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Chapter 1

Introduction

1.1 Background and Motivation

Renewable energies are considered to play an important role in achieving greenhouse

gas emission reduction targets. In addition, the European Commission states that the

promotion of renewable energies contributes to “promoting the security of energy sup-

ply, promoting technological development and innovation and providing opportunities

for employment and regional development (. . . )”(EU Directive 2009/28/EC). For these

reasons, the share of renewable energy in primary energy consumption and, in particular,

in electricity consumption should increase in the coming years and decades, according to

political plans. Up to 2020, binding targets for the renewable energy share in electricity

(RES-E) consumption have been defined in all member states of the European Union, in

compliance with Directive 2009/28/EC. Overall, on a European level, the RES-E share

is set to increase up to 34% by 2020, compared to 19.9% in 2010 (BMU (2012) and

EREC (2011)). Post 2020, RES-E targets have only been defined in some European

countries thus far. For example, Germany envisages reaching a RES-E share of 80% by

2050 (BMWi/BMU (2010)). In addition, renewable energies may potentially play an

important role in realizing European decarbonization plans up to 2050 (EC (2011b) and

Jägemann et al. (2013)).

Two major challenges come along with an increasing RES-E share. First, most renewable

energies are not (yet) competitive with other energies and would not be built without

support mechanisms. Thus, with an increasing RES-E share, support expenditures also

increase. For example, in Germany, support expenditures increased from 0.9 bn. EUR in

2000, when the German renewable energy support system (EEG) was introduced, up to

1



Chapter 1. Introduction 2

15.4 bn. EUR in 2012 (Übertragungsnetzbetreiber (2012)).1 Second, renewable energies

have to be integrated in the electricity system. In particular, many renewable energies,

such as wind and solar, depend on hourly meteorological conditions. The intermittency

of renewable energy infeed has important consequences on the electricity system. First,

hourly residual demand becomes more volatile and the balancing of hourly demand and

supply becomes more challenging than in electricity systems with mainly dispatchable

power plants. Second, the yearly utilization times that can be achieved by thermal

power plants are affected by an increasing RES-E share (e.g., de Miera et al. (2008)):

In many hours of the year, a large part of demand is met by renewable energies, while

in some hours residual demand remains high when the wind is not blowing and the sun

is not shining. Depending on their yearly utilization times, different power plant types

(characterized by different capital/operation cost ratios) are cost-efficient. Therefore,

an increasing RES-E penetration affects optimal investment decisions of thermal power

plants (e.g., Nicolosi (2012)). Moreover, a further challenge of RES-E integration is to

physically connect supply and demand because many favorable renewable energy sites

are located far from demand centers and have to be connected to the electricity grid.

From an economic point of view, these challenges should be tackled by building and us-

ing those technologies in those regions which allow reaching the political target at lowest

system costs. In the context of renewable energy deployment in the European Union,

RES-E plants have thus far mainly been built in countries with high promotion payments

rather than in regions where meteorological conditions are favorable and generation costs

are low (EWI (2010)). In fact, given large variances in RES-E generation costs across

different European regions, the national 2020 RES-E targets do not necessarily have to

be reached by national RES-E production only. Instead, Directive 2009/28/EC explic-

itly provides the option of reaching the national targets through cooperation between

different member states or with third countries. These cooperation mechanisms defined

by the Directive include joint projects, joint support systems and statistical transfers of

renewable energy generation. Cooperation between European countries would signifi-

cantly reduce the costs of increasing the RES-E share in the European electricity system

(e.g., EWI (2010) and Aune et al. (2012)). Nevertheless, cooperation mechanisms have

been hardly used thus far.

This conflict between the potential economic benefits of cooperation on the one hand and

the observed reluctance to cooperate on the other hand motivates the first main topic of

this thesis. Within three essays, the benefits and challenges of cross-border cooperation

in RES-E support are investigated. In doing so, the impact of cooperation is analyzed

both on the electricity system level and on the level of individual groups. In fact, as

1In the same period, the renewable energy share in gross electricity consumption increased from 6.8%
in 2000 to 23.5% in 2012 (BMU (2013)).
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also shown in general trade theory, an overall cost-efficient measure does not necessarily

result in the best outcome from the single groups’ perspectives. Consequently, financial

redistribution effects resulting from an overall economic efficient measure (such as the

introduction of trade or cooperation, which can be interpreted as a trade in RES-E

targets) can be an obstacle to the implementation of this measure. Therefore, in this

thesis, the economic benefit of cooperation is further investigated compared to previous

analyses. In addition, redistribution effects arising from cooperation are analyzed both

theoretically and numerically.

The second main topic of this thesis deals with optimal investment and dispatch decisions

of conventional power plants and storage units under uncertainty about future renewable

energy deployment paths. The motivation for this part of the thesis is that RES-E

deployment paths have been difficult to forecast in the past and that a broad range

of scenarios and forecasts exists regarding future developments. For example, due to

social acceptance issues and uncertainties about technological developments of renewable

energies and the progress of grid extensions, the pace of future RES-E deployment

paths is difficult to predict. In addition, political uncertainty about future developments

in renewable energy promotion can render future RES-E penetration levels uncertain.

As the RES-E penetration level in an electricity system affects the optimal capacity

mix of dispatchable power plants, unknown future RES-E deployment paths induce

uncertainty about optimal investment decisions of thermal power plants and storage

units. In the second part of this thesis, a dynamic stochastic optimization model is

developed to optimize investment and dispatch decisions given that future renewable

energy deployment paths are unknown.

To summarize, this thesis sheds further light on the question, how an increasing re-

newable energy share in the European power system can be cost-efficiently reached. In

particular, this thesis investigates two aspects of this question: First, it investigates the

benefit of cooperation in European RES-E deployment as well as resulting redistribu-

tion effects, which are possible obstacles to the practical implementation of cooperation.

Second, it analyzes the optimal development of the conventional power plant fleet, given

that future RES-E deployment paths cannot be perfectly foreseen.

1.2 Methodological approach of this thesis

In order to analyze cost-efficient RES-E deployment and integration pathways as well

as redistribution effects of cooperation in RES-E support different methodologies could

be applied: On the one hand, theoretical models can be used to determine the signs of
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effects under quite general assumptions. On the other hand, based on numerical analy-

ses, the magnitude of effects can be quantified. Furthermore, if effects are undetermined

in theoretical models based on general assumptions, the sign of the effects can be de-

termined in numerical analyses based on real-world data. Important numerical analysis

methods in energy economics are empirical methods as well as optimization and equilib-

rium models, covering the technological and economic fundamentals of energy markets

in large detail.2 Empirical analyses are mostly used for an ex-post quantification of

effects. Optimization and equilibrium models, in contrast, are widely used for modeling

future developments of, e.g., the electricity system.

The aim of this thesis is to analyze the benefits of European cooperation in achieving

high renewable energy shares in electricity consumption, the resulting redistribution

effects between different groups and the optimal investment and dispatch decisions under

uncertainty about future RES-E penetration levels. In Chapter 2 of this thesis, the

benefits of cooperation in RES-E support are calculated, in terms of a decrease in total

system costs. In doing so, an electricity optimization model of the European power

system is used, allowing for the quantification of the magnitude of this benefit and its

robustness with regard to various developments in the electricity system. In Chapter 3,

redistribution effects of cooperation are theoretically investigated using a mathematical

two-country model, and in Chapter 4, these effects are numerically analyzed by applying

the same optimization model of the European electricity system as in Chapter 2. In

Chapter 5, a stochastic optimization model is developed to investigate the impact of

uncertain renewable energy deployment paths on optimal investment decisions in the

conventional power market. First, a simplified version of the model is used to investigate

general effects of this uncertainty. Next, the detailed model, parameterized for the

Central European power market, is used to quantify the magnitude of effects in a real-

world electricity market setting.

To summarize, in this thesis, I use optimization under perfect foresight, stochastic opti-

mization and a theoretical model of cross-border cooperation in RES-E support. In the

following, general principles of optimization and, in particular, of stochastic optimiza-

tion are briefly outlined. In addition, economic principles of efficiency and distribution

are recaptured.

2In optimization models, one target function is minimized or maximized (while satisfying additional
restrictions), while equilibrium models require a set of conditions to be satisfied in an equilibrium. This
set of equations, which has to be satisfied in equilibrium, can for example represent the target functions
of different market participants. Note that an optimization model can be reformulated as an equilibrium
model. In fact, equilibrium models generalize optimization models (Gabriel et al. (2013), Minot (2009)).
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Optimization

Optimization methods generally minimize or maximize a target function under sev-

eral restrictions. In this thesis, I use linear optimization models, which imply that all

variables in the target function and the restriction equations are linear (Neumann and

Morlock (2002)). The main advantage of linear optimization is that problems are easier

to computationally solve and thus applicable to large-scale models, including a large

number of variables. However, using linear optimization also implies, e.g., that demand

has to be assumed to be inelastic and that perfect competition as well as exogenous

cost developments have to be assumed. As will be discussed in Chapter 3, demand in

electricity markets is relatively inelastic, especially in the short term. The degree of

competitiveness, and the right instruments to measure it in electricity markets, is a con-

tentious issue (Newberry (2009)). Furthermore, the impact of learning curve effects on

the investment cost developments of power plants is controversial. The learning curve

concept suggests that with each doubling of the world-wide installed capacity of a tech-

nology, the costs of this technology are reduced by a certain percentage. As discussed

in Jägemann et al. (2013), a caveat to the learning curve concept is that past trends are

extrapolated to the future, which is not always appropriate. Moreover, when regional

electricity systems (and not the world-wide electricity system) are optimized, including

endogenous learning curves is difficult and requires an assumption about the relation

between regional and world-wide technology expansions.

In stochastic optimization, a target function is also minimized or maximized under

certain restrictions. In addition to deterministic optimization, stochastic optimization

takes into account that the realization of one or several parameters is uncertain. In

electricity systems, investment decisions for new power plants are typically characterized

by long planning, construction, amortization and technical lifetimes. Future revenues

and production costs are, however, unknown because, e.g., the development of fuel costs,

electricity demand and political decisions is uncertain from an investor’s perspective

(Weber (2005)). The aim of stochastic optimization is to find an optimal decision (e.g.,

for a power plant investment) given that the future is uncertain. This optimal decision

may include postponing decisions until new information is revealed or hedging against

realizations of the random parameters, for example, by considering a more balanced

technology mix than the one which is optimal given perfect foresight (see e.g., Gardner

(1996), Gardner and Rogers (1999), Hobbs and Maheshwari (1990) and Patino-Echeverri

et al. (2009)). In general, the optimal solution under uncertainty differs from the optimal

solution(s) given perfect foresight and, in particular, also from the optimal solution given

an average realization of the random parameter. In fact, a solution which is optimal

when assuming an expected value of the uncertain parameter may be very costly once
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extreme values of the uncertain parameter are realized (Birge (1997), Conejo et al.

(2010)).

In order to take into account uncertainty in an optimization model, an assumption on the

distribution of the uncertain parameters is needed (Birge (1997)). Within the stochas-

tic optimization process, perfect information about the distribution of uncertainty is

assumed. Making an adequate assumption about the distribution of the uncertain pa-

rameter(s) is challenging in many cases. Only in some cases, e.g., when modeling uncer-

tainty about realizations of meteorological phenomena, such as wind speeds and solar

radiation, can the distributions be estimated based on historical data. In contrast, when

modeling uncertainty about the development of demand, fuel costs and, in particular,

technological progress or political decisions, occurrence probabilities of different realiza-

tions of the random parameters are difficult to estimate. Therefore, when interpreting

the results of a stochastic optimization model, it is important to keep in mind which kind

of uncertainty has been taken into account and which assumptions on the probability

distributions have been made in the modeling process.

In stochastic programming, uncertainty is often taken into account either by two-stage

or by multi-stage stochastic programs.3 In two-stage programs, a decision for the so-

called ‘first-stage’ or ‘here-and-now’ variables has to be made first under uncertainty

about the realization of the random parameters. In the second stage, information about

the uncertain parameters is revealed and the so-called ‘second-stage’ or ‘wait-and-see’

variables are optimized as a best response to this revealed information (Birge (1997)

and Conejo et al. (2010)). For example, in investment planning, the first-stage variables

are the investment variables and the second-stage variables the dispatch variables. In a

multi-stage program, decisions under uncertainty are made in several subsequent stages,

taking into account that the transition probabilities between different nodes as well

as the realization of the random parameters in different stages are interdependent. For

example, in the context of weather uncertainty, a two-stage stochastic program is applied

by Nagl et al. (2013) and a multi-stage stochastic program by Sun et al. (2008). Nagl

et al. (2013) analyze the impact of weather uncertainty on investment decisions and

electricity system costs. In their model, investment decisions have to be made in the first

stage without knowing the weather realization during the lifetime of the plants. Thus,

only one decision under uncertainty has to be made, before constructing a plant. In

contrast, Sun et al. (2008) analyze the influence of short-term uncertainties surrounding

the infeed of wind in a stochastic dispatch optimization model. In their model, decisions

under uncertainty have to be made in each state, taking into account that wind infeed

3An additional strand of stochastic optimization is chance-constrained programming. Chance-
constrained programming is applied if certain constraints should “hold with some probability or re-
liability level” and can not be applied if all constraints have to hold under all possible outcomes of the
random parameters (Birge (1997)).
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levels between different stages are strongly correlated. In a similar fashion, Chapter

5 of this thesis presents how a multi-stage stochastic program is developed to account

for implementation risks in RES-E deployment when optimizing the development of the

conventional power plant fleet. By using a multi-stage model, it is taken into account

that the installed RES-E capacities (and therefore the RES-E penetration level) in one

stage depends on the deployment realized in previous stages. Moreover, the multi-stage

model represents the fact that more and more information about the progress in RES-E

deployment is revealed over time.

One challenge facing stochastic optimization is that problems can become very large

and difficult to solve (Sen (2001), Birge (1997)). Due to high computational times of

stochastic models, not all parameters which are uncertain in reality can also be rep-

resented as uncertain parameters in the model. Thus, one aim of stochastic modeling

is to identify the direction and the magnitude of the effect of including the uncertain

nature of different parameters. Thereby, those parameters can be identified which have

a large effect on model results and thus should be included as uncertain parameters in

optimization calculus (Hobbs and Maheshwari (1990)). Moreover, knowledge about the

impact of different uncertainties on optimal decisions can help the results of determin-

istic optimization models to be interpreted more accurately (e.g., as lower bounds for

cost calculations).

Measures to analyze the impact of uncertainty on model results are the Expected Value

of Perfect Information (EVPI) and the Value of the Stochastic Solution (VSS). The

EVPI estimates the costs induced by uncertainty or, expressed differently, the “value of

knowing the future with certainty” (Birge (1997)). It is calculated as the additional costs

resulting from stochastic optimization, compared to the probability-weighted additional

costs resulting from the deterministic optimization problems, given perfect foresight,

of different realizations of the parameter. Thus, the EVPI measures the impact of

uncertainty given that stochasticity is taken into account in the optimization process

(see Figure 1.1).
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• Perfect information
• Deterministic optimization

EVPI

VSS

• Uncertainty
• Stochastic optimization

• Uncertainty
• Deterministic optimization, assuming

an expected value of the random
parameter

Figure 1.1: The calculation of EVPI and VSS
Source: Own illustration. If not indicated otherwise,

all figures in this thesis are own illustrations.

In contrast, the VSS measures the benefit of using stochastic programming when the

future is uncertain. The VSS is calculated as the probability-weighted additional costs,

arising under different realizations of the random parameter, if the optimization is per-

formed assuming the expected value of the random parameter is realized, compared to

the costs arising under stochastic planning. A large VSS indicates that it is worth it

to use stochastic optimization because the optimization for the expected value of the

random parameter leads to significantly different results (Birge (1997)). Both measures,

the EVPI and the VSS, help to identify those uncertain parameters, which have a large

impact on model results (Hobbs and Maheshwari (1990)).

Efficiency and distributional effects

The objective of the electricity market optimization models used in this thesis (namely,

the newly developed multi-stage model in Chapter 5 and the deterministic optimization

model DIMENSION in Chapters 2 and 4) is to minimize total costs of electricity supply

under the restriction of meeting electricity demand as well as under a set of additional

restrictions (e.g., environmental targets). Under the assumption of a price-inelastic elec-

tricity demand, this cost minimization problem is equivalent to the welfare maximization

problem of the social planner (Sauma and Oren (2005)).

Weakening restrictions in the optimization model implies that overall welfare can be

increased and that electricity demand can be satisfied at lower costs. However, welfare
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of individual groups does not necessarily increase. As an example, the introduction

or facilitation of trade between different regions in the electricity system corresponds

to a weakening of trading restrictions. Without the possibility of trade (e.g., trading of

electricity, CO2 -emission certificates or RES-E targets), demand or political targets have

to be met in each region individually. When trade is possible, differences in generation

costs or CO2 mitigation costs between regions can be exploited. Figure 1.2 illustrates the

effects of electricity trade between two regions with different supply curves for electricity

generation. It can be seen that overall welfare increases compared to the situation under

autarky (by c+e+f). However, due to the convergence of electricity prices, consumers in

region A, the ‘low price region’ before trade, are worse off than without trade (consumer

rents decrease by a+ b), while producers benefit from trade (producer rents increase by

a+ b+ c). In contrast, in region B, the ‘high price region’ before trade, consumer rents

increase by (d+ e+ f) and producer rents decrease by d.

pA

pB

QA

pT
A

QA
T PROD

a b c

SA

DA

SB

DB

p p

Q Q

pT
B

QBQB
T PROD QB

T CONS QA
T CONS 

d
T= Export

T= Import

e f

pA, pB: Pre-trade electricity price
pT

A, pT
B: Electricity price with trade

SA ,SB: Electricity supply curve
DA, DB: Electricity demand curve

QA, QB: Produced and consumed electricity without trade
QA

T CONS, QB
T CONS : Electricity consumption with trade

QA
T PROD, QB

T PROD: Electricity production with trade

Figure 1.2: Welfare effects of electricity trade
Source: Adapted from Kapff and Pelkmans (2010).

Likewise, in general trade theory, it has been shown that international trade increases

overall welfare but is not beneficial for all groups. For example, in the neoclassical trade

theory model of Heckscher and Ohlin, it is shown that trade between regions with a

different factor endowment increases overall welfare (see, e.g., Krugman and Obstfeld

(2009)). The model assumes that different goods have different input factor intensities.

When international trade is possible, regions specialize in the production of the good

which is intensive in the factor that is relatively abundant in comparison to the other

factor. Figure 1.3 illustrates the effect of different factor endowments on the production

possibility frontier (PPF) in two regions, as well as the effect of trade on the welfare in
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both regions.4 Assume that the production of product A is intensive in the input factor

1, which is relatively abundant in country A. Vice versa, assume that the product B

is intensive in the input factor 2, which is relatively abundant in country B. With the

possibility of trade, country A will specialize in the production of product A, country B

in the production of product B. The relative output prices of the two products converge

on the international level and, in both countries, a higher community indifference curve

(CIC*) can be reached (and thus, also overall welfare increases).

xA xA

xB xB

Region A Region B

Production possibility frontier

International
price ratio

CIC*

CIC*

CIC1

CIC1

Z Y

W

CIC1: Community Indifference Curve without trade
CIC*: Community Indifference Curve with trade
XA: Production of good A
XB: Production of good B

Z

Y

W

W: Production and consumption without trade
Y: Consumption with trade
Z:  Production with trade

Figure 1.3: Effects of international trade in the Heckscher-Ohlin model
Source: Based on Ströbele and Wacker (1995) and Zweifel and Heller (1992).

However, as shown in the Stolper-Samuelson theorem, the output price changes also

affect the relative factor prices in both countries such that owners of the factor which

is relatively abundant (scarce) in a country benefit (lose) from trade (see, e.g., Zweifel

and Heller (1992)).5 Consequently, the introduction of trade is normally not a pareto-

improvement, which would require that at least one individual benefits from trade while

no individual is worse off than without trade (Breyer (2004)). However, if the win-

ners are able to compensate the losers and would still be better off than without trade,

the introduction of trade, accompanied with transfers, could potentially be a pareto-

improvement (‘Kaldor-Hicks criteria’; see, e.g., Gravelle and Rees (2004)). In other

terms, as pointed out by Sauma and Oren (2005), whether an increase of social wel-

fare is a pareto-improvement essentially depends on the ”availability of adequate and

4A production possibility frontier (PPF) represents the opportunity costs of producing one good in
terms of sacrificing output of the other good. As all input factors available in the economy are completely
used for all production combinations of the two goods, which are located on the PPF, a higher production
of one good necessarily leads to a lower production of the other good (see, e.g., Breyer (2004)).

5In the context of electricity systems, different regions have different endowments, e.g., in sites with
high wind speeds or different production possibilities for conventional electricity, e.g., due to different
endowments in lignite.
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costless (without transaction costs) transfer mechanisms”. In practice, such compensa-

tion mechanisms are difficult to implement (Breyer (2004), Gravelle and Rees (2004),

Sauma and Oren (2005)). Thus, redistribution effects, which come along with policies

that improve overall welfare, play an important role in their practical implementation.

Therefore, in Chapters 3 and 4, I theoretically and numerically analyze redistribution

effects resulting from the introduction of cross-border cooperation in RES-E support,

which can essentially be interpreted as a cross-border trade of renewable energy targets.

1.3 Thesis outline

This thesis consists of four essays, dealing with two main topics. Chapters 2, 3 and 4

analyze the effects of cross-border cooperation in the support of renewable energies and

Chapter 5 analyzes optimal investment and dispatch decisions of conventional power

plants under uncertain future renewable energy deployment paths.

While each chapter of this thesis can be read separately, Chapters 2, 3 and 4 are closely

interrelated. In Chapter 2, the effect of European-wide cooperation in renewable energy

support on electricity system costs is quantified for the period 2020 to 2030. In addi-

tion, this chapter qualitatively investigates why European member states mostly rely on

national renewable energy production in order to achieve their renewable energy targets

instead of cooperating with other countries. As a result from this qualitative analysis, we

find that undesired redistribution effects resulting from cross-border cooperation seem to

be a major reason impeding the use of cooperation mechanisms in practice. Therefore,

within Chapters 3 and 4, redistribution effects arising from cross-border cooperation are

analyzed in-depth. Chapter 3 provides a theoretical analysis of redistribution effects,

taking into account effects of different regional RES-E deployments on regional power

markets and regional renewable energy markets. Chapter 4 directly builds on the the-

oretical analysis in Chapter 3 and quantifies the effects shown in the theoretical model

for the case of the European power system.

Chapter 5 deals with a distinctive subject, namely the optimization of power plant

investments under uncertainty. In the following, the content of each chapter is briefly

summarized.
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1.3.1 Promotion of electricity from renewable energy in Europe post

2020 - the economic benefits of cooperation

The analysis presented in Chapter 2 quantifies the economic benefits of European-wide

cooperation in RES-E support and qualitatively investigates obstacles to the implemen-

tation of cooperation mechanisms. It has been published in the Working Paper Series

of the Institute of Energy Economics at the University of Cologne (Fürsch and Linden-

berger (2013)). The paper has been written in co-authorship with Dietmar Lindenberger

and I am the leading author of this paper. The motivation for this paper is that the

availability of renewable energies differs significantly across European regions. Conse-

quently, European cooperation in the deployment of renewable energy potentially yields

substantial efficiency gains. However, for achieving the 2020 renewable energy targets,

most countries purely rely on domestic production. In this paper, we analyze the bene-

fits of cooperation compared to continuing with national renewable energy support after

2020. We use an optimization model of the European electricity system and find that

compared to a 2030 CO2 -only target (-40% compared to 1990), electricity system costs

increase by 5 to 7% when a European-wide renewable energy target for electricity gen-

eration (of 55%) is additionally implemented. However, these additional costs are 41 to

45% lower than the additional costs which would arise if the renewable energy target

was reached through national support schemes (without cooperation). Furthermore, the

cost reduction achieved by cooperation is quite robust with regard to the assumptions on

interconnector extensions and investment cost developments of renewable energy tech-

nologies. In practice, however, administrative issues and questions concerning the fair

sharing of costs and benefits between the member states represent major obstacles that

need to be tackled in order to reach renewable energy targets at the lowest possible cost.

1.3.2 Redistribution effects resulting from cross-border cooperation in

support for renewable energy

In Chapter 3, I theoretically analyze redistribution effects resulting from cross-border

cooperation in support for renewable energy. This analysis has not yet been published

and I am the sole author of this analysis. The background for this analysis is that inter-

national cooperation in achieving renewable energy targets, e.g., via a common tradable

green certificate market, increases overall welfare. However, cooperation in the support

of electricity from renewable energy sources also leads to regional price effects, from

which some groups benefit while others lose. On a regional level, the introduction of

cross-border cooperation in RES-E support generally has an opposite effect on support
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expenditures and wholesale electricity prices, as long as grid congestion between the dif-

ferent regions exists. In this paper, the redistribution effects resulting from cooperation

in RES-E support are analyzed in terms of consumer rents and producer profits per

country. A theoretical model is used to show under which conditions different groups

benefit or suffer from the introduction of cooperation. Findings of the analysis include

that effects on consumers and total producers per country can only be clearly determined

if no grid congestions between the countries exist. If bottlenecks in the transmission sys-

tem exist, the relationship between the slopes of the renewable and the non-renewable

marginal generation cost curves for electricity generation as well as the level of the

RES-E target essentially determine whether these groups benefit or lose from the intro-

duction of green certificate trading. In contrast, system-wide welfare always increases

once cooperation in RES-E support is introduced. Similarly, welfare on the country level

always increases (compared to a situation without RES-E cooperation) if the countries

are perfectly or not at all physically interconnected. In the case of congested intercon-

nectors, the sum of producer and consumer rents in a country may also decrease under

certain conditions. However, in this case the level of congestion rents is also influenced

by the introduction of RES-E cooperation. Therefore, in this case, there always exists a

possible distribution of congestion rents between the countries which ensures that each

country benefits from the introduction of certificate trade.

1.3.3 Who benefits from cooperation? - A numerical analysis of redis-

tribution effects resulting from cooperation in European RES-E

support

In Chapter 4, I numerically quantify redistribution effects potentially arising from coop-

eration in RES-E support in the European power system. This analysis has not yet been

published and I am the sole author of this analysis. The quantification of redistribution

effects builds on the theoretical analysis presented in Chapter 3. A dynamic investment

and dispatch optimization model of the European electricity system is used to investigate

which groups potentially benefit from cooperation and which groups would be worse off

compared to a situation in which national RES-E targets are reached solely by domestic

RES-E production. In the analysis, cooperation in RES-E support is implemented as a

European-wide green certificate trading scheme. Main findings of the analysis include

that in the European electricity system, effects of the change in the certificate price in

most countries would overcompensate for the effects of the change in the wholesale elec-

tricity price. Thus, in most countries with comparatively high (low) generation costs for

renewable energies, consumer rents increase (decrease) due to cooperation and producers

yield lower (higher) profits. In addition, it is found that the magnitude of redistribution
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effects between the individual groups is quite large: In some countries, the change in

consumer rents or producer profits resulting from cooperation is nearly twice as high

as the overall welfare effect of cooperation in the whole European electricity system.

Moreover, the benefit different countries have from cooperation varies substantially. In

our analysis, we find that Germany would by far have the largest (absolute) benefit of

cooperation, achieved by significant reductions of RES-E target compliance costs via

certificate imports. Finally, we find that the sign of redistribution effects is quite ro-

bust to different developments of interconnector extensions, the CO2 price and RES-E

investment costs. The magnitude of redistribution effects, in contrast, is in some coun-

tries sensitive to these assumptions (especially with regard to the assumption on the

CO2 price).

1.3.4 Optimization of power plant investments under uncertain re-

newable energy deployment paths: A multi-stage stochastic pro-

gramming approach

The analysis presented in Chapter 5 has been published in Fürsch et al. (2013b). The

essay has been written in co-authorship with Stephan Nagl and Dietmar Lindenberger

and I am the leading author of the paper. The paper investigates the impact of un-

certain renewable energy deployment paths on investment planning for conventional

power plants and storage units. Electricity generation from renewable energy sources

(RES-E) is planned to increase significantly within the coming decades. However, due

to uncertainty surrounding the progress of necessary infrastructure investments, public

acceptance and cost developments of renewable energies, the achievement of political

plans is unclear. Implementation risks of renewable energy targets are challenging for

investment planning, because different shares of RES-E fundamentally change the opti-

mal mix of dispatchable power plants. Specifically, uncertain future RES-E deployment

paths induce uncertainty about the level and the steepness of the residual load duration

curve and the hourly residual load structure. In this paper, we show how uncertain

future RES-E penetration levels impact the electricity system and try to quantify effects

for the Central European power market. We develop a multi-stage stochastic invest-

ment and dispatch model to analyze effects on investment choices, electricity generation

and system costs. Our main findings include that uncertainty about the achievement of

RES-E targets significantly affects optimal investment and dispatch decisions. In par-

ticular, plants with a medium capital/operating cost ratio have a higher value under

uncertainty. We find that this technology choice is mainly driven by the uncertainty

about the level rather than about the structure of the residual load. Furthermore, given

larger investments in plants with medium capital/operating cost ratio under uncertainty,
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optimal investments in storage units are lower than under perfect foresight. In the case

of the Central European power market, costs induced by the implementation risk of

renewable energies are rather small compared to total system costs.





Chapter 2

Promotion of electricity from

renewable energy in Europe post

2020 - the economic benefits of

cooperation

2.1 Introduction and background

For the year 2020, the European Union (EU) has agreed upon a target of 20% for the

share of renewable energy sources (RES) in gross final energy consumption, comprising

the electricity, heating and cooling and transportation sectors. A sectoral breakdown of

the national targets was defined by each EU member state in the National Renewable

Energy Action Plans (NREAP). In addition, the member states were asked to notify via

their NREAPs, whether they plan to make use of the cooperation mechanisms defined

in the European Directive 2009/28/EC. The purpose of these cooperation mechanisms

is to facilitate a cost reduction in achieving national targets by promoting RES in a

different member state or in a third country in which generation costs are lower. Across

different European regions, full load hours of fluctuating renewables such as wind and

solar technologies vary by factors up to 100% (Fürsch et al. (2013a)) such that sub-

stantial potential benefits from cross-border cooperation arise (see, e.g., EWI (2010)).

Nevertheless, the national schemes for target achievement stated in the NREAPs rely

almost purely on domestic RES production and hardly envisage the use of cooperation

mechanisms.

17
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Beyond 2020, a European renewable energy target has not yet been defined. However,

in October 2009, the European Council agreed upon the target to reduce greenhouse gas

emissions by 80-95% by 2050 compared to 1990 levels. Within the European ”Roadmap

for moving to a competitive low carbon economy in 2050” an emission reduction of 40%

by 2030 was identified as an important milestone (EC (2011a)). Furthermore, in the

EU Energy Roadmap, possible decarbonization pathways to reach the 2050 target were

analyzed. All decarbonization pathways outlined in the Roadmap include substantial

deployments of renewable energies within the coming decades, reaching RES-E shares

between 50% and 60% in 2030 (EC (2011b)).

In this paper, we analyze the benefits of a larger use of cooperation mechanisms beyond

2020, compared to effects of continuing with national RES support as currently envis-

aged by almost all member states for the period up to 2020. We focus on the electricity

sector and use a large-scale linear optimization model of the European power system,

including investment and dispatch decisions for thermal, renewable and storage tech-

nologies. This modeling approach allows us to take into account the interdependencies

between regional renewable deployment and its effects on the power system. On the

one hand, cooperation may possibly lead to higher RES-E integration costs because of a

higher regional concentration of RES-E generation on sites with favorable meteorological

conditions, which, however, are often located far from demand centers. On the other

hand, in electricity systems with grid congestions between market regions, cooperation

may possibly also induce cost-savings in the non-RES-E sector. In this case, coopera-

tion in RES-E support enables an overall optimization of electricity generation, including

renewable and non-renewable sources. Furthermore, we analyze the robustness of coop-

eration gains with regard to interconnector capacity extensions and RES-E investment

cost developments, which has thus far been neglected in almost all numerical analy-

ses of cooperation gains. Interconnector extensions in Europe currently progress very

slowly (EWI and energynautics (2011)). If planned interconnector extensions are not

realized, gains from cooperation may be lower since electricity cannot be transported

from favorable sites to demand centers. Also, cooperation gains may be sensitive to

RES-E investment cost developments, especially in terms of the resulting cost-difference

between RES-E technologies available in all countries (e.g., biomass, photovoltaics) and

those renewable energy sources that are regionally concentrated (e.g., wind offshore).

Our main findings include that compared to a CO2 -only target for 2030 (-40% compared

to 1990 emission levels), electricity system costs increase by 5 to 7% when a European-

wide renewable energy target for electricity generation (of around 55%) is additionally

implemented. However, these additional costs are 41 to 45% lower than the additional

electricity system costs which would arise if the renewable energy target was reached

through national support systems (without cooperation). Furthermore, we find that the
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cooperation gains (i.e., the cost reduction achieved by cooperation) are quite robust.

Though the optimal regional and technological generation mix is influenced by different

levels of interconnector extensions and varying investment costs for RES-E technologies,

cooperation gains decrease only slightly when interconnectors are not further extended

(compared to today) and depend only slightly on assumptions on investment cost devel-

opments of renewable energy technologies. With regard to the practical implementation

of cooperation, however, unclear administrative issues and questions concerning the fair

sharing of costs and benefits between the member states represent major obstacles that

need to be tackled in order to reach renewable energy targets at the lowest possible cost.

The remainder of the paper is structured as follows: In Section 2.2 we provide an

overview of related literature. In Section 2.3 we describe the methodological approach

of our analysis and present the most important assumptions underlying the scenario

analysis. Section 2.4 covers model results and interpretations. In Section 2.5 we ad-

dress possible obstacles to cooperation, which need to be tackled in order to increase

cooperation between member states. Conclusions are drawn in Section 2.6.

2.2 Related literature and contribution of the current work

The discussion surrounding stronger cooperation in renewable energy support in Europe

has a history spanning more than a decade. Already in the context of the 2001 EU

Renewables Directive (2001/77/EC), which defines (indicative) renewable targets for

2010, have many authors discussed the potential benefits of European-wide harmonized

support systems (e.g., Voogt et al. (2001) and Del Ŕıo (2005)) or the suitability of

different support scheme designs for a harmonized approach (e.g., Lauber (2004), Munoz

et al. (2007) and Söderholm (2008)). For the target year 2020, possible gains from

harmonization have been quantified, e.g., by Ragwitz et al. (2007), EWI (2010), Capros

et al. (2011), Aune et al. (2012) and Jägemann et al. (2013). Although the authors use

different model types, which in turn have different regional and technological coverage,

all authors find that cooperation in RES may yield substantial cost savings. An overview

of the models used for these analyses and the quantified cooperation gains is provided

in Table 2.1.
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Table 2.1: Overview of related literature

Authors Model used Cooperation gains
are quantified in
terms of:

Resulting coopera-
tion gains

Voogt et al. (2001) REBUS additional costs of
RES-E supply

- 15 to - 70% (de-
pending on target
distribution)

Ragwitz et al. (2007) Green-X support expendi-
tures for RES-E
(EUR/MWh)

- 33 to - 37% or up to
+ 12% (depending on
support design)

EWI (2010) LORELEI total costs of RES-E
generation

-20% (cumulated
2008-2020)

& DIME

Capros et al. (2011) PRIMES total energy system
costs

-16 to -25% (depend-
ing on other policy
options, e.g., the
implementation of
CDM)

Aune et al. (2012) LIBEMOD additional energy
system costs (due to
RES target)

-70% (yearly costs)

Jägemann et al.
(2013)

DIMENSION total costs of electric-
ity generation

- 10% (cumulated
2010-2050)

While Voogt et al. (2001) quantify the benefits of a EU-wide cooperation for the achieve-

ment of the 2010 RES-E targets, all other papers analyze cooperation gains in the context

of the 2020 targets. Voogt et al. (2001) and EWI (2010) analyze cooperation gains in

terms of cost savings for electricity supply from RES, either in terms of absolute costs

(EWI (2010)) or in terms of additional costs with regard to electricity market prices

(Voogt et al. (2001)). In contrast, Ragwitz et al. (2007) compare support expenditures

for RES-E under different promotion systems. Capros et al. (2011) and Aune et al.

(2012) apply multi-market models and determine cost savings in terms of energy system

costs, including electricity supply costs as well as costs in other energy markets (e.g.,

natural gas). Jägemann et al. (2013) use a large-scale dynamic optimization model of

the European electricity generation sector, which covers thermal, renewable and stor-

age technologies. The authors determine the excess costs of technology-specific national

RES-E targets for 2020, as defined in the NREAPs, compared to a technology-neutral

European-wide RES-E target for 2020.



Chapter 2. Promotion of electricity from renewable energy in Europe post 2020 - the
economic benefits of cooperation 21

We use the same general modeling framework as Jägemann et al. (2013) to determine

the benefits of European cooperation in the decade 2021 to 2030 and to analyze the

robustness of cooperation gains with regard to interconnector extensions and RES-E

investment costs. Cooperation gains in the decade 2021 to 2030, a period that is cur-

rently in the focus of the political debate, have thus far hardly been analyzed. To our

knowledge, only one other analysis of cooperation gains arising in the period post 2020

has been published. The study conducted by Booze & Company et al. (2013) mainly

deals with the effects of larger European electricity and gas market integration in gen-

eral. In addition, Booze & Company et al. (2013) calculate the cost savings achieved by

a reallocation of photovoltaic and wind capacities (that are installed in the year 2030 in

a scenario taken from the EU Energy Roadmap (EC (2011b))) to regions where higher

load factors can be achieved.6 In their analysis, generation levels taken from the EU

Roadmap scenario are held constant when reallocating the photovoltaic and wind capac-

ities. A cost reduction is achieved, because less capacities are required to generate the

same amount of wind-based and photovoltaic-based electricity (compared to the original

allocation of capacities). In contrast, our approach of optimizing investment and dis-

patch decisions of power plants, both in the cases with and without cooperation, takes

into account that not only a different regional allocation but also a different technological

generation mix may be optimal when European-wide cooperation is possible.

In addition, the influence of different interconnector capacity restrictions and of different

RES-E investment cost developments on possible gains from cooperation has thus far

been neglected in almost all numerical analyses of cooperation gains. To our knowledge,

only Booze & Company et al. (2013) indicate a range of cost savings from using favor-

able renewable energy production sites in Europe, depending on different photovoltaic

costs.7 Moreover, the influence of limited interconnector extensions on coordinated RES-

E supply has recently been addressed in a theoretical two-country model by Laffont and

Sand-Zantman (2012). Their key finding is that the optimal level of coordination in

RES-E support depends on the level of transmission capacity between the two coun-

tries. Moreover, Saguan and Meeus (2012) analyze the interaction between cooperation

in renewable energy support and cooperation in transmission planning in a two-region

6Note also that Booze & Company et al. (2013) refer to a Siemens AG presentation in which cost
savings from a reallocation of wind and photovoltaics capacities in the period 2012-2030 are shown.
However, no further information on the applied methodology or the assumed input parameters is provided
in this presentation.

