
 
 

The role of prohibitin-2 in podocytes –  

mitochondrial function and beyond 

 

 

 

Inaugural-Dissertation 

 

zur 

 

Erlangung des Doktorgrades 

 

der Mathematisch-Naturwissenschaftlichen Fakultät 

 

der Universität zu Köln 

 

vorgelegt von 

 

 

Christina Ising 

aus Steinfurt 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Berichterstatter:   Prof. Dr. Thomas Langer 

(Gutachter) 

    Prof. Dr. Thomas Benzing 

 

 

 

Tag der mündlichen Prüfung: 20. Januar 2014 



Table of contents 

I 

 

Table of contents 

Table of contents ......................................................................................................... I 

List of figures .............................................................................................................. V 

List of tables .............................................................................................................. VI 

Abbreviations ............................................................................................................ VII 

1  Abstract ............................................................................................................... 1 

2  Zusammenfassung .............................................................................................. 2 

3  Introduction .......................................................................................................... 4 

3.1  Podocytes in glomerular diseases ................................................................. 4 

3.2  SPFH domain-containing protein family ........................................................ 5 

3.2.1  General information ................................................................................ 5 

3.2.2  Podocin ................................................................................................... 6 

3.2.3  Prohibitins ............................................................................................... 6 

3.3  Regulation of metabolism by mTOR signaling ............................................... 8 

3.3.1  The mTOR pathway ................................................................................ 8 

3.3.2  Role of mTOR signaling in podocytes ................................................... 10 

4  Thesis aims ....................................................................................................... 12 

5  Material and methods ........................................................................................ 14 

5.1  Material ........................................................................................................ 14 

5.1.1  Chemicals, reagents and solutions ....................................................... 14 

5.1.2  Assays/Kits ........................................................................................... 19 

5.1.3  Buffers and solutions ............................................................................ 20 

5.1.4  Oligonucleotides ................................................................................... 27 

5.1.5  Plasmids ............................................................................................... 29 

5.1.6  Antibodies ............................................................................................. 30 

5.1.7  Enzymes ............................................................................................... 32 

5.1.8  Materials ............................................................................................... 32 

5.1.9  Equipment ............................................................................................. 34 

5.1.10    Software ............................................................................................... 37 

5.2  Methods ....................................................................................................... 38 

5.2.1  Working with nucleic acids .................................................................... 38 

5.2.1.1  Polymerase chain reaction (PCR) .................................................. 38 

5.2.1.2  Restriction and purification of plasmids, vectors and PCR products38 



Table of contents 

II 

 

5.2.1.3  Ligation ........................................................................................... 38 

5.2.1.4  Recombination ............................................................................... 38 

5.2.1.5  RNA extraction and cDNA synthesis .............................................. 39 

5.2.1.6  TaqMan® assay .............................................................................. 39 

5.2.1.7  DNA sequencing ............................................................................ 39 

5.2.1.8  Dual-luciferase® reporter assay ...................................................... 39 

5.2.2  Bacteria ................................................................................................. 40 

5.2.2.1  Chemical transformation of E.coli ................................................... 40 

5.2.2.2  Isolation of plasmid DNA and diagnostic digest .............................. 40 

5.2.3  Cell culture ............................................................................................ 40 

5.2.3.1  Cells ............................................................................................... 40 

5.2.3.2  Freezing and thawing of cells ......................................................... 40 

5.2.3.3  Passaging of cells .......................................................................... 41 

5.2.3.4  Doxycycline-treatment of mouse podocytes ................................... 41 

5.2.3.5  Transient expression of plasmids in 293T HEK cells ...................... 41 

5.2.3.6  Virus production ............................................................................. 41 

5.2.3.7  Infection of cells with virus and selection ........................................ 42 

5.2.3.8  Immunofluorescence on cells ......................................................... 42 

5.2.4  Protein biochemistry ............................................................................. 42 

5.2.4.1  Protein extraction ........................................................................... 42 

5.2.4.2  Protein measurement ..................................................................... 43 

5.2.4.3  Co-immunoprecipitation .................................................................. 43 

5.2.4.4  SDS-polyacrylamide-gelelectrophoresis ......................................... 44 

5.2.4.5  Western Blot ................................................................................... 44 

5.2.4.6  Colloidal coomassie staining .......................................................... 45 

5.2.5  Antibody production .............................................................................. 45 

5.2.5.1  Purification of recombinant protein ................................................. 45 

5.2.5.2  Immunization of mice and hybridoma generation ........................... 47 

5.2.5.3  ELISA ............................................................................................. 47 

5.2.6  Worm experiments ................................................................................ 48 

5.2.6.1  Worm strains .................................................................................. 48 

5.2.6.2  RNA interference ............................................................................ 48 

5.2.6.3  Touch assay ................................................................................... 49 



Table of contents 

III 

 

5.2.6.4  Microinjection ................................................................................. 49 

5.2.6.5  Immunofluorescence on worms ...................................................... 49 

5.2.7  Mouse experiments ............................................................................... 50 

5.2.7.1  Mouse strains and animal care ....................................................... 50 

5.2.7.2  Serum analysis ............................................................................... 51 

5.2.7.3  Extraction of DNA from mouse tissue ............................................. 51 

5.2.7.4  Polymerase-chain reaction (PCR) for genotyping purposes ........... 51 

5.2.7.5  Albumin ELISA ............................................................................... 52 

5.2.7.6  Creatinine Assay ............................................................................ 52 

5.2.7.7  PAS staining ................................................................................... 52 

5.2.7.8  Specific immunohistochemistry ...................................................... 53 

5.2.7.9  Electron microscopy and immunogold labeling .............................. 54 

5.2.7.10  Glomeruli isolation ......................................................................... 54 

5.2.7.11  Tamoxifen diet ............................................................................... 55 

5.2.7.12  Rapamycin injection ....................................................................... 55 

5.2.8  Human tissue ........................................................................................ 55 

5.2.8.1  Immunofluorescence on human tissue ........................................... 55 

5.2.9  Statistical analysis ................................................................................. 56 

6  Results .............................................................................................................. 57 

6.1  Loss of PHB2 leads to severe glomerular disease ...................................... 57 

6.1.1  Podocyte-specific Phb2-knockout mice (Phb2pko) develop albuminuria 

and die prematurely ........................................................................................... 57 

6.1.2  Phb2pko mice develop glomerulosclerosis ............................................. 59 

6.1.3  Phb2het mice present with changes in mitochondrial ultrastructure ....... 60 

6.1.4  Glomeruli of Phb2pko mice display no increased rate of apoptosis at 

day 21  .............................................................................................................. 61 

6.1.5  PHB2 is required to maintain structural integrity of podocyte foot 

processes .......................................................................................................... 62 

6.1.6  Inducible depletion of Phb2 results in loss of slit diaphragm function ... 63 

6.2  PHB2 as a novel slit diaphragm protein ....................................................... 65 

6.2.1  PHB2 localizes to the slit diaphragm ..................................................... 65 

6.2.2  PHB1 and PHB2 co-immunoprecipitate with podocin ........................... 67 



Table of contents 

IV 

 

6.2.3  PHB-2 co-localizes with MEC-2 at touch receptor punctae and regulates 

touch sensation in C. elegans ........................................................................... 69 

6.3  PHB2 in metabolic signaling ........................................................................ 72 

6.3.1  Podocyte-specific knockout of the insulin receptor (Insr) and IGF-1 

receptor (Igf1r) prolongs survival of Phb2pko mice ............................................. 72 

6.3.2  Inhibition of mTOR signaling increases lifespan of Phb2pko mice .......... 74 

7  Discussion ......................................................................................................... 79 

7.1  PHB2 – a slit diaphragm protein? ................................................................ 79 

7.1.1  The phenotype of Phb2pko mice is similar to slit diaphragm 

protein-deficient mice ........................................................................................ 79 

7.1.2  PHB2 is necessary for the function of the slit diaphragm complex ........ 81 

7.1.3  Phb2-deficiency in podocytes affects mitochondrial and 

non-mitochondrial functions ............................................................................... 82 

7.2  PHB2 is linked to the regulation of cell metabolism ..................................... 84 

7.2.1  Phb2-deficiency influences metabolic signaling via the insulin and IGF-1 

receptor ............................................................................................................. 84 

7.2.2  Dysregulated mTOR signaling leads to glomerular diseases ................ 86 

7.2.3  Hypothesis: Loss of PHB2 sensitizes the insulin receptor .................... 88 

8  Conclusion ......................................................................................................... 91 

9  Publications ....................................................................................................... 93 

9.1  Publications in academic journals ................................................................ 93 

9.2  Publications in international academic conferences .................................... 93 

10  References ........................................................................................................ 94 

11  Danksagung .................................................................................................... 111 

12  Erklärung ......................................................................................................... 112 

13  Curriculum vitae .............................................................................................. 113 



List of figures 

V 

 

List of figures 

Figure 1: The three layers of the glomerular filtration barrier ...................................... 4 

Figure 2: Multimeric ring complexes of prohibitins ...................................................... 7 

Figure 3: mTOR pathway .......................................................................................... 10 

Figure 4. Podocyte-specific Phb2-knockout mice (Phb2pko) develop albuminuria and 

die prematurely ......................................................................................................... 58 

Figure 5. Phb2pko mice develop glomerulosclerosis .................................................. 60 

Figure 6. Phb2het mice present with changes in mitochondrial ultrastructure ............ 61 

Figure 7. Glomeruli of Phb2pko mice display no increased rate of apoptosis at day 21

 ................................................................................................................................. 62 

Figure 8. PHB2 is required to maintain structural integrity of podocyte foot processes

 ................................................................................................................................. 63 

Figure 9. Inducible depletion of Phb2 results in loss of slit diaphragm function ........ 64 

Figure 10. PHB2 localizes to the slit diaphragm ....................................................... 66 

Figure 11. PHB1 and PHB2 co-immunoprecipitate with podocin .............................. 68 

Figure 12. PHB-2 co-localizes with MEC-2 at touch receptor punctae and regulates 

touch sensation in C. elegans ................................................................................... 71 

Figure 13: Loss of the insulin receptor but not IGF-1 receptor prolongs lifespan of 

Phb2pko mice ............................................................................................................. 73 

Figure 14: Podocyte-specific knockout of the insulin receptor (Insr) and IGF-1 

receptor (Igf1r) prolongs survival of Phb2pko mice .................................................... 74 

Figure 15. Generation and validation of an inducible Phb2 shRNA podocyte cell line

 ................................................................................................................................. 76 

Figure 16. Inhibition of mTOR signaling increases lifespan of Phb2pko mice ............ 78 

Figure 17. Hypothesis: Loss of PHB2 sensitizes the insulin receptor ....................... 89 

Figure 18. Why does loss of PHB2 lead to glomerular disease? .............................. 91 



List of tables 

VI 

 

List of tables 

Table 1. List of chemicals, reagents and solutions ................................................... 14 

Table 2. List of assays and kits ................................................................................. 19 

Table 3. Composition of buffers and solutions .......................................................... 20 

Table 4. List of oligonucleotides used for cloning ..................................................... 27 

Table 5. List of oligonucleotides used for genotyping ............................................... 27 

Table 6. List of oligonucleotides for sequencing ....................................................... 28 

Table 7. List of shRNAs ............................................................................................ 28 

Table 8. List of TaqMan® probes ............................................................................. 29 

Table 9. List of plasmids ........................................................................................... 29 

Table 10. List of primary antibodies .......................................................................... 30 

Table 11. List of secondary antibodies ..................................................................... 31 

Table 12. List of enzymes ......................................................................................... 32 

Table 13. List of materials ......................................................................................... 32 

Table 14. List of equipment ...................................................................................... 34 

Table 15. List of software.......................................................................................... 37 

Table 16. List of online software ............................................................................... 37 

 



Abbreviations 

VII 

 

Abbreviations 

µl microliter 
4E-BP1 eukaryotic initiation factor 4-binding protein  
AMPK AMP-activated protein kinase 
APS ammonium persulfate 
b base 
BSA bovine serum albumin 
CaCl2 calcium chloride 
cDNA complementary DNA 
CKD chronic kidney disease 
DAB 3,3′-diaminobenzamidine 
DAPI 4',6-diamidino-2-phenylindole 
DEG/eNaC degenerin/epithelial Na+ channels  
DNA deoxyribonucleic acid 
dNTP deoxyribonucleotide triphosphate 
DRM detergent resistant membrane 
dsRNA double stranded RNA 
DTT dithiothreitol 
EC endothelial cell 
ECL enhanced chemoluminescence 
EDTA ethylenediaminetetraacetic acid  
eIF4E eukaryotic initiation factor 4E 
ETC electron transport chain 
FBS fetal bovine serum 
fl/fl flox/flox 
FOXO1 forkhead box O1 (mammalian protein) 
FP foot process 
FSGS focal segmental glomerulosclerosis 
G standard gravity 
GBM glomerular basement membrane 
GFP green fluorescent protein 
H human 
HEBS HEPES-buffered saline solution 
HEK human embryonic kidney 
het heterozygous 
His histidine-tag 
HPRT1 hypoxanthine phosphoribosyltransferase 1 
HRP horse radish peroxidase 
IF immunofluorescence 
IGF-1 insulin-like growth factor 1 
Igf1r insulin-like growth factor 1 receptor (mammalian gene) 
IgG immunoglobulin G 
IHC immunohistochemistry 
Insr insulinreceptor (mammalian gene) 
IP immunoprecipitation 



Abbreviations 

VIII 

 

IPTG isopropyl-thio-β-d-galactoside 
IRS Insulin receptor substrate 
kb kilobase 
KCl potassium chloride 
kDa kilodalton 
KO knockout 
l liter 
LB lysogeny broth 
m mouse 
MEF mouse embryonic fibroblast 
MgSO4 magnesium sulfate 
ml milliliter 
mRNA messenger RNA 
mTOR mammalian target for rapamycin (mammalian protein) 
mTORC1 mammalian target for rapamycin complex 1 
mTORC2 mammalian target for rapamycin complex 2 
mtUPR mitochondrial unfolded protein response 
NaCl sodium chloride 
NCBI National Center for Biotechnology Information 
NDS normal donkey serum 
NEB New England Biolabs 
NGM nematode growth medium 
Nphs2 podocin (mammalian gene) 
OPA1 optical atrophy 1 
OXPHOS oxidative phosphorylation system 
PAGE polyacrylamide gel electrophoresi 
PAN puromycin aminonucleoside 
PAS periodic acid schiff 
PBS phosphate-buffered saline 
PCR polymerase chain reaction 
PFA paraformaldehyde 
PHB1 prohibitin-1 (mammallian protein) 
Phb1 prohibitin-1 (mammalian gene) 
phb-1 prohibitin-1 (C. elegans gene) 
PHB-1 prohibitin-1 (C. elegans protein) 
PHB2 prohibitin-2 (mammalian protein) 
Phb2 prohibitin-2 (mammalian gene) 
phb-2 prohibitin-2 (C. elegans gene) 
PHB-2 prohibitin-2 (C. elegans protein) 
PI3K phosphoinositide 3-kinase 
pko podocyte-specific KO 
PMSF phenylmethylsulfonyl fluoride 
pS6RP phospho S6 ribosomal protein 
PVDF polyvinylidene difluoride  
RNA ribonucleic acid 
RNAi RNA interference 



Abbreviations 

IX 

 

ROS reactive oxygen species 
RT room temperature 
S6RP S6 ribosomal protein 
SDS sodium dodecyl sulfate 
SE standard error 
shRNA short hairpin RNA 
SEM standard error of the mean 
SOC super optimal broth medium 
SPFH stomatins, prohibitins, flotillins and HflK/C 
TAE tris-acetate-EDTA 
TBS tris-buffered saline 
TEM transmission electron microscope 
TEMED N,N,N´,N´-tetramethylethylenediamine  
Tm melting temperature 
Tris tris(hydroxymethyl)aminomethane 
TRP transient recepor potential 
TSC1 tuberous sclerosis complex 1 (mammalian protein) 
Tsc1 tuberous sclerosis complex 1 (mammalian gene) 
TSC2 sclerosis complex 2 (mammalian protein) 
UV ultraviolet 
V volts 
WB Western blot 
WT wildtype 
 

 



Abstract 

1 

 

1 Abstract 

Diseases of the kidney filtration barrier are a major cause of renal failure and 

cardiovascular mortality. Podocytes maintain the glomerular filtration barrier and 

podocyte dysfunction leads to the development of glomerulosclerosis, i.e. glomerular 

scarring. Mutations in the SPFH domain-containing protein podocin, which is 

localized to the specialized cell-cell contact of podocytes, the slit diaphragm, can 

cause one of the most frequent glomerulopathies, FSGS. Podocin is one of the most 

extensively studied proteins in podocytes but nothing is known about other SPFH 

domain-containing proteins in podocytes so far. Since it has been speculated that 

mitochondrial dysfunction may contribute to podocyte injury in glomerular diseases 

this thesis work investigated the podocyte-specific function of a mitochondrially 

localized SPFH domain-containing protein, prohibitin-2 (PHB2). PHB2 is important for 

maintaining normal cristae structures and proper mitochondrial function. 

Podocyte-specific loss of PHB2 in mice resulted in the development of progressive 

albuminuria, glomerulosclerosis and endstage renal failure. Unexpectedly, 

immunofluorescence stainings and immunogold labeling detected PHB2 not only in 

mitochondria but also at the slit diaphragm. PHB2 co-precipitated with podocin, 

thereby suggesting an extramitochondrial role of PHB2 at the slit diaphragm. 

Supporting these results, the ortholog of PHB2 in C. elegans was also not restricted 

to mitochondria but associated with a mechanosensory complex containing the 

podocin ortholog MEC-2. Given the high similarity of the mechanosensory complex in 

worms and the slit diaphragm complex in mammals, functional assays of the 

mechanosensor were performed. Knockdown of phb-2 as well as loss of mec-2 in the 

mechanosensitive neurons resulted in impaired touch sensitivity, showing a 

functional impact of PHB2 on this conserved protein-lipid supercomplex.  

Furthermore, it was shown before that loss of insulin signaling increases lifespan of 

Phb2/phb-2-deficient yeast and worms. Therefore, apart from the findings at the slit 

diaphragm, the impact of PHB2 on podocyte metabolism was investigated. 

Phb2-deficiency in podocytes led to increased activity of mTORC1. Treatment of 

these animals with rapamycin or additional knockout of the insulin and IGF-1 receptor 

prolonged survival despite progressive albuminuria. Collectively, these data indicate 

that loss of PHB2 at the slit diaphragm resulted in the development of albuminuria but 

loss of podocytes was dependent on metabolic dysregulation.  
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2 Zusammenfassung 

Erkrankungen des Nierenfilters stellen eine der Hauptursachen für Nierenversagen 

und kardiovaskuläre Mortalität dar. Podozyten sind ein wichtiger Bestandteil der 

glomerulären Filtrationsbarriere und eine podozytäre Dysfunktion führt zur Proteinurie 

und Glomerulosklerose, d.h. glomerulären Vernarbung. Mutationen in dem SPFH-

Domänen-Protein Podocin, das an den spezialisierten Zell-Zell-Kontakt von 

Podozyten, die Schlitzmembran, lokalisiert, führen zu einer der häufigsten 

Glomerulopathien, der FSGS. Podocin gehört zu den am meisten untersuchten 

Proteinen im Podozyten, jedoch ist über weitere SPFH-Domänen-Proteine in diesem 

Zelltyp bisher nichts bekannt. Da spekuliert wird, dass eine mitochondriale 

Dysfunktion zum Podozytenschaden in glomerulären Erkrankungen beitragen 

könnte, beschäftigt sich diese Doktorarbeit mit der podozyten-spezifischen Funktion 

eines mitochondrial-lokalisierten SPFH-Domänen-Proteins, Prohibitin-2 (PHB2). 

PHB2 ist unter anderem wichtig für den Aufbau und Erhalt der Cristae-Strukturen 

sowie normale mitochondriale Funktionen. 

Der Podozyten-spezifische Verlust von PHB2 führt in Mäusen zur Entwicklung einer 

fortschreitenden Albuminurie, Glomerulosklerose und terminalem Nierenversagen. 

Dabei konnten Immunfluoreszenz- und Immunogoldfärbungen PHB2 nicht nur in 

Mitochondrien, sondern auch an der Schlitzmembran nachweisen. PHB2 

ko-präzipitierte mit Podocin, was eine extramitochondriale Rolle von PHB2 an der 

Schlitzmembran nahelegt. Darüber hinaus fand sich das PHB2-Ortholog in 

C. elegans nicht nur in Mitochondrien, sondern auch im mechanosensorischen 

Komplex, der das Podocin-Ortholog MEC-2 enthält. In Anbetracht der hohen 

Vergleichbarkeit des mechanosensorischen Komplexes in Würmern und dem 

Schlitzmembrankomplex in Säugern wurden funktionelle Assays des 

Mechanosensors durchgeführt. Sowohl eine verringerte phb-2-Expression als auch 

der Verlust von mec-2 in den mechanosensitiven Neuronen führte zu einer 

verringerten Berührungssensitivität. Dies deutet auf einen funktionellen Einfluss von 

PHB2 auf diesen konservierten Protein-Lipid-Superkomplex hin. 

Ferner wurde bereits gezeigt, dass der Verlust des Insulinsignalweges die 

Lebensspanne von Phb2/phb-2-defizienten Hefen und Würmern verlängert. Deshalb 

wurde – unabhängig von den Erkenntnissen an der Schlitzmembran – der Einfluss 

von PHB2 auf den Metabolismus von Podozyten untersucht. Eine Phb2-Defizienz in 
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Podozyten führt zu einer erhöhten Aktivierung von mTORC1. Die Behandlung dieser 

Tiere mit Rapamycin sowie der zusätzliche Verlust des Insulin- und IGF-1-Rezeptors 

verlängerten das Überleben der Tiere trotz fortschreitender Albuminurie. 

Zusammengefasst bedeutet dies, dass das Fehlen von PHB2 an der Schlitzmembran 

zur Entstehung der Albuminurie beiträgt, während der Verlust der Podozyten 

vermutlich auf eine metabolische Dysregulierung in Folge einer Dysregulation des 

Insulin/mTOR-Signalweges zurückzuführen ist. 

 



Introduction 

4 

 

3 Introduction 

 

3.1 Podocytes in glomerular diseases 

Glomerular diseases represent a major cause of chronic kidney disease (CKD) 

affecting more than 5% of all human beings world-wide. They share common 

features e.g. loss of plasma proteins into the urine (albuminuria and proteinuria) and 

glomerular degeneration, fibrosis and scarring (glomerulosclerosis). Both, proteinuria 

and chronic kidney disease are independently associated with increased risk for 

endstage renal failure and cardiovascular diseases [1,2]. 

Each human kidney contains about one million small filtering units, the glomeruli. 

