
1 

 

The Dictyostelium discoideum RACK1 orthologue 

has roles in growth and development 

 

Inaugural-Dissertation 

zur 

Erlangung des Doktorgrades  

der Mathematisch-Naturwissenschaftlichen Fakultät 

der Universität zu Köln 

                                                     

vorgelegt von 

Napoleon Nosa Omosigho 

aus Benin City, Nigeria 

 

Köln, 2014 

 



2 

 

 

Vorsitzender:                    Prof. Dr. H. Arndt 

1. Berichterstatter:            Prof. Dr. A. A. Noegel 

2. Berichterstatter:            Prof. Dr. M. Hülskamp 

Tag der mündlichen Prüfung: 24 Juni 2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

This research work was carried out from July 2011 to May 2014 at the Centre for 

Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, 

Germany, under the supervision of Prof. Dr. Angelika A. Noegel. 

 

Die vorliegende Arbeit wurde in der Zeit von Juli 2011 bis May 2014 unter der Anleitung von 

Prof. Dr. Angelika A. Noegel im Institut für Biochemie I der Medizinischen Fakultät der 

Universität zu Köln angefertigt.  

 

 

 

 

 

 

 

 

 

 

 



4 

 

Acknowledgements 

I would first like to thank Prof. Dr. Angelika Noegel for the opportunity given to me to carry 

out this research work in the Institute of Biochemistry I. Also, her words of advice and 

encouragement throughout the period of the research were of immense help. 

My sincere gratitude also goes to Dr. Tanja Riyahi, who is the pioneer of this project, for 

incorporating me into the D. discoideum field of studies. Her competence was second to none 

with respect to problems solving whenever and wherever they arose. 

My gratitude also goes to Dr. Annette Müller-Taubenberger (LMU München), Dr. G. Gerisch 

and Dr. M. Plomann for their support in the provision of reagents during this study.  

I also thank the Center for Molecular Medicine Cologne for assistance in protein and DNA 

sequencing.   

Furthermore, my appreciation also goes to all members of Lab. 14 and of the Institute of 

Biochemistry I which include Rosi (Frau Blau who is retired but never tired), Sonja, Karthik 

(Herr Swaminathanski, now in UK), Vivek, Salil, Ping Li, Atul (Bling Bling) and Ilknur. I 

cannot forget Mr. Berthold Gassen for all the great antibodies he provided during the course 

of this study. Mr. Rolf Müller and Maria Stumpf are not left out for their technical support in 

cloning experiments. Members of the other laboratories in the Biochemistry Institute too 

numerous to mention who were in one way or the other of assistance to me during the 

research are also appreciated. 

I want to thank members of my family especially my elder brother, Omosigho Julius and 

Ursula Freyer, who engineered my trip to Germany from Nigeria for this course. Others are 

Mr & Mrs Tony Omorogbe, Kennedy, Harrison, Mercy Igbinovia (Opladen), and my parents. 

My heart and very warm thanks goes to my wife, Nancy Osarugue Osaghae, for her endless 

encouragement and assistance. My children, Adonai and Harmony, who were borne during 

this study, also added new life to this project. I would not forget to thank friends, Mr Sammy 

(Leverkusen), and Mr and Mrs Oliver and Glory Hoegenkamp (Duisburg), who are very 

much, like family members to me. 

Above all, I give God almighty all the glory for his grace, goodness and mercies upon my life 

and that of my family. May He be praised forever!  



5 

 

Table of contents 

Abbreviations …………………………………………………………………………….1 

1 Introduction ……………………………………………………………………………2 

       1.1 The WD-repeat family of proteins ……………………………………………..2 

       1.2 Receptor for activated C kinase 1 (RACK1) - a scaffold protein:  

             structure and  physiological functions ………………………………………....7 

             1.2.1 Structure of RACK1 ……………………………………………………...8 

             1.2.2 Physiological functions of RACK1 ……………………………………...10 

             1.2.3 Post-translational Modification of RACK1 ...…………………………..13 

      1.3 G protein-linked signalling in Dictyostelium discoideum ...……………………13  

      1.4 D. discoideum G protein β subunit-null mutants ……………………………....14   

      1.5 Aim of this study …………………………………………………………………15 

2 Materials and Methods ………………………………………………………………..16 

      2.1 Kits ………………………………………………………………………………..16 

      2.2 Enzymes, antibodies and antibiotics ……………………………………………16 

            2.2.1 Enzymes for molecular biology …………………………………………….16 

            2.2.2 Antibodies …………………………………………………………………...17 

               2.2.2.1 Primary antibodies ……………………………………………………...17 

               2.2.2.2 Secondary antibodies ……………………………………………...……17 

            2.2.3 Antibiotics …………………………………………………………………...17 

      2.3 Media and Buffers ……………………………………………………………….18 

            2.3.1 Buffers and Solutions ……………………………………………………...18 

            2.3.2 Bacteria medium and agar plates ………………………………………...19  

            2.3.3 Yeast medium ……………………………………………………………...20 

            2.3.4 Media and buffers for Dictyostelium cultures …………………………...22  



6 

 

            2.3.5 Bacteria, D. discoideum, and yeast strains …..…………………………...23 

            2.3.6 Oligonucleotides …………………………………………………………...23 

      2.4 Methods ………………………………………………………………………….26 

            2.4.1 Growth, development and transfection ………………………………….26 

            2.4.2 Cloning of RACK1 cDNA and expression of recombinant proteins …..26 

            2.4.3 Phosphoinositide binding assay ………………………………………......27  

            2.4.4 Lipid vesicle preparation and sedimentation assay ……………………..28 

            2.4.5 Yeast Two-Hybrid Interaction …………………………....…....………....29   

            2.4.6 Pull down and immunoprecipitation assays ……………………………..29   

            2.4.7 In vitro cross-link assay …………………………………………………...30 

            2.4.8 Test for presence of phosphotyrosine in DdRACK1 ……………………30 

            2.4.9 Immunofluorescence analysis and life cell imaging ……………………..30 

            2.5 Cell migration studies ……………………………………………………….31  

            2.5.1 Miscellaneous methods ……………………………………………………31 

      3 Results …………………………………………………………………...…………32 

         3.1 Characterization of DdRACK1 ………………………....…………………....32 

         3.2 Subcellular localization of RFP-/GFP-DdRACK1 ………………………….36 

         3.3 Subcellular distribution of DdRACK1, GFP-DdRACK1 and  

               DdRACK1mut, and the developmental expression pattern of DdRACK1 ..40 

         3.4 DdRACK1 oligomerization potential …………………………………………42 

         3.5 Post-translational modification of DdRACK1 …………………………….....45 

         3.6 Lipid interactions ……………………………………………………….………46 

         3.7 DdRACK1 interacts with G proteins ………………………………………….49 

         3.8 Growth and development of D. discoideum strains …………………………..56 

         3.9 Development is altered in DdRACK1 overexpressor strains ………………..61 

      4 Discussion …………………………………………………………………………...66 



7 

 

      5 Summary ……………………………………………………………………………71 

      6 References …………………………………………………………………………..73 

      7 Erklärung ……………………………………………………………………….......92 

      8 Lebenslauf …………………………………………………………………………..93  

  

   

 

 

   

     

 

      

      

 

 

 

 

 

 

 

 

 



8 

 

Abbreviations 

Dd                    Dictyostelium discoideum 

DNA                    Deoxyribonucleic acid 

EDTA                    Ethylenediaminetetraacetic acid 

GFP                    Green fluorescent protein 

GpbB                    G protein beta subunit B 

GPCR                    G-protein-coupled receptor 

GST                    Glutathion-S-Transferase 

IPTG                    Isopropyl-thio-galactoside 

kDa                    Kilo Dalton 

min                    Minute 

mM                    Millimolar 

M                    Molar 

PAGE                    Polyacrylamide Gel electrophoresis 

PCR                    Polymerase chain reaction 

PIPs                       Phosphoinositides 

PMSF                    Phenylmethylsulfonyl fluoride 

RACK1        Receptor for activated C Kinase 1 



9 

 

RFP                       Red fluorescent protein  

RpkA              Receptor Phosphatidylinositol Kinase A 

SDS                    Sodium dodecyl sulphate 

TAE                     Tris-Acetate-EDTA-Buffer 

Tris                     Tris(hydroxymethyl)aminomethane 

TRITC             Tetramethylrhodamine isothiocyanate 

v/v                     volume per volume 

YFP                        Yellow fluorescent protein 

X-Gal                     5-bromo-4-chloro-3-indolyl-β-D-Galactopyranoside 

 

 

 

 

 

 

 

 

 



10 

 

1      Introduction 

1.1     The WD-repeat family of proteins 

The tryptophan, aspartic acid-repeat (WD-repeat) containing proteins are an ancient 

conservative family of proteins found in prokaryotes and all eukaryotes (Li and Roberts, 

2001). They are involved in almost every signalling pathway and are associated with many 

genetic diseases. Until now over 100 WD-repeat proteins have been assigned with an 

approved name and designation in the human nomenclature database (Adams et al., 2011). 

WD-repeats themselves are sequences of typically 40-60 amino acids in length ending at the 

C-terminus with a signature WD dipeptide or its equivalent (Adams et al., 2011). The motifs 

were first identified as repeating segments of homologous sequence within the primary 

structure of the transducin Gβ subunit and CDC4 (Fong et al., 1986). The WD-repeats are 

also characterised by the presence of a GH dipeptide which is usually in the N-terminus, 

though neither the GH nor the WD dipeptide is absolutely conserved. Moreover, WD-repeat 

proteins may contain N-terminal and C-terminal regions of variable length (Chen et al., 

2004). Several other characteristic amino acids contribute to the repeat, most notably an 

aspartic acid located 6 residues before the WD dipeptide, but it is the collective critical mass 

of such features rather than the absolute conservation of any individual amino acid that 

establishes the identity of a sequence as a WD-repeat ( Xu and Min, 2011). Given the variable 

number of residues at the N-terminal end of these units, sequence databases tend to map the 

repeats of WD-proteins between GH and WD dipeptides for convenience (Adams et al., 

2011). The basic criterion for inclusion of a protein into this family is the presence of at least 

four of these repeat sequences to generate a WD-domain. These domains adopt a β-propeller 

structure, where the propeller fold is characterised by blades that are arranged radially around 

a central axis (Figure 1) (Neer et al., 1994; Neer, 1995; Paoli, 2001; Sondek et al., 1996; Wall 

et al., 1995).  
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Figure 1 Structural detail for RACK1 proteins. (A) Crystal structure of RACK1A from 

A. thaliana (PDB: 3DM0), illustrating the seven-bladed β-propeller structure. (B) As (A) 

but with surface rendition. (C) Schematic representation of RACK1 structure and 

organisation of WD-repeats; peripheral circles show superimposition of individual 

propeller blades for Gβ1 (blue) (PDB: 1TBG) and for the structurally defined RACK1 
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orthologues. Gβ is distinguished in blade 7 by a helical N-terminal extension that 

engages tightly bound Gγ (not shown) in coiled coil interactions (Adams et al., 2011).  

The conserved propeller structure is maintained by well-defined hydrogen bonding networks 

and intra-chain hydrophobic interactions, although different WD-repeat proteins appear to 

adopt distinct folding orders for their constituent propeller blades (Sondek et al., 1996; 

Garcia-Higuera et al., 1998). In principle, s single β-propeller subunit may comprise four to 

eight blades (Smith, 2008; Paoli, 2001), although at present only 7-bladed or 8-bladed WD-

repeat propellers have been characterised by X-ray diffraction studies-the majority being 7-

bladed structures consistent with the proposal that this is the optimal β-propeller fold (Murzin, 

1992). Proteins are known with more than eight WD-repeats, but these assume tertiary 

structures with multiple propeller subunits (Adams et al., 2011).  

WD-repeat proteins share a common role in scaffolding protein complexes, often with 

multiple and competing partners, thereby serving as hubs for spatiotemporal orchestration of 

signalling events across diverse pathways. Enzymatic activities have not been reported thus 

far for WD-repeat proteins, but their functions can be regulated by post-translational 

modifications (Adams et al., 2011). The lack of a direct catalytic enzymatic function for the 

protein family contrasts with other β-propeller-forming proteins, many of which exhibit 

enzymatic activity (Paoli, 2001). 

