of atoms and Z is the number or nearest neighbours. The effect
of the ladder operators is to raise or lower the projection on the z direction.
Ŝ±|S,m〉 = ~

√
S(S + 1)−m(m± 1)|S,m± 1〉

Although it is possible to exactly diagonalise this Hamiltonian for such easy
systems as the ferromagnet with nearest neighbour interaction it is useful to in-
troduce the Bose operators â (annihilation) and â† (creation). This approach
was first introduced by T. Holstein and H. Primakoff [91] and is therefore called
Holstein-Primakoff transformation. The spin quantum state is now expressed by
an occupation number n = 0, . . . , 2S rather than the spin-quantum number m.
n = 0 means there is no excitation and the spin is in the ground state with m = S,
|Ψ0〉 = |0, . . . , 0〉, generally n = S−m. A deviation from the ground state is called
a magnon. The action of the Bose operators is given by

â|n〉 =
√
n|n− 1〉, â†|n〉 =

√
n+ 1|n+ 1〉, â†â|n〉 = n|n〉,

[âi, â
†
j] = δij, [âi, âj] = [â†i , â

†
j] = 0,

n̂ = â†â is called the number operator. In these equations the restriction n ≤ 2S
is not incorporated any more, instead n is unlimited. However, for excitations
with a few magnons this discrepancy is irrelevant. The ladder operators can be
expressed by the Bose operators as follows

Ŝ+ =
√

2S

√
1− â†â

2S
â ≈
√

2Sâ, Ŝ− =
√

2Sâ†
√

1− â†â

2S
≈
√

2Sâ†

Ŝz = S − â†â

Again, the approximations relies on the assumption 〈n̂〉 � 2S. Especially for a
spin-1/2 system this is a crude assumption, which describes the physical proper-
ties satisfactorily, however. Substituting the Bose operators and neglecting the
quadratic term n2 � S yields the linearised Hamiltonian

Ĥ ≈ −JS
∑
i

∑
δ

(
â†i+δâi + â†i âi+δ − â

†
i âi − â

†
i+δâi+δ

)
−NZJS2

The effect of the Hamiltonian on a spin state is to increase the spin state at
one site (create a magnon) and to lower it at the neighbouring state (annihilate
a magnon). By this means a spin excitation is not located at one atom but
propagates through the crystal as spin wave. The wave-like behaviour motivates
diagonalising the Hamiltonian by Fourier transformation. Substituting

âi =
1√
N

∑
q

eiq·Ri âq, â†i =
1√
N

∑
q

e−iq·Ri â†q
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into the Hamiltonian yields

Ĥ − E0 = −JS
∑
i

∑
δ

1

N

∑
q,q′

(
e−iq·(Ri+δ)eiq′·Ri + e−iq·Rieiq′·(Ri+δ)

− ei(q′−q)·Ri − ei(q′−q)·(Ri+δ)
)
â†qâq′

= −JS
∑
q

∑
δ

(
eiq·δ + e−iq·δ − 2

)
â†qâq

=
∑
q

Eqâ
†
qâq

with the energy eigenvalues

Eq = 2JS

(
Z −

∑
δ

cos(q · δ)

)

For the second step the identity 1
N

∑
j ei(q−q′)·Rj = δqq′ was used. For a spin chain

with Z = 2 and δ = −a,+a we get Eq = 4JS(1− cos(qa)). A good introduction
to linear spin-wave theory is given in the textbook of G. Czycholl [92].

The generalised Heisenberg-Hamilton operator for n magnetic moments per
primitive magnetic unit cell, which are mutually parallel or antiparallel, is given
by:

Ĥ = −
∑
i,j,α,β

Jiα,jβŜiα · Ŝjβ −
∑
i,α

σαAαŜ
z
iα (2.14)

The indices i, j = 0, 1, . . . , N − 1 run over all primitive unit cells in the crystal
while the indices α, β, γ = 0, 1, . . . , n − 1 run over all magnetic moments within
one of these cells. Sα is the spin quantum number and Ŝiα and Ŝziα are the spin
operators of the magnetic ion located at Riα = Ri + rα where Ri is a lattice
translation vector. Aα is a possible anisotropy field collinear to the z direction
and σα = 1(−1) for moments parallel (antiparallel) to the z direction. σ = [σαδαβ]
is a diagonal matrix. Obviously Jiα,jβ = Jjβ,iα and Jiα,iα = 0. The solution of 2.14
is given in the work of A. Sáenz [93]. Introducing the Hermitian matrix

Lq,αβ =2

(
σα
∑
iγ

Jiγ,0ασγSγ + Aα/2

)
δαβ

− 2σασβ
√
SαSβ

∑
i

Jiβ,0α exp (iq · (Riβ −R0α))

(2.15)

the energy eigenvalues Eα of (2.14) are given by the eigenvalues of σ ·Lq denoted
µα:

Eq,α = |µq,α| (2.16)
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3 LiFeSi2O6

LiFeSi2O6 is a member of the pyroxene family with general composition AMSi2O6

(A = mono- or divalent metal, M = di- or trivalent metal) recently shown to ex-
hibit interesting magnetoelectric properties [94]. It crystallises in the monoclinic
space group C2/c at room temperature and undergoes a structural phase transi-
tion to P21/c at 229 K [95, 96]. LiFeSi2O6 is a synthetic analogue to NaFeSi2O6

which exists as natural grown crystal. The crystals of LiFeSi2O6 used for mea-
surements in this thesis were provided by the group of P. Becker of the Insitut für
Kristallographie at Universität zu Köln. Large single crystals were grown from
melt solvent of the system Li2MoO4−LiVO3.

LiFeSi2O6 shows a single magnetic transition into a commensurate magnetic
phase at 18 K [97]. There is no spontaneous ferroelectric polarisation at zero
magnetic field but sizeable electric polarisation up to Pc ≈ 20 µC/m2 is induced
by magnetic fields in the ac plane. Thus LiFeSi2O6 is a material with a strong
magnetoelectric effect. The magnetoelectric tensor shows asymmetric off-diagonal
components [98].

There have been contradictory reports on the magnetic structure of LiFeSi2O6

basing on powder neutron diffraction [95, 99]. A single-crystal diffraction experi-
ment at HEIDI single-crystal diffractometer already reported in the diploma thesis
[97] identifies P21/c

′ as the most probable magnetic space group in LiFeSi2O6 con-

PMAFM
P21/c

′

ME, P (H)

18 K

k = (0, 0, 0)

Figure 3.1: Magnetic phase diagram of LiFeSi2O6. The moments are collinearly aligned
in the ac plane coupled with a b component leading to a canted antiferromagnetic struc-
ture. The main part of the moment is along the c direction. Only by applying a magnetic
field electric polarisation can be observed. Therefore LiFeSi2O6 is not multiferroic but
just magnetoelectric.
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3 LiFeSi2O6

sistent with the more recent powder study [99]. Only this magnetic group is in
accordance with the finite off-diagonal magnetoelectric coefficients α13 and α31

[4, 98].1 The moments are collinearly aligned in the ac plane coupled with a
b component leading to a canted antiferromagnetic structure. The main part of
the moment is along the c direction.

The largest section of this chapter deals with the poling of antiferromag-
netic domains by a combination of electric and magnetic fields. A microscopic
method is needed for studying antiferromagnetic domains which spherical neutron-
polarisation analysis was utilised for. The result is that it is possible to manipulate
antiferromagnetic domains employing different components of the magnetoelectric
tensor. The non-centrosymmetric magnetic space group of LiFeSi2O6 gives rise to
a toroidal moment. The behaviour of the antiferromagnetic domains is discussed
in the context of the toroidal moment.

In addition the magnon dispersion and the spin density were determined.

3.1 Magnetic structure

The magnetic structure of LiFeSi2O6 preliminarily treated in the diploma thesis
[97] was revisited in the context of this thesis. An anomaly for reflections with 2θ >
90◦ was recorded. It seems that for higher angles some part of the Eulerian cradle
itself got into the path of the scattered neutrons attenuating the corresponding
intensities [101]. For the revisited refinement only reflections with 2θ < 90◦ were
considered. Due to the magnetic form factor reflections at high scattering angle
have a low magnetic scattering intensity and are of minor importance for the
determination of the magnetic structure anyway.

The space group of LiFeSi2O6 is P21/c (a = 9.6195 Å, b = 8.6625 Å, a =
5.2630 Å, β = 109.93◦) [95]. The magnetic structure of LiFeSi2O6 was investi-
gated at HEIDI single-crystal diffractometer at the Forschungsreaktor München II
(FRM II) using a point detector and a wavelength of λ = 1.16 Å. Structural and
magnetic peaks were recorded at two temperatures (10 K and 20 K). The lower
temperature lies in the antiferromagnetic phase, the higher temperature lies in the
paraelectric phase. LiFeSi2O6 shows no magnetic propagation vector. The data
were corrected numerically for absorption with datap. The structural refinement
was done with FullProf [102].

At 20 K 925 reflections with 2θ < 90◦ were collected. 188 of those were equiva-
lent reflections. 54 reflections were rejected. 777 valid independent reflections were
used for the refinement. The (weighted) internal R value was 3.29 % ( 3.64%). The
refinement was done with isotropic temperature factors and anisotropic extinction

1More recent results indicate that the magnetoelectric tensor may have finite entries in all
components which would suggest magnetic point groups P1 or P 1̄′. So far it is not clarified
whether this applies also in zero magnetic field. [4, 100]
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3.1 Magnetic structure

Figure 3.2: Magnetic structure of LiFeSi2O6 as determined at HEIDI. Moments are
coupled ferromagnetically in the zigzag chains along the c direction and antiferromagnet-
ically between neighbouring chains. The moments are collinearly aligned in the ac plane
plus an additional b component leading to a canted antiferromagnetic structure. The
main part of the moment is along the c-direction.

correction (model 4 in FullProf ). The structural parameters and the R values are
listed in Table 3.1.

For the magnetic structure a symmetry analysis was employed. There are four
irreducible representations in P21/c. The character table is shown in Table 3.3.
The representations belong to the following magnetic space groups: Γ1 = P21/c,
Γ2 = P21/c

′, Γ3 = P2′1/c
′, Γ4 = P2′1/c. The symmetry conditions of the four

irreducible representations are listed in Table 3.4. The symmetry analysis was
done with BasIreps [102].

At 10 K 936 reflections with 2θ < 90◦ were collected. 212 of those were equiv-
alent reflections. 830 valid independent reflections were used for the refinement.
The (weighted) internal R value was 1.23 % ( 1.29%). The refinement was done
with isotropic temperature factors and anisotropic extinction correction. The
R values are listed in Table 3.2. Undoubtedly P21/c

′ yields the lowest R values.
The structural parameters for P21/c

′ are listed in Table 3.1. The structural pa-
rameters are consistent for both temperatures within the errors. The magnetic
moment is given by M = (0.58(8), 0.69(3), 3.91(3))µB, M = 3.81(3)µB in a co-
ordinate system with unit vectors parallel to the crystallographic axes. The main
part is parallel to the c axis and the moment is canted slightly towards the a and
b direction. The structure is a canted antiferromagnet. The results confirm the
former results, but are more reliable because the R values are considerably lower.
A picture of the crystal and magnetic structure is shown in Figure 3.2.
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atom x y z Uiso [Å2]

Li 0.2486(5) 0.0066(5) 0.2376(8) 0.0104(9)
Fe 0.25014(10) 0.64815(10) 0.23462(17) 0.0080(2) T = 20 KH
SiA 0.0478(2) 0.3395(2) 0.2783(4) 0.0072(4)
SiB 0.5485(2) 0.8392(2) 0.2509(4) 0.0079(4) RF 2 = 5.0 %
O1A 0.86710(16) 0.33254(17) 0.1634(3) 0.0083(3) RwF 2 = 7.8 %
O1B 0.36712(16) 0.83405(17) 0.1338(3) 0.0086(3) RF = 4.7 %
O2A 0.11589(15) 0.50899(17) 0.3098(3) 0.0092(3) χ2(I) = 17.6
O2B 0.62236(15) 0.00355(17) 0.3543(3) 0.0094(3)
O3A 0.10887(16) 0.26758(16) 0.5840(3) 0.0087(3)
O3B 0.60519(16) 0.72238(18) 0.5108(3) 0.0086(3)

Li 0.2490(5) 0.0071(5) 0.2380(9) 0.0091(9)
Fe 0.25023(11) 0.64834(10) 0.23441(19) 0.0070(2) T = 10 KH
SiA 0.0478(2) 0.3395(2) 0.2782(4) 0.0065(4)
SiB 0.5484(2) 0.8393(2) 0.2511(4) 0.0070(4) RF 2 = 5.1 %
O1A 0.86714(17) 0.33274(17) 0.1636(3) 0.0075(3) RwF 2 = 7.7 %
O1B 0.36715(17) 0.83418(17) 0.1338(3) 0.0077(3) RF = 4.7 %
O2A 0.11592(16) 0.50906(17) 0.3097(3) 0.0083(3) χ2(I) = 16.6
O2B 0.62234(16) 0.00352(18) 0.3545(3) 0.0087(3)
O3A 0.10873(16) 0.26765(17) 0.5839(3) 0.0078(3)
O3B 0.60514(16) 0.72229(19) 0.5106(3) 0.0078(3)

Table 3.1: Structural parameters of LiFeSi2O6 as determined at HEIDI.

P21/c P21/c
′ P2′1/c

′ P2′1/c

RF 2 7.5% 5.1% 7.7% 7.2%
RwF 2 17.9% 7.7% 18.6% 17.2%
RF 8.4% 4.7% 8.8% 7.8%
χ2(I) 89.5 16.6 96.3 82.6

Table 3.2: R values of different magnetic models of LiFeSi2O6 fitted to the data de-
termined at HEIDI at 10 K.
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3.2 Poling of Antiferromagnetic Domains

1 21 1̄ c

Γ1 1 1 1 1
Γ2 1 1 −1 −1
Γ3 1 −1 1 −1
Γ4 1 −1 −1 1

Table 3.3: Character table of P21/c.

x, y, z x̄, y + 1
2
, z̄ + 1

2
x̄, ȳ, z̄ x, ȳ + 1

2
, z + 1

2

Γ1 P21/c u, v, w ū, v, w̄ u, v, w ū, v, w̄
Γ2 P21/c

′ u, v, w ū, v, w̄ ū, v̄, w̄ u, v̄, w
Γ3 P2′1/c

′ u, v, w u, v̄, w u, v, w u, v̄, w
Γ4 P2′1/c u, v, w u, v̄, w ū, v̄, w̄ ū, v, w̄

Table 3.4: Symmetry conditions of the four irreducible representations of P21/c.

3.2 Poling of Antiferromagnetic Domains

Antiferromagnetic magnetic structures form domains. Their most prominent rep-
resentatives are 180◦ domains, which are characterised by regions of the crystal
in which the direction of the magnetic moments are reversed with respect to the
corresponding opposite domain. From symmetry considerations there is no evi-
dence that a magnetic field should prefer either of the two domains. However, if
the magnetic structure gives rise to the magnetoelectric effect, a combination of
an electric and a magnetic field may break the symmetry and thereby prefer one
particular domain.

The magnetoelectric tensor of LiFeSi2O6 was determined by S. Jodlauk [98].

α =

 0.60 ∼ 0 3.16
∼ 0 ∼ 0 ∼ 0
0.64 ∼ 0 4.86

 ps

m
(T = 14 K) (3.1)

It is derived from the treated data shown in Figure 3.4 which are again derived
from the measured data shown in Figure 3.3. As can be learned from the magne-
toelectric tensor a magnetic field in the ac plane induces electric polarisation also
lying in the ac plane. The biggest effect can be achieved by a magnetic field along
c. By an additional electric field it is further possible to choose the direction of the
electric polarisation. Due to the magnetoelectric effect the magnetic structure and
the electric polarisation are coupled in LiFeSi2O6. Therefore by the application of
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3 LiFeSi2O6

Figure 3.3: Electric polarisation induced by magnetic field for the four non-zero com-
ponents of the magnetoelectric tensor of LiFeSi2O6 [98].

a magnetic field and an electric field, both in the ac plane, it should be possible
to manipulate antiferromagnetic domains.

More recent results indicate that the magnetoelectric tensor may have finite
entries in all components. So far it is not clarified whether this applies also in zero
magnetic field [100].

A microscopic method is required for observing antiferromagnetic domains. So
far two methods are available: optical second harmonic generation (SHG) [40] and
spherical neutron-polarisation analysis. Poling of antiferromagnetic domains by
cooling below the magnetic phase transition in parallel magnetic and electric fields
has been studied with polarised neutrons in Cr2O3 [103] and in crossed electric
and magnetic fields in LiCoPO4, MnGeO3 [104], and MnPS3 [105].

By the use of spherical polarisation analysis the different antiferromagnetic do-
mains can be distinguished via the nuclear-magnetic interference terms (Table 2.1).
The reversion of the magnetic moments results in a different sign of the magnetic
structure factor. For structures with non-zero propagation vector structural and
magnetic intensities do not superimpose. As a consequence only squares of the
magnetic structure factor contribute to the magnetic intensity and thus differ-
ent domains cannot be distinguished. However, if the propagation vector is zero,
nuclear and magnetic intensities superimpose giving rise to nuclear-magnetic inter-
ference terms. These terms consist of the product of the nuclear and the magnetic
structure factor (not their squares), hence opposite domains are distinguishable
by measuring the neuron polarisation in the corresponding channels. Only mono-
domain crystals yield the full neutron polarisation. The intensity and polarisation
in a multidomain crystal will be the average of the contributions of the two do-
mains weighted by their populations. [50]
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3.2 Poling of Antiferromagnetic Domains

Figure 3.4: Electric polarisation as function of the magnetic field for the four non-
zero components of the magnetoelectric tensor of LiFeSi2O6 as derived from the data in
Figure 3.3 [98].

The full neutron polarisation is given by the Blume-Maleev equations (2.7)
and (2.11). By implementing the equations and the structure factors into a Py-
ton code and a systematic search in the two scattering planes (1 0 0)/(0 1 0) and
(0 1 0)/(0 0 1) the reflections (3 0 0) and (0 3 1) were found to be suitable candi-
dates for investigating the poling of antiferromagnetic domains. Because of the
nuclear structure having an inversion centre and the magnetic structure having an
inversion centre composed with time reversal, N is real and M⊥ is purely imag-
inary. Both reflections are extinct in the high-temperature nuclear phase due to
the C centring. At the (3 0 0) reflection the b component of the magnetic mo-
ment does not contribute, thus M⊥ only has a finite z component Mz = imz

with mz being real. Hence =(M∗
zN) = −mzN and <(M∗

zN) = 0. At the
(0 3 1) reflection the b component of the magnetic moment yields only a minor
contribution2. Both components My = imy and Mz = imz are purely imag-
inary. Hence =(M∗

yN) = −myN , =(M∗
zN) = −mzN , <(MyM

∗
z ) = mymz, and

<(M∗
yN) = <(M∗

zN) = 0. Also there is no chiral contribution −i(M⊥×M ∗
⊥)x = 0

for any reflection. Following these preliminary considerations the complete polar-
isation matrices can be derived:

P ′(3 0 0) =
1

N2 +m2
z

 N2 −m2
z 2Nmz 0

−2Nmz N2 −m2
z 0

0 0 N2 +m2
z


2Note the b component is not to be confused with the y component. While b refers to the

coordinate system of the crystallographic unit cell, y refers to the coordinate system attached
to the scattering vector Q.
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P ′(0 3 1) =
1

N2 +m2
y +m2

z

 N2 −m2
y −m2

z 2Nmz −2Nmy

−2Nmz N2 +m2
y −m2

z 2Nmymz

2Nmy 2Nmymz N2 −m2
y +m2

z


The magnetic structure factors of both antiferromagnetic domains have oppos-
ing signs. Therefore those components of the polarisation matrix, which are a
linear function of the magnetic structure factor, have opposing signs for the dif-
ferent domains. With the nuclear and magnetic structure given in Section 3.1 the
polarisation matrices for the two reflections and both antiferromagnetic domains
are

P ′(3 0 0) =

 −0.997 ∓0.077 0
±0.077 −0.997 0

0.000 0.000 1


P ′(0 3 1) =

 0.134 ±0.230 ±0.964
∓0.230 0.953 −0.195
∓0.964 −0.195 0.180


3.2.1 Experimental

Figure 3.5: Sample
holder of LiFeSi2O6.

Two samples were prepared: one in the (1 0 0)/(0 1 0) scat-
tering plane and one in the (0 1 0)/(0 0 1) scattering plane.
For the first sample an electric field was applied parallel to
the crystallographic a∗ axis by inserting the plate-shaped
single crystalline sample of synthetic LiFeSi2O6 between
two thin aluminium plates so that the crystal-plate nor-
mal b was parallel to the aluminium plates and the c axis
vertical. The sample was glued in between these plates,
which were further stabilized by nylon screws, see Fig-
ure 3.5. The second sample was fixed with plate normal
b parallel to the aluminium plates again but this time
the a axis was vertical. The distance of the aluminium
plates measured 8 mm for both samples. Unfortunately
spherical polarisation analysis cannot be performed with

a magnetic field at the sample position, as the neutron spin would precess about
the field direction and thereby only the component parallel to the magnetic field
would be preserved. The measurement was carried out with the CRYOPAD in
which the magnetic field is expelled from the sample position. The poling of
the antiferromagnetic domains thus could not be studied in situ, but the sam-
ple needed to be cooled in the electric and magnetic field below the magnetic
transition outside of the CRYOPAD. The cold sample then was inserted into the
CRYOPAD and the neutron polarisation was determined. The sample with the
capacitor was mounted in a cryostat with a sufficiently thin tail to enter both the
CRYOPAD and an external magnet.
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3.2 Poling of Antiferromagnetic Domains

The experiment was realised during two beam times at the Institut Laue-
Langevin. In the first experiment the reflection (3 0 0) was investigated at the
cold triple-axis spectrometer IN14. In the second experiment the reflection (0 3 1)
was investigated at the thermal triple-axis spectrometer IN22. The following table
shows which configurations of electric and magnetic fields were realised.

IN14 (3 0 0) E ‖ a∗ B ‖ c
IN22 (0 3 1) E ‖ c∗ B ‖ a B ‖ b B ‖ c∗

(E ‖ a∗) ⊥ (B ‖ c)

The first experiment was performed at IN14. The neutron wave vector was set to
k = 1.5 Å−1. The sample was cooled outside the spectrometer in crossed electric
and magnetic fields. An electric field of E = +0.25 kV/mm was applied along the
a∗ axis while a magnetic field of B = +1 T was applied along the c axis. At a
temperature of 10 K both fields were removed and the cold sample was transferred
to the spectrometer and the CRYOPAD.