7In the analysis of Booze & Company et al. (2013), the level of photovoltaic investment costs influences
the magnitude of the cost savings, because it determines the value of the photovotaic capacities which
can be reduced through reallocation. In contrast, in our analysis, different investment cost assumptions
influence the optimal generation and capacity levels of various renewable energy technologies (both in
the cases with and without cooperation).
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modeling example. However, for a real-world electricity system, the influence of inter-

connector extensions on the level of cooperation gains, to our knowledge, has not yet

been quantified.

2.3 Methodological approach and assumptions

We use a dynamic linear dispatch and investment model for Europe incorporating ther-

mal, storage and renewable technologies. The model is an extended version of the long-

term investment and dispatch model DIMENSION of the Institute of Energy Economics

(University of Cologne), as presented in Richter (2011). The model in its extended ver-

sion has been recently applied, e.g., by Fürsch et al. (2013a) (who provide a detailed

model description).8 In the following, we briefly summarize the main model characteris-

tics (Section 2.3.1) and give an overview of the input parameters chosen for the analysis

presented (Section 2.3.2).

2.3.1 Model description

The model minimizes total discounted system costs of the European electricity system.

These costs comprise investment, fixed operation and maintenance, variable production

and ramping costs.9 Costs are minimized subject to the conditions of meeting hourly

electricity demand in each market region and of ensuring security of supply. For the

latter condition, securely available generation capacities must be sufficient to cover peak

demand (increased by a security margin). In addition, European-wide CO2 emissions

are limited by an emission cap. RES-E targets must be met either on a national or on

a EU-wide level, depending on the scenario. Furthermore, the electricity infeed and/or

the amount of construction of certain technologies is restricted due to meteorological

conditions (such as wind speed, solar radiation and water inflows to hydro reservoirs),

space potentials (e.g., for wind parks), fuel potentials (e.g., for biomass or lignite) or

political restrictions (such as nuclear phase-out plans). Curtailment of renewable energy

infeed is endogenously chosen by the model as long as this option reduces system costs

(e.g., because ramping costs can be avoided). Electricity import and export streams

are limited by exogenously defined net transfer capacity values between market regions.

8The DIMENSION model is based on the DIME model of the Institute of Energy Economics (Bartels
(2009)). DIME has been applied, e.g., by Nagl et al. (2011b), Paulus and Borggrefe (2011), Grave et al.
(2012) and Fürsch et al. (2012). The extended version of the DIMENSION model, as presented in
Fürsch et al. (2013a), includes most elements of the renewable energy investment model LORELEI
(Wissen (2011)).

9In contrast, combined heat and power plants can earn incomes from the heat market, which are
deducted from the objective value. Thus, the objective value only includes costs induced by the supply
of electricity.
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Within market regions, grid copper plates are assumed. Further model elements are

described in Richter (2011).

Within this analysis, we model all member states of the European Union (with the excep-

tion of Malta and Cyprus), Switzerland and Norway. Different wind and solar conditions

throughout Europe are captured by modeling 47 wind onshore regions, 42 wind offshore

regions and 38 photovotaic regions, which are determined according to meteorological

data (EuroWind (2011)).10 The different hourly, daily and seasonal characteristics of

renewable infeed and electricity demand are captured by modeling four typical days per

model year.

The model incorporates thermal, renewable and storage technologies. The existing Eu-

ropean power plant fleet is represented by different vintage classes, which account for

different technical properties such as conversion efficiencies. Thermal power plants can

be equipped with combined-heat-power-technology (CHP) and/or carbon-capture-and-

storage (CCS) (from 2030 onwards). We assume that, before 2025, only nuclear plants

already under construction today can be commissioned. However, existing plants can be

retrofitted to increase plant lifetime by 10 years. Endogenous storage investments are

only possible for compressed-air-storage technology (CAES), as pump storage and hy-

dro storage potentials are already largely used and further investments are often difficult

due to environmental concerns. Renewable technologies covered by the model include

photovoltaics (base and roof), concentrated solar power (CSP), onshore wind, offshore

wind (deep and shallow water), biomass (solid and gas), hydro (run-of-river and storage)

and geothermal power. In addition, different wind turbine classes, available at different

points in time, are modeled to represent technological progress (see Wissen (2011) and

EWI and energynautics (2011)).

2.3.2 Assumptions

Table 2.2 depicts the assumed final electricity demand development per country up

to 2030. Up until 2020, the demand development is based on the ‘additional energy

efficiency’ scenario of the NREAPs (Beurskens et al. (2011)).11 For the development

after 2030, electricity demand growth rates are based on EWI and energynautics (2011).

In addition, the potential heat generation in CHP plants per country is depicted (based

on EURELECTRIC (2008) and Capros et al. (2010); see also EWI and energynautics

(2011)).

10For an overview of these regions, see EWI and energynautics (2011).
11For Norway and Switzerland, which do not have a NREAP, electricity demand growth rates based

on EWI and energynautics (2011) have been applied.
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Table 2.2: Final electricity demand [TWhel] and potential heat generation in CHP
plants [TWhth]

2010 2020 2030

Austria (AT) 66 (40.7) 74 (41.2) 80 (41.5)
Belgium (BE) 97 (14.5) 111 (14.7) 119 (14.8)
Bulgaria (BG) 36 (6.8) 37 (6.9) 41 (7.0)
Czech Republic (CZ) 70 (54.0) 84 (55.1) 95 (55.7)
Denmark (DK) 36 (54.0) 38 (54.7) 43 (55.1)
Estonia (EE) 10 (1.4) 11 (1.4) 12 (1.4)
Finland (FI) 88 (64.4) 102 (65.2) 109 (65.7)
France (FR) 533 (31.2) 546 (31.6) 585 (31.8)
Germany (DE) 604 (191.0) 562 (192.4) 562 (192.9)
Greece (GR) 59 (17.1) 68 (17.4) 79 (17.7)
Hungary (HU) 43 (13.9) 51 (14.2) 58 (14.4)
Ireland (IE) 29 (3.2) 33 (3.2) 35 (3.3)
Italy (IT) 357 (166.1) 375 (169.2) 433 (171.7)
Latvia (LV) 7 (6.4) 9 (6.5) 10 (6.6)
Lithuania (LT) 7 (4.7) 9 (4.8) 10 (4.9)
Luxembourg (LU) 6 (0.9) 7 (0.9) 7 (0.9)
Netherlands (NL) 124 (112.8) 136 (114.3) 146 (115.1)
Norway (NO) 104 (3.6) 119 (3.6) 127 (3.6)
Poland (PL) 141 (91.5) 170 (93.3) 191 (94.4)
Portugal (PT) 55 (13.6) 65 (13.9) 75 (14.1)
Romania (RO) 62 (91.5) 74 (93.3) 83 (94.4)
Slovakia (SK) 29 (16.7) 33 (17.0) 38 (17.2)
Slovenia (SL) 14 (1.2) 16 (1.2) 18 (1.2)
Spain (ES) 291 (57.9) 375 (59.0) 433 (59.9)
Sweden (SE) 152 (28.9) 155 (29.3) 166 (29.5)
Switzerland (CH) 59 (0.7) 67 (0.7) 72 (0.7)
United Kingdom (UK) 369 (67.2) 377 (68.1) 404 (68.6)

Table 2.3 depicts the investment cost development up to 2030. Assumptions are based

on EWI and energynautics (2011) with the exception of photovoltaic investment costs,

which have been adapted in order to account for recent cost degressions (BSW (2011)).

Furthermore, investment costs for concentrating solar plants have been adapted accord-

ing to data from IRENA (2012), Turchi et al. (2010) and Hinkley et al. (2011).
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Table 2.3: Investment costs [EUR2010/kW ]

2020 2030 2020 2030
Nuclear 3,157 3,157 Biomass gas 2,398 2,395
Nuclear Retrofit 300 300 Biomass gas - CHP 2,597 2595
Hard Coal 1,500 1,500 Biomass solid 3,297 3,293
Hard Coal - innov. 2,250 1,875 Biomass solid - CHP 3,497 3,493
Hard Coal - CCS - 2,000 Geothermal (hot dry rock) 10,504 9,500
Hard Coal - innov. CCS - 2,475 Geothermal (high enthalpy) 1,050 950
Hard Coal - innov. CHP 2,650 2,275 PV ground 1,440 990
Hard Coal - innov. CHP & CCS - 2,875 PV roof 1,600 1,100
Lignite 1,850 1,850 Concentrated solar power 3,423 2,926
Lignite - innov. 1,950 1,950 Wind onshore 6 MW 1,221 -
Lignite - innov. CCS - 2,550 Wind onshore 8 MW - 1,161
OCGT 700 700 Wind offshore 5 MW (shallow) 2,615 -
CCGT 1,250 1,250 Wind offshore 8 MW (shallow) - 2,512
CCGT - CCS - 1,550 Wind offshore 5 MW (deep) 3,105 -
CCGT - CHP 1,500 1,500 Wind offshore 8 MW (deep) - 2956
CCGT - CHP & CCS - 1,700

Pump storage - -
Hydro storage - -
CAES 850 850

Table 2.4 shows the conversion efficiencies, CO2 emission factors, technical availability,

operational and maintenance costs and the technical lifetime for conventional plants

(taken from EWI and energynautics (2011)).

Table 2.4: Economic-technical parameters for conventional and storage technologies

Technologies η(gen) η(load) CO2 factor avail FOM costs Lifetime
[%] [%] [t CO2 /MWhth] [%] [EUR2010/kW ] [a]

Nuclear 33.0 - 0.0 84.50 96.6 60
Hard Coal 46.0 - 0.335 83.75 36.1 45
Hard Coal - innov. 50.0 - 0.335 83.75 36.1 45
Hard Coal - CCS 42.0 - 0.034 83.75 97.0 45
Hard Coal - innov. CCS 45.0 - 0.034 83.75 97.0 45
Hard Coal - CHP 22.5 - 0.335 83.75 55.1 45
Hard Coal - CHP & CCS 18.5 - 0.034 83.75 110.0 45
Lignite 43.0 - 0.406 86.25 43.1 45
Lignite - innov. 46.5 - 0.406 86.25 43.1 45
Lignite - innov. CCS 43.0 - 0.041 86.25 103.0 45
OCGT 40.0 - 0.201 84.50 17.0 25
CCGT 60.0 - 0.201 84.50 28.2 30
CCGT - CHP 36.0 - 0.201 84.50 40.0 30
CCGT - CCS 53.0 - 0.020 84.50 88.2 30
CCGT - CHP & CCS 33.0 - 0.020 84.50 100.0 30
Pump storage 87.0 83.0 0.0 95.00 11.5 100
Hydro storage 87.0 - 0.0 90.00 11.5 100
CAES 86.0 81.0 0.0 95.00 9.2 40
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Table 2.5 reports technological and economic characteristics for renewable energy tech-

nologies (taken from EWI and energynautics (2011)). The availabilities of fluctuating

renewable energy technologies vary on an hourly level and between the different meteo-

rological regions throughout Europe, and are thus not able to be depicted in Table 2.5.

The secured capacity corresponds to the share of capacity that can be assumed to be

securely available at peak demand (see EWI and energynautics (2011)).

Table 2.5: Economic-technical parameters for renewable technologies

Technologies Efficiency Availability Secured capacity FOM costs Lifetime
[%] [%] [%] [EUR2010/kW ] [a]

Biomass gas 40.0 85 85 120 30
Biomass gas - CHP 30.0 85 85 130 30
Biomass solid 30.0 85 85 165 30
Biomass solid - CHP 22.5 85 85 175 30
Geothermal (HDR) 22.5 85 85 300 30
Geothermal 22.5 85 85 30 30
PV ground - - 0 15 25
PV roof - - 0 17 25
Concentrated solar power - - 40 120 25
Wind offshore 6MW (deep) - - 5 152 25
Wind offshore 8MW (deep) - - 5 160 25
Wind offshore 6MW (shallow) - - 5 128 25
Wind offshore 8MW (shallow) - - 5 136 25
Wind onshore 6MW - - 5 41 25
Wind onshore 8MW - - 5 41 25
Run-of-river hydropower - - 50 11.5 100

Table 2.6 depicts the assumed fuel price development up to 2030. Assumptions are

based on IEA (2011) and EWI and energynautics (2011). The CO2 price is determined

endogenously in the model by imposing a CO2 emission reduction (in the power sector)

of 20% (40%) compared to 1990 levels by 2020 (2030).

Table 2.6: Fuel costs in EUR2010/MWhth

2008 2020 2030

Nuclear 3.6 3.3 3.3
Coal 17.28 12.5 12.8
Lignite 1.4 1.4 1.4
Natural gas 25.2 28.1 28.3
Biomass (solid) 15.0-27.7 15.7-34.9 16.7-35.1
Biomass (gas) 0.1-70.0 0.1-67.2 0.1-72.9
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2.4 Scenario Analysis

2.4.1 Scenario definition

We compare the costs of achieving a European RES-E share of 55% by 2030 using na-

tional RES-E support to the costs of achieving the target under EU-wide cooperation.12

The RES-E share of 55% was chosen in line with the decarbonization pathways of the EU

Roadmap, including RES-E shares between 50% and 60% in 2030 (see Section 2.1). Both

national and EU-wide coordinated RES-E support is modeled as a technology-neutral

support, implying that technologies with lowest costs are chosen first - either on a na-

tional or on an EU-wide level. Moreover, in both cases, the technology-specific national

NREAP targets are reached in 2020 (see Beurskens et al. (2011) for an overview), whereas

possible gains from cooperation only refer to the subsequent timeframe 2021-2030. We

analyze possible gains from EU-wide cooperation in RES-E support for different national

target settings as well as for different assumptions regarding interconnector extensions

and RES-E investment cost developments. The setting of the national targets is cru-

cial in determining the magnitude of the cooperation gains as the distribution of the

targets dictates the reference costs against which the cooperation gains are calculated.

The availability of interconnector capacities restricts the use of favorable RES-E sites in

regions with low electricity demand and thus presumably also influences the magnitude

of the cooperation gains. Similary, the development of RES-E investment costs pre-

sumably influences the magnitude of the cooperation gains because cost differences vary

between the generation options available in all countries and those that are regionally

concentrated. Table 2.7 provides an overview of the modeled scenarios.

Table 2.7: Overview of modeled scenarios

Energy Economic Assumptions
Reference Without lower wind lower

TYNDP offshore costs phovoltaic costs
Target Setting Equal Share

Extrapolation national RES-E support vs. EU-wide cooperation
Flatrate Growth

With regard to the setting of national targets, we model the following cases:

• ‘Equal share’: Each member state must increase its RES-E share up to 55% by

2030.
12As the electricity systems of Switzerland and Norway are embedded in the European power system,

these two countries are included in the calculation even though the countries are not part of the EU. Nor-
way and Switzerland can therefore contribute in reaching the common RES-E target in the cooperation
case. However, we assume that, regardless of the national target setting for the EU member states, the
targets for Switzerland and Norway remain close to today´s RES-E shares, which significantly exceed
the EU average.
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• ‘Extrapolation’: The RES-E deployment of each country, as stated by its NREAP

2020 target, is extrapolated to 2030.13

• ‘Flatrate growth’: Each member state must increase its 2020 RES-E share by 20

percentage points by 2030.

The different settings of national targets cover a broad range of possible effort sharing

agreements. The ‘Equal share’ target setting results in a large effort for countries that

have low RES-E shares in 2020, while other countries (such as Sweden and Austria)

already exceed the 55% share in 2020 and thus would not require a further increase

in their share. In the ‘Extrapolation’ case, the greatest effort is demanded from those

countries which also made the greatest effort in the 2010-2020 decade. However, these

are mostly countries with a high GDP per capita and/or favorable RES-E potentials, as

these components were used to determine the 2020 target distribution. The ‘Flatrate

growth’ target setting poses the same burden on all countries as far as the percentage

increase is concerned. However, also in this case, the slope of the RES-E merit order

curve and the demand development in each country essentially determine the burden

imposed by the national targets. An overview of the assumed national RES-E targets

can be found in Appendix A.14

With regard to interconnector extensions and RES-E investment cost developments,

we model the following reference case and sensitivity analyses:

• ‘Reference’: Interconnectors are extended according to ENTSO-E´s Ten-Year-

Network-Development-Plan (TYNDP, see ENTSO-E (2010)). Assumed invest-

ment costs for RES-E correspond to those depicted in Table 2.3.

• ‘w/o TYNDP’: Interconnectors are not extended. Net transfer capacities (NTC)

remain at today´s level. All other assumptions are identical to the ‘Reference’

case.

• ‘Lower Offshore Wind Costs’: Investment costs for offshore plants are 10% lower

than depicted in Table 2.3. All other assumptions are identical to the ‘Reference’

case.

13Note that in order to ensure that a EU-wide target of around 55% is reached by all national target
settings the ‘Extrapolation’ case includes a flatrate increase of 5 percentage points in each country in
addition to the extrapolation.

14Note that we assume a linear pathway for achieving the 2030 targets and thus also set 2025 RES-E
(and CO2 ) targets. These 2025 targets are determined as a linear interpolation between the 2020 and
the 2030 targets.
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• ‘Lower Photovoltaic Costs’: Investment costs for photovotaic systems are 10%

lower than depicted in Table 2.3. All other assumptions are identical to the ‘Ref-

erence’ case.

We model sensitivities with regard to interconnector extensions and to offshore wind

and photovoltaic investment costs for two reasons: First, both network extensions and

cost degressions of renewables are subject to high uncertainty - either because, e.g., op-

position from the local population often leads to delays of planned network extensions or

because technological progress is uncertain. Second, both aspects potentially have a high

influence on the extent of cooperation gains. Lower interconnector capacities presum-

ably lead to lower gains from cooperation because the best RES-E sites in Europe can

be used to a lesser extent. In contrast, lower costs of offshore wind presumably increase

the benefit from cooperation, as favorable potentials for offshore wind are regionally

concentrated in Northern Europe and can be used to a larger extent in a cooperative

European support system. The benefit of using these resources further increases if in-

vestment costs of offshore plants are low. Lower investment costs for photovoltaic, on

the one hand, may similarly increase the benefit from cooperation due to the increased

opportunity of using sites with high solar radiation in the Mediterranean region. On the

other hand, potentials (however not necessarily favorable ones) for photovoltaic systems

exist in all countries, such that this generation option may be used to a larger extent

under a national target scheme. Thus, given lower photovoltaic costs, the achievement

of national targets may be less costly.

In the following, we present results for the reference case (Section 2.4.2) and discuss

the influence of interconnector extensions and RES-E investment cost developments on

potential cooperation gains (Section 2.4.3 and Section 2.4.4, respectively).

2.4.2 Results - Reference case

Table 2.8 depicts differences between the national and the EU-wide RES-E support

scenarios in 2030 in terms of European electricity generation and European generation

capacities. Regardless of the national target setting (Equal Share, Extrapolation or

Flatrate Growth), generation from coal plants, photovoltaic systems and biomass plants

is higher when RES-E targets are achieved on a national level, while generation from

nuclear plants as well as from on- and offshore wind plants is higher when RES-E support

is coordinated on the European level. Capacity differences reflect varying technological

and regional generation patterns under national and cooperative RES-E support. On

average, photovoltaic systems and wind plants (onshore and offshore) have lower energy

outputs in the national support scenarios, because sites with comparatively low solar
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radiation and low wind speeds are also used in achieving national targets. Thus, e.g.,

onshore wind capacities in the ‘Equal Share’ and the ‘Flatrate Growth’ scenarios are

lower when RES-E support is coordinated, although wind onshore generation is higher.

In the following differences between the generation and capacity levels under national

and cooperative support are discussed in more detail.

Table 2.8: Differences in European electricity generation [TWh] and generation ca-
pacities [GW] between national support and cooperation in 2030 (Reference)

Generation [TWh]

Equal Share Extrapolation Flatrate Growth
national coop. diff. national coop. diff. national coop. diff.

Nuclear 866 968 -102 978 1011 -34 947 1000 -54
Lignite 370 362 7 366 367 -1 369 366 4
Coal 480 399 81 473 427 46 439 413 26
Gas 48 56 -8 42 67 -25 63 61 3
Oil 0 0 0 0 0 0 0 0 0
Storage 78 87 -9 84 81 3 78 85 -7
Hydro 551 552 0 552 552 0 552 552 0
Biomass 208 174 34 178 170 8 186 172 14
Wind onshore 706 711 -5 689 705 -16 704 707 -3
Wind offshore 299 359 -61 299 335 -37 244 345 -101
PV 370 325 45 324 270 54 393 291 102
CSP 49 47 1 49 48 0 49 47 1
Geothermal 94 94 0 94 93 1 94 94 1
Others 56 56 0 56 56 0 56 56 0

Capacity [GW]

Equal Share Extrapolation Flatrate Growth
national coop. diff. national coop. diff. national coop. diff.

Nuclear 141 151 -10 149 154 -5 147 153 -6
Lignite 57 56 2 56 57 -1 57 56 1
Coal 73 65 8 73 66 7 69 65 3
Gas 147 147 -1 147 147 0 151 147 4
Oil 5 5 0 5 5 0 5 5 0
Storage 78 82 -3 78 76 2 74 79 -4
Hydro 154 155 -1 155 155 0 155 155 0
Biomass 29 24 5 25 24 1 26 24 2
Wind onshore 315 311 4 301 308 -6 310 309 2
Wind offshore 89 91 -2 82 85 -3 69 87 -19
PV 311 251 60 273 205 68 330 223 108
CSP 11 11 0 11 11 0 11 11 0
Geothermal 13 13 0 13 13 0 13 13 0
Others 11 11 0 11 11 0 11 11 0

Generation from photovoltaic systems, biomass plants and coal plants is higher in the
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national support scenarios. The reason for higher photovoltaic generation is a higher gen-

eration at sites with low solar radiation (e.g, in Belgium, Germany and even in Sweden

when a national target of 83% must be reached in the ‘Flatrate Growth’ scenario) which

overcompensates for lower generation at sites with high solar radiation (e.g., in Spain

and Portugal), which are used to a higher extent in the cooperative support scenarios.

Higher biomass generation in the national support scenarios can be mainly attributed to

additional generation in Finland and in the Equal Share scenario also to higher biomass

generation in Hungary and Italy. Higher coal generation in the national support sce-

narios essentially replaces nuclear generation. Generation from nuclear plants is lower

on a European level because, in the national support scenarios, RES-E generation in

countries with existing nuclear plants or political plans to construct nuclear plants (FR,

BG, CZ, PL, SK, RO) is usually higher than in the cooperative scenarios. Due to limited

interconnector capacities - despite extensions according to the TYNDP - high nuclear

in addition to high RES-E generation would exceed regional demand and export pos-

sibilites in these countries. The largest difference between nuclear and coal generation

occurs when each country is required to reach a 55% RES-E share (‘Equal Share’). This

target distribution leads to the highest RES-E generation in France, which impedes the

use of French nuclear plants. Generation from wind plants, especially from offshore

wind plants, is substantially higher in the scenarios with cooperative RES-E support

because wind generation at sites with high wind speeds is associated with comparatively

low generation costs. Additional offshore generation in the cooperative (compared to

the national) support scenarios mainly comes from Skandinavia, the Netherlands and

Ireland. However, offshore generation in the national support scenarios is higher in Ger-

many and, depending on the national target setting, in France and the United Kingdom.

In addition, total RES-E generation is higher in the national support scenarios because

RES-E generation exceeds national targets in countries with favorable meteorological

conditions for wind- or solar-based electricity generation and low national targets com-

pared to their RES-E potential (e.g., in Portugal and Ireland). This additional RES-E

generation contributes to a cost-efficient achievement of the CO2 emission reduction tar-

get. In the cooperative support scenarios, RES-E generation from these favorable sites

replaces RES-E generation in other regions and the CO2 emission reduction target is

achieved by a higher generation from nuclear plants.

Additional results of the cost-efficient regional RES-E deployment in the cooperative

support scenarios and the respective deviations in the national support scenarios are
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provided in Table 2.9.15 The table depicts the RES-E generation per country, depend-

ing on the different settings of national targets, both for the national and for the co-

operative support scenarios. In Table 2.9, only about half of the countries modeled are

depicted. The countries listed are those countries which yield the greatest deviation

in RES-E generation from their national targets, when a European-wide cooperation is

implemented.

Table 2.9: RES-E generation in national and cooperative support scenarios in 2030
in selected countries [TWh]

Equal Share Extrapolation Flatrate Growth

national coop. diff. national coop. diff. national coop. diff.

Group A
Belgium 53 32 21 50 32 18 49 32 17
Finland 60 38 22 49 34 15 58 34 24
Germany 309 258 51 364 256 108 329 258 72

Group B
France 322 265 57 254 252 3 275 254 21
Czech Republic 52 24 28 25 23 1 33 24 8
Greece 43 46 -2 56 42 14 47 44 3
Poland 105 68 37 68 68 0 75 68 7
Sweden 105 110 -5 126 110 16 137 110 27
United Kingdom 222 210 13 234 199 36 206 205 1

Group C
Ireland 23 47 -23 27 46 -19 30 47 -17
Netherlands 80 121 -41 103 121 -18 83 121 -38
Norway 127 204 -77 127 193 -65 127 195 -68
Portugal 43 70 -27 55 65 -10 56 65 -9
Spain 238 297 -59 244 295 -51 260 297 -37

Group D
Italy 238 198 40 169 180 -11 201 189 12

The countries depicted have been clustered into four groups: Countries in the ‘A’ group

are characterized by higher RES-E generation in the national support scenarios com-

pared to the cooperative support scenarios, regardless of the national target setting.

Countries in the ‘B’ group are also characterized by a higher RES-E generation in the

national support scenarios under most scenario settings; however, for at least one target

setting, hardly a deviation from the cost-efficient generation in the cooperative support

scenarios occurs. In countries, belonging to the ‘C’ group, RES-E generation in the

15Note that we use the term ‘cost efficient’ in the context of a European-wide RES-E target - with a
CO2 emission reduction target only, a smaller share of RES-E would be cost-efficient. In our scenario
settings, a European RES-E share of 46% is achieved in 2030 if no additional RES-E target is modeled
after 2020. However, this share also includes RES-E generation from plants that were built in order to
achieve the NREAP in 2020.
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national support scenarios is always lower than in the cooperative support scenarios.

These countries are characterized by high wind speeds or high solar radiation. Italy (‘D’

group) is a special case because, depending on the target setting, RES-E generation in

the national support scenarios is either significantly lower or significantly higher than in

the cooperative support scenarios.

As a result of the suboptimal regional and technological RES-E generation in the national

support scenarios (compared to the cooperative support scenarios), the costs of achieving

a RES-E share of 55 % by 2030 are significanty higher in the national support scenarios.

Table 2.10 shows the additional electricity system costs in the decade 2021-2030 that are

induced by national and EU-wide 2030 RES-E targets as opposed to a 2030 CO2 target

only (-40% compared to 1990 levels). Moreover, the resulting gains from cooperation

are shown, expressed as the difference in additional costs of the 2030 RES-E target

(compared to the CO2 target only) with national and with cooperative support. All

costs are cumulated from 2021 to 2030 and discounted by 5% (to the base year 2020).

Table 2.10: Additional costs induced by the 2030 RES-E target and cooperation gains
(2021-2030)

Equal Extra- Flatrate
Share polation Growth

Additional costs of 2030 RES-E target - national
support (bn. EUR2010)

166 125 133

Additional costs of 2030 RES-E target - coopera-
tive support (bn. EUR2010)

93 68 79

Gains from cooperation (bn. EUR2010) 73 57 54

Gains from cooperation (%) 44 45 41

Additional electricity system costs induced by the 2030 RES-E target vary between 68

and 93 bn. EUR2010 if the RES-E target is cost-efficiently reached by using efficient

technologies and sites throughout Europe. The cost differences between the different

cooperative support scenarios result from slightly different 2030 RES-E shares. The ‘Ex-

trapolation’ and the ‘Flatrate Growth’ target distribution result in a European RES-E

target of approximately 55 % (54.5% and 55.4%, respectively). The ‘Equal Share’ target

distribution results in a higher European RES-E target (56.8%) because some countries

already exceed the 55% share in their 2020 NREAP targets. However, it becomes clear

that, given our assumptions, the European RES-E merit order curve is relatively steep

given RES-E shares of approximately 55%: While the RES-E share in the ‘Flatrate

Growth’ scenario is 0.9 percentage points higher than in the ‘Extrapolation’ scenario

(corresponding to 1.6% higher RES-E generation), additional costs of achieving the 2030
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RES-E target increase by 16%.16 Comparing the additional electricity system costs of

the 2030 RES-E target of the national versus the cooperative support scenarios, gains

from cooperation amount to 54-73 bn. EUR2010. In other words, the additional costs

induced by the (national) RES-E targets can be reduced by 41 to 45 % when the best

sites throughout Europe can be used. It is important to note that these cost differ-

ences refer to electricity system costs and not only to the costs of RES-E production.

For example, more regionally concentrated RES-E generation in the cooperative sup-

port scenarios may increase the need for system flexibility. In the Equal Share and the

Flatrate Growth target setting scenarios, it can be seen that more storage units are de-

ployed given cooperative rather than national support. The gains from cooperation thus

already include the indirect costs of RES-E support, i.e., the costs of RES-E integration

in terms of flexibility and security of supply requirements.17 Note also that, as described

above, not exactly the same RES-E quantities are reached under national and cooper-

ative support. Some countries surpass their targets in the national support scenarios

and thereby contribute to the achievement of the European CO2 emission reduction

target.18 The gains from cooperation thus include both the cost advantage of using best

sites throughout Europe to achieve the European RES-E target and the advantage of

using low-cost emission reduction possibilities in the overall electricity sector to achieve

the European CO2 target.

2.4.3 The influence of interconnector extensions on cooperation gains

Table 2.11 depicts the difference in generation between national support and coopera-

tive support scenarios in 2030, both when interconnectors are extended according to the

TYNDP (left columns, see also Table 2.8) and when interconnectors are not extended

(right columns). The overall picture is similar for the scenarios with and without inter-

connector extensions: In the national support scenarios, generation from photovoltaic

systems and fossil-fuel power plants is higher, whereas in the cooperative support sce-

narios, generation from nuclear and wind plants is higher. However, the absence of

interconnector extensions has two major consequences: First, lower import and export

possibilities impede the use of low-cost electricity generation options throughout Europe.

16Similarly, while the RES-E share in the ‘Equal Share’ scenario is 1.4 percentage points higher than
in the ‘Flatrate Growth’ scenario (corresponding to 2.5% higher RES-E generation), additional costs of
the 2030 RES-E target increase by 18%.

17In contrast, costs of the electricity grid are not included in the calculation. However, Fürsch et al.
(2013a) show that substantial extensions of the transmission grid are beneficial in order to access favor-
able RES-E sites and that the induced grid extension costs are rather small compared to cost differences
occurring in the generation system.

18RES-E generation in 2030 is around 1% higher for national compared to cooperative support. In
2025, differences amount to around 5%.
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This includes renewable generation options (i.e., offshore wind) and non-renewable gener-

ation options (i.e., existing nuclear and lignite). Second, lower interconnector capacities

limit the possibility to balance regional demands and fluctuating RES-E infeed. Thus,

the requirement for flexible generation or demand on a national level increases.
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Table 2.11: Differences in European electricity generation [TWh] between national
and cooperative support scenarios in 2030 (with and without TYNDP)

TYNDP w/o TYNDP
national cooperative difference national cooperative difference

Equal Share

Nuclear 866 968 -102 755 890 -135
Lignite 370 362 7 362 357 5
Coal 480 399 81 451 421 30
Gas 48 56 -8 171 108 62
Oil 0 0 0 0 0 0
Storage 78 87 -9 78 105 -28
Hydro 551 552 0 552 552 0
Biomass 208 174 34 208 193 16
Wind onshore 706 711 -5 699 704 -5
Wind offshore 299 359 -61 311 332 -20
PV 370 325 45 374 344 30
CSP 49 47 1 49 46 3
Geothermal 94 94 0 94 94 0
Others 56 56 0 56 56 0

Extrapolation

Nuclear 978 1011 -34 859 913 -54
Lignite 366 367 -1 356 361 -5
Coal 473 427 46 453 429 24
Gas 42 67 -25 174 156 18
Oil 0 0 0 0 0 0
Storage 84 81 3 78 87 -9
Hydro 552 552 0 552 552 0
Biomass 178 170 8 181 189 -8
Wind onshore 689 705 -16 683 696 -13
Wind offshore 299 335 -37 303 303 0
PV 324 270 54 324 293 31
CSP 49 48 0 49 46 3
Geothermal 94 93 1 94 94 0
Others 56 56 0 56 56 0

Flatrate
Growth

Nuclear 947 1000 -54 842 906 -64
Lignite 369 366 4 362 360 3
Coal 439 413 26 431 433 -2
Gas 63 61 3 172 132 40
Oil 0 0 0 0 0 0
Storage 78 85 -7 79 96 -17
Hydro 552 552 0 552 552 0
Biomass 186 172 14 191 192 -1
Wind onshore 704 707 -3 692 699 -7
Wind offshore 244 345 -101 254 311 -56
PV 393 291 102 387 314 73
CSP 49 47 1 49 46 3
Geothermal 94 94 1 95 94 0
Others 56 56 0 56 56 0
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We identify the following effects of interconnector capacities on the optimal generation

mix in the cooperative RES-E support scenarios, compared to national support:

• The best wind availabilities across Europe are better exploited under cooperative

RES-E support. This advantage is greater when interconnector capacities are

larger. Thus, the difference in wind generation between cooperative and national

support is larger if the TYNDP is realized.

• Photovoltaic generation is lower given cooperative support because only best solar

sites are competitive with other RES-E generation options throughout Europe.

When interconnector capacities are larger, more favorable RES-E generation op-

tions across Europe (i.e., wind in Northern Europe) can be used and solar genera-

tion at sites with medium solar generation in Central Europe is smaller. Thus, the

difference in solar generation between cooperative and national support is larger

if the TYNDP is realized.

• Nuclear generation is higher given cooperative support because the use of renew-

able and non-renewable generation options can be optimized on a European-wide

level. With cooperative support, RES-E generation in countries with existing nu-

clear plants or the political will to construct nuclear plants is lower compared to

national support. Thus, a larger use of nuclear generation is possible. When in-

terconnectors are larger, this relative advantage of the cooperative RES-E support

decreases. With larger interconnectors, a higher nuclear, in addition to a high

RES-E generation, is possible on a national level. Thus, the difference in nuclear

generation between cooperative and national support is smaller if the TYNDP is

realized.

• When interconnector capacities are larger, international power flows contribute

significantly to balance demand and fluctuating RES-E infeed. Thus, the need

for flexibility on a national level is smaller, both under cooperative and national

RES-E support. In the cooperative RES-E support scenarios, storage generation

in countries with a high wind penetration is smaller when interconnector capacities

are larger. In the national support scenarios, a large share of non-renewable gener-

ation is coal rather than gas based when interconnector capacities are larger. Thus,

the difference in generation from storage units between cooperative and national

support is smaller if the TYNDP is realized. Furthermore, a lower generation from

nuclear plants under national compared to cooperative support is replaced by coal

rather than by gas when interconnector capacities are larger.

Differences in regional generation patterns between national and cooperative support

scenarios do not fundamentally change given an absence of interconnector extensions.
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Countries with favorable meteorological conditions also generate more RES-E in coop-

erative than in national support scenarios, however, generally to a lower extent. For

example, the cost-efficient wind generation in Ireland, Norway and Denmark is lower

due to limited export possibilites. In contrast, e.g., solar generation in Spain in the co-

operative support scenarios is hardly reduced when the TYNDP is not realized, because

the additional solar generation in the cooperative (compared to the national) support

scenarios mainly replaces non-renewable based generation in Spain and is not exported

to other countries.

With regard to gains from cooperation, the absence of interconnector extensions has, as

expected, a decreasing effect. However, gains from cooperation remain at a significant

magnitude of 47 to 62 bn EUR2010 (cumulated from 2021 to 2030) which translates to

a reduction of the additional costs induced by the (national) RES-E targets by 36% to

37%.

2.4.4 The influence of RES-E investment costs on cooperation gains

Table 2.12 depicts the additional costs induced by the 2030 RES-E target under national

and cooperative RES-E support systems, as well as the associated cooperation gains

when investment costs for photovoltaic systems or for offshore wind plants are 10%

lower than in the reference case. Numbers in brackets indicate the difference compared

to the reference case (either in bn. EUR2010 or in percentage points).

Table 2.12: Effect of RES-E investment costs on additional costs induced by the 2030
RES-E target and cooperation gains (2021-2030)

Photovoltaic Costs - 10% Equal Extra- Flatrate
Share polation Growth

Additional costs of 2030 RES-E target - national
support (bn. EUR2010)

156 (-10) 115 (-10) 124 (-9)

Additional costs of 2030 RES-E target - coopera-
tive support (bn. EUR2010)

90 (-3) 68 (0) 76 (-3)

Gains from cooperation (bn. EUR2010) 65 (-8) 47 (-10) 48 (-6)
Gains from cooperation (%) 42 ( -2) 41 (-4) 39 (-2)

Offshore Wind Costs - 10%

Additional costs of 2030 RES-E target - national
support (bn. EUR2010)

160 (-6) 121 (-4) 131 (-2)

Additional costs of 2030 RES-E target - coopera-
tive support (bn. EUR2010)

91 (-2) 67 (-1) 76 (-3)

Gains from cooperation (bn. EUR2010) 69 (-4) 55 (-2) 54 (0)
Gains from cooperation (%) 43 (-1) 45 (0) 42 (+1)
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Lower costs for photovoltaic systems (compared to the reference case) mainly lead to

higher photovoltaic and to lower offshore wind-based generation under either national or

cooperative RES-E support. Given national RES-E support, the switch from offshore- to

photovoltaic-based generation mostly occurs in countries characterized by medium wind

speeds and medium solar radiation as opposed to the best sites throughout Europe (e.g.,

France and Germany). Under cooperative RES-E support, e.g., photovoltaic generation

in Italy is higher than in the reference case, while offshore generation in the United

Kingdom is lower. In contrast, generation at the best sites for offshore wind (e.g.,

in the Netherlands and Denmark) is not affected by lower photovoltaic costs. Also,

generation from other generation options such as onshore wind, is hardly affected by

lower photovoltaic costs. In contrast, the overall costs of reaching the 2030 RES-E target

is reduced by lower investment costs for photovoltaic systems, both given national and

cooperative RES-E support. The cost reducing effect is, however, more pronounced in

the national support scenarios, in which photovoltaic capacities are largely higher, such

that gains from cooperation decrease to 47 - 65 bn. EUR2010 (to 39 - 42 %).

Lower investment costs for offshore wind plants also lead to generation switches between

offshore wind- and photovoltaic-based generation. In addition, in the cooperative RES-E

support scenarios, higher offshore wind-based generation partly replaces biomass-based

generation. Contrary to the hypothesis made in Section 2.4.1, gains from cooperation

do not increase with decreasing offshore wind costs. In absolute terms, gains from

cooperation either do not change (‘Flatrate Growth’ scenario) or decrease slightly. In

relative terms, gains from cooperation do not change, decrease or increase in a negligible

order of magnitude. Although offshore wind-based generation is significantly higher in

the cooperative support scenarios, capacities are only slightly higher (but deployed at

sites with higher full load hours). Consequently, lower investment costs for offshore

plants affect approximately the same number of offshore wind plants in the national and

in the cooperative support scenarios. In terms of offshore wind generation costs, absolute

reductions due to decreasing investment costs are, however, larger in the national support

scenarios because full load hours are lower on average. Thus, in the ‘Equal Share’ and

‘Extrapolation’ scenarios, additional costs induced by the 2030 RES-E target decrease

more when RES-E is supported on a national level. In the ‘Flatrate Growth’ scenarios,

the highest difference in offshore wind capacity between national and cooperative support

occurs (8 GW in the reference case, 18 GW when offshore wind costs are lower). In this

case, cost reductions in the national and the cooperative support scenario are in the same

order of magnitude: The effect of higher offshore wind capacities in the cooperative

scenario balances the effect of a larger absolute reduction of generation costs in the

national scenario.
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2.5 Possible obstacles to cooperation in RES-E support

In Section 2.4, we have shown that stronger cooperation in RES-E support yields sub-

stantial cost savings in the period after 2020 and that these cost savings are relatively

robust to different developments of the grid infrastructure and RES-E investment costs.

