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Abstract 

Forward genetic screens remain one of the main genetic tools to characterize gene 

functions in plants. Recent advances in Next Generation Sequencing (NGS) 

technology have greatly reduced the time required for mutant identification in forward 

genetic screening. The major advantage of NGS enabled mapping, known as 

mapping-by-sequencing, is the simultaneous marker identification and genotyping 

and identification of the genomic loci causing phenotypes. We have been among the 

first to show that mapping-by-sequencing can be performed even within the same 

genetic background using mutagen-induced changes as segregating markers. As a 

proof of this concept, we mapped a previously unknown suppressor of like 

heterochromatin protein1 (lhp1) mutant. We developed a computational pipeline for 

the same and integrated it into an existing mapping-by-sequencing pipeline called 

SHOREmap.  

Though mapping-by-sequencing is now being routinely used, less effort has been put 

in optimizing the experimental set-up. Therefore, we developed new computational 

pipeline called Pop-Seq simulator that can simulate different mapping populations 

and sequencing experiments. It simulates recombinant genomes by following 

empirical determined recombination frequency and landscape, which make 

simulations close to reality. Using Pop-Seq simulator we simulated different 

mapping-by-sequencing scenarios and created guidelines for mapping-by-sequencing 

experiments in Arabidopsis. Although mapping-by-sequencing has already become a 

standard method in Arabidopsis, the application in crops is hindered by the large 

genome sizes and the lack of complete reference genomes. Therefore, we have used 

the Pop-Seq simulator to extend our analysis on the experimental design of mapping-

by-sequencing to two crop model species, rice and barley, in which next generation 

sequencing-based mapping becomes tangible reality. Besides, we have developed a 

reference-free method called NIKS (needle in the k-stack) that enables mapping-by-

sequencing in species without pre-assembled reference sequence, gene annotation, or 

genetic map. NIKS directly compares genomes using k-mers from whole genome 

sequencing data to identify homozygous mutations and extend the sequence 

associated with mutation site by local de novo assembly. We have used ab initio gene 

structural prediction to annotate the effect of mutations, which led us to the 
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identification of causal mutation. This method will facilitate mapping-by-sequencing 

in non-model species. 
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Zusammenfassung 

Vorwärts genetische Verfahren sind in der Pflanzengenetik eine der wichtigsten 

Methoden zur Identifizierung von Genen und ihrer Funktion. Jüngste Fortschritte in 

der Sequenziertechnik der nächsten Generation (engl. Next Generation Sequencing 

(NGS)) haben den Zeitaufwand für die Kartierung von Mutationen mittels vorwärts 

genetischer Verfahren drastisch reduziert. Eine neue Methode, die auch als Kartierung 

durch Sequenzierung (engl. Mapping-by-sequencing) bezeichnet wird, ermöglicht nun 

die simultane Identifizierung und Genotypisierung von Markern. Diese werden 

benötigt um die genomische Region, die einem Phänotypen zugrunde liegt, zu 

bestimmen. Wir waren unter den Ersten die gezeigt haben, dass Kartierung durch 

Sequenzierung im selben genetischen Hintergrund mittels Mutagen induzierter 

Marker durchgeführt werden kann. Dies konnten wir anhand der bereits bekannten 

Suppressions Mutante like heterochromatin protein1 (lhp1) nachweisen. Für die 

Kartierung haben wir eine Pipeline zusammengestellt welche nun in SHOREmap 

integriert ist.  

Obwohl Kartierung durch Sequenzierung ein routinemäßig eingesetztes Verfahren ist, 

wurde der Optimierung des experimentellen Aufbaus bisher wenig Aufmerksamkeit 

geschenkt. Aus diesem Grund haben wir eine Simulationssoftware (Pop-Seq 

Simulator) entwickelt, welche empirisch bestimmte Rekombinationsfrequenzen und –

landkarten verwendet und somit realitätsnahe Simulation ermöglicht. Mittels der 

Simulation von verschiedenen Szenarien, bei denen Kreuzungsschemata und 

Sequenziertiefe variiert wurden, konnten wir Leitlinien für verschiedene 

experimentelle Setups in Arabidopsis erstellen. Auch wenn Kartierung durch 

Sequenzierung mittlerweile in Arabdopsis Standard ist, ist die Verwendung dieser 

Methode in Kulturpflanzen durch vielfach größere Genome und das Fehlen 

vollständiger Referenzgenomsequenzen erschwert. Aus diesem Grund haben wir 

unsere Analysen auf zwei Kulturpflanzen in denen Kartierung durch Sequenzierung 

schon jetzt möglich ist, Gerste und Reis, erweitert, um auch in diesen optimale 

experimentelle Setups zu bestimmen. Darüberhinaus haben wir mit NIKS (engl. 

Needle In the K-Stack) eine Methode entwickelt, die nicht auf einer 

Referenzgenomsequenz, Genannotation oder genetische Karte beruht. NIKS 

vergleicht Genome mittels k-mers aus NGS Daten, wobei homozygote Mutationen 

mittels lokalen Assemblies der Region gefunden werden. Im Anschluss werden 
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Genstruktur und Annotation vorhergesagt, welche die Bestimmung der kausalen 

Mutation ermöglichen. Durch diese Verallgemeinerung der Methode wird die 

Anwendung von Kartierung durch Sequenzierung über die Grenzen von 

Modellorganismen ermöglicht. 
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Chapter 1. Introduction 

The genetic screens to identify the gene responsible for phenotypic variation 

have been a common task in genetics. In plants, identification of genes contributing to 

the variations in phenotype has great deal of implications not only in understanding 

fundamental processes but also for the betterment of crop (Rafalski, 2010). Genetic 

screens systematically associate observable characteristics or traits (known as 

phenotype) and the genetic make-up (known as genotype). During the course of time, 

different strategies have been deployed and these strategies have largely been 

classified into two major groups, forward and reverse genetics. Forward genetic 

screens select for a phenotype associated with a biological process and identify the 

genetic region contributing to the phenotype. Whereas reverse genetics screen select a 

gene of interest and analyze mutant of the gene in order to identify the process it has 

been involved with (Page and Grossniklaus, 2002; Alonso and Ecker, 2006).  

The environment where the screen been conducted has influence on traits and 

higher the heritability of a trait, lesser is the influence of environment on phenotype 

(Paterson et al., 1991; Mauricio, 2001; Collard et al., 2005). Therefore, accurate 

genetic screen requires simultaneous recording of environment, phenotype and 

genotype. The fact that forward genetics allows the direct analysis of a biological 

process of interest without any prerequisite knowledge. The process of forward 

genetics screens start with random mutagenesis to introduce genetic variations that 

occasionally lead to phenotypes of interest. Subsequently, mapping localizes genetic 

element responsible for the phenotype.  

Mapping experiments can be summarized as; first, identification of 

polymorphic markers between parental lines. Second, generation of segregating 

mapping population by crossing a parent with phenotype of interest to a suitable wild 

type parent. Finally, genotyping the mapping population at each marker position and 

associating phenotype to genotype in order to identify causal genetic region, known as 

mapping interval. This may further require fine mapping to reduce the genetic region 

under probe by using more segregant and even more markers, if available. If genome-

wide information such as whole genome sequence and gene annotation is available, 

this could be utilized to pinpoint the candidate genes within the mapping interval.  
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Short life cycle, self-compatibility and relatively easy to be grown in a 

greenhouse has made Arabidopsis thaliana, a member of Brassicaceae family, a 

widely accepted model species in plant science (Meinke et al., 1998; Somerville and 

Koornneef, 2002; Koornneef and Meinke, 2010). Moreover, features like foremost 

sequenced genome with a stable assembly, comparatively well annotated and 

characterized genes and amenability to forward genetic screen has made Arabidopsis 

a model system of choice for plant biologist. 

Traditionally, mapping populations are derived from biparental cross between 

phenotypically diverged parents in order to map phenotype of interest. The primary 

mapping population derived from such a cross is F2 progenies, facilitating uneven 

phenotype. The underlying genetic segregation causes such an uneven trait in F2, 

which is utilized during mapping by associating the fixed allele within a group of 

progeny having phenotype under selection. In other words, by classifying the 

mapping populations into groups with same phenotype and by pooling DNA from 

group with phenotype of interest, mutation underlying the phenotype, as well as the 

closely linked genetic region will be selected. Thus, in case of a recessive phenotype 

the mutant region will be homozygous. On the other hand, due to recombination and 

independent chromosome assortment in each pooled plant, regions unlinked to 

mutation have equal likelihood to have both alleles, hence heterozygous in the pool. 

Thus, the allele frequency at and near the mutation will be one (all alleles are the 

same), and this frequency will gradually decline to the random expected frequency of 

0.5 with increasing genetic distance from the mutation. This way of analysis is known 

as Bulk Segregant analysis (BSA) (Michelmore et al., 1991).  

BSA was first utilized in mapping resistant gene in lettuce by grouping 

mapping population into resistance and susceptible groups. Later this method became 

common for the phenotype with discrete groups. On the other hand, when the 

phenotype are complex, continuous and contributed from multiple loci, method called 

quantitative trait locus (QTL) mapping is used (Falconer and Mackay, 1996; Kearsey, 

1998). In QTL mapping, each segregant plants are genotyped and phenotyped 

separately to associate genomic loci and their contributions to phenotype (reviewed 

by (Collard et al., 2005)). Depending on the objective, advanced mapping populations 

were created by either selfing or backcrossing to produce recombinant inbred line 

(RIL) or near-isogenic lines (NIL), respectively. In RILs, heterogeneous homozygous 

genome state is obtained by several round of selfing. Whereas in NILs, repeated 
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backcrosses are done to introgress homozygous alleles from one parent to second 

parental background. Recently in Arabidopsis and in other plant species, advanced 

mapping populations, such as MAGIC (Multiparent Advanced Generation Inter-

Cross) and AMPRIL (Arabidopsis multiparent RIL), were introduced by using 

multiple parental lines and complex crossing schemes to increase the power of 

mapping (Kover et al., 2009; Huang et al., 2011). AMPRIL crossing scheme 

represents the founder lines evenly, whereas MAGIC consists of more recombination 

events per lines (Weigel, 2012). As both designs consists of multiple parents that aids 

to study epistatic effects as well as is likely to generate unnatural allelic combinations. 

Together with these new methods of generating mapping populations, revolution in 

both genotyping and up to certain extent phenotyping made the mapping process 

faster and powerful than ever. Due to revolution in DNA sequencing, marker 

discovery and genotyping has gained tremendous speed and throughput in last decade 

and brought up new framework of Next Generation Sequencing (NGS) integrated 

approaches in mapping (Varshney et al., 2011). 

1.1. Changes brought by Next Generation Sequencing 

During last century, plant breading has made remarkable progress in crop 

improvement by utilizing molecular markers and appropriate statistical methods, 21
st
 

century has even more to contribute with new developments in sequencing and 

associated methods (Collard and Mackill, 2008). Last decade has witnessed the 

revolution in DNA sequencing method from Sanger chain-termination technology to 

pyrosequencing or sequencing by synthesis methods by Roche and Illumina (Sanger 

et al., 1977; http://www.454.com/; http://www.illumina.com; reviewed by Wall et al., 

2009; L., Liu et al., 2012) The transition was massive, as the technology which served 

for decades had only few kb per run compared to more than million-throughput in 

new technology. Moreover the cost per base pair got reduced during the course of 

time, encouraging more sequencing project than ever before (Figure 1). Roche and 

Illumina have now several platforms with different throughputs to serve various 

needs. Illumina platform is known for the high throughput of ~6 billion per run with 

relatively short read length of 100- 300 bp (http://www.illumina.com). On the other 

hand, Roche has longer read length up to 1000 bp but comparatively lower throughput 

of ~1 million reads per run (http://www.454.com/). Recently introduced Ion Torrent 

has a read length and throughput intermediate to previously discussed technologies, 
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therefore apt for specific uses (http://www.lifetechnologies.com). Recent 

development of sequencing from a single molecule without any pre-amplification step 

provides longer reads with an average size of 3 kb but with lower throughput 

(http://www.pacificbiosciences.com). While longer reads as well as signal from an 

unbiased molecule is promising, current error rate of 11-14% hamper the utility of 

this method alone and requires support information from another platform (Roberts et 

al., 2013). The other exciting but non-commercialized technologies like Nanopore 

sequencing, suggests that the advancement of DNA sequencing is still on its peak, and 

is projected to grow further. There are many more technologies, which are not 

mentioned above. Further comparisons between technologies have been published in 

various comparative studies (Liu et al., 2012; Quail et al., 2012; Jünemann et al., 

2013). 

 

Figure 1: Improvement in DNA sequencing over the years. With NGS, cost per 

Mb of DNA sequencing (Red y-axis, Data from www.genome.gov/sequencingcosts) 

has decreased unprecedentedly and together with increase in throughput, the number 

of published plant species genome has increased (Blue y-axis).  

The throughput of NGS has revolutionized many biological fields, including 

genetics and genomics. The growing sequencing throughput, has not only opened the 

door for the sequencing more samples but has also changed the way forward genetics 

has been conducted and practiced. The speed and throughput of NGS, has not only 

stimulated the whole genome sequencing projects but also resequencing projects, to 

investigate natural variations between accessions/ecotype. The number of plant 

species being sequenced is growing in a great speed as the cost per base pair is 

reducing (Figure 1). This momentum to generate more genomic resources with 

http://www.lifetechnologies.com/
http://www.genome.gov/sequencingcosts
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respect to sequencing has got attention in non-model organisms as well (Tautz and 

Domazet-Lošo, 2011; Varshney et al., 2011). Simultaneously, resequencing projects 

like 1001 Arabidopsis genome project (http://1001genomes.org), where the whole 

genome sequencing of multiple accessions/ecotypes has given rise to rich data sets of 

natural variations that have direct implication in genomic studies such as whole 

genome profiling (WSP) and genome wide association studies (GWA) (Nordborg and 

Weigel, 2008; Weigel, 2012).  

Other than whole genome sequencing and resequencing, NGS has improved 

other biological study fields such as expression analysis, direct identification of DNA 

binding site (Chip-seq) or DNA methylation pattern identification, just to name a few. 

Most of the mentioned techniques are still under optimization and have recently been 

the subject of extensive studies to explore the utility of each or combined methods, 

which were not possible to carry out at all or in genome-wide scale before NGS. 

1.2. NGS enabled forward genetics 

In forward genetics, genetic mechanism of a phenotype is studied by 

introducing random mutations artificially by means of either chemicals or radiation, 

and plants showing phenotype of interest are selected to raise a mapping population. 

The aim of mutagenesis is to introduce maximal genomic variation with minimal 

reduction in viability and by screening this population, traits that are almost 

impossible to identify by conventional breeding are being developed and 

characterized at the molecular level (Sikora et al., 2012). In order to pinpoint the 

molecular identity of the mutant, positional cloning is commonly employed with the 

help of available genomic information (Lukowitz et al., 2000). However, the 

positional cloning of mutants can be time consuming because of lower recombination 

rates in the region. Feasibility of resequencing and recent developments in marker 

discovery and genotyping due to the up-rise in DNA sequencing methods has brought 

up new framework of NGS integrated mapping approaches. The major advantage of 

so called, mapping-by-sequencing, is the simultaneous discovery of segregating 

markers in the mapping population and genotype to identify mapping interval that 

contribute to phenotype. Finally, using the same data together with gene annotation, 

effect of mutation on gene function is predicted to pinpoint candidate genes. Hence, 

mapping-by-sequencing merges three steps that were required previously to one, thus 

speeding up the whole process. 

http://1001genomes.org/
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Mapping-by-sequencing consists of multiple intermediate bioinformatic 

analysis, mainly comprising of resequencing analysis. Soon after the sequencing, base 

calling is done by converting the raw images of sequencing to bases with quality 

score. Different sequencing platforms use separate in-build pipelines for base calling. 

Phred scoring is the generally accepted quality scale in sequencing and represents log-

transformed error probability at every base pair. 

                       

where Q is phred quality score and P is estimated error probability (Ewing and Green, 

1998). Shotgun sequencing is prone to have sequencing error and vary in magnitude 

and profile based on the sequencing platform. For example, base qualities towards the 

end of reads get reduced in case of Illumina platform (Nakamura et al., 2011). 

Therefore, it is necessary to remove the sequencing-specific artifacts such as poor 

quality reads, low base call and adaptor contamination, before starting resequencing 

analysis. The quality filtered reads are aligned to the reference genome in order to 

identify the genetic variations in the sequenced genome. There are multiple alignment 

tools available for general and specific use, depending on the sequencing platform and 

the type of reads. Most of the alignment tools use supplementary data structure called 

indices, for fast and memory efficient alignment. Majority of alignment tools 

implement based on either hash table (seed based) or suffix/prefix tree and use it for 

read sequence or reference sequence, or both. Alignment step is followed by 

identifying variant in sequenced genome. Different tools use different statistics to 

identify variation. Generally, there is overlap between the outcomes, though tools 

provide minor portion of unique variations. Along with other reviews, Pabinger et al.  

compiled a comprehensive list of tools and compared their performances (Nielsen et 

al., 2011; Pabinger et al., 2013). Apart from individual specific tools for specific 

tasks, pipelines such as SHORE, ngs_backbone, GATK and HugeSeq are few to 

name, that perform all the tasks sequentially (Ossowski et al., 2008; Blanca et al., 

2011; DePristo et al., 2011; Lam et al., 2012).  

Despite being slower, “seed” based read alignment methods are preferably 

used for such analysis for aligning short reads to reference genome sequence due to 

their robustness in identifying polymorphism (Jimenez-Gomez, 2011). Removal of 

multiple hit reads as well as duplicate reads helps in the realistic estimation of allele 

frequency in a pool. Selection of high quality markers improves the precision in 

mapping interval and assists to remove false mapping intervals (Galvão et al., 2012; 
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Lindner et al., 2012). Filtering variations between sequenced line and reference 

genome introduces deceptive variations called background mutations. Since 

background mutations are artifacts of analysis protocol, these are uninformative and 

needs to be filtered out. Depending on experimental setup, different approaches have 

been suggested consisting of liberal approach like filtering common markers present 

in multiple mutants and more conservative approach such as removing mutations 

present in non-mutagenized progenitor. The disadvantage of last method is the 

obligatory sequencing of progenitor that is avoidable in first approach (Uchida et al., 

2011; Nordström et al., 2013). 

The method of integrating BSA with NGS, was introduced in plants by 

mapping Arabidopsis recessive mutation in AT4G35090 gene from a forward genetic 

screen using an outcrossed mapping population (Schneeberger, Ossowski, et al., 

2009). In this case, segregating markers that were used for mapping, consisted of the 

natural variations between parents along with mutagen induced mutations. The 

method developed for this study is called as SHOREmap. Similar computational tools 

have been successfully developed in other studies to extend the analysis based on 

web-interface and cloud computing (Austin et al., 2011; Minevich et al., 2012).  

In contrast to the initial studies done on an outcrossed population where 

considerable variation in phenotype may occur, mapping was done in a backcrossed 

population of Rice and Arabidopsis by crossing mutant plant to non-mutagenized 

progenitor and mutagen induced variations were used as segregating markers (Abe et 

al., 2012; Hartwig et al., 2012) (Chapter 2). However, in population derived from 

backcross, depending on mutagen, the number of segregating markers was typically 

lower and the average number of short reads at each marker position was usually 

lower than the number of plants pooled in bulk DNA. This impedes accurate allele 

frequency estimation, thus fictitiously including nearly fixed mutations as fixed ones. 

