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Kurzzusammenfassung

Die vorliegende Arbeit gliedert sich in zwei Themenbereiche. Der erste Teil befasst sich mit
der Bestimmung der Asymptotik sphérischer Superfunktionen auf nicht-kompakten sym-
metrischen Superrdumen niedrigen Ranges. Diese spielt eine wichtige Rolle in der Harmo-
nischen Analysis solcher Superrdume. Sie wird durch die c-Funktion nach Harish-Chandra
beschrieben. Die Kenntnis der c-Funktion ermdglicht es, eine explizite Reihenentwicklung
sphérischer Superfunktionen zu bestimmen, mittels derer sich das Wachstumsverhalten
dieser Superfunktionen abschétzen lasst. Die wesentliche Problematik bei der Bestimmung
der c-Funktion besteht darin, dass gewisse notwendige Integrationsformeln sich nur fiir
kompakt getragene Integranden verallgemeinern lassen.

Der zweite Teil befasst sich mit der Herleitung einer Riicktransformationsformel fiir
die Fouriertransformation auf dem Raum SOSp[; (1,1 + p|2q)/ SOSp.s(1 + p|2¢). Der
Unterschied zum klassischen Fall besteht hierbei darin, dass die c-Funktion Nullstellen mit
positiven Realteil aufweisen kann, weswegen die Residuen von % zu zuséatzlichen Termen in
der Riicktransformationsformel fithren. Im Beweis dieser Formel werden Polarkoordinaten
bendtigt, von denen im Allgemeinen zu erwarten ist, dass sie zu sogenannten Randtermen
fiihren. Zu diesem Zweck wird dieser symmetrische Raum mit der Superpoincarékugel
identifiziert, da sich auf dieser eine geeignete Polarintegrationsformel herleiten lésst.






Abstract

This thesis covers two topics. The first part studies the asymptotic behaviour of spherical
super functions on non-compact symmetric superspaces of low rank. This plays an
important role in the harmonic analysis of such spaces. It is described by Harish-
Chandra’s c-function. The c-function is the first step in order to obtain an explicit series
expansion of spherical super functions. This expansion allows to estimate the growth
behaviour of these functions. The main difficulty in determining the c-function is that the
necessary integration formulas generalise to the super case only for compactly supported
integrands.

The second part focuses on the Fourier transform on the symmetric superspace
SOSp. (1,1 + p|2q)/ SOSp.s(1 + p|2¢) to obtain a Fourier inversion formula. In dis-
tinction to the classical setting, the c-function might have zeros with positive real part
in the super case. Therefore, the residues of % lead to additional terms in the inversion
formula. The proof of this formula makes it necessary to work with polar coordinates
which in general produce boundary terms. For this purpose, this space will be identified
with the Poincaré super ball. On this space, a necessary polar integration formula can be
derived easily.
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1. Introduction

In the study of harmonic analysis non-compact symmetric spaces G/K, the algebra
I'(Dg/ k)™ of G-invariant differential operators on G/K is of special interest. Functions
on G/ K, which happen to be K-invariant joint eigenfunctions of all elements of I'(D¢, )k,
are called spherical functions. As it turns out, the class of spherical functions is exhausted
by functions ¢y, given by

da(g) = Di:e(—0)(H(gk))
K/M

for A € ag. Here, ag is the set of complex linear functionals on a Cartan subspace
a of g and p is the Weyl vector of a positive root system. Moreover, the function
H: G — adetermines the a component of an element g € GG in the corresponding Iwasawa
decomposition.

The asymptotic behaviour of spherical functions is of special interest. It is described
by Harish-Chandra’s c-function, which is given by

c(A) = tliglo ePA0)(th) g (eth),

for h € at. The c-function has various different applications, as for example in the Cartan—
Helgason Theorem. It is also necessary for the formulation of the Fourier inversion formula
in that it determines the Plancherel measure. Such a formula is, besides its independent
mathematical interest, useful in physics. For example, it can be used to calculate the
mean conductance of a quasi-one-dimensional disordered conductor (cf. |Zir91ajZir91b)).

One of the objectives of this thesis is to derive the c-function in the super setting on
spaces where there is only one simple positive restricted root . Namely, this happens
for the spaces Ues(1,1 + plq)/U(1) x Ues(1 + plq), SOSpL (1,1 + p|2¢)/ SOSp,,(1 + p|2q)
and ( GLes(1]1) X GLes(1]1))/ GLes(1]1). For the former two spaces, the c-function turns
out to be

27T(N)

r (M—?—H) T (/\+’”T‘12+mza) ’

c(N) =

Here, A is identified with the number A(hg), where a(hg) = 1. On the third space, the
c-function takes on a different form. The restricted root « is odd and isotropic, which
leads to

c¢(A) = Alho)
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with hg € ker a. These findings are the first step towards a formula for the c-function on
general symmetric superspaces. As it was recently shown in |[AS13], the general problem
can be reduced to these cases of low rank by a procedure called rank reduction.

After the c-function is determined, an explicit series expansion for ¢y on AT = exp(a™)
will be given in the ortho-symplectic case. Analogously to the classical setting, this will be
done by determining the eigenfunctions of the radial part of the Laplace operator. Here,
some interesting observations can be made. If a has even non-positive multiplicity, the
expansion of ¢ terminates ( cf. . Moreover, if the restricted root « is purely
odd (this is the case p = 0), the spherical functions are not symmetric as it is the case for
even « (Proposition 3.1.14). The same happens for ( GLs(1|1) x GLs(1]1))/ GLes(1]1),
which is the only other considered case of a purely odd restricted root (Proposition 3.1.17)).

Once this is done, the Fourier transform can be defined:

Ff(\Ek) = Dg f(g)e(A’g)(H(g_lk))
G/K

This will be performed only for G = SOSp/; (1,1 + p|2¢) and K = SOSp,,(1 + p|2q).
With the inverse Fourier transform

rot = [ 2

c(N)[? K/M
one would suspect that JF f = f like in the classical case. However, this is only true if
Mg > 0.

Already in the case my = —1, a correction term needs to be added as it has been shown
in [Zir91a]. This is due to the fact that ¢(\) has zeros for Re A > 0. Since the reciprocal of
¢(\) occurs in the inverse Fourier transform, this leads to collecting some residues in the
proof of the inversion formula. This is similar to the case of non-Riemannian symmetric
spaces (cf. [HS95 Part II, Lecture 8]). These residues add up to the inverse Fourier
transform of the constant function 1 (which indeed exists). Generally, the inversion
formula is of the form

Dl p(\, k)e"A—9H(g™ k)

JFf=[f+(f*T),

where * denotes the convolution. A necessary tool for the proof of this formula is a polar
integration formula. For this purpose, G/K will be identified with the unit ball Bl+pl2
in AMP2¢. This is in analogy to the Poincaré ball model. This will be done in order
to apply a polar integration formula which can be derived on A*P2¢. Since this needs
a coordinate change, boundary terms are obtained by a formula from [AHP12|. These
integration formulas take very different forms for even and odd negative multiplicities.
This is due to the fact that the volume of K/M vanishes if and only if m, is negative
and odd.
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Unfortunately, it was only possible to prove the inversion formula for positive and odd
negative multiplicities. At the time of submission of this thesis, the original proof for
even negative multiplicities turned out to be faulty because a certain estimate was not
strong enough to allow for interchanging some derivations and integrals.

In the unitary setting, m,, is always even. The principal behaviour in this setting is
like in the one for odd m,, in the ortho-symplectic model, since the symmetric superspace
Ues(1,1 4 p|q)/U(1) x Uegs(1 + plg) may be identified with B'*+212¢, This is the reason
for focusing on the ortho-symplectic case, since only there the volume of K/M can be
non-zero for negative multiplicities. It seems to be straight-forward to adapt the proof
from the ortho-symplectic case to this setting.

The content of this thesis is structured as follows. In basic concepts on
superspaces are explained. In particular, in an explicit formula for polar
integration on A”?? is derived. covers the calculation of the c-function on
the mentioned spaces as well as the determination of the series expansion of ¢, in the
ortho-symplectic setting and some deduced estimates of ¢,. Finally, aims
to prove the Fourier inversion formula for the ortho-symplectic setting. The ideas in
Chapters [3| and [ follow mainly the concepts of [Hel62,|Hel84, Hel94].






2. Preliminaries

2.1. Basics on cs Spaces

This section gives a brief synopsis of the theory of cs spaces. It is based on the concepts
of sheaves and categories. For the former [Bre97,Ive84] can be recommended to the
reader, whereas the later is briefly summarised in

The concept of ¢s manifolds was introduced by Joseph Bernstein (cf. [DM99]). The
category of real super manifolds is equivalent to a subcategory of the category of cs
manifolds. Each real super manifold becomes a c¢s manifold by complexifying structure
sheaves and morphisms. However, easy examples show that the so obtained subcategory
is not a full subcategory. The advantage of considering the bigger category of cs
manifolds lies in the easier application to physical problems (c¢f. [Zir91a]). Also, from
the mathematical point of view, cs manifolds are to be preferred. In certain situations,
e.g. when it comes to integration theory, is it reasonable to consider a complex super
manifold as a ¢s manifold rather than as a real super manifold (c¢f. [DM99]).

Although the majority of the standard literature (as [Ber87,Lei80, Man97,DM99]) is
written in the context of super manifolds, almost all results can be carried over to cs
manifolds. The first part of this section follows widely (but in a much smaller setting)
[AHW14a, AHW14b).

2.1.1 Definition. A C-superspace is a pair X = (Xo, Ox), where Xj is a topological
space and Oy is a sheaf of unital super-commutative super algebras over C. Furthermore,
the stalks Ox , of Ox at any point z € X, are assumed to be local super-commutative
rings, whose maximal ideals are denoted as mx ;. Elements of Ox (U) for any open set
U C Xy are referred to as super functions.

A morphism ¢ = (o, gpﬁ): X — Y of C-superspaces consists of a pair of a continuous
function ¢ and a morphism of sheaves goﬁ: Oy — ¢0,+Ox, which induces local ring
homomorphisms on the stalks, i.e. @ﬁx(my’%(x)) C mx ;. In the following, no difference

will be made between the equivalent morphisms Oy — ¢0+Ox and ¢y 1Oy — Ox. The
category of C-superspaces will be denoted by SSp¢.

[13P2)

2.1.2 Definition. A real super vector space V = V; @ Vj is called a cs vector space (“c
for “complex”, “s” for “super”) if there is a complex structure on V; which is compatible
with the real structure. Morphisms of cs vector spaces are even linear maps which are
additionally complex linear on the odd part. The category of cs vector spaces will be

denoted csVec. The complexification of a cs vector space V' is the complex super vector
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space Vo = (V5 ®r C) @ V;. Considering Vi as c¢s vector space, V' can be understood as
sub cs vector space via identifying it with (V5 ® 1) @ V;.
For any two cs vector spaces V and W, the cs vector space of inner homs is defined to

be:

@csVec(M W) = HomcsVec(V7 W) S (HOHI]R(‘/(‘), Wi) @ HomR(Via W(_)))
=~ Homegvec (V. W) & (Home (Vg ® C, W) & Home(V;, W5 ® C))
= {X € Home(Ve, We) | A(V) € W5}

The dual cs vector space of V' is V* := Hom(V,R) = Homg(Vj, R) @ Homc(Vi,C). Sim-
ilarly, a multi-linear morphism of cs vector spaces is an even complex multi-linear
morphism A: V3¢ X -+ X Vi ¢ = W, such that A(V; 5 x --- x V}. 5) € Wy. The set of all
such morphisms will be denoted Multcsvec(Vi, ..., Vi; W).

The tensor product V ® W is defined via

(VoW = (Vyor W) @r (Vi @c Wi), (Ve W)= (V;er W) &c (Vg @r Wi).

The complex structures on the odd part of V ® W is given by the complex structures on
Vi and Wi. The space Hom(V, W) is indeed the inner hom space in the category of cs
vector spaces, since Hom(U ® V, W) = Hom (U, Hom(V, W)).

For a given a cs vector space V, let A(V) := (V5, Ov), with Oy :=Cj? @c AVY. A(V)
is called the corresponding affine C-superspace. Here, C{? denotes the sheaf of com-
plex valued smooth functions on V5. A becomes a functor A: csVec — SSp by set-
ting A(A) = (Ag, A(N)¥) for A € Hom(V, W) with AN (f) = (foA) for f € Cfy, and
AN (v}) = v} o \ for v} € V7.

The C-superspace associated to V = RP @ C? will be denoted by the symbol API9, Tt is
called the affine space of dimension plq.

2.1.3 Definition. Let X be a C-superspace whose underlying space Xy is Hausdorff.
Then X is called a ¢s manifold of dimension dim X = p|q if it is locally isomorphic to
API2. The super dimension of X is defined to be sdim X := p — ¢. The full subcategory of
¢s manifolds of SSp¢ will be denoted csMan. Clearly, A?l4 is a ¢s manifold by definition.
It is easy to see that the category csMan admits finite products and that the terminal
object is given by % = A%l0,

From now on, all superspaces and morphisms will be considered in csMan unless
something else is stated.

2.1.4 Definition. A morphism ¢: X — Y is called an embedding if ¢ is an embedding
and @o(Xp) is closed in some open U C Yy, such that ¢f: Oy |y — ©0,+Ox is surjective.
If ¢ is an open (closed) map, ¢ is said to be an open (closed) embedding.



2.1. Basics on cs Spaces 7

2.1.5 Definition. For any open subset U C Xy, the open subspace X|; := (U, Ox|y) is
called the restriction of X toU. It comes with an embedding jx), : Xy — X, given
by JX| 0" U — Xy and jX| : Oxlv = | 0Ov — Ox. Accordlngly, the restriction of

a morphlsm @ is |y = © JX|p-

2.1.6 Definition. Let f € Ox(U) be a super function and = € U. The value of f at
x is the unique f(z) € C, such that f, — f(x) € mx . This allows to define real super
functions: A super function f € Ox(U) is called real if f(x) € R for all x € U. The
subsheaf of Ox formed by real super functions is denoted Ox g.

By defining a subsheaf Nx of Ox via Nx(U) ={f € Ox(U)|Vz €U : f(z) =0},
the so-called reduced space (Xo,Ox/Nx) of X is obtained. The reduced space has the
structure of a real manifold and is denoted by the same symbol as the topological space: Xj.
The open embedding jx,: My — M, inherited from the projection Ox — Ox/Nx, is
called the canonical embedding.

2.1.7 Definition. The standard coordinate system on API9 is the tuple t = (t,)729 of
super functions on APl9, given by t, := (pr,: R — R) € Oprlagp for a=1,...,p and
ta = (Pra_p: C? = C) € Oyyiq 1 for a > p. To each morphism ¢: X — Y, where Y is an
open subspace of A”!9, a tuple (goa)p 7 is associated via ¢, = !(t,). The super functions
p; are called component super functzons of ¢. This construction is compatible with the
canonical embedding in the sense that the component functions ¢, of o are indeed the
reduced super functions of the ¢;. Thanks to [Proposition 2.1.9] it will be reasonable to
identify morphisms and such tuples.

2.1.8 Definition. An open embedding x: X|Uw — A X for open U, C X is called a
chart or coordinate system. Coordinates are the component functions of a coordinate
system. Sometimes it is convenient to distinguish between even and odd coordinate func-
tions of x and write z = (u, £), where u = (u;)_; = (z4)5_, and £ = (EJ)] 1= (xa)ptgﬂ.
The set U, is said to be a coordinate neighbourhood. If U, can be chosen to be equal to
Xy, one calls z a global coordinate system.

2.1.9 Proposition. Let X,Y be cs manifolds with dim X = p|q, let y = (v,n) be a
coordinate system on'Y , and let fi,..., fp,91,-..,9q be real super functions, where the
fi are even and the g; are odd. Then there exists a morphism ¢: X —'Y such that

oH(vi) = fi and @*(n;) = g if and only if fo(Xo) C y(Uy).

2.1.10 Proposition. Let S be a c¢s manifold and V' be a super vector space. Then there
exists a bijection

A(V)(S) = Hom¢snran (S, A(V)) = Hom s Ve (V*, F(OS,R)) = (V &® F(OS,R))(]
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which is natural in S and V. It is given by ¢ — 3, va ®@ ©*(v2) for a graded basis (v,)
of V. with dual basis (v}). For open subspaces U C A(V'), the bijection restricts to

U(S) = {f € Hom (V*,T(Ogr))|V(s € So) I(u € Up) V(v' € V*) : f(v')(s) = v'(u)}
& {f = ZZ v; @ fi € (T(V ® Osr))y ‘V(s € 50)Iuely):u= Zz vifi(s)}.

2.1.11 Remark. For morphisms A\ € Homegvec(V, W), the proposition above shows
that the induced morphism A(X) is I'(Og r)g-linear on S-points: A(N)(v ® f) = A(v) ® f
for v f € (V®I'(Og));. This suggests to define for A € Multesvee(Vi, ..., Vis W) a
morphism A(\) € Homegpian (A(V1) X - x A(Vy), A(W)) via

(U1®f17"'7vk®fk)'—>)\('U1,...,’Uk)®f1---fk.
Here, the right hand side of this map should be read as w ® f = w, ®r f + w; @r i f if

w= (w, ®1) + (w; ®1i) € W . Since w; # 0 only if f is nilpotent, this definition makes
sense.

2.1.12 Definition. In view of [Proposition 2.1.10} it is reasonable to define a functor

A®: csVec — csMan"
via
A(V)(S) :=Homc (V&,T'(0s)) = (Ve ®c F(OS))()’
for any cs vector space V and any cs manifold S. Furthermore, one sets
A)s(f) = foX

for cs linear maps A: V. — W and f € A(V)(S5).
As for the functor A, it is reasonable to set ACPl4 := AC(RP @ C9). In particular, one
has AGI(S) = (Og).

2.1.13 Remark. Note that, unlike A(V)(—), the functor A®(V) can in general not be
represented by an object in csMan. In particular, A(Vg) 2 A®(V) as objects in csMan.
The reason for this lies in the fact that I'(Ox) is not the complexification of the cs vector
space ['(OgR).

However, A®(V) can be represented by the C-superspace (V¢, ©). Here, the sheaf O is
given by O = C‘“}c,a ®@c A\ VY, where C%}m denotes the sheaf of holomorphic functions on
Veo-

Similarly to the setting of c¢s manifolds, a C-superspace X is called a complex super
manifold if X is locally isomorphic to some A2l and X, is Hausdorff.
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2.1.14 Corollary.
A(V)(S) = {s € AS(V)(S) | 50 € AVo)(S0)}

2.1.15 Remark. In applications it proves to be useful to consider morphisms only in
the setting of super points. The spaces A% are called super points. The full subcat-
egory of super points of csMan will be denoted SPt. Similar to the construction of
the Yoneda embedding (cf. , each cs manifold X determines a functor
X(—): SPt —» Man. Here, Man denotes the category of ordinary real smooth manifolds.

The obtained functor hgpt: csMan — Man" is, like the Yoneda embedding, faithful.
However, it is not full. This means that morphisms of c¢s manifolds are completely
determined by their values on super points, but not every natural transformation on
super points defines a morphism. This can be seen as an analogy to the fact that smooth
maps on manifolds are completely determined by their value on ordinary points.

For a more detailed view of the super points approach to superspaces, one may also
consult [SW11].

2.1.16 Definition. If a morphism v: X — Xy is a retraction of the canonical embedding
Jx,, it will be called retraction without referring to jx,.

On an affine space A(V'), the projection pr;: V = V; & V; — Vj induces a retraction.
This retraction will be referred to as the standard retraction on A(V).

2.1.17 Remark. Assume that X admits a global coordinate system (u, ). In this case, a
retraction +y is easily defined by requiring ug oy = fyﬂ(uo) = u. One calls 7 the retraction
associated with (u,&). Conversely, given a global coordinate system vy on the reduced
space X, a global coordinate system (v, {) is obtained by setting v := vy o v and choosing
some odd coordinates. Such a coordinate system is called adapted to ~.

Although global coordinate systems do not always exist on cs manifolds, retractions do
[RS83|, Lemma 3.2]. This is achieved by taking retractions on coordinate neighbourhoods
and gluing them together by using a partition of unity. In general there is no unique
retraction on a supermanifold.

Given a global coordinate system (u, &) with associated retraction -, each super function
f on X possesses a unique decomposition

F=> )€, f,eT(Ox,).
VEZ%

Here, ¢ is the odd dimension of X and " = ¢&* - -- el

2.1.18 Definition. The tangent space T, X = Der(Oxr,R) of a cs manifold X at
x € Xp is the subspace of derivations in Hom gvee(Ox r 2, R). These are the elements
0 € Hom(Ox g 4, R) satisfying

5(f9) = 6(f)g(x) + (=11 f(2)5(g).
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Such elements are called tangent vectors at x. T X is a cs vector space whose even part is
given by even derivations: Der(Oxr ) = Der(Ox, r») = T:Xo. The complexification of
T, X is isomorphic the complex super vector subspace of derivations in Hom¢(Ox 4, C).

Given a morphism ¢: X — Y and x € X, the differential at x is Tpp: To X — Ty Y,
with T,(8)(f) = 0(*(f)). The morphism ¢ is called immersion at  if Ty is injective
and immersion if this is the case for all x € Xy. If T, is surjective at x, then ¢ is called
a submersion at x. It is a submersion if this is true for all x € Xj.