As discussed in Section 2.2, several authors have already quantified cost savings from

cooperation in achieving the 2020 target. However, currently hardly any member states

plan to use cooperation mechanisms in order to reach their national 2020 targets.19 One

exception is the joint support system of Sweden and Norway that was implemented in

2012. In addition, Italy and Luxembourg both intend to profit from RES sources outside

their national borders in order to achieve their targets. This section addresses possible

obstacles to a cooperative RES-E support that need to be tackled in order to reduce the

costs of increasing the European RES-E share. In the following, we analyze the main

obstacles facing the implementation of cooperation mechanisms, as stated in the indi-

vidual member states’ NREAPs (see EC (2010)), and thereby provide further insights

on political measures required to increase cooperation among member states (MS).

• Uncertainty surrounding national RES-E deployment paths

Future RES-E deployment is not exactly predictable, especially in countries with a

price-based RES-E promotion system. MS explain within their NREAPs that they

are interested in statistical transfers in the case their national target is surpassed,

but would also like to be assured that their own target is met (see, e.g., NREAP

Ireland and NREAP Germany).

• Uncertainty surrounding RES-E deployment in third countries

Even more than RES-E deployment on national territories, the progress of joint

projects between MS and third countries is difficult to foresee. For example, many

MS are involved in initiatives to import RES-E from the North African countries.

However, Italy is the only country that states within its NREAP that it aims

to fulfill a part of its target through imports from third countries. In contrast,

e.g., France explains that the current status of the project does not allow for the

quantification of the amounts of RES-E that could be imported within the target

period of the Directive.

• Administrative issues

Another obstacle hindering the use of cooperation mechanisms are unclear admin-

istrative issues. Within the NREAPs, the MS were requested to describe national

19Cooperation mechanisms defined within the European Renewables Directive include statistical trans-
fers, joint projects and joint support systems between member states. In addition, targets can be achieved
through cooperation mechanisms with non-EU member states under certain conditions. For more de-
tailed information, see EC (2012).



Chapter 2. Promotion of electricity from renewable energy in Europe post 2020 - the
economic benefits of cooperation 41

procedures for arranging statistical transfers or joint projects. Most countries de-

clared that no procedures have yet been established and that there is no clear

common understanding of how cooperation mechanisms could work in practice

(see, e.g., NREAP Ireland). In addition, there is a lack of information concerning

the potential for joint projects in other MS or third countries (see, e.g., NREAP

Slovakia or NREAP Spain).

• Sharing of integration costs

Several MS state that the implementation of statistical transfers or joint projects

is only eligible if integration costs of a higher RES-E share are borne by all partic-

ipating member states. These integration costs include, e.g., costs for reinforcing

the national grid and interconnectors as well as balancing costs (see, e.g., NREAP

Ireland and NREAP Germany). Obviously, it is not evident how, for example, grid

enforcement costs induced by renewable energies can be clearly distinguished from

those induced by other power plants or changes in the demand structure (Dena

(2010)). To quantify the integration costs induced only by those RES quantities

needed for cooperation mechanisms is even less straightforward.

• Insufficient interconnector capacities

Besides the unclear cost distribution of grid investments, an important issue for

the implementation of cooperation mechanisms is the actual realization of grid

enhancements, especially regarding interconnectors. Thus, administrative issues

or issues of public acceptance that hinder grid extensions can be an obstacle to the

use of cooperation mechanisms. Spain explains in its NREAP that participation

in joint projects would be ”senseless” for Spain if interconnectors between Spain

and France (and the rest of the European Union) are not enforced. Furthermore,

the Spanish NREAP states that the interconnectors between the European Union

and the North African countries are insufficient with regard to the envisaged RES-

E imports from North Africa. Portugal´s NREAP declares that it could easily

go beyond its own RES target given an extension of the interconnector capacity

between France and Spain.

• Influence on the conventional power market

A rising RES-E share has significant effects on the conventional power system.

Portugal explains that the Portuguese electricity market currently has surplus

capacity and therefore does not intend to produce more RES-E than required for

national target achievement. A rising amount of RES-E would lead to shrinking

full load hours of thermal power plants and thus affect their profitability.

• Other political targets

Finally, some governments also pursue political targets that can only be achieved
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by domestic RES promotion. For example, the Netherlands have set a higher

target for themselves than the mandatory target of the EU directive, which, in

addition, should be achieved through domestic production. Germany states in its

NREAP that the benefits from cooperation mechanisms have to be balanced with

the benefits from local RES production (such as local employment).

In summary, a sharing of costs and benefits between member states is challenging, and

unclear administrative procedures, a lack of information about RES-E potentials in

other countries and uncertainty about the progress of RES-E projects may hinder the

use of cooperation mechanisms. Potential drawbacks of cooperation have also been

addressed in the literature. Del Ŕıo (2005) states that harmonization may be in conflict

with national socioeconomic and environmental objectives, e.g., if a country wants to

increase employment by creating green jobs. Klessmann et al. (2010) point out that a

quantification of indirect costs and benefits resulting from cooperation mechanisms is

hardly possible. These indirect costs include, e.g., grid integration costs or environmental

costs (e.g., impact on the landscape) whereas potential benefits listed by Klessmann

et al. (2010) include, e.g., local job creation and innovation. Pade et al. (2012) also

identify the distribution of costs and benefits as a major challenge. In addition, the

authors discuss in detail barriers that are specific to the implementation of the different

cooperation mechanisms. When implementing a joint support scheme, countries have

to agree on a common support system design, which can be very difficult in practice.

Joint projects are more easily to implement; however, Pade et al. (2012) point out that

transaction costs can be an important barrier for small size projects. Moreover, the

authors explain that uncertainty surrounding the setting of RES targets in the period

post 2020 is a barrier to cooperation because countries with low-cost RES potentials

may not be willing to exploit their potentials given uncertainty about the development

of future targets.

2.6 Conclusions

Generation costs of fluctuating renewables vary substantially throughout Europe due

to different meteorological conditions. Thus, any RES-E support system that does not

incentivize the use of best sites across Europe induces high extra costs. In this analysis,

we have shown that continuing with national support systems after 2020 would increase

the additional cost of a 2030 RES-E target substantially. Furthermore, we find that

the economic benefit of cooperation, in terms of cost savings in the electricity system,

is quite robust: The cost savings decrease only slightly when interconnectors are not
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further extended (compared to today) and depend only slightly on assumptions about

the developments of RES-E investment costs.

In order to benefit from cooperation in practice, prevailing obstacles facing cooperation

need to be tackled. Based on an analysis of the NREAP documents, we find that a

sharing of costs and benefits between member states is challenging and that unclear

administrative procedures, a lack of information about RES-E potentials in other coun-

tries and uncertainty surrounding the progress of RES-E projects may hinder the use of

cooperation mechanisms. However, the example of the joint support system of Norway

and Sweden shows that these obstacles can be overcome.20 Moreover, the European

Commission is currently working on the development of guidelines on the implemen-

tation of cooperation mechanisms to provide information on legal conditions and on

possible methodologies to share costs and benefits (EC (2012)).21 Moreover, hybrid

support systems (as opposed to pure national or pure cooperative support systems)

may yield a large part of possible cooperation gains while limiting the distributional

effects. For example, Jansen (2011) proposes a bottom-up harmonization in which joint

renewable quota systems can be supplemented with national support measures in order

to take into account national concerns. Pade et al. (2012) also propose ‘technology or

geographically specific joint support schemes’ (e.g., only for offshore wind) as a short-

to medium-term solution. The advantage of this approach would be that these specific

joint support schemes could coexist with national support schemes. Thereby, some bar-

riers to cooperation would be removed, such as the difficulties in agreeing on a common

support system or the pursuit of different objectives the member states have with regard

to RES-E support. The authors state that while full harmonization would lead to the

highest efficiency gains, it is difficult to implement in the short term. In the context of

European cooperation in transmission system planning, Buijs (2011) investigates how

different forms of collaboration affect overall and country-wise economic welfare and

discusses the impact of different compensation mechanisms. Further research in this

area is clearly required in order to avoid large excess costs of achieving national targets

without cooperation.

20Klessmann et al. (2010) explain that the idea of a joint support system between Norway and Sweden
was first abolished in 2006 because ”it was very hard to find a final agreement how to share the costs
and benefits in such a system”.

21The analysis presented in this chapter has been published in the EWI Working Paper Series in August
2013. In November 2013, the European Commission published its guidelines ”on the use of renewable
energy cooperation mechanisms” (EC (2013)). These guidelines clarify administrative procedures for
the implementation of different cooperation mechanisms and describe different practical design options
for statistical transfers, joint projects and joint support schemes. Moreover, indirect costs and benefits
arising in the host and the off-taking countries are named. However, the guidance also states that a
quantification of these indirect costs and benefits is difficult.





Chapter 3

Redistribution effects resulting

from cross-border cooperation in

support for renewable energy

3.1 Introduction and background

International trade increases overall welfare. However, trade also results in redistribution

effects such that different groups may be better or worse off with or without trade.

These general findings of international trade theory (see, e.g., Krugman and Obstfeld

(2009) or Bhagwati et al. (1998)) also apply to cross-border cooperation in achieving

political targets for electricity generation from renewable energy sources (RES-E). Due

to favorable meteorological conditions (e.g., high wind speeds or high solar radiation) or

large resource availabilities (e.g., of hydro reservoirs), some regions have cost advantages

in RES-E generation. Political targets for RES-E generation are, however, often not

linked to the resource potential of a region. Cooperation between regions with different

supply functions of RES-E generation thus increases system-wide welfare because less

costly generation options can be used. However, this cooperation also leads to regional

price effects from which some groups (e.g., consumers or producers in a particular region)

benefit while other groups lose compared to a situation without cooperation. While the

effect of increasing welfare resulting from cooperation in RES-E support has been studied

quite extensively (e.g., by Ragwitz et al. (2007), EWI (2010) and Aune et al. (2012)), the

associated redistribution effects have received little attention in literature thus far. This

is intriguing as redistribution effects seem to be one of the main reasons that cooperation

in RES-E support among member states of the European Union has been impeded thus

far (Fürsch and Lindenberger (2013)).

45
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With this paper, we try to fill the existing gap in literature. We analyze redistribution

effects resulting from cooperation in a theoretical two-country electricity system model

in which RES-E support is implemented via a tradable green certificate system. In a

green certificate system, consumers or distributors of electricity are obliged to present

an amount of ‘green certificates’ corresponding to a politically-defined percentage share

of their electricity demand. Thereby, a market for the ‘green value’ of RES-E generation

is created (see Section 3.3). The green certificate market is closely linked to the whole-

sale electricity market for two reasons. First, the certificate price is paid on top of the

wholesale electricity price, such that the RES-E investor has two sources of incomes from

which he covers his costs. Therefore, if the electricity price level is high, the investor

will bid at low prices on the certificate market and vice versa. Second, an increase

in renewable-based electricity generation leads to a decrease in non-renewable-based

electricity generation (ceteris paribus). Therefore, as long as grid congestions between

different regions exist, varying regional allocations of RES-E also affect regional whole-

sale electricity markets. Consequently, welfare and redistribution effects resulting from

RES-E cooperation are significantly influenced by the degree of physical interconnec-

tion between different regional power systems. In this paper, we explicitly distinguish

between different grid interconnections, in analyzing under which conditions different

groups benefit or lose from the introduction of cooperation.

Main findings of this analysis include that the effects on consumers and total producers

per country resulting from cooperation can only be clearly determined if no grid con-

gestions between the countries exist. If bottlenecks in the transmission system exist,

the relationship between the slopes of the renewable and the non-renewable marginal

generation cost curves for electricity generation as well as the level of the RES-E target

essentially determine whether these groups benefit or lose from the introduction of cross-

border trading in green certificates. In contrast, system-wide welfare always increases

once cooperation in RES-E support is introduced. Similarly, welfare on the country level

always increases (compared to a situation without RES-E cooperation) if the countries

are perfectly or not at all physically interconnected. In the case of congested intercon-

nectors, the sum of producer and consumer rents in a country may also decrease under

certain conditions. However, in this case the level of congestion rents is also influenced

by the introduction of RES-E cooperation. Therefore, in this case, there always exists a

possible distribution of congestion rents between the countries which ensures that each

country benefits from the introduction of certificate trade.

The remainder of the article is structured as follows: In Section 3.2, an overview of the

related literature and the contribution of the current work is presented. In particular,

the relationship between cooperation in RES-E support and international trade theory
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is highlighted. Section 3.3 covers the theoretical analysis of redistribution effects. In

Section 3.4, we draw conclusions and provide an outlook for further research.

3.2 Related literature and contribution of the current work

To our knowledge, the redistribution effects resulting from RES-E cooperation have not

yet been analyzed in a theoretical framework. However, our analysis is related to two

strands of literature. First, as pointed out in the introduction, the question of welfare and

redistribution effects resulting from RES-E cooperation is closely related to international

trade theory. Second, our analysis builds on the literature on the interaction between

renewable support and the competitive wholesale market for electricity. A part of the

latter literature also includes an investigation of cross-border cooperation in RES-E

support, however, these investigations do not analyze redistribution effects.

3.2.1 Relation to international trade theory

International trade theory shows that trade between different regions increases welfare

for two main reasons: First, because differences between the regions (e.g., in terms

of different resource availabilities) can be exploited and second, because trade enables

economies of scale to be achieved (Krugman and Obstfeld (2009)). The classical and

neoclassical trade theory (Smith, Ricardo, Heckscher and Ohlin) is founded on differences

between the countries, whereas the new trade theory focuses on reasons for trade between

similar countries, e.g., on the achievement of economies of scale and the reinforcement of

competition through increasing market sizes (Mej́ıa (2011)). The analysis presented in

this paper can be best related to classical and neoclassical trade theory, as cooperation

in our model occurs between regions with different RES-E generation costs.

In 1776, Adam Smith showed that trade between regions with an absolute cost advan-

tage in the production of different goods increases overall welfare. The Ricardian model

(developed by David Ricardo in 1817) states that trade increases welfare even if a region

has higher production costs for all goods. In the Ricardian model, countries specialize in

the production of the good in which they have a comparative advantage (Krugman and

Obstfeld (2009)). In both the models of Smith and Ricardo, labor is the only produc-

tion factor and trade occurs due to differences in regional labor productivities. Trade is

beneficial for both countries, which reach higher aggregate consumption levels than in

autarky. In addition, trade is beneficial for all individuals within the countries because
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productivities and real wages increase in both countries (Mej́ıa (2011)).22 Redistribution

effects resulting from trade were first addressed in the context of the Heckscher-Ohlin

model. Heckscher and Ohlin analyze trade between regions with different factor endow-

ments. Their model consists of two countries, two output goods and - in contrast to

Smith and Ricardo´s model - two input factors. Each of the output goods is intensive

in one of the input factors (i.e., it requires more of one of the input factors than of the

other) and each of the input factors is relatively abundant in one of the two countries.

The Heckscher and Ohlin model states that countries specialize in the production of

the good that is intensive in the input factor that is relatively abundant in the specific

country. As in the models of Smith and Ricardo, trade increases overall consumption

and, thus, welfare in both countries (Krugman and Obstfeld (2009)). However, as shown

in the Stolper-Samuelson theorem, changes in the output price, induced by trade, also

affect the relative factor prices in both countries, such that owners of the relatively

abundant factor, benefit from trade, whereas owners of the relatively scarce factor, lose

compared to the pre-trade situation (see, e.g., Zweifel and Heller (1992)).

Our analysis of cooperation in RES-E support is closest related to the theory of Heckscher

and Ohlin. The motivation for cooperation in RES-E, e.g., implemented as a cross-border

green certificate trading scheme, is that regions have different resource availabilities,

such as sites with high wind speeds, hydro reservoirs or lignite mines. Furthermore,

as will be shown in Section 3.3, cross-border green certificate trading leads to regional

price effects which in turn lead to income distribution effects between different groups

within a country. A difference between the analysis in this paper and the models of

Smith, Ricardo and Heckscher-Ohlin is that our model covers only the electricity system

(partial equilibrium model) and not the economy as a whole (general equilibrium model).

In addition, the general equilibrium models of Smith, Ricardo and Heckscher and Ohlin

assume that all factors are fully used, both before and after trade (which implies, e.g.,

that no unemployment exists). Therefore, no country will export or import both goods.

An export of both goods would simply not be possible and an import of both goods

would lead to unused resources and, thus, to inefficiencies. In our partial equilibrium

model of the electricity system, it is not assumed that all input factors are fully used.23

Therefore, it is possible that a country is an importer or an exporter of both green

certificates and electricity. As will be shown in Section 3.3, in this case, and under the

additional condition that the interconnector between the two countries is congested, it

is possible that the sum of consumer rents and producer profits in a country decreases

22Note that the Ricardian model assumes free and costless mobility of labor between the sectors within
a country. Also, the productivity of all workers in a country is assumed to be identical.

23In a partial equilibrium model, such an assumption would not be sensible. For example, agricultural
land can be used either for producing energy crops or for producing food. As the food sector is not
included in the model of the electricity system, it would not be reasonable to assume that all available
production sites are fully used for producing energy crops.
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once cooperation is introduced. However, if interconenctors are congested, cooperation

not only affects the welfare of producers and consumers, but also impacts congestion

rents. Including changes of the congestion rents, we find that, analogous to general

trade theory, overall international system-wide welfare always increases when trade is

possible. Moreover, similar to the Heckscher-Ohlin model, in which trade is beneficial

for all countries, we find that there always exists a possible redistribution of congestion

rents between the countries which ensures that sectoral welfare in the electricity systems

of all countries increases.

3.2.2 Interaction between RES-E support and the competitive whole-

sale electricity market

The influence of RES-E support on the wholesale electricity market, i.e., in terms of

wholesale electricity prices, has been studied e.g., by Amundsen and Mortensen (2001),

Jensen and Skytte (2002) and Fischer (2010). These authors either use one-country

models or models with electricity trading, in which, however, RES-E is only supported

in one country. Models with a common support scheme for renewable energies in two

or more countries are investigated by e.g., Bye (2003), Amundsen and Nese (2009), Sun

(2012), Aune et al. (2012) and Laffont and Sand-Zantman (2012). Except for Laffont

and Sand-Zantman (2012), all authors study the effects of RES-E support via a green

certificate market. Bye (2003) studies volume and price effects of an increasing RES-E

percentage requirement in a model under autarky, a model with only electricity trading

and a model with both electricity and green certificate trading. Amundsen and Nese

(2009) investigate the impact of the RES-E percentage requirement and CO2 emission

prices on RES-E generation and total electricity production, both under autarky and

with cross-border certificate trading. Aune et al. (2012) show that a common certificate

market ensures the cost-efficient allocation of production across countries as long as the

countries aim to increase their share of renewable energy in aggregate energy consump-

tion. Sun (2012) builds on the two-country model presented in Aune et al. (2012) and

investigates welfare effects of a socially-optimal RES-E percentage requirement under a

joint renewable support system. Laffont and Sand-Zantman (2012) study the optimal

degree of coordination in RES-E support in a two-country model with potentially lim-

ited transmission capacity. Their key finding is that the optimal degree of coordination

depends on the level of transmission capacity.

In summary, while theoretical two-country models with common renewable promotion
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systems have been studied by several authors, these analyses do not include redistri-

bution effects.24 Our contribution to literature is thus to theoretically determine the

redistribution effects resulting from cooperation in RES-E support, which to the best of

our knowledge has not yet been performed.

3.3 Theoretical analysis

In analyzing the redistribution effects resulting from cooperation in RES-E support,

we use a theoretical two-country model with a wholesale electricity market and a mar-

ket for green certificates. A system of tradable green certificates (TGC) is a support

mechanism for RES-E generation that is currently implemented in e.g., Poland, Great

Britain, Norway and Sweden.25 Of course, other support mechanisms also exist (see

www.res-legal.eu for an overview of current RES-E support mechanisms across Europe)

and cooperation in RES-E support is not restricted to a common TGC market. In this

analysis, we chose to focus on the TGC system because, as outlined in Section 3.2, most

literature that theoretically analyze RES-E support mechanisms, focus on this support

mechanism.

In the model, producers sell electricity from renewable and non-renewable energy sources

on the wholesale electricity market. Most renewable electricity sources are currently

not competitive with non-renewable electricity sources. It is assumed that a certain

RES-E target is decided politically and expressed as a percentage share of electricity

demand, and that RES-E generation is incentivized by a green certificate system. In a

green certificate system, the electricity consumer, or the electricity utility providing the

consumer with electricity, is usually obliged to present a certain amount of certificates

per unit of electricity demand. Producers of renewable energy usually receive green

certificates for each generated unit of RES-E (from the regulatory body). Thus, they

sell their produced electricity on the wholesale electricity market and the ‘green value’ of

the electricity on the green certificate market. Therefore, producers of renewable energy

have two sources of income and - in competitive markets - will offer green certificates at

a price which compensates for the additional costs of renewable generation compared to

the wholesale electricity price. For more information on the functioning of TGCs, the

interested reader is referred to, e.g., Amundsen and Mortensen (2001), Menanteau et al.

(2003) and Agnolucci (2007).

24The paper of Aune et al. (2012) also includes a numerical analysis in which welfare effects of coop-
eration on country levels are shown. However, redistribution effects between different groups within the
countries are analyzed neither in their theoretical nor in their numerical model.

25The term ‘tradable’ generally does not refer to trade between different countries, but simply to the
fact that green certificates can be traded between different market actors and often also across different
time periods.
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The RES-E percentage requirements in the model are set on the national level and may

or may not be identical in the two countries. Without cooperation in renewable support

between the two countries, the national RES-E targets have to be achieved by domestic

RES-E production only. With cooperation, implemented in our analysis as a cross-

border green certificate trading system, imported green certificates can also contribute

to national target achievement. Note that cross-border trade in green certificates is

also possible without electricity trading because the green value, and not necessarily the

green electricity itself, is traded across borders. In the following, we analyze the welfare

effects of introducing a cross-border green certificate trading scheme in two cases. In the

first case, we assume that the grid connection between the two countries is unlimited

(‘copper plate’). Neglecting transmission losses, the two countries in this case have a

common wholesale price of electricity that is not affected by the regional distribution of

RES-E generation.26 In the second case, we assume that the interconnector linking the

two countries is congested or that, in the extreme case, the two countries are not at all

physically connected (‘limited grid’). Therefore, in this case, the regional distribution

of RES-E generation affects regional wholesale electricity markets.

In Section 3.3.1, we present the theoretical model. In Sections 3.3.2 and 3.3.3 we discuss

welfare and redistribution effects resulting from cross-border green certificate trading

for the case of a copper plate and the case of limited grid connection, respectively. In

Section 3.3.4, the determinants for the results in the ‘limited grid’ case are discussed

in more detail and in Section 3.3.5, we present numerical examples to illustrate how

different assumptions (e.g., on the supply curves) influence welfare and redistribution

effects shown in the theoretical model.

3.3.1 The theoretical model

As a starting point for our analysis, we take the model presented in Amundsen and Nese

(2009), which is a theoretical two-country model with a wholesale electricity market and

a green certificate market. However, the research question of this paper is completely

different to the one of Amundsen and Nese (2009). Amundsen and Nese (2009) use the

model to investigate whether it is possible to derive clear results on the level of RES-E

generation resulting from a) an increase in the RES-E percentage requirement and of

b) an increase in the CO2 -price. We use the model to investigate welfare effects of

26Note that the (common) wholesale price for electricity could be affected by a different regional dis-
tribution of RES-E generation if the impact of the demand structure is taken into account. Assume, for
example, that the introduction of cross-border green certificate trading leads to a reduction of photo-
voltaic generation in country A, which is then replaced by a higher wind generation in country B. In this
case, the total amount of RES-E generation remains unchanged; however the structure of the renewable
infeed has changed. A possible influence on the wholesale electricity market resulting from a different
renewable energy mix is neglected in this analysis.
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cross-border green certificate trading, under different assumptions about the physical

interconnection between different regions. In contrast to Amundsen and Nese (2009),

we do not consider the market for CO2 emissions and assume that electricity demand

is inelastic. Unlike in other markets, demand in electricity markets is characterized by

a relatively low elasticity, especially in the short term (Erdmann and Zweifel (2008)).27

Thus, we believe that, for our research question, the assumption of a perfectly inelastic

demand is appropriate as an approximation for a low demand elasticity.28

Table 3.1 presents the parameters and variables of the two-country model, where the

index i denotes the country i ∈ {A,B} (and where i´ is an alias of i).

Table 3.1: Notation of the theoretical model (partly based on Amundsen and Nese
(2009))

si price of green certificate
qi wholesale price of electricity
xi total consumption of electricity
yi production of conventional electricity
gi production of renewable electricity
αi RES-E percentage requirement
zi national RES-E target [with zi = αi · xi]
Ci(yi) costs for conventional electricity with ∂C

∂y > 0;∂C
2

∂y2 ≥ 0

hi(gi) costs for RES-E with ∂h
∂g > 0;∂h

2

∂g2 ≥ 0

πi profit function of all producers
πRi profit function of renewable electricity producers
πCi profit function of conventional electricity producers
CRi consumer rent
CEi consumer expenditures (expenditures for meeting electricity demand)
Wi welfare
Ti,i′ traded green certificates
Mi,i′ interconnector capacity
Ei,i′ congestion rent

We assume that country B has a large potential of RES-E generation options with com-

paratively lower costs than country A (e.g., due to favorable meteorological conditions).

More specific, we assume that in the market equilibrium without certificate trading, the

price of green certificates in country B (at the certificate demand level corresponding to

27An overview of electricity demand estimations is, e.g., provided by Simmons-Süer et al. (2011) and
Liejesen (2007). In general, electricity demand of industrial consumers is more elastic than of household
customers. Furthermore, electricity demand is more elastic in the long term than in the short term.
Simmons-Süer et al. (2011) determine average household electricity demand elasticities to be -0.2 in the
short term (up to one year) and -0.6 in the long term (ten years or more), based on a literature review.
Real-time price elasticity of electricity demand is estimated to be close to zero (Liejesen (2007)).

28In contrast, the main finding of Amundsen and Nese (2009), namely that the effect of an increasing
percentage requirement on RES-E generation is indeterminate, relies on the assumption of an elastic
electricity demand. With elastic electricity demand, an increasing percentage requirement can lead to
a decreasing electricity demand such that the percentage requirement can also be achieved without an
increase in RES-E generation.
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the national RES-E target zB) is lower than in country A. Technologies and resource

availabilities for the generation of non-renewable electricity may or may not be iden-

tical in both countries. Analogous to Amundsen and Nese (2009), we assume perfect

competition in all markets.

3.3.2 Welfare effects with unlimited grid connection (‘copper plate’)

In the case of unlimited grid connection between countries A and B, the introduction

of cross-border green certificate trading only affects the certificate market and not the

wholesale electricity market. In the absence of grid congestions non-renewable power

generation is optimally distributed between countries A and B even if green certificate

trading is not possible and the regional distribution of RES-E generation is not optimal.

Neglecting grid losses, a change in the regional distribution of renewable energy genera-

tion has no influence on the optimal regional distribution of non-renewable generation.

Thus, the outcome of the wholesale electricity market (in terms of the common power

price q and the regional levels of conventional electricity generation yi) is not affected

by the trading of green certificates.29 With the possibility to trade green certificates,

country A (with comparatively higher generation costs of RES-E) will import an amount

T of certificates instead of fulfilling the national renewable target (zA) using only local

RES-E production. In country B, a higher RES-E generation is generated than needed

to fulfill domestic demand for certificates (zB), such that an amount T of certificates

can be exported to country A. Equation (3.1) shows the profit function of conventional

electricity producers in countries A and B. Equations (3.2) and (3.3) show the profit

functions of renewable electricity producers in countries A and B, respectively.

πCi =q · yi − C(yi); i ∈ {A,B} (3.1)

πRA =[q + sA][zA − T ]− hA(zA − T ) (3.2)

πRB =[q + sB][zB + T ]− hB(zB + T ) (3.3)

Analogous to Billette de Villemeur and Pineau (2010), who analyze the impact of a

marginal increase in cross-border electricity trade on producer profits, consumer rents

and total welfare, we analyze the welfare effects of a marginal increase in cross-border

29In addition, as explained in footnote 26, this proposition relies on the assumption that the cost
function for non-renewable electricity generation Ci only depends on the level of non-renewable elec-
tricity generation and thus only on the level of demand minus the level of RES-E infeed. The possible
influence of a different structure of RES-E infeed, which may result from certificate trading, is neglected.
Furthermore, wholesale electricity price effects can occur if the RES-E quota in country B is not binding.
In this case, overall RES-E production in countries A and B would be lower than without the possibility
of certificate trading. This case is discussed via a numerical example in Section 3.3.5.
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certificate trade T from country B to country A. The case T = 0 corresponds to the case

where trading of green certificates is not allowed. In this case, by assumption, the price

of green certificates in country A is larger than in country B (sA(zA) > sB(zB)). In

the market equilibrium without certificate trading, the price of green certificates in each

country corresponds to the additional marginal costs of renewable energy production,

associated with a RES-E production of gi = zi, compared to the wholesale electricity

price: si = h′i(zi) − q.30 If green certificate trading is allowed, T is increased until

the prices of green certificates in both countries converge (sA = sB). As the wholesale

electricity price is identical in both countries and not affected by trading green certificates

(meaning that q and yi are independent of T ), the convergence of green certificate prices

is reached when the marginal costs of RES-E generation in both countries are equal

(h
′
A(zA − T ) = h

′
B(zB + T )). Thus, the optimal certificate trade T* is reached when

sA = h
′
A(zA − T ∗)− q = h

′
B(zB + T ∗)− q = sB, and arbitrage is no longer possible.

Lemma 3.1 states that an increase in the trading of green certificates increases welfare in

both countries, as long as 0 < T < T ∗ (implying h
′
A > h

′
B) and under the condition that

the interconnector is not congested. While consumers in country A benefit from trading,

producers of renewable electricity are worse off. Contrarily, RES-E producers in country

B profit from trading, whereas consumers are worse off (for proof, see Appendix B).31

In both countries, producers of conventional electricity are not affected by cross-border

certificate trading.

30The equilibrium condition in the certificate market (i.e., the certificate price corresponds to the
marginal generation costs of RES-E minus the wholesale electricity price) results from differentiating
the profit function of RES-E producers with regard to RES-E production gi (i.e., to the first-order
condition of profit maximization of the RES-E producers) (see Amundsen and Nese (2009)).

31To be precise, price effects (and thus also most redistribution and welfare effects) on country-levels
are only non-negative and not strictly positive or negative, as indicated in Lemma 3.1.
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Lemma 3.1. If 0 < T < T ∗ and M is unlimited then

dCRA
dT

=− dsA
dT
· αAxA = −dsA

dT
· zA ≥ 0 (3.4)

dπRA
dT

=
dsA
dT
· [zA − T ] ≤ 0 (3.5)

dπCA
dT

=0 (3.6)

dWA

dT
=− dsA

dT
· T ≥ 0 (3.7)

with
dsA
dT

=− h′′A(zA − T ) ≤ 0 (3.8)

dCRB
dT

=− dsB
dT
· αBxB = −dsB

dT
· zB ≤ 0 (3.9)

dπRB
dT

=
dsB
dT
· [zB + T ] ≥ 0 (3.10)

dπCB
dT

=0 (3.11)

dWB

dT
=
dsB
dT
· T ≥ 0 (3.12)

with
dsB
dT

=h
′′
B(zB + T ) ≥ 0 (3.13)

dW

dT
=
dWA

dT
+
dWB

dT
= [−dsA

dT
+
dsB
dT

] · T ≥ 0 (3.14)

In country A, the trading of green certificates leads to a decreasing price in green cer-

tificates (Eq. (3.8)), which is beneficial for consumers (Eq. (3.4)) and worse for RES-E

producers compared to a situation without trade (Eq. (3.5)). The price decrease refers

to the quantity zA for the consumers, but only to the quantity (zA − T ) for the RES-E

producers. Producers of conventional electricity are not affected by certificate trade (Eq.

(3.6)). Thus, total welfare in country A increases (Eq. (3.7)). In country B, in con-

trast, the trade in green certificates leads to an increasing price in green certificates (Eq.

(3.13)), which is beneficial for RES-E producers (Eq. (3.10)) and worse for consumers

compared to a situation without trade (Eq. (3.9)). In this case, the price increase refers

to the quantity (zB + T ) for the RES-E producers, but only to the quantity zB for the

consumers. Thus, total welfare in country B increases (Eq. (3.12)). The change in total

system-wide welfare corresponds to the sum of the welfare changes in A and B and is

therefore also positive (Eq. (3.14)).

Consequently, when grid connections are unlimited, it can be clearly shown that total

welfare in both countries increases. Furthermore, it can be seen that in the country with

a cost advantage for RES-E production (country B), producers are better and consumers
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are worse off than without trade. The opposite holds true in country A. The magnitude

of the overall welfare and distributional effects essentially depends on the slope of the

RES-E generation cost curves, which in turn determine the optimal certificate trade T ∗

and the changes in certificate prices.

3.3.3 Welfare effects with limited interconnection (‘limited grid’)

We now consider the case in which the electricity systems of countries A and B are not

perfectly physically interconnected. Either, the interconnector between the two countries

is congested, or, in the extreme case, the two regional electricity markets are not physi-

cally linked at all. Under this assumption, the different regional allocation of renewable

energy generation capacities, resulting from the introduction of green certificate trading,

has an influence on national wholesale electricity prices. If country A imports green cer-

tificates and thus reduces its domestic RES-E production, (inelastic) electricity demand

in country A has to be met by increasing generation from conventional plants. Similarly,

in country B, an increasing production of renewable energy leads to a decreasing produc-

tion of electricity from conventional energy sources. This effect is the larger, the smaller

electricity trading possibilities are. In the extreme case of no physical interconnection

between the countries, the amount of lower (higher) RES-E generation in country A (B)

has to be completely compensated by higher (lower) domestic conventional electricity

generation.

The profit functions of electricity producers (for renewable and conventional electricity)

in countries A and B are given by Eq. (3.15) - Eq. (3.20).32 Equations (3.15) and

(3.16) both present the profit function of conventional electricity producers in country

A - once for the case that country A is an importer of electricity and once for the case

that it exports electricity. Country A may be an importer both of certificates and of

electricity, e.g., if countries A and B have the same production costs for conventional

electricity or if country A has higher costs both for the generation of green and of

conventional electricity. In contrast, if country A has a cost advantage for the generation

of conventional electricity compared to country B, it may be an importer of certificates

but an exporter of electricity. Similarly, Country B is an exporter of green certificates

and may either be an importer or an exporter of electricity (Eq. (3.18) and Eq. (3.19)).

Note that we only consider the case, when the interconnector is congested and a complete

electricity price convergence between the two regional electricity markets cannot be

32 Note that the intermittent character of RES-E technologies such as wind and solar, is not taken
into account in the model. This becomes apparent in Equations (3.15), (3.16), (3.18) and (3.19) as the
total costs of conventional electricity generation (CA and CB) directly depend on the level of the residual
demand (= demand - RES-E generation). Additional integration costs that occur in the conventional
power system when RES-E shares increase (e.g., due to increasing balancing requirements or in ensuring
security of supply during hours of low RES-E infeed) are not taken into account.
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achieved. Thus, total electricity imports or exports correspond to the interconnector

capacity M. Setting M=0 corresponds to the case that the two countries are not at all

interconnected.

πCA =qA · [xA − zA + T −M ]− CA(xA − zA + T −M) [A imports electricity] (3.15)

πCA =qA · [xA − zA + T +M ]− CA(xA − zA + T +M) [A exports electricity] (3.16)

πRA =[qA + sA] · [zA − T ]− hA(zA − T ) (3.17)

πCB =qB · [xB − zB − T +M ]− CB(xB − zB − T +M) [B exports electricity] (3.18)

πCB =qB · [xB − zB − T −M ]− CB(xB − zB − T −M) [B imports electricity] (3.19)

πRB =[qB + sB] · [zB + T ]− hB(zB + T ) (3.20)

As in the ‘copper plate’ case, certificates are traded until certificate prices converge.

However, in this case, convergence implies that the additional marginal generation costs

of RES-E are identical in both countries ((h
′
A − C

′
A) = (h

′
B − C

′
B)). Lemma 3.2 defines

welfare and redistribution effects resulting from the trading of green certificates (for

0 < T < T ∗; meaning that (h
′
A − C

′
A) > (h

′
B − C

′
B)), given that country A (B) is not

only a certificate but also an electricity importing (exporting) country.
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Lemma 3.2. If 0 < T < T ∗, M > 0 but limited and A (B) is an electricity importer

(exporter), then:

dCRA
dT

=−dsA
dT
· zA︸ ︷︷ ︸

≥0

−dqA
dT
· xA︸ ︷︷ ︸

≤0

(3.21)

dπA
dT

=
dsA
dT
· [zA − T ]︸ ︷︷ ︸
≤0

+
dqA
dT
· [xA −M ]︸ ︷︷ ︸
≥0

(3.22)

dπRA
dT

=[
dsA
dT

+
dqA
dT

] · [zA − T ] ≤ 0 (3.23)

dπCA
dT

=
dqA
dT
· [xA − zA + T −M ] ≥ 0 (3.24)

dWA =−dsA
dT
· T︸ ︷︷ ︸

≥0

−dqA
dT
·M︸ ︷︷ ︸

≤0

(3.25)

with
dsA
dT

=− h′′A(zA − T )− C ′′A(xA − zA + T −M) ≤ 0 (3.26)

and
dqA
dT

=C
′′
A(xA − zA + T −M) ≥ 0 (3.27)

dCRB
dT

=− dCEB
dT

= −dsB
dT
· zB︸ ︷︷ ︸

≤0

−dqB
dT
· xB︸ ︷︷ ︸

≥0

(3.28)

dπB
dT

=
dsB
dT
· [zB + T ]︸ ︷︷ ︸
≥0

+
dqB
dT
· [xB +M ]︸ ︷︷ ︸
≤0

(3.29)

dπRB
dT

=[
dsB
dT

+
dqB
dT

] · [zB + T ] ≥ 0 (3.30)

dπCB
dT

=
dqB
dT
· [xB − zB − T +M ] ≤ 0 (3.31)

dWB

dT
=
dπB
dT

+
dCRB
dT

=
dsB
dT
· T︸ ︷︷ ︸

≥0

+
dqB
dT
·M︸ ︷︷ ︸

≤0

(3.32)

with
dsB
dT

=h
′′
B(zB + T ) + C

′′
B(xB − zB − T +M) ≥ 0 (3.33)

and
dqB
dT

=− C ′′B(xB − zB − T +M) ≤ 0 (3.34)

dEA,B
dT

=[
dqA
dT
− dqB

dT
] ·M ≥ 0 (3.35)

dW

dT
=
dWA

dT
+
dWB

dT
+
dEA,B
dT

= [−dsA
dT

+
dsB
dT

] · T ≥ 0 (3.36)
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In country A, the trading of green certificates leads to a decreasing price of green cer-

tificates (Eq. (3.26)) but to an increasing wholesale electricity price (Eq. (3.27)). The

change in the wholesale electricity price is always (in absolute values) smaller than, or

equal to, the change in the green certificate price. Thus, profits of renewable electricity

producers decrease (Eq. (3.23)) and profits of conventional electricity producers increase

(Eq. (3.24)). However, effects on consumer rents and on total producer profits cannot

be clearly determined without making further assumptions. With regard to consumer

rents, the smaller change in the wholesale electricity price refers to total electricity de-

mand (xA), while the larger change in the green certificate price only affects a fraction

of electricity demand (namely (zA = xA · αA)). With regard to producer profits, the

change in the wholesale electricity price refers to (xA −M), which is likely to be larger

than the quantity (zA − T ) that is affected by the change in the certificate price.33

In country B, the trading of green certificates leads to an increasing price of green

certificates (Eq. (3.33)) but to a decreasing wholesale electricity price (Eq. (3.34)).