The first measurement of the polarisation matrix at the (3 0 0) reflection after
the above-described cooling in crossed fields yields

P ′(3 0 0),+E+B =

 −0.924 −0.067 0.005
0.057 −0.919 0.005
0.005 0.020 0.925


Inspecting the data one notices that the zz-channel is not 1 as it should be ac-
cording to theory. This is not due to a lack in statistics but reflects the precision
of polarisation control. A polarisation of 0.925 corresponds to a flipping ratio of
26. It is not easy, if not impossible, to correct for this. A poor attempt is made
by multiplying all polarisations by a factor of 1/0.925. The result is

P ′(3 0 0),+E+B =

 −0.998 −0.072 0.005
0.061 −0.993 0.005
0.006 0.022 1.000


The four channels which should be zero give us a chance to estimate the error.
Their mean is 0.01. So an error of ±0.01 can be estimated.

Repeating the measurement by reversing the magnetic field only, +E, −B yields
(correction already applied)

P ′(3 0 0),+E−B =

 −0.999 0.041 −0.003
−0.043 −0.998 0.007

0.011 0.026 1.000


These two polarisation matrices clearly show the expected inversion of the two
polarisation channels xy and yx although the poling appears to be slightly less

43



3 LiFeSi2O6

E B P ′xy P ′yx

+ + 0.061 −0.072
+ − −0.043 0.041
− − 0.045 −0.058
+ 0 −0.005 0.002
− 0 −0.006 −0.004
0 − −0.016 0.007

Table 3.5: Neutron polarisation at (3 0 0) as function of different cooling fields. The
sample was cooled from 33 K to 10 K in (E ‖ a∗) = ±0.25 kV/mm and (B ‖ c) = ±1 T.

perfect for the second run. The good agreement between the calculated and ex-
perimental polarisation matrix unambiguously shows, that it is possible to control
the antiferromagnetic domains in LiFeSi2O6 by crossed electric and magnetic fields
similar to the usual control of ferroic order.

The next measurement was done with both fields being reversed, −E, −B,
yielding P ′xy = 0.045 and P ′yx = −0.058, which as expected correspond to the
same domain structure as for the +E, +B run. Furthermore, it was verified that
it is not possible to pole the domains in LiFeSi2O6 by applying just one field,
either magnetic or electric. The experimental data are summarised in Table 3.5.

Figure 3.6 shows the temperature dependence of the magnetic Bragg peak in-
tensity xy = 1/2(N2 + m2

z − 2Nmz) and xȳ = 1/2(N2 + m2
z + 2Nmz) and the

polarisation P ′xy = (xy − xȳ)/(xy + xȳ) = −2Nmz/(N
2 + m2

z) computed from
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0

5 0 0 0 0

1 0 0 0 0 0
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Figure 3.6: Temperature dependence of the intensities in the xy and the xȳ channel of
the (3 0 0) reflection and that of the neutron polarisation P ′xy computed from these inten-
sities recorded after cooling in crossed fields (+E ‖ a∗) and (−B ‖ c). The temperature
was increased during this measurement.
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3.2 Poling of Antiferromagnetic Domains

these intensities. It was recorded after the second cooling cycle in +E, −B.
The temperature was heated from 10 K to 22 K during this measurement. The
intensities xy and xȳ can be fitted simultaneously by assuming a temperature in-
dependent nuclear contribution N and describing the temperature dependence of
the magnetic contribution by mz = mz0(1− T

TN
)β [106]: mz0 = 632(4), N = 13(1),

TN = 18.07(2) K, β = 0.146(5). The same parameters satisfactorily describe the
temperature dependence of the neutron polarisation, too.

(E ‖ c∗) ⊥ (B ‖ a)

The second experiment was performed at IN22. The neutron wave vector was
set to k = 2.66 Å−1. An electric field of E = ±0.25 kV/mm was applied along
the c∗ axis while a magnetic field of B = ±1 T was applied along the a, b, and
c∗ axes. For each configuration of the fields the sample was cooled from 30 K to
14 K or 12 K. For most configurations the complete neutron polarisation matrix at
the reflection (0 3 1) was recorded. A complete polarisation matrix was recorded
in the paramagnetic phase at 30 K and can be used to determine the accuracy of
the measurement. The values on the diagonal give the polarisation of the neutron
beam (FR = 9) while the off-diagonal values should be zero.

P ′(0 3 1), 30 K =

 0.805 −0.003 0.016
0.040 0.804 −0.025
−0.009 0.020 0.808


For the magnetic field along a all four combinations of the field directions were

examined. The complete polarisation matrices are given in Table 3.6. For +E

+B −B

+E
0.311 −0.130 −0.505 0.310 0.152 0.581
0.142 0.766 −0.159 −0.127 0.807 −0.107
0.519 −0.107 0.330 −0.579 −0.115 0.338

−E
0.224 0.026 0.160 0.310 −0.047 −0.137
−0.024 0.777 −0.134 0.054 0.786 −0.138
−0.147 −0.120 0.254 0.147 −0.109 0.336

E = 0
0.234 −0.077 −0.267
0.073 0.784 −0.153
0.277 −0.130 0.263

Table 3.6: Neutron polarisation matrices at (0 3 1) after field cooling in (E ‖ c∗) =
±0.25 kV/mm and (B ‖ a) = ±1 T from 30 K to 14 K.
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3 LiFeSi2O6

(0 3 1) (0 3 1̄) (0 3̄ 1̄)

0.310 0.152 0.581 0.324 −0.166 −0.598 0.310 −0.112 0.594
−0.127 0.807 −0.107 0.185 0.802 −0.152 0.143 0.783 0.110
−0.579 −0.115 0.338 0.600 −0.135 0.373 −0.586 0.122 0.329

Table 3.7: Neutron polarisation matrices of equivalent reflections to (0 3 1) after field
cooling in (E ‖ c∗) = +0.25 kV/mm and (B ‖ a) = −1 T from 30 K to 14 K.

with both directions of the magnetic field polarisation higher than 0.5 can be
achieved for the xz and zx channel. The sign of the channel xy resembles the sign
of the channel xz according to the predicted values. The same holds for yx and
zx. The symmetry of the polarisation matrix is fulfilled to a high degree and the
values are conform to the theoretical predictions. No corrections had to be applied
to the data in order to see this. For −E the polarisation is less perfect for both
directions of the magnetic field. Nevertheless the signs of the relevant polarisation
channels follow the electric and magnetic fields. Clearly the sample has a preferred
direction for one direction of the electric field. Thus it is not surprising that even
by applying solely a magnetic field a polarisation approximately half as strong as
with +E and even exceeding the polarisation for −E can be achieved. This is a
direct consequence of the preferred direction of this sample. Poling with solely a
magnetic field was not possible for the other sample previously examined at IN14.

Two equivalent reflections of (0 3 1) were examined during one cooling cycle, see
Table 3.7. The arrangement of the signs and the values is in perfect accordance
with the theory.

The temperature dependence of the neutron polarisation was investigated. The
sample was cooled from 30 K to 14 K in E = +0.25 kV/mm and B = −1 T.
Then the temperature was increased to 23 K while the neutron polarisation was
measured. Again the intensities were fitted (my0 = −106(4), mz0 = 22(2), TN =
18.13(8) K, β = 0.29(2)). The same parameters describe the polarisation well.
The polarisation data are shown in the left panel of Figure 3.7.

Another temperature dependence was recorded after cooling in E =
−0.25 kV/mm and B = +1 T. The polarisation is less perfect as usual for neg-
ative electric field. The polarisation was recorded while the sample was heated
from 12 K to 30 K. Thereafter the sample was cooled again to 14 K while an op-
posite electric field E = +0.25 kV/mm was applied . The magnetic field was zero.
During heating the polarisation shows the familiar power-law dependence. No
neutron polarisation develops during cooling. This demonstrates that an electric
field solely is not sufficient to pole the antiferromagnetic domains. After heating
the poled sample into the paramagnetic regime the sample develops approximately
an equal population of the two antiferromagnetic domains upon re-entering the
magnetic phase.
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3.2 Poling of Antiferromagnetic Domains
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Figure 3.7: Temperature dependence at (0 3 1). Left: The sample was field cooled in
(E ‖ c∗) = +0.25 kV/mm and (B ‖ a) = −1 T. Then during heating the neutron polar-
isation was recorded. Right: The sample was field cooled in (E ‖ c∗) = −0.25 kV/mm
and (B ‖ a) = +1 T. Then the polarisation was measured during heating from 12 K
to 30 K and re-cooling to 14 K with opposite electric field E = +0.25 kV/mm and zero
magnetic field. The re-cooled sample does not give rise to neutron polarisation which
means that both antiferromagnetic domains are equally populated.
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(E ‖ c∗) ‖ (B ‖ c∗)

The largest component of the magnetoelectric tensor in LiFeSi2O6 is the compo-
nent α33. Therefore it is a natural consequence that poling of antiferromagnetic
domains is possible with magnetic and electric fields both parallel the c∗ axis.
Polarisation matrices for different temperatures after cooling from 30 K to 12 K
in (E ‖ c∗) = +0.25 kV/mm and (B ‖ c∗) = +1 T are shown in Table 3.8. The
matrices were recorded successively while increasing the temperature by 2 K. The
achieved polarisation at 12 K is of the same magnitude as for cooling in crossed
electric and magnetic fields. All polarisations and their fits are plotted against
the temperature in Figure 3.8. The data shown in the figure have been corrected
for the background with the data from the matrix at 30 K. The fit values are
my0 = −268(6), mz0 = 56(3), N = 240(1), TN = 18.3(1) K, β = 0.42(2).

With parallel electric and magnetic field it is also possible to pole opposite an-
tiferromagnetic domains by reversing the magnetic field, see Table 3.9. Reversing
the electric field was not tested due to lack of beam time. Again it was possible
to pole the antiferromagnetic domains with solely a magnetic field, see Table 3.9.
The polarisation is less perfect in this case.

1 2 1 4 1 6 1 8 2 0
- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0  P ’ x x
 P ’ x y
 P ’ x z
 P ’ y x
 P ’ y y
 P ’ y z
 P ’ z x
 P ’ z y
 P ’ z zP’

T  [ K ]
Figure 3.8: Polarisation matrices for different temperatures after field cooling in (E ‖
c∗) = +0.25 kV/mm and (B ‖ c∗) = +1 T. The temperature was increased during the
measurement. The data are from Table 3.8 additionally corrected for background.
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3.2 Poling of Antiferromagnetic Domains

T = 12 K T = 14 K T = 16 K
0.203 0.145 0.616 0.276 0.144 0.586 0.396 0.133 0.536
−0.124 0.757 −0.087 −0.112 0.749 −0.085 −0.100 0.747 −0.068
−0.608 −0.123 0.245 −0.576 −0.103 0.309 −0.517 −0.069 0.419

T = 18 K T = 20 K T = 30 K
0.645 0.061 0.266 0.741 −0.001 0.012 0.805 −0.003 0.016
−0.022 0.743 −0.025 0.047 0.736 −0.046 0.040 0.804 −0.025
−0.252 −0.007 0.652 0.007 0.020 0.744 −0.009 0.020 0.808

Table 3.8: Polarisation matrices for different temperatures after field cooling in (E ‖
c∗) = +0.25 kV/mm and (B ‖ c∗) = +1 T.

+B −B

+E
0.203 0.145 0.616 0.233 −0.159 −0.617
−0.124 0.757 −0.087 0.154 0.748 −0.172
−0.608 −0.123 0.245 0.630 −0.126 0.252

E = 0
0.222 0.031 0.200 0.222 −0.058 −0.201
−0.031 0.784 −0.131 0.060 0.785 −0.159
−0.182 −0.125 0.252 0.215 −0.132 0.255

Table 3.9: Neutron polarisation matrices at (0 3 1) after field cooling in (E ‖ c∗) =
+0.25 kV/mm and (B ‖ c∗) = ±1 T from 30 K to 12 K.
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(E ‖ c∗) ⊥ (B ‖ b)

According to S. Jodlauk [98] the magnetoelectric tensor, Equation (3.1), has only
zero-entries for the magnetic field parallel b. Therefore poling of antiferromag-
netic domains should not be possible with magnetic fields along b. According to
more recent experiments by M. Ackermann [100] there are small components for
magnetic field parallel b.

Now it is an interesting result that it is indeed possible to pole antiferromagnetic
domains with magnetic field along b. The electric field was along c∗ as before. It
is even possible to pole the domains with zero electric field. Again this leads to
lower values of the neutron polarisation. The data are shown in Table 3.10.

+B −B

+E
0.237 −0.116 −0.431 0.218 0.129 0.549
0.108 0.787 −0.165 −0.124 0.782 −0.116
0.440 −0.127 0.268 −0.544 −0.132 0.258

E = 0
0.227 0.032 0.187
−0.038 0.788 −0.133
−0.181 −0.130 0.265

Table 3.10: Neutron polarisation matrices at (0 3 1) after field cooling in (E ‖ c∗) =
+0.25 kV/mm and (B ‖ b) = ±1 T from 30 K to 12 K.

(E ‖ c∗) & (B = 0)

Solely electric field without magnetic field is not sufficient to pole antiferromag-
netic domains. This was seen before in the right panel of Figure 3.7. After heating
into the paramagnetic phase the sample develops no preferred antiferromagnetic
domain upon re-entering the magnetic phase. One matrix was recorded with
E = +0.25 kV/mm and zero magnetic field, Table 3.11. It shows only marginal

+E E = 0

B = 0
0.223 −0.013 −0.006 0.223 −0.009 −0.002
0.013 0.781 −0.146 0.010 0.779 −0.140
0.013 −0.132 0.252 0.012 −0.131 0.259

Table 3.11: Neutron polarisation matrices at (0 3 1) after field cooling in (E ‖ c∗) =
+0.25 kV/mm and zero magnetic field from 30 K to 12 K.
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3.2 Poling of Antiferromagnetic Domains

polarisation which is of the same size as the polarisation for a sample cooled with-
out any field. Therefore it is not possible to pole antiferromagnetic domains solely
with electric fields of E = +0.25 kV/mm.

3.2.2 Discussion

The experiments at IN14 and IN22 demonstrate that it is possible to pole antifer-
romagnetic domains with electric and magnetic fields applied in different directions
both parallel and perpendicularly. One observation is, when reversing one field,
the opposite domain is obtained. By reversing both fields the initial domain is re-
obtained. This holds for all combinations of field directions. This is in accordance
with basic symmetry considerations. Different components of the magnetoelec-
tric tensor were employed for poling the domains. It is most remarkable that the
component for B ‖ b brings high polarisation values. This allows two conclusions:
either the magnetoelectric tensor is not zero in this component as mentioned by
M. Ackermann [100] or the magnetic field had components along c∗ . This is quite
likely since correct alignment of the magnetic field could not be checked because
the crystal was mounted inside the cryostat.

The asymmetry of the direction of the electric field can only be explained by a
preferred direction of the sample. This asymmetry is noticeable only for electric
fields and not for magnetic fields. The reasons for that might be the following:
(I.) The electric polarisation arises from displaced charges. Therefore the electric
polarisation is directly coupled to the lattice and may develop a preferred direction.
The magnetic moments on the contrary are not directly coupled to the lattice.
(II.) The magnetic order is the primary order. Thus a magnetic field has a big
influence on the magnetic order and easily overcomes the preferred direction. The
ferroelectric order is the secondary order. Therefore an electric field has much less
impact on the magnetic order.

It is also not possible to pole antiferromagnetic domains by solely an electric
field. Poling with solely a magnetic field was much more obvious for the second
sample. In fact for the first sample this effect was not significant. From symmetry
considerations neither antiferromagnetic domain is preferred by solely a magnetic
field. The fact that poling of antiferromagnetic domains is allowed by solely a
magnetic field after all, is a direct consequence of the preferred direction of that
sample.
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3.3 Toroidal Moment

Poling of antiferromagnetic domains can also be considered in the picture of poling
toroidal domains. This section introduces the concept of the toroidal moment and
discusses the results of the previous section in the picture of the toroidal moment.

A multiferroic compound is defined by the coexistence of at least two ferroic
order parameters [1], in first view one may consider ferroelasticity, ferromagnetism
and ferroelectricity. A ferroic order parameter is characterised by the fact that
it forms domains which may be switched by applying an external field (stress,
magnetic or electric field). These three well-established cases transform differ-
ently under the inversion of space and time, (++, +−, −+)3 for ferroelasticity,
ferromagnetism, and ferroelectricity, respectively. It is then a natural extension to
consider also a ferroic order parameter which breaks both space and time inversion
symmetry and transforms as (−−). The (ferro-)toroidal moment, which can be
defined as the sum over the magnetic moments m multiplied by their position r,
exhibits the desired transformation behaviour. A toroidal moment can arise either
by head-to-tail arrangement of local moments or by orbital currents. Ferrotoroidal
order results from spontaneous parallel alignments of the toroidal moments. In
order to establish the toroidal moment as an independent fourth ferroic order pa-
rameter one needs to further prove the possibility of switching toroidal domains.
A combination of crossed (perpendicular) electric and magnetic fields (E × B)
fulfils the symmetry requirements and thus should switch the toroidal domains.
However, the switching of the toroidal domains has not been reported so far, just
the change of the domain structure [38].

Following the definition of C. Ederer and N. Spaldin [36] the toroidal moment t
of a bulk material with localised magnetic moments can be computed as sum over
all the moments mα and the cross product with their position vectors rα with
respect to some origin:

t =
1

2

∑
α

rα ×mα

The choice of that origin it not negligible for the value of the toroidal moment
which can be shown easily:

t′ =
1

2

∑
α

r′α ×mα =
1

2

∑
α

(rα +R)×mα = t+
1

2
R×m

where m =
∑

αmα is the magnetisation. Luckily, in the case of an antiferromag-
netic structure the magnetisation m = 0 vanishes and the choice of the origin
becomes irrelevant. Another crucial detail about the toroidal moment is that it

3This reads as follows: Ferromagnetism for example stays invariant under the inversion of space
but changes sign under the inversion of time.
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3.3 Toroidal Moment

vanishes for structures with spatial and time inversion symmetry. Spatial inver-
sion affects the position (1̄ : r → −r, m→m) and time inversion the magnetic
moment (1′ : r → r, m→ −m). Structures with time inversion symmetry obvi-
ously do not allow any magnetic order at all so we restrict our treatment to the
case of spatial inversion:

t =
1

2

∑
α

rα ×mα =
1

2

∑
α

−rα ×mα = −t

⇒ t = −t = 0

For periodic bulk material one likes to restrict the sum to one unit cell. This
brings us to the definition of the toroidisation T = t/VS as the toroidal moment
per volume VS of the system. It can be shown (see Reference [36]) that

T =
1

2V

∑
j

rj ×mj (3.2)

where the sum runs over all moments in the unit cell of volume V . In a periodic
system the choice of the basis is ambiguous. Each moment may be translated by
a lattice vector Rn without changing the overall periodic arrangement. However,
such a translation results in a change of the toroidisation.

∆Tnj =
1

2V
Rn ×mj

In order to get a well-defined quantity Ederer and Spaldin [36] suggest that only
the difference of the toroidisation calculated by equation 3.2 for two states – one
being the actual state of interest and the other being a centrosymmetric and thus
non-toroidal reference state – is a physical measurable quantity. This difference is
independent of the choice of the basis and thus well-defined. In doing so it is not
relevant if this structural transition actually takes place in reality or if it is just a
mathematical trick.

∆T = T − T1̄ =
1

2V

∑
j

∆rj ×mj (3.3)

∆rj is the structural displacement between the two states.
The magnetic space group of LiFeSi2O6 is P21/c

′. The magnetic structure
is described in detail in Table 3.12 and it is depicted in Figure 3.9. As can
be learned from Table 3.12 in the magnetic space group P21/c

′ the inversion
centre is in combination with time inversion 1̄′. This means there is no pure
spatial inversion. Thus P21/c

′ allows the toroidal state. While searching for a
non-toroidal reference state one comes across the structural phase transition in
LiFeSi2O6 which takes place at TS = 229 K and is characterised by the loss of
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Fe site element symm. op. magn. symm.
C
′ 2
′ /
c′

P
2 1
/c
′

1 1 x, y, z u, v, w

2 21 (0, 1
2
, 0) 0, y, 1

4
x̄, y + 1

2
, z̄ + 1

2
ū, v, w̄

3 1̄′ 0, 0, 0 x̄, ȳ, z̄ ū, v̄, w̄

4 c′ x, 1
4
, z x, ȳ + 1

2
, z + 1

2
u, v̄, w

2 t′ (1
2
, 1

2
, 0) x+ 1

2
, y + 1

2
, z ū, v̄, w̄

1 2′ 1
4
, y, 1

4
x̄+ 1

2
, y, z̄ + 1

2
u, v̄, w

4 1̄ 1
4
, 1

4
, 0 x̄+ 1

2
, ȳ + 1

2
, z̄ u, v, w

3 n (1
2
, 0, 1

2
) x, 0, z x+ 1

2
, ȳ, z + 1

2
ū, v, w̄

Table 3.12: Symmetry elements in the magnetic space groups P21/c
′ and C ′2′/c′. The

magnetic space group is P21/c
′. In the space group C ′2′/c′ the Fe-site sits at special

Wyckoff position (1/4, y, 1/4). The site symmetry is a twofold rotation axis composed
with time inversion 2′ and consequently the magnetic component parallel the b axis
(which is labelled with v) must be zero.

the centring: C2/c → P21/c. In C2/c the position of the Fe ion is fixed to the
special Wyckoff position (1/4, y, 1/4). The site symmetry is a twofold rotation axis
2. When the magnetic structure is assumed to stay invariant under this transition
this twofold axis must be composed with time inversion 2′ and consequently the
magnetic component parallel to the b axis (which is labelled with v) must be
zero. The complete magnetic space group is C ′2′/c′. Here C ′ means the centring
operation t′ = (1/2, 1/2, 0) is composed with time inversion. More conventionally
this would be described by a magnetic propagation vector of either k = (1, 0, 0)
or k = (0, 1, 0) but the formalism with the time inversion operator ′ seems to be
more plausible here. There is an additional inversion centre 1̄ in C ′2′/c′ which is
not composed with time inversion. Thus the toroidal moment must vanish and a
suitable reference state is found.

