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Abstract(
 

 

For a better understanding of future climate it is inevitably to study earth history and past 

climate changes. The objective of this thesis was to analyse seasonal-to-millennial-scale 

fluctuations during the last glacial and deglacial period. Therefore, core sites located in the 

Atlantic Sector of the Southern Ocean providing high sedimentation rates, of up to a few metres 

per thousand years were investigated.  

Varved sediments originating from channel-ridge systems in the southeastern Weddell Sea 

were analysed, including thin section and X-radiographs production, X-ray fluorescence-scanning, 

RADIUS particle analyses, and of course varve counting. The investigations reveal highly 

dynamic sedimentation in the channel-ridge systems, reflecting seasonal changes of the 

thermohaline current during the LGM possibly related to changes in katabatic winds and hence 

coastal polynya activity. Spectral analysis detected decadal-to-centennial-scale oscillations in 

varve thicknesses strongly correlating with the periods of solar cycles, therefore suggesting that 

solar cycles modulated sedimentation in the core site area during the LGM. Sedimentation in the 

southeastern Weddell Sea possibly also indicates multiple fluctuations of East Antarctic Ice Sheet 

during the LGM. 

The magnetic susceptibility record of Scotia Sea cores show a one-to-one coupling with the 

non-sea-salt Ca2+ flux of East Antarctic EDML ice core, a confident atmospheric dust proxy. This 

clearly identifies atmospheric circulation as supplier of the magnetic susceptibility signal in the 

Scotia Sea, and enables the establishment of a high-resolution age model. Patagonia can be 

identified as major dust source during the LGM. 

Biogenic opal was determined by leaching, as well as estimated using colour b*, wet-bulk 

density, Si/Ti count ratios, and Fourier transform infrared spectroscopy (FTIRS). All methods can 

be used to detect general biogenic opal trends, thus FTIRS provides the most reliable estimation. 

The biogenic opal flux curve of MD07-3134 is one of the first continuous palaeoproductivity 

records over the last 92.5 ka for the Southern Ocean. It exhibits a relatively complicated glacial-to-

interglacial pattern with large-amplitude, millennial-scale fluctuations in bioproductivity. 
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!
Kurzfassung(

!
!

Um zukünftige Klimaschwankungen besser zu verstehen, ist es unabdingbar 

erdgeschichtliche Klimaschwankungen zu untersuchen. Das Hauptziel dieser Arbeit war die 

Untersuchung von dekadischen bis tausendjährigen Klimaschwankungen während der letzten 

Glazialen und deglazialen Periode. Deswegen wurden Kernlokationen im Atlantischen Sektor des 

Südozeans mit hohen Sedimentationsraten von bis zu einigen Metern pro tausend Jahren 

untersucht. 

Warvierte Sedimente aus Rinnen-Rücken-Systemen der südöstlichen Weddellmeeres wurden 

untersucht. Dafür wurden Dünnschliffe und Radiographien angefertigt, Röntgen-Fluoreszenz-

Analysen und RADIUS Partikel Analysen, sowie Warven-Zählungen vorgenommen. Die 

Untersuchungen lassen auf hoch-dynamische Sedimentation in den Rinnen-Rücken-Systemen 

schließen, welche saisonale Schwankungen einer thermohalien Strömung im Letzten Glazialen 

Maximum widerspiegeln. Diese stehen vermutlich in Verbindung mit Schwankungen von 

katabatischen Winden und damit verbundenen Küstenpolynya Aktivitäten. Spektralanalysen 

zeigen  dekadische bis jahrhundert-jährige Oszillationen der Warven-Mächtigkeit, welche starke 

Ähnlichkeiten  mit den Perioden von Sonnen-Zyklen zeigen, folglich wurde die Sedimentation im 

Arbeitsgebiet während des letzten Glazialen Maximums von zyklischen Schwankungen der 

Sonneneinstrahlung beeinflusst. Die Sedimentation im südöstlichen Weddellmeer deutet multiple 

Schwankungen des Ostantarktischen Eisschildes während des letzten Glazialen Maximums an. 

Untersuchungen der magnetischen Suszeptibilität von Sedimentkernen aus dem Scotiameer 

zeigen eine eins-zu-eins Übereinstimmung mit nssCa2+-Fluss Daten des Ostantarktischen EDML 

Eiskernes, welcher als sicheres Proxy für atmosphärischen Staub gilt. Diese Übereinstimmung ist 

also ein Indikator für atmosphärische Zirkulation als Transportmedium der magnetische 

Suszeptibilität, welches das Erstellen eines hoch-auflösenden Altersmodells ermöglicht. Patagonia 

kann als Hauptquelle von atmosphärischem Staub identifiziert werden. 

Biogener Opal wurde mit Hilfe der Lösungsmethode bestimmt sowie abgeleitet von 

Farbkomponente b*, Feuchtraumdichte, Si/Ti count ratios und Fourier-Transform-

Infrarotspektroskopie (FTIRS). Alle Methoden spiegeln die generellen Trends der biogenen Opal 

Kurve wider, jedoch zeichnet sich FTIRS als zuverlässigste Ableitungsmethode aus. Die biogene 

Opalfluss Kurve von MD07-3134 ist einer der ersten kontinuierlichen Paläoproduktivitätsrecords 

des Südozeans für die letzten 92.500 Jahre. Sie zeigt eine relativ kompliziertes glazial-interglazial 

mit ausgeprägten jahrtausend-jährigen Schwankungen in der Bioproduktivität. 
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1 Introduction(

1.1 General(introduction(

Recently, it is becoming increasingly apparent that regional and global climate varies 

significantly on short, already annual- to decadal time scales. This is of great societal importance 

with substantial impact on global population (IPCC, 2007). Nonetheless, climate fluctuations can 

still not be predicted precisely, not even for the next century. For a better understanding of future 

climate it is inevitably to study earth history and past climate changes. Instrumental climate 

records exist only for a few hundred years. Therefore, it is important to study past climate changes 

using geological archives such as tree-rings, corals, ice cores, and sediments. Especially marine 

deep-sea sediments yield undisturbed records, providing valuable information about regional as 

well as global climate in the past. Therefore, during the last decades the deep-sea sediments have 

been the focus of many scientific explorations, e.g. organised by the Alfred Wegener Institute for 

Polar and Marine Research on a national level, or internationally by the Integrated Ocean Drilling 

Program (IODP). 

During the Cenozoic era, the last 65 Million years (Myrs), major changes in global climate 

from an ice-free "greenhouse world" to an "ice-house world" took place (Zachos et al., 2008). The 

opening of the Drake Passage and therefore the separation between southern South America and 

the Antarctic Peninsula (Lagabrielle et al., 2009), led to an isolation of the Antarctic continent and 

enabled the formation of the Antarctic Circumpolar Current (ACC) (e.g. Barker, 2001; Barker and 

Burrell, 1977).  

The opening of the Drake and Tasmanian passages, together with North Atlantic rift 

volcanism, the collision of India with the Eurasian plate and consequential Himalaya uplift, as 

well as closing of the circum-equatorial Panama gateway and declining atmospheric CO2 possibly 

strongly influenced Cenozoic climate and led to global cooling (e.g. Livermore et al., 2005; 

Zachos et al., 2001). Around 35 Ma large ice sheets started to develop on East Antarctica (Zachos 

et al., 2001) and were more stable after around 14 Ma. The onset of the Northern hemisphere 

glaciation started between 3.6 and 2.7 Ma (e.g. Bartoli et al., 2011; Mudelsee and Raymo, 2005) 

and strongly intensified after 2.7 Ma (Haug et al., 2005).  

Many studies, e.g. benthic δ18O records (Lisiecki and Raymo, 2005) highlighted that ice 

volume varies quasi-periodically, related to changes in orbital forcing (Milankovitch, 1941). 

During the Middle-Pleistocene transition (MPT) from about 1.25 to 0.7 Ma (Clark et al., 2006), 

which timing and initiation is still discussed though (e.g. Raymo and Nisancioglu, 2003), climate 

changed fundamentally, shifting from a 40-kyr-obliquity cycle dominated world to a 100 kyr-

world. The last 800 kyrs are strongly dominated by 100-kyr cyclic variations in ice volume 

(Imbrie et al., 1992) (Fig. 1). Sea-level changes during the Quaternary are primarily related to ice 

sheet fluctuations (Lambeck and Chappell, 2001). 
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Figure(1:"Climate"changes"dominated"by"1009kyr"Eccentricity"solar"cycle:"Incoming"solar"radiation"
(Insolation)"for"65°N"(Berger"and"Loutre,"1991)"and"benthic"δ18O"LR04"record"(Lisiecki"and"Raymo,"
2005)" as" a" proxy" for" global" ice" volume." Yellow" bars" roughly" highlight" the" relatively" short"
Interglacial"periods.""

 

 

1.2 The(last(glacial(period(

The last glacial period was the most recent glaciation (Fig. 1) and occurred from around 110 

to 14 thousand years before present (ka BP). Climate was very variable during the last glacial as 

well as the deglacial period with millennial-scale fluctuations in global temperature and sea level 

in global climate (Barker et al., 2009; Shackleton et al., 2000). Records from Greenland ice cores, 

e.g. NGRIP (NGRIP Members, 2004) and other archives, e.g. sediments from the North Atlantic 

(Bard et al., 2000; Bond et al., 1997) revealed rapid abrupt rises in temperatures within a few 

decades only, namely the Dansgaard-Oeschger (D/O) Events (Dansgaard et al., 1993; Oeschger et 

al., 1984). After the rapid temperature rise of about 8 to 15 °C (Huber et al., 2006; Siddall et al., 

2010), temperatures reduced slowly, within a few hundred to thousand years, back to cold stadial 

conditions (Fig. 2). 

Antarctic temperature changes during the last glacial period have been detected in Antarctic 

ice cores, e.g. EDML (EPICA Community Members, 2006), i.e. the Antarctic Isotopic Maxima 

(AIM). In contrast to the Greenland and North Atlantic D/O events, Antarctic temperature changes 

are smaller, i.e. only about 1 to 3 °C (EPICA Community Members, 2004, 2006) and more gradual 

(Fig. 2). Different ice core studies showed, that the events are related, although the Antarctic 

temperature rises were leading D/O events in Greenland (Blunier and Brook, 2001; Blunier et al., 

1998), which is also visible in Figure 2. The anti-phase warming, also called "bipolar see-saw" 

(Broecker, 1998), seems to be related to variations in the strength of the Atlantic Meridional 

Overturning Circulation (AMOC) (Barker et al., 2009; Blunier and Brook, 2001) affecting the 

distribution of heat between North and South Atlantic. Additionally, Knutti et al. (2004) showed, 
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that freshwater flux into the North Atlantic has also a direct influence on Southern Ocean 

temperature. 
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Figure( 2:"Millennial9scale" fluctuations" during" the" last" glacial" period:" d18O" curve" determined" at"
Northern"Greenland"Ice"Core"Project"(NGRIP)"(NGRIP"Members,"2004)"plus"Daansgaard9Oeschger"
(D/O)" events," and" the" Youger" Dryas" (YD)" event" (Alley," 2000)" are" plotted." Additionally," the"
reconstructed" Relative" Sea" Level" (RSL)" curve" (Waelbroeck" et" al.," 2002)" is" included." Antarctic"
EPICA"Dronning"Maud"Land"(EDML)" ice9core"δ18O"record"(Ruth"et"al.,"2007)"and"combined"CO29
record"measured"at"EDC"(0920"ka;"Monnin,"2006)"and"Byrd"(20991"ka;"Ahn"and"Brook,"2008)."Also,"
the"Last"Glacial"Maximum"(LGM;"Clark"et"al.,"2009)" from"26.5"to"19"ka"before"present" (BP)"and"
the"Antarctic"Cold"Reversal"(ACR;"Rahmstorf,"2002)"are"highlighted."Marine"isotopic"Stages"(MIS)"
are"plotted"for"reference"(Lisiecki"and"Raymo,"2005)."

!
During the Last Glacial Maximum  (LGM) from about 26.5 to 19 ka BP northern and 

southern hemisphere ice sheets had their maximum extent due to decreased incoming solar 

radiation (insolation) in the northern hemisphere, reduced atmospheric CO2 as well as lowered sea-

surface temperatures (Clark et al., 2009). Thus, relative sea-level (Waelbroeck et al., 2002) was 

approximately 130 m lower than today (Fig. 2). West and East Antarctic Ice sheets were grounded 

and had most likely advanced close to or possibly even reached the shelf breaks, e.g. in the 

southern Weddell Sea (Weber et al., 2011). Northern hemisphere deglaciation was primarily 

triggered by an increase of northern insolation (Clark et al., 2009). 

!
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1.3 Study(areas(

Both study areas are located in the Atlantic sector of the Southern Ocean, which surrounds 

the Antarctic continent (Fig. 3). The Weddell and Scotia Sea are separated by the Southern Scotia 

Ridge, although even allowing deep water passing through gaps (Reid et al., 1977). 
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Figure(3."Overview"map"of"Antarctica"and"the"Southern"Ocean:"The"study"areas"are"located"in"the"

Atlantic" Sector" of" the" Southern" Ocean." Antarctic" Circumpolar" Current" (ACC)" flows" clockwise"

around" Antarctica" and" connects" the" Atlantic," Pacific," and" Indian" Ocean" " (http://aadc9

maps.aad.gov.au/aadc/mapcat/display_map.cfm?map_id=13438,"access"date"06.04.2013);"Small"

map" shows" the" global" thermohaline" circulation" in" the" Atlantic" Ocean" (Rick" Lumpkin;"

www.aoml.noaa.gov,"access"date"18.12.2012)"with"surface"water"(red"arrows)"and"deep"as"well"

as"bottom"water"(blue"arrows)"flow."

 

The Scotia Sea is located between Southern South America and the Antarctic Peninsula with 

an area of about 1.3 x 106 km2 (Maldonado et al., 2003). North and South Scotia Ridges are the 

northern and southern boundaries of the Scotia Sea. The Southern Sandwich-Island bow is the 

eastern border. In the West, the Scotia Sea reaches up to the Drake Passage. The Antarctic 
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Circumpolar Current (ACC) dominates ocean circulation in the Scotia Sea. With a transport 

volume of about 134 Sverdrup (1 Sv = 106 m3/s) (Whitworth and Peterson, 1985) the ACC is the 

world's largest current flowing eastwards around Antarctica mainly wind-driven by the Southern 

Hemisphere Westerlies (Russell et al., 2006). The ACC uniquely connects the Atlantic, Pacific, 

and Indian Ocean, thus enabling heat, nutrient, and salt exchange between the oceans (Maldonado 

et al., 2003), Therefore, playing an important role in global climate control (Pugh et al., 2009). 

The Weddell Sea is the southernmost part of the Atlantic sector of the Southern Ocean (Fig. 

3). The Southern Scotia Ridge marks the northern boundary and in the east limited by Coats Land 

as well as Dronning Maud Land, where smaller ice shelvers like the Brunt and Riiser-Larsen Ice 

Shelf are located offshore. The Filchner-Rønne Ice Shelf covers the southern Weddell Sea and in 

the west the Weddell Sea is bordered by the Antarctic Peninsula. As one of the major deep-water 

formation areas, the Weddell Sea is a key region for global thermohaline circulation (Rahmstorf, 

2002; Seidov et al., 2001), also known as Conveyor Belt (e.g. Broecker, 1987, 1991). About 60 % 

(Orsi et al., 1999) to 70 % (Carmack and Foster, 1977) of Antarctic Bottom Water (AABW) is 

influenced by the bottom-water formation in the Weddell Sea, namely the Weddell Sea Deep and 

Bottom Waters (WSDW and WSBW) (Foldvik et al., 2004; Huhn et al., 2008). Maldonado et al. 

(2005) even argument that 80 % of AABW is produced in the Weddell Sea by brine rejection and 

supercooling. Cyclonic movement of all water masses within the Weddell Gyre dominates the 

Weddell Sea circulation.  

 

!
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2 Objectives(

Research results presented in this thesis relate to sediment cores from two neighbouring study 

areas in the Southern Ocean, the Weddell and its northern connection, the Scotia Sea (Fig. 2). 

Results from the Weddell Sea focus on seasonal- to millennial-scale changes in sedimentation 

detected in varved sediment during the LGM. Their implications on palaeoceanography, glacial 

bottom-water production, and Antarctic ice-sheet dynamics are presented in chapters 3 and 4. 

Results from the Scotia Sea focus on decadal- to millennial-scale changes obtained throughout the 

last glacial cycle. Their implications on palaeoproductivity and dust transport are presented in 

chapters 5 and 6. 

 

2.1 SeasonalI(to(millennialIscale(oscillations(

Chapters 3 and 4 present new details obtained from gravity cores originating from the 

southeastern Weddell Sea (Fig. 2), which were retrieved with R/V Polarstern (PS) in the late 1980s 

and early 1990s (Kuhn and Weber, 1993; Weber et al., 1994). The core sites are located in 

channel-ridge systems on a terrace of the continental slope in 1900 – 3000 m water depth (Michels 

et al., 2002). These sediments consist mostly of fine-grained siliciclastic laminated sediment 

deposited during the LGM and Glacial Transition (Weber et al., 2011). Some earlier studies 

(Weber et al., 1994; Weber et al., 2011; Weber et al., 2010a) revealed already that the laminations 

actually represent true varves. Due to their seasonal resolution varved sediments are ideal archives 

to study short-term fluctuations. Still there are many questions unsolved concerning the varves 

sedimentation process and climatic conditions in the Weddell Sea during the Last Glacial Period. 

Following questions motivated for further investigations of the varved sediments: 

 

• What are the differences in composition of the layers?  

• What causes differences in grain size and what is the triggering transportation and 

sedimentation process? 

• Why shows the transporting current seasonal fluctuations in velocity/volume? 

• How was bottom-water formed in the Weddell Sea region during LGM? 

• Can the varve counting process be further improved? 

• Can varve counting results improve correlating the sediment core sites among 

each other? 

• Do the layers show any cyclic thickness variations and what are the causing 

processes? 

• Do climate model simulations show solar forcing effects on atmospheric 

circulation in the Weddell Sea area? 
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• Can glacial short-term ice-sheet fluctuations be predicted from the varved 

sediment? 

 

In chapter 3 sediment-physical and –chemical data from the newly opened sediment core 

PS1795 are presented. Due to the fact that each layer is only a few hundred µm up to 3 mm thick, 

high-resolution analyses are needed to find out more about the internal structure and elemental 

composition of the varves. Thin sections are an ideal tool to study varved sediments (Francus and 

Asikainen, 2001). Additionally, X-ray fluorescence (XRF) scanning (Croudace et al., 2006) every 

0.2 mm helps to gain information about the chemical elements and their variations between 

individual layers. The RADIUS tool (Seelos and Sirocko, 2005) provides rapid particle analysis of 

digital images by ultra-high resolution scanning of thin sections. Also, coastal polynya activity and 

bottom-water formation under LGM conditions in the Weddell Sea is discussed. 

 

Chapter 4 presents investigations on the sediment cores PS1599, PS1789, and PS1791. We 

counted varves in all laminated sections and tried to combine the counting results with AMS 14C 

data measured on planktonic foraminifera Neogloboquadrina pachyderma to correlate the sediment 

cores among each other. For varve counting we used the BMPix and PEAK tools (Weber et al., 

2010a) and tried to improve the varve counting process. ESAlab (Weber et al., 2010b) and 

REDFIT (Schulz and Mudelsee, 2002) programs are used for spectral analysis to analyse possible 

cyclicity of the thickness variations. 

 

2.2 Dust(transport(and(palaeoproductivity(

Core sites MD07-3133 and MD07-3134 originate from the Central Scotia Sea and mainly 

consist of diatomaceous ooze. Thus the Scotia Sea is located between Southern South America and 

the Antarctic continent. Investigations of Antarctic ice cores, e.g. East Antarctic EDML ice core 

(Fischer et al., 2007) implemented that at least during glacial times dust mostly originated from 

Southern South America, e.g. Patagonia (Haberzettl et al., 2009). So, the Scotia Sea (Fig. 2) 

located between Southern South America and East Antarctica is an ideal location to study the dust. 

For a detailed interpretation of sediment core data, it is inevitable to have a high-resolution 

age-depth-model. In chapters 5 and 6 we try to answer the following questions: 

 

• Is it possible to correlate the Scotia Sea sediment cores with Antarctic ice cores? 

• Can magnetic susceptibility be used as dust proxy? 

• How was the atmospheric transport to Antarctica during the last glacial period? 

• Which methods are useful to estimate biogenic opal content from deep-sea 

sediment? 
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• Is Fourier transform infrared spectroscopy also a useful tool to determine biogenic 

opal in deep-sea sediments? 

• How strong is the particle flux at the core sites affected by sediment focusing? 

• Can biogenic opal be used to reconstruct regional palaeoproductivity in the Scotia 

Sea? 

 

Chapter 5 presents one-to-one correlations of the Scotia Sea cores magnetic susceptibility 

(MS) records and dust input recorded in Antarctic EDML ice core. Some earlier studies from 

Hofmann (1999) and Pugh et al. (2009) had also shown that MS in Southern Ocean sediment cores 

can be used as dust proxy. Therefore, we correlated the EDML dust record with the MS signal of 

the Scotia Sea cores to construct high-resolution age models for MD07-3133 and MD07-3134. 

The Scotia Sea cores can also help to get useful information about the dust transport since Marine 

Isotopic Stage (MIS) 5. 

In chapter 6 different methods to determine biogenic opal and their potentials for marine 

sediment analyses are discussed. This is one of the first studies on biogenic opal estimations based 

on Fourier transform infrared spectroscopy (FTIRS) (Rosén et al., 2009; Rosén et al., 2010) for 

marine deep-sea sediment. It is also discussed if and to what extent biogenic opal records provide 

useful information about regional bioproductivity. Excess 230Th normalization (e.g. Frank, 1996) is 

used to obtain information about possible sediment focusing in the core site area. 
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Abstract 

 The Weddell Sea and the associated Filchner-Rønne Ice Shelf constitute key regions for 

global bottom-water production today. However, little is known about bottom-water production 

under different climate and ice-sheet conditions. Therefore, we studied core PS1795, which 

consists primarily of fine-grained siliciclastic varves that were deposited on contourite ridges in 

the southeastern Weddell Sea during the Last Glacial Maximum (LGM). We conducted high-

resolution X-ray fluorescence (XRF) analysis and grain-size measurements with the RADIUS tool 

(Seelos and Sirocko, 2005) using thin sections to characterize the two seasonal components of the 

varves at sub-mm resolution to distinguish the seasonal components of the varves. 

 Bright layers contain coarser grains that can mainly be identified as quartz in the medium 

to coarse silt grain size. They also contain higher amounts of Si, Zr, Ca, and Sr, as well as more 

ice-rafted debris (IRD). Dark layers, on the other hand, contain finer particles such as mica and 

clay minerals from the chlorite and illite groups. In addition, chemical elements, Fe, Ti, Rb, and K 

are elevated as well. Based on these findings as well as on previous analyses on neighbouring 

cores, we propose a model of glacially enhanced thermohaline convection in front of a grounded 

ice sheet that is supported by seasonally variable coastal polynya activity. Accordingly, katabatic 

(i.e. offshore blowing) winds removed sea ice from the ice edge, leading to coastal polynya 

formation. We suggest that glacial processes were similar to today with stronger katabatic winds 

and enhanced coastal polynya activity during the winter season. If this is correct, silty layers are 

likely glacial winter deposits, when brine rejection was increased, leading to enhanced bottom 

water formation and increased sediment transport. Vice versa, finer-grained clayey layers were 

then deposited during summer, when coastal polynya activity was likely reduced.  
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1 Introduction 

 The Weddell Sea is a key region for Earth’s climate variability because it influences 

global thermohaline circulation (Seidov et al., 2001; Rahmstorf, 2002) as one of the major sites of 

deep- and bottom-water formation (Huhn et al., 2008). The present-day bottom-water formation, 

which is rather well known, requires flow and mixing of water masses underneath the Filchner-

Rønne Ice Shelf and brine release within polynyas on the southern Weddell Sea shelf to form cold 

and dense water masses that can flow across the shelf and into the deep Weddell Basin (see 

chapter Oceanography).  

 However, little is known about glacial bottom-water production although Antarctica may 

have acted as a major supplier of deep water, i.e. Antarctic Bottom Water (AABW) during stadials 

(Shin et al., 2003), when production of North Atlantic Deep Water (NADW) was sluggish or even 

terminated (e.g. Stocker and Johnson, 2003; Knutti et al., 2004). Glacial times did not involve 

major floating ice shelves. Specifically during the Last Glacial Maximum (LGM) from 26.5-19 ka 

before present (BP) (Clark et al., 2009) most ice sheets were grounded and had advanced close to 

or even reached the shelf edge. In the Weddell Sea, during the LGM the ice sheet at least advanced 

very close, i.e. within 40 km (Larter et al., 2012) to the shelf edge and most likely even reached it 

(Weber et al., 2011; Elverhøi, 1984; Larter et al., 2012; Hillenbrand et al., 2012). Therefore, 

glacial bottom-water must have been produced very differently as ice shelf cavities required for 

supercooling High-Salinity Shelf Water (HSSW) to produce Ice-Shelf Water (ISW) would be 

inexistent (Gales et al., 2012). Here, we will provide a conceptual model of glacial brine rejection 

in coastal polynyas that led to intense thermohaline convection in front of a grounded ice sheet as a 

possible model for glacial bottom-water production.  

 Earlier studies (e.g. Weber et al., 1994; Weber et al., 2010; Weber et al., 2011; Sprenk et 

al., in review) of the channel-ridge system located on a terrace of the continental slope in the 

southeastern Weddell Sea (Fig. 1) have revealed that the laminated deposits represent true varves 

formed by seasonal variations in thermohaline convection during the LGM. Recently, Sprenk et al. 

(in review) investigated decadal-scale oscillations including a persistent 50-85-yr cycle in varve 

thickness data of three cores originating from the northeastern prolongation of the channel-ridge-

system. Accordingly, decadal-scale fluctuations in sedimentation rates are consistent with periods 

of solar cycles during the LGM, e.g. the Gleissberg (Gleissberg, 1944, 1958) cycle and are 

therefore indirectly related to changes in total solar irradiance. 

 To obtain detailed information on the internal structure of the varves on a seasonal scale, 

we investigated gravity core PS1795 from the same channel-ridge-system and analysed sediment-

physical properties. We gained detailed insight on the chemical composition and the grain size 

variation of the varves using high-resolution X-ray fluorescence (XRF)-scanner and RADIUS tool 

(Seelos and Sirocko, 2005) data every 0.2 mm. 
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Figure 1. On the left side is an overview map showing whole Antarctica with the West (WAIS) 

and East (EAIS) Antarctic Ice Sheets as well as Antarctic Peninsula. The Weddell Sea (black 

square) is located in the southernmost part of Atlantic sector of the Southern Ocean. Additionally, 

the clockwise flowing Antarctic Circumpolar Current (ACC) and the Weddell Gyre (green arrows) 

are highlighted. The map in the centre shows a bathymetric chart of the Weddell Sea (Alfred 

Wegener Institute for Polar and Marine Research BCWS 1: 3 000 000; Bremerhaven, 1997). 

Present-days flow direction of important water masses, i.e. High Salinity Shelf Water (HSSW), Ice 

Shelf Water (ISW), Weddell Sea Bottom Water (WSBW), Warm Deep Water (WDW) and the 

through heat loss Modified WDW (MWDW) are indicated (further information see chapter 2.2). 

The core site area (black square) is located in the southeastern Weddell Sea close to the Brunt Ice 

Shelf. The small map on the right is a bathymetric map focussing on the southeastern Weddell Sea 

modified after (Weber et al., 1994) highlighting the Polarstern (PS) core sites referred to in this 

study (red dots). The core sites are located on ridges on a terrace of the continental slope. 

Southeast of each ridge (brown colour) runs a channel. During the LGM the thermohaline current 

(blue lines) was flowing towards the NE in the channels. Due to the Coriolis force most of the 

transported sediment is deposited NW of each channel. 

 

 During the LGM and the last glacial transition while the East Antarctic Ice Sheet 

advanced to the shelf break, coastal polynyas were active above the continental slope, which 

induced brine rejection and therefore high-salinity water production (Weber et al. 2011). These 

dense water masses reworked sediment and drained into the channels, depositing the material 

mainly northwest of each channel because of the Coriolis force, building natural levees (Michels et 

al., 2002). Depending on seasonal velocity changes of the thermohaline current, the transporting 

sediment grain size changed, leading to varved sedimentation with alternating silty-rich and more 
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clayey layers. Bioturbated hemipelagic mud was deposited during times, when the ice sheet was 

retreated from the shelf edge and sea ice was reduced. The velocity of the thermohaline current is 

strongly decreased, leading to significantly lower linear sedimentation rates. The final East 

Antarctic Ice Sheet retreat was around 16 ka, marked by a transition from laminated to bioturbated 

sedimentation at every core site (Weber et al., 2011). 

 

2 Study area and regional oceanography 

 We study gravity cores originating from the southeastern Weddell Sea, which were 

retrieved with R/V Polarstern (PS) in the late 1980s and early 1990s (Fig. 1). The core sites are 

located in channel-ridge systems on a terrace of the continental slope in 1900 – 3139 m water 

depth. Each ridge is up to 300 m high and up to 100 km long and runs parallel, on the northwestern 

side of a channel (e.g. Weber et al., 1994; Kuhn and Weber, 1993). 

 The Weddell Sea is the southernmost part of the Atlantic sector of the Southern Ocean. 

The South Scotia Ridge marks the northern boundary and in the east it is limited by the Coats 

Land and Dronning Maud Land, where smaller ice shelves like the Brunt and Riiser-Larsen Ice 

Shelf are located offshore (Fig 1.). The southern Weddell Sea is covered by the Filchner-Rønne Ice 

Shelf. In the west the Antarctic Peninsula borders the Weddell Sea. 

 About 60 % (Orsi et al., 1999) to 70 % (Carmack and Foster, 1977) of the Antarctic 

Bottom Water (AABW) originates from the Weddell Sea, where Weddell Sea Bottom Waters 

(WSBW) is produced (Huhn et al., 2008; Foldvik et al., 2004). Maldonado et al. (2005) even 

argued that 80 % of AABW is produced in the Weddell Sea by brine rejection and supercooling. 

