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Kurzzusammenfassung 

MicroRNAs sind kleine regulatorische Moleküle, welche in Eukaryoten diverse Funktionen 

durch die Steuerung der Expression von Genen auf post-transkriptioneller Ebene in 

spezifischen Geweben ausüben. In der Fruchtfliege Drosophila melanogaster sind 238 

miRNA Gene annotiert, die nur vereinzelt funktionell charakterisiert sind. Einige miRNAs 

spielen eine Rolle in biologischen Prozessen des Alterns und stehen im direkten 

Zusammenhang mit altersmodulierenden Signaltransduktionswegen, zu denen auch der 

Insulin/IGF-ähnliche Signalweg (IIS) zählt. Ob miRNAs die phänotypischen Effekte von 

reduziertem IIS, wie Lebensverlängerung und Resistenz gegenüber Stressfaktoren, vermitteln, 

ist gänzlich unbekannt. Für eine umfangreiche Charakterisierung von miRNAs ist die 

Information über gewebespezifische Expression unerlässlich. Bei der adulten Fliege wurden 

bisher nur Ovarien untersucht und es wurde zwischen der Expression in Köpfen und ganzen 

Körpern unterschieden. In der vorliegenden Arbeit wurden erstmals spezifische miRNA-

Expressionsprofile der vier folgenden adulten Gewebe erstellt; des Gehirns,  des Thorax, des 

Darmes und des Abdomens. Des Weiteren wurden in dieser Arbeit differenziell regulierte 

miRNAs in Geweben von langlebigen Drosophila dilp2-3,5-Mutanten identifiziert und mittels 

miRNA-Überexpressionsanalysen sowie einer im Rahmen dieser Arbeit generierten miRNA-

Knockout-Mutante auf IIS-assoziierte Phänotypen funktionell untersucht. Die vorliegende 

Arbeit leistet einen wesentlichen Beitrag zur Charakterisierung von miRNAs in Drosophila 

melanogaster im Allgemeinen, liefert insbesondere eine umfangreiche Analyse identifizierter 

differenziell regulierter miRNAs in langlebigen Insulin-Mutanten und trägt so zur Aufklärung 

der dem Alterungsprozess zu Grunde liegenden biologischen Mechanismen bei.  
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Abstract 

MicroRNAs are small, regulatory molecules that execute diverse functions in eukaryotes 

through the post transcriptional control of gene expression in specific tissues. In the fruit fly 

Drosophila melanogaster 238 miRNA genes are annotated and only few have been 

functionally characterized. Some miRNAs play a role in the biological processes of aging and 

are directly linked with aging-modulating pathways, including the insulin/IGF-like signaling 

(IIS) pathway. Whether miRNAs mediate phenotypic effects of reduced IIS remains 

unknown. For a comprehensive characterization of miRNA function, information about 

tissue-specific  expression is indispensible, and so far in the adult fly is limited to ovaries and 

the analysis of heads and whole bodies. In the present study for the first time miRNA 

expression profiles from four adult tissues, namely the brain, thorax, digestive tract and 

abdomen, were generated. Furthermore, differentially expressed miRNAs in tissues of the 

long-lived Drosophila dilp2-3,5 mutant were identified and functionally characterized for IIS-

associated phenotypes, by overexpression analysis and by a miRNA knock-out mutant 

generated within the scope of this study. The present study provides fundamental information 

for the characterization of miRNA function in Drosophila in general, and supplies particularly 

an analysis of identified, differentially expressed miRNAs in long-lived insulin mutants, and 

thus contributes to the elucidation of biological mechanisms underlying the process of aging. 
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1 Introduction 

1.1 MicroRNAs 

MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that act as post-

transcriptional regulators of gene expression. Three types of small regulatory RNAs have 

been described. Short interfering RNAs (siRNAs) operate in cis by regulating the expression 

of the transcripts from which they have evolved (Katayama et al., 2005). Piwi-interacting 

RNAs (piwiRNAs) are usually expressed in germline cells and probably act as a defense 

mechanism against transposable elements and in gametogenesis (Siomi et al., 2011). MiRNAs 

act in trans by inhibiting the expression or causing the degradation of protein-coding mRNAs. 

 

1.2 MicroRNA-mediated gene silencing and origin of microRNAs 

The process of inhibiting mRNA expression by binding of complementary miRNAs or 

siRNAs is referred to as RNA interference (RNAi). Although prokaryotes have a regulatory 

system functionally analogous to RNAi (Hale et al., 2009), conventional miRNA silencing 

seems to be restricted to eukaryotes. MiRNAs are found in all multicellular eukaryotic 

organisms ranging from sponges (Grimson et al., 2008) and algae (Cock et al., 2010) to 

higher animals and plants, suggesting miRNA regulation of gene expression to be an 

evolutionary ancient mechanism. However, miRNA families are not conserved between 

plants and animals. Consistently, biogenesis (Reinhart et al., 2002), cellular localization of 

miRNA processing (Park et al., 2005; Lee et al., 2003) as well as mode of regulation (Zhang 

et al., 2007) differs between animal and plant miRNAs, suggesting that miRNAs arose 

independently in plants and animals. 

 

In plants, miRNAs probably originated by inverted duplication of protein coding genes, as the 

sequence of plant miRNAs is perfectly complementary to the sequence of their target mRNAs 

(Allen et al., 2004). In contrast, miRNAs in animals do not share high sequence similarity 

with their target genes (Nozawa et al., 2010).  However, many miRNA share sequence 

homology with transposable elements or inverted genomic repeats, suggesting that during 

evolution miRNAs may have evolved from transposable elements or inverted repeats 

(Piriyapongsa and Jordan, 2007). Within the genome miRNAs are often arranged in clusters, 

suggesting that new miRNA genes also evolved by gene duplication of already existing 

miRNAs. 
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1.3 Evolutionarily conservation of microRNAs and their mRNA targets 

Many miRNAs are highly conserved during evolution (Axtell and Bartel, 2005; Pasquinelli et 

al., 2000). However, although miRNAs can be evolutionarily conserved, their mRNA targets 

can differ between species (Chen and Rajewsky, 2006) and clade-specific changes in miRNA 

targets have been proposed to contribute to speciation and diversification of life (Grün et al., 

2005). Interestingly, the number of miRNAs present in a species is positively correlated with 

organismal complexity (Grimson et al., 2008). This finding has led to the hypothesis that  

fine-tuning of gene expression via regulation by miRNAs was necessary for the evolution of 

complex organisms (Heimberg et al., 2008). 

Although miRNA targets can change during evolution, there are several miRNAs described 

for which the mRNA targets are conserved between species. One example is the let-7 miRNA 

family. Let-7 was first described as an essential regulator of development in the nematode 

Caenorhabditis elegans and is involved in the heterochronic pathway. Heterochronic genes 

control the relative timing of events during development. Interestingly, as in C. elegans, let-7 

is both necessary and sufficient for the appropriate timing of developmental processes in the 

fruit fly Drosophila, indicating that its function as a heterochronic miRNA is evolutionarily 

conserved (Caygill and Johnston, 2008). Furthermore, targets of let-7 are conserved between 

humans and C. elegans (Chen and Rajewsky, 2006) and the expression pattern of let-7 is also 

similar between worms, flies and humans (Pasquinelli et al., 2000), suggesting that let-7 may 

regulate similar processes in these organisms. 

In general, it is suggested that conserved miRNAs are expressed at high levels and more 

broadly than non-conserved miRNAs, whereas non-conserved miRNAs often show low 

expression levels and spatial and temporal specific expression patterns (Ruby et al., 2007). 

 

1.4 Genomic arrangement of microRNAs and their control of transcription 

Consistent with the correlation of miRNA number and organismal complexity, up to now 

1872 miRNA genes are annotated in humans, 1186 in mice and 223 in C. elegans. In the 

Drosophila genome 238 miRNA genes have been identified and the number is still increasing 

(Griffiths-Jones, 2006). MiRNAs are distributed throughout the Drosophila genome and are 

located in intergenic sites, intronic sites or gene clusters (Nozawa et al., 2010) and, very 

rarely, also in exons (Berezikov et al., 2011). Approximately 50 % of Drosophila miRNAs 

are arranged in clusters with at least two or more miRNAs (Bartel, 2004). In general, 

transcription of miRNAs is regulated by their own promoter. Transcriptional regulation of 

intronic miRNAs is dependent on the orientation of the miRNA gene in relation to the protein 
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coding gene it resides in. If an intronic miRNA is arranged in antisense orientation, its 

transcription is regulated by its own promoter. In contrast, if the intronic miRNA is arranged 

in sense orientation within the protein coding gene then its transcription is more likely to be 

under the control of the promoter of the protein coding gene (Baskerville and Bartel, 2005). 

However, there are exceptions, e.g. the expression pattern of Drosophila miR-7 is distinct 

from its host gene bancal (Aboobaker et al., 2005).  

MiRNAs in gene clusters are often transcribed as entity in an operon-like manner (Ruby et al., 

2007), e.g. Drosophila mir-100, -125, and let-7 are arranged within a single cluster and were 

shown to be coup-regulated during metamorphosis. Interestingly, transcriptional regulation of 

this miRNA cluster is mediated via ecdysone and juvenile hormone. Chromosomal clustering 

of these miRNAs is evolutionarily conserved suggesting that their transcriptional regulation 

via hormones may also be conserved (Sempere et al., 2003). Transcription factors that 

regulate miRNAs expression include FOXO3a. In mammalian cells it was shown that 

FOXO3a binds to the promoter of a cluster consisting of miR-106b, miR-93, and miR-25 and 

activates its expression. Interestingly, predicted targets of miR-25 include members of the 

insulin/IGF-like signaling (IIS) pathway, suggesting that miR-25 is part of a feedback loop 

within the IIS pathway in mammals (Brett et al., 2011). Indeed, feedback loops formed by 

miRNAs and transcription factors have already been demonstrated. For example, p53 induces 

the expression of miR-34a in mammalian cells and in vivo in mice. miR-34 targets silent 

information regulator 1 (SIRT1) and SIRT1 in turn promotes p53 deacetylation and decreases 

p53 activity (Yamakuchi and Lowenstein, 2009). 

Little is known about the nature of miRNA core promoters. For in vivo analysis most studies 

define miRNA promoter regions as the genomic sequence 300-2000 bases upstream of 

miRNA genes (Martinez et al., 2008). MiRNA promoters seem to be highly similar to 

promoters of protein-coding genes (Corcoran et al., 2009). 

 

1.5 MicroRNA biogenesis pathway 

Maturation of miRNAs from a pre-miRNA transcript to the mature ~22bp long miRNA is 

controlled by the miRNA biogenesis pathway. Like protein-coding genes, miRNAs genes are 

transcribed by RNA polymerase II (Lee et al., 2004), with a few exceptions that are 

transcribed by RNA polymerase III (Borchert et al., 2006). The primary miRNA transcript 

(pri-miRNA) can be several kilobases long and can contain multiple miRNA precursors. 

Within the nucleus the pri-miRNA is recognized by Drosha, a RNase III enzyme. Together 

with the RNA binding protein DGCR8 (in Drosophila: "Pasha") Drosha cleaves the pri-
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miRNA into smaller precursor miRNAs (pre-miRNAs), which typically form stem-loop 

structures (Denli et al, 2004). The pre-miRNA is exported by Exportin-5 (Yi et al., 2003) in a 

GTP-dependent manner into the cytoplasm. There, the pre-miRNA is further cleaved by the 

RNase III enzyme Dicer (in Drosophila: "Dicer-1") (Bernstein et al., 2001). The resulting 

approximately 22 nucleotides long miRNA duplex is incorporated into the RNA induced 

silencing (RISC) complex (Hammond et al., 2000). Only one strand of the miRNA duplex is 

selected for target gene regulation while the other strand is degraded (Gregory et al., 2005). 

The final complex (miRISC) consists of the single stranded mature miRNA, Dicer, Argonaute 

(Ago) and RNA-binding proteins (in Drosophila: "loquacious"). The miRISC mediates either 

repression of translation by imperfect binding of the miRNA to the mRNA target or mRNA 

degradation by perfect complementary binding (Hutvágner and Zamore, 2002). In addition to 

cleavage by Drosha and Dicer, pri-miRNAs and pre-miRNAs can be modified by editing 

(Kawahara et al., 2007). Editing includes adenosine to inosine transitions (Kawahara et al., 

2008) or addition of nucleotides (Landgraf et al., 2007) and provides a way to regulate 

biogenesis and target specificity of miRNAs. An alternative to the canonical miRNA pathway 

is used by "mirtrons". Mirtrons are short intronic hairpins that bypass Drosha-mediated 

cleavage and enter the canonical miRNA pathway at the stage of export into the cytoplasm 

(Okamura et al., 2007). Mirtrons are a source of miRNAs and were first identified in 

Drosophila. Shortly after, it was shown that mirtrons also exist in other species including 

nematodes (Ruby et al., 2007) and mammals (Berezikov et al., 2007). 

 

1.6 MicroRNA functions in Drosophila 

The first described miRNA in Drosophila was bantam. The target of bantam is the pro-

apoptotic gene hid and it was shown, that bantam controls cell proliferation and apoptosis 

during development (Brennecke et al., 2003). Later it was shown that indeed several 

Drosophila miRNAs play roles in cell proliferation and apoptosis, including miR-2 (Leaman 

et al., 2005), miR-14 (Xu et al., 2003) and miR-278 (Nairz et al., 2006). But also muscle 

differentiation (Kwon et al., 2005), neurogenesis (Li et al., 2006), energy homeostasis 

(Teleman et al., 2006), homeotic transformation (Ronshaugen et al., 2005) and meta-

morphosis (Sempere et al., 2002) are functions that are under the control of miRNAs. 

However, assigning miRNAs to specific functions is arbitrary since one miRNA can target 

several mRNAs that play roles in different cellular functions (Lim et al., 2005). For example, 

miR-278 is not only involved in cell proliferation, but also affects energy homeostasis 

(Teleman et al., 2006). Thus, miRNAs control basic organismal functions. In doing so, 
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miRNAs are not just restricted to fine-tuning of gene expression but mutations of miRNAs 

can cause severe phenotypes. For example, loss of miR-1 causes lethality due to the 

dysfunction of muscle gene expression maintenance in flies (Kwon et al., 2005). Therefore, 

miRNAs play pivotal roles in Drosophila. 

 

1.7 MicroRNAs and aging 

MiRNAs have been implicated in the regulation of age-related diseases as well as the aging 

process itself. For example, miRNAs are differentially expressed in age-associated diseases 

like Alzheimer’s Disease (Zovoilis et al., 2011) or cancer and the expression profile of 

miRNAs is changed in tumor cells (Munker and Calin, 2011). The tumor suppressor p53 is 

known to impact aging and lifespan in worms (Derry et al., 2001), flies (Lee et al., 2003; 

Bauer et al., 2005) and mice (Lavigueur et al., 1989; Chin et al., 1999). miR-29 is expressed 

in response to DNA damage in a p53-dependent manner and is up-regulated in a mouse model 

of progeria as well as during normal aging (Ugalde et al., 2011). Indeed, in mice miRNAs 

have been suggested to be biomarkers for aging. miR-34a level increases with age while the 

level of its target SIRT1 decreases. As changes in miR-34 levels can be measured in blood, 

miR-34a expression levels are a potential biomarker for the aging process (Li et al., 2011). In 

the worm C. elegans the expression of certain miRNAs is regulated in an age-dependent 

manner (Pincus et al., 2011). Furthermore, the single miRNA lin-4 has been shown to be able 

to modulate lifespan in worms. Overexpression of lin-4 increases lifespan and its reduction 

shortens lifespan (Boehm and Slack, 2005). Since then, several other miRNAs have been 

identified that modulate lifespan in worms, including miR-71 and miR-239 (de Lencastre et 

al., 2010). Recently, also in Drosophila it has been shown that a single miRNA can regulate 

survival, since mild overexpression of miR-34 extends lifespan and mitigates induced 

neurodegeneration (Liu et al., 2012). 

 

1.8 The IIS pathway extends lifespan in diverse organisms 

The IIS pathway is an evolutionarily conserved, nutrient-responsive pathway that coordinates 

metabolic homeostasis, growth, development, stress resistance and reproduction (Broughton 

and Partridge, 2009; Toivonen and Partridge, 2009). Interestingly, decreased IIS has been 

shown to extend lifespan in organisms as diverse as worms (Kenyon et al., 1993; Lin et al., 

2001), flies (Tatar et al., 2001; Giannakou et al., 2004) and mice (Holzenberger et al., 2003; 

Selman et al., 2008). Moreover, in humans there is a correlation between longevity and 

certain alleles of the IIS downstream transcription factor FOXO3A, suggesting a conserved 
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role of IIS signaling in lifespan extension including humans (Willcox et al, 2008; Flachsbart 

et al., 2009). 

 

In the fruit fly Drosophila melanogaster several intracellular components of the IIS pathway 

have been implicated in the control of lifespan. Flies carrying hypomorphic mutations of the 

insulin receptor (InR) or mutants for the insulin receptor substrate CHICO have greatly 

extended lifespan (Tatar et al., 2001, Clancy et al., 2001). The adaptor protein Link (LNK) 

functions in parallel to CHICO (Werz et al., 2009) and Lnk mutant flies as well are long-lived 

(Slack et al., 2010). Furthermore, adult-specific overexpression of the downstream 

transcription factor dFOXO or the Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase 

(PTEN) in the fat body is sufficient to increase lifespan (Giannakou et al., 2004; Hwangbo et 

al., 2004). dFOXO has been shown to be a key downstream factor mediating the lifespan 

response to reduced IIS, since loss of dFOXO abolishes the lifespan extension of flies with 

ablated median neurosecretory cells (mNSCs) and flies expressing a dominant negative 

version of the InR (InR
DN

) (Slack et al., 2011).  

 

In addition to the intracellular IIS components, the ligands of IIS have also been implicated in 

lifespan control in flies. The Drosophila genome encodes seven insulin-like peptides (DILP1-

7). Three of the DILPs, DILP2, DILP3 and DILP5 are expressed in the mNSCs of the fly 

brain and genetic ablation of mNSCs causes increased lifespan (Broughton et al., 2005). 

Furthermore, the combined knock-out of DILP 2, 3 and 5 (dilp2-3,5 mutants) also results in 

lifespan extension. dilp2-3,5 triple mutants are not only long-lived but also show other 

characteristic phenotypes linked to reduced IIS including developmental delay, reduced body 

weight, reduced fecundity, altered metabolic homeostasis and resistance to oxidative stress 

(Grönke et al., 2010). Currently, the mechanisms why these mutants are so long-lived are not 

well understood, neither is it known whether miRNAs are involved in the regulation of 

lifespan extension or other phenotypes associated with reduced IIS. 

 

1.9 MicroRNAs regulate the activity of the IIS pathway 

There is evidence that miRNAs are involved in the regulation of IIS pathway activity. Insulin 

synthesis and secretion are both modulated by miRNAs in Drosophila. It was shown that 

miR-278 targets the mRNA of expanded, while expanded promotes dILP expression. miR-278 

mutant flies have elevated insulin production due to elevated expanded mRNA. Thus       

miR-278 controls insulin levels in flies (Teleman et al., 2006). Insulin levels are also 
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regulated by miRNAs in mammals (Poy et al., 2004, Sun et al., 2010; Melkman-Zehavi et al., 

2011). Additionally, miRNAs directly target components of the IIS pathway. Insulin-like 

growth factor 1 (IGF-1) is modulated by miRNAs in human cells (Shan et al., 2009;            

Elia et al., 2009) and in rats (Wang et al., 2009). IGF-2 (Ge et al., 2011), IGF-1 receptor, S6 

kinase (S6K) (McKinsey et al., 2011), insulin receptor substrate 1 (IRS-1) (La Rocca et al., 

2009; Karolina et al., 2011) and IRS-2 (Dávalos et al., 2011) are targeted by miRNAs in 

mammalian cells. 

 

1.10 MicroRNAs and the regulation of IIS dependent lifespan extension 

Evidence exist that miRNAs regulate IIS-dependent lifespan extension. Flies mutant for   

miR-14 are obese, have reduced insulin levels and are sensitive to starvation. miR-14 acts in 

the mNSCs by targeting the transcription factor sugarbabe, which in turn controls DILP levels 

(Varghese et al., 2010). Interestingly, miR-14 mutant flies have a reduced lifespan under 

thermal stress (Xu et al., 2003). If this is true under normal thermal conditions was not shown. 

Interestingly, in worms several miRNAs have been identified that regulate lifespan by 

modulating activity of the IIS pathway. Overexpression of lin-4 results in long-lived worms. 

The target of lin-4 is lin-14, which acts in parallel or upstream of the IIS receptor DAF-2 

(Boehm and Slack, 2005). In addition, overexpression of miR-71 increases lifespan in worms 

while overexpression of miR-239 decreases lifespan. This effect on lifespan could be 

modified by RNAi against the IIS components DAF-2 and DAF-16, suggesting that miR-71 

and miR-239 act in the IIS pathway to modulate lifespan (Pincus et al., 2011; de Lencastre    

et al., 2010). Thus, there is evidence for a crucial role of miRNAs in IIS-mediated regulation 

of lifespan in worms. However, it is currently unknown whether IIS-mediated lifespan 

extension is controlled by miRNAs in other species nor it is known whether miRNA 

expression is changed in long-lived IIS Drosophila mutants. 
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1.11 Aims of the project 

Aim 1: Generation of a Drosophila miRNA expression atlas 

For the characterization of miRNAs, information about their spatial expression is 

indispensible. So far for adult Drosophila tissues only data for heads, whole bodies and 

ovaries exist. In this study, microarrays and next-generation sequencing were used to generate 

comprehensive miRNA expression profiles of adult Drosophila tissues including brain, 

thorax, digestive tract, and abdomen.  

 

Aim 2: Identification of differentially expressed microRNAs in tissues of a long-lived 

Drosophila IIS mutant 

Whether miRNA expression is differentially regulated in IIS mutants is not known. In order to 

identify differentially expressed miRNAs in long-lived IIS mutants, next generation 

sequencing and microarrays were used to compare miRNA expression between adult tissues 

of wild type flies and long-lived dilp2-3,5 mutants.  

 

Aim 3: Functional in vivo analysis of differentially expressed microRNAs 

In order to analyze the role of miRNAs in IIS-associated phenotypes, differentially expressed 

miRNAs were functionally characterized in vivo using overexpression and knock-out fly 

lines. For one selected candidate miRNA a null mutant was generated by homologous 

recombination. To further dissect the role of miRNAs in different tissues, miRNAs were 

overexpressed tissue-specifically and analyzed for IIS-associated phenotypes. 