The situation is illustrated in Figure 3.9. In the left part the structure has
the symmetry C ′2′/c′ and an inversion centre 1̄ (black circle) relates the four
iron sites. We choose this inversion centre as origin and the four iron sites as
basis. Since two of the moments have parallel magnetic moments and opposite
position vectors (green arrows) each, their toroidal contributions cancel out. In
the right part of the picture the magnetic symmetry is P21/c

′. Only inversion
centres composed with time inversion 1̄′ (red circle) are left. Due to the reduction
of the symmetry structural displacement (green arrows) is allowed. For all iron
sites the displacement and the magnetic moments have the same relative phase.
Therefore the toroidal moments arising from the shift of the four ions add up.
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a

c

Figure 3.9: The magnetic structure of LiFeSi2O6. (Left) The non-toroidal reference
state. The structure has symmetry C ′2′/c′ and an inversion centre 1̄ (black circle) relates
the four iron sites. We choose this inversion centre as origin and the four iron sites as
basis. Since two of the moments have parallel magnetic moments and opposite position
vectors (green arrows) each of their toroidal contributions cancel out. Generally, in a
centrosymmetric structure t = 0. (Right) In reality the magnetic symmetry is P21/c

′.
Only inversion centres composed with time inversion 1̄′ (red circle) are left. Due to the
reduction of the symmetry structural displacements (green arrows, enlarged by factor
10) are allowed. For all iron sites the displacement and the magnetic moments have the
same relative phase therefore the toroidal moments arising from the shift of the four
ions add, t 6= 0.

The displacement vector for site 1 is

∆r = (0.25023, y, 0.23441)− (1/4, y, 1/4) = (0.00023, 0,−0.01559)

= (σx, 0, σz) = σxa+ σzc

The magnetic moment of site 1 is m = ua/a + wc/c (the component parallel
b is ignored on account of the symmetry considerations discussed above). With
equation 3.3 we receive for the toroidisation

∆T =
2

V
∆r ×m =

1

π

(σzu
a
− σxw

c

) 2πc× a
V

=
1

π

(σzu
a
− σxw

c

)
b∗

= −0.00025(3)
µB

Å2
b̂

Where b̂ is the unit vector in b direction which is parallel to the b∗ direction.
By reversing the antiferromagnetic domains the toroidal moment is reversed,

too. As demonstrated in the previous section reversing of antiferromagnetic do-
mains is possible by a combination of electric and magnetic fields. The toroidal
moment points along the b direction. Therefore the cross product (E×B) should
point along b in order to reverse the toroidal moment which implies that E and
B should lie in the ac plane. But switching of antiferromagnetic domains is also
possible for both fields parallel c. In this case the cross product (E×B) = 0 and
switching of antiferromagnetic domains cannot be explained by the toroidal mo-
ment. Poling of antiferromagnetic domains however can be explained as a natural
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consequence of the magnetoelectric effect. In fact the component α33 = 4.86 ps/m
is the largest component of the magnetoelectric tensor. In conclusion, toroidal
moments in LiFeSi2O6 can be switched, but this is just a natural consequence
of the linear magnetoelectric effect and the toroidal domains are coupled to the
antiferromagnetic domains. The two toroidal domains with toroidisation paral-
lel and antiparallel to the b axis result from nearly parallel or nearly antiparallel
alignment of magnetic moment and structural displacement, see Figure 3.9. Note
that the structural transition only results in 180◦ domains associated with the sign
of the structural order parameter. The same holds for the magnetic transition.
Therefore one can identify four different domains with magnetic and structural
phases of (0◦, 0◦), (0◦, 180◦), (180◦, 0◦), and (180◦, 180◦), respectively. From these
the first and the last together form the up-toroidisation domain, while the second
and the third form the down-toroidisation domain. Toroidal and antiferromagnetic
domains are therefore not identical.
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3.4 Spin Waves

The magnon dispersion in LiFeSi2O6 was already presented in the diploma thesis
[97]. The dispersion relation was revisited in the context of this thesis and a
more sophisticated data analysis was performed to describe both branches of the
dispersion relation satisfactorily. The magnon dispersion was measured at the
triple-axis spectrometer PANDA (FRM II) at a temperature of 3.5 K in constant-
kf mode with kf = 1.55 Å−1. The dispersion relation is shown in Figure 3.10.
The dispersion relation is treated in the context of linear spin-wave theory. The
Heisenberg Hamiltonian is

Ĥ = −
∑
i,j,α,β

Jiα,jβŜiα · Ŝjβ −
∑
i,α

σαAαŜ
z
iα

See Section 2.5 for further explanation. The following exchange constants are
introduced: JF connecting two Fe sites within the zigzag chains, green lines in
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Figure 3.10: Magnon dispersion in LiFeSi2O6 as determined at PANDA, T = 3.5 K.
A Heisenberg model with one ferromagnetic and two antiferromagnetic and an addi-
tional anisotropy term describes both branches of the magnon dispersion well (red line).
An additional antiferromagnetic next-nearest neighbour interaction along c yields only
minor improvement (green line).
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Figure 3.11: Magnetic structure of LiFeSi2O6. Moments are coupled ferromagnetically
in the zigzag chains along the c direction and antiferromagnetically between neighbour-
ing chains. The magnon dispersion is described with the following exchange constants:
JF connecting two Fe sites within the zigzag chains, green lines. The super-exchange
interactions rise from two equivalent Fe-O-Fe paths. Super-super exchange JAF (yel-
low) and JAF2 (magenta) via one respectively two SiO4 tetrahedra. Each Fe ion has
two neighbours with JF, four neighbours with JAF and two neighbours with JAF2. The
anisotropy term A takes into account that the moments are aligned mainly along the
c direction.

Figure 3.11. The super-exchange interactions rise from two equivalent Fe-O-Fe
paths. Super-super exchange JAF (yellow) and JAF2 (magenta) via one respec-
tively two SiO4 tetrahedra [94]. Each Fe ion has two neighbours with JF, four
neighbours with JAF and two neighbours with JAF2. With four Fe sites in the
unit cell the matrix Ji,α,j,β has 32 non-zero entries. The anisotropy term A takes
into account that the main part of the magnetic moments is aligned along the
c axis.

The solution of the Hamiltonian is given by the eigenvalues of the matrix σ ·Lq,
see equations (2.15) and (2.16). The matrix σ · Lq and its eigenvalues were
computed numerically with a Python code. A least square fit was used to fit the
four parameters JF, JAF , JAF2 and A to the measured data. As start values the
parameters from the analysis of the diploma thesis were used, slightly modified
by hand to account for the new parameter JAF2. S = 5/2 is fix. The fit yields the
following results.
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3.4 Spin Waves

JF = 0.0297(8) meV
JAF = −0.0513(10) meV
JAF2 = −0.069(2) meV
A = 0.152(6) meV

The model with theses four parameters describes the magnon dispersion well as
can be seen by the red line in Figure 3.10.

The experimental parameters are at odds with theoretical parameters de-
termined by ab initio band structure calculations: JF = −0.60 meV, JAF =
−0.16 meV, JAF2 = −0.29 meV [94]. The negative sign indicates that all three
exchange interactions are all antiferromagnetic. The labelling was adjusted to be
consistent with the labelling introduced in Figure 3.11. The theoretical parame-
ters favour a spiral magnetic structure which is not observed experimentally. Thus
the theoretical parameters are not very reliable.

It was tested whether a next-nearest neighbour interaction along c would yield
even better results. The improvement of the refinement is marginal. The refine-
ment finds a small antiferromagnetic component JAF3. The other parameters do
not change much.

JF = 0.0289(6) meV
JAF = −0.0467(12) meV
JAF2 = −0.081(3) meV
JAF3 = −0.0082(9) meV
A = 0.151(4) meV

The model is displayed as green line in Figure 3.10.
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3.5 Spin Density

The spin density was measured at 5C1 the Laboratoire Léon Brillouin. The tem-
perature was set to 20 K and a magnetic field of 7 T was applied along the c axis.
The flipping ratio of 407 reflections were measured. 160 of these reflections are
independent. 380 reflections are equivalent reflections. The (weighted) internal
R value is 2.66% (3.37%). The spin density was refined with FullProf [102] in
the spherical mode [107]. In the spherical mode the magnetic form factor fmag is
given by

fmag(s) =
∑

l=0,2,4,6

Wl〈jl(s)〉

with s = sin(θ)/λ. The radial wave functions of the unpaired electrons are ap-
proximated by 〈jl(s)〉 whose values are tabulated in [41, 42]. The coefficients Wl

are refined. The unit of these coefficients is µB. W0 gives the value of the mag-
netic moment. For Fe3+ three coefficients are refineable l = 0, 2, 4 and for O−

there is one coefficient l = 0. The (weighted) R factor of the refinement is 4.2%
(2.3%) and χ2 = 3.6. The coefficients are listed in Table 3.13. The total magnetic
moment is −1.03(6)µB which is in perfect agreement with the value at 7 T of the
magnetisation curve, Figure 3.13.

The different positions of the O ions are indicated in Figure 3.12. Maps of the
spin density are shown in Figures 3.14–3.16.

atom W0 W2 W4

Fe −0.84(2) 0.08(17) −0.5(6)
O1A −0.096(15)
O1B −0.125(15)
O2A 0.069(15)
O2B 0.074(15)
O3A −0.08(4)
O3B −0.03(3)

Table 3.13: Value of the refinable coefficients Wl. The unit of these coefficients is µB.
W0 gives the value of the magnetic moment.
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3.5 Spin Density

Figure 3.12: This figure indicates the different positions of the magnetic moments.
The O1 ions (blue) are located at the corners of the edge-sharing FeO6 octahedra that
belong to two octahedra. The O2 ions (red) are located at the corners of the octahedra
which have no contact to other octahedra. The O3 ions (green) are not in contact to
the octahedra. They are located in the corners of the corner-sharing SiO4 tetrahedra.
The Fe ions (blue) and their moments (blue) are located in the centres of the octahedra.
Moments are not true to scale.
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Figure 3.13: Magnetisation curve of LiFeSi2O6 [98].
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Figure 3.14: Spin density of LiFeSi2O6 in the ab plane integrated over the whole unit
cell.

Figure 3.15: Spin density of LiFeSi2O6 in the ac plane integrated over the whole unit
cell.
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Figure 3.16: Spin density of LiFeSi2O6 in the bc plane integrated over the whole unit
cell.

63



3 LiFeSi2O6

3.6 Conclusion

This chapter presented different neutron investigations of magnetoelectric
LiFeSi2O6. The magnetic structure was investigated by single-crystal neutron
diffraction. LiFeSi2O6 exhibits a single magnetic phase transition below 18 K.
The magnetic structure is a canted antiferromagnet with moments in the ac plane
plus additional components along b. The main moment is along c. The magnetic
space group is P21/c

′ which is in accordance with the magnetoelectric tensor as
it was determined primarily.

The magnetoelectric effect provides evidence that it should be possible to ma-
nipulate antiferromagnetic domains in LiFeSi2O6. Spherical neutron-polarisation
analysis was employed to investigate whether the combination of an electric and
a magnetic field allows to pole antiferromagnetic domains. Indeed, it was possible
to pole antiferromagnetic domains by the use of different combinations of perpen-
dicular or parallel electric and magnetic fields employing different components of
the magnetoelectric tensor. Even the components αi2, which were stated to be
zero, can be used for poling of antiferromagnetic domains effectively. This leads
to two possible explanations: either the alignment of the magnetic field was not
accurate or the components αi2 are not completely zero. The latter is confirmed
by new measurements of the magnetoelectric tensor. In the magnetic space group
the inversion centre is composed with time inversion. Therefore a toroidal moment
is possible in LiFeSi2O6. The toroidal moment is coupled to the antiferromagnetic
domains. Thus it is also possible to pole toroidal domains. However, a special
contribution of the toroidal moment to the properties of LiFeSi2O6 cannot be
asserted.

In addition, the magnon dispersion and the spin density were determined. The
magnon dispersion is described very satisfactorily by a model employing three
exchange integrals and one anisotropy term.
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4 NaFeSi2O6

Aegirine (NaFeSi2O6) belongs to the pyroxenes with the general composition
AMSi2O6 (A = mono- or divalent metal, M = di- or trivalent metal). It
crystallises in the monoclinic space group C2/c [108] with lattice constants
a = 9.6618(5) Å, b = 8.7933(4) Å, c = 5.2946(2) Å, β = 107.334(3)◦ at 1.9 K, data
from Table 4.8. The crystal structure is similar to the structure of LiFeSi2O6.
Natural aegirine was discovered to be multiferroic by S. Jodlauk et al. at Univer-
sität zu Köln a few years ago, published 2007 [94]. Antiferromagnetic order sets
in at 8 K and an anomaly at 6 K can be observed in the susceptibility data as well
as in the magnetic intensity (Figure 4.2). This anomaly is accompanied by the
development of spontaneous electric polarisation along the monoclinic b direction,
Pb ≈ 13 µC/m2. The electric polarisation can be suppressed by a magnetic field of
about 4 T in the ac plane and a smaller polarisation along the c direction appears
instead, Pc ≈ 1 µC/m2 [94].

Understanding the mechanism of multiferroic coupling in aegirine requires know-
ing the magnetic structure. Several investigations of the magnetic structure in
aegirine based on neutron scattering have been published so far [109–111]. How-
ever, these three publications are contradictory and neither of them allows on
a basis of a clear picture of the magnetic structure to explain the origin of the
spontaneous electric polarisation. The reason for that is, that the quantitative
measurements in these three works are based on neutron powder measurements

PMSDW
m in ac

helix
m in ac

FE, P ‖ b

6 K 8 K

k = (0, 0.77, 0)

Figure 4.1: Magnetic phase diagram of NaFeSi2O6. At 8 K the magnetic structure sets
in as a transverse spin-density wave with moments in the ac plane and at 6 K evolves
into an elliptical helix with moments remaining in the ac plane. The transition in the
spiral phase is accompanied by the onset of spontaneous electric polarisation.

65



4 NaFeSi2O6

on synthetic samples. Mere on basis of a powder measurement it is often not pos-
sible to unambiguously distinguish between different models of complex magnetic
structures which nevertheless have a similar magnetic structure factor.

The advantage of the results in this thesis is, that they can rely on a series of
single crystal and powder neutron measurements, and, that the natural samples
were cut from the same large crystal which was found to be multiferroic by Jodlauk
et al. [94]. The measurements include measurements with polarised neutrons on
a single crystal at IN14, collecting several hundreds of integrated intensities on a
single crystal at D10, a powder measurement with natural and synthetic powder
at G4.1, and a single crystal measurement at high pressure at 4F2.

Unlike in the three publications [109–111] the measurements at natural sam-
ples show no commensurate magnetic order but only incommensurate order with
propagation vector k = (0, 0.77, 0). Combining all measurements the following
picture of the magnetic structure in natural NaFeSi2O6 can be derived: the mag-
netic structure forms a transverse spin-density wave with moments in the ac plane
in the temperature range between 8 K and 6 K and evolves towards an elliptical
helix with moments in the ac plane below 6 K.

In a powder measurement with synthetic powder additional commensurate mag-
netic order with propagation vector k = (0, 1, 0), as observed before in the three
publications, can be confirmed. By applying relatively low pressure up to 5 kbar
on a natural sample surprisingly it was possible to suppress the incommensurate
magnetic structure and regain the commensurate order.

4.1 Samples

All samples of natural NaFeSi2O6 were cut from the same high quality nat-
ural single crystal found on Mount Malosa, Malawi, which was also used
by S. Jodlauk et al. [94]. The chemical composition was reported to be
Na1.04Fe0.83Ca0.04Mn0.02Al0.01Ti0.08Si2O6. The samples were provided by the group
of L. Bohatý of the Insitut für Kristallographie at Universität zu Köln.

The magnetic propagation vector of different samples of natural NaFeSi2O6

varies between (0, 0.77, 0) to (0, 0.79, 0). The magnetic structure is highly frus-
trated and reacts sensitively on external parameters as the exact composition of
the sample. As the samples were cut from one large single crystal it is very likely
that the exact composition varies slightly throughout this crystal of several cm
length. The strong influence of external parameters on the propagation vector can
also be observed when pressure is applied to the sample: the propagation vector
shifts to higher values for increasing pressure, compare Figure 4.5. A temperature
dependence of the propagation vector is however marginal, compare Table 4.8 and
4.11.

The synthetic sample shows, in addition, magnetic reflections which can be in-
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dexed with a commensurate propagation vector (0, 1, 0). Powder of NaFeSi2O6 was
synthesised by crystallisation of a glass of stoichiometric composition (NaFeSi2O6)
at 800 ◦C by P. Becker of the Insitut für Kristallographie at Universität zu Köln.

4.2 Symmetry Analysis

In order to solve a complex magnetic structure a detailed symmetry analysis is
indispensable. This section deals with the symmetry analysis.

All symmetry elements of a space group G can be written in the Koster-Seitz
notation g = {α|τα +Rn}, where α is an orthogonal 3 × 3 matrix symbolising
the rotational part [proper: detα = 1 (real rotation), improper: detα = −1
(inversion, refection)] of the symmetry and τα + Rn its translational part. τα
is either null or a translation vector with fractional components, Rn is a lattice
translation vector with integer components.

The action of g on the space variable r is given by g(r) = α · r + τα + Rn.
The action of g on a vectorial quantity is solely determined by its rotational
part. A translation transports a vectorial magnitude from one position to another
leaving the orientation invariant. When the vector is polar (e.g. the electric dipole
moment) it transforms as g(p) = α·p. When the vector is axial (e.g. the magnetic
dipole moment) it transforms as g(a) = det(α)α · a.

If the magnetic structure has a non zero propagation vector k it may be that not
all symmetry elements of the space group G are compatible with this modulation.
In this case the little group Gk (all elements of G which are compatible with k)
may be a proper subgroup of G. The condition for compatibility of a symmetry
element g with the propagation vector k is, that it leaves the propagation vector
invariant modulo a reciprocal lattice vector G

α · k = k +G

[112, 113].
The crystallographic space group of NaFeSi2O6 is C2/c. The symmetry elements

of this space group are listed in Table 4.1. The magnetic moments are located at
the Fe sites which have the special Wyckoff position (0, y, 1/4); the site symmetry
is a twofold rotation axis. So the eight symmetry elements generate only four
Fe sites; two of them being generated by the C centring and thus their magnetic
moment is determined by the magnetic moment of the site to which they are
related by the centring operation multiplied by the phase factor of e−ik·t.

The magnetic propagation vector found in the used natural crystal is k =
(0, 0.77, 0). The little group is Gk = {1, 2, t, 21}, which is C2. In the space group
describing the nuclear structure the four Fe sites belong to one orbit (i.e. they are
connected by the symmetry operations). The little group contains less symmetry
elements, that is why the orbit splits in two orbits. So, with respect to the little
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element symm. op.

1 x, y, z

2 0, y, 1
4

x̄, y, z̄ + 1
2

1̄ 0, 0, 0 x̄, ȳ, z̄

c x, 0, z x, ȳ, z + 1
2

t (1
2
, 1

2
, 0) x+ 1

2
, y + 1

2
, z

21 (0, 1
2
, 0) 1

4
, y, 1

4
x̄+ 1

2
, y + 1

2
, z̄ + 1

2

1̄ 1
4
, 1

4
, 0 x̄+ 1

2
, ȳ + 1

2
, z̄

n (1
2
, 0, 1

2
) x, 1

4
, z x+ 1

2
, ȳ + 1

2
, z + 1

2

Table 4.1: Symmetry elements of the space group C2/c.

group the two Fe sites which are not related by the C centring (symmetry element
t), now are independent. The independent Fe ions are located at (x, y, z) and
at (x̄, ȳ, z̄). The character table is listed in Table 4.2. There are two irreducible
representations Γ1 and Γ2. The symmetry restrictions for the magnetic moments
are given in Table 4.3.

The reflection (0, 0.77, 0) exists, therefore the valid irreducible representation
cannot be Γ1. In Γ1 the magnetic moment is parallel b and for the reflection
(0, 0.77, 0) the scattering vector Q is parallel to the magnetic moment and ac-
cording to Equation 2.3 the intensity is null. A combination of both irreducible
representations is possible allowing magnetic symmetries of the form (u, v, w).

The synthetic sample shows additional magnetic reflections which can be in-
dexed with a propagation vector k = (0, 1, 0) which is equivalent to k = (1, 0, 0).1

For this propagation vector the little group is identical to the space group, i.e. all
symmetry operations are compatible with the propagation vector and the orbit of
all atom sites is not split into two orbits as it was the case for the incommensurate
propagation vector. The character table is given in Table 4.4 and the correspond-
ing symmetry conditions for the magnetic moments are given in Table 4.5. With a
propagation vector k = (0, 1, 0) only simple antiferromagnetic spin arrangements
(up-down-up-down) are possible (the phase between nearest moments connected
by the propagation vector is φk = k · t = π). The symmetry analysis was done
with BasIreps [102].

1Two propagation vectors k1 and k2 are equivalent if k1 − k2 is a vector of the reciprocal
lattice.
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1 2

Γ1 C2 1 1
Γ2 C2′ 1 −1

Table 4.2: Character table of the little
group Gk = C2. k = (0, 0.77, 0).

x, y, z

Γ1 0, v, 0
Γ2 u, 0, w

Table 4.3: Symmetry conditions of
the two irreducible representations of
C2. k = (0, 0.77, 0).

1 2 1̄ c

Γ1 C2/c 1 1 1 1
Γ2 C2/c′ 1 1 −1 −1
Γ3 C2′/c′ 1 −1 1 −1
Γ4 C2′/c 1 −1 −1 1

Table 4.4: Character table of C2/c. k =
(0, 1, 0).

x, y, z x̄, ȳ, z̄

Γ1 0, v, 0 0, v, 0
Γ2 0, v, 0 0, v̄, 0
Γ3 u, 0, w u, 0, w
Γ4 u, 0, w ū, 0, w̄

Table 4.5: Symmetry conditions of
the four irreducible representations
of C2/c. k = (0, 1, 0).

4.3 Spherical Polarisation Analysis at IN14

The triple-axis spectrometer IN14 at the Institut Laue-Langevin (ILL) was used
to investigate the magnetic structure of natural NaFeSi2O6 with CRYOPAD for
spherical polarisation analysis. The flipping ratio at (3 3 0) (1000 cnts/s) was 18.
A single crystal sample of natural aegirine was mounted in the (1 0 0)/(0 1 0) scat-
tering plane. The propagation vector of this sample is (0, 0.79, 0). An electric field
of 0.7 kV/mm was applied parallel to the b direction during the cooling process in
order to produce a monodomain state.