Cyclonic movement of all water masses within the Weddell Gyre dominates the Weddell Sea 

circulation (Fig. 1). Relatively warm Circumpolar Deep Water (CDW) is transported by the 

Weddell Gyre from the Antarctic Circumpolar Current (ACC) southwards along the eastern 

boundary into the Weddell Sea and mixes with cold surface waters generating Warm Deep Water 

(WDW) (e.g. Orsi et al., 1993; Gordon et al., 2010). Through heat loss and mixing primarily 

during winter with Winter Water (WW) while flowing further to the West along the continental 

margin, WDW becomes Modified Warm Deep Water (MWDW). MWDW intrudes onto the shelf 

and mixes with the ISW to produce WSBW (Foldvik et al., 1985). HSSW is being generated 

during sea ice production by brine rejection (Foldvik et al., 2004; Petty et al., 2013) and is then 

supercooled by circulation under the ice shelf becoming dense Ice-Shelf Water (ISW; Nicholls et 

al., 2009). Passive tracer experiments also point to the Filchner-Rønne Ice Shelf as the main 

location for bottom water production (Beckmann et al., 1999). 

 Bottom-water drainage is across the over-deepened Filchner Trough along the south-north 

running channel-ridge systems into the Weddell Basin (Fig. 1). There, it is deflected to the left due 

to Coriolis Force and flows clockwise along the continental slope within the Weddell Gyre 
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(Foldvik, 1986). Although a current meter mooring (AWI-213) in the northeastern prolongation of 

the channel-ridge systems investigated here, still shows a near-bottom flow underneath the 

Weddell Gyre with a predominant northeastern direction (Weber et al., 1994).  

 

3 Methods 

Gravity core PS1795 was opened and splitted into archive and working halves at the laboratory of 

the Alfred Wegener Institute in Bremerhaven. All sampling was accomplished on working halves, 

while sediment physical properties were measured non-destructively at 1-cm increments on full 

round cores and archive halves. We used the GEOTEK Multi-Sensor-Core Logger (MSCL; 

method see Weber et al. (1997)) for determining wet-bulk density (WBD), compression wave 

velocity (Vp) as well as magnetic susceptibility (MS). For MS measurements a Bartington point 

sensor (MS2F) was used and the data was volume-corrected. Also L*, a*, and b* colour 

components (Weber, 1998) were measured, using a Minolta spectrophotometer CM-2002. L* 

gives information about the sediment lightness, colour a* reflects the amount of green-red, and 

colour b* is the blue-yellow component. 

Water content was estimated on sediment samples every 5 cm by freeze-drying. Information about 

the geochemical composition was gained by analysing bulk samples with an element analyser. 

Contents of total carbon (TC), inorganic carbon (TIC), and organic carbon (TOC; TIC subtracted 

from TC), as well as total nitrogen (TN) and total sulphur (TS) were measured. We also 

determined biogenic opal contents by leaching with 1M NaOH-solution according to the method 

see Müller and Schneider (1993). All resulting bulk data have been corrected for the containing 

amount of sea salt in the pore fluid (35 %o). 

To analyse sediment fabric, we cut out 1-cm thick, 10-cm wide, and 25-cm long plates from the 

centre of each core using a double-bladed saw. The plates were exposed for 3 to 5 minutes to a HP 

43855 X-Ray System. After scanning the negatives at 300 dots per inch (dpi) resolution, we 

adjusted brightness and contrast to enable a better distinction of dark and bright layers, which are 

only a few millimetres thick.  

Additionally we counted all grains >1 mm and >2 mm in diameter, reflecting ice-rafted debris 

(IRD). To do that, we used the scanned X-radiographs and place a semi-transparent 1x1 mm grid 

onto it; for further information on the method see Grobe (1987). 

 To obtain information on the distribution of chemical elements we measured the sediment 

cores non-destructively at 1-cm resolution using an Avaatech XRF core scanner (Jansen et al., 

1998) at the Alfred Wegener Institute in Bremerhaven. For high-resolution element analysis, XRF-

scanning was carried out every 0.2 mm on three consecutive split sediment core sections (197 –

 499 cm) of PS1795 using a 3.0 kW Molybdenum tube. For these measurements, the ITRAX XRF-

scanner (Cox Analytical, Sweden), a multi-function instrument for non-destructive optical, 
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radiographic, and chemical elemental sediment core analyses (Croudace et al., 2006), was used at 

the Cologne University laboratory. We also used the ITRAX scanner equipped with a 1.9 kW 

Chromium tube, to produce X-radiographs of the archive halves. 

 For accelerator mass spectrometry (AMS) radiocarbon dating we used well-preserved 

carbonate shell material originating from planktonic foraminifera Neogloboquadrina pachyderma 

(sinistral). Beforehand, H2O2 was added to each sample to remove the organic material. All 

measurements were conducted at the ETH laboratory of Ion Beam Physics in Zurich. AMS 14C 

ages were reservoir corrected (1.215 ± 30 years; see Weber et al. (2011)), based on age dating of 

carbonate shell material from a living bryozoa from neighbouring Site PS1418-1 (Melles, 1991). 

Clam version 2.1 (Blaauw, 2010) and Marine09 calibration curve (Reimer et al., 2011) were 

applied to calibrate the AMS 14C of PS1795 and calculate calendar ages (Table 1). We used a 

cubic spline age-depth model with the weighted average of 10000 iterations with 95 % confidence 

range. 

 We also produced two overlapping thin sections (PS1795: 354.6-373.2 cm; 371.5-381.2 

cm) for a detailed analysis of individual layers. Therefore, aluminium boxes were pressed into the 

sediment and then sliced with a fishing line. After carefully removing the sediment slabs from the 

core half, samples were immediately flash-freezed in liquid nitrogen and then freeze-dried. Slabs 

were then embedded in epoxy resin under vacuum and cured afterwards. For more details on the 

method see Cook et al. (2009) and Francus and Asikainen (2001). To obtain thin sections, the 

dried epoxy-impregnated sediment slabs were cut, grinded, and polished to a thickness of only a 

few millimetres. The thin sections were also scanned using the ITRAX system at the University of 

Cologne at 0.2-mm-resolution as well as scanned with a flatbed scanner for negative transparency 

scanning. 

 Additionally, we applied the RADIUS tool, providing rapid particle analysis of digital 

images by ultra-high resolution scanning of thin sections (Seelos and Sirocko, 2005), which uses 

the commercial image processing software analySIS (Soft Imaging System GmbH) controlled by 

three macro-scripts by Seelos (2004). Thin sections were therefore scanned on a fully-automatic 

polarization microscope in combination with a digital microscope camera at the University of 

Mainz. The scripts derive mineral-specific particle-size distributions that cover grain sizes from 

medium silt to coarse sand. The RADIUS tool was used on the thin sections (PS1795: 354.6-373.2 

cm; 371.5-381.2 cm) at 100-�m-resolution. 

 For automatic layer recognition and counting we used the BMPix and PEAK tool (Weber 

et al., 2010). First, grey values were extracted from the scanned X-radiographs using the BMPix 

tool. Then, the PEAK tool was used to count every maximum, i.e. bright layers, every minimum, 

i.e. dark layers, or every transition of the grey scale curve. For more precise counting results we 

manually examined and revised all counting results generated by the PEAK tool. See Sprenk et al. 
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(in review) for further information about the counting method, its uncertainties, and discrepancy 

estimations. 

 

4 Results 

4.1 Sediment-physical data 

 The 8.99 m long gravity core PS1795 (74°30'S, 28°11'W, 1884 meter water depth) is 

located southwest of the southern sediment ridge (Fig. 1). Sediments are relatively homogenous 

grey to brown (Fig. 2A), only the uppermost 23 cm are yellow to orange-brown due to oxidation. 

Analyses of the coarse grain fraction (>63 �m) of PS1795 every five centimetres shows that the 

main components of the coarse grains are quartz (80 % on average), but also feldspars, biotite, and 

hornblende make up 3 – 5 % each. Overall, maxima in MS (Fig. 2C) correlate with high high IRD 

counts (Fig. 2B). 

 From 2.15 m to the bottom of the core at 8.99 m, sediment is mostly laminated, consisting 

of alternating clayey and silty layers, each only up to a few millimetre thick. Laminated sediment 

consists mainly of terrigenous material with only 2 – 6 % biogenic opal, less than 0.2 % TIC/TOC, 

and about 0.04 % TN. WBD vary only slightly from 1.8 to 2.0 g/cm3. IRD content shows 

relatively strong fluctuations in the laminated sediment and varies between 0–18 grains/cm2 (Fig. 

2). 

 Between 6.42 – 6.87 m the sediment is nearly structureless, showing no bioturbation or 

laminations and contains only few IRD (Fig. 2B). Sediment-physical properties, e.g. MS, water 

content, and WBD of the 45-cm long section show only marginal fluctuations, suggesting a very 

homogenous composition. 

 A 3-cm thick coarse sand layer is intercalated into laminated sediment at 6.21 m, which is 

also reflected in sediment-physical properties. The coarse sand layer shows maxima in MS, IRD 

content, and WBD as well as minima in water content, TN, biogenic opal, Si, and Fe (Fig. 2).  

 The uppermost 2.15 m of PS1795 are characterized by highly bioturbated mud with 

varying IRD-content. The transition from laminated to bioturbated sediment is clearly documented 

in all parameters (Fig. 2). Water contents rise significantly from about 30 % to 40 %, colour a* 

drops slightly, and WBD decreases to ~1.6 g/cm3. Overall, bioturbated sediment shows higher 

TOC, TIC, TN, and biogenic opal values than laminated sediment, indicating higher 

bioproductivity. Between 0.37 – 0.48 m bioturbated sediment contains high amount of IRD as well 

as the highest TOC contents and the lowest biogenic opal values. 
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Figure 2. Sediment-physical data from sediment core PS1795: A shows the red/green/blue (RGB) 

colour pattern; B shows the amounts of grains >1 mm, representing iceberg-rafted debris (IRD; 

method see Grobe (1987)); C is magnetic susceptibility (MS) record; D is colour a* (green-red 

component); E shows the water content of the sediment; F gives lightness (L*); G is wet-bulk 

density (WBD); H to K are sea-salt corrected (sc) total organic and inorganic carbon (TIC/TOC), 

biogenic opal, and total Nitrogen (TN); L and M show chemical elements Silicon (Si), and Iron 

(Fe) determined with a X-ray fluorescence-scanner. AMS 14C ages (marked with red dots) 

measured on planktonic foraminifera Neogloboquadrina pachyderma are given in ka cal before 

present. The grey line at 2.15 m depth marks a possible hiatus (see chapter 4.2). 
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To form bioturbated sediment requires low sedimentation rates and at least partly open-water 

conditions (reduced sea-ice cover). Accordingly, bioturbated sediment was most likely deposited 

during times, when the ice sheet was retreated from the shelf edge (e.g. Weber et al., 1994; Weber 

et al., 2011). Therefore, the dense water masses are formed on the southern Weddell Sea shelf as 

today (see Oceanography chapter). Accordingly, due to the retreated ice sheet less ice-transported 

sediment was deposited on the upper slope. 

 

4.2 Chronology 

 Using sediment slices up to 25-cm thick and labour-intense microscopic analysis, we 

managed to collect enough intact shell material from planktonic foraminifera Neogloboquadrina 

pachyderma for six AMS 14C analyses (Table 1). Three samples have less than 0.3 mg C, which is 

close to the detection limit of radiocarbon dating possible at ETH Zurich. Two of those samples 

show slight age reversals relative to those with greater amounts of C, and are therefore not 

included in the final age models. Nonetheless, the error range of AMS 14C age of 24.19 ± 0.29 ka 

at 6.68 m depth lies within the age range of the age-depth-models and is possibly caused by high 

linear sedimentation rates of about 1.1 – 1.6 m/kyr (Fig. 6).  

 We constructed two different age-depth-models for the sediment core PS1795. One age-

model for undisturbed sedimentation relying only on the AMS 14C ages plus an age-depth-model, 

which includes a hiatus at a core depth of about 2.15 m. The X-radiograph highlights an erosive 

contact between laminated and bioturbated sediment at 2.15 m (Fig. 2) and also the varve counting 

results lead to the assumption that sedimentation is disturbed at the base of the bioturbated section. 

However, it is not possible to count the varves accurately between 2.15 and 2.57 m due to the low 

quality of the X-radiographs, the material can be identified as varved sediment. Nonetheless, based 

on the visually detectable faint lamination, the material can be considered varves. Using an 

estimated LSR of approximately 1.1– 1.6 m/kyr the varved sediment possibly includes about 260-

380 varves, which gives an age for the top of the varved sediments between 21.8 and 22.4 ka. The 

topmost 2.15 m, cover about the last 17 – 18 kyrs as the AMS 14C age of 17.44 ± 0.36 ka close to 

the base of the bioturbated section reveals. This reflects linear sedimentation rates of only 0.12 

m/kyr for the bioturbated sediment. Accordingly, the combination of varve counting and 

radiocarbon dating strongly suggests incomplete sedimentation, with a hiatus of approximately 

3 to 4 kyr (Fig. 2). 

 

Table 1. Accelerator mass spectrometry (AMS) 14C ages measured on planktonic foraminifera 

Neogloboquadrina pachyderma shells at the ETH laboratory of Ion Beam Physics in Zurich. Also 

the amount of C used for each measurement is included in the table. AMS 14C ages were reservoir 

corrected (1215 ± 30 years), based on age dating of carbonate shell material from a living bryozoa 
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from neighbouring Site PS1418-1 (Melles, 1991). Clam 2.1 (Blaauw, 2010) and the Marine09 

calibration curve (Reimer et al., 2011) were used to calculate calendar years before present (cal yrs 

BP). For all ages also the estimated error of the dating method is given. 

Laboratory 

code 

Sample 

depth (cm) 

Amount C 

(mg) 

Uncalibrated 
14C age (yrs 

BP) ± error 

Age min 

(cal yrs 

BP) 

Age max 

(cal yrs 

BP) 

Probability 

(%) 

ETH-48371 210-215 0,23* 15947 ± 77 17087 17797 95 

ETH-48372 390-415 0,38* 22211 ± 86 24304 24946 95 

ETH-48373 450 0,87 20501 ± 60 22221 22678 83.9 

ETH-48373 450 0,87 20501 ± 60 22764 22950 8 

ETH-48373 450 0,87 20501 ± 60 23140 23229 3.1 

ETH-48374 655-680 0,31* 21912 ± 90 23903 24474 95 

ETH-48375 775-795 0,42 21546 ± 80 23437 24170 95 

ETH-48376 865-880 0,54 21643 ± 77 23558 24289 95 

 

4.3 Varves 

 The varve character of the laminations has been established in earlier studies (Weber et al. 

(1994, 2010a, 2011; Sprenk et al., in review). The most convincing argument is provided by core 

PS1789 (location see Fig. 1), which yields the visually most complete record of LGM varvation. 

Two horizons at 199 cm and 1211 cm core depth date to 19,223 and 22,476 ka, respectively. Over 

this age difference of 3253 years (±529 years), we counted 3329 laminae couplets (see Fig. 8 of 

Weber et al., 2010) – a very convincing and robust indication of the seasonal nature of the 

lamination. The AMS 14C ages and varve counting results of PS1795 of this study also approve the 

seasonal sedimentation (see following chapters). 

 In this study, analyses concentrate on laminated sections of newly opened core PS1795. 

Accordingly, the density of the coarser layers is slightly higher, leading to less darkening of the X-

ray film (Axelsson, 1983), therefore X-radiographs have been successfully used for varve counting 

on sediment cores PS1599, PS1789, and PS1791 (Sprenk et al., in review). Although, the varved 

sections of PS1795 have similar average grain sizes as the cores studied previously, the seasonal 

differences are subdued, the X-radiographs do not show the differences accordingly (Fig. a) and 

the layers cannot always be adequately counted. To obtain more information on the texture and 

composition of the individual layers as well as to better understand the seasonal sedimentation 

process, we produced thin sections of the varved sediment. 
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4.3.1 Thin sections 

 Figure 4 shows that the scanned images of the thin sections provide more detailed 

information of the internal structure and composition of the varves. Strong thickness variations can 

be noticed both in the brown-coloured clayey layers and the light-coloured silty layers (Fig. 3), 

with thicknesses of only few hundred �m up to 3 mm. There are only smaller variations in grain 

size and no erosional or sharp bases. Both findings argue against turbiditic deposition and favour 

varve formation (Fig. 3A). Sand and coarse-silt contents may vary significantly between individual 

layers. However, some parts of the record reveal very little difference in grain size so that 

individual layers are hardly recognisable in thin sections (Fig. 3) and cannot be distinguished on 

X-radiographs (Fig. 4) at all. Some layers are completely IRD-free (Fig. 3B), while others contain 

high amounts of sand-size grains (Fig. 3C). IRD appears to be mainly embedded in the lighter silty 

layers. Fig. 4D shows some large IRD  – up to 2 mm in diameter – deforming the underlying 

layers. This is a clear indication that either icebergs or sea ice transported the IRD and deposited it 

by dropping onto the sea floor.  
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Figure 3. Detailed images of a scanned thin section of PS1795. A gives an overview of the varved 

sediment and the thickness variation of silty (light-coloured) and clayey (brown-coloured) layers. 

On the right side are three zoomed-in photos: Regular silty-clayey-layers (B); sand-rich silty layers 

with some ice-rafted debris (IRD) (C); D shows some individual large IRD, deposited by 

deforming the sediment below. 
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Figure 4. High-resolution element composition of a varved sediment section of core PS1795 

(362 – 378 cm). The left side shows X-radiographs, generated using a X-ray fluorescence (XRF) 

scanner and scanned images of the thin sections. On the right side are zoomed-in images of the 

thin sections plus XRF-scanner element counts every 0.2 mm of the sediment slabs, from which 

the thin sections were produced. 
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4.3.2 Element composition 

 To investigate elemental composition changes, we scanned the sediment slabs prepared 

for thin sections (see Methods) every 0.2 mm (Fig. 4). Additionally, three archive halves were 

scanned for XRF at high resolution. Due to the fact that the varves are not exactly horizontally 

orientated and the radiographs, taken from a different part of the sediment as the XRF-scanner data 

were measured, both data sets do not reflect the same position in the sediment at the same depth. 

Therefore, we shifted the complete XRF-data curves a few millimetres (Fig. 5) in order to align 

them. Accordingly, most parts of Fig. 5 show a good correlation between XRF-derived elemental 

counts and the grey value curve estimated from X-radiographs, roughly reflecting density changes 

of the material. The most meaningful variation of elements in varved sediment are displayed in 

Figs. 4 and 5 and described in the following chapters. Characteristics of the clayey and silty layers 

are also highlighted in Table 2.  

 Si can either be of detrital or biogenic origin, i.e. bounded in biogenic opal (Sprenk et al., 

2013). Given that the biogenic opal content of the glacial varves (Fig. 2K; chapter 4.1) of PS1795 

is less than 5 %, with a mean of 2.2 %, Si is mostly of detrital origin. Analyses of the coarse-

grained fraction also revealed that, on average, about 80 % of the particles coarser than 63 �m are 

actually quartz grains. The combination of thin sections and XRF-data (Fig. 4) highlights that Si 

counts are relatively enriched in coarser, light-coloured layers relative to brownish clayey layers. 

This indicates that Si counts every 0.2 mm can be an ideal additional tool for detrital varve 

counting. Figure 5 shows that the overall amount of Si also correlates to grey values derived from 

radiographs, which are positively correlated to sediment density (see methods). Si counts are also a 

good indicator for facies changes (see Fig. 2). Si counts are significantly lower in bioturbated 

sections relative to varved sections, due to increased water content of the sediment. 

 Potassium (K), iron (Fe), and titanium (Ti) show strong positive correlation, which is 

reflected in the Ti/Fe ratio of r2=0.84 and K/Ti ratio of r2=0.90. This suggests that K, Fe, and Ti 

are mainly bounded in clay minerals such as the chlorite and illite groups as well as mica biotite. 

Figure 4 highlights that K, Fe, and Ti show maxima in brownish coloured clayey layers.  

 Rubidium (Rb) has a similar ionic radius as K. Therefore, it commonly replaces it and can 

often be detected in K-feldspars, mica, and clay minerals (Chang et al., in press). Cu, Zn, Rb, Cs, 

Ba, and Sn are generally related to clay minerals (Vital and Stattegger, 2000). Fine-grained 

sediments show typically high Rb counts (Dypvik and Harris, 2001), which is also documented in 

varved sections of PS1795, where Rb is like K, Fe, and Ti enriched in clayey layers (Fig. 4).  

 Strontium (Sr) has an atomic radius similar to calcium (Ca) and can therefore replace it 

easily. Both elements are slightly enriched in siltier layers (Fig. 4). Ca and Si show a good 

correlation with a coefficient of r2=0.78. 

 Zirconium (Zr) is comparatively immobile, mainly residing in heavy minerals, e.g. zircon, 

resistant to chemical as well as physical weathering (Wayne Nesbitt and Markovics, 1997; Alfonso 
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et al., 2006). Thus Zr is mainly transported with coarser particles (Vogel et al., 2010). Zr shows 

maxima mainly in coarser silty layers. Comparing the scanned thin sections and the Zr counts (Fig. 

4), reveals that especially thicker and coarser silty layers have maxima in Zr counts.  
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Figure 5. Seasonal-scale changes in chemical element composition: high-resolution X-ray 

fluorescence scanner data (area counts) every 0.2 mm of PS1795 core section (430 – 445 cm). 

Additionally, the estimated grey scale value curve estimated from scanned X-radiograph using the 

BMPix tool (Weber et al., 2010) was added. 

 



 15 

4.3.3 RADIUS tool 

 To gain more information on the particles and their size distribution in varved layers, we 

applied the particle analysing RADIUS tool (Seelos, 2004) on high-resolution, scanned thin 

sections. The RADIUS tool differentiates between (i) bright particles, i.e. mainly quartz, and light 

feldspars, (ii) dark particles, i.e. opaque minerals, and (iii) carbonates (Seelos and Sirocko, 2005). 

Carbonate particles are neglected in Fig. 6 given that the values are extremely low and not 

significant, which is also reflected in the low TIC content of varved sediment (Fig. 2).  

 Figure 6 shows the percentage of detected bright and dark particles in the grain size 

fraction 20 – 63 �m, i.e. medium to coarse silt, of total grains (i.e. of all classified grains up 

to 200 �m in diameter). In lighter layers, bright silt-sized particles have local maxima and are 

accounting for up to 10 % of the total grains. Also, the mean size of the bright particles is mostly 

higher in lighter layers than in brown layers (Fig. 6). Although, single IRD, e.g. at 385.5 or 

369 cm, strongly influence the mean particle size. The median size of bright particles is about 

34 �m. In contrast to that, dark particles have only median sizes of about 22 �m. This is also 

reflected in the overall low content of dark particles in the medium to coarse silt fraction with only 

up to 1.2 % of all classified grains and yet in some parts even no detected dark particles. The 

correlation of the silt-sized dark particles and the sediment layers is not as striking as for the bright 

particles (Fig. 6). However, many lighter layers also show increased amounts in silt-sized as well 

as higher mean size of dark particles. 

 

5 Discussion 

5.1 Seasonal sedimentation changes 

 Our age model relying on AMS 14C dates and varve counting reveals that the varved 

sediment was deposited during the LGM, when the ice sheets in the Weddell Sea area had most 

likely advanced to the shelf break (e.g. Weber et al., 2011; Hillenbrand et al., 2012). The estimated 

linear sedimentation rate of about 1.1 – 1.6 m/kyrs for the varved sediment of PS1795 (e.g. Fig. 6), 

is somewhat lower than established for core sites farther downslope on the same channel-ridge 

system. Sprenk et al. (in review) calculated mean linear sedimentation rates from varve counting 

varying between 2.2 and 5.3 m/kyr for the cores PS1599, PS1789, and PS1791 (Fig. 1). The 

differences in sedimentation rates are possibly related to the location of the core sites. In contrast 

to the earlier investigated core sites located on the sediment ridges NW of the channels, PS1795 

originates from a shallower position farther southwest outside the channel, on a steeper part of the 

continental slope (Fig. 1) where the channel-ridge system starts to develop. 
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Figure 6. Detailed particle analysis of the varved sediment section 365.8-371.5 cm with the 

RADIUS tool (Seelos and Sirocko, 2005) applied on high-resolution scans of the thin sections. 

Total refers to all analysed particles up to 200 �m size. Purple bars mark the 52 counted light-

coloured silty layers with a resultant linear sedimentation rate of about 1.1 m/kyrs. 
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 The main differences of the layers come from seasonal changes in grain size and related 

changes in element and mineral composition (Table 2). The lighter-coloured layers show maxima 

in the amount of bright particles, mainly quartz in the medium to coarse silt grain size (Fig. 6), 

which is also reflected in Si count maxima (Figs 4,5). The lighter-coloured layers shows also 

slightly increased amounts of silt-sized dark particles. Enriched Zr counts in the silty layers also 

allude to coarser grain-sized material besides higher densities indicated by less darkening of the X-

ray film (Fig. 4). Interestingly, most of the IRD is included in the lighter layers (Fig. 3). The 

brownish-coloured layers are characterized by predominant clay-sized particles and related 

minerals like mica, clay minerals like e.g. chlorite and illite group members, also indicated by 

maxima in Fe, Ti, Rb, and K counts (Figs 4,5).  

 

Table 2. Characteristics of seasonally deposited clayey and silty layers. Elements were measured 

using ITRAX X-ray fluorescence scanner (see also Figs 4-6). 

Characteristics  Clayey layer Silty layer 

Colour brown light-coloured 

Si, Ca, Sr, Zr low high 

K, Ti, Fe, Rb high low 

Grey value low high 

Silt-sized bright particles low high 

Silt/fine sand content low high 

Ice-rafted debris low high 

Bottom current velocity low high 

 

5.2 Modern and LGM polynyas and their relation to bottom-water 

production in the Weddell Sea 

 Today, Antarctic coastal polynyas are very important areas for AABW production and 

therefore, polynyas also contribute to the maintenance of the overturning circulation in the oceans 

(Morales Maqueda et al., 2004). Offshore blowing katabatic winds remove sea ice from coastal 

areas or the shelf-ice edge and often implement the development of coastal polynyas (Kern, 2009; 

Williams et al., 2007). Open water areas form where heat from the ocean can be released to the 

cold atmosphere and sea-ice production is intensified leading to brine rejection and thus dense 

water formation (Tamura et al., 2008). Haid and Timmermann (2013) identified the Brunt Ice 

Shelf, which is close to the core sites (Fig. 1), together with the Ronne Ice Shelf (e.g. Hollands et 
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al., 2013) and southern regions of Antarctic Peninsula as important polynya areas and highlighted 

that ice production is 9 – 14 times higher in these areas compared to neighbouring regions with the 

highest mean heat flux during the winter months July and August. Today, coastal polynyas are 

pervasive around Antarctica during winter (Kern, 2009) and considered as the areas of highest ice 

production in winter (Morales Maqueda et al., 2004). Tamura et al. (2008) estimated that 10 % of 

all sea ice in the Southern Ocean and about 6 % in the Weddell Sea (Renfrew et al., 2002) is 

produced in Antarctic coastal polynyas. In the Weddell Sea, investigations showed that years with 

large coastal polynya areas are in accordance with maxima in total ice extent (Comiso and Gordon, 

1998). Renfrew et al. (2002) highlighted that the inter-annual variations in coastal polynya activity 

and area seem to be related to katabatic winds, cyclones, as well as barrier winds. 

 Heinemann et al. (2013) studied coastal polynyas in the Weddell Sea area and showed 

that in the area of Coats Land, in front of the Brunt Ice Shelf (Fig. 1), the offshore winds are 

mainly driven by katabatic winds, due to the steepness and length of the slope. However, for 

glacial conditions, there is still little knowledge on katabatic winds and coastal polynya activity as 

well as their seasonal changes in the southeastern Weddell Sea. Due to the fact that ice sheets 

covered the continental shelf in the Weddell Sea, the bottom-water formation must have deviated 

from today, where dense bottom waters are formed on the continental shelf under the ice shelves 

(e.g. Haid and Timmermann, 2013). LGM simulations by Shin et al. (2003) showed that around 

80 % of the AABW could have been formed by increased brine release in the sea-ice production 

zones in the Southern Ocean. Coastal polynyas in front of the grounded ice sheet above the 

continental slope might have played a major role in the bottom water formation during the LGM. 

Earlier studies (e.g. Weber et al. (1994); Weber et al. (2011); Sprenk et al. (in review)) indicated 

that during the LGM intensified katabatic winds likely drove coastal polynya formation in the 

southeastern Weddell Sea. Smith et al. (2010) also pointed out that during the last glacial, off-

blowing katabatic winds in front of the grounded Antarctica Peninsula Ice Sheet formed coastal 

polynyas in the Western Weddell Sea.  

 The Weddell Sea varves were deposited only during glacial times when the grounded ice 

sheet had very likely advanced to the shelf break (e.g. Hillenbrand et al., 2012). Based on earlier 

(e.g. Weber et al., 1994; Kuhn and Weber, 1993; Sprenk et al., in review) as well as on this study, 

we favour the following scenario of glacial sedimentation: during the LGM, plumes of cold and 

dense water were generated in front of the grounded East Antarctic Ice Sheet above the 

upper slope by coastal polynya, i.e. operated by strong offshore blowing (i.e. katabatic) winds 

enhancing sea-ice formation and thus brine release. The resulting dense water mass moved down 

the continental slope and was canalized into the channel-ridge systems northeast of Crary Fan (Fig. 

1), producing cold and saline WSBW. Apparently, this flow oscillated seasonally with a stronger 

salt injection during glacial winter due to increased brine release by more intense coastal polynya. 