Thus, profits of renewable electricity producers increase (Eq. (3.30)), while profits of

conventional electricity producers decrease (Eq. (3.31)). However, as in country A,

the effects on consumer rents and on total producer profits are not clear. Again, the

change in the wholesale electricity price (in absolute values) is smaller than, or equal

to, the change in the green certificate price and affects total electricity demand (xB) for

consumers and (xB +M) for producers. The change in the certificate price, in contrast,

affects only (zB = xB · αB) for consumers and (zB + T ) for producers.

The change in total welfare in countries A and B depends on the change in the green

certificate price and, in contrast to the ‘copper plate’ case, also on the change in the

wholesale electricity price (Eq. (3.25) and Eq. (3.32)). If country A is an electricity

importer and the wholesale electricity price increases once cooperation is introduced,

consumers pay a higher wholesale electricity price for their total demand (xA), while

producers only profit from the higher price for the quantity (xA −M). Therefore, the

welfare change in country A, defined as the sum of changes in producer profits and con-

sumer rents, depends on (dsAdT ·T ) and on (dqAdT ·M), and can without further assumptions

on the slopes of the marginal generation cost curves only be clearly determined if either

one of the price effects is zero or if T > M .34 Similarly, if country B is an electricity

exporting country, the decreasing wholesale electricity price affects producers to a larger

extent (xB +M) than consumers (xB), such that it is unclear, whether total welfare in

country B increases or decreases.

33As (xA > zA), M would need to be substantially larger than T in oder to let (xA −M) be smaller
than (zA−T ). At the same time, when assuming that the interconnector is congested, it is unlikely that
M is substantially larger than T.

34As | dsA
dT
| > | dqA

dT
|, it follows that, if T > M , | dsA

dT
· T | > | dqA

dT
·M | (independent of the slopes of the

marginal cost curves).
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In contrast, if either the two countries are not at all interconnected (M=0) or if country

A (B) is an electricity exporting (importing) country, the welfare changes in A and

B are always positive. In the latter case, Equation (3.25) is transformed to dWA
dT =

−dsA
dT · T + dqA

dT ·M and Equation (3.32) to dWB
dT = dsB

dT · T −
dqB
dT ·M . These equations

are always non-negative.

The change in total system-wide welfare corresponds to the sum of the welfare changes

in countries A and B and to the change in the congestion rents. If the interconnector

between A and B is congested, the changes in the regional wholesale electricity prices

affect the price difference between the countries and thus, in turn, the congestion rents.

If country A is an electricity importing country (and correspondingly, country B is an

electricity exporting country), the price difference between A and B increases when cer-

tificate trade is possible (Eq. (3.35)). In contrast, if country A (B) is an electricity

exporting (importing) country, then the difference in the wholesale electricity price be-

tween A and B decreases with an increasing T, since the wholesale electricity price in A

is lower than in B without certificate trading. In both cases, total system-wide welfare

increases in T. If country A (B) imports (exports) electricity, then the increasing con-

gestion rents compensate for the negative components in dWA
dT and dWB

dT (Eq. (3.36)).

If country A (B) exports (imports) electricity, the decreasing congestion rent compen-

sates for the additional welfare increasing effects in A and B based on the changing

wholesale electricity prices (see Appendix B). Thus, the change in total system-wide

welfare always only depends on the change in the certificate price in both countries and

on T, and is always positive. Therefore, even if the welfare in one country, defined as

the sum of consumer rents and producer profits, decreases in T, congestion rents can

always be redistributed in a way that all countries benefit from certificate trading. In

fact, in the European Union congestion rents have to be used for one or several of the

three following purposes: (1) guaranteeing the actual availability of the allocated ca-

pacity, (2) for network investments maintaining or increasing interconnector capacities

or (3) for reducing network tariffs (Art. 6 of the Regulation (EC) 1228/2003; see also

Kapff and Pelkmans (2010)). Therefore, if congestion rents are used for purposes (2)

or (3), increasing congestion rents have a welfare increasing effect on the country level.

If interconnector capacities are increased, ceteris paribus, the welfare in both countries

increases - either because of increasing producer profits that overcompensate decreasing

consumer rents or, vice versa, because increasing consumer rents dominate (e.g., Kapff

and Pelkmans (2010)). If network tariffs are reduced, endconsumer electricity prices

decrease and consumer rents increase, which also has a welfare increasing effect. There-

fore, if for example congestion rents are used for a network tariff reduction, there exist

possible distributions of the network tariff reduction between the two countries, which

ensure that welfare in both countries increases once certificate trade is introduced.
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In summary, we find that both when the two countries are perfectly interconnected or

if bottlenecks exist, system-wide welfare always increases in T (as long as T < T ∗).

Also, welfare on the country-levels always increases either if the two countries form

a copper plate or if the countries are not at all interconnected. If bottlenecks exist,

congestion rents can always be redistributed in a way, that both countries benefit from

the introduction of certificate trading. In contrast, redistribution effects arise between

different groups within the two countries, such that the introduction of certificate trade

is not beneficial for all groups. Producers of renewable energy yield lower profits in

country A (characterized by relative higher generation costs of renewable energy), while

profits of RES-E producers in country B increase. If bottlenecks exist, the opposite

holds true for producers of conventional electricity. In the copper plate case, producers

of conventional electricity are not affected by the introduction of certificate trading.

Effects on consumer rents and total producer profits (renewable and conventional) can,

however, not be determined, except for the copper plate case. Table 3.2 provides an

overview of the price, welfare and redistribution effects resulting from trading of green

certificates.

Table 3.2: Price, welfare and redistribution effects resulting from cross-border trading
of green certificates

Copper plate Limited interconnection
M>0 but limited M=0

dsA ≤ 0 ≤ 0 ≤ 0
dsB ≥ 0 ≥ 0 ≥ 0
dqA = ≥ 0 ≥ 0
dqB = ≤ 0 ≤ 0
dCRA ≥ 0 ? ?
dCRB ≤ 0 ? ?
dπCA = ≥ 0 ≥ 0
dπCB = ≤ 0 ≤ 0
dπRA ≤ 0 ≤ 0 ≤ 0
dπRB ≥ 0 ≥ 0 ≥ 0
dπA ≤ 0 ? ?
dπB ≥ 0 ? ?
dWA ≥ 0 ? ≥ 0
dWB ≥ 0 ? ≥ 0
dEA,B = ? =
dWA + dWB + dEA,B ≥ 0 ≥ 0 ≥ 0

In the next section, the influence factors for those effects marked by a question mark in

Table 3.2 are discussed.
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3.3.4 Determinants of the redistribution effects in the case of limited

interconnection

In this section, determinants of redistribution effects of cooperation, arising in the case of

limited interconnection, are investigated in more detail. In the following, it will be shown

that the sign of the changes of consumer rents and producer profits essentially depends

on the relationship between the slopes of the generation cost curves for renewable-based

and conventional electricity and on the level of the RES-E quota.

For this purpose, Equation (3.21), which defines the change in consumer rents in country

A due to an increase in T, can be rewritten as follows:
dCRA
dT = −(−h′′A(zA − T )− C ′′A(xA − zA + T −M)) · zA − (C

′′
A(xA − zA + T −M) · xA).

Thereby, it can be seen that the change in consumer rents depends on the slopes of the

generation cost curves of renewable and non-renewable electricity generation (h′′A and

C ′′A) and on the RES-E percentage requirement (zA). While the slopes of the supply

curves determine the magnitude of the price effects (resulting from cooperation) on the

certificate and on the wholesale electricity market, the level of the RES-E percentage

requirement determines how large the part of electricity demand is that is affected by

the change in the green certificate price. If the slopes of the two marginal generation

cost curves are identical (in the relevant areas) and the RES-E quota is exactly 50%,

then the effect of the change in the certificate price exactly compensates for the effect

of the change in the wholesale electricity price. In this case, consumer rents are not

affected by certificate trading. The upper part of Table 3.3 shows how consumer rents

in country A change in T, depending on the relationship between the slopes of the two

marginal generation cost curves and the level of the RES-E quota. Generally, consumers

in country A benefit from certificate trading, if the RES-E marginal generation cost curve

is relatively steep compared to the conventional one (h′′A ≥ C ′′A) and/or the RES-E quota

is high.
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Table 3.3: Changes in consumer rents and producer profits in country A (case II,
‘limited grid’) depending on the slopes of the marginal generation cost curves and the

level of the RES-E quota

dCRA/dT

h′′A = C ′′A h′′A > C ′′A h′′A < C ′′A
zA = 0.5xA 0 > 0 < 0
zA < 0.5xA < 0 ? < 0
zA > 0.5xA > 0 > 0 ?

dπA/dT

h′′A = C ′′A h′′A > C ′′A h′′A < C ′′A
zA = 0.5(xA −M) > 0 ? > 0
zA < 0.5(xA −M) > 0 ? > 0
zA > 0.5(xA −M) ? ? ?

The lower part of Table 3.3 shows how the change in total producer profits in country

A depends on the slopes of the marginal generation cost curves, on the RES-E quota

and on the size of the interconnector capacity.35 As defined in Equation (3.23), the

change in the certificate price refers to the quantity (zA − T ) for the producers. Thus,

the change in total producer profits shown in Table 3.3 cannot be determined in many

cases because the level of T is also necessary to determine whether the sum of producers

benefit or lose from certificate trading. Generally, if the slope of the marginal generation

cost curve for conventional electricity is relatively steep and the RES-E target is low,

the wholesale electricity price effect is likely to be dominant, implying that producers in

country A benefit from certificate trading.

Table 3.4 depicts the changes in consumer rents and total producer profits in country

B depending on the slopes of the renewable and the conventional marginal generation

cost curves and the level of the RES-E quota. The effects shown in Table 3.4 mirror

the ones depicted in Table 3.3: Under the same conditions as in country A, either the

certificate price effect or the wholesale electricity price effect is dominant. However, as

price effects in country A and B are opposite, a dominant certificate price effect implies

increasing consumer rents in country A and decreasing consumer rents in country B.36

35Note that the depicted changes in producer profits correspond to the case that country A is not only
a certificate but also an electricity importing country. If A is an electricity exporting country, (xA−M)
has to be replaced by (xA + M).

36Note that the depicted changes in producer profits correspond to the case that country B is not only
a certificate but also an electricity exporting country. If B is an electricity importing country, (xB +M)
has to be replaced by (xB −M).



Chapter 3. Redistribution effects resulting from cross-border cooperation in support for
renewable energy 64

Table 3.4: Changes in consumer rents and producer profits in country B (case II,
‘limited grid’) depending on the slopes of the marginal generation cost curves and the

level of the RES-E quota

dCRB/dT

h′′B = C ′′B h′′B > C ′′B h′′B < C ′′B
zB = 0.5xB 0 < 0 > 0
zB < 0.5xB > 0 ? > 0
zB > 0.5xB < 0 < 0 ?

dπA/dT

h′′B = C ′′B h′′B > C ′′B h′′B < C ′′B
zB = 0.5(xB +M) > 0 > 0 ?
zB < 0.5(xB +M) ? ? ?
zB > 0.5(xB +M) > 0 > 0 ?

Table 3.5 shows under which conditions (i.e., the slopes of the marginal cost curves

and the relation between T and M) welfare in country A decreases or increases, given

that A is an importer both of certificates and of electricity.37 Generally, if the amount

of certificates traded is large compared to the amount of electricity traded, and if the

marginal cost curves of RES-E are relatively steep compared to the marginal cost curves

of conventional electricity, then welfare on the country level increases. In contrast,

if the amount of certificates traded is relatively small and the conventional marginal

generation cost curves are relatively steep, then the wholesale electricity price effect

dominates and welfare, defined as the sum of producer profits and consumer rents,

decreases. Remember however, that, as explained in Section 3.3.3, congestion rents

increase in T if A is electricity importer. These congestion rents can be distributed

between A and B in a way which ensures that welfare in both countries always increases

in T.

Table 3.5: Change in welfare in country A (case II, M>0, but limited) depending on
the slopes of the marginal generation cost curves and the relation between certificate

and electricity trading

dWA/dT

h′′A = C ′′A h′′A > C ′′A h′′A < C ′′A
T = 0.5M 0 > 0 < 0
T < 0.5M < 0 ? < 0
T > 0.5M > 0 > 0 ?
T > M > 0 > 0 > 0

37Note that the welfare effects in country B are identical to the ones depicted in Table 3.5 when h′′A
is replaced by h′′B and C′′A by C′′B .
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Summarizing, the relation between the slopes of the RES-E supply curve and the supply

curve for conventional electricity has a high influence on welfare and redistribution effects

resulting from cooperation. Whether in real-world power systems the supply curve of

RES-E is steeper or flatter than the one of non-renewable-based electricity cannot be

generally said and depends, for example, on available country-specific potentials for

different power plant types. For this reason, a determination of redistribution effects in

real-world power systems needs to be based on quantitative modeling analyses and is an

important subject for future research. In the next section, the role of the supply curves´

slopes and the RES-E percentage requirement is further demonstrated, using numerical

examples.

3.3.5 Numerical examples

In this section, we construct two simple numerical examples in order to highlight the

effect of the degree of physical interconnection between the two countries, the slopes of

the RES-E and the conventional supply curves and the RES-E quota requirement on

welfare and redistribution effects induced by cooperation in RES-E support. Table 3.6

provides an overview of the assumptions made in the two numerical examples.

Table 3.6: Assumptions made in the numerical examples

Example 1 Example 2

Demand
xA 10 10
xB 10 10
RES-E target
zA 5 4
zB 5 4
Cost curves
CA 0.5y2A 0.75y2A + 2yA
CB 0.5y2B 0.5y2B
hA 2g2A 0.75g2A + 5gA
hB g2B 0.5g2B + 3gB

In the first numerical example, a 50% RES-E share of electricity demand has to be

reached in both countries and costs for conventional electricity generation are identical

in both countries. In contrast, country B has a cost advantage in the production of

renewable-based electricity compared to country A. Furthermore, in both countries, the

slope of the RES-E supply curve is steeper than the slope of the conventional supply

curve (h′′A(gA) = 4 > C ′′A(yA) = 1 and h′′B(gB) = 2 > C ′′B(yB) = 1).
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Table 3.7 shows the results of this first numerical example for three different interconnec-

tor settings: M=0 (‘no grid’), M=1 (‘limited grid’) and M unlimited (‘copper plate’). It

can be seen that the optimal amount of certificate trade (T*) increases with an increas-

ing level of interconnection between the two countries and that the common certificate

price with certificate trading (s*) decreases when M increases. Furthermore, overall wel-

fare gains of certificate trading (WA +WB +EA,B) increase when M, and therefore T*,

increases.

Table 3.7: Effects of cooperation in RES-E support:
Results from numerical example 1

M = 0 M = 1 M unlimited
(‘no grid’) (‘limited grid’) (‘copper plate’)

T* 1.25 1.5 1.67
s* 8.75 8.5 8.33

T=0 T=T* diff. T=0 T=T* diff. T=0 T=T* diff.
A sA 15.00 8.75 -6.25 15.00 8.50 -6.50 15.00 8.33 -6.67

qA 5.00 6.25 1.25 5.00 5.50 0.50 5.00 5.00 0.00
πR
A 50.00 28.12 -21.88 50.00 24.50 -25.50 50.00 22.22 -27.78
πC
A 12.50 19.53 7.03 12.50 15.13 2.63 12.50 12.50 0.00
πA 62.50 47.66 -14.84 62.50 39.63 -22.88 62.50 34.72 -27.78

CEA 125.00 106.25 -18.75 125.00 97.50 -27.50 125.00 91.67 -33.33
CRA 18.75 27.50 33.33
WA 3.91 4.63 5.55

B sB 5.00 8.75 3.75 5.00 8.50 3.50 5.00 8.33 3.33
qB 5.00 3.75 -1.25 5.00 4.50 -0.50 5.00 5.00 0.00
πR
B 25.00 39.06 14.06 25.00 42.25 17.25 25.00 44.44 19.44
πC
B 12.50 7.03 -5.47 12.50 10.13 -2.38 12.50 12.50 0.00
πB 37.50 46.09 8.59 37.50 52.38 14.88 37.50 56.94 19.44

CEB 75.00 81.25 6.25 75.00 87.50 12.50 75.00 91.67 16.67
CRB -6.25 -12.50 -16.67
WB 2.34 2.38 2.77
EA,B 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00

WA +WB + EA,B 6.25 8.00 8.32

Note that, due to the assumption of an inelastic electricity demand, no absolute values for
consumer rents and welfare levels can be calculated. However, the differences in expenditures
that consumers pay for meeting their electricity demand (CE) (multiplied by (-1)) correspond

to the change in consumer rents (CR).

Regardless of the size of the interconnector capacity M, the certificate price effect is

always dominant in this example. Therefore, consumers in country A and total producers

in country B benefit from certificate trading, while consumers in country B and total

producers in country A are worse off than without certificate trading. On the country

level, the change in welfare is positive in A and B. However, trade gains are unequally

distributed between the two countries. In all three interconnector settings, the welfare

increase in country A is larger than in country B. When the two countries form a copper

plate, the welfare gain in country A makes up even two thirds of the overall welfare

gain. The reason is, that, as shown in Lemma 2, the welfare change on the country-level

depends on the changes in the green certificate and in the wholesale electricity price
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(dW = | dsdT · T | + |
dq
dT ·M |). As the slopes of the conventional electricity supply curves

are the same in both countries, it follows that |dqAdT | = |dqBdT |. In contrast, the RES-E

supply curve is steeper in A than in B, such that the certificate price effect in A is larger

than in B (|dsAdT | > |
dsB
dT |). Consequently, the welfare change in A is larger than in B

(dWA
dT > dWB

dT ).

In the second example, it is assumed that countries A and B have different cost curves for

RES-E as well as for conventional electricity generation. In contrast to the first example,

the slopes of the RES-E and the conventional supply curves in each country are identical

(h′′A(gA) = C ′′A(yA) = 1.5 and h′′B(gB) = C ′′B(yB) = 1). Moreover, in contrast to the first

example, the RES-E quotas in both countries are assumed to be 40% instead of 50%.

Table 3.8 shows price, welfare and redistribution effects occurring in this second example

due to certificate trading. First of all, it needs to be noted that under the assumptions

made in this example, country A is not always a certificate importing country. When

M=0 and certificate trading is not possible, the certificate price in A is lower than in

country B. The reason is that country A has higher costs for RES-E and conventional

electricity generation compared to country B. Therefore, the certificate price in country

A is lower than in B, due to a high wholesale electricity price. When electricity trading

is possible (M=1 or M unlimited), country A is an electricity importing country, both

when certificate trade is and is not possible. Therefore, the wholesale electricity price

in country A is lower than without the possibility of electricity trading and the pre-

certificate trading certificate price is higher in country A than in B. Thus, when M=1

or when M is unlimited, country A imports electricity and green certificates.
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Table 3.8: Effects of cooperation in RES-E support:
Results from numerical example 2

M = 0 M = 1 M unlimited
(‘no grid’) (‘limited grid’) (‘copper plate’)

T* 0.2 0.3 1.6
s* 0.6 0.6 0.6

T=0 T=T* diff. T=0 T=T* diff. T=0 T=T* diff.
A sA 0.00 0.60 0.60 1.50 0.60 -0.90 3.38 0.60 -2.78

qA 11.00 10.70 -0.30 9.50 9.95 0.45 7.63 8.00 0.38
πR
A 12.00 13.23 1.23 12.00 10.27 -1.73 12.00 4.32 -7.68
πC
A 27.00 25.23 -1.77 18.75 21.07 2.32 10.55 12.00 1.45
πA 39.00 38.46 -0.54 30.75 31.34 0.59 22.55 16.32 -6.23

CEA 110.00 109.40 -0.60 101.00 101.90 0.90 89.75 82.40 -7.35
CRA 0.60 -0.90 7.35
WA 0.06 -0.32 1.12

B sB 1.00 0.60 -0.40 0.00 0.60 0.60 0.00 0.60 0.60
qB 6.00 6.20 0.20 7.00 6.70 -0.30 7.63 8.00 0.38
πR
B 8.00 7.22 -0.78 8.00 9.25 1.25 10.69 15.68 4.99
πC
B 18.00 19.22 1.22 24.50 22.45 -2.06 29.07 32.00 2.93
πB 26.00 26.44 0.44 32.50 31.69 -0.81 39.76 47.68 7.92

CEB 64.00 64.40 0.40 70.00 69.40 -0.60 76.25 82.40 6.15
CRB -0.40 0.60 -6.15
WB 0.04 -0.21 1.77
EA,B 0.00 0.00 0.00 2.50 3.25 0.75 0.00 0.00 0.00

WA +WB + EA,B 0.10 0.22 2.89

As in the first example, the optimal amount of certificates traded and the welfare gains

increase with an increasing interconnection between the two countries.38 In contrast

to the first example, however, the common certificate price when certificate trading

is possible (s*) does not vary with different levels of M. As shown in Lemma 2, the

certificate price effect depends on the slopes of the RES-E and the conventional electricity

supply curve. On the one hand, an increase in M leads to an increase in T* and therefore,

ceteris paribus, to an increasing certificate price effect. On the other hand, the larger

the interconnector capacity is, the smaller the wholesale electricity price effect becomes.

As the change in the wholesale electricity price reinforces the certificate price effect, a

larger interconnector capacity also has a decreasing effect on changes in the certificate

price. Under the assumptions of equal slopes of the two supply curves, these two effects

exactly compensate for each other.

38Note that the overall welfare gain is significantly higher when M is unlimited compared to the case
when M=1, as shown in the third column of Table 3.8. The reason is that without certificate trading the
RES-E quota in country B is not binding (i.e., the certificate price would be negative when producing
only 4 units of RES-E). Thus, the overall amount of RES-E produced is lower when certificate trading
is possible because a part of the certificates traded from country B to country A corresponds to RES-E
generation that exceeds the RES-E quota even without certificate trade. Consequently, some of the
traded certificates do not induce extra costs in country B. Moreover, for this reason, the wholesale
electricity price increases both in countries A and B when certificate trading is possible.
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Regarding redistribution effects, the certificate price effect in this example clearly domi-

nates if M is unlimited. In contrast, it can be seen that if M=1, the wholesale electricity

price effect is dominant both with regard to changes in consumer rents and with regard

to changes in producer profits in the two countries. As the slopes of the RES-E and the

conventional electricity supply curves are identical in this example, the change in the

certificate price is twice as high as the change in the wholesale electricity price in both

countries. However, as the RES-E quota is lower than 50%, the wholesale electricity

price effect dominates.

Regarding welfare effects on the country-level, it can be seen that welfare in countries A

and B decreases if M=1. As stated in Table 3.5, welfare on the country level decreases

if the slopes of the RES-E and the conventional supply curves are identical and if T <

0.5M , which is satisfied in this example. In this case, the increase in the wholesale

electricity price in country A leads to increasing end-consumer electricity prices for all

consumers in country A, while producers in country A only partly benefit from this

price increase because a part of the consumed electricity is imported. Similarly in

country B, the decrease in the wholesale electricity price affects producers to a larger

extent than consumers because electricity generation is higher than electricity demand

due to exports. However, if M=1, congestion rents increase by 0.75 once cooperation

is introduced and consequently, welfare on the system-level increases. Moreover, in

this case, e.g., an equal distribution of the additional congestion rents between the two

countries would ensure that both countries benefit from the introduction of certificate

trade.

3.4 Conclusion

As shown in neoclassical trade theory, trade between regions characterized by different

resource availabilities increases overall welfare. However, due to trade-induced changes

in prices, some individuals benefit from trade while others are worse off compared to a

situation in autarky. This paper is motivated by findings of trade theory and analyzes

cooperation in RES-E support between regions that are characterized by different supply

functions of RES-E generation. The paper shows that cooperation in RES-E support

also increases overall welfare and creates winners and losers compared to a situation in

which each country achieves its RES-E target by local production only.

Our analysis shows that, due to opposing price effects of cooperation on the wholesale

electricity market and on the green certificate market, the determination of winners and

losers of cooperation is not straightforward as long as the different regions are not per-

fectly physically interconnected. Whether consumers or producers in a country benefit
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or are worse off essentially depends on the relation between the slopes of the RES-E and

the conventional electricity supply curves as well as on the level of the RES-E target and

on the degree of physical interconnection between the different countries. In contrast,

system-wide welfare always increases once cooperation in RES-E support is introduced.

Similarly, welfare on the country level always increases (compared to a situation without

RES-E cooperation) if the countries are perfectly or not at all physically interconnected.

In the case of congested interconnectors, the sum of producer and consumer rents in a

country may also decrease under certain conditions. However, in this case the level of

congestion rents is also influenced by the introduction of RES-E cooperation. Therefore,

in this case, there always exists a possible distribution of congestion rents between the

countries which ensures that each country benefits from the introduction of certificate

trade.

Redistribution effects have a high relevance in political decisions surrounding the imple-

mentation of cooperation in RES-E support. In most real-world electricity systems, bot-

tlenecks in the transmission lines between different countries exist currently. Our analysis

shows that, in this case, the determination of redistribution effects is not straightfor-

ward and needs to be based on thorough quantitative analyses of real-world electricity

systems. In particular, the interaction between the support for renewable energy and

the wholesale electricity market needs to be taken into account. Moreover, important

influence factors of redistribution effects can change over time, e.g., when interconnec-

tors are expanded, when the RES-E targets increase over time or when cost degressions

of different technologies lead to changing supply curves.

It is also important to take these considerations into account when discussing the shar-

ing of costs and benefits of cooperation mechanisms. In this context, two important

questions arise: First, who should or would need to be compensated in order to enhance

cooperation between different regions? And second, how should compensation payments

be determined? Regarding the first question, our analysis shows that in most cases co-

operation increases welfare on the country level. Thus, compensation mechanisms on

the country level would be hardly needed if countries are not concerned about domestic

redistribution effects or unequally high benefits among participating countries. However,

while the analysis includes effects resulting form cooperation on RES-E support expendi-

tures and on the wholesale electricity market, effects on regional grid enhancement costs

and other integration costs are neglected. Furthermore, the theoretical model assumes

that producer profits are clearly allocated to the country in which the electricity is pro-

duced. For example, in the European electricity system, large international companies

operating in several countries play an important role in electricity production. Thus, a

clear association between producer profits and countries can be difficult in practice.
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Regarding the second question, direct and indirect costs and benefits of cooperation

have already been assessed in literature, e.g., by Klessmann et al. (2010) and Pade et al.

(2012). These costs and benefits include, e.g., a reduction of RES-E target compliance

costs, grid reinforcement and grid expansion costs, power market effects, effects on the

technological development of power plants, employment effects and regional environmen-

tal effects. In particular, Pade et al. (2012) state that compensation mechanisms should

include power market effects and that barriers to cooperation between countries with a

common electricity market are lower because, in this case, RES-E deployment leads to

similar power market effects in the cooperating countries. Our analysis confirms that

power market effects can have a significant influence on redistribution effects resulting

from cooperation. However, thorough quantitative analysis based on real-world data is

needed to determine the magnitude of these power market effects. In summary, further

research, is needed to further investigate redistribution effects and possible measures to

enhance cooperation.





Chapter 4

Who benefits from cooperation? -

A numerical analysis of

redistribution effects resulting

from cooperation in European

RES-E support

4.1 Introduction

An important target in European energy policy is to increase the share of renewable

energy sources (RES) in primary energy consumption, mainly for reasons of environ-

mental protection and security of supply (EU (2001), EC (2009)). The electricity sector

plays an important role in reaching this target. By 2020, the overall RES share in

primary energy consumption should reach 20%, whereas the renewable energy share in

electricity consumption (RES-E) is targeted to increase up to 34%.39 The contribution

of the individual member states of the European Union (EU) in achieving this target

has been agreed upon based on the member states´ GDP, their RES level in 2005 and

their resource potentials for renewable energy generation (EC (2009)). As the resource

potential is only one among several factors which influenced the target distribution, a

cost-efficient regional allocation of RES-E production across Europe is not reached if the

39Directive 2009/28/EC defines the contribution of each member state to reach the 20% RES target
in primary energy consumption. This target includes the electricity, transportation and heating and
cooling sectors. The sector-specific distribution of the targets were defined by the member states in their
National Renewable Energy Action Plans (NREAP). An aggregation of the targets for the electricity
sector of all member states leads to a EU-wide RES-E target of 34% by 2020 (EC (2012)).
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national targets are achieved purely by domestic production (e.g., EWI (2010), Aune

et al. (2012)). Thus, in order to reduce target compliance costs, the European Directive

2009/28/EC on the promotion of renewable energy establishes the possibility of using

cooperation mechanisms, including statistical transfers, joint projects and joint support

schemes.

The use of cooperation mechanisms potentially enables the member states to benefit

from low-cost generation options across Europe, either because support payments can

be reduced (in member states with small potentials of low-cost generation options com-

pared to their targets) or because additional revenues can be acquired (in member states

with large potentials of low-cost generation options). Despite these potential benefits

from cooperation, almost all member states plan to reach their 2020 targets solely by

domestic RES-E production (Beurskens et al. (2011)). One reason why member states

are reluctant to implement cooperation mechanisms is that cooperation induces redis-

tribution effects (Fürsch and Lindenberger (2013)). For example, Portugal states in its

National Renewable Energy Action Plan (NREAP) that it could easily produce more

RES-E than required for achieving its national target if the interconnector between the

Iberian Peninsula and France would be expanded. Without interconnector expansions,

a larger RES-E share would devaluate the existing power plant fleet of Portugal (Por-

tuguese Republic (2010)). Furthermore, in the history of the joint quota system of

Norway and Sweden, redistribution effects played an important role. This joint RES-E

support system was introduced in 2012 and is one of the few exceptions of a cooperation

mechanism in use. An earlier attempt to establish the joint support scheme, however,

failed in 2006 because the different parties could not agree on a sharing of costs and

benefits (Klessmann et al. (2010)).

While the overall benefit of cooperation in RES-E support has been quantified in prior

research, e.g., by Voogt et al. (2001), Ragwitz et al. (2007), EWI (2010), Capros et al.

(2010) and Aune et al. (2012), the effects of cooperation on individual groups such as

consumers or producers in individual countries have, to our knowledge, not yet been

quantified.40 However, in a theoretical analysis, this research question has recently been

addressed by Unteutsch (2014), who relates cross-border cooperation in RES-E support

40Moreover, redistribution effects of other policies in the electricity system have been subject to prior
research, however, to our knowledge, we are the first to numerically analyze redistribution effects of
cooperation in RES-E support. For example, Huang et al. (2005) and Billette de Villemeur and Pineau
(2010) show effects of electricity trading on overall sectoral welfare, consumer rents and producer rents.
Bauer et al. (2008) analyze redistribution effects of electricity transfers from North Africa to Europe.
Hirth and Ueckerdt (2012) analyze redistribution effects between consumers and producers induced by
support schemes for renewable energies and by CO2 emission reduction policies. Neuhoff et al. (2013)
investigate the distributional effects of increasing RES-E support payments in Germany on different
household types and discuss different compensation mechanisms to lower the burden carried by low-
income households.
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to international trade theory and shows in a theoretical two-country model that cooper-

ation in RES-E support increases overall welfare but is not beneficial for all groups. The

author shows that as long as cooperating countries are not perfectly physically inter-

connected, cooperation has opposite effects on regional wholesale electricity prices and

prices for green certificates.41 For this reason, the net effect of cooperation on consumers

and producers per country is theoretically not clear as long as grid congestions between

different countries exist. Moreover, while the system-wide welfare always increases if

cooperation is implemented, the net welfare effect of cooperation on the country level

can be undetermined under certain conditions (including that a country is importer or

exporter both of electricity and of green certificates). Therefore, redistribution effects

resulting from cooperation depend on data that is specific to each electricity system and

need to be determined by numerical analyses using real-world data.

The paper presented numerically analyzes the effects shown in Unteutsch (2014) for the

European electricity system up to 2020. The purpose of this paper is to analyze the di-

rection, magnitude and robustness of redistribution effects that could be induced in the

European electricity system in reaching the 2020 RES-E targets by EU-wide cooperation

(via cross-border trading of green certificates) rather than by national approaches. The

analysis is carried out using the investment and dispatch optimization model DIMEN-

SION of the Institute of Energy Economics, which captures the European electricity

system in great detail. As shown in Unteutsch (2014), the degree of physical intercon-

nection and the slopes of the RES-E and the conventional electricity supply curves have

a large influence on the direction and the magnitude of redistribution effects. Therefore,

we model different scenarios with regard to interconnector capacity extensions between

European regions as well as with regard to factors influencing the slopes of the supply

curves (such as CO2 - prices and RES-E investment costs).

Main findings of this paper include that, in the European electricity system, effects of

a change in the green certificate price in most countries would overcompensate for the

effects of a change in the wholesale electricity price. Thus, in most countries with com-

paratively high (low) generation costs for renewable energies, consumer rents increase

(decrease) due to cooperation and producers yield lower (higher) profits. In addition, we

find that the magnitude of redistribution effects between the individual groups is quite

large: In some countries, the change in consumer rents or producer profits resulting

from cooperation is nearly twice as high as the overall welfare effect of cooperation in

the whole European electricity system. Moreover, the benefit different countries have

from cooperation varies substantially. In our analysis, we find that Germany would by

41In Unteutsch (2014), cooperation in RES-E support is implemented as a cross-border green cer-
tificate trading scheme. A green certificate system is one of several RES-E support systems currently
implemented in European member states. See Section 4.2 for a brief description.
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far have the largest (absolute) benefit of cooperation, achieved by significant reductions

of RES-E target compliance costs via certificate imports. Finally, we find that the sign

of redistribution effects is quite robust to different developments of interconnector ex-

tensions, the CO2 price and RES-E investment costs. The magnitude of redistribution

effects, in contrast, is in some countries sensitive to these assumptions (especially with

regard to the assumption on the CO2 price).

The remainder of the article is structured as follows: In Section 4.2, findings of Unteutsch

(2014) are briefly summarized in order to provide the theoretical background for the

analysis carried out in this paper. Section 4.3 outlines the modeling approach and

covers the results of the numerical analysis. In Section 4.4, we draw conclusions and

provide an outlook for future research.

4.2 Theoretical background

As described in the introduction, this paper directly builds on the theoretical analysis of

redistribution effects by Unteutsch (2014), whose results are briefly summarized in this

section. Unteutsch (2014) analyzes the impact of cooperation in RES-E support in a

theoretical two-country electricity system model in which RES-E support is implemented

as a green certificate system. In a green certificate system, a market for the green value

of renewable electricity is created by obligating consumers or distributers of electricity

to certify that a certain share of the electricity produced or consumed comes from

renewable energy sources (see Amundsen and Mortensen (2001), Menanteau et al. (2003)

or Agnolucci (2007) for a detailed description).

In the model presented by Unteutsch (2014), it is assumed that a country A has higher

RES-E generation costs compared to a country B, whereas generation costs of con-

ventional electricity in A can be equal, higher or lower than in B. Each country has a

national RES-E target, expressed as a percentage share of (inelastic) electricity demand.

Without cross-border trading of green certificates, the national RES-E target has to be

achieved solely by domestic RES-E production. When trading of green certificates is

possible, country B produces a higher RES-E amount than needed for national target

achievement and exports certificates to country A until the certificate prices in the two

countries converge. Note that the trading of green certificates is also possible without

physical trading of electricity.

In this analytical framework, effects of cooperation in RES-E support (via cross-border

green certificate trading) on consumer rents, producer profits and total welfare in both

countries are analyzed for two different cases of physical interconnection between the
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two countries, i.e., the ‘copper plate’ case and the ‘limited interconnection’ case. The

‘copper plate’ case assumes that no grid congestion between the countries exist and that,

consequently, the two regional electricity markets are perfectly interconnected. In the

‘limited interconnection’ case, electricity trade between the two countries is restricted -

either because the interconnector is congested (the interconnector capacity M is > 0 but

limited such that no complete electricity price convergence between the two markets is

possible) or because no interconnector exists (M=0). Table 4.1 summarizes the results

from the analysis by Unteutsch (2014).

Table 4.1: Price, welfare and redistribution effects resulting from cross-border trading
of green certificates

Copper Limited interconnection
plate M>0 but M=0

limited
Green certificate price in A (dsA) ≤ 0 ≤ 0 ≤ 0
Green certificate price in B (dsB) ≥ 0 ≥ 0 ≥ 0
Wholesale electricity price in A (dqA) = ≥ 0 ≥ 0
Wholesale electricity price in B (dqB) = ≤ 0 ≤ 0
Consumer rents in A (dCRA) ≥ 0 ? ?
Consumer rents in B (dCRB) ≤ 0 ? ?
Profits of conventional elec. producers in A (dπC

A) = ≥ 0 ≥ 0
Profits of conventional elec. producers in B (dπC

B) = ≤ 0 ≤ 0
Profits of renewable-based elec. producers in A (dπR

A) ≤ 0 ≤ 0 ≤ 0
Profits of renewable-based elec. producers in B (dπR

B) ≥ 0 ≥ 0 ≥ 0
Total producer profits in A (dπA) ≤ 0 ? ?
Total producer profits in B (dπB) ≥ 0 ? ?
Welfare in A (dWA) ≥ 0 ? ≥ 0
Welfare in B (dWB) ≥ 0 ? ≥ 0
Congestion rent (dEA,B) = ? =
System-wide welfare (dWA + dWB + dEA,B) ≥ 0 ≥ 0 ≥ 0

Source: Unteutsch (2014)

In all cases, the certificate price in country A (with comparatively higher RES-E gener-

ation costs) decreases when cross-border cooperation in RES-E support is possible (sA),

whereas the certificate price in country B (sB) increases. The opposite holds true for

the wholesale electricity prices (qA and qB), except for the ‘copper plate’ case in which

a different regional allocation of RES-E production does not affect the common whole-

sale electricity market. In country A, producers of conventional electricity yield higher

profits (πCA) than without cooperation in RES-E support (due to the increased wholesale

electricity price), while producer profits gained with conventional electricity generation

decrease in country B (πCB) (except for the ‘copper plate’ case in which producer prof-

its from conventional electricity generation are not affected by cooperation). Producer

profits of RES-E (πRA , πRB), in contrast, increase in country B and decrease in country A.