Blood plasma has to pass the glomerular filtration barrier, which is responsible for the 

size- and charge-selectivity of the kidney filter and produces an almost protein-free 

ultrafiltrate. The glomerular filtration barrier is composed of three layers: fenestrated 

endothelium, glomerular basement membrane and podocytes [3,4] (Figure 1). 

 

 

Figure 1: The three layers of the glomerular filtration barrier 

The glomerular filtration barrier consists of three layers that are important for filtration 
of blood plasma: podocytes with their foot processes (FP), glomerular basement 
membrane (GBM) and fenestrated endothelial cells (EC). 
 

Podocytes are the visceral epithelial cells of the kidney glomerulus. They elaborate 

long interdigitated foot processes that completely enwrap the glomerular capillaries in 

a complex network. The intercellular slit inbetween neighbouring foot processes is 

bridged by a continous membrane-like cell junction, the slit diaphragm [3].  

Genetic studies of the last decade showed that glomerular podocytes are essential 

for the function and integrity of the kidney filter and critically involved in the 

development of proteinuria [5,6]. Podocyte injury in renal diseases is reflected by foot 

process effacement, i.e. retraction of the membrane extensions, and ultimately cell 
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death. Since podocytes are terminally differentiated epithelial cells, podocyte loss 

inevitably leads to a reduced cell number which is negatively correlated with renal 

survival [7,8]. Not only inflammation, toxins and mechanical stress but also gene 

mutations can be the cause of podocyte injury [9]. Numerous studies within the last 

decades on hereditary glomerular diseases identified mutations in genes encoding 

for proteins that localize to the podocyte slit diaphragm, e.g. cytoskeleton-associated 

CD2AP [10,11], the immunoglobulin family member nephrin [12,13], the ion channel 

TRPC6 [14,15] and the SPFH domain-containing protein podocin [16–19]. 

 

3.2 SPFH domain-containing protein family 

3.2.1 General information 

The SPFH domain-containing protein family was named after the initials of the 

proteins in this family: stomatins, prohibitins, flotillins and HflK/C. Initially, the SPFH 

domain was identified in stomatins and database searches revealed that other 

proteins like prohibitins contain a strikingly similar domain (also called PHB domain) 

[20]. The SPFH domain is not only conserved among different proteins but also 

across species [20–22]. Among others, erlins and podocin as well as the podocin 

homolog MEC-2 in C. elegans are prominent members of this protein family 

[3,23,24]. Many SPFH domain-containing proteins form homo-oligomers by 

interacting via the SPFH domain [25–27]. However, also hetero-oligomers exist as 

shown for the complexes that are made up of prohibitin-1 and prohibitin-2 [28]. Most 

of the SPFH domain-containing proteins have been shown to be enriched in 

detergent resistant membranes (DRM) [21,29–34], but so far no common function 

could be attributed to all members of this family. The SPFH domain is suggested to 

be either a protein-binding or a lipid-binding motif but no protein-binding partner was 

identified which is universal for all family members [21]. Since many of the SPFH 

domain-containing proteins are associated with DRMs - which are defined by their 

specific lipid composition [35] – it seems to be very probable that this domain is 

necessary for specific protein-lipid interactions [21]. This has already been shown for 

podocin/MEC-2, which bind to cholesterol in the plasma membrane [24], but still 

needs to be proven for other members of the SPFH domain-containing protein family.  



Introduction 

6 

 

3.2.2 Podocin 

Podocin is an integral membrane protein encoded by NPHS2. It consists of one 

transmembrane domain and a carboxy-terminal cytoplasmic tail. The protein 

sequence shows strong homology to the corresponding regions of stomatin family 

proteins [16,36]. During glomerular development podocin is expressed in 

“mesonephric podocytes from the S-shaped body and, later, in the metanephric 

kidney, in the future podocytes at the late S-shaped body stage” [36]. In the mature 

kidney podocin expression is exclusively detectable in podocytes where the protein is 

localized at the slit diaphragm [36]. NPHS2 mutations are involved in the 

development of a familial form of early-onset steroid-resistant nephrotic syndrome 

progressing towards focal segmental glomerulosclerosis (FSGS) as well as in 

sporadic cases of the disease and late-onset inherited FSGS [16,17,37–41]. 

NPHS2-knockout mice develop normally but show massive proteinuria shortly after 

birth due to severe podocyte foot process effacement resulting in end-stage renal 

failure and premature death within the first weeks of life [18]. 

In the nematode C. elegans MEC-2 - the worm homolog of podocin – is located along 

regular touch punctae along the six touch receptor neuron processes. Here, MEC-2 

is part of a multiprotein-channel complex that is needed to convert mechanical stimuli 

into electrical signals [42,43]. MEC-2 regulates the function of MEC-4/MEC-10, two 

degenerin/epithelial Na+ channels (DEG/ENaC) that transduce gentle body touch 

sensation [42,44,45]. In mammals, the ion channel TRPC6 - a member of the 

transient receptor potential (TRP) superfamily - is associated with the slit diaphragm 

[14,15], where it interacts with other slit diaphragm proteins [14,24]. TRP channels 

are mechanically gated ion channels [46] which can be regulated by podocin [24]. 

This renders the slit diaphragm a possible mechanosensitive structure which can 

more easily be studied in C. elegans [47]. 

3.2.3 Prohibitins 

Prohibitin-1 (PHB1) and prohibitin-2 (PHB2) are two closely related proteins that 

reside within the inner mitochondrial membrane. Unconventional sorting sequences 

target both proteins to mitochondria, where they are inserted into the inner 

membrane by TIM23-translocase activity. Protein structure analysis revealed that 

they are anchored to the membrane by a hydrophobic stretch located at the amino 

terminal end while the large carboxy terminal end, which consists of a PHB-domain 
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and a coiled coil domain, is exposed to the intermembrane space [28,48]. PHB1 and 

PHB2 directly interact by forming multimeric ring complexes (Figure 2) and stabilize 

each other [28,49,50].  

 

 

Figure 2: Multimeric ring complexes of prohibitins 

Prohibitin-1 and prohibitin-2 are assembled in heteromeric ring structures and 
thereby stabilize each other. (Figure adapted from Osman et al., 2009 [51]) 
 

Prohibitins are involved in numerous functions within the cell. Not only are they 

needed for the maintenance of the mitochondrial membrane and cristae structure but 

also serve a scaffolding function during biogenesis of oxidative phosphorylation 

system (OXPHOS) complexes [52,53]. Moreover, prohibitins seem to be important for 

the regulation of apoptosis [53–56] and can reside within the nucleus where they 

modulate transcriptional activity [54,57–60]. Nevertheless, it is generally conceived 

that the majority of prohibitins is localized within the mitochondrial compartment. 

Prohibitins are upregulated in various types of cancers e.g. breast cancer [61] and 

gastric cancer [62] but seem to have protective roles in many normal tissues. For 

example PHBs are required to prevent ethanol-mediated damage of pancreatic 

β-cells [55,63] and can stop the progression of TGF-β1-induced renal 

tubulointerstitial lesions [64]. 

In 2008, Merkwirth et al. [53] showed that cellular depletion of PHB2 in mouse 

embryonic fibroblasts (MEFs) led to decreased levels of PHB1, markedly reduced 

proliferation and an increased susceptibility to apoptotic stimuli. The cells exhibited 

disorganized and swollen mitochondrial cristae structures. However, mitochondrial 

membrane potential and enzymatic activities of respiratory complexes were 

unaffected. An impaired processing of the dynamin-like GTPase OPA1 (optic 

atrophy 1) was identified as the primary cellular defect in the absence of prohibitins 

[53]. Correct cleavage of OPA1 into five different short and long isoforms is required 
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for mitochondrial fusion, thereby promoting cristae maintenance and remodeling [65–

68]. 

Universal knockout of Phb2 in a mouse model resulted in no viable offspring [53,59]. 

Recently, loss of regular mitochondrial cristae structures and impaired OPA1 

cleavage was demonstrated in a neuronal-specific Phb2-knockout mouse model 

in vivo [69], thereby confirming the phenotype that was observed in isolated 

Phb2-deficient MEFs [53]. Phb2-deficiency in C. elegans led to increased fat 

utilization, increased mitochondrial proliferation, consequent cellular damage and an 

ultimately reduced lifespan. However, loss of PHB-2 increased lifespan of already 

long-lived insulin receptor/daf-2-mutant worms and partially restored the metabolic 

defects observed in Phb2-deficient worms, thereby linking prohibitins to the metabolic 

signaling pathways [70]. Furthermore, a recent study in prohibitin-deficient yeast cells 

revealed that loss of prohibitins leads to increased mitochondrial proteotoxic stress, 

which activates the mitochondrial untranslated protein response (mtUPR). This effect 

can be reversed under dietary restriction i.e. less nutrient signaling, probably via 

decreasing cytoplasmic mRNA translation [71]. In conclusion, experiments in yeast 

and worm link PHB2 to the action of insulin. 

 

3.3 Regulation of metabolism by mTOR signaling 

3.3.1 The mTOR pathway 

The nutrient-sensing Ser/Thr kinase mammalian target of rapamycin (mTOR) is one 

of the central regulators for metabolism in cells and organisms. mTOR can assemble 

with other proteins into two distinct complexes, mTORC1 and mTORC2. In the 

rapamycin-sensitive mTORC1 complex mTOR associates with raptor and regulates 

temporal aspects of cell growth whereas the rapamycin-insensitive mTORC2 

complex contains rictor and controls spatial aspects of cell growth [72–76]. To exert 

its function mTORC1 signaling increases e.g. transcription and protein synthesis but 

inhibits autophagy. The mTORC2 complex mainly regulates actin organization [77].  

The activity of mTOR complexes is regulated by different upstream signals that either 

downregulate or upregulate mTOR activity. On the one hand, stress signals like 

hypoxia as well as low cellular energy states downregulate mTOR signaling to arrest 

cell growth [78–81]. Hypoxia increases the HIF1-mediated expression of REDD, 
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which activates the tuberous sclerosis complex consisting of the heterodimer TSC1 

and TSC2. TSC1-TSC2 negatively regulate mTOR activity via Rheb [82–84]. Low 

cellular energy leads to activation of AMP-activated protein kinase (AMPK), which 

activates TSC2, resulting in the inhibition of mTORC1 activity [80,85]. On the other 

hand, amino acids and growth factors increase mTOR signaling. So far, it is not clear 

how the amino acid status is communicated to the mTOR complex, but one 

hypothesis is that it works independent of the TSC complex by direct activation of 

Rheb, which in turn activates the mTOR complex. Two of the most important 

activators of the mTOR pathway are the growth factors insulin and insulin-like growth 

factor 1 (IGF-1). Each binds to its specific receptor at the plasma membrane and 

inhibits TSC1-TSC2 via the phosphoinositide 3-kinase (PI3K) pathway, thereby 

promoting activation of mTOR and cell growth [86–90] (Figure 3).  

Two of the best understood downstream mediators of mTOR function are the 

ribosomal S6 kinase S6K1 and the eukaryotic initiation factor 4-binding protein 

4E-BP1. mTORC1 activation leads to phosphorylation of S6K1, which then 

phosphorylates the 40S ribosomal protein S6, ultimately leading to translation of 

proteins necessary for ribosomal biogenesis [91]. Moreover, mTORC1 signaling 

promotes phosphorylation of 4E-BP1, leading to the release of eukaryotic initiation 

factor 4E (eIF4E) [91,92]. Both downstream effectors initiate protein translation and 

can be used as in vitro and in vivo readout for mTORC1 activity [93].  
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Figure 3: mTOR pathway 

The mTOR pathway can be activated by different signals. Insulin and IGF-1 are 
acting via growth factor receptors and the PI3K pathway to inhibit the TSC1-TSC2 
complex. Hypoxia mediates inhibition of TSC1-TSC2 via increasing expression of 
REDD. Low energy states are sensed by AMPK, which also acts on the TSC 
complex. Amino acids most likely act downstream of the TSC complex by activating 
Rheb. The two mTOR-complexes contain either mTOR and raptor (mTORC1) or 
mTOR and rictor (mTORC2). The mTORC1 complex controls temporal aspects of 
cell growth by regulation of e.g. translation, transcription and autophagy whereas the 
mTORC2 complex regulates spatial aspects of cell growth via actin organization. 
(Figure adapted from Wullschleger et al., 2006 [77]) 
 

3.3.2 Role of mTOR signaling in podocytes 

Several studies revealed that patients with glomerular diseases like FSGS [94] and 

diabetic nephropathy [95–99] may benefit from mTORC1 inhibition by rapamycin 

treatment. However, rapamycin treatment also frequently leads to the development of 

de novo proteinuria, especially in transplant patients [100–102]. To further 

understand the role of mTOR in podocytes Gödel et al. [95] generated a podocyte-

specific raptor-knockout mouse to specifically abrogate function of the mTORC1 

complex. These mice developed albuminuria at the age of four weeks and later 



Introduction 

11 

 

displayed with glomerulosclerosis, resulting in an increased mortality rate after eight 

month of age. By using an inducible mouse model they also showed that mTORC1 

function is not only important for the development but also for the maintenance of the 

glomerulus during adulthood. Ablation of mTORC2 function by podocyte-specific 

deletion of rictor did not lead to any overt phenotype under normal conditions, but 

these mice developed albuminuria when they were exposed to stress cues. However, 

a combination of raptor- and rictor-knockout led to a much faster progressing and 

more severe phenotype compared to the knockout of raptor alone [95]. In line with 

these findings, podocyte-specific depletion of the insulin receptor led to the 

development of proteinuria and first subtle changes in foot process structures at the 

age of five weeks. Histologically, these mice showed features of diabetic nephropathy 

[103]. Another study used a podocyte-specific TSC1-knockout mouse, thereby 

increasing mTORC1 activity. These mice developed albuminuria already at the age 

of two weeks and foot process effacement at four weeks of age. In addition, this 

phenotype was inducible in adult animals as well and the effects could be reversed 

by treatment with rapamycin [104]. These studies clearly demonstrate that a balance 

in mTORC1 activity is crucial for a healthy glomerular metabolism, but further work is 

needed to better understand the effects of different mTOR activity states in 

glomerular health and disease [105]. 
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4 Thesis aims 

The SPFH domain-containing protein podocin, a component of the protein-lipid 

supercomplex at the slit diaphragm of podocytes, is one of the best studied proteins 

in podocyte biology. Mutations in NPHS2, the gene encoding for podocin, are 

causing frequent glomerulopathies in humans. So far, little is known about the role of 

other SPFH domain-containing proteins in podocytes. Therefore, this PhD work 

investigated the role of prohibitin-2, another SPFH domain-containing protein with 

primarily mitochondrial function, in podocytes. Furthermore, recent reports from 

worms and yeast suggest a link between PHB2 and insulin signaling [70,71]. Since 

mTOR activity downstream of insulin signaling seems to be dysregulated in 

glomerulosclerosis [95,104,105], the connection between PHB2 and insulin/mTOR 

signaling was explored further. 

Therefore, the major aims for this thesis were: 

 

1. Generation and characterization of podocyte-specific Phb2-knockout mice 

Conditional Phb2 flox/flox mice were mated to podocyte-specific Cre mice 

(NPHS2.cre mice) to generate podocyte-specific Phb2-knockout mice 

(Phb2pko mice). The development of glomerular disease in these mice was 

analyzed at day 14, 21 and 28 after birth by measuring urinary albumin-to-

creatinine ratio with a combination of an ELISA and a colorimetric assay. 

Moreover, PAS staining, specific immunohistochemistry and electron 

microscopy were used to further characterize these mice. 

 

2. Determination of the localization of PHB2 in podocytes and investigation of 

a possible interaction with podocin 

To assess localization of PHB2 in podocytes two different techniques, 

immunofluorescence and immunogold labeling, were applied. To analyze a 

possible interaction with podocin co-immunoprecipitation experiments were 

performed from overexpressed and endogenous samples. 

 

3. Analysis of a functional impact of PHB2 on the protein-lipid supercomplex 

Immunofluorescence stainings were used to confirm the conserved 

localization of PHB-2 to the protein-lipid supercomplex in C. elegans. Gentle 
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touch assays were used to investigate a functional role of PHB-2 in touch 

sensation. 

 

4. Analysis of an impact of the insulin and IGF-1 receptor on the development 

of glomerular disease in Phb2pko mice 

Conditional Phb2 flox/flox mice were mated to Insr flox/flox / Igf1r flox/flox mice 

and NPHS2.cre mice to generate Phb2pko/Insrpko/Igf1rpko mice. Lifespan of 

these animals was recorded and albuminuria at different time points assessed 

in coomassie gels. 

 

5. Determination of a role of mTOR activation in the development of 

glomerular disease in Phb2pko mice 

Kidney sections from Phb2pko were stained by specific immunohistochemistry 

for mTORC1 activity. Phb2pko mice were treated with the mTORC1 inhibitor 

rapamycin and albuminuria by means of a coomassie gel as well as survival 

was assessed. 
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5 Material and methods 

 

5.1 Material 

5.1.1 Chemicals, reagents and solutions 

Table 1. List of chemicals, reagents and solutions 

Chemicals/Reagents/Solutions Product  no. Provider 

2-Mercaptoethanol M3148 Sigma 

Agarose A9539-500G Sigma 

Ammonium persulfate (APS) A0834 Applichem 

Ammonium sulfate 3746 Carl Roth 

Ampicillin Sodium Salt K029 Carl Roth 

ANTI-FLAG® M2 Affinity Gel A2220 Sigma 

Bacto™ yeast extract 212750 BD Biosciences 

Blasticidin S ant-bl-1 InvivoGen 

Boric acid 100165 Merck 

Bovine Serum Albumin (BSA) A7030 Sigma 

Bovine Serum Albumin (BSA), 10 mg/ml B9001 New England 

BioLabs 

Bovine Serum Albumin (BSA), fraction V 1066 Gerbu 

Bromphenol Blue A512 Carl Roth 

Cacodylic acid sodium salt trihydrate 5169 Carl Roth 

Calcium chloride dihydrate HN04 Carl Roth 

Cholesterol C8667 Sigma 

Citric acid monohydrate 27490 Sigma 

Collagen I, bovine A1064401 Invitrogen 

Collagenase Type 1A C9891 Sigma 

Coomassie brilliant blue G-250 161-0406 BioRad 

Coumeric Acid C9008 Sigma 

D(+)-Glucose monohydrate 1040740 Merck 

DAB substrate (10x) 1855920 Thermo Scientific 

Deoxyribonuclease I, bovine (DNase) D5319 Sigma 



Material and methods 

15 

 

Chemicals/Reagents/Solutions Product  no. Provider 

Deoxyribonucleotide triphosphate (dNTP)-mix 200415 Stratagene 

Dimethyl sulfoxide (DMSO) Hybri-Max D2650 Sigma 

Dithiothreitol (DTT) 6908 Carl Roth 

Doxycycline hyclate A2951 Applichem 

Dulbecco’s Modified Eagle Medium (DMEM) D6429 Sigma 

Ethanol 96% + 1% Methyl ethyl ketone WAL641.5000 Th.Geyer Group 

Ethanol 99% + 1% Methyl ethyl ketone A5007 Applichem 

Ethanol absolut 9065 Carl Roth 

Ethidiumbromide solution (1%) 2218 Carl Roth 

Ethylene glycol-bis(2-aminoethylether)-

N,N,N′,N′-tetraacetic acid (EGTA) 

E3889 Sigma 

Ethylenediaminetetraacetic acid disodium salt 

dihydrate (EDTA) 

E5134 Sigma 

Fetal Bovine Serum (FBS) S 0115 Biochrom AG 

Formaldehyde solution 37% 2137.1011 Th.Geyer Group 

Freund's adjuvant, complete F5581 Sigma 

Freund's adjuvant, incomplete F5506 Sigma 

GeneRuler 1kb DNA Ladder SM0311 Fermentas 

GeneRuler 50bp DNA Ladder SM0373 Fermentas 

Glycerol 3783 Carl Roth 

Glycine 3908 Carl Roth 

HAT supplement 100x 21060-017 Gibco 

Heparin-Rotexmedica 3862340 Rotexmedica 

HEPES Buffer 1M H0887 Sigma 

Histo-Clear 905006 Biozym 

Histomount HS-103 National 

Diagnostics 

Hydrochlorid acid 2 N T134 Carl Roth 

Hydrogen Peroxide 30% 107209 Merck 

Igepal® CA-630 I8896 Sigma 

Imidazole X998 Carl Roth 
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Chemicals/Reagents/Solutions Product  no. Provider 

Incidin Plus 3011520 Ecolab 

Interferon gamma, murine 1476960100 provitro 

Isopropanol 5752.3 Carl Roth 

Isopropyl-thio-β-d-galactoside (IPTG) A1800 Applichem 

Kanamycin sulfate K4000 Sigma 

Ketavet® 100 mg/ml   Pfizer 

LB-Agar X965 Carl Roth 

LB-Medium X964 Carl Roth 

L-Glutamine 200mM 25030-081 Gibco 

Lipofectamine-2000 11668-027 Invitrogen 

Loading Dye Solution (6X) R0611 Thermo Scientific 

Luminol 9253 Fluka 

Lysozyme A3711 Applichem 

Magnesium chloride hexahydrate 105833 Merck 

Magnesium sulfate heptahydrate P027 Carl Roth 

Mayer's hematoxylin MHS16 Sigma 

MEM non-essential amino acids (MEM NEAA) 

100x 11140-050 

Gibco 

Methanol  4627 Carl Roth 

MitoTracker® Red FM M22425 Invitrogen 

N,N,N´,N´-tetramethylethylenediamine 

(TEMED) 

2367 Carl  Roth 

Ni-NTA agarose 30210 Qiagen 

NEBuffer 3 B7003 New England 

BioLabs 

Ni-NTA agarose R901-01 Qiagen 

Normal Donkey Serum 017-000-121 Dianova 

Opti-MEM® 31985-047 Invitrogen 

Osmium tetroxide 8371 Carl Roth 

PageRuler Plus Prestained Protein Ladder 26620 Fermentas 

Paraformaldehyde (PFA) P6148 Sigma 
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Chemicals/Reagents/Solutions Product  no. Provider 

Passive Lysis Buffer 5x E1941 Promega 

Penicillin-Streptomycin 10,000 U/mL 15140-122 Gibco 

Peptone from casein, enzymatic digest 82393 Sigma 

Periodic acid 99% 3257 Carl Roth 

Phenylmethylsulfonyl fluoride (PMSF) P7626 Sigma 

Phosphoric acid 85% 79617 Sigma 

PIPES disodium salt P3768   

Polyacrylamide T802 Carl Roth 

Polyethylenglykol 400 0144 Carl Roth 

Ponceau S P7170 Sigma 

Potassium chloride 6781 Carl Roth 

Potassium dihydrogen phosphate  P-018 Carl Roth 

ProLong Gold antifade reagent with DAPI P-36931 Invitrogen 

Protein A Sepharose  10-1041 Invitrogen 

Protein G Sepharose  GEHE17-

0618-01 

VWR 

Proteinase K 82456 Sigma 

Pure acetic acid 99% - 100%  7332 Carl Roth 

Puromycin ant-pr-1 InvivoGen 

Qiazol 79306 Qiagen 

Rapamycin R-5000 LC Labs 

RNase-free water Ultra Pure 10977-035 Invitrogen 

Rompun® 2%   Bayer HealthCare 

RPMI-1640 medium 31870025 Gibco 

RPMI-1640 medium R8758 Sigma 

Schiff's reagent 109033 Merck 

Sodim citrate dihydrate 194868 MP Biomedicals 

Sodium acetate 6268 Merck 

Sodium azide S2002 Sigma 

Sodium chloride  3957 Carl Roth 

Sodium chloride solution 0,9%, isotonic 3563293 AlleMan Pharma 
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Chemicals/Reagents/Solutions Product  no. Provider 

Sodium deoxycholate D6750 Sigma 

Sodium dodecyl sulfate (SDS) pellets CN30 Carl Roth 

Sodium fluoride S-1504 Sigma 

Sodium hydrogen carbonate 106329 Merck 

Sodium hydroxide 402 J.T. Baker 

Sodium hydroxide solution 2 N T135 Carl Roth 

Sodium hypochlorite solution 12% 9026 Carl Roth 

Sodium orthovanadate S6508 Sigma 

Sodium pyruvate 100 mM 11360-070 Gibco 

Sodium pyruvate 100 mM S8636 Sigma 

Sodium(di-) hydrogen phosphate heptahydrate 106574 Merck 

Sodium(tetra-) diphosphate decahydrate 106591 Merck 

Spectinomycin dihydrochloride pentahydrate 567570 Merck 

Spermidine HCl S2501 Sigma 

TE buffer 60191 Invitrogen 

Tetramethylbenzidine (TMB) T2885 Sigma 

Tissue-Tek® O.C.T.™ compound 4583 Sakura 

Tris Hydrochlorid (HCl) 9090 Carl Roth 

Triton X-100 108603 Merck 

Trizma Base T1503 Sigma 

Trypsin-EDTA Solution (1x) T3924 Sigma 

Tryptone 1010817 MP Biomedicals 

Tween®20 3472 Caesar&Lorentz 

Tween®80 9139 Carl Roth 

Uranyl acetate 19481 Ted Pella Inc. 

