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Kurzzusammenfassung

In dieser Arbeit entwickeln wir die Theorie der prähomogenen Supervek-
torräume. Für den Fall, dass G eine komplexe und zusammenhängende Lie
Supergruppe ist, die linear auf dem Supervektorraum V wirkt und einen
offen Orbit in V hat, beweisen wir, dass dieser Orbit dann, als eine offene
Untersupermannigfaltigkeit betrachtet, eindeutig, zusammenhängend und
dicht ist. Dies erlaubt uns prähomogene Supervektorräume zu definieren.
Wir führen den Begriff der relativen Superinvarianten ein und können zeigen,
dass die relativen Superinvarianten durch die Supercharaktere bestimmt
sind, die unter der Isotropiesupergruppe invariant bleiben. Darüber hin-
aus konstruieren wir zwei Beispiele für einen prähomogenen Supervektor-
raum und sind in der Lage alle Supercharaktere der allgemeinen linearen
Supergruppe anzugeben. Dies ermöglicht alle relativen Superinvarianten
der supersymmetrischen Matrizen zu bestimmen.

Wir führen die lokalen Zeta Superfunktionen für den prähomogenen Super-
vektorraum der supersymmetrischen Matrizen ein und beweisen, dass diese
ganze Funktionen sind. Außerdem ist die lokale Zeta Superfunktion für kom-
pakt getragene Superfunktionen auf einer Zusammenhangskomponente Vij
des Orbits

Fi,j(s,Φc) =
1

γ(s)

∫
Vij

|D(X)| |Ber(X)|s Φc(X),

eine Regularisierung des Integral auf der rechten Seite auf den größeren
Raum der Schwartz Superfunktionen. Diese sind auf dem zugehörigen cs
Vektorraum definiert. Anders als die Regularisierungsmethode von Marcel
Riesz und Hadamard, bei der homogene Distributionen ihre Homogenitäts-
eigenschaft verlieren, erhält diese schon von Gelfand und Sato verwendete
Regularisierungsmethode die algebraischen Eigenschaften der relativen Su-
perinvarianten.

Es wird gezeigt, dass die Fourier Supertransformierte bis auf einen Super-
charakter eine äquivariante Abbildung für die induzierte Wirkung auf dem
Supervektorraum der Schwartz Superfunktionen ist. Wir beweisen auch,
dass die Fourier Supertransformierte der dualen lokalen Zeta Superfunktion
sich mit dem gleichen Supercharakter transformiert wie die lokale Zeta Su-
perfunktion, geshiftet im komplexen Parameter.



Abstract

In this thesis, we develop the theory of prehomogeneous super vector spaces.
In the case that G is a complex connected Lie supergroup, acting linearly on
a super vector space V and if G has an open orbit in V then this orbit, as an
open sub supermanifold, is unique, connected and dense. This allows us to
define prehomogeneous super vector spaces. We introduce the notion of rel-
ative superinvariants and show that the relative superinvariants are already
determined by the supercharacters which are invariant under the isotropy
supergroup. Furthermore, we construct two examples of prehomogeneous
super vector spaces. The supercharacters of the general linear supergroup
will be classified and thereby all relative superinvariants for the space of
supersymmetric matrices. We introduce the local zeta superfunction for the
prehomogeneous super vector space of supersymmetric matrices and prove
that these are entire functions. Moreover, for a compactly supported su-
perfunction Φc on a connected component Vij of the orbit the local zeta
superfunction

Fij(s,Φc) =
1

γ(s)

∫
Vij

|D(X)| |Ber(X)|s Φc(X),

is a regularization of the integral on the right-hand side to the greater space
of Schwartz superfunctions. These are defined on the associated cs-vector
space. Unlike the regularization methods of Marcel Riesz and Hadamard,
where homogeneous distributions lose their homogeneity, this regularization
method, already used by Gelfand and Sato, maintains the algebraic property
of relative superinvariant.

Moreover, we demonstrate that the Fourier supertransform is, up to a su-
percharacter, an equivariant map for the induced action on the super vector
space of Schwartz superfunctions. We also prove that the Fourier super-
transform of the dual local zeta superfunctions transforms with the same
supercharacter as the local zeta superfunction, shifted in the complex pa-
rameter.
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1 Introduction

Hörmander [18] considered the homogeneous function

xs+ :=

{
xs if x > 0,
0 if x ≤ 0,

which is locally integrable when Re(s) > −1 and discussed extensions to all
s ∈ C as a distribution. There are different ways to define such a distri-
bution: one due to Marcel Riesz and an older method due to Cauchy and
Hadamard, known as Cauchy principle value and Hadamard regularization.
All of these methods destroy the property of homogeneity. But the following
way define a distribution for all s ∈ C, which remains homogeneous. For an
arbitrary Schwartz function Φ ∈ S (R) the function

s 7→ Is(Φ) =
∫ ∞

0
xsΦ(x)dx

is analytic when Re(s) > −1. Using the relation

Is(Φ) =
(−1)k

(s+ 1) . . . (s+ k)
Is+k(Φ(k)), (1.1)

where Φ(k) = ∂kxΦ and which holds for Re(s) > −1 and any integer k > 0,
one can define the distribution Is by analytic continuation with respect to
s, if s is not a negative integer. Using the gamma function Γ(s) one can
redefine Is as

s 7→ Is(Φ) =
∫ ∞

0

xs

Γ(s+ 1)
Φ(x)dx,

which now extends analytically using

Is(Φ) = (−1)kIs+k(Φ(k)), (1.2)

to the whole s-plane and remains homogeneous. Note that dividing by the
gamma function exactly cancels the poles which appear in Equation 1.1.

Mikio Sato generalised this idea to irreducible relative invariants of reductive
prehomogeneous vector spaces. He originated the theory of prehomogeneous
vector spaces around 1960 motivated by finding a testing ground for a general
theory of linear differential equations, which is now called algebraic analysis.

Classically, a prehomogeneous vector space is a finite dimensional C-vector
space V with an R-structure VR and ρ : G→ GL(V ) an R-rational represen-
tation on V of a connected linear algebraic group G, such that there exists a
v ∈ V with Ov := ρ(G)v an open orbit of V . This implies that Ov is unique
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and dense in the Zariski topology. A relative invariant is a homogeneous
polynomial f : V → C with the property f(ρ(g)v) = χ(g) · f(v), where
χ : G → GL1 is a rational character. For reductive prehomogeneous vector
spaces, it is known that the dual triplet (G, ρ∗, V ∗) and Ov ∼= Ov∗ , where ρ∗

is the contragredient representation and v∗ ∈ V ∗, is also a prehomogeneous
vector spaces. There is also a dual relative invariant f∗ corresponding to
χ∗ = χ−1. The sets VR∩Ov and V ∗R ∩Ov∗ split into finitely many connected
components denoted Vi and V ∗j respectively. In [23] the local zeta functions
of the prehomogeneous vector space (G, ρ, V ) and the dual prehomogeneous
vector space (G, ρ∗, V ∗) are defined by

Fi(s,Φ) :=
1

γ(s)

∫
Vi

dx |f(x)|s Φ(x)

F ∗j (s,Φ∗) :=
1

γ(s)

∫
V ∗j

dy |f∗(y)|s Φ∗(y).

The measures dx and dy are defined by the standard Lebesgue measure on
Rn and isomorphisms V ∼= Rn and V ∼= V ∗. Furthermore, the space of
Schwartz functions on Rn is isomorphic to the space of Schwartz functions
S (VR) on VR, respectively S (V ∗R ), with Φ(x) ∈ S (VR) and Φ∗(x) ∈ S (V ∗R ),
(see, for more details, [23]). In the case of reductive prehomogeneous vector
spaces and f a relative invariant corresponding to the character χ, we have

f∗(∂x)f(x)s+1 = b(s)f(x)s.

The function b(s) is called the Bernstein-Sato polynomial. It is due to Bern-
stein [5] and Sato and Shintani [32], who introduced it independently. It
is a polynomial related to a differential operator. For reductive prehomo-
geneous vector spaces, the differential operator f∗(∂x) is given by the dual
relative invariant f∗ corresponding to χ−1 and ∂x = (∂x1 , . . . , ∂xn). The
Bernstein-Sato polynomial has the form

b(s) = b0

d∏
i=1

(s+ αi).

where αi ∈ Q>0 for i = 1, . . . , d ([21]). The meromorphic function γ(s) is
defined as the product of gamma functions γ(s) =

∏d
i=1 Γ(s + αi) and one

finds that

f∗(∂x)
f(x)s+1

γ(s+ 1)
= εib0

f(x)s

γ(s)
,

where εi ∈ {−1, 1} depends on the connected component. The purpose of
the function γ(s) is to absorb the poles that appear by analytic continua-
tion as the gamma function did in Equation (1.2), such that the local zeta
function can be extended to a holomorphic function of s ∈ C by

Fi(s,Φ) = (−1)dm(εib0)−m · Fi(s+m, f∗(Dx)mΦ).
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Sato proved the following statement in 1961, which Kimura calls the Fun-
damental theorem of prehomogeneous vector spaces in [23, Theorem 4.17].

Theorem 1.1. Let (G, ρ, V ) be a reductive prehomogenous vector space
and f a irreducible relative invariant corresponding to a character χ and
f∗ a relative invariant of the dual prehomogeneous vector space (G, ρ∗, V ∗)
corresponding to χ−1. Then, the local zeta functions

Fi(s,Φ) :=
1

γ(s)

∫
Vi

dx |f(x)|s Φ(x)

and
F ∗j (s,Φ∗) :=

1
γ(s)

∫
V ∗j

dy |f∗(y)|s Φ∗(y),

extend analytically to holomorphic functions on the whole s-plane. Further-
more the following holds:∫

V ∗j

dy |f∗(y)|s−
n
d Φ̂(y) = γ(s− n

d ) ·
l∑

j=1

cij(s)
∫
Vi

dx |f(x)|−s Φ(x) (1.3)

where cij(s) are entire functions which do not depend on Φ ∈ S (VR).

The example described at the beginning of this introduction is the simplest
prehomogeneous vector space (C∗,C), with the relative invariant f(x) = x
and Is(Φ) as the local zeta function for the connected component V1 = R∗+.

In this thesis, we generalise the theory of prehomogeneous vector spaces
to develop the theory of prehomogeneous super vector spaces. We prove
that if G is a complex connected Lie supergroup, acting linearly on a super
vector space V and if G has an open orbit in V then this orbit, as an
open sub supermanifold, is unique, connected and dense (Theorem 3.21).
Then, after translating this result into the algebraic category, this statement
allows us to define a prehomogeneous super vector space. Moreover, we
show that a relative superinvariant is homogeneous (Theorem 4.9) and if
two relative superinvariants f and h have the same supercharacter χ, they
are equal up to a constant c (Theorem 4.7). Hence, we are able to show, by
using preliminary work based on algebraic geometry, (Theorem 4.10) that
the set of algebraic supercharacters X1(G) that correspond to a relative
superinvariant is given by the set of supercharacters, which are invariant
under the isotropy supergroup Gv

X1(G) = {χ ∈ X(G) | χ|Gv = 1}.

We classify the supercharacters χ : GLm|n → GL1 of the general linear
supergroup GLm|n by integer powers of the Berezinian Berz(.) and, using
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this, all relative superinvariants for the space of supersymmetric matrices
(Theorem 4.11). Analogous to the classical theory, we define the notion of
regular prehomogeneous super vector spaces, which guarantees that the dual
super vector space (G, ρ∗, V ∗) with the contragredient representation ρ∗ is
again a prehomogeneous super vector space. Further we show that X1(G) =
X∗1 (G), which tells us that if we have a supercharacter χ corresponding to
a relative superinvarint f there is also a dual relative superinvariant f∗ on
V ∗ corresponding to χ−1 (Theorem 4.14).

We derive that the flat Berezinian measure of a prehomogeneous super vector
space of dimV = m|n with an irreducible relative superinvariant f , with su-
perdegree deg f = db−df corresponding to the supercharacter χ transforms
under the action of G by the factor χ(g)(m−n)/db−df , where 2(m−n)/db−df
is a integer number (Lemma 4.16).

We construct two examples of prehomogeneous super vector spaces and use
the prehomogeneous super vector space of supersymmetric matrices S2(Cp|q)
as a toy model to examine the more general results.

Furthermore, we introduce the local zeta superfunction for the prehomoge-
neous super vector space of supersymmetric matrices and prove that these
are entire functions of s ∈ C

Fi,j(s,Φ) :=
∫
Vij

|Dξ| Fj,f
(
−2(s+

pq

2
), | det(A)|

pq
2 · Fi,b (s,Φ(Xb-shift))

)
for each Schwartz superfunction Φ associated to the cs-structure of the pre-
homogeneous super vector space. Moreover, for a compactly supported su-
perfunction Φc on a connected component Vij of the orbit the local zeta
superfunction

Fi,j(s,Φc) =
1

γ(s)

∫
Vi,j

|D(X)| |Ber(X)|s Φc(X),

is a regularization of the integral on the right-hand side to the greater class
of Schwartz superfunctions on S (S2(Cp|q

cs )) (Theorem 5.13). Unlike the
regularization methods of Marcel Riesz or Hadamard, where homogeneous
distributions lose their homogeneity, this regularization maintains the alge-
braic property of the Berezinian. We associate a cs-supergroup Gcs to an
algebraic supergroup G and G+

cs is the open subspace of Gcs such that (G+
cs)0

contains the neutral element. Under the action of G+
cs, we get

g.Fi,j(s,Φ) = |χ(g)|−(s+
p−q+1

2 ) · Fi,j(s,Φ),

g.F ∗i,j(s,Φ
∗) = |χ∗(g)|−(s+

p−q+1
2 ) · F ∗i,j(s,Φ∗),

(Theorem 5.19).
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The reason for this restriction by considering the local zeta superfunction
to the example of supersymmetric matrices is that we cannot express a rela-
tive superinvariant so far in general by the classical relative invariants of the
underlying prehomogeneous vector spaces. But, we believe that the preho-
mogeneous super vector space of supersymmetric matrices is a characteristic
example for constructing general local zeta superfunctions and prove similar
statements as above for the local zeta superfunction of S2(Cp|q

cs ).

Furthermore, we show in Proposition 5.23 that the Fourier supertransform
is, up to a supercharacter, an equivariant map

ĝ.Φ(w) = χ(g)
− m−n
db−df · g.Φ̂(w)

for the induced action on the super vector space of Schwartz superfunctions.
Moreover, we can show that the Fourier supertransform of the dual local
zeta superfunctions, considered as tempered superdistributions, transforms
with the same supercharacter

g.F ∗i,j(s− m−n
db−df , Φ̂) = |χ(g)|−s · F ∗i,j(s− m−n

db−df , Φ̂),

g.Fi,j(−s,Φ) = |χ(g)|−s · Fi,j(−s,Φ)

as the local zeta superfunctions, shifted in the complex parameter. Classi-
cally, this property is sufficient to show that the Fourier transform of the
dual local zeta function and the local zeta function are equal, up to a con-
stant only depending of the complex parameter s (Equation 1.3).

This thesis can be considered as a starting point for the study of prehomo-
geneous super vector spaces. A further question may be: Is it possible to
classify all prehomogeneous super vector spaces?

In Section 2, we give the basic definitions. There the notion of super vec-
tor spaces, locally ringed superspaces, the concept of S-points, affine su-
perschemes, complex analytic supermanifolds are defined and we prove or
recall statements about open and closed sub supermanifolds that we will
need throughout the thesis.

In Section 3, we define Lie supergroups and consider the quotient super-
manifold of a Lie supergroup by the isotropy supergroup in order to prove
Theorem 3.21. We also define the notion of algebraic supergroups and con-
sider quotient superschemes in order to prove Theorem 4.10.

In Section 4, we develop the theory of prehomogeneous super vector spaces,
and prove the results mentioned above. We define relative superinvariants,
the contragredient action and the dual prehomogeneous super vector space
and define the notion of a regular prehomogenous super vector space.
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In Section 5, we define the local zeta superfunction for supersymmetric ma-
trices and prove the results mentioned above about it and its Fourier super-
transform.
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2 Preliminaries

This section contains preparatory information. We discuss the foundation
of supergeometry in order to set up the basic framework needed to develop
the theory of prehomogeneous super vector spaces.

In particular, we introduce the notion of super vector spaces, tensor prod-
ucts, superalgebras and supermodules following the standard description in
the literature. The reader may consult, for instance Ref. [10, 13, 27]. Then
we define the notion of locally ringed superspaces following [2]. Moreover,
we introduce generalised points, following [3, 13], in order to capture the
supergeometric feature of the supergeometric objects. We will also need the
following subcategories of locally ringed superspaces: complex analytic su-
permanifolds, cs-manifolds and affine superschemes. In introducing complex
analytic supermanifolds and affine superschemes we follow [13, 28] and in
the case of cs-manifolds we follow [3, 11]. Furthermore, we give, as a warm
up, a proof of Theorem 2.26, which tells us that a morphism of complex an-
alytic supermanifolds, where the Jacobian has maximal rank, admits local
sections. This proof is technically similar to the proof of the inverse funtion
theorem [27, Theorem 2.3.1]. Though one can often choose more general
fields, we restrict our attention to C.

2.1 Super vector spaces

Definition 2.1. A super vector space is a Z2-graded vector space V =
V0̄⊕V1̄ over C. A homogeneous element v0 ∈ V0̄ is said to be even and v1 ∈ V1̄

is called odd. The parity function is defined on homogeneous elements by

|.| : (V0̄ ∪ V1̄)\{0} → Z2

|v| = ī for v ∈ Vi

where i ∈ Z2. For brevity, if {ej} is a homogeneous basis for V we will
also write |j| for the parity |ej |. We define the superdimension of the super
vector space V by the pair of integers

dim(V ) = dimV0̄ | dimV1̄.

A linear map φ : V →W between super vector spaces V andW is called even
if φ(Vī) ⊂ Wī, and is called odd if φ(Vī) ⊂ Wī+1̄. The set of all linear maps
between V and W is a super vector space with Hom(V,W ) = Hom(V,W )0̄⊕
Hom(V,W )1̄, where Hom(V,W )0̄ are the even maps and Hom(V,W )1̄ are
the odd ones. The morphisms from a super vector space V to a super
vector space W are linear maps in Hom(V,W )0̄ that preserve the grading.
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The super vector spaces with their morphisms form the category svct. For
details about categories, one may consult [33].

Definition 2.2. A real Z/2Z graded vector space U = U0̄ ⊕ U1̄ with a
fixed complex structure U1̄ will be called cs-vector space. Given a complex
super vector space V = V0̄⊕V1̄, where V0̄ has a real form, V0̄ = V0̄,R⊕ iV0̄,R,
then the cs-vector space Vcs := V0̄,R ⊕ V1̄ is called a cs-form of V .

We can also construct the tensor product of two super vector spaces

V ⊗W = (V ⊗W )0̄ ⊕ (V ⊗W )1̄

with
(V ⊗W )̄i :=

∑
j̄+k̄=ī

Vj̄ ⊗Wk̄ ī, j̄, k̄ ∈ Z2.

Definition 2.3. An associative superalgebra A over C is a super vector
space over C, which is also an associative ring. Furthermore, we require
that the multiplication map A⊗A→ A is even, which implies the following
multiplication rule

ai · aj ∈ Aī+j̄ whenever ai ∈ Aī, aj ∈ Aj̄ ī, j̄ ∈ Z2.

A superalgebra A is supercommutative, if the product of homogeneous ele-
ments a, b ∈ A obeys the rule

ab = (−1)|a||b|ba.

An example of a superalgebra is M(p|q, A). This is the superalgebra of
(p+ q)× (p+ q)-matrices, with entries in a superalgebra A. We define

M(p|q, A)̄i =
(
B Γ
∆ C

)
Bkl, Cmn ∈ Aī Γkn,∆ml ∈ Aī+1̄ ī ∈ Z2

with
k, l ∈ {1, ...p} m,n ∈ {1, ..., q}.

The superalgebra structure is given by usual matrix multiplication. Further-
more, we define the super transpose of X =

(
B Γ
∆ C

)
by XST =

(
BT ∆T

−ΓT CT

)
.

Definition 2.4. Fix a supercommutative superalgebra A. The standard
free module Ap|q is the module freely generated by even elements e1, . . . , ep
and odd elements ep+1, . . . , ep+q. The endomorphisms of Ap|q can be rep-
resented by elements of M(p|q, A)0̄ and the automorphisms are represented
by GL(p|q, A) := {X ∈M(p|q, A)0̄ | X is invertible}.
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2.2 Locally ringed superspaces

Here, we introduce the category of locally ringed superspaces, which includes
as full sub categories affine C-superschemes, complex analytic supermani-
folds and cs-manifolds.

Definition 2.5. A locally ringed superspace X = (X0,OX) is a topologi-
cal space X0 endowed with a sheaf of superalgebras OX over C such that the
stalk at every point x ∈ X0, denoted by OX,x, is a local superalgebra, i.e.
OX,x has a unique maximal ideal mx. For brevity, we will often use the term
superspace instead of locally ringed superspace. A morphism φ : X → T of
superspaces is expressed by φ = (φ0, φ

]), where φ : X0 → T0 is a map of
topological spaces and φ] : OT → φ0∗OX is a local sheaf morphism, so that
φ]x(mφ0(x)) ⊆ mx. An open sub superspace U is defined by the superspace
(U0,OX |U0), where U0 ⊆ X0 is open in X0. Additionally one has the inclu-
sion morphism jU := (jX|U ,0̄, j

]
X|U ), where jX|U ,0̄ is the inclusion of U0 in

X0 and the sheaf morphism j]X|U : j−1
X|U ,0̄

OX → OX |U0 is the identity. We
call a morphism φ : T → X of superspaces an open embedding if it factors
as φ = jU ◦ ψ where U0 ⊆ X0 is an open subset and ψ : T → X|U is an
isomorphism.

An example of a superspace is Cp|q, which is the model space in the category
of complex analytic supermanifolds. The superspace Cp|q := (Cp,OCp|q) is
the topological space Cp endowed with the following sheaf of superalgebras
over C. With any open set U0 ⊂ Cp we associate the superalgebra

OCp|q(U0) := H(Cp)(U0)⊗
∧

(Cq)∗,

where H(Cp)(U0) consists of the algebra of complex analytic functions on
U0 and Λ(Cq)∗ is the Grassmann algebra of (Cq)∗.