 

Aim 4: Comparison of microarray data with next-generation sequencing data 

Microarray and next-generation sequencing are two techniques which are used to study 

miRNA expression. Both techniques were compared for performance in the detection of 

absolute and differential expression as well as for the detection of tissue-specificity.   
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2 Results 

The downstream mechanisms of IIS related phenotypes including lifespan extension and 

stress resistance are still elusive and it is not known whether miRNAs may be involved in the 

regulation of these phenotypes. In order to investigate whether miRNAs are differentially 

expressed in tissues of long-lived Drosophila IIS mutants I used microarrays and next 

generation sequencing to compare miRNA expression profiles of wild type control flies with 

long-lived dilp2-3,5 mutant flies. Therefore, I collected brain, midgut, abdominal fat and 

muscle tissue from the thorax of 10 day old wild type control and dilp2-3,5 mutant flies 

(Figure 2.1).  

 

Figure 2.1: Project outline for the identification of differentially expressed miRNAs in tissues of adult 
Drosophila IIS mutants. 10 day old wild type and dilp2-3,5 flies were dissected, RNA was extracted 
and used for microarrays and next generation sequencing, respectively. 
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2.1 Tissue-specific microRNA expression profiling using microarrays 

2.1.1 Pre-test - Identification of differentially expressed microRNAs in thoraces of   

xdilp2-3,5 mutants 

In order to establish purification conditions for Drosophila miRNAs and to test whether 

miRNAs are differentially expressed in long-lived IIS mutants, I did a pre-test using thoraces 

of dilp2-3,5 mutants. Microarrays were used for the detection of miRNAs, because they are 

cost effective and allow fast high throughput analysis of miRNAs. For the pre-test we used 

the Affymetrix GeneChip for miRNAs 1.0, which contained probe sets for 152 mature 

Drosophila miRNAs.  

28 miRNAs were significantly changed in expression between dilp2-3,5 mutants and controls 

(summarized in Table 1). Interestingly, most differentially regulated miRNAs were up-

regulated (>80 %). However, most miRNAs showed only minor expression changes, but 14 

miRNAs had a fold change of more than 1.5 or below 0.5, respectively. mir-986-5p was the 

strongest regulated miRNA with a fold change of more than 14. Since I was able to 

successfully identify differentially expressed miRNA with this protocol, I extended the 

analysis to further tissues in order to ask whether the observed expression changes were 

specific to the thorax or a general miRNA response in all tissues.   

Thorax (Pre-test) 

miRNA Mean wt Mean dilp2-3,5 FC p-value p-value (adjusted) 
miR-980-3p 1506.10 819.86 0.54 0.002 0.04 
miR-274-5p 19618.64 14535.94 0.74 0.003 0.04 
miR-305-5p 11599.09 9390.98 0.81 0.01 0.07 
miR-998-3p 1001.22 816.01 0.82 0.04 0.23 
miR-263a-3p 29387.56 26889.01 0.91 0.01 0.06 
miR-124-3p 7590.66 8869.21 1.17 0.04 0.23 
miR-995-3p 4504.08 5352.13 1.19 0.02 0.12 
miR-304-5p 2.86 3.68 1.29 0.001 0.04 
miR-133-3p 2395.58 3088.96 1.29 0.02 0.12 
miR-932-5p 668.50 897.49 1.34 0.003 0.04 
miR-7-5p 129.24 174.14 1.35 0.01 0.08 
miR-957-3p 4769.43 6803.66 1.43 6.6 x 10-5 0.01 
miR-10-3p 249.48 358.31 1.44 0.003 0.04 
miR-307-3p 117.23 168.39 1.44 0.04 0.23 
miR-1017-3p 448.85 662.38 1.48 0.002 0.04 
miR-972-3p 2.88 4.36 1.52 0.02 0.15 
miR-1000-5p 342.44 534.47 1.56 0.01 0.07 
miR-1004-3p 296.16 463.78 1.57 0.003 0.04 
miR-999-3p 101.00 162.49 1.61 0.05 0.26 
miR-1001-5p 140.07 233.20 1.66 0.0001 0.01 
miR-981-3p 212.30 394.25 1.86 0.02 0.15 
miR-987-5p 70.54 138.56 1.96 0.001 0.04 
miR-989-3p 41.22 85.56 2.08 0.04 0.23 
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miR-87-3p 11.35 23.83 2.10 0.01 0.10 
miR-13a-3p 18.32 46.02 2.51 0.005 0.06 
miR-210-3p 1187.92 3110.32 2.62 0.03 0.18 
miR-954-5p 194.93 627.01 3.22 0.01 0.07 
miR-986-5p 36.64 525.31 14.34 0.001 0.04 
Table 1: Differentially expressed miRNAs detected in mechanically separated dilp2-3,5 thoraces used 
for the pre-test by microarray. Mean represents miRNA expression in three independent replicates 
each genotype. p-values are calculated by Student's t-test and adjusted by Benjamini-Hochberg 
procedure. FC, fold change; wt, wild type 
 

2.1.2 Drosophila tissues have characteristic microRNA expression profiles  

Based on the results from the pre-test, the miRNA microarray analysis was extended to three 

more tissues, namely the brain, the digestive tract and the abdomen. Furthermore, the analysis 

for the thorax was repeated. In contrast to the pre-test, thoraces for this experiment were 

manually dissected and thus exclude gut tissue (for dissection details see chapter 4.14). Three 

replicates were used per tissue. In addition, I used a newer generation of miRNA microarrays 

(Affymetrix GeneChip for miRNAs 2.0), which contained probe sets for 186 mature 

Drosophila miRNAs.  
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Figure 2.2: Comparisons of microarray tissue profiles. Pearson correlation coefficient for all pairwise 
comparisons was computed and the values are depicted color-coded. Samples from the same tissue 
cluster indicating high quality of tissue preparation and tissue-specific miRNA expression.   

 

In order to discover whether miRNAs are expressed in a tissue-specific manner and to verify 

reproducibility between tissue preparations, I tested the correlation of miRNA expression 

profiles by Pearson analysis. The Pearson coefficient gives information about the similarity in 

a pairwise miRNA profile comparison. Indeed, correlation coefficients between microarrays 

of the same tissue showed clustering indicating that each tissue had a unique miRNA 

expression profile and that tissue preparation was consistent between replicates (Figure 2.2).  

2.1.3 Identification of tissue-specific microRNAs by microarray  

Each tissue is characterized by a specific miRNA expression profile as discovered by Pearson 

correlation. In order to identify tissue-specific and ubiquitously expressed miRNAs, we 

qualitatively evaluated tissue specificity of single miRNAs by a tissue specificity score 

(Landgraf  et al., 2007). The calculation of the score is based on quantification of information, 

based on the information-theoretic concept of Claude Elwood Shannon (Shannon,  1948). It 

takes into account the distribution of the cloning frequencies in each tissue. The tissue-

specificity score is dependent on the number of tissues and varies between 0, when the 

expression of a miRNA is evenly distributed across tissues, and 2 when a miRNA is highly 

specific for a given tissue (Landgraf  et al., 2007). MiRNAs with expression under the 

detection threshold were filtered out in the analysis. We identified miRNAs whose expression 

is evenly distributed across tissues, such as miR-317-3p and miR-276a-3p (Figure 2.3). 

However, many miRNAs were expressed in a tissue-specific manner. Interestingly, most 

tissue-specific miRNAs were expressed in the brain, including miR-981-3p and miR-990-5p. 

We also found miRNAs specific for abdomen, like miR-2494-5p and miR-1015-3p, and 

miRNAs specific for digestive tract, like miR-314-3p and miR-956-3p. Only few miRNAs 

were specific for the thorax, like miR-993-3p. 
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Figure 2.3: Tissue specificity of miRNA expression as detected by microarray analysis in wild type 
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flies. The total length of each bar represents the tissue specificity and the relative length for each of 
the tissues are proportional to miRNA expression in a given tissue type relative to all tissue types. 
Only miRNAs with an expression value of 15 or greater were included in the analysis. 

 

2.1.4 Evolutionary conservation of microRNAs does not correlate with expression level 

as detected by microarray 

In diverse species including Drosophila it was shown that evolutionarily conserved miRNAs 

normally have higher expression levels than non-conserved miRNAs (Ruby et al., 2006; Ruby 

et al., 2007; Bartel, 2004). In order to examine whether highly evolutionarily conserved 

miRNAs are stronger expressed than less conserved miRNAs in our microarray study, I 

compared the phylogenetic conservation of miRNAs with their expression level. miRNAs 

were ranked in five classes according to the degree of evolutionary conservation. I 

distinguished between miRNAs that were found to be unique for Drosophila melanogaster, or 

conserved in Drosophilidae, insects, Ecdysozoa and Bilateria. To assign a miRNA to a 

conservation class, I searched for miRNA family members in other species as annotated on 

miRBase and examined the phylogenetic relation to D. melanogaster. In contrast to the 

previous studies, with a Pearson correlation coefficient of 0.03 I found no correlation between 

expression level and evolutionary conservation in our microarray data set (Figure 2.4 A).  

2.1.5 Expression level as detected by microarray does not correlate with tissue specificity 

Previous studies have suggested that miRNAs that are highly evolutionarily conserved tend to 

be ubiquitously expressed, while non-conserved miRNAs are expressed in a tissue-specific 

manner (Ruby et al., 2007). To analyze whether a similar trend was present in our microarray 

data set, I analyzed the correlation between evolutionary conservation and tissue specificity. 

Among tissue-specifically expressed miRNAs we found conserved as well as non conserved 

miRNAs (Figure 2.4 B). Expression of conserved miRNAs as well as non-conserved miRNAs 

was also found to be evenly distributed across tissues. Thus, with a Pearson correlation 

coefficient of -0.14, no correlation between degree of conservation and breadth of expression 

was found in adult tissues of Drosophila as detected by microarray. 
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Figure 2.4: Correlation of evolutionary conservation and tissue specificity or absolute expression of 
miRNAs, respectively. For both comparisons no correlation was observed. (A) Relationship between 
absolute expression and evolutionary conservation of miRNAs. (B) Relationship between tissue 
specificity and evolutionary conservation of miRNA expression as detected by microarray analysis.  
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2.1.6 Identification of differentially expressed microRNAs in four tissues of              

 dilp2-3,5 mutants 

In order to identify differentially expressed miRNAs in dilp2-3,5 tissues, the expression of 

single miRNAs was compared with the expression in wild type tissues. Differentially 

expressed miRNAs were detected in all tissues (Table 2-5). When assessed by row wise t-test, 

in the brain 6 miRNAs were significantly down-regulated and 5 were up-regulated. 2 

miRNAs were found to be down-regulated in the thorax and 11 were found to be up-

regulated. In the digestive tract of dilp2-3,5 flies 7 miRNAs were down-regulated while 4 

were up-regulated. In the abdomen 4 miRNAs were down-regulated and also 4 miRNAs were 

up-regulated. In total, 40 miRNAs were found to be differentially expressed in dilp2-3,5 

mutant flies. 7 miRNAs had a fold change over 1.5 or under 0.5, respectively. mir-986-5p had 

the highest fold change with 3.26 in the thorax. The strongest down-regulated miRNA was 

miR-2500-5p in the brain. Most miRNAs had a moderate fold change and were regulated 

tissue-specifically, however miRNAs like miR-986-5p and miR-978-3p were differentially 

regulated in more than one tissue. Some miRNAs like miR-285-3p or miR-1000-5p were 

down-regulated in one tissue, but up-regulated in other tissues, suggesting complex tissue-

specific miRNA regulation in response to reduced insulin signaling. However, a table-wide 

statistical test could not confirm significance for differential expression. 

Brain 

miRNA Mean wt Mean dilp2-3,5 FC p-value p-value (adjusted) 
dme-miR-2500-5p 77.83 39.54 0.51 0.00 0.19 
dme-miR-285-3p 32.87 20.41 0.62 0.02 0.52 
dme-miR-998-3p 1751.55 1142.64 0.65 0.02 0.52 
dme-miR-1014-3p 19.48 14.46 0.74 0.01 0.52 
dme-miR-2497-5p 14.96 11.86 0.79 0.01 0.52 
dme-miR-308-3p 18.98 16.41 0.87 0.05 0.78 
dme-let-7-5p 8804.45 10297.69 1.17 0.05 0.78 
dme-miR-9b-5p 13.44 18.25 1.36 0.02 0.52 
dme-miR-960-5p 13.82 18.78 1.36 0.01 0.52 
dme-miR-10-3p 1535.48 2109.08 1.37 0.04 0.78 
dme-miR-986-5p 59.28 141.32 2.38 0.02 0.52 
 
Table 2: Differentially expressed miRNAs in dilp2-3,5 brains as detected by microarray. Mean 
represents miRNA expression in three independent replicates of each genotype. P-values are 
calculated by Student's t-test and adjusted by Benjamini-Hochberg procedure. FC, fold change; wt, 
wild type 
 

Thorax 

miRNA Mean wt Mean dilp2-3,5 FC p-value p-value (adjusted) 
dme-miR-992-3p 17.52 13.34 0.76 0.05 0.44 
dme-miR-307b-5p 19.60 15.75 0.80 0.05 0.44 
dme-miR-276a-3p 36760.54 39592.58 1.08 0.05 0.44 
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dme-miR-2501-3p 16.24 18.12 1.12 0.03 0.44 
dme-miR-303-5p 18.17 22.50 1.24 0.02 0.44 
dme-miR-4-3p 14.98 18.72 1.25 0.01 0.44 
dme-miR-985-3p 16.77 22.34 1.33 0.04 0.44 
dme-miR-3-3p 42.06 59.84 1.42 0.03 0.44 
dme-miR-263b-3p 11030.76 15713.83 1.42 0.04 0.44 
dme-miR-1000-5p 224.59 332.69 1.48 0.04 0.44 
dme-miR-210-3p 659.88 1292.84 1.96 0.00 0.44 
dme-miR-954-5p 122.38 240.41 1.96 0.03 0.44 
dme-miR-986-5p 92.04 300.04 3.26 0.00 0.35 
 
Table 3: Differentially expressed miRNAs in dilp2-3,5 thoraces as detected by microarray. Mean 
represents miRNA expression in three independent replicates of each genotype. P-values are 
calculated by Student's t-test and adjusted by Benjamini-Hochberg procedure. miRNAs that were 
detected as differentially regulated in the pre-test are highlighted in bold. FC, fold change; wt, wild 
type 
 

Digestive tract 

miRNA Mean wt Mean dilp2-3,5 FC p-value p-value (adjusted) 
dme-miR-2494-5p 17.14 12.40 0.72 0.05 0.66 
dme-miR-12-5p 9301.95 6747.07 0.73 0.03 0.66 
dme-miR-1012-3p 35.93 27.56 0.77 0.02 0.66 
dme-miR-985-3p 24.38 20.20 0.83 0.02 0.66 
dme-miR-1004-3p 20.63 17.38 0.84 0.01 0.66 
dme-miR-1000-5p 16.75 14.15 0.84 0.03 0.66 
dme-miR-309-3p 15.88 13.81 0.87 0.05 0.66 
dme-miR-1011-3p 12.77 14.35 1.12 0.02 0.66 
dme-miR-927-5p 13.19 15.04 1.14 0.04 0.66 
dme-miR-978-3p 11.96 14.46 1.21 0.01 0.66 
dme-miR-2280-3p 13.98 17.88 1.28 0.05 0.66 
 
Table 4: Differentially expressed miRNAs in dilp2-3,5 digestive tracts as detected by microarray. 
Mean represents miRNA expression in three independent replicates of each genotype. p-values are 
calculated by Student's t-test and adjusted by Benjamini-Hochberg procedure. FC, fold change; wt, 
wild type 
 

Abdomen 
miRNA Mean wt Mean dilp2-3,5 FC p-value p-value (adjusted) 
dme-miR-308-3p 19.34 14.74 0.76 0.05 0.90 
dme-miR-iab-4-3p 16.76 13.33 0.80 0.01 0.75 
dme-miR-14-3p 17.15 13.81 0.81 0.00 0.75 
dme-miR-274-5p 27157.96 23190.94 0.85 0.01 0.75 
dme-miR-1004-3p 15.39 18.14 1.18 0.03 0.90 
dme-miR-1009-3p 14.99 18.46 1.23 0.02 0.75 
dme-miR-285-3p 15.19 23.84 1.57 0.04 0.90 
dme-miR-978-3p 15.57 41.03 2.64 0.03 0.90 
 
Table 5: Differentially expressed miRNAs in dilp2-3,5 abdomen as detected by microarray. Mean 
represents miRNA expression in three independent replicates of each genotype. p-values are 
calculated by Student's t-test and adjusted by Benjamini-Hochberg procedure. FC, fold change; wt, 
wild type 
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2.1.7 MicroRNA expression in the thorax as detected by microarray is reproducible  

 2.1.7.1 Verification of differentially expressed microRNAs in independent thorax 

   samples 

To assess whether data are reproducible between independent sample preparations, results 

from manually dissected thoraces were compared with the results of the pre-test where 

mechanically dissected thoraces were used. Only miRNAs with probe sets on both chips were 

analyzed. Consistent with the observation from the pre-test that most differentially expressed 

miRNAs were up-regulated in the thorax, in manually dissected thoraces only two miRNAs 

were down-regulated and 11 miRNAs were up-regulated (Table 3). In comparison with the 

pre-test, we detected less miRNAs to be significantly differentially expressed in the thorax 

with the new chips. Due to technical problems with these chips, two of three replicates for      

dilp2-3,5 thoraces had to be hybridized for a second time with the same RNA. To check 

whether the second hybridization influences miRNA profiles, we analyzed correlation of the 

chips by Pearson. Indeed, profiles from chips which were hybridized twice were most distinct 

from the other profiles (Figure 2.5 A).  

To test whether this technical variation affected the identification of differentially expressed 

miRNAs, we used Pearson correlation to compare detected fold changes of the pre-test and 

the manually dissected thoraces. The fold change profiles had a relative low Pearson 

correlation index of 0.36 (Figure 2.5 B). However, miRNAs which were significantly 

differentially expressed, were to a large extend congruent between the two chips (Table 3) 

Thus, the second hybridization did affect the sensitivity of detection of fold changes of 

miRNAs, but it had minor effects on the identity of differentially expressed miRNAs. 

Therefore, thorax miRNA expression data are consistent and reproducible between 

independent sample preparations and additionally, between different types of microarray.  
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Figure 2.5: Comparison of thorax profiles of microarray 1.0 (pre-test) and microarray 2.0. (A) Absolute 
expression profiles. Pearson correlation coefficient for all pairwise comparisons was computed and 
the values are depicted color-coded. Only miRNAs with probe sets on both chips are analyzed. 
Samples from the same chip-type cluster. Chips that were hybridized twice due to technical reasons 
are marked with asterisks. Notably, profiles from chips that were hybridized for a second time, show 
strong clustering and were most distinguishable from other profiles. (B) Comparison of fold change 
data as detected by microarrays 1.0 (pre-test) and microarrays 2.0. Pearson correlation coefficient of 
fold change data was computed and revealed low correlation. FC, fold change; wt, wild type. 
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 2.1.7.2 Verification of differentially expressed microRNAs by quantitative       

     RT-PCR 

In order to verify the results from the microarray analysis, expression of selected miRNAs 

was tested by quantitative Real-time-PCR (q-RT-PCR). Due to limited availability of 

dissected tissue, the same RNA samples that were used for microarray experiments were also 

used for the qRT-PCR analysis.  

Upregulation of miR-986-5p and downregulation of 2500-5p in the brain was confirmed by 

qRT-PCR (Figure 2.6 A). In contrast, downregulation of miR-285-3p as measured by 

microarray, could not be confirmed by qRT-PCR. miR-986-5p, miR-210-3p and miR-1000-5p 

were all up-regulated by microarray analysis in the thorax. Although upregulation did not 

reach significance, similar tendencies were observed in the qRT-PCR analysis (Figure 2.6 B).  

Additionally, differential expression of miR-2500-5p, which was significantly down-regulated 

in the brain, was tested in the thorax. By microarray miR-2500-5p showed a non-significant 

tendency to be down-regulated. However, qRT-PCR revealed a significant down-regulation in 

this tissue. Because we could verify differential expression of selected miRNAs in the brain 

and in the thorax, we tested whether those miRNAs were also differentially expressed in 

digestive tract and abdomen. By microarray, miR-210-3p, miR-285-3p, miR-986-5p and  

miR-2500-5p tended to be differentially expressed in the digestive tract (Figure 2.6 C). This 

tendency was reproduced by qRT-PCR. In the abdomen upregulation of miR-285-3p by 

microarray was observed. By qRT-PCR a tendency of upregulation of miR-285-3p was 

confirmed, although this was not significant (Figure 2.6 D). Microarrays could not detect 

differential expression of miR-210-3p in the abdomen and this was confirmed by qRT-PCR. 

However, miR-986-5p, which had a tendency of up-regulation by microarray was confirmed 

to be up-regulated significantly by qRT-PCR. miR-2500-5p expression was not changed as 

detected by microarray. However, qRT-PCR revealed that it is down-regulated by trend in the 

abdomen, like in every other tissue analyzed.  
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Figure 2.6: qRT-PCR analysis verifies differential expression of most miRNAs in dilp2-3,5 tissues as 
detected by microarrays. Fold change in (A) brain, (B) thorax, (C) digestive tract and (D) abdomen 
from microarray and qRT-PCR analysis are compared. * p<0.05; ** p<0.01,Student's t-test for qRT-
PCR, Benjamini-Hochberg for microarray data. miRNA transcript level was normalized to wild type 
samples, which by default was set to 1. 

 

Taken together, miRNAs are tissue-specifically expressed in Drosophila. Tissue-specificity or 

expression level did not correlate with evolutionary conservation, when assessed by 

microarray. Differentially expressed miRNAs in dilp2-3,5 mutants were found by microarray. 

By qRT-PCR differential expression for most miRNAs was confirmed. Interestingly, 

differentially expressed miRNAs, such as miR-2500-5p and miR-986-5p, which by 

microarray were found to be differentially expressed in brain and thorax, were also regulated 

in digestive tract and abdomen of dilp2-3,5 flies. These results suggest that the sensitivity of 

microarrays may be limiting for some miRNAs to detect differential expression and 

demonstrates that verification by qRT-PCR is essential to conclude about tissue-specific 

regulation. 

 

 

 

 



Results 
 

22 
 

2.2 Functional in vivo characterization of differentially expressed microRNAs  

By microarray, differentially expressed miRNAs were identified. These miRNAs might 

execute functions that mediate phenotypes observed for dilp2-3,5 flies such as lifespan 

extension, reduced organismal growth, reduced fecundity and increased development time. 

MiRNAs with significant expression fold change of >1.5 or <0.5 were selected to analyze 

their role in IIS related phenotypes (Fig. 2.7 A). These included miR-986, miR-210, miR-954, 

miR-285 and miR-978. Although, miR-7 did not match the selection criteria, it was included 

in the analysis to represent a differentially expressed miRNA in the digestive tract. 

Additionally, miR-2500 was added to the analysis because of a consistent and reproducible 

down-regulation in every tissue also in other Drosophila IIS mutants and under different food 

conditions (Supplemental Figure S1). 