The identification of causal mutation was possible by identifying the fixed mutation 

with the help of deep candidate resequencing (dCARE); the true allele frequency 

estimation in a large bulk DNA by targeted resequencing. This approach displays how 

different mapping stages can benefit from different sequencing platforms (Chapter 2). 

After considerable number of backcrosses, it is even possible to directly resequence 

the mutant genome to identify the genetic causal region. However, this approach is 

highly time consuming and even after four rounds of backcross, one may end-up with 

large number of candidate genes spinning on more than one chromosome (Ashelford 
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et al., 2011). Nonetheless, direct sequencing approach has the advantage of having 

mutant genome sequenced for further characterization studies. Availability of 

multiple alleles for a phenotype makes direct individual resequencing a better option 

by identifying commonly disturbed genes from both allelic groups (Uchida et al., 

2011). In short, the key factors involved in mapping-by-sequencing are A) availability 

of reference genome, B) size of the genome, C) availability of genetic material such 

as alleles or mutants, and D) prior knowledge about mapping interval. 

1.3. Guidelines for mapping-by-sequencing 

All the above different strategies are now routine in forward genetic screening 

and are becoming replacement of traditional mapping procedure. As the cost of 

sequencing is going down and the number of organisms having a stable reference 

genome is increasing, more and more mutant identification by mapping-by-

sequencing is being reported (Cuperus et al., 2010; Golas et al., 2013; Schreiber et 

al., 2012; Tabata et al., 2013). Practical application of mapping-by-sequencing 

requires decisions on the experimental setup right from generating mapping 

populations to the adjustment of next generation sequencing reaction. As both, the 

composition of mapping populations and the amount of sequencing are directly 

related to time and financial effort, thus it is important to optimize each step of 

mapping-by-sequencing experiments. However, there is only limited effort to 

optimize mapping-by-sequencing procedure by suggesting the best practical 

experimental design for such experiments (Austin et al., 2011). It usually remains 

unclear what the expected outcome of mapping-by-sequencing experiments could be. 

Therefore, this usually leads to conservative decisions resulting in an excess of 

mutants and sequencing data. Although, different studies commented on the 

experimental design by sub-setting the data analyzed, these conclusions were either 

incomplete and may be specific to the given data, or failed to compare different 

mapping scenarios (Austin et al., 2011; Abe et al., 2012). A comprehensive study to 

suggest guidelines for mapping-by-sequencing should consider the effect of mapping 

population as well as sequencing depth on mapping outcome of the experiment along 

with other parameters like phenotyping error and availability of allelic groups. We 

have studied the effect of crossing scheme and mapping population with help of a 

newly developed simulation tool called Pop-Seq simulator, which considers empirical 

recombination frequency and landscape. From over 400,000 mapping-by-sequencing 
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simulations in Arabidopsis, we have studied the expected outcome of given 

experimental setups (Chapter 3). The utility of Pop-Seq simulator was further showed 

by realistic mapping-by-sequencing experiment setups in Rice and Barley. 

1.4. Reference free NGS enabled mapping methods 

However, all the above mentioned methods prerequisite the availability of a 

reference genome sequence. Though, the number of species having available 

reference genome sequence is increasing substantially, currently this requirement 

impedes the applicability of mapping-by-sequencing to larger portion of plant species. 

Comparative genomics approaches, like utilizing the genome sequence of closely 

related species is an alternative or even utilization of partial syntenic blocks as 

reference genome (Galvão et al., 2012). Nonetheless, the evolutionary distances 

between species may become critical and are subject to failure due to lack of 

homology or even absence of genomic region in the closely related genome. 

Apparently, a reference free method is needed in order to directly compare 

short reads from two samples. An algorithmic framework has been introduced in 

plants by mapping genes in Arabis alpina without genetic maps and reference 

sequences using k-mers (Chapter 4). The short DNA reads with a length of k (k-mer) 

was used to compare between mutant and parent to identify mutations. Subsequently 

building up a local assembly followed by ab initio gene structural prediction in order 

to predict the effect of mutation at gene level. This method also succeeded in 

identifying more mutations than a comparative genomics approach using Arabidopsis 

genome as reference. 
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Chapter 2. Fast Isogenic Mapping-by-Sequencing of Ethyl 

Methanesulfonate-Induced Mutant Bulks 

 

This chapter explains the method for mutant identification by mapping-by-sequencing 

in an isogenic population. We demonstrate how mapping-by-sequencing and 

candidate gene identification can be performed within the same genetic background 

using mutagen-induced changes as segregating markers. As a proof-of-principal, we 

mapped the previously unknown suppressor of like heterochromatin protein1 (lhp1) 

mutant, from ethyl methanesulfonate (EMS) forward screen by using mutagen-

induced mutations as markers. lhp1 in its functional form is involved in chromatin-

mediated gene repression. As a method to identify the causal mutation from 

candidates, we introduced deep candidate resequencing (dCARE) using Ion Torrent 

Personal Genome Machine to resolve three linked candidate mutations in the mapping 

interval. dCARE reduced the number of causal candidate mutations to one, which was 

further confirmed by complementation studies. This study was published under Break 

Through Technologies in Plant Physiology 2012 (Hartwig et al., 2012). Appropriate 

contents for this chapter are taken from the manuscript. This project was conceived 

together by Korbinian Schneeberger and Franziska Turck. Ben Hartwig performed the 

mutant screening as well as wet lab confirmation. I performed the analysis of short 

read sequences by developing SHOREmap backcross pipeline that was later 

integrated to SHOREmap.  
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2.1. Introduction 

Recent advances in NGS technology have greatly reduced the time required 

for mutant identification in forward genetic screening. The major advantage of NGS 

enabled mapping, known as mapping-by-sequencing, is the simultaneous marker 

identification and genotyping to identify the genomic region causing phenotype. In 

plants, mapping-by-sequencing was introduced by mapping a mutant in an outcrossed 

population between Arabidopsis reference accession Columbia (Col-0) and a diverged 

accession Landsberg erecta (Ler). Plants with phenotype of interest were bulked and 

sequenced to identify markers followed by allele frequency to detect mapping region 

(Schneeberger, Ossowski, et al., 2009). For a recessive phenotype, pooled DNA from 

plants with phenotype shows homozygous mutation at the causal site. This principal 

was followed by other studies for successful mapping (Cuperus et al., 2010; Austin et 

al., 2011).  

 Although the integrated approach of BSA and resequencing is powerful and 

extremely fast, crossing with diverged accession to generate mapping population 

impairs the recognition of mutant with subtle phenotype. Moreover, for genetic 

screening of suppresser or enhancer of a preexisting mutation, availability of primary 

mutation in another suitable accession becomes inevitable. If not, this screening has to 

be first probed for the initial mutation, thus adding more complex and lengthy 

procedure to mutant identification. An alternative is to remain within the same 

accession background by backcrossing mutant to parental line. However, this will 

eliminate the opportunity to use natural variation among parents as markers. Thus, in 

a population generated by backcrossing mutant to parental line, unknown variations 

that are introduced by mutagen remain as markers. 

 Recently in rice, mapping was done using pooled mutants that were 

backcrossed to parental line and used provisional reference genome in order to filter 

out natural variations (Abe et al., 2012). However, in this case prior knowledge about 

candidate gene was used to pinpoint the causal change. Alternatively, in Arabidopsis, 

direct sequencing of four times backcrossed mutant genome to parental line produced 

103 putative casual mutations that had potential to change 48 putative proteins 

(Ashelford et al., 2011). Moreover, these candidate mutations were clustered to two 

separate regions, demanding additional mapping information to prioritize candidates. 
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Two major tasks in analyzing mapping-by-sequencing data from a backcross 

population are; A) identification of mutagen induced variation as markers B) precise 

estimation of allele frequency in the pool as the number of plants pooled are typically 

higher than the average number of read count. This concern increases when the 

mutations are physically close by therefore has lower likelihood of conceiving 

recombination in between, thus results to delicate difference in allele frequency.  

 We have developed a backcross analysis pipeline and have integrated into 

existing SHOREmap tool. The identification of mutagen-induced variations was done 

by filtering out the markers identified in the genome of non-mutagenized parent. The 

putative candidate casual mutations were further analyzed in detail with deep 

candidate resequencing (dCARE) (Figure 2.1). dCARE involves targeted sequencing 

of bulk segregant DNA. As a proof-of-concept, we applied this method to screen 

suppressor of like heterochromatin protein1 (lhp1) mutant. The pleiotropic phenotype 

of lhp1 mutant plants differs quantitatively between accessions such as 

Wassilewskija-2 and Col-0, making it difficult to create a robust mapping population 

for subtle modifiers. Therefore antagonist of lhp1-1 (alp1;lhp1) double mutant was 

backcrossed to original lhp1 allele and F2 offspring of this cross gave 3:1 ratio for 

suppresser phenotype, indicating that a single mutation was responsible for the 

suppression.  
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Figure 2.1: Schematic illustration of the fast isogenic mapping approach. 

Chemical mutagens typically introduce hundreds of novel mutations. Within the M2 

generation, mutants are screened for phenotypes. Selected plants are backcrossed to 

the nonmutagenized progenitor. The F2 offspring of such a cross forms an isogenic 

mapping population, as only novel mutations are segregating. Backcrossed 

individuals that display the mutant phenotype are selected, bulked, and their DNA is 

prepared as a pool and whole-genome is sequenced. If the parental line is genetically 

different from the reference line Col-0, it needs to be resequenced in order to filter 

naturally occurring differences that need to be differentiated from novel mutations. 

EMS mutagenesis

Backcross

F1

X

Mapping population

Illumina sequencing

Wild type Mutant

Natural variations EMS induced variations

Substract natural variations from mutant

Filter EMS induced variations

- =

SHOREmap backcross analysis

T

T

T
T

T
T

C

T

T
T

T
T

T

T

C
T

T

T

TT

T
T

TT
T

C

TT

TT
TT

TT
T

T

TT

CC
TT

TT
T

T

C

C
T

C
T

T

C

C
T

T
T

Allele frequency in 

pooled genome

dCARE at candidate region

Align wild type and mutant sequences to 

reference genome seperately

Pool genomes having phonotype



 30 

Thus, novel EMS-induced mutations can be selected for SHOREmap analysis by 

filtering for mutations that do not reside in the parental line (adopted from Hartwig et 

al., 2012). 
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2.2. Materials and Methods 

2.2.1. Sequenced material and SNP identification 

For the mapping of alp1;lhp1, we have sequenced pooled DNA from leaf 

samples of  270 BC2F2 double mutant plants. In parallel, DNA from lhp1 single 

mutant that was used as parent for this screen, was sequenced. Each reaction of 

sequencing was done on Illumina Genome Analyzer IIx. Each DNA clone was 

sequenced twice from both the ends to generate interconnected sequences reads called 

paired-end. We have generated paired-end reads having 2x 96 bp length for alp1;lhp1 

double mutant as well as parental line. We applied short read analysis pipeline, 

SHORE, for identification of SNPs and short INDELs. Using the function SHORE 

import, raw reads were trimmed based on quality values with a cutoff Phred score of 

+38. After import, 43.4 and 42.2 million high-quality reads from lhp1 mutant and 

alp1;lhp1 double mutant, respectively, were independently aligned to the Col-0 

reference genome using GenomeMapper as an alignment tool (Ossowski et al., 2008; 

Schneeberger et al., 2009) (Arabidopsis Genome Consortium; The Arabidopsis 

Information Resource 10). Out of total high-quality reads, 93% and 94% of reads 

were aligned to the TAIR10 Col-0 reference sequence and yielded an average nucleic 

genome coverage of 41 and 49 fold for lhp1 and alp1;lhp1, respectively (Table 2.1). 

The alignments were corrected for the expected paired-end distance of 300 bp by 

SHORE correct4pe. We applied SHORE consensus to both sequence sets to identify 

variations between the mutant and reference genome sequence. The minimum minor 

allele frequency for SNP calling was kept to 20%. Inbuilt SHORE heterozygous SNP 

configuration was used for SNP calling. Since the SNPs from lhp1 were the natural 

variation between mutant line and reference sequence, these SNPs were filtered out 

from the double mutant to get mutagen-induced mutations. EMS changes (GC:AT) 

with a SHORE quality score > 24 and supported by more than seven reads, were used 

in SHOREmap backcross for allele frequency analysis. Allele frequency was 

calculated as  

                 
  

  
 

where Cm and Ct are coverage of mutant allele and total coverage at locus, 

respectively. Sequence changes in the region that featured evidence for selection were 
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annotated for their effect on gene identity using TAIR10 gene annotation. See 

Appendix note I for further details on command line calls for the resequencing and 

mapping-by-sequencing analysis. 

2.2.2. Targeted deep resequencing of individual mutations 

Later on the putative candidate mutations were amplified for dCARE analysis by 

designing primers with the help of Primer3 (version 0.4.0) to amplify 80 to 150 bp 

amplicons. These amplicons contained the candidate mutations at a distance from +1 

to +50 from the 3’ end of the primer that contained the A-type extension required for 

Ion Torrent PGM sequencing. DNA was amplified from the same pool of DNA as 

used for whole-genome resequencing. Amplicons were purified and sequenced in an 

Ion Torrent PGM (Life Technologies) using a 316K chip to a depth of 5,000 to 20,000 

reads per amplicon. Allele frequencies of both the wild type and mutant were 

estimated from raw reads. Using a 21-mer around the mutation site, an ad-hoc script 

was used to count the allele occurrence with perfect match or one mismatch. 

Coverage at each locus was calculated by the sum of satisfying reads from the above 

criteria.  

 

Table 2.1: Resequencing summary of mutants. Resequencing output of each 

mutant (adopted from Hartwig et al., 2012). 

  Chromosome Unique bases sequenced Mean depth of 

sequencing 

Coverage of genome 

alp1:lhp1         

  1 1167674295 38.38 99.94 

  2 827866858 42.03 99.96 

  3 1025324459 43.71 99.96 

  4 773853919 41.64 99.96 

  5 1081475692 40.09 99.96 

Mean     41.17 99.96 

lhp1         

  1 1393315836 45.79 99.96 

  2 994873293 50.51 99.98 

  3 1229419565 52.41 99.98 

  4 912048405 49.07 99.97 

  5 1283372543 47.58 99.97 

Mean     49.07 99.97 



2.3. Results 

2.3.1. Analysis of isogenic mapping population for mutant identification 

After quality trimming and SNP identification from short read analysis using 

SHORE, we have identified 14225 and 13721 variations from alp1;lhp1 double 

mutant and lhp1 mutant respectively compared to Col-0 reference genome. Mutagen 

induced changes in double mutant alp1;lhp1 was identified by removing all sequence 

differences identified in lhp1 mutant. These variations identified in lhp1 mutant are 

the natural variations between the line used for mutagenesis and Col-0 along with 

sequencing error and resequencing artifacts. alp1;lhp1 specific SNPs having at least 

eight reads of support and a SHORE quality score greater than 24 were retained that 

made 1351 mutations for further allele frequency analysis. As EMS introduce mainly 

G/C:A/T mutations, we filtered for those and were left with a set of 412 novel EMS 

changes (Appendix Table 1). Allele frequency of each EMS mutation in the pool was 

plotted against chromosomal position to identify the fixed genomic region. Selection 

for the lower arm of chromosome 3 became apparent through an allele frequency 

distortion in this region (Figure 2.2). Across the five chromosomes, there were only 

three mutations that had a mutant allele frequency higher than 80% and clustered on 

the lower arm of chromosome 3. Functional prediction of these three mutations based 

on the TAIR10 gene annotation was that two mutations were located in exons of 

AT3G57940 and AT3G63270 and one in an intron of AT3G61130. Moreover, the 

first two mutations caused missense mutation leading to amino acid changes of 

Val→Ile and Gly→Glu, respectively (Figure 2.3). The script used for EMS induced 

mutant identification as well as frequency analysis and visualizations were compiled 

for download under SHOREmap backcross analysis package. The complete package 

is downloadable from (http://shoremap.org). 
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Figure 2.2: Allele frequency estimations at EMS changes. Allele frequency 

estimations at EMS-induced mutations of alp1;lhp1 across all five chromosomes were 

shown (x-axis: Chromosomal position in Mb). Allele frequencies (AF; y-axis) were 

estimated as fractions of short reads supporting the mutant allele divided by the 

number of all reads aligning to a given marker. The color indicates the resequencing 

consensus (SHORE) score, and only base calls with a quality score of more than 25 

have been considered. The long arm of chromosome 3 was found to be under 

selection, as local allele frequencies appeared to be higher as compared to other 

regions in the genome. This region was magnified to show the allele frequency 

difference in detail (orange box) and the estimated allele frequency from dCARE was 

shown on right side (adopted from Hartwig et al., 2012).  

2.3.2. dCARE identifies causal change  

Although the putative candidate mutations were spaced over 2 Mb apart, 

nearly complete linkage between the three candidate mutations was apparent in the 

pooled DNA. Based on Arabidopsis genetic maps, this physical distance corresponds 
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to approximately 7 to 8 centimorgan, suggesting that several recombination events 

between these mutations are expected in a pool of 270 recombinants (Giraut et al., 

2011). Our analysis of the raw reads from illumina sequencing covering the three 

mutations revealed two Col-0 wild-type reads out of 50 and 48 reads, for the mutation 

in AT3G57940 and AT3G61130, respectively. Whereas, the mutation in AT3G63270 

had one wild-type read out of 41 reads. Although the mutation in AT3G63270 could 

therefore act as main candidate, the disparity was too minor to reliably exclude the 

other mutations. As usually the number of individuals pooled in bulk segregant 

analyses is considerably larger than the average whole genome resequencing 

coverage, thus not powerful enough to resolve the real allele frequency accurately. 

Therefore, an increased number of short-read alignments at the mutation sites by a 

targeted deep resequencing of mutant locus would enable to determine the allele 

frequency in a bulked DNA much more precisely. In order to generate more 

sequencing data for the mutated regions, we amplified regions across the mutations by 

PCR using the pooled DNA from bulked segregant as template and sequenced the 

amplicons with the Ion Torrent Personal Genome Machine (Rothberg et al., 2011). 

This dCARE analysis generated 20,111, 4,390, and 19,203 reads across the candidate 

mutations in AT3G57940, AT3G61130, and AT3G63270, respectively. For the 

changes in AT3G57940 and AT3G61130, we found 5.7% and 2.1% reads supporting 

wild-type allele, whereas only less than one percentage of the reads at AT3G63270 

supported the wild-type allele. The presence of Col-0 wild-type reads at all candidate 

mutations can be explained by contamination of the segregant bulk, possibly due to 

mis-scoring of mutants or by sequencing errors that occur at a low rate. Both types of 

error affect mutations independent of their linkage to the causative change and 

represent background noise. In fact, the rate of wild type allele at AT3G63270 is even 

slightly lower than the rate of sequencing errors reported for Ion Torrent PGM 

sequencing (Rothberg et al., 2011). As a consequence, we could not reliably identify 

any wild-type alleles for the mutation affecting AT3G63270, whereas the wild-type 

allele was clearly apparent for both linked mutations (Table 2.2). Thus, dCARE 

reduced the list of candidates to AT3G63270. dCARE demonstrates the apt utilization 

of different NGS platforms on mapping-by-sequencing experiment. Utility of dCARE 

resembles the traditional fine mapping procedure in a mapping-by-sequencing 

context. 
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Table 2.2: Raw reads and allele frequency calculations at three putative 

candidate mutation locus. Illumina platform was used for whole genome 

resequencing, whereas dCARE used Ion Torrent sequencing platform for targeted 

deep resequencing (adopted from Hartwig et al., 2012). 