2.3 The concept of S-points

In the case of supergeometric objects (or in the generality of schemes), the
points of an object X do not fully capture the supergeometric (respectively
scheme-theoretic) features of X. Without full knowledge of the sheaf OX ,
essential information would be omitted. In order to recapture this informa-
tion, we use Grothendieck’s functor of points. We consider the object X
along with all morphisms S → X, where S runs through all objects of the
same type.

Definition 2.6. Let C be a category, for instance the category of locally
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ringed superspaces. For S,X ∈ Ob(C), we denote by X(S) := HomC(S,X)
the set of morphisms from S toX and call α ∈ X(S), also written as α ∈S X,
an S-point of X. By definition, the set of S-points X(S) is functorial in S,
which means that a morphism u : T → S and s ∈S X induces the map
s 7→ s ◦ u from X(S) to X(T ). Thus, we get a contravariant functor

hX : C → set

S 7→ X(S),

where set is the category of sets. The functor hX is called the functor of
points of X.

The notion of S-points is motivated by the following: A point x ∈ X0, where
X0 is an ordinary set, can be considered as a map from the singleton set
{∗} to X0 and X0(∗) ∼= X0. In this way X0(S) contains X0 as a subset and
shows that S-points serve as generalised points.

Definition 2.7. A contravariant functor F : C → set is called repre-
sentable if there exists X ∈ Ob(C) such that F ∼= hX as functors. In this
case, X is unique up to canonical isomorphism and is called the representa-
tive of F .

Let FC be the category of contravariant functors, from C to set, where the
morphisms are natural transformations. Every category embeds in a functor
category, which often has nicer properties than the original category. The
use of this language is justified by the Yoneda Lemma, and can be found in
any introduction to category theory, for instance [33]:

Lemma 2.8 (Yoneda Lemma). For any X ∈ Ob(C) and F ∈ Ob(FC), we
have

HomFC(hX , F ) ∼= F (X).

In particular, the functor h is fully faithful and the full subcategory of FC
consisting of the representable functors is equivalent to C.

Each natural transformation hX → hY is defined by a unique morphism
f : X → Y , so f induces a map fS fromX(S) to Y (S) functorial in S. By the
Yoneda Lemma, this construction is a bijection from the set of morphisms
f : X → Y to the set of maps between systems of maps fS : X(S)→ Y (S).
There is a natural topology on the set of S-points defined as follows:

Definition 2.9. Let U ⊆ X be an open sub superspace, with the inclusion
morphism jU . By composing elements of U(S) with jU , we get an embedding
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of U(S) in X(S). In this way we are able to identify U(S) with the subsets
of X(S) as

U(S) = {ψ : S → X | ψ0(S0) ⊆ U0}.

The collection of these open sets U(S), such that U ⊆ X is an open sub
superspace, gives a topology on X(S)

Top(X(S)) := {U(S) | U ⊆ X open}.

Proposition 2.10. Let f : X → Y be a morphism of superspaces. The
induced map on the S-points fS : X(S)→ Y (S) is continuous.

Proof. Let V ⊆ Y be an open sub superspace, then the continuity follows
from f−1

S (V (S)) = f−1(V )(S) with the Yoneda lemma, where f−1(V ) is an
open subspace with the underlying space f−1

0 (V0). This is an open subset of
X0, so f−1

S (V (S)) is open in X(S), which proves the continuity of fS .

Proposition 2.11. If W0 ⊆ V0 is dense and open in V0, then W (S) is
dense in V (S).

Proof. Let u ∈S V and U(S) be an open neighbourhood of u, then u0(S0) ⊆
U0 ⊆ V0. We know W0 is dense in V0, hence U0 ∩W0 nonempty and open.
For x ∈ U0 ∩W0, it follows that the morphism xs : S → x is an element of
(U ∩W )(S) and xS ∈ U(S) ∩W (S), thus U(S) ∩W (S) 6= ∅. Hence, each
neighbourhood includes an element of W (S).

Now we define the main categories we will work with, the category of affine
C-superschemes, the category of complex analytic supermanifolds and the
category of cs-manifolds.

2.4 Affine superschemes

Definition 2.12. Let salg be the category of supercommutative superal-
gebras over C and A ∈ salg. An affine superscheme X (over C) is defined as
a locally ringed superspace Spec A = (Spec(A0̄),OX), where Spec(A0̄) is the
set of prime ideals of A0̄. The basic open sets of the underlying topological
space X0 = Spec(A0̄) are given by

Uf = {p ∈ Spec(A0̄) | (f) 6⊂ p}

for f ∈ A0̄ and the structure sheaf OX is defined on basic open sets by

OX(Uf ) := Af =
{
a

fn

∣∣∣∣ a ∈ A}.
11



The superalgebra of global section OX(X0) is isomorphic to A.

Remark 2.13. Here, we only deal with affine superschemes over C, given
by finitely generated superalgebras, such that the algebra Ared := A/〈A1̄〉
has no nilpotents.

A super vector space V = V0̄ ⊕ V1̄ can also be viewed as an affine su-
perscheme V = (V0̄,OV ) given by the superalgebra C[x1, . . . , xp, ξ1, . . . ξq]
of polynomials in the even coordinate functions x1, . . . , xp on V0̄ and the
odd coordinate functions ξ1, . . . , ξq. The underlying topological space, also
called V0, is Spec(C[x1, . . . , xp, ξ1, . . . ξq]0̄) and is built from the prime ide-
als of C[x1, . . . , xp, ξ1, . . . , ξq]. Each of these prime ideals is of the form
(p, ξiξj | i, j ∈ {1, . . . , q}), for a unique prime ideal p ⊂ C[x1, . . . , xp]. Fur-
thermore, one has Spec(C[x1, . . . , xp, ξ1, . . . ξq]0̄) = Spec(C[x1, . . . , xp]) as
topological spaces, so the ringed space (V0̄,OV /Iodd) is a usual affine vari-
ety, where the ideal Iodd is generated by the odd coordinates ξ1, . . . , ξq.

Definition 2.14. A superfunction h is called regular on the affine su-
perscheme X if h ∈ Γ(OX) or equivalently, if for all points v ∈ X0 there
is an open affine sub superscheme U with v ∈ U0 and polynomials p ∈
C[x1, . . . , xp, ξ1, . . . , ξq] and q ∈ C[x1, . . . , xp] such that q is nowhere zero on
U and h can be expressed by h = p

q on U .

Example 2.15. Let C[x1, . . . , xp, ξ1, . . . ξq] be the superalgebra of polyno-
mials of the super vector space V . The structure sheaf of the regular super-
functions OV is defined by OV (Uf ) := OV (V0̄)f = C[x1, . . . , xp, ξ1, . . . , ξq]f
for f ∈ C[V0̄]. For every h ∈ OV (Uf ), there exists a p ∈ C[x1, . . . , xp, ξ1, . . . , ξq]
and an n ∈ N such that h = p

fn ∈ C(V0̄)[ξ1, . . . , ξq], where C(V0̄) is the func-
tion field of the affine scheme V0̄.

Definition 2.16. The set of rational superfunctions on the affine super-
scheme X, denoted by C(X), is defined as equivalence classes of pairs (U, f),
where U is an open dense sub superscheme of X and f is a regular super-
function on U . Two pairs (U, f) and (V, g) are called equivalent if f ≡ g on
U ∩ V .

Example 2.17. The rational superfunctions on V form the space of func-
tions of the type C(V0̄)[V1̄], consisting of rational functions in the even
coordinates xi and polynomials in the odd coordinates ξj . An element
f ∈ C(V0̄)[V1̄] can expressed by f =

∑
µ∈Zq2

fµξ
µ with fµ = pµ

qµ
and pµ, qµ

coprime polynomials in the even coordinates.
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The following proposition will be important for Theorem 4.10, telling us
about the relation between relative superinvariants and supercharacters.

Proposition 2.18. Let V be a super vector space and O a Zariski open
sub superscheme, then a regular superfunction on O defines a rational su-
perfunction on V .

Proof. Let f be a regular superfunction on O. Furthermore, let U be a
Zariski open cover of V0̄, then there exist fi ∈ C[V0̄] (i ∈ N) with U =

⋃
i Ui

and Ui := {x ∈ V0̄ | fi(x) 6= 0} principal open sets. The Zariski topology
is quasi compact, so there exists a N ∈ N such that U =

⋃N
i=1 Ui. As the

intersection of two such Zariski open and dense sets, (O)0 ∩ Ui is open and
dense in V0̄. Let OV be the structure sheaf of regular superfunctions defined
by OV (D(g)) := OV (V0̄)g = C[x1, . . . , xp, ξ1, . . . , ξq]g for g ∈ C[V0̄]. For
every h ∈ OV (D(g)), there exists p ∈ C[x1, . . . , xp, ξ1, . . . , ξq] and a n ∈ N
such that h = p

gn ∈ C(V0̄)[ξ1, . . . , ξq]. Let f̃ ∈ OV (U) and f̃ |O ≡ f , then
there exists a pi ∈ C[V ] and a qi ∈ C[V0̄] with qi 6= 0, such that f̃ |Ui = pi

qi

and pi =
∑

I piIξ
I for all i ∈ {1, . . . , N}, where the greatest common divisor

gcd((piI)I , qi) = 1. On Ui ∩Uj , we have that pi
qi

= pj
qj
⇔ qjpiI = qipjI and qi

also divides all qjpiI for all I. It follows that qi is a divisor of qj for all i and
all j. Hence, qj = α · qi, where α ∈ C[V0̄]∗ = C∗. Therefore, α · qipiI = qipjI
and qi, qj 6= 0 on Ui∩Uj , so that α ·piI = pjI on the Zariski dense set Ui∩Uj .
Consequently piqj = pjqi and pi

qi
= pj

qj
in C(V ). Since j is arbitrary and N

finite, f = pi
qi

= f̃ on U and f is a rational superfunction on V .

2.5 Complex analytic supermanifolds

Here, we define complex analytic supermanifolds and cs-manifolds. We show
that a sufficient condition for a morphism between complex analytic su-
permanifolds to admit local sections is the Jacobian having maximal rank.
Technically, this proof is similar to the Inverse Function Theorem [27, Theo-
rem 2.3.1]. We will need this statement for the proof of Theorem 3.19, which
ensures that if a complex connected Lie supergroup, acting linearly on a su-
per vector space, has an open orbit, then this orbit is unique, connected
and dense. Furthermore, we recapitulate when an ideal sheaf determines a
closed sub supermanifold, which will be necessary in the context of orbit
supermanifolds.

Definition 2.19. A complex analytic supermanifold of dimension p|q is
a locally ringed superspace X = (X0,OX) such that the topological space
X0 is Hausdorff and X admits a cover by open subspaces Ui such that every
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Ui is isomorphic as a locally ringed superspace to an open subspace of Cp|q.

That means, that X possesses a cover by chart domains U . By definition, a
chart domain U is an open subspace that admits an isomorphism φ : U →
W to an open subspace W of Cp|q. Then (φ,U) is called a chart. Local
coordinates for U are then given by the tuple

y = (v1, ..., vp, η1, ..., ηq) = (ϕ](u1), ..., ϕ](up), ϕ](ξ1), ..., ϕ](ξq)),

where uj are the standard coordinates on Cp, and {ξj} form a basis of (Cq)∗.

The structure sheafOX contains an ideal sheaf JX , where JX(U) = 〈η1, ..., ηq〉
is generated by the nilpotent coordinate functions. This allows us to con-
struct the ringed space Xred = (X0,OX/JX), which is a complex analytic
manifold and is often called the underlying manifold. The quotient map
π] : OX → OX/JX , which sends a complex analytic superfunction f to a
complex analytic function f̃ , induces a morphism π : Xred → X. Here π0 is
the identity map of X0.

Definition 2.20. A cs-manifold X of dimension p|q is a topological space
X0 with a sheaf of C-algebras OX , such that locally (X0,OX) is isomorphic
to (Rp, C∞p ⊗

∧
(Cq)∗), where C∞p denotes the sheaf of complex valued smooth

functions on Rp.

To each super vector space V = V0̄⊕V1̄ of complex superdimension dimV =
p|q we can functorially associate a linear complex analytic supermanifold,
V = (V0̄,H(V0̄) ⊗ Λ(V1̄)∗) where V ∗ ⊆ Γ(OV ). Analogously, one can as-
sociate to any cs-vector spaces Vcs the cs-affine superspace, which is also
denoted by Vcs. The cs-affine superspace Vcs is given by (V0̄,R,OVcs), where
OVcs := C∞V0̄,R

⊗
∧
V ∗

1̄
and C∞V0̄,R

is isomorphic to C∞p .

The following proposition is the obvious extension of [8, Proposition 4.6.1]
to complex analytic supermanifolds or affine superschemes or cs-manifolds.
The case of superschemes is an immediate generalisation of [14, I, 1.6.3].

Proposition 2.21. Let be complex analytic supermanifolds, where Y is
an open subspace of Cp|q or X a locally ringed superspace and Y an affine
superscheme or X,Y cs-manifolds with Y an open sub superspace of Cp|q

cs .
There is a bijective correspondence

Hom(X,Y ) ∼= Hom(OY (Y0),OX(X0)).

Definition 2.22. LetX and Y be complex supermanifolds or cs-manifolds.
Let φ : X → Y be a morphism and charts x = (u, ξ) and y = (v, η) on the
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open sub superspaces U ⊆ X and V ⊆ Y . The Jacobian of φ is then defined
as

Jφx,y =

(
∂φ](v)
∂u −∂φ](v)

∂ξ
∂φ](η)
∂u

∂φ](η)
∂ξ

)
,

where Jφx,y ∈ M
(
p|q,OX(U0 ∩ φ−1

0 (V0))
)

0̄
. The rank of Jφx,y is the rank of

π](Jφx,y), where π : Xred → X was the canonical embedding of Xred in X.

The differential (dφ)p at p ∈ X0 can be expressed by the matrix

(dφ)p = π](Jφx,y)(p) =

π
]

(
∂φ](v)
∂u

∣∣∣
p

)
0

0 π]
(
∂φ](η)
∂ξ

∣∣∣
p

)
 .

Definition 2.23. The supermanifold X is an immersed sub supermani-
fold in Y , if there exists an injective immersion j : X → Y , which means
that j0 : X0 → Y0 is injective and (dj)p is injective for all p ∈ X0. Moreover,
we say that X is an embedded sub supermanifold if j : X → Y is an injective
immersion and j0 : X0 → Y0 is a homeomorphism onto its image.

A morphism φ : X → Y is a submersion at p ∈ X0 if (dφ)p is surjective.

Definition 2.24. Let X and Y be complex analytic supermanifolds of
dimension n|s and m|r, with n ≥ m and s ≥ r. Moreover, let φ : X → Y
be a morphism. For an open sub supermanifold V of Y we call a morphism
ψ : V → X a local section, if φ0 ◦ ψ0 = IdV0 and ψ] ◦ φ] = IdOY |V .

Remark 2.25. We can interpret the existence of a local section as the
fact that there are neighbourhoods U and V , such that φ : U → V is a
submersion. Furthermore, ψ : V → U is an immersion (cf. [28]).

Theorem 2.26. Let φ : X → Y be a morphism between complex analytic
supermanifolds X and Y . If the rank of the Jacobi matrix Jφx,y is equal to
the dimension of Y for a point p ∈ X0, then there exists a local section
ψ : V → X, where V is an open neighbourhood of φ0(p) and there exists an
open neighbourhood U for p, such that the map φ : U → V is a submersion.

Proof. The statement is purely local and therefore it is sufficient to prove
the statement with X = Cn|s and Y = Cm|r. Let (x = (u, ξ), U) be a chart
on Cn|s with p ∈ U0, and (y = (v, η), V ) a chart on Cm|r with φ0(p) ∈ V0.
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The matrix π](Jφx,y)(p) is of the form

π](Jφx,y)(p) =

π
]

(
∂φ](v)
∂u

∣∣∣
p

)
0

0 π]
(
∂φ](η)
∂ξ

∣∣∣
p

)
 .

By assumption, rank(Jφx,y(p)) = m|r and so, π]
(
∂φ](v)
∂u

∣∣∣
p

)
= ∂φ]0(v0)

∂u0

∣∣∣∣
p

and

π]
(
∂φ](η)
∂ξ

∣∣∣
p

)
are both of maximal rank with entries in C.

If the tangent map dfp : TpCn → Tf(p)Cm of a holomorphic map f : Cn → Cm

has rank m, then by [25, Theorem 0.5.2] there exist open neighbourhoods
U0 and V0 of p and f(p) respectively, where f : U0 → V0 is surjective.

After possibly shrinking our sub superspaces U and V , it follows from the
last statement that φ0 is a surjective map from U0 to V0 and V0 is already
open. Furthermore, we are using the same symbols here for the refined open
sub superspaces U and V . It remains to show that a superalgebra morphism
ψ] : OX(U0)→ OY (V0) exists such that (φ◦ψ)] = ψ] ◦φ] = IdOY (V0), which
immediately implies the existence of a sheaf morphism ψ] : OX → OY . Sine
Φ0 : U0 → V0 is surjective, we may choose cordinates such that U0 = V0×U ′0
and Φ0 is the projection onto V0. Hence, ui = π](φ](vi)) for i ∈ {1, ...,m},
which implies that

φ](vi) = ui mod(JU0), i ∈ {1, ...,m}.

Possibly shrinking U further, we may assume that the (r×s)-matrix π]
(
∂φ](η)
∂ξ

)
with entries in H(Cm)(U0) has rank r for all p ∈ U0. Further, there exists a
matrix T ∈ GL(s,H(Cm)(U0)) such that

A′ :=
(
π]
(
∂φ](η)
∂ξ

))
T =

(
Ã 0

)
, (2.1)

with Ã ∈ GL(r,H(Cm)(U0)). Now, we define an invertible (s× s)-matrix by

A =
(
Ã 0
0 Id

)
T−1 and new odd coordinates on U by

ξ′j =
s∑

k=1

Ajkξk.

In this new coordinate system, we have

φ](vi) = ui (mod JU0) i ∈ {1, ...,m}
φ](ηj) = ξ′j (mod J2

U0
) j ∈ {1, ..., r}.
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We now construct the morphism ψ : Y → X, which is a right inverse to φ.
Define a morphism ψ]0 : OX(U0)→ OY (V0) by

ψ]0(ui) = vi (i = 1, ...,m)

ψ]0(uj) = 0 (j = m+ 1, ..., n)

ψ]0(ξk) = ηi (k = 1, ..., r)

ψ]0(ξl) = 0 (l = r + 1, ..., s),

and the morphisms ψ]k recursively by

ψ]k+1(xi) := ψ]k(xi) + ψ]0(xi − φ]ψ]k(xi)),

where xi = (u, ξ)i ∈ OX(U0). We claim that ψ]k for r < k is the required
morphism. To prove this, consider the maps

∆k :OY (V0)→ OY (V0)

∆k(f) = ψ]kφ
](f)− f.

By construction,

∆k+1(yi) = ψ]k+1φ
](yi)− yi

= ψ]kφ
](yi) + ψ]0φ

](yi)− ψ]0φ
]ψ]kφ

](yi)− yi
= −[ψ]0φ

](ψ]kφ
](yi)− yi)− (ψ]kφ

](yi)− yi)]
= −∆0(∆k(yi)).

Since the homomorphism ψ]0φ
] : OY (V0)→ OY (V0) satisfies

ψ]0φ
](vi) = ψ]0(ui (mod JU0)) = vi (mod IV0) i ∈ {1, ...,m}

ψ]0φ
](ηj) = ψ](ξj (mod J2

U0
)) = ηj (mod I2

V0
) j ∈ {1, ..., r},

it follows that ∆0(IkV0
) ⊂ Ik+1

V0
. Hence, ∆k(f) ⊂ IkV0

for all f ∈ OY (V0) and
∆k(f) = 0 for k > r. Hence, ψ]φ] is the identity map on OY (V0) and ψ is a
right inverse to φ.

Definition 2.27. A p|q×m|n-supermatrix T ∈ M(p|q, A)0̄ for A a super-
commutative superalgebra is said to have constant rank (r|s), if there exist
G1 ∈ GL(m|n,A) and G2 ∈ GL(p|q, A) such that

G1TG2 =


Idr 0 0 0
0 0 0 0
0 0 Ids 0
0 0 0 0

 .
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Remark 2.28. Notice that not all T ∈ M(p|q, A)0̄ are of constant rank.
A counter example is given by

(
0 0
ξ 0

)
, because it is not possible to transform

this matrix with left and right multiplication by elements of the general
linear supergroup into the required form.

Now, we need two more definitions to state the next proposition.

Definition 2.29. A morphism of supermanifolds φ : X → Y has constant
rank r|s in a neighbourhood U of p ∈ X0, if the Jacobian Jφ has constant
rank r|s on U .

Definition 2.30. An ideal sheaf I determines a closed sub supermanifold
N of a complex analytic supermanifold M , if for N0 := supp OM/I =
{x ∈ M0 | Ix ⊂ OM,x}, N := (N0, j

−1
0 (OM/I)) is a supermanifold and

j := (j0, j]) : N → M is an immersion for j] : j−1
0 OM → j−1

0 (OM/I)
defined as the canonical projection.

Proposition 2.31. Let φ : M → W be a morphism of complex analytic
supermanifolds with q ∈ W0. For each p ∈ φ−1

0 (q) suppose there exists a
neighbourhood of p where φ is of constant rank r|s. Then the ideal sheaf
I ⊆ OM generated by φ](Jq), where Jq is the maximal ideal associated to the
point q, determines a closed sub supermanifold N of M .

For a proof, the reader may consult Ref. [27, Theorem 2.3.9], but we ex-
amine the idea behind the proof. One finds that I ⊆ Jp for all p ∈ φ−1

0 (q).
This set is a closed subset of M0 defined by I. Since φ is of constant rank,
there exists for each p a neighbourhood Up and homogeneous superfunctions
f1, ..., fn in I(Up) which come via φ] from coordinates around q, such that
the germs [f1], ...[fn] generate Ix, the stalk of I in x. The (df1)p, ..., (dfn)p
are linearly independent and therefore the fi’s can be supplemented to coor-
dinates around p in the neighbourhood Up. One can define locally a super-
manifold structure for Up ∩ φ−1

0 (q), where the superfunctions are functions
only in the supplemented coordinates. And by the transition function one
can carry the structure over to φ−1

0 (q).
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3 Quotient superspaces

The theory of prehomogeneous super vector spaces relies on the general the-
ory of supergroup quotients. In this section, we give the basic definitions
both in the case of real or complex supermanifolds and in the case of al-
gebraic supergroups. Therefore, we introduce group objects in a category
in order to define Lie supergroups and algebraic supergroups in an efficient
way. An important step to define a prehomogeneous super vector space is
to understand the orbit of a Lie supergroup through a supervector v ∈ V0

in a super vector space V , considered as a linear supermanifold. Partially
following [8, p.149ff], we show that the isotropy supergroup is a closed sub
Lie supergroup and that the quotient superspace is a supermanifold.