To date the most extensively studied WD-repeat protein is the G-protein β subunit (Gβ) 

(Neer, 1995; Sondek and Siderovski, 2001), which exists in a complex with the γ subunit 

(Gγ). Gβγ reversibly complexes with the GDP-bound Gα subunit to form a Gαβγ heterotrimer 

that associates with G-protein-coupled receptors (GPCRs) for transduction of extracellular 

signals. Agonist-bound GPCRs act as guanine nucleotide exchange factors (GEFs), promoting 

the release of the Gα subunit from the Gβγ heterodimer, resulting in the activation of various 
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signalling cascades (Schwindinger and Robishaw, 2001; Tuteja, 2009). The mode of Gβ 

interaction with its binding partners has become increasingly clear with the emergence of 

crystal structures of Gβ in various complexes with Gα/Gγ, (Sondek et al., 1996; Wall et al., 

1995; Lambright et al., 1996; Nishimura et al., 2010), phosducin (Gaudet et al., 1996; Gaudet 

et al., 1999; Loew et al., 1998), GPCR Receptor Kinase 2 (GRK2) (Ladowski et al., 2003; 

Tesma et al., 2010; Tesma et al., 2005), and Regulator of G-protein Signalling 9 (RGS9) 

(Cheever et al., 2008; Slep et al., 2001). Evidence is accumulating for the 

homodimeric/heterodimeric interactions of the WD-repeat containing proteins including the 

Receptor for activated C kinase 1 (RACK1) (Thornton et al., 2004; Liu et al., 2007; Chen et 

al., 2004; Chen et al., 2005). Dimerization events are frequently employed to transduce 

signals from the cell surface to the nucleus (Klemm et al., 1998). Moreover, some WD-repeat 

proteins contains some other domains in addition to the WD repeat sequences that increase 

the number of binding partners, scaffolding properties and overall function of the protein 

(Adams et al., 2011). For example, the β-transducing repeat-containing protein 1 (β-TrCP1) is 

a ubiquitin ligase with both WD-repeat and F-Box domains as well as a RING domain. β-

TrCP1 is required for the degradation of regulatory proteins such as Snail and p53 (Vinas-

Castells et al., 2010; Xia et al., 2009), and the WD-repeats increase its binding cohort and 

regulate its sub-cellular location, allowing the protein to also have a role in transcription and 

in regulating circadian rhythm (Seo et al., 2009; Kimbrel and Kung, 2009; Ohsaki et al., 

2008).  

As the knowledge of the WD-repeat family of proteins increases, the members are being 

regularly shown to be involved in most signalling pathways. It is therefore not surprising to 

note that WD-repeat proteins play critical roles in several human diseases. It is also interesting 
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to know that changes in WD-repeat homeostasis can have a dramatic effect on protein 

complex assembly and on key signalling pathways.   

1.2     Receptor for activated C kinase 1 (RACK1) - a scaffold protein: structure and 

physiological functions 

Scaffold proteins are uniquely poised to integrate signals from multiple pathways. Such 

proteins generate considerable functional diversity by mediating concomitant and/or 

promiscuous interactions with a vast array of protein partners (Ullah et al., 2008). RACK1 is 

a highly conserved intracellular adaptor protein with significant homology to Gβ (Adams et 

al., 2011). RACK1 was originally cloned from a chicken liver cDNA library and human B-

lymphoblastoid cell line (B-LCL) (Guillemot et al., 1989). The protein was then cloned from 

a rat brain cDNA library which was screened for gene products that bind purified rat brain 

PKC in the presence of its activators (phosphatidyserine, diacylglycerol and calcium) (Ron et 

al., 1994). Given the association of RACK1 with the active conformation of PKCβII, the 

protein was named Receptor for Activated C Kinase 1 (RACK1) (Ron et al., 1994; 1995; Ron 

and Mochly-Rosen, 1995; Stebbins and Mochly-Rosen, 2001).  

It is now very well established that RACK1 interacts with a large number of proteins either 

directly or as a part of a complex. As a scaffold protein, RACK1 integrates inputs from 

distinct signalling pathways and is crucial for fundamental cellular activities such as cell 

proliferation, transcription and protein synthesis, as well as various neuronal functions 

(Adams et al., 2011). RACK1’s scaffolding properties are mediated by the presence of seven 

WD-repeats (McCahill et al., 2002; Sklan et al., 2006) that present multiple protein-binding 

sites and facilitate interaction with specialized protein docking modules, including SH2 

domains (Src and Fyn) (Chang et al., 2002; Yaka et al., 2002), pleckstrin homology (PH) 
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domains (dynamin and p120GAP) (Koehler and Moran, 2001; Rodriguez et al., 1999) and C2 

domains (Ron et al., 1994; Stebbins and Mochly-Rosen, 2001).  

RACK1 functions as a homodimer enabling the expansion of its binding partners (Chen et al., 

2005; Thornton et al., 2004; Yaka et al., 2002; Dell et al., 2002; Liu and Semenza, 2007). The 

formation of the RACK1 heterodimer has been shown to enable efficient cross-talk between 

signal transduction pathways mediated by GPCRs and by ligand-gated ion channels, 

specifically between the cAMP/PKA pathway and the N-methyl D-aspartate receptor 

(NMDAR) (Thornton et al., 2004). RACK1 binding partners have been identified at various 

cellular locations. One very important function of RACK1 is to shuttle some of its interaction 

partners to specific sites within the cell. Global control of gene transcription, translation, and 

ribosome assembly are also emerging as important cellular functions of RACK1 (Ceci et al., 

2003; Nilsson et al., 2004). RACK1 orthologs have also been discovered in lower eukaryotes, 

such as Chlamydomonas and yeast (Schloss, 1990), and are highly conserved in plants and 

other organisms (van Nocker and Ludwig, 2003), which do not express canonical protein 

kinase C enzymes (Herold et al., 2002).  

1.2.1     Structure of RACK1  

Studies probing the evolution of RACK1 suggest that the protein is strongly conserved 

through evolution (Wang et al., 2003). Sequence alignments of RACK1 species from diverse 

organisms reveal a significant sequence identity. Gβ was the first WD repeat protein to be 

characterised by X-ray crystallography. Numerous crystal structures have since emerged for 

WD-repeat proteins (Sondek et al., 1996; Wall et al., 1995; Lambright et al., 1996; 

Stirnimann et al., 2010). These structural studies confirmed that RACK1 adopts a seven-

bladed β-propeller structure consistent with the predictions of earlier homology modelling 

studies based on Gβ and other WD-repeat proteins (McCahill et al., 2002; Stirnimann et al., 
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2010; Coyle et al., 2009; Rabl et al., 2011; Ullah et al., 2008; Ruiz et al., 2012). The A. 

thaliana protein was the first of RACK1 orthologues to be structurally defined. In contrast to 

metazoans, where RACK1 is expressed as a single gene, A. thaliana possesses three genes. 

The structure of human RACK1 is shown in Figure 2. 

   

     

 

Figure 2 Views of the hRACK1 crystal structure. Central panel: cartoon representations 

of hRack1 viewed from the side (left) and from the top (right). The locations of the 

protein pore and the ‘velcro’ motif are indicated. Each β-sheet or blade is numbered 

sequentially from the N-terminus of the protein and their β-strands are labelled a, b, c, 
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and d starting from the inside of the propeller close to the pore. The electrostatic surface 

of hRack1 is shown from four different angles. Side surfaces, bottom and top views are 

displayed in (a) (blades 1–3), (b) (blades 5–7), (c) and (d), respectively (Ruiz et al., 2012). 

Each β-sheet (1-7) shows the same basic architecture comprised of antiparallel strands 

labelled a, b, c and d from the inner side of the propeller to the outer side. Adjacent blades are 

connected by a loop bridging from strand d on one blade to strand a on the next. These loops 

are exposed on the top face of the propeller blade, as are the β-turns linking strands b and c in 

each blade. The WD-repeats of RACK1, as with all proteins that adopt this fold, overlap two 

adjacent propeller blades to provide an interlocking architecture. Each repeat encompasses the 

d-strand of one blade and strands a, b, and c of the next, terminating in the signature WD 

dipeptide at the end of strand c such that the aspartic acid (or equivalent residue) is exposed 

on the propeller’s lower face (Adams et al., 2011). 

The available crystal structures for Gβ and other WD-repeat proteins have established the 

structural basis for scaffold interactions with a range of partner proteins (Xu and Min, 2011). 

Unfortunately, structural information relating specifically to the interactions of RACK1 with 

its numerous protein partners currently remains very limited (Adams et al., 2011).  

1.2.2     Physiological functions of RACK1 

There are emerging critical roles for RACK1 in development. RACK1 has been implicated in 

the membrane localization of van gogh-like 2 (Vangl2) in zebrafish. The Vangl2-interacting 

region of RACK1 has been shown to exert a dominant-negative effect on Vangl2 localization 

and gastrulation (Li et al., 2011). The interaction between RACK1 and tyrosine-protein 

kinase-like 7 (PTK7) has also been shown to be a requirement for neural tube closure in 

Xenopus (Wehner et al., 2011). In Arabidopsis, where three RACK1 homologues are present, 
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the RACK1 gene products are essential regulators of plant development (Chen et al., 2006; 

Guo and Chen, 2008). RACK1 homologs in Drosophila (Kadrmas et al., 2007), Aspergillus 

nidulans (Hoffmann et al., 2000), Schizosaccharomyces pombe (McLeod et al., 2000) and 

Trypanosoma brucei (Rothberg et al., 2006) have similarly been shown to be central to 

various stages of the developmental process. 

The scaffolding of signalling proteins by RACK1 at receptors is particularly important in 

dynamic processes such as cell migration, cell adhesion and cell spreading (Hermanto et al., 

2002; Kiely et al., 2002; 2005; 2009). All of these processes require the highly regulated 

converging of transient signalling between receptors. For instance, RACK1 was first 

discovered to be a mediator of cell spreading by establishing contact with the extracellular 

matrix and growth factor receptors at adhesion sites (Hermanto et al., 2002). As a scaffold 

protein RACK1 plays very important roles during cell migration. Cell migration is a 

fundamental process required for embryonic development, wound healing and immune 

responses, and the components of cell migration are functionally conserved in evolution 

(Adams et al., 2011). Cell migration is a dynamic process involving multiple steps: 

cytoskeletal reorganisation to form leading edge protrusions, turnover of focal adhesions, 

generation of mechanic forces, retraction of the cell tail, and detachment from the surrounding 

extracellular matrix (Gandin et al., 2013). Evidence is mounting of RACK1 involvement in 

various stages of this process. RACK1 is essential for cell migration, and the protein binds to 

many components of the cell migration machinery including kinases, phosphatases and the 

cytoplasmic domains of cell surface receptors (McCahill et al., 2002; Sklan et al., 2006). 

RACK1 also functions in direction sensing of migrating cells. A complex of RACK1, focal 

adhesion kinase (FAK), and the cAMP-degrading phosphodiesterase PDE4D5 is recruited to 

nascent adhesions, where it modulates cell polarity (Serrels et al., 2010). 
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Some of the importance of RACK1 in disease pathology results from its ability to modulate 

the innate immune response and activation of interferon (IFN) signalling (Gandin et al., 

2013). Many pathogens, especially viruses, evade the host immune response by interfering 

with IFN signalling. RACK1 interacts with IFNα/β receptor and recruits signal transducer and 

activator of transcription 1 (STAT1) into this complex, which is required for IFN signalling 

(Usacheva et al., 2001). RACK1 has been suggested to be a prognostic marker in breast 

cancer, and its elevated expression is associated with poor clinical outcome (Al-Reefy and 

Mokbel, 2010; Cao et al., 2010). Furthermore, RACK1 promotes proliferation, migration and 

metastasis of breast cancer cells in vitro and in vivo through activation of the RhoA/Rho 

kinase pathway (Cao et al., 2010; 2011). RACK1 is also implicated as a key player in ovarian 

cancer (Williams et al., 2004), prostate cancer (Hellberg et al., 2002), and in cancers caused 

by pathogens such as human papillomavirus (HPV16) (Boner and Morgan, 2002) and 

Helicobacter pyroli (Hennig et al., 2001).  

