
Universität zu Köln

Simulations of the Atomic Beam
Transport in an Atomic Beam Source
under the Influence of Spin-Selective

Sextupole Magnets

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Martin Gaißer

aus Radolfzell

Jülich, 2013



Berichterstatter: Prof. Dr. H. Ströher

Prof. Dr. J. Jolie

Tag der mündlichen Prüfung: 22.1.2014

ii



Abstract

Polarized internal gas targets are important tools in spin-physics experiments at par-
ticle accelerators. For many experiments it is imperative to get the highest possible
target density. Research in recent decades, however, led only to marginal increase of
the intensity of atomic beam sources (ABS), which constitute the main factor in in-
creasing the target density. The main problem, hindering further improvement, is the
complexity of the processes in the ABS, which prevents a complete description of all ef-
fects. A particularly big challenge is the description of the change in flow regime from
laminar to molecular during the formation of the atomic beam by the nozzle. Now,
with ever increasing computer power, it becomes possible to simulate all the processes
in a complete ABS and to use algorithms to optimize the device.

The present thesis summarizes the important effects in polarized internal gas targets
and describes the implementation of a new computer program, which was interfaced
with an optimization algorithm. The program is based on OpenFOAM 1.7.1 and uses
the Direct Simulation Monte Carlo (DSMC) method to simulate the gas flow. Besides a
generic interface for magnetic fields which act on the magnetic moments of the atoms,
many important effects like recombination and spin-exchange collisions are included
in the program. Furthermore, a generic framework for optimization is implemented.
It can be used to optimize very different problems with different optimization algo-
rithms. Currently, Adaptive Simulated Annealing (ASA) is implemented together with
the capability to handle the optimization of an ABS. All parts of the program were
tested and results are provided. Although the execution time of a simulation run is
still very long, the new program might become a valuable tool for simulating and op-
timizing polarized internal gas targets. This will lead to better statistics in experiments
and will enable certain new experiments.
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Zusammenfassung

Polarisierte interne Gastargets sind wichtige Instrumente in Spinphysik-Experimenten
an Teilchenbeschleunigern. Viele Experimente benötigen zwingend eine höchstmög-
liche Targetdichte. Die Forschung während der letzten Jahrzehnte brachte allerdings
nur geringe Fortschritte bei der Erhöhung der Intensität von Atomstrahlquellen (ABS),
die den größten Einfluss auf die Targetdichte haben. Das Hauptproblem, das weit-
ere Verbesserungen verhindert, besteht in der Komplexität der Prozesse in der ABS,
welche eine komplette Beschreibung aller Effekte verhindert. Eine besondere Heraus-
forderung stellt der Übergang vom laminaren zum molekularen Flussbereich während
der Erzeugung des Atomstrahls in der Düse dar. Mit stetig steigender Computerleis-
tung wird es heutzutage möglich, alle Abläufe in einer kompletten ABS zu simulieren
und einen Algorithmus zur Optimierung der Quelle zu verwenden.

Die vorliegende Doktorarbeit fasst alle wichtigen Effekte in polarisierten internen Gas-
targets zusammen und beschreibt die Implementierung eines neuen Computerpro-
gramms, welches mit einem Optimierungsalgorithmus verbunden wurde. Das Pro-
gramm baut auf OpenFOAM 1.7.1 auf und nutzt die Direct Simulation Monte Carlo
(DSMC) Methode um den Gasfluss zu simulieren. Neben einer generischen Schnitt-
stelle für Magnetfelder, die auf die magnetischen Momente der Atome wirken, wurden
viele weitere Effekte wie Rekombination und Spinaustausch-Stöße in das Programm
miteingebaut. Desweiteren wurde ein generisches Rahmenwerk für die Optimierung
entwickelt und implementiert, mit dessen Hilfe sehr verschiedene Probleme mit ver-
schiedenen Algorithmen optimiert werden können. Zur Zeit ist Adaptive Simulated
Annealing (ASA) zusammen mit der Fähigkeit zur Optimierung einer ABS implemen-
tiert. Alle Programmteile wurden getestet und Ergebnisse werden präsentiert. Obwohl
die Ausführung des Programms immer noch sehr viel Zeit in Anspruch nimmt, könnte
das Programm ein wertvolles Werkzeug zur Simulation und Optimierung von inter-
nen polarisierten Gastargets werden. Dies wird zu geringeren statistischen Fehlern in
Experimenten führen und bestimmte neue Experimente erst ermöglichen.
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1 Introduction

Experiments with spin-polarized protons and antiprotons allow to measure a mul-
titude of parameters which are not accessible in collisions of unpolarized particles.
For example, the Polarized Antiproton eXperiments (PAX ) Collaboration proposed to
measure the transversity distribution of the valence quarks of the proton which is only
directly accessible in collisions of transversely polarized protons and antiprotons [1].
Beams and targets of polarized protons and deuterons are available at various facilities
and are usually produced in polarized atomic beam sources (ABS) [2], where the hyper-
fine splitting of hydrogen or deuterium states in magnetic fields is exploited. The only
low-intensity low-quality polarized antiproton beam however was produced in the de-
cay of Λ-hyperons at Fermilab [3]. As a method to produce polarized beams of higher
intensity, spin-filtering was proposed by Csonka in 1968 [4] and was first measured
with protons by the FILTEX group [5] at the Test Storage Ring (TSR) in Heidelberg [6].
Recently, measurements with higher beam energy and other machine parameters were
performed by the PAX group [7, 8] at COSY [9] in Jülich to test the theoretical predic-
tions [10, 11]. Although the polarization-buildup rate and the final beam polarization
for protons is small, this might be different for antiprotons, where some parameters
to calculate the relevant cross sections are unknown. However, beam polarizations
of 15-20% seem feasible after filtering for two beam lifetimes at a dedicated polarizer
ring [12]. It was proposed by the PAX group to measure the cross section of double
polarized pp scattering at the CERN Antiproton Decelerator (AD) ring.

One way to increase the polarization-buildup rate is to increase the target thickness,
since it enters linearly in the rate. A high target thickness would also be preferable in
many other experiments. To this end, a lot of effort was put into increasing the ABS
output and increasing the areal target density in the gas-storage cells (e.g. [13]). Neither
experimental nor theoretical work (e.g. [14, 15, 16]), however, led to major advances in
recent decades. This may be due to principle limitations or due to the multitude of
different effects, which could not be modeled all at once and such prevent a complete
understanding of the atomic beam source. A hint for the latter one is that all recent
sources have similar intensity, while only the beam from the RHIC source is by roughly
50% more intense than those from all others (compare Fig. 1.1). The decisive reason for
this difference finally is not known.

The aim of the present work therefore was to develop a versatile computer program
which can simulate a complete ABS (and more generally the whole polarized target
including the ABS and the gas-storage cell) with all relevant effects. This should help
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Figure 1.1 – Intensity (in two hyperfine states) of different polarized hydrogen atomic
beam sources against year of publication, References: Madison/IUCF [17], FILTEX [18],
Munich [19], Novosibirsk [20], ANKE [21, 22], HERMES [23], RHIC H-jet [24, 25]

to better understand the interplay of the different ABS components. Further, an op-
timization algorithm was implemented that automatically optimizes the atomic beam
source to maximize the output of spin-polarized hydrogen or deuterium atoms. The
theoretical foundations and the principle of Stern-Gerlach type atomic beam sources
are explained in Chap. 2. The Direct Simulation Monte Carlo (DSMC) method was ap-
plied to simulate the gas flow. It is described in Chap. 3. Chapter 4 gives a short intro-
duction to the program, on which the current work is based and describes in detail the
solver dsmcFoam that was extended during the work. The changes made to the solver
are detailed in Chap. 5. Tests of the new parts of the program were performed and
some results are shown in Chap. 6. The optimization algorithm is described in Chap. 7
and a new solver for the optimization procedure is described in Sec. 7.2. Finally, in-
formation about the setup of simulations together with examples of configuration files
can be found in the appendices.
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2 Polarized Internal Gas Targets

2.1 Hyperfine Structure of Hydrogen and Deuterium

Angular momenta of electrons and nuclei in atoms produce magnetic fields which in
turn retroact on the magnetic momenta. This leads to different energy levels of the
ground state in hydrogen atoms, where electron (total angular momentum J = 1/2)
and proton spin (I = 1/2) can couple in various relative orientations. If an additional
external magnetic field is present, it also affects the spin coupling. The effect of a strong
B field on the spins overwhelms the coupling effect and each magnetic moment couples
individually to the external field. The eigenstates of the corresponding Hamiltonian
can be described with the projection of the spins |mS,mI〉 onto the direction of the
external field in the high B field case, whereas in the low-field case they are described
by the total angular momentum F = J + I and its projection mF. A description of the
intermediate case in an external magnetic field ~B = Bz~ez can be obtained by calculating
the (2J + 1)(2I + 1) different eigenvalues and eigenvectors of the Hamiltonian H. For
the ground state of hydrogen and deuterium the angular momentum of the electron J
is equal to the spin S = 1/2 and mJ = mS. With the operators I, Iz and Sz one has

H = a I · S + gS µB

h̄
SzBz −

gI µN

h̄
IzBz, (2.1)

where gS and gI are the gyromagnetic factors of the electron and nucleus, respectively.
Furthermore, µB = eh̄

2me
is the Bohr magneton and µN = µB

me
mN

is the nuclear magne-
ton. The coupling constant a can be calculated from the wavefunctions or from the
measured hyperfine splitting (HFS) energy by

EHFS = ah̄2

2 (2I + 1) = h νHFS, (2.2)

which defines the hyperfine frequency νHFS. Using the definitions of the creation and
annihilation operator J± = J1 ± iJ2 for the first term in the Hamiltonian the following
identity holds:

I · S = IzSz + 1
2(I+S− + I−S+). (2.3)

With this, the matrix elements of the Hamiltonian 〈mS′ ,mI′|H|mS,mI〉 can be written in
the basis |mS,mI〉 = {|12 , I〉 . . . |

1
2 ,−I〉, |−

1
2 ,−I〉 . . . |−

1
2 , I〉} and the eigenvalue problem

can be solved analytically for J = S = 1
2 . The solutions for arbitrary I are

3



E1 = EHFS

(
I

2I + 1 + 1
2x
)
, (2.4)

Ej = EHFS

2(2I + 1)

(
−1 +

√
(x+ 1)2(2I + 1)2 + 4x(1− j)(2I + 1)

)
,

E2I+2 = EHFS

(
I

2I + 1 −
1
2x
)
, and

E4(I+1)−j = EHFS

2(2I + 1)

(
−1−

√
(x+ 1)2(2I + 1)2 + 4x(1− j)(2I + 1)

)

with j = 2 . . . 2I + 1 and x = Bz
Bc

. The critical B field Bc is defined by

h̄ωS(Bz = Bc) = EHFS (2.5)

with the Larmor frequency

ωS = gS µB

h̄
Bz. (2.6)

The relations of Eq. (2.5) give the energies of the 4 hyperfine states of hydrogen (j = 2)
and the 6 states of deuterium (j = 2, 3) where the energy of the nuclear spin in the
external B field is neglected due to the approximation gI

gS
me
mN
≈ 0. The eigenstates of the

Hamiltonian in arbitrary B fields are

|1〉 =
∣∣∣∣
1
2 , I
〉
, (2.7)

|j〉 =
∣∣∣∣
1
2 , I − j + 1

〉
cos θj +

∣∣∣∣−
1
2 , I − j + 2

〉
sin θj,

|2(I + 1)〉 =
∣∣∣∣−

1
2 ,−I

〉
, and

|4(I + 1)− j〉 = −
∣∣∣∣
1
2 , I − j + 1

〉
sin θj +

∣∣∣∣−
1
2 , I − j + 2

〉
cos θj.

With j = 2 and j = 2 and 3 the mixing angles cos θj and sin θj are given by

cos θj =
√

1
2(1 + cos(2θj)), (2.8)

sin θj =
√

1
2(1− cos(2θj)), and (2.9)

cos(2θj) = (x+ 1)(2I + 1) + 2(1− j)√
(x+ 1)2(2I + 1)2 + 4x(1− j)(2I + 1)

. (2.10)

4



The force to a particle in state |n〉 in an inhomogeneous magnetic field is

~Fn = −∇En = −dEn
dx
∇

(
| ~B|
Bc

)
= −dEn

dx

1
Bc

∇| ~B| = −µn∇| ~B|. (2.11)

From that one obtains the effective magnetic moment µn = dEn
dx

1
Bc

as

µ1 = 1
2gS µB, (2.12)

µj = 1
2gS µB cos(2θj) for j = 2 . . . 2I + 1, (2.13)

µ2(I+1) = −1
2gS µB, and (2.14)

µ4(I+1)−j = −1
2gS µB cos(2θj) for j = 2 . . . 2I + 1. (2.15)

In case of several active magnetic fields at a certain point, one has to keep in mind that
the forces from the fields do not add up linearly, i.e. ~F (

∑
i
~Bi) 6=

∑
i
~Fi( ~Bi) since µn

is nonlinear in ~B. Therefore, one has to add up all the magnetic fields first and then
use formula (2.11) to calculate the force of the combined fields. For the calculation
of x = | ~B|

Bc
in µ( ~B) one needs only the absolute value of the combined field strength.

However, for the gradient one needs the Jacobi matrices of the individual fields as well
since

∇
∣∣∣
∑

i

~Bi

∣∣∣ = ∇
√(∑

i
Bi,x

)2
+
(∑

i
Bi,y

)2
+
(∑

i
Bi,z

)2

= 1
| ~B|
· JT( ~B) · ~B

= 1
|
∑

i
~Bi|
·

(∑

i

JT
i ( ~Bi)

)
· ~B (2.16)

where JT( ~B) is the transpose of the Jacobi matrix of ~B =
∑

i
~Bi.

The polarization of an ensemble of particles is defined as the normalized expectation
value of the operators Sz for electron polarization Pe and Iz for the nuclear polarization
Pz. The expectation value of an operator A for an ensemble is given by the trace of the
density matrix:

〈A〉 = Tr(ρA) =
∑

k

pk〈k|A|k〉 (2.17)

5



Table 2.1 – Values for the hyperfine splitting of the ground state of hydrogen and deu-
terium. The frequency values are from [26]

νHFS/MHz EHFS/eV Bc/mT
Hydrogen 1420.4057 5.877 · 10−6 50.7
Deuterium 327.3843 1.355 · 10−6 11.7

where pk is the probability to find state |k〉 in the ensemble. With the relative popula-
tion numbers nk of state |k〉 one obtains

Pe = n1 − n2I+2 +
2I+1∑

j=2

(nj − n4(I+1)−j) cos(2θj) (2.18)

and

Pz = n1 − n2I+2 (2.19)

+
2I+1∑

j=2

[
nj

(
I − j + 3

2 −
1
2 cos(2θj)

)
+ n4(I+1)−j

(
I − j + 3

2 + 1
2 cos(2θj)

)]
.

For the deuteron this information is not sufficient to characterize the full polarization
state, since there are three possible values ofmI . One additional number, named tensor
polarization Pzz, is needed for the description

Pzz = 〈3I2
z − 2〉 (2.20)

= n1 + n2I+2

+
2I+1∑

j=2

nj

[
3
2
(
(I − j + 1)2(1 + cos(2θj)) + (I − j + 2)2(1− cos(2θj))

)
− 2
]

+
2I+1∑

j=2

n4(I+1)−j

[
3
2
(
(I − j + 1)2(1− cos(2θj)) + (I − j + 2)2(1 + cos(2θj))

)
− 2
]
.

The formulas so far have been for general nuclear spin I . In this thesis however, only
the two cases with I = 1

2 for hydrogen and I = 1 for deuterium are needed and will be
given explicitly here. The hyperfine splitting energies for these atoms are known very
precisely. The values for the frequency, the splitting energy and the critical magnetic
field are given in Tab. 2.1.

For hydrogen one obtains the energies E1 to E4 with the dependence on the external
field shown in Fig. 2.1.

6



E1 = EH
HFS
4 (1 + 2x) ,

E2 = EH
HFS
4

(
−1 + 2

√
1 + x2

)
,

E3 = EH
HFS
4 (1− 2x) , and

E4 = EH
HFS
4

(
−1− 2

√
1 + x2

)
,

cos(2θ2) = x√
x2 + 1

.

0

1

−1

−2

1 2 3 x = Bz
BH

c

E
EH

HFS

HFS mS mI

|1〉 + 1
2 + 1

2

|2〉 + 1
2 − 1

2

|3〉 − 1
2 − 1

2

|4〉 − 1
2 + 1

2

F = 1

F = 0

mF

+1
0

−1

0

Figure 2.1 – Hyperfine splitting energy in an
external magnetic field for hydrogen

The matrix U−1 = UT, containing all the eigenvectors as columns and diagonalizingH
via U−1HU , is

U =




1 0 0 0
0 cos θ2 0 − sin θ2
0 0 1 0
0 sin θ2 0 cos θ2


 . (2.21)

The electronic and nuclear polarization of a sample of hydrogen atoms is given by

Pe = n1 − n3 + (n2 − n4) cos(2θ) (2.22)
Pz = n1 − n3 − (n2 − n4) cos(2θ)

and for single states one obtains
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〈1|Pe,z|1〉 = 1,
〈2|Pe,z|2〉 = ± cos(2θ),
〈3|Pe,z|3〉 = −1, and
〈4|Pe,z|4〉 = ∓ cos(2θ)

(upper sign for Pe lower sign for
Pz).

−1
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0.5

1

0.01 0.1 1 10

P
z

x = B
BH

c

|1〉

|2〉

|3〉

|4〉

Figure 2.2 – Nuclear polarization of the different
hyperfine states 〈k|Pz|k〉 for hydrogen

The dependence of Pz on the external field is shown in Fig. 2.2. For deuterium one
obtains the dependence on x for the energies E1 to E6, which are shown in Fig. 2.3

E1 = ED
HFS
6 (2 + 3x) ,

E2 = ED
HFS
6

(
−1 +

√
9x2 + 6x+ 9

)
,

E3 = ED
HFS
6

(
−1 +

√
9x2 − 6x+ 9

)
,

E4 = ED
HFS
6 (2− 3x) ,

E5 = ED
HFS
6

(
−1−

√
9x2 − 6x+ 9

)
,

E6 = ED
HFS
6

(
−1−

√
9x2 + 6x+ 9

)
.

0

1
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−2
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c

E
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2 0
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Figure 2.3 – Hyperfine splitting energy in an
external magnetic field for deuterium

Here the mixing angles are

cos(2θ2) = 3x+ 1√
9x2 + 6x+ 9

and (2.23)

cos(2θ3) = 3x− 1√
9x2 − 6x+ 9

.

The Matrix U is
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U =




1 0 0 0 0 0
0 cos θ2 0 0 0 − sin θ2
0 0 cos θ3 0 − sin θ3 0
0 0 0 1 0 0
0 0 sin θ3 0 cos θ3 0
0 sin θ2 0 0 0 cos θ2



. (2.24)

The polarizations of a sample of deuterium atoms are

Pe = n1 − n4 + (n2 − n6) cos(2θ2) + (n3 − n5) cos(2θ3), (2.25)

Pz = n1 − n4 + 1
2(n2 + n6 − n3 − n5)− 1

2(n2 − n6) cos(2θ2)− 1
2(n3 − n5) cos(2θ3), and

Pzz = n1 + n4 −
1
2(n2 + n3 + n5 + n6)− 3

2(n2 − n6) cos(2θ2) + 3
2(n3 − n5) cos(2θ3).

For the 6 states one obtains for the nuclear vector polarization

〈1|Pz|1〉 = 1,

〈2|Pz|2〉 = 1
2(1− cos(2θ2)),

〈3|Pz|3〉 = −1
2(1 + cos(2θ3)),

〈4|Pz|4〉 = −1,

〈5|Pz|5〉 = −1
2(1− cos(2θ3)), and

〈6|Pz|6〉 = 1
2(1 + cos(2θ2))

as shown in Fig. 2.4.
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|5〉|3〉

Figure 2.4 – Nuclear polarization of the different
hyperfine states 〈k|Pz|k〉 for deuterium

For the tensor polarization
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〈1|Pzz|1〉 = 1,

〈2|Pzz|2〉 = −1
2(1 + 3 cos(2θ2)),

〈3|Pzz|3〉 = −1
2(1− 3 cos(2θ3)),

〈4|Pzz|4〉 = 1,

〈5|Pzz|5〉 = −1
2(1 + 3 cos(2θ3)),

〈6|Pzz|6〉 = −1
2(1− 3 cos(2θ2)).

as shown in Fig. 2.5.
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Figure 2.5 – Tensor polarization of the different
hyperfine states 〈k|Pzz|k〉 for deuterium

2.2 The Functionality of Polarized Internal Gas Targets

A target that is placed directly in the beam of a storage ring is called internal target.
A polarized internal gas target consists of an Atomic Beam Source (ABS) and a gas-
storage cell completed by a polarimeter to measure the polarization of the beam from
the ABS or that of the target gas. A schematic picture of a setup is shown in Fig. 2.6.

The first part of an atomic beam source is a dissociator in which electrons are acceler-
ated by an rf-field or by microwaves. The accelerated electrons loose kinetic energy,
when they collide with the molecules and excite vibrations. If the energy transfer is
higher than 8.8 eV, the first molecular triplet state 3Σ+

u can be excited, which leads to
the dissociation of the molecule [14]. The electron bombardment heats the gas and
a part of the atoms is ionized or excited from the ground state. In order to obtain a
high degree of dissociation a small amount (≈ 0.2 %) of oxygen is added to the gas. At
least two mechanisms were proposed for that. First, it was suggested that OH radi-
cals bound to the wall increase the activation energy for hydrogen recombination thus
lowering the recombination rate [27] and second, the OH radicals may contribute to
the dissociation via the reaction OH+H2 →H2O+H [28]. The dissociated gas with an
admixture of undissociated molecular gas then flows through a cooled nozzle of typ-
ically ≈ 100 K, in which it cools down and returns to the ground state. The produced
water freezes at the surface and forms an ice layer which has to be removed after some
days of running. On this ice layer some of the atoms recombine to molecules (compare
with Sec. 2.3.1) and the recombination rate increases away from an optimum nozzle
temperature thus limiting both the nozzle temperature and the degree of dissociation
after the nozzle where the degree of dissociation, defined by the intensities of atoms,
Ia, and molecules, Im, is given by
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− produces polarized atomic
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Target Gas Analyzer (TGA)

− measures nuclear polarization
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Figure 2.6 – Schematic drawing of the PAX polarized target as installed at COSY and
to be installed at the CERN AD. The figure shows the ABS in the vertical position, the
storage cell around the beam axis, and the target diagnostic system in the horizontal po-
sition. The Target Gas Analyzer (TGA) determines the atomic to molecular fraction of
an effusive beam from the storage cell and the Breit-Rabi Polarimeter (BRP) measures
the intensities of the various hyperfine states to determine the polarization of the atomic
storage-cell gas. The beam blocker in front of the sextupole magnets prevents particles near
the beam axis from reaching the quadrupole mass analyzer (QMA), (from [8]).

.

α = Ia

Ia + 2Im
. (2.26)

The maximal degree of dissociation typically reaches about 80 % for low gas fluxes and
decreases with increasing flux.

Behind the nozzle, the gas expands into the first of several differentially pumped vac-
uum chambers (five in the PAX-ABS) and forms a cold, supersonic beam, while the
density rapidly drops and the flow regime changes from laminar to molecular flow. A
skimmer and a collimator between nozzle and first sextupole magnet are used to cut a
narrow beam with low divergence from the expanding gas. This beam passes through
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a set of sextupole magnets, that exerts a force onto atoms in different hyperfine states
as given by Eq. (2.11) and therefore focuses the beam of atoms in states with one orien-
tation of the electron spin (e.g. states |1〉 and |2〉 for hydrogen), while it defocuses the
beam of atoms in the other states. A set of medium-sized magnets is used for this task
instead of only one large magnet in order to let the defocused atoms escape through
the gap between the magnets. This reduces the gas density within the magnet bores
and increases the transmission due to the decrease of scattering. The dimensions and
strengths of the magnets have to be matched with the beam parameters (size, velocity
distribution) in order to obtain maximal separation of the hyperfine states. In some
cases it makes sense to use tapered magnets with conically shaped bores to reduce the
pressure inside and to increase the transmission. A detailed description of the B field
within the bore of the used Halbach type permanent sextupole magnets [29] can be
found in appendix A.

Further important components of the ABS are the high frequency transition units,
which are used to modify the occupation numbers of the hyperfine states in an rf-field.
The necessary frequency for two states |a〉 and |b〉 depends on the energy difference
|Ea − Eb| and is given by

ν = |Ea − Eb|
h

, (2.27)

which according to Eqs. (2.5) depends on the separation of the states by the magnetic
field. In order to define the time that the atoms spend in the resonance region and for
exactly matching ν and | ~B|, the B field has a small gradient along the beam direction.
The efficiency of this type of transition units is very high, above 98 % for some transi-
tions. A mathematical description of such devices is given in [30] and it is found that,
for an idealized case with only two hyperfine states (e.g. a free electron), the spin-flip
probability p is given by

p = e
−π

˛̨̨̨
µJB

2
rf

Ḃzh̄

˛̨̨̨
(2.28)

where µJ is the magnetic moment of the electron, Brf is the magnetic component of the
high frequency field and Ḃz is the dependence of the permanent field as seen by the
particle. From this equation it follows that the spin-flip probability p is small for

Ḃz �
2µJ

h̄
B2

rf (2.29)

which is called the adiabaticity condition. In the classical view it means that, if the
condition is fulfilled, the spins can follow the change of the B field, while otherwise
the B field changes too fast and the spins cannot follow completely, which would lead
to depolarization. For the case of atoms with mixed hyperfine states, no analytical
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Table 2.2 – List of hyperfine transitions in hydrogen and deuterium; Strong Field Tran-
sitions (SFTs) are characterized by ∆F = 1 while Medium Field Transitions (MFTs) are
characterized by ∆F = 0. ∆mF is used to distinguish π (∆mF = 1) and σ (∆mF = 0)
transitions and ∆mS = 1 indicates a spin flip of the electron while ∆mI = 1 indicates a
transition of the nucleus (from [31]).

Orientation σ/π Type ∆mF ∆F ∆mI ∆mS Hydrogen Deuterium
BHF‖Bz σ SFT 0 1 1 1 2↔ 4 2↔ 6
BHF‖Bz σ SFT 0 1 1 1 3↔ 5
BHF ⊥ Bz π SFT 1 1 0 1 1↔ 4 1↔ 6
BHF ⊥ Bz π SFT 1 1 0/2 1 2↔ 5, 3↔ 6
BHF ⊥ Bz π SFT 1 1 1 0 3↔ 4 4↔ 5
BHF ⊥ Bz π MFT 1 0 1 0 1↔ 2 1↔ 2
BHF ⊥ Bz π MFT 1 0 1 0 2↔ 3, 5↔ 6
BHF ⊥ Bz π MFT 1 0 0 1 2↔ 3 3↔ 4

equations for the transition probability exist but the situation is qualitatively the same
as for the simple two-level system.

It should be mentioned that only transitions with ∆mF = 1 (σ transition) and ∆mF = 0
(π transition) are possible. In the first case the rf-field has to have a component parallel
to the holding field, while in the second case the rf field has to be perpendicular to
the holding field. For historical reasons the naming of the states is usually such that
transitions with ∆F = 1 are called Strong Field Transitions (SFT), while transitions
with ∆F = 0 are called Medium Field Transitions (MFT) or Weak Field Transitions
(WFT) although some authors like Philpott in [30] use differing conventions. The WFTs
are sometimes considered as a special way to run a cascade of MFTs in a multi-photon
mode. Possible transitions are listed in Tab. 2.2.

For hydrogen, this first high frequency transition unit may interchange the population
numbers of states |2〉 and |3〉 and in a second set of sextupole magnets the beam par-
ticles in hyperfine state |3〉 are defocused. In the ideal case, only atoms in state |1〉 are
left in the atomic beam, which yields a highly polarized atomic gas target in a weak
holding field. If the gas is injected into a region with high magnetic field, one can use
two states at once, because both states are fully polarized in this limit (as can be seen in
Fig. 2.2). The first transition unit is not used in this case and only at the end of the ABS
behind the second set of magnets a final transition (not shown in Fig. 2.6) |2〉 → |4〉 or a
cascade |1〉 → |2〉 → |3〉 is induced to obtain positive or negative vector polarization.

The polarized gas from the ABS is injected into a storage cell which is basically a system
of tubes (compare Fig. 2.7). The beam of polarized atoms is injected by the feeding tube
and diffuses to the outlets at the sides. Via the sampling tube a fraction of gas is taken
from the cell to determine the polarization with the Breit-Rabi Polarimeter. During the
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COSY beam to BRP

from ABS

400 mm
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100 mm

Figure 2.7 – The PAX storage cell: The polarized beam from the ABS is injected from
above by the feeding tube of 10mm diameter into the quadratic interaction volume of 10 ×
10mm2 cross section. The diameter of the sampling tube for the BRP and TGA is 6mm
and then widened to 10mm.

diffusion process the atoms bounce back and forth inside the cell and such increase
the probability of being hit by a particle from the accelerator beam by two orders of
magnitude compared to a jet target. However, the wall collisions lead to recombination
and depolarization (see Sec. 2.3) which (together with the detector size) limit the length
of the cell and make it difficult to determine the gas polarization in the cell from a
measurement with the BRP. The standard way of measuring the polarization is to take
a fraction of the gas from the cell through a sampling tube and determine the relative
intensities of the various hyperfine states with a BRP from which the polarization can
be calculated according to Eq. (2.19). The BRP works essentially as the ABS, but it
has an additional beam blocker on the beam axis. It stops particles with the wrong
hyperfine state that leak through the system, because the sextupole magnets cannot
deflect particles on their axis, where the gradient of the B field is zero. The beam
intensity is measured with a Quadrupole Mass Analyzer (QMA). Another one is used
in the Target Gas Analyser (TGA) to measure the molecular fraction.

2.3 Depolarization Mechanisms

There are three different mechanisms for depolarization – recombination, spin-
exchange collisions and depolarization at the walls. All three effects will play only
a minor role in the ABS itself, since there are almost no collisions between atoms, and
particles desorbed from the wall, do most likely not reach the storage cell. However,
recombination (without polarization loss) is important within the nozzle where it in-
creases the molecular fraction. Within the storage cell mainly spin-exchange collisions
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will take place although the mean free path length of the atoms is larger than the di-
mensions of the storage cell and hence only few spin-exchange collisions will occur.
Measurements at HERMES showed that spin-exchange collisions reduce the nuclear
polarization of hydrogen at the working point by about 3.3 %, while depolarization
at the walls causes a polarization loss of 2 % [31]. Although working conditions are
different for the PAX target, depolarization at the walls is neglected in the the present
state of the program.

2.3.1 Recombination

Hydrogen atoms are highly reactive and tend to recombine with other H atoms to hy-
drogen molecules. However, the atoms usually cannot recombine in a dilute gas, since
in two body collisions both energy and momentum conservation cannot be satisfied. A
third collision partner would be necessary for volume recombination, which is there-
fore highly unlikely. The recombination rate in hydrogen gas of atomic and molecular
number density n(H) and n(H2) with n(H2)� n(H) is

ṅ(H2) = dn(H2)
dt

= krec · n2(H) · n3(H), (2.30)

where krec ≈ 10−32 cm6s−1 [32] and n3(H) = n(H) is the number density of atomic
hydrogen as third collision partner. In the storage cell the pressure is≈ 5 ·10−4 mbar or
n(H) ≈ 1013 atoms/cm3, which yields ṅ(H2) ≈ 107/cm3·s. The relative rate ṅ(H2)/n(H)
is of the order of 10−6 s−1 and therefore volume recombination in the storage cell can
be neglected. In the dissociator, however, the pressure is about 1 mbar. At this pressure
ṅ(H2)/n(H) ≈ 0.1 s−1 affects the achievable degree of dissociation.