In order to understand expressions like [y w(x)f(s,z), the concept of relative cs
manifolds needs to be introduced.

2.1.19 Definition. Assuming that there is a fixed c¢s manifold Y, a cs manifold over Y
or relative cs manifold is a cs manifold X, together with a submersion px: X — Y. One
simply writes X/Y for this statement.

The relative dimension is defined to be dimy X :=dim X — dimY. Similarly, the
relative superdimension is given via sdimy X := sdim X — sdim Y.

A morphism ¢: X/Y — Z/Y is a morphism of ¢s manifolds, such that the following
diagram commutes:

X

‘ Z
Y

The category of ¢s manifolds over Y is denoted csMany . Clearly, a ¢s manifold is always
a ¢s manifold over * and each morphism of c¢s manifolds is a morphism over .

The simplest relative cs manifolds are of the form Xy :=Y x X with px, = pry.
The spaces Af,lq are of special interest, since they are the model spaces for relative cs
manifolds.

2.1.20 Proposition. Let p: X — Y be a morphism. If @ is an immersion at x, it is a
section at x (i.e. there are neighbourhoods U of x and V' of fo(x), with fo(U) CV and
a morphism ¢: Y|, — X|; such that 1 o o[, = idx), ). This local condition shows that
(global) immersions are monomorphisms.

If ¢ is an submersion at x, it is a retraction at x (i.e. there are neighbourhoods
U of x and V of fo(x), with fo(U) CV and a morphism : Y|, — X|; such that
poyh = idy|U). In particular, surjective submersions are epimorphisms. Moreover,
constdering X as relative Y -space, there exists a neighbourhood W of x and an open
embedding ®: X\, /Y — AdyimYX/Y.

If ¢ is an immersion as well as an submersion at x, then ¢ is an open embedding
in a neighbourhood of x, i.e. it is a local isomorphism at x. In the case where g is in
addition injective, an immersive and submersive ¢ becomes an isomorphism onto its
image Y|, x,)-
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2.1.21 Definition. An open embedding z : X[, /Y — Agi,imyx, with U, C X open,
is called a relative chart, relative coordinate system or fibre coordinate system. If U,
can be chosen to be the whole space, the cart x is called a global chart or global
coordinate system. Relative coordinates are the component functions of pryox, where
pry: Af,'q =Y x Adimy X _, Adimy X 5 the projection onto the second component. Again,
if convenient, even and odd relative coordinates will be distinguished: x = (u,&). Note
that zg = ug by considering x and u as morphisms.

2.1.22 Definition. Let ¢: X — Y be a morphism of c¢s manifolds and vx, vy be
retractions on X and Y. Then vx and -y are called compatible under ¢ if the following
diagram commutes.

XYy

X0 > Yo

2.1.23 Lemma. Suppose that ¢ in above definition is an immersion and that vy is fized.
Then there is at most one retraction vx, compatible with vy under p.

Similarly, if ¢ is a surjective submersion and vx is fized, then there is at most one
retraction vy, compatible with vx under .

PROOF. In both cases, the assertion follows from g o vx = vy o ¢ since g is a mono-
morphism in the first case and ¢ is an epimorphism in the second case. ]

2.1.24 Remark. Although uniqueness of compatible retractions in the preceding lemma
can be proven, it cannot be assumed that such retractions generally exist. For example,
the retraction v on A22, given by ~v(s) == (s1 + 25354, s2) for an S-point s €g A2I2 hag
a counterpart neither under the immersion A2 — A22, (sy, s9,53) — (s1, 51, 52, 83), nor
under the submersion A22 — A2, (s1,52,53,54) — (1,53, 54).

2.1.25 Definition. A retraction of a ¢s manifold X, which is also a relative ¢s manifold
X/Y, is called a relative retraction, retraction over Y or simply retraction of X/Y if
there exists a retraction vy on px(X) =Y px.0(Xo)? compatible with + over px. Note
that px o is an open map, hence px(X) is well-defined.

2.1.26 Remark. It should be noted that in general neither can the retraction vy be
assumed to be extendible onto Y for non-surjective px o, nor can such a continuation be
assumed to be unique.

2.1.27 Definition. For a relative ¢s manifold X /Y, the relative tangential sheaf consists

of the derivations on X which are Oy-invariant: Ty y = mp; Oy (Ox,0Ox). The dual

sheaf QX/Y = Homp,, (TX/Y, Ox) is called the relative cotangentzal sheaf. In the case
= x, let Tx = T/, and Q% = QX/*
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2.1.28 Definition. On Hom OY(OX7 Ox) the super commutator is given by
X,0
[D,D']:=DoD —(—1)PIPID oD

on local sections. Consider the subsheaf DX Iy = Ox of Hom POy (Ox,Ox) obtained
by left multiplication with super functions. The subsheaf D% - of dzﬁerentzal operators
of order at most n of Hom -1 (Ox,Ox) is defined recursively as follows: The local
sections of D /v are the D suc(h that [D, f] is a local section of D', /Y for any local section
f of Ox. This gives rise to the sheaf of differential operators Dx vy = UpZo Dy v Here,
the union has to be understood in the sense of sheaves, i.e. one needs to sheafificate after
taking the union of the sets of local sections.

2.1.29 Proposition. Given a global relative coordinate system x on XY, there exists
a unique Ox-basis (Oy,); = (—) of I'(Tx )y ), such that Oy, (w;) = ;5. In particular, if
~ denotes the retraction associated with x = (u €) and f =3, 7 (f,)€", then

8 v y v—e; vit... v

V]#O

Furthermore, these coordinate derivations give rise to a basis of Dxy: For anyn € No,
the set of all

— Orta ...k
dl = irta 03,

Tp+q
with i € NOXZ3 and |i| =141 + ...+ iprq < n is a basis of Dy -
2.1.30 Proposition (Taylor’s formula). Let x be a global fibre coordinate system on

a relative cs manifold X/Y of dimension p|lq and o € prypoxo(Xo). Then for any
f €T (Ox) and any k € Ny

f= Z(m—o)iaizof mod <(x—0)j‘|j| :k—|—1>

r'(Ox)’
li|<k (©x)

with i,j € NbxZ4. Furthermore, 9:_, = (px x 0)f o (z*)71 0 9,,, where o is identified
with the morphism x — API4, of(f) = f(o0) and

(@ — o) = a8 a2 (2 — 0p)7 - (w1 — 01)

The expression {((x—o0)||j|=k+ 1>F(O ) denotes the ideal in ['(Ox), generated by
(x — o)’ for|j| =k + 1.

2.1.31 Definition. Let ¢: X — Y be a morphism of c¢s manifolds and £ be an Oy-
module. The pullback is defined to be the sheaf

oo -1
0 € = 0x ®%1 vy €.

The ® in this notation denotes the tensor product of sheaves, i.e. the sheafification of
the presheaf inherited from the tensor product of graded super algebras.
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2.1.32 Proposition (Base change). Let X/Y be a relative cs manifold and p: Z —'Y be
a morphism. The fibre product Z xy X (cf. [Definition A.11) exists and is a cs manifold
over Z via the canonical morphism pz =pryz: Z xy X — Z.

Fibre coordinate systems z on X/Y induce fibre coordinate systems idz Xiq, * on
(Z xy X)/Z. Their component super functions are given by prﬁX(:ni), with the canonical
morphism pr )f : Z xy X — X. Therefore, it makes sense to denote the induced coordinate

system by priy (x).

2.1.33 Corollary. The base change induces an isomorphism of Oz, x-sheaves

prﬁgz p*ZTX/Y — TzxyXx/2>
satisfying prg((D) prgf(f) = pr& (D(f)). Locally, it takes the form
#
Oy, —> er(f)aprg((xi).
This isomorphism can be extended to an Oz, x-isomorphism pry Dx/y — Dzxyx/z-

2.1.34 Definition. Suppose X/Y is a relative manifold and p = (p1,. .., pn) a family of
smooth functions on Xy. Then p is said to be a family of boundary functions over Yy if
for every z € X and every subfamily p = (pi,, ..., pi,) with p(z) = 0, the function p is
submersive at x and T, px o|kerT, 5 IS surjective.

The set Xo, == iz {p; > 0} is called a manifold with corners. For any subfamily p
of p, the set H = H; = npieﬁ{pi =0}nN ﬂpigp{m > 0} is called a boundary manifold if
it is not empty. In this case, let pp, := p. The collection of all boundary manifolds is
denoted by B(Xy,p) = B(p). The disjoint union of all boundary manifolds equals the
topological boundary of X , in Xp.

A family 7 = (1,...,7,) of super functions is called a family of boundary super
functions if the underlying functions 7y are a family of boundary functions. The open
subspace X; = X| Xo.rg is called a c¢s manifold with corners in X.

2.1.35 Proposition. Let a family of boundary super functions 7 on X/Y be given and
Hy € B(Xo,p). There exist a unique cs manifold H/Y with underlying space Hy and a
unique immersion tgr: H — X over'Y, such that tgp ot = 0.

If there is a relative retraction v on X/Y, such that T satisfies v¥(1;0) = 7 for all
7, €T, the space H only depends on ~ in the following sense: Any other family of
boundary super functions 7', which are compatible with v and satisfy B(7}) = B(70), gives
the same cs manifold over Hy. In this case, there exists a unique relative retraction yg
on H/Y, compatible with vy under vg.

PROOF. The condition of Txpx,olKerTzﬁ being surjective induces a submersive mor-
phism (py, 70,1,): X|y =Y X A*0 on a sufficiently small neighbourhood U of Hy. Here,
k = codim Hy = dim X — dim Hy. Defining ¥ — Y x A*? on generalized points by
y+— (y,0) yields Y Xy, ar0 X. The restriction of this space to Hy gives H. O
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2.1.36 Definition. The spaces obtained in the above proposition are called boundary cs
manifolds. The collection of all boundary cs manifolds is denoted B(X,7) = B(7). Let

TH = (Ti)Ti,OETHU .

2.1.37 Corollary. Corollary and Proposition induce the following mor-
phism of sheaves:

* E ~
vaTxyy — tuTxyyxaro — Tayy, D— Dly .

If v = (T, &) is a fibre coordinate system, then (f0y,)|g ., = L%(f)@bu(xi) for xz; ¢ Ty and
(f02)| g, =0 otherwise.

2.2. Integration on cs Manifolds

This section summarises the concept of integration on (relative) c¢s manifolds. Integration
of Berezin densities with non-compact support will be explained, as well as boundary
terms that occur under changes of retractions. This follows [AHP12|. However, it is
necessary to extend these boundary term formulas to relative cs manifolds.

Unless otherwise stated, X/Y will be assumed to be a relative cs manifold.

2.2.1 Definition. The sheaf of relative Berezin densities ]Ber\X/Y is the Ox-module
sheaf of absolute Berezinians of €2x/y. This sheaf is is locally described by

Ber|x,y (Us) = {|Dz|f | f € Ox(Ux)},

whenever © = (z,¢) is a fibre coordinate system on X/Y. The symbol |Dz| is supposed
to be of parity ¢ mod 2, where g denotes the odd relative dimension of X /Y. It behaves
under coordinate changes as |Dz| = |Dy||Ber] (%Z)? where y = (v,n) denotes another
fibre coordinate system. Here,

|Ber| (R S) = sgnj&o(det R)-det(R— SV T)det V1,

TV
and
dxy .. OTpiq
oy1 0y1 ou 9§
8j = . c. . — % ?
dz1 . Oxpig on  On
OYp+q OYp+q

If Y = «, the sheaf [Ber|y := [Ber|y/, is called the sheaf of Berezin densities.
Sections w € F(|Ber|X/Y), such that px: suppw — Yp is a proper map, are called
compactly supported along the fibres. The set of all these sections will be denoted

Fcf(‘BeﬂX/Y)-
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2.2.2 Example. Let A\: V — RP & C? be an isomorphism of super vector spaces. Then
A()) is a global coordinate system on A(V') and DX := |DJ| is a Berezin density. Berezin
densities obtained in this manner will be called Lebesgue Berezin densities. Lebesgue
Berezin densities are unique up to constant multiples.

2.2.3 Corollary. The isomorphism pr Tx/y — Tzxy x/z from|Corollary 2.1.59 gives
rise to an isomorphism prg(: pri |Ber|X/Y — |Ber|ZXYX/Z. Locally, it is given by

|Dz|f — | Dpr (z)] pri ().

In the case of Y = %, this simply means

|Ber’Xz/Z = priy [Ber[y .

2.2.4 Corollary. Let 7 be a family of boundary super functions on X/Y and H € B(T).
The morphism from [Corollary 2.1.37 induces a morphism of sheaves

|H.r LﬁH,O Ber|x,y = [Ber[gy -

Locally it takes the form (|Dz|f)
dinate system.

Hr = |Dbﬁ(§3)‘LﬁH(f), where x = (1g, %) is a fibre coor-

2.2.5 Proposition. There is a unique right connection
1
V: [Ber|yy ®ox Dx/y — [Ber|x)y,

of the sheaf D}(/Y =O0x ®@Tx/y on |Ber|X/Y. It is determined by the requirement that
V(|Dz| ® 0y;) = 0 for any local fibre coordinate system x and all i. Right connection in
this setting means that it is a right-Ox -linear morphism. This right connection can be
continued to an Ox-linear right action of Dx/y on |Ber|X/Y, ie.

V(Vw®D)®D')=V(w® DD').

The first part of this proposition is the content of [Lei80, Lemma 2.4.6], whereas the
second part is due to |Che94].

2.2.6 Definition. Let v be a relative retraction on X and suppose that there is a global
coordinate system (v,n) on Y adapted to vy. Recall that vy denotes the retraction on
Y compatible with v under px. Furthermore, assume that there is a fibre coordinate
system (u, &) on X adapted to «, such that (v,u,n,&) is a global coordinate system on
X. The fibre integral with respect to «y of a relative Berezin density w = |D(u,§)|f with

f = Zy,,y ,Yﬁ(fu,u)f“ny is set to be

2
][ w = Z'yg/ < ][ |dUO|fy,(1,...,1)> n”,
YJX v YoJ Xo

whenever all dugf, (i, 1) are absolutely fibre integrable. In this case, w is said to be
(fibre) integrable with respect to ~. If - is understood, it will be omitted in notation:

yix = yfx-
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2.2.7 Proposition. The definition of the fibre integral is independent of the choice of
adapted coordinates and extends to relative cs manifolds in general. It gives rise to a
morphism ofp;(}o(/)y module presheaves Yf;: Ber’)?%/ — Py OOY Here, Ber}?t/y denotes
the presheaf of integrable relative Berezin densities.

PRrROOF. The first thing to notice is the Oy-linearity of the integral, i.e.

Vi € T(Oy) ijp&u)w:fy]{:w

This is due to the compatibility of the retractions v and ~y. It already proves the
invariance of the integral under coordinate changes on Y.
Now assume that (u/, ') to be a second global coordinate system adapted to v and write

w=[D(u,¢&)|g with g =37, Y4 (gu,u)€#n”. Equation (2-I)) on page [12 shows gg}' =0 as
well as 2% = ~#(542), hence !
k k,0

e (57) =t (G Y (5) = (e (55)) 0 (55)

S mod N2, Accordingly,

k

Furthermore, each odd coordinate can be written as § =Yt o
1+ & = det ( )51 -&, and therefore

1°
v ou’
fD N o) )Er € = f\D(w,s'w( |det|< 0))&---@
YJX ()
ou!
=v§/( ][ duolgu . 1>|det!( 0))
Yo J Xo uo
—’Y§/( ][ ’du6!9u,(1,...,1)>-
Yo/ Xo

It remains to show that the integral vanishes for summands with u # (1,...,1). Each
such summand can be obtained by derivating along an odd fibre coordinate, which means
ID(, &)V (fou)é" = V(w' ® 9 ) for some j and w € [Ber|y/y. Using again g—g}' =0
and the chain rule, ’ !

¢,
Vv (w/ ® 8{;) = Zk \% <L«.)/8£’]f & 8§k>

is obtained. The fibre integral of this Berezin density vanishes by definition, showing
that [Definition 2.2.6] does not depend on the choice of coordinates.

Now, extending the integral to cs manifolds in general can be accomplished by using
the standard argumentation with partitions of unity. O

2.2.8 Remark. The second part of the proof of [Proposition 2.2.7]is a slight modification
of the proof of [Lei80, Theorem 2.4.5].
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2.2.9 Remark. Let U be an open dense subset of Xy. Then it is clear by definition,
that fX w=y fX‘ w|y. This observation becomes very useful if one has non-global
coordinate systems, adapted to a global retraction, with dense domains.

2.2.10 Corollary. If w € I'cs(|Ber|y y ), the fibre integral of w does not depend on the
choice of .

2.2.11 Definition. Given an Oy-module presheaf £ over Yp, it is reasonable to define
the presheaf

int

Px € Bp Oy IBer[y/y

over X by taking tensor products of local sections. In particular if Y is considered to

be a relative ¢s manifold over Z, this yields ]Ber]l;% = pXO Berly,, ®, 0y Ber|y/y-

This presheaf can be considered as sub-presheaf of p X, 0 |Ber| X2

2.2.12 Corollary. The definition of the integral extends, thanks to its Oy -linearity, for
any Oy -module presheaf £ over Yy to a morphism of presheaves

N
Y]{{ Px€ Bp 0y ‘Ber‘l)?;y — Px €.

In particular, this takes the form

v
int 1
Y]{( s [Berly), — pxo Berlyz-

The following Fubini formula is easily obtained by checking it on coordinate neighbour-
hoods.

2.2.13 Corollary. Suppose X/Y and Y/Z to be relative cs manifolds and let v be a rel-
ative retraction on X/Y, such that vy is a relative retraction on px(X)/Z. Furthermore,
let w € T'(|Ber|y, ), such that {5 w € T'( ]Ber\ (x)/z)- Then

X/Z
][ ][ X Y][
ZJpx(X)

Suppose v to be a relative retraction on X/Y and let ¢: Z — Y be a morphism. If
vz is a retraction on pz(Z xy X), compatible with ~y wvia ¢, then the fibre product
Yz X4y ¥x (cf. [Definition A.11)) is a retraction on Z xy X. This leads to the following
proposition.

2.2.14 Proposition. The fibre integral is invariant under base change via @ in the

following sense
T2y i ¥
P o= ()
ZJ Zxy X YJX

forw e F(\Ber|i§>y).
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PROOF. Assume that X/Y admits a global fibre coordinate system z = (u, §), adapted
to 7. Due to the Oy linearity of the integral, it suffices to assume w = |Dx|v*(f)E".
Keeping in mind that vy o pry = pry, o(yz X, ), that prg( (x) is adapted to vz X,y 7,
and that g o vz = vy o ¢, the proof reduces to the purely even case, which is trivial:

£ (1ps e =

VZ Xy Y
- £ 0w @0z oy (b () prk(6)”

ZXyX

T ( f |dpr&0<xo>rpr&0<f>)
ZoJ ZoXyyXo

=0,1,.., 1)7}0%08< ][ |d$0|f)
Yo Xo

() :

2.2.15 Remark. The case of the relative c¢s manifold (Y x X)/Y is of special interest.
Let vx and 7y be retractions on X and Y. Then ;1;;{7)( does not depend on the
choice of vy. This can be shown as follows. Consider Y x X as ¢s manifold over Y x X

via the morphism idy x~x. Then

Ty XYX Yy Xidx Ty XVX
YJY xX YJY xXg Y xXoJY xX
by [Corollary 2.2.13|

Assume that X admits a global fibre coordinate system x = (u, ) = idy xz’, adapted
to vy X vx. In this case, the property of being adapted to vy X vx depends only on vx.
Therefore, O¢, o (74 x yx)* = 0 for any retraction ~4, on Y. This shows the independence
of v x, oy from the choice of 7y

Therefore, one may assume X = Xg. Elements of I'(Ber(y  x,)/y) can be considered
as I'(Ox)-valued densities on X in this case. Here, ;;/dexo is the Blochner integral of
such densities (cf. |AS14, Appendix B1]), which means in particular that it is independent
from the choice of ~y.

A similar argument shows that in this special case the assumption of ¢ being compatible
with the retractions on Y and Z can be dropped in [Proposition 2.2.14] Therefore, the

following definition is justified.

Z Z

2.2.16 Definition. Let  be a retraction on X, let w € T'(|Ber|%") and f € Ogxx. Con-
sidering f as a morphism S x X — Ap‘q, and setting f(s,z) == fo (s x x) = (s x z)¥(f)
for any s €7 S and x = idx, let

[ = 47w = o (S][Sf:pr&w)f) |

Here, vp and ~yg are retractions on 7" and S, respectively (not necessarily compatible).
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This definition is natural in T, i.e.

[ @it = ([ w@isen) o

X
for generalised points ¢ of T.

2.2.17 Remark. In the language of [Definition 2.2.16] |Corollary 2.2.13| takes the following
form:

[ wewm e = [ ww) [ w0

Y xX Y X

for ¢s manifolds X, Y and S, Berezin densities w € I'(|Ber| ) and @ € I'(|Ber|y,), and
retractions vx on X and 7y on Y.

