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SUMMARY

Aging entails a progressive decline in protein homeo-
stasis, which often leads to age-related diseases.
The endoplasmic reticulum (ER) is the site of pro-
tein synthesis and maturation for secreted and
membrane proteins. Correct folding of ER proteins
requires covalent attachment of N-linked glycan oli-
gosaccharides. Here, we report that increased syn-
thesis of N-glycan precursors in the hexosamine
pathway improves ER protein homeostasis and ex-
tends lifespan in C. elegans. Addition of the N-glycan
precursor N-acetylglucosamine to the growth me-
dium slows aging in wild-type animals and alleviates
pathology of distinct neurotoxic diseasemodels. Our
data suggest that reduced aggregation of meta-
stable proteins and lifespan extension depend on
enhanced ER-associated protein degradation, pro-
teasomal activity, and autophagy. Evidently, hexos-
amine pathway activation or N-acetylglucosamine
supplementation induces distinct protein quality
control mechanisms, which may allow therapeutic
intervention against age-related and proteotoxic
diseases.

INTRODUCTION

During aging, organisms undergo a decline in function and

homeostasis, accompanied by reduced cellular, organ, and sys-

temic performance. Nevertheless, aging can be modulated by

environmental and genetic factors, and several mechanisms

have been implicated in lifespan extension that are conserved

from simple organisms to mammals (Kenyon, 2010). Among

them are dietary restriction, reduced insulin/insulin-like growth
factor 1 signaling (IIS), reduced mitochondrial respiration, and

signals from the reproductive system (Kenyon, 2010), which

trigger natural defense mechanisms that help stave off aging.

Recent studies reveal that these pathways regulate diverse

downstream processes, such as stress resistance, metabolism,

quality control mechanisms, and immunity, to enhance life and

health. However, the underlying proximal mechanisms of aging

and the relative contribution of various defense mechanisms

essential to longevity remain elusive.

Protein quality control mechanisms constitute a major regula-

tory output of longevity pathways, and aging and age-related

diseases are associated with a decline in protein homeostasis.

These processes are particularly evident in neurodegenerative

diseases, which stem largely from a failure to properly handle

protein misfolding, aggregation, and proteotoxic stress (Koga

et al., 2011). The protein homeostasis network is required under

normal conditions to support chaperone-assisted protein folding

and to suppress protein aggregate formation (Balch et al., 2008).

Different cellular compartments possess distinct proteotoxic

stress response pathways; these include the cytosolic heat

shock response, the mitochondrial unfolded protein response,

and the endoplasmic reticulum (ER) unfolded protein response

(UPR). In addition, autophagy, a turnover mechanism that de-

grades and recycles organelles and macromolecules, is induced

during stress conditions such as starvation and thus plays a

major role in protein quality control (Menzies et al., 2011).

Notably, these pathways impinge on the aging process in

Caenorhabditis elegans (Jia and Levine, 2010; Shore et al.,

2012). Numerous long-lived mutant strains have the striking abil-

ity to maintain responsiveness to stress and to sustain protein

homeostasis (Hsu et al., 2003; Morley and Morimoto, 2004;

Zhou et al., 2011).

The ER is a major site of protein synthesis, lipid biosynthesis,

and membrane biogenesis. All membrane and secreted proteins

enter the ER and undergo a tightly regulated folding process,

which includes the covalent attachment of complex sugars to
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the amino group of asparagine residues in a process called

N-glycosylation (Roth et al., 2010). N-glycans are structural com-

ponents of secreted and cell surface proteins and also operate in

ER protein folding quality control (Parodi, 2000). The presence of

luminal unfolded proteins is an ER stress signal and triggers the

UPR, a signaling cascade that results in attenuated translation

and induced expression of ER-resident chaperones, such as

heat shock protein 4 (HSP-4) (Walter and Ron, 2011). It is inter-

esting to note that the remarkable longevity of animals with

reduced IIS depends on proper ER quality control; in particular,

the ER-UPR (Henis-Korenblit et al., 2010). Furthermore, the ER

associated protein degradation (ERAD) machinery in combina-

tion with the ubiquitin-proteasome system removes ER luminal

unfolded proteins for cytosolic degradation (Meusser et al.,

2005). This multilayered protein quality assurance system sug-

gests a significant requirement of ER protein homeostasis in

healthy aging and longevity.

We reasoned that, if protein quality control mechanisms are

indeed an important component of aging, then enhancing their

effectiveness might improve health into old age and extend life-

span. We hypothesized that improved ER protein quality control

itself promotes longevity. Using a forward genetic approach in

C. elegans, we identified gain-of-function (gof) mutations in

gfat-1, the key enzyme of the hexosamine pathway, as a novel

regulator of protein quality control and longevity. GFAT-1 gain

of function induces ERAD and autophagy and correlatively ex-

tends lifespan and ameliorates a broad spectrum of proteinopa-

thies. These findings suggest novel therapeutic approaches to

promote health and extend lifespan through endogenous mole-

cule modulation of protein quality control.

RESULTS

gfat-1 gof Mutations Cause Resistance to ER Stress
To identify genes modulating aging through ER protein homeo-

stasis, we performed a tunicamycin (TM) resistance screen in

C. elegans. TM interferes with ER protein folding by inhibiting

N-glycan synthesis and is a potent inducer of ER stress (Parodi,

2000). TM treatment of wild-type (WT) animals results in devel-

opmental retardation and lethality.We performed ethylmethane-

sulfonate (EMS) mutagenesis and selected mutants that

completed development at the WT lethal dose of 10 mg/ml (Fig-

ure 1A). From more than 200,000 screened genomes, we iso-

lated 358 TM-resistant mutant strains. Of those, 109 had an

increased median lifespan (>15%). Through single-nucleotide

polymorphism mapping and whole-genome sequencing, we

identified three independent point mutations in a novel longevity

gene F07A11.2, which encodes a putative glutamine-fructose

6-phosphate aminotransferase (called gfat-1). The C. elegans

genome contains a homolog (F22B3.4), called gfat-2, that is

88.3% similar to gfat-1 in amino acid sequence, but this gene

was not found in our screen. We generated a transgenic C. ele-

gans strain that carries additional WT gfat-1 copies fused to cyan

fluorescent protein (CFP), gfat-1::cfp. gfat-1::cfp was expressed

most prominently in epidermal seam cells and the pharynx (Fig-

ure 1B). gfat-1 is strikingly conserved across eukaryotes, with a

80% similarity between H. sapiens and C. elegans protein

sequences (Figure 1C). Mammalian GFAT is the rate-limiting
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enzyme of the hexosamine pathway (HP), which synthesizes

UDP-N-acetylglucosamine (UDP-GlcNAc) used as precursor

for N- and O-glycans. (Figure 1D).