As a primary RACK1-binding partner (Ron et al., 1994; 1995), PKCβII has been identified as 

an important factor linking ribosomal RACK1 and translational control in mammals (Gandin 

et al., 2013). RACK1 recruits active PKCβII onto ribosomes, where it phosphorylates 

eukaryotic initiation factor 6 (eIF6) (Sharma et al., 2013). This confirms the importance of 

RACK1-PCKβII-eIF6 complex in the regulation of translation. In addition to a positive role 

for ribosomal RACK1 in mRNA translation, a negative role for RACK1 in gene expression at 

the posttranscriptional level has been reported in yeast (Gandin et al., 2013). Depletion of 

RACK1 results in increased ribosomal activity in cell-free in vitro translation assays and a 

concomitant increase in protein levels in vivo (Gerbasi et al., 2004).  
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1.2.3     Post-translational Modification of RACK1 

Apart from phosphorylation which appears as an important process that modulates binding of 

RACK1 to other proteins, not much is known about other possible post-translational 

modifications. There are lots of tyrosine residues in the RACK1 sequence. Phosphorylation of 

RACK1 by c-Abl mediates the interaction with FAK (Kiely et al., 2009), while 

phosphorylation/dephosphorylation of RACK1 also regulates its mutually exclusive 

association with PP2A and β1 Integrin (Kiely et al., 2008; 2006). Specifically, Src 

phosphorylates RACK1 on Y-228 and 246 (Chang et al., 2002).  

1.3     G protein-linked signalling in Dictyostelium discoideum 

In D. discoideum, G protein-linked signal transduction events, in particular, are essential for 

chemotaxis, cell aggregation, morphogenesis, gene expression, and pattern formation 

(Devreotes, 1994). A major breakthrough in the identification of key proteins that are 

involved in eukaryotic chemotaxis was the discovery that cAMP receptors in D. discoideum 

are members of GPCRs (Klein et al., 1988; Saxe et al., 1988). Members of the large family of 

GPCRs detect various extracellular stimuli, including hormones, neurotransmitters, odorants, 

light, and chemoattractants (Jin et al., 2008; Gilmann, 1987). Activation of GPCRs induces 

events which lead to dissociation of heterotrimeric G proteins into Gα and Gβγ subunits, 

which in turn transduce cascade of signals to intracellular signalling components that 

culminate cell responses. Of the 12 Gα subunits present in D. discoideum, some have been 

characterised. The Gα2 subunit is required for cellular responses to the extracellular cAMP 

signal that directs the aggregation process during development (Kumagai et al., 1989). The 

Gα3 subunit is also required for aggregation but only in absence of exogenous cAMP, 

suggesting that Gα3 subunit is not directly involved with responses to extracellular cAMP 

(Brandon and Podgorski, 1997; Brandon et al., 1997). Finally, the Gα4, Gα5 and Gα8 
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subunits play important roles in the development of spores and the anterior prestalk cells, 

respectively, consistent with the increased expression of these subunits upon aggregate 

formation (Hadwiger and Firtel, 1992; Hadwiger and Srinivasan, 1999; Hadwiger et al., 1991; 

1994; Wu and Janetopoulos, 2013).  

1.4     D. discoideum G protein β subunit-null mutants 

In chemotaxis, amoeboid motile cells, like leukocytes and Dictyostelium cells, respond 

directionally to chemical gradients; in phagocytosis, they bind and engulf foreign organisms 

or apoptotic cells (Devreotes and Zigmond, 1988; Rabinovitch, 1995). Chemotaxis and 

phagocytosis seem to be closely related, suggesting that the underlying signal transduction 

events and cytoskeletal responses have evolved in parallel (Metchnikoff, 1968). In the simple 

eukaryote D. discoideum and in amoeboid cells of the immune system of animals, 

chemotactic and phagocytic stimuli elicit a remarkably similar spectrum of behavioural events 

and biochemical reactions (Devreotes and Zigmond, 1988; Greenberg, 1995). Foremost 

among these is the polymerization of actin into filaments that support the extension of 

pseudopods and the formation of phagocytic cups (McRobbie and Newell, 1993; Greenberg, 

1995; Zigmond, 1996). Chemotaxis and phagocytosis involve both G protein-coupled and 

tyrosine kinase-linked signal transduction pathways (Parent and Devreotes, 1996, Murphy, 

1996). With regard to phagocytosis, bound particles activate protein tyrosine kinases, such as 

syk, leading to actin polymerization and rearrangement, possibly through involvement of the 

small G protein Rho (Greenberg et al., 1994, 1996; Indik et al., 1995; Hackam et al., 1997). 

Heterotrimeric G proteins have been involved in chemotactic activation of macrophages, 

which leads to phagocytosis (Thelen and Wirthmueller, 1994), and in phagosome-endosome 

fusion (Desjardins et al., 1994)  
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D. discoideum amoebae contain a single G protein β subunit; its deletion creates cells that 

lack functional G proteins (Lilly et al., 1993; Wu et al., 1995). These mutants are severely 

defective in chemotaxis, aggregation, and development. When plated on bacterial lawns, they 

form smooth plaques consisting of monolayers of undifferentiated cells. These plaques are 

much smaller than those of wild type (Wu et al., 1995). This slow growth reflects a severe 

defect in phagocytosis, which is primarily due to a failure in organizing the actin meshwork 

into a phagocytic cup (Peracino et al., 1998).   

1.5     Aim of this study 

The aim of this study was to characterise the D. discoideum RACK1 (DdRACK1) protein 

which we initially identified as a binding partner of Receptor phosphatidylinositol kinase A 

(RpkA), an unusual GPCR which functions in phagocytosis and antibacterial defense in D. 

discoideum (Riyahi et al., 2011). DdRACK1 was characterised based on the following 

features: 

1. Its structure and homology to other RACK1 species  

2. Subcellular localisation and its dimerization properties 

3. Its ability to interact with G proteins 

The final part of this study was focused on the analyses of the effect of D. discoideum 

RACK1 (DdRACK1) overexpression during growth and development.  
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2     Materials and Methods 

Standard molecular biology techniques were performed as described in Sambrook et al., 1989. 

Light and heavy instruments used were properties of the Department. Standard laboratory 

materials and reagents were obtained from local suppliers.  

2.1    Kits 

NucleoSpin Extract 2 in 1                                                         Macherey-Nagel 

Quick Change Site-Directed Mutagenesis kit                           Stratagene 

pGEM-Teasy Vector kit                                                            Promega 

Pure Yield Plasmid System                                                       Promega 

VIVASPIN 500                                                                         sartoriusstedim biotech 

2.2     Enzymes, antibodies and antibiotics 

2.2.1   Enzymes for molecular biology: 

Taq-polymerase                                                                          Promega 

T4 DNA ligase                                                                            Boehringer    

Thrombin                                                                                    GE Healthcare 

Pfu DNA polymerase                                                                 Promega    

Alkaline phosphatase                                                                  Roche 

Restriction endonuclease                                                            New England Biolabs 

Ribonuclease A                                                                          Sigma        
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2.2.2   Antibodies 

2.2.2.1 Primary antibodies 

Mouse monoclonal anti- α-actinin mAb 47-16-8                      (Schleicher et al., 1984) 

Mouse monoclonal anti-csA mAb 33-294                                 (Berthold et al., 1985) 

Mouse monoclonal anti-cap32 mAb 188-19-95                        (Haus et al., 1993) 

Mouse monoclonal mAb 5E7                                                    (Fendly et al., 1990) 

Mouse monoclonal anti-GFP mAb K3-184-2                           (Noegel et al., 2004)       

Monoclonal antibody anti-mRFPmars mAb K73-875-7           (Fischer et al., 2004;  

                                                                                                   Omosigho et al., submitted) 

Rabbit polyclonal anti-GST                                                         (Xiong et al., 2008) 

Rabbit polyclonal anti-RACK1                                                    (This study) 

2.2.2.2 Secondary antibodies 

Goat anti-mouse IgG, peroxidase conjugated                               Sigma 

Goat anti-rabbit IgG, peroxidase conjugated                                Sigma 

2.2.3   Antibiotics  

Ampicillin                                                                                     Gruenenthal 

Blasticidin S                                                                                  Biomedicals 

Dihydrostreptomycinsulphate                                                       Sigma 
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Tetracyclin                                                                                    Sigma 

Gentamicin                                                                                    Sigma        

G418                                                                                              Sigma    

2.3    Media and Buffers 

All solutions and media used in the course of these experiments were prepared with deionized 

water from a pure water source in the laboratory. All other buffers and solutions which were 

not mentioned here are seen in the methods. 

2.3.1 Buffers and Solutions 

GST-fusion protein elution buffer, pH 7.2 

50 mM Tris/HCl, pH 7.2 

100 mM NaCl 

10 mM reduced glutathione 

0.2 % Tween-20 

10 mM DTT 

10 x NCP-buffer, pH 8.0 

12.1 g Tris  

87.0 g NaCl  

5.0 ml Tween 20  

2.0 g NaCl  

Made up to 1 litre with deionised water 
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50 x Tris/Acetate buffer (TAE), pH 8.0  

242 g Tris  

57.1 ml 16.6 M Glacial acetic acid  

100 ml 0.5 M EDTA  

Made up to 1 litre with deionized water 

TBS lysis buffer, pH 7.2 

50 mM Tris/HCl, pH 7.2 

100 mM NaCl 

TE-buffer, pH 8.0 

10 mM Tris/HCl, pH 8.0  

1 mM EDTA 

TBS-T buffer, pH 7.2 

50 mM Tris/HCl, pH 7.2 

100 mM NaCl 

0.2 % Tween-20 

2.3.2   Bacteria medium and agar plates 

LB-Medium (Sambroock et al., 1989) 

10 g/L Bacto-Tryptone 

5 g/L Yeast Extract 

5 g/L NaCl  

pH was adjusted to 7.0 with 5 M NaOH and made up to 1 litre with deionised water and then 

autoclaved. 
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Ampicillin-LB-agar Plates 

For the preparation of LB-agar plates, 0.9% (w/v) agar was added to LB-medium. After 

autoclaving and cooling to 55
o
C, 100 mg/l ampicillin was added. Stroage was at 4

o
C.  

To prepare plates with ampicillin/IPTG/X-Gal, 10 µl of 1M IPTG and 50 µl of 20 mg/ml X-

Gal was spread over the surface of LB-Amp-Plates and allowed to absorb for at least 30 

minutes at 37
o
C prior to use.  

2.3.3   Yeast medium 

YEPD-Medium  

20 g Difco-Peptone  

10 g Yeast Extract                 Made up to 1 litre with deionized water and then autoclaved 

YEPD-Agarplates  

20 g Difco-Peptone  

10 g Yeast Extract  

18 g Agar-Agar  

Made up to 1 litre and then autoclaved 

100x L-Adenine solution      

200 mg of L-Adenine dissolved in 100 ml H2O. Dissolution was aided with addition of drops 

of HCl and then sterile filtered.                                                                                                                  

100x L-Tyrosine solution 

300 mg of L-Tyrosine dissolved in 100 ml H2O. Dissolution was aided with addition of drops 

of NaOH and then sterile filtered.                                                                                                             

100x L-Histidine solution           

200 mg of L-Histidine dissolved in 100 ml H2O and then sterile filtered.                                        
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100x L-Leucine solution 

200 mg of L-Leucine dissolved in 100 ml H2O and then sterile filtered.    

100x L-Tryptophan solution  

200 mg of L-Tryptophan dissolved in 100 ml H2O and then sterile filtered. 

100x L-Uracil solution 

200 mg of L-Uracil dissolved in 100 ml H2O. Dissolution was aided by slightly warming 

solution before it was sterile filtered. 