2.2.18 Definition. For a relative isomorphism ¢: Z/Y — X/Y, the pullback of rela-
tive Berezin densities is obtained by requiring ¢(|Dz|f) = |D(z o ¢)|@*(f) for fibre
coordinate systems x. It rises to a morphism of sheaves ¢#: 5" |Ber|y Y~ |Ber|, -

2.2.19 Proposition. Given a relative isomorphism p: Z/Y — X/Y and relative retrac-
tions yx on X and vz on Z, compatible under ¢, the following equality holds:

'YZI:t 00¢
f @(W)Z][ o,
YJZ YJX

whenever one of both sides exists.
In view of [Definition 2.2.16 this takes in the case Y = * the form

[ P10 - / ™ @) f(s2),

Z

for f € I'(Osxx) and generalised points s of S.

For a relative morphism ¢: X/Y — X/Y, it might happen that ¢! is a differential
operator. Thanks to the p)_(}o(’)y—linearity of ¢! this means ¢! € Dx/y- The following
proposition relates the right action of Dy /y on Bery y to the pullback of Berezin densities.
It is the key ingredient in the derivation of boundary terms, occurring under changes of
retractions.

2.2.20 Proposition. Suppose ¢: X/Y — X/Y to be a isomorphism with o' € [(Dx/v)-
Then ©*(V(w ® @) = w for any w € I'([Ber|y/y)-

The proof of this proposition is based on partial integration, [Corollary 2.2.10| and
[Proposition 2.2.19,

Let 7,7 be retractions on X/Y, such that 7y = 74, and suppose that X admits a
global fibre coordinate system = = (u, ), adapted to 7. Then ¢f := ient (v —u)d;,
defines an isomorphism ¢: X/Y — X/Y, such that v and + are compatible via . Here,
v = 7"%(up) and (v —u)" == (vy —u1)" - - (vp — up)™ with p = dimy, Xo. In this setting
the following formula is obtained by applying Propositions [2.2.19] and [2.2.20]
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2.2.21 Corollary.

o4 v v
][ w= ][V(w®g0ﬁ)= ][w+ ][V v —u) ®8Z)
vJ/x yJXx vJ/x

ENq\{O}
if the right hand side exists.

By applying the Fundamental Theorem of Calculus, a global formula can be deduced
after fixing some notation. Given a family of boundary super functions 7 = (71,...,7)
and H € B(1),let Jg :={j e N} |ji =0< p; ¢ pu}. For j € Ny, set jl:= (j1l,. .., Jnd)s
where s|:= max(0,s — 1).

Furthermore, it can be shown that there exist D; € I'(Tx,y) for i = 1,...,n, such that
D;(mx) = 0 on U; N Uy, where U; is a neighbourhood of the boundary c¢s manifold, given
by 7;.

2.2.22 Prop051t10n Let w € Fcf(|Ber|X/Y) let p be a famzly of boundary functions on
Xo/Yo and ~,~ be relative retractions on X/Y with vy = ;. Then

/

R T

VX VI Xp HeB((p)) jeJy Y/ H

Here, D = (D1, ...,D,) is a family of derivations adjusted to v*(p), as described above.

2.2.23 Remark. The space X = Ak X Z, where Z is an ordinary c¢s manifold and
Ak = AF |Rk is of special interest. Let v be a retraction on A* x Z, let w € T'(|Ber|,)
and let d\ be the Lebesgue measure on A*. Furthermore, let f € Ler(Osxarxz). Then,
the proposition above takes the following form.

/7 (dA@w)(t,z)f(s,t,2) _/Ak d)\(t)/Zw(z)f(s,t, z)

Ak xZ
:lz; _ Zl(—l)ljl!ﬁijgl:o /Akl d)\(tg>l)/zw(z)(t—’y(t, ) f(s.t.2),
=105k jeEN ¥
where
Prcimo = 85;*1<1>:0 h 'afffl(l):o,

tos1 = (to-1(141)s - - > Lo—1(k))5

Jt Ji
(t — (¢, z))a<l (taq(l) — Pry—1(1y 0 y(t, x)) . (taq(l) — pry—1( 0 (t, z)) )

Here, it should be noted that the derivations can be pulled out of the integral due to
the compact support along the fibres. For the same reason, it is not necessary to fix a
retraction on Z.

2.2.24 Remark. In applications of [Proposition 2.2.22]it proves beneficial that the bound-
ary functions may be replaced by p; — ¢; for constants ¢; € R. This can be performed,
since the ¢; cancel each other out in the formula for boundary terms.
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2.3. Integration Along Polar Coordinates on A?/%

In this section, let DX = (—27)79|Dy| € I'(|Ber| 4p24) be the Lebesgue Berezin density.
Here, y = (v,n) denotes the standard coordinate system on API24. Let v be the retraction
associated with vy, i.e. v(2) = x5 = (21,...,1,) for x € API?(T) = Og (TP x O1(T)".
One should avoid to confuse the notation x5 € AP(T") with the underlying morphism
zo € AP(Tp). Furthermore, || - ||>: API22 — Al shall be given by

p q
Izl = a7 + 2> aproj-1Tpyo;
i= =1

for x e API?4. Using the positive square root, this yields
2
I-1= V"ol I: AZG! — AL
where Aﬂgq = Ap‘Qq\Rp\{g}.

2.3.1 Definition. A super function f € I'(Og, api2¢) for p > 0 will be called rotation-
ally invariant in the second component if there exists an f° € F((’)SXA1) such that
fs,x) = fo(s, |all), for (s,2) € S x ALY

Since || - || is not well-defined on A°9; the definition of rotational invariance has to be
modified in this case. Here, f is called rotational invariant if there exists g € I'(Ogya1),
with f(s,z) = g(s, ||z||?) for (s,z) €7 A%q, is needed. In this case, it is reasonable to
define f°(s,t) := g(s,t?) analogously.

2.3.2 Remark. In the case p > 0, the super function f° in [Definition 2.3.1] can also
be extended to a super function on S x Al which is even in the second component.
Such an extension is given by f°(s,t) := f(s,te1), where t €p A! and e; is the first
basis vector of RP. Due to the evenness in the second component, there exists an
extension g of f° o (idg x4/~ ) onto S x Al. This extension fulfils f(s,z) = g(s, ||z||?) for
all (s,x) €7 S x API%.

2.3.3 Lemma. Let f € Og, ppl2¢ be rotationally invariant in the second component. Then

! D\a)f(s,x) = %fw drre198f°(s,\/r), p>0,
arte ( )7q r= Ofo( 7\[)) p=0,

Here, one side exists if and only if the other exists.

PRrROOF. Applying Taylor-expansion to g from above yields

q q

1 1
gls,t+1) = gt'kﬁﬁzog(s,t—{— EDY k't'k(?tg(s t) mod ((¢')7T),
k=1"" k=1
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with ¢ = ¢/ = id,:. Hence,

q
1
Fls,y) = g(s. [lvll* + [In]1%) Z? (s, ol lInll*,

where y = idp|q, v = idgr, = idyo)q and (029)(s,t) == Og(s, t).

The expression ||n]|?* contains 7y - - - 72, if and only if & = ¢q. In this case, it equals
249!y - - - m2q. For p = 0 this means that the integral equals (—m)~20]_g(s,t). If p > 0,
the integral takes the form

¥
DA (5.) = (=) [ oo gl o)
AP|2q AP

Polar coordinates are easily used on this integral for p > 2:

pP—2q

27 2 (—1)4
(=m0 [ duotgts.uol?) = T [ totg(s, )
AP F(Q) Ai_
7TP—22q (_1)q / 271
= drrz="0lg(s,r).
re g(s,7)

The case p =1 is just as simple:

(7 [ avolg(s. ) =2-mt [ avoly(s.i?)
Al A+

= — / drr_%@?g(s,r). O
2 AL

2.3.4 Corollary. Let k < min(5,q) and f € T'c(O,p124) be rotationally invariant. Then
S

v v
DAWf(s,) = | DAW)F°(s. yl).
APl2q AP—2k|2q—2k
PRrROOF. Use and partial integration for k& < £. In addition, the fundamental
theorem of calculus needs to be applied if k = . O

2.3.5 Corollary. Let f € Fcf(OAp\zq) be rotationally invariant. Then
S

p—2q
%J‘Al dr P21 fo(s, 7)) p—2q>0,
¥ - pP—2q 2 °
L DAW)f(s,y) = e rﬂi ((z *\)[)2
API2q = (—7T) 3 (2q2 p) q pfo<s 7,) p— 2(] <0 even,
—1-2 =
(—m) 52 [y drr 30, 2 fo(s,V/F), p— 24 <0 odd.
+
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PrOOF. The only case where anything needs to be proven is the case of p = 0. Here,
Faa di Bruno’s formula yields

O (s, ) = 0 o5, Vi) = S0 2 gtk oy hokike (29)

T T ‘
k1+2ka=2q oy o

All summands except for ko = ¢ vanish. O

In the following, it will be useful to define some notation for coordinate systems x
on API7. Let & =¢j—1 for j even and & = —§;41 for j odd. If one considers " as
row vector and ¢ as column vector, then f €= -||? o& On the right hand side of this
equation, ¢ has to be understood as a morphism API27 — A02¢,

The first thing to do, in order to obtain some kind of polar integration formula, is
to define polar coordinates. With this aim, the symbol p := || - || will be used in the
following for the radial coordinate.

Let ug = (po, o) : Ry x| —m,w[x | -3, %[pﬁ — RP\ (] — 00, 0[xRP~1) be the ordinary
polar coordinate system,

V1,0 = pPoCOSU2,0COSU3Q - COSUpoO,
Vi 0 = posinu; g COSU41,0° - COSUpQ, ©=2,...,p—1,

Up,0 = PoSinuy .

Let o' be the retraction on Aﬂgq which is given by +/(¢) :== ~(¢) ||A|Y|f”)|| |‘|fth|f for t ep Appq

and set u = y#(ug) and § = m for j =1,...,2¢q. From now on, the coordinate system
x = (u, &) will be referred to as polar coordmates on API%4,

It is clear by definition that p* = [[v]|? + n*n = ||v]|* + p?€*¢, hence ||v|| = py/T —E*E.

Furthermore, the linearity of v; ¢ shows v;(t) = v;o(v(t)) = ()l vio(7/(t)), and therefore

Il
v = @fy’ﬁ(viyo) Keeping in mind that v#(pg) = ||v||, this proves

vy = py/1 —E*Ecosug cosuz - -+ COS Up,
v; = py/ 1 —E&*E sinw; cosuipq---cosuy, @=2,...,p—1,
vp = py/ 1 =X sinuy,

nJ:p£j7 ]:1372q

2.3.6 Lemma. The Berezinian of the coordinate change to polar coordinates is

|Ber| (gi) = pP 172 cosug cos® ug - - - cosP % uy(1 — )T
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PRroOOF. Note that 8{9&7;5 = —2¢7, hence CAVA S S Writing |A| := |Ber|(A), this

851 1—£*
vields &
v1 V2 Yp
sin uo cgs U2 r 51 52‘1
“Ylcosus v2 sin ug 0 0 0 e 0
oy 0
| = sinu sinu, cosu
Ox B cosuf7 —Up— cosu];7 Up sinu: 0
51‘”1 ffvp 0
1-&°¢ &g P
ggqvl fgql Up
1 1 1 & - oy
1 csfu gL 0 0 --- 0
sin® ug
C1o9g sinug  sinwy,|| 0
=p V1---Vp cos? uy
COS U9 cosup || —1 e | ey e o --- 0
& &g
1 1
=7 —et ! 0
§24 5211‘1*
=6+ e U 1
1 0 0 &1 &2q
-1 1 1 0 0
sin? ug
0
_ 12y sinug  sinu,
P ! Peosus  cosuy,|| —1 0 o 0 Sin%up o --- 0
31
iy 0 0 1 0
&
1_5‘15 0 0 0 1
1 &1 - Sy
31 1 0
1_ *
= pP 12 cosug - - - cosP 2 up(1 —5*5)% g :
&
ez 0 1

:pp_l_Qqcosu;g---cosp_Qup(l—£*§)¥. O
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2.3.7 Definition. The super sphere is the sub c¢s manifold of API2¢ defined by the
boundary function p — 1. This means that the T-points of SP~127 are given by

se=tRa(r) = {5 ep AP | |15l = 1} .

Abusing notation, = (4,§) will be used for the coordinate system Lgp 1124 (Z). As
well, v/ will be used for the retraction on SP~2¢ induced by 4. Of course, Z is no
global coordinate system on SP~12¢, However, it is defined on a subset of SP~! whose
complement has measure 0 and it is adapted to the global retraction . Therefore, & can
be used for integration on SP~12¢,

2.3.8 Corollary. The induced Berezin density on SP~124 is given by
DS = D)\|Sp_1‘2q7p_1 = | D(it, &)|(—27) "% cos ug cos® uz - - - cos? L u,(1 — &7
on the open dense subset, where T is defined.

With a similar calculation as in the proof of it is possible to calculate
the volume of the super sphere:

Vol(sP~12a) .= / DS
Spr—1[2q
P pP—2q
2

I or 272

N2 T(3) 1)

(—2m)92997_, (1 — r) "= Vol(SP71)

—7q

In particular, the volume vanishes for p < 2¢ even. This has recently been obtained, by
different methods, in [Grol3].
From now on let f € I'cf(O,4i24) and p > 0. Then
T

¥ ¥
DX(y)f(t,y) = / (dX\® DS)(r, s) rp72q71f(t, rSs).

APl2q AiXSp—1|2q

This is achieved by applying [Proposition 2.2.19] where the isomorphism is given by
Al x SP~ 112g A’;Qq, (r,s) — rs. The retraction ~ is identified with the retraction
(r, s) (rllssll, Toc ”) However, this retraction cannot be extended onto A x §P—1124,
Therefore, in order to apply the boundary term formula in the form of [Remark 2.2.23] a
shift away from 0 has to be inserted:

" DAW(ty) = lm ( /A  drret /S o DS (ts)

AP|2q e—0t

1 pP—2q— _ _
=Y okt [ DS r\|so|r>kf<t,rs>) (23)

k>0

Here, Al = A1| .
The integrals f o 1|2q DS(s)(1 — |sgl)*f(t,rs) yield super functions which are well-
defined on A x SP~12¢_ If p is bigger than 2g, then 8 rp_Qq_Hk = 0.
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2.3.9 Proposition. For p > 2q, the polar integration formula takes the form

DA ) = [ ar [ DS )

.
AP|2q
For the cases where p < 2¢ further efforts need to be made. Taylor’s formula (2.1.30)
applied to f at 0 yields
2q9—p 1. '
f=> f+g, =) 4o g€<y]‘\j|:2q—p+1> :
— 4! F(O p‘gq)
1=0 li|=L T

The first thing to notice is that f;(¢t,7s) = r'fi(t,s) and f(t,—s) = (—=1)' fi(t,s) for
generalised points (t,7,s) of T x AL x SP=1124 Therefore,

[ .. PO~ Il 0 =0

if [ is odd. This is due to the fact that DS is invariant under the morphism s — —s on
SP=1124 since DA and p are invariant under the morphism API24 — API24 22— —z. In
addition, g(t,7s) = rP=29T1G(t, r, s) for some § € T' (Opy g1y gp-1124), hence

lim 87]5:81 / DS(s)rp_Qq_l(r — r||56||)kg(t, rs) = 0.
Sp—1|2¢q

e—0

Putting these considerations together, Equation (2.3)) reduces to

Y
DA@w)f(t,y) = lim ( /
Ap|2q e—0t A1>E

L k1 pog—
-Y okt DS(S)(l—|S()||)kf21(t,8))-
: Sp—1]2q

dr rP=2a71 / DS(s)f(t,rs)
Spr—1|2q

k>021<2g—p
Since — Oz yp=2a—1rk+2l — ﬁ(—l)k(%_g_zl)ep_z‘”zl, the second line reduces
to
B S_Hquprl -1
o [ ps Iso s). 2.4
)y [ apse g (2.4)

21<2q—p

Here, % shall be understood as log(||sg||)- ,
-
2

Now, it is time to recall that DS = |D(u,§)|h(1 — £*¢) 2 with some super function
h, satisfying h = 4"%(hg). Furthermore, ||s5|| = v/T — £*€(s). The integral of

DSVT=&& " E (o) = [D(@, ) [h(1 — £, (for)

vanishes, since the order of Lgp,mq( for) in £ is at most 2. If p is even, the integral of
DSLﬁSp_1|2 . (f21) vanishes for the same reason, showing that in this case only the summand
for 21 = 2qg — p remains.
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2.3.10 Proposition. For p < 2q with p even, the polar integration formula is given by

Y
= —2¢—1
g DA () = /A . dr P2 /S o DSE)f(trs)
32q P
g /Sl DS(s)log(||sg])f (¢, 7s)-

ProoF. This follows directly from the fact that faq_p(t,s) = 2q Lt rs). O

(2q p)'
2.3.11 Remark. It is important to note that the integration formula in[Proposition 2.3.10)|

only exist in this iteratively written form. The integrand on the right hand side is not
integrable over Aﬁr x SP~124 gince negative powers of r would let this integral diverge.

2.3.12 Corollary. Applying|[Proposition 2.3.1( to any rotationally invariant function
and comparing the result with|Corollary 2.5.5 shows

/Sp_mq DS(s) log(||sgll) = (=)= <2q2—p>!‘

2.3.13 Proposition. For p < 2q with p odd, the polar integration formula takes the
following form.:

p—1-2¢q

g P24y (1) | 20+1-p
DA (1) = -2 0 [ DS

2 2 1
APl2q A+

PRrROOF. It suffices to take a closer look at
DX(y)f(t,y) = lim / dr rp_2q_1/ DS(s)f(t,rs)
AP|24 e—0t Al>a Sp—1|2q

cp—2q+20 52l

i Z p—2q+2l (;l:)('] /Sp—lzq DS(S)f(t’TS)) . (2.5)

21<2q—p

The super function f°, given by f°(t,r) == m Jsp—112¢ DS(s) f(t,75), is even in
r. Therefore, (t,y,s) — f°(t, ||y, s) can be extended to a super function on T x API%
which is rotationally invariant in the second component. Replacing f(¢,y) by f°(¢, ||y|)
leaves the right hand side of Equation invariant. Therefore, [Corollary 2.3.5| proves
the claim. O

2.4. Lie cs Groups, Symmetric Spaces and their
Decompositions

2.4.1 Definition. A Lie cs algebra is a c¢s vector space g together with a C-bilinear map
[,]: 9c X gc — gc, such that the following conditions are satisfied
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* [95:90] € 9o,
o [z,y] = (D), 2],
o [z, [y, 2] = [[=,y], 2] + (—=1)1W [y, [z, 2]

for homogeneous z,y, z € gc. For this, recall that gc = (gg ® C) @ g1.

A morphism of Lie cs algebra is a morphism of cs vector spaces A: g — b, such that
A(z), A(y)] = M([z,y]) for all z,y € g. The category of Lie cs algebras will be denoted
Liecsalg.

Note that the map A([-,-]): A(g) x A(g) — A(g) induces a Lie algebra structure over
['(Oggrp) on S-points of A(g). Accordingly, A(\) behaves as I'(Oggp)-Lie algebra
morphism on S-points for a Lie cs algebra morphism .

2.4.2 Definition. A Lie cs group is a group object in the category csMan (cf.
tion A.9). The category of Lie cs groups is denoted LiecsGrp. For a Lie cs group G,
one uses the corresponding fracture letter g for the tangential space T.G. The linear map
T.p for a morphism ¢ of Lie cs groups is denoted dep.

In the following, G will always denote a Lie ¢s group with multiplication m, neutral
element e and inversion i. Since morphisms x — X for c¢s manifolds X are always of
the form f — f(x) for some = € Xy, it is indeed reasonable to speak of e as the neutral
element.

2.4.3 Remark. Recall Remark 2.1.15 Since G(A%) is an ordinary manifold, it can be
considered as Lie group with the induced maps from e, m and ¢.

2.4.4 Proposition. There are unique morphisms
Adg: G x A(g) = A(g), adg: A(g) x A(g) = A(g), expg: A(g) = G,

such that the induced morphisms on super points are the adjoint representation, the Lie
bracket and the exponential map in the classical sense. In particular, the exponential map
is a local isomorphism at 0 € g5. Furthermore, there is a unique Lie cs algebra structure
on g such that ad = A([,]).

To actually prove the existence of these morphisms much more effort is needed,
especially for the exponential map (cf. [GW12,/CCF11]). If convenient, subscripted G
and g will be omitted in notation and exp(z) will be abbreviated as e* for x €5 A(g).
Furthermore, to avoid an excess of notation, the symbol g will also be used for the affine
space A(g) of g as long as this is clear from the context. As well, for a tangential map
dp the map A(dy) will be denoted de.
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2.4.5 Corollary. The above defined morphisms are compatible with morphisms of Lie cs
groups ¢: G — H, i.e.