Figure 4.2 shows two temperature dependent scans at the magnetic reflections
(0, −1.21, 0) and (3, 0.21, 0). With the formulas given in Table 2.1 we can gain
some qualitative information on the magnetic structure in NaFeSi2O6. The data
were treated to directly display the different magnetic contributions: |M⊥|2 =
|My|2 + |Mz|2 and M2

χ = −i(M⊥ ×M ∗
⊥)x = 2=(MyM

∗
z ). The crystal is mounted

with its crystallographic c axis being vertical, i.e. c ‖ z. For the scan at Q =
(0,−1.21, 0) we get x ‖ b and y ‖ a∗ (approximately y ‖ a) and thus Mz = Mc

and My = Ma. So, the intensity must arise from a magnetic moment distribution
which has components in the ac plane. Further the emergence of M2

χ at 6 K
indicates the development of a chiral magnetic structure below that temperature.
The maximum chiral ratio is rχ = 0.3.

Repeating the same analysis for the reflection Q = (3, 0.21, 0) we get x ‖ a∗
(approximately) and y ‖ b (approximately) and thus Mz = Mc and My = Mb. In
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Figure 4.2: Spherical polarisation analysis of magnetic intensities in NaFeSi2O6

recorded at IN14. The data is treated to directly display the different magnetic contri-
butions. For Q = (0,−1.21, 0) we get Mz = Mc and My = Ma∗ . For Q = (3, 0.21, 0) we
get Mz = Mc and My ≈Mb. These scans suggest the following model for the magnetic
structure: The b component is null and the moments lie within the ac plane to form
a transverse spin-density wave in the temperature range between 10 K and 6 K and a
helical spiral in the range below 6 K. The misalignment of the scattering vector Q and
the a∗ axis can account for the small chiral contribution (black line). The flipping ratio
can account for half of the |My|2 component (green line).

particular the fact that there is almost no intensity for My might indicate that
there is little or no moment parallel b.

In the following it will be analysed whether a helix in the ac plane can account
for the small intensities |My|2 and M2

χ atQ = (3, 0.21, 0). The effect of the flipping
ratio and the small misalignment between the scattering vector Q and the a∗ axis
will be analysed.

The contribution of |My|2 can be measured in the non-spin-flip channels (NSF)
of Iy and in the spin-flip channels (SF) of Iz: |My|2 = INSF

y = ISF
z . Likewise:

|Mz|2 = ISF
y = INSF

z . Even if we expect zero intensity for |My|2 = 0 a flipping ratio
of FR = 18 generates an intensity of |My|2 = 1

FR
|Mz|2 = 1

FR
|M⊥|2 = 0.056|M⊥|2.

If the scattering vector lies within the rotation plane of the helix, the chiral term
is zero M2

χ = 0, compare footnote on page 23. If we assume a circular helix in the
ac plane, there is a small angle α between the scattering vector Q and the rotation
plane of the helix. The component My is then no longer zero but My = qM where
q = sin(α) and the helix is described by Ma∗ = M and Mc = iM . The c axis
is vertical and thus Mz = iM is not affected by the misalignment. The effect of
the misalignment on |M⊥|2 and |My|2 is almost negligible because it contributes
quadratically. For M2

χ it is not negligible because it contributes linearly.
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|M⊥|2 = |My|2 + |Mz|2 = (1 + q2)|M |2

|Mχ|2 = |2=(MyM
∗
z )| = 2q|M |2

⇒ |rχ| =
2q

1 + q2

With α = 4.4◦ it follows |My|2 = 0.0059|M |2 and |Mχ|2 = 0.15|M |2. Con-
sidering the correction for the flipping ratio, too, we get for the y component:
|My|2 = 0.0059|M |2 + 0.056|M |2 = 0.06|M |2. For the chiral contribution we must
consider that the experimental chiral ratio was rχ = 0.3. Therefore the expected
chiral term due to the misalignment amounts to |Mχ|2 = 0.05|M |2. Both correc-
tions terms are depicted in the right panel of Figure 4.2. The chiral term can be
explained by the misalignment completely. The contribution of |My|2 can only be
explained to a factor 1/2. Another disagreement is that |My|2 + |Mz|2 do not add
up to |M⊥|2. Therefore it might be argued that the b component of the magnetic
structure is actually zero and the flipping ratio was less than assumed or some
other effect has to be considered.

Based on these qualitative results and the symmetry analysis the following
model for the magnetic structure is proposed: The magnetic moments lie within
the ac plane. The emergence of the chiral term M2

χ further suggests a helical
spin-spiral structure below 6 K and a transverse spin-density wave above. The
existence of a small b component cannot be excluded. However, its contribution
is not chiral.

Attempts in reversing the sign of the chiral magnetic term M2
χ by means of an

electric field along the crystallographic b direction did not succeed. Furthermore
it can be assumed that the crystal is not in a mono-domain state. For a mono-
domain state of a circular helix one would compute the chiral term to be of as
high intensity as the total magnetic intensity |M⊥|2. The chiral term being so
much smaller indicates that the crystal consists of two domains – unequal in size
– which generate chiral terms with opposite signs which cancel out most of the
chiral contribution.

71



4 NaFeSi2O6

4.4 Single-Crystal Measurement at D10

The magnetic structure of a second single crystal sample of natural NaFeSi2O6

was investigated at D10 (ILL) single-crystal diffractometer using a wavelength
of λ = 2.36 Å and an 80×80 mm2 two-dimensional microstrip detector for three-
dimensional resolution in reciprocal space [114]. Structural and magnetic peaks
were recorded at two temperatures (1.8 K and 6.9 K). The lower temperature
lies in the multiferroic phase below 6 K, the higher temperature lies in the an-
tiferromagnetic but paraelectric phase. The propagation vector of this sample is
k = (0, 0.78, 0).

The refinement was done in the space group C2/c with the lattice constants
at 1.9 K from a powder sample, see Table 4.8: a = 9.6618(5) Å, b = 8.7933(4) Å,
c = 5.2946(2) Å, β = 107.334(3)◦. The refinement was done with FullProf [102].

4.4.1 Crystal Structure

At 1.8 K 1027 reflections were collected out of which 340 arouse from the crystal
structure while the remaining 687 were reflections from the magnetic structure.
240 of the structural reflections were equivalent reflections. 113 valid independent
reflections were used for the refinement of the crystal structure. The (weighted)
internal R-value was 2.8 % (3.3 %).

At 6.9 K 852 reflections were collected of which 366 were structural ones. 255
of those were equivalent reflections. 113 valid independent reflections were used
for the refinement. The (weighted) internal R-value was 2.5 % (3.6 %).

atom x y z Uiso [Å2]

Na 0 0.3002(11) 1/4 0.010(3) T = 1.8 K
Fe 0 0.8994(4) 1/4 0.0159(17)
Si 0.2905(6) 0.0903(6) 0.2379(9) 0.0047(18) RF 2 = 5.9 %
O1 0.1137(5) 0.0796(4) 0.1384(7) 0.0078(16) RwF 2 = 5.9 %
O2 0.3595(4) 0.2551(5) 0.3041(7) 0.0101(16) RF = 3.8 %
O3 0.3526(4) 0.0089(5) 0.0105(6) 0.0115(14) χ2(I) = 13.5

Na 0 0.3000(10) 1/4 0.008(3) T = 6.9 K
Fe 0 0.8994(4) 1/4 0.0146(16)
Si 0.2902(5) 0.0901(5) 0.2379(9) 0.0041(18) RF 2 = 5.8 %
O1 0.1132(4) 0.0795(4) 0.1387(7) 0.0060(16) RwF 2 = 5.8 %
O2 0.3597(4) 0.2554(5) 0.3039(7) 0.0096(16) RF = 3.7 %
O3 0.3526(4) 0.0088(4) 0.0108(6) 0.0114(14) χ2(I) = 13.8

Table 4.6: Structural parameters of natural NaFeSi2O6 as determined at D10.
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4.4 Single-Crystal Measurement at D10

The refinement was done with isotropic temperature factors and anisotropic
extinction correction (model 4 in FullProf ). The results are listed in Table 4.6.
There is no significant difference between the crystal structures at 1.8 K and 6.9 K.

4.4.2 Magnetic Structure

At 1.8 K 687 magnetic reflections were recorded. After averaging 423 independent
reflections were used for the refinement.

Different models were implemented and fitted to the data with FullProf. In all
models the two Fe sites which belong to the two different orbits were described by
identical Fourier coefficients, only the phase φk between those two moments was
chosen variable. This condition is necessary, otherwise the absolute moment can
be split arbitrarily among both sites and convergence of the refinement cannot
be reached. This constraint, however, is not too strong as both sites still have
the same site symmetry and thus should have similar magnetic moments. The
phase between the moments which are related by the C centring is given by
φk = k · t = 2π · 0.39.

A helical magnetic structure with moments in the ac plane is compatible with
the irreducible representation Γ2. An elliptical helix with moments in the ac plane
was fitted to the data and, for comparison, elliptical cycloidal spirals with moments
in the ab and the bc plane, respectively, were fitted to the data. Of these three
models only the ac helix is an eligible candidate as can be learned from the R values
of the three models listed in Table 4.7. It was also tested whether an additional
b component to an ac helix would lead to better results; the improvement is
however almost negligible and the value of the b component is small. Again, for
comparison sinusoidal spin-density waves (SDW) in different planes were refined.

cycl. ab cycl. bc hel. ac hel. ac+ b

RF 2 38.2% 35.3% 17.7% 17.4%
RwF 2 41.7% 41.5% 19.9% 19.8%
RF 22.3% 20.9% 12.1% 12.1%
χ2(I) 95.3 94.0 21.7 21.5

SDW ab SDW bc SDW ac SDW abc
RF 2 39.1% 37.1% 30.8% 30.7%
RwF 2 43.2% 45.4% 35.4% 35.3%
RF 24.6% 23.8% 20.9% 20.2%
χ2(I) 101.6 112.2 68.2 68.1

Table 4.7: R values of different magnetic models of natural NaFeSi2O6 fitted to the
data determined at D10 at 1.8 K.
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Figure 4.3: Low temperature magnetic structure of natural NaFeSi2O6 at 1.8 K as
determined at D10. Here the elliptical helix with moments in the ac plane is pictured.

SDW’s do not yield good results and thus can be excluded.

Based on these refinements the following model for the magnetic structure can
be proposed: The low temperature magnetic structure (T = 1.8 K) of the natural
crystal of aegirine forms an elliptical helix with moments in the ac plane, the
existence of a small component along b cannot be excluded although it is not
necessary to successfully describe the data. The lengths of the major and the
minor principle axis of the basal ellipse of the helix are Mmax = 3.06(3)µB and
Mmin = 2.45(4)µB, Mmin/Mmax = 0.80. The angle between the major principle
axis and the c axis is 50◦. The phase between the moments at the Fe sites which
are related by the inversion centre (1̄) is φk = 0.218(2) · 2π. A picture of the
magnetic structure can be seen in Figure 4.3.

For the magnetic structure at 6.9 K no model could be fitted to the data suc-
cessfully. 6.9 K is close to the paramagnetic transition at 8 K. As a consequence
the magnetic reflections are weak and broad. Therefore it may be possible that
the integration of the intensities was done incorrectly.

4.5 Natural Powder Sample at G4.1

A powder sample of the same natural crystal as used in [94] was measured in 1 K
steps from 2 K to 11 K at G4.1 spectrometer at the Laboratoire Léon Brillouin
(LLB) with a wavelength of λ = 2.423 Å. The onset of magnetic ordering can be
observed around 8 K, stable refinement of the magnetic structure can be attained
up to 7 K. FullProf was used for refinement of the following magnetic models:
spiral magnetic structures with moments in the ac, ab, bc pane and an additional
model with the rotation plane tilted arbitrarily, abc. Sinusoidal spin-density waves

74



4.5 Natural Powder Sample at G4.1

with moments in the ac, ab, bc plane and along the a, b, c axis and in arbitrary
direction abc. As background a linear interpolation between a set of background
points was chosen. The R values of all models are listed in Table 4.10.

In many cases it is not possible to distinguish among all different magnetic mod-
els solely on basis of a powder measurement. Measurements on a single crystal
– either by collecting a large number of integrated intensities or by the use of
polarised neutrons – are needed to unambiguously distinguish between the differ-
ent magnetic models. The R values in Table 4.10 suggest the following magnetic
structure: At 1.9 K, 3.4 K and 4.2 K a helical spiral with moments in the ac plane is
most likely. Although for 1.9 K and 3.4 K slightly better results are achieved when
a small b component is added to the rotation plane of the spiral. This component
however is small and the improvement of the magnetic R value is too marginal to
justify the need of the b component. At 4.2 K the model with the b component
does not converge. At 5.1 K the transition from the spiral phase to the SDW
can be observed; the moments remain in the ac plane during this transition. At
6.1 K and 7.1 K a SDW with moments in the bc plane yields slightly better results
than a SDW with moments in the ac plane. However, at that temperature the
magnetic peaks are weak and broad already. Therefore – also bearing in mind the
results of the measurement with polarised neutrons and the symmetry analysis –
the magnetic structure in the paraelectric phase most likely forms a SDW with
moments in the ac plane.

Table 4.8 shows the lattice parameters and the propagation vector for the best
fit (helix or SDW with moments in ac plane). The lattice parameters show no
significant dependence of the temperature which was not to be expected any-
way for the small temperature range. One might detect a slight increase of the
propagation vector for the two highest temperatures on the other hand at that
temperature the magnetic peaks are quite weak already and the results are not
very reliable any more. Concluding, the propagation vector of the natural sample
is k = (0, 0.77, 0). Table 4.9 shows the parameters of the magnetic structure at
different temperatures for the favoured model. The transition from the helix to
the SDW at about 5 K can be observed well. The data at 1.9 K and the Rietveld
fit of a helical spiral with moments in the ac plane is shown in the upper panel of
Figure 4.4.
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T [K] a [Å] b [Å] c [Å] β [◦] k

1.9 9.6618(5) 8.7933(4) 5.2946(2) 107.334(3) 0.7704(6)
3.4 9.6623(5) 8.7927(4) 5.2948(2) 107.332(3) 0.7694(7)
4.2 9.6616(5) 8.7930(4) 5.2947(2) 107.329(3) 0.7686(9)
5.1 9.6627(5) 8.7938(4) 5.2952(2) 107.331(3) 0.770(1)
6.1 9.6627(5) 8.7943(4) 5.2953(2) 107.329(3) 0.774(3)
7.1 9.6625(5) 8.7943(4) 5.2951(3) 107.333(3) 0.776(6)

Table 4.8: Lattice parameters and magnetic propagation vector of natural powder of
NaFeSi2O6 as determined at G4.1. The data displayed here belong to the best fit which
is either a helix or a SDW with moments in the ac plane.

T [K] Mmax [µB] Mmin [µB] Mmin/Mmax ] φk/2π

1.9 4.2 2.5 0.59 13◦ 0.21
3.4 4.1 2.0 0.50 16◦ 0.22
4.2 3.8 1.7 0.45 13◦ 0.22
5.1 3.5 0.1 0.03 12◦ 0.22
6.1 3.0 0 0 8◦ 0.22
7.1 2.8 0 0 5◦ 0.22

Table 4.9: Magnetic structure of natural powder of NaFeSi2O6 as determined at G4.1.
The moments lie in the ac plane. At low temperatures they rotate in an elliptical helix.
The lengths of the major and the minor principle axis of the ellipse are denoted with
Mmax and Mmin. The angle between the major principle axis and the c axis is shown.
φk is the phase between the moments at the Fe sites which are related by the inversion
centre (1̄). Between 5 K and 6 K the magnetic structure evolves towards a transverse
spin-density wave. All values are given to the last significant digit.
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spiral SDW
ac ab bc abc ac ab bc a b c abc

1.9 K
Bragg R 3.31 3.63 3.41* 3.31 3.32 3.63 3.46* 4.35 3.45 3.32

RF 2.31 2.44 2.39* 2.31 2.38 2.44 2.40* 2.78 2.40 2.38
Magnetic R 4.12 10.68 11.07* 4.07 5.51 10.72 10.01* 20.46 9.90 5.56

3.4 K
Bragg R 2.91 3.00 3.02 2.90 3.02 3.00 3.02 2.92 3.73 3.02 3.01

RF 2.23 2.19 2.35 2.21 2.27 2.19 2.35 2.37 2.62 2.35 2.26
Magnetic R 5.55 10.99 9.70 5.44 6.17 11.01 9.70 37.03 20.42 9.63 6.22

4.2 K
Bragg R 3.10 3.06 3.17* 3.17 3.06 3.18* 3.01 3.67 3.17 3.16

RF 2.33 2.25 2.41* 2.39 2.25 2.46* 2.35 2.55 2.39 2.37
Magnetic R 5.24 9.93 8.92* 6.22 9.91 8.67* 37.91 19.27 7.95 6.32

5.1 K
Bragg R 3.20 3.21 3.20 3.20 3.20 3.21 3.20 3.12 3.55 3.19 3.20

RF 2.46 2.42 2.45 2.46 2.47 2.42 2.45 2.51 2.62 2.45 2.46
Magnetic R 6.19 11.88 6.61 6.72 6.18 11.88 6.59 50.73 18.46 6.86 6.39

6.1 K
Bragg R 3.58 3.38 3.38 3.58 3.38 3.42 3.70 3.38 3.38

RF 2.67 2.56 2.57 2.67 2.56 2.80 2.80 2.58 2.55
Magnetic R 11.45 8.12 8.86 11.46 8.09 59.94 14.79 9.12 8.07

7.1 K
Bragg R 3.39* 3.25 3.22* 3.33 3.25 3.28 3.42 3.22 3.26*

RF 2.88* 2.76 2.74* 2.80 2.76 2.90 2.88 2.75 2.78*

Magnetic R 26.33* 8.35 9.31* 10.14 8.37 80.47 11.77 9.90 10.61*

Table 4.10: R values of different magnetic models fitted to a powder sample of natural NaFeSi2O6 measured at G4.1. Models
which run unstable are marked with an asterisk. Empty positions indicate the corresponding model does not converge.
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Figure 4.4: Rietveld fit of natural (1.9 K) and synthetic (1.5 K) NaFeSi2O6 powder
measured at G4.1 and refined with FullProf. The incommensurate magnetic structure
is a helical spiral and the commensurate magnetic structure a SDW both with moments
in the ac plane. The upper most green ticks indicate the structural Bragg-peak posi-
tions whereas the lower indicate the incommensurate magnetic (and commensurate for
synthetic sample) Bragg-peak positions. Light red data are excluded from refinement.
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4.6 Synthetic Powder Sample at G4.1

4.6 Synthetic Powder Sample at G4.1

A powder sample of synthetic NaFeSi2O6 was measured at different temperatures
at G4.1 (LLB) spectrometer with a wavelength of λ = 2.423 Å. The results
were already published in the PhD thesis of A.C. Komarek [110]. The data were
revisited in the context of this thesis.

Overall, the sample quality is not as good as the quality of the natural sample.
There are reflections which cannot be explained by the crystal structure. These
reflections are clearly not of magnetic origin as they do not disappear in the
paramagnetic regime. The following regions are excluded from the refinement:
25.7◦ − 27.2◦, 33.6◦ − 34.4◦, 38.2◦ − 38.9◦, 52.0◦ − 54.0◦, 68.0◦ − 68.9◦.

In addition to the magnetic reflections which can be indexed with the same
incommensurate magnetic propagation vector as that of the natural sample, the
synthetic sample shows reflections which can be described by a commensurate
propagation vector k = (0, 1, 0). Thus the magnetic structure in the synthetic
sample is a superposition of two magnetic structures. Two independent magnetic
phases were fitted to the data. The following magnetic models were fitted to
the incommensurate phase: spiral magnetic structures with moments in the ac,
ab, bc pane and an additional model with the rotation plane tilted arbitrarily,
abc. Sinusoidal spin-density waves with moments in the ac, ab, bc plane and in
arbitrary direction abc. The moments of the commensurate phase were restricted
to the same planes each time which seems to be a reasonable assumption. Due to
the integer propagation vector the moments of the second phase are restricted to
be of type up-down-up-down.2 As background a polynomial with six coefficients
was chosen. The R values of all models are listed in Table 4.13. The comparison
of the different models confirms the previous results: at low temperature the
incommensurate magnetic structure forms a helix with moments in the ac plane
and between 5.5 K and 6.5 K it transforms into a SDW with moments while the
moments remain in the ac plane; the commensurate phase forms an up-down-up-
down structure with moments in the ac plane.

Table 4.11 shows the lattice parameters and the propagation vector for the best
fit (helix or SDW with moments in ac plane plus superposition of up-down-up-
down structure). The lattice parameters slightly increase with the temperature.
One might detect a slight increase of the propagation vector for the two highest
temperatures on the other hand at that temperature the magnetic peaks are quite
weak already and the results are not very reliable any more. Concluding, the
propagation vector of the synthetic sample is k = (0, 0.75, 0). Table 4.12 shows the
parameters of the magnetic structure at different temperatures for the favoured
model. The transition of the incommensurate part from the helix to the SDW
takes place between 5.5 K and 6.5 K. The data at 1.5 K and the Rietveld fit of

2See the symmetry analysis in section 4.2 for a detailed discussion.
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a helical spiral plus a superposition of an up-down-up-down structure both with
moments in the ac plane is shown in the lower panel of Figure 4.4.

T [K] a [Å] b [Å] c [Å] β [◦] k

1.5 9.6357(6) 8.7767(5) 5.2895(3) 107.355(4) 0.746(1)
2.6 9.6359(6) 8.7768(5) 5.2897(3) 107.356(4) 0.746(1)
3.6 9.6358(6) 8.7764(5) 5.2894(3) 107.358(4) 0.747(1)
4.5 9.6358(6) 8.7775(5) 5.2899(3) 107.356(4) 0.749(1)
5.5 9.6367(6) 8.7775(5) 5.2899(3) 107.357(4) 0.750(2)
6.5 9.6371(5) 8.7783(5) 5.2902(3) 107.360(4) 0.752(4)

Table 4.11: Lattice parameters and magnetic propagation vector of synthetic powder
of NaFeSi2O6 as determined at G4.1. The data displayed here belong to the best fit
which is either a helix or a SDW with moments in the ac plane.