Seq-run 

Ch

r Pos AGI 

EM

S WT Cov A C G T N 

              Cov Fre 

Co

v Fre Cov Fre Cov Fre 

Co

v Fre 

Illumin

a 

3 

2145509

9 

AT3G57

940 A G 50 47 94.0 0 0.0 2 4.0 0 0.0 1 2.0 

3 

2262235

2 

AT3G61

130 T C 48 0 0.0 2 4.2 0 0.0 44 91.7 2 4.2 

3 

2337630

5 

AT3G63

270 T C 41 0 0.0 1 2.4 0 0.0 39 95.1 1 2.4 

dCARE 

3 

2145509

9 

AT3G57

940 A G 20111 18966 94.3 0 0.0 

114

5 5.7 0 0.0 0 0 

3 

2262235

2 

AT3G61

130 T C 4390 0 0.0 90 2.1 0 0.0 4300 97.9 0 0 

3 

2337630

5 

AT3G63

270 T C 19203 0 0.0 86 0.4 0 0.0 

1911

7 99.6 0 0 

  

Independent of dCARE analysis, AT3G63270 was established as the 

antagonist of lhp1 (alp1) by complementation study and test cross between 

independent alleles. ALP1 encodes a gene related to Harbinger-like transposases. 

From phylogenetic study of available homologous, ALP1 is likely to be derived from 

an ancient Harbinger transposon but seems to have acquired a plant-specific function 

over time. However, ALP1 is an expressed gene that is not directly regulated by 

LHP1 and the Polycomb Group (PcG) pathway, thus required further study to reveal 

its function and interaction with lhp1 mutant (Hartwig et al., 2012).  
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Figure 2.3: Annotation of putative causal mutations. The genomic regions of 

candidate EMS mutations (red asterisks) along with gene annotations are shown (top). 

Only partial gene structure is shown where orange boxes indicate exons. Locations of 

EMS mutations that have putative effects on amino acid sequences are shown in red 

letters; for clarity, the DNA sequences in the graph do not reflect the actual number of 

reads at these locations (coverage was shown in table 2.2) (adopted from Hartwig et 

al., 2012). 
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Chapter 3. User guide for mapping-by-sequencing in 

Arabidopsis thaliana 

 

Though mapping-by-sequencing accelerates mutant identification by combining 

genetic mapping with whole-genome sequencing, less effort has been put in 

optimizing the experimental set up. Moreover, different strategic approaches reported 

so far has not compared comprehensively. This chapter explores the different 

strategies and optimal experimental design for each of the mapping-by-sequencing 

scenarios. The guidelines are formulated based on simulations of different 

experimental setups mainly the type of mapping population, sequencing coverage and 

sequencing methods by following empirically determined recombination frequency 

and landscape of Arabidopsis thaliana. Using a newly developed simulation tool 

called Pop-Seq simulator, different mapping populations and sequencing experiments 

were simulated to replicate different mapping-by-sequencing scenarios in-silico. This 

study was published recently in a special edition of Genome Biology for Plant 

Genomics (Velikkakam James et al., 2013). Within few weeks’ span of time, this 

paper was designated as ‘Highly accessed’ and made to top two in the list of most 

popular recently viewed articles. Appropriate contents for this chapter are taken from 

the published manuscript. Korbinian Schneeberger and myself designed this study. 

The simulation tool; Pop-Seq simulator was designed and implemented by me 

together with Vipul Patel and Korbinian Schneeberger. Karl J.V. Nordstrom and 

Jonas R. Klasen helped with ad-hoc external scripts for SHOREmap analysis and 

collecting recombination frequency for rice and barley, respectively. I simulated 

different scenarios and performed analysis to formulate results. Patrice Salome and 

Detlef Weigel provided empirical recombination data for A. thaliana. 
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3.1. Introduction 

Forward genetic screens remain one of the major genetic tools to discover 

gene function in plants as well as in other organisms. Soon after the realization of 

applicability of NGS in mapping, several analysis pipelines have been introduced and 

were already applied to various model species, including plants, yeast, nematodes, 

mammals, and invertebrates (Schneeberger, Ossowski, et al., 2009; Birkeland et al., 

2010; Doitsidou et al., 2010; Austin et al., 2011; Abe et al., 2012; Hartwig et al., 

2012). The two main parts of mapping-by-sequencing is first, to generate a mapping 

population, and second, selection of mutant and whole genome shotgun resequencing. 

Different types of crossing schemes for mapping-by-sequencing have been 

suggested to develop mapping population. The very first mapping-by-sequencing 

experiments were performed on pooled genomes of mutant recombinants that were 

generated by crossing the mutants to diverged strains followed by one round of 

selfing (Schneeberger, Ossowski, et al., 2009; Cuperus et al., 2010). Recently, several 

groups suggested use of backcrossed instead of outcrossed individuals as mapping 

population, as mutagen-induced changes segregate like natural polymorphisms. Even 

though there is no prior knowledge about their distribution or location, mutagen-

induced changes can be identified within whole-genome sequencing data and 

subsequently used for mapping (Abe et al., 2012; Hartwig et al., 2012; Lindner et al., 

2012). Similarly, direct sequencing of an individual mutant recombinant, as suggested 

for Caenorhabditis elegans and later for A. thaliana, will allow for a rough mapping 

of the causal mutation (Zuryn et al., 2010; Ashelford et al., 2011). Although multiple 

rounds of backcrossing are usually not sufficient to considerably minimize the size of 

linked regions around causal mutations, this strategy has the advantage to characterize 

the complete genome of a mutant recombinant. Alternatively, direct sequencing of 

two or more independently generated alleles of the same mutant followed by a 

subsequent search for genes that carry mutations in all mutant alleles is powerful 

enough to unambiguously identify the causal mutation (Uchida et al., 2011; 

Nordström et al., 2013). 

Irrespective of the actual strategy, application of mapping-by-sequencing 

involves decisions on the experimental makeup, for instance the size of the mapping 

population, as well as the amount of next generation sequencing data. Since both are 

directly related to time and financial effort, it is important to optimize the setup of 
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mapping-by-sequencing experiments. The lack of general guidelines describing an 

optimal design might lead to conservative decisions that prime an unnecessarily high 

number of individuals and sequencing coverage.  

Within this study, we established guidelines for mapping-by-sequencing for A. 

thaliana by simulation. Simulation studies are powerful and well utilized to study the 

power of linkage map and crossing scheme with respect to QTL identification in 

different mapping population (Slate, 2008; Klasen et al., 2012). However, simulations 

solely dependent on theoretical calculation may differ from reality. Thus, we 

developed a simulation tool called Pop-Seq simulator that follows an experimentally 

established recombination landscape. We simulated more than 400,000 mapping-by-

sequencing experiments to analyze the differences in the design of mapping 

populations in relation to the number of candidate mutations identified in the course 

of such an experiment. Pop-Seq simulator consists of two parts, first, Pop simulator 

which simulates virtual genotype from a given cross of two parents. Successively, 

these virtual genomes that are represented in genotypes are passed to Seq simulator, 

which generate the sequence read count per allele per locus. Furthermore, we 

evaluated the impact of technical aspects, such as read length and read pairing, on 

mapping-by-sequencing.  
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Figure 3.1: Overview of different strategies in mapping-by-sequencing. Various 

questions during experimental setup of mapping-by-sequencing are shown in red. (I) 

Mutants can be crossed to diverged accessions or backcrossed to the wild-type. (II) 

The number of backcrosses and number of plants used as parents contribute to the 

outcome of mapping-by-sequencing. (III) The number of mutant plants sampled from 

mapping population greatly impacts the mapping results. (IV) Finally, the sequencing 

coverage as well as type of sequencing (single-end or paired-end) affects the outcome 

of mapping-by-sequencing (adopted from Velikkakam James et al., 2013). 
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Even though our simulations were focused on A. thaliana, our simulation 

pipeline is generic and can be applied to other species as well as other mapping or 

sequencing strategies. In the last section, we describe the extension of our analysis on 

the experimental design of mapping-by-sequencing to two crop model species; rice 

and barley, in which next generation sequencing-based mapping becomes tangible 

reality. 
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3.2. Materials and Methods 

3.2.1. Simulation of recombinant populations by Pop simulator 

We implemented Pop-Seq simulator in Perl 5.14.2. Both simulation tools 

could stand-alone and were based on object-oriented programming. In case of Pop 

simulator, initial parental genomes were generated using user specified number of 

homozygous makers placed randomly or at the specified locus. If the marker under 

selection was not specified, then one of those markers was randomly selected as 

causal mutation and used for selection at the end of each population stage if specified. 

Similarly, a wild-type genome was simulated except marker loci with wild-type allele. 

Throughout the Pop simulator, each parental allele was coded internally with parental 

name and decoded back at the end of the simulation. In order to simulate offspring 

genomes, we combined recombined haploid genomes from one or two virtual parents. 

Offspring genomes were used as parents for further crosses. During each cross, the 

virtual gametes were generated from each genome by determining the number and 

location of recombination involved. The actual number of recombination per meiosis 

for each chromosome was randomized based on the distribution of recombination 

events in Arabidopsis; these empirical determined recombination frequencies were 

derived from a cross between Arabidopsis Col-0 and Fei-0 (Salome et al., 2011). It 

was calculated by 

 

                [        ]  

 

where p1, p2 and p3 are the observed frequencies of none, one and two or more 

recombination per chromosome per meiosis. The location of each recombination was 

selected after the observed frequencies over each marker along the chromosome and 

placed in-between two adjacent markers. The probability of a recombination at 

position xij between two adjacent markers was calculated by 
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where i, j, k and l are the marker, base pair, total number of markers and length 

between adjacent markers, respectively.      
 is the observed probability of 

recombination in between marker mi and mi-1. The location of additional 

recombination events was modeled after a gamma distribution in order to take 

crossing over interference into account. Both gamma distribution parameters scale 

and shape were chosen such that the resulting distribution followed the empirical data. 

One gamete genome from each parent was randomly selected to make offspring 

genome. This step was repeated to generate user specified number of mutagenic 

plants. Depending on the user specification, mutant phenotype was classified as 

recessive or dominants, and mutant plants were selected accordingly. As a parameter, 

user can either specify the number of mutant plants or total number of segregant in 

population. The crossing scheme can be defined by simple encoding where backcross 

and selfing are represented by “B” and “S”, respectively. For example, 

F2:B1:F1:B1:F1 for generating BC2F2 by crossing F2 and recurrent parent to make 

BC1F1 followed by one round of selfing and repeating the backcross and selfing cross 

to make BC2F2. Moreover, multiple parent crosses are possible, but current version is 

limited to only four parents with limited option to generate recombinant inbred lines. 

Empirical configuration data about the species recombination frequency and rate per 

marker are specified in Configuration file. Along with recombination information, 

species specific information such as chromosome number and size are also specified 

in this file. The complete options of Pop simulator are explained in Appendix note III.  

3.2.2. Simulation of whole-genome sequencing by Seq simulator 

Accurate simulation of whole-genome sequencing of bulks and individual 

genomes needs to consider the total number of alignments per marker, the parental 

allele frequencies and sequencing errors. To incorporate the variation in the number 

of alignments per marker, we assigned a prior normalization n value to each marker 

position based on the observed coverage in real resequencing experiments of 

Arabidopsis wild-type (Schneeberger et al., 2011). The value describes the ratio of 

observed coverage at single marker in relation to the genome-wide average. Actual 

number of reads at each marker position ci per sequencing simulation was then 

calculated by 

 

                   [          ]  
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where m, n and k are the total number of reads, normalized coverage probability per 

marker and the total number of markers, respectively. Then, we used the allele 

frequency a1, and a2 within the population under investigation and assigned each read 

ri to one of the parental alleles by  

 

                  [       ]   

 

where a1, a2 and s are the allele frequency of mutant, allele frequency of wild-type 

and sequencing error respectively. We obtained the allele frequency at each marker 

position from the virtual genome generated by Pop simulator. It is also possible to 

simulate individual mutant genome where allele frequency is 0, 0.5 or 1. In both, 

pooled or individual, it is possible to adopt the results from any other source to Seq 

simulator by following the format of Pop simulator. We used a constant sequencing 

error rate of 0.3% (Galvão et al., 2012). The frequency of different types of 

sequencing errors in Illumina sequencing is non-randomly distributed, however as this 

would have a limited impact on our simulations, we did not address this fact here 

(Ossowski et al., 2008). 

3.2.3. Selection of homozygous mutations 

Definition of homozygous mutations are influenced by pool size and 

sequencing coverage. In order to define a uniform threshold for the detection of 

homozygous mutations across all deeply and shallowly sequenced pools with a few or 

many plants, we introduced two thresholds representing pool size and sequencing 

coverage. First, we calculated the mutant allele frequency at loci where one single 

wild-type chromosome is present, defined as 

     (
[   ]   

   
) 

 

where m and n are the number of mis-scored and total mutants in the pool, 

respectively. For the second threshold, we calculated the mutant allele frequency as 

estimated by the short read alignments, where one alignment is sampled from a non-

mutant chromosome, defined as 
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where cp is the actual coverage at position p and e is the estimated sequencing error 

frequency of 0.3% (Galvão et al., 2012). Only mutations with mutant allele 

frequencies greater than gf  and rf  have been considered as homozygous mutations. 

3.2.4. High quality marker selection for outcross simulation 

For all simulations based on outcross populations we defined a high quality 

marker set based on resequencing data of A. thaliana Ler compared to TAIR10 

reference assembly (Schneeberger et al., 2011). SNPs having low score as well as 

being in a regions which is hard to resolve through resequencing, may mislead and 

negatively influence the mutant identification, therefore we filtered this SNP sets 

based on the quality score and the local vicinity. All SNPs with a resequencing quality 

score below 25 were discarded, as well as SNPs that overlap with regions with 

different copy numbers between the parents as predicted by the resequencing. Further 

we iteratively removed SNPs, which were closer than 50 bp. This yielded 291,973 

high quality markers. 

3.2.5. Simulation of mapping-by-sequencing 

Simulation of in-silico mutant genomes was done by Pop-Seq simulator and 

was started by creating an initial mutant genome with 700 or 1,400 randomly placed, 

homozygous mutations. Depending upon the population under study, single, double or 

three rounds of backcross was made followed by one round of selfing. After each 

round of selfing, the homozygous mutant plant was selected to proceed for next 

generation. Contrastingly, in outcross populations, preselected 291,973 markers were 

used to generate mapping populations. Only one round of selfing was made to 

generate F2 segregating populations and various mutant plants were pooled for 

respective experiments. 

3.2.6. Comparison of single-end and paired-end sequencing 

Single and paired-end sequencing was simulated with reads ranging from 50 

to 750 bp in length. Insert length for paired-end sequencing was simulated with three 

times the read length. For each combination of read length and sequencing type 

100,000 random alignment locations were chosen. The read length defined the end of 
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the alignment. The actual location of the read pair was defined by read length and 

insert size. If the simulated alignments overlapped with one or more markers the 

alignment was scored as informative. 

3.2.7. Availability of simulation pipeline 

Our pipeline; Pop-Seq simulator, for simulating recombinant genomes and 

emulate output of a NGS analysis is available at 

https://sourceforge.net/projects/popseq/. Recombination frequency and landscape are 

specified by configuration files, which we provide for all simulations performed in 

this study.  
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3.3. Results 

3.3.1. Paired-end versus single-end sequencing 

Many of the new sequencing technologies allow sequencing of one or both 

ends (paired-end) of DNA clones. However, it is not yet clear, which kind of 

sequencing is most appropriate for mapping-by-sequencing (Figure 1). Paired-end 

sequencing enables access to (the borders of) repetitive sequences, which increases 

the number of markers and mutations that can be analyzed. Even though single-end 

sequence reads might not be able to explore the same genomic space as paired-end 

sequence reads, they are independent of each other. In bulk segregant sequencing, 

independent reads are counted to estimate allele frequencies. If both reads of a pair 

align to different markers, they cannot contribute twice to the estimation of allele 

frequencies as they carry the same genetic background (ignoring the very rare cases, 

where read pairs span recombination events). If two single-end reads overlap with 

markers, both contribute to the estimation of allele frequencies as they have been 

sampled independently. It is thus not obvious whether paired-end or single-end 

sequencing is advantageous for mapping-by-sequencing. 

We have compared the efficiency of single and paired-end reads by counting 

the number of randomly generated read or read pair alignments that overlap with 

predefined marker. A read, respectively a pair, was scored as informative if it was 

uniquely aligned to at least one or more markers. The length of the simulated reads 

ranged from 50 to 750 bp to cover a wide range of next generation sequencing read 

length (Figure 2.1). Reads, which align equally well to multiple regions in the 

genome, are excluded for further analysis. Increased read length span some of the 

short repeats and thus allows aligning more reads uniquely (Cahill et al., 2010; 

Koehler et al., 2011).  
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Figure 3.2: Percentage of informative reads for different sequencing read lengths 

and types. Only informative reads or read pairs that overlap with at least one marker 

or mutation can contribute to mapping-by-sequencing. The number of informative 

reads from single-end and paired-end sequencing are shown in purple and blue, 

respectively. The lower part of the graph refers to resequencing of backcross 

population that has a lower mutation density (here, 1,400 mutations per mutant 

genome). While the upper graph refers to markers in outcross populations (281,668 

and 291,973 for single-end and paired-end sequencing, respectively) (adopted from 

Velikkakam James et al., 2013) . 

 

For the analysis of mapping-by-sequencing with outcross populations, we 

defined two sets of 291,973 and 281,668 markers for paired-end and single-end 

sequencing, respectively, in order to take the different mapping properties into 

account. Depending on the read length, paired-end sequencing featured between 25 

and 78% more informative read pairs. Consequently, it would require between 25 and 

78% more single-end reads in order to end up with the same number of informative 

reads. This calculation allows for a cost comparison of mapping-by-sequencing for 

single and paired-end sequencing based on actual sequencing costs. However, as 

paired-end sequencing enables the analysis of parts of the otherwise inaccessible 

DNA, it might be advantageous to sequence both ends, even if this would be more 

expensive. In particular if combined with mutation identification, paired-end 

sequencing has a higher chance not to miss the causal mutation. We repeated this 

exercise for mapping-by-sequencing based on backcross populations that were 
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simulated with 1,400 mutations in the genome. Here, paired-end sequencing featured 

between 95 and 119% more informative read pairs.  

3.3.2. In-silico mapping-by-sequencing experiments 

Assessing different types of mapping-by-sequencing experiments require 

establishment and sequencing of thousands of mapping populations, which is 

practically not feasible in plants. In contrast, in-silico simulations do allow for the 

generation of many experiments, with the potential caveat that they rely on prior 

assumptions. In particular, genuine simulations of mapping-by-sequencing 

experiments require realistic assumptions about mutation load, next generation 

sequencing and meiotic recombination. 