 
Figure 2.7: Overexpression of candidate miRNAs is achieved by the Gal4/UAS system.                 
(A) Candidate miRNAs as detected by microarray in dilp2-3,5 tissues of Drosophila melanogaster. 
Shown are miRNAs with a significant expression fold change of more than 1.5 or less than 0.5 in 
comparison to wild type tissues with p<0.05, Student's t-test. (B) The Gal4/UAS system for miRNAs 
in Drosophila melanogaster. In flies generated by the cross of a driver-line to an UAS-line, Gal4 is 
expressed in a promoter-dependent manner and can activate transcription of the miRNA by binding 
to upstream activation sites (UAS). (C) Transgene construct used to generate UAS lines. 
Transgenic flies contain 500 bp of the genomic region of the miRNA precursor under the control of 
the hsp70 TATA UAS (5x). The construct also includes DsRed2 and a SV40 polyadenylation 
(polyA) signal. UAS-lines were kindly provided by Dr. Eric Lai. 
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To study their function, candidate miRNAs were overexpressed in vivo using the Gal4/UAS 

system (Figure 2.7 B). For each miRNA UAS-overexpression lines were kindly provided by 

Dr. Eric Lai from the Sloan Ketterin Institute, New York. The inserted overexpression 

transgene included approximately 500 bp of the genomic region including the miRNA 

precursor cloned into a vector containing the hsp70 promoter with 5 UAS sites and DsRed for 

visualization of overexpression (Figure 2.7 C). 

2.2.1 Organismal growth and development time of flies overexpressing microRNAs 

dilp2-3,5 mutants have a reduced body weight due to decreased organismal growth and a 

severely increased development time (Grönke et al., 2010). In order to investigate a putative 

role of the candidate miRNAs in the regulation of body size and developmental timing, body 

weight and egg to adult development time of flies with ubiquitous overexpression of miRNAs 

during development were determined. Overexpression of miR-2500 and miR-954 did not 

affect body weight (Figure 2.10 A) nor development time (Figure 2.10 B), suggesting that 

those miRNAs do not play an important role during development. Overexpression of miR-986 

also had no effect on body weight, but these flies were slightly developmental delayed. The 

delay of male flies was stronger than of female flies, suggesting that miR-986 might regulate 

development time in a gender-specific manner.    
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Figure 2.8: Body weight and development time of flies overexpressing miR-986, miR-2500 or miR-
954. (A) Body weight of flies overexpressing miR-986, miR-2500 or miR-954 was not changed in 
both sexes. Flies were measured in pairs, therefore results reflect the mean body weight of two 
flies. n=20 flies per genotype and sex. (B) Overexpression of miR-986, but not miR-2500 or miR-
954 did increase development time in both sexes. 
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2.2.2 Lifespan and fecundity of strongly ubiquitously overexpressed microRNAs  

In order to analyze whether selected candidate miRNAs might play a role in lifespan 

regulation, these miRNAs were overexpressed and lifespan of overexpressing flies was 

measured. For overexpression we used the constitutive tubulin-Gal4 driver line, which drives 

strong ubiquitous expression both during development and adulthood. Overexpression of 

miR-978 and miR-7 caused embryonic lethality, suggesting toxic effects during development. 

To bypass developmental lethality, both miRNAs were overexpressed using an inducible 

tubulin-GeneSwitch (tubulinGS) driver, which allows expression to be restricted to adulthood 

(Osterwalder et al., 2001). Degree of induced overexpression was measured by qRT-PCR. 

Overexpression of miR-285 was not detected; therefore miR-285 was excluded from further 

analysis (Supplemental Figure S2). In all other tested miRNA lines, strong overexpression 

ranging from 26.71- to 791.24-fold was detected (Figures 2.9 and 2.10). Adult-specific 

overexpression of miR-978 and miR-7 resulted in a severe reduction of median lifespan by 

22.14 % (Figure 2.10 A) and 71.43 % (Figure 2.10 B), respectively. This reduction in adult 

lifespan is consistent with their detrimental role upon overexpression during development. 

Overexpression of miR-986 and miR-954 caused moderate but significant reduction in 

lifespan (Figure 2.9 A, C) while overexpression of miR-2500 did not significantly affect 

lifespan compared to controls (Figure 2.9 B). 

In order to analyze the role of selected miRNAs in the regulation of fecundity, egg production 

of miRNA overexpressing flies was measured. Adult-specific overexpression of miR-978 

(Figure 2.10 A) and miR-7 (Figure 2.10 B) resulted in severe reduction in fecundity. In 

contrast, egg production of flies overexpressing miR-986, was only slightly reduced (Figure 

2.9 A) and fecundity of miR-2500 or miR-954 overexpressing flies was not changed 

compared to controls (Figure 2.9 B, C).  

In summary, tubulin-Gal4/GS mediated overexpression of miRNAs negatively affected 

lifespan and fecundity, suggesting that strong ubiquitous overexpression of the selected 

miRNAs is detrimental for fly health.  
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Figure 2.9: Expression level, lifespan and fecundity of flies overexpressing miRNAs with a strong 
ubiquitous driver. Overexpression of (A) miR-986, (B) miR-2500 and (C) miR-954 with tubulin-Gal4 
was confirmed by qRT-PCR. * p<0.05,Kruskal-Wallis test, Dunn's test for multiple comparisons. 
Lifespan of miR-986 or miR-954 overexpressing flies were shortened compared to both controls, 
respectively (*** p<0.001, log-rank test). Survival of miR-2500 overexpressing flies was not changed 
compared to the tubulin-Gal4 control. Fecundity of miR-986 and miR-954 overexpressing flies was 
reduced and not changed for flies overexpressing miR-2500. ** p<001, Kruskal-Wallis test, Dunn's 
test for multiple comparisons.  
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Figure 2.10: Expression level, lifespan and fecundity of flies overexpressing miRNAs with a strong 
ubiquitous inducible driver. Overexpression of (A) miR-978 and (B) miR-7 with tubulin-GS was 
confirmed by qRT-PCR. ***p<0.001, Kruskal-Wallis test, Dunn's test for multiple comparisons. 
Lifespan of miR-978 or miR-7 overexpressing flies is shortened (*** p<0.001, log-rank test). 
Fecundity of miR-978 and miR-7 overexpressing flies was dramatically reduced. *** p<001, Kruskal-
Wallis test, Dunn's test for multiple comparisons. 

 

2.2.3 Lifespan of mildly ubiquitously overexpressed microRNAs 

In contrast to the very strong overexpression achieved by the tubulin-Gal4 driver (Figures 2.9 

and 2.10) miRNAs that were identified in the microarray analysis only showed small fold 

changes in the range of 1.5-14 fold induction in the dilp2-3,5 mutants compared to controls 

(see chapter 2.1.6). As strong overexpression was detrimental to flies, we reasoned that 

induction that resembles more the physiological conditions might cause different, beneficial 

effects on lifespan. In order to achieve low-level overexpression of specific miRNAs we used 

the UAS-miRNA lines in combination with the inducible daughterless-GeneSwitch (da-GS) 

driver (Figure 2.11). To determine the right induction conditions, i.e. concentration of RU486, 

for the lifespan analysis, flies were fed with increasing concentrations of RU486 (10, 25 and 

50 µM) and miRNA induction was analyzed by qRT-PCR. As shown in Figure 2.11 

expression level of miRNA increased with increasing amounts of RU486 and overall 

expression induction was smaller than when using the tubulin-Gal4 or tub-GS driver lines 

(compare Figure 2.11 with 2.9 and 2.10). Accordingly, lifespan was not decreased upon mild 
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overexpression of miR-986, miR-954 or miR-978, however, lifespan was also not increased. 

Ubiquitous overexpression of miR-210 with the da-GS driver still resulted in decreased 

median lifespan, demonstrating that even mild overexpression of this miRNA is detrimental 

for survival. In summary, none of the tested miRNAs caused lifespan extension upon 

moderate ubiquitous overexpression. 
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Figure 2.11: Survival and expression level of flies overexpressing miRNAs with the ubiquitous da-GS 
driver line. Overexpression using different RU-concentrations of (A) miR-986, (B) miR-210, (C) miR-
954 and (D) miR-978 with da-GS was confirmed by qRT-PCR. * p<0.05, Kruskal-Wallis test, Dunn's 
test for multiple comparisons. Expression of miRNAs was directly correlated to RU486 (RU) 
concentration in the food. Overexpression of miR-986 or miR-954 did not affect lifespan, 
overexpression of miR-210 decreased lifespan (** p<0.01, log-rank test).  
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2.2.4 Lifespan analysis upon tissue-specific overexpression of microRNAs 

miRNAs were up-regulated in specific tissues of dilp2-3,5 mutants and maybe tissue-

specificity is important for lifespan regulation. In order to test this hypothesis, we 

overexpressed the miRNAs in a tissue-specific manner according to which tissue they were 

up-regulated in the dilp2-3,5 mutant flies (Figure 2.12). miR-210 and miR-954 were 

differentially expressed in the thorax, which consists to a large extend of muscle tissue. 

However, overexpressing miR-210 or miR-954 specifically in the muscle using the MHC-

Gal4 driver did not change lifespan compared to the controls. Similarly, overexpression of 

miR-978, which was found to be differentially expressed in the abdomen, with the abdominal 

fat body specific driver S106-GS had no effect on lifespan. Therefore, tissue-specific 

overexpression of the selected candidate miRNAs had no beneficial effect on lifespan.  
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Figure 2.12: Survival and expression level of flies overexpressing miRNAs with tissue-specific drivers. 
Overexpression of (A) miR-210 and (B) miR-954 with the muscle-specific MHC-Gal4 driver and 
overexpression of (C) miR-978 with the fat-body specific S106-GS driver using different RU-
concentrations was confirmed by qRT-PCR (* p<0.05, Wilcoxon rank-sum test, Mann-Whitney for (A) 
and (B), Kruskal-Wallis test, Dunn's test for multiple comparisons for (C)) but did not change lifespan 
compared to controls. 
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2.3 The Drosophila miR-986 knock-out mutant 

2.3.1 Generation of a Drosophila miR-986 knock-out mutant  

miR-986 was one of the most strongly induced miRNAs in dilp2-3,5 flies according to the 

microarray analysis, however, its function is currently unknown. Therefore I decided to study 

miR-986 in vivo function by generating a loss-of-function mutant. The miR-986 precursor is 

located on the right arm of the 2nd chromosome, in sense orientation within the 3rd intron of 

the protein coding Cyp4e2 gene (Fig. 2.13 A). Cyp4e2 encodes for a cytochrome P450, an 

enzyme with oxidoreductase activity. Cytochrome P450s are suggested to be involved in the 

metabolism of insect hormones and the breakdown of insecticides (Chung et al., 2009). 

Cyp4e2 was recently identified as a putative methanol metabolizing enzyme (Wang et al., 

2012).  
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Figure 2.13: Generation of a miR-986 knock-out mutant (miR-986
KO

). (A) Ends-out homologous 
recombination was used to generate knock-out mutants of the miR-986 gene which is located on the 
right arm of the 2nd chromosome, within the 3rd intron of Cyp4e2. (B) PCR verified the knock-out of 
miR-986 in three independent targeting lines as well as in miR-986

KO* 
which excludes the mini-white 

gene. (C) Cyp4e2 expression was affected in miR-986
KO

 lines as tested by qRT-PCR and restored by 
removal of the mini-white marker.  

 

In order to generate a Drosophila mir-986 loss-of-function mutant (miR-986
KO

) I used ends-

out homologous recombination (Gong et al., 2003). In the first step, the miR-986 precursor 

gene was replaced by homologous recombination with a mini-white marker gene. Knock-out 

of miR-986 was verified by PCR with primers 185 and 186 (Figure 2.13 B). These primers 

produce a 535 bp fragment on wild type genomic DNA and no fragment on mir-986 knock-

out mutants. Three mutant lines from independent targeting events were verified and used for 

further analysis. In order to test whether Cyp4e2 expression was affected by insertion of the 

mini-white gene in these lines, qRT-PCR was performed (Figure 2.13 C). A slight but 

significant decrease in expression of Cyp4e2 was detected: line #1 showed 27 %, line #2 44 % 

and line #3 48 % reduction. Thus, Cyp4e2 is affected but still expressed in miR-986
KO

 

mutants. In order to restore Cyp4e2 expression to wild type levels, the mini-white marker 

gene was removed from the mir-986 locus by Cre recombinase-mediated excision for one of 

the three miR-986
KO

 lines. Excision of the marker gene was verified by eye color and deletion 

of miR-986 was verified by PCR using primers 185 and 186. Removal of the white marker 

gene fully restored wild type expression levels of Cyp4e2 (Figure 2.13 C).  

2.3.2 In vivo characterization of miR-986
KO 

mutants 

For in vivo analysis three miR-986
KO

 lines including the white gene were used. Homozygous 

miR-986
KO

 mutant flies were viable and had no visible obvious phenotypes. Therefore, I 

analyzed their body weight, development time, lifespan, fecundity and stress resistance, all 

phenotypes that are affected by mutations in IIS (Figures 2.14 and 2.15).  

Reduced IIS in flies causes reduced body size and a delay in development (Weinkove and 

Leevers, 2000; Rulifson  et al., 2002; Grönke et al., 2010). Therefore, body weight  and egg 

to adult development time of the three miR-986
KO

 mutants lines was assessed. miR-986
KO

 

males and females had normal body weight, suggesting that miR-986 does not regulate 

organismal growth (Figure 2.14 A). 
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Figure 2.14: Body weight, development time, survival and fecundity of miR-986

KO
 mutants. (A) Body 

weight of miR-986
KO

 females and males was not changed. Flies were weighed in pairs. (B) Egg-to-
adult development time of miR-986

KO
 mutant females and males. Only the hatching period of adult 

flies is shown. Two of three independent miR-986
KO

 lines hatched earlier than wild type flies. (C) 
Survival curves of miR-986

KO
 mutants. Female and male lifespan was decreased. *** p<0.001, log-

rank test. (D) Fecundity of female miR-986
KO 

flies was decreased. *** p<0.001, Wilcoxon rank sum 
test. 
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Development time of two miR-986
KO

 strains was slightly shortened for males and for females 

(Figure 2.14 B). However, one strain had the same development time as wild type flies. 

Therefore, the shortened development time of the two other strains is likely to be a non-

specific, miR-986-independent effect. Survival analysis of the three miR-986
KO

 lines revealed 

that lifespan of miR-986
KO

 males and females was reduced, suggesting that miR-986 is 

required for normal lifespan (Figure 2.14 C). Fecundity of miR-986
KO

 flies was also reduced 

as flies of all three miR-986
KO

 lines laid about 37 % less eggs than wild type flies suggesting 

that miR-986 might be involved in the regulation of fecundity (Figure 2.14 D). 

dilp2-3,5 mutants were shown to be resistant to oxidative stress including paraquat and H2O2 

(Grönke et al., 2010). If miR-986 mediates resistance to oxidative stress in dilp2-3,5 mutants, 

miR-986
KO

 flies are expected to be sensitive to these stresses. In contrast, miR-986
KO

 flies 

survived significantly longer when exposed to paraquat (Figure 2.15 A). This suggests a 

putative role for miR-986 in the regulation of paraquat resistance but not in dilp2-3,5 

mediated paraquat resistance. When exposing miR-986
KO 

flies to H2O2 only one of three lines 

had reduced resistance (Figure 2.15 B). Therefore, miR-986 most likely does not account for 

H2O2 resistance. 

Mutants with reduced IIS activity were shown to tolerate starvation conditions better than 

wild type flies as a result of suppressed nutrient storage and cell growth and the enabling of 

nutrient mobilization by energy storing tissues (Britton et al., 2002). miR-986
KO

 flies were 

sensitive to starvation, suggesting a putative role of miR-986 in the regulation of starvation 

response (Figure 2.15C). However, dilp2-3,5 mutants do not have increased starvation 

resistance (Grönke et al., 2010). Therefore, it is likely that reduced starvation tolerance of 

miR-986
KO

 mutants is independent of IIS.   

dilp2-3,5 mutants were shown to be resistant to the xenobiotic DDT (Grönke et al., 2010). 

Only one of three lines of miR-986
KO

 was significantly resistant to DDT (Figure 2.15 D). In 

the DDT assay miR-986
KO

 and wild type flies were kept separately on food containing the 

drug. Strikingly, over time the surface of the food of the mutants but not of wild type became 

smeary, most probably due to bacterial contamination. As this could affect the response to 

DDT, the assay was performed again, with wild type and miR-986
KO

 flies in same vials where 

flies were distinguished by eye color. When both genotypes were pooled, still only one of 

three miR-986
KO 

lines survived longer than wild type. Therefore, miR-986 does not mediate 

the response to DDT.  
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Figure 2.15: miR-986

KO 
performance under stress conditions. miR-986

KO
 flies were exposed to 

paraquat (A), H2O2 (B), starvation (C) and DDT (D). (A) Survival under H2O2 stress was decreased for 
one of three miR-986

KO
 lines. (B) Stress tolerance of miR-986

KO
 flies against paraquat was increased. 

(C) Starvation reduced the lifespan of miR-986
KO

 flies. (D) Only one miR-986
KO

 line had increased 
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lifespan in the first experiment. The second experiment was done with pooled wild type and          
miR-986

KO
 flies in same vials (for details see text). Still, only one of three miR-986

KO
 lines was longer-

lived. For each drug treatment two replicate experiments are shown. * p<0.05; ** p<0.01; *** p<0.001, 
log-rank test. 

 

2.3.3 Putative targets of miR-986 

miRNAs regulate gene expression by silencing target mRNAs. To find putative targets of 

miR-986, the miRanda algorithm was used (Enright et al., 2003). This algorithm predicts 

targets based on sequence complementarity, free energies of RNA-RNA duplexes and 

evolutionary conservation of target sites. In order to rank predicted targets the mirSVR 

method was used (Betel et al., 2010). Using the miRNA.org source that combines miRanda 

algorithm with the mirSVR method (Betel et al., 2008), predicted targets of miR-986 were 

identified (Table 6). The predicted miR-986 targets were shown to be involved in diverse 

functions including olfactory learning, dopamine secretion, mitosis, phagocytosis, histone 

actetylation, reproduction, notch signaling, glycogen biosynthesis, brain development and 

fatty acid biosynthesis. Targets involved in detoxification of superoxide were not predicted.  

Putative 
Target ID 

mirSVR 
score Biological function 

klg NM_079730 -1.85 

homophilic cell adhesion; behavioral response to 
ethanol; long-term memory (olfactory learning); R7 
cell differentiation. 

CG10338 NM_136053 -1.7 unknown 

Ih NM_001038859 -1.59 

determination of adult lifespan; positive regulation 
of circadian sleep/wake cycle, locomotor rhythm; 
transmembrane potassium ion transport; proboscis 
extension reflex; regulation of dopamine secretion. 

larp NM_080259 -1.57 

spindle assembly involved in male meiosis; 
mitochondrion inheritance; salivary gland cell 
autophagic cell death; centrosome separation; 
mitotic chromosome condensation. 

ATPsyn-b NM_168365 -1.51 
phagocytosis; ATP synthesis coupled proton 
transport. 

CG10492 NM_136093 -1.48 unknown 

msl-1 NM_057548 -1.41 

histone H4-K16 acetylation; complex assembly 
involved in dosage compensation by 
hyperactivation of X chromosome. 

CG10433 NM_137746 -1.36 reproduction; defense response. 

CG32479 NM_167844 -1.34 
positive regulation of Notch signaling pathway; 
ubiquitin-dependent protein catabolic process. 

Glycogenin NM_166432 -1.34 glycogen biosynthetic process. 

CG2790 NM_138142 -1.31 unknown 

fdl NM_165908 -1.3 brain development; N-glycan processing 

CG2781 NM_141497 -1.3 very long-chain fatty acid biosynthetic process. 
Table 6: Putative miR-986 targets as predicted by miRDeep algorithm. Scores are calculated by 
mirSVR. 



Results 
 

38 
 

In summary, miR-986 did not modulate body size, development time and the response to 

H2O2 or DDT. However, miR-986 seemed to be required for normal lifespan, egg-production 

and starvation resistance, as miR-986
KO

 flies were short-lived, laid fewer eggs and were 

sensitive to starvation. Lack of miR-986 significantly increased paraquat resistance, 

suggesting that miR-986 might target genes involved in the detoxification of superoxide. 

However, currently we cannot exclude that down-regulation of Cyp4e2 expression in        

miR-986
KO

 flies might contribute to the observed phenotypes. The repetition of the 

experiments with the miR-986
KO*

 line without the white gene and fully restored Cyp4e2 

expression will answer this question. 

 

2.4 Next-generation sequencing of Drosophila tissues 

2.4.1 Establishment of a small RNA preparation protocol for deep sequencing of 

nDrosophila microRNAs 

 2.4.1.1 Standard microRNA library generation resulted in ribosomal                    

         RNA contamination 

In addition to microarray analysis, miRNA expression can also be analyzed by next 

generation sequencing. Next generation sequencing offers several advantages over microarray 

analysis. Sequencing discriminates highly similar sequences and can distinguish miRNA 

family members and isoforms on the basis of single nucleotides. Furthermore, it allows the 

detection of editing events and even unknown small RNAs, e.g. of the 238 miRNAs currently 

annotated in MirBase, only 186 are represented on the Affymetrix GeneChip 2.0. Thus, in 

order to analyze miRNA expression by an independent method and to cover all possible 

expressed miRNAs, we used next generation sequencing to profile tissue-specific miRNA 

expression in adult flies. 

In order to establish a protocol for RNA isolation that is compatible with next generation 

sequencing of miRNAs in Drosophila, we generated a test library from total RNA of the 

digestive tract of wild type flies. Total RNA, which was extracted and size-fractionated on a 

column to isolate small RNAs, served as input for the library. After adapter ligation the RNA 

was reverse transcribed and amplified by PCR. The generated library was then used for 

sequencing on an Illumina platform. 
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Sequencing of the gut library resulted in 20.83 million reads, however, only 1.94 % of the 

reads mapped to Drosophila miRNAs (Table 7). To identify the other 98.06 % non-miRNA 

sequences we performed a BLAST search on the Drosophila genome. This analysis revealed 

that most non-miRNA sequences matched to ribosomal RNAs, particularly 2S rRNA. The 

proportion of rRNA in the library amounted to 96.33 %, with 91.01 % identified as 2S rRNA. 

1.73 % of all sequences failed to align to miRNAs or rRNAs. Thus, the standard protocol of 

library preparation was not suitable for deep sequencing of Drosophila miRNA expression. 

 column fractionation  Protocol A Protocol B Protocol C 

# x 106 reads analyzed  20.83 26.59 12.33 23.57 
% reads mapped to 
Drosophila miRNA 1.94 3.84 1.01 4.31 
% reads mapped to rRNA 96.33 33.22 66.20 29.27 
% reads mapped to 2S rRNA  91.01 1.34 45.54 1.20 
% reads not mapped to 
Drosophila rRNA or miRNA  1.73 62.94 32.79 66.42 
 
Table 7: Comparison of different methods for miRNA library preparation. 

