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Introduction and Summary

This dissertation consists of four research papers, covering topics from

decision and game theory. Chapters 1 and 2 concern continuous-time games

and extensive forms. Chapter 3 presents results on the number of Nash

equilibria in a particular class of games called circulant games, while Chapter

4 covers the preference reversal phenomenon. In the following, I present a

brief overview of the four chapters summarizing the main findings.

Chapter 1, entitled “Repeated Games in Continuous Time as Extensive

Form Games”, is the result of joint work with Carlos Alós-Ferrer (University

of Cologne). Continuous-time games suffer from a severe conceptual issue,

namely that some strategy profiles induce multiple outcomes while other

profiles induce no outcome at all. Since preferences are defined on the set

of ultimate outcomes, neither profiles leading to a multiplicity of outcomes

nor profiles that “evaporate” can be evaluated, hence making it impossible

to analyze such games for example in terms of equilibria. The literature

has proposed several ways to deal with this issue. The most common one

requires players to stick to a chosen action for some strictly positive amount

of time. Indeed, it can be shown that any profile of such strategies induces

a unique outcome. This approach is, however, problematic from a game-

theoretic point of view. Fixing the extensive form of the game (i.e. decision

nodes and choices) determines the players’ strategies as these are mappings

from the set of decision nodes to the set of choices. Placing exogenous re-

strictions on the set of strategies hence implicitly changes (and in the worst

case destroys) the extensive form. Our paper presents a game-theoretically

well-founded framework for modeling repeated games in continuous time. It

further provides a clarification as to which restrictions on strategies can be

allowed in the sense that the resulting strategies can be derived from a well-

defined extensive form. Work on this paper was shared among authors as

follows: Johannes Kern 50%, Carlos Alós-Ferrer 50%.
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Chapter 2 is based on the paper “Comment on ‘Trees and Extensive

Forms’ ”, which is joined work with Carlos Alós-Ferrer (University of Cologne)

and Klaus Ritzberger (IHS Vienna) and has been published in the Jour-

nal of Economic Theory, Vol. 146, No. 5, September 2011, pp. 2165–2168.

The paper comments on the definition of Extensive Form in Alós-Ferrer and

Ritzberger (2008) and shows that one of the properties there needs to be ad-

justed. It provides counterexamples showing that with the original version

of this property some results do not hold as stated and presents a corrected

formulation of the property as well as the corrected statement of the results.

It further provides proofs for these results under the new formulation. Work

on this paper was shared among authors as follows: Johannes Kern 331
3
%,

Carlos Alós-Ferrer 331
3
%, Klaus Ritzberger 331

3
%.

Chapter 3 entitled “Circulant Games” is joint work with Ðura-Georg

Granić (University of Cologne). Games with a cyclical structure are ubiq-

uitous in game theory and are routinely used to generate popular examples,

starting with Matching Pennies and Rock-Paper-Scissors. For these as well

as larger games, the cyclical structure can be captured by circulant payoff

matrices in which each row vector is rotated by one element relative to the

preceding row vector. In our paper we study a class of two-player games in

which both players payoffs are given by such circulant matrices. Given that

these payoffs are ordered, we are able to determine the exact number of (pure

and mixed) Nash equilibria. This number only depends on the number of

strategies, the position of one of the player’s largest payoff in the first row

of his payoff matrix, and whether the players’ payoff matrices “cycle” in the

same or in different directions. Our results further allow us to describe the

support of each Nash equilibrium strategy. Work on this paper was shared

among authors as follows: Johannes Kern 50%, Ðura Georg Granić 50%.

Chapter 4, “Preference Reversals: Time and Again”, is the result of joint

work with Carlos Alós-Ferrer, Ðura-Georg Granić, and Alexander K. Wagner

(all at the University of Cologne). Experiments documenting the preference

reversal phenomenon highlight that, contrary to the invariance assumption

underlying most economic theories of choice, preferences may actually be in-

fluenced by the elicitation method employed. In the most basic setup of such

2



experiments, subjects are asked to choose from pairs of lotteries containing

one lottery with a high chance of paying a moderate amount of money (P -bet)

and one lottery with a moderate chance of paying a high amount of money

($-bet). They are then asked to state prices for each of the lotteries. A prefer-

ence reversal occurs if either the $-bet receives a higher price in a pair where

the P -bet is chosen (predicted reversal) or the P -bet receives a higher price

in a pair where the $-bet is chosen (unpredicted reversal). The preference re-

versal phenomenon is characterized by a significantly higher rate of predicted

reversals. We present a new, simple process-based model that explains the

preference reversal phenomenon and makes novel predictions about the asso-

ciated decision times in the choice phase. The phenomenon is jointly caused

by noisy lottery evaluations and an overpricing phenomenon associated with

the compatibility hypothesis. A laboratory experiment confirmed the model’s

predictions for both choice data and decision times. Choices associated with

reversals take significantly longer than non-reversals, and non-reversal choices

take longer whenever long-shot lotteries are selected. A second experiment

showed that the overpricing phenomenon can be shut down, greatly reducing

reversals, by using ranking-based, ordinally-framed evaluation tasks. This

experiment also disentangled the two determinants of the preference rever-

sal phenomenon since noisy evaluations still deliver testable predictions on

decision times even in the absence of the overpricing phenomenon. Work on

this paper was shared among authors as follows: Johannes Kern 25%, Carlos

Alós-Ferrer 25%, Ðura Georg Granić 25%, Alexander K. Wagner 25%.

References
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Chapter 1

Repeated Games in Continuous Time as

Extensive Form Games

1.1 Introduction

Suppose two players play a continuous-time version of the infinitely repeated

Prisoner’s Dilemma, starting at time t = 0. A player is then free to choose a

strategy conditioning on arbitrary events in the past. For instance, a player

could specify the following grim-trigger strategy: cooperate as long as both

players have always cooperated in the past, otherwise defect forever. Now

suppose both players use this strategy. One is tempted to conclude that the

outcome of the strategy profile is eternal cooperation. Indeed, this outcome

is compatible with the strategy profile in the sense that, at every point in

time, instantaneous cooperation is prescribed by the strategy profile given

the past history contained in the outcome. However, if time is continuous,

there are infinitely many other outcomes which are equally compatible with

these grim-trigger strategies. Fix any arbitrary time T , and consider the

outcome where both players cooperate up to and including time T , and

defect at any later point in time. Since there is no first point in time where

players defect, this outcome never contradicts the prescriptions of the grim-

trigger strategy profile and hence is also compatible with it. We conclude

that the strategy profile induces a continuum of different outcomes. As a

consequence, even if every outcome has a well-defined payoff, the payoff of

the considered strategy profile is not well-defined, and a game-theoretical

analysis becomes impossible.

Outcome multiplicity is not the only problem in continuous-time repeated

games. Consider a different strategy profile where each player starts coop-

erating and further decides to cooperate unless only cooperation has been
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observed in the past. What is the outcome? Obviously, eternal cooperation

cannot be the outcome. But, if a defection occurred at any strictly posi-

tive point in time, this must mean that no defection occurred before, and

hence the strategies prescribe a defection at every previous, strictly positive

point in time, a contradiction. Hence, this simple strategy profile induces no

outcome at all.

These problems have been previously pointed out by Anderson (1984),

Simon and Stinchcombe (1989), Stinchcombe (1992), and Alós-Ferrer and

Ritzberger (2008), among others. As shown in Alós-Ferrer and Ritzberger

(2008, 2013a), they are not exclusive of continuous-time settings: intuitively,

it suffices for the time axis to have an accumulation point towards the past to

generate such problems, as e.g. in the case of the time set {1/n}n=1,2,...

⋃

{0}.

We now have a good understanding of the underlying reasons for these prob-

lems. Alós-Ferrer and Ritzberger (2008) (see also Alós-Ferrer, Kern, and

Ritzberger, 2011) formulated out a characterization of the set of extensive

forms where every profile of pure strategies generates a unique outcome (and

hence a normal-form game can be defined). This characterization can be ar-

gued to describe the domain of game theory, for games outside the character-

ized set cannot be “solved” in any sense of the word. Unsurprisingly, perfect-

information continuous-time games are outside this domain; technically, they

fail a condition called “up-discreteness” in Alós-Ferrer and Ritzberger (2008),

which precludes accumulation points toward the past.

This state of affairs has not prevented economic theory from venturing

into the realm of continuous-time games (the literature is of course too ex-

tensive to review it here). And neither should it. On the one hand, contin-

uous time is often analytically convenient due to the possibility of employ-

ing techniques from differential calculus along the time dimension. On the

other hand, discrete time sometimes creates artificial phenomena which van-

ish away in continuous time; and it is their vanishing in the latter framework

which proves their artificiality in the former. However, the problems pointed

out above create serious difficulties with the interpretation of continuous-

time applications. For instance, if certain strategy combinations fall out of

the framework by virtue of creating outcome existence or uniqueness prob-
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lems, the meaning of any equilibrium concept becomes questionable, since

some deviations might be excluded for merely technical reasons, and not the

self-interest of the deviator. Further, if a proper extensive form game can-

not be specified for a continuous-time model, notions of “time consistency”

cannot rely on subgame perfection or other equilibrium refinements based on

backward induction, since in the absence of a properly formulated extensive

form, it is not possible to determine the full collection of subgames capturing

the strategic, intertemporal structure of the problem.

One typical approach for developing a coherent framework in continuous

time is to admit an exogenous restriction on the set of pure strategies and de-

clare some of those inadmissible. In the case of differential games (Friedman,

1994), this approach often leads to the specification of a normal-form game,

where strategies are required to be e.g. differentiable or integrable functions

of some state variable. In other domains, the analysis has been restricted

to strategies incorporating some Markov structure, as e.g. in the case of the

literature on (individual) strategic experimentation (e.g. Keller and Rady,

1999; Keller, Rady, and Cripps, 2005). The approach was most effectively

described by Stinchcombe (1992), who set out to identify a maximal set of

strategies for a continuous-time game such that every strategy profile induces

a unique outcome. The result incorporates elements of a framework intro-

duced by Anderson (1984) and also studied by Bergin and MacLeod (1993)

and Bergin (1992, 2006), and rests on the condition that a strategy must

always identify the player’s next move.

Stinchcombe (1992) identifies the best that can be done through strategy

constraints once one accepts the inconvenient fact that unconstrained con-

tinuous time games cannot be solved. From a game-theoretic point of view,

however, restricting the strategy set is an unsatisfactory approach. On the

one hand, since certain strategies are excluded on purely technical grounds,

we face the problems with the interpretation of equilibria and time consis-

tency pointed out above. On the other hand, there is a more fundamental,

conceptual problem. An extensive form game incorporates a complete de-

scription of the possible choices of every player at every decision node. A

behavioral strategy is merely a collection of possible “local” decisions at the
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nodes, and any possible combination thereof is a feasible behavioral strategy.

Once the game is specified, there can be no further freedom in the specifica-

tion of the possible local decisions, since those have already been fixed in the

extensive form. The set of possible behavioral strategies is thus automatically

specified once the extensive form is given.

A restriction prohibiting a given combination of local decisions in order

to preserve some property of the outcome, no matter how desirable, lacks

any decision-theoretic justification. Worse, it is then unclear whether the

extensive form structure survives the restriction, raising doubts as to whether

the resulting formal object is simply a (constrained) normal-form game.

Here we propose a different approach to the study of continuous-time

games. The basic idea is as follows. Continuous time is a convenient device;

its modelization within an extensive form game, however, needs only go so

far as it is useful for game-theoretic purposes. The formalizations analyzed

until now might have “gone too far”, in the sense that the associated extensive

forms become too large and restoring tractability requires restricting their

strategy spaces. The literature has concentrated on providing ideas and

rationales for restricting the strategy space in an ex-post way. In this paper,

we prove that continuous-time decisions can be captured by applying those

ideas to the very definition of the game. The resulting formal object can

then still be considered a well-defined “continuous-time game”; it is, however,

a fully solvable extensive form game, i.e. every strategy profile induces a

unique profile, without any restriction on the set of behavioral strategies.

The advantage is that the framework is an extensive form game without

any caveat, and standard game-theoretic concepts and methods can then

be applied. In other words, our message is a positive one: we show that

continuous-time modeling is possible without giving up the benefits and the

conceptual discipline resulting from well-defined extensive form games.

In this paper, we focus on the repeated-game framework with observable

actions.1 Specifically, we show how repeated games in continuous time can

1This is the framework where the problems we mentioned above are the most severe.
Continuous-time models are also customarily used in different frameworks, e.g. games with
imperfect monitoring (Sannikov, 2007). Intuitively, the fact that players cannot condition
on as many events as in the case of perfectly observable actions shrinks the strategy space
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be formalized incorporating natural conditions from the onset. The construc-

tion is not trivial, and in order to describe it we must carefully detail the

appropriate game tree and choice structure. Once this is in place, we show

that, by virtue of fulfilling the appropriate conditions, the resulting game is

well-behaved without any restrictions on the strategy sets. In order to link

our construction to the literature, we then show that it is possible to retrace

our steps and prove an equivalence result between the unrestricted behav-

ioral strategies in our repeated game and a restricted class of strategies in a

more naïvely specified (and hence, in our view, problematic) continuous-time

repeated game.

The paper is structured as follows. Section 1.2 lies out the general frame-

work for repeated games in continuous time, the Action-Reaction Framework.

Section 1.3 presents our main result, showing that in our framework all strat-

egy profiles induce unique outcomes. Section 1.4 presents the alternative ap-

proach through restricted strategies (Conditional Response Mappings) and

Section 1.5 proves an equivalence result, which allows us to link our exten-

sive form to the previous literature in Section 1.6. Section 1.7 concludes.

The construction and the main arguments are detailed in the main text but

specific proofs are relegated to the appendix.

1.2 Repeated Games in Continuous Time

1.2.1 Extensive Form Games Without Discreteness As-

sumptions

Working definitions of extensive form games frequently incorporate strong re-

strictions in the form of explicit finiteness or discreteness assumptions. Since

we aim to view continuous-time repeated games as extensive form games, we

need a more general approach. We will rely on a definition of extensive form

games allowing for infinite time horizon, continuous time axis, and arbitrary

action sets. This concept is the basis for a general framework developed in

and makes it easier to obtain a well-defined extensive form game. See Alós-Ferrer and
Kern (2013) for a comment.
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Alós-Ferrer and Ritzberger (2005, 2008, 2013a,b).

The definition comes in two parts. The first is a general concept of game

tree, capturing the order and nature of decisions. The second is a definition

of extensive decision problem (given the game tree) which incorporates all

appropriate consistency conditions on the choices that players can make.

Let us start with game trees. Following Kuhn (1953), a game tree is just

an ordered set of “decision points” or nodes which can be represented as an

abstract graph. Alternatively, von Neumann and Morgenstern (1944) focus

on ultimate outcomes as the primitive objects and consider nodes as sets of

such outcomes, which become finer as decisions are taken. A result arising in

the work quoted above is that there exists exactly one way of defining game

trees such that both approaches are equivalent. As a consequence, there is

no loss of generality in assuming a game tree where nodes are taken to be

sets of ultimate outcomes, as in the following definition.

Definition 1. A (rooted) game tree T = (N,⊇) is a collection of nonempty

subsets x ∈ N (called nodes) of a given set W partially ordered by set

inclusion such that W ∈ N (W is called the root) and

(TI) “Trivial Intersection:” if x, y ∈ N with x ∩ y 6= ∅, then x ( y or y ⊆ x.

(IR) “Irreducibility:” if w,w′ ∈ W with w 6= w′, then there exist x, x′ ∈ N

such that w ∈ x \ x′ and w′ ∈ x′ \ x.

(BD) “Boundedness:” for every nonempty chain h ⊆ N there exists w ∈ W

such that w ∈ x for all x ∈ h.2

A play is a chain of nodes h ⊆ N that is maximal in N , i.e. there is no

x ∈ N \ h such that h ∪ {x} is a chain. Plays are the natural objects on

which preferences can be defined in a setting where the time horizon is not

assumed to be finite. The advantage of game trees is that the underlying set

W can also be identified with the set of plays. Specifically, Alós-Ferrer and

Ritzberger (2005, Theorem 3(c)) show that an element w ∈ W can be seen

either as a possible outcome (element of some node) or as a play (maximal

2A chain is a subset of N that is completely ordered by set inclusion.
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chain of nodes), and a node x ∈ N can be identified with the set of plays

passing through it.

For a game tree (N,⊇) with set of plays/outcomes W and an arbitrary

subset a ⊆ W (not necessarily a node), define the up-set ↑a and the down-set

↓a by

↑a = {y ∈ N |y ⊇ a} and ↓a = {y ∈ N |a ⊇ y} .

The key implication of (TI) is that ↑ x is a chain for all x ∈ N , which is

contained in (can be “prolonged to”) the play ↑{w} for any w ∈ x. Further,

if h is a play, by (BD) there exists a unique outcome w ∈ W such that

∩x∈hx = {w}, or, equivalently, h =↑ {w}. This fact is the basis for the

equivalence between outcomes and plays, which essentially reduces to the

fact that, for w ∈ W and x ∈ N , w ∈ x if and only if x ∈↑ {w}. When a

distinction is called for, we write w for the outcome and ↑ {w} for the play

(chain of nodes).

We now turn to the second part of the definition. In an extensive form

game, players make decisions at nodes that are properly followed by other

nodes, called moves. Let X = {x ∈ N | ↓x \ {x} 6= ∅} be the set of all

moves.3 In finite, perfect information examples, the possible actions or op-

tions available to a player at a given move can be identified with the nodes

following that move (its immediate successors). In more general settings, we

need a more general object. The possible alternatives faced by players are

modeled through choices, which are subsets c ⊆ W satisfying a number of

consistency conditions.

Before we present those conditions, we need a notion of when a choice c

is available at a move x. For an arbitrary set of outcomes/plays a ⊆ W , the

set of immediate predecessors of a is defined by

P (a) = {x ∈ N |∃y ∈↓a : ↑x =↑y\ ↓a} .

Since nodes in a game tree are sets of plays, they too may, but need not,

have immediate predecessors. Since choices are also sets of plays, the set of

3All other nodes are called terminal. It follows from (IR) that a node x ∈ N is terminal
if and only if there is w ∈ W such that x = {w}.
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immediate predecessors of a choice is well defined, and we will say that a

choice c is available at a move x ∈ X if x ∈ P (c). This is the key element in

the following definition.

Definition 2. An extensive decision problem (EDP) with player set I is

a pair (T, C), where T = (N,⊇) is a game tree with set of plays W and

C = (Ci)i∈I is a system consisting of collections Ci (the sets of players’

choices) of nonempty unions of nodes (hence, sets of plays) for all i ∈ I such

that

(EDP.i) if P (c)∩P (c′) 6= ∅ and c 6= c′, then P (c) = P (c′) and c∩ c′ = ∅,

for all c, c′ ∈ Ci for all i ∈ I;

(EDP.ii) x ∩
[

∩i∈I(x)ci
]

6= ∅ for all (ci)i∈I(x) ∈ A (x) and for all x ∈ X;

(EDP.iii) if y, y′ ∈ N with y ∩ y′ = ∅ then there are c, c′ ∈ Ci for some

player i ∈ I such that y ⊆ c, y′ ⊆ c′, and c ∩ c′ = ∅;

(EDP.iv) if x ) y ∈ N , then there is c ∈ Ai (x) such that y ⊆ c for all

i ∈ I (x), for all x ∈ X;

where A (x) = ×i∈I(x)Ai (x), Ai (x) = {c ∈ Ci |x ∈ P (c)} are the choices

available to i ∈ I at x ∈ X, and I (x) = {i ∈ I |Ai (x) 6= ∅} is the set of

decision makers at x, which is required to be nonempty, for all x ∈ X.

An extensive form game is an extensive decision problem together with a

specification of players’ preferences on the set of plays.

The interpretation of the conditions above is as follows (see Alós-Ferrer

and Ritzberger, 2005, Section 5 or Alós-Ferrer and Ritzberger, 2008, Section 3

for additional details). (EDP.i) stands in for information sets: if two distinct

choices c, c′ ∈ Ci are ever simultaneously available, then they are disjoint

and available at the same moves—at those in the information set P (c) =

P (c′). (EDP.ii) requires that simultaneous decisions by different players

at a common move do select some outcome. (EDP.iii) states that for any

two disjoint nodes, there is a player who can eventually make a decision that

selects among them. Finally, (EDP.iv) states that, if a player takes a decision

at a given node, he must be able not to discard any given successor of the

node. This excludes absent-mindedness (Piccione and Rubinstein, 1997), as

in the original formulation of Kuhn (1953).
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An important point about EDPs is that they allow several players to de-

cide at the same move. This sometimes simplifies both the representation of

a game and the equilibrium analysis (see Alós-Ferrer and Ritzberger, 2013a,

for examples). This will also be important for our present purposes, for in

repeated games players act simultaneously at every time point. If we adopted

the convention that each move is assigned to one player only, we would be

forced to incorporate artificial “cascading information sets” to accommodate

this characteristic.

1.2.2 Existing Approaches to Extensive Form Games in

Continuous Time

We now turn to the specific problem of modeling a repeated game in contin-

uous time explicitly as an extensive form game. A first, direct approach to

this task is to define strategies as mappings from the set of history-time pairs

to the set of possible actions with the minimal requirement that at time t the

same action is prescribed for two histories that agree on [0, t[. Indeed, this

approach can be readily formalized as an EDP (Alós-Ferrer and Ritzberger,

2005, 2008).

Let W be the set of functions f : R+ → A, where A =
∏

i∈I Ai and

each Ai is some fixed set of actions containing at least two elements. W

is the set of all possible outcomes in the continuous-time repeated game.

Let the set of nodes be N = {xt(f) | t ∈ R+, f ∈ W }, where xt(f) =

{g ∈ W | g(τ) = f(τ) ∀ τ ∈ [0, t[} for f ∈ W and t ∈ R+. A node xt(f)

contains all functions that agree with f on [0, t[ while all possibilities of val-

ues at t and afterwards are still open. (N,⊇) can be shown to be a game

tree (Alós-Ferrer and Ritzberger, 2005).

A strategy in this framework is a mapping assigning a choice of the form

cit(f, ai) = {g ∈ xt(f) | gi(t) = ai} (for some ai ∈ Ai) to every move of the

form xt(f). However, it is then possible to define strategies like the ones

described in the introduction that induce no outcome or that induce a con-

tinuum of outcomes (cf. Examples 10 and 12 of Alós-Ferrer and Ritzberger,

2008). Hence, this approach, while intuitive, is not suited to model repeated
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games in continuous time. In order to be able to “solve” these games, addi-

tional assumptions are needed.

A second approach is to view a continuous-time game as the limit of some

sequence of discrete-time games and then define continuous-time strategies

as limits of sequences of strategies in discrete time. This approach, however,

presents difficulties of its own. A particular problem, pointed out by David-

son and Harris (1981) and Fudenberg and Levine (1986), is that sequences of

discrete time strategies may not possess a limit (the “chattering problem”).

Imagine, for instance, a sequence of discretizations with period length 1/n

and discrete-time strategies prescribing to cooperate in periods k/n with k

odd and defect in other periods.

A third approach is to restrict the sets of strategies in a game, that is,

to impose the exogenous constraint that certain strategies cannot be used

for e.g. equilibrium analysis. This allows to identify strategy sets which keep

the framework tractable (e.g. guaranteeing existence and uniqueness of out-

comes), and hence avoids the problems mentioned above. This approach has

been pursued in Anderson (1984), Bergin (1992, 2006), Bergin and MacLeod

(1993), Perry and Reny (1993), and Perry and Reny (1994), among others

(see also Simon and Stinchcombe (1989) for a combination of this approach

and discrete-time approximations). Stinchcombe (1992) investigates maxi-

mal strategy sets such that a unique outcome can be assigned to every admis-

sible strategy profile, thereby obtaining a setting which is as good as it can

be given a potentially problematic extensive form. As mentioned in the in-

troduction, this approach presents conceptual problems because (behavioral)

strategies are collections of local decisions, and which decisions are feasible

should be solely and completely determined by the extensive form. However,

it remains an open question whether the maximal strategy set approach can

be reconciled with a pure extensive form approach. This would entail finding

a new extensive form such that the unconstrained sets of behavioral strategies

are equivalent, in a well-defined sense, to the set of constrained strategies.

We will return to this question in Section 1.5.
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1.2.3 The Action-Reaction Framework

Our approach to the problem of defining extensive form games in continuous

time is different to the ones just mentioned. We will exhibit a specific exten-

sive decision problem capturing repeated decisions in continuous time, such

that, for every strategy profile, one and only one associated outcome exists.

The basic construction relies on ideas present in the frameworks of Anderson

(1984), Stinchcombe (1992), and Bergin (2006). However, the approach is

different at a basic level because strategy sets are kept unconstrained; the

differences with respect to the “direct approach”-EDP mentioned above are

built directly into the construction of the extensive decision problem.

The basic idea of the construction is as follows. At time 0 all players

choose a first action that they will have to stick to for some positive amount

of time. This amount of time is determined by the choice of “inertia times”

during which a player is committed to her current action. After this, when-

ever a player’s inertia time has run out she can revise her previous action.

If she switches to a different one, i.e. “makes a jump”, the players who did

not jump can react instantly and choose new actions as well. All players will

again have to stick to their new actions for some positive amount of time,

i.e. decide on new inertia times. This construction prevents players from

jumping again right after an action change and from reacting even though

no other player has jumped. The latter is crucial: a direct consequence is

that the set of decision points becomes well-ordered, hence eliminating the

problems of the direct approach.

We proceed in two steps. First we will describe the set of outcomes/plays

of the game. The construction of this set already incorporates the essence of

the Action-Reaction Framework. The second step is to appropriately define

nodes and choices and show that the resulting structure is indeed an extensive

decision problem.

The Outcome Space

Fix a finite set of players I and an arbitrary action space Ai for each player

i ∈ I. Assume that Ai is a metric space.
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We start by defining the set of plays, i.e. the possible maximal chains of

decisions that might actually occur during the game. Ultimately, the history

of all decisions taken by a player i builds a function fi : R+ 7→ Ai as in

the direct approach. We will introduce additional constraints to reflect the

Action-Reaction Framework.

We require some preliminary notation. First, given a metric space B,

call a function g : R+ 7→ B (right-)piecewise constant if for every t ∈ R+

there exists ε > 0 such that g
∣

∣

]t,t+ε[ is constant. If g is piecewise constant,

g+(t) := limτ→t+ g(τ) exists for all t ∈ R+. In this case, define

RK(g) = {t ∈ R+ | g+(t) = g(t)}

to be the set of points where g is right-constant. Second, given any function

g : R+ 7→ B, let

LC(g) =

{

t ∈]0,+∞[

∣

∣

∣

∣

∃ g−(t) := lim
τ→t−

g(τ) ∧ g−(t) = g(t)

}

denote the set of points where g is left-continuous.4

The following definition spells out the first ingredient of our framework.

Definition 3. A decision path is a tuple f = (fi)i∈I such that

(DP.i) for each i ∈ I, fi : R+ 7→ Ai is piecewise constant,

(DP.ii) for each i ∈ I, LC(fi)
⋃

RK(fi) = R+,

(DP.iii) for each t ∈ R+, if ∃ i ∈ I with t ∈ R(fi), then ∃ j ∈ I with t ∈ J(fj),

where J(fi) := RK(fi) \ LC(fi) and R(fi) := LC(fi) \ RK(fi) are the set

of jump points and reaction points of player i, respectively. The set of all

decision paths is denoted by F .

Property (DP.i) states that a player’s action revision cannot occur arbi-

trarily close to a previous action revision. A direct consequence (see Lemma

4For piecewise constant functions as defined here, a function is right-continuous at t if
and only if it is right-constant at t.
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A.2 in Section 1.7) is that the set of jump points of any player is well-ordered

by the usual order on the real numbers. Property (DP.ii) requires that a

player’s action revision cannot take the form of an instantaneous change

which is then abandoned (i.e. simultaneous failure of left- and right-continui-

ty).5 Taken together, (DP.i) and (DP.ii) mean that when a player changes

action, be it due to a jump or to a reaction to somebody else’s revision, the

player is not able to change action again immediately after the change.

Property (DP.iii) is the only condition requiring consistency across play-

ers’ paths of decisions. Intuitively, jump points are those where a players’

decision path has changed discontinuously (a sudden action revision), while

t is a reaction point if the player’s strategy shifts immediately after t but

not at t, in reaction to an observed shift of another player at t: an “instant

reaction”. (DP.iii) states that a player can change action by instant reaction

only if some other player jumped at t.

The second key ingredient of the Action-Reaction Framework are inertia

times. By (DP.i), after every jump or reaction at t, there exists ε > 0 such

that the player is “committed” not to revise action again until at least t + ε

(although a better interpretation is a physical impossibility to revise too

often). We will introduce an explicit record of inertia times as part of every

play. Formally, let E be the set of all possible functions ǫ = (ǫi)i∈I with

ǫi : R+ → R+ such that ǫi(0) > 0 for all i ∈ I. The quantity ǫi(t) will play

the role of a marker, with the interpretation that ǫi(t) > 0 if and only if

player i is able to revise her action at t. In that case, ǫi(t) represents the

length of time after t for which player i cannot change action again, unless

it is as reaction to some other action change.

Define the set of decision points of player i as

DP (ǫi) := {t ∈ R+ | ǫi(t) > 0} ,

i.e. the set of times at which player i is able to take a decision. In order to

link inertia times with decision paths, we will have to spell out consistency

5In particular, (DP.ii) implies that 0 ∈ RK(fi) for all i ∈ I, i.e. f+(0) = f(0). That is
the players’ initial decisions cannot be adjusted arbitrarily close to t = 0. Note that this
implies 0 ∈ RK(fi) \ LC(fi) = J(fi) for all i ∈ I.

17



Chapter 1

Repeated Games in Continuous Time as Extensive Form Games

conditions. A minimal such condition is that J(fi) ∪ R(fi) ⊆ DP (ǫi), i.e.

whenever a player makes a decision or reacts to another decision at time t,

an inertia time ǫi(t) > 0 is specified. However, the inclusion will typically

be strict, since a player can always decide to keep the previous action, which

still requires specifying a (new) inertia time. That is, t ∈ DP (ǫi) indicates

a decision which might not be observable as such (because no action change

ensues), while t ∈ J(fi) ∪ R(fi) implies an observable action change.

Before introducing the announced consistency conditions, again we re-

quire additional notation. Since ǫi(0) > 0, for all i ∈ I, ǫ ∈ E, and t ∈]0,+∞[

the intersection DP (ǫi)∩ [0, t[ is not empty and hence by the Supremum Ax-

iom we can define

Prev(ǫi, t) := sup(DP (ǫi) ∩ [0, t[),

which gives the last time before t that player i has taken a decision. Define

Prev(ǫi, 0) = 0 for all i ∈ I and ǫ ∈ E. For i ∈ I, ǫ ∈ E, and t ∈ DP (ǫi)

define

Next(ǫi, t) := t+ ǫi(t),

which gives the next time after t that player i can initiate an action change

if no other player jumps before. Further let

PJ(ǫi) := {t ∈ R+ | Next(ǫi,Prev(ǫi, t)) = t} ∪ {t ∈ R+ | t = Prev(ǫi, t)}

be the set of potential jumps for player i, i.e. the set of times where a player

is allowed to initiate an action change according to the inertia times. Those

are of two kinds. The “natural ones” are those where the inertia time since

the last time an action change was implemented has “run out”. The second is

slightly counterintuitive, and corresponds to points which are the supremum

of the set of prior time points where action changes have been initiated, i.e.

accumulation points of prior action changes.

Last, for w = (f, ǫ) ∈ F × E and t ∈ R+ define (for notational conve-

nience) IDP (ǫ, t) := {i ∈ I | t ∈ DP (ǫi)}, IJ(f, t) := {i ∈ I | t ∈ J(fi)},

and IPJ(ǫ, t) := {i ∈ I | t ∈ PJ(ǫi)}, i.e. the sets of players having decision
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points, jumps, and potential jumps at t, respectively.

We are now ready to define the set of plays, which incorporate the con-

nection between decision paths and inertia times.

Definition 4. A play is a pair w = (f, ǫ) ∈ F ×E such that

(P.i) for each i ∈ I, J(fi) ⊆ PJ(ǫi);

(P.ii) for each i ∈ I, J(fi) ⊆
⋂

j∈I DP (ǫj);

(P.iii) for each i ∈ I, PJ(ǫi) ⊆ DP (ǫi);

(P.iv) for each i ∈ I and each t ∈ DP (ǫi) if τ ∈ DP (ǫi)∩]t,Next(ǫi, t)[ then
⋃

j 6=i J(fj)∩]t, τ ] 6= ∅.

The set of all plays is denoted by W .

(P.i) states that a player can jump at t only if t was indeed a potential

jump. (P.ii) means that, whenever a player jumps, every player who does

not also jump is allowed to react, and all players have to specify inertia

times. Note that (P.ii) together with (DP.iii) implies that J(fi) ∪ R(fi) ⊆

DP (ǫi). (P.iii) requires that every potential jump be a decision point. The

interpretation of (P.iv) is as follows. If at time t a player makes a decision

with inertia time ε, then the only way he can make a decision before t+ ε is

if some other player jumped before t + ε.

The Extensive Decision Problem

We first define the decision nodes, and hence the tree.

For every w = (f, ǫ) ∈ W and t ∈ R+, define the following sets

xt(w) = {w′ = (f ′, ǫ′) ∈ W | w′(τ) = w(τ) ∀ τ ∈ [0, t[} ,

xR
t (w) = {w′ = (f ′, ǫ′) ∈ xt(w) | f ′(t) = f(t)} ,

xP
t (w) =

{

w′ = (f ′, ǫ′) ∈ xR
t (w)

∣

∣ f ′
+(t) = f+(t)

}

.

Nodes of the form xt(w) are “potential jump nodes” at which a player

might make the decision to initiate a change of action. Hence, they will
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be part of the tree whenever t ∈
⋃

i∈I PJ(ǫi) or, equivalently, whenever

IPJ(ǫ, t) 6= ∅.

Nodes of the form xR
t (w) are “reaction nodes” which model the possibility

of players to react to a change of action initiated by another player. Hence

they are part of the tree whenever t ∈
⋃

i∈I J(fi) but t /∈ J(fj) for some

j ∈ I; equivalently, whenever ∅ ( IJ(f, t) ( I.

Nodes of the form xP
t (w) are “peek nodes” where both the actions at t

(individual action change initiations) and the immediate reactions to them

(the right limits of f), have already been decided, but the times ǫi(t) still

have not. Again, they are part of the tree whenever IPJ(ǫ, t) 6= ∅.

Note that nodes are independent of the “representant play”. If w′ ∈ xt(w),

then xt(w) = xt(w
′), and analogously for reaction and peek nodes.

Potential jump, reaction, and peek nodes account for all possible decision

situations. Note that the root, i.e. the node W containing all plays, is con-

tained in N because x0(w) = W for all w ∈ W . The root is followed by peek

nodes of the form xP
0 (w). The set of nodes is given by

N = {xt(w) | t ≥ 0, IPJ(ǫ, t) 6= ∅}
⋃

{

xR
t (w) | t > 0, ∅ ( IJ(f, t) ( I

}

(1.1)
⋃

{

xP
t (w) | t ≥ 0, IPJ(ǫ, t) 6= ∅

}

.

We now specify the choices, and hence the extensive decision problem

by reviewing the decisions that have to be taken at each type of node. At

potential jump nodes xt(w), players who are allowed to jump may decide

how to continue, i.e. which action to adopt. That is, for every t ≥ 0, w =

(f, ǫ) ∈ W , i ∈ IPJ(ǫ, t), and ai ∈ Ai, we include the choice

ci(xt(w), ai) = {w′ = (f ′, ǫ′) ∈ W | t ∈ PJ(ǫ′i), f
′(τ) = f(τ) ∀ τ ∈ [0, t[,

f ′
i(t) = ai } .

At reaction nodes xR
t (w), the players who did not jump decide on their instant

reaction. That is, for every t > 0, w = (f, ǫ) ∈ W with IJ(f, t) 6= ∅,
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i ∈ I \ IJ(f, t), and ai ∈ Ai, we include the choice

ci(x
R
t (w), ai) =

{

w′ = (f ′, ǫ′) ∈ W
∣

∣ f ′(τ) = f(τ) ∀ τ ∈ [0, t], f ′
i+(t) = ai

}

.

At peek nodes xP
t (w), all players who either had a potential jump at t

or reacted at t decide how long they are going to stick to their action. That

is, for every t ≥ 0, w = (f, ǫ) ∈ W , i ∈ I such that i ∈ IDP (ǫ, t),6 and

εi ∈ R++, we include the choice

ci(x
P
t (w), εi) = {w′ = (f ′, ǫ′) ∈ W | f ′(τ) = f(τ) ∀ τ ∈ [0, t],

f ′
+(t) = f+(t), ǫ

′
i(t) = εi} .

Hence, the set of choices of player i is given by

Ci = {ci(xt((f, ǫ)), ai) | t ≥ 0, i ∈ IPJ(ǫ, t), ai ∈ Ai}
⋃

{

ci(x
R
t ((f, ǫ)), ai) | t > 0, i ∈ I \ IJ(f, t), IJ(f, t) 6= ∅, ai ∈ Ai

}

⋃

{

ci(x
P
t ((f, ǫ)), εi) | t ≥ 0, i ∈ IDP (ǫ, t), εi ∈ R++

}

.

Let us now look at information sets. By definition an information set in

an EDP is the set of immediate predecessors of a given choice. For a choice

c = ci(xt(w), ai) ∈ Ci with w = (f, ǫ) we obtain

P (c) = {xt((f
′, ǫ′)) ∈ N | f(τ) = f ′(τ) ∀ τ ∈ [0, t[, t ∈ PJ(ǫ′i) } .

This means that at a potential jump node xt(w) a player knows all past

actions (i.e. the decision path up to time t) but not the record of inertia times

which has led to the particular decision path (with the obvious exception that

she knows that the play is such that she is allowed to jump).

For a choice c = ci(x
R
t (w), ai) ∈ Ci with w = (f, ǫ) (which implies i /∈

IJ(f, t)) we have

P (c) =
{

xR
t ((f

′, ǫ′)) ∈ N | f ′(τ) = f(τ) ∀ τ ∈ [0, t] } ,

6This is equivalent to i ∈ IPJ(ǫ, t) or IJ(f, t) 6= ∅ (see Lemma A.5 in the appendix).
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i.e. at a reaction node xR
t (w) the player knows the decision path up to and

including time t.

Finally, for a choice c = ci(x
P
t (w), εi) ∈ Ci with w = (f, ǫ) we obtain

P (c) =
{

xP
t ((f

′, ǫ′)) ∈ N | f ′(τ) = f(τ) ∀ τ ∈ [0, t], f ′
+(t) = f+(t),

t ∈ DP (ǫ′i) }

which means that at a peek node xP
t (w) the player knows the decision path

up to and including time t, as well as what all players are “going to do next”,

i.e. the right limits at t, and that she took a decision at t (which cannot

necessarily be inferred from the decision path).

This completes the specification of the framework. Denote T := (N,⊇)

and C := (Ci)i∈I . We call the pair (T, C) the Action-Reaction Framework.

Proposition 1. The Action-Reaction Framework (T, C) is an extensive de-

cision problem.

To define an extensive form game on the EDP capturing the Action-

Reaction Framework, all what is left is a specification of individual prefer-

ences on plays. Plays, however, contain a full specification of inertia times,

which are essential to capture the idea that an action initiation cannot oc-

cur arbitrarily close to a previous one (as also assumed in Bergin, 1992;

Stinchcombe, 1992; Perry and Reny, 1993) but should ultimately be payoff-

irrelevant. Hence, one can define a repeated game in continuous time as

an EDP as above together with a specification of preferences on plays which

does not depend on inertia times, e.g. if utilities on w = (f, ǫ) only depend on

the first argument. As we will clarify below, the information sets described

above guarantee that players’ choices only depend on decision paths and not

on inertia times.

1.3 A Possibility Result

In this section we aim to show that the framework we have introduced is

well-suited to the analysis of repeated games in continuous time. For that,
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we need to establish that it is better behaved than general EDPs, since

being an EDP does not guarantee that well-specified strategy profiles lead to

well-specified outcomes. Fortunately, the conditions guaranteeing outcome

existence and uniqueness are already known. We now review them for the

general case and then return to our framework.

1.3.1 Strategies and Outcomes in General Extensive Form

Games

Given an extensive decision problem, let Xi := {x ∈ X|∃c ∈ Ci : x ∈ P (c)}

be the set of moves for player i, for every i ∈ I.

A pure strategy for player i ∈ I is a function si : Xi → Ci, such that

s−1
i (c) = P (c) for all c ∈ si (Xi)

where si (Xi) ≡ {si (x) |x ∈ Xi}.

That is, the function si assigns to every move x ∈ Xi a choice c ∈ Ci

such that (a) choice c is available at x, i.e. si (x) = c ⇒ x ∈ P (c) or

s−1
i (c) ⊆ P (c), and (b) to every move x in an information set P (c) the

same choice gets assigned, i.e. x ∈ P (c) ⇒ si (x) = c or P (c) ⊆ s−1
i (c), for

all c ∈ Ci that are chosen somewhere, viz. c ∈ si (Xi). Let Si denote the

set of all pure strategies for player i ∈ I. A pure strategy combination is an

element s = (si)i∈I ∈ S ≡ ×i∈ISi.

We want to obtain a framework where every strategy combination induces

an outcome/play. Hence, we need to clarify the formal meaning of when a

pure strategy combination “induces” a play. Define, for every s ∈ S, the

correspondence Rs : W → W by

Rs (w) =
⋂

{si (x) |w ∈ x ∈ X, i ∈ I (x)} .

Say that strategy combination s induces the play w if w ∈ Rs(w), i.e. if it is

a fixed point of Rs.

In an arbitrary EDP the correspondence Rs for a given strategy combi-

nation s ∈ S may not have a fixed point at all, or have a whole continuum
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thereof. The two basic desiderata on an EDP, expressed in terms of Rs, are

as follows.

(A1) For every s ∈ S there is some w ∈ W such that w ∈ Rs (w).

(A2) If for s ∈ S there is w ∈ W such that w ∈ Rs (w), then Rs has no other

fixed point and Rs (w) = {w}.

(A1) says that for every strategy combination s ∈ S there is an out-

come/play w ∈ W that is induced by s. (A2) requires that the induced

outcome is unique. (A1) and (A2) define a function φ : S → W that asso-

ciates a unique play to each pure strategy combination. (Furthermore, this

function is onto by Theorem 4 of Alós-Ferrer and Ritzberger, 2008). These

two properties are, therefore, necessary and sufficient to define a normal form

(without payoffs).

The main result of Alós-Ferrer and Ritzberger (2008) states that (A1)

and (A2) are essentially equivalent to two properties of the tree: “regularity”

and “up-discreteness.” Thus, these two properties represent the appropriate

restrictions on game trees for a well-founded sequential decision theory.

Definition 5. A game tree (N,⊇) is regular if ↑x \ {x} has an infimum for

every x ∈ N , x 6= W . It is up-discrete if every (nonempty) chain in N has a

maximum.

In the terminology of Alós-Ferrer and Ritzberger (2008), regularity means

that there are no strange nodes, or, equivalently, that every node other than

the root is either finite (meaning that it has an immediate predecessor) or

infinite, meaning that it coincides with the infimum of its strict predeces-

sors. Up-discreteness is equivalent to the chains ↑x for x ∈ N being dually

well-ordered (that is, all their subsets have a maximum). This condition is

common in order theory and theoretical computer science (see Koppelberg,

1989, chp. 6). It implies that the set of immediate successors of a move is

nonempty and forms a partition of the move by finite nodes.

Intuitively, up-discreteness should exclude continuous-time examples, since

immediate successors can be seen as “the next” decision points. It turns out,
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however, that the Action-Reaction Framework fulfills up-discreteness in spite

of being a model for decisions in continuous time.

1.3.2 Strategies and Outcomes in the Action-Reaction

Framework

In (T, C) the sets of moves and the sets of choices are fixed. As described

above this specifies the set of strategies for each player since strategies in

an EDP are mappings from the set of moves to the set of choices. Hence in

the Action-Reaction Framework there is no freedom in the specification of

strategies and in particular players cannot be prevented from using certain

strategies. All restrictions on the players’ ways to act are already incorpo-

rated in the tree and the choice system respectively. Note that due to the

structure of the information sets the choices prescribed by strategies only

depend on decision paths and not on inertia times.

We denote the set of strategies of player i in the Action-Reaction Frame-

work by Si. Let further S := ×i∈ISi denote the set of strategy profiles in

(T, C).

Lemma 1. The tree of the Action-Reaction Framework is an up-discrete and

regular tree.

By Proposition 1 above and Theorem 4 in Alós-Ferrer and Ritzberger

(2008) any decision path in W can be reached by some profile of strategies.

Using Proposition 1 above, Lemma 1, and Propositions 6(b) and 9 in Alós-

Ferrer and Ritzberger (2008) we obtain that (T, C) is an Extensive Form

(Alós-Ferrer and Ritzberger, 2008; Alós-Ferrer, Kern, and Ritzberger, 2011).

Corollary 5(b) from Alós-Ferrer, Kern, and Ritzberger (2011) then yields the

following result.

Theorem 1. Every strategy profile in the Action-Reaction Framework in-

duces one and only one outcome.
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1.4 An Alternative Approach: Strategy Con-

straints

In the previous sections, we have established that it is possible to define

extensive form games modeling continuous-time problems without the re-

course to an artificially constrained strategy set. It is, however, natural to

ask whether there is a relation between the Action-Reaction Framework and

previous approaches which employed strategy constraints. Indeed, it is pos-

sible to embody ideas similar to the ones in the Action-Reaction Framework

through strategy constraints. In this section we detail this alternative route

and show how these constraints must be imposed to preserve equivalence (in

a well-defined sense to be detailed below) with the extensive form approach.