Except for the ‘copper plate’ case, the net effect on consumers (CRA, CRB) and total

producers (πA, πB) in countries A and B cannot be determined without making further
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assumptions. While the decreasing green certificate price in country A is beneficial for

consumers in this country, the increasing wholesale electricity price has an end-consumer

price increasing effect. Similarly, in country B, the increasing certificate price leads to

increasing end-consumer prices (ceteris paribus), while the decreasing wholesale electric-

ity market price has an opposite effect. Welfare on the country level (WA, WB) always

increases due to cooperation, except under certain conditions in the ‘limited grid’ case

(as further discussed below). However, given the conditions under which welfare on the

country level can decrease, congestion rents (EA,B) increase such that overall system-

wide welfare (WA +WB +EA,B) always increases once cooperation in RES-E support is

introduced. Moreover, these additional congestion rents could potentially be distributed

between the two countries in a way which ensures that all countries benefit from the

introduction of certificate trade.

Moreover, for the cases in which effects on consumers, producers and welfare per country

cannot be determined (marked by a ‘?’ in Table 4.1), Unteutsch (2014) shows under

which conditions the effects are unambiguous, particular with respect to the slopes of

the supply curves and the level of the RES-E targets. Generally, if the conventional

electricity supply curve is relatively steep compared to the RES-E supply curve and the

RES-E target is rather low, then the wholesale electricity price effect resulting from co-

operation is likely to be dominant. In this case, producers in country A and consumers

in country B benefit from cooperation, while producers in country B and consumers in

country A lose compared to a situation in which each country achieves its RES-E target

without cooperation. Similarly, if the RES-E supply curve is relatively steep compared

to the conventional electricity supply curve and the RES-E target is rather high, the

certificate price effect is likely to be dominant. In this case, cooperation is beneficial

for consumers in country A and for producers in country B. Total welfare in country

A and B always increases when cooperation in RES-E support is introduced and the

two countries are not at all or perfectly interconnected. If, however, a bottleneck in

the interconnector exists and country A is an importer of both certificates and electric-

ity (and country B an exporter of certificates and electricity), welfare on the country

level (defined as the sum of consumer rents and producer profits) can decrease under

certain conditions. For example, the amount of certificates traded may be relatively

small compared to the amount of electricity traded and the conventional electricity sup-

ply curve may be relatively steep compared to the RES-E supply curve. In this case,

higher electricity import costs or lower revenues from electricity exports resulting from

cooperation can overcompensate the benefit from certificate trading in terms of reduced

RES-E production costs or additional incomes from certificate trading.

In summary, Unteutsch (2014) shows that redistribution effects of cooperation depend

on the level of interconnection between the different countries as well as on the slopes
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of the supply curves and the level of the RES-E target(s). These factors are specific

to each electricity system and can also change over time, e.g., when interconnectors

are expanded or when fuel, CO2 prices or investment costs change, leading to changing

supply curves. Therefore, in order to determine the direction and the magnitude of

redistribution effects in real-world electricity systems, a quantification based on real-

world data is needed. In this paper, we analyze which redistribution effects would

occur in the European electricity system up to 2020, if the 2020 targets were reached

with EU-wide cooperation in RES-E support rather than with national RES-E support.

As in the theoretical analysis presented in Unteutsch (2014), the model-based scenario

analysis is built on the assumption that the RES-E targets are either cost-efficiently

reached within national borders (when cooperation is not possible) or by using low-cost

generation options throughout Europe (via cooperation).

4.3 Numerical analysis

We numerically analyze redistribution effects in the European electricity system that

may potentially arise when reaching RES-E targets for 2020 with European-wide co-

operation rather than by national approaches. According to the European Directive

2009/28/EC, the renewable energy share in the European Union´s (EU) final energy

consumption (including the electricity, transportation and heating and cooling sectors)

should increase to 20% by 2020. The contribution of each country to the European-wide

target has also been defined in Directive 2009/28/EC, while the sector-specific break-

down of the national targets has been stated by each member state within its National

Renewable Energy Action Plan (NREAP). Overall, the achievement of the national

RES-E targets would lead to an EU-wide RES-E share of approximately 34% by 2020

(EC (2010)). Despite the possibilities to cooperate across borders in order to achieve

the national targets, given by the Directive 2009/28/EC, most member states almost

purely rely on national approaches. As described in the introduction (Section 4.1), one

impediment of stronger cooperation seems to be (politically undesired) redistribution

effects.

Therefore, we compare consumer rents, producer profits and total welfare per coun-

try in the event that the 2020 RES-E targets are reached either on a national level or

with EU-wide cooperation. In both cases, we assume that targets are reached with a

technology-neutral support system. It is important to note that, in reality, many EU

countries currently have technology-specific support systems.42 Thus, we do not quantify

redistribution effects that would arise when changing from the currently implemented

42See www.res-legal.eu for an overview of renewable energy support system designs currently imple-
mented in European countries.
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country-specific support systems to a cooperative support design. Instead, we show

which effects would arise when changing from purely national, technology-neutral sup-

port systems to a system in which RES-E is supported as technology-neutral and with

European-wide cooperation. Thereby, we quantify the effects that have been theoreti-

cally shown by Unteutsch (2014) for the European power system up to 2020 and focus on

the welfare and redistribution effects explicitly induced by cross-border cooperation. In

contrast, we do not take into account effects which could arise from inefficient national

support systems. In specific, the numerical analysis in this paper aims at investigating

the following questions:

1. Who benefits and who loses when the 2020 RES-E targets in Europe are achieved

with cross-border cooperation in RES-E support?

2. How large are these redistribution effects?

3. How robust are these redistribution effects (in terms of their sign and magnitude)

with regard to different developments of interconnector extensions and with regard

to changes in the CO2 price, fuel prices or investment costs, which influence the

slope of electricity supply curves?

In Section 4.3.1, we define the scenarios to analyze and provide information on the most

important assumptions. In Section 4.3.2, the modeling approach is described. In Section

4.3.3, we describe and analyze the model results.

4.3.1 Scenario definition and assumptions

As discussed in Unteutsch (2014), the level of grid interconnection between countries

influences the optimal amount of certificates traded as well as the redistribution and

welfare effects resulting from cooperative RES-E support. Therefore, the numerical

analysis presented in this paper also distinguishes between different grid interconnec-

tion settings. The current European power system is, on the one hand, already deeply

intermeshed and is, on the other hand, still subject to substantial bottlenecks between

some regions. Interconnector extensions are planned but often delayed (EWI and en-

ergynautics (2011)). Thus, we model two main scenarios that differ with regard to the

progress in interconnector extensions. In the first scenario, we assume that interconnec-

tors are not extended at all from today onwards. In the second scenario, we assume that

all planned interconnector extensions, as stated in the Ten-Year Network Development

Plan (TYNDP; see ENTSO-E (2010)), are realized.
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Moreover, as discussed in Unteutsch (2014), price effects, which in turn induce redistri-

bution effects, depend on the slopes of the supply curves for renewable and conventional

electricity generation. Thus, we run sensitivities with regard to three factors which influ-

ence the slopes of the supply curves. First, we analyze the effects of a higher CO2 price

than in the reference case (30 EUR/t compared to 20 EUR/t in 2020). Second, we ana-

lyze the effects of lower photovoltaic investment costs and third, of lower offshore wind

investment costs (- 10 % compared to the investments costs in the reference case).43

In all sensitivity runs, we assume that the TYNDP is realized. Table 4.2 provides an

overview of the main scenarios and the sensitivities.

Table 4.2: Overview of modeled scenarios

Interconnector extension
no extension TYNDP

Reference assumptions x x
Sensitivities higher CO price x

lower photovoltaic costs x
lower offshore wind costs x

All scenarios depicted in Table 4.2 are modeled twice: Once assuming purely national

RES-E support systems and once with EU-wide cooperation. RES-E targets in 2020

and electricity demand in 2020 are depicted in Table 4.3. Electricity demand is assumed

to develop according to the ‘additional energy efficiency’ scenario of the NREAPs (see

Beurskens et al. (2011)).44

43The investment costs in the reference case correspond to those costs which are also assumed in the
analysis presented in Chapter 2 of this thesis (see Table 2.3).

44The analysis covers the EU-27 countries (with the exception of Cyprus and Malta), Norway and
Switzerland. As Norway and Switzerland are not part of the European Union and have no NREAP,
assumptions on electricity demand are based on EWI and energynautics (2011). RES-E targets are
assumed to be slightly above historical RES-E generation in 2010.
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Table 4.3: Final electricity demand and NREAP target in 2020 [TWhel]

electricity demand RES-E target

Austria (AT) 74 52
Belgium (BE) 111 23
Bulgaria (BG) 37 8
Czech Republic (CZ) 84 12
Denmark (DK) 38 21
Estonia (EE) 11 2
Finland (FI) 102 33
France (FR) 546 155
Germany (DE) 562 217
Greece (GR) 68 27
Hungary (HU) 51 6
Ireland (IE) 33 14
Italy (IT) 375 99
Latvia (LV) 9 5
Lithuania (LT) 9 3
Luxembourg (LU) 7 1
Netherlands (NL) 136 50
Norway (NO) 119 114
Poland (PL) 170 32
Portugal (PT) 65 36
Romania (RO) 74 31
Slovakia (SK) 33 8
Slovenia (SL) 16 6
Spain (ES) 375 150
Sweden (ES) 155 97
Switzerland (CH) 67 45
United Kingdom (UK) 377 117

Table 4.4 depicts the assumed fuel price developments up to 2020, based on Prog-

nos/EWI/GWS (2010) and EWI and energynautics (2011) (biomass solid and biogas).

In addition, CO2 emission factors are shown. The CO2 price is assumed to increase up

to 20 EUR2010/t in 2020.

Table 4.4: Fuel prices [EUR2010/MWhth]
and CO2 emission factor [t CO2 /MWhth]

Fuel price CO2 factor
2008 2020

[ EUR2010/MWhth] [t CO2 /MWhth]
Nuclear 3.6 3.3 0
Coal 17.28 10.1 0.335
Lignite 1.4 1.4 0.406
Natural gas 25.2 23.1 0.201
Biomass (solid) 15.0-27.7 15.7-34.9 0
Biomass (gas) 0.1-70.0 0.1-67.2 0
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Assumptions on technical and economic parameters of power plants correspond to those

described in Chapter 2 of this thesis (see Tables 2.3, 2.4 and 2.5).

4.3.2 Model description

For the numerical analysis, we use the dynamic investment and dispatch optimization

model DIMENSION developed at the Institute of Energy Economics at the Univer-

sity of Cologne. The model minimizes total costs required to meet an inelastic hourly

electricity demand in each market region. Hourly demand is represented by a typical

day approach, reflecting typical demand and RES-E feed-in structures on a weekday

and a weekend-day in autumn/winter and in spring/summer. Different meteorological

conditions throughout Europe are taken into account by modeling different wind speed

conditions in 47 onshore and 42 offshore wind regions. Different levels of solar radiation

throughout Europe are captured by modeling 38 photovoltaic regions. Meteorological

data is taken from EuroWind (2011). Hourly dispatch decisions include ramping pro-

cedures of thermal power plants, pumping and generation operations in storage units

and import and export streams between market regions. Furthermore, RES-E infeed

can be curtailed if this option is beneficial for minimizing total costs, e.g., when cur-

tailment is cost-optimal compared to ramping procedures of thermal power plants. The

model optimizes investment and dispatch decisions of thermal power plants (possibly

equipped with combined-heat-power technology (CHP)), storage units and renewable

plants. The existing power plant fleet is taken into account by several vintage classes,

representing typical technological characteristics (e.g., conversion efficiencies) of power

plants build at different points in time. Renewable technologies covered by the model

include: onshore wind, offshore wind (shallow and deep water), biomass solid, biogas,

concentrated solar power (equipped with thermal energy storage), geothermal and pho-

tovoltaics (ground and roof). The generation in biomass or biogas plants is restricted by

yearly fuel potentials. Investments in wind- and solar-based technologies are restricted

by area potentials. The technological progress of wind turbines is taken into account

by modeling different technology classes which can be deployed at different future time

periods. The option of repowering is also included in the modeling.

A detailed documentation of the basic model is provided by Richter (2011). In this anal-

ysis, we use an extended model version including the option of endogenous investments

in renewable energy plants. For a documentation of this extended model version, the

reader is referred to Jägemann et al. (2012) and Fürsch et al. (2013a).

In this paper, we use the DIMENSION model to analyze redistribution effects of EU-wide

cooperation compared to national RES-E support. Equations (4.1) to (4.4) show how
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redistribution effects in terms of consumer rents, producer profits as well as welfare on the

country level and on the European electricity system level are determined. A list of the

abbreviations used in the equations for model sets, parameters and variables, is provided

in Table 4.5. The difference in consumer rents (in country i and year y) between EU-

wide cooperation and national RES-E support is defined by Eq. (4.1), i.e., the difference

in expenditures that consumers pay to meet their electricity demand multiplied by (-

1).45 These expenditures include costs for buying electricity on the wholesale electricity

market, RES-E support expenditures and costs for ensuring security of supply. In the

model, ‘security of supply’ is defined by the requirement that an amount of ‘securely

available’ electricity generation capacity exists that is sufficient to meet peak demand

including during times of low wind infeed and low solar radiation (see, e.g., Fürsch et al.

(2013a)).46 Producers may earn incomes on the wholesale electricity market, for selling

green certificates on the certificate market and by providing securely available generation

capacities. In addition, producers can earn incomes by selling heat that is generated by

combined-heat-and-power plants on the heat market. Producer profits are determined

as the sum of these incomes, from which the following costs are deducted: variable

generation costs (including fuel and CO2 costs), additional variable costs arising from

ramping procedures, costs for pumping electricity into storage units, fixed operation and

maintenance costs and annualized investment costs. Equation (4.2) shows the difference

in producer profits between cooperative and national RES-E support. The difference in

the national welfare of country i is defined as the sum of differences in consumer rents

and in producer profits in this country (Eq.(4.3)). Differences in the overall European-

wide welfare are determined as the sum of differences of all national welfares and of

the congestion rents that the transmission system operators (TSO) earn (Eq.(4.4)).

Congestion rents cannot be allocated to a particular TSO of a specific country. In reality,

often agreements regarding the allocation of these rents exist (see, e.g., Nordpool Spot

(na)). However, as these agreements can change over time, we do not allocate congestion

rents to specific countries.

45As DIMENSION is a linear optimization model, no absolute values for consumer rents can be
determined. However, we are only interested in differences of consumer rents between scenarios with
cooperative and national RES-E support. Assuming an inelastic electricity demand, these differences in
consumer rents correspond to the differences in expenditures that consumers pay to meet their demand.

46Due to limited computed hours in the model, not all combinations of demand and RES-E infeed
that may occur with some probability can be explicitly modeled. Thus, in this modeling approach,
investments that are only required to meet security of supply are incentivized by a capacity price. Note
that, in real-world electricity markets, investments in plants which are only necessary for a few hours
can also be incentivized by price peaks in the electricity wholesale market (see Nagl (2013)).
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dCRi,y =φy · (−1) · [
∑
h

(qCOi,h,y − qNi,h,y) · xi,h,y (4.1)

+(sCOy − sNi,y) · αi,y ·
∑
h

xi,h,y

+ωa(
∑
a

CCOi,a,y · γCOi,y −
∑
a

CNi,a,y · γNi,y)

dπi,y =φy · [
∑
h,a

(qCOi,h,y · ZCOa,i,h,y − qNi,h,y · ZNa,i,h,y) (4.2)

+(sCOy ·
∑
r,i,h,y

ZCOr,i,h,y − sNi,y ·
∑
r,i,h,y

ZNr,i,h,y)

+ωa(
∑
a

CCOi,a,y · γCOi,y −
∑
a

CNi,a,y · γNi,y)]

+hy(
∑
d,h

HCO
d,i,h,y −

∑
d,h

HCO
d,i,h,y)]

−(
∑
h,a

va,y · (ZCOa,i,h,y − ZNa,i,h,y))

−(
∑
h,a

vra,y(R
CO
a,i,h,y −RNa,i,h,y))

−(qCOi,h,y · PCOp,i,h,y − qNi,h,y · PNp,i,h,y)

−
∑
a

(CCOi,a,y − CNi,a,y) · foma,y

−
∑
a

(ICOi,a,y − INi,a,y) · anna,y

dWi,y =dCRi,y + dπi,y (4.3)

dWy =
∑
i

dWi,y + φy · [[(qCOi,h,y · (1− λi,i′)− qCOi′,h,y) ·MCO
i,i′,h,y]] (4.4)

−[(qNi,h,y · (1− λi,i′)− qNi′,h,y) ·MN
i,i′,h,y]
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Table 4.5: Model abbreviations including sets, parameters and variables

Abbreviation Dimension/Unit Description

indices
a Technology
p Subset of a Storage technology
r Subset of a RES-E technology
d Subset of a Combined-heat-and-power technology
i,i’ Countries
h Hour
y Year
CO Coordinated Support
N National Support
Model parameters
anna,y EUR2010/MW Annuity for technology specific investment costs
xi,h,y MWel Demand
φy % Discount rate
foma,y EUR2010/MW Fixed operation and maintenance costs
va,y EUR2010/MWhth Variable generation costs
vra,y EUR2010/MWhth Additional variable costs for ramping
ωa % Capacity factor
αi,y % Quota on RES-E generation
λi,i′ % Transmission losses
Marginal values
qN
i,h,y,qCO

i,h,y EUR2010/MWhel Power price (marginal on power balance)

sNi,y,sNi,y EUR2010/MWhel Green certificate price (marginal on RES-E quota)
γNi,y, γCO

i,y EUR2010/MWhel Capacity price (marginal on peak capacity constraint)
hy EUR2010/MWhth Heat price
Model variables
ZN
a,i,h,y,ZN

a,i,h,y MWel Electricity generation

RN
a,i,h,y, RCO

a,i,h,y MWel Capacity which is ramped up in hour h

MN
i,i′,h,y, MCO

i,i′,h,y MWel Net electricity trade between regions

CN
i,a,y,CCO

i,a,y MWel Installed capacity
INi,a,y,ICO

i,a,y MWel Capacity Additions
PN
p,i,h,y, PCO

p,i,h,y MWel Consumption in storage operation

HN
d,i,h,y, HCO

d,i,h,y MWth Heat generation in combined-heat-and-power plants

Variables
calculated ex-post
dCRi,y EUR2010 Difference in consumer rents
dπi,y EUR2010 Difference in producer profits
dWi,y EUR2010 Difference in country-wise sectoral welfare
dWy EUR2010 Difference in overall sectoral welfare

4.3.3 Model results

In this section, we present results from our scenario analysis with regard to price, re-

distribution and welfare effects of EU-wide cooperation in reaching the 2020 RES-E

targets. First, we present model results of the main scenarios (Section 4.3.3.1). Second,

we discuss the results of the sensitivity analysis (Section 4.3.3.2).
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4.3.3.1 Analysis of the main scenarios

As described in Section 4.3.1, the main scenarios differ with regard to the assumed

level of physical interconnection between European regions. For the two different grid

extension scenarios (‘no extension’, ‘TYNDP’), we compare consumer rents, producer

profits and welfare in reaching the 2020 RES-E targets with either (technology-neutral)

national support or (technology-neutral) cooperative RES-E support. In addition, before

discussing welfare and redistribution effects, the general effects of cooperation on the

optimal technological and regional generation and capacity mix in the European power

system are briefly presented.

Effects of cooperation on generation patterns and welfare

Table 4.6 shows electricity generation and capacity differences by energy source on the

European level, resulting from the introduction of cooperation. It can be seen that

in 2020, European generation from onshore wind plants and concentrated-solar-power

(CSP) plants is higher with cooperation, while biomass-based electricity generation is

lower compared to the case where each country achieves its national target on its own.

Generation from onshore wind plants mainly increases because sites with high load fac-

tors in Poland, the Czech Republic and Ireland can be used to a larger extent (note that

the installed European onshore wind capacities are identical with and without cooper-

ation). The higher CSP generation is mainly of Spanish origin and the lower biomass

generation is mainly driven by a reduction in German biomass generation. Moreover,

offshore wind generation is higher with cooperation when the TYNDP can be realized,

because in this case offshore generation in Norway and Denmark is significantly higher

with cooperation and clearly overcompensates for a lower offshore wind generation in

Germany. In contrast, if the TYNDP is not realized, the favorable offshore wind sites in

Northern Europe can only be used to a smaller extent. Therefore, if the TYNDP is not

realized, European wind offshore generation decreases once cooperation is introduced

because the effect of lower offshore wind generation in Germany dominates.47 Photo-

voltaic generation is mainly higher in Spain and lower in Italy, when cooperation is

introduced. The increase in Spanish photovoltaic generation resulting from cooperation

is higher when the TYNDP is not realized because in this case offshore wind generation

from Northern Europe can be used to a lesser extent to achieve the European RES-E

47In the model, grid connection costs (as well as grid extension and other grid related costs) have
not been included. In the case of offshore wind plants, grid connection costs are substantially higher
compared to other technologies and depend on the shore distance of the wind parks. In Germany,
potential wind offshore areas are located relatively far from shore (Skiba and Reimers (2012)). Therefore,
when including offshore grid connection costs, the benefit of cooperation achieved by replacing German
offshore wind generation by less costly generation options may, ceteris paribus, increase.
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target cost-efficiently. Therefore, photovoltaic-based electricity generation on the Eu-

ropean level increases once cooperation is introduced when the TYNDP is not realized

and decreases in the TYNDP case.

Table 4.6: Generation and capacity differences between cooperative and national
RES-E support scenarios in the year 2020 [TWh and GW] on the European level (in

the TYNDP and in the ‘w/o TYNDP’ scenario)

Generation differences Capacity differences
TYNDP w/o TYNDP TYNDP w/o TYNDP

Nuclear -4.3 2.6 -0.5 0.6
Lignite 0.2 -1.5 0.6 -0.2
Gas 50.2 9.7 5.4 -1.1
Coal -41.5 -9.3 -3.9 -1.0
Storage -0.4 -1.0 0.0 0.0
Hydro 0.0 0.0 -0.4 -2.7
Biomass -29.2 -19.6 -4.5 -3.1
Onshore Wind 14.0 12.8 0.0 0.0
Offshore Wind 31.8 -14.8 4.3 -6.2
Photovotaics -8.5 9.2 -6.9 5.2
CSP 8.0 10.4 1.7 2.3
Geothermal -17.5 1.3 -2.4 0.2

Positive (negative) values indicate that electricity generation or generation capacities are
higher (lower) once cooperation is introduced.

Taking a look at generation differences of non-renewable-based electricity sources, a

switch from coal to gas-based electricity generation can be observed, once cooperation

is introduced. Coal-based electricity generation is lower in Spain and Poland, where, in

turn, RES-E generation is significantly higher with cooperation. In the TYNDP case,

gas-based electricity generation increases significantly in Italy, which is an importer

of green certificates once cooperation is introduced. An overview of changes in the

generation and capacity mixes on country level is provided in Table C.2 in Appendix C

for the largest certificate importing and exporting countries, which are also analyzed in

the following.

In Table 4.7, certificate trade streams in 2020 for the largest certificate importing and

exporting countries are shown. The amount of certificates traded is, in some coun-

tries, independent of the level of interconnection between countries (e.g., in Germany,

Poland and Italy). In these countries, the trade in green certificates mainly leads to a

switch between domestic renewable and conventional electricity generation. Moreover,

Germany is already today well interconnected with neighboring electricity markets. In

other countries, e.g., in Denmark and Norway, the enforcement of interconnectors is a

critical factor in determining to what extent sites with high wind speeds can be used

to generate more RES-E than required for national target achievement. For example,

in Norway, most electricity generation comes from renewable energy sources. Thus, due
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to low conventional generation that could be reduced, an increase in RES-E generation

has to be exported. Furthermore, in Spain, the amount of exported certificates signifi-

cantly depends on whether the TYNDP is realized or not. As explained above, in Spain

certificate exports are substantially lower when the TYNDP is realized because, in this

case, many other and more cost-efficient RES-E generation options (e.g., offshore wind

in Norway) are accessible.

Taking a look at the amount of certificates traded by the individual countries, it can be

seen that Germany is the largest importer, with certificates corresponding to 91 TWh

of green electricity and making up 42% of its NREAP target. Similarly, Finland and

Greece import large amounts of certificates and cost-efficiently fulfill one third or more

of their national target by using cooperation mechanisms (in the TYNDP case). Large

exporters of certificates are mainly countries with large potentials of sites with high

wind speeds, either for onshore or for offshore wind. In relation to its national target,

Denmark is the largest exporter of certificates (204% when the TYNDP is realized, 83%

when interconnectors are not enforced).

Table 4.7: Green certificate trade streams in 2020 [TWh and % of NREAP targets],
overall welfare gain from cooperative RES-E support [bn. EUR2010, cumulated 2010-
2020 and discounted by 5 %] and certificate price in 2020 [EUR2010/MWh] in the

scenarios ‘TYNDP’ and ‘w/o TYNDP’

TYNDP w/o TYNDP

Certificate trade of TWh % of target TWh % of target
largest certificate importing countries [TWh]
Finland (FI) -11 33% -5 14%
Germany (DE) -91 42% -91 42%
Greece (GR) -8 37% -3 10%
Italy (IT) -9 9% -9 9%
Portugal (PT) -7 20% -3 8%
Sweden (SE) -10 10% -9 10%
United Kingdom (UK) -6 5% -4 3%
Certificate trade of
largest certificate exporting countries [TWh]
Czech Republic (CZ) 9 80% 9 80%
Denmark (DK) 28 204% 11 83%
France (FR) 5 3% 11 7%
Ireland (IE) 7 50% 6 44%
Norway (NO) 51 45% 21 18%
Poland (PL) 19 60% 19 60%
Spain (ES) 23 15% 38 25%

Overall welfare gain [bn. EUR2010] 12 10.6
European certificate price [EUR2010/MWh] 47.4 52.1
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In addition, Table 4.7 depicts the overall welfare gain of cooperation as well as the Eu-

ropean certificate price (in the case that cooperation is possible), depending on the level

of interconnection between regions. Generally, stronger interconnections between the

European regions facilitate the use of low-cost generation options throughout Europe as

well as the balancing of supply and demand over large distances (Fürsch et al. (2013a)).

Therefore, the European-wide benefit of cooperative, compared to purely national, RES-

E support increases because sites with high wind speeds or high solar radiation are more

easily accessible (see also Fürsch and Lindenberger (2013)). The overall welfare gain

of introducing cooperation is 12 bn. EUR2010 when the TYNDP is realized and 10.6

bn. EUR2010 when interconnector capacities are not extended. Note that the results

in terms of cost figures presented in this section refer to the period 2010-2020 and are

discounted by 5%. As we use a dynamic model and amortization times of power plants

are long (typically around 20 years, depending on the technology), these costs do not

include all costs induced by the 2020 target (and vice versa, the presented welfare gains

do not include the total long-term benefit of introducing cooperation in the achievement

of the 2020 target).

The largest welfare gain of cooperation on the country level is achieved in Germany, as

can be seen in Table 4.8 which depicts welfare differences per country between cooper-

ative and national RES-E support scenarios (cumulated from 2010 to 2020).

Table 4.8: Country-wise welfare differences between cooperative and national RES-E
support scenarios [bn. EUR2010, cumulated 2010-2020, discounted by 5%]

Certificate importing countries TYNDP w/o TYNDP
Finland (FI) 0.1 0.3
Germany (DE) 5.3 4.3
Greece (GR) 0.1 0.0
Italy (IT) 0.1 0.2
Portugal (PT) 0.0 0.0
Sweden (SE) 0.4 -0.1
United Kingdom (UK) 0.0 0.1
Certificate exporting countries
Czech Republic (CZ) 0.8 0.9
Denmark (DK) 0.1 0.1
France (FR) 0.3 0.1
Ireland (IE) -0.1 0.1
Norway (NO) 0.6 0.1
Poland (PL) 0.7 1.0
Spain (ES) 1.3 0.3

Positive (negative) values indicate that welfare is higher (lower) once cooperation is introduced.

On the country level, welfare generally increases with cooperation because either in-

creasing consumer rents overcompensate for decreasing producer profits or vice versa.

The country that benefits (in absolute terms) most from cooperation is Germany. It

is the country with the highest electricity demand and the highest RES-E target (see
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Table 4.3) and also trades the highest amount of certificates (see Table 4.7). Certificate

exporting countries which benefit most from cooperation are Poland, the Czech Repub-

lic and, if the TYNDP is realized, Spain and Norway. In relation to their electricity

demand, countries which benefit most from cooperation are smaller countries such as

Latvia and Luxembourg.

In some few countries, however, welfare decreases. In Ireland (if the TYNDP is realized)

and Sweden (if the TYNDP is not realized), cumulated welfare up to 2020 is lower

under cooperation. In these two countries, the welfare decreasing effect is temporary

and occurs because not all costs and incomes from electricity generation are realized

in the same period.48 In contrast, in Portugal and France (in the TYNDP scenario),

welfare decreases in the long term. As shown theoretically by Unteutsch (2014), the

change in welfare on the country level, resulting from cooperation, can be negative if a)

a country is an exporter of both electricity and certificates, and the additional incomes

gained from certificate exports do not outweigh lower incomes gained from the export

of electricity or if b) a country is an importer of both electricity and certificates and

the cost savings, in terms of renewable energy production, do not outweighed higher

electricity import costs. In this numerical analysis, welfare decreases in Portugal, an

importer of both electricity and certificates, and in France, an exporter of electricity

and certificates (in the TYNDP scenario).

While the overall European-wide benefit of cooperation increases if countries are better

interconnected (Table 4.7), the effect of interconnector extensions on the welfare change

is ambiguous on the country level. In Germany, the benefit of cooperation is larger if

the TYNDP is realized and certificates can be imported at a comparatively low price. In

contrast, in Poland, the benefit of cooperation is larger without interconnector extensions

because, in this case, the European certificate price is higher and higher revenues from

certificate exports can be gained.

In the following, we discuss how the introduction of cross-border trading of green cer-

tificates influences prices, consumer rents and producer profits in the different European

countries.

Effects of cooperation on price changes

Unteutsch (2014) shows that cross-border trading of green certificates leads to an in-

crease (decrease) of green certificate prices in countries with comparatively low (high)

RES-E generation costs, while opposite price effects occur on the regional wholesale

electricity markets. Table 4.9 depicts green certificate prices and wholesale electricity

48In these countries, cumulated welfare up to 2020 decreases; however, cumulated welfare up to the
end of the modeled period increases. In order to account for long amortization and lifetimes of power
plants, the optimization model runs up to 2040.
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prices in 2020 for both the cooperative and the national RES-E support scenarios in

selected European countries.

Table 4.9: Green certificate prices and wholesale electricity prices in 2020 (with na-
tional and with cooperative RES-E support), [EUR2010/MWh]

TYNDP w/o TYNDP
Certificate Wholesale Certificate Wholesale

price electr. price price electr. price
Certificate Nat Coop Diff. Nat Coop Diff. Nat Coop Diff. Nat Coop Diff.
importers
FI 36.9 47.4 10.5 47.8 46.9 -0.9 35.0 52.1 17.1 47.4 46.7 -0.7
DE 87.6 47.4 -40.1 46.6 49.5 3.0 87.6 52.1 -35.5 46.3 49.5 3.2
GR 44.7 47.4 2.7 50.5 53.4 2.7 45.6 52.1 6.5 51.1 52.7 1.7
IT 40.7 47.4 6.7 56.8 58.4 1.6 42.4 52.1 9.7 55.4 56.7 1.3
PT 34.3 47.4 13.1 54.5 52.6 -1.9 34.2 52.1 17.9 55.8 52.6 -3.1
SE 61.9 47.4 -14.4 46.4 43.8 -2.6 64.7 52.1 -12.6 45.2 41.5 -3.7
UK 113.7 47.4 -66.3 49.4 50.7 1.3 110.0 52.1 -58.0 50.5 52.4 1.9
Certificate
exporters
CZ 14.3 47.4 33.2 45.9 47.8 1.9 13.6 52.1 38.5 46.1 47.3 1.2
DK 0.0 47.4 47.4 46.6 44.0 -2.6 0.0 52.1 52.1 46.2 42.5 -3.7
FR 14.7 47.4 32.7 45.7 46.1 0.4 16.2 52.1 35.9 44.8 45.1 0.4
IE 0.0 47.4 47.4 51.7 48.2 -3.4 4.6 52.1 47.4 53.6 46.2 -7.4
NO 0.0 47.4 47.4 46.0 40.6 -5.4 0.0 52.1 52.1 45.6 36.5 -9.0
PL 0.0 47.4 47.4 47.2 48.8 1.6 0.0 52.1 52.1 47.1 47.9 0.9
ES 23.8 47.4 23.7 52.2 51.0 -1.2 22.1 52.1 30.0 54.2 49.6 -4.6

In all certificate exporting countries, green certificate prices increase with cooperation,

while the opposite generally holds true in the certificate importing countries. However,

in some certificate importing countries, the green certificate price in 2020 also increases

(FI, PT, IT, GR). In these countries, the certificate prices in the period post 2020

decrease given cooperation. Therefore, from a dynamic perspective, for these countries

it is cost-efficient to import certificates. Note that the range of certificate price changes

is identical in many exporting countries (NO, PL, DK and IE in the ‘TYNDP’ case). In

these countries, the national certificate price is zero because the national target is not

binding. The certificate price changes thus correspond to the different certificate prices

occurring with cooperation (see Table 4.7). The largest certificate price change occurs

in the United Kingdom. As shown in Table 4.7, the amount of certificates imported

is comparatively low (3% and 5% without and with the realization of the TYNDP,

respectively). However, the high certificate price in the national RES-E scenarios shows

that it is very costly to reach the national target completely by domestic production.

The wholesale electricity price increases in most certificate importing countries. Excep-

tions occur in Portugal, Finland and Sweden. In these countries, the wholesale elec-

tricity prices decrease because the RES-E generation in neighboring countries increases

(Spain and Norway). In most certificate exporting countries, wholesale electricity prices
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are lower with cooperation (DK, IE, NO, ES). In other certificate exporting countries,

which today are already well interconnected with certificate importing countries, whole-

sale electricity prices increase (CZ, FR and PL).

In general, it can be seen that, in most countries, the change in the green certificate

price far exceeds the change in the wholesale electricity price. Unteutsch (2014) shows

that, in general, the change in green certificate prices is larger than the change in whole-

sale electricity prices but affects a smaller quantity than the change in the wholesale

electricity price. Thus, the net effect of cross-border cooperation on consumer rents and

total producer profits per country is theoretically unclear and needs to be determined

by numerical analyses.

Effects on consumers rents and producer profits

Results of the numerical analysis in terms of consumer rents and producer profits per

country are depicted in Table 4.10. The upper part of the table depicts the change of

discounted, cumulated consumer rents and producer profits up to 2020 that result from

cross-border green certificate trading. Percentage changes are depicted in the lower part

of the table.49 Consumer rents are only affected by cooperation via changes in the green

certificate prices and in the wholesale electricity prices, assuming an inelastic demand.

Producer profits, in contrast, are affected by cooperation via price and quantity effects

as the amount of electricity produced and/or the electricity mix within a country also

changes.

49Due to the assumption of an inelastic electricity demand, absolute values for consumer rents with
either national or cooperative RES-E support cannot be determined. Thus, the percentage change of
consumer rents between cooperative and national RES-E support can also not be determined. While
absolute differences in the expenditures of consumers in meeting their electricity demand (multiplied
with -1) correspond to absolute difference in consumer rents, percentage changes cannot be determined.
Thus, the lower part of Table 4.10 depicts the percentage change in expenditures of consumers as well
as the percentage changes of producer profits between cooperative and national RES-E support.
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Table 4.10: Differences in consumer rents and producer profits between cooperative
and national RES-E support, cumulated up to 2020 and discounted by 5% [bn. EUR2010

and %-changes]

changes in bn. EUR2010

TYNDP w/o TYNDP

Certificate Consumer rent Changes of Consumer rent Changes of
importing changes producer profits changes producer profits
countries (Coop-Nat) (Coop-Nat) (Coop-Nat) (Coop-Nat)

FI -1.0 1.2 -1.9 2.2
DE 20.0 -14.7 18.1 -13.8
GR -0.4 0.5 -0.6 0.6
IT -4.2 4.3 -3.8 3.9
PT -1.1 1.1 -1.5 1.6
SE 5.2 -4.8 5.4 -5.4
UK 20.8 -20.8 18.2 -18.1

Certificate
exporting
countries

CZ -1.7 2.5 -1.5 2.5
DK -2.6 2.7 -2.8 2.9
FR -13.0 13.3 -14.9 15.1
IE -1.7 1.6 -1.3 1.4
NO -13.9 14.5 -13.7 13.7
PL -5.6 6.3 -5.2 6.2
ES -13.6 14.8 -14.6 14.9

% changes

Certificate Changes in Changes of Changes in Changes of
importing consumer producer profits consumer producer profits
countries expenditures expenditures
countries (Coop-Nat) (Coop-Nat) (Coop-Nat) (Coop-Nat)

FI 2.4 7.9 4.5 14.9
DE -7.3 -13.5 -6.6 -12.7
GR 1.3 4.3 1.9 5.2
IT 2.3 7.5 2.1 7.0
PT 3.6 9.5 5.0 13.1
SE -6.3 -7.5 -6.5 -8.6
UK -11.3 -36.3 -9.9 -31.5

Certificate
exporting
countries

CZ 5.8 17.7 5.1 17.2
DK 17.1 42 18.3 45
FR 5.0 9.2 6.0 11.2
IE 13.5 85 10.1 78
NO 34.3 38 34.2 37
PL 9.3 60 8.6 59
ES 8.6 28 9.2 28

Positive (negative) values indicate that consumer rents, consumer expenditures or producer
profits are higher (lower) once cooperation is introduced.
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It can be seen that, in those countries which are exporters of certificates, consumer rents

decrease and producer rents increase when changing from a national to a cooperative

support system. Results for countries that are importers of certificates are more ambigu-

ous. In some certificate importing countries, the effect of the change in the certificate

price overcompensates for the effect of the change in the wholesale electricity price (e.g.,

in DE, GB and SE), such that consumer rents increase and producer profits decrease.

However, in other certificate importing countries, the wholesale electricity price effect

dominates such that producers make higher profits (especially from the utilization of ex-

isting conventional plants) and consumers are worse off with cooperation (e.g., PT). In

Italy and Greece, both the certificate and the wholesale electricity price in 2020 increase

such that consumers rents decrease and producer profits increase.

The largest effects of cooperation on consumer rents (in terms of percentage changes)

occur in Norway, Denmark, Ireland and the United Kingdom. In these countries, the

certificate price effect resulting from cooperation is very large and, in addition, the

RES-E targets are comparatively high, such that the change in the certificate price

has a large influence on the electricity bill of end consumers. Regarding the change in

producer profits, cooperation substantially increases profits in Ireland, Poland, Denmark

and Norway. These countries export large amounts of certificates and are characterized

by high changes in the certificate prices. Moreover, it can be seen that redistribution

effects are generally large compared to the overall welfare gain resulting from cooperation

on the European level. For example, the changes in consumer rents and producer profits

in the United Kingdom, Germany, Spain, Norway and France far exceed the overall

change in European-wide welfare (see Table 4.7).