We should note that spaces of open water, which were generated by the katabatic winds and led to 

glacial polynyas did likely not stay open for long because of the low temperatures. Rapid freezing 
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and associated intense brine rejection should therefore be a major difference to present-day 

polynyas, which may stay open for longer and do therefore not invoke major brine rejection. The 

resulting glacial thermohaline current flowed underneath and against the probably weakened 

Weddell Gyre. The clayey layer would hence have be interpreted as a summer signal, resulting 

from less intense katabatic winds, hence less sea-ice transport away from the coast, reduced brine 

rejection in front of the ice sheet that led to reduced thermohaline convection, lower current 

velocities in the channels, and less overspilling on the ridges. Vice versa, coarser-grained silty 

layer should represent a winter signal as a result of enhanced katabatic winds that carried sea ice 

away from the continent more effectively, inducing rapid freezing processes at the surface that 

spurred thermohaline convection, led higher velocities in the channels and higher overspilling on 

the ridges. As a whole, the seasonally variable thermohaline convection produced large volumes of 

bottom water and transported vast amounts of sediment into the deeper environment that have 

originally been delivered by meltwater channels from the grounded ice sheet and/or 

by gravitational processes (Anderson et al., 1986), leaving its trace in form of varved sediment on 

the ridges (Figs. 3-5). In a coupled climate model, Justino and Peltier (2006) demonstrated that 

the seasonal cycle in the Southern Ocean was likely much stronger during LGM than it is today 

with a very pronounced winter season. Since coastal polynya formation is mainly driven by the 

intensity of the katabatic winds, sea-ice was moved away from the continent and/or thinned close 

to the coast in glacial winter, allowing for a more intense transport of icebergs counterclockwise 

around Antarctica within the Antarctic Coastal Current. This could explain why coarser-grained 

(winter) layers occur preferentially with higher amounts of IRD.  

 Alternatively, coarser layers could have been deposited during summer, when ice melt 

occurred more likely. This interpretation could be supported by the fact that the silty layers contain 

higher IRD contents resulting from ice melt. Ice melt could occur either through direct surface 

melt, although modelling of atmospheric teleconnections from sea-surface temperature variations 

from equatorial Pacific (Weber et al., 2011) show that increasing temperatures would not lead to a 

negative ice mass balance under LGM conditions. Meltwater could also be delivered by meltwater 

channels directly from the ice sheet. That process, however would only deliver fresh water that is 

not dense enough to sink down and move across the shelf and onto the continental slope and into 

the channels that accompany the ridges because the surrounding brines are much denser. Also, 

seasonal deposition on the ridges requires a continuous flow of a dense water mass at varying 

volume (velocity) in the channels that is deflected to the left due to the influence of Coriolis Force, 

and overspills the channels on their northwestern side. This process can most likely only be 

sustained by a seasonally variable thermohaline convection resulting from polynya formation in 

front of the ice edge. Nonetheless, there is no definitive interpretation possible at the current stage 

as to which season produced which layer.  
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6 Conclusions 

 We presented high-resolution sediment-physical and geochemical data of the newly 

opened sediment core PS1795 from a channel-ridge system located on a terrace of the continental 

slope of the southeastern Weddell Sea. AMS 14C ages and varve counting results for PS1795 

underline earlier studies that laminations represent true varves and are therefore seasonally 

deposited during the LGM with sedimentation rates of about 1.1 – 1.6 m/kyr. Thin sections, XRF-

scanning at 0.2 mm resolution, as well as RADIUS tool analysis reveal detailed information on the 

internal varve composition. Individual layers have thicknesses of only few hundred �m up to 

3 mm. The facts that laminae couplets show only small variations in grain size and there are no 

erosional or sharp surfaces argues against turbiditic sedimentation and favours varve formation. In 

fact, grain-size variability of some parts is so low that layers are hardly be distinguishable in thin 

sections cannot be recognised on X-radiographs at all. Analyses of thin sections show that IRD is 

mainly embedded in the lighter, silty layers with some large debris – up to 2 mm in diameter – 

deforming the underlying layers. This is a clear indication of transport by either icebergs or sea 

ice, and deposition by dropping onto the sea floor.  

 Our results reveal seasonal changes in grain size and related changes in element and 

mineral composition. Lighter-coloured layers contain higher amounts of silt-sized particles, mostly 

quartz grains, which is also shown by maxima in Si counts. Light layers are also enriched in Zr, 

reveal coarser grain sizes and show higher densities as indicated by less darkening of the X-ray 

film. Finer grained layers are of darker colour, contain mainly clay-sized particles as well as 

maxima in K, Fe, Ti, and Rb, i.e. typical trace elements for clay minerals such as chlorite and illite 

as well as mica such as biotite. 

 Consequently, sedimentation in the channel-ridge-system was highly dynamic during the 

LGM, reflecting seasonal velocity changes of the thermohaline current that transporting sediment 

from the upper slope downslope to the core sites. Sediments were deposited when the grounded ice 

sheet had advanced to the Weddell Sea shelf edge. Offshore blowing katabatic winds removed sea 

ice from the ice edge and coastal polynyas developed. We suggest that glacial coastal polynya 

processes were in general similar to today inasmuch as stronger katabatic winds and enhanced 

coastal polynya activity occurred during the winter season. However, that does not imply the 

spaces of open water may have existed for long. Following this concept, silty layers are likely 

glacial winter deposits, when brine release was increased leading to intensified bottom water 

formation and increased sediment transport. Vice versa, finer-grained clayey layers were deposited 

during summer, when coastal polynya activity was possibly reduced.  

 Nonetheless, there is currently no concluding interpretation as to which season produced 

which layer. Coarser layers could also have been deposited during glacial summer by meltwater 

channels or when more sea ice melted, which might also explain the higher IRD content in silty 
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layers. However, the density of melted freshwater would have been too low to sink down the 

continental slope and initiate the required thermohaline circulation.  
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Abstract 

 High-resolution sediment records from the Southern Ocean providing detailed insight into 

the Last Glacial Maximum (LGM) are very rare. We present a varved-based chronology for glacial 

sediment from the Southern Ocean. These three sediment cores originate from a channel-ridge 

system on the continental slope of the southeastern Weddell Sea. Most of the sediment consists of 

fine-grained siliciclastic varves, whose accumulation is related to seasonal velocity changes of a 

contour current.  

 A high-resolution correlation for the sediment cores based on the combination of 14C 

dating and varve counting, reveals that facies changes from lamination to bioturbation and vice 

versa occurred simultaneously in the core site area around 25, 23, 21.5, 20, and 19 ka, The 

duration of the non-laminated, mainly bioturbated periods that interrupted varve accumulation, 

was only a couple of centuries up to a millennium, and presumably associated with ice-sheet 

retreat from the shelf, an inactive contour current on the slope, and at least partially open water 
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conditions above the sites. We therefore suggest multiple fluctuations of the East Antarctic Ice 

Sheet during the LGM.  

 The thickness of the varves varies quite strongly between the different core sites and time. 

We conducted bulk and evolutionary spectral analyses revealing decadal-to-centennial-scale 

variations. Most dominant is a 50-85-yr cycle, which seems to have been very robust during the 

LGM. Detected (multi-) decadal-scale frequencies are consistent with the periods of the Schwabe, 

lower and upper Gleissberg cycles. In addition to solar forcing, internal atmosphere-ocean 

variability such as the Atlantic Multidecadal Oscillation (AMO) may have influenced the 

sedimentation processes at the multi-decadal timescale. Climate model experiments support the 

inference that solar-forced anomalies in atmospheric circulation over the Weddell Sea promoted 

coastal polynya formation during periods of high solar activity, enhancing brine formation and 

influencing the sedimentation process at our core sites. 

 

1 Introduction 

 Recently it has been become more and more obvious that regional and global climate 

varies significantly also on short-term, i.e. annual- to decadal scales. Instrumental climate records 

are only available for up to a few hundred years, therefore high-resolution archives, e.g. tree rings, 

corals, and varved sediments, are essential for studying short-term past climate fluctuations to 

learn more about these oscillations and their possible forcing mechanisms. Unfortunately, climate 

records with annual-resolution and covering a long time period are relatively rare, thus there are 

still many open questions about the mechanisms of decadal-to-centennial-scale climate 

oscillations. Until now, there is only insufficient knowledge available if (multi-) decadal cycles 

also occurred during glacial times. 

 As the Weddell Sea is a major deep-water formation area, it is one of the key regions for 

the global thermohaline circulation. Unfortunately, most marine records from the Weddell Sea 

exhibit only low accumulation rates. We study sediment cores from the southeastern Weddell Sea 

that consist of long laminated sections that are only interrupted by short bioturbated intervals. 

Earlier studies (e.g. Weber et al., 1994; Weber et al., 2011) revealed that the lamination is due to 

seasonal variations in thermohaline convection during the Last Glacial Maximum (LGM) and are 

therefore true varves. Varved sediment consists of seasonally deposited layers and is therefore an 

ideal high-resolution climate archive (Ojala et al., 2012). Therefore investigating these varved 

sediments from the Weddell Sea is very promising to gain information about possible decadal-

scale climate fluctuations during the last Glacial Maximum and their mechanisms. 
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Figure 1. The map shows the southeastern Weddell Sea (Weber et al., 2011) highlighting the 

Polarstern (PS) core sites referred to in this study (for more information see Table 1); The core 

sites are located on ridges (orange lines) on a terrace of the continental slope. Southeast of each 

ridge runs a channel (yellow lines); Deep purple area refers to the continental ice sheets; Ice-shelf 

areas are in light purple colour; blue arrows indicate the flow direction of major water masses; 

Small map shows the global thermohaline circulation in the Atlantic Ocean (Rick Lumpkin; 

www.aoml.noaa.gov, access date 18.12.2012) with surface water (red arrows) and deep as well as 

bottom water (blue arrows) flow; The core site area (black square) is located in the southernmost 

part of the Atlantic sector of the Southern Ocean, where 60 (Orsi et al., 1999) to 80 % (Maldonado 

et al., 2005) of the Antarctic Bottom Water (AABW) is formed by brine rejection and 

supercooling.  

 

2 Study area and ocean circulation 

2.1 Study area 

 The Weddell Sea is the southernmost part of the Atlantic sector of the Southern Ocean. 

The northern border is the South Scotia Ridge and in the east it is limited by the Coats Land and 

Dronning Maud Land, where smaller ice shelves like the Brunt and Riiser-Larsen Ice Shelf are 
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located offshore (Fig 1.). In the south it is covered by the Ronne and Filchner Ice shelves and in 

the west the Antarctic Peninsula border the Weddell Sea. Our study sites are located in the 

southeastern part of the Weddell Sea on a terrace of the continental slope. Each ridge is up to 

300 m high and up to 100 km long and runs parallel on the northwestern side of a channel (e.g. 

Weber et al., 1994; Kuhn and Weber, 1993). 

 During the LGM and the Last Glacial Transition while the East Antarctic Ice Sheet 

advanced to the shelf break, coastal polynyas were active above the continental slope, which 

induced brine rejection and therefore high-salinity water production (Weber et al. 2011). These 

dense water masses reworked sediment and drained into the channels, depositing the material 

mainly northwest of each channel (Fig. 1) because of the Coriolis force, building natural levees 

(Michels et al., 2002). Depending on seasonal velocity changes of the thermohaline current, the 

transported sediment grain size changed, leading to varved sedimentation with alternating silt-rich 

and more clayey layers. Bioturbated hemipelagic mud was deposited during times, when the 

polynya was inactive and less sediment was transported to the core sites. The final East Antarctic 

Ice Sheet retreat was around 16 ka, marked by a transition from laminated to bioturbated 

sedimentation at the core sites (Weber et al., 2011). 

2.2 Ocean circulation 

 The Weddell Sea circulation is dominated by the cyclonic movement of all water masses 

within the Weddell Gyre. The Weddell Gyre transports relatively warm Circumpolar Deep Water 

(CDW) from the Antarctic Circumpolar Current (ACC) southwards, which modifies to the cooler 

Warm Deep Water (WDW) (e.g. Orsi et al., 1993; Gordon et al., 2010; Hillenbrand et al., 2012). 

Through heat loss and mixing with Winter Water (WW) while flowing further to the West along 

the continental margin, the WDW becomes the Modified Warm Deep Water (MWDW), which is 

together with the High Salinity Shelf Water (HSSW) and the Ice-shelf water (ISW), both 

originating from the southern Weddell Sea shelf, a major contributor to the bottom-water 

formation in this area (Hillenbrand et al., 2012). About 60 % (Orsi et al., 1999) to 70 % (Carmack 

and Foster, 1977) of the Antarctic Bottom Water (AABW) is influenced by the bottom-water 

formation in the Weddell Sea, namely the Weddell Sea Deep and Bottom Waters (WSDW and 

WSBW) (Huhn et al., 2008; Foldvik et al., 2004). Maldonado et al. (2005) even argue that 80 % of 

AABW is produced in the Weddell Sea by super-cooling and brine rejection related to intensive 

sea-ice production in coastal polynyas (Tamura et al., 2008). Together with the Ross Sea and the 

northern North Atlantic, where the North Atlantic Deep Water (NADW) is formed (Orsi et al., 

1999), the Weddell Sea is the major deep-water formation area (Huhn et al., 2008). Therefore, 

these areas are key regions for the global thermohaline circulation (Seidov et al., 2001; Rahmstorf, 

2002), also known as Conveyor Belt (Gordon, 1986; e.g. Broecker, 1987) (Fig. 1, small map). 
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3 Material and methods 

3.1 Material 

 We study gravity cores originating from the southeastern Weddell Sea, which were 

retrieved with R/V Polarstern (PS) in the late 1980s and early 1990s (Fig. 1). The core sites are 

located on sediment ridges on a terrace of the continental slope at 1900 – 2900 m water depth 

(Table 1). The sediment cores mainly consist of terrigenous components and only minor amount of 

biogenic material. Most sections of the sediment cores are varved. Each varve consists of a layer 

couplet. The layers show only minor differences in grain size with varying amounts of silt-sized 

and clay-sized particles. Therefore, it is not easy to distinguish individual layers by visual 

examination of the core or surface photos thereof. However, coarser layers have higher densities, 

which leads to less darkening of the X-ray film (Axelsson, 1983). Therefore, we used X-

radiographs for layer recognition and counting (Fig. 2). 

Table 1 Information on Weddell Sea core sites referred to in this study, including the water depth 

and the gravity core length. 

Core site Latitude Longitude Water depth (m) Core length (m) 

PS1599 74° 04’ S 27° 42’ W 2487 11,32 

PS1789 74° 14’ S 27° 18’ W 2411 14,19 

PS1791 73° 55’ S 26° 32’ W 2894 12,89 

3.2 Methods 

 For accelerator mass spectrometry (AMS) 14C dating we used well-preserved carbonate 

shell material originating from planktonic foraminifera Neogloboquadrina pachyderma (sinistral). 

Beforehand, H2O2 was added to each sample to remove the organic material. All the measurements 

were done at the ETH laboratory of Ion Beam Physics in Zurich. The AMS 14C ages were 

reservoir corrected (1.215 ± 30 years), based on age dating of carbonate shell material from a 

living bryozoa from neighbouring Site PS1418-1 (Melles, 1991). Calib 6.0 

(http://calib.qub.ac.uk/calib/) was used for calculation from conventional radiocarbon ages into 

calendar ages. 

To analyse sediment fabric, we cut out 1-cm thick, 10-cm wide, and 25-cm long plates from the 

centre of each core using a double-bladed saw. The plates were exposed for 3 to 5 minutes to a HP 

43855 X-Ray System. After scanning the negatives at 300 dots per inch (dpi) resolution, we 

adjusted brightness and contrast to enable a better distinction of dark and bright layers, which are 

just a few millimetres thick. 

 We then used BMPix and PEAK tool (Weber et al., 2010a) software packages for 

automatic layer recognition and counting. First, grey values were extracted from the scanned X-
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radiographs with the BMPix tool (Figs. 2 and 3). We used a line width of 30 pixel over which the 

measurement is integrated perpendicular to the scanning direction from one measurement to the 

next. Over 25 cm length, we generated approximately 3000 grey values, translating into 12 

measurements/mm, or in other words, a sample resolution of 85 µm. 
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Figure 2. Method to count the siliciclastic varves and determine the varve thickness variation: A is 

the negative of the 25-cm long X-radiograph from core site PS1791 scanned at 300 dpi; B shows 

the X-radiograph displayed in A with adjusted brightness/contrast; C is the moving average of the 

grey value curve determined by using the BMPix software (Weber et al., 2010a); D shows the grey 

value maxima (pink lines) counted with the PEAK tool. E shows the amount (red number) and 

thickness variation in centimetre of the counted varves. 
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 We took advantage of the software’s ability to count laminations in five different ways, 

which also helped to reduce the overall count error. Annual counts were achieved by counting 

every maximum (max count; bright layers) and every minimum (min count; dark layers) of an 

annual layer couplet. Seasonal counts were achieved by counting every transition from dark to 

bright layers (up crossings) and from bright to dark layers (down crossings) as well as halfway 

passage (zero crossings) of the grey scale curve (Fig. 2). In order to optimize the counting results 

quickly and iteratively, the user can adjust three basic settings, the full width half maximum of the 

Gaussian smoothing, the minimum cycle length, and the minimum amplitude (details see Weber et 

al. (2010a)). 

 Finally, we evaluated counting errors by comparing manual counts conducted by two 

individuals and automated counts achieved with the PEAK (Table 2). Accordingly, two candidates 

counted all minima, maxima, up crossings, down crossings, and zero crossings manually for two 

selected varved sections (for Site PS1789 at 689-717 cm, and for Site PS1791 at 612-637 cm core 

depth). Then, both candidates counted the same properties using the PEAK tool. For manual 

counts potential sources of error include individual misjudgement, inconsistent layer treatment, 

and miscalculations. For automated counts differences may arise from the adjustment of the three 

basic settings and the width of the line, over which the BMPix software integrates the grey value 

perpendicular to the counting direction. 

 

Table 2 Error estimation for the layer counting was achieved by counting two representative X-

radiographs (PS1789, 689-717 cm and PS1791, 612-637 cm). Displayed are the amounts of 

maxima, minima, transitions into bright (up crossings) and dark layers (down crossings) as well as 

zero crossings counted by 2 individuals manually. Additionally, the layers were counted by both 

persons using the BMPix and PEAK software (Weber et al., 2010a). While using the software the 

person operating the software needs to adjust different settings (e.g. counting position, minimum 

grey value peak height, width, and area). For more information on the counting see methods 

chapter and Fig. 2. The mean of the different counting results (e.g. maxima, minima) and their 

discrepancy in per cent are included in the table. 

Counting method Mimima Maxima Up crossings Down crossings Zero crossings 

PEAK tool person 1 205 209 212 214 408 (2x204) 

PEAK tool person 2 206 205 204 202 412 (2x206) 

Manually person 1 209 211 212 202 396 (2x198) 

Manually person 2 200 203 204 199 404 (2x202) 

Mean of counting 204,5 207 208 206,5 404 (2x202) 

Discrepancy (%) ±2,2 ±1,9 ±1,9 ±3,6 ±2,0 
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 However, the counting results for both candidates and the five methods applied are fairly 

similar (Table 2). Between 198 and 214 peaks were counted, which reflects a total discrepancy of 

±3,9 %. Depending on the counted feature, the discrepancy varies between ±1,9 and ±3,6 %. 

Maxima and up crossing counts show the lowest discrepancies (±1,9 %). This is due to the fact 

that, at least for the glacial varves from the Antarctic continental slope, bright layers – and the 

transitions into bright layers (up crossings) are the most distinct features that produce the most 

reliable counting results. 

 So we used the maxima counting results for the further analyses. We also suggest that a 

combination of both methods leads to the most accurate counting result. Therefore, in a last 

iteration step, we further reduced the counting error by manually examining and revising, if 

necessary, the automated counting results generated by PEAK tool.  

 

Table 3 Varve counting results and estimated mean sedimentation rates (mm/yr i.e. m/kyr) for the 

varved sediment sections. For additional information on the varve counting see methods and Figs. 

2 and 3. 

Core Site Section (cm) Section length (cm) Counted years Mean sed. rate (mm/yr) 

PS1599 184-239 55 130 4,23 

PS1599 260-372 112 257 4,36 

PS1599 400-552 152 482 3,15 

PS1599 600-895 295 1167 2,53 

PS1599 968-1127 159 720 2,21 

PS1789 132-182� 50� 95� 5,26�

PS1789 198-471 273 756 3,61 

PS1789 488-872 384 1392 2,76 

PS1789 897-1263 366 1331 2,75 

PS1789 1280-1419 139 348 3,99 

PS1791 112-160 48 64 7,5 

PS1791 173-352 179 390 4,59 

PS1791 355-575 220 706 3,12 

PS1791 587-836 249 859 2,9 

PS1791 842-1284 442 1462 3,02 

 

 To conduct bulk and evolutionary spectral analysis on the varve thickness variability data 

we used the ESALAB (Weber et al., 2010b) and REDFIT (Schulz and Mudelsee, 2002) software. 

Both programs rely on the (Lomb, 1976) and (Scargle, 1982, 1989) algorithms, providing an 

estimation of the spectrum by fitting harmonic sine and cosine components to the data set. This 

enables the use of be unevenly spaced input data and leads to robust and high resolution resulting 
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spectra (Weber et al., 2010b). For all spectral analysis estimations raw, i.e. unsmoothed varve 

thickness data was used. Additionally, to extract chronological variability of only selected periods 

and thereby omitted undesirable frequency bands from the data analysis (Kern et al., 2012), we 

applied a Gaussian bandpass filter to the layer and varve thickness dataset using 

AnalySeries2.0.4.2 (Paillard et al., 1996). 

 

4 Results and discussion 

4.1 Chronology & stratigraphic correlation 

 The contourite ridges range among the very few Antarctic archives with carbonate shell 

preservation. Although scarce, it allows for the implementation of a sound and reliable low-

resolution chronology relative to those obtained from dating the bulk acid insoluble organic carbon 

fraction, which usually contains old, reworked organic matter (e.g. Domack et al., 1999). Our 

AMS 14C dates give a minimum age for the beginning of the LGM at ca. 25.7 ka (Weber et al., 

2010a) and allow for the identification of common key points of Antarctic glacial retreat detected 

at all sites around 19 ka (Weber et al., 2011; Weber et al., 1994), synchronous to the onset of 

deglaciation of Northern Hemisphere ice sheets (Clark et al., 2009), and final ice-sheet retreat, at 

least for the Weddell Sea part of the East Antarctic Ice Sheet, around 16 ka (Weber et al., 2011). 

 However, given the rather large error of glacial AMS 14C ages and the scarceness of 

carbonate shells, any high-resolution correlation among the sites based on AMS 14C remains 

ambitious. Only three to five AMS 14C ages have been determined for sites PS1599, PS1789 and 

PS1791, respectively (Weber et al., 2011) using planktonic foraminifera Neogloboquadrina 

pachyderma (Fig. 3). In addition, no ash layers have been found in the sediment so far. Therefore, 

varve-counting results are very helpful to correlate the sites at higher resolution, to gain further 

information about changes in sedimentation processes, facies, and sedimentation rates. 

 Varve thickness shows strong variability between individual core sections and between 

sites (Fig. 3), with mean thicknesses of 0.3 – 0.75 cm, documenting unusually high mean 

sedimentation rates of 3 – 7.5 m/kyr (Table 3). However, the total mean sedimentation rates of 

varved sections for each core are very similar with values of 3.1 m/kyr (PS1599), 3.15 m/kyr 

(PS1789), and 3.15 m/kyr (PS1791), pointing to a common formation mechanism. 
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Figure 3. Centennial- to millennial-scale cycle in the Weddell Sea sediment: The correlation of the 

non-varved, mostly bioturbated sections (green bars) interrupting the varved (yellow bars) 

sediment occurred roughly at the same time (around 25, 23, 21.5, 20, 19, and finally at 16 ka; 

green bars) with a pacing of approximately 1000 to 2000 years. Accelerator mass spectrometry 

(AMS) 14C-ages (red stars) of Neogloboquadrina pachyderma were used to correlate the core sites 
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(Weber et al., 2011). Varve thickness (red italic number) was estimated using the excel macros 

BMPix and PEAK tools (Weber et al., 2010a) to generate a greyscale curve from X-radiograph 

and maxima counting (for more information see Fig. 2). The resulting varve thickness data were 

smoothed with a 5-point moving average filter (AnalySeries2.0.4.2; Paillard et al., 1996) for 

graphical reasons to highlight the decadal-scale fluctuations, but raw data was used for all further 

analysing. 

 

4.2 Millennial-scale variability in glacial Weddell Sea sediment 

 We combined the few AMS 14C ages and varve counts to correlate the cores (Fig. 3). 

Given the uncertainties described above, we conclude that facies changes from lamination to 

bioturbation and vice versa occurred simultaneously around 25, 23, 21.5, 20, and 19 ka (Fig. 3), 

with a millennial-scale (1000 – 2000 years) pacing. According to Weber et al. (2011), bioturbated 

sediment is associated with ice-sheet retreat from the shelf, an inactive contour current on the 

slope, and at least partially open water conditions above the sites. The duration of the non-

laminated periods that interrupted varve accumulation, based on the combination of AMS 14C 

dating and varve counting, was a couple of centuries up to a millennium. The upper 4 m of PS1599 

(Fig. 3) likely include hiatuses that complicate the correlation to the other sites. PS1599 is located 

on a sediment ridge further northwest (Fig. 1), whereas sites PS1789 and PS1791 originate from 

the southernmost ridge and show good agreement (Fig. 3). 

 The facies changes described above are only noticeable in glacial sediment sections. After 

the final ice-sheet recession from the outer shelf around 16 ka (Weber et al., 2011) the contour 

current became inactive, and non-laminated (hemipelagic) mud was deposited at low 

sedimentation rates of only about 0.06 (PS1791) to 0.08 m/kyr (PS1789-1) providing further 

indication for centennial-scale duration of glacially non-laminated sections.  

 Facies changes associated with varve interruption occur every few centuries to 

approximately 2000 years in our record (Fig. 3), suggesting multiple fluctuations of the East 

Antarctic Ice Sheet during the LGM. These recurrence time period bears some similarity to the 

typical timescale of abrupt climate events in the North Atlantic during the last glacial period 

(Grootes and Stuiver, 1997; Schulz, 2002). 

 

4.3 Spectral analysis 

 To gain more insight into cyclic sedimentation during the LGM and varve thickness 

variation, we performed bulk and evolutionary spectral analysis. The spectral analysis 

measurements were made individually on the raw varve thickness data on all laminated sections 
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Figure 4. Bulk and evolutionary spectra performed on the varve thickness data determined with 

the ESALAB tool (Weber et al., 2010b) of southeastern Weddell Sea cores. Accelerator mass 

spectrometry (AMS) 14C-ages of Neogloboquadrina pachyderma and varve counting results (see 

Fig. 3) were used to correlate the core sites (Weber et al., 2011). Varve thickness was estimated 

using the excel macros BMPix and PEAK tools (Weber et al., 2010a). 
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number of similar peaks exceeding the 99 % confidence level. Note that the bulk spectra at the top 

of Figure 4 give only a representation of one specific section from each core. The most common 

spectral feature identifiable in all cores is enhanced power concentration between 50 and 83 yr. 

For example, sites PS1789 and PS1791 share a distinct peak at 53 yr. At PS1599 a 50-yr peak is 

noticeable. Some peaks, e.g. 90-97-yr, 116-125-yr, and 250-yr periods, are also exceeding the 99 

% confidence level in most of the analysed core sections. Additionally, a few higher-frequency 

cycles exceeding the 96 % confidence level, e.g. 11-yr, 14-yr, 17-yr, 20-29-yr, as well as 36-yr 

(Fig. 4), can be noticed in most of the bulk spectra. 

 The evolutionary spectra of all three cores reveal an overall persistent and powerful 50-

85-yr-oscillation band, which seems to have been a robust feature during the LGM (Fig. 4). Other 

frequencies are only pronounced temporarily in the evolutionary spectra rather than being 

persistent LGM features. For example, the 14-yr cycle is quite powerful in the 355-575 cm core 

section of PS1791. 

 

4.4 Potential causes of multi-decadal variability in sedimentation during 

the LGM 

 Our high-resolution study of Weddell Sea sediment revealed multi-decadal-scale changes 

in sedimentation, which seem to have been persistent during the LGM. For an in-depth 

investigation of the cyclic varve thickness variation, we also conducted spectral analysis on the 

summer and winter layer thicknesses separately. Their bulk and evolutionary spectra show the 

same decadal-scale cyclic fluctuations as already described above for an annual layer couplet. 

Maxima in the thickness of summer layers mostly coincide with winter layer maxima and vice 

versa (Fig. 5A, B). This leads us to the conclusion that the driving mechanism influenced and 

modulated the sedimentation process throughout the year, overprinting the seasonal sedimentation 

changes. 

 On the one hand grain size and amount of material deposited in the core site area is 

controlled by the availability and supply of sediment material on the upper slope (Michels et al., 

2002). This quartz-rich material originates from the shelf and is transported in suspension by ice-

shelf water (Diekmann and Kuhn, 1999) onto the slope. On the other hand the contour current 

reworking this material and transporting it to the core sites also influences the sedimentation 

process. The current velocity is mainly dependent on the amount of brine release, thus being 

controlled by coastal polynya activity. Heinemann et al. (2013) investigated coastal polynyas in 

the Weddell Sea area and showed that in the area of Coats Land, in front of the Brunt Ice Shelf 

(Fig. 1), the offshore winds are mainly driven by katabatic winds, due to the steepness and length 

of the slope. Possible indirect or direct driving mechanisms of the (multi-) decadal-scale 
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sedimentation changes in the Weddell Sea could therefore involve external forcing by variations in 

solar irradiance and/or internal climate variability through atmosphere-ocean interactions. 
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Figure 5. Gaussian band pass filtering of varve and layer thickness data (PS1789; 488 – 872 cm; 

see Figs. 3 and 4) around the length of solar cycles and Atlantic Multidecadal Oscillation (AMO): 

A shows raw thickness data of the silty (winter) and clayey (summer) layers; B refers to the 50-80-

yr period (lower Gleissberg cycle) filtered from the unsmoothed summer (green curve) and winter 

(blue curve) layer thickness data (A). C to F are filtered from the raw varve thickness data: C: 8-

14-yr (Schwabe), D and E: 50-80-yr and 90-140-yr (lower and upper Gleissberg) as well as F: 170-

260-yr (De Vries/Suess) solar cycles (Ogurtsov et al., 2002). G shows a 5-point moving average of 

the varve (summer plus winter layer (A)) thickness for comparison. H is the result of filtering the 

60-90-yr period band of the AMO (e.g. Kerr, 2000) from the varve thickness data. For all the 
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filtering a Gaussian bandpass filter (AnalySeries2.0.4.2; Paillard, 1996) was used. Automated 

layer recognition and counting were performed using the BMPix and PEAK tools (Weber et al., 

2010a) (see methods and Fig. 2). 