Informally, a Conditional Response Mapping is a mapping which specifies,

at each time t, an action (depending only on the previous history of play)

and a response which depends on the actions being simultaneously decided by

other players. A number of additional conditions must be imposed in order

to capture the constraints which are also inherent in the Action-Reaction

Framework. Naturally, these additional conditions resemble the restrictions

imposed on strategies by e.g. Stinchcombe (1992) and Bergin (2006), among

others (see Section 1.6). The reason we refrain from using the term strategy is

that a priori it is not clear whether the set of Conditional Response Mappings

indeed corresponds to the set of strategies in a well-defined extensive form.

We shall, however, see that this is the case.

Analogously to the conditions discussed for extensive forms, a coherent

framework will be obtained if every profile of mappings induces an outcome

contained in the appropriate outcome set and any outcome can be reached

by some profile. In order to guarantee these properties, however, it is not

sufficient to place restrictions on Conditional Response Mappings only. It is

necessary to also constrain the set of possible outcomes, and hence (through

the dependence on histories) the domain of these mappings. The appropriate

constraints for the set of outcomes are exactly as in the Action-Reaction

Framework: outcomes must define decision paths.
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Let F denote the set of decision paths as introduced in Definition 3. The

formal definition of Conditional Response Mappings is as follows.

Definition 6. A Conditional Response Mapping (CRM) for player i ∈ I is

a mapping σi : F × R+ → A2
i , (f, t) 7→ (σ1

i (f, t), σ
2
i (f, t)) such that for every

f ∈ F and all t ∈ R+

(CRM.i) if f(τ) = f ′(τ) for f ′ ∈ F and all τ ∈ [0, t[, then σ1
i (f, t) = σ1

i (f
′, t);7

if f(τ) = f ′(τ) for f ′ ∈ F and all τ ∈ [0, t], then σ2
i (f, t) = σ2

i (f
′, t).

(CRM.ii) if t ∈
(

⋂

j∈I LC(fj)
)

∪J(fi) then σ2
i (f, t) = fi(t) and there is εi(f, t) >

0 such that σ1
i (f, τ) = fi(t) for all τ ∈]t, t + εi(f, t)[.

(CRM.iii) if t ∈ LC(fi) ∩
(
⋃

k∈I J(fk)
)

then there is εi(f, t) > 0 such that

σ1
i (f, τ) = fi+(t) for all τ ∈]t, t+ εi(f, t)[.

Denote the set of CRMs for player i by Σi and let Σ := ×i∈IΣi.

For each decision path f and time t, a CRM hence specifies an action,

denoted σ1
i (f, t), and an instant response σ2

i (f, t). The first part of condition

(CRM.i) specifies that actions depend only on the past history of play, i.e.

on the values of f up to (but excluding) t. The second part of this condition

stipulates that responses depend only on the values of f up to and including

t. Equivalently, at time t each player specifies an action and, for any possible

profile of actions at t which is part of a decision path, also a conditional

response.

Condition (CRM.ii) captures the intuition that, as long as no player has

changed action at t (and hence the decision path is left-continuous in all

coordinates), then no player can change the current action through a condi-

tional response. That is, “no reaction without a triggering action”. Further,

players will be constrained to the current action for some small time interval.

Likewise, the same restrictions apply if a given player has changed action at t

(“jumped”), which embodies the intuition that two action changes of a given

player cannot be arbitrarily close. In particular, all players have to stick to

the action picked at time 0 for some positive amount of time.

7In particular σ1
i
(f ′, 0) = σ1

i
(f, 0) for all f ′ ∈ F .
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Condition (CRM.iii) captures a similar intuition for responses. If a player

did not initiate an action change at t, but some other player did, then the

original player was allowed to react through the stipulated conditional re-

sponse (hence no constraint is placed on the second component of the action

tuple). The condition requires that the player needs to stick to the action

specified as a response for some small time interval, as long as no other player

initiates an action change.8

The following examples illustrate that the restriction to decision paths

is necessary. In other words, CRMs are well-defined mappings only on F ×

R+. The first example shows that a CRM cannot be built by simply gluing

together arbitrary chains of decisions.

Example 1. Let I = {1} and A1 = {0, 1} and consider the function h : R+ →

A1 defined by

h(τ) =







0, if τ ∈ Q,

1, if τ ∈ R \Q.

By (CRM.ii), for any t ∈ Q, there should exist an ε > 0 such that σ1(h, τ) = 0

for all τ ∈]t, t+ε[. Also by (CRM.ii) for any t′ ∈ R\Q∩]t, t+ε[ there should

exist an ε′ > 0 such that σ1(h, τ) = 1 for all τ ∈]t′, t′ + ε′[, which leads to a

contradiction.

In this example, the decision maker changes action “too often”, with action

changes being arbitrarily close to each other. The next example shows that

this problem also arises with more intuitive, “continuous” mappings.

Example 2. Let I = {1} and A1 = R+. Consider the function h : R+ → A1

defined by h(τ) = τ for all τ ∈ R+. By (CRM.ii) for any t ∈ R+, there should

exist an ε > 0 such that σ1(h, τ) = t for all τ ∈]t, t + ε[. Also by (CRM.ii)

for any t′ ∈]t, t + ε[ there should exist an ε′ > 0 such that σ1(h, τ) = t′ > t

for all τ ∈]t′, t′ + ε′[, which leads to a contradiction.

The last two conditions in the definition of CRM implicitly incorporate

a notion of “inertia” analogous to the inertia times needed for the Action-

Reaction Framework. A first step in order to show that the new framework

8By (DP.iii), t fulfills either the hypothesis of (CRM.ii) or the hypothesis of (CRM.iii).
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is coherent is to make the relationship to inertia times explicit. This corre-

sponds to the following thought experiment. Given a decision path f and

a time instant t, imagine the path after t was changed in such a way that

nobody changed action after the reactions specified at time t, i.e. the path

was fixed at f+(t). What is the first point in time after t such that a given

CRM σi would specify a deviation from the new path? If such a first point

in time is well defined and equal to t+ ε, the quantity ε will fulfill the same

role as an inertia time in the Action-Reaction Framework.

Let us formally construct these inertia times for a given CRM σi ∈ Σi.

For each f ∈ F and t ∈ R+ let f t+ be given by f t+(τ) = f(τ) for all τ ≤ t and

f t+(τ) = f+(t) for all τ > t. We call ε > 0 a deviation point prescribed by σi

after (f, t) if σ1
i (f

t+, t+ε) 6= fi+(t). That is, for a deviation point ε, the action

prescribed by σi at time t + ε is different from the action/reaction chosen

by player i at time t, given that all players stick to their actions/reactions

chosen at time t. The following lemma shows that whenever such a deviation

point exists, there is a first deviation point, which then plays the role of an

inertia time.

Lemma 2. Let f ∈ F , t ∈ R+, i ∈ I, σi ∈ Σi, and let Eσi(f, t) be the set of

all deviation points prescribed by σi after (f, t). If Eσi(f, t) 6= ∅ then there

exists a first deviation point εσi(f, t) = minEσi(f, t).

This property is a consequence of condition (CRM.ii). It should be

remarked that the existence of a first deviation point corresponds to the

“Identifiability” assumption for admissible strategies imposed by Stinchcombe

(1992). The difference is that in Stinchcombe (1992), this property is imposed

as one of the conditions restricting the strategy set, while in our framework,

it is a property derived from the definition of CRM.

The existence of first deviation points as identified in Lemma 2 is crucial

for the framework at hand. It has two important consequences. First, it plays

a major role in the proof of outcome existence and uniqueness below. Second,

and as already announced, the εσi(f, t) essentially reconstruct inertia times

and will allow us to establish the equivalence between the Action-Reaction

Framework and the framework based on CRMs.
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The next result shows that this framework is coherent, that is, every

profile of CRMs induces a unique outcome (after every history) and any

outcome in F can be reached by some profile of CRMs.

Definition 7. Let σ ∈ Σ.

(i) f ∈ F is induced by σ if σ1
i (f, t) = fi(t) and σ2

i (f, t) = fi+(t) for all

i ∈ I and all t ∈ R+.

(ii) Given f ∈ F and t ∈ R++, f ∈ F is induced by σ after (f, t) if

f(τ) = f(τ) for all τ ∈ [0, t[, σ1
i (f, τ) = f(τ) and σ2

i (f, τ) = fi+(τ) for

all τ ∈ [t,+∞[ and i ∈ I.

Proposition 2. (i) Every σ ∈ Σ induces a unique f ∈ F .

(ii) For all f ∈ F and t ∈ R++ every σ ∈ Σ induces a unique f ∈ F after

(f, t).

(iii) Every f ∈ F is induced by some σ ∈ Σ.

Properties (i) and (ii) in the last Proposition are comparable to Theorem

IV.1 in Stinchcombe (1992), Theorem 3 in Bergin (1992), Lemma A.1 in Perry

and Reny (1993), Theorem 2 in Bergin and MacLeod (1993), and Theorem

1 in Bergin (2006). All these results state that, under the constraints of the

respective framework, every profile of strategies induces a unique outcome

after any history. Property (iii) additionally states that any outcome can

be reached by some profile of strategies, a result similar to Theorem IV.2 in

Stinchcombe (1992).

The intuition behind the proof of the last result is as follows. Given

a profile of CRMs, initial actions are clear. The inertia times identified

in Lemma 2 then allow us to identify the (constant) path up to the next

deviation point. At that point, the CRMs can be used to establish the

new actions/reactions. Applying Lemma 2, the construction can be iterated.

Since time is continuous, the exact iterative argument relies on transfinite

recursion, which is made possible by the structure of decision paths.
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1.5 An Equivalence Result

Proposition 2 shows that the framework based on CRMs is coherent, in the

sense that every profile of CRMs induces one and only one outcome. Coher-

ence of the framework, however, is just a necessary prerequisite for exten-

sive form analysis. In this section, we show that CRMs indeed allow for a

full-fledged extensive form formulation. In particular, they are shown to be

equivalent to the Action-Reaction Framework. Hence, CRMs represent the

“translation” into constrained strategy sets of a proper extensive form game

modeling continuous-time decisions.

1.5.1 Outcome-Equivalence and Equivalence Classes

We need some additional notation. For f ∈ F and t ∈ R++ let t(f, t) :=

sup
⋃

i∈I

J(fi)∩[0, t[ and further let t(f, 0) = 0. Note that
⋃

i∈I J(fi)∩[0, t[ 6= ∅

for t ∈ R++ as 0 ∈ J(fi) for all i ∈ I. The time point t(f, t) is essentially the

last time strictly before t that some player jumped. In particular (by Lemma

C.1 in the appendix), if t(f, t) < t then f is constant on ]t(f, t), t[. Note,

however, that t′ = t(f, t) might be an accumulation point of jumps. In this

case, necessarily t(f, t′) = t′. Let J (f) :=
⋃

i∈I J(fi) ∪ {t ∈ R+|t = t(f, t)}.

Note that t(f, t) ∈ J (f) for all t ∈ R+.

In order to show the equivalence between the Action-Reaction Framework

and the approach based on CRMs, we need to associate a CRM to each

strategy si ∈ Si in the Action-Reaction Framework. The idea is as follows.

The construction of a CRM requires to prescribe an action and a reaction

for every history-time pair. The structure of the EDP allows for a natural

way to define actions ai(f, t, si) and reactions aRi (f, t, si) that only depend

on the history-time pair (f, t) and the strategy si. The only difficulty is to

determine the set M(f, si) ⊆ R+ of time points t such that the strategy si

and the past decisions along f imply that i actually has to make a decision

at t. Once this is in place, a CRM can be defined by prescribing the action

ai(f, t, si) whenever player i has to make a decision, and the left limit of past

actions if not (reactions are determined in a similar manner).
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First, we identify the natural actions. Given si ∈ Si and (f, t) ∈ F×R+ let

ai(f, t, si) be the action such that si(xt((f
′, ǫ′))) = ci(xt((f

′, ǫ′)), ai(f, t, si))

for any (f ′, ǫ′) ∈ W such that f ′(τ) = f(τ) for all τ ∈ [0, t[ and t ∈ PJ(ǫ′i)

(provided, of course, some such potential jump node exists). Note that by

construction of the EDP, for any (f ′′, ǫ′′) ∈ W such that f ′′(τ) = f(τ) for

all τ ∈ [0, t[ and t ∈ PJ(ǫ′′i ), xt(f
′′, ǫ′′) belongs to the same information set

as xt((f
′, ǫ′)) and hence si(xt((f

′, ǫ′))) = si(xt((f
′′, ǫ′′))). Thus ai(f, t, si) is

uniquely determined by the strategy si, the time point t, and the decision

path f up to t.

Now, analogously to the last paragraph, we determine the natural reac-

tions. Given si ∈ Si and (f, t) ∈ F × R+ let aRi (f, t, si) be the action such

that si(x
R
t ((f

′, ǫ′))) = ci(x
R
t ((f

′, ǫ′)), aRi (f, t, si)) for any (f ′, ǫ′) ∈ W such

that f ′(τ) = f(τ) for all τ ∈ [0, t] and i /∈ IJ(f ′, t) 6= ∅ (provided, of course,

such a reaction node exists). Note that by construction of the EDP, for any

(f ′′, ǫ′′) ∈ W such that f ′′(τ) = f(τ) for all τ ∈ [0, t] and i /∈ IJ(f ′′, t) 6= ∅,

xR
t (f

′′, ǫ′′) belongs to the same information set as xR
t ((f

′, ǫ′)) and hence

si(x
R
t ((f

′, ǫ′))) = si(x
R
t ((f

′′, ǫ′′))). Thus aRi (f, t, si) is uniquely determined

by the strategy si, the time point t, and the decision path f up to and

including t.

Now, we proceed to identify the set M(f, si) of time points where player

i needs to move given f and si. The construction of M(f, si) requires a

definition and a lemma.

Definition 8. Let i ∈ I, si ∈ Si, and (f, ǫ) ∈ W . For t1, t2 ∈ R+ ∪ {∞},

t1 < t2, (f, ǫ) agrees with si on [t1, t2[ if for all τ ∈ [t1, t2[,

ǫi(τ) > 0 ⇒ si
(

xP
τ ((f, ǫ))

)

= ci
(

xP
τ ((f, ǫ)), ǫi(τ)

)

. (1.2)

Lemma 3. Let i ∈ I, si ∈ Si, f ∈ F . Then

(i) for any t ∈ J (f) there is ǫ ∈ E such that (f t+, ǫ) ∈ W and it agrees

with si on [t,∞[ (in particular, ǫi(t) > 0);

(ii) for any t ∈ J (f), if (f t+, ǫ), (f t+, ǫ′) ∈ W agree with si on [t,∞[ then

ǫi(τ) = ǫ′i(τ) for all τ ∈ [t,∞[;
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(iii) for any t ∈ R+, if (f t(f,t)+, ǫ), (f t(f,t)+, ǫ′) ∈ W agree with si on [t(f, t),∞[

then PJ(ǫi) ∩ [t,∞[= PJ(ǫ′i) ∩ [t,∞[.

Given any si ∈ Si and (f, t) ∈ F ×R+, we define ǫi(f, t, si) : [t(f, t),∞[→

R+ as the unique function given by Lemma 3. That is, if (f t(f,t)+, ǫ) ∈ W

agrees with si on [t(f, t),∞[ then ǫi(τ) = ǫi(f, t, si)(τ) for all τ ∈ [t(f, t),∞[

and ǫi(f, t, si)(t(f, t)) > 0. Further, for any si ∈ Si and (f, t) ∈ F × R+ we

define (abusing notation) PJ(f, t, si) = PJ(ǫ′i) ∩ [t,∞[ for any ǫ′ ∈ E such

that (f t(f,t)+, ǫ′) ∈ W and agrees with si on [t(f, t),∞[. This is well-defined

by Lemma 3(iii). Finally, let M(f, si) = {t ∈ R+|t ∈ PJ(f, t, si)}. The

intuition for M(f, si) is as follows. Since no player jumps between t(f, t) and

t, one can uniquely reconstruct the inertia times chosen by player i between

t(f, t) and t according to si (Lemma 3(i) and (ii)). This yields a sequence

of time points between t(f, t) and t at which player i has to move. If this

sequence either includes t or “converges” to it then t ∈ M(f, si).

The considerations above allow us to construct a well-defined CRM given

a strategy in (T, C) as follows. Given i ∈ I and a strategy si ∈ Si define

σsi : F × R+ → A2
i by

σsi,1(f, t) :=







ai(f, t, si) if t ∈ M (f, si) ,

fi−(t) if t /∈ M (f, si)

and

σsi,2(f, t) :=















aRi (f, t, si), if t ∈
⋃

j∈I

J(fj) ∩ LC(fi),

fi(t), if t ∈
⋂

j∈I

LC(fj) ∪ J(fi).

The intuition behind this construction is as follows. Given a history-time

pair (f, t) one first checks whether past decisions prescribe that i should

make a decision at t, i.e. whether t ∈ M (f, si). If this is the case, the

action chosen at (f, t) is the unique action prescribed by si at the corre-

sponding potential jump node. If not, the left-continuous action is chosen.9

Reactions are chosen according to the uniquely prescribed reactions at the

9If t /∈ M(f, si), then t(f, t) < t by (P.ii) and the definition of a potential jump. Since
f is constant on ]t(f, t), t[ by Lemma C.1 in the appendix, fi−(t) exists.

33



Chapter 1

Repeated Games in Continuous Time as Extensive Form Games

corresponding reaction nodes. Note that t ∈ M(f, si) implies that there is

ǫ ∈ E such that (f t(f,t)+, ǫ) ∈ W and t ∈ PJ(ǫi) and consequently that

xt((f
t(f,t)+, ǫ)) ∈ Xi. Hence, in particular ai(f, t, si) is well-defined. Anal-

ogously, if t ∈
⋃

j∈I J(fj) ∩ LC(fi) then i /∈ IJ(f, t) 6= ∅. Hence by con-

struction of the game tree (and Lemma C.2 in the appendix), there is ǫ ∈ E

such that (f, ǫ) ∈ W and xR
t ((f, ǫ)) ∈ Xi which guarantees that aRi (f, t, si)

is well-defined. As the next proposition shows, the mappings above indeed

define CRMs.

Proposition 3. Let i ∈ I, and si ∈ Si. Then σsi is a CRM.

Given a profile s ∈ S of strategies in (T, C), denote by ws = (f s, εs) the

play induced by s (recall Section 1.3.1) and say that f s is the decision path

induced by s.

The structure of (T, C) allows for a natural way to define an equivalence

relation on the set of a player’s strategies, which will be used in the sequel.

Definition 9. Let i ∈ I. Two strategies s1i , s
2
i ∈ Si are outcome-equivalent,

s1i ∼ s2i , if they induce the same decision path for any given profile of the

other players’ strategies, that is f (s1i ,s−i) = f (s2i ,s−i) for all s−i ∈ S−i.

For si ∈ Si denote the equivalence class of si with respect to ∼ by [si]

and let Si/∼ be the set of equivalence classes.

As the next lemma shows, if two strategies induce the same CRM they

are outcome-equivalent.

Lemma 4. Let i ∈ I and s1i , s
2
i ∈ Si. If σs1i = σs2i then s1i ∼ s2i .

1.5.2 Equivalence of CRM and Action-Reaction Frame-

work

We now proceed to show that the Action-Reaction Framework and the ap-

proach using CRMs are equivalent. Proposition 3 establishes the existence

of a well-defined mapping from the set of strategies in (T, C) to the set of

CRMs. Next, we construct a mapping from the set of CRMs to the set of

(equivalence classes of) strategies in (T, C) and subsequently show that any
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profile of strategies in (T, C) induces that same decision path as the associ-

ated profile of CRMs and conversely that any profile of CRMs induces the

same decision path as the associated strategy profiles in (T, C).

We first note that every CRM defines a set of associated strategies in

(T, C) in a natural way.

Definition 10. Let σi ∈ Σi. A strategy si : Xi → Ci is induced by σi if

(IS.i) si(xt(w)) = ci(xt(w), σ
1
i (f, t)) for all potential jump nodes xt(w) ∈ Xi

where w = (f, ǫ),

(IS.ii) si(x
R
t (w)) = ci(x

R
t (w), σ

2
i (f, t)) for all reaction nodes xR

t (w) ∈ Xi where

w = (f, ǫ),

(IS.iii) si(x
P
t (w)) = ci(x

P
t (w), ε

σi(f, t)) for all peek nodes xP
t (w) ∈ Xi such

that Eσi(f, t) 6= ∅, where w = (f, ǫ).

Let S(σi) be the set of all strategies si : Xi → Ci that are induced by σi.

This definition is, for all practical purposes, constructive. At each poten-

tial jump node (reaction node) the action prescribed is the action (reaction)

chosen by the CRM after the corresponding history-time pair. At peek nodes,

the inertia time chosen is the length of the period until the next jump pre-

scribed by the CRM. The only part of the definition which allows for some

freedom in the specification of choices corresponds to history-time pairs after

which the CRM does not prescribe a jump if no other player jumps. Formally,

one then has si
(

xP
t ((f, ǫ))

)

= ci
(

xP
t ((f, ǫ)) , ε

)

for some arbitrary ε > 0 for

all peek nodes xP
t ((f, ǫ)) ∈ Xi where Eσi(f, t) = ∅. The next proposition

shows that this construction indeed delivers a set of strategies in (T, C) for

any given CRM.

Proposition 4. Let i ∈ I, and σi ∈ Σi.

(i) S(σi) 6= ∅.

(ii) If si, s
′
i ∈ S(σi) then si ∼ s′i.

For a profile σ ∈ Σ of CRMs let fσ denote the outcome induced by σ

(recall Definition 7 and Proposition 2).
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Theorem 2. Let σ = (σi)i∈I ∈ Σ be a CRM profile and s = (si)i∈I ∈ S be a

strategy profile in (T, C).

(i) σs′i = σi for all i ∈ I and s′i ∈ S(σi).

(ii) [si] = [s′i] for all s′i ∈ S(σsi).

(iii) f (s′i)i∈I = fσ for all (s′i)i∈I ∈ ×i∈IS(σi).

(iv) f (σsi )i∈I = f s.

What the theorem states is the following. By (i) when going from a CRM

to a corresponding strategy in the EDP and then from that strategy to the

corresponding CRM one obtains the original CRM. Part (ii) says that one

obtains an outcome-equivalent strategy when going from a strategy in the

EDP to the corresponding CRM and then to a strategy corresponding to

that CRM. In (iii) we show that the outcome induced by a profile of CRMs

coincides with the decision path of the play induced by any corresponding

strategy profile in (T, C). Part (iv) is the analogous statement for a profile

of strategies in (T, C). These properties show that the approach using the

Action-Reaction Framework and the approach using CRMs are equivalent.

1.6 Relation to the Literature

In this section we discuss several frameworks for games in continuous time

that have been suggested in the literature, and comment on the relation of

those to our approach.

1.6.1 Maximal Strategy Sets

In a remarkable paper, Stinchcombe (1992) proposed a two-step approach

in order to obtain a coherent framework for the analysis of continuous-time

decision problems. His first step is to reduce the set of possible outcomes,

and hence the underlying extensive form. The second step is to restrict the

class of “admissible” strategies on that extensive form. This approach is thus
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located “in between” the Action-Reaction Framework and the approach using

strategy constraints. On the one hand the set of possible outcomes of the

game is restricted and a decision tree is used. On the other hand the players’

strategy sets are exogenously restricted.

The construction in Stinchcombe (1992) is as follows. First, the con-

straints on the set H of possible outcomes guarantee that jumps can only

occur on a well-ordered set of time points. An outcome is a list of jump

times and actions chosen at these jump times for all players such that the

set of jump times is well-ordered by ≤. From this set, the decision nodes

and the game tree are defined. Strategies are then mappings from the set of

decision nodes to the set of actions. However, players are only allowed to use

a strict subset of strategies satisfying two additional assumptions. The first,

“identifiability”, requires that the infimum of a set of jump times also has to

be a jump time, i.e. at any point in time the next time a strategy prescribes

a jump can be identified. The second, “finitely many moves at any point in

time”, states that a player is allowed to initiate at most finitely many jumps

at any point in time. The main purpose of this condition is to guarantee that

profiles of admissible strategies induce outcomes in H .

The results of Stinchcombe (1992) show that every profile of admissi-

ble strategies induces a unique outcome after every possible history. Further,

every outcome in H can be reached through some profile of admissible strate-

gies. Importantly, the set of admissible strategies is shown to be maximal in

the sense that weakening the identifiability condition for any player or the

second condition for all players simultaneously would lead to the existence

of strategy profiles that induce either no outcome or multiple outcomes.

The identifiability condition is comparable to our conditions (CRM.ii) and

(CRM.iii). Both identifiability and our conditions essentially ensure that at

any point in time when a player changed his action he has to stick to the

new action for some positive amount of time. The effect of either approach

is to guarantee that the next point in time when a decision is to be taken is

well-defined.
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1.6.2 Staying Quiet

Perry and Reny (1993) develop a bargaining model in continuous time. At

any point in time players can submit an offer or “stay quiet”, i.e. not make

an offer. The strategy sets are then restricted through three conditions.

Condition S1 requires that once an offer is made by a player, he must stay

quiet for an exogenously given strictly positive amount of time. Condition S2

specifies that the other player cannot react to the offer for some exogenously

given nonnegative amount of time (although he can make an offer himself

during that period). The game ends whenever either both players make

the same offer at some point in time or at some point a player stays quiet

but the other player matches his most recent offer. Perry and Reny (1993)

provide an example showing that S1 and S2 alone do not guarantee outcome

existence. This (and outcome uniqueness) is accomplished by condition S3,

which requires that at any point in time, after making a decision, whether

this was making an offer or staying quiet, the player must stay quiet for some

strictly positive amount of time. Interestingly, given S1, S3 is both necessary

and sufficient for the existence of an outcome.

Condition S3 incorporates an idea akin to inertia times and is related to

our condition (CRM.ii), but it is a more stringent constraint in the sense that

it does not allow for instant responses. While a player may immediately learn

about the other player’s offer, by S3 he has to stay quiet for some strictly

positive amount of time. Hence while the lower bound of possible reaction

times is 0, there is a strictly positive delay. A similar but slightly stronger

restriction is used in Perry and Reny (1994) where it is required that for every

history all points in time where the strategy prescribes something else than

staying quiet are isolated points, i.e. for every history and all times t there is

an ε > 0 such that the strategy prescribes to stay quiet on ]t− ε, t+ ε[ \ {t}.

1.6.3 Conditioning on Counterfactuals

Bergin (1992, 2006) and Bergin and MacLeod (1993) propose an interesting

framework for repeated games in continuous time that also relies on reducing

the set of allowable strategies. The restrictions imposed in those works result
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in a framework guaranteeing outcome existence and uniqueness. In partic-

ular, Bergin (2006) presents a general formalization of restricted strategies,

and we have drawn from it for the formulation of our Conditional Response

Mappings. However, the restrictions imposed in those papers cause prob-

lems in a different front, because the framework cannot be captured through

an extensive form game. We think it is important to address those here to

highlight the kind of problems that can inadvertently be created if a model

of continuous time does not rely on an explicit extensive form game.

To illustrate the problems, we focus on Bergin (2006). We first present

a brief introduction to the framework in that paper, adapting the original

notation to ours. Let I and Ai be as in the Action-Reaction Framework

and let H :=
{

h = (h1, . . . , h|I|) | hi : R+ → Ai ∀ i ∈ I
}

. A “strategy” for

a player i in Bergin’s framework is a mapping bi : H × R+ → Ai such that

for all h ∈ H the following conditions hold.

(B.i) If h(τ) = h′(τ) for all τ ∈ [0, t[ for some h′ ∈ H and some t ∈ R+, then

bi(h, t) = bi(h
′, t).

(B.ii) There exists ε > 0 such that bi(h, τ) = bi(h, 0) for all τ ∈ [0, ε[.

(B.iii) If t ∈
⋂

j∈I LC(hj) then there exists ε > 0 such that bi(h, τ) = bi(h, t)

for all τ ∈ [t, t+ ε[.

(B.iv) If t /∈ LC(hi) then then there exists ε > 0 such that bi(h, τ) = bi(h, t)

for all τ ∈ [t, t+ ε[.

(B.v) If t ∈ LC(hi) \
⋂

j 6=i

LC(hj) then there is εi(h, t) > 0, ai ∈ Ai such that

bi(h, τ) = ai for all τ ∈]t, t + εi(h, t)[.

Conditions (B.ii)-(B.v) are similar in spirit to our conditions (CRM.ii) and

(CRM.iii). Whenever a player jumps, the other players can react instantly.

After that, however, all players have to stick to their new action for some

positive amount of time. Bergin (2006) proves that any profile of “strate-

gies” in his framework induces a unique outcome after every history. This

approach, however, is problematic for two reasons. First, it can be shown
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that the set of outcomes induced by profiles of such “strategies” is equal to

our set F of decision paths defined above (see Proposition 5 in Appendix

1.D), i.e. not all elements of H can be reached by such a profile. This is

in contrast to the Action-Reaction Framework or the framework of Stinch-

combe (1992). Second, the restrictions imposed on the strategies make it

impossible to formalize this approach as an extensive form game. Specifi-

cally, conditions (B.ii)-(B.v) require the set of choices that are available to a

player after a history to not only depend on the history, as it should be in an

extensive form, but also on the chosen strategy. In a sense, they “depend on

a counterfactual future”, because by (B.ii) and (B.iii) after a time t a player

is forced to choose what the strategy chose along the (future) outcome path,

irrespective of the history after t. Intuitively, the problem is that a “strategy”

insists on what “should have been done ” rather than considering the actual

path of play.

The following example shows that Bergin’s approach cannot be formalized

in the Action-Reaction Framework. This also provides an indication as to

why it cannot be formalized as an extensive form game.

Example 3. Let I = {1}, and A1 = {0, 1}. Let h0 be defined by h0(t) = 0 for

all t ∈ R+ and

h1(t) =







0, if t < 42,

1, if t ≥ 42.

Let w0 := (h0, ǫ0) ∈ W and w1 := (h1, ǫ1) ∈ W . Given x ∈↑ {wk} let ck(x)

be the (unique) choice available at x that leads to {wk}, k = 0, 1. Define a

strategy s in (T, C) as follows:

s(x) =



















c1(x), if x ∈↑ {w1},

c0(x), if x ∈↑ {w0}\ ↑ {w1},

c(x), otherwise,

where c(x) ∈ A(x) is some arbitrary element of A(x). The corresponding

CRM σ satisfies σ1(h1, t) = h1(t) for all t ∈ R+ and σ1(h0, t) = 0 for all

t > 42. For any strategy b in Bergin’s framework that induces the same
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outcome as σ, i.e. for which b(h1, t) = h1(t) for all t ∈ R+, (B.i) implies

b(h0, 42) = 1. Further, (B.iii) implies that there is an ε > 0 such that

b(h0, t) = 1 for all t ∈]42, 42+ε[. Even though b(h0, 42) = 1 means departing

from h0, (B.iii) implies a condition for actions chosen along h0 after t = 42.

Hence the outcome induced by σ and the outcome induced by b after the

history-time pair (h0, 42 + ε/2) can never be the same. Thus there is no

strategy in Bergin’s framework that induces the same outcome as σ after

every history and could therefore be considered equivalent to σ. In particular

there is no strategy in Bergin’s framework that could be considered equivalent

to the strategy s in the Action-Reaction Framework.

The above example illustrates the problem caused by conditions (B.i)-

(B.v). On the one hand a player is required to stick to an action chosen for

some positive amount of time. On the other hand this “rule” does not apply

to counterfactual histories where the player is forced to immediately switch

to the action that was chosen along the actual outcome path. Thus Bergin’s

framework is an example of a framework where the extensive form does not

survive the restrictions imposed on the strategy set.

1.7 Conclusion

Repeated games in continuous time are plagued with problems of outcome

nonexistence and nonuniqueness, which amount to various forms of impos-

sibility results and convey the overall message that continuous-time models

are not well-founded. In contrast, we provide a possibility result. Our ap-

proach shows that it is possible to capture continuous-time modeling within

the framework of well-defined extensive form games, without any artificial

restriction of the associated strategy sets. All the necessary conditions en-

suring that every strategy profile induces a unique outcome are incorporated

in the game form, which allows for a better understanding of the tradeoffs

involved in continuous-time modeling.

Previous work had concentrated on a “second best”, placing exogenous

restrictions on the players’ strategy sets. From a game-theoretic point of
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view, however, this is a problematic approach, since it is unclear in which

sense a solution concept based on a strategy set restricted for purely technical

reasons is related to the original extensive form. What our construction

accomplishes is showing that the restrictions for strategy sets considered

in the literature (e.g. Stinchcombe, 1992) can be adapted to appropriate

conditions formulated from the onset, i.e. incorporated into the game tree

and the choice system. The relation to the literature is made clear by showing

that the (unrestricted) behavioral strategies from the resulting extensive form

are equivalent to those in a restricted class of strategies in a more naïvely

specified continuous-time repeated game. In turn, those restricted strategies

are closely related to the approaches presented in the literature (Stinchcombe,

1992; Bergin, 2006).

Of course, our results do not mean that naïvely specified continuous time

models can be treated as extensive form games, as our initial examples show.

Familiarity should not be confused with simplicity, and the continuum is not

a simple construction. The accomplishment of this paper is to show that

continuous-time modeling is possible within the realms of standard game

theory. Modeling decisions in continuous time, however, requires a relatively

involved framework. The benefits are of two kinds. The first is of practical

nature. Once the framework is in place, there is no further question of

interpretation of game-theoretic concepts. The game is an extensive form

game to which standard ideas apply. The second is more fundamental. In

a sense, our construction resolves the tension between technical assumptions

imposed for the sake of tractability and conceptual requirements resulting

from a well-established theory of strategic interactions. If continuous time is

deemed a worthy setting for tractability reasons, it is not necessary to give

up the standard decision- and game-theoretic framework in order to use it.
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Appendix 1.A: Proofs from Sections 1.2 and 1.3

This appendix contains the proofs of Proposition 1 and Lemma 1, which in

turn implies Theorem 1. We start with a few preliminary lemmata which are

also used elsewhere. N0 will denote the set of natural numbers including 0,

i.e. N0 = {0, 1, 2, . . .}.

Lemma A.1. Let w = (f, ǫ) ∈ W , i ∈I, and t ∈ R+.

(i) Prev(ǫi, t) ∈ DP (ǫi).

(ii) Next(ǫi,Prev(ǫi, t)) ≥ t.

Proof. (i) By definition Prev(ǫi, t) = sup(DP (ǫi) ∩ [0, t[). By contradiction,

assume that t := Prev(ǫi, t) /∈ DP (ǫi). Then for all ε > 0 there is τ ∈

]t − ε, t[∩DP (ǫi). Hence sup(DP (ǫi) ∩ [0, t[) = t and thus t ∈ PJ(ǫi) by

definition of PJ(ǫi). (P.iii) then implies t ∈ DP (ǫi), a contradiction.

(ii) By definition, Prev(ǫi, t) ≤ t. If Prev(ǫi, t) = t then ǫi(t) > 0 as t ∈

PJ(ǫi) ⊆ DP (ǫi) by (P.iii) and hence Next(ǫi, t) > t. If Prev(ǫi, t) < t assume

by contradiction that t := Next(ǫi,Prev(ǫi, t)) < t. As ǫi(Prev(ǫi, t)) >

0 by (i), Prev(ǫi, t) < t < t. By definition of Prev(ǫi, t), ǫi(τ) = 0 for

all τ ∈]Prev(ǫi, t), t[, hence for all τ ∈]Prev(ǫi, t), t], implying Prev(ǫi, t) =

sup(DP (ǫi)∩ [0, t[) = Prev(ǫi, t). Thus t = Next(ǫi,Prev(ǫi, t)) which implies

t ∈ PJ(ǫi) ⊆ DP (ǫi) by (P.iii), a contradiction with ǫi(t) = 0.

Lemma A.2. For every f ∈ F and all i ∈ I the set J(fi) is well-ordered by

≤. In particular the set
⋃

i∈I J(fi) is well-ordered by ≤.

Proof. Let ∅ 6= U ⊆ J(fi). Since U ⊆ R+ we have that t := inf U exists. By

(DP.i) there is ε > 0 such that fi is constant on ]t, t + ε[. By contradiction,

suppose t /∈ U , then for every ε > 0 there is τ ∈]t, t + ε[ such that τ ∈ U ⊆

J(fi), contradicting that fi is constant on ]t, t + ǫ[.
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Lemma A.3. Let w = (f, ǫ) ∈ W .

(i) For i ∈ I the sets DP (ǫi), and PJ(ǫi) are well-ordered by ≤.

(ii) The sets
⋃

i∈I DP (ǫi), and
⋃

i∈I PJ(ǫi) are well-ordered by ≤, and hence

countable.

Proof. (i) Fix a player i ∈ I. We will first show that DP (ǫi) is well-ordered.

Let ∅ 6= U ⊆ DP (ǫi). As U ⊆ R+, t := inf U exists. If t ∈ U , we are done.

By contradiction, if t /∈ U then for all ε > 0 there is t ∈]t, t + ε[ such that

t ∈ U ⊆ DP (ǫi). Let

t′ := min{ min
j∈IDP (ǫ,t)

Next(ǫj , t); min
j∈I\IDP (ǫ,t)

Next(ǫj ,Prev(ǫj , t))}.

By Lemma A.1(ii) Next(ǫj ,Prev(ǫj , t)) ≥ t for all j ∈ I. Hence, by (P.iii)

Next(ǫj ,Prev(ǫj , t)) > t for all j ∈ I \ IDP (ǫ, t). As Next(ǫj , t) > t for all

j ∈ IDP (ǫ, t), we obtain t′ > t.

As f ∈ F by (DP.i) there is ε > 0 such that f is constant on ]t, t+ ε[. We

claim that ǫi(τ) = 0 for all τ ∈]t,min{t′, t + ε}[. Assume by contradiction

that ǫi(τ) > 0 for some τ ∈]t,min{t′, t+ ε}[. If i ∈ IDP (ǫi, t) then by (P.iv),
⋃

j 6=i J(fj)∩]t, τ ] 6= ∅, which contradicts the fact that f is constant on ]t, t+ǫ[.

If i /∈ IDP (ǫ, t) then as Prev(ǫi, t) ≤ t < τ < t′ ≤ Next(ǫi,Prev(ǫi, t)), (P.iv)

implies
⋃

j 6=i J(fj)∩]Prev(ǫi, t), τ ] 6= ∅ which again contradicts the fact that

f is constant on ]t, t+ ǫ[.

Hence there is ε′ > 0 such that ǫi(τ) = 0 for all τ ∈]t, t + ε′[. As t /∈ U ,

this is a contradiction to the definition of infimum.

(ii) follows from (i) as all sets are finite unions of well-ordered sets. All

sets of real numbers which are well-ordered by ≤ are countable.10

10This is a well-known observation. Let s(x) be the successor of a real number x accord-
ing to the standard order ≤. The open intervals (x, s(x)) for the different elements of the
well-ordered set are nonempty and disjoint. Since each such interval contains a different
rational number, the well-ordered set must be countable.
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Lemma A.4. Let w = (f, ǫ) ∈ W , t ∈ R+, and εi ∈ R++ for all i ∈ I.

Further let a, b ∈ ×i∈IAi and let f t be given by f t(τ) = f(τ) for all τ < t,

f t(t) = a, and f t(τ) = b for all τ > t. Suppose f t ∈ F and that for all i ∈ I,

t ∈ J(f t
i ) only if i ∈ IPJ(ǫi, t).

(i) There is ǫ′ ∈ E such that ǫ′(t) = ǫ(t) for all t ∈ [0, t[, ǫ′i(t) = εi for all

i ∈ IPJ(ǫ, t), and w′ = (f t, ǫ′) ∈ W .

(ii) If t ∈ J (f t) then there is ǫ′ ∈ E such that ǫ′(t) = ǫ(t) for all t ∈ [0, t[,

ǫ′i(t) = εi for all i ∈ I, and w′ = (f t, ǫ′) ∈ W .

Proof. (i) Let I(t) = {i ∈ I|t ∈ PJ(ǫi) ∪
⋃

j∈I J(f
t−
j )}. For each i ∈ I define

ǫ′i(t) =































ǫi(t), if t < t,

εi, if i ∈ I(t) and t = t+ ǫin for some n ∈ N0,

73, if i /∈ I(t) and t = Next(ǫi,Prev(ǫi, t)) + 73n for some n ∈ N0,

0, otherwise

(Note that the third condition becomes void if t ∈
⋃

j∈I J(f
t
j )).

We will show that w′ = (f t, ǫ′) ∈ W . To see (P.i) and (P.ii), let i ∈ I and

t ∈ J(f t
i ). Then t ≤ t by definition of f t, and hence t ∈ PJ(ǫ′i)∩

⋂

j∈I DPj(ǫ
′
j)

by (P.i) and (P.ii) for w and the construction of ǫ. To prove (P.iii), let i ∈ I

and t ∈ PJ(ǫ′i). If t ≤ t then t ∈ DP (ǫ′i) by (P.iii) for w. If t > t then by

construction t ∈ PJ(ǫi) if and only if t ∈ DP (ǫi).

Finally, we will turn to (P.iv). Let i ∈ I, t ∈ DP (ǫ′i), and τ ∈ DP (ǫ′i) ∩

[t,Next(ǫ′i, t)[. If Next(ǫ′i,Prev(ǫ
′
i, t)) ≤ t, then

⋃

j 6=i J(f
t−
j )∩]t, τ ] 6= ∅ by

(P.iv) for w. Hence suppose that Next(ǫ′i,Prev(ǫ
′
i, t)) > t. If t ≥ t then by

construction of f t, t ∈ DP (ǫ′i) implies DP (ǫ′i)∩]t,Next(ǫ
′
i, t)[= ∅, a contra-

diction to our choice of τ . If t > t and t > τ , applying (P.iv) to w yields
⋃

j 6=i J(f
t−
j )∩]t, τ ] 6= ∅.

If τ ≥ t consider three cases. If t ∈
⋃

j 6=i J(f
t
j ), we are done. Therefore

suppose t /∈
⋃

j 6=i J(f
t
j ). Then if t ∈ PJ(ǫi) we get that t ∈ DP (ǫi) and

t < t < Next(ǫi, t). Applying (P.iv) for w then yields
⋃

j 6=i J(f
t−
j )∩]t, t] 6= ∅

and hence
⋃

j 6=i J(f
t−
j )∩]t, τ ] 6= ∅. Finally, if t /∈ PJ(ǫi) then by hypothesis
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t /∈ J(f t
i ). Note that if t < Prev(ǫi, t) < t, applying (P.iv) for w we obtain

∅ 6=
⋃

j 6=i J(f
t−
j )∩]t,Prev(ǫi, t)] ⊆]t, τ ], as Prev(ǫi, t) ∈ DP (ǫi) by Lemma

A.1(i). Hence w.l.o.g. assume t = Prev(ǫi, t) < t. By construction of ǫ′i

we get τ = Next(ǫi,Prev(ǫi, t)) + 73n for some n ∈ N0, which yields τ ≥

Next(ǫi,Prev(ǫi, t)) ≥ Next(ǫ′i, t), a contradiction to our choice of τ . Hence

(P.iv) holds.

(ii) Note that in (i) we actually proved that ǫi(t) = ǫi for all i ∈ I(t). If

t ∈ J (f) then I(t) = I and hence the statement follows.

Lemma A.5. Let w = (f, ǫ) ∈ W , t ∈ R+. Then i ∈ IDP (ǫ, t) if and

only if i ∈ IPJ(ǫ, t) or IJ(f, t) 6= ∅. In particular, IDP (ǫ, t) 6= ∅ implies

IPJ(ǫ, t) 6= ∅.

Proof. “If”: If i ∈ IPJ(ǫ, t) then i ∈ IDP (ǫ, t) by (P.iii). If IJ(f, t) 6= ∅ then

i ∈ IDP (ǫ, t) by (P.ii).

“Only if”: Let i ∈ IDP (ǫ, t) and suppose that i /∈ IPJ(ǫ, t). Let t =

Prev(ǫi, t). Then t < t < Next(ǫi, t), where the second inequality follows

from Lemma A.1(ii). By Lemma A.1(i) t ∈ DP (ǫi). As t ∈ DP (ǫi), (P.iv)

implies that there is t̃ ∈
⋃

j 6=i J(fj)∩]t, t]. If t̃ ∈]t, t[ then by (P.ii) t̃ ∈ DP (ǫi).

As t = Prev(ǫi, t) < t̃ < t this would contradict the definition of Prev(ǫi, t).

Hence t ∈
⋃

j 6=i J(fj) and thus IJ(f, t) 6= ∅.

We are now ready to turn to the proof of Proposition 1.

Proof of Proposition 1. For x ∈ N , let tx ∈ R+ and wx = (fx, ǫx) ∈ W be

such that x = xtx(w
x), x = xR

tx(w
x), or x = xP

tx(w
x).

We will first show that T = (N,⊇) is a game tree (Definition 1).

(TI): Let x, y ∈ N be such that x∩y 6= ∅ and let w = (f, ǫ) ∈ x∩y. Then

xP
tx(w) ⊆ x ⊆ xtx(w) and xP

ty (w) ⊆ x ⊆ xty (w). Without loss of generality,

assume tx ≤ ty. Then for any wy = (f y, ǫy) ∈ y we obtain wy(τ) = w(τ) for

all τ ∈ [0, ty[. If tx < ty then f y(tx) = f(tx) and f y
+(t

x) = f+(t
x). Hence

wy ∈ xP
tx(w) ⊆ x, i.e. y ⊆ x. If tx = ty then x, y ∈ {xtx(w), x

R
tx(w), x

P
tx(w)}

and hence are ordered.