 

 2.4.1.2 Optimization of microRNA library preparation 

Drosophila 2S rRNA is expressed at higher levels than miRNAs and with 30 nt has a similar 

size as miRNAs, which are on average 22 nt long. Thus standard column fractionation may 

not be sufficient to separate miRNAs from 2S rRNA. In order to generate miRNA next 

generation libraries with lower 2S rRNA contamination, three different approaches were 

tested: (A) gel purification of 15-27 nt small RNAs, (B) oligo-depletion of 2S RNA and (C) 

combination of A and B (Figure 2.16). To test the three methods, total RNA of digestive tracts 

of wild type flies was used consistent with the pre-test library (2.4.1.1).  

Sequencing of library A resulted in 26.59 million reads. Importantly, the percentage of rRNA 

in the library was significantly reduced from 96.33 % to 33.22 % (Table 7), whereby            

2S rRNA content was reduced from 91.01 % to 1.34 %, demonstrating that gel purification is 

an efficient method to avoid 2S rRNA contamination. Reads mapping to miRNA were 

increased from 1.94 % to 3.84 %. Noteworthy, the amount of reads which did not map to 

Drosophila miRNAs or rRNAs was increased from 1.73 % to 62.94 % (compare 2.4.3). 

Overall sequencing depth was lower in the oligo-depleted library B, resulting in only 12.33 

million reads. rRNA and particularly 2S rRNA was reduced to 66.2 % and 45.54 %, 

respectively, demonstrating that oligo depletion was less efficient in removing rRNA 

contamination than gel purification. The amount of reads mapping to miRNA was decreased 
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to 1.01 % and therefore even lower than in the standard protocol. Reads that could not be 

mapped to miRNAs or rRNAs represented 32.79 % of all analyzed reads, which is lower than 

in protocol A and probably the result of less efficient rRNA depletion. Combined gel 

purification and oligo-depletion of library C resulted  in 23.57 million reads, of which only 

29.27 % mapped to rRNA and 1.2 % to 2S rRNA sequences. These values are just slightly 

lower than the results of just the gel purification. Consistent with this finding, 4.31 % of the 

reads mapped to miRNAs, which is only slightly more than the 3.83 % of gel purification 

alone. Reads which did not map to miRNA or rRNA accounted for 66.42 % of all analyzed 

reads. Thus, in summary, oligo depletion combined with size selection only marginally 

improved rRNA depletion and miRNA enrichment compared to gel purification alone. 

Therefore, we decided to use gel purification (method A) for the generation of the libraries for 

the tissues of wt and dilp2-3,5 flies.   

 
 

Figure 2.16: Optimization of miRNA library preparation. In protocol A total RNA was size-separated 
on an acrylamide-urea gel and miRNAs were isolated from 2S rRNA by size selection. Protocol B 
used oligonucleotide-coated beads with antisense oligonucleotides to deplete 2S rRNA identified in 
the pretest-library. In protocol C both protocols are combined; Total RNA is size-selected on a 
polyacrylamide-urea gel and 2S rRNA is then depleted using oligonucleotide-coated beads. 
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2.4.2 Next generation sequencing of Drosophila tissues 

We used total RNA isolated from brain, thorax, digestive tract and abdomen of wild type and 

dilp2-3,5 flies to generate 24 miRNA libraries (3 replicates per tissue and genotype). Libraries 

were sequenced using Illumina technology and the number of reads per library varied between 

9 and 36 million reads (Table 8).
 

Gel purification of miRNAs (protocol A, see 2.4.1.2) resulted in low level of rRNA 

contamination in all libraries. Brain libraries contained on average 4 %, thorax libraries 6 % 

and abdomen libraries 4 % reads mapping to rRNA sequences. The digestive tract showed the 

highest rRNA contamination with 17.32 % of all reads. Thus, the used protocol successfully 

reduced the amount of rRNA in all tissues although to varying degree.   

The percentage of analyzed reads that mapped to Drosophila miRNA varied between tissues. 

In libraries originating from brain, thorax and abdomen 82 %, 71 % and 73 % of the reads 

mapped to miRNAs, respectively. In contrast, libraries made from the digestive tract 

contained significantly less reads mapping to miRNA sequences, only 16 % of all reads 

mapped to miRNAs.  

A miRNA was defined as detected when the normalized read count was more than 10. With 

this stringent criterion, between 109 and 159 distinct mature miRNAs were detected, on 

average 134 miRNAs per library. Among replicates the normalized sequencing read count for 

miRNAs was similar, suggesting that the sequencing data are reproducible. Given a total 

number of 426 annotated mature Drosophila miRNAs (miRBase release 20) the average 

amount of detected distinct mature miRNAs in all libraries was 30.95 %. The microarray chip 

contained probe sets for 186 distinct miRNAs. The average amount of miRNAs detected over 

background by microarray was 22.82 % compared to all annotated miRNAs. Thus, next 

generation sequencing resulted in the detection of more miRNAs compared to the microarray 

analysis despite the stringent detection criterion used in the sequencing analysis.  
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2.4.3 Identification of non-microRNA reads 

A large part of the library reads did not map to the Drosophila genome (Table 8). 14.57 % of 

brain, 22.64 % of thorax and 22.73 % of abdomen library sequences did not map to either 

Drosophila miRNA or rRNA. For digestive tract the amount of reads that did not map to 

Drosophila miRNA or rRNA was the highest with 66.65 %.  

wDah and wDah; dilp2-3,5 flies used for the next generation sequencing analysis contain the 

intracellular endosymbiont Wolbachia pipientis (Grönke et al., 2010). In order to test whether 

reads that could not be mapped to the Drosophila genome may be originating from 

Wolbachia, we mapped the library sequences onto the Wolbachia genome (see chapter 

4.24.5). Indeed, in brain 0.36 %, thorax 1 %, digestive tract 1.13 % and in the abdomen      

1.82 % of all analyzed reads mapped to Wolbachia. Interestingly, in all tissues, the amount of 

sequences that map to Wolbachia was much higher in dilp2-3,5 flies than in wild type flies. 

Especially in the digestive tract the amount of reads corresponding to the Wolbachia genome 

was 11 times higher in dilp2-3,5 flies than in wild type.  

Since the food source of flies used in this experiment contained yeast, the library of digestive 

tract samples might be contaminated with yeast small RNA sequences. We therefore 

compared the analyzed sequences with the transcriptome of Saccharomyces cerevisiae by 

BLAST algorithm. Indeed, the amount of reads mapping to yeast sequences was low in brain 

(1.35 %), thorax (3.84 %) and abdomen (3 %), while with 30.64 % it was high in digestive 

tract. Thus, dietary yeast affected the digestive tract library composition.  

2.4.4 Tissue-specific microRNA expression profiles 

We used Pearson correlation analysis to analyze whether global miRNA expression profiles 

differs between tissues and genotypes and whether tissue dissection was consistent between 

replicates (Figure 2.17). miRNA profiles of the same tissue type showed strong correlation 

indicating high similarity. Consistent with the microarray data, this indicated that Drosophila 

tissues have a characteristic miRNA expression profile. Furthermore, these results show that 

tissue preparation was consistent between the replicates and that profiles from wild type and 

dilp2-3,5 tissues showed strong correlation. 
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Figure 2.17: Comparisons of miRNA tissue profiles generated by next-generation sequencing. 
Pearson correlation coefficient for all pairwise comparisons was computed and the values are 
depicted color-coded. Samples of the same tissue cluster, indicating high quality of tissue preparation 
and tissue-specific miRNA expression.   

  

2.4.5 Identification of tissue-specific microRNAs by sequencing 

In order to analyze tissue specificity of miRNAs that were detected by next generation 

sequencing, a tissue specificity score was calculated as before for microarray data (see chapter 

2.1.3). miRNAs with less than 10 normalized reads were not included in the analysis. 

Sequencing data for tissue specificity highly correlated with microarray data with a Pearson 

coefficient of 0.72. Thus similar tissue specificity as for microarray data was found by 

sequencing data. We found ubiquitously expressed miRNAs and tissue-specific miRNAs 

(Figure 2.18). Consistent with the microarray results, miRNAs specific for the digestive tract 

included miR-314-3p and miR-956-3p. In the abdomen among others miR-2494-5p and   

miR-1015-3p were specifically expressed. Also by sequencing we found that most tissue-

specific miRNAs were expressed in the brain, like mir-981-3p and 990-5p. As observed 

before, miR-993-3p was specifically expressed in the thorax. While by microarray 30 

miRNAs were detected as tissue-specific, by sequencing 75 miRNAs had a tissue specificity 

score of more than 1.0. Thus by sequencing we were able to extend the information about 

tissue specificity to more miRNAs. For example miR-4916-3p is a miRNA with no probe set 
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on the array but by sequencing we found it to be highly specific for the brain. Also we found 

miRNAs, which were evenly expressed in all tissues, like let-7-5p. Tissue specificity of  

dilp2-3,5 miRNAs was altered compared to wild type (Supplemental Figure S3), suggesting 

differential regulation of spatial miRNA expression in dilp2-3,5 mutants. 

 

Figure 2.18: Tissue specificity of miRNA expression as detected by next-generation sequencing in 
wild type flies. The total height of each bar represents the tissue specificity and the relative heights for 
each of the tissues are proportional to miRNA expression in a given tissue type relative to all tissue 
types. miRNAs with at least 10 reads are included in the analysis. 
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2.4.6 Evolutionary conservation of microRNAs correlates with expression level as 

fdetected by sequencing 

Although it was shown in previous studies, that miRNA expression level correlates with 

degree of evolutionary conservation (Ruby et al., 2007), we could not verify this observation 

by microarrays (see chapter 2.1.4). In order to test whether in contrast our sequencing results 

can confirm the observation of previous studies we compared miRNA read number with 

degree of evolutionary conservation. By sequencing we found that the majority of miRNAs 

with high read number are highly evolutionary conserved whereas miRNAs with low read 

number are not conserved. Thus with a Pearson coefficient of 0.3 expression level of miRNAs 

correlated with evolutionary conservation. (Figure 2.19 A) 

2.4.7 Expression level as detected by sequencing does not correlate with tissue specificity 

It was published that highly expressed miRNAs are evenly distributed across tissues whereas 

low expressed miRNAs show higher tissue specificity (Ruby et al., 2007). I did not observe 

the same correlation in my microarray analysis (see chapter 2.1.5). In order to re-analyze this 

correlation on my next generation sequencing dataset, we compared miRNA tissue specificity 

with sequencing read count (Figure 2.19 B). As for microarrays, with a Pearson coefficient   

of -0.13 we found no correlation between evolutionary conservation and specificity of 

expression in adult tissues of Drosophila flies. 
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Figure 2.19: Correlation of evolutionary conservation of miRNAs and tissue specificity or absolute 
expression, respectively. Sequencing data was used for the analysis. (A) Relationship between 
absolute expression and evolutionary conservation of miRNAs. Strong correlation was observed as 
evolutionary conserved miRNAs are highly expressed. For a detailed list see supplemental table 1.  
(B) Relationship between tissue specificity of miRNA expression as detected by sequencing and 
evolutionary conservation. No correlation between tissue specificity and conservation was observed. 
Only miRNAs with a read number of >10 were included in the analysis.. 

 

2.4.8 Identification of differentially expressed microRNAs in dilp2-3,5 tissues by 

sequencing 

Global miRNA expression was highly similar between wt and dilp2-3,5 tissues (Figure 2.17). 

However, single miRNAs might be differentially expressed yet not significantly alter global 

miRNA expression profiles. To identify differentially expressed miRNAs in the brain, thorax, 

digestive tract and abdomen of dilp2-3,5 flies, we used the Bioconductor package DESeq 

(Anders and Huber, 2010). For the detection of differentially expressed miRNAs, this package 

uses a negative binominal distribution and a shrinkage estimator for the distribution's variance 

to test for differential expression. In the brain and in the thorax significance of differential 

expression was supported by multiple testing. Considering this test, in the brain 2 miRNAs 

were up-regulated and 3 down-regulated (Table 9), while in the thorax, 4 miRNAs were up-

regulated and 15 down-regulated (Table 10). In the digestive tract and abdomen miRNAs 

were differentially expressed but not significant at the significance level of a multiple 

comparison test. As tested by single comparisons one miRNA was up-regulated in the 

digestive tract (Table 11), while in the abdomen 3 miRNAs were up-regulated and one was 

down-regulated (Table 12). Thus, miRNAs were differentially expressed in dilp2-3,5 tissues.   

Brain 

miRNA Mean wt Mean dilp2-3,5 FC p-value p-value 
(adjusted) 

dme-miR-4911-3p 193.90 91.21 0.47 7.28 x 10-5 0.01 
dme-miR-980-5p 296.92 156.47 0.53 7.96 x 10-5 0.01 
dme-miR-986-5p 10211.99 6201.73 0.61 0.00003 0.02 
dme-miR-92a-5p 1913.62 3855.52 2.01 4.8 x 10-7 0.0002 
dme-miR-375-3p 1400.82 5411.37 3.86 2.06 x 10-6 0.0004 
 
Table 9: Differentially expressed miRNAs in dilp2-3,5 brains as detected by next generation 
sequencing. Mean represents miRNA expression in three independent replicates each genotype. 
Fold changes are calculated by DeSeq algorithm. p-values are calculated by Student's t-test and 
adjusted by Benjamini-Hochberg procedure. FC, fold change; wt, wild type 
 

Thorax 

miRNA Mean wt Mean dilp2-3,5 FC p-value p-value 
(adjusted) 

dme-miR-929-5p 353.71 38.89 0.11 1.41 x 10-07 2.37 x 10-05 
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dme-miR-219-3p 37.16 4.33 0.12 0.0002 0.006 
dme-miR-9b-3p 99.14 16.60 0.17 2.17 x 10-05 0.001 
dme-miR-14-3p 217439.69 37063.70 0.17 4.43 x 10-08 1.49 x 10-05 
dme-miR-998-3p 62.62 11.22 0.18 0.0002 0.005 
dme-miR-277-5p 594.03 124.79 0.21 1.04 x 10-06 0.0001 
dme-miR-33-3p 281.87 61.55 0.22 3.88 x 10-05 0.002 
dme-let-7-3p 496.89 111.23 0.22 6.74 x 10-05 0.002 
dme-miR-317-5p 5848.93 1486.28 0.25 5.93 x 10-05 0.002 
dme-miR-33-5p 15512.60 4130.58 0.27 3.17 x 10-05 0.002 
dme-miR-981-3p 269.10 75.00 0.28 0.0005 0.01 
dme-miR-988-3p 107.33 30.29 0.28 5.75 x 10-05 0.002 
dme-miR-274-5p 3038.69 1053.38 0.35 0.001 0.02 
dme-miR-927-5p 581.19 201.82 0.35 0.0009 0.02 
dme-miR-9c-5p 16398.16 5749.61 0.35 0.001 0.02 
dme-miR-1010-3p 676.09 1807.25 2.67 0.001 0.03 
dme-miR-124-5p 43.48 132.16 3.04 0.002 0.04 
dme-miR-1016-5p 14.44 62.94 4.36 0.0003 0.007 
dme-miR-316-3p 76.45 691.14 9.04 4.34 x 10-06 0.0004 
 
Table 10: Differentially expressed miRNAs in dilp2-3,5 thoraces as detected by next generation 
sequencing. Mean represents miRNA expression in three independent replicates each genotype. 
Fold changes are calculated by DeSeq algorithm. p-values are calculated by Student's t-test and 
adjusted by Benjamini-Hochberg procedure. FC, fold change; wt, wild type 
 

Digestive tract 

miRNA Mean wt Mean dilp2-3,5 FC p-value p-value 
(adjusted) 

dme-miR-312-3p 1.04 21.60 20.75 0.005 > 0.99 
 
Table 11: Differentially expressed miRNAs in dilp2-3,5 digestive tracts as detected by next generation 
sequencing. Mean represents miRNA expression in three independent replicates each genotype. 
Fold changes are calculated by DeSeq algorithm. p-values are calculated by Student's t-test and 
adjusted by Benjamini-Hochberg procedure. FC, fold change; wt, wild type 

 

Abdomen 

miRNA Mean wt Mean dilp2-3,5 FC p-value p-value 
(adjusted) 

dme-miR-10-5p 36310.82 20477.72 0.56 0.03 > 0.99 
dme-miR-133-3p 155.46 297.28 1.91 0.01 > 0.99 
dme-miR-263b-5p 3948.61 8055.09 2.04 0.04 > 0.99 
dme-miR-87-5p 27.39 66.44 2.43 0.02 > 0.99 
 
Table 12: Differentially expressed miRNAs in dilp2-3,5 abdomen as detected by next generation 
sequencing. Mean represents miRNA expression in three independent replicates each genotype. 
Fold changes are calculated by DeSeq algorithm. p-values are calculated by Student's t-test and 
adjusted by Benjamini-Hochberg procedure. FC, fold change; wt, wild type 
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2.4.9 qRT-PCR analysis of differential expressed microRNAs 

In order to verify differentially expressed miRNAs in dilp2-3,5 brain and thorax, qRT-PCR on 

selected miRNAs was performed. Independent biological samples were used. In agreement 

with sequencing results, up-regulation of miR-92a-5p in dilp2-3,5 brains was detected, 

although it was not significant (Figure 2.20). However, differential expression of selected 

miRNAs in thorax and for two of three tested miRNAs in the brain was not detected by    

qRT-PCR. Thus, only differential up-regulation of miR-92a-5p in dilp2-3,5 brains could be 

confirmed by qRT-PCR analysis.  

 
Figure 2.20: qRT-PCR analysis verifies differential expression of miR-92a-5p in dilp2-3,5 brains as 
detected by next-generation sequencing. Fold change in (A) brain and (B) thorax from next-generation 
sequencing and qRT-PCR analysis are compared. Differential expression of miR-92a-5p as detected 
by sequencing was verified by tendency of up-regulation as measured by qRT-PCR. miRNA transcript 
level was normalized to wild type samples, which by default was set to 1. * p<0.05, ** p<0.01; *** 
p<0.001, Benjamini-Hochberg test. 
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2.5 Comparison of microarray with next-generation sequencing data 

2.5.1 Comparison of absolute expression datasets between next-generation sequencing 

fand microarrays 

To assess whether the miRNA next generation sequencing data were consistent with the 

miRNA microarray data, correlation between absolute expression profiles of all tissues of 

wild type flies was examined by comparing sequencing density to expression metrics from 

microarray intensities. Raw data were normalized to total number of reads or quantile 

normalization, respectively, to obtain absolute expression profiles. To exclude miRNAs that 

were not detected by either microarray or sequencing, miRNAs with an expression value > 15 

or with less than 10 sequencing reads were filtered out, respectively. The congruency between 

sequencing and microarray expression data was relatively low (Figure 2.21 A). Pearson 

coefficients varied between 0.46 for thorax libraries and 0.56 for brain libraries.   

There can be several reasons for the difference between the sequencing and microarray data. 

The differences could be caused by the use of total RNA for microarrays while for sequencing 

miRNAs were isolated by gel purification ahead of library preparation. Furthermore, for both 

techniques different RNA samples were used, thus biological variation may account for the 

low correlation between sequencing and microarray profiles. Also, the fact that sequencing 

and microarrays are different detection techniques may account for the differences in the 

expression data. To experimentally differentiate whether low correlation of both datasets was 

due to differences in miRNA isolation, biological variation or due to technical reasons 

between the two platforms, we used the same RNA, which was used for sequencing also for 

hybridization to microarrays. Although we used the same gel purified miRNA source, the 

congruency between microarray and next generation sequencing data was not significantly 

increased (Pearson coefficient of 0.5). However, when we compared this newly generated 

microarray data with the microarray data that were generated from total RNA, we observed 

strong correlation between the two datasets (Pearson coefficient 0.9, Figure 2.21 C). 

Therefore, biological variation between samples and miRNA purification methods were not 

underlying the differences in absolute expression between sequencing and microarrays, and 

these differences are most likely caused by technical differences between the two platforms. 
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Figure 2.21: Comparison of wild type absolute expression data of microarrays and next generation 
sequencing. (A) Comparison of expression data in brain, thorax, digestive tract and abdomen as 
detected by microarray hybridized with total RNA and sequencing of libraries generated from isolated 
small RNA. Pearson correlation coefficient of fold change data was computed. (B) Comparison of 
expression of sequencing datasets and datasets from microarrays hybridized with the same isolated 
RNA as used for sequencing. Using the same RNA for both platforms does not increase correlation. 
(C) Comparison of datasets from microarrays hybridized with total RNA and isolated RNA show 
strong correlation. r = Pearson correlation coefficient. 
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2.5.2 Analyzed microRNAs have different calculated hybridization affinities to 

 microarray chips 

One technical difference between sequencing and microarrays is that the latter is based on 

hybridization affinity of miRNAs to complementary sequences on microarrays.  Hybridization 

affinity does not only depend on sequence similarity but also on the melting temperature (Tm) 

of the miRNAs and therefore might be affected by the temperature used during the microarray 

hybridization step. As the GC content varies between miRNAs, we calculated and compared 

Tms of individual miRNAs that had probe sets on the chip (see supplemental table 2). The 

mean calculated Tm of those miRNAs was 57.64 °C but several miRNAs had a Tm over      

65 °C or under 50 °C respectively. The temperature used for the hybridization step was 48 °C. 

Tm is the approximated temperature when half of the molecules are bound to complementary 

sequences on the chip. At temperatures below Tm binding of non-specific miRNAs is 

increased, at temperatures higher than Tm less miRNAs bind to complementary sequences of 

the correspondent probe set. It is likely that miRNAs with low Tm bind to their corresponding 

probe sets at 48 °C with lower affinity than miRNAs with high Tm, and that miRNAs with 

high Tm are prone to bind to non specific probe sets. This might interfere with quantification 

of absolute expression levels. 

2.5.3 Comparison of differential expression datasets between sequencing and 

 microarrays  

Although normalized absolute expression data between sequencing and microarrays showed 

low correlation, both platforms might give similar results when analyzing differential 

expression between wild type and dilp2-3,5 tissues. To test this hypothesis we compared 

differential expression measurements between both platforms. However, fold changes of 

miRNA expression as detected by sequencing did not correlate with differential expression as 

detected by microarray (Pearson coefficient between 0.24 for abdomen and -0.38 for thorax, 

Figure 2.22 A). To assess whether biological differences account for the discrepancy in fold 

change detection of genotypes, we compared fold changes as detected by microarray with fold 

changes as detected by sequencing using the same RNA input. When using the same 

biological sample, the fold changes of both techniques showed strong correlation with a 

Pearson coefficient of 0.82 (Figure 2.23 B). In contrast, a Pearson coefficient of -0.4 for the 

comparison of two microarray datasets which were generated using different biological RNA 

samples showed no correlation of fold changes (Figure 2.23 C), suggesting that the 
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differences in differential expression between microarray and next generation sequencing data 

is caused by biological variation between samples. 