Comparing changes in consumer rents and producer profits in the scenarios with and

without the realization of the TYNDP, it can be seen that the effects of cooperation

are of a similar order of magnitude in both settings. Even in Norway, which exports

certificates corresponding to 51 TWh RES-E generation when the TYNDP is realized

and less than half as much when interconnectors are not enforced, the effect of coop-

eration on consumer rents and producer profits hardly differs. Consumer rents are not

directly affected by the amount of certificates traded but only by the changes in prices.

In Norway, the combined effect of cooperation on the wholesale electricity price and

the certificate price are of the same order of magnitude with and without realization

of the TYNDP. In addition, due to the assumed high RES-E target in Norway, both

price changes affect nearly the same amount of electricity for consumers. Moreover, the

effect of cooperation on producer profits is hardly influenced by different grid extensions

because (as discussed in more detail in the following) producer profits in Norway mainly

increase with cooperation as the incomes of existing hydro plants increase. Additional
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incomes from those capacities that are only built to export green certificates (in the

cooperative support scenarios), in contrast, are comparatively low.

A closer look on producer profits

Tables 4.11 through 4.13 present a closer look on changes in producer profits. Table 4.11

depicts differences in producer profits between the national and the cooperative support

scenarios by fuel type and Tables 4.12 and 4.13 highlight effects of cooperation in RES-E

support on producer profits per country for conventional power plants and renewable

energy plants, respectively. In all three tables, only changes in producer profits realized

using plants from the currently existing European power plant fleet are shown. Thus,

to be specific, producer rents (and not profits) of existing plants are depicted because

investment costs of existing power plants are considered as stranded costs.

Examining the changes in producer rents of the existing power plant fleet is interesting

for two main reasons. First, in contrast to new power plant investments, existing plants

are not mobile. Investment decisions for the existing power plant fleet have been made

in the past without anticipating European-wide cooperation (and possibly also without

anticipating a strong RES-E expansion in general). If producer rents realized by these

plants would decrease due to a shift in politics towards more cooperation in RES-E

support, cooperation plans would presumably face strong opposition from the respec-

tive plant owners.50 Second, it may be questioned as to whether it is appropriate to

determine country-wise producer profits in light of international capital markets. While

this question also concerns the existing power plant fleet, since large international stock

companies generate a large part of electricity in many countries, this question becomes

even more important for new investments. While the current ownership structure of the

European power plant fleet is known, it is unclear which companies would build new

capacities. Furthermore, in some countries, the state owns a large part of the existing

power plant fleet.

Table 4.11 shows that, on a European level, producer rents gained from electricity gen-

eration by existing lignite, coal, gas and hydro plants are larger with cooperative than

with national RES-E support. In contrast, rents gained from generation by existing

biomass, offshore wind and photovoltaic plants decrease once cooperation is introduced.

Rents gained from existing nuclear plants are larger with cooperative RES-E support if

the TYNDP is realized but lower with national RES-E support if interconnectors are

not enforced. The owners of existing onshore wind plants, in contrast, benefit in sum

50In fact, Portugal, for example, states in its National Renewable Energy Action Plan (NREAP) that it
would be interested in surpassing its own target and make use of cooperation mechanisms, given that the
interconnector between Spain and France is expanded. Without a stronger interconnection of the Iberian
Peninsula to Central Europe, the impact of a higher RES-E share on the existing conventional power
plant fleet in Portugal would be strong (see Portuguese Republic (2010) and Fürsch and Lindenberger
(2013)).
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(on a European level) from cooperation if interconnectors are not enforced but are worse

off in the cooperation case if the TYNDP is realized.

Producer rents realized with lignite-based, gas-based and coal-based electricity gener-

ation increase because wholesale electricity prices in those countries, in which large

capacities of lignite, gas and coal plants are located, increase once cooperation is intro-

duced. Large lignite plants exist in Germany, Poland and the Czech Republic. Lignite

production in these countries is hardly affected by the introduction of cooperation in

RES-E support, whereas wholesale electricity prices in these three countries increase

(Table 4.9). Producer rents of existing coal plants mainly increase because wholesale

electricity prices in Germany and Italy increase. Producer rents realized by existing gas

plants increase mainly due to increased generation and electricity prices in Germany,

the United Kingdom, Italy and - especially in the TYNDP case - the Netherlands.

The effect of cooperation on producer rents gained from electricity generation by ex-

isting nuclear plants is rather small because generation levels are hardly affected by

the introduction of cooperation. In addition, existing nuclear plants are located both

in countries in which the wholesale electricity price increases with cooperation (e.g.,

FR) and in countries where the wholesale electricity price decreases (e.g., ES and FI).

Therefore, the net effect on overall producer rents from existing nuclear plants on the

European level is small.

Hydro rents are substantially larger with cooperative RES-E support because most hy-

dro power plants are competitive without support payments. For example, the national

green certificate price (without cooperation) is zero in Norway, where large hydro power

resources are located. Thus, a shift towards a cooperative RES-E support system, in

which hydro power producers gain revenues from selling green certificates at the Euro-

pean certificate prices, increases hydro rents substantially.51 The increase in hydro rents

is larger if the TYNDP is not realized because, in this case, the European certificate

price is higher.

Producer rents realized using existing biomass plants, offshore wind plants and photo-

voltaic systems decrease once cooperation is introduced because a large part of these

plants were built in countries that are importers of certificates if cooperation is possible

(e.g., Germany, Finland, Sweden, United Kingdom, Italy). In most of these countries,

the certificate price is lower with cooperation than with national RES-E support.

Existing onshore wind capacities are mainly located in Germany and Spain. While

the certificate price in Germany decreases once cooperation is introduced, the opposite

51Of course, hydro may also be excluded from the support system, depending on the specific support
design. For example, in Germany, large hydro power plants are currently excluded from the RES-E
support system.
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price effect resulting from cooperation is observed for Spain. If the TYNDP is realized,

onshore rents on a European level decrease because the effect of lower rents gained in

Germany is dominant. In contrast, if interconnectors are not enforced, the increase in

the certificate price resulting from cooperation in Spain is higher than if the TYNDP is

realized and onshore wind rents increase on a European level.

Table 4.11: Differences in producer rents gained from electricity generation of ex-
isting power plants (by fuel type) between cooperative and national RES-E support,

cumulated up to 2020 and discounted by 5% [bn. EUR2010 and %-changes]

TYNDP w/o TYNDP
bn. EUR2010 % bn. EUR2010 %

Nuclear 1.1 0.6 -0.8 -0.5
Lignite 1.4 4.6 0.6 2.0
Coal 4.8 12.2 4.2 10.5
Gas 3.3 8.3 0.6 1.4
Storage 0.2 3877.4 0.5 -337.5
Hydro 23.7 9.4 31.3 12.5
Biomass -3.6 -74.4 -1.9 -42.1
Onshore Wind -0.9 -1.7 0.7 1.4
Offshore Wind -0.5 -18.6 -0.3 -12.1
Photovoltaics -1.0 -6.1 -0.7 -4.3

Positive (negative) values indicate that producer rents are higher (lower) once cooperation is
introduced.

Tables 4.12 and 4.13 depict changes in producer rents on the country level. The changes

in producer rents gained from generation by existing conventional power plants (Table

4.12) mostly reflect the changes in wholesale electricity prices (see Table 4.9). An excep-

tion is Spain, where producer rents increase despite of decreasing wholesale electricity

prices in 2020. However, the wholesale electricity price in 2015 is higher given coopera-

tive rather than national RES-E support. The largest benefit (in absolute values) from

cooperation in terms of producer rents of existing conventional power plants is realized

in Germany (+ 5.1 bn. EUR2010 in the TYNDP scenario), followed by Spain (+ 1.9 bn.

EUR2010) and United Kingdom (+ 1.3 bn. EUR2010).
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Table 4.12: Differences in producer rents gained from electricity generation by exist-
ing conventional power plants (per country) between cooperative and national RES-E
support, cumulated up to 2020 and discounted by 5% [bn. EUR2010 and %-changes]

TYNDP w/o TYNDP
Certificate importing countries bn. EUR2010 % bn. EUR2010 %
Finland (FI) 0.1 0.7 0.0 0.1
Germany (DE) 5.1 14.1 4.3 12.0
Greece (GR) 0.1 1.9 0.1 1.5
Italy (IT) 0.7 8.2 0.1 1.8
Portugal (PT) -0.1 -2.9 -0.1 -2.8
Sweden (SE) -0.6 -3.8 -1.0 -6.7
United Kingdom (UK) 1.3 9.5 1.1 7.1
Certificate exporting countries
Czech Republic (CZ) 0.6 4.3 0.2 1.6
Denmark (DK) -0.1 -2.3 -0.1 -2.3
France (FR) -1.0 -0.9 -1.1 -1.1
Ireland (IE) 0.1 35.3 0.1 103.9
Norway (NO) 0.0 23.4 0.0 135.7
Poland (PL) 0.5 4.4 -0.1 -0.6
Spain (ES) 1.9 7.4 1.1 4.4

Positive (negative) values indicate that producer rents are higher (lower) once cooperation is
introduced.

Existing RES-E plants make up approximately one third of the currently existing Euro-

pean power plant capacity. Producer rents realized up to 2020 using currently existing

RES-E plants are higher given cooperative RES-E support, in particular, in countries

that are characterized by large hydro power resources and in which, in addition, the

certificate price increases once cooperation is introduced (NO, FR, ES, IT). Lower pro-

ducer rents under cooperative RES-E support are mainly realized in Germany and the

United Kingdom, where the certificate price decreases with cooperation. In many other

European countries, very few RES-E capacities currently exist.
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Table 4.13: Differences in producer rents gained from electricity generation by ex-
isting RES-E plants (per country) between cooperative and national RES-E support,

cumulated up to 2020 and discounted by 5% [bn. EUR2010 and %-changes]

TYNDP w/o TYNDP
Certificate importing countries bn. EUR2010 % bn. EUR2010 %
Finland (FI) 0.7 11.7 1.3 21.3
Germany (DE) -14.5 -23.0 -12.8 -20.3
Greece (GR) 0.1 1.9 0.2 4.0
Italy (IT) 1.8 5.0 3.8 10.0
Portugal (PT) 0.7 8.0 1.0 10.9
Sweden (SE) -4.3 -9.3 -4.5 -9.8
United Kingdom (UK) -6.2 -34.7 -5.3 -30.3
Certificate exporting countries
Czech Republic (CZ) 1.0 94.0 1.1 104.2
Denmark (DK) 1.5 93.8 1.8 120.0
France (FR) 5.8 17.9 6.7 21.8
Ireland (IE) 0.4 35.9 0.4 30.4
Norway (NO) 15.8 38.1 18.6 44.4
Poland (PL) 0.6 77.5 0.7 84.5
Spain (ES) 6.4 22.6 7.7 27.5

Positive (negative) values indicate that producer rents are higher (lower) once cooperation is
introduced.

4.3.3.2 Sensitivity Analysis: The influence of CO2 emission prices and RES-

E investment cost developments on welfare and redistribution effects

As shown by Unteutsch (2014), the slopes of the electricity supply curves (for RES-E and

conventional electricity) determine the magnitude of the price changes and thereby also

the magnitude of redistribution effects induced by certificate trade. Therefore, we run

sensitivities with regard to three parameters that influence the slopes of the supply curves

and investigate whether findings of the main scenarios are robust to these changes. We

run sensitivities for the development of the CO2 emission price, photovoltaic investment

costs and offshore wind investment costs, which are all subject to great uncertainty. In

the sensitivity analysis, we assume that the CO2 emission price in 2020 is higher (by 10

EUR/t) and that photovoltaic and offshore wind investment costs in 2020 are lower (by

10% each) compared to the assumptions made in the main scenarios.

An increasing CO2 emission price and decreasing RES-E investment costs have a com-

mon impact on the electricity system: Generation cost differences between RES-E plants

and conventional plants decrease. Thus, the costs of achieving RES-E targets also de-

crease - both on a national level and under cooperation. The overall European system-

wide benefit of cooperation decreases (‘lower photovoltaic costs’) or increases (‘lower off-

shore costs’ and ‘higher CO2 price’), depending on whether costs in the national or in the

cooperative RES-E support scenarios are more affected by an increasing CO2 emission
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price/decreasing RES-E investment costs. Table 4.14 provides an overview of European-

wide welfare effects and the European green certificate price in the ‘reference’ case,

corresponding to the ‘TYNDP’ scenario of the main scenarios, as well as in the sensi-

tivity scenarios. In addition, certificate trade streams, price changes, redistribution and

welfare effects in selected countries are presented.

Table 4.14: The influence of the CO2 price and RES-E investment cost develop-
ments on model results [[bn. EUR2010], cumulated 2010-2020 and discounted by 5 %;

[EUR2010/MWh] in 2020 or [TWh] in 2020 ]

Reference Higher Lower wind Lower photovoltaic
CO2 price offshore costs costs

Overall welfare 12 13.4 12.4 11.3
gain [bn. EUR2010]

European certificate 47.4 34.2 45.6 42.4
price [EUR2010/MWh]

Results for
selected countries
Certificate price DE - 40.1 (+ 2.9) - 30.8 (+ 1.4) - 42 (+ 3.2) - 33.6 (+ 3.4)
change [EUR2010/MWh] DK + 47.4 (- 2.6) + 34.2 (- 2.5) + 45.6 (- 3.7) + 42.4 (- 0.8)
and ES + 23.7 (- 1.2) + 15.1 (- 2.2) + 21.9 (- 0.5) + 16.0 (+ 0.2)
(wholesale electricity IE + 47.4 (- 3.4) + 34.2 (- 3.3) + 45.6 (- 4.2) + 42.4 (- 2.9)
price change) IT + 6.7 (+ 1.6) - 2.8 (+ 0.3) + 4.9 (+ 1.7) + 10 (+ 1.6)

NO + 47.4 (- 5.4) + 34.2 (- 5.5) + 45.6 (- 5.5) + 42.4 (- 3.9)
PL + 47.4 (+ 1.6) + 34.2 (- 0.8) + 45.6 (+ 1.8) + 42.4 (+ 1.9)

Certificate trade [TWh] DE -91 -91 -91 -91
DK 28 21 34 21
ES 23 20 19 36
IE 7 7 9 7
IT -9 -9 -9 3
NO 51 50 51 51
PL 19 17 19 17

Consumer rent DE + 20.0 (- 14.7) + 19.9 (- 9.8) + 20.6 (- 15.5) + 15.4 (- 8.8)
change [bn. EUR2010] DK - 2.6 (+ 2.7) - 1.8 (+ 1.6) - 2.4 (+ 2.4) - 2.5 (+ 2.5)
and ES - 13.6 (+ 14.8) - 6.8 (+ 7.5) - 12.9 (+ 14.3) - 9.9 (+ 10.4)
(changes in producer IE - 1.7 (+ 1.6) - 1.1 (+ 1.3) - 1.6 (+ 1.5) - 1.5 (+ 1.3)
profits [bn. EUR2010]) IT - 4.2 (+ 4.3) + 1.4 (- 0.7) - 4.1 (+ 4.2) - 5.4 (+ 5.1)

NO - 13.9 (+ 14.5) - 9.5 (+ 8.9) - 13.3 (+ 14.3) - 12.7 (+ 12.7)
PL - 5.6 (+ 6.3) - 2.4 (+ 3.4) - 5.5 (+ 6.1) - 5.1 (+ 5.7)

Changes in country-wise DE 5.3 7.1 5 6.7
welfare [bn. EUR2010] DK 0.1 -0.2 0 0

ES 1.3 0.7 1.4 0.5
IE -0.1 0.2 -0.2 -0.2
IT 0.1 0.7 0.1 -0.4
NO 0.6 -0.7 1 0
PL 0.7 1 0.6 0.6
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In many countries, the amount of certificates traded is not sensitive to changes in the

CO2 emission price or RES-E investment costs. For example, the amount of certifi-

cates traded by Germany and by Norway is (approximately) the same in the reference

and all sensitivity scenarios. In the case of lower investment costs for offshore wind

plants, Denmark and Ireland export a higher amount of certificates, while exports from

Spain decrease compared to the ‘reference’ case. In the case of lower photovoltaic costs,

countries in the Mediterranean region (Spain and Italy) produce more RES-E, while

offshore wind generation in the North Sea region is reduced. In fact, Italy is a cer-

tificate importing country in all scenarios except for the ‘lower photovoltaic’ sensitivity

scenario. A higher CO2 price reduces the overall amount of traded certificates in Europe

by around 10%. Due to a higher CO2 price, the relative costs of generating power and

heat in geothermal plants compared to the costs of generating heat and power in hard

coal CHP plants decrease in some countries. Therefore, in some countries which are

certificate importers in the ‘reference’ scenario, the optimal amount of domestic RES-E

production increases.

Furthermore, the sign of the redistribution effects determined in the main scenarios is,

in most countries, robust to changes in the supply curves assumed in the sensitivity

scenarios. In most certificate importing countries, such as Germany, the certificate price

decreases and the wholesale electricity price increases. In addition, in most certificate

importing countries, the certificate price effect overcompensates for the wholesale elec-

tricity price effect such that consumers are better and producers are worse off than in

a situation with purely national RES-E support systems. The opposite holds true for

most certificate exporting countries, such as Norway and Ireland.

In contrast, the magnitude of price and redistribution effects highly depends on the

assumptions varied in the sensitivity scenarios. The European certificate price is lower by

around 28% when assuming a CO2 price of 30 EUR/t (instead of 20 EUR/t). A decrease

in offshore wind investment costs (photovoltaic costs) by 10% reduces the European

green certificate price by around 4% (11%) compared to the ‘reference case’. In countries

where the national RES-E target is not binding, the European certificate price directly

corresponds to the certificate price change resulting from cooperation (e.g., in Ireland

and Norway). In these countries, a lower European certificate price reduces the benefit

of cooperation for producers and attenuates the effect of decreasing consumer rents. For

example, in the sensitivity scenario ‘higher CO2 price’, the benefit that producers receive

from cooperation decreases compared to the ‘reference’ case by 32% in Norway (19% in

Ireland). Furthermore, the effect of increasing expenditures for consumers to meet their

electricity demand decreases compared to the ‘reference’ case (-32% in Norway, -35% in

Ireland). In other countries, the change in the certificate price depends on the relation

between the national and the European certificate price, which both depend on changes
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in CO2 emission prices and/or RES-E investment costs. For example, in Germany, lower

photovoltaic costs have a larger impact on the national than on the European certificate

price. Thus, both the benefit consumers have from cooperation and the negative impact

cooperation has on producer profits substantially decrease compared to the reference

case (by 23% for consumers, by 40% for producers). Moreover, the effect that lower

photovoltaic costs have on the redistribution effects between individual groups within

the countries is significantly larger than the effect of lower photovoltaic costs on the total

system-wide welfare change resulting from cooperation (- 6% compared to the reference

case).

In summary, the sensitivity analysis shows that the sign of the redistribution effects of

cooperation and the magnitude of the overall European-wide welfare effect are quite ro-

bust to different assumptions which influence the slope of the electricity supply curves.

However, the magnitude of price changes and thus also of redistribution effects is sensi-

tive to different developments of RES-E investment costs and the CO2 emission price.

4.3.4 Critical discussion of the numerical results

This paper numerically analyzes welfare and redistribution effects potentially resulting

from the introduction of cooperation in European RES-E support. While the modeling

represents the European power system by including European data about e.g., electric-

ity demand, resource potentials, wind speed and the existing power plant fleet, some

important differences between the current real-world European power system and the

modeled situation exist. Therefore, in this section we discuss which model specifics have

to be kept in mind when drawing conclusions from the model results presented in Section

4.3.3.

Probably the largest difference between the modeled scenarios and the real-world Eu-

ropean power system stems from the assumption of technology-neutral RES-E support

in all countries, both in the cases with and without cross-border cooperation. As stated

in the introduction of this section, currently a variety of country-specific RES-E sup-

port systems exists in Europe and many countries have implemented technology-specific

support systems, generally not leading to a cost-optimal generation mix. This current

real-world situation is not taken into account in the analysis presented in Section 4.3.3.

Therefore, in this paper, we do not quantify welfare and redistribution effects induced

by a change from the currently implemented country-specific RES-E support systems to

a RES-E support system with European-wide cooperation. Instead, we analyze the ef-

fects of introducing European-wide cooperation starting from a (hypothetical) situation

of country-specific technology-neutral RES-E support. Thereby, we explicitly determine
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the separate welfare and redistribution effects of cooperation and exclude the effects

which could also be achieved by optimizing national RES-E policies.

Note also that a complete change from purely national RES-E support to European-

wide cooperation represents an extreme shift of politics that is very unlikely to occur

before 2020. A first step towards European-wide cooperation would be the use of bi-

lateral and multilateral cooperation mechanisms. Our analysis shows that especially

Germany would have a large benefit from cooperation - even under the assumption of

a cost-efficient domestic RES-E generation mix. Also, the analysis identifies potential

cooperation partners such as Poland or Spain. However, the magnitude of redistribution

effects resulting from different bilateral or multilateral engagements would have to be

calculated in separate model analyses as the magnitude of price effects would be dif-

ferent compared to the case when changing from purely national support to complete

European-wide cooperation. Nevertheless, this analysis shows that in the European

power system effects of cooperation arising in the RES-E market would in most coun-

tries (such as Germany) be dominant compared to effects in the electricity market and

that the sign of redistribution effects is in most countries very robust. Therefore, the

results from this analysis provide a general idea of the impact different cooperation

agreements would have on individual groups within the participating countries.

In addition, the magnitude of redistribution effects would in reality also depend on a

variety of additional political decisions. For example, grandfathering rules could apply

for existing renewable energy power plants. In this case, owners of existing RES-E plants

would not be affected by the introduction of cooperation and consumers in countries

with comparatively expensive existing RES-E plants would benefit to a smaller extent

from cooperation. Moreover, as stated in footnote 51, renewable energies which are

competitive without subsidies, such as large hydro power plants, might be excluded

from the RES-E support system. In this case, countries with large hydro power resources

would benefit less from cooperation.

In summary, the exact magnitude of redistribution effects resulting from different coop-

eration mechanisms in reality depends on many design specifics of the RES-E support

systems and the cooperation mechanisms themselves. Conclusions which can be drawn

from this analysis for the European electricity system are presented in the next sec-

tion and include that the effects of cooperation in the RES-E market overcompensate

in most countries for the effects occurring in the wholesale electricity market - even if

interconnectors are not further extended compared to today.
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4.4 Conclusion

Due to different meteorological conditions and resource availabilities across Europe,

cooperation in the support of renewable energies would increase overall welfare in the

European electricity sector. However, just like international trade in general, cooperation

in the achievement of national RES-E targets, e.g., via cross-border green certificate

trading, is not beneficial for all groups but creates winners and losers.

We find that in the European electricity system, effects of the change in the certificate

price in most countries would overcompensate for the effects of the change in the whole-

sale electricity price. Thus, in most countries with comparatively high (low) generation

costs for renewable energies, consumer rents increase (decrease) due to cooperation and

producers yield lower (higher) profits. In addition, we find that the magnitude of re-

distribution effects between the individual groups is quite large: In some countries, the

change in consumer rents or producer profits resulting from cooperation is nearly twice

as high as the overall welfare effect of cooperation in the whole European electricity

system. Moreover, the benefit different countries have from cooperation varies substan-

tially. In our analysis, we find that Germany would by far have the largest (absolute)

benefit of cooperation, achieved by significant reductions of RES-E target compliance

costs via certificate imports. Finally, we find that the sign of redistribution effects is

quite robust to different developments of interconnector extensions, the CO2 price and

RES-E investment costs. The magnitude of redistribution effects, in contrast, is in some

countries sensitive to these assumptions (especially with regard to the assumption on

the CO2 price).

Therefore, this analysis shows that cooperation indeed has a significant influence on the

welfare of different groups and thereby sheds further light to the question why it has been

difficult to implement cooperation mechanisms thus far. Although on a country level the

benefit of cooperation is generally positive, large inner-country redistribution effects may

occur and those groups which potentially are worse off once cooperation is introduced

may have a large influence on political decisions about the implementation of cooper-

ation. The question, how these redistribution effects should be dealt with, however,

is not straightforward. According to international trade theory, winners of trade can

always compensate losers such that no group is worse off than without trade. However,

in reality such compensation mechanisms can be complicated to design. First, it would

need to be clarified who should be compensated by whom. Considering only consumers,

cross-country compensation mechanisms could be implemented between those consumers

who benefit from trade and those who pay higher prices once cooperation is introduced.

But which group would, for example, compensate owners of conventional power plants
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in a country where the power price decreases once cooperation is introduced? Imple-

menting compensation mechanisms for producers is especially difficult because many

companies in the electricity sector operate in several countries and may therefore in

some countries benefit from cooperation and lose revenues in other countries. Moreover,

companies may also own both conventional and renewable power plants. Finally, even

a clear distinction between producers and consumers can be difficult in practice, e.g., in

the field of household photovoltaic installations. Second, the quantification of adequate

compensation payments can be difficult ex-ante to the implementation of cooperation.

As shown in this analysis, the exact magnitude of redistribution effects is specific to

economic and technological developments in the power system, which are often subject

to uncertainty. Finally, many other policies in the European power sector also induce

redistribution effects, for which no compensation mechanisms exist. Examples are the

European CO2 emission trading system, the initial implementation of RES-E targets and

the plan to create a single European electricity market. Thus, the question of welfare

and redistribution effects resulting from cooperation in RES-E support comes back to

the general question of trade and cooperation: To what extent should individual groups

be protected and how far should overall welfare be increased?

This analysis has several shortcomings which could be addressed by future research.

First, no sensitivities regarding the particular design of (national and cooperative) RES-

E support systems have been made. This, for example, includes the question of how

welfare and redistribution effects of cooperation depend on a technology-neutral (versus

a technology-specific) and a quantity-based (versus a price-based) support. Moreover,

in this analysis, we neglected that in practice grandfathering rules may apply for exist-

ing RES-E technologies. Second, in this analysis, we aggregated producer profits and

consumer rents on country levels. While this seems appropriate for consumers as well

as for some electricity producers, this procedure may be questioned for many electricity

producers that are large international stock companies, operating in several countries.

Further research analyzing the impact of cooperation on firm levels may be interest-

ing. Third, this analysis is based on a purely deterministic approach and neglects, e.g.,

the stochastic nature of wind and solar in-feed. Nagl et al. (2013) show that including

weather uncertainties in optimization models influences the value of different power plant

types. In particular, Nagl et al. (2013) find that the value of fluctuating renewables such

as wind decreases compared to deterministic modeling approaches. Consequently, in-

cluding weather uncertainties would also affect the optimal generation mixes both when

cooperation is and when it is not possible. Including stochastics therefore would lead

to a more accurate determination of welfare and redistribution effects. Fourth, in this

analysis, only the impact of an EU-wide cooperation in comparison to pure national

RES-E support systems is analyzed. A first step towards European-wide cooperation
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would be the use of cooperation mechanisms between two or more countries via a com-

mon support system, joint projects or statistical transfers. Our analysis shows that in

all scenarios the benefit of cooperation would be particularly large for Germany. There-

fore, an engagement in bilateral or multilateral cooperation mechanisms would be an

important measure to increase cost-efficiency in German RES-E support. The analy-

sis of welfare and redistribution effects resulting from cooperation between Germany

and different potential cooperation partners would be an interesting subject for further

research.





Chapter 5

Optimization of power plant

investments under uncertain

renewable energy deployment

paths: a multi-stage stochastic

programming approach

5.1 Introduction

In order to reduce CO2 emissions and the dependency from imported fuels, many coun-

tries established ambitious targets to increase electricity generation from renewable en-

ergy sources (RES-E). European member states agreed to increase the European RES-E

share from 15.6% in 2007 to 34% in 2020. Although long-term targets (after 2020) have

not been defined on a European level, individual member states, such as Germany, aim

at increasing their RES-E shares continously up to 80% in 2050.

However, the implementation of political plans can be uncertain, even if reliable targets

exist, for four principal reasons. First, many RES-E technologies are relatively new,

implying that technological and cost developments are uncertain and/or that limited

experiences exist for construction and maintenance. Second, favorable RES-E sites are

often located far from demand centers and therefore the electricity network has to be

adapted. Third, local opposition may hinder the construction of new sites or transmis-

sion lines due to visual or environmental concerns. Fourth, when RES-E is supported

109
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by a price-based promotion system, such as by a feed-in-tariff system, resulting RES-E

quantities are inherently uncertain.

Uncertainty of the achievement of RES-E targets is challenging for investment planning

because different shares of RES-E fundamentally change the optimal mix of dispatchable

power plants. Specifically, uncertain future RES-E deployment paths induce uncertainty

about the level and the steepness of the residual load duration curve and the structure

of the hourly residual load. Thus, the optimal mix of (dispatchable) peak-, mid- and

baseload plants is uncertain. In addition, it is uncertain how flexible the power plant fleet

should optimally be and how valuable storage units are for the system. Consequently, the

optimal investment planning for power plants with long construction times, amortization

times and technical lifetimes is difficult.

In this paper, we show in a first part how uncertain future RES-E penetration levels im-

pact the electricity system and in a second part try to quantify this impact from a social

welfare perspective for the electricity systems of Germany and its neighboring countries.

For the second part, we assume that a continuous increase in the RES-E share up to

2050 is a reliable target, which is however submitted to risks concerning the progress of

necessary infrastructure investments, public acceptance and cost developments of RES-

E. We use a multi-stage stochastic investment and dispatch model to quantify effects on

investment choices, electricity generation and system costs.

Our main findings include that uncertainty about the achievement of RES-E targets

significantly affects optimal investment and dispatch decisions. In particular, plants

with a medium capital/operating cost ratio have a higher value under uncertainty. We

find that this technology choice is mainly driven by the uncertainty about the level rather

than about the structure of the residual load. Furthermore, given larger investments in

plants with medium capital/operating cost ratio under uncertainty, optimal investments

in storage units are lower than under perfect foresight. In the case of the Central

European power market, costs induced by the implementation risk of renewable energies

are rather small compared to total system costs.

The remainder of the article is structured as follows: The next section provides an

overview of related literature and the contribution of the current work. Section 5.3

describes the modeling approach and gives an overview of assumed input parameters.

In Section 5.4 we theoretically discuss the impact of uncertain future RES-E penetration

levels and highlight the most important effects in an illustrative modeling example. In

Section 5.5 we quantify the impact of uncertain RES-E target achievements for the

electricity systems of Germany and its neighboring countries. In Section 5.6 we draw

conclusions and provide an outlook for further research.
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5.2 Related literature

The analysis of uncertainties using stochastic optimization models can be traced back

to the 1950´s (Dantzig (1955)). Applications to electricity investment planning models

often focus on the effects of demand, fuel or CO2 emission price uncertainties. In

recent years, the influence of intermittent renewable infeed on investment decisions for

conventional power plants has also been analyzed with stochastic optimization models.

The influence of demand uncertainty on investment decisions was first shown in the

1980´s, for example by Murphy et al. (1982) and Mondiano (1987). Using multi-stage

optimization models, Gardner (1996) and Gardner and Rogers (1999) analyze the effect

of demand uncertainty in dynamic contexts.52 Gardner (1996) shows that the value of

technologies with short lead times, short lifetimes and/or a low capital/operating cost

ratio increases in an uncertain environment. Gardner and Rogers (1999) analyze, in

more detail, the effect of short lead times when dealing with demand uncertainty.

Fuel cost uncertainty has been addressed e.g., by Hobbs and Maheshwari (1990), who

show that the expected costs of neglecting uncertainty of fuel prices in investment plan-

ning is lower than those of disregarding demand uncertainties. Reinelt and Keith (2007)

use a stochastic dynamic model to analyze generation technology choices and optimal

timing in investment when future CO2 and natural gas prices are uncertain. Roques et al.

(2006) evaluate investment decisions in nuclear and CCGT plants under uncertainty of

natural gas prices, CO2 emission prices and electricity prices, by applying a multi-stage

stochastic program. Effects of uncertain future CO2 regulations are also addressed by

Patino-Echeverri et al. (2009) who apply a stochastic dynamic model and analyze the

effect of uncertainty on investment strategies, social costs and CO2 emissions.

Short-term uncertainties concerning the infeed of intermittent renewables have been

analyzed in stochastic investment and dispatch models e.g., by Swider and Weber (2007)

and Sun et al. (2008). Swider and Weber (2007) use a stochastic model to estimate the

integration costs of intermittent wind and show that larger investments into thermal

capacities are required when short-term stochastics of wind infeed are taken into account.

This result is confirmed by Sun et al. (2008), who find that neglecting short-term wind

infeed uncertainty leads to an undervaluation of the operational flexibility and results

in insufficient investments in thermal power plants.

In contrast to the analysis of short-term uncertain renewable infeed, we analyze the

influence of long-term uncertain renewable penetration levels induced by uncertainty as

to whether political RES-E targets can be achieved. To our knowledge, the impact of

52Dynamic stochastic electricity optimization models have been developed earlier for different appli-
cations, e.g., by Manne and Richels (1978).
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long-term uncertain residual load developments on the power system has not yet been

analyzed. Other long-term uncertainties, e.g., demand, fuel or CO2 emission price un-

certainties, either primarily correspond to uncertainty as to how much capacity should

be optimally constructed (demand) or induce uncertainty concerning the optimal tech-

nology mix (fuel and CO2 emission prices). In the context of uncertain future RES-E

penetration levels, both the optimal amount of dispatchable generation capacities and

the optimal technology mix are uncertain because the level and the slope of the future

residual load duration curve as well as the volatility of the hourly residual load curve

are unknown.

5.3 Model description and assumptions

In this section, we describe the stochastic optimization model (5.3.1) and present the

major assumptions underlying the scenario analyses (5.3.2).

5.3.1 Model description

We develop a linear multi-stage stochastic investment and dispatch model for electricity

markets. The model covers thermal power plants and storage units. In each model

period, different nodes account for different possible realizations of the residual load.

In the following, we present the basic model equations and describe how uncertainty is

captured in the model. Abbreviations used for model sets, parameters and variables are

shown in Table 5.1.53

53The table only shows sets, parameters and variables used in the equations listed within this chapter.
In addition, the model comprises variables necessary for ramping or storage equations such as the hourly
storage level in a storage unit. Ramping and storage equations are modeled as described in Richter
(2011).
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Table 5.1: Model abbreviations including sets, parameters and variables

Abbreviation Dimension Description

Model sets
d Day
h Hour
n Node
n1 alias of n Node (direct ancestor of n)
n2 alias of n Node (direct or indirect ancestor of n)
r Region
r1 alias of r Neighboring region of r
res RES-E technology
s Subset of t Storage technology
t Technology
y Subset of n Node (associated with a certain model year)
Model parameters
ad MW Exogenous capacity commissions
annuity EUR2010/MW Technology specific investment costs (annuity)
attc EUR2010/MWhth Attrition costs for ramp-up operation
co EUR2010/t CO2 CO2 emissions prices
cres MW RES-E capacities
dsc % Discount factor
f EUR2010/MWhth Fuel prices
fomc EUR2010/MW Fixed operation and maintenance costs
heatpr EUR2010/MWhth Heating price for end consumers
heatratio MWhth/MWhel Ratio for heat extraction
p % Occurence probability of node
β % Minimum generation level of power plants
η % Net efficiency
ηpartload % Net efficiency in partload operation
ρ MW Residual demand
θ MW Peak demand
τ % Capacity factor
γ % Capacity factor (RES-E plants)
ω t CO2 /MWhth CO2 emissions per fuel consumption
ξ [0;1] Indicates if a technology has reached its lifetime
Model variables
C MW Installed capacity (net)
CADD MW Capacity commissions (net)
CRTO MW Capacity which is ready to operate (net)
CSUB MW Capacity decommissions (net)
CUP MW Ramped-up capacity (net)
G MW Electricity generation (net)
NI MW Net imports
S MW Consumption in storage operation
Z EUR2010 Total system costs (objective value)

The objective of the model is to minimize total discounted system costs (eq. 5.1) while

satisfying hourly (residual) demand (eq. 5.2) and ensuring that peak demand can be

met by securely available capacities in each node (eq. 5.3). Equation 5.4 determines the

capacity in each node, which depends on investment decisions made in previous periods,

and which is thus chosen under uncertainty about the level and the structure of the
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residual load.

min Z =
∑
n

[
p(n) · dsc(y) ·

∑
t,r

[[∑
n2

annuity(t) · CADD(t, n2, r)

]
(5.1)

+C(t, n, r) · fomc(t)

+

[∑
d,h

G(d, h, n, t, r)

]
·

[
f(y, t) + co(y) · ω(t)

η(t)

]

+

[∑
d,h

CUP (d, h, n, t, r)

]
·

[
f(y, t) + co(y) · ω(t)

η(t)
+ attc(t)

]

+

[∑
d,h

(CRTO(d, h, n, t, r)−G(d, h, n, t, r))

]
·

[
f(y, t) + co(y) · ω(t)

ηpartload(t)
− f(y, t) + co(y) · ω(t)

η(t)

]
· β

1− β

−
∑
d,h

heatpr(y) · heatratio(t) ·G(d, h, n, t, r)

]]

s.t.

∑
t

G(d, h, n, t, r) +
∑
r1

NI(d, h, n, r, r1)−
∑
s

S(d, h, n, s, r) = ρ(d, h, n, r) (5.2)

τ · C(t, n, r) + γ · cres(res, n, r) ≥ θ(n, r) (5.3)

C(t, n) = C(t, n1) + CADD(t, n1) + ad(t, y)− CSUB(t, n) (5.4)

−
∑
n2

[
(CADD(t, n2) + ad(t, n2)) · ξ(t, n, n2)

]

Total system costs comprise fixed costs (investment and fixed operation and mainte-

nance costs), variable production costs (including fuel and CO2 costs), ramp-up costs

and costs arising due to efficiency losses in part-load operation. We simulate ramp-up

costs in this linear approach by referring to power plant vintage classes and setting a

minimal load restriction. Also, additional costs for ramping-up (attrition (attc) and

extra fuel costs) are taken into account (as in Richter (2011) and Nagl et al. (2013)). In

part-load operation, fuel costs of power plants are higher due to lower efficiency values,

which is taken into account by a linear approximation (as in Swider and Weber (2007)).
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A heat remuneration for electricity generation in co-generation mode is subtracted from

total system costs. As in Nagl et al. (2013), we assume that the heat remuneration cor-

responds to the ”assumed gas price (divided by the conversion efficiency of the assumed

reference heat boiler) which roughly represents the opportunity costs for households and

industries”. Heat generation in co-generation plants is restricted by a maximum heat

potential per model region. The inflexibility of electricity generation in co-generation

mode is accounted for by longer ramping times (as in Nagl et al. (2013)). All cost pa-

rameters are taken into account with the occurrence probability p(n) of the node n in

which the costs arise.

The hourly residual demand per country and node, inflows to storage units and elec-

tricity exports have to be met by generation from thermal and storage plants and/or by

electricity imports (eq. 5.2). The dispatch within each node is calculated for four typi-

cal days, representing a weekday and a weekend-day in autumn/winter and in spring/-

summer. These typical days capture typical seasonal, weekly and diurnal patterns of

demand, wind speeds, solar radiation and inflow into hydro storages. Note that the

model includes only long-term uncertainties about the deployment of RES-E capacities

and no short-term uncertainty about the hourly infeed of renewables. The dispatch of

generation and demand is realized under perfect foresight.

