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where they regulate the actin dynamics in the cortex (Cai et al., 2007). The single 

coronin in yeast binds to F-actin and microtubules in vitro and regulates dynamic 

actin structures such as actin patchesin vivo (Goode et al., 1999). In Drosophila, 

mutations in coronin disrupt the actin cytoskeleton of the embryonic imaginal disks 

indicating that it is essential for morphogenesis (Bharathi et al., 2004). Mammalian 

Coronin 7 localizes to the Golgi network and plays a role in Golgi trafficking (Rybakin 

et al., 2004; 2006)  

The Dictyosteliumdiscoideum genome encodes two coronin homologues, a short 

coronin encoded by the corA gene with a conserved coiled coil domain and a longer 

homologue with a tandem beta-propeller domain, CRN7 encoded by the corB gene. 

D.discoideumcoroninis thefounding member of the coronins and was identified as a 

co-purifying protein from acto-myosin complexes and has been found enriched in 

crown like projections in the dorsal surface of the cells (de Hostos et al., 1991). 

deHostos et al.(1993) later created a coronin deficient cell line which showed several 

interesting phenotypes implicating the protein in physiological processes like 

cytokinesis, migration, cell polarity, and morphogenesis.CRN7, aDictyostelium 

homologue of CaenorhabditiselegansPOD-1 has been implicated in actin driven 

processes and Legionella pneumophila internalization (Shina et al., 2010). Deletion 

of both coronin homologues in D.discoideumhighlightedthe factthat even though they 

are involved in the same cellular processes, they act antagonistically to each other 

(Shina et al., 2011).  

1.2 Rho GTPases 

Rho-like proteins are small, monomeric GTPases of the Ras superfamily. They act as 

a molecular switch in the cell by cycling between an active (GTP-bound) and an 

inactive (GDP-bound) conformation. This activation cycle is regulated by two classes 

of enzymes, GEF and GAP proteins. GEFs or GuanosineExchange Factors activate 

the Rho GTPases by exchanging GDP for GTP, and GAP or GTPase Activating 

Proteins increase the intrinsic GTP hydrolysis of Rho GTPases thereby effectively 

terminating the signal by converting them into an inactive form (GDP-bound). A third 

class of regulatory proteins known as GDI (GDP Dissociation Inhibitors) regulates 

Rho GTPases by binding to the GDP bound (inactive) form of GTPases and prevent 

their spontaneous activation (Figure 2). They also bind to the isoprenyl moiety of Rho 
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consists of three members (Rac1A, 1B, 1C) and is considered as orthologues of 

mammalian Rac1. Rac1A, 1B, and 1C regulatethe actin cytoskeleton and cell motility 

(Faix et al., 1998). In addition, Rac1A and RacE are required for cytokinesis 

(Larochelle et al., 1997). RacB is required for chemotaxis and morphogenesis (Park 

et al., 2004), while RacC is implicated in phagocytosis and is regulated by 

phosphatidylinositol 3-kinaseactivation (Han et al., 2006). RacG is required for the 

regulation of cell shape, motility, and phagocytosis (Somesh et al., 2006a). RacH has 

been implicated in vesicular trafficking and intracellular immunity to Mycobacterium 

(Somesh et al., 2006b). Furthermore, the D. discoideum genome encodes numerous 

exchange factors (RacGEFs) and GAPs (RacGAPs) and the function of handful of 

them are known (Park et al., 2004, Faix et al., 1996). In addition, there are two GDI 

homologues present and deletion of either one or both of them results in a defective 

cytokinesis and contractile system (Rivero et al., 2002). 

1.3 CRIB effector proteins 

Rho GTPases bind to several downstream target molecules known as effector 

proteins. These proteins specifically interact with the GTP-bound form of Rho 

GTPases and this is achieved by recognizing conformational changes in the ‘effector 

region’ (switch I) of Rho GTPases (Bishop and Hall, 2000). Most of the Rac and 

Cdc42 effector proteins, if not all, contain a conserved CRIB motif (Cdc42 and Rac –

interactive binding). The CRIB motif is the minimal effector binding region for Cdc42 

and Rac and is 15 amino acids long with the consensus ISXPXXXXFXHXXHVG. This 

small motif forms part of a larger binding region (also known as PBD-p21-binding 

domain or GBD-GTPase binding domain) that has been shown to be required for 

GTPase interaction. The CRIB motif was first reported by Burbelo et al. in 1993. 

Subsequently, Hall and co-workers identified a host of candidate effectors proteins on 

the basis of homology searches to the CRIB region (Burbelo et al., 1995). The 

repertoire of effector proteins expanded phenomenally in the last decade or so and 

includes protein families having diverse sets of structure and function. Some 

exemplary families are kinases (ser/thr protein kinase and tyrosine kinase), actin-

binding proteins, and scaffold proteins (Bishop and Hall, 2000). 

The GBD of WASP (Wiscott Aldrich syndrome protein) and ACK (Cdc42 and Rac-

interactive kinase) were the first reported crystallographic structures bound to 

GTPase(Abdul-Manan et al., and 1999, Mott et al., 1999). Subsequent mutational 
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studies of the CRIB motif provided a significant insight into the binding interface 

between GBD and GTPases. The interaction is mediated by both polar and 

hydrophobic contacts involving highly conserved residues in the CRIB motif. The 

conserved isoleucine, serine, and proline in the N terminus of the CRIB motif form 

hydrophobic contacts with the �5 helix of the GTPase. The conserved Asp38 in the 

switch I region of Cdc42 and Rac1 interacts with one of the conserved histidines 

(HXXH) in the CRIB motif. Mutation of either of these histidines greatly affects the 

interaction of CRIB effector with GTPases. The adjacent residues of the CRIB motif 

show less conservation among CRIB effector proteins. However, these residues 

make extensive contacts with the switch I and switch II regions of the GTPases and 

appear to be important in response to the nucleotide switch (Morreale et al., 2000). 