T [K] Mmax [µB] Mmin Mmin/Mmax ] φk/2π M ] φk/2π
k = (0, k, 0) k = (0, 1, 0)

1.5 4.7 2.0 0.42 10◦ 0.22 2.0 34◦ −0.08
2.6 4.6 2.0 0.44 8◦ 0.22 1.9 30◦ −0.07
3.6 4.7 1.6 0.34 11◦ 0.22 1.8 32◦ −0.07
4.5 4.4 1.7 0.38 9◦ 0.21 1.7 35◦ −0.09
5.5 4.2 1.4 0.32 12◦ 0.21 1.6 37◦ −0.10
6.5 3.9 0 0 16◦ 0.20 1.4 39◦ −0.12

Table 4.12: Magnetic structure of synthetic powder of NaFeSi2O6 as determined at
G4.1. At low temperatures the magnetic structure is a superposition of an incommen-
surate helix and a commensurate up-down-up-down structure both with moments in
the ac plane. The lengths of the major and the minor principle axis of the ellipse are
denoted with Mmax and Mmin. The angle between the major principle axis and the
c axis is shown. φk is the phase between the moments which are related by the in-
version centre (1̄). Between 5.5 K and 6.5 K the incommensurate part of the magnetic
structure evolves towards a transverse spin-density wave. All values are given to the
last significant digit.
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spiral SDW
ac ab bc abc ac ab bc abc

1.5 K

Bragg R 6.49 7.45 6.73 6.51* 6.49 7.08 6.72
RF 4.54 5.21 4.66 4.48* 4.53 5.04 4.66

inc. R 11.25 23.77 13.22 12.57* 13.36 20.43 13.22
com. R 8.96 11.41 10.32 12.90* 9.57 9.46 10.33

2.6 K

Bragg R 6.76 7.74 7.07* 7.36* 6.82 7.29 7.14 7.36
RF 4.87 5.48 5.02* 5.00* 4.87 5.34 5.01 5.00

inc. R 11.08 24.57 14.48* 17.09* 13.07 20.35 14.56 17.09
com. R 7.70 11.19 10.65* 31.46* 8.26 8.89 14.96 31.46

3.6 K

Bragg R 6.66 7.57 7.13* 6.69* 6.72 7.22 6.93* 6.89*

RF 4.65 5.18 4.77* 4.65* 4.66 5.12 4.75* 4.66*

inc. R 11.55 22.50 13.54* 11.70* 13.02 21.60 12.60* 14.09*

com. R 9.57 11.38 19.50* 10.75* 9.97 9.92 10.95* 17.07*

4.5 K

Bragg R 6.63 7.48 6.88* 6.90* 6.68 7.11 6.97* 6.69*

RF 4.72 5.15 4.85* 4.82* 4.73 5.14 4.84* 4.72*

inc. R 11.50 20.45 13.06* 15.51* 13.63 21.65 13.69* 13.84*

com. R 9.97 10.61 12.12* 26.06* 10.24 10.65 16.31* 12.55*

5.5 K

Bragg R 6.69 11.41* 7.00* 7.24* 6.69 7.33* 8.24* 6.85*

RF 4.64 12.45* 4.76* 4.91* 4.64 5.06* 5.45* 4.73*

inc. R 9.83 32.55* 10.65* 9.36* 10.93 22.58* 60.59* 12.01*

com. R 10.95 30.38* 15.63* 13.42* 11.31 11.43* 49.17* 16.63*

6.5 K

Bragg Rr 7.26* 7.10* 6.88 7.25 7.08*

RF 4.96* 5.01* 4.89 5.24 4.93*

inc. R 13.88* 14.64* 11.28 26.86 13.37*

com. R 13.21* 15.00* 13.69 12.70 21.67*

Table 4.13: R values of different magnetic models fitted to a powder sample of synthetic
NaFeSi2O6 measured at G4.1. The magnetic structure is a superposition of an incom-
mensurate and a commensurate structure. Models which run unstable are marked with
an asterisk. Empty positions indicate that the corresponding model does not converge.
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4.7 Pressure at 4F2

As we learned from the previous chapters the magnetic structure of NaFeSi2O6 is
rather complex: commensurate and incommensurate magnetic structures coexist
in a competitive situation. Natural single crystals all cut from the same large crys-
tal show an incommensurate propagation vector and no evidence of commensurate
magnetic order. Furthermore a slight deviation in the exact value of the incom-
mensurability for different samples can be observed. The synthetic powder sample
shows a superposition of a commensurate and an incommensurate structure. The
deviation in the incommensurability for different samples and the absence or pres-
ence of the commensurate magnetic structure indicate that the magnetic structure
in NaFeSi2O6 is highly frustrated and complex so that impurities have a high in-
fluence on it. The assumption that external parameters as hydrostatic pressure
have a great influence on the magnetic structure, too, is obvious.

At the triple-axis spectrometer 4F2 (LLB) the effect of hydrostatic pressure
on the magnetic structure was investigated. Hydrostatic pressure up to 5 kbar
was applied with a helium pressure cell. When increasing the pressure the cell
must be heated above the melting point of the He. The sample was mounted

2
4
6
8

10

5 kbar

4 kbar

2 kbar

0 kbar

2
4
6
8 2 kbar

2
4
6
8

0 kbar

3 kbar

T
 [K

]

2
4
6
8

5 kbar

0.7 0.8 0.9 1.0 1.1 1.2 1.3
2
4
6
8

Q = (0, k, 0)

4 kbar

Figure 4.5: Natural NaFeSi2O6 under pressure at 4F2. The propagation vector k =
(0, k, 0) shifts to higher values with pressure and the intensity of the incommensurate
order decreases. Most remarkably is the onset of the commensurate order already at
relatively low pressure.
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in the ab plane. Longitudinal scans across the magnetic peaks (0,∼ 0.77, 0) and
(0,∼ 1.23, 0) and the commensurate position at (0, 1, 0) at pressures up to 5 kbar
and varying temperature can be seen in Figure 4.5. At zero pressure no evi-
dence of commensurate magnetic order can be seen here3. The propagation vector
k = (0, k, 0) shifts to higher values with pressure and additionally the emergence
of the commensurate order at (0, 1, 0) can be observed. The intensity of the in-
commensurate order decreases whereas the intensity of the commensurate order
increases. It can be assumed that at higher pressure the sample orders completely
commensurate. This effect is reversible when going back and forth with pressure.
The shift of the incommensurability with pressure is an expected feature, the
emergence of the commensurate order at this rather low pressure is remarkable
however.

3A very small component could be seen at IN14.
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4.8 Conclusion

This chapter presents a comprehensive investigation of the magnetic structure of
natural and synthetic NaFeSi2O6. Different neutron techniques were combined
in a powerful way. The magnetic structure is incommensurate with propagation
vector k = (0, 0.77, 0). The most likely model of the magnetic structure is a
transverse spin-density wave with moments in the ac plane which sets in below
8 K and evolves into an elliptical helix with moments remaining in the ac plane
below 6 K. The existence of a small b component cannot be excluded. However,
its contribution is not chiral.

The measurement with spherical polarisation analysis at IN14 gives most valu-
able advice on the magnetic structure. The results are more of qualitative value
than of quantitative. In contrast to the powder measurements, which do not
always favour a single model, the results of the measurement with spherical polar-
isation analysis are more reliable. The measurement with spherical polarisation
analysis furthermore indicates that it is not a simple task to influence the magnetic
structure by means of an electric field as for other multiferroica.

The measurement at the D10 single-crystal diffractometer clearly confirms the
low-temperature magnetic structure and gives a quantitative result. The size of the
magnetic moment is 3.06µB. The theoretical magnetic moment of Fe3+ is 5.92µB.
This deviation indicates that the magnetic moments are not completely ordered
at that temperature, yet. The reason for that might be the high frustration of the
magnetic structure. Another cause might be the replacement of some Fe3+ ions
by other ions (see chemical analysis in Section 4.1).

The measurements of the natural and the synthetic powder at G4.1 show on the
one hand different results in the sense that the synthetic sample has an additional
commensurate propagation vector, on the other hand the results for the incom-
mensurate phases seem to be rarely influenced by that fact, as the agreement for
the incommensurate magnetic structure is surprisingly good. Especially the natu-
ral sample exhibits the transition from the spiral to the SDW nicely. Overall, the
powder samples reveal a larger magnetic moment and a flatter ellipse than the
single-crystal measurement. Also the angle between the major axis and the c axis
is found to be smaller in the powder measurements.

The pressure experiment at 4F2 reconciles the different behaviours of the syn-
thetic and the natural sample. The magnetic structure in NaFeSi2O6 is highly
frustrated, with the result that external parameters such as doping and pressure
have great influence on the propagation vector.

With this data on the magnetic structure it is possible to exclude the inverse
Dzyaloshinskii-Moriya interaction as the driving force in NaFeSi2O6 to be multifer-
roic. The inverse Dzyaloshinskii-Moriya interaction requires a cycloidal magnetic
structure where the axis of spin rotation is perpendicular to the modulation vec-
tor k of the spin arrangement. In a helical magnetic structure the axis of spin
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rotation is parallel to the modulation vector and the double cross product of the
Dzyaloshinskii-Moriya term thus vanishes. The small b component, which cannot
be excluded, has no chiral contribution and thus generates no Dzyaloshinskii-
Moriya term.

The magnetic order in NaFeSi2O6 lowers the symmetry from C2/c to C2′ which
is a polar space group. The polar axis is b which is indeed the axis of spontaneous
electric polarisation in NaFeSi2O6. Only on basis of symmetry considerations the
following explanation of the spontaneous electric polarisation can be given: once
the symmetries which keep the crystal from getting polar (here inversion and glide
plane) are broken by the magnetic structure, nothing prevents the ions or electrons
to shift towards a polar position and ferroelectricity sets in. The argument that a
helical spin structure can induce ferroelectricity was also given by T. Arima [23].
A similar argumentation is given by R. Johnson et. al. [33].

There is a peculiarity about the mechanism generating ferroelectricity in
NaFeSi2O6. Most multiferroics (TbMnO3 [19], MnWO4 [20], Ni3V2O8 [21],
CuFeO2 [22, 23]) undergo a sequence of two second-order magnetic phase transi-
tions. While the first requires a single irreducible representation and is non-polar
the second requires two irreducible representations and is polar. Only the second
transition breaks the remaining symmetries and generates the ferroelectric phase
[24]. The proposed magnetic transitions in NaFeSi2O6 are restricted to a single
irreducible representation. Why then does the first magnetic transition not give
rise to ferroelectricity while the second does? Phenomenologically, a spin-density
wave does not break inversion symmetry whereas a helix does. In the case of
NaFeSi2O6 the incommensurate spin-density wave is not in accordance with the
crystal lattice and the inversion symmetry is not a member of the little group, nev-
ertheless the spin-density is not a chiral structure. The helix on the contrary is a
chiral structure and does therefore break the crystal symmetry ’more’. B. Mettout
et al. [24] discuss the appearance of just a single irreducible representation under
the term symmetry-replication mechanism.
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In this chapter the investigations on the kinetics of electric field induced switching
of chiral magnetic structures in multiferroic MnWO4 are presented. On the one
hand this topic is of fundamental research interest. On the other hand multifer-
roics are often regarded in the context of data storage devices such as non-volatile
magnetic random access memory (RAM). For this application the writing speed
is a crucial issue. Time-resolved neutron scattering was applied in order to in-
vestigate how fast the magnetic chirality adapts to an instantaneously switched
electric field. Technical details of time-resolved neutron scattering are described
in Section 2.4.

The time dependence of the multiferroic switching in MnWO4 was investigated
with two different samples at the triple-axis spectrometers IN12 and IN14 at
the Institut Laue-Langevin (ILL). The results of both measurements are in good
agreement. The main result is that the switching process in MnWO4 takes place
in the time scale of 2 ms to 30 ms which is much slower than anticipated.

Hübnerite (MnWO4) is a naturally occurring mineral. It crystallises in the
monoclinic space group P2/c (a = 4.823 Å, b = 5.753 Å, c = 4.992 Å, β = 91.08◦).
MnWO4 undergoes a sequence of magnetic phase transitions. Below 13.5 K
(AFM3) an incommensurate sinusoidal spin-density wave with collinear moments
in the ac plane forming an angle of 35◦ with the a axis and propagation vector
k = (−0.241, 1

2
, 0.457) sets in. Below 12.3 K (AFM2) an additional b component

PM

k = (−0.214, 1
2 , 0.457)

AFM3

SDW
m in ac plane

AFM2

spiral
m in ac plane + b

FE, P ‖ b
k = (−1

4 ,
1
2 ,

1
2)

AFM1

↑↑↓↓
m in ac plane

8 K 12.3 K 13.5 K

Figure 5.1: Magnetic phase diagram of MnWO4. MnWO4 undergoes a sequence of
magnetic phase transitions. The transition in the spiral phase is accompanied by the
onset of spontaneous electric polarisation. The transition at 8 K is of first order while
the other transitions are of second order. Data are taken from Reference [20].
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evolves and the moments order in an elliptical spiral which intercepts the ac plane
in the direction of the magnetic moments of AFM3. Below 8.0 K (AFM1) the
system orders collinear again with moments in the ac plane forming an angle of
37◦ with the a axis but with commensurate propagation vector k = (−1

4
, 1

2
, 1

2
).

The moments order in an up-up-down-down (↑↑↓↓) structure which is a special
case of a sinusoidal structure with propagation vector k = 1

4
. [20]

At the transition to the non-collinear state (AFM3 → AFM2) spontaneous
electric polarisation parallel b develops continuously. At the transition back into
the collinear state (AFM2 → AFM1) the electric polarisation disappears discon-
tinuously. Just before this transition the polarisation reaches its maximum of
Pb ≈ 60 µC/m2. [29–31]

MnWO4 being multiferroic can be explained by the inverse Dzyaloshinskii-
Moriya interaction. The direction of the electric polarisation P is given by
P ∝

∑
ij eij×(Si×Sj) where Si and Sj are the magnetic moments of neighbouring

manganese ions and eij points along the connection line of the corresponding ions.
As the moments rotate in an ellipse, whose basal plane intercepts the ac plane
at an angle of 35◦ and furthermore is not inclined with respect to the b axis, the
cross product Si×Sj lies in the ac plane forming an angle of 125◦ with the a axis.
The manganese ions form zigzag chains along the c direction; in average the con-
nection line is along the c axis, 〈eij〉 ‖ c. Finally, 〈eij〉 × (Si×Sj) ‖ b predicts the
polarisation P along the b axis. [29]

The ferroelectric polarisation in MnWO4 can be turned from the b direction to
the a direction when a magnetic field above 10 T is applied along the b axis [29].
The observation of the effect of an electric field on the magnetic structure is more
difficult to study, as a complex antiferromagnetic order requires a microscopic
technique for observation. By the use of polarised neutrons the direct observation
of the electric-field induced switching of the chiral magnetism has been observed
in MnWO4 where full hysteresis loops (chiral ratio vs. electric field) were recorded
[115–117].
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5.1 Time-Dependent Measurements at IN12

ki

kf

Q

E

Figure 5.2: Sample holder
of MnWO4. The electric field
is applied by two aluminium
plates which are fixed by four
nylon screws. The sample is
1.98 mm thick.

For spherical polarisation analysis CRYOPAD III
was installed on the IN12 (ILL) triple-axis spec-
trometer. The sample was mounted in the
(0 1 0)/(−0.214, 0, 0.457) plane. The magnetic peak
(−0.214, 0.5, 0.457) had an intensity of 400 cnts/s.
The flipping ratio at (0 2 0) was 26 (90 cnts/s) and
at (1 0 2̄)1 it was 41 (260 cnts/s). The electric field
was applied along the b direction by two aluminium
plates which were fixed with four nylon screws to
the sample, see Figure 5.2. The sample was 1.98 mm
thick. It was grown from melt by P. Becker.

For all measurements of the chiral ratio the spec-
trometer was placed right at the centre of a peak
and for each neutron-polarisation channel just one
point was recorded rather than scanning the whole
peak. This proceeding is justified if the amplitude
is directly proportional to the area which is the case
when the full width at half maximum is constant.
This requirement was checked carefully for differ-
ent electric fields with the result that the proposed
measuring technique is justified.

Prior to the time-resolved measurements some
static investigations were undertaken. A sequence
of five cooling cycles in different electric fields was recorded, Figure 5.3. The first
measurement (the sample had not seen any electric field yet) in zero electric field
was a temperature scan from 20 K, which is well in the paramagnetic regime, to
6 K of both spin-flip channels in the x direction, which are directly linked to the
chiral ratio via Equation (2.13). Thereafter, the procedure was repeated with
electric fields of 1 kV/mm, 0 kV/mm, −1 kV/mm, and 0 kV/mm. The obtained
maximal chiral ratios were −0.11, 0.48, 0.10, −0.48, 0.05, respectively. The follow-
ing transition temperatures can be observed: onset of magnetic order at 13.0 K,
development of chiral component at 12.6 K (splitting of both spin-flip channels)
and transition to commensurate phase at 7.5 K. These transition temperatures are
in good agreement with the values found in literature. The chiral ratio can be
influenced effectively by the electric field. The virgin sample (no electric field seen
yet) already shows a small chiral ratio of −0.11. The chiral ratio can be reversed
and increased by an electric field to 0.48. After heating into the paramagnetic
regime and cooling again without electric field the sample remembers its former

1In order to reach this reflection the sample has to be tilted slightly out of the scattering plane.
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Figure 5.3: Temperature scans of the two spin-flip channels in x direction at different
electric fields measured at the incommensurate magnetic reflection (−0.214, 0.5, 0.457).
The succession of the measurements is from left to right.

state and develops a chiral ratio of 0.10. The absolute value is comparable to
the former zero-field state but the sample remembers the positive sign of the last
electric field it saw. The chiral ratio can be fully switched to −0.48 by a reversed
electric field. After reheating and removing the electric field the sample develops
a chiral ratio of 0.05. This time the crystal seems not to remember the last field
seen but remembers the first field it ever saw after cooling from room temper-
ature. This complicated behaviour depending on the history of the sample was
also reported by Th. Finger et al. [116]. The authors of this reference observed a
maximal chiral ratio in of ±0.8. To a high degree the properties of a sample are
thus intrinsic.

The influence of the cooling field on the development of a preferred chirality
can also be observed when driving hysteresis loops (chiral ratio vs. electric field).
The hysteresis loops were recorded after cooling from 20 K to 10 K in an applied
electric field of ±1 kV/mm. The saturation value of the chiral ratio is ±0.48 and
can be fully reversed. The crystal develops a preferred chirality depending on
the field which is applied during cooling from the paramagnetic phase and can
be arbitrarily chosen. A higher field is needed to force the sample in the non-
preferred state and a lower field to return in the preferred state. As a consequence
the hysteresis loop gets shifted with respect to the electric field, as can be seen in
Figure 5.4. This is in accordance with former results, compare [116, 117].

After these preliminary investigations the time dependence was investigated.
The time of flight of the neutrons has to be regarded. All data have been shifted
so that the onset of the switching process coincides with the reversal of the electric
field. During the experiment a strong dependence on the succession of the indi-
vidual switching processes was observed. For this reason the results are presented
in the same succession as they were performed.

In the first experiment an electric field of ±1.2 V/mm was switched at a fre-
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Figure 5.4: Static hysteresis loop obtained by measuring the chiral ratio as a function
of external electric field at constant temperature. The loops were recorded after field
cooling from 20 K to 10 K in E = ±1 kV/mm. Note the coercive field depends on the
field direction applied during cooling.

quency of 8 Hz. The response of the sample was observed in a temperature range
from 12.5 K to 7.5 K. Prior to this the sample was cooled from 20 K to 12.5 K in
a field of +1.2 kV/mm. Three curves at different temperatures are shown in Fig-
ure 5.5. It is possible to switch the magnetic chirality between the two saturation
values and the same amplitude as for the static hysteresis loop can be reached.
Furthermore the relaxation time is shorter when the system goes into its preferred
state and longer when it is forced to respond to the electric field in the other
direction. At the temperature closer to the phase transitions the system is softer
(i.e. it responds faster to the reversed field).

The following function was fitted to the data [118]

y(t) =
1

2

[
1− tanh

(
t− t0

0.001 ms

)][
A2 + (A1 − A2)e

−
(

t
t1

)b1
]

+
1

2

[
1 + tanh

(
t− t0

0.001 ms

)][
A2 + (A1 − A2)

(
1− e

−
∣∣∣ t−t0

t2

∣∣∣b2)]
The hyperbolic tangent yields a continuous approximation of the Heaviside step
function which describes the instantaneous reversal of the electric field. t0 is half
of the switching period when the direction of the electric field is reversed. t1,2 are
the characteristic relaxation times. A1 and A2 describe the minimal and maximal
chiral ratio, respectively.

91



5 MnWO4

0 2 5 5 0 7 5 1 0 0- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

- 1 . 2  k V / m m
 r χ

t  [ m s ]

8 . 0  K

+ 1 . 2  k V / m m
0 2 5 5 0 7 5 1 0 0

- 1 . 2  k V / m m+ 1 . 2  k V / m m

1 0 . 0  K

t  [ m s ]
0 2 5 5 0 7 5 1 0 0 1 2 5

- 1 . 2  k V / m m+ 1 . 2  k V / m m

1 2 . 0  K

t  [ m s ]

Figure 5.5: Time-dependent measurement of the magnetoelectric switching at different
temperatures. The sample was cooled from 20 K in an electric field of +1.2 kV/mm. The
electric field is switched with a frequency of 8 Hz and an amplitude of ±1.2 kV/mm with
a rise time of 0.2 ms. The chiral ratio can approximately be switched in the same range
as in the static hysteresis loop. The relaxation time differs strongly for the two states.
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Figure 5.6: Characteristics of the switching behaviour for field cooling +1.2 kV/mm.
The electric field is switched with a frequency of 8 Hz and an amplitude of ±1.2 kV/mm.
The influence of fitting the exponent individually for each temperature or globally for all
temperatures on the saturation value of the chiral ratio and the characteristic relaxation
time is negligible. The temperature was decreased during the measurement.
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Figure 5.7: Time-dependent measurement of the magnetoelectric switching at different
temperatures. The sample was cooled from 20 K in an electric field of −1.2 kV/mm.
Frequency: 8 Hz, amplitude: ±1.2 kV/mm. The switching behaviour is asymmetric.
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Figure 5.8: Characteristics of the switching behaviour for field cooling −1.2 kV/mm.
Frequency: 8 Hz, amplitude: ±1.2 kV/mm. The influence of the exponents on the
saturation value of the chiral ratio and the characteristic relaxation time is negligible.
The temperature was decreased during the measurement.
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The relaxation is discussed on the basis of the Avrami model [119–122]. The
exponent b should be between 1 and 2. For one dimensional domain growth the
Avrami model predicts an exponent of 2, when assuming constant nucleation,
and 1, when assuming nucleation only in the beginning. The exponent cannot
be fitted reliably to the data. It varies strongly for different temperatures, see
Figure 5.6. The data analysis was done once with global refinement and once with
individual refinement of the exponents b1 and b2. All parameters are displayed in
Figure 5.6. Fortunately, the exponent has only small influence on the saturation
value of the chiral ratio and the characteristic relaxation time. The properties
which were already discussed at the three example scans (Figure 5.5) are confirmed
by the whole temperature run. An interesting observation is that the saturation
of the chiral ratio decreases slightly with temperature. This behaviour might
be a function of temperature or more likely due to fatigue of the sample as the
temperature was reduced during the measurement.