(IR) Let w,w′ ∈ W with w = (f, ǫ), w′ = (f ′, ǫ′) be such that w 6= w′.

Then there is t ∈ R+ such that w(t) 6= w′(t). Let t1 = mini∈I Next(ǫi,Prev(ǫi, t))
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and t2 = mini∈I Next(ǫ
′
i,Prev(ǫ

′
i, t)). By (P.iv),

⋃

i∈I DP (ǫi)∩]Prev(ǫi, t), t
1[=

∅ and
⋃

i∈I DP (ǫ′i)∩]Prev(ǫ
′
i, t), t

2[= ∅. Hence Prev(ǫi, t
1) = Prev(ǫi, t) and

Prev(ǫ′i, t
2) = Prev(ǫ′i, t) for all i ∈ I and there are i, j ∈ I such that

t1 = Next(Prev(ǫi, t
1), t1) and t2 = Next(Prev(ǫ′j , t

2), t2). Thus t1 ∈ PJ(ǫi),

t2 ∈ PJ(ǫ′j) and by the construction of the tree, xt1(w), xt2(w
′) ∈ N . By

Lemma A.1(ii), t1, t2 ≥ t and hence by construction of the nodes w ∈ xt1(w)

and w /∈ xt2(w
′) and w′ ∈ xt2(w

′) and w′ /∈ xt1(w).

(BD) Let h ∈ 2N be a nonempty chain. Let

D :=
{

t ∈ R+

∣

∣ ∃w ∈ W : xt(w) or xR
t (w) or xP

t (w) ∈ h
}

.

Note that as in the proof of (TI) above (case tx = ty) for each t ∈ A there are

at most three nodes x ∈ h such that tx = t (a peek node, a reaction node,

and a potential jump node).

Suppose first that ∃t = supD and t ∈ D. Let y ∈ h be the smallest of

the nodes in the chain h with ty = t. Let w ∈ y. As in the proof of (TI)

above (case tx < ty), it follows that w ∈ x for all x ∈ h.

Suppose now that either ∃t = supD and t /∈ D or ∄ supD. In the latter

case write t = +∞ for convenience. For any 0 < K < t there is tK ∈]K, t[∩D

and wK = (fK , ǫK) ∈ W such that xtK (w
K) or xR

tK (w
ε) or xP

tK (w
K) ∈ h.

For each i ∈ I and some ai ∈ Ai define wi = (f i, ǫi) ∈ F × E by

wi(τ) :=







wτ
i (τ), if τ < t,

(ai, 0), if τ ≥ t.

Note that (since h is a chain) if τ < t then wτ
i (τ) = wK

i (τ) for any K ∈]0, t[

with τ ∈ [0, tK [.

If t < +∞ we claim that t ∈
⋃

j∈I PJ(ǫj). Assume by contradiction

that t /∈
⋃

j∈I PJ(ǫj). Then Prev(ǫj , t) < t and hence ǫj(τ) = 0 for all τ ∈

]Prev(ǫj , t)[ and all j ∈ I. Let K ∈] maxj∈I Prev(ǫj , t), t[. Then there is tK ∈

]K, t[ and wK = (fK , ǫK) ∈ W such that xtK (w
K) or xR

tK (w
ε) or xP

tK (w
K) ∈ h

and hence IDP (ǫK , tK) ⊇ IPJ(ǫK , tK) 6= ∅, where the inclusion follows from

(P.iii). By construction wi(t
K) = wtK

i (tK) and as IDP (ǫK , tK) 6= ∅ this
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implies IDP (ǫK , tK) 6= ∅, which contradicts the fact that IDP (ǫ, τ) = ∅ for

all τ ∈] maxj∈I Prev(ǫj , t), t[.

For each i ∈ IPJ(ǫ, t) choose a′i such that a′i 6= limt→t f i−(t) if limt→t f i−(t)

exists and arbitrarily otherwise. For each i ∈ I\IPJ(ǫ, t) let a′i = limt→t f i−(t).

Note that the limit exists as otherwise t would be an accumulation point of

jump points of fi (and hence decision points of ǫi by (P.i) and (P.iii)) and

hence i ∈ IPJ(ǫ, t).

Now define

fi(τ) :=







f i(τ), if τ < t

a′i, if τ ≥ t

and

ǫi(τ) :=



















ǫi(τ), if τ < t,

73, if τ ≥ t and τ = t + 73n for some n ∈ N0,

0, otherwise.

and set w := (f, ǫ) ∈ F × E. Note that the construction guarantees the

t ∈ J(fi) if and only if t ∈ PJ(ǫi). We will now verify that w ∈ W . To

see (P.i), let τ ∈ J(fi). As f is constant on ]t,+∞[, τ ≤ t. If τ < t

then τ ∈ [0, tK [ for some K > 0. Then, by (P.i) for wK , τ ∈ PJ(ǫKi )

and hence τ ∈ PJ(ǫi). If τ = t, by construction of f , t ∈ J(fi) if and

only if t ∈ PJ(ǫi) and hence t ∈ PJ(ǫi). This proves (P.i). (P.ii) follows

immediately from the construction of ǫ. To see (P.iii) let τ ∈ PJ(ǫi). If τ ≤ t

then τ ∈ DP (ǫi) by construction. If τ > t then Prev(ǫi, τ) = t + 73n for

some n ∈ N0 implying that τ = t+73(n+1) and thus ǫi(τ) > 0. Thus (P.iii)

is satisfied. To prove (P.iv) let t ∈ DP (ǫi) and τ ∈]t,Next(ǫi, t)[∩DP (ǫi)

be such that
⋃

j∈I J(fj)∩]t, τ ] = ∅. If τ ≤ t we reach a contradiction with

(P.iv) for wK with K > τ . If t < t and t < τ then in particular t /∈
⋃

j∈I J(fj), in contradiction with the construction of f . Now suppose t ≥ t.

The construction of ǫ implies that if τ ∈]t,Next(ǫi, t)[ then ǫi(τ) = 0, a

contradiction with τ ∈ DP (ǫi). Hence (P.iv) holds and we obtain w ∈ W .

Next we will show that (T, C) is an EDP (Definition 2).
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(EDP.i) Let i ∈ I and c, c′ ∈ Ci be such that P (c)∩P (c′) 6= ∅ and c 6= c′.

First, let c = ci(xt(w), ai) for some w = (f, ǫ) ∈ W and some ai ∈ Ai. Then

P (c) = {xt((f
′, ǫ′)) ∈ N | f(τ) = f ′(τ) ∀ τ ∈ [0, t[, t ∈ PJ(ǫ′i) } .

P (c) ∩ P (c′) 6= ∅ yields c′ = ci(xt(w), a
′
i) for some a′i ∈ Ai and hence P (c) =

P (c′). As c 6= c′, we have ai 6= a′i which implies c∩ c′ = ∅. The proofs for the

cases c = ci(x
R
t (w), ai) and c = ci(x

P
t (w), ai) are analogous.

(EDP.ii) Let x ∈ X and (ci)i∈I(x) ∈ ×i∈I(x)Ai(x). If x = xtx(w
x) let

f(τ) = fx(τ) for all τ ∈ [0, tx[ and fi(τ) = ai for all τ ∈ [tx,∞[ and all i ∈ I

where the ai are such that ci = ci(x, ai) if i ∈ I(x) and ai = limτ→tx f
x
i (τ) if

i /∈ I(x). Applying Lemma A.4(i) there exists ǫ ∈ E such that ǫ(τ) = ǫx(τ)

for all τ ∈ [0, tx[ and w = (f, ǫ) ∈ W . By construction w ∈ x ∩
⋂

i∈I(x) ci.

If x = xR
tx(w

x) let f(τ) = fx(τ) for all τ ∈ [0, tx], and fi(τ) = ai for all

τ ∈]t,∞[ and all i ∈ I where the ai are such that ci = ci(x, ai) if i ∈ I(x) and

ai = fx
i (t

x) if i /∈ I(x). By Lemma A.4(i) there is ǫ ∈ E such that ǫ(τ) = ǫx(τ)

for all τ ∈ [0, tx[ and w = (f, ǫ) ∈ W . By construction w ∈ x ∩
⋂

i∈I(x) ci.

If x = xP
tx(w

x) let f(τ) = fx(τ) for all τ ∈ [0, tx], and fi(τ) = fi+(t
x)

for all τ ∈]t,∞[ and all i ∈ I. By Lemma A.4(i) there is ǫ ∈ E such that

ǫ(τ) = ǫx(τ) for all τ ∈ [0, tx[, ǫi(t
x) = εi for all i ∈ I(x) where εi is such

that ci = ci(x, εi) if i ∈ I(x) and εi = 0 if i /∈ I(x) and w = (f, ǫ) ∈ W . By

construction w ∈ x ∩
⋂

i∈I(x) ci.

(EDP.iii) Let y, y′ ∈ N be such that y ∩ y′ = ∅. Let t := inf{t ∈

R+|w
y(t) 6= wy′(t)}. Then wy(τ) = wy′(τ) for all τ ∈ [0, t[. Note that

t ∈ PJ(ǫyi ) if and only if t ∈ PJ(ǫy
′

i ) for all i ∈ I as wy(τ) = wy′(τ) for all

τ ∈ [0, t[.

We claim that t ∈
⋃

i∈I PJ(ǫyi ). By contradiction, suppose that t /∈
⋃

i∈I PJ(ǫyi ). If wy(t) 6= wy′(t) then t ∈ DP (ǫyj ) ∪ DP (ǫy
′

j ) for some j ∈ I

as either f y(t) 6= f y′(t) or ǫy(t) 6= ǫy
′

(t). Suppose that t /∈ PJ(ǫy
′

j ) ∪ PJ(ǫyj )

for all j ∈ I. Then by (P.i) and (P.iv), t /∈ DP (ǫyj ) ∪DP (ǫy
′

j ) for all j ∈ I.

Hence t ∈ DP (ǫyj )∪DP (ǫy
′

j ) for some j ∈ I implies that t /∈ PJ(ǫy
′

k )∪PJ(ǫyk)

for some k ∈ I, a contradiction. If wy(t) = wy′(t) then f y
+(t) 6= f y

+(t) by

(DP.i) and (P.iv) as otherwise there is ε > 0 such that wy(τ) = wy′(τ) for
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all τ ∈ [0, t + ε[, contradicting the choice of t. But f y
+(t) 6= f y

+(t) implies

t ∈ J(f y
j )∪J(f y′

j ) for some j ∈ I and hence t ∈
⋃

i∈I PJ(ǫyi ), a contradiction.

Thus t ∈
⋃

i∈I PJ(ǫyi ) ∩ PJ(ǫy
′

i ) and xt(w
y) = xt(w

y′) ∈ N . If wy(t) =

wy′(t) then xR
t
(wy) = xR

t
(wy′) and f y

+(t) 6= f y′

+ (t) by definition of t which

implies ∅ 6= IJ(f y, t) = IJ(f y′ , t) ( I. Let i ∈ I \ IJ(f y, t) be such that

f y
i+(t) 6= f y′

i+(t), and set c := ci(x
R
t (w

y), f y
i+(t)) and c′ := ci(x

R
t (w

y), f y′

i+(t)).

Then y ⊆ c, y′ ⊆ c′ and c∩c′ = ∅. If wy(t) 6= wy′(t) then either f y(t) 6= f y′(t)

or ǫy(t) 6= ǫy
′

(t). If f y(t) 6= f y′(t) let i ∈ I be such that f y
i (t) 6= f y′

i (t) and

define c := ci(xt(w
y), f y

i (t)) and c′ := (xt(w
y), f y′

i (t)). Then y ⊆ c, y′ ⊆ c′

and c ∩ c′ = ∅. If f y(t) = f y′(t) and ǫy(t) 6= ǫy
′

(t) let i ∈ I be such that

ǫyi (t) 6= ǫy
′

i (t) and define c := ci(x
P
t
(wy), ǫyi (t)) and c′ := (xP

t
(wy′), ǫy

′

i (t)).

Then y ⊆ c, y′ ⊆ c′ and c ∩ c′ = ∅.

(EDP.iv) Let x ) y ∈ N and i ∈ I(x). Then tx ≤ ty which implies

wx(τ) = wy(τ) for all τ ∈ [0, tx[. If x = xtx(w
x) let ci = ci(x, w

y
i (t

x)). If

x = xR
tx(w

x) then fx(tx) = f y(tx). Let ci = ci(x, f
y
+i(t

x)). If x = xP
tx(w

x)

then fx(tx) = f y(tx) and fx
+(t

x) = f y
+(t

x). Let ci = ci(x, ǫ
y
i (t

x)). In any case

y ⊆ ci.

Now we turn to the proof of Lemma 1.

Proof of Lemma 1. As in the proof of Proposition 1, for x ∈ N , let tx ∈ R+

and wx = (fx, ǫx) ∈ W be such that x = xtx(w
x), x = xR

tx(w
x), or x =

xP
tx(w

x).

We first show that T is regular. Let x ∈ N . If x = xR
tx(w

x) then ∅ 6=

IJ(fx, tx) ⊆ IPJ(ǫx, tx) (where the last inclusion follows from (P.i)) and

hence xtx(w
x) ∈ N . Thus xtx(w

x) = min ↑ x \ {x}. If x = xP
tx(w

x) we

distinguish two cases. If ∅ ( IJ(ǫ, tx) ( I then xR
tx(w

x) ∈ N and xR
tx(w

x) =

min ↑ x \ {x}. Otherwise xR
tx(w

x) /∈ N and IPJ(ǫx, tx) 6= ∅ as x ∈ N

(recall (1.1)). Then xtx(w
x) ∈ N and xtx(w

x) = min ↑ x \ {x}. If x =

xtx(w
x) we again distinguish two cases. If Prev(ǫxi , t

x) < tx for all i ∈ I let

t = maxi∈I Prev(ǫ
x
i , t

x). By Lemmata A.1(i) and A.5(“only if”) we obtain

IPJ(ǫx, t) 6= ∅ and hence xP
t
(wx) ∈ N . Then xP

t
(wx) = min ↑ x \ {x} as

otherwise there would be xP
t
(wx) ) xP

t′ (w
x) ) x implying t < t′ < t. As then

IDP (ǫx, t′) 6= ∅ by Lemma A.5(“if”) this would contradict the construction of
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t. If on the other hand Prev(ǫxi , t
x) = t for some i ∈ I, let y ∈↑ x\{x}. Since

then ty < tx and Prev(ǫxi , t
x) = t there is ty < t < tx such that t ∈ DP (εi).

By Lemma A.5 IPJ(ǫ, t) 6= ∅ and hence y ) xt(w
x) ∈↑ x \ {x}. As x ( y

for all y ∈↑ x \ {x} we obtain x = inf ↑ x \ {x}.

It remains to show that T is up-discrete. Let h ∈ 2N be a nonempty

chain and let w = (f, ǫ) ∈
⋂

x∈h x, which exists by (BD). Note that if xt(w),

xR
t (w), or xP

t (w) ∈ N for some t ∈ R+ then by construction of T (recall

(1.1)), t ∈
⋃

i∈I PJ(ǫi). Since
⋃

i∈I PJ(ǫi) is well-ordered by Lemma A.3 we

obtain that t := min{t|xt(w) or xR
t (w) or xP

t (w) ∈ h} exists. Hence either

xt(w), x
R
t
(w) or xP

t
(w) is a maximum of h.

Appendix 1.B: Proofs from Section 1.4

The proofs of results from Sections 1.4 and 1.5 make use of the machinery of

ordinal numbers; we refer the reader to Jech (2002, chap. 2).

Let Ord be the class of all ordinal numbers. Given an ordinal α ∈ Ord,

a transfinite sequence of (possibly extended) real numbers (tβ)β<α is a set

{tβ |tβ ∈ R ∪ {∞}, β < α}. A transfinite sequence (tβ)β<α is increasing if

γ < β implies tγ ≤ tβ and strictly increasing if γ < β implies tγ < tβ. If α is

a limit ordinal the limit limβ→α t
β of the sequence is defined by limβ→α t

β =

sup{tβ|β < α}. A sequence (tβ)β<α is continuous if tγ = limβ→γ t
β for every

limit ordinal γ < α. For the sake of clarity we will write (tβ)β≤α for (tβ)β<α+1.

The following definitions and lemmata are used in the proof of Proposition

2 and also elsewhere.

Definition 11. Given f ∈ F , t ∈ R+ and a ∈ ×i∈IAi, define

G−(f, t, a) =







f(τ), if τ ∈ [0, t[,

a, if τ ≥ t

and

G+(f, t, a) =







f(τ), if τ ∈ [0, t],

a, if τ > t
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Lemma B.1. Let f ∈ F , t ∈ R+, and a ∈ ×i∈IAi. Then

(i) G−(f, t, a) ∈ F .

(ii) If a is such that for all i ∈ I, ai = fi(t) if t ∈
(

⋂

j∈I LC(fj)
)

∪ J(fi),

then G+(f, t, a) ∈ F .

Proof. (i) By construction G−(f, t, a) is piecewise constant and hence (DP.i)

holds. To prove (DP.ii), let τ ∈ R+. If τ /∈ LC(G−
i (f, t, a)), then by con-

struction, τ ≤ t and hence τ ∈ RK(G−
i (f, t, a)) by construction. To see

(DP.iii), let τ ∈ R(G−
i (f, t, a)) for some i ∈ I. Then, as τ /∈ RK(G−

i (f, t, a)),

τ < t and since f ∈ F , there is j ∈ I such that τ ∈ J(fj) and hence

τ ∈ J(G−
j (f, t, a)). Thus (DP.iii) holds.

(ii) Let a be as given. By construction G+(f, t, a) is piecewise constant

and hence (DP.i) holds. To prove (DP.ii), let τ ∈ R+. If τ /∈ LC(G+
i (f, t, a)),

then by construction τ ≤ t. If τ < t, τ ∈ RK(G+
i (f, t, a)) since f ∈ F .

Suppose τ = t. Then t /∈ LC(G+
i (f, t, a)) implies t /∈ LC(fi) and hence

by (DP.ii) for f , t ∈ J(fi). Then by hypothesis, ai = fi(t) and hence τ ∈

RK(G+
i (f, t, a)). Hence (DP.ii) holds. To see (DP.iii), let τ ∈ R(G+

i (f, t, a))

for some i ∈ I. Then by construction of G+
i (f, t, a), τ ≤ t. If τ < t then

τ ∈ R(fi) and by (DP.iii) for f it follows that τ ∈ J(fj) and hence τ ∈

J(G+
j (f, t, a)) for some j ∈ I. Suppose τ = t. That t ∈ R(G+

i (f, t, a)) implies

that ai 6= fi(t) which by hypothesis implies t /∈
(

⋂

j∈I LC(fj)
)

∪ J(fi). As

t /∈
⋂

j∈I LC(fj) we get that t ∈ J(fj) and hence (since (DP.ii) has already

been shown for G+(f, t, a)) t ∈ J(G+
j (f, t, a)) for some j ∈ I.

Lemma B.2. Let α ∈ Ord be a limit ordinal and let (tβ)β<α ⊆ R+ be

a strictly increasing and continuous transfinite sequence. Then for every

t0 ≤ t < limβ→α t
β there is a unique δ ∈ Ord such that t ∈ [tδ, tδ+1[.

Proof. Let t0 ≤ t < limβ<α t
β . Then γ = min{β < α|tβ > t} exists as the

set {β|β < α} is well-ordered. Further, γ > 0 as t ≥ t0 and γ is a successor

ordinal as otherwise limβ<γ t
β = tγ by continuity and hence there would be

β < γ with t < tβ < tγ. This would contradict that γ = min{β < α|tβ > t}.

Thus γ = δ + 1 for some δ < α and t ∈ [tδ, tδ+1[.
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Proof of Lemma 2. Note that f t+
i+ (t) = fi+(t) by definition of f t+

i . If Eσi(f, t)

6= ∅ then ε = inf Eσi(f, t) exists. We claim that ε > 0. In order to see this

we distinguish two cases. First, suppose that t ∈
(

⋂

j∈I LC(f t+
j )
)

∪ J(f t+
i ).

In this case, t ∈ RK(f t+
i ) by (DP.ii) and (DP.iii) and hence f t+

i+ (t) = f t+
i (t)

which implies f t+
i (t) = fi+(t). Now by (CRM.ii) there is ε > 0 such that

σ1
i (f

t+, τ) = f t+
i (t) = fi+(t) for all τ ∈]t, t + ε[. Thus Eσi(f, t) is bounded

away from zero, and hence ε > 0. Second, suppose that t /∈
(

⋂

j∈I LC(f t+
j )
)

∪

J(f t+
i ), hence (by (DP.ii)), t ∈ LC(f t+

i ) ∩
(

⋃

j∈I J(f
t+
j )
)

. In this case, by

(CRM.iii) there is ε′ > 0 such that σ1
i (f

t+, τ) = f t+
i+ (t) = fi+(t) for all

τ ∈]t, t + ε′[. Again, Eσi(f, t) is bounded away from zero, and hence ε > 0.

This proves the claim.

Suppose now that ε /∈ Eσi(f, t). As f t+ is constant on ]t,∞[ and t+ε > t,

t + ε ∈
⋂

j∈I LC(f t+
j ) and hence by (CRM.ii) there is ε > 0 such that

σ1
i (f

t+, τ) = f t+
i (t + ε) for all τ ∈]t + ε, t + ε + ε[. Since f t+

i is constant

on ]t,∞[, we have that f t+
i (t+ε) = f t+

i+ (t) = fi+(t) for all τ ∈]t+ε, t+ε+ε[.

This contradicts the construction of ε = inf Eσi(f, t).

Proof of Proposition 2. (i) Let Eσi(f, t) and εσi(f, t) be defined as in Lemma

2. Fix r ∈ R++ and define εσi
r (f, t) by εσi

r (f, t) = εσi(f, t) if Eσi(f, t) 6= ∅ and

εσi
r (f, t) = r otherwise.

We are going to use transfinite recursion to construct a sequence of

functions (fα)α∈Ord and a sequence of extended real numbers (tα)α∈Ord ⊆

R+ ∪ {∞} such that for all α ∈ Ord the following properties are satisfied.

(TR.i) fα ∈ F .

(TR.ii) If β < α then fα(τ) = fβ(τ) for all τ ∈ [0, tβ[.

(TR.iii) (tβ)β≤α is continuous.

(TR.iv) Either tα = ∞ or (tβ)β≤α ⊆ R++ and is strictly increasing.

(TR.v) σ1
i (f

α, τ) = fα
i (τ) and σ2

i (f
α, τ) = fα

i+(τ) for all τ ∈ [0, tα[ and all i ∈ I.

In order to apply transfinite recursion, we need to complete three steps.

First, we will define (f 0, t0) trivially fulfilling (TR.i)-(TR.v). Second, we will
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show that, if (TR.i)-(TR.v) are fulfilled for an ordinal α then (fα+1, tα+1)

fulfilling (TR.i)-(TR.v) can be defined for the successor ordinal α+1. Third,

we will show that, for any limit ordinal α, if (fβ, tβ) fulfilling (TR.i)-(TR.v)

have been defined for all β < α, then (fα, tα) fulfilling (TR.i)-(TR.v) can

be defined. Applying transfinite recursion then yields existence of the full

sequences (fα)α∈Ord, (t
α)α∈Ord.

Step 1. For all i ∈ I, define f 0
i by f 0

i (τ) = σ1
i (f, 0) for all τ ∈ R+ for

any f ∈ F . Note that by (CRM.i), σ1
i (f, 0) is independent of f . Set t0 :=

mini∈I ε
σi
r (f

0, 0) which exists and is strictly positive by Lemma 2. For t0 and

f 0 (TR.i)-(TR.iv) are trivially fulfilled. To see that (TR.v) holds, first note

that σ1
i (f

0, τ) = f 0
i+(τ) = f 0

i (τ) for all τ ∈ [0, t0[ and all i ∈ I by definition

of εσi
r (f

0, 0). Second, σ2
i (f

0, τ) = f 0
i (τ) = f 0

i+(τ) for all τ ∈ R+ and all i ∈ I

by (CRM.ii) since f 0 is a constant function, and so (TR.v) is satisfied.

Step 2. Let α + 1 ∈ Ord be a successor ordinal and suppose that fα and

tα ∈ R+ ∪ {∞} satisfying (TR.i)-(TR.v) have been constructed.

We first construct fα+1. For all i ∈ I, define an intermediate function

f
α+1

i = G−
i (fα, tα, a), where for all i ∈ I, ai = σ1

i (f
α, tα) and G− is as

in Definition 11. By Lemma B.1(i), f
α+1

∈ F . Now, for all i ∈ I, define

fα+1
i = G+

i (f
α+1

, tα, b), where for all i ∈ I, bi = σ2
i (f

α+1
, tα) and G+ is as

given in Definition 11. Note that for all i ∈ I, if tα ∈
⋂

j∈I LC(f
α+1

j )∪J(f
α+1

i )

then σ2
i (f

α+1
, tα) = f

α+1

i (tα) by (CRM.ii). Hence (σ2
i (f

α+1
, tα))i∈I satisfies

the conditions in Lemma B.1(ii) and it follows that fα+1 ∈ F , i.e. (TR.i)

holds.

To prove that (TR.ii) is satisfied let β < α+1. By construction, fα+1(τ) =

fα(τ) for all τ ∈ [0, tα[. If β = α this already shows (TR.ii). If β < α, by

(TR.ii) for α, fβ(τ) = fα(τ) = fα+1(τ) for all τ ∈ [0, tβ[, where the last

equality holds because tβ ≤ tα by (TR.iv) for α, and the conclusion follows.

Now define tα+1 := tα+mini∈I ε
σi
r (f

α+1, tα). As α+1 is a successor ordinal

(tβ)β≤α+1 is continuous if (tβ)β≤α is continuous. The latter sequence is contin-

uous by induction hypothesis and hence (TR.iii) holds. To see that (TR.iv) is

fulfilled, note that by induction hypothesis either tα = ∞ or (tβ)β≤α ⊆ R+ is

strictly increasing. If tα = ∞ then tα+1 = ∞ by construction. If, on the other

hand (tβ)β≤α ⊆ R+ is strictly increasing then by construction tα < tα+1 < ∞
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because 0 < εσi
r (f

α+1, tα) < ∞ by Lemma 2. Thus (tβ)β≤α+1 ⊆ R+ is strictly

increasing.

To prove (TR.v), first note that for all τ ∈ [0, tα[ and all i ∈ I, σi(f
α+1, τ) =

σi(f
α, τ) = (fα

i (τ), f
α
i+(τ)) = (fα+1

i (τ), fα+1
i+ (τ)) . The first equality follows

by construction of fα+1 and both parts of (CRM.i), the second from the in-

duction hypothesis, and the third from the construction of fα+1. If tα = ∞,

this already shows (TR.v). Hence we can now assume that tα < ∞ (and, by

construction, tα+1 < ∞). We now prove the first part of (TR.v). By con-

struction of fα+1 and (CRM.i) σ1
i (f

α+1, tα) = σ1
i (f

α, tα) and since fα+1
i (tα) =

σ1
i (f

α, tα) by construction of fα+1, we obtain σ1
i (f

α+1, tα) = fα+1
i (tα) for

all i ∈ I. Since tα+1 = tα + εσi
r (f

α+1, tα), by defintion of εσi
r (fα+1, tα)

it follows that σ1
i (f

α+1, τ) = fα+1
i+ (tα) for all τ ∈]tα, tα+1[. Since fα+1 is

constant on ]tα,∞[, we obtain fα+1
i (τ) = fα+1

i+ (tα) for all τ ∈]tα,∞[ and

all i ∈ I and hence σ1
i (f

α+1, τ) = fα+1
i (τ) for all τ ∈ [0, tα+1[. Now we

turn to the second part of (TR.v). By construction of fα+1 and (CRM.i)

σ2
i (f

α+1, tα) = σ2
i (f

α+1
, tα) and since fα+1

i+ (tα) = σ2
i (f

α+1
, tα) by construc-

tion of fα+1, we obtain σ2
i (f

α+1, tα) = fα+1
i+ (tα) for all i ∈ I. Since fα+1 is

constant on ]tα,∞[, (CRM.ii) yields σ2
i (f

α+1, τ) = fα+1
i (τ) = fα+1

i+ (τ) for all

τ ∈]tα,∞[ and hence σ2
i (f

α+1, τ) = fα+1
i+ (τ) for all τ ∈ [0, tα+1[.

Step 3. Let α be a limit ordinal and assume that fβ and tβ ∈ R+ ∪ {∞}

satisfying (TR.i)-(TR.v) have been constructed for all β < α. Set tα :=

limβ→α t
β. We distinguish two cases. Suppose first that tα = ∞. Let α∗ ≤ α

be the first limit ordinal such that tα
∗

= ∞. Then by induction hypothesis,

(tβ)β<α∗ ⊆ R+ is strictly increasing and continuous and hence by Lemma B.2

for every τ ∈ [t0,∞[ there is a unique β < α∗ such that τ ∈ [tβ, tβ+1[. Hence

every τ ∈ R+ is contained in some interval [0, tβ[ for some β < α∗ and by

induction hypothesis (TR.ii), fα defined by fα(τ) = fβ(τ) if τ ∈ [0, tβ[ is

well-defined. (TR.i)-(TR.iv) hold by induction hypothesis and construction

of fα and tα. To see (TR.v) let τ ∈ [0,∞[. Then there is β < α∗ such

that τ ∈ [0, tβ[. By induction hypothesis σi(f
β, τ) = (fβ

i (τ), f
β
i+(τ)). By

construction of fα, fα(τ ′) = fβ(τ ′) for all τ ′ ∈ [0, tβ[ and hence by (CRM.i)

σi(f
α, τ) = σi(f

β, τ). This yields σi(f
α, τ) = (fα

i (τ), f
α
i+(τ)).

Suppose now that tα < ∞. Then by induction hypothesis (tβ)β<α ⊆ R+
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is strictly increasing and continuous and by Lemma B.2, for every τ ∈ [t0, tα[

there is a unique β < α such that τ ∈ [tβ, tβ+1[. In particular every τ ∈ [0, tα[

is contained in some interval [0, tβ[ for some β < α and by (TR.ii) and for

each i ∈ I, the following intermediate function is well-defined.

f̃α
i (τ) :=







fβ
i (τ), if τ < tα and τ ∈ [0, tβ[

ai, if τ ≥ tα.

(Where ai ∈ Ai is arbitrary.) By construction (as in the proof of Lemma

B.1(i)) f̃α ∈ F . Then for each i ∈ I, define f
α

i = G−
i (f̃

α, tα, a), where

for all i ∈ I, ai = σ1
i (f̃

α, tα) and G− is as in Definition 11. Note that by

Lemma B.1(i), f
α
∈ F . Now, for all i ∈ I, define fα

i = G+
i (f

α
, tα, b), where

for all i ∈ I, bi = σ2
i (f

α
, tα) and G+ is as given in Definition 11. Note

that for all i ∈ I, if tα ∈
⋂

j∈I LC(f
α
) ∪ J(fi) then σ2

i (f
α
, tα) = f

α

i (t
α) by

(CRM.ii). Hence (σ2
i (f

α
, tα))i∈I satisfies the conditions in Lemma B.1(ii)

and hence fα ∈ F , so (TR.i) is satisfied. (TR.ii) and (TR.iii) follow directly

by induction hypothesis and the constructions of fα and tα. To see (TR.iv)

note that by induction hypothesis (tβ)β<α is strictly increasing and hence,

as tα = limβ→α t
β, (tβ)β≤α is strictly increasing. To see (TR.v) let τ ∈

[0, tα[. Then there is β < α such that τ ∈ [0, tβ[. By induction hypothesis

σi(f
β, τ) = (fβ

i (τ), f
β
i+(τ)). By construction of fα, fα(τ ′) = fβ(τ ′) for all τ ′ ∈

[0, tβ[ and hence by (CRM.i) σi(f
α, τ) = σi(f

β, τ). This yields σi(f
α, τ) =

(fα
i (τ), f

α
i+(τ)) for all τ ∈ [0, tα[.

This completes the construction. Transfinite recursion now yields se-

quences (fα)α∈Ord and (tα)α∈Ord satisfying (TR.i)-(TR.v) for all α ∈ Ord.

Then there exists a limit ordinal α such that tα = ∞.11 Let α∗ be the first

limit ordinal such that tα
∗

= ∞. As by (TR.iii) limα→α∗ tα = ∞, Lemma

B.2 implies that for all τ ∈ [t0,∞[ there is a unique β < α∗ such that

τ ∈ [tβ , tβ+1[. Hence for all τ ∈ R+ there is β ∈ Ord such that τ ∈ [0, tβ[.

Then, using (TR.ii), fi given by fi(τ) := fβ
i (τ) for τ ∈ [0, tβ[ is well-defined.

From the construction of f and because fα ∈ F by (TR.iii) for every

11Otherwise, we would have a strictly increasing mapping from the class of ordinals to
R, which is impossible (e.g. by Lemma III.2 in Stinchcombe, 1992).
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α ∈ Ord, it follows that f ∈ F . To see that σi(f, τ) = (fi(τ), fi+(τ)) for

all τ ∈ R+ and all i ∈ I let τ ∈ R+. Then there is β < α∗ such that

τ ∈ [0, tβ[. As fβ satisfies (TR.v) it follows that σi(f
β, τ) = (fβ

i (τ), f
β
i+(τ)).

By construction of f , f(τ ′) = fβ(τ ′) for all τ ′ ∈ [0, tβ[ and hence by (CRM.i)

σi(f, τ) = σi(f
β, τ). This yields σi(f, τ) = (fi(τ), fi+(τ)) for all τ ∈ [0,∞[.

Finally, we will prove that f is unique. Let f ′ ∈ F be such that σ1
i (f

′, τ) =

f ′
i(τ) and σ2

i (f
′, τ) = f ′

i+(τ) for all τ ∈ R+ and all i ∈ I. Assume f ′ 6= f .

Then t := inf{τ ∈ R+|f
′(τ) 6= f(τ)} exists. We claim that t > 0. To see this,

note that f ′(0) = f(0) by (CRM.i). By (CRM.ii) there is ε > 0 such that

f ′(τ) = f(τ) for all τ ∈ [0, ε[. This proves the claim. Because f ′(τ) = f(τ)

for all τ ∈ [0, t[, (CRM.i) implies that f ′
i(t) = σ1

i (f
′, t) = σ1

i (f, t) = fi(t)

for all i ∈ I. Further, it follows from (CRM.i) that f ′
i+(t) = σ2

i (f
′, t) =

σ2
i (f, t) = fi+(t) for all i ∈ I. Hence, as f ′, f ∈ F , by (DP.i) there is ε > 0

such that f ′(τ) = f(τ) for all τ ∈ [0, t+ε[, which contradicts the construction

of t = inf{τ ∈ R+|f
′(τ) 6= f(τ)}.

(ii) Given f ∈ F and t ∈ R++, define a0i = σi(f, t) for all i ∈ I. Define

f 0 = G−(f, t, a0) and set t0 = t+mini∈I ε
σi
r (f, t) where εσi

r (f, t) is defined as

in the proof of (i). The rest of the proof is analogous to the proof of (i).

(iii) Let f ∈ F . For each i ∈ I fix some arbitrary ai ∈ Ai. For all i ∈ I,

f ∈ F , and τ ∈ R+ define

σ1
i (f, t) =



















f i(t), if f(τ) = f(τ) for all τ ∈ [0, t[

lim
τ→t−

fi(τ), if f(τ) 6= f(τ) for some τ ∈ [0, t[ and ∃ lim
τ→t−

f(τ),

ai, otherwise,

and

σ2
i (f, t) =







f i+(t), if f(τ) = f(τ) for all τ ∈ [0, t],

fi(t), otherwise.

(CRM.i) holds by construction of σi.

To see (CRM.ii) let i ∈ I, f ∈ F and t ∈
⋂

j∈I LC(fj)∪J(fi). Note that by

(DP.ii) and (DP.iii), t ∈ RK(fi). Hence by (DP.i) there is ε > 0 such that fi is

constant on [t, t+ε[ and in particular, limr→τ− f(r) = f(τ) for all τ ∈]t, t+ε[.
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To show the first part of (CRM.ii), we will distinguish two cases. First, if

f(τ) = f(τ) for all τ ∈ [0, t] then also t ∈
⋂

j∈I LC(f j)∪ J(f i) which implies

t ∈ RK(f i) and hence f i+(t) = f i(t). Hence by construction, σ2
i (f, t) =

f i+(t) = f i(t) = fi(t). Second, if there is τ ≤ t such that f(τ) 6= f(τ) then

σ2
i (f, t) = fi(t) by construction. To prove the second part of (CRM.ii), we will

again distinguish two cases. First, if there is ε′ > 0 such that f(τ) = f(τ) for

all τ ∈ [0, t+ ε′[ then σ1
i (f, τ) = f i(τ) for all τ ∈]t, t+ ε′[. Since t ∈ RK(fi),

fi(τ) = fi(t) for all τ ∈]t, t + ε[ and hence σ1
i (f, τ) = f i(τ) = fi(τ) = fi(t)

for all τ ∈]t, t + min{ε, ε′}[. Second, if for every τ > t there is τ ′ < τ such

that f(τ ′) 6= f(τ ′), then by construction σ1
i (f, τ) = limr→τ− fi(r) = fi(τ) for

all τ ∈]t, t + ε[. As t ∈ RK(fi), fi(τ) = fi(t) for all τ ∈]t, t + ε[ and hence

σ1
i (f, τ) = fi(τ) = fi(t) for all τ ∈]t, t + ε[.

To establish (CRM.iii) let i ∈ I, f ∈ F , and t ∈ LC(fi) ∩
⋃

j∈I J(fj).

Note that by (DP.i) there is ε > 0 such that f is constant on ]t, t + ε[ and

in particular limr→τ− f(r) = f(τ) for all τ ∈]t, t + ε[. We distinguish two

cases. First, if there is ε′ > 0 such that f(τ) = f(τ) for all τ ∈ [0, t+ ε′[ then

σi(f, τ) = f i(τ) for all τ ∈]t, t + ε′[. Since f is constant on ]t, t + ε[, fi(τ) =

fi+(t) for all τ ∈]t, t+ε[. We thus obtain σi(f, τ) = f i(τ) = fi(τ) = fi+(t) for

all τ ∈]t, t +min{ε, ε′}[. Second, if for every τ > t there is τ ′ < τ such that

that f(τ ′) 6= f(τ ′), then by construction σ1
i (f, τ) = limr→τ− fi(r) = fi(τ) for

all τ ∈]t, t+ ε[. As f is constant on ]t, t+ ε[, fi(τ) = fi+(t) for all τ ∈]t, t+ ε[

and hence σ1
i (f, τ) = fi(τ) = fi+(t) for all τ ∈]t, t + ε[.

This shows that σi is a CRM for every i ∈ I. Since σ1
i (f, t) = f i(t) and

σ2
i (f, t) = f i+(t) for all t ∈ R+ and all i ∈ I, σ induces f .

Appendix 1.C: Proofs from Section 1.5

This appendix contains the proofs of Lemmata 3, and 4, Propositions 3 and

4, and Theorem 2. We start with a few preliminary results.

Lemma C.1. (i) Let f ∈ F and t1, t2 ∈ R+ be such that ]t1, t2[∩J(fi) = ∅

for all i ∈ I. Then f is constant on ]t1, t2[.

(ii) Let (f, t) ∈ F × R+ and t ∈ [t(f, t), t]. Then f t+(τ) = f(τ) for all

τ ∈ [0, t[.
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Proof. (i) By (DP.i), fi is piecewise constant for all i ∈ I. Hence there is

ε > 0 and a ∈ ×i∈IAi such that f(τ) = a for all τ ∈]t1, t1 + ε[. Suppose

by contradiction that there is t ∈ [t1 + ε, t2[ such that f(t) 6= a. Then

t∗ := inf{t ∈ [t1+ ε, t2[|f(t) 6= a} exists. By (DP.ii) t∗ ∈ LC(fi)∪RK(fi) for

all i ∈ I. If t∗ /∈ RK(fi) for some i ∈ I, then t∗ ∈ R(fi) = LC(fi) \ RK(fi)

and, by (DP.iii), there is j ∈ I, such that t∗ ∈ J(fj), which contradicts

]t1, t2[∩J(fj) = ∅. It follows that t∗ ∈ RK(fi) for all i ∈ I. Further,

t∗ ∈ LC(fi) for all i ∈ I, as otherwise t∗ ∈ RK(fi) \LC(fi) = J(fi) for some

i ∈ I which again contradicts ]t1, t2[∩J(fj) = ∅. Hence t∗ ∈ LC(fi)∩RK(fi)

for all i ∈ I and since f(τ) = a for all τ ∈]t1, t
∗[ by construction of t∗, we

obtain f(t∗) = a. Further, by (DP.i), there is ε′ > 0 and b ∈ ×i∈IAi such

that f(τ) = b for all τ ∈]t∗, t∗ + ε′[. As t∗ ∈ RK(fi) for all i ∈ I, we obtain

f(t∗) = b and hence a = b. Thus there is ε′ > 0 such that f(τ) = a for all

]t1, t
∗ + ε′[, which contradicts the definition of t∗.

(ii) If t = t(f, t) the conclusion follows by construction. Hence suppose

that t > t(f, t). By construction f t+(τ) = f(τ) for all τ ∈ [0, t]. By (i),

f is constant on ]t(f, t), t[ and hence f(τ) = f+(t) for all τ ∈]t, t[. Thus

f(τ) = f t+(τ) for all τ ∈]t, t[ and the conclusion follows.

For f ∈ F and t ∈ R+ define

t+(f, t) :=











min
⋃

i∈I

J(fi)∩]t,+∞[, if
⋃

i∈I

J(fi)∩]t,+∞[6= ∅

t, otherwise.

That is, t+(f, t) is the next time after t that some player jumps. Note that

the minimum used in the construction exists by Lemma A.2.

The following lemma shows that every decision path can be “completed”

to a play by appropriately specifying the inertia times.

Lemma C.2. For every f ∈ F there is ǫ ∈ E such that (f, ǫ) ∈ W .

Proof. Fix f ∈ F and let t∗ = maxJ (f) be the last jump of f if maxJ (f)

exists and t∗ = +∞ otherwise. Note that if t ∈ J (f) \ {t∗} then t+(f, t) > t

since then by construction of t∗,
⋃

i∈I J(fi)∩]t,+∞[6= ∅. Further, if t∗ < ∞

then t+(f, t∗) = t∗.
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For each i ∈ I define ǫi : R+ → R+ as follows

ǫi(t) :=



















t+(f, t)− t, if t ∈ J (f) \ {t∗},

73, if t = t∗ + 73n for some n ∈ N0,

0, otherwise.

Note that as 0 ∈ J(fi) for all i ∈ I it follows that ǫi(0) > 0 for all i ∈ I and

hence ǫ = (ǫi)i∈I ∈ E. By construction, for all i ∈ I,

DP (ǫi) = J (f) ∪ {t ∈ R+|t = t∗ + 73n for some n ∈ N}. (1.3)

It remains to show that w = (f, ǫ) ∈ W , i.e. that (P.i)-(P.iv) in Definition 4

hold. To prove (P.i), let t ∈ J(fi) for some i ∈ I. If t = t(f, t) it follows from

(1.3) that t = Prev(ǫi, t) and hence t ∈ PJ(ǫi) by definition of the latter. If

t > t(f, t), then t = t+(t(f, t)) > t(f, t) where the inequality holds because

t ≤ t∗. As t∗ ≥ t > t(f, t) ∈ J (f), it follows that ǫi(t(f, t)) = t+(t(f, t)) −

t(f, t) > 0, i.e. t = t(f, t) + ǫi(t(f, t)). By Lemma C.1, f is constant on

]t(f, t), t[ and hence ǫi(τ) = 0 for all τ ∈]t(f, t), t[. Thus t(f, t) = Prev(ǫi, t),

which implies that t = Next(ǫi,Prev(ǫi, t)) and t ∈ PJ(ǫi). To see (P.ii),

let again t ∈ J(fi) for some i ∈ I. Then, by construction, ǫj(t) > 0 for

all j ∈ I and hence by (1.3) t ∈
⋂

j∈I DP (ǫj). To establish (P.iii), let

t ∈ PJ(ǫi) for some i ∈ I. If Prev(ǫi, t) = t, which by (1.3) is only possible

if t = t(f, t), then t ∈ J (f) and hence ǫi(t) > 0, i.e. t ∈ DP (ǫi). Otherwise

t = Next(ǫi,Prev(ǫi, t)). Then, by (1.3), either Prev(ǫi, t) ∈ J (f) \ {t∗} or

Prev(ǫi, t) = t∗ +73n for some n ∈ N0 implying that either t ∈
⋃

j∈I J(fj) or

t = t∗+73n for some n ∈ N0. In any case it follows from (1.3) that ǫi(t) > 0.

To see (P.iv), let t ∈ DP (ǫi) for some i ∈ I. Then
⋃

j∈I J(fj)∩]t,Next(ǫi, t)[=

∅ and ǫi(τ) = 0 for all τ ∈]t,Next(ǫi, t)[ by (1.3). Hence (P.iv) holds.

Lemma C.3. (i) Let (f, ǫ) ∈ W , t ∈ R+. If t(f, t) = t then t ∈ PJ(ǫi)

for all i ∈ I.