The CRIB motif containing effector proteins bind preferentially to GTP-bound Rho 

GTPases and connect the activation of GTPases to a broad range of downstream 

responses. Once bound to the active GTPases, the activity of the CRIB effector 

proteins might be regulated in several ways such as activation, sub-cellular 

localization and others. The most common mechanism of effector activation by Rho 

GTPases appears to be the disruption of intramolecular auto-inhibitory interactions, 

which exposes functional domains within the effector protein. For example, the two 

related CRIB domain containing effector proteins WASP and N-WASP are regulated 

by intramolecular inhibition. These proteins share similar domain architecture and are 

involved in the relay of signals from cell membrane receptors to the actin 

cytoskeleton. The WASP protein contains an N-terminal GBD (GTPase binding 

domain) required for Cdc42 interaction, and a C-terminal VCA domain (Veprolin 

homology, Cofilin homology, acidic region segment) involved in Arp2/3 complex 

mediated actin polymerization. In an auto-inhibited state, the cofilin homology domain 

forms an intramolecular auto-inhibitory interaction with the N-terminal GTPase 

binding domain and effectively masks the VCA domain. Cdc42-GTP activates WASP 

by binding to the GBD and subsequently relieving the auto-inhibitory intra-molecular 

interactions. The relieved VCA domain then recruits Arp2/3 complex and initiates 

actin polymerization (Rohatgi et al., 2000). A similar mechanism of activation has 

also been observed in other Rho GTPase target proteins like PAK (kinase activity), 

mDia (actin polymerization) and several others (Hoffman and Cerione, 2000). A 

different mode of activation has been observed in IQGAP protein, which is involved in 
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actin cross-linking function where Cdc42-GTP was shown to regulate the cross-

linking activity of IQGAP in vitro (Fukata et al., 1997).  

In recent years, proteins with less conserved CRIB motifs have also been shown to 

interact with Rho GTPases in a GTP dependent manner. For example, POSH2 is an 

E3 ligase and scaffold protein that interacts with Cdc42-GTP through a partially 

conserved CRIB motif (conserved ISxP sequence) (Kärkkäinen et al., 2010). 

Similarly, phospholipase D2 (PLD2) contains two weakly conserved CRIB motifs in its 

PH domain through which it interacts with Rac2 (Peng et al., 2011). In some cases, 

proteins with a partial CRIB sequence use its adjacent structural modules for GTPase 

interaction. Par6 in Drosophila has been shown to be required for neuroblast cell 

polarity and asymmetric cell division. It contains a PDZ domain downstream to a 

partial CRIB motif. Both domains are required for Cdc42-GTP interaction (Garrard et 

al., 2003;Joberty et al., 2000). PlexinB1, a functional semaphorin receptor has been 

reported to contain a partial CRIB sequence embedded in its cytoplasmic domain. 

Deletion analysis showed that the plexin-Rac binding domain is significantly larger 

than the CRIB motif (Haris et al., 2000).   

1.4 CRIB effector proteins in D. discoideum

In D. discoideum, several Rac effector proteins have been characterized in detail. 

DGAP1 and GAPA are two IQGAP-related proteins that regulate cytokinesis in 

D.discoideum. Both proteins interact with Rac1a through a conserved GRD (GTPase 

related domain) domain. The actin binding proteins cortexillin I and II form a 

quaternary complex with DGAP1 or GAPA and activated Rac1a (Faix et al., 

1998;Mondal et al., 2010). Filamin, an actin cross-linking protein has been shown to 

interact with activated Rac1a and associates with cortexillin I (Mondal et al., 2010). 

Formin homology proteins regulate cytoskeletal remodeling during cytokinesis, cell 

polarity, and development. The diaphanous or Dia-related FH proteins (DRFs) 

constitute a subclass of FH related proteins and a D.discoideumformin homologue, 

mDia2, has been shown to localize to filopodia tips and regulate actin polymerization. 

mDia2 binds to activated Rac1a and is required for filopodia formation (Schirenbeck 

et al., 2005). RacC interacts with WASP and stimulates F-actin polymerization via the 

activation of WASP. RacE is requited for 14-3-3 localization to the cortex and 14-3-3 

mediated myosin II assembly (Robinson DN, 2010). However, no direct 

RacEinteraction partner has beenreported so far. RacB specifically interacts with 
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Figure 4: Myosin II regulation in D. discoideum(taken from de la Roche et al., 
2002).

D. discoideum encodes four myosin heavy chain kinases, MHCKA through MHCKD, 

which are responsible phosphorylation of the three threonine residues in the MHC tail 

region that are critical for filament formation (Luo et al., 2001). They belong to the 

alpha-kinases family and apart from a conserved catalytic domain; they possess a 

WD repeat domain that is required for substrate targeting. Each MHCKs displays 

different cellular localization and was suggested to have separated functions in the 

cell. MHCKA is primarily localized in the anterior F-actin rich regions where it enables 

formation of new pseudopods by disrupting myosin filaments. MHCKC localization is 

dependent on myosin II and has been suggested to regulate myosin II during uropod 

retraction and cleavage furrow formation. MHCKB is localized in the cytosol and may 

serve a role in maintaining basal MHC phosphorylation levels (de La Roche et al., 

2002). The molecular mechanisms underlying activation and localization of MHCKA 

have been studied in detail. MHCKA has been shown to be activated primarily by 

auto-phosphorylation and recently, it was shown that F-actin can activate MHCKA 

through increasing its auto-phosphorylation rate. MHCKA contains a coiled-coil 

domain through which it binds to F-actin and localizes to anterior regions (Steimle et 

al., 2001).However, it was suggested that the kinase activity one or more MHCKs 

was negatively regulated by upstream PAK kinases during cell migration: particularly 

in the posterior regions of migrating cells (Chung and Firtel, 1999). 

1.7D. discoideum family of PAK kinases 

The D. discoideum PAK kinase family consists of three members, PAKa, PAKb, and 

PAKc, with a conserved CRIB motif in the N-terminal regulatory region and a catalytic 

domain in its C-terminus. PAKa has been shown to localize to the posterior regions of 

migrating cells where myosin II is enriched (Chung and Firtel, 1999). Cells deficient in 

PAKa have been shown to exhibit altered F-actin cytoskeleton, defective cytokinesis 

and cell polarity. PAKa tagged with a membrane targeting signal was used to show 

that PAKa activates actin polymerization at the cortex. Most strikingly, PAKais 

required for myosin II assembly and it regulates myosin assembly by inhibiting one or 

more myosin heavy chain kinases (MHCKs), however it did not phosphorylate myosin 

directly. A dominant negative PAKa containing the CRIB and the catalytic domain has 

been shown to inhibit phagocytosis by Müller-Taubenberger et al. (2002). In 
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addition,this group showed that PAKa can interact with Rac1a specifically in its GTP-

bound form, and that a small region in the N-terminus is required for PAK localization 

to the cortex. PAKb was shown as a heavy chain kinase for unconventional myosin I 

and is involved in the formation of phagosomes (de la Roche et al., 2005). PAKcis a 

PH domain containing member and localizes to the plasma membrane upon chemo-

attractant stimulation. PAKc kinase activity increased upon cAMP stimulation and 

was activated specifically by RacB. A PAKc carrying a mutation in the CRIB motif 

exhibited higher basal kinase activity highlighting the role of Rac GTPases in PAK 

regulation (Lee et al., 2004). However, PAKccould also regulate myosin assembly. 