One of the main results is Theorem 3.21, which tells us that if G is a con-
nected Lie supergroup, acting linearly on a super vector space, and if G has
an open orbit, then the orbit is a unique, connected, and dense sub super-
manifold. Moreover, we are in the situation to translate this statement in
the algebraic category, such that the orbit is a Zariski-open sub superscheme
of V .

Furthermore, we need to handle the quotient space of an algebraic super-
group by an isotropy supergroup. The nontrival question when such a quo-
tient of supergroups exists is answered by Masuoka and Zubkov in [29]. The
authors answer this question in a very general manner, generalising ideas
presented in [19] and [12], by regarding superschemes as functors from super-
algebras to sets, which are sheaves on the opposite category of supercommu-
tative superalgebras equipped with a Grothendieck topology. The existence
question is answered by the representability of a functor by a superscheme.
Considering this approach, we can prove that the orbit morphism is an iso-
morphism between the quotient scheme and the orbit (Theorem 3.44).

3.1 Group objects in a category

Now, we define a group object in a category C and a left action of such a
group object in order to avoid repeating ourselves by defining Lie super-
groups or algebraic supergroup. The reader may consult Ref.[34, p.76 ff.].

Definition 3.1. Let C be a category that admits finite products. In
particular, C admits a terminal object, which we denote by P . For instance,
if C is the category of locally ringed superspaces lrss a terminal object is
(∗,C∗) ∈ lrss. Let G be an object in C with morphisms µ : G × G → G
(multiplication), e : P → G (unit) and i : G → G (inversion). If these
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morphisms make the following diagrams commute:

(associativity of multiplication) (two sided unit)

G×G×G G×G

G×G G

µ× idG

idG × µ

µ

µ

P ×G G G× P

G×G G G×G

e× idG idG idG × e

µ µ

(right inverse compatible to µ) (left inverse compatible to µ)

G×G G×G

G P G,

idG × i

µ(idG, idG)

e

G×G G×G

G P G,

i× idG

µ(idG, idG)

e

then we call G a group object in C.

Remark 3.2. For a group object G the functor hG becomes group valued
by the Yoneda Lemma. Making hG group valued is the same as giving an
object G a group object structure.

Definition 3.3. Let G be a group object, X an object of C and a mor-
phism a : G×X → X. If the following diagrams commute:

G×G×X G×X P ×X G×X

G×X X X.

µ× idX

idG × a

a

a

e× idX

prX a

then a is called a left action of the group object G on an object X. Note
that prX : P ×X → X is the projection on to X.

The action morphism a : G×X → X induces a natural transformation ha,
such that for all objects T ∈ Ob(C) the transformation satisfies the following
relations:

1 · x = x and (g1g2) · x = g1 · (g2 · x)

for all g1, g2 ∈ hG(T ) and x ∈ hX(T ), where 1 is the unit in hG(T ). Here we
set for example ha(T )(g1, x) = g1 · x and hµ(T )(g1, g2) = g1g2.
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Definition 3.4. If p ∈T X0, we define the orbit morphism ap by the
natural transformation given by

hap : hG → hX , g 7→ g · p.

3.2 Lie supergroups

Since we will be dealing with complex analytic supermanifolds, we will refer
to them simply as “supermanifolds”. Partially following [8, p.149ff], we show
that the isotropy supergroup is a closed sub Lie supergroup and that the
quotient superspace is a supermanifold. However, the results of this section
carry over to the case of cs-manifolds.

Definition 3.5. A group object in the category of supermanifolds is a
complex Lie supergroup.

Remark 3.6. One can associate to each complex Lie supergroup G a Lie
group Gred. This Lie group is given by the underlying manifold of G and
the canonical morphisms µ0, e0, i0.

An example of a Lie supergroup is the general linear supergroup GLp|q. It
illustrates the power of the approach via S-points. Using it, we can represent
this Lie supergroup as a matrix group with entries in a superalgebra of global
sections. This example is also important later on.

Example 3.7. Let the superspace Mp|q = Cp2+q2|2pq be the linear super-
manifold corresponding to the super vector space M(p|q,C) of (p+q)×(p+q)
matrices (

Ã B̃

C̃ D̃

)
=
(
Ã 0
0 D̃

)
+
(

0 B̃

C̃ 0

)
with entries of the block matrices Ã, B̃, C̃, D̃ in C. The underlying topolog-
ical space (Mp|q)0 of the supermanifold Mp|q is the direct product of p × p
matrices and q × q matrices Mp ×Mq. The structure sheaf of Mp|q is given
by the assignment

V 7→ OMp|q(C)(V ) = HMp×Mq(V )⊗
∧

(C2pq)∗

for all open subsets V in Mp × Mq. The open sub superspace GLp|q :=
(U,OMp|q |U ) is associated to the open subset U of invertible matrices in
Mp ×Mq. It has a Lie supergroup structure which will be defined now and
will be referred to as the general linear supergroup. For brevity, we write
O(S) and O(Cp2+q2|2pq) for the superalgebras of global sections OS(S0) and
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OCp2+q2|2pq(Cp2+q2
). By Proposition 2.21, the S-points of the supermanifold

Cp2+q2|2pq are given by

Cp2+q2|2pq(S) = Hom(S,Cp2+q2|2pq)

= Hom(O(Cp2+q2|2pq),O(S)).

This means that a supermanifold morphism f : S → Cp2+q2|2pq corresponds
to a superalgebra morphism f ] : O(Cp2+q2|2pq) → O(S). By Ref. [27,
Theorem 2.1.7] such a morphism is known once we know the image on the
canonical chart,

Mp|q(S) ∼= {(f ](u1), ..., f ](up
2+q2

), f ](ξ1), ..., f ](ξ2pq)) | f : S → Cp2+q2|2pq}
= M(p, q;O(S))0̄.

By M(p|q,O(S))0̄ we mean the block matrices
(
A B
C D

)
where the entries of

A,D are in O(S)0̄ and the entries of B,C are in O(S)1̄. The group of
automorphisms of

Cp|q(S) = (O(S)⊗ Cp|q)0̄ = O(S)p
0̄
⊕O(S)q

1̄

is given by GLp|q(S), the functor of points of the general linear supergroup
GLp|q. Thereby

GLp|q(S) =
{(

A B
C D

) ∣∣∣∣ A,D invertible
}
⊆M(p, q;O(S))0̄

is an element in the category of set theoretical groups.

Now, we want to define the Lie superalgebra g associated to a Lie supergroup
G.

Definition 3.8. A Lie superalgebra is a super vector space g = g0̄ ⊕ g1̄

with multiplication [., .] satisfying the following two axioms: For all homo-
geneous X,Y, Z ∈ g, we have

[X,Y ] = −(−1)|X|·|Y |[Y,X]

[X, [Y, Z]] = [[X,Y ], Z] + (−1)|X|·|Y |[Y, [X,Z]].

The first axiom is called skew supersymmetry and the second axiom is called
Jacobi superidentity.

Definition 3.9. Let M be a complex analytic supermanifold. The sheaf
Der(OM ) of C-linear graded derivations is defined for any open subspace U
of M0 by Der(OM )(U) =

{D ∈ HomC(OM (U),OM (U)) | D(gf) = D(g)f + (−1)|D||g|gD(f)}.
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A super vector field V on a complex analytic supermanifold M is an C-linear
gradded derivation of OM . The set of super vector fields of M is denoted
by VecM .

Now, we can define the Lie superalgebra g of G to be the left invariant super
vector fields. A super vector field X ∈ VecG is said to be left invariant if

(1⊗X) ◦ µ] = µ] ◦X.

Here, 1⊗X is the unique vector field on G×G such that

(1⊗X)(p]1(f1)p]2(f2)) = p]1(f1)p]2(X(f2))

for any local sections f1 and f2 of OG. We define g to be the set of left
invariant super vector fields, i.e.

g = {X ∈ VecG | (1⊗X)µ] = µ]X}.

This is the Lie superalgebra associated to G, where for homogeneous ele-
ments X,Y ∈ g the bracket is given by [X,Y ] = XY − (−1)|X|·|Y |Y X.

For example, the Lie superalgebra of GLp|q is given by the super vector space
Cp2+q2|2pq via the functor A → M(p|q, A) and the fact that M(p|q, A) ∼=
Cp2+q2|2pq(A).

23



3.3 Isotropy supergroups

An important step to define a prehomogeneous super vector space is to
understand the orbit of a Lie supergroup through a supervector v ∈ V0 in
a super vector space V , considered as a linear supermanifold. To that end,
we have to define the isotropy supergroup Gp of a point p, which we will do
in the generality of supermanifolds. Moreover, we will see that the isotropy
supergroup is a closed sub Lie supergroup.

We recall the definition of an action morphism for a Lie supergroup. Let G
be a Lie supergroup, M a supermanifold and

a : G×M →M

a left action of G on M . Moreover, let p ∈M0, which can be considered as
a map p : C0|0 → M . Recall that the function f̃ was defined by π](f). For
p ∈M0 the orbit morphism is given by

ap : G→M, ap := a ◦ (idG, p̃),

where p̃ denotes the composition of the map p : C0|0 → M given by the
evaluation at the point p through p](f) := f̃(p) with the unique map G →
C0|0. The orbit morphism ap satisfies

G ∼= G× C0|0 G×M

M.

idG × p

ap a

We also need the isotropy supergroup.

Definition 3.10. Let G be a Lie supergroup and a : G ×M → M an
action of G on the supermanifold M . The isotropy supergroup at p ∈M0 is
the supermanifold Gp equalizing the diagram

Gp G M,
jGp ap

p̃

where jGp is the canonical embbeding. The isotropy functor at p is defined
by

Gp(S) := {g ∈S G|g · pS = pS}
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for all supermanifolds S. The set Gp(S) defines a subgroup of G(S). We will
now show that the isotropy functor is representable by a sub supermanifold
of G, which then is automatically a sub supergroup.

Theorem 3.11 ([13], Prop. 8.4.7). Let G be a Lie supergroup acting on a
supermanifold M and p ∈M0. Then there exists a supermanifold Gp, which
can be embedded as a closed sub supermanifold in G, equalizing the diagram

Gp G M.
jGp ap

p̃

Further Gp is a sub Lie supergroup of G and the functor Gp(S) = Hom(S,Gp)
is represented by the sub supermanifold Gp of G.

Proof. We give a sketch of the proof. The orbit morphism ap : G→M has
constant rank ([13, Prop. 8.1.5]). Proposition 2.31 implies that there exists
a closed embedded sub supermanifold Gp of G, such that the embedding jGp
is closed and j]Gp is surjective.

With the knowledge of the isotropy supergroup, we are in a position to define
the quotient superspace.

3.4 Quotient supermanifolds

Definition 3.12. Let G be a Lie supergroup and H a closed sub Lie
supergroup. The quotient superspace is defined by G/H = (G0/H0,OG/H).
The quotient sheaf OG/H is defined in the following way: For any open set
V ⊂ G0/H0 we set OG/H(V ) :=

= {f ∈ OG(π−1
0 (V )) |(r]h(f) = f) and (Z(f) = 0) ∀(h ∈ H0, Z ∈ h)}.

Here, the morphism π0 : G0 → G0/H0 is the canonical quotient map and
rh : G→ G is the right translation by h.

Theorem 3.13. The superspace (G0/H0,OG/H) is a supermanifold.

Proof. A proof can be found in [1, Theorem 5.3], where the authors use
Godement’s Theorem on quotients. For another proof, which uses Frobenius
Theorem, the reader may consult, for instance, Ref. [8, Theorem 9.3.4].
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Proposition 3.14. Let f : G → X be an H-invariant morphism, i.e.
f(gh) = f(g) ∀ T, g ∈T G, h ∈T H. Then there is a unique morphism

f̃ : G/H → X,

so that the following diagram commutes:

G X

G/H.

f

π f̃

Now, we intend to understand the orbit through a point by the action of a
Lie supergroup in more detail.

Proposition 3.15 ([13], Prop. 8.1.5). Let a : G×M →M be the action
of the Lie supergroup G on a supermanifold M through a point p ∈M0. The
orbit morphism ap : G→M has constant rank.

Note that by the universal property of the quotient we get the following
commuting diagram

G M

G/Gp

ap

π âp

and we get a morphism â : G/Gp →M , which also has constant rank.

Proposition 3.16. The morphism âp : G/Gp → M is an injective im-
mersion.

Proof. If g1, g2 ∈ G0 are such that g1 · p = g2 · p, then g−1
2 g1 ∈ (Gp)0, hence

(âp)0 is injective. Moreover, the orbit map ap is a morphism of constant
rank and so âp : G/Gp → M . The morphism âp is an injective immersion,
because ker Teap = TeGp.
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Definition 3.17. We call the pair (G/Gp, âp) the orbit of G through p.
Furthermore, if G0p is open we denote by Oanp := (G0p,OM |G0p) the sub
superspace, given by the underlying orbit G0p := a0(G0, p) ⊆M0.

Remark 3.18. In general, the morphism âp is not an embedding, as one
can already see in the classical example, where one takes the irrational action
of R on the torus.

Now, we can prove our next proposition.

Proposition 3.19. Let G be a Lie supergroup acting on a supermanifold
M . If for p ∈M0 the differential of the orbit map ap has maximal rank, then
âp is an open embedding and G/Gp ∼= Oanp is an open sub supermanifold.

Proof. We already know by Proposition 3.16 that âp : G/Gp → M is an
injective immersion. It remains to show that (âp)0 is a homeomorphism
onto its image. But this is the case by Theorem 2.26 and the maximal rank
assumption.

Corollary 3.20. If for two open orbits the intersection of their underlying
spaces is not the empty set, then the orbits are equal.

Proof. Let v, w ∈M0 such that (Oanv )0 ∩ (Oanw )0 6= ∅. There are g1, h1 ∈ G0

satisfying

g1v = h1w

⇔(h−1
1 g1)v = w.

Therefore w ∈ (Oanv )0 and the underlying topological spaces are equal
(Oanv )0 = (Oanw )0. The result follows from the fact that two sub super-
manifolds of the same superdimension as M and with the same underlying
topological space are equal.

Now, we can prove the main theorem of this section, which is a crucial
requirement for prehomogeneous super vector spaces.

Theorem 3.21. Let G be a complex connected Lie supergroup, acting
linearly on a super vector space V . If G has an open orbit in V , then this
orbit is unique, connected, and dense.

Proof. Let x1, ..., xp, ξ1, ..., ξq be a homogeneous basis of g with dim g = p|q
and v∗1, ..., v

∗
m, η

∗
1, ..., η

∗
n a homogeneous basis of V ∗ with dimV = m|n. The
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action is denoted by a : G× V → V . For each v ∈ V0 we consider the even
linear map dav : g→ V given by X 7→ dav(X). This gives us a dimV ×dim g

matrix Av in our selected basis. The entries of Av are linear functions of v
with values in C and the matrix is given by

Av :=
(
v∗i (dav(xj)) 0

0 η∗k(dav(ξl))

)
.

Since we have assumed that G has an open orbit in V , we know for some
v = v0 that dav0(g) = V. Thus the rank of Av0 is m + n, and so there is
some non-zero (m+ n)× (m+ n) minor of Av0 . Let P be the vector-valued
function P (v) := (pI(v), πJ(v)) with

pI(v) = det(v∗i (dav(xij )))
m
i,j=1 I = 1 ≤ i1 < ... < im ≤ p,

πJ(v) = det(η∗k(dav(ξjl)))
n
k,l=1 J = 1 ≤ j1 < ... < jn ≤ q.

on V whose value at v is the tuple of all (m + n) × (m + n) minors of Av.
This function P is a vector-valued polynomial function on V whose value
at v0 is non-zero. Let Ω0 = {v ∈ V0 | Oanv an open orbit} be the set of v
for which P (v) 6= 0. Because P is a holomorphic polynomial function not
identically zero, Ω0 is connected, and dense. Proposition 3.15 tells us that
since dav(g) = V we have daw(g) = V for w = a(g, v) and g ∈ G0. Hence,
a(g) maps Ω0 onto itself. Thus Ω0 is the union of disjoint orbits under a(G0).
Since Ω0 is connected, there is only one orbit in the open sub supermanifold
Ω = (Ω0,OV |Ω0

), which is already Ω. By Theorem 2.11 we conclude that
Gv(S) ⊆ V (S) is dense.

Remark 3.22. For the classical case, compare [26, Theorem 10.1].

Proposition 3.23. Let a complex connected Lie supergroup G act linearly
on a super vector V . The open orbit Oanv of G at v ∈ V can be regarded as
an open sub superscheme, denoted by Oalgv .

Proof. From Theorem 3.21, we know that the open orbit of a complex
connected Lie supergroup in a super vector V is unique, dense and con-
nected. Also, we saw in the proof of the Theorem 3.21, that the com-
plement of the set (Oanv )0 is the set of common zeros of finitely many
polynomials, which were expressed by the vector-valued polynomial func-
tion P . Let i ∈ {1, . . . , q} be an index running over the components,
such that Pi is a polynomial on V0. Then the underlying open set is
(Oalgv )0 := {p ∈ Spec(Cm) | (P1, . . . , Pq) 6⊂ p} and the superalgebra A =
{ gpn | p ∈ (P1, . . . , Pq), g ∈ C[x1, . . . , xm; ξ1, . . . , ξn]} defines an open sub
superscheme of Cm|n.
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Remark 3.24. In the following we will refer Oanv or Oalgv simply as Ov.
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3.5 Superschemes as functors

In this section we are preparing the proof of Theorem 4.10, which tells us
about the relation between supercharacters and relative superinvariants of
a prehomogeneous super vector spaces. Therefore, we need to handle the
quotient space of an algebraic supergroup by an isotropy supergroup. The
authors of [29] answer the question of the existence of such quotients in a very
general manner by regarding superschemes as functors, which are sheaves
on the opposite category of supercommutative superalgebras equipped with
a Grothendieck topology, thereby following the work of Demazure-Gabriel
in the ungraded case. They show that the quotient sheaf of algebraic super-
groups is a Noetherian superscheme.

At first we like to motivate this approach. The functor Spec is a covari-
ant functor from the opposite category of supercommutative superalgebras
(salg)op to the category of affine superschemes sschem. This functor has
a quasi-inverse D, sending an affine superscheme X to the superalgebra of
global sections A = OX(X0), which is also often called the coordinate su-
peralgebra C[X]. Moreover, we have as a consequence Homsschem(S,X) ∼=
Homsalg(A,B), with S = Spec(B). Because of the anti-equivalence of the
categories salg and sschem, and the embedding property by the Yoneda
Lemma, one can consider an affine superscheme X as a functor hA : B →
Homsalg(A,B), which is represented by the superalgebra A with Spec(A) =
X. In this way the category of affine superschemes over C is embedded as
a full subcategory of the category of covariant functors from salg to set,
denoted by Fsalg. We also write X or Spec(A) for the functor hA.

Let G and H be supergroup superschemes, one can easily define the quotient
by the universal property of the quotient in the functor category, where the
functor given by A 7→ G(A)/H(A) is the quotient. However, this functor
is usually not even a sheaf in the Zariski topology, and so cannot be rep-
resentable by an affine superscheme. Moreover, the inclusion of sheaves in
the Zariski topology to the category of presheaves (i.e. of functors) does not
have a left adjoint (i.e. a sheafification functor). Such a left adjoint func-
tor to the inclusion functor exists, if one consider the category of functors,
which are sheaves on the fppf -topology and will be called faisceaux below.
At first we have to give some definitions.

Here, by following [19, p. 73] and [29, p.7f] we outline the sheafification of
a functor in the fppf -topology.

Definition 3.25. We call an object X in the functor category Fsalg a
functor. A functor X = hA, which is represented by A ∈ salg, is called an
affine superscheme.

30



Remark 3.26. In general, one can work with superalgebras over a com-
mutative ring instead of our restriction to C-superalgebras (cf.[19, p.3]).

Definition 3.27. Let I be a superideal of A ∈ salg. An principal open
subfunctor D(I) of Spec(A) is defined as follows. For any B ∈ salg, we set

D(I)(B) :={x ∈ Spec(A)(B) | x(I)B = B}
={x ∈ Homsalg(A,B) | x(I)B = B}.

Let X be a functor from salg to set. A subfunctor Y ⊆ X is said to be
open iff for any morphism f : Spec(A)→ X in the category of functors from
salg to set the preimage f−1(Y ) is the union of principal open subfunctors
of Spec(A).

Example 3.28. A Zariski-open sub superscheme Spec(Af ) = (Uf ,OX |Uf )
of an affine superscheme (Spec(A0̄),OX) where Uf = {p ∈ Spec(A0̄) | (f) 6⊂
p}, defined in Definition 2.12, can be considered as an example of such an
open subfunctor.

A collection of open subfunctors {Yi}i∈I of a functor X is called an open
covering of X whenever X(A) =

⋃
i∈I Yi(A) for any A ∈ salg.

In order to define a sheaf on a category, it is not necessary to have a topolog-
ical space in the conventional sense. The notion of a Grothendieck topology
is enough, which we define in the following.

Definition 3.29. Let C be a category together with, for each object U
of C, a distinguished set of families of morphisms {Ui → U}i∈I called the
coverings of U with the following axioms:

1. For any U , the family {U id→ U} consisting of a single morphism is a
covering of U .

2. If {Ui → U}i∈I is a covering and V → U is any morphism, then the
fiber products {Ui ×U V }i∈I exist and the collection of projections
{Ui ×U V → V }i∈I is a covering.

3. If {Ui → U}i∈I is a covering and for each index i, there is a covering
{Vij → Ui}i,j∈I , then the collection {Vij → Ui → U}i,j∈I is a covering
of U .