Uranyl acetate dihydrate 73943 Sigma 

Vectastain® R.T.U. Elite™ ABC reagent PK-7100 

Vector 

Laboratories 

Zeocin ant-zn-1 InvivoGen 
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5.1.2 Assays/Kits 

Table 2. List of assays and kits 

Assay/Kit Product no. Provider 

Avidin/Biotin Blocking Kit SP-2001 Vector 

Laboratories 

BCA Protein Assay Kit 

23227 

Pierce/Thermo 

Scientific 

Big Dye® Terminator v3.1 Cycle Sequencing 

Kit 

4337455 Applied 

Biosystems 

Creatinie (urinary) Assay Kit 500701 Cayman 

DAB Substrate Kit 34002 Pierce/Thermo 

Scientific 

Direct-zol™ RNA Mini Prep Kit R2052 ZymoResearch 

Dual-Luciferase® Assay System E1910 Promega 

Epoxy Embedding Medium Kit 45359 Sigma 

GeneJet™ PCR Purification Kit K0702 Fermentas 

GeneJet™ Gel Extraction Kit K0692 Fermentas 

GeneJet™ Plasmid Miniprep Kit K0503 Fermentas 

GoTaq® Flexi DNA Polymerase M8301 Promega 

High Capacity cDNA Reverse Transcription  4368814 Applied 

Biosystems 

KOD Hot Start DNA Polymerase Kit 71086 Merck/Novagen 

Lowicryl® K4M Polar Kit 15923 Polysciences 

Mouse Albumin ELISA Kit 

E99-134 

Bethyl 

Laboratories 

NucleoBond® Xtra Midi Prep Kit  740410 Macherey-Nagel 

REDtaq® ReadyMix™ PCR Reaction Mix R2523 Sigma 

SuperSignal West Femto Chemiluminescent 

Substrate 34095 

Pierce/Thermo 

Scientific 

TaqMan® Universal Master Mix II 

4440040 Applied 

Biosystems 

Venor® GeM Mycoplasma Detection Kit 11-1050 Minerva Biolabs 
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Assay/Kit Product no. Provider 

Zenon® Tricolor Rabbit IgG Labeling Kit Z25360 Molecular Probes 

 

5.1.3 Buffers and solutions 

Table 3. Composition of buffers and solutions 

Buffer/Solution Composition 

Anesthesia 

  

   

6.8 ml 0.9% NaCl 

1 ml 100 mg/ml Ketavet® 

0.4 ml Rompun®  

Antibody Buffer A 

  

  

  

   

1% (w/v) BSA  

0.5% (v/v) Triton X-100 

0.05% (w/v) NaN3 

1 mM EDTA 

in 1x PBS  

Antibody Buffer B 

   

0.2% (w/v) BSA 

in Antibody Buffer A  

Base Solution 

   

  

0.025 N NaOH 

0.2 mM EDTA 

pH 12  

Blocking Solution 

  

   

5% (v/v) NDS 

0.1% (v/v) Triton-X100 

in 1x PBS  

Borate Buffer (40x) 

  

   

1 M boric acid 

500 mM NaOH 

pH 9.2  

Cell Culture Medium (HEK 293T) 

   

10% (v/v) FBS 

in DMEM  

Cell Culture Medium (Hybridoma) 

  

  

  

  

10% (v/v) FBS 

100 U/ml Penicillin-Streptomycin 

2 mM L-Glutamin 

0.5 mM Sodium pyruvate (Gibco) 

1x HAT supplement 
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Buffer/Solution Composition 

  

   

1x MEM NEAA 

in RPMI-1640 (Gibco) 

Cell Culture Medium (Mouse Podocytes) 

  

  

   

10% (v/v) FBS 

10 mM HEPES 

1 mM Sodium pyruvate (Sigma) 

in RPMI-1640 (Sigma)  

Cell Freezing Solution 

  

   

45% (v/v) FBS 

45% (v/v) DMEM or RPMI-1640 

10% (v/v) DMSO  

Citrate Buffer (10mM) 

  

   

1.26 mM Citric acid 

8.74 mM Sodium citrate 

pH 6 

Colloidal Coomassie Stock Solution 

  

  

  

755 mM (NH4)2SO4 

2.55% (v/v) Phosphoric acid 

0.1% (w/v) Coomassie brilliant blue G-

250  

Colloidal Coomassie Solution 

  

  

80% Colloidal Coomassie Stock 

Solution 

20% (v/v) Methanol  

Developer Solution 

  

  

   

48 mM Sodium acetate 

13.4% (v/v) H2O2 

98 µg/ml TMB 

pH 5.2  

ECL Detection Solution 

  

  

  

  

  

100 mM Tris  

1,25 mM Luminol  

0,2 mM Coumaric acid  

0,75% (v/v) H2O2  

pH 8.5 

  

Electron Microscopy Antibody Buffer 

  

  

1% BSA 

0.5% Tween®20 

0.1% Triton X-100 
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Buffer/Solution Composition 

   0.1 M Tris  

Electron Microscopy Fixation Buffer 

  

   

4% (v/v) PFA  

2% (v/v) Glutaraldehyde 

0.1 M Cacodylate  

Elution Buffer 

  

  

   

20 mM Tris 

150 mM NaCl 

300 mM Imidazole 

pH 8  

Fixing Solution for Worms 

   

1% (v/v) formaldehyde 

in 1x MRWB  

Fixing Solution for Coomassie 

   

25% (v/v) isopropanol 

10% (v/v) acetic acid  

HBSS (1x) 

   

1x HBSS solution A 

1x HBSS solution B  

HBSS Solution A (10x) 

  

  

  

  

  

   

5.4 mM KCl 

0.3 mM Na2HPO4 

0.4 mM KH2PO4 

4.2 mM NaHCO3 

137 mM NaCl 

5.6 mM D-glucose 

pH 7.4  

HBSS Solution B (10x) 

  

   

1.3 mM CaCl2 

0.5 mM MgCl2 

0.6 mM MgSO4  

HEBS (2X)  

  

  

  

   

50 mM HEPES  

280 mM NaCl  

10 mM KCl  

1.5 mM Na2HPO4  

pH 7.08  
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Buffer/Solution Composition 

His-Buffer 

  

  

   

50 mM Tris 

150 mM NaCl 

20 mM Imidazole 

pH 7.5  

IP Buffer 

  

  

  

  

   

20 mM Tris  

1% (v/v) Triton X-100  

50 mM NaCl  

15 mM Na4P2O7 

50 mM NaF 

pH 7.5  

Laemmli Sample Buffer (2X) 

  

  

  

  

   

100 mM Tris 

4% (w/v) SDS 

20% (v/v) Glycerol 

Bromphenol Blue 

100 mM DTT 

pH 6.8  

 Laemmli Sample Buffer (5X) 

  

  

  

  

   

250 mM Tris 

10% (w/v) SDS 

50% (v/v) Glycerol 

Bromphenol Blue 

250 mM DTT 

pH 6.8  

Ligation Buffer (10X)  

  

  

  

   

400 mM Tris 

100 mM MgCl2 

100 mM DTT 

5 mM ATP 

pH 7.8  

M9 Buffer 

  

  

   

22 mM KH2PO4 

42 mM Na2HPO4 

85.5 mM NaCl 

1 mM MgSO4  
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Buffer/Solution Composition 

modified RIPA Buffer 

  

  

  

  

  

   

50 mM Tris-HCl 

1% (v/v) Igepal® CA-630 

0.25% (v/v) Sodium deoxycholate 

150 mM NaCl 

1 mM EDTA 

1 mM NaF 

pH 7.4  

modified Ruvkun's Witches Brew (MRWB) 

(2x) 

  

  

  

    

160 mM KCl 

40 mM NaCl 

20 mM EGTA 

10 mM Spermidine 

30 mM PIPES 

50% Methanol 

Nematode Growth Medium (NGM) 

  

  

  

  

  

   

51 mM NaCl 

59 mM Agar 

Peptone 

1 mM CaCl2 

1 mM Mg2SO4 

25 mM KH2PO4 

5 µg/ml Cholsterol  

Neutralization Solution 

   

40 mM Tris-HCl 

pH 5 

Phosphate Buffered Saline (PBS) 

  

  

   

137 mM NaCl 

2.7 mM KCl 

10 mM Na2HPO4 

2 mM KH2PO4  

PBS-Tween 

   

0.05% (w/w) Tween®20 

in 1x PBS  

Proteinase K Solution 

  

   

20 µg/ml Proteinase K 

50 mM Tris-HCl 

pH 7.8  
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Buffer/Solution Composition 

Rapamycin Solution for injection 

  

  

   

0.3 mg/ml Rapamycin 

5% Tween®80 

5% PEG400 

sterile filtered with 0.22 µm filter  

Rapamycin Stock Solution 

   

6 mg/ml Rapamycin 

in 100% Ethanol  

Resolving Gel 

  

  

   

750 mM Tris 

10% (v/v) PAA 

0.2% (w/v) SDS 

pH 8.8  

Running Buffer 

  

   

25 mM Tris 

192 mM Glycine 

0.1% (w/v) SDS  

Stacking Gel 

  

  

   

250 mM Tris 

5% (v/v) PAA 

0.2% (w/v) SDS 

pH 6.8  

Staining PBS 

  

   

1 mM CaCl2 

0,5 mM MgCl2 

in 1x PBS  

SOC Medium 

  

  

  

  

   

2% (w/v) Tryptone 

0.5% (w/v) Yeast Extract 

8.6 mM NaCl 

2.5 mM KCl  

20 mM MgSO4 

20 mM Glucose  

TAE (1X) 

  

  

   

40 mM Tris 

20 mM Acetic Acid 

1mM EDTA 

pH 8.5  
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Buffer/Solution Composition 

TBS (1x) 

  

  

   

15 mM Tris-HCl 

4.5 mM Tris 

150 mM NaCl 

pH 7.6  

TBS-Tween (1x) 15 mM Tris-HCL 

4.5 mM Tris 

150 mM NaCl 

pH 7.6 

0.025% (v/v) Tween20 

Transfer Buffer 

  

   

25 mM Tris 

188 mM Glycine 

0.1% (w/v) SDS  

Tris-EDTA-Tween 10 mM Tris 

1 mM EDTA 

pH 9.0 

0.05% (v/v) Tween20 

Tris-Triton Buffer (TTB) 

  

  

   

100 mM Tris-HCl 

1% (v/v) Triton X-100 

1 mM EDTA 

pH 7.4  

Vehicle Solution for injection 

  

   

5% (v/v) Ethanol 

5% (v/v) Tween®80 

5% (v/v) PEG400  

Wash Buffer 

  

  

   

30 mM Tris 

300 mM NaCl 

0.3% (v/v) Tween20 

pH 7.5  

2x YTA 

  

  

85 mM NaCl 

16 g/l Tryptone 

10 g/l Yeast extract 
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5.1.4 Oligonucleotides 

Table 4. List of oligonucleotides used for cloning 

Cloning primers Sequence (5’  3’) 

ce phb-1 fp CAATGTTGATGGAGGTCAACG 

ce phb-1 rp GGTGACATTCTTGTTCTTGGC 

ce phb-2 ORF pEntry fp 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTGGCGAAA

CAAGGGCAAGAAGC 

ce phb-2 ORF pEntry rp 

GGGGACCACTTTGTACAAGAAAGCTGGGTAGCGTCTT

TTGTCGGTCAC 

ce pmec-17 fp 

GGGGACAACTTTGTATAGAAAAGTTGATTTTCTGAAATT

ACTATTA 

ce pmec-17 rp 

GGGGACTGCTTTTTTGTACAAACTTGTCATGATCGAAT

CGTCTCACAACT 

mPhb1 Mlu1 fp GCTGCCACGCGTACCATGGCTGCCAAAGTG 

mPhb1 Not1 rp ATGCACGCGGCCGCTCACTGGGGAAGCTGG 

mPhb2 Mlu1 fp GCTGCCACGCGTACCATGGCCCAGAACTTG 

mPhb2 Not1 rp ATGCACGCGGCCGCTCATTTCTTACCCTTAATG 

 

Table 5. List of oligonucleotides used for genotyping 

Genotyping primers  Sequence (5'  3') 

β-globin fp TGCTCACACAGGATAGAGAGGGCAGG 

β-globin rp GGCTGTCCAAGTGATTCAGGCCATCG  

Cre fp GGACATGTTCAGGGATCGCCAGGCG  

Cre rp GCATAACCAGTGAAACAGCATTGCTG  

Dicer fp CCTGACAGTGACGGTCCAAAG  

Dicer rp CATGACTCTTCAACTCAAACT  

iCreER(T2) fp TCAACATGCTGCACAGGAGAT  

iCreER(T2) rp ACCATAGATCAGGCGGTGGGT  

Igf1r fp TCCCTCAGGCTTCATCCGCAA  

Igf1r rp CTTCAGCTTTGCAGGTGCACG  

Insr fp GATGTGCACCCCATGTCTG  

Insr rp CTGAATAGCTGAGACCACAG  
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Genotyping primers  Sequence (5'  3') 

Phb2 fp ATCGTATTGGTGGCGTGCAGCA 

Phb2 rp1 CGAGGTCTGGCCCGAATGTCAT 

Phb2 rp2 AGGGAGGCTTGGTTTGAGGGGA 

 

Table 6. List of oligonucleotides for sequencing 

Sequencing primers Sequence (5’  3’) 

ce phb-2 ORF  

pos. 1262 fp CATCAATTTGTTATTGTTTTG 

ce phb-2 ORF  

pos. 169 rp CAATTAATTTGATCGTTATAC 

ce phb-2 ORF  

pos. 251 fp CACTTCAGAATCCCATGGTTC 

ce phb-2 ORF  

pos. 658 fp GAAAATTATGGGTTATGATC 

ce phb-2 ORF  

pos. 963 fp GAAGAACGATCCAGGATTTTTG 

emGFP fp GGCATGGACGAGCTGTACAA 

mPhb1 pos. 428 fp GAGAGCTGGTCTCCAG 

mPhb1 pos. 601 rp CCACCACAAATCTGGC 

mPhb2 pos. 416 fp GAGGTGCTCAAGAGTG 

mPhb2 pos. 548 rp CTGTGTACTCTCGGC 

pcDNA6 fp CGTGTACGGTGGGAGGTCTA 

pcDNA6 rp AGGAAAGGACAGTGGGAGTG 

pmec-17 pos. 216 rp TCTCTCCAACAAACTTATTGT 

 

Table 7. List of shRNAs 

shRNAs Sequence (5’  3’)/Clone ID 

mPhb2 shRNA 1 

bottom strand 

CCTGAGCTAAGTCCTAAGTTCTGGTCAGTCAGTGGCC

AAAACCAGAACTTGAAGGACTTAGCTC 

mPhb2 shRNA 1 top 

strand 

TGCTGAGCTAAGTCCTTCAAGTTCTGGTTTTGGCCACT

GACTGACCAGAACTTAGGACTTAGCT 

mPhb2 shRNA 2 CCTGTAACAATGGACCAGCACTCGTCAGTCAGTGGCC
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shRNAs Sequence (5’  3’)/Clone ID 

bottom strand AAAACGAGTGCTGCCGTCCATTGTTAC 

mPhb2 shRNA 2 top 

strand 

TGCTGTAACAATGGACGGCAGCACTCGTTTTGGCCAC

TGACTGACGAGTGCTGGTCCATTGTTA 

scrambled shRNA 

bottom strand 

CCTGAAATGTACTGCGTGGAGACGTCAGTCAGTGGCC

AAAACGTCTCCACGCGCAGTACATTTC 

scrambled shRNA top 

strand 

TGCTGAAATGTACTGCGCGTGGAGACGTTTTGGCCAC

TGACTGACGTCTCCACGCAGTACATTT 

 

Table 8. List of TaqMan® probes 

TaqMan® probe Assay ID Provider 

mHPRT  Mm01545399_m1 Applied Biosystems 

mPhb1  Mm01627033_g1 Applied Biosystems 

mPhb1  Mm00476104_m1 Applied Biosystems 

 

5.1.5 Plasmids 

Table 9. List of plasmids 

Plasmid Provider 

ce mec-2 L4440 J. Ahringer lab, Cambridge, England 

ce mev-1 L4440 J. Ahringer lab, Cambridge, England 

ce phb-1 L4440 generated for this thesis 

ce phb-2 L4440 J. Ahringer lab, Cambridge, England 

ce phb-2 pEntry generated for this thesis 

ce pmec-17 pEntry generated for this thesis 

ce pmec-17-phb-2::GFP-pDest generated for this thesis 

FLAG.hNEMO pcDNA6 Nephrolab Cologne 

FLAG.mPhb1 pcDNA6 generated for this thesis 

FLAG.mPhb2 pcDNA6 generated for this thesis 

FLAG.mPodocin pcDNA6 Nephrolab Cologne 

FLAG.RuvBl1 pcDNA6 Nephrolab Cologne 

L4440 A. Fire lab, Stanford, CA, USA 

mPhb2 pDonr 221 generated for this thesis 
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Plasmid Provider 

mPhb2 psiCheck Dest LR generated for this thesis 

mPhb2 shRNA1+2 pcDNA6.2 generated for this thesis 

mPhb2 shRNA1+2 pLenti4/TO/V5-

Dest generated for this thesis 

pLentiTTR Invitrogen 

pMD2 VSV-G Nephrolab Cologne 

pMDL g/p Nephrolab Cologne 

pRSV Nephrolab Cologne 

p∆R8.74 D. Trono lab, Lausanne, Switzerland 

scrambled shRNA pcDNA6.2 Nephrolab Cologne 

scrambled shRNA pLenti4/TO/V5-

Dest generated for this thesis 

scrambled shRNA TRIPZ Thermo Scientific 

V5.mPhb1 pcDNA6 generated for this thesis 

V5.mPhb2 pcDNA6 generated for this thesis 

 

5.1.6 Antibodies 

Table 10. List of primary antibodies 

Antigen (epitope) Clone Product 

no. 

Host dilution Provider 

cleaved caspase-3 (polyclonal) 9661 rabbit 1:200 IHC 

Cell 

Signaling 

Flag (DYKDDDDK) (polyclonal) F7425 rabbit 

1:10,000 

WB Sigma 

Flag (DYKDDDDK) 

M2 

(monoclonal) F3165 mouse 1 µg IP Sigma 

mec-2     rabbit 1:100 IF M. Chalfie 

PHB1 (C-terminal) 

Poly6031 

(polyclonal) 603101 rabbit 1:1000 WB BioLegend

PHB1/PHB2 mixed (monoclonal)   mouse undiluted IF 

newly 

generated 
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Antigen (epitope) Clone Product 

no. 