 

4.4.1 Solar Origin 

 Minor changes in total solar irradiance, e.g. 0.07 % variation in 11 years (Gray et al., 2010), 

seem to have direct or indirect impact on the global climate. Solar cycles have been detected in a 

number of climate archives (e.g. Beer et al., 2000; Gray et al., 2010; Versteegh, 2005) including 

marine and lake sediment (Kern et al., 2013), ice cores (e.g. Steinhilber et al., 2012; Grootes and 

Stuiver, 1997), tree rings (e.g. Breitenmoser et al., 2012), and speleothems (e.g. Knudsen et al., 

2012; Wang et al., 2005). Seidenglanz et al. (2012) noticed in a comprehensive global climate 

model that a 90-yr solar forcing leads to responses in water temperatures especially in deep-water 

masses of the South Atlantic. 

 Recently, Ogurtsov et al. (2002) showed that the 87-yr Gleissberg cycle (Gleissberg, 1944) is 

indeed a complex 50-140-yr solar cycle with two oscillation modes, i.e. the lower 50-80-yr and 

upper 90-140-yr Gleissberg cycles. The multi-decadal-scale sedimentation changes in our Weddell 

Sea cores correspond remarkably to the 50-80-yr cycle of the lower Gleissberg solar oscillation. 

The 90-140-yr upper Gleissberg cycle also occurs in most of the spectra, e.g. 97-yr as well as 125-

yr (PS1599) and 83-yr as well as 116-yr (PS1789) power peaks in the bulk spectra (Fig. 4). 

 A 250-yr power peak noticeable in some bulk spectra, e.g. PS1791 section 355-575 cm (Fig. 4) 

could be related to the 210-yr DeVries/Suess cycle (Wagner et al., 2001), also described as 170-

260-yr solar band (Ogurtsov et al., 2002). The higher frequency cycles dominant in the bulk 

spectra (Fig. 4) are possibly related to the 11-yr Schwabe cycle (Schwabe, 1844), recently 

described as 8-14-yr solar band (Ogurtsov et al., 2002), and the 22-yr Hale cycle (Mursula et al., 

2002). 

 The accordance of prominent solar cycles with the oscillation frequencies found in our 

sediment records strongly suggests a solar influence on the sedimentation most likely associated 

with coastal polynya formation and brine release in the southern Weddell Sea. Climate model 

simulations (Varma et al., 2011) support the notion of a solar forcing effect on the atmospheric 

circulation and hence sea-ice dynamics in the Weddell Sea region. Figure 6 shows the seasonal 

mean response in sea-level pressure anomalies and surface wind anomalies in response to a 70-yr 

lasting reduction in total solar irradiance of 2 W/m2 (i.e. 0.15%) for different seasons as simulated 

by the fully-coupled comprehensive global climate model CCSM3 (Community Climate System 

Model version 3). The sea-level pressure response exhibits a rather annular pattern in southern 

mid- to high latitudes associated with an overall meridional shift of the southern westerlies, which 

is poleward during austral winter (i.e. June, July, and August) and equatorward during the other  
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Figure 6. Summer (i.e. December, January, and February; DJF) and winter (i.e. June, July, and 

August; JJA) mean surface wind (m/s) anomalies and sea-level pressure (Pa) anomalies (high 

minus low total solar irradiance) in response to a 70-year lasting reduction in total solar irradiance 

of 2 W/m2 as simulated by CCSM3. Three solar sensitivity runs (ensemble) with reduced 

irradiance (1363 W/m2) were branched off from a pre-industrial control run with greater solar 

output (1365 W/m2). Shown is the ensemble mean response, where each ensemble member was 

averaged over the entire 70-year interval of the sensitivity experiment. Stippling indicates 

significance of the sea-level pressure anomaly at the 0.05 level (applying a Student’s t-test). For 

details on the model setup and experimental design the reader is referred to Varma et al. (2011). 

 

seasons. In fact, the southern mid- to high latitude wind changes constitute the strongest dynamic 

response to solar irradiance changes worldwide in the model simulation (not shown), which may 

be attributed to feedbacks involving atmospheric eddy momentum fluxes (Lorenz and Hartmann, 

2001) as well as ocean and sea-ice dynamics (Varma et al., 2011). Similar responses in southern 

hemisphere surface winds, albeit with a larger magnitude, were simulated with a climate model 

that includes the effect of solar-induced stratospheric ozone variations (Varma et al., 2012). The 

dynamic response to solar forcing also comprises significant surface wind anomalies over the 

Weddell Sea during summer (i.e. December, January, and February) and winter (i.e. June, July, 

and August), whereas the surface response in that area is not statistically significant (p>0.05 in 

sea-level pressure) during autumn (i.e. March, April, and May) and spring (i.e. September, 

October, and November) and therefore is not included in Figure 6 and not further discussed. 

Surface wind anomalies during both summer (Fig. 6A) and winter (Fig. 6B) are southwesterly over 

the eastern Weddell Sea, in response to solar maxima. Consequently, during solar maxima stronger 

offshore blowing winds would favour coastal polynya and hence brine formation, thus leading to 

intensified sedimentation in the core site area. By contrast, during solar minima the surface wind 

anomalies are northeasterly over the eastern Weddell Sea. These wind anomalies push sea ice 

towards the margin of the southeastern Weddell Sea, counteracting the formation of coastal 

polynyas. Therefore less brine release and lower velocities of the contour current would lead to 
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lower sedimentation in the core site area during solar minima. The simulation suggests that slight 

changes in total solar irradiance lead to a significant response in surface winds over the eastern 

Weddell Sea, likely affecting contour current and sedimentation dynamics in the region of our core 

sites. 

 

4.4.2 Internal atmosphere-ocean variability 

 Also, the 50 – 85-yr cyclic varve thickness variation could be related to the AMO 

(Delworth and Mann, 2000; Kerr, 2000), recurring changes in North Atlantic sea-surface 

temperature with a pacing of 60-90 years. The origin of the AMO though is still not fully 

understood, it seems to be related to changes in Atlantic meridional overturning circulation 

(AMOC; e.g. Knight et al., 2006). Zhang et al. (2011) highlighted that the North Brazil Current 

connecting the Northern and Southern Atlantic Ocean also shows decadal-scale oscillations being 

linked to AMO as well as AMOC.  

 

 

Figure 7. Comparison between evolutionary spectra of the Weddell Sea sediment and records 

reflecting the Atlantic Multidecadal Oscillation (AMO) as well as solar activity: A is an 

evolutionary spectrum of the varve thickness variability during the Last Glacial Maximum 

determined in Weddell Sea sediment (PS1791: 355-575 cm; see Fig. 4); B shows the evolutionary 

spectrum of a tree ring-reconstructed Atlantic sea-surface temperature (SST) record for 1567-1990 

AD, mainly reflecting the AMO (Gray et al., 2004); C is an evolutionary spectrum of the annual 
10Be flux record measured in the NGRIP ice core from Greenland covering 1389-1994 AD, 

reflecting solar activity changes like the 11-yr Schwabe and the Gleissberg solar cycles (Berggren 

et al., 2009). All evolutionary spectra were determined using the ESALAB program (Weber et al., 

2010b). 
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 Until now, the AMO has only been detected in Holocene records. There is no consistent 

information available if the AMO also existed during the LGM. As already mentioned above the 

AMO might be related to changes in AMOC. Recently, Ritz et al. (2013) estimated that the 

AMOC strength in the LGM was indistinguishable from its recent strength, but was reduced 

during cooling events, e.g. Younger Dryas and Heinrich event 1.  

 Knudsen et al. (2011) found 55-70-yr long oscillations during the last 8 kyrs linked to the 

internal ocean-atmosphere variability of the AMO. Until now, the AMO has been mainly detected 

in Northern Hemisphere marine and lacustrine sediment archives, Greenland ice core records (e.g. 

GISP2 ice core, Knudsen et al., 2011) as well as speleothems (Winter et al., 2011). In addition, 

coral data from the Caribbean show that regional sea-surface temperature variations are possibly 

related to the AMO (Hetzinger et al., 2008) as well as the number of northern tropical Atlantic 

hurricanes (Hetzinger et al., 2008; Goldenberg et al., 2001) and North American droughts (e.g. 

Nigam et al., 2011; Oglesby et al., 2012) as well as US rainfall and river flow (Enfield et al., 

2001). Recently, different Caribbean stalagmite records reflecting rainfall variability show typical 

cyclic multi-decadal variations during at least the last 1.3 kyr (Winter et al., 2011; Fensterer et al., 

2012). Wyatt et al. (2012) showed that the AMO influences the Northern Hemisphere, and 

consequently also global climate. Evidence for an influence of the AMO on Antarctic temperatures 

indeed exists (Chylek et al., 2010) such that an effect of multi-decadal internal climate variability 

on sea-ice/ocean processes in the Weddell Sea and hence on our sedimentary records cannot be 

ruled out. Also it is still discussed if the AMO itself is related to and therefore reflects solar 

irradiance changes, as mentioned in earlier studies (e.g. Ólafsdóttir et al., 2013). 

 The similar oscillation band of multi-decadal-scale solar cycles and the AMO complicates 

the differentiation. The most prominent 50-85-yr cycle in our Weddell Sea cores lies in the range 

of the lower Gleissberg solar cycle (50-80-yr) as well as the 60-90-yr cyclic AMO band. 

Therefore, we extracted oscillation bands typical for the decadal-scale solar cycles as well as the 

AMO by using a Gaussian bandpass filter (Fig. 5). The filtering was done exemplarily on the 

varve thickness data of the PS1791 section 488-872 cm covering around 1200 years during the 

LGM. The signal of the lower Gleissberg cycle (Fig. 5E) seems to be slightly more prominent than 

the signal of the AMO cycle (Fig. 5H). The Gaussian bandpass filtering also reveals strong 

variations of the 8-14-yr cycle (Fig. 5C) in the varve thickness, possibly related to the Schwabe 

cycle, whereby strongest signals are related to thickest varves, i.e. highest sedimentation rates (Fig. 

5G). 

 Additionally, we compared an evolutionary spectrum of the varve thickness variation in 

the Weddell Sea cores (Fig. 7A) with evolutionary spectra of data sets, which record the AMO 

(Fig. 7B) and solar activity changes (Fig. 7C). The spectra represent different time periods, due to 

the rareness of LGM records with annual resolution. To get comparable spectra, we used the same 

settings in ESALAB (Weber et al., 2010b) for the estimating. Figure 7B shows the spectrum of a 

tree ring-reconstructed Atlantic sea-surface temperature (SST) record for 1567-1990 AD mainly 
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reflecting the AMO (Gray et al., 2004). Figure 7C is an evolutionary spectrum of the annual 10Be 

flux record measured in the NGRIP ice core from Greenland covering 1389-1994 AD, reflecting 

solar activity changes like the 11-yr Schwabe and the Gleissberg solar cycles (Berggren et al., 

2009). 

 

5 Conclusions 

 A high-resolution correlation for the sediment cores based on the combination of 14C 

dating and varve counting, reveals that facies changes from lamination to bioturbation and vice 

versa occurred simultaneously in the core site area around 25, 23, 21.5, 20, and 19 ka, The 

duration of the non-laminated, mainly bioturbated periods that interrupted varve accumulation, 

was only a couple of centuries up to a millennium, and presumably associated with ice-sheet 

retreat from the shelf, an inactive contour current on the slope, and at least partially open water 

conditions above the sites. We therefore suggest multiple fluctuations of the East Antarctic Ice 

Sheet during the LGM. 

 The Weddell Sea sediment cores show decadal-to-centennial-scale varve thickness 

variations, reflecting sedimentation changes during the LGM. Several cycles, e.g. 11-yr, 14-yr, 17-

yr, 20-29-yr, 36-yr, 90-yr, and 116-yr, exceeding the 96 and even the 99 % confidence level could 

be detected in the bulk spectra. Most dominant is a 50-85-yr oscillation band, which is noticeable 

in the evolutionary spectra of all analysed core sections, and therefore seems to have been a robust 

feature during the LGM. Maxima in the thickness of summer layers coincide with winter layer 

maxima and vice versa. This leads us to the conclusion that the driving mechanism influenced and 

modulated the sedimentation process throughout the year, overprinting the seasonal sedimentation 

changes.  

 To our knowledge this is one of the first studies showing (multi-) decadal-scale 

oscillations in varved marine sediment during glacial times. As the cycles are consistent with the 

periods of the Schwabe, lower and upper Gleissberg solar cycles, we conclude that solar cycles 

likely have been modulating the sedimentation in the core site area during the LGM. Climate 

model experiments support the inference that solar-forced anomalies in atmospheric circulation 

over the Weddell Sea promoted coastal polynya formation during periods of high solar activity, 

enhancing brine formation and influencing the sedimentation process at our core sites. In addition 

to solar forcing, internal atmosphere-ocean variability such as the AMO may have also influenced 

the sedimentation processes at the multi-decadal timescale. 
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a b s t r a c t

We studied two deep-sea cores from the Scotia Sea to reconstruct past atmospheric circulation in the
southern hemisphere and to resolve a long-standing debate on the interpretation ofmagnetic susceptibility
(MS) records in Southern Ocean (SO) sediment. High-sedimentation sites MD07-3134 (0.2e1.2 m/kyr)
and MD07-3133 (0.3e2.1 m/kyr) cover the last 92.5 kyr and 36 kyr, respectively. Both exhibit a one-to-
one coupling of the MS and Ca2þ signal to the non-sea salt (nss) Ca2þ signal of the EDML ice core, clearly
identifying atmospheric circulation asmeans of distribution. Comparison of additional proxies also excludes
major influence by volcanic sources, sea-ice, icebergs, or oceanic current transport. The close resemblance of
the dust proxies over the last glacial cycle, in turn, allows for the establishment of an age model of
unprecedented resolution and precision for SO deep-sea sediment because atmospheric transport involves
nomajor leads or lags. This is of particular importance becauseMS is routinely measured on deep-sea cores
in the SO but the sediments usually lack biogenic carbonate and therefore had only limited stratigraphic
control so far.

Southern South America (SSA) is the likely source of eolian material because Site MD07-3133, located
closer to the continent, has slightly higher MS values than Site MD07-3134, and also the MS record of
Patagonian Site SALSA shows comparable variability. Patagonia was the dust source for both the Scotia
Sea and East Antarctica. Dust fluxes were several times higher during glacial times, when atmospheric
circulation was either stronger or shifted in latitude, sea level was lowered, shelf surfaces were exposed,
and environmental conditions in SSA were dominated by glaciers and extended outwash plains. Hence,
MS records of SO deep-sea sediment are reliable tracers of atmospheric circulation, allowing for
chronologically-constrained reconstructions of the circum Antarctic paleoclimate history.

! 2012 Elsevier Ltd. All rights reserved.

1. Introduction (Rationale)

Reliable proxies for past atmospheric transport are crucial for
paleoclimate studies because aerosol nuclei blown over long
distances affect oceanic bioproductivity and cloud cover (Fischer
et al., 2007). The amount of wind-blown material also helps iden-
tifying potential source regions and reconstructing the intensity of
past atmospheric circulation. The long-range transport may also
allow for the correlation of sites over large distances, thereby
providing a powerful stratigraphic tool. Dust records of Antarctic
ice cores yield important information on past atmospheric circu-
lation in the Southern Hemisphere. They are used to evaluate global

circulation models and to infer the paleoenvironmental conditions
of the surrounding continents. East Antarctic ice cores (e.g., the
European Project for Ice Coring in Antarctica; EPICA Drowning
Maud Land; EDML) indicate SSA as a major source of dust during
glacial stages of the last glacial cycle (EPICA Community Members,
2006). There, the cold periods provided drier conditions with
increased physical weathering and intensified glacial erosion in
combination with a more persistent westerly circulation.

Marine sites located in the SO opal belt and close to the Antarctic
continent often lack biogenic carbonate because they are located
below the relatively shallow carbonate compensation depth (CCD)
(e.g., Hillenbrand et al., 2003). Also, dating the bulk insoluble
organic carbon closer to the continent is problematic because itmay
contain old, reworked material (Domack et al., 1999). In addition,
the injection of carbon dioxide with low radiocarbon activity from
oceanic abyssal reservoirs that were isolated from the atmosphere
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for several thousand years may alter reservoir corrections for 14C
ages (Skinner et al., 2010). These stratigraphic problems obstruct
paleoclimate reconstruction in SO marine sediment so far.

Accordingly, only a limited number of lower-resolution marine
cores indicated dust proxies in SO deep-sea sediment (e.g., Pugh
et al., 2009). However, no study has been able to provide a high-
resolution chronology showing a one-to-one coupling of signals,
thereby ultimately proofing the validity of this proxy assignation.
We investigated two high-resolution deep-sea cores from the
Scotia Sea (sedimentation rates are 0.2e2.1 m/kyr), showing a one-
to-one coupling of MS, sampled at decadal resolution, and atmo-
spheric dust over the last glacial cycle.

2. Core location and setting

We retrieved two deep-sea sediment cores from the Scotia Sea
during Marion Dufresne (MD) II cruise 160 in March 2007, which
are located between the presumed source area of the Patagonian
loess (e.g., Haberzettl et al., 2009) and East Antarctica (e.g., the
EDML ice core, EPICA Community Members, 2006) to study the
dust transport history along the trajectory to the Antarctic conti-
nent (Fig. 1) along the Atlantic side of the SO. Sediment sites MD07-
3133 (57!260 S, 43!270 W; 3101 mwater depth; 32.8 m core length)
and MD07-3134 (59!250 S, 41!280 W; 3663 m water depth; 58.2 m
core length) from the southern part of the central Scotia Sea belong
to the northern end of Dove Basin and Pirie Bank, respectively
(Fig. 1). The sites are situated in the prolongation of the so-called
“iceberg alley” (Anderson and Andrews, 1999), a zone where

icebergs calving from the margins of the Weddell Sea and further
east merge with icebergs coming from the West, follow the
cyclonic, wind-driven movement of all water masses (Carmack and
Foster, 1977; Gordon et al., 1981). Most of the icebergs exit
the Weddell Sea to the north (Pudsey and Howe, 1998) along
with deep-water passing through gaps into the South Scotia Ridge
(Reid et al., 1977).

The Antarctic Circumpolar Current (ACC) dominates oceanic
circulation in the Scotia Sea. With a transport volume of roughly
140 Sverdrup (1 Sv¼ 106m3/s) it is the largest current on the planet
(Pugh et al., 2009) and the only one connecting the Atlantic, Indic,
and Pacific (Maldonado et al., 2003), thereby allowing for an
exchange of salt and nutrients among the oceans. The main water
mass of the ACC is Circumpolar Deep Water (CDW), a mixture of
North Atlantic Deep Water (NADW), Antarctic Bottom Water
(AABW), and Antarctic Intermediate Water (AAIW) (e.g., Mantyla
and Reid, 1983). The ACC flows west to east and is mainly wind-
driven between 45 and 55! S. Therefore, it provides a major
oceanic atmospheric link which exhibits global teleconnections
(Anderson et al., 2009).

Atmospheric circulation in the Scotia Sea is dominated by
cyclonic transport within the Southern Hemisphere Westerlies
(SHW), which cover a wide latitudinal range from 40 to 70! S and
show highest wind speeds between 45 and 50! S (Toggweiler and
Russell, 2008). Towards Antarctica, polar easterlies prevail with
anti-cyclonic atmospheric circulation (Iriondo, 2000). For Antarctic
ice cores dust particle concentration as well as nssCa2þ flux are
used to trace atmospheric circulation (Lambert et al., 2011).

Fig. 1. Location map. Sites MD07-3133 and MD07-3134 are located in the central Scotia Sea. White arrows refer to “iceberg alley” of Anderson and Andrews (1999). Laguna Potrok
Aike refers to Patagonian lake record (Haberzettl et al., 2009). Gray arrow indicates the main wind direction of Southern Hemisphere Westerlies (SHW). Turquoise dashed line
shows the extent of Patagonia at the last glacial maximum (LGM) (Iriondo, 2000). White dotted line indicates the limit of Patagonian ice sheet during the LGM (Hein et al., 2010).
Polar Front (PF) is shown by blue dashed line and Southern Boundary of Antarctic Circumpolar Current (SB of ACC) is indicated by gray dashed line (Diekmann et al., 2000). The
white lines describe the winter (WSI) and summer (SSI) sea-ice extent (Gersonde et al., 2005). PS cores refer to studies of Weber et al. (1994, 2010). NPI and SPI are Northern and
Southern Patagonian Icefield; NSR and SSR are North and South Scotia Ridge. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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3. Analytical methods

Sediment physical properties were measured non-destructively
at 1-cm increments on whole and split cores using a Multi-Sensor-
Core Logger (MSCL; method seeWeber et al., 1997). We determined
wet-bulk density (WBD), compressional wave velocity (Vp), andMS
(kappa volume specific, with C and F sensor). Using an iteration
procedure described in Weber et al. (1997), we calculated water
content, porosity, and dry bulk density (DBD) by applying specific
mass attenuation coefficients to each measurement to account for
varying water content and grain densities. We also corrected the
density measurements for the salinity of the interstitial fluid to
reduce the error in calculating DBD to less than 2%.

We also determined the distribution of chemical elements non-
destructively using an AVAATECH X-ray Fluorescence Core Scanner
(XRF-CS) (Jansen et al., 1998). In this paper, we concentrate on Ca
elemental XRF peak area intensities measured in total counts per
second (cps). Following the methods of Richter et al. (2006), we
performed the analysis using a sample spot of 1 by 1 cm in size at
1-cm increments.

To obtain further stratigraphic information, we used a pass-
through cryogenic magnetometer from 2-G Enterprises (Rolf, 2000)
with an embedded AF demagnetizer (max. 30 mT) to determine
the natural remanent magnetization (NRM) at the magnetic labora-
tory of the Leibniz Institute for Applied Geophysics (LIAG) in Einbeck
(Grubenhagen, Germany), where we also measured MS at 0.5-cm
increments by employing a long core susceptibility logger from
Magnon GmbH (Germany).

As demonstrated by several publications (Tauxe, 1993; Kissel
and Laj, 2004; Yamazaki and Kanamatsu, 2007; Hambach et al.,
2008), under suitable conditions (e.g. homogeneity of rock
magnetic parameters) sediments can preserve continuous records
of paleointensity variations. The magnetization intensity of sedi-
ments is not only proportional to the concentration of magnetic
particles but also to their degree of alignment with the ambient
geomagnetic field (Nowaczyk and Frederichs, 1999). Therefore,
normalizing the NRM intensity after demagnetization (to eliminate
viscous overprints) by concentration-dependent parameters such
as MS, should lead to records that reflect essentially the variation of
the intensity of the geomagnetic field. This assumption is only true
if the grain size of the magnetic effective minerals throughout the
sediment is almost homogenous because MS does not only depend
on concentration but also on grain-size. We measured relative
paleointensities at 1-cm increments and used it as a further means
of stratigraphic control.

We also used a Minolta spectrophotometer CM-2002 to
measure L*, a*, and b* color components (method seeWeber, 1998)
at 1-cm increments. In addition, we determined the amount of
biogenic opal (BSi), using the leaching method of Müller and
Schneider (1993), and correcting the primary results of biogenic
silicon by adding 10 wt % H2O to account for the water bound in the
amorphous opal skeleton (BSi ¼ BSiM&S þ 10% H2O). A correction of
the mass % due to the high salt concentration in the freeze-dried
samples was applied as well. Since this method is time-
consuming and expensive, we used it only on specific sections
that exhibit large-amplitude fluctuations. Finally, we counted all
particles >1 mm in diameter on x-radiographs on a 1 by 1 cm grid
(principal method see Grobe, 1987) as an indicator of the content of
ice-rafted debris (IRD).

High-resolution paleoclimate proxies were then obtained
through a combination of traditional analytical means and state-of-
the-art core logging techniques of physical (MSCL) and optical
(spectrophotometer) measurements (Weber, 1998). We used Ana-
lySeries software (Paillard, 1996) to perform tuning experiments
and to construct high-resolution ageedepth models. Also, we

calculated orbital insolation values, using the solutions provided by
Laskar et al. (2004).

4. Sediment composition and ground-truth stratigraphy

Sediment composition strongly varies with climate conditions
(Weber and Pisias, 1999). Deep-sea sediments can be considered
a three-component system, consisting primarily of biogenic
carbonate, BSi and detrital components (e.g., clay minerals, quartz,
etc.). Scotia Sea Sites MD07-3133 and MD07-3134 are located well
below the CCD, i.e., the sediments are more or less carbonate
free and consist primarily of BSi (mainly diatoms) and detrital
material.

BSi-rich, unconsolidated sediments exhibit extremely high
porosities because interstitial fluid rests both within the shells
(intragranular) and in the pore space (intergranular). Accordingly,
water contents are also very high, whereas WBD and DBD are
extremely low, also because BSi has lower grain densities than
detrital material (Weber et al., 1997). The negative correlation
betweenWBD and BSi follows sediment-physical laws and is hence
generally valid. For the Scotia Sea sites it is so striking (r ¼ 0.9) that
90% of the variability documented for BSi can be expressed by
changes in WBD. In addition, WBD and Vp are negatively corre-
lated. Low-density, high-velocity sections are also indicative for
high amounts of BSi, an observation that has been made globally
for non-compacted ocean sediments (Weber et al., 1997). Also, the
b* value of sediment color shows a positive linear correlation to BSi
(r ¼ 0.85), i.e., the yellower the sediment, the higher the amount of
BSi. Since opal leaching measurements are very time consuming,
we restricted initial measurements to some major transitions in
the record and used WBD and color b* as high-resolution BSi
proxies.

The production of BSi and the related carbon sink is an impor-
tant part of the climate system and 50e75% of the global burial
occurs in the “opal belt” of the SO (Nelson et al., 1995). Although the
mechanisms are not fully understood, sedimentary cycles in the SO
are dominated by changes in BSi on glacial-to-interglacial time
scales (Diekmann, 2007). South of the Antarctic Polar Front (APF),
sediments show higher interglacial and lower glacial contents
(Pudsey and Howe, 1998). Glacial to interglacial changes in the SO
are associated with latitudinal shifts of the frontal systems
(Toggweiler, 2009), leading to substantial changes in the upwelling
associated with BSi-rich waters (Anderson et al., 2009).

We used these major changes to apply a first, low-resolution age
model to the BSi proxy (WBD and color b*) records of Site MD07-
3134 (Fig. 2), containing the MIS boundaries of the orbital time
scale according to Lisiecki and Raymo (2005). As a result, Marine
Isotopic Stage (MIS) boundaries 5/4 (71 ka), 4/3 (57 ka), 3/2 (29 ka),
and 2/1 (14 ka) comply with 46, 38.5, 16.5, and 11 m core depth,
respectively. This stratigraphic assignation is also reflected in
fundamental changes in sediment facies, which, in turn, is docu-
mented by changing proportions of BSi and detrital material. Warm
climatic periods (MIS 5 and 1) show homogenous, olive gray to
yellowish diatomaceous oozes, cold periods (MIS 4 and 2) indicate
gray to blueegray diatom-bearing mud, and MIS 3 mostly reveals
olive-gray diatomaceous mud.

Relative paleointensity of Site MD07-3134 is generally low with
a poor signal-to-noise ratio, specifically in the lowermost and
uppermost parts of the record. This is due to the poor signal
preservation in diatom-rich sediment since the carrier of the MS
signal is usually fine-grained detrital material. However, compar-
ison to the global paleointensity stack (GLOPIS, Laj et al., 2004) over
the last 75 kyr, reveals some common trends despite the difference
that the GLOPIS record contains higher amplitudes and more
structured long-term trends (Fig. 2). One specific drop around 24m
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is considered the Laschamp Event (40.4 ! 1.1 ka; Guillou et al.,
2004). This age control point was added to the low-resolution age
model of Site MD07-3134.

Further stratigraphic evidence comes from volcanic ashes. We
detected rather massive layers rich in IRD, e.g., at Site MD07-3134
in 8.9, 13.36, 34.17, and 43.88 m core depth. Kanfoush et al.
(2000) dated such layers, correlated them across the Southern
Atlantic (SA), and named them SA0 (ca 14e15 ka) to SA6 (ca 55 ka).
Nielsen et al. (2007) demonstrated that thematerial was of volcanic
origin. For Site MD07-3134, volcanic layers SA0 and SA6were found
in 13.36 and 34.17m core depth, respectively. The detection of these
two layers further supports the independent MIS ground-truth
assignation based on BSi changes because SA6 is just a little
younger than MIS boundary 4/3, and SA0 is exactly as old as MIS
boundary 2/1.

5. Tuned chronology and high-resolution age model

Using the seven control points of the ground-truth age model
(fourMIS boundary control points, the Laschamp Event, and two ash
layer ages), we converted the depth scale of Site MD07-3134 into an
age scale. For reasons explained in Chapter 7, our tuning target is the
nssCa2þ flux record of the EDML ice core (Fischer, 2008), a confident
indicator of atmospheric dust transport. The close resemblance of
the nssCa2þ flux record and theMS record of SiteMD07-3134 on this
preliminary time scale is striking and provides further evidence for
the validity of the ground-truth stratigraphy. It documents, with
slight temporal shifts, a one-to-one reproduction of virtually every
single increase during the last glacial cycle. This strong correlation
allows for furtherfine-tuning of the record to nssCa2þfluxwithin the
boundaries given by the ground-truth stratigraphy.We applied three

Fig. 2. Ground-truth chronology of Site MD07-3134 displayed versus sediment depth. Upper panel shows global d18O record (A) of Lisiecki and Raymo (2005); spring (September)
Insolation at 59# S (B) (Laskar et al., 2004); and GLOPIS (C) paleointensity stack (Laj et al., 2004) vs age for the last 92.5 kyr. Lower panel gives content of ice-rafted debris (D; IRD
>1 mm; gray histogram lines); Biogenic opal (BSi) proxies p-wave velocity (Vp; E), wet-bulk density (WBD; F), and sediment color b* (G); measured BSi (red dots); and relative
paleointensity (H). Note that assignation to Marine Isotopic Stages (MIS) relies on WBD and color b* changes relative to global d18O changes. The Laschamp Event (Guillou et al.,
2004) is indicated as a significant drop in relative paleointensity (orange bar). Black stars refer to ground-truth data points used to develop the age model (see text for details).
Underlain color pattern refers to MIS. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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stratigraphic approaches to produce a tuned, high-resolution age
model, evaluate its quality, and provide error estimates: (i) manual
picking of tie points, (ii) an automated pattern-matching algorithm,
and (iii) a smoothing spline regression using the manual tie points.

For the first and basic approach, we used Analyseries (version
2.0.4.2.; Paillard,1996), a highly iterative software that displays four
windows, to perform tuning experiments. Window 1 is used to
manually pick tie points from the graphical display of the record
(MD07-3134; displayed versus depth) that correlate best with the
target (EDML; displayed versus age). The remaining windows
calculate, in real time, various statistics and display them graphi-
cally with updates every time new tie points are selected. Window
2 displays the record curve on top of the target curve versus age.