The system of coverings is then called a Grothendieck topology and a cate-
gory C with a Grothendieck topology is called a site.
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For example, let X be a topological space, and let C be the category whose
objects are the open subsets of X and whose morphisms are the inclusion
maps. Then the families {Ui → U}i∈I such that {Ui}i∈I is an open covering
of U . It is a Grothendieck topology on C and for open subsets U1 and U2 of
V is U1 ×V U2 = U1 ∩ U2.

Now, we define a Grothendieck topology Tloc in (salg)op as follows: A cov-
ering in Tloc of A ∈ salg is defined to be a collection of finitely many mor-
phisms {Spec(Afi) → Spec(A)}1≤i≤n, where A ∈ salg and f1, . . . , fn ∈ A0̄

such that
∑

1≤i≤nA0̄fi = A0̄. Each Spec(Afi) → Spec(A) is an isomor-
phism onto D(Afi) and the open subfunctors D(Afi) form an open covering
of Spec(A). By that, the Af1 , . . . , Afn form an open covering of A. These
coverings satisfy the conditions given in Definition 3.29, so that Tloc is indeed
a Grothendieck topology.

Definition 3.30. Let T be a Grothendieck topology on salg a functor
X is called a sheaf iff for any superalgebra A and any open covering {Ai}i∈I
the diagram

X(A)→
∏
i∈I

X(Ai) ⇒
∏
i,j∈I

X(Ai ⊗A Aj)

is exact.

Notice, any affine superscheme is a sheaf on Tloc (cf. [19], Part I, 1.8(4)).

Definition 3.31. A sheaf X on Tloc is called a superscheme, if X has
an open covering {Yi}i∈I with Yi ' Spec(Ai) and Ai ∈ salg. The full
subcategory of all superschemes, defined as a sheaf on Tloc with an open
covering, is denoted by SFsalg. A superscheme X is said to be Noetherian,
if it has an open covering {Yi}i∈I with Yi ' Spec(Ai), such that I is finite,
and each Ai is Noetherian. An affine superscheme Spec(A) is Noetherian iff
A is Noetherian.

Remark 3.32. Any superscheme in the sense defined above is represented
by a locally ringed superspace covered by affine superschemes (Ref. [29,
Theorem 5.14]).

In the following we work in the finer Grothendieck topology Tfppf , where
fppf stands for the french term with the meaning faithfully flat, finitely
presented.

Let us define a Grothendieck topology Tfppf in (salg)op as follows: A cov-
ering in Tfppf of A ∈ salg is defined to be a collection of finitely many
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morphisms {Spec(Ai) → Spec(A)}1≤i≤n, where each Ai is a finitely pre-
sented A-superalgebra and B = A1 × · · · ×An is a faithfully flat A-module.
An A-superalgebra is finitely presented if it is the quotient of a polynomial
ring in a finite number of even and odd variables by a finitely generated
ideal. Note, that for f ∈ A0̄ the A-superalgebra Af is finitely presented,
as Af ∼= A[T ]/(Tf − 1), and a flat A-module. If f1, . . . , fn ∈ A0̄ satisfy∑n

i=1Afi = A, then A′ :=
∏n
i=1Afi form an fppf -open covering of A.

Definition 3.33. A sheaf Y on Tfppf is called a faisceau.

Remark 3.34. It can be seen that Tfppf is finer than Tloc. Hence, a
faisceau is also a sheaf on Tloc.

Proposition 3.35 ([29], Proposition 3.6). For any X ∈ Fsalg there is
a faisceau X̃, called the sheafification of X, and a natural transformation
j : X → X̃ such that for any faisceau Y the canonical map Mor(X̃, Y ) →
Mor(X,Y ) induced by j is a bijection.

Definition 3.36 ([29], Definition 3.7). For A,A′ ∈ salg and A′ an fppf -
covering of A. A functor X is called suitable if it commutes with finite direct
products of superalgebras and the induced map X(A)→ X(A′) is injective.

Remark 3.37 ([29], Remark 3.8). If X is suitable, then for any A ∈ salg

X̃(A) = lim−→X(B,A),

where X(B,A) = Ker(X(B) ⇒ X(B ⊗A B)) and B runs over all fppf -
coverings of A. Besides, j : X → X̃ is an injection.

In order to prove Theorem 3.44, we need to prove the next proposition.
Here, we are generalising ideas for affine schemes, which can be found in
[19, 5.4] and [12], to the supercategory of affine superschemes.

Proposition 3.38. Let X,Y : salg → set be functors, where Y is a
faisceau and f : X → Y a natural transformation and X is suitable. The
canonical map j : X → X̃ embeds the functor X in X̃, the sheafification of
X. It holds that the map j(A) is injective for all A ∈ salg and the diagram

X Y

X̃

f

j f̃
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is commutative. Moreover, there exists a unique natural transformation f̃ :
X̃ → Y and , if f(A) is injective for all A ∈ salg, then f̃(A) is also injective
for all A ∈ salg.

Proof. Let Y be a faisceau and B an fppf -covering of the superalgebra
A. For any morphism f : X → Y any f(B)x with x ∈ X(B,A), where
X(B,A) := {x ∈ X(B) | X(i1)(x) = X(i2)(x)} with i1(b) = b ⊗ 1 and
i2(b) = 1 ⊗ b, has to belong to Y (A) ⊆ Y (B). Hence, one can define
f̃ : X̃ → Y through f̃(A)x = f(B)x ∈ Y (A). It holds that f̃|X = f. Now,
we prove the injectivity. The faisceau X̃ of X is defined by the direct limit
X̃(A) := lim−→ X(B,A), where B runs over all fppf -coverings of A. Let
x̃1, x̃2 ∈ X̃(A) with f̃(x̃1) = f̃(x̃2), then there exists a fppf -covering B of
A, such that x̃1, x̃2 ∈ X(B,A) := {x ∈ X(B) | X(i1)(x) = X(i2)(x)} and
f(B)(x̃1) = f̃(A)(x̃1) = f̃(A)(x̃2) = f(B)(x̃2) and by injectivity of f(B) it
follows that x̃1 = x̃2.

3.6 Algebraic supergroups

We now give the definition of an algebraic supergroup.

Definition 3.39. A group object in the category of affine superschemes
is called an algebraic supergroup.

From the context it should be clear whether G is considered as a functor or
as a superscheme, and so we drop the notation hG.

Recall that a morphism f : X → Y of affine superschemes is called an
epimorphism if for any two morphisms g1, g2 : Y → Z of affine superschemes,
the equality g1 ◦ f = g2 ◦ f implies that g1 = g2. By the anti-equivalence
of salg and sschem, f : Spec(B) → Spec(A) is an epimorphism if and
only if f ] : A → B is a monomorphism. Here, a monomorphism in salg
algebras is an even superalgebra morphism ϕ : A → B such that for any
two even superalgebra morphisms ψ1, ψ2 : C → A, the equality ϕ ◦ ψ1 =
ϕ ◦ ψ2 implies that ψ1 = ψ2. Certainly, any injective algebra morphism is
a monomorphism. Conversely, the elements a ∈ A are in bijection with the
even superalgebra morphisms ψ : C[x, ξ]→ A, where the correspondence is
via ψ(x) = a0̄ and ψ(ξ) = a1̄. Thus, it follows easily that monomorphisms in
salg are injective. If ϕ : A→ B is an injective even superalgebra morphism
and f = (f0, f

]) : X = Spec(B) → Y = Spec(A) is the corresponding
epimorphism in sschem, then f ] is an injective sheaf morphism. Indeed,
if p ⊆ B0̄ is a prime ideal, then f ]p = ϕp : Ap → Bp is injective since
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localization is exact. However, although one can show that f0 has dense
image, in general, f0 is not surjective. In spite of the above remark, we say
that the action a is transitive if a is an epimorphism.

The stabilizer supergroup functor at the point v ∈ X0 with respect to the
action a is defined by Gv(A) := {g ∈ G(A) | g · vA = vA}, where vA denoted
the morphism {A→ v}.

Now, we are in a situation to state the following proposition.

Proposition 3.40. Let G be an algebraic supergroup acting on an affine
superscheme X and v ∈ X0. Then Gv is a closed algebraic supergroup.

Proof. A proof can be found in [13, Theorem 11.8.3].

The general linear supergroup GLalg(p|q,C) as an algebraic supergroup is
given by affine superscheme

Spec (C[xij , ykl, t1, t2, ξmn, ηrs]/(t1 det(xij)− 1, t2 det(ykl)− 1))

where i, j,m, s ∈ {1, . . . , p} and k, l, n, r ∈ {1, . . . , q}.

Definition 3.41. An algebraic sub supergroup G of GLalg(p|q,C), such
that G is a Zariski-closed sub superscheme of GLalg(p|q,C) is called a linear
algebraic supergroup.

3.7 Quotient superschemes

We need an isomorphism from the quotient of the supergroup G by the
isotropy supergroup Gv to the orbit scheme by the action of G for the proof
of Theorem 4.10. The nontrival question when such quotients of supergroups
exist is answered by Masuoka and Zubkov in [29]. In this context a super-
scheme, as is common in algebraic geometry, is considered as a functor from
the category of superalgebras to the category of sets. The existence question
is answered by the representability of a functor by a superscheme.

Recall that an algebraic supergroup is considered here with the structure of
an affine superscheme given by a finitely generated superalgebra. Masuoka
and Zubkov proved the following theorem.

Theorem 3.42 ([29],Theorem 0.1). Let G be an algebraic supergroup,
and let H be a closed sub supergroup of G. Then the faisceau G̃/H is a
Noetherian superscheme.
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They show that for an algebraic supergroup G and a closed sub supergroup
H the functor G̃/H, which is obtained by the sheafification of the naive quo-
tient, is representable by a superscheme, also denoted by G̃/H. The naive
quotient functor is defined as the functor A 7→ G/H(A) := G(A)/H(A)
from the category of superalgebras to category of sets. This superscheme
G̃/H fulfills the universal property of a quotient.

In the following, we show that under favourable circumstance, such as are
relevant in this thesis, the orbit map is an isomorphism of superschemes,
which maps from the quotient supergroup to the orbit. We need the follow-
ing definition, which is given in [20].

Definition 3.43. Let f : X → Y be a morphism of set-valued functors
on salg. Then f is called formally smooth if for any supercommutative
superalgebra A and any graded ideal I ⊆ A of square I2 = 0, the map

X(A)→
{

(y, x) ∈ Y (A)×X(A/I)
∣∣∣ f(A/I)(x) = yA/I

}
,

defined by
x 7→ (f(A)(x), xA/I)

is surjective. If X and Y are superschemes and f is, in addition, locally of
finite presentation, then f is called smooth. A C-superscheme X is called
smooth, if so is the structural morphism X → Spec C.

Theorem 3.44. Let G be a smooth algebraic supergroup acting on V ,
where V is a super vector space, and let Gv be the isotropy sub supergroup
at some v ∈ V0̄ such that dimV = dimG−dimGv. Then the quotient G̃/Gv
exists as a superscheme and ãv : G̃/Gv → V induces an isomorphism of
superschemes onto the open subspace corresponding to the orbit of G0 in V0̄

at v.

The proof of Theorem 3.44 requires some preparatory work. We will give
the proof below after these preparations.

3.7.1 Effective monomorphisms and epimorphisms

We begin our preparations with some general facts on effective monomor-
phisms and epimorphisms.

Definition 3.45. Let C be a category and f : X → Y a morphism in C.
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We say that f has a cokernel pair if there are an object Z and morphisms
i1, i2 : Y → Z such that i1 ◦ f = i2 ◦ f , satisfying the following universal
property: For any object W and any two morphisms g1, g2 : Y → W such
that g1 ◦ f = g2 ◦ f , there is a unique morphism g : Z → W such that
g ◦ i1 = g1 and g ◦ i2 = g2. When Z exists, we write Z = Y

∐
X Y .

Dually, we say that f has a kernel pair if there are an object Z and mor-
phisms p1, p2 : Z → X such that f ◦p1 = f ◦p2, satisfying the following uni-
versal property: For any object W and any two morphisms g1, g2 : W → X
such that f ◦ g1 = f ◦ g2, there is a unique morphism g : W → Z such that
p1 ◦ g = g1 and p2 ◦ g = g2. When Z exists, we write Z = X ×Y X.

We say that f is an effective monomorphism if a cokernel pair Y
∐
X Y exists

and f is moreover the equalizer of i1, i2 : Y → Y
∐
X Y . The latter condition

amounts to the following: For every object W , any morphism g : W → Y
such that i1 ◦ g = i2 ◦ g factors uniquely through f .

Dually, we say that f is an effective epimorphism if a kernel pair X ×X Y
exists and f is moreover the coequalizer of p1, p2 : X×Y X → X. The latter
condition amounts to the following: For every object W , any morphism
g : X →W such that g ◦ p1 = g ◦ p2 factors uniquely though f .

Lemma 3.46. Let C be a category and f : X → Y be a morphism that
is either both a monomorphism and an effective epimorphism or both an
effective monomorphism and an epimorphism. Then f is an isomorphism.

Proof. We will show the conclusion only under the first assumption, the
other one follows by categorical duality.

Firstly, f ◦p1 = f ◦p2, because f is the coequalizer of p1, p2 : X×Y X → X.
But then p1 = p2, since f is a monomorphism. It follows that idY coequalises
p1, p2, and hence factors uniquely through f to a morphism g : Y → X. That
is, g ◦ f = idY . In particular, f ◦ g ◦ f = f = idX ◦ f , but then, since f is an
epimorphism, it follows that f ◦ g = idX . Hence, f is an isomorphism.

3.7.2 Monomorphisms and epimorphisms of faisceaux

The next step is to see that in the category of faisceaux, all monomorphisms
and epimorphisms are effective. Moreover, we will need a characterization
of epimorphisms in terms of faithful flatness.

Proposition 3.47. All monomorphisms and all epimorphisms in the cat-
egory of faisceaux are effective. In particular, any morphism of faisceaux,
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which is at the same time a monomorphism and an epimorphism, is an
isomorphism.

Proof. The conclusion concerning isomorphisms will follow by the token of
Lemma 3.46 once we have established the first two assertions.

Our proof follows [12, III, §1, no. 2, 2.1-2] closely, where the same facts
are established for the case of ordinary faisceaux (without grading). Let
f : X → Y be a monomorphism of faisceaux. We define

Z(A) := Y (A)
∐
Y (A)/ ∼,

where∼ is the equivalence relation that identifies all elements of f(A)(X(A)).

By construction, there are canonical morphisms i1, i2 : Y → Z that are
equalised by f . Obviously, i1, i2 define a cokernel pair in the category of set-
valued functors on salg. Since left adjoints preserve colimits, Y

∐
X Y := Z

is a cokernel pairs in the category of faisceaux.

We need to show that f : X → Y is the equalizer of i1, i2. Sheafification
preserves projective limits by [12, III, § 1, no. 1, 1.12]. Hence, it is sufficient
to show that f is the equalizer of i1, i2 in the category of set-valued functors
on salg.

But this is quite straightforward: Assume that g : W → Y is a morphism of
faisceaux such that i1◦g = i2◦g. Let w ∈W (A). Then g(w) ∈ f(A)(X(A)).
Since f(A) is injective (f being a monomorphism), there is a unique x ∈
X(A) such that f(A)(x) = w. Define g̃(A)(w) := x. By the uniqueness, one
checks that g̃ is a morphism of functors such that f ◦ g̃ = g, and moreover
the unique such morphism. Thus, f is indeed an effective monomorphism.

Now, assume that f is an epimorphism. Sheafification preserves projective
limits by [12, III, § 1, no. 1, 1.12], so the fibre product of f with itself in the
category of faisceaux exists, and is the sheafification p1, p2 : X ×Y X → X
of

Z(A) =
{

(x1, x2) ∈ X(A)×X(A)
∣∣∣ f(A)(x1) = f(A)(x2)

}
,

together with the obvious morphisms q1, q2 : Z → X. We need to see
that f is the coequalizer of p1, p2. Since left adjoints preserve colimits, the
coequalizer of p1, p2 in the category of faisceaux is the sheafification of the
coequalizer q1, q2 in the category of set-valued functors.

The coequalizer of these morphisms is the functor defined by

I(A) := f(A)(X(A)),
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together with the obvious morphism p : X → I. Let i : I → Y be given by
the inclusion of subsets. Since Y is a faisceau, ĩ : Ĩ → Y is a monomorphism
of faisceaux, so it is effective by the above. Moreover, ĩ ◦ p̃ = f̃ = f , to
ĩ is an epimorphism by the assumption on f . Hence, by Lemma 3.46, ĩ is
an isomorphism, and f : X → Y is indeed the coequalizer of p1, p2 in the
category of faisceaux. Thus, f is indeed an effective epimorphism.

Lemma 3.48. The point-functor of any superscheme is a faisceau. The
functor from superschemes to faisceaux is fully faithful.

Proof. The first claim is a straightforward generalisation of [12, III, § 1,
no. 1, 1.3 Corollaire]. The second follows from the Yoneda Lemma and the
fact that faisceaux are by definition a full subcategory of set-valued functors
on salg.

Lemma 3.49. Let f : X → Y be a morphism of faisceaux. Then f is an
epimorphism of faisceaux if and only if for any A and y ∈ Y (A), there is an
fppf A-algebra B and an x ∈ X(B) such that f(B)(x) = yB.

Proof. The same as [12, III, § 1, no. 2, 2.8].

Definition 3.50. Let f : X → Y be a morphism of superschemes.

It is called flat if for any x ∈ X0, f ] : OY,f(x) → OX,x makes OX,x a flat
OY,f(x)-module, and faithfully flat, if in addition, f0 : X0 → Y0 is surjective.

The morphism f is called locally of finite presentation if for any x ∈ X0, there
are open subspaces U of X and V of Y containing x and f(x), respectively,
such that f |U : U → Y factors through jV : V → X and the superalgebra
morphism f ] : OY (V ) → OX(U) exhibits OX(U) as a finitely generated
OY (V )-module.

We call f of finite presentation if in addition, f is quasi-compact—i.e., for
any quasi-compact subset K ⊆ Y0, f−1

0 (K) ⊆ X0 is quasi-compact—and
quasi-separated—i.e., the diagonal morphism ∆ : X → X ×Y X is quasi-
compact. Here, a topological space is called quasi-compact if any open cover
admits a finite subcover.

Lemma 3.51. Let f : X → Y be a morphism of superschemes. Then f
is an epimorphism of faisceaux if and only if the following is true: For any
y ∈ Y0, there are an open subspace U of Y such that y ∈ U0, a faithfully flat
morphism g : U ′ → U of finite presentation, and a morphism h : U ′ → X
such that f ◦ h = jU ◦ g.
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Proof. The same as [12, III, § 1, no. 2, 2.9].

3.7.3 Quotient faisceaux and orbits

Finally, we apply the general considerations given above to supergroup ac-
tions.

Let G be an affine algebraic supergroup of finite type over C and H a closed
subsupergroup. As we have noted above, the sheafification G̃/H of the naive
quotient functor A 7→ G(A)/H(A) is a Noetherian superscheme.

Lemma 3.52. The canonical quotient morphism π : G → X is an epi-
morphism of faisceaux.

Proof. By [29, Corollary 9.10], π is affine and faithfully flat. Then π is
separated (the diagonal morphism is a closed immersion), and hence quasi-
separated. By Lemma 3.51, π is an epimorphism of faisceaux.

Lemma 3.53. Let a : G ×X → X be an action on a scheme X, and x
be C-rational point of X. Then the morphism ãx : ˜G/Gx → X induced by
the orbit morphism ax : G→ X is a monomorphism of faisceaux.

Proof. Let I be the functor defined by

I(A) := G(A)x = ax(A)(G(A)).

Then ax factors into morphisms p : G → I and i : I → X of functors.
Certainly, i is a monomorphism of set-valued functors on salg. Hence, ĩ is
a monomorphism of faisceaux.

Clearly, I is isomorphic to the naive quotient functor G/Gx. Thus, ˜G/Gx is
isomorphic to Ĩ, and under this isomorphism, ĩ corresponds to ãx. Hence,
ãx is a monomorphism of faisceaux.

Finally, we are in a position to prove Theorem 3.44.

Proof of Theorem 3.44. By Proposition 3.47 and Lemma 3.53, it is sufficient
to prove that ãv is an epimorphism of faisceaux. For this, it is sufficient that
av be an epimorphism of faisceaux. But by Lemma 3.51, it is to that end
sufficient to show that av is faithfully flat. By [23, Proposition 2.11], (av)0

is surjective. Hence, it is sufficient to show that av is flat.

40



Clearly, the local rings of V are regular superrings in the sense of [35, Def-
inition 3.2]. To see that the local rings of G are regular, we remark that
[35, Lemma 3.4.4] allows us to copy in the graded case the usual proof of
the standard fact that an equicharacteristic formally smooth local ring is
regular [30, Chapter 10, § 28, Lemma 1].

Thus, to see that av is flat, it is by [35, Proposition 3.6.2] sufficient to show
that for every g ∈ G0, the morphism OV,gv/JV,gv → OG,g/JG,v induced by
(a]v)g is flat. Here, JV and JG denote the ideal sheaves of OV and OG,
respectively, that are generated by the odd part of the structure sheaf. But
by [23, Proposition 2.11], this morphism is an isomorphism, and hence flat.
The assertion follows.
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4 Prehomogenous super vector spaces

We are now in a position to define prehomogeneous super vector spaces,
which will be a natural generalisation of prehomogeneous vector spaces. A
prehomogeneous vector space is a finite-dimensional vector space V together
with a subgroup G of GL(V ) such that G has an open dense orbit in V .

In this section, we develop the theory of prehomogeneous super vector
spaces. We are able to generalise the notion of relative invariants and results
about them, as well as the notion of regular prehomogeneous vector spaces,
to prehomogenous super vector spaces. As the previous sections indicate
and as we will see in this section, these generalisations are not obvious. We
define relative superinvariants and show that two relative superinvariants
corresponding to the same supercharacter are equivalent up to a constant.
Moreover, we will see that a relative superinvariant is, in a generalised sense,
homogeneous and that the set of relative superinvariants are equal to the set
of supercharacters invariant under the isotropy supergroup. For example,
we determine all supercharacters of GL(m|n,C).