The situation is different at the walls of the containment, where atoms can be bound
chemically or physically by Van-der-Waals forces. Atoms from the gas phase can re-
combine with these chemisorbed or physisorbed atoms. The description of this pro-
cess is complicated and not well understood. There are basically two different reac-
tion mechanisms which are dominant in different temperature regimes and describe
different behaviors. The first one, called Eley-Rideal (E-R) mechanism, is a reaction
between a gas phase atom colliding with an adsorbed atom and the second one, called
Langmuir-Hinshelwood (L-H) mechanism, concerns two adsorbed atoms diffusing
along the surface. Since the accommodation time at the surface decreases with in-
creasing temperature and the mobility of the atoms decreases at low temperatures,
the second mechanism mainly applies in the intermediate temperature range. In this
temperature range the recombination probability γL−H

rec of this process is [31]

γL−H
rec ∝ e

2Eb−Ej
kBT , (2.31)
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where Eb is the binding energy of the atoms to the surface and Ej is the activation
energy for surface diffusion. Contrary to that, the E-R mechanism works in all temper-
ature ranges and the recombination probability γE−R

rec can be approximated by [31]

γE−R
rec ≈ k1e

T1
T + k2e

−T2
T (2.32)

where the first term describes the increase in sticking time for physisorbed atoms at
low temperatures and the second term describes an activation barrier for reactions
with chemisorbed atoms. Another difference of the two recombination mechanisms
is the energy distribution of the products. The energy of hydrogen molecules after
recombination will be

EH2 = E0 − Eb + Ekin − Ew (2.33)

where E0 = 4.5 eV is the binding energy of the H2 molecule (measured at T = 298 K),
Eb is the binding energy of the reactants to the surface, Ekin is the kinetic energy of
the reactants, and Ew is the energy transferred to the wall. In L-H-type recombinations
Ekin is approximately zero. Both atoms are bound to the surface and a large part of
the energy E0 is needed to free the molecule from the wall. Therefore, one can expect
the molecules to be approximately in thermal equilibrium with the wall. In E-R type
reactions on the other hand, there may be a considerable amount of kinetic energy
and only one of the reactants is bound to the wall. This leads to molecules which
are approximately in thermal equilibrium with the wall in the translational energy.
They are, however, in very high rotational and vibrational excitated states such that the
internal energy of the molecules is far from thermal equilibrium. They also retain parts
of the incident transverse momentum leading to an asymmetric velocity distribution
around the wall normal.

Modeling all these effects is extremely difficult, since the recombination probability de-
pends on various microscopic and macroscopic parameters. The recombination proba-
bility depends strongly on the surface coverage, which in turn depends on the gas and
wall temperatures, the gas density, and the surface properties which can be described
by a surface potential depending on the material, the kinds of binding sites, geom-
etry (steps, e.g., have a different potential than flat areas), orientation of the cutting
plane through the crystal (’Miller indices’) and surface impurities. As shown by ex-
perimental [33] and theoretical [34] work, a significant part of the reactions occurs via
a so-called hot-atom pathway, in which the gas-phase atoms of the E-R mechanism do
not hit the adsorbed atom directly but diffuse for a short time along the surface. This
increases the cross section for this reaction type by an order of magnitude. Depending
on the mass ratio of the adsorbed atoms to the wall, impinging light atoms lose little
energy such that the hot-atom pathway is E-R-like.
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For applications in internal gas targets not only the recombination of hydrogen is of
interest but also the nuclear polarization of the atoms within the molecules. In an H2
molecule, the electron spins have to follow the Pauli principle and point in opposite di-
rections. On the other hand, the two relative orientations of the nuclear spins yield two
energetically different kinds of hydrogen. The singlet state, where both nuclear spins
point into opposite directions, is called parahydrogen and the triplet state, where both
spins are parallel, is called orthohydrogen. Since the energy difference between these
two forms of hydrogen are small, at room temperature the three times degenerate or-
thohydrogen occurs three times as often as parahydrogen. Which form is produced
in a surface recombination event from a polarized gas, depends mainly on the surface
properties of the wall and the polarizations of the reaction partners. The rate of de-
polarization depends on the external magnetic field strength. The recombination rate
also depends on the electron polarization because of the Pauli principle.

One model for surface recombination is described in [35]. Based on rate equations for
physisorption and chemisorption, for desorption of physisorbed atoms, and for chemi-
cal reactions the author builds a model which yields expressions for the recombination
probabilities γL−H and γE−R. Although the model is generic and describes the temper-
ature and density dependence of the recombination probability, it depends on several
(generally unknown) parameters which makes the model unhandy to use. In addition,
no comparison of calculated rates with measurements is provided.

An equation for depolarization of molecules and its dependence on the external B field
is given in [36]. The depolarization is interpreted as spin relaxation of orthohydrogen
between wall collisions. The nuclear spins precess rapidly around an axis that is ro-
tated to the external field by θ = Bint

B
where the internal B field for orthohydrogen in

the J = 1 state is Bint = 5.4 mT. Wall collisions randomize the direction of Bint and the
component of the polarization along the external field decreases by Bint

B2 between two
wall collisions. This leads to a remnant polarization of molecules after b wall collisions
of

P (b) = P (0) e−b(
Bint
B )2

. (2.34)

Analog considerations apply for the deuterium atom and molecule. Differences occur
due to (1) the higher mass, twice that of hydrogen, (2) the smaller magnetic moment
of the deuteron, and (3) the fact that the deuteron with nuclear spin 1 is a boson. In
the molecule the nuclear spins can couple to a total spin of 0, 1, and 2. Due to histor-
ical reasons, here molecules with with I = 0 and 2 are called orthodeuterium, those
with I = 1 are called paradeuterium. They differ by the symmetry character of the
total wave function. The moment of inertia of the deuterium molecule is twice that of
hydrogen, whereas for both the nuclear distance is equal within ≈ 10−4. An example
for the difference in kinematics is found in the velocity distribution of desorbed HD
molecules. As shown in [33], the asymmetry of the velocity distribution of desorbed
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HD molecules around the wall normal depends strongly on the mass ratio between the
incoming and the adsorbed atom, such that there is a pronounced difference between
the reactions H + D(wall) and D + H(wall).

2.3.2 Spin-Exchange Collisions

When two hydrogen atoms collide, they may temporarily form a bound state, during
which the electrons interact and can be exchanged. Both effects look like exchange of
angular momentum and consequently, the hyperfine population can change. Purcell
and Field [37] developed a method to calculate the spin exchange in hydrogen and a
calculation of the spin exchange probabilities is found in [38]. Two initial states |a〉 =
a↑| ↑ ma − 1

2〉 + a↓| ↓ ma + 1
2〉 and |b〉 = b↑| ↑ mb − 1

2〉 + b↓| ↓ mb + 1
2〉 are considered

and the probability of ending in states |c〉 and |d〉 is calculated. With the number Ni of
particles in hyperfine state i and the total number density n = 1/V

∑
iNi in a volume

V the the population rate of hyperfine state c is given by

Ṅc = 2nσSEvr
∑

a,b

(
|〈cd|U |ab〉|2 − |〈cd|ab〉|2

)
NaNb (2.35)

= nσSEvr
∑

a,b

M c
abNaNb, (2.36)

where U = Ps + e−iΦPt is the time evolution operator of the model, where Ps is the pro-
jection operator for electron singlet states, Pt is the corresponding operator for electron
triplet states, and

Φ =
∫
Vt − Vs

h̄
dt (2.37)

is the difference between the phase accumulations during the collision for singlet and
triplet component of the electron spin function of the molecule. Here Vt − Vs is the
energy difference between the triplet and singlet electronic state of the molecule. Fur-
thermore, σSE is the spin exchange cross section which is not much different from the
cross section for momentum exchange σT [37]. The calculation yields

M c
ab =

∑

d

[
− 2〈c|a〉〈d|b〉 (a↑b↓c↑d↓ + a↓b↑c↓d↑) (2.38)

〈mc|ma〉〈md|mb〉 (a↑b↓c↑d↓ + a↓b↑c↓d↑)2

〈mc|ma − 1〉〈md|mb + 1〉 (a↑b↓c↓d↑)2

〈mc|ma + 1〉〈md|mb − 1〉 (a↓b↑c↑d↓)2
]
.
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Table 2.3 – Pairs of hyperfine states for hydrogen and deuterium for which spin-exchange
collisions are allowed by angular momentum conservation. Only final states within the
same row as the initial state are allowed.∑

imF Hydrogen Deuterium
3 |11〉
2 |11〉 |12〉, |16〉
1 |12〉, |14〉 |13〉, |15〉, |22〉, |26〉, |66〉
0 |13〉, |22〉, |24〉, |44〉 |14〉, |23〉, |25〉, |36〉, |56〉
−1 |23〉, |34〉 |24〉, |33〉, |35〉, |46〉, |55〉
−2 |33〉 |34〉, |45〉
−3 |44〉

Since the coefficients of the states depend on the magnetic field, the relaxation rate of
the spins also depends on the magnetic field. With the time constant τ = 1

nσSEvr
one

can write Eq. (2.36) as

τṄc =
∑

a,b

M c
abNaNb. (2.39)

For atoms with I = 1
2 the relaxation of the difference of the occupation number of

hyperfine states 2 and 4, N2 −N4, follows an exponential with time constant

τB = (1 + x2)τ (2.40)

where x = B/Bc = gSµBB/EHFS as given in Sec. 2.1. For I > 1
2 this time constant is still

a useful approximation.

Due to angular momentum conservation, the states cannot interact arbitrarily. The pos-
sible interactions are listed in Tab. 2.3 and only final states within the same row of the
table as the initial state can result from a spin-exchange collision. This is automatically
included in Eq. (2.36).
For t → ∞, the populations of the different hyperfine states will reach equilibrium
values. The spin temperature equilibrium N ste

a was introduced [26] to calculate the
equilibrium values

N ste
a = eβma∑

a e
βma

. (2.41)

If one defines η = tanh
(
β
2

)
, one obtains for hydrogen and deuterium the values listed

in Tab. 2.4 [31]. Note that the equilibrium values do not depend on the magnetic field.
So these values depend only on the initial polarization of the ensemble of particles and
will always be reached, whereas the rate of approach to the equilibrium will monoton-
ically decrease with increasing B field.
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Table 2.4 – Population numbers and polarization of hydrogen and deuterium in spin tem-
perature equilibrium.

Value Hydrogen Deuterium
〈mF 〉 η η 11+η2

6+2η2

β ln
(

1+η
1−η

)
ln
(

1+η
1−η

)

n1
(1+η)2

4
(1+η)3

6+2η2

n2
1−η2

4 n2 = n6 = (1+η)2(1−η)
6+2η2

n3
(1−η)2

4 n3 = n5 = (1−η)2(1+η)
6+2η2

n4
1−η2

4
(1−η)3

6+2η2

Pe η η

Pz η 4η
3+η2

Pzz
4η2

3+η2

2.3.3 Spin Relaxation at Walls

When atoms strike a wall, they will be adsorbed due to Van-der-Waals interaction for
a short time τs given by

τs = τ0 e
Eb
kB T (2.42)

with the high temperature sticking time τ0 and the binding energy Eb. During that
time they diffuse along the surface and the electron of the hydrogen or deuterium
atom interacts with the local magnetic fields of the wall material. For polymers as wall
material, where the atoms are bound together by covalent bindings, the electron spins
do not contribute to the interaction with the adsorbed atom. Only the nuclear spins
of the wall and possibly spin-orbit coupling can lead to depolarization. The theory for
this was developed in [39] and [40] and was used for the investigation of the relaxation
of optically pumped rubidium atoms on paraffin-coated walls [41] and for sodium on
silicone surfaces [42]. Experiments with hydrogen and deuterium are described in [43]
and [31]. The measurements in these two theses were performed at low temperatures
(≈ 100 K) and for various holding field strengths. The effect is expected to decrease
exponentially with increasing temperature because of the reduced sticking time τs and
this was confirmed by measurements.

Generally, the effect of depolarization at the walls is expected to be smaller than the
effects of spin-exchange collisions and it will be omitted in this work. Here, only a
short theoretical description is provided following the discussion of Ref. [41].
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For the derivation of relaxation rates, the Hamiltonian of the atom in a weak fluctuating
B field B(t) is given by

H = gSµB

h̄
B(t) · S. (2.43)

An exponential correlation function for the modulation of B(t) is assumed with a cor-
relation time τc. This correlation time can be interpreted as the time it takes for an
adsorbed atom to diffuse from one place with a certain magnetic field to another place
with the same field conditions. Then, the frequency dependence of the modulation is
given by the Fourier transform of the correlation function

j(ω) = 1
1 + ω2τ 2

c
. (2.44)

The relaxation rate for an isolated spin is given by

1
Ts

= Cj(ωS), (2.45)

where ωs is the Larmor frequency of the spin and the amplitude C is

C = 2
3

τs

τs + τw

(gSµB

h̄

)2
B2τc (2.46)

where τw is the time between two wall collisions, and B is the amplitude of B(t). Hy-
perfine structure and a static external magnetic field make the situation more complex
and the rate of change of different hyperfine state populations can be written as

dNi

dt
=
∑

j

RijNj (2.47)

with the transition rates Rij given by

Rij = C|〈i|S|j〉|2j(ωi − ωj). (2.48)

Here ωi−ωj is the hyperfine transition frequency which can be calculated with the use
of Eqs. (2.5). The relaxation rates for hydrogen and deuterium were calculated in [44]
and [45]. The solution for Eq. (2.47) is given by

Ni =
2(2I+1)∑

j=1

cjVje
−λjt, (2.49)

where Vj is the eigenvector of Rij corresponding to the eigenvalue λj and the cj are
determined by the initial conditions. From this, one can calculate the polarization with
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Eqs. (2.18) to (2.21). The result can be quite complicated but for the case of low external
B field simplified formulas exist for the expectation values of Iz and Sz:

〈Iz〉 = 〈Iz〉0e−
t
Tn , (2.50)

〈Sz〉 =
(
〈Sz〉0 −

2
(2I + 1)2 − 2〈Iz〉0

)
e−

t
Te + 2

(2I + 1)2 − 2〈Iz〉0e−
t
Tn . (2.51)

With the electronic (nuclear) relaxation times Te (Tn) the relaxation rates are given by

1
Te

= C

(
j(ωf)− j(ωHFS)

(2I + 1)2 + j(ωHFS)
)

and (2.52)

1
Tn

= C

(2I + 1)2 (j(ωf) + j(ωHFS)). (2.53)

Here ωHFS = EHFS
h̄

and ωf = EZ
h̄

with EZ being the Zeeman splitting energy. This shows
that the nuclear spin relaxes with a single rate, while the electron spin has two differ-
ent rates. For the case with high external B field, where electron and nuclear spin are
decoupled, the relaxation rate of 〈Sz〉 is given by Eq. (2.45) and for intermediate field
one has to use Eq. (2.49) to calculate the different relaxation rates. Reference [46] pro-
poses a simpler model of atom polarization depending on the average collision age:
The polarization of a set of atoms is given by

〈P 〉 =
∫∞

0 P (b)n(b) db∫∞
0 n(b) db

(2.54)

where n(b) is the number of atoms having undergone b wall collisions and P (b) is
the polarization after b wall collisions. The distribution of collision ages for a simple
geometry is

n(b) = e
− b
N0 , (2.55)

where N0 is the average collision age of the atoms.

With the assumption of an exponential decrease of the polarization over time and the
sticking time to the surface as given by Eq. (2.42)

P (b) = P (0) e−
τs
τR

b (2.56)

one can integrate Eq. (2.54) and finally obtains

〈P 〉 = P (0)

1 + N0 τ0

τR
e
Eb
kB T

. (2.57)
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On metal surfaces, where electrons are only loosely bound, electron exchange can be
important in the depolarization process. This or fluctuating local fields lead to the
conclusion ([36]) that atoms, adsorbed to a copper surface, are completely depolarized
and the molecules formed in an E-R-type recombination retain half the original nuclear
polarization. Other groups ([47, 48, 49]) investigated other surfaces and showed that
significantly higher nuclear polarizations in molecules are obtained from recombina-
tion on non-metallic surfaces.

2.4 Definition of Basic Gas Properties

Nj particles of type j with mass mj and number density nj = Nj
V

in a volume V within
an equilibrium gas have a Maxwellian velocity distribution

dNj

Nj

d~v = dnj
nj

d~v =
β3
j

π
3
2
e−β

2
j |~v′|2d~v, (2.58)

where the thermal velocity ~v′ is given by the difference of the total velocity ~v and the
stream velocity ~v0, i.e., ~v′ = ~v − ~v0, and βj is the inverse of the most probable thermal
velocity,

βj = 1
|~v′m,j|

=
√

mj

2kBT
. (2.59)

Macroscopic properties of the gas are given for every point in space, but are defined
microscopically by averaging over all particles within an extended volume element
no matter if the gas is in equilibrium or not. For example the mean velocity of a gas,
composed of different particle species, is the average over all velocities of all particles
kj of all particle species j:

~v = 1
N

∑

j,kj

~vj,kj . (2.60)

The mean thermal speed ~v′ and the mean stream velocity ~v0 are defined similarly as
well as the mean kinetic (or translational) energy per particle

Et = 1
N

∑

j,kk

1
2mj~v

2
kj
. (2.61)

With this, the translational temperature Ttr can be defined by

3
2kBTtr = 1

2m~v
′ = Et −

1
2m~v0

2
. (2.62)
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This is actually the temperature used in Eq. (2.59) and it can also be used to express the
ideal gas equation

p = kBnTtr (2.63)

and to define the pressure p. If the molecules of species j have ζj internal degrees of
freedom, one can also define an internal temperature by

ζ

2kBTint = Eint, (2.64)

whereEint is the mean internal energy. In the equilibrium state Tint = Ttr and in general
an overall temperature can be defined as the weighted average of the translational and
internal temperatures as

Tov = 3Ttr + ζTint

3 + ζ
. (2.65)
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3 The Direct Simulation Monte Carlo (DSMC)
Method

3.1 Motivation

Depending on various microscopic and macroscopic parameters, gases can have dif-
ferent properties which can be described by a few numbers, either dimensioned like
viscosity and diffusion coefficients or dimensionless like the Reynolds number or the
Knudsen number. The latter one is of particular interest here and is defined byKn = λ

L
,

where λ is the mean free path length of the gas atoms or molecules and L is a character-
istic length of the system like the diameter of a gas-flow channel. It can also be defined
locally, e.g., as L = ρ

|∇ρ| by the local density ρ and its gradient. Then the locally defined
Knudsen number becomes

Kn = λ
ρ
|∇ρ|

. (3.1)

The Knudsen number can be used to define the validity ranges of equations that de-
scribe the gas behavior. The most general gas equation is the Boltzmann equation that
is valid for all Knudsen numbers under the assumption of molecular chaos and the
assumption that only two body collisions occur:

∂

∂t
(nf) + ~v · ∂

∂~r
(nf) + ~F · ∂

∂~v
(nf) =

∞∫

−∞

4π∫

0

n2(f ′f ′1 − ff1)vrσ dΩd~v1. (3.2)

This equation describes the flux of particles in and out of a volume element. The first
term is the change of the particle number in a volume element, where n is the num-
ber density and f is the velocity distribution function of the particles. The second
term describes the particle flux caused by the movement of the particles with velocity
~v and the third term is the additional flux caused by the force ~F per unit mass. The
right hand side describes the particle flux caused by collisions of particles with relative
velocity vr and differential cross section σ. The velocity distribution functions f and
f1 are for particles of velocity ~v and ~v1 before collision, while the prime denotes the
post-collision values. Solving this equation is extremely difficult. The easiest case is
encountered for no collisions which corresponds to the limit Kn → ∞. In the other
limiting case Kn → 0, the velocity distributions can be taken as the local equilibrium
Maxwell distribution which leads to the Euler equations for inviscid flows. For small
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Knudsen numbers the velocity distribution functions can be approximated by a per-
turbation to the Maxwellian distribution. For first order perturbations this leads to the
Chapman-Enskog theory and the Navier-Stokes equations. The Navier-Stokes equa-
tions start to fail when the gradients of the macroscopic variables become so steep that
their scale length is of the same order as the average distance traveled by the molecules
between collisions, which is the case for Kn ≈ 0.1. For larger Kn there are generally
no analytical solutions to the Boltzmann equation available and this is especially the
case in gases at very low densities or in shock structures.

Solving Eq. (3.2) numerically is very demanding and therefore people started to make
use of the molecular structure of gases. The first molecular dynamics calculations for
solving a many particle problem of interacting particles was reported 1959 [50]. Be-
cause of the huge number of particles, however, this original method is not suitable
for simulating gas flows. Therefore, Bird [51] in 1963 used a probabilistic approach to
solve this problem and the method was developed over the years to become the Direct
Simulation Monte Carlo (DSMC) method.

3.2 The DSMC Method

The basic assumptions of the DSMC method are that the movement of particles and
their collisions can be separated on small timescales, which is true in the limit of
∆t → 0, and that the gas properties can be derived by using only a relatively small
number of stochastically interacting simulated particles whose properties are initially
sampled from the local equilibrium distribution functions. Further, only binary colli-
sions are assumed to occur which limits the method to gases of low densities. Then, the
method proceeds in three steps: First, during the time step ∆t, all particles are moved
ballisticly along deterministic tracks. If a wall is encountered, the particle properties
will be changed according to a certain wall interaction model. In the second step, pos-
sible collision partners are selected from a neighborhood of the particles and collisions
are performed with a certain probability according to a collision model (see Sec. 3.3).
This is assumed to happen instantaneously in the model, i.e., the simulated time is
not advanced during this step. In the last step, the new macroscopic gas properties
are sampled from the microscopic ensemble before the whole procedure starts again.
Although the macroscopic gas properties are defined for every point in space, a reason-
able value can only be defined by averaging over an ensemble of particles. Therefore
the simulated region is usually split into small cells and the calculation of the macro-
scopic gas properties is done by averaging over all particles within such a cell, while
possible collision partners can be chosen only from this cell.

This method empirically proved very useful for a wide range of situations, both equi-
librium and nonequilibrium ones. Theoretically it was shown that the solution of a
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DSMC simulation converges to a solution of the Boltzmann equation in the limit of
vanishing cell size, time step, and infinitely large particle number [52]. In real simu-
lations these conditions cannot be fulfilled exactly and therefore various discretization
errors occur. Besides numerical errors and statistical fluctuations that decrease with
the square root of the sample size, there are three error sources: Cell size, time step,
and number of particles per cell. Various authors investigated these errors theoreti-
cally by means of the Green-Kubo theory [53] and by simulations. In these studies,
simulation results are compared to exact theoretical values that can be obtained for
simple problems. Errors in cell size occur since the collision partners are chosen from
the whole cell and a too large separation of the collision partners leads to physically
unrealistic collisions which tend to smear out gradients. In [54], [55] it was found that
for the limiting case ∆t → 0 and Nc → ∞, where Nc is the number of simulated par-
ticles per cell, the discretization error caused by the finite cell size is proportional to
(∆x̃)2 where ∆x̃ = ∆x

λ
is the dimensionless cell size. Time discretization errors occur

since the collision partners are only selected at the end of each time step although in
reality the collisions would occur continuously. In the limit of vanishing cell size and
particle number errors, the time step error was found proportional to the square of the
dimensionless time step ∆t̃ = t

t0
, where t0 is the mean collision time [56]. Finally, [57]

reports that the particle number error is proportional to 1
Nc

in the limiting case of van-
ishing other discretization errors. A comprehensive study of the thermal conductivity
of a gas between two differentially heated plates found [58] that the simulated thermal
conductivity K divided by the theoretical value K can be described in the presence of
all three errors by

K

K
= 1.0001 + 0.0287(∆t̃)2 + 0.0405(∆x̃)2 − 0.083

Nc
+ F

(
∆t̃,∆x̃, 1

Nc

)
, (3.3)

where F
(

∆t̃,∆x̃, 1
Nc

)
is a function of higher order terms in the declared variables.

However, it was also found that the convergence behavior depends on the exact DSMC
method used, its implementation, the measure by which the convergence behavior is
measured, and the problem under investigation. Generally it can be noted that the
time step should be a fraction of the mean collision time, that the cell size should be a
fraction of the mean free path length, and that the numbers per cell should be around
20. In real simulations with large pressure differences these conditions are hard to
fulfill and the time step is determined by the largest pressure area. This may lead to
time steps which are much too small for large parts of the domain which slows down
the computation significantly.

The DSMC method is extensively described in [59] and is often called DSMC94 in the
literature. Many improvements have been suggested to increase convergence and com-
putational efficiency like the use of subcells for the selection of collision partners to
reduce the mean collision separation or sampling twice, once before and once after
the collision step. Some new developments, implemented in a code generally termed
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DSMC07 [60], include the use of different collision selection mechanisms and adaptive,
cell based time steps which makes the code faster, especially in simulations with large
pressure differences. However, it was found in [61] that the new scheme introduces
stringent requirements for the temporal discretization. It should further be noted that
cell-based collision-partner schemes are not applicable to charged particles since their
cross section is generally much larger than the cell and therefore possible collision part-
ners cannot be selected. Therefore, Olson and Christlieb report about the development
of a gridless DSMC code which is intended to become part of a plasma simulation tool
[62].

3.3 Binary Collisions

In rarefied gas flows only two body or binary collisions are likely to occur while three
body collisions are negligible. Realistic descriptions of binary collisions are very com-
plicated in general, especially when inelastic collisions are considered where energy
is redistributed between the translational and internal degrees of freedom. In general,
the interaction potential of molecules cannot be given or would need excessive com-
putational effort. Therefore one is limited to simple collision models. They are allowed
to be as simple as possible as long as they yield appropriate results. Only when the re-
sults obtained from a simple model do not agree with measurements a more complex
model should be used. In the following section some simple models will be described
and formulas for the relevant quantities will be given. Much of this section closely fol-
lows Chap. 2 of [59]. All models considered here are purely classical. Quantum effects
are expected to occur only at very low temperatures and can therefore be neglected
in general. Quantum mechanical models using partial waves to calculate a cross sec-
tion are also less efficient and it was found in [63] that the macroscopic gas properties
calculated with quantum mechanical models agree well with the ones calculated with
classical models although the differential cross sections differ in the two approaches.

The simplest collision models consider only elastic collisions and make use of a ro-
tational symmetric molecular potential. In this case the collision has to obey the three
conservation laws for momentum, energy and angular momentum. If the two colliding
particles have masses m1 and m2, pre-collision velocities ~v1 and ~v2 and post-collision
velocities ~v′1 and ~v′2 the first two conservation laws can be written as

m1 ~v1 +m2 ~v2 = m1 ~v′1 +m2 ~v′2 = (m1 +m2)~vm (3.4)
m1 v

2
1 +m2 v

2
2 = m1 v

′2
1 +m2 v

′2
2 (3.5)

where ~vm is the velocity of the center of mass. Defining the relative velocities before
and after the collision, ~vr = ~v1 − ~v2 and ~v′r = ~v′1 − ~v′2, one can write
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A
~vr

~v′
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χ

Figure 3.1 – Collisions in the center of mass system; One particle is located at the origin
O and the other one approaching with impact parameter b and velocity ~vr is deflected by
an angle χ in its potential Φ. The problem is symmetric around the axis O-A.

~v1 = ~vm + m2

m1 +m2
~vr (3.6)

~v2 = ~vm −
m1

m1 +m2
~vr (3.7)

and

~v′1 = ~vm + m2

m1 +m2
~v′r (3.8)

~v′2 = ~vm −
m1

m1 +m2
~v′r. (3.9)

~vm will not change without external forces and in elastic collisions the magnitude of
the relative velocities before and after the collision will be the same, i.e. |~vr| = |~v′r|.
~vm and ~vr can be calculated from the pre-collision velocities and hence the only task
left is to determine the change in direction χ of the relative velocity vector during the
collision.

Writing the position vector of particle i as ~ri, the equations of motion for both collision
partners are

m1 ~̈r1 = ~F (3.10)
m2 ~̈r2 = −~F (3.11)
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which can be combined to an effective one body problem with the reduced mass mr =
m1 m2
m1+m2

and the relative position ~r = ~r1 − ~r2 in the force field of a fixed particle:

mr ~̈r = ~F . (3.12)

The central force ~F (r) can be written as the derivative of a scalar potential Φ as

~F (r) = −dΦ
dr

~er (3.13)

and the equation of motion can be written in terms of the total energy

1
2mr

(
ṙ2 + r2θ̇2)+ Φ = E = 1

2mrv
2
r (3.14)

where the last term comes from the asymptotic large separations of the two particles
with no potential energy. In order to eliminate the time dependence, one can use an-
gular momentum conservation r2θ̇ = const = bvr with b being the impact parameter, to
obtain

(
dr

dθ

)2

= r4

b2 − r
2 − Φ r4

1
2mr v2

r b
2 . (3.15)

Using the dimensionless coordinate

W = b

r
(3.16)

this reduces to

(
dW

dθ

)2

= 1−W 2 − Φ
1
2 mr v2

r
(3.17)

so that

θ =
∫ W

0

1√
1−W 2 − Φ

1
2 mr v2

r

dW. (3.18)

Now, one can make use of the symmetry of the problem. At the intersection of the orbit
with the apse line OA (compare Fig. 3.1) it is

θ = θA (3.19)

and
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dW

dθ
= 0. (3.20)

Therefore,

θA =
∫ W1

0

1√
1−W 2 − Φ

1
2 mr v2

r

dW (3.21)

where W1 is the positive root of the equation

1−W 2 − Φ
1
2 mr v2

r
= 0. (3.22)

From this one can obtain the deflection angle of the relative velocity as

χ = π − 2θA (3.23)

The final task now is to get the post-collision velocities from this value. Angular mo-
mentum conservation requires that all velocities stay in one plane during the collision
in the center of mass frame. This plane may be rotated by an angle φ versus some ref-
erence plane. Generally φ will be equally distributed in the interval [0, 2π] and can be
chosen randomly. In Cartesian coordinates ~v′r can be written as

~v′r = vr




cosχ
sinχ cosφ
sinχ sinφ


 . (3.24)

This can now be used to calculate the post-collision velocities according to Eqs. (3.8)
and (3.9).

The differential cross section of the collision can be obtained from

σ dΩ = b db dφ (3.25)

with dΩ = sinχdχ dφ being the solid angle around ~v′r. This yields

σ = b

sinχ

∣∣∣∣
db

dχ

∣∣∣∣ . (3.26)

Finally, in order to get the total cross section, one has to integrate over all angles

σT =
∫ 4π

0
σ dΩ = 2π

∫ π

0
σ sinχdχ. (3.27)
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For some more realistic molecular models this integral will diverge and one has to
introduce effective or nominal cross sections. This can be achieved by using cutoffs
on b or on χ, where in the case of a collision it should hold b < b0 or χ > χ0. In all
other cases the interaction is considered too small to be counted as collision and it was
shown in [64] that if quantum effects are taken into account, such glancing collisions
cannot be properly defined. However, since these cutoffs are arbitrary, the resulting
total cross section is not suitable for defining an efficient collision frequency or mean
free path length. In order to define these properties, a nominal cross section σ = πd2/4
may be defined, where the diameter d may depend on the relative velocity vr of the
collision partners.