Host dilution Provider 

PHB2/BAP37  

(C-terminal) 

Poly6118 

(polyclonal) 611802 rabbit 

1:5 

Immunogold 

1:1000 WB BioLegend

podocin (amino-acid 

residues 367-383) (polyclonal) P0372 rabbit 1:100 IF Sigma 

V5 

(GKPIPNPLLGLDST) (polyclonal) AB3792 rabbit 1:2000 WB Millipore 

V5 

(GKPIPNPLLGLDST) 

SV5-Pk1 

(monoclonal) MCA1360 mouse 1 µg IP Serotec 

WT-1 (C-terminal) 

C-19 

(polyclonal) sc-192 rabbit 1:1000 IHC St. Cruz 

 

Table 11. List of secondary antibodies 

Antigen (epitope) Product no Dilution Provider 

Cy3-AffiniPure Donkey α-Rabbit IgG 

(H+L) 711-165-152 1:400 

Jackson 

ImmunoRe

search 

F(ab')2 fragment anti-rabbit IgG 

(H+L)-Biotin 711-066-152 1:500 Dianova 

gold-labeled goat anti-rabbit IgG  EM.GAR15 1:10 

BBInternati

onal 

Polyclonal goat anti-mouse 

immunoglobulins/HRP P0447 1:30,000 Dako 

Polyclonal goat anti-rabbit 

immunoglobulins/HRP P0448 1:30,000 Dako 
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5.1.7 Enzymes 

Table 12. List of enzymes 

Enzyme Product no. Provider 

Gateway® BP Clonase® II Enzyme 

Mix 11789020 Invitrogen 

Gateway® LR Clonase® II Enzyme 

Mix 11791100 Invitrogen 

MluI R0198 New England Biolabs 

Nco R0193 New England Biolabs 

NotI R0189 New England Biolabs 

SacI R0156 New England Biolabs 

T4 DNA Ligase EL0011 Fermentas 

 

5.1.8 Materials 

Table 13. List of materials 

Material Product no. Provider 

8-Lid chain, flat 65.989.002 Sarstedt 

10 cm dish for Agar Plates 82.1473 Sarstedt 

BD Microlance™ 3 27 G 3/4'' cannula 302200 BD Medical 

BD Plastipak™ syringe, 1 ml 300013 BD Medical 

BD Primaria™ cell culture dish 353803 BD Biosciences 

Blotting paper (Type BF4, 580 x 580) FT-2-521-

580580G 

VWR 

Cell culture dishes (12-well) 3513 Corning 

Cell culture dishes (6-well) 3516 Corning 

Cell culture dishes (10-cm) 430167 Corning 

Cell culture dish (96-well F-Form) 655180 Greiner BioOne 

Cell strainer, 100 µm 352360 BD Biosciences 

Combs (10 well, 1 mm) for acrylamide 

gels 

NC3010 Invitrogen 

Combs (15 well, 1 mm) for acrylamide 

gels 

NC3015 Invitrogen 
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Material Product no. Provider 

Cover glass (round 18 mm no. 1.5) 631-0153 VWR 

Cover glass (square18 mm no. 1.5) 631-0125 VWR 

Crymold® standard 4557 Sakura 

Discofix®-3 4098102 Braun 

Dounce glass-glass homogenizer   Wheaton 

Dynabeads® MPC®-S (magnetic 

particle concentrator) 

A13346 Invitrogen 

Fast Optical 96-well plates 4346907 Applied Biosystems 

Flask rectangular 25 cm2 431463 Corning 

Formvar/Carbon-coated nickel grids S162N Plano 

Gel cassette (1 mm) NC2010 Invitrogen 

Glass cuvette   WINZER 

Laborglastechnik 

Histosette® I M499-11 Simport 

Intrafix® SafeSet 4063000 Braun 

Polypropylene conical tube (15 ml) 188271 Greiner BioOne 

Polypropylene conical tube (50 ml) 227261 Greiner BioOne 

MicroAmp® Optical Adhesive Film 4311971 Applied Biosystem 

Micro tubes (1.5 ml) 72.690.001 Sarstedt 

Micro tubes (2 ml) 72.691 Sarstedt 

Millipore Immobilon-P Transfer 

Membranes  

T831.1 Carl Roth 

Multiple well cluster plate, 96-well 3596 Corning 

Multiply®-µStrip 0.2 ml chain 72.985.002 Sarstedt 

Nunc Cryotube™ 368632 Nunc 

Nunc-immuno frame 460348 Nunc 

Nunc-immuno module F8 maxisorb 

loose 

469949 Nunc 

Omnifix® Solo syringe, 10 ml 4617100V Braun 

PCR Soft-tubes 0.2 ml assorted 

colours 

711088 Biozym 
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Material Product no. Provider 

PCR Soft-tubes 0.2 ml clear 710920 Biozym 

PCR Soft-tubes 0.2 ml 8 Tubes/Flat 

Caps 

710970 Biozym 

Pipette tips (200 µl yellow) 70.760.002 Sarstedt 

Pipette tips (1000 µl blue) 70.762 Sarstedt 

Polypropylene column 34964 Qiagen 

Rotilabo®-syringe filters, 0.22 µm P666.1 Carl Roth 

Rotilabo®-syringe filters, 0.45 µm P667.1 Carl Roth 

Safe Lock 1.5 ml Eppendorf tubes 211-2130 VWR 

Stripettes (5 ml) 4051 Corning 

Stripettes (10 ml) 4101 Corning 

Stripettes (25 ml) 4251 Corning 

SuperFrost®/Plus microscope slides H867.1 Th.Geyer Group 

Syringe (PlastipakTM 1 ml) 7392/2007 BD 

TipOne (0.1-10 µl XL), sterile  S1110-3810-c Starlab 

TipOne (1-200 µl beveled), sterile S1111-1816-c Starlab 

TipOne (101-1000 µl graduated), 

sterile 

S1111-2831-c Starlab 

Venofix® Safety 21 G 3/4'' 4056520-01 Braun 

Weighing tray 140 x 140 mm 2159.1 Carl Roth 

Weighing tray 89 x 89 mm 2150.1 Carl Roth 

 

5.1.9 Equipment 

Table 14. List of equipment 

Equipment Model/Product no. Provider 

Analogue tube roller SRT6 Stuart 

Autoclave V-150 Systec 

Avanti centrifuge J-301 Beckman 

AxioCam ICc 1 Zeiss 

AxioCam MRm Zeiss 

Axiovert microscope 200M Carl Zeiss MicroImaging 
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Equipment Model/Product no. Provider 

Centrifuge (refrigerated) 5810 R Eppendorf 

Confocal microscope 

LSM/Axiobserver Z1 

LSM 710 Zeiss 

Cryostat CM1850 UV Leica 

Dumont #5 forceps 14098 WPI 

Dumont #55 forceps 14099 WPI 

Eppendorf Research® Multipipette 

(10-100 µl) 

3122000043 Eppendorf 

Fast Real-Time PCR System 7900HT ABI 

Fusion Solo chemiluminometer 60-FU-SOLO PeqLab 

Hamilton syringe (50 µl Type 705) 549-1155 VWR 

HERAcell Incubator  240 Heraeus 

HERAcell Incubator  150 Heraeus 

High-speed centrifuge (refrigerated) RC-5C plus Sorvall 

Horizontal electrophoresis system 1582 - 030305 Dan-Kar 

Incubator (Agarose) T 6030 Heraeus 

Innova Incubator Shaker 4400 New Brunswick Scientific

Inverted microscope CK2 Olympus 

JuLiTM Smart Fluorescence Cell 

Imager 

DBJ01B Bulldog Bio 

Laminar Flow Cabinet HS12 Heraeus 

MacsMix Tube Rotator MX100 Miltenyi Biotech 

Microcentrifuge   5424 Eppendorf 

Microcentrifuge (refrigerated) 5417R Eppendorf 

Microcentrifuge (refrigerated)  5415 R Eppendorf 

Microtome RM2235 Leica 

Mithras multimode microplate reader LB 940 Berthold Technologies 

Multifuge 4KR Heraues 

Nanodrop Spectrophotometer 1000 PeqLab 

Operating Scissor 501754 WPI 

Pipetboy acu 155 015 Integra Biosciences AG 
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Equipment Model/Product no. Provider 

Pipetman Pipette set (P2, P10, P100) F167500 Gilson 

Pipetman Pipette set (P20, P200, 

P1000) 

F167300 Gilson 

Power supply (for Dan-Kar system) EPS200 Pharmacia Biotech 

Powerpac 200 Power supply 1655052 Bio-Rad 

Powerpac 3000 Power supply 1655057 Bio-Rad 

Shaker  KS 260 IKA 

Suction Pump  MD 4C Vacuubrand 

TEM CCD camera Megaview III Olympus 

Thermal cycler (MJ mini) PTC-1148 Bio-Rad 

Thermomixer Comfort 1.5 ml 

Thermoblock 

5360 000.011 Eppendorf 

Thermomixer Comfort shaker & 

heating plate 

5355 000.011 Eppendorf 

Transmission electron microscope EM 902 Zeiss 

Transmission electron microscope JEM 1200 JEOL 

Ultra-centrifuge (Optima) TLX-120 Beckman 

Ultra-centrifuge rotor TLA-55 Beckman 

Ultracut UCT ultramicrotome EM FCS Leica 

Ultrasound homogenisator 

SONOPLUS 

HD2070 Bandelin 

Ultrasound water bath 2200 Branson 

UV Transilluminator system MW312 Intas 

Vannas Scissors 500086 WPI 

Vortex Mixer MS525-20 Heidolph (Reax) 

Water bath  WNB 22 Memmert 

Water bath (digital heating bath) HBR4 IKA 

Water bath (for paraffin sections) HI1210 Leica 

XCell SureLockTM Mini-Cell 

electrophoresis system 

100601-1408 Invitrogen 
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5.1.10 Software 

Table 15. List of software 

Software Version Provider 

Adobe Illustrator CS4 14.0.0 Adobe 

Adobe Photoshop  11.0.0.0 Adobe 

Axiovision 4.8 Carl Zeiss MicroImaging 

Edit-Seq 5.06 DNASTAR 

FinchTV 01.04.2000 Geospiza Inc. 

Fusion-CAPT 15.16 Vilber Lourmat 

Graphpad Prism 5 for Windows 5.2 GraphPad Software Inc. 

ImageJ/Fiji  1.46j Wayne Rasband 

Microsoft Office Suite 2003 Microsoft 

MikroWin  2000 Berthold Technologies 

Nanodrop 1000  3.7 Thermo Scientific 

SDS Software 2.4 Applied Biosystems 

ZEN Software 2009 Zeiss 

 

Table 16. List of online software 

Software (online) Website 

BLOCK-iT™ RNAi Designer http://rnaidesigner.invitrogen.com/rnaiexpress/ 

Ensembl.org http://www.ensembl.org/ 

NCBI Primerblast software http://www.ncbi.nlm.nih.gov/tools/primer-blast/ 

NCBI Pubmed  http://www.ncbi.nlm.nih.gov/pubmed/ 

NEB Double Digest Finder http://www.neb.com/nebecomm/doubledigestcalculator.

asp 
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5.2 Methods 

5.2.1 Working with nucleic acids 

5.2.1.1 Polymerase chain reaction (PCR) 

KOD Hot Start DNA Polymerase Kit was used for DNA amplification according to the 

manufacturer’s instructions. 100 ng template was used for amplification. Annealing 

temperature was chosen depending on the primer pair used (Primer Tm - (5-10) °C). 

5.2.1.2 Restriction and purification of plasmids, vectors and PCR products 

Plasmids and vectors for cloning were digested with the following protocol: 2 µg 

DNA, 1 µl restriction enzyme, 3 µl NEBuffer, 0,1 µg/µl BSA (depending on which 

enzyme was used) and filled up with H2O to 30 µl. After mixing, this solution was 

incubated for two hours at 37°C. Inserts were digested with the same protocol 

but - without considering the concentration - 15 µl of the purified PCR product 

(purification done with GeneJET™ Gel Extraction Kit according to manufacturer’s 

instructions) were applied to this mixture. After digestion the samples were loaded 

onto an agarose-gel and separated by applying an appropriate voltage. The expected 

bands were excised with a scalpel under UV light and purified by employing the 

GeneJET™ Gel Extraction Kit according to the manufacturer’s instructions. 

5.2.1.3 Ligation 

5 µl ligation buffer, 1 µl T4-Ligase and 1 - 2 µl digested, purified vector were mixed in 

a tube and filled up with H2O to 42 µl. The mixture was equally split into two tubes 

and 4 µl likewise digested and purified PCR product was added or 4 µl H2O as 

control. The samples were incubated for two hours at room temperature (RT) before 

transformation. 

5.2.1.4 Recombination 

For recombination 200 ng entry clone were mixed with 300 ng destination vector and 

filled up with TE buffer, pH 8.0, to 9 µl. The mixture was equally split into two tubes 

and 1 µl clonase or 1 µl H2O was added. After mixing by pipetting up and down, the 

reaction was incubated for one hour at 25°C. 0.5 µl Proteinase K solution was added 

to each sample, followed by an additional incubation for 10 minutes at 37°C to 

terminate the reaction. 
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5.2.1.5 RNA extraction and cDNA synthesis 

Cells were harvested in 500 µl Qiazol and RNA was extracted using the Direct-zol™ 

RNA MiniPrep Kit according to the manufacturer’s instructions. Quality of RNA was 

assessed by agarose gelelectrophoresis and measurement with a NanoDrop. cDNA 

was transcribed from 1 µg RNA with the High Capacity cDNA Reverse Transcription 

Kit according to the manufacturer’s instructions. 

5.2.1.6 TaqMan® assay 

For TaqMan® assays, the following mix was prepared: 12.5 µl TaqMan® Universal 

Mastermix II + 1.25 µl TaqMan® probe + 2 µl 25 ng/µl cDNA + 8 µl H2O. Cycling 

conditions: 95°C for 15 sec and 60°C for 1 min for 40 cycles. Analysis of the results 

was done by means of SDS software. 

5.2.1.7 DNA sequencing 

300 ng DNA were mixed with 2.25 µl sequencing buffer, 0.25 µl BigDye® Terminator 

and 2 pmol primer. The reaction was filled up with H2O to 10 µl. DNA was denatured 

for 1 min at 96°C. 40 cycles with the following conditions followed: 10 s, 96°C; 5 s, 

55°C; 4 min, 60°C. For the further procedure samples were given to the Cologne 

Center for Genomics (CCG), University of Cologne, Germany. Sequencings were 

analyzed by means of FinchTV. 

5.2.1.8 Dual-luciferase® reporter assay 

40.000 HEK293T cells were seeded into one well of a flat bottom 96-well plate in the 

evening. Next morning, cells were transfected using Lipofectamine® 2000. Therefore, 

mastermix 1 was prepared as follows: 80 µl Opti-MEM® was mixed with 

150 ng Phb2 psiCHECK™ Dest LR (modified from Promega’s psiCHECK™-2) and 

150 ng shRNA pcDNA™ 6.2-GW/emGFP-miR/eco31 (modified from Invitrogen’s 

pcDNA™ 6.2-GW/emGFP-miR). For mastermix 2, 80 µl Opti-MEM® was mixed with 

0.75 µl Lipofectamine® 2000 and incubated for five minutes. 80 µl of mastermix 1 was 

mixed with 80 µl mastermix 2 and incubated for 20 minutes. 50 µl of this mix was 

added to one well of the 96-well plate with HEK293T cells. Every transfection was 

done in triplicates. The Dual-luciferase® reporter assay was performed according to 

the manufacturer’s instructions by measuring firefly luciferase activity and Renilla 

luciferase activity with a Mithras LB 940 Microplate Reader. 
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5.2.2 Bacteria 

5.2.2.1 Chemical transformation of E.coli 

5 µl ligation product or 2 µl recombination product were mixed with 50 µl E.coli and 

incubated on ice for 30 minutes. After heat shock for 45 s at 42°C the bacteria were 

incubated on ice for additional two minutes. 350 µl SOC medium was added and the 

mixture placed on a 37°C-shaker for one hour (30°C for lentiviral constructs). 

Afterwards, 80 µl bacteria suspension was streaked out on LB plates including the 

respective antibiotics. The plates were dried for 15 minutes at RT and incubated 

overnight at 37°C (30°C for lentiviral constructs). Next day colonies were picked into 

LB medium including the respective antibiotics. Bacterial cultures were grown in a 

37°C-shaker (30°C for lentiviral constructs) overnight. 

5.2.2.2 Isolation of plasmid DNA and diagnostic digest 

DNA was isolated out of bacteria with GeneJet™ Plasmid Mini-Prep Kit or 

NucleoBond® Xtra Midi Kit according to the manufacturer’s instructions. 

Viral DNA constructs were filtered with a 0.22 µm syringe filter after elution. 

0.5 µg DNA was used for a diagnostic digestion with the appropriate enzymes. 

 

5.2.3 Cell culture 

5.2.3.1 Cells 

Conditionally immortalized mouse podocytes were generated as previously described 

[106,107] and cultured in RPMI-1640 media supplemented with 10% FBS, 

10 mM HEPES buffer, 1 mM sodium pyruvate and 5 ng/ml Interferone gamma. 

Differentiation was induced by culturing the cells at 37°C for 14 days on Primaria 

plastic plates (BD Biosciences) in the absence of Interferone gamma. All experiments 

were carried out with differentiated podocytes if not stated otherwise. HEK293T 

(human embryonic kidney cell line 293T) were maintained in DMEM media 

supplemented with 10% FBS. 

5.2.3.2 Freezing and thawing of cells 

For freezing, cells were washed with PBS once before the addition of 1 - 2 mL 

trypsin. After 1 - 5 minutes incubation at 37°C, medium containing 10% FBS was 
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added to stop the trypsin reaction. Cells were pelleted with a 5 minutes centrifugation 

at 200 x g, resuspended in cell freezing solution and transferred to a cryo tube for 

slow freezing. Storage of cells was done at -80°C or - for long-term storage - in liquid 

nitrogen. For thawing, a cryo tube with cells was quickly thawed up and the cell 

suspension transferred to a dish containing the appropriate medium. 

5.2.3.3 Passaging of cells 

Cells were washed once with PBS before the addition of 1 - 2 ml trypsin. After 

1 - 5 minutes incubation at 37°C, medium containing 10% FBS was added to stop the 

trypsin reaction. The desired amount of cell suspension was transferred to a new dish 

and filled up with the appropriate medium. 

5.2.3.4 Doxycycline-treatment of mouse podocytes 

Conditionally immortalized mouse podocytes expressing a Tetracycline repressor 

(pLenti6/TR) and a Tetracycline-inducible shRNA construct (shRNA construct in 

pLenti4/TO/V5-Dest) were differentiated as described under 5.2.3.1. After 10 days of 

differentiation, 2 µg/ml doxycycline was added to the medium and exchanged every 

24 hours. Experiments were performed after 96 hours of doxycycline-treatment. 

5.2.3.5 Transient expression of plasmids in 293T HEK cells 

HEK293T cells were transfected with a standard calcium-phosphate-method. 

Therefore, up to 20 µg plasmid- or vector-DNA were mixed with 500 µl CaCl2. 500 µl 

2x HEBS were added dropwise. The mixture was given to the cell media and after 

eight hours the medium was changed. Transfection efficiency (controlled by using a 

GFP plasmid) was controlled after 24 hours under the microscope. 

5.2.3.6 Virus production 

For pLenti6/TR or pLenti4/TO/V5-Dest virus production a mix of three helper 

plasmids was prepared as follows: 2.5 µg pRSV, 3.5 µg pMD2 VSV-G, 

6.5 µg pMDL g/p. 50 µl CaCl2 and 10 µg pLenti6/TR or pLenti4/TO/V5-Dest were 

mixed. After addition of 450 µl CaCl2 500 µl 2x HEBS were added dropwise. The 

mixture was given to the cell media of a 10 cm HEK293T dish. The reaction was 

stopped after eight hours by exchanging the medium. Virus production lasted 

72 hours. Then media were centrifuged for five minutes at 200 x g and the 
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supernatant was filtered through a 0.45 µm syringe filter. The virus supernatant was 

stored at 4°C until it was used for infection of cells. 

5.2.3.7 Infection of cells with virus and selection 

Mouse podocytes on one 10 cm cell dish were incubated with 5 ml medium, 

5 ml virus supernatant and 1x Polybrene. The medium was changed after 48 hours 

and infection efficiency was controlled under the microscope. Cells were treated for 

selection with the appropriate antibiotics until all cells on a non-infected control dish 

were dead. 

5.2.3.8 Immunofluorescence on cells 

For immunofluorescence staining of mouse podocytes, the cells were seeded on 

coverslips and differentiated at 37°C for 14 days. The cells were fixed in 4% 

paraformaldehyde for 15 minutes, washed three times with staining PBS before 

incubation in blocking solution and subsequently incubated with primary antibody 

overnight at 4°C in a humid chamber. After extensive washing with staining PBS an 

appropriate fluorophore-labeled secondary antibody was applied for one hour at RT 

in the dark. After three additional washing steps mounting was done in Prolong Gold 

antifade with DAPI. Images were acquired with an Axiovert 200 M microscope/EC 

Plan-Neofluar ×63/1.30 water immersion objective. Images were further processed 

using ImageJ/Fiji software version 1.46 and Adobe Photoshop CS4 version 11.0.0.0. 

 

5.2.4 Protein biochemistry  

5.2.4.1 Protein extraction 

HEK293T cells were detached from a 10 cm dish with PBS and centrifuged for 

5 minutes at 200 x g. The cell pellet was resuspended in 1 ml modified RIPA buffer 

including 44 µg/µl PMSF and 2 mM sodium orthovanadate as protease/phosphatase 

inhibitors. Mouse podocytes were scraped directly into 100 µl IP buffer including 

44 µg/µl PMSF and 2 mM Na3VO4 as protease/phosphatase inhibitors. The cell 

suspension was placed on ice for 15 minutes and vortexed every 3 - 5 minutes. A 

centrifugation at 4°C and 15.000 g for 15 minutes followed. The supernatant was 

transferred to a new vial and stored at -20°C. 
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5.2.4.2 Protein measurement 

To determine protein concentration the Pierce™ BCA protein assay kit was used. 5 µl 

of each sample or BSA standard (BSA standard prepared according to 

manufacturer’s instructions) were pipetted into one well of a flat-bottom 96-well plate. 

A mastermix of 150 µl BCA reagent A and 3 µl BCA reagent B was prepared and 

150 µl of this mastermix was added to each well of the flat-bottom 96-well plate 

containing either sample or BSA standard. The 96-well was incubated for 15 minutes 

at 37°C prior to measuring the absorption at 560 nm using a Mithras LB 940 

Microplate Reader. Every sample or BSA standard was measured in duplicates. 

5.2.4.3 Co-immunoprecipitation 

HEK293T cells were transiently transfected using the calcium phosphate-method 

described under 5.2.3.5. One day after transfection cells were harvested in 10 ml 

1x PBS and transferred to a 15 ml conical tube. Cells were pelleted by centrifugation 

at 200 x g for 1 minute at 4°C. The supernatant was discarded and the cell pellet 

resuspended in 1 ml modified RIPA buffer. The cell suspension was transferred to a 

new 1.5 ml vial and incubated on ice for 15 minutes prior to centrifugation at 

20,000 x g for 15 min at 4°C. 24 µl of the supernatant was preserved, mixed with 6 µl 

5× Laemmli, cooked for five minutes at 95°C and stored at -20°C for subsequent 

western blot analysis (i.e. lysate). The remaining supernatant was transferred to a 

new 1.5 ml vial and incubated with either 30 µl anti-FLAG(M2) antibody covalently 

coupled to agarose beads or with 1 µg of V5 antibody and 30 µl protein-G-sepharose 

beads, each for one hour at 4°C on an overhead shaker. After three washing steps 

(centrifugation at 1,000 x g for 1 minute at 4°C) with modified RIPA buffer, 30 µl of 

2x Laemmli was applied to the samples before incubation of the samples for 

5 minutes at 95°C. Samples were stored at -20°C. 

For endogenous co-immunoprecipitation, glomeruli were isolated as described under 

5.2.7.10. Isolated glomeruli were homogenized in 2 ml modified RIPA buffer with 

20 strokes in a dounce glass-glass homogenizer before sonication on ice (1.5 min, 

0.5 sec pulses). The suspension was transferred to a 2 ml tube and incubated on ice 

for 15 minutes prior to centrifugation at 20,000 x g for 15 min at 4°C. 24 µl of the 

supernatant was preserved, mixed with 6 µl 5× Laemmli, cooked for five minutes at 

95°C and stored at -20°C for subsequent western blot analysis (i.e. lysate). The 

remaining supernatant was split into two tubes and incubated with either 1 µg 
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podocin antibody (Sigma, host species: rabbit) and 30 µl of protein-A-sepharose 

beads or with 1 µg of Flag antibody (Sigma, host species: rabbit) and 30 µl of protein-

A-sepharose beads. After three washing steps (centrifugation at 1,000 x g for 1 

minute at 4°C) with modified RIPA buffer, 30 µl of 2x Laemmli was applied to the 

samples before incubation of the samples for 5 minutes at 95°C. Samples were 

stored at -20°C. 