Furthermore, we introduce the contragredient action and answer the ques-
tion: When is the dual super vector space of a prehomogeneous super vector
space also a prehomogeneous super vector space? And how are the sets of
relative superinvariants of V and V ∗ connected? We will see how one can
understand how the Berezinian measure of the prehomogeneous super vector
space transforms under the action of an element of a Lie supergroup. It will
turn out that we can express this transformation by a suitable power of a
supercharacter.

We construct two examples of prehomogeneous super vector spaces, the su-
per vector space of supersymmetric matrices with an action of GL(p|q,C)
and the super vector space M(p|2q×m|2n,C) with an action of OSp(p|2q,C)×
GL(m|2n,C). The prehomogeneous super vector space of supersymmetric
matrices is also used to consider the general results for prehomogeneous su-
per vector spaces in a sufficiently complicated example, where we know all
relative superinvariants.

Furthermore, we calculate explicitly the transformation of the flat Berezinian
measure of the super vector space of supersymmetric matrices under the ac-
tion of GL(p|q,C). We end this section by generalising the partial differen-
tial equation of the Bernstein–Sato polynomial for prehomogeneous vector
spaces by introducing an operator equation for prehomogeneous super vector
spaces.
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4.1 Definition of prehomogeneous super vector spaces

By Theorem 3.21, we know that an open orbit is connected, unique and
dense in V , which says that V is almost a homogeneous super vector space.
If the orbit Ov in v ∈ V0 is open, we call v a generic point. By Proposition
3.23 we know that such an open orbit, which we considered in the analytic
category, can also regard as an open sub superscheme of V . Furthermore,
the next proposition tells us, that one can embed an algebraic supergroup
into some GLm|n, analogous to the classical case.

Proposition 4.1 ([13], Theorem 11.7.9). Let G be an algebraic super-
group. Then

G ⊆ GLm|n

is a closed affine sub superscheme of the general linear supergroup GLm|n
for suitable m and n.

This motivates the following definition.

Definition 4.2. Consider a triple (G, ρ, V ), where G is a connected linear
algebraic supergroup, V is a complex super vector space of finite dimension
dimV = m|n and ρ : G → GL(V ) is a rational homomorphism of super-
groups. Then (G, ρ, V ) is a prehomogeneous super vector space if there exists
an open orbit of G in V . We will refer to the triple (G, ρ, V ) as V when G
and ρ are clear from the context.

4.2 Relative superinvariants

Here we are going to introduce the notion of relative superinvariants, for
which we need to define rational supercharacters.

Definition 4.3. A rational supercharacter for an algebraic supergroup G
is a morphism of algebraic supergroups χ : G → GL1. The set of rational
supercharacters is denoted by

X(G) = {χ : G→ GL1 | χ is a rational supercharacter}.

Definition 4.4. Let V be a prehomogeneous super vector space with
an open orbit Ov. A rational superfunction f on V is called a relative
superinvariant if f is regular on Ov and there exists a rational supercharacter
χ such that we have

f(ρ(g) · x) = χ(g) · f(x) ∀x ∈T Ov, ∀g ∈T G (4.1)
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on T -points.

Remark 4.5. We use ρ(g) · x and for brevity g · x as notation for a(g, x)
on T -points.

Let X1(G) = {χ ∈ X(G) | there exists a relative superinvariant f to χ} be
the set of rational supercharacters which correspond to relative superinvari-
ants. The set X1(G) is a subgroup of X(G). A rational supercharacter
χ : G → GL1 is a constant supercharacter if it is constant as a superfunc-
tion on G. If χ ∈ X1(G) is a constant, then the corresponding relative
superinvariant is called an absolute superinvariant.

In the next theorems we consider how far relative superinvariants are deter-
mined by their supercharacters. First, we need the following lemma.

Lemma 4.6. The orbit map av : G→ Ov is an epimorphism.

Proof. By Theorem 3.44, the induced morphism ãv : G/Gv → Ov is an iso-
morphism and in particular, an epimorphism. By Lemma 3.52, the canonical
projection π : G → G/Gv is an epimorphism of faisceaux and in particular
of superschemes. Since av = ãv ◦ π, the assertion follows.

Theorem 4.7. If V is a prehomogeneous super vector space, then all
absolute superinvariants are constant superfunctions and two relative super-
invariants f and h corresponding to the same supercharacter χ are equal up
to a constant factor.

Proof. Let f ∈ C(V0̄)[V1̄] be an absolute superinvariant. We show that
f ≡ f(v).

Let f ′ := f(v) a constant superfunction (constant on Ov). We have for all
T, g ∈T G the following equations

f(av(g)) =f(g · vT ) = f(vT )
=f(v)T = f ′(av(g)).

Note, that av(g) = a(g, vT ) with vT = T → ∗ v→ V . Hence, f ◦ av = f ′ ◦ av
and the fact that av is an epimorphism by Lemma 4.6, it follows f = f ′.

Let f, h are relative superinvariants with the same supercharacter χ, then
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we have

f(av(g)) =f(ρ(g)vT ) = (f(vT )/h(vT ))h(ρ(g)vT )
=(f(vT )/h(vT ))h(av(g)).

Since h(vT ) is invertible and av is an epimorphism, we get that f is equal
to h on the orbit and by the first statement f = c · h.

Definition 4.8. We define a map deg : C(V0)[V1]→ Z, by

deg(fµξµ) = degcl(pµ)− degcl(qµ) + |µ|,

where degcl stands for the standard degree of a polynomial and fµ = pµ
qµ

.
Moreover, we set deg(f) = maxµ(deg(fµξµ)). We call a rational superfunc-
tion

∑
µ fµξ

µ homogeneous if deg(f) = deg(fµξµ) and pµ, qµ are homoge-
neous polynomials for all µ ∈ Zn2 .

For the next theorem, we introduce the Lie supergroup G̃ = G×GL1 with
the extended homomorphism ρ̃ : G × GL1 → GL(V ) which is given by
ρ̃(g̃) = ρ(g) · (t · IdV ) for g̃ = (g, t) ∈T G×GL1.

Theorem 4.9. A relative superinvariant f is homogeneous of degree
degf = degf0.

Proof. Let f be a relative superinvariant with supercharacter χ. Fix λ ∈ C∗.
Then the rational superfunction, defined by h(x) := f(λT · x) for all T and
x ∈T Ov and λT := T → ∗ λ→ C∗, has the following relation for all g, g′ ∈T G̃

h(g · av(g′)) =h(g · g′ · vT ) = f(λT · g · g′ · vT )
=χ(g)f(λT · g · g′ · vT ) = χ(g)h(av(g′)).

By the fact that av is an epimorphism, it follows that h is a relative super-
invariant corresponding to χ with

h(g · x) = χ(g) · h(x).

Hence by Theorem 4.7, there exists a constant c(λ) such that

c(λ)f = h. (4.2)

In particular, (f0(λ ·v))T = f(λT ·vT ) = h(vT ) = c(λ)f0(vT ) = (c(λ)f0(v))T ,
so that

f0(λv) = c(λ)f0(v).

Since the latter holds for any λ, we find by Equation 4.2 that f0 has to be a
homogenous relative invariant as described in Ref. [23, Corollary 2.7]. This
implies that c = λdegf0 .
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We are in the situation to reap the benefits of our labour by using Theorem
3.44 to prove the following theorem. It plays a crucial role in telling us when
the dual super vector space V ∗ is also a prehomogeneous super vector space
and how the relative superinvariants are related.

The following theorem tells us that the set of supercharacters corresponding
to a relative superinvariant is equal to the set of supergroup homomorphisms
from G to C∗ invariant under the isotropy supergroup Gv.

Theorem 4.10. Let (G, ρ, V ) be a prehomogeneous super vector space
and v ∈ V0̄ a generic point. Then

X1(G) = {χ ∈ X(G) | χ|Gv = 1}.

Proof. Let χ ∈ X1(G), then there exists a relative superinvariant f 6= 0
corresponding to χ. There exists y ∈ (Õv)0 with f(y) 6= 0 and for all
x ∈ (Õv)0 there exist a g ∈ G0 with x = gy, such that

f(x) = χ(g)f(y) 6= 0.

Hence f(x) 6= 0 for all x ∈ (Õv)0. In particular 0 6= f(vT ) = f(gvT ) =
χ(g)f(vT ) for all g ∈T Gv and it follows that χ(g) = 1 for all g ∈T Gv.

On the other hand, let χ ∈ X1(G) with χ|Gv = 1. Then by the universal

property of G̃/Gv, there exists an f ′ ∈ C[G̃/Gv] with π](f ′) = χ. Moreover,

ãv : G̃/Gv
'→ Õv is an isomorphism in ssch by Theorem 3.44, so there

exists f ∈ C[Õv] with ãv
](f) = f ′. Then for all g ∈T G we have f(gv) =

f(av(g)) = f ′(π(g)) = χ(g) = χ(g)f(v). Since, by Proposition 2.18, regular
superfunctions on Zariski open sub superschemes are rational superfunctions
on V , the statement follows.

We now consider the example G = GLm|n. For a super commutative super-
algebra A recall from Definition 2.3, the invertible elements in Mat(m|n,A)0̄

are denoted by GL(m|n,A). The Berezinian is then a morphism

Ber : GL(m|n,A)→ A∗0̄

defined by

Ber
(
R S
T V

)
:= det(R− SV −1T ) detV −1.

The multiplicative property of the Berezinian [27, Theorem 1.7.4], implies
that it is supercharacter of the general linear supergroup GLm|n.
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In the classical case, a character χ : GLm → GL1 of the general linear group
must have the form

χ(g) = (det g)z z ∈ Z,

see for example Ref. [23, p.44]. Now we state a similiar theorem for the
general linear supergroup.

Theorem 4.11. The rational supercharacters χ : GLm|n → GL1 are
exactly integer powers of the Berezinian.

Proof. Let χ be a supercharacter of GLm|n and Q be an arbitrary affine
superscheme. For brevity, we also write χ : GLm|n(Q) → GL1(Q). Let
X ∈ GLm|n(Q) = GL(m|n|O(Q)). Since each supermatrix X =

(
R S
T V

)
, can

be decomposed as

X =
(

1 SV −1

0 1

)(
R− SV −1T 0

0 V

)(
1 0

V −1T 1

)
,

we have

χ(X) = χ

(
1 SV −1

0 1

)
· χ
(
R− SV −1T 0

0 V

)
· χ
(

1 0
V −1T 1

)
.

The supercharacter χ is a rational function in the matrix entries and equals
1 for the identity matrix. We can express

χ

(
1 SV −1

0 1

)
= 1 + f(SV −1),

where f is a rational superfunction of degree d independent of Q. The
relation

χ

(
1 SV −1

0 1

)n
= χ

(
1 n · SV −1

0 1

)
gives

(1 + f(SV −1))n = 1 + f(n · SV −1).

The function f has degree d, so the expression on the left-hand side has
degree nd. The only solution to this equation is f ≡ 0. Analogously,

χ

(
1 0

V −1T 1

)
= 1.

Since, in the classical case the character is an integer power of the determi-
nant, the most general form of the supercharacter, which is still a character
of the underlying classical group, is

χ(X) = det(R− SV −1T )z1 · det(V )−z2 z1, z2 ∈ Z
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which is the same as

χ(X) = Ber
(
R S
T V

)z1
· det(V )(z1−z2). (4.3)

Furthermore, a supercharacter χ has to fulfill for two supermatrix X1, X2

the relation
χ(X1 ·X2) = χ(X1) · χ(X2)

with

X1 ·X2 =
(
R1R2 + S1T2 R1S2 + S1V2

T1R2 + V1T2 T1S2 + V1V2

)
.

The Berezinian fulfills this relation, but

det(V1V2 + T1S2)z1−z2 = det(V1)(z1−z2) det(V2)(z1−z2)

only if z1 = z2. It follows by Equation 4.3, that the most general form of a
supercharacter is an integer power of the Berezinian.

4.3 Contragredient actions and dual
prehomogeneous super vector spaces

In this subsection, we define the notion of the contragredient action and
of a regular prehomogeneous super vector space. As main results, we prove
Theorem 4.14, which tells us that each regular prehomogeneous super vector
space has a dual prehomogeneous super vector space and the set of relative
superinvariants is equal to the set of dual relative superinvariants. Lemma
4.16 is crucial to understand how the Berezinian measure on V transforms
under the action of the supergroup G induced by the representation ρ.

Let V be a prehomogeneous super vector space with the data (G, ρ, V ) and
V ∗ = {v∗ : V → C | v∗ is an even linear mapping} the dual super vector
space of V . The contragredient representation of the Lie supergroup G on
V ∗, written as ρ∗ : G→ GL(V ∗), is defined by the relation

〈ρ∗(g)v∗, ρ(g)w〉 = 〈v∗, w〉, (4.4)

with g ∈T G, w ∈T V and v∗ ∈T V ∗. For a homogeneous basis v1, . . . , vp+q
of V (T ) and the dual homogeneous basis v1, . . . , vp+q of V ∗(T ) the canonical
pairing is defined by 〈vi, vj〉 := δij(T ), where δij is the Kronecker delta. Here
we use Einstein’s summation convention and get for v∗ ∈ V ∗ and w ∈ V

〈v∗, w〉 = 〈yivi, vjxj〉 = yix
i.
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〈ρ∗(g)v∗, ρ(g)w〉 = 〈ρ∗(g)(yivi), ρ(g)(vjxj)〉 = yi〈ρ∗(g)(vi), ρ(g)(vj)〉xj

= yi〈vkρ∗(g)ki, vlρ(g)lj〉xj

= yi(−1)|k|(|k|+|i|)ρ∗(g)ki〈vk, vl〉ρ(g)ljxj

= yi(−1)|k|(|k|+|i|)ρ∗(g)kiρ(g)kjxj

The relation in Equation 4.4 is fulfilled, if

(−1)|k|(|k|+|i|)ρ∗(g)kiρ(g)kj = δij(T ),

or equivalently (ρ∗(g))ST
3
ρ(g) = I, which gives the expression ρ∗(g) =

(ρ(g)−1)ST for the contragredient representation of G on V ∗.

4.4 Regular prehomogeneouses super vector spaces

Here, we answer the question when the dual vector space with the contra-
gredient action is a prehomogeneous super vector space. Let x ∈T Ov, we
define φf (x) ∈T V ∗

φf (x) = vi
1

f(x)

p+q∑
i=1

∂f

∂xi
(x). (4.5)

This defines a morphism φf : Ov → V ∗. This definition is independent of
the choice of a basis on V . Indeed, let v′1, . . . , v

′
p+q be another homogeneous

basis of V and v′1, . . . , v′p+q the dual basis. Then there exist unique matrices
A ∈ GL(V ) and B ∈ GL(V ∗) such that v′i = vkaik and v′j = vlb

l
j with

A = (aij) and B = (bij), so we have

δij =〈v′i, v′j〉 = 〈vkaik, vlb
j
l 〉

=(−1)|k|(|i|+|k|)aik〈vk, vl〉b
j
l

=(AST
3
B)ij

Let v = vixi = v′jx
′
j , then we have v′jx

′
j = vibijx

′
j = vixi and xi = bijx

′
j .

Moreover, let ∂
∂xi

= cik
∂
∂x′k

, then

δij =
∂

∂xi
(xj) = cik

∂

∂x′k
(bjtx′t) = cik

∂

∂x′k
(x′t)(−1)|t|(|j|+|t|)bjt = (CBST )ij .

Hence, one gets for v ∈T V :

f(v)φf (v) =vi
∂f

∂xi
(v)

=v′kBST
ki (BST )−1

il

∂f

∂x′l
(v)

=v′k
∂f

∂x′k
(v),
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which shows that φf is independent of the choice of basis.

Let x = IdOv ∈ Ov(Ov) and g ∈T G. Note, that x](xi) = xi and g · x =
a(g, x) ∈ Ov(T ×Ov). In order to express the next calculation in a stream-
lined fashion, we can identify ∂f

∂xi
(x) = x]

(
∂f
∂xi

)
= ∂f

∂xi
∈ Γ(OOv) and note

that
f(ρ(g)x) = (ρ(g)x)](f) ∈ C∗(T ×Ov) = Γ(OT×Ov)∗0̄.

Now we get the following proposition.

Proposition 4.12. Let g ∈T G and x = IdOv ∈ Ov(Ov), then

φf (ρ(g)x) = ρ∗(g)φf (x).

Proof. For simplicity we may assume G(T ) ⊆ GL(Op|q(T )), so by differen-
tiating f(gx) = χ(g)f(x) we obtain

χ(g)
∂f

∂xi
(x) =∂xif(gx) =

∂(gx)k
∂xi

∂f

∂xk
(gx)

=(∂xigkjxj)
∂f

∂xk
(gx)

=(−1)|i|(|k|+|j|)gkjδij
∂f

∂xk
(gx)

=(gST )ik
∂f

∂xk
(gx).

Here, we used the chain rule in the second step and expanded the linear
action in coordinates. With the previous calculation we obtain

1
f(x)

∂f

∂xi
(x) =

1
f(x)

χ(g)
χ(g)

∂f

∂xi
(x)

=
1

f(gx)
(gST )ik

∂f

∂xk
(gx)

=(gST )ik

(
1
f

∂f

∂xk

)
(gx).

It follows φf (ρ(g)x) = (g−1)STφf (x) = ρ∗(g)φf (x).

Now we define the matrix H = (Hij)i,j=1,...,p+q by

Hij(x) :=
∂

∂xi

(
1
f

∂f

∂xj

)
(x) for i, j = 1, . . . , p+ q

to state the following proposition.
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Proposition 4.13. H(gx) = (gST )−1H(x)(gST
2
)−1

Proof. Using the same ideas as the last proposition, we calculate

∂

∂xi

(
1
f

∂f

∂xj

)
(x) =

∂

∂xi
(gST )jk

(
1
f

∂f

∂xk

)
(gx)

=
∂

∂xi

(
1
f

∂f

∂xk

)
(gx)(−1)|k|(|j|+|k|)(gST )jk

=(gST )it
∂

∂xt

(
1
f

∂f

∂xk

)
(gx)(−1)(|j|+|k|)(gST

2
)kj

and it follows that H(gx) = (gST )−1H(x)(gST
2
)−1.

Now we see that the sheafification of the functors φf (Ov(T )), φf (ρ(G(T ))v),
and ρ∗(G(T ))φf (v) are equal and give an orbit of V ∗. If this orbit is dense,
we call the relative superinvariant f nondegenerate and (G, ρ, V ) a regular
prehomogeneous super vector space. Moreover, (G, ρ∗, V ∗) becomes a preho-
mogeneous super vector space.

Theorem 4.14. If (G, ρ, V ) is a regular prehomogeneous super vector
space, then the dual triplet (G, ρ∗, V ∗) is also a regular prehomogenous super
vector space. In this case, if X∗1 (G) denotes the group of supercharacters
corresponding to relative superinvariants of (G, ρ∗, V ∗), we have X1(G) =
X∗1 (G). Moreover, Ov ∼= O∗v∗.

Proof. We are going to show that for all A ∈ g and x ∈S V, y ∈S V ∗ the
following holds

〈dρ∗(A)y, x〉+ 〈y, dρ(A)x〉 = 0.

We define F ∈ Γ(OG×V ∗×V ) through F (g) := 〈ρ∗(g)y, ρ(g)x〉 = 〈y, x〉 with
g = idG ∈G G, y = idV ∗ ∈V ∗ V ∗, x = idV ∈V V .

Recall, that the tangent super vector space TpX at p ∈ X0 of X is defined
by TpX := Der(OX,p,C) and we can identify g ∼= T1G. Furthermore, one
can express

TpX(S) = {φ ∈S[t|τ ] X | φ|t=τ=0 = pS},

with S[t|τ ] = (S0,OS ⊗ C[t, τ ]/(t2, tτ)).

For all A ∈S T1G there exists a unique g ∈S[t|τ ] G, such that g|t=τ=0 = 1
and ∂

∂tg
](f)|t=τ=0 = A0̄(f) and ∂

∂τ g
](f)|t=τ=0 = A1̄(f) with f ∈ OG.
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We know F (g) = 〈y, x〉 is independent of g, so dF (A) = 0, such that we get

0 = A(F ) =(
∂

∂t
+

∂

∂τ
)〈ρ∗(g)y, ρ(g)x〉t=τ=0

=(
∂

∂t
+

∂

∂τ
)〈ρ∗(g)y, ρ(1)x〉t=τ=0 + (

∂

∂t
+

∂

∂τ
)〈ρ∗(1)y, ρ(g)x〉t=τ=0

=〈dρ∗(A)y, x〉+ 〈y, dρ(A)x〉,

where dρ(A)f := A(ρ](f)) for f ∈ OGL(V).

If (G, ρ, V ) is a prehomogeneous super vector space and f a relative super-
invariant with the supercharacter χ, then we have

〈φf (x), dρ(A)x〉 = dχ(A)

for x ∈T V .

We define H ∈ Γ(OG×V ) by H(g) = f(ρ(g)x) = χ(g)f(x) for x = idV ∈V V
and g = idG ∈G G and set dH(A) := A(H) and dχ(A)f(x) := A(H). Since

A(H) =( ∂∂t + ∂
∂τ )f(ρ(g)x)

=( ∂∂t + ∂
∂τ )(ρ(g)x)]f

=(( ∂∂t + ∂
∂τ )ρ(g)x)i · ∂f∂xi (x)

=〈dρ(A)x, gradf(x)〉,

with gradf(x) :=
(
∂f
∂x1

(x), . . . , ∂f
∂xp+q

(x)
)T

, it follows that

dχ(A) = A(χ) =( ∂∂t + ∂
∂τ )χ(g)f(x) 1

f(x)

=〈dρ(A)x, φf (x)〉
=〈φf (x), dρ(A)x〉.

Let f be a nondegenerate relative superinvariant. We now show that the
map (φf )0 : (Ov)0 → (V ∗)0̄ is injective. If x, x′ ∈ (Ov)0 and φf (x) = φf (x′),
then we have

0 = dχ(A)− dχ(A) = 〈φf (x), dρ(A)x〉 − 〈φf (x′), dρ(A)x′〉
= 〈φf (x), dρ(A)(x− x′)〉 = 〈dρ∗(A)φf (x), x− x′〉

Since f is nondegenerate, φf (x) is a generic point of (G, ρ∗, V ∗) and in the
proof of Theorem 3.21, we saw that for a generic point

{dρ∗(A)φf (x) | A ∈ Lie(G)} = V ∗,
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which implies x = x′ and (φf (x))0 is injective.