According to the Chapman-Enskog theory, the viscosity and diffusion of a gas depend
on the differential cross sections rather than the total cross section. This fact makes it
possible to define models that lead to a diverging total cross section but still exhibit the
correct viscosity and diffusion. Only the collision frequency and the mean free path
length then depend on the total cross section, that can be chosen in a suitable way.
These quantities will therefore be effective ones, i.e. they will be model dependent and
not equal to the correct ones which one would obtain from measurements. For later
use, the viscosity cross section σµ and the diffusion cross section σD in the Chapman-
Enskog theory are defined as

σµ =
∫ 4π

0
(1− cos2χ)σ dΩ = 2π

∫ π

0
σ sin3χdχ (3.28)

σD =
∫ 4π

0
(1− cosχ)σ dΩ = 2π

∫ π

0
σ (1− cosχ) sinχdχ. (3.29)

These integrals are convergent but usually very difficult to solve.

3.3.1 Binary Collision Models

Inverse Power Law Model

One of the simplest models is the inverse power law model. The force on a particle is
simply given by

F = κ

rη
(3.30)

with parameters κ and η. For η > 1 the corresponding potential is

ΦIPL = κ

(η − 1)rη−1 . (3.31)
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The ratio of the potential energy to the total energy can be written as

ΦIPL

1
2 mr v2

r
= 2
η − 1

(
W

W0

)η−1

(3.32)

where W0 is a second dimensionless parameter defined by

W0 = b

(
mr v

2
r

κ

) 1
η−1

. (3.33)

Equations (3.21) to (3.23) then yield for the deflection angle

χ = π − 2
W1∫

0

1√
1−W 2 − 2

η−1

(
W
W0

)η−1
dW (3.34)

where W1 is the positive root of the equation

1−W 2 − 2
η − 1

(
W

W0

)η−1

= 0. (3.35)

The differential cross section for this model can be calculated from Eqs. (3.33) and (3.25)
to

σIPL dΩ = W0

(
κ

mv2
r

) 2
η−1

dW0 dφ. (3.36)

It is easy to see that the integration of this equation would lead to a divergent total
cross section. Therefore, a cutoff is needed, preferably on χ. Since χ depends only on
W0, this is equivalent to setting the cutoff directly on W0 where the cutoff value shall
be denoted by W0,m. So

σIPL
T =

2π∫

0

W0,m∫

0

W0

(
κ

mv2
r

) 2
η−1

dW0 dφ = πW 2
0,m

(
κ

mv2
r

) 2
η−1

= πW 2
0,m

( 1
2κ

Et

) 2
η−1

. (3.37)

The important point here is the dependence of σT on the relative velocity:

σIPL
T ∝ 1

v
4

η−1
r

. (3.38)

This dependence will later be used for the definition of the variable hard sphere model.
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hard sphere, ΦHS =∞ for r < r0

inverse power law, ΦIPL = κ
rη

Lennard-Jones,
ΦLJ = 4ǫ

[(
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r

)12 −
(

r0
r

)6
]r0

ǫ

Figure 3.2 – Simple molecular potentials used for binary collision models.

Hard Sphere (HS) and Variable Hard Sphere (VHS) Model

In this very simple model the colliding particles are treated as hard spheres. This can be
understood as the limiting case of the inverse power law model with η =∞ (compare
Fig. 3.2). It is clear that the force becomes effective at

r0 = 1
2(d1 + d2) = d12 (3.39)

and the apse line is the line through the centers of the spheres. Therefore,

b = d12 sin θA = d12 cos
(χ

2

)
(3.40)

and

∣∣∣∣
db

dχ

∣∣∣∣ = 1
2 d12 sin

(χ
2

)
(3.41)

so that Eq. (3.26) gives

σHS = 1
4 d

2
12. (3.42)

This equation is independent of χ meaning that all scattering angles are equally likely
in the center of mass frame. The total cross section is
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σHS
T =

∫ 4π

0
σHS dΩ = π d2

12 (3.43)

and the viscosity and diffusion cross sections are

σHS
µ = 2

3σ
HS
T (3.44)

σHS
D = σHS

T . (3.45)

The first approximation to the viscosity coefficient for a monatomic gas in the
Chapman-Enskog theory is

µ =
5
8
√
πmkBT(

m
4kBT

)4 ∞∫
0
v7

r σµ e
− mv2r

4kBT dvr

(3.46)

which yields

µ = 5
16

√
πmkBT

σHS
T

= 5
16

√
mkBT

π

1
d2 (3.47)

for the hard sphere model. One can see that µ ∝
√
T in this case whereas for real

gases the dependence is more like µ =∝ T
3
4 . Empirically it was found that a successful

molecular model has to reproduce the viscosity coefficient of a gas and the depen-
dence of it on temperature. The choice of the potential on which the model is based
on was found to be much less important. The failure of the hard sphere model to de-
scribe the temperature dependence of the viscosity effectively prohibits its usage but
the aforementioned facts led Bird ([65]) to the proposition of the variable hard sphere
model which is a simple extension of the hard sphere model. It uses the same isotropic
distribution for the scattering angle χ as the hard sphere model such that

χ = 2 arccos
(
b

d

)
(3.48)

and the nominal cross sections are taken from the hard sphere model as well:

σVHS
T = πd2 (3.49)

σVHS
µ = 2

3πd
2 (3.50)

σVHS
D = πd2. (3.51)
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But now the diameter is allowed to vary with the collision energy. Usually it is cho-
sen such that the temperature dependence of the viscosity matches that of the inverse
power law model. Comparing viscosity and diffusion cross sections of both models
yields

d2 ∝ E−νt (3.52)

with ν = 2
η−1 . For practical usage one has to find or eliminate the constants κ and

η of the inverse power law model. To this end one can use Eq. (3.47) which yields a
diameter at some reference temperature and viscosity of

dref =

√
5

16µref

√
mkBTref

π
. (3.53)

These reference values can be taken from experimental data as well as the dependence
of µ on T . With the reference values it is

σVHS
T
σVHS

T,ref
=
(

d

dref

)2

=
(

vr

vr,ref

)−2ν

=
(

Et

Et,ref

)−ν
. (3.54)

Using this and Eqs. (3.50) and (3.46) one obtains

µ =
15
8
√
πmkB

(4kB
m

)ν
T ω

Γ(4− ν)σVHS
T,ref v

2ν
r,ref

(3.55)

with

ω = ν + 1
2 = 1

2
η + 3
η − 1 (3.56)

yielding

d =

√√√√
15
8
√

m
π

(kBTref)ω

Γ
(9

2 − ω
)
µref E

ω− 1
2

t

. (3.57)

This procedure is suitable for a pure gas. If one wants to consider a gas mixture it
may be more practical to use reference diffusion values for this procedure and one can
obtain for a two component gas mixture

d12 =
√

3
8(2kBTref)ω12

Γ
(7

2 − ω12
) √

πmr nD12,ref (2Et)ω12− 1
2
. (3.58)
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If such cross collision data is not available, one may want to use approximated values,
e.g. the averages of diameters and temperature exponents, i.e.

d12 = 1
2(d1 + d2) (3.59)

ω12 = 1
2(ω1 + ω2). (3.60)

Variable Soft Sphere (VSS) Model

The VHS model is already much more useful than the hard sphere model but one can
find that in the VHS model it is

σVHS
µ

σVHS
D

= 2
3 (3.61)

like in the hard sphere model while in the inverse power law model σIPL
µ

σIPL
D

is a function
of η and the ratio is not equal to 2

3 except for η = ∞, i.e. if the parameters of the VHS
model are matched with viscosity data, diffusion is expected to be off and vice versa.
In order to match this ratio, the variable soft sphere (VSS) model was introduced by
Koura and Matsumoto ([66]). Here, the law for the scattering angle is modified and
can be written as

χ = 2 arccos
((

b

d

) 1
α

)
. (3.62)

Since normal values for α lie in the range between 1 and 2, the scattering angle for this
model is smaller than for the VHS model and this circumstance leads to the name „soft
sphere“. Note that for α = 1 the VSS and the VHS model are equivalent. The definite
cross sections can be written as

σVSS
T = πd2 (3.63)

σVSS
µ = 2

3 Sµ πd
2 (3.64)

σVSS
D = SD πd

2 (3.65)

with the softness coefficients

Sµ = 6α
(α + 1)(α + 2) (3.66)

SD = 2
α + 1 . (3.67)
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If the model is based on the inverse power law model, the diameter d of a particle has
the same energy dependence as for the VHS model:

πd2 = const · E−νt (3.68)

with ν = 2
η−1 . For the exponent α one gets

α = 1
σVSS

D
σVSS
µ

− 1
2

(3.69)

and the viscosity and diffusion coefficients of the Chapman-Enskog theory become
modified by the respective softness factors

µVSS = µVHS

Sµ
(3.70)

DVSS = DVHS

SD
. (3.71)

VSS Model based on Lennard-Jones-Potential

So far, only models based on the simple inverse power law potential have been con-
sidered. The corresponding force is repulsive for all distances between the collision
partners. However, in reality, the force is usually composed of a long range attractive
and a short range repulsive term and the attractive term may change the scattering
behavior at very low collision energies, i.e. at low temperatures. One of the most fa-
mous models describing the interaction between neutral, non-polar molecules is the
Lennard-Jones-Potential

ΦLJ = 4εLJ

[(
dLJ

r

)12

−
(
dLJ

r

)6
]

(3.72)

(compare Fig. 3.2) where the r−6-term describes the Van-der-Waals attraction and the
r−12-term models the Pauli-repulsion due to overlapping of the electron orbitals at
short distances. From this one can expect the model to work best for noble gases.
Unfortunately, the model is very complicated to handle if one wants to calculate the
scattering angle or the collision cross section which is the reason why it is not as com-
monly used as the inverse power law potential. However, the calculations have been
performed numerically and some fitfunctions are provided in [67]. These can be used
for the easy incorporation of the Lennard-Jones potential into the VSS model. The
nominal cross section is

σLJ = πd2
LJ (3.73)
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and the exponent for the scattering angle is [66]

α = 1
σ∗D
σ∗µ
− 1

2

= 1
σLJ

D
σLJ
µ

− 1
2

(3.74)

where σ∗µ = σLJ
µ

σLJ
and σ∗D = σLJ

D
σLJ

are the reduced viscosity and diffusion cross sections. Fit
functions for the two ”reduced cross sections” S(l)(K) are given in [67] and are defined
as

S(l)(K) = 4
2− 1+(−1)l

1+l

∞∫

0

(
1− coslχ

)
β dβ. (3.75)

They are of the form

S(l)(K) =
∑

i

A
(l)
i Kn

(l)
i e−a

(l)
i K (3.76)

with l = 1 for diffusion and l = 2 for viscosity as well as K =
1
2mrv2

r
εLJ

and the respective
coefficients given in tables 3.1 and 3.2.

Table 3.1 – Coefficients for fitfunction
of S(1)(K) for Lennard-Jones potential

i A
(1)
i n

(1)
i a

(1)
i

1 1.212 -0.155 0
2 1.0782 -0.5 0.439
3 19.49 2.126 3.675
4 −4.255 · 1081 154 194
5 −1.677 · 1016 23.4 45
6 1.705 · 105 4.425 29.1

Table 3.2 – Coefficients for fitfunction
of S(2)(K) for Lennard-Jones potential
i A

(2)
i n

(2)
i a

(2)
i

1 1.3719 -0.145 0
2 1.1812 -0.789 0.19
3 2.724 -0.697 0.67742
4 -899.76 3.01 6.7461
5 3.162 · 1056 118.6 132.2
6 9.3325 · 10188 363.5 443.25
7 8.4723 · 1054 82.51 140.42
8 −5.0315 · 106 3.958 35.989

It should be mentioned that for numerical reasons it is much more convenient to write
Eq. (3.76) as

S(l)(K) =
∑

i

eln(A(l)
i )+ln(K)·n(l)

i −a
(l)
i K (3.77)

and although the S(l)(K) are called ”reduced cross sections”, starting from Eqs. (3.29)
and (3.28) and using Eq. (3.25), (3.75) and β = b

dLJ
one finds
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Figure 3.3 – Reduced cross sections and exponent of the scattering angle for the VSS
model based on the Lennard-Jones potential as a function of the reduced collision energy
K =

1
2mrv2

r
εLJ

.

σ∗D = S(1)(K) (3.78)

σ∗µ = 2
3S

(2)(K) (3.79)

These reduced cross sections together with the exponent for the scattering angle α are
shown in Fig. 3.3. For the reduced total cross section one then obtains

σ∗T = 3
2Sµ

σ∗µ = πd2

σLJ
=
(
d

dLJ

)2

(3.80)

If the collision of two different particle species is considered, one may approximate the
relevant cross collision values by

dLJ,12 = 1
2(dLJ,1 + dLJ,2) (3.81)

εLJ,12 = √
εLJ,1 · εLJ,2 (3.82)

3.3.2 Inelastic Collisions

So far only elastic collisions have been studied where the total kinetic energy of the
collision partners is conserved during the collision. This is not the case if inelastic
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collisions are considered where there is an exchange of kinetic energy Et and internal
energy Ei that may be stored in rotational or vibrational excitations. There are several
different models which describe the mechanism of energy exchange more or less real-
istically. Many of them suffer from complex calculations or problematic results. One
widely used phenomenological method is the Larsen-Borgnakke model in which only
a fraction Λ of the collisions is regarded as inelastic. This allows Λ to be used as con-
trol parameter to steer the relaxation rate. Further, it has a low computational cost. A
similar model which considers all collisions as inelastic but with a restricted energy
exchange is less efficient and was found to lead not to exact equipartition of energy for
internal and translational degrees of freedom whereas the Larsen-Borgnakke model
satisfies this requirement. Another advantage of this model is, that it redistributes en-
ergy between the molecules and internal and translational modes but otherwise does
not affect the scattering behavior, i.e. the scattering angle is not affected in inelastic col-
lisions. This feature makes it easy to combine this model with the previously discussed
collision models and therefore it will be the only model for inelastic collisions used in
this work.

Larsen-Borgnakke Model

The average over an arbitrary quantity Q of a gas that depends only on velocity can be
calculated by

Q =
∫ ∞

−∞
Qf d~v (3.83)

where f is the velocity distribution function. For a gas in equilibrium this is given by

f = β3

π
3
2
e−β

2v′2 (3.84)

where the thermal velocity ~v′ is given by the difference of the particle velocity ~v and
the stream velocity ~v0 and with β =

√
m

2kBT
being the inverse of the most probable

molecular thermal speed. For example, the average of the j-th power of the relative
velocity vr = |~v1 − ~v2| of two particles can be written as

vjr =
∫ ∞

−∞

∫ ∞

−∞
vjrf1f2 d~v1d~v2. (3.85)

If the integration variables are changed from ~v1 and ~v2 to ~vm and ~vr and the gas is in
equilibrium, this can be written as

vjr = 2(m1m2) 3
2

π(kBT )3

∫ ∞

0
v2

me
−−(m1+m2)v2

m
2kBT dvm ·

∫ ∞

0
vj+2

r e
−mrv2

r
2kBT dvr (3.86)

= 2√
π

Γ
(
j + 3

2

)(
2kBT

mr

) j
2

. (3.87)
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For j = 1 this yields vr = 2√
π

√
2kBT
mr

which is for a simple gas with the reduced mass
mr = m

2

vr = 2
√

2
π

1
β

=
√

2 · v′. (3.88)

For particles with a fixed cross section this is also the mean relative speed in a collision.
If the cross section depends on the relative speed of the colliding particles, the result
will change and one has to include σT in the calculation, e.g. for the mean collision
frequency

ν = nσTvr (3.89)

where σTvr is given by

σTvr =
√

2
π

mr

kBT

∫ ∞

0
σTv

3
r e
−mrv2

r
2kBT dvr. (3.90)

The mean of a quantity over all collisions is then given by

Q =
∫∞

0 QσTv
3
r e
−mrv2

r
2kBT dvr

∫∞
0 σTv3

r e
−mrv2r

2kBT dvr

(3.91)

=
√

2
π

(
mr

kBT

) 3
2 1
σTvr

∫ ∞

0
QσTvre

−mrv2
r

2kBT dvr. (3.92)

For example, the mean kinetic energy Et of the particles in the center of mass system
can be obtained by setting Q = 1

2mrv
2
r . Equation (3.92) can also be written in terms of

the kinetic energy to give

Q ∝
∫ ∞

0
QσT(Et)Ete

− Et
kBT dEt (3.93)

from which one can deduce the distribution function of Et through comparison with
Eq. (3.83). The result is

fEt ∝ σT(Et)Ete
− Et
kBT . (3.94)

The total internal energy of the two collision partners is

Eint = Eint,1 + Eint,2 (3.95)
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and the distribution function of the internal energy Eint,1 for a molecule with ζ internal
degrees of freedom is

fEint,1 ∝ E
ζ
2−1
int,1e

−
Eint,1
kBT . (3.96)

From this one can derive the distribution function for the total internal energy which
is

fEint ∝ Eζ−1
int e

−Eint
kBT . (3.97)

The total energy Ec in a collision is

Ec = Et + Eint. (3.98)

The probability density of Et and Eint is proportional to the product of fEt and fEint ,
i.e.

fEtfEint ∝ σT(Et)EtE
ζ−1
int e

−Et+Eint
kBT (3.99)

or using Eq. (3.98)

fEtfEint ∝ σT(Et)Et(Ec − Et)ζ−1e
− Ec
kBT . (3.100)

The effective temperature T is defined by the total collision energy Ec and hence the
exponential term may be regarded as constant. Then, the probability P of a certain
value of the translational energy is

P = CσT(Et)Et(Ec − Et)ζ−1 (3.101)

where C is a normalization constant. Sampling from this distribution is difficult, but
if the maximum value Pmax of this function can be calculated, the acceptance-rejection
method can be used. For the VHS and VSS models based on the inverse power law
potential one obtains

P

Pmax
=
(
ζ + 1

2 − ω
3
2 − ω

Et

Ec

) 3
2−ω (ζ + 1

2 − ω
ζ − 1

(
1− Et

Ec

))ζ−1

. (3.102)

With this relation, one can randomly choose a value for the post-collision translational
energy 0 ≤ E ′t ≤ Ec and compare it with a random number R ∈ [0, 1]. If R < P

Pmax
the

value for E ′t is accepted and otherwise rejected and a new value for E ′t is selected and
tested until a value is accepted. Now, the post-collision internal energy E ′int = Ec − E ′t
has to be distributed between the two molecules. This can be done in an equivalent
way to the preceding analysis using Eq. (3.96) and by noting that
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fEint,1fEint,2 = fEint,1f(Eint−Eint,1) ∝ E
ζ
2−1
int,1 (Eint − Eint,1)

ζ
2−1. (3.103)

From this one obtains for E ′int,1

P

Pmax
= 2ζ−2

(
E ′int,1

E ′int

) ζ
2−1(

1−
E ′int,1

E ′int

) ζ
2−1

. (3.104)

Finally, the internal energy for the second molecule will be given by

E ′int,2 = Eint − E ′int,1. (3.105)

So far, only collisions of one particle species have been considered. Different molecules
can have a different number of internal degrees of freedom and different collision re-
laxation rates. The different number of degrees of freedom can easily be accounted for
in the above formulas by using ζ1 for molecule 1 and ζ2 for molecule 2. The analysis
then is completely equivalent except that some singularities have to be handled which
is not important for understanding the method and therefore omitted here (see [59]).
Accounting for different relaxation rates will be described shortly. First the general
Larsen-Borgnakke distribution used in the code will be described. For that a parame-
ter Ξ is defined as the sum of the average degrees of freedom:

Ξ = ζt

2 + ζrot,1

2 + ζrot,2

2 +
∑
ζvib,1

2 +
∑
ζvib,2

2 (3.106)

where the indices 1 and 2 are for the two particle species and ζrot stands for the rota-
tional degrees of freedom while ζvib denotes the vibrational ones and ζt for the transla-
tional ones. ζt can be obtained by using the equipartition theorem

Et = ζt

2 kBT (3.107)

and Et can be calculated by setting Q = 1
2mrv

2
r in Eq. (3.92). For the VHS and VSS

model based on the inverse power law this yields

ζt

2 = 5
2 − ω12 (3.108)

and for the VSS model based on the Lennard-Jones potential it is

ζt

2 = εLJ,12

kBT

∑
i

A
(2)
i Γ

“
3+n(2)

i

”
“
εLJ,12
kBT

+a(2)
i

”3+n(2)
i

∑
i

A
(2)
i Γ

“
2+n(2)

i

”
“
εLJ,12
kBT

+a(2)
i

”2+n(2)
i

(3.109)
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with the parameters from Tab. 3.2. The rotational degrees of freedom become excited
at low temperatures, generally below a few dozen degrees Kelvin, and are usually con-
sidered fully excited. The vibrational degrees of freedom become excited only above a
few thousand degrees and in most cases cannot be considered fully excited. Therefore
they need special treatment but since the characteristic temperature for H2 is 6159 K
which is much higher than the temperatures in the ABS, the vibrational modes can be
neglected here.

Now, let Ξa be one or more terms of Eq. (3.106) and Ξb the remaining degrees of free-
dom that take part in the division of energy. Let Ea be the energy of the first group of
modes and Eb the energy of the second group. Then, the available energy for redistri-
bution is Ec = Ea + Eb and the distribution functions for the energies are

f

(
Ea

Ec

)
= f

(
Eb

Ec

)
= Γ(Ξa + Ξb)

Γ(Ξa)Γ(Ξb)

(
Ea

Ec

)Ξa−1(
Eb

Ec

)Ξb−1

. (3.110)

From that one can derive the probability of a particular value of Ea compared to the
maximum probability to be used with the acceptance-rejection method:

P

Pmax
=
(

Ξa + Ξb − 2
Ξa − 1

Ea

Ec

)Ξa−1(Ξa + Ξb − 2
Ξb − 1

(
1− Ea

Ec

))Ξb−1

. (3.111)

This general Larsen-Borgnakke distribution contains all previous distributions as spe-
cial cases and is easier to handle. It is also useful if one wants to consider differ-
ent relaxation rates for different gas components. The relaxation rate in the Larsen-
Borgnakke model is controlled via the fraction Λ of inelastic collisions. Therefore dif-
ferent relaxation rates are only possible with different Λ’s for different particle species.
However, if the whole collision is considered as inelastic, i.e. if the energy is redis-
tributed between translational and internal degrees of freedom of both molecules, this
formalism is not possible in cross-collisions. In order to resolve this problem, the en-
ergy can get subsequently distributed between translational and internal degrees of
freedom for molecule i if a random number Ri ∈ [0, 1] is bigger than Λi. It was also
shown in [59] that this method leads to the expected result whereas the energy dis-
tribution between both molecules at once only agrees qualitatively but with another
relaxation rate.

Now, only the parameters Λi have to be determined. Usually the rate of approach to
equilibrium of the internal energy of a gas is modeled by the following rate equation

dEint

dt
= Eint(Ttr)− Eint(t)

τi
(3.112)
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whereEint(Ttr) = ζ
2kBTtr

is the instantaneous equilibrium internal energy with ζ internal
degrees of freedom and the time-dependent translational temperature Ttr(t). τi is the
characteristic relaxation time of the system. It is customary to express τi as

τi = Ziτc (3.113)

where τc is the mean collision time, which is a function of Ttr(t) as well. The collision
relaxation number Zi is the average number of collisions per molecule that is necessary
to bring the gas back to equilibrium. Then, the fraction of inelastic collisions in the
Larsen-Borgnakke model can be written as

Λ = τc

τi
= 1
Zi
. (3.114)

Zi is also dependent on the temperature and generally increases with temperature.
In this work, hydrogen is simulated and this gas has quite unusual properties since
the molecules are so light. This leads to a very low moment of inertia I which in
turn leads to a high characteristic rotational temperature Trot,c = h̄2

2kBI
. For H2 this

is 85.4 K, for D2 it is 43 K and it reduces further with mass and yields 0.35 K for Cl2.
Therefore, the energy levels are widely spaced in hydrogen and only the lowest en-
ergy levels are excited at room temperature. For temperatures below the characteristic
temperature the molecules behave like atoms, i.e. they are mainly in the rotational
ground state and do not take part in the energy redistribution. Calculations in [68]
of Zi for para-hydrogen show a steep increase of Zi for temperatures below 300 K
and a gradual increase for higher temperatures. This general behavior is expected
for other molecules as well, but with the minimum shifted to much lower tempera-
tures and possibly below the boiling point. It was further found that Zi depends on
the distance from equilibrium and the direction to equilibrium. Generally it holds
Zi(∆T < 0) > Zi(∆T > 0) with ∆T = Trot,0 − Ttr,0, i.e. the temperature difference
between internal and translational degrees of freedom at t = 0. Additionally, higher
rotational excitation levels decay slower than lower ones, which leads to an energy
level distribution that is not the Boltzmann distribution and makes the system depend
on its history. This also has an effect on the measured value that therefore depends on
the measurement method. Measured values, e.g. in [69] and [70] agree well with the
calculations of [68] but others like [71] which agrees qualitatively but with lower Zi
and a higher temperature for the minimum, differ significantly. Minimum values for
H2 at around 300 K for gas expansion are around Zi = 300 and increase with temper-
ature to Zi(T ≈ 1000 K) ≈ 500. For temperatures below room temperature, the value
increases rapidly to around Zi(T ≈ 100 K) ≈ 700. D2 needs only about half that num-
ber of collisions to relax and HD needs only a tenth of the H2 value. These are still very
high numbers for the current simulation and no significant effect can be expected from
inelastic collisions, i.e. the rotational temperature will stay fixed after the nozzle which
was also found in [72]. In simulations where the effects of rotational relaxation matter
it was found in [73] that a suitably chosen constant Zi can yield relatively good results
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in DSMC calculations for nitrogen where Zi is about two orders of magnitude smaller
than for hydrogen and already a simple model for the temperature dependence of Zi
can drastically improve the results.

3.3.3 Selection of Collision Partners in DSMC Calculations

As mentioned above, there exist various collision selection mechanisms to reduce the
mean collision distance. Here, only the method used in the DSMC94 method will be
described. The probability P of two simulated particles that represent FN real particles
to collide in a cell of volume Vc is proportional to the volume swept over by their total
cross section moving at the relative speed vr of the two particles:

P = FNσTvr∆t
Vc

. (3.115)

Testing all possible collision pairs in a cell is very inefficient for a larger number of par-
ticles per cell. To circumvent this problem, Bird proposed the no-time counter (NTC)
method [74]. In this method, the number Ns of selected collision pairs is calculated
before the selection and is

Ns = 1
2
NNFN(σTvr)max∆t

Vc
(3.116)

where N is the time averaged number of simulated particles per cell and (σTvr)max is
the maximum value of σTvr in a cell. Using this value, one can also write the maximum
probability of a collision between two particles in the cell as

Pmax = FN(σTvr)max∆t
Vc

. (3.117)

Using this, Ns possible collision pairs are selected and the collision is performed with
probability

P = σTvr

(σTvr)max
. (3.118)

This method is linear in Nc and since (σTvr)max occurs in the numerator of Eq. (3.116)
and in the denominator of Eq. (3.118) the result does not depend on its exact value.
The only drawback of this method is, that the values for (σTvr)max have to be stored
for every cell and should be updated during the simulation. If subcells are used for
the selection of collision pairs, the pairs are first selected from within one subcell but if
there is only one particle in a subcell, a second collision partner will be chosen either
from neighboring subcells or from the whole cell.
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4 OpenFOAM

The whole work is based on OpenFOAM version 1.7.1. This is a fully parallelized open
source C++ library which is freely available under the GNU general public license from
[75]. It is made for Linux operating systems and installation instructions can be found
on the same web page1. The source pack is delivered with a user manual [76] and a
short programmer’s guide [77]. Additional information can be found at [78].

OpenFOAM, previously FOAM for Field Operation And Manipulation, was devel-
oped as a solver for computational continuum mechanics problems but could be used
as a solver for all systems of time-dependent partial differential equations [79], [80].
It makes heavy use of the object oriented programming features of C++ to make code
fragments reusable, hide low level code from top level applications and to provide
easy interfaces for new developments. It also provides a metalanguage for the user
to provide partial differential equations in an intuitive way to the program. This de-
sign around a common central infrastructure with simple interfaces as well as the open
source nature of the code led to the development of many different additional solvers
and features over time. Beginning with OpenFOAM version 1.6 a solver for DSMC
problems called dsmcFoam implementing Birds DSMC94 method is included and suc-
cessful testing is reported in [81].

4.1 Description of the Common Infrastructure

OpenFOAM makes heavy use of the full functionality of C++. The program is centered
around a generic core that provides a common infrastructure which can be interfaced
by the various solvers. The core itself consists of many classes with a complicated
inheritance structure and intensive use of templates. The low level structure is com-
pletely transparent for the top levels and in general does not need to be considered by
an application programmer. In this section some of the frequently used parts of the
OpenFOAM infrastructure shall be explained and some terminology is introduced.

1Note that as a basis for the further work the source pack has to be installed which requires the additional
Linux packages flex, cmake and binutils-dev. The recommended compiler version is gcc-4.4.x but with
some additional work (including many "this->" statements in the source code and linking additional
libraries) it was also compiled successfully with gcc-4.7.1 under OpenSuse 12.2.
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4.1.1 Mesh

One of the most important preconditions for numerically solving a system of partial
differential equations or to perform a DSMC calculation is a mesh. This term describes
the entity formed by all points, lines, faces, cells and groups thereof and splits the
computational volume into small cells. An example is shown in Fig. 4.2. The mesh in
OpenFOAM can consist of arbitrary convex polyhedrons and is unstructured, i.e. the
cells are not ordered such that an easy scheme to find the neighbors of a cell does not
exists. The most basic representation in OpenFOAM is as follows: First, there is a list
of points (vectors) defining the position of every corner of every mesh cell. Then, there
is a list of cell faces (compare Fig. 4.1). Every face is in turn represented by an ordered
list of all its corner points which are referenced by the index in the list of points. After
that, a similar list can be created to define the cells as a list of cell faces. Now, the
computational domain is filled by cells, but for the handling of the mesh additional
lists are necessary. One list indicates for every cell face by which cell it is owned. This
can be only one cell for every face and the ordering of the points is such that the face
normal calculated from them will point outwards of the owner cell. For all internal faces
there is another list which gives the list index of the neighbor cell. All boundary faces
can be grouped to patches and will appear in the faces list in an ordered way after all
the internal faces. For the boundary patches certain types can be defined determining
their behaviour in the computation like wall or symmetryPlane. All this information
will be stored in a folder polyMesh (compare figure B.1) in which the file boundary is the
only one that the user has to modify from time to time in order to adapt the boundary
conditions. Note that almost arbitrary boundary planes can be combined to a patch. In
figure 4.2 the front side could form a patch, but also e.g. the front and back together or
even all sides together. Except for some physical patch types like cyclic or wedge, there
are no restrictions of the grouping.