However,PAKa has been suggested to be the major player in regulation of myosin 

dynamics. Accordingly, Chung and Firtel(1999) suggested that PAKa localizes to the 

rear of the moving cells and enhances myosin assembly by inhibiting the activity of 

heavy chain kinases. PAKain turn is activated by phosphorylation by Akt and Rho 

GTPases.    

1.8. Aim of this study 

The aim of this work is to study the interaction specificity of coronins and Rho 

GTPases in the model system D. discoideum and 

1. to analyze and characterize the putative CRIB domain of D. discoideum 

coronin proteins, 

2. to understand the significance of Coronin-Rac interaction in the physiological 

processes of the cell, 

3. to elucidate the molecular signaling pathway in which coronin and Rho 

GTPases are involved. 
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Figure 8: A. Schematic diagram showing the different GST fusion polypeptides 
of coronin. The position of the amino acids is indicated. The modular structure 
of coronin with the location of the CRIB domain is shown above for 
comparison. B. The different GST fusion peptides were expressed in E.coli
XL1-blue and purified as GST fusion products using Glutathione  
Sepharose beads. The polypeptides were separated on a 12 % polyacrylamide 
gel and stained with Coomassie Blue. On the left the position of molecular 
weight markers is indicated. 
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Figure 16: CRN7-Rac interactions. A. GFP fusion deletion constructs of CRN7 
is shown. The figure is not drawn to scale. Modified from Shina et al.,(2010). B. 
CRNGST-Rac A, GST-Rac C, GST-Rac E and GST-Rac 1a bound to Glutathione-
Sepharose beads were loaded with GDP or GTP�S and incubated with AX2 cell 
lysates expressing either GFP-CRN7-NT or GFP-CRN7-CT. After repeated 
washing of the beads, the bound proteins were immunoblotted with anti-GFP 
antibody to detect GFP-tagged proteins. The GST fusions are shown in the 
lower panels. Molecular weight markers in kDa are indicated at the left. 

From all the above experiments we conclude that D. discoideum coronin proteins 

(coronin and CRN7) preferentially interact with Rac GTPases in their GDP bound 

form. However, when the individual propellers of CRN7 are expressed, they prefer 

active Racs (GTP-loaded).   

2.4.1 Coronin regulates myosin II function 

Myosin II (conventional) in D. discoideum plays a central role in several cellular 

processes like cytokinesis, chemotaxis, and development. Myosin II can self-

assemble into bipolar filaments. Phosphorylation of myosin II in its heavy chain 

regulates the dynamics of filament assembly (Bosgraaf and van Haastert., 2006) and 

impaired regulation of myosin II assembly and disassembly dynamics leads to severe 

cell polarity and developmental defects (Mondal et al., 2008). 

We performed immunofluorescence analysis in order to elucidate the function of 

coronins in myosin II regulation. Myosin II typically localizes to the posterior cortex of 

chemotaxing cells where it helps to retract the cell body and suppress lateral 

pseudopod formation. It was observed that the amount of myosin II associated with 

the cytoskeleton increases and nearly doubles during the aggregation stage. When 

we stained coronin mutant cells for myosin II, we observed a similar distribution of 

myosin II in AX2 and corB mutant cells where we found an increased cortical staining 

only in aggregation competent cells. In contrast, corA- and corA-B- mutants showed 

an increased staining of myosin II in the cortex in vegetative cells comparable to the 

myosin II staining of aggregating cells (Figure 17). 
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the mean of six independent experiments for vegetative and two for 
aggregating cells. 

We further measured the amounts of myosin II recovered from detergent-insoluble 

cytoskeleton extracts of AX2 and coronin mutant cells. In the un-phosphorylated 

state, myosin II assembles into bipolar filaments and associates with the 

cytoskeleton. In AX2 cells, there is a twofold increase in the amount of myosin II 

recovered from cytoskeletal preparations of aggregation competent cells compared to 

growing cells reflecting the increased association of myosin II with the posterior 

cortical regions of chemotaxing cells. In contrast, corA- and corA-B- mutant cells 

showed an elevated level of myosin II in growing cells which was comparable to that 

in aggregating cells. On the other hand, cytoskeletal myosin II recovered from corB- 

was comparable to AX2 cells (Figure 18).  

2.4.2 D. discoideum coronin interacts with Rac GTPases that regulate myosin II 
function 

Rac GTPases regulate several cellular processes through CRIB containing effectors 

proteins. PAK kinases are such effector proteins that are regulated by Rac GTPases. 

PAK kinases are activated by active Rac GTPases (GTP-bound), and in turn regulate 

downstream processes like myosin assembly (conventional myosin II) and myosin 

motor activity (unconventional myosin I) in the cell. 

The D. discoideum genome encodes three canonical PAK kinases, PAKa, PAKb and 

PAKc. Two of these kinases, PAKa and PAKc, have been implicated in myosin II 

regulation (Chung and Firtel., 1999; Lee et al., 2004; Müller-Taubenberger et 

al.,2002). Additionally, these two PAK kinases are known targets for activated Rac 

GTPases, especially Rac1b and RacB. So we sought out to investigate whether 

coronin could interact with these two Rac GTPases. In pull-down assays we found 

that coronin bound preferentially to the GDP bound form of Rac1b and RacB (Figure 

19). 
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3. Discussion 

A link between Rac GTPases and coronins has been suggested by earlier work. 