In addition the effect of the frequency on the switching behaviour was inves-
tigated. At 10 K the following frequencies were used: 10 Hz, 12 Hz, 5 Hz, 8 Hz,
20 Hz, and 40 Hz. The overlay of the curves at 5 Hz, 10 Hz, 20 Hz, and 40 Hz in
Figure 5.9 exhibits the preferred state clearly. When the electric field is switch
faster than the system can respond, it will not follow the whole way but it will
follow at the same rate and thus will not reach the opposite chiral ratio. It is note-
worthy, that the crystal always reaches the saturation value for the preferred state.
If the sample was symmetric with respect to the electric field one would expect
a more symmetric curve, i.e. the saturation values of the maximal and minimal
chiral ratio would be equal in size and both decrease for increasing frequency.

During the experiment it appeared that the sample showed irreversible changes.
Especially switching at high frequencies caused fatigue. Runs which were done
at 10 K and 8 Hz with different history of the sample prove this assumption. The
run which was done in the beginning of the measurement during the temperature
scan was used as reference. At this time the chiral ratio could be flipped almost
completely (+0.49, −0.45), compare Figure 5.5. Later, after the sample had been
switched with 12 Hz, the preferred chirality stayed almost the same (+0.48) but
the non-preferred chirality decreased to −0.28, compare Figure 5.9. It is not
possible to distinguish whether this is due to the former switching at 12 Hz or to
a general process of fatigue. After switching at 40 Hz all parameters stay more or
less the same. This speaks for general fatigue rather than destroying the sample
by applying too high of a frequency. After this the sample was heated to 20 K and
cooled again. The sample did not restore to its reference values. So the sample
was heated to 120 K in the hope that would restore the sample. This was not
accomplished. Possibly structural defects or mechanical tension influencing the
magnetic and polar order, which do not heal when going far beyond the magnetic
phase transition, were induced into the sample by the repeated switching.

The influence of the amplitude of the switching field on the switching be-
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Figure 5.9: Switching at different frequencies. At 10 K the electric field is switched with
different frequencies and an amplitude of ±1.2 kV/mm. The system clearly develops a
preferred state. At high frequencies the time is too short to completely adapt to the
non-preferred state. The data are shifted in the time axis such that the time of the
switch coincides for the different frequencies.

haviour was investigated by three measurements with 1.2 kV/mm, 1.4 kV/mm,
and 1.5 kV/mm, respectively, Figure 5.10. The difference in the three applied am-
plitudes is straightforward: when switching from the non-preferred state into the
preferred state the field of 1.2 kV/mm already exceeds the minimal required field
(i.e. the field at which the system is willing to adapt to its preferred state). The
time constant and the saturation value stay almost the same for all three fields.
When switching into the non-preferred state, the system is unwilling to follow. By
applying a higher field the chirality is switched faster and the saturation value is
increased. This can be understood easily by considering the higher driving force
of the higher field.

Nevertheless the sample had suffered non-reversible changes in its properties,
in the last series of scans it was investigated whether the preferred chirality can
be changed by reversing the field during cooling. The sample was heated to 20 K
and recooled in a field of −1.2 kV/mm. The switching behaviour in a temperature
range from 12.5 K to 7.5 K was recorded. Three curves at different temperatures
are shown in Figure 5.7. As expected the sample now has a preference to a
negative chiral ratio which is in accordance with the field applied during cooling.
At 10 K the relaxation time exceeds half of the period of the applied electric
field, as a consequence the positive saturation value of the chiral ratio is not
reached. Comparing the fit parameters of the two temperature runs (Figure 5.6
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Figure 5.10: Switching with different electric field strength at 10 K and 8 Hz. Higher
fields yield a higher driving force and thus a faster respond.

with Figure 5.8) reveals reversed behaviour. Now the saturation of the negative
chiral ratio exceeds the saturation of the positive chiral ratio. However the positive
(non-preferred) saturation value shows a less smooth curve than before. The kink
at 10 K is a consequence of the long relaxation time at that temperature where the
saturation value of the chiral ratio is not reached for positive electric field. The
behaviour of the time constants is also reversed. Now the time needed to switch
to the positive chiral ratio exceeds the time needed to switch to the negative chiral
ratio. The time to switch to the non-preferred chirality now is much longer than
it was in the series done before.
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5.2 Time-Dependent Measurements at IN14

The measurement was repeated at IN14 with a different sample in order to in-
vestigate which properties were specific to the sample and which ones of general
nature. The sample [E/H3] was 0.89 mm thick. It was grown from melt solution
by P. Becker. A standard Helmholtz setup was used for polarisation analysis.
With a Helmholtz setup only the diagonal terms of the polarisation matrix are
available. Because the chiral ratio can be obtained with the strongest intensity by
measuring both spin flip channels in the x direction this is sufficient. In fact the
Helmholtz setup is preferable when one is interested in the diagonal terms of the
polarisation matrix only because it is experimentally easier to handle and provides
higher intensity than CRYOPAD. Another advantage is that the goniometers can
tilt in a wider range, so the sample alignment is much easier. The intensity of the
magnetic reflection (−0.214, 0.5, 0.457) was 1400 cnts/s.

The hysteresis loop of a zero-field cooled sample is shown in Figure 5.11. The
sample was cooled to 10 K in zero electric field and then a negative field of
−1.25 kV/mm was applied. The saturation value of the chiral ratio is ±0.85
which is significantly higher than for the other sample investigated before but it
is consistent with values observed by Th. Finger et al. [116]. The hysteresis loop
is not perfectly symmetric but shows a clear preference for negative electric fields
which was the first field it saw after cooling. Especially a high positive electric
field is needed to reach saturation. For that reason the amplitude of the switching
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Figure 5.11: Static hysteresis loop obtained by measuring the chiral ratio as a function
of external electric field at constant temperature. The loops were recorded after zero-
field cooling to 10 K and then a negative field was applied.
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Figure 5.12: Time-dependent measurement of the magnetoelectric switching at differ-
ent temperatures. The sample was cooled from 20 K in an electric field of +1.35 kV/mm.
The electric field is switched with a frequency of 8 Hz and an amplitude of ±1.35 kV/mm.
The relaxation times and the saturation values are quite symmetric for both field direc-
tions.
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Figure 5.13: Characteristics of the switching behaviour for field cooling +1.35 kV/mm
from 20 K. The electric field is switched with a frequency of 8 Hz and an amplitude of
±1.35 kV/mm. The first run was done with 0.5 K steps from 12 K to 7.5 K. Afterwards
the sample was reheated to 20 K and the run was repeated with 1 K steps. All data are
perfectly reproducible.
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Figure 5.14: Time-dependent measurement of the magnetoelectric switching at differ-
ent temperatures. The sample was cooled from 20 K in an electric field of −1.35 kV/mm.
The electric field is switched with a frequency of 8 Hz and an amplitude of ±1.35 kV/mm.
The relaxation times and the saturation values behave extremely asymmetric for both
field directions.
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Figure 5.15: Characteristics of the switching behaviour for field cooling −1.35 kV/mm
from 20 K. The electric field is switched with a frequency of 8 Hz and an amplitude of
±1.35 kV/mm. The first run was done with 0.5 K steps from 12 K to 7.5 K. Afterwards
the sample was reheated to 20 K and the run was repeated with 1 K steps. All data are
perfectly reproducible.
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field was chosen to be ±1.35 kV/mm which is slightly higher than for the other
sample. Due to lack of time it was abstained from recording further hysteresis
loops and checking whether field cooling would produce two different preferred
states; instead time-resolved measurements were recorded right away.

For the time-resolved measurements the sample was field cooled from 20 K in
an electric field of +1.35 kV/mm. Then the field was switched with a frequency of
8 Hz and an amplitude of ±1.35 kV/mm. The temperature was reduced in 0.5 K
steps from 12.0 K to 7.5 K. Thereafter the temperature was raised to 20 K again
and the procedure was repeated with 1 K steps. By doing so the reproducibility of
the results was checked. The obtained data are perfectly reproducible. For all data
the exponent was again fitted individually and globally. Again, the influence on the
characteristic relaxation time and the saturation value is negligible. Figure 5.12
shows three example scans. All fitted parameters are displayed in Figure 5.13.
The characteristic relaxation time is shorter than for the sample measured at
IN12 and both times t1 and t2 are almost equal. Overall this sample exhibits
a more symmetric performance. Additionally, this sample displays a long-term
relaxation process which can be observed at 8 K and 10 K in Figure 5.12 and at
8 K in Figure 5.14. The main part of the chiral ration adapts to the new field in
less than 10 ms. Hereafter the chiral ratio still increases but on a much lower time
scale. This behaviour was not observed at the other sample studied at IN12.

The same procedure was repeated for a negative cooling field of −1.35 kV/mm.
The results are displayed in Figures 5.14 and 5.15. This time the sample develops
a clear preference for negative field and shows asymmetric behaviour. The time
constants differ strongly and the saturation of the chiral ratio is only reached
for negative field. Again, the obtained data are perfectly reproducible; even the
kink in the positive saturation values. Most remarkably is that the kink in the
positive saturation values resembles the kink measured in the other specimen at
IN12 which is also located at 10 K. A possible explanation for that might be
that the static hysteresis loop recorded in the beginning was recorded at 10 K.
Possibly this might have imprinted a preferred state. However this explanation
seems somewhat speculatively.
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5.3 Conclusion

The time-dependence of the magnetoelectric switching in MnWO4 was observed
with stroboscopic neutron scattering. In summery it can be stated that the switch-
ing process in MnWO4 takes place in the time scale of 2 ms to 30 ms. External
parameters like the temperature of the sample, the frequency and the amplitude
of the applied electric field, and the history of the sample have a big influence
on the switching behaviour. Other properties are intrinsic to the sample. The
maximal chiral ratios observed at different samples vary between 0.5 and 0.8.

A higher electric field yields a higher driving force, which switches the chiral
ratio faster and increases the saturation value slightly. The relaxation time is
independent of the applied switching frequency.

Measurements on two different samples confirm that the time scale of the switch-
ing process depends strongly on the temperature. In the vicinity of the high-
temperature and the low-temperature phase transitions of the ferroelectric regime
the sample can be switched faster (2 ms to 7 ms) than for intermediate tempera-
tures (7 ms to 32 ms). For the high-temperature phase transition (second order)
this is in accordance with the fact that the coercive field decreases in the vicinity of
the phase transition. In the vicinity of the low-temperature phase transition (first
order) the coercive field does not reduce2. This disagrees with the observation of
a reduced relaxation time at this transition. In this context it must be pointed
out that the coercive field and the time-dependent measurements were recorded
on different samples.

Another feature that could be confirmed by measurements on two different
samples is that the history of the sample plays a crucial role for the switching
characteristics. The samples clearly develop a preferred state which depends on
the field which was applied during cooling. Here it must be distinguished between
a long-term and a short term-effect. The short-term effect is related to cooling in
an applied electric field from the paramagnetic phase (20 K was used here) into
the ferroelectric phase. The sample develops a preference to the field which was
applied during cooling. This means that the relaxation time into the corresponding
state is shorter than the relaxation time into the other state. By reheating the
sample form the ferroelectric into the paramagnetic phase at 20 K and recooling
with a reversed electric field, the direction of the preferred state can be alternated.
However, the relaxation time into the non-preferred state now is much longer than
it was before. The sample seems to remember the first field which was applied after
cooling from room temperature. This is the long-term effect. For one sample it was
tried to reset this long-term effect by heating to 120 K. However, this temperature
was not sufficient to completely reset the sample.

The process of fatigue of the sample is not completely understood, yet. To

2See hysteresis loops in Reference [116].
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some extent the data are perfectly reproducible, however, not all changes are
reversible. During the experiment the maximal chiral ratio of the non-preferred
state decreased. Heating up to 120 K did not restore the sample completely.
Because of the fatigue of the sample during the two temperature series (cooling in
positive/negative field) it cannot be distinguished whether the different but not
completely opposite behaviour of the sample is due to the different history or due
to the fatigue of the sample.

The characteristic relaxation time was determined by second harmonic gener-
ation in the group of M. Fiebig [123], too. Their results are consistent with the
results presented in this thesis.
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TbMnO3 belongs to a series of rare-earth manganites with orthorhombically dis-
torted perovskite structure, RMnO3 (R = Gd, Tb, Dy) [124]. Its space group is
Pbnm [125] with lattice constants a = 5.3003(1) Å, 5.8532(1) Å, c = 7.3987(1) Å
at room temperature. Below 28 K a remarkable large spontaneous electric polari-
sation along the c direction develops, with Pc ≈ 600 µC/m2 at 10 K. By applying
a magnetic field of about 5 T the polarisation can be flipped in the a direction
[18, 124].

There exist several older publications on the magnetic structure which however
overlook the development of a cycloidal magnetic structure at lower temperatures
[125–127]. The two older publications [125, 126] on the magnetic structure were
published before TbMnO3 was known to develop spontaneous electric polarisa-
tion. The discovery of TbMnO3 being multiferroic motivated to search for more
complex magnetic order which, via inversion symmetry breaking, can account for
spontaneous electric polarisation. In 2005 M. Kenzelmann et al. [19] reported a
transition into a spiral magnetic phase. Below 42 K the Mn moments order in a
longitudinal spin-density wave (SDW) with incommensurate propagation vector
k ≈ (0, 0.28, 0) and moments parallel b. The propagation vector reduces slightly
with temperature until a quasi-lock-in at 28 K where an elliptical cycloid with mo-
ments in the bc plane develops. The transition in the spiral phase is accompanied

PMSDW
m ‖ b

cycloid

m in bc

FE, P ‖ c

28 K 42 K

k = (0, 0.28, 0)

Figure 6.1: Magnetic phase diagram of TbMnO3. The propagation vector reduces
slightly with temperature until a quasi-lock-in at 28 K. The transition in the spiral
phase is accompanied by the onset of spontaneous electric polarisation. Below 7 K the
Tb moments begin to order which however has no big influence on the order of the
Mn moments nor the electric polarisation. Data are taken from Reference [19].
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by the onset of spontaneous electric polarisation. The inverse Dzyaloshinskii-
Moriya interaction as origin of ferroelectricity in spiral magnets was unknown to
Kenzelmann at that time. It was presented almost simultaneously by H. Katsura
et al. [25]. The inverse Dzyaloshinskii-Moriya interaction predicts electric polarisa-
tion parallel c for a cycloidal magnetic structure in the bc plane with propagation
vector along b. Below 7 K the magnetic moments of Tb begin to order which
however has no big influence on the Mn order nor the electric polarisation.

Due to its high electric polarisation and the rather high transition tempera-
tures TbMnO3 is well suited for measurements of electric properties as well as
neutron investigations in the ferroelectric phase. Furthermore, large high-quality
single crystals can be grown easily with the floating-zone method. Therefore, it
is not surprising that TbMnO3 is involved in several great advances concerning
the research on multiferroics. It was the first material for which the possibility of
switching the electric polarisation by means of a magnetic field was reported in
2003 by T. Kimura et al. [18]. The polarisation is switched from the c direction
to the a direction by a magnetic field above 5 T along the b direction. The origin
of the polarisation flip was proposed to be due to a flip of the magnetic structure
[128]. The experimental proof was provided 2009 by N. Aliouane et al. [129]. The
rotation plane of the moments flips from bc to ab while the propagation vector re-
mains parallel b. The opposite direction – manipulating the magnetic structure by
means of electric field – is more difficult to study, as a complex antiferromagnetic
order requires a microscopic technique for probing. For that reason progress in
manipulating the spin helicity through an electric field during cooling below the
magnetic phase transition was reported not before 2007 by Y. Yamasaki et al. [39].
One would expect that from here to direct switching at constant temperature, i.e.
driving hysteresis loops, should be a small step. However, the first hysteresis
loops were reported in 2009 on MnWO4 [115, 116] and on Ni3V2O8 [130]. The
first hysteresis loops for TbMnO3 are presented in this thesis. Another great ad-
vance which can be attributed to TbMnO3 is the detection of the electromagnon
[131, 132].

Within this thesis further attention was dedicated to the lock-in of the mag-
netic propagation vector and the behaviour of the propagation vector under the
influence of isotropic pressure. The crystal structure was determined with single
crystal X-ray diffraction in order to gain information on the origin of the ferro-
electric polarisation.
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6.1 Quasi-lock-in of the Propagation Vector

As mentioned in the introduction the magnetic propagation vector reduces slightly
with temperature until a quasi-lock-in1 where the cycloidal component of the
magnetic structure develops and ferroelectricity sets in simultaneously. A precise
observation of the phase transition at the IN20 triple-axis spectrometer at the
Institut Laue-Langevin (ILL) with polarised neutrons reveals that the quasi-lock-
in of the incommensurability takes place at 31 K slightly above the development
of the cycloidal phase at 28 K which coincides with the ferroelectric transition,
Figure 6.2. The value of the propagation vector was determined by Q scans at
the magnetic reflection Q = (2, k, 1) at IN20 (ILL) for both spin-flip channels in
the x direction at the relevant temperatures. Up to 28 K the intensity in both
spin-flip channels is exactly the same and diverges below 28 K.

The absolute value of the temperature and the reciprocal lattice position are less
reliable for the following reasons: in order to apply a high electric field the pressure
of the exchange gas (helium) at the sample has to be reduced. Consequently the
thermal contact of the sample to the temperature sensor might be reduced. The
absolute value of the temperature is therefore questionable for all measurements
with electric field. For polarisation analysis CRYOPAD was installed on the triple-

1The term quasi-lock-in means the propagation vector becomes (almost) constant but stays
incommensurate, in contrast to a lock-in where it becomes commensurate and therefore
fixed to a precise value.
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Figure 6.2: Left: The magnetic propagation vector was determined by Q scans at
Q = (2, k, 1) at IN20 (ILL). The quasi-lock-in takes place before the chiral component
of the magnetic structure develops. Right: A Q scan at T = 26.9 K with both spin-flip
channels.
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axis spectrometer. Unfortunately, due to the experimental setup the goniometers
cannot be used for sample alignment resulting in an uncertainty of the reciprocal
lattice units. A more exact determination of the absolute value of the propagation
vector can be determined by a powder sample or at a four-circle diffractometer.
Nevertheless relative changes in temperature and reciprocal lattice units are not
affected by the mentioned limitations.

It is an unexpected and not obvious result that the propagation vector becomes
constant slightly above the transition into the chiral phase. Actually, this be-
haviour can be seen in the results of Kenzelmann et al. [19]. However, there it
remains unclear if it might be due to uncertainty in the temperature scale and it is
not emphasised by the authors. A similar observation, albeit at 34 K, is reported
in Reference [127]. D. Meier et al. [133] report an additional kink-like anomaly
in the thermal expansion at 34 K which is suspected to be related to the slope
change in the temperature dependence of the incommensurability, too.

6.2 Hysteresis

Figure 6.3: Sample holder of
TbMnO3. The electric field
is applied by two aluminium
plates which are fixed by four
nylon screws. The sample is
0.9 mm thick. sfsdf sdf sdfsdf
asdfsd

Hysteresis loops (chiral ratio vs. electric field) were
recorded at the two-axis instrument POLI-HEIDI
at the Forschungsreaktor München II. The neutron
polarisation and analysis is accomplished by 3He-
spin filters and CRYOPAD. The use of spin filters
is accompanied by reduced neutron flux. A flipping
ratio of 6 was accomplished (that corresponds to a
polarisation of 70%).

Two TbMnO3 samples which were cut from the
same single crystal perpendicular to the c axis with
thickness of 3.1 mm and 0.9 mm were investigated.
The single crystal [ACK103] was grown by A.C. Ko-
marek by the floating-zone method. The electric
field was applied with a capacitor build from alu-
minium plates and nylon screws, Figure 6.3. The
sample was mounted in the (2 0 1)/(0 1 0) scattering
plane. The strongest magnetic reflections used for
determining the chiral ratio were Q = (2,±0.28, 1).
The intensity of the thinner sample at this reflec-
tion was rather low: 50 cts/s. The great difficulty of
all measurement with electric field is to reduce the
helium exchange gas to a pressure low enough to be
able to apply voltage of up to 4.5 kV and still con-
trol the temperature. Much effort was made by the
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POLI-HEIDI team which checked out the breakdown pressure vs. voltage curve
before the experiment. The chiral ratio was determined by measuring the two
spin-flip channels in the x direction, Equation (2.13).

In a preliminarily test the sample was cooled from 50 K in positive and negative
electric field, Figure 6.4. The sample develops a clear preference for one chiral
domain depending on the sign of the electric field. This can be detected by the
splitting of the spin-flip channels upon entering the chiral phase. The intensity of
the two spin-flip channels is interchanged by reversing the electric field. The chiral
ratio was calculated from the data for cooling in positive field. Figure 6.5 depicts
the chiral ratio compared to the electric polarisation as taken from [124]. Apart
from the temperature mismatch, which is due to the mentioned difficulties with
the exchange gas and the resulting poor temperature control, the development of
the chiral ratio resembles the development of the electric polarisation.

Reversing of chiral domains is also possible at constant temperature with varying
electric field yielding hysteresis loops. The obtained hysteresis loops are shown
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Figure 6.4: Electric field cooling of TbMnO3 in ±1.3 kV/mm. The intensities of the
spin-flip channels interchange upon reversing the field which indicates the development
of opposite chiral domains.