Since φf (ρ(g)v) = ρ∗(g)φf (v), it is clear that Gv(T ) ⊆ Gφf (v)(T ). On the
other hand, if g ∈T Gφf (v)(T ) then φf (ρ(g)v) = ρ∗(g)φf (v) = φf (v) and by
the injectivity of (φf )0 we get (Gφf (v))(T ) ⊆ (Gv)(T ). Hence Gv = Gφf (v)

and by Theorem 4.10, X1(G) = X∗1 (G). Let χ be the supercharacter cor-
responding to the relative superinvariant f , then χ−1 ∈ X1(G) = X∗1 (G).
Hence, there exists a relative superinvariant f∗ of (G, ρ∗, V ∗) correspond-
ing to the supercharacter χ−1. Let φ∗f∗ : O∗v∗(T ) → V (T ). We have
〈dρ∗(A)y, φ∗f∗(y)〉 = −dχ(A) for A ∈ Lie(G) and y = φf (x) ∈T O∗v∗(T ).
Using 〈−x, dρ∗(A)φf (x)〉 = dχ(A) we get

〈φ∗f∗(φf (x))− x, dρ∗(A)φf (x)〉 = 0,

and since {dρ∗(A)φf (x) | A ∈ Lie(G)} = V ∗(T ), we have φ∗f∗(φf (x)) = x ∈T
Ov(T ). In particular, (G, ρ∗, V ∗) is a regular prehomogeneous super vector
space.

Corollary 4.15. Let (G, ρ, V ) be a regular prehomogeneous super vec-
tor space. Then there exists a relative superinvariant corresponding to the
supercharacter Ber(ρ)2, such that Ber(ρ)2 ∈ X1(G).

Proof. Let f be a nondegenate relative superinvariant, then φf : Ov(T ) →
Ov∗(T ) is an isomorphism and (dφf ) is a bijective linear mapping given by
the matrix

H(x) =
(
∂

∂xi

(
1
f

∂f

∂xj

)
(x)
)
i,j=1...p+q.

Hence, Ber(H(x)) 6= 0 for x = IdOv ∈Ov Ov. By Proposition 4.13, Ber(H(x))
is not identically zero and a relative superinvariant corresponding to the
supercharacter Ber(ρ(x))−2.

Lemma 4.16. Let (G, ρ, V ) be a regular prehomogeneous super vector
space, f a relative superinvariant and χ the corresponding supercharacter.
Assume that any relative superinvariant is a constant multiple of fm, for
some m ∈ Z and that C∗ ⊆ ρ(G0). Let r|s = dimV and d := degf := degf0.
Then

Ber(ρ2) = χ2(r−s)/d

where 2(r − s)/d is an integer.

Proof. By Corollary 4.15, there is a relative superinvariant corresponding
to the supercharacter Ber(ρ)2, which is of the form c · fm. Hence, there
exists an integer m such that Ber(ρ)2 = χm. We may assume that there
exists an element g ∈ G0 such that ρ(g) = tIV with t ∈ C∗. Hence, we
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get Ber(ρ(g)) = tr−s. Further χ(g)f(x) = f(ρ(g)x) = f(tx) = tdf(x)
for any x, such that χ(g) = td. Hence t2(r−s) = tdm, and it follows that
m = 2(r − s)/d ∈ Z and Ber(ρ)2 = χ2(r−s)/d.

4.5 Examples of prehomogeneous super vector spaces

We present the construction of two examples of prehomogeneous super vec-
tor spaces. The first example is the super vector space of supersymmetric
matrices with an action of GL(p|q,C). We will use this example in order to
make some of our statements explicit. The second example is the super vec-
tor space M(p|2q×m|2n,C) with an action of OSp(p|2q,C)×GL(m|2n,C).

Example 4.17. Let V = Cp|q, with q an even number and S2(V ) be
the super vector space of supersymmetric matrices. We define an action of
G = GL(V) on S2(V ) by first defining one on

⊗2 V . The action on the latter
is simply the natural extension of the action on V . In terms of the canonical
basis (ei) of V , it is explicitly given, for g ∈T G and R = eiRij⊗ej ∈T

⊗2 V ,
by

gR = g(ei)Rij ⊗ g(ej)

= ekgkiRij ⊗ elglj = ek(gkiRij(−1)(|l|+|j|)|l|glj)⊗ el
= ek(gkiRij(g(ST )3

)jl)⊗ el.

The super symmetric matrices S2(V ) are given as the fixed point set on
T -valued points of the right linear map ϑ, defined by

ϑ : V ⊗ V → V ⊗ V
ϑ(eiRij ⊗ ej) :=(−1)|i||j|+(|R|+1)(|i|+|j|)ejRji ⊗ ei.

So the coefficents Rij have to fulfill the relation

Rij = Rji(−1)|i||j|+(|R|+1)(|i|+|j|).

Written as a block matrix R =
(
S B
C A

)
this means that

(
S B
C A

)
=
(

ST −CT
−BT −AT

)
,

i.e. S = ST ; CT = −B; A = −AT .

For g ∈T G, we compute

ϑ(g(ei)⊗ g(ej)) = ϑ(ekgki ⊗ elglj) = ϑ(ek ⊗ el)(−1)|gki||l|gkiglj

= (el ⊗ ek)(−1)|k||l|+|gki||l|gkiglj

= (el ⊗ ek)gljgki(−1)|glj ||gki|+|k||l|+|gki||l|

= (elglj ⊗ ekgki)(−1)|k||glj |+|glj ||gki|+|k||l|+|gki||l|

= g(ej)⊗ g(ei)(−1)|i||j| = gϑ(ei ⊗ ej).
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Hence, G leaves S2(V ) invariant. This action is compatible with matrix
multiplication. For an even super matrix R =

(
S B
C A

)
∈T S2(V ) the action

g.R = gRgST
3

can be calculated for concrete matrices g ∈T G as

g.R =
(
G0 G1

G3 G4

)(
S B
−BT A

)(
GT0 −GT3
GT1 GT4

)
.

The isotropy supergroup of J =
(
Ip 0
0 Jq

)
under this action, where Ip is

the p × p identity matrix and Jq =
(

0 Iq/2
−Iq/2 0

)
is the standard symplectic

matrix, is isomorphic to OSp(V ). Its T -valued points are given by(
Ip 0
0 Jq

)
=
(
G0G

T
0 +G1JG

T
1 −G0G

T
3 +G1JG

T
4

G3G
T
0 +G4JG

T
1 G4JG

T
4 −G3G

T
3

)
.

The Lie superalgebra is defined by the relation XJ + JX(ST )3
= 0, which

is isomorphic to osp(V ) via the Chevalley automorphism

τ : X 7→ τ(X) := −XST .

A dimension calculation gives

dimG− dim OSp(V )

= (p2 + q2 | 2pq)−
(
p(p+ 1)

2
+
q(q − 1)

2

∣∣∣∣ pq)
=
p(p− 1)

2
+
q(q + 1)

2

∣∣∣∣ pq
= dimS2(V ).

By this calculation and Theorem 3.21, the next proposition follows directly.

Proposition 4.18. The action of GL(V ) on S2(V ) admits an open orbit,
whose T -valued points are given by the invertible elements R ∈ S2(V )(T ).

The irreducible relative superinvariants for the space of supersymmetric ma-
trices is given by the Berezinian and all integer powers of it give a relative
superinvariant. One calculates

Ber(G.R) = Ber(G) · Ber(R) · Ber(GST
3

)

= Ber(G)2 · Ber(R).

to confirm this statement.

Now we consider the second example of a prehomogeneous super vector
space.
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Example 4.19. Let p ≥ m ≥ 2 and q ≥ n ≥ 2. We define an ac-
tion of OSp(p|2q,C)×GL(m|2n,C) on M(p|2q×m|2n,C) by ρ(A,B)(X) =
AXBST 3

, where A ∈ OSp(p|2q,C) and B ∈ GL(m|2n,C) and X ∈ M(p|2q×
m|2n,C). The infinitesimal representation dρ is given by dρ(Y, Z)X =
Y X + XZST

3
with (Y,Z) ∈ osp(p|2q,C) ⊕ gl(m|2n,C). Now, we calculate

the isotropy algebra at

I =

 Im 0 0
0 0 0
0 In 0
0 0 0
0 0 In
0 0 0

 .

The isotropy superalgebra is given by the elements for which the equation
dρ(Y, Z)I = 0 holds. An element Y ∈ osp(p|2q,C) is given by the equation
Y J + J Y ST 3

= 0, compare with Example 4.17, and has the general form

Y =


A1 A2 CT1 CT3 −BT1 −BT3
A3 A4 CT2 CT4 −BT2 −BT4
B1 B2 −FT1 −FT3 D1 D2

B3 B4 −FT2 −FT4 D3 D4

C1 C2 E1 E2 F1 F2
C3 C4 E3 E4 F3 F4

 ,

where the square submatrix, denoted by A =
(
A1 A2
A3 A4

)
is skew-symmetric

and the submatrices
(
D1 D2
D3 D4

)
,
(
E1 E2
E3 E4

)
are symmetric. We write a general

element Z ∈ gl(m|2n,C) in the form

Z =
(
G1 H1 K1
G2 H2 K2
G3 H3 K3

)
.

Now we get that the elements of the isotropy superalgebra satisfy:

Y I + IZST
3

= 0

or equivalently
A1 CT1 −BT1
A3 CT2 −BT2
B1 −FT1 D1

B3 −FT2 D3

C1 E1 F1
C3 E3 F3

+


GT1 GT2 GT3
0 0 0

−HT
1 HT

2 HT
3

0 0 0

−KT
1 KT

2 KT
3

0 0 0

 =


0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

 ,

so that the general form of an element from gI is


A1 0 CT1 0 −BT1 0

0 A4 0 CT4 0 −BT4
B1 0 −FT1 0 D1 0

0 B4 0 −FT4 0 D4

C1 0 E1 0 F1 0
0 C4 0 E4 0 F4

 ,

(
A1 BT1 CT1
−C1 F1 −ET1
B1 −DT1 −FT1

)
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and we see that gI ∼= osp(p −m|2q − 2n,C) ⊕ osp(m|2n,C). A dimension
calculation shows that

dim(OSp(p|2q,C)×GL(m|2n,C))− dim(M(p|2q ×m|2n,C))− dim(gI)

= p(p+ 1)/2 + q(2q − 1) + 2pq + (m+ 2n)2 − (p+ 2q)(m+ 2n)
− ((p−m)(p−m+ 1)/2 + (q − n)(2(q − n)− 1)
+ (p−m)2(q − n) +m(m+ 1)/2 + n(2n− 1) + 2mn)

= 0,

and this defines a prehomogeneous super vector space.

In order to construct a relative superinvariant, we define a super bilinear
form by b(X,Y ) := XST 3J −1Y. Then b(ρ(A,B)X, ρ(A,B)Y ) is

(AXBST 3
)ST

3J −1(AXBST 3
) = BST 2

XST 3
(AST

3J −1A)XBST 3

= BST 2
XST 3

(AST
3J −1A)XBST 3

= BST 2
(XST 3

(A−1J (A−1)ST
3
)−1XBST 3

= BST 2
(XST 3J −1X)BST 3

,

where we used the relation

AJAST 3
= J ⇔ (A−1)ST

3J −1(A−1) = J −1,

since A ∈ OSp(p|2q,C). Hence, we get by

f(X) := Ber(XST 3J −1X)

a relative superinvariant with f(ρ(A,B)(X)) = Ber(B)2f(X).

Now we go back to the first example and calculate the contragredient action
of GL(p|q,C) on S2(V )∗ from Example 4.17.

Let e1, . . . , ep+q be a homogeneous basis of Cp|q and e1, . . . , ep+q be the dual
homogeneous basis.

X =v ⊗ ṽ = eivi ⊗ ṽjej
Y =w ⊗ w̃ = eiwi ⊗ w̃jej .

Let us define

〈X,Y 〉 = 〈v ⊗ ṽ, w ⊗ w̃〉 = 〈v, w〉 · 〈ṽ, w̃〉
= (eiviekwk)(ṽjejw̃kek)

= (−1)|i|+|j|viwiṽjw̃j = (−1)|i|+|j+|i||j|viṽjwiw̃j

= (−1)|j|(−1)(|i|+|j|)|i|viṽjw
iw̃j = str(XST 3

Y ),

where XST 3

ji = (−1)(|i|+|j|)|i|Xij .
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Proposition 4.20. The contragredient action for the pairing

〈X,Y 〉 = str(XST 3
Y )

on S2(Cp|q)∗ ⊗ S2(Cp|q)→ C has the form

ρ∗(g).Y = (g−1)ST
3
Y (g−1)ST

2
.

Proof. The action of GL(p|q;O(T )) on S2(Op|q(T ))∗, which fulfills the rela-
tion

〈ρ(g).X, ρ∗(g).Y 〉 = 〈X,Y 〉

is given by
ρ∗(g).Y = (g−1)ST

3
Y (g−1)ST

2
.

We also like to calculate the transformation of the flat Berezinian measure
on S2(V ) under GL(p|q,C).

Let us define the flat Berezinian measure on S2(C). A globally defined
super coordinate system is given by (sij , akl, bil), where the indices are i, j ∈
{1, ..., p} and k, l ∈ {1, ..., q} with i ≤ j and k < l. The flat Berezinian
measure on S2(C) is defined by

dµ(X) = D(s, a, b) =
∏
i≤j
dsij

∏
k<l

dakl
∏
i,l

∂

∂bil
,

where we took the wedge product for the even coordinate differentials.

The following definition is needed.

Definition 4.21. Let (si,j), (ai,j) and (xi,j) the standard coordinate sys-
tems of the vector spaces of symmetric matrices, skew-symmetric and ar-
bitrary n × n-matrices. We define the Lebesgue measures on these vector
spaces Sym(n,C), Skew(n,C) and Mat(n,C) by

dµ(S) :=
∏
i≤j
dsij , dµ(A) :=

∏
k<l

dakl and dµ(B) :=
∏
k,l

dbkl,

with i, j, k, l ∈ {1, ..., n}, where the wedge product is used as necessary.

The next proposition follows directly by Lemma 4.16.
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Proposition 4.22. Let X ∈T S2(Cp|q) and g ∈T GL(p|q,C), then the flat
Berezinian measure transforms under the action given by ρ(g).X = gXgST

3

as
dµ(ρ(g).X) = Ber(ρ(g))dµ(X) = Ber(g)p−q+1dµ(X).

Proof. In order to apply Lemma 4.16, we have to calculate two numbers,
r − s where dimS2(Cp|q) = r|s and d = deg Ber. For the first number we
get

r − s =
p2 + p

2
+
q2 − q

2
− pq

and d = p− q, so that

Ber(ρ(g)) = χ(g)(p2−2pq+q2+p−q)/2(p−q)

= χ(g)(p−q+1)/2 = Ber(g)(p−q+1).

We also give a more elementary proof for Proposition 4.22, which shows how
powerful Lemma 4.16 is and which gives some insight to Proposition 4.22
from another point of view.

Now we give the proof.

Proof. First, we have to calculate the Jacobian of the coordinate transfor-
mation. Second, we have to take the Berezinian from this Jacobian and
express it as the Berezinian of g ∈S GL(p|q,C) to some power. Let T be
the transformation map X ′ = T (X) = gXgST

3
. With g =

(
α β
γ δ

)
we get

X ′ = T (X) =(
αSαT − βBTαT + αBβT + βAβT −αSγT + βBTγT + αBδT + βAδT

γSαT − δBTαT + γBβT + δAβT −γSγT + δBTγT + γBδT + δAδT

)
.

Now, we introduce the following notation cx,y(z) := xzyT , where x, y, z are
matrices. Because we are interested in the coordinate transformation we
write it as cα,α cβ,β cα,β − cβ,α ◦ (.)T

cγ,γ cδ,δ cγ,δ + cδ,γ ◦ (.)T

cα,γ cβ,δ cα,δ + cβ,γ ◦ (.)T

 ·
SA
B

 ,

which also gives us the Jacobian by linearity in X. Notice that one has a
decomposition for an invertible super matrix g ∈T GL(p|q,C). Such a matrix
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can be written as a product of an upper triangular matrix, a diagonal matrix
and a lower triangular matrix

g =
(
α β
γ δ

)
=
(

1 βδ−1

0 1

)(
α− βδ−1γ 0

0 δ

)(
1 0

δ−1γ 1

)
, (4.6)

with α ∈ GL(p,OT,0̄), δ ∈ GL(q,OT,0̄), β ∈ Op×q
T,1̄

and γ ∈ Oq×p
T,1̄

. We have
to check the statement for each matrix in the decomposition case by case.

But first we need the following classical lemma.

Lemma 4.23. Let the invertible n × n-matrices GL(n,C) act on these
vector spaces Sym(n,C), Skew(n,C) and Mat(n,C) by g.X := gXgT for
g ∈ GL(n,C). The corresponding Lebesgue measures transform as follows:
In the symmetric and the skew-symmetric case, we have

dµ(gSgT ) = det(g)n+1dµ(S) and dµ(gAgT ) = det(g)n−1dµ(A)

and in the case of arbitrary n× n-matrices by

dµ(gBgT ) = det(g)2ndµ(B)

for S ∈ Sym(n), A ∈ Skew(n) and B ∈ Mat(n,C).

Proof. Every invertible matrix is the product of finitely many elementary
matrices. In order to prove the lemma, it is enough to show it for elementry
matrices of type Sii(λ) =

(
1 0 0
0 λ 0
0 0 1

)
and Rij(λ) =

(
1 0 λ
0 1 0
0 0 1

)
, where λ ∈ C∗ is

positioned in the row of the first index and in the column of the second.
Acting by g gives a linear coordinate transformation for all of these three
vector spaces.

We have to calculate the Jacobian of these transformations. We give the
proof for symmetric matrices, the other cases are similiar. First let g =
Sii(λ). Multiplying an arbitrary matrix B from the right-hand side with
Sii(λ) multiplies the ith column of B by λ and multiplying B from the
left-hand side with Sii(λ) multiplies the ith row of B by λ, so that

gBgT =


b1,1 . . . λb1,i . . . b1,n

...
...

...
λbi,1 . . . λ2bi,i . . . λbi,n

...
...

...
bn,1 . . . λbn,i . . . bn,n

 .

Hence, the coordinate transformation is a diagonal matrix in this case. Here,
a λ appears when the entry comes from a coordinate from the ith column or
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the ith row of the matrix gBgT . The entry associated with the coordinate
function with the indices ii gives a λ2 and all the other diagonal entries are
one.

Now we regard B as a symmetric matrix S. Hence, we get

dµ(gSgT ) = λ(n+1)dµ(S),

where λ is the determinant of the elementary matrix Sii(λ).

We also have to prove the statement for g = Rij(λ). Again let B ∈
Mat(n,C). Multiplying B from the left-hand side with Rij(λ) adds λ times
the jth row of B to the ith row of B. Multiplying B from the right-hand
side with Rij(λ)T adds λ times the ith column of B to the jth column of
B. The Lebesgue density of Sym(n,C) is an alternating form in the co-
ordinate functions, so it vanishes if a coordinate appears twice and we get
dµ(gSgT ) = dµ(S), which proves the lemma.

Now, we can proceed to prove the proposition. Consider the case where(
α′ 0
0 δ′

)
:=
(
α− βδ−1γ 0

0 δ

)
The transformation is given by

T =

cα′,α′ 0 0
0 cδ′,δ′ 0
0 0 cα′,δ′

 ,

which gives

Ber(T ) = (detα′)p+1 · (det δ′)q−1 ·
(
(detα′)q · (det δ′)p

)−1

= (detα′)p+1−q · (det δ′)−(p−q+1)

and proves the first case. In the second case we have(
1 β′

0 1

)
:=
(

1 βδ−1

0 1

)
and we get

T =

1 cβ′,β′ c1,β′ − cβ′,1(.)T

0 1 0
0 cβ′,1 1


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so that

Ber(T ) = det
((

1 cβ′,β′

0 1

)
−
(
c1,β′ − cβ′,1(.)T

0

)
·
(
0 cβ′,1

))
· det(1)−1

= det
((

1 cβ′,β′

0 1

)
−
(

0 ∗
0 0

))
= 1 = Ber

(
1 β′

0 1

)p−q+1

for the second case. The proof for the third case is the same.

Now, we consider the relative superinvariant under such a supermatrix de-
composition. An invertible supersymmetric matrix X ∈T Ov can be decom-
posed by Corrollary 4.18 as X = gJ gST 3

with g ∈T GLp|q and such a g

can also be decomposed as in Equation 4.6. Let g =
(

1 BA−1

0 1

)
, then we can

express X as

X =
(

S B
−BT A

)
= g

(
S+BA−1BT 0

0 A

)
gST

3
= ρ(g)

(
S+BA−1BT 0

0 A

)
.

For a supercharacter χ in general, we obtain:

Lemma 4.24. For y ∈T g1̄, it holds that χ(exp(Y )) = 1.

Proof. We know χ is an even morphism of Lie supergroups, and that the
differential dχ : g→ C satisfies

dχ|g1̄
= 0

and hence dχ(Y ) = 0 for all Y ∈T g1̄. Furthermore, one has for Lie super-
groups the commutative diagram

g C

G C∗,

dχ

expG

χ

expC

so that χ(expG(Y )) = expC(dχ(Y )) = 1 for Y ∈T g1̄.

We know that the Berezinian to any integer power is an relative superinvari-
ant of the prehomogeneous super vector space of supersymmetric matrices.
On the underlying even space, we have a product of two prehomogeneous
vector spaces of symmetric matrices Sym(p) and skew-symmetric matrices
Skew(q). Their irreducible relative invariants are the determinant (det) and
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the pfaffian (pf) respectively, (of course pf2 = det is also a relative invariant
of Skew(q,C)). By Lemma 4.24, we have χ(g) = 1 for g = exp(x) with
x ∈T g1̄, and from Equation 4.6 we see that

Ber
(

S B
−BT A

)
= det(S +BA−1BT ) · det(A)−1.

Note, that we express the relative superinvariant Ber as a nilpotent (in the
boson–boson sector) of the relative invariants of the underlying prehomoge-
neous vector spaces. Of course, we also have

Ber
(

S B
−BT A

)
= det(S) · det(A+BTS−1B)−1

with a shift in the fermion–fermion sector. In order to extend the local zeta
function to an entire function, one needs to consider the Bernstein–Sato
polynomial of a relative invariant. The notion of the local zeta function of
a prehomogeneous vector spaces is explained in the next section.