Adgy (p(9), de(x)) = dp( Ada(g, x)),
) = (),
[dp(), dp(y)] = de([z,y])

for g €s G and x,y €g g. In particular, dp is a morphism of Lie cs algebras. Moreover,
the following conditions are satisfied:

Ad(gh, x)
eAd(g,7)

,Ad(h, z))

Ad (
=geg!,

1

;

for g,h €5 G and x,y €g g.
2.4.6 Corollary (Baker-Campbell-Hausdorff formula). Consider the morphism

%= C: Ag)|y x Alg)ly — Ag),

given on S-points via

—1)k dz)Pt (ady)? - - - (adx)Px (ady)9- (adz)™
zey=c+ 3 (=1) (adz)”" (a y)' '(a fv') '(a'y) (adz)
keom>0 k—l-l q1+...+Qk+1) P1iq1: - - PeQk-m:

pz+‘11>0

Here, U is the subset of g5 on which the classical Hausdorff series converges. Then

exp(z * y) = exp(z) exp(y).

PROOF OF COROLLARIES [2.4.5] AND 2.4.6] Some of the expressions to check are only
well-defined if the topology on I'(Og) is understood. A summary of this topic can be
found in |[AS14, Appendix C]. Then, it suffices to check these equations on super points,
where they are evident. O

2.4.7 Corollary. G = Gy x g7 via the isomorphism Go(S) x g1(5), (g, x) — ge* as cs
manifolds. Similarly, (g,z) — e®g defines another isomorphism.

PROOF. Let the morphism be denoted . The tangential map of ¢ at e is given by
g0(S) x 91(5) — a(), (5, x1) = 25 + 271

Since this is an isomorphism, the same is true for ¢ on a neighbourhood of e. Now, the
left Go-invariance of ¢ immediately proves the claim. O
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2.4.8 Definition. A retraction v on a cs Lie group G is said to be Gg-invariant if
~v(gh) = gy(h) for all g €5 Gy, h €5 G.

2.4.9 Corollary. Fach Lie cs group admits a unique Go-invariant retraction vyq, compat-
ible with the standard retraction 4 on g under the exponential function. This retraction
will be called the standard retraction on G. Moreover, these retractions are compatible
under morphisms of Lie cs groups.

In general, standard retractions are not morphisms of Lie cs groups.

PROOF. In view of[Corollary 2.4.7] it suffices to set yg(ge®) == g for g €5 Go, z €5 g7. O

2.4.10 Definition. A cs group pair (G, g) consists of a Lie group Gy, a Lie cs algebra
g and a representation Ad: Gg — Homy,jecsalg(8, 9), such that the following is true

e gg is the Lie algebra of Gy,
. Ad\Gox% is the adjoint action of G on gg,
o dAd(z)(y) = [x,y] for z € gj and y € g.

A morphism of cs group pairs (¢g,dye): (Go,g) — (Hp,b) consist of a Lie group mor-
phism ¢g: Go — Hg and a Lie ¢s algebra morphism dy: g — b, such that the restriction
of di is the differential of ¢y and

Ad (p(g), dep(z)) = d(Ad(g, )
for g € Gy and x € g. The category of cs group pairs will be denoted csGrpPr.

2.4.11 Proposition. The categories LiecsGrp and csGrpPr are equivalent via the
functor which sends a Lie cs group G to the pair (G, g) with AdG‘Goxg as representation
of Go on g. Morphisms ¢ are sent to (¢o,dy) by this functor.

A proof for this non-trivial fact can be found in |[CCF11} Chapter 7].

2.4.12 Remark. [Proposition 2.4.11] shows in particular, that a morphism of Lie cs
groups is an isomoprhism if and only if ¢g and dy are isomorphisms.

2.4.13 Definition. A complex Lie super group is a group object in the category of
complex super manifolds.

The complexification of a Lie c¢s group G is a complex Lie super group G¢ together
with a morphism of group objects jg: G — G¢ (in SSpc) with the following universal
property: If H is a complex Lie super group and ¢: G — H is a morphism of group
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objects, then there is a unique morphism of complex Lie super groups (¢, such that the
following diagram commutes:

Gc
The complexification of a Lie ¢s group is unique up to unique isomorphisms.
2.4.14 Proposition. The complezification of a Lie cs group always exists.

SKETCH OF THE PROOF. This can be easily verified by using the fact that there is also
an equivalence of complex group pairs and complex Lie super groups. In particular, the
complexification of a Lie ¢s group G is given by the complex group pair (Go c, gc), where
Go,c is the complexification of the underlying group. Since the sheaves of super functions
are given by

Og = HomU(g(]‘C) (U(Q(C)’ COO)7 OG@ = HomU(g(]‘C) (U(g(C)a cw)a

(¢f. [CCF11, Proposition 7.4.9]), the morphism jg can be defined to be the inclusion
of the latter into the former. The underlying map jg0: Go — Go,c is just the ordinary
inclusion. O

2.4.15 Example. Let glz(p|g) be the complex super vector space of square matrices
written as blocks (A B) of size p + ¢ with entries in C. The grading on glc(p|g) is given by
these blocks, i.e. gl¢ 5(plg) = glc(p) © glc(g). The space gle(plg) is the complexification
of gl.s(plg) == (gl (p) ® 8lr(q)) ® glc(plg);- The cs vector space gl.,(plg) is turned into
a Lie cs algebra by setting [z,y] = xy + (—1)|z‘|y‘yx for homogeneous elements x and y

of glc(plq)-
Furthermore, let

GLc(plg) = Ac(glcs(p\q»’ GLe(p)xCLe(a)’
GL¢s (p‘Q) = A(g[cs (p‘Q)) ‘GLR(p)XGL]R(q) :

Consider the bilinear map : glz(plq) % glc(plg) — glc(p|g) obtained by matrix multipli-
cation. This map induces a multiplication map m on GL¢(p|g) and GL¢s(p|g), turning
these spaces into a complex Lie super group and a Lie c¢s group, respectively.

Let S be a ¢s manifold. According to [Definition 2.1.12] and [Corollary 2.1.14] S-points
of these spaces can be seen as block matrices (é LB,), where the entries of A and D are
in I'(Og) and the entries of B and C' are contained in I'(Og 7). In the case of gl (plq),
the entries of these matrices are additionally real valued, whereas in the case of GL¢(p|q)
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and GL¢s(p|q) they have values in GLc(p) x GLc(g) and GLr(p) x GLr(q), respectively.
It is clear, that the multiplication map is on S-points given by matrix multiplication, as
well.

These spaces satisfy indeed the fact that gl.,(p|q) is the Lie cs algebra of GL.s(p|q)
and that glc(p|g) is the Lie c¢s algebra of GLc(p|q), since this is the case on super points.
Furthermore, in both cases Ad(g,r) = grg~! and exp(z) = >.3°, %:r’ for S-points g and
x.

Moreover, GL¢(p|g) is the complexification of GL¢s(p|q).

The fact that S-points of GL.s(p|q) are precisely those of GL¢(p|g) with values in
GLr(p) x GLgr(q) can be generalised.

2.4.16 Proposition. The generalised points of a Lie cs group G can be obtained as
G(S) ={s € Gc(5) |50 € Go(S0)}
for any cs manifold S.

SKETCH OF THE PROOF. The following diagram commutes:

A(g) — A%(g)

exXpa \L l eXPGe

I Jc G(C

Therefore the claim can be proven locally, using [Corollary 2.1.14] The general assertion
is obtained by shifting with elements of Gy and gluing. 0

The following explanations follow mainly [All12,/AS13].

2.4.17 Definition. A symmetric super pair is a pair (g, §), where g is a Lie c¢s algebra and
¢ is an involutive automorphism of g. The decomposition g = € ® p, with £ := ker(idg —0)
and p = ker(idg +6) is called the polar decomposition of (g,0).

Let (G, K) be a pair of Lie ¢s group G and a sub Lie c¢s group K together with an
involution @ on is Lie cs algebra g, such that € is the Lie cs algebra of K. Then (G, K) is
said to admit a global polar decomposition if the map

Kxp— G, (k,x) — ke® (2.6)
defines an isomorphism of ¢s manifolds.

2.4.18 Proposition. A pair (G, K) admits a global polar decomposition if and only if
this is true on the underlying pair (Go, Ko).
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PROOF. The morphism in Equation (2.6) is always a local isomorphism, since its deriva-
tive is given by ¢ x p — g, (y,x) — y + x. The claim follows from O

2.4.19 Definition. A symmetric super pair (g, 0) is called reductive if the following is true:
g is a semisimple gg-module, 3(g) C g5, and there is a super symmetric non-degenerate
g-invariant form b € Mult(g, g; R).

An Abelian subalgebra a C pg is called an even Cartan subspace if a consists entirely
of semi-simple elements of gz and p = [¢,a]. A symmetric super pair, which admits an
even Cartan subspace is said to be of even type.

A reductive Lie symmetric super pair which satisfies gc = 3(gc) @ [gc, gc] is called
strongly reductive.

2.4.20 Definition. Let (g,0) be a reductive symmetric super pair of even type with
even Cartan subspace a. Then

g=maae @ g (2.7)
a€Y

where for a € a*
¢" = {vegl(vhea): [hal —alh)e), ©={aca \{0}|g" 0},

and m := g’ N €. Of course, having such a decomposition for Abelian a C py already
implies that a is an even Cartan subspace.

Elements of ¥ are called restricted roots. ¥ itself is said to be a root system. The
elements of

5 = {a €\ {0}] g5 0}

for j € Zg are called even/odd, respectively.

A subset X7 C ¥ is called positive if STU(=XT) =Y and TN (Xt + ) C 2. If 2F
is fixed, restricted roots o € X1 are called positive. In this case o € X1 will be abbreviated
a>0and a € =X by a < 0. Positive restricted roots a for which 5 is no restricted
root are called simple. The Element p := %Za>0 mqa € 0¥, where m, = sdim g%, is
called the Weyl vector of ¥+.

By setting n := @,-0 9% and n:= P, 9%, Equation takes the form
g=némdadn.
Furthermore, there is the so-called Iwasawa decomposition of g:
g=tPadn

Let E;r =3t N ;. Then Yj is a root system on gz and Eg is a positive root
system on gg and ng = nNgg = B, cx+ 95, hence g5 = & & a @ ng is a classical Iwasawa
decomposition. 0
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It makes sense to define the centraliser of a in K to be the sub Lie c¢s group of K,
associated to the c¢s group pair (Mg, m), where My := Zk,(a) is the ordinary centraliser.
Note that M indeed centralises a, since Ad(me”,h) = Ad(m, [z, h]) = h for m €g G,
r €ggyand h €g a.

2.4.21 Proposition. Let G be a Lie cs group with an involution 6 on g, such that (g,0)
is reductive and of even type. The morphism

N x M x Ax N+ G, (i, m,a,n) —> nman

is an open embedding if this is true for the underlying spaces. Here A = exp(a). Fur-
thermore, N and N are the Lie cs groups associated with the cs group pairs (exp(ng),n)
and (exp(ng),n).

2.4.22 Proposition (Global Iwasawa decomposition). Let G be a Lie cs group with an
involution 0 on g, such that (g,0) is reductive and of even type. Furthermore, let K be a
sub Lie cs group of G, such that its Lie cs algebra equals k. Then, the morphisms

KxAxN—G, (k,a,n) — kan,
N xAx K — G, (n,a,k) — nak

are isomorphisms if and only if this is already true for the underlying morphisms.

PrOOF OF PROPOSITIONS [2.4.2T] AND [2.4.22] The morphisms induce isomorphisms on
tangent spaces, which proves the assertions. ]

2.4.23 Definition. If G admits an Iwasawa decomposition G = K AN, it is common
to write g = k(g)e”9n(g). This defines a morphisms of cs manifolds k: G — K, as
well as H: G — A(a) and n: G — N. Then the decomposition of g = n(g)eA9u(g)
with respect to the NAK-decomposition satisfies u(g) = n(gfl)fl, A(g)=—-H(g™)
and u(g) = k(g~")~

2.4.24 Remark. The morphisms from the definition above satisfy the following equa-

tions:
H(gm) = H(g), (2.8)
k(gm) = k(g), (2.9)
H(ga) = H(g) + H(a), (2.10)
H(gh) = H(gk(h)) + H(h), (2.11)
k(gh) = k(gk(h)), (2.12)

forall geg G,a€g A, meg M andn €g N.
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These can seen by

kanm = (km
ga) g)ef“g)n > ) = H(k(g)e"Da(a " n(g)a)) = H(g) + H(a),
gh) = H(gk(h)e" Mn(h)) = H(gk(h)) + H(h),
) )e(@)

(gan = k(k(g)e"Wa(a™ n(g)a)n) = k(g) = k(gh) = k(gh(h)).

In the first equation, the fact Ad(m,n) €g n for all m €g M, n €g n was used.

2.4.25 Definition. Let G be a Lie cs group and X a c¢s manifold. A left action of G
on X is a morphism «: G x X — X, which induces a left action of G(S) on X (S) on
S-points.

An action « is said to be transitive if the morphism o, = a o (idg,z): G — X is a
surjective submersion for one (and hence for all) z € Xo = X (*). If X admits a transitive
G-action, it is said to be a symmetric superspace. The underlying manifold of a symmetric
superspace X is a symmetric space. If this symmetric space happens to be non-compact,
X is also said to be non-compact.

2.4.26 Proposition (|[CCF11, Proposition 8.4.7]). Let a: G x X — X be an action.
Then the stabiliser G, == a;!(z) = G xx * of ¥ in G exist and is a closed subgroup of
G. The generalised points of G have the form G5(S) = {g €s X | gxr = z} and the Lie
cs algebra of G is given by the kernel of Toa: g — T, X.

2.4.27 Definition. Let G be a Lie ¢s group. A sub Lie ¢s group H of G is said to be
closed in G if this is the case for the underlying Lie groups. In this case, one defines
G/H = (GO/HO>OG/H) with

Oc/u(U) = {f € O/ (pc(U)) | (mlen ' (F) = P} (2.13)

where pgo: Go — Go/H) is the classical projection and p;: G x H — G is the projection
onto the first component. A canonical morphism pg: G — G/H is easily obtained via
pe(f) = f.

After proving that G/H is indeed a c¢s manifold, it is clear that super functions on
G/H are precisely the super functions f on G which satisfy f(gh) = f(g) for g €5 G and
h €s H. Moreover, the map pg turns G into a ¢s manifold over G/H.

Similarly, one can define the c¢s manifold H\G with underlying space Hy\Go by

requiring (m|gxc)f(f) = pg(f) in Equation (2.13)).

2.4.28 Proposition. The superspace G/H is a cs manifold. Moreover, for any right
H -invariant morphism ¢: G — X there exist ¢p: G/H — X, such that the following
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diagram commutes:

a—2 > x

s

G/H

If  is submersive, so is ¢. Additionally, if H = ¢~ () for x € X, then ¢ becomes a local
isomorphism. In particular if G acts transitively on a cs manifold X then X = G/G,
for any x € Xg.

Similar statements are true for H\G.

For the proof of this proposition, consult [CCF11, Chapter 9].

2.4.29 Remark. The multiplication map on G induces a transitive left G-action on
G/H and a transitive right G-action on H\G. The inversion morphism i¢ induces an
isomorphism G/H — H\G. This isomorphism is left G-invariant, considering the right
action on H\G as left action (i.e. g.x = z.g71).

2.4.30 Corollary. In case of an existing global Iwasawa decomposition on G, the mor-
phism G — N x A, given by g — (n1(g), eA(g)) for g €s G, induces an isomorphism

G/K — N x A,

since this is the case on the underlying spaces.

2.4.31 Corollary. In the situation of |Proposition 2.4.21), let M AN be the sub Lie cs
group of G given by (MoANy, m @ a ®n). The right M-invariant morphism G — K/M
induces an isomorphism G/M AN — K/M due to[Proposition 2.4.28. Moreover, N is
embedded in G/MAN. This leads to an embedding N — K /M which will be denoted k,
too.

2.4.32 Proposition. The morphism
Kx AT — G, (k,a)— g

induces an open embedding with dense image K/M x AT — G /K. Here, AT = exp(a™),
where

at={heal(Vae ES‘) ca(h) > 0}.

Since this fact will only used to outline an idea in its proof will be omitted.
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2.5. Integration on Lie cs Groups and Symmetric Superspaces

In this section, invariant Berezin densities on symmetric spaces (as introduced in [AH10])
will be explained. Afterwards, integration formulas induced by the decompositions from
the preceding section will be discussed, following [All12].

2.5.1 Definition. Let a: G x X — X be an action. Considering the relative c¢s manifold
X¢ /G, a Berezin density w € |Ber|y is said to be G-invariant if

(o, idx)* (pri (w)) = pr (w).

2.5.2 Lemma. A Berezin density w € I'(|Ber|y) is G-invariant if and only if for all
feTl(Ox,) and all g € G, the following is true:

[ w@ittgn = [ w@i@).
X X

It has to be noted that the condition of f being compactly supported along the fibres
cannot be omitted, since in general no retraction of the form 7, x yx is compatible with
ve X vx under («,id). However, there is a weaker version where this is possible.

2.5.3 Corollary. Let w € I'(|Ber| ) be G-invariant and v be a Go-invariant retraction
on X. Then

/,Yw(:c)f(ga:) - /Ww(w)f(w)

X X
for all f € I'(Ox,) and all g €5 Gy.

From now on, the integral on a Lie ¢s group G will be considered to be the one coming
from the standard retraction on G unless something else is stated.

2.5.4 Definition. Let G be a Lie ¢s group and H a closed subgroup. If G/H admits a
G-invariant Berezin density, it is unique up to multiplication by a constant. In this case,
G/H is called unimodular.

Similarly, G is called unimodular if it admits a Berezin density which is invariant with
respect to the action of G x G on G, given by (g1, 92).9 = 91995 ! on generalised points.
This is equivalent to the statement that the symmetric space (G x G)/G is unimodular.

The invariant Berezin density on a unimodular Lie ¢s group G will be denoted by Dg
(g being the small letter for ). Accordingly, the invariant Berezin density on G/H will
be denoted Dyg.

2.5.5 Proposition (|All12, Proposition A.2]). Let G be a Lie cs group and H a closed
subgroup. Then

1. If G and H are unimodular, then so is G/H.
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2. If G and H are unimodular, then so is the Lie cs group G X H.

3. If g is nilpotent, Abelian, or strongly reductive, and Gg is connected, then G is
unimodular.

2.5.6 Proposition (JAH10, Corollary 5.12]). Let G and H be unimodular. Then

LDgf(s,g)Z/G/HDQ/Hth(Sth)

for f € T'(Oqy), assuming that the densities are normalised accordingly.

2.5.7 Proposition. Let G be unimodular. Then

4 1— e—ad:c

exp*(Dg) = DX |Ber| | ————

pf(Dg) = DA Ber| [~

on the open neighbourhood U of O where exp is an isomorphism Here, DX is an adequately
normalised Lebesque Berezin density on g, x = idg and 1 1=¢ denotes the formal power

series Y22, ((;Zl)),

In particular, this shows exp?(Dg) = DX if g is nilpotent (or Abelian,).

PrOOF. For x €gg|,; and a sufficiently small neighbourhood V' of 0, the morphism
C(z,-) Esxg|, 9 satisfies

adx
1— e—adm

d(C(z,-)) =

on S x g. This is true, since the right hand side converges (similarly to e~24%) and the
equation is true for super points of S x g by the classical theory.

Now, let expf(Dg) = DA p for some p € O,4(U). Possibly after shrinking V, one may
assume C(—x,y) €sxr gy forall y €7 g|y,. Then for any compactly supported f € Og(V)
the following is true:

= exp lg) = exp e ®
/gDApf—/GDgf( p~'g) /GDgf( p~(e™%g))
= /Dk(y) p() f(C(—x,y)) = /Dk(y)lBerl (dC(z,)p(C(z,y)) f(y).
g g

Here, the identity C(x, C(—x,y)) = y was applied. Since f was chosen arbitrarily, this
implies p(y) = |Ber| (dC(z,-))p(C(z,y)) for y €7 g|,,. Setting y = 0 shows

1_€7adx
:B _
(z) |err< = )
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hence the claim.

If G is nilpotent, U can be chosen to equal gz. Moreover, adx is nilpotent for any

T €g @, hence ljfggdz = 1+ n, where n is nilpotent. Then

Ber(l + Tl) = 6str(10g(1+n)) = ezi>0 %(—1)n+1 str(n?) = 60 =1

concludes the proof. O

From now on, let G be a Lie cs algebra such that the decompositions from
exist and such that the subgroups K and M are unimodular. In particular, this implies
that G and G/K are unimodular.

2.5.8 Proposition. The pullback of the invariant Berezin density Dg via the Iwasawa
isomorphism is Dk @da @ Dn (up to normalisation). In particular,

/GDgf(579):/KDk/Ada/Nan(S,kan)ezg(loga)
for f € FCf(OGs)-

2.5.9 Lemma ([AS13, Lemma 4.2]). Let f € U'ef(Ogxrnr) and g € Uep(Opyg/nr)- Then
/ Dk f(s, k(g7 k))g(t, k) = / Dk f(s,k)g(t, k(gk))e™2eH k),
K K

The proof of this lemma in |[AS13, Lemma 4.2] is only performed in the case S = x,
generalising it is straightforward.