We observed normal development, pharyngeal pumping

rates, and brood sizes in gfat-1 mutants (Figures S1A and S1B

available online). We tested TM resistance in the offspring of

heterozygous gfat-1 mutants and found that all three alleles

conferred resistance in the heterozygous state (Figure S1C), indi-

cating that the identified gfat-1 alleles are dominant gof (gain-of-

function) mutations. Accordingly, knockdown of the HP using

RNAi against gfat-1 and gna-2 (catalyzing the second step of

the HP) significantly reduced developmental TM resistance of

gfat-1 gof mutants (Figures S1D and S1E). Finally, we found

that the gfat-1::cfp transgene increased TM resistance

compared to controls expressing only CFP fused to the same

50 and 30 gfat-1 regulatory elements (Figure 1E).

To elucidate whether GFAT-1 gof affects hexosamine metab-

olites, we used liquid chromatography mass spectrometry

(LC-MS) andmeasured levels of endogenous UDP-N-acetylhex-

osamines (UDP-HexNAc), which represent the combined UDP-

GlcNAc and UDP-N-acetylgalactosamine (UDP-GalNAc) pool.

Consistent with gof, we found significantly elevated UDP-

HexNAc levels in whole-worm lysates in all three gfat-1 mutants

by up to 10-fold (Figures 1F and 1G). No reduction in pyruvate or

fructose 6-phosphate levels was observed (Figures S1F and

S1G). TM resistance of the mutants also positively correlated

with measured UDP-HexNAc levels (Figure S1H). This led us to

ask whether exogenous supplementation of HP intermediates

could alter TM toxicity. Indeed, WT animals successfully devel-

oped on TM plates with added GlcNAc or UDP-GlcNAc (Figures

1H and 1I), suggesting that dietary GlcNAc is utilized in the HP,

as shown previously in cultured cells (Wellen et al., 2010). Addi-

tional data showed that GFAT-1 gof rendered animals resistant

to TM-induced inhibition of N-glycosylation and subsequent

UPR stress signaling (Figures S1I and S1P). In addition, we found

that TM treatment induces gfat-1 gene expression inWT animals

(Figure S1Q). Together, these data demonstrate that elevation of

cellular UDP-HexNAc levels through GFAT-1 gof or supplemen-

tation with UDP-GlcNAc or GlcNAc result in TM resistance.

Increased UDP-HexNAc Extends Lifespan
Given the altered ER stress response in our mutants, we asked if

the novel gfat-1 mutations affect lifespan. We found significant

lifespan extension in all gfat-1 gof mutants from 9% to 42%,

which was completely dependent on gfat-1 activity, as gfat-1

knockdown abolished lifespan extension in gfat-1 gof mutants,

without having an effect on WT lifespan (Figure 2A; Figure S2A;

Table S1). Likewise, transgenic overexpression of gfat-1::cfp re-

sulted in similar lifespan extension (Figure 2B). Moreover,

GlcNAc supplementation extended lifespan in WT animals up

to a concentration of 10 mM, compared to the 10 mMD-arginine

(D-Arg) osmolarity control (Figure 2C). By contrast, 25 mM

GlcNAc failed to extend lifespan (Figure 2D), suggesting that

an optimal GlcNAc concentration promotes beneficial effects.

Thus, three independent lines of evidence indicate that elevated

cellular UDP-HexNAc levels extend C. elegans survival.

Several longevity pathways in C. elegans, including reduced

IIS pathway and germline removal, depend on the FOXO



Figure 1. Developmental Tunicamycin Re-

sistance Screen Identifies gfat-1 gof Muta-

tions

(A) Representative images of WT controls and

tunicamycin (TM)-resistant C. elegans mutants

after developmental screen for resistance to

10 mg/ml TM.

(B) Representative images of dhEx941(Pgfat-1::

gfat-1::cfp) transgenic animal showing the GFAT-1

expression pattern in the head area of L4 animals.

DIC, differential interference contrast.

(C) Multiple sequence alignment of gfat-1 protein

sequences surrounding the amino acid sub-

stitutions of alleles dh468, dh784, and dh785.

(D) The hexosamine pathway.

(E) Developmental TM resistance assay using

transgenic animals expressing cfp or gfat-1::cfp

fusion under gfat-1 regulatory elements (n = 3).

Results are presented as means ± SEM.

***p < 0.001.

(F) Representative LC/MS scans of adult

C. elegans extracts.

(G) Quantitative LC/MS analysis of pooled L1/L2

larvae and adult animals for UDP-HexNAc levels in

dh468, dh784, and dh785 alleles of gfat-1 (n = 8).

Results are presented as means ± SEM. *p < 0.05

and ***p < 0.001 versus WT.

(H) Representative images of developmental TM

resistance assay on control or 10 mg/ml TM plates

with UV-killed OP50 bacteria, supplemented with

10 mM of indicated compounds.

(I) Quantification of the developmental TM resis-

tance assay in (F). L4 or adult animals were

counted 5 days after egg transfer to TM plates and

displayed as a fraction of the number of eggs used

(n = 6). **p < 0.01 and ***p < 0.001 versus D-Arg.

Results are presented as means ± SEM.