 
Figure 2.22: Comparison of fold change data as detected by microarrays and next generation 
sequencing. (A) Comparison of fold change data in brain, thorax, digestive tract and abdomen as 
detected by microarray hybridized with total RNA and sequencing of libraries generated from isolated 
small RNA. Pearson correlation coefficient of fold change data was computed and revealed low 
correlation (B) Comparison of fold change of sequencing datasets and datasets from microarrays 
hybridized with the same isolated RNA as used for sequencing. Using the same RNA for both 
platforms revealed strong correlation (C) Comparison of datasets from microarrays hybridized with 
total RNA and isolated RNA show low correlation. r = Pearson correlation coefficient. 
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2.5.4 Correlation between expression level and fold change in differentially expressed 

fmicroRNAs  

Differential expression of lowly expressed miRNAs is prone to be affected by small 

aberrations in expression. Accordingly, small variations in expression do not considerably 

contribute to expression differences of strongly expressed miRNAs. In order to investigate 

whether correlation of fold changes between microarray and sequencing of strongly expressed 

miRNAs is higher than of lowly expressed miRNAs, miRNA expression level as detected by 

microarray was color labeled in the comparison of differential expression between microarray 

and sequencing (Figure 2.23). Indeed, low expressed miRNAs showed the strongest fold 

change difference between experiments. Therefore, fold changes of lowly expressed miRNAs 

might be an artefact generated by small variations in expression and not caused by genotype.  

 

 
Figure 2.23: MiRNAs, which are expressed at low levels, show higher variation in fold change 
between microarrays and next-generation sequencing. Comparison of fold change data as detected 
by microarrays and next generation sequencing in brain, thorax, digestive tract and abdomen. 
Microarrays were hybridized with total RNA and next-generation sequencing libraries were generated 
from isolated small RNA. Degree of absolute expression in microarrays is depicted color-coded.  
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In summary, absolute expression levels were dependent on the technical platform used for 

analysis, whereas fold change differences were more affected by variation between different 

biological samples. MiRNAs that were detected to be expressed at low levels account for the 

majority of miRNAs which were detected to be differentially expressed. 
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3 Discussion 

3.1 Next generation sequencing of Drosophila tissues 

I used next generation sequencing to generate tissue-specific miRNA expression profiles of 

adult wild type and dilp2-3,5 mutant Drosophila flies. In a first test library, which was 

isolated by a standard column fractionation protocol, most reads mapped to ribosomal RNA, 

particularly 2S rRNA. With a size of 30 nucleotides Drosophila 2S rRNA is very similar in 

length to miRNAs and therefore column fractionation was not sufficient to remove 2S rRNA 

from the library. In addition, 2S rRNA is expressed at very high levels compared to miRNAs, 

which explains the high number of reads mapping to 2S rRNA and the low number of 

miRNAs detected in the test library. In order to optimize library preparation, I tested three 

different miRNA enrichment methods, (A) gel purification, (B) oligo-depletion of 2S rRNA 

and (C) a combination of A and C. Gel purification of miRNAs was more efficient than oligo-

depletion in removing 2S rRNA from the library and the combination of both methods did not 

improve the enrichment of miRNA significantly beyond gel purification alone. Therefore, all 

next generation sequencing of adult Drosophila miRNAs was done using gel purification of 

miRNAs as input for library preparation. By this method the amount of sequences that 

mapped to rRNA was reduced to 4-6 % in the brain, thorax and abdomen and to 17 % in the 

digestive tract. With an average of 12 million the number of reads per library mapping to 

miRNAs was very high. Although libraries from the digestive tract contained four times less 

miRNA reads than the libraries of the other tissues, in all libraries the amount of reads that 

mapped to Drosophila miRNAs, was sufficient for analysis. Three replicates were used for 

each condition and miRNA read counts were reproducible within independent biological 

replicates. 

In the digestive tract only 16 % of all reads mapped to Drosophila miRNAs, which is 

significantly less than in the other tissues, where 70-80 % of all reads mapped to miRNAs. 

Furthermore, 67 % of the reads of the digestive tract library did not map to any Drosophila 

sequence. The digestive tract differs from the other tissues in the fact, that it contains the food 

the fly is eating but also serves as a habitat for the gut microbiota (Wong et al., 2011). Yeast 

is a main component of the fly food and alignment of the reads to the yeast genome showed 

that more than 30 % of all reads of the digestive tract libraries mapped to yeast sequences. 

Thus, the high amount of reads not mapping to Drosophila sequences in the digestive tract 

libraries is at least partially due to small yeast RNAs. Whether these small yeast-derived 

RNAs have any functional role in Drosophila or are just degradation products of digestion is 
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currently unknown. Interestingly, in humans and various animals cross-species regulation of 

gene expression by miRNAs taken up with the food have been reported. For example, mir-

186 is a very abundant miRNA in rice that was shown to be enriched in the blood serum of 

Chinese people. In mice, rice mir-186 was able to regulate expression of the low-density 

lipoprotein receptor adaptor protein 1, demonstrating that a plant-derived miRNA can regulate 

gene expression in mammals (Zhang et al., 2012). However, as miRNAs are not annotated in 

yeast, it is currently unknown whether these yeast-derived RNAs have similar function in 

flies. 

The wild type and dilp2-3,5 mutant flies used in this study both carry the endosymbiontic 

bacterium Wolbachia pipientis. Accordingly, reads mapping to the genome of Wolbachia 

were identified in all analyzed tissues, ranging from 0.4 % of all reads in the brain up to 1.8 % 

of all reads in the abdomen. Even though the detailed molecular interaction between 

Wolbachia and its host are still elusive, dilp2-3,5 mutants are only long-lived in the presence 

of this bacterium (Grönke et al., 2010). Interestingly, the amount of reads mapping to the 

Wolbachia genome is increased in dilp2-3,5 flies. This is in agreement with the observation, 

that in dilp2-3,5 flies the amount of Wolbachia bacteria is increased (Sebastian Grönke, 

personal communication). The influence of increased Wolbachia load in dilp2-3,5 flies is still 

elusive. In mosquitos, Wolbachia changes the expression of host miRNAs to increase its 

density in the host (Hussain  et al., 2011). Profiling and comparing miRNA expression of 

dilp2-3,5 mutants with and without Wolbachia could explore a putative role of  Wolbachia in 

the regulation of miRNA expression in dilp2-3,5 flies.  

 

3.2 Comparison of absolute expression datasets between sequencing and 

microarrays 

I could show in this study that absolute miRNA expression data between microarray and next 

generation sequencing only show low level of correlation between the two platforms. This 

was also evident on the level of individual miRNAs. For example, miR-14 was one of the 

strongest expressed miRNAs as detected by sequencing, but miR-14 was not detected at all by 

microarray analysis. Using the same RNA source for both platforms did not increase 

correlation of absolute expression values. In contrast, two microarray expression datasets 

from independent biological RNA samples showed strong correlation, demonstrating that the 

observed differences are not caused by biological variation between samples. Therefore, 
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differences in absolute expression data between the two platforms are likely caused by 

differences between microarray and next generation sequencing technologies. One technical 

difference might be hybridization bias of microarrays, which can have several reasons. First, 

hybridization affinity of miRNAs on the microarrays is dependent on the similarity to the 

complementary sequence of the probe set. Many miRNAs share high sequence similarities. 

For example miR-2a and miR-2c mature miRNAs only differ in a single nucleotide. Thus, 

differences between miRNA expression data might be due to miRNAs binding to probe sets 

of closely related miRNAs. Second, the Affymetrix 2.0 GeneChip used in this study contains 

probe sets for more species in addition to the Drosophila melanogaster probe sets. Thus, 

miRNAs may bind these non-Drosophila melanogaster probe sets, which could affect their 

absolute expression levels. Third, the GC content varies substantially among miRNAs 

resulting in different melting temperatures for each miRNA. As hybridization temperature is 

constant, miRNAs with low melting temperatures might bind to the chip with lower affinity 

while others with high melting temperatures bind with high affinity. Thus differences between 

miRNA expression data might be caused by different GC content and consequently different 

affinity of miRNAs in binding to complementary sequences on the chip. Library preparation 

for next generation sequencing might also introduce expression bias for certain miRNAs. In a 

comparison of different miRNA profiling methods Linsen et al. (Linsen et al., 2009) 

observed, that different methods for miRNA library preparation caused differences in absolute 

expression profiles for specific miRNAs. Biases caused by RNA ligation preferences, reverse 

transcriptase and PCR amplification could also contribute to the difference between 

microarrays and sequencing in the ability to detect absolute expression levels of miRNAs in 

our study. It has been shown that it is not possible to conclude from detection signal of 

microarrays to biological expression levels (Chen et al., 2009). The results of my study are in 

agreement with the observation that absolute miRNA expression measurements are dependent 

on the used detection technique. NGS can distinguish between very similar sequences, which 

differ only in a single nucleotide. Additionally, since NGS is not dependent on a priori 

information it allows the detection of unknown miRNAs as well as miRNA isoforms resulting 

from post-transcriptional modification. Additionally, it allows the detection of more miRNAs 

than by microarray. Therefore, further studies should be based on sequencing results. 
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3.3 Adult Drosophila microRNA expression atlas 

The function of most Drosophila miRNAs is still unknown. An important step in 

comprehending miRNA function is to understand miRNA tissue specificity. However, for 

most Drosophila miRNAs adult expression level and tissue specificity are still elusive. To 

close this gap we generated miRNA expression profiles of four adult Drosophila tissues, 

namely brain, thorax, digestive tract and abdomen, by microarray and next generation 

sequencing. 

3.3.1 Tissue-specific microRNA expression profiles 

Pairwise comparison of miRNA expression profiles of the four tissues confirmed that the 

quality of tissue preparation was constant and indicated that each tissue inhered a unique and 

characteristic miRNA expression pattern. Tissue specificity from sequencing and microarrays 

were mostly consistent between both platforms as revealed by Pearson correlation analysis. 

We identified ubiquitously expressed miRNAs and many miRNAs that are expressed 

specifically in a certain tissue. Most miRNAs with a high tissue specificity score were 

expressed in the brain. This could indicate that particularly brain function is highly 

specialized and needs to be regulated by specific miRNAs. However, this could also represent 

the purity of dissected brains. 

3.3.2 Tissue specificity of microRNAs is in agreement with published data  

Our Drosophila miRNA atlas is in agreement with published data. miRNAs like miR-981, 

miR-969, miR-927 or miR-990 were shown to be expressed in Drosophila heads (Ruby et al., 

2007). Accordingly, we found these miRNAs to be specifically expressed in the brain. 

Neuronal expression of miR-124 is evolutionarily conserved between flies, nematodes, and 

vertebrates and a function of miR-124 in Drosophila neurons has been reported (Sun et al., 

2012). In agreement, we found specific expression of miR-124 in the brain. Another brain-

specific miRNA, miR-219, was shown to be specific for brain cells in vertebrates, and to 

control oligodendrocyte differentiation (Zhao et al., 2010). In contrast to the analysis of total 

head miRNA expression (Ruby et al., 2007), our analysis detected expression more precisely 

in the brain and in addition identified up to now unknown brain specificity for some miRNAs. 

For example, miR-315 was found to be specifically expressed in fly imaginal discs (Ruby et 

al., 2007), but we could show specific expression of miR-315 in the adult brain. Data about 

tissue specificity of novel miRNAs is still limited. Our study provides detailed information 
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about tissue specificity of novel miRNAs such as miR-4960, which we assigned to be a brain 

specific miRNA.  

miR-1 has been shown in diverse species including Drosophila to be specifically expressed in 

muscles (Zhao et al., 2007; Simon et al., 2008; Sokol and Ambros, 2005). In our study miR-1 

expression was enriched in the thorax, although with a relative low tissue-specificity score 

compared to the brain-specific miRNAs. Similarly, miR-277 was previously shown to be 

expressed in the thorax (Esslinger et al., 2013), which we could verify in our analysis. 

However, as for miR-1, the tissue specificity score was relatively low. The dissected thorax 

does not only consist of muscle tissue, but also includes epidermal tissue, fat tissue and parts 

of the nervous system. Different tissues types in thorax samples might limit the detection of 

specificity. Indeed, only few miRNAs had a high tissue specificity score for the thorax. 

miRNAs like miR-314, miR-958 or miR-956 were previously shown to be expressed in adult 

fly bodies (Ruby et al., 2007). Our study shows that these miRNAs are not ubiquitously 

expressed throughout the whole adult fly, but specifically in the digestive tract. Another 

example for a digestive tract-specific miRNA is miR-10. During embryogenesis miR-10 is 

expressed in the posterior midgut and the anal pad (Aboobaker et al., 2005) and we show that 

in the adult, expression of miR-10 remains specific for the digestive tract. miR-2494,        

miR-1015, miR-994 and miR-274 are examples of miRNAs, which expression was previously 

detected in whole adult bodies (Ruby et al., 2007) and we could now show that they are 

specifically expressed in abdomen. In summary, the observed tissue-specific miRNA 

expression profiles are consistent with previous reports and significantly extend our 

knowledge about miRNA expression in adult Drosophila flies. 

Expression and function of miR-993 was unknown so far. miR-993 belongs to the well 

characterized and conserved miR-10 miRNA family. miR-10 is one of two miRNA genes of 

the Drosophila Hox clusters and it has been shown to be expressed in ventral nerve cord, 

posterior midgut and hindgut in Drosophila embryos (Aboobaker et al., 2005). miR-10 was 

shown to regulate Hox genes in zebrafish (Woltering and Durston, 2008) and humans (Han et 

al., 2007). However, in Drosophila the targets of miR-10 are unknown. Although miR-993 

belongs to the miR-10 family, it is not predominantly expressed in the gut. Instead, it is 

expressed in the thorax and also to a minor extent in the brain, suggesting that its function is 

different to miR-10. Therefore, miRNAs which belong to the same miRNA family do not 

necessarily have same expression patterns. 
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3.3.3 Strong microRNA expression increases reliability in the detection of                

 dtissue specificity  

For few miRNAs tissue specificity differs between microarrays and sequencing. miRNAs, 

which were determined as tissue-specific by microarray but not by sequencing, are usually 

expressed at low levels as detected by sequencing and high levels as detected by microarray. 

For example miR-184-5p had a strong signal on microarrays, whereas by sequencing this 

miRNA had only few reads. Reciprocally, miRNAs, which were determined to be tissue-

specific by sequencing, but not by microarray are barely detected by microarrays, but detected 

to be highly expressed by sequencing. For example miR-958-3p had a high number of reads 

in the digestive tract whereas this miRNA was not detected by microarray analysis to be 

tissue-specific. Thus, assigning tissue specificity to a miRNA can depend on the platform 

used to detect its expression and is more reliable if the miRNA expression is detected at 

significant levels on both platforms.  

3.3.4 Evolutionary conservation of microRNAs does not correlate with breadth of 

dexpression  

Evolutionary conserved miRNAs were more ubiquitously expressed across libraries of 

different Drosophila developmental stages, heads and adult bodies than non-conserved 

miRNAs (Ruby et al., 2007). In contrast, we found no correlation between evolutionary 

conservation of miRNAs and breadth of expression across tissues of adult Drosophila flies. 

Non-conserved miRNAs might define profile specificity only of developmental stages but not 

of adult tissues. However, our finding could also reveal that there is indeed no correlation 

between tissue specificity and conservation level of a miRNA in adult flies. 

3.3.5 Evolutionary conservation of microRNAs correlates with expression level 

Highly expressed miRNAs tend to be more evolutionarily conserved than miRNAs with low 

expression levels (Ruby et al., 2006; Ruby et al., 2007; Bartel, 2004). In agreement with this 

hypothesis, we also found a positive correlation between expression level and evolutionary 

conservation in our next generation sequencing data set. However, some miRNAs deviate 

from this rule, e.g. miR-956 is only present in Drosophila but highly expressed. On the other 

hand, expression level of some conserved miRNAs might be underestimated due to a very 

tissue- or cell type-specific expression. These miRNAs would have low read counts in 

libraries of complex tissues samples. For example, miR-285 was found to be expressed at low 

levels  in all analyzed tissues although it belongs to the conserved miR-29 family. In 
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mammals, miR-29 expression is enriched in astrocytes (Ouyang et al., 2013). Astrocyte-like 

glia account for a subset of brain cells in Drosophila and other cells of the dissected brain 

may mask high astrocyte-specific expression of miR-285. Like miR-285, other conserved 

miRNAs, which were found to be lowly expressed could be restricted to a certain tissue or 

cell type not analyzed in this study. Although sequencing analysis revealed a clear correlation 

between miRNA expression level and evolutionary conservation, no correlation was observed 

using microarrays. On the Affymetrix microarray only a limited number of miRNAs are 

present, excluding many miRNAs with low expression. Sensitivity of microarrays might be 

limiting, whereas sequencing was able to detect a non-random correlation between expression 

level and evolutionary conservation.  

3.4 Differentially expressed microRNAs in dilp2-3,5 mutants 

In Drosophila, tissue-specific down-regulation of IIS signaling is sufficient to increase 

lifespan (Grönke et al., 2010; Giannakou et al., 2004; Hwangbo et al., 2004; Demontis and 

Perrimon, 2010). However, it is currently unknown whether miRNAs mediate pathway 

activity and gene expression downstream of the insulin receptor. We identified differentially 

expressed miRNAs in all four analyzed tissues of the dilp2-3,5 mutant by microarray analysis 

and confirmed the expression changes for selected miRNAs by qRT-PCR. qRT-PCR analysis 

also showed that miRNAs such as miR-2500-5p and miR-986-5p, which by microarray 

analysis were only found to be regulated in the brain and thorax, were also differentially 

regulated in the digestive tract and the abdomen. These results suggest that the sensitivity of 

microarrays may be limiting for some miRNAs to detect differential expression and 

demonstrates that qRT-PCR verification is important. Some miRNAs were found to be up-

regulated in one tissue and down-regulated in other tissues, demonstrating complex tissue-

specific changes in miRNA expression upon down-regulation of the IIS pathway. The number 

of miRNAs that were up- and down-regulated was comparable in the brain and in the 

abdomen. In the digestive tract most miRNAs were down-regulated and in the thorax most 

miRNAs were up-regulated in dilp2-3,5 mutants. This observation was independent of the 

tissue preparation method and the microarray chip version and was reproducible, because it 

was observed for both mechanically and manually dissected thoraces. Less miRNAs were 

detected to be differentially expressed in manually dissected thoraces due to variation in 

samples, which affects the sensitivity to detect differentially expressed miRNAs.  

By sequencing of independent biological tissue samples we found a different set of miRNAs 

to be up- and down-regulated than by microarray. In the brain and in the thorax miRNAs were 
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found to be significantly differentially expressed. At the significance level of single 

comparisons, differentially expressed miRNAs were also found in the abdomen and digestive 

tract. In contrast to microarray results, we found the majority of differentially expressed 

miRNAs in the thorax to be down-regulated. Malone and Oliver (Malone and Oliver, 2011) 

reported that sequencing and microarrays show similar performance in detecting differential 

mRNA expression. We could show that the detection of differentially expressed miRNAs in 

dilp2-3,5 mutants correlated only if the same RNA input was used for both techniques. 

Comparison of differential expression of microarray and sequencing data using independent 

RNA samples showed no correlation. Thus, detection of differential expression levels in 

dilp2-3,5 mutants is independent of the technique used though only consistent when the same 

RNA is used for both techniques. miRNAs with the strongest fold change in expression were 

usually detected at low levels. The signal of differentially expressed miRNAs like miR-303-

5p was even close to the detection threshold. Strongly expressed miRNAs are usually 

evolutionary conserved and the expression was less changed in the mutant than the expression 

of low expressed miRNAs. One possible explanation is that conserved miRNAs could execute 

essential functions and are therefore under stringent control to keep constant expression 

levels. Another explanation is that the fold change of barely expressed miRNAs is caused by 

variations in expression attributable to the  influence of small variations on FC of low 

expressed miRNAs. This could account for the different results of microarray, sequencing and 

qRT-PCR in the detection of differentially expressed miRNAs using independent biological 

samples.  

3.4.1 MicroRNA candidates and their role in regulation of lifespan 

The function of most miRNAs that were detected as differentially expressed in dilp2-3,5 

mutants is not known in Drosophila or any other species. However, some of those miRNAs 

have been shown to play a role in aging or aging-modulating pathways.  

miR-210 is highly evolutionarily conserved between flies and mammals. In mammals,      

miR-210 is induced by hypoxia and is a direct targeted of the hypoxia-inducible factor    

(HIF-1α) (Liu et al., 2011), a transcription factor involved in lifespan regulation. 

Interestingly, HIF-1α is activated by the insulin pathway in Drosophila (Dekanty et al., 2005). 

Thus, it would be expected that miR-210 abundance is reduced in dilp2-3,5 mutants. In 

contrast, we showed by microarray that miR-210 is up-regulated in dilp2-3,5 flies. This might 

indicate an inherent compensatory effect. However, to discover the role of elevated miR-210 

levels in dilp2-3,5 mutants, functional analysis of this miRNA in Drosophila is required.  
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miR-285 is down-regulated in dilp2-3,5 mutants. Drosophila miR-285 belongs to the 

conserved miR-29 family. In mammals, upregulation of miR-29 correlates with aging and 

miR-29 is up-regulated in a progeroid mouse model most likely in response to DNA damage 

(Ugalde et al., 2011). The function of Drosophila miR-285 is not known, yet. However, if the 

function of miR-29 is conserved, dilp2-3,5 mutants might have less DNA damage, which in 

consequence results in the down-regulation of miR-285. Further studies are needed to test this 

hypothesis. 

miR-375 expression was found to be up-regulated in dilp2-3,5 brains by sequencing. miR-375 

is highly evolutionarily conserved and its function has been extensively characterized.      

miR-375 is specifically expressed in secretory pituitary brain cells in zebrafish (Kapsimali    

et al., 2010). In mammals, miR-375 is specifically expressed in pancreatic islets (Poy et al., 

2009), where it is involved in regulation of glucose homeostasis. miR-375 knockout mice are 

hyperglycemic, have decreased numbers of pancretic β-cells and reduced insulin levels (Poy 

et al., 2009). Furthermore, in obese mice, which are insulin resistant and have an increased 

insulin demand, miR-375 is up-regulated to compensate this state by promoting β-cell 

expansion (Poy et al., 2009). The function of Drosophila miR-375 is currently unknown. 

However, its role in glucose homeostasis in mammalian pancreatic cells, and its differential 

expression in dilp2-3,5 flies, might indicate a role of miR-375 in Drosophila insulin 

producing cells (IPCs).  