Hence, the graphical correlation is immediately visualized and can
be changed iteratively for optimization. Windows 3 and 4 display
the deptheage structure and the development of sedimentation
rates throughout the record, respectively, and are also helpful for
evaluating the legitimacy of the tuning procedure. After carefully
optimizing the visual fit by using all (and only) significant corre-
lations (either minima or maxima in the records), we established
48 confident age control points (Fig. 3) for the last 92.5 kyr that
provide the best fit between record and target.

The very close match of record and target proofs a common
mechanism of formation. The resulting correlation coefficient from
manually assigned tie points is r > 0.9 for elevated signals, and
r ¼ 0.85 for the entire record. Accordingly, the correlation is very

Fig. 3. Correlation of (A) EDML nssCa2þ-flux (Fischer, 2008) on EDML1/EDC3 time scale (Parrenin et al., 2007; Ruth et al., 2007) and magnetic susceptibility (MS) records of Sites
MD07-3134 and MD07-3133. Correlation lines mark tuned tie points to convert sediment depth of Sites MD07-3134 (B) and MD07-3133 (C) to calendar ages using AnalySeries
2.0.4.2 (Paillard, 1996). (D) shows correlation of MS records of Sites MD07-3133 and MD07-3134. Black stars refer to ground-truth data points (see text for details). Underlain color
pattern refers to Marine Isotopic Stages (MIS). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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robust for higher contents and usually, these intervals display
closer-spaced age control points. However, when both signals
decrease, the correlation becomes less striking.

The second approach follows the idea of evaluating the chro-
nology by independent measures in order to test for common traps
and circularities of (manual) tuning. Common tools are dynamic
time wrapping (DTW) algorithms (e.g., Giorgino, 2009), which
compute a time axis stretch and map two time series optimally by
minimizing the cumulative distance. Since these methods are
built for various, mostly technical applications, matching high-
resolution time series of MS und nssCa2þ flux requires a detailed
setup of windowing functions, step patterns, etc. Here, we used
a RabinereJuang step pattern and LOESS smoothing with a span
(degree of smoothing) of 0.025 in order to remove minor subscale
noise that deterministic DTW algorithms cannot handle. Results
coincide with manually picked tie points throughout most parts of
the record and with only slight deviations at 10e15 ka and at
75e85 ka (Fig. 4A), which can be seen as independent verification
of the tuning procedure. However, the DTW algorithm still

represents a deterministic point of view and the results strongly
depend on the various options that have to be set a priori. Since this
is clearly a limiting factor, the final ageedepth model is therefore
built on a more robust approach that also accounts for
uncertainties.

The third approach applies a cubic smoothing spline (e.g., Hastie
and Tibshirani, 1990) to the age control points (Fig. 3) that were
picked manually. It overcomes the problem of traditional splines,
which may produce extreme outliers and artefacts due to the fact
that the observations are treated deterministic, i.e. without error.
The smoothing factor has been set to 0.25, which allows for (partial)
leads and lags between the two time series, albeit not for an overall
bias. In order to estimate the uncertainty in this model, especially
the identification of tie points, we generated 500 replicates
by ordinary non-parametric bootstrap re-sampling (Efron and
Tibshirani, 1994). Fig. 4A shows the resulting ageedepth model in
terms of median, interquartile range, and 0.05/0.95 quantiles. The
bootstrap correlation for the time series of MS and nssCa2þ flux is
0.843 for the median and within a 95% uncertainty range of [0.821,

Fig. 4. Top shows ageedepth models based on the correlation of EDML nssCa2þ flux to MD07-3134 MS (A) and to MD07-3134 Ca2þ (B) using a smoothing spline (solid) with
bootstrap estimates of uncertainty (gray shading). Tie points (þ) as well as results from a stepwise linear model (dashed) and from a dynamic time wrapping (DTW) algorithm
(dash-dot) are shown for comparison. Age plots underneath give sedimentation rates for MD07-3134 MS (C) and MD07-3134 Ca2þ (D), corresponding to the different ageedepth
models provided by A and B. Solid line shows median. Gray areas mark uncertainties in terms of quantile ranges as obtained from bootstrap re-sampling. Background curves are
shown for reference only. They represent MD07-3134 records of MS (green) and Ca2þ (red) at the top and EDML nssCa2þ flux (gray) (Fischer, 2008) at the bottom (in relative units).
Underlain color pattern is explained in Fig. 5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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0.856]. However, the correlation coefficient should be interpreted
carefully when matching time series since it neither accounts for
autocorrelation in both time series nor for the reduced degrees of
freedom due to the definition of tie points.

The corresponding sedimentation rates vary from approxi-
mately 0.2 m/kyr to 1.2 m/kyr (Fig. 5E). Note that the uncertainty
ranges are narrow compared to the temporal variation in most
parts of the time series and naturally becomewider in sections with
fewer tie points (usually those with MS and nssCa2þ flux values),
indicating a more uncertain definition of the sedimentation rate.

Finally, the question arises if the robustness of the technique
could be evaluated by using different records. Therefore, we also
applied the three approaches described above to the Ca2þ record of
site MD07-3134 that has been generated by XRF scanning tech-
niques, instead of the MS record, and the nssCa2þ flux record of the
EDML ice core. For Site MD07-3134, MS and Ca2þ records show
a correlation coefficient of r ¼ 0.88. The resulting ageedepth rela-
tion and the sedimentation rates including their uncertainty

estimates are almost identical relative to those given by the MS
tuning, whereas the bootstrap correlation slightly drops to 0.806
for the median with 95% uncertainty ranges of [0.706,0.827]. As
a conclusion, we summarize that both ageedepth model and
sedimentation rates are well defined by the smoothing spline
approach, with uncertainties given in Fig. 4.

From the various supplymechanisms proposed for theMS signal
(a detailed analysis will follow in Chapter 7), only atmospheric
circulation remains (a thorough discussion of this conclusion will
follow in Chapter 8), which also has significant implications for the
quality and reliability of the age model. The fact that we more or
less phase-lock nssCa2þ flux with both the MS and Ca2þ signals
during this procedure is therefore reasonable because dust trans-
port from Patagonia to Antarctica takes only about a week (Li et al.,
2010). Therefore, no major leads or lags should be involved for
atmospheric transport. Accordingly, our chronology provides
a precise and high-resolution age model of unprecedented confi-
dence and resolution for SO deep-sea sediment.

Fig. 5. Paleoclimate records at site MD07-3134 for the last 92.5 kyr. A is EDML d18O (EPICA Community Members, 2006). BeE are records of Site MD07-3134: B is wet-bulk density
(WBD) and measured biogenic opal (BSi) (red circles); C shows dry-bulk density (DBD); D is mass accumulation rate (MAR; black) plotted on top of E (linear sedimentation rate; LSR;
bold brown); F refers to Northern Hemisphere nGRIP d18O (NGRIP Members, 2004) for comparison. The underlain pattern consists of Marine Isotopic Stages (MIS) 5e1 (Lisiecki and
Raymo, 2005), Antarctic Isotopic Maxima (AIM; yellow) 22e0 (EPICA Community Members, 2006), Antarctic Cold Reversal (ACR; dark blue), Heinrich Layers (HL; brown)
(Rahmstorf, 2002), DansgaardeOeschger-Cycles (D/O; green) (Blunier and Brook, 2001), and 8.2 event (turquoise) (Rohling and Pälike, 2005). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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In a last step,we applied the same stratigraphic approaches to Site
MD07-3133 and fine-tuned the MS record to the one of Site MD07-
3134 implementing 48 age control points for the last 36 kyr (Fig. 3).
High-resolution time series could have been obtained fromBSi proxy
records (WBD and Vp). These proxies show a pattern that contains
characteristics of the d18O time series fromEDML (EPICACommunity
Members, 2006) and nGRIP (nGRIP Members, 2004), both on orbital
and suborbital time scales (Fig. 5). Nonetheless, the resemblance is
not as striking as for MS and nssCa2þ flux, and the two d18O time
series from thepolar ice sheets are phase-shifted, probably related to
temporal changes in oceanic heat transport between the hemi-
spheres (EPICA Community Members, 2006). Because of these
uncertainties onmillennial time scales, we abandoned the option to
use BSi as a tuning record. However, these ambiguities are not given
for MS and nssCa2þ flux (see discussion in Chapter 7).

We calculated mass accumulation rates (MAR; g/cm2/kyr) by
multiplying LSR (cm/kyr) with DBD (g/cm3). Average LSR are high,
ranging from 0.2 to 1.2 m/kyr and from 0.3 to 2.1 m/kyr for Sites
MD07-3134 and MD07-3133, translating into MAR of 10e120
g/cm2/kyr and 15e170 g/cm2/kyr, and into sample resolution of
50e8 years and 33e5 years (given a sample increment of 1 cm),
respectively. The detailed LSR and MAR structure of Site MD07-
3134 (Fig. 5) shows a complicated pattern with intermediate
values during MIS 5, high values during late MIS 4 and early MIS 3,
lowest values during late MIS 3 and early MIS 2, and high values
again during the Holocene. There is no linear relationship with
orbital-scale variations, e.g., the Holocene shows high values,
whereas MIS 5 indicates low values. Also, MAR are highest during
MIS 4 and lowest during MIS 2. Although MIS 1 sections of Sites
MD07-3133 and MD07-3134 have high LSR and visually appear as
diatom oozes (with BSi contents "40%), their DBD are extremely
low and hence Holocene MAR are not higher than those during
MIS 4 and early MIS 3, where DBD are much higher.

6. Supply mechanism for magnetic susceptibility

In order to evaluate the possible supply mechanisms for the MS
signal, we have to consider iceberg transport, oceanic circulation,
volcanic sources, sea-ice distribution, and atmospheric circulation.
We used IRD as an indicator for iceberg transport. One has to be
careful when adopting this approach. For instance, Kanfoush et al.
(2000) used IRD to deduce Antarctic ice-sheet instability during the
last glacial cycle from deep-sea cores across the Polar Frontal Zone.
However, Nielsen et al. (2007) demonstrated that the IRD material
wasof volcanicorigin, probably fromtheSouthSandwich Islands, and
concluded that sea-ice transported it.We also detected some of these
IRD-rich layers (e.g., at Site MD07-3134 in 8.9 m, 13.36 m (layer SA0
according to Kanfoush et al., 2000), 34.17 m (layer SA6), and 43.88 m
depth; see also above discussion on the age model), but they are
distinct and massive, whereas the IRD curve that we have produced
consists mainly of small grains (1e3 mm in size) in a dispersed,
diatom- or clay-rich matrix. Therefore, we are confident that the IRD
records of SitesMD07-3133 andMD07-3134 can be used as a reliable
tracer of long-lasting (centuries to millennia) phases of enhanced
iceberg fluxes from the Antarctic Ice Sheet.

This interpretation is corroborated by the fact that the central
Scotia Sea is located in the prolongation of the so-called “iceberg
alley” (Anderson and Andrews, 1999), a zone where icebergs calving
from the margins of the Weddell Sea merge and follow the cyclonic,
wind-driven movement of all water masses (Carmack and Foster,
1977; Gordon et al., 1981). Most of the icebergs exit the Weddell
Sea to the north (Pudsey and Howe, 1998) along with deep-water
passing through gaps into the South Scotia Ridge (Reid et al., 1977),
before they reach Sites MD07-3133 and MD07-3134. Therefore, the
Antarctic Ice Sheet can be considered the primary source of IRD.

The temporal distribution of IRD displays a complicated pattern
of enhanced phases of iceberg transport of unequal length and
amplitude (Fig. 6). Some of the major amplitudes are concentrated
on deglaciation periods during the later half of MIS 4 and MIS 2.
Also, some longer stadial intervals during MIS 3 contain higher
values, whereas interglacial periods MIS 5 and MIS 1 show lower
contents. However, the IRD pattern shows virtually no resemblance
to the MS curve, i.e. icebergs can be excluded as a primary means of
transporting and delivering the MS signal.

Besides icebergs, oceanic circulation could be important. Earlier
studies (Diekmann et al., 2000) emphasized that current transport
was mainly responsible for dispersal of the MS signal. However,
Hofmann(1999) foundcomparableMSpattern incores fromdifferent
current regimes. In addition, the Scotia Sea is isolated from major
sediment sources of the continental marginse only thewestern part
is located in the supply areas of SSA and the Antarctic Peninsula
(Maldonado et al., 2003). Therefore, oceanic circulation is also
unlikely the major supplier of the MS signal. Nonetheless, it might
serve as a secondary means of redistribution (Pugh et al., 2009). The
MS carrier would most likely be the detrital fraction (mainly clay
minerals), whereas biogenic sediment components (mainly
carbonate and BSi) unlikely stored, but potentially diluted the signal
(Florindo et al., 2003). However, Pugh et al. (2009) showed, by
calculating the flux of the specific MS of the detrital component, that
signal alteration of kappawasminor in Scotia Sea sediment. Northern
hemisphere Heinrich events, for instance, were mostly detected by
negative excursions of the MS signal in deep-sea cores, because
icebergs released from the Laurentide Ice Sheet carried detrital
carbonates from the region off Hudson Strait (e.g., Hemming, 2004).
Accordingly, sediment compositionwill influence the MS record, but
not necessarily point to the mechanism of transport.

Another potential transport agent is sea-ice. Here, two processes
are capable of incorporating and re-locating material. First, turbu-
lent outflow of fine-grained material in high-energy systems such
as glacial outwash plains or delta systems can re-suspend material.
In case of rapid cooling, this hypopycnal sediment load would be
incorporated into the freezing sea-ice (frazil ice). Also, due to
turbulence, sinking ice particles can incorporate material from the
bottom of shallow shelf areas (Reimnitz et al., 1987). This process,
often promoted by strong winds, is well known from the Arctic
region (Kempema et al., 1989). However, Antarctica lacks large shelf
areas that are fed by river suspension and therefore frazil ice
formation through supercooling of surface waters did likely not
include large quantities of fine-grained sediment.

During times of intense sea-ice coverage, however, material
delivered by atmospheric processes will first be deposited on the
sea-ice. Forced by wind and oceanic circulation, it will drift away
from the Patagonian source region along the ACC and eventually
rain out into the deep sea in areas of melting (e.g., Nielsen et al.,
2007). Since sea-ice in the Antarctic realm only carries material
delivered by eolian processes, both sea-ice transport and atmo-
spheric circulation carry the same source material. Therefore, sea-
ice formation can be considered a secondary source of sediment
transport, although it could only have a minor impact on the Scotia
Sea, because there is virtually no correlation between the MS
record and the ssNaþ flux record of the EDML ice core, a sea-ice
indicator (Fischer et al., 2007) (Fig. 6). We should note that
volcanic eruptions also deliver ashes as eolian fallout that will be
carried by both atmospheric winds and sea-ice.

7. Magnetic susceptibility as dust indicator

Dust particle concentration records provide direct information
on atmospheric transport activity and sediment sources. Unfortu-
nately, these records are hard to decipher in ocean sediment and
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only available for a limited number of Antarctic ice cores. Fig. 6
displays the dust particle concentration for Epica Dome C (EDC;
Lambert et al., 2008), the record with the highest resolution avail-
able so far. Ice-core records of nssCa2þ flux are confident and well-
established indicators for atmospheric dust (e.g., Röthlisberger
et al., 2004), specifically during glacial times (Lambert et al., 2011).
Also, they are available at very high resolution for a number of
Antarctic ice cores.

The close resemble of the MS signal of the deep Scotia Sea Basin
and the nssCa2þ flux of the EDML ice core (Fig. 3) clearly favors
atmospheric circulation as the major mechanism of supply.
Accordingly, a significant influence through ocean currents,
icebergs, and sea-ice (see Chapter 6), can be excluded for the Scotia
Sea sites.

Comparison of MS and nssCa2þ flux records shows that atmo-
spheric signals documented for the Scotia Sea mostly reached the
EDML site (Fig. 6). There were times when amplitudes decreased

significantly along the transport path (e.g., at 46.3, 42.6, and
41e39 ka), and not all signals reached the EDC site (e.g., at 46.4,
32.8 ka). Also, during deglaciation, Scotia Sea and EDML share two
spikes that are important for the agemodel (at 14.8 and 8.5 ka) that
do not appear at EDC. These similarities support our effort of tuning
the Scotia Sea sites to EDML rather than to a more distant ice core.

The XRF-CS determined Ca2þ record of the Scotia Sea cores also
resembles the EDML nssCa2þ flux record (Fig. 6). Virtually every
single increase in the Scotia Sea Ca2þ record has counterparts in the
nssCa2þ flux record from the East Antarctic Ice Sheet (EAIS). The
fact that the same chemical element replicates in both archives is
another strong argument for atmospheric transport of Ca2þ. It is
also the reason why we conducted tuning experiments using Ca2þ

(see Chapter 5) in addition to MS. Both Ca2þ and MS originate from
the carbonate-free detrital sediment fraction (mostly from feld-
spars) since biogenic carbonate is not present because the Scotia
Sea sites are located underneath the CCD.

Fig. 6. Atmospheric dust proxies in the Southern Ocean during the last glacial cycle (92.5 ka to present). A shows ice-rafted debris (IRD) (>1 mm; gray histogram lines) content of
Site MD07-3134; B and C are EDML ssNaþ- and nssCa2þ-flux (Fischer, 2008) on EDML1/EDC3 time scale (Parrenin et al., 2007; Ruth et al., 2007); D and E are records of Site MD07-
3134: D is magnetic susceptibility (MS) and E is calcium concentration (Ca2þ XRF-CS spectral peak area counts); F shows the residual curve calculated by subtracting normalized
MD07-3134 records MS and Ca2þ from twice the EDML nssCa2þ flux; G displays dust particle concentration of the EDC ice core (Lambert et al., 2011); H refers to MS record of
Patagonian maar lake Laguna Potrok Aike (Haberzettl et al., 2009). See Fig. 5 for explanation of underlain pattern.
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This finding supports an original concept of Hofmann (1999)
who also used MS to infer atmospheric dust transport. It also
corroborates the assumption of Pugh et al. (2009) that MS can be
used as dust indicator in SO deep-sea sediment that is more or less
carbonate free. They inferred the link of MS and Antarctic dust for
more than ten lower-sedimentation sites from the Scotia Sea (in
the vicinity of Sites MD07-3133 and MD07-3134) on glacial-to-
interglacial time scales.

Therefore, one of our main conclusions is that the MS record of
our high-resolution sites is a very powerful tool for detailed chro-
nostratigraphic correlation over long distances under the given
circumstances, specifically on millennial time scales. Phase-locking
nssCa2þ flux and MS is reasonable because both signals are atmo-
spheric and, hence, no major leads or lags should be involved.
Accordingly, chronologies relying on this atmospheric correlation
provide precise and high-resolution age models, allowing for
detailed comparison of climate signals (see above, and Figs. 5 and
6). This is of particular importance because deep-sea sites in the
SO usually lack biogenic carbonate and therefore had only limited
stratigraphic control so far.

Dust transport is closely coupled to climatic conditions. Generally,
cold periods provide higher temperature gradients between equator
and poles, leading to intensified atmospheric circulation (Toggweiler
and Russell, 2008). Indeed, our inferred dust input into the Scotia Sea
was significantly higher during glacials than during interglacials e
up to 10 times during parts of MIS 4 and 2 (also at the end of MIS 3),
relative to MIS 5 and 1 (Fig. 6). Dust input into Antarctic ice cores
followed the same pattern with higher fluxes during glacial periods
(Fischer et al., 2007; Lambert et al., 2008). The same co-variance is
documented for millennial-scale variability. Colder phases between
Antarctic IsotopicMaxima (AIM) indicate elevated contents, whereas
most AIM show reduced dust concentrations (specifically AIM 20,18,
14, 12, 8, 7, 5, 3, and 1; Fig. 6).

SiteMD07-3133 has, on average, higher amplitudes of variability
with elevated contents during glacial stages relative to Site MD07-
3134 because it is located closer to the Patagonian source area. We
examined the difference between the Scotia Sea and the EAIS by re-
sampling the EDML nssCa2þ flux and MD07-3134 MS and Ca2þ

records at 0.1 kyr increments, scaling each record to unit variance,
and subtracting the two Scotia Sea records from twice the EAIS
record (see Fig. 6F). The residual curve does not exhibit any long-
term trend, thus the mean difference of atmospheric transport
remained constant over glacial-to-interglacial cycles between the
two areas. A constant dust source was also inferred by Basile et al.
(1997) and Delmonte et al. (2010) for several glacial cycles. There is
no systematic assignation of lows and highs to AIM; however there
seems to be a common trend with higher relative EAIS dust
contents (positive values) toward the end of MIS 5 and 3, declining
to strongly negative values (higher relative dust in the Scotia Sea) at
the beginning of MIS 4 and 2, and switching back to positive values
for the remaining parts of glacial MIS 4 and 2, respectively. There
are also a few distinct events that may be unrelated to atmospheric
transport, e.g., clear Scotia Sea signals around 88 ka and in the
vicinity of the Laschamp Event (around 40 ka), and higher EAIS
contents around 32e30 ka.

8. Patagonia as dust supplier during the last glacial Cycle

SSA is the only large southern landmass within the dominating
SHW. It is therefore natural to assume that Patagonia is the source
for Antarctic dust. According to Iriondo (2000), cyclonic winds
reaching Patagonia will rise several km on the western side of the
Andes, loose their moisture, and carry large amounts of fine-
grained sand and silt to the dry East Patagonian low lands
(humidity is "5%). These high-pressure cyclonic systems in the

upper troposphere move east and southeast, with possible influ-
ence as far as 80# S. They are compensated by Antarctic anti-
cyclonic movement, which sinks air and aerosols to the surface on
the Antarctic continent.

Li et al. (2010) conducted trajectory studies and identified two
Patagonian dust sources with the southernmost area around San
Julian’s Great Depression as the dominant dust source. Transport to
East Antarctica takes about 7 days and is driven by eastward
moving low-pressure systems. Since the Scotia Sea sites are located
in the trajectory of atmospheric transport from SSA to East Ant-
arctica, we see strong evidence that the eolian record of Sites
MD07-3133 and MD07-3134 also originated from Patagonia. This
interpretation is corroborated by the fact that MD07-3133, which is
located a couple of hundred km closer to the presumed source area,
has slightly higher MS contents than Site MD07-3134 (Fig. 3).
Hofmann (1999) found similar indications for Scotia Sea sites. Also,
Fischer et al. (2007) attributed the threefold higher dust content of
EDML relative to EDC to the smaller distance to the SSA source
region. The MS records from Site MD07-3134 and Patagonian lake
Laguna Potrok Aike (Haberzettl et al., 2009) show common features
during deglaciation. For that period, commonalities are also evident
relative to the dust content of EDC (Fig. 6). However, the glacial part
of the lake record indicates that probably additional processes
influence the Patagonian record. Furthermore, their glacial chro-
nology is less constrained (Haberzettl et al., 2009).

Kaiser and Lamy (2010) studied the terrigenous supply at ODP
Site 1233 located off southern Chile. They argue that dust fluctua-
tions were largely controlled by environmental changes in SSA.
From the study of glacial outwash plains in Patagonia, Sugden et al.
(2009) also conclude that the amount of atmospheric dust depends
on the glacial conditions. During the sea-level low stand of the last
glacial maximum (LGM), when sea level was about 130 m lower
than today (Huybrechts, 2002), large portions of the Argentine
Shelf were exposed, in fact, the Patagonian land area had almost
doubled (Iriondo, 2000) in size (see also Fig. 1). Physical weathering
(e.g., frost wedging) prevailed on the ice-free glacial outwash plains
that received the debris of the Andes, and large loess areas formed.
Accordingly, dry and cold climate, strong west winds, and large
areas of fine-grained sediment made the East Patagonian low lands
an ideal source area for atmospheric dust (Sugden et al., 2009). Vice
versa, during sea-level high stands, the source area for dust supply
was significantly reduced. This would explain the strong depen-
dence of atmospheric dust concentration in the SO onMilankovitch
forcing, primarily on the 100-kyr eccentricity cycle. The availability
(or unavailability) of pro-glacial lakes could also provide an on/off
switch for some of the higher-amplitude dust peaks on millennial
time scales detected at Site MD07-3134 (e.g., around 25, 30, 36, 40,
44, 46, 49, 56, 63, 66, 67, 68, 72, 87, and 89 ka).

Using atmospheric modeling, Toggweiler et al. (2006) postulate
that the SHWshifted north byasmuch as 7e10# during cold climatic
periods. Thiswould imply that the strongestwesterlieswere located
over Patagonia only during glacial times. Around 17 ka, SHW started
to shift south during the early part of deglaciation (Toggweiler et al.,
2006; Lamy et al., 2007; Toggweiler, 2009), so Patagonia was no
longer in the center of high wind speeds. Dust concentrations also
dropped substantially to interglacial levels at 17e16 ka, both in the
Scotia Sea and over East Antarctica. This change occurred during
a time of enhanced temperature rise documented for East Antarctic
ice cores (EPICA Community Members, 2006) and was probably
associatedwith the redistribution of heat between the hemispheres
caused by a reduction in the Atlantic meridional overturning circu-
lation (Stocker and Johnson, 2003;Weber et al., 2011). Also, glaciers
in Patagonia started to retreat rapidly at 16.5e15 ka (Hein et al.,
2010). The shift of the SHW probably involved upwelling of CO2-
rich deepwater that accompanied atmosphericwarming (Anderson
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et al., 2009). These major environmental and climatic changes
reduced the availability of dust in the Patagonian source areas.

Dust provenance studies from East Antarctic ice cores indicate
Patagonia as the main dust supplier through the last glacial cycle
(EPICA Community Members, 2006) and through the last 800 kyr
(Delmonte et al., 2010). Delmonte et al. (2004) report a 10e30 times
higher dust flux during the LGM relative to the Holocene for
Antarctic ice cores. Accordingly, for warm climatic periods atmo-
spheric dust contents were significantly lower. For these times, the
correlation of MS and nssCa2þ flux in our Scotia Sea sites is rather
insignificant and the dust source might be much more debatable.
Based on magnetic studies, Lanci et al. (2008) propose changing
dust provenances between glacials and interglacials. Revel-Rolland
et al. (2006) call for Australia as the dominant dust source for
interglacials using isotopic composition changes, whereas Gabrielli
et al. (2010) argue, based on rare earth element analysis, for
a combination of various dust source areas (SSA, Australia, New
Zealand, and South Africa).

On the other hand, Lunt and Valdes (2001) argue, based on
modeling (trajectory) studies, that dust transport efficiency for
particles in East Antarctica is currently higher than it has been during
theLGM.Thisagain implies thathigherglacialdustconcentrationsare
primarily caused by changingenvironmental conditions in the source
area rather than by changes in atmospheric circulation. Accordingly,
they claim Patagonia as dust source during both glacial and inter-
glacial times. In addition, the fact that the SHW did not change
direction during glacial and interglacial cycles, argues for dust
transport from Patagonia to the Scotia Sea also in recent times.

9. Summary and conclusions

Identification of reliable proxies for past atmospheric transport
is crucial for paleoclimate studies in many ways. In this paper, we
concentrate on two aspects: the identification of MS as a reliable
dust tracer in SO deep-sea cores, and the use of the signal as
a powerful stratigraphic tool. Two high-sedimentation sites from
the Scotia Sea (MD07-3133 and MD07-3134; sedimentation rates
vary 0.3e2.1 m/kyr and 0.2e1.2 m/kyr, respectively) show a one-to-
one coupling of the MS and the nssCa2þ flux signal of the EDML ice
core, clearly identifying atmospheric circulation as means of
distribution, and excluding major influence by sea-ice, iceberg, or
oceanic current transport. The fact that the same chemical element
(Ca2þ) also co-varies in Antarctic ice cores and in the Scotia Sea
provides a further, strong argument for atmospheric transport.
This interpretation has significant implications for the quality and
reliability of the age model because atmospheric transport involves
no leads or lags on millennial time scales. Accordingly, phase
locking of nssCa2þ flux with MS and Ca2þ is reasonable and the
detailed structure of variability allows for the establishment of an
age model of unprecedented resolution and confidence for SO
deep-sea sediment. This is of particular importance because MS is
a standard property measured on most marine sediment cores.
Even more importantly, deep-sea sites in the SO usually lack
biogenic carbonate and therefore had only limited stratigraphic
control so far.

The tight coupling of the two signals over the last glacial cycle
shows that both the Scotia Sea and East Antarctica were affected by
the same atmospheric circulation system. The resemblance to sites
located in Patagonia and the decrease of MS values further away
from the continent, favors SSA as the major dust source for the
Scotia Sea, specifically during glacial periods, when dust fluxes
were much higher during times of low sea-level stands, shelf
surfaces were exposed and more glacial environmental conditions
existed in SSA. Accordingly, MS records of SO deep-sea sites are
reliable tracers of atmospheric circulation that can be used to

confidently establish circum Antarctic teleconnections and study
paleoclimate change at both orbital andmillennial-scale resolution.
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Abstract 

 We present biogenic opal flux records from two deep-sea sites in the Scotia Sea (MD07-

3133 and MD07-3134) at decadal-scale resolution, covering the last glacial cycle. In addition to 

conventional and time-consuming biogenic opal measuring methods, we introduce new biogenic 

opal estimation methods derived from sediment colour b*, wet bulk density, Si/Ti-count ratio, and 

Fourier transform infrared spectroscopy (FTIRS). All methods capture the biogenic opal 

amplitude, however, FTIRS – a novel method for marine sediment – yields the most reliable 

results. 230Th normalization data show strong differences in sediment focusing with intensified 

sediment focusing during glacial times. At MD07-3134 230Th normalized biogenic opal fluxes 

vary between 0.2 and 2.5 g/cm2/kyr. Our biogenic opal flux records indicate bioproductivity 

changes in the Southern Ocean, strongly influenced by sea ice distribution and also summer sea 

surface temperature changes. South of the Antarctic Polar Front, lowest bioproductivity occurred 

during the Last Glacial Maximum when upwelling of mid-depth water was reduced and sea ice 

cover intensified. Around 17 ka, bioproductivity increased abruptly, corresponding to rising 

atmospheric CO2 and decreasing seasonal sea ice coverage.  