Peak demand (augmented by a security margin) per country and node has to be ensured

by installed capacities which are securely available (eq. 5.3).54 Thermal and storage

capacities are adjusted by a factor incorporating possible outages (in the range of 85-

90%; see Section 5.3.2). Fluctuating RES-E contribute with a relatively low capacity

credit (5% for wind, 0% for photovoltaics).

Equation 5.4 determines the capacity in node n depending on the installed capacity and

the investment decisions made in its ancestor node n1. In addition, the installed capacity

in node n is augmented by exogenous capacity commissions (representing thermal and

storage power plants that are already under construction or in an advanced planning

process) and reduced by capacity decommissions, before or at the end of the technical

lifetime of plant t. Thus, the model takes into account that power plant investments

have long planning times, construction times, amortization times and technical lifetimes.

Long planning times and construction times are represented by the fact that investment

decisions have to be made one period before their commissioning, and thus under un-

certainty about the state of the world at commissioning time. Long amortization times

and technical lifetimes in uncertain environments are represented by the fact that at the

time at which an investment decision for a power plant is made, the state of the world

in each period up to the end of its lifetime is uncertain.

54Peak demand corresponds to the highest demand before subtraction of fluctuating RES-E infeed.



Chapter 5. Optimization of power plant investments under uncertain renewable energy
deployment paths: a multi-stage stochastic programming approach 116

In addition to the equations presented in this section, the model incorporates common

elements of linear dispatch models such as storage equations, ramping and minimum

load restrictions, net transfer possibilities and the possibility of RES-E curtailment, as

presented in Richter (2011) and Fürsch et al. (2013a).

5.3.2 Assumptions

In the following, we present the major assumptions underlying the scenario analyses. For

the illustrative example (Section 5.4), cost assumptions for the year 2020 are used. For

the analysis of RES-E implementation risks on the electricity systems of Germany and

its neighboring countries (Section 5.5), we model Germany, Benelux (covering Belgium,

the Netherlands and Luxembourg), Denmark, Czech Republic and Poland (‘CZ + PL’),

Switzerland and Austria (‘CH + AT’) and France.

5.3.2.1 Electricity demand and potential heat generation in combined-heat-

and-power (CHP) plants

We assume that in the long term, increasing energy efficiency will counterbalance any

further increase in electricity demand driven by economic or population growth. Thus,

we assume that electricity demand will increase until 2030 and stagnate afterwards. In

addition to electricity demand values, Table 5.2 reports values for heat demand, based

on data for electricity production in co-generation reported in EURELECTRIC (2008).

In order to reduce computational time, the option to generate electricity in combined-

heat-and-power (CHP) plants is restricted to countries in which CHP-based electricity

generation makes up a major part of today´s electricity generation.

Table 5.2: Net electricity demand in TWhel and (potential heat generation in CHP
Plants in TWhth)

2020 2030 2040 2050

Benelux 226.2 (128) 241.7 (128) 241.7 (128) 241.7 (128)
CH + AT 140 (-) 149.5 (-) 149.5 (-) 149.5 (-)
CZ + PL 233.9 (146) 260.4 (146) 260.4 (146) 260.4 (146)
Denmark 43.1 (54) 46 (54) 46 (54) 46 (54)
Germany 611 (191) 628 (191) 628 (191) 628 (191)
France 523.6 (-) 558.3 (-) 558.3 (-) 558.3 (-)
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5.3.2.2 Power plants

Table 5.3 depicts assumed investment costs for thermal and storage technologies (based

on EWI and energynautics (2011) and EWI/Prognos/GWS (2010)). In addition to the

listed technologies, the model comprises several technology classes to account for exist-

ing power plants. Investments into nuclear, hard coal, lignite, open-cycle-gas-turbines

(OCGT), combined-cycle-gas-turbines (CCGT) and compressed-air-storages (CAES) are

possible. Investments into nuclear plants are restricted to countries that already have

existing nuclear power plants and that did not agree on a political phase-out of nuclear

power. In addition, we account for long planning and construction times of nuclear

plants. Therefore, no endogenous nuclear investments are possible before 2020, and af-

terwards investments are restricted to a maximum of 3 GW per 5-year-period and model

region. For hard coal and lignite, state-of-the-art and innovative power plants are con-

sidered in the model. Innovative hard coal plants are equipped with ”improved materials

and processing techniques” and thus able to run at higher temperatures (700 degrees

Celsius) and higher pressures (350 bars) (EWI and energynautics (2011)). The efficiency

is assumed to increase by about 4 percentage points to 50% due to these improvements

(EWI and energynautics (2011)). Investment costs are higher than the costs of state-of-

the-art technologies but are decreasing due to learning effects by around one third by

2050. ‘Innovative’ lignite technologies use a more efficient drying process than existing

plants and can therefore increase their efficiency to 46.5% (see EWI and energynautics

(2011) and EWI/Prognos/GWS (2010)). Hard coal, lignite and CCGT plants can also

be build as CHP technologies. Endogeneous investments in pump storage and hydro

storage plants are not considered, because the existing space potentials are already used

to a large extent.

Table 5.3: Investment costs of thermal and storage technologies in EUR2010/kW

Technologies 2020 2030 2040 2050

Nuclear 3,157 3,157 3,157 3,157
Hard Coal 1,500 1,500 1,500 1,500
Hard Coal - innovative 2,250 1,875 1,750 1,650
Hard Coal - innovative CHP 2,650 2,275 2,150 2,050
Lignite - innovative 1,950 1,950 1,950 1,950
Lignite - innovative CHP 2,350 2,350 2,350 2,350
OCGT 400 400 400 400
CCGT 800 800 800 800
CCGT-CHP 1,100 1,100 1,100 1,100

Pump storage - - - -
Hydro storage - - - -
CAES 850 850 850 850
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Table 5.4: Economic-technical parameters of thermal and storage technologies

Technology η (ηload) ηmin availability FOM-costs Lifetime
[%] [%] [%] [EUR2010/kW] [a]

Nuclear 33.0 28.0 84.5 96.6 50
Hard Coal 46.0 41.0 83.75 36.1 40
Hard Coal - innov. 50.0 45.0 83.75 36.1 40
Hard Coal - innov. CHP 22.5 17.5 83.75 55.1 40
Lignite - innov. 46.5 41.5 86.25 43.1 40
OCGT 40.0 20.0 84.5 17 20
CCGT 60.0 50.0 84.5 28.2 30
CCGT-CHP 36.0 26.0 84.5 40 30
Pump storage 87.0 (83.0) 87.0 95.25 11.5 100
Hydro storage 87.0 87.0 90.75 11.5 100
CAES 86.0 (81.0) 86.0 95.25 9.2 30

Table 5.4 shows the conversion efficiencies (at optimal operation and when operating at

minimum load level), technical availability, operational and maintenance costs and the

technical lifetime of conventional plants (mainly based on EWI and energynautics (2011)

and EWI/Prognos/GWS (2010)). The efficiency grades depicted correspond to those of

newly constructed plants. CHP plants have lower electrical but higher total efficiency

grades than plants without the co-generation option (EWI and energynautics (2011)).

The availability factor accounts for planned and unplanned shut-downs of the plants,

e.g., because of inspections (EWI and energynautics (2011)). In addition, the availability

factor determines the contribution of thermal and storage plants to the securely available

capacity at times of peak demand. For renewable plants treated exogenously, we assume

a contribution of 5% for wind and 0% for solar plants to securely available capacity.

Biomass and geothermal capacities are dispatchable plants and assigned a capacity credit

of 80%.

Assumed CO2 factors (in t CO2 /MWhth) are 0.406 for lignite-fired plants, 0.335 for

hard-coal fired plants and 0.201 for gas-fired plants.

We assume that yearly lignite generation is restricted to 350 TWhth in Germany and

to 249 TWhth in the region ‘Czech Republic + Poland’. In the other model regions,

lignite is not a generation option because its low calorific value leads to prohibitively

high transportation costs.

5.3.2.3 Fuel and CO2 emission prices

Table 5.5 lists the assumed development of fuel prices (including transportation costs to

the power plants) as well as historical prices. After the high price year of 2008, fuel prices

came down rapidly before beginning to rebound afterwards. Assumptions concerning the
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fuel price development are mainly based on EWI and energynautics (2011). Regarding

CO2 prices, we assume that more restrictive quotas will lead to increasing prices, while

an increasing RES-E share attenuates this effect. Overall, we assume that the CO2 price

increases up to 45 EUR2010/t CO2 by 2050.

Table 5.5: Fuel costs in EUR2010/MWhth and CO2 emission costs in EUR2010/t CO2

2008 2020 2030 2040 2050

Oil 44.6 99.0 110.0 114.0 116.0
Coal 17.28 13.4 13.8 14.3 14.7
Natural Gas 25.2 28.1 30.1 32.1 34.1
Lignite 1.4 1.4 1.4 1.4 1.4
Uranium 3.6 3.3 3.3 3.3 3.3
CO2 22 25 35 40 45

5.3.2.4 Net transfer capacities

Table 5.6 depicts the assumed net transfer capacities (NTC), restricting imports and ex-

ports between model regions. Assumptions are based on ENTSO-E (2010). For model

regions representing several countries, such as Benelux, the NTC-values of the repre-

sented countries have been summed.

Table 5.6: Net transfer capacities [MW]

DE FR Benelux CH+AT CZ+PL DK

DE - 3050 4830 3100 1600 1500
FR 2600 - 2900 3000 - -
Benelux 3980 1300 - - - -
CH+AT 4800 1100 - - 600 -
CZ+PL 3200 - - 800 - -
DK 2050 - - - - -

5.4 Theoretical discussion of effects and illustrative exam-

ple

In this section, we discuss the influence of RES-E infeed on the optimal electricity

capacity mix, the effects of uncertain future RES-E penetration levels and means to

measure these effects (Section 5.4.1). In addition, we highlight the impact of uncertain

future RES-E deployment paths via an illustrative modeling example (Section 5.4.2).
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5.4.1 Theoretical discussion of results

Uncertain future RES-E penetration levels lead to uncertainty about the residual de-

mand, required to be met by thermal power plants or by storage units. Figure 5.1 illus-

trates the influence of RES-E infeed on the optimal mix of dispatchable power plants.

The upper graph depicts an hourly load curve without and after subtraction of RES-E

infeed. The middle graph shows the corresponding (residual) load duration curves and

the lower graph depicts the optimal mix of peak-, mid- and baseload plants under the

simplifying assumption that only their yearly utilization times are decisive for the deter-

mination of the optimal capacity mix.55 Even though the load duration curve approach

provides a good approximation of the optimal capacity mix, it is important to note that

in addition to yearly utilization times, the hourly variability of demand influences the

optimal capacity mix. In the following we first discuss the influence of RES-E infeed on

the optimal capacity mix under a load duration curve consideration. Then, we discuss

the influence of the changing hourly variability of demand on the optimal capacity mix.

55An electricity load duration curve ranks load levels in a descending order of magnitude. The integral
under the load duration curve shows how much electricity is demanded for how many hours per year.
For the fraction of demand, that is needed in nearly all hours of the year, plants with high fixed and
low variable costs (baseload plants) are cost-efficient while demand peaks are cost-efficiently met by
peakload plants, characterized by high variable but low fixed costs (see e.g. Stoft (2002)).
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Figure 5.1: Effects of RES-E infeed on the optimal capacity mix
Source: Own illustration based on Nabe (2006) and de Miera et al. (2008).

Given high infeed of renewables, the residual load duration curve becomes steeper.56 In

many hours, a large part of the (residual) demand is met by renewables with negligible

variable generation costs. Thus, the (residual) demand fraction, which is high in almost

all hours of the year, shrinks. Consequently, the optimal capacity mix comprises less

baseload plants, which need high utilization times in order to be cost-efficient (yb < xb).

In addition, these baseload plants achieve lower utilization times than without RES-E

56While an increasing RES-E share generally increases the steepness of the residual load curve, this
is not necessarily the case for small shares of renewables whose infeed matches well with demand. In
these cases, an increasing RES-E share (up to a certain level) can even flatten the residual load duration
curve. For example, small shares of solar based generation can flatten the electricity demand curve in
countries with demand peaks at noon.
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infeed due to a steeper residual load curve in the area where utilization times are higher

than h∗B. On the other hand, fluctuating RES-E such as wind and solar plants are

not necessarily available at times of high demand. Thus, high electricity demand still

needs to be met by dispatchable power plants. Consequently, the optimal capacity mix

comprises a larger amount (or at least a larger share) of peak- and midload capacities

(yp > xp and ym > xm) when RES-E shares are high (see also Lamont (2008) and

De Jonghe et al. (2011)). This effect is further amplified when considering security

of supply requirements (not depicted in Figure 5.1). Due to low capacity credits of

fluctuating RES-E, a large share of dispatchable generation capacities are also needed in

electricity systems with high RES-E penetration, in order to ensure that peak demand

can be met with securely available capacities (see, e.g., Dena (2008) and Weigt (2009)).

In addition, the volatility of the hourly residual load curve increases with a higher RES-E

share (upper graph). Consequently, with an increasing RES-E share, the economic value

of power plants with short ramping times, and/or low costs for ramping or part load

operation, increases. Plants with a high capital/operating ratio are also those plants

characterized by long ramping times, while plants with a low capital/operation cost

ratio, such as open cycle gas turbines, can be ramped up and down within short time-

frames. In addition, plants with a high capital/operating cost ratio typically have high

minimum load requirements. Consequently, the increasing demand volatility induced

by an increasing RES-E share also impacts optimal investment decisions of fossil fuel

plants (De Jonghe et al. (2011)). Of course, also the economic value of storage units is

significantly influenced by demand volatility (see, e.g., Nagl et al. (2011a)).

For these reasons, under uncertain future RES-E penetration levels, it is uncertain

whether the optimal electricity mix should comprise large shares of baseload or rather

large shares of peakload plants and storage units. The impact of this uncertainty on

electricity system costs can be measured with the expected value of perfect information

(EVPI) and with the value of the stochastic solution (VSS). The EVPI determines the

expected additional costs induced by uncertainty, when the uncertainty is taken into

account by a stochastic optimization procedure. The VSS corresponds to the additional

costs (compared to the stochastic solution) arising when investments are planned for

the average realization of the random parameters (here: residual load curves), without

taking into account uncertainty. Thereby, the VSS measures how effectively stochastic

optimization can help to mitigate the effects of uncertainty (Birge (1997)).
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5.4.2 Illustrative example

In this section, we present an illustrative modeling example in order to highlight the

effects of uncertain future RES-E deployment paths on optimal investment choices

(5.4.2.1) and system costs (5.4.2.2). We consider one model region without an exist-

ing power plant fleet and only two time periods. Furthermore, for reasons of simplicity,

we assume in this example that the contribution of RES-E to security of supply require-

ments is zero.57

5.4.2.1 Effects of uncertainty on the optimal technology mix

In this illustrative example, investment decisions have to be made in period 0 under

uncertainty concerning the RES-E penetration in period 1, when RES-E shares of 0%

(S1), approximately 25% (S2) and approximately 50% (S3) can be realized with equal

probability. Investments can be made into hard coal, CCGT and OCGT plants, rep-

resenting a baseload, a midload and a peakload technology, respectively. In addition,

investments into storage units are possible.

Figure 5.2 depicts the residual load duration curves in S1, S2 and S3 as well as the

stochastic residual load duration curve that corresponds to the probability weighted

horizontal aggregation of the residual load curves of the three scenarios. It can be clearly

seen that the stochastic residual load duration curve differs from all three deterministic

load duration curves and, in particular, also from the average residual load duration

curve (S2). In contrast to the average, the stochastic residual load duration curve takes

into account that all extremely low or extremely high demand levels within the three

scenarios can be realized with some probability. In Figure 5.2, it is also apparent, which

power plant technologies are cost-efficient depending on their yearly utilization times

(analogue to Figure 5.1). Considering only the load duration curve, OCGT plants are

the cost-efficient choice to cover the demand levels occurring in fewer than h∗M (full

load) hours ( - given our cost assumptions). For yearly full load hours larger than h∗M

(h∗B), CCGT (hard coal) plants are cost-efficient. Of course, the hourly volatility of

demand also determines the cost-efficient technology mix and especially the investments

into storage units. However, abstracting in a first step from the hourly volatility, it can

be seen that the residual load duration curve of S1 is comparatively flat, implying that

a large share of hard coal plants should be cost-efficient. The residual load duration

curve of S2 is also relatively flat except for the area of low utilization times. Since we

57As described in Section 5.3.2, the contribution of fluctuating RES-E to security of supply require-
ments is close to zero, because peak demand can occur when neither sun nor wind power is securely
available, e.g., during night hours. In this illustrative scenario, we assume a capacity credit of 0% of all
RES-E, as this assumption simplifies the calculation of the VSS in Section 5.4.2.2.
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assume in this illustrative scenario that the contribution of RES-E to security of supply

requirements is zero, all residual load curves start at the same demand level. Thus, the

residual load curve of S2 and S3 are steep in the area where full load hours are below h∗M .

S3 generally has a steeper residual load curve than S1 and S2, indicating that a large

share of OCGT plants should be cost-efficient. The stochastic residual load duration

curve is flatter than S2 and S3 in the areas of very low utilization times but steeper than

all deterministic scenarios between h∗M and h∗B. Thus, a large share of CCGT plants

should be cost-efficiently deployed under stochastic optimization.
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Figure 5.2: Residual load duration curves - deterministic and stochastic
Remark: Note that the load duration curve approach only provides an approximation of the
optimal capacity mix. In addition, the optimal capacity mix is influenced by hourly demand

variability.

In addition to yearly utilization times, optimal investment choices depend on the hourly

variability of demand, which in turn determines the flexibility required from the power

plant fleet. In particular, optimal investment decisions for storage units depend on

the hourly variability of demand and cannot be determined by a load duration curve

approach. Table 5.7 shows the maximum, minimum and average variations of residual

demand from one hour to the next hour in the different scenarios. It can be seen

that demand volatility significantly increases with an increasing RES-E share.58 In

58As described in Section 5.3.1, we use a typical day approach to represent seasonal, daily and hourly
variability of demand and infeed structures of fluctuating RES-E. Generally, this approach allows us to
take into account typical residual demand situations resulting, e.g., from situations in which high RES-E
infeed and low demand or low RES-E infeed and high demand occur at the same time. However, weather
situations such as several weeks of calm wind cannot be captured by the limited number of typical days.
Thus, including these weather phenomenons, e.g., by including a larger number of typical days or an
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the stochastic optimization, both the maximum variation and the minimum variation

of the three scenarios are taken into account. The average demand variation in the

stochastic optimization is higher than in the average deterministic scenario (S2), because

the extreme variations of S3 are also included.

Table 5.7: Hourly variation of residual demand - maximum, minimum and average
values [MW]

S1 S2 S3 stochastic

Max variation 10128 31026 53581 53581
Min variation 128 2 126 2
Average variation 2213 3646 6265 4254

Results of the power plant fleet optimization for the different residual demand curves

are depicted in Table 5.8. The table shows the investment decisions for each of the

three scenarios given perfect information about their realizations and the stochastic

solution given uncertainty concerning RES-E penetration in period 1. In addition, uti-

lization times are depicted. Table 5.9 depicts the power balances under deterministic

and stochastic planning and provides information on the electricity demand of storage

units and on the curtailed RES-E generation.

Table 5.8: Investments [GW] and utilization times [h] with deterministic and stochas-
tic planning

deterministic stochastic

S1 (0%) S2 (25%) S3 (50%) S1-S3 S1 S2 S3

GW h GW h GW h GW h

Coal 83 6969 61 6811 41 6469 50 7111 6985 5393
CCGT 11 3321 9 3057 4 4096 36 6455 2792 230
OCGT 2 124 26 74 46 51 13 2248 0 0
Storage 8 1191 7 1163 15 1189 5 1280 647 581

Table 5.9: Power balances with deterministic and stochastic planning [TWhel]

deterministic stochastic

S1 S2 S3 S1 S2 S3

End consumer electricity demand 611 611 611 611 611 611
Electricity consumption in storage units 14 11 25 8 4 4

Gross electricity demand 625 622 636 619 615 615

Generation of non-RES-E plants 625 452 298 619 445 279
Generation of RES-E plants - 170 340 - 170 340
RES-E curtailment - - 2 - - 4

Gross electricity generation 625 622 636 619 615 615

8760h approach, would lead to a lower average variation of hourly residual demand than depicted in
Table 5.7.
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It can be clearly seen that the optimal deterministic power plant mixes vary significantly

between the scenarios. In scenario S1, without RES-E infeed, the capacity mix is domi-

nated by coal capacities, while in scenario S3, with a 50% RES-E share, OCGT plants

make up the largest share of capacities.59 Storage capacities are deployed to the largest

extent in scenario S3, characterized by the most volatile residual load.60 Taking into

account these uncertainties using a stochastic optimization approach, resulting invest-

ments yield more CCGT plants than in all deterministic scenarios.61 Investments into

coal, OCGT and storage capacities are lower than on average within the deterministic

scenarios. As discussed above, the optimal capacity mix under stochastic optimization

should comprise a large share of CCGT capacities because the stochastic residual load

duration curve is relatively steep between h∗M and h∗B (Figure 5.2). But why is it cost-

optimal to optimize for the stochastic residual load curve and thus build a large share of

CCGT capacities when it is uncertain whether S1, S2 or S3 will be realized? Under the

assumed investment, fuel and CO2 prices, CCGT plants have a medium capital/operat-

ing cost ratio compared to coal and OCGT plants. When investment decisions are made

under uncertainty and a high RES-E penetration (S3) is realized, CCGT plants have

a low utilization and replace a part of the OCGT plants built under the deterministic

planning of S3. In this case, additional total costs of CCGT plants are relatively low

compared to additional costs arising if coal plants would be build and only run few hours

per year. When a low RES-E penetration (S1) is realized, CCGT plants have a high

utilization and substitute a part of the coal generation, which would be cost-efficient un-

der the deterministic planning of S1. In this case, additional generation costs of CCGT

plants are relatively low compared to additional costs arising if a large part of demand

would have to be met by OCGT generation.

Investment decisions for storage units are driven by differences in electricity prices be-

tween periods of high and low (residual) demand. Electricity price volatility is high

if (residual) demand is volatile and if differences in marginal generation costs of the

price-setting technologies during high and low demand periods are large. Given perfect

information, investments into storage units are highest in Scenario S3. Residual demand

in S3 comprises, on the one hand, hours with negative residual demand during which

electricity can be pumped into storage units for free. On the other hand, it comprises

hours during which demand is relatively high and electricity generation from storage

59A large part of these OCGT capacities is only required to ensure security of supply, i.e., to meet
demand in the peak demand hour if renewable infeed is not available. However, even if RES-E infeed
would be 100% secure, 15 GW OCGT would be build in S3 - a significantly larger amount than in S1.

60It may seem surprising that the optimal storage capacities in Scenario S2 are lower than in S1 even
though the RES-E share is higher. The reason is that a large part of the RES-E infeed in S2 matches
demand and even flattens demand peaks at noon due to photovoltaic infeed.

61In the stochastic optimization approach, 36 GW CCGT capacities are built in period 0. In period
1, 2 GW CCGT are decommissioned in S2 and S3 in order to save fix operation and maintenance costs
for capacities which are neither required for meeting demand nor for ensuring security of supply.
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units can avoid high variable production costs by substituting generation from OCGT

plants. Under uncertainty concerning the realization of S1, S2 or S3, a comparatively

low amount of storage units is built. In combination with an - under uncertainty -

optimally large deployment of CCGT plants, the value of storage units is, especially in

S3, rather low. Under stochastic planning, the optimal capacity mix comprises more

coal and CCGT plants than in the deterministic S3 scenario, and OCGT plants are not

dispatched at all, when S3 is realized. Thus, under stochastic planning, the value for

storage units is low in S3 because electricity prices have a lower volatility than under

deterministic investment planning.62 In addition, it is important to note that the model

incorporates the option for cost-efficient RES-E curtailment. Thus, a smaller amount

of storage units installed under uncertainty does not necessarily increase the ramping

requirements for thermal power plants. In this example, RES-E curtailment in Scenario

S3 is 4 TWh in the stochastic solution, while a curtailment of 2 TWh is cost-efficient

in the case of deterministic investment planning. Furthermore, flexibility can be pro-

vided by part-load operation in addition to, or instead of, ramping procedures. In fact,

the option of part-load operation is substantially used in Scenario S3, when investment

decisions are made under uncertainty.

It should be noted that the setting of this illustrative scenario is rather extreme. First,

the difference in RES-E infeed between the two extreme scenarios S1 and S3 is rather

large. Second, only three scenarios are taken into account to represent this uncertainty.

Increasing the number of scenarios representing an RES-E infeed between the two ex-

tremes of 0% and 50% flattens the stochastic residual load duration curve, as extreme

values are taken into account with decreasing probabilities (see Figure D.1 in Appendix

D). Consequently, the effect that technologies with a medium capital/operating cost

ratio have a higher value under uncertainty is - although robust - less pronounced when

the number of scenarios is increased. Table 5.10 depicts the optimal investment choice

under uncertainty of RES-E infeed between 0% and 50% - either represented by three

scenarios (0%, 25%, 50%) or represented by 50 scenarios (0%, 1%, 2%, ..., 50%). In

addition, the result for the average scenario (25%) is shown again. It can be seen that

the result from the stochastic optimization differs less from the optimal capacity mix in

the average scenario if uncertainty is represented by 50 instead of 3 scenarios. However,

the optimal capacity mix under uncertainty will never be identical to the optimal ca-

pacity mix for the average scenario. As shown in Figure 5.2, the residual load duration

curve of S1 (with 0% RES-E infeed) consists of many high load levels, which never occur

in the average S2 scenario. Furthermore, the residual load duration curve of S3 (with

50% RES-E infeed) consists of many low load levels, which never occur in the average S2

62In contrast, in Scenario S1, stochastic planning leads to a high OCGT generation compared to the
deterministic case. Electricity prices have a higher volatility than under deterministic planning and the
5 GW storage capacity, installed under uncertainty, consequently has the highest utilization time in S1.
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scenario. In the stochastic residual load duration curve, however, all load levels occuring

in at least one of the scenarios are taken into account, also those that are higher or lower

than in S2.

Table 5.10: Investments under uncertainty (3 vs 50 scenarios) and under average
planning [GW]

stochastic average

3 scenarios 50 scenarios 25% RES-E

Coal 50 54 61
CCGT 36 26 9
OCGT 13 19 26
Storage 5 5 7

In addition, it is important to note that the value of midload plants under uncertainty,

compared to perfect foresight modeling, depends on the relative steepness of the stochas-

tic residual load duration curve in the area h∗M - h∗B compared to the steepness of the

deterministic residual load duration curves in the same area. Thus, given a higher steep-

ness of, e.g, the average deterministic residual load duration curve in the area h∗M - h∗B,

the difference between the stochastic solution and the average deterministic solution

(shown in Table 5.10) would ceteris paribus be smaller.63 Steeper deterministic residual

load duration curves in the area h∗M - h∗B could for example result from different RES-E

infeed patterns than those represented in our typical days (e.g, if a situation of several

weeks of calm wind would be additionally taken into account). Using hourly historical

data for RES-E infeed and demand on an 8760h basis instead than a typical day ap-

proach for constructing residual load duration curves (see Figure D.2 in Appendix D),

we find that the curves with RES-E infeed (S1 and S2) are steeper in the area h∗M -

h∗B compared to the curves which have been constructed on the basis of the typical day

RES-E infeed structure (see Figure 5.2). Thus, also the relative difference in the steep-

ness of the stochastic compared to the average residual load duration curve decreases.

Thus, both using a typical day approach and using hourly historical data for RES-E

infeed and demand on an 8760h basis, we find that in the area h∗M - h∗B, the stochastic

residual load duration curve is steeper than the average deterministic residual load du-

ration curve. The magnitude of this effect, however, is smaller when using the historical

8760h RES-E infeed structures.

63 A higher steepness of the deterministic residual load duration curves in the area h∗M - h∗B would also
affect the stochastic residual load duration curve, however, not necessarily for utilization times of h∗M or
h∗B and even not necessarily in the area h∗M - h∗B . More specifically, if the steepness of a deterministic
residual load duration curve changes in an area, where the level of the deterministic curve is lower than
the value of the stochastic residual load duration curve in h∗B , the stochastic residual load duration curve
is affected by these changes only in the area of utilization times which are higher than h∗B .
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Against this background, a further investigation of the drivers for the steepness of the

stochastic residual load duration curve is interesting. As described in Section 5.4.1, un-

certainty concerning the RES-E penetration in an electricity system leads to uncertainty

about the level and the slope of the residual load duration curve and about the hourly

variability of residual demand. Thus, the amount of capacities needed to meet demand

and the optimal capacity mix, in terms of utilization times and flexibility requirements,

is uncertain. In order to further investigate the drivers for the steepness of the stochastic

residual load duration curve, we compare the stochastic residual load duration curves

if i) only the level of demand is uncertain or if ii) the level and the structure of the

residual demand are uncertain. In Figure 5.3, the two stochastic and three deterministic

(residual) load duration curves are depicted. The deterministic curves correspond to a)

no RES-E infeed or a high demand level (≡ S1), b) to a RES-E infeed that makes up

approximately 50% of yearly demand (≡ S3) and c) a demand level that corresponds

to 50% of the highest demand level (assuming the same hourly demand pattern of the

different yearly demand levels). The stochastic (residual) load curves take into account

either uncertainty about the level of demand only (high versus low demand) or uncer-

tainty about the level and the structure of residual demand (0% RES-E versus 50%

RES-E).
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Figure 5.3: The influence of demand level uncertainty on the steepness of the stochas-
tic load duration curve

Remark:Note that the load duration curve approach only provides an approximation of the
optimal capacity mix. In addition, the optimal capacity mix is influenced by hourly demand

variability.
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However, both stochastic curves are quite similar except for the area of very high uti-

lization times. In the area of very low utilization times, the two curves are overlapping

because highest demand arises in the deterministic (a) scenario, which is taken into ac-

count in both stochastic curves.64 The deterministic scenarios with a low demand (c) and

with a high RES-E share (b) have significantly different slopes (- although their yearly

(residual) demand levels are identical). These different slopes of the (residual) load du-

ration curves have a high impact on the optimal capacity mix given perfect foresight.65

However, in the area h∗M - h∗B, the effect of these different slopes of the deterministic

curves on the slopes of the stochastic curves is rather low (in fact, the stochastic load

duration curve given RES-E uncertainty lies only slightly above the stochastic load du-

ration curve given demand uncertainty). The effect of a higher value of midload plants

under uncertainty is thus mainly driven by the uncertainty about the level of the de-

mand, while the additional uncertainty about the slope of the demand even slightly

attenuates this effect. Furthermore, with increasing demand level differences between

the scenarios, the steepness of the stochastic residual load duration curve increases (see

Figure D.3 in Appendix D).

Moreover, the effect that midload plants have a higher value under uncertainty depends

on the distance between h∗M and h∗B, i.e. the utilization time for which midload plants

(here: CCGT plants) are cost-efficient. For example if we would include the possibility

to invest into lignite in addition to OCGT, CCGT and hardcoal plants, the distance be-

tween h∗M and h∗B would approximately be divided in half (given our cost assumptions).

Thus, in general, the magnitude of the effect that technologies with a medium capital/-

operating cost ratio have a higher value under uncertainty first depends on the steepness

of the stochastic residual load duration curve between h∗M and h∗B (in comparison to the

steepness of the deterministic load duration curves). This steepness is essentially driven

by the uncertainty about the level of demand (Figure 5.3) and by the probability with

which the ‘extreme’ scenarios are taken into account (Table 5.10/ Figure D.1). Second,

the magnitude of the effect depends on the distance between h∗M and h∗B, which is in-

fluenced by the choice of technologies considered in the modeling and the assumptions

on investment, fuel and CO2 costs.

64The stochastic load duration curves in Figure 5.3 have been calculated based on twelve scenarios that
represent the range of demand or residual demand between the deterministic a and the deterministic b
or c scenarios. Twelve scenarios, instead of only three scenarios, have been chosen because the scenario
with the highest demand(/lowest RES-E infeed) is identical in both stochastic (residual) load duration
curves. Thus, in order to limit the influence of this scenario on the slopes of the stochastic residual load
duration curves, twelve scenarios have been chosen.

65For example, the optimal deterministic capacity mixes in the high and low demand scenarios in
Figure 5.3 comprise the same shares of base-, mid- and peakload capacities. In contrast, the optimal
deterministic capacity mixes with high and low RES-E shares differ significantly, as shown in Table 5.8.
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5.4.2.2 Effects of uncertainty on system costs

Table 5.11 depicts system costs (excluding costs for RES-E generation) arising in this

illustrative scenario when the future is perfectly known (deterministic planning), in the

case of uncertainty under stochastic planning and in the case of uncertainty when the

uncertainty is not taken into account within the investment planning process (average

planning).

In this scenario setting, average planning principally refers to an optimization of in-

vestment capacities for Scenario S2, characterized by an average RES-E infeed. This

capacity mix is then fixed in all scenarios and only the dispatch of these capacities can be

optimized according to the actual RES-E infeed. Due to the peak-capacity constraint

(and the simplifying assumption in this illustrative scenario that the contribution of

RES-E to security of supply requirements is zero), capacities built in Scenario S2 are

sufficient to meet peak demand in all scenarios. However, due to different structures of

the residual load curves and thus different ramping requirements, it is not guaranteed

that these capacities are sufficient to meet demand in all scenarios in every single hour.

Thus, we optimize capacities for the average residual load (S2) under the additional

constraint that demand also needs to be met in all other possible scenarios.66 This opti-

mization results in a slightly different capacity choice compared to the original Scenario

S2. Thus, costs in S2 are slightly higher with average planning than with deterministic

planning.

Table 5.11: System costs (excluding costs for RES-E generation) in Mio EUR, EVPI
and VSS

deterministic stochastic average
planning planning planning

S1 (0% RES-E) 41,166 42,040 43,966
S2 (25% RES-E) 31,253 31,736 31,285
S3 (50% RES-E) 21,960 23,269 23,105
average costs 31,460 32,348 32,785

EVPI 889
EVPI (% of det costs) 2.82%

VSS 437
VSS (% of det costs) 1.39%

In all scenarios, total system costs are higher under stochastic planning than under

deterministic planning (given perfect foresight). In scenarios S1 and S2, a lower coal

generation than under deterministic planning leads to increasing variable generation

66In this auxiliary optimization of S2, only dispatch costs arising in S2 are taken into account. However,
chosen capacities have to be sufficient in order to meet demand in all scenarios.
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costs. However, capital costs are lower, such that in sum total system costs increase

by 1.5 - 2%. In Scenario S3, total system costs under uncertainty are 6% higher than

given perfect foresight because lower variable costs do not outweigh additional capital

costs. The EVPI, corresponding to the probability weighted additional costs arising

in all scenarios under stochastic compared to deterministic planning, amounts to 889

Mio EUR and to 2.82%, expressed as percentage of average deterministic system costs.

The VSS evaluates the benefit of solving the stochastic solution and corresponds to

the probability weighted additional costs arising in all scenarios under average planning

compared to stochastic planning. The VSS amounts to 437 Mio EUR, representing 1.39%

of average deterministic system costs. Expressed differently, system costs are higher by

1326 Mio EUR compared to a situation of perfect foresight, if RES-E deployment paths

are uncertain and investment decisions are made for an average realization of the residual

load. These additional costs can be reduced by approximately one third, by taking into

account the existance of uncertainty by a stochastic investment planning approach.67

5.5 Analysis of uncertain RES-E deployment paths in Ger-

many and neighboring countries

In the previous chapter, we have shown how uncertainty about future RES-E deployment

paths changes optimal investment plans for thermal power plants and storage units and

that this uncertainty induces additional costs. However, the remaining question is how

significant these effects are in real-world electricity systems. In this context, it is im-

portant to exactly define the source of uncertainty to be analyzed and to determine the

possible bandwidth of realizations of the uncertain parameters according to this defini-

tion. Specifically, uncertain future RES-E deployment paths have two potential sources:

political uncertainty and uncertainty about the implementation of political plans. Polit-

ical uncertainty arises when political targets are unclear or when it is uncertain, whether

targets will be changed, e.g., after governmental elections. The implementation of polit-

ical plans can be uncertain even if reliable targets exist, for four principal reasons. First,

many RES-E technologies are relatively new technologies, implying that technological

and cost developments are uncertain and/or that limited experiences exist for construc-

tion and maintenance. Second, favorable RES-E sites are often located far from demand

centers and therefore the electricity network has to be adapted. Third, local opposition

may hinder the construction of new sites or transmission lines due to visual or environ-

mental concerns. Fourth, when RES-E is supported by a price-based promotion system,

67As shown in Table 5.10, when uncertainty is represented by a larger number of scenarios, the
stochastic investment solution is closer to the optimal capacity mix under average planning. Thus, the
cost advantage of the stochastic compared to the average planning (i.e., VSS) also depends on the specific
representation of uncertainty in the model.
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such as by a feed-in-tariff system, resulting RES-E quantities are inherently uncertain.

In the following, we try to quantify effects of uncertainty concerning the implementation

of reliable long-term political RES-E targets for Germany and its neighboring countries.

We assume that a continuous increase of RES-E until 2050 is a politically agreed and

reliable target for Germany and its neighboring countries.68 Thus, we assume that the

RES-E share increases within each model year and that only the magnitude of the in-

crease is uncertain because the progress of necessary infrastructure investments, public

acceptance, cost and technological developments of renewable energy technologies can-

not be perfectly foreseen.

In this chapter we describe the scenario tree representing uncertainty about the im-

plementation of political RES-E targets (Section 5.5.1) and present model results with

regard to investment decisions, electricity generation and system costs (Section 5.5.2).

5.5.1 Representation of the RES-E implementation risk

In order to represent the RES-E implementation risk in the model, we estimate possi-

ble bandwidths of RES-E deployments within the next decades based on the targeted

growth rates indicated in the National Renewable Energy Action Plans (NREAP)69,

the actual trends regarding the achievement of these targets, the possible obstacles to

RES-E deployment and the space potential restrictions per technology and country.

The first model year considered in the analysis is 2015, when investment decisions have

to be made for power plants commissioning in 2020. The model year 2020 is represented

by three nodes, taking into account that the NREAP can be exactly reached but also be

surpassed or not be reached. Lower RES-E deployments than targeted represent a case

in which slow progress in grid and plant construction, local opposition to new power

plant construction and/or a lack of funds hinders RES-E deployment. In particular,

the achievement of offshore wind targets has been questioned recently because of slow

progress in grid and plant construction. In contrast, higher than targeted RES-E de-

ployments represent a case in which there exist hardly any obstacles to plant and grid

construction and/or cost degressions of RES-E plants are higher than foreseen. For ex-

ample, photovoltaic targets are easily surpassed in price-based RES-E support systems

68It is important to notice that political uncertainty about future RES-E deployment paths also exists.
Binding RES-E targets on a European level have only been formulated until 2020. In Germany, RES-E
targets until 2050 have been additionally formulated (Energiekonzept (2010)). Not all other European
countries have long-term RES-E strategies yet. In addition, changes in political targets could occur with
some probability. These risks are not incorporated in our model calculations.