Figure 4.1 – File
structure for the
mesh in OpenFOAM,
the structure for the
full DSMC case is
shown in Fig. B.1

Figure 4.2 – Example of a
simple Delauny mesh

Figure 4.3 – Example of a
Voronoi mesh created with
polyDualMesh from the
mesh in Fig. 4.2.
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The creation of such a complicated set of lists cannot be done by hand. Therefore
OpenFOAM provides a utility called blockMesh to generate simple meshes. As users
might want to handle more complicated geometries or use geometries created with
CAD tools, OpenFOAM also offers tools to convert various other mesh formats into the
native format. Additionally, the program offers many tools to handle and manipulate
meshes and calculate basic properties like cell centers, cell volumes and face normal
vectors whose magnitude is giving the face area. There is even an application (poly-
DualMesh) to calculate the dual of a mesh creating a Voronoi mesh (compare Fig. 4.3)
from a Delauny mesh. Voronoi meshes are found to have very favorable properties for
DSMC calculations [82]. The mesh in OpenFOAM can also be changed during runtime
allowing for moving parts in the simulation.

There is further the possibility to select parts of a mesh with the help of so called
topoSetSources. This is a base class for classes like cylinderToCell, boxToCell etc. which
allow to select cells or faces that have their center within a simple geometric entity that
can be described by a few parameters in a dictionary (Sec. 4.1.3).

OpenFOAM also offers tools to decompose the mesh, i.e. to split it into smaller parts
that are each assigned to a processor for separate calculations. Simple algorithms for
decomposition are directly implemented in OpenFOAM but there is also more complex
third party software delivered together with OpenFOAM like Scotch and Metis. These
algorithms are interfaced with OpenFOAM and can be called via the configuration file
decomposeParDict.

4.1.2 Parallelization

OpenFOAM is fully parallelized. The method used for all solvers is domain decompo-
sition, meaning that the computational domain is split between different processors.
The inter-processor communication is handled by the Message Passing Interface (MPI).
This allows one to spread calculations over an arbitrary number of processors within
one machine or even over several computers. The parallel performance of two solvers
was tested in [83] and it was found that the performance is reasonable up to a thousand
tasks on an Intel NUMA architecture. Above that a bottleneck in core linear algebra
libraries exists, which however may not affect the DSMC solver that was not tested. As
usual, OpenFOAM provides all the necessary tools to decompose, handle and recom-
bine calculations.

4.1.3 Data Types

OpenFOAM defines all basic data types by its own. For example, the C++ type int
is called label while double (or float, depending on the settings) is called scalar. This is
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done to provide the data types with a set of suitable operators, define some useful con-
stants and provide some additional functionality like a function inv() for calculating the
inverse. Most important for all data types is a common framework for input/output
(I/O) operations. Starting from these simple data types, more and more complex types
are defined. Scalars are extended to vectors and tensors which in turn are combined
with a dimension set to allow dimension checking in calculations.

A very important data type, the GeometricField, is created through a rather complicated
inheritance structure. It consists of several lists, one for the internal field which holds
a field value for every mesh cell, and a list of boundary patches each holding a list
of field values for every cell face. Since the list class is a template, the GeometricField
is one as well and hence can hold different data types like scalars, vectors or tensors.
Several template specializations are explicitly defined in the program and are called
volScalarField, volVectorField and volTensorField. The GeometricField class also defines
operators for handling the field, such that mathematical operations can be used for
fields and functions for reading and writing fields from and to files are present as
well.

Another important data type is the dictionary. Like in a real dictionary, it has two
columns. One for the name of the entry and one for the data. But opposed to real
dictionaries, the data does not have to be a word as well but can be of rather arbitrary
type. Together with its I/O-operations this makes the dictionary a perfect class to be
used in configuration files. For example, a dictionary entry could be

velocity (10 0 0);

Configuration files built from such dictionary entries are much easier to read and write
by the user and no special order of the entries has to be maintained as the underlying
hash table offers efficient lookup functions. Further, being of arbitrary data type, the
data field of an entry can be of type dictionary as well. This allows to build hierarchies of
dictionaries and subdictionaries which can be used to structure data for better readability
and to use various keywords in several hierarchy levels.

4.1.4 Object Registries

OpenFOAM uses a hierarchical database were various objects like fields register them-
selves. This is used as a standardized interface to manage the communication between
various solvers and their data. At the top of this database called the objectRegistry is
always an instance of the Time class, usually called runTime. The mesh class registers
itself at a sublevel of runTime and the fields are registered as sublevels of the mesh. The
objectRegistry is complemented by the classes IOobject and regIOobject. IOobject is a class
that provides standardized input/output support, as well as giving access to runTime.

52



regIOobject automatically manages the registration and deregistration of objects to the
objectRegistry. The objectRegistry class is derived from regIOobject making it a subgroup
of regIOobject and allowing for the hierarchical structure which is very useful for writ-
ing. Usually, the solver data has to be written to file at some time, which is triggered
by runTime. This class tells all its registered objects to write themselves to files. If the
registered object is a database itself, it cycles through all its registered objects as well
to tell them to write themselves. Reading from file is usually performed only when
needed. Then the object registry tells the solver where to look for the file and if it was
modified, i.e. if it really has to be read again.

4.1.5 Virtual Constructors
C++ allows to call member functions of an object through its base class. These functions
are called virtual functions. However, for constructors this mechanism isn’t allowed
although it could be of great use. For example, it would allow to create a derived class
by creating the parent class with a certain parameter. Such a behaviour would in turn
allow to build a common interface to all child classes were new models can easily be
added at a later time. This is exactly what OpenFOAM wants to do and so it uses a
workaround which is called runTimeSelection mechanism in the program and which
is generally known as virtual constructors. Much of the implementation is hidden in
a set of macros that define a hash table with pointers to the various constructors of
the child classes before the execution of the program. Then, the correct constructor
can be selected via its typeName at runtime. An example for the usage of this concept
in the DSMC solver is the selection of a BinaryCollisionModel through a configuration
file. In this case, the runTimeSelection mechanism also allows the user to easily add
new BinaryCollisionModels without taking care of the interface to the calling class. Only
model specific functions like collide() have to be implemented.

4.1.6 Pre- and Postprocessing
Before a run can be started, a lot of preparation has to be done and after the run has
finished, the results should be processed in some way to extract the relevant data.
OpenFOAM offers various tools for pre- and postprocessing. For example, there are
tools for mesh import or creation, mesh manipulation, field initialization, case decom-
position and initialization as pre-processing tools. The main tool for postprocessing is
ParaView [84], a third party visualization and data analysis software to which Open-
FOAM delivers an interface. There are also tools to convert the results to other file
formats used by some common third party programs. Additionally there is a possibil-
ity to load functions from certain libraries through the configuration file controlDict
to be executed at certain time steps during the calculation. One example is the function
fieldAverage that calculates time averages of the specified fields. Note that not all tools
are written in C++. Some, like foamLog that extracts relevant data from a logfile, are
shell scripts that are delivered together with OpenFOAM. The required file structure
of an executable case together with some description can be found in appendix B.
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4.2 Description of the Solver dsmcFoam

The solver for DSMC calculations is called dsmcFoam in OpenFOAM. Besides the
classes from the common infrastructure, there are only a few new special ones for the
solver that are mainly derived from some generic parent class. The two most impor-
tant ones are the template classes DsmcParcel<ParcelType> and DsmcCloud<ParcelType>.
Additionally, there are the templated base classes BinaryCollisionModel<CloudType>,
InflowBoundaryModel<CloudType> and WallInteractionModel<CloudType> together with
their specific models like e.g. VariableHardSphere for the binary collisions. These classes
will be described in the following section while some helper classes will not be ex-
plained in detail. As a convention, private or protected member variables of classes
are marked by an underscore at the end of the variable name in OpenFOAM. This un-
derscore will be omitted in the following such that variableName_ will be the same as
variableName. Further, template arguments will be omitted from time to time as well
as function arguments to increase readability. Finally, all setter and getter functions as
well as constructors and destructors are never shown together with most operators.

4.2.1 Particles

Every simulated particle in the program is represented as an instance of a dsmcParcel
which is a child class and a type definition of DsmcParcel<ParcelType> specializing the
template to DsmcParcel<dsmcParcel>, compare Fig. 4.4. This complicated design with
the template parameter being the class itself is used for maximal efficiency in some
function calls avoiding virtual functions by using static casts. All the functionality of
the dsmcParcel is already implemented in the parent class DsmcParcel which in turn
inherits most of its functionality from its parent class Particle from the OpenFOAM
core. The Particle class handles the sorting of particles into cells, does the tracking
along straight lines to cell faces, and handles interactions with different patch types. For
this, it needs the attributes shown in the UML diagram below, indicating for example
at which position and in which cell the particle is, at which face it is, and to which
processor it is assigned. The DsmcParcel class overloads some of the patch interaction
functions and has a function move(), which uses the tracking functions from its parent
class to move the particle for a certain time interval. As additional attributes it holds
the velocity, internal energy, and a label indicating the particle type which is equal to the
position in the typeIdList in the configuration file dsmcProperties. The other classes
shown on the right side of Fig. 4.4 are helper classes. iNew is used to read-construct
particles when they are transferred from one processor to another. trackData is a class
that provides data to some tracking functions and constantProperties holds the constant
properties of a particle like its mass and its diameter d. This class is only structurally
a member of DsmcParcel but is not instantiated for every dsmcParcel. In fact, it is only
instantiated once for every particle type by the DsmcCloud.
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IDLList::link
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Particle
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hitWallPatch()

hitProcessorPatch()
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write()
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hitWallPatch()
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...
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≡ DsmcParcel<dsmcParcel>

. . .

trackData
cloud: Cloud<ParticleType>
switchProcessor: bool
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ParticleType

trackData

cloud: DsmcCloud<ParcelType>

ParcelType
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cloud
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d

internalDegreesOfFreedom
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UML Notation

A B
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an A (with addi-
tional attributes)

A B
composition, A
owns B, B cannot
exist without A

A B
aggregation, A has
an attribute B, B ex-
ists indepently of A

Figure 4.4 – Simplified UML diagram for particles in OpenFOAM; All class attributes
are shown while several member functions are omitted. The arrows indicate inheritance
and the classes upstream of Particle<ParticleType> are omitted. Every particle has as an
attribute the class trackData for which the data type of the attributes is shown for clarifi-
cation. All classes above the dashed red line belong to the OpenFOAM core and are used
by other solvers as well while the classes below the red line are specific to the dsmcFoam
solver.
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4.2.2 DsmcCloud

The second major class of the solver is the class DsmcCloud. From the most basic point
of view it is a list of all particles, which is indicated in the UML diagram (Fig. 4.5)
by the inheritance from IDLList and the inheritance of DsmcParcel from IDLList::link.
But the cloud is much more. It is the first solver specific class that gets instantiated
by the program and holds all the data of the solver, either directly by its own or indi-
rectly via member classes. It also performs the whole computation within its evolve()
function. Before, the cloud may have to be initialized, i.e. the mesh cells have to be
filled with simulated particles with properties such that the initial conditions specified
by the user are obeyed. This task is done by the initialise() function. Then, particles
have to be added at inflow patches, which can be done according to different mod-
els. Like BinaryCollisionsModels and WallInteractionModels, the InflowBoundaryModels
are implemented with the runTimeSelection mechanism, where the DsmcCloud holds only
a (auto-)pointer to the abstract base class of the submodel like in Fig. 4.6. The correct
model to be used during the calculation is chosen by the user via the configuration file
dsmcProperties. After the evolve() function has called the suitable inflow() function,
it calls the move() function from the parent class Cloud. This function calls the move()
function of every particle and handles the assignment of the particles to the correct
processor. After that, the function collisions() is called to select collision partners within
(sub-)cells of the mesh and perform collisions according to the chosen BinaryCollision-
Model. The last step in the loop is to calculate the new field properties from the particle
properties, which is done by the function calculateFieldProperties(). The loop around
evolve() is steered during run time by the entries of the file controlDict.

There are several member functions of DsmcCloud that calculate some macroscopic
properties of the system, like massInjected(), and functions that calculate average prop-
erties of particles from the Maxwell distribution. The functions equipartitionLinearVeloc-
ity() and equipartitionInternalEnergy() create a random sample value from the suitable
distribution of the velocity and internal energy respectively, using the random number
generator hold by the class attribute rndGen. A list of constantProperties for each parti-
cle type is stored in constProps and the DsmcCloud holds all fields as member variables.
Finally, the function autoMap() of the parent class Cloud is used to sort the particles into
the correct mesh cell after the mesh has changed. This parent class also implements
the main input/output functions. The second parent class of DsmcCloud, namely Dsm-
cBaseCloud, only disallows standard bitwise copy construction and bitwise assignment
by declaring these operations as private.
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Figure 4.5 – Simplified UML diagram for clouds in OpenFOAM; All class attributes are
shown while several member functions are omitted, e.g. all setter and getter functions.
The arrows indicate inheritance and the classes upstream of IDLList<ParticleType> and
objectRegistry are omitted. The classes cloud and DsmcBaseCloud are only used to dis-
allow bitwise copy operations and copy construction. All classes left of the dashed red line
belong to the OpenFOAM core and are used by other solvers as well while the classes right
to the red line are specific to the dsmcFoam solver.
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<<static>> New()
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Figure 4.6 – Simplified UML diagram for BinaryCollisionModels in OpenFOAM; All
class attributes are shown while all setter and getter functions are omitted. The arrows
indicate inheritance.
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5 Changes to the Standard DSMC Solver

In the standard OpenFoam DSMC solver dsmcFoam it is not possible to simulate pres-
sure driven flows. One has only the option between the two inflow models FreeStream
and NoInflow. For pressure driven flows and as basis for all further work the extended
solver dsmcModFoam is used, which is available online ([85]). In this code, the scalar
fields rhoN and rhoM are changed to volVectorFields, to allow three particle species
to be placed anywhere in arbitrary quantities in the simulated region at the begin-
ning. Each element of the vector represents the particle density of a certain particle
species. The new scalar fields spaceAverageRhoN and spaceAverageRhoM take the role
of the old fields rhoN and rhoM respectively as the average (particle) density in a cell.
For the setup of a simulation it is required to write the files 0/rhoN and 0/rhoM. The
files 0/spaceAverageRhoN and 0/spaceAverageRhoM can be created with the new util-
ity SpaceAverageRhoN. It has to be taken into account that the initialization procedure
uses the boundary values for the particle density given in the file 0/rhoN but for the
interior of the domain the values from the dictionary system/dsmcInitialiseDict are
used. So these values should be set to compatible values.

In this work, the new solver dsmcSpinModFoam was created which is an extended ver-
sion of the dsmcModFoam solver. The differences between dsmcModFoam and the origi-
nal solver dsmcFoam are relatively small and all the UML diagrams in Sec. 4.2 are valid
for dsmcModFoam as well. The current work considerably extends the functionality of
the solver. Several new classes are added and many existing functions are extended or
overloaded.

5.1 Magnetic Forces

An important part of this thesis was the integration of magnetic fields into the simu-
lation. The force ~F on a neutral particle with magnetic moment ~µ can be calculated
according to Eq. (2.11), where the gradient of the field has to be calculated according
to Eq. (2.16). Hence, one needs hyperfine states in the simulation, magnetic fields, and
a description of the region where they are active, i.e. nonzero. If more than one force is
acting on a particle, one needs a calculation of the combined force and the effect on the
particle and last but not least, some kind of output and a calculation of the polarization
in homogeneous magnetic fields to see and check the effects of magnetic fields. In this
section the various parts of the implementation of magnetic fields and their effects will
be described together with some problems and their solutions that occurred during the
work.
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5.1.1 Hyperfine States

Every particle needs variables for describing its hyperfine state. There are several pos-
sibilities of describing a certain state, e.g. with one variable for the number of the state
or with two variables for electron and nuclear spin. But since an analytic description
of the hyperfine splitting energy is only possible for S = 1/2 and therefore the whole
simulation is restricted to this case, a slightly different approach was chosen. A first
variable whichHalf with values 1 or 2 describes the upper and lower set of states in the
Breit-Rabi-Diagram or, correspondingly, the electron spin state. The second variable
whichState with values 1 . . . 2I + 1 basically matches the index j in Chap. 2.1. The only
difference is that j has a range from 2 to 2I + 1 and the additional state whichState = 1
describes the pure state such that one has the following relationship between the used
labeling and the standard labeling of hyperfine states:

|whichHalf, whichState〉=




|1,whichState〉 = |whichState〉 = |1〉, |2〉
|2,whichState = 1〉 = |2I + 2〉 = |3〉
|2,whichState > 1〉 = |4(I + 1)− whichState〉 = |4〉

(5.1)
where the last column is specifically for hydrogen (nuclear spin-1/2 particles). This
choice allows for a particular easy force calculation and limits the use of case-by-case
analysis but requires twice as much memory space. However, the additional memory
usage of a few MB at maximum might well be outweighed by a possible speedup of
the calculation.

5.1.2 “Field” of Hyperfine States

For calculating a polarization value values of the relative population numbers of each
hyperfine state are necessary. On the finite volume mesh, this can be defined for every
cell as the number of particles of a certain species in a certain hyperfine state divided
by the total particle number of this species within this particular cell. In the source
code a volTensorField structure was chosen to hold these values. There is one field for
every particle type with names hfsPopulationNumbers0 to hfsPopulationNumbers2 where
the last number is the typeId of the particle type, i.e. the position of the particle species
in the typeIdList in the file dsmcPropertiesDict. The number for hyperfine state i is
saved in the tensor element i when the tensor is represented as a one-dimensional list.
This limits the maximum number of hyperfine states per particle to 9, i.e. I ≤ 3

2 which is
sufficient for our purpose. The clear advantage of this choice is that the standard I/O-
functions for fields and the postprocessing including field averaging and interfacing
with ParaView can be used.

The time averaging of the three fields could be done in the standard way, i.e. calcu-
lating the average of a number of fields calculated for different times. However, this
method has the problem that there is no guarantee that there are particles within each
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owner: CloudType&
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declareRunTimeSelectionTable()
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BField()

transJacobiB()

activeCells()
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Figure 5.1 – UML diagram for ForceModels in dsmcSpinModFoam; All class attributes
are shown while setter and getter functions are omitted. The arrows indicate inheritance.

cell at every time step, i.e. the field value can be undefined from time to time. Simply
setting the undefined values to zero may create serious artifacts if they are too numer-
ous. That’s why another method was chosen. During the averaging time, the place in
the tensor for a certain hyperfine state will just hold the sum of particles in this partic-
ular hyperfine state during the time interval. Averaging then means just dividing by
the sum over all components of the tensor. If there were always particles in every cell,
these two methods would be equivalent, but so the second one has a clear advantage
in avoiding artifacts by increasing the likelihood that there is a particle in the cell by a
factor equivalent to the number of time steps over which the average stretches. This
alternative averaging method for these three fields requires some small changes to the
controlDict as can be seen in appendix D which are explained in appendix B.

5.1.3 Magnetic Fields
For the calculation of the force on a particle a description of the magnetic field at the
position of the particle is a prerequisite. Possible are an analytical or a numerical de-
scription. The latter one has the advantage that very complex fields can be specified
but the major disadvantages are that it can only be specified at certain grid points and
has to be interpolated in between and that it has to be recalculated for every change
of the geometry. Therefore, for standard magnets the analytical description is more
favorable. It is implemented with the runtime selection mechanism in a similar way as
other submodels, for example the binary collision models, see Fig. 5.1.
The base class ForceModel declares three abstract functions which have to be defined by
every child class. Every such child class represents a certain type of magnet that has to

61



return the B field at a specified location, the transpose of the Jacobi matrix and a set of
mesh cells where the field is active, i.e. nonzero. All values should be defined in a local
coordinate system of the magnet such that the magnet can be placed anywhere in the
computational domain and in arbitrary orientations. This requires global coordinates
transformed to local ones in the calculation of field properties at a particles position
which is a combination of a translation and a rotation. The whole transformation is
performed by the function transformToLocal() where the rotational part is described by
a quaternion, a data type inherent to OpenFOAM. The quaternion can be created with
a vector for the rotation axis v and a scalar w = cos

(
θ
2

)
where θ is the rotation angle.

These values can be obtained when the magnet axis is known and it is assumed that
this axis defines the x-axis of the local coordinate system. The axis ~a is defined by two
points, origin and P2. When ~a = (a1, a2, a3) is normalized, it is

v = ê1 × â = (0,−a3, a2) (5.2)

w = cos
(
θ

2

)
=
√

1
2(1 + cos(θ)) =

√
1
2(1 + ê1 · â) =

√
1
2(1 + a1). (5.3)

These values, together with the transformation, are the same for all magnets and hence
are located in the base class ForceModel.

The types, dimensions and orientations of magnets can be defined as a dictionary in the
file dsmcProperties. Additionally, as for the particle properties a list of the names of
all magnets has to be provided, called forceIdList. The properties for every magnet
will then be stored in a class forceProperties (compare Fig. 5.2) that can hold several
parameters of which the following are compulsory

type Magnet type, e.g. MagneticCylindricalSextupole

origin Local origin given in global coordinates

P2 Second point given in global coordinates, used to define magnet axis and size

The other parameters in the forceProperties class were originally thought for tempered
sextupole magnets were r1Origin is the inner radius of the magnet at the origin, r1End
is the inner radius at P2 and r2 is the outer radius. B0 is the pole tip field and vectorB0
was later introduced to describe the B field of homogeneous magnets. The angle phi,
measured in degrees according to the right hand rule, defines a rotation of the magnet
around its axis. Although the parameter names may not be suggestive for other mag-
net geometries, they are currently used for them as well. Which parameters are needed
and their meaning can be found in the comments of the source code.

At initialization of the extended dsmcCloud class, a list of forceProperties of all magnets
will be created as well as a list of pointers to all instances of magnets. When all mag-
nets are initialized, a lookup table called forceActiveList will be created by the function
makeForceActiveList() which shows for every mesh cell which magnet has a nonzero
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Figure 5.2 – UML diagram for the dsmcCloud in dsmcSpinModFoam; Class attributes
are shown with their type and setter and getter functions are omitted. The diagram is
meant as an extension to the diagram of the dsmcCloud class from the standard dsmc-
Foam solver in Fig. 4.5. Attributes and functions printed in red are new in dsmcSpin-
ModFoam as well as complete classes of which only the class name is printed red. The
class dsmcPatchCloud will be used for particles counting the wall collisions, compare
Sec. 5.4.
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field value in this cell. The table has one column more than there are magnets. In
this last column it is indicated if any force is active in this particular cell, which helps
avoiding loops over all magnets in cases where there is no field in a cell. For setting
the list, the function makeForceActiveList() cycles through all magnet instances and calls
their function activeCells(). In turn, these functions make use of classes derived from
topoSetSource like e.g. cylinderToCell provided by OpenFOAM to obtain all cells whose
cell center is within a simple geometric volume with only a few parameters saved in
the corresponding forceProperties.

Calculating the B field for a single magnet is straightforward. One has only to remem-
ber to transform the vector back to global coordinates before it is returned. For the
Jacobi matrix the situation is a bit more involved because the simplified analytical de-
scriptions specifies the field only inside the magnet and neglects fringe fields. This
causes a step in the B field which entails a gradient in the form of the Delta function. A
small argument shows, that although the time spent crossing this surface is infinitely
small, the effect of this step cannot be neglected in general. Consider the force on a
particle caused by the field gradient (compare with Eq. (2.11))

~F = −µ∇| ~B| = −∇E = m~̇v. (5.4)

The change in the B field leads to a change in potential energy equal to the energy shift
of the hyperfine states (Eq. (2.5)) that in turn leads to a change in velocity. Because
∇| ~B| is normal to the boundary surface, only the velocity component v⊥ normal to
the surface will be changed. The velocity change ∆v⊥ can be computed from energy
conservation to be

∆v⊥ =
√
v2

1⊥ −
2∆E
m
− v1⊥ (5.5)

where v1⊥ is the velocity normal to the field step outside of the magnetic field. In
most cases the effect is very small which shows that the fringe fields shouldn’t affect
the hyperfine state separation efficiencies of the magnets. Nonetheless, this effect is
realized in the program and is implemented in the function DsmcParcel::hitFace() where
it is checked whether a field is active on one side of a cell face but not on the other. If
appropriate, the velocity correction is applied with the normal direction of the field
taken as the normal vector of the cell face. In cases where this effect is big enough
to have any effect, one should therefore build the geometry and select the cells with
magnetic field appropriately.

5.1.4 Particle Motion in Magnetic Fields

In the original code of the dsmcFoam solver, the translation of the particles is performed
as follows: From the current position and velocity and the time step deltaT (= ∆tcD)
provided in the file controlDict the next position is calculated by ~xn+1 = ~xn + ~vn ∆tcD
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where ~xn and ~vn may be restricted to a certain plane depending on the dimensionality
of the simulation. The connection line between the current position ~xn and the position
at the end of the time step ~xn+1 is searched for intersections with the cell faces of the
mesh (see Sec. 5.1.5). If there is no intersection, the particle is moved to ~xn+1 otherwise
it is moved to the first cell face along the track. On internal faces the particle is simply
moved to the next cell, i.e. its variable celli is changed. On processor boundaries the
particle is appended to a list which shows which particle has to be transferred to which
processor. If the particle hits a wall patch, the velocity and possibly other particle
properties like the internal energy are changed according to a wallInteractionModel. For
other patches like inlets or symmetry patches, there are specific actions as well. At all
face hits the particle attribute stepFraction holding the fraction of the current time step
completed, is set. After transferring the marked particles to the new processors, the
procedure is repeated with a reduced time step dt = ∆tcD(1 − stepFraction) until all
particles have stepFraction = 1. Afterwards the collisions are performed and the whole
procedure is repeated.

If magnetic fields are allowed, the particles will generally be accelerated and move
along curved tracks. Hence, calculating ~xn+1 is not as easy as for the case without
forces. The equation of motion describes the particle behaviour, but for arbitrary fields
there is no analytical solution. However, a numerical solution can always be found.
The question is, which numerical method is suitable by means of accuracy, stability
and computational effort.

Only single step methods are useful since there is no information of the previous time
steps at the time of calculation of ~xn+1. Another restriction is to use only explicit meth-
ods since solving a nonlinear system of equations is computationally costly. So it is
natural to consider the simplest explicit scheme, namely the Euler method, first. The
equation of motion can be written in the form

~̇x = ~v (5.6)

~̇v =
~F

m
.

The standard Euler method is to approximate the solution by

~x(t+ ∆t) = ~x(t) + ~v(t)∆t (5.7)

~v(t+ ∆t) = ~v(t) + F (~x(t))
m

∆t.

This method converges in order O(∆t) but it can be numerically unstable for some
(stiff) problems and it is not symplectic meaning it does not preserve energy. Only
a small variation of the method is needed to overcome the problems with instability
and symplecticity. The new method is called Semi-implicit Euler method and the only
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change versus the standard Euler method is, that it uses already the newly calculated
position in the calculation of the new velocity:

~x(t+ ∆t) = ~x(t) + ~v(t)∆t (5.8)

~v(t+ ∆t) = ~v(t) + F (~x(t+ ∆t))
m

∆t.

This method still has convergence order one. The question arises if this is sufficient
for a general DSMC simulation or whether a higher order scheme like the fourth order
Runge-Kutta has to be used. Since the time step ∆t =: ∆tODE used for the solution
will be the same as ∆tcD which should be much smaller than the mean collision time
∆tCol for the particles, there is no trivial answer. But one can estimate the two values
of ∆tODE and ∆tCol: For the VHS and VSS collision model the mean collision rate can
be written as ([59])

ν0 = nσT,ref v
2ω−1
r,ref

2√
π

Γ
(

5
2 − ω

)(
2kBT

mr

)1−ω

(5.9)

= 5(α + 1)(α + 2)
α(5− 2ω)(7− 2ω)

p

µ
(5.10)

= 1
∆tCol

(5.11)

where σT,ref and vr,ref are reference values for the collision cross section and the relative
velocity of the collision partners. mr = m1m2

m1+m2
is the reduced mass while ω and α are

parameters describing the dependence of the particle diameter on the relative velocity
and the scattering angle on the impact parameter b respectively as defined in Eqs. (3.56)
and (3.62). µ is the coefficient of viscosity at reference conditions. The important point
is the linear dependence on the pressure p and the weak dependence on the tempera-
ture. For common ω between 0.65 and 1.1 the maximal change in collision frequency in
the temperature range from 10 K to 10 000 K is one order of magnitude, while for ω = 1
the collision rate is independent of temperature. Therefore it is sufficient to estimate
the collision rate by considering only Eq. (5.10) for the reference values at T = 273 K
and allow a factor 5 for temperature dependence. As α generally lies between 1 and
2, the first fraction in Eq. (5.10) is always bigger than about 0.7. The highest viscosity
coefficient listed in [59] is for neon with µ = 2.975 ∗ 10−5 N s m−2 at standard condi-
tions. For these adversely chosen parameters one can conclude that for all particles
within the assumed parameter range ω > 0.65 and α > 1 and for all temperatures
∆tCol ≤ 10−5Pa·s

p
. Thus the maximal time step ∆tcD that can be chosen for the DSMC

method is about an order of magnitude smaller, say

∆tcD ≤
10−6Pa · s

p
. (5.12)
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From this one can see, that for very low pressures the mean collision time and the time
step for calculation can easily be in the order of several seconds or even minutes. With
an assumed particle velocity of 1000 m

s this yields a traveled distance between two cal-
culation steps in the order of kilometers which is ways too long independent of the
numerical scheme. Thus, for very low pressures the chosen time step ∆tcD will not be
limited by the collision frequency but rather by the dimensions of the simulated area

and the numerical scheme. With a mean thermal speed of a particle of v̄′ = 2
√

2kBT
πm

easily in the range of hundreds to thousands meters per second, the particle can move
several millimeters per microsecond without even considering the flow speed. De-
pending on the size of the magnets ∆tcD = 10−6 s seems to be the absolute maximum
for simulations with B field. In order to support relatively large stepsizes, a numerical
scheme with good convergence is needed while too much computational effort should
be avoided. Therefore the fourth order Runge-Kutta method is selected. It requires
the evaluation of the force at four different locations per step and is of convergence
order four for an ordinary differential equation. A single time step has error O ((∆t)5)
and since the particle velocities are randomized after a random number of time steps
by collisions, the total convergence order in this case is unclear. For the differential
equation

dy(t)
dt

= f(t, y(t)) (5.13)

one way to express the method is

yn+1 = yn + 1
6(k1 + 2k2 + 2k3 + k4) (5.14)

k1 = ∆t f(tn, yn)

k2 = ∆t f
(
tn + ∆t

2 , yn + k1

2

)

k3 = ∆t f
(
tn + ∆t

2 , yn + k2

2

)

k4 = ∆t f(tn + ∆t, yn + k3)

with yn = y(tn) and an initial condition y(t0) = y0. For the equation of motion it is

y =
(
x
v

)
and f(t, y(t)) =

(
v

F (x)
m

)
. This yields
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(
~xn+1
~vn+1

)
=

(
~xn + ~vn ∆t+ ∆t

6
∆t
m

(~F1 + ~F2 + ~F3)
~vn + ∆t

6m(~F1 + 2 ~F2 + 2~F3 + ~F4)

)
(5.15)

~F1 = ~F (~xn)

~F2 = ~F

(
~xn + ∆t

2 ~vn

)

~F3 = ~F

(
~xn + ∆t

2

(
~vn + ∆t

2
~F (~xn)
m

))

~F4 = ~F

(
~xn + ~vn ∆t+ (∆t)2

2m
~F

(
~xn + ∆t

2 ~vn

))
.

Since the force should not explicitly depend on t, one has an autonomous ordinary dif-
ferential equation that conserves energy. The explicit Runge-Kutta methods however
are not symplectic meaning they do not conserve energy. But since the method has a
high convergence order and no long term behaviour is considered, this is not expected
to pose any problems here.