The most commonly used mutagen for Arabidopsis is ethyl methanesulfonate 

(EMS), a chemical mutagen that predominantly introduces C to T and G to A 

changes. There are various reports about the frequency of EMS-induced mutations, 

including one change in 112 kb to one change in 171 kb, indicating a dosage 

dependency of the mutation rate, which suggests that the actual frequency range is 

likely to be much wider (Jander et al., 2003; Ashelford et al., 2011). In order to 

explore the effects of different mutation rates, we simulated low (700 changes) and 

high (1,400 changes) rates of mutations that were randomly introduced into the 

genome.  

Similarly, realistic simulations of next generation sequencing rely on correct 

assumptions about the number of short read alignments per reference position (from 

here on referred to as coverage) and sequencing errors. As we were only interested in 

coverage at marker loci, we simulated whole-genome sequencing by randomizing the 

number of read alignments at each marker. The absolute number of alignments per 

marker followed a coverage distribution assessed on real resequencing experiments 

using Illumina sequencing. Deriving the coverage distribution from real sequencing 

experiments has the advantage that it considers all factors that contribute to the 

variation in sequence coverage. Perhaps most prominently, several different groups 

have demonstrated that local GC content is correlated with sequence coverage which 

is consequently also represented in our coverage landscape (Ossowski et al., 2008; 

Aird et al., 2011). Moreover, in a recent study we rigorously assessed the sequencing 

error rate of sequence reads aligned to marker positions, where the actual per base 

sequencing error rate was between 0.09 and 0.21% after quality filtering (Galvão et 
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al., 2012). In order to avoid overly optimistic simulation we assumed a sequencing 

error rate of 0.3% in our simulations. Based on these assumptions each of the 

simulated read alignments was then assigned to a parental allele, following a 

multinomial distribution based on local allele frequencies within the bulked segregant 

and Illumina sequencing-specific error rate (Materials and methods).  

Most important, however, might be realistic simulations of recombinant 

genomes that greatly rely on frequency and location of recombination. Thus, we 

based our simulations on experimentally determined recombination frequencies 

derived from F2 population established by crossing two diverged Arabidopsis 

accessions (Salome et al., 2011). These data reveal the number of recombination in a 

single cross as well as their distribution over the physical range of the chromosomes. 

We used the frequency of recombination events along the chromosomes as a 

probability function after which recombination location and frequency were simulated 

(Materials and methods).  

This method for in-silico simulation of recombination breakpoint events can 

be applied to any type of crossing regime. In this study, we focused on three different 

types of mapping-by-sequencing scenarios (Figure 3.1). First, we simulated F2 

mapping populations generated by crossing a mutant plant to a non-mutagenized 

accession with a diverged background followed by selfing of the F1 hybrid (as 

performed by (Schneeberger, Ossowski, et al., 2009; Cuperus et al., 2010; Austin et 

al., 2011; Schreiber et al., 2012)). We refer to these classical mapping populations as 

“outcross populations”. In outcross populations, natural variations along with 

mutagen-induced changes serve as genetic markers. A second type of population was 

simulated by backcrossing the mutant plant to the non-mutagenized progenitor, 

followed by selfing of the hybrid (as performed by (Abe et al., 2012; Hartwig et al., 

2012)). We refer to these mapping populations as “backcross populations”, in which 

only mutagen-induced changes serve as markers.  

In contrast to the previous two methods, which makes use of recombination, 

the third type of simulation constitutes direct sequencing of individual mutant 

genomes selected from the backcross populations (as performed by (Zuryn et al., 

2010; Ashelford et al., 2011)). In the next sections, we explore the consequences of 

different crossing schemes and the effect of pool size and coverage on the extent of 

the resulting mapping interval and on the number of candidate mutations (CAMs). 

 



 54 

3.3.2.1. Mapping-by-sequencing with outcross populations 

Mapping-by-sequencing with outcross populations is based on mutant allele 

frequencies assessed at large-scale marker sets leading to the identification of 

mapping intervals. Such regions can then be screened for novel mutagen-induced 

changes using the same whole-genome sequencing data (see (I) in Figure 3.1). 

Usually a rough identification of linked region suffices, as even in larger region 

sequencing data can easily be screened for CAMs. In order to evaluate this process we 

used the mapping-by-sequencing analysis pipeline SHOREmap, which implements a 

likelihood ratio test statistics that converts mapping-by-sequencing data into 

confidence-mapping intervals (Galvão et al., 2012). These mapping intervals 

represent the region in which causal candidates reside at a given confidence level p 

(here p=0.99). As we assume that mutations are randomly introduced into the 

genome, the number of CAMs is linearly correlated with the length of mapping 

intervals, which we used to quantify the outcome of a mapping-by-sequencing 

experiment. Though marker density positively impacts on mapping resolution, 

inclusion of markers that cannot be accessed with the actual sequencing methods or 

that have been falsely included can have severe local effects on the precise 

determination of mapping intervals (Galvão et al., 2012). The marker set we used 

consisted of 291,973 markers, after discarding closely linked polymorphisms and 

those in repetitive regions from the complete set of differences between Arabidopsis 

accessions Columbia (Col-0) and Landsberg erecta (Ler) (Schneeberger et al., 2011) 

(Material and methods).  

3.3.2.1.1. Interplay of pool size and genome-wide coverage 

Outcross populations were simulated with 40 to 400 mutant genomes. Next 

generation sequencing was simulated at various genome-wide coverage levels ranging 

from 5 to 200x. Each combination of pool size and coverage was independently 

repeated for 500 times. For each data set we performed a SHOREmap analysis and 

assessed the size of the final mapping intervals (Figure 3.3). Overall, the sizes of the 

mapping intervals were remarkably variable. This variation was lower for pools with 

more recombinants as compared to pools with fewer recombinants. As expected, the 

number of recombinants also strongly influenced mapping resolution. For example, at 

an average genome-wide coverage level of 15x, pools with 200 recombinants yielded 

an average interval size of 381 (± 222) kb, whereas pools with 50 recombinants 
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generated interval sizes of 783 (± 567) kb on average. Like in conventional mapping 

experiments, the decrease in the size of the mapping interval was not linear. The first 

indication of saturation was observed at a sequencing coverage of 5 to 15x, where 

increasing the pool size beyond 350 recombinants did not improve the interval size.  

In contrast to pool size, coverage alone had only a small effect on size and variation 

of mapping intervals. Pools of 100 recombinants, which were sequenced at 15x, 

yielded an average interval size of around 500 (± 310) kb, as compared to 419 (± 298) 

kb at a coverage of 200x. The reason for the weak impact of coverage on the size of 

the mapping interval is the large number of markers, which are distributed throughout 

the genome allowing for an accurate assessment of allele frequencies even at low 

coverage levels.  

Assuming 1,400 mutagen-induced mutations per genome, the average number 

of CAMs was around five for pools of more than 100 recombinants sequenced at an 

average genome-wide coverage of 25x. In practical application, additional 

prioritization by functional annotation and location of mutations in the interval has the 

potential to reduce this low number of CAMs to one outstanding candidate only 

(Schneeberger, Ossowski, et al., 2009).  

 

Figure 3.3: Results of mapping-by-sequencing with outcross populations. Pools 

of 40 to 400 individuals (colored blocks) were sequenced with increasing coverage 

ranging from 5 to 200x. For each combination of pool size and coverage we simulated 

500 independent populations and performed a mapping-by-sequencing analysis on 

each of them. Average mapping interval size with one standard deviation as well as 
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the imputed number of candidate mutations within mapping region are shown on the 

right and left y-axis, respectively. The initial number of mutations per genome was 

1,400 (adopted from Velikkakam James et al., 2013). 

3.3.2.2. Mapping-by-sequencing with backcross populations 

Conventional genetic mapping requires a cross of the mutant to a diverged 

genome. In addition to genetic variation, this introduces phenotypic variation, which 

can interfere with the recognition of subtle phenotypes. Moreover, if the mutagenesis 

was performed in a complex (transgenic or otherwise mutagenized background) this 

needs to be introgressed into the diverged genome, if tedious genotyping of all 

recombinants for the presence of first site mutations should be avoided. 

In order to bypass these obstacles, it has been suggested to use F2 populations 

derived from backcrossing the mutant plant to the non-mutagenized progenitor as 

mapping populations (Abe et al., 2012; Hartwig et al., 2012). Within backcross 

populations all mutagen-induced mutations segregate, except for the causal and 

closely linked mutations, which are fixed in the mutant pool by selecting the mutant 

phenotype. Thus, selection for fixed differences between the mutant pool and its 

genetic background considerably reduces the number of putative causal changes. To 

quantify results of each simulation, we used the number of homozygous differences 

between the mutant pool and the background. However, the absolute number of 

homozygous mutations greatly depends on the definition and settings of parameters 

used for their identification. As sequencing errors can introduce wild-type alleles at 

otherwise homozygous loci, selecting only those positions without reads that support 

the wild-type allele excludes some of the real homozygous mutations. On the other 

hand, including positions, which support wild-type alleles, will introduce false 

positives. In order to allow comparison across samples, we defined and applied 

thresholds, which are adjusted to pool size and sequencing coverage (Materials and 

methods). Backcrossing was simulated by crossing a single mutant plant to its 

isogenic parent followed by one generation of inbreeding to establish a BC1F2 

mapping population (see (I) in Figure 3.1).  
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3.3.2.2.1. The interplay of pool size and genome-wide coverage in BC1F2 

populations 

We simulated BC1F2 populations with 3 to 70 mutants for high and low 

mutation rates separately. Sequencing was simulated at different coverage levels, 

ranging from 5x to 200x. For each combination of pool size and coverage level, we 

simulated 500 independent mapping populations and scored the number of 

homozygous mutations (Figure 3.4). Mutations that are not fixed, but are close to 

fixation have a high probability to appear as fixed in the sequencing data. This effect 

becomes stronger at low coverage levels, where the reduced number of reads does not 

allow identifying low frequencies of wild-type alleles. As expected, more 

recombinants reduced the average number of homozygous candidate mutations. 

Sequencing pools with 30 recombinants at coverage of 25x revealed 43 (± 18) CAMs 

on average. Like for outcross populations, the variation of CAMs was high in pools 

with few recombinants, but got reduced in larger pools. 
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Figure 3.4: Results of mapping-by-sequencing with backcross populations. A) 

Pools of 3 to 70 BC1F2 individuals (colored blocks) were sequenced with increasing 

coverage ranging from 5 to 200x. For each combination of pool size and coverage we 

simulated 500 independent populations and performed a mapping-by-sequencing 

analysis on each of them. Average number of candidate mutations with one standard 

deviation is shown on the y-axis. The initial number of mutations per genome was 

1,400. B) Zoom in on the framed region in panel A. Pools with three recombinants are 

not shown (adopted from Velikkakam James et al., 2013). 

In great contrast to outcross populations, we observed immediate saturation of 

the number of CAMs with increasing pool size. For example, pools with 20 mutants 

sequenced at a coverage level of 20x revealed 56 (± 22) CAMS on average. Pools 
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with 70 mutants, which were sequenced with the same sequencing effort, revealed 

almost the same number. In general, for coverage levels having less than 25x, we 

observed no reduction in the number of CAMs when the pool size is increased beyond 

20 recombinants. This suggests that low-fold sequencing lacks the power to make use 

of the compliment of recombination in the pool and more sequencing is required to 

exploit all recombination events. In agreement, we still observed a decrease in CAMs 

for deeply sequenced samples (200x) when pool size is increased from 60 to 70. This 

illustrates the mutual importance of both pool size and coverage.  

3.3.2.2.2. Effects of successive backcrossing  

In a series of simulations, we increased the number of backcross generations 

up to three before establishing a mapping population (see (II) in Figure 3.1). In total, 

mapping-by-sequencing of 81,000 BC2F2 and BC3F2 populations were compared to 

the prior analysis of BC1F2 pools. As expected, additional backcrosses reduced the 

variation of CAMs in pools with a few plants (Figure 3.5). In particular, when 

genome-wide coverage or the number of mutants was limited, additional rounds of 

backcrossing helped to reduce the number of CAMs. However, pools with a 

reasonable number of recombinants sequenced with sufficient coverage did not 

improve with additional backcrosses.  
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Figure 3.5: Effect of coverage and pool size on BC2F2 and BC3F2 backcross 

populations. A) Pools of 3 to 70 BC2F2 individuals (colored blocks) were sequenced 

with increasing coverage ranging from 5 to 200x. For each combination of pool size 

and coverage we simulated 500 independent populations and performed a mapping-

by-sequencing analysis on each of them. Average number of candidate mutations with 

one standard deviation is shown on the y-axis. The initial number of mutations per 

genome was 1,400. B) Outcome of the same analysis with BC3F2 recombinants 

(adopted from Velikkakam James et al., 2013). 

 

In order to test the influence of mutation load, we simulated whole backcross 

simulations explained above with different initial 700 mutations per genome (Figure 
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3.6). This only reduced the CAM proportional to the change in the mutation load and 

persisted the trend observed in previously tested mutation load. Both mutation loads 

together mimic the realistic mutation load which one could expect from a chemical 

treatment such as EMS (Jander et al., 2003; Ashelford et al., 2011). Within this 

magnitude, mutation load has least influence on experimental setup.  
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Figure 3.6: Effect of coverage and pool size on BC1F2, BC2F2 and BC3F2 

backcross populations. Outcome from different populations, BC1F2, BC2F2 and 

BC3F2 are shown on panel A, B and C respectively. On each panel different number 

of recombinants are pooled ranging from 3-70 (each block on x-axis) and the same 
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pools are sequenced with multiple coverage levels, ranging from 5-200x (shown on 

top of each blocks) to illustrate the effect of both pool size and coverage. Mean 

number of candidate mutations with one SD is on y-axis. Mutation load of the 

genome is 700 mutations (adopted from Velikkakam James et al., 2013). 

Backcross populations are usually derived from one single mutant plant and 

its wild type parent. However, generation of a backcross population is based on 

multiple mutant siblings, all of which are crossed to their wild type parent, may bring 

additional variation around the causal locus. Here, we simulated the generation of 

backcross populations using three mutant siblings and compared the mapping 

outcome to our previous results, which were based on one mutant parent only (Figure 

3.7). The improvement in mapping resolution was very limited and restricted to pools 

with few mutants only.  

 

Figure 3.7: Effect of number of individuals used during backcross. The average 

mapping outcome of BC1F2 population are developed by crossing wild type parent to 

individual mutant (bold line) or three mutants (dotted lines) as parent. Mutation load 

of simulation is 1400 mutation per genome. Different colors; dark red, light red, 

green, blue, cyan, purple, yellow, gray and black indicate the size of recombinants in 

pool 3, 5, 10, 20, 30, 40, 50, 60 and 70 respectively (adopted from Velikkakam James 

et al., 2013). 

3.3.2.3. Effects of mis-scored plants 

Complex or subtle phenotypes can lead to mis-scored plants. Such plants 

introduce wild-type alleles at the causal candidate locus and severely interfere with 

genetic mapping. In order to study the effect of mis-scored recombinants, we 

simulated different rates of mis-scored plants ranging from 1 to 6% within a 
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population of 50 BC1F2 mutants sequenced at 50x (Materials and methods). 

Compared to previous results, pools with 1 to 2% false scored plants yielded 82% and 

145% more CAMs, respectively (Figure 3.8). This illustrates that even small errors in 

the phenotyping can have severe effect on mapping-by-sequencing based on 

backcross populations. 

 

Figure 3.8: Effect of phenotyping error on BC1F2 population. The effect of 

phenotyping error ranging from 0 to 6% and respective observed candidate mutations 

are on y-axis (adopted from Velikkakam James et al., 2013). 

3.3.2.4. Direct sequencing of mutant genomes 

As an alternative to bulk segregant analysis, individual mutant genomes can be 

sequenced directly (see (III) in Figure 3.1). However, the large number of background 

mutations interferes with the unambiguous identification of causal mutations. 

Backcrossing removes some of these background mutations (Zuryn et al., 2010; 

Ashelford et al., 2011). Here, we analyzed mutant genomes after one to three rounds 

of backcrossing. Mutants that are selected from backcross populations will generally 

yield fewer CAMs. The theoretical fraction of the recurrent parental genome after n 

rounds of backcrossing is (2^(n+1)-1)/2^(n+1) (Collard et al., 2005). Our simulated 

populations closely followed the expected percentage and showed an average 

reduction of foreground genome by 12.8% and 6.8% in BC2 and BC3 respectively. 

As expected, direct sequencing yielded more CAMs than in our bulk segregant 

analyses. For example, across all coverage levels, pools with no more than three 
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BC1F2 mutant individuals showed less than half of the CAMs as compared to direct 

sequencing of BC1F2 individuals, illustrating the power of bulk segregant analysis.  

3.3.3. Application of mapping-by-sequencing simulations in model crop 

species 

Mapping-by-sequencing has already been successfully applied to crop 

species, like rice and polyploid wheat (Abe et al., 2012; Trick et al., 2012; Nordström 

et al., 2013). As the size of some of the crop genomes can be as large as multiple Gb, 

an informed decision on the experimental design of mapping-by-sequencing seems 

even more important for such species. Here, we explored the power of Pop-Seq 

simulator to address questions about the experimental design of mapping-by-

sequencing experiments in rice and barley, where mapping-by-sequencing has started 

to become a part of standard molecular toolbox.  

3.3.3.1. Mapping-by-sequencing in the crop model species rice 

First, we estimated the recombination frequency and landscape of rice by 

combining two publically available rice RIL populations (Harushima et al., 1998; 

Huang et al., 2009). Further, we selected a publically available set of 139,244 markers 

for the simulation of outcross populations (McNally et al., 2009). Similar to 

Arabidopsis, we randomly introduced 2,222 mutations (1 every 171 kb), of which one 

was selected to be causal. Based on this, we simulated mapping-by-sequencing using 

both outcross and BC1F2 backcross populations with 50 to 400 and 10 to 80 mutant 

genomes, respectively (Figure 3.9). Sequencing of these pooled genomes was 

simulated at various genome-wide coverage levels ranging from 10 to 100x. Each 

combination of pool size and coverage was simulated for 300 times.  
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Figure 3.9: Simulated Mapping-by-sequencing outcome from rice. A) and B) 

show the simulated outcome of mapping-by-sequencing in outcross and backcross 

rice populations, respectively (adopted from Velikkakam James et al., 2013). 

 

Overall, we observed very similar trends for mapping-by-sequencing in rice as 

compared to Arabidopsis. Changes in the genome-wide coverage affected the 

outcome of backcross populations more than outcross populations and pools with very 

low number of recombinants drastically suffered from the lack of recombination. 

Outcross populations with 150 mutant recombinants sequenced with not more than 

20x featured less than 3 CAMs on average in our simulations. In contrast, backcross 
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populations consisting of 50 mutants, which were sequenced at a genome-wide 

coverage of 50 yielded around 10 CAMs on average. 

In general, the greater genome size of rice as compared to Arabidopsis, was 

counteracted by an enriched recombination frequency allowing for similar 

conclusions on the experimental design in rice as in Arabidopsis.  

3.3.3.2. Mapping-by-sequencing based on targeted enrichment sequencing  

As-of-today, the large genome sizes of crop species like the one of Hordeum 

vulgare (barley) make whole-genome resequencing as part of mapping-by-sequencing 

an expensive and risky approach. To address this general problem genome-

complexity reduction methods, like transcriptome sequencing, restriction site 

associated DNA sequencing or targeted enrichment sequencing, have been proposed 

(Baird et al., 2008; Gnirke et al., 2009; Turner et al., 2009; Elshire et al., 2011). For 

example, targeted enrichment sequencing has been already proven to be suitable for 

mapping-by-sequencing (Galvão et al., 2012).  