2.5.10 Corollary. Let f € T(Ogxg/nr). Then

Dk f(s. k(g™ "k)) = D f(s, k)e2eH(oh)
K/M KM

In the classical case, this equation follows directly from by using

However, it is not completely trivial in the super setting, since the volume of
K might vanish.
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PrROOF OF [COROLLARY 2.5.10L Let h € T'o(Ok), such that [, DIh(l) = 1. Then
Dik f (5,k(g™"F)) :/ DIh() Dicf (s, k(g~'1k))
K K/M
:/ Dl;:/ DIk f (s, k(g7 1)
K/M K

= / Di: / DUR(k(gl)k™) £ (s, [)e~2eH )
K/M K

K/M

= / DI [ Din(k(glk)k™") f (s, lk)e2e(H (610
K K/M

:/ Dl Dl%:h(k(gk)k‘ll)f(&k)e—29(H(gk))
K K/M

= Di: f(s, k)e~2e(H(gk) / DIh(l)
K/M K

by the following arguments: In Lines 1 and 5, left K-invariance of Dk is used. Lines 2
and 4 utilize right K-invariance of DI. In Line 3, is applied. In the last line,
the left K-invariance of Dk is used. Furthermore, it should be noted that the integrand
in Lines 4 and 5 is indeed right M-invariant due to Equation . O

2.5.11 Proposition ([AS13, Proposition 4.4]). The pullback of the invariant Berezin
density Dk on K via the open embedding k from |Corollary 2.4.31] is Dn e 2e(H(m))

2.5.12 Remark. Note that the standard retraction on N is in general not compatible
with a global retraction on K/M wvia k. This means that in order to obtain

. i B
(Vf x T(Osxr/m)) : Dk f(s,k) :/_ D f (s, k(n)) e 2eHm),
K/M N

~ needs to be chosen in the right way. Otherwise this equation is only true for those f
that have compact support along fibres.

2.5.13 Proposition. Recall the .embedding from [Proposition 2.4.39. The pullback of D§
via this morphism is given by Dk dad(a) where 6(a) = [[,~0sinh™ a(loga).

Since this fact will only used to outline an idea in its proof will be omitted.

2.5.14 Remark. For the morphism in [Proposition 2.4.32) a similar problem as in
Remarks [2.5.12] occurs. Given a global retraction v on G/K, the pullback of v is in
general not of the form 7/ x id 4+. This means, that a integral formula of the form

o Dg f(s,g9) = /K/M Dk /A+ da f(s,ka)d(a)
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would be wrong, unless boundary terms are added (cf. [Remark 2.2.23| [Proposition 2.3.10]
and [Bun93]). Although, explicit formulas can be given for such boundary terms, there is
right now no know general formula, which is also manageable in applications.







3. Spherical Super Functions

A key ingredient in the study of non-compact symmetric superspaces G/K are the
so-called spherical super functions. These are the super functions ¢y for A € ag. which
are given by

Palg) = DI e(A—0)(H(gk))
K/M

for g €5 G. Thanks to Equation , this is well-defined. Due to the left K-invariance of
H and the left K-invariance of Dk, the sperical super functions are K-bi-invariant super
functions on G/K and therefore uniquely determined by their values on A. Especially the
analysis of the asymptotic behaviour of spherical super functions, described by Harish-
Chandra’s c-function, has a vast amount of applications. In the c-function
will emerge in the formula for the inverse Fourier transform.

In order to obtain a general formula for the c-function, one has to execute a procedure
called rank reduction (c¢f. [AS13]). This reduces the problem to certain spaces of low
rank. Here, the rank is the dimension of a in the root space decomposition.
is devoted to the derivation of the c-function in these low rank cases. In an
expansion of ¢y will be obtained in one of these cases. This expansion plays an important
role in the proof of the Fourier inversion formula.

3.1. Harish-Chandra’s c-function

Unless something else is stated, G/K will be a symmetric superspace, a will be an even
Cartan subspace and a fixed positive root system X7 is understood.

3.1.1 Definition. Let h € a, such that a(h) > 0 for all a > 0. If all roots are even, this
means h € a*. The c-function is defined as follows:

¢(A) = lim eP=th) g, (th), (3.1)

t—o00

for A € at. with Re A(h) > 0, provided the limit exists. The independence of this definition
from the choice of h is not obvious per se. However, in the rank one cases, this is clear,
since such choices only differ by a constant multiple.

43
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3.1.2 Lemma.

pa(hg™) = Dl e A=) (H(RK)) ,(=A—0)(H(gk))
K/M

forg,h €5 G.
PROOF. Applying Equation twice gives

H(hg™'k) = H(hk(g™'k)) + H(g~'k) = H(hk(g™"k)) — H (gk(g™"k)),
hence

or(hg™) = Dk eA—0)H(hk(g™ k) ,— (A=) (H(gk(g™ k)
K/M

Now, [Corollary 2.5.10] proves the claim with f(g, h, k) = eXA—@H"Rk)o=(A=e)(H(gk)) ]

3.1.3 Corollary. Setting h = e in shows ¢x(97%) = ¢_x(9g).
3.1.4 Corollary. Let Dk, be the invariant measure on M\K. Then

Pa(g) = Di, e A0 (A(kg).
M\K

PROOF. Note, that the isomorphism ¢: K/M — M\K, given by k+— k=t (cf.
mark 2.4.29|), satisfies cpﬁ(Dk:r) = Dk, provided the Berezin densities are normalised
adequately. Therefore,

Di:, eAHe)(Alkg)) — Di: M) (A ) _ Di: o) (=H(g™ k)
M\K K/M K/M

=¢-a(g7") = ¢a(9),
using [Definition 2.4.23] O

The Unitary Case

In the following, let g = u.s(1,1+ p|g) be the Lie cs algebra, where gz = u(1,p) & u(q)
and g7 = glc(2 + plq)1. Obviously, the complexification of u.s(1,1 + p|q) is glc(2 + plq).
Furthermore, let G = Ugs(1,1 + plq) be the Lie cs group corresponding to the cs group
pair

(U1, 14 p) x U(g), ues(1,1 4 plg)).
An involution ¥: g — g is given by

HX) =0Xo,
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where

cho 00
o= 0 14| 0 (3.2)
0" 0 |1,

Under this involution g decomposes as g = £ @ p with

Here, dashed lines in the matrices indicate the action of the involution, whereas full lines
signify the grading.

A super symmetric non-degenerate even bilinear form on g can be defined with the
super trace: b(X,Y) := str(XY'). Here, str(% 5) = tr R — tr V, where the blocks indicate
the grading.

Let a C pg be the even subspace which is generated by the element

From now on, matrices will be written in the form of columns (and rows) of size 1, 1,
p and q. Since hyg is even, ad(hg) acts on gle(2 + p|g) in the same way as ad(hg) acts on
glc(2 4+ p+ ¢). This means that the root decomposition is formally the same as in the
classical case.
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There are 4 roots: «,2a, —a, —2a, where a(hg) = 1. The root spaces are

0 0 Bo| B
D R 0 "0 Bo|Bi
gOl_ g - _CO\C(] 0 O )
—-C1'Ct 00
—A A 00
). _| —AT4a o]0
g?a— xr gx_ O ‘0 0 O bl
0'0 0]0
0,0 —Bo|-B
_ oo By| B
g o= T€Eg|lz= ' co 0 0 , (3.3)
ci'ci 0 |0
—A,-A o]0
) _ Al A 00
§-22=0TS8IT=1 ¢ " o olo [
0' 0 0]0
D 0 00
medocale 0'D 00
- 817=1 00 E|F
0'0 G|H

In the following, o and 2« will be considered to be the positive restricted roots, hence
n=g,®Dg2, and n =g_, D g_2,. Furthermore, it is clear, that m, = 2(p — ¢q) and
maoa = 1, hence o = (1 +p — q)a.

Let K :=U(1) x Ugs(1 4 plg) be the sub Lie ¢s group of G with underlying space
Ko =U(1) x U(1 +p) x U(q) and Lie cs algebra ¢. G admits an Iwasawa decomposition
G = K AN, since this is the case for U(1,1+ p). An essential tool in the calculation of
the c-function is[Proposition 2.5.111 In order to apply this proposition, it is necessary to
determine H|y: N — A(a).
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Due to [Proposition 2.1.10] S-points of A(n) and A(n) are given by
Aeg Ac’l‘o,
). (A B\ 1 | BlegACrla,
An)(S) =X =M (C’ 0) M'o O cg ACPI, ,
.
im X) C ng
]SO( ) Cng (3.4)
Aeg A(C,l\O’
e e A B\ 1| B'eg ACrla,
AM)(S) =< X =0M (C 0) M C eg ACPl, ;
i j§, (X) € g

with M7 = (é §10 ) In this notation, B is considered as row-vector with entries

p+q

in I'(Og), whereas C'is a column vector. Furthermore im jgo (X) C gy means that the
underlying function jgo (A) of A is has values in ‘R and that jgo (B;) = — ng(Ci) for

1=1,...,p.

The calculations to obtain H|y are formally the same as in the classical case. The only
difference is that one has to work with generalised points instead of ordinary points. The
complexification of Ugs(1,1 + plq) is GLc(2 + plq)- Therefore, the S-points of N and N

are matrices in GL¢(2 + p|q)(S). The S-points of N and N are of the form

1
nAB,C = eXp <M <A B) MTU) = logprg + M (A b B) M'o

C 0
1-A-3BC A+3iBC B

C 0

=| —-A-3BC 1+A+§BC B |,
—-C c Lpiq
7 A B A+3BC B
S S Ly e O L

1-A-3BC —A—%BC -B
= A+3BC 1+A+3BC B |,
c ¢ Lpiq

with A, B, C as in Equation (3.4)), since expy and expy are isomorphisms and

0 0
M"oM = ,
7 <0]1p+q>
A B (0 0 A B\ _ (BC 0
¢ o)\o 1,,/\C o)/ L0 0/
A BY[(0 0O BC 0\ _,
¢ o)\o 1,.,/\ 0 o) ™
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From this

¥(na,B,c) =NAB,C, ¥ (naB,c) =nNABC

can be deduced immediately.
The identities

(1 1 0)napo=(1-24-BC 1+24+BC 2B), (3.5)
(11 0)pase=(1 1 0), (3.6)

follow from (1,1,0)0M =0 and (1,1,0)M = (2,0). Similarly,

1 1 1 1-2A—- BC
NAB.C 11=111, nAB,C 1| =1|14+24+ BC (3.7)
0 0 0 2C

are obtained.
Now, let

napc = k(napc)exp(ho® h)nra,H,

with h € T'(Og) such that ho ® h = H(na p,c) and npgu €s N. Applying ¢ on both
sides of this equation yields

V(na,B,c) = k(napc)exp(—ho ® h)d(nra n),

hence
V(napc) tiapce = (nren) texplho ® 2h)npc H,
or equivalently

N—A,—B,—CNA,BC = N—F—a,—H1exp(ho ® 2h)npc o

Thanks to Equations (3.6 and , multiplying (1,1,0) from the left and its transpose
from the right reduces the right hand side to

1
(1 1 O) exp(ho @ h) | 1] = 2¢",
0
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since (1,1,0)ho = (1,1,0). Therefore, Equations (3.5) and (3.7)) lead to

1
1 )
62"25(1 1 0)n a b chapo |l
0
. 1- 24— BC
:§<1+2A—BC 1-2A+ BC —23) 1+2A+ BC
2C
= (1 — BC)* — 442

3.1.5 Lemma. The restriction of H to N is given by
H(n — oo — BC)? —44°
A,B,C) =hyp® 5 In (1 BC) 4A

for NnAB,C €S N.

The classical approach to derive c is to write

bx(g) = Dis (A—0)(H(gk)) _ / Dt e A0 (H(gh()))
K/M N

However, if pg # 0, this cannot be performed, since the retractions on K/M and N are
not compatible. There are examples where the integral on the right hand side does not
even exist. The next guess might be to interchange the limit in Equation with [ KM
which should be easy to perform, since K/M is compact. Yet, this is not permitted
either, since the limit of e(*~0)°H (e"0ke™""0) qhes not exit. Even in the classical case the
limit would not be smooth outside of k().

Consequently, the only possible way is to apply [Proposition 2.5.11| with the support of
the integrand forced to be compact inside ko(Np). In order to do this let x € C(]0, oc)
such that xy =1 on a neighbourhood of e. Define X € I'(Og ) by

R(k(iapc)) = x((1 — BC)? — 4A?)

fornapc €s N. This super function has compact support in the image of k: N — K /M
and is therefore well-defined on K/M. Then

or(g) = Di; M H k)R (k) + Dk eA=9HGwk) (1 _ ) (wk) (3.8)
K/M K/M

for any w € My = N, (a) = {m € Ko| Ad(m,a) C a} due to the left K-invariance of Dk.
It is clear that the first of these two integrals can be pulled back to N. In order to be
able to do the same for the second integral, a good choice for w has to be made.
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The Weyl group M|;/My consists in the considered case of two elements. Let w € M
be a representative of the non-trivial Weyl group element. The Bruhat decomposition
(cf. [Hel62, Theorem 1.3]) shows that the complement of k(Ng) in Ko/My is indeed
wMy. Since 1 — N vanishes in a neighbourhood of eMj, this shows that the second
integrand in Equation has also support inside k(No). Now, Equation shows
H(gk(n)) = H(gn) — H(n), hence by [Proposition 2.5.11]

éx(g) = / Din OO H () o~k Y ()
N

(3.9)
+ / Di A=) H(gui) o~ () H) (1 _ N) (wh(i)).
N
For the following considerations, it is necessary to assume g € A. For t € R
cosh(t) sinh(t) 0
et = | sinh(t) cosh(t) 0
0 0 Tpiq
It is clear that ethoﬁA,B,oe_thO = Ne-2t4e-tBe—tc 0T NABC ES N, since
-A —-A -B —e A —e A —e7'B
etho A A Bletho= e 2tA e A  e'B
c C 0 e tC e tC 0
This shows
H(ethOﬁA,B7CeithO) = H(ﬁe*QtA,e*tB,E*tC)
1 3.10
=hy® 5 In (1 — e 2 BC)? — 4e™4 A?), (3.10)
thus
H(e™wnapoe ) = He7"0ny g oet™) — 2t
1 3.11
=ho@ 5 n ((e7* — BC)* — 4A?) (3.11)
by Equation (2.10)).

In particular, Equation (3.10]) shows R(k) = limy_, o X (e—ga(H(ethOke*thO))) for k es K,
using H(ak(n)a™!) = H(ana™') — H(n). Accordingly,

o 2 A A2
(1= N)(wk(fap,c)) = (1—x) ((1(35)02)_ 4;11;1 )

for na.p,c €s N, thanks to Equation (3.11)). Since (1 — x) =1 at 0o, this equation makes
sense everywhere on V.
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Let @: A1T2P20 — Al 5 API9 x API7 — A() be the isomorphism given by

—% -5 —(bo— iCo)i —(b1 — 01)1
% % (bo — ico) (b1 —c1)
(a,,¢) — bo +icy bo + icg 0 0
bi4+c1 b1+ 0 0

Since this isomorphism is linear, the pullback a Lebesgue Berezin density on g via ¢ is a
Lebesgue density on AM2P12¢ hence the same is true for the pullback of Di: via exp oy,
thanks to [Proposition 2.5.7]

By pulling the integrals on N back wvia exp op, Equation takes the form

¢/\(etho)e—(>\—0)(tho)
1
1 —2t(1.,112)2 —4¢t 2\ 3(A=0)(ho)
= [ puts,y e e o) V(4 [P + 52)
Al+2p12g (1 + [lyl|2)2 +82)§(/\+9)(h0)

_ L-o)(h
v DMSy(&?hH@WV+2v<@”“u_X)Cr+WWV+¥>
wrmiza (L )2 4 52) BOT0) fyll*+ 2

Assuming DFk to be normalised adequately, Dy denotes the Lebesgue Berezin density
from

From now on, A(hg) will be abbreviated A as long the meaning is clear from the context.
Since the Lebesgue Berezin density on A12PI20 = Al x A2P12¢ i the same as the tensor

product of the Lebesgue Berezin densities on the factors, can be applied.
In particular, this means that ¢, only depends on m, and ms,. Therefore, if m, > 0,
one can assume ¢ = 0 and use the well-known formula for the c-function in the classical

case (cf. [Hel84, Chapter IV, Theromem 6.4]).
3.1.6 Lemma. Let my > 0 and Re\ > 0. Then
27 T(\)

r <A+?+1) r </\+mT‘*2+mza)

c(N) = ¢

for some constant cy.

In the case m, < 0, |Corollary 2.3.5| can be brought to use.

3.1.7 Lemma. Let my <0 and ReX > 0. Then

— _2Ate
C/ ds O3 (142 +5%) 7 x((L+7)2 +57)
e 2 o\ 2=e 2 2 (312)
vo [Taot EAT (At
0 (L+7)2+s2)72 s

for some constant C. Furthermore, ¢ is a meromorphic function for Re A > 0.
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PROOF. The integrands have compact support and are bounded even after deriving in \.
Thus, it is no problem to interchange lim;_,o, with the integrals and the same can be
done for 9. ]

In order to finally derive ¢(\), the function x needs to be removed. For this, the
following estimation will repeatedly be used.

3.1.8 Lemma.

Rez—k

<c((L+7)2 487 2

OF((1+7)2+s%)2

for all r;s > 0, where k € Ny and ¢y, is some not further specified (z-dependent) constant.

PROOF. As one can see by induction,

z 1 +r z—2k
O ((L47)* +5%) =y < s ) S+ %)
where py, is a polynomial of order at most k. Since limy_,oo (2 + 1)‘5 pr(t) exists, there

is a constant ¢z such that |(t? + 1)*%pk(t)| < ¢, for all ¢ > 0. This implies

pk<1+r) ((1+7~)2+1> (147247

S S

[NIES

OF((147)2 + %)

Rez—k

<c((L+r)2+s?) 2 . O

3.1.9 Lemma. If m, <0, and Re \(Hy) > 0, then

A+o

c(\) = C/OOO ds O —8((1+71)2+5%)" 2. (3.13)

PROOF. First of all, note that " =1 — p and consider the second integral in Equa-
tion (3.12). The substitution r = su yields

| asoizs ATy <W> (3.14)
0 (

Ao 2 2
1+7r)2+s2) 2 s
00 2,2 2\ 2-¢ 2 2
1o o1 ($*u®+s%)72 (14 su)*+s
:/ dS&uZSSQ 1 o (1—X) W (315)
0 (14 su)?+s2) 2

& 0 u2+1¥ s u)?+1
:/ ds 9 —8s 1 ( ) (1= %) % (3.16)
0 (14 su)®+4s2) 2 ut+1
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The next step is to interchange [ ds and 9. Since only the limit u — 0 is of interest,
u may assumed to be small. Let ¢ < 1 be small enough such that (1 —x) =0 on the
interval [1,1 + 4¢2]. Then the function

s 4 u)?
[0,e] x Ry, (u, 8) = (1 =) <(u—;—i—)1+1>

1 2 _
is of compact support, since % < 1+4¢e? for s > % Therefore, 811;8 and [° ds

can be interchanged for arbitrarily small . oy
Let 0 < 1 be small enough such that (1 — X)(w) =1for s < 0 and u < . Now,

uZ+1
by [Comma 318

Ao _ ReAtotk
s)‘_laff((l + su)? + 32) 2 < cksRe/\_Hk((l + su)? + 32) 2 < 53 cpsRer1

for u < e, s <6, and k < q. Since s®¢*~1 is integrable on [0, ], one may also interchange
fg ds and 8&;8. Therefore, the right hand side of Equation (3.16)) equals

A—o
2

(™ _ u? +1 sTh4u)2+1
8718/ dSS)\ 1 ( ) m(:l*X) <(2)1>
0 (14 su)? +s2) 2 u® +

A—o

Loy [T
— Yu=0 A+o
0 ¥ (571 +2u+8(u2+1))%

s71 u+ s(u?
1—x)< +52(u;r+(1)+1)>_

Substituting ¢ = s~ (u? + 1)~! leads to

A—eo
_ > dt t 2
o5 [ - (H 2t + 1)),
0

Pt outtz+1) 2

Ato

=92 /Ooo dtte (1 +tu)? +12) 72 (1 —x) (1 + tu)? +12).

Note that % and s~! + 2u + s(u? + 1) are invariant under this substitution.

Again, derivation and integral need to be interchanged. Possibly after shrinking &
one may assume (1 — x)((1+ tu)? + %) =0 for t < ¢ and u < €. Therefore, it suffices to
consider the integral [ EOO dt. Obviously, there is no problem in interchanging [ ER dt and
81;8, where R is big enough such that (1 — x)((1 + tu)? + t?) = 1 for t > R. Again, by

(%

emma 3.1.8

_Ate Re A to+k

AN (14 tu)? +62)7 7 | <t (U +tu)? +12) 7 7 <5 it ReAl
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which is integrable on [R, oo for Re A > 0. Thus, [ dt and 8};8 can also be interchanged.
Therefore,

/OO woig T <(1 o 32)
0 (( B

14+7)2452) 2 r?+ 52
%) _Ate
— / 02 (1 + 1)+ 12) 2 (1= x) (1 + tu)? + 12)
0
o 1—o 2 2\— 2% 2 2
= [ dtd' 1+ (=) (1 +7)2+12),
0

by substituting v = 7. This combined with Equation (3.12) yields the assertion. In
particular, the right hand side of Equation (3.13|) exists, since this is true for both
summands. ]

3.1.10 Theorem. The c-function for Uqs(1,1+ p|2q) is given by

27T(\)

I <A+?+1) T (A+m7‘12+m2a)

c¢(N) =co

for some constant ¢y and Re A > 0.