(ii) Let f ∈ F , i ∈ I, si ∈ Si, and t ∈ R+. If t(f, t) = t then t ∈ PJ(ǫi)

for any ǫ ∈ E such that (f t(f,t)+, ǫ) ∈ W and (f t(f,t)+, ǫ) agrees with si

on [t(f, t),∞[.
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Proof. (i) If t = 0 then Prev(ǫi, 0) = 0 and hence 0 ∈ PJ(ǫi) by definition. If

t > 0 then, since t(f, t) = sup
(

⋃

j∈I J(fj) ∩ [0, t[
)

= t and
⋃

j∈I J(fj)∩[0, t[⊆

DP (ǫi) ∩ [0, t[ by (P.ii), Prev(ǫi, t) = sup (DP (ǫi) ∩ [0, t[) = t and hence

t ∈ PJ(ǫi).

(ii) This follows from (i) since (f t(f,t)+, ǫ) ∈ W by hypothesis.

Proof of Lemma 3. (i) First note that f t+ = G+(f, t, f+(t)) (recall Definition

11 in Section 1.7). Since f ∈ F , it follows that fj+(t) = fj(t) if t(f, t) ∈
⋂

k∈I LC(fk) ∪ J(fj) for all j ∈ I, and hence f t+ ∈ F by Lemma B.1(ii).

We are going to use transfinite recursion to construct a sequence of

functions (ǫα)α∈Ord and a sequence of extended real numbers (tα)α∈Ord ⊆

R+ ∪ {∞} such that for all α ∈ Ord the following properties are satisfied.

(TR.i) (f t+, ǫα) ∈ W .

(TR.ii) If β < α then ǫα(τ) = ǫβ(τ) for all τ ∈ [0, tβ[.

(TR.iii) (tβ)β≤α is continuous.

(TR.iv) Either tα = ∞ or (tβ)β≤α ⊆]t,∞[∩
(

⋂

j∈I PJ(ǫαj )
)

and is strictly in-

creasing.

(TR.v) If ǫαi (τ) > 0 then si
(

xP
τ ((f t+, ǫα))

)

= ci
(

xP
τ ((f t+, ǫα)) , ǫα(τ)

)

for all

τ ∈ [t, tα[

In order to apply transfinite recursion, we need to complete three steps.

First, we will define (ǫ0, t0) trivially fulfilling (TR.i)-(TR.v). Second, we will

show that, if (TR.i)-(TR.v) are fulfilled for an ordinal α then (ǫα+1, tα+1)

fulfilling (TR.i)-(TR.v) can be defined for the successor ordinal α+1. Third,

we will show that, for any limit ordinal α, if (ǫβ , tβ) fulfilling (TR.i)-(TR.v)

have been defined for all β < α, then (ǫα, tα) fulfilling (TR.i)-(TR.v) can

be defined. Applying transfinite recursion then yields existence of the full

sequences (ǫα)α∈Ord, (t
α)α∈Ord.

Step 1. Let ǫ ∈ E be such that (f t+, ǫ) ∈ W which exists by Lemma

C.2. Note that xP
t ((f

t+, ǫ)) ∈ N and player i has to make a choice at this

node. This is because either t ∈ J(fj) for some j ∈ I, in which case i ∈
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IDP (ǫ, t) by (P.ii) or t = t(f, t) in which case t = Prev(ǫ, t) by (P.ii) and

definition of Prev(·, ·) and hence i ∈ IPJ(ǫ, t). In both cases, by Lemma

A.5, IPJ(ǫ, t) 6= ∅ and xP ((f t+, ǫ)) ∈ Xi. Set t0 := t + ε0, where ε0 > 0

is such that si
(

xP
t ((f t+, ǫ))

)

= ci
(

xP
t ((f t+, ǫ)) , ε0

)

. Since (f t+, ǫ) ∈ W ,

by (P.i) t ∈ J(f t+
j ) only if t ∈ PJ(ǫj). Further, since t ∈ J (f), it follows

that t ∈ J (f t+) by construction of f t+. Then, by Lemma A.4(ii), there is

ǫ0 ∈ E such that ǫ0(τ) = ǫ(τ) for all τ ∈ [0, t[, ǫ0j (t) = ε0 for all j ∈ I,

and (f t+, ǫ0) ∈ W . Thus (TR.i) holds. (TR.ii) and (TR.iii) are trivially

fulfilled. (TR.iv) holds by construction, since (f t+, ǫ0) ∈ W and hence by

(P.iv) ǫ0j (τ) = 0 for all τ ∈]t, t0[ and all j ∈ I. (TR.v) holds since by

construction ǫ0i (t) = ε0 and ǫ0i (τ) = 0 for all τ ∈]t, t0[.

Step 2. Let α+1 ∈ Ord be a successor ordinal and suppose that ǫα and tα ∈

R+ ∪ {∞} satisfying (TR.i)-(TR.v) have been constructed. We distinguish

two cases. Suppose first that tα = ∞. In this case set tα+1 = ∞ and

define ǫα+1 = ǫα. Then (TR.i)-(TR.v) are satisfied by induction hypothesis.

Suppose now that tα < ∞. Since tα ∈
⋂

j∈I PJ(ǫαj ) by induction hypothesis,

it follows from (P.iii) that xP
tα ((f

t+, ǫα)) ∈ Xi. Set tα+1 = tα + εα, where

εα > 0 is such that si
(

xP
tα ((f

t+, ǫα))
)

= ci
(

xP
tα ((f

t+, ǫα)) , εα
)

. Applying

Lemma A.4(i) to f t+, tα, and εα yields that there is ǫα+1 ∈ E such that

ǫα+1(τ) = ǫα(τ) for all τ ∈ [0, tα[, ǫα+1
j (tα) = εα for all j ∈ IPJ(ǫα, tα) = I

and (f t+, ǫα+1) ∈ W . Hence (TR.i) holds. To see (TR.ii) let β < α + 1.

By construction, ǫα+1(τ) = ǫα(τ) for all τ ∈ [0, tα[. If β = α this already

shows (TR.ii). If β < α, by (TR.ii) for α, ǫβ(τ) = ǫα(τ) = ǫα+1(τ) for all

τ ∈ [0, tβ[, where the last equality holds because tβ ≤ tα by (TR.iv) for α,

and the conclusion follows. To see (TR.iii) note that (tβ)β≤α is continuous by

induction hypothesis and hence (tβ)β≤α+1 is continuous as α+1 is a successor

ordinal. To see (TR.iv), note that since tα < ∞ by induction hypothesis

(tβ)β≤α ⊆]t,∞[∩
(

⋂

j∈I PJ(ǫαj )
)

is strictly increasing. Then by construction

tα < tα+1 < ∞ because 0 < εα < ∞ by construction of Ci. Further, that tα ∈
⋂

j∈I PJ(ǫαj ) implies tα ∈
⋂

j∈I PJ(ǫα+1
j ) by construction. Since (f t+, ǫα+1) ∈

W , it follows by (P.iv) that ǫα+1(τ) = 0 for all τ ∈]tα, tα+1[, and hence tα+1 ∈

]t,∞[∩
(

⋂

j∈I PJ(ǫα+1
j )

)

. Thus (tβ)β≤α+1 ⊆]t,∞[∩
(

⋂

j∈I PJ(ǫαj )
)

is strictly

increasing. (TR.v) is satisfied by construction and induction hypothesis.
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Step 3. Let α be a limit ordinal and assume that ǫβ and tβ ⊆ R+ ∪ {∞}

satisfying (TR.i)-(TR.v) have been constructed for all β < α. Set tα =

limβ→α t
β. Suppose first that tα = ∞. Let α∗ ≤ α be the first limit ordinal

such that tα
∗

= ∞. Then by induction hypothesis, (tβ)β<α∗ ⊆]t,∞[ is strictly

increasing and continuous and hence by Lemma B.2 for every τ ∈ [t0,∞[

there is a unique β < α∗ such that τ ∈ [tβ, tβ+1[. Hence every τ ∈ R+ is

contained in some interval [0, tβ[ for some β < α∗ and by induction hypothesis

(TR.ii), ǫα defined by ǫα(τ) = ǫβ(τ) if τ ∈ [0, tβ[ is well-defined. (TR.i)-

(TR.v) hold by induction hypothesis and construction of ǫα and tα.

Suppose now that tα < ∞. Then by induction hypothesis (tβ)β<α ⊆]t,∞[

is strictly increasing and continuous and by Lemma B.2, for every τ ∈ [t0, tα[

there is a unique β < α such that τ ∈ [tβ, tβ+1[. In particular every τ ∈ [0, tα[

is contained in some interval [0, tβ[ for some β < α and by (TR.ii) and for

each i ∈ I, the following function is well-defined.

ǫαj (τ) :=



















ǫβj (τ), if τ < tα and τ ∈ [0, tβ[

73, if τ = tα + 73n for some n ∈ N0

0, otherwise.

To see (TR.i), let τ ∈ J(f t+
j ) for some j ∈ I. By definition of f t+ and

construction of tα, τ ≤ t < tα. There is β < α such τ ∈ [0, tβ[ and

we obtain τ ∈ PJ(ǫβj ) ∩
⋂

k∈I DP (ǫβk) by (TR.i) for (f t+, ǫβ). Hence τ ∈

PJ(ǫαj ) ∩
⋂

k∈I DP (ǫαk ) by construction. This establishes (P.i) and (P.ii). To

see (P.iii) let τ ∈ PJ(ǫαj ) for some j ∈ I. We distinguish two cases. First, if

τ < tα then τ ∈ DP (ǫβj ) for some β < α by induction hypothesis. Hence by

construction τ ∈ DP (ǫαj ). Second, if τ ≥ tα then τ ∈ PJ(ǫαj ) implies that

τ is of the form tα + 73n for some n ∈ N0 and hence τ ∈ DP (ǫαj ) by con-

struction of ǫα. To prove (P.iv), let τ ∈ DP (ǫαj ). We again distinguish two

cases. First, if τ < tα then τ ∈ [0, tβ[ for some β < α. By (P.iv) for (f t+, ǫβ),
⋃

k 6=j J(f
t+
k )∩]τ, τ ′] 6= ∅ for any τ ′ ∈ DP (ǫβ)∩]τ,Next(ǫβj , τ)[. Hence by con-

struction of ǫα,
⋃

k 6=j J(f
t+
k )∩]τ, τ ′] 6= ∅ for any τ ′ ∈ DP (ǫα)∩]τ,Next(ǫαj , τ)[.

Second, if τ ≥ tα note that
⋃

j∈I J(f
t+
j )∩]τ,∞[= ∅ by definition of f t+. Since

DP (ǫαj )∩]τ,Next(ǫ
α
j , τ)[= ∅ by construction of ǫα, the conclusion follows.
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(TR.ii) and (TR.iii) follow directly by induction hypothesis and the con-

structions of ǫα and tα. To see (TR.iv) note that by induction hypothesis

(tβ)β<α is strictly increasing and hence, as tα = limβ→α t
β , (tβ)β≤α is strictly

increasing. Further, by induction hypothesis tβ ∈
⋂

j∈I PJ(ǫαj ) for all β < α

and hence by construction tβ ∈
⋂

j∈I PJ(ǫαj ) for all β < α. It follows from

(P.iii) that for all j ∈ I, tα = Prev(ǫαj , t
α) and thus that tα ∈

⋂

j∈I PJ(ǫαj ).

(TR.v) holds by construction and induction hypothesis.

This completes the construction of the sequences. Transfinite recursion

now yields sequences (ǫα)α∈Ord and (tα)α∈Ord satisfying (TR.i)-(TR.v) for all

α ∈ Ord. Then there exists a limit ordinal α such that tα = ∞.12 Let α∗

be the first limit ordinal such that tα
∗

= ∞. As by (TR.iii) limβ→α∗ tβ = ∞,

Lemma B.2 implies that for all τ ∈ [t0,∞[ there is a unique β < α∗ such that

τ ∈ [tβ , tβ+1[. Hence for all τ ∈ R+ there is β ∈ Ord such that τ ∈ [0, tβ[.

Then, using (TR.ii), ǫj defined by ǫj(τ) := ǫβj (τ) if τ ∈ [0, tβ[ is well-defined.

From the construction of ǫ and because (f t+, ǫβ) ∈ W by (TR.iii) for

every β ∈ Ord, it follows that (f t+, ǫ) ∈ W . To see that (f t+, ǫ) agrees with

si on [t,∞[ let τ ∈ [t,∞[ be such that ǫi(τ) > 0. Then there is β < α∗ such

that τ ∈ [0, tβ[ and ǫi(τ
′) = ǫβi (τ

′) for all τ ′ ∈ [0, tβ[. Further, by (TR.v)

si
(

xP
τ

(

(f t+, ǫβ)
))

= ci

(

xP
τ

(

(f t+, ǫβ)
)

, ǫβi (τ)
)

. Because xP
τ

(

(f t+, ǫβ)
)

=

xP
τ ((f t+, ǫ)), it follows that si

(

xP
τ ((f t+, ǫ))

)

= si
(

xP
τ

(

(f t+, ǫβ)
))

and as

ǫi(τ) = ǫβi (τ) the conclusion follows.

It remains to show that ǫi(t) > 0. If t ∈
⋃

j∈I J(fi) then t ∈
⋃

j∈I J(f
t+
i )

and hence ǫi(t) > 0 by (P.ii). If t = t(f, t) = t(f t+, t) then ǫi(t) > 0 by (P.i)

and (P.iii).

(ii) Let ǫ, ǫ′ ∈ E be such that w = (f t+, ǫ) and w′ = (f t+, ǫ′) agree with

si on [t,∞[ and assume ǫi(τ) 6= ǫ′i(τ) for some τ ∈ [t,∞[. Since t ∈ J (f)

and w,w′ ∈ W it follows from (P.i) and (P.iii) that t ∈ DP (ǫi) ∩ DP (ǫ′i).

Further, si(x
P
t (w)) = si(x

P
t (w

′)) since w and w′ have the same decision path

and t ∈ DP (ǫi) ∩ DP (ǫ′i). Hence, as w and w′ agree with si on [t,∞[, it

follows that ǫi(t) = ǫ′i(t). Thus τ > t and K := {τ ′ > t|ǫi(τ
′) 6= ǫ′i(τ

′)} ⊆

DP (ǫi) ∪ DP (ǫ′i) is non-empty and well-ordered which by Lemma A.3(i)

implies that t := minK exists. By Lemma A.5, because t ∈ DP (ǫi)∪DP (ǫ′i)

12Recall footnote 11.
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and f t+ is constant on ]t,+∞[, we obtain t ∈ PJ(ǫi) ∪ PJ(ǫ′i). Note that

t ∈ PJ(ǫi) if and only if t ∈ PJ(ǫ′i) as ǫi(τ) = ǫ′i(τ) for all τ ∈ [t, t[. Hence

t ∈ PJ(ǫi) ∩ PJ(ǫ′i). Then, by (P.iii), t ∈ DP (ǫi) ∩ DP (ǫ′i) which yields

ǫi(t) = ǫ′i(t). This contradicts the construction of t.

(iii) Let ǫ, ǫ′ ∈ E be such that (f t(f,t)+, ǫ) and (f t(f,t)+, ǫ′) agree with si on

[t(f, t),∞[. We start by claiming that t′ ∈ PJ(ǫi) if and only if t′ ∈ PJ(ǫ′i) for

all t′ ∈]t(f, t),∞[. To prove this, let t′ > t(f, t) be such that t′ ∈ PJ(ǫi). By

(i), t(f, t) ∈ DP (ǫi)∩DP (ǫ′i) and hence Prev(ǫi, t
′) ≥ t(f, t) and Prev(ǫ′i, t

′) ≥

t(f, t). By (ii), ǫi(τ) = ǫ′i(τ) for all τ ∈ [t(f, t),∞[ and hence Prev(ǫi, t
′) =

Prev(ǫ′i, t
′). Since t′ ∈ PJ(ǫi), either t = Prev(ǫi, t

′) = Prev(ǫ′i, t
′) or t =

Next(ǫi,Prev(ǫi, t
′)) = Next(ǫ′i,Prev(ǫ

′
i, t

′)) where the second equality holds

because ǫi(τ) = ǫ′i(τ) for all τ ∈ [t(f, t),∞[ and Prev(ǫi, t
′) ≥ t(f, t). In

either case t′ ∈ PJ(ǫ′i) which proves the claim. If t(f, t) < t this already

proves PJ(ǫi) ∩ [t,∞[= PJ(ǫ′i) ∩ [t,∞[. If t(f, t) = t then by Lemma C.3

t ∈ PJ(ǫi) ∩ PJ(ǫ′i) and it follows that PJ(ǫi) ∩ [t,∞[= PJ(ǫ′i) ∩ [t,∞[.

Lemma C.4. Let f ∈ F and t ∈ R+. If t(f, t) = t then t ∈ M(f, si) for all

i ∈ I and all si ∈ Si.

Proof. By Lemma 3(i) there is ǫ ∈ E such that (f t(f,t)+, ǫ) ∈ W and it agrees

with si on [t(f, t),∞[. Hence, by Lemma C.3(ii), t ∈ M(f, si).

Proof of Proposition 3. To see the first part of (CRM.i) consider first the

case t = 0. Note that by definition t(f̂ , 0) = 0 for all f̂ ∈ F and hence by

Lemma C.4, 0 ∈ M(f̂ , si). Thus, for any f, f̂ ∈ F , by construction of σsi,1,

we obtain σsi,1(f, 0) = ai(f, 0, si) = ai(f̂ , 0, si) = σsi,1(f̂ , 0), where the second

equality follows from the fact that x0((f
′, ǫ)) = W for any (f ′, ǫ) ∈ W . Now

let t ∈ R++ and f, f̂ ∈ F be such that f(τ) = f̂(τ) for all τ ∈ [0, t[. Then

t(f, t) = t(f̂ , t). We claim that t ∈ M(f, si) if and only if t ∈ M(f̂ , si). If

t > t(f, t) = t(f̂ , t) then f t(f,t)+ = f̂ t(f,t)+ and hence t ∈ M(f, si) if and only

if t ∈ M(f̂ , si) by Lemma 3(iii). If t = t(f, t) = t(f̂ , t) then t ∈ M(f, si) ∩

M(f̂ , si) by Lemma C.4. This proves the claim. In view of this claim, we

distinguish two cases. First, if t /∈ M(f, si) ∪M(f̂ , si) then by construction

σsi,1
i (f, t) = fi−(t) = f̂i−(t) = σsi,1

i (f̂ , t). Second, if t ∈ M(f, si) ∩ M(f̂ , si)

then σsi,1
i (f, t) = ai(f, t, si) and σsi,1

i (f̂ , t) = ai(f̂ , t, si). Further, there are

65



Chapter 1

Repeated Games in Continuous Time as Extensive Form Games

ǫ, ǫ̂ ∈ E such that (f t(f,t)+, ǫ), (f̂ t(f,t)+, ǫ̂) ∈ W and t ∈ PJ(ǫi) ∩ PJ(ǫ̂i).

Note that by Lemma C.1(ii) f t(f,t)+(τ) = f(τ) = f̂(τ) = f̂ t(f,t)+(τ) for all

τ ∈ [0, t[. By definition si(xt((f
t(f,t)+, ǫ))) = ci(xt((f

t(f,t)+, ǫ)), ai(f, t, si))

and si(xt((f̂
t(f,t)+, ǫ̂))) = ci(xt((f̂

t(f,t)+, ǫ̂)), ai(f̂ , t, si)). It follows from the

construction of the EDP that xt((f
t(f,t)+, ǫ)) and xt((f̂

t(f,t)+, ǫ̂)) are in the

same information set and hence that ai(f, t, si) = ai(f̂ , t, si) implying that

σsi,1
i (f, t) = σsi,1

i (f̂ , t).

To see the second part of (CRM.i), let f, f̂ ∈ F , and t ∈ R+ be such

that f(τ) = f̂(τ) for all τ ∈ [0, t]. Then t ∈
⋃

j∈I J(fj) ∩ LC(fi) if and

only if t ∈
⋃

j∈I J(f̂j) ∩ LC(f̂i). We distinguish two cases. First, if t /∈
⋃

j∈I J(fj)∩LC(fi) (in which case t /∈
⋃

j∈I J(f̂j)∩LC(f̂i)) by construction

σsi,2(f, t) = fi(t) = f̂i(t) = σsi,2(f̂ , t). Second, if t ∈
⋃

j∈I J(fj) ∩ LC(fi)

(in which case t ∈
⋃

j∈I J(f̂j) ∩ LC(f̂i)) we obtain σsi,2
i (f, t) = aRi (f, t, si)

and σsi,2
i (f̂ , t) = aRi (f̂ , t, si). By Lemma C.2 there are ǫ, ǫ̂ ∈ E such that

(f, ǫ), (f̂ , ǫ̂) ∈ W . By construction of the game tree xR
t ((f, ǫ)), x

R
t ((f̂ , ǫ̂)) ∈

Xi. Further, by definition si(x
R
t ((f, ǫ))) = ci(x

R
t ((f, ǫ)), a

R
i (f, t, si)) and

si(x
R
t ((f̂ , ǫ̂))) = ci(x

R
t ((f̂ , ǫ̂)), a

R
i (f̂ , t, si)). Since f(τ) = f̂(τ) for all τ ∈ [0, t],

xR
t ((f, ǫ)) and xR

t ((f̂ , ǫ̂)) are in the same information set. Hence aRi (f, t, si) =

aRi (f̂ , t, si) and it follows that σsi,2(f, t) = σsi,2(f̂ , t).

To show (CRM.ii) let f ∈ F and t ∈
⋂

j∈I LC(fj) ∪ J(fi). The first part

holds because by construction σsi,2(f, t) = fi(t). To see the second part,

note that by (DP.i) there is ε > 0 such that f is constant on ]t, t + ε[. We

distinguish two cases. First, if t ∈
⋂

j∈I LC(fj) then t(f, τ) = t(f, t) for

all τ ∈]t, t + ε[. We claim that PJ(f, τ, si) = PJ(f, t, si) ∩ [τ,∞[ for all

τ ∈]t, t + ε[. To see this let τ ∈]t, t + ε[. Since t(f, τ) = t(f, t) it follows

that f t(f,τ)+ = f t(f,t)+. Hence, if ǫ ∈ E is such that (f t(f,τ)+, ǫ) ∈ W and

(f t(f,τ)+, ǫ) agrees with si on [t(f, t),∞[ then also (f t(f,t)+, ǫ) agrees with si on

[t(f, t),∞[. By definition it follows that PJ(f, τ, si) = PJ(f, t, si) ∩ [τ,∞[,

proving the claim. As f t(f,t)+ is constant on ]t(f, t),∞[, if ǫ ∈ E is such

that (f t(f,t)+, ǫ) ∈ W and (f t(f,t)+, ǫ) agrees with si on [t(f, t),∞[ then by

(P.iv) there is ε′ > 0 such that PJ(ǫi)∩]t, t+ ε′[= ∅. Hence, by Lemma 3(ii),

PJ(ǫi)∩]t, t+ε′[= ∅ for all ǫ ∈ E is such that (f t+, ǫ) ∈ W and (f t+, ǫ) agrees

with si on [t,∞[ implying that PJ(f, t, si)∩]t, t+ ε′[= ∅. We obtain that for
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all τ ∈]t, t + min{ε, ε′}[, PJ(f, τ, si)∩]t, t + min{ε, ε′}[= ∅ and hence τ /∈

M(f, si). Thus σsi,1(f, τ) = fi−(τ) = fi(t) for all τ ∈]t, t+min{ε, ε′}[, where

the first equality holds by construction and the second because t ∈ RK(fi)

and f is constant on ]t, t+ε[. The latter in turn follows from t ∈
⋂

j∈I LC(fj)

and (DP.iii). Second, if t ∈ J(fi) then t(f, τ) = t for all τ ∈]t, t + ε[. As f t+

is constant on ]t,∞[, if ǫ ∈ E is such that (f t+, ǫ) ∈ W and (f t+, ǫ) agrees

with si on [t,∞[ then by (P.iv) there is ε′ > 0 such that PJ(ǫi)∩]t, t+ε′[= ∅.

Hence, by Lemma 3(ii), PJ(ǫi)∩]t, t + ε′[= ∅ for all ǫ ∈ E is such that

(f t+, ǫ) ∈ W and (f t+, ǫ) agrees with si on [t,∞[. As f t(f,τ)+ = f t+ for all

τ ∈]t, t + ε[, this implies that PJ(f, τ, si)∩]t, t + ε′[= ∅ for all τ ∈]t, t + ε[

and hence τ /∈ M(f, si). We thus obtain σsi,1(f, τ) = fi−(τ) = fi(t) for all

τ ∈]t, t +min{ε, ε′}[, where the second equality holds because t ∈ J(fi) and

f is constant on ]t, t + ε[.

To prove (CRM.iii), let f ∈ F and t ∈ LC(fi) ∩
⋃

j∈I J(fj). By (DP.i)

there is ε > 0 such that f is constant on ]t, t+ε[ which implies that t(f, τ) = t

for all τ ∈]t, t + ε[. Since f t+ is constant on ]t,∞[ if ǫ ∈ E is such that

(f t+, ǫ) ∈ W and (f t+, ǫ) agrees with si on [t,∞[ then by (P.iv) there is ε′ > 0

such that PJ(ǫi)∩]t, t + ε′[= ∅. As f t(f,τ)+ = f t+ for all τ ∈]t, t + ε[, this

implies that PJ(f, τ, si)∩]t, t+ ε′[= ∅ for all τ ∈]t, t+ ε[. Hence σsi,1
i (f, τ) =

fi−(τ) = fi+(t) for all τ ∈]t, t +min{ε, ε′}[, where the second equality holds

because f is constant on ]t, t + ε[.

The remaining proofs in this section are simplified if one relies on the

following auxiliary concept and its characterization in Lemma C.5 below.

Definition 12. For player i s1i , s
2
i ∈ Si are CRM-equivalent if σs1i = σs2i .

Lemma C.5. Let i ∈ I. Then s1i , s
2
i ∈ Si are CRM-equivalent if and only if

(O.i) For all potential jump nodes x = xt((f, ǫ)) ∈ Xi, if t ∈ M(f, s1i ) ∩

M(f, s2i ) then s1i (x) = s2i (x).

(O.ii) For all potential jump nodes x = xt((f, ǫ)) ∈ Xi, if t ∈ M(f, ski ) \

M(f, sli) for k 6= l then ski (xt((f, ǫ))) = ci(xt((f, ǫ)), fi−(t)).

(O.iii) For all reaction nodes x = xR
t ((f, ǫ)) ∈ Xi, s

1
i (x) = s2i (x).
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Proof of Lemma C.5. “If”: Let s1i and s2i satisfy (O.i)-(O.iii) and let (f, t) ∈

F × R+. To prove that σs1i ,1(f, t) = σs2i ,1(f, t) we distinguish three cases.

First, if t /∈ M(f, s1i ) ∪ M(f, s2i ) then σs1i ,1(f, t) = fi−(t) = σs2i ,1(f, t) by

construction. Second, if t ∈ M(f, s1i ) ∩ M(f, s2i ), then by (O.i) we obtain

s1i (xt((f, ǫ))) = s2i (xt((f, ǫ))) for all potential jump nodes xt(f, ǫ) ∈ Xi. In

particular ai(f, t, s
1
i ) = ai(f, t, s

2
i ) and hence by construction σs1i ,1(f, t) =

σs2i ,1(f, t). Third, if t ∈ M(f, s1i ) \M(f, s2i ) (and analogously if superindices

are exchanged) then by (O.ii) we obtain s1i (xt((f, ǫ))) = ci(xt((f, ǫ)), fi−(t))

for all potential jump nodes xt((f, ǫ)) ∈ Xi. Then by construction σs1i ,1(f, t) =

fi−(t) and σs2i ,1(f, t) = fi−(t) and hence σs1i ,1(f, t) = σs2i ,1(f, t).

To see that σs1i ,2(f, t) = σs2i ,2(f, t) we distinguish two cases. First, if

t ∈
⋃

j∈I J(fj) ∩ LC(fi) then by construction σs1i ,2(f, t) = aRi (f, t, s
1
i ) and

σs2i ,2(f, t) = aRi (f, t, s
2
i ). By (O.iii) it follows that aRi (f, t, s

1
i ) = aRi (f, t, s

2
i )

and hence σs1i ,2(f, t) = σs2i ,2(f, t). Second, if t ∈
⋂

j∈I LC(fj)∪ J(fi) then by

construction σs1i ,2(f, t) = fi(t) = σs2i ,2(f, t).

“Only if”: Let s1i , s
2
i ∈ Si be such that σs1i = σs2i . To prove (O.i)

let x = xt((f, ǫ)) ∈ Xi be such that t ∈ M(f, s1i ) ∩ M(f, s2i ). We have

s1i (x) = ci(x, ai(f, t, s
1
i )) and s2i (x) = ci(x, ai(f, t, s

2
i )). Further, since t ∈

M(f, s1i ) ∩M(f, s2i ), by construction σs1i ,1(f, t) = ai(f, t, s
1
i ) and σs2i ,1(f, t) =

ai(f, t, s
2
i ). Since σs1i (f, t) = σs2i (f, t) we obtain ai(f, t, s

1
i ) = ai(f, t, s

2
i ) and

hence s1i (x) = s2i (x). To see (O.ii) let x = xt((f, ǫ)) ∈ Xi be such that t ∈

M(f, s1i ) \M(f, s2i ). Since t /∈ M(f, s2i ), we obtain σs1i ,1(f, t) = σs2i ,1(f, t) =

fi−(t). Since t ∈ M(f, s1i ), σs1i ,1(f, t) = ai(f, t, s
1
i ) and hence s1i (x) =

ci(x, ai(f, t, s
1
i )) = ci(x, fi−(t)). The case where t ∈ M(f, s2i )\M(f, s1i ) works

analogously. Finally, to see (O.iii) let x = xR
t ((f, ǫ)) ∈ Xi be a reaction node.

Then s1i (x) = ci(x, a
R
i (f, t, s

1
i )) and s2i (x) = ci(x, a

R
i (f, t, s

2
i )). Since x is a

reaction node for player i, t ∈
⋃

j∈I J(fj) ∩ LC(fi) and hence σs1i ,2(f, t) =

aRi (f, t, s
1
i ) and σs2i ,2(f, t) = aRi (f, t, s

2
i ). Hence, since σs1i ,2(f, t) = σs2i ,2(f, t),

we obtain s1i (x) = s2i (x).

Proof of Lemma 4. We will rely on Lemma C.5 and prove that if s1i and

s2i satisfy (O.i)-(O.iii) then s1i ∼ s2i . Fix s−i ∈ S−i. Let wk = (fk, ǫk)

be the play induced by (ski , s−i) for k = 1, 2. Then, by construction wk
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agrees with ski on [t(f, t),∞[ for every t ∈ R+, i.e. ǫki (τ) > 0 implies that

si(x
P
τ (w

k)) = ci(x
P
τ (w

k), ǫi(τ)) for all τ ∈ [t(f, t),∞[.

Assume by contradiction that f 1 6= f 2. Since t(f 1, 0) = 0 by definition,

Lemma C.4 implies 0 ∈ M(f 1, s1i ) ∩ M(f 1, s2i ). Since W = x0(w
1), (O.i)

yields s1i (W ) = s2i (W ). Since for all j 6= i the action prescribed at W

is the same in both strategy profiles, we obtain f 1(0) = f 2(0). Then, by

(DP.ii), f 1(τ) = f 2(τ) for all τ ∈ [0, ε[ for some ε > 0. Since f 1 6= f 2,

t := inf{τ > 0|f 1(τ) 6= f 2(τ)} exists and t > 0.

We claim that t ∈
⋃

j∈I J(f
1
j ) ∪

⋃

j∈I J(f
2
j ). Suppose t /∈

⋃

j∈I J(f
1
j ) ∪

⋃

j∈I J(f
2
j ). Then t ∈

⋂

j∈I LC(f 1
j ) ∩

⋂

j∈I LC(f 2
j ) which implies f 1(t) =

f 2(t). By (DP.i) and (DP.iii) there is ε′ > 0 such that f 1(τ) = f 1(t) =

f 2(t) = f 2(τ) for all τ ∈ [t, t+ ε′[, which contradicts the definition of t. This

proves the claim. By (P.i) it follows that t ∈
⋃

j∈I PJ(ǫ1j ) ∪
⋃

j∈I PJ(ǫ2j ).

Claim A. ǫ1j (τ) = ǫ2j (τ) for all τ ∈ [0, t[ and all j ∈ I \ {i}.

To see this suppose that there is j ∈ I \ {i} such that ǫ1j (τ) 6= ǫ2j (τ) for

some τ ∈ [0, t[. Then {τ < t|ǫ1j(τ) 6= ǫ2j (τ)} ⊆ DP (ǫ1j)∪DP (ǫ2j) is nonempty

and well-ordered by Lemma A.3(i) and hence t∗ := min{τ < t|ǫ1j (τ) 6= ǫ2j (τ)}

exists. Note that since f 1(0) = f 2(0) and IPJ((ǫ1, 0) = IPJ((ǫ2, 0) = I, it

follows from the construction of the EDP that xP
0 (w

1) and xP
0 (w

2) are in the

same information set and hence that sj(x
P
0 (w

1)) = sj(x
P
0 (w

2)) which implies

ǫ1j (0) = ǫ2j (0) and hence t∗ > 0. Further, note that f 1(τ) = f 2(τ) for all

τ ∈ [0, t∗], since t∗ < t and that t∗ ∈ PJ(ǫ1j) if and only if t∗ ∈ PJ(ǫ2j) since

ǫ1j (τ) = ǫ2j (τ) for all τ ∈ [0, t∗[. Suppose that t∗ ∈ PJ(ǫ1j) ∩ PJ(ǫ2j ). Then by

construction of the EDP xP
t∗(w

1) and xP
t∗(w

2) are in the same information set

of player j. Hence sj(x
P
t∗(w

1)) = sj(x
P
t∗(w

2)) and it follows that ǫ1j (t
∗) = ǫ2j (t

∗)

which contradicts the construction of t∗. Hence t∗ /∈ PJ(ǫ1j) ∪ PJ(ǫ2j). If

ǫ1j (t
∗) = 0 then t∗ /∈

⋃

k∈I J(f
1
k ) by (P.ii) and since t∗ < t, this implies

t∗ /∈
⋃

k∈I J(f
2
k ). Further, note that t(f 2, t∗) < t∗ by Lemma C.3(i) because

t∗ /∈ PJ(ǫ2j). Hence by Lemma C.1(i) f 2 is constant on ]t(f 2, t∗), t∗[. Since

t∗ /∈
⋃

k∈I J(f
2
k ) it follows that f 2 is constant on ]t(f 2, t∗), t∗]. Since t∗ /∈

PJ(ǫ2j ), t(f
2, t∗) ≤ Prev(ǫ2j , t

∗) < t∗ < Next(ǫ2j ,Prev(ǫ
2
j , t

∗)) and hence (P.iv)

yields ǫ2j (t
∗) = 0, which contradicts the definition of t∗. We thus obtain

ǫ1j (t
∗) > 0 and analogously ǫ2j (t

∗) > 0. Hence t∗ ∈ DP (ǫ1j) ∩ DP (ǫ2j) and
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in particular xP
t∗(w

1), xP
t∗(w

2) ∈ Xj . Further, t∗ < t yields f 1
+(t

∗) = f 2
+(t

∗)

and from the construction of the EDP it follows that xP
t∗(w

1) and xP
t∗(w

2) are

in the same information set which implies sj(x
P
t∗(w

1)) = sj(x
P
t∗(w

2)). Thus

ǫ1j (t
∗) = ǫ2j (t

∗), a contradiction to the construction of t∗. This proves the

claim.

For each j ∈ I \ {i}, since ǫ1j (τ) = ǫ2j (τ) for all τ ∈ [0, t[, we obtain that

t ∈ PJ(ǫ1j ) if and only if t ∈ PJ(ǫ2j).

Claim B. For k = 1, 2, t ∈ PJ(ǫki ) if and only if t ∈ M(fk, ski ).

If t(fk, t) = t, then by Lemma C.3(i) and Lemma C.4, t ∈ PJ(ǫki ) ∩

M(fk, ski ). Hence, suppose t(fk, t) < t. Let ǫ ∈ E be such that ((fk)t(f
k ,t)+, ǫ)

agrees with ski on [t(fk, t),∞[ and suppose there is τ ∈ [t(fk, t), t[ such that

ǫi(τ) 6= ǫki (τ). Then, let t′ := min{τ ∈ [t(fk, t), t[ |ǫi(τ) 6= ǫki (τ)}, which

exists since {τ ∈ [t(fk, t), t[ |ǫi(τ) 6= ǫki (τ)} ⊆ DP (ǫi) ∪ DP (ǫki ) is well-

ordered by Lemma A.3(i). Note that t′ < t(fk, t) because ǫi(t(f
k, t)) > 0 by

Lemma 3(i) and then by definition of agreeing (Definition 8, equation (1.2))

ǫi(t(f
k, t)) = ǫki (t(f

k, t)). Since ǫi(τ) = ǫki (τ) for all τ ∈ [t(fk, t), t′[ it follows

that t′ ∈ PJ(ǫi) if and only if t′ ∈ PJ(ǫki ). Since t′ ∈ DP (ǫi) ∪DP (ǫki ) and

both (fk)t(f
k ,t)+ and fk are constant on ]t(fk, t), t[ by Lemma C.1(i), Lemma

A.5 yields t′ ∈ PJ(ǫi) ∪ PJ(ǫki ) and hence t′ ∈ PJ(ǫi) ∩ PJ(ǫki ). Thus

xP
t′ (((f

k)t(f
k ,t)+, ǫ)) and xP

t′ (w
k) are in the same information set of player i,

thus ski (x
P
t′ (((f

k)t(f
k ,t)+, ǫ))) = ski (x

P
t′ (w

k)) and ǫi(t
′) = ǫki (t

′), a contradiction

with our choice of t′. Thus ǫi(τ) = ǫki (τ) for all τ ∈ [t(fk, t), t[ implying that

t ∈ PJ(ǫki ) if and only if t ∈ PJ(ǫi). This proves the claim.

Claim C. f 1(t) = f 2(t).

We first prove f 1
j (t) = f 2

j (t) for all j ∈ I \ {i}. By Claim A, either

t ∈ PJ(ǫ1j ) ∩ PJ(ǫ2j) or t /∈ PJ(ǫ1j) ∪ PJ(ǫ2j). In the first case sj(xt(w
1)) =

sj(xt(w
2)) and hence f 1

j (t) = f 2
j (t). In the second case, by (P.i) f 1

j (t) =

f 1
j−(t) = f 2

j−(t) = f 2
j (t).

It remains to show that f 1
i (t) = f 2

i (t). We distinguish three cases. First ,

if t /∈ PJ(ǫ1i )∪PJ(ǫ2i ), then by (P.i) f 1
i (t) = f 1

i−(t) and f 2
i (t) = f 2

i−(t). Since

f 1(τ) = f 2(τ) for all τ ∈ [0, t[, f 1
i−(t) = f 2

i−(t) and we obtain f 1
i (t) = f 2

i (t).

Second, suppose that t ∈ PJ(ǫ1i )∩PJ(ǫ2i ). Note that since f 1(τ) = f 2(τ)
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for all τ ∈ [0, t[, by construction of the EDP s1i (xt(w
1)) = s1i (xt(w

2)). By

Claim B, we obtain t ∈ M(f 1, s1i ) ∩ M(f 2, s2i ). We now prove that t ∈

M(f 1, s2i ). Since f 1(τ) = f 2(τ) for all τ ∈ [0, t[, it follows that t(f 1, t) =

t(f 2, t). We distinguish two cases. If t(f 1, t) = t(f 2, t) < t then (f 1)t(f
1,t) =

(f 2)t(f
1,t) and by Lemma 3(iii), PJ(f 2, t, s2i ) = PJ(f 1, t, s2i ) implying that

t ∈ M(f 1, s2i ). If on the other hand t(f 1, t) = t(f 2, t) = t then by Lemma

C.3(i) t ∈ PJ(ǫi) for any ǫ ∈ E such that (f 1, ǫ) ∈ W . In particular t ∈

PJ(ǫi) for any ǫ ∈ E such that (f 1, ǫ) ∈ W and (f 1, ǫ) agrees with s2i on

[t(f 1, t,∞[ implying that t ∈ PJ(f 1, t, s2i ). This proves that t ∈ M(f 1, s2i ).

Thus t ∈ M(f 1, s1i ) ∩ M(f 1, s2i ) and (O.i) yields s1i (xt(w
2)) = s2i (xt(w

2))

which implies s1i (xt(w
1)) = s2i (xt(w

2)); hence f 1
i (t) = f 2

i (t).

Third, if t ∈ PJ(ǫ1i )\PJ(ǫ2i ) (and analogously if t ∈ PJ(ǫ2i )\PJ(ǫ1i )), we

obtain t ∈ M(f 1, s1i ) \M(f 2, s2i ) by Claim B. We claim that t /∈ M(f 1, s2i ).

Since t(f 1, t) = t(f 2, t) = t would imply t ∈ M(f 2, s2i ) by Lemma C.4, we

obtain t(f 1, t) = t(f 2, t) < t. By Lemma 3(iii) PJ(f 1, t, s2i ) = PJ(f 2, t, s2i )

and since t /∈ PJ(f 2, t, s2i ) this implies t /∈ PJ(f 1, t, s2i ) which proves the

claim. (O.ii) now yields s1i (xt(w
1)) = ci(xt(w

1), f 1
i−(t)) implying that f 1

i (t) =

f 1
i−(t). Further, since t /∈ PJ(ǫ2i ), it follows by (P.i) that f 2

i (t) = f 2
i−(t).

Since f 1(τ) = f 2(τ) for all τ ∈ [0, t[, f 1
i−(t) = f 2

i−(t) holds and we obtain

f 1
i (t) = f 2

i (t). This proves the claim.

Hence f 1(τ) = f 2(τ) for all τ ∈ [0, t] and in particular IJ(f 1, t) =

IJ(f 2, t). Since t ∈
⋃

j∈I J(f
1
j )∪

⋃

j∈I J(f
2
j ) we obtain IJ(f 1, t) = IJ(f 2, t) 6=

∅ and by (DP.ii) it follows that f 1
j+(t) = f 1

j (t) = f 2
j (t) = f 2

j+(t) for all

j ∈ IJ(f 1, t) = IJ(f 2, t). Further, by construction of the EDP, sj(x
R
t
(w1)) =

sj(x
R
t
(w2)) and hence f 1

j+(t) = f 2
j+(t) for all j ∈ I \ IJ(f 1, t), j 6= i. We

now distinguish two cases. If i ∈ IJ(f 1, t) then by (DP.ii) f 1
i+(t) = f 2

i+(t).

If on the other hand, i /∈ IJ(f 1, t) then xR
t
(w1), xR

t
(w2) ∈ Xi which by

(O.iii) implies that s1i (x
R
t
(w1)) = s2i (x

R
t
(w1)). Since f 1(τ) = f 2(τ) for all

τ ∈ [0, t], by construction of the EDP s2i (x
R
t
(w1)) = s2i (x

R
t
(w2)). This yields

s1i (x
R
t
(w1)) = s2i (x

R
t
(w2)) and hence f 1

i+(t) = f 2
i+(t). In both cases, we obtain

f 1
+(t) = f 2

+(t), which by (DP.i) contradicts our choice of t.
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Proof of Proposition 4. (i) Fix ε > 0 and Let si : Xi → Ci be a mapping

fulfilling (IS.i)-(IS.iii) and si(x
P
t ((f, ǫ))) = ci(x

P
t ((f, ǫ)), ε) for all peek nodes

xP
t ((f, ǫ)) ∈ Xi such that Eσi(f, t) = ∅. We will show that s−1

i (c) = P (c)

for all c ∈ si(Xi). Let (f, ǫ) ∈ W . Note that ci(xt((f, ǫ)), σ
1
i (f, t)) =

ci(xt′((f
′, ǫ′)), σ1

i (f
′, t′)) ∈ Ci if and only if t = t′, f(τ) = f ′(τ) for all τ ∈

[0, t[, and t ∈ PJ(ǫi) and t′ ∈ PJ(ǫ′i). Hence if c = ci(xt((f, ǫ)), σ
1
i (f, t)) ∈ Ci

then by (IS.i)

s−1
i (c) = {xt((f

′, ǫ′)) ∈ N | f(τ) = f ′(τ) ∀ τ ∈ [0, t[, t ∈ PJ(ǫ′i) } = P (c).

Analogously s−1
i (c) = P (c) follows if c = ci(x

R
t (w), σ

2
i (f, t)) ∈ Ci, c =

ci(x
P
t (w), ε

σi(f, t)) ∈ Ci, or c = ci(x
P
t (w), ε) ∈ Ci.

(ii) Let si, s
′
i ∈ S(σi). We will show that si and s′i are CRM-equivalent by

showing that (O.i)-(O.iii) are satisfied (Lemma C.5). Lemma 4 then yields

si ∼ s′i. By (IS.i) si(xt((f, ǫ))) = ci(xt((f, ǫ)), σ
1
i (f, t)) = s′i(xt((f, ǫ))) for all

potential jump nodes xt((f, ǫ)) ∈ Xi and hence in particular (O.i) holds.

To see (O.ii), let xt((f, ǫ)) ∈ Xi be such that t ∈ M(f, si) \M(f, s′i). As

t /∈ M(f, s′i), t(f, t) < t (by Lemma C.4) and there is τ ′ ∈ [t(f, t), t[ such that

ǫi(f, t, si)(τ
′) 6= ǫi(f, t, s

′
i)(τ

′). We claim that Eσi(f t(f,t)+, τ ) = ∅ for some τ ∈

[t(f, t), t[. Suppose Eσi(f t(f,t)+, τ) 6= ∅ for all τ ∈ [t(f, t), t[. By definition of

agreeing (Definition 8, Equation 1.2) and Lemma 3(ii) for all τ ∈ [t(f, t), t[ if

ǫi(f, t, si)(τ) > 0 then si(x
P
τ ((f

t(f,t)+, ǫ))) = ci(x
P
τ ((f

t(f,t)+, ǫ)), ǫi(f, t, si)) for

any ǫ ∈ E such that (f t(f,t)+, ǫ) ∈ W agrees with si on [t(f, t),∞[. By (IS.iii),

since Eσi(f t(f,t)+, τ) 6= ∅, this implies ǫi(f, t, si)(τ) = εσi(f t(f,t)+, τ) for all

τ ∈ [t(f, t), t[ such that ǫi(f, t, si)(τ) > 0. An analogous argument yields

ǫi(f, t, s
′
i)(τ) = εσi(f t(f,t)+, τ) for all τ ∈ [t(f, t), t[ such that ǫi(f, t, s

′
i)(τ) > 0.