Spoerl et al. (2002) reported that in Swiss 3T3 cells the localization of human Coronin 

1C (Coronin3, CRN2) was strongly influenced by expression of constitutively active 

or inactive Rac1. This was thought to result from changes in the actin cytoskeleton 

caused by the different states of Rac proteins. Furthermore, a truncated Coronin 1C 

containing only the core region which is composed of the WD repeats and lacking 

nearly all regions implied in F-actin co-localization, failed to localize to membranes 

and affected the shape of the cells. The cells exhibited an impaired spreading and 

adhesion to solid supports, whereas cell-cell adhesion was unaffected leading to a 

rounded or spindle-like cell shape and suppress neurite formation in neuronal cell 

lines (Hasse et al., 2005). Similarly, truncated Xenopus coronin led to impaired Rac-

mediated spreading and lamellipodia formation. On this basis Mishima and Nishida 

(1999) had suggested that the coronin core might directly interact with a Rac GTPase 

and might block signal transmission to downstream effectors. 

 

We extended the work by Xavier et al. (2008) in which a CRIB motif was identified in 

coronins and confirmed the presence of CRIB motifs in the D. discoideum coronin 

homologues. We further found that the CRIB motif is present in coronin species from 

different taxa with varying degree of conservation. When we compared the CRIB 

motif sequence of known effector proteins with D. discoideum coronins, we found a 

high conservation of critical amino acids as the D. discoideum short coronin 

homologue shows amino acid conservation in six positions out of eight in the typical 

CRIB consensus ISXPXXXFXHXXHVG (Figure 33). 
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Figure 33: Conservation of CRIB domain in short coronins across taxa. Protein 
sequences of coronin from H. sapiens (P31146), M. musculus (O89053), D.
melanogaster (Q7JVY0), S. cerevisiae (Q06440), E. histolytica (C4M137), D
discoideum (P27133), T. thermophila (I7MIA8), T. cruzi (Q4D4X6), T. brucei 
(Q57W63), T. gondii (Q5Y1E7), L. major (Q4QB38), and P. falciparum (O44021) 
were retrieved and the core WD repeats (2-6) were aligned using ClustalX 
program (Larkin et al., 2007). A bootstrap Neighbor Joining (NJ) tree was 
created and the resulting cladogram is shown with supporting bootstrap 
values in percent. The CRIB sequence alignment of respective coronins is 
shown on the right side of the tree. 

By cloning CRIB sequences from various effector proteins, Burbelo et al. (1995) 

showed that Rho GTPase binding is unaffected in sequences with one or two 

mutations in the eight consensus amino acids. The long coronin homologue CRN7 

contains a CRIB related sequence in each of its WD repeat domains with somewhat 

lesser conservation.  

 

The CRIB domain is commonly found in Cdc42/Rac effector proteins and enables 

them to bind to Rho GTPases in a GTP dependent manner. The CRIB motif was 

found to be the minimal essential domain for Rho GTPase binding, however, further 

analysis with mutational studies in p21 activated kinase (PAK) suggested that a 

larger binding region is required for Rho GTPase binding and was termed as PBD 

(p21 activated kinase binding domain). This domain has been routinely used as a 

tool to quantify cellular GTP-Rac levels because of the high affinity of this domain for 

Rho GTPases (Bokoch et al., 2003). We have identified the presence of a CRIB motif 

in a surface accessible loop between blade 2 and blade 3 of D. discoideum coronin 

proteins. In our pull-down assays with different coronin deletion peptides, all the GST 

fused peptides harboring the CRIB motif could precipitate GFP-Rac1a from AX2 

cells. Rac1a from D. discoideum regulates cytokinesis and the actin cytoskeleton. 

The D. discoideum genome encodes nearly 18 Rac family GTPases (Vlahou and 

Rivero, 2006). So, we used this minimal GST fused CRIB peptide in a pull-down 

assay to identify its binding to other Rac members and found that it could precipitate 

GFP-RacE from AX2 cells. To further understand the in vivof unctions of the coronin 

CRIB domain, we expressed GFP-cor CRIB in AX2 cells and followed its localization 
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using live cell imaging. In these experiments, we have found that GFP-cor CRIB 

transiently localize to the membrane of protruding pseudopods, while a full length 

protein GFP-cor WT was enriched in the cortex.  

 

CRIB effector proteins binds to Rho GTPases in a nucleotide dependent manner. 

Rho GTPases act as a molecular switch by converting the inactive (GDP-bound) to 

the active (GTP-bound) conformations. Rho GTPase effectors proteins bind 

preferentially to the GTP-bound form of GTPases through their CRIB motif (Bishop 

and Hall, 2000). We have conducted pull-down assays in order to test the nucleotide 

specificity of coronin binding to Rho GTPases where we used a series of Rac 

GTPases fused to GST and loaded them with nucleotide analogues (GDP or GTP�S) 

to mimic the in vivo situation. In these experiments we found that D. discoideum 

coronin proteins preferentially interacted with GDP-bound (inactive) forms of Rac 

GTPases. Coronin interacted with GDP-RacC with higher affinity and CRN7 showed 

an increased binding to GDP-RacE. RacC has been implicated in phagocytosis and 

regulates actin polymerization through activation of WASP. Both of these processes 

were found to be impaired in corA- cells suggesting that coronin-RacC interaction 

might play a role in regulating them. As CRN7 contains two CRIB domains, we next 

asked how the individual CRIB domain interacted with Rho GTPases when 

expressed separately. We have used AX2 cells expressing GFP fused proteins 

encoding the individual beta-propeller domains of the CRN7 protein in our pull-down 

assays. Surprisingly, the individual beta-propeller domains showed increased binding 

to GTP-loaded Rac GTPases. While GFP-CRN7 NT interacted with RacC-GTP, 

GFP-CRN7 CT showed higher preference for GTP-RacE. This suggests an additional 

regulation of the interaction at the level of the full length protein.  

 

We further tested if the interaction between coronin and Rac GTPases is direct. In 

our direct binding assays, we found that a thrombin cleaved fragment (NT CRIB) 

binds to both forms of Rac GTPases (GDP and GTP) without any preference. This 

data is in contrast to the full-length protein which binds preferentially to GDP-Racs. In 

general the conserved residues in the CRIB motif make extensive contacts with 

switch I and switch II regions of Rac GTPases. These residues and an adjacent 
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alpha-helix appear to mediate sensitivity to the nucleotide switch (Abdul-Manan et al., 

1999). The CRIB motif binds preferentially the GTP loaded GTPase and exhibits 

reduced binding activity when the GDP form is used. In D.discoideum coronins the 

CRIB motif, although being well conserved, is not followed by an alpha-helix as in the 

CRIB motifs of WASP, ACK or PAK65 (Abdul-Manan et al., 1999), instead, it is 

embedded into beta sheets.  