5.1.5 Finding Cell Face Crossings

The calculation of an approximate solution with a numerical scheme yields values for
position and velocity at certain points. The tracks in between these points are unknown
and generally approximated by straight lines. This is necessary for the standard track-
ing algorithm to find intersections with cell faces. If the particle shall be moved from
~xn to ~xn+1 it might have to cross one or more cell faces. The closest face will be one de-
limiting the cell currently containing the particle. So only the faces of the current cell
have to be checked for intersection. A cell face is internally represented as an ordered
list of points from which one can calculate the face center ~Cf and the face normal unit
vector ~Sf (see Fig. 5.3). Then the fraction λ of the time step at which the particle hits
the face can be computed as

λ = α

β
= (~Cf − ~xn) · ~Sf

(~xn+1 − ~xn) · ~Sf
. (5.16)

This can be done for every face because in the used normal form of the plane they
are infinitely extended. Only if the particle track is parallel to the face, there is no
intersection and λ is set to a big number. At the end one has to choose the smallest λ
that lies between zero and one. This is the fraction of the current time step after which
the cell face is hit (soft particles can go out of the domain and therefore have λ < 0 or
λ > 1 but this is not the case for DsmcParcels). Then the particle is moved to the face,
boundary conditions might be applied and the tracking is continued with a smaller
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b
xn

b
xn+1

cell faces

continuation of cell face

~Sf
b~Cf

α β

Figure 5.3 – For tracking a particle from
~xn to ~xn+1 one needs to find the inter-
section points with cell faces (bold lines,
dashed lines indicate the infinite exten-
sion). Every face has a center ~Cf and a
unit normal vector ~Sf . With these vectors
one can compute the fraction λ of the track
completed until the particle reaches the
face according to Eq. (5.16)

time step until ~xn+1 is reached. If none of the λs is between 0 and 1, no face has to be
crossed and the particle can be moved to the end point in one step.

For a moving mesh one needs to find the intersection of the flight path with a moving
plane. The problem here is, that one only knows the points constituting the face at the
beginning and end of the full time step ∆tcD. If the face is not rotating one has in the
beginning ~Cf,00 = ~Cf(t = t0) and after the time step it is ~Cf = ~Cf(t = t0 + ∆tcD). If
a face has been hit before in the time step, this will have happened at ~Cf,0 = ~Cf(t =
t0 + stepFraction · ∆tcD). So at the time of the face collision it is ~Cf(λ) = ~Cf − (1 −
λ)
(
~Cf − ~Cf,0

)
with λ = (1 − stepFraction) · ∆tcD beeing the fraction of the current

(reduced) time step. Now the face can be described as all points ~r for which holds
~Sf · (~r− ~Cf(λ)) = 0. Using ~x(λ) = ~x′n + λ · (~xn+1 − ~x′n) and inserting this for ~r in the last
equation one obtains

λ = (~Cf,0 − ~x′n) · ~Sf

(~xn+1 − ~x′n − ~Cf + ~Cf,0) · ~Sf
(5.17)

where ~x′n = ~xn+stepFraction ·(~xn+1−~xn) is the position at the beginning of the current
reduced time step. If the face is rotating not only the face center is moving but also the
face normal. Using the same notation for ~Sf as for ~Cf one has ~Sf,0 = ~Sf,00+stepFraction·
(~Sf − ~Sf,00). A point on the rotating plane can be obtained by

~r0 = ~Cf,0 + (~Cf − ~Cf,0) · ~Sf

(ω̂ × ~Sf,0) · ~Sf
· (ω̂ × ~Sf,0) (5.18)
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where ω̂ = ~Sf,0×~Sf

|~Sf,0×~Sf |
is the normalized rotation axis. In order to obtain λ one now has to

solve the equation

(~x(λ)− ~r0) · (~Sf,0 + λ(~Sf − ~Sf,0)) = 0 (5.19)

which is a second order polynomial with the two solutions

λ1/2 = −1
2
(
ap ∓

√
cp
)

(5.20)

ap = (~x′n − ~r0) · (~Sf − ~Sf,0) + (~xn+1 − ~x′n) · ~Sf,0

(~xn+1 − ~x′n) · (~Sf − ~Sf,0)
(5.21)

cp = a2
p − 4 (~x′n − ~r0) · ~Sf,0

(~xn+1 − ~x′n) · (~Sf − ~Sf,0)
. (5.22)

With this straight line algorithm one could handle curved tracks as follows: First cal-
culate ~xn+1 and ~vn+1 from ~xn and ~vn. Then move the particle along the connection be-
tween ~xn and ~xn+1 with the velocity ~v = ~xn+1−~xn

∆tcD
. At the end of the time step, i.e. when

stepFraction= 1, set ~v = ~vn+1. This has the major disadvantage that one needs to save
~vn+1 for every particle during the time step. Another problem is that one may miss a
wall or hit it although the real track would go around it as can be seen in Fig. 5.4. For
wall collisions in general one has the problem to define ~vn+1 in a meaningful way: For
the first calculation of the tracking speed, one uses points outside the defined compu-
tational domain. Then there is a reflection at the wall. With the straight line approxi-
mation the particle will hit the wall not only with the wrong velocity but also from the
wrong direction. And if one wants to calculate better approximations by recalculating
the values of ~xn+1 and ~vn+1 for the time when the wall is hit (obtained with the first
approximation) one might still end up shoving the particle out of the computational
domain. Simply shifting it back might mean a gain or loss in potential energy. An-
other point to consider is that on all internal face crossings one shouldn’t recalculate
the velocity according to the equation of motion in order to avoid an unphysical shift
along the face which would sum up systematically for all particles with the same spin
orientation leading to a separation of spin states by crossing cell boundaries (compare
Fig. 5.5). Clearly an artifact one has to avoid. But using the same velocity for the whole
time step would mean that one cannot account for a change in magnetic fields on cell
faces. This would look like if the magnet was shifted slightly with the distance de-
pending on the particles velocity. Another unwanted artifact. Although all described
effects can be reduced to negligible size simply by reducing the time step ∆tcD, one
may want to use a better algorithm in order to be able to use a bigger time step for
faster calculation.

For this purpose, the particle tracks will be approximated by the Taylor series up to
second order, i.e. by a parabola. If the force is constant, one can describe the track
exactly by a parabola and as long as the force is changing only slowly, the parabola
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Figure 5.4 – Illustration of a false wall
collision

b

b

~xn

~xn+1

cell face

simulated track
real track

b

~x′
n+1

shift
b

new start

∇| ~B|

~vn

~vn+1

Figure 5.5 – With the standard track-
ing algorithm the cell face crossing is at
a wrong place. If the particle is moved
there and the differential equation is
solved again for the next point, one
would end up at a wrong place at the end
of the time step. Hence it is important to
move along the same straight line during
the whole time step.

approximation will still be good but one does not have a unique set of parameters for
the parabola anymore. In fact, the parameters will depend on the requirements posed
to fit the parabola. If the real track is denoted by ~x(t) and the parabola by ~p(t) one could
require that the time average of the deviation 1

∆t

∫ ∆t
0 ~x(t)−~p(t) dt vanishes such that on

average one hits the correct point on the face. However this is not feasible since ~x(t) is
not known. The best approximation that one has is the one from solving the equation
of motion numerically (compare Eq. (5.15)), i.e.

~f(t) = ~xn+~vn t+
t2

6m

[
~F (~xn) + ~F

(
~xn + ~vn ·

t

2

)
+ ~F

(
~xn + t

2

(
~vn + t

2
~F (~xn)
m

))]
.

(5.23)

Requiring an easy parabolic fit to this function in order to reduce computational effort,
two possibilities come to mind. The first one uses ~xn, ~vn and ~xn+1 while the second one
uses ~xn, ~x 1

2
= ~f

(∆t
2

)
and ~xn+1. For the first case one obtains
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~p1(t) = ~xn + ~vn t+ 1
2
~F

m
t2 (5.24)

~F = 1
3 ·
[
~F (~xn) + ~F

(
~xn + ~vn ·

∆t
2

)
+ ~F

(
~xn + ∆t

2

(
~vn + ∆t

2
~F (~xn)
m

))]
(5.25)

where Eq. (5.25) is obtained from Eq. (5.15). The second set of conditions yields

~p2(t) = ~xn + (4~x 1
2
− 3~xn − ~xn+1) t

∆t + 2(~xn+1 + ~xn − 2~x 1
2
) t2

(∆t)2 (5.26)

= ~xn + ~vn t+ t

6m

[
~F (~xn) t+ ~F

(
~xn + ∆t

4 ~vn

)
(∆t− t)

+ ~F

(
~xn + ∆t

2 ~vn

)
(2t−∆t) + ~F

(
~xn + ∆t

4

(
~vn + ∆t

4
~F (~xn)
m

))
(∆t− t)

+ ~F

(
~xn + ∆t

2

(
~vn + ∆t

2
~F (~xn)
m

))
(2t−∆t)

]
.

While for a single face crossing the maximal difference |~f(t)− ~pi(t)| is important, mini-
mizing the error for the whole simulation (i.e. for many face crossings) is equivalent to

minimizing the time average ~f(t)− ~pi(t) = 1
∆t

∫ ∆t
0

~f(t)− ~pi(t) dt. Then, the question is,
which of the two polynomials ~pi(t) yields a smaller time averaged deviation from the
real track. To calculate this, the force ~F is approximated by a first order Taylor series
such that ~F (~xn + ~δ) = ~F (~xn) + (~δ · ∇)~F (~x)

∣∣
~x=~xn

. Using this, one obtains for the first
parabola

~f(t)− ~p1(t) = t2

6m JF(~xn)
[
~vn(t−∆t) + 1

4m
(
t2 − (∆t)2) ~F (~xn)

]
(5.27)

~f(t)− ~p1(t) = − 1
6m JF(~xn)

[
(∆t)3

12 ~vn + (∆t)4

30
~F (~xn)
m

]
(5.28)

and for the second one

~f(t)− ~p2(t) = t

6m JF(~xn)
[
~vn

(
t2 + (∆t)2

2 − 3
2t∆t

)

+
~F (~xn)
m

(
1
4t

3 + 3
16(∆t)3 − 7

16t(∆t)
2
)]

(5.29)

~f(t)− ~p2(t) = − (∆t)4

2880m2 JF(~xn) · ~F (~xn). (5.30)
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Figure 5.6 – Scheme of the parabolic fit
to find cell face crossings; In reality, the
particle would move along the black track
from ~xn to ~xn+1. The numerical solution
~f(t), drawn in blue, deviates from the real
track with time and leads the particle to
~̃xn+1. The parabola ~p2(t) is fitted through
the points ~xn, ~f(∆t/2) and ~f(∆t) = ~̃xn+1
and is shown in red. The intersection of
~x(t) with the cell face is approximated by
the intersection of ~f(t) with the cell face
which in turn is approximated by the face
crossing of ~p2(t). Since ~f(t) and ~p2(t) do
not necessarily have to hit the face at the
same time, the particle will not be moved
exactly to the cell face. The resulting prob-
lems will be described in the next section.

Comparing Eqs. (5.28) and (5.30) shows that on average the error is at least one order
of magnitude smaller if one uses the second parabola. To check if the absolute values
are good enough for the simulation, one can insert reasonable numbers. Considering
a hydrogen atom with a mass of mH = 1.67 · 10−27 kg. Assuming a very strong B field
gradient of 1000 T/m yields a force |~F | = |µB∇| ~B|| = 9.27 · 10−21 N. Further assume
that the force drops from this value to zero within 1 mm and that the force gradient is
parallel to the force. It was reasoned before that the timestep shouldn’t exceed 10−6 s.
With these adversely chosen values one obtains

~f(t)− ~p2(t) ≈ 1.1 · 10−11 m. (5.31)

This is much smaller than the diameter of an atom and clearly enough for the simula-
tion. The strong ∆t-dependence usually does the rest. For clarification, the procedure
is shown in Fig. 5.6.

This kind of parabola fit is used in the program only to calculate the time when the face
is hit. This time will then be used to recalculate the position and, more importantly, the
velocity at the cell face with Eq. (5.15) in order to get the best possible results. To find
the time of the cell face crossing one has to solve the same equations as for the simple
straight line algorithm. Therefore write ~p2(λ) as

~p2(λ) = ~aλ2 +~bλ+ ~xn (5.32)

with
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~a = (∆t)2

6m

[
~F (~xn) + 2~F

(
~xn + ∆t

2 ~vn

)
− ~F

(
~xn + ∆t

4 ~vn

)

+ 2~F
(
~xn + ∆t

2

(
~vn + ∆t

2
~F (~xn)
m

))
− ~F

(
~xn + ∆t

4

(
~vn + ∆t

4
~F (~xn)
m

))]
(5.33)

~b = ~vn ∆t+ (∆t)2

6m

[
~F

(
~xn + ∆t

4 ~vn

)
− ~F

(
~xn + ∆t

2 ~vn

)

+ ~F

(
~xn + ∆t

4

(
~vn + ∆t

4
~F (~xn)
m

))
− ~F

(
~xn + ∆t

2

(
~vn + ∆t

2
~F (~xn)
m

))]
. (5.34)

Then the intersection of the parabola with a static cell face will happen at

λ1/2 = −1
2



~Sf ·~b
~Sf · ~a

±

√√√√
(
~Sf ·~b
~Sf · ~a

)2

− 4
(
~Sf · (~xn − ~Cf)

~Sf · ~a

)
 . (5.35)

If the cell face is moving but not rotating this will be

λ1/2 = −1
2



~Sf · (~b− ~Cf + ~Cf,0)

~Sf · ~a
±

√√√√
(
~Sf · (~b− ~Cf + ~Cf,0)

~Sf · ~a

)2

− 4
~Sf · (~xn − ~Cf,0)

~Sf · ~a


 .

(5.36)

The situation becomes more complex if the cell face is moving and rotating. In this case
one has to find the roots of the third order polynomial

p3(λ) = Aλ3 +Bλ2 + Cλ+D (5.37)

with

A = ~a · (~Sf − ~Sf,0) (5.38)
B = ~a · ~Sf,0 +~b · (~Sf − ~Sf,0)
C = ~b · ~Sf,0 + (~xn − ~r0) · (~Sf − ~Sf,0)
D = (~xn − ~r0) · ~Sf,0

where ~r0 is the same as in Eq. (5.18). With the definitions
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q = 2B3 − 9ABC + 27A2D (5.39)
r = B2 − 3AC (5.40)
Q =

√
q2 − 4 r2 (5.41)

R = 3

√
1
2(Q+ q) (5.42)

and the definition of a phase θ with θ = 0 for q2 ≥ 4 r3 and

θ =





arctan
(
|Q|
q

)
q > 0

arctan
(
|Q|
q

)
q < 0

π
2 q = 0

(5.43)

if Q is imaginary, one can write the three solutions as

λ1 = − 1
3A

[
B +

(
3 |R|+ r

|R|

)
cos
(
θ

3

)
− i sin

(
θ

3

)(
r

|R|
+ |R|

)]
(5.44)

λ2/3 = 1
3A

[
−B +

(
3 |R|+ r

|R|

)
cos
(
θ ± π

3

)
− i sin

(
θ ± π

3

)(
r

|R|
+ |R|

)]
. (5.45)

In this notation it is easy to decide whether a solution is real or complex without using
complex numbers for the calculation.

The location in the source code, where these changes have to take place are the func-
tions Particle::lambda(). Since this is a class of the common infrastructure and several
other particle types other than DsmcParcel are derived from it, the functions have to be
overloaded for DsmcParcels in order to let other solvers undisturbed. But since some
additional input parameters for the function are needed and the selection of the cor-
rect particle type is done by static cast, instead of overloading to save time, the class
Particle has to be modified as well. In order to not disturb the other solvers, these ad-
ditional input parameters are therefore declared as default arguments for the altered
functions.

5.1.6 Sorting Particles Into the Correct Mesh Cell

Every simulated particle has a variable holding the index of the mesh cell currently
containing the particle. This variable has to be changed at cell face crossings. This
might sound trivial, but there is a difficulty: Because of the finite number of digits in
the calculation, particles can be moved only to discrete places in the computational
domain. Additionally, numerical errors make it impossible to tell exactly where the
particle will be placed when it is moved to the cell face by the program. With these
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two inaccuracies it is not possible to tell, on which side of the cell face the particle
actually will end after the movement but as long as the face is an internal one the
particles variable celli will always be changed to the index of the neighbor cell. This
might be correct, but if the particle is still in the old cell, a call to the function lambda()
in the next step calculating the fraction of the time step to the next cell face will yield
the same cell face again with a tiny λ value. Then, the program will try to move the
particle to the face, but numerical accuracy may hinder the particle to cross the face
while the variable celli of the particle will be changed again. This can go forever and the
program will be stuck. Another problem can occur if the particle is positioned slightly
beyond a boundary face, which would result in the particle moving away from the
computational domain. If the particle is tracked along straight lines, there is a clever
way of avoiding these problems (see Fig. 5.7). In the first step, the λ value for all faces
of the current cell will be calculated with the starting point taken as the cell center
~C and the end point beeing the final position ~xn+1. All faces with 0 < λ

(1)
i < 1 will

potentially be crossed and are appended to a list. In the second step there are two
possibilities: Either the list of faces from the first step is empty and the particle can be
moved to ~xn+1 or the list is not empty. In the latter case, for every face of the list the λ
value will be calculated again but this time with the starting point beeing ~xn yielding
values λ(2)

k . The face with the smallest 0 < λ
(2)
k,min < 1 will be the first to cross. But it can

also happen that λ(2)
k,min is negative meaning that the particle is not in the cell indicated

by its variable celli. In this case, only celli is changed but the particle is not moved. This
will correct the error and the particle will be moved in the next step. It can also happen
that λ(2)

k,min > 1. In this case the particle is as well outside the correct cell. To correct the
situation it is only moved to ~xn+1 and celli is kept constant.

The method described above does not work for tracking along curved tracks because
the calculation of λ(1)

i does not yield all cell faces that might be crossed (see Fig. 5.8).
Thus, the particle could move to other cells without knowing it. However, it is imper-
ative to find the correct faces to cross since the selection of collision partners and the
calculation of the fields depend crucially on the correct celli value. Therefore another
algorithm is used if the particle is located within a magnetic field. In the first step λ

(1)
i

is calculated for all cell faces for a straight track between ~xn and the cell center ~C (note
that using the reversed order starting at ~C does not yield the necessary accuracy be-
cause of the clustering of the representable decimal numbers around zero (1 − x = 1
if |x| < 10−15)). If it is 0 < λ

(1)
i < 1 for at least one face i, then the particle is outside

the cell. Now, the question is whether the face i is an internal face or a boundary face.
If it is a boundary face, the particle is outside the computational domain and moved
back into the direction of the cell center in small steps until it is in the cell again. If the
face is an internal one, the particle will be moved across the face (for λ(1)

i < 10−12) or
the variable celli of the particle will be changed otherwise. Note that for the shift into
the direction of the cell center it is assumed that the cell is convex and that the correc-
tion will have to be made at approximately every second face crossing. The particle is
generally moved not more than a few femtometers, so that even with a very large num-
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cell faces

b
cell center ~C1

b
cell center ~C2

b

~xn+1

b

~xn b

~x′
n

face 1

Figure 5.7 – Finding cell face crossings works in
two steps: If the particle starts at ~xn and is sorted
into cell 1, in the first step face 1 is found to be
crossed and in the second step the distance to the
cell face is calculated. If the particle is already
sorted into cell 2 then there is no cell face cross-
ing detected between the cell center ~C2 and ~xn+1
and the particle is simply moved to ~xn+1. The same
is true if the particle starts at ~x′n and is sorted into
cell 2. If it starts at ~x′n and is sorted into cell 1,
the second step will yield a λ < 0 and the particle
will be sorted into the neighbor cell.

b
~xn

b ~xn+1

b

~C

wall

Figure 5.8 – The straight
line algorithm does not work
in magnetic fields. The inter-
section of the red track with the
wall would not be detected and
the particle would not interact
with the wall.

ber of mesh cells no sizeable effect from this correction is expected. In magnetic fields
another small shift of the particle position is applied to make sure that the particle is
actually at the face which is not guaranteed otherwise with the parabola algorithm for
multipoles of higher order than sextupoles, compare with caption of Fig. 5.6. After all
these tiny shifts, the particle is in the correct cell again and the λ(s)

k s can be calculated.
The smallest face k for which it is 0 < λ

(2)
k < 1 will then be crossed.
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5.2 High Frequency Transitions

The high frequency transition units are idealized such that all high frequency transi-
tions take place in one plane. If a particle crosses this plane, its hyperfine state will be
changed with a certain probability into another hyperfine state. The plane can be cho-
sen arbitrarily, independent of the mesh, i.e. it is not necessary to align the plane with
the cell faces of the mesh. A high frequency transition unit is then described by the
following parameters: The center of the plane and the normal vector together with the
name of the shape of the plane (i.e. circle or rectangle) and efficiencies of the transitions
for all particle species from the typeIdList. The efficiencies have to be specified in the
following way (compare appendix C): The dictionary efficiencies contains as many
subdictionaries as there are particle species and each subdictionary is a subdictionary
as well with the only entry beeing the keyword efficiency and a list of probabilities.
This list is meant as matrix where the element Mi,j is the probability that the initial
state i is changed to the final state j. Internally this matrix is stored such that in each
row the element in a certain column is the sum of all previous columns of that specific
row, i.e. Mi,j =

∑
k≤jMi,k. This is just a convenient choice which makes it easier to

select the correct final hyperfine state. If a hyperfine transition unit is encountered, the
final hyperfine state is initially set to 0 and a random number Rh is chosen. Afterwards
the final state is increased as long as Rh < Mi,f .

Finding a hyperfine transition unit is not trivial since the transition plane can lie within
mesh cells but does not have to cross the cell completely. The procedure is as fol-
lows: First, find all faces of the current mesh cell where the particle is in and calcu-
late λCF as described in Sec. 5.1.5 for every cell face. To this end the functions Par-
ticle::findFaces() are overloaded and changed such that the current particle position is
used instead of the cell center. Then, for each of the hyperfine transition units λHF
can be calculated with the same functions DsmcParcel::lambda(). If one λHF is smaller
than the smallest λCF and additionally 0 < λHF < 1, the corresponding hyperfine tran-
sition unit is possibly hit by the particle. But it has still to be checked if the particle
does not move around that interaction plane. This is done by the function DsmcPar-
cel::hfsTransitionProperties::insideHfRegion() which can check this for different shapes of
the plane. For example if the shape is declared as circle in dsmcPropertiesDict, then
it is just checked if the distance between the position at the face and the face center
is smaller than the declared radius. If the high frequency transition is encountered,
a large negative face index (facei=−1000−hfsId) is returned to allow some functions to
distinguish these faces from the normal cell faces and to allow them to retrieve their
properties. Otherwise the encounter of the hyperfine transition unit is handled simi-
larly to normal cell faces. The particle is moved to the face and the hyperfine state of
the particle is changed with the probability described above.

All the changes made to the dsmcParcel class are shown in Fig. 5.9. Several new at-
tributes were added to the various classes which made it necessary to extend the read
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and write functions for particles. As described above, the function DsmcParcel::move()
had to be extended as well to allow tracking along curved tracks which made it also
necessary to overload the functions Particle::lambda() and Particle::findFaces(). The func-
tion forceOnParticle() calculates the force on a particle by a magnetic field at a speci-
fied position while the function setPosAndU() is used to place a particle at a cell face
with correct velocity after λ is calculated, i.e. the particle is placed at position ~f(λT )
in Fig. 5.6. hitFace() is used to account for steps in the B field. isAtHfFace() checks if a
particle is at a high frequency transition unit and if true calls hitHfTransition() which
changes the hyperfine state of the particle. The two functions numericHfState() and hf-
sToWhWs() are used to convert the two used notations for the hyperfine state labeling
into each other, namely the standard notation and the one using whichHalf and which-
State. Finally, the remaining functions are used to calculate the sine and cosine of the
hyperfine mixing angle for the particle for a specified field strength. The class con-
stantProperties has some new attributes which will be needed in a new collision model
which is described in Sec. 5.6. The new particle class dsmcPatchParcel is an extension
of the standard particle used when particles have to count the number of patch hits as
described in Sec. 5.4.

5.3 Calculation of the Polarization

For the calculation of the polarizations according to Eqs. (2.18) to (2.21), it is only
necessary to know the relative occupation numbers of the various hyperfine states
which are calculated during the run and the magnetic field strength. The polarization
can therefore be determined after the run and is performed in the function dsmcPlus-
Fields::write(). The extended class dsmcPlusFields will be compiled to the library dsmc-
SpinPlusFields.so and can be called via the configuration file controlDict, see appendix
D. In the original version, this function was only used to calculate some fields like p,
translationalT and U (velocity) from others and write them to disk. Now, it also calcu-
lates the mean of the hyperfine population numbers and the various polarizations. In
order to get all the relevant data, a new instance of the dsmcCloud class is temporarily
created and the forceActiveList is changed in such a way, that it marks only the cells
where the magnetic field is purely homogeneous. If the field is inhomogeneous in a
cell, it is not clear which field strength to take for the calculation and every choice
might cause significant errors. Therefore the polarization is only calculated for homo-
geneous fields and is set to zero otherwise. For the program to know which magnets
produce a homogeneous field, a dictionary is created within the function which holds
the typeName of all magnet types with homogeneous field. This dictionary has to be
extended if a new magnet with homogeneous field is programmed. When all the cells
with constant magnetic field are marked, a new volScalarField magB is created giving
the magnitude of the field strength for every cell and the ensuing calculation of the
polarization is straightforward. Finally, the new polarization fields will be written to
disk but only if it makes sense, i.e. the nuclear polarization will be written if I > 0 and
the tensor polarization will be written if I ≥ 1.
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dsmcParcel
≡ DsmcParcel<dsmcParcel>

dsmcPatchParcel
patchHitList: List<label>
hitPatch()

writeParcelToPatch()

DsmcParcel
whichHalf: label

whichState: label

move()

hitWallPatch()

findFaces()

lambda()

setPosAndU()

hitFace()

isAtHfFace()

hitHfTransition()

numericHfsState()

hfsToWhWs()

cosTwoTheta()

cosTheta()

sinTheta()

forceOnParticle()

readFields()

writeFields()

operator<<()

ParcelType

constantProperties

radius: scalar

epsilon: scalar

ehfs: scalar

nuclearI: scalar

electronicS: scalar

trackData

dt: scalar

Figure 5.9 – UML diagram of dsmcParcel class in solver dsmcSpinModFoam meant as
an extension to the conventional dsmcParcel class of the solver dsmcFoam depicted in
Fig. 4.4. Class attributes printed in red are new, functions printed red are also new ex-
cept of findFaces() and lambda() which are overwritten versions of the ones from the class
Particle from the common core of OpenFOAM. Functions printed in black are extended
versions of the original ones. The class dsmcPatchParcel is completely new.

5.4 Particles Counting Wall Hits
Studying gas properties that are influenced by wall collisions often requires some pa-
rameters of the wall interaction and the number of wall collisions. One can either
predict the effect of the wall or, if some parameters are not known but the resulting
property together with the number of wall collisions, one can deduce the wall pa-
rameters. That is why an option to count the number of wall hits for every particle
was created. In order to achieve this, a new particle class dsmcPatchParcel was derived
from the template particle class DsmcParcel, see Fig. 5.9. Each new particles has a list
which shows how often the particle collided with the various patches of the mesh.
The correct list entry is simply increased by one if a patch is hit during the simula-
tion which is done by the overloaded function hitPatch(). In the file dsmcProperties
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there is the option writeParticlesAtPatch which requires a list of patch names. For
all patches specified in this list, some of the particle properties will be written to a
file with name Parcels_at_patch_patchName.dat were patchName is the name of the
patch, each time a particle hits this patch. This data can be used to extract some useful
information like the collision age distribution. It should be noted though that in order
to save storage space the number of wall collisions will always be set to zero at the
beginning of a simulation, such that it will take some time to reach equilibrium, even
when the simulation is a restart of an old simulation where the other gas properties
like e.g. number density already are in equilibrium. Thus, one should only use data
written to this file after a certain time, when equilibrium is already achieved. As basis
for this selection one can use the time of the wall collision, which is written to this file
as well.

Other changes that were made concern a new cloud class named dsmcPatchCloud, see
Fig. 5.2. This class creates a vector field for every patch with name patch_patchName.
The first component of the field shows the average number of collisions with the patch
of all particles within a cell and the second component shows the standard deviation
of this number. The third component gives the maximum number of collisions with
the patch for all particles within a cell. These fields are written to disk during the
simulation and allow the visualization of the spacial collision age distribution. For
efficiency, the described functionality is completely implemented in new classes and
runs using it can be started with the option -countPatchHits, i.e.

dsmcSpinModInitialise nProcs -countPatchHits
dsmcSpinModFoam nProcs -countPatchHits

for initialization and starting a run where nProcs is the number of processors to be
used.

5.5 New Inflow Model

Simulating a complete ABS is a difficult task since there are regions with pressures that
differ by several orders of magnitude. As a consequence, the time step ∆tcD must be set
to the minimal value suitable for the high density region within the nozzle. However,
for most parts of the computational volume, this value is orders of magnitudes too
small. This isn’t a problem for accuracy but only for execution time. The situation
is similar with the size of the mesh cells which cannot be arbitrarily big in order to
not loose spatial resolution. Hence, the ratio of real to simulated particles has to be
relatively high to get at least some particles into a cell in the low density regions. Both
factors lead to very high execution times of several months. This is very impractical,
especially if an optimization algorithm shall be used to optimize some parts of the
ABS which certainly needs hundreds of runs. The idea to circumvent this problem
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is to split the computational volume into parts. This assumes that the upstream flow
in the first part of the ABS does not change significantly if some magnets are placed
differently in the low density part downstream. Then, one can start a calculation with
the whole ABS until one has a reasonably good result at some cutting plane in the
middle of the ABS. After that, one changes to a reduced mesh, were only the low
density part of the ABS is represented and restarts the simulation with a much higher
density of simulated particles. This requires a method to set the boundary values at the
cutting plane appropriately and a suitable method is implemented in the new inflow
boundary model MixedInflow. This inflow model can be used as a combination of the
two existing inflow models FreeStream and InOutflow and additionally has the option
cellInternalValues that can be set in the configuration file dsmcProperties. If this
option is set to true, the boundary condition for this patch will be derived face by
face from the cell values adjacent to the patch. In order to get good results, the time
averaged mean fields from the first calculation should be used for this together with
small cell sizes at the new inlet for a good spacial resolution. The time averaged fields
will have to be present in the start time folder of the new case. They can be mapped
like all other fields with the mapFields utility from one mesh to the other if a file with the
correct name and header is already present in the start time folder of the new case.