Our sequencing analysis reveals that miR-33 is down-regulated in the thorax of dilp2-3,5 

mutant flies. miR-33 is evolutionarily conserved and in mammals it targets the insulin 

receptor substrate 2 (IRS2) in liver cells (Dávalos et al., 2011). Overexpression of miR-33 not 

only reduces IIS, it also reduces fatty acid oxidation, whereas reduction of miR-33 increases 

both pathways (Dávalos et al., 2011). Furthermore, miR-33 was shown to regulate cholesterol 

levels in mice (Rayner et al., 2010). miR-33 might be a putative regulator of metabolic 

pathways in the fly, since dilp2-3,5 flies have altered lipid levels. However, so far miR-33 

was not functionally characterized in Drosophila and it role in IIS or fatty acid metabolism 

needs to be further investigated. 

miR-277, which is specifically expressed in the thorax was down-regulated in dilp2-3,5 

mutant flies. We could show that overexpression of miR-277 in fly thoraces shortens lifespan, 

which would suggest down-regulation of miR-277 as a putative mechanism of IIS-mediated 

lifespan extension. However, inhibition of miR-277 also shortens lifespan in flies and       
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miR-277 has been reported to be down-regulated with age (Esslinger et al., 2013). Thus the 

role of miR-277 in IIS-dependent lifespan extension is currently unclear. 

let-7 miRNA is highly evolutionarily conserved between species including worms, flies and 

mammals. In mammals let-7 was shown to target components of the insulin pathway 

including insulin-like growth factor 1 receptor (IGF1R), insulin receptor (INSR) and IRS2 

(Zhu et al., 2011). In worms let-7 family members miR-84 and miR-241 were also shown to 

regulate insulin/IGF signaling and metabolism. Additionally, these two miRNAs are required 

for germline mediated longevity through DAF-16/FOXO (Shen et al., 2012). let-7 family 

members miR-84 and miR-241 are not annotated in Drosophila or more complex species. let-

7-3p was shown to be down-regulated in dilp2-3,5 thoraces as detected by sequencing. 

However, this miRNA is lowly expressed and there is no evidence that it has a biological 

function. let-7-5p is highly expressed, its expression was validated by northern blot and its 

function was characterized (Sokol et al., 2008). In contrast to let-7-3p let-7-5p was not 

detected to be differentially regulated in dilp2-3,5 flies suggesting that the conserved miRNA 

let-7 might not regulate IIS mediated phenotypes in Drosophila.  

miR-14 was shown to control insulin production in IPCs in the fly brain. Overexpression of 

miR-14 in the IPCs resulted in lean flies possibly as consequence of elevated insulin levels. 

Similar to IIS mutants, miR-14 mutants have elevated fat levels. Furthermore, dILP2, dILP3 

and dILP5 levels in the brain are decreased in miR-14 mutants (Varghese et al., 2010).      

miR-14 expression was not only detected in the brain, but also in all other analyzed tissues. 

We found miR-14 to be down-regulated in dilp2-3,5 thoraces. Since miR-14 was shown to 

regulate dILP levels and we showed that miR-14 expression in turn is dependent on dILPs, 

this miRNA could be part of a feedback loop regulating IIS. Interestingly, miR-14 was 

reported to play a role in the positive autoregulatory loop of ecdysone signaling (Varghese 

and Cohen, 2007), a pathway which was shown to play a role in lifespan (Gáliková et al., 

2010). Further studies are needed to address the regulatory role of miR-14 in endocrine 

signaling and its putative connection to lifespan.   

If differentially expressed miRNAs contribute to phenotypes of the dilp2-3,5 mutant remains 

to be investigated. By microarray and sequencing in each tissue of the long-lived dilp2-3,5 

mutant differentially regulated miRNAs which are highly conserved even up to humans were 

found. Since many molecular mechanisms of IIS are similar between organisms, a 

comparison of our data with tissue-specific  miRNA expression profiles of long-lived mutants 

from other organisms could provide information about conserved regulation of miRNAs in 
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processes associated with IIS-mediated phenotypes such as longevity. As Drosophila provides 

excellent genetic tools to study the role of miRNAs in aging in vitro and in vivo, studies in 

this model organism could provide new insights into mechanisms, which could be relevant for 

other organisms. 

3.4.2 The microRNA 6~309 cluster is up-regulated in dilp2-3,5 abdomen 

Tissue specificity of dilp2-3,5 miRNAs is altered compared to wild type. Interestingly, 

analysis of tissue specificity was able to identify miRNAs, which tissue specificity was 

altered but not significantly differentially expressed. miRNAs with altered tissue specificity 

involve miR-5-5p, miR-286-3p, miR-6-1-3p/miR-6-2-3p/miR-6-3-3p and miR-4-3p. 

Expression of these miRNAs is evenly distributed across tissues in wild type. In dilp2-3,5 

mutants, expression of these miRNAs becomes enriched in the abdomen. It was shown that 

clustered miRNAs are often co-expressed in an operon-like manner (Ruby et al., 2007; Lau et 

al., 2001; Sempere et al., 2004). Indeed, all identified miRNAs are located within the same 

genomic cluster, indicating that these miRNAs are concerted up-regulated in dilp2-3,5 

abdomen. Verification and functional analysis by knock-out or overexpression is necessary to 

unravel the putative role of this cluster in phenotypes of the dilp2-3,5 mutant.  

3.5 The miR-986
KO

 mutant 

In this study a miR-986
KO

 mutant was successfully generated by homologous recombination 

and analyzed for IIS-associated phenotypes. Homozygous miR-986
KO

 mutant flies were viable 

and had no obvious developmental defects, indicating that miR-986 is not essential for 

viability and growth. Moderate overexpression of miR-986 did not affect lifespan. In contrast, 

lack of miR-986 significantly reduces lifespan. Therefore, correct miR-986 expression is 

required for normal lifespan. Fecundity of miR-986
KO

 flies was reduced and mutants were 

prone to starvation, indicating that normal miR-986 expression is required for long term 

health.  

Tolerance towards DDT or hydrogen peroxide was not changed in miR-986
KO 

mutants 

compared to wild type flies. In contrast, miR-986
KO 

mutants were more resistant to paraquat 

treatment. Toxicity of paraquat involves the production of superoxide. Increased paraquat 

resistance of flies lacking miR-986 suggests that miR-986 might target mRNAs responsible 

for superoxide resistance. However, a target prediction algorithm did not reveal genes 

involved in superoxide detoxification. The production of superoxide by reduction of paraquat 

is mainly mediated by P450 oxidoreductases (Han et al., 2006). miR-986 resides within an 
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intron of the P450 cytochrome gene Cyp4e2. Cyp4e2 expression is down-regulated in       

miR-986
KO

 flies. Therefore, increased tolerance of miR-986
KO

 flies to paraquat might be 

caused by a reduced expression of Cyp4e2 and hence reduced generation of superoxide in 

these mutants and not by a direct effect of loss of miR-986.  

To differentiate whether reduced Cyp4e2 or the lack of miR-986 causes the observed 

phenotypes further studies are needed. In order to test whether observed phenotypes can be 

assigned to the lack of miR-986, a miR-986 mutant without white-marker and with rescued 

expression of Cyp4e2 was successfully generated and is available for phenotyping. Further, 

genomic rescue experiments are necessary to study the in vivo function of miR-986.  

3.6 Functional characterization of differentially expressed microRNAs by 

overexpression 

Overexpression of miR-7 and miR-978 during development caused lethality, suggesting that 

misexpression of those miRNAs has toxic effects early in development. Conserved miRNAs 

might execute essential functions and their precise regulation might be pivotal for the 

organism. Although miR-7 is conserved and causes lethality when artificially overexpressed, 

overexpression of the non-conserved miR-978 did also cause lethality. Therefore, toxicity 

upon overexpression is independent on evolutionarily conservation of the overexpressed 

miRNA. miRNAs are expressed at different levels in Drosophila. Upregulation of miRNAs 

that are normally expressed at low levels might have more severe impacts on health than 

upregulation of miRNAs that are highly expressed in wild type flies. Both, miR-7 and      

miR-2500 are expressed at relative low levels. While overexpression of miR-7 causes lethality 

and adult specific expression of miR-7 severely impacts lifespan, miR-2500 overexpressing 

flies are viable. Thus, toxicity of overexpression is independent on the degree of induced 

differential expression. 

Adult specific strong ubiquitous overexpression with the tubulin-Gal4 or tubulin-GS driver of 

most miRNAs resulted in shortened lifespan. This could be a specific effect due to toxicity of 

the particular miRNA, possibly caused by expression in tissues where this miRNA is usually 

not or not as highly expressed resulting in the down-regulation of pivotal genes in these 

tissues. Alternatively, this could be a general effect of increased miRNA load in the cells, 

which becomes toxic over time. Strong overexpression may also affect miRNA target 

specificity so that genes are down-regulated, which are not normally a target of a given 

miRNA. 
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Strong overexpression of candidate miRNAs did not increase lifespan. However, this does not 

exclude that overexpression of other miRNAs could be beneficial for survival. Indeed, mild 

overexpression of miR-34 by genomic insertion constructs increased lifespan, while 

Gal4/UAS mediated expression of miR-34 during development caused lethality (Liu et al., 

2012). By usage of a mild daGS driver, toxicity of overexpression of analyzed miRNAs was 

reduced. A lifespan extending effect of miRNA overexpression could be dosage-dependent 

with strong miRNA expression resulting in toxicity. In congruence, miRNAs in dilp2-3,5 flies 

showed only small differential expression. Overexpression level of miRNAs can be fine tuned 

by the concentration of RU486 in the food. Therefore, miRNA expression that mimic the fold 

change in long-lived mutants were used to investigate lifespan phenotypes. Mild 

overexpression of selected miRNAs prevented toxic effects on lifespan, suggesting that 

toxicity of up-regulation is dosage dependent. However, lifespan was not increased upon 

various levels of mild overexpression, suggesting that ubiquitous up-regulation of the selected 

candidate miRNAs is not beneficial for survival. In dilp2-3,5 flies miRNAs were 

differentially expressed in specific tissues. In order to test whether lifespan depends on tissue-

specific overexpression of selected miRNAs, miR-210, miR-954 and miR-978 were 

overexpressed in specific tissues. Neither overexpression affected lifespan, suggesting that 

selected miRNAs do not mediate lifespan extension. Other miRNAs still could mediate IIS 

dependent lifespan, which were not identified to be differentially expressed by microarray. 

Sequencing revealed a different set of differentially expressed miRNAs in dilp2-3,5 mutants, 

which should be analyzed for their role in lifespan extension.  

Although there is no evidence for differentially expressed miRNAs which were identified by 

microarray to regulate lifespan extension, those miRNAs could play a role in other IIS 

mediated phenotypes and were therefore analyzed for phenotypes of dilp2-3,5 flies. dilp2-3,5 

flies have a reduced body weight, increased development time and reduced fecundity (Grönke 

et al., 2010). However, flies overexpressing miR-986, miR-2500 or miR-954 had normal body 

weight, suggesting that these miRNAs do not regulate organismal growth. Overexpression of 

selected miRNAs reduced egg production. Because increased expression of miRNAs also 

reduced lifespan, it is unlikely that reduced egg production as a result of overexpression is a 

specific effect. Instead, decreased fecundity seems to be an unspecific effect caused by 

toxicity of overexpression. Overexpression of miR-2500 or miR-954 did not change 

development time, suggesting that those miRNAs do not regulate developmental timing. In 

contrast, miR-986 overexpression caused a delay in development. The effect was stronger in 
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males than in females, suggesting gender-specific functions of miR-986. Consistently, 

development time of two of three independent fly strains lacking miR-986 was shortened.  

Further analysis of IIS-related phenotypes of flies overexpressing miRNAs that are 

differentially regulated in dilp2-3,5 flies is needed. Differentially expressed miRNAs should 

also be investigated by knockout or RNAi in order to distinguish between specific and 

unspecific effects and to verify functions in IIS related phenotypes. In addition to the analysis 

of differentially expressed miRNAs that might be putative mediators of IIS depending 

phenotypes, miRNAs that are expected to target components of lifespan modulating pathways 

such as the IIS pathway, should be investigated for longevity by overexpression or down-

regulation in order to explore upstream mechanisms and to get a comprehensive overview of 

the role of miRNAs in lifespan regulating pathways.  
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4 Material and methods 

4.1 Bacterial media 

All bacterial media were autoclaved to assure sterility. Antibiotics were added to media after 

autoclaving and cooling to 60 °C. 

Lysogeny broth (LB) medium    1% NaCl 

        pH 7.0  

        1 % (w/v) Trypton 

        0.5 % yeast extract 

 

Bacterial plates consisted of LB medium with 1.5 % bacto-agar. 

S.O.C medium      20 mM glucose 

        10 mM MgSO4 

        10 mM MgCl2 

        2.5 mM KCl 

        10 mM NaCl 

        0.5 % yeast extract 

        2 % bactotryptone 

4.2 Solutions 

TAE (1x)       40mM Tris  

        20mM acetic acid 

        1mM EDTA 

 

TBE (5x)       445 mM boric acid 

        445 mM Tris 

        10 mM EDTA 

 

PBS        145 mM NaCl 

        7.5 mM Na2HPO4 

        2.5 mM NaH2PO4 

        pH adjusted to 7.4 

 

Squishing buffer      10 mM Tris-HCl  

        1 mM EDTA 

        25 mM NaCl 

        200 µg/ml Proteinase K 

        pH adjusted to 8.2 

 

Saline-sodium citrate buffer (SSC; 20x),  RNAse-free  3 M sodium chloride  

        300 mM trisodium citrate  

        pH adjusted to 7.0 with HCl 

 

MyOne C1 dynabead B&W buffer + 0.01% Tween (2x) 10 mM Tris-HCl (pH 7.5) 

        1 mM EDTA 

        2M NaCl 

        0.01% Tween 
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MyOne C1 dynabead B&W buffer + 0.01% Tween (1x) 5 mM Tris-HCl (pH 7.5) 

        500 µM EDTA 

        1M NaCl 

        0.01% Tween 

 

MyOne C1 dynabead Solution A    0.1 M NaOH 

        0.05 M NaCl 

 

MyOne C1 dynabead Solution B    0.1 M NaCl 

4.3 Drosophila food media 

All Drosophila food and media were boiled to dissolve agar. Nipagin was added to media 

after boiling and cooling to 60 °C. 

SYA food       5 % sugar 

        10 % yeast 

        1.5 % agar 

        0.3 % Nipagin (20 % in EtOH) 

 

Starvation media      1 % agarose in H2O 

H2O2 media       1 % agarose (w/v) 

        5 % H2O2 

        10 % sugar (w/v) 

        in H2O 

 

Dichlorodiphenyltrichloroethane (DDT) media  275 mg/l DDT 

        in SYA food 

 

Paraquat media      20 mM paraquat 

        in SYA food 

 

Grape medium      grape juice 

        1.5 % agar 

        1 % nipagin (20 % in EtOH) 

 

4.4 Fly stocks, genetic background and general animal husbandry 

The wild type stock used was w
Dah 

Wol+, carrying the intracellular bacterium Wolbachia. 

This stock is maintained in large population cages to reduce inbreeding.  All fly lines were 

backcrossed for at least 9 generations into the w
Dah 

background. Backcrossed fly lines were 

kept in bottles (13.5 cm x 6 cm diameter) on standard food in order to maintain them in large 

cohorts. Backups of non-backcrossed stocks were kept in plastic vials (9.5 cm x 2.5 cm 
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diameter). All stocks were kept on a 12:12 light:dark cycle at 18°C and 65% humidity in a 

controlled temperature (CT) room.  

Table 13: Fly stock list. 

Name Genotype source 

wild type wDah Wolbachia + Groenke et al., 2010 
dilp2-3,5  wDah; dilp2-3,5  Groenke et al., 2010 
#6934 y

1
, w*; P{70FLP}11, P{70I-SceI}2B, 

sna
Sco

/CyO, S
2
 

Bloomington Drosophila Stock 
Center  

#766 y1w67c23P{Crey}1b; snaSco/CyO Bloomington Drosophila Stock 
Center  

#3938 w1118; P{70FLP}10 Bloomington Drosophila Stock 
Center  

miR-986KO wDah; miR-986KO Jennifer A. Werner, this study 
miR-986KO* wDah; miR-986KO* Jennifer A. Werner, this study 
UAS-miR-986 w1118; UAS-miR-986 Bejarano et al., 2012 
UAS-miR-210 w1118; UAS-miR-210 Bejarano et al., 2012 
UAS-miR-7 w1118; UAS-miR-7 Bejarano et al., 2012 
UAS-miR-954 w1118; UAS-miR-954 Bejarano et al., 2012 
UAS-miR-978 w1118; UAS-miR-978 Bejarano et al., 2012 
UAS-miR-2500 w1118; UAS-miR-2500 Eric C. Lai, PhD 
UAS-miR-285 w1118; UAS-miR-285 Bejarano et al., 2012 
Tubulin-Gal4 y1 w*; P{tubP-GAL4}LL7/TM3, Sb1 Bloomington Drosophila Stock 

Center  
MHC-Gal4 w*; P{Mhc-RFP.F3-580}2, P{Mhc-

GAL4.F3-580}2/SM6b 
Bloomington Drosophila Stock 
Center  

Tubulin-GS wDah; Tubulin-GeneSwitch Fernandez et al., 2009 
Da-GS wDah; Daughterless-GeneSwitch Tricoire et al., 2009 
S1106-GS wDah; S1106-GeneSwitch Roman et al., 2001 

 

4.5 Collecting males and virgins and setting up crosses 

Virgin females were collected in the morning from bottles which were cleared the day before 

and kept at 18 °C over night for a maximum of 16 h to ensure virginity. Parental flies for 

crossings were anesthetized by CO2 and collected. Collected males and females were kept in 

bottles at 25 °C on a 12:12 light:dark cycle and 65 % humidity for 48 h to mate and were then 

transferred into cages with grape plates.    

4.6 Egg collections for experiments 

In order to assure standard larval density for experimental flies, parental flies were kept on 

grape agar plates to allow egg laying for 6 h.  Eggs were washed of the plates with PBS using 

a brush. Eggs were then transferred into falcon tubes and allowed to settle down. PBS 

supernatant was removed and 20 µl eggs were pipetted per bottle using a cut pipette tip.  

Bottles with standardized amount of eggs were kept at 25 °C on a 12:12 light:dark cycle and 

65 % humidity.  
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4.7 Mapping of transgene insertions  

Male flies with unknown transgene insertion site, which contains the mini-white marker, were 

crossed to the female balancer lines CyO/+ and Tm3Sb/+. If all female F1 flies had red eyes 

and male flies had white eyes, the insertion is located on the X-Chromosome. If not, red-eyed 

F1 flies containing the respective balancer were intercrossed. F2 offspring flies were screened 

for red eyes. The insertion was mapped to the second chromosome, if all flies containing CyO 

had red eyes and all flies containing Tm3Sb had white or red eyes. The insertion was mapped 

to the 3rd chromosome if all flies containing Tm3 Sb had red eyes and all flies containing 

CyO had white or red eyes. 

4.8 Expression of genes with the UAS/Gal4 System 

In Drosophila, overexpression of a specific gene can be achieved by the binary Gal4/UAS 

system (Brand and Perrimon, 1993). The method is based on the activation of transcription by 

the yeast transcription activator Gal4 that binds to the upstream activation sequence (UAS) 

fused to sequences of the gene of interest (Figure 2.7 B). Flies expressing Gal4 (driver lines) 

are crossed to flies harbouring the UAS-transgene. F1 flies will express the gene of interest in 

a manner depending on the used Gal4 promoter. Modification of this system allows temporal 

expression induced by RU486 (Osterwalder et al., 2001), which is achieved by a RU486-

dependent GAL4 protein (GeneSwitch). 

4.9. Fly stress assays  

Flies reared at standard density (see chapter 4.6) were allowed to mate after eclosing for 48 h 

in bottles at 25 °C on a 12:12 light:dark cycle and 65 % humidity. Flies were then sorted 

according to gender into plastic vials with SYA food. 5 x 20 flies per vial were used per 

treatment. Flies were transferred into new vials every 2 days, before starting the assay at the 

age of 10 days. For the stress assay flies were transferred into vials containing the stress 

media, which was prepared freshly on the day of the experiment (see chapter 4.3). Dead flies 

were counted in regular time intervals.   

4.10 Lifespan assay 

Experimental flies were reared at standard density (see chapter 4.6) and transferred into new 

bottles after eclosing. After a mating period of 48 h, 10 flies per glass vial (7.5 cm x 2.55 cm 

diameter) with standard SYA food and 20 flies per plastic vial (9.5 cm x 2.5 cm diameter) 

with food containing RU486 were allocated. Flies were transferred into new vials three times 
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a week and kept at 25 °C on a 12:12 light:dark cycle and 65 % humidity. The number of dead 

flies per vial was counted on the day of transfer.  

4.11 Fecundity assay 

The number of eggs laid was counted as readout for fecundity. Lifespan flies at the age of 10 

days were kept on fresh food for 12-16 h and then transferred to new vials. The number of 

eggs laid over this time period was counted for each vial. Data represent cumulative number 

of eggs laid per female.  

4.12 Development time assay 

For measurement of development time parental flies were allowed to lay eggs for 3 h on grape 

plates. Eggs on the plate were kept on 25 °C until first instar larvae hatched. First instar larvae 

were hand-picked and transferred into glass vials at a density of 50 larvae per vial on standard 

food. The number of eclosing adults flies was recorded at regular time points. 

4.13 Body weight 

For body weight measurements, flies were anesthetized on ice and then weighted in pairs on a 

semi-microbalance (ME235S, Sartorius Mechantronics).  

4.14 Tissue dissection 

All tissues were manually dissected using fine forceps on silicone plates with PBS. The brain 

includes the optical lobes and attaching connective tissue as well as residual fat tissue from 

the head. The thorax includes the wings and legs and excludes the gut. Thus the dissected 

thorax mainly consists of muscle tissue. The digestive tract is the midgut excluding 

malpighian tubules. The whole abdomen is dissected, excluding ovaries, digestive tract and 

malpighian tubules. Thus, what is referred to as abdomen consists of the abdominal carcass 

with adhering fat tissue. Tissues were dissected in 1x PBS, snap frozen in tubes on dry ice and 

stored at -80 °C. RNA from dissected tissues was used for next generation sequencing and for 

microarrays.  

4.15 Mechanic separation of thoraces and heads 

Flies were frozen in liquid nitrogen and heads, thorax as well as abdomen were separated by 

vortexing in a reagent tube. First, heads were separated from thorax and abdomen through a 

sieve. Thoraces were then separated from abdomen by intensive vortexing and manual 

selection on dry ice using a fine brush. 
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4.16 General cloning techniques and molecular biology 

4.16.1 Polymerase chain reaction (PCR) 

PCR is a widely common technique used to amplify DNA molecules (Saiki et al., 1988). PCR 

reactions for cloning or genotyping were carried out in a Veriti 96 well thermal cycler 

(Applied Biosystems). Oligonucleotide primers for PCR reactions were purchased from 

MWG-Biotech. For a complete list of oligos used in this study see supplemental table 3. 