 

Keywords: biogenic opal flux; bioproductivity; Southern Ocean; Scotia Sea; Fourier 

transform infrared spectroscopy; last glacial cycle; upwelling; sediment focusing, 230Th 

normalization 
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The Southern Ocean plays an important role in transferring carbon dioxide (CO2) via wind-

induced upwelling from the deep sea to the atmosphere (Toggweiler et al. 2006; Anderson et al. 

2009) and is therefore one of the key regions from which to study climate change. Bioproductivity 

in the Southern Ocean is mainly controlled by the rate of upwelling of cold nutrient- and silica-

rich water masses, the extent of sea ice coverage, and the availability of light and micronutrients 

(Dezileau et al. 2003; de Baar et al. 2005; Stenni et al. 2010). Thus, bioproductivity in the 

Southern Ocean is mainly coupled to local climate change. Biogenic opal is an important nutrient 

that fuels biological production in the surface waters around Antarctica. Recent investigations 

(Pondaven et al. 2000; Chase et al. 2003; Bradtmiller et al. 2007; Anderson et al. 2009) revealed 

that biogenic opal flux in the Southern Ocean primarily reflects variations in bioproductivity rather 

than changes in preservation, which enables its use for studying palaeoenvironmental changes 

during the last glacial cycle. Anderson et al. (2009) also identified biogenic opal as an upwelling 

proxy because south of the Polar Frontal Zone in the Southern Ocean, its production is ultimately 

limited by the supply of dissolved Si from the deep ocean. Horn et al. (2011) argued that biogenic 

opal flux might not be a direct upwelling proxy, but could also indicate major changes in nutrient 

demand such as iron. Until now, high-resolution and continuous biogenic opal flux records from 

the Southern Ocean extending back to the last interglacial, are rare (e.g. Anderson et al. 2009) and 

therefore only limited knowledge exists on how Southern Ocean bioproductivity changed in the 

past. 

We studied two deep-sea cores from the Scotia Sea, with linear sedimentation rates of up to 

1.2 m/kyr (MD07-3134) and 1.8 m/kyr (MD07-3133). As biogenic opal analysis using the 

leaching method by Müller & Schneider (1993) is very time-consuming and expensive we 

additionally tested several biogenic opal estimation methods, e.g. Si/Ti-count ratio, wet bulk 

density, colour b* and Fourier transform infrared spectroscopy (FTIRS), and compared the results 

to conventionally-measured biogenic opal. FTIRS has been successfully used to determine 

biogenic opal quantitatively in lacustrine sediment (Vogel et al. 2008). We present one of the first 

studies to assess biogenic opal from FTIRS in marine sediment. Our goal is to provide a high-

resolution biogenic opal accumulation rate record, giving the opportunity to study bioproductivity 

changes at decadal-scale resolution in the Southern Ocean over the last glacial cycle (92.5 ka to 

present; note that all ages mentioned are calendar ages).  

!
Core Material 

Sediment cores used in this study originate from the central Scotia Sea (Fig. 1) and were 

drilled with a Calypso II piston corer during the Marion Dufresne (MD) II cruise 160 in March 

2007. Core sites MD07-3133 (57°26‘ S, 43°27‘ W, 3101 m water depth, 32.8 m core recovery) 

and MD07-3134 (59°25’ S, 41°28’ W, 3663 m water depth, 58.2 m core recovery) are located 

approximately 450 km apart. Both core sites lie below the carbonate compensation depth. 

Therefore, the core material is virtually free of biogenic carbonate and consists of varying amounts 
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of lithogenic material and biogenic opal. Homogenous, olive grey to yellow diatomaceous oozes 

were deposited during warm climatic periods (Marine Isotopic Stages (MIS) 5 and 1), grey to 

blue-grey diatom-bearing mud during cold periods (MIS 4 and 2), and mostly olive-grey 

diatomaceous mud during MIS 3.  

 

Chronology 

The chronology of Sites MD07-3133 and MD07-3134 is detailed in Weber et al. (2012). It 

relies on seven ground-truth data points obtained at Site MD07-3134. Accordingly, MIS 

boundaries 5/4 (71 ka), 4/3 (57 ka), 3/2 (29 ka), and 2/1 (14 ka) comply with 46, 38.5, 16.5, and 11 

m core depth, respectively. Relative palaeointensity data indicates a significant drop at 

approximately 24 m in the core that is considered to represent the Laschamp Event (40.4 ± 1.1 ka; 

Guillou et al. 2004). Furthermore, volcanic ashes also rich in ice-rafted detritus (e.g. Site MD07-

3134 at 8.9, 13.36, 34.17, and 43.88 m core depth) have been dated and correlated across the 

Southern Atlantic as layers SA0 (ca. 14 – 15 ka) to SA6 (ca. 55 ka) (Kanfoush et al. 2000; Nielsen 

et al. 2007). For Site MD07-3134, volcanic layers SA0 and SA6 were found at 13.36 and 34.17 m 

in the core, respectively. The detection of these two layers further supports the independent MIS 

ground-truth assignation because SA6 is just slightly younger than MIS boundary 4/3, and SA0 is 

exactly as old as MIS boundary 2/1.  

Weber et al. (2012) provided convincing arguments that from the various supply mechanisms 

proposed for magnetic susceptibility and Ca2+ concentrations, i.e. icebergs, ocean circulation, 

atmospheric circulation, volcanic sources, and sea ice, only atmospheric circulation remains for 

the Scotia Sea sites. Hence, they correlated both signals to the non-sea-salt Ca2+ flux of the 

European Project for Ice Coring in Antarctica (EPICA) Dronning Maud Land (EDML) record 

(Fischer et al. 2007a) to increase the resolution of their age model for Site MD07-3134. They 

applied three stratigraphic approaches to produce a tuned, high-resolution age model, evaluate its 

quality, and provide error estimates: (i) manual picking of tie points, (ii) an automated pattern-

matching algorithm, and (iii) a smoothing spline regression using the manual tie points.  

As a result, Weber et al. (2012) established 48 confident age control points for the last 92.5 

kyr. Average linear sedimentation rates are high, ranging from 0.2 – 1.2 m/kyr and from 0.3 – 1.8 

m/kyr for Sites MD07-3134 and MD07-3133, translating into mass accumulation rates (calculated 

by multiplying linear sedimentation rate with dry bulk densities) of 10 – 130 g/cm2/kyr and 9 – 

100 g/cm2/kyr, and into sample resolution of 50 – 8 years and 33 – 5 years (given a sample 

increment of 1 cm), respectively. 

Tuning magnetic susceptibility to the non-sea-salt Ca2+ flux has significant implications for 

the quality and reliability of the age model. The fact that the two signals are more or less phase-

locked during this procedure is reasonable because dust transport from Patagonia to Antarctica 

takes only approximately a week (Li et al. 2010). Therefore, no major leads or lags should be 

involved for atmospheric transport. Accordingly, the chronology of our two sites provides a 

precise and high-resolution age model for Southern Ocean deep-sea sediment. 
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Setting 

The Scotia Sea is located in the Atlantic Sector of the Southern Ocean where the Antarctic 

Circumpolar Current dominates oceanic circulation. It is the world’s largest current with a 

transport volume of approximately 134 Sverdrup (1 Sv = 106 m3/s) (Whitworth & Peterson 1985) 

flowing eastward around the Antarctic continent. The Antarctic Circumpolar Current includes, in 

most regions, water masses from the seafloor to the surface. Its velocity generally decreases with 

depth but is also severely influenced by local seabed topography (Pugh et al. 2009). Uniquely 

connecting the Atlantic, Indian, and Pacific, the Antarctic Circumpolar Current allows for heat, 

nutrient, and salt exchange between the oceans (Maldonado et al. 2003); accordingly, playing an 

important role in global climate control (Pugh et al. 2009). It is mainly wind-driven by the 

Southern Hemisphere Westerlies between 45° and 55°S. These westerlies are also responsible for 

transporting surface waters away from Antarctica through Ekman transport, leading to upwelling 

of mid-depth water (2 to 3 km) south of the current, a unique process restricted to the Southern 

Ocean (Berger & Loutre 1991).  

In the Scotia Sea, the Antarctic Circumpolar Current flows between the Subtropical Front 

and Southern Antarctic Circumpolar Current Front (Fig. 1). Its flow is concentrated in 

circumpolar, vertically-coherent, seafloor-reaching fronts: the Subantarctic Front, Antarctic Polar 

Front, and Southern Antarctic Circumpolar Current Front (Orsi et al. 1995). The Antarctic Polar 

Front is the northern limit of wind-driven, nutrient-rich deep-water upwelling because of 

northward Ekman transport. It therefore forms an ecological and physical water-mass boundary to 

colder, more silicate-rich and less saline water masses south of it (Pondaven et al. 2000; Dezileau 

et al. 2003; Cassar et al. 2007; Diekmann 2007), where both core sites are located (Fig. 1). The 

area between the Antarctic Polar Front and northern limit of seasonal sea ice is known as the 

Circum-Antarctic Opal Belt with high biosiliceous production rates (Geibert et al. 2005; 

Diekmann 2007). The southern boundary of siliceous deposits corresponds well to the Southern 

Antarctic Circumpolar Current Front in the Atlantic Sector of the Southern Ocean (Geibert et al. 

2005). 

 

Methods 

We used a Minolta spectrophotometer CM-2002 to measure L*, a*, and b* colour 

components at 1 cm intervals (Weber 1998). To obtain information on chemical element 

distribution (e.g. for Si, Ti), every centimetre of sediment was analysed according to the method of 

Richter et al. (2006) using an Avaatech X-ray Fluorescence Core Scanner (XRF-CS) (Jansen et al. 

1998).  

Sediment physical properties such as wet bulk density and magnetic susceptibility (kappa 

volume specific) were measured non-destructively every centimetre with a Geotek Multi-Sensor 

Core Logger (Weber et al. 1997). Dry bulk densities, which are required for the calculation of 

mass accumulation rates, were calculated from wet bulk densities using an iteration procedure 

described in Weber et al. (1997), by applying specific mass attenuation coefficients to each 
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measurement to account for fluctuating water content and grain density. To check its accuracy we 

also compared the non-destructive data to dry bulk densities determined on freeze-dried samples.  

Besides measuring biogenic opal on specific samples we implemented several strategies to 

estimate it at high spatial resolution. We first analysed biogenic opal by leaching the sediment in 

1M NaOH-solution according to the method of Müller & Schneider (1993). The initial values for 

biogenic silicon were corrected by adding 10 wt% H2O for the water bound in the amorphous opal 

skeleton (biogenic opal = biogenic opalM&S+10% H2O). All resulting data needed to be corrected 

for the sea salt content of the pore fluid (35‰). As this leaching method is relatively expensive 

and time-consuming, measurements were restricted to 10 cm intervals of specific sections that 

exhibit large-amplitude variations (MD07-3133: 1655 – 2785 cm, 112 samples; MD07-3134: 745 

– 1785 cm, 4135 – 4585 cm; 141 samples).  

Biogenic opal-rich, unconsolidated sediments exhibit extremely high porosities because 

interstitial fluid rests both within the shells (intragranular) and in the pore space (intergranular).  

The high sediment water contents as well as the lower grain densities of biogenic opal in contrast 

to detrital material and biogenic carbonate, cause the extremely low wet and dry bulk densities of 

biogenic opal-rich sediments. Therefore, wet bulk densities are negatively correlated to biogenic 

opal (Weber 1998) for diatom-rich deep-sea sediments well below the carbonate compensation 

depth and hence biogenic opal can be estimated from wet bulk densities using linear correlation 

coefficients (Fig. 2 A).  

Another striking correlation is given for colour b* and biogenic opal in diatom-rich sediment 

(Weber 1998), i.e. the more yellow the sediment, the higher the amount of biogenic opal, whereas 

more bluish colours indicate low biogenic opal. Accordingly, we derived linear correlation 

coefficients to estimate the amount of biogenic opal from colour b* for Scotia Sea Sites MD07-

3133 and MD07-3134 (Fig. 2 B).  

Also, we used the ratio of Si and Ti XRF-counts to obtain information on biogenic opal 

changes. Si originates from either detrital siliciclastics or from biogenic, mostly diatom sources. 

Because Ti reflects only clastic input (Murray et al. 1993), the XRF Si/Ti ratio should only 

represent changes in biogenic opal (Francus et al. 2009; Balascio et al. 2011). Because XRF core-

scanner measurements were made at higher resolution than some other proxies (1 cm increments), 

we implemented a 9-point moving average to smooth the data (using AnalySeries 2.0.4.2.; Paillard 

et al. 1996). Then we used the linear correlation between the Si/Ti XRF-count ratio and leached 

biogenic opal to calculate biogenic opal values, depending on Si/Ti-count ratios (Fig. 2 C). 

Furthermore, we implemented FTIRS to obtain high-resolution information on biogenic opal 

and other biogeochemical sediment components. FTIRS is a fast and relatively inexpensive 

technique, which requires only 11 mg of sample material (Rosén et al. 2011). It was therefore 

employed at 10 cm intervals over the entire core lengths of Sites MD07-3133 and MD07-3134 

(316 and 575 samples, respectively) at the Climate Impacts Research Centre in Umeå, Sweden. 

Until now FTIRS was successfully used to determine, quantitatively, total inorganic and organic 

carbon, and biogenic opal in lacustrine sediment (Vogel et al. 2008). Here, we present one of the 
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first studies to assess these sediment properties quantitatively for marine sediment. Samples were 

first freeze-dried and grounded to < 63 µm using a swing mill. In addition, 500 mg of oven-dried 

(80 °C) potassium bromide (KBr, Merck), which is transparent in the infrared band, was added to 

each sample. This is necessary to avoid very high absorbances (> 2), which are released by low 

intensities of infrared light that would otherwise reach the detector and produce higher noise levels 

in the data and spectral distortions (Griffiths & De Haseth 1986). The samples were measured 

using a FTIR spectrometer (Bruker Vertex 70) equipped with a diffuse reflectance accessory. Each 

sample was scanned 128 times and data were collected every 2 cm-1 (reciprocal centimetres). The 

measurement resolution was 4 cm-1 for wavenumbers between 3750 and 400 cm-1, which equals 

wavelengths from 2666 to 25000 nm, thus yielding 1735 data points per sample. To avoid 

variations caused by temperature, all samples were placed in the same temperature-controlled 

laboratory (25 ± 0.2 °C) as the FTIRS device for at least five hours prior to analysis. Multiple 

scatter correction and baseline correction were used to linearize spectra and remove variation in 

spectra caused by noise (Geladi et al. 1985; Rosén et al. 2010). Baseline correction performs a 

linear correction of the spectra so that two points (3750 and 2210–2200 cm-1) equals zero. Multiple 

scatter correction removes spectral variation arising from different effective path lengths and 

particle sizes (Geladi et al. 1985). Partial least squares regression was used to develop quantitative 

calibration models between FTIR spectra of sediment and conventionally measured sediment 

properties (Martens & Naes 1989). An internal calibration model based on 253 samples from 

MD07-3133 and MD07-3134 were regressed on 253 conventionally determined sea salt corrected 

mass percentage biogenic opal contents using the leaching technique (Müller & Schneider 1993; 

Vogel et al. 2008). Wavenumbers between 450 and 1320 cm-1 were used in the partial least 

squares regression model, i.e. a region where different types of silicates absorb. Although different 

silicates absorb in the FTIRS wavenumber region between 1050 and 1250 cm-1, it is not necessary 

to subtract spectra as the curve’s shape shows characteristic differences for, e.g. quartz and 

biogenic opal. The predictive performance of the partial least squares regression calibration model 

was assessed by 10% cross-validation. This means that the calibration model was developed using 

90% of data of the calibration samples with the remaining 10% used to test the predictions. This 

process was repeated a total of ten times as each group, in turn, was set aside. Root mean squared 

error of cross validation was used as an estimate of prediction error. All primary sediment 

properties were square root transformed prior to the analysis. SIMCA-P 11.5 (Umetrics AB, SE-

907 19 Umeå, Sweden) was used for all multivariate data analyses. 

 

Correction of sediment focusing using 230Thxs normalization 

The extremely high sedimentation rates of up to 1.8 m/kyr clearly indicate that the sediments 

of this site have been subject to massive sediment focusing induced by bottom currents. This is 

observed at many locations in the Southern Ocean and results in completely erroneous mass 

accumulation rates, which can be off by a factor of 12 (Frank et al. 1999) or even more (this 

study). For the calculation of realistic mass accumulation rates (rain rates) of biogenic opal and 
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other components, the effects of sediment focusing have to be quantified and be corrected for 

applying excess 230Th (230Thxs) normalization (Kumar et al. 1995; Frank et al. 1996; Frank et al. 

2000; Francois et al. 2004). This method is based on the constant production of 230Th from its 

global homogenously distributed radioactive parent 234U. In contrast to U, Th is highly particle 

reactive resulting in essentially the entire amount of locally produced 230Th being deposited in the 

sediments below. This means that the mass accumulation rate of 230Th in the sediments should 

match its production in the overlying water column. Given that 230Th can only be advectively 

transported in solution over very short distances as a consequence of its particle reactivity, any 

significant increases over the expected 230Th-mass accumulation rate must be a result of sediment 

focusing and can be quantitatively corrected for by relating it to the expected flux at any particular 

location. 

For the determination of the activities of 230Th, 232Th, 234U, and 238U, between 50 and 90 mg 

of sediment were weighed and spiked with 229Th/233U/236U in the laboratory of GEOMAR in Kiel. 

The samples were first treated with aqua regia and were then subjected to total dissolution in a 

mixture of concentrated nitric, hydrofluoric, and perchloric acid. Subsequently U and Th were 

separated from each other and from disturbing matrix elements via ion exchange chromatography 

using an Uteva resin (Eichrom). The activities of the U and Th isotopes were determined on an 

Agilent 7500 quadrupole mass spectrometer. The precision of the measurements was better than 

1% (2 standard errors) for the respective U isotopes and better than 2% (2 standard errors) for the 

Th isotopes. For the calculation of 230Thxs activities see Frank et al. (1996). 

 

Results 

Correlation coefficients of r=0.95 and 0.83 indicate that wet bulk density changes at Sites 

MD07-3133 and MD07-3134 are mainly caused by fluctuations in biogenic opal content (Fig. 2 

A). Also colour b* changes predominantly reflect fluctuations in biogenic opal content (Fig. 2 B), 

although their relation is, with correlation coefficients of r=0.91 and 0.79, not as striking as for wet 

bulk density. The generally good correlation coefficients (≥ 0.79) let us assume that both wet bulk 

density and colour b* can be used to estimate realistic biogenic opal contents (within the given 

errors). 

Additionally, XRF-measured Si/Ti-count ratios provide, to some extent, rough information 

about biogenic opal fluctuations. The correlation coefficient for Si/Ti and biogenic opal is r=0.58 

and 0.62 for Sites MD07-3133 and MD07-3134 (Fig. 2 C). However, its use as a biogenic opal 

proxy is questionable due to uncertainties associated with Ti values (see discussion for further 

explanation). 

The most promising estimation method is FTIRS (Fig. 2 D) with correlation coefficients of 

r=0.99 and r=0.93 for Sites MD07-3133 and MD07-3134. The models of leached and FTIRS-

estimated biogenic opal show good statistical performance, with cross-validated root mean 

squared errors of 4.8% (MD07-3133), respectively 8.7% (MD07-3134) of the gradient. FTIRS 
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provides the closest similarities of all estimation methods to the reference method of conventional 

leaching.  

We then calculated biogenic opal contents from the various proxy data sets for Sites MD07-

3133 and MD07-3134 (Fig. 3), using the linear regression lines discussed above (Fig. 2). In 

general, the same overall trend is recognizable for all biogenic opal estimation curves, however, 

the amplitude varies significantly for some parts of the cores. Higher linear sedimentation rates 

lead to higher-resolution data for Site MD07-3133 relative to Site MD07-3134, specifically for the 

Holocene section. However, both cores share the same overall trend and principal features. As 

expected from the correlation coefficients FTIRS-estimated and leached biogenic opal share the 

most commonalities. Biogenic opal contents estimated from colour b* capture the glacial to 

interglacial transition; however, colour b* overestimates biogenic opal contents for the uppermost 

and lowermost core sections of Site MD07-3133. In fact, for the upper 12 m of MD07-3133, 

estimates from colour b*, wet bulk density, and the Si/Ti-count ratio show substantial 

discrepancies relative to FTIRS estimates (Fig. 3). 

On average, highest biogenic opal contents occur during interglacial MIS 5 and 1, confirming 

results of earlier studies on deep-sea sediment in the Atlantic sector (e.g. Charles et al. 1991; 

Mortlock et al. 1991; Pudsey & Howe 1998; Diekmann 2007), the Indian Sector (Bareille et al. 

1998), and the Pacific Sector (Chase et al. 2003) of the Southern Ocean, south of the Antarctic 

Polar Front. Interglacial MIS 3 shows intermediate contents of biogenic opal with an overall 

decreasing trend towards MIS 2. During glacial MIS 4 and 2, absolute minima in biogenic opal 

contents are noticeable (Fig. 3). Surprisingly, maximum biogenic opal contents occur during 

glacial MIS 4 (Site MD07-3134). These extraordinary high values seem robust (i.e. not caused by 

analytical errors), as five data points scatter around 60% biogenic opal in less than 1 m of 

sediment core. This section also shows low densities and yellower sediment colour, corresponding 

to substantially elevated biogenic opal contents. FTIRS also indicates high biogenic opal values 

for this section, whereas the highest FTIRS-estimated biogenic opal values (~ 67%) occur at the 

end of MIS 5. MIS 5 and 4 show high-amplitude and high-frequency changes in biogenic opal, 

whereas during MIS 2 and 1 biogenic opal contents were relatively stable showing only low-

amplitude fluctuations.  

To better understand the biogenic opal sedimentation changes through time, we calculated 

mass accumulation rates for FTIRS-estimated biogenic opal contents (Fig. 4 E), which we 

consider the most precise estimation method (see methods; Fig. 2). This was done by multiplying 

the biogenic opal content as a percentage with the mass accumulation rate, i.e. the product of 

sedimentation rate and dry bulk density (Fig. 4 A, B). Instead of linear sedimentation rates, we 

used sedimentation rates estimated from a cubic smoothing spline age-model (Weber et al. 2012) 

(Fig. 4 A, grey lines). This overcomes the problems of normal splines, which don’t include errors 

and so might produce outliers and artefacts, hence, representing more realistic sedimentation rates. 

Both cores exhibit extremely high sedimentation rates in some sections with values up to 1.8 and 

1.2 m/kyr for Sites MD07-3133 and MD07-3134. Warmer periods (MIS 3 and 1) show 
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approximately 1.5 – 2 times increased sedimentation rates at Sites MD07-3133 relative to Site 

MD07-3134, whereas during MIS 2 nearly identical rates occur at both core sites (Fig. 4 A). The 

sedimentation rates and biogenic opal mass accumulation rates show a relatively complicated 

glacial-to-interglacial pattern with large-amplitude changes. While biogenic opal mass 

accumulation rate reaches its minimum during the Last Glacial Maximum with values of 

approximately 3 g/cm2/kyr at both core sites, up to 10 times higher rates are observed during MIS 

4 (Fig. 4 E). 
230Th-normalization data for MD07-3134 show that sediment focusing was very high, 

ranging from 5 (minimum value at 84.3 ka) to 29 (maximum value at 55.9 ka). During the 

interglacials the focusing factor ranged between 5 and 13, meaning that 5 to 13 times more 

sediment was added laterally to the core site via focusing than vertically through the water column. 

In the last glacial, in particular MIS 3, the focusing factors were generally even higher and ranged 

between 11 and 29. Strictly speaking, the 230Th-normalized fluxes can only be applied for the 10 

samples on which 230Th was measured because there is no control over changes in sediment 

focusing between the depths of the measured 230Th-normalized values. We are aware of this 

limitation and the interpolated 230Th-normalized rain rates are just provided as an approximation 

for illustrative purposes until we have additional 230Th-normalized data. 

The interpolated rain rate for MD07-3134 (Fig 4. D) varies between 2 and 4.3 g/cm2/kyr, 

with maximum values around 67 ka resulting from intermediate dry bulk densities (Fig. 4 B), a 

focusing factor of 10, and a relatively high linear sedimentation rate (Fig. 4 A). In order to achieve 

a more realistic record of the biogenic opal flux we multiplied 230Th-normalized rain rates and 

FTIRS-estimated biogenic opal amount to get 230Th-normalized biogenic opal flux (Fig. 4 C). The 

calculated 230Th-normalized biogenic opal flux varies from 0.2 to 2.5 g/cm2/kyr. Maxima occur 

during interglacials, with mean values of 1 (MIS 1) and 1.4 (MIS 5) g/cm2/kyr, whereas glacial 

MIS 2 and 3 were generally characterized by lower values near 0.5 g/cm2/kyr. MIS 4 shows large 

short-term fluctuations, which, however, would need to be confirmed by additional 230Thxs 

measurements at higher resolution. In general, the 230Th-normalized biogenic opal flux data (Fig. 4 

C) show a similar pattern over the past 92.5 kyr compared with the uncorrected biogenic opal 

accumulation rates (Fig. 4 D) albeit with realistic numbers when compared to other sites in the 

Atlantic sector of the Southern Ocean (Kumar et al. 1995; Frank et al. 2000). As we have no 230Th-

normalization data for MD07-3133, we can only suggest that the sediment focusing was analogous 

and maybe even higher than at the MD07-3134 core site, as the linear sedimentation rate shows a 

similar trend, but higher values (Fig. 4 A). 

 

Discussion 

To what extent are biogenic opal estimation methods reliable? 

Biogenic opal can be analysed and estimated using various techniques, but no standardized 

determination methodology exists because each method has advantages and drawbacks. As 

deduced from Figure 3, the main biogenic opal fluctuations are captured by all estimation 
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methods; so all methods can be used to decipher general biogenic opal trends; however, there are 

some strong discrepancies. Leaching according to Müller & Schneider (1993) is one of the most 

commonly used methods because of its simplicity and robustness (Swann 2010). However, 

samples with ≤ 10% biogenic opal might be affected by the pH value of the leaching solution 

(Schlüter & Rickert 1998).  

XRF Si/Ti ratio is often used to indicate biogenic opal content changes in sediments (e.g. 

Francus et al. 2009; Balascio et al. 2011; Johnson et al. 2011). Nonetheless, Tjallingii et al. (2007) 

found reduced XRF-element intensities for light elements such as Si and Al of wet material 

relative to dried material, which they relate to differences in water contents. Accordingly, this can 

lead to misinterpretations of wet-measured samples. Our Si/Ti-count ratios reflect roughly the 

main biogenic opal fluctuations, especially at MD07-3134 (Fig. 3), but they should be only seen as 

rough estimations because of the given measurement uncertainties. Colour b* can also be a useful 

parameter to estimate biogenic opal content of carbonate-free sediments that mainly contain 

varying amounts of biogenic opal, quartz and clay minerals. Our estimation shows that wet bulk 

density is also useful to roughly estimate biogenic opal content. It would also yield reliable results 

for sediments containing biogenic carbonate because biogenic opal has significantly lower 

densities (~2.2 g/cm3) than biogenic carbonate (~2.8 g/cm3) or detrital material (~2.6 g/cm3). 

However, greater amounts of organic carbon (density of ~1.4 g/cm3) would lead to 

misinterpretations (Weber 1998).  

Estimates from colour b*, wet bulk density, and the Si/Ti-count ratio for the upper 12 m of 

MD07-3133 show substantial discrepancies relative to FTIRS estimates (Fig. 3). This may be due 

to a combination of coring effect and sediment facies, i.e. the upper parts of core MD07-3133 were 

partially supersaturated with water. These sections leaked pore water when they were cut into 1-m 

sections because of missing cohesive forces typical for the fabric of diatomaceous oozes. 

Accordingly, scanning techniques such as the Multi-Sensor Core Logger and the XRF-scanner 

measured false values in the uppermost core section, because they rely on completely filled core 

liners as well as smooth and even surfaces. So these estimations have limitations if sediments are 

supersaturated with water or show uneven surfaces. 

A number of studies (e.g. Vogel et al. 2008; Rosén et al. 2011) show that FTIRS can be used 

to gain high-resolution and high-quality geochemical information on lacustrine sediment 

consisting of varying amounts of inorganic and organic components. Our results (Figs. 2 D and 3) 

also indicate that FTIRS is a very promising and useful tool for studying marine sediment 

composition. Correlation coefficients of r=0.99 (MD07-3133) and r=0.93 (MD07-3134) and an 

all-gradient accordance (Fig. 2 D) underline our suggestion that FTIRS seems to be the most 

reliable estimation method, and hence can be used successfully for deep-sea sediment analysis. 

Therefore, we used the FTIRS results for all further discussions and comparisons (Figs. 4 and 5). 
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Biogenic opal flux as a bioproductivity proxy 

There is a strong debate on the reliability of biogenic opal flux data for indicating 

bioproductivity. It is still not entirely clear whether biogenic opal preservation is consistent over 

longer time periods and how the silicon cycle is coupled with the carbon biogeochemical cycle 

during interglacials (e.g. Pondaven et al. 2000; Ragueneau et al. 2000; Dezileau et al. 2003). 

However, in recent years, a number of studies indicate that biogenic opal flux can be used as 

bioproductivity proxy. Chase et al. (2003) and Bradtmiller et al. (2007) argued that biogenic opal 

flux reflects variations in diatom productivity and not changes in biogenic opal preservation. For 

the Indian sector Pondaven et al. (2000) found that local differences in biogenic opal preservation, 

apparent in the polar frontal zone and south of it, have only a modulating but no primary effect on 

biogenic opal flux fluctuations. The good correlation of Sites MD07-3133 and MD07-3134 

biogenic opal mass accumulation rate records (Fig. 5 E), which are approximately 450 km apart 

(Fig. 1), indicates that this argument is also true for the central Scotia Sea. 

Presently, the 231Pa/230Th ratio is the most accurate and most commonly used proxy for 

analysing particle and water mass transport in the Southern Ocean, e.g. past opal fluxes 

(Kretschmer et al. 2011). Also Anderson et al. (2009) found strong correlation between the 

biogenic opal flux (i.e. mass accumulation rate) and 231Pa/230Th ratios, which are not altered by 

biogenic material loss during early diagenesis (Chase et al. 2003) in Southern Ocean sediment. 

This led them to the conclusion that biogenic opal flux variations reflect changes in biogenic opal 

production and silicon supply, rather than changes in preservation. 