5.2.4.4 SDS-polyacrylamide-gelelectrophoresis 

Each gel cassette was prepared by mixing 6 ml of resolving buffer with 

0.15% TEMED and 0.1% APS and adding a top layer of isopropanol. After 

hardening, isopropanol was removed and 1.7 ml stacking buffer mixed with 

0.15% TEMED and 0.1% APS was filled in. A 10-well or 15-well comb was inserted 

and the stacking gel was allowed to solidify. Gels were assembled into the XCell 

SureLock™ Mini-Cell electrophoresis system as per manufacturer’s instructions and 

the chamber was filled with running buffer so that the interior space between the gels 

was completely full and the exterior part was filled to a depth of 2 cm. Samples were 

loaded using a 50 µl Hamilton syringe which was cleaned four times with running 

buffer between each sample. 3 µl of Page-ruler Plus protein ladder were loaded on 

one well. Samples were diluted with Laemmli buffer to a final concentration of 

1x Laemmli and boiled for five minutes at 95°C before they were loaded onto the 

SDS-polyacrylamide-gel. Electrophoresis was done using a Powerpac 3000 with 

70 V for 30 minutes, followed by 1 hour 45 minutes at 25 mA per gel. 

5.2.4.5 Western Blot 

For Western Blot analysis the semi-dry method was used. Therefore, two squares of 

blotting paper as well as the polyacrylamide-gel were placed in transfer buffer. A 

Millipore Immobilon-P polyvinylidene difluoride (PVDF) membrane was soaked in 

methanol for one minute and then placed in transfer buffer as well. The blot was 

arranged as follows: one square of blotting paper, membrane, polyacrylamide-gel, 

one square of blotting paper. The protein transfer was achieved with a constant 

current of 12 V for 50 - 70 minutes. After transfer, the membrane was stained with 

Ponceau S to control for efficiency of the transfer. The membrane was incubated in 

5% BSA for one hour at RT, washed three times for five minutes with wash buffer 

followed by an overnight incubation with the primary antibody diluted in wash buffer 
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(antibody dilutions see section 5.1.6). On the next day the membrane was washed 

three times for five minutes with wash buffer and incubated for 30 minutes with the 

appropriate HRP-coupled secondary antibody diluted in wash buffer. Additonal 

three washing steps followed before either ECL detection solution or SuperSignal 

West Femto Chemiluminescent Substrate was applied to the membrane. Images 

were taken with FUSION-Solo™. 

5.2.4.6 Colloidal coomassie staining 

To test for albuminuria, 1 µl of urine was mixed with 4 µl of distilled water and 5 µl 

2x Laemmli. The mixture was incubated for five minutes at 95°C before separation on 

a SDS-polyacrylamid-gel (see section 5.2.4.4). The gel was incubated in 30 ml fixing 

solution for 30 minutes at RT on a shaker. Staining was done by applying 50 ml 

colloidal coomassie staining solution and incubation on a shaker at RT overnight. The 

gel was destained with distilled water before taking an image with a GS-800™ 

calibrated densitometer. 

 

5.2.5 Antibody production 

Antibody production was done in collaboration with Bernhard Schermer, Nephrolab 

Cologne, Germany. 

5.2.5.1 Purification of recombinant protein 

1 µl mPHB1 or mPHB2 pET30b Z Be (modified from Novagen’s pET30b(+)) was 

transformed into 10 µl chemo-competent BL21 bacteria as described under 5.2.2.1. 

100 µl of transformed bacteria were streaked out on an agar plate containing 

20 µg/ml kanamycin. Colonies were grown overnight at 37°C. Single colonies were 

picked into 3 ml 2x YTA containing 20 µg/ml kanamycin and incubated on a shaker at 

37°C for five hours. Two 1.5 ml tubes were filled with 1 ml bacteria culture each and 

IPTG was added to a final concentration of 1 mM into one of the two tubes. With a 

needle holes were poked into the lid of the tubes before shaking them for two hours 

at 37°C. Bacteria were pelleted by centrifugation at 16.000 x g for one minute at RT. 

Supernatant was discarded, the pellet resuspended in 100 µl 2x Laemmli and 

incubated for five minutes at 95°C. After separation of the samples in a SDS-

polyacrylamide-gel (see section 5.2.4.4) the gel was stained with colloidal coomassie 
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(see section 5.2.4.6) to identify well inducible clones. The remaining 1 ml bacteria 

culture of a well inducible clone was added to 100 ml 2x YTA containing 

20 µg/ml kanamycin and incubated overnight on a shaker at 37°C. 80 ml of this 

overnight culture were added to 1 l 2x YTA containing 20 µg/ml kanamycin and 

incubated on a shaker at 37°C until OD600 = 0.6 - 0.8 was obtained. IPTG was 

added in a final concentration of 1 mM and the culture incubated on a shaker at 30°C 

for additional five hours. Bacteria were pelleted with a centrifugation at 4000 x g for 

15 minutes at 4°C. Supernatant was discarded, the pellet resuspended in 35 ml His-

buffer and transferred to a 15 ml conical tube. 1 µg/ml DNase and 

200 µg/ml Lysozyme were added and the mixture was incubated on ice for 15 

minutes. 1 mM PMSF was added and the bacteria lysed by sonication (7 x 10% 

cycles for 30 seconds with 70% power; repeated 15 times). Lysis efficiency was 

checked by transferring 1 ml of lysate to a new 1.5 ml tube and centrifugation at 

20,000 x g for 10 minutes at 4°C. If the supernatant was yellow and cloudy the 

protocol was followed further, if it was white and clear another two repeats of 

sonication were applied and lysis efficiency was checked again. If lysis efficiency was 

ok, 1 ml of the supernatant (now called “crude lysate”) was transferred to a new 

1.5 ml tube and 30 µl Ni-NTA agarose was added. After incubation on an overhead 

shaker for 30 minutes at RT, the agarose was pelleted by centrifugation at 2,000 x g 

for two minutes at 4°C. The supernatant was transferred to a new 1.5 ml tube 

(= “flow-through”) while the agarose was washed three times with His-buffer. 

2x Laemmli was added to crude lysate, flow-through and pelleted Ni-NTA agarose in 

an appropriate amount to generate 1x Laemmli solutions. After incubation at 95°C for 

five minutes all samples and three different BSA standards (1 µg, 5 µg, 10 µg) were 

separated on a SDS-polyacrylamide-gel (see section 5.2.4.4) and stained with 

colloidal coomassie (see section 5.2.4.6). This gel was used to estimate the amount 

of protein in 1 ml of crude lysate. In parallel, the rest of the lysed bacteria were 

pelleted by centrifugation at 50,000 x g for 45 minutes at 4°C. The supernatant 

(=”crude lysate”) was filtered through a 0.45 µm filter into a new 50 ml conical tube. 

Depending on the previous estimation of protein concentration, 1 ml Ni-NTA agarose 

was added for each 10 mg protein in the crude lysate. This mixture was incubated on 

an overhead shaker overnight at 4°C. The next morning, a polypropylene column 

was moistened with 10 ml His-buffer. The mixture of crude lysate and Ni-NTA 
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agarose was applied to this column and the column washed with 50 ml His-buffer. 

Elution of His-tagged proteins from the Ni-NTA agarose was done by adding 

100 µl elution buffer and collecting the eluate in a new 1.5 ml tube. The elution step 

was done five times with fresh elution buffer. To estimate protein concentration 

5 µl of each eluate fraction was mixed with 5 µl 2x Laemmli, incubated for 

five minutes at 95°C and separated together with three BSA standards (1 µg, 5 µg, 

10 µg) on a SDS-polyacrylamide-gel (see section 5.2.4.4). The gel was stained with 

colloidal coomassie (see section 5.2.4.6). 

5.2.5.2 Immunization of mice and hybridoma generation 

80 µg of His-tagged PHB1 or His-tagged PHB2 were mixed with either 200 µl 

complete Freund’s adjuvant or 200 µl incomplete Freund’s adjuvant and 400 µl sterile 

water. The mixture was incubated in an ultrasound bath for three minutes and then 

vortexed for 20 minutes before uptake in a 1 ml syringe. A Balb/c mouse was i.m. 

injected every second day (four times in total) with 100 µl of this mixture containing 

either His-tagged PHB1 or His-tagged PHB2 (first injection with complete Freund’s 

adjuvant, next three injections with incomplete Freund’s adjuvant). Fusion with 

myeloma cells resulted in the generation of more than 40 prohibitin-1- and 

prohibitin-2-specific hybridoma cell lines producing monoclonal antibodies that were 

subcloned. 

5.2.5.3 ELISA 

Positive clones were identified by ELISA. Briefly, 200 ng His-tagged prohibitin-1, 

prohibitin-2 or a control protein were coupled to the wells of a Nunc immunosorb 

8-strip by incubation overnight at 4°C. After three washing steps with PBS-Tween the 

strips were blocked with 1% BSA in 1x PBS for one hour at RT. Three washing steps 

with PBS-Tween followed. 100 µl hybridoma supernatant was applied to the strips 

and incubated for one hour at RT. After three washing steps with PBS-Tween, the 

strips were incubated with a HRP-conjugated mouse antibody (dilution: 1:5000 in 

1x PBS) for one hour at RT in the dark. Three washing steps with PBS-Tween 

followed. 100 µl developer solution was applied to the strips and incubated for 

15 minutes at RT in the dark (blue color). The reaction was terminated by adding 

50 µl 2 N hydrochloric acid (yellow color). Absorption at 450 nm was measured with a 

Mithras LB 940 Microplate Reader. 
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5.2.6 Worm experiments 

All worm experiments were done in collaboration with Sibylle Brinkkötter and Puneet 

Bharill, Nephrolab Cologne, Germany. 

5.2.6.1 Worm strains 

TU3568 [sid-1(pk3321) him-5(e1490) V; lin-15B(n744) X; uIs71 [pCFJ90(myo-

2p::mCherry) + mec-18p::sid-1] were used, a kind gift of Prof. Martin Chalfie, 

Columbia University, New York [108]. Due to an integrated array containing mec-

18p::sid-1 in a sid-1 mutant background it provides efficient RNA interference only in 

touch receptor neurons. For microinjection of the mec-17p::phb-2::gfp transgene 

WTN2 animals were used [109]. All strains were cultured at 20°C. 

5.2.6.2 RNA interference 

RNA interference (RNAi) was performed by feeding as it is described previously 

[110,111] using the RNAi sensitized background of TU3568 worms. RNAi clones 

corresponding to the target genes phb-1, phb-2, mec-2 and mev-1 were used for 

knockdown experiments. Empty RNAi vector L4440 was used as control RNAi, 

mec-2 as positive control and mev-1, encoding another mitochondrial protein as 

control for unspecific RNAi effects based on an impairment of the mitochondrial 

respiratory chain. All clones except phb-1 were picked from an RNAi feeding library 

constructed by J. Ahringer’s laboratory at the The Wellcome CRC Institute, University 

of Cambridge, Cambridge, England [111]. To generate a phb-1 RNAi clone, a 0.8-kb 

fragment was PCR amplified using N2 genomic DNA as template and the primer pair 

ce phb-1 fp and rp as published previously [112]. A 0.656-kb NcoI/SacI fragment was 

cloned into the likewise digested L4440 vector. The construct was electroporated into 

HT115 bacteria. Bacteria containing the different knockdown plasmids were seeded 

onto nematode growth medium - isopropyl-thio-β-d-galactoside (NGM–IPTG) plates. 

Plates were kept 16 hours at RT for generation of dsRNA.  

Worm eggs were harvested by bleaching gravid adult animals in 0.5 N NaOH and 

2 - 4% NaOCl. The eggs were washed in M9 buffer, placed on the seeded plates and 

grown at 20°C. Young adult hermaphrodites were tested for touch sensation as 

described under 5.2.6.3. 
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5.2.6.3 Touch assay 

Animals were tested for response to gentle touch as described previously [113]. 

Briefly, each animal was touched 10 times by a thin hair at the anterior part of the 

body. Stopping or backward movements were scored and shown as touch response 

out of ten touches. The data was generated in three independent experiments using 

>= 15 worms each time for each data point. Statistical evaluation was done as 

described under 5.2.7.11. 

5.2.6.4 Microinjection 

For germline injection, the phb-2::gfp plasmid was prepared via multisite gateway 

cloning. Briefly, the promoter of mec-17 (mec-17p) was cloned from a C. elegans 

library and recombined into pDONR P4-P1R according to the manufacturer’s 

protocol. phb-2 was cloned without stop codon from the same library and recombined 

into pDONR 221 according to the manufacturer’s protocol. Both, mec-17p and phb-2 

were recombined from the pEntr plasmids into pDest MB14 to generate a plasmid 

expressing PHB-2::GFP under control of the mec-17 promoter. 

Lines containing extrachromosomal arrays were generated by injecting the phb-2::gfp 

plasmid at a concentration of 50 ng/ul mixed with pmyo-2::mCherry as a co-injection 

marker at the concentration of 5 ng/ul into WTN2. Single positive transgenic 

F1 worms were moved onto NGM plates and allowed to proliferate to form different 

lines.  

Microinjection was performed in the lab of A. Antebi, MPI for Biology of Ageing, 

Cologne, Germany. 

5.2.6.5 Immunofluorescence on worms 

Antibody stainings on mec-17p::phb-2::gfp transgenic worms were performed using a 

modified Finney-Ruvkun protocol [114,115]. 1.25 ml fixing solution was added to a 

tube with worms and kept on dry ice for 2 - 3 hours. The worms were thawed again 

on ice, centrifuged at 400 x g for two minutes and the supernatant was discarded. 

The worms were washed with Tris-Triton-Buffer (TTB) once. After resuspension in 

1% β-mercaptoethanol/TTB the worms were incubated at 37°C for two hours, 

centrifuged at 400 x g for two minutes and the supernatant was discarded. Worms 

were first resuspended in 1x borate buffer, the buffer was discarded and replaced by 

10 mM DTT in 1x borate buffer. After gentle shaking for 15 minutes the buffer was 
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discarded and the worms washed with 1x borate buffer once. Worms were shaken for 

15 minutes in 0.3% H2O2/1x borate buffer and washed again with 1x borate buffer. 

Next, the worms were incubated in antibody buffer B for 15 minutes. The specimen 

finally was incubated with a rabbit antibody detecting the N-terminus of MEC-2 (kind 

gift of Prof. Martin Chalfie; dilution 1:200 in antibody buffer A) for two hours at RT. 

Several washing steps with antibody buffer B were followed by incubation with a 

Cy3-labeled secondary antibody diluted in antibody buffer A for two hours at RT (for 

dilution see section 5.1.6). After extensive washing with antibody buffer B the worms 

were mounted on slides with ProLong Gold antifade reagent with DAPI. Images were 

captured with an LSM 710/Axiobserver Z1 confocal microscope x40/1.1 water 

immersion objective operated by ZEN 2009 software. Images were further processed 

using ImageJ/Fiji software version 1.46 and Adobe Photoshop CS4 version 11.0.0.0. 

 

5.2.7 Mouse experiments 

5.2.7.1 Mouse strains and animal care 

Mice in which exons 3 and 4 of the Phb2 gene are flanked by two loxP sequences 

[53] were mated to either NPHS2.Cre mice [116] or Tamoxifen-inducible 

podocin-iCreER(T2) [117] to generate podocyte-specific Phb2 knockout mice 

Phb2 flox/flox;NPHS2.Cre (Phb2pko) or tamoxifen-inducible podocyte-specific Phb2 

knockout mice Phb2 flox/flox;podocin-iCreER(T2) (podocin-iCreER(T2) Phb2pko). The 

animals were backcrossed onto the C57/Bl6 background for at least 10 generations. 

Mice from both genders carrying the conventional NPHS2.cre transgene were 

included while only male mice of the Phb2 flox/flox;podocin-iCre(ER(T2) were used. 

Mice were housed according to the standardized specific pathogen-free conditions in 

the University of Cologne animal facility. The Animal Care Committee of the 

University of Cologne reviewed and approved the experimental protocol. The mice 

were sacrificed once they lost 15 - 20% of their maximal body weight following 

federal animal care regulations. Renal tissue was embedded in OCT compound and 

frozen at -80°C or fixed in 4% neutral buffered formalin for 24 hours before paraffin-

embedding. 
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5.2.7.2 Serum analysis 

Blood samples were collected in the fifth week of life with a 1 ml syringe and a 

27 G cannula (both washed with heparin) from anesthetized mice. Blood samples 

were centrifuged at 3000 x g for 10 minutes at 4°C, supernatant (= serum) 

transferred to a new tube and given to the Institute for Clinical Chemistry of the 

University Hospital of Cologne, Germany, for quantification of serum urea and 

creatinine. 

5.2.7.3 Extraction of DNA from mouse tissue 

To obtain DNA from mouse tissue (ear tag or tail cut) for genotyping purposes, the 

tissue was mixed with 100 µl base solution. After incubation for 30 minutes at 95°C, 

100 µl neutralization solution was added and the mixture stored at 4°C. 

5.2.7.4 Polymerase-chain reaction (PCR) for genotyping purposes 

For genotyping-PCRs Promega’s GoTaq® Flexi DNA Polymerase was used 

according to the manufacturer’s instructions. For sequences of primers see section 

5.1.4, Table 5. For Phb2 genotyping PCR the following mix was prepared: 5.5 µl H2O 

+ 12.5 µl 1x RedTaq Mix + 1 µl 10 µM Phb2 fp + 0.5 µl 10 µM Phb2 rp1 + 

0.5 µl 10 µM Phb2 rp2 + 5 µl template. Cycling conditions for Phb2 genotyping PCR: 

1.) 2 minutes at 95°C; 2.) 30 sec at 95°C; 3.) 30 sec at 62°C; 4.) 45 sec at 72°C; 

5.) repeat step 2.) - 4.) 39 times; 6.) 1 min 30 sec at 72°C. Size of expected 

fragments: wildtype = 378 bp, floxed allele = 506 bp. 

For Insr genotyping PCR the following mix was prepared: 13.6 µl H2O + 

5 µl 5x Green Flexi buffer + 1.5 µl 25 mM MgCl2 + 0.2 µl 10 mM dNTPs + 

1 µl 10 µM Insr fp + 1 µl 10 µM Insr rp + 0.2 µl 5 U/µl GoTaq® + 2.5 µl template. 

Cycling conditions for Insr genotyping PCR: 1.) 2 minutes at 95°C; 2.) 30 sec at 

95°C; 3.) 45 sec at 58°C; 4.) 45 sec at 72°C; 5.) repeat step 2.) - 4.) 29 times; 

6.) 1 min 30 sec at 72°C. Size of expected fragments: wildtype = 200 bp, floxed 

allele = 250 bp. 

For Igf1r genotyping PCR the following mix was prepared: 13.6 µl H2O + 

5 µl 5x Green Flexi buffer + 1.5 µl 25 mM MgCl2 + 0.2 µl 10 mM dNTPs + 1 µl 10 µM 

Igf1r fp + 1 µl 10 µM Igf1r rp + 0.2 µl 5 U/µl GoTaq® + 2.5 µl template. Cycling 

conditions for Igf1r genotyping PCR: 1.) 2 minutes at 95°C; 2.) 30 sec at 95°C; 

3.) 30 sec at 54°C; 4.) 40 sec at 72°C; 5.) repeat step 2.) - 4.) 24 times; 
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6.) 1 min 30 sec at 72°C. Size of expected fragments: wildtype = 300 bp, floxed 

allele = 350 bp. 

For Podocin-Cre genotyping PCR the following mix was prepared: 10.6 µl H2O + 

5 µl 5x Green Flexi buffer + 1.5 µl 25 mM MgCl2 + 0.2 µl 10 mM dNTPs + 

1.25 µl 10 µM β-globin fp + 1.25 µl 10 µM β-globin rp + 1.25 µl 10 µM Cre fp + 

1.25 µl 10 µM Cre rp +0.2 µl 5 U/µl GoTaq® + 2.5 µl template. Cycling conditions for 

Podocin:Cre genotyping PCR: 1.) 2 minutes at 95°C; 2.) 45 sec at 95°C; 3.) 60 sec at 

59°C; 4.) 45 sec at 72°C; 5.) repeat step 2.) - 4.) 29 times; 6.) 1 min 30 sec at 72°C. 

Size of expected fragments: internal control (β-globin band)  = 494 bp, Cre 

allele = 269 bp. 

For Podocin-iCreER(T2) genotyping PCR the following mix was prepared: 

11.6 µl H2O + 5 µl 5x Green Flexi buffer + 1.5 µl 25 mM MgCl2 + 0.2 µl 10 mM dNTPs 

+ 1 µl 10 µM Dicer fp + 1 µl 10 µM Dicer rp + 1 µl 10 µM iCreER(T2) fp + 

1 µl 10 µM iCreER(T2) rp + 0.2 µl 5 U/µl GoTaq® + 2.5 µl template. Cycling 

conditions for Podocin-iCreER(T2) genotyping PCR: 1.) 2 minutes at 95°C; 2.) 45 sec 

at 95°C; 3.) 30 sec at 57°C; 4.) 45 sec at 72°C; 5.) repeat step 2.) - 4.) 34 times; 

6.) 1 min 30 sec at 72°C. Size of expected fragments: internal control (β-globin band) 

 = 351 bp, iCreER(T2) allele = 500 bp. 

5.2.7.5 Albumin ELISA 

Albumin concentration in mouse urine was measured by using a mouse albumin 

ELISA kit according to the manufacturer’s instructions. 

5.2.7.6 Creatinine Assay 

Creatinine concentration in mouse urine was measured by using a creatinine 

(urinary) assay kit according to the manufacturer’s instructions. 

5.2.7.7 PAS staining 

Paraffin sections were deparaffinized in Histo-Clear (Xylene-like) and rehydrated in 

graded ethanol. After five minutes incubation in distilled water the sections were 

incubated in 0.9% periodic acid for 10 minutes. After washing for one minute in 

distilled water the sections were incubated for 10 minutes in Schiff’s reagent. An 

additional washing step for two minutes in tap water followed before the sections 

were incubated in Mayer’s hematoxylin solution for 10 minutes. After eight minutes in 
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tap water the sections were dehydrated in graded ethanol and Histo-Clear. Mounting 

was done with Histomount. 