 4.16.1.1 Genotyping of flies by PCR 

For genotyping of flies the HotStarTaq Plus DNA Polymerase (Qiagen) was used. 150 ng 

DNA and 0.5 µl of each primer at the concentration of 10 μM were mixed with 10 µl of 

HotStarTaq Plus Master Mix (2x) and water was added to adjust the total volume to 20 µl.  

The cycler was programmed as follows: Step 1  95 °C  5 min  

      Step 2  94 °C  30 sec 

      Step 3  50–68 °C 30 sec 

      Step 4  72 °C  1 min 

      Step 5  72 °C  7 min 

      Step 6  4 °C  ∞ 

Steps 2-4 were repeated 35 times.  

 4.16.1.2 Amplification of cloning constructs 

For the amplification of DNA fragments used for cloning, the Phusion® High-Fidelity DNA 

Polymerase (Thermo Fisher Scientific) was used. 150 ng DNA, 0.4 µl dNTPs (10 mM), 1 µl 

of each primer (10 μM) and 0.2 µl Phusion DNA Polymerase were mixed with 4 µl of 

Phusion HF buffer (5x) and water was added to adjust the total volume to 20 µl. 

The cycler was programmed as follows: Step 1  98 °C  30 sec  

      Step 2  98 °C  10 sec 

      Step 3  50–68 °C 30 sec 

      Step 4  72 °C  30 sec 

      Step 5  72 °C  7 min 

      Step 6  4 °C  ∞ 

Steps 2-4 were repeated 35 times.  
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 4.16.1.3 Quantitative real-time reverse transcription-PCR (qRT-PCR) 

   4.16.1.3.1 qRT-PCR of miRNAs 

qRT-PCR of miRNAs was conducted using the TaqMan® Universal PCR Master Mix No 

AmpErase® UNG (Applied Biosystems). 1.5 µl cDNA was mixed with 7.5 µl H2O, 10 µl 

TaqMan® Mastermix and 1 µl miRNA-specific TaqMan® assay. PCR was done using the 

7900HT Fast Real-Time PCR System (Applied Biosystems). Raw data were analyzed using 

the sequence detection systems software 2.3 (Applied Biosystems). Data were analyzed using 

the ΔΔCt method and normalized to small nucleolar (sno) RNA that was shown to produce 

more reliable results than the 2S rRNA control (Supplemental Figure S5).  

PCR was done using the 7900HT Fast Real-Time PCR System (Applied Biosystems) with 

following program:    Step 1  95 °C  10 min 

      Step 2  95 °C                   15 sec 

      Step 3  60 °C                   1 min 

 

Steps 2 and 3 were repeated 40 times. 

   4.16.1.3.2 qRT-PCR of mRNAs 

qRT-PCR of mRNAs was conducted using the TaqMan® Gene Expression Master Mix 

(Applied Biosystems). 2 µl diluted cDNA (1:1) was mixed with 7 µl H2O, 10 µl TaqMan® 

Gene Expression Master Mix (2x) and 1 µl mRNA-specific TaqMan® Gene Expression 

Assay (20x). The internal Rpl32 control reaction mix consisted of 10 µl TaqMan® Master 

Mix (2x), 0.8 µl Primer SOL268 and SOL269 (10 µM), 0.4 µl FAM-Probe (10 µM) and 6.8 

µl H2O. 

PCR was done using the 7900HT Fast Real-Time PCR System (Applied Biosystems) with 

following program:    Step 1  95 °C  10 min 

      Step 2  95 °C                   15 sec 

      Step 3  60 °C                   1 min 

 

Steps 2 and 3 were repeated 40 times. 

Raw data were analyzed using the sequence detection systems software 2.3 (Applied 

Biosystems). Data were analyzed using the ΔΔCt method and normalized to Rpl32. 

4.16.2 Agarose gel electrophoresis 

DNA fragments of samples were separated by size by agarose gel electrophoresis. A 

molecular weight marker (HyperLadder™ II, Bioline) and samples mixed with DNA loading 

buffer (6x, thermo scientific) were applied on a gel consisting of 0.5 x TAE with 1 % agarose 



Material and methods 
 

79 
 

and 0.5 μg/mL EtBr submerged in 0.5 x TAE. DNA fragments were separated by applying 

constant 5 V/cm with 400 mA and 400 W to the tank until adequate separation occurred.  

4.16.3 Gel elution  

In order to recover DNA from agarose gels, the appropriate DNA band was cut out with a 

clean scalpel. The DNA was eluted from the gel piece using the QIAquick
®
 Gel Extraction 

Kit (Qiagen) following the manufacturers instructions. 

4.16.4 cDNA synthesis by reverse transcription of miRNAs 

cDNA from miRNA was produced using the NCode™ VILO™ miRNA cDNA synthesis kit 

(Invitrogen) with miRNA specific TaqMan
®
 primers (Applied biosystems). 5 µl containing 

300 ng RNA was mixed with 0.15 µl dNTPs (100 mM), 1 µl MultiScribe™ Reverse 

Transcriptase, 1.5 µl reverse transcriptase buffer (10 x), 0.19 µl RNase Inhibitor (20 U/µl), 

4.16 µl H2O and 3 µl specific primer. Reverse transcription was conducted using a Veriti 96 

well thermal cycler (Applied Biosystems) with following cycle program:   

16°C  30 min 

42°C  30 min 

85°C  5 min 

4°C  ∞ 

 

4.16.5 cDNA synthesis by reverse transcription of total RNAs 

cDNA from total RNA was produced using the Superscript® VILO™ cDNA synthesis kit 

(Invitrogen). 1 µg total RNA in 14 µl H2O was mixed with 4 µl VILO™ Reaction Mix (5x) 

and 2 µl SuperScript® Enzyme Mix (10x). cDNA was synthesized by incubation at 25 °C for 

10 minutes and incubation at 42 °C for 60 minutes in a thermal cycler. The reaction was 

terminated by incubation at 85 °C for 5 minutes.  

4.16.6 Restriction digest  

For the cleavage of DNA at specific sites, restriction endonucleases from New England 

Biolabs were used. Usually, for analytical restriction 1 µg DNA was cleaved by mixing it 

with 0.5 µl restriction enzyme (5 U) and 2.5 µl appropriate NEB buffer (10x) in a total 

volume of 25 µl. The reaction was incubated for 1 h at an enzyme-dependent temperature. For 

cloning purpose 10 µg DNA were digested.  

 



Material and methods 
 

80 
 

4.16.7 In-Fusion
®
 cloning 

In-Fusion
®
 cloning is a fast method for cloning based on recombination between fragment 

and vector. The In-Fusion
®
 HD Cloning (Clontech Laboratories) was conducted following the 

procedure for Spin-Column Purification of PCR fragments. For the In-Fusion
®

 reaction 

cloning primers for the fragment were designed according the manufacturers protocol and 

used for amplification by PCR. The PCR fragment was purified and the target vector was 

linearized by restriction digest (see 4.16.6). 200 ng PCR fragment was mixed with 200 ng 

vector and 2 µl In-Fusion HD Enzyme Premix (5x) in a total reaction volume of 10 µl. The 

reaction was incubated for 10 minutes at 50 °C, placed on ice and used for transformation of 

chemically competent E. coli. 

4.16.8 Transformation of chemically competent E. coli 

For transformation of chemically competent cells One Shot
®
 TOP10 cells (Invitrogen) were 

used. After thawing frozen cells on ice, 1 µl (50 ng DNA) was added, gently mixed and 

incubated on ice for 30 minutes. Transformation was induced by heat shock for 30 seconds at 

42 °C. Bacteria were placed on ice for two minutes before 250 µl pre-warmed S.O.C medium 

was added. The cells were incubated at 37 °C for 1 h at 225 rpm in a shaking incubator and  

50 µl was spread on pre-warmed selective plates containing the appropriate antibiotic. The 

plates were inverted and incubated overnight at 37 °C. Bacterial colonies were used for 

inoculation of LB media. 

4.16.9 Plasmid DNA purification  

Small amounts of plasmid DNA was purified from 2 ml overnightbacterial cultures, which 

were produced by the inoculation of antibiotics containing LB medium with single colonies at 

37 °C. Bacteria were harvested by centrifugation at room temperature and 8000 rpm for 10 

minutes. For purification of plasmid DNA the QIAprep
®
 Spin Miniprep kit (Qiagen) was used 

according to the protocol of the manufacturer. 

4.16.10 Plasmid DNA purification for generation of transgenic flies 

In order to obtain high quality DNA for injections to generate transgenic fly lines, the 

QIAGEN Plasmid Midi Kit was used according to manufacturers protocols. Single bacterial 

colonies were used to inoculate a starter culture of 2 ml of LB medium with appropriate 

antibiotics. Bacterial cultures were grown for 8 hours at 37 °C and 300 rpm. 50 µl starter 

culture was used to inoculate 100 ml LB medium with appropriate antibiotics which was 
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incubated overnight at 37 °C and 300 rpm. The bacterial cells were harvested by 

centrifugation at 6000 g for 15 min at 4 °C.  

4.16.11 Conventional Sanger sequencing of cloned constructs 

DNA sequencing was done in house by Regina Dirksen on a 3730 DNA Analyzer sequencer 

(Applied Biosystems) at the Max-Planck-Institute for Biology of Aging. 

4.16.12 Genomic DNA preparation from whole flies 

A single fly was placed into a tube and homogenized in 50 µl squishing buffer using a pipette 

tip and incubated at 37 °C for 20 minutes. Proteinase K was inactivated by heating to 95 °C 

for 2 minutes and then the homogenate was briefly centrifuged. 1 µl of the supernatant 

containing the DNA was used for PCR analysis. 

4.16.13 RNA extraction  

Tissues or whole flies were homogenized in 700 µl QIAzol Lysis Reagent using FastPrep™ 

Lysing Matrix tubes and the FastPrep
®
-24 instrument at maximum speed for 20 seconds. 

RNA was extracted using the miRNeasy Mini Kit (Qiagen) following the protocol for 

purification of total RNA including small RNAs, from animal tissues. Purified RNA was 

eluted in 30 µl elution buffer.  

4.16.14 Determination of RNA concentration  

RNA concentration was measured using the Qubit® 2.0 Fluorometer and the Qubit™ RNA 

BR Assay Kits (Invitrogen). Quantification of RNA by the Qubit system is based on a 

comparison with a standard curve generated with kit-included standard concentrations.  

4.16.15 Polyacrylamide RNA gel electrophoresis 

RNA gel electrophoresis was conducted using a PROTEAN
®

 II xi Cell (Bio-Rad) with a 15 % 

polyacrylamide/urea gel in 0.5 x TBE buffer.  The polyacrylamide/urea gel was prepared as 

follows: 18 g urea was dissolved in 14.075 ml acrylamide solution (40 %, 29:1) and 3.75 ml 

TBE (10x) by stirring at 37 °C. 6.33 ml water was added. For polymerization 187.5 µl 

ammonium persulfate (APS; 10 %) and 18.75 µl TEMED was added. The solution was mixed 

and the gel was poured avoiding the introduction of air bubbles. Polymerization was complete 

after 45 minutes. The gel was pre-run at 275 Volt for 30 minutes and remaining non-

polymerized acrylamide was rinsed off the wells using a small pipette tip. Samples were 
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mixed 1:1 with RNA loading dye (2x; 89.75 % Formaldehyde, 10 % TBE (5x), 0.05 % 

sodium dodecyl sulfate (SDS),  0.05 % bromophenol blue) and miRNA marker (NEB) and 

denatured at 95 °C for 2 minutes before loading on the gel. The gel was run at 300 Volt for 

300 minutes with permanent cooling of the buffer by connecting the gel running apparatus to 

a GD120 water bath (Grant). For visualization the gel was incubated in an 1 % EtBr solution 

for 30 minutes and viewed under UV light. The invisible band containing small RNAs was 

cut out at the size between 19 and 26 bases.   

4.16.16 RNA gel elution and precipitation  

The excised polyacrylamide gel containing small RNAs was crushed with a RNA-free pistol 

and RNA was eluted using 528 µl elution buffer (17.96 µl H2O, 2 µl NaOac (3M), 40 µl 

EDTA (0.5 M), 3 µl RNase Inhibitor) with agitation overnight at 4°C.  The sample was 

centrifuged at 4 °C at 10000 rpm and the gel-free supernatant was mixed with 70 µl 3M 

Sodium Acetate pH 5.5, 2 µl GlycoBlue
TM

 and 600 µl isopropanol and placed at -80 °C for 30 

minutes for precipitation. The sample was centrifuged at 4 °C and 20000 g for 30 minutes. 

The supernatant was discarded and the pellet was washed with cold 80 % EtOH. EtOH was 

removed and the RNA pellet was air dried for 5 minutes and then resuspended in 8 µl DEPC-

treated water. 

4.17 Generation of targeting construct and donor flies for the knock-out of     

miR-986  

A targeting construct for homologous recombination was generated by cloning 4 kb upstream 

and 4 kb downstream sequences flanking the miR-986 gene into the targeting vector pW25 

(Gong and Golic, 2004). Upstream flanking sequence was cloned into BsiWI and AscI 

restriction sites with primers 140 and 141 using the In-Fusion
®
 HD Cloning Kit (Clontech). 

Downstream flanking sequence was cloned into SphI and NotI using primer 154 and 155 and 

the In-Fusion
®
 HD Cloning Kit (Clontech). The correct sequence of the vector containing the 

mir-986 flanking sequences was verified by sequencing. The construct was injected by 

BestGene Drosophila Embryo Injection Services (www.thebestgene.com). The insertion of 

resulting donor flies was mapped to the 3rd chromosome. 

4.18 Generation of miR-986
KO 

flies 

In order to generate miR-986
KO

 flies, donor flies with insertion on the 3rd chromosome were 

crossed to flies expressing FLP recombinase and I-SceI endonuclease (y
1
, w*; P{70FLP}11, 

P{70I-SceI}2B, sna
Sco

/CyO, S
2
). The FLP recombinase mobilizes the DNA from the targeting 
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construct and the I-SceI endonuclease linerarizes the extrachromosomal circular DNA to 

enable effective homologous recombination with the endogenous DNA at the target locus. 

Activation of FLP recombinase and I-SceI endonuclease was induced by heatshock of first 

instar larvae at 38 °C for 1h. Putative homologous recombination events were identified by 

the fast screening method (Gong and Golic, 2003). Therefore, mosaic-eyed or white-eyed flies 

were crossed to flies expressing FLP recombinase (w
1118

; P{70FLP}10) and first instar larvae 

were heatshocked at 38 °C for 1 h. Flies were screened for red eyes as marker for targeting 

events. PCR was used for the identification of miR-986
KO

 mutants using primer 185 and 186.  

To generate miR-986
KO*

 flies lacking the mini-white marker gene, which is flanked by loxP-

sites, miR-986
KO

 flies were crossed to flies providing expression of Cre recombinase 

(y
1
w

67c23
P{Crey}1b; sna

Sco
/CyO). First instar larvae were heat-shocked at 38°C for 1 h to 

induce expression of Cre recombinase and the removal of the mini-white gene. Resulting 

mosaic-eyed F1 males were crossed to w; +/CyO virgins. Removal of mini-white gene in 

white-eyed F2 flies was verified by eye color. 

 

4.19 Microarrays 

For microarray analyses 50 thoraces of 10 days old female wild type and 100 thoraces of 

dilp2-3,5 flies were mechanically separated or dissected. Per sample we used 50 wild type and 

100 dilp2-3,5 abdomen or digestive tracts, respectively. 200 brains were used per genotype 

and sample.Total RNA was isolated, labeled with the Genisphere FlashTag® Biotin HSR kit 

and hybridized to Affymetrix GeneChip® miRNA Arrays 1.0 or 2.0 according to the 

protocols of the manufacturer by Dr. Bruno Hüttel at the Max-Planck Institute for plant 

breeding in cologne. Affymetrix GeneChip 1.0 contained probes for 152 and GeneChip 2.0 

contained probes for 186 Drosophila microRNAs. Three biological replicates were used per 

tissue and genotype. 

4.20 RNA column fractionation 

In order to isolate small RNA for sequencing, total RNA was fractionated using the LabChip
®
 

XT by Dr. Bruno Hüttel at the Mack-Planck Institute for plant breeding in cologne.  

4.21 rRNA depletion using magnetic beads 

In order to deplete the most abundant rRNA species in the samples, streptavidin coupled 

Dynabeads
®

 were used. This technique is based on magnetic separation of biotinylated DNA 

oligonucleotides complementary to the target rRNA sequence of the input RNA.  The rRNA-
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complementary oligonucleotide was used at a final concentration of 2 pM/µl and had the 

sequence: 5'BIO-TGCTTGGACTACATATGGTTGAGGGTTGTAA-3' A6T. Total RNA or 

gel-isolated small RNA was mixed with DEPC-treated water in a non-stick microfuge tube to 

a total volume of 21 µl. 5 µl rRNA-complementary oligonucleotide and 3 µl 20 x SSC was 

added. The mixture was incubated for 2 minutes at 70 °C and then put on ice. 1 µl 

SUPERaseIn
TM

 was added and the mixture was incubated for 15 minutes at 37 °C with 

shaking at 400 rpm in an Eppendorf thermomixer. The sample was chilled on ice for 5 

minutes. In the meantime, 150 µl vortexed MyOne Streptavidin C1 dynabeads were prepared 

by washing 3 times in 150 µl 1 x MyOne C1 dynabead B&W buffer + 0.01 % Tween, 2 times 

in 150 µl solution A and 2 times in 150 µl solution B. The beads were resuspended in 30 µl   

2 x MyOne C1 dynabead B&W buffer + 0.01 % Tween. The sample was briefly centrifuged 

and added to the beads. Target rRNA bound to the antisense oligonucleotides by incubation 

for 15 minutes at room temperature with gentle agitation at 400 rpm. To remove the beads the 

tube was placed on a magnetic stand and the supernatant was transferred into a new non-stick 

tube. The depleted RNA was precipitated by mixing with 468 µl DEPC-treated water, 70 µl 

3M Sodium Acetate pH 5.5, 2 µl GlycoBlue
TM

 and 600 µl isopropanol and placing it at -80 °C 

for 30 minutes. The tube was centrifuged at 4 °C at 20000 g for 30 minutes, the supernatant 

was discarded and the pellet was washed with cold 80 %  EtOH. EtOH was removed and the 

RNA pellet was air dried for 5 minutes and then resuspended in 8 µl DEPC-treated water. 

4.22 Illumina small RNA library preparation 

Small RNA sequencing libraries were generated using the Small RNA v1.5 Kit from Illumina 

following the manufacturers protocol. Small RNA was isolated from 2 µg total RNA and used 

as input for the library. In brief, adapters for reverse transcription and amplification were 

ligated on both ends of the small RNA fragments. The adapter-ligated RNA was reverse 

transcribed and then amplified. The cDNA was further gel-purified to exclude adapter dimer 

sequences in the library.  

4.23 Cluster generation and sequencing 

Cluster generation and 100 bp single read next generation sequencing was done using the 

Illumina HiSeq2500 sequencer by Dr. Bruno Hüttel at the Mack-Planck Institute for plant 

breeding in cologne.  
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4.24 Data analysis 

4.24.1 Statistics 

Lifespan data were subjected to survival analysis by Log-rank test (Peto and Peto, 1972) using 

Excel software. Unless otherwise noted, following statistic tests were used: Fecundity was 

tested by Wilcoxon rank test. Single qRT-PCR data was analyzed using Student's t-test. In 

order to analyze differences between groups, analysis of variance (ANOVA) was used and 

groups with significant differences were identified using Tukey-Kramer post-hoc analysis. 

Statistical analysis of microarray data is described in chapter 4.24.4.6 and statistical analysis 

of sequencing data is described in chapter 4.24.5.  

4.24.2 Calculation of melting temperature (Tm) 

Melting temperature of miRNAs was calculated with the formula: Tm= 0.41 x (%GC-

content)+69.3-(650/sequence length). 

4.24.3 Calculation of tissue specificity score 

The specificity score evaluates the tissue specificity of the expression of a specific miRNA 

and is calculated as described in Landgraf et al. (Landgraf  et al., 2007): 

Specificity scorem = log2(number of tissue types) + Σt Gm,t log2(Gm,t)     

Gm,t = Fm,t / Σt' Fm,t'. Fm,t = normalized count; t= tissue type; m = miRNA; t' = other tissue 

types; m' = other miRNAs. Only microRNAs with reads >10 or chip expression >15 in wt and 

dilp2-3,5 flies were used for analysis of tissue-specificity. 

4.24.4 Computational miRNA target prediction  

MiRNA targets were predicted using the miRanda algorithm (Enright et al., 2003) and rated 

using SVR score (Betel et al., 2010) of the online miRNA.org source (for details see chapter 

2.3.2).  

4.24.5 Data analysis of microarray data  

  4.24.5.1 Preprocessing 

Microarray data preprocessing was conducted by Affymetrix


  miRNA QC tool and included 

image analysis, background adjustment, normalization and summarization.  
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  4.24.5.2 Image analysis 

Probe sets consisting of perfect match probes and mismatch probes were used to estimate the 

microRNA signal intensity. The intensity of a signal detection call was determined by the 

Wilcoxon Rank-Sum test of the probe set signals compared to the signals from GC content 

matched anti-genomic probes. Probes with p-values > 0.06 were counted as „not detected“ 

above background. Fischer’s exact test is used for computing the probe set p-value. 

  4.24.5.3 Background adjustment 

GC content matched background signals were determined by the same set of anti-genomic 

probes used for signal detection calls. The background was subtracted from each miRNA 

probe signal value. 

  4.24.5.4 Normalization 

Measurements across microarrays can vary due to differences in reagent batches, sample 

preparation, hybridization, in physical differences of the arrays or differences in scanning. To 

allow inter-array comparisons of probe intensities, the Affymetrix® miRNA QC tool uses 

quantile normalization (Boldstad et al., 2003). This normalization method forces the data to 

have the same distribution of log(probe intensities). 

  4.24.5.5 Summarization 

To obtain one value from a set of probes for each miRNA, the Affymetrix
®
 miRNA QC tool 

uses median polish. This summarization method ignores outlier probe-level values (Irizarry et 

al., 2003). 

Data preprocessing by the Affymetrix
®
 miRNA QC tool gives rise to a miRNA expression 

matrix with expression values in rows and arrays in columns. These data were used for further 

analyses. Probe sets of microRNAs that were not called „present“ by detection call in 2 of 3 

samples in one tissue group were assessed as „not detected“.  

  4.24.5.6 Statistics 

Statistical significance of miRNA expression fold changes in dilp2-3,5 flies by microarray 

were evaluated by Student's t-test. P-values of multiple comparisons were adjusted by the 

Benjamini Hochberg procedure (Benjamini and Hochberg, 1995). 
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4.24.6 Analysis of sequencing data 

For the analysis, adapter sequences were computationally clipped from the raw sequencing 

data. MiRNAs in the sequencing datasets were identified using the algorithm miRDeep 

(Friedländer et al., 2008). This algorithm aligns reads to the genome and decides whether a 

plausible miRNA precursor is formed. It then scores the probability for a predicted precursor 

to be a real miRNA precursor.  