See also Figure S1.
transcription factor DAF-16 (Kenyon, 2010). DAF-16 also medi-

ates resistance to various types of cellular stress. We found

that GFAT-1 gof-induced TM resistance was independent of

DAF-16 and that DAF-16 target genes sod-3, dod-3, and dod-

8 remained unchanged (Figures S2B and S2C). Notably, GlcNAc

supplementation and gfat-1 gof mutation extended the lifespan

of daf-16(mgDf50) and daf-2(e1368) mutants (Table S1), sug-

gesting a mechanism, at least partially independent from DAF-

16/FOXO and IIS longevity pathways. In addition, we detected

no changes in the mRNA expression of representative cytosolic

and mitochondrial chaperones (Figure S2D). No changes in

UDP-HexNAc levels were observed in various long-lived ani-

mals, including those carrying mutations in genes affecting the

IIS pathway (daf-2), gonadal outgrowth (glp-1), mitochondrial
Cell 156, 1167–1178
function (isp-1), dietary intake (eat-2),

and protein translation (ife-2) (Figure 2E).

Thus, known longevity pathways do not

obviously activate the HP, implying a

novel mechanism to extend lifespan.

Furthermore, we found that UDP-Hex-

NAc levels decreased with age, both in

WT as in gfat-1 gof mutants (Figure 2F).
In addition to N-glycosylation, which is specifically inhibited

by TM, the HP gives rise to precursors used in O-glycosylation,

which was previously implicated in C. elegans lifespan:

O-GlcNAc transferase (ogt-1) loss-of-function mutants are

short lived, while O-GlcNAcase (oga-1) mutants are modestly

long lived (Rahman et al., 2010), revealing that enhanced

O-glycosylation of client proteins is associated with longevity.

However, neither oga-1 nor ogt-1 affected the gfat-1 mutants’

developmental TM resistance (Figure S2E) or lifespan (Table

S1). Moreover, GlcNAc supplementation extended the lifespan

of ogt-1 mutants (Table S1). These results indicate that ogt-1

mediated O-glycosylation does not play an appreciable role

in developmental TM resistance or longevity of gfat-1 gof

mutants.
, March 13, 2014 ª2014 Elsevier Inc. 1169



Figure 2. gfat-1 gof or Supplementation with GlcNAc Extends C. elegans Lifespan

(A) Kaplan-Meier survival curves of gfat-1 alleles dh468, dh784, and dh785 show significant lifespan extensions (left: WT median lifespan = 21 days, and

gfat-1(dh468)median lifespan = 30 days, p < 0.0001; middle: WT median lifespan = 21 days, and gfat-1(dh784)median lifespan = 25 days, p < 0.0001; right: WT

median lifespan = 21 days, and gfat-1(dh785) median lifespan = 23 days, p = 0.0004).

(B) Lifespan assay using transgenic animals expressing cfp or gfat-1::cfp fusion under gfat-1 regulatory elements (Pgfat-1::cfp median lifespan = 21 days, and

Pgfat-1::gfat-1::cfp median lifespan = 30 days, p < 0.0001).

(C) Survival curves of WT animals on NGM plates supplemented with the indicated compounds. Animals were maintained on UV-killed OP50 E. coli. D-Arg was

used as osmolarity control. (10 mM D-Arg median lifespan = 18 days, and 10 mM GlcNAc median lifespan = 27 days, p < 0.0001).

(D) Average median lifespan extension observed for the indicated GlcNAc concentrations (n = 3). Results are presented as means ± SEM.

(E) LC/MS analysis of indicatedC. elegansmutants shows elevated UDP-HexNAc concentrations only in gfat-1mutants (n = 4–8). Results are presented asmeans

± SEM. ***p < 0.001 versus WT.

(F) Quantitative LC/MS analysis of UDP-HexNAc levels in WT animals and gfat-1 gof mutant alleles at days 1, 5, 12, and 18 of adulthood (n = 3–6). Results are

presented as means ± SEM.

See also Figure S2 and Table S1.
Increased HP Metabolite Levels Improve ER Protein
Quality Control
We hypothesized that improved ER protein homeostasis might

contribute to the observed lifespan extension and therefore

asked whether elevation of HP metabolites causes changes in

the protein folding milieu within the ER lumen. To this end, we

made use of the neuroserpin homolog and folding sensor serpin

2 fused to yellow fluorescent protein (YFP) (SRP-2H302R::YFP),

which accumulates in the ER lumen due to a point mutation

and whose aggregation is modulated by the heat shock
1170 Cell 156, 1167–1178, March 13, 2014 ª2014 Elsevier Inc.
response and the UPR (Schipanski et al., 2013). srp-2::yfp is

expressed in the body wall muscles, and SRP-2H302R::YFP

aggregates were quantified in the head region. A time course

analysis revealed an increase in SRP-2H302R::YFP puncta from

the L4 to adult stage and no further increase after the first

day of adulthood in WT animals. At all measured time points,

SRP-2H302R::YFP accumulation was significantly reduced in

gfat-1 gof mutants (Figures 3A and 3B). Similarly, aggregation

of SRP-2 was reduced in gfat-1::cfp transgenic animals (Fig-

ure 3C). Overall protein levels of SRP-2 were unchanged in



Figure 3. gfat-1 gof or Supplementation with GlcNAc Improves ER Protein Quality Control

(A) Time course of SRP-2H302R::YFP aggregation. Quantification was done in head region ofR20 animals (data are means ± SD, representative result from n = 3

experiments; ***p < 0.001 versus gfat-1). Results are presented as means ± SEM.

(B) Representative fluorescent images ofPunc-54::srp-2H302R::yfp transgenic animals crossed to the indicated strains. Head regions are shown, and arrows point

to SRP-2H302R::YFP aggregates.

(C) Quantification of SRP-2H302R::YFP in cfp and gfat-1::cfp transgenic animals (representative result from n = 3 experiments, t test). Results are presented as

means ± SEM. ***p < 0.001 versus cfp.

(D) Quantification of SRP-2H302R::YFP aggregates after exposure to the indicated compounds. Supplementation with compounds was done for the 24 hr prior to

quantification (n = 3). Results are presented as means ± SEM. ***p < 0.001 versus D-Arg.

(E) Fraction of paralyzed Punc-54::humanAb transgenic animals in WT or gfat-1 gof mutant background at day 7 of adulthood (n = 4). Results are presented as

means ± SEM. **p < 0.01 and ***p < 0.001 versus WT.