 

We studied myosin functions in the coronin mutant cells in order to understand the 

significance of coronin-Rac interaction. Myosin II dynamics in Dictyostelium is 

regulated by phosphorylation in its tail region by heavy chain kinases. The molecular 

mechanisms involved in myosin II regulation have been well studied (Bosgraaf and 

Haastert, 2006). Rac GTPases have been shown as significant players in myosin II 

regulation and now we found that coronin interact with Racs; we studied the myosin 

assembly dynamics in coronin deficient cells. It was shown that, during cell migration 

(chemotaxis) myosin accumulation in the cortex increases by twofold compared to an 

unstimulated cells (Mondal et al., 2008). When we stained for myosin in coronin 

mutant cells, we found an increased accumulation already in the growth phase cells 

of corA- and corA-B- cells, while in the WT and corB- mutants, it increased only during 

aggregation. This was further confirmed by quantification of myosin in the detergent-

insoluble fractions. Two Rac GTPases have been implicated in regulating myosin 

functions, Rac1b and RacB. These two GTPases exert their function by regulating a 

downstream Pak kinase activity. So, we next asked whether coronin can interact with 

these two GTPases in our pull-down assays. Coronin interacted with both of these 

GTPases in their GDP-bound form implicating that coronin might regulate myosin 

functions through interaction with these two GTPases. 

 

We next assessed the significance of the CRIB motif in coronin protein functions by 

generating point mutations in the conserved residues. Two different expression 

constructs with CRIB mutations were generated. GFP-MUT1 contains a mutated 

CRIB motif in its N-terminal half (ISxP exchanged for AAxA) and in GFP-MUT2 the 

conserved amino acids in the consensus HXXXVG were mutated to alanine. In 

immunofluorescence studies, both of the mutants were found enriched in the cortex 

of cells and co-localized with actin. In addition, they were equally present in detergent 
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soluble and insoluble cytoskeletal fractions (data not shown) suggesting that the actin 

binding ability of the proteins was unaffected by CRIB mutations. As coronins can 

form homo-oligomers by means of a conserved coiled coil domain, we expressed 

these GFP-CRIB mutants in AX2 cells in order to analyze this function. In our 

immunoprecipitation experiments, we found that the GFP-MUT2 could form 

oligomers like wild-type protein. 

 

Furthermore, we tested the binding ability of GFP-CRIB mutated coronin proteins 

with Rac GTPases. In pull-down assays, GFP-cor WT protein interacted with the 

GDP-bound form of Rac1b as observed with the endogenous protein. While GFP-

MUT1 lost the ability to bind Rac1b, GFP-MUT2 behaved like wild type protein and 

retained its binding ability. In our structural analysis of the coronin CRIB domain, the 

N-terminal half of the CRIB motif was surface exposed and appeared to be more 

relevant for the Rac interaction as its mutation led to a loss of binding activity. When 

coronin deficient cells rescued with these mutants were analyzed for the myosin 

phenotype, we observed that the GFP-MUT2 which retained Rac binding ability could 

prevent the overassembly of myosin in the cortex of vegetative corA- cells 

comparable to AX2 cells. These results clearly highlight that the coronin-Rac 

interaction is essential for myosin functions. 

 

Since we identified a myosin phenotype in corA- cells we focused here on PAKa as 

an effector of Rac. In mammalian cells a downstream effector of PAK is the myosin II 

light chain kinase whose activity is down regulated after phosphorylation by PAK1. 

This results in reduced myosin II activity (Sanders et al., 1999). In Dictyostelium, 

myosin assembly is controlled by phosphorylation of the myosin II heavy chain. 

MHCKs phosphorylate the protein in the tail region which leads to disassembly of the 

myosin filaments and release of myosin from the cell cortex. The activity of the 

MHCKs is subject to regulation by various mechanisms. In particular, Chung and 

Firtel (1999) suggested that PAKa affects myosin assembly in response to cAMP 

signaling whereby PAKa does not phosphorylate myosin II directly but regulates it in 

a negative fashion through regulation of MHCK. In PAKa null cells the level of 

cytoskeletal myosin was reduced to ~65% of wild-type level and constitutively active 

PAKa led to enhanced cytoskeletal myosin already in growth-phase cells. PAKs are 

activated by GTP-bound Rac proteins and for PAKa binding to several Racs including 
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Rac1a and Rac1b has been shown. For this interaction the CRIB domain was 

responsible (Chung and Firtel, 1999; Müller-Taubenberger et al., 2002; Park et al., 

2004).  

 

In our work we found up-regulated cortical myosin levels already in corA- growth 

phase cells which exhibited a strong cortical staining for myosin that did not increase 

further during development. Enhanced myosin content in the cortex suggested that 

MHCK is not active and cannot phosphorylate myosin heavy chain and release it 

from the cortex. MHCK inactivation might be achieved by an overactive PAKa. PAKa 

like myosin resides in the cortex during aggregation. It is a GTPase effector and its 

activity is regulated by active Rac GTPase. We propose that in the corA- the balance 

between GDP-bound and GTP-bound Rac is altered due to the loss of coronin. In 

fact, the Rac-GTP levels were increased as demonstrated by pull downs with the 

PDB of rat PAK1 which binds only activated Rac (Fili� et al., 2012). This leads to an 

overactive PAKa in the cytoskeleton which inhibits MHCK resulting in overassembly 

of myosin in the cortex (Figure 17). Intrigued by the link between PAK and myosin we 

tested this hypothesis and expressed in corA- cells a dominant version of PAKa, 

PAKa-c, consisting of the CRIB domain and the kinase domain. In contrast to full 

length PAKa this protein is located in the cytosol (Müller-Taubenberger et al., 2002). 

This resulted in normal myosin levels in the mutant during growth phase. As PAKa is 

not known to form (homo-) oligomers it is unlikely that the PAKa protein in the cortex 

is influenced by PAKa-c in its activity. PAKa-c rescued the phenotype because it 

sequestered active Rac to a large extent in the cytoplasm. This might restore the wild 

type phenotype of PAKa activation in the cortex and proper regulation of the myosin 

heavy chain kinase.  