PROOF. The case mq > 0 is already clear by Lemma 3.1.6] Let m, < 0. The c-function is
meromorphic, thanks to[Lemma 3.1.7] Therefore, an argument using analytic continuation
allows to assume Re A > —p for the following.

Thanks to [Lemma 3.1.9

Ato Ato

c(\) = C/ dsO (1 +7)?+s2) 2 = Ca,};g/ ds((L+7)*+s%) 2.
0 0

The second equality comes from since

Ato

(L +7r)+s%) 2

_ReAtotk __ ReMtfo

<cp((1+7)?+ 5% 2 <qp(l+s%)7 2

for k <1 — p. This is integrable by assumption.
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Substitution with s = (1 4 7)v/# yields
o0 Ate

c(\) = Caﬁ;§(1+r)A9“/ dtt~2(14+1) 2
A

2 0
c (—A—@+1>m5w<
A

= 5(1 —o)!

_oyr(-1)te Tt
2 T re- DI
O oo 27AT(\)
~C e eE

Here, the beta function fooo L1+ t)Vdt = %&/y)—x) for Rey > Rex > 0 has been
applied as well as (") = (—1)"‘(’”:71) for kK € N. Furthermore, the duplication for-

mula I'(z) = ﬁ2z_lf(§)F(2J2“1) came to use. The claim follows from mg, =1 and
me =2(p—1). O

The Ortho-Symplectic Case
Let ospc(1,1 4+ p|2g) be the complex sub Lie super algebra of glc(2 + p|2q), given by

ospc(1, 1+ pl2g) = {:L‘ € glc (24 p|2q) ‘ T+ Jr = 0} ,

where (§§)ST3 = (_1;: 5:) and
L0 |0
J= 0 11| 0 |. (3.17)
0" 0 |J

Here J,; denotes the 2¢ x 2¢ matrix with ¢ copies of the 2 x 2 matrix (% }) on the
diagonal. Therefore, ospc(1, 1+ p|2q) consists of matrices of the form

X929

Xos (3.18)

with Xao € soc(l + p) and X33 € spc(2q).
In this subsection the orthosymplectic Lie cs algebra

g= 05]305(1, 1 ‘|‘p|2Q) = 05]3@(1, 1 +p|2Q) N uCS(L 1 +p|2Q)
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will play the central role. Note that gz = sor(1 + p) x usp(2q), where usp(2q) is the
compact form of sp-(2¢). Again, the involution ¥: g — g will be given by

HX) =0Xo

with o from Equation .

Let G = SOSpJ, (1,1 + p|2¢) be the sub Lie cs group of U.s(1,1 + p|2q) given by the
underlying Lie group SOgr(1,1+ p) x USp(2¢) and the Lie cs algebra osp_,(1,1 + p|2q).
Here, USp(2q) := U(2¢q) N Sp(2q). Let K = SOSp_,(1 4 p|2¢) be the sub Lie ¢s group of
G with underlying space {1} x SOgr(1 + p) x USp(2¢) and Lie cs algebra € from g = ¢ & p.

Let a C pg again be the even Cartan subalgebra generated by the element

Since ¢ and J commute, the restricted root space decomposition on g can be easily
obtained by restricting the decomposition from Equation (3.3) to osp.4(1,1 + p|2¢). This
time there are only two restricted roots: a and —«, where a(hg) = 1. The root spaces
are

0.0 By|Bi
_ e 0 , 0 Byl|B
Ja= TS0 BT v B 0|0 |(°
JoB ' —=J,Bf 0|0
0.0 By B
0 , 0 —By|—-B
ga=TEQ BJ \ B(;r 0 0 )
JoBl ' JyB] 0 0
000 [0
0,0 0 0
mEATES o0 B | F
010 —J,G" |H

There is no root 2« since the intersection of go, from Equation (3.3) with g is {0}. This
can also be obtained by just counting dimensions.

The root o will be considered to be the positive one, hence n = g, and n = g_,. As
one can see from Equation (3.19), m, = p — 2¢, and ma, = 0 hence o = p_—fqa.
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As in Equation (3.4) the S-points of A(n) and A(n) are of the form

C 0 B= (70(]—7 7C£|—Jq)a

im j&, (X) C ng

)

CESAP‘Qq,
An)(S) = X:M(O B)MTU

(3.19)

B = (_C(;rv _CFJQ)v

im j§, (X) € g

)

CESAP‘Q‘J,
Am)(S) = XZUM(O B)MT

This means that the S-points of N and N are the form no,5,c and ng g c. Therefore,
the H-function is, as in the Ug(1, 1 + p|g)-case, given by

H(nopc)=ho® %m((l — BC)}hy = ho ® In(1 — BC).

As well,
1—e2BC
H(ethok(ﬁoﬂc)e—tho) = ho®In liiBC’
—2t B
H(ethowk(ﬁ07B7C)€_thO) = h(] & In %,

where w € M|, again denotes a representative of the non-trivial element of the Weyl group.
Note that this only makes sense if p > 0. Otherwise, the root « is not even and the Weyl
group would be trivial in this case. Therefore, let p > 0 for the time being. The case
p = 0 will be postponed to the end of this subsection.

Let x be as before and define X € T'(Og/ar) by

N(ki(ﬁ07B7c)) = X(l — BC)

for fig. g.c €5 N. Both R and k ~— (1 — X)(wk) have compact support inside ko(No) and

B 1-BC
(1 —N)(wk(no,B,c)) = (1 —x) < —-BC ) '
Therefore,
or(9)= [ DX OUEINE) 1 [ Dl OO (1 W) (k)

K/M K/M
_ / Dt O 0 (H (&)~ HY (1 (7))
N

n / Dit A=) (H{gwm) =+ H) (1 _ N (wh(n)).
N
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Let ¢: AP?4 — A(n) be the (linear) isomorphism with

T 1, 0
0 0 Jq

T/(1, O
0 —a (7§ Jq
a 0
Pulling back the integrals over N via exp oy then yields

L 1+6—2t 2\A—o
or(eye oot — [ pug) CEE I )

(1+ [ly||2) e
(e + [ly)|*)*~* 1+ ly|?
+ Du(y) A=) -5 1|
Apl2q (1 + fly||2)r+e lyl|?

assuming Dk to be normalised adequately. Again, Dy denotes the Lebesgue Berezin
density on API24.

Applying [Corollary 2.3.4] shows, that ¢, and therefore ¢(\) only depend on m, and
not on p and ¢ separately in this case, too. Therefore, if m, > 0, the c-function can be
taken from |Hel84, Chapter IV, Theorem 6.4].

3.1.11 Lemma. Let m, > 0. Then

27\T(N)

I (A+?+1) T (A+%‘12+m2a)

c¢(A) =co

for some constant ¢y and Re A > 0.

shows that one needs to differ between even and odd cases for m, < 0.
3.1.12 Lemma. Let my < 0 be even and p > 0. Then

T
‘N =9r31 g

for some constant ¢y and Re X > 0.

Proor. |Corollary 2.3.5| shows

eN) =CO % (1+7) HOx(1 + r))

1 oot <M9(1 )t

=)

i) are constant for r near

r

for some constant C. The functions x(1 + ) and (1 — x)(
zero. Furthermore, 8’“ 07"’\ ¢ =0 for k < —p, hence

() = C(-0) <‘“ K 9>> - C(—l)@(—g)!<)\ - 1) —one W o

—0 —0
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3.1.13 Lemma. Let m, < 0 be odd. Then
I'(A)
A\) = ch——>t—
C( ) COF()\+Q)

for some constant ¢, and Re X > 0.

Proor. By [Corollary 2.3.5]

c(N) :C'/ dr riéﬁr_g—i_% ((1 + T)fo‘ﬂ’)x(l + r))
0

+c/ dri—or ot (Mé’u L)1y (1 ”)) .
0 T

Similar to the proof of [Equation 3.13] the second integral will be rewritten in order to
get rid of . This will be done by partial integration. Note, that (1 — x) (%) =1 for

small r. Therefore,

ol
lim (8f_1r_%) Or otg—k (7)‘_@(1 + 7")_()‘+9)(1 -X) (1 + 7’))

(3.20)

r—0 T
1 k_QJr%_k A—o—( L _k—1) (A—o)—1
— lim r2— —o—(—otz—k— —(A-0)—
lim 72 Z ar 2 (1+47r)
1=0
—ot+3—k
— 1 M (1 ~(A—0)—l _
lim Z ar*(1+r) 0

1=0
with adequate ¢; for ReA >0and 1 <k < —p+ % This means that the second integral
equals

(o gt y) [t (1)
(—Q + ;) ! <_Q_£ $> /OOO gy)\(l )01 — ) (1 ;r 7’)
(o) [ () ey

ol e > 550 s)— (A o)1 s
( g+2)!<_g+§>/0 ds 21+ )71 =) (14 5).

Here, the substitution s = 7~! was applied. Furthermore, partially integrating again

yields
o0 —ot 1
/ drr30; 72 (14 1)1 = x)(1+ 7))
0

1 —0 > o— —(A o
:(—9+2>!<—g+§>/o dss? ' (L+) M0 (1—x)(1 +9),
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since

fim (ak e 2) 62 o ((1 +r) M1 — ) (1 + 7")) =’ rli_}rgo?”%_k(l + r)_)‘_%%’ =0

r—00
for 1 <k < —p. Note that (1 — x)(1 + r) vanishes for small r and equals 1 for big r.

Combining these insights leads to

= c/ drr=38; Y3 (1 4 1)~ O0
0

(o 2)( (”9>/ dr =3 (1 4 1))

1 1
=ttt (<o (28 ) TS

=C(-1)" g+2f ()\(+)Q) O

The case where p = 0 is still open. This situation is rather interesting, since it is the
only one yet where there are only purely odd roots. Fortunately, it is pretty easy to
deal with. The underlying spaces of K/M and N are both trivial, i.e. isomorphic to
the terminal object. Therefore, both spaces admit only one retraction, hence they are
compatible via k. This leads to the following result.

3.1.14 Proposition. If p = 0, the spherical function ¢y is given by

¢ tho ce”Z( )(;‘ k)(g?k)

for some constant c;.
PROOF.
pa(eth0)e~ A0t — Di: e\ —0)(H(e"0ketho))
K/M
/ D A (H(ethone0))  —(\o)(H(R))
= Dp(y) (1 + e~ [y 2(L + [|y||*) =+

AO[2q

=00, 51 +e A1 + ry~A+e)

oy (A ) Q) (:Z:g)e—%t. e

k=0
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3.1.15 Corollary. If p =0, the c-function is given by

T
‘N =953y

for some constant ¢, and Re XA > 0.

Since T'(A + o) = 71*%2’”9_11“(#)“)*5“), one can merge Lemmas [3.1.11] to [3.1.13
and |Corollary 3.1.15]

3.1.16 Theorem. The c-function for SOSp/. (1,1 + p|2q) is given by

27 \T(\)

r (M—?—H) T (/\+’”T‘12+mza)

c(N) =co

for some constant cy and Re A > 0.

The case GL.(1]1) x GLs(1|1)

Let gc = glc(1]1) x glo(1|1) with the induced Lie super algebra structure. Note that
gc,p is Abelian. The elements of gc can be written as double matrices of the form

A B|E F
C D|G H |’
Let g be the Lie cs algebra given by
A B|E F
8=\ ¢ p|lg m )9

and let G be the sub Lie ¢s group of GL¢(1]|1) x GL¢(1|1) with underlying space

z 0 0
GO_{(OT S)Egc

and Lie cs algebra g.
An involution ¥ on g can be defined by

9 A B|E F\ (E F
G H|) \G H
Therefore,

C D
A B|A B

E=—A, DeR, HGR}

O Wi

z € C\{0}, r,s € R+}
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Let K be the sub Lie cs group of G with Lie cs algebra £ and

z 01z O
KO_{(O r|0 r)Egc

There is no other choice for the even Cartan subalgebra than a = pg, since pg is Abelian.

Let
1 0][-1 0 0 0/0 o0
hl_(o 0ol o 0)’ h2_<0 1|0 —1>

be a basis of a and suppose « € ag: to be a restricted root. Then

|z] =1, T6R+}.

A B|FE F A B|E F
a(a1h1 + aghg) ( >

c DG H)_O‘(‘“hl*‘”h?)(c ple u
. aj 0 —al 0 A B|FE F
- 0 as 0 —ag ’ C D G H
Ctar—ay [ ° Blo —-F
—\mm® _ooolag o )

This means that there are only two possible roots: a and —a with

a(a1h1 + a2h2) = a1 — ao.

The corresponding root spaces are

0 B|0 0
{0 0]e §)[poeef
0 0|0 F
oo=f(e o §)eree)
iA 0]iA O
e (830 ) ames).
In the following, suppose that « is the positive root, hence n = g,, n = g_o, ma = —1

and therefore 9 = —a. The Lie ¢s group G admits an Iwasawa decomposition, since this
is the case for Gy. Each element in Gy can be decomposed as

P Lo\ _(fF 0 |FH O

Norjo s ) Vo Vrs|0 s )

[ 7 01 o) [ loglzl 0 —log |#| 0

Vo rl0 s ) 0 %log(g) 0 —%log(g) '
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Note that Ny = {e}. )
The S-points of NV and N are of the form

(1 B|1 0 (1 0|1 F
"=\ 1lg 1) "FT\lc 1l0 1)

with B,C, F, q € F(Os)]
Again, H: N — a will be derived using the equation

ﬂ(ﬁcﬁp)_lﬁ()’p = ﬁ‘(nt)_l eXp(QH(T_LQF))TLByg, ner €3 N.

The left hand side equals
1 —-F| 1 o0 1 ol1 F\ (1-FC -F| 1 F
0 1 |-C 1 c 1/0 1) C 1 |-C 1-CF |’
whereas the right hand side yields
1 0|1 —-B e 0 e 0 1 B|1 0
-G 1]0 1 0 e2| 0 22 0 1|G 1
1 0|1 —-B e e2hip | 720 0
-G 1]o 1 0 ¥ |e22q 2

B 62t1 B€2t1 6—2t1 _ BG€_2t2 7Be—2t2
- _Ge2t1 €2t2 _ GB€2t1 G€72t2 672t2 )

with H(nc r) = hit1 + haty for t1,t2 € I'(Og)g. Therefore, e?'t =1 — FC and further-
more e 22 =1 —CF =1+ FC, hence t| =ty = —%FC. This shows

1 1
H(ﬁC,F) = _iFChO = §CFh0

for ner €9 N, with hgy = hy + ha.
The coordinates &1,& on N, given by

&i(ner) =C, &(nor) =F,

satisfy D = | D§|, provided the normalisation of Dn is suitable. The spaces K/M and
N are of purely odd dimension, hence both admit only one retraction. These retractions
have to be compatible under k. Therefore,

ba(ch) = Di (A= ("k) _ (A—0)(h) / D A=A HERe) () (H) (3 91)
K/M N

for h € a.
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Note that ehﬁqpe_h = Ng—a(h) g e—a(h)F, SiNCE

elt 0 |e ™t 0 1 0|1 F et 0
0 ef2 0 et C 1]0 1 0 et

3 1 0|1 e F
T \ehC 10 1 '
This leads to the following proposition.

3.1.17 Proposition.
dx (") = coA(ho)e* ™ sinh a(h)
for some constant co and any X\ € ag.
PROOF. Since the root is even, o(hg) = —a(hg) = 0. Furthermore,

(A0 (Hic,r)) _ MH(c,r)) — 3ARICOF _ 1 | %)\(hg)CF,

hence, by Equation (3.21)),

ox(e") Dg (14 3Mh)e 266 ) (1= S0t

N
= CeP=2M \(hg)(e720h) _ 1), O

From this proposition, it can directly be seen that
3.1.18 Corollary. The c-function for G is given by
C()\) = C()A(h())

for some constant co and any X\ € ag.

3.2. Harish-Chandra’s Spherical Function Expansion

In the following, suppose G = SOSp/; (1,1 + p|2¢). An expansion for ¢, in the case p = 0
was easily obtained in [Proposition 3.1.14l This section aims to derive such an expansion
for general p. The standard procedure to do so is to solve a differential equation (cf.
[Hel84, Chapter IV, §5]).

Again, let hy € a be the element with a(hg) = 1 and identify A € af with A(hg) where
it is convenient.
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3.2.1 Proposition. Spherical super functions are eigenfunctions of the differential oper-
ator A(L) on A:

A(L)pr = (A = 0*)n. (3.22)
Here, A(L) is given by
A(L)() (M) = (87 + me, coth(t)y) £ ()

For this proposition one needs to check that the differential operator A(L) is the radial
part of the Laplace operator L on G/K (cf. [GV88, §4.2]). The claim then follows by
calculating the eigenvalue of ¢y for L (cf. [All12]). Moreover, it can be seen that the ¢y
exhaust the set of joint eigenfunctions of all K-invariant differential operators. However,
for the application in mind this is not necessary.

The function ¢ — e~ satisfies (97 + ma0;)eP 9 = (A2 — ¢?)e(A =9t Therefore, it
is reasonable to to make a perturbation ansatz. Let ®) be a function on A" solving

Equation (3.22)), with

Dy (e"h0) = A3y (N)e 2 (3.23)

3.2.2 Lemma. The coefficients v, from Equation (3.23)) are given by

-1

_ (m+o)(m+o0—-2X)
() =) 1_:[() D T 1) (3.24)
= Y0(N)e(=A)(=1)! (f) (Z—A)C?l—k) (3.25)

for X ¢ N. Moreover, the series which defines ®) converges absolutely on each interval
[e,00[ for e > 0 and ®y is an eigenfunction of A(L).

ProOF. With
O} 4+ mg coth(t)d; = (9} + ma0;) + ma(coth(t) — 1)0;

o
= (02 + ma0;) + 2my Z e 2y,
k=1

applying A(L) — (A2 — ¢?) to l<I>,\ yields

0= Z% ( er—e=20)t Z (A—g—zz—zk)t>
iek o—20)t ( —{—Z A—o—2(l— ))Q'Yl—m()\)>,

=1
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hence

-1
1= M) = Y (A + o+ 2m)oym(N)

m=0

(=A+o+20—2)on-1(N) + (=1 =1 = Ny-1(N)
(At+ot+li-Do+(I-Lo—(I-Do+ (-1 —-1-A+0)n-1()
((=1+0=N(I=1+0)n-1(}))

for | > 0. This shows

-1

= LG

B —0\L(l+0—-NT(1 -
—vo(A)(—l)l< ! )r(z+1 — Al (e—A)

=M\ (-1)! (—lg> C(_)\)(l—)\)_;(\l—)\)'

Since
A I+D|I+1-
i | ) ’:hm (+1+ AIZL
o0 [ Y41 (A) [ 1o o+ 1|1+ 0= Al
the series for ¢, converges absolutely on [e, oo[. Therefore, derivation and infinite sum
can be interchanged, proving that ¢, indeed is an eigenfunction. O

From now on, vy(A) will be chosen to equal ¢()\).

3.2.3 Corollary. If m, < 0 is even, the series terminates and

2 (A— A=
(I))\(eth0> _ cle)‘t; < l % iy _ZQ e(—o=20)t
=0
for some constant c1. In particular, ¢y is well-defined on A. If p =0, this means that

D\ = .

PRrROOF. Clearly, v;(A) = 0 for [ > —p. Recall that

C2et T(N) 27t
W= T ore ~ vr LAH
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hence

-0 “m4o—
WO = <—1>l< l >c<A>mH Mo 2

om+ 1—A
_ C°2g_1<1>’<‘9) I o-0Tl(O=e—m)
ﬁ ! k=Il+1 m=0
_ co(=2)%(~0)! <—>\ - Q) </\ - @) -
2/ —o0—1 l

3.2.4 Proposition. If p # 0 and A ¢ %Z, the spherical functions are given by
dr =P\ + D)
on AT.

PROOF. Both ®y and ®_ are solutions for the differential equation A(L)f = (A% — ¢?)f.
Since they are obviously linearly independent, there are constants by, by € C such that
dr =b1Px +b2®P_). Let w e Mj be a representative of the non-trivial Weyl group
element. Then for any a € A"

da(a) = p-a(a™!) = g_r(waw™") = _x(a) = b1®_x(a) + by®y(a)

due to the K-bi-invariance of ¢ and hence by = by. Now, by = 1 follows
from
blc()\) _ }Eg% (I))\(etho)ef()\fg)t — %g% (Z)A(etho)ef(/\*g)t _ C()\) O

The following lemma will be important in

3.2.5 Lemma. The residues of W are located at A # 0 with A = o+ k for k € Ny.
They are given by

Dy(eth)  (—DF(o+k) & (k—20)t
RES)\:Q+k C(A)C(*)\) = COF 1— Q l:EO l e (3.26)
. % + k k o
= = gl o (1-2ycosht+y?) ", (3.27)

where cq is the constant from[Theorem 3.1.16,

ProoF. Since

NN —0 -\ B —0\ —AD(I+0—))
c()\)lc(—)\) - (_1)1( l )(z —Ne(l=X) (_1)l< l ) col((+1—-X)"
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it is clear that the residues of ®) are located at ¢ + Ng. Any residue at A = 0 is eh}fxé+ 1a‘ced

by the single A in the equation. The residue of T(I+ 90— \) at A= o+ k is ((k?fl), for
[ <k and 0 otherwise. Therefore,

Res nA) _ (DFe+k) (—0) ( —0 )
AZCE (Ne(=N)  el(1—0) \ 1 )\k—1

for [ < k and Resy—,+# #A)/\) = 0 for [ > k. This proves Equation (3.26|).