5.2.7.8 Specific immunohistochemistry 

Indirect immunoperoxidase staining was performed on formalin-fixed tissue. 4 μm 

thin tissue sections were deparaffinized in Histo-Clear and rehydrated in graded 

ethanol. Endogenous peroxidase activity was blocked with 3% hydrogen peroxidase 

in methanol for 15 minutes. After five minutes incubation in tap water the sections 

were either treated with Proteinase K solution 15 minutes (for 

podocin-immunohistochemistry (IHC)), cooked for 10 minutes in 10 mM citrate buffer, 

pH 6 (for cleaved caspase-3- IHC) or cooked for 10 minutes in Tris-EDTA-Tween (for 

phosphorylated S6 ribosomal protein- and WT-1-IHC) followed by three washing 

steps for three minutes in TBS. Blocking was done for 20 minutes in 1% BSA in TBS 

followed by three washing steps for three minutes in TBS. Solution A was applied for 

15 minutes and then the sections were incubated with solution B for 15 minutes. After 

three washing steps for three minutes in TBS the sections were incubated overnight 

at 4°C with primary antibody diluted in TBS (for dilutions see section 5.1.6). The 

sections were washed repeatedly in TBS before incubation for one hour at RT with 

biotinylated mouse anti-rabbit secondary antibody diluted in 1% BSA in TBS. The 

ABC kit was used according to the manufacturer’s instructions for signal amplification 

and 3,3′-diaminobenzamidine (DAB) was used as a chromogen. Sections were 

counterstained with hematoxylin for 10 seconds and washed for three minutes under 

running tap water. After dehydration in graded ethanol and Histo-Clear the sections 

were covered with Histomount. In the procedure of specific immunohistochemistry for 

phosphorylated S6 ribosomal protein washing was always done with TBS-Tween and 

blocking with 1% BSA in TBS was skipped. 

Images were acquired with an Axiovert 200 M microscope/EC Plan-Neofluar x40/1.3 

oil immersion or ×63/1.20 water immersion objective equipped with a charge-

coupled-device camera. Images were further processed using ImageJ/Fiji 

softwareersion 1.46j. 

Specific immunohistochemistry for cleaved caspase-3 was done in collaboration with 

Andreas Linkermann, Christian-Albrechts University, Kiel, Germany. 
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5.2.7.9 Electron microscopy and immunogold labeling 

Mice were perfused with electron microscopy fixation buffer and the kidneys post-

fixed in the same buffer for two weeks at 4°C. Sample osmication with 1% osmium 

tetroxid in 0.1 M cacodylate and dehydration in a graduated ethanol series as well as 

infiltration and flat embedding using the epoxy embedding medium kit was done 

according to the manufacturer’s instructions. Thin (30 nm) cross sections were taken 

on an Ultracut UCT ultramicrotome. The sections were stained with 1.5% aqueous 

uranylic acetate and examined with a Zeiss EM 902 electron microscope. For 

immunogold labeling, fixed samples of mouse or human kidneys were embedded in 

acrylic Lowicryl® K4M resin according to the manufacturer’s instructions and 

polymerized in gelatin capsules at -35°C under UV light for 24 hours followed by 

incubation at RT under UV light for 48 hours. Ultrathin sections (80 nm) were 

collected on Carbon coated nickel grids and quenched in 1% BSA/0.1 M Tris for 

10 minutes. For mouse sections the antibody was diluted 1:5 in EM antibody buffer, 

for human sections 1:10 in electron microscopy antibody buffer. Sections were 

incubated with the antibody dilution for two hours at RT, washed three times for 

five minutes in 0.1 M Tris before incubation with 15 nm of gold-labeled goat 

anti-rabbit IgG (diluted 1:10 in electron microscopy antibody buffer) for one hour at 

RT. The sections were washed once in 0.1 M Tris and thrice in ddH2O. After staining 

with 2% aqueous uranyl acetate for 14 minutes and Reynold’s lead citrate for 

10 minutes the sections were examined with a JEOL JEM 1200 transmission electron 

microscope. Images were further processed with Adobe Photoshop CS4 version 

11.0.0.0. 

Electron microscopy was done in collaboration with Prof. Bloch, German Sport 

University Cologne, Germany. Immunogold labeling was done in collaboration with 

Prof. Kerjaschki, Medical University of Vienna, Austria. 

5.2.7.10 Glomeruli isolation 

For glomeruli isolation, the mouse was sacrificed and both kidneys together with the 

aorta were taken out and placed in a 10 cm dish with 1x HBSS. The aorta was cut 

open from the dorsal side to get access to the renal arteries. 100 µl tosylactivated 

Dynabeads M-450 were mixed with 10 ml 1x HBSS and 1 ml of this mixture was 

injected into each kidney with a 1 ml syringe and 27 G cannula via the renal artery. 

Kidneys were decapsulated and transferred to a 2 cm dish. They were cut into pieces 
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with a scalpel and digested with 2 ml of 1 mg/ml Collagenase in 1x HBSS for 

20 minutes on a shaker at 37°C. At first, this mixture was actively pressed through a 

100 µm cell strainer into a 50 ml conical tube and the cell strainer was washed with 

10 ml 1x HBSS. Then the solution was passively filtered through a new 100 µm cell 

strainer into a fresh 50 ml conical tube and the cell strainer was again washed with 

10 ml 1x HBSS. After centrifugation at 300 x g for five minutes at 4°C the supernatant 

was discarded and the pellet resuspended in 2 ml 1x HBSS. The glomeruli were 

isolated by consecutive washing steps with a magnetic bead separator. Purity and 

quality of glomeruli was checked under the microscope. 

5.2.7.11 Tamoxifen diet 

Eight weeks old animals were exposed to a tamoxifen-enriched diet (400mg/kg, 

Harlan Laboratories) ad libitum for six weeks. Based on a daily intake of 5 g of food 

per mouse, this corresponded to an oral dose of 2 mg/d tamoxifen per mouse. To 

exclude any potential side effects in females only male mice were used. 

5.2.7.12 Rapamycin injection 

For rapamycin injections the protocol published by Zeng et al.[118] was used with 

some modifications. Animals received daily i.p. injections of either rapamycin solution 

or vehicle solution starting two weeks after birth until they were sacrificed because of 

weight loss or sickness. Phb2pko were injected with either 3 µg rapamycin solution 

per g body weight (i.e. 10 µl 0.3 mg/ml rapamycin solution per g body weight) or the 

same amount of vehicle solution (i.e. 10 µl vehicle solution per g body weight). 

Phb2fl/fl mice received 3 µg rapamycin solution per g body weight (i.e. 10 µl 0.3 mg/ml 

rapamycin solution per g body weight). The rapamycin solution was always freshly 

prepared directly before injection from the rapamycin stock solution, which was 

stored at -20°C. 

 

5.2.8 Human tissue 

5.2.8.1 Immunofluorescence on human tissue 

Human tissue samples were obtained from tumor nephrectomy samples after 

obtaining written consent as approved by the local ethic committee. The tissue was 

fixed in 4% paraformaldehyde for 15 minutes, washed three times with staining PBS 
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before incubation in blocking solution and subsequently incubated with primary 

antibody overnight at 4°C in a humid chamber. After extensive washing with staining 

PBS an appropriate fluorophore-labeled secondary antibody was applied for 

one hour at RT in the dark. In the meantime, 1 µg podocin-antibody was labeled with 

the Zenon® Tricolor rabbit IgG labeling kit according to the manufacturer’s 

instructions. After three additional washing steps, the tissue was incubated with the 

Zenon-labeled podocin antibody for 60 minutes in the dark. Three additional washing 

steps and a post-fixation with 4% paraformaldehyde for 15 minutes followed. After 

three more washing steps, mounting was done in Prolong Gold antifade with DAPI. 

Images were acquired with an LSM 710/Axioobserver Z1 confocal microscope 

x40/1.1 water immersion objective operated by ZEN 2009 software. Images were 

further processed using ImageJ/Fiji software version 1.46 and Adobe Photoshop CS4 

version 11.0.0.0. 

 

5.2.9 Statistical analysis 

All results are expressed as means ± SEM. Statistical significance was evaluated 

using GraphPad Prism version 4.00c for Macintosh and OASIS (Online Application 

for the Survival Analysis of Lifespan Assays) [119]. Unpaired Student’s t-test was 

applied in most experiments except for survival analysis experiments where a Log 

Rank test [120] was performed. A P-value <0.05 was considered significant. 
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6 Results 

6.1 Loss of PHB2 leads to severe glomerular disease 

6.1.1 Podocyte-specific Phb2-knockout mice (Phb2pko) develop albuminuria 

and die prematurely 

To generate a mouse line for investigation of the function of PHB2 in podocytes 

conditional Phb2 flox/flox mice [53] were mated to podocyte-specific Cre mice 

(NPHS2.cre mice) [116]. The murine Phb2 gene is located on chromosome 6 and is 

composed of nine exons. In the Phb2 flox/flox mouse loxP sites are inserted 

upstream of exon 3 and downstream of exon 4 of the Phb2 gene. Expression of a 

Cre-recombinase leads to deletion of the loxP-flanked exons and causes a frameshift 

mutation resulting in a stop of translation at amino acid 73. The truncated PHB2 

protein product is inactive [53]. 

All mice were born following Mendelian rules (Figure 4A) and no overt differences 

became evident at birth. Interestingly, podocyte-specific Phb2-deficient mice 

(Phb2pko) did not survive longer than 31 - 37 days while all Cre-negative mice 

(Phb2fl/fl) developed normally and did not show any signs of glomerular disease 

(Figure 4B). Analysis of the urinary albumin-to-creatinine ratio, which was used to 

determine the amount of albuminuria, revealed progressive albuminuria in Phb2pko 

mice but not Phb2fl/fl mice over time. 14 days after birth albuminuria was detectable in 

neither Phb2pko mice nor control mice whereas after 21 days Phb2pko mice showed 

already pronounced albuminuria. At day 28 a maximum albumin-to-creatinine ratio of 

430 mg/mg was reached in Phb2pko mice (Figure 4C). In line with this finding, 

Phb2pko mice gained less weight compared to control mice already evident at day 22 

resulting in a wasting syndrome after day 29 (Figure 4D). Serum creatinine and 

serum urea levels were measured to assess renal function. Serum creatinine (Figure 

4E) as well as serum urea levels (Figure 4F) were significantly increased in 

Phb2pko mice but not control mice in their fifth week of life. This is further supporting 

the observation that podocyte-specific loss of PHB2 results in podocyte dysfunction, 

renal failure and eventually causes premature death. 
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Figure 4. Podocyte-specific Phb2-knockout mice (Phb2pko) develop albuminuria and 
die prematurely 

(A) Phb2 flox/flox;NPHS2.cre mice are born following Mendelian rules (Phb2fl/wt, 
Phb2 flox/wt;NPHS2.cre wt/wt; Phb2fl/fl, Phb2 flox/flox;NPHS2.cre wt/wt; Phb2het, 
Phb2 flox/wt;NPHS2.cre tg/wt; Phb2pko, Phb2 flox/flox;NPHS2.cre tg/wt). (B) Kaplan-
Meier survival curve showed decreased survival of Phb2pko mice compared to control 
mice (n = 5 for Phb2fl/fl / het, n = 6 for Phb2pko) (C) Measurement of urinary albumin-to-
creatinine ratio revealed progressive albuminuria in Phb2pko mice (albumin-to-
creatinine ratio day 14: Phb2fl/fl 0.09 ± 0.03 mg/mg, n = 4, vs. 
Phb2pko 0.37 ± 0.21 mg/mg, n = 4; P > 0.05; albumin-to-creatinine ratio day 21: 
Phb2fl/fl 0.65 ± 0.16 mg/mg, n = 4, vs. Phb2pko 193.10 ± 26.81 mg/mg, n = 4; 
***P < 0.001; albumin-to-creatinine ratio day 28: Phb2fl/fl 0.57 ± 0.07 mg/mg, n = 4, 
vs. Phb2pko 470.40 ± 131.30 mg/mg, n = 4; **P < 0.01). (D) Analysis of body weight 
from postnatal day 14 until day 32 (Phb2fl/fl or Phb2het vs. Phb2pko at days 28/29, 
*P<0.05 and at days 30-32 with **P < 0.01, n = 3 for Phb2fl/fl and n = 4 for Phb2het 
and Phb2pko). (E) Measurement of serum creatinine levels of mice in their fifth week 
of life showed increased serum creatinine in Phb2pko mice (Phb2fl/fl / het 14.74 ± 
3.75 µmol/l vs. Phb2pko 74.73 ± 2.20 µmol/l, n = 3 for both groups; ***P < 0.001). (F) 
Measurement of serum urea levels of mice in their fifth week of life showed higher 
serum urea levels in Phb2pko mice than control mice (Phb2fl/fl / het 44.00 ± 7.02 mg/dl 
vs. Phb2pko 493.70 ± 45.34 mg/dl, n = 3 for both groups; ***P < 0.001). 
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6.1.2 Phb2pko mice develop glomerulosclerosis 

To gain a better insight into the development of glomerular disease in Phb2pko mice 

the animals were analyzed at different time points. Glomerulogenesis in mice is 

completed 14 days after birth. Therefore, the phenotypic analysis of Phb2pko mice 

was started at this time point and ended with 28 days after birth, which is close to the 

death of the animals. 

To assess glomerular morphology PAS staining of kidney sections from Phb2pko mice 

at day 14, 21 and 28 were analyzed. Despite albuminuria being present already at 

day 21 no changes in glomerular morphology became evident before day 28. Here, 

the mice presented with tubular protein casts as well as glomerular scarring i.e. 

glomerulosclerosis (Figure 5A). Podocin was used as a marker for the integrity of the 

slit diaphragm. Podocin stainings revealed a regular garland-like pattern of podocin 

at day 14 in Phb2pko mice. One week later, at day 21, podocin stainings appeared 

weaker and more granular indicative of an injured slit diaphragm. 28 days after birth 

podocin expression was nearly completely lost (Figure 5B). Electron micrographs 

revealed already at day 14 first subtle changes in foot process organization. In some 

areas foot process structures were completely normal while other areas showed 

beginning broadening of the processes. This became even more evident at day 21 

when the regular foot process structure is lost nearly everywhere within a glomerulus 

and adjacent processes flattened. At day 28 Phb2pko mice completely lost the 

glomerular structure (Figure 5C). Since PHB2 is known as a mitochondrial protein 

and previous reports already showed defects in mitochondrial morphology upon loss 

of PHB2 [53,69] the cristae structure of podocytic mitochondria in Phb2pko mice was 

analyzed in electron micrographs. 14 days after birth no changes in mitochondrial 

morphology were seen. However, at day 21 the lamellar cristae structure of 

mitochondria in Phb2pko mice was lost and the podocytes contained swollen 

mitochondria with disorganized cristae structures (Figure 5D). Because of the severe 

phenotype and complete loss of the glomerular structure an analysis of mitochondrial 

morphology in 28 days old Phb2pko mice was not possible. 

Taken together, Phb2pko mice did not only show defects in mitochondrial morphology 

but also lost foot process organization and developed glomerulosclerosis. 
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Figure 5. Phb2pko mice develop glomerulosclerosis 

Genotypes and time points as indicated in the figure. (A) PAS staining of kidney 
sections revealed protein casts in the tubular system and glomerulosclerosis at 
day 28 in Phb2pko mice (scale bar 20 µm). (B) Immunohistochemistry for podocin on 
kidney sections showed reduction of podocin expression over time in Phb2pko mice 
(scale bar 20 µm). (C) Analysis of podocyte foot processes in electron micrographs 
revealed progressive foot process effacement in Phb2pko mice (scale bar 0.7 µm). (D) 
Analysis of mitochondrial morphology in electron micrographs showed swollen and 
disorganized mitochondria in 21 days old but not 14 days old Phb2pko mice (arrows; 
scale bar 0.3 µm). FP, podocyte foot processes; GBM, glomerular basement 
membrane; EC, endothelial cells. 

 

6.1.3 Phb2het mice present with changes in mitochondrial ultrastructure 

To further understand the defect in Phb2pko mice an electron micrograph analysis of 

Phb2het mice was performed. These mice do not show any loss of body weight or 

albuminuria but electron micrographs of 21 days old Phb2het mice revealed partially 

disorganized mitochondrial cristae structures, whereas foot process organization was 

normal (Figure 6A+B). 

Thus, changes in mitochondrial ultrastructure do not necessarily lead to glomerular 

disease. 
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Figure 6. Phb2het mice present with changes in mitochondrial ultrastructure 

(A) Electron micrograph analysis of mitochondrial cristae structures of Phb2het mice 
at day 21 revealed partially disorganized mitochondrial cristae structures (arrow = 
normal mitochondrial structure; arrowheads = defective mitochondrial structure; scale 
bar 1 µm). (B) Electron micrograph analysis of foot process organization of 
Phb2het mice at day 21 showed no overt changes in foot process organization (scale 
bar 1 µm). 

 

6.1.4 Glomeruli of Phb2pko mice display no increased rate of apoptosis at 

day 21 

Previous reports showed that loss of prohibitin-2 might render cells more susceptible 

to apoptosis [53,69,121,122]. Loss of the terminally differentiated podocyte cannot be 

compensated and seems to cause the development of albuminuria and 

glomerulosclerosis in other models of glomerular diseases [123–126].  

To investigate if loss of podocytes causes the severe phenotype in this mouse model, 

kidney sections of the albuminuric Phb2pko mice at day 21 and non-albuminuric 

control mice of the same age were stained for cleaved caspase-3, a marker for 

apoptotic cell death. However, no increased cleavage of caspase-3 was detected in 

podocytes of Phb2pko mice (Figure 7A). Since podocyte loss does not necessarily 

depend on apoptosis but could also be attributed to other types of cell death the total 

number of podocytes per glomerulus was assessed. Therefore, kidney sections of 

three animals per genotype were stained for the podocyte marker protein WT-1. 

Podocytes from 40 glomeruli of each kidney section were counted. Interestingly, no 

change in podocyte cell number was detected at day 21 in Phb2pko mice compared to 

Phb2fl/fl mice (Figure 7B+C). 

Therefore, podocyte loss did not account for the development of albuminuria in 

Phb2pko mice. 
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Figure 7. Glomeruli of Phb2pko mice display no increased rate of apoptosis at day 21 

(A) Immunohistochemistry for cleaved caspase-3 on kidney sections of Phb2pko and 
Phb2fl/fl mice revealed no cleaved caspase-3-positive cells in the glomeruli of both 
genotypes (scale bar 20 µm). (B) Immunohistochemistry for the podocyte marker 
WT-1 on kidney sections of Phb2pko and Phb2fl/fl mice (scale bar 20 µm). (C) 
Quantification of WT-1-positive cells per glomerulus showed no difference in 
Phb2pko mice compared to Phb2fl/fl mice (Phb2fl/fl 11.96 ± 0.65 WT-1-positive 
cells/glomerulus vs. Phb2pko 11.32 ± 0.57 WT-1-positive cells/glomerulus; n = 3 for 
both groups, 40 glomeruli per animal counted, P > 0.05). 

 

6.1.5 PHB2 is required to maintain structural integrity of podocyte foot 

processes 

In the past decades, several studies on proteins of the slit diaphragm complex 

showed that an intact slit diaphragm structure is essential for a healthy glomerulus 

and normal albumin filtration [13,16,18,19,127]. Therefore, the structure of the slit 

diaphragm was analyzed in Phb2pko mice more closely by means of electron 

microscopy.  

In 14 days old Phb2pko mice no overt changes in slit diaphragm appearance were 

detected (Figure 8A). However, at day 21 Phb2pko mice developed foot process 

effacement and loss of slit diaphragm structures became evident (Figure 8B). 
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Thus, although slit diaphragm structures between neighboring podocytes were 

initially formed Phb2pko mice failed to maintain them over time. 

 

 

Figure 8. PHB2 is required to maintain structural integrity of podocyte foot processes 

(A) Electron micrographs revealed no overt changes in slit diaphragm appearance in 
14 days old Phb2pko mice (arrows point to slit diaphragm structures in Phb2pko mice; 
scale bar 0.3 µm). (B) Electron micrographs demonstrated foot process effacement 
and loss of slit diaphragm structures in 21 days old Phb2pko mice (arrow heads, scale 
bar 0.3 µm). 

 

6.1.6 Inducible depletion of Phb2 results in loss of slit diaphragm function 

First differences in foot process organization were already seen 14 days after birth. 

To exclude a developmental phenotype in Phb2pko mice a second mouse model was 

used. Mating of tamoxifen-inducible improved Cre mice under the control of the 

NPHS2 promoter (podocin-iCreER(T2)) [117] to conditional Phb2 flox/flox mice [53] 

resulted in podocin-iCreER(T2) Phb2pko animals (tPod-Phb2pko) and podocin-

iCreER(T2) Phb2het animals (tPod-Phb2het). These mice were fed with a tamoxifen-

enriched diet starting at the age of eight weeks for six weeks in total to induce Cre 

expression in adult animals. Only male mice were used for this study to exclude 

potential side-effects of tamoxifen in female mice.  

PAS-staining at 2.5 weeks after end of tamoxifen treatment revealed 

glomerulosclerosis and tubular protein casts in tPod-Phb2pko but not tPod-Phb2het 

mice (Figure 9A). Furthermore, at this time point podocin expression was highly 

reduced in these animals (Figure 9B). Analysis of urinary samples of tPod-Phb2pko 

mice in a coomassie gel detected albuminuria already in the last week of tamoxifen 

feeding (Figure 9C). However, the time of onset of albuminuria and time of death 
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varied inbetween two weeks in all mice that were analyzed, probably due to different 

amounts of intake of the tamoxifen-enriched diet. 

Taken together, the phenotype of the Phb2pko mice was not developmental and could 

be reproduced in adult animals. 

 

 

Figure 9. Inducible depletion of Phb2 results in loss of slit diaphragm function 

(A) PAS staining revealed glomeruloscerosis in tPod-Phb2pko but not 
tPod-Phb2het mice 2.5 weeks after the end of tamoxifen treatment (scale bar 20 µm). 
(B) Immunohistochemistry for podocin on kidney sections of tPod-Phb2pko and control 
mice showed loss of podocin expression 2.5 weeks after the end of tamoxifen 
treatment (scale bar 20 µm). (C) Coomassie stain of urinary samples detected 
albuminuria in tPod-Phb2pko but not control mice at day 37 of tamoxifen treatment. 
 



Results 

65 

 

6.2 PHB2 as a novel slit diaphragm protein 

6.2.1 PHB2 localizes to the slit diaphragm 

As loss of PHB2 not only resulted in premature death after 4-5 weeks but also led to 

massive albuminuria already evident three weeks after birth we tested the hypothesis 

that PHB2 exerts extramitochondrial functions in podocytes. To this end we assessed 

the localization of PHB2. Therefore, a new antibody was generated because the 

commercially available antibodies directed against PHB1 and PHB2 gave no 

reproducible results on tissue sections. Human kidney sections were stained with this 

self-generated antibody detecting both, PHB1 and PHB2. Co-staining for podocin 

showed a partial co-localization of PHB1/2 and podocin at the sit diaphragm (Figure 

10A). The PHB1/2 antibody was validated using a co-staining with MitoTracker on 

immortalized podocytes (Figure 10B) and an ELISA (Figure 10C). To further prove 

the localization of PHB2 to the slit diaphragm immunogold labelings were performed. 