(F) Punc-54::humanAb transgenic animals were treated with indicated compounds in a bath for 6 hr daily in the presence of UV-killed OP50 and otherwise

maintained under standard culture conditions; fraction paralyzed worms was quantified at day 7 of adulthood. (n = 3; **p < 0.01 versus D-Arg). Results are

presented as means ± SEM.

See also Figure S3.
both the gfat-1 gof mutants and the gfat-1::cfp transgenic strain

(Figures S3A and S3B), suggesting that reduced protein aggre-

gation results from improved protein homeostasis. Additionally,

the beneficial effects observed in gfat-1 gof mutants arise from

increased HP activity, since the decrease in SRP-2 aggregates

was abolished upon gfat-1 or gna-2 knockdown (Figure S3C).

Finally, GlcNAc treatment reduced SRP-2H302R::YFP aggrega-

tion in young adults (Figure 3D).

Next, we tested if GlcNAc supplementation might clear

already established SRP-2H302R::YFP aggregates when pro-

vided at a later time during adulthood. Remarkably, 24 hr expo-

sures to GlcNAc reduced SRP-2H302R::YFP puncta at various

adult time points until day 12 of adulthood (Figure 3D). Together,

these data reveal that increased HP metabolite levels improve

the ER’s capacity not only to prevent accumulation of aggre-
gated proteins but also to reverse aggregation. As an additional

toxic aggregation-prone protein, we turned to animals express-

ing human ER-targeted Ab42 peptide (Link, 1995; Link et al.,

2001). These animals undergo progressive paralysis during adult

aging due to Ab toxicity. When crossed to gfat-1 gof mutants or

after GlcNAc treatment, transgenic Ab animals showed signifi-

cant motility improvements (Figures 3E and 3F).

To further explore ER function in gfat-1 gof mutants, we

investigated the role of N-glycosylation and UPR components

in the aggregation dynamics of SRP-2H302R::YFP. Inhibiting

N-glycosylation by knockdown of oligosaccharyltransferase

(OST) complex components suppressed the reduction of

SRP-2H302R::YFP puncta and lifespan extension found in gfat-1

gof mutants (Figures S4A and S4B). These data suggest that

N-glycosylation is required for improved protein homeostasis
Cell 156, 1167–1178, March 13, 2014 ª2014 Elsevier Inc. 1171



Figure 4. Role of the UPR in gfat-1 gof

Mutants

(A) SRP-2H302R::YFP aggregate count in WT

and gfat-1(dh468) mutants after RNAi-mediated

knockdown of indicated UPR genes (n = 3). n.s.,

not significant. Results are presented as means ±

SEM. ***p < 0.001.

(B) Representative survival demography of WT

and gfat-1(dh468) animals treated with indicated

RNAi targeting UPR genes. WT(gfp) median life-

span = 24 days, and gfat-1(dh468)(gfp) median

lifespan = 29 days, p < 0.0001; WT(ire-1) median

lifespan = 22 days, and gfat-1(dh468)(ire-1)

median lifespan = 24 days, p < 0.005 versus gfat-

1(dh468)(gfp); WT(xbp-1) median lifespan = 22

days, gfat-1(dh468)(xbp-1) median lifespan = 22

days, p < 0.001 versus gfat-1(dh468)(gfp).

(C) Relative mRNA levels of indicated UPR genes

in WT animals and gfat-1 mutants (n = 3). Results

are presented as means ± SEM.

See also Figure S4 and Table S1.
and longevity in gfat-1 gof mutants. Downregulation of the UPR

pathway by RNAi against ire-1 and xbp-1 also increased SRP-

2H302R::YFP aggregates in gfat-1 gof mutants (Figure 4A).

Knockdown of atf-6 only partly suppressed the beneficial effects

from the gfat-1 gof mutation, and pek-1 knockdown had no

effect. Correlatively, gfat-1 gof longevity was completely depen-

dent on ire-1 and xbp-1 (Figure 4B). These results suggest that

specific branches of the UPR pathway coassist the improved

protein homeostasis and longevity of gfat-1 gof mutants.

Unexpectedly, however, we found no changes in transcriptional

regulation of known UPR target genes by qPCR (Figure 4C),

including hsp-4, spliced xbp-1, and target genes of the ATF-6

and PEK-1 UPR branches (Shen et al., 2005). HSP-4 protein

levels were slightly increased without reaching statistical signifi-

cance, and CNX-1 protein levels were unchanged (Figures S4C

and S4D), suggesting that a functional UPR is required but not

activated in gfat-1 gof mutants.

Wewere surprised to find no evidence for UPR induction; thus,

we hypothesized that ERAD activity might be induced. ERAD

client proteins are retrotranslocated from the ER lumen to the

cytosol before proteasomal degradation. The SEL-11/HRD1

ubiquitin ligase complex controls this translocation and ubiqui-

tin-dependent degradation process (Bordallo et al., 1998), in

conjunction with the ER membrane glycoprotein SEL-1/HRD3

that serves as a cofactor (Hampton et al., 1996). We found a

2-fold increased expression of SEL-1 protein in all three gfat-1

gof mutants using western blot analysis of worm lysates (Figures

5A and 5B), without accompanying changes inmRNA levels (Fig-

ure S5A). Similarly, gfat-1::cfp transgenic animals and WT ani-

mals supplemented with GlcNAc showed slightly elevated levels

of SEL-1 (Figures S5B and S5C).We next tested the role of ERAD

in SRP-2H302R::YFP aggregation and lifespan extension of gfat-1

gof mutants. RNAi experiments identified a strict requirement for
1172 Cell 156, 1167–1178, March 13, 2014 ª2014 Elsevier Inc.
sel-1 and sel-11, as knockdown sup-

pressed the gfat-1 mutants’ ER luminal

aggregation and longevity phenotypes

(Figures 5C and 5D). Strikingly, a sel-
1::gfp transgenic strain was long lived compared to WT controls

(Figure 5E), suggesting the gfat-1 gof induced longevity could

arise in part from increased sel-1 expression and activity.