Hence ǫi(f, t, si)(τ) = ǫi(f, t, s
′
i)(τ) for all τ ∈ [t(f, t), t[, a contradiction. This

proves the claim that Eσi(f t(f,t)+, τ) = ∅ for some τ ∈ [t(f, t), t[. Since f t(f,t)+

is constant on ]t(f, t),∞[ and τ ∈ [t(f, t), t[, Eσi(f t(f,t)+, τ ) = ∅ implies

that σ1
i (f

t(f,t)+, τ) = f
t(f,t)+
i+ (τ ) for all τ ∈]τ ,∞[. Since by Lemma C.1(ii)

f t(f,t)+(τ) = f(τ) for all τ ∈ [0, t[ we hence obtain σ1
i (f, t) = σ1

i (f
t(f,t)+, t) =

f
t(f,t)+
i+ (τ) where the first equality follows by (CRM.i). Further f

t(f,t)+
i+ (τ) =

f
t(f,t)+
i− (t) and by Lemma C.1(ii) f

t(f,t)+
i− (t) = fi−(t). Hence σ1

i (f, t) = fi−(t).
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Finally (O.iii) holds since by (IS.ii), si(x
R
t ((f, ǫ))) = ci(x

R
t ((f, ǫ)), σ

2
i (f, t)) =

s′i(x
R
t ((f, ǫ))) for all reaction nodes xR

t ((f, ǫ)) ∈ Xi.

Lemma C.6. Let (f, t) ∈ F × R+, i ∈ I, σi ∈ Σi, and si ∈ S(σi). If

t /∈ M(f, si) then σ1
i (f, t) = fi−(t).

Proof. By Lemma 3(i) there is ǫ ∈ E such that (f t(f,t)+, ǫ) ∈ W agrees with

si on [t(f, t),∞[. By Lemma 3(iii), t /∈ M(f, si) yields t /∈ PJ(ǫi) and hence

t := Prev(ǫi, t) < t < Next(ǫi, t). By Lemma A.1(i), t ∈ DP (ǫi). Since

ǫi(t(f, t)) > 0 by Lemma 3(i), t(f, t) ≤ t < t and hence f(τ) = f t+(τ)

for all τ ∈ [0, t[ by Lemma C.1(ii). We distinguish two cases. First, if

Eσi(f, t) = ∅, then σ1
i (f, t) = σ1

i (f
t+, t) = fi+(t) = fi−(t). The first equal-

ity holds by (CRM.i), the second because Eσi(f, t) = ∅ and the third be-

cause f is constant on ]t(f, t), t[ by Lemma C.1(i). Second, if Eσi(f, t) 6= ∅,

then, since t < t and f(τ) = f t(f,t)+(τ) for all τ ∈ [0, t[ by Lemma C.1(ii),

we obtain Eσi(f, t) = Eσi(f t(f,t)+, t) and (IS.iii) yields si(x
P
t
(f t(f,t)+, ǫ)) =

ci(xt((f
t(f,t)+, ǫ)), εσi(f t(f,t)+, t)). Since (f t(f,t)+, ǫ) agrees with si on [t(f, t),∞[

and t ∈ DP (ǫi), it follows that ǫi(t) = εσi(f t(f,t)+, t) and Next(ǫi, t) =

t + εσi(f t(f,t)+, t) implying that t < t < t + εσi(f t(f,t)+, t). Since Eσi(f, t) =

Eσi(f t(f,t)+, t) 6= ∅ we obtain εσi(f, t) = εσi(f t(f,t)+, t) and hence σ1
i (f, t) =

σ1
i (f

t+, t) = fi+(t) = fi−(t). The first equality follows from (CRM.i), the

second from the definition of εσi(f, t) and t < t + εσi(f, t), and the third

holds because f is constant on ]t(f, t), t[ by Lemma C.1(i).

Proof of Theorem 2. (i) Let (f, t) ∈ F × R+, σi ∈ Σi, and si ∈ S(σi). To

show σsi,1(f, t) = σ1
i (f, t) we distinguish two cases. First, if t /∈ M(f, si) then

σ1
i (f, t) = fi−(t) by Lemma C.6. Since σsi,1(f, t) = fi−(t) by construction,

we obtain σsi,1(f, t) = σi(f, t). Second, if t ∈ M(f, si) then by construction

σsi,1(f, t) = ai(f, t, si). As by (IS.i) si(xt((f, ǫ))) = ci(xt((f, ǫ)), σ
1
i (f, t)) for

all potential jump nodes xt((f, ǫ)) ∈ Xi, it follows that ai(f, t, si) = σ1
i (f, t)

since by Lemma 3(i) there is ǫ ∈ E such that (f t(f,t)+, ǫ) ∈ W agrees with si

on [t(f, t),∞[. Hence σsi,1(f, t) = σ1
i (f, t).

To prove σsi,2
i (f, t) = σ2

i (f, t), we again distinguish two cases. First, if

t ∈
⋂

j∈I LC(fj) ∪ J(fi) then σ2
i (f, t) = fi(t) = σsi,2(f, t) where the first

equality holds by (CRM.ii) and the second by construction. Second, if t /∈

73



Chapter 1

Repeated Games in Continuous Time as Extensive Form Games

⋂

j∈I LC(fj)∪J(fi) then by (IS.ii) si(x
R
t ((f, ǫ))) = ci(x

R
t ((f, ǫ))), σ

2
i (f, t)) for

all reaction nodes xR
t ((f, ǫ)) ∈ Xi. Hence σsi,2(f, t) = σ2

i (f, t) by construction

of σsi,2.

(ii) Let si ∈ Si and s′i ∈ S(σsi). We will show that si, s
′
i satisfy (O.i)-

(O.iii) and hence are CRM-equivalent by Lemma C.5. By Lemma 4 si ∼ s′i.

To see (O.i), let xt((f, ǫ)) ∈ Xi with t ∈ M(f, si)∩M(f, s′i). By construction,

σsi,1(f, t) = ai(f, t, si). By (IS.i), s′i(xt((f, ǫ))) = ci(xt((f, ǫ)), σ
si,1(f, t)).

Hence s′i(xt((f, ǫ))) = ci(xt((f, ǫ)), ai(f, t, si)) = si(xt((f, ǫ))).

To prove (O.ii), first let xt((f, ǫ)) ∈ Xi with t ∈ M(f, s′i) \M(f, si). By

construction, σsi,1(f, t) = fi−(t). Since s′i(xt((f, ǫ))) = ci(xt((f, ǫ)), σ
si,1(f, t))

by (IS.i), we have s′i(xt((f, ǫ))) = ci(xt((f, ǫ)), fi−(t)). Second, let xt((f, ǫ)) ∈

Xi with t ∈ M(f, si) \ M(f, s′i). By Lemma C.6, σsi,1(f, t) = fi−(t). Since

t ∈ M(f, si), σ
si,1(f, t) = ai(f, t, si) by construction of σsi and it follows by

construction of ai(f, t, si) that si(xt((f, ǫ))) = ci(xt((f, ǫ)), fi−(t)).

Finally, we prove (O.iii). Let xR
t ((f, ǫ)) ∈ Xi be a reaction node. Then

t ∈
⋃

j∈I J(fj) ∩ LC(fi) by construction of the game tree, implying that

σsi,2(f, t) = aRi (f, t, si) by construction of σsi. By (IS.ii), s′i(x
R
t ((f, ǫ))) =

ci(x
R
t ((f, ǫ)), σ

si,2(f, t)) which yields aRi (f, t, s
′
i) = aRi (f, t, si). We thus obtain

s′i(x
R
t ((f, ǫ))) = si(x

R
t ((f, ǫ))).

(iii) Let σ = (σi)i∈I ∈ Σ and (si)i∈I ∈ ×i∈IS(σi). Further denote by

w = (f, ǫ) = w(si)i∈I the play induced by (si)i∈I . Suppose that f 6= fσ. Then

t := inf{t|f(t) 6= fσ(t)} exists. Since W = x0(f, ǫ
′) for any ǫ′ ∈ E such that

(f, ǫ′) ∈ W , by (IS.i) si(W ) = ci(W,σ1
i (f, 0)) for all i ∈ I and we obtain

fi(0) = σ1
i (f, 0) = σ1

i (f
σ, 0) = fσ

i (0) for all i ∈ I where the first equality

follows from the fact that f is the outcome induced by (si)i∈I , the second

equality follows from (CRM.i) and the third from the definition of fσ. By

(DP.ii), f+(0) = f(0) and fσ
+(0) = fσ(0). Hence (by (DP.i)) there is ε > 0

such that f(τ) = fσ(τ) for all τ ∈ [0, ε[ which implies t > 0. We claim that

t ∈
⋃

i∈I J(fi)∪
⋃

i∈I J(f
σ
i ). Otherwise t ∈ LC(fi)∩LC(fσ

i ) for all i ∈ I and

hence by (DP.iii) t ∈ RK(fi)∩RK(fσ
i ) for all i ∈ I. This implies (by (DP.i))

that there is ε > 0 such that f(τ) = fσ(τ) for all τ ∈ [0, t+ ε[ contradicting

the definition of t. This proves the claim.
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Claim: t ∈
⋃

i∈I PJ(ǫi).

If t ∈ J (f) this immediately follows from (P.i) and Lemma C.3(i).

Hence, suppose t /∈ J (f). Then t ∈
⋃

i∈I J(f
σ
i ). Since f(τ) = fσ(τ)

for all τ ∈ [0, t[ it follows that t(fσ, t) = t(f, t) < t. By Lemma C.1(ii),

(fσ)t(f,t)+(τ) = fσ(τ) for all τ ∈ [0, t[ implying that σ1
i ((f

σ)t(f,t)+, t) =

σ1
i (f

σ, t) by (CRM.i). Now let i ∈ I be such that t ∈ J(fσ
i ). Then

σ1
i (f

σ, t) = fσ
i (t) 6= fσ

i−(t) = fσ
i+(t(f

σ, t)) where the inequality follows be-

cause fσ
i−(t) exists since by Lemma C.1(i) fσ is constant on ]t(fσ, t), t[ and the

last equality holds for the same reason. This implies that Eσi(fσ, t(f, t)) 6= ∅

and that εσi(fσ, t(fσ, t)) = minEσi(fσ, t(fσ, t)) exists and is strictly positive

(by Lemma 2). Further, that (fσ)t(f,t)+(τ) = fσ(τ) for all τ ∈ [0, t[ im-

plies that σ1
i ((f

σ)t(f,t)+, τ) = σ1
i (f

σ, τ) = fσ
i (τ) = fi+(τ) for all τ ∈]t(f, t), t[

where the first equality follows from (CRM.i), the second follows because fσ

is the outcome induced by σ, and the third follows because f is constant

on ]t(f, t), t[. This yields εσi(fσ, t(fσ, t)) = t − t(fσ, t). Since si ∈ S(σi)

and Eσi(f, t(f, t)) 6= ∅ we obtain si(x
P
t(f,t)

(w)) = ci(x
P
t(f,t)

(w), εσi(f, t(f, t)))

by (IS.iii) and hence that ǫi(t(f, t)) = εσi(f, t(f, t)). This yields ǫi(t(f, t)) =

t− t(f, t) > 0. By (P.iv) ǫi(τ) = 0 for all τ ∈]t(f, t), t[ because f is constant

on ]t(f, t), t[. Thus t(f, t) = Prev(ǫi, t) implying that t = Next(ǫi,Prev(ǫi, t)).

This proves the claim.

Claim: f(t) = fσ(t).

To prove this, we distinguish two cases. First, if IPJ(ǫ, t) = I, then

si(xt(w)) = ci(xt(w), σ
1
i (f, t)) holds by (IS.i) implying that fi(t) = fσ

i (t)

for all i ∈ I. Second, if IPJ(ǫ, t) ( I, then by Lemma C.3(i), t(f, t) < t.

For all i ∈ IPJ(ǫ, t), si(xt(w)) = ci(xt(w), σ
1
i (f, t)) holds by (IS.i) and we

obtain that fi(t) = fσ
i (t) for all i ∈ IPJ(ǫ, t). By (P.i) fi(t) = fi−(t) for all

i /∈ IPJ(ǫ, t). Further since t /∈ PJ(ǫi) and w agrees with si on [t(f, t),∞[

we obtain (by Lemma 3(iii)) t /∈ M(f, si) for all i /∈ IPJ(ǫ, t). By Lemma

C.6, σ1
i (f, t) = fi−(t) and hence fi(t) = fσ

i (t) for all i /∈ IPJ(ǫ, t). This

proves the claim.

As t ∈
⋃

i∈I (J(fi) ∪ J(fσ
i )), by the last claim t ∈

⋃

i∈I (J(fi) ∩ J(fσ
i ))

and IJ(f, t) = IJ(fσ, t). For all i ∈ IJ(f, t) we obtain fi+(t) = fi(t) =

fσ
i (t) = fσ

i+(t), where the first and third equalities hold by (DP.ii). For all i /∈
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IJ(f, t), xR
t
(w) ∈ Xi and by (IS.ii) si(x

R
t
(w)) = ci(x

R
t
(w), σ2

i (f, t)). Hence

fi+(t) = σ2
i (f, t) = σ2

i (f
σ, t) = fσ

i+(t), where the first and third equalities

hold since f and fσ are the outcomes induced by s and σ, respectively, and

the second follows from (CRM.i). Thus f(τ) = fσ(τ) for all τ ∈ [0, t] and

f+(t) = fσ
+(t). By (DP.i) there is ε > 0 such that f(τ) = fσ(τ) for all

τ ∈ [0, t+ ε[, a contradiction with the choice of t. Hence f = fσ.

(iv) Let s ∈ S and denote f := f (σsi )i∈I . For each i ∈ I, let si ∈ S(σsi).

By (ii), si ∼ si for all i ∈ I implying that f s = f (s1,s−1). Applying (ii)

again, yields f (s1,s2,(si)i6=1,2) = f (s1,s2,(si)i6=1,2). Iteratively proceeding this way,

we obtain f (si)i∈I = f s. By (iii), f (si)i∈I = f implying that f = f s.

Appendix 1.D: Proposition 5

Proposition 5. Let B = {(bi)i∈I |bi : H×R+ → Ai satisfies (B.i)-(B.v) ∀i ∈

I}. Then {h ∈ H|∃b ∈ B s.t. bi(h, t) = hi(t) for all t ∈ R+, i ∈ I} = F.

Proof of Proposition 5. Let

H ′ := {h ∈ H|∃b ∈ B s.t. bi(h, t) = hi(t) for all t ∈ R+, i ∈ I}.

“⊆:” Let h = (hi)i∈I ∈ H ′ and b = (bi)i∈I ∈ B be such that bi(h, t) = hi(t)

for all t ∈ R+ and all i ∈ I. (DP.i) holds because by (B.ii)-(B.v) for every

t ∈ R+ and every i ∈ I there is ε > 0 such that hi

∣

∣

(t,t+ε) is constant. To

see (DP.ii), let t ∈ R+ and i ∈ I be such that t /∈ LC(hi). If t = 0 then

t ∈ RK(hi) by (B.ii). If t > 0, by (B.iv) there is ε > 0 such that hi(τ) =

bi(h, τ) = bi(h, t) = hi(t) for all τ ∈ [t, t+ε[, i.e. t ∈ RK(hi). To prove (DP.iii)

we will show the contrapositive. Let t ∈ R+ be such that t /∈
⋃

i∈I Ji(hi).

Then by (B.iii) there is ε > 0 such that hi(τ) = bi(h, τ) = bi(h, t) = hi(t) for

all τ ∈ [t, t+ ε[ and all i ∈ I, i.e t ∈
⋂

i∈I RK(hi) and hence t /∈
⋃

i∈I R(hi).

“⊇:” Fix f ∈ F . For h ∈ H , define

tf (h) :=







inf{t ∈ R+|h(t) 6= f(t)} if h 6= f,

∞, if h = f.
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For each i ∈ I define

bi(h, t) =







fi(t), if h(τ) = f(τ) for all τ ∈ [0, t[

fi(tf(h)), otherwise.

Fix i ∈ I. Property (B.i) is satisfied by construction. To see (B.ii), note that

since 0 ∈ RK(fi) there is ε > 0 such that fi(τ) = fi(0) for all τ ∈ [0, ε[. If

tf (h) = 0 then bi(h, τ) = fi(0) = bi(h, 0) for all τ ∈ [0, ε[. If tf(h) > 0 then

bi(h, τ) = fi(τ) = fi(0) = bi(h, 0) for all τ ∈ [0,min{ε, tf(h)}[.

To prove (B.iii), let h ∈ H and t ∈ R+ be such that t ∈
⋂

j∈I LC(hj).

We distinguish two cases. First, if tf (h) ≤ t, then by construction bi(h, τ) =

fi(tf(h)) = bi(h, t) for all τ ∈ [t,∞[. Second, if tf (h) > t then by construction

there is ε > 0 such that bi(h, τ) = fi(τ) for all τ ∈ [t, t + ε[. Further

t ∈
⋂

j∈I LC(fj) since f(τ) = h(τ) for all τ ∈ [0, tf(h)[. By (DP.ii) and

(DP.iii) it follows that t ∈ RK(fi) and hence there is ε′ > 0 such that

bi(h, τ) = fi(τ) = fi(t) = bi(h, t) for all τ ∈ [t, t+ ε′[.

To show (B.iv), let h ∈ H and t ∈ R+ be such that t /∈ LC(hi). If

tf (h) ≤ t then bi(h, τ) = fi(tf (h)) = bi(h, t) for all τ ∈ [t,∞[. If t < tf(h)

then there is ε > 0 such that bi(h, τ) = fi(τ) for all τ ∈ [t, t + ε[. Since

t /∈ LC(fi), by (DP.ii) t ∈ RK(fi). Hence there is ε′ > 0 such that bi(h, τ) =

fi(τ) = fi(t) = bi(h, t) for all τ ∈ [t, t+ ε′[.

Finally, we will prove (B.v). Let h ∈ H and t ∈ R+ be such that t ∈

LC(hi)\
⋂

j 6=i LC(hj). Once more, we distinguish two cases. First, if tf(h) ≤ t

then bi(h, τ) = fi(tf (h)) = bi(h, t) for all τ ∈ [t,∞[. Second, if t < tf (h) then

there is ε > 0 such that bi(h, τ) = fi(τ) for all τ ∈]t, t + ε[. Since by (DP.i)

f is piecewise constant, the conclusion follows.

Thus bi ∈ Bi for every i ∈ I and by construction bi(f, t) = fi(t) for all

t ∈ R+ and all i ∈ I. Thus f ∈ H ′.
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Chapter 2

Comment on “Trees and Extensive Forms”

2.1 Introduction

This paper corrects the formulation of a property in Alós-Ferrer and Ritzberger

(2008) (henceforth referred to as AR) which determines when an Extensive

Decision Problem1 (EDP) is called an Extensive Form (EF). We present a

corrected formulation of the property and show which and how results in

AR are affected by the reformulation. We further present a counterexample

which shows that some of the original results do not hold under the restated

version of the property.

The rest of the paper is organized as follows. Section 2.2 introduces the

necessary notation. Section 2.3 presents the correctly stated version of the

property and illustrates in detail which and how results in AR change under

the new formulation. Finally, Section 2.4 contains a counterexample for the

results that do not hold under the new version of the property.

2.2 Preliminaries

We will rely on the notation and concepts introduced in Sections 1.2.1 and

1.3.1. Some additional notation is required, however. For a game tree T =

(N,⊇), a history is a nonempty chain h in N that is not maximal in T and

for which ↑ x ⊆ h for all x ∈ h. For as history h in T a continuation is

the complement of h in a play that contains h. A game tree is weakly up-

discrete if all maximal chains in ↓ x \ {x} have maxima, for all nodes x ∈ N

for which ↓ x \ {x} 6= ∅. A game tree is coherent if every history without

1See Definition 2 in Section 1.2.1.
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minimum has at least one continuation with a maximum.2 Given a move

x ∈ X and a play w ∈ x the perfect information choice γ(x, w) ⊆ W is

the set of plays γ(x, w) =
⋃

{z | w ∈ z ∈↓ x \ {x}} . A game tree (N,⊇)

has available choices if γ(x, w) ( x for all w ∈ x and all x ∈ X. Let

Γ(T ) = {γ(x, w) | w ∈ x ∈ X } be the set of perfect information choices and

S(N) be the set of strange nodes in N . If a game tree T has available choices

then Π(T ) = (T, C1) where C1 = Γ(T ) ∪ S(N) is a single-player EDP (AR,

Theorem 1).3 A game tree is selective, if for all w,w′ ∈ W , w 6= w′ implies

that there is x ∈ X such that w,w′ ∈ x and γ(x, w) 6= γ(x, w′).

For an EDP, given a strategy profile s = (si)i∈I ∈ S and a history h,

a node x ∈ N is discarded at h, if x ( W (h) =
⋂

y∈h y and there are z ∈

↑ x \ {x}, i ∈ I(z), and c ∈ Ai(z) such that z ⊆ W (h) and x ⊆ c 6= si(z).

Dh(s) denotes the set of all nodes discarded at h and Uh(s) = {x | x ⊆

W (h)} \ Dh(s) is the set of undiscarded nodes at h. The strategy profile

(si)i∈I ∈ S induces an outcome after history h if there is w ∈ W (h) such that

w ∈ Rh
s (w), where Rh

s (w) =
⋂

{si(x) | w ∈ x ⊆ W (h), x ∈ X, i ∈ I(x)}. If

every strategy profile induces an outcome after every history then the EDP

is everywhere playable.

2.3 Corrected Formulation and Changes

In AR, an EF is defined as an EDP which satisfies a stronger version of

property (EDP.iii), namely

(EDP.iii’) for all y, y′ ∈ N , if y ∩ y′ = ∅ then there are i ∈ I and c, c′ ∈ Ci

such that y ⊆ c, y′ ⊆ c′, c ∩ c′ = ∅, and P (c) ∩ P (c′) 6= ∅.

This property is misstated in AR. The correct formulation is as follows:

(EDP.iii’) for all y, y′ ∈ N , if y ∩ y′ = ∅ then there are x ∈ X, i ∈ I(x) and

c, c′ ∈ Ci such that x ∈ P (c) ∩ P (c′), y ⊆ x ∩ c, y′ ⊆ x ∩ c′, and c ∩ c′ = ∅.

2It can be shown (AR, Corollary 3) that for regular game trees weak up-discreteness
and coherence is equivalent to up-discreteness.

3Theorem 1 in AR actually states that a game tree T having available choices is equiv-

alent to Π(T ) being a single-player EDP.
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In what follows the numbering of results and definitions corresponds to

that in AR. With the corrected formulation of (EDP.iii’) provided here,

Proposition 7, Proposition 9, Theorem 5, and Corollary 4 are true as stated.

Propositions 5 and 8(b) do not hold with the new version of (EDP.iii’).

Proposition 10 remains true as stated, but requires a different proof. Fi-

nally, Theorem 6 and Corollary 5 remain true with a (slight) change of the

hypotheses. We now explain the necessary changes in more detail.

Proposition 7, Proposition 9, Theorem 5, and Corollary 4

All those results are true as stated, with the corrected formulation of (EDP.iii’)

stated here. The proofs (with minor, straightforward adaptations) remain as

in AR.

Proposition 7. An EDP (T, C) satisfies (EDP.iii’) if and only if T is selec-

tive and

(EDP.ii’) x ∩ [
⋂

i∈I(x) ci)] = γ(x, w) for some w ∈ x ∩ [
⋂

i∈I(x) ci)] for all

(ci)i∈I(x) ∈ ×i∈I(x)Ai(x) and for all x ∈ X.

This is not true for the version of (EDP.iii’) incorrectly stated in the paper,

but holds under the new formulation.

Proposition 9. An EDP (T, C) with a weakly up-discrete tree T = (N,⊇)

is an EF if and only if T is selective.

Theorem 5. Consider an EF and fix a pure strategy combination s ∈ S. If

w ∈ Rs(w) then (a) Rs(w) = {w}, and (b) if w′ ∈ Rs(w
′) then w′ = w.

Corollary 4. The tree of an EF is selective and, hence, regular.

Propositions 5 and 8(b)

These results are not true for the corrected version of (EDP.iii’) (see Example

14 in Section 2.4). There is a common mistake in the proofs of Propositions

5 and 8(b) that is as follows. The construction of a strategy s selecting both

w and w′ fails when, for a node x with w ∈ x but w′ /∈ x, si(x) is required

to pick up the choice leading to w. For a different node x′ with w′ ∈ x′ but
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w /∈ x′, si(x
′) will be required to pick up the choice leading to w′. However, it

might be the case that x and x′ belong to the same information set of player

i, in which case an incompatibility arises.

This problem cannot appear under perfect information. Therefore, the

statement remains true for the game Π(T ). In this case, it follows from

Proposition 7 that the corrected version of (EDP.iii’) reduces to selective-

ness, because (EDP.ii’) is always fulfilled for Π(T ). The resulting property

coincides with the original formulation of Proposition 8(a) in AR. The fol-

lowing result replaces the original versions of both Proposition 5 and 8.

Proposition 5. Consider a game tree T with available choices. If T is not

selective, then the perfect information EDP Π(T ) fails outcome uniqueness.

Consider the class of weakly up-discrete trees. This includes the class on

which every EDP is everywhere playable. By Theorem 5, Proposition 9,

and the new version of Proposition 5 above, a weakly up-discrete tree T is

selective if and only if every EDP (T, C) satisfies outcome uniqueness.

Proposition 10

The statement of Proposition 10 is the following.

Proposition 10. Fix a history h for a game tree T = (N,⊇). If for an

arbitrary EF (T, C) every strategy combination induces outcomes after h,

then for the problem Π(T ) every strategy induces outcomes after h.

Proposition 10 is correct as stated also with the version of (EDP.iii’) given

here. But its proof contains the same mistake pointed out for Propositions

5 and 8(b). The correct proof is as follows..

Proof of Proposition 10. Suppose for some history h there is a strategy s′ for

Π(T ) that does not induce an outcome after h. Let h′ be a maximal chain

in Uh(s′) (the undiscarded nodes after h) and W (h′) =
⋂

x∈h′ x. Fix a play

w as follows. If h′ has a minimum z (which then cannot be a terminal node

by hypothesis), let w ∈ s′(z). Otherwise, let w ∈ W (h′). If Uh(s′) = ∅ (and

hence there is no such chain h′), fix an arbitrary w ∈ W (h).
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Consider now an arbitrary EF (T, C). By Proposition 7 T is selective.

We construct a strategy profile in (T, C) as follows. For all y ∈ N such that

w ∈ y ⊆ W (h) and i ∈ I(y), choose si(y) such that y
⋂

[

⋂

i∈I(y) si(y)
]

=

s′(y). This is possible by (EDP.ii’) and (EDP.iv). If y ∈ h′, then of course

s′(y) = γ(y, w). For any other node, specify the strategy profile s arbitrarily.

Notice that we determine s only along a play, which is possible by (EDP.iv).

We claim that w /∈ Rh
s (w). For, if it were, by construction of s, we would

obtain w ∈ Rh
s′(w) for Π(T ), a contradiction.

Let w′ ∈ W (h) with w′ 6= w. By selectiveness there exists x ∈ X such

that w,w′ ∈ x and γ(x, w)
⋂

γ(x, w′) = ∅ (by Proposition 1(a) in AR).

Notice that, necessarily, x ⊆ W (h). There are two possibilities. If x /∈ h′,

x ∈ Dh(s′) for Π(T ) which implies by construction that x ∈ Dh(s) for (T, C).

Hence w′ /∈ Rh
s (w

′). If x ∈ h′, then s′(x) = γ(x, w) 6= γ(x, w′). Since

s′(x) = x
⋂

[

⋂

i∈J(x) si(x)
]

, it follows that w′ /∈ Rh
s (w

′). Since w′ ∈ W (h)

was arbitrary, we conclude that s does not induce an outcome after h in

(T, C).

Theorem 6 and Corollary 5

The “only if” direction of Theorem 6 relied on (the original version of)

Proposition 5 and needs to be (slightly) reformulated by changing the hy-

pothesis that (T, C) is an EDP to the hypothesis that it is an EF:

Theorem 6. An EF (T, C) satisfies (A1) and (A2) if and only if the (rooted)

game tree T = (N,⊇) is regular, weakly up-discrete, and coherent.4

The proof of the “if” implication remains essentially the same as in AR. The

only caveat is that Proposition 9 refers to the corrected version of (EDP.iii’)

provided here and hence Theorem 5, which requires this version, can be

used. To see the “only if” direction, note that Proposition 7 implies that T is

selective. Hence it is also regular by Proposition 6(a) in AR. By Proposition

10 the game Π(T ) fulfills (A1). By Corollary 2 in AR, every EDP defined on

T satisfies (A1). Theorem 3 in AR then implies that T is up-discrete, hence

4See Section 1.3.1 for the statements of (A1) and (A2).
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weakly up-discrete and coherent by Corollary 3 in AR. This argument does

not make use of Proposition 5.

The statement of Corollary 5 remains true when EDP is replaced by EF

in its formulation:

Corollary 5. (a) If an EF satisfies (A1) and (A2), then so does every EF

with the same tree.

(b) An EF satisfies (A1) and (A2) if and only if its tree is regular and up-

discrete. Furthermore, the EDP is then everywhere playable.

2.4 Example

Consider the direct approach to modeling repeated games in continuous time

presented in Section 1.2.2 where W is the set of functions f : R+ → A, and

A is some fixed set of actions containing at least two elements. Defining

N = {xt(f) | t ∈ R+, f ∈ W }, where xt(f) = {g ∈ W | g(τ) = f(τ) ∀ τ ∈

[0, t[} for f ∈ W and t ∈ R+ it can be shown that T = (N,⊇) is a game

tree (Alós-Ferrer and Ritzberger, 2005). One can define an EDP on this tree

using choices ct(f, a) = {g ∈ xt(f) | g(t) = a} for every t ∈ R+, f ∈ W , and

a ∈ A (Alós-Ferrer and Ritzberger, 2005, Example 16). The resulting EDP

is referred to as the differential game.

There is a mistake in Example 7 of AR concerning the computation of

the perfect information choices for the tree of the differential game. There it

is falsely stated that for a play g ∈ xt(f) ∈ N , the perfect information choice

γ(xt(f), g) = ct(f, a). The correct expression, however, is as follows:

γ(xt(f), g) = {h ∈ W
∣

∣ ∃ τ > t such that h
∣

∣

[0,τ [ = g
∣

∣

[0,τ [ }

The differential game is hence different from Π(T ) for the tree T . In Example

13 in AR, this gives rise to another mistake. There it is stated that the tree

of the differential game is not selective. In fact, the tree of the differential

game is selective. To see this, let f, g ∈ W with f 6= g. If f(0) 6= g(0), then

γ(W, f) 6= γ(W, g). If f(0) = g(0), let t∗ = sup{τ > 0 | f
∣

∣

[0,τ [ = g
∣

∣

[0,τ [}.

Then xt∗(f) = xt∗(g) and γ(xt∗(f), f) 6= γ(xt∗(f), g).
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The point of Example 13 in AR was to provide a counterexample showing

that a regular game tree is not necessarily selective, i.e. that the converse of

Proposition 6(a) in AR does not hold. Yet, this is already accomplished by

Example 4 in AR.

The differential game actually fails (EDP.ii’) and hence (by Proposition

7) also the corrected version of (EDP.iii’). On the other hand, the game Π(T )

based on the same tree is, in fact, an EF. The comment after the statement

on Proposition 7 needs to be adjusted accordingly (AR, p. 240-241).

We now provide a common counterexample to the statements of Propo-

sitions 5 and 8(b) under the corrected formulation of (EDP.iii’) given here.

Example 14. Let T be the tree of the differential game as above. Consider an

EDP (T, C) based on this tree as follows. There is a continuum of players,

I = R+. Each player chooses an action a ∈ A. Player t is the only player

who plays at time t. All nodes at period t belong to the same information

set, i.e. no player ever learns any previous decision. That is, the choices of

player t are of the form ct(a) = {f ∈ W |f(t) = a}. The set of nodes where

player t is active is the “slice” Xt = {xt(f)|f ∈ W}. Further, each such slice

is the only information set of the corresponding player, where all choices of

the form ct(a) are available, P (ct(a)) = Xt for all a ∈ A.

This game is just the “cascading information sets” version of the normal-

form game where each player in I = R+ chooses an action a ∈ A. The

strategy of player t is simply an action a ∈ A and the outcomes (plays) of

the game are simply functions f : R+ → A. Hence, (A1) and (A2) follow

immediately.

Recalling the expression of γ(xt(f), g) given above, it is immediate that

this EDP fails (EDP.ii’), hence (by Proposition 7) also (EDP.iii’). Since

outcome uniqueness (A2) is satisfied, this shows that Propositions 5 and

8(b) as stated in AR do not hold with the corrected version of (EDP.iii’).
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3.1 Introduction

Games with cyclical structures are ubiquitous in game theory. Simple ex-

amples like Matching Pennies and Rock-Paper-Scissors are routinely used to

illustrate the concepts of mixed strategies and mixed strategy Nash equi-

libria in any introductory class to game theory. Beyond their pedagogical

value, these simple examples have a wide range of application in game theory.

Evolutionary game theory is one prominent example and, e.g., the mating

strategies of the common side-blotched lizard have been shown to follow a

rock-paper-scissors pattern (Sinervo and Lively, 1996). A cyclical game struc-

ture can be captured by circulant payoff matrices, in which each row vector

is rotated by one element relative to the preceding row vector (Hofbauer,

Schuster, Sigmund, and Wolff, 1980; Diekmann and van Gils, 2009). Games

with circulant payoff matrices have been studied extensively in the literature

on evolutionary game theory (Hofbauer and Sigmund, 1998) and population

dynamics (Hofbauer, Schuster, Sigmund, and Wolff, 1980; Diekmann and van

Gils, 2009). Circulant payoff matrices also underly certain classes of coordi-

nation games, starting with matching games, that have been studied in the

literature on symmetries and focal points (Casajus, 2000; Janssen, 2001).1

The class of games we study here is important for at least two fields

of applications. First, the analysis of the convergence properties of various

evolutionary dynamics for cyclical game structures has often focused on uni-

formly mixed strategies. Games in which this strategy profile is the unique

equilibrium constitute important examples of convergence failure (see, e.g.,

1The simplest example of a matching game is Heads and Tails. If both players match
the strategy of the other player each player gets a payoff of 1, otherwise each player receives
a payoff of zero.
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Sandholm, 2010, Chapter 9.2.1, pp. 327-330). Still, many games with a cycli-

cal structure have more than one equilibrium and the non-convergence to one

particular equilibrium may not be conclusive for the convergence properties

of the whole system. Second, matching games and more general coordination

games constitute an archetypal framework to analyze features external to the

games’ formal structure. The cyclical game structure provides a framework

where strategies cannot be differentiated according to differences in payoffs.

Yet, matching games are just one particular representation of such symmetric

frameworks and many different, equally appropriate cyclical game structures

may exist (see, e.g., Alós-Ferrer and Kuzmics, 2013). A rigorous characteri-

zation of the set of Nash equilibria of cyclical game structures in general is

still missing.

The aim of this paper is to bridge these gaps and provide a more general

analysis of games with a cyclical structure. More precisely, we investigate a

class of finite two-player normal-form n×n games we coin circulant games, in

which the players’ payoff matrices are circulant. We also require that the first

row of each matrix is ordered. This approach allows us to integrate classical

examples from Game Theory into one single class of games. Well-known

games such as the ones mentioned above, as well as subclasses of common-

interest and coordination games (including matching games) belong to the

class of circulant games.

Our results shed new light on the common features shared by these games.

Our main results identify the exact number of (pure or mixed) Nash equilib-

ria in circulant games. We also obtain necessary and sufficient conditions for

the existence of pure strategy Nash equilibria and, in case of non-existence,

for the uniqueness of the uniformly mixed Nash equilibrium (a profile which

we show to be a Nash equilibrium for all circulant games). As a consequence

of our main results we obtain that the maximal number of Nash equilibria in

these games is exactly 2n − 1. The number of pure strategy Nash equilibria

is either 0, 1, 2, or n. Further, we are also able to characterize the structure

of the set of mixed Nash equilibria. The best response correspondences in-

duce an equivalence relation on each player’s set of pure strategies. In any

Nash equilibrium all strategies within one equivalence class are either played
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with strictly positive or with zero probability. We show how to derive the

equivalence classes, allowing for a characterization of the support of all Nash

equilibrium strategies.

Our results also contribute to the literature on the number of Nash equi-

libria in finite two-player normal-form n × n games. Provided that such a

game is non-degenerate the number of Nash equilibria is finite and odd (see,

e.g., Shapley, 1974). Quint and Shubik (1997) show that for any odd integer

number y between 1 and 2n − 1, there exists a game with exactly y Nash

equilibria. However, as shown in von Stengel (1997), 2n − 1 is not an upper

bound on the number of Nash equilibria in such games. New upper bounds

on the number of distinct Nash equilibria are established in Keiding (1998)

and von Stengel (1999). For the class of coordination games 2n − 1 is the

(tight) upper bound on the number of equilibria (Quint and Shubik, 2002).

Our results show that this is also true for the class of circulant games.

Recently, several other articles have analyzed subclasses of games with

a special focus on different notions of cyclicity. Duersch, Oechssler, and

Schipper (2012) consider symmetric two-player zero-sum normal-form games

and define generalized rock-paper-scissors matrices (gRPS ) in terms of best

response cycles. In their setting, a game has a pure strategy Nash equilibrium

if and only if it is not a gRPS. Bahel (2012) and Bahel and Haller (2013)

examine zero-sum games that are based on cyclic preference relations on the

set of actions and characterize the set of Nash equilibria. In the former paper,

actions are distinguishable, i.e., one specific actions is the beginning of the

cyclic relation, and there exists a unique Nash equilibrium. In the latter,

actions are anonymous, i.e., each action can be seen as the beginning of the

cycle without affecting the relation, and depending on the number of actions

the Nash equilibrium is unique or there exists an infinite number of Nash

equilibria.

The remainder of this paper is structured as follows. Section 3.2 intro-

duces the class of circulant games. Section 3.3 states the main results and

presents a recipe to characterize the support of all Nash equilibrium strategies

for a given circulant game. Section 3.4 presents generalizations of circulant

games and Section 3.5 concludes. All proofs are relegated to the appendix.
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3.2 Circulant Games

Let Γ = ((S1, S2), (π1, π2)) be a finite two-player normal-form game where

Si = {0, 1, . . . , ni − 1} denotes player i’s set of pure strategies and πi :

S1 × S2 → R denotes player i’s payoff function for i = 1, 2.2 We will write

player i’s payoff function as the n1 × n2 matrix Ai = (aikl)k∈S1,l∈S2
given by

aikl = πi(k, l). Thus in both matrices each row corresponds to a pure strategy

of player 1 and each column to a pure strategy of player 2. Following the

notation in e.g. Alós-Ferrer and Kuzmics (2013), we will also write πi(s|s
′)

for player i’s payoff if he chooses a strategy s and player −i chooses strategy

s′. The set of mixed strategies for player i is denoted by Σi. For σi ∈ Σi,

σi(s) denotes the probability that σi places on the pure strategy s ∈ Si. The

set of all pure strategies played with strictly positive probability is denoted

by supp(σi). Payoff functions are extended to the sets of mixed strategies

through expected payoffs. Given a mixed strategy σ−i of player −i, a best

response for player i against σ−i is a strategy σi such that πi(σi|σ−i) ≥

πi(σ
′
i|σ−i) for all σ′

i ∈ Σi. The set of best responses for player i against a

strategy σ−i of the other player is denoted by BRi(σ−i). A finite two-player

normal-form game is non-degenerate (Quint and Shubik, 1997) if for any

mixed strategy σi of player i with | supp(σi)| = m, player −i has at most m

pure strategy best responses against σi. In what follows Γn denotes a finite

two-player normal-form game in which S1 = S2 = Sn = {0, . . . , n− 1}.

The following two results are well-known and will be used throughout the

paper.

Proposition 1 (Best Response Condition, Nash, 1951). Let Γ be a finite

two-player normal-form game. Then σi ∈ Σi is a best response to σ−i ∈ Σ−i

if and only if for all si ∈ Si

σi(si) > 0 ⇒ πi(si|σ−i) = max
s∈Si

πi(s|σ−i).

2We choose to label players’ strategies from 0 to ni−1 as this will later simplify notation
significantly.

92



Chapter 3

Circulant Games

Proposition 2 (Shapley, 1974; Quint and Shubik, 1997). Let Γ be a finite

non-degenerate two-player normal-form game with strategy set S1 = S2 = S.

Then

(i) Γ has a finite and odd number of Nash equilibria.

(ii) if T1, T2 ⊆ S then Γ has at most one Nash equilibrium (σ1, σ2) such

that supp(σ1) = T1 and supp(σ2) = T2.

Circulant games will be defined through circulant matrices (see Davis,

1979) which we introduce now.

Definition 1. A matrix A ∈ Rn×n is circulant if it has the form

A =



















a0 a1 a2 · · · an−1

an−1 a0 a1 . . . an−2

an−2 an−1 a0 . . . an−3

...
...

...
. . .

...

a1 a2 a3 · · · a0



















and anti-circulant if

A =























a0 · · · an−3 an−2 an−1

a1 · · · an−2 an−1 a0

a2 · · · an−1 a0 a1

... . .
. ...

...
...

an−1 · · · an−4 an−3 an−2























.

Circulant and anti-circulant matrices are hence fully specified by the first

row vector. Each remaining row vector is rotated by one element relative to

the preceding row vector. We are now ready to define a circulant game.

Definition 2. A two-player normal-form game Γn is a circulant game if

(i) each player’s payoff matrix is either circulant or anti-circulant,

(ii) a10 > a11 ≥ · · · ≥ a1n−1, and
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(iii) either a2n−k > a2n−k+1 ≥ · · · ≥ a2n−1 ≥ a20 ≥ a21 ≥ · · · ≥ a2n−k−1 or

a2n−k > a2n−k−1 ≥ · · · ≥ a21 ≥ a20 ≥ a2n−1 ≥ · · · ≥ a2n−k+1 for some

1 ≤ k ≤ n.

The parameter k is called the shift of Γn.

The shift describes the position of player 2’s largest payoff in the first row

of his payoff matrix. As we will see later, knowing the shift and the number

of pure strategies suffices to determine the exact number and structure of

Nash equilibria in circulant games.

Note that if Ai is circulant then aij = aj−i and if Ai is anti-circulant

then aij = ai+j where the indices are to be read modulo n, e.g. −1 =

n − 1, n + 1 = 1, etc. In a circulant game, if player 1’s payoff matrix is

circulant then π1(s|s
′) = a1s′−s and if player 1’s payoff matrix is anti-circulant

then π1(s|s
′) = a1s+s′. Similarly if player 2’s payoff matrix is circulant then

π2(s|s
′) = a2s−s′ and if player 2’s payoff matrix is anti-circulant then π2(s|s

′) =

a2s+s′. Throughout the paper the sum and difference of two strategies (and

the multiplication of a strategy with an integer) in a circulant game is to be

read modulo n.

In a circulant game the entries in the first row of player 1’s payoff matrix

(weakly) decrease when moving from left to right with a10 being the unique

maximum payoff. The entries in the first row of player 2’s payoff matrix

(weakly) decrease either when moving from the largest payoff to the right, or

when moving from the largest payoff to the left. The shift k is determined

by the position of the unique maximum payoff in the first row of player 2’s

payoff matrix. A shift of k = n corresponds to a20 being player 2’s largest

payoff. A shift of k = 0 is of course possible but for notational convenience

is formally represented by a shift of k = n.

Since in a circulant game the sum of the payoffs in each row and each

column is constant, if one player plays the completely uniformly mixed strat-

egy, then all of the other player’s pure strategies yield the same payoff. An

immediate consequence of this is the following.

Lemma 1. Let Γn be a circulant game. Then σ∗ = (σ∗
1 , σ

∗
2) where σ∗

i (s) =

1/n for all s ∈ Sn, i = 1, 2, is a Nash equilibrium of Γn.
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We can classify circulant games according to whether the players’ payoff

matrices “rotate” in the same or in opposite directions.

Definition 3. A circulant game is iso-circulant if the players’ payoff matri-

ces are either both circulant or both anti-circulant matrices. It is counter-

circulant if one player’s payoff matrix is circulant and the other player’s

payoff matrix is anti-circulant.

For n = 2 every iso-circulant game is also counter-circulant and vice versa,

as any circulant 2 × 2 matrix is also anti-circulant. For n ≥ 3, however, the

class of iso-circulant games is disjoint from the class of counter-circulant

games. Iso-circulant games with shift k = n capture the class of (weakly

ordered) circulant coordination games.

Example 15 (Matching Pennies).

The game given by

A1 =

(

1 −1

−1 1

)

, A2 =

(

−1 1

1 −1

)

is the well-known Matching Pennies game. Both players’ payoff matrices are

circulant (and anti-circulant) and for player 2, a2n−1 = a21 = 1 is the largest

payoff. Hence, it is an iso-circulant (and also a counter-circulant) game with

shift k = 1. [(1/2, 1/2), (1/2, 1/2)] is a Nash equilibrium of this game. As we

will show later it is the unique one.

