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INTRODUCTION AND SUMMARY

This dissertation consists of four research papers, covering topics from
decision and game theory. Chapters 1 and 2 concern continuous-time games
and extensive forms. Chapter 3 presents results on the number of Nash
equilibria in a particular class of games called circulant games, while Chapter
4 covers the preference reversal phenomenon. In the following, I present a
brief overview of the four chapters summarizing the main findings.

Chapter 1, entitled “Repeated Games in Continuous Time as Extensive
Form Games”, is the result of joint work with Carlos Alos-Ferrer (University
of Cologne). Continuous-time games suffer from a severe conceptual issue,
namely that some strategy profiles induce multiple outcomes while other
profiles induce no outcome at all. Since preferences are defined on the set
of ultimate outcomes, neither profiles leading to a multiplicity of outcomes
nor profiles that “evaporate” can be evaluated, hence making it impossible
to analyze such games for example in terms of equilibria. The literature
has proposed several ways to deal with this issue. The most common one
requires players to stick to a chosen action for some strictly positive amount
of time. Indeed, it can be shown that any profile of such strategies induces
a unique outcome. This approach is, however, problematic from a game-
theoretic point of view. Fixing the extensive form of the game (i.e. decision
nodes and choices) determines the players’ strategies as these are mappings
from the set of decision nodes to the set of choices. Placing exogenous re-
strictions on the set of strategies hence implicitly changes (and in the worst
case destroys) the extensive form. Our paper presents a game-theoretically
well-founded framework for modeling repeated games in continuous time. It
further provides a clarification as to which restrictions on strategies can be
allowed in the sense that the resulting strategies can be derived from a well-
defined extensive form. Work on this paper was shared among authors as
follows: Johannes Kern 50%, Carlos Aldés-Ferrer 50%.



Chapter 2 is based on the paper “Comment on ‘Trees and Extensive

Forms’”

, which is joined work with Carlos Alés-Ferrer (University of Cologne)
and Klaus Ritzberger (IHS Vienna) and has been published in the Jour-
nal of Economic Theory, Vol. 146, No. 5, September 2011, pp. 2165-2168.
The paper comments on the definition of Extensive Form in Alés-Ferrer and
Ritzberger (2008) and shows that one of the properties there needs to be ad-
justed. It provides counterexamples showing that with the original version
of this property some results do not hold as stated and presents a corrected
formulation of the property as well as the corrected statement of the results.
It further provides proofs for these results under the new formulation. Work
on this paper was shared among authors as follows: Johannes Kern 33%%,
Carlos Alos-Ferrer 33%%, Klaus Ritzberger 33%%.

Chapter 3 entitled “Circulant Games” is joint work with Pura-Georg
Grani¢ (University of Cologne). Games with a cyclical structure are ubig-
uitous in game theory and are routinely used to generate popular examples,
starting with Matching Pennies and Rock-Paper-Scissors. For these as well
as larger games, the cyclical structure can be captured by circulant payoff
matrices in which each row vector is rotated by one element relative to the
preceding row vector. In our paper we study a class of two-player games in
which both players payoffs are given by such circulant matrices. Given that
these payoffs are ordered, we are able to determine the exact number of (pure
and mixed) Nash equilibria. This number only depends on the number of
strategies, the position of one of the player’s largest payoff in the first row
of his payoff matrix, and whether the players’ payoff matrices “cycle” in the
same or in different directions. Our results further allow us to describe the
support of each Nash equilibrium strategy. Work on this paper was shared
among authors as follows: Johannes Kern 50%, Pura Georg Grani¢ 50%.

Chapter 4, “Preference Reversals: Time and Again”, is the result of joint
work with Carlos Alos-Ferrer, BDura-Georg Grani¢, and Alexander K. Wagner
(all at the University of Cologne). Experiments documenting the preference
reversal phenomenon highlight that, contrary to the invariance assumption
underlying most economic theories of choice, preferences may actually be in-

fluenced by the elicitation method employed. In the most basic setup of such



experiments, subjects are asked to choose from pairs of lotteries containing
one lottery with a high chance of paying a moderate amount of money (P-bet)
and one lottery with a moderate chance of paying a high amount of money
($3-bet). They are then asked to state prices for each of the lotteries. A prefer-
ence reversal occurs if either the $-bet receives a higher price in a pair where
the P-bet is chosen (predicted reversal) or the P-bet receives a higher price
in a pair where the $-bet is chosen (unpredicted reversal). The preference re-
versal phenomenon is characterized by a significantly higher rate of predicted
reversals. We present a new, simple process-based model that explains the
preference reversal phenomenon and makes novel predictions about the asso-
ciated decision times in the choice phase. The phenomenon is jointly caused
by noisy lottery evaluations and an overpricing phenomenon associated with
the compatibility hypothesis. A laboratory experiment confirmed the model’s
predictions for both choice data and decision times. Choices associated with
reversals take significantly longer than non-reversals, and non-reversal choices
take longer whenever long-shot lotteries are selected. A second experiment
showed that the overpricing phenomenon can be shut down, greatly reducing
reversals, by using ranking-based, ordinally-framed evaluation tasks. This
experiment also disentangled the two determinants of the preference rever-
sal phenomenon since noisy evaluations still deliver testable predictions on
decision times even in the absence of the overpricing phenomenon. Work on
this paper was shared among authors as follows: Johannes Kern 25%, Carlos
Alos-Ferrer 25%, Dura Georg Grani¢ 25%, Alexander K. Wagner 25%.
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CHAPTER 1
REPEATED GAMES IN CONTINUOUS TIME AS
EXTENSIVE FORM GAMES

1.1 Introduction

Suppose two players play a continuous-time version of the infinitely repeated
Prisoner’s Dilemma, starting at time ¢t = 0. A player is then free to choose a
strategy conditioning on arbitrary events in the past. For instance, a player
could specify the following grim-trigger strategy: cooperate as long as both
players have always cooperated in the past, otherwise defect forever. Now
suppose both players use this strategy. One is tempted to conclude that the
outcome of the strategy profile is eternal cooperation. Indeed, this outcome
is compatible with the strategy profile in the sense that, at every point in
time, instantaneous cooperation is prescribed by the strategy profile given
the past history contained in the outcome. However, if time is continuous,
there are infinitely many other outcomes which are equally compatible with
these grim-trigger strategies. Fix any arbitrary time 7', and consider the
outcome where both players cooperate up to and including time 7', and
defect at any later point in time. Since there is no first point in time where
players defect, this outcome never contradicts the prescriptions of the grim-
trigger strategy profile and hence is also compatible with it. We conclude
that the strategy profile induces a continuum of different outcomes. As a
consequence, even if every outcome has a well-defined payoff, the payoff of
the considered strategy profile is not well-defined, and a game-theoretical
analysis becomes impossible.

Outcome multiplicity is not the only problem in continuous-time repeated
games. Consider a different strategy profile where each player starts coop-

erating and further decides to cooperate unless only cooperation has been
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observed in the past. What is the outcome? Obviously, eternal cooperation
cannot be the outcome. But, if a defection occurred at any strictly posi-
tive point in time, this must mean that no defection occurred before, and
hence the strategies prescribe a defection at every previous, strictly positive
point in time, a contradiction. Hence, this simple strategy profile induces no
outcome at all.

These problems have been previously pointed out by Anderson (1984),
Simon and Stinchcombe (1989), Stinchcombe (1992), and Alos-Ferrer and
Ritzberger (2008), among others. As shown in Alos-Ferrer and Ritzberger
(2008, 2013a), they are not exclusive of continuous-time settings: intuitively,
it suffices for the time axis to have an accumulation point towards the past to
generate such problems, as e.g. in the case of the time set {1/n}, _, , (J{0}.
We now have a good understanding of the underlying reasons for these prob-
lems. Alos-Ferrer and Ritzberger (2008) (see also Alos-Ferrer, Kern, and
Ritzberger, 2011) formulated out a characterization of the set of extensive
forms where every profile of pure strategies generates a unique outcome (and
hence a normal-form game can be defined). This characterization can be ar-
gued to describe the domain of game theory, for games outside the character-
ized set cannot be “solved” in any sense of the word. Unsurprisingly, perfect-
information continuous-time games are outside this domain; technically, they
fail a condition called “up-discreteness” in Alés-Ferrer and Ritzberger (2008),
which precludes accumulation points toward the past.

This state of affairs has not prevented economic theory from venturing
into the realm of continuous-time games (the literature is of course too ex-
tensive to review it here). And neither should it. On the one hand, contin-
uous time is often analytically convenient due to the possibility of employ-
ing techniques from differential calculus along the time dimension. On the
other hand, discrete time sometimes creates artificial phenomena which van-
ish away in continuous time; and it is their vanishing in the latter framework
which proves their artificiality in the former. However, the problems pointed
out above create serious difficulties with the interpretation of continuous-
time applications. For instance, if certain strategy combinations fall out of

the framework by virtue of creating outcome existence or uniqueness prob-
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lems, the meaning of any equilibrium concept becomes questionable, since
some deviations might be excluded for merely technical reasons, and not the
self-interest of the deviator. Further, if a proper extensive form game can-
not be specified for a continuous-time model, notions of “time consistency”
cannot rely on subgame perfection or other equilibrium refinements based on
backward induction, since in the absence of a properly formulated extensive
form, it is not possible to determine the full collection of subgames capturing
the strategic, intertemporal structure of the problem.

One typical approach for developing a coherent framework in continuous
time is to admit an exogenous restriction on the set of pure strategies and de-
clare some of those inadmissible. In the case of differential games (Friedman,
1994), this approach often leads to the specification of a normal-form game,
where strategies are required to be e.g. differentiable or integrable functions
of some state variable. In other domains, the analysis has been restricted
to strategies incorporating some Markov structure, as e.g. in the case of the
literature on (individual) strategic experimentation (e.g. Keller and Rady,
1999; Keller, Rady, and Cripps, 2005). The approach was most effectively
described by Stinchcombe (1992), who set out to identify a mazimal set of
strategies for a continuous-time game such that every strategy profile induces
a unique outcome. The result incorporates elements of a framework intro-
duced by Anderson (1984) and also studied by Bergin and MacLeod (1993)
and Bergin (1992, 2006), and rests on the condition that a strategy must
always identify the player’s next move.

Stinchcombe (1992) identifies the best that can be done through strategy
constraints once one accepts the inconvenient fact that unconstrained con-
tinuous time games cannot be solved. From a game-theoretic point of view,
however, restricting the strategy set is an unsatisfactory approach. On the
one hand, since certain strategies are excluded on purely technical grounds,
we face the problems with the interpretation of equilibria and time consis-
tency pointed out above. On the other hand, there is a more fundamental,
conceptual problem. An extensive form game incorporates a complete de-
scription of the possible choices of every player at every decision node. A

behavioral strategy is merely a collection of possible “local” decisions at the
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nodes, and any possible combination thereof is a feasible behavioral strategy.
Once the game is specified, there can be no further freedom in the specifica-
tion of the possible local decisions, since those have already been fixed in the
extensive form. The set of possible behavioral strategies is thus automatically
specified once the extensive form is given.

A restriction prohibiting a given combination of local decisions in order
to preserve some property of the outcome, no matter how desirable, lacks
any decision-theoretic justification. Worse, it is then unclear whether the
extensive form structure survives the restriction, raising doubts as to whether
the resulting formal object is simply a (constrained) normal-form game.

Here we propose a different approach to the study of continuous-time
games. The basic idea is as follows. Continuous time is a convenient device;
its modelization within an extensive form game, however, needs only go so
far as it is useful for game-theoretic purposes. The formalizations analyzed
until now might have “gone too far”, in the sense that the associated extensive
forms become too large and restoring tractability requires restricting their
strategy spaces. The literature has concentrated on providing ideas and
rationales for restricting the strategy space in an ex-post way. In this paper,
we prove that continuous-time decisions can be captured by applying those
ideas to the very definition of the game. The resulting formal object can
then still be considered a well-defined “continuous-time game”; it is, however,
a fully solvable extensive form game, i.e. every strategy profile induces a
unique profile, without any restriction on the set of behavioral strategies.
The advantage is that the framework is an extensive form game without
any caveat, and standard game-theoretic concepts and methods can then
be applied. In other words, our message is a positive one: we show that
continuous-time modeling is possible without giving up the benefits and the
conceptual discipline resulting from well-defined extensive form games.

In this paper, we focus on the repeated-game framework with observable

actions.! Specifically, we show how repeated games in continuous time can

IThis is the framework where the problems we mentioned above are the most severe.
Continuous-time models are also customarily used in different frameworks, e.g. games with
imperfect monitoring (Sannikov, 2007). Intuitively, the fact that players cannot condition
on as many events as in the case of perfectly observable actions shrinks the strategy space
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be formalized incorporating natural conditions from the onset. The construc-
tion is not trivial, and in order to describe it we must carefully detail the
appropriate game tree and choice structure. Once this is in place, we show
that, by virtue of fulfilling the appropriate conditions, the resulting game is
well-behaved without any restrictions on the strategy sets. In order to link
our construction to the literature, we then show that it is possible to retrace
our steps and prove an equivalence result between the unrestricted behav-
ioral strategies in our repeated game and a restricted class of strategies in a
more naively specified (and hence, in our view, problematic) continuous-time
repeated game.

The paper is structured as follows. Section 1.2 lies out the general frame-
work for repeated games in continuous time, the Action-Reaction Framework.
Section 1.3 presents our main result, showing that in our framework all strat-
egy profiles induce unique outcomes. Section 1.4 presents the alternative ap-
proach through restricted strategies (Conditional Response Mappings) and
Section 1.5 proves an equivalence result, which allows us to link our exten-
sive form to the previous literature in Section 1.6. Section 1.7 concludes.
The construction and the main arguments are detailed in the main text but

specific proofs are relegated to the appendix.

1.2 Repeated Games in Continuous Time

1.2.1 Extensive Form Games Without Discreteness As-

sumptions

Working definitions of extensive form games frequently incorporate strong re-
strictions in the form of explicit finiteness or discreteness assumptions. Since
we aim to view continuous-time repeated games as extensive form games, we
need a more general approach. We will rely on a definition of extensive form
games allowing for infinite time horizon, continuous time axis, and arbitrary

action sets. This concept is the basis for a general framework developed in

and makes it easier to obtain a well-defined extensive form game. See Alés-Ferrer and
Kern (2013) for a comment.
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Alos-Ferrer and Ritzberger (2005, 2008, 2013a,b).

The definition comes in two parts. The first is a general concept of game
tree, capturing the order and nature of decisions. The second is a definition
of extensive decision problem (given the game tree) which incorporates all
appropriate consistency conditions on the choices that players can make.

Let us start with game trees. Following Kuhn (1953), a game tree is just
an ordered set of “decision points” or nodes which can be represented as an
abstract graph. Alternatively, von Neumann and Morgenstern (1944) focus
on ultimate outcomes as the primitive objects and consider nodes as sets of
such outcomes, which become finer as decisions are taken. A result arising in
the work quoted above is that there exists exactly one way of defining game
trees such that both approaches are equivalent. As a consequence, there is
no loss of generality in assuming a game tree where nodes are taken to be

sets of ultimate outcomes, as in the following definition.

Definition 1. A (rooted) game tree T = (N, D) is a collection of nonempty
subsets © € N (called nodes) of a given set W partially ordered by set
inclusion such that W € N (W is called the root) and

(TT) “Trivial Intersection:” if x,y € N with z Ny # (), then z C y or y C x.

(IR) “Irreducibility:” if w,w’ € W with w # w’, then there exist x,2’ € N

such that w € z \ 2’ and v’ € 2’ \ .

(BD) “Boundedness:” for every nonempty chain A C N there exists w € W
such that w € z for all z € h.2

A play is a chain of nodes h C N that is maximal in NV, i.e. there is no
x € N\ h such that h U {z} is a chain. Plays are the natural objects on
which preferences can be defined in a setting where the time horizon is not
assumed to be finite. The advantage of game trees is that the underlying set
W can also be identified with the set of plays. Specifically, Alés-Ferrer and
Ritzberger (2005, Theorem 3(c)) show that an element w € W can be seen

either as a possible outcome (element of some node) or as a play (maximal

2A chain is a subset of N that is completely ordered by set inclusion.

10
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chain of nodes), and a node x € N can be identified with the set of plays
passing through it.

For a game tree (N, D) with set of plays/outcomes W and an arbitrary
subset a C W (not necessarily a node), define the up-set 1a and the down-set
la by

Ta={yeNly2a} and la={yeNla2y}.

The key implication of (TI) is that 1 z is a chain for all x € N, which is
contained in (can be “prolonged to”) the play 1{w} for any w € z. Further,
if h is a play, by (BD) there exists a unique outcome w € W such that
Nzent = {w}, or, equivalently, h =1 {w}. This fact is the basis for the
equivalence between outcomes and plays, which essentially reduces to the
fact that, for w € W and x € N, w € z if and only if z €1 {w}. When a
distinction is called for, we write w for the outcome and 1 {w} for the play
(chain of nodes).

We now turn to the second part of the definition. In an extensive form
game, players make decisions at nodes that are properly followed by other
nodes, called moves. Let X = {z € N|]x\{z}#0} be the set of all
moves.? In finite, perfect information examples, the possible actions or op-
tions available to a player at a given move can be identified with the nodes
following that move (its immediate successors). In more general settings, we
need a more general object. The possible alternatives faced by players are
modeled through choices, which are subsets ¢ C W satisfying a number of
consistency conditions.

Before we present those conditions, we need a notion of when a choice ¢
is available at a move x. For an arbitrary set of outcomes/plays a C W, the

set of immediate predecessors of a is defined by

Pa)={r e N[y ela: Tz =ty\ la}.

Since nodes in a game tree are sets of plays, they too may, but need not,

have immediate predecessors. Since choices are also sets of plays, the set of

3All other nodes are called terminal. It follows from (IR) that a node x € N is terminal
if and only if there is w € W such that z = {w}.

11
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immediate predecessors of a choice is well defined, and we will say that a
choice ¢ is available at a move x € X if x € P (c). This is the key element in

the following definition.

Definition 2. An extensive decision problem (EDP) with player set [ is
a pair (T,C), where T' = (N,D) is a game tree with set of plays W and
C = (Cy);e; 1s a system consisting of collections C; (the sets of players’
choices) of nonempty unions of nodes (hence, sets of plays) for all ¢ € I such
that

(EDP.) if P(¢)NP () # 0 and ¢ # ¢, then P (¢) = P () and cNe' =0,
for all ¢, € C; for all i € I;

(EDP.i) x N [F‘lig(z)ci} = () for all (Ci)iel(x) € A(z) and for all z € X;

(EDPuil) if y,y’ € N with y Ny’ = 0 then there are ¢, ¢ € C; for some
player i € I such that y C ¢,y C ¢, and eNc = (;

(EDP.iv) if x D y € N, then there is ¢ € A; (x) such that y C ¢ for all
i€l (x), foral z e X;
where A (z) = Xermdi (z), Ai(z) = {c€ C;jlx € P(c)} are the choices
available to i € T at x € X, and I (z) = {i € I'|A;(x) #0} is the set of

decision makers at x, which is required to be nonempty, for all z € X.

An extensive form game is an extensive decision problem together with a
specification of players’ preferences on the set of plays.

The interpretation of the conditions above is as follows (see Alos-Ferrer
and Ritzberger, 2005, Section 5 or Alos-Ferrer and Ritzberger, 2008, Section 3
for additional details). (EDP.i) stands in for information sets: if two distinct
choices ¢, € C; are ever simultaneously available, then they are disjoint
and available at the same moves—at those in the information set P (c) =
P (). (EDP.i) requires that simultanecous decisions by different players
at a common move do select some outcome. (EDP.iii) states that for any
two disjoint nodes, there is a player who can eventually make a decision that
selects among them. Finally, (EDP.iv) states that, if a player takes a decision
at a given node, he must be able not to discard any given successor of the
node. This excludes absent-mindedness (Piccione and Rubinstein, 1997), as

in the original formulation of Kuhn (1953).

12
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An important point about EDPs is that they allow several players to de-
cide at the same move. This sometimes simplifies both the representation of
a game and the equilibrium analysis (see Alos-Ferrer and Ritzberger, 2013a,
for examples). This will also be important for our present purposes, for in
repeated games players act simultaneously at every time point. If we adopted
the convention that each move is assigned to one player only, we would be
forced to incorporate artificial “cascading information sets” to accommodate

this characteristic.

1.2.2 Existing Approaches to Extensive Form Games in

Continuous Time

We now turn to the specific problem of modeling a repeated game in contin-
uous time explicitly as an extensive form game. A first, direct approach to
this task is to define strategies as mappings from the set of history-time pairs
to the set of possible actions with the minimal requirement that at time ¢ the
same action is prescribed for two histories that agree on [0,¢[. Indeed, this
approach can be readily formalized as an EDP (Alos-Ferrer and Ritzberger,
2005, 2008).

Let W be the set of functions f : R, — A, where A = [[,.; 4; and

each A; is some fixed set of actions containing at least two elements. W

el

is the set of all possible outcomes in the continuous-time repeated game.
Let the set of nodes be N = {x(f) | t € Ry, f € W}, where z(f) =
{geW | g(r)=f(r) V7 €0,t[} for f € W and t € R,. A node x;(f)
contains all functions that agree with f on [0, ¢[ while all possibilities of val-
ues at t and afterwards are still open. (NN, D) can be shown to be a game
tree (Alos-Ferrer and Ritzberger, 2005).

A strategy in this framework is a mapping assigning a choice of the form
c(f,a;) =4{g € x(f) | 9:i(t) =a;} (for some a; € A;) to every move of the
form x;(f). However, it is then possible to define strategies like the ones
described in the introduction that induce no outcome or that induce a con-
tinuum of outcomes (cf. Examples 10 and 12 of Alés-Ferrer and Ritzberger,

2008). Hence, this approach, while intuitive, is not suited to model repeated
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games in continuous time. In order to be able to “solve” these games, addi-
tional assumptions are needed.

A second approach is to view a continuous-time game as the limit of some
sequence of discrete-time games and then define continuous-time strategies
as limits of sequences of strategies in discrete time. This approach, however,
presents difficulties of its own. A particular problem, pointed out by David-
son and Harris (1981) and Fudenberg and Levine (1986), is that sequences of
discrete time strategies may not possess a limit (the “chattering problem”).
Imagine, for instance, a sequence of discretizations with period length 1/n
and discrete-time strategies prescribing to cooperate in periods k/n with k
odd and defect in other periods.

A third approach is to restrict the sets of strategies in a game, that is,
to impose the exogenous constraint that certain strategies cannot be used
for e.g. equilibrium analysis. This allows to identify strategy sets which keep
the framework tractable (e.g. guaranteeing existence and uniqueness of out-
comes), and hence avoids the problems mentioned above. This approach has
been pursued in Anderson (1984), Bergin (1992, 2006), Bergin and MacLeod
(1993), Perry and Reny (1993), and Perry and Reny (1994), among others
(see also Simon and Stinchcombe (1989) for a combination of this approach
and discrete-time approximations). Stinchcombe (1992) investigates maxi-
mal strategy sets such that a unique outcome can be assigned to every admis-
sible strategy profile, thereby obtaining a setting which is as good as it can
be given a potentially problematic extensive form. As mentioned in the in-
troduction, this approach presents conceptual problems because (behavioral)
strategies are collections of local decisions, and which decisions are feasible
should be solely and completely determined by the extensive form. However,
it remains an open question whether the maximal strategy set approach can
be reconciled with a pure extensive form approach. This would entail finding
a new extensive form such that the unconstrained sets of behavioral strategies
are equivalent, in a well-defined sense, to the set of constrained strategies.

We will return to this question in Section 1.5.
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1.2.3 The Action-Reaction Framework

Our approach to the problem of defining extensive form games in continuous
time is different to the ones just mentioned. We will exhibit a specific exten-
sive decision problem capturing repeated decisions in continuous time, such
that, for every strategy profile, one and only one associated outcome exists.
The basic construction relies on ideas present in the frameworks of Anderson
(1984), Stinchcombe (1992), and Bergin (2006). However, the approach is
different at a basic level because strategy sets are kept unconstrained; the
differences with respect to the “direct approach”™EDP mentioned above are
built directly into the construction of the extensive decision problem.

The basic idea of the construction is as follows. At time 0 all players
choose a first action that they will have to stick to for some positive amount
of time. This amount of time is determined by the choice of “inertia times”
during which a player is committed to her current action. After this, when-
ever a player’s inertia time has run out she can revise her previous action.
If she switches to a different one, i.e. “makes a jump”, the players who did
not jump can react instantly and choose new actions as well. All players will
again have to stick to their new actions for some positive amount of time,
i.e. decide on new inertia times. This construction prevents players from
jumping again right after an action change and from reacting even though
no other player has jumped. The latter is crucial: a direct consequence is
that the set of decision points becomes well-ordered, hence eliminating the
problems of the direct approach.

We proceed in two steps. First we will describe the set of outcomes/plays
of the game. The construction of this set already incorporates the essence of
the Action-Reaction Framework. The second step is to appropriately define
nodes and choices and show that the resulting structure is indeed an extensive

decision problem.

The Outcome Space

Fix a finite set of players I and an arbitrary action space A; for each player

1 € I. Assume that A; is a metric space.
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We start by defining the set of plays, i.e. the possible maximal chains of
decisions that might actually occur during the game. Ultimately, the history
of all decisions taken by a player ¢ builds a function f; : R, — A; as in
the direct approach. We will introduce additional constraints to reflect the
Action-Reaction Framework.

We require some preliminary notation. First, given a metric space B,
call a function g : Ry, — B (right-)piecewise constant if for every t € Ry
there exists ¢ > 0 such that g ‘]tﬂ‘/%[ is constant. If g is piecewise constant,

g+ (t) == lim, ;4 g(7) exists for all ¢ € R;. In this case, define

RE(g) ={t e Ry [ g4(t) = g(t)}

to be the set of points where ¢ is right-constant. Second, given any function

g: R,y — B, let

T—t—

() = {r €000l | 39-0) = fim o) 1 -0 =)}

denote the set of points where ¢ is left-continuous.*

The following definition spells out the first ingredient of our framework.
Definition 3. A decision path is a tuple f = (f;),c; such that
(DP.i) for each i € I, f; : Ry — A; is piecewise constant,
(DP.ii) for each i € I, LC(f;) JRK(f,) = R,
(DP.iii) for each t € Ry, if 34 € I with ¢t € R(f;), then 3 j € I with ¢t € J(f;),

where J(f;) :== RK(f;) \ LC(f;) and R(f;) := LC(f;) \ RK(f;) are the set
of jump points and reaction points of player i, respectively. The set of all

decision paths is denoted by F.

Property (DP.i) states that a player’s action revision cannot occur arbi-

trarily close to a previous action revision. A direct consequence (see Lemma

4For piecewise constant functions as defined here, a function is right-continuous at ¢ if
and only if it is right-constant at ¢.
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A.2 in Section 1.7) is that the set of jump points of any player is well-ordered
by the usual order on the real numbers. Property (DP.ii) requires that a
player’s action revision cannot take the form of an instantaneous change
which is then abandoned (i.e. simultaneous failure of left- and right-continui-
ty).> Taken together, (DP.i) and (DP.ii) mean that when a player changes
action, be it due to a jump or to a reaction to somebody else’s revision, the
player is not able to change action again immediately after the change.

Property (DP.iii) is the only condition requiring consistency across play-
ers’ paths of decisions. Intuitively, jump points are those where a players’
decision path has changed discontinuously (a sudden action revision), while
t is a reaction point if the player’s strategy shifts immediately after ¢ but
not at ¢, in reaction to an observed shift of another player at ¢: an “instant
reaction”. (DP.iii) states that a player can change action by instant reaction
only if some other player jumped at .

The second key ingredient of the Action-Reaction Framework are inertia
times. By (DP.i), after every jump or reaction at t, there exists ¢ > 0 such
that the player is “committed” not to revise action again until at least ¢ + ¢
(although a better interpretation is a physical impossibility to revise too
often). We will introduce an explicit record of inertia times as part of every
play. Formally, let E be the set of all possible functions € = (¢;);e; with
¢; : Ry — R, such that ¢;(0) > 0 for all i € I. The quantity ¢;(t) will play
the role of a marker, with the interpretation that ¢;(t) > 0 if and only if
player i is able to revise her action at t. In that case, €;(t) represents the
length of time after ¢ for which player ¢ cannot change action again, unless
it is as reaction to some other action change.

Define the set of decision points of player i as
DP(e) :={t e Ry | &(t) >0},

i.e. the set of times at which player ¢ is able to take a decision. In order to

link inertia times with decision paths, we will have to spell out consistency

°In particular, (DP.ii) implies that 0 € RK(f;) for all i € I, i.e. f1(0) = £(0). That is
the players’ initial decisions cannot be adjusted arbitrarily close to t = 0. Note that this
implies 0 € RK(f;) \ LC(f;) = J(f;) for all i € I.
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conditions. A minimal such condition is that J(f;) U R(f;) C DP(e;), i.e.
whenever a player makes a decision or reacts to another decision at time ¢,
an inertia time ¢;(t) > 0 is specified. However, the inclusion will typically
be strict, since a player can always decide to keep the previous action, which
still requires specifying a (new) inertia time. That is, t € DP(¢;) indicates
a decision which might not be observable as such (because no action change
ensues), while t € J(f;) U R(f;) implies an observable action change.

Before introducing the announced consistency conditions, again we re-
quire additional notation. Since €;(0) > 0, foralli € I, e € E, and t €]0, +00|
the intersection DP(¢;) N[0, t] is not empty and hence by the Supremum Ax-

iom we can define
Prev(e;, t) := sup(DP(e;) N[0, ¢]),

which gives the last time before ¢ that player i has taken a decision. Define
Prev(e;,0) =0 foralli €  and e € E. Fori € I, e € E, and t € DP(¢;)
define

Next(e;, t) :=t + €(t),

which gives the next time after ¢ that player ¢ can initiate an action change

if no other player jumps before. Further let
PJ(e) :={t € Ry | Next(e;, Prev(e;,t)) =t} U{t € Ry | t =Prev(e;,t)}

be the set of potential jumps for player i, i.e. the set of times where a player
is allowed to initiate an action change according to the inertia times. Those
are of two kinds. The “natural ones” are those where the inertia time since
the last time an action change was implemented has “run out”. The second is
slightly counterintuitive, and corresponds to points which are the supremum
of the set of prior time points where action changes have been initiated, i.e.
accumulation points of prior action changes.

Last, for w = (f,€¢) € F x E and t € Ry define (for notational conve-
nience) IDP(e,t) :={i€l | t€ DP(¢)}, IJ(f,t):={iel | teJ(fi)}
and IPJ(e,t):={i €l | t € PJ(e)}, i.e. the sets of players having decision
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points, jumps, and potential jumps at ¢, respectively.
We are now ready to define the set of plays, which incorporate the con-

nection between decision paths and inertia times.

Definition 4. A play is a pair w = (f,€) € F' x E such that
(P.i) for each i € I, J(f;) C PJ(€);

(P.ii) for each i € I, J(fi) € ;e; DP(€));

(P.ii) for each i € I, PJ(¢;) € DP(¢;);

(P.iv) for each i € I and each t € DP(¢;) if 7 € DP(¢;)N]t, Next(e;, t)[ then

Uji J(F)N]E 7] # 0.
The set of all plays is denoted by W.

(P.i) states that a player can jump at t only if ¢ was indeed a potential
jump. (P.i) means that, whenever a player jumps, every player who does
not also jump is allowed to react, and all players have to specify inertia
times. Note that (P.ii) together with (DP.iii) implies that J(f;) U R(f;) C
DP(e;). (P.iii) requires that every potential jump be a decision point. The
interpretation of (P.iv) is as follows. If at time ¢ a player makes a decision
with inertia time e, then the only way he can make a decision before t + ¢ is

if some other player jumped before ¢ + €.

The Extensive Decision Problem

We first define the decision nodes, and hence the tree.

For every w = (f,€) € W and t € R, define the following sets

n(w) = {w' = () eW | w'(r) =w(r)V7e01},
wi(w) = {w'=(f,€) €xlw) | f(t)= ()},
v (w) = {w' =(f¢)€x(w) | filt)=fi(t)}.

Nodes of the form z;(w) are “potential jump nodes” at which a player

might make the decision to initiate a change of action. Hence, they will
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be part of the tree whenever t € |J,_; PJ(¢;) or, equivalently, whenever
IPJ(e, t) # 0.
R

Nodes of the form z;*(w) are “reaction nodes” which model the possibility

iel

of players to react to a change of action initiated by another player. Hence
they are part of the tree whenever t € J,.; J(fi) but ¢t ¢ J(f;) for some
j € I; equivalently, whenever () C IJ(f,t) C I.

Nodes of the form z”(w) are “peek nodes” where both the actions at ¢
(individual action change initiations) and the immediate reactions to them
(the right limits of f), have already been decided, but the times ¢;(¢) still
have not. Again, they are part of the tree whenever IPJ (e, t) # (.

Note that nodes are independent of the “representant play”. If w’ € z;(w),
then x;(w) = z;(w’), and analogously for reaction and peek nodes.

Potential jump, reaction, and peek nodes account for all possible decision
situations. Note that the root, i.e. the node W containing all plays, is con-
tained in N because zo(w) = W for all w € W. The root is followed by peek

nodes of the form z{’(w). The set of nodes is given by

N = {x(w) | t >0, IPJ(e,t) £ 0}
U{affw) | t>0,0C LI(f,t) G T} (1.1)
U{af(w) | t>0, IPJ(e,t) £ 0} .

We now specify the choices, and hence the extensive decision problem
by reviewing the decisions that have to be taken at each type of node. At
potential jump nodes x;(w), players who are allowed to jump may decide
how to continue, i.e. which action to adopt. That is, for every ¢t > 0, w =
(f,e) e W, i€ IPJ(et), and a; € A;, we include the choice

ci(zy(w),a;) ={w' = (f,é) e W | tePJE), f(r)=f(r)V7Tel0t,
fi)) = ai}.

At reaction nodes 22 (w), the players who did not jump decide on their instant
reaction. That is, for every t > 0, w = (f,e) € W with IJ(f,t) # 0,
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ieI\1J(ft), and a; € A;, we include the choice
ci(zf(w), a;) = {w’ =(fl,d)eWw } fi(r)=f(r) YT el0,t], fit) = ai}.

At peek nodes xf(w), all players who either had a potential jump at ¢
or reacted at ¢ decide how long they are going to stick to their action. That
is, for every t > 0, w = (f,e) € W, i € I such that i € IDP(e,t),° and

g; € Ry, we include the choice

ci(af (w),g) ={w' = (f,) eW | f'(r)=f(r) V7 €0,
fjr(t) = f+(t), Eé(t) =&}.

Hence, the set of choices of player i is given by

C; = {Ci(xt((.fa 6))>az) | t>0,1¢€ IPJ(G,t), a; GA,}
U{a@f(fe),a) | t>0, i€ I\LI(f,t), TI(f,t) #0, a; € A; }
U{c@(f.e).e) | t=0,i€IDP(et),e; € Ry}

Let us now look at information sets. By definition an information set in
an EDP is the set of immediate predecessors of a given choice. For a choice
¢ = ¢i(z(w),a;) € C; with w = (f, €) we obtain

Ple) ={z((f ) eN | f(r)=[f(r)VTel0,t] tePJ(c)}.

This means that at a potential jump node z;(w) a player knows all past
actions (i.e. the decision path up to time t) but not the record of inertia times
which has led to the particular decision path (with the obvious exception that
she knows that the play is such that she is allowed to jump).

For a choice ¢ = ¢;(zf(w),a;) € C; with w = (f,€) (which implies i ¢
IJ(f,t)) we have

={z((f ) eN | f(r)=f(r)Vrelot},

5This is equivalent to i € IPJ(e,t) or IJ(f,t) # 0 (see Lemma A.5 in the appendix).
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i.e. at a reaction node xf(w) the player knows the decision path up to and
including time t.

Finally, for a choice ¢ = ¢;(z] (w), ;) € C; with w = (f, €) we obtain

Ple)={z((f,€) e N | f(r)=f(r)¥Tel0d, filt)= fr (1),
te DP(e) }

which means that at a peek node 2 (w) the player knows the decision path
up to and including time ¢, as well as what all players are “going to do next”,
i.e. the right limits at ¢, and that she took a decision at ¢ (which cannot
necessarily be inferred from the decision path).

This completes the specification of the framework. Denote T' := (N, D)
and C' := (C});er. We call the pair (T, C') the Action-Reaction Framework.

Proposition 1. The Action-Reaction Framework (T,C') is an extensive de-

cision problem.

To define an extensive form game on the EDP capturing the Action-
Reaction Framework, all what is left is a specification of individual prefer-
ences on plays. Plays, however, contain a full specification of inertia times,
which are essential to capture the idea that an action initiation cannot oc-
cur arbitrarily close to a previous one (as also assumed in Bergin, 1992;
Stinchcombe, 1992; Perry and Reny, 1993) but should ultimately be payoff-
irrelevant. Hence, one can define a repeated game in continuous time as
an EDP as above together with a specification of preferences on plays which
does not depend on inertia times, e.g. if utilities on w = (f, €) only depend on
the first argument. As we will clarify below, the information sets described
above guarantee that players’ choices only depend on decision paths and not

on 1nertia times.

1.3 A Possibility Result

In this section we aim to show that the framework we have introduced is

well-suited to the analysis of repeated games in continuous time. For that,
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we need to establish that it is better behaved than general EDPs, since
being an EDP does not guarantee that well-specified strategy profiles lead to
well-specified outcomes. Fortunately, the conditions guaranteeing outcome
existence and uniqueness are already known. We now review them for the

general case and then return to our framework.

1.3.1 Strategies and Outcomes in General Extensive Form

Games

Given an extensive decision problem, let X; := {x € X|3c € C; : x € P(c)}
be the set of moves for player i, for every ¢ € I.

A pure strategy for player ¢ € I is a function s; : X; — C;, such that
571 (c) = P(c) for all ¢ € 5, (X;)

where S; (Xz) = {Si (LU) |LU c Xz}
That is, the function s; assigns to every move x € X; a choice ¢ € C}
such that (a) choice ¢ is awvailable at z, ie. s;(x) = ¢ = v € P(c) or

-1

7 () € P(c), and (b) to every move z in an information set P (c) the

s
same choice gets assigned, i.e. x € P(c) = s;(z) = c or P(c) C s; " (), for
all ¢ € C; that are chosen somewhere, viz. ¢ € s;(X;). Let S; denote the
set of all pure strategies for player i € I. A pure strategy combination is an
element s = (s;),.; € S = XierS;.

We want to obtain a framework where every strategy combination induces
an outcome/play. Hence, we need to clarify the formal meaning of when a
pure strategy combination “induces” a play. Define, for every s € S, the

correspondence Ry : W — W by
Ry(w)=({si(z)lwezeX icl(x)}.

Say that strategy combination s induces the play w if w € Ry(w), i.e. if it is
a fixed point of R;.
In an arbitrary EDP the correspondence R for a given strategy combi-

nation s € S may not have a fixed point at all, or have a whole continuum
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thereof. The two basic desiderata on an EDP, expressed in terms of Ry, are

as follows.

(A1) For every s € S there is some w € W such that w € R (w).

(A2) If for s € S there is w € W such that w € R (w), then R, has no other
fixed point and R, (w) = {w}.

(A1) says that for every strategy combination s € S there is an out-
come/play w € W that is induced by s. (A2) requires that the induced
outcome is unique. (A1) and (A2) define a function ¢ : S — W that asso-
ciates a unique play to each pure strategy combination. (Furthermore, this
function is onto by Theorem 4 of Alos-Ferrer and Ritzberger, 2008). These
two properties are, therefore, necessary and sufficient to define a normal form
(without payoffs).

The main result of Alés-Ferrer and Ritzberger (2008) states that (Al)
and (A2) are essentially equivalent to two properties of the tree: “regularity”
and “up-discreteness.” Thus, these two properties represent the appropriate

restrictions on game trees for a well-founded sequential decision theory.

Definition 5. A game tree (N, D) is regular if T2\ {z} has an infimum for
every x € N, x # W. It is up-discrete if every (nonempty) chain in N has a

maximuin.

In the terminology of Alés-Ferrer and Ritzberger (2008), regularity means
that there are no strange nodes, or, equivalently, that every node other than
the root is either finite (meaning that it has an immediate predecessor) or
infinite, meaning that it coincides with the infimum of its strict predeces-
sors. Up-discreteness is equivalent to the chains 1 for x € N being dually
well-ordered (that is, all their subsets have a maximum). This condition is
common in order theory and theoretical computer science (see Koppelberg,
1989, chp. 6). It implies that the set of immediate successors of a move is
nonempty and forms a partition of the move by finite nodes.

Intuitively, up-discreteness should exclude continuous-time examples, since

immediate successors can be seen as “the next” decision points. It turns out,
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however, that the Action-Reaction Framework fulfills up-discreteness in spite

of being a model for decisions in continuous time.

1.3.2 Strategies and Outcomes in the Action-Reaction

Framework

In (T, C) the sets of moves and the sets of choices are fixed. As described
above this specifies the set of strategies for each player since strategies in
an EDP are mappings from the set of moves to the set of choices. Hence in
the Action-Reaction Framework there is no freedom in the specification of
strategies and in particular players cannot be prevented from using certain
strategies. All restrictions on the players’ ways to act are already incorpo-
rated in the tree and the choice system respectively. Note that due to the
structure of the information sets the choices prescribed by strategies only
depend on decision paths and not on inertia times.

We denote the set of strategies of player ¢ in the Action-Reaction Frame-
work by S;. Let further S := x;¢1.5; denote the set of strategy profiles in
(T,C).

Lemma 1. The tree of the Action-Reaction Framework is an up-discrete and

reqular tree.

By Proposition 1 above and Theorem 4 in Alés-Ferrer and Ritzberger
(2008) any decision path in W can be reached by some profile of strategies.
Using Proposition 1 above, Lemma 1, and Propositions 6(b) and 9 in Alos-
Ferrer and Ritzberger (2008) we obtain that (7',C) is an Extensive Form
(Alos-Ferrer and Ritzberger, 2008; Alos-Ferrer, Kern, and Ritzberger, 2011).
Corollary 5(b) from Alés-Ferrer, Kern, and Ritzberger (2011) then yields the

following result.

Theorem 1. FEvery strategy profile in the Action-Reaction Framework in-

duces one and only one outcome.
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1.4 An Alternative Approach: Strategy Con-

straints

In the previous sections, we have established that it is possible to define
extensive form games modeling continuous-time problems without the re-
course to an artificially constrained strategy set. It is, however, natural to
ask whether there is a relation between the Action-Reaction Framework and
previous approaches which employed strategy constraints. Indeed, it is pos-
sible to embody ideas similar to the ones in the Action-Reaction Framework
through strategy constraints. In this section we detail this alternative route
and show how these constraints must be imposed to preserve equivalence (in
a well-defined sense to be detailed below) with the extensive form approach.

Informally, a Conditional Response Mapping is a mapping which specifies,
at each time ¢, an action (depending only on the previous history of play)
and a response which depends on the actions being simultaneously decided by
other players. A number of additional conditions must be imposed in order
to capture the constraints which are also inherent in the Action-Reaction
Framework. Naturally, these additional conditions resemble the restrictions
imposed on strategies by e.g. Stinchcombe (1992) and Bergin (2006), among
others (see Section 1.6). The reason we refrain from using the term strategy is
that a priori it is not clear whether the set of Conditional Response Mappings
indeed corresponds to the set of strategies in a well-defined extensive form.
We shall, however, see that this is the case.

Analogously to the conditions discussed for extensive forms, a coherent
framework will be obtained if every profile of mappings induces an outcome
contained in the appropriate outcome set and any outcome can be reached
by some profile. In order to guarantee these properties, however, it is not
sufficient to place restrictions on Conditional Response Mappings only. It is
necessary to also constrain the set of possible outcomes, and hence (through
the dependence on histories) the domain of these mappings. The appropriate
constraints for the set of outcomes are exactly as in the Action-Reaction

Framework: outcomes must define decision paths.
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Let F' denote the set of decision paths as introduced in Definition 3. The

formal definition of Conditional Response Mappings is as follows.

Definition 6. A Conditional Response Mapping (CRM) for player ¢ € I is
a mapping o; : F' x Ry — A2, (f,t) — (0} (f,t),0%(f,t)) such that for every
feFandalteR,

(CRM.i) if f(7) = f'(7) for f' € F and all 7 € [0,¢[, then o} (f,t) = o} (f,1);
if f(7) = f'(7) for f' € F and all 7 € [0,t], then o?(f,t) = o2(f',t).

(CRM.ii) ift (mje, LO( fj)) UJ(f,) then 02(f,t) = f,(t) and there is &;(f, 1) >
0 such that o} (f,7) = f;(¢) for all 7 €]t,t + &;(f,t)[.

(CRM.iii) if t € LO(f;) N (Uyes J(fx)) then there is &;(f,t) > 0 such that
ol (f,7) = fiyr(t) for all 7 €]t t + &;(f, 1)].

Denote the set of CRMs for player ¢ by ¥; and let X 1= X;c%;.

For each decision path f and time ¢, a CRM hence specifies an action,
denoted o}(f,t), and an instant response o2(f,t). The first part of condition
(CRM.i) specifies that actions depend only on the past history of play, i.e.
on the values of f up to (but excluding) ¢. The second part of this condition
stipulates that responses depend only on the values of f up to and including
t. Equivalently, at time ¢ each player specifies an action and, for any possible
profile of actions at ¢ which is part of a decision path, also a conditional
response.

Condition (CRM.ii) captures the intuition that, as long as no player has
changed action at ¢ (and hence the decision path is left-continuous in all
coordinates), then no player can change the current action through a condi-
tional response. That is, “no reaction without a triggering action”. Further,
players will be constrained to the current action for some small time interval.
Likewise, the same restrictions apply if a given player has changed action at ¢
(“jumped”), which embodies the intuition that two action changes of a given
player cannot be arbitrarily close. In particular, all players have to stick to

the action picked at time 0 for some positive amount of time.

"In particular o} (f’,0) = ol (f,0) for all f' € F.
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Condition (CRM.iii) captures a similar intuition for responses. If a player
did not initiate an action change at ¢, but some other player did, then the
original player was allowed to react through the stipulated conditional re-
sponse (hence no constraint is placed on the second component of the action
tuple). The condition requires that the player needs to stick to the action
specified as a response for some small time interval, as long as no other player
initiates an action change.®

The following examples illustrate that the restriction to decision paths
is necessary. In other words, CRMs are well-defined mappings only on F' X
R, . The first example shows that a CRM cannot be built by simply gluing

together arbitrary chains of decisions.

Example 1. Let I = {1} and A; = {0, 1} and consider the function h : Ry —
Aj defined by
0, if 7 eQ,

h(r) =
1, ifreR\Q.

By (CRM.ii), for any ¢ € Q, there should exist an & > 0 such that o' (h,7) = 0
for all 7 €]¢t,t+¢[. Also by (CRM.ii) for any ¢ € R\ QN]¢, t+¢[ there should
exist an ¢ > 0 such that o'(h,7) = 1 for all 7 €]¢, ¢ + €'[, which leads to a

contradiction.

In this example, the decision maker changes action “too often”, with action
changes being arbitrarily close to each other. The next example shows that

this problem also arises with more intuitive, “continuous” mappings.

Ezxample 2. Let I = {1} and A; = R,. Consider the function h : R, — A,
defined by h(7) = 7 for all 7 € R;. By (CRM.ii) for any ¢ € R, there should
exist an € > 0 such that ol'(h,7) =t for all 7 €]t,t + ¢[. Also by (CRM.ii)
for any ¢’ €]t,t + [ there should exist an ¢’ > 0 such that o'(h,7) =t > ¢

for all 7 €]t’,t' 4 ¢’[, which leads to a contradiction.

The last two conditions in the definition of CRM implicitly incorporate
a notion of “inertia” analogous to the inertia times needed for the Action-

Reaction Framework. A first step in order to show that the new framework

8By (DP.iii), ¢ fulfills either the hypothesis of (CRM.ii) or the hypothesis of (CRM.iii).
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is coherent is to make the relationship to inertia times explicit. This corre-
sponds to the following thought experiment. Given a decision path f and
a time instant ¢, imagine the path after ¢ was changed in such a way that
nobody changed action after the reactions specified at time ¢, i.e. the path
was fixed at fi(t). What is the first point in time after ¢ such that a given
CRM o; would specify a deviation from the new path? If such a first point
in time is well defined and equal to t + ¢, the quantity € will fulfill the same
role as an inertia time in the Action-Reaction Framework.

Let us formally construct these inertia times for a given CRM o; € %;.
Foreach f € Fandt € R, let f'" be given by f'*(7) = f(7) for all 7 < t and
f(7) = f(¢) for all 7 > t. We call € > 0 a deviation point prescribed by o;
after (f,t)if ol (f,t+¢) # fir(t). That is, for a deviation point €, the action
prescribed by o; at time ¢ + ¢ is different from the action/reaction chosen
by player ¢ at time ¢, given that all players stick to their actions/reactions
chosen at time ¢. The following lemma shows that whenever such a deviation
point exists, there is a first deviation point, which then plays the role of an

inertia time.

Lemma 2. Let f € F,t e Ry, i €1, 0, €%y, and let E7 (f,t) be the set of
all deviation points prescribed by o; after (f,t). If E7(f,t) # 0 then there
exists a first deviation point €% (f,t) = min E7(f,t).

This property is a consequence of condition (CRM.ii). It should be
remarked that the existence of a first deviation point corresponds to the
“Identifiability” assumption for admissible strategies imposed by Stinchcombe
(1992). The difference is that in Stinchcombe (1992), this property is imposed
as one of the conditions restricting the strategy set, while in our framework,
it is a property derived from the definition of CRM.

The existence of first deviation points as identified in Lemma 2 is crucial
for the framework at hand. It has two important consequences. First, it plays
a major role in the proof of outcome existence and uniqueness below. Second,
and as already announced, the €% (f,t) essentially reconstruct inertia times
and will allow us to establish the equivalence between the Action-Reaction

Framework and the framework based on CRMs.
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The next result shows that this framework is coherent, that is, every
profile of CRMs induces a unique outcome (after every history) and any

outcome in F' can be reached by some profile of CRMs.
Definition 7. Let 0 € X.

(i) f € F is induced by o if o} (f,t) = fi(t) and o2(f,t) = fir(t) for all
1€l andallt € R,.

(i) Given f € F and t € Ry, f € F is induced by o after (f,t) if

f(r) = f(r) for all 7 € [0,t], o} (f,7) = f(7) and o2(f,7) = fis (1) for
all 7 € [t,+o0[ and i € I.

Proposition 2. (i) Every o € ¥ induces a unique f € F.

(ii) For all f € F andt € R, every o € ¥ induces a unique f € F after

(f.1).
(i1i) Every f € F is induced by some o € X.

Properties (i) and (ii) in the last Proposition are comparable to Theorem
IV.1in Stinchcombe (1992), Theorem 3 in Bergin (1992), Lemma A.1 in Perry
and Reny (1993), Theorem 2 in Bergin and MacLeod (1993), and Theorem
1 in Bergin (2006). All these results state that, under the constraints of the
respective framework, every profile of strategies induces a unique outcome
after any history. Property (iii) additionally states that any outcome can
be reached by some profile of strategies, a result similar to Theorem IV.2 in
Stinchcombe (1992).

The intuition behind the proof of the last result is as follows. Given
a profile of CRMs, initial actions are clear. The inertia times identified
in Lemma 2 then allow us to identify the (constant) path up to the next
deviation point. At that point, the CRMs can be used to establish the
new actions/reactions. Applying Lemma 2, the construction can be iterated.
Since time is continuous, the exact iterative argument relies on transfinite

recursion, which is made possible by the structure of decision paths.
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1.5 An Equivalence Result

Proposition 2 shows that the framework based on CRMs is coherent, in the
sense that every profile of CRMs induces one and only one outcome. Coher-
ence of the framework, however, is just a necessary prerequisite for exten-
sive form analysis. In this section, we show that CRMs indeed allow for a
full-fledged extensive form formulation. In particular, they are shown to be
equivalent to the Action-Reaction Framework. Hence, CRMs represent the
“translation” into constrained strategy sets of a proper extensive form game

modeling continuous-time decisions.

1.5.1 Owutcome-Equivalence and Equivalence Classes

We need some additional notation. For f € F and t € Ry, let t(f,t) :=
sup [J J(f;) N[0, ¢[ and further let ¢(f,0) = 0. Note that J,., J(fi)N[0,t[ # 0
for tZGEI Ry, as 0 € J(f;) for all i € I. The time point ¢(f, ) is essentially the
last time strictly before ¢ that some player jumped. In particular (by Lemma
C.1 in the appendix), if t(f,t) < ¢ then f is constant on |t(f,t),t[. Note,
however, that ¢ = ¢(f,¢) might be an accumulation point of jumps. In this
case, necessarily t(f,t') = 1. Let J(f) := U;e; J(fi) U{t € Ry|t =t(f,t)}.
Note that t(f,t) € J(f) for all t € R,.

In order to show the equivalence between the Action-Reaction Framework
and the approach based on CRMs, we need to associate a CRM to each
strategy s; € S; in the Action-Reaction Framework. The idea is as follows.
The construction of a CRM requires to prescribe an action and a reaction
for every history-time pair. The structure of the EDP allows for a natural
way to define actions a;(f,t,s;) and reactions af*(f,t,s;) that only depend
on the history-time pair (f,¢) and the strategy s;. The only difficulty is to
determine the set M(f,s;) C R, of time points ¢ such that the strategy s;
and the past decisions along f imply that ¢ actually has to make a decision
at t. Once this is in place, a CRM can be defined by prescribing the action
a;(f,t,s;) whenever player ¢ has to make a decision, and the left limit of past

actions if not (reactions are determined in a similar manner).
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First, we identify the natural actions. Given s; € S;and (f,t) € F' xRy let
a;(f,t,s;) be the action such that s;(x;((f',€))) = ci(x ((f',€)), ai( f, 1, :))
for any (f’,€') € W such that f'(7) = f(7) for all 7 € [0,¢[ and t € PJ(€))
(provided, of course, some such potential jump node exists). Note that by
construction of the EDP, for any (f”,€”) € W such that f"(7) = f(r) for
all 7 € [0,t] and t € PJ(€!), z(f",€") belongs to the same information set
as z,((f',€)) and hence s;(z,((f',€))) = si(x((f",€"))). Thus a;(f,t,s;) is
uniquely determined by the strategy s;, the time point ¢, and the decision
path f up to t.

Now, analogously to the last paragraph, we determine the natural reac-
tions. Given s; € S; and (f,t) € F x R, let al'(f,t,s;) be the action such
that s;(zR((f",€))) = ci(xl((f',€)),al(f,t,s;)) for any (f’,¢’) € W such
that f'(7) = f(7) for all 7 € [0,t] and ¢ ¢ IJ(f',t) # 0 (provided, of course,
such a reaction node exists). Note that by construction of the EDP, for any
(f",€") € W such that f"(7) = f(r) for all 7 € [0,¢] and ¢ ¢ IJ(f",t) # 0,
xl(f",€") belongs to the same information set as xf((f’,¢’)) and hence
si(B((f',€))) = si(xB((f",€"))). Thus al(f,t, s;) is uniquely determined
by the strategy s;, the time point ¢, and the decision path f up to and
including ¢.

Now, we proceed to identify the set M (f,s;) of time points where player
i needs to move given f and s;. The construction of M(f,s;) requires a

definition and a lemma.

Definition 8. Let i € I, s; € S;, and (f,e) € W. For t1,t, € R, U {0},
t1 < to, (f,€) agrees with s; on [ty,to] if for all T € [t1, 5],

&(1) > 0= s (v ((f€) = e (27 ((f, ), (7)) - (1.2)
Lemma 3. Leti€ I, s; €S;, f € F. Then

(i) for any t € J(f) there is € € E such that (f'",€) € W and it agrees
with s; on [t, 00 (in particular, €;(t) > 0);

(ii) for anyt € J(f), if (f*F,€),(f*",€) € W agree with s; on [t,00][ then
(1) = €(7) for all 7 € [t,00];
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(i) for anyt € Ro, if (FUF,€), (FU* &) € W agree with s, on [t(f, ), o]
then PJ(€;) N [t,00[= PJ(€,) N [t, o0].

Given any s; € S; and (f,t) € F xRy, we define €,(f,t,s;) : [t(f, 1), 00[—
R, as the unique function given by Lemma 3. That is, if (f//H* ¢) € W
agrees with s; on [t(f,t), 00| then €,(7) = €;(f,t,s;)(7) for all T € [t(f,t),00[
and €;(f,t,s;)(t(f,t)) > 0. Further, for any s; € S; and (f,t) € ' x R, we
define (abusing notation) PJ(f,t,s;) = PJ(€;) N [t, 00| for any € € E such
that (f/UH+ ¢) € W and agrees with s; on [t(f,t),c0[. This is well-defined
by Lemma 3(iii). Finally, let M(f,s;) = {t € Ry|t € PJ(f,t,s;)}. The
intuition for M (f, s;) is as follows. Since no player jumps between ¢(f, ) and
t, one can uniquely reconstruct the inertia times chosen by player ¢ between
t(f,t) and t according to s; (Lemma 3(i) and (ii)). This yields a sequence
of time points between t(f,¢) and ¢ at which player i has to move. If this
sequence either includes ¢ or “converges” to it then t € M(f,s;).

The considerations above allow us to construct a well-defined CRM given
a strategy in (7T, C') as follows. Given ¢ € I and a strategy s; € S; define
0% F xR, — A? by

ai(f, t, Si) ifte M (f, Si) ,

o (f,t) = ‘
fi-(t) ift ¢ M (f,s:)
and
ai*(f.t,s:), ifte U J(f;) N LO(f),
o2 (f 1) = jel
fi(®), ift e QILC(fj) U J(fi)-

The intuition behind this construction is as follows. Given a history-time
pair (f,t) one first checks whether past decisions prescribe that i should
make a decision at ¢, i.e. whether t € M (f,s;). If this is the case, the
action chosen at (f,t) is the unique action prescribed by s; at the corre-
sponding potential jump node. If not, the left-continuous action is chosen.’

Reactions are chosen according to the uniquely prescribed reactions at the

9 t ¢ M(f,s;), then t(f,t) <t by (P.ii) and the definition of a potential jump. Since
f is constant on Jt(f,t),t[ by Lemma C.1 in the appendix, f;_(t) exists.
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corresponding reaction nodes. Note that ¢ € M(f,s;) implies that there is
¢ € E such that (f'0* ¢) € W and t € PJ(¢;) and consequently that
z:((f1UD* €)) € X;. Hence, in particular a;(f,t,s;) is well-defined. Anal-
ogously, if t € U;c; J(f;) N LC(fi) then i ¢ IJ(f,t) # 0. Hence by con-
struction of the game tree (and Lemma C.2 in the appendix), there is € € F
such that (f,e) € W and xf((f,¢)) € X; which guarantees that a®(f,t, s;)
is well-defined. As the next proposition shows, the mappings above indeed
define CRMs.

Proposition 3. Leti € I, and s; € S;. Then o% is a CRM.

Given a profile s € S of strategies in (7', C), denote by w® = (f*,¢°) the
play induced by s (recall Section 1.3.1) and say that f* is the decision path
induced by s.

The structure of (7', C) allows for a natural way to define an equivalence

relation on the set of a player’s strategies, which will be used in the sequel.

Definition 9. Let i € I. Two strategies s}, s? € S; are outcome-equivalent,

7 1
sh~ §?

7 I

if they induce the same decision path for any given profile of the
other players’ strategies, that is f(515-) = f(s75-) for all s_; € S_;.

For s; € S; denote the equivalence class of s; with respect to ~ by [s;]
and let S;/~ be the set of equivalence classes.
As the next lemma shows, if two strategies induce the same CRM they

are outcome-equivalent.

Lemma 4. Leti € [ and s}, 52 € S;. If 0% = 0% then s} ~ s2.

1771

1.5.2 Equivalence of CRM and Action-Reaction Frame-

work

We now proceed to show that the Action-Reaction Framework and the ap-
proach using CRMs are equivalent. Proposition 3 establishes the existence
of a well-defined mapping from the set of strategies in (7',C) to the set of
CRMs. Next, we construct a mapping from the set of CRMs to the set of

(equivalence classes of) strategies in (7, C') and subsequently show that any
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profile of strategies in (7, C') induces that same decision path as the associ-
ated profile of CRMs and conversely that any profile of CRMs induces the
same decision path as the associated strategy profiles in (T, C).

We first note that every CRM defines a set of associated strategies in
(T, C) in a natural way.

Definition 10. Let 0; € ¥;. A strategy s; : X; — C; is induced by o; if

(IS.1) si(z¢(w)) = c;(w¢(w), o} (f,t)) for all potential jump nodes z;(w) € X;

where w = (f¢€),

(1S.ii) s;(zF(w)) = ¢;(zf(w), o?(f,t)) for all reaction nodes z*(w) € X; where

w:( 76)7

(1S.iii) s;(xf(w)) = ci(xf(w),e%(f,t)) for all peek nodes zF(w) € X; such
that E%(f,t) # 0, where w = (f, ¢€).

Let S(o;) be the set of all strategies s; : X; — C; that are induced by o;.

This definition is, for all practical purposes, constructive. At each poten-
tial jump node (reaction node) the action prescribed is the action (reaction)
chosen by the CRM after the corresponding history-time pair. At peek nodes,
the inertia time chosen is the length of the period until the next jump pre-
scribed by the CRM. The only part of the definition which allows for some
freedom in the specification of choices corresponds to history-time pairs after
which the CRM does not prescribe a jump if no other player jumps. Formally,
one then has s; (27 ((f,€))) = ¢ (z ((f,€)),€) for some arbitrary & > 0 for
all peek nodes =¥ ((f,€)) € X; where E%(f,t) = (). The next proposition
shows that this construction indeed delivers a set of strategies in (7', C) for

any given CRM.
Proposition 4. Leti € I, and o; € ¥;.
(i) S(o;) # 0.
(11) If s;, si € S(o;) then s; ~ s
For a profile ¢ € ¥ of CRMs let f? denote the outcome induced by o

(recall Definition 7 and Proposition 2).
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Theorem 2. Let 0 = (0;)ic; € ¥ be a CRM profile and s = (8;)ic; € S be a
strategy profile in (T,C).

(i) 0% = o; for alli € I and s, € S(a;).
(ii) [si] = [s}] for all s, € S(o®).
(iii) fOVer = 7 for all (s})icr € XicrS(a7).
(i) o = .

What the theorem states is the following. By (i) when going from a CRM
to a corresponding strategy in the EDP and then from that strategy to the
corresponding CRM one obtains the original CRM. Part (ii) says that one
obtains an outcome-equivalent strategy when going from a strategy in the
EDP to the corresponding CRM and then to a strategy corresponding to
that CRM. In (iii) we show that the outcome induced by a profile of CRMs
coincides with the decision path of the play induced by any corresponding
strategy profile in (7',C'). Part (iv) is the analogous statement for a profile
of strategies in (7', C'). These properties show that the approach using the

Action-Reaction Framework and the approach using CRMs are equivalent.

1.6 Relation to the Literature

In this section we discuss several frameworks for games in continuous time
that have been suggested in the literature, and comment on the relation of

those to our approach.

1.6.1 Maximal Strategy Sets

In a remarkable paper, Stinchcombe (1992) proposed a two-step approach
in order to obtain a coherent framework for the analysis of continuous-time
decision problems. His first step is to reduce the set of possible outcomes,
and hence the underlying extensive form. The second step is to restrict the

class of “admissible” strategies on that extensive form. This approach is thus
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located “in between” the Action-Reaction Framework and the approach using
strategy constraints. On the one hand the set of possible outcomes of the
game is restricted and a decision tree is used. On the other hand the players’
strategy sets are exogenously restricted.

The construction in Stinchcombe (1992) is as follows. First, the con-
straints on the set H of possible outcomes guarantee that jumps can only
occur on a well-ordered set of time points. An outcome is a list of jump
times and actions chosen at these jump times for all players such that the
set of jump times is well-ordered by <. From this set, the decision nodes
and the game tree are defined. Strategies are then mappings from the set of
decision nodes to the set of actions. However, players are only allowed to use
a strict subset of strategies satisfying two additional assumptions. The first,
“identifiability”, requires that the infimum of a set of jump times also has to
be a jump time, i.e. at any point in time the next time a strategy prescribes
a jump can be identified. The second, “finitely many moves at any point in
time”, states that a player is allowed to initiate at most finitely many jumps
at any point in time. The main purpose of this condition is to guarantee that
profiles of admissible strategies induce outcomes in H.

The results of Stinchcombe (1992) show that every profile of admissi-
ble strategies induces a unique outcome after every possible history. Further,
every outcome in H can be reached through some profile of admissible strate-
gies. Importantly, the set of admissible strategies is shown to be maximal in
the sense that weakening the identifiability condition for any player or the
second condition for all players simultaneously would lead to the existence
of strategy profiles that induce either no outcome or multiple outcomes.

The identifiability condition is comparable to our conditions (CRM.ii) and
(CRM.iii). Both identifiability and our conditions essentially ensure that at
any point in time when a player changed his action he has to stick to the
new action for some positive amount of time. The effect of either approach

is to guarantee that the next point in time when a decision is to be taken is
well-defined.
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1.6.2 Staying Quiet

Perry and Reny (1993) develop a bargaining model in continuous time. At
any point in time players can submit an offer or “stay quiet”, i.e. not make
an offer. The strategy sets are then restricted through three conditions.
Condition S1 requires that once an offer is made by a player, he must stay
quiet for an exogenously given strictly positive amount of time. Condition 52
specifies that the other player cannot react to the offer for some exogenously
given nonnegative amount of time (although he can make an offer himself
during that period). The game ends whenever either both players make
the same offer at some point in time or at some point a player stays quiet
but the other player matches his most recent offer. Perry and Reny (1993)
provide an example showing that S1 and S2 alone do not guarantee outcome
existence. This (and outcome uniqueness) is accomplished by condition S3,
which requires that at any point in time, after making a decision, whether
this was making an offer or staying quiet, the player must stay quiet for some
strictly positive amount of time. Interestingly, given S1, 53 is both necessary
and sufficient for the existence of an outcome.

Condition S3 incorporates an idea akin to inertia times and is related to
our condition (CRM.ii), but it is a more stringent constraint in the sense that
it does not allow for instant responses. While a player may immediately learn
about the other player’s offer, by S3 he has to stay quiet for some strictly
positive amount of time. Hence while the lower bound of possible reaction
times is 0, there is a strictly positive delay. A similar but slightly stronger
restriction is used in Perry and Reny (1994) where it is required that for every
history all points in time where the strategy prescribes something else than
staying quiet are isolated points, i.e. for every history and all times ¢ there is

an € > 0 such that the strategy prescribes to stay quiet on [t —e, ¢ +¢[ \ {t}.

1.6.3 Conditioning on Counterfactuals

Bergin (1992, 2006) and Bergin and MacLeod (1993) propose an interesting
framework for repeated games in continuous time that also relies on reducing

the set of allowable strategies. The restrictions imposed in those works result
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in a framework guaranteeing outcome existence and uniqueness. In partic-
ular, Bergin (2006) presents a general formalization of restricted strategies,
and we have drawn from it for the formulation of our Conditional Response
Mappings. However, the restrictions imposed in those papers cause prob-
lems in a different front, because the framework cannot be captured through
an extensive form game. We think it is important to address those here to
highlight the kind of problems that can inadvertently be created if a model
of continuous time does not rely on an explicit extensive form game.

To illustrate the problems, we focus on Bergin (2006). We first present
a brief introduction to the framework in that paper, adapting the original
notation to ours. Let I and A; be as in the Action-Reaction Framework
and let H := {h = (h1,..., ) | hi Ry = A Viel } A “strategy” for
a player ¢ in Bergin’s framework is a mapping b; : H x R, — A; such that
for all h € H the following conditions hold.

(B.i) If h(r) = RA/(7) for all 7 € [0,¢] for some I’ € H and some t € R, then

(B.ii) There exists € > 0 such that b;(h,7) = b;(h,0) for all 7 € [0,¢].

(B.iii) If ¢t € (;c; LC(hy) then there exists € > 0 such that b;(h, 7) = bi(h, 1)
for all 7 € [t,t + €.

(B.iv) If t ¢ LC(h;) then then there exists € > 0 such that b;(h, 7) = b;(h,t)
for all 7 € [t,t + €.

(B.v) If t € LC(h;) \ () LC(h;) then there is g;(h,t) > 0,a; € A; such that
i
bi(h,7) = a; for all T €]t,t + ;(h,1)[.
Conditions (B.ii)-(B.v) are similar in spirit to our conditions (CRM.ii) and
(CRM.iii). Whenever a player jumps, the other players can react instantly.
After that, however, all players have to stick to their new action for some
positive amount of time. Bergin (2006) proves that any profile of “strate-
gies” in his framework induces a unique outcome after every history. This

approach, however, is problematic for two reasons. First, it can be shown
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that the set of outcomes induced by profiles of such “strategies” is equal to
our set F' of decision paths defined above (see Proposition 5 in Appendix
1.D), i.e. not all elements of H can be reached by such a profile. This is
in contrast to the Action-Reaction Framework or the framework of Stinch-
combe (1992). Second, the restrictions imposed on the strategies make it
impossible to formalize this approach as an extensive form game. Specifi-
cally, conditions (B.ii)-(B.v) require the set of choices that are available to a
player after a history to not only depend on the history, as it should be in an
extensive form, but also on the chosen strategy. In a sense, they “depend on
a counterfactual future”, because by (B.ii) and (B.iii) after a time ¢ a player
is forced to choose what the strategy chose along the (future) outcome path,
irrespective of the history after ¢. Intuitively, the problem is that a “strategy”
insists on what “should have been done ” rather than considering the actual
path of play.

The following example shows that Bergin’s approach cannot be formalized
in the Action-Reaction Framework. This also provides an indication as to

why it cannot be formalized as an extensive form game.

Ezxample 3. Let I = {1}, and A; = {0,1}. Let hy be defined by ho(t) = 0 for
all t € Ry and

0, ift < 42,
1, ift>42.

ha(t) =

Y

Let wg := (ho,€) € W and wy := (hy,€1) € W. Given = €1 {w} let cp(x)
be the (unique) choice available at = that leads to {wy}, & = 0,1. Define a
strategy s in (7, C') as follows:

c(x), ifx et {w},
s(x) = co(z), if x €1 {wo}\ T {w:},

c(x), otherwise,

where ¢(z) € A(x) is some arbitrary element of A(z). The corresponding
CRM o satisfies ot(hy,t) = hy(t) for all t € Ry and o'(hg,t) = 0 for all

t > 42. For any strategy b in Bergin’s framework that induces the same
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outcome as o, i.e. for which b(hq,t) = hy(t) for all ¢ € R,, (B.i) implies
b(ho,42) = 1. Further, (B.iii) implies that there is an € > 0 such that
b(ho,t) = 1 for all t €]42,42+¢[. Even though b(hg,42) = 1 means departing
from hg, (B.iii) implies a condition for actions chosen along hq after ¢t = 42.
Hence the outcome induced by ¢ and the outcome induced by b after the
history-time pair (hg,42 + €/2) can never be the same. Thus there is no
strategy in Bergin’s framework that induces the same outcome as o after
every history and could therefore be considered equivalent to o. In particular
there is no strategy in Bergin’s framework that could be considered equivalent

to the strategy s in the Action-Reaction Framework.

The above example illustrates the problem caused by conditions (B.i)-
(B.v). On the one hand a player is required to stick to an action chosen for
some positive amount of time. On the other hand this “rule” does not apply
to counterfactual histories where the player is forced to immediately switch
to the action that was chosen along the actual outcome path. Thus Bergin’s
framework is an example of a framework where the extensive form does not

survive the restrictions imposed on the strategy set.

1.7 Conclusion

Repeated games in continuous time are plagued with problems of outcome
nonexistence and nonuniqueness, which amount to various forms of impos-
sibility results and convey the overall message that continuous-time models
are not well-founded. In contrast, we provide a possibility result. Our ap-
proach shows that it is possible to capture continuous-time modeling within
the framework of well-defined extensive form games, without any artificial
restriction of the associated strategy sets. All the necessary conditions en-
suring that every strategy profile induces a unique outcome are incorporated
in the game form, which allows for a better understanding of the tradeoffs
involved in continuous-time modeling.

Previous work had concentrated on a “second best”, placing exogenous

restrictions on the players’ strategy sets. From a game-theoretic point of
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view, however, this is a problematic approach, since it is unclear in which
sense a solution concept based on a strategy set restricted for purely technical
reasons is related to the original extensive form. What our construction
accomplishes is showing that the restrictions for strategy sets considered
in the literature (e.g. Stinchcombe, 1992) can be adapted to appropriate
conditions formulated from the onset, i.e. incorporated into the game tree
and the choice system. The relation to the literature is made clear by showing
that the (unrestricted) behavioral strategies from the resulting extensive form
are equivalent to those in a restricted class of strategies in a more naively
specified continuous-time repeated game. In turn, those restricted strategies
are closely related to the approaches presented in the literature (Stinchcombe,
1992; Bergin, 2006).

Of course, our results do not mean that naively specified continuous time
models can be treated as extensive form games, as our initial examples show.
Familiarity should not be confused with simplicity, and the continuum is not
a simple construction. The accomplishment of this paper is to show that
continuous-time modeling is possible within the realms of standard game
theory. Modeling decisions in continuous time, however, requires a relatively
involved framework. The benefits are of two kinds. The first is of practical
nature. Once the framework is in place, there is no further question of
interpretation of game-theoretic concepts. The game is an extensive form
game to which standard ideas apply. The second is more fundamental. In
a sense, our construction resolves the tension between technical assumptions
imposed for the sake of tractability and conceptual requirements resulting
from a well-established theory of strategic interactions. If continuous time is
deemed a worthy setting for tractability reasons, it is not necessary to give

up the standard decision- and game-theoretic framework in order to use it.
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Appendix 1.A: Proofs from Sections 1.2 and 1.3

This appendix contains the proofs of Proposition 1 and Lemma 1, which in
turn implies Theorem 1. We start with a few preliminary lemmata which are

also used elsewhere. Ny will denote the set of natural numbers including 0,
ie. Ng={0,1,2,...}.

Lemma A.1. Let w= (f,e) e W, i €l, andt € R,.
(1) Prev(e;,t) € DP(e;).
(11) Next(e;, Prev(e;,t)) > t.

Proof. (i) By definition Prev(e;, t) = sup(DP(¢;) N [0,¢[). By contradiction,
assume that ¢ := Prev(e;,t) ¢ DP(e;). Then for all ¢ > 0 there is 7 €
|t — e,t{{NDP(¢;). Hence sup(DP(e;) N [0,¢]) = t and thus ¢ € PJ(e;) by
definition of PJ(¢;). (P.ii) then implies ¢ € DP(¢;), a contradiction.

(ii) By definition, Prev(e;, t) < t. If Prev(e;, t) = ¢ then ¢(t) > 0 as t €
PJ(e;) € DP(e;) by (P.ii) and hence Next(e;, t) > t. If Prev(e;, t) < t assume
by contradiction that ¢ := Next(e;, Prev(e;,t)) < t. As e;(Prev(e;,t)) >
0 by (i), Prev(e;,t) < t < t. By definition of Prev(e;,t), €(1) = 0 for
all 7 €]Prev(e;, t),t[, hence for all 7 €]Prev(e;, t),t], implying Prev(e;, t) =
sup(DP(e;)N|0,t[) = Prev(e;, t). Thus ¢ = Next(e;, Prev(e;, t)) which implies
t € PJ(e;) € DP(¢;) by (P.ii), a contradiction with €;(t) = 0. O

Lemma A.2. For every f € F and alli € I the set J(f;) is well-ordered by
<. In particular the set | J,c; J(fi) is well-ordered by <.

Proof. Let ) £ U C J(f;). Since U C R, we have that ¢ := inf U exists. By
(DP.i) there is € > 0 such that f; is constant on |¢,¢ + ¢[. By contradiction,
suppose t ¢ U, then for every € > 0 there is 7 €]t,¢ + ¢[ such that 7 € U C
J(f:), contradicting that f; is constant on |t,t + €. O
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Lemma A.3. Let w = (f,e) € W.
(i) Fori € I the sets DP(¢;), and PJ(¢;) are well-ordered by <.

(i) The sets|J,c; DP(€;), andJ;c; PJ(e;) are well-ordered by <, and hence

countable.

Proof. (i) Fix a player i € I. We will first show that DP(e;) is well-ordered.
Let ) # U C DP(e;). AsU C Ry, t:=infU exists. If t € U, we are done.
By contradiction, if ¢ ¢ U then for all ¢ > 0 there is ¢ €]t, + £[ such that
t €U C DP(c). Let

t':=min{ min Next(e;,¢); min Next(e;, Prev(e;, 1))}
JEIDP(e}F) JEINIDP(e}F)

By Lemma A.1(ii) Next(¢;, Prev(e;, t)) > ¢ for all j € I. Hence, by (P.iii)
Next(e;, Prev(e;, 1)) > ¢ for all j € I\ IDP(e,t). As Next(e;,t) > t for all
j € IDP(e,t), we obtain ¢ > ¢.

As f € F by (DP.i) there is € > 0 such that f is constant on ], t+¢[. We
claim that €;(7) = 0 for all 7 €]t, min{t',t + £}[. Assume by contradiction
that €;(7) > 0 for some 7 €], min{t',t+}[. If i € IDP(e;, t) then by (P.iv),
U, J(f5)NE, 7] # O, which contradicts the fact that f is constant on J¢, t+.
If i ¢ IDP(e,t) then as Prev(e;, t) <t <7 <t < Next(e;, Prev(e;, t)), (P.iv)
implies (J,; J(f;)N|Prev(e;, t), 7] #  which again contradicts the fact that
f is constant on |t + €.

Hence there is ¢’ > 0 such that €;(7) = 0 for all 7 €]t,t +£'[. Ast ¢ U,
this is a contradiction to the definition of infimum.

(ii) follows from (i) as all sets are finite unions of well-ordered sets. All

sets of real numbers which are well-ordered by < are countable.!” O

10This is a well-known observation. Let s(x) be the successor of a real number z accord-
ing to the standard order <. The open intervals (x, s(x)) for the different elements of the
well-ordered set are nonempty and disjoint. Since each such interval contains a different
rational number, the well-ordered set must be countable.
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Lemma A.4. Let w = (f,e) € W, t € Ry, and g; € Ry, for all i € I.
Further let a,b € x;erA; and let f be given by fH(1) = f(7) for all T < T,
f8t) = a, and fi(t) = b for all T > t. Suppose f* € F and that for alli € I,
te J(fY) onlyifi € IPJ(e;,1).

(i) There is € € E such that € (t) = €(t) for allt € [0,%[, €(t) = &; for all
i€ IPJ(e,t), and w' = (f,€) € W.

(i) Ift € J(f") then there is € € E such that ¢'(t) = (t) for all t € [0,1],
€t)=¢; forallieI, andw' = (ft,€) e W.

Proof. (i) Let I(t) = {i € I|t € PJ(&) UU;¢; J(f;_)} For each i € I define

4

Ei(t), ift < %,
£, if i € I(t) and t = ¢ + ¢;n for some n € Ny,
73, ifi ¢ I(t) and ¢t = Next(e;, Prev(e;, t)) + 73n for some n € Ny,

0, otherwise

\

(Note that the third condition becomes void if t € |, J(f1).

We will show that w' = (f*,€') € W. To see (P.i) and (P.ii), let i € I and
t € J(fF). Then t < 7 by definition of ff, and hence t € PJ(e)NN;e; DP;(€;)
by (P.i) and (P.ii) for w and the construction of e. To prove (P.ii), let i € I
and t € PJ(e)). If t <t then t € DP(€;) by (P.ii) for w. If ¢ > t then by
construction ¢ € PJ(¢;) if and only if ¢t € DP(e;).

Finally, we will turn to (P.iv). Let i € I, t € DP(¢}), and 7 € DP(€;) N
[t, Next(e;, t)[. If Next(ej, Prev(e;,t)) < #, then |J; J(f;_)ﬂ]tﬂ'] # 0 by
(P.iv) for w. Hence suppose that Next(e;, Prev(e;, t)) > t. If t > ¢ then by
construction of f, t € DP(¢}) implies DP(e})N]t, Next(¢}, t)[= @, a contra-
diction to our choice of 7. If ¢ > t and t > 7, applying (P.iv) to w yields
Uj;éi J(f;_)ﬂ]t, 7| # 0.

If 7 > 7 consider three cases. If t € J,; J(f}), we are done. Therefore
suppose t ¢ U,; J(fj). Then if ¢ € PJ(e;) we get that # € DP(e;) and
t <t < Next(e;,?). Applying (P.iv) for w then yields ., J(f;7)NJt, 2] # 0
and hence J,; J(f;7)N]t, 7] # 0. Finally, if £ ¢ PJ(e;) then by hypothesis
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t ¢ J(f!). Note that if t < Prev(e;, ) < t, applying (P.iv) for w we obtain
0 # Uz J(f;_)ﬂ]t,Prev(ei,f)] Clt, 7], as Prev(e;, t) € DP(e;) by Lemma
A.1(i). Hence w.lo.g. assume t = Prev(e;,¢) < t. By construction of €,
we get 7 = Next(e;, Prev(e;, t)) + 73n for some n € Ny, which yields 7 >
Next(e;, Prev(e;, t)) > Next(€;, t), a contradiction to our choice of 7. Hence
(P.iv) holds.

(ii) Note that in (i) we actually proved that €;(f) = ¢; for all ¢ € I(¢). If
t € J(f) then I(¢) = I and hence the statement follows. O

Lemma A.5. Let w = (f,e) € W, t € Ry. Then i € IDP(e,t) if and
only if i € IPJ(e,t) or IJ(f,t) # 0. In particular, IDP(e,t) # () implies
IPJ(e,t) # 0.

Proof. “If”: 1t i € IPJ (e, t) then i € IDP(e, t) by (P.ii). If IJ(f,t) # 0 then
i € IDP(e,t) by (P.ii).

“Only if”: Let ¢ € IDP(e,t) and suppose that ¢ ¢ TPJ(e,t). Let t =
Prev(e;, t). Then t < t < Next(e;, t), where the second inequality follows
from Lemma A.1(ii). By Lemma A.1(i) ¢ € DP(¢;). Ast € DP(g;), (P.iv)
implies that there is t € Ujzi J(£5)NNE 2. If £ €], t[ then by (P.ii) f € DP(e;).
As T = Prev(e;, t) < t < t this would contradict the definition of Prev(e;, t).
Hence t € U, J(f;) and thus IJ(f,t) # 0. O

We are now ready to turn to the proof of Proposition 1.

Proof of Proposition 1. For x € N, let t* € R, and w”* = (f*,€*) € W be
such that z =z (w?), z = 2t (w?), or z = 25 (w®).

We will first show that T'= (N, D) is a game tree (Definition 1).

(TI): Let z,y € N be such that zNy # () and let w = (f,€) € xNy. Then
rh(w) C o C xp(w) and zf, (w) C 2 C xw(w). Without loss of generality,
assume t* < t¥. Then for any w¥ = (fY,¢¥) € y we obtain w¥(1) = w(r) for
all 7 € [0,¢Y]. If t* < ¥ then fY(t*) = f(¢*) and fY(t*) = f(¢t*). Hence
wY € 28 (w) C x,ie. y C o Ift* =¥ then z,y € {24 (w), 28 (w), 2k (w)}
and hence are ordered.

(IR) Let w,w" € W with w = (f,€), w' = (f’,€) be such that w # w'.
Then there is t € R, such that w(t) # w'(t). Let t* = min;e; Next(e;, Prev(e;, t))
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and t* = mine; Next (e}, Prev(e), t)). By (P.iv), U,c; DP(€;)N|Prev(e;, t), t'[=
0 and (J,c; DP(€;)N|Prev(e;, t),t*[= 0. Hence Prev(e;, t') = Prev(e;,t) and
Prev(e;,t*) = Prev(é,,t) for all i € I and there are 4,5 € I such that
t! = Next(Prev(e;, t'),t") and t* = Next(Prev(e}, t*),t*). Thus t' € PJ(e;),
t* € PJ(¢}) and by the construction of the tree, z; (w), zp2(w') € N. By
Lemma A.1(ii), t',#* > t and hence by construction of the nodes w € x; (w)
and w ¢ zp(w') and W' € xpe(w') and W' ¢ xa(w).
(BD) Let h € 2V be a nonempty chain. Let

D:={teR; | JweW:z(w)orz;(w)or z] (w) € h}.

Note that as in the proof of (TI) above (case t* = t¥) for each t € A there are
at most three nodes = € h such that t* = t (a peek node, a reaction node,
and a potential jump node).

Suppose first that 3t = sup D and ¢ € D. Let y € h be the smallest of
the nodes in the chain h with t¥ = ¢t. Let w € y. As in the proof of (TI)
above (case t* < t¥), it follows that w € z for all x € h.

Suppose now that either 3 = sup D and t ¢ D or Bsup D. In the latter
case write £ = +oo for convenience. For any 0 < K < £ there is t* €]K,{[ND
and w’ = (f¥, ) € W such that zx (w™) or fk (w®) or zfi (W) € h.

For each i € I and some a; € A; define w; = (f;,&) € F x E by
wl(r), if7<t,

— )

’LUZ(’T) =
(CLZ', 0), if 7 > t.

Note that (since h is a chain) if 7 <  then w7 (1) = wX(7) for any K €]0,7]
with 7 € [0, 5.

If £ < 400 we claim that ¢t € (J;c; PJ(§). Assume by contradiction
that £ ¢ U;c; PJ(€;). Then Prev(€;,t) <t and hence €;(r) = 0 for all 7 €
|Prev(€;, ¢)[ and all j € I. Let K €] max;er Prev(€;, t),[. Then there is t* €
K, t[ and w™ = (f, ) € W such that z,x (w™) or 2/ (w®) or zli (W) € h
and hence IDP(ef t5) D IPJ(eX t£) # (), where the inclusion follows from
(Piii). By construction w;(tX) = w!™ (t¥) and as IDP(eX,t5) # @ this
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implies I DP(e%,t5) # (), which contradicts the fact that IDP(€, 1) = () for
all 7 €] max;ecr Prev(e;, 1), 1]

For each i € IP.J(%,%) choose a} such that a} # lim,_; f,_(¢) iflim,_; f,_(¢)
exists and arbitrarily otherwise. For eachi € I\IPJ (¢, 1) let a} = lim,_; f, ().
Note that the limit exists as otherwise ¢ would be an accumulation point of
jump points of f; (and hence decision points of € by (P.i) and (P.iii)) and
hence i € IPJ(E, ).

Now define
fin), ifr<t
filr) = _
a;, ifr >t
and
€(r), if <t
(7)== 73, if 7>t and 7 =1t + 73n for some n € Ny,
0, otherwise.

and set w := (f,e) € F' x E. Note that the construction guarantees the
t € J(f;) if and only if £ € PJ(§). We will now verify that w € W. To
see (Pi), let 7 € J(f;). As f is constant on |t,+oof, 7 < t. If 7 < ¢
then 7 € [0,t%] for some K > 0. Then, by (P.i) for w®, 7 € PJ(e&)
and hence 7 € PJ(¢;). If 7 = t, by construction of f, ¢ € J(f;) if and
only if t € PJ(§;) and hence ¢ € PJ(¢;). This proves (P.i). (P.ii) follows
immediately from the construction of e. To see (P.iii) let 7 € PJ(¢;). If 7 <
then 7 € DP(¢;) by construction. If 7 > ¢ then Prev(e;, 7) = t 4+ 73n for
some n € Ny implying that 7 = ¢+ 73(n+ 1) and thus ¢;(7) > 0. Thus (P.iii)
is satisfied. To prove (P.iv) let t € DP(¢;) and 7 €]t, Next(e;, t)[NDP(e;)
be such that (J,c; J(f;)N]t, 7] = 0. If 7 <% we reach a contradiction with
(Piv) for w® with K > 7. If t < ¢ and ¥ < 7 then in particular ¢ ¢
Ujer J(f), in contradiction with the construction of f. Now suppose t > %.
The construction of € implies that if 7 €]t, Next(e;, t)[ then €(7) = 0, a
contradiction with 7 € DP(e;). Hence (P.iv) holds and we obtain w € W.
Next we will show that (7', C) is an EDP (Definition 2).
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(EDP.i) Let 7 € I and ¢, ¢ € C; be such that P(c)NP(d) # () and ¢ # ¢
First, let ¢ = ¢;(x(w), a;) for some w = (f,€) € W and some a; € A;. Then

Ple) ={z:((f,€) €N | f(r)=Ff(r) VT el tePJ(g)}.

P(c) N P() # 0 yields ¢ = ¢;(x(w), a;) for some a, € A; and hence P(c) =
P(c). As ¢ # ¢, we have a; # a} which implies cN¢’ = (). The proofs for the
cases ¢ = ¢;(zf(w), a;) and ¢ = ¢;(xF (w), a;) are analogous.

(EDP.i) Let x € X and (¢)icr@w) € Xicr@)Ai(z). If 2 = zp(w®) let
f(r) = f*(7) for all 7 € [0,t*[ and f;(7) = a; for all 7 € [t*,00[ and all ¢ € [
where the a; are such that ¢; = ¢;(x, q;) if i € I(x) and a; = lim, = f7(7) if
i ¢ I(x). Applying Lemma A.4(i) there exists € € F such that e(7) = Em(T)
for all 7 € 0,¢°[ and w = (f,€) € W. By construction w € 2 N (\;cy(,

If 2 = 2B (w®) let f(7) = f(7) for all 7 € [0,t%], and f;(7) = a; for all
T €]t,00[ and all ¢ € I where the a; are such that ¢; = ¢;(z,a;) if ¢ € I(x) and

= f*(t*)ifi ¢ I(x). By Lemma A.4(i) there is € € F such that ¢(7) = Em(T)
for all 7 € [0,¢*[ and w = (f,€) € W. By construction w € x N (V;cy(

If v = b (w®) let f(r) = f2(7) for all 7 € [0,¢*], and fi(7) = f2+( )
for all 7 €]t,00[ and all i € I. By Lemma A.4(i) there is € € E such that
e(r) = €°(7) for all 7 € [0,t7[, (t") = ¢; for all i € I(x) where ¢; is such
that ¢; = ¢;(z,e;) if i € I(x) and g, = 0if i ¢ I(x) and w = (f,e) € W. By
construction w € x N ﬂlej(x ;-

(EDP.iii) Let y, € N be such that y Ny’ = 0. Let ¢ := inf{t €
R, |w¥(t) # w¥(t)}. Then w¥(r) = w¥(r) for all 7 € [0,7]. Note that
T e PJ(e) if and only if 7 € PJ(é") for all i € I as w¥(7) = w¥(r) for all
T € [0,%].

We claim that ¢ € (J,.; PJ(€/). By contradiction, suppose that ¢ ¢
Uies PJ (). If w¥(t) # w¥ () then T € DP(e!) U DP(e! ") for somej el
as either fY(f) # fY(¥) or €/(f) # ¥ (). Suppose that 7 ¢ PJ( Hu PJ(e})
for all j € I. Then by (P.i) and (P.iv), £ ¢ DP(ej) U DP(¢} Yforall jel.
Hence t € DP(e}) UDP(E?I) for some j € I implies that ¢ ¢ PJ(E%/) UPJ(el)
for some k € I, a contradiction. If w¥(?) = w¥ () then fY(¥) # f(¥) b
(DP.i) and (P.iv) as otherwise there is ¢ > 0 such that w¥(7) = w¥ (1) for
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all 7 € [0,f+¢ [, contradicting the choice of ¢. But f Y(t) # f1(t) implies
te J(ff)UJ(f Y'Y for some j € I and hence 7 € Uier PJ(€)), a contradiction.

ThustGU. PJ(") N PJ(e) and zz(w )—xt(wy)EN. If w¥(t) =
wY (7) then zf(w¥) = zf(w¥) and fL() # FY (%) by definition of  which
implies O # IJ(fY,%) = 1J(fY,T) C I. Let i € I\ IJ(fY,%) be such that

5(0) 4 F2L(0), and set ¢ = (e (wb), f0) and ¢ = (el w), 70)
ThenyCc y' C ¢ and cne = (. If w¥(%) # wY (%) then either fY() # £ ()
or e¥(f) # ¢/ (7). If fv(F) # f¥(I) let i € I be such that f¥(7) # f¥(f) and
define ¢ = ¢;(zz(w?), fY(?)) and ¢ = (zz(wV), f (). Then y C ¢, y C ¢
and cnd = 0. If f¥(I) = f¥(t) and €’(f) # ¢V (f) let i € I be such that
/(T) # ¢/ (F) and define ¢ := ¢;(a (w?), /(7)) and ¢ = («F (W), (7).
Theny Cc,y Cc and ecne =0.

(EDP.iv) Let x 2 y € N and ¢ € I(z). Then ¢* < ¥ which implies
w*(r) = wY(7) for all 7 € [0,t*[. If x = xp(w®) let ¢; = ¢z, w!(t*)). If
r = xl(w”) then f*(t*) = fY(t*). Let ¢; = ¢i(z, fLi(t%)). If x = zk (w®)
then f*(t*) = fY(¢t*) and f¥(t%) = f{(t*). Let ¢; = ¢;(z, €/ (¢*)). In any case
y C ¢ U

Now we turn to the proof of Lemma 1.

Proof of Lemma 1. As in the proof of Proposition 1, for z € N, let t* € R,
and w® = (f% €) € W be such that * = ru(w%), v = 2B (w®), or x =
xh (w®).

We first show that T is regular. Let z € N. If z = z(w”) then () #
IJ(f*,t*) C IPJ(e",t*) (where the last inclusion follows from (P.i)) and
hence x(w®) € N. Thus xp(w®) = min 1tz \ {z}. If 2 = 2L (w®) we
distinguish two cases. If § € I.J(e,t%) C I then 2% (w®) € N and 2 (w®) =
min 1 2z \ {z}. Otherwise zfi(w*) ¢ N and IPJ(e",t*) # 0 as x € N
(recall (1.1)). Then zw(w®) € N and @ (w®) = min 1 2\ {z}. If z =
ze (w”) we again distinguish two cases. If Prev(ef,t") < t* for all i € I let
t = max;e; Prev(e?,t*). By Lemmata A.1(i) and A.5(“only if”) we obtain
IPJ(€",t) # 0 and hence 2 (w”) € N. Then 2f (w”) = min 1 = \ {z} as
otherwise there would be zf (w”) 2 @}/ (w*) 2 « implying 7 < ¢’ < t. As then
IDP(e*,t') # 0 by Lemma A.5(“if”) this would contradict the construction of
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t. If on the other hand Prev(e?,t*) =t for some i € I, let y €t x\ {z}. Since
then t¥ < t* and Prev(ef,t*) = t there is t¥ < t < t* such that t € DP(g;).
By Lemma A.5 [PJ(e,t) # 0 and hence y 2 zz(w”) €t \ {z}. Asax Cy
for all y €t =\ {z} we obtain x = inf 1 =\ {z}.

It remains to show that T is up-discrete. Let h € 2V be a nonempty
chain and let w = (f,€) € (,¢), x, which exists by (BD). Note that if 2,(w),
zl(w), or zf'(w) € N for some t € R, then by construction of T (recall
(1.1)), t € U;e; PJ(e). Since J,o; PJ(e;) is well-ordered by Lemma A.3 we
obtain that 7 := min{t|z;(w) or zF(w) or zf'(w) € h} exists. Hence either

zr(w), xF(w) or ¥ (w) is a maximum of h. O

Appendix 1.B: Proofs from Section 1.4

The proofs of results from Sections 1.4 and 1.5 make use of the machinery of
ordinal numbers; we refer the reader to Jech (2002, chap. 2).

Let Ord be the class of all ordinal numbers. Given an ordinal o € Ord,
a transfinite sequence of (possibly extended) real numbers (t7)s-, is a set
{tP|tF € RU{oo}, 8 < a}. A transfinite sequence (t°)s-, is increasing if
v < B implies t” < t# and strictly increasing if v < 3 implies ¢ < t°. If « is
a limit ordinal the limit limg_,, t? of the sequence is defined by limg_,, th =
sup{t’|3 < a}. A sequence (”)s, is continuous if ¢ = limg_,, t7 for every
limit ordinal v < . For the sake of clarity we will write (7)<, for (t7)s<at1-

The following definitions and lemmata are used in the proof of Proposition

2 and also elsewhere.

Definition 11. Given f € F, t € R, and a € x;¢;A;, define

f(r), if 7 e]0,t],

a, if >t

G~ (f,t,a) =

and
f(r), if 7 e€]0,t,

a, ifr >t
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Lemma B.1. Let f € F,t € R, and a € X;c;A;. Then
(i) G=(f,t,a) € F.

(11) If a is such that for alli € I, a; = fi(t) if t € (ﬂjej LC(fj)) UJ(f),
then G*(f,t,a) € F.

Proof. (i) By construction G~(f,t, a) is piecewise constant and hence (DP.i)
holds. To prove (DP.i), let 7 € Ry. If 7 ¢ LC(G; (f,t,a)), then by con-
struction, 7 < ¢ and hence 7 € RK(G; (f,t,a)) by construction. To see
(DPiii), let 7 € R(G; (f,t,a)) for some i € I. Then, as 7 ¢ RK(G; (f,t,a)),
T < t and since f € F, there is j € [ such that 7 € J(f;) and hence
7 € J(G; (f,t,a)). Thus (DP.ii) holds.

(ii) Let a be as given. By construction G (f,t,a) is piecewise constant
and hence (DP.i) holds. To prove (DP.ii), let 7 € R,. If T ¢ LC(G; (f,t,a)),
then by construction 7 < ¢. If 7 < t, 7 € RK(G/(f,t,a)) since f € F.
Suppose 7 = t. Then t ¢ LC(G/(f,t,a)) implies t ¢ LC(f;) and hence
by (DP.ii) for f, t € J(fi). Then by hypothesis, a; = f;(t) and hence 7 €
RK(G{(f,t,a)). Hence (DP.ii) holds. To see (DP.iii), let 7 € R(G; (f,t,a))
for some i € I. Then by construction of G (f,t,a), 7 < t. If 7 < t then
T € R(f;) and by (DP.ii) for f it follows that 7 € J(f;) and hence 7 €
J(G(f,t,a)) for some j € I. Suppose 7 = t. That t € R(G(f,t,a)) implies
that a; # f;(t) which by hypothesis implies ¢ ¢ <ﬂj61 LC’(fj)) UJ(fi). As
t & (;e; LC(f;) we get that ¢ € J(f;) and hence (since (DP.ii) has already
been shown for G*(f,t,a)) t € J(G(f,t,a)) for some j € I. 0O

Lemma B.2. Let a € Ord be a limit ordinal and let (t°)s.0 C Ry be
a strictly increasing and continuous transfinite sequence. Then for every
0 <t <limg_,,t? there is a unique § € Ord such that t € [t°,#+1].

Proof. Let t° <t < limg,t°. Then v = min{B8 < a|t’ > t} exists as the
set {B]8 < a} is well-ordered. Further, v > 0 as ¢ > t° and ~ is a successor
ordinal as otherwise limg—. ¢’ = 7 by continuity and hence there would be
B < ~ with ¢ < t? < 7. This would contradict that v = min{3 < a|t# > t}.
Thus v = 6 + 1 for some § < o and ¢ € [t7, t7+1]. O
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Proof of Lemma 2. Note that f/(t) = fi;(t) by definition of f{*. If E7(f,t)
# () then € = inf E7(f,t) exists. We claim that € > 0. In order to see this
we distinguish two cases. First, suppose that ¢ € (ﬂjel LC’(f]H)) UJ(fi).
In this case, t € RK(f{*) by (DP.ii) and (DP.iii) and hence f/f(t) = f/*(t)
which implies f/*(t) = fi.(t). Now by (CRM.ii) there is & > 0 such that
ol (ffr, 1) = fIH(t) = fir(t) for all 7 €]t,t + ¢[. Thus E%(f,t) is bounded
jer LC(I))U
J(fI7), hence (by (DP.i)), t € LC(f/7) N (Ujel J(f;Jr)) In this case, by
(CRM.iii) there is & > 0 such that o}(f'*,7) = fiI(t) = fi+(t) for all
T €Jt,t +¢'[. Again, E%(f,t) is bounded away from zero, and hence € > 0.

away from zero, and hence € > 0. Second, suppose that ¢ ¢ ([

This proves the claim.

Suppose now that z ¢ E%(f,t). As f'* is constant on |, 00| and t+7 > ¢,
t+2 € e LC(fi*) and hence by (CRM.ii) there is ¢ > 0 such that
ol(ftr, 1) = fit(t +¥) for all T €]t +&,t +F+ ¢[. Since f{* is constant
on Jt, o[, we have that f/*(t+2) = f{i(t) = fir(t) for all T €]t +2,t+E+¢].
This contradicts the construction of € = inf E%(f, ). O

Proof of Proposition 2. (i) Let E7(f,t) and *(f,t) be defined as in Lemma
2. Fix r € Ry and define €% (f,t) by e%i(f,t) = % (f,t) if E7i(f,t) # (0 and
e%(f,t) = r otherwise.

We are going to use transfinite recursion to construct a sequence of
functions (f*)acora and a sequence of extended real numbers (t*)ncora C

R, U {oo} such that for all & € Ord the following properties are satisfied.

(TR.i) f* € F.
(TR.ii) If B8 < a then f*(1) = fA(r) for all 7 € [0, t"].
(TR.iii) (t#)s<, is continuous.
(TR.iv) Either t* = 0o or (t?)s<o € R, and is strictly increasing.
(TR.v) o} (f* 1) = f(7) and o7 (f*,7) = f&. () forall T € [0,t*[ and all i € I.

In order to apply transfinite recursion, we need to complete three steps.
First, we will define (f°,°) trivially fulfilling (TR.i)-(TR.v). Second, we will
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show that, if (TR.i)-(TR.v) are fulfilled for an ordinal a then (fo*! tot1)
fulfilling (TR.i)-(TR.v) can be defined for the successor ordinal a+ 1. Third,
we will show that, for any limit ordinal «, if (f#,¢%) fulfilling (TR.i)-(TR.v)
have been defined for all f < «, then (f,t*) fulfilling (TR.i)-(TR.v) can
be defined. Applying transfinite recursion then yields existence of the full

sequences (f%)acord;s (t*)acord-

Step 1. For all i € I, define f? by f2(r) = o}(f,0) for all 7 € R, for
any f € F. Note that by (CRM.i), o}(f,0) is independent of f. Set t° :=
min;e; £7°(f°,0) which exists and is strictly positive by Lemma 2. For ¢° and
f° (TR.i)-(TR.iv) are trivially fulfilled. To see that (TR.v) holds, first note
that o} (f°,7) = fo.(7) = f2(r) for all 7 € [0,¢°] and all ¢ € I by definition
of e7(f°,0). Second, oZ(f°,7) = f2(7) = f2.(7) forall T e Ry and all i € ]
by (CRM.ii) since f° is a constant function, and so (TR.v) is satisfied.
Step 2. Let a+ 1 € Ord be a successor ordinal and suppose that f* and
t* € Ry U {oo} satisfying (TR.i)-(TR.v) have been constructed.

We first construct f®*!. For all ¢ € I, define an intermediate function
?‘;H = G (f*,t% a), where for all i € I, a; = o}(f* t*) and G~ is as
in Definition 11. By Lemma B.1(i), 7a+1 € F. Now, for all i € I, define
fott = Gj(?aﬂ,ta,b), where for all 1 € I, b; = Uf(?aﬂ,to‘) and G* is as
given in Definition 11. Note that for alli € I,ift* € (,; LC’(??H)UJ(T?H)
then o2(F*7, %) = 777 (#9) by (CRM.ii). Hence (02(F"™,¢%))ics satisfies
the conditions in Lemma B.1(ii) and it follows that f**' € F, ie. (TR.i)
holds.

To prove that (TR.ii) is satisfied let 8 < a+1. By construction, f*(r) =
f*(7) for all 7 € [0,t*[. If 8 = « this already shows (TR.ii). If 8 < «, by
(TR.ii) for , f2(1) = fo(r) = foT(r) for all 7 € [0,t°[, where the last
equality holds because t# < t* by (TR.iv) for «, and the conclusion follows.

Now define t*T! := ¢®+min;er % (f*T, %), As a+1 is a successor ordinal
(t7) g<as1 is continuous if (¢7)s<, is continuous. The latter sequence is contin-
uous by induction hypothesis and hence (TR.iii) holds. To see that (TR.iv) is
fulfilled, note that by induction hypothesis either t* = oo or (##)s<, C R, is
strictly increasing. If t* = oo then t*! = oo by construction. If, on the other

hand (t7)s<, C Ry is strictly increasing then by construction t* < > < oo
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because 0 < £7i(f*T!,¢*) < oo by Lemma 2. Thus (#7)s<ar1 C R is strictly
increasing.

To prove (TR.v), first note that for all 7 € [0,t*[ and alli € I, o;(f*™, 1) =
oi(fo7) = (fo(7), fo. () = (ff1(7), f25H (7)) . The first equality follows
by construction of f@*! and both parts of (CRM.i), the second from the in-
duction hypothesis, and the third from the construction of fo*!. If t* = oo,
this already shows (TR.v). Hence we can now assume that t* < oo (and, by
construction, t*™! < o0). We now prove the first part of (TR.v). By con-
struction of £+ and (CRM.i) o} (fo+!,t%) = o} (f*,t*) and since f**!(t®) =
ol (f*,t*) by construction of fo! we obtain o}(fo+,t*) = fo(¢) for
all i € I. Since t*™' = t* + &%i(f**! t*), by defintion of &7i(f**! t%)
it follows that o}(fott,7) = for'(t®) for all 7 €]t t*H[. Since fot! is
constant on [t 0o, we obtain fi*'(7) = f2FH(t¥) for all 7 €]t*, co] and
all i € I and hence o}(fot!,7) = f**(7) for all 7 € [0,t*T'[. Now we
turn to the second part of (TR.v). By construction of f**!' and (CRM.i)
g2(f*H10) = 2(F7T ) and since f37(t) = o?(F
tion of fot, we obtain o?(fo,t*) = f2H(t) for all i € I. Since fo! is
constant on Jt*, oof, (CRM.ii) yields o2(fot,7) = fo*(r) = f2 () for all
T €]t*, 0o[ and hence o?(fo+!, 7) = f2H(7) for all 7 € [0, 2.

Step 3. Let a be a limit ordinal and assume that f° and t# € R, U {co}
satisfying (TR.i)-(TR.v) have been constructed for all f < «. Set t* :=

limg_,, t°. We distinguish two cases. Suppose first that t* = co. Let a* < «

,1%) by construc-

be the first limit ordinal such that t*" = co. Then by induction hypothesis,
(t%)s<ar C Ry is strictly increasing and continuous and hence by Lemma B.2
for every 7 € [t° oo there is a unique 3 < a* such that 7 € [t°,t°F!]. Hence
every 7 € R, is contained in some interval [0, 7] for some 8 < a* and by
induction hypothesis (TR.ii), f® defined by f*(r) = f°(r) if 7 € [0,t7] is
well-defined. (TR.i)-(TR.iv) hold by induction hypothesis and construction
of f* and t*. To see (TR.v) let 7 € [0,00[. Then there is f < ax* such
that 7 € [0,#’[. By induction hypothesis o;(f?,7) = (fZB(T),fZB_,’_(T)) By
construction of f@, f(r') = f#(r') for all 7’ € [0,¢’[ and hence by (CRM.i)
oi(f*,7) = oi(fP, 7). This yields o;(f*, 7) = (f&(7), f2(7))-

Suppose now that t* < co. Then by induction hypothesis (#/)s<, C Ry
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is strictly increasing and continuous and by Lemma B.2, for every 7 € [t9 t%]
there is a unique 8 < a such that 7 € [t7, 1|, In particular every 7 € [0, t%]
is contained in some interval [0,¢?[ for some 3 < a and by (TR.ii) and for

each ¢ € I, the following intermediate function is well-defined.

N . f2(r), ifr<t*and T el0,t?]

a;, if 7 > te.

(Where a; € A; is arbitrary.) By construction (as in the proof of Lemma
B.1(i)) f* € F. Then for each i € I, define f, = Gy (f* 1%, a), where
forallt € I, a; = Uil(fa,ta) and G~ is as in Definition 11. Note that by
Lemma B.1(i), f* € F. Now, for all i € I, define f* = G (f",t*,b), where
for all i € I, b; = o2(f",t*) and G is as given in Definition 11. Note
that for all i € I, if t € (., LC(f") U J(fi) then o?(f", %) = f; (t*) by
(CRM.ii). Hence (02(f",t*))ic; satisfies the conditions in Lemma B.1(ii)
and hence f* € F', so (TR.i) is satisfied. (TR.ii) and (TR.iii) follow directly
by induction hypothesis and the constructions of f* and t*. To see (TR.iv)
note that by induction hypothesis (t°)5-, is strictly increasing and hence,
as t* = limg_,t°, (t%)s<q is strictly increasing. To see (TR.v) let 7 €
[0,#*]. Then there is 8 < « such that 7 € [0,°[. By induction hypothesis
ai(f2,7) = (fP(r), fﬁ_(T)) By construction of f, f*(1') = f5(7') forall 7’ €
[0,#°[ and hence by (CRM.i) oy(f®,7) = o:(f?,7). This yields o;(f,7) =
(fe(r), fo(r)) for all 7 € [0,t*].

This completes the construction. Transfinite recursion now yields se-
quences (f*)acora and (t*)acora satisfying (TR.i)-(TR.v) for all a € Ord.
Then there exists a limit ordinal « such that t* = co.!'! Let a* be the first
limit ordinal such that t*° = co. As by (TR.iii) limg_,0- t* = 0o, Lemma
B.2 implies that for all 7 € [t oo there is a unique 8 < «* such that
T € [tP,¢PT1]. Hence for all 7 € R, there is 8 € Ord such that 7 € [0,¢”].
Then, using (TR.ii), f; given by f;(7) := f7(r) for 7 € [0, %] is well-defined.

From the construction of f and because f* € F by (TR.iii) for every

1 Otherwise, we would have a strictly increasing mapping from the class of ordinals to
R, which is impossible (e.g. by Lemma II1.2 in Stinchcombe, 1992).
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a € Ord, it follows that f € F. To see that o;(f,7) = (fi(7), fis (7)) for
all 7 € Ry and all ¢ € I let 7 € R;. Then there is § < a* such that
7€ 10,47, As f? satisfies (TR.v) it follows that o;(f°,7) = (£ (1), f2.(7)).
By construction of f, f(7') = f?(7') for all 7’ € [0, [ and hence by (CRM.i)
oi(f,7) = o;(f?, 7). This yields o;(f,7) = (fi(7), fir(7)) for all 7 € [0, ool.

Finally, we will prove that f is unique. Let f’ € F be such that o} (f',7) =
fi(r) and o?(f',7) = fl.(7) for all 7 € Ry and all ¢ € I. Assume f' # f.
Then ¢ := inf{7 € R |f'(7) # f(7)} exists. We claim that ¢ > 0. To see this,
note that f’(0) = f(0) by (CRM.i). By (CRM.ii) there is € > 0 such that
f/(t) = f(r) for all 7 € [0,e]. This proves the claim. Because f'(1) = f(7)
for all 7 € [0,7], (CRM.i) implies that f/(t) = o}(f',t) = oi (f,1) = fi(?)
for all ¢ € I. Further, it follows from (CRM.i) that f/ (f) = o2(f',1) =
o2(f,t) = fir(t) for all i € I. Hence, as f’, f € F, by (DP.i) there is ¢ > 0
such that f'(7) = f(7) for all 7 € [0,%+¢[, which contradicts the construction
of t = inf{r e Ry |f'(7) # f(7)}.

(ii) Given f € F and t € R, define a) = o;(f,t) for all i € I. Define
0= G (f,t,a") and set t° = t +minye; % (f, t) where £%(f,t) is defined as
in the proof of (i). The rest of the proof is analogous to the proof of (i).

(iii) Let f € F. For each i € I fix some arbitrary a; € A;. For alli € I,
f € F,and T € R, define

7.1, if f(7) = f(7) for all 7 € [0,¢]
ol (f,t) = Tli)r?_ fi(r), if f(7) # f(7) for some 7 € [0, and EITIHP— f(7),
a;, otherwise,
and
(i) = ?H(t), if f(7) = f(r) for all 7 € [0,1],

fi(t),  otherwise.

(CRM.i) holds by construction of o;.

Tosee (CRM.ii)leti € I, f € Fandt € (;c; LO(f;)UJ(f;). Note that by
(DP.ii) and (DPu.ii), t € RK(f;). Hence by (DP.i) there ise > 0 such that f; is
constant on [t, t+¢[ and in particular, lim,_,,_ f(r) = f(7) for all T €]t, t+¢].
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To show the first part of (CRM.ii), we will distinguish two cases. First, if
f(7) = f(r) for all 7 € [0,#] then also t € Njer LC(f;)UJ(f;) which implies
t € RK(f;) and hence f, (t) = f;(t). Hence by construction, o2(f,t) =
fis(t) = f.(t) = fi(t). Second, if there is 7 < ¢ such that f(7) # f(7) then
a?(f,t) = fi(t) by construction. To prove the second part of (CRM.ii), we will
again distinguish two cases. First, if there is ¢’ > 0 such that f(7) = f(7) for
all 7 € [0, + &'[ then o} (f,7) = f,(7) for all 7 €]t,t +¢'[. Since t € RK(f;),
fi(7) = fi(t) for all 7 €]t,t + €[ and hence o} (f,7) = f,(7) = fi(T) = fi(t)
for all 7 €]t,t + min{e,¢’'}[. Second, if for every 7 > ¢ there is 7/ < 7 such
that f(7') # f(7'), then by construction o}(f,7) = lim,_,._ fi(r) = f;(7) for
all 7 €lt,t +¢[. Ast € RK(f;), fi(1) = fi(t) for all T €]t,t + ¢[ and hence
ol(f,7) = fi(r) = fi(t) for all T €]t,t + €.

To establish (CRM.iii) let i € I, f € F, and t € LC(f;) N U;e; J(f5)-
Note that by (DP.i) there is ¢ > 0 such that f is constant on ]t,t + ¢[ and
in particular lim,_,,_ f(r) = f(7) for all 7 €]t,t + ¢[. We distinguish two

cases. First, if there is ¢’ > 0 such that f(7) = f(7) for all 7 € [0,¢+¢€'[ then

oi(f,7) = f.(7) for all 7 €]t,t + £'[. Since f is constant on Jt,t + €[, fi(7) =
fix (t) for all 7 €]t, t+¢[. We thus obtain o;(f,7) = f.(7) = fi(1) = fi(t) for
all 7 €]t,t + min{e, £'}[. Second, if for every 7 > ¢ there is 7/ < 7 such that
that f(7') # f(7'), then by construction o}(f,7) = lim,_,._ fi(r) = f;(7) for
all 7 €]t,t+¢e[. As f is constant on |t,t+¢[, fi(T) = fir(t) for all 7 €]t, t+¢]
and hence o} (f,7) = fi(1) = fir(t) for all T €]t, ¢ + €.

This shows that o; is a CRM for every i € I. Since o} (f,t) = f;(t) and

o?(f,t) = f,.(t) forall t € R, and all i € I, o induces f. O

Appendix 1.C: Proofs from Section 1.5

This appendix contains the proofs of Lemmata 3, and 4, Propositions 3 and

4, and Theorem 2. We start with a few preliminary results.

Lemma C.1. (i) Let f € F and t1,ty € Ry be such that |ty, t2[NJ(f;) =0
for alli € I. Then f is constant on |ty,ts].

(ii) Let (f,t) € F x Ry and t € [t(f,t),t]. Then f*(r) = f(r) for all
T € [0,1].
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Proof. (i) By (DP.i), f; is piecewise constant for all i« € I. Hence there is
e > 0 and a € X;crA; such that f(7) = a for all 7 €]t;,t; + ¢[. Suppose
by contradiction that there is ¢ € [ty + €,t5] such that f(¢) # a. Then
t* ;= 1inf{t € [t; +e,6[|f(t) # a} exists. By (DP.ii) t* € LC(f;) URK(f;) for
alli e I. If t* ¢ RK(f;) for some i € I, then t* € R(f;) = LC(f;) \ RK(f;)
and, by (DP.iii), there is j € I, such that t* € J(f;), which contradicts
Jt1,t2[NJ(f;) = 0. Tt follows that t* € RK(f;) for all i« € I. Further,
t* € LC(f;) for all i € I, as otherwise t* € RK(f;)\ LC(f;) = J(f;) for some
i € I which again contradicts |t1, t2[NJ(f;) = 0. Hence t* € LC(f;) NRK(f;)
for all ¢ € I and since f(7) = a for all 7 €]t;,¢*[ by construction of t*, we
obtain f(t*) = a. Further, by (DP.i), there is ¢’ > 0 and b € X;crA; such
that f(7) = b for all 7 €]t*, t* +&'[. Ast* € RK(f;) for all i € I, we obtain
f(t*) = b and hence a = b. Thus there is ¢’ > 0 such that f(r) = a for all
Jt1,t* + €[, which contradicts the definition of ¢*.

(ii) If t = t(f,t) the conclusion follows by construction. Hence suppose
that t > t(f,t). By construction f*(r) = f(r) for all 7 € [0,7]. By (i),
f is constant on |t(f,t),t[ and hence f(r) = fy(¢) for all 7 €]¢,¢t[. Thus
f(r) = fH*(7) for all 7 €]t,t[ and the conclusion follows. O

For f € F and t € R, define

N min J J(fi)NJt, +ool, if U J(fi)Nt, +ool# 0
t (f, t) = iel iel
t, otherwise.

That is, t7(f,t) is the next time after ¢ that some player jumps. Note that
the minimum used in the construction exists by Lemma A.2.
The following lemma shows that every decision path can be “completed”

to a play by appropriately specifying the inertia times.
Lemma C.2. For every f € F there is € € E such that (f,e) € W.

Proof. Fix f € I and let t* = max J(f) be the last jump of f if max J(f)
exists and t* = 400 otherwise. Note that if ¢t € J(f) \ {t*} then tT(f,t) >t
since then by construction of t*, |J,c; J(fi)N|t, +00[# 0. Further, if t* < oo
then ¢t (f, t*) = t*.
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For each ¢ € I define ¢; : R, — R, as follows

t+(f>t) _t> ift € j(f)\{t*}>
€(t) == < 73, if t = t* 4+ 73n for some n € Ny,

0, otherwise.

Note that as 0 € J(f;) for all i € I it follows that ¢;(0) > 0 for all ¢ € I and

hence € = (¢;);e; € E. By construction, for all i € I,
DP(e;)) =J(f)U{t € Ry|t =t" + 73n for some n € N}. (1.3)

It remains to show that w = (f,€) € W, i.e. that (P.i)-(P.iv) in Definition 4
hold. To prove (P.i), let t € J(f;) for some i € I. If t = t(f,t) it follows from
(1.3) that ¢ = Prev(e;, t) and hence t € PJ(e;) by definition of the latter. If
t > t(f,t), then t = t*(t(f,t)) > t(f,t) where the inequality holds because
t <t Ast* >t > t(f,t) € J(f), it follows that € (t(f,t)) = tT(t(f,t)) —
t(f,t) > 0, ie. t = t(f,t) + €(t(f,t)). By Lemma C.1, f is constant on
Jt(f,t),t] and hence ¢;(7) = 0 for all 7 €]t(f,t),t[. Thus t(f,t) = Prev(e;, 1),
which implies that ¢ = Next(e;, Prev(e;, t)) and t € PJ(¢;). To see (P.ii),
let again ¢ € J(f;) for some ¢ € I. Then, by construction, €;(t) > 0 for
all j € I and hence by (1.3) t € (;c; DP(¢;). To establish (P.iii), let
t € PJ(e;) for some i € I. If Prev(e;, t) = t, which by (1.3) is only possible
if t =t(f,t), then t € J(f) and hence ¢;(t) > 0, i.e. t € DP(¢;). Otherwise
t = Next(e;, Prev(e;, t)). Then, by (1.3), either Prev(e;, t) € J(f) \ {t*} or
Prev(e;,t) = t* + 73n for some n € Ny implying that either t € ;. J(f;) or
t = t*+ 73n for some n € Ny. In any case it follows from (1.3) that €;(¢) > 0.
To see (P.iv), let t € DP(e;) for some i € I. Then J,; J(f;)N]t, Next(e;, t)[=
0 and ¢;(7) = 0 for all T €]t, Next(¢;, t)[ by (1.3). Hence (P.iv) holds. O

Lemma C.3. (i) Let (f,e) e W, t € Ry. Ift(f,t) =t thent € PJ(g)
foralliel.

(i) Let f € F,iel,s; €8;, andt € Ry. Ift(f,t) =1t thent € PJ(¢)
for any € € E such that (f'U'9% ¢) € W and (f{0% €) agrees with s;
on [t(f,t), o0
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Proof. (i) If t = 0 then Prev(e;, 0) = 0 and hence 0 € PJ(¢;) by definition. If
t > 0 then, since ¢(f, ) = sup (Ujel J(f;) N o, t[) — tand ., J(f;)N[0, £[C
DP(e;) N [0,¢] by (P.ii), Prev(e;,t) = sup (DP(¢;) N [0,¢]) = ¢ and hence
t € PJ(e).

(ii) This follows from (i) since (f*/*Y* ¢) € W by hypothesis. O

Proof of Lemma 3. (i) First note that f'* = G*(f,t, f1(t)) (recall Definition
11 in Section 1.7). Since f € F, it follows that f;(t) = f;(¢) if ¢(f, ) €
Nees LC(fe) U J(f;) for all j € I, and hence f'* € F by Lemma B.1(ii).
We are going to use transfinite recursion to construct a sequence of
functions (€*)aecorq and a sequence of extended real numbers (t%),cora C

R, U {oo} such that for all « € Ord the following properties are satisfied.
(TR.) (ff,e*) e W.
(TR.ii) If B < a then (1) = €’(7) for all T € [0,t7].
(TR.iii) (t#)s<, is continuous.

(TR.iv) Either t* = oo or (t#)s<, CJt, 0[N (ﬂjel PJ(E?)) and is strictly in-

creasing.

(TR.v) If €() > 0 then s; (L ((f'F,€))) = ¢ (aF ((f'F,€%)), (7)) for all
T € [t, t%]

In order to apply transfinite recursion, we need to complete three steps.
First, we will define (€°,¢°) trivially fulfilling (TR.i)-(TR.v). Second, we will
show that, if (TR.i)-(TR.v) are fulfilled for an ordinal o then (e**! ¢*t1)
fulfilling (TR.i)-(TR.v) can be defined for the successor ordinal a+ 1. Third,
we will show that, for any limit ordinal «, if (¢?,¢°) fulfilling (TR.i)-(TR.v)
have been defined for all f < «, then (¢*,¢) fulfilling (TR.i)-(TR.v) can
be defined. Applying transfinite recursion then yields existence of the full
sequences (€%)acord;s (t%)acord-

Step 1. Let € € E be such that (f'*,€) € W which exists by Lemma
C.2. Note that zF((f*,€)) € N and player i has to make a choice at this
node. This is because either ¢t € J(f;) for some j € I, in which case i €
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IDP(Et) by (P.ii) or t = t(f,t) in which case t = Prev(e, t) by (P.ii) and
definition of Prev(-,-) and hence i € IPJ(€,t). In both cases, by Lemma
A5, IPJ(et) # 0 and 27((f'F,€) € X;. Set t° := ¢t + £, where ¢* > 0
is such that s; (zf ((f*7,%)) = ¢ («F (f77,%)),€%). Since (f*7,¢) € W,
by (Pi) t € J(f;7) only if t € PJ(¢;). Further, since t € J(f), it follows
that ¢t € J(f'") by construction of f'*. Then, by Lemma A.4(ii), there is
¢’ € E such that (1) = €(7) for all 7 € [0,t[, €)(t) = &° for all j € I,
and (f*, e%) € W. Thus (TR.i) holds. (TR.ii) and (TR.iii) are trivially
fulfilled. (TR.iv) holds by construction, since (f**,€’) € W and hence by
(Piv) €)(r) = 0 for all 7 €]t,t°[ and all j € I. (TR.v) holds since by
construction €(t) = &° and €)(7) = 0 for all 7 €]t, °].

Step 2. Let a+1 € Ord be a successor ordinal and suppose that ¢* and t¢ €
R, U {oo} satistying (TR.i)-(TR.v) have been constructed. We distinguish
two cases. Suppose first that t* = oco. In this case set t*™' = oo and
define €21 = €. Then (TR.i)-(TR.v) are satisfied by induction hypothesis.
Suppose now that t* < co. Since t* € [ ier PJ (€§) by induction hypothesis,
it follows from (P.ii) that =% ((f'F,€%)) € X;. Set t*t! = t* + ¢* where
e* > 0 is such that s; (zfa ((f*7,€%))) = ¢ (i ((f'F,€*)),e%). Applying
Lemma A.4(i) to f'*, t*, and ¢* yields that there is e*™ € FE such that
e*T(7) = €(7) for all T € [0, [, ¢ (t*) = & for all j € IPJ(e*,t*) = I
and (fiT,e**) € W. Hence (TR.i) holds. To see (TR.ii) let 3 < «a + 1.
By construction, €**1(7) = () for all 7 € [0,¢*[. If 8 = « this already
shows (TR.ii). If 8 < a, by (TR.ii) for a, é*(7) = (1) = e**1(7) for all
7 € [0,t7], where the last equality holds because t# < t* by (TR.iv) for «,
and the conclusion follows. To see (TR.iii) note that (¢)s<, is continuous by
induction hypothesis and hence (¢°)3<41 is continuous as a+1 is a successor
ordinal. To see (TR.iv), note that since t* < oo by induction hypothesis
(t%) s<a CJt, 00N (ﬂjel PJ(e?)) is strictly increasing. Then by construction
t* <t < 0o because 0 < €% < oo by construction of C;. Further, that t* €
Njer PJ(€5) implies t* € (¢, PJ(e5*1) by construction. Since (f'F,e*™) e
W, it follows by (P.iv) that €™ (7) = 0 for all 7 €]t*, ™[, and hence t**! €
J¢, 00| (m ol PJ(E;H)). Thus (##)g<as1 Ct, 00N (m il PJ(e‘})) is strictly

increasing. (TR.v) is satisfied by construction and induction hypothesis.
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Step 3. Let a be a limit ordinal and assume that €’ and ¥ C R, U {oc0}
satisfying (TR.i)-(TR.v) have been constructed for all § < a. Set t* =
limg_,, t°. Suppose first that t* = co. Let a* < « be the first limit ordinal
such that " = co. Then by induction hypothesis, (t?)s<q~ CJt, 0ol is strictly
increasing and continuous and hence by Lemma B.2 for every 7 € [t°, oo
there is a unique 8 < a* such that 7 € [t°,t°F![. Hence every 7 € R, is
contained in some interval [0, [ for some 3 < a* and by induction hypothesis
(TR.ii), €* defined by €*(7) = €°(7) if 7 € [0,t°] is well-defined. (TR.i)-
(TR.v) hold by induction hypothesis and construction of €* and t°.

Suppose now that t* < co. Then by induction hypothesis (t?)s<. CJt, 00|
is strictly increasing and continuous and by Lemma B.2, for every 7 € [t9 t%]
there is a unique 8 < a such that 7 € [t7, 1|, In particular every 7 € [0, ¢
is contained in some interval [0,¢’[ for some 3 < a and by (TR.ii) and for
each ¢ € I, the following function is well-defined.

65(’7‘), if 7 <t*and 1 €0,t7]

€5 (1) == 473, if 7 =1*4 73n for some n € Ny

0, otherwise.

To see (TR.i), let 7 € J(f;") for some j € I. By definition of f** and
construction of t*, 7 < t < t* There is f < a such 7 € [0,#°] and
we obtain 7 € PJ(E?) N Nie; DP(€)) by (TR.) for (f*,¢%). Hence 7 €
PJ(5) N(per DP(€f) by construction. This establishes (P.i) and (P.ii). To
see (P.ii) let 7 € PJ(ef