Figure 6.5: The chiral ratio calculated
for E = 1.3 kV/mm compared to the
electric polarisation as taken from [124].
Apart from the temperature mismatch,
which is due to the mentioned difficul-
ties with the exchange gas and the result-
ing poor temperature control, the devel-
opment of the chiral ratio resembles the
development of the electric polarisation.
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in Figure 6.6. All hysteresis loops were recorded after zero-field2 cooling from
50 K to the respective temperature. Therefore it is a remarkable result that the
initial curve starts at different positive and negative values. The hysteresis loops

2To ensure there was not even a minimal electric field applied during cooling the sample was
short-circuited during cooling.
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Figure 6.6: Hysteresis loop in TbMnO3 obtained by measuring the chiral ratio as a
function of external electric field at different temperatures for two different samples at
POLI-HEIDI. The loops were recorded after zero-field cooling from 50 K. The hysteresis
loops show a symmetric shape. The coercive field increases with rising temperature
while the saturation value stays the same.
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Figure 6.7: The positive and negative
coercive fields match perfectly underlin-
ing the symmetric character of the sam-
ple. The coercive field follows a linear be-
haviour as a function of the temperature.

- 0 . 1 0 - 0 . 0 5 0 . 0 0 0 . 0 5 0 . 1 0
- 0 . 5
- 0 . 4
- 0 . 3
- 0 . 2
- 0 . 1
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5

T  =  2 5  K

r χ

E  [ k V / m m ]

Figure 6.8: Effect of the electric field af-
ter cooling from the paramagnetic (50 K)
into the chiral magnetic phase (25 K). The
sequence was measured with reducing and
alternating field strengths. At low fields
the chiral ratio shows a linear dependence
of the electric field applied during cooling.

shows a symmetric shape. Both the coercive fields and the saturation values are
in good accordance. The coercive field increases with rising temperature while
still the same saturation value can be reached by applying of a high enough field.
The sample becomes stiffer when going deeper into the magnetic phase. This
behaviour resembles the results reported on MnWO4, compare [116]. At 10 K the
sample is so stiff that the electric field causes an electrical breakdown before the
chiral ratio can be affected. The hysteresis loops of the two samples of different
thickness match perfectly. In order to apply the same electric field to the thicker
sample a larger voltage has to be applied. For that reason it is not possible to
reach as high fields for the thicker sample as for the thinner sample. Hence there
are only three hysteresis loops at higher temperatures for the sample which was
3.1 mm thick.

The coercive fields for all temperatures are investigated in Figure 6.7. The
positive and negative coercive fields match perfectly underlining the symmetric
character of the sample. The coercive field shows more or less a linear dependence
of the temperature.

The effect of the electric field when cooling from the paramagnetic into the
chiral magnetic phase is depicted in Figure 6.8. The sample was cooled from 50 K
to 25 K in small electric fields. The sequence was measured with reducing and
alternating field strengths. Very small fields are sufficient when applied during
cooling to produce a preference for one chiral domain. Saturation is not reached
for very small fields. Instead the chiral ratio shows a linear dependence of the
electric field at low values.
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6.3 Pressure

The highly frustrated, complex magnetic structure of TbMnO3 arises from com-
peting ferromagnetic and antiferromagnetic exchange interactions. Pressure af-
fects the interatomic distances and therefore influences the frustration. The effect
of hydrostatic pressure up to 15 kbar on the magnetic structure in TbMnO3 was
investigated at D10 (ILL) four-circle diffractometer. The pressure was applied
with a high-pressure clamped cell [04PCL150CB5] [134]. For increasing the pres-
sure the cell with the crystal inside had to be dismounted. The pressure was
applied at room temperature. After that the pressure cell was reinstalled on the
diffractometer and the temperature was set to 10 K. It has to be mentioned that
during cooling the cell loses pressure.

The value of the incommensurability was determined at the reflections
(0,±k,±1), (0,±1 ± k,±1) and (0,±2 ± k,±1) (20 reflections) by longitudinal
Q-scans. The crystal was mounted in the (0 1 0)/(0 0 1) plane. The orientation
matrix was determined by the automatic routine at D10. For any magnetic re-
flection both satellites k1 = k and k2 = −k were collected. The exact value of
k was calculated by this formula: k = (k1 − k2)/2. It turned out that the best
signal was obtained from the (0,±k,±1) reflections. The mean values of the in-
commensurability as a function of temperature at different pressures are shown
in Figure 6.9. In the low temperature phase the value of the incommensurability
is almost constant. These values are shown in Figure 6.10. Omitting the point
at 0.36 kbar a linear function can be fitted to the data. The pressure which was
applied at room temperature decreases at low temperature. The nominal pressure
of 3.16 kbar at room temperature reduced to almost 0 kbar at 10 K. The data were
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Figure 6.9: Incommensurability as func-
tion of temperature at different pressures.
The pink line indicates the quasi-lock-in
at Tlock.
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Figure 6.11: Intensity of the magnetic
Bragg reflection (0, 0.28, 1) at different
pressures. The Néel temperature does not
depend on the pressure.

shifted accordingly (dashed line, grey symbols). This rather crude correction is
justified by the fact that the zero pressure value of the incommensurability agrees
with the values of prior investigations: k = 0.27 [19], k = 0.275 [125], k = 0.28
[127], and k = 0.275 from another measurement at 1T1 at the Laboratoire Léon
Brillouin. The incommensurability k as function of pressure p in kbar (including
the shift) is as follows:

k(p) = 0.2737(1) r.l.u.+ 0.00207(4) p
r.l.u.

kbar

The values of the corrected pressure are shown in the table:

p at RT [kbar] 0.36 3.16 5.97 9.16 11.95 14.81

p at low T [kbar] 0.00 0.58 3.78 6.94 9.64 12.32

The magnetic phase transition is defined by two characteristic temperatures. At
TFE = 28 K ferroelectricity sets in. Above TFE the structure is sinusoidally ordered
with the magnetic moment along b. Below TFE the magnetic structure transforms
into an elliptical spiral with moments in the bc plane. The quasi-lock-in of the
incommensurability sets in at Tlock = 31.5 K for zero pressure, see Figure 6.9. This
is in perfect agreement with [19]. Tlock is indicated as pink line in Figure 6.9 and
increases slightly with increasing pressure:

Tlock = 31.5(2) K + 0.21(3) p
K

kbar

The Néel temperature TN shows no temperature dependence as can be seen in
Figure 6.11.

The complex magnetic structure in TbMnO3 is a consequence of competing
ferromagnetic and antiferromagnetic exchange interactions between the magnetic
moments of the manganese ions. In the ab plane the nearest neighbours interact

111



6 TbMnO3

Figure 6.12: View on the ab plane
of TbMnO3. Ferromagnetic interac-
tions JF between nearest neighbours are
highlighted in green. Antiferromagnetic
interactions JAF between next-nearest
neighbours along b are highlighted in
red.
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Figure 6.13: −η = −JAF/JF as function
of the pressure. Pressure enhances the JAF

compared to JF.

via a ferromagnetic interaction JF > 0 and the next-nearest neighbours along b
via an antiferromagnetic interaction JAF < 0. Along c nearest neighbours interact
via an antiferromagnetic interaction JAFc < 0 [135]. The situation is illustrated
in Figure 6.12. The magnetic structure is a cycloid with moments in the bc plane
[19]. Neglecting the elliptical shape of the cycloid the magnetic moments can be
described by

S = S[0, cos(2π ky), sin(2π ky)]

where k is the y component of the propagation vector k = (0, k, 0) and y the frac-
tional position of the moment. The magnetic energy of the moment distribution
is given by

E = −
∑
i,j

Ji,jSi · Sj

Each ion has two neighbours in c direction, two next-nearest neighbours in b di-
rection and four nearest neighbours in the ab plane. The magnetic energy per ion
is thus

ε = −4JFS
2 cos(π k)− 2JAFS

2 cos(2π k)− 2JAFcS
2

In the ground state the system minimises its energy. The competition between
the ferromagnetic and antiferromagnetic exchange interactions results in a modi-
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fication of the incommensurability k as function of η = JAF/JF.

dε

dk
= 4π JFS

2 sin(π k) + 4π JAFS
2 sin(2π k)

=⇒ 0 = sin(π k) + η sin(2π k)

=⇒ η = − 1

2 cos(π k)

For k = 0.28 the relation between JAF and JF is η = JAF/JF = −0.78 and
for k = 0.30 it is η = −0.85. The function −η is plotted as function of the
pressure in Figure 6.13. In conclusion, applying pressure to TbMnO3 enhances
the antiferromagnetic next-nearest-neighbour exchange interaction JAF compared
to the ferromagnetic nearest-neighbour exchange interaction JF.

6.4 X-Ray Crystal-Structure Analysis

It has been shown that the ferroelectric polarisation in TbMnO3 arises from the
inverse Dzyaloshinskii-Moriya interaction. It remains however unclear whether the
polarisation is of electronic or of ionic character. By X-ray diffraction, the position
of the electron cloud regardless if the electron cloud is shifted with respect to the
atomic nucleus (electronic character) or if the ion is shifted as a whole (ionic
character), can be studied.

The space group of TbMnO3 is Pbnm which is a centrosymmetric space group
and therefore electric polarisation is forbidden. In the ferroelectric phase the
symmetry must therefore reduce to a non-centrosymmetric space group. There
exist four maximal non-isomorphic subgroups: Pbn21, Pb21m, P21nm, P212121

[136]. Only Pbn21 allows electric polarisation along c. An X-ray measurement is
able to detect the deviations of the electrons from their centrosymmetric position.
However, these deviations will be small and it is not clear if the resolution will be
sufficient.

A room temperature single-crystal X-ray measurement was performed with a
Bruker X8 APEX using Mo Kα1 radiation. A spherical sample with a diameter
of 75 µm to 80 µm was produced with a ball mill and glued on a glass capil-
lary with clear nail varnish diluted by acetone. A dataset was collected within
24 h. 12 744 reflections were collected of which 1369 were independent. The inter-
nal (weighted) R value was 2.0% (2.2%). The data were corrected for spherical
absorption. The structure refinement was done with Jana2006 [137]. The refine-
ment was performed for F 2 with isotropic extinction correction and anisotropic
temperature parameters in the space group Pbnm. The lattice parameters are
a = 5.3003(1) Å, 5.8532(1) Å, and c = 7.3987(1) Å. The structural parameters
and the R values are listed in Table 6.1. The parameters are in good agreement
with the parameters in Reference [125].
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Note, refining the room temperature data in the non-centrosymmetric space
group Pbn21 should not give rise to an electric polarisation due to the deviation
of the ions from the centrosymmetric positions. The results of the refinement in
Pbn21 are listed in Table 6.2. The z component of Tb was fixed to account for
the floating origin.

The electric dipole moment of a crystal can be calculated by

p =
∑
α

qα∆rα

where ∆r is the deviation of an ionic position from its centrosymmetric position
and q is its charge. The polarisation P = p/V is defined as dipole moment per
volume V .

With the data from Table 6.1 and 6.2 the polarisation of Tb3+Mn3+O2−
3 can

be computed: Pc = 4.2(2) · 104
µC/m2. This value exceeds the actual polarisa-

tion by a factor of 70 and was determined in the paraelectric phase. This result
demonstrates the precision of this X-ray measurement is not sufficient to detect
the transition to a ferroelectric space group. In general X-ray measurements
are less precise for lighter elements as oxygen. Unfortunately the light oxygen
ions are expected to experience the highest deviation from their centrosymmet-
ric positions. The expected deviation of the oxygen ions can be estimated. In a
simple model only the oxygen ions shift while the other ions remain at the cen-
trosymmetric position. There are twelve O2− ions in the unit cell. This gives
∆rc = Pc V/(12 · 2 e) = 0.000 36 Å which corresponds to a shift in the fractional
position parameters of ∆z = 0.000 05. This resolution is not reached for the
oxygen ions.

Because the room temperature measurement did not yield the required resolu-
tion it was abstained from making a measurement in the ferroelectric phase at low
temperature.
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atom x y z Uiso [Å2]

Tb 0.98349(2) 0.08138(2) 1/4 0.00342(3)
Mn 1/2 0 0 0.00317(7) GOF = 1.54
O1 0.1072(4) 0.4660(3) 1/4 0.0047(4) R = 1.81 %
O2 0.7036(3) 0.3272(2) 0.05145(17) 0.0048(2) R2

w = 4.83 %

atom U11 U22 U33 U12 U13 U23

Tb 0.00373(5) 0.00320(5) 0.00332(5) −0.00058(3) 0 0
Mn 0.00279(13) 0.00438(13) 0.00234(13) 0.00095(9) 0.00001(8) 0.00070(10)
O1 0.0054(7) 0.0062(6) 0.0025(6) −0.0010(5) 0 0
O2 0.0044(4) 0.0050(4) 0.0050(4) −0.0012(3) 0.0010(3) −0.0007(3)

Table 6.1: Structural parameters of TbMnO3 at room temperature as measured at
APEX. The refinement was done with Jana2006 in space group Pbnm. Anisotropic
temperature factors were used.

atom x xiy xiz Uiso [Å2]

Tb 0.983484(17) 0.081438(15) xi1/4 0.00343(2)
Mn 0.4977(3) −0.00444(16) −0.00090(14) 0.00282(6) GOF = 1.29
O1 0.1069(3) 0.4660(3) 0.2533(8) 0.0045(3) R = 1.87 %
O2A 0.7049(10) 0.3283(5) 0.0547(6) 0.0060(8) R2

w = 4.43 %
O2B 0.7028(9) 0.3262(6) 0.4508(5) 0.0036(7)

atom U11 U22 U33 U12 U13 U23

Tb 0.00371(4) 0.00324(4) 0.00335(4) −0.00058(2) 0.0009(2) −0.00008(9)
Mn 0.00259(10) 0.00372(11) 0.00217(10) 0.00065(8) 0.00004(7) 0.00048(8)
O1 0.0039(13) 0.0021(14) 0.0120(14) −0.0003(10) 0.0025(11) 0.0004(9)
O2A 0.0048(13) 0.0076(15) −0.0014(9) −0.0022(10) 0.0002(9) 0.0019(8)
O2B 0.0048(13) 0.0076(15) −0.0014(9) −0.0022(10) 0.0002(9) 0.0019(8)

Table 6.2: Structural parameters of TbMnO3 at room temperature as measured at
APEX. The refinement was done with Jana2006 in space group Pbn21. Anisotropic
temperature factors were used.
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6.5 Conclusion

In this chapter magnetoelectric hysteresis loops in TbMnO3 were presented. They
were recorded by determining the chiral ratio with polarised neutrons. By the use
of two samples of different thickness it was demonstrated that the hysteresis scales
with the strength of the electric field. The coercive field increases linearly with
decreasing temperature. When cooling from the paramagnetic regime only a small
field is required for choosing a preferred chirality. The value of the chiral ratio
depends linearly on the electric field strength for small fields. Further it has been
demonstrated that the development of the chiral ratio resembles the development
of the electric polarisation.

The quasi-lock-in of the magnetic propagation vector was investigated with
polarised neutrons. It has been shown that the lock-in takes place slightly above
the transition into the chiral magnetic phase. The propagation vector changes
linearly with isotropic pressure. This is due to the highly frustrated and thus
complex magnetic structure. The increase of the value of the incommensurability
indicates that the antiferromagnetic exchange interaction is enhanced with respect
to the ferromagnetic exchange interaction.

A precise X-ray single crystal measurement was performed. The measurement
yields good results. Nevertheless it is not accurate enough to analyse the origin
of the ferroelectric polarisation. Otherwise, such measurements have not yet been
reported in literature.
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7 DyMnO3

The structural, ferroelectric, and magnetic properties of DyMnO3 resemble those
of TbMnO3. Its space group is Pbnm with lattice constants a = 5.2841 Å,
b = 5.8496 Å, c = 7.3941 Å [138]. DyMnO3 exhibits the largest ferroelectric polar-
isation among the rare-earth manganites. Spontaneous ferroelectric polarisation
develops below 18 K parallel to the c direction and reaches Pc ≈ 1400 µC/m2 at its
maximum at 12 K. Below 12 K the spontaneous polarisations decreases until 6.5 K
where it becomes constant at 600 µC/m2 similar to the polarisation of TbMnO3.
By application of a magnetic field along the b direction the electric polarisation
can be flipped into the a direction and values of Pa ≈ 2500 µC/m2 can be reached
in relatively low magnetic fields of 2 T. [124].

The magnetic structure of the Mn moments is similar to the structure in
TbMnO3. Below 39 K the Mn moments order in an incommensurate longitudinal
spin-density wave with moments along b. The propagation vector k = (0, 0.37, 0)
reduces slightly until a quasi lock-in at 18 K where a second transition into a
cycloidal phase with moments in the bc plane occurs. An essential difference
compared to TbMnO3 plays the role of the Dy moments. While in TbMnO3

the ordering of the Tb moments has no big influence on the electric polarisa-
tion, the order of the Dy moments can account for the significant higher polar-

PMSDW
m ‖ b

cycloid

m in bc

FE, P ‖ c

18 K 39 K

k = (0, 0.37, 0)

Figure 7.1: Magnetic phase diagram of DyMnO3. The propagation vector reduces
slightly with temperature until a quasi-lock-in at 18 K takes place. The transition in the
spiral phase is accompanied by the onset of spontaneous electric polarisation. Below 15 K
the Dy moments order with the same propagation vector as the Mn moments and thereby
enhance the electric polarisation. Below 6.5 K the Dy moments order with propagation
vector kDy = (0, 1

2 , 0) accompanied by the steep drop of the electric polarisation. Data
are taken from Reference [28].
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7 DyMnO3

isation and its steep drop below 12 K. Below 15 K the Dy moments order along
the b axis in an incommensurate sinusoidal structure with the same propagation
vector as the Mn moments and thereby enhance the electric polarisation. Below
6.5 K the Dy moments order in a commensurate structure with propagation vector
kDy = (0, 1

2
, 0) accompanied by the steep drop of the electric polarisation. [28, 139]

Neutron-scattering experiments on Dy compounds suffer from the large neutron
absorption cross section of Dy which can be minimised by the use of the isotope
162Dy.

For DyMnO3 the magnetoelectric hysteresis was investigated in the same man-
ner as reported in the previous chapter for TbMnO3. The measurements were
performed at the two-axis instrument POLI-HEIDI at the Forschungsreaktor
München II.

7.1 Hysteresis

Hysteresis loops (chiral ratio vs. electric field) of DyMnO3 were recorded dur-
ing the same beam time in which hysteresis loops of TbMnO3 were recorded at
POLI-HEIDI. For further description on the experimental setup, it is referred to
Section 6.2.

A DyMnO3 sample was cut perpendicular to the c axis with a thickness of
2.6 mm. The electric field was applied with a capacitor build from aluminium
plates and nylon screws. The sample was mounted in the (2 0 1)/(0 1 0) scattering
plane. The strongest magnetic reflection used for the measurement was Q =
(−2, 0.37,−1). The chiral ratio was determined by measuring the two spin-flip
channels in the x direction, Equation (2.13).
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Figure 7.2: Electric field cooling of DyMnO3 in ±1 kV/mm. The intensities of the
spin-flip channels interchange upon reversing the field which indicates the development
of opposite chiral domains.
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7.1 Hysteresis

Figure 7.3: The chiral ratio compared
to the electric polarisation as taken from
[124]. Apart from the temperature mis-
match the development of the chiral ratio
resembles the development of the electric
polarisation.

Again, during electric field cooling from 50 K the two spin-flip channels were
recorded, Figure 7.2. The sample develops a clear preference for one chiral domain
depending on the sign of the electric field. This can be detected by the splitting
of the spin-flip channels upon entering the chiral phase. The intensity of the two
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Figure 7.4: Hysteresis loops in DyMnO3 obtained by measuring the chiral ratio as a
function of external electric field at different temperatures for two samples at POLI-
HEIDI. The loops were recorded after zero-field cooling from 50 K. Reversing of chiral
domains is only possible near the ferroelectric transition.
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spin-flip channels is interchanged by reversing the electric field. In contrast to
TbMnO3 (Figure 6.4), where the difference in both spin-flip channels increases
upon cooling, in DyMnO3 the difference reaches a maximum around 17 K, reduces
thereafter, and becomes almost constant at lower temperatures. This behaviour
can be understood by considering the chiral ratio calculated from the field-cooling
data. In Figure 7.3 the chiral ratio is compared to the electric polarisation as
taken from [124]. Apart from the temperature mismatch the development of the
chiral ratio resembles the development of the electric polarisation qualitatively.

Reversing of chiral domains at constant temperature by means of an applied
electric field in DyMnO3 is only possible close to the phase transition of the chiral
magnetic phase. The recorded hysteresis loops are shown in Figure 7.4. All
hysteresis loops were recorded after zero-field cooling from 50 K to the respective
temperature. To ensure there was not even a minimal electric field applied during
cooling the sample was short-circuited during cooling. According to literature the
ferroelectric transition should be at 18 K. The observation of a hysteresis loop at
20 K indicates a problem with the temperature control that might be explained
by the low pressure of the exchange gas (helium). The low pressure is required in
order to apply the electric field yet it results in a poor temperature control.

7.2 Conclusion

The experimental results clearly demonstrated that the development of the chiral
ratio resembles the development of the electric polarisation. Furthermore, the
difficulty of driving hysteresis loops in DyMnO3 compared to TbMnO3 was ob-
served. In fact just one hysteresis loop close to the ferroelectric transition could be
recorded. One explanation might be that the Dy order is the reason for the poor
response of the chiral ratio of the Mn moments to the electric field. In DyMnO3

the order of the Dy moments has big influence on the ferroelectric polarisation.
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Oxides of the RMn2O5 (R = Y, Bi or rare earth) series exhibit large electric po-
larisation. Spontaneous electric polarisation along the b axis develops in YMn2O5

below 39 K and values of 1000 µC/m2 are reached. The sign of the electric po-
larisation inverts at 19 K and its absolute value drops to a quarter of the former
value [140]. Ferroelectricity is induced by the order of the magnetic moments
of the Mn3+/4+ ions. Below 45 K commensurate magnetic order with propaga-
tion vector k = (1/2, 0, 1/4) sets in. Between 23 K and 17 K a transition to an
incommensurate order with propagation vector k = (0.48, 0, 0.29) occurs [35].

L. Chapon et al. [35] propose a superposition of two sinusoidal spin-density
waves on different crystallographic Mn sites in the commensurate phase on basis
of neutron powder diffraction. This resulting magnetic structure breaks inversion
symmetry. The electric polarisation is claimed to arise from exchange striction.
More recent results obtained by neutron single-crystal diffraction by H. Kimura et
al. [34] and C. Vecchini et al. [141] report an additional small cycloidal component
in the magnetic structure. It is therefore questionable whether the predominant
mechanism inducing ferroelectricity is the inverse Dzyaloshinskii-Moriya interac-
tion or exchange striction.