Given the apparent involvement of the ERAD machinery, we

tested proteasome activity. We observed a mild yet significant

increase in chymotrypsin-like proteasome activity, as measured

by turnover of an LLVY-tagged fluorescent substrate, in all gfat-1

gof alleles (Figures 5F and 5G). Additionally, gfat-1(dh785)

showed a significant increase in trypsin-like activity (Figure S5D).

GlcNAc supplementation stimulated both activities in WT ani-

mals, although the trypsin-like activity did not reach significance

(Figure 5H; Figure S5E). If the gfat-1 gof mutants enhance

proteasome activity, then they might exhibit resistance to borte-

zomib, a known proteasome inhibitor. Indeed, in gfat-1 gof

mutants we observed significantly elevated resistance to

30 mM bortezomib compared to WT controls (Figure S5F).

RNAi knockdown of proteasome subunit genes rpn-6 and

rpn-8 abrogated lifespan extension of gfat-1 but also shortened

WT lifespan (Table S1). Together, increased expression of SEL-1

and enhanced proteasome activity suggest that improved ER

protein homeostasis in gfat-1 gof mutants is linked to longevity

and enhanced proteolytic capacity.

Elevated HP Metabolite Levels Induce Autophagy
Another quality control mechanism that contributes to the

turnover of aggregation prone proteins is autophagy, a cellular

degradation pathway known to play a role in protein and

organellar homeostasis (Menzies et al., 2011). Recent data also

suggest that the hexosamine metabolite glucosamine can

induce autophagy in cell culture experiments (Shintani et al.,

2010), but the influence of other such metabolites in a multicel-

lular organism is unknown. During autophagosome formation,

the nematode microtubule-associated protein light chain 3



Figure 5. gfat-1 gof Mutants Show In-

creased ERAD Activity

(A) Representative western blot from L4 animals

from indicated genotypes detecting SEL-1 and

a-tubulin.

(B) Analysis of SEL-1 western blots from n = 3

independent experiments. SEL-1 levels were

normalized to a-tubulin. Results are presented as

means ± SEM. *p < 0.05 and **p < 0.01 versusWT.

(C) SRP-2H302R::YFP aggregation inWT and gfat-1

gof mutants treated with RNAi targeting ERAD

genes sel-1 and sel-11 (n = 3). Results are pre-

sented as means ± SEM. ***p < 0.001 versus WT.

(D) Lifespan analysis of WT and gfat-1(dh468)

animals treated with indicated RNAi targeting

ERAD gene expression. WT(gfp) median lifespan =

24 days, and gfat-1(dh468)(gfp) median lifespan =

29 days, p < 0.0001; WT(sel-1) median life-

span = 22 days, and gfat-1(dh468)(sel-1) median

lifespan = 22 days, p < 0.005 versus gfat-

1(dh468)(gfp); WT(sel-11) median lifespan =

24 days, and gfat-1(dh468)(sel-11) median life-

span = 24 days, p < 0.005 versus gfat-

1(dh468)(gfp).

(E) Representative lifespan curves of Pgfat-1::cfp,

Pgfat-1::gfat-1::cfp, and sel-1::gfp (Pgfat-1::cfp

median lifespan = 25 days versus Pgfat-1::gfat-

1::cfp median lifespan = 29 days, p < 0.005,

and versus sel-1::gfp median lifespan = 29 days,

p < 0.005).

(F) Representative example of chymotrypsin-like

proteasome activity assay measuring LLVY-AMC

turnover at 25�C with in lysates of L4 larvae.

Treatment with the proteasome inhibitor bortezo-

mib served as a negative control.

(G) Relative chymotrypsin-like activity from n = 4

experiments with animals of indicated genotypes.

Results are presented as means ± SEM. *p < 0.05

and ***p < 0.001 versus WT.

(H) Relative chymotrypsin-like activity from n = 4

experiments with WT animals and indicated

treatments. Results are presented as means ±

SEM. *p < 0.05 versus D-Arg.

See also Figure S5 and Table S1.
(LC3) homolog LGG-1 condenses into puncta, reflecting the

activity of autophagic processes (Meléndez et al., 2003).

When we quantified LGG-1::GFP foci in epidermal seam cells,

we observed a 60%–70% increase of LGG-1::GFP foci in

the gfat-1 gof mutants relative to WT (Figure 6A; Figure S6A)

and saw a similar increase upon GlcNAc supplementation

(Figure S6B). This enhancement was due to increased HP

activity since gfat-1 and gna-2 RNAi reduced LGG-1::GFP

puncta formation (Figure S6C). Concomitantly, we detected

an increase in the lipidated form of LGG-1::GFP in gfat-1 gof

mutants and after GlcNAc treatment (Figures 6B and 6C; Figures

S6D–S6F), suggesting that autophagic activity was enhanced.

To confirm this idea, we quantified turnover of p62, a physio-

logical substrate that is selectively removed by autophagy

(Tian et al., 2010). We observed a reduction in p62 foci in the

posterior pharyngeal bulb in GFAT-1 gof animals (Figure 6D).

No changes in the mRNA expression of autophagy genes were
detected (Figure 6E), suggesting that autophagy is induced

posttranscriptionally.

Since autophagy was induced, we tested if improved ER pro-

tein homeostasis and lifespan extension of gfat-1 gof mutants

depended on autophagy. We found that inhibition of autophagy

by RNAi-mediated knockdown of the gene atg-18 specifically

increased SRP-2H302R::YFP aggregation in gfat-1 gof mutants

(Figure 6F). Moreover, atg-18 RNAi shortened lifespan in gfat-1

gof mutants but not in WT controls (Figure 6G). Taken together,

gfat-1 gof mutations induce autophagy, which supports ER pro-

tein homeostasis and lifespan extension.

Increased HP Activity Alleviates Proteotoxicity in
C. elegans Disease Models
Given that HP metabolites enhanced both the proteasome

and autophagy, we wondered whether observed changes in

protein homeostasis might go beyond the ER. We used
Cell 156, 1167–1178, March 13, 2014 ª2014 Elsevier Inc. 1173



Figure 6. gfat-1 gof Extends Lifespan via

Induction of Autophagy

(A) Average number of LGG-1:GFP foci per seam

cell of L3 larvae in indicated genotypes shows

elevated autophagosome formation in gfat-1 gof

mutants. Results are presented as means ± SEM.