 

Cytokinesis is a crucial step in the mitotic process. Coronin deficient cells showed 

severe cytokinesis defects with the majority of cells being multinucleated, a 

phenotype similar to MHCA- cells (de Hostos et al., 1993). The multinuclearity defect 

in MHCA- cells cannot be rescued by the expression of a non-phosphorylatable form 

of myosin II (3XALA). Phosphorylation of myosin II in its tail region is essential for 

myosin disassembly and it was suggested that myosin II needs to disassembles first 

from the cortex before its assembly in the cleavage furrow to play its role in furrow 



  Discussion 
�

48�
�

constriction (de La Roche., 2002). Since we observed a higher accumulation of 

myosin in the cortex of corA- cells, we speculated that the cytokinesis phenotype in 

corA- cells could be due to deregulation in myosin dynamics which in turn is a result 

of higher PAKa kinase activity. As the expression of dominant negative PAKa, PAKa-

c rescued the myosin functions in corA- cells, we counted the number of nuclei in 

these cells and found that there was a partial rescue in cytokinesis. While 50% of the 

corA- cells had more than 3 nuclei, this is reduced to 30% in PAKa-c expressing cells 

suggesting that the cytokinesis phenotype of corA- cells is in part due to the 

deregulation in myosin assembly dynamics. 

 

A recent analysis has shown that in mammalian cells Pak1 forms a complex with 

coronin1A in an F-actin dependent manner. In this report, coronin1A was suggested 

to act as a scaffolding protein and form a complex with Pak1 and RhoGDI thereby 

enhancing the release of Rac from the GDI for its activation (Castro-Castro et al., 

2011). To analyse this for Dictyostelium PAK and coronin we first tested if there is a 

binding site for PAKa in coronin by pull-down assays. We found that the GST-NT 

CRIB could precipitate efficiently GFP-PAKa from AX2 cells suggesting the presence 

of a PAK binding site in the coronin N-terminus. RhoGDI was absent from the 

complex. In immunofluorescence analysis, we found a partial co-localization of PAKa 

and coronin in the cortex. It was shown previously that PAKa localizes to the rear of 

migrating cells like myosin while coronin is enriched in the leading fronts suggesting 

that only a fraction of PAKa may exist in a complex with coronin in vivo (Chung and 

Firtel, 1999).  

 

Coronin proteins, a WD repeat containing family, are well known for their role in 

regulating actin cytoskeleton dynamics (Clemen et al., 2008). Here, we report that D.

discoideum coronins interact with Rac GTPases in their GDP-bound form. Since Rac 

GTPase activation stimulates PAK kinases, and activated PAKs regulate the myosin 

cytoskeleton, we propose that coronin through its binding to GDP-Rac regulates Rac 

activation and thereby myosin dynamics. In support of this hypothesis, we show that, 

(1) the CRIB domain of coronin is essential for Rac interaction, (2) myosin II 

assembly is upregulated in corA- cells and expression of a dominant negative PAK is 
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4. Materials and Methods 
4.1  Materials 
4.1.1 Oligonucleotide Primers 
Forward Primers 
cor-5‘ For  5‘-GGATCCATGTCTAAAGTAGTCCGTAGTAGTAAATAT-3‘ 

cor-330 For  5‘-GGATCCGAAGGTGGTTTAACCGACTCAATCTCAACC-3‘ 

cor-499 For  5‘-GGATCCACTGTTGAAGGTCACTCTGATATGATCACT-3‘ 

cor-1029For  5‘-GGATCCTTCCGTGTACCAAGAAAATCTGATATCTTC-3‘ 
Reverse Primers 
330 Rev 5‘-CCCGGGTGGGATACCCCAAATACAAATGTTACAATC-3‘ 

504 Rev 5‘-CCCGGGAACAGTGGTTAAATTCTTACCTTGTTCAAC-3‘ 

1029 Rev 5‘-CCCGGGTGAGATTGGTTCAACGGTGAATGGAGTAAC-3 

1188 Rev 5‘-CCCGGGAGCTGAAGCTTTTTTGACAAAACCACCAGCTAAAC-3‘ 

3‘ Rev  5‘-CCCGGGTTGGTGAGTTCTTTGATTTTGGCATCCTTTTTAAC-3‘ 

Primers for Site-Directed Mutagenesis  
MUT1 For  

5’-

CCCAGAAGGTGGTTTAACCGACTCAGCCGCCACCGCACTCCAAACTTTATCTGG

TCACAAGAGAAAGG-3’ 

MUT1 Rev  

5’- 

CCTTTCTCTTGTGACCAGATAAAGTTTGGAGTGCGGTGGCGGCTGAGTCGGTTA

AACCACCTTCTGGG-3‘ 

4.1.2 Primary Antibodies 

anti- coronin mAb 176-3-6  - de Hostos et al., 1991 

anti-actin mAb act1-7  - Simpson, and Spudich, 1984 

 anti-myosin mAb 56-396-5 - Pagh and Gerisch,1986 

anti-GFP mAb K3-184-2  - Noegel et al., 2004 

anti-Rac1a pAb   - Fili� et al., 2012
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4.1.3 D. discoideum strains used in the study 

corA KO    - de Hostos et al., 1991; 1993 

corB KO    - Shina et al., 2009 

corAB KO    - Shina et al., 2010 

AX2 expressing GFP-Rac1a - Faix et al., 1998 

AX2 expressing  

GFP-RacE    - This study   

GFP-crn7 NT   - This study  

GFP-crn7 CT   - This study 

GFP-cor CRIB   - This study 

GFP-cor WT    - This study 

GFP-MUT1    - This study 

GFP-MUT2    - This study 

 

GFP-MUT1 in corA-   - This study 

GFP-MUT2 in corA-   - This study 

GFP-PAKa in AX2   - Müller-Taubenberger et al., 2002  

GFP-PAKa-c in corA KO  - This study 

 
4.2 Methods 
4.2.1 Growth of Dictyostelium strains 
D. discoideum strain AX2 was used as wild type strain. Cells were cultured either in 

petri dishes or in suspension culture (160 rpm) at 220C with appropriate antibiotics. 