Although much attention has been devoted to the determination of the magnetic
structure of YMn2O5 little effort has been put to measuring the lattice distortions
that give rise to the electric polarisation. This information could be a valuable
hint on that matter. This displacement will be small, however.

In the context of this thesis detailed crystallographic investigations of the crystal
structure were undertaken. A room temperature single-crystal X-ray diffraction
measurement was performed with a Bruker X8 APEX using Mo Kα1 radiation.
A spherical sample with a diameter of 115(10) µm was produced with a ball mill
and glued on a glass capillary with clear nail varnish diluted by acetone. A
dataset was collected within 24 h. 32 396 reflections were collected of which 1979
were independent. The internal (weighted) R value was 5.4% (2.9%). The data
was corrected for spherical absorption. The structure refinement was done with
Jana2006 [137]. The refinement was performed for |F |2 with isotropic extinction
correction and anisotropic temperature parameters in the space group Pbam. The
lattice parameters are a = 5.6639(2) Å, b = 7.2587(2) Å, and c = 8.4726(3) Å. The
structural parameters and the R values are listed in Table 8.1. The parameters
are in excellent agreement with parameters from References [34, 142].

The space group of YMn2O5 is Pbam [143] which is a centrosymmetric space
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group and therefore electric polarisation is forbidden. In the ferroelectric phase the
symmetry must therefore reduce to a non-centrosymmetric space group. There
exist four maximal non-isomorphic subgroups: Pba2, Pb21m, P21am, P21212
[136]. Only Pb21m allows for electric polarisation along b.

The electric dipole moment of a crystal can be calculated by

p =
∑
α

qα∆rα

where ∆r is the deviation of an ionic position from its centrosymmetric position
and q is its charge. The polarisation P = p/V is defined as dipole moment
per volume V . A simple model can be used to estimate the expected displace-
ment. In a simple model all oxygen ions shift equally while the other ions re-
main at the centrosymmetric position. There are 20 O2− ions in the unit cell.
The expected displacement of the oxygen ions under this assumption amounts to
∆rb = Pb V/(20 · 2 e) = 0.000 54 Å which corresponds to a shift in the fractional
position parameters of ∆y = 0.000 06.

Note, refining the room temperature data in the non-centrosymmetric space
group Pb21m should not give rise to an electric polarisation due to the deviation
of the ions from the centrosymmetric positions. The results of the refinement in
Pb21m are listed in Table 8.2. The y component of Mn1 was fixed to account for
the floating origin.

With the data from Table 8.1 and 8.2 the polarisation of Y3+Mn
3+/4+
2 O2−

5 (Mn1:
+4, Mn2: +3) can be computed: Pb = 8.1(1.5) · 103

µC/m2. This value is a factor
8 higher than the actual polarisation and was computed for the paraelectric phase
where there should be no polarisation. This result demonstrates the precision
of this X-ray diffraction measurement is not sufficient to detect the transition to
a ferroelectric space group. In general X-ray diffraction measurements are less
precise for lighter elements as oxygen. Unfortunately the light oxygen ions are
expected to experience the highest deviation from their centrosymmetric positions.
The necessary resolution for the oxygen ions of ∆y = 0.000 06 was not reached
what can be detected from the values in Table 8.2 directly.

Despite the non-sufficient resolution at room temperature another data set was
collected at T = 28 K. The crystal was cooled to 28 K by a stream of helium
gas which is cooled by passing through a heat exchanger N-HeliX by Oxford
Cryosystems. The cold gas passes over the sample through an X-ray transparent
beryllium nozzle.

A dataset was collected within 8 h. 8296 reflections were collected of which
1993 were independent. The internal (weighted) R value was 4.0% (2.3%). The
data were corrected for spherical absorption. The structure refinement was done
with Jana2006 [137]. The refinement was performed for |F |2 with isotropic
extinction correction and anisotropic temperature parameters in the space groups
Pbam and Pb21m. The lattice parameters are a = 5.6622(4) Å, b = 7.2516(5) Å,
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and c = 8.4660(5) Å. The structural parameters and the R values are listed in
Table 8.3 and 8.4. The electric polarisation computed from that data amounts to
Pb = 1.8(2) · 104

µC/m2. This is a factor 18 higher than the actual value. Again,
the necessary resolution for the oxygen ions could not be accomplished.

Overall, the structure refinements of YMn2O5 at room temperature and at 28 K
yield good R values for the space group Pbam. The values at 28 K are only
slightly worse, which is due to the three times shorter measurement time. At low
temperatures ice accumulates around the sample holder. The measurement time
has to be reduced in order to reduce the risk that the ice covers the sample. The
evaluation of the data in space group Pb21m does not improve the R values of the
refinement which indicates that the data can be described sufficiently well with
the high symmetry space group. The experiment did not achieve to analyse the
shifts of the ions into a polar position. Measurements of this precision however
are at the threshold of the experimental resolution. Reference [140] reports a
synchrotron diffraction measurement and a neutron diffraction measurement was
reported in the diploma thesis [97]. Both measurements meant to analyse the
ferroelectric phase transition by a precise structure analysis. Neither of them
yielded sufficient resolution. Concluding, ferroelectric polarisation in YMn2O5 is
beyond the resolution of structure analysis.
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atom x y z Uiso [Å2]

Y 0.138697(18) 0.171131(18) 0 0.00493(3)
Mn1 0 1/2 0.25494(3) 0.00404(4) GOF = 1.20
Mn2 0.41180(3) 0.35004(3) 1/2 0.00450(4) R = 1.91 %
O1 0 0 0.27114(18) 0.0060(2) R2

w = 4.02 %
O2 0.16317(14) 0.44412(14) 0 0.0056(2)
O3 0.15109(14) 0.43087(15) 1/2 0.0073(2)
O4 0.39454(11) 0.20593(10) 0.24333(13) 0.00640(15)

atom U11 U22 U33 xiU12 xiU13 xiU23

Y 0.00528(4) 0.00391(6) 0.00559(4) 0.00001(4) 0 0
Mn1 0.00439(6) 0.00355(8) 0.00419(6) 0.00015(5) 0 0
Mn2 0.00514(6) 0.00379(8) 0.00458(6) −0.00015(5) 0 0
O1 0.0076(3) 0.0049(4) 0.0055(3) 0.0012(3) 0 0
O2 0.0056(3) 0.0054(4) 0.0059(3) 0.0005(3) 0 0
O3 0.0057(3) 0.0106(5) 0.0055(3) 0.0020(3) 0 0
O4 0.0083(2) 0.0043(3) 0.0066(2) 0.0012(2) −0.00096(18) −0.00109(19)

Table 8.1: Structural parameters of YMn2O5 at RT in space group Pbam.

atom xix y z Uiso [Å2]

YA 0.13846(8) 0.17096(3) 0 0.00445(9)
YB 0.63893(8) 0.32860(4) 0 0.00534(10)
Mn1 −0.00015(13) 1/2 0.25495(3) 0.00402(3)
Mn2A 0.41204(12) 0.35036(8) 1/2 0.00465(15) GOF = 1.13
Mn2B 0.91158(12) 0.15029(9) 1/2 0.00430(14) R = 2.13 %
O1 −0.0007(5) 0.0007(4) 0.27121(15) 0.00594(18) R2

w = 4.23 %
O2A 0.1637(4) 0.4449(5) 0 0.0059(6)
O2B 0.6626(4) 0.0565(4) 0 0.0052(6)
O3A 0.1521(5) 0.4305(5) 1/2 0.0074(7)
O3B 0.6500(5) 0.0687(5) 1/2 0.0073(7)
O4A 0.3946(4) 0.2069(3) 0.2436(4) 0.0066(5)
O4B 0.8944(4) 0.2949(3) 0.7570(4) 0.0060(5)

atom U11 U22 U33 xiU12 xiU13 xiU23

YA 0.004901(15) 0.0031(2) 0.00533(13) 0.00027(14) 0 0
YB 0.00553(15) 0.0047(2) 0.00574(14) 0.00033(14) 0 0
Mn1 0.00433(5) 0.00361(7) 0.00412(5) 0.00014(4) 0.00015(14) 0.00025(18)
Mn2A 0.0051(2) 0.0043(3) 0.0046(2) 0.0000(2) 0 0
Mn2B 0.0051(2) 0.0033(3) 0.0044(2) 0.0004(2) 0 0
O1 0.0076(3) 0.0047(4) 0.0055(3) 0.0012(2) 0.0006(7) 0.0007(8)
O2A 0.0034(10) 0.0080(14) 0.0062(9) −0.0004(8) 0 0
O2B 0.0078(11) 0.0024(12) 0.0055(8) −0.0018(8) 0 0
O3A 0.0068(11) 0.0095(14) 0.0059(9) 0.0029(10) 0 0
O3B 0.0043(9) 0.0126(15) 0.0050(8) −0.0010(10) 0 0
O4A 0.0085(8) 0.0044(10) 0.0068(6) 0.0009(6) −0.0002(5) −0.0012(6)
O4B 0.0080(8) 0.0037(9) 0.0064(6) −0.0014(6) 0.0016(5) −0.0011(6)

Table 8.2: Structural parameters of YMn2O5 at RT in space group Pb21m.
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atom x y z Uiso [Å2]

Y 0.13807(3) 0.17147(3) 0 0.00297(4)
Mn1 0 1/2 0.25493(5) 0.00276(6) GOF = 1.28
Mn2 0.41135(5) 0.35047(4) 1/2 0.00304(6) R = 2.62 %
O1 0 0 0.2712(3) 0.0045(3) Rw = 5.41 %
O2 0.1633(2) 0.44439(19) 0 0.0044(3)
O3 0.1513(2) 0.43115(19) 1/2 0.0044(3)
O4 0.39466(18) 0.20628(13) 0.2433(2) 0.0047(2)

atom U11 U22 U33 xiU12 xiU13 xiU23

Y 0.00323(7) 0.00225(7) 0.00342(7) −0.00028(6) 0 0
Mn1 0.00293(10) 0.00221(10) 0.00316(10) 0.00009(8) 0 0
Mn2 0.00347(10) 0.00222(10) 0.003415(10) −0.00004(9) 0 0
O1 0.0057(5) 0.0036(5) 0.0041(5) 0.0013(5) 0 0
O2 0.0041(5) 0.0047(5) 0.0044(5) 0.0004(4) 0 0
O3 0.0033(5) 0.0055(5) 0.0045(5) 0.0004(4) 0 0
O4 0.0055(4) 0.0034(3) 0.0052(4) 0.0007(3) −0.0004(3) −0.0003(3)

Table 8.3: Structural parameters of YMn2O5 at T = 28 K in space group Pbam.

atom xix y z Uiso [Å2]

YA 0.13892(13) 0.17141(5) 0 0.00317(15)
YB 0.63726(12) 0.32845(5) 0 0.00273(15)
Mn1 0.0002(2) 1/2 0.25494(5) 0.00278(5)
Mn2A 0.4109(2) 0.35057(12) 1/2 0.0027(2) GOF = 1.22
Mn2B 0.9119(2) 0.14960(14) 1/2 0.0036(2) R = 2.75 %
O1 0.0010(8) 0.0032(6) 0.2711(3) 0.0045(3) R2

w = 5.53 %
O2A 0.1647(7) 0.4473(7) 0 0.0044(11)
O2B −0.1620(8) 0.5587(7) 0 0.0048(11)
O3A 0.1503(8) 0.4310(7) 1/2 0.0054(10)
O3B 0.6523(8) 0.0693(7) 1/2 0.0037(9)
O4A 0.3961(6) 0.2063(4) 0.2435(6) 0.0036(7)
O4B 0.8930(6) 0.2933(5) 0.7570(7) 0.0060(8)

atom U11 U22 U33 xiU12 xiU13 xiU23

YA 0.0041(3) 0.0021(3) 0.0033(2) −0.0003(3) 0 0
YB 0.0023(2) 0.0023(3) 0.0035(2) 0.0003(3) 0 0
Mn1 0.00292(9) 0.00224(9) 0.00319(9) 0.00009(8) 0.0003(3) −0.0000(4)
Mn2A 0.0039(4) 0.0010(4) 0.0030(4) 0.0003(4) 0 0
Mn2B 0.0029(4) 0.0039(4) 0.0039(4) 0.0004(4) 0 0
O1 0.0055(5) 0.0037(5) 0.0044(5) 0.0011(4) −0.0017(15) −0.0033(15)
O2A 0.0019(17) 0.008(2) 0.0034(15) 0.0034(15) 0 0
O2B 0.006(2) 0.0025(19) 0.0054(17) −0.0024(16) 0 0
O3A 0.0020(17) 0.009(2) 0.0054(15) −0.0009(17) 0 0
O3B 0.0046(18) 0.0034(16) 0.0033(14) −0.0016(16) 0 0
O4A 0.0058(13) 0.0020(12) 0.0029(10) 0.0033(10) −0.0001(9) 0.0006(8)
O4B 0.0053(14) 0.0050(14) 0.0079(12) 0.0019(11) 0.0008(11) −0.0012(11)

Table 8.4: Structural parameters of YMn2O5 at T = 28 K in space group Pb21m.
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9 Conclusion

In the context of this thesis several multiferroic materials with antiferromagnetic
and/or chiral magnetic structures have been studied thoroughly by different (po-
larised) neutron-scattering techniques in combination with X-ray diffraction. Spe-
cial attention has been devoted to the switching of (chiral) antiferromagnetic do-
mains.

Pyroxenes

Despite their similar composition LiFeSi2O6 and NaFeSi2O6 exhibit quite different
properties. While NaFeSi2O6 is multiferroic and exhibits a spontaneous electric
polarisation below 6 K, LiFeSi2O6 exhibits electric polarisation below 18 K only in
an applied magnetic field. Therefore, LiFeSi2O6 is not multiferroic in the sense of
the definition, yet it is magnetoelectric.

In order to determine the magnetic structure, neutron-diffraction experiments
have been performed on both compounds revealing different magnetic structures.
LiFeSi2O6 undergoes a single magnetic phase transition below 18 K. The magnetic
structure was examined by a single-crystal neutron-diffraction experiment. The
chemical and the magnetic unit cell are identical and the magnetic space group
is P21/c

′. The magnetic structure represents a canted antiferromagnet with mo-
ments in the ac plane plus an additional b component. The main moment lies
along the c direction.

Refinement of the magnetic structure of NaFeSi2O6 reveals a more complex mag-
netic structure. (Polarised) neutron measurements on single crystals and powders
(natural and synthetic) allow the following picture: the magnetic structure of nat-
ural NaFeSi2O6 is incommensurate with propagation vector k = (0, 0.77, 0). Below
8 K it sets in as a transverse spin-density wave with moments in the ac plane and
below 6 K it evolves into an incommensurate helix with moments remaining in
the ac plane. The transition into the spiral phase is accompanied by the onset
of ferroelectricity along the monoclinic axis b. In addition, the synthetic powder
shows commensurate order with a propagation vector k = (0, 1, 0). By apply-
ing isotropic pressure to the natural sample the incommensurate order can be
suppressed and commensurate order develops. Furthermore, it was observed that
different samples of natural NaFeSi2O6 have a slightly different propagation vector
varying from k = (0, 0.77, 0) to k = (0, 0.79, 0). This is most likely due to small
differences in the composition of these natural samples. The strong influence of
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9 Conclusion

the chemical composition and the mechanical pressure on the value of the prop-
agation vector can be explained by the frustration of the magnetic structure of
NaFeSi2O6.

A helical magnetic structure breaks inversion symmetry and can account for
electric polarisation along the rotation axis of the helix. This is the case in
NaFeSi2O6 as the rotation axis of the helix coincides with the direction of the
spontaneous polarisation. It is noteworthy that the two magnetic transitions in
NaFeSi2O6 require only a single irreducible representation. This is exceptional
among the multiferroics.

Spherical polarisation analysis was used to demonstrate that antiferromagnetic
domains in LiFeSi2O6 can be reversed by a combination of perpendicular as well as
parallel electric and magnetic fields. The fields were applied in the paramagnetic
phase and then the sample was cooled into the antiferromagnetic phase before the
fields were removed. From symmetry considerations only a magnetic field or only
an electric field should not give rise to a preferred antiferromagnetic domain. In
LiFeSi2O6 a magnetic field induces an electric polarisation. Now, if the direction of
this polarisation is defined by the direction of an applied electric field, the magnetic
structure is influenced, too. The different directions of the applied electric and the
magnetic field that can be used to influence the antiferromagnetic domains exploit
different components of the magnetoelectric tensor. Reversion of one field (either
magnetic or electric) causes inversion of the antiferromagnetic domain. Reversion
of both fields restores the initial configuration.

Due to the fact that in the magnetic structure of LiFeSi2O6 the inversion sym-
metry is composed with time inversion (1̄′), LiFeSi2O6 allows for ferrotoroidicity.
Switching of antiferromagnetic domains is related to switching of ferrotoroidal do-
mains. The crucial point about the toroidal state is whether it reveals some unique
properties which distinguish it from an antiferromagnetic structure with broken
inversion symmetry. As far as the experimental results in this thesis are concerned,
no evidence for a unique feature of the toroidal domains can be confirmed.

The magnon dispersion of LiFeSi2O6 was determined by inelastic neutron scat-
tering and sufficiently described by a Heisenberg model. The best-fit parameters
result from a model with one ferromagnetic and two antiferromagnetic exchange
interactions, while the gap near the zone-boundary has been described by an
anisotropy term.

Time Dependence of Multiferroic Switching

Within the scope of this thesis the kinetics of electric-field induced switching of chi-
ral magnetic structures was investigated by stroboscopic techniques for polarised
neutron scattering. Two samples of MnWO4 were examined. The experimental
observations yield a surprisingly slow switching process within the time scale of
about 2 ms to 30 ms.
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The time scale of the switching process strongly depends on the temperature.
In the vicinity of the high-temperature and the low-temperature phase transitions
of the ferroelectric regime the sample can be switched faster than for intermediate
temperatures. For the high-temperature phase transition (second order) this is
in accordance with the fact that the coercive field decreases in the vicinity of the
phase transition. In the vicinity of the low-temperature phase transition (first
order) the coercive field does not decrease. This disagrees with the observation of
a reduced relaxation time at this transition. In this context it must be pointed
out that the coercive field and the time-dependent measurements were recorded
on different samples.

A higher electric field causes a faster response. Measurements at two different
samples confirm that the history of the sample plays a crucial role for the switching
characteristics. The sample clearly develops a preferred state, which depends on
the first field applied during cooling. The relaxation time into this preferred state
is shorter than the relaxation time into the non-preferred state.

The process of fatigue of the sample is not completely understood, yet. To some
extent the data are perfectly reproducible, however, not all changes are reversible.

It appears highly interesting to extend these observations to other chiral mul-
tiferroics. The static hysteresis loops on TbMnO3 and DyMnO3 presented in this
thesis provide a good basis for these investigations. From the static hysteresis
loops it becomes apparent that TbMnO3 is a suitable candidate for this kind of
investigation. DyMnO3 on the contrary is less suitable.

Rare Earth Manganites

The investigations on TbMnO3 and DyMnO3 manly focus on the hysteresis loops
(chiral ratio vs. electric field).

Even though TbMnO3 was the first multiferroic material with chiral magnetic
structure which was discovered, up to now only hysteresis loops for MnWO4 and
Ni3V2O8 have been reported. The hysteresis loops were recorded by measuring
the chiral ratio of the magnetic structure by polarised neutron scattering as a
function of the electric field. The electric field was aligned parallel to the electric
polarisation. The experiment demonstrates that the chirality of the magnetic
spiral can be reversed by an applied electric field. By comparing temperature
dependent data of the chiral ratio and the electric polarisation it was proven
that the development of the chiral ratio resembles the development of the electric
polarisation.

The use of two samples of different thickness confirms that the shape of the
hysteresis scales with the strength of the electric field and that no other geometric
effect has to be considered. The coercive field increases linearly with decreasing
temperature. When cooling from the paramagnetic regime, only a small field is
required for choosing a preferred chirality, and the value of the chiral ratio depends
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linearly on the electric field strength for small fields.
In contrast to TbMnO3 it has been much more difficult to drive hysteresis loops

in DyMnO3. Again, by comparing temperature dependent data of the chiral ratio
and the electric polarisation, it was proven that the development of the chiral
ratio resembles the development of the electric polarisation. The electric polarisa-
tion develops at the transition into the spiral magnetic phase and its magnitude
drops to a lower value when the order of the Dy moments sets in. In fact just
one hysteresis loop close to the ferroelectric transition could be recorded. One
explanation might be that the Dy order is the reason for the poor response of the
chiral ratio of the Mn moments to the electric field. In DyMnO3 the order of the
Dy moments has a large influence on the ferroelectric polarisation.

The quasi-lock-in of the magnetic propagation vector of TbMnO3 was investi-
gated with polarised neutrons. The results reveal that the lock-in takes place at
temperatures slightly above the development of the chiral magnetic structure.

Furthermore, it has been shown that the propagation vector increases linearly
with isotropic pressure. The highly frustrated and thus complex magnetic struc-
ture responds sensitively to any change in interatomic distances. The increase of
the value of the incommensurability indicates that the antiferromagnetic exchange
interaction is enhanced with respect to the ferromagnetic exchange interaction.

Precise X-ray single crystal measurements were performed at TbMnO3 and
YMn2O5. The refinement of the crystal structure yields good results. Neverthe-
less, the primary objective of analysing the origin of the ferroelectric polarisation
has not been achieved. The measurements reveal that the deviations of the ions
from their centrosymmetric positions in the ferroelectric phase is beyond the res-
olution limit of diffraction experiments. Otherwise, such measurements have not
yet been reported in literature.
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Structural and magnetic study of Tb1-xCaxMnO3 perovskites, Phys. Rev. B 62,
5609 (2000).

[126] S. Quezel, F. Tcheou, J. Rossat-Mignod, G. Quezel, and E. Roudaut, Magnetic
structure of the perovskite-like compound TbMnO3, Physica B 86, 916 (1977).

[127] R. Kajimoto, H. Yoshizawa, H. Shintani, T. Kimura, and Y. Tokura, Magnetic
structure of TbMnO3 by neutron diffraction, Phys. Rev. B 70, 012401 (2004).

[128] M. Mostovoy, Ferroelectricity in Spiral Magnets, Phys. Rev. Lett. 96, 067601
(2006).

[129] N. Aliouane, K. Schmalzl, D. Senff, A. Maljuk, K. Prokeš, M. Braden, and D. Ar-
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Zunächst möchte ich mich bei Prof. Dr. Markus Braden für die unzähligen Ideen
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