Here, we simulated targeted enrichment sequencing of ~60 Mb of the barley 

genome. This included the simulation of deep sequencing at selected regions of the 

genome, but at the same time the simulation excluded the rest of the genome from 

sequencing. Even though enrichment sequencing has a high chance to exclude the 

causal mutation from the actual sequencing data, mapping-by-sequencing based on 

enrichment sequencing will guide subsequent fine-mapping efforts. 

The design of the enrichment reduced the set of genome-wide marker as 

defined between the two cultivars Morex and Barke from 11,371,643 to 164,492 

markers, which are accessible through our enrichment sequencing (Mayer et al., 

2012). Mapping populations were simulated with 50 to 600 mutant plants selected 

from F2 outcross populations and were based on the recombination frequency and 

landscape for barley as observed in the Oregon Wolfe Barley mapping population 

(Cistué et al., 2011). Sequencing was simulated at coverage levels of 100 to 1,000x 

reflecting the high coverage gained in enriched regions. Each combination of pool 

size and coverage was simulated for 300 times.  

Overall, the reduced recombination frequency in barley as compared to the 

other species resulted in large mapping intervals (Figure 3.10). Similar to the 

observations for the other two species, increased coverage had only a minor effect on 

the results of outcross populations-based mapping-by-sequencing, but an increase in 
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the number of mutants can have a strong effect on the size of the mapping interval. 

Simulation of mapping populations with 400 mutants that were sequenced with an 

average coverage of 200x at the enriched regions resulted in mapping intervals with 

an average size of 3.2 Mb.  

 

Figure 3.10: Targeted enrichment sequencing in barley. Simulation outcome of 

~60 Mb targeted enrichment sequencing in barley (adopted from Velikkakam James 

et al., 2013). 
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Chapter 4. Mapping-by-sequencing in non-model organism 

 

Previously discussed mapping-by-sequencing strategies and proposed computational 

methods are prerequisite for a reference genome and gene annotation; therefore it is 

limited to species with well-characterized genomes. The constraint of characterized 

genome can be abolished either by having a close relative genome sequence or a 

method that compares wild-type and mutant directly without aligning the short reads 

to a reference genome. We propose two approaches, first, a comparative genomics 

approach where a close relative genome is being used as intermediate to identify 

mutations. Second, we introduce a reference-free algorithm called NIKS (needle in 

the k-stack) based on comparing k-mers in whole-genome sequencing data for 

identification of homozygous mutations. We applied both approaches to two mutants 

of non-model species Arabis alpina. NIKS successfully identified causal mutation, 

whereas the approach with a mediator genome was hampered due to lack of 

conservation. In case of NIKS, the effect of mutation was characterized by both ab 

initio and homology based annotation. This study was published in Nature 

Biotechnology 2013 (Nordström et al., 2013). Korbinian Schneeberger and George 

Coupland designed this study. Karl J V Nordström implemented NIKS and applied to 

mutant samples. Karl J V Nordström and myself performed the analysis. Maria C 

Albani, Caroline Gutjahr, Benjamin Hartwig, Franziska Turck, Uta Paszkowski 

provided the biological material.  
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4.1. Introduction 

With various suggested strategies in crossing as well as multiple 

computational frame works, mapping-by-sequencing has become a routine procedure 

for characterization of mutant from forward genetic screens. However, so far the 

utility of this fast and powerful method is limited to species with complete or draft 

genome. This is because the availability of the reference genome is indispensible from 

the mapping-by-sequencing procedure, therefore eliminating the majority of plant 

species. Many genome sequence assembly projects are currently in progress including 

major crops. However, this may take time to get to a complete mature genome. It is 

important to have a mature genome assembly, instead of unordered scaffolds, as 

genome assembly is used as genetic maps during mapping-by-sequencing, in addition 

to as a target for short read alignment. Even in case of the finished genome 

assemblies, resequencing different accessions cofound higher level of translocation 

which will hinder the reconstruction of mutant genome based on the alignment of 

reads to reference genome (Long et al., 2013). As the mutation identification starts 

with aligning short reads to reference genome, regions having copy number 

variations, translocation or loci having higher local divergences may experience 

difficulty in mutant identification. Therefore an unbiased method to compare genomes 

without utilizing the prior information of reference genome will improve mapping-by-

sequencing. This is further important if the trait under selection is known to be rapidly 

evolving, such as resistance, therefore the reference genome from one accession may 

not necessarily represent another accession (Cai et al., 1997; Song et al., 2003). The 

local deletions in reference genome may hinder identification of putative causal 

region. Nevertheless this could be solved by creating local assembly around the 

mapping interval (Takagi et al., 2013) 

Utilization of reference sequence from close relative species gave an 

alternative approach for mutant mapping. However, this approach utterly relies on the 

homology between two genomes and additionally inherits all above-mentioned 

drawbacks. Recently, methods for identification of SNPs by direct comparison of 

genomes were introduced, but none has proved to be accurate enough for 

identification of mutagen induced mutations (Ratan et al., 2010; Iqbal et al., 2012).  

Challenge in characterization of mutants without reference genome involves 

identification of homozygous mutations followed by annotation of the effect of 
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mutation in coding sequence. We introduced a method called Needle in the k-stack 

(NIKS) to compare isogenic genomes. This reference-free method utilizes the 

occurrence of each substring of size k (hereafter referred to as k-mers) within whole 

genome sequencing data of one sample and identifies the homozygous mutations by 

comparing sample-specific k-mers between samples. A homozygous mutation can be 

identified by using sample specific k-mer from one sample and the similar k-mer in 

the second sample with mismatch representing mutation. Multiple levels of data 

reduction were done before searching for sample specific k-mer. The initial step is to 

filter out k-mers having sequencing error. Genome sequencing with a decent coverage 

expects to produce a Gaussian distribution while plotting the occurrences of 

sufficiently large k-mers vs. frequency of k-mers, with a peak representing the 

average k-mer coverage (Pevzner et al., 2001; Kelley et al., 2010). However, a 

sequencing error converts the frequent k-mer to a k-mer with low representation in the 

genome. These k-mers will disturb Gaussian distribution by having a peak at left 

(having few occurrences in the sequence) that can be detectable in case of sequencing 

with a decent coverage. Mutagen-induced mutations introduce sample specific k-mers 

in the genome but are represented in higher magnitude in the sequences. Therefore, 

comparing k-mers between two samples for unique k-mers per sample can identify 

homozygous mutagen induced mutations (Figure 4.1). NIKS identifies mutations and 

creates local assembly around mutation that provides usually multiple hundreds of bp 

in length. 
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Figure 4.1: Workflow of NIKS. Two related genomes distinguished by mutagen-

induced changes are sequenced. Raw reads from whole genome sequencing are 

analyzed for the frequency of k-mers separately. K-mers having sequencing error tent 

to have lower frequency, therefore k-mers with low frequency can be removed 

(shown in gray background). Comparing k-mers from two samples identifies sample-

specific k-mers that harbor mutations. Sample-specific k-mers are merged to longer 

sequences called seeds. In case of small-scale differences, each seed may have a 

counterpart in other genome with subtle difference. Seeds are extended by local 

assembly using reads that share at least one k-mer with one of the seeds. These local 

assemblies containing the mutagen-induced mutations are used for gene prediction. 

  

Once the putative mutations are identified, classification and prioritization of 

candidates could only be possible by annotating the putative effect of mutation. As 

the genome sequences and thus gene annotations are not available, this can be done 

either by homology-based annotation or by ab initio.  Homology based annotation 

requires the availability of close relative homologous sequences. The success rate of 

homology-based annotation is essentially depending on the percentage of homology 

and differs between difference loci in the genome.  Nonetheless, as the objective in 

forward genetic screen is to identify causal non-synonymous mutation, thus in gene 
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space, the likelihood of greater conservation is expected around the mutation site. On 

the other hand, ab initio annotation is independent and hardly requires any prior 

information, but suffer from low specificity and sensitivity (Reese and Guigó, 2006; 

Yandell and Ence, 2012). Moreover based on genome construction, different ab initio 

tools have been known to perform differently (Coghlan et al., 2008; Yandell and 

Ence, 2012). Therefore, we used four ab initio prediction tools such as AUGUSTUS, 

GENEID, GENSCAN, FGENESH to compare the ab initio prediction tools in order 

to select the best prediction tool for A. alpina (Guigó et al., 1992; Burge and Karlin, 

1997; Salamov and Solovyev, 2000; Stanke and Waack, 2003; Blanco et al., 2007). 

We made a set of 745 highly conserved genes using Program to Assemble Spliced 

Alignments (PASA), which served as a benchmark to access the performance of each 

ab initio prediction tool (Haas et al., 2003). We sequenced two A. alpina mutants and 

identified causal mutation by NIKS. We applied NIKS as well as homology based 

mutant identification by using close relative Arabidopsis genome assembly to identify 

mutations. These mutations were annotated using homology as well as ab initio 

approach to identify putative candidates 

 



 75 

4.2. Materials and Methods 

4.2.1. A. alpina mutant sequencing 

Two of the A. alpina mutants were selected from a recent EMS screen where 

one mutant, perpetual flowering 1-1 (pep1-1), was previously characterized through a 

homology based candidate gene approach to carry a splice-site mutation in the PEP1 

gene that is responsible for the phenotype (Wang et al., 2009). Whereas the second 

mutant floral defective 1 (fde1) displayed floral homeotic defects, in which underlying 

genetic cause was not known. We used both mutant genomes in this study and aimed 

to use pep1-1 mutation to reconfirm the approach whereas fde1 to identify the 

unknown causal mutation. The fde1 mutant was backcrossed once to wild-type 

followed by selfing to generate segregating population of BC1F2, whereas pep1-1 

mutant was backcrossed twice to make BC2F2. Plants having mutant phenotype from 

fde1 BC1F2 and pep1-1 BC2F2 mutant families were selected and DNA from 86 and 

97 mutant plants were pooled separately for sequencing. Both mutant pools were 

sequenced in a 2x100 bp paired-end sequencing using Illumina HiSeq2000. The pep1-

1 mutant pool was sequenced in one lane of Illumina instrument whereas the  fde1 

was sequenced in two lanes. The sequencing generated data accounting for 51 to 158 

times of A. alpina genome. 

 

Table 4.1: Summary of sequencing data generated. Summary of Illumina 

HiSeq2000 sequencing for each mutant samples. The estimated genome coverage is 

based on assumption that A. alpina genome size is 375 Mb (adopted from Nordström 

et al., 2013). 

Mutant Sample 

Number of 

individual 

pooled 

Number of 

read pair 

generated 

Estimated genome 

coverage 

pep1-1 BC2F2 97 125,167,649 ~67.4 

fde1 BC1F2 86 293,395,860 ~158.0 
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4.2.2. Resequencing analysis of A. alpina mutants and SNP calling using 

mediator genome 

All raw reads from each mutant samples were quality filtered and trimmed if 

the ends of the reads were of low quality. Arabidopsis thaliana Col-0 reference 

genome (TAIR10) was used as mediator genome for alignment of short reads and 

SNP calling. These reads were aligned to mediator genome using GenomeMapper in 

the short read analysis pipeline SHORE (Ossowski et al., 2008; Schneeberger et al., 

2009). Relaxed criteria of 10 mismatches and 7 gaps were allowed for the aligning of 

100bp long reads. Aligned reads were corrected for the expected insert size between 

read pairs. Using default heterozygous parameters and a minimum allele frequency of 

20%, SHORE consensus was used to identify SNPs. 

4.2.3. SNP calling using NIKS in A. alpina mutants  

We applied NIKS pipeline to identify mutations in all two A. alpina mutant 

samples. NIKS does not require any prior information of reference genome and 

directly compares two samples using whole genome shotgun raw sequence. Therefore 

we used segregating population samples, pep1-1 and fde1 and compared them to 

identify mutations in each sample. Comparing the two genomes using NIKS, we 

aimed to identify the unknown lesion in fde1 and simultaneously confirm the pep1-1 

mutation, which was characterized as PEP1 gene by homology based candidate gene 

approach (Wang et al., 2009). NIKS pipeline starts by generating k-mers. We 

generated 31-mers using jellyfish and assessed the frequency of each k-mer within the 

raw reads (Marçais and Kingsford, 2011). This generated 17.7, 41.6 billion k-mers 

from pep1-1, fde1 samples respectively. Multiple rounds of data reduction were made 

to identify mutation sites, which includes unique and sample specific k-mers in each 

sample set compared to counter sample set, was selected. This reduced the k-mer 

count to 3.4, 0.7 million k-mer from pep1-1, fde1 samples respectively. Sequencing 

errors can produce unique k-mers in a sample. However, if the sample coverage in the 

sequencing is decent enough then these k-mer frequencies will be minimum and 

distinguishable from the expected Gaussian distribution. If errors are introduced 

during PCR, this could lead to illusive k-mers with sufficient frequency. Therefore it 

is advised to remove reads produced from single PCR template by filtering out reads 

with same starting sequences. Sample specific k-mers were merged with overlapping 

k-mers in order to increase the length, which in ideal case is k*2-1 and called as 
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seeds. The counterpart of seed (seed pair) from the counter genome was identified to 

call SNPs. In total we found 29 mutations in pep1-1 and fde1 mutant analysis and 

classified them to each group by taking advantage of EMS biased mutation spectrum. 

All 29 mutations were canonical EMS mutations that converted C->T (G->A), thus 13 

and 16 mutant alleles were assigned to pep1-1 and fde1 samples, respectively.  

4.2.4. Annotation of mutant SNPs 

Two strategies were implemented to annotate the effect of mutations on 

protein coding. First, homology based annotation of seed sequences by using BLAST 

to identify the orthologous sequence followed by imputing the effect of mutation on 

protein sequence. Second, ab initio annotation of seed sequences for which no prior 

information is required. To identify the best tool for ab initio annotation in A. alpina, 

we used four annotation tools, namely AUGUSTUS 2.4, FGENESH 2, GENEID 1.3 

and GENSCAN 1 and tested the sensitivity of each tool (Guigó et al., 1992; Burge 

and Karlin, 1997; Salamov and Solovyev, 2000; Stanke and Waack, 2003; Blanco et 

al., 2007). We generated a set of test genes using available cDNA sequence from A. 

alpina. We used cDNA as input for Program to Assemble Spliced Alignments 

(PASA) and followed pasa_asmbls_to_training_set pipeline for generating training 

set (Haas et al., 2003). This training set was further filtered for complete genes and 

reduced the representation of protein from similar family by filtering out proteins 

having similarity of greater than or equal to 70%. CD-HIT was used to cluster the 

proteins to avoid the over representation of protein family in training set (Li and 

Godzik, 2006; Fu et al., 2012). This reduced the initial set of 29661 genes to 12106 

genes. In order to get high confident genes with less annotation mistakes, we used 

Blat to compare the protein sequence to Arabidopsis protein database and selected 

genes which had full coverage and >90% identity. This produced 745 genes in total, 

which were later used to identify the accuracy of ab initio prediction. The output from 

all four prediction tools was converted to Gene Transfer Format (GTF). With the help 

of Eval tool, we estimated the accuracy of each prediction tool (Keibler and Brent, 

2003). This was calculated by the mean of sensitivity and specificity, and was 

estimated in three different levels, such as transcript, exon and nucleotide level.  
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4.3. Results 

4.3.1. Comparison of NIKS and comparative genomic approach with 

mediator genome for pep1-1 and fde1 mutations 

Both A. thaliana and A. alpina are from the same family Brassicaceae. Both 

genomes have different chromosome numbers of five and eight, which makes up to a 

genome size of 119 and 375 Mb, for A. thaliana and A. alpina respectively. 

Nonetheless, being the model plant organism for decades and the most well studied 

closest plant genome to Arabis, A. thaliana was selected as the mediator genome to 

identify SNP from pep1-1 and fde1 mutant genome. We used A. thaliana Col-0 

reference genome (TAIR10) as a mediator genome for alignment of short reads from 

both mutant samples separately. Using very relaxed criteria for short read alignment 

such as 10% mismatch and 7% gaps of the total length of the read, it yet had poor 

alignment of raw reads. Only 8% raw reads were aligned to reference sequence, from 

which we identified 2,062,177 variations to mediator genome from pep1-1 genome 

without any quality filtering. Similarly, fde1 genome had 8% of raw reads aligned to 

mediator reference genome and identified 2191156 variations. Since we were using a 

mediator genome, it was expected that majority of identified mutations will be the 

difference between A. thaliana and A. alpina and will not be interesting for mutant 

identification. Therefore, these >90% of shared mutations between two mutants were 

filtered out along with mutation having low SHORE quality score of <24. As pep1-1 

mutation was previously identified as a splice-site lesion in PEP1 gene, we examined 

at homologous gene in Arabidopsis. Unfortunately this site was not covered with any 

short read alignment. On average 18% of Arabidopsis genome was covered with short 

mutant reads. Compared to mutations identified by NIKS, only two and four 

mutations were shared between NIKS and comparative approach from pep1-1 and 

fde1, respectively. Scarcity of short read alignment at mutation loci caused the 

missing of rest of the mutations. In general, mediator genome approach was hampered 

by low homology. Though, in this particular case, comparative genomics was 

abortive, we checked whether majority of the short read aligned regions cover the 

mutations in coding region or not. Indeed 83% of covered mutations were in coding 

region. This anticipated output was encouraging as in mutant mapping; SNPs within 

coding regions are predominantly interesting as putative candidates.  
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Table 4.2: Fixed genomic differences between bulked F2 individuals of pep1-1 

and fde1. Contigs and related information were derived from NIKS analysis. ab initio 

annotation of these contigs were done and the effect of mutations were predicted. 

Causal mutations are shown in bold letters. 
a
Short read alignment coverage at each 

mutation locus in homology based alignment approach (adopted from Nordström et 

al., 2013). 