For the implementation one should first note, that the mean fields are not read auto-
matically by the program such that one has to do this first. For the fields hfsPopulation-
NumbersMean1 and hfsPopulationNumbersMean2 this is a bit tricky, since these fields are
only present if there are enough particle species and one has to solve some issues with
registering and deregistering the fields with the object registry. If this is done, one can
start setting the boundary conditions. For that it is important to note, that the inflow
models FreeStream and InOutflow use the following equation (from [59], Eq. 4.22) to
decide how many particles to inject across a face:

βi Ṅi

ni
= 1

2
√
π

(
e−s

2
i cos2θ +

√
πsi cos θ (1 + erf(si cos θ))

)
(5.46)

where βi =
√

mi
2kB T

= 1
vm,i

is the inverse of the most probable molecular thermal speed

and si = v0
vm,i

is the molecular speed ratio for particle type i. θ is the angle between the

stream velocity ~v0 and the face normal of the inlet and erf(x) = 2√
π

∫ x
0 e
−y2

dy denotes
the error function. For the derivation of this equation it is assumed that the molecules
have a thermal velocity distribution function, i.e. the gas is assumed to be in thermal
equilibrium. This assumption is also used for the selection of the particle speed and
internal energy. Hence, gases out of equilibrium cannot be simulated with this model.
This is important since the gas in the ABS could well be out of equilibrium after the
nozzle and the conditions should be checked. Another issue arises with setting the
correct boundary fields because the used time averaged fields are averaged over all
particle species. However, in the ABS, the different gases have different stream veloc-
ities and possibly different translational temperatures. Different temperatures would
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stand against the equilibrium assumption but one can and should account for the dif-
ferent stream velocities. This could be done by calculating the gas velocity for every
particle type separately but that would require a lot of additional storage space and
would be unnecessary for most simulations. Therefore the different stream velocities
~vi for each gas component are calculated from the mean fields. Depending on the num-
ber of particle species, this is more or less complicated. The easiest case where there
is only one gas is trivial. For two gas components one can use two equations for the
average momentum ~p (momentumMean) per mesh cell and velocity ~v (UMean) to obtain
the two stream velocities where it is implicitly used that the average of the thermal
velocity is zero:

~p = n1m1~v1 + n2m2~v2 (5.47)
~v = n1

n1 + n2
~v1 + n2

n1 + n2
~v2. (5.48)

This yields

~v2 =
~v(n1 + n2)− ~p

m1

n2

(
1− m2

m1

) (5.49)

~v1 = ~p− n2m2~v2

n1m1
(5.50)

where ni are the proper components of the field rhoNMean. For three gas components
the situation is more difficult. There are simply not enough equations to disentangle
the mean fields. However, by assuming that the stream velocities of all three gases are
parallel, the number of equations required reduces from 9 to 3. Then, the stream veloc-
ities of all gases can be written as ~vi = vi

~v
|~v| and one can use the average kinetic energy

per mesh cell (linearKEMean) as additional constriction. One has only to consider that
taking the square and averaging do not commute, i.e. that v2 6= v2. The needed average
of the square of v can be obtained according to Eq. (3.83):

v2 = β3

π
3
2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
ẋ2 + ẏ2 + ż2) e−β2[(ẋ−ẋ0)2+(ẏ−ẏ0)2+(ż−ż0)2] dẋ dẏ dż (5.51)

= ẋ0
2 + ẏ0

2 + ż0
2 + 3

2β2

= v2 + 3
2β2 .

Then, one has to solve the following equation system
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|~p| =
3∑

i=1

nimivi (5.52)

|~v| =
3∑

i=1

ni
n1 + n2 + n3

vi (5.53)

Et =
3∑

i=1

1
2nimi

(
v2
i + 3

2β2(mi)

)
(5.54)

where the resulting equations for vi are very lengthy and will not be written here but
they can be found in the source code in the function MixedInflow::initialize() in a form
optimized for fast calculation with the freely available computer algebra program Max-
ima. The last problem with this is, that there are two solutions and one has to choose
one. To this end, one should remember that the vi are the projections onto the stream
velocity ~v and hence are assumed to be positive. Then it is required that the sum of all
three vi over all faces of the patch is maximal.

If the field UMean is not present, a mean velocity can still be calculated by dividing the
fields momentumMean and spaceAverageRhoMMean or, if these fields are also not present,
by dividing the fields momentum and spaceAverageRhoM. However, in these cases, the
velocity will be the same for all particle species and in the latter case the fluctuation
from one face to the other will likely be very high and the result of the simulation
might be useless. For other boundary fields one has to do less. As mentioned above,
the translational and internal temperatures are required to be the same for all gas com-
ponents and now only for the case where the mean field is not available some minor
calculations are needed. For the hyperfine states one simply has to read the corre-
sponding fields. After that, the initialization is basically finished and the rest of the
model is almost the same as for the already available inflow models.

5.6 New Binary Collision Models

The original dsmcFoam has only two binary collision models, namely VariableHard-
Sphere and LarsenBorgnakkeVariableHardSphere, compare with Fig. 4.6. It was found in
[72] that the DSMC method yields good results for the gas flow in an atomic beam
source but the simulated temperatures were too high. M. Stancari [86] tried various
input parameters for the VSS collision model based on the inverse power law potential
of Birds DSMC94 code and could improve the results for the temperature at the cost of
of a higher deviation of simulated and measured beam velocity. This might be caused
by the approximation of the temperature dependence of the cross section by a sim-
ple power law. This is probably a bad approximation as the measured temperatures
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are around 20 K where the relative velocity of the collision partners vr is so low that
an attractive part of the molecular potential can have a significant effect. In order to
account for this, the VSS model is implemented on the basis of the Lennard-Jones po-
tential, both with and without Larsen-Borgnakke energy redistribution. In both cases,
the cross section is calculated according to Eq. (3.80) using Eqs. (3.79) and (3.77). A
cutoff on K is set such that K is set to 0.1 if K ≤ 0.1. This is done because Eq. (3.76) is
only a fitfunction where the terms with higher i contribute for subsequently lower K
such that more terms would be needed for lower K. The value K = 0.1 was chosen as
limiting case because it is the lowest plotted value in both papers, [66] and [67] and at
some lower value forK one can expect quantum effects to take over which are not con-
sidered in the calculations. For the correct use of Larsen-Borgnakke model, it would
be necessary to have the correct number of translational degrees of freedom which is
given by Eq. (3.109). However, this equation is not only complicated but also depends
on the translational temperature which is not readily obtained during the calculation.
Therefore, for simplicity the value obtained with the inverse power law model (Eq.
(3.108)) is taken. For hydrogen with its huge collision relaxation numbers, no effect
from this is expected in the ABS.

5.7 Spin-Exchange Collisions
The cross section for spin-exchange collisions is taken to be the same as for momen-
tum exchange collisions and therefore a spin-exchange collision always occurs when
two particles collide. Since the probability of a spin exchange does not depend on the
momentum of the particle and the momentum exchange is assumed not to depend on
the spins of the collision partners, it does not matter whether the spin exchange part is
performed before or after the momentum exchange. But one problem is that the proba-
bility of a spin exchange depends on the magnetic field. Since the collision partners are
generally not at the same position but only within the same (sub-)cell of the mesh, they
experience different field strengths if the field is inhomogeneous. It looks problematic
to use the fields at both particle locations and then mix the states as if they were at the
same position. The problem is solved by using the field value in the middle of the two
particles, i.e. B = B

(1
2(~x1 + ~x2)

)
were ~xi is the position of particle i. This method is

a first order approximation and might cause a small error in the spin relaxation rate if
the field variation is strongly nonlinear and the cell size is too big.

The B field and all the mixing angles of the states are calculated in the function Dsmc-
Cloud::spinExchangeCollisions(). The actual determination of the final hyperfine states is
done in the base class of the binary collision model since it is the same for all collisions,
i.e. in the function BinaryCollisionModel::spinExchangeCollision(). There, a random num-
ber Rf ∈ [0, 1] is generated and the cumulative probability p =

∑
c,d pcd of the different

final states are calculated in a loop over all possible values. This calculation is aborted
when p > Rf and the hyperfine states in place at abortion are taken as the final ones.
The probability pcd of ending in final state |cd〉 is according to Sec. 2.3.2 given by
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pcd = |〈cd|U |ab〉|2 = 1
2M

cd
ab + |〈cd|ab〉|2 (5.55)

where M cd
ab is everything in the square brackets of Eq. (2.38) which can easily be com-

puted.

5.8 New Wall Interaction Model

For studies of depolarization and recombination on the walls it is important to know,
how often a wall was hit. Experimentally it can be shown, that the simple WallInterac-
tionModels like MaxwellianThermal and SpecularReflection work only for some materials
while they give a much too low number for others. There is an ongoing discussion
in the community whether the reflected molecules from a wall should have a cosine
or a cosine square distribution. In order to investigate the difference in a storage cell,
a new WallInteractionModel named MaxwellianThermalCosineExponent was created that
is basically equivalent to the standard MaxwellianThermal model, except that it has a
distribution of

dn

dΩ ∝ cosk(θ) (5.56)

around the wall normal vector. k > 0 is an arbitrary exponent that can be set in the
configuration file dsmcProperties with the name cosineExponent. In order to obtain
this cosine distribution, one has to set the velocity of the reflected molecules properly
and this can be done with the correct distribution function. In an equilibrium gas it
is

dn

n
= f d~v = β3

π
3
2
e−β

2(v2
x+v2

y+v2
z) dvxdvydvz (5.57)

or in polar coordinates

dn

n
= β3

π
3
2
v2e−β

2v2 sin θ dθdΦdv. (5.58)

With dΩ = sin θ dθdΦ it is dn
dΩ = const. To get the proper θ-dependence, one has to

include a factor cosk θ in the distribution function such that, after normalization it is

f d~v = fv dv · fθ dθ · fΦ dΦ (5.59)

=
[

4β3
√
π
v2e−β

2v2
dv

]
·
[
(k + 1) coskθ sin θ dθ

]
·
[

1
2π dΦ

]
(5.60)
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where the integration over θ stretches only from 0 to π
2 . Sampling from fΦ is simple

since it is equally distributed and it is Φ = 2πRf with Rf ∈ [0, 1] an equally distributed
random number. For θ the cumulative distribution function Fθ =

∫ θ
0 fθ′ dθ

′ is

Fθ = 1− (cos(θ))k+1. (5.61)

Setting this to an equally distributed random number Rt ∈ [0, 1], one obtains

cos θ = R
1
k+1
t (5.62)

using that 1 − Rt is also equally distributed in [0, 1]. Now also θ is fixed and only the
magnitude v of the velocity is missing. The method used for θ does not work since the
cumulative distribution function Fv cannot be inverted. The method of choice here is
to use the velocity vector of the old MaxwellianThermal method and use its magnitude,
since both values must be the same. Then, the velocity after a wall collision is

~v = v cos θ · ~n+ v sin θ cos Φ · ~t1 + v sin θ sin Φ · ~t2 + ~vw (5.63)

where ~n is the normal unit vector of the wall, ~t1 and ~t2 are the two tangential unit
vectors and ~vw is the velocity at the wall specified as boundary condition.

5.9 Recombination

Recombination of hydrogen atoms to molecules or more general, chemical reactions at
surfaces, are implemented in the new run time selectable submodel ChemicalSurfaceRe-
actionModel. There are only two simple models available, namely simpleLangmuirHin-
shelwood and NoReaction, compare Fig. 5.10.

The models are implemented in a way such that different reactions can take place at a
wall patch and it can be taken into account that different walls might consist of different
materials with different reaction properties. Therefore, one has to provide a list of all
reactions and their properties in the file dsmcProperties. A simple example is shown
in appendix C. Each reaction needs a list of reactants and a list of products where
all particles have to be listed separately, even if one particle occurs five times in the
list. Additionally, some model dependent reaction properties are needed which can
be specified in a dictionary for groups of patches where each patch group needs an
unambiguous name that is of the form patchGroup_1 where the last number is meant
as a counter that can either start from 0 or 1.

Each model has to implement the function gamma which calculates the probability for a
reaction which is simply a constant in the simpleLangmuirHinshelwood model but could
be much more complex as described in Sec. 2.3.1. The second function that has to
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ChemicalSurfaceReactionModel
dict: dictionary&

owner: CloudType&

propertiesDict: dictionary&

reactionList: List<word>
parameterDictList: List<List<dictionary>>
wallPatchDict: dictionary

particleIndexDict: dictionary

nReactants: List<label>
declareRunTimeSelectionTable()

<<static>> New()

checkParameters()

<<abstract>> gamma()

<<abstract>> reaction()

CloudType

NoReaction

gamma()

reaction()

CloudType

SimpleLangmuirHinshelwood

gamma()

reaction()

CloudType

Figure 5.10 – UML diagram of submodel ChemicalSurfaceReactionModel in dsmcSpin-
ModFoam. As usual, all setter and getter functions as well as constructors and destruc-
tors are omitted.

be implemented by all models is the function reaction that actually performs the re-
action. Both functions are called when a wall is hit, i.e. by the function DsmcPar-
cel::hitWallPatch(). In this function, a random number R1 ∈ [0, 1] is drawn and com-
pared with the sum of the γi for each reaction. If

∑
i γi < R1 a reaction takes place and

it is decided which one. Then, the function reaction is called which has to handle the
stoichiometry and set the properties of the reaction products. The first part has to make
sure, that the particle number stays constant during the simulation. This is not quite as
easy as it might seem, since the reaction is performed, when one reactant hits a wall.
If there are more particles reacting together, one has to delete several particles and the
question is which ones to choose. It is by no means certain that all the necessary par-
ticles are in the adjacent cell at the time of the reaction and one cannot simply delete
particles from somewhere in the whole volume. The chosen solution is to change the
incoming particle into one of the products and add the other products if there are more
than one if

R2 <
1

NR(i) (5.64)

where R2 ∈ [0, 1] is a second random number and NR(i) denotes the number of reac-
tants of particle species i (= typeId of the incoming particle). If R2 >

1
NR(i) , the incoming

particle will be deleted. If a reaction takes place, the particle properties of the products
will be set such that they are in thermal equilibrium with the wall and have a cosine
theta velocity distribution around the normal vector of the wall. Further, their hyper-
fine state is chosen such that the products are on average unpolarized although this
might not be the case in reality as described in Sec. 2.3. However, there is currently
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no generic way to describe molecule polarizations which would allow to handle polar-
ized products in the simulation. One should also note that the used selection method
for the reaction assumes that the reaction speed isn’t limited by the absence of one of
the reactants at the wall, i.e. the reaction will always take place if condition (5.64) is
fulfilled, no matter if there are actually enough particles of all reactants around. In
order to drop this limitation, one would have to record the particles hitting faces of a
wall patch. One possibility could be to create a volVectorField::GeometricBoundaryField
which in its elements stores the number of particles that have already hit the face. The
components of the vector would be used for the various particle species. Then, the
reaction would take place only if the wall face was already hit by enough particles of
all types taking part in the reaction and the function reaction() would have to decrease
these numbers by the number of occurrence in the list of reactants.

89



90



6 Simulation Results

Every new program needs thorough testing and the best way to check a program is
to test only one new feature at a time. This enables one to identify and locate most
of the errors. The task was executed constantly during the course of the work after
some initial simulations of the gas flow through an ABS to check whether the DSMC
method and especially OpenFOAM works for this case. However, some errors arising
from the interplay of various new components may not be found by this method and
more complicated simulations are necessary for this. These are much more difficult
to interpret and errors are therefore much more difficult to detect and locate. The fact
that corrections for one error may again be erroneous, possibly such that the correction
seems to work but suddendly another program component is negatively affected, is
especially inconvenient. This would require to test all features again after a correction
when one cannot exclude that other program components are affected by a change in
the code. The major difficulty with this is the long time it takes for a single run. Typical
runtimes lie in the order of several days to months. For this reason, the calculations
were executed mainly on three different computers, two older ones with 3 GHz Intel
dualcore processors and a new one with two 2.4 GHz Intel Xeon hexacore processors
each with two virtual processors allowing for a total of 24 parallel processes. All com-
puters use some distribution of the OpenSuse operating system with version numbers
between 11.1 and 12.2. Still, although many tests were performed, exhaustive testing,
and especially comparison with measurements, was not possible because late in the
work some major errors were detected which rendered many of the previous results
more or less useless. Nonetheless, all new features were tested and some results will
be shown and compared with theoretical predictions or measurements.

All meshes for the simulations were created with Gmsh, only the more complicate
ones for the storage cell were created with SALOME and then imported into Open-
FOAM (see appendix B). Because of the long execution time, many simulations were
run at low pressure such that the mean free path length of the particles was generally
quite long allowing for large cell sizes. However, in order to retain some spacial res-
olution, the cells were usually made much smaller. This in turn increases the number
of required simulated particles in the simulation, since there should ideally be about
20 particles per cell. This requirement was not always fulfilled since it is difficult to
match cell size, gas density, and the need for spacial resolution with computational ef-
fort. The most extreme cases occur in the simulations of the ABS where the mean free
path length is between λ0 ≈ 10−5 m in the nozzle and λ0 ≈ 100 m in the last vacuum
chamber. The first number is so small that millions of cells would be required only for
the nozzle to satisfy the requirement of cell sizes much smaller than the mean free path
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length. This makes the meshes very large and can lead to memory exhaustion. As a
compromise, a cell size of several tenth of millimeters was chosen for the nozzle. This
might lead to artifacts in the expansion region after the nozzle and should be inves-
tigated in detail with simulations of only the nozzle and the expansion with different
cell sizes. The cell size for the vacuum chambers was set at several millimeters such
that the central beam can still be resolved although the exact width and structure will
be lost. The bigger problem with this is, that with the low density prevailing in this
region, only very few particles move through the region leading to an average density
of simulated particles per cell below 10−5. This presents a clear violation of the DSMC
requirements, but can be justified with the low gas density. Since the mean free path
length is much bigger than the ABS, there are practically no collisions in reality and
therefore almost no collisions will be neglected through the selection mechanism of
the program looking only in a single cell for possible collision partners. The downside
is that even with time averaging switched on, it is almost impossible to obtain reason-
able statistics for the low density region. Increasing the ratio of simulated particles
to real particles is not an option either, because it increases significantly the execution
time and it takes much longer to even reach an equilibrium state from where it makes
sense to switch on time averaging, meaning an overall performance loss. The last steer-
ing parameter that can be used to influence the runtime is the timestep ∆tcD in the file
controlDict. This is however determined by the mean collision time in the nozzle
and cannot be chosen much larger without significantly influencing the result of the
gas expansion after the nozzle. The only real possibility for reducing these problems
would be to have timesteps matching the local mean collision time which however
would require major changes to the program as mentioned earlier in Chap. 3.

6.1 Trial Simulation of Test Stand

In order to test whether the settings described above are justifiable, one of the first
tests was the flow of H2 gas through the ABS without magnets solved with the dsmc-
ModFoam solver. This could be compared with measurements at a test stand shown in
figure 6.1 and described in [15].

For the simulation, an axisymmetric test case was set up with a simplified geometry
(see Fig. 6.2). Since OpenFOAM is a three dimensional solver, it requires a wedge-
shaped section of the geometry. Here, as for all other axisymmetric simulations, a
wedge with 5◦ opening angle was used together with the boundary condition cyclic
in the configuration file boundary for the sides of the wedge. The radius (distance from
center line to pumps) for this first simulation was taken as 5 cm, and the complete outer
walls were defined as pumps (see Fig. 6.3), where the number densities set as boundary
conditions were calculated with p = nkBT with T = 300 K from pressures measured
in the vacuum chambers of the teststand (see Tab. 6.1). Since the simulated inward
flux is not known before the end of the simulation, the value for a flux Q = 1 mbarl/s
was taken for all simulations. All wall temperatures as well as the temperature of the
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Figure 6.1 – Drawing of the test stand ([14]); The numbers I to IV are for the four vac-
uum chambers and the arrows and numbers below identify turbo pumps with the indicated
pumping speed.

Figure 6.2 – Simulated velocity in the upper half of the test stand; The symmetry axis
is aligned with the lower edge of the plotted region and the dimensions of the test stand
model are plotted to scale. Skimmer and collimators are like in Fig. 6.1 and the numbers
I-IV again indicate the vacuum chambers. One can see that there are still significant sta-
tistical fluctuations in chamber IV.

incoming gas were set to T = 300 K except of the conical part of the nozzle which was
cooled to T = 100 K.

The number density at the inflow was set to 1 · 1022 m−3 which leads to a flux
Q = kBT

∫
~vn d ~A of just over 1 mbar l/s. The time step was set to ∆tcD = 5 · 10−10 s

and every simulated particle represents 1011 real particles. As wall interaction model
MaxwellianThermal was used, which implements an undirected reflection from the
wall with total thermalization. As binary collision model the newly implemented VSS
model based on the Lennard-Jones potential described in Sec. 5.6 was used. The sim-
ulation was executed for about three months on one of the dualcore PCs and during
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Table 6.1 – Measured pressures in the vacuum chambers of the test stand for different
inward fluxes through the nozzle with a nozzle-skimmer distance of 30mm (from [14])

Qmbarl/s p1/mbar p2/mbar p3/mbar p4/mbar
0 2.0 · 10−7 6.0 · 10−8 5.0 · 10−8 1.3 · 10−7

1 2.1 · 10−4 1.8 · 10−5 7.0 · 10−7 1.7 · 10−7

2 5.2 · 10−4 2.8 · 10−5 1.4 · 10−6 2.1 · 10−7

3 8.6 · 10−4 4.3 · 10−5 2.2 · 10−6 2.6 · 10−7

4 1.3 · 10−3 6.0 · 10−5 3.0 · 10−6 3.1 · 10−7

5 1.6 · 10−3 7.5 · 10−5 2.2 · 10−6 1.8 · 10−7

that time 0.1161 s of real time were simulated. In order to obtain a result with not too
much statistical fluctuation, time averaging was switched on very early, certainly be-
fore a steady state was reached, which leads to poor results in the third and fourth
vacuum chamber. Generally, there are three ways to judge whether steady state is
reached, i.e. when it makes sense to switch on time averaging. The first is simply to
look at the fields during the simulation and check if they vary from one time step to
another. This is a very crude method, since unaveraged fields show a lot of statistical
fluctuations from one mesh cell to another, and one cannot really tell whether differ-
ences originate from statistical fluctuations or coherent changes over time. The second
method is proposed in [81] and uses the total number of simulated particles at a time as
criterion. With a small change to the database file $WM_PROJECT_DIR/bin/foamLog.db
where $WM_PROJECT_DIR is an environment variable set by OpenFOAM, the foamLog
script delivered with OpenFOAM can extract the particle number for every time step
from the logfile and one can plot it with Gnuplot. During the simulation, the particle
number will approach a constant value. This is much easier to see and usually yields
a later start time for averaging. The third method is a rule of thumb after which the
steady state may be reached after the particles had time to cross the whole simulated
volume about three times, where the average velocity can be taken for the calcula-
tion. This may be the safest method and usually leads to the largest time, for some
cases about an order of magnitude larger than the other methods. Usually the sec-
ond method was used during the work but in some cases like here, the first one was
used because the foamLog script can have problems with very large logfiles of several
Gigabyte if there is not enough main memory available.

The result of this first major simulation was used to plot velocity (Fig. 6.2), temperature
(Fig. 6.3) and pressure (Fig. 6.4) and to extract some macroscopic values which were
compared with measurements. The results are listed in Tab. 6.2. One can see that the
simulated results are in good agreement with the measurements, but to really under-
stand the comparison, it is important to mention how these values are obtained. First,
the pressures in the various vacuum chambers are measured close to the chamber walls
with an uncertainty of about 50 %. The simulated chambers have a different shape and
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Table 6.2 – Comparison of measured and simulated values for the test stand in Fig. 6.1
operated with H2; The index of the pressure indicates in which vacuum chamber it was
measured, vx is the velocity component parallel to the symmetry axis and T denotes the
translational temperature. The errors for the simulated values are not known exactly but
probably in the single per cent range.

measured simulated
p1/mbar 2.1 · 10−4 3.4 · 10−4

p2/mbar 1.8 · 10−5 2.7 · 10−5

p3/mbar 7.0 · 10−7 8.0 · 10−7

p4/mbar 1.7 · 10−7 1.7 · 10−7

vx/(m/s) 1274± 8.4 1290
T/K 19.03± 1.11 16.5

Figure 6.3 – Close up view of the simulated translational temperature in the upper half of
the test stand close to the nozzle.

a smaller radius and the values were extracted only 4 cm off axis and a small gradient
parallel to the axis was averaged out. The velocity and temperature measurements
are performed with a chopper that allows a short pulse of gas to pass and this pulse
lengthens over time until it reaches the quadrupole mass spectrometer (QMS) which
measures the time-dependent intensity. The velocity can then be obtained by the mean
flight time of the particles, while the pulse shape determines the temperature. The de-
tails can be found in [15]. It is important to note that with this measurement method
the rest gas influence is suppressed. This cannot be achieved with the standard DSMC
output, where all field values are averages over all gas molecules within a mesh cell,
and the beam cannot be separated from the rest gas. Therefore, the temperature and ve-
locity values are extracted on axis over a few centimeters behind the collimator where
the density ratio of the beam to restgas is maximal. At this position, the temperature is
lowest and increases slightly with increasing distance from the collimator. One can also
expect that the steady state was reached during the simulation for these positions such
that the above mentioned error from starting time averaging too early can be neglected
here.
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Figure 6.4 – Close up view of the simulated pressure in the upper half of the test stand
close to the nozzle.

This first simulation looks very promising and it seems that the new binary collision
model can solve the problem of too high simulated temperatures found in [15]. How-
ever, it should be stressed that about two years after this simulation two errors were
found in the collision model (and were then corrected). First, the formulas for viscosity
and diffusion cross section (3.78 and 3.79) were interchanged and second, the factor 2

3
in Eq. (3.79) was omitted. The effect is that the simulated total cross section was some-
what higher than it should have been and the scattering angle was also inaccurate.
The effect of the cross section would look like if the pressure was a bit too high and
the effect of the scattering angle is not known. Both affect only the expansion behind
the nozzle since there are almost no collisions far from the nozzle. Still, the effect on
the simulated values for ~v, T and p is not clear and the simulation was not repeated
with the correct collision model because of time constraints. However, a simulation of
a complete ABS with more effects and correct collision model was performed and the
results can be found in Sec. 6.7.

6.2 Test of Motion in Magnetic Fields

The next step was testing the motion of particles in magnetic fields. A simple test case
was set up for this, where atomic hydrogen in a single hyperfine state is expanded
through a nozzle and an unrealistically strong sextupole magnet with a pole tip field
of 1500 T and a length of 4 cm is placed 1 cm behind the nozzle. The magnet does not
have any walls, only its field is active within this region of 3 cm radius. Further, the
complete boundary is open and acts as pump respectively as source for atoms. Only
the nozzle has a real wall, where particles can be reflected from. These settings are
meant to simplify the analysis. The test case is again axisymmetric and the pressure in
the upper half of the vessel for injected hyperfine state |1〉 is shown in Fig. 6.5 while
the same is shown for injected state |3〉 in Fig. 6.6. One can clearly see that atoms in
state |1〉 are focused by the magnet while atoms in state |3〉 are defocused. The magnet
seems to be so strong that the atoms in state |1〉 cannot even reach the outer edge of the
B field but are completely reflected at a smaller radius and increase the pressure inside
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the magnet. Atoms in state |3〉 are rapidly pushed out of the magnet, thus lowering the
pressure inside.

Figure 6.5 – Pressure of H atoms in state
|1〉 moving through a strong B field which
is active within the region demarcated by
the thin white line.

Figure 6.6 – Pressure of H atoms in state
|3〉 moving through a strong B field which
is active within the region demarcated by
the thin white line.

6.3 Test of Collision Age Determination and New Wall
Collision Model

Testing the new collision age determination from Sec. 5.4 was executed with a model of
the storage cell shown in Fig. 2.7. At the ABS feeding tube a pressure of H2 molecules
of 2.7 · 10−3 Pa at 300 K was set and at the cell and BRP outlet the pressures are about
three orders of magnitude smaller leading to an effusive flow through the cell with
the InOutflow inflow model. In one case the FreeStream model was used with a gas
velocity at the inlet of v = 1290 m/s obtained from the simulation described in Sec. 6.1.
For this run with the MaxwellianThermal wall interaction model, Fig. 6.7 shows the
average number of wall collisions per mesh cell in the ABS feeding tube and the cell.
Figure 6.8 shows the same in a cut through the feeding tube and the BRP tube. In
both pictures the total number of wall collisions is shown but it is also possible to plot
only the number of wall collisions with a single wall patch to investigate where the
collisions take place.

Figure 6.7 – Total number of wall colli-
sions in the ABS feeding tube and the cell;
The average number of 116.5 seen by the
COSY beam is calculated along the white
line.

Figure 6.8 – Total number of wall colli-
sions in the ABS feeding tube and the BRP
tube
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Table 6.3 – Number of wall collisions in a storage cell for different wall interaction mod-
els.

wall interaction model Nw,cell Nw,BRP

SpecularReflection 92.4 66.2
MaxwellianThermal 81.8 330.3
MaxwellianThermal/FreeStream 116.5 109.9
MaxwellianThermalCosineExponent (k = 0) 58.6 435.7
MaxwellianThermalCosineExponent (k = 1) 118.8 968.2
MaxwellianThermalCosineExponent (k = 2) 185.4 1468.6

An important number for experiments is the average number of wall collisions of par-
ticles, both in the cell, which is seen by the COSY beam, and at the exit of the BRP tube,
which influences the polarization determined by the BRP and which has to be related
to the polarization seen by the COSY beam. The average number of wall collisions
along the cell Nw,cell has to be weighted with the number density n, since the density
decreases from the center outwards. Then it is

Nw,cell =
∫ 0.2
−0.2 nNw,cell(x) dx
∫ 0.2
−0.2 n dx

. (6.1)

This was calculated for different wall interaction models, both with the new
MaxwellianThermalCosineExponent model (Sec. 5.8) with different exponents k as well
as with the models of OpenFOAM (MaxwellianThermal and SpecularReflection). All
but one run were performed with effusive flow and the last one was with FreeStream
as inflow model as described above. The results of these calculations are listed in
Tab. 6.3.

For the polarization measurement in the BRP, it is not the number of wall collisions
of the particles within the BRP tube that matters, but the number of wall collisions
of particles actually moving out of the BRP tube into the BRP. All particles leaving
through a patch are dumped to file together with their number of wall collisions, and
the average as well as the collision age distribution can be calculated from this in-
formation. The average number of wall collisions of all particles leaving the end of
the BRP tube Nw,BRP is also listed in Tab. 6.3 and the collision age distribution for the
MaxwellianThermal/FreeStream case is shown in Fig. 6.9.

Interestingly, the average number of wall collisions in the cell Nw,cell is higher
than the corresponding number Nw,BRP at the BRP outlet for the cases with the
SpecularReflection and MaxwellianThermal/Freestream settings, although the BRP
tube is much longer. This may best be understood with the SpecularReflection model
where the angle of incidence at the wall is equal to the angle of reflection. This allows
mainly particles with a flight direction essentially parallel to the BRP tube to enter the
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Figure 6.9 – Collision age distribution, obtained with the FreeStream inflow model, for
particles leaving the BRP tube divided into contributions of individual parts of the wall.
The total distribution, which is not shown here, follows the one of the BRP tube very
closely. Particles leaving through the BRP tube apparently have almost no collisions with
the cell wall. Shown is the distribution of ≈ 4.8 · 106 particles.