Equation (3.27) can be obtained by considering the following exponential series:

B S () o

k=0 =0

<

I
—

+ yet>79 (1 + ye_t)ig = (1 + 2ycosht + y2) ¢

for y small enough. This proves the claim. O

3.3. An Estimate for Spherical Super Functions

In this section, an estimate for the growth behaviour of spherical super functions on
SOSp. (1,1 + p|2q) will be given. This estimate is necessary in the proof of the Fourier
inversion formula. It will generalise the following classical result.

3.3.1 Proposition (Chapter IV, Theorem 8.1). The spherical function ¢y is bounded if
and only if X\ € ia* + [—p, 0].

Since spherical super functions depend on m,, but not on the dimension, this proposi-
tion is also true in the super case, as long as m, > 0. However, if m, < 0 this does not
make sense. As one can see by |[Corollary 3.2.3| and [Proposition 3.2.4] spherical super
functions are not bounded at all at least for even m, < 0.

The following proposition gives an analogon to [Proposition 3.3.1]in the case m, < 0.

3.3.2 Proposition. Let p > 0 and 0 < 0. For d > 0 and K > 0 there exists a constant
C such that

10F (™) < C(1 + |A|)7¢"* cosh(Re At) cosh ™2 ¢ (3.28)

for k < —p, whenever Re X € [—K, K] and (Yn € Zyg) : |A —n| > 0.
3.3.3 Lemma. Let §, K > 0 and o < 0. Then there exists a constant Cy > 0 such that
[@A(eM)] < Colro(A)eBer=0M (3.29)

for h € at and all X with Re\ < K and (Vn € N) : [\ —n| > 4.
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I < Clo)| ‘ (‘f)

for all [. For this let [ > K + 1 — ¢ and choose C' > 0 such that above estimate is true
for all smaller [. Note that this requires the minimum distance § of A from all natural
numbers. The estimate

PrOOF. First,

l+0—ReA=1l+p—ReA<Il+1—-Rel
yields
L4+o—A <|I+1-),

hence

B l—14poll+0— Al
[V (N)] = [v-1(N)] ] IFE e < Clyo(N)]

by induction. Applying this to ®) gives
< 0’70 Re A—o)t Z —2[t

‘(I))\( tho ’< €Re/\ Zh’
00 Q)
=0 !
[—o

< Clyo(A)]eBer= ( <’ ZQ
1=

J(3)=-£))

< Colo(M)eRer-o. (3.30)

Note that the series in the third line equals (1 — e2)7¢ < 1. O
3.3.4 Lemma. Under the assumptions of [Lemma 3.3.3

[0F@A(e"0)] < Cilro(WI(1 + [A])Felfer=o (3.31)

for k < —p and some constant Cy, which depends on § and K.
PROOF. Since
|8k (A—o—21)t | A—o— 2l|ke(Re)\7972l)t
<(1+ |>\| +20 — o — 1)ke(Rer-e=2Dt
<O+ |)\|)klke(ReA—g—m)t7

the series 3.7 [11(A\)|I¥e 2! needs to be estimated. This can be performed by adapting
the estimate from (3.30)), using an upper bound of 9F(1 — e~2¢)7¢. O
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3.3.5 Remark. [Lemma 3.3.3| and [Lemma. 3.3.4] remain true for o > 0 and k£ > —p.
However, in these cases one has to assume ¢t > ¢ > 0 to get Equations (3.29)) and
with an e-dependent constant.

If m,, < 0 is even, the constants in Equations (3.29) and (3.31)) become independent of
K and 0. This is due to the fact that the series ®) terminates by [Corollary 3.2.3]

3.3.6 Lemma. For fized o let ¢ be as in Theorem|[3.1.10, For each §, K > 0 there exists
a constant Cs such that

1
—— < Cs5(1+ |\|)°

e~
for all X with Re A > —K and (Vn € Ng) : [A+ o0+ n| > 4. If my is even, the estimate
holds for all X with ]\ —n| >4 form=1,...,—o.
Similarly,

e < Cs(L+ A8

for all X with Re A > —K and (¥n € Ng) : |\ +n| > 4.

PROOF. Recall that ¢(\) = ¢ ng)g)

ately, since the c-function has only finitely many zeros with Re A > —K and

for some constant ¢j. The assertion follows immedi-

- T(A)\e
=00 I'(A + 0)

for arg\ € | — m, 7[. O

PROOF OF [PROPOSITION 3.5.2 First Lemmas [3.3.4] and [3.3.6] can be combined to get
(3-28) for t > 0, Re A > 0 by using Se’ < cosht < e’ and e < 2cosh(At). The assertion
then follows by using symmetry and continuity of ¢y (e*0) in X and ¢. O

3.3.7 Corollary. For § >0, o <0 and K € R, there exists a constant C such that

@y ()

< 1 o+k (ReA—p)t
eNe(—x) | < TN

fort >0 and k < —p, whenever Re A < K and (VYn € No\{—0}) : [N+ 0+ n| > 4.
PROOF. This can be obtained from Equation (3.25) as follows.

1
c(l—N)

S Cs(L+ 1= A% < Cs(1+[A)*

for I > 2K, since |l — \|> =1(I — 2Re ) 4 |A|> > |A]2. An estimate like the one in Equa-
tion (3.30]) concludes the proof. O
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3.3.8 Corollary. For § >0, o <0 and K € R, there exists a constant C such that

OFpa(e!ho)

c(N)e(=N) | — C(1+[A]) cosh(Re \t) cos t

for k < —o, whenever Re X € [-K, K] and (Vn € Z\{—p}) : |\ + 0+ n| > 0.






4. The Fourier Transform

This chapter aims to generalise the Fourier transform on symmetric spaces, as described
in [Hel84], to an example in the setting of cs spaces. Suppose G admits an Iwasawa
decomposition K AN. Define for f € I'.t(Og/k) a super function f = Ff € F(Oa(’éxK/M)
via

FIOK) = [ Dy f(g)elHETH,
G/K

The super function F f is said to be the Fourier transform of f. This super function is
right M-invariant, since this is the case for H due to Equation (2.9). The inverse Fourier
transform Jp € T'(Og/k) of a super function ¢ € F(OaéxK/M) is defined by
dA . 1
Tolg)= [ o [ Dhp(n el o),
iar |[c(A)[2 K/M

provided this iterative integral exists. Here, ¢ denotes the c-function for G. The super
function J¢ is indeed right K-invariant due to the left K-invariance of H.

In the classical setting F and J are indeed inverse to each other. However, in the
super setting this is not the case any more. Here, a correction needs to be added. In the

following let G = SOSp;(1,1 + p|2q), as in the second part of [Section 3.1]

4.1. The Spherical Transform

The Fourier transform of a left K-invariant f € I'.f(Og/k) does not depend on K. This
is due to the left invariance of Dg. Vice versa, the inverse Fourier transform of ¢ & F(Oaé)
is left K-invariant if it exists. In particular,

To(6) = | mir@ei).

In the following, a few insights on the inverse Fourier transform will be obtained in
this setting.

4.1.1 Definition. Let

lollir = sup (1 + [A)F|p(A)]|e IR
A€ag

73
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for R >0, k € No and ¢ € I'(Oqz) and
PWpr = {¢ € Hol(ag) | (Yw € W) (VX € ag) : p(A) = p(w)), (Vk € Np) :

Here, Hol(af.) denotes the set of holomorphic functions on af. Moreover, the condition
©(A) = p(wA) is equivalent to p(A) = ¢@(—\) for p > 0. If p =0, this is not the case,
since the Weyl group is trivial.

4.1.2 Lemma. The function Jp(a) is invariant under a — a=' on A if p > 0. Moreover,

— W] / ‘2 B (a)p(N)

for a € AT. Here, |W| denotes the order of the Weyl group.

ProoF. Using the invariance of d\ under A — —A\ yields

7o = [ ap e = [ e

- / dA\?%(a_l)w(A) = Jp(a™).

()

The second assertion follows the same way from ¢y = @) + ®_, and p(A) = ¢(—\) by

[ tpta@em = [ a@em, 0

AP c(A)P

4.1.3 Proposition. If p <0 and ||¢||n,r < 00 for some n and R, then

ohTole") = [ g0k

for k< —o+n—1. In particular, J1 exists if 0 < 0. Moreover, J¢ is smooth on A if
p € PWg.

PRrROOF. This follows directly from [Proposition 3.3.1] and [Corollary 3.3.8] ]

The statement about the smoothness is of course also true if o > 0 due to
The interesting part of this proposition is that it shows that the inverse
Fourier transform of the constant function 71 is continuous if ¢ < —1. This insight will
play an important role in the proof of the Fourier inversion formula.

4.1.4 Proposition. Let ||¢||,,r < 0o for somen > o, R > 0. Then

D) (eh0)
Tp(e) =27[W| Y Resycprh v
et T e(Ne(=A)

<—-0

w0+ k) (4.1)

fort > R.
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PROOF. Let 6 > 0 and C as in[Corollary 3.3.7 For K > |g| let S be the path given by
B(s) =iKe", s € [0,7]. Then

) iK ‘I)A(etho) (I))\(etho)
L e PV, e

= 2m Z (,0(@ + k) Res,\:ﬁk
k<—p

by Moreover, [Corollary 3.3.7] yields

/ M@(A)CD\
Bk €

@)\(etho)
c(M)e(=A)

<C (1 + ‘)\DgfneRe)\(tfR)fgtd‘)\’

(Me(=A) Bi

=C(1+ K)g—ne—thK/Q e~ (t=R)Ksins g,
0

<O(1+ K)Q_”e_9t2K/2 e~ (t-RKS gq
0

= C(1+ K)e e ¢ (1— e (=PKT)

t—R
<C(1l+ K)g_”e_gti
- t— R’
This vanishes for K — 0o, hence the integral over S also vanishes for K — oo. ]
4.1.5 Definition. Let
- P, (a)
Je(a) = Te(a) = 2n|W| >  Resx—grk v (e +k)
2 Remer 50

for a € A. If p > 0, the function J¢ is invariant under a ~ a~! by and
Equation ([3.27)).

The following corollary is the first step towards a Payley-Wiener theorem.

4.1.6 Corollary. If p > 0, J maps the space PWg to the space Cx (A) of smooth func-
tions on A with support inside exp([—R, R]ho).

4.1.7 Lemma. If g is negative, J1 exists on A\ {0} and is given by

7| W] _9p-1 (1 —2y*cosht +yt)~°
col'(1 — o)T'(~2¢) =" (1-y)?

with the constant co from[Theorem 3.1.16. In particular, J1 has a smooth extension in
e € A which will also be denoted J1.

jl(etho) —
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If mq s odd,

| W2ze
col'(3 — 0)
PROOF. Note that in the case m, = —1, the existence of [J1 needs to be checked.

However, this rather easy, since the integrand behaves like Sml(élini’\) for big | Im AJ.
By [Proposition 4.1.4] and [Lemma 3.2.5]

[

J1(etho) = — (1 —cosht) ¢ 2.

27r|W| o+k -0

1(eh0) = *_y (1 —2ycosht + 4>

U = Cr = o) k;g i Oio (1 2w coshit+47)
_ W] 2(0+ k)
"~ col'(1 - p) Z (2k)!

85@0 (1 —2y? cosh t + y4)_g
k<—op

W T 2p—k

B Cel(1—p) Z k!

k=0

8];:0 (1 — 2y% cosht + y4) e

since 8520]‘"(3/2) = (25)!8§:0f(y) (¢f. Equation ([2.2])) and (95561]‘"(3/2) = 0. Furthermore,

1 —20—k—1 —9
m%:o (1-y) " =-20-k,

which proves the first claim.
Now, let m, be odd. The operator 8;:28_1 vanishes on anti-symmetric functions, since

—20 — 1 is even. Therefore, decomposing (1 —y)~2 = (11jyy22)2 + (1_252)2 yields
jl(etho) _ 7T|W| —20—1 (1 + y2) (1 - 2y2 cosht + y4) e
col'(1 — 0)T'(=2¢) ¥~° (1—y?)?
_ w|W]| 87_907% (1+y) (1 —2ycosht+y?)~°
col(1— o)l (—o+3) '~ (1-y)?
Note, that

0\ 9%

=257 ) e (L) (L) e

( b ) (—e—3)!

1 1
—o—1-k —o—5—k-1
-0 9y—o 9y—o —~20—2k—2

=2 . - (1+y)2

(’f) (—o—3-K)! (~o—5-k-1)
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This vanishes for all k # —p — 3. For k = —p — 3 it equals 9703 (_;fl). Therefore,

2

7| W| Colo ot 0 —o—3
jl €th0 _ ' _1 e 22 0—3 COSht—l 973
(™) cOF(l—Q)( ) —0—3 ( )
1
93—0
= _M(l —cosht)_@_%. D
COF(§ —0)

4.1.8 Lemma. Let m,, be odd. Then

_1)3—0VTIW[2(=20—1)! - 99—
Do T 1 (et (ho) = gt F1(eMo) = T A A
0 k< —20—1.
PRrROOF. Faa di Bruno’s formula shows
Ojo(cosht — 1)*9*% = Z ckokl(Qg)*kzoks (4[)*’64 e
k14+2ko+...+nkp=n
with ¢ = (k llgiék )WO*Q*%*M*”%”. The only non-vanishing summand for

n < —20 — 1 is the one with ky = —p — %, which is only possible for n = —29 — 1. This
—1

proves the assertion for J1(e*"). For J1(et2®h" (ho) the claim follows again by applying

Faa di Bruno’s formula. d

4.2. The Inversion Formula

This section aims to prove an Fourier inversion formula for G = SOSp/; (1,1 + p|2q).

4.2.1 Definition. Let f1 € I'(Ogxq/k), fo € T'(Orxa i) such that one of both is com-
pactly supported along fibres and fo is K-bi-invariant. The convolution of such super
functions f1 * fa € T(Ogxrxa/x) is defined via

(f1* fo)(s,t,h) = Dg fi(s,hg) f2(t, g7 ") = /G/K Dj fi(s,9) f2(t, g~ h)

G/K
for generalised points (s,t,h) of S x T x G.

In the following, let J1 be the K-bi-invariant super function from for
0 <0. In case p >0, set J1 :=0.

4.2.2 Theorem. Let my, be odd or non-negative and f € U'cy(Osxq i) Then
JFf=Cof +(f+J1)

for a constant Cy which does not depend on f.
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4.2.3 Lemma. [t suffices to prove[Theorem 4.2.9 for e € Gy and S = *.

ProoF. Let F € T'ey(Ogxaxa/i) be defined by F(s,g,h) = f(s,gh) for generalised
points (s,g,h) €p S X G x G. Then (F x J1)(s,g,h) = (f «T1)(s,gh) by definition.
Moreover,

TFf(s,h) = / D DiceA-0E= 1) [ pa 0o (g
i [c(N)] K/M G/K
- / D / Diflg) [ D e 1) (A=) H ),
ior [cA)? Ja/k K/M

-/, woe /; e P @one™h)

by Therefore,
dX

JFf(s,h)= /ia* \c(d/\);P(f* ox)(s,h) = /ia* |c()\)\2(F* o) (s, h,e) = TFF(s,h,e),

showing that suffices to assume h = e.
The claim for S follows, since integration is continuous on I'cf(Ogx /K ) and

TJF(f1® f2) = [Lr @ (T Ffo)
for f1 ® f2 € T'e(Os) @ L'e(Ogyk)- O

In the following, it will be necessary to identify G /K with the unit ball in AP0 to
use the formulas from In order to do so, a few considerations need to be

made.

4.2.4 Lemma. The S-points of G = SOSp/, (1,1 + p|2q) are precisely those generalised
points g €s GL¢ (2 + p|2q) which satisfy

gSTJg =J, (4.2)

such that go has values in Gy = SO} (1,1 + p) x USp(2q). Here, (% g)ST = (_RSTT ‘T/I)
and J is the matriz from FEquation “3.17).

PROOF. Consider the non-degenerate super symmetric bilinear form b on V = CP+2/24,
T3 e . . .
given by b(v,w) == v¥ " Jw. Such a bilinear form can always be identified with the element

vp = Ze;‘ ® b(es, ej)e; € S%(V*)s.
/Z:hj
Here, S?(V*) denotes the vector space of symmetric 2-tensors in V* and (e;) ; is a graded
basis of V* with dual basis (e ),. This definition is independent from the choice of a certain
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basis. Moreover, the actions of GL¢(2 + p|2¢) on A®(S?(V*)) and the space of bilinear
forms, given by g¢.(v* ® w*) = (v* 0o g™ !) ® (w* 0o g~1) and (g.b)(v,w) = b(gv, gw), are
compatible in the sense that g.vy = vy,

Let the complex Lie super group H := OSp¢(1, 1 + p|2q) := G, be the stabiliser of v.
Its generalised points are precisely the ones which leave b invariant, hence those which
satisfy Equation (4.2)). At this point it should be noted that AC((-)STs) = (-)¥ as linear
maps. The corresponding complex Lie super algebra is the subset of all x € glc(2 + p|2¢q)
such that b(zv, w) = —(=1)PI#lp(v, 2w), hence ospe(1,1 + p|2¢).

Since Hyp = O¢(1,1 + p) x Spc(2q), it is clear that the complexification of G is the
identity component of H. Now, [Proposition 2.4.16] concludes the proof. ]

4.2.5 Remark. Similarly, one can obtain that the S-points of K = SOSp,,(1 + p|2q) are
those of G which are of the form (} ).

4.2.6 Lemma. Let B1TPI24 .— Ap+1\2th1+p be the unit ball in APT1124. Then

G x Bl i (4D Dz+C
a: GxB — B ’((C D)’x>'—>3x+A

defines a tranmsitive action. Here, the notation of the matrices is in accordance with
the involution, ignoring the grading. Moreover, the stabiliser of o :=0 € B*P s K. In
particular, G/K = B*pl2,

PRrROOF. The compatibility of o with the group structure is clear. Transitivity is clear
on the underlying spaces. The tangent map of «, is surjective, since

o (& ) =c

for (3 B)eg. Let g=(AB) €s G, such that g.o = 0. Then

C

0 = q.0 = —

g o A?
hence C' = 0. Equation (4.2)) then implies B =0 and A = 1, thus g €g K. The converse
is clear. ]

4.2.7 Lemma. If p > 0, the action

a: K x §pl2a — grl2a, ((é 2),8) — ks

is transitive and therefore K /M = SP124,
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PROOF. First, this map is indeed an action on SPI?¢, since K leaves || - || invariant on
APF12¢ Since SP = SOr(1 + p)/ SOr(p), the action is transitive on the underlying spaces.
Considering the point e; € SP, the transitivity of the action is easily shown. The stabiliser
of e; is M = SOSp_,(p|2¢), which proves the claim. O

4.2.8 Lemma. The following diagram commutes.

(eth0 k) (tanh(t),ke1)

AT x K Alho,l[ x SPl2a
(ak)»—)kal i(r,s)b—ﬂ”s
G 9790 Bl+p2q

In the next part, the Berezin densities DX\ and DS from will be used.

4.2.9 Lemma. The Berezin density DX(1 — | - ||2)~17¢ on B*PI%¢ is left G-invariant.
Similarly, the Berezin density DS on SP1%4 is left K -invariant.

PRrROOF. The Lebesgue Berezin density DA is invariant under K, since Ber k = 1 for all
k €5 K. The same is true for || - ||, which defines SPI??. Therefore, DS = DA | gpi2a . 18
also invariant under the action of K. In the same manner, DA(1 — || - ||)717¢ is invariant
under K. Let 2 denote the standard coordinate system on B!*712¢, Then

1
L fletoa]?) ¢
TP

tho
Ber (668 w) — (21 sinht 4 cosht)727P+20 = <
x

shows that this Berezin density is also invariant under A. O

In the following assume that D¢ and Dk are normalised such that they are compatible
with DX and DS

4.2.10 Corollary. Let f € T'cy(Ogxq k). Then for p >0

fol drr?e(1—r?)~1-e fK/M Dk f(s, kay) mq € No,
D3 f(s.9) C fy dr=207¢ (L=r)7'72 [0 Dk fls.kays)) %€ —N,
gf(s,9) = o :
G/ Jo drr®e(t —v®)=1e [ Dis f(s, kay)
8—29—1

+ ey (1= 2)7172 [0 DR log(l[(ken)g|) f (s, kay) - else,
with ay = e~ o gng ¢ = LerPED?,

For p =0 the formula takes the form

1
Dif(s.g) = C [ arriore ((1—r>—1—@ Dz%f<s,kam+f<s,a_m).

G/K K/M
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PROOF. The claim follows directly from Propositions [2.3.9] [2.3.10] and [2.3.13] The
different form of the formula for p = 0 is due to the fact that S°2¢ consists of two super
points, whereas K /M consists of only one. ]

PROOF OF [THEOREM 4.2.2] FOR m,, > 0.

d\ . d\ 1 . ,
[G*WL/KDgf<g>¢_A<g>:[u*CW/ i (r22(1 1)1 (s (a)

with f°(r) = [} I Dk f(s, ka,). The right hand side of the equation above only depends
on Mg for any function f°. Therefore, one may assume g = 0 and obtain from the
classical result (cf. [Hel84, Chapter IV, Theorem 7.5])

(M)

for constants C' and Cj. (]

[ B [ Dise s =) = st
ia* G/K

4.2.11 Lemma. Let my < 0 be odd. Then 9F_ypx(e0) =0 for all k < —20. Similarly,
OF_opx(ar) =0 for all k < —2p.

PROOF. Since ¢, (e fK o Di: = Vol(SPI2¢) = 0, the assertions are trivial if k = 0 or
A = +p. In the case of odd k, the claims follow from the invariance of ¢)(a) under
ara l.