50x Drop-out Solution 

1,500 mg Isoleucine  

7,500 mg Valine  

1,000 mg Arginine  

1,500 mg Lysine  

1000 mg Methionine  

2,500 mg Phenylalanine  

10,000 mg Threonine 

Filled up to 1 litre and then sterile filtered 

20x Drop-out Solution 

20 ml 50x Drop-out solution                                                                                                      

10 ml 100x L-Uracil                                                                                                                   

10 ml 100x L-Tyrosine                                                                                                                

10 ml 100x L-Adenine  

1 M 3-Amino-1, 2, 4-triazol solution (3AT) 

8.4 g 3-Amino-1, 2, 4-triazol dissolved in 100 ml deionised H2O and then sterile filtered. 
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Composition of the Yeast Selection Plates and Selection Medium 

  SD/-Leu/-Trp     SD/-Leu/-Trp/ 

  -His/+3AT 

Yeast Nitrogen Base (g)        6.7         6.7 

Agar-Agar (g)        20         20 

Water (ml)        770         745 

20% Glucose solution (ml)        100         100 

20x Drop-out solution (ml)        50         50 

100 x L-Histidine (ml)        10   

100 x L-Leucine (ml)         -   

100 x L-Tryptophan (ml)         -   

1M 3AT Solution (ml)                     25  

 

Yeast selection media were prepared but without the addition of the 20 g Agar to the 

preparations. To test for protein interactions, transformants on the SD /-Leu /-Trp plates were 

transferred to the SD /-Leu /-Trp /-His /+3AT plates. After 6-8 days, the colonies which grew 

were used to perform β-galactosidase activity staining.  

2.3.4   Media and buffers for Dictyostelium cultures 

AX2-Medium, pH 6.7 (Claviez et al., 1982) 

7.15 g Yeast extract  

14.3 g Peptone  

18.0 g Maltose  

0.486 g KH2PO4  

0.616 g Na2HPO2 x H2O  

Made up with H2O to 1 Liter 
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Soerensen-phosphate buffer, pH 6.0 (Malchow et al., 1972) 

2 mM Na2HPO4  

14.6 mM KH2PO4 

Phosphate-Agar plates, pH 6.0 

9 g Agar made up with Soerensen-phosphate buffer pH 6.0 to 1 Litre  

Water agar plates 

1% Agar in Water  

 

 

2.3.5   Bacteria, D. discoideum, and yeast strains 

Bacteria Cell Stock 

E.coli (XL1 blue)                                                                   (Bullock et al., 1987) 

E.coli (BL21)                                                                         (Studier and Moffat, 1986) 

D. discoideum 

AX2-214, also known as AX2 is a derivative of NC4 wild isolate (Raper, 1935) which can 

grow axenically. 

Yeast strain 

Saccharomyces cerevisiae Y190 (His3 and lacZ reporter genes) (Johnston et al., 1991; Harper 

et al., 1993). 

2.3.6   Oligonucleotides 

Oligonucleotides used for PCR (Polymerase Chain Reaction) were purchased from Sigma-

Genosys in Steinheim. 
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RACK1 

      RACK1_fw GGATCCATGGAACAACAAAAAGCACCAC 

      RACK1_rev ATCGATTTATTGGGATGATGATTTGTAAAC 

 

 Gβ subunit 

        Gβ_fw                         ATCGCGGATCCATGTCATCAGATATTTCAGAAAAAATT 

        Gβ_rev                        ATCGCCTGCAGTTAAGCCCAAATCTTGAGGAGAGAATC 

 Gγ subunit 

        Gγ_fw                          GCGGGATCCACCATGGAAATGTCCGAATCACAATTAAAAAAAGTT 

        Gγ_rev                         ATCGCGGATCCTTATAACACAGAACATCCATTTCCTTT 

 

Gα subunits 

          Gα1_fw                        ATCGCGGATCCATGGGTAATATTTGTGGTAAACCA 

          Gα1_rev                       ATCGCCTCGAGTTAAAGAATCATACCAGCTTCACCCAA 

          Gα2_fw                        ATCGCGAATTCATGGGTATTTGTGCATCATCAATG 

          Gα2_rev                       ATCGCAGATCTTTAGGATCCAGAATATAAACCAGCTTTCATAACACA 

          Gα3_fw                        ATCGCCTCGAGATGGATTTCAATCCAGTACCACCA 

          Gα3_rev                       ATCGCAGATCTTTAACAATAAAATTCTAAAGTTTTTGAAATTAT 

        Gα4_fw                        ATCGCGAATTCATGAGATTCAAGTGTTTTGGATCA 

        Gα4_rev                       ATCGCCTCGAGTTAGGATCCGAAGTGTTCTAAAGCTTGAGATAA 

          Gα5_fw                        ATCGCGAATTCATGGGTTGTATATTAACAATTGAAGCA 

         Gα5_rev                        ATCGCAGATCTTTAGGATCCATAATTTATGATTGTATTAAAGATATTTTT 

         Gα6_fw                        ATCGCGAATTCATGGCATTTTTATGTAAATCAAATGAT 

         Gα6_rev                       ATCGCAGATCTTTAGGATCCAACAAGATCCATAACATGACCAAC 

          Gα7_fw                       ATCGCGAATTCATGAGTAGCACTACAACAAATACA 

          Gα7_rev                      ATCGCAGATCTTTAGGATCCGATACCTCCTTCCTCCATAGTTTG  
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          Gα8_fw                       ATCGCGGATCCATGGGTTGCTATCAATCACGTGTT 

          Gα8_rev                      ATCGCCTCGAGTTAAGAATTAATTTTGGCGGTTGCACC 

          Gα9_fw                       ATCGCGAATTCATGGGTTGTAATTCAAGTAGTGAA 

          Gα9_rev                      ATCGCAGATCTTTAGGATCCATAGTGAAGTTTTAAGATAGATTGAAT 

          Gα10_fw                     ATCGCGAATTCATGTCATTTTTATGCTCAGAAAATTCA 

          Gα10_rev                    ATCGCAGATCTTTAGGATCCATTTTTTACAGAATTATATGTTATGTT 

          Gα11_fw                     ATCGCGAATTCATGGGAAGCCAATTTAGTGTTTTA 

          Gα11_rev                    ATCGCAGATCTTTAGGATCCAATTGTATCTTCTAATATTTTTTTAAC 

          Gα12_rev                    ATCGCGGATCCATGTGTACAAGAAATAAAAAAGATATT 

          Gα12_rev                    ATCGCCTCGAGTTATAAAATTTCTGCAACATTCATTAATAA 

  

Primers for Site-Directed Mutagenesis 

           mut_fw                      CCAGAAGTCAAAGAACAAGCTTTCGACTCAGAGGAAGAGGAA 

                                             GAATCAAAACCAAAGCACC  

           mut_rev                     GGTGCTTTTGGTTTTGATTCTTCCTCTTCCTCTGAGTCGAAAGCT 

                                             TGTTCTTTGACTTCTGG                 
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2.4      Methods 

2.4.1   Growth, development and transfection 

Cells were either grown on a lawn of K. aerogenes on SM agar plates, on a lawn of E. coli 

B12 on NA-agar or cultivated in shaking suspension (160 rpm) or in a submerged culture at 

21-23°C in axenic medium (Harloff et al., 1989). Development was initiated by plating 5 x 

10
7
 cells which were washed twice with Soerensen phosphate buffer (17 mM Na

+
/K

+
 

phosphate, pH 6.0) on phosphate agar plates and monitored. Development was also followed 

for cells starved in Soerensen phosphate buffer in shaken suspension (1 x 10
7
 cells/ml; 160 

rpm at 22ºC) or in petri dishes. Mutants were maintained in the presence of appropriate 

antibiotics (2-4 µg/ml G418) (Roche Applied Science) or (3-5 µg/ml Blasticidin) (MP 

Biomedicals Inc., Eschwege, Germany). The following strains have been used; AX2-214 

(wild type) (Noegel et al., 1985), AX2 expressing GFP-, YFP- or RFP-tagged fusion proteins, 

Gβ null mutants LW6 (Wu et al., 1995; Peracino et al., 1998) and LW6 expressing GFP-

DdRACK1. The corresponding plasmids were introduced by electroporation using a Biorad 

electroporator Gene Pulser Xcell (Biorad, München, Germany) according to the protocol 

supplied.  

2.4.2   Cloning of RACK1 cDNA and expression of recombinant proteins 

For expression of recombinant D. discoideum RACK1 and Gα subunits as glutathione S 

transferase (GST) fusion proteins in E. coli, full-length cDNAs were respectively cloned into 

pGEX-4T-1 vector (GE Healthcare Life Sciences). E. coli strain XL1 Blue was used for 

expression of the GST fusion proteins. Induction of protein expression was with 0.25 mM 

isopropyl -D-thio-galactoside (IPTG) when an OD600 of 0.8 was reached. Cells were further 

cultured at 30ºC for 3 hours. They were harvested, lysed in 50 mM Tris/HCl, pH 7.4, 100 mM 

NaCl, supplemented with Protease inhibitors (0.5 mM PMSF, 1mM Benzamidine and 
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Complete (Roche) and 1mM DTT with an EmulsiFlex cell homogenizer (Avestin Europe 

GmbH, Mannheim, Germany). Lysates were separated into soluble and insoluble fractions by 

centrifugation at 18,000g. The fusion proteins from the soluble fraction were purified using 

GST-Sepharose beads (GE Healthcare). 

For cleavage of proteins from GST-Sepharose beads, the GST fusion proteins were washed 5 

times with cleavage buffer (20 mM Tris/HCl, pH 7.4, 150 mM NaCl and 0.2 % Sarcosyl). 

Beads were then re-suspended in cleavage buffer and 3-10 U thrombin/mg fusion protein 

were added to the beads and incubated with little agitation at room temperature overnight. As 

RACK1 was released from the beads together with some GST, we next performed an anion 

exchange chromatography step in order to separate the proteins. For this the protein solution 

was dialyzed against 20 mM Tris/HCl, pH 8.0, and 1 mM EDTA overnight before loading 

onto a DE-52 Sephadex column which had been calibrated with 50 mM Tris/HCl, pH 8.0, 1 

mM EDTA. The protein was eluted with 1 M NaCl and the eluate dialyzed and analyzed by 

SDS-PAGE.  

For expression in AX2 the cDNA was cloned into pBsr-N2-GFP vector and expressed as 

GFP-RACK1 (GFP N-terminal) under control of the actin 15 promoter and also into 

mRFPmars plasmid for RFP-RACK1 (RFP N-terminal) (Blau-Wasser et al., 2009; Fischer et 

al., 2004). A PCR-mediated site-directed mutagenesis (QuikChange Site-Directed 

Mutagenesis Kit, Stratagene) was used to generate mutations in the GST-RACK1 and GFP-

RACK1 plasmids. The mutations were confirmed by sequencing.  

2.4.3   Phosphoinositide binding assay 

PIP-strips supplied by Echelon Biosciences, Inc. (Salt Lake City, Utah, USA) were used to 

perform phosphoinositide binding according to the supplied protocol. Briefly, GST and GST-

fusion proteins were eluted from the glutathione agarose beads with elution buffer (20 mM 
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reduced glutathione, 50 mM Tris/HCl, pH 7.4, 100 mM NaCl, 0.2% Tween-20, and 100 mM 

DTT). 

The membranes were blocked with 0.1% ovalbumin (Sigma # A-5253) in TBS for one hour at 

room temperature. After discarding the blocking solution membranes were incubated with 1 

mg/ml GST-fusion proteins in TBS-T (50 mM Tris/HCl, pH 7.4, 100 mM NaCl, 0.2 % 

Tween-20) at room temperature for one hour. The protein solution was then discarded and the 

membranes were washed with TBS-T three times 10 minutes each. Bound protein was 

detected by western blot analysis with GST polyclonal antibodies as primary and anti-rabbit 

IgG-peroxidase (Sigma # A-6154) as secondary antibody followed by enhanced 

chemiluminescence. 

2.4.4   Lipid vesicle preparation and sedimentation assay 

Phosphatidylserine (PS), phosphatidylcholine (PC), phosphatidylethanolamine (PE), PI(3)P, 

PI(4)P, PI(5)P, PI(3,4)P2, PI(3,5)P2, PI(4,5)P2, and PI(3,4,5)P3 were obtained from Sigma 

and disolved in chloroform. Liposome binding experiments were performed with a modified 

published liposome binding assay protocol (Blume et al., 2007). Lipid mixtures containing 

65% PC, 20% PE, 5% PS and 10% individual phosphoinositides were produced by mixing 

appropriate lipid solutions in chloroform/methanol. Slow flow nitrogen gas was used for the 

production of a film on the glass and vacuum desiccation for 30 min for solvent removal. 