Estimated mean sedimentation rates are extremely high at both core sites: mean linear 

sedimentation rate for MIS 1 is 0.9 (MD07-3134) and 1.6 (MD07-3133) m/kyr, approximately 0.5 

m/kyr (MD07-3133 and MD07-3134) for MIS 2, 0.7 m/kyr (MD07-3134) for MIS 3 as well as 

MIS 5, and 0.9 m/kyr (MD07-3134) for MIS 4. Our values are more than 10 to 30 times higher 

than reported in previous studies, where rates of less than 5 cm/kyr for interglacials, and more than 

5 cm/kyr for glacial times in the Scotia Sea were estimated (Pudsey & Howe 1998; Diekmann et 

al. 2000; Pugh et al. 2009). Accordingly, we conclude that both core sites are strongly influenced 

by sediment focusing, which is also reflected in the 230Th normalized data of MD07-3134 (Fig. 4 C 

and D), showing quite strong variability in sediment focusing with average interglacial values of 8 

and average glacial values of 20. To our knowledge, these are some of the highest focusing factors 

ever determined with this method. The calculated 230Th normalized rain rates (Fig. 4 D) now 

correspond very well to other Southern Ocean sites, for instance, neighbouring core PS2319-1 

(Francois et al. 2004). However, the 230Th normalized biogenic opal flux overall shows the same 

trend as our estimated biogenic opal mass accumulation rate (Fig. 4 E) for MD07-3134. 

High sediment focusing of course is an indicator for bottom currents affecting an area, but 

these currents obviously did not vary so dynamically that they destroyed the dust related signal 

(Pugh et al. 2009; Weber et al. 2012) within the decadal resolution. In contrast they collected the 

sediments from an upstream mostly shallower region and focused the material deposition to the 

core sites thereby enhancing time resolution of the sedimentary record. By increasing the focusing 
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factor from 8 to 20 during glacials this sediment advection acted like a slow motion frame. The 

Antarctic Circumpolar Current has a significant effect on sea floor sedimentation in that area 

(Pudsey & Howe 1998). As a mainly wind-driven current (Maldonado et al. 2003) we assume that 

it resulted in decadal and centennial variations, which are comparable to dust climate signals, e.g. 

Antarctic EDML non-sea-salt Ca2+ flux (Fischer et al. 2007a). 

In regions such as the Antarctic Zone, where nutrient concentration is constantly high, iron 

availability strongly influences bioproductivity (Martínez-Garcia et al. 2011). Different iron 

fertilization experiments (e.g. Martin et al. 1990; Boyd et al. 2000) showed that Southern Ocean 

productivity is limited by Fe-deficiency. Coastal sediments, aerosols, upwelling, ice melting, and 

vertical mixing, can supply iron to the Southern Ocean (Cassar et al. 2007), however today the 

major nutrient and iron supply originates from upwelling water masses or lateral advection 

(Meskhidze et al. 2007; Martínez-Garcia et al. 2011). The influence of dust-transported aeolian 

iron on bioproductivity is still debated. Erickson et al. (2003) suggested that bioproductivity in the 

Antarctic Circumpolar Current region is mainly controlled by atmospheric dust-Fe, mostly from 

Patagonia, whereas Kaufmann et al. (2010) argued that dust flux variations had no major influence 

on Southern Ocean productivity over the last 150 ka. Further, modelling studies suggest that 

upwelling delivers approximately 99% of micronutrients to the Southern Ocean rather than dust 

(Lefèvre & Watson 1999). At Sites MD07-3133 and MD07-3134 dust-indicator magnetic 

susceptibility exhibits mostly minima when biogenic opal mass accumulation rate is high and vice 

versa (Fig. 4 E, F). During the Last Glacial Maximum, dust transport was significantly intensified 

and led to 10–30 times higher concentrations in Antarctic ice cores (Delmonte et al. 2004) and in 

the Scotia Sea (Sites MD07-3133 and MD07-3134; Weber et al. 2012), whereas biogenic opal 

mass accumulation rates were extremely low during that period. Accordingly, we believe that iron-

fertilization via dust-transport is not the main driver of bioproductivity changes in the Scotia Sea. 

In addition, iron released from melting icebergs (Raiswell 2011), i.e. Fe either from terrigenous 

material or aeolian dust (Lin et al. 2011), might have a minor affect on bioproductivity, as both 

sediment core sites are within the so-called “iceberg alley” (Anderson & Andrews 1999; Stuart & 

Long 2011). 

Biogenic opal export increase at the end of the last glacial could reflect higher nutrient 

content in upwelling waters or just intensified upwelling, more fractional utilization of nutrients, 

or, to a lesser extent, better preservation of sinking biogenic opal (Horn et al. 2011). Allen et al. 

(2011) conclude that reduced surface water productivity and/or export in the Scotia Sea during the 

Last Glacial Maximum, caused by enhanced sea ice cover, lower sea surface temperatures, and 

therefore shorter growing seasons, and not changes in dissolution processes, are more likely to 

explain the lower abundance of diatoms in sediment cores during the Last Glacial Maximum. 

 

Bioproductivity changes since the last interglacial 

Given the above arguments, we believe that the Scotia Sea biogenic opal mass accumulation 

rates at Sites MD07-3133 and MD07-3134 mainly provide records of changing bioproductivity 
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since the last interglacial. Interestingly, a relatively complicated glacial-to-interglacial pattern is 

noticeable (Fig. 5 E-G). Large amplitude millennial-scale fluctuations occur in the Scotia Sea 

records, which exhibit decadal-scale sample resolution. We estimate the lowest bioproductivity for 

the Last Glacial Maximum, while Southern Hemisphere Westerlies seem to have been located 

approximately 7 to 10° latitude north of their present position (e.g. Moreno et al. 1999; Toggweiler 

et al. 2006). During that time upwelling of silica- and CO2-rich, relatively warm mid-depth water 

to the sea surface was reduced significantly – approximately 30% relative to today (Horn et al. 

2011), which led to low-temperature and low-salinity surface waters that supported sea ice 

formation in the Southern Ocean (Toggweiler et al. 2006). Also, micronutrient availability in the 

Scotia Sea was at a minimum during the Last Glacial Maximum (Hendry et al. 2011). As shown in 

Figure 5, low biogenic opal mass accumulation rates at the Last Glacial Maximum correspond to 

(i) low δ18O values of the EDML ice core (Fig. 5 A), which provide a local ice sheet temperature 

indicator (EPICA Community Members 2006) and (ii) to high sea-salt Na+ fluxes of the EDML 

ice core (Fig. 5 B; Fischer et al. 2007b), which reflect intense sea ice cover. During MIS 2, 

decreased biogenic opal mass accumulation rates were estimated by Diekmann (2007) for the 

southern parts of Antarctic Circumpolar Current in all Southern Ocean sectors. Also Frank et al. 

(2000), Chase et al. (2003), Dezileau et al. (2003), and Bradtmiller et al. (2009) found lower 

biogenic opal accumulation rates south of the Antarctic Polar Front during MIS 2 relative to MIS 

1, thereby suggesting less diatom productivity during MIS 2. 

Around 17 ka, atmospheric CO2 increased rapidly and the Southern Hemisphere Westerlies 

probably shifted south (Toggweiler 2009). It remains unclear whether the shift in Southern 

Hemisphere Westerlies caused the rise in CO2 or if the shift was a result of rising CO2. Denton et 

al. (2010) show that reorganization of ocean circulation, induced by intensified cooling as a result 

of large meltwater pulses in the Northern Hemisphere, weakened the Atlantic Meridional 

Overturning Circulation. This consequently led to a poleward shift of the Southern Hemisphere 

Westerlies, intensified upwelling of CO2-rich mid-depth water, and therefore the warming of 

Antarctica (Toggweiler & Russell 2008; Toggweiler & Lea 2010). Banderas et al. (2012), Burke & 

Robinson (2012), and Kwon et al. (2012) support this theory by inferring increased deep-water 

mixing and less stratification of the water column in the Southern Ocean during the deglacial 

period. Anderson et al. (2009) also interpreted biogenic opal flux as an upwelling proxy because 

biogenic opal production is ultimately limited by dissolved Si supply, explaining its direct, but not 

necessarily linear connection. Biogenic opal mass accumulation rate rose abruptly at MD07-3133 

and still also the 230Th-normalized biogenic opal flux record of MD07-3134 (Fig. 5 E, G, grey 

vertical bar) rose around 17 ka, thus representing probable increases in bioproductivity and 

upwelling. The rise is followed by a maximum around 15 ka in biogenic opal accumulation rate at 

MD07-3133, which was also detected at other core sites in the Southern Ocean (Atlantic, Indian, 

and Pacific sectors) (Anderson et al. 2009), and coincides with Antarctic Isotopic Maximum 1. 

During the Antarctic Cold Reversal (14.54 - 12.76 ka; Putnam et al. 2010) biogenic opal 

mass accumulation rates at MD07-3133 and MD07-3134 (Fig. 5 E) are only slightly reduced and 
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remain high. Also EDML ice core data show only a minor reduction in δ18O and rise in sea-salt 

Na+ flux (Fig. 5 A, B) according to regional differences. This is slightly different from the 

observation of Anderson et al. (2009) of strongly decreased biogenic opal flux (Fig. 5 G) 

indicating reduced Southern Ocean upwelling during that time. The Antarctic Cold Reversal is 

followed by the Antarctic Isotopic Maximum 0, an abrupt rise in temperature and CO2, as well as 

sea ice decrease, also the biogenic opal content rose at both core sites during that time. 

Linear sedimentation rate and biogenic opal mass accumulation rate were equivalent for both 

Scotia Sea sites during the Last Glacial Maximum but increased by a factor of 1.5 to 2 at Site 

MD07-3133 during MIS 3, the Antarctic Cold Reversal, and MIS 1 (Fig. 4 A, E). Higher 

amplitudes further north could be related to an approximately 5° shift in latitude of the Antarctic 

Circumpolar Current fronts (and associated opal belt) to the north during the Last Glacial 

Maximum (Gersonde et al. 2003). Also, Allen et al. (2011) observed a shift of the winter sea ice 

limit of at least 5° northwards during the Last Glacial Maximum, so that it remained north of the 

Scotia Sea. Accordingly, at that time, both core sites would have been within the winter sea ice 

limit, explaining the similarly reduced biogenic opal mass accumulation and linear sedimentation 

rates. Today, MD07-3133 which is located approximately 450 km northwest of MD07-3134 (Fig. 

1) lies north of the winter sea ice limit with significantly elevated biogenic opal mass 

accumulation and linear sedimentation rates, while MD07-3134 is within the winter sea ice limit 

and exhibits reduced biogenic opal mass accumulation and linear sedimentation rates. Therefore, 

we suggest that the distribution of sea ice has a strong influence on bioproductivity and can be the 

reason for pronounced regional differences in the Southern Ocean.  

The last glacial period was characterized by abrupt millennial-scale climate fluctuations (e.g. 

Blunier & Brook 2001; Ahn & Brook 2008), which have been detected worldwide, e.g. in 

stalagmites in southeast China (Cosford et al. 2008), in Antarctic ice cores (e.g. EDML; EPICA 

Community Members 2006; Fig. 5 A, B), and in Greenland ice cores (nGRIP; NGRIP Members 

2004; Fig. 5 H). Also in marine sediments (ODP site 1089, Cortese & Abelmann (2002); Fig. 5 D) 

in the Atlantic Sector summer sea surface temperature record shows large millennial-scale 

temperature changes during the last glacial, and correlates relatively well with our biogenic opal 

percentages, and to a lesser extent also with the biogenic opal mass accumulation rate records. 

During periods with high summer sea surface temperature, maxima in biogenic opal percentages 

can also be recognized. Around 65 ka in MIS 4 the MD07-3134 data shows an absolute maximum 

in biogenic opal percentages, which is also observed in the 230Th-normalized biogenic opal flux 

(Fig. 5 G). At this time, summer sea surface temperature at ODP site 1089 (Cortese & Abelmann 

2002; Fig 5 D), in the Atlantic Sector, also rose about 4°C. 

The precise and detailed chronology of Sites MD07-3133 and MD07-3134 in combination 

with the decadal-scale resolution of biogenic opal determinations provides the opportunity to study 

regional bioproductivity changes in the Southern Ocean relative to the timing of individual 

Antarctic Isotopic Maxima. Strong high-frequency fluctuations are also noticeable in the biogenic 

opal content record (Fig. 5 G) and to a lesser extent in biogenic opal mass accumulation rate (Fig. 
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5 E). At Site MD07-3134, biogenic opal peaks, representing enhanced bioproductivity, occurred 

during the relatively warm phases in Antarctica, i.e. during Antarctic Isotopic Maxima 5, 7, 8, 10, 

12, 13, 14, 16, 17, and 19, while less sea ice occurred (Fig. 5 B). Extremely large spikes are 

documented for Antarctic Isotopic Maxima 15, 18, 20, and 22, when biogenic opal mass 

accumulation rate in the central Scotia Sea increases up to more than 20 g/cm2/kyr, at times when 

the sea ice cover was only marginally reduced and Antarctic atmospheric temperatures and CO2 

concentration elevated only slightly. These fluxes are, however, clearly biased by sediment 

focusing as stated by the 230Th normalization results (Fig. 4 C and D), but still showing the same 

incline. In general, biogenic opal content and mass accumulation rates show the same trend as 

atmospheric CO2 concentration (Fig. 5 C); biogenic opal rises correspond well to increasing CO2 

concentration, while during low CO2 biogenic opal is also mainly at minima. In addition, 

Anderson et al. (2009) also found an increase in upwelling at each phase of rising CO2 during MIS 

3, illustrated by higher biogenic opal flux in the Southern Ocean (Fig. 5 G, blue and grey curve), 

which corresponds quite well with the 230Th normalized biogenic opal flux from MD07-3134 (Fig. 

5 G, black curve). Our investigations show that variations in biogenic opal flux reflect 

bioproductivity changes and strongly correlate to sea ice cover, summer sea surface temperature as 

well as atmospheric CO2 variations. 

 

Summary and Conclusions 

Silica is an important nutrient that fuels biological production in the Southern Ocean. We 

investigated two long deep-sea sediment cores from the central Scotia Sea south of the present 

Antarctic Polar Front, that exhibit exceptionally high sedimentation rates (up to 1.8 and 1.2 m/kyr 

for Sites MD07-3133 and MD07-3134, respectively) to gain detailed (decadal-scale) insight into 

past biogenic opal flux variations.  

In a first step, we measured biogenic opal conventionally by leaching 253 samples from core 

sections providing large-amplitude variations according to the method of Müller & Schneider 

(1993). Then, we estimated biogenic opal by testing three methods that rely on ~9100 non-

destructive measurements (at 1-cm increments) of sediment colour b*, wet bulk density, and Si/Ti-

count ratios. Finally, we determined biogenic opal using FTIRS on 891 samples at 10-cm 

increments. 

One interesting result is that all methods can be used to decipher general biogenic opal 

trends. However, FTIRS – a novel method for marine sediment – provides the most reliable 

estimation relative to the conventional leaching method. It is rather inexpensive and requires only 

a small portion (11 mg) of sample material. 

Biogenic opal flux records in the Southern Ocean are only marginally affected by 

preservation changes and therefore provide valid information on past bioproductivity changes. We 

provide the first decadal-scale resolution continuous bioproductivity record for the Southern 

Ocean over the last 92.5 kyr. The biogenic opal mass accumulation rate records of the central 
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Scotia Sea exhibit a relatively complicated glacial-to-interglacial pattern with large-amplitude, 

millennial-scale fluctuations in bioproductivity. 

South of the Antarctic Polar Front, lowest bioproductivity levels deduced from biogenic opal 

fluxes occurred during the Last Glacial Maximum, when upwelling of mid-depth water was 

reduced and sea ice cover intensified. 230Th normalized biogenic opal fluxes in core MD07-3134 

show a similar pattern albeit at realistic values of between 1 and 1.5 g/cm2/kyr during interglacials, 

whereas glacial MIS 2 and 3 were generally characterized by lower values near 0.5 g/cm2/kyr. 

These numbers are comparable to other records in the Atlantic sector of the Southern Ocean. 

Around 17 ka, bioproductivity increased abruptly, corresponding to rising atmospheric CO2 and 

decreasing seasonal sea ice coverage. Distribution of sea ice strongly influences bioproductivity 

and may be the reason for pronounced regional differences in the Southern Ocean. Also summer 

sea surface temperature changes are strongly correlated to the biogenic opal flux changes in the 

central Scotia Sea. 
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Figure' 1:! Location!map! showing! the!MD0743133! and!MD0743134! core! sites! referred! to! in! this!
study;! Subantarctic! Front,!Antarctic! Polar! Front,! Southern!Antarctic! Circumpolar!Current! Front,!
limits!modified! from!Gersonde!et! al.! (2005).!Additionally,! the!positions!of!Winter! and!Summer!
Sea! Ice! limits! today! (Gersonde!et! al.! 2005;!Allen! et! al.! 2011)! are! shown.!Also,! the!direction!of!
Antarctic! Circumpolar! Current! is! highlighted.! Underlying! map! originates! from!
http://maps.ngdc.noaa.gov/viewers/bathymetry/! (access! date:! 20.10.2011).! TN! core! sites! are!
from!Anderson!et!al.!(2009);!BYRD!(Ahn!&!Brook!2008),!EPICA!Dronning!Maud!Land!(EDML;!EPICA!
Community!Members!2006),!and!EPICA!Dome!C!(EDC,!EPICA!Community!Members!2004)!refer!to!
Antarctic!ice!cores!(for!details!see!text).!!
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Figure' 2:! Scatter! plots! illustrating! linear! correlations! for! conventionally! leached! biogenic! opal!
(BSi)! values! (method! see!Müller! &! Schneider! 1993)! and! BSi! content! estimated! from!wet! bulk!
density!(a),!colour!b*!(b),!XRF4core4scanner!measured!Si/Ti4count!ratio!(c),!and!Fourier!transform!
infrared!spectroscopy!(FTIRS)!(d;!method!see!Rosén!et!al.!2010).!White!diamonds!and!grey!lines!
refer!to!Site!MD0743133,!black!squares!and!black!lines!indicate!data!from!Site!MD0743134.!!
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Figure'3:!Comparison!of!biogenic!opal!(BSi)!contents!evaluated!with!different!methods!for!sites!
MD0743133!(top)!and!MD0743134!(bottom):!conventionally!(leached;!data!points!highlighted!as!
red!dots;!method!see!Müller!&!Schneider!1993);!and!BSi!estimated!from!wet!bulk!density!(brown!
curve),! colour! b*! (grey! curve),! Fourier! transform! infrared! spectroscopy! (FTIRS;! black! curve;!
method!see!Rosén!et!al.!2010),!and!XRF4core4scanner!measured!Si/Ti4count! ratio! (green!curve;!
method!see!Balascio!et!al.!2011).!Marine! Isotopic!Stages! (MIS)!1! to!5!are!plotted! for! reference!
(Lisiecki!&!Raymo!2005).!

!



! 25 

Age (ka)
0 20 40 60 8010 30 50 70 90

MIS 2 MIS 3 MIS 4 MIS 5MIS 1

M
S 

(1
0-5

SI
)

0

20

40

60

1

2

0.5

0

SR
 (m

/k
yr

)

23
0 T

h-
no

rm
al

. B
Si

 F
lu

x 
(g

/c
m

2 /k
yr

)

B
Si

 M
A

R
 (g

/c
m

2 /k
yr

)

DB
D 

(g
/c

m
3 )

0.2

0.5

1.1

0.8

10

20

30

0

1.5

23
0 T

h-
no

rm
al

. r
ai

n 
ra

te
 (g

/c
m

2 /k
yr

)

(f)

(e)

(d)

(a)

(b)

(c)

MD07-3134
MD07-3133

4

2

3

0

1

2

!
Figure' 4:! Sites! MD0743133! (dashed! lines)! and! MD0743134! (solid! lines)! records:! (a)! Linear!
sedimentation! rate! (LSR)! (black! lines)! and! sedimentation! rates! (SR)! estimated! from! a! cubic!
smoothing!spline!age4model!(grey!lines;!Weber!et!al.!2012);!(b)!Dry!bulk!density!(DBD);!(c)!230Th4
normalized! biogenic! opal! (BSi)! flux! evaluated! by! using! the! Fourier! transform! infrared!
spectroscopy!(FTIRS)!estimated!biogenic!opal!values!(for!method!see!Rosén!et!al.!2010);!(d)!230Th4
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7 Discussion(

7.1 SeasonalI(to(millennialIscale(oscillations(

Glacial bottom-water formation is still discussed, while North Atlantic Deep Water (NADW) 

production was sluggish or maybe even terminated (Knutti et al., 2004; Stocker and Johnson, 

2003), Antarctica was maybe the main supplier of deep water, namely the Antarctic Bottom Water 

(AABW) (Shin et al., 2003). During the Last Glacial Maximum (LGM), the ice sheet in the 

Southern Weddell Sea had at least advanced very close, i.e. within 40 km (Larter et al., 2012) or 

most likely even reached the shelf break (e.g. Hillenbrand et al., 2012; Larter et al., 2012; Weber 

et al., 2011). Today, High-Salinity Shelf Water (HSSW) is generated during sea ice production by 

brine rejection (Foldvik et al., 2004; Petty et al., 2013) and then supercooled by circulation under 

the ice shelf becoming dense Ice-Shelf Water (ISW). Modified warm deep water (MWDW) 

intruding on the shelf mixes with ISW producing WSBW. Due to the fact that ice sheet covered 

the continental shelf, glacial bottom-water formation in the Wedeell Sea must have been produced 

different as ice shelf cavaties required for supercooling HSSW to produce ISW would be 

inexistent (Gales et al., 2012). 

Coastal polynyas might have played an important role in deep-water formation during the 

LGM (Sprenk et al., in review-a; Sprenk et al., in review-b). Offshore blowing katabatic winds 

remove sea ice from coastal areas or ice edges, which often implements the development of coastal 

polynya (Kern, 2009; Williams et al., 2007). Coastal polynas are open water areas induced from 

off-shore blowing winds, where heat from the ocean can be released to the cold atmosphere and 

sea-ice production is intensified leading to brine rejection and thus dense water formation (Tamura 

et al., 2008). The Brunt Ice Shelf, close to the Weddell Sea cores (Sprenk et al., in review-b) has 

been identified as important polynya area, where sea ice production is 9 – 14 times higher 

compared to neighbouring regions with the highest mean heat flux during winter months July and 

August (Haid and Timmermann, 2013). Today, about 10 % of all sea ice in the Southern Ocean is 

produced in Antarctic coastal polynyas (Tamura et al., 2008) with a major amount of 6 % alone in 

the Weddell Sea (Renfrew et al., 2002). In the Weddell Sea investigations showed that years with 

large coastal polynya areas are in accordance with maxima in total sea ice extent (Comiso and 

Gordon, 1998). The inter-annual variations in coastal polynya activity and area seem to be related 

to katabatic winds, cyclones, as well as barrier winds (Renfrew et al., 2002). 

Heinemann et al. (2013) studies on coastal polynyas in the Weddell Sea revealed that in the 

area of Coats Land, in front of the Brunt Ice Shelf, offshore winds are mainly driven by katabatic 

winds, due to the steepness and length of the slope. Different studies (Sprenk et al., in review-a; 

Weber et al., 2011; Weber et al., 2010a) indicated that during the LGM intensified katabatic winds 

likely drove coastal polynya formation in the southeastern Weddell Sea. In the western Weddell 

Sea, Smith et al. (2010) also indicated that katabatic winds in front of the Antarctic Peninsula Ice 

Sheet formed coastal polynyas. 
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 Sprenk et al. (in review-b) investigations including AMS14C ages and varve counting results 

of the newly opened sediment core PS1795 from the southeastern Weddell Sea revealed that the 

varved sediment was deposited during the LGM, matching results from earlier studies (Weber et 

al., 2011; Weber et al., 2010a) of varved sediment cores located close by. Although, the estimated 

linear sedimentation rates of about 1.1 – 1.6 m/kyr are slightly lower than the sedimentation rates 

calculated for sediment cores PS1599, PS1789, and PS1791, which are varying between 2.2 and 

5.3 m/kyr (Sprenk et al., in review-a). These differences in sedimentation rates are possibly related 

to the location of the sediment cores. PS1795 originates from shallower water depth, southwest 

outside the southernmost channel, on a slightly steeper part of the continental slope, where the 

channel-ridge system starts to develop, in contrast to the other cores, which are located on the 

ridges NW of each channel. 

For the first time, analyses on thin sections of the varves are presented in Sprenk et al. (in 

review-b) showing only small variations in grain size and no erosional or sharp bases of the layers, 

which argue against turbiditic deposition and favour varve formation. Main differences of the 

layers are seasonally related fluctuations in grain size and related changes in element and mineral 

composition. High-resolution XRF-scanner data on the thin sections show that the lighter-coloured 

layers have maxima in Si, Sr, Ca, and Zr counts. The comparatively immobile Zr primarily resides 

in heavy minerals like zircon, thus resistant to chemical and physical weathering (Alfonso et al., 

2006; Wayne Nesbitt and Markovics, 1997), therefore mainly transported with coarser particles. 

Furthermore, RADIUS tool (Seelos and Sirocko, 2005) analysis reveal, that lighter-coloured layers 

contain more medium- to coarse silt-sized quartz grains and have a higher mean grain size than the 

brown layers. The brownish-coloured layers are characterized by predominant clay-sized particles 

and maxima in Fe, Ti, Rb, and K counts, generally related to minerals like mica and clay minerals 

(Dypvik and Harris, 2001; Vital and Stattegger, 2000), e.g. chlorite and illite group members.  

The seasonally related changes in grain size and elements described above, led Sprenk et al. 

(in review-b) discuss the following two scenarios of glacial sedimentation: during the LGM, 

plumes of cold and dense water were generated in front of the grounded East Antarctic Ice Sheet 

above the upper slope by coastal polynya, i.e. operated by strong offshore blowing katabatic winds 

enhancing sea-ice formation and thus brine release. The resulting dense water mass moved down 

the continental slope and was canalized into the channel-ridge systems northeast of Crary Fan, 

producing cold and saline WSBW. Apparently, this flow oscillated seasonally with a stronger salt 

injection during glacial winter due to increased brine release by more intense coastal polynya. We 

should note that spaces of open water, which were generated by the katabatic winds and led to 

glacial polynyas did likely not stay open for long because of the low temperatures, causing rapid 

freezing and associated intense brine release. The resulting glacial thermohaline current 

flowed underneath and against the probably weakened Weddell Gyre. The clayey layer would 

hence have be interpreted as a summer signal, resulting from less intense katabatic winds, hence 

less sea-ice transport away from the coast, reduced brine rejection in front of the ice sheet that led 

to reduced thermohaline convection, lower current velocities in the channels, and less overspilling 
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on the ridges. Vice versa, coarser-grained silty layer should represent a winter signal as a result of 

enhanced katabatic winds that carried sea ice away from the continent more effectively, inducing 

rapid freezing processes at the surface that spurred thermohaline convection, led higher velocities 

in the channels and higher overspilling on the ridges. As a whole, the seasonally variable 

thermohaline convection produced large volumes of bottom water and transported vast amounts of 

sediment into the deeper environment that have originally been delivered by meltwater channels 

from the grounded ice sheet and/or by gravitational processes (Anderson et al., 1986) leaving its 

trace in form of varved sediment on the ridges. In a coupled climate model, Justino and Peltier 

(2006) demonstrated that the seasonal cycle in the Southern Ocean was likely much stronger 

during LGM than it is today with a very pronounced winter season. Since coastal polynya 

formation is mainly driven by the intensity of the katabatic winds, sea ice was moved away from 

the continent and/or thinned close to the coast in glacial winter, allowing for a more intense 

transport of icebergs counter-clockwise around Antarctica within the Antarctic Coastal Current. 

This could explain why coarser-grained (winter) layers occur preferentially with higher amounts of 

iceberg-rafted debris (IRD).  

Alternatively, coarser layers could have been deposited during summer, when ice melt 

occurred more likely. This interpretation could be supported by the fact that the silty layers contain 

higher IRD contents resulting from ice melt. Ice melt could occur either through direct surface 

melt, although modelling of atmospheric teleconnections from sea-surface temperature variations 

from equatorial Pacific (Weber et al., 2011) show that increasing temperatures would not lead to a 

negative ice mass balance under LGM conditions. Meltwater also could have been delivered by 

meltwater channels directly from the ice sheet. That process, however would only deliver fresh 

water that is not dense enough to sink down and move across the shelf and onto the continental 

slope and into the channels that accompany the ridges because the surrounding brines are much 

denser. Also, seasonal deposition on the ridges requires a continuous flow of a dense water mass at 

varying volume and velocity in the channels that is deflected to the left due to the influence of 

Coriolis Force, and overspills the channels on their northwestern side. This process can most likely 

only be sustained by a seasonally variable thermohaline convection resulting from polynya 

formation in front of the ice edge. Nonetheless, there is no definitive interpretation possible at the 

current stage as to which season produced which layer.  

 

In chapter 4 varve counting results from sediment cores PS1599, PS1789, and PS1791 are 

presented. Combined varve counting results and AMS14C ages reveal that facies changes from 

lamination to bioturbation occurred simultaneously at the core sites around 25, 23, 21.5, 20, and 

19 ka with a millennial-scale pacing (Sprenk et al., in review-a). These facies changes are only 

noticeable in the glacial sediment sections and are associated with varve interruption every few 

centuries to approximately 2000 years and are possibly related to ice-sheet retreats from the shelf 

edge, strongly reduced thermohaline current flow in the channels on the continental slope and at 

least partly open water conditions. Therefore, suggesting multiple fluctuations of the ice sheet in 
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the Weddell Sea during the LGM. These recurrence time period bears some similarities to the 

typical timescale of abrupt climate events in the North Atlantic during the last glacial period 

(Grootes and Stuiver, 1997; Schulz, 2002). After the final ice-sheet retreat from the shelf area 

around 16 ka (Weber et al., 2011) hemipelagic mud was deposited at low sedimentation rates of 

only 0.06 (PS1791) to 0.08 m/kyr (PS1789) and is highly bioturbated. 

Strong cyclic changes in varve thinkness are detectable in all varved sections of PS1599, 

PS1789, and PS1791 (Sprenk et al., in review-a). Bulk and evolutionary spectral analysis reveal 

decadal-to centennial variations in varve thickness with a dominating 50-85-yr cycle, which seems 

to be robust during the LGM. For an in-depth investigation of the cyclic varve thickness variation 

also the summer and winter layer thicknesses were analysed individually. Their bulk and 

evolutionary spectra show overall the same decadal-scale fluctuations as described for an annual 

layer couplet. Therefore, concluding that the driving mechanism influenced and modulated the 

sedimentation process throughout the year, overprinting the seasonal sedimentation changes. 