Write cotht = % + f(t), where f is analytic at 0. Then

(_l)lal—‘rl

tm ((0f coth )g()) = lim(~ 119 1 (oo (1)) 9(0) = ¢ o

g9(t)

for any function g with 9j2,9(¢t) = 0 for m <.
Now, suppose the first assertion to be true for all £k < 2n + 1 with n < —9 — 1. Then

0 = 82 (X* — 0*)ga(e™) = G (A(L)(92)) (™)
2n

n 2n _
5 ga(e™0) + 20lim Y- ( l ) (0} cotht) 92"y (eh0)
=0

_ 82(n+1) tho 9 > (2n (_1)l82n+2 tho

= Ui—0 ¢/\(6 )+ QE I 7l+1 t=0 ¢)\(€ )

o 20 2(n+1) thoy\ _ 2n+1+ 29 2(n+1) tho
(14 5t ) 825 Pan(ere) = 222002 g o),

hence 0; (kﬂ)(ﬁ)\( tho) = 0. In the last line, the identity 37" ( ") (ljl)lx = %
was used.

By applying Faa di Bruno’s formula on ¢y(a,) = ¢x(e'**" (D"0) the second claim
follows immediately. O
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PROOF OF ['HEOREM 4.2.2] FOR m, < 0 ODD. By |Corollary 4.2.10)

d\ .
- c()‘)|2/G/K Dg f(g)9-x(9)

ot L '
:/ia* c()\)‘Q/O dr (7"2 (1_?”2) 1 (Z)_)\(ar) K/MDkf(kaT)>

N 2 —1-p - i
+/ cVE (=20 — 1! ((1 —77) Cf)—/\(ar)/K/M Dklog(ll(kel)oll)f(kar)>-

Thanks to the second summand vanishes after applying the product rule.
Therefore,

7Fie - [

= 760\ 1 r|r?e( —r2)"1-e a . a
JFfl(e) _/ia* ’C()‘)P/O d ( (1 ) ¢-x(ar) K/MDkf(k r))
On the other hand,
(f*TJ(e)= [ Dgflg)TLg™")
G/K
= 1 r(r?e(1 — 210 _dA a ' a
- [ ( 1= [ o) [ DI 7»))
+ @231<(1 —r?) 7T 1(a )/ Dk log(||(ke1)gll) £ (ka ))
(_29_ 1)' T K/M g 1)0 r .

Here, the integrals over r and A in the second line can be interchanged, since the integrand
can be estimated adequately due to [Corollary 3.3.8 Moreover, afj 1(a,) vanishes for

k < —20 —1 by [Lemma 4.1.8 Therefore, [Corollary 2.3.12| shows

a2 71(a,) ; ,
et T8 /K oy Dt ker ol ().

= JFf(e)— j;wlﬂf(e). O

(f+T1)(e) = TFfle) +

4.2.12 Remark. The idea to this proof generalises concepts of [Zir91a], where the case
of my, = —1 was covered.

4.2.13 Remark (The first part of the proof of [Theorem 4.2.2| for m, < 0 even). Define

folr)=(1—r?)~'e Dk f(kay)
K/M
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for r €] — 1,1]. Let T" be the distribution on | — 1, 1] given by
dA ! 1 1 1
Tg= [ i [ driorteamai - [ dreiortg(vi i),
i c(A)e(=A) Jo vr 0 v
Since Tf° = C YT Ff(e) — CL(f x J1)(e) for p > 0 by [Corollary 4.2.10] it suffices to
check T'g = Cpg(0) for some constant Cy

The operator T satisfies supp T C {0}. This is easy to check, since for any compactly
supported g with 0 ¢ supp g:

1 1
/ c@)i?_w /0 dr 307295 (a)g(V)
1

0 T2 dA ' -3—0

=(-1) (—Q)!<_z> /z‘a*c()\)c(—)\)/o drr2 ¢A(aﬁ)9(\/;)
4 -3 dA ' —20

=(-1) 2(—9)!<_z> /ia* C()\)c(_)\)/o drr=*2¢x(ar)g(r)

= (—1)°2(— 2 1 20 _d ay)g(r
= (-1)e2( g>!<_;> | [ o)

1
:/0 drr‘%f?;@g(\/?)ﬂ(aﬁ)

Here, the integrals over r an A can be interchanged due to [Corollary 3.3.8] Therefore
Tg=0.

In order to finish this proof, one needs to show |T'g| < sup,cp+ |g(r)|. For this, the
canonical procedure would be to show

dX L,
Tg:/ia*_MC()\)C(—)\)/o drr=20,%px(a ) g(Vr)

for some M > —p. This can be done, since the integration over » commutes with taking
residues of the integrand.
The idea is to estimate |T'g| by using

O or(a )
c(A)e(=A)
for |t| < R and | Re A| < M, which follows from by Faa di Bruno’s formula.
However, this leads nowhere. In fact, this idea would only work if ¢ in Equation (4.3])
was replaced by 2p. Unfortunately this is not possible, even in the case m, = —2.

So far, there is no idea to overcome this obstacle. The fact that ¢, is given by a finite
sum of exponential functions might be useful for a solution. One can show

¢)\(€th0) —_ Cle(/\—g)tPS—QA,QQ—l)(l o 26_2t),

< Ci(1+ A2+ (4.3)

where the Péa’ﬂ ) denote the Jacobi polynomials.






5. Outlook

As it was pointed out in the introduction, a general formula for the c-function has already
been derived in [AS13]. Obtaining a series expansion for spherical super functions in
higher rank cases is then straightforward. Therefore, the main obstacle in proving a
general Fourier inversion formula is the determination of a polar integration formula
for the dense open embedding K/M x At — G/K from [Proposition 2.4.32} During the
preparation of this thesis, an idea to solve this problem arose. This idea shall be outlined
in the following.

In the development of a polar integration formula was only possible due
to the linearity of the standard retraction on API2¢. Therefore, it is reasonable to try
to obtain a retraction on G/K that is linear in some sense. Recall the decomposition
G = K x p from |Proposition 2.4.18, The vector space p admits a transitive action of G,
given by g.x = log (9e*0(g1)) with the Cartan involution § on G. This is indeed well-
defined, hence G/K may be identified with p. Under this identification, the morphism
K/M x at — G/K = p takes the form

(k,h) — 2 Ad(K)(h).

Let v be the retraction on K/M x A" which is compatible with the canonical retraction
on p under this isomorphism. The canonical retraction is linear. Since Ad is linear in the
second component, the same is true for vy, considered as an retraction on K/M x a*.

For brevity, assume g to have only even roots and enumerate the simple roots as
ai,...,ak. Then pi(kMy, h) == a;(h) for i = 1,..., k defines a family of boundary func-
tions on Ko/My x a™. Let hy,...,hi be the basis of a which is dual to the simple roots.
Then p;(y(k,h)) = ai(h)pi(v(k, h;)) implies with [Remark 2.2.23] and [Proposition 2.5.13]
that

D f(g) = lim ( /A axe) [ Dis(e) f(ketho)

G/K =0 k. K/M
. o - (5.1)
+ Z Z Z <_1)l78gj<z=€a<l / dA(to>1) / DFE ni<ltja<l6(€tho)f(ketho) .
I=10€S) jeN! Je B A§;i>l K/M -

Here, the restriction of A*~! to lea—1(1), 00[X - - - X]gz-1p), o0 is denoted A’;é>l fore € R.
Furthermore, thy == t1h1 + ...+ tphr and

nffgl = (1 — pa.—l(l) @) 'y(k‘, ha_l(l)))

J1

J
ce (1 — Pg—l(l) o ’y(k‘, ho.—l(l))) : .

85
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If § has no singularities at the boundary of A™ (which is for example the case if the
multiplicities of all roots are non-negative), the second line of Equation ([5.1]) vanishes for
€ — 0, and one obtains the formula

D f(g) = / da [ Dio(a)f(ka), (5.2)
G/K A+ Jrm

similar to [Proposition 2.3.9]

For negative multiplicities, a procedure as in the proof of Propositions[2.3.10] and [2.3.13]
becomes necessary. First, one needs to obtain for each o € S,, an expansion of the super
function &(et0) f(ketho) on K/M x Ai‘l x Al in terms of t,<; at 0. Let the coefficients
of this expansion be denoted f7 for n € Nf). This leads as in Equation to integrals
of the form

Dkby-1(1y.1 o1 m J7 (s tosi), (5.3)
K/M
where
log (p; o v(k, hy)) k= —1—mq— moa,
bik = 1—(mov(k,hi))717%2’7%%7’6
Ty T 20, TF else.

Although it is easy to check by Weyl group invariance that the integrals in Equation
vanish unless n € 2N/, it becomes rather difficult to obtain further insights on them.
In the further approach was to show that most of these integrals equal
I} K/M Dk f7 (k,ts>1) or even vanish. This was rather easy to see by using polar coordinates.
However, in the general case, the only available coordinates so far are the ones given
by the map k: N — K /M, under which retractions on K/M are not compatible with
the canonical one on N. Therefore, the major task in order to obtain a general polar
coordinate formula is to find suitable coordinates on K/M.



A. Appendix: Categories

This section should summarise the concepts of category theory, used in this thesis. For a
broader view on the topic, [Lan98] may be recommended to the reader.

A.1 Definition. A category C consists of:
o a class Ob C of objects,
o a set of morphisms Hom¢(X,Y') for any pair of objects X,Y € C,
o a composition map o: Hom¢(X,Y) x Home(Y, Z) — Home (X, Z) for any triple of
objects X,Y,Z € Ob C,
satisfying the following two conditions:
o for any three f € Hom¢(Z, W), g € Home (Y, Z) and h € Home(X,Y'), composition
is associative: (fog)oh = fo(goh)
o for any object X € Ob C, there exists a morphism idx € Hom¢ (X, X), called the
identity morphism, such that f oidx = f and idx og = g for any f € Hom¢(X,Y),
g € Home (Y, X).
It is easy to check that the identity morphism is unique. For convenience, one writes Hom
instead of Homg if the category is understood and f: X — Y instead of f € Hom(X,Y).
For any two morphisms f: X =Y, g: Y — X with f o g = idy, one calls f a retraction
of g. Vice versa, g is called a section of f.
If g is both a section and a retraction of f, it is uniquely determined by these properties.
f and g are called isomorphisms and one writes f~! := g. The objects X and Y are then
said to be isomorphic: X =Y.
If f is a retraction, it is also an epimorphism, i.e. go f = ho f implies g =h. If f is a
section, it is a monomorphism, i.e. f o g = f o h implies g = h.

A.2 Definition. A subcategory D of a category C is a category for which all objects
X € Ob D are also objects in C. Furthermore Homp(X,Y) C Hom¢(X,Y) is required
for all X,Y € Ob D. If this inclusion is an equality for all Objects, D is said to be a full
subcategory.

A.3 Definition. For any index set I and objects X; € Ob C, an object Y is the product of
(Xi),cg if it satisfies the following universal property. There exist morphisms pr;: ¥ — X;
for all ¢ € I such that for each Z € Ob C' with morphisms f;: Z — X; there exists a
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unique morphism f: Z — Y such that for each ¢ € I, the following diagram commutes:

Y

b

J —

i !

If the product exists it is denoted [[;c; X;. For finite products one uses the symbol “x”,
e.g. X1 X Xs. Note that products are preserved under functors.

A terminal object x € Ob C is an object such that for each X € Ob C, there exists
a unique morphism X — *. Terminal objects, so they exist, are unique up to unique
isomorphisms. In a category which admits finite products a terminal object always exists.
It is given by the product over the index set ().

A .4 Definition. A functor F': C — D between categories consists of two assignments:

« each X € Ob C is mapped to F(X) € Ob D,

o either each morphism f € Hom¢(X,Y') is mapped to F(f) € Homp(F(X), F(Y))

or all morphisms f € Home(X,Y) are mapped to F(f) € Homp(F(Y), FI(X)).
Functors fulfilling the first condition are called covariant, whereas those satisfying the
second are said to be contravartiant. Furthermore, the following is assumed to be true
for all composable morphisms f and ¢g: F(f og) = F(f) o F(g) in the covariant case and
F(fog)=F(g)o F(f) in the contravariant case.
Functors which are injective on Home(X,Y) are called faithful, those which are

surjective on the sets of morphisms are called full.

A.5 Definition. Given two functors F,G: C — D, a natural transformation from F' to
G is a collection of morphisms 1 = (nx) xcop, ¢» With nx: F(X) — G(X), such that for
all morphisms f € Home(X,Y), the following diagram commutes:

F(x) 2L Py

x| |

G(X) 5 GY)

Two natural transformations n: F' — G, §: G — H are combined to a natural transfor-
mation 6 on: F — H by composing the respective maps.

Given a category C, let CV denote the category whose objects are given by contravari-
ant functors C — Sets. Here, Sets is the category of sets, where the morphisms are
represented by ordinary maps between these sets. The morphisms in CV are the natural
transformation between functors, with the obvious identity morphism.
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A.6 Definition. Given X € C, a natural contravariant functor X (—): C — Sets arises
by setting X (5) := Hom¢(S, X) for S € Ob C and X(f): X(Z) - X(Y),g+> go f for
f € Home(Y, Z).

This gives rise to a functor h: C — C¥ via h(X) := X (—), where natural transformations
h(f): X(=) = Y(—) for f: X = Y are given by h(f)s: X(S) = Y(S),s+— fos. The
functor h is known as the Yoneda embedding.

A.7 Proposition (Yoneda Lemma). Given a functor F': C' — Sets and X € Ob C. Then
Homev (X (—), F) = F(X).
By setting F :=Y (=) for Y € Ob C, this shows in particular
Homev (X (=), Y (—)) = Home(X,Y),

hence h: C — CV is a fully faithful functor. This explains the name of the Yoneda
embedding

A.8 Remark. Although the Yoneda Lemma might look unimpressive at first sight, it
gives a very useful tool into one’s hand. For applications it is profitable to introduce
the notion of S-points. For any object X € Ob C, elements s of X (S) = Hom¢(S, X) are
called S-points or generalised points of X. One writes s €g X instead of x € X (5) and
f(s) instead of f o s.

Now, the Yoneda Lemma states that instead of dealing with rather complicated
morphisms f: X — Y it suffices to analyse them on the level of S-points. Even more, to
define such a morphism it is enough to define it on S-points: Given maps (between sets)
fs: X(S) = Y (S), such that for any g: S — T the following diagram commutes

X(8)L-v(s) |

X(g)l lY(g)

X(T) ——=Y(T)

there exists a unique corresponding morphism f: X — Y.
In applications it it therefore reasonable to define morphisms f: X — Y by defining

f(x) for z €g X with implicitly stating that this is natural in . The benefit of this
method becomes very clear in the context of group objects.

A.9 Definition. A group object in a category C which allows finite products, is an
object G together with morphisms mg: G X G — G, ig: G — G, eq: * — G, such that



90 A. Appendix

the following diagrams commute:

G ldG Xig G G )( 26 xeq ldG xXeq
G x G x Gldc LG x G b \ \ /
meidG\L l *
GxG e G S / / \
x G

G x

Here, dg denotes the diagonal morphism, which arises from the identity morphism in
both components.

A morphism of group objects G — H is a morphism which is compatible with the
multiplication and neutral morphisms, i.e. mg o (p X ) = pomg and poeg = eqy.
This defines the subcategory of group objects in C.

A.10 Remark. Thanks to the Yoneda Lemma there is only one thing to check in order to
prove that an object is indeed a group object: If for any object S, the set G(.5), together
with the induced maps mg and ig is a group with neutral element eg: S — * — G, then
G is a group object. Moreover, with this approach it is easily shown that the inversion
morphism i¢ is compatible with morphisms of group objects.

A.11 Definition. Given a commuting diagram

|

Y——Z

-

in a category C, the object P is called the fibre product of X and Y over Z if the diagram
is universal in the following way: For any other such diagram with @ in place of P, there
exists a unique morphism Q — P such that

|

Y ——Z7

commutes, as well. P is unique up to unique isomorphisms by this condition, which
justifies to write X xz Y = P.
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Given a commuting diagram

X
f

XXZY

X' xpY —— X'

|

NN

Yl

Y

Z/

the induced morphism X xz Y — X’ xz Y’ is denoted f xy, g.
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B(X,7), boundary cs manifolds, given
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C', morphism of Baker-Campbell-Haus-
dorff formula,
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J1, inverse Fourier transform of the con-
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J o, inverse Fourier transform,

Ob C, Objects in the category C,

PWp, Payley-Wiener space, [74]

S-point, [89

SOSp (1,1 + p|2q), B9

SSpc, category of C-superspaces,
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Sets, category of sets,

T, X, tangent space, [J]

Uy, domain of a coordinate system z, [7]
U,, domain of the fibre coordinate sys-

tem x, [T

Ues(1,1 + plg), 4]

V*, dual cs vector space, [0]

Ve, complexification of the cs vector
space V', [0]

X (S), S-points of X, [89]

X, c¢s manifold with boundary, bounded
by p, [[3]

X xzY, fibre product of X and Y over
base Z,

at, 36

.63

csMany, category of ¢s manifolds over
base Y, [10]

csMan, category of ¢s manifolds, [f]

v

dim X, dimension of X, [0]

dimy X, relative dimension of X/Y,

f , Fourier transform of f,[73]

f(z), value of f at z,

f1 * fa, convolution, [77]

f Xp g, fibre product of morphisms,

7, retraction of canonical embedding, [9]

va, standard retraction on the Lie cs
group G, [30]

vy, retraction, compatible with retrac-
tion v over Y, [I]]

glc(ple), BT
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v fibre integral, [T5]
Jx,, canonical embedding, [7]
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px(X), image of X/Y under the projec-
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density,
¢, spherical super function, [43]
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05p.s(1, 1+ p|2q), B
str, super trace, [45]
ues (1,14 plg), [Aq]
w|m 7, restriction of a Berezin density to
the boundary c¢s manifold H, [T§]
r g X, @
cs
manifold, [6]
differential of a morphism,
relative m.,
vector space, [5]
complexification, [f]
dual v.s., [0]
inner hom, [§]
cs group pair, [30]
LiecsGrp, category of c¢s groups,

action, [35]

transitive a., [35]
affine space, [0]

Baker-Campbell-Hausdorff formula, 29|
base change,

of a Berezin density,

of a derivation,
Berezin density,

base change,

pullback, [T9]
boundary ¢s manifold, [14]
boundary function,
boundary super function, [I3]

canonical embedding, [7]
category, [87]
chart, [7]

relative c.,
compactly supported along the fibres,
complex Lie super group, [30]
complex super manifold,
convolution, [77]
coordinate system, [7]

adapted to a retraction, [9]

global c.s., [7]

relative c.s.,

standard c.s.,[7]
coordinates

relative c.,
cotangential sheaf

relative c.s.,

derivation, [9]

base change of a d.,
differential of a morphism,
differential operators, [12]

embedding, [6]
epimorphism, [87]
even Cartan subspace, [33]

Fourier transform, [73]
full subcategory, [87]
functor,

generalised point, [89]
group object,

identity morphism, [87]
immersion, [T0]
integral
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fibre i., [15]

inverse Fourier transform,
isomorphism, [87]
Iwasawa decomposition,

Lebesgue Berezin density,
Lie cs algebra,

Lie ¢s group, [2§

manifold with corners, [13]
monomorphism,

natural transformation, [8§|
open subspace, [7]

polar coordinates,
polar decomposition, [32]
product,
pullback
of a Berezin density,
of a module sheaf, [12]

real super function, [7]
reduced space, [7]
relative cotangential sheaf,
relative dimension,
relative super dimension,
restricted root, 33

positive, [33]

simple r.r., 33
retraction, [87]
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standard r.
on a Lie c¢s group,
on an affine space, [9]
root system, [33]
restricted r. s.,

section, [87]
spherical super function, [43]
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standard coordinate system, [7]
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full s., B7]

super commutator, [I2]
super dimension, [0]
super function,
real s. f.,[7]
rotationally invariant s.f.,
value of a s.f. at a point,
super point, [J]
super sphere,
superspace, [9]
symmetric super pair
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reductive s.s. p.,
strongly reductive s.s. p., 33|
symmetric superspace, [39]

tangent vector, [I0]
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relative t.s.,
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value of a super function at a point,
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Yoneda embedding,
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