Example 16 (Rock-Paper-Scissors).

The game given by

A1 =







3 2 1

2 1 3

1 3 2






, A2 =







1 2 3

2 3 1

3 1 2






.

is Rock-Paper-Scissors. Strategies are labeled such that for player 1, strategy

0 is ‘Rock’, strategy 1 is ‘Scissors’, and strategy 2 is ‘Paper’ and for player

2, strategy 0 is ‘Scissors’, strategy 1 is ‘Rock’, and strategy 2 is ‘Paper’.

Both players’ payoff matrices are anti-circulant and for player 2, a2n−1 =
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a22 = 3 is the largest payoff. This is an iso-circulant game with shift k = 1.

[(1/3, 1/3, 1/3), (1/3, 1/3, 1/3)] is a Nash equilibrium of this game. As we

will see later it is the unique one.

Example 17 (4× 4 Coordination Game).

The game given by

A1 =













5 4 3 2

2 5 4 3

3 2 5 4

4 3 2 5













, A2 =













5 4 3 2

2 5 4 3

3 2 5 4

4 3 2 5













is an example of an iso-circulant game with shift k = 4 as both play-

ers’ payoff matrices are circulant and for player 2, a2n−4 = a20 = 5 is the

largest payoff. The uniform probability distribution over all pure strategies,

[(1/4, 1/4, 1/4, 1/4), (1/4, 1/4, 1/4, 1/4)], constitutes a Nash equilibrium. It

is, however, not the only one. As we will see later, our results immediately

imply that this game has 15 Nash equilibria.

The following two games are examples of counter-circulant games. In

both games player 1’s payoff matrix is anti-circulant and player 2’s payoff

matrix is circulant.

Example 18.

A1 =













4 3 2 1

3 2 1 4

2 1 4 3

1 4 3 2













, A2 =













1 4 3 2

2 1 4 3

3 2 1 4

4 3 2 1













This is a counter-circulant game with shift k = 3 as for player 2, a2n−3 = a21 =

4 is the largest payoff. The uniform probability distribution over all pure

strategies [(1/4, 1/4, 1/4, 1/4), (1/4, 1/4, 1/4, 1/4)] is a Nash equilibrium of

this game. As we will see later this game has 3 Nash equilibria.
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Example 19.

A1 =

















5 4 3 2 1

4 3 2 1 5

3 2 1 5 4

2 1 5 4 3

1 5 4 3 2

















, A2 =

















3 2 1 5 4

4 3 2 1 5

5 4 3 2 1

1 5 4 3 2

2 1 5 4 3

















This is a counter-circulant game with shift k = 2 as for player 2, a2n−2 = a23 =

5 is the largest payoff. The uniform probability distribution over all pure

strategies [(1/5, 1/5, 1/5, 1/5, 1/5), (1/5, 1/5, 1/5, 1/5, 1/5)] is a Nash equi-

librium of this game. As we will see later this game has 7 Nash equilibria.

3.3 Main Results

In this section we present the main results on the number and the structure of

Nash equilibria in circulant games. We start by presenting some preliminary

lemmata. All proofs are relegated to the appendix.

3.3.1 Preliminaries

Lemma 2. Let Γn be a circulant game with shift k in which player 1’s payoff

matrix is anti-circulant and let d = gcd(k, n).

(i) If Γn is iso-circulant, then in any Nash equilibrium (σ1, σ2), for all

s ∈ Sn, σi(s) = 0 if and only if σi(s+km) = 0 for all m = 0, . . . , n
d
−1,

i = 1, 2.

(ii) If Γn is counter-circulant, then in any Nash equilibrium (σ1, σ2), for all

s ∈ Sn, σ1(s) = 0 if and only if σ1(−s + k) = 0 and σ2(s) = 0 if and

only if σ2(−s− k) = 0

Given an iso-circulant game Γn, we can define an equivalence relation ∼

on the set Sn by s ∼ s′ if and only if s = s′ +mk for some 0 ≤ m ≤ n
d
− 1,

where d = gcd(n, k). Denote the equivalence class of s ∈ Sn by I(s).
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Note that, s′ + m1k 6= s′ + m2k for all 0 ≤ m1 < m2 ≤ n
d
− 1. Hence

I(s) = {s + mk|0 ≤ m ≤ n
d
− 1} contains n/d elements and there are d

different equivalence classes. Let I(Sn) = {I(s)|s ∈ Sn} be the set of equiv-

alence classes. Suppose player 1’s payoff matrix is anti-circulant. By Lemma

2(i) two strategies are equivalent if and only if in any Nash equilibrium ei-

ther both are simultaneously played with positive probability or both are

simultaneously played with zero probability.

For a counter-circulant game let C1(s) = {s,−s+k} and C2(s) = {s,−s−

k} for all s ∈ Sn. Note that any class C1(s) contains at least one and at

most two elements. It contains one element if −s + k ≡ s mod n and two

elements if −s+k 6≡ s mod n. The former occurs if and only if either 2s = k

or 2s = n+ k. Thus there is a singleton class if and only if either k
2
∈ Sn or

(n+k)
2

∈ Sn, i.e. if either k or (n + k) is an even number. In particular there

can be at most two singleton classes. Similarly, any class C2(s) contains one

element if −s− k ≡ s mod n and two elements if −s− k 6≡ s mod n. The

former occurs if and only if either 2s = n − k or 2s = 2n − k. Thus there

is a singleton class if and only if either n − k or 2n − k is an even number,

which holds if and only if either k or (n + k) is an even number, i.e. if and

only if k
2
∈ Sn or (n+k)

2
∈ Sn. We define Ci(S

n) := {Ci(s)|s ∈ Sn}, i = 1, 2.

Suppose player 1’s payoff matrix is anti-circulant. Then, by Lemma 2(ii),

s′ ∈ Ci(s) if and only if in any Nash equilibrium either both s and s′ are

simultaneously played with positive probability or both are simultaneously

played with zero probability. It can be shown (Lemma B.3 in the appendix)

that the sets Ci(S
n), i = 1, 2, form a partition of Sn.

The following lemma covers the connection between the support of a

strategy of player i and the best response of player −i against that strategy.

Lemma 3. Let Γn be a circulant game in which player 1’s payoff matrix is

anti-circulant.

(i) If Γn is iso-circulant then if σi ∈ Σi and I(s) ∈ I(Sn) are such that

supp(σi) ∩ I(s) = ∅ then BR−i(σi) ∩ I(−s) = ∅.

(ii) If Γn is counter-circulant then if supp(σ−i) ∩ C−i(s) = ∅ for C−i(s) ∈

C−i(S
n) then BRi(σ−i) ∩ Ci(−s) = ∅.
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3.3.2 The Number of Nash Equilibria

Theorem 1. Let Γn be an iso-circulant game with shift k and let d =

gcd(k, n) denote the greatest common divisor of k and n. Then Γn has 2d−1

Nash equilibria.

Since by definition k ≤ n, necessarily gcd(k, n) ≤ n. It follows that an

iso-circulant game can have at most 2n − 1 Nash equilibria. Further, an iso-

circulant game has a unique Nash equilibrium if and only if gcd(k, n) = 1.

Together with Lemma 1, this implies that if gcd(k, n) = 1 then the unique

Nash equilibrium is the one where both players choose the uniformly mixed

strategy. Some immediate consequences of these results are the following.

Matching Pennies (Example 15) is an iso-circulant game with shift k = 1.

Hence, [(1/2, 1/2), (1/2, 1/2)] is the unique Nash equilibrium. Rock-Paper-

Scissors (Example 16) is an iso-circulant game with shift k = 1. Hence, the

unique Nash equilibrium is [(1/3, 1/3, 1/3), (1/3, 1/3, 1/3)].

Proposition 3. Let Γn be an iso-circulant game with shift k. Γn has n pure

strategy Nash equilibria if and only if k = n. Further, Γn has no pure strategy

Nash equilibrium if and only if k 6= n.

By the last proposition an iso-circulant game Γn has either 0 or n pure

strategy Nash equilibria. The 4 × 4 coordination game in Example 17 is an

iso-circulant game with shift k = 4. As gcd(4, 4) = 4, by Theorem 1, this

game has 24 − 1 = 15 Nash equilibria. By Proposition 3 four of these are in

pure strategies.

Theorem 2. Let Γn be a counter-circulant game with shift k.

(i) If n is odd, then Γn has exactly 2
n+1
2 − 1 Nash equilibria.

(ii) If both n and k are even, then Γn has exactly 2
n
2
+1 − 1 Nash equilibria.

(iii) If n is even and k is odd, then Γn has exactly 2
n
2 − 1 Nash equilibria.

It follows that a counter-circulant game can have at most 2
n
2
+1 − 1 Nash

equilibria. Further, a counter-circulant game has a unique Nash equilibrium
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if and only if n = 2 and k = 1. Example 18 is a counter-circulant game

with shift k = 3. As n is even and k is odd, by Theorem 2(iii) the game

has 22− 1 = 3 Nash equilibria. Example 19 is a counter-circulant game with

shift k = 2. As n is odd, by Theorem 2(i) the game has 23 − 1 = 7 Nash

equilibria.

Proposition 4. Let Γn be a counter-circulant game with shift k.

(i) Γn has exactly one pure strategy Nash equilibrium if and only if n is

odd.

(ii) Γn has exactly two pure strategy Nash equilibria if and only if both n

and k are even.

(iii) Γn has no pure strategy Nash equilibrium if and only if n is even and

k is odd.

In Example 18 n is even and k is odd, hence by Proposition 4(iii) none of

its three Nash equilibria are in pure strategies. In Example 19 n is odd, hence

by Proposition 4(i) one of its seven Nash equilibria is in pure strategies.

It follows from (i) and (ii) in Proposition 4 that the class of counter-

circulant games with even shift is a class of games for which a pure strategy

Nash equilibrium always exists.

3.3.3 The Structure of Nash Equilibria

The next lemma shows that only specific subsets of Sn can arise as the

support of a Nash equilibrium strategy of player 1.

Lemma 4. Let Γn be a circulant game in which player 1’s payoff matrix is

anti-circulant.

(i) If Γn is iso-circulant then for any union U =
⋃m

j=1 I(s
j) of elements of

I(Sn) there is a unique Nash equilibrium (σ1, σ2) such that supp(σ1) =

U . Further, for any Nash Equilibrium (σ1, σ2) there is a union U =
⋃m

j=1 I(s
j) of elements of I(Sn) such that supp(σ1) = U .
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(ii) If Γn is counter-circulant then for any union U =
⋃m

j=1C1(s
j) of ele-

ments of C1(S
n) there is a unique Nash equilibrium (σ1, σ2) such that

supp(σ1) = U . Further, for any Nash Equilibrium (σ1, σ2) there is a

union U =
⋃m

j=1C1(s
j) of elements of C1(S

n) such that supp(σ1) = U .

By Lemma 4, there exists a straightforward way to characterize the sup-

port of all Nash equilibrium strategies for a given circulant game. Moreover,

once we know what to look for the weights of the strategies in the support

can be easily derived.

Consider first the case of an iso-circulant game with n and k, and let d =

gcd(n, k). We can transform the game so that player 1’s payoff matrix is anti-

circulant (see Lemma A.1(i) in the appendix). Recall that by Lemma 2(i) the

circulant structure of the payoff matrices allows us to define an equivalence

relation on the set of pure strategies Sn for each player. For a pure strategy

s ∈ Sn, the corresponding equivalence class I(s) = {s+mk|0 ≤ m ≤ n
d
− 1}

contains n/d elements and there are d different equivalence classes. In any

Nash equilibrium all strategies within one equivalence class are either played

with strictly positive or with zero probability. It follows from Lemma 4(i)

that in any Nash equilibrium the support of either player’s strategy is the

union of classes in I(Sn) = {I(s)|s ∈ Sn} and further that for any such union

of classes in I(Sn) there is a unique Nash equilibrium in which player 1’s

strategy has this union as its support. Further, if the mixed strategy profile

(σ1, σ2) is a Nash equilibrium with supp(σ1) =
⋃m

j=1 I(s
j) for some strategies

s1, . . . , sm ∈ Sn then by Lemma 3(i) it follows that supp(σ2) =
⋃m

j=1 I(−sj).

The actual probabilities for each pure strategy of course depend on the actual

payoffs, however, the structure of the supports is the same for all iso-circulant

games with the same shift and the same number of pure strategies.

Let us revisit the 4 × 4 Coordination game from Example 17. We can

transform this game so that both payoff matrices are anti-circulant (see Ta-

ble 3.1 in appendix 3.C and Lemma A.1(i) in Appendix 3.A). In this game

n = k = d = 4 and hence there are four (singleton) classes: I(0) = {0},

I(1) = {1}, I(2) = {2}, and I(3) = {3}. Each class is part of a (pure

strategy) Nash equilibrium in which supp(σ1) = I(s) and supp(σ2) = I(−s),

and there are four such combinations. For instance, in one Nash equilibrium
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player 1 plays the strategy s = 1, i.e. chooses support I(1) and player 2 plays

s = 3, chooses support I(−1) = I(3). Analogously, the three remaining pure

strategy Nash equilibria are given by the profiles (0, 0), (2, 2), and (3, 1). Fur-

ther, each union of two classes is part of a (mixed strategy) Nash equilibrium

in which supp(σ1) = I(s1) ∪ I(s2) and supp(σ2) = I(−s1) ∪ I(−s2). There

are six such combinations, e.g., in one Nash equilibrium player 1 puts posi-

tive probability only on I(0) and I(1) and player 2 puts positive probability

on I(−0) ∪ I(−1) = I(0) ∪ I(3). The probabilities are easily derived from

the corresponding indifference conditions and the Nash equilibrium strategy

profile is [(1/4, 3/4, 0, 0), (3/4, 0, 0, 1/4)]. Similarly, there are four Nash equi-

libria in which the support of player 1’s (and player 2’s) strategy is the union

of three classes, e.g., [(1/4, 1/4, 1/2, 0), (1/2, 0, 1/4, 1/4)]. Finally, there is

one Nash equilibrium where player 1’s (and player 2’s) strategy put posi-

tive probability on all four equivalence classes, i.e. plays a completely mixed

strategy: [(1/4, 1/4, 1/4, 1/4), (1/4, 1/4, 1/4, 1/4)].3

Consider now the case of a counter-circulant game with given n and k.

We can transform this game so that player 1’s payoff matrix is anti-circulant

(see Lemma A.1(ii) in the appendix). Recall that by Lemma 2(ii) we can

define an equivalence relation on set of pure strategies for each player. For

all s ∈ S let C1(s) = {s,−s+ k} denote the corresponding equivalence class

of player 1 and C2(s) = {s,−s − k} the one of player 2. Note that any

class C1(s), C2(s) contains at least one and at most two elements. It follows

from Lemma 4(ii) that in any Nash equilibrium the support of player 1’s

strategy is a union of classes in C1(S
n) = {C1(s)|s ∈ Sn} and that for any

union of classes in C1(S
n) there is a Nash equilibrium in which the support of

player 1’s strategy has this union as its support. Further, if (σ1, σ2) is a Nash

equilibrium with supp(σ1) =
⋃m

j=1C1(s
j) for some strategies s1, . . . , sm ∈ Sn

then by Lemma 3(ii) it follows that supp(σ2) =
⋃m

j=1C2(−sj).

Let us revisit the game in Example 18. Here, n = 4 and k = 3. There are

two classes for player 1: C1(0) = C1(3) = {0, 3} and C1(1) = C1(2) = {1, 2}.

Correspondingly there are two classes for player 2: C2(0) = C2(1) = {0, 1}

and C2(2) = C2(3) = {2, 3}. There are two Nash equilibria in which the

3Table 3.1 in the appendix contains the remaining Nash equilibrium profiles.
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support of player 1’s (and player 2’s) strategy consists of a single class, e.g.

[(1/4, 0, 0, 3/4), (1/4, 3/4, 0, 0)]. Further there is one equilibrium in which

both players play the completely mixed strategy [(1/4, 1/4, 1/4, 1/4)].4

3.4 Generalizations

By our definition there are games that are not circulant games, but can be

transformed into one by a simple relabeling of strategies. We chose to exclude

those games from our definition for ease of exposition. However, the results

presented above also apply for these games.

It is not necessary to insist on each row containing the same entries. All

our proofs go through if payoffs are transformed in a way that preserves the

order of entries in each row and in each column of the payoff matrices.

Example 20. In the 3× 3 game with payoff matrices

A1 =











3.1 1.9 0.8

1.5 0.9 3.4

0.5 3.2 2.1











, A2 =











0.7 2.2 3.5

1.8 2.6 0.1

3.0 0.5 2.8











.

the order of payoffs in each row and in each column is the same as in Rock-

Paper-Scissors (Example 16). The proof of Theorem 1 can easily be general-

ized to this case to show that this game has a unique Nash equilibrium. As

the sum of payoffs in each row is not constant, however, the unique Nash equi-

librium is not the strategy profile in which both players play the uniformly

mixed strategies.

In this sense, our results on the number and the structure of Nash equi-

libria only depend on the order of payoffs in the rows and columns of the

payoff matrices.

Our results further generalize to coordination games in which players

obtain a strictly positive payoff if and only if they use the same strategy

4Table 3.2 in the appendix shows the Nash equilibria and the equivalence classes for
the two counter-circulant games we introduced in Example 18 and 19.
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and a payoff of 0 otherwise i.e., so-called games of pure coordination. The

resulting payoff matrices are of the form

A1 =



















a0 0 0 · · · 0

0 a1 0 . . . 0

0 0 a2 . . . 0
...

...
...

. . .
...

0 0 0 · · · an−1



















, A2 =



















a0 0 0 · · · 0

0 a1 0 . . . 0

0 0 a2 . . . 0
...

...
...

. . .
...

0 0 0 · · · an−1



















Proving that such games have 2n − 1 Nash equilibria works analogously to

the proof of Theorem 1.

3.5 Conclusion

In this paper we introduce and investigate a class of two-player normal-form

games we coin circulant games. Such games have a straightforward repre-

sentation in form of circulant matrices. Each player’s payoff matrix is fully

characterized by a single row vector, which is rotated to obtain the rest of the

matrix. All circulant games have a Nash equilibrium where players random-

ize between all pure strategies with equal probability (uniformly mixed Nash

equilibrium), but might have many other pure and mixed Nash equilibria.

The circulant structure underlying the payoff matrices has interesting

implications. First, the best response correspondences induce a partition on

each players’ set of pure strategies into equivalence classes. In any Nash

Equilibrium all strategies within one class are either played with strictly

positive or with zero probability. Second, there exists a simple one-to-one

correspondence between the players’ respective equivalence classes. If some

player puts zero probability on one class, the other has one corresponding

equivalence class he plays with zero probability. Finally, a single parameter

k fully determines the strategy classes and the relation between the players’

classes. The parameter itself only depends on the position of the largest

payoff in the first row of a player’s payoff matrix. For a given circulant

game, knowing k and the number of pure strategies n suffices to calculate
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the exact number of Nash equilibria and to describe the support of all Nash

equilibrium strategies. As an immediate consequence of our main results we

establish 2n − 1 as the tight upper bound on the number of Nash equilibria

in these games.

The class of circulant games contains a large variety of games with cycli-

cal payoff structures including well-known games such as Matching Pen-

nies, Rock-Paper-Scissors or subclasses of coordination and common interest

games. We shed new light on the features these games have in common

focusing on the circulant structure of their payoff matrices. For example

Matching Pennies is the two-strategy variant of Rock-Paper-Scissors. Be-

yond their zero-sum property the two games belong to the same sub-class

circulant games. Both are characterized by k = 1 and the only Nash equilib-

rium is the uniformly mixed one. The common denominator that connects

these games is the balanced payoff structure induced by the circulant ma-

trices with a shift of k = 1. Moreover, this reinterpretation is robust in the

sense that only relative payoffs matter. We can write down many variants of

Rock-Paper-Scissors, including asymmetric evaluations of wins or losses and

variants that cannot be transformed into zero-sum games. Yet, the balanced

structure is preserved and the best players can do is to randomize between

all pure strategies with equal probability.
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Appendix 3.A: Transformation of Games

Lemma A.1. (i) Let Γn be an iso-circulant game in which both players’

payoff matrices are circulant. There is a permutation of row vectors

that fixes the first row in both matrices and transforms both players’

payoff matrices into anti-circulant matrices.

(ii) Let Γn be a counter-circulant game in which player 1’s payoff matrix

is circulant. There is a permutation of row vectors that fixes that first

row in both matrices and transforms player 1’s payoff matrix into an

anti-circulant matrix and player 2’s matrix into a circulant matrix.

Proof. (i) A matrix A is anti-circulant if and only if A = PC, where C is a

circulant matrix and

P =























1 0 · · · 0 0 0

0 0 · · · 0 0 1

0 0 · · · 0 1 0

0 0 · · · 1 0 0
...

...
...

...
...

0 1 · · · 0 0 0























(Davis, 1979, p. 162, Corollary). The matrix P switches rows i and n+1− i

and fixes the first row. Using this result, we obtain that PA1 and PA2 are

anti-circulant matrices since both A1 and A2 are circulant matrices.

(ii) Using the matrix P defined as in (i), we obtain that PA1 is anti-

circulant (Davis, 1979, p. 162, Corollary). As A2 is anti-circulant, A2 = PC

for some circulant matrix C (Davis, 1979, p. 162, Corollary). Hence PA2 =

P (PC) and since P = P−1 (Davis, 1979, p.28, equ. (2.4.22)), we obtain that

PA2 is a circulant matrix.
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Appendix 3.B: Proofs of Main Results

We remind the reader that the sum and the difference of strategies in a

circulant game as well as multiplications of integers with strategies are read

modulo n. Central to the proofs of our main results is Proposition 5 below.

Proposition 5 identifies sufficient conditions under which the number of

Nash equilibria of a finite two player normal-form game can be calculated

by merely identifying one parameter of the game. Under the hypotheses of

Proposition 5, each Nash equilibrium strategy of a player corresponds to one

specific combination of elements of a partition of that player’s strategy set.

Moreover, for each possible combination of elements of the partition there

exists exactly one corresponding Nash equilibrium strategy. The parameter

necessary to determine the number of Nash equilibria is the cardinality of

the partition.

The proof of Theorem 1 (Theorem 2) first establishes that iso-circulant

(counter-circulant) games satisfy the hypotheses of Proposition 5. Determin-

ing the cardinality of the partitions is then merely a counting exercise.

Proposition 5. For the two-player normal-form game Γn let S1 = {[s]1|s ∈

Sn} and S2 = {[s]2|s ∈ Sn} be partitions of Sn such that |S1| = |S2|. If Γn,

S1, and S2 satisfy

(a) for all Nash equilibria (σ1, σ2), and all s, s′ ∈ Sn, if s′ ∈ [s]i then

σi(s) = 0 if and only if σi(s
′) = 0,

(b) for all σi ∈ Σi, i = 1, 2, supp(σi) ∩ [s]i = ∅ for [s]i ∈ Si implies

BR−i(σi) ∩ [−s]−i = ∅,

(c) for all s ∈ Sn, Γn has a Nash equilibrium (σ1, σ2) with supp(σ1) = [s]1

and supp(σ2) = [−s]2,

then

(i) for any M ⊆ S1 Γn has a unique Nash equilibrium (σ1, σ2) with supp(σ1) =
⋃

[s]1∈M
[s]1;

(ii) Γn has exactly 2|S1| − 1 Nash equilibria.
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Proof. (i) Given ∅ 6= M ⊆ S1 let −M := {[−s]2|[s]1 ∈ M} ⊆ and let ΓM
n be

the reduced game where player 1’s set of strategies is
⋃

[s]1∈M
[s]1 and player

2’s set of strategies is
⋃

[s]1∈M
[−s]2 (and the payoff functions are restricted

accordingly).

Claim A: Let M ′ ⊆ M ⊆ S1 be a nonempty subset of S1 and let

(σM ′

1 , σM ′

2 ) be a completely mixed Nash equilibrium of ΓM ′

n . Then (σM
1 , σM

2 )

defined by σM
1 (s) = σM ′

1 (s) if [s]1 ∈ M ′ and σM
1 (s) = 0 otherwise, and

σM
2 (s) = σM ′

2 (s) if [s]2 ∈ −M ′ and σM
2 (s) = 0 otherwise is a Nash equilibrium

in ΓM
n .

Since (σM ′

1 , σM ′

2 ) is a completely mixed Nash equilibrium of ΓM ′

n , all strate-

gies in
⋃

[s]1∈M ′ [−s]2 yield the same payoff for player 2 against σM
1 . By hy-

pothesis (b), since supp(σM
1 ) =

⋃

[s]∈M ′[s], no strategy outside
⋃

[s]1∈M ′[−s]2

can be a best response for player 2 against σM
1 . Analogously all strate-

gies in
⋃

[s]1∈M ′[s]1 yield the same payoff for player 1 against σM
2 , and since

supp(σM
2 ) = −

⋃

[s]1∈M ′[−s]2, no strategy outside
⋃

[s]1∈M ′[s]1 is a best re-

sponse for player 1 against σM
2 . Hence, by Proposition 1, (σM

1 , σM
2 ) is a Nash

equilibrium in ΓM
n . This proves the claim.

Claim B: For any ∅ 6= M ⊆ S1, the reduced game ΓM
n has exactly one

completely mixed Nash equilibrium.

Let ∅ 6= M ⊆ S1 be such that |M | = m. We will prove the claim by

induction over m. Note first, that by hypothesis (b), in any Nash equilibrium

(σ1, σ2) of ΓM
n , supp(σ1) is a union of elements of M .

For m = 1, this follows by hypothesis (c). For m > 1, by induction

hypothesis we obtain that for all ∅ 6= M ′ ( M the reduced game ΓM ′

n has a

unique completely mixed Nash equilibrium. By Claim A, for every ∅ 6= M ′ (

M there is a Nash equilibrium (σM
1 , σM

2 ) in ΓM
n with supp(σM

1 ) =
⋃

[s]∈M ′[s].

As by Proposition 2(ii) for any ∅ 6= M ′ ( M there can be at most one

Nash equilibrium (σ1, σ2) in ΓM
n with supp(σ1) = M ′ we obtain that there is

exactly one such Nash equilibrium. This implies that ΓM
n has at least 2m− 2

Nash equilibria.

Suppose there is no completely mixed Nash equilibrium in ΓM
n . Then ΓM

n

has exactly 2m−2 Nash equilibria. From hypotheses (a) and (b) it follows that
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Γn is non-degenerate and hence that ΓM
n is non-degenerate. By Proposition

2(i) ΓM
n must have an odd number of Nash equilibria, which contradicts the

fact that 2m − 2 is even. Hence there is at least one completely mixed Nash

equilibrium and again because ΓM
n is non-degenerate by Proposition 2(ii)

there is exactly one. This proves the claim.

By Claim B, for ∅ 6= M ⊆ S1, ΓM
n has exactly one completely mixed

Nash equilibrium (σM
1 , σM

2 ). By Claim A, this induces a Nash equilibrium

(σ1, σ2) in Γn with supp(σ1) =
⋃

[s]1∈M
[s]1. Any Nash equilibrium (σ′

1, σ
′
2) 6=

(σ1, σ2) with supp(σ′
1) =

⋃

[s]1∈M
[s]1 would induce a completely mixed Nash

equilibrium in ΓM
n different from (σM

1 , σM
2 ), a contradiction. Hence Γn has

exactly one Nash equilibrium (σ1, σ2) with supp(σ1) =
⋃

[s]1∈M
[s]1.

(ii) From (i) it follows that for any ∅ 6= M ⊆ S1 there is a unique Nash

equilibrium (σ1, σ2) in Γn such that supp(σ1) =
⋃

[s]1∈M
[s]1. Further, by

hypothesis (a), for any Nash equilibrium (σ1, σ2) of Γn there is ∅ 6= M ⊆ S1

such that supp(σ1) =
⋃

[s]1∈M
[s]1. As S1 has 2|S1| − 1 nonempty subsets, Γn

has exactly 2|S1| − 1 Nash equilibria.

The following lemma is required in the proofs of Lemmata 2 and 3.

Lemma B.1. Let Γn be a circulant game with shift k in which player 1’s

payoff matrix is anti-circulant.

(i) For all σ2 ∈ Σ2 and all s ∈ Sn if σ2(s) = 0 then −s /∈ BR1(σ2) .

(ii) If Γn is iso-circulant, then for all σ1 ∈ Σ1 and all s ∈ Sn if σ1(s) = 0

then (−s− k) /∈ BR2(σ1) .

(iii) If Γn is counter-circulant, then for all σ1 ∈ Σ1 and all s ∈ Sn if σ1(s) =

0 then (s− k) /∈ BR2(σ1) .

Proof. (i) Let σ2 ∈ Σ2 be such that σ2(s) = 0 for some s ∈ Sn. Since player

1’s payoff matrix is anti-circulant π1(s|s
′) = a1s+s′. We will show that there

exists a strategy for player 1 that yields a strictly higher payoff against σ2

than strategy −s. Let l := min{s < l′ ≤ s+n−1|σ2(l
′) > 0}. Since n > 1 the

set {s < l′ ≤ s+n−1|σ2(l
′) > 0} is non-empty and l exists. By construction
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of l, σ2(s) = · · · = σ2(l − 1) = 0. We claim that π1(−s|σ2) < π1(−l|σ2). To

see this, note that

π1(−s|σ2) =
s+n−1
∑

t=l

σ2(t)a
1
t−s

and

π1(−l|σ2) =
s+n−1
∑

t=l

σ2(t)a
1
t−l.

Comparing these payoffs for t = l we obtain that a1t−l = a10 > a1t−s = a1l−s,

where the strict inequality holds by part (ii) of Definition 2. Further, for

l < t ≤ s+n−1 we have 0 ≤ t− l < t−s ≤ n−1 and hence that a1t−l ≥ a1t−s

again by part (ii) of Definition 2. Since by construction of l, σ2(l) > 0 we

obtain π1(−s|σ2) < π1(−l|σ2) which proves the claim. Hence −s /∈ BR1(σ2).

(ii) Let σ1 ∈ Σ1 and s ∈ Sn be such that σ1(s) = 0. Since player 2’s payoff

matrix is anti-circulant, π2(s|s
′) = a2s′+s for s, s′ ∈ S. Since Γn is a circulant

game, by part (iii) of Definition 2 either a2n−k > a2n−k+1 ≥ · · · ≥ a2n−1 ≥ a20 ≥

a21 ≥ · · · ≥ a2n−k−1 or a2n−k > a2n−k−1 ≥ · · · ≥ a21 ≥ a20 ≥ a2n−1 ≥ · · · ≥ a2n−k+1.

We will only prove the result for the former case as the proof for the latter

works analogously .

Let l := min{s < l′ ≤ s + n − 1|σ1(l
′) > 0} which exists since {s < l′ ≤

s + n− 1|σ1(l
′) > 0} 6= ∅. Then σ1(s) = · · · = σ1(l − 1) = 0. We claim that

π2(−s− k|σ1) < π2(−l − k|σ1). To see this, note that

π2(−s− k|σ2) =
s+n−1
∑

t=l

σ1(t)a
2
t−s−k

and

π2(−l − k|σ2) =

s+n−1
∑

t=l

σ1(t)a
2
t−l−k.

For t = l we have a2t−l−k = a2n−k > a2t−s−k = a2l−s−k, where the strict

inequality holds by part (iii) of Definition 2. Further, for l < t ≤ s+n−1 we
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have a2t−l−k ≥ a2t−s−k by part (iii) of Definition 2 since t− l − k < t− s− k,

−k ≤ t − l − k < n − k − 1, and −k < t − s − k ≤ n − k − 1. Since by

construction of l, σ1(l) > 0 we obtain that π2(−s − k|σ1) < π2(−l − k|σ1)

which proves the claim. Hence (−s− k) /∈ BR2(σ1).

(iii) Let σ1 ∈ Σ1 and s ∈ Sn be such that σ1(s) = 0. Since player 2’s payoff

matrix is circulant, π2(s|s
′) = a2s−s′ for s, s′ ∈ S. Since Γn is a circulant game,

by definition either a2n−k > a2n−k+1 ≥ · · · ≥ a2n−1 ≥ a20 ≥ a21 ≥ · · · ≥ a2n−k−1

or a2n−k > a2n−k−1 ≥ · · · ≥ a21 ≥ a20 ≥ a2n−1 ≥ · · · ≥ a2n−k+1. We will

only prove the result for the former case as the proof for the latter works

analogously. Let l := min{s < l′ ≤ s + n − 1|σ1(l
′) > 0} which exists since

{s < l′ ≤ s + n − 1|σ1(l
′) > 0} 6= ∅. Then σ1(s) = · · · = σ1(l − 1) = 0. We

claim that π2(s− k|σ1) < π2(−l − k|σ1). To see this, note that

π2(s− k|σ2) =

s+n−1
∑

t=l

σ1(t)a
2
s−k−t

and

π2(l − k|σ2) =
s+n−1
∑

t=l

σ1(t)a
2
l−k−t.

For t = l we have a2l−k−t = a2n−k > a2s−k−t = a2s−k−l. Further, for l <

t ≤ s + n − 1 we have a2l−k−t ≥ a2s−k−t by part (iii) of the definition of

circulant game since l − k − t > s − k − t, −k ≥ l − k − t > −n − k + 1,

and −k > s − k − t ≥ −n − k + 1. Since by construction of l, σ1(l) > 0

we obtain that π2(s − k|σ1) < π2(l − k|σ1) which proves the claim. Hence

(s− k) /∈ BR2(σ1).

Lemma B.1 allows us to rule out certain strategies as best responses for

player i if player −i plays some strategy with zero probability in the case that

player 1’s payoff matrix is anti-circulant. By (i) if player 2 plays a strategy s

with probability 0 then for player 1 strategy −s cannot be a best response.

Similarly, (ii) and (iii) state that if in an iso-circulant (counter-circulant)

game player 1 places probability 0 on strategy s then −s− k (s− k) cannot

be a best response for player 2.
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We are now ready to prove Lemmata 2 and 3. It follows from Lemma

2(i) and Lemma 3(i) that iso-circulant games satisfy hypotheses (a) and (b)

in Proposition 5. Analogously, Lemma 2(ii) and Lemma 3(ii) establish that

counter-circulant games fulfill (a) and (b) in Proposition 5.

Proof of Lemma 2. (i) The “if” part is trivial. To see the “only if” part let

(σ1, σ2) be a Nash equilibrium of Γn and let s ∈ Sn be such that σ1(s) = 0. By

Lemma B.1(ii), σ2(−s−k) = 0 and consequently by Lemma B.1(i) σ1(s+k) =

0. Iterating this argument yields σ1(s+mk) = 0 for all m = 0, . . . , n
d
− 1. If

σ2(s) = 0 the argument works analogously.

(ii) By Lemma B.1(i) and (iii) for any Nash equilibrium (σ1, σ2) and any

s ∈ Sn we obtain

σ1(s) = 0 ⇒ σ2(s− k) = 0 ⇒ σ1(−s+ k) = 0

and

σ1(−s + k) = 0 ⇒ σ2(−s) = 0 ⇒ σ1(s) = 0.

Analogously, for player 2, we obtain

σ2(s) = 0 ⇒ σ1(−s) = 0 ⇒ σ2(−s− k) = 0

and

σ2(−s− k) = 0 ⇒ σ1(s+ k) = 0 ⇒ σ2(s) = 0.

Proof of Lemma 3. (i) First, let s ∈ Sn be such that supp(σ1) ∩ I(s) = ∅.

By Lemma B.1(ii), −s − (m + 1)k /∈ BR2(σ1) for all 0 ≤ m ≤ n/d − 1. As

{−s− (m+1)k|0 ≤ m ≤ n/d− 1} = I(−s) we obtain BR2(σ1)∩ I(−s) = ∅.

Next, let s ∈ Sn be such that supp(σ2) ∩ I(s) = ∅. By Lemma B.1(i),

−s − mk /∈ BR1(σ2) for all 0 ≤ m ≤ n/d − 1. As {−s − mk|0 ≤ m ≤

n/d− 1} = I(−s) we obtain BR1(σ2) ∩ I(−s) = ∅.

(ii) If supp(σ−i) ∩ C−i(s) = ∅ for C−i(s) ∈ C−i(S
n), then, since C−i(s) =

{s,−s+(−1)i−1k}, by Lemma B.1(i) and (iii), −s, s+(−1)i−1k /∈ BRi(σ−i).

Hence BRi(σ−i) ∩ Ci(−s) = ∅.
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The following Lemma B.2 establishes that iso-circulant games fulfill hy-

pothesis (c) in Proposition 5 and is used in the proofs of Theorem 1 and

Proposition 3.

Lemma B.2. Let Γn be an iso-circulant game in which both players’ payoff

matrices are anti-circulant. For every s ∈ Sn, there is a Nash equilibrium

(σ1, σ2) such that supp(σ1) = I(s) and supp(σ2) = I(−s).

Proof. Given s ∈ Sn, define σ1(s) = d/n for all s ∈ I(s) and σ2(s) = d/n

for all s ∈ I(−s). By construction supp(σ1) = I(s) and supp(σ2) = I(−s).

By Lemma 3(i), no strategy outside I(s) can be a best response for player 1

against σ2 and no strategy outside I(−s) can be a best response for player

2 against σ1. Further, π1(s|σ2) =
∑n/d−1

m=0
d
n
as+s+mk = π1(s

′|σ2) for all s, s′ ∈

I(s) and analogously π2(s|σ1) = π2(s
′|σ1) for all s, s′ ∈ I(−s). Proposition 1

yields that (σ1, σ2) is a Nash equilibrium of Γn.

We are now ready to prove Theorem 1 and Proposition 3.

Proof of Theorem 1. If Γn is an iso-circulant game in which both players’

payoff matrices are anti-circulant then by Lemma 2(i), Lemma 3(i) and

Lemma B.2, Γn and S1 = S2 = I(Sn) as defined in section 3.3.1 then satisfy

the hypotheses of Proposition 5. As |I(Sn)| = d, it follows that Γn has 2d−1

Nash equilibria. If Γn is an iso-circulant game in which both players’ payoff

matrices are circulant, there is a permutation of row vectors that transforms

both players’ payoff matrices into anti-circulant matrices while fixing the first

row in both matrices (Lemma A.1(i)). This permutation, which is essentially

a relabeling of the players’ strategies, does not affect the number of equilibria.

Hence, the proof is complete.

Proof of Proposition 3. Note first that if both players’ payoff matrices are

circulant then by Lemma A.1(i) the game can be transformed into a different

version of the same game in which both players’ payoff matrices are anti-

circulant by a permutation of row vectors. Since such a permutation does

not affect the number of pure strategy Nash equilibria, we assume wlog that

both players’ payoff matrices are anti-circulant.
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To see the “if” part suppose k = n. Then by construction, each class I(s)

is a singleton set and there are n disjoint classes. Hence by Lemma B.2, Γn

has at least n pure strategy Nash equilibria. By Lemma 2(i), in any pure

strategy Nash equilibrium (σ1, σ2), supp(σ1) = I(s) for some s ∈ S and hence

Γn has exactly n pure strategy Nash equilibria.

To prove the “only if” part let Γn have n pure strategy Nash equilibria

and let (s1, s2) be one of them. By Lemma 2(i), I(s1) must be a singleton

set. By construction, I(s1) is a singleton set if and only if k = n.

This proves the first part of the theorem.

To see the second part, note that by construction of the classes I(s) is

a singleton set if and only if k = n for any s ∈ S. Further by Lemma 2(i)

and Lemma B.2, Γn has a pure strategy Nash equilibrium if and only if there

is a singleton equivalence class I(s). Hence, Γn has no pure strategy Nash

equilibrium if and only if k 6= n.

Before we can turn to the proofs of Theorem 2 and Proposition 4 we

require a couple more preliminary lemmata. One hypothesis in Proposition

5 requires the sets S1 and S2 to be partitions of the strategy set. While

this is true by construction for I(Sn) in the case of iso-circulant games, the

following Lemma B.3 shows that the C1(S
n) and C2(S

n) form a partition of

Sn.

Lemma B.3. Let Γn be a counter-circulant game. For i = 1, 2 the set Ci(S
n)

is a partition of Sn.

Proof. We will prove the result for i = 1 as the proof for i = 2 works

analogously. Since s ∈ C1(s) for all s ∈ Sn, it follows that
⋃

s∈Sn C1(s) = Sn.

If there is s ∈ C1(s) ∩ C1(s
′) for some s, s′ ∈ Sn, then then since s ∈ C1(s)

either s = s or s = −s + k. If s = s then Ci(s) = Ci(s). If s = −s + k

then −s + k = s − k + k = s. In any case it follows that C1(s) = C1(s).

Using the same argument one obtains C1(s) = C1(s
′) and hence that C1(s) =

C1(s
′).

The following Lemma B.4 establishes that counter-circulant games fulfill

property (c) in Proposition 5.
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Lemma B.4. Let Γn be a counter-circulant game in which player 1’s payoff

matrix is anti-circulant and let σ = (σ1, σ2) ∈ Σ1 × Σ2.

(i) Ci(s) is a singleton set if and only if C−i(−s) is a singleton set.

(ii) For every s ∈ Sn, there is a Nash equilibrium (σ1, σ2) such that supp(σ1) =

C1(s) and supp(σ2) = C2(−s).

Proof. (i) Suppose that Ci(s) is a singleton. By construction, s ≡ −s +

(−1)i−1k mod n which is equivalent to −s ≡ s+(−1)ik mod n. This holds

if and only if C−i(−s) is a singleton.

(ii) Note that this follows from (i) and Lemma 3(ii) if C1(s) is a singleton

set. Hence, suppose that C1(s) = {s,−s + k} contains two elements. Then,

by (i), C2(−s) = {−s, s − k} contains two elements and neither 2s = k

nor 2s = n + k. Choose σ1(s) as the solution to xa2−2s + (1 − x)a2−k =

xa2−k + (1− x)a22s−2k, i.e.

σs
1(s) =

a22s−2k − a2n−k

a22s−2k − a2n−k + a2n−2s − a2n−k

.

By definition a2n−k is player 2’s largest payoff implying that a22s−2k−a2n−k < 0

since 2s 6= n+k and that a2n−2s−a2n−k < 0 since 2s 6= k. Hence σ1(s) ∈]0, 1[.

Choose σs
2(−s) as the solution to xa10+(1−x)a12s−k = xa1−2s+k+(1−x)a10,

i.e.

σs
2(−s) =

a10 − a12s−k

a10 − a12s−k + a10 − a1−2s+k

.

By definition a10 is player 1’s largest payoff. Hence as 2s 6= k a10 − a12s−k > 0

and a10 − a1−2s+k > 0 implying that σ2(−s) ∈]0, 1[. By Lemma 3(ii) and

Proposition 1, (σ1, σ2) is a Nash equilibrium.

The set C1(S
n) is a partition of the strategy set for player 1 while C2(S

n)

is a partition of the strategy set for player 2. By Lemma 3(ii) a class C1(s) of

player 1 “corresponds” to a class C2(−s) of player 2 in the sense that if player

1 puts probability 0 on all strategies in C1(s) then none of the strategies in

C2(−s) are a best response for player 2 and vice versa. Part (i) of Lemma B.4

states that two corresponding classes contain the same number of elements.
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By (ii) for every class C1(s) there is always a Nash Equilibrium such that

player 1’s strategy has this class as its support while player 2’s strategy has

support C2(−s). The equilibrium constructed to prove (ii) is such that player

1 chooses his strategy (with support C1(s)) such that player 2 is indifferent

between all strategies in C2(−s) (and vice versa). As Γn is a non-degenerate

game, by Proposition 2(ii) this is the unique equilibrium (σ1, σ2) such that

supp(σ1) = C1(s) and supp(σ2) = C2(−s).

We are now ready to prove Theorem 2 and Proposition 4.

Proof of Theorem 2. If Γn is a counter-circulant game in which player 1’s

payoff matrix is anti-circulant and player 2’s payoff matrix is circulant then

by Lemma B.3, C1(S
n) and C2(S

n) as defined in section 3.3.1 are partitions

of Sn. Further, by Lemma B.4(i), |C1(S
n)| = |C2(S

n)| and by Lemmata

2(ii), 3(ii), and B.4(ii), Γn, S1 = C1(S
n), and S2 = C2(S

n) satisfy properties

(a)-(c) in Proposition 5 and hence Γn has 2|C1(Sn)| − 1 Nash equilibria.

To prove (i)-(iii) it hence suffices to determine |C1(S
n)|. Note that any

class C1(s) contains either one or two elements. It contains one element if

and only if −s+k ≡ s which occurs if and only if either 2s = k or 2s = n+k.

Further, there are at most two singleton classes.

(i) If n is odd, then either n− k is odd (if k is even) or 2n− k is odd (if

k is odd). Hence there is one singleton class in C1(S
n) and since all other

elements of C1(S
n) contain two elements, |C1(S

n)| = (n−1)/2+1 = (n+1)/2.

(ii) If both n and k are even, then both k and n+k are even and k/2, (n+

k)/2 ∈ Sn. Hence there are two singleton classes in C1(S
n) and since all other

elements of C1(S
n) contain two elements, |C1(S

n)| = (n−2)/2+2 = (n+2)/2.

(iii) If n is even and k is odd, then n+k is odd and hence neither k/2 ∈ Sn

nor (n+ k)/2 ∈ Sn. Hence there is no singleton class and hence all elements

of C1(S
n) contain 2 elements, implying that |C1(S

n)| = n/2 = n/2.