**p < 0.01 and ***p < 0.001 versus WT.

(B) Representative western blot using anti-GFP

antibodies to detect LGG-1::GFP fusion protein in

L4 animals shows increase of phosphatidyletha-

nolamine-LGG-1::GFP in gfat-1 gof mutants.

(C) Analysis of LGG-1::GFP western blots as in (B)

from n = 6 experiments. PE-LGG-1::GFP levels

were normalized to a-tubulin. Results are pre-

sented as mean ± SEM. *p < 0.05 versus WT.

(D) Average number of p62::GFP foci per posterior

pharyngeal bulb of L4 larvae inR 15 WT and gfat-

1(dh468) animals (t test, representative result of

n = 3 experiments). Results are presented as

means ± SEM. ***p < 0.001 versus WT.

(E) Quantitative real-time PCR measurements of

autophagy genes in L4 animals from indicated

genotypes (n = 5). Results are presented as

means ± SEM.

(F) Quantification of SRP-2H302R::YFP aggregates

in L4 animals after developmental exposure to

atg-18 RNAi or L4440 empty vector control

(representative result of n = 3 experiments). Re-

sults are presented as means ± SEM. n.s., not

significant. ***p < 0.001 versus WT or gfat-

1(dh468), respectively as indicated.

(G) Kaplan-Meier survival curves of N2 and

gfat-1(dh468) animals exposed to indicated RNAi

shows significant lifespan extension in gfat-

1(dh468) animals on control RNAi but not after atg-

18 RNAi treatment. WT(gfp) median lifespan =

19 days, and gfat-1(dh468)(gfp) median lifespan =

26 days, p < 0.0001; WT(atg-18) median life-

span = 19 days, and gfat-1(dh468)(atg-18) median

lifespan = 21 days, p < 0.0001 versus gfat-

1(dh468)(gfp).

See also Figure S6 and Table S1.
additional models of protein aggregation, including polyglut-

amine (polyQ40) repeats and a-synuclein, which are not targeted

to the ER. PolyQ repeats are found in aggregation-prone proteins

such as Huntingtin, implicated in Huntington’s disease, whereas

a-synuclein is associated with Parkinson’s and Alzheimer’s

diseases (Douglas and Dillin, 2010; Johnson, 2000). Because

polyQ40 and a-synuclein transgenic animals express the ectopic

toxic protein species in muscle cells, we used motility as a

readout for toxicity by counting the number of bodybends in

liquid. We found significant motor function improvements in

both proteotoxic disease models on a 6-day treatment initiated

from young adulthood for 6 hr/day with 10 mM GlcNAc supple-

mented in liquid (Figures 7A and 7B). A role of the HP in protec-

tion from proteotoxicity was further corroborated by improved

motor function in gfat-1 gof mutants carrying the same trans-

genes (Figures 7C and 7D). As with SRP-2 expression, overall

abundance of Q40::GFP and a-synuclein::GFP was not reduced

in the gfat-1 gof mutants (Figures S7A and S7B). Knocking down

gfat-1 or gna-2 abolished the improvement without changingWT
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motility (Figures S7C and S7D). In addition, atg-18 RNAi, as well

as knockdown of sel-1 and sel-11 suppressed the beneficial

effects on motility in both a-synuclein and polyQ40 transgenic

animals (Figures 7C–7F). These data indicate that the protective

effects in gfat-1 gof mutants are not limited to the ER and that

they depend on HP activity, ERAD, and autophagy.

Furthermore, we wanted to see if the HP pathway could influ-

ence toxic phenotypes in the nervous system. We therefore

examined animals expressing a-synuclein under the dat-1 pro-

moter in dopaminergic neurons. We found improved motility in

this neuronal proteotoxicity model in gfat-1 gof mutants (Fig-

ure 7G). Together, these data show that HP metabolites induce

broad-spectrum protection against proteotoxicity in various

tissues and cellular compartments.

DISCUSSION

The current study provides a previously unknown link between

endogenous hexosaminemetabolites and cellular protein quality



Figure 7. GlcNAc Supplementation or gfat-1 gof Alleviate Multiple Forms of Proteotoxicity

(A and B) Motility assays using 7-day-old animals with Punc-54-driven muscle-specific expression of (A) polyQ40-YFP fusion protein and (B) a-synuclein-GFP

reveal significant improvement in motor function when treated with UDP-GlcNAc or GlcNAc.

(C and D) Motility assay using (C) Punc-54::polyQ40 and (D) Punc-54::a-synuclein transgenic animals at day 7 of adulthood after exposure to indicated RNAi

starting from day 1 of adulthood.

(E and F) Motility assay using (E) Punc-54::polyQ40 and (F) Punc-54::a-synuclein transgenic animals at day 7 of adulthood after exposure to indicated RNAi

starting from day 1 of adulthood.

(G) Motility assay in indicated gfat-1 mutants with transgenic expression of a-synuclein specifically in dopaminergic neurons.

All data are means ± SD, n = 3. **p < 0.01 and ***p < 0.001 versus D-Arg or WT controls.

(H) Model. GFAT-1 gof elevates hexosamine pathway activity and/or UDP-HexNAc availability. This activates the protein quality control mechanisms autophagy,

ERAD, and the proteasome, which in concert results in suppression of ER and cytoplasmic proteotoxicity and in lifespan extension.

See also Figure S7.
control, leading to improved protein homeostasis and lifespan

extension. Using gfat-1 gof mutations and activation of the HP

pathway, we demonstrate that elevated levels of the endoge-

nous metabolite UDP-GlcNAc extend longevity and ameliorate

various proteinopathies. Lifespan extension induced by GlcNAc

or gfat-1 gof required multiple aspects of ER function, including

N-glycosylation, ERAD, andUPR signaling. It is important to note

that GlcNAc supplementation or GFAT-1 gof alleviated—and, in

some cases, reversed—proteotoxicity in models of neurodegen-

erative disease in diverse tissues and cellular compartments.