The function b(s) is called the Bernstein–Sato polynomial. It is attributed to
Bernstein [5] and Sato and Shintani [32], who introduced it independently.
It is a polynomial related to a differential operator. Here for reductive
prehomogeneous vector spaces, the differential operator f∗(∂x) is given by
the dual relative invariant f∗ corresponding to the character χ−1 and ∂x =
(∂x1 , . . . , ∂xn). The Bernstein–Sato polynomial is of the form

b(s) = b0

d∏
i=1

(s+ αi).

By [21] it is known that αi > 0 and αi ∈ Q.

For regular prehomogeneous vector spaces we have the following proposition.

Proposition 4.25 ([23], Proposition 2.22). Let f be the relative invari-
ant of a regular prehomogeneous vector space, which we denote by fb for
Sym(p,C) or by ff for Skew(q,C), corresponding to the character χ and f∗

the dual relative invariant corresponding to χ−1, then

f∗(∂x)f(x)s+1 = b(s)f(x)s,

where x = (xij) is a vector of the coordinate functions and ∂x = ( ∂
∂xij

) is
the corresponding vector of partial derivatives.

In order to derive a similar relation for the relative superinvariant f(X) =
Ber(X), we introduce suitable coordinates. Let X =

(
S B
−BT A

)
be the stan-

dard coordinates on S2(Cp|q). Let x = S + BA−1BT , y = A, z = B.
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In these coordinates we have f(X) = det(x) det(y)−1. The correspond-
ing coordinate derivatives are ∂x = ( ∂

∂xij
)1≤i≤j≤p, ∂y = ( ∂

∂yij
)1≤i≤j≤q and

∂z = ( ∂
∂zij

)1≤j≤q
1≤i≤p

, which are uniquely determined by ∂
∂xij

(xkl) = δikδjl and

∂
∂xij

(ykl) = ∂
∂xij

(zkl) = 0 and similarly for y and z, see [27, 3.3.13]

We have by Ref. [23, p. 261]

det(∂y) (det(y))−s = (−s) · · · (−s− 1 + q) (det(y))−(s+1) ,

so that we get the relation

det(∂x)
(

det(x)
det(y)

)s+1

=
(s+ 1) · · · (s+ p)

(−s) · · · (−s− 1 + q)
det(∂y)

(
det(x)
det(y)

)s
.

The Bernstein–Sato relation for Sym(p) is given by

det(∂x) (det(x))s+1 = (s+ 1)
(
s+

3
2

)
· · ·
(
s+

p+ 1
2

)
(det(x))s

=
p∏

k=1

(
s+

k + 1
2

)
(det(x))s

and for Skew(q), it is given by

pf(∂y) (pf(y))s+1 = (s+ 1)(s+ 3) · · · (s+ q − 1) (pf(y))s

=
q∏

k=1

(s+ 2k − 1) (pf(y))s .

The reader may, for instance, consult Ref. [23, p.262]. It follows that

det(∂y) (det(y))s = pf(∂y)pf(∂y)pf(y)2s

=
q∏
j=1

(2s+ 2j − 2)pf(∂y)pf(y)2s−1

=
q∏
j=1

(2s+ 2j − 2)
q∏

k=1

(2s+ 2k − 3)pf(y)2s−2

=
q∏
j=1

(2s+ 2j − 2)
q∏

k=1

(2s+ 2k − 3) det(y)s−1,

and thus

det(∂x)
(

det(x)
det(y)

)s+1

=
bb(s)

bf (−2s− 1)bf (−2s− 2)
det(∂y)

(
det(x)
det(y)

)s

=
∏p
k=1(s+ k+1

2 )∏q
j=1(2j − 2s− 2) ·

∏q
k=1(2k − 2s− 3)

det(∂y)
(

det(x)
det(y)

)s
,
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where bb(s) =
∏p
k=1(s+ k+1

2 ) and bf (s) =
∏q
k=1(s+2k−1). One can rewrite

this relation using the gamma function. Let us define the bosonic gamma
function by

γb(s) :=
p∏

k=1

Γ(s+ k+1
2 ) (4.7)

and the fermionic gamma function by

γf (s) :=
q∏

k=1

Γ(s+ 2k − 1), (4.8)

then we can rewrite the relation to get the following theorem.

Theorem 4.26. For the prehomogeneous super vector space of supersym-
metric matrices we have in the super coordinate system (x, y, z) the relation

det(∂x)
γb(s+ 1)γf (−2(s+ 1))

(
det(x)
det(y)

)s+1

=
det(∂y)

γb(s)γf (−2s)

(
det(x)
det(y)

)s
.
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5 Local zeta superfunctions and Fourier supertrans-
form

In this section, we consider the prehomogeneous super vector spaces of su-
persymmetric matrices, although our methods are in principle not restricted
to this example. We introduce the local zeta superfunctions as regulariza-
tions of the integral

Fi,j(s,Φc) =
1

γ(s)

∫
Vij

|D(X)| |Ber(X)|s Φc(X),

which is a priori defined only for superfunctions with compact support con-
tained in a connected component Vij of the intersection of Ov with a cs-
form Vcs of V . As we show, the regularizations form families of tempered
superdistributions, analytic on the whole complex plane. Moreover, the
regularizations preserve the relative superinvariance of the Berezinian.

Furthermore, we show in Proposition 5.23 for an abitrary regular preho-
mogeneous super vector space that the Fourier supertransform is, up to a
supercharacter, an equivariant map:

ĝ.Φ(w) = |χ(g)|
− m−n
db−df · g.Φ̂(w).

We are able to show that the Fourier supertransform of the dual local
zeta superfunctions F̂ ∗k,l(s−

m−n
db−df , .), considered as tempered superdistribu-

tions, transform by the same supercharacter as the local zeta superfunction
Fi,j(−s, .) and that

g.F ∗k,l(s− m−n
db−df , Φ̂) = |χ(g)|−s · F ∗k,l(s− m−n

db−df , Φ̂),

g.Fi,j(−s,Φ) = |χ(g)|−s · Fi,j(−s,Φ).

Classically, this property is sufficient to show that the Fourier transform of
the dual local zeta function and the local zeta function are equal, up to a
constant depending only on the complex parameter. Besides the fact that
the local zeta functions are entire functions, this is the main content of the
Fundamental Theorem of Prehomogeneous Vector Spaces proved 1961 by
Sato [23, Theorem 4.17].

5.1 Preliminaries

We recall the definition of a cs-form and a cs-affine superspace of V . Given
a complex super vector space V = V0̄ ⊕ V1̄, where V0̄ has a real form,
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V0̄ = V0̄,R ⊕ iV0̄,R, then the cs-vector space Vcs := V0̄,R ⊕ V1̄ is called a cs-
form of V . The cs-affine superspace, associated to a cs-vector space and also
denoted by Vcs, is given by Vcs = (V0̄,R,OVcs), where OVcs := C∞V0̄,R

⊗
∧
V ∗1

and C∞ denotes the sheaf of complex-valued smooth functions.

From now on, we assume that (G, ρ, V ) is a regular prehomogeneous super
vector space (recall that (G0, ρ0, V0̄) is a regular prehomogeneous vector
space) and analogous to the classical case

• a real form V0̄,R of V0̄,

• a real form G0,R := G0 ∩ (GL(m,R)×GL(n,R)) of G0, and

• a linear action a0 : G0,R × V0̄,R → V0̄,R

such that the following diagram commutes

G0 × V0̄ V0̄

G0,R × V0̄,R V0̄,R.

a0

a0

By definition, the cs-supergroup Gcs = (G0,R,OGcs) with OGcs := OG|G0,R

associated to G (where G ⊆ GL(m|n,C)) leaves Vcs := V0̄,R ⊕ V1̄ invariant.
Let G+

cs be the open subsupergroup whose underlying group is the connected
component of the identity in G0,R. The underlying vector space V0̄ is then
a classical regular prehomogeneous vector space with R-structure V0̄,R. The
R-structure of the open orbit (Ov)0 in V0̄ is Ov,R and can be decomposed into
Ov,R =

⋃l
i=1 V0̄,i (compare with [23, Proposition 4.5]). This decomposition

induces a decomposition of the cs-orbit

(Ov)cs =
l⋃

i=1

Vi

with Vi = (V0̄,i,OVi) and OVi := OVcs |V0̄,i
. Moreover,

a0(G+
0,R, vi) = ρ0(G+

0,R)vi = V0̄,i

with vi ∈ V0̄,i, which induces for the corresponding cs-supergroup G+
cs that

ρ(G+
cs(T ))vi = Vi(T )

for vi ∈T Vi.
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Let Vcs be a cs-form of V , considered as a cs-affine superspace. Furthermore,
let x = (u, ξ) and y = (v, η) with xi, yj ∈ Γ(OVcs) be a global supercoordi-
nate system of Vcs, where the underlying coordinates are equally oriented.

Now, we need the notion of a retraction.

Definition 5.1. A morphism γ : X → X0 is called a retraction if it is a
right inverse of the canonical embedding jX , i.e.

γ ◦ jX = idX .

Let u1, . . . , up be a coordinate system of X0 and u1, . . . , up, ξ1, . . . , ξq a co-
ordinate system of X, the associated retraction γ is called the standard
retraction.

A compactly supported superfunction f can be written as f =
∑

I∈Zn2
γ∗(fI)ηI

with fI ∈ Γc(C∞V0̄,R
) and γ the standard retraction. Here, the letter c stands

for compactly supported. The flat Berezinian measure is given by

D(v, η) = dv1 ∧ · · · ∧ dvm ⊗
∂

∂ηn
· · · ∂

∂η1

and the Berezinian integral is defined by∫
Vcs

D(v, η) f(v, η) :=
∫
Vcs

dv1 · · · dvm
∂

∂ηn
· · · ∂

∂η1
f(v1, . . . , vm, η1, . . . , ηn)

=
∫
V0,R

dv1 · · · dvm f1,...,1(v1, . . . , vm).

The Berezinian of a coordinate transformation, which is a map α : Vcs → Vcs
with α∗(yi) a superfunction in the coordinates xi, is defined by

D(v, η)
D(u, ξ)

:= Ber(Jαx,y) = Ber

(
∂α∗(v)
∂u −∂α∗(v)

∂ξ
∂α∗(η)
∂u

∂α∗(η)
∂ξ

)
.

The following proposition tells us how the Berezinian integral for compactly
supported superfunctions transforms under such a coordinate transforma-
tion.

Proposition 5.2 ([27], Theorem 2.4.5). Let x = (u, ξ) and y = (v, η) be
two coordinate systems on Vcs, with the same orientation, and f compactly
supported, then ∫

Vcs

D(v, η) f =
∫
Vcs

D(u, ξ)
D(v, η)
D(u, ξ)

α∗(f).
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Remark 5.3. Without the assumption that f is compactly supported,
one has to regard a boundary term, which would appear by transforming
the measure. Applied to the superfunction f this boundary term gives after
integrating out the odd variables an exact m-form.

Now we introduce the space of Schwartz superfunctions and the space of
tempered superdistributions for a cs-vector space Vcs. We are following
Appendix C in [3]. Let S(V ) be the symmetric superalgebra and jV0̄

the
embedding of V0̄,R in the cs-affine superspace Vcs.

Definition 5.4. A superfunction Φ ∈ Γ(OVcs) will be called tempered if
for every u ∈ S(Vcs), there exist N > 0 such that

supx∈V0̄
||x||N |j∗V0̄

(∂uΦ)(x)| <∞. (5.1)

Definition 5.5. Similarly, a superfunction Φ ∈ Γ(OVcs) is a Schwartz
superfunction if for any u ∈ S(Vcs) and any N > 0

pN,u(Φ) := supx∈V0̄
||x||N |j∗V0̄

(∂uΦ)(x)| <∞. (5.2)

The totality of all tempered superfunctions is denoted by Γtemp(OVcs) and
the space of Schwartz superfunctions are denoted by S (Vcs). The space
S (Vcs) is endowed with the locally convex topology defined by the semi-
norms pN,u. By S ′(Vcs) we denote the topological dual space of S (Vcs),
with the strong topology. The elements of S ′(Vcs) are called tempered
superdistributions.

The space of Schwartz superfunctions on Vcs is also given by

S (Vcs) := S (V0̄,R)⊗
∧
V ∗1̄ ,

where S (V0̄,R) is the classical space of Schwartz function on the vector space
V0̄,R.

Let V0̄,R = U0̄,R ⊕W0̄,R be the even part of the cs-vector space, then by [3,
Corollary C.10], there is an isomorphism between the locally convex super
vector spaces

S (Vcs) ∼=
(
S (U0̄,R)⊗̂S (W0̄,R)

)
⊗
∧
V ∗1̄ , (5.3)

where ⊗̂ denotes the completed projective tensor product topology, for in-
stance the reader may consult [37, Theorem 51.6].

Let us define an action of G+
cs on the space of superfunctions Γ(OVcs).
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Definition 5.6. For g ∈T G+
cs, Φ ∈ Γ(OVcs) and Φ∗ ∈ Γ(OV ∗cs), we define

ρ(g).Φ ∈ Γ(OT×Vcs) by

(ρ(g).Φ)(p, v) := Φ(ρ(gT ′)v),

and ρ∗(g).Φ∗ ∈ Γ(OT×V ∗cs) by

(ρ∗(g).Φ∗)(p, v) := Φ(ρ∗(gT ′)v),

p : T ′ → T , v ∈T ′ Vcs. Here, gT ′ := g ◦ p.

This definition automatically give actions of Gcs on the spaces of Schwartz
superfunctions S (Vcs) and S (V ∗cs) respectivley. If Φ ∈ S (Vcs), then ρ(g).Φ ∈
Γ(OT )⊗̂S (Vcs) and if Φ∗ ∈ S (V ∗cs), then ρ∗(g).Φ∗ ∈ Γ(OT )⊗̂S (V ∗cs) respec-
tively by [3, Appendix C.2].

Induced by the standard pairing we also get actions of Gcs on the spaces of
tempered superdistributions S ′(Vcs) and S ′(V ∗cs) respectivley.

Definition 5.7. For F ∈ S ′(Vcs) we define for all Φ ∈ S (Vcs) the action
on the tempered superdistributions ρ(g).F ∈ Γ(OT )⊗̂S ′(Vcs) with g ∈T G+

cs

by
〈ρ(g).F,Φ〉 := 〈F, ρ(g).Φ〉 ∈ Γ(OT ),

where 〈·, ·〉 is the standard pairing S ′(Vcs)⊗S (Vcs)→ C.

Analogously for F ∗ ∈ S ′(V ∗cs) and g ∈T G+
cs, we define for all Φ∗ ∈ S (V ∗cs)

the action on the tempered superdistributions ρ∗(g).F ∗ ∈ Γ(OT )⊗̂S ′(V ∗cs)
by

〈ρ∗(g).F ∗,Φ∗〉 := 〈F ∗, ρ∗(g).Φ∗〉 ∈ Γ(OT ),

where 〈·, ·〉 is the standard pairing S ′(V ∗cs)⊗S (V ∗cs)→ C.

Now we extend Proposition 5.2 to Schwartz superfunctions. By [3, Appendix
C.9] is the space of compactly supported superfunctions dense in the space of
Schwartz superfunctions. We assume that the transformation α : Vcs → Vcs
is polynomial. Hence, α∗(Φ) is obviously a Schwartz superfunction. Under
this assumption and the fact that the Berezinian integral is a continuous
map between the space of Schwartz superfunctions to C, we can extend
Proposition 5.2 to Schwartz superfunctions.

Definition 5.8. The morphism α : Vcs → Vcs is called a polynomial
transformation, if α is an isomorphism and α](xi) ∈ C[x1, . . . , xp+q] for all
i ∈ {1, . . . , p+ q} with x a supercoordinate system of Vcs.
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Corollary 5.9. For all Φ ∈ S (Vcs) and a polynomial transformation
α : Vcs → Vcs we have∫

Vcs

D(v, η) Φ =
∫
Vcs

D(u, ξ)
D(v, η)
D(u, ξ)

α](Φ).

Before we define the local zeta superfunctions, let us define |f |. Note, that
one has Γ(OVcs) ∼= Mor(Vcs,C1|1) and even superfunctions can be regarded
as Mor(Vcs,C).

Definition 5.10. Let f ∈ Γ(O0̄,Vcs)
∗ an invertible superfunction on Vcs

and |.| : C→ R≥0 the usual norm of the complex numbers, then we define

|f | := f ](|.|) ∈ Mor(Vcs,R+).

5.2 The local zeta superfunctions

In this section, we define the local zeta superfunctions for the prehomo-
geneous super vector space S2(Cp|q) of supersymmetric matrices, where
q is even. Let (S,A, ξ) be a global supercoordinate system, where S =
(s1,1, . . . , si,j , . . . , sp,p), A = (a1,2, . . . , ak,l, . . . , aq−1,q) and ξ = (ξ1,1, . . . , ξp,q)
with i ≤ j and k < l. We denote by Sym(p) the complex vector space of
p × p symmetric matrices, which we also call the boson–boson sector; and
we denote by Skew(q) the complex vector space of skew-symmetric matrices,
also called the fermion–fermion sector. Together Sym(p)×Skew(q) form the
even part of S2(Cp|q). A supermatrix X ∈T S2(Cp|q) can be represented by
a p × p symmetric matrix S, a q × q skew-symmetric matrix A, both with
entries in OT (T )0̄, and a p× q matrix ξ with entries in OT (T )1̄. It is of the
form

X =
(

S ξ
−ξT A

)
.

(The subscript b is related to the boson–boson sector and the subscript f to
the fermion–fermion sector of the supermatrix X.) The aim of this section
is to find a superdistribution, that regularizes the expression∫

Vij

|D(X)| |Ber(X)|s Φc(X), (5.4)

where |D(X)| is the flat Berezinian measure, Ber(X) a relative superin-
variant and Φc(X) a compactly supported superfunction on the connected
component Vij of the cs-orbit.

The vector spaces of Sym(p) and Skew(q) are prehomogeneous vector spaces
and we recall some facts about them.
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The local zeta functions for Sym(p) are

Fi,b(s,Φ) :=
1

γb(s)

∫
Vi,b

|dS| | det(S)|s Φ(S)

F ∗i,b(s,Φ
∗) :=

1
γb(s)

∫
V ∗i,b

|dS′| | det(S′)|s Φ∗(S′),

where γb(s) :=
∏p
k=1 Γ(s + k+1

2 ), as in Equation 4.7. For this preho-
mogeneous vector space we have the determinant as the irreducible rel-
ative invariant, the real symmetric matrices Sym(p,R) as the real form,
Φ ∈ S (Sym(p,R)) and Φ∗ ∈ S (Sym(p,R)∗), and the intersection of the
open orbit OSym(p) with Sym(p,R) are the invertible real symmetric matrices
OSym(p,R). They decompose into p+1 connected components V1,b, . . . , Vp+1,b.

The local zeta functions of Skew(q), where q is even, are

Fj,f (s,Φ) :=
1

γf (s)

∫
Vj,f

|dA| |pf(A)|sΦ(A)

F ∗j,f (s,Φ∗) :=
1

γf (s)

∫
V ∗j,f

|dA′| |pf(A′)|s Φ∗(A′),

where γf (s) :=
∏ q

2
l=1 Γ(s + 2l − 1) as in Equation 4.8. For this prehomo-

geneous vector space we have the Pfaffian pf as irreducible relative invari-
ant, the real skew-symmetric matrices Skew(q,R) as the real form, Φ ∈
S (Skew(q,R)) and Φ∗ ∈ S (Skew(q,R)∗), and the intersection of the open
orbit OSkew(q) with Skew(q,R) are the invertible real skew-symmetric matri-
ces. They decompose in two connected components V1,f , V2,f .

Sato proved the following statement in 1961, which Kimura calls the Fun-
damental theorem of prehomogeneous vector spaces in [23, Theorem 4.17].

Theorem 5.11. Let (G, ρ, V ) be a reductive prehomogenous vector space
and f a irreducible relative invariant corresponding to a character χ and
f∗ a relative invariant of the dual prehomogeneous vector space (G, ρ∗, V ∗)
corresponding to χ−1. Then, the local zeta functions

Fi(s,Φ) :=
1

γ(s)

∫
Vi

dx |f(x)|s Φ(x)

and
F ∗j (s,Φ∗) :=

1
γ(s)

∫
V ∗j

dy |f∗(y)|s Φ∗(y),

extend analytically to holomorphic functions on the whole s-plane. Further-
more the following holds:∫

V ∗j

dy |f∗(y)|s−
n
d Φ̂(y) = γ(s− n

d ) ·
l∑

j=1

cij(s)
∫
Vi

dx |f(x)|−s Φ(x) (5.5)
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where cij(s) are entire functions which do not depend on Φ ∈ S (VR).

By the last theorem we can consider Fi,b and Fj,f as entire functions. Let
Vij,0̄ := Vi,b × Vj,f and Vij be the corresponding open sub superspace of Vcs.

Moreover, let X ∈T S2(Cp|q) be the supermatrix

X =
(

S ξ
−ξT A

)
.

We define, when A is invertible, the bosonically-shifted supermatrix Xb-shift

of X by

Xb-shift :=
(
S − ξA−1ξT ξ
−ξT A

)
and when S is invertible, the fermionically-shifted supermatrix Xf -shift of X
by

Xf -shift :=
(

S ξ
−ξT A− ξTS−1ξ

)
.

Below we will also use for the flat Berezinian measure |D(X)| the nota-
tion |Dξ||dS||dA|. The norm of an invertible superfunction |f | is defined in
Definition 5.10. Now, we can define the local zeta superfunctions for the
prehomogeneous super vector space S2(Cp|q) and its dual.

Definition 5.12. The local zeta superfunctions for the prehomogeneous
super vector space S2(Cp|q) are defined by

Fi,j(s,Φ) :=
∫
V1̄

|Dξ| Fj,f
(
−2(s+ pq

2 ), | det(A)|
pq
2 · Fi,b (s,Φ(Xb-shift))

)
,

F̃i,j(s,Φ) :=
∫
V1̄

|Dξ| Fi,b
(
s− pq

2 , | det(S)|
pq
2 · Fj,f (−2s,Φ(Xf -shift))

)
.