If Γn is a counter-circulant game in which player 1’s payoff matrix is

circulant and player 2’s payoff matrix is anti-circulant, there is a permutation

of row vectors that transforms player 1’s payoff matrix into an anti-circulant

matrix. Applying the same permutation of row vectors to player 2’s payoff

matrix yields a different version of the same game in which strategies are
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differently labeled and player 1’s payoff matrix is anti-circulant and player

2’s payoff matrix is circulant (Lemma A.1(ii)). This permutation does not

affect the number of Nash equilibria and hence the proof of Theorem 2 is

complete.

Proof of Proposition 4. Note first that if player 1’s payoff matrix is circulant

then by Lemma A.1(i) the game can be transformed into a different version

of the same game in which player 1’s payoff matrix is anti-circulant by a

permutation of row vectors. Since such a permutation does not affect the

number of pure strategy Nash equilibria, we assume wlog that player 1’s

payoff matrix is anti-circulant.

(i) By Lemmata 2(ii) and B.4(ii), Γn has one pure strategy Nash equi-

librium if and only if one of the classes C1(s) is a singleton set, which by

construction happens if and only if n is odd.

(ii) By Lemmata 2(ii) and B.4(ii), Γn has two pure strategy Nash equi-

libria if and only if two of the classes C1(s) are singleton sets, which by

construction happens if and only if both n and k are even.

(iii) By Lemmata 2(ii) and B.4(ii), Γn has no pure strategy Nash equi-

librium if and only if none of the classes C1(s) is a singleton set, which by

construction happens if and only n is even and k is odd.

Finally, we prove Lemma 4.

Proof of Lemma 4. (i) To see the first part, let M =
⋃m

j=1 I(s
j) be a union of

elements of I(Sn). By Lemma 2(i) and Lemma B.2, Γn and S1 = S2 = I(Sn)

as defined in section 3.3.1 then satisfy the hypotheses of Proposition 5. Hence,

there is a unique Nash equilibrium (σ1, σ2) with supp(σ1) = M .

To prove the second part, let (σ1, σ2) be a Nash equilibrium. By Lemma

2(i), supp(σ1) is a union of elements in I(Sn).

(ii) Too see the first part, let M =
⋃m

j=1C1(s
j) be a union of elements

of C1(S
n). By Lemma B.3, C1(S

n) and C2(S
n) as defined in section 3.3.1

are partitions of Sn. Further, by Lemma B.4(i), |C1(S
n)| = |C2(S

n)| and by

Lemma 2(ii), Lemma 3(ii), and B.4(ii), Γn, S1 = C1(S
n), and S2 = C2(S

n)
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satisfy properties (a)-(c) in Proposition 5. It follows that there is a unique

Nash equilibrium (σ1, σ2) with supp(σ1) = M .

To prove the second part, let (σ1, σ2) be a Nash equilibrium. By Lemma

2(ii), supp(σ1) is a union of elements in C1(S
n).
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Appendix 3.C: Tables

Table 3.1: Examples of iso-circulant games.

Matching Pennies Rock-Paper-Scissors 4× 4 Coordination

Matrix Player 1
(

1 −1
−1 1

)

(

3 2 1
2 1 3
1 3 2

)





5 4 3 2
4 3 2 5
3 2 5 4
2 5 4 3





Matrix Player 2
(

−1 1
1 −1

)

(

1 2 3
2 3 1
3 1 2

)





5 4 3 2
4 3 2 5
3 2 5 4
2 5 4 3





Shift k 1 1 4
gcd(n, k) 1 1 4
Number of Equilibria 1 1 15

Equivalence Classes I(0)={0} I(0)={0} I(0)={0}
I(1)={1} I(1)={1} I(1)={1}

I(2)={2} I(2)={2}
I(3)={3}

Nash Equilibria

Pure s1 = 0, s2 = 0
s1 = 1, s2 = 3
s1 = 2, s2 = 2
s1 = 3, s2 = 1

Support 2 Classes σ1 = (1/2, 1/2) σ1 = (1/4, 3/4, 0, 0)
σ2 = (1/2, 1/2) σ2 = (3/4, 0, 0, 1/4)

σ1 = (1/2, 0, 1/2, 0)
σ2 = (1/2, 0, 1/2, 0)

σ1 = (3/4, 0, 0, 1/4)
σ2 = (1/4, 3/4, 0, 0)

σ1 = (0, 1/4, 3/4, 0)
σ2 = (0, 0, 1/4, 3/4)

σ1 = (0, 1/2, 0, 1/2)
σ2 = (0, 1/2, 0, 1/2)

σ1 = (0, 0, 1/4, 3/4)
σ2 = (0, 1/4, 3/4, 0)

Support 3 Classes σ1 = (1/3, 1/3, 1/3) σ1 = (1/4, 1/4, 1/2, 0)
σ2 = (1/2, 1/3, 1/3) σ2 = (1/2, 0, 1/4, 1/4)

σ1 = (1/4, 1/2, 0, 1/4)
σ2 = (1/4, 1/2, 0, 1/4)

σ1 = (1/2, 0, 1/4, 1/4)
σ2 = (1/4, 1/4, 1/2, 0)

σ1 = (0, 1/4, 1/4, 1/2)
σ2 = (0, 1/4, 1/4, 1/2)

Support 4 Classes σ1 = (1/4, 1/4, 1/4, 1/4)
σ2 = (1/4, 1/4, 1/4, 1/4)
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Table 3.2: Examples of counter-circulant games.

Example 4 Example 5

Matrix Player 1





4 3 2 1
3 2 1 4
2 1 4 3
1 4 3 2













5 4 3 2 1
4 3 2 1 5
3 2 1 5 4
2 1 5 4 3
1 5 4 3 2









Matrix Player 2





1 4 3 2
2 1 4 3
3 2 1 4
4 3 2 1













3 2 1 5 4
4 3 2 1 5
5 4 3 2 1
1 5 4 3 2
2 1 5 4 3









Shift k 3 2
n 4 5
Number of Equilibria 3 7

Equivalence Classes

Player 1
Singleton C1(1) = {1}

2 Elements C1(0) = C1(3) = {0, 3} C1(0) = C1(2) = {0, 2}
C1(1) = C1(2) = {1, 2} C1(3) = C1(4) = {3, 4}

Player 2
Singleton C2(4) = {4}

2 Elements C2(0) = C2(1) = {0, 1} C2(0) = C2(3) = {0, 3}
C2(2) = C2(3) = {2, 3} C2(1) = C2(2) = {0, 3}

Nash Equilibria

Pure s1 = 1, s2 = 4

Support 1 Class mixed σ1 = (1/4, 0, 0, 3/4) σ1 = (3/5, 0, 2/5, 0, 0)
σ2 = (1/4, 3/4, 0, 0) σ2 = (3/5, 0, 0, 2/5, 0)

σ1 = (0, 3/4, 1/4, 0) σ1 = (0, 0, 0, 4/5, 1/5)
σ2 = (0, 0, 1/4, 3/4) σ2 = (0, 1/5, 4/5, 0, 0)

Support 2 Classes σ1 = (1/4, 1/4, 1/4, 1/4) σ1 = (3/5, 1/5, 1/5, 0, 0)
σ2 = (1/4, 1/4, 1/4, 1/4) σ2 = (3/5, 0, 0, 1/5, 1/5)

σ1 = (1/5, 0, 2/5, 1/5, 1/5)
σ2 = (1/5, 1/5, 1/5, 2/5, 0)

σ1 = (0, 2/5, 0, 2/5, 1/5)
σ2 = (0, 1/5, 2/5, 0, 2/5)

Support 3 Classes σ1 = (1/5, 1/5, 1/5, 1/5, 1/5)
σ2 = (1/5, 1/5, 1/5, 1/5, 1/5)
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4.1 Introduction

The concept of preference is of fundamental importance for decision theory

and economic analysis. Yet, preferences are not a primitive but a derived

object which structures choices as long as they exhibit some basic consistency,

e.g. in the form of the weak axiom of revealed preference. If choices are

consistent, a number of elementary predictions can be derived, which form the

basis for decision theory, microeconomics, consumer research, and judgment

and decision making. One such prediction is that choices should agree with

valuations: if a decision maker chooses one option over another, he should

value the former more than the latter.

This common-sense prediction is at odds with observed decisions under

risk. The preference reversal phenomenon, first documented in psychology by

Slovic and Lichtenstein (1968) and Lindman (1971), describes a situation in

which participants are asked to state monetary valuations for a series of lot-

teries (usually through minimum selling prices), and separately choose from

pairs of those lotteries. The pairs consist of a P -bet, which has a high prob-

ability of paying a moderate amount of money, and a $-bet , which has a low

probability of paying a high amount of money. A preference reversal occurs

if either the P -bet is chosen from a pair in which the $-bet is priced higher

or the $-bet is chosen from a pair in which the P -bet is priced higher. The

preference reversal phenomenon is characterized by a high rate of reversals

of the first type (between 40 and 80 percent in most experiments), which are

called predicted reversals. Reversals of the second type, termed unpredicted,

are less frequent (between 5 and 30 percent). The asymmetry between both

types of reversals is especially problematic, for, if reversals were due to e.g.

participants’ errors, one should expect similar numbers of both types. In
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other words, while one could explain away unpredicted reversals as noisy ob-

servations, predicted reversals remain a serious challenge to basic economic

analysis.

It is no surprise that preference reversals have received a great deal of

attention in the last half century. After the first replication in economics by

Grether and Plott (1979), a large number of experimental and theoretical

studies has shown that the phenomenon is extremely stable. It has been

replicated in various ways using hypothetical and real payments, different

payment schemes, and different elicitation methods for lottery prices (for a

survey, see e.g. Seidl, 2002). Preference reversals of this particular form have

been documented beyond lottery choice, e.g. in the field of health utility

measurements (Stalmeier, Wakker, and Bezembinder, 1997; Bleichrodt and

Pinto Prades, 1994; Oliver, 2013). They have also been shown to be relevant

for decision making under ambiguity (Maafi, 2011; Trautmann, Vieider, and

Wakker, 2011; Ball, Bardsley, and Ormerod, 2012). Furthermore, other forms

of inconsistencies between different preference elicitation methods have been

established in the literature, including reversals between pricing and rat-

ing (Schkade and Johnson, 1989) as well as discrepancies between certainty

and probability equivalents (Hershey and Schoemaker, 1985; Johnson and

Schkade, 1989; Delquié, 1993). In addition to their conceptual importance

for decision analysis, these phenomena are of great relevance for applied eco-

nomics, since they cast doubts on the validity of e.g. consumer valuations,

and, accordingly, on demand estimations and policy decisions based on those

valuations.

The present research provides new evidence on the determinants of pref-

erence reversals. We propose a simple, process-based model which predicts

the observed pattern of reversals. Specifically, we disentangle the causes be-

hind the existence of reversals and their asymmetry, i.e. the predominance of

predicted preference reversals. The key determinant behind the existence of

reversals of both types is the presence of noise in the evaluation phase, or,

in other words, imprecise preferences (Schmidt and Hey, 2004; Butler and

Loomes, 2007). The asymmetry of reversals, on the other hand, is caused by

an overpricing phenomenon due to anchoring of evaluations on the largest
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monetary outcomes of a lottery (Tversky, Sattath, and Slovic, 1988; Tversky,

Slovic, and Kahneman, 1990). This phenomenon is itself a consequence of

the cardinal/monetary framing of the evaluation phase.

Received evidence on preference reversals could potentially be explained

by a number of alternative, “as if” models. Our model, however, delivers

additional, testable predictions on decision times. In particular, choices as-

sociated to reversals of either type are predicted to be slower than corre-

sponding non-reversals. Measuring decision times hence allows us to put our

model to a more stringent test than if we relied on choice data only, and we

consequently do so in two experiments.1

Our first experiment confirmed the predictions of the model, both for

choices and decision times. We established the basic effects using different

payment methods to incentivize pricing tasks. Specifically, we employed the

BDM procedure (Becker, DeGroot, and Marschak, 1964) and an ordinal pay-

ment scheme (Goldstein and Einhorn, 1987; Tversky, Slovic, and Kahneman,

1990; Cubitt, Munro, and Starmer, 2004). The aim of our second experiment

was to disentangle the two causes of preference reversals. To do so, we set

out to eliminate the overpricing phenomenon by moving away from cardinal

elicitation tasks. Instead, we employed two different ranking methods (plus

a control BDM replication), one with a price framing, and one where we

carefully removed all references to prices. In terms of our model, eliminating

overpricing in the lottery evaluation phase should reduce the occurrence of

predicted reversals should be reduced. However, the basic predictions for de-

cision times remain unaffected as they arise from the assumption of noise in

the evaluation phase only. As hypothesized, predicted reversals were greatly

reduced, but decisions times associated with reversals remained significantly

1The measurement of decision times or response times is a standard tool in psychology
(see, e.g., Bargh and Chartrand, 2000). To our knowledge, the first studies employing them
in economics were those of Wilcox (1993, 1994), who related them to decision costs in the
context of risky choice. Decision times were also used by Moffatt (2005) relying on risky-
choice data from Hey (2001). More recently, Piovesan and Wengström (2009) measured
response times in a dictator game. Rubinstein (2007) advocated the measurement of
decision times in large-scale, web-based experiments to better understand the process of
reasoning behind economic decisions. Achtziger and Alós-Ferrer (2013) measured response
times within a Bayesian-updating paradigm in order to study intuitive decision making in
economic contexts.
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longer than those associated with non-reversals.

Our research also delivers additional theoretical and methodological in-

sights. A first, interesting prediction was unexpected before the development

of the model. On the basis of our assumptions, we are able to prove that

decisions where the riskier $-bet is chosen without giving rise to a reversal

should be slower than those non-reversals where the P -bet is chosen. This

nontrivial prediction arises as a consequence of the conjunction of impre-

cise preferences and the overpricing phenomenon, and hence was predicted

for (and observed in) the first experiment but not for the second. A fur-

ther, striking observation was that choices in the treatment with unframed

ranking-based evaluations were much faster than those in other treatments,

in spite of the fact that choice phases were identical across treatments. This

fact has a simple process-based explanation within our model. Last, our

design specifically allowed comparing the number of preference reversals oc-

curring when prices are elicited before the choice phase to the number of

preference reversals occurring when prices are elicited after the choice phase.

This comparison was motivated by evidence from psychology (see Section

4.2.3 below) indicating that choices might sharpen and even modify previ-

ously imprecise preferences. In agreement with this literature, we show that

ordering effects, although small, are present in the measurement of reversals.

The remainder of the paper is organized as follows. Section 4.2 spells

out our model and derives its predictions and corresponding experimental

hypotheses. Sections 4.3 and 4.4 describe the first and second experiments

and their results, respectively. Section 4.5 concludes.

4.2 A Simple Model of Preference Reversals

and Decision Times

In this section we present our formal model, which is meant to be as simple

as possible. We first state and discuss the underlying assumptions, and

then derive a number of predictions concerning preference reversals and the

associated decision times.
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The building blocks of our model are grounded on received evidence from

the literature on preference reversals. First, evidence by Schmidt and Hey

(2004) suggested that part of the preference reversal phenomenon might be

due to pricing errors, while choice errors play a minor role. Butler and

Loomes (2007) found that subjects in preference reversal experiments ex-

hibit imprecise monetary valuations of lotteries.2 Our model incorporates

these observations by assuming a noisy evaluation phase, in comparison to

a relatively noise-free choice phase. Second, we rely on the compatibility

hypothesis proposed by Tversky, Sattath, and Slovic (1988) and further in-

vestigated by Tversky, Slovic, and Kahneman (1990), according to which

attributes that naturally map onto the evaluation scale are given predomi-

nant weight in the evaluation phase. Since the evaluation scale usually refers

to prices, the monetary outcomes of the lotteries might anchor valuations,

giving rise to an overpricing of the $-bet, where a large monetary outcome is

salient.3

4.2.1 Model and Rationale

We consider a choice between a P -bet and a $-bet and the pricing decisions

for both bets. Let uP and u$ denote the “true” utilities of the P -bet and the $-

bet, respectively. Denote by CEP and CE$ the elicited certainty equivalents

of the P -bet and the $-bet, respectively.

Relying on evidence by Schmidt and Hey (2004) and Butler and Loomes

(2007), we assume that the price elicitation phase is noisier than the choice

phase. This is formalized in two parts. The first assumption states that the

pricing of lotteries is a noisy process.

2See Blavatsky (2009) for a formal model focused on those findings.
3Tversky, Slovic, and Kahneman (1990) used a design with additional choices between

the bets and cash amounts and showed that at least part of the predicted reversals arise
because of an overpricing of $-bets. Tversky, Sattath, and Slovic (1988) also proposed
the prominence hypothesis, which assumes a bias in the choice stage rather than in the
evaluation stage (see also Fischer, Carmon, Ariely, and Zauberman, 1999). Cubitt, Munro,
and Starmer (2004) investigated a number of alternative hypotheses including prominence
and compatibility and dismissed each of them in isolation, concluding that a combination
of hypotheses would be a more reasonable explanation of their findings.
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Assumption 1. CEP = uP + ζP and CE$ = u$ + ζ$, where ζP and ζ$ are

independent error terms with everywhere positive density functions.4

In contrast, the choice phase should be comparatively noise-free. For sim-

plicity, the second assumption postulates that choices follow the underlying

utilities. Write c(P, $) = P if the P -bet was chosen in the choice task and

c(P, $) = $ if the $-bet was chosen.

Assumption 2. c(P, $) = P whenever up > u$ and c(P, $) = $ whenever

up < u$.

The main element of our model relies on the compatibility hypothesis

(Tversky, Sattath, and Slovic, 1988; Tversky, Slovic, and Kahneman, 1990).

It implies that, when pricing lotteries, it is likely that subjects focus their

attention on the salient monetary outcomes. Since the $-bet yields a large

outcome with moderate probability and the P -bet pays a moderate outcome

with high probability, subjects will tend to state a higher price for the $-bet.

This overpricing phenomenon can be captured by simply assuming a strictly

positive mean for the error term associated with the valuation of the $-bet.

Assumption 3. There is a tendency to overprice the $-bet, i.e. E[ζ$] = K >

0 but E[ζP ] = 0. Further, the densities of ζP and ζ$ are symmetric around

the means and unimodal.5

It is a well-established fact that decision times reflect preferences in the

sense that hard choices, where the decision maker is close to being indif-

ferent, results in longer decision times than easy choices, where one option

is clearly better (Wilcox, 1993; Shultz, Léveillé, and Lepper, 1999; Moffatt,

2005; Chabris, Laibson, Morris, Schuldt, and Taubinsky, 2009; Sharot, De-

Martino, and Dolan, 2009; Alós-Ferrer, Granić, Shi, and Wagner, 2012). To

model this effect in a simple way, we postulate that the choice time DTC only

4The second part of the assumption is for technical convenience. The analysis goes
through, with more cumbersome proofs, if the error terms have bounded support.

5A density function is unimodal with mode m if it is nondecreasing for all x < m and
nonincreasing for all x > m. For example, normally distributed error terms fulfill our
assumptions.
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depends on the utility difference |uP − u$|. To avoid unnecessarily compli-

cating the model, we make the simplifying assumption that decisions are of

two kinds, easy and hard. Easy decisions correspond to utility pairs (up, u$)

such that |uP − u$| ≥ δ for some δ > 0, while utility pairs (up, u$) with

|uP − u$| < δ lead to hard decisions. Denote by TE = E[DTC | |uP − u$| ≥ δ]

and TH = E[DTC | |uP −u$| < δ] the expected choice times for easy and hard

decisions, respectively. The next assumption captures the idea that choice

decisions in which a subject is close to indifference between two items are

harder than “obvious” choices.

Assumption 4. Hard choices take longer than easy choices, i.e. TH > TE.

Our assumptions are meant to reflect the basic principles involved in

preference reversal experiments without unnecessarily complicating the ex-

position and the analysis. Of course, one could postulate more involved

formulations, as e.g. a continuously monotonic relation between choice times

and closeness to indifference. The next section shows that the simple versions

postulated above are enough to provide testable hypotheses.

4.2.2 Predictions

In preference reversal experiments, results refer to a relatively large num-

ber of evaluation and choice decisions. Systematic biases are avoided, e.g.

by offering choices between lotteries of similar expected values, or counter-

balancing the difference in expected values across pairs. Hence, to obtain

experimental hypotheses, it is reasonable to treat the utilities u$ and uP as

random variables. Specifically, we assume that the utilities of the lotteries in

an experiment are drawn from i.i.d. continuous random variables with some

fixed distribution. Since, in our model, both choices and decision times are

assumed to depend on utility differences only, the analysis relies on the dis-

tribution of uP − u$. We assume that this distribution has an everywhere

positive density h.6

6Since uP and u$ are i.i.d, uP − u$ and u$ − uP have the same distribution. If the
distribution of uP and u$ has density v then h = (v ∗ v−), where v−(s) = v(−s) for all s
and the symbol ∗ denotes the convolution operator.
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Our model makes four predictions which can be experimentally tested.

The first one concerns a well-established observation in the literature, namely

that predicted reversals are more frequent than unpredicted ones.

Proposition 1. Under Assumptions 1, 2, and 3,

(i) there are more predicted than unpredicted preference reversals, i.e

Pr(CE$ > CEP , c(P, $) = P ) > Pr(CEP > CE$, c(P, $) = $);

(ii) and the reversal rate is higher for predicted preference reversals than for

unpredicted preference reversals, i.e. Pr(CE$ > CEP |c(P, $) = P ) >

Pr(CEP > CE$|c(P, $) = $).

The intuition for this result is straightforward. Both kinds of reversals re-

sult from noise in the evaluation phase shifting the evaluations of the lotteries

in opposite directions. A reversal occurs when, due to noisy realizations, the

evaluation ranking is reversed with respect to the one derived from utilities.

The overpricing phenomenon helps produce predicted reversals: initially, the

$-bet is ranked lower than the P -bet (u$ < uP ), but overpricing tends to

shift the valuation of the $-bet higher than that of the P -bet. Overpricing,

however, makes unpredicted reversals harder: the $-bet is initially ranked

higher and overpricing tends to increase its evaluation with respect to the

P -bet even more.

We can reformulate the predictions arising from the last proposition

straight away as experimental hypotheses.

H1a. The average number of predicted preference reversals per subject is

larger than the average number of unpredicted reversals.

H1b. The average rate of predicted reversals (i.e. percentage of reversals

over all P -choices) per subject is larger than the average rate of unpredicted

reversals (i.e. percentage of reversals over all $-choices).

These predictions fit received evidence in the literature on preference

reversals, and are hence a first validation of the model. We will, of course,

also test them with our own data. The added value of the model, however,

is given by the following, novel predictions, which concern decision times
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in the choice task. The first refers to decision times in “conflict situations”

as compared to those in “non-conflict situations”, i.e. for choices leading to

preference reversals vs. choices not leading to preference reversals.

Proposition 2. Let DTC denote the decision time in the choice phase. Un-

der Assumptions 1, 2, and 4,

(i) the decision time for a P -bet leading to a preference reversal is longer

than the decision time for a P -bet that does not lead to a preference

reversal, i.e. E[DTC |CE$ > CEP , c(P, $) = P ] > E[DTC |CEP >

CE$, c(P, $) = P ];

(ii) and the decision time for a $-bet leading to a preference reversal is

longer than the decision time for a $-bet that does not lead to a prefer-

ence reversal, i.e. E[DTC |CEP > CE$, c(P, $) = $] > E[DTC |CE$ >

CEP , c(P, $) = $].

The intuition for this result is again simple. Since the origin of reversals

lies in the noise arising in the evaluation process, it is clear that reversals

are more likely when utilities were close, and hence errors in the evaluation

phase are more likely to reverse the order of the lotteries. Decisions where

utilities are close are comparatively harder and hence take longer. In other

words, reversals are more likely to involve hard choices than non-reversals,

which leads to longer decision times.

This proposition translates into the following experimental hypotheses.

H2a. The average decision time for predicted preference reversals is longer

than the average decision time for comparable non-reversals (i.e. non-reversals

where the P -bet is chosen).

H2b. The average decision time for unpredicted preference reversals is

longer than the average decision time for comparable non-reversals (i.e. non-

reversals where the $-bet is chosen).

The next prediction is orthogonal to preference reversals. At the same

time, it represents an a priori unexpected feature of the model and is hence

especially valuable for its validation. It concerns decision times when the
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$-bet was chosen given that it was priced higher compared to decision times

when the P -bet was chosen given that it was priced higher.

Proposition 3. Under Assumptions 1, 2, 3, and 4, the decision time for a $-

bet that does not lead to a preference reversal is longer than the decision time

for a P -bet that does not lead to a preference reversal, i.e. E[DTC |CE$ >

CEP , c(P, $) = $] > E[DTC |CEP > CE$, c(P, $) = P ].

This result seems less intuitive. On the one hand, under overpricing, it is

more likely that $-bets will be priced higher than P-bets than the other way

around. Hence, the probability that a hard (slow) $-bet-choice will result

in a non-reversal is larger than the probability that a hard P -bet-choice will

result in a non-reversal. On the other hand, an easy (fast) $-bet-choice is also

more likely to result in a non-reversal than an easy P -bet-choice. The reason

for this is that in the first case u$ > up and overpricing pushes the evaluations

further apart, while in the second case u$ < up and overpricing pushes the

evaluations together. Proposition 3 holds because the relative likelihood for

a hard choice to lead to a non-reversal compared to the likelihood for an easy

choice to lead to a non-reversal is larger for $-bets than for P-bets.7

This result leads to our next experimental prediction.

H3. The average decision time for non-reversals where the $-bet is chosen

is longer than the average decision time for non-reversals where the P -bet is

chosen.

4.2.3 Order Effects and Preference Reappraisal

Preference-reversal experiments include a pricing/evaluation phase and a

choice phase. Up to date, the literature has remained silent on order ef-

fects, i.e. on whether there is any difference between experiments where the

choice phase precedes the evaluation phase, and experiments where the or-

der of the tasks is the opposite. Preference reversals have been established

in experiments using either of the two possible orderings.

7In particular, the arguments in the proof of this result hold only for non-reversals. No
analogous version of Proposition 3 for reversals can be established.
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We argue, however, that order effects need to be taken into account. The

reason is that, as discussed above, imprecise preferences have been identified

as one of the factors driving preference reversals. If preferences are impre-

cise, a large literature in psychology indicates that they might become more

precise, or be generally altered, by the mere act of making choices. In the

classical Free-Choice Paradigm (Brehm, 1956), subjects first face a rating

(ranking) task, then a choice task, and finally another rating (ranking) task

identical to the first one. The chosen options are usually evaluated more pos-

itively in the second rating (ranking) task while the options that were not

chosen tend to be evaluated more negatively.8 According to Cognitive Dis-

sonance Theory (Festinger, 1957), this happens because in the reevaluation

phase subjects attempt to reduce the tension between the negative aspects

of a chosen option and the positive aspects of an option that was not chosen.

Self-Perception Theory (Bem, 1967), on the other hand, attributes this phe-

nomenon to the fact that subjects learn their preferences better by making

choices and hence ratings (rankings) in the second phase more closely re-

semble the “true preferences”. This raises the question of whether preference

reversals are affected by the order of valuation and choices. More precisely, if

preference reappraisal occurs during the choice phase, there should be fewer

preference reversals if the valuation task follows the choice task. This yields

an additional hypothesis.

H4. Preference reversals are reduced if the valuation task follows the choice

task, compared to the opposite ordering.

More generally, and in view of the discussion above, our expectation was

that effects would in general be more clear when considering post-choice

evaluations than when relying on pre-choice ones. For example, if one relies

on self-perception theory, classifying choices as reversals or non-reversals on

the basis of pre-choice evaluations will result in some false classifications,

effectively adding more noise to all measurements. However, since preference

reversals have been established in the literature using both possible task

8Although this classical task has recently been shown to be affected by statistical
biases, improved versions of the task have meanwhile re-established the basic effect. See
e.g. Alós-Ferrer, Granić, Shi, and Wagner (2012).

133



Chapter 4

Preference Reversals: Time and Again

orderings, we expected order effects to be subtle. The difference should be

more clear for unpredicted reversals, because, if those are purely due to noise,

any reduction of noise in the evaluation task should eliminate at least part

of them.

Finally, it should be noted that there is evidence from fMRI (Jarcho,

Berkman, and Lieberman, 2011) as well as response time studies (Alós-Ferrer,

Granić, Shi, and Wagner, 2012) indicating that preference reappraisal and

process conflict resolution in the Free-Choice Paradigm occur during the

choice phase. Incorporating this additional observation into our model would

not affect our predictions, as discussed in the next subsection.

4.2.4 Process Conflict and Decision Times

In psychological terms, the compatibility hypothesis suggests that several

decision processes might be at work when choosing from a pair of lotteries.

Overpricing might result from a process focusing on monetary outcomes only,

which competes with a more global decision process that evaluates lotteries

by taking both outcomes and winning probabilities into account.

Taking the process view into account is important because this view deliv-

ers standard predictions regarding process data (specifically, decision times).

According to dual-process models from psychology (Schneider and Shiffrin,

1977; Strack and Deutsch, 2004; Rottenstreich, Sood, and Brenner, 2007;

Evans, 2008; Weber and Johnson, 2009; Alós-Ferrer and Strack, 2013) de-

cision processes can be either automatic and fast, corresponding to quick

heuristics, or controlled and slow. In our interpretation, overpricing should

result from an automatic (impulsive) process, while a more global valuation

should be associated with a more cognitive, controlled process. The quick

“look-at-monetary-outcomes” process is more prevalent in the pricing task

and causes an overpricing of the $-bets. We hypothesize that this process is

also active in the choice task, but there it is often inhibited, which leads to

a choice causing a preference reversal.

A basic prediction of dual-process models is that inhibiting automatic

processes costs time and cognitive resources. More generally, conflict de-
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tection and resolution is time consuming, that is, decision times are longer

when several processes conflict than when processes are aligned. If reversals

result from an automatic process which affects the pricing of lotteries but is

inhibited in the choice phase, preference reversals should be associated with

longer decision times in the choice phase.

This observation can be incorporated into our model by postulating that

decision times in the choice task, DT , are noisy and consist of two com-

ponents, choice time DTC and conflict resolution time DTR, i.e. DT =

DTC + DTR. The next assumption reflects the considerations above and

concerns conflict resolution time only.

Assumption 5. Conflict resolution is time-consuming, i.e. conflict resolu-

tion time is longer for a reversal than for a comparable non-reversal:

E[DTR|CEP > CE$, c(P, $) = $] > E[DTR|CE$ > CEP , c(P, $) = $] and

E[DTR|CE$ > CEP , c(P, $) = P ] > E[DTR|CEP > CE$, c(P, $) = P ].

How does this assumption affect our predictions? Hypotheses H1a and

H1b do not concern decision times and are hence unaffected. Hypothesis H3 is

equally unaffected since this prediction does not concern preference reversals.

The additional assumption affects the interpretation of Hypotheses H2a and

H2b. Since total decision time is now viewed as the sum of choice time and

conflict resolution time, Proposition 2, which states that choice times are

longer for reversals than for non-reversals, does not directly translate into

experimental hypotheses anymore. However, by Assumption 5, also conflict

resolution time is on average larger for reversals. Hence, both effects are

aligned and Hypotheses H2a and H2b still obtain.

4.3 Experiment 1: Preference Reversals and

Decision Times

The objective of our first experiment was to test the predictions of the model

with regard to both choices and decision times. This would allow us to con-

clude that the combination of imprecise preferences in the evaluation phase
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and an overpricing phenomenon arising from the compatibility hypothesis is

able to explain received evidence on preference reversals while at the same

time fitting novel evidence on process data.

4.3.1 Experimental Design and Procedures

We followed a between-subject design comprised of three independent, con-

secutive single-decision making parts. The first and third phases were evalu-

ation tasks, while the second, intermediate phase contained the choice task.

This way, we can consider two kinds of preference reversals. On the one hand,

we have “Price-Choice Reversals” which occur comparing the evaluations in

the first phase and the choices in the second phase. On the other hand, we

have “Choice-Price Reversals” which occur comparing the evaluations in the

third phase and the choices in the second phase. Each of our Hypotheses

H1 to H3 can be tested either on Price-Choice or Choice-Price reversals (or

non-reversals), and we will report the results for both possibilities, keeping in

mind that we expect clearer results for the Choice-Price ordering. Comparing

both orderings allows us to test Hypothesis H4.

The stimuli were 40 different lotteries, which are presented in Table 4.5

in Appendix 4.B. Each of the pairs in the choice task contained one P -bet

and one $-bet from this set of lotteries, with the former being defined by

a high probability of winning a moderate amount of money and the latter

being defined by a low probability of winning a high amount of money.9

We employed a pricing method for the evaluation of lotteries in phases

1 and 3. In these two pricing tasks participants were asked to state their

minimum selling price for each of the 40 lotteries which were presented se-

quentially in fully randomized order (“State the lowest price for which you

9Of the 20 lottery pairs, pairs 3 to 8 were such that the expected value of the P -bet was
higher than the expected value of the $-bet (with a difference between e1.00 to e3.40).
Pairs 9 to 14, which most closely resemble the ones commonly used in the literature, had
roughly equal expected values. In pairs 15 to 20, the $-bet had a higher expected value
than the P -bet (difference between e1.60 to e4.80). Finally, lottery pairs 1 and 2 were
such that one bet dominated the other strictly and were only included as a basic rationality
check. Only 2 out of 141 subjects chose one of the two strictly dominated lotteries in phase
2. These two lottery pairs are therefore excluded from the analysis.
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are just willing to sell the presented lottery.”). Subjects were only allowed to

state prices between e2 (the lower amount to win) and the higher amount

to win. An example screen display for the pricing tasks is shown in Figure

4.6(a) in Appendix 4.C. The colors in the pie charts (green and blue) were

counterbalanced across subjects. In phase two, the choice task, subjects faced

the 20 lottery pairs sequentially and had to choose the lottery they would

prefer to play out. See Figure 4.6(c) in Appendix 4.C for an example screen

of the choice task. The order of the pairs and the onscreen position of the

P -bet (i.e. left or right) was randomized. For each choice, we recorded the

individuals’ decision times as the time elapsed between the presentation of

the lottery pair and clicking the button (“This lottery”) underneath one of

the two lotteries.

After the three tasks, participants filled in a questionnaire containing var-

ious questions on their statistical knowledge, sociodemographic background,

and personality attitudes.

All three tasks were incentivized. Payoffs were determined independently

for each task after completion of the ex-post questionnaire to prevent spillover

effects between tasks (e.g. through wealth effects). The two treatments in

this experiment, BDM and OrdPM, differed only in the payment scheme

used in the pricing tasks (phases 1 and 3). The former used a BDM payment

scheme (Becker, DeGroot, and Marschak, 1964), and the latter a variant of

the Ordinal Payment Method (Goldstein and Einhorn, 1987; Tversky, Slovic,

and Kahneman, 1990; Cubitt, Munro, and Starmer, 2004). We included

these two treatments to ensure that our results were robust with respect to

the elicitation method.

The two schemes determined the payment in an evaluation task as follows.

In the BDM treatment, after one of the 40 lotteries was picked at random the

computer drew a price from a uniform distribution over the interval ]2, A[,

where A denotes the higher of the two amounts to win. If this price was

higher than or equal to the price stated by the subject, the subject received

this amount. If it was lower, the subject played the lottery and the payment

was the realized outcome of that lottery. This was done separately for each

pricing task. In the OrdPM treatment, two lotteries were chosen at random.
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The more highly priced lottery of the two was then played out and the realized

outcome was the payoff for this phase (in case of a tie, the computer chose

one at random). As in the BDM treatment, this procedure was conducted

separately for the two pricing phases. Note that under the ordinal payment

scheme, the absolute prices do not play a role, but only the induced ordering

matters.

The payment method for the choice task in phase 2 was identical in both

treatments. One of the 20 lottery pairs was picked at random, then the

lottery the subject had chosen from this pair was played out and the realized

outcome of that lottery was the payment for this round. The total payment

a participant received in the experiment was the sum of realized payoffs in

the three decision tasks.

4.3.2 Procedures

Before the experiment started, participants were briefly informed that the

session consisted of three decision tasks, that payment for each task was

partly determined by their decisions and partly by luck, that the tasks were

paid independently of one another and that lotteries from each phase were

not played out before the end of the experiment. In addition, four control

questions had to be answered, using pencil and paper, before the start of the

experiment to ensure that participants understood the concept of a lottery

and its pie chart representation. Detailed instructions about each individual

decision-making task (phase 1 to 3) and how payments would be determined

in each phase were handed to the participants prior to the start of each phase.

The experiment was programmed in z-tree (Fischbacher, 2007). Par-

ticipants were university students with majors other than psychology and

economics. Each student participated in only one session. We conducted

7 sessions with a total of 141 participants (91 female). Of those, 67 were

allocated to the BDM treatment and 74 to the OrdPM treatment. A session

lasted about 2 hours with average earnings of e24.76 in the BDM treatment

and of e23.03 in the OrdPM treatment.
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Table 4.1: Preference reversal rates, Experiment 1.

Treatment Predicted Reversals Unpredicted Reversals

Price-Choice Choice-Price Price-Choice Choice-Price

BDM 48.75 47.20 18.80 8.99

OrdPM 40.96 35.47 17.69 11.14

Note: Predicted (resp. unpredicted) reversal rates computed as percentage of reversals

over all P -bet-choices (resp. $-bet-choices).

4.3.3 Results of Experiment 1

As a first illustration, Table 4.1 contains the average reversal rates in the

BDM and the OrdPM treatments in Experiment 1. The rate of predicted

(unpredicted) reversals is computed as the number of predicted (unpredicted)

reversals divided by the number of P -bet choices ($-bet choices). Figure 4.1

further depicts the average number of preference reversals per participant for

both treatments. It is already apparent from Table 4.1 and Figure 4.1 that

predicted reversals are more frequent than unpredicted reversals, that mea-

suring reversals with respect to post-choice attitudes reduces their quantity,

possibly by reducing noise, and that there might be some minor differences

between treatments. We now proceed to test for these observations and our

experimental hypotheses.

Predicted vs. unpredicted reversals (H1). We conducted two-sided Wil-

coxon Signed-Rank (hereafter WSR) tests to assess whether participants gen-

erated more predicted than unpredicted reversals. Tests were highly signif-

icant both for the BDM (Price-Choice, N = 67, z = 6.060, p < 0.0001;

Choice-Price, N = 67, z = 6.439, p < 0.0001) and the OrdPM treatments

(Price-Choice, N = 74, z = 6.177, p < 0.0001; Choice-Price, N = 74,

z = 5.770, p < 0.0001). This confirms our Hypothesis H1a. To confirm

Hypothesis H1b, we computed the predicted and unpredicted preference re-

versal rates for each subject individually as the percentage of P -bet/$-bet
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Figure 4.1: Average number of reversals per subject, Experiment 1.

Note: Reversals for the Price-Choice (dark bars) and Choice-Price (light bars) task order-

ings. Error bars depict the 95 percent confidence interval.

choices (respectively) resulting in reversals. The rates for predicted rever-

sals were significantly higher than the rates of unpredicted reversals for both

treatments and both possible task orderings (BDM Price-Choice, N = 60,

z = 4.170, p < 0.0001; BDM Choice-Price, N = 60, z = 5.140, p < 0.0001;

OrdPM Price-Choice, N = 69, z = 4.585, p < 0.0001; OrdPM Choice-Price,

N = 69, z = 3.595, p < 0.0005).10

Order effects (H4). In both treatments, there were significantly fewer

unpredicted reversals when prices are elicited after choices (Choice-Price)

than when they are elicited before choices (Price-Choice) according to two-

sided WSR tests (BDM, N = 67, z = −3.487, p < 0.0005; OrdPM, N =

74, z = −2.858, p = 0.004). There were no significant differences in the

number of predicted reversals, although there seems to be a trend towards

fewer predicted Choice-Price reversals in the OrdPM treatment (BDM, N =

67, z = −0.169, p = 0.865; OrdPM, N = 74, z = −1.526, p = 0.127).

Since unpredicted reversals are essentially due to noise, this is consistent with

the interpretation that measuring reversals through post-choice evaluations

reduces noise.

10The tests for reversal rates include of course only the participants for which both rates
can be computed. For instance, if a participant never chose a $-bet, no rate of unpredicted
reversals can be computed.

140



Chapter 4

Preference Reversals: Time and Again

(a) BDM treatment, Exp. 1

Price − Choice Choice − Price

10
12

14
16

18
20

22 Predicted Reversal
P−Bet Chosen No Reversal

(b) BDM treatment, Exp. 1

Price − Choice Choice − Price

8
12

16
20

24
28

Unpredicted Reversal
$−Bet Chosen No Reversal

(c) OrdPM treatment, Exp. 1

Price − Choice Choice − Price

10
12

14
16

18
20

22 Predicted Reversal
P−Bet Chosen No Reversal

(d) OrdPM treatment, Exp. 1

Price − Choice Choice − Price

8
12

16
20

24
28 Unpredicted Reversal

$−Bet Chosen No Reversal

Figure 4.2: Average decision time per individual in the choice task, Experiment 1.

Note: Predicted reversals are compared to non-reversals where the P -bet was chosen,

unpredicted reversals to non-reversals where the $-bet was chosen. Error bars depict the

95 percent confidence interval.

Treatment effects (reversals). We compared the individual numbers of

reversals across treatments using Mann-Whitney-U (MWU) tests. We found

significantly fewer predicted reversals in the OrdPM treatment than in the

BDM treatment, for both task orderings (Price-Choice, z = −2.101, p =

0.036; Choice-Price, z = −2.688, p = 0.007). There were, however, no

significant differences for unpredicted reversals (Price-Choice, z = −0.735,

p = 0.462; Choice-Price, z = 1.067, p = 0.286).

Decision times and reversals (H2). Figure 4.2 displays the decision times

for reversals and comparable non-reversals for both treatments and both task

orderings. Each type of reversal is compared with the correct counterfactual,
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i.e. predicted reversals are compared with non-reversals where the P -bet was

chosen, and unpredicted reversals with non-reversals where the $-bet was

chosen.

Two-sided WSR tests confirmed that predicted reversals involved signif-

icantly longer decision times than comparable non-reversals, both for Price-

Choice and for Choice-Price, both for the BDM (Price-Choice N = 61,

z = 2.758, p = 0.006; Choice-Price, N = 54, z = 3.625, p < 0.0005)

and the OrdPM treatments (Price-Choice, N = 66, z = 2.894, p = 0.004;

Choice-Price, N = 57, z = 2.987, p = 0.003).11 Unpredicted reversals were

also associated with significantly longer decision times in the OrdPM treat-

ment (Price-Choice, N = 39, z = 2.854, p = 0.004; Choice-Price, N = 22,

z = 1.883, p = 0.060), but there were no significant differences for unpre-

dicted reversals in the BDM treatment (Price-Choice, N = 31, z = 0.950,

p = 0.342; Choice-Price, N = 17, z = −0.947, p = 0.344).

Decision times and non-reversals (H3). Non-reversals were clearly slower

when the $-bet was chosen than when the P -bet was chosen. The differ-

ence was highly significant independently of whether choices were declared

non-reversals according to pre-choice or post-choice evaluations, for both the

BDM treatment (Price-Choice, N = 56, z = 3.242, p = 0.001; Choice-Price,

N = 51, z = 2.995, p = 0.003) and the OrdPM treatment (Price-Choice,

N = 64, z = −3.681, p < 0.0005; Choice-Price, N = 59, z = −3.204,

p = 0.001). The differences are illustrated in Figure 4.3.

4.3.4 Regression Analysis for Experiment 1

We also conducted a random effects panel regression analysis (with stan-

dard errors clustered at the subject level) to further investigate the relation

between preference reversals and decision times, and to further test our hy-

potheses while controlling for a number of natural variables, e.g. individual

and lottery-pair covariates. Since decision times are always positive, we used

the log of decision times (logDT ) as the dependent variable. The main re-

11Every test on decision times was conducted for the population of subjects for which
the involved average decision times could be computed. For instance, if a subject did not
display any unpredicted reversal, no decision time can be computed for this category.
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Figure 4.3: Average non-reversal decision time per individual in the choice task,

Experiment 1.

Note: Choices classified as non-reversals according to the indicated task ordering, Price-

Choice (left) and Choice-Price (right). Error bars depict the 95 percent confidence interval.

sults of these regressions are displayed in Table 4.2. For each treatment, we

report a regression including a dummy variable for Price-Choice reversals

and an analogous one with a dummy variable for Choice-Price reversals. We

also ran a number of additional regressions and found the main effects to

be robust (in magnitude and significance) to the inclusion or exclusion of

additional control variables.

The regressions include dummies for choices which were part of reversals,

for $-bet-choices, and the interaction thereof. Hence we can make any com-

parison among reversals and non-reversals where the $-bet or the P -bet was

chosen, either directly through specific regression coefficients or via appro-

priate postestimation tests, which are also reported in the table.

Predicted reversals vs. non-reversals. Hypothesis H2a states that decision

times for predicted preference reversals should be longer on average than de-

cision times for comparable non-reversals, i.e. non-reversals where the P -bet

was chosen. Since a $-choice dummy is included, the comparison between

predicted reversals and non-reversals where the P -bet was chosen corresponds

to the reversal dummy in the regression, which is highly significant and pos-

itive for both regressions for the OrdPM treatment, and for the Choice-Price
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Table 4.2: Random effects panel regressions for decision times, Experiment 1.