BRP tube and they can therefore collide only seldom with the wall, before they leave it
through the BRP outlet. On the other hand, particles in the cell may enter from the ABS
feeding tube with almost arbitrary angle (only particles with small angles to the z-axis
may be reflected upwards and leave through the ABS feeding tube again) and will hit
the cell wall frequently before they leave the tube. Something similar might happen
with the MaxwellianThermal/Freestream settings where the distribution of the total
number of wall hits at the BRP outlet seems to be composed of two exponentials. Most
particles collide only a few times with the walls but another fraction undergoes thou-
sands of wall collisions leading to a long tail of the distribution. The first part may
come from particles which fly pretty straight down the ABS feeding tube and are then
reflected into the BRP tube with a small angle to the y-axis, while the rest may be par-
ticles that had multiple wall collisions before they entered the BRP tube and therefore
have all possible angles to the y-axis. When the particles have no initial downward
stream velocity as in the case with the MaxwellianThermal model, the average angle
to the z-axis is much higher and therefore the particles collide more often with the
walls before entering the BRP tube, leading to a relative increase of the second kind of
particles.
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6.4 Test of Hyperfine Transition Units and Calculation of
Polarization

High frequency transition units were tested in a flow of hydrogen atoms through a
tube and spin exchange collisions were temporarily switched off. Several transition
units were placed along the flow direction and the transition efficiencies were set such
that all particles that cross the transition plane were put into a single hyperfine state
although some of the transitions are physically impossible. In Fig. 6.10 it is shown
which transitions have been used and the resulting nuclear polarization is plotted for
a homogeneous background field of 0.1 T. The electron polarization is not shown but is
correct as well. The result in Fig. 6.10 was obtained with SpecularReflection as wall
interaction model but a simulation with MaxwellianThermal was also done. However,
this model has plenty of particles which are deflected in the backward direction after
a wall collision and with the unrealistically set transition efficiencies, particles with
the wrong hyperfine state move into a region where they would not be expected by
considering only the flow direction. For example, at the second transition, where all
particles are pushed into hyperfine state |3〉, particles crossing the transition plane from
right to left (i.e. against the flow direction) will be in state |3〉 although state |4〉 is
prevailing in this section. The result looks very strange with apparent distortions in
the corner between the wall and the transition plane, although the result is correct.
The effect is reduced to negligible levels with the SpecularReflection model because
the number density at the exit of the tube and within the tube is low, leading to almost
no particles moving into the wrong direction.

The simulation described above shows that the high frequency transitions and the po-
larization determination work perfectly when the transition plane crosses cells. How-
ever, it was also found in other test runs, that there are problems when the transition
unit is aligned with cell faces. In this case, the transition probability of the transition
unit is reduced significantly and the transition probability depends apparently on the
position. This occurs at some transitions while it works perfectly at others. Another
problem occurs when the simulation is executed on several processors. From time to
time the program simply gets stuck in the calculation but no error message is pro-
duced. It simply runs forever without making progress. The problem may be resolved
by starting the simulation again from a slightly earlier timestep, but this is not a real
solution. The problem here is most likely caused by the shifts of the particles at cell
faces as described in Sec. 5.1.6 and occurs when the cell face and the transition plane
are not perfectly aligned within the numerical accuracy. If a particle is shifted at a
cell face, it may be shifted across the high frequency transition unit without noting its
presence and therefore pass unchanged. This explains the first part of the problem.
That the second part of the problem occurs only in parallel runs indicates that some
particles may be shifted forth and back between processors. Both problems would
probably be solved if the high frequency transition units and the cell faces were per-
fectly aligned. This may be achieved with Gmsh as meshing tool since it allows to
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|1〉, |2〉, |3〉, |4〉 |4〉 |3〉 |1〉 |2〉 |4〉 |1〉

Figure 6.10 – Simulation of a flow (left to right) of H atoms through a tube with several
high frequency transition units marked by the vertical white lines. The units are idealized
such that they put all particles into one hyperfine state of which the nuclear polarization
is shown in the picture. The labels above the picture show which hyperfine state state is
present in the region below. Some cells are transected by the transition units such that the
cell average of the nuclear polarization is in between the ones of neighboring cells.

specify the geometric tolerance. For the simulations here a tolerance of 10−12 m was
used but OpenFOAM has a relative accuracy of about 10−15. Therefore, a smaller tol-
erance in Gmsh might already solve the issue but this was not tested and the method
might fail, since the points of the mesh may be shifted during mesh manipulations in
OpenFOAM or because the cell faces and the transition units are calculated differently.
Another possibility to solve the problem would be to restrict the high frequency transi-
tions to normal cell face crossings, reducing flexibility. For now, the issue is not further
pursued and the transition units are simply misaligned with the cell faces.

6.5 Test of Recombination at the Walls

The recombination at the walls was tested in a small cube with a side length of 2 cm
that is initially filled with hydrogen atoms. Over time the particles collide with the
wall, where they recombine according to the SimpleLangmuirHinshelwood model with
a fixed recombination probability of γ = 5 · 10−3. The initial gas and wall tempera-
tures were set to 300 K and as wall interaction model MaxwellianThermal was chosen.
Therefore, the particle velocity is randomized after each wall collision, and on average
all particles have the same velocity and travel the same distance between successive
wall collisions. Then, one would expect that the number of recombinations per time
depends only on the number of atoms, the rate νwt of wall collisions and the recombi-
nation probability, i.e.

dNH

dt
= −Nνwtγ (6.2)

→ N(t) = N0e
−νwtγt (6.3)
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Figure 6.11 – Normalized particle numbers during recombination in a cube of 2 cm side
length. At the start of the simulation, the volume is filled with H atoms only which recom-
bine during wall collisions with a probability of 5 · 10−3.

Fig. 6.11 shows the particle numbers normalized to the initial number of H atoms and
a fit of Eq. (6.3) to the simulated number of atoms. The fit yields a wall collision rate
νwt = 183 462.4 s−1. With an average thermal speed of the atoms of

v = 2√
π

1
β

= 2√
π

√
2kBT

m
= 2512.5 m

s (6.4)

one obtains an average flight distance between two wall collisions of 1.37 cm which is
reasonable. This shows that the program correctly simulates the recombination.

It is also important to compare the particle numbers at the beginning and the
end of the simulation because the proton number will not be perfectly conserved
as described in Sec. 5.9. The relevant data can be obtained from the logfiles
log.dsmcSpinModInitialise and log.dsmcSpinModFoam. The simulation starts with
159 954 simulated H atoms and ends with 80 049 H2 molecules. One can make sure that
no atoms are included in the final number by searching the last time of a wall collision
of an H atom in the file Parcels_at_patch_wall.dat. This occurs after about 0.012 s
and until the end of the simulation at 0.08 s no more atoms hit the wall. Therefore,
one can conclude that the proton number increases by 0.18 % during the simulation.
This error is small and is expected to scale with 1/

√
N . This is negligible for every real

simulation, where the number of simulated particles will usually be higher.
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Figure 6.12 – Evolution of hyperfine pop-
ulation numbers with spin exchange colli-
sions for H in a homogeneous B field with
B = 0.05T.
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Figure 6.13 – Evolution of polarization
during spin exchange collisions for H in a
homogeneous B field with B = 0.05T.

6.6 Test of Spin Exchange Collisions

The tests of spin exchange collisions were performed in a small cube with edge length
of 2 mm and a number density of n = 1018 m−3. Every simulated particle represents
only 104 real particles, yielding roughly 8 · 105 simulated particles. Two simulations
were run, one with hydrogen and one with deuterium atoms. In both cases the initial
hyperfine population numbers were set such that the gas is fully electron spin polar-
ized while it exhibits no nuclear or tensor polarization. Further, a small homogeneous
magnetic field comparable to the critical field was applied. The computational volume
was split into 11 288 cells containing ≈ 71 particles on average. In order to obtain a
good time resolution, the result of the calculation was averaged for only 10−4 s before
it was written to disk. Despite the relatively high particle number per cell, one still
observes large fluctuations of the polarization between individual mesh cells for each
time step. In order to smooth the data, the results shown in Figs. 6.12 to 6.15 are calcu-
lated as averages over the whole volume of the cube. In each case, the time is scaled
to the mean collision time TH respectively TD between to atoms. This time is extracted
from the file log.dsmcSpinModFoam by first extracting the numbers of collisions for ev-
ery time step with the foamLog script and then averaging all values and finally dividing
by the time step ∆tcD and the number of simulated particles.

One can check whether the spin temperature equilibrium values introduced in
Sec. 2.3.2 are attained. For both cases it is 〈mF〉 = 1/2 for the chosen initial values of
the hyperfine populations. With this, one obtains η = 1/2 for hydrogen and η ≈ 0.278
for deuterium. The expected values are obtained with the formulas given in Tab. 2.4
and one obtains the values in Tab. 6.4. The simulations clearly match the expectations.
Another point is the relaxation rate that can be approximated by Eq. (2.40). For hy-
drogen one expects that n2 − n4 ≈ 0.18 at t = 2TH which is fulfilled. The shape of the
individual curves can also be calculated numerically from Eq. (2.39) or, more conve-
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Figure 6.15 – Evolution of polarization
during spin exchange collisions for D in a
homogeneous B field with B = 0.01T.

Table 6.4 – Expected population numbers and polarization of hydrogen and deuterium in
spin temperature equilibrium for the simulated conditions where in both cases 〈mF〉 = 1/2.

Value Hydrogen Deuterium
n1 0.56 0.34
n2 0.19 n2 = n6 = 0.19
n3 0.06 n3 = n5 = 0.11
n4 0.19 0.06
Pe 0.5 0.28
Pz 0.5 0.36
Pzz 0.10

niently, from the explicit equations given in [44]. Here, they were just compared with
the corresponding plots for different B field in [38] which shows perfect agreement. All
this shows that the spin exchange collisions work as expected.

6.7 Simulations of a Complete ABS (in Two Steps) and
Test of a New Inflow Model

Several runs of a complete ABS were executed at the end of the thesis. The ABS was
split into two parts for the calculation and both parts were calculated individually. The
first part comprises the nozzle, the first two vacuum chambers and the bore of magnet
1, compare Fig. 6.16. The second part also comprises the bore of magnet one which
is meant as an overlap region for defining the inflow parameters for the second part,
which further comprises vacuum chambers 3 to 5. The first part of the ABS is the same
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for all simulations and calculated only once. This provides a huge speedup, because
the high number densities in and around the nozzle require short simulated time steps,
leading to an execution time of roughly two months. The second part can be handled
with much bigger time steps such that it can be calculated within one or two days.

The setup for the first part is as follows. At the inflow a number density of nH =
3.5 · 1022 m−3 is specified for hydrogen atoms and nH2 = 0 for molecules. The gas tem-
perature at the inflow is set to T = 1200 K and the nozzle temperature is T = 100 K.
The probability for recombination during a wall collision is set to γ = 4.5 · 10−4 in the
nozzle and to γ = 8 · 10−2 [87] at all other walls, which are kept at a constant temper-
ature of T = 300 K. The resulting degree of dissociation behind the nozzle is α ≈ 0.7,
which is in good agreement with measurements. The number densities at the outlets
of chamber 1 and 2 are set to nH,1 = 1.52 · 1019 m−3 and nH,2 = 2.4 · 1018 m−3, respec-
tively. The corresponding densities for the molecules are set to zero. The beam that is
formed in this first part is flowing into a vacuum at the exit of magnet 1. The vacuum
(nH = 10 m−3, nH2 = 0) is chosen in order to not get reflected particles which would
spoil the results for the second part of the calculation. Magnet 1 is represented only
physically but does not produce a magnetic field in the first part of the simulation.

The second part of the simulation is always executed with nH = 0 at all three outlets
while the number densities for molecules are set to nH2,3 = nH2,5 = 7.25 · 1016 m−3 and
nH2,4 = 4.83 ·1016 m−3 respectively. This is to reflect that the background is mainly com-
posed of molecules. The number densities at the outlets are calculated from measured
pressures in the various chambers and the pressure in the fifth chamber is usually
higher than the pressure in the fourth chamber, because the beam is dumped into it.
The conditions at the entrance of magnet 1 are calculated with the new inflow model
MixedInflow described in Sec. 5.5 with the option cellInternalValues set to true. The
fields for the hyperfine population numbers were set manually to the values for unpo-
larized gas because time averaging for these fields was accidentally switched off dur-
ing the first part of the simulation. The magnets are present in all simulations, either
producing a magnetic field or not. The MFT is also always present and interchanges
the population numbers of hyperfine states |2〉 and |3〉with 100 % efficiency if switched
on.
The results of both parts of the simulation are mapped onto a mesh of the complete
ABS. The result of the first part is always mapped first such that the result of the second
part overwrites the field values within the bore of magnet 1. An example can be seen in
Fig. 6.16 which shows the number densities n|1〉 for particles in hyperfine state |1〉 and
n|4〉 for particles in hyperfine state |4〉 for a simulation with all magnets switched on
while the MFT is switched off. One can clearly see that particles in state |1〉 are focused
while particles in state |4〉 are defocused. One can also see that the number density
for state |1〉 in the compression tube is slightly lower than in chamber 5 which does
not look correct. This cannot be only due to recombination as can be seen in Fig. 6.17
which shows the pressure in the ABS along an axis parallel to the x-axis (with 1 mm
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Figure 6.16 – Number density in m−3 for particles in hyperfine state |1〉 (top) and |4〉
(bottom) in the ABS with all sextupole magnets (M1-M5) producing a B field while the
MFT is switched off. One can clearly see that particles in state |1〉 are focused while par-
ticles in state |4〉 are defocused. The speckles between the skimmer and magnet 1 result
from time averaging of the fields for the hyperfine population numbers switched off. The
gas was manually made unpolarized for the second part. The overlap region for the two
different parts of the simulation is shown at the top. Note that there is a thin wall be-
tween vacuum chambers 2 and 3 stretching outwards from magnet 1 along the red line
which cannot be seen in the picture. The roman numbers in the bottom figure denote the
vacuum chamber. The y-axis is stretched by a factor of 2.

offset) for a run with and one without B field of the magnets. The pressure decreases
along the compression tube although the fraction of atoms in the gas is very low, as
shown in Fig. 6.18. Measurements also show that a higher pressure than in chamber 5
can be expected. The problem is probably the boundary condition for the wall. It was
set to calculated for the number densities while zeroGradient would have been more
appropriate. The zeroGradient condition was used for the simulation in Sec. 6.1 which
showed a significant pressure increase in the compression tube. The false boundary
condition is applied at all walls and the simulations have to be rerun to get correct
results.

The hyperfine population numbers and the polarizations are calculated for a run with
(Figs. 6.19 and 6.20) and one without (Figs. 6.21 and 6.22) MFT. The magnets are on
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Figure 6.18 – Number densities of H and
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cantly when the magnets produce a B field
while the H2 density does not change.

in both cases. The result of the simulation without MFT matches the expectation.
The result of the simulation with MFT, however, reveals some problems of the pro-
gram. The first thing which cannot be seen in the figures is that the MFT switches
particles from state |2〉 to |3〉 not only within the bore of the yoke but also beyond
the yoke. Apparently there is a minor error in the program, probably in the function
DsmcCloud::hfsTransitionProperties::insideHfRegion() which was not immedi-
ately found. The more serious error is that the MFT switches less than half of the par-
ticles from state |2〉 to state |3〉. As a first guess it was assumed that the transition was
accidentally aligned with cell faces which could have led to particles leaking through
the MFT, as described in Sec. 6.4. In order to check this, two more simulations were
performed, each with the transition plane of the MFT placed an additional millimeter
behind its previous position. The results look much the same than the ones shown in
Fig. 6.21. This indicates that there is another problem, which did not appear during
the simulations for Sec. 6.4. Currently the cause is not clear, but it will be investigated.
Another curiosity is the relative increase of particles in state |2〉 along the beam axis
behind the MFT when the MFT is on.

The simulation was also meant as a test of the new inflow model. This seems to
work fine, but more detailed studies are necessary to definitely decide whether it re-
ally works correctly. There are several assumptions in the model described in Sec. 5.5
which are not yet shown to be correct. In order to get more confidence in the simulation
results it will be crucial to study this further.
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beam axis in the ABS with MFT switched
off. The polarization is not calculated in
inhomogeneous B fields, i.e. within the
magnets, where it is set to zero. The ho-
mogeneous background field is 1mT.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1 1.2

N
|i〉

∑
i
N

|i〉

distance from nozzle exit/m

|1〉
|2〉
|3〉
|4〉

Figure 6.21 – Hyperfine population num-
bers at 1mm offset parallel to the beam
axis in the ABS with MFT switched on.
Hyperfine states |1〉 and |2〉 become fo-
cused, while states |3〉 and |4〉 become defo-
cused. The MFT flips less than half of the
electron spins of particles in state |2〉. The
results of the first part of the simulation
are not shown.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

P
i

distance from nozzle exit/m

Pe
Pz

Figure 6.22 – Electron and nuclear po-
larization at 1mm offset parallel to the
beam axis in the ABS with MFT switched
on. The polarization is not calculated in
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7 Optimization

Optimization is the process of finding the best element in a set of possibilities with
regard to a set of criteria. These criteria can generally be combined to a cost function

f : P → R (7.1)
f : ~x 7→ f(~x) (7.2)

that maps the element ~x from the parameter space P ⊆ Rn to a real number. Then, op-
timization means finding a local or global extremum of f . Without loss of generality,
one can restrict oneself to the search for a minimum, since a maximization of a function
f is equivalent to the minimization of −f . Optimization is a very wide field of math-
ematics and there exist many different algorithms to find an optimum. Which one to
choose depends on the known properties of the cost function like information about
first or higher order derivatives or whether the function is continuous, linear, and/or
convex. The more knowledge exists, the more specialized an algorithm can be selected
and a better convergence behaviour is expected. However, if one does not use any in-
formation about the cost function, the No Free Lunch (NFL) theorems [88] state, that,
averaged over all possible cost functions, all algorithms perform equally well. That
means, if one algorithm performs better than another algorithm on a certain problem,
it will necessarily perform worse on some other, even if the second algorithm is a sim-
ple random search. So there is no a priori knowledge of the performance of a special
algorithm. The situation is even worse: The NFL theorems also state that testing two
algorithms with a certain cost function for some time and comparing the results, one
cannot find out which algorithm performs better in a longer optimization run with
the same cost function. Therefore, effective simulation relies on fortuitous matching
between the cost function and the algorithm. Another important consequence of the
NFL theorems is, that comparing the performance of two algorithms on one problem
does not tell anything about the performance of the same algorithms on other prob-
lems.

For the optimization of the atomic beam source the situation is pretty dire. There is
almost no information about the cost function. One can probe it only at a certain point
of the parameter space with a DSMC calculation. A gradient can only be calculated
numerically, which is computationally expensive in this case, especially for higher di-
mensional parameter spaces. One may suspect that f is continuous, but it may exhibit
large gradients and f is certainly nonlinear. One does not know if f is convex and
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one cannot tell how many local and global extrema it has. The situation is further
complicated by the fact that f is calculated with a stochastic method and hence the cal-
culated function values scatter around the real value. Nonetheless, one wants to have a
method that robustly finds the global optimum in a short time. These are very stringent
requirements on the algorithm and not many algorithms can deal with such general
cases. One possibility are evolutionary algorithms [89] and a genetic algorithm was
already used to optimize the sextupole system of the HERMES-ABS (located at DESY
in Hamburg, Germany) with a ray-tracing particle tracking algorithm [90]. However,
genetic algorithms have major drawbacks. For one, it is difficult to set suitable param-
eters like the mutation rate and on the other side, the algorithm can get stuck in local
extrema or even converge to arbitrary points.

In [25] a gradient scheme was used to optimize the magnet system of the RHIC-ABS
(Brookhaven, USA). It was found that the algorithm fails because of two reasons. First
the statistical fluctuations of the ray-tracing algorithm sometimes lead to reversed gra-
dients when the gradients were small, and this made the algorithm move into the
wrong direction. The second problem was the somewhat unexpected occurrence of
local extrema, where the algorithm got stuck and the final result of the optimization
therefore depended on the initial parameters. Finally, the group used a brute force
method and calculated the cost for several ten thousands of parameter combinations
and manually selected the best one.

For the DSMC calculation, a brute force method is out of question because of its high
computation time. Anyway, it would scale bad with the dimensionality of the param-
eter space. A gradient scheme is also prohibitively expensive and would probably fail
because of the same reasons as above. The genetic algorithm does not seem to be suit-
able, since it is not guaranteed to converge to an optimum. Actually, the only black box
algorithm that can come up with a convergence proof is Adaptive Simulated Anneal-
ing (ASA), which will be used in this work and is described in the next section.

7.1 Adaptive Simulated Annealing (ASA)

Like many other optimization schemes, Adaptive Simulated Annealing [91] (formerly
called Very Fast Simulated Re-Annealing [92]) is inspired by a natural process, which
is the annealing of a metal after hardening in this case.

The optimization method exploits some analogy with a typical physical problem,
namely the minimization of the energy of a system. The cost function of a problem
is scalar valued and it can therefore be viewed as a potential landscape. In this pic-
ture, every evaluation of the cost function returns the value of the potential energy at
this point in parameter space. If the k th evaluation of f for parameter set ~xk yields
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f( ~xk) = Ek and in the next step one obtains f(~xk+1) = Ek+1, the new position in pa-
rameter space is accepted with a probability that depends only on the two most recent
function evaluations:

h(∆E) = 1
1 + e

∆E
Ta

≈ e−
∆E
Ta (7.3)

where ∆E = Ek+1 − Ek is the energy difference and Ta is a control parameter usu-
ally called acceptance temperature. This temperature is time-dependent and lowered
according to

Ta(k) = Ta,0e
−ca k

1
D (7.4)

where D is the number of dimensions of the parameter space and ca > 0 is a control
parameter that can be chosen freely to tune the algorithm for a specific problem. The
coordinate i of a new point ~xk+1 ∈ [Ai, Bi] is calculated according to

xik+1 = xik + yi(Bi − Ai), (7.5)

using only the current point as starting point, where yi ∈ [−1, 1] is a random number
that is selected according to the distribution function

giT
(
yi
)

= 1
2 (|yi|+ Tg,i) ln

(
1 + 1

Tg,i

) , (7.6)

which is shown in Fig. 7.1 for different values of the generation temperature Tg and
which has a cumulative distribution function

Gi
T
(
yi
)

= 1
2 +

sgn
(
yi
)

2

ln
(

1 + |y
i|

Tg,i

)

ln
(

1 + 1
Tg,i

) . (7.7)

Hence, a suitable yi can be generated from a uniformly distributed random number
Ri

f ∈ [0, 1] by

yi = sgn
(
Ri

f −
1
2

)
Tg,i

((
1 + 1

Tg,i

)|2Rif−1|
− 1
)
. (7.8)

With this yi, a new coordinate xik+1 of a new point is calculated according to Eq. (7.5)
until it fulfills the boundary condition, i.e., until xik+1 ∈ [Ai, Bi]. To obtain a new point
~xk+1, one can move parallel to an axis of the parameter space by changing only one
coordinate of ~xk or one can change all coordinates at once. Using different generation
temperatures Tg,i for every coordinate allows to handle different sensitivities of the cost
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Figure 7.1 – Probability density function gT(y) for generating new points in ASA for
different values of Tg; The distribution is increasingly centered around 0 for decreasing Tg
with non-vanishing probability for larger |y|.

function to the various parameters. As for the acceptance temperature, the generation
temperature is decreased over time, and using the distribution function in Eq. (7.6) for
the algorithm allows one to decrease Tg,i exponentially fast:

Tg,i(k) = Tg,0,i e
−cg,i k

1
D (7.9)

where again the cg,i > 0 are free parameters to tune the algorithm. It is possible to
use the number of generated states k for both, the cooling of the generation temper-
ature and the acceptance temperature, but it has proven fruitful to use the number
of accepted states for k for the acceptance temperature instead. This cooling sched-
ule then makes sure that the distribution gets centered more and more around zero
and therefore, the average stepsize in the parameter space decreases significantly with
time. While at the beginning of the optimization process the whole space is sampled,
the search narrows to a neighborhood of the last generated point after some time, while
there is still a small probability to make a big step, which may allow to escape a local
minimum.

The convergence of the method is easy to show. It is enough to proof that every point
of the parameter space can be sampled infinitely often in an infinitely long run, i.e. that
the probability of not generating a state ~x for all times goes to zero, which is

lim
k→∞

∏

k

(1− gk) = 0, (7.10)

or which is equivalent to
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lim
k→∞

∑

k

gk =∞ (7.11)

after taking the logarithm, where

gk =
D∏

i=1

giT
(
yi
)

=
D∏

i=1

1
2 (|yi|+ Tg,i) ln

(
1 + 1

Tg,i

) . (7.12)

For large enough k it is ln
(

1 + 1
Tg,i

)
≈ cg,i k

1
D and Tg,i ≈ 0. So, starting with a suffi-

ciently large k0, one obtains

∞∑

k=k0

gk ≈
∞∑

k=k0

(
D∏

i=1

1
2 |yi| cg,i

)
1
k

=∞, (7.13)

which proofs that the best solution will be found, although it might take infinitely long.
One reason for a low convergence rate may be that the cost function depends only
weakly on a certain parameter and the generation temperature is too low, such that
the algorithm moves only slowly towards a better parameter set. If the temperature
would be higher, bigger steps would be more common, and one would expect faster
convergence. The opposite is the case where the cost function is very sensitive to a
certain parameter, such that large steps would mean overshooting the minimum. In
order to handle different sensitivities of the cost function, there is the technique of
reannealing, which can be performed in certain intervals and means increasing the
temperature for certain parameters according to the sensitivity si = ∂f

∂xi
of the cost

function to them at the most current minimum of the cost function. If the largest si is
called smax and the generation temperature is calculated according to Eq. (7.9), one can
either rescale k or alternatively Tg,0,i according to

T ′g,0,i = smax

si
Tg,k,i e

cg,i k
1
D . (7.14)

Reannealing may increase convergence speed, but from Eq. (7.9) one can see, that with
increasing dimensionality of the problem, the temperature can be lowered slower and
for a high dimensional problem it may become too slow to ever get a reasonable re-
sult. A way to increase the rate of cooling is to introduce a quenching factor Qi of the
order of D to press the temperature lower and sooner end up in a minimum such that
Eq. (7.9) becomes

Tg,i(k) = Tg,0,i e
−cg,i k

Qi
D . (7.15)

However, for Qi > 1 the above convergence proof fails since
∑∞

k=k0
1
kQi

is finite.
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7.2 Solver optimizationFoam

The optimization of an atomic beam source requires many DSMC calculations for vari-
ous parameter settings and geometries. An optimization algorithm should set these
parameters and geometries automatically, and the solver dsmcSpinModFoam should
only be used to calculate the cost function, which is used by the optimization algo-
rithm. This makes it necessary that the optimization algorithm runs on a higher hier-
archy level than dsmcSpinModFoam, and the folder structure for an optimization run on
disk should reflect this. Further, one may want a versatile optimization tool, that can
be used with different optimization algorithms and for different optimization prob-
lems, where the cost function may be calculated with different solvers. The new solver
optimizationFoam is a framework that can fulfill all these requirements. It consists of
two main classes, which both make use of OpenFOAMs runtime selection mechanism,
OptimizationAlgorithm and OptimizationProblem. This makes it possible to specify in
a new configuration file optimizationOptions (compare appendix E) which problem
should be solved by which algorithm, and makes it particularly easy to include new
algorithms and problems.

For the implementation, this means that a layered approach with an inheritance struc-
ture and use of templates is required. The UML diagram of the base class for the
optimization algorithm is depicted in Fig. 7.2. The class serves as base class for the use
with the runtime selection mechanism and as parent for all optimization algorithms,
where currently only Adaptive Simulated Annealing is implemented. Further, the base
class declares some general functions, which every optimization algorithm has to im-
plement. The function parameterIdList() returns a list with the names of the parameters
to optimize, parameters() returns their value, and generatedStates() returns the number
of generated states. The other three functions are self-explanatory.

An UML diagram of ASA, the only implemented optimization algorithm, is shown in
Fig. 7.3. The class implements the algorithm described in Sec. 7.1 and from there, the
meaning of most class attributes should become clear. A lot of them can be set in the
configuration file optimizationOptions. Two so far unexplained options are minimize
and restart. The first is set to true by default, but if changed to false, the algorithm will
try to find the maximum of the cost function by minimizing the negative cost function.
If restart is set to true, ASA will restart the optimization from the last completed state
with appropriate settings, which requires that the algorithm keeps track of those and
saves them in a file optimization/AsaState in order to be able to reload them after a
shutdown of the program. The reload or new initialization is done by the function ini-
tialize(). The function optimize() generates new states, tests if they are within the param-
eter space by calling the function OptimizationProblem::viableState(), and calculates the
cost function by calling the appropriate function from the optimization problem and
negating the result if necessary. Afterwards, the acceptance test according to Eq. (7.3)
is performed and the acceptance and generation temperatures are lowered. Finally, the
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OptimizationAlgorithm

dict: dictionary&

optimizationProblem:

autoPtr<OptimizationProblem<OptimizationAlgorithm>>
optimizationPath: fileName

declareRunTimeSelectionTable()

<<static>> New()

<<abstract>> parameters()

<<abstract>> parameterIdList()

<<abstract>> generatedStates()

<<abstract>> initialize()

<<abstract>> optimize()

<<abstract>> finalize()

AsaOptimization

Figure 7.2 – UML diagram of the OptimizationAlgorithm base class in solver optimiza-
tionFoam

number reannealStep indicates after how many accepted states the reannealing is per-
formed. This is done according to Eq. (7.14) where the partial derivatives are calculated
by forward or backward difference quotient according to

∂f

∂xi
= f(xi ±∆xi)− f(xi)

±∆xi
, (7.16)

where the ∆xi correspond to the parameters deltaParameters in the configuration file.
The value of the ∆xi is limited to 10−3(xi,max−xi,min) in the program and the appropriate
difference quotient is chosen when xi is close to a boundary of the parameter space.
The last function finalize() simply prints some final values containing some information
about the best parameters found together with the minimal cost.

The base class of the optimization problem, OptimizationProblem, has only two abstract
functions. First, viableState() indicates whether a generated state lies within the param-
eter space of the problem and second, the function costfunction() calculates the function
value at a certain position in parameter space. This is enough for simple optimization
problems like minimizing arbitrary functions as indicated by the two problem classes
testFunction0 and testFunction2 in Fig. 7.4. The problem is much more complex for the
case of optimizing an atomic beam source, since a new test case folder has to be set
up for every function evaluation and the entries in the configuration files have to be
adapted. Further, the mesh may have to be changed and post-processing of the DSMC
result may be necessary to extract the function value. Many tasks are similar for ev-
ery situation and therefore a class DsmcOptimizationProblem was created. The actual
problem classes are then derived from this parent class as can be seen in Fig. 7.4.
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OptimizationAlgorithm

AsaOptimization

parameterIdList: List<word>
nParams: label

parameterLowerBound: List<scalar>
parameterUpperBound: List<scalar>
parameterBestState: List<scalar>
parameterLastState: List<scalar>
parameters: List<scalar>
costBestState: label

costLastState: label

generatedStates: label

acceptedStates: label

restart: bool

minimize: bool

rndGen: Random

generationT: List<scalar>
acceptanceT: scalar

initialGenerationT: List<scalar>
initialAccetanceT: scalar

generationDampingCoeffs: List<scalar>
acceptanceDampingCoeffs: List<scalar>
generationQuenchingFactors: List<scalar>
acceptanceQuenchingFactor: scalar

reannealStep: label

maxGenStates: label

deltaParameters: List<scalar>
AsaState: IOdictionary

parameterLastAcceptedState: List<scalar>
generateState()

acceptanceTest()

costFunction()

reanneal()

initialize()

optimize()

finalize()

Figure 7.3 – UML diagram of the optimization algorithm class for ASA

The design here is such that the parent class does the standard work and the child class
performs the special actions or handles exceptions from the standard. This leads to a
somewhat interwoven structure and may best be explained with an example. For this,
a test case was created, which is called AsaDsmcTest_1. The task here is to minimize the
flow through a small tube of circular cross section and of fixed length, that is bent by an
angle ϕ ∈ [10−6, 3] to form a ring segment, see Fig. 7.5. Further, the pressure or number
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OptimizationProblem

dict: dictionary&

owner: OptimizationAlgorithmType&

declareRunTimeSelectionTable()

<<static>> New()

<<abstract>> viableState()

<<abstract>> costFunction()

OptimizationAlgorithmType

DsmcOptimizationProblem

useGmsh: bool

useGnuplot: bool

countPatchHits: bool

parameterPathes: dictionary

meshScaling: vector

nGeneratedStates: label

caseFolder: fileName

additionalParameterChanges()

changeMeshParameters()

remakeMesh()

initialize()

createNewCase()

runCase()

finalize()

changeBoundaryFile()

<<abstract>> costFunction()

<<abstract>> viableState()

OptimizationAlgorithmType

testFunction0
viableState()

costFunction()

OptimizationAlgorithmType

testFunction2
viableState()

costFunction()

OptimizationAlgorithmType

AsaDsmcTest 1
additionalParameterChanges()

changeMeshParameters()

remakeMesh()

sampleScalarField()

sampleVectorField

viableState()

costFunction()

OptimizationAlgorithmType

Figure 7.4 – UML diagram of the optimization problem classes

density n at the entrance of the tube can vary by a factor 5 in the range n ∈ [1023, 5·1023].
One may expect to see the minimal flow through the tube at the lowest number density
and the biggest curvature of the tube for a molecular flow. The curvature of the tube
is expected to be negligible for a laminar flow. This simple test case is ideally suited
to test the overall functionality of the class DsmcOptimizationProblem, since changing ϕ
means changing the geometry of the problem and changing n needs several changes
in configuration files.