Immunogold labeling of a commercially available PHB2 antibody showed a clear 

signal in podocytes close to the slit diaphragm (Figure 10D) and – used as a proof of 

principle control – in mitochondria (Figure 10E). In addition, immungold labeling with 

a PHB1 antibody was performed but did not give any specific signals in mitochondria 

or other parts of the cell. 

Thus, PHB2 localized not only to mitochondria but also to the slit diaphragm of 

podocytes. 
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Figure 10. PHB2 localizes to the slit diaphragm 

(A) Immunofluorescence stainings of podocin and PHB1/2 on human kidney sections 
showed partial co-localization (arrows show the overlap; scale bar 50 µm in overview, 
10 µm in magnification). (B) ELISA for PHB1, PHB2 and a control protein measured 
in triplicates. (C) Co-staining of MitoTracker and PHB1/2 on mouse podocytes (scale 
bar 20 µm).  (D) Immunogold labeling of PHB2 in mouse and human kidney sections 
detected PHB2 at the slit diaphragm (arrows). (E) Immunogold labeling of PHB2 
revealed signals in mitochondria (arrow). 
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6.2.2 PHB1 and PHB2 co-immunoprecipitate with podocin 

Previous worked already showed that podocin is an important player at the slit 

diaphragm [33,36]. Since both, podocin and PHB2, localized to the slit diaphragm we 

next tested the hypothesis that both proteins co-immunoprecipitate. To test this, 

co-precipitation experiments after overexpression in HEK293T cells were performed. 

For these experiments, the known interaction of PHB1 and PHB2 served as a 

positive control. PHB2 co-immunoprecipitated with podocin and vice versa (Figure 

11A+B). In addition, the interaction of PHB1 and podocin was tested and 

co-immunoprecipitation showed a co-immunoprecipitation of PHB1 with podocin and 

vice versa (Figure 11C+D). Both proteins did not co-immunoprecipitate with a control 

protein. To further substantiate this finding co-immunoprecipitations were performed 

with endogenous proteins. To this end, glomeruli from wildtype mice were isolated 

and proteins extracted before the respective antibodies were added. Here, PHB2 

co-immunoprecipitated with podocin as well (Figure 11E). Due to technical reasons 

no conclusive result for the co-precipitation of PHB1 with podocin from glomerular 

lysates can be shown. 

Taken together, PHB2 not only localized to the slit diaphragm but also 

co-immunoprecipitated with podocin in overexpression and glomerular lysates. 

Co-immunoprecipitation of PHB1 with podocin could only be shown in 

overexpression experiments. 
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Figure 11. PHB1 and PHB2 co-immunoprecipitate with podocin 

(A) HEK293T cells were transiently transfected as stated. Immunoprecipitation was 
performed using a V5 antibody and showed co-precipitation of PHB2 with podocin 
but not the control protein. (B) HEK293T cells were transiently transfected with the 
indicated constructs. Immunoprecipitation was performed using a FLAG antibody and 
showed co-precipitation of podocin with PHB2 but not the control protein. (C) 
HEK293T cells were transiently transfected with the constructs as stated. 
Immunoprecipitation was performed using a FLAG antibody and showed 
co-precipitation of PHB1 with podocin but not the control protein. (D) HEK293T cells 
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were transiently transfected with the indicated constructs. Immunoprecipitation was 
performed using a V5 antibody and showed co-precipitation of podocin with PHB1 
but not the control protein. (E) Co-immunoprecipitation of podocin and PHB2 from 
isolated mouse glomeruli revealed co-precipitation of PHB2 with podocin 
endogenously. 

 

6.2.3 PHB-2 co-localizes with MEC-2 at touch receptor punctae and 

regulates touch sensation in C. elegans 

Localization of PHB2 to the slit diaphragm and its interaction with podocin point to an 

additional, extramitochondrial role of PHB2 in podocytes. This could of course also 

imply a functional relevance of PHB2 at the slit diaphragm complex. However, in 

mammals, no assays are currently available to test the functionality of the slit 

diaphragm experimentally. To circumvent this problem the nematode C. elegans can 

be utilized [24]. In C. elegans, six touch receptor neurons are necessary for 

conducting gentle body touch [113,128]. In these touch receptor neurons MEC-2 

- the C. elegans homolog of podocin - is part of the multiprotein-channel complex that 

is localized in regular punctae along touch receptor neuron processes [42,43]. 

A new transgenic worm strain was generated that expressed PHB-2::GFP under 

control of the mec-17 promoter, which is exclusively active in the six-touch receptor 

neurons [129]. In this transgenic strain PHB-2 was found around the cell body of the 

neurons most likely reflecting the mitochondrial localization of the protein. 

Additionally, staining of these worms for MEC-2 revealed a partial co-localization of 

PHB-2 and MEC-2 along the touch punctae (Figure 12A), thereby confirming the 

results on localization of PHB2 from section 6.2.1. 

The mechanosensory machinery in C. elegans and the complex organization of the 

slit diaphragm in mammals show a high similarity [24,130]. In C. elegans the 

multiprotein-channel complex is needed to convert mechanical forces into electrical 

signals, thus representing a physiological response to study by performing gentle 

touch assays. To achieve optimal knockdown of genes in neurons of C. elegans a 

neuronal-specific RNAi strain [sid-1(pk3321) him-5(e1490) V; lin 15B(n744) X; uIs71 

[pCFJ90(myo-2p::mCherry) + mec-18p::sid-1]] can be used. By using this strain, the 

cell metabolism in any other cell of the body is not affected. As a whole body 

knockout of phb-2 leads to infertility and shortened lifespan [70] the restriction of the 

knockdown to the neurons was important to exclude an influence of metabolic 
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changes in other cells on gentle body touch. Feeding of the neuronal-specific RNAi 

strain with bacteria carrying a mec-2-RNAi plasmid impaired touch sensitivity as 

reported previously [113]. Loss of either phb-1 or phb-2 significantly decreased touch 

sensitivity but to a lesser extent compared to mec-2 deficiency. To exclude a 

potential effect of defects of the respiratory chain on touch sensitivity the worms were 

also fed with mev-1 RNAi. Mev-1 encodes for the succinate dehydrogenase 

cytochrome b, i.e. the respiratory chain complex II and its knockdown causes 

disruption of mitochondrial respiration [131]. However, loss of mev-1 resulted only in 

a slight decrease in touch sensitivity while the difference between mev-1-deficient 

and phb-1- or phb-2-deficient worms was still highly significant (Figure 12B). 

In summary, PHB-2 co-localized with MEC-2 at touch receptor punctae in C. elegans. 

Both, PHB-1 and PHB-2 were needed to conduct touch sensation, which was most 

likely independent of respiratory chain activity. 
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Figure 12. PHB-2 co-localizes with MEC-2 at touch receptor punctae and regulates 
touch sensation in C. elegans 

(A) Immunofluorescence stainings of MEC-2 on PHB-2::GFP expressing worms 
showed co-localization of PHB-2 and MEC-2 in touch punctae (arrows point at co-
localization in a touch receptor neuron). (B) Touch sensitivity was reduced upon loss 
of either mec-2, phb-1 or phb-2 but not mev-1. (control RNAi 9.42 ± 0.09 
responses/10 touches, mev-1 RNAi 9.02 ± 0.10 responses/10 touches, phb-1 RNAi  
6.58 ± 0.21 responses/10 touches, phb-2 RNAi 6.80 ± 0.21 responses/10 touches, 
mec-2 RNAi 3.38 ± 0.22 responses/10 touches; n = 50 for all groups; ***P < 0.001 for 
control RNAi vs. phb-1 RNAi, control RNAi vs. phb-2 RNAi, mev-1 RNAi vs. phb-1 
RNAi and mev-1 RNAi vs. phb-2 RNAi). 
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6.3 PHB2 in metabolic signaling 

6.3.1 Podocyte-specific knockout of the insulin receptor (Insr) and IGF-1 

receptor (Igf1r) prolongs survival of Phb2pko mice 

In worms and yeast the deleterious effects of a phb-2/Phb2-deficiency could be 

reversed by either loss of the insulin receptor homolog daf-2 or dietary restriction 

[70,71]. However, nothing is known about the impact of PHB2 on insulin signaling 

and the mTOR pathway in mammalian cells. 

To investigate if Phb2pko mice benefit from loss of insulin signaling and show reduced 

albuminuria and/or prolonged survival two new mouse models were generated. First, 

Phb2 flox/flox mice were mated to Igf1r flox/flox or Insr flox/flox mice. Second, these 

mice were mated to podocyte-specific Cre mice (NPHS2.cre mice) [116] to obtain 

mice with a podocyte-specific deficiency of either Phb2 and Igf1r 

(Phb2pko/Igf1rpko mice) or Phb2 and Insr (Phb2pko/Insrpko mice). 

Survival analysis revealed that an additional Igf1r-deficiency did not influence the 

survival rate of Phb2pko mice (Figure 13A+C). In contrast, Phb2pko/Insrpko as well as 

Phb2pko/Insrhet mice outlived Phb2pko mice by 6 days in average (Figure 13B+C). The 

survival benefit reached statistically significant levels for Phb2pko/Insrpko mice (Figure 

13C) and all mice developed progressive albuminuria, short-lived Phb2pko/Igf1rpko as 

well as longer-lived Phb2pko/Insrpko mice (Figure 13D). 
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Figure 13: Loss of the insulin receptor but not IGF-1 receptor prolongs lifespan of 
Phb2pko mice 

(A) Kaplan-Meier survival curve revealed that the survival time of Phb2pko mice is not 
changed by an additional Igf1r-deficiency (n = 6 for Phb2pko/Igf1rpko, n = 4 for 
Phb2pko/Igf1rhet, n = 6 for Phb2pko). (B) Kaplan-Meier survival curve showed that an 
additional knockout of the insulin receptor (Insr) prolonged lifespan of Phb2pko mice 
(n = 3 for Phb2pko/Insrpko, n = 3 for Phb2pko/Insrhet, n = 6 for Phb2pko). (C) Statistical 
analysis comparing all genotypes with Phb2pko mice. (D) Representative coomassie 
stain of urinary samples revealed albuminuria in podocyte-specific double 
knockout-mice irrespective of their genotype. 
 

Since the insulin receptor may compensate for the IGF-1 receptor and vice versa 

[132] a podocyte-specific triple knockout mouse line of Phb2, Insr and Igf1r was 

generated (Phb2pko/Insrpko/Igf1rpko). 

Analysis of survival rates showed that Phb2pko/Insrpko/Igf1rpko, Phb2pko/Insrhet/Igf1rpko 

and Phb2pko/Insrpko/Igf1rhet mice lived longer than Phb2pko mice (Figure 14A) but this 
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increased survival was only statistically significant for Phb2pko/Insrpko/Igf1rpko and 

Phb2pko/Insrpko/Igf1rhet mice (Figure 14B). In accordance to the results in 

Phb2pko/Igf1rpko and Phb2pko/Insrpko mice all analyzed genotypes of the triple knockout 

mice presented with massive albuminuria and there were no differences observed 

between the different genotypes (Figure 14C).  

 

 

Figure 14: Podocyte-specific knockout of the insulin receptor (Insr) and IGF-1 receptor 
(Igf1r) prolongs survival of Phb2pko mice 

(A) Kaplan-Meier survival curve revealed prolonged survival of 
Phb2pko/Insrpko/Igf1rpko, Phb2pko/Insrhet/Igf1rpko and Phb2pko/Insrpko/Igf1rhet mice (n = 19 
for Phb2pko/Insrpko/Igf1rpko, n = 9 for Phb2pko/Insrhet/Igf1rpko, n = 11 for 
Phb2pko/Insrpko/Igf1rhet, n = 9 for Phb2pko/Insrhet/Igf1rhet, n = 6 for Phb2pko). (B) 
Statistical analysis comparing all genotypes with Phb2pko mice. (C) Representative 
coomassie stain of urinary samples showed albuminuria in all analyzed mice 
irrespective of their genotype (x = no urine analyzed because mouse was dead by 
that time). 
 

6.3.2 Inhibition of mTOR signaling increases lifespan of Phb2pko mice 

To study the role of PHB2 in metabolic signaling of podocytes in more detail a new 

Phb2-knockdown podocyte cell culture model was established. In 2008, Merkwirth et 
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al. showed that Phb2-deficiency leads to a reduced proliferation rate of the affected 

cells [53]. Therefore, the use of a doxycycline-inducible knockdown cell culture model 

was necessary. To generate an inducible Phb2 knockdown in mouse podocytes, 

short hairpin RNAs (shRNAs) directed against the murine Phb2 mRNA were 

designed, cloned and tested for knockdown-efficiency with a dual-luciferase assay in 

mPhb2-transfected HEK 293T cells. The combination of shRNA1 and shRNA4 gave 

the best knockdown result as calculated by the renilla/firefly ratios and was used for 

further studies (Figure 15A). The selected shRNAs were transferred into a 

doxycycline-inducible lentiviral vector (pLenti4-TO, Invitrogen) and thermo-sensitive 

immortalized mouse podocytes [107] were stably transduced with this vector (cell line 

named mPhb2 shRNA). To control for off-target effects another cell line was 

generated which inducibly expressed a scrambled shRNA. The Phb2 knockdown was 

confirmed by using a TaqMan® assay with probes specific for Phb1 and Phb2, 

showing a decrease in mRNA expression of Phb2 but not Phb1 (Figure 15B). 

Western Blot analysis of these cells revealed significantly reduced protein levels of 

PHB1 and PHB2 (Figure 15C). This is in accordance with previous results showing 

that PHB1 and PHB2 interdepend and each protein needs the other for its stability 

[50,53,112]. In addition, the cells presented with a disrupted mitochondrial network as 

visualized by immunofluorescence staining for the mitochondrial marker protein 

Tom20 that resides within the outer mitochondrial membrane (Figure 15D+E).  
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Figure 15. Generation and validation of an inducible Phb2 shRNA podocyte cell line 

(A) Knockdown efficiency of different shRNAs targeting murine Phb2 mRNA was 
assessed by dual-luciferase assay in 293T cells (n = 3; bars represent 
means ± SEM). (B) mPhb2 shRNA podocytes contained less Phb2 mRNA than 
control (scrambled shRNA) podocytes as assessed in a TaqMan® assay (n = 3, bars 
represent mean ± SEM, ***P < 0.001). (C) Western Blot analysis revealed decreased 
protein levels of PHB1 and PHB2 in mPhb2 shRNA podocytes. Staining for 14-3-3 
was used as a loading control. (D) mPhb2 shRNA podocytes presented with a 
disrupted mitochondrial network as seen by immunofluorescence staining with a 
Tom20 antibody (scale bar 10 µm). (E) Quantification of tubular and fragmented 
mitochondrial morphology revealed more fragmented mitochondria in mPhb2 shRNA 
podocytes (n = 100 cells for mPhb2 shRNA, n = 108 cells for scrambled shRNA).  

 
Western Blot analysis of these Phb2-deficient mouse podocytes revealed an 

overactive signaling via the mTOR pathway as seen by increased phosphorylation of 

the downstream effector S6 ribosomal protein (Figure 16A+B). This could be 

blocked by treating the cells with the mTORC1-specific inhibitor rapamycin (Figure 

16A). To show the importance of PHB2 for this signaling pathway not only in cell 

culture, but also in tissue, kidney sections of Phb2pko and Phb2fl/fl mice were stained 

for phosphorylated S6 ribosomal protein in immunohistochemistry. Interestingly, 
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Phb2pko but not control mice showed increased activation of S6 ribosomal protein 

within glomeruli (Figure 16C). 

To investigate if the increased mTOR activity plays a role in the development of 

glomerular disease in Phb2pko mice the mice were treated with the mTORC1-specific 

inhibitor rapamycin starting at the age of two weeks. At this age glomerulogenesis 

was completed and Phb2pko mice did not present with albuminuria yet as described in 

section 6.1.2. Rapamycin treatment had no effect on control Phb2fl/fl mice. In 

contrast, treatment of Phb2pko mice with rapamycin prolonged the mean lifespan by 

10 days compared to vehicle-treated Phb2pko mice (Figure 16D+E). Analysis of 

urinary samples in coomassie gels showed massive albuminuria in both, 

vehicle-treated and rapamycin-treated Phb2pko mice (Figure 16F). 

Thus, loss of PHB2 influenced signaling of the mTOR pathway, but treatment with 

rapamycin could prolong lifespan of short-lived Phb2pko mice despite progressive 

albuminuria. 
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Figure 16. Inhibition of mTOR signaling increases lifespan of Phb2pko mice 

(A) Phb2-deficient mouse podocytes showed higher levels of phosphorylated S6 
ribosomal protein than control podocytes, which could be blocked by treatment with 
10 ng/ml rapamycin (pS6RP = phosphorylated S6 ribosomal protein, S6RP = S6 
ribosomal protein). (B) mPhb2 shRNA podocytes had a higher ratio of pS6RP/S6RP 
than control (scrambled shRNA) podocytes as assessed by densitometric 
quantification (n = 5, bars represent mean ± SEM, **P < 0.01) (C) 
Immunohistochemistry for phosphorylated S6 ribosomal protein (pS6RP) on kidney 
sections revealed increased levels of pS6RP in glomeruli of Phb2pko compared to 
Phb2fl/fl mice (arrows point to cells showing a signal for pS6RP; scale bar 20 µm). (D) 
Kaplan-Meier survival curve revealed that treatment of Phb2pko mice with rapamycin 
prolonged survival for several days compared to vehicle-treated Phb2pko mice (n = 7 
for Phb2fl/fl + rapamycin, n = 7 for Phb2pko + vehicle, n = 8 for Phb2pko + rapamycin). 
(E) Statistical analysis comparing rapamycin-treated Phb2pko mice with vehicle-
treated Phb2pko mice. (F) Representative coomassie stain of urinary samples showed 
development of albuminuria in vehicle- as well as rapamycin-treated Phb2pko mice 
(x = no urine analysed because mouse was dead by that time).
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7 Discussion 

7.1 PHB2 – a slit diaphragm protein? 

7.1.1 The phenotype of Phb2pko mice is similar to slit diaphragm 

protein-deficient mice 

More than 5% of all human beings worldwide suffer from chronic kidney diseases 

(CKD) with great impact on quality of life and rising socio-economical burdens on our 

societies. Glomerular disorders, with diabetic nephropathy being the leading cause, 

account for the majority of cases of CKD. In the past several years, accumulating 

evidence suggested that glomerular podocytes are crucial for the function of the 

kidney filter and critically involved in the development of proteinuria [5,6]. Mutations in 

several genes encoding for proteins of the slit diaphragm are a major cause for the 

development of focal segmental glomerulsclerosis (FSGS). One of the most studied 

proteins at the slit diaphragm is podocin, a member of the SPFH domain protein 

family. Mutations in podocin cause childhood onset of proteinuria and 

steroid-resistant forms of focal segmental glomerulosclerosis (FSGS) [16,17,37–41]. 

So far, nothing is known about the function of other SPFH domain-containing 

proteins in podocytes, which could also be important for the development of 

proteinuria and glomerular disease. 

PHB2 - another member of the SPFH domain-containing protein family - is known as 

an integral mitochondrial membrane protein. In addition to its functions in 

mitochondrial biogenesis and maintenance of mitochondrial DNA PHB2 seems to be 

involved in lots of other cellular processes like cellular signaling and apoptosis 

[54,133,134].  

To study the function of PHB2 in podocyte biology a podocyte-specific 

Phb2-knockout mouse (Phb2pko) was generated. The mice were born viable in the 

expected Mendelian frequency. Starting at about three weeks of age the animals 

showed growth retardation as compared to their littermate controls. Phb2pko animals 

died at the age of 31 to 37 days. To obtain a better insight in podocyte biology the 

glomerular phenotype at different time points was analyzed. 14 days after birth, when 

glomerular development is completed, light microscopy of renal sections did not 

reveal any injury. Glomerular function as examined by urine albumin/creatinine ratios 

was normal. EM analysis revealed normal mitochondrial architecture. One week later 
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podocin expression was reduced and changed to a more granular pattern, indicating 

a change in slit diaphragm organization. In accordance to this, EM analysis of 

Phb2pko mice demonstrated highly effaced foot processes, loss of slit diaphragm 

structures and the animals developed albuminuria. Mitochondria structure was 

disorganized and with multiple swollen cristae structures. At four weeks of age, PAS 

staining revealed severe glomerulosclerosis and high levels of serum urea and serum 

creatinine revealed the progression of the disease to renal failure, leading to 

premature death. Podocin expression was markedly reduced and foot processes 

were completely effaced, which was also reflected in high, nephrotic-range levels of 

albuminuria. In summary, podocytes of Phb2pko mice showed not only disorganized 

mitochondrial cristae structures but also defects in foot process organization and slit 

diaphragm maintenance. 

Interestingly, apart from loss of proper mitochondrial ultrastructures, these findings 

resemble the phenotype of mice lacking important components at the slit diaphragm. 

For example, CD2AP is part of the podocyte slit diaphragm complex and interacts 

with the slit diaphragm protein nephrin [135]. CD2AP-knockout mice exhibit growth 

retardation starting three weeks after birth and die three to four weeks later. The 

animals develop proteinuria at day 14 and present with glomerulosclerosis at about 

four weeks of age [10]. Nephrin- or podocin-knockout mice show massive foot 

process effacement and rapidly develop proteinuria as well. While nephrin-knockout 

mice die within one day after birth, podocin-knockout animals survive some days or 

even weeks [18,136]. To explain the differences in the onset of proteinuria and time 

of death between nephrin-, podocin- and CD2AP-knockout mice it was speculated 

that other proteins might compensate for the function of podocin and CD2AP. This 

could explain the slower time course of the disease in these animals compared to 

nephrin-knockout mice [136]. A second explanation would be the variance in genetic 

backgrounds, which has been shown to influence the severity of glomerular diseases 

[18,137]. 

However, the highly comparable phenotype of Phb2pko mice and other slit diaphragm 

protein-knockout mice is not the only argument for a slit diaphragm-related 

phenotype of Phb2pko animals: despite first signs of structural changes at the slit 

diaphragm at day 14 mitochondria of Phb2pko mice were unaffected and 21 days old 

Phb2het mice did not show an overt glomerular phenotype albeit disturbed 
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mitochondrial ultrastructure. Taken together, these findings point to an 

extramitochondrial function of PHB2 as an important factor for the maintenance of the 

kidney filtration barrier. 