This suggests broad-spectrum improvements in protein quality

control. Our data indicate that such improved homeostasis

stems largely from posttranscriptional enhancement of ERAD
function, proteasome activity, and autophagy, suggesting coor-

dinate regulation of these processes through interactions be-

tween metabolites and proteins. Moreover, elevated levels of

UDP-HexNAc are not seen in several major models of longevity

such as reduced insulin signaling, mitochondrial function,

gonadal longevity, or dietary restriction, suggesting that gfat-1

gof mutation invokes a novel mechanism to prolong life. These

results point to new strategies to combat proteotoxic diseases

through endogenous small molecule metabolites.

Aging and ER Function
Several studies have previously linked ER function and its stress

response pathways to effects on health and lifespan (Brown and
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Naidoo, 2012; Parodi, 2000). Many age-related diseases and

conditions, including diabetes, chronic inflammation, heart dis-

ease, and neurodegenerative diseases, show perturbation in

the ER stress response (Cao and Kaufman, 2013; Ozcan and

Tabas, 2012; Walter and Ron, 2011). Moreover, components of

UPR signaling are required for lifespan extension of C. elegans

daf-2/Insulin receptor mutants (Henis-Korenblit et al., 2010).

More recently, constitutive activity of the XBP-1 transcription

factor has been shown to work cell nonautonomously to stimu-

late longevity, demonstrating that UPR activation is sufficient

for lifespan extension (Taylor and Dillin, 2013). The UPR is

thought to stimulate ERAD and autophagy through various pro-

posed mechanisms (Qin et al., 2010; Shen et al., 2005; Yorimitsu

and Klionsky, 2007; Zhao et al., 2013). Although gfat-1 gof mu-

tants require basal UPR for lifespan extension and aggregate

removal, it is surprising that we found no evidence for transcrip-

tional induction of this pathway, as measured by xbp-1 splicing

and mRNA levels of downstream target genes such as hsp-4

(Figure 4). Similarly we found that, while gfat-1 gof-induced

longevity depended on components of ERAD, autophagy, and

N-glycosylation, it did not give rise to obvious transcriptional

changes; nor did we see changes in mRNA levels of genes

involved in other stress pathways such as mitochondrial UPR

genes (hsp-6, hsp-60) or cytosolic heat shock response genes

(hsp-16.2, hsp-70) (Figure S2D). Preliminary global transcrip-

tome analysis of gfat-1 mutants further revealed virtually no

changes in mRNA levels (data not shown). GFAT-1 gof instead

appears to stimulate autophagic vesicle formation, ERADprotein

expression, and proteasome activity, although other aspects of

protein homeostasis might also be affected. These observations

highlight a posttranscriptional and proximal mechanism for

longevity that affects metabolite levels and their interaction

with client proteins.

Links between Hexosamine Metabolites, ER Physiology,
and Autophagy
Howmight hexosaminemetabolites influenceERAD, proteasome

activity, and autophagy? One possibility is that phenotypes result

from broad changes in the secretory apparatus, presumably by

modulation of N-glycosylation. However, we failed to observe

global changes in steady-state protein glycosylation asmeasured

by N-glycan labeling with concanavalin A (Figures S1I and S1J).

Another possibility is that specific secretory proteins may be

affected. Indeed, the observation that increased UDP-GlcNAc re-

sults in increased expression of SEL-1 protein, involved in ERAD,

may provide an important hint. Conceivably, elevated UDP-

GlcNAc stimulates the covalent N-glycosylation of SEL-1 and

other ERAD components, thereby affecting their activity and/or

stability. Consistent with this idea, increased gene dose of sel-1

is sufficient to extend lifespan. In addition, we detected a depen-

dence of gfat-1-induced aggregate clearance and longevity on

components of the N-glycosylation machinery (Figure S4). It is

noteworthy thatHrd3p, the yeast homologofSEL-1, is aglycopro-

tein itself (Saito et al., 1999) that functions in a complex with the

Hrd1p/SEL-11 ubiquitin ligase and has been shown to autoregu-

late its own activity (Plemper et al., 1999). Presumably, elevated

SEL-1 enhances ubiquitination, ERAD, and proteasome activity

to improveproteindegradation. It is alsopossible thathexosamine
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metabolites noncovalently affect interacting proteins. Future ex-

periments should clarify the possible mechanisms at work.

How might ERAD and autophagy be linked? In certain patho-

logical serpinopathy models, ERAD has been shown to be

stimulated concomitantly with autophagy, resembling our obser-

vations with GFAT-1 gof (Kroeger et al., 2009) (Figures 5 and 6).

However, in our mutants, we saw no overt evidence for endoge-

nous protein misfolding stress; animals had normal develop-

mental timing and brood sizes and demonstrated better handling

of misfolded proteins. Another view is that organellar homeosta-

sis within the ER may require intimate coordination of these

processes. Autophagosomes form at ER-mitochondria contact

sites; thus, ER membranes might be an origin for autophagic

vesicle formation (Hamasaki et al., 2013). Such sites may be

used to initiate normal macroautophagy. Alternately, they may

facilitate so-called ERAD tuning, in which ERAD components

are selectively removed from the ER to dampen the degradation

response. During ERAD tuning, the unlipidated form of LC3

physically associates with SEL-1 to mediate this process (Ber-

nasconi et al., 2012). In gfat-1 gof mutants, however, we

observed an increase in the lipidated form of LC-3, consistent

with canonical autophagy (Figure 6).

Several other small molecule metabolites have been shown

to stimulate autophagy, including spermidine, trehalose, and

others (Eisenberg et al., 2009; Honda et al., 2010). It is unclear

if they work in concert with GlcNAc or affect a parallel pathway.

It is striking that a single endogenousmetabolite such as GlcNAc

can stimulate both ER quality control and autophagy, suggesting

a potential role as a signaling molecule.