For the dual case, we define the local zeta superfunction by

F ∗i,j(s,Φ
∗) :=

∫
V ∗

1̄

|Dξ′| F ∗j,f
(
−2(s+

pq

2
), | det(A′)|

pq
2 · F ∗i,b

(
s,Φ∗(X ′b-shift)

))
,

F̃ ∗i,j(s,Φ
∗) :=

∫
V ∗

1̄

|Dξ′| F ∗i,b
(
s− pq

2
, | det(S′)|

pq
2 · F ∗j,f

(
−2s,Φ∗(X ′f -shift)

))
.

Theorem 5.13. The functions Fi,j(s,Φ) and F ∗i,j(s,Φ
∗) are entire func-

tions on the whole s-plane for each Φ ∈ S (S2(Cp|q
cs )). Moreover, for any

compactly supported superfunction Φc on Vij, we have

Fi,j(s,Φc) =
1

γ(s)

∫
Vij

|D(X)| |Ber(X)|s Φc(X).

73



Therefore, Fi,j(s,Φ) is a regularization of the right-hand side to the greater
class of Schwartz superfunctions on S (S2(Cp|q

cs )).

Remark 5.14. Later we show that this regularization still respects the
algebraic properties of the Berezinian.

Before we prove the statement of the theorem, we need the following lemma.

Lemma 5.15. Let h : Rn → R be a homogeneous polynomial of degree
d, Φ ∈ S (Rn) a Schwartz function, and s ∈ C. Then the function |h|sΦ is
integrable over Rn for Re(s) > −n

d .

Proof. In the first step, we transform the integral to spherical coordinates
and obtain∣∣∣∣∫

Rn
|h(x)|sΦ(X)dx

∣∣∣∣ =
∣∣∣∣∫

R+

∫
Sn
|h(rw)|sΦ(rw)rn−1dw dr

∣∣∣∣ .
Because the integrand is a continuous function and attains its maximum on
a compact set, we can define Φ̃(r) := 2π

n
2

Γ(n
2

) ·maxw∈Sn |h(w)|s|Φ(rw)|. Here,

the factor 2π
n
2

Γ(n
2

) is the surface area of Sn. Hence,∣∣∣∣∫
R+

(∫
Sn
|h(w)|sΦ(rw)dw

)
rsd+n−1dr

∣∣∣∣ ≤ ∫
R+

Φ̃(r)rRe(s)d+n−1dr.

In the following expression the second integral is absolutely convergent for
all s ∈ C ∫ 1

0
Φ̃(r)rRe(s)d+n−1dr +

∫ ∞
1

Φ̃(r)rRe(s)d+n−1dr

and the first integral is absolutely convergent for Re(s) > −n
d , since∫ 1

0
Φ̃(r)rRe(s)d+n−1dr ≤ C

∫ 1

0
rRe(s)d+n−1dr

= C

[
rRe(s)d+n

Re(s)d+ n

]1

0

where C := maxr∈[0,1] Φ̃(r).

Remark 5.16. The statement of Lemma 5.15 holds also for Φ with values
in some Banach space.

As a corollary, we obtain the following:
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Corollary 5.17. Let h : Rn → R and g : Rm → R be homogeneous
polynomials of degree dh and dg, then the function |h|s|g|−sΦ with Φ ∈
S (Rn × Rm) is integrable over Rn × Rm for − n

dh
< Re(s) < m

dg
.

Proof of Theorem 5.13. We set γ(s) := γb(s)γf (−2(s + pq
2 )) and define for

det(A) 6= 0, the parameter-dependent integral

Fj,f (A, s,Φ) =

=
1

γ(s)
|det(A)|−s

∫
Vb,i×V1̄

|D(S, ξ)|
∣∣det(S + ξA−1ξT )

∣∣s Φ(S,A, ξ).

This integral is absolutely convergent for −p+1
2 < Re(s) by Lemma 5.15.

Furthermore, the measure |D(S, ξ)| is invariant under the translation S′ =
S + ξA−1ξT , ξ′ = ξ, which Jacobian has the Berezinian equal to one. Since
the transformation is polynomial

Fj,f (A, s,Φ) =
1

γ(s)
|det(A)|−s

∫
Vb,i×V1̄

|D(S, ξ)| |det(S)|s Φ(S − ξA−1ξT , A, ξ),

by Corollary 5.9. We express Φ(S − ξA−1ξT , A, ξ) as a Taylor expansion,
for which we will use the following multi-index notation.

Let β = (β11, . . . , βij , . . . , βpp) ∈ Np×p be a multi-index with

|β| := |β11|+ · · ·+ βij + · · ·+ |βpp| and β! := β11! · · ·βij ! · · ·βpp!.

Moreover, we abbreviate ∂βS := ∂β11

S11
· · · ∂βijSij · · · ∂

βpp
Spp

and

(ξA−1ξT )β := (ξA−1ξT )β11
11 · · · (ξA

−1ξT )βijij · · · (ξA
−1ξT )βpppp .

The Taylor expansion is then

Φ(S − ξA−1ξT , A, ξ) =
∑
β=0

1
β!

(∂βSΦ)(S,A, ξ) · (−ξ ·A−1 · ξT )β.

The inverse matrix of A can expressed in terms of the adjugate adj(A) of A,
ie. A−1 = det(A)−1 · adj(A). Hence, we get

∑
β=0

(−1)|β|

β!
det(A)−|β|(∂βSΦ)(S,A, ξ) ·

(
ξ · adj(A) · ξT

)β
.
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The sum is finite because for |β| > pq
2 , (ξA−1ξT )β is zero. The expression is

then equal to

det(A)−
pq
2

∑
0≤|β|≤ pq

2

(−1)|β|

β!
det(A)

pq
2
−|β|(∂βSΦ)(S,A, ξ) ·

(
ξ · adj(A) · ξT

)β
.

For brevity, we define

Φ̃(S,A, ξ) :=
∑

0≤|β|≤ pq
2

(−1)|β|

β!
det(A)

pq
2
−|β|(∂βSΦ)(S,A, ξ) ·

(
ξ · adj(A) · ξT

)β
.

As the sum of products of superpolynomials with Schwartz superfunctions,
it is a Schwartz superfunction. By this calculation, we obtain

Fj,f (A, s,Φ) =
1

γf (−2(s+ pq
2 ))

sign(det(A))
pq
2 |det(A)|−(s+ pq

2
)

1
γb(s)

∫
Vb,i×V1̄

|D(S, ξ)| | det(S)|s Φ̃(S,A, ξ).

From Equation 5.3 we have the isomorphism

S (S2(Cp|q)cs) ∼=
(
S (Sym(p,R))⊗̂S (Skew(q,R))

)
⊗
∧

(V1̄)∗.

This and Theorem 5.11 imply that the function

ψ(s,A, ξ) =
1

γb(s)

∫
Vb,i

|dS| | det(S)|s Φ̃(S,A, ξ)

with values in the space of Schwartz superfunction S (Skew(q,R))⊗
∧

(V1̄)∗

extends as an entire function in s to the whole s-plane. Integrating out the
odd variables, the function

ψ(s,A) :=
1

γb(s)

∫
Vb,i×V1̄

|D(S, ξ)| | det(S)|s ψ(s,A, ξ)

is a Schwartz function in A. Now, we consider the integral

1
γf (−2(s+ pq

2 ))

∫
Vf,j

|dA| |pf(A)|−2(s+ pq
2

) ψ(s,A),

where pf(A) is the Pfaffian of A. This integral is absolutly convergent for
s < −pq

2 and again extends analytically by Theorem 5.11. It follows that

Fi,j(s,Φ) :=
∫
V1̄

|Dξ| Fj,f
(
−2(s+ pq

2 ), | det(A)|
pq
2 · Fi,b (s,Φ(Xb-shift))

)
,

extends as an entire function to the whole s-plane. As we have seen, it
regularizes the integral∫

Vij

|D(X)| |Ber(X)|s Φc(X).

The other local zeta superfunctions are analogously entire functions.
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The next expression is a representation of the function Fi,j(s,Φ), which is
integrable for −p+1

2 < Re(s) < q−1
2 . It is given by

Fi,j(s,Φ) = (−1)
df ·pq

γb(s)γf (−2s)

∫
Vij

|D(S,A, ξ)|
∣∣∣∣det(S)
det(A)

∣∣∣∣s (pf(∂A))pq Φ̃(S,A, ξ),

with df = deg(pf) and ∂A = (∂a1,2 , . . . , ∂aq−1,q). Here, we have used

Fj,f (−2s− pq,Φ) = 1
γf (−2s−pq)

∫
Vf,j

|dA| |pf(A)|−2s−pq Φ(A)

= (−1)
df ·pq

γf (−2s)

∫
Vf,j

|dA| |pf(A)|−2spf(∂A)pq Φ(A),

which follows from [23, Proposition 4.7] for pq ∈ N, and Corollary 5.17.

Furthermore, one can express, using the same idea, the local zeta superfunc-
tion Fi,j(s,Φ) for m > s+ pq by

Fi,j(s,Φ) = (−1)
df ·m

γb(s)γf (2m−2s−pq)

∫
Vij

|D(S,A, ξ)| ·

·|det(S)|s|det(A)|m−s−
pq
2 pf(∂A)2m |det(A)|

pq
2 Φ(Xb-shift). (5.6)

It is absolutly convergent for s > 0 and m > s + pq. The following lemma
will be needed for the proof of the next theorem.

Lemma 5.18 ([23], Proposition 2.21). The differential operator pf(∂A)
transforms under the GL(q,C) action ρf (g)A := dAdT on the underlying
fermionic prehomogeneous vector space by

pf(∂ρf (g)A) = pf(∂dAdT ) = det(d)−1pf(∂A) = χf (g)−1pf(∂A).

Now we state the relative superinvariance of the local zeta superfunctions.

Theorem 5.19. The local zeta superfunctions, considered as superdistri-
butions, are relatively superinvariant under the action of G+

cs, with

g.Fi,j(s,Φ) = |χ(g)|−(s+
p−q+1

2 ) · Fi,j(s,Φ),

g.F ∗i,j(s,Φ
∗) = |χ∗(g)|−(s+

p−q+1
2 ) · F ∗i,j(s,Φ∗).

Proof. By analyticity, it is sufficient to consider s > 0 and use Equation
5.6 for some m > s + pq. The transformations we consider are polyno-
mial isomorphisms, which means that we can use Corollary 5.9. In order
to prove the statement we have to calculate g.Fi,j(s,Φ). First consider
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(g.Φ)(Xb-shift) = Φ(ρ(g).Xb-shift). An arbitrary element g ∈T G+
cs can be

expressed as

g =
(
a b
c d

)
, gST

3
=
(
aT −cT
bT dT

)
and Xb-shift =

(
S−ξA−1ξT ξ

−ξT A

)
.

Explicitly, ρ(g).X = gXgST
3

=(
a(S−ξA−1ξT )aT+ aξbT+ bAbT− bξT aT aξdT− a(S−ξA−1ξT )cT+ bξT cT+bAdT

c(S−ξA−1ξT )aT+ cξbT+ dAbT− dξT aT cξdT− c(S−ξA−1ξT )cT+ dξT cT+dAdT

)
.

An arbitrary element g =
(
a b
c d

)
can be decomposed into matrices of the

form g1 =
(
a 0
0 d

)
, g2 =

(
1 b
0 1

)
, and g3 = ( 1 0

c 1 ) . In the first case, we get

g1Xg
ST 3

1 =
(
a(S−ξA−1ξT )aT aξdT

−dξT aT dAdT

)
.

In the next calculations, we drop the factor (−1)
df ·m

γb(s)γf (2m−2s−pq) .

g1.Fi,j(s,Φ) =
∫
Vij

|D(S,A, ξ)| | det(S)|s|det(A)|m−s−
pq
2 pf(∂A)2m

· | det(A)|
pq
2 Φ(a(S − ξA−1ξT )aT , dAdT , aξdT ).

Under the polynomial transformation {S 7→ S′ := aSaT , A 7→ A′ := dAdT , ξ 7→
ξ′ := aξdT } Lemma 4.22 implies that the measure transforms as |D(S,A, ξ)| =
|χ(g1)|−

p−q+1
2 |D(S′, A′, ξ′)|. Using Lemma 5.18 we obtain

g1.Fi,j(s,Φ) = |χ(g1)|−(s+ p−q+1
2 )

∫
Vij

|D(S′, A′, ξ′)| | det(S′)|s| det(A′)|m−s−
pq
2

·pf(∂A′)2m| det(A′)|
pq
2 Φ(S′ − ξ′(A′)−1(ξ′)T , A′, ξ′)

= |χ(g1)|−(s+ p−q+1
2 )Fi,j(s,Φ).

In the second case,

g2Xg
ST 3

2 =
(

(S−ξA−1ξT )+ξbT−bξT+bAbT ξ+bA

−ξT+AbT A

)
and we have to consider the following integral∫

Vij

|D(S,A, ξ)||det(S)|s|det(A)|m−s−
pq
2 pf(∂A)2m|det(A)|

pq
2

· Φ((S − ξA−1ξT ) + ξbT − bξT + bAbT , A , ξ + bA).

Making the polynomial transformation ξ 7→ ξ + bA, which has Berezinian
equal to one, we get
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∫
Vij

|D(S,A, ξ)||det(S)|s| det(A)|m−s−
pq
2 pf(∂A)2m| det(A)|

pq
2

· Φ(S − (ξ − bA)A−1(ξT +AbT ) + ξbT − bξT − bAbT , A , ξ).

which is∫
Vij

|D(S,A, ξ)||det(S)|s|det(A)|m−s−
pq
2 pf(∂A)2m|det(A)|

pq
2

· Φ(S − ξA−1ξT , A, ξ).

Now we come to the third and hardest case

g3Xg
ST 3

3 =
(

(S−ξA−1ξT ) ξ−(S−ξA−1ξT )cT

c(S−ξA−1ξT )−ξT A+cξ+ξT cT−c(S−ξA−1ξT )cT

)
.

For g′3 =
(

1 0
c′ 1

)
we have g3 · g′3 =

(
1 0

c+c′ 1

)
, and we can assume, without

loss of generality, that the entries of the matrix c are zero up to one entry
η ∈ (

∧
(Cpq)∗)1. For such a matrix c, we know that c(S − ξA−1ξT )cT = 0,

which means η2 = 0 and setting D := (A−1cξ + A−1ξT cT ), we get the
following equations

det(1 +D) = 1 + tr(D) and (1 +D)−1 = (1−D).

Therefore, the integral expression is∫
Vij

|D(S,A, ξ)||det(S)|s|det(A)|m−s−
pq
2 pf(∂A)2m|det(A)|

pq
2

· Φ(S − ξA−1ξT , A(1 +D), ξ − (S − ξA−1ξT )cT ).

Making the transformation A 7→ A(1 + D), polynomial in A, which has
Berezinian equal to one, we get, by replacing A by A(1−D),∫
Vij

|D(S,A, ξ)||det(S)|s|det(1−D)|−s| det(A)|m−s−
pq
2 pf(∂A)2m| det(A)|

pq
2

· Φ(S − ξ(1 +D)A−1ξT , A, ξ − (S − ξA−1ξT )cT ).

The next transformation, polynomial in ξ, is ξ 7→ ξ−(S−ξA−1ξT )cT , which
again has Berezinian equal to one. Setting

S′(S,A, ξ) := S − (ξ + (S − ξA−1ξT )cT )(1 +D)A−1(ξT + c(S − ξA−1ξT ))

= S(Id− S−1ξA−1cS − cTA−1ξT )− ξA−1ξT

this expression is∫
Vij

|D(S,A, ξ)||det(S)|s|det(1−D)|−s| det(A)|m−s−
pq
2 pf(∂A)2m| det(A)|

pq
2

· Φ(S′(S,A, ξ), A, ξ).
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With the transformation S 7→ S(Id−S−1ξA−1cS−cTA−1ξT ) polynomial in
S, which has again Berezinian equal to one, and setting D′ := (S−1ξA−1cS+
cTA−1ξT ), we get, after replacing S by S(Id +D′),∫

Vij

|D(S,A, ξ)||det(S) det(Id +D′)|s|det(1−D)|−s|det(A)|m−s−
pq
2

· pf(∂A)2m| det(A)|
pq
2 Φ(S − ξA−1ξT , A, ξ).

We calculate

det(S) det(Id +D′)
det(A) det(Id−D)

=
det(S)(Id + tr(S−1ξA−1cS) + tr(cTA−1ξT ))

det(A)(Id− tr(A−1cξ)− tr(A−1ξT cT ))

=
det(S)(Id + tr(ξA−1c) + tr(cTA−1ξT ))
det(A)(Id− tr(A−1cξ)− tr(A−1ξT cT ))

=
det(S)
det(A)

,

where in the last step we used that the trace is invariant under cyclic per-
mutations. Furthermore, the trace is invariant under similarity transforma-
tions, so that we finally get∫

Vi,j

|D(S,A, ξ)||det(S)|s| det(A)|m−s−
pq
2

· pf(∂A)2m|det(A)|
pq
2 Φ(S − ξA−1ξT , A, ξ).

For the other local zeta superfunctions, the proof is entirely analogous.
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5.3 Fourier supertransform on prehomogeneous super vector
spaces

In this subsection, we recall the basics about the Fourier supertransform on
cs-vector spaces and consider the Fourier supertransform of the local zeta
superfunction. Presenting the Fourier supertransform, we follow [3].

Let Vcs be a cs-vector space of dimVcs = m|n, endowed with a homogeneous
basis (va, ηb), where it is assumed va ∈ V0̄,R. Let (va, ηb) be the dual basis.
The Lebesgue measure |dv| is the unique translation invariant measure on
V0̄,R such that the unit cube spanned by va has volume 1. Moreover, there
is a unique Berezinian measure |Dv| on the cs-vector space Vcs, considered
as a cs-manifold such that∫

Vcs

|Dv|f =
∫
V0̄,R

|dv| · ∂

∂ηn
· · · ∂

∂η1
Φ for all Φ ∈ Γ(OVcs). (5.7)

Let V ∗cs be the dual cs-vector space, with measures |dv∗| and |Dv∗| associated
with the dual basis (va, ηb). For Φ ∈ S (Vcs), the Fourier supertransform
F(Φ) = Φ̂ ∈ S (V ∗cs) is defined by

F(Φ) :=
1

πp/2

∫
Vcs

|Dv|e−i〈·,v〉Φ(v), (5.8)

where 〈·, ·〉 : V ∗cs × Vcs → C denotes the canonical pairing.

Proposition 5.20 ([3], Proposition C.17). The Fourier supertransform
F : S (Vcs) → S (V ∗cs) is an isomorphism of locally convex super vector
spaces.

Definition 5.21. For any homogeneous F ∈ S ′(Vcs) and Φ ∈ S (Vcs),
the distributional Fourier supertransform F̂ ∈ S ′(V ∗cs) is defined by

〈F̂ ,Φ〉 := F (Φ̂). (5.9)

Proposition 5.22 ([3]). The Fourier supertransform F : S ′(V )→ S ′(V ∗)
is an isomorphism of locally convex vector spaces.

For the prehomogeneous super vector space of S2(Cp|q), for instance, the
Fourier supertransform is

Φ̂(X ′) =
∫
Vcs

|DX| e−i〈X′,X〉 Φ(X),

where 〈X ′, X〉 = str(XST 3
X ′) = tr(SS′)− 2tr(ξξ′T ) + tr(AA′).
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The next proposition shows that the Fourier supertransform is, up to a
supercharacter, an equivariant map.

Proposition 5.23. The Fourier supertransform acts on the space of Schwartz
superfunctions as follows:

ρ̂(g).Φ(w) = |χ(g)|
− m−n
db−df · ρ∗(g).Φ̂(w).

Proof. For Φ ∈ Γc(Vcs)

ρ̂(g).Φ(w) =
∫
Vcs

|Dv| exp(−i〈w, v〉))Φ(ρ(g)v).

By denoting ρ(g)v = v′, we obtain |Dv| = |χ(g)|
− m−n
db−df (g)|Dv′| by Lemma

4.16 and 〈w, v〉 = 〈ρ∗(g)w, v′〉, so that

ρ̂(g).Φ(w) =
∫
Vcs

|Dv| exp(−i〈w, v〉)Φ(ρ(g)v)

= |χ(g)|
− m−n
db−df ·

∫
Vcs

|Dv′| exp(−i〈ρ∗(g)w, v′〉)Φ(v′)

= |χ(g)|
− m−n
db−df · Φ̂(ρ∗(g)w)

= |χ(g)|
− m−n
db−df · ρ∗(g).Φ̂(w).

Remark 5.24. The exponent m−n
db−df is not singular, because m − n is

divisible by db − df , and moreover a natural number by Lemma 4.16. For
the prehomogeneous super vector space S2(Cp|q)cs we have m−n

db−df = p−q+1
2 .

Proposition 5.25. Let F ∗k,l(s, .) be the local zeta superdistributions on
the prehomogeneous super vector space S (S2(Cp|q)∗cs) and Φ∗ a Schwartz
superfunction. Let χ∗(g) = χ−1(g). The Fourier supertransforms of F ∗k,l are
relatively superinvariant superdistributions on S (Vcs), with

g.F ∗k,l(s− m−n
db−df , Φ̂) = |χ(g)|

s− m−n
db−df · F ∗k,l(s− m−n

db−df , Φ̂)

and transform like the local zeta superdistributions

g.Fi,j(−s,Φ) = |χ(g)|
s− m−n

db−df · Fi,j(−s,Φ).

Proof. By Theorem 5.19 the dual local zeta superdistribution has the fol-
lowing property

g.F ∗k,l(s− m−n
db−df ,Φ

∗) = |χ∗(g)|−s · F ∗k,l(s− m−n
db−df ,Φ

∗),
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such that with Proposition 5.23 we get

〈g.F̂ ∗k,l(s−
m−n
db−df , .),Φ〉 =F̂ ∗k,l(s−

m−n
db−df , g.Φ)

=F ∗k,l(s− m−n
db−df , ĝ.Φ)

=F ∗k,l(s− m−n
db−df , |χ(g)|

− m−n
db−df · g.Φ̂)

=|χ(g)|
s− m−n

db−df · F ∗k,l(s− m−n
db−df , Φ̂)

=|χ(g)|
s− m−n

db−df · 〈F̂ ∗k,l(s−
m−n
db−df , .),Φ〉.
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