 

7.1.2 PHB2 is necessary for the function of the slit diaphragm complex 

Podocin and prohibitins are required for proper structural organization of their 

immediate surrounding at the slit diaphragm or mitochondria, respectively. Together 

with the initial findings in the Phb2pko mice this raised the hypothesis that PHB2 may 

not only localize to mitochondria but also to the slit diaphragm and interact with 

podocin to further stabilize the protein-lipid supercomplex at the slit diaphragm. 

Therefore, localization of PHB2 in podocytes was assessed. PHB2 was found - in 

addition to its known mitochondrial localization - close to the slit diaphragm in 

immunogold labelings as well as immunofluorescences stainings. Overexpression as 

well as endogenous experiments revealed co-immunoprecipitation of PHB2 with the 

slit diaphragm protein podocin. With regard to previous reports showing PHB2 

interacting and being stabile only in a complex with PHB1 it is very likely that PHB1 

may also localize to the slit diaphragm. Overexpression experiments suggest a 

co-immunoprecipitation of podocin and PHB1. However, due to technical limitations, 

co-immunoprecipitation studies for PHB1 using glomerular lysates as well as 

immunogold labelings remained inconclusive.  

The localization of PHB2 to the slit diaphragm protein-lipid supercomplex was further 

confirmed in C. elegans. Here, the PHB2 homolog (PHB-2) co-localized with the 

podocin homolog MEC-2 in mechanosensitive complexes along touch receptor 

punctae of the neurons. As a transgenic strain was utilized in which expression of the 

transgene was under the control of the mec-17 promoter mislocalization due to 

overexpression as compared to the endogenous phb-2 promoter and/or due to the 

GFP-tag cannot be excluded. However, a similar approach has been used previously 

to analyze localization of prohibitins in worms [70]. To assess the functionality of the 

complex a neuronal-specific RNAi strain was fed with either phb-1 or phb-2 RNAi and 

gentle touch assays were performed. Interestingly, phb-1- and phb-2-deficient worms 

showed a reduced response to gentle touches as compared to the control RNAi fed 

worms, suggesting a functional impact of PHB1 and PHB2 on the complex. Loss of 

mev-1, a component of the mitochondrial electron transport chain complex II, showed 
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only mild effects on mechanosensation. This indicates that the effect of phb-1- and 

phb-2-deficiency on the function of the multiprotein-channel complex does not 

depend on an overall reduction of respiratory chain activity and thereby altered cell 

behavior. 

Although no conclusive results could be shown for the localization of PHB1 to the slit 

diaphragm three arguments suggest that probably both, PHB1 and PHB2, act 

together at the slit diaphragm: first, previous work published from different groups 

showed that PHB1 and PHB2 exist in multimeric ring structures and stabilize each 

other [28,49,50]; second, PHB1 was shown to co-precipitate with podocin in 

overexpression; finally, phb-1-deficiency led to the same decrease in touch sensitivity 

as phb-2-deficiency.  

A possible mode of action of PHB2 and probably PHB1 on the functionality of the 

protein-lipid supercomplex could be a stabilizing effect. Thereby, loss of PHB2 could 

lead to increased stretch-evoked activation of the ion-channel protein transient 

receptor potential cation channel 6 (TRPC6) - a component of slit diaphragm 

supercomplex [14,15] - as suggested for podocin deficiencies as well [24,138]. 

The finding that PHB2 localizes to the slit diaphragm protein-lipid supercomplex is 

further emphasized by results from other groups, showing that prohibitins can be 

detected in detergent-resistant lipid rafts [30,122,139] as shown for podocin as well 

[140]. These specialized membrane compartments are absent in mitochondria [139], 

further supporting a function of prohibitins in slit diaphragm protein-lipid 

supercomplexes at the plasma membrane. The identification of PHB2 as a second 

SPFH domain-containing protein at the slit diaphragm changes the current view of 

our understanding of a podocin-multimeric-complex, which may also be comprised of 

several SPFH domain-containing proteins.  

 

7.1.3 Phb2-deficiency in podocytes affects mitochondrial and 

non-mitochondrial functions 

Several lines of evidence point into the direction of not only a mitochondrial but also 

an extramitochondrial phenotype of Phb2pko mice. As discussed in section 7.1.1 

Phb2pko mice rapidly developed a severe phenotype which resembled that of other 

slit diaphragm protein-deficient mice. Furthermore, PHB2 localized not only to 
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mitochondria, but also to the slit diaphragm complex in mammals as well as to the 

highly similar multiprotein-channel complex in C. elegans (see section 7.1.2). 

Previous reports showed that Phb2-deficient cells are more susceptible to intrinsic 

apoptotic stimuli in vitro and in vivo [53,69,121,122]. A possible mechanism for the 

increased levels of proteinuria could be that podocytes of Phb2pko mice show either 

increased levels of mitochondria-induced apoptosis and/or detachment from the 

underlying GBM, consequently leading to cell loss. Interestingly, no increased 

caspase-3 cleavage was detected in three weeks old Phb2pko animals despite high 

albuminuric levels arguing against apoptosis as the primary mechanisms for 

podocyte damage at this time point. However, podocyte detachment from the GBM 

can also occur in the absence of apoptosis [141]. To investigate this, the overall 

podocyte cell number was assessed by counting WT-1-positive cells in paraffin 

sections, but no changes were detected in Phb2pko compared to Phb2fl/fl mice. 

Therefore, there is no evidence for the hypothesis that either increased apoptosis or 

early podocyte detachment account for the loss of podocyte function and initial 

development of albuminuria in Phb2pko mice. 

However, Phb2-deficient podocytes clearly show a mitochondria-related phenotype in 

addition as seen by the detection of disorganized and swollen mitochondria cristae 

structures within the cells of Phb2pko mice. Since the respiratory chain is localized 

within the cristae structures and has been shown to rely on prohibitins it can be 

speculated that the morphological changes could decrease respiratory chain activity 

and increase levels of reactive oxygen species (ROS). This would modulate cell 

metabolism by oxidation of e.g. proteins, lipids and DNA and also influence cell 

viability. Interestingly, various studies on this topic revealed opposing results. On the 

one hand, loss of prohibitins has been shown to increase ROS production by 

inhibition of the respiratory chain in e.g. human endothelial cells in vitro [142] and 

human epithelial colorectal adenocarcinoma cells in vitro [143] as well as 3T3-L1 

mouse embryonic fibroblast in vitro [144]. On the other hand, no or only a late impact 

on respiratory chain activity was seen in studies on prohibitin-deficient mouse 

epidermal progenitor/stem cells in vivo [121], mouse embryonic fibroblasts in vitro 

[53] and mouse neurons in the forebrain in vivo [69]. Possible reasons for these 

contrary results could either be cell type-specific differences in the impact of 



Discussion 

84 

 

prohibitin depletion on resipiratory chain activity and consequently ROS production or 

variable experimental settings.  

Mitochondrial dynamics are essential for a cell and mutations in genes that are 

important for fusion and fission events can lead to neurodegeneration [145–147]. The 

dynamic nature of the mitochondrial network is needed as a quality control and to 

mitigate the effect of damaged mitochondria. On the one hand, fusion allows 

redistribution of damaged content between intact and dysfunctional mitochondria, 

thereby maintaining the integrity of the whole network. On the other hand, fission 

ensures the effective elimination of damaged mitochondria by mitophagy, thus 

protecting the cell from mitochondria-induced apoptosis [148]. OPA1 is the central 

regulator of fusion at the inner mitochondrial membrane [149,150] and enhanced 

processing of OPA1 to shorter isoforms induces mitochondrial fragmentation [65]. 

Loss of PHB2 leads to unbalanced cleavage of OPA1 and subsequently fusion 

defects as seen by disorganized and swollen mitochondrial cristae structures [53].  

Several studies have reported morphological changes of mitochondria with disturbed 

cristae structures in podocytes of a FSGS mouse and rat model [151,152] as well as 

FSGS patients [153–155]. But whether the disruption of the mitochondrial network 

plays a role in the development of glomerulosclerosis or if it is a secondary effect of 

podocyte damage still remains to be elucidated. 

 

7.2 PHB2 is linked to the regulation of cell metabolism 

7.2.1 Phb2-deficiency influences metabolic signaling via the insulin and 

IGF-1 receptor 

Previous work from Artal-Sanz et al. [70] and Schleit et al. [71] suggests a role of 

PHB2 in cell metabolism via insulin/mTOR signaling. In worms, loss of PHB2 

decreased survival, but increased lifespan of already long-lived daf-2 mutant worms 

[70]. In yeast, Phb2-deficiency activated the mitochondrial untranslated protein 

response (mtUPR), which is associated with reduced lifespan. This effect could be 

inhibited by dietary restriction, thereby reducing the mtUPR [71]. Taken together, 

these findings raised the hypothesis of a potential link of PHB2 and insulin/mTORC1 

signaling in mammalian organ systems. In contrast to nematodes, the insulin receptor 
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and the IGF-1 receptor mediate the action of growth factors on cell metabolism in 

mammals. Both have been shown to be expressed in podocytes [156–159]. 

To investigate if the deleterious effect of the podocyte-specific Phb2-deficiency is 

dependent on signaling via the insulin receptor and/or the IGF-1 receptor pathway, 

podocyte-specific double knockout mice were generated that either lacked PHB2 and 

the insulin receptor (Phb2pko/Insrpko mice) or PHB2 and the IGF-1 receptor 

(Phb2pko/Igf1rpko mice). Assessing survival of these animals revealed a beneficial 

effect on lifespan in Phb2pko/Insrpko but not Phb2pko/Igf1rpko mice compared to 

Phb2pko mice. All mice rapidly developed massive albuminuria and no differences 

were observed between the different genotypes. These results indicate that although 

filtering properties are impaired in Phb2pko/Insrpko the damage of podocytes which 

probably leads to renal failure in the end is delayed compared to Phb2pko mice. 

Insulin and IGF-1 cannot only bind and activate their specific receptor, but insulin can 

also bind to the IGF-1 receptor and IGF—1 to the insulin receptor with differing 

affinities [132]. Loss of the insulin receptor under standard plasma insulin and IGF-1 

levels might then lead to increased activation of the IGF-1 receptor. To test for an 

additional beneficial effect after loss of of the IGF-1 receptor, triple podocyte-specific 

knockout mice lacking PHB2, the insulin receptor and IGF-1 receptor 

(Phb2pko/Insrpko/Igf1rpko mice) were generated and survival was monitored. Deletion of 

just one Igf1r allel in addition to homozygous Phb2- and Insr-deletions did not show 

any overt effect on survival compared to Phb2pko/Insrpko mice (50% mortality rate of 

Phb2pko/Insrpko/Igf1rhet mice at day 37, mean lifespan of ~36 days vs. 50% mortality 

rate of Phb2pko/Insrpko mice at day 38 and a mean lifespan of ~38 days). Intriguingly, 

Phb2pko/Insrpko/Igf1rpko mice showed a 50% mortality rate at day 43 and a mean 

lifespan of ~86 days. However, the survival rate of Phb2pko/Insrpko/Igf1rpko mice was 

extremely diverse. While some mice did not die by the end of the study others 

showed a medium survival and some died in the same time frame as Phb2pko mice. 

These differences could be caused by insufficient and differing Cre activity in this 

triple knockout mouse model. Arguing against an ineffective Cre recombinase, all 

Phb2pko/Insrpko/Igf1rpko mice developed massive albuminuria which was present until 

they died. Since double knockouts of the insulin and IGF-1 receptor alone do not 

show any overt albuminuria until at least 8 weeks after birth (data not shown), the 



Discussion 

86 

 

development of albuminuria in the triple knockout mouse model is probably due to 

the loss of PHB2 and cannot be rescued by interfering with metabolic signaling. 

 

7.2.2 Dysregulated mTOR signaling leads to glomerular diseases 

The benefical effect of the loss of insulin signaling in Phb2pko mice raised the 

question whether activation of the downstream mediator mTORC1 is involved in 

podocyte damage in this model. 

Interestingly, staining for phosphorylated S6 ribosomal protein - a downstream target 

of mTORC1 signaling widely used to assess the activation status of 

mTORC1 - revealed enhanced phosphorylation of S6 ribosomal protein not only in 

Phb2-depleted podocytes in vitro but also in vivo. Hyperactivation of mTORC1 has 

been shown to cause glomerular diseases in mice and humans before 

[95,104,160,161]. For example, diabetic mice show increased mTORC1 activation 

but benefit from podocyte-specific mTORC1 suppression and are less proteinuric 

under mTORC1 inhibition. Furthermore, constitutive podocyte-specific activation of 

mTORC1 by ablation of the upstream negative regulator TSC1 results in the 

development of a glomerular disease similar to diabetic nephropathy including 

proteinuria. Treatment with rapamycin ameliorated proteinuria in that study [104]. 

Rats treated with puromycin aminonucleoside (PAN) to induce nephrosis show 

hyperactivation of mTORC1 as well and can be protected from proteinuria by 

treatment with rapamycin or a rapamycin derivate [160,161].  

Compared to Phb2pko mice the progression of the disease in both, PAN-induced 

nephrosis rats and Tsc1-knockout mice, is much slower and animal models with 

hyperactive mTORC1 rather developed features of diabetic nephropathy with GBM 

thickening and mesangial expansion while Phb2pko mice presented with a FSGS-like 

pathology [104,160,161]. Additionally, Phb2pko mice died around 31-37 days after 

birth while e.g. Tsc1-knockout mice survived at least eight weeks when they were 

analyzed in the less susceptible C57BL/6 background which was also used for the 

Phb2pko study. Rapamycin treatment before onset of the disease suppressed the 

development of proteinuria in Tsc1-knockout mice completely [104] but shows no 

effect on albuminuria in Phb2pko mice. Therefore, it can be speculated that the 

hyperactivation of mTORC1 is not the initial cause of albuminuria and 
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glomerulosclerosis in Phb2pko mice but rather the consequence of PHB2 depletion at 

the slit diaphragm as discussed under 7.1.2.  

Intriguingly, lifespan of Phb2pko mice is clearly increased under rapamycin treatment, 

suggesting that the fast progression of the disease and severity of podocyte damage 

in this model depends on mTORC1 activity. This hypothesis is in line with the studies 

discussed here, illustrating that dysregulation of mTOR signaling in podocytes 

causes glomerular diseases [95,104,160,161]. Gödel et al. [95] raised the hypothesis 

that under pathologic conditions like diabetic nephropathy in patients mTOR is 

activated to counteract the metabolic changes in the disease. But despite of 

short-term beneficial effects of the increased mTORC1 activation this dysregulation 

ultimately facilitates disease progression. Clearly, this could hold true for Phb2pko 

mice as well, but the underlying molecular mechanism needs to be investigated 

further. One hypothesis could be that the development of any glomerular disease 

sensitizes the same pathway which ultimately leads to activation of mTOR as a 

common final effector pathway. Another hypothesis could be that mTOR activation is 

mediated via distinct pathways specific for the underlying podocyte defect. So far, 

hyperactivation of mTORC1 has only been shown in diabetic nephropathy 

[95,104,161] and glomerulonephritis [160,162] models as well as glomerulosclerosis 

arising from Phb2-deficiency. To be able to draw any conclusive result more 

glomerular disease models need to be analyzed for hyperactivity of mTORC1 and 

mechanisms of activation. Clearly, so far it cannot be ruled out that mTOR activation 

could also be a secondary effect caused by the development of albuminuria as a 

metabolic switch meant to counteract the disease. But there is no actual data 

available showing that albuminuria per se causes mTOR activation, neither in this 

model nor in any other published report on mTOR activation and proteinuria. 

Phb2pko mice treated with rapamycin showed a 50% mortality rate at day 42 and a 

mean lifespan of ~44 days whereas Phb2pko/Insrpko/Igf1rpko mice showed a 50% 

mortality rate at day 43 and a mean lifespan of ~86 days. This high increase in mean 

lifespan of Phb2pko/Insrpko/Igf1rpko mice can be explained by the fact that some 

Phb2pko/Insrpko/Igf1rpko mice did not die by renal failure in the end but survived until 

the end of the study. In contrast, in the rapamycin-treated Phb2pko study group only 

one mouse survived until the end of the study. This could be on the one hand due to 

unequal numbers of mice that were analyzed. The rapamycin-treated Phb2pko study 
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group included only 8 mice while the Phb2pko/Insrpko/Igf1rpko study group contained 19 

individual subjects. On the other hand, this could also be explained by the fact that 

the effect of an intraperitonally administered drug might not be as pronounced as a 

knockout model. For this study, it is not known which concentration of rapamycin 

reaches the podocyte in the end and for how long the rapamycin concentration is 

high enough to exert its beneficial effects. In this regard, the triple knockout mouse 

might serve as a better model to study metabolic effects in Phb2-deficient mice. 

 

7.2.3 Hypothesis: Loss of PHB2 sensitizes the insulin receptor 

Investigation of the molecular mechanism how loss of PHB2 leads to increased 

mTORC1 activity in vitro and in vivo might provide novel insights into the crosstalk of 

mitochondria and insulin/mTOR signaling in health and disease. This thesis work 

suggests that the effect of Phb2-deficiency on mTOR activity is mediated via 

activation of the insulin and IGF-1 receptor and that dysregulated signaling is 

detrimental to cell metabolism and survival as reflected by slowing progression of 

glomerular disease with rapamycin treatment or knockout of the insulin receptor and 

IGF-1 receptor. 

A possible mechanism could be that loss of mitochondrially localized PHB2 leads to 

the production of reactive oxygen species (ROS) including H2O2 in podocytes. These 

effect has already been shown for several other but not all cell types in vitro and in 

vivo [53,69,121,142–144]. A mild but not high increase in ROS production has been 

suggested to enhance insulin sensitivity by two mechanisms: first, facilitation of the 

insulin-stimulated tyrosine autophosphorylation of the insulin receptor; second, 

oxidation and inhibition of PTEN, a suppressor of the insulin/IGF-1 receptor 

downstream target AKT [163–165]. Furthermore, oxidative stress can also induce 

activation of the IGF-1 receptor [166]. Therefore, an increase in ROS production 

could enhance insulin/IGF-1 signaling and activate mTORC1. The study in worms 

showed that Phb2-deficiency leads to increased mitochondrial content [70]. This 

ROS-induced enhanced insulin sensitivity model could provide two explanations for 

this finding. Firstly, the activation of the mTORC1 pathway could result in the 

inhibition of autophagy [167], thereby preventing the breakdown of structurally 

disorganized and maybe dysfunctional mitochondria further promoting disease 

progression. Secondly, enhanced activation of insulin/IGF-1 signaling leads to 
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phosphorylation of the transcription factor FOXO1 thereby preventing FOXO1 from 

translocation into the nucleus [168–170]. FOXO1 is amongst others necessary for the 

transcription of a gene that encodes for an enzyme leading to heme depletion [171]. 

Heme is an important co-factor for the OXPHOS system. Loss of heme results in 

reduced electron transfer from e.g. NADH and FADH2 and alters the ratio of 

NAD+/NADH which is a sensor for mitochondrial biogenesis. When FOXO1 

translocates to the nucleus the NAD+/NADH ratio decreases and blocks 

mitochondrial biogenesis [171]. Lack of PHB2 and subsequent activation of the 

insulin/IGF-1 signaling pathway retain FOXO1 in the cytoplasm and allow 

mitochondrial biogenesis leading to more ROS production and again enhanced 

insulin sensitivity. This would foster a vicious circle from which escape is possible by 

directly interfering with signaling on the level of the insulin receptor and IGF-1 

receptor. However, this does not explain the benefical effect of mTORC1 inhibition in 

Phb2pko mice. But with regard to the function of active mTORC1 in promoting gene 

transcription and protein translation, inhibition of mTORC1 could deplete the cell of 

components necessary for mitochondrial biogenesis leading to a similar effect as loss 

of the insulin and IGF-1 receptor. 

. 

 
Figure 17. Hypothesis: Loss of PHB2 sensitizes the insulin receptor 

Loss of PHB2 in mitochondria could increase ROS production which on the one hand 
might lead to activation of the insulin and IGF-1 receptor and thereby signaling via 
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AKT. On the other hand, increased ROS could inhibit PTEN which under normal 
conditions would inhibit AKT. AKT activation would lead not only to mTORC1 
activation but also to the inhibition of FOXO1-phosphorylation, resulting in heme 
depletion and a decreasing NAD+/NADH ratio. This could promote mitochondrial 
biogenesis, leading to the accumulation of more Phb2-deficient mitochondria. 
Increased mitochondrial biogenesis could be further supported by elevated 
transcription and translation processes via mTORC1 activation and the inhibition of 
autophagy by mTORC1 may further promote accumulation of the dysfunctional 
mitochondria. (ETC = electron transport chain; ROS = reactive oxygen species) 

 
Clearly, the hypothesis that increased ROS production from Phb2-deficient 

podocytes leads to enhanced insulin sensitivity needs further testing. Of course, it is 

very well conceivable that other factors than ROS activate the insulin and IGF-1 

receptor in PHB2-depleted conditions to mediate hyperactivation of mTORC1 and the 

potentially deleterious effects of this dysregulation. 
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8 Conclusion 

By using different techniques like immunofluorescence, immunogold-labeling and 

co-immunoprecipitation PHB2 was not only shown to localize to mitochondria but 

also to the podocyte slit diaphragm protein-lipid supercomplex. Podocyte-specific 

Phb2-deficient mice (Phb2pko mice) developed progressive albuminuria and 

glomerulosclerosis and died prematurely from renail failure, thereby resembling 

phenotypes of mice lacking other slit diaphragm protein knockout mice. Experiments 

in the nematode C. elegans further supported the localization of PHB2 to the 

protein-lipid supercomplex and revealed an essential impact of PHB2 on the 

functionality of this mechanosensitive complex in worms. Collectively, this thesis 

works suggests an extramitochondrial function of PHB2 at the slit diaphragm of 

podocytes. 

Furthermore, inhibition of mTORC1 signaling by either rapamycin-treatment of 

podocyte-specific Phb2-deficient mice or loss of the insulin receptor and IGF-1 

receptor prolonged lifespan of the Phb2pko mice by a so far unknown mechanism. 

Interestingly, albuminuria developed in these animals despite suppression of 

mTORC1 activity. In conclusion, this indicates that the development of albuminuria 

could be the result of the loss of function of PHB2 at the slit diaphragm but the fast 

progression of the glomerular disease depends on hyperactive mTORC1 after 

PHB2-depletion. 

 

Figure 18. Why does loss of PHB2 lead to glomerular disease? 

Loss of PHB2 ultimately leads to glomerular disease via two probably distinct 
pathways. On the one hand, PHB2-depletion results in foot process effacement 



Conclusion 

92 

 

because of its localization to the slit diaphragm, which results in loss of filter function 
(resulting in albuminuria). On the other hand, Phb2-deficiency leads to mitochondria 
dysfunction which enhances mTOR activation, resulting in a detrimental metabolic 
switch in podocytes (leading to podocyte loss). These two pathways together underlie 
the severe glomerular disease seen in Phb2pko mice. 
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