All strains were grown and maintained as described (Claviez et al., 1982). 
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4.2.2 Cloning, expression and purification of GST and GFP fusion proteins 
A vector coding for full length coronin with GFP fused to the C-terminus under the 

control of actin15 promoter was described previously (Gerisch et al., 1995). This 

plasmid was referred to as GFP-cor WT. The GFP-coronin MUT1 and MUT2 

constructs were created by site directed mutagenesis using appropriate primers and 

the QuikChange Site-Directed Mutagenesis Kit (Stratagene) and the sequence 

verified. Cloning of GFP-PAKa and generation of a dominant negative PAKa (GFP-

PAKa-c) was described earlier (Müller-Taubenberger et al., 2002). The plasmids 

were transformed into AX2 and corA knock-out cells by electroporation. 

Transformants expressing the respective GFP-tagged proteins were selected by 

using G418 (Geneticin) at 2μg/ml. The expression levels were determined by western 

blots. For the expression of different coronin deletion constructs as GST fusion 

proteins, appropriate coding sequences were PCR amplified and cloned into the 

expression vector pGEX 4T-2 (GE Healthcare) using BamHI and XmaI sites. GST 

fusion proteins were expressed in E. coli strain XL1 blue and purified from the soluble 

fraction using Glutathione Sepharose affinity columns (GE Healthcare). A 200 bp 

fragment encoding the CRIB domain of coronin was cloned into the expression vector 

pBsrN2 (Blau-Wasser et al., 2009) and introduced into AX2 cells. The transformants 

were selected with blasticidin at 1.5 μg/ml (MP Biomedicals, Eschwege, Germany). 

Rac proteins were expressed as GST- and GFP-tagged fusion proteins.  

 

4.2.3 Loading of Rac GTPases with GDP or GTP�S 
For direct interaction assays, GST, GST-Rac1a, and RacC bound to Glutathione 

Sepharose columns were loaded with GDP or GTP�S in nucleotide exchange buffer 

(25 mM HEPES, pH 7.4, 100 mM NaCl, 10 mM EDTA, and 1 mM DTT) for 1 hour at 

4oC. Equivalent amounts of thrombin cleaved fragment (NT CRIB) was added to the 

preloaded columns and incubated for 1 hour at 4oC. After repeated washing, the 

bound proteins were separated by SDS-PAGE (15% acrylamide) and visualized with 

Coomassie Blue. For interaction of full length coronin with Rac GTPases, AX2 cells 

(5x107) were lysed by sonication in lysis buffer (25 mM Tris-HCl, pH 7.5, 100 mM 

NaCl, 5 mM MgCl2, 2 mM EGTA, 2 mM DTT, and 1% NP40 with EDTA-free protease 

inhibitor cocktail (Roche)) and equivalent amounts of cell lysates were added to 

columns containing GST, GST-Rac1b, and GST-RacB preloaded with either GDP or 

GTP�S. After 2 hours of incubation at 4oC, beads were washed with wash buffer 
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(lysis buffer without protease inhibitors) and pull-down eluates were analyzed in 

western blots with anti-coronin mAb 176-3-6 (de Hostos et al., 1991). Interaction of 

DGAP1 with Rac1a was analyzed as described (Faix et al., 1998). Probing was with 

mAb 216-394-1(Faix and Dittrich, 1996). 

 

4.2.4 Immunoprecipitation and pull down experiments  
For coronin self-association studies, equivalent amounts of AX2 cells (5x107) 

expressing GFP-cor WT and GFP-MUT2 were lysed by pipetting several times in 500 

μl lysis buffer (10 mM Tris-HCl, pH 7.5, 100 mM NaCl, 1 mM EDTA, and 0.5% NP40 

with protease inhibitor cocktail) and incubated on ice for 20 minutes. 500 μl of dilution 

buffer (10 mM Tris-HCl, pH 7.5, 100 mM NaCl, and 1 mM EDTA) was then added to 

the clarified lysate and incubated with 20 μl of GFP-TRAP beads (ChromoTek, 

Martinsried, Germany) for 2 hours at 4oC. The beads were washed and the 

immunoprecipitates were analysed by western blots with anti-GFP mAb K3-184-2 

(Noegel et al., 2004) and anti-coronin mAb 176-3-6 (de Hostos et al.,1993). 

Interaction of Rac1a GTPase with coronin fragments was investigated by pull-down 

assays. AX2 cells expressing GFP-Rac1a (5x107) were lysed (25 mM Tris-HCl, pH 

7.5, 150 mM NaCl, 5 mM EDTA, 0.5% NP40, 1 mM DTT, and 5% glycerol) 

supplemented with protease inhibitors (Sigma) and incubated with equivalent 

amounts of GST, GST-CRIB, and GST-NT CRIB, GST-CRIB+WD, and GST-CT CC 

fusion proteins bound to Glutathione Sepharose beads for 2 hours at 4oC. The pull-

down eluates were immunoblotted with GFP specific mAb K3-184-2. 

For determining the levels of activated Rac in D. discoideum cells, a pull down with 

the GTPase-binding domain (GBD) from rat PAK1 kinase (GST-PAK-GBD) which 

specifically interacts with the GTP-bound form of Rac1 was carried out followed by 

western blot analysis with polyclonal antibodies against Rac (Fili� et al., 2012). 

 

4.2.5 Mutant analysis  
Immunofluorescence was performed as described (Mondal et al., 2008). Cells were 

fixed by ice cold methanol (5 min, -20oC). Actin was recognized by mAb act-1 

(Simpson et al., 1984). For myosin II staining, vegetative and aggregation-competent 

cells were fixed using ice cold methanol and stained for myosin II using mAb 56-396-

2 (Pagh and Gerisch, 1986). Fixed cells were imaged using confocal laser scanning 

microscopy (TCS SP5 Leica). For surface plot rendering (Figure 6A), scanning 
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parameters for AX2 were used to image corA- cells and the image stacks were 

processed with imageJ plug-in for pseudo-3D representation, in which the z-axis 

represents intensity. Phagocytosis assay for corA- and rescue cells were performed 

as described (Shina et al., 2011).   

 

4.2.6 Miscellaneous methods 
Isolation and analysis of cytoskeletal proteins were done as described earlier 

(Mondal et al., 2008). To analyse CRIB sequences of coronin, CRIB motifs of 

HsPAK1 (Q13153), HsWASP (P42758), DdWASP (Q7KWP7), DdPAKb (Q869N2), 

HsCRN2 (A7MAP1), HsCRN7 (P57737), DdCRN7 (Q55E54) were retrieved and 

aligned using clustalW2 online program (Thompson et al., 1994). The aligned 

sequence was processed using ESPript 2.2 (Gouet et al., 1999) for representation. 