These studiesalsoprovide strongevidence that enhancedpro-

tein homeostasis promotes health and increases life span. It will

be interesting to see if these observations extend to mammals

and can lead to new strategies to combat proteotoxic diseases.
EXPERIMENTAL PROCEDURES

C. elegans Strains and Culture

Nematodes were cultured at 20�C on nematode growth medium (NGM) agar

plates with the E. coli strain OP50, unless indicated otherwise (Brenner,

1974). For strains and details of the TM resistance screen, see the Extended

Experimental Procedures. For the genetic dominance test, gfat-1 mutant ani-

mals were crossed with N2 males, and TM resistance was scored in the F2

offspring of F1 heterozygous animals.

Mutant Mapping and Sequence Analysis

Rapid single nucleotide polymorphism mapping was conducted as previously

described (Davis et al., 2005). Genomic DNA was prepared using the QIAGEN

Gentra Puregene Kit. Whole-genome sequencing was conducted on the

Illumina HiSeq2000 platform. Sequencing outputs were analyzed using the

MAQGene pipeline (Bigelow et al., 2009). Paired-end reads (100 base pairs

long) were used; the average coverage was larger than 20-fold.

qRT-PCR

See the Extended Experimental Procedures for quantitative RT-PCR (qRT-

PCR). Primers are listed in Table S2.

RNAi

RNAi experiments were performed as described elsewhere (Kamath and Ah-

ringer, 2003; Rual et al., 2004). Synchronized eggs were put on corresponding

RNAi plates containing IPTG and ampicillin. gfp (GFP::L4440) RNAi or empty



vector (L4440) were used as a nontargeting control. RNAi clones used are

listed in Table S3.

Lifespan Assays

Adult lifespan analyses were performed at 20�C on E. coli OP50; the young

adult stage was defined as as day 0. One hundred to 150 animals were used

per condition and scored every day or every second day. The secondary

longevity screen after TM selection was conducted on 50 mM FUDR plates.

Animals in all RNAi lifespan assays were treated with RNAi from young adults

(L4 + 1 day) and kept on RNAi bacteria-containing plates throughout the exper-

iment. Worms that had undergone internal hatching, vulval bursting, or crawl-

ing off the plates were censored. Throughout the experiment, strain and/or

treatment was unknown to researcher. In some experiments, all plates were

numbered and randomly mixed. In both cases, data were assembled on

completion of the experiment. Statistical analyses were performed with the

Mantel-Cox log rank method in Excel (Microsoft).

Paralysis and Motility Assays

Paralysis of dvIs2[pCL12(Punc-54::human Abeta peptide 1-42 minigene;

pRF4(rol-6(su1006)))] animals was scored daily by prodding animals at head

and tail with a wire on NGM plates. Animals that were alive but unable to roll

were scored as paralyzed. Motility assays were carried out by transferring

animals to M9 and counting body bends over a 30 s interval.

Compound Feeding and Developmental TM Resistance Assay

For developmental TM resistance assays with GlcNAc and UDP-GlcNAc

(Sigma), UV-radiation-killed bacteria were transferred to plates containing

10 mg/ml tunicamycin. Compounds were then added to the plate surface, re-

sulting in a 10 mM compound concentration in the plates. Fifty to eighty

synchronizedWT (N2) eggs per condition were added to the plates, and devel-

opment to L4 or adult stage was scored after 4 and 5 days. For adult exposure

experiments for lifespan analyses with D-Arg or GlcNAc, compounds were

mixed with the NGM agar to a final concentration of 10 mM unless otherwise

noted, and UV-killed OP50 bacteria were added on the plates. For motility

assays, adult exposure experiments were carried out by maintaining animals

on normal NGM agar plates with a daily 6 hr treatment in S-basal media sup-

plemented with UV-killed OP50 bacteria and the indicated compounds.

LC/Tandem MS Analysis

See the Extended Experimental Procedures.

Western Blotting

Twenty-five L4 animals were suspended in Laemmli lysis buffer under

reducing conditions. Proteins were separated by reducing SDS-PAGE and

transferred to PVDF membranes. Membranes were then incubated with spe-

cific antibodies to GFP (Clontech), a-tubulin (Sigma), and SEL-1 (produced

in the Sommer laboratory).

Plasmid Construction and Transgenes

See the Extended Experimental Procedures.

Autophagy Quantification

Autophagosomes were scored as reported previously (Lapierre et al., 2011).

Fifteen to 25 transgenic lgg-1::gfp animals per condition where whole

mounted, and foci were counted using 1003 magnification on a Zeiss Axio

Imager.Z1 microscope in the seam cells of L3 larvae. For quantification of

p62::GFP puncta, 10–20 L4 larvae were whole mounted, and GFP foci in the

posterior pharyngeal bulb were quantified. For quantification, we used 1003

magnification on a Leica TCS SP5-X confocal microscope.

Quantification of SRP-2H302R::YFP Aggregation

SRP-2H302R::YFP puncta were scored in transgenic animals inWT or gfat-1 gof

backgrounds. At least 20 animals were whole mounted per experiment, and

GFP puncta were counted using a Zeiss Axio Imager.Z1. For clarity of imaging,

only the aggregates in the animals’ head regions were scored.
Proteasome Activity Assay

Proteasome chymotryptic and tryptic activity was assayed according to stan-

dard procedures (Fredriksson et al., 2012) as the rate of hydrolysis of the

fluorogenic peptide suc-LLVY-AMC (Sigma) or ac-RLR-AMC (Enzo), respec-

tively. Extracts were prepared in 25 mM Tris HCl, pH 7.5, using a dounce

homogenizer. Protein (20 mg) was incubated with 12.5 mM suc-LLVY-AMC or

ac-RLR-AMC in a total volume of 200 ml. AMC fluorescence was measured

using 355 nm excitation and 460 nm emission filters with free AMC (Sigma)

as standard every 2 min for 1 hr at 25�C.

Statistical Analysis

Results are presented as means ± SEM unless noted otherwise. For each

experiment, at least three biological replicates were carried out, and geno-

types were blinded during analysis. Statistical tests were performed using

one-way ANOVA with a Bonferroni posttest, unless otherwise noted, with

GraphPad Prism (GraphPad software). Chi-square two-tailed p values were

calculated with GraphPad QuickCalcs. Significance levels are *p < 0.05,

**p < 0.01, and ***p < 0.001 versus WT control unless otherwise noted.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and three tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2014.01.061.
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