Minor changes in total solar irradiance, e.g. 0.07 % variation in 11 years (Gray et al., 2010) 

seem to have direct or indirect impact on the global climate. Solar cycles have been detected in a 

number of climate archives (Beer et al., 2000) including marine and lake sediment (Kern et al., 

2013), ice cores (Steinhilber et al., 2012), tree rings and speleothems (e.g. Breitenmoser et al., 

2012). A comprehensive global climate model indicated that a 90-yr solar forcing leads to 

responses in water temperatures especially in deep-water masses of the South Atlantic 

(Seidenglanz et al., 2012).  

Ogurtsov et al. (2002) revealed that the 87-yr Gleissberg cycle (Gleissberg, 1944) is indeed a 

complex solar cycle with two oscillation modes, i.e. the lower 50-80-yr and the upper 90-140-yr 

Gleissberg cycle. The multi-decadal scale sedimentation changes in the Weddell Sea cores 

correspond remarkably to the 50-80-yr cycle of the lower Gleissberg oscillation. Frequencies 

similar to the 90-140-yr upper Gleissberg cycle also occurr in most spectra. High frequency cycles 

dominant in the bulk spectra are possibly related to the 11-yr Schwabe (Schwabe, 1844) cycle, 

recently described as 8-14-yr solar band (Ogurtsov et al., 2002), and the 22-yr Hale cycle (Mursula 

et al., 2002). 

The accordance of prominent solar cycles with the oscillation frequencies found in the varved 

sediment records strongly suggest a solar influence on the sedimentation most likely associated 

with coastal polynya activity and brine release in the southern Weddell Sea. Climate model 

simulations (Varma et al., 2011) support the notion of a solar forcing effect on the atmospheric 

circulation and hence sea-ice dynamics in the Weddell Sea region. Climate model experiments 

presented in Sprenk et al. (in review-a) support the inference that solar-forced anomalies in 

atmospheric circulation over the Weddell Sea promoted coastal polynya formation during periods 

of high solar activity, enhancing brine formation and influencing the sedimentation process in the 

channel-ridge system. 

Although, the decadal-scale varve thickness changes could also be related to the Atlantic 

Multidecadal Oscillation (AMO), recurring changes in North Atlantic sea-surface temperature 
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with a pacing of 60-90 years (Delworth and Mann, 2000; Kerr, 2000) influencing the Northern 

Hemisphere (Wyatt et al., 2012), and consequently also global climate. The origin of AMO is stil 

not fully understood, although it seems to be related to changes in Atlantic meridional overturning 

circulation (AMOC; Knight et al., 2006). Ritz et al. (2013) indicated that also the North Brazil 

Current connecting the Northern and Southern Atlantic also shows decadal-scale oscillations 

linked to AMO as well as AMOC. Until now, the AMO has been only detected in Holocene 

records and there is no consistent information available if the AMO also existed during the LGM. 

Recently, Ritz et al. (2013) estimated that the AMOC strength in the LGM was indistinguishable 

from its recent strength, but reduced during cooling events like the Younger Dryas. Evidence for 

an influence of the AMO on Antarctic temperatures during the 20th century exist, and are anti-

phase to the Arctic (Chylek et al., 2010). An effect of AMO also on sea-ice/ocean processes in the 

Weddell Sea during the LGM cannot be ruled out, particularly because it is still discussed if AMO 

itself is related to and therefore reflects solar irradiance changes (e.g. Ólafsdóttir et al., 2013). 

Simulations by Park and Latif (2008) using the Kiel Climate Model, suggest that decadal-scale 

AMOC variations originate in the North Atlantic, while multi-centennial changes are driven in the 

Southern Ocean, thus both are related to fluctuations in sea-ice extent. Although, they also 

considered decadal-scale variations in the Southern Annular Mode (SAM; Thompson and Wallace, 

2000). Recent climate model analyses revealed decadal-to-centennial-scale changes in SAM in the 

Southern Ocean also during the LGM, showing teleconnections in sea-surface temperature, 

AMOC, and atmospheric circulation (Sprenk and Lohmann, unpublished). 

 

7.2 Dust(transport(and(palaeoproductivity(

Interpretation of the magnetic susceptibility signal in Southern Ocean sediments in still 

debated. Possible supply mechanisms could be iceberg transport, oceanic circulation, volcanic 

sources, sea-ice distribution, and atmospheric circulation. The Scotia Sea is located in the 

prolongation of the so-called "Iceberg Alley" (Anderson and Andrews, 1999). Large amounts of 

Antarctic calved icebergs are transported by the Antarctic Coastal Current counter-clockwise 

around Antarctica into the Weddell Sea (Stuart and Long, 2011), which are then entrapped in the 

clockwise flowing Weddell Gyre. Most of the icebergs exit through gaps in the South Scotia Ridge 

into the Scotia Sea (Pudsey and Howe, 1998). A recent study (Weber et al., in review) highlights 

that the IRD records of MD07-3133 and MD07-3134 from the Central Scotia Sea record a 

spatially integrated signal of Antarctic Ice Sheet variability. Weber et al. (2012) present magnetic 

susceptibility records from these sediment cores, showing no accordance with the counted IRD in 

the sediment, thus ruling out that icebergs are transporting the magnetic susceptibility signal. 

Ocean circulation is also a potential supply mechanism, Diekmann et al. (2000) assumed that 

current transport is mainly responsible for transporting the magnetic susceptibility signal. 

However, Hofmann (1999) investigated comparable magnetic susceptibility records from different 

current regimes. The Scotia Sea is isolated from major sediment sources of continental margins 



Discussion"

!

! 105"

with only the western part being in the supply areas of southern South America and the Antarctic 

Peninsula (Maldonado et al., 2003), also pointing against ocean currents as main supplier of 

magnetic susceptibility. Although, oceanic circulation might be responsible for secondary 

redistribution (Pugh et al., 2009). 230Th-normalization data for MD07-3134 reveal strong 

differences in sediment focusing with intensified sediment focusing during glacial times, so 

Sprenk et al. (2013) assumed that bottom currents collected the sediment from an upstream 

shallower region and focused the material composition to the core sites, thereby enhancing time 

resolution of the record. By increasing the focusing factor from 8 to 20 during the last glacial 

period, this sediment advection acted like a slow motion frame.  

Another possible transport mechanism for the magnetic susceptibility signal is sea ice, which 

can incorporate and re-locate material. In contrast to Arctic regions (Kempema et al., 1989), 

Antarctica lacks large shelf areas fed by river suspension, so frazil ice formation through 

supercooling of surface waters possibly did not include high amounts of fine-sized particles. 

Although, during times with large sea-ice cover, material transported by atmospheric circulation is 

first deposited on the sea ice, then acting as a secondary transport process. However, Weber et al. 

(2012) found no agreement between magnetic susceptibility record of the Scotia Sea cores with the 

EDML sea-ice indicator, i.e. sea-salt Na+ flux (Fischer et al., 2007). 

Atmospheric circulation is most likely the primary supply mechanism for magnetic 

susceptibility. Weber et al. (2012) present a striking correlation of the magnetic susceptibility 

record of the Scotia Sea cores with non-sea-salt Ca2+-flux of EDML ice core (Fischer et al., 2007), 

a confident atmospheric dust proxy (Lambert et al., 2011; Röthlisberger et al., 2004). Earlier 

studies (Hofmann, 1999; Pugh et al., 2009) already showed that the magnetic susceptibility signal 

is linked to Antarctic dust supply on interglacial-glacial timescales.  

Southern South America is the only large land mass within the Southern Hemisphere 

Westerlies dominated region and Patagonia has been identified as main East Antarctic dust 

supplier during glacial cycles of the last 800 kyrs (Delmonte et al., 2010). Also indicated by dust 

provenance studies from East Antarctic ice cores (EPICA Community Members, 2006). Weber et 

al. (2012) investigated that MD07-3133, i.e. located closer to Southern South America shows 

higher magnetic susceptibility values than MD07-3134, thus also indicating South America as dust 

source during the last glacial period. Similar investigations had also revealed Hofmann (1999). 

The Scotia Sea cores and Patagonian Laguna Potrok Aike maar lake (Haberzettl et al., 2009) 

magnetic susceptibility records show the same trends during MIS 2, also promoting Patagonia as 

glacial dust source. Although, (Lanci et al., 2008) promote different dust sources for glacial and 

interglacial times. (Revel-Rolland et al., 2006) analyses on isotope composition changes reveal 

Australia as dominant dust source for interglacials. (Gabrielli et al., 2010) even suggest a 

combination of southern South America, Australia, New Zealand, and South Africa as dust 

supplier. Modelling studies by Lunt and Valdes (2001) indicate that dust transport efficiency for 

particles in East Antarctica is even higher today than during the LGM, thus implying that higher 

glacial dust concentrations are primarily caused by changing environmental conditions in the 
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source area rather than by changes in atmospheric circulation. Consequently, Lunt and Valdes 

(2001) predict Patagonia as glacial and interglacial dust source, which is also supported by the 

fact, that the direct of the Southern Hemisphere Westerlies did not vary. 

During glacial times a higher temperature gradient between poles and equator existed, 

leading to intensified atmospheric circulation (Toggweiler and Russell, 2008). Antarctic dust input 

was significantly higher during glacial times (Fischer et al., 2007; Lambert et al., 2008) with about 

10 to 30 times higher dust flux during the LGM compared to the Holocene (Delmonte et al., 

2004). Antarctic dust input shows millennial-scale fluctuations with reduced dust input (Fischer et 

al., 2007) during Antarctic Isotopic Maxima (AIM), also noticeable in magnetic susceptibility 

minima in the Scotia Sea sites (Weber et al., 2012), possibly due to decreased aridity and/or 

reduced wind speeds in Patagonia (Fischer et al., 2007). Studies on glacial outwash plains in 

Patagonia, led Sugden et al. (2009) conclude that the atmospheric dust amount is controlled by 

glacial conditions. When sea level was around 130 m lower during the LGM than today 

(Huybrechts, 2002), large parts of the Argentine Shelf were exposed, thus the area of Patagonia 

had nearly doubled (Iriondo, 2000). Physical weathering prevailed on the ice-free glacial outwash 

plains, which received material from the Andes, and large loess areas formed. Therefore, the East 

Patagonian low lands were the ideal dust source area, due to dry and cold conditions, strong west 

winds, and large areas of fine-grained material (Sugden et al., 2009).  

The Southern Hemisphere Westerlies had shifted around 7 – 10 °C north of their recent 

position during the LGM (Moreno et al., 1999), implying that the strongest westerlies were only 

then located over Patagonia. During that time upwelling of silica- and CO2-rich, relatively warm 

mid-depth water to the sea surface water was reduced significantly, i.e. approximately 30 % 

relative to today (Horn et al., 2011), also reflected in strongly reduced biogenic opal flux rates 

(Anderson et al., 2009; Sprenk et al., 2013). 

Circulation model results (Toggweiler et al., 2006) predict, that after the LGM, around 17 ka 

the westerlies shifted south again, therefore Patagonia was no longer in the centre of winds. Dust 

input in the Scotia Sea (Weber et al., 2012) and East Antarctica (Fischer et al., 2007) strongly 

decreased around 17 to 16 ka, while enhanced temperature rises are recorded in East Antarctic ice 

cores (EPICA Community Members, 2006). Also, Patagonian glaciers retreated rapidly at 16.5 –

 15 ka (Hein et al., 2010). It remains unclear whether the shift in Southern Hemisphere Westerlies 

caused the rise in CO2 or vice versa. Reorganization of ocean circulation, induced by intensified 

cooling as a result of large meltwater pulses in the Northern Hemisphere, weakened the Atlantic 

Meridional Overturning Circulation (Denton et al., 2010). Consequently, leading to a poleward 

shift of the Southern Hemisphere Westerlies, intensified upwelling of CO2-rich mid-depth water, 

and therefore the warming of Antarctica (Toggweiler and Lea, 2010; Toggweiler and Russell, 

2008). Inferring increased deep-water mixing and less stratification of the water column in the 

Southern Ocean during the deglacial period (Banderas et al., 2012; Burke and Robinson, 2012; 

Kwon et al., 2012) supports this theory. Anderson et al. (2009) also interpreted biogenic opal flux 

as an upwelling proxy because biogenic opal production is ultimately limited by dissolved Si 
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supply, explaining its direct, but not necessarily linear connection. Until now, high-resolution and 

continuous biogenic opal flux records from the Southern Ocean for the last glacial and deglacial 

period are rare, and therefore limited knowledge exists about Southern Ocean bioproductivity 

changes in the past. Bioproductivity in the Southern Ocean is mainly controlled by the rate of 

upwelling of cold nutrient- and silica rich water masses, the extent of sea-ice cover as well as the 

availability of light and micronutrients (de Baar et al., 2005; Dezileau et al., 2003). The reliability 

of biogenic opal flux as indicator for bioproductivity is still debated, because it is still not entirely 

clear whether biogenic opal preservation is consistent over longer time periods. Chase et al. (2003) 

and Bradtmiller et al. (2007) argued that biogenic opal flux reflects variations in diatom 

productivity and not changes in biogenic opal preservation. For the Indian sector of the Southern 

Ocean local differences in biogenic opal preservation, apparent in the polar frontal zone and south 

of it, have a modulating but not a primary effect on biogenic opal flux fluctuations (Pondaven et 

al., 2000). The good correlation of sites MD07-3133 and MD07-3134, which are approximately 

450 km apart, indicates that this is also true for the central Scotia Sea (Sprenk et al., 2013). 

Sprenk et al. (2013) determined biogenic opal using the conventional and very time-

consuming leaching method of Müller and Schneider (1993), still it is one of the most commonly 

used methods due to its simplicity and robustness (Swann, 2010). However, samples with less than 

10 % biogenic opal might be affected by the pH value of the leaching solution (Schlüter and 

Rickert, 1998). Additionally, biogenic opal was estimated from sediment colour b*, wet-bulk 

density, Si/Ti-count ratios and Fourier transform infrared spectroscopy (FTIRS; Rosén et al., 

2009). Colour b* is useful parameter to estimate biogenic opal content (Weber, 1998), as both core 

sites are located below the carbonate compensation depth (CCD), i.e. carbonate-free and contain 

mainly biogenic opal, quartz, and clay minerals. All methods capture the main biogenic opal 

fluctuations in the Scotia Sea cores. A number of studies (e.g. Rosén et al., 2009; Rosén et al., 

2010; Vogel et al., 2008) showed that FTIRS can be used to gain high-resolution geochemical 

information on lacustrine sediment. Sprenk et al. (2013) indicate that FTIRS is also a very 

promising and useful tool for analysing marine deep-sea sediments. 

Sprenk et al. (2013) presented extremely high sedimentation rates of up to 1.8 m/kyr with 

mean sedimentation rates of 1.6 m/kyr (MD07-3133) and 0.9 m/kyr (MD07-3134) for MIS 1 and 

about 0.5 m/kyr (MD07-3133 and MD07-3134) for MIS 2. These values are more than 10 – 30 

times higher than reported in previous studies (e.g. Pudsey and Howe, 1998) estimating rates of 

less than 5 cm/kyr for interglacials, and more than 5 cm/kyr for glacial times in the Scotia Sea. It 

clearly indicated that sedimentation in the core site area was strongly influenced by massive 

sediment focusing induced by bottom currents. Presently, the 231Pa/230Th ratio is the most accurate 

and most commonly used proxy for analysing particle and water mass transport in the Southern 

Ocean, e.g. past opal fluxes (Kretschmer et al., 2011). Anderson et al. (2009) revealed a strong 

correlation between biogenic opal flux and 231Pa/230Th ratios, which are not altered by biogenic 

material loss during early diagenesis (Chase et al., 2003) in Southern Ocean sediment. This led 
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Anderson et al. (2009) conclude that biogenic opal flux variations reflect changes in biogenic opal 

production and silicon supply, rather than changes in preservation.  

Nutrient concentration is constantly high in regions such as the Antarctic Zone, so iron 

availability strongly influences bioproductivity (Martínez-Garcia et al., 2011). Different iron 

fertilization experiments (e.g. Boyd et al., 2000; Martin et al., 1990) showed that Southern Ocean 

productivity is limited by Fe-deficiency. Coastal sediments, aerosols, upwelling, ice melting, and 

vertical mixing, can supply iron to the Southern Ocean (Cassar et al., 2007), however today the 

major nutrient and iron supply originates from upwelling water masses or lateral advection 

(Martínez-Garcia et al., 2011; Meskhidze et al., 2007). The influence of dust-transported aeolian 

iron on bioproductivity is still debated. Erickson et al. (2003) suggested that bioproductivity in the 

Antarctic Circumpolar Current region is mainly controlled by atmospheric dust-Fe, mostly from 

Patagonia, whereas Kaufmann et al. (2010) argued that dust flux variations had no major influence 

on Southern Ocean productivity over the last 150 ka. Further, modelling studies suggest that 

upwelling delivers approximately 99 % of micronutrients to the Southern Ocean rather than dust 

(Lefèvre and Watson, 1999). At Sites MD07-3133 and MD07-3134 dust-indicator magnetic 

susceptibility (Weber et al., 2012), exhibits mostly minima when biogenic opal mass accumulation 

rate is high and vice versa (Sprenk et al., 2013). During the LGM, dust transport was significantly 

intensified and led to 10 – 30 times higher concentrations in East Antarctic ice cores (Delmonte et 

al., 2004) and in the Scotia Sea (Weber et al., 2012), whereas biogenic opal mass accumulation 

rate was extremely low during that period. Accordingly, we believe that iron-fertilization via dust-

transport is not the main driver of bioproductivity changes in the Scotia Sea. In addition, iron 

released from melting icebergs (Raiswell, 2011), i.e. Fe either from terrigenous material or aeolian 

dust (Lin et al., 2011), might have a minor affect on bioproductivity, as both sediment core sites. 

Biogenic opal export increase at the end of the last glacial could reflect higher nutrient 

content in upwelling waters or just intensified upwelling, more fractional utilization of nutrients, 

or, to a lesser extent, better preservation of sinking biogenic opal (Horn et al., 2011). Allen et al. 

(2011) concluded that reduced surface water productivity and/or export in the Scotia Sea during 

the LGM, caused by enhanced sea ice cover, lower sea surface temperatures, and therefore shorter 

growing seasons, and not changes in dissolution processes, are more likely to explain the lower 

abundance of diatoms in sediment cores during the LGM. 

Sprenk et al. (2013) revealed that biogenic opal mass accumulation rate rose abruptly at 

MD07-3133 and still also the 230Th-normalized biogenic opal flux record of MD07-3134 rose 

around 17 ka, thus representing probable increases in bioproductivity and upwelling. The rise is 

followed by a maximum around 15 ka in biogenic opal accumulation rate at MD07-3133, which 

was also detected at other core sites in the Atlantic, Indian, and Pacific sectors of the Southern 

Ocean (Anderson et al., 2009), and coincides with AIM 1. During the Antarctic Cold Reversal 

(14.54 – 12.76 ka; Putnam et al., 2010) biogenic opal mass accumulation rates at MD07-3133 and 

MD07-3134 are only slightly reduced and remain high. Also EDML ice core data show only a 

minor reduction in δ18O and rise in sea-salt Na+ flux according to regional differences. This is 
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slightly different from the observation of Anderson et al. (2009) showing strongly decreased 

biogenic opal flux indicating reduced Southern Ocean upwelling during that time. The ACR is 

followed by the AIM 0, an abrupt rise in temperature and CO2, as well as sea ice decrease, also the 

biogenic opal content rose at both core sites during that time (Sprenk et al., 2013). 

Linear sedimentation rate and biogenic opal mass accumulation rate were equivalent for both 

Scotia Sea sites during the LGM but increased by a factor of 1.5 to 2 at Site MD07-3133 during 

MIS 3, the Antarctic Cold Reversal, and MIS 1. Higher amplitudes further north could be related 

to an approximately 5° shift in latitude of the ACC fronts (and associated opal belt) to the north 

during the LGM (Gersonde et al., 2003). Allen et al. (2011) observed for the LGM a shift of the 

winter sea ice limit of at least 5° northwards, thus it remained north of the Scotia Sea. 

Accordingly, at that time, both core sites would have been within the winter sea ice limit, 

explaining the similarly reduced biogenic opal mass accumulation and linear sedimentation rates 

(Sprenk et al., 2013). Today, MD07-3133 which is located approximately 450 km northwest of 

MD07-3134 lies north of the winter sea ice limit with significantly elevated biogenic opal mass 

accumulation and linear sedimentation rates, while MD07-3134 is within the winter sea ice limit 

and exhibits reduced biogenic opal mass accumulation and linear sedimentation rates. Therefore, 

(Sprenk et al., 2013) suggested that the distribution of sea ice has a strong influence on 

bioproductivity and can be the reason for pronounced regional differences in the Southern Ocean.  

In general, biogenic opal content and mass accumulation rates show the same trend as 

atmospheric CO2 concentration; biogenic opal rises correspond well to increasing CO2 

concentration, while during low CO2 biogenic opal is also mainly at minima. In addition, 

Anderson et al. (2009) also found an increase in upwelling at each phase of rising CO2 during MIS 

3, illustrated by higher biogenic opal flux in the Southern Ocean, which corresponds quite well 

with the 230Th normalized biogenic opal flux from MD07-3134. Sprenk et al. (2013) indicated that 

variations in biogenic opal flux reflect bioproductivity changes and strongly correlate to sea ice 

cover, summer sea surface temperature as well as atmospheric CO2 variations. 
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8 Conclusions(and(Summary(

The sediment-physical and geochemical studies on sediment cores from the Atlantic sector of 

the Southern Ocean provide new insights on seasonal-to-millennial-scale fluctuations during the 

last glacial and deglacial period. The sediment cores from channel-ridge systems on a terrace of 

the continental slope of the southeastern Weddell Sea, are one of very few Antarctic archives with 

carbonate shell preservation. However, due the scarceness of carbonate shells only three to five 

AMS14C ages determined on planktonic foraminifera Neogloboquadrina pachyderma could be 

gained for each sediment core. Furthermore, no ash layers have been detected in the cores so far. 

The sediments mostly consist of terrigenous components and only a minor amount of biogenic 

material, as well as are mainly varved with only short bioturbated sections. Siliciclastic varves 

were counted using scanned X-radiographs and thin sections to gain new insights on the internal 

varve composition, thickness variations, and sedimentation process. The sediment cores were 

correlated among each other using varve counting results in combination with AMS14C revealing 

simultaneous facies changes from lamination to bioturbation and vice versa in the core site area 

around 25, 23, 21.5, 20, and 19 ka. The duration of the non-laminated, mainly bioturbated periods 

that interrupted varve accumulation, was only a couple up to a millennium, likely associated with 

ice-sheet retreat from the shelf, an inactive contour current on the slope, and at least partially open 

water conditions above the sites. Therefore, promoting multiple fluctuations of the East Antarctic 

Ice Sheet during the LGM. A final transition from lamination to bioturbation occurred around 

16 ka, marks the final ice-sheet retreat from the shelf edge in the southeastern Weddell Sea.  

Analyses of thin sections from sediment core PS1795 revealed that the varves have only 

small variations in grain size and no erosional or sharp surfaces occur argue against turbiditc 

sedimentation and favours varve formation. Also the varve counting results from PS1599, PS1789, 

PS1791, and PS1795 in combination with AMS14C ages support the results from earlier studies 

that the laminations represent true varves. High-resolution XRF-scanning every 0.2 mm and 

RADIUS tool measurements of PS1795 reveal seasonal changes in grain size and related changes 

in element and mineral composition. Lighter-coloured layers contain higher amounts of silt-sized 

particles, mainly Quartz grains, which is also reflected in Si count maxima. Less darkening of the 

X-ray film also reflects enhanced densities of the lighter-coloured layers. The finer grained layers 

are of a darker, brownish colour and contain mainly clay-sized particles and show maxima in K, 

Fe, Ti, and Rb, thus typical trace elements for clay minerals such as chlorite and illite as well as 

mica, e.g. biotide. 

Consequently, sedimentation in the channel-ridge systems was highly dynamic during the 

LGM, reflecting seasonal velocity changes of the thermohaline current that transporting sediment 

from the upper slope downslope to the core sites. Sediments were deposited when the grounded 

ice sheet had advanced to the Weddell Sea shelf edge. Offshore blowing katabatic winds removed 

sea ice from the ice edge and coastal polynyas developed. We suggest that glacial coastal polynya 

processes were in general similar to today with stronger katabatic winds and enhanced coastal 
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polynya activity during winter season. However, that does not imply the spaces of open water may 

have existed for long. Following this concept, silty layers are likely glacial winter deposits, when 

brine release was increased leading to intensified bottom water formation and increased sediment 

transport. Vice versa, finer-grained clayey layers were deposited during summer, when coastal 

polynya activity was possibly reduced. Nonetheless, there is currently no concluding interpretation 

as to which season produced which layer. Coarser layers could also have been deposited during 

glacial summer by meltwater channels or when more sea ice melted, which might also explain the 

higher IRD content in silty layers. However, the density of melted freshwater would have been too 

low to sink down the continental slope and initiate the required thermohaline circulation.  

Likely for the first time, decadal-to-centennial-scale oscillations have been detected in varved 

marine sediments during glacial times. Evolutionary spectra show a 50-85-year oscillation band 

present in all analysed varved sediment sections of the Weddell Sea cores, hence being a robust 

feature during the LGM. Also, 11-yr, 14-yr, 17-yt, 20-29-yr, 26-yr, 90-yr, and 116-yr cycles were 

detected in the bulk spectra exceeding the 96 or even the 99 % confidence level. The cycles 

correlate well with the periods of the Schwabe, Hale, lower and upper Gleissberg solar cycles, 

suggesting that solar cycles modulated sedimentation in the core sites area in the southeastern 

Weddell Sea during the LGM. Climate model experiments support the inference that solar-forced 

anomalies in atmospheric circulation over the Weddell Sea promoted coastal polynya formation 

during periods of high solar activity, enhancing brine formation and influencing the sedimentation 

process in the channel-ridge systems in the southeastern Weddell Sea. Additionally, internal 

atmosphere-ocean variability like the AMO, which itself might be related to solar irradiance 

changes, could have also influenced the sedimentation process.  

 

Sediment cores MD07-3133 and MD07-3134 originating from the central Scotia Sea reveal 

centennial-to-millennial changes of dust input as well as bioproductivity. The magnetic 

susceptibility record of both cores shows a one-to-one coupling with the non-sea-salt Ca2+ flux of 

East Antarctic EDML ice core, a confident atmospheric dust proxy. This clearly identifies 

atmospheric circulation as supplier of the magnetic susceptibility signal in the Scotia Sea. Sea ice 

and oceanic currents thus might have operated as secondary supplier transporting atmospheric dust 

to the core sites. Icebergs can be presumably ruled out as dust supplier, given that IRD and 

magnetic susceptibility show no accordance. Atmospheric transport involves no major lead or 

lags, therefore correlating magnetic susceptibility with EDML non-sea-salt Ca2+ flux is reasonable 

and the detailed structure of variability allows for the establishment of a high-resolution age model 

for the Scotia Sea cores. The strong correlation of the signals during the last glacial period reveals 

that the same atmospheric circulation affected East Antarctica and the Scotia Sea. Patagonia can 

be identified as major dust source as the magnetic susceptibility records of Patagonian lake 

sediment correlates with the records from the Scotia Sea. Furthermore, shows MD07-3133, located 

closer to Patagonia higher magnetic susceptibility values. During glacial times, when sea level was 

lower, therefore shelf areas exposed, magnetic susceptibility records in the Scotia Sea cores as 
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well as Antarctic dust input was intensified. Highest concentrations occurred in stadials MIS 2 and 

MIS 4. Also colder phases between AIM indicate elevated dust concentrations, whereas reduced 

during most AIM. Therefore, magnetic susceptibility records of Southern Ocean deep-sea 

sediments can be used as reliable traces of dust as well as atmospheric circulation changes. 

Additionally, biogenic opal flux of Scotia Sea cores reflects palaeoproductivity changes 

during the last glacial period as it is only marginally affected by preservation. Biogenic opal was 

determined by leaching, as well as estimated using colour b*, wet-bulk density, Si/Ti count ratios, 

and FTIRS. All methods can be used to detect general biogenic opal trends, thus FTIRS provides 

the most reliable estimation. The biogenic opal flux record of MD07-3134 is one of the first 

continuous palaeoproductivity record over the last 92.5 ka for the Southern Ocean. It exhibits a 

relatively complicated glacial-to-interglacial pattern with large-amplitude, millennial-scale 

fluctuations in bioproductivity. 

South of the Antarctic Polar Front, lowest bioproductivity levels deduced from biogenic opal 

fluxes occurred during the LGM, when upwelling of mid-depth water was reduced and sea ice 

cover intensified. 230Th normalized biogenic opal fluxes in core MD07-3134 show a similar 

pattern albeit at realistic values of between 1 and 1.5 g/cm2/kyr during interglacials, whereas 

glacial MIS 2 and 3 were generally characterized by lower values near 0.5 g/cm2/kyr. These 

numbers are comparable to other records in the Atlantic sector of the Southern Ocean. Around 17 

ka, bioproductivity increased abruptly, corresponding to rising atmospheric CO2 and decreasing 

seasonal sea ice coverage. Distribution of sea ice strongly influences bioproductivity and may be 

the reason for pronounced regional differences in the Southern Ocean. Also summer sea surface 

temperature changes are strongly correlated to the biogenic opal flux changes in the central Scotia 

Sea. 

 

In summary, Southern Ocean sediments are very useful to reconstruct past climate changes. 

The sedimentation in the Scotia and Weddell Sea seem to have responded even to seasonal-to 

millennial-scale climate fluctuations during the last glacial and deglacial period. Bioproductivity 

was lowest during the LGM, while dust input reached maximum values. They both also record 

millennial-scale changes like AIM during the last glacial period. Sedimentation in the channel-

ridge systems in the southeastern Weddell Sea was likely related to seasonal changes in katabatic 

winds and therefore coastal polynya fluctuations. Solar cycles and maybe internal atmosphere-

ocean variability influenced sedimentation on decadal-to-centennial-scale time-scales. 

Sedimentation in the southeastern Weddell Sea possibly also indications multiple fluctuations of 

East Antarctic Ice Sheet during the LGM. 
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