69Within the National Renewable Energy Action Plans, the member states of the European Union
defined how the national 2020 RES targets, according to the 2009 EU Directive on the promotion of
renewable energy sources, are broken down into targets for the transporting, the heating and cooling
and the electricity sectors.
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except for very low promotion payment levels, because the support of the local popula-

tion is often high and the space potential is vast.

Table 5.12 depicts the RES-E capacities in 2010, the foreseen deployment in GW between

2010 and 2020 (according to the NREAP) and the installed RES-E capacities in 2020

(when the NREAP is exactly reached, surpassed or not reached). Historical capacities

in 2010 are based on the NREAP documents (Beurskens et al. (2011)), EURELECTRIC

(2009) and BMU (2011).

Table 5.12: RES-E capacities in 2010 and 2020 [GW]

Region Technology 2010 growth NREAP > NREAP < NREAP
NREAP 2020 2020 2020

Germany wind onshore 27 9 36 40 30
wind offshore 0 10 10 12 3
photovoltaics 17 34 52 60 35
biomass 7 2 9 10 8
geothermal 0 0 0 1 0

Benelux wind onshore 3 8 10 12 6
wind offshore 0 5 5 7 2
photovoltaics 0 2 2 4 1
biomass 2 3 5 6 5
geothermal 0 0 0 0 0

France wind onshore 6 13 19 25 10
wind offshore 0 6 6 8 1
photovoltaics 1 4 5 10 2
biomass 1 2 3 4 2
geothermal 0 0 0 0 0

CH + AT wind onshore 1 2 3 4 2
wind offshore 0 0 0 0 0
photovoltaics 0 0 0 1 0
biomass 1 0 1 2 1
geothermal 0 0 0 0 0

CZ+ PL wind onshore 1 5 6 9 3
wind offshore 0 1 1 1 0
photovoltaics 2 0 2 2 2
biomass 0 3 3 4 0
geothermal 0 0 0 0 0

Denmark wind onshore 3 0 3 3 3
wind offshore 1 1 1 2 1
photovoltaics 0 0 0 0 0
biomass 1 2 3 4 2
geothermal 0 0 0 0 0

For the time-frame after 2020, we estimate possible bandwidth for a high or a moderate

RES-E deployment pace based on the same considerations. For the case of favorable in-

vestment conditions, we assume that the deployment between 2010 and 2020 (according
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to the NREAP) is carried forward in the coming decades, while in the presence of obsta-

cles to RES-E deployment, the deployment is assumed to be one half of this growth. For

offshore wind, we deviate slightly from this procedure, because experiences with offshore

plants are few and unused space potential is still vast in all considered countries. Thus,

for offshore wind, the deployment at a high pace is assumed to be twice the development

in the NREAP between 2010 and 2020, while a deployment at moderate pace is assumed

to be the same as within the NREAP. In addition, we take into account that (space or

fuel) potential restrictions (see Table D.1 in Appendix D) need to be respected and that

the maximal yearly RES-E production of all RES-E technologies reaches at most 90%

of the annual country-specific electricity demand.

Figure 5.4 recaptures the resulting structure of the scenario tree representing the RES-E

implementation risk for Germany and its neighboring countries. We assume that fac-

tors favoring and factors hindering a high RES-E deployment pace are realized with the

same probability such that all nodes depicted in Figure 5.4 have the same occurrence

probability. Also, with the chosen approach, we implicitly assume that different risks

associated with the deployment of different RES-E technologies are positively correlated

in all model regions.70 In addition, we assume that most uncertainties about technolog-

ical and cost developments and about grid construction progress are resolved from 2040

onwards.71

70Possible negative correlations could both increase or attenuate the effects of the RES-E implementa-
tion risk. For example, the combination of high offshore wind and low photovoltaic penetration can lead
to a more volatile residual load than high penetration of both technologies. Thus, including paths with
high offshore and low photovoltaic penetrations may even increase the possible bandwidth of residual
load curves captured in the scenario tree and increase effects of uncertainty. On the other hand, includ-
ing paths with high offshore and low onshore wind penetrations and vice versa may lead to increasing
probabilities for these ‘medium’ paths such that effects of uncertainty may decrease to some extent.

71In our analysis, we focus on investments decisions until 2020 and the corresponding dispatch decisions
until 2025. In order to include effects of long-term uncertainties on investment decisions with long
amortization times and technical lifetimes, we however include nodes until 2060. Overall, the chosen
scenario tree consists of 24 branches and 94 nodes.
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Figure 5.4: Structure of the scenario tree representing the RES-E implementation
risk

Resulting RES-E capacities per node for the model years 2030 and 2050 can be found

in Appendix D. For example, in Germany in the year 2030, RES-E capacities vary

between 109 GW and 187 GW (see Table D.2 in Appendix D). In terms of RES-E

generation, bandwidths are between 225 TWh and 383 TWh, which make up 37% and

63%, respectively, of the assumed electricity demand in 2030. In 2050, the maximum

assumed bandwidths for Germany are between 141 GW and 244 GW (see Table D.3

in Appendix D), resulting in RES-E shares of 47% and 78%, respectively, given our

assumed demand development.72

5.5.2 Model results

In the following, we analyze the effects of the RES-E implementation risk on investment

and dispatch decisions (Section 5.5.2.1) as well as on system costs (Section 5.5.2.2). In

addition, we compare the results for the European power system with the results of the

illustrative example in Section 5.4.2 (Section 5.5.2.3).

72For Germany, an estimation of possible bandwidths of RES-E generation in a 5-year period can
also be found in the medium-term RES-E generation forecast (IE Leipzig (2011)). As a lower bound
for promoted RES-E generation in 2016, about 130 TWh are indicated and as a higher bound about
210 TWh. Although this bandwidth is based on both possible ranges for RES-E deployment and for
different wind and water infeed assumptions, it clearly confirms that even within a short time horizon,
RES-E developments can be quite uncertain.
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5.5.2.1 Effects of RES-E implementation risks on investment and dispatch

decisions

Table 5.13 depicts investment decisions made in 2015 for the sum of all modeled coun-

tries. Within branch 1, characterized by the highest possible RES-E penetration in all

model years (surpassed NREAP in 2020 and fast-pace growth in each following period),

only lignite and OCGT plants are constructed. In branch 24, with the lowest possible

RES-E generation, coal and CCGT plants are also chosen. Lignite investments are iden-

tical in all branches because lignite generation is characterized by very low variable costs

and is also restricted to local fuel potentials. Note that nuclear is not an investment

option in the first model year.

Table 5.13: Investments in 2015 in all model regions [GW]

deterministic stochastic

Max RES-E Min RES-E average of
Branch 1 Branch 24 branches 1-24

Lignite 3 3 3 3
Coal 10 2
CCGT 3 2 3
OCGT 18 12 18 23
CHP-Coal
CHP-Gas
Nuclear
Storage

sum 21 28 25 29

Under uncertainty, no investments into coal plants take place. In contrast, CCGT and

especially OCGT investments are higher than on average under certainty. The result of

lower coal and higher CCGT investments reflects the effect discussed in the illustrative

modeling example (Section 5.4): As coal is only cost-efficient in some scenarios, invest-

ments with lower capital/operating cost ratios are chosen under uncertainty in order

to hedge against the risk of high investment expenditures for plants that may only run

for few hours. In contrast, higher OCGT investments under uncertainty are only cost-

efficient because of an existing power plant fleet. In the illustrative modeling example,

lower OCGT investments are chosen under uncertainty because a high utilization of

these capacities, in the case of low RES-E penetration, would induce high costs. Due

to the existing power plant fleet of the Central European power market (now taken into

account), the additional OCGT capacities built under uncertainty are not needed to

meet demand in 2020. Even in the scenario with the lowest RES-E penetration (branch

24), demand can be met by a different dispatch of existing power plants such that the

additional OCGT plants built under uncertainty only serve as backup capacities in all
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scenarios. Specifically, the utilization of existing CCGT plants in branch 24 is higher

under uncertainty. In addition, generation in lignite-CHP plants is reduced such that

generation in non-CHP lignite plants can be increased (due to the lignite fuel bound,

only a limited amount of lignite can be used per year). CHP generation from lignite

plants is replaced by a higher utilization of gas-CHP and coal-CHP plants. In addition,

the utilization of pump storage plants is higher than under investment planning given

perfect foresight. Due to a higher utilization of pump storage plants, the utilization of

existing baseload plants can be increased compared to the deterministic case, in which

more investments into baseload plants are made in 2015. In branch 1, characterized by

the highest RES-E penetration, the different optimal investment plan under uncertainty

leads to a higher amount of total installed capacities and to a larger share of CCGT

capacities in 2020. Consequently, a larger share of demand in 2020 is met by CCGT

plants instead of old coal plants, which have higher variable costs than new built CCGT

plants due to low efficiency values.

These generation differences are recaptured in Figure 5.5. Interestingly, although in

branch 1 and 24 uncertainty leads to a replacement of coal by CCGT generation, this

generation difference leads to lower variable costs in branch 1 compared to the determin-

istic case, while variable costs in branch 24 are comparatively higher. Whereas in branch

1, CCGT generation replaces coal generation in old existing coal plants, differences in

branch 24 occur because new efficient coal plants built in the deterministic case are not

available under uncertainty.
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Figure 5.5: Generation differences in 2020 between the deterministic and the stochas-
tic case [TWh]
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Investment choices in 2020 differ between the stochastic and the deterministic solu-

tions, mainly because the power plant fleet in the stochastic approach is adapted to

newly available information about future RES-E deployments. Table 5.14 depicts in-

vestment decisions in branches 1 and 24, given perfect foresight, the average values

for all eight deterministic branches passing through node n1 and node n3, respectively,

and the stochastic values for nodes n1 and n3. Nuclear investments are identical in all

deterministic and stochastic cases because generation costs are comparatively low and

investments are restricted (see Section 5.3). Lignite investments are also identical in all

branches passing through the same 2020 node such that investments into lignite plants

are not subject to uncertainty.

Table 5.14: Investments in 2020 in all model regions [GW]

Branch 1 av (n1) stoch (n1) Branch 24 av (n3) stoch (n3)

Lignite 7 7 7 10 10 10
Coal
CCGT 13 17 13 35 31 42
OCGT 34 31 28 15 17 8
CHP-Coal
CHP-Gas
Nuclear 6 6 6 6 6 6
Storage

sum 60 61 54 66 64 66

Considering node n1 (characterized by a surpassed NREAP), it can be seen that under

uncertainty, less investments in CCGT and OCGT plants are made compared to the

average investments in the deterministic scenario calculations. Lower investments are

cost-efficient because under uncertainty, more CCGT and OCGT plants are constructed

in the period before 2020. Considering branch 1, CCGT investments in 2020 are identi-

cal in the stochastic and deterministic case. Thus, due to the higher CCGT investments

in 2015 under uncertainty, installed CCGT capacities in 2025 are higher than in the

deterministic case. Consequently, in branch 1, differences in the dispatch decisions be-

tween the deterministic and the stochastic optimization in 2025 hardly differ from those

in 2020. Under uncertainty, a larger part of demand is met by CCGT plants, while

generation from coal plants is lower than under perfect foresight.

Node n3 (low RES-E share) is characterized by substantially larger CCGT investments

under uncertainty. OCGT investments are, in contrast, lower than in the determinis-

tic case. Additional CCGT capacities are built in order to compensate for lower base-

and midload plant investments (coal and CCGT) made in 2015. CCGT, rather than

coal plants, are chosen to compensate for lower baseload investments because increasing

CO2 prices and RES-E shares over time lead to an increasing relative value of CCGT
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plants compared to coal plants. Fewer investments in OCGT plants are cost-efficient un-

der uncertainty in 2020 because the capacity mix already comprises larger OCGT shares

than under certainty due to the 2015 investments. Resulting dispatch decisions (branch

24) in 2025 are again characterized by higher CCGT and pump storage generation and

by lower coal generation than under certainty. Results for later model years generally

reflect the same effects and are thus not discussed in more detail.

5.5.2.2 Effects of RES-E implementation risks on system costs

Figure 5.6 depicts additional capital costs, additional variable costs and additional total

costs arising in each of the 24 branches due to the uncertainty about the magnitude and

the pace of future RES-E deployments in Germany and its neighboring countries. De-

picted costs are discounted with a 5 % rate and accumulated until 2060. In branches with

high RES-E shares, such as branch 1, investment planning under uncertainty induces

additional capital costs (+ 9 bn EUR2010 by 2060 in branch 1) because many mid- and

baseload plants built under uncertainty are not cost-efficient for these branches. How-

ever, variable generation costs decrease due to the availability of generation options with

low variable costs (- 4 bn EUR2010). In contrast, in branches with low RES-E shares,

such as branch 24, additional variable costs are high (+ 11 bn EUR2010 by 2060 in branch

24), while capital costs are lower than in the deterministic case (- 9 bn EUR2010).

-10

-5

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

additional capital costs additional total costs additional variable costs

Bn. €2010
[discounted and accumulated until 2060]
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Total additional costs induced by uncertainty amount to 4 bn EUR2010 on average.

Compared to total average deterministic costs, these costs however represent only 0.3%.

One reason is that investment requirements are low in those periods when uncertainty

is highest.73 Investment decisions are exposed the most to uncertainty in 2015, when

RES-E penetration levels up to 2060 are unknown. Besides exogenous commissions of

power plants that are already in the construction process today, investment requirements

to meet demand in 2020 are low. Endogenous investment decisions in 2015 amount to

between 21 and 29 GW - representing approximately 7% of total installed capacities.

In addition, due to an existing power plant fleet, not all of the new investments are

necessarily needed to meet demand. For example, in branch 24, stochastic investment

planning in 2015 does not lead to a higher OCGT generation in 2020; although from a

capacity point of view, some of the OCGT plants replace coal plants, built under perfect

foresight. Thus, the existing power plant fleet permits some investment decisions to be

postponed to a period when more information is available. Another reason for relatively

low additional costs is that not all capacity investments are exposed to risk. Lignite and

nuclear plants are built in all paths either nearly (lignite) or exactly (nuclear) to the

same amount. Both technologies have low variable costs and are additionally restricted

by natural resource or political constraints.

5.5.2.3 Comparison of findings for the European power system with findings

in the illustrative modeling example (Section 5.4.2)

In the illustrative modeling example (Section 5.4.2), we find that CCGT plants, char-

acterized by a medium capital/operating cost ratio compared to hard coal and OCGT

plants, have a higher value under uncertainty than given perfect foresight about future

RES-E penetration levels. Given higher investments in CCGT plants under uncertainty,

optimal investments in storage units are lower than under perfect foresight. In the case

of the European power system, the finding that investments in CCGT plants are higher

under uncertainty is confirmed. The magnitude of this effect is, however, rather small

in comparison to the illustrative scenario. One major reason is that the difference be-

tween the highest and the lowest possible realization of RES-E penetration is very large

in the illustrative scenario (0% versus 50% RES-E). Indeed, the difference between the

assumed minimum and maximum realizations of RES-E shares in the European power

system for 2050 is also large (e.g., for Germany: 47% versus 78%). However, investment

decisions relevant for 2050 do not have to be made all in 2015. The difference in the

73In a quite different context, Manne (1974) finds that the expected value of perfect information
about the time at which nuclear breeder technology becomes available is very low (0.04% of average
deterministic costs), because decisions can be defererred to periods when uncertainty is at least partly
resolved. In his calculation, a sufficient amount of old power plants exists, such that only few investments
are required in the period when uncertainty is highest.
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possible RES-E penetrations from one investment period to the next, in contrast, are

comparatively small, because we assume that a long-term increase in the RES-E share is

reliable and that only the magnitude and the pace of the increase are uncertain. Further-

more, as described above, investment requirements in the short term, when uncertainty

is highest, are rather small. The result of lower investments in storage units, found in

the illustrative example, can be neither confirmed nor disproved by the modeling results

for the European power system. In the European power system, a large amount of pump

storage units exist already and other storage options are not cost-efficient in the short

and medium term. Analogue to the smaller magnitude of the effects, uncertainty has

on the optimal capacity choice, also the impact of uncertainty on system costs of the

European power system is comparatively small.

5.6 Conclusions

Uncertain future RES-E deployment paths induce uncertainty about the level and the

slope of the residual load that needs to be met by dispatchable power plants and storage

units. We find that uncertainty about the achievement of RES-E targets significantly

affects optimal investment and dispatch decisions. Under plausible assumptions, plants

with a medium capital/operating cost ratio have a higher value under uncertainty. Fur-

thermore, given higher investments in plants with a medium capital/operating cost ratio

under uncertainty, optimal investments in storage units are lower than under perfect

foresight. Finally, the impact of uncertain RES-E deployment paths on system costs is

rather small if we assume that a long-term increase in the RES-E share is reliable and

that only the magnitude and the pace of the increase are uncertain.

Based on our analysis, the following implications can be drawn for optimal investment

planning and policy: Firstly, it is important to take into account possible implemen-

tation risks associated with RES-E targets because a different technology choice or a

different point of time may be beneficial for the investment. Secondly, many old power

plants, whose decommissioning may seem cost-efficient based on deterministic optimiza-

tion models, are valuable under uncertainty. Thirdly, reliable long-term political targets

are crucial in order to limit uncertainty. Fourthly, the effects of RES-E implementation

risks need to be considered in the ongoing debate concerning the necessity of capac-

ity payments in the context of an increasing RES-E share. From deterministic model

calculations, it is known that an increasing RES-E share requires a large amount of

backup capacities, which however only run for very few hours. The capacity payment

debate focuses on the question, as to whether investment incentives for these plants are

high enough without additional payments (e.g., Cramton and Ockenfels (2012), Joskow



(2008), Cramton and Stoft (2008), Cramton and Stoft (2005)). Our analysis shows

that under uncertainty about the pace of future RES-E deployments, power plants are

needed that are only dispatched if RES-E deployment plans progress slowly. We analyze

the effects of RES-E implementation risks from the perspective of a risk-neutral central

planner, who recovers all costs on average. However, in some scenarios, electricity prices

are not sufficient to cover investment expenditures. Whether risk-averse investors would

invest within this uncertain environment without additional incentives is an interesting

area of further research. Moreover, we have focused on only one source of uncertainty

associated with the envisaged transformation process towards a low-carbon and mainly

renewable-based European electricity system. However, this transformation process re-

lies on three pillars: an increasing share of renewable energy, increasing energy efficiency

and a reduction of CO2 emissions. In this context, future CO2 prices and the progress

of energy efficiency measures are additional sources of uncertainty about the optimal ca-

pacity mix of conventional power plants and storage units. A combined analysis of these

uncertainties provides an interesting area of further research and would contribute to a

better understanding of optimal power plant investment planning within the context of

the envisaged transformation process.
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Appendix A

Supplemental data for Chapter 2

Table A.1: RES-E shares in 2010 and 2020 (according to NREAPs) and assumed
RES-E targets for 2030 in the scenarios ‘Equal Share’, ‘Extrapolation’ and ‘Flatrate

Growth’

2010 2020 2030
(NREAP) (NREAP) Equal Extra- Flatrate

Share polation Growth
[%] [%] [%] [%] [%]

Austria 73 71 71 76 91
Belgium 5 21 55 42 41
Bulgaria 11 21 55 36 41
Czech Republic 7 14 55 26 34
Denmark 34 52 55 75 72
Estonia 2 5 55 13 25
Finland 26 33 55 45 53
France 16 27 55 44 47
Germany 17 39 55 65 59
Greece 13 40 55 71 60
Hungary 7 11 55 20 31
Ireland 20 43 55 70 63
Italy 19 26 55 39 46
Latvia 45 60 60 80 80
Lithuania 8 21 55 39 41
Luxembourg 4 12 55 25 32
Netherlands 9 37 55 70 57
Poland 8 19 55 36 39
Portugal 41 55 55 74 75
Romania 27 43 55 63 63
Slovakia 19 24 55 34 44
Slovenia 32 39 55 51 59
Spain 29 40 55 56 60
Sweden 55 63 63 76 83
United Kingdom 9 31 55 58 51
Switzerland* 55 n/a 57 57 57
Norway* 90 n/a 100 100 100
*2010 share according to Eurostat
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Supplemental data for Chapter 3

Proof of Welfare effects in case 1 (‘copper plate’)

In the first case, it is assumed that the two countries form a copper plate, implying that

the common wholesale electricity market price is not affected by cross-border trading of

green certificates.

Country A (certificate importing country):

• Effects on producers:

Producer profits are defined as:

πCA =q · yA − C(yA) (B.1)

πRA =[q + sA][zA − T ]− hA(zA − T ) (B.2)

A marginal increase of T changes producer profits as follows:

dπCA
dT

=0 (B.3)

dπRA
dT

=
dsA
dT

[zA − T ]− q − sA + h′A(zA − T ) (B.4)

The first order condition of profit maximization of RES-E producers (
dπR

A
dgA

with

gA = zA − T ) implies that the certificate price corresponds to the additional
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marginal costs of renewable energy compared to the wholesale electricity price

(see also Amundsen and Nese (2009)) sA = h′A(zA − T )− q. It follows that:

dπRA
dT

=
dsA
dT
· [zA − T ] ≤ 0 (B.5)

with
dsA
dT

=− h′′A(zA − T ) ≤ 0 (B.6)

• Effects on consumers:

Due to the assumption of an inelastic electricity demand, changes in consumer rents

correspond to the changes in expenses for consumers in meeting their electricity

demand (eq. (B.7)), multiplied by (-1). Thus, the effects of cross-border trading

of green certificates on consumer rents is defined by Equation (B.8).

Consumer expeditures = CEA = q · xA + sA · αA · xA (B.7)

dCRA
dT

= −dCEA
dT

=− dsA
dT
· αAxA = −dsA

dT
· zA ≥ 0 (B.8)

• Effects on total welfare in country A:

dWA

dT
=
dπA
dT

+
dCRA
dT

= −dsA
dT
· T ≥ 0 (B.9)

Country B (certificate exporting country):

• Effects on producers:

Producer profits are defined as:

πCB =q · yB − C(yB) (B.10)

πRB =[q + sB][zB + T ]− hB(zB + T ) (B.11)
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A marginal increase in T changes producer profits as follows:

dπCB
dT

=0 (B.12)

dπRB
dT

=
dsB
dT

[zB + T ] + q + sB − h′B(zB + T ) (B.13)

Using sB = h′B(zB + T )− q, changes in producer profits correspond to:

dπRB
dT

=
dsB
dT
· [zB + T ] ≥ 0 (B.14)

with
dsB
dT

=h
′′
B(zB + T ) ≥ 0 (B.15)

• Effects on consumers:

CEB = q · xB + sB · αB · xB (B.16)

dCRB
dT

= −dCEB
dT

= −dsB
dT
· αBxB = −dsB

dT
· zB ≤ 0 (B.17)

• Effects on total welfare in country B:

dWB

dT
=
dπB
dT

+
dCRB
dT

=
dsB
dT
· T ≥ 0 (B.18)
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Proof of Welfare effects in case 2 (‘limited interconnection’)

In the second case, it is assumed that the two countries are not perfectly physically

interconnected. Either, an interconnector exists which is congested, or the two regional

electricity systems are not physically interconnected at all. In both cases, the trading

of green certificates also influences the regional wholesale electricity markets. Note that

setting the interconnector capacity M=0 corresponds to the case of no interconnection.

Country A (certificate importing country):

In the following, it is first assumed that country A is not only a certificate, but also an

electricity importing country.

• Effects on producers:

Producer profits are defined as:

πCA =qA · [xA − zA + T −M ]− CA(xA − zA + T −M) (B.19)

πRA =[qA + sA] · [zA − T ]− hA(zA − T ) (B.20)

A marginal increase in T changes producer profits as follows:

dπCA
dT

=
dqA
dT
· [xA − zA + T −M ] + qA − C

′
A(xA − zA + T −M) (B.21)

dπRA
dT

=
dqA
dT
· [zA − T ] +

dsA
dT
· [zA − T ]− qA − sA + h

′
A(zA − T ) (B.22)

Again, the certificate price corresponds to the additional marginal costs of renew-

able energy compared to the wholesale electricity price (sA = h′A(zA−T )−qA) and

the wholesale electricity price corresponds to the marginal costs of meeting resid-

ual demand (=total electricity demand - RES-E production - electricity imports)

with electricity from conventional energy sources (C
′
A(xA − zA + T −M) = qA).

It follows that:
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dπCA
dT

=
dqA
dT
· [xA − zA + T −M ] ≥ 0 (B.23)

dπRA
dT

=[
dsA
dT

+
dqA
dT

] · [zA − T ] ≤ 0 (B.24)

dπA
dT

=
dsA
dT
· [zA − T ]︸ ︷︷ ︸
≤0

+
dqA
dT
· [xA −M ]︸ ︷︷ ︸
≥0

(B.25)

with
dsA
dT

=− h′′A(zA − T )− C ′′A(xA − zA + T −M) ≤ 0 (B.26)

and
dqA
dT

=C
′′
A(xA − zA + T −M) ≥ 0 (B.27)

• Effects on consumers:

CEA = qA · xA + sA · αA · xA (B.28)

dCRA
dT

= −dCEA
dT

= −dsA
dT
· zA︸ ︷︷ ︸

≥0

−dqA
dT
· xA︸ ︷︷ ︸

≤0

(B.29)

• Effects on total welfare in country A:

dWA

dT
=
dπA
dT

+
dCRA
dT

= − dsA
dT
· T︸ ︷︷ ︸

≥0

−dqA
dT
·M︸ ︷︷ ︸

≤0

(B.30)

If country A is a certificate importing as well as an electricity exporting country, the

profits gained from conventional generation and total producer profits in country

A change as follows:

πCA =qA · [xA − zA + T +M ]− CA(xA − zA + T +M) (B.31)

dπCA
dT

=
dqA
dT
· [xA − zA + T +M ] ≥ 0 (B.32)

dπA
dT

=
dsA
dT
· [zA − T ]︸ ︷︷ ︸
≤0

+
dqA
dT
· [xA +M ]︸ ︷︷ ︸
≥0

(B.33)

Thus, if country A is a certificate importing as well as an electricity exporting

country, welfare in country A changes as follows:
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dWA

dT
= −dsA

dT
· T +

dqA
dT
·M ≥ 0 (B.34)

Country B (certificate exporting country):

In the following, it is first assumed that country B is not only a certificate but also an

electricity exporting country.

• Effects on producers:

Producer profits are defined as:

πCB =qB · [xB − zB − T +M ]− CB(xB − zB − T +M) (B.35)

πRB =[qB + sB] · [zB + T ]− hB(zB + T ) (B.36)

A marginal increase in T changes producer profits as follows:

dπCB
dT

=
dqB
dT
· [xB − zB − T +M ]− qB + C

′
B(xB − zB − T +M) (B.37)

dπRB
dT

=
dqB
dT

(zB + T ) +
dsB
dT

(zB + T ) + qB + sB − h
′
B(zB + T ) (B.38)

Using that sB = h′B(zB − T )− qB and C
′
B(xB − zB − T +M) = qB, we find that:

dπCB
dT

=
dqB
dT
· [xB − zB − T +M ] ≤ 0 (B.39)

dπRB
dT

=[
dsB
dT

+
dqB
dT

] · [zB + T ] ≥ 0 (B.40)

dπB
dT

=
dsB
dT
· [zB + T ]︸ ︷︷ ︸
≥0

+
dqB
dT
· [xB +M ]︸ ︷︷ ︸
≤0

(B.41)

with
dsB
dT

= h
′′
B(zB + T ) + C

′′
B(xB − zB − T +M) ≥ 0 (B.42)

and
dqB
dT

= −C ′′B(xB − zB − T +M) ≤ 0 (B.43)
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• Effects on consumers:

CEB = qB · xA + sB · αB · xB (B.44)

dCRB
dT

= −dCEB
dT

= −dsB
dT
· zB︸ ︷︷ ︸

≤0

−dqB
dT
· xB︸ ︷︷ ︸

≥0

(B.45)

• Effects on total welfare in country B:

dWB

dT
=
dπB
dT

+
dCRB
dT

=
dsB
dT
· T︸ ︷︷ ︸

≥0

+
dqB
dT
·M︸ ︷︷ ︸

≤0

(B.46)

If country B is a certificate exporting as well as an electricity importing country, the

profits which can gained from conventional generation and total producer profits

in country B change as follows:

πCB =qB · [xB − zB − T −M ]− CB(xB − zB − T −M) (B.47)

dπCB
dT

=
dqB
dT
· [xB − zB − T −M ] ≤ 0 (B.48)

dπB
dT

=
dsB
dT
· [zB + T ]︸ ︷︷ ︸
≥0

+
dqB
dT
· [xB −M ]︸ ︷︷ ︸
≤0

(B.49)

(B.50)

Thus, if country B is a certificate exporting as well as an electricity importing

country, welfare in country B changes as follows:

dWB

dT
=
dsB
dT
· T − dqB

dT
·M ≥ 0 (B.51)

Congestion rents:

If the interconnector is congested, congestion rents, corresponding to the price difference

between the two regions multiplied by the amount of electricity traded, are also affected

by certificate trading.

• If country A is an electricity importing country and country B an electricity ex-

porting country, congestion rents increase in T. Country A (B) imports (exports)
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electricity (even in the absence of certificate trading) if the wholesale electricity

price in A is higher than in B. With an increasing T, the wholesale electricity price

in A increases further, while the wholesale electricity price in B decreases. Thus,

the price difference, and thereby the congestion rent, increases. If electricity trades

are zero in the absence of certificate trading, congestion rents are also zero. In this

case, the price difference also increases once certificate trading is introduced and

congestion rents increase from zero to a positive value.

dEA,B
dT

= [
dqA
dT
− dqB

dT
] ·M ≥ 0 (B.52)

• If country A is an electricity exporting country and country B an electricity im-

porting country, congestion rents decrease in T. Country A exports electricity if

the wholesale electricity price in A is lower than in B. When certificate trading

is possible and wholesale electricity prices in A (B) increase (decrease), the price

difference decreases.
dEA,B
dT

= [
dqB
dT
− dqA
dT

] ·M ≤ 0 (B.53)

Overall welfare:

• If country A is an electricity importing country and country B an electricity ex-

porting country, the increasing congestion rent compensates exactly for the sum

of the negative components in the change in welfare in countries A and B, such

that system-wide welfare increases and only depends on the changes in certificate

prices.

dW

dT
=
dWA

dT
+
dWB

dT
+
dEA,B
dT

=− dsA
dT
· T︸ ︷︷ ︸

≥0

−dqA
dT
·M︸ ︷︷ ︸

≤0

+
dsB
dT
· T︸ ︷︷ ︸

≥0

(B.54)

+
dqB
dT
·M︸ ︷︷ ︸

≤0

+ [
dqA
dT
− dqB

dT
] ·M︸ ︷︷ ︸

≥0

=[−dsA
dT

+
dsB
dT

] · T ≥ 0

• If country A is an electricity exporting country and country B an electricity im-

porting country, the decreasing congestion rent compensates exactly for the sum

of the wholesale price effects in the changes in welfare of country A and B (which

in this case are positive).

dW

dT
=
dWA

dT
+
dWB

dT
+
dEA,B
dT

=− dsA
dT
· T︸ ︷︷ ︸

≥0

+
dqA
dT
·M︸ ︷︷ ︸

≥0

+
dsB
dT
· T︸ ︷︷ ︸

≥0

(B.55)

−dqB
dT
·M︸ ︷︷ ︸

≥0

+ [
dqB
dT
− dqA
dT

] ·M︸ ︷︷ ︸
≤0

=[−dsA
dT

+
dsB
dT

] · T ≥ 0
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Appendix C

Supplemental data for Chapter 4
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Table C.1: Generation and capacity differences between cooperative and national
RES-E support in the year 2020 [TWh and GW] in the largest certificate importing

countries (in the TYNDP and in the ‘w/o TYNDP’ scenario)

Generation differences Capacity differences
TYNDP w/o TYNDP TYNDP w/o TYNDP

FI non RES-E -4.3 -0.3 0.9 0.1
biomass -3.5 0.1 -0.5 0.0
onshore wind -4.9 -4.9 -2.6 -2.6
offshore wind 0.0 0.0 0.0 0.0
pv/csp 0.0 0.0 0.0 0.0

DE non RES-E 40.1 49.3 -0.1 -0.6
biomass -30.5 -30.5 -4.1 -4.1
onshore wind -26.0 -26.0 -15.1 -15.1
offshore wind -32.2 -32.2 -10.0 -10.0
pv/csp 0.0 0.0 0.0 0.0

GR non RES-E 5.1 3.0 0.5 0.3
biomass -0.4 0.0 -0.1 0.0
onshore wind -0.7 -0.7 -0.4 -0.4
offshore wind 0.0 0.0 0.0 0.0
pv/csp -4.8 -1.2 -2.8 -0.3

IT non RES-E 12.8 8.3 0.0 0.9
biomass 0.0 0.0 0.0 0.0
onshore wind -0.2 -0.2 -0.1 -0.1
offshore wind 0.0 0.0 0.0 0.0
pv/csp -8.8 -8.8 -6.1 -6.1

SE non RES-E 2.2 1.8 0.8 0.7
biomass -7.6 -7.1 -0.5 -0.5
onshore wind -0.7 -0.7 -0.3 -0.3
offshore wind 0.0 0.0 0.0 0.0
pv/csp 0.0 0.0 0.0 0.0

UK non RES-E -1.4 3.5 0.3 0.0
biomass -0.6 -0.5 0.0 0.0
onshore wind 0.0 0.0 0.0 0.0
offshore wind -3.4 -3.4 -0.9 -0.9
pv/csp 0.0 0.0 0.0 0.0

Positive (negative) values indicate that generation levels or capacities are higher (lower) once
cooperation is introduced.
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Table C.2: Generation and capacity differences between cooperative and national
RES-E support in the year 2020 [TWh and GW] in the largest certificate exporting

countries (in the TYNDP and in the ‘w/o TYNDP’ scenario)

Generation differences Capacity differences
TYNDP w/o TYNDP TYNDP w/o TYNDP

CZ non RES-E -0.6 0.4 0.2 0.2
biomass 1.0 1.4 0.0 0.0
onshore wind 8.2 7.8 3.8 3.6
offshore wind 0.0 0.0 0.0 0.0
pv/csp 0.0 0.0 0.0 0.0

DK non RES-E 0.0 0.0 -0.3 0.0
biomass 2.0 1.8 0.0 0.0
onshore wind 0.0 0.0 0.0 0.0
offshore wind 19.2 2.8 4.5 0.6
pv/csp 0.0 0.0 0.0 0.0

IE non RES-E -2.2 -5.5 -0.2 -0.5
biomass 0.0 0.0 0.0 0.0
onshore wind 6.4 6.1 2.5 2.7
offshore wind 0.0 0.0 0.0 0.0
pv/csp 0.0 0.0 0.0 0.0

NO non RES-E -0.1 -1.1 0.0 -0.1
biomass 0.0 0.0 0.0 0.0
onshore wind 5.9 5.9 2.4 2.4
offshore wind 45.0 14.9 10.0 3.3
pv/csp 0.0 0.0 0.0 0.0

PL non RES-E -21.6 -16.8 0.3 0.3
biomass 2.0 2.0 0.3 0.3
onshore wind 17.0 17.0 6.8 6.8
offshore wind 0.0 0.0 0.0 0.0
pv/csp 0.0 0.0 0.0 0.0

ES non RES-E -14.3 -29.4 -1.4 -1.7
biomass 2.2 2.1 0.3 0.3
onshore wind -0.7 -1.2 -0.4 -0.6
offshore wind 0.0 0.0 0.0 0.0
pv/csp 21.8 34.4 9.3 17.6

Positive (negative) values indicate that generation levels or capacities are higher (lower) once
cooperation is introduced.
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Appendix D

Supplemental data for Chapter 5

Table D.1: Assumed potential restrictions [based on EWI and energynautics (2011)]

Technology Germany Benelux France CH + AT CZ + PL Denmark
Wind Onshore [km2] 2174 497 3215 252 2429 300
Wind Offshore [km2] 7200 11054 4050 - 1410 8520

Biomass [TWhth] 177 44 356 42 141 34
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Table D.2: RES-E capacities in 2030 [GW]

Region Technology n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12
Germany wind onshore 48.5 46.4 46.4 44.3 44.3 42.2 42.2 40.0 38.5 36.4 36.4 34.3

wind offshore 31.7 26.8 26.8 21.9 29.7 24.8 24.8 19.9 22.7 17.8 17.8 12.9
photovoltaics 94.4 85.8 85.8 77.2 86.2 77.6 77.6 69.0 69.4 60.8 60.8 52.2

biomass 11.7 11.2 11.2 10.6 11.0 10.5 10.5 9.9 10.2 9.7 9.7 9.1
geothermal 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.3 0.2 0.2 0.2

Benelux wind onshore 15.0 15.0 15.0 15.0 15.0 15.0 15.0 14.0 13.5 11.7 11.7 9.8
wind offshore 17.2 14.7 14.7 12.1 15.6 13.0 13.0 10.5 12.2 9.7 9.7 7.1
photovoltaics 5.7 5.3 5.3 4.9 3.9 3.5 3.5 3.0 2.7 2.3 2.3 1.9

biomass 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
geothermal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

France wind onshore 38.5 35.1 35.1 31.7 32.5 29.1 29.1 25.7 23.5 20.1 20.1 16.7
wind offshore 20.0 17.0 17.0 14.0 18.0 15.0 15.0 12.0 13.0 10.0 10.0 7.0
photovoltaics 14.4 13.3 13.3 12.2 9.2 8.1 8.1 7.0 6.4 5.3 5.3 4.2

biomass 6.0 5.5 5.5 5.0 5.0 4.5 4.5 4.0 4.0 3.5 3.5 3.0
geothermal 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0

CH + AT wind onshore 5.6 5.2 5.2 4.8 4.2 3.8 3.8 3.4 3.6 3.2 3.2 2.8
wind offshore 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
photovoltaics 1.2 1.2 1.2 1.1 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4

biomass 3.3 3.0 3.0 2.6 2.6 2.2 2.2 1.9 2.3 2.0 2.0 1.6
geothermal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CZ+ PL wind onshore 14.0 12.8 12.8 11.5 11.3 10.1 10.1 8.8 8.0 6.8 6.8 5.5
wind offshore 2.0 1.8 1.8 1.5 1.5 1.3 1.3 1.0 1.0 0.8 0.8 0.5
photovoltaics 2.0 2.0 2.0 2.0 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7

biomass 6.3 5.6 5.6 4.9 5.8 5.1 5.1 4.4 3.1 2.4 2.4 1.7
geothermal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Denmark wind onshore 2.7 2.8 2.8 2.8 2.3 2.4 2.4 2.5 2.3 2.4 2.4 2.5
wind offshore 2.3 2.3 2.3 2.2 1.7 1.6 1.6 1.5 1.3 1.3 1.3 1.2
photovoltaics 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

biomass 3.9 3.8 3.8 3.7 3.2 3.1 3.1 3.0 1.9 1.8 1.8 1.7
geothermal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Figure D.1: The influence of representing uncertainty by a different number of sce-
narios
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Figure D.2: Residual load duration curves - deterministic and stochastic (using 8760h
of demand and RES-E infeed data instead of a typical day approach as in Figure 5.2)
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