Sterile-filtered sucrose binding buffer (20 mM HEPES, pH 7.4, 100 mM KCl, 1 mM EDTA, 

0.1 M sucrose) was added to a final lipid concentration of 1 mg/ml and incubated at 37ºC for 

2 h. Lipids were then sonicated in a waterbath-sonicator for 10 sec. To test liposome binding, 

a 100 μl reaction mixture of freshly prepared liposomes and 5 μg of purified protein were 

incubated for 15 min at room temperature and centrifuged at 100,000 x g (42,000 rpm) at 4ºC 

for 25 min in a Beckman table top ultracentrifuge Optima TLX (TLA 45 rotor). The 

supernatant was saved, and the pellet was resuspended in 100 μl of sucrose binding buffer.  
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Both fractions were then analyzed by SDS-PAGE followed by Coomassie Blue staining. 

ImageJ was used for quantification.  

2.4.5   Yeast Two-Hybrid Interaction 

For the yeast two-hybrid screen, the full-length cDNAs of D. discoideum G protein β-, γ-, α1-, 

α2-, α4-, α5-, α6-, α7-, α8-, α9-, α10-, α11- and α12-subunits were cloned in frame into the 

yeast pAS2-1 vector (Clontech), respectively, resulting in fusion to the GAL4-DNA-BD (BD, 

binding domain). Full-length cDNA of DdRACK1 was cloned into the yeast pACT2 vector 

(Clontech) resulting in a fusion to the GAL4-DNA-AD (AD, activation domain). Yeast Y190 

strain which has His3 and lacZ reporter genes was used for this assay. 

Candidate colonies expressing interacting proteins were screened by plating on SD/-Leu/-

Trp/-His/+3AT plates after which membrane colonies-lift β-galactosidase activity assay was 

performed according to the MATCHMAKER Y2H system manual. Briefly, colonies on SD/-

Leu/-Trp/-His/+3AT selection plates were transferred to a Nitrocellulose membrane (Protran 

BA 85) by placing the membrane over colonies on selection plates for 20 min. The filter was 

carefully lifted off the agar plates and transferred (with colonies facing up) to a pool of liquid 

nitrogen for 10 sec. The frozen filter was then allowed to thaw at RT and placed on a 

Whatman filter paper presoaked in freshly prepared X-Gal solution (60 mM Na2HPO4, 40 mM 

NaH2PO4, 10 mM KCl, 1 mM MgSO4, pH 7.0, 50 mM β-mercaptoethanol, X-Gal (1 mg/ml 

final concentration)) and incubated at 30
o
C and checked between 1 to 6 h for the appearance 

of blue colonies.  

2.4.6   Pull down and immunoprecipitation assays 

For pull down and immunoprecipitation experiments D. discoideum cells were lysed in 50 

mM (10 mM for immunoprecipitation assay) Tris/HCl, pH 7.4, 150 mM NaCl, 0.5% NP40, 

supplemented with protease inhibitor cocktail (Sigma), 0.5 mM PMSF, 0.5 mM EDTA, and 1 

mM Benzamidine by passing them through a 25G syringe (10-20 strokes) and incubated with 
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agitation (1000 rpm) for 15 min at 4ºC (to ensure complete cell lysis) followed by a 

centrifugation step at 16,000 rpm for 10 min. The supernatants were either incubated with 

GST and GST-fusion proteins respectively or with GFP-trap beads (ChromoTek, Martinsried, 

Germany). After incubation for 3 h while GST beads were washed three times with wash 

buffer (50 mM Tris/HCl, pH 7.4, 150 mM NaCl, protease inhibitor cocktail, 0.5 mM PMSF, 

0.5 mM EDTA, 1 mM Benzamidine), GFP-trap beads were washed with a different wash 

buffer (10 mM Tris/HCl pH 7.4, 150 mM NaCl, protease inhibitor cocktail, 0.5 mM PMSF, 

0.5 mM EDTA, 1 mM Benzamidine). The beads were resuspended in SDS sample buffer, 

incubated at 95ºC for 5 min and the proteins separated by SDS-PAGE and analyzed by 

western blot. The Gβ and Gγ subunits used in this study were previously cloned into GFP 

(GFP N-terminal) and YFP (YFP C-terminal) vectors, respectively (Jin et al., 2000; Zhang et 

al., 2001). 

2.4.7   In vitro cross-link assay 

Purified DdRACK1 was used for a multimerization experiment as was previously described 

(Xiong et al., 2008). Briefly, 5-10 µg/100 µl of RACK1 in 1 x PBS, pH 7.4, was incubated at 

room temperature in the presence of 0.001 % (v/v) glutaraldehyde for various time points. 

The reaction was stopped by addition of glycine to a final concentration of 0.1 M after 5, 10 

and 20 min, respectively. Samples were analyzed by SDS-PAGE and western blot.  

2.4.8   Test for presence of phosphotyrosine in DdRACK1  

Samples from immunoprecipitation experiments from GFP-DdRACK1 bound to GFP-trap 

beads in the presence or absence of phosphatase inhibitors were analyzed by western blots 

and probed with anti-phosphotyrosine monoclonal antibody (5E7) (Fendly et al., 1990). 

2.4.9   Immunofluorescence analysis and life cell imaging 

Immunofluorescence study was performed as previously described (Blau-Wasser et al., 2009). 

Briefly, cells were transferred onto coverslips in Petri dishes and fixed by ice-cold methanol 
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(5 min, 20 °C). Cells were treated twice for 15 min (room temperature) with blocking solution 

(1x PBS containing 0.5% (wt/vol) BSA and 0.1% (vol/vol) fish gelatin). The appropriate 

antibodies were diluted in the blocking solution and applied on the cells for 1 h at room 

temperature; the excess of antibodies was removed by washing with the blocking solution 

before the 1 h incubation with the corresponding secondary antibodies. For live cell study, 

cells were placed in 35 mm Petri dishes (ibidi GmbH-Martinsried, Germany) and allowed to 

adhere to the surface. Analysis of fixed and live cells was done by laser scanning confocal 

microscopy using a Leica TCS SPS microscope.  

2.5   Cell migration studies 

This analysis was done as previously described (Blau-Wasser et al., 2009; Müller et al., 

2013). Briefly, cells were plated after ~ 6 h of starvation in a chamber (ibidi GmbH-

Martinsried, Germany) and migration towards aggregation centers were followed. Images 

were recorded at intervals of 6 s using a Leica DM-IL inverse microscope (Deerfield, IL; 40x 

objective) and a conventional CCD video camera and analyzed using Dynamic Image 

Analysis Software (DIAS, Soll Technologies, Iowa City, IA).  

2.5.1   Miscellaneous methods  

Cell fractionation of AX2 cells was done as described (Müller et al., 2013). For generation of 

rabbit polyclonal antibodies against DdRACK1, the GST-part of GST-DdRACK1 was 

removed by thrombin cleavage and DdRACK1 was used to immunize rabbits (Pineda, Berlin, 

Germany). The antibodies specifically recognized the bacterially produced recombinant 

protein, the RFP- and GFP-tagged fusion proteins as well as the endogenous protein in 

western blots of whole cell lysates; they were used in immunoprecipitation experiments 

whereas they were not suitable for immunofluorescence studies.  

Protein sequences of RACK1 proteins from H. sapiens (P63244), D. melanogaster (O18640), 

A. thaliana (O24456), S. cerevisiae (P38011), and D. discoideum (P46800) were retrieved 
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from Uniprot protein database and aligned using ClustalW program with Blosum 62 matrix. 

The aligned sequences were processed through EsPript for representation. The structural 

coordinates of S. cerevisiae RACK1 (Asc1p) was obtained from protein databank (PBD: 

3FRX) (Figure 4) and used as a template for modelling D. discoideum RACK1. MODELLER 

v9 was used to generate DdRACK1 model. Structures in Figures 3B and C were generated 

with the aid of the molecular visualization software PyMOL. 
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3     Results  

3.1   Characterization of DdRACK1 

gpbB (DDB_G0275045) is located on chromosome 2 of the D. discoideum genome and has 2 

exons. The open reading frame encompasses 1136 bp which encodes a protein of 329 amino 

acids migrating as a 36 kDa protein on SDS polyacrylamide gels. Blast results showed that 

GpbB is highly related to the RACK1 family of proteins and the alignment of RACK1 

sequences from diverse organisms such as H. sapiens, D. melanogaster, A. thaliana, D. 

discoideum and S. cerevisiae revealed significant sequence identity. The greatest difference is 

observed between propeller blades 6 and 7 where an extended loop of mainly basic amino 

acids is present in the D. discoideum protein and the A. thaliana RACK1 (Figure 3). 

Gβ was the first WD-repeat protein to be characterized by X-ray crystallography (Wall et al., 

1995). Since then various other crystal structures have been reported for WD-repeat proteins 

(Lambright et al., 1996; Sondek et al., 1996) which include the recently determined structures 

for several RACK1 proteins, RACK1A from A. thaliana, Asc1p from S. cerevisiae, RACK1 

from T. thermophila and RACK1 from human (Coyle et al., 2009; Rabl et al., 2011; Ruiz et 

al., 2012; Ullah et al., 2008; Yatime et al., 2011). These structural studies confirmed the 

seven-bladed β-propeller structure. In the RACK1 structure each propeller blade consists of a 

four-stranded antiparallel β-sheet, where strand A lines the central canal of the protein, and 

strand D is present on the outer circumference. Adjacent blades are connected by a loop 

bridging from strand D on one blade to strand A on the next. These loops are exposed on the 

top face of the propeller blade as are the β-turns linking strands B and C in each blade. The 

loops connecting strand A to B and strand C to D in each blade are located on the reverse, 

slightly larger face of the propeller (Adams et al., 2011).  
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Figure 3 Sequence alignment of RACK1 orthologues and their UniProt accession 

numbers from H. sapiens (P63244), D. melanogaster (O18640), A. thaliana (O24456), D. 

discoideum (P46800) and S. cerevisiae (P38011). The WD40 repeats and β-propeller 

blade positions are written above the sequences. Alignment was done with the ClustalW 

program and processed through ESPript for representation. All conserved residues are 

shown in red and similar residues in yellow 

Most notably, the D-A loop between blades 6 and 7 in the RACK1 species is 8 to 19 residues 

longer than the cognate region of Gβ1 and forms a knob-like projection from the upper face of 
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the propeller (discovered in the crystal structure of A. thaliana RACK1A) (Adams et al., 

2011). This sequence is quite unusual in the D. discoideum protein as it is rich in lysine 

residues. These general features described for RACK1 proteins are also present in DdRACK1 

when we modelled the DdRACK1 sequence to the crystal structure of S. cerevisiae RACK1 

(Asc1p) which reveals a comparable structure (Figure 4, 5).  

                            

Figure 4 Ribbon diagram of S. cerevisiae RACK1 (Asc1p) (PDB: 3FRX) which was used 

as template for DdRACK1 model. Shown are the seven β-propeller blades. Coordinates 

were retrieved from protein data bank (PDB) (www.rcsb.org) and modelled with the aid 

of MODELLER 9 program and visualized by the software PyMOL. 

The DdRACK1 protein harbors in the knob-like projection in the D-A loop between blades 6 

and 7 of sequence a polybasic stretch with four lysine residues. These residues were changed 

http://www.rcsb.org/
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to glutamic acid and the surface properties of this region viewed alongside the wild type 

protein during the modelling of DdRACK1. 

 

Figure 5 Ribbon diagram of DdRACK1 modelled with the aid of MODELLER9 

program, with yeast RACK1, which was retrieved from protein data bank (PDB) 

(www.rcsb.org), as template. Structures were finally generated using molecular 

visualization software PyMOL. In (c) the surface charge of the extension after mutation 

of the basic residues into glutamic acid (see 3.6) is shown.   