 

Allele Contig assoc. with mutation 

ab initio annotation 

Cov

erag

e
a
 

pep

1-1 

fde

1 

Mutant 

genome 

Len

gth 

(bp) 

Mutat

ion 

positi

on 

C

hr Position Gene Effect   

T C pep1-1 549 437 2 

5,482,63

3   none NO 

T C pep1-1 625 236 5 

2,627,76

0 

AT5G08

160 

syn 

(L>L) NO 

T C pep1-1 807 410 5 

2,754,08

2 

AT5G08

510 intronic NO 

A G pep1-1 829 354 5 

~2,998,2

50 

AT5G09

670 none NO 

A G pep1-1 889 408 5 

3,175,36

3 

AT5G10

140 

splice-

site 

change NO 

T C pep1-1 812 451 5 

~3,219,7

08   none NO 

T C pep1-1 653 220 5 

3,333,72

4 

AT5G10

550 

syn 

(R>R) YES 

A G pep1-1 783 437 5 

3,336,19

3   none  NO 

T C pep1-1 780 348 5 

3,818,09

3 

AT5G11

850 

nonsyn 

(G>D) YES 

A G pep1-1 882 445 5 

10,116,1

08   

nonsyn 

(F>S) NO 
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A G pep1-1 732 368 5 

17,725,7

25 

AT5G44

050 intronic NO 

A G pep1-1 772 341 - - - none   

A G pep1-1 850 448 - - - 

nonsyn 

(E>K)   

G A fde1 828 410 4 

16,422,8

53 

AT4G34

320 

nonsyn 

(Q>ST

OP) YES 

G A fde1 745 361 4 

16,756,8

18 

AT4G35

230 intronic YES 

G A fde1 637 261 4 

~17,051,

245   none NO 

G A fde1 806 388 4 

17,135,8

87   none  NO 

C T fde1 819 388 4 

17,178,2

92 

AT4G36

360 

nonsyn 

(G>E) YES 

C T fde1 863 427 4 

~17,286,

500 

AT4G36

660 

nonsyn 

(E>K) NO 

C T fde1 764 313 4 

17,357,7

62   none NO 

C T fde1 880 454 4 

17,401,7

94 

AT4G36

920 

nonsyn 

(D>N) NO 

G A fde1 798 385 4 

17,460,1

82   none NO 

C T fde1 789 353 4 

17,475,5

71 

AT4G37

080 

nonsyn 

(A>T) YES 

G A fde1 863 429 4 

~17,729,

980   none NO 

 

4.3.2. Annotation of candidate mutations in pep1-1 and fde1 

We tested the ab initio gene prediction accuracy of AUGUSTUS 2.4, 

FGENESH 2, GENEID 1.3 and GENSCAN 1.0 in A. alpina sequence. We utilized 

transcriptome data from A. alpina in order to access the accuracy of different gene 
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prediction tools. In contemplation of generating a set of genes for bench marking, 

PASA training gene set prediction pipeline was used to generate gene structures for 

protein coding genes with a minimum of 100 amino acids (Haas et al., 2003). Genes 

with either partial 5’ or 3’ end were filtered out. Gene prediction tool are known to 

have biased prediction accuracy rate towards certain family of proteins. Therefore, 

over representation of any protein family in benchmark gene set would bias the 

accuracy rate of prediction. Hence, we applied CD-HIT to remove proteins that were 

70% or more similar to others within the group (Li and Godzik, 2006; Fu et al., 

2012). This reduced the number of benchmark gene set to 12106 genes.  Remaining 

gene sets were aligned to A. thaliana and genes that were fully covered and had 

homology greater than 90%, were selected as highly conserved gene set for 

benchmarking. 

We used ad-hoc scripts to convert outputs from all four-gene structural 

prediction tools to unique Gene Transfer Format (GTF). This helped to compare the 

predicted genes from different tools against the benchmark genes and calculate 

accuracy of each prediction tool at transcript, exon and nucleotide level (Figure 4.2).  

 Though at nucleotide level all four prediction tools showed high accuracy, 

both sensitivity and specificity decreased at exon and transcript level. At exon level 

AUGUSTUS and FGENESH outperformed other two gene prediction tools and 

produced an accuracy of ~90%. While considering the complete transcripts, the 

accuracy declined and remarkable differences were showed between prediction tools. 

In all three level of accuracy check, AUGUSTUS outperformed FGENESH, GENEID 

and GENSCAN. GENSCAN gave the least accuracy level among all four prediction 

tools in all three level of accuracy test.  
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Figure 4.2: Accuracy of gene prediction tools. Sensitivity and specificity of four ab 

initio prediction tools based on the 745 benchmark genes. The sensitivity (dark color) 

and specificity (light color) were calculated at three different levels of prediction, 

such as nucleotide (red), exon (blue) and transcriptome (orange) .  

 

AUGUSTUS was further used to annotate mutations identified by NIKS. 

Genes were predicted on contigs having mutations and in addition to full-length gene 

models AUGUSTUS predicted gene models that were partially present in the 

sequence. Mutations were introduced into the predicted gene models and annotated by 

their putative effect on the coding sequence (Table 4.2). Together with other putative 

candidates, AUGUSTUS predicted the known causal splice site mutation in pep1-1 

sample. Out of 24 mutations, nine mutations containing contigs did not produce any 

gene model. However, majority (89%) of these contigs appeared to be intergenic 

regions by homology search to Arabidopsis.  
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Chapter 5. Discussion 

The revolution in DNA sequencing methods have changed the way genetic 

and genomic experiments been performed. NGS mediated new computational 

frameworks help to identify the causal mutation in forward genetics faster than ever 

before. Though this field is undergoing rapid changes, recent developments have 

shown more potential to be unfolded. 

5.1. Mutant mapping using isogenic background 

Chapter 2 illustrates one of the possibilities in the modification of crossing 

scheme that was not possible without the help of NGS. Conventional genetic mapping 

requires outcrossing to a diverged accession for the establishment of the mapping 

population. However, differences in phenotypes that segregate between Arabidopsis 

accessions are likely to mask subtle phenotypes that are caused by mutations. On the 

other hand, isogenic background has the advantage of eliminating possible artifacts in 

phenotypes caused by the introduction of new genomic background. As the 

identification of segregating markers as well as genotyping has been simultaneously 

done in mapping-by-sequencing, mapping has become possible even in an isogenic 

background. Cases like suppressor or enhancer screens of a previously identified 

mutant line, it is critical to keep the genome intact in order to avoid additional 

possible steps of genotyping. We demonstrated this approach in Chapter 2 by doing a 

suppressor screen of the lhp1 mutant. The lhp1 mutant phenotype differs 

quantitatively between accessions such as Col-0 and Wassilewskija-2, making it 

difficult to create a robust outcross mapping population for subtle modifiers. 

Therefore, we backcrossed alp1;lhp1 double mutant plant to single mutant parent 

lhp1, generating an isogenic mapping population. Consequently, conventional 

markers were absent in the population and cannot be used to distinguish between 

parental alleles. We performed whole-genome sequencing and identified mutagen-

induced changes by selecting mutant specific markers that were absent in parental 

genome. This way mutant mapping was done in an isogenic background that was not 

possible without sequencing. It is important to notice that as the number of 

segregating markers were comparable to the mutation rate of mutagen, which 

typically is one change in 112 to 171 kb in case of EMS, the number of segregants 
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required to resolve the linkage disequilibrium was rather low (Jander et al., 2003; 

Ashelford et al., 2011). This was further acknowledged by the simulation study in 

Chapter 3 in which comparable results could be obtained by using less segregants 

from backcross population as compared to outcross population.  

Differences between reference sequence and the sequenced accession were 

identified as mutations. These mutations were referred as background mutations. 

Mutagen induced mutations were identified by filtering out background mutations 

from mutations identified in mutant line. Depending on the experimental setup, 

background mutations were defined in different ways. Conservative approach is to 

sequence the non-mutagenized progenitor in order to identify background mutations. 

However, this comes with the cost of sequencing progenitor. If two or more mutants 

are available from different mutagenic events on same progenitor, then mutants may 

be used reciprocally as background mutations. The assumption here is that, the 

probability of having similar mutation at the same locus of genome in two 

independent mutagenic events, is low. Both cases have the cavity of having non--

sequenced regions in background genome leading to partial filtering of background 

mutations, thus producing false positive mutations. This can be avoided by 

considering mutations, when same locus has sufficient non-mutagenized allele in 

background genome, thus ensuring that the genome is being sequenced at this locus. 

However, this may lead to false negative markers. Therefore, these strategies need to 

be fine-tuned depending on the sequencing coverage and the expected number of 

markers in the genome. As false markers indulge in the mapping interval 

identification, it is advised to use a strict background mutation filtering to identify the 

mapping interval and then revisit the marker definition with more relaxed criteria 

(Galvão et al., 2012). We extended the SHOREmap tool by integrating backcross 

analysis pipeline (http://shoremap.org). Appendix note II illustrates detailed option 

list of SHOREmap backcross .  

However, whole-genome resequencing of pooled DNA from bulked 

segregant, usually results in a list of linked candidate changes. Mutations that are 

physically closer to causal mutation are only influenced by a minor number of 

recombination. And the typical coverage of whole-genome resequencing is 

incompatible to distinguish between homozygous and nearly homozygous changes. 

As closely linked candidate mutations may only have few recombination in the pool, 

non-causative mutations can be excluded by quantitative detection of rare wild-type 
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alleles. This is achievable by dCARE, a method that facilitates deep but targeted 

sequencing, thus reflects the true allele frequency in bulked DNA. Different NGS 

platforms have varying throughput, read length and cost per base and dCARE 

showcases how the power of different NGS platforms could benefit to the different 

stages of the mapping process. dCARE utilizes comparatively low throughput 

sequencing platform, Ion torrent, but is suitable for targeted resequencing. Often 

confounded but still improvable problem is, how to sequence larger genomic parts 

having multiple candidate loci spinning over more than few Mb. This becomes more 

important when these methods are transferred to crops and cereals with higher 

genome sizes and often tend to have larger mapping interval. Though most platforms 

provide method either by hybridization or capturing, for targeted sequencing, higher 

cost and lack of custom made arrays prevent the utility.  

5.2. Simulating virtual genomes and mapping-by-sequencing: Tool 

and lessons learned. 

We implemented two simulation programs, Pop simulator and Seq simulator 

collectively known as Pop-Seq simulator. Pop-Seq simulator simulates simplified 

virtual genotype and marker frequency by NGS genotyping. Pop-Seq simulator is 

implemented in Perl and follows Object Oriented Programming (OOP). Internally, 

Pop simulator starts with defining initial stage of homozygous parents at user defined 

marker positions. The parameters defined in the current version of our simulator 

configuration file are chromosome number, their respective sizes and ploidy level. In 

addition to that, the configuration file also contains a recombination landscape, 

probabilities for number of recombination and parameters for a gamma distribution to 

simulate crossover interference. By modifying respective values in configuration file, 

this tool can be applied to different species. However, if empirical data are not 

available for the species under consideration, then rather simplified simulation is also 

possible by defining equal recombination probability throughout the genome. Current 

implementation of the Pop simulator can handle variable number of chromosomes but 

limited to a ploidy level of two. The user is empowered to design crossing scheme by 

combining common crossing activities such as selfing, outcrossing or backcrossing, 

and is able to select dominant or recessive marker position in the genome to progress 

for next generation. Current version of Pop simulator can even handle crossing 

scheme with four founder parents, enabling to simulate AMPRIL lines (Huang et al., 
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2011).  

Whereas in Seq simulator, true allele frequency at each marker position is 

calculated from the virtual genotypes generated by Pop simulator. User is able to 

define the resequencing accessibility at each marker positions. Based on this expected 

local coverage, total reads are arbitrarily distributed on the estimated true allele 

frequency to generate reads per allele as output. By using Pop-Seq simulator, Chapter 

3 formulates the optimal experimental design and the opportunities to be explored in 

mapping-by-sequencing experiments in Arabidopsis. Other than the options of 

different crossing to create segregation populations, direct sequencing of individual 

mutant genome is also possible given that allelic group is available for simultaneous 

analysis. Mapping-by-sequencing experiments have different layers of decisive steps. 

Possibilities in mapping-by-sequencing are primarily dependent on the starting 

biological material, available genomic resources; mainly reference genome sequence 

and the sequenced genomic material such as DNA or transcriptome.  Chapter 3 

primarily focuses on the crossing scheme of mapping population and the effect 

brought by this on whole experiment, particularly on the pool size and the required 

depth of sequencing. Compared to outcross populations, backcross populations 

require higher coverage for optimal mapping results.  This is predominantly due the 

difference in genetic composition of both populations. Arabidopsis outcross 

population typically contains hundreds of thousands of natural variations, which are 

much denser than the expected recombination frequency. Thus, sliding-window-like 

approaches can combine the information from neighboring markers, and establish 

precise allele frequency in the pooled DNA. Whereas, backcross population consists 

only of mutagen induced mutations that are typically in the magnitude of hundreds 

across the genome, thus reduces the power of statistics or even treated markers 

independently in backcross analysis. Thus backcross population demands higher 

coverage but require low number of segregants pooled compared to an outcross 

population (Table 5.1).  

As an alternative to bulk segregant analysis, we also analyzed direct 

sequencing of individual genomes of backcross populations. Each successive 

backcross reduces the foreground genome and the number of putative candidates. 

However, it requires multiple backcross generations before the number of putative 

candidates is as low as in bulk segregant analyses. Our study suggests that multiple 

rounds of backcrosses can be avoided by pooling multiple genomes. The genome-
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wide mutation rate of radiation mutants is reported to be significantly lower as 

compared to chemically induced mutants (Belfield et al., 2012). Direct sequencing of 

mutants with fewer, but putatively more severe mutations can simplify the 

interpretation of whole-genome analysis of directly sequenced mutant genomes. 

 

Table 5.1: Suggestions for the design of mapping-by-sequencing experiments. 

Suggestions for the experimental set-up in different crossing scenario summarized 

from simulation study (adopted from Velikkakam James et al., 2013). 

 

 Outcross 

populations 

Backcross 

populations 

Direct 

sequencing 

Deep 

candidate 

resequencing 

(dCARE) 

Generation F2 BC1F2 BC1-3F2 n/a 

Number  of 

mutants 

~150 ~50 1 as many as 

possible 

Optimal 

coverage 

>25 ~50 >25 n/a 

Sequencing 

type 

Paired-end Paired-end Paired-end Single-end 

  

 As the mis-scored plants can have severe effects on mapping result, clarity of 

phenotype in a segregation population is very important and complex phenotypes may 

benefit from backcrossed mapping populations as the genetic background stays 

isogenic. From the simulation study in Arabidopsis, we came to the conclusion that 

having lower number of segregant is beneficial compared to accommodation of wrong 

segregant in the pool.  

Paired end sequencing is beneficial in accessing the boards of repeat rich 

regions, thus may increase the number of markers been analyzed.  Though, less repeat 

rich genomes like Arabidopsis may have low influence, crop genomes, known for 

their repeat content, may provide access to higher marker numbers with such reads. 

However, in crops other than the repeat content, genome size itself is a challenge. 

Though sequencing bigger genome is feasible, resequencing mutant lines for 
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identifying mapping region may need other strategies that are cost effective (Mayer et 

al., 2012; Brenchley et al., 2012). Chapter 3 explores one of the similar strategies by 

simulating target enriched sequencing in Barley. Though the chance of missing the 

causal mutation from the targeted sequence data is high, such approaches will lead 

and help fine-mapping efforts.  

 

5.3. Mapping-by-sequencing in Crops 

Advances in technologies have increased the easiness and made it more 

feasible than ever before to perform functional genetics studies(Kakioka et al., 2013). 

Homology based approaches such as ordering incomplete reference genome 

(scaffolds) based on synteny or even using the closely related species’ reference 

genome to align short reads, can be rewarding.  As the number of sequenced genome 

or the transcriptome assembly is increasing, utilization of these incomplete but useful 

information in mapping is advantageous. For example, significant macro-collinearity 

between grass genomes encourage the synteny based mapping in these genomes 

(Pfeifer et al., 2012). The probability of success increases when the mutant genome 

and the reference genome assembly are closely related and from the same genus 

(Wurtzel et al., 2010). As the coding regions that are arguably conserved between 

genus and the main focus of forward genetic screening is to identify non-synonymous 

mutations, the amount of mutations undetected due to the lack of homology, should 

be minimum. However, this approach still needs to sequence the whole genome, 

moreover, even within the same species, structural variations or even absence of 

genomic regions in reference genome may cause difficulties in identifying causal 

mutation. Local assembly around the candidate mapping interval could resolve this, 

and subsequently could identify the causal mutation (Takagi, Uemura, et al., 2013). 

Such approaches will certainly help the utilization of incomplete reference genome in 

mapping-by-sequencing. 

Chapter 4 introduces a new computational framework called NIKS. NIKS 

enables comparison of isogenic genomes directly without the help of reference 

genome to identify homologous mutagen induced changes. The ability of NIKS to 

identify more mutations than a comparative approach as well as successful ab initio 

annotation of mutation for functional characterization indicates the power of NIKS for 

mapping in non-model organisms. In general ab initio prediction was successful in 
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annotating candidate mutations. However, an accuracy benchmarking is advised, if 

the species under study is getting annotated for the first time. Along with other 

sequencing data, these sequences generated for mutant identification can be utilized 

further for creating genomic resources like partial reference sequences and marker 

discovery. Sequencing backcrossed mutant as well as parental genome or independent 

multiple alleles of the phenotype will help in removing background mutations. The 

major advantage of NIKS is to enable mutant characterization without any prior 

knowledge of genetic map, reference sequences and even without segregation 

population. NIKS led NGS empowered mapping to non-model organisms and 

resolved one of the major hurdles. The remaining major obstacle in the application of 

mapping-by-sequencing to crops is the genome size that substantially increases the 

cost of experiment.  

Recently, transcriptome sequencing became an obvious choice for the 

development of markers in species with larger genome size (Bancroft et al., 2011; 

Barbazuk and Schnable, 2011; Dutta et al., 2011; Edwards et al., 2011; Margam et 

al., 2011; Zhou et al., 2012). As major portion of such genomes is non-coding, 

transcriptome sequencing helps in reducing the area under probing. The advantage of 

probing coding regions makes this approach even more suitable for mapping-by-

sequencing experiments. Apart from the effective reduction in the genome 

representation, transcriptome mediated mapping experiments have several 

advantages: First, the reduced representation of genome directly reduces the cost of 

experiment. This has major impact when the genome has size is in few Gb and only 

minority of the genome is coding. Second, effect of mutation on transcript splicing 

can be directly assessed. A direct identification of mutation affecting splicing can be 

identified from the data on both annotated and un-annotated transcripts. Finally, 

comparing mutant and wild-type transcriptome can identify the alteration in 

expression level due to regulatory mutations. Altogether, these attributes make RNA-

seq enabled mapping-by-sequencing, an efficient and cost effective means in larger 

genome mapping. Three different studies have applied this approach to map genes 

from Maize and Zebra fish (Liu et al., 2012; Hill et al., 2013; Miller et al., 2013). 

However, variable expression level of genes across genome makes RNA-seq data 

noisy, thus demanding more statistical driven approach in analysis (Hill et al., 2013). 

Though RNA-seq offers alternative method for performing mapping-by-

sequencing, this method has several cavities as well; First, low or no expression of 
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candidate transcript may or may not be due to causal mutation, obstructs the 

identification of casual mutations. If lack of expression is genuinely due to time or is 

tissue specific, having sampling done at various time points and on various tissues 

could solve this problem. This will explode the magnitude of samples to be sequenced 

if pre-knowledge or educated guess is not possible. At least for some phenotypes, it is 

possible to reduce the time between the emergence of the mutant phenotype and the 

extraction of RNA. If lack of expression is due to nonsense mutation, leading to a 

nonsense mediated decay (NMD), then mapping interval can still be identified 

without knowing causal mutation (Chang et al., 2007; Miller et al., 2013). The 

identification of casual mutation can be done by subsequent scrutiny of the mapping 

interval using suitable methods such as targeted sequencing or chromosome walking 

(Liu et al., 2012; Trick et al., 2012). Secondly, the possibility of utilizing the 

expression level in order to find the causal mutation comes with the demand to have 

multiple replicates in order to have a significant conclusion. It is also critical to have 

parental samples (control in this case) extracted in similar manner as mutations. By 

providing a direct comparison of expression levels, RNA-seq empowers the 

identification of the effect of noncoding regulatory mutations, but not the mutation 

itself. Third, mutations that influence the regulation of allele-specific expression may 

generate false positive SNPs (Main et al., 2009; Pastinen, 2010). Finally, in RNA-seq, 

increasing coverage does not propositionally increase the coverage of low expressed 

genes. This can be as severe as 50% of the reads derived from 1% of genes (Trick et 

al., 2012). Normalized RNA-seq would be an alternative that cleaves the highly 

abundant transcripts from the sample but comes with the cost of lack of expression 

level (Christodoulou et al., 2011). Though this has been applied in marker discovery 

project in new species, this has not been tried yet in mapping-by-sequencing context.  