Treatment BDM BDM OrdPM OrdPM
Order P-C C-P P-C C-P

ReversalPC 0.018 0.078∗∗∗

(0.029) (0.025)
ReversalCP 0.083∗∗∗ 0.109∗∗∗

(0.031) (0.027)
$-Choice 0.127∗∗∗ 0.155∗∗∗ 0.126∗∗∗ 0.151∗∗∗

(0.054) (0.031) (0.027) (0.026)
$-Choice -0.097 0.107∗∗

×ReversalPC (0.073) (0.052)
$-Choice -0.189∗∗ 0.058

×ReversalCP (0.095) (0.064)
DiffEV -0.023∗ -0.022∗ -0.021∗∗ -0.023∗∗

(0.012) (0.012) (0.009) (0.009)
Ratio 0.041∗∗∗ 0.036∗∗∗ 0.038∗∗∗ 0.038∗∗∗

(0.011) (0.011) (0.008) (0.008)
StatedDiff-1 -0.010 -0.009 -0.008∗∗ -0.009∗∗∗

(0.007) (0.007) (0.003) (0.003)
StatedDiff-3 -0.010 -0.011∗ -0.011∗∗∗ -0.011∗∗∗

(0.006) (0.006) (0.003) (0.003)
Round -0.008∗∗∗ -0.008∗∗∗ -0.005∗∗∗ -0.005∗∗∗

(0.003) (0.003) (0.002) (0.002)
Female -0.286∗∗ -0.290∗∗ -0.156∗∗ -0.151∗∗

(0.113) (0.113) (0.072) (0.071)
Position 0.016 0.015 -0.012 -0.009

(0.023) (0.023) (0.019) (0.019)
Color -0.021 -0.019 0.088 0.084

(0.111) (0.112) (0.070) (0.068)
Constant 2.666∗∗∗ 2.649∗∗∗ 2.563∗∗∗ 2.556∗∗∗

(0.106) (0.105) (0.073) (0.072)

Nr. Obs. 1340 1340 1480 1480
Nr. Groups 67 67 74 74
R2-Overall 0.103 0.101 0.118 0.119
Wald test 0.000 0.000 0.000 0.000

Postestimation tests
Reversal -0.079 -0.106 0.185∗∗∗ 0.167∗∗∗

+($-Choice×Reversal) (0.072) (0.094) (0.045) (0.056)

Note: All regressions are random-effects panel estimations, with log decision time as de-

pendent variable. Standard errors in parentheses. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
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regression for the BDM treatment. This indicates that predicted reversals

took longer than comparable non-reversals, confirming Hypothesis H2a.

Unpredicted reversals vs. non-reversals. Hypothesis H2b states that un-

predicted reversals should take longer than non-reversals where the $-bet

was chosen. The difference between both types of choices corresponds to

βReversal + β$−Choice×Reversal, which is highly significant and positive in both

regressions for the OrdPM, confirming Hypothesis 2b. However, the postes-

timation tests are not significant for the BDM treatment.

Comparison of non-reversals. According to Hypothesis H3, non-reversals

where the $-bet was chosen should take longer than non-reversals where the

P -bet was chosen. Since reversals dummies are included, this comparison

corresponds to the $-choice dummy, which is highly significant and positive

for all four regressions. Hence, conditional on the absence of a preference

reversal, $-bet-choices took longer, confirming Hypothesis H3.

Controls: Lotteries. We included a number of covariates in order to con-

trol for differences in the lottery pairs. The ratio of the two higher amounts

to win in the $-bet and the P -bet (Ratio) had a significant positive effect in

both treatments. The absolute value of the difference in expected values of

the P -bet and the $-bet (DiffEV) had a weakly significant negative effect in

both treatments. We further included the absolute difference in the prices

stated for the lotteries in phases one and three (StatedDiff-1, StatedDiff-3)

as a rough measure of how similar (or different) the participant viewed the

lotteries within a pair. Both were highly significant in the OrdPM treatment,

but essentially not significant in the BDM treatment.

Other controls. Decision time measurements in repeated tasks usually

capture a learning effect as participants gain familiarity with the interface.

We controlled for this effect by including the round in which the choice

was made as a regressor (Round). This was significantly positive in both

treatments. A dummy variable controlling for gender (Female) was also

significant in both treatments. Finally, we controlled for onscreen position

(Position) of the P -bet and the $-bet and for the colors used in the pie-chart

(Color) to verify that these factors did not influence the results. As expected,

these variables never had significant effects.
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4.3.5 Discussion of Experiment 1

The analysis of the data confirms our predictions as derived from the model

in Section 4.2. First, predicted reversals are clearly more frequent than un-

predicted ones, in agreement with previous experiments. Second, preference

reversals appear to involve longer decision times. This effect is clear for an

ordinal-based elicitation of prices; in the BDM treatment, the effect is also

present albeit less pronounced. Third, in both treatments we found that

$-bet-choices which are part of non-reversals take significantly longer than

P -bet-choices part of non-reversals.

In view of the evidence, we conclude that the data is compatible with the

idea that preference reversals arise from the combination of two factors. First,

as pointed out by Schmidt and Hey (2004) and Butler and Loomes (2007),

monetary valuations of lotteries are typically imprecise, and hence preference

elicitation through pricing tasks is much noisier than actual choices. Second,

as summarized by the compatibility hypothesis (Tversky, Sattath, and Slovic,

1988; Tversky, Slovic, and Kahneman, 1990), the use of pricing tasks causes

an overpricing phenomenon which anchors up the evaluation of bets where

a relatively high monetary outcome is salient. These observations produce

testable hypotheses for both choice data and decision times once we incor-

porate the observation that easier choices (where the alternatives are farther

away from indifference) take longer (e.g. Wilcox, 1993; Shultz, Léveillé, and

Lepper, 1999; Moffatt, 2005).

Regarding ordering effects, we observe small but systematic differences

suggesting that a Price-Choice ordering, where the evaluation task precedes

actual choices, might be noisier than the opposite order, hence producing

both more reversals and slightly less clear effects. This is compatible with

self-perception theory (Bem, 1967), which holds that actual choices serve as

“self-signals” which help reduce noise in future evaluations of alternatives.

Last, we observe small but definite treatment effects, pointing out that

price evaluations conducted through the BDM “price-list” scheme might be

noisier than those conducted according to a more intuitive, ordinal-like scheme.

This is reflected by the fact that preference reversals (and especially unpre-
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dicted ones, which are presumably due to noise) are more frequent in the

BDM case. It is also compatible with the general observation that effects are

often more clearly observed in the OrdPM treatment than in the BDM one.

4.4 Experiment 2: Eliminating Reversals

The objective of our second experiment was twofold. First, we wanted to

show that the overpricing phenomenon can be next to eliminated by using

ordinal, ranking-based evaluation tasks. Second, this manipulation would

allow us to disentangle the two building blocks of our model. The absence of

the overpricing phenomenon should result in a reduction of predicted pref-

erence reversals, while the assumption of imprecise preferences still delivers

predictions on decision times.

4.4.1 Motivation and Hypotheses

In our first experiment we found that the method used to elicit participants’

minimum selling prices affects the rate of preference reversals. According

to the compatibility hypothesis, predicted reversals appear because partici-

pants focus more on monetary outcomes when their preferences are elicited

through prices. Notably, preference reversals were also present in the OrdPM

treatment, where the use of prices in the evaluation task was simple framing,

with no direct monetary consequences. This raises the natural hypothesis

that the overpricing phenomenon predicted by the compatibility hypothesis

arises due to a price-based, cardinal framing (i.e., a “rating task”) in the eval-

uation phases. As a consequence, moving away from a cardinal evaluation

task towards a more natural, ordinal-based one (a “ranking task”) should

greatly reduce preference reversals.

Specifically, suppose that, by employing a ranking-based evaluation task,

we were able to shut down the decision process responsible for the overpric-

ing phenomenon. In terms of the model in Section 4.2, this would imply

K = 0 in Assumption 3. It is easy to revisit our theoretical predictions

and derive new experimental hypotheses for such a situation. First, Propo-
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sition 1 crucially depends on Assumption 3, and hence we would not expect

Hypotheses H1a/H1b to hold in this setting. Although from the point of

view of the model we would expect no differences in reversal rates, this rests

upon the implicit assumption that there is no other (second-order) latent

process causing unpredicted reversals. Even if this was the case, a conser-

vative hypothesis derived from our theoretical analysis is that the number

and frequency of predicted preference reversals should be greatly reduced in

comparison to treatments with price-framed evaluations.

H5. There will be fewer predicted preference reversals if ordinal, ranking-

based evaluation tasks are used than if rating-based tasks are used.

The first decision-times predictions spelled out in Proposition 2, however,

do not depend on Assumption 3. Hence, independently of whether evaluation

tasks are based on ratings or rankings, we would expect Hypotheses H2a/b

to hold.

H6a/b. Even if ordinal, ranking-based evaluation tasks are used, choices

associated with predicted preference reversals take longer than P -bet-choices

associated with non-reversals, and choices associated with unpredicted pref-

erence reversals take longer than $-bet-choices associated with non-reversals.

Proposition 3 depends on Assumption 3. If K = 0, we would a priori ex-

pect no differences in the decision times associated with non-reversals where

the P -bet or the $-bet was chosen.

H7. If ordinal, ranking-based evaluation tasks are used, the average decision

time for non-reversals where the P -bet is chosen is not different from the

average decision time for non-reversals where the $-bet is chosen.

4.4.2 Design of Experiment 2

The basic setup of our second experiment was almost identical to Experiment

1, with the exception that we used different evaluation tasks. We used two

different ranking-based tasks and one BDM task. The former were meant to

shut down the overpricing decision processes; the latter was intended as a

control treatment. In each of the three treatments, presentation of lotteries
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was such that participants faced a total of three blocks consisting each of

six lotteries, i.e. a total of 18 pairs.12 In the Rank-Unframed treatment, we

used a purely ranking-based task. Participants were asked to assign ranks

(from most preferred to least preferred) to the lotteries according to how

much they would like to play each lottery, separately for each block. Most

importantly, we did not make any reference to prices (see Figure 4.6(b) in

Appendix 4.C for an example screen display of the two ranking treatments).

In this sense, the task was unframed. The Rank-Framed treatment was identi-

cally programmed. The only difference was in the experimental instructions.

Participants were asked to rank the lotteries (from 1 to 6) according to their

minimum selling price, separately for each block. However, they were not

asked to type in or otherwise state the prices, but merely to think about

them and use them for the ranking. Finally, in the BDM2 treatment, par-

ticipants had to complete a pricing task that was identical to the one in the

BDM treatment in Experiment 1, with the only exception that (for compa-

rability with the other treatments) lotteries were presented one after another

in three blocks of six lotteries each. Again, colors and onscreen positions of

the lotteries were completely randomized in all treatments.

As in Experiment 1, all three tasks were incentivized and payoffs for

each task were determined independently. Payoffs for the evaluation task

of the BDM2 and the choice tasks of all three treatments were determined

in the same way as in Experiment 1. Payoffs for the evaluation phases for

Treatments Rank-Unframed and Rank-Framed were determined as follows.

First, the computer picked one of the six blocks at random. From the six

lotteries contained in that block, the computer again randomly picked two.

The one that had been ranked higher by the participant was then played out

and the participant received the outcome of that lottery as payment for that

round. In all three treatments, payments were determined and presented

to participants only after all three tasks had been completed. Since in both

ranking treatments there was no actual “pricing” task, we will refer to the two

possible task orderings for these treatments as “Rank-Choice” and “Choice-

Rank”.

12We only used 18 of the lottery pairs that had been used in Experiment 1 (pairs 3-20
in Table 4.5), excluding pairs 1 and 2 which contained stochastically dominated lotteries.

149



Chapter 4

Preference Reversals: Time and Again

4.4.3 Procedures

We followed the same procedures as in Experiment 1. We conducted 12

sessions with a total of 215 participants (102 female). Of those, 73 were allo-

cated to the Rank-Unframed treatment, 73 to the Rank-Framed treatment,

and 69 to the BDM2 treatment. Sessions in the Rank-Unframed treatment

lasted roughly an hour with average earnings of e23.36. Sessions in the

Rank-Framed treatment lasted one hour and 20 minutes with average earn-

ings of e24.07, while sessions in the BDM2 treatment lasted about 2 hours

with average earnings of e28.44.

4.4.4 Results of Experiment 2

Table 4.3 shows the average reversal rates for all three treatments for both

Price/Rank-Choice and Choice-Price/Rank reversals. As before, the per-

centage of predicted (unpredicted) reversals is computed as the number of

predicted (unpredicted) reversals divided by the number of P -bet choices ($-

bet choices). Figure 4.4 shows the average number of reversals per subject in

the three treatments. The basic trends are already apparent. Predicted re-

versals were enormously reduced in both ranking treatments, and especially

in the rank-unframed one, to the extent of dropping below the levels of un-

predicted reversals. Further, as in Experiment 1 we observe that measuring

reversals with respect to post-choice attitudes reduces their quantity.

BDM replication. The first observation is that, as expected, there is no

qualitative difference between the results of Treatment BDM2 and Treatment

BDM of Experiment 1. For instance, in Treatment BDM2 the number of

predicted reversals is significantly higher than the number of unpredicted

ones (WSR tests; Price-Choice, N = 69, z = 6.658, p < 0.0001; Choice-Price,

N = 69, z = 6.680, p < 0.0001). Likewise, the rates of predicted reversals

(relative to the number of P -bet-choices) are significantly higher than the

rates of unpredicted reversals (relative to the number of $-bet-choices) (Price-

Choice, N = 68, z = 4.495, p < 0.0001; Choice-Price, z = 4.585, p < 0.0001).

Reduction of predicted reversals (H5). Kruskal-Wallis tests confirmed that

the number of predicted reversals was significantly different across treatments
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Table 4.3: Preference reversal rates, Experiment 2.

Treatment Predicted Reversals Unpredicted Reversals

Price-Choice Choice-Price Price-Choice Choice-Price

BDM 46.87 44.66 16.05 11.32

Rank-Framed 17.67 13.57 34.78 32.95

Rank-Unfr. 12.64 8.39 49.32 45.95

Note: Predicted (resp. unpredicted) reversal rates computed as percentage of reversals

over all P -bet-choices (resp. $-bet-choices).

(Price/Rank-Choice, χ2 = 71.304, df= 2, p < 0.0001; Choice-Price/Rank,

χ2 = 81.095, df= 2, p < 0.0001). To confirm that the differences were

between the ranking treatments and the control BDM2 treatment, we con-

ducted two-sided MWU tests with Holm-Bonferroni correction to account

for multiple comparisons (p-values below are the adjusted values). Both

ranking treatments generated significantly fewer predicted reversals than

the BDM2 treatment (Rank-Framed Price/Rank-Choice, z = −6.769, p <

0.0001; Rank-Framed Choice-Price/Rank, z = −7.040, p < 0.0001; Rank-

Unframed Price/Rank-Choice, z = −7.745, p < 0.0001; Rank-Unframed

Choice-Price/Rank, z = −8.210, p < 0.0001). The difference in the num-

ber of predicted reversals across both ranking treatments was not signifi-

cant for the Rank-Choice ordering (z = −0.824, p = 0.410), but for the

Choice-Rank ordering there were significantly fewer predicted reversals in the

Rank-Unframed treatment than in the Rank-Framed treatment (z = −2.248,

p = 0.025). This last result agrees with the idea that the Rank-Unframed

treatment goes one step further in the elimination of the overpricing process

than a ranking-based but still price-framed approach.

Order effects. As in Experiment 1, there were significantly fewer un-

predicted reversals in the BDM2 treatment when prices were elicited after

choices than when they were elicited before choices (N = 69, z = −1.884,

p = 0.059), but no significant differences for predicted reversals (N = 67,
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Figure 4.4: Average number of reversals per subject, Experiment 2.

Note: Reversals for the Price/Rank-Choice (dark bars) and Choice-Price/Rank (light bars)

task orderings. Error bars depict the 95 percent confidence interval.

z = −0.470, p = 0.638). We found no differences in the Rank-Framed treat-

ment (unpredicted reversals, N = 73, z = −0.532, p = 0.595; predicted

reversals, N = 73, z = −1.154, p = 0.248). For the Rank-Unframed treat-

ment, we only found differences for predicted reversals (unpredicted reversals,

N = 73, z = −0.513, p = 0.608; predicted reversals, N = 73, z = −2.245,

p = 0.025).

Decision Times and Reversals (H2/H6). Figure 4.5 displays the decision

times for reversals and comparable non-reversals for all three treatments

and both task orderings, comparing each type of reversal with the appro-

priate non-reversals. Two-sided WSR tests confirmed that predicted rever-

sals involved longer decision times than comparable non-reversals, both for
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Price/Rank-Choice and for Choice-Price/Rank, for all treatments. For both

ranking treatments, the differences were highly significant (Rank-Framed

Rank-Choice, N = 42, z = 3.551, p < 0.0005; Rank-Framed Choice-Rank,

N = 45, z = 2.743, p = 0.006; Rank-Unframed Rank-Choice, N = 43,

z = 2.614, p = 0.009); Rank-Unframed Choice-Rank, N = 34, z = 3.163,

p = 0.002). This confirms that the decision times effect predicted by our

model, which is independent of the overpricing assumption, is still present

under ordinal (ranking) evaluation tasks. In the case of the BDM2 treat-

ment, the test missed significance for the Price-Choice ordering (N = 64,

z = 1.595, p = 0.111), but the difference was significant for Choice-Price

(N = 58, z = 3.004, p = 0.003).

For both ranking treatments unpredicted reversals were again signifi-

cantly slower than comparable non-reversals independently of task ordering

(Rank-Framed Rank-Choice, N = 49, z = 2.875, p = 0.004; Rank-Framed

Choice-Rank, N = 45, z = 3.014, p = 0.003; Rank-Unframed Rank-Choice,

N = 49, z = 1.930, p = 0.054); Rank-Unframed Choice-Rank, N = 47,

z = 3.656, p < 0.0005). In the BDM2 treatment the decision time differ-

ences were not significant for the Price-Choice ordering (N = 30, z = 1.131,

p = 0.258), but unpredicted reversals were significantly slower for the Choice-

Price ordering (N = 23, z = 1.992, p = 0.046).

Decision times and non-reversals (H3/H7). Treatment BDM2 success-

fully replicated the finding that non-reversals are slower when the $-bet is

chosen than when the P -bet is chosen, as predicted in Hypothesis H3 (WSR

tests; Price-Choice, N = 60, z = 1.984, p = 0.047; Choice-Price, N = 58,

z = 2.609, p = 0.009). However, for ranking treatments we expected no

differences (Hypothesis H7). There is still a significant difference for the

Rank-Choice ordering (Rank-Framed, N = 57, z = 1.835, p = 0.066; Rank-

Unframed, N = 54, z = 1.825, p = 0.068), but there is clearly no significant

difference for the (presumably more appropriate) classification according to

the Choice-Rank ordering (Rank-Framed, N = 55, z = 0.733, p = 0.463;

Rank-Unframed, N = 48, z = 0.385, p = 0.701). Figure 4.6 illustrates these

results.

153



Chapter 4

Preference Reversals: Time and Again

(a) BDM treatment

Price − Choice Choice − Price

8
12

16
20

24

Predicted Reversal
P−Bet Chosen No Reversal

(b) BDM treatment

Price − Choice Choice − Price

8
12

16
20

24 Unpredicted Reversal
$−Bet Chosen No Reversal

(c) Rank-Framed treatment

Rank − Choice Choice − Rank

8
12

16
20

24 Predicted Reversal
P−Bet Chosen No Reversal

(d) Rank-Framed treatment

Rank − Choice Choice − Rank

8
12

16
20

24 Unpredicted Reversal
$−Bet Chosen No Reversal

(e) Rank-Unframed treatment

Rank − Choice Choice − Rank

8
12

16
20

24

Predicted Reversal
P−Bet Chosen No Reversal

(f) Rank-Unframed treatment

Rank − Choice Choice − Rank

8
12

16
20

24 Unpredicted Reversal
$−Bet Chosen No Reversal

Figure 4.5: Average decision time per individual in the choice task, Experiment 2.

Note: Predicted reversals are compared to non-reversals where the P -bet was chosen,

unpredicted reversals to non-reversals where the $-bet was chosen. Error bars depict the

95 percent confidence interval.

Decision times in the Rank-Unframed Treatment. As can be seen in Fig-

ures 4.5 and 4.6, all decisions in the Rank-Unframed treatment were signifi-
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(b) Choice-Price/Rank
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Figure 4.6: Average non-reversal decision time per individual in the choice task,

Experiment 2.

Note: Choices classified as non-reversals according to the indicated task ordering. Error

bars depict the 95 percent confidence interval.

cantly quicker than in the other two treatments. The difference is substantial:

the median decision time over all choices was 13.41 s in BDM2, 12.52 s in

Rank-Framed, and only 9.61 s in Rank-Unframed. This difference is remark-

able, because the choice phases in which the decision times were measured

were completely identical across treatments; the differences across treatments

concerned only the evaluation phases. We will discuss this observation in de-

tail below.

A Kruskal-Wallis test confirmed that the decision times were significantly

different across treatments (χ2 = 35.545, df= 2, p < 0.0001). Two-sided

MWU tests with Holm-Bonferroni correction to account for multiple com-

parisons showed that decisions were faster in the Rank-Unframed treatment

than in both of the other treatments (BDM2, z = −5.722, p < 0.0001;

Rank-Framed, z = −4.225, p < 0.0001).13

13The difference between decision times in Treatments Rank-Framed and BDM2 missed
significance, z = −1.596, p = 0.111.
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4.4.5 Regression Analysis for Experiment 2

As for Experiment 1, we conducted a random effects panel regression anal-

ysis on the log of decision times from Experiment 2. The objective was to

confirm and clarify our results while controlling for natural individual and

lottery-pair characteristics; specifically, we included the same controls as in

Experiment 1.14 Table 4.4 contains the main results of all treatments. For

each treatment, in the first regression reversals are classified as such according

to the Price/Rank-Choice task ordering, while in the second one the Choice-

Price/Rank is used. We present a single regression for each treatment and

task ordering, but the results are robust with respect to the control variables.

Predicted reversals vs. non-reversals. The reversal dummies were highly

significant in all treatments and task orderings, except for the “noisiest”

Price-Choice in Treatment BDM2. This indicates that, as in Experiment

1, predicted reversals took longer than comparable non-reversals, confirming

Hypothesis H2a.

Unpredicted reversals vs. non-reversals. Hypothesis H2b states that un-

predicted reversals should take longer than non-reversals where the $-bet was

chosen. The difference corresponds to βReversal + β$−Choice×Reversal, which is

indeed highly significant and positive in all four regressions for the rank-

ing treatments. The postestimation tests are not significant for the BDM2

treatment.

Comparison of non-reversals. The $-choice dummy is significant and

positive for Treatment BDM2. That is, as in Experiment 1, non-reversals

where the $-bet was chosen took longer than non-reversals where the P -

bet was chosen in this treatment (Hypothesis H3). As stated in Hypothesis

H7, we expected this effect to disappear for the purely ordinal, unframed

treatment Rank-Unframed. Indeed, the dummy is not significant in any

of the regressions for this treatment. The prediction is less clear for the

“intermediate” treatment Rank-Framed, where the evaluation task was also

14For the two ranking treatments, StatedDiff-1 and StatedDiff-3 refer to the difference
in stated ranks between the two lotteries within a pair in phases 1 and 3, respectively.
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Table 4.4: Random effects panel regressions for decision times, Experiment 2.

Treatment BDM2 RankFramed RankUnframed
Order P-C C-P R-C C-R R-C C-R

ReversalPC 0.049 0.135∗∗∗ 0.108∗∗∗

(0.031) (0.042) (0.044)
ReversalCP 0.100∗∗∗ 0.155∗∗∗ 0.199∗∗∗

(0.032) (0.043) (0.051)
$-Choice 0.072∗∗ 0.098∗∗∗ 0.073∗∗ 0.062∗ 0.030 -0.006

(0.033) (0.033) (0.033) (0.033) (0.036) (0.035)
$-Choice 0.026 0.014 0.014
×ReversalPC (0.069) (0.062) (0.061)

$-Choice 0.011 0.039 0.008
×ReversalCP (0.077) (0.064) (0.067)

DiffEV -0.022∗∗ -0.020∗ -0.026∗∗ -0.025∗∗ -0.013 -0.008
(0.031) (0.011) (0.010) (0.010) (0.010) (0.010)

Ratio 0.034∗∗∗ 0.033∗∗∗ 0.038∗∗∗ 0.038∗∗∗ 0.044∗∗∗ 0.043∗∗∗

(0.011) (0.011) (0.010) (0.010) (0.009) (0.009)
StatedDiff-1 -0.005 -0.004 -0.011 -0.014 -0.024∗∗ -0.026∗∗∗

(0.005) (0.005) (0.010) (0.010) (0.010) (0.010)
StatedDiff-3 -0.003 -0.005 -0.046∗∗∗ -0.041∗∗∗ -0.045∗∗∗ -0.042∗∗∗

(0.005) (0.005) (0.010) (0.010) (0.011) (0.011)
Round -0.007∗∗∗ -0.007∗∗∗ -0.008∗∗∗ -0.007∗∗∗ -0.003 -0.003

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Female -0.190∗∗ -0.181∗∗ -0.238∗∗∗ -0.237∗∗∗ -0.217∗∗ -0.212∗∗

(0.089) (0.087) (0.077) (0.077) (0.087) (0.085)
Position 0.004 0.008 0.008 0.004 0.030 0.022

(0.023) (0.023) (0.022) (0.022) (0.021) (0.021)
Color 0.108 0.112 0.088 0.085 -0.034 -0.040

(0.087) (0.086) (0.077) (0.077) (0.085) (0.083)
Constant 2.624∗∗∗ 2.595∗∗∗ 2.649∗∗∗ 2.645 2.391∗∗∗ 2.388∗∗∗

(0.095) (0.094) (0.087) (0.087) (0.090) (0.088)

Nr. Obs. 1242 1244 1314 1314 1314 1314
Nr. Groups 69 69 73 73 73 73
R2-Overall 0.066 0.069 0.128 0.140 0.104 0.122
Wald test 0.000 0.000 0.000 0.000 0.000 0.000

Postestimation tests
Reversal 0.075 0.111 0.149∗∗∗ 0.194∗∗∗ 0.121∗∗∗ 0.207∗∗∗

+($-Ch×Rev) (0.060) (0.068) (0.043) (0.044) (0.031) (0.041)

Note: All regressions are random-effects panel estimations, with log decision time as de-

pendent variable. Standard errors in parentheses. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
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ordinal but there was an indirect framing in terms of prices.15 For this

treatment, the $-choice was significantly positive, but e.g. only at the 10%

level for the Choice-Rank ordering.

Controls: Lotteries. As in Experiment 1, the ratio of the two higher

amounts to win in the $-bet and the P -bet (Ratio) had a significant positive

effect throughout. Likewise, the absolute difference in expected values of

the P -bet and the $-bet (DiffEV) had a weakly significant negative effect,

but not in the Rank-Unframed treatment. The absolute difference in the

prices/ranks stated for the lotteries in phases one and three (StatedDiff-1,

StatedDiff-3) was significant for Rank-Unframed but not for BDM2 (and only

the second measure was significant for Rank-Framed).

Other controls. As in Experiment 1, we controlled for learning and fa-

miliarity effects by including the round in which the choice was made as a

regressor. Also as in Experiment 1, female participants were significantly

quicker in all treatments and task orderings. The onscreen position (Posi-

tion) of the P -bet and the $-bet and the colors used in the pie-chart (Color)

had, as expected, no effect.

4.4.6 Discussion of Experiment 2

The analysis of the data confirms our predictions, strengthening our inter-

pretation that preference reversals arise from the combination of noisy evalu-

ations and an overpricing phenomenon. The almost-complete disappearance

of predicted reversals in the ranking treatments (especially when ordinally

framed) confirms that the overpricing phenomenon appears due to the cardi-

nal, rating-based frame used in standard evaluation tasks as those employed

in Experiment 1. The fact that reversals are still associated with longer

decision times (a prediction our model derives from noisy evaluations) even

though the overpricing process has been impaired is further evidence that

both noisy evaluations and the overpricing phenomenon need to be taken

into account as different ingredients in order to model preference reversals.

15We consider the framing “indirect” because, contrary to the tasks in Experiment 1 or
Treatment BDM2, participants did not actually write down prices.
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An important observation is that decision times in Treatment Rank-

Unframed were significantly lower than those in other treatments. To under-

stand this effect, recall our dual-process interpretation as sketched in Section

4.2.4. In this treatment, we removed all references to prices, and it is easy to

argue that the decision process which usually causes overpricing was simply

not activated at all. Hence, in the choice phase there was no process con-

flict, and no additional time was spent in conflict resolution. It is especially

interesting to observe that in the Treatment Rank-Framed, where the evalu-

ation task was also ordinal but the frame made a reference to prices, decision

times were closer to those of the rating treatments, even though predicted

reversals were also greatly reduced. Again, the interpretation is simple. The

price frame generally activated the process behind overpricing, but the fact

that the task was ultimately a purely ordinal one made it less likely that this

process actually shaped the decision in the evaluation tasks, hence reducing

reversals. However, since the process had been activated, it needed to be

inhibited in the choice phase, causing longer decision times.

Our results are consistent with evidence from Bateman, Day, Loomes,

and Sugden (2007). These authors also observed a reduction in predicted

preference reversal rates in an experiment where lotteries were ranked within

sets which also contained sure amounts. Their ranking task is not directly

comparable to ours because $-bets and P -bets were ranked separately, i.e.

within different sets, and the ranks of P -bets relative to $-bets were inferred

indirectly. Oliver (2013) used a similar method for the measurement of pref-

erences in the health domain (life expectancy).

Our main object of study have been predicted preference reversals, since

they are empirically more relevant and the compatibility hypothesis points

to an overpricing phenomenon as a reason for the predominance of these

reversals, while the origin of unpredicted ones might be just noisy evalua-

tions. Nonetheless, it is interesting to observe that the number and rate of

unpredicted reversals increased in the ranking treatments with respect to the

control (BDM2) treatment. We hypothesize that, when the cues on which

the overpricing process acts are removed, attention is diverted to probabili-

ties instead. Following the compatibility hypothesis, this would result in an
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over-evaluation of P-bets, for which a high probability is salient. However,

this process is weaker than the one causing overpricing of $-bets with pricing

frames, simply because monetary rewards are a more immediately accessible

concept than probabilities. Thus, in a standard preference-reversal study,

this second, probability-based process is overshadowed by the overpricing

of $-bets. Our evidence in this respect is consistent with Cubitt, Munro,

and Starmer (2004), where the rate of unpredicted reversals increased when

subjects were asked for “probabilistic valuations” instead of prices, trying to

induce a probability anchor and shift the predictions of the compatibility hy-

pothesis to unpredicted, rather than predicted reversals. However, the rates

of predicted reversals remained relatively high, suggesting that such valuation

tasks, being still cardinal, do not completely remove the salience of mone-

tary outcomes.16 Casey (1991, 1994) observed a higher rate of unpredicted

reversals compared to predicted ones using very high payoffs and maximum

buying prices (rather than minimum selling prices). Again, however, pre-

dicted reversal rates remained comparatively high. Casey (1994) argues that

high stakes might induce buyers to anchor on the smallest monetary outcome

of a lottery, adjusting the valuation upwards on the basis of probabilities, and

hence resulting in an overpricing of P-bets. In our terms, the setting of Casey

(1991, 1994) might correspond to a combination of elements enhancing the

second process mentioned above. If such a second process is assumed, the in-

crease of unpredicted reversals in our ranking treatments, in Cubitt, Munro,

and Starmer (2004), and in Casey (1991, 1994) can be easily explained within

our model.

Last, we observe order effects similar to those already seen in Experiment

1, again supporting our view that post-choice elicitation tasks carry less

noise than pre-choice analogues, possibly due to “preference sharpening” or

reappraisal in the sense of self-perception theory.

16Participants were asked for the probability p making them indifferent between a given
lottery and receiving a fixed, high monetary outcome X with probability p. Hence mone-
tary outcomes remained an important part of the frame.
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4.5 General Discussion and Conclusion

We propose a simple, parsimonious model which predicts both preference

reversals and a clear pattern of decision times in choices among lotteries.

We conducted two experiments which confirm the predictions derived from

the model. The consideration of decision times allows us to put our model

to a more stringent test than if we had relied exclusively on choice data.

At the same time, the insights provided by the analysis of decision times

allow us to deepen our understanding of the actual decision processes behind

preference reversals. Our model, which is based on insights from the previous

literature, postulates that reversals arise due to the interaction of noise in the

evaluation phases and a psychological process (or set thereof) which causes an

overpricing phenomenon of lotteries with a salient monetary outcome. In our

second experiment, we have been able to effectively shut down that process,

resulting in the practical elimination of predicted preference reversals and a

notable reduction of decision times.

Our experimental design also allowed us to evaluate different experimen-

tal possibilities with regard to the amount of noise they induce. By using two

evaluation phases, one pre-choice and one post-choice, we are able to con-

clude that post-choice evaluation tasks are in general more appropriate for

preference elicitation, in accordance with evidence on preference reappraisal

from psychology. By using different evaluation tasks across treatments, we

conclude that tasks based on the BDM procedure might add additional, un-

wanted noise and other tasks, as e.g. the Ordinal Payment Method, might

be more accurate. Finally, if one is interested in preferences rather than

certainty equivalents, our second experiment shows that the most accurate

evaluation method (in the sense of inducing fewer reversals) is to rely on

purely ordinal, ranking-based tasks.

Our research investigated (theoretically and experimentally) the mecha-

nisms and processes behind the preference reversal phenomenon. Previous

research (see e.g. Cubitt, Munro, and Starmer, 2004) has pointed out that a

combination of psychological mechanisms might be the simplest explanation

of the phenomenon. Given the fundamental importance of preference (and
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consumer demand) elicitation methods for both decision theory and applied

economics, and the amount of attention dedicated to the preference rever-

sal phenomenon in the last half century, we believe that fleshing out these

mechanisms is an important step. At the same time, we show that a sim-

ple parsimonious model can account for received evidence and provide new,

testable hypotheses. By using process data (decision times), we are able to

show that our model is more than an as if construction and, in spite of its

simplicity, is able to capture the essential features of the actual mechanisms

behind the phenomenon.
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Appendix 4.A: Proofs

Throughout the appendix, let ∆ζ = ζP − ζ$ +K. Under Assumption 3, ζP

and ζ$ are i.i.d. and unimodal, implying that ∆ζ is symmetrically distributed

around 0 and unimodal (cf. Purkayastha, 1998, Theorem 2.1).

Proof of Proposition 1. (i) Since K > 0 by Assumption 3, Pr(∆ζ < −K −

s) < Pr(∆ζ < K − s) for all s ∈ [0,∞[ and the conclusion follows from the

following computations.

Pr(CE$ > CEP , C(P, $) = P )

=

∫ ∞

0

Pr(CE$ > CEP |uP − u$ = s)h(s)ds =

∫ ∞

0

Pr(∆ζ < K − s)h(s)ds

Pr(CEP > CE$, C(P, $) = $) =

∫ ∞

0

Pr(CEP > CE$|u$ − uP = s)h(s)ds

=

∫ ∞

0

Pr(∆ζ > K + s)h(s)ds =

∫ ∞

0

Pr(∆ζ < −K − s)h(s)ds.

(ii) Note that Pr(CE$ > CEP |c(P, $) = P ) = Pr(CE$>CEP ,c(P,$)=P )
Pr(uP>u$)

, and

Pr(CEP > CE$|c(P, $) = $) = Pr(CEP>CE$,c(P,$)=$)
Pr(u$>uP )

. Since Pr(uP > u$) =

Pr(u$ > uP ), the conclusion follows from (i).

The next lemma is used in the proof of Proposition 2.

Lemma A.1. Under Assumption 1, the following hold.

(i) Pr(CE$ > CEP |0 < uP − u$ < δ) > Pr(CE$ > CEP |uP − u$ > δ).

(ii) Pr(CEP > CE$|0 < u$ − uP < δ) > Pr(CEP > CE$|u$ − uP > δ).

Proof. We prove part (i). The proof of part (ii) is analogous. We have
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Pr(CE$ > CEP |uP − u$ = s) = Pr(∆ζ < K − s) and

Pr(CE$ > CEP |0 < uP − u$ < δ)

=
1

Pr(0 < uP − u$ < δ)

∫ δ

0

Pr(CE$ > CEP |uP − u$ = s)h(s)ds

>
1

Pr(0 < uP − u$ < δ)

∫ δ

0

Pr(∆ζ < K − δ)h(s)ds = Pr(∆ζ < K − δ).

Similarly Pr(CE$ > CEP |uP − u$ = s) = Pr(∆ζ < K − s) and

Pr(CE$ > CEP |uP − u$ > δ)

=
1

Pr(uP − u$ > δ)

∫ ∞

δ

Pr(CE$ > CEP |uP − u$ = s)h(s)ds

<
1

Pr(uP − u$ > δ)

∫ ∞

δ

Pr(∆ζ < K − δ)h(s)ds = Pr(∆ζ < K − δ)

and the conclusion follows.

Proof of Proposition 2. (i) To shorten notation let ∆0 = Pr(CE$ > CEP |0 <

uP − u$ < δ), ∆1 = Pr(CE$ > CEP |uP − u$ > δ), P δ = Pr(0 < uP − u$ <

δ|0 < uP − u$), and P = Pr(CE$ > CEP |uP > u$).

With these definitions, P = ∆0P
δ+∆1(1−P δ). We obtain E[DTC |CE$ >

CEP , c(P, $) = P ] = 1
P
[∆0P

δTH + ∆1(1 − P δ)TE ], and E[DTC |CEP >

CE$, c(P, $) = P ] = 1
1−P

[(1 − ∆0)P
δTH + (1 − ∆1)(1 − P δ)TE ]. A simple

calculation shows that

E[DTC |CE$ > CEP , c(P, $) = P ] > E[DTC |CEP > CE$, c(P, $) = P ]

⇔ P δTH [∆0 − P ] > (1− P δ)TE [P −∆1]

As P = ∆0P
δ + ∆1(1 − P δ), we obtain ∆0 − P = (1 − P δ)(∆0 − ∆1)

and P − ∆1 = P δ(∆0 − ∆1). Hence E[DTC |CE$ > CEP , c(P, $) = P ] >

E[DTC |CEP > CE$, c(P, $) = P ] holds if and only if TH(∆0 − ∆1) >

TE(∆0 −∆1). By Lemma A.1(i), ∆0 > ∆1 and hence the inequality holds if

and only if TH > TE , which is true by Assumption 4.

(ii) is analogous to (i), using part (ii) of Lemma A.1 instead of (i).
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The next lemma is used in the proof of Proposition 3.

Lemma A.2. Pr(0 < uP − u$ < δ|0 < uP − u$) = Pr(0 < u$ − uP < δ|0 <

u$ − uP ).

Proof. First note that since uP and u$ are i.i.d, uP − u$ and u$ − uP are

identically distributed and Pr(u$−uP > 0) = Pr(u$−uP < 0) = 1/2. Then

Pr(0 < u$−uP < δ|0 < u$−uP ) =
Pr(0<u$−uP<δ)

Pr(u$>uP )
= Pr(0<uP−u$<δ)

Pr(uP>u$)
= Pr(0 <

uP − u$ < δ|0 < uP − u$).

Proof of Proposition 3. To shorten notation let ∆0 = Pr(CE$ > CEP |0 <

u$−uP < δ), ∆1 = Pr(CE$ > CEP |u$−uP > δ), ∆2 = Pr(CEP > CE$|0 <

uP−u$ < δ), ∆3 = Pr(CEP > CE$|uP−u$ > δ), P1 = Pr(CE$ > CEP |u$ >

uP ), P2 = Pr(CEP > CE$|uP > u$). Let also P δ be the probability given in

Lemma A.2.

With these definitions, we have that P1 = ∆0P
δ +∆1(1 − P δ) and P2 =

∆2P
δ +∆3(1− P δ).

We obtain E[DTC |CE$ > CEP , c(P, $) = $] = 1
P1
[∆0P

δTH + ∆1(1 −

P δ)TE] and E[DTC |CEP > CE$, c(P, $) = P ] = 1
P2
[∆2P

δTH+∆3(1−P δ)TE ].

This yields.

E[DTC |CE$ > CEP , c(P, $) = $] > E[DTC |CEP > CE$, c(P, $) = P ]

⇔ P δ(1− P δ)TH [∆0∆3 −∆1∆2] > (1− P δ)P δTE[∆0∆3 −∆1∆2]

Since TH > TE by Assumption 4, the claim holds if ∆1∆2 < ∆0∆3. The rest

of the proof is devoted to establish this fact. For this, we rely on ideas taken

from Wijsman (1985).
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First, note that

∆0 =
1

Pr(0 < u$ − uP < δ)

∫ δ

0

Pr(∆ζ < K + s)h(s)ds,

∆1 =
1

Pr(u$ − uP > δ)

∫ ∞

δ

Pr(∆ζ < K + s)h(s)ds,

∆2 =
1

Pr(0 < up − u$ < δ)

∫ δ

0

Pr(∆ζ < −K + s)h(s)ds, and

∆3 =
1

Pr(uP − u$ > δ)

∫ ∞

δ

Pr(∆ζ < −K + s)h(s)ds.

Now let f1(s) := Pr(∆ζ < K + s), f2(s) = Pr(∆ζ < −K + s),

g1(s) =







h(s) if s ∈]δ,∞[,

0 otherwise,
and g2(s) =







h(s) if s ∈ [0, δ],

0 otherwise.

As u$ and uP are i.i.d Pr(0 < u$ − uP < δ) = Pr(0 < uP − u$ < δ) and

Pr(u$ − uP > δ) = Pr(uP − u$ > δ) and hence showing that ∆1∆2 < ∆0∆3

boils down to showing that

∫ ∞

0

f1(s)g1(s)ds

∫ ∞

0

f2(s)g2(s)ds <

∫ ∞

0

f2(s)g1(s)ds

∫ ∞

0

f1(s)g2(s)ds.

To see that this is true note that

2

(
∫ ∞

0

f1(s)g1(s)ds

∫ ∞

0

f2(s)g2(s)ds−

∫ ∞

0

f2(s)g1(s)ds

∫ ∞

0

f1(s)g2(s)ds

)

=

∫ ∞

0

∫ ∞

0

F (x, y)G(x, y)dxdy,

where F (x, y) = f1(x)f2(y)−f1(y)f2(x) and G(x, y) = g1(x)g2(y)−g1(y)g2(x).

Further,

(

f1
f2

)′

(s) =
q(K + s)Pr(∆ζ < −K + s)− Pr(∆ζ < K + s)q(−K + s)

(Pr(∆ζ < −K + s))2
,

where q is the density of ∆ζ . Then (f1
f2
)′(s) < 0 since 0 < q(K + s) ≤

q(−K + s) and Pr(∆ζ < −K + s) < Pr(∆ζ < K + s) by Assumptions 3
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and 3.17 Thus f1
f2

is strictly decreasing and hence F (x, y) > 0 if x < y and

F (x, y) < 0 if y < x (of course, F (x, y) = 0 if x = y). By construction

G(x, y) > 0 if (x, y) ∈]δ,∞[×[0, δ], G(x, y) < 0 if (x, y) ∈ [0, δ]×]δ,∞[, and

G(x, y) = 0 otherwise. Hence F (x, y)G(x, y) ≤ 0 for all (x, y) ∈ R+×R+ and

F (x, y)G(x, y) < 0 for all (x, y) ∈]δ,∞[×[0, δ] ∪ [0, δ]×]δ,∞[. This implies

that
∫∞

0

∫∞

0
F (x, y)G(x, y)dxdy < 0 which proves the claim.

17The fact that q(K+s) ≤ q(−K+s) follows by unimodality. If s ≥ K then q(−K+s) ≤
q(K + s) since q is nonincreasing in the positive domain. If s < K then q(−K + s) >
q(−K − s) = q(K + s) since q is nondecreasing in the negative domain and symmetric.
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Appendix 4.B: Lotteries

Table 4.5: The lottery pairs.

Lottery P-bet $-bet

pair Prob Outc EV StdDev Prob Outc EV StdDev

1 0.44 7 4.20 3.536 0.36 7 3.80 3.536
2 0.40 8 4.40 4.243 0.40 7 4.00 3.536
3 0.82 11 9.38 6.364 0.10 48 6.60 32.527
4 0.94 9 8.58 4.950 0.20 30 7.60 19.799
5 0.80 11 9.20 6.364 0.20 24 6.40 15.556
6 0.90 10 9.20 5.657 0.30 22 8.00 14.142
7 0.60 15 9.80 9.192 0.21 23 6.41 14.849
8 0.80 10 8.40 5.656 0.40 15 7.20 9.192
9 0.89 6 5.56 2.828 0.11 36 5.74 24.042
10 0.81 6 5.24 2.828 0.19 18 5.04 11.314
11 0.97 12 11.70 7.071 0.31 34 11.92 22.627
12 0.94 8 7.64 4.242 0.39 16 7.46 9.899
13 0.82 9 7.74 4.243 0.50 13 7.50 7.778
14 0.87 7 6.35 3.536 0.50 11 6.50 6.364
15 0.68 7 5.40 2.828 0.20 25 6.60 16.971
16 0.79 8 6.74 2.828 0.30 24 8.60 15.556
17 0.80 6 5.20 2.828 0.40 18 8.40 11.314
18 0.90 6 5.60 2.828 0.30 18 6.80 11.314
19 0.60 9 6.20 4.950 0.45 17 8.75 10.607
20 0.60 10 6.80 5.657 0.40 16 7.60 9.899

Note: All lotteries pay an amount of e2 with the corresponding converse probabilities.

The table shows for each P -bet and $-bet within a pair the probability with which the

outcome occurs, the expected value and the standard deviation. Lottery pairs 1 and 2,

containing strictly dominated bets, were only used in Experiment 1 as a basic rationality

check.
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Appendix 4.C: Screenshots

(a) Pricing phase (Experiment 1)

(b) Ranking phase (Experiment 2)

(c) Choice phase (Experiments 1 and 2)

Figure 4.7: Screen displays.
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