3.2   Subcellular localization of RFP-/GFP-DdRACK1   

When we expressed RFP-DdRACK1 in AX2 cells expressing the G protein beta-subunit as 

GFP-fusion protein for labelling the plasma membrane, we found that RFP-DdRACK1 is 

present throughout the cytosol (Figure 6).  

http://www.rcsb.org/
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Figure 6 Subcellular localization of DdRACK1. To determine the localization of 

DdRACK1, AX2 wild type cells co-expressing GFP-Gβ and RFP-DdRACK1 were used 

to perform confocal live cell microscopy. Localization of RFP-DdRACK1 is mainly in 

the cytosol and GFP-Gβ is distinctly at the plasma membrane. Scale bar, 5 µm.             

In live cell confocal imaging analysis, RFP-DdRACK1 co-localized with GFP-Gβ at the front 

of newly formed membrane protrusions (Figure 7, arrow).  
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Figure 7 DdRACK1 co-localisation with Gβ. Representative images of a series show co-

localization of RFP-DdRACK1 with GFP-Gβ at membrane protrusions (arrow) formed 

after 12 sec of imaging, which disappeared after 24 sec. Scale bar, 5 µm.  

Close inspection of AX2 cells expressing GFP-DdRACK1 revealed that newly formed 

protrusions initially were devoid of RACK1 but were later filled with GFP-DdRACK1 after 

several seconds (Figure 8, arrow).  
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Figure 8 Confocal live cell images of GFP-DdRACK1/AX2 cells. Like RFP-DdRACK1 in 

Figure 7 GFP-DdRACK1 filled membrane protrusions after 50 sec of live imaging which 

disappeared after 120 sec. Scale bar, 5 µm. 

We also generated a mutant protein in which the four lysine residues in the extended loop of 

RACK1 (see Figure 5) were exchanged with glutamic acid residues. Analysis of GFP-

DdRACK1mut cellular distribution showed similar localization like GFP-DdRACK1 (Figure 

9). 
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Figure 9 Subcellular localization of DdRACK1mut. Imaging of GFP-

DdRACK1mut/AX2 cells showed localization of GFP-DdRACK1mut at membrane 

protrusions after 70 sec and 90 sec (arrows) respectively. Scale bar, 5 µm.           

3.3   Subcellular distribution of DdRACK1, GFP-DdRACK1 and DdRACK1mut, and     

        the developmental expression pattern of DdRACK1 

Cell fractionation experiments were performed to further study the subcellular distribution of 

endogenous DdRACK1 as well as its GFP-fusion constructs. While reasonable amounts of 

endogenous DdRACK1 associated with the pellet fractions, only faint bands of both GFP-

DdRACK1 and GFP-RACK1mut were seen in the pellet fractions (Figure 10). These low 

GFP-fusion protein amounts in the pellet fractions may be explained by their moderately low 

level of overexpression with respect to endogenous DdRACK1. α-Actinin which served as 

cytosolic marker was exclusively present in the cytosolic fraction. A membrane association of 

RACK1 is not surprising as it has been repeatedly found in phagosomal preparations from 

mouse and Drosophila, and GpbB has been found in phagosomal preparations from D. 
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discoideum (Boulais et al., 2010; Gotthardt et al., 2006; Rogers and Foster, 2007; Urwyler et 

al., 2009).            

                                                                                                                           

Figure 10 Subcellular fractionation of AX2 and AX2 expressing GFP-DdRACK1 and 

GFP-RACK1mut after lysis by passing through Nucleopore filters. Protein aliquots 

separated by SDS PAGE were used to perform western blot analysis. WL, whole cell 

lysate; L, supernatant from cell lysate (400 x g); S1, P1 (10,000 x g); S2, P2 (100,000 x g). 

S, supernatant; P, pellet. DdRACK1 was detected with polyclonal anti-DdRACK1 

antibodies. Antibodies against the cytosolic α-actinin were used as control. 

A developmental analysis showed the presence of DdRACK1 protein in nearly unaltered 

levels during all stages of Dictyostelium development (Figure 11).                               
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Figure 11 DdRACK expression levels during development. Western blot analysis was 

performed with AX2 wild type cell samples collected during starvation in shaking 

suspension at the indicated time points. DdRACK1 was detected with polyclonal anti-

DdRACK1 antibodies. For loading control the blot was probed with mAb 188-19-95 

detecting cap32. 

3.4   DdRACK1 oligomerization potential 

It has been reported that RACK1 can dimerize in vivo and this dimerization is required for 

specific processes including the regulation of the N-methyl-D-aspartate (NMDA) receptor by 

the Fyn kinase in the brain (Thornton et al., 2004). Here, we tested the capability of 

DdRACK1 to oligomerize using recombinant DdRACK1 full length protein that had been 

cleaved from the GST part. In the presence of the cross-linking reagent glutaraldehyde 

(0.001%), DdRACK1 formed dimers and even higher oligomers with increasing time of 

incubation as detected by western blots using polyclonal DdRACK1 specific antibodies. 

Interestingly, the native non-crosslinked DdRACK1 sample also contained some amount of 

dimers and oligomers (Figure 12). This indicates that the dimerization characteristic exhibited 

by RACK1 proteins also holds true for DdRACK1.  
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Figure 12 DdRACK1 forms homodimers and oligomers. 5-10 µg/100 µl of recombinant 

DdRACK1 were incubated with 0.001% of glutaraldehyde and samples taken at the 

indicated time points of 5, 10 and 20 min. In the absence of glutaraldehyde, the 

monomer (36 kDa, mono) and low amounts of dimer (72 kDa), and trimer (108 kDa) 

were detected. Proteins were detected with polyclonal anti-DdRACK1 antibodies. The 

band below the monomer is due to intramolecular crosslinks. 

Similarly, DdRACK1mut in which we had exchanged the basic amino acid residues in the 

loop between blades 6 and 7 (see below, 3.6) also displayed wild type DdRACK1 

oligomerization capability (Figure 13).  
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Figure 13 DdRACK1mut forms homodimers and oligomers. 5-10 µg/100 µl of 

recombinant DdRACK1mut were incubated with 0.001% of glutaraldehyde and 

samples taken at the indicated time points of 5, 10 and 20 min. For DdRACK1 and 

DdRACK1mut, in the absence of glutaraldehyde, the expexted monomers (36 kDa, 

mono), including dimers (72 kDa), and trimers (108 kDa) were detected. Proteins were 

detected with polyclonal anti-DdRACK1 antibodies. 

We further confirmed DdRACK1 dimerization by co-immunoprecipitation assays. Both GFP-

DdRACK1 and GFP-DdRACK1mut bound to GFP-trap beads precipitated endogenous 

DdRACK1 (Figure 14).    
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Figure 14 DdRACK1 forms homodimers and oligomers. Coimmunoprecipitation 

analysis to confirm DdRACK1 oligomerization. Both GFP-DdRACK1 and GFP-

DdRACK1mut bound to GFP-trap beads (upper panel) were able to precipitate 

endogenous RACK1 (lower panel) from cells expressing GFP-tagged proteins. For GFP-

RACK1 fusions a degradation band was observed. GFP-trap beads incubated with AX2 

cell lysates were used as control (Ctl).  

3.5   Post-translational modification of DdRACK1 

Little is known about post-translational modifications of RACK1 apart from phosphorylation 

which is emerging as an important factor that modulates the binding of proteins to RACK1 

(Adams et al., 2011). Phosphorylation of specific tyrosine residues and their corresponding 

functions have been reported. To determine if DdRACK1 also possesses the potential of 

becoming phosphorylated, we enriched DdRACK1 by immunoprecipitating GFP-DdRACK1 

from cell lysates that were prepared in the presence or absence of phosphatase inhibitor 

cocktail (PIC) (Roche) and performed a western blot analysis using phosphotyrosine specific 

mAb 5E7 antibodies (Fendly et al., 1990). These antibodies recognized the GFP-DdRACK1 
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band on the blot indicating that DdRACK1, like RACK1 proteins from other species, can be 

phosphorylated on specific tyrosine residues (Figure 15).   

                                                    

Figure 15 DdRACK1 is a phosphotyrosine-containing protein. Western blot analysis was 

performed with proteins from immunoprecipitated GFP-DdRACK1 cell lysates (upper 

panel) prepared in the presence or absence of phosphatase inhibitor cocktail (PIC). AX2 

cell lysates incubated with GFP-trap beads was used as control (Ctl). The 

phosphotyrosine specific mAb 5E7 detected GFP-DdRACK1 in the IP (lower panel). 

3.6   Lipid interactions 

The mechanism of membrane association of DdRACK1 is not known. In general, membrane 

association of proteins can be achieved by various mechanisms. For instance, polybasic 

clusters as defined by arginine- and lysine-enriched amino acid sequences enable diverse 

transmembrane and cytosolic proteins to bind lipids (DeFord-Watts et al., 2011). Also, 

proteins can target specific membranes through an interaction with phosphoinositides (PIPs). 

Based on the initial characterization of RACK1 as an interactor of RpkA we tested the ability 

of DdRACK1 to bind to different phosphoinositides in vitro using GST-DdRACK1 in dot-
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blot (PIP strips) overlay assays. Whereas GST alone showed no PIP binding, GST-DdRACK1 

bound with almost the same affinity to all the monophosphorylated PIPs, except for PI(3)P for 

which we observed stronger binding, to the bisphosphorylated PIPs as well as to the 

triphosphorylated PIP. GST-DdRACK1 also bound to phosphatidylserine (Figure 16). The A. 

thaliana and D. discoideum RACK1 proteins carry an insertion between propeller blades 6 

and 7, which contains primarily basic amino acids, in case of DdRACK1 six lysine residues 

(Figures 3 and 5). By charge-reversal mutation, four lysine residues from the polybasic stretch 

were replaced with glutamic acid to generate a GST-fusion mutant version of DdRACK1 

(GST-DdRACK1mut). The mutant protein when used in dot-blot protein overlay assays still 

bound to PI(4,5)P2 and PI(3,4,5)P3 although with reduced affinity, whereas binding to all 

other PIP variants was completely abolished (Figure 16).    

 

Figure 16 DdRACK1 binds to Phosphoinositides. PIP-Strip-membranes were incubated 

for 1 h at room temperature with 1 µg/ml GST (control), GST-DdRACK1 and GST-
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DdRACK1mut respectively. Binding to PIPs on membranes was detected by incubation 

with polyclonal anti-GST antibodies.  

Although dot-blot overlay assays are convenient assays, they need to be supported by 

different methods as apparent specificities may be distorted and as they do not allow reliable 

quantification (Narayan and Lemmon, 2006). We therefore examined the sedimentation of 

GST-DdRACK1 with liposomes containing 65% phosphatidylcholine, 20% 

phosphatidylethanolamine, 5% phosphatidylserine, reconstituted with 10% individual 

phosphoinositides. Although without any specificity, while GST-DdRACK1 showed 

significant binding to these liposomes, indicating a broad binding specificity for membranes, 

GST-RACK1mut did not show significant binding to any of the PIPs. This supports the 

requirement of this polybasic region by RACK1 for lipid binding. GST was included as a 

control and did not sediment with the liposomes (Figure 17).  

 

Figure 17 Binding of GST-DdRACK1, GST-DdRACK1mut and GST (control) to PIPs 

in a liposome binding assay. 5-10 µg of GST and the GST-fusion proteins were 
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incubated with liposomes containing 10% (wt/wt) of the indicated PIPs. Liposomes were 

collected by centrifugation, and bound proteins resolved by SDS-PAGE and detected by 

Coomassie Blue staining (S = supernatant; P = pellet).  

To quantitatively study to which PIPs DdRACK1 preferable bound, band intensities of the 

Coomassie Blue stained gels from both DdRACK1 and DdRACK1mut binding assays were 

scanned and the pellet fractions plotted. This assay showed that DdRACK1 interacted equally 

well with all the different PIPs. Generally, while more than 60% of DdRACK1 bound to the 

PIPs liposomes, only less than 20% DdRACK1mut were bound (Figure 18). 

 

Figure 18 Quantification of bound GST-DdARCK1 and GST-DdRACK1mut in pellet 

samples from Figure 17. Protein bands were quantified with ImageJ software. 