5.4. Further challenges in mapping-by-sequencing 

During last century, identification of a wide range of mutagen-induced 

phenotypes founded the basis of genetic research in Arabidopsis (Page and 

Grossniklaus, 2002). Different strategies are adopted in mapping-by-sequencing; 

indicating the availability of more than one optimum way in mapping. Figure 5.1 

summaries the possibilities and proven strategies in mapping-by-sequencing (Figure 

5.1). In future, given the available genomic resource and the specific limitations of the 

species under study, one has to decide optimum strategy on a case-by-case basis. 
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Three major stakeholders in this strategic planning are plant material, genomic 

resource used for study and computational method used in analysis.  

 

 

 

Figure 5.1: Roadmap of different strategies in mapping-by-sequencing. Three 

levels of options, such as mutant selected, genomic material sequenced and 

bioinformatics analysis are shown. Each colored continuous lines indicate proven 

strategies, whereas dotted lines indicate strategies yet to be established.  

However, beyond the recessive phenotype, NGS enabled mapping could 

enable for traits, which are dominant and quantitative. In Arabidopsis, dominant 

mutant phenotypes are less common than recessive phenotypes (Meinke, 2013). At 

least in some cases, this is mainly due to the lethality. Unlike recessive mutant alleles, 

whose presence can be masked by the presence of a functional wild-type allele, 

dominant mutant alleles can be found in both heterozygotes and homozygotes state. 
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Currently, the suggested solution is to sequence mutant and non-mutant pools from 

BC2F1, and expects a region at 0.5 allele frequency versus the background frequency 

of 0.25 (Lindner et al., 2012). However, the difference between expected and random 

frequency is subtle and needs extra information to identify the causal fixation. An 

alternative approach for dominant mutant mapping is to utilize the Mendelian 

segregation ratio to identify homozygous mutants in F2-3 population. If F3 family (each 

family is derived from selfing single F2) is fixed for mutant phenotype, indicates 

homozygous mutant F2 progenitor. Thus, by pooling mutant and wild-type phenotype 

plants separately produce homozygous allele in respective pools. Therefore, allele 

frequency analysis has higher leverage difference between two pools. This method 

has yet to be applied in dominant mutant mapping-by-sequencing. 

Speeding-up in genetic mapping now opens new avenues even for more 

complex phenotype. As NGS enabled mapping of alleles that are naturally present in 

population, and which quantitatively contributes to complex phenotypes, will be of 

great interest. Such alleles can be identified by genome wide association studies 

(GWAS). GWAS utilize natural populations and NGS based genotyping that provides 

simultaneous marker discovery and genotyping (Atwell et al., 2010; Li et al., 2010; 

Witte, 2010). Alternatively, mapping of natural allele can be done by creating 

mapping population from distinct parents and pooling plants with extreme phenotype. 

In this case, genomic loci contributing to phenotype will show difference in allele 

frequency between two extreme pools. This principal was initially adopted in yeast to 

map major QTLs (Ehrenreich et al., 2010). Later, NGS enabled QTL mapping was 

done in species with even higher genome size, such as rice and Drosophila (Turner et 

al., 2011; Takagi, Abe, et al., 2013). Though mapping was successfully done in major 

QTLs, improvement in the algorithm to reduce the noise from sequencing, in order to 

identify the minor QTLs is still needed. Current simplified approach of subtraction of 

allele frequency between extreme pools obstructs the identification of QTLs present 

in close physical vicinity. As in Claesen et al., further improvement of resolution in 

QTL peak detection methods, either powered by statistics or by modified crossing 

scheme or even both, is much needed (Claesen et al., 2013). 

Currently, mapping studies end with functional annotation in gene space. 

However, this can be extended with other ‘omics’ data to get a unified global 

functional interpretation. With advance in genomics, it is possible to study the 

molecular phenotypes such as transcription/translational rate, chromatin accessibility 
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and methylation rate, just to name a few (Boyle et al., 2008; Cokus et al., 2008; 

Ingolia, 2010; Churchman and Weissman, 2011). Future direction of studies must 

examine different layers of evidence to provide important links between genomic 

information and organismic functions, in order to postulate major mechanisms, if not 

complete, of complex traits.  
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Appendix Notes: 

Note 1: Exemplary command line calls for resequencing analysis using SHORE 

and successively by SHOREmap 

Task Command 

SHORE  

Preprocessing the 

reference sequence 

 

shore preprocess -f TAIR10_chr_all.fa -i TAIR10 -W 

Importing raw reads 

into SHORE  

 

shore import -v Fastq -a genomic -i 1001 -x s_1_1.fq -y 

s_1_2.fq -o sampleA --rplot --disable-illumina-filter -k 75 

Evoking short read 

alignments 

 

shore mapflowcell -f sampleA -i 

TAIR10/TAIR10_chr_all.fas.shore -n 10% -g 7% -p 

Correcting alignments 

for paired-end 

information 

 

shore correct4pe -l sampleA/1 -x 300 -e 1 -p 

Merge alignment files shore merge -p sampleA -d merge 

 

SNP calling shore consensus -n sampleID -f 

TAIR10/TAIR10_chr_all.fas.shore -o consensus -i 

merge/map.list.gz -g 4 -a scoring_matrix_het.txt -v -r 

  

SHOREmap  

Analyze frequencies 

of novel mutations 

SHOREmap.pl backcross --marker 

mutant_sample/consensus/ConsensusAnalysis/quality_va

riant.txt --out SHOREmap_out --chrsizes 

TAIR10_chrsizes.txt --bg 

background_sample/consensus/ConsensusAnalysis/qualit

y_variant.txt --marker-score 25 --marker-freq 0 –marker-

cov 8 --bg-freq 20 

 



 110 

 

Note 2: Detailed option list of SHOREmap backcross 

Resequencing of pooled backcrossed segregant can be analyzed using SHOREmap 

backcross in order to identify the putative candidate mutations. SHOREmap 

backcross analysis filter out the natural variation between reference sequence and 

mutant accession and visualize the frequency of mutagen-induced mutations. The 

usage of SHOREmap backcross with minimum parameter as follows: 

SHOREmap.pl backcross --chrsizes Chromsome.txt --out SHOREoutput --marker 

quality_varitent.txt  

Mandatory: 

--chrsizes File: Tabbed file with chromosome name and size of each 

chromosome  

--out   Characters: Output folder name. 

--marker File: Marker file. Output file from SHORE 

(quality_varitent.txt). If the list of marker is from different 

source then convert to SHORE marker format 

Optional: 

--marker-score Numeric: Minimum SHORE score cutoff for filtering marker. 

Default is 25                            

--marker-freq  Numeric: Minimum concordances for filtering marker. Default 

is 80 

--marker-cov  Numeric: Minimum read support for filtering marker. 

    

--bg File: File with background mutations. Usually this are the 

markers derived from the non-mutagenized sample. These 

mutations represent the natural variation between sequenced 

accession and reference sequence. If more than one file list 

them with comma-separation. 

--bg-score Numeric: Minimum SHORE score cutoff for filtering 

background markers 

--bg-freq Numeric: Minimum concordance for background markers. 

Default is 20 

--bg-cov  Numeric: Minimum read support for background markers. 
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--bg-ref File: File with details of background reference allele calls. If 

this file is given, then to qualify as mutagen induced marker, a 

marker must not only be absent in --bg file/s but also the 

reference allele must be present in --bg-ref file.  

Plotting options: 

-no-summary Flag: Turn off plotting all chromosome in single page as 

summary 

-no-filter Flag: Plot all markers after background correction. No marker 

score, frequency and coverage cutoff been used during plotting. 

-non-EMS  Flag: Plot non-canonical EMS (marked as "x") mutations also. 

-other-mutagen Flag: No differentiation between EMS and Non-EMS markers 

-verbose Flag: Verbose. Be talkative and report what is going on while 

analyzing. 

 

 

Note 3: Detailed option list of Pop simulator and Seq simulator 

Pop simulator simulates virtual genomes produced by following user specified 

crossing scheme and represented in genotype. Minimal option to run Pop simulator 

includes the requirement of population size, marker positions and crossing scheme. 

The usage is as follows: 

perl simulate_F2_seq.pl -n 20 -f F2 -m Marker_file.txt  

This command will simulate 20 F2 segregants with genotype information at specified 

marker positions given by Marker_file. Elaborated parameter options are briefly 

explained below: 

Mandatory: 

-n / -a Numeric: Number of segregant or mutant plants, respectively. Either 

one of the option is mandatory. 

-f  Characters: Crossing scheme in "litral words" superated by ":" . For 

example: F5 for five times selfing and F2:B1:F1 for generating BC1F2 

by crossing F2 and recurrent parent to make BC1F1 followed by one 

round of selfing. Three plants are used during each round of backcross.  

-m  File: Marker file in SHORE marker output format.  

 

Optional: 



 112 

-o   Characters: Output file name. Default is genotyping.txt in the local 

directory. Rewrite if the file already excites.  

-g   Flag: Write graphical outputs files for each chromosome. Default 

name of files are Chromosome_1-9.txt 

-l  Flag: Print complete genomes from every generation, including the 

intermediate populations 

-s  Character: Mutation site. Example: 1:100 for chr1 and 100bp. Default 

is 1:100000 

-i  File: Output file from previous Pop simulation. Utilize the genomes 

simulated earlier.  

-p  Flag: Flag for 4 parent cross. Two F1 are made out of four parents and 

further selfed to user specified times to simulate recombinant inbred 

lines. 

-e  Float: Expected phenotyping error in percentage  

-c  File: Config file for species. Default is Arabidopsis_config.txt, which 

is provided with package. Rice and Barley config files are also 

provided in package. To create config file for other species, please 

followe the guidelines given in the README of the package. 

-d  Flag: Use single genome till the last stage of simulation and create last 

population with specified plants from it. This simulate single seed 

descent 

-j  Flag: Use only single plant in each backcross. Default is three. 

-h  Flag: Help   

-V Flag: Verbose. Be talkative and report what is going on while 

analyzing. 

 

 

The output of Pop simulator serves as an input for Seq simulator. The minimum 

required parameters to run Seq simulator are genome file, marker file, normalized 

coverage file and required coverage. The usage as follows: 

perl simulate_seq.pl -c Coverage.txt -g Genotype.txt –m Marker_file.txt -x 50 

 

Following are the details of each parameter: 

-h  Flag: Help 
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-c File: Coverage file with normalized expected coverage at each marker 

position 

-g  File: Output file from Pop simulator having simulated genomes. 

-m  File: Marker file in SHORE marker output format 

-x  Numeric: Required coverage of simulation  

-o  File: Name of output file . Default is Output.txt 

-b Flag: Instead of pooling all the genome from the input file, each 

genome sequencing will be simulated separately 

-a  Flag: Faster simulation method. Not usable below 1x coverage 
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Appendix Tables: 

Table SI: List of markers induced by EMS in alp1;lhp1 mutant 

Chr Locus 

Wild-

type Mutant Score Cov Concordance Repetitiveness 

1 528089 C T 25 8 0.22 1.00 

1 1455002 C T 30 9 0.27 1.00 

1 1567367 C T 40 11 0.38 1.00 

1 2296104 C T 25 9 0.15 1.00 

1 3467889 C T 36 10 0.26 1.00 

1 3629253 C T 30 9 0.24 1.00 

1 3675554 C T 30 10 0.25 1.00 

1 4838651 C T 30 8 0.35 1.00 

1 4954896 G A 25 10 0.21 1.00 

1 5137993 C T 28 8 0.26 1.00 

1 5544941 C T 27 10 0.24 1.00 

1 6069148 C T 36 12 0.26 1.00 

1 6752291 C T 36 17 0.33 1.00 

1 8294426 G A 36 11 0.27 1.00 

1 8301873 G A 40 15 0.38 1.00 

1 10661932 G A 36 10 0.28 1.00 

1 10728593 G A 36 17 0.33 1.00 

1 12840240 C T 34 9 0.26 1.00 

1 13180730 C T 28 23 0.35 1.60 

1 13181778 G A 40 33 0.36 1.12 

1 13187030 G A 34 13 0.27 1.25 

1 13572421 C T 34 9 0.25 1.21 

1 13572438 C T 28 9 0.22 1.48 

1 13598810 G A 25 11 0.24 1.00 

1 13598853 G A 25 8 0.18 1.04 

1 13840908 C T 25 9 0.16 1.06 

1 14044723 G A 25 10 0.18 1.19 

1 14105701 C T 30 10 0.22 1.17 

1 14223413 G A 25 11 0.22 1.00 

1 14227448 C T 34 15 0.28 1.28 

1 14227454 C T 28 14 0.26 1.23 

1 14237345 C T 28 14 0.27 1.23 

1 14270990 C T 25 8 0.19 1.17 

1 14271005 G A 25 8 0.16 1.14 

1 14271927 C T 30 12 0.24 1.09 

1 14464852 G A 34 8 0.27 1.00 

1 14486841 C T 36 14 0.25 1.00 

1 14486851 C T 36 15 0.29 1.00 

1 14497035 C T 25 8 0.16 1.00 

1 14499162 C T 25 11 0.24 1.02 

1 14509881 C T 38 21 0.36 1.45 
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Chr Locus 

Wild-

type Mutant Score Cov Concordance Repetitiveness 

1 14544115 G A 25 12 0.21 1.00 

1 14592376 G A 36 16 0.25 1.01 

1 14666764 G A 28 12 0.23 1.50 

1 14922405 C T 36 16 0.25 1.00 

1 15060309 G A 25 10 0.20 1.02 

1 15060369 G A 25 13 0.22 1.02 

1 15091990 C T 32 14 0.35 1.67 

1 15096904 C T 25 8 0.18 1.20 

1 15098643 C T 25 9 0.18 1.18 

1 15103278 C T 30 18 0.25 1.13 

1 15148451 C T 30 8 0.24 1.11 

1 15169937 G A 32 25 0.42 1.73 

1 15196913 C T 25 9 0.20 1.04 

1 15196933 C T 25 9 0.21 1.02 

1 15198938 C T 25 32 0.22 1.04 

1 15208584 G A 25 10 0.23 1.00 

1 15437072 C T 25 26 0.18 1.02 

1 15437359 G A 30 34 0.25 1.01 

1 15437371 G A 25 32 0.19 1.01 

1 15522690 C T 25 8 0.18 1.00 

1 15612103 G A 25 11 0.21 1.00 

1 15612109 G A 25 11 0.20 1.00 

1 15839181 G A 28 9 0.27 1.51 

1 16012283 C T 36 9 0.25 1.07 

1 16052952 C T 25 9 0.24 1.00 

1 16103829 G A 40 20 0.48 1.00 

1 16513124 C T 25 21 0.16 1.04 

1 16514381 G A 25 18 0.15 1.15 

1 16519806 C T 27 28 0.26 1.59 

1 16522410 G A 25 21 0.16 1.13 

1 17143580 C T 25 14 0.20 1.03 

1 17144868 G A 25 8 0.19 1.11 

1 17145062 G A 36 18 0.33 1.05 

1 17145106 G A 36 19 0.28 1.11 

1 17602952 G A 36 10 0.27 1.00 

1 17866864 C T 34 9 0.35 1.00 

1 18316593 G A 28 10 0.29 1.00 

1 18364642 G A 40 15 0.56 1.00 

1 18641548 G A 40 20 0.42 1.00 

1 19680096 G A 40 17 0.47 1.00 

1 19706004 C T 25 10 0.23 1.09 

1 19983954 G A 40 28 0.61 1.00 

1 20196679 G A 40 21 0.53 1.00 

1 20227699 G A 40 21 0.45 1.00 
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Chr Locus 

Wild-

type Mutant Score Cov Concordance Repetitiveness 

1 22119003 G A 40 15 0.38 1.00 

1 22795495 G A 40 17 0.38 1.00 

1 22937848 G A 40 17 0.53 1.00 

1 23257047 G A 36 9 0.56 1.00 

1 23304045 G A 40 25 0.53 1.00 

1 24681784 G A 40 23 0.46 1.00 

1 25109150 G A 40 17 0.44 1.00 

1 25299556 G A 40 13 0.36 1.00 

1 25699757 C T 36 9 0.27 1.00 

1 26750832 C T 32 14 0.30 1.00 

1 27211891 G A 30 9 0.26 1.00 

1 27834832 G A 36 11 0.32 1.00 

1 27971974 G A 28 8 0.29 1.00 

1 28956103 C T 28 9 0.23 1.00 

1 29345246 C T 40 8 0.47 1.00 

2 48429 C T 25 18 0.18 1.05 

2 368426 G A 40 18 0.43 1.00 

2 1606662 C T 30 15 0.25 1.16 

2 1606664 G A 25 9 0.15 1.16 

2 2163852 G A 25 8 0.24 1.00 

2 2324978 C T 34 11 0.28 1.00 

2 2496417 G A 36 15 0.31 1.00 

2 3548843 G A 25 12 0.15 1.08 

2 3550221 C T 28 17 0.30 1.53 

2 3580120 G A 25 9 0.24 1.00 

2 3631586 G A 36 10 0.27 1.10 

2 3758100 C T 36 8 0.38 1.00 

2 3845310 G A 25 9 0.20 1.02 

2 3899518 C T 34 14 0.29 1.21 

2 3906321 C T 36 13 0.27 1.11 

2 3948585 C T 25 8 0.19 1.12 

2 4190014 G A 25 12 0.21 1.00 

2 4380286 G A 28 15 0.31 1.29 

2 4380291 G A 38 19 0.38 1.28 

2 4381592 G A 25 12 0.21 1.11 

2 4381601 C T 36 19 0.29 1.10 

2 4383398 G A 25 13 0.22 1.18 

2 4516286 G A 25 8 0.18 1.02 

2 4660276 G A 30 10 0.27 1.00 

2 4682855 C T 25 10 0.18 1.14 

2 4776727 G A 34 12 0.29 1.33 

2 4950351 G A 25 12 0.21 1.10 

2 5282409 C T 25 9 0.20 1.00 

2 5475183 C T 25 10 0.18 1.17 
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2 5475189 C T 25 10 0.16 1.16 