Before the start of an optimization, the function initialize() will read some parameters
from the configuration file. For example, if useGmsh is set to true, the freely available
third party software Gmsh [93] will be used for meshing and if useGnuplot is set to true,
the commonly used plotting tool Gnuplot [94] will be used for plotting the information
contained in the logfile of a run. Additionally, the option countPatchHits will use the
cloud class dsmcPatchCloud as described in Sec. 5.4 to let the particles count the number
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Figure 7.5 – Geometry for a test case during the optimization of the problem
AsaDsmcTest_1

of wall collisions and the option meshScaling will allow to scale the mesh during import
into OpenFOAM from other mesh formats.

The work for calculating one function value can be divided into three major steps:
First, setting up the test case, then doing the DSMC calculation and finally extracting
the flow through the tube from the DSMC result. The first task is executed by the func-
tion createNewCase(). This function will start with copying the relevant files from the
folder of the last test case named TestState_i to a new folder with the new number
of generated states in its name, i.e. TestState_i+1. In order for some of the file han-
dling operations to succeed, one has to remove a barrier in OpenFOAM that limits the
allowed file structure to that one known from a single DSMC case and prohibits a fur-
ther hierarchy level. This limitation may be useful in many cases, but here it has to be
removed by a change to the file regIOobjectWrite.C from the common infrastructure
of OpenFOAM. It is simply extended in such a way that if the option allowWritingI-
nArbitraryPlace is set to true in the top level controlDict (compare Fig. B.1), writing is
allowed in arbitrary places and otherwise the barrier is kept. Then, after copying the
folders, the configuration files have to be changed. In order to find the correct places
in the correct files where the changes have to be made, the full path to the parame-
ters has to be provided in the dictionary DsmcProblemOptions/parameterPathes in the file
optimizationOptions, because some parameter names may occur multiple times in a
file. The first word in the list is either mesh, if the geometry has to be changed, or the
file name of the configuration file followed by the names of the various dictionary hier-
archy levels, compare appendix E. If the parameter does not need a remake of the ge-
ometry, the parameter value in the appropriate configuration file is changed to the one
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required by the optimization algorithm and the new file version is saved. If the geome-
try has to be changed during the optimization, one needs tools to automatically change
the geometry and remake the mesh. In principle, this could be done with OpenFOAMs
blockMesh utility, but it is quite difficult to use for complex geometries. Therefore Gmsh
is used for this task. Then, the function changeMeshParameters() loads and changes the
∗.geo file that specifies the geometry and the function remakeMesh() uses the “system”
call of C++ to call Gmsh and remesh the geometry, import it into OpenFOAM, and scale
it by the scaling factors provided in the optimizationOptions. In order to make neces-
sary changes to the boundary file, the function AsaDsmcTest_1::remakeMesh() overloads
the function DsmcOptimizationProblem::remakeMesh() but calls the function of the parent
class first and then calls the function DsmcOptimizationProblem::changeBoundaryFile(),
which is a generic tool to change the boundary conditions of boundary patches. Af-
ter that, the function changeAdditionalParameters() is called to make changes to other
dictionaries that may have to be made when other parameters depend on one of the
variables specified in the optimizationOptions. In the current example this is an ad-
ditional change to the dsmcInitialiseDict to make the initial condition of the number
density fit with the inflow properties.

After the new case is set up, the function runCase() is called, which reads the
number of processors from the decomposeParDict and again uses the “system” com-
mand to decompose, initialise, run, and reconstruct the case and then calls the
function finalize(), which executes the foamLog script to extract all data from the
logfile and, if selected, Gnuplot is used to plot this data by a call to the script
$FOAM_SRC/optimization/Problems/DsmcOptimizationProblem/DsmcDataPlot.sh.
This may not seem to be a nice way of doing it, but it offers an easy way to change
the plots without recompiling everything. Finally, the function finalize() deletes the
logfiles and the processor folders to free disk space.

The functions createNewCase() and runCase() are called from within the function cost-
Function(), which now has the task of extracting the function value from the obtained
data. In the current example, this means calculating the flux Φ through the tube from
the fields which can be done according to the formula

Φ = d(pV )
dt

= kBT
dN

dt
= kB

∫
~vn d ~A ·

∫
T d ~A∫
1 d ~A

, (7.17)

where the last term is the average temperature on the surface with surface element d ~A.
For a better statistical result, the flow will be calculated through ten different planes
along the tube and the average will be returned to the optimization algorithm. In
order to sample the relevant data from the fields, OpenFOAM provides the sample
utility which requires a dictionary system/sampleDict that specifies which fields are
sampled at which planes, the interpolation scheme, and the output format. Because
the tube is bent by different angles, the parameters of the planes to sample have to be
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changed for every case, which is also done in the function additionalParameterChanges().
Then, the sampled data can be integrated by OpenFOAMs sampledSurfaces class and the
average flow can be calculated. This completes the evaluation of the costfunction and
the optimization algorithm can continue its work.

7.3 Test of the Solver optimizationFoam

7.3.1 Test of Optimization Algorithm ASA

In a first step, the optimization algorithm was tested with various test functions from
[95]. In order to test different aspects of the optimization algorithm, the three functions
f0(~x), f2(~x) and f4(~x) were chosen. The first function is defined by

f0(x1, . . . , x4) =
4∑

i=1

{
(ti sgn(zi) + zi)2cdi if |xi − zi| < ti and |xi| < t
dix

2
i otherwise (7.18)

zi =
⌊∣∣∣∣
xi
si

∣∣∣∣+ 0.49999
⌋

sgn(xi)si,

si = 0.2,
ti = 0.05,
c = 0.15
di = {1.0, 1000.0, 10.0, 100.0},

−10 000 ≤ xi ≤ 10 000.
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Figure 7.6 – Test function function f0(~x) along an axis with di = 10 around the mini-
mum at x = 0.
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Figure 7.7 – Best cost for the optimization of f0(~x) with different cooling parameters
cg,i for generation and ca for acceptance temperature. The convergence behavior depends
strongly on the chosen parameters and the algorithm does not converge for the first 3 pa-
rameter sets after 2 · 106 generated states while it rapidly converges for the last three.

This is a paraboloid in four dimensions with steepness di along the axis xi that has
numerous holes of width 2ti centered at xi,j = j · si with increasing floor level for
increasing |xi,j| (see Fig. 7.6). The function has one global minimum at ~x = 0 where
f(0) = 0 and 1020 − 1 local minima [96]. This function is very difficult to optimize
because of the large number of local minima and its discontinuity. Figure 7.7 shows
that the present implementation of ASA can handle this function and find its global
minimum within reasonable time for suitably chosen cooling parameters. This clearly
shows the importance of optimizing the cooling parameters as well. It was not done
here, so one can expect to find a set of cooling parameters that leads to much faster
convergence than shown in Fig. 7.7. The initial values of the parameters xi are only
of minor importance for the convergence rate and were all set to xi(k = 0) = 10 000.
The initial generation (acceptance) temperature was set to Tg,i(0) = 1.0 (Ta(0) = 107).
Reannealing and quenching were not used.
The second function is

f2(x1, x2) = 100(x2 − x2
1)2 − (1− x1)2 − 2.048 ≤ x1/2 ≤ 2.048 (7.19)

which has a global minimum at x1 = x2 = 1 with f2(1, 1) = 0 and a parabolic valley
stretches along x2 = x2

1. This valley makes the function hard to minimize [96]. Five op-
timization runs with different cooling parameters were performed with initial values
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Figure 7.8 – Best cost for the optimization of f2(~x) with different cooling parameters cg,i
for generation and ca for acceptance temperature.

x1(k = 0) = 1.2 and x2(k = 0) = 1.2. The results are shown in Fig. 7.8. Reannealing was
performed every 200 accepted states during all runs with the stepsize ∆xi = 0.004 for
the calculation of the partial derivatives. The behavior of the generation temperature
with reannealing is shown in Fig. 7.9.
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Figure 7.9 – Generation temperatures Tg,1/2 during the optimization run of function
f2(x1, x2) with cg,i = 1.0 and ca = 1.0. Steps where reannealing takes place are marked
by arrows.
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Figure 7.10 – Best cost for the optimization of f4(~x) with different cooling parameters.
The only difference between the first (red) and second (green) curve is a difference in
the initial acceptance temperature Ta,0 which is left unspecified in the first case and set
to Ta,0 = 0.1 in the second case. The initial values for all simulations were xi,0 = 1 except
in the last case where they were set to xi,0 = 0 as a check.

The third function to minimize is

f4(x1, . . . , x30) =
30∑

i=1

x4
i + η − 1.28 ≤ xi ≤ 1.28 (7.20)

where η ∈ [0, 1] is an equally distributed random number. The function has a global
minimum at xi = 0 and tests whether the algorithm can handle noisy functions. Figure
7.10 shows that this is not a problem and that the optimization works with quenching
too. The optimization is quite fast for very different cooling parameters although it
would be highly unlikely to find a minimum with a simple random walk. The param-
eter space is so big that the probability p of hitting the volume around the optimum
with |xi| ≤ 0.5 only once within 2 · 106 steps is only p = 2 · 106 · 1/(2.56)30 ≈ 1.1 · 10−6.

7.3.2 Test of DsmcOptimizationProblem

The test of the class DsmcOptimizationProblem was performed with the test case
AsaDsmcTest_1 described in Sec. 7.2. Because of the long computation time, no com-
plete optimization could be performed but 30 different values for the costfunction were
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Figure 7.11 – Sampled parameters during optimization of problem AsaDsmcTest_1 de-
scribed in Sec. 7.2; The radial coordinate gives the number density n at the entrance of the
tube and the azimuthal angle gives the bending angle ϕ of the tube. The starting point is
marked in black and the green line delineates the allowed parameter space.

calculated during two different runs, which also proves that the restart option is
working. However, the main point here is, that the program is able to edit all config-
uration files, automatically change the mesh, start a new run and extract the relevant
data from the output of the solver dsmcSpinModFoam. Figure 7.11 shows the generated
points in parameter space in a polar plot, where the radial direction shows the number
density n at the entrance of the tube and the polar angle shows the bending angle ϕ of
the tube. The number density at the exit of the tube is kept constant at n = 2.4 ·1020 m−3

throughout all runs. The flux Φ through the tube is plotted against the number density
at the tube entrance in Fig. 7.12 and is fitted with a straight line Φ(n) = a · n + b with
a = (2.80525±0.03231) ·10−23 mbar · l/(m3 · s) and b = −1.12635±0.1028 mbar · l/s. The
data can be described perfectly by this fit, motivated by the Hagen-Poiseuille equation,
but if one calculates Φ(n = 2.4 · 1020 m−3), the flux does not vanish. Figure 7.13 shows
that the bending angle ϕ of the tube has no measurable influence, as is expected for
a laminar flow. The reason for the non-vanishing flux at zero pressure gradient is the
boundary condition zeroGradient used for the velocity at the inlet, which leads to a
non-vanishing inflow velocity.
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8 Summary and Outlook

This thesis describes the development of a program to simulate the gas flow through
an atomic beam source with the Direct Simulation Monte Carlo Method implemented
by the open source program OpenFOAM 1.7.1. This program was extended to include
magnetic fields which can act on particles with spin as a new property. High frequency
transition units were added to the program as a second hardware part. Recombination
and spin-exchange collisions were implemented. Further, the new program is able to
determine the collision age distribution of particles if requested. For low densities, like
the ones occuring in the storage cell, this can also be done with faster ray-tracing codes,
but if collisions play an important role, like in the ABS, the new program will be more
accurate. Last but not least, Adaptive Simulated Annealing was implemented as an op-
timization algorithm which can set up all the necessary configuration files for a DSMC
calculation and which can be used to optimize the ABS. All parts of the program were
shown to work properly in simple test cases. Some remaining problems with the high
frequency transition units were detected and should become solved in the near term.
The implementation of many parts of the program is very generic and interfaces us-
ing OpenFOAMs runTimeSelection mechanism are provided for several new program
components. This allows one to easily implement new magnet types, surface recom-
bination models and optimization algorithms without the need to care about much of
the rest of the source code.

A first thing that should be done with the new program is to simulate the ABS for
different running conditions and compare the result with measurements. This should
help to identify and correct possible inaccuracies. It may also help to get a better un-
derstanding of the gas flow in the device. Further simulations of other atomic beam
sources could help to clarify why these sources have different intensities.

The new program can further help to calibrate the polarization measurement of the
BRP. This polarimeter is supposed to measure the polarization seen by the accelerator
beam but the extracted gas for the polarimeter flows through a long tube before the
measurement. Recombination and depolarization occur along the way. The program
can help to estimate the polarization loss through spin-exchange collisions. Further,
the effects of wall depolarization and the polarization of molecules can be estimated
together with simulated data when the number of wall hits is counted. Turning this
around, one can derive material properties like recombination probability and proba-
bility of wall depolarization from the combination of measurements and simulations.
Further, the angular distribution of particles reflected from a wall can be determined
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by comparing density profiles along the storage cell (from detector count rates during
experiments) with simulations for different wall interaction models. This would lead
to improvements in other values like the recombination probability since the number
of wall hits could be simulated more accurately. Depending on the required accuracy,
it may make sense to include wall depolarization and more elaborate wall interaction
models as well as better recombination models in the program. For some applications
it may also be useful to lift the artificial restriction to only three particle species of
the program. In order to describe polarized molecules, it would be necessary to find
and implement a more general description of the various spin orientations. For faster
execution of the program it may make sense to implement the DSMC07 algorithm in
OpenFOAM. The simulation of a complete ABS with its wide range of different pres-
sures would certainly benefit a lot from such an improvement and it would allow to
omit the approximations made with the MixedInflow inflow model.

The most important application of the new program however is the optimization of
the ABS. This is not feasible on a current desktop PC because of the long execution
time. Therefore, the program has to run on a supercomputer and it should be shown
that it can run there. It would also be necessary to study the scaling behavior of the
execution time with the number of processes. If this is bad, bottlenecks have to be
found and should be eliminated. If this is not possible, one could also try to use another
optimization algorithm that can be run in parallel, such that several calculations of
the cost function run at the same time, each on a limited number of processors. This
would however require a more elaborate restart routine for the optimization algorithm
since users get usually only a certain time window for calculations on a supercomputer
and they have to use several such time windows for the complete execution of the
program.
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A Sextupole Magnets

In the atomic beam source two groups of sextupole magnets are used to separate the
two different electron spin states via the Stern-Gerlach force. They consist of 24 seg-
ments each assembled in a Halbach configuration [29] made of three different NdFeB
alloys.

According to [97], the radial and tangential components of the B-Field of a cylindrical
2N-multipole made from M permanently magnetized segments such that the magneti-
zation axis of each segment advances by an angle 2π (N + 1)/M with respect to a fixed
coordinate system (compare Fig. A.1) can be written as

Brad(r, φ) = J
∞∑

ν=0

(
r

r1

)n−1

Hn cos(nφ)Kn (A.1)

Btan(r, φ) = J
∞∑

ν=0

(
r

r1

)n−1

Hn sin(nφ)Kn (A.2)

with

n = N + νM (A.3)

Hn = n

n− 1

(
1−

(
r1

r2

)n−1
)

(A.4)

Kn = sin((n+ 1)επ/M))
(n+ 1)π/M (A.5)

where ε is a correction factor close to one for slits from glueing the segments together.
For an ideal sextupole (no higher multipole terms) this reduces to

Brad(r, φ) = B0 cos(3φ)
(
r

r1

)2

(A.6)

Btan(r, φ) = B0 sin(3φ)
(
r

r1

)2

(A.7)

where B0 = J H3K3 is the pole tip field. The B-Field in cartesian coordinates can
therefore be written as
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~B = B0


cos(3φ)




0
cos(φ)
sin(φ)


+ sin(3φ)




0
− sin(φ)
cos(φ)




 ·

(
r

r1

)2

·B(x) (A.8)

when the symmetry axis coincides with the x-axis. The angle φ is measured clockwise
around the y-axis such that cos(φ) = y√

y2+z2
and sin(φ) = z√

y2+z2
.

The factor B(x) is 1 for normal cylindrical magnets, but is a function of x for coni-
cal magnets. From eq. A.4 one can see that the dependence of the pole tip field on
the material thickness is given by the factor 1 − (r1/r2)2. For conical magnets the ra-
dius r1 has to be replaced by the radius R at the correct position along the magnet,
i.e. R = r1i + (r1f − r1i) xL where r1i is the inner radius of the magnet at x = 0 and r1f
is the corresponding value at x = L with L beeing the magnet length. With the correct
normalization factor such that B0 is the pole tip field in the center plane of the magnet
one can write

B(x) =
1−

(
r1i+ x

L
(r1f−r1i)
r2

)2

1−
(
r1i+r1f

2r2

)2 (A.9)

A more detailed fully analytical description of the field of cylindrical Halbach struc-
tures inside and outside of the magnet bore can be found in [98].
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Figure A.1 – One quadrant of a cylin-
drically symmetric sextupole magnet
consisting of 24 segments. The arrows
denote the direction of magnetization,
while the number code indicates the ma-
terial employed (as in [97]).

Figure A.2 – Calculation of the mag-
nitude of the magnetic flux density | ~B|
in the central xy-plane of sextupole
magnet 5 (from [97]).
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Figure A.3 – Magnetic flux density
B(∗) along the axis of magnet 6 at a
radius of 14.5mm. The upper solid line
indicates a MAFIA calculation using
typical values for the remanence J typ of
the individual segments. The lower solid
line for the configuration with minimal
values of the magnetization is obtained
by scaling the results obtained with J typ
by a factor Jmin/J typ. The dashed lines
correspond to the physical boundaries of
the magnet (from [97]).

Figure A.4 – Measured magnetic flux
density B along the axis of magnet 1 at
a radius of 4.5mm. The solid line cor-
responds to the result of a calculation
based on the measured pole tip field B(∗),
using a factor (r/r1)2 · [1 − (r1/r2)2]
to account for the radius r at which the
distribution was measured and for the
change in material thickness (from [97]).
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B Setup and File Structure of a Case

The setup of a DSMC case is mostly described in the OpenFOAM user guide [76] and
some examples are delivered with OpenFOAM as tutorials. Every case folder has at
least three subfolders, a start time folder (often 0), constant and system. In the start
time folder, a file for every field specifying the initial and boundary conditions has to be
provided. The only new fields are the volTensorFields hfsPopulationNumbers0 to hfsPopu-
lationNumbers2, each for one particle species. The mesh information is contained in the
folder constant/polyMesh which can be generated either with OpenFOAMs blockMesh
utility from a dictionary or by importing a mesh generated with a dedicated program.
The file dsmcProperties holds all DSMC specific data and is read only once at the be-
ginning of the simulation. A complete example showing all new entries (but not all op-
tions) for the solver dsmcSpinModFoam can be found in appendix C. The system folder
contains dictionaries controlling the behavior of various tools. The most important file
is controlDict which controls the behavior of the dsmcSpinModFoam solver. An exam-
ple is shown in appendix D. Several changes have to be made compared to the original
solver dsmcFoam. First, the name of the application has changed as well as the name of
the additional libraries that have to be loaded for postprocessing specified under the
keyword libs. Then, there is the new option hfsResetOnOutput which specifies if the av-
erage field values of the hyperfine populations are kept after writing the average field
to file or if the average for the next time step should start from the beginning again
without considering the previous time steps. When the simulation reaches the steady
state, one wants to average over many time steps to reduce the statistical error but the
time steps before reaching the steady state shouldn’t be included in the average. This is
why the new option startHfsLongTimeAverageAt is created that specifies at which time
the averaging should start. Otherwise one would have to change this manually during
the simulation. Basically the same option called startLongTimeAverageAt specified in
the fieldAverage section was created for the average of all other fields. The difference in
these two is that the average of the hyperfine population numbers has to be calculated
differently than that for the other fields as described in Sec. 5.1.2 and should therefore
not be handled by the fieldAverage class. Another file that contains additional options
is dsmcInitialiseDict. In this file the value of the hyperfine population numbers for
the tool dsmcSpinModInitialise can be set by the command

hfsPopulationNumbers0 (1 0 0 0 0 0 0 0 0);

and analog for the other fields. When all configuration files are written, the simulation
can be initialized with the command dsmcSpinModInitialise and run with dsmcSpinMod-
Foam or alternatively with the corresponding commands for parallel execution.
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As mentioned above, the mesh can be generated with third party software and can
be imported into OpenFOAM. For most of the work, Gmsh was used for creating the
mesh and for some difficult meshes like for the storage cell, the open-source CAD tool
SALOME [99] was used. Gmsh can be used as command line tool and the geometry
can be specified in a simple way in a ∗.geo file. Meshing can be done from the com-
mand line as well and the result will be saved in a ∗.msh file. This can be imported
into OpenFOAM with the gmshToFoam tool. This will create the polyMesh folder. The
only action that has to be done afterwards is to edit the boundary file in order to set the
correct boundary properties like wall or cyclic. This can be done manually or with the
createPatch utility which can also combine front and back side of a wedge to one patch
which is required for rotationally symmetric cases using the cyclic boundary condition.
If SALOME is used for mesh generation, the mesh is saved in ∗.med format, then im-
ported into Gmsh and converted into a ∗.msh file. The following steps are like before.

Setting up an optimization case requires one more hierarchy level in the folder struc-
ture as can be seen in Fig. B.1. The top level system folder needs to contain only two
files with pretty arbitrary content. They can just be copies of the corresponding files
from a lower level system folder and the only necessary additional input in the top
level controlDict file is the entry

allowWritingInArbitraryPlace true;

which loosens restrictions of OpenFOAM on the file structure as described in Sec. 7.2.
The only other required file is optimization/optimizationOtions which specifies
which optimization problem shall be solved by which algorithm and which param-
eters shall be considered. Additionally, the parameter ranges, initial values and spe-
cific data for the problem and algorithm can be specified. A complete example of the
file optimizationOptions for the case described in Sec. 7.2 is shown in appendix E. If
the optimization is done with DSMC, a folder TestState_0 which contains the com-
plete set up of a DSMC case has to be present as well. If the mesh is part of the op-
timization and Gmsh is used for meshing, a ∗.geo file has to be present as well in
the TestState_0 folder which will be edited by the program and Gmsh will be called
for remeshing and creating the corresponding ∗.msh file that will be imported auto-
matically into OpenFOAM. If only a simple function shall be minimized, the folder
TestState_0 is not necessary and the section DsmcProblemOptions can be omitted in
the file optimizationOptions. If a completely new problem shall be tackled, one first
has to program it and Fig. 7.4 shows which functions the new class must implement.
Then, the new problem class has to be listed together with all algorithms to solve
it in the file optimization/Problems/BaseProblem/makeOptimizationProblems.C and
the problem has to be compiled which can be done using the buildopt.sh script de-
livered with the source code of the solver. Finally, starting a new problem can sim-
ply be done with the command optimizationFoam from within the optimization folder,
i.e. AsaDsmcTest_1 in the example of Fig. B.1.
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standard DSMC case

Figure B.1 – Folder structure of an optimization case were the cost function is calcu-
lated with the dsmcSpinModFoam solver and the geometry is part of the optimization.
All folders and files are shown that are needed for the setup of an optimization case.
The top level system folder needs to contain only the two shown files were the content
of dsmcInitialiseDict can be arbitrary. The file optimization/AsaState needs only
to be present if Adaptive Simulated Annealing (ASA) is used as optimization algorithm
and the option restart is set to true in the optimizationOptions. TestState_0 contains
everything a single DSMC case contains as described in the OpenFOAM user guide [76],
except for the additional files hfsPopulationNumbers0 to hfsPopulationNumbers2. If the
geometry is part of the optimization and the mesh is generated with Gmsh, a file ∗.geo is
required from which the corresponding ∗.msh file is generated. During the calculation an
additional file TestState_xxparameterInfo will be generated containing the values of the
parameters used for the case xx. The folder TestState_1 will be generated automatically
by the solver and is shown only for clarification.
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C Example of File dsmcProperties

/*--------------------------------*- C++ -*-------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.7.1 |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*-------------------------------------------------------------------*/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "constant";
object dsmcProperties;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// General Properties
// ~~~~~~~~~~~~~~~~~~

nEquivalentParticles 1e10;

// Wall Interaction Model
// ~~~~~~~~~~~~~~~~~~~~~~

WallInteractionModel MaxwellianThermalCosineExponent;

MaxwellianThermalCosineExponentCoeffs
{

cosineExponent 2;
}

// Binary Collision Model
// ~~~~~~~~~~~~~~~~~~~~~~
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BinaryCollisionModel LarsenBorgnakkeVariableSoftSphereLennardJones;

LarsenBorgnakkeVariableSoftSphereLennardJonesCoeffs
{

relaxationCollisionNumber 300;
}

// Inflow Boundary Model
// ~~~~~~~~~~~~~~~~~~~~~

InflowBoundaryModel MixedInflow;

MixedInflowCoeffs
{

inflow
{

inflowModelType InOutflow;
cellInternalValues true;

numberDensities
{

H 8e21;
H2 4e21;

};
}
outflow
{

inflowModelType InOutflow;
cellInternalValues false;

numberDensities
{

H 1e16;
H2 5e15;

};
}

}

// Molecular species
// ~~~~~~~~~~~~~~~~~
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typeIdList (H H2);

moleculeProperties
{

H
{

mass 1.67e-27; // kg
internalDegreesOfFreedom 0;
radius 2.81e-10; // m
epsilon 1.187e-22; // J
diameter 0;
viscosityCoefficient 0;
omega 0.67;
electronicS 0.5;
nuclearI 0.5;
ehfs 9.412e-25; // J

}

H2
{

mass 3.34e-27;
internalDegreesOfFreedom 2;
radius 2.928e-10;
epsilon 51.084e-23;
diameter 0;
viscosityCoefficient 0;
omega 0.67;
ehfs 0;
electronicS 0;
nuclearI 0;

}
}

// Forces
// ~~~~~~~~~~~~~~~~~~~~~

forceIdList (S1);

forceProperties
{

S1
{

type MagneticCylindricalSextupole;
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origin (0.03 0 0);
P2 (0.05 0 0);
r1Origin 0.01;
r1End 0.01;
r2 0.03;
B0 1.5;
vectorB0 (1 0 0);
phi 0.0;

}
}

// High frequency transition units
// ~~~~~~~~~~~~~~~~~~~~~

hfTransitionIdList (HF1);

hfTransitionProperties
{

HF1
{

shape circle;
radius 0.03;
faceCenter (0.01 0 0);
faceNormal (1 0 0);
efficiencies
{

H
{

efficiency (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

);
}

H2 //program assumes always spin-1/2 but does not use it
{

efficiency (
1 0
0 1

);
}
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}
}

}

//ChemicalSurfaceReactionType
// ~~~~~~~~~~~~~~~~~~~~~

ChemicalSurfaceReactionModel simpleLangmuirHinshelwood;

ChemicalSurfaceReactionList (hydrogenRecombination);

ChemicalSurfaceReactions
{

hydrogenRecombination
{

Reactants (H H);
Products (H2);

reactionParameters
{

patchGroup_1
{

patchNames (wall);

parameters
{

gamma 5e-3;
}

}
}

}
}

// write particles hitting these patches to file
// ~~~~~~~~~~~~~~~~~~~~~

writeParticlesAtPatch (inflow outflow);
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D Example of file system/controlDict

/*--------------------------------*- C++ -*-------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.7.1 |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*-------------------------------------------------------------------*/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "system";
object controlDict;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

application dsmcSpinModFoam;
startFrom startTime;
startTime 0.0;
stopAt endTime;
endTime 0.2;
deltaT 1e-7;
writeControl runTime;
writeInterval 1e-4;
purgeWrite 3;
writeFormat ascii;
writePrecision 10;
writeCompression uncompressed;
timeFormat general;
timePrecision 10;
runTimeModifiable yes;
adjustTimeStep no;

hfsResetOnOutput true;
startHfsLongTimeAverageAt 0.01;
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libs
(

"libdsmcSpinMod.so"
"libdsmcSpinPlusFields.so"

);

functions
(

dsmcPlusFields
{

type dsmcPlusFields;
enabled on;
functionObjectLibs ( "libutilityFunctionObjects.so" );
outputControl outputTime;
resetOnOutput off;

}
fieldAverage
{

type fieldAverage;
functionObjectLibs ( "libfieldFunctionObjects.so" );
outputControl outputTime;
resetOnOutput on;
startLongTimeAverageAt 0.01;
fields
(

rhoN
{

mean on;
prime2Mean off;
base time;

}

possibly other fields
);

}
);
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E Configuration File optimizationOptions

The configuration file for optimization runs optimizationOptions is separared into
four parts. The first part contains some general information about the optimization
algorithm and optimization problem while the second part contains the parameters,
their initial values and maximal range which may be refined later in the optimization
problem class to allow for more complex boundaries. The third part is a dictionary
holding configurations for the optimization algorithm used and the last part is a dictio-
nary holding settings for the optimization problem. Below is an example for the case
AsaDsmcTest_1 described in Sec. 7.2.

/*--------------------------------*- C++ -*-------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.7.1 |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*-------------------------------------------------------------------*/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "optimization";
object optimizationOptions;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

OptimizationAlgorithm AsaOptimization;

OptimizationProblem AsaDsmcTest_1;

minimize true;

restart true;

ParameterIdList ( phi inflow );

Parameters
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{
phi
{

upperLimit 3;
lowerLimit 1e-06;
initialValue 3;

}
inflow
{

upperLimit 5e+23;
lowerLimit 1e+23;
initialValue 2.4e+23;

}
}

ASAOptions
{

initialGenerationTemperature ( 1 1 );
generationDampingCoeffs ( 0.1 0.1 );
acceptanceDampingCoeff 0.2;
generationQuenchingFactors ( 1 1 );
acceptanceQuenchingFactor 1;
reannealStep 200;
maxGenStates 1500;
deltaParameters ( 0.01 1e+18 );

}

DsmcProblemOptions
{

parameterPathes
{

phi ( mesh );
inflow (

dsmcProperties InOutflowCoeffs
inflow numberDensities H

);
}
meshScaling ( 0.001 0.001 0.001 );
startTime 0;
countPatchHits false;
useGnuplot true;
useGmsh true;

}
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