3.7   DdRACK1 interacts with G proteins 

Conventional Gβ subunits exhibit a high affinity for Gγ subunits and function as Gβγ 

heterodimers to bind and stabilize GDP-bound Gα subunits. In addition, a Gβ can associate 
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with multiple individual Gγ subunits (Clapham and Neer, 1997). The interaction of Gβγ with 

RACK1 was first identified by a yeast two-hybrid screen using the bovine Gβ1 sequence as 

bait to screen a mouse brain library (Dell et al., 2002). To test whether DdRACK1 likewise 

associates with the D. discoideum Gβ and Gγ protein subunits, we performed a yeast two-

hybrid analysis using DdRACK1 fused to the pACT2-AD. Gβ and Gγ subunits were fused to 

pAS2-BD, respectively. We detected interactions between DdRACK1 and Gβ as well as 

between DdRACK1 and Gγ subunits as revealed by β-galactosidase production (Figure 19, 

blue staining of the colonies). For S. cerevisiae it is reported that the RACK1 orthologue 

Asc1p functions as a Gβ subunit for a Gα (Gpa2) (Zeller et al., 2007). Similarly, in the human 

pathogenic fungus C. neoformans the RACK1 orthologue Gib2 functions as Gβ for Gpa1 

(Palmer et al., 2006). Like D. discoideum both organisms have a single Gβ gene. To 

investigate DdRACK1-Gα interactions, yeast two-hybrid assays were performed using 

DdRACK1 fused to pACT2-AD. The Gα subunits Gα1, Gα2, Gα4, Gα5, Gα6, Gα7, Gα8, 

Gα9, Gα10, Gα11 and Gα12 were fused to pAS2-BD. In these assays we detected interactions 

between DdRACK1 and Gα2 as well as between DdRACK1 and Gα8 (Figure 19 and data not 

shown).     
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Figure 19 Yeast two-hybrid analyses and β-galactosidase activity staining. Yeast Y190 

strain that has lacZ and His3 reporter genes was co-transformed with DdRACK1 in 

pACT2 vector and the Gβ, Gγ, Gα2 and Gα8 protein subunits in pAS2 vector, 

respectively. β-galactosidase activity staining in X-gal solution was then performed with 

selected colonies from Pre-SD agar plates.  

To confirm these interactions we performed co-immunoprecipitation analyses. GFP-Gβ, Gγ-

YFP, Gα2-RFP, Gα4-RFP and Gα8-RFP expressed in AX2 and bound to GFP- and RFP-trap 

beads respectively co-immunoprecipitated endogenous DdRACK1 (Figure 20). This provides 

further evidence that DdRACK1 resembles RACK1 proteins and, like those, interacts with G 

proteins. 
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Figure 20 Co-immunoprecipitation assays to confirm DdRACK1 interaction with the 

Gβ, Gγ and Gα2 protein subunits. (i) GFP-Gβ, Gγ-YFP bound to GFP-trap beads and 

Gα2-RFP bound to RFP-trap beads co-precipitated endogenous DdRACK1 (IP). GFP-

trap beads incubated with AX2 cell lysates were used for control (Ctl). (ii) Gα4 and Gα8 

bound to RFP-trap beads co-precipitated endogenous DdRACK1 (IP). GFP and RFP 

bound to beads were used as control. mAb K3-184-2 detected GFP-Gβ and Gγ-YFP; 

mAb K73-875-7 detected Gα2-RFP, Gα4-RFP and Gα8-RFP. DdRACK1 was detected 

with polyclonal anti-DdRACK1 antibodies.  

The interactions were further confirmed with pulldown experiments. GST-Gα2, GST-Gα4, 

GST-Gα8 as well as GST-Gγ pulled down endogenous DdRACK1 (Figure 21). 

(i) 
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Figure 21 GST pulldown experiments to confirm DdRACK1 interaction with Gα 

subunits 2, 4 and 8, and γ respectively. DdRACK1 in the input and in the precipitates 

was detected with polyclonal anti-DdRACK1 antibodies. Below the proteins employed in 

the pulldown are shown by staining of the nitrocellulose membrane with Ponceau S.  

To analyse if DdRACK1 also takes over the Gβ function for the Gα subunits in vivo we 

ectopically expressed DdRACK1 as a GFP fusion in the gβ null mutant LW6 (Wu et al., 

1995; Peracino et al., 1998) and analysed whether it rescues the impaired growth on a 

bacterial lawn, the phagocytosis, chemotaxis, aggregation and developmental defects. We 

found that expression of GFP-DdRACK1 in LW6 cells did not rescue the developmental 

defect. When we plated the cells on a lawn of K. aerogenes they formed smooth plaques as 

observed for the mutant strain (Figure 22).  
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Figure 22 Growth and development of AX2, gβ null mutants (LW6) and LW6/GFP-

DdRACK1 cells plated on a K. aerogenes lawn. Images taken after 3 days are shown. 

Scale bar, 0.5 mm.  

Remarkably, the plaque size was even further reduced when we compared the wild-type strain 

AX2, LW6 and LW6 expressing GFP-RACK1 (Figure 23). This might be due to a further 

reduction in the rate of phagocytosis or enhanced defects in cell motility.  
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Figure 23 Measurement of plaque diameter to determine plaque size formed by AX2, 

LW6 and LW6/GFP-DdRACK1 cells over several days. The bar represents the mean 

and SD of ten independent experiments (***P < 0.001). 

Hence we examined their phagocytic capability following yeast particle uptake and found that 

whereas fewer LW6 cells had ingested one or more yeast particles after 30 min as expected 

when compared with AX2 cells, even fewer LW6/GFP-DdRACK1 cells took up yeast cells. 

Quantitatively, ~24% LW6 and ~15% LW6 cells expressing GFP-DdRACK1 had taken up 

yeast cells as compared to ~64% uptake level for AX2 (Figure 24).  

                                                                                                                                                                                                                                                                        

Figure 24 Yeast uptake experiments were performed using the strains from Figure 22 

and TRITC-labelled yeast to determine their phagocytic capabilities. Approximately 200 

cells from each strain were counted. The percentage of cells which had engulfed yeast 

after 30 min is shown on the graph (***P < 0.001).  

3.8   Growth and development of D. discoideum strains 
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Our attempts to generate D. discoideum knockout mutants for RACK1 were not successful. 

Since RACK1 acts as a scaffold protein, interference with its levels might lead to cellular 

defects which can give an indication about its involvement in critical cellular roles. We 

therefore tried to study the effects of RACK1 overexpression in a wild type background and 

characterized AX2 cells expressing GFP-DdRACK1 and GFP-DdRACK1mut. From western 

blot analysis with AX2, AX2/GFP-DdRACK1 and AX2/GFP-DdRACK1mut cells, we found 

that the levels of RACK1, with respect to endogenous RACK1, were only moderately 

enhanced (~17% in AX2/GFP-DdRACK1 and ~13% in AX2/GFP-DdRACK1mut cells 

respectively) (Figure 25). Such behaviour may be the result of the scaffolding function. It has 

been proposed that the levels of scaffold proteins should be tightly regulated as misregulation 

might interfere with many cellular processes (Ron et al., 2013).  

                                                                               

Figure 25 Levels of DdRACK1 overexpression. Cell lysates from vegetative AX2, 

AX2/GFP-DdRACK1 and AX2/GFP-DdRACK1mut strains were analyzed by SDS-

PAGE and western blot. DdRACK1 and GFP-fusion proteins at 36 and 66 kDa were 

detected with polyclonal anti-DdRACK1 antibodies. 
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Growth in shaking suspension was comparable between AX2 and AX2 expressing GFP-

DdRACK1 and GFP-DdRACK1mut with similar duplication times and similar final densities 

(~1x10
7
cells/ml). However, once the cells had reached maximum density, AX2/GFP-

DdRACK1 and AX2/GFP-DdRACK1mut cells did not stay in the stationary phase like AX2 

as cell counts dropped rapidly (Figure 26).  

                                    

Figure 26 Growth in shaking suspension of D. discoideum strains as in Figure 25. 

5x10
4
cells/ml was used for inoculation.                                                                                                 

Differences were also observed during growth on lawns of K. aerogenes on SM agar and E. 

coli B12 on nutrient agar (NA) plates. In these assays we noticed an expanded region 

containing GFP-DdRACK1/AX2 cells when they were grown on K. aerogenes. Upon growth 

on a lawn of E. coli B12 this behaviour was even more conspicuous (Figure 27, 29).  
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Figure 27 Growth on a lawn of K. aerogenes of D. discoideum strains as in Figure 25. 

Images were taken on days 4 and 5. Scale bar, 1 mm. 

AX2 cells expressing GFP-DdRACK1mut were like wild type (Figure 27). AX2, AX2/GFP-

DdRACK1 and AX2/GFP-DdRACK1mut displayed similar growth rate on a lawn of K. 

aerogenes when plaque diameter was measured (Figure 28).  
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Figure 28 Bar chart showing diameter of plaques formed by D. discoideum strains in 

Figure 27 measured between days 4 and 7. The bar represents the mean and SD of ten 

independent experiments (NS, not significant; P > 0.05). 

On an E. coli lawn the AX2/GFP-DdRACK1 strain showed increased growth whereas AX2 

and AX2/GFP-DdRACK1mut displayed similar growth behaviour (Figure 29 and 30). Faster 

growth on a bacterial lawn could be due to increased phagocytosis, altered cell motility or to a 

developmental defect.  
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Figure 29 Growth of D. discoideum strains as in Figure 25 on a lawn of E. coli B12 as 

imaged on days 3 and 6. Scale bar, 1 mm. 
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Figure 30 Bar chart showing diameter of plaques formed by D. discoideum strains in 

Figure 29 measured between days 4 and 9. The bar represents the mean and SD of ten 

independent experiments (**P < 0.01; *P < 0.05; NS, not significant; P > 0.05).                      

3.9   Development is altered in DdRACK1 overexpressor strains 

D. discoideum development is initiated by starvation. AX2 cells plated on phosphate agar 

plates start to form multicellular aggregates between 8 to 12 hours and have formed fully 

differentiated fruiting bodies after ~24 hours. In our experiments cells from all strains had 

gathered into mounds at 10 hours. After 24 hours AX2 cells and AX2 expressing GFP 

(AX2/GFP) had formed fruiting bodies, whereas those of both AX2/GFP-DdRACK1 and 

AX2/GFP-DdRACK1mut were still present as tight aggregates and fruiting bodies were 

observed only after 42 hours. They were smaller than those of AX2 and there were still many 

mounds present (Figure 31).  
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Figure 31 5 x 10
7
 AX2, AX2/GFP, AX2/GFP-DdRACK1 and AX2/GFP-DdRACK1mut 

cells were deposited on phosphate agar plates and imaged at the indicated hours of 

development. Scale bar, 250 µm. 

To investigate development further, we examined the aggregation behaviours of these strains 

on a plastic surface. AX2 cells were highly elongated and formed well-defined streams after 9 

hours of starvation. After 11 hours the streams became thicker and shorter. AX2/GFP-

DdRACK1 and AX2/GFP-DdRACK1mut cells failed to form streams after 9 hours. 

AX2/GFP-DdRACK1 cells started to form aggregates after 11 hours, start of aggregate 

formation was even more delayed in AX2/GFP-DdRACK1mut cells (Figure 32).  
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Figure 32 1 x 10
7
 D. discoideum cells of the different strains were starved on petri dishes 

under phosphate buffer. Images were taken at the indicated time points. Scale bar, 250 

µm. 

When we monitored the expression of the strictly developmentally regulated cell adhesion 

protein contact site A (csA) in cells starved in shaking suspension, we observed a similar 

expression pattern with a first detection after four hours of starvation and a steady increase in 

all three strain (Figure 33). 
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Figure 33 Time-dependent expression of csA. Cells from the different D. discoideum 

strains were collected during development in shaking suspension at the indicated time 

points and analyzed by SDS-PAGE and western blots. csA was detected by mAb 33-294, 

mAb 188-19-95 detected cap32 which was used as loading control.  