2 6124027 G A 25 9 0.24 1.07 

2 6124266 C T 36 15 0.35 1.24 

2 6176791 G A 40 15 0.41 1.00 

2 6652425 C T 36 9 0.36 1.00 

2 6778878 C T 34 8 0.33 1.00 

2 7568835 G A 36 17 0.33 1.00 

2 9760661 G A 30 12 0.25 1.00 

2 10431148 G A 36 12 0.27 1.00 

2 10720689 G A 38 9 0.36 1.00 

2 11701603 G A 36 13 0.27 1.00 

2 11954694 G A 36 11 0.31 1.00 

2 12402711 G A 30 12 0.26 1.00 

2 12600322 G A 40 8 0.38 1.00 

2 12600328 G A 30 8 0.30 1.00 

2 12722481 C T 30 10 0.32 1.00 

2 12761295 G A 40 26 0.54 1.00 

2 13836108 G A 40 17 0.44 1.00 

2 13995863 G A 40 15 0.42 1.00 

2 15652847 C T 40 21 0.48 1.00 

2 15965780 G A 40 21 0.53 1.00 

2 17746783 C T 40 17 0.52 1.00 

2 19039666 C T 40 18 0.43 1.00 

2 19100239 C T 40 12 0.48 1.00 

2 19332588 C T 36 8 0.32 1.00 

3 730961 C T 25 11 0.19 1.00 

3 826933 C T 40 9 0.50 1.00 

3 2413273 G A 34 8 0.31 1.00 

3 3205070 C T 40 9 0.38 1.14 

3 3205071 C T 40 9 0.38 1.14 

3 3205085 C T 40 9 0.43 1.09 

3 5280990 G A 25 11 0.17 1.19 

3 5285703 G A 25 13 0.22 1.10 

3 6456060 G A 38 14 0.44 1.00 

3 7995702 G A 30 10 0.26 1.20 

3 9773917 C T 25 11 0.20 1.00 

3 12210366 C T 36 10 0.26 1.17 

3 12210533 C T 28 11 0.33 1.71 

3 12210537 G A 28 8 0.27 1.74 

3 12214444 C T 25 9 0.20 1.00 

3 12248419 G A 25 11 0.21 1.02 

3 12249639 G A 25 12 0.24 1.02 

3 12252193 G A 28 15 0.26 1.74 

3 12334101 C T 36 14 0.32 1.00 
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3 12334106 C T 36 13 0.31 1.00 

3 12334114 C T 36 13 0.30 1.00 

3 12334193 C T 36 16 0.29 1.00 

3 12334254 G A 36 15 0.28 1.00 

3 12425773 C T 40 17 0.61 1.00 

3 12459357 C T 40 14 0.56 1.00 

3 12672117 C T 25 8 0.16 1.09 

3 12715128 G A 34 11 0.25 1.38 

3 12715161 C T 28 11 0.26 1.28 

3 12893634 C T 25 8 0.19 1.08 

3 13280245 G A 25 11 0.20 1.17 

3 13315273 C T 25 10 0.21 1.00 

3 13413001 C T 30 11 0.32 1.72 

3 13421587 G A 25 11 0.18 1.02 

3 13586890 C T 25 11 0.24 1.19 

3 13595615 G A 25 10 0.22 1.15 

3 13598303 G A 38 16 0.38 1.25 

3 13604965 C T 25 9 0.20 1.00 

3 13658611 G A 28 16 0.26 1.67 

3 13693460 G A 34 9 0.28 1.33 

3 13774798 C T 28 11 0.22 1.49 

3 13794584 G A 34 14 0.29 1.49 

3 13835007 G A 28 25 0.31 1.65 

3 13835026 G A 30 21 0.33 1.74 

3 13840268 G A 25 8 0.22 1.17 

3 13912473 G A 34 14 0.29 1.22 

3 13938604 C T 25 11 0.17 1.06 

3 14049194 G A 30 12 0.29 1.13 

3 14164972 C T 40 14 0.56 1.00 

3 14174981 C T 32 14 0.36 1.73 

3 14216604 C T 34 16 0.26 1.25 

3 14392427 C T 25 9 0.17 1.18 

3 14394603 C T 25 10 0.17 1.19 

3 14394625 C T 28 16 0.24 1.23 

3 14475646 C T 25 10 0.21 1.00 

3 14476306 C T 25 8 0.21 1.03 

3 14476740 C T 25 11 0.19 1.00 

3 14587126 C T 40 19 0.39 1.00 

3 14587602 C T 36 9 0.30 1.00 

3 14814713 C T 34 13 0.33 1.41 

3 14820146 G A 25 8 0.17 1.20 

3 14980218 G A 28 10 0.24 1.39 

3 15141273 C T 30 9 0.24 1.17 

3 15143316 C T 25 8 0.20 1.02 



 120 

Chr Locus 

Wild-

type Mutant Score Cov Concordance Repetitiveness 

3 15143716 G A 25 11 0.24 1.02 

3 15144644 C T 25 10 0.24 1.00 

3 15253456 C T 38 24 0.38 1.21 

3 15258016 C T 40 15 0.42 1.00 

3 15258203 C T 25 15 0.23 1.03 

3 15305302 C T 25 17 0.17 1.05 

3 15465812 G A 25 10 0.20 1.10 

3 15465823 G A 25 10 0.21 1.08 

3 15466756 C T 25 9 0.16 1.07 

3 15466762 C T 25 9 0.18 1.00 

3 15717631 C T 25 11 0.19 1.00 

3 15717797 G A 36 9 0.33 1.00 

3 16071224 G A 40 8 0.44 1.00 

3 16458036 C T 40 19 0.54 1.00 

3 18310153 C T 38 18 0.43 1.31 

3 18536084 C T 40 32 0.60 1.00 

3 18757858 C T 40 29 0.78 1.00 

3 19462997 C T 40 27 0.64 1.00 

3 19728658 C T 40 17 0.61 1.00 

3 21455099 G A 40 47 0.96 1.00 

3 22622352 C T 40 44 0.96 1.00 

3 23376305 C T 40 39 0.98 1.00 

4 158374 C T 40 16 0.37 1.00 

4 1231684 G A 25 8 0.20 1.18 

4 1683886 C T 40 13 0.38 1.00 

4 1751956 C T 25 12 0.21 1.02 

4 1753451 G A 34 16 0.25 1.25 

4 1753487 C T 25 12 0.21 1.15 

4 1753889 C T 25 11 0.20 1.18 

4 1753991 C T 25 13 0.20 1.00 

4 1753994 C T 25 11 0.17 1.00 

4 2057261 C T 36 18 0.33 1.00 

4 2057798 C T 25 10 0.21 1.00 

4 2058440 G A 25 9 0.18 1.00 

4 2062991 G A 28 11 0.23 1.35 

4 2362823 G A 36 17 0.30 1.00 

4 2509201 G A 38 12 0.32 1.00 

4 2824240 C T 30 8 0.27 1.00 

4 2856794 C T 25 10 0.21 1.00 

4 3039701 G A 30 15 0.24 1.00 

4 3040240 C T 25 12 0.21 1.05 

4 3048933 C T 34 15 0.31 1.33 

4 3377359 G A 25 14 0.23 1.00 

4 3377364 C T 25 15 0.23 1.00 
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4 3505971 C T 25 10 0.22 1.08 

4 3506033 C T 36 16 0.33 1.02 

4 3506228 G A 25 11 0.20 1.00 

4 3506608 C T 25 8 0.19 1.00 

4 3506664 C T 25 10 0.19 1.05 

4 3574581 G A 30 12 0.24 1.04 

4 3574587 G A 25 12 0.24 1.07 

4 3587289 G A 28 17 0.27 1.24 

4 3653212 G A 30 11 0.24 1.00 

4 3654292 C T 25 8 0.17 1.00 

4 3671480 C T 36 12 0.32 1.00 

4 3871575 C T 25 30 0.23 1.19 

4 3963607 C T 25 13 0.21 1.09 

4 3991189 G A 28 13 0.25 1.44 

4 4030446 G A 30 12 0.24 1.13 

4 4052720 G A 30 8 0.24 1.00 

4 4066510 C T 25 8 0.23 1.00 

4 4209915 G A 36 20 0.28 1.13 

4 4229695 C T 25 10 0.23 1.10 

4 4274255 C T 36 22 0.34 1.00 

4 4274306 G A 38 22 0.35 1.09 

4 4274777 G A 25 8 0.18 1.19 

4 4283066 G A 25 9 0.18 1.00 

4 4326437 C T 38 14 0.44 1.25 

4 4362007 C T 25 10 0.21 1.00 

4 4409809 C T 30 14 0.23 1.09 

4 4409818 G A 30 14 0.24 1.10 

4 4459412 C T 25 8 0.15 1.00 

4 4559212 G A 25 11 0.22 1.04 

4 4565539 C T 25 9 0.19 1.04 

4 4678150 C T 36 9 0.27 1.00 

4 4770181 C T 25 10 0.19 1.05 

4 4958658 G A 30 9 0.25 1.00 

4 4958660 G A 30 9 0.25 1.00 

4 5105463 G A 34 12 0.27 1.27 

4 5568907 C T 36 11 0.28 1.00 

4 6210123 C T 30 11 0.24 1.00 

4 6700268 C T 36 16 0.31 1.00 

4 8347080 C T 40 12 0.46 1.00 

4 9106512 C T 36 14 0.33 1.00 

4 9390545 C T 36 15 0.33 1.00 

4 9894974 C T 40 14 0.42 1.00 

4 10158115 C T 36 13 0.29 1.00 

4 10601154 C T 40 18 0.50 1.00 
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4 10865356 C T 25 10 0.24 1.00 

4 11249251 C T 36 13 0.30 1.00 

4 12010179 C T 36 16 0.34 1.00 

4 13981827 C T 40 12 0.38 1.00 

4 14467913 C T 40 16 0.38 1.00 

4 14868086 C T 25 9 0.20 1.00 

4 15093833 C T 40 17 0.36 1.00 

4 15132107 C T 30 9 0.29 1.00 

4 17834574 G A 34 9 0.32 1.00 

5 4004237 G A 25 9 0.20 1.00 

5 4005950 C T 36 14 0.30 1.00 

5 6362038 C T 40 14 0.41 1.00 

5 6461731 C T 25 8 0.20 1.00 

5 6676861 C T 38 18 0.36 1.00 

5 7179925 C T 36 9 0.33 1.00 

5 8067959 G A 28 8 0.26 1.00 

5 8068125 C T 36 11 0.31 1.00 

5 8177879 C T 40 17 0.63 1.00 

5 8225565 C T 36 9 0.33 1.00 

5 8524929 C T 38 11 0.33 1.00 

5 8748204 C T 36 12 0.32 1.00 

5 8750589 C T 38 11 0.32 1.00 

5 9054815 C T 36 10 0.28 1.00 

5 9704823 G A 40 17 0.63 1.00 

5 9751375 G A 32 8 0.40 1.00 

5 10087331 G A 25 18 0.17 1.00 

5 10087385 G A 25 20 0.19 1.05 

5 10142959 G A 40 16 0.36 1.10 

5 10234889 C T 36 13 0.25 1.00 

5 10368670 C T 25 9 0.24 1.00 

5 10724651 G A 40 16 0.50 1.00 

5 10730334 C T 25 12 0.19 1.03 

5 10730336 G A 25 10 0.16 1.03 

5 10731992 G A 36 19 0.28 1.00 

5 10969465 C T 36 9 0.32 1.00 

5 11066800 C T 36 10 0.27 1.00 

5 11093834 C T 25 11 0.19 1.00 

5 11142826 G A 30 14 0.23 1.00 

5 11217460 G A 28 15 0.25 1.31 

5 11217696 C T 30 13 0.22 1.16 

5 11402073 G A 36 9 0.27 1.00 

5 11646111 C T 30 14 0.25 1.05 

5 11646138 C T 30 13 0.24 1.05 

5 11646174 G A 25 13 0.23 1.03 
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5 11718415 G A 32 48 0.33 1.32 

5 11729523 C T 28 42 0.26 1.61 

5 11733052 C T 25 10 0.15 1.17 

5 11768393 G A 25 12 0.18 1.03 

5 11773359 C T 25 17 0.22 1.15 

5 11774499 G A 28 24 0.28 1.72 

5 11775330 G A 36 19 0.27 1.10 

5 11776375 C T 30 9 0.22 1.18 

5 11776690 C T 38 12 0.36 1.45 

5 11778486 C T 25 11 0.15 1.19 

5 11803108 C T 25 21 0.18 1.00 

5 11803883 C T 36 14 0.25 1.00 

5 11851810 C T 25 11 0.18 1.10 

5 11973646 C T 36 12 0.29 1.08 

5 11973650 C T 36 13 0.32 1.09 

5 12009107 G A 25 12 0.19 1.11 

5 12009131 G A 34 17 0.26 1.36 

5 12010174 G A 25 21 0.23 1.02 

5 12011690 C T 25 9 0.20 1.08 

5 12041420 C T 25 11 0.22 1.10 

5 12110748 G A 28 16 0.25 1.52 

5 12133821 G A 36 13 0.30 1.06 

5 12350141 G A 28 14 0.33 1.80 

5 12359375 G A 25 12 0.23 1.00 

5 12487823 G A 25 9 0.15 1.10 

5 12633254 G A 28 16 0.28 1.51 

5 12768493 C T 34 11 0.25 1.34 

5 12768521 G A 30 10 0.24 1.18 

5 12918997 C T 34 15 0.28 1.44 

5 12918998 C T 34 15 0.28 1.44 

5 12986017 G A 25 9 0.19 1.00 

5 12986020 G A 25 9 0.19 1.00 

5 12986027 G A 25 9 0.20 1.00 

5 12986028 C T 25 9 0.19 1.00 

5 13143226 G A 38 10 0.36 1.07 

5 13226313 G A 36 17 0.29 1.06 

5 13226341 C T 36 15 0.31 1.18 

5 13226880 G A 25 11 0.20 1.00 

5 13304517 C T 25 10 0.18 1.19 

5 13304524 C T 25 10 0.17 1.16 

5 13399435 C T 25 10 0.19 1.05 

5 13406258 G A 36 22 0.31 1.18 

5 13406880 C T 25 12 0.22 1.00 

5 13406895 C T 36 12 0.25 1.08 
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5 13505301 C T 36 14 0.25 1.13 

5 13505322 G A 36 14 0.28 1.14 

5 13647781 C T 40 19 0.44 1.00 

5 15347294 C T 36 14 0.33 1.00 

5 17521625 C T 28 9 0.33 1.00 

5 17664078 C T 36 14 0.30 1.00 

5 21320859 G A 36 15 0.28 1.00 

5 22187873 C T 25 13 0.21 1.00 

5 23920865 G A 34 8 0.26 1.00 

5 24029249 C T 36 18 0.29 1.10 

5 24029259 C T 25 13 0.22 1.16 

5 24029468 C T 40 23 0.36 1.04 

5 24102801 G A 40 10 0.42 1.00 

5 24106528 C T 40 22 0.49 1.00 

5 25008363 C T 40 26 0.60 1.00 

5 26069971 G A 30 15 0.26 1.20 

5 26086756 G A 40 22 0.50 1.00 

5 26113581 G A 36 11 0.28 1.00 

5 26272128 G A 28 8 0.27 1.00 
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Table SII: List of plant genomes published till April 2013 

Organisum Year Name 

Assembled 

/ estimated 

genome 

size 

Citation 

Arabidopsis 

thaliana 
2000 Arabidopsis 119 Mb 

(Arabidopsis 

Genome 

Initiative, 2000) 

Oryza sativa L. 

ssp. japonica 
2002 Rice 420 Mb (Goff, 2002) 

Oryza sativa L. 

ssp. indica 
2002 Rice 466 Mb (Yu et al., 2002) 

Populus 

trichocarpa 
2006 Black cottonwood ~485 Mb 

(Tuskan et al., 

2006) 

Vitis vinifera 2007 Grapevine 475 Mb 
(Jaillon et al., 

2007) 

Lotus japonicus 2008 Lotus 472 Mb 
(Sato et al., 

2008) 

Carica papaya 2008 Papaya 372 Mb 
(Ming et al., 

2008) 

Physcomitrella 

patens 
2008 Physcomitrella 480 Mb 

(Rensing et al., 

2008) 

Sorghum bicolor 2009 Sorghum ~730 Mb 
(Paterson et al., 

2009) 

Cucumis sativus 2009 Cucumber 367 Mb 
(S., Huang et al., 

2009 

Zea mays 2009 Maize 2.3 Gb 
(Schnable et al., 

2009) 

Ricinus communis 2010 Castor bean ~320 Mb 
(Chan et al., 

2010) 

Malus × 

domestica 
2010 Apple 742 Mb 

(Velasco et al., 

2010) 
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Fragaria vesca 2010 Strawberry ~240 Mb 
(Shulaev et al., 

2010) 

Theobroma cacao 2010 Cacao 430 Mb 
(Argout et al., 

2011) 

Brachypodium 

distachyon 
2010 Brachypodium ~272 Mb 

(Vogel et al., 

2010) 

Glycine max 2010 Soybean ~1.1 Gb 
(Schmutz et al., 

2010) 

Glycine soja 2010 Soybean ~1.1 Gb 
(Kim et al., 

2010) 

Arabidopsis 

lyrata 
2011 Arabidopsis 207 Mb (Hu et al., 2011) 

Brassica rapa 2011 Chinese cabbage ~283 Mb 
(Wang et al., 

2011) 

Thellungiella 

parvula 
2011 Thellungiella 160 Mb 

(Dassanayake et 

al., 2011) 

Solanum 

tuberosum 
2011 Potato 844 Mb (Xu et al., 2011) 

Selaginella 

moellendorffii 
2011 Selaginella ~106 Mb 

(Banks et al., 

2011) 

Phoenix 

dactylifera 
2011 Date palm ~658 Mb 

(Al-Dous et al., 

2011) 

Cajanus cajan 2011 Pigeonpea 833 Mb 
(Varshney et al., 

2011) 

Cannabis sativa 2011 Cannabis 534 Mb 
(Bakel et al., 

2011) 

Medicago 

truncatula 
2011 Medicago 375 Mb 

(Young et al., 

2011) 

Solanum 

lycopersicum 
2012 Tomato 900 Mb 

(Consortium, 

2012) 

Linum 

usitatissimum 
2012 Flax 350 Mb 

(Z., Wang et al., 

2012) 
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Manihot 

esculenta 
2012 Cassava 770 Mb 

(Prochnik et al., 

2012) 

Triticum aestivum 2012 Wheat ~17 Gb 
(Brenchley et al., 

2012) 

Cucumis melo 2012 Melon 450 Mb 
(Garcia-Mas et 

al., 2012) 

Setaria italica 2012 Foxtail millet ~423 Mb 
(G., Zhang et al., 

2012) 

Hordeum vulgare 2012 Barley 5.1 Gb 
(Mayer et al., 

2012) 

Prunus mume 2012 Prunus mume 280 Mb 
(Q., Zhang et al., 

2012) 

Gossypium 

raimondii 
2012 Cotton ~775 Mb 

(K., Wang et al., 

2012) 

Azadirachta 

indica 
2012 Neem 364 Mb 

(Krishnan et al., 

2012) 

Thellungiella 

salsuginea 
2012 

Thellungiella 

salsuginea 
243 Mb (Wu et al., 2012) 

Musa acuminata 2012 Banana 523 Mb 
(D’Hont et al., 

2012) 

Pyrus 

bretschneideri 
2013 Pear 527 Mb (Wu et al., 2013) 

Citrullus lanatus 
2

013 
Watermelon ~425 Mb 

(Guo et al., 

2013) 

Betula nana 
2

013 
Dwarf birch ~450 Mb 

(Wang et al., 

2013) 

Hevea 

brasiliensis 

2

013 
Rubber tree ~2.15 Gb 

(Rahman et al., 

2013) 

Cicer arietinum 2013 Chickpea ~738 Mb 
(Varshney et al., 

2013) 

Triticum urartu 

(A genome) 
2013 Wheat 4.94 Gb 

(Ling et al., 

2013) 
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Phyllostachys 

heterocycla 
2013 Moso bamboo 2.05 Gb 

(Peng et al., 

2013) 

Utricularia gibba 2013 Bladderwort 82 Mb  
(Ibarra-Laclette 

et al., 2013) 

Lupinus 

angustifolius 
2013 Lupin 960 Mb 

(Książkiewicz et 

al., 2013) 

Capsella rubella 2013 Capsella rubella 135 Mb 
(Slotte et al., 

2013) 
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