To study the sequence conservation of CRIB domain in short coronins across taxa., 

proteins sequences of coronins from H sapiens (P31146), M musculus (O89053), D

melanogaster (Q7JVY0), S cerevisiae (Q06440), E histolytica (C4M137), D

discoideum (P27133), T thermophila (I7MIA8), T cruzi (Q4D4X6), T brucei brucei 

(Q57W63), T gondii (Q5Y1E7), L. major (Q4QB38), and P falciparum (O44021) were 

retrieved and the core WD repeats (2-6) were aligned using ClustalX program (Larkin 

et al., 2007). A bootstrap Neighbor Joining (NJ) tree was created and the resulting 

cladogram is shown with supporting bootstrap values in percent.     
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5. Summary 

Coronin proteins constitute a subfamily of WD repeat domain containing proteins 

represented by two homologues, coronin and CRN7, in the amoeba D. discoideum. 

Deletion of either one or both coronins led to severe defects in several physiological 

processes, such as cytokinesis, migration, and morphogenesis. It was suggested that 

coronin proteins in D. discoideum have both unique and redundant functions in the cell. 

However, the molecular mechanisms involved are largely unknown. We study here the 

CRIB (Cdc42- and Rac-interactive binding) motif of the coronin proteins in D. 

discoideum. It is located in a surface accessible area of the beta-propeller and provides 

a binding site for Rac proteins. Binding to GDP-loaded Rac is more efficient than to 

GTP-Rac. Through mutational studies, we identified residues important for Rac binding. 

Furthermore, we show here that corA- cells are defective in myosin II assembly and 

show increased cortical myosin already in the growth-phase whereas in wild-type cells 

the level increases only in the aggregation phase. Myosin II assembly is regulated by 

phosphorylation of its tail region through myosin heavy chain kinases (MHCKs). Their 

activity depends on the activation state of the serine/threonine kinase PAKa, a CRIB 

motif containing protein. We find that the myosin defect of corA- mutants can be rescued 

by expression of the coronin CRIB domain and by a dominant negative PAKa (PAKa-c) 

which is not targeted to the cell cortex like the wild-type protein and cannot exert its 

inhibitory function on MHCK. Importantly, a CRIB mutant deficient in Rac binding fails to 

rescue the myosin phenotype in corA- mutants highlighting the importance of coronin-

Rac in regulation of myosin functions. In addition, we show that coronin interacts with 

PAKa though its N-terminus and that the binding site does not overlap with the CRIB 

domain. We propose that coronin through its affinity for GDP-Rac regulates the 

availability of GTP-Rac for activation of PAKa which then affects myosin assembly. 
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Zusammenfassung 

In dieser Arbeit wird die Bedeutung des CRIB (Cdc42- and Rac-interactive binding) 

Motivs im WD Repeat enthaltenden Protein Coronin untersucht. Diese Motiv ist an der 

Oberfläche des Proteins lokalisiert und somit zugänglich für Interaktionen mit 

RhoGTPasen. Coronin bevorzugt Rac-GDP vor Rac-GTP�S, und Mutationen im CRIB 

Motiv führen zu einer Aufhebung der Rac Bindung. Basierend auf der Präferenz von 

Coronin für RacGDP könnte Coronin als Regulator der Rac Aktivierung fungieren. Diese 

Hypothese sollte mit Hilfe einer Coronin defizienten Dictyostelium discoideum Mutante 

(corA-) überprüft werden. In dieser Mutante sind die Mengen an aktiviertem Rac erhöht, 

ferner weist sie einen Myosin Defekt auf. corA- Zellen besitzen eine erhöhte Menge an 

kortikalem Myosin bereits in der Wachstumsphase, wohingegen in Wildtyp-Zellen dies 

erst in Zellen in der Aggregationsphase auftritt. Kortikales Myosin ist wichtig für die 

Polarisierung der Zellen in der Aggregationsphase und für eine effziente Chemotaxis. In 

D. discoideum ist die Bildung von kortikalen Myosinfilamenten durch Phosphorylierung 

des C-Terminus durch Myosin-schwere-Ketten-Kinase (MHCK) reguliert. Die Aktivität 

der MHCK ist abhängig vom Aktivierungsstatus der PAKa (p21-activated kinase). PAKa 

besitzt ein CRIB Motiv und wird durch RacGTP reguliert. Interessanterweise kann der 

Myosindefekt der corA- Mutante nicht durch ein Coronin aufgehoben werden, das eine 

mutierte CRIB Domäne besitzt. Dieses Mutantenprotein ist auch nicht in der Lage, mit 

Rac Proteinen zu interagieren. Eine dominant negative PAKa (PAKa-c), die nicht mehr 

im Zellkortex lokalisiert ist sondern im Zytosol, führt dagegen zu einer Reduktion von 

kortikalem Myosin in der Wachstumsphase in corA- Zellen. Unsere Ergebnisse führen 

zu einem Modell, bei dem Coronin die Menge an Rac kontrolliert, die für eine 

Aktivierung zur Verfügung stehen. Dadurch kann es Prozesse beeinflussen, die von 

RacGTP abbhängig sind wie die Aktivierung der PAKa. 
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7. Abbreviations 

 

CRIB  - cdc42/Rac interactive binding 

PAK  - p21- activated kinases 

GDP  - Guanosine di-phosphate 

GTP  - Guanosine tri-phosphate 

GTP�S - Guanosine 5�-[�-thio] triphosphate tetralithium salt 

GEF  - Guanosine Exchange Factors 

GAP  - GTPase activating proteins 

GDI  - Guanosine dissociation inhibitors 

GBD  - GTPases binding domain 

PDB  - p21 activated kinase binding domain 

ACK  - Cdc42 and Rac-interactive kinase 

VCA  - Verprolin homology, Cofilin homology, acidic region segment 

GRD  - GTPase related domain 

mhcA-  - myosin heavy chain A knock-out cells 

MHCK  - Myosin Heavy Chain Kinases 

Akt  - Proteins kinase B (PKB) 

IPTG  - isopropyl �-D-thio-galactoside 

MUT1 or 2 - coronin protein mutated in CRIB domain 
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