This was however not the case when we monitored csA expression from cells starved on 

plates under phosphate buffer. AX2 and AX2/GFP-DdRACK1 showed similar expression 

pattern with a first detection of csA after six hours of starvation, AX2/GFP-DdRACK1mut 

cells showed delayed csA expression with first detection after eight hours of starvation 

(Figure 34). This corroborates the data obtained by visual inspection to a certain extent 

(Figure 32).  
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Figure 34 Cell samples of D. discoideum strains collected from submerged cultures in 

phosphate buffer were tested for csA expression.  
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4     Discussion 

Scaffold proteins uniquely integrate signals from multiple pathways. They generate lots of 

functional diversity by mediating a series of interactions with a vast array of protein partners. 

The receptor for activated C kinase 1 (RACK1) is a member of the evolutionarily conserved 

family of WD40 repeat proteins which forms seven β-propeller blades. It was initially 

discovered through its ability to function as a scaffold protein, bringing in close proximity 

protein kinase C (PKC) and its substrates (Ron and Mochly-Rosen, 1995; Ron et al., 1994). In 

this study we report a novel protein in D. discoideum that is hitherto uncharacterized and 

displays very significant identity to RACK1 proteins that have been very well studied in 

various other species. Due to its high similarity to these other RACK1 proteins we have 

named this protein DdRACK1. 

DdRACK1 is a WD40 repeat protein harboring a seven-bladed β-propeller that shares some 

similarities with the heterotrimeric G protein β subunit. The modelled structure of DdRACK1 

features the seven β-propeller architecture with each propeller blade arranged in sequential 

order and made up of four-stranded antiparallel β-sheets. Although differences exist, 

particularly in the extended loop that connects β-propeller blades 6 and 7, the structures of 

RACK1 from S. cerevisiae (Yatime et al., 2011), A. thaliana (Ullah et al., 2008) and human 

(Ruiz et al., 2012) show significant identity with DdRACK1. The region between the β-

propeller blades 6 and 7 is conserved between DdRACK1 and A. thaliana RACK1A. The 

major difference between the WD repeats is in the loops that provide the distinct features of 

each member of the WD family and distinguishes RACK1 interactions from those of other 

WD proteins (Garcia-Higuera et al., 1996; Sklan et al., 2006). The A. thaliana protein was the 

first RACK1 orthologue to be structurally described (Adams et al., 2011). Unlike in A. 

thaliana where RACK1 is expressed by three genes, DdRACK1 is expressed like in 
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metazoans by only gene, gpbB. Residues in two conserved regions of RACK1 have been 

mapped in A. thaliana RACK1A (Ullah et al., 2008). These regions represent potential 

protein-protein interaction sites. The first conserved region is located on the top rim of the 

propeller and involves side chains from residues R36, K38, S63, H64 (blade 1), R42, K44, 

S70, H71; W83, D107 (blade 2), W90, D114; R125 (blade 3), R132; and W152 (blade 4), 

W158 in DdRACK1. The second large conserved surface region of RACK1 is located on the 

bottom of the propeller and is comprised of conserved residues P204, D205, Y230 (blade 5), 

P208, D209, Y234; and N246, Y248 and W249 (blade 6), N250, Y252 and W253 in 

DdRACK1. Besides the high sequence identity between DdRACK1 and RACK1 from other 

species, the presence and conservation of these above mentioned regions indicates that 

DdRACK1 is a member of the RACK1 family of WD40 repeats proteins and may undergo 

similar interactions. Although DdRACK1 is mainly cytosolic as seen from live confocal 

microscopy images and fractionation studies, a portion of it was also found in the membrane 

fraction, buttressing localization to cellular membranes by proteins of the RACK1 family. 

Furthermore, RFP- and GFP-DdRACK1 were found in D. discoideum membrane protrusions 

as well as in filopod-like extensions. Mutations in the basic loop of DdRACK1 did not alter 

its localization.  

RACK1 dimerizes both in vivo and in vitro (Yatime et al., 2011; Thornton et al., 2004; Ruiz 

et al., 2012). The physiological role is however still unclear. In the regulation process of the 

NMDA receptor by Fyn, RACK1 dimerization is required to bring the two interacting 

partners in close contact. RACK1 dimerization allows exposing a new surface of the protein, 

buried within the propeller core in the monomeric form (Yatime et al., 2011). We have 

provided evidence that DdRACK1 also has the potential to dimerize. The dimerization of 

human RACK1 is enhanced by phosphorylation (Liu et al., 2007) and one of the putative 
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phosphorylation sites was Ser146 in blade 3. This residue is however not conserved in 

DdRACK1, but there are other Ser/Thr residues present in this region which could probably 

be potential targets in mediating DdRACK1 dimerization by phosphorylation. On the other 

hand, an important factor which modulates the binding of RACK1 proteins to partners is 

tyrosine phosphorylation (Adams et al., 2011). Phosphorylation/dephosphorylation of 

different tyrosine residues of human RACK1 regulates various cellular processes (Kiely et al., 

2006; 2008, Chang et al., 2002). These tyrosine residues are also conserved in DdRACK1, 

and we provided evidence that the DdRACK1 protein is a phosphotyrosine-containing 

protein.  

Phosphoinositides (PIPs) regulate fundamental biological processes including cell growth and 

survival, membrane trafficking and cytoskeletal dynamics (Kutateladze, 2010). PIPs are 

tightly regulated during chemotaxis in D. discoideum, in particular, PI(3,4,5) P3 gradients are 

formed within the plasma membrane (Müller et al., 2013). They are thought to be of differing 

importance for sensing of shallow and steep gradients (Kölsch et al., 2008; Hoeller and Kay 

2007). In the region between β-propeller blades 6 and 7 we noted a key polybasic cluster (-

KKKK-) in DdRACK1 which turned out to be responsible for binding to several PIPs; PI(3)P, 

PI(4)P, PI(5)P, PI(3,4)P2, PI(3,5)P2, PI(4,5)P2, and PI(3,4,5)P3 without particular preference; 

and also to phosphatidylserine. The translocation of RACK1 from one subcellular location to 

another has been shown to mediate various cellular responses following a stimulus (Neasta et 

al., 2012). However the mechanism of RACK1 localization to cellular membranes is not 

known. PIPs are clustered in distinct intracellular membranes and could each serve as a 

marker of different organelles. We propose therefore that one way by which RACK1 localize 

to different cellular membranes may be via its interaction with PIPs which in D. discoideum is 
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mediated by the polybasic stretch. Whether RACK1 proteins from other species are likewise 

able to bind to membrane lipids remains to be investigated. 

G protein-linked signal transduction plays an essential role in the developmental program of 

Dictyostelium (Devreotes, 1994; Firtel, 1991; Wu et al., 1993). D. discoideum has twelve Gα 

subunits, one Gβ and one Gγ subunit. It is generally assumed that Gβ forms heterotrimers 

with the γ and all α subunits (Firtel, 1996). For RACK1 interactions with G protein 

heterotrimer and heterodimeric βγ subunits were reported (Dell et al., 2002, Chen et al., 2004; 

2005). We describe here an interaction of DdRACK1 with Gα subunits 2, 4 and 8, as well as 

with the Gβ and Gγ subunits by yeast two-hybrid, co-immunoprecipitation and pull down 

experiments which in case of Gβ was further supported by confocal live cell imaging where 

RFP-RACK1 partially co-localized with GFP-Gβ. The mutant phenotypes that were observed 

after overexpression revealed roles in cell growth, chemotaxis and development which are 

processes in which Gα2, Gα4, Gα8 and Gβ also are implicated underlining a role for RACK1.  

We have identified the novel RACK1 orthologue in D. discoideum (DdRACK1), which has 

significant sequence identity with other previously studied RACK1 species and similar 

biochemical features as bona fide RACK1 proteins. It contains an unusual polybasic region 

through which it can bind to cellular membranes uncovering a further mechanism how 

RACK1 can be targeted to membranes. At the biochemical level it interacts with several 

proteins among them ribosomal proteins, enzymes, cytoskeletal proteins and most notably 

heterotrimeric G proteins. Our genetic data provide evidence for a function as a scaffold 

protein. Upon overexpression we observe phenotypes that imply changes in signalling 

pathways regulated by the interacting G proteins. Taken all these results together, we propose 

that, through these interactions, RACK1 is involved in the regulation of several cellular 

processes (Figure 35).  
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Figure 35 Model for DdRACK1 involvement in growth and development. The activation 

of Gβγ at the membrane initiates a series of events which modulates the production of 

PI(4,5)P2 and PI(3,4,5)P3 leading to the recruitment of DdRACK1 (RI). DdRACK1 

binds to G proteins (which may be in their free or heterotrimeric state). This association 

could regulate G protein interaction with downstream effectors. 

Phosphorylation/dephosphorylation of DdRACK1 further could regulate its function. 

Interaction with the different partners confers DdRACK1 with roles in various cellular 

processes like growth, chemotaxis and development.  
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5    Summary 

The receptor for activated C-kinase 1 (RACK1) is a conserved protein belonging to the WD40 

repeat family of proteins. It folds into a beta propeller with seven blades which allow 

interactions with many proteins. Thus it can serve as a scaffolding protein and have roles in 

several cellular processes. We identified the product of the Dictyostelium discoideum gpbB 

gene as the Dictyostelium RACK1 homolog. The protein is mainly cytosolic but can also 

associate with cellular membranes. DdRACK1 binds to phosphoinositides (PIPs) in protein-

lipid overlay and liposomes-binding assays. The basis of this activity resides in a basic region 

located in the extended loop between blades 6 and 7 as revealed by mutational analysis. 

Similar to RACK1 proteins from other organisms DdRACK1 interacts with G protein 

subunits alpha, beta and gamma as shown by yeast two-hybrid, pulldown, and 

immunoprecipitation assays. Unlike the Saccharomyces cerevisiae and Cryptococcus 

neoformans RACK1 proteins it does not appear to take over Gβ function in D. discoideum as 

developmental and other defects were not rescued in Gβ null mutants overexpressing GFP-

DdRACK1. Overexpression of GFP-tagged DdRACK1 and a mutant version (DdRACK1mut) 

which carried a charge-reversal mutation in the basic region in wild type cells led to changes 

during growth and development. DdRACK1 interacts with heterotrimeric G proteins and can 

through these interactions impact on processes specifically regulated by these proteins.  
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Zusammenfassung 

Der Rezeptor für aktivierte C-kinase 1 (RACK1) ist ein konserviertes Protein, das zur WD40 

Repeat Familie gehört. Diese Wiederholungseinheiten sind siebenfach vorhanden und bilden 

einen siebenflügeligen β-Propeller, der die Interaktion mit vielen Proteinen ermöglicht. Rack1 

kann als Gerüstprotein funktionieren und hat Rollen in verschiedenen zellulären Prozessen. 

Wir haben das Produkt des Dictyosteliun discoideum gpbb Gens als Dictyostelium RACK1-

Homolog identifiziert. Das Protein ist im Wesentlichen cytosolisch, ist aber auch mit 

zellulären Membranen assoziiert. In Protein-Lipid Overlay und Liposomen-Binding Assays 

bindet DdRACK1 an Phosphoinositide (PIPs). Die Grundlage für diese Aktivität befindet sich 

in einer Lysin-reichen Aminosäuresequenz zwischen den Propellerblättern 6 und 7 wie eine 

Mutationsanalyse gezeigt hat. Ähnlich wie bei RACK1-Proteinen aus anderen Organismen, 

interagiert DdRACK1 mit den G-Protein-Untereinheiten  Alpha, Beta und Gamma in Yeast 

Two-Hybrid, Pull down und Immunpraezipitations Analysen. Im Gegensatz zu den RACK1-

Proteinen aus Saccharomyces cerevisiae und Cryptococcus neoformans scheint es nicht die 

Gβ Funktionen in D. discoideum zu übernehmen, da Entwicklungs- und andere Defekte in 

einer Gβ null Mutante nicht beseitigt wurden. Eine Überexpression des GFP- DdRACK1 

Fusionsproteins und einer Mutantenversion (DdRACK1Mut), bei der die Lysine gegen 

Glutamatreste ausgetauscht waren, führte zu Änderungen bei Wachstum und Entwicklung. 

Wir schließen aus unseren Ergebnissen, dass DdRACK1 mit heterotrimeren G-Proteinen 

interagiert und durch diese Interaktion Einfluss auf Prozesse nehmen kann, die G-Proteine 

geregelt sind.  
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