MiRDeep aligns mature Drosophila miRNA sequences to the sequencing reads and allows for 

mismatches in the last three nucleotides of the mature sequences. At the end the algorithm 

counts the number of reads mapping to a miRNA. In order to compare different libraries, read 

counts were normalized to total read number. 

To identify the source of the reads that did not map to Drosophila miRNAs the dataset was 

aligned to the genome of Wolbachia pipientis (NC_002978.6), the genome of Saccharomyces 

cerevisiae and to Drosophila 18s-2s-5s-28s rRNA by BLAST.  

4.24.7 Computational identification of differentially expressed miRNAs 

Differential expressed miRNAs were identified using the "R"-package DESeq, which 

provides methods to test for differential expression (Anders and Huber, 2010). 
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5 Supplements 

5.1 Supplemental Figures 

 
Figure S1: Differential expression of miR-2500-5p in tissues of different insulin mutants and at two 
SYA food concentrations. Significant downregulation was detected by qRT-PCR in different samples 
as indicated by asterisks. miRNA transcript level was normalized to wild type samples, which by 
default was set to 1.* p<0.05; ** p<0.01, Student'st-test. 

 

 
Figure S2: Overexpression of miR-285 was not detected. qRT-PCR analysis reveals no upregulation 
of miR-285. miRNA transcript level was normalized to tubulinGS/+ with RU, which by default was set 
to 1.* p<0.05; ** p<0.01, Student'st-test  
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Figure S3: Tissue specificity of miRNA expression in dilp2-3,5 flies as detected by next-generation 
sequencing. Tissue specificity of several miRNAs differs in dilp2-3,5 flies. The total height of each bar 
represents the tissue specificity and the relative heights for each of the tissues are proportional to 
miRNA expression in a given tissue type relative to all tissue types. miRNAs with at least 10 reads 
are included in the analysis. 
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Figure S4: Comparison of dilp2-3,5 absolute expression data as detected by microarrays and next 
generation sequencing. dilp2-3,5 absolute expression data are similar to wild type data. (A) 
Comparison of expression data in brain, thorax, digestive tract and abdomen as detected by 
microarray hybridized with total RNA and sequencing of libraries generated from isolated small RNA. 
Pearson correlation coefficient of fold change data was computed. (B) Comparison of expression of 
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sequencing datasets and datasets from microarrays hybridized with the same isolated RNA as used 
for sequencing. Using the same RNA for both platforms does not increase correlation. (C) Comparison 
of datasets from microarrays hybridized with total RNA and isolated RNA show strong correlation. 

 

 
Figure S5: Comparison of performance of the internal miRNA controls 2S rRNA and sno RNA. The 
usage of sno RNA leads to a better significance of results due to more suitable Ct values for the raw 
data analysis via the ΔΔCt method. miRNA transcript level was normalized to tubulin-Gal4 samples, 
which by default was set to 1. ** p<0.01; *** p<0.001, Student's t-test 

 

5.2 Supplemental Tables 

microRNA conservation level sequencing reads (pooled tissues) 

dme-mir-276a 4 1607779.82 

dme-mir-1 5 1059892.77 

dme-mir-8 5 898535.04 

dme-bantam 5 662351.58 

dme-mir-184 5 409008.16 

dme-mir-10 5 401430.01 

dme-mir-14 3 332219.85 

dme-mir-34 5 322346.89 

dme-mir-263a 5 285094.50 

dme-mir-276b 4 222985.93 

dme-mir-956 1 209390.08 

dme-mir-277 3 175067.85 

dme-let-7 5 145879.60 

dme-mir-999 3 136730.78 

dme-mir-7 5 106241.11 

dme-mir-305 4 98811.07 

dme-mir-283 5 90028.42 

dme-mir-375 5 67902.49 

dme-mir-9a 5 67606.33 

dme-mir-11 3 63844.16 

dme-mir-31a 5 42876.11 

dme-mir-317 4 41535.06 

dme-mir-957 3 39215.73 

dme-mir-33 5 32028.52 

dme-mir-281-2 5 30571.98 

dme-mir-9b 5 28122.78 
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dme-mir-190 5 27088.38 

dme-mir-275 4 26223.56 

dme-mir-281-1 5 26089.99 

dme-mir-958 2 25061.65 

dme-mir-987 2 21260.57 

dme-mir-9c 5 19220.19 

dme-mir-100 5 17301.80 

dme-mir-314 2 17051.61 

dme-mir-986 2 16809.10 

dme-mir-252 5 16420.49 

dme-mir-278 5 16409.36 

dme-mir-125 5 15634.15 

dme-mir-284 2 12932.56 

dme-mir-263b 5 12017.82 

dme-mir-927 3 10399.92 

dme-mir-315 5 9194.69 

dme-mir-133 5 8663.25 

dme-mir-13b-2 5 7615.46 

dme-mir-13b-1 5 7530.33 

dme-mir-12 5 7153.42 

dme-mir-2b-2 5 6784.09 

dme-mir-981 5 6722.11 

dme-mir-1012 2 6701.53 

dme-mir-279 5 5883.85 

dme-mir-306 3 5359.71 

dme-mir-932 3 4566.55 

dme-mir-993 5 4378.74 

dme-mir-988 3 4175.03 

dme-mir-2b-1 5 4139.65 

dme-mir-2a-2 5 4060.51 

dme-mir-137 5 3861.05 

dme-mir-274 2 3772.99 

dme-mir-2a-1 5 3458.05 

dme-mir-318 2 3231.93 

dme-mir-316 3 2843.58 

dme-mir-304 2 2502.21 

dme-mir-970 3 2224.68 

dme-mir-1010 2 2087.70 

dme-mir-989 3 1999.94 

dme-mir-996 3 1752.74 

dme-mir-994 2 1709.17 

dme-mir-965 4 1591.64 

dme-mir-1000 3 1372.23 

dme-mir-998 3 998.46 

dme-mir-210 5 993.74 

dme-mir-929 3 965.99 

dme-mir-92a 5 864.41 
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dme-mir-6-3 2 760.97 

dme-mir-6-1 2 750.12 

dme-mir-6-2 2 749.79 

dme-mir-31b 5 637.20 

dme-mir-87 5 636.43 

dme-mir-995 2 581.18 

dme-mir-1015 1 571.72 

dme-mir-124 5 559.56 

dme-mir-1006 2 553.85 

dme-mir-219 5 553.18 

dme-mir-92b 5 517.46 

dme-mir-2535b 1 487.41 

dme-mir-2c 5 453.23 

dme-mir-5 2 413.76 

dme-mir-1017 1 387.60 

dme-mir-1013 2 373.90 

dme-mir-1001 2 367.14 

dme-mir-286 3 354.41 

dme-mir-307a 5 320.42 

dme-mir-312 2 304.65 

dme-mir-966 1 266.72 

dme-mir-13a 5 256.12 

dme-mir-iab-4 4 221.54 

dme-mir-4951 1 214.89 

dme-mir-2279 1 193.69 

dme-mir-990 1 135.89 

dme-mir-971 3 123.35 

dme-mir-282 3 116.27 

dme-mir-980 3 113.70 

dme-mir-969 2 108.13 

dme-mir-79 5 107.42 

dme-mir-311 2 106.14 

dme-mir-1003 2 98.82 

dme-mir-4 2 65.00 

dme-mir-1004 1 64.33 

dme-mir-954 1 59.97 

dme-mir-310 2 54.37 

dme-mir-4984 1 51.48 

dme-mir-2494 2 50.22 

dme-mir-4969 1 48.00 

dme-mir-4975 1 38.00 

dme-mir-3 3 36.15 

dme-mir-1007 1 35.79 

dme-mir-308 3 35.39 

dme-mir-4911 1 27.77 

dme-mir-955 2 27.30 

dme-mir-967 2 27.19 
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dme-mir-1009 1 26.22 

dme-mir-1002 2 22.00 

dme-mir-4976 1 20.12 

dme-mir-1014 1 18.73 

dme-mir-4960 1 17.90 

dme-mir-984 1 16.80 

dme-mir-193 5 16.33 

dme-mir-983-1 2 14.69 

dme-mir-983-2 2 14.69 

dme-mir-1016 1 13.45 

dme-mir-2500 1 13.10 

dme-mir-982 2 12.00 

dme-mir-4963 1 11.75 

dme-mir-313 2 11.66 

dme-mir-4952 1 10.78 

dme-mir-285 5 9.25 

dme-mir-4958 1 9.23 

dme-mir-1011 2 8.99 

dme-mir-4916 1 8.89 

dme-mir-4973 1 6.85 

dme-mir-4940 1 6.72 

dme-mir-4956 1 5.85 

dme-mir-964 2 5.58 

dme-mir-2489 2 4.76 

dme-mir-4962 1 4.48 

dme-mir-3645 1 4.36 

dme-mir-991 2 4.15 

dme-mir-1005 2 4.02 

dme-mir-960 2 3.47 

dme-mir-4949 1 3.28 

dme-mir-3642 1 3.12 

dme-mir-4961 1 3.12 

dme-mir-976 2 2.93 

dme-mir-2282 1 2.90 

dme-mir-962 2 2.58 

dme-mir-2501 1 2.53 

dme-mir-2283 1 2.44 

dme-mir-4964 1 2.28 

dme-mir-961 2 2.20 

dme-mir-4955 1 2.18 

dme-mir-4944 1 2.16 

dme-mir-974 1 2.14 

dme-mir-3641 1 2.10 

dme-mir-973 1 1.98 

dme-mir-4983 1 1.92 

dme-mir-4953 1 1.84 

dme-mir-4945 1 1.77 
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dme-mir-289 2 1.74 

dme-mir-4957 1 1.64 

dme-mir-959 2 1.63 

dme-mir-4943 1 1.58 

dme-mir-4972 1 1.57 

dme-mir-2492 1 1.46 

dme-mir-979 1 1.39 

dme-mir-968 2 1.31 

dme-mir-975 2 1.30 

dme-mir-iab-8 3 1.27 

dme-mir-963 2 1.20 

dme-mir-4948 1 1.17 

dme-mir-4985 1 1.16 

dme-mir-4913 1 1.04 

dme-mir-4987 1 0.98 

dme-mir-4950 1 0.83 

dme-mir-4982 1 0.82 

dme-mir-4968 1 0.81 

dme-mir-4966 1 0.79 

dme-mir-4915 1 0.75 

dme-mir-4977 1 0.74 

dme-mir-4942 1 0.72 

dme-mir-4910 1 0.71 

dme-mir-309 3 0.67 

dme-mir-4979 1 0.63 

dme-mir-4965 1 0.55 

dme-mir-4939 1 0.53 

dme-mir-977 2 0.48 

dme-mir-972 1 0.47 

dme-mir-2498 1 0.46 

dme-mir-978 2 0.43 

dme-mir-4971 1 0.41 

dme-mir-4978 1 0.35 

dme-mir-4981 1 0.32 

dme-mir-1008 1 0.31 

dme-mir-4974 1 0.27 

dme-mir-2496 1 0.23 

dme-mir-2497 1 0.20 

dme-mir-4912 1 0.20 

dme-mir-4967 1 0.18 

dme-mir-3644 1 0.16 

dme-mir-303 2 0.15 

dme-mir-307b 2 0.14 

dme-mir-2499 1 0.13 

dme-mir-2281 1 0.13 

dme-mir-985 1 0.13 

dme-mir-4980 1 0.12 
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dme-mir-2491 1 0.10 

dme-mir-4941 1 0.10 

dme-mir-4919 1 0.09 

dme-mir-4917 1 0.07 

dme-mir-2495 1 0.05 

dme-mir-3643 1 0.05 

dme-mir-4954 1 0.05 

dme-mir-4947 1 0.04 

dme-mir-997 1 0.03 

dme-mir-2280 1 0.03 

dme-mir-4970 1 0.02 

dme-mir-2490 1 0.00 

dme-mir-2493 1 0.00 

dme-mir-280 2 0.00 

dme-mir-287 2 0.00 

dme-mir-288 2 0.00 

dme-mir-4908 1 0.00 

dme-mir-4909 1 0.00 

dme-mir-4914 1 0.00 

dme-mir-4918 1 0.00 

dme-mir-4946 1 0.00 

dme-mir-4959 1 0.00 

dme-mir-4986 1 0.00 

dme-mir-992 2 0.00 
Supplemental table 1: Phylogenetic conservation and expression level of miRNAs as determined by 
sequencing reads. Conservation level code: 1, Drosophila melanogaster (species); 2, Drosophilidae 
(family); 3, Insecta (class), 4, Ecdysozoa (superphylum); 5, Bilateria. 

 

miRNA calculated melting temperature 
dme-miR-1014-3p 48.11 
dme-miR-2279-5p 49.07 
dme-miR-1006-3p 49.95 
dme-miR-283-5p 50.06 
dme-miR-2279-3p 50.94 
dme-miR-2280-5p 50.94 
dme-miR-2489-3p 50.94 
dme-miR-958-3p 50.94 
dme-miR-983-5p 50.94 
dme-miR-991-3p 50.94 
dme-miR-1009-3p 51.73 
dme-miR-2283-5p 51.73 
dme-miR-304-5p 51.73 
dme-miR-1008-3p 52.01 
dme-miR-4-3p 52.01 
dme-miR-977-3p 52.01 
dme-miR-1003-3p 52.80 
dme-miR-1007-3p 52.80 
dme-miR-2280-3p 52.80 
dme-miR-2282-3p 52.80 
dme-miR-2497-3p 52.80 
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dme-miR-375-3p 52.80 
dme-miR-79-3p 52.80 
dme-miR-972-3p 52.80 
dme-miR-976-3p 52.80 
dme-miR-iab-8-3p 52.80 
dme-miR-1013-3p 53.20 
dme-bantam-3p 53.52 
dme-miR-2501-3p 53.52 
dme-miR-288-3p 53.52 
dme-miR-982-5p 53.52 
dme-let-7-5p 53.97 
dme-miR-1005-3p 53.97 
dme-miR-14-3p 53.97 
dme-miR-2281-3p 53.97 
dme-miR-287-3p 53.97 
dme-miR-87-3p 53.97 
dme-miR-969-5p 53.97 
dme-miR-190-5p 54.18 
dme-miR-2498-5p 54.18 
dme-miR-987-5p 54.18 
dme-miR-137-3p 54.66 
dme-miR-13a-3p 54.66 
dme-miR-1-3p 54.66 
dme-miR-279-3p 54.66 
dme-miR-308-3p 54.66 
dme-miR-315-5p 54.66 
dme-miR-6-3p 54.66 
dme-miR-927-5p 54.66 
dme-miR-961-5p 54.66 
dme-miR-964-5p 54.66 
dme-miR-971-3p 54.66 
dme-miR-974-5p 54.66 
dme-miR-999-3p 54.66 
dme-miR-9c-5p 54.66 
dme-miR-iab-4-5p 54.66 
dme-miR-1012-3p 55.30 
dme-miR-2492-3p 55.30 
dme-miR-7-5p 55.30 
dme-miR-8-3p 55.30 
dme-miR-975-5p 55.30 
dme-miR-984-5p 55.30 
dme-miR-9a-5p 55.30 
dme-miR-9b-5p 55.30 
dme-miR-280-5p 55.86 
dme-miR-963-5p 55.88 
dme-miR-968-5p 55.88 
dme-miR-1000-5p 55.92 
dme-miR-1016-3p 55.92 
dme-miR-314-3p 55.92 
dme-miR-2497-5p 56.42 
dme-miR-10-5p 56.53 
dme-miR-13b-3p 56.53 
dme-miR-276b-3p 56.53 
dme-miR-306-5p 56.53 
dme-miR-318-3p 56.53 
dme-miR-959-3p 56.53 
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dme-miR-960-5p 56.53 
dme-miR-965-3p 56.53 
dme-miR-992-3p 56.53 
dme-miR-994-5p 56.53 
dme-miR-996-3p 56.53 
dme-miR-10-3p 57.08 
dme-miR-12-5p 57.08 
dme-miR-219-5p 57.08 
dme-miR-277-3p 57.08 
dme-miR-281-3p 57.08 
dme-miR-303-5p 57.08 
dme-miR-5-5p 57.08 
dme-miR-956-3p 57.08 
dme-miR-iab-8-5p 57.08 
dme-miR-307-3p 57.30 
dme-miR-1001-5p 57.87 
dme-miR-11-3p 57.87 
dme-miR-2494-5p 57.87 
dme-miR-33-5p 57.87 
dme-miR-970-3p 57.87 
dme-miR-979-3p 57.87 
dme-miR-989-3p 57.87 
dme-miR-995-3p 57.87 
dme-miR-997-5p 57.87 
dme-miR-998-3p 57.87 
dme-miR-2500-5p 58.06 
dme-miR-962-5p 58.06 
dme-miR-100-5p 58.39 
dme-miR-276a-3p 58.39 
dme-miR-285-3p 58.39 
dme-miR-309-3p 58.39 
dme-miR-313-3p 58.39 
dme-miR-932-5p 58.39 
dme-miR-986-5p 58.39 
dme-miR-1011-3p 58.87 
dme-miR-2281-5p 58.87 
dme-miR-2490-5p 58.87 
dme-miR-2498-3p 58.87 
dme-miR-305-5p 58.87 
dme-miR-1002-5p 59.30 
dme-miR-1010-3p 59.30 
dme-miR-2494-3p 59.30 
dme-miR-263a-3p 59.30 
dme-miR-iab-4-3p 59.30 
dme-miR-973-5p 59.70 
dme-miR-263b-3p 59.82 
dme-miR-929-3p 59.82 
dme-miR-954-5p 59.82 
dme-miR-967-5p 59.82 
dme-miR-990-5p 59.82 
dme-miR-289-5p 60.07 
dme-miR-1004-3p 60.25 
dme-miR-125-5p 60.25 
dme-miR-193-3p 60.25 
dme-miR-2495-5p 60.25 
dme-miR-2500-3p 60.25 
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dme-miR-281-2-5p 60.25 
dme-miR-307-as-5p 60.25 
dme-miR-310-3p 60.25 
dme-miR-311-3p 60.25 
dme-miR-312-3p 60.25 
dme-miR-316-5p 60.25 
dme-miR-31b-5p 60.25 
dme-miR-3-3p 60.25 
dme-miR-957-3p 60.25 
dme-miR-978-3p 60.25 
dme-miR-980-3p 60.25 
dme-miR-981-3p 60.25 
dme-miR-985-3p 60.25 
dme-miR-1017-3p 60.65 
dme-miR-2a-3p 60.65 
dme-miR-993-3p 60.65 
dme-miR-274-5p 61.65 
dme-miR-184-5p 61.78 
dme-miR-210-3p 61.78 
dme-miR-2493-5p 61.78 
dme-miR-1015-3p 62.12 
dme-miR-133-3p 62.12 
dme-miR-184-3p 62.12 
dme-miR-2491-5p 62.12 
dme-miR-252-5p 62.12 
dme-miR-278-3p 62.12 
dme-miR-281-1-5p 62.12 
dme-miR-307-as-3p 62.12 
dme-miR-92a-3p 62.12 
dme-miR-276-5p 62.43 
dme-miR-286-3p 62.43 
dme-miR-2b-3p 62.43 
dme-miR-2c-3p 62.43 
dme-miR-31a-5p 62.43 
dme-miR-955-5p 62.43 
dme-miR-2499-5p 62.72 
dme-miR-2501-5p 62.72 
dme-miR-317-3p 62.72 
dme-miR-282-5p 63.66 
dme-miR-966-5p 63.73 
dme-miR-284-3p 63.85 
dme-miR-92b-3p 63.98 
dme-miR-988-3p 63.98 
dme-miR-995-5p 63.98 
dme-miR-124-3p 64.21 
dme-miR-2493-3p 64.21 
dme-miR-34-5p 64.43 
dme-miR-2496-3p 65.85 
dme-miR-275-3p 66.00 
dme-miR-2495-3p 66.13 
dme-miR-2496-5p 66.13 
dme-miR-306-3p 67.71 
dme-miR-2499-3p 67.84 
Supplemental table 2: Calculated melting temperatures for miRNAs. For calculation see chapter 
4.24.1 
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Internal 
primer 
name Sequence Description 

JW109 
ACTGGTGAGGAGGCCAT 

Sequencing miR-986 construct 
upstream sequence 

JW110 
CCATATTGAAATGGAACCCCAG 

Sequencing miR-986 construct 
upstream sequence 

JW111 
CGCAATGCCGCACAG 

Sequencing miR-986 construct 
upstream sequence 

JW112 
TTATACTTACCAGACGATCATGAC 

Sequencing miR-986 construct 
upstream sequence 

JW113 
GTCATGATGCAGAGACAATGTAA 

Sequencing miR-986 construct 
upstream sequence 

JW114 
TTGCTGCCATAAAACAATATATACTGG 

Sequencing miR-986 construct 
upstream sequence 

JW115 
AGCGACTTTACGACCGG 

Sequencing miR-986 construct 
downstream sequence 

JW116 
GATCACCCCAGCATTCCAC 

Sequencing miR-986 construct 
downstream sequence 

JW117 
GATACTACCACTTCTGGAGTGTC 

Sequencing miR-986 construct 
downstream sequence 

JW118 
TCTGGATGAGCTCGTCTCTAA 

Sequencing miR-986 construct 
downstream sequence 

JW119 
CTCAAATCCGATTTACTCGCTG 

Sequencing miR-986 construct 
downstream sequence 

JW120 
TGTGACATGTTAATAACGCTAAGG 

Sequencing miR-986 construct 
downstream sequence 

JW121 
ACTTTGCTCCTGAATATCCAGAA 

Sequencing miR-986 construct 
downstream sequence 

JW140 TCCCTAGGGGATCACGTACGGATGCA
GCAGGCCTCGAC 

miR-986 Infusion cloning 
forward primer of upstream 4 kb 

JW141 CTAGTCTAGGGCGCGCCTCCTCTGC
GTGGCTAACG 

miR-986 Infusion cloning 
reverse primer of upstream 4 kb 

JW154 
TAGTCTAGGGTACCGCATGCAGCGAC
TTTACGACCGGA 

miR-986 Infusion cloning 
forward primer of downstream 4 
kb 

JW155 
AGGGTAATGTACCGCGGCCGCACGT
TGCGCCTCCTTTATAAAC 

miR-986 Infusion cloning 
reverse primer of downstream 4 
kb 

JW185 GCAAGTCATGCTGAAAGCAC miR-986KO genotyping primer 
JW186 CAGTCACAACGCTATTCGAG miR-986KO genotyping primer 
rRNA 
depletion 
oligo 

5'BIOTIN-TGCTTGGACTA 
CATATGGTTGAGGGTTGTAA-3' A6T 

Primer for rRNA oligo depletion 

Supplemental table 3: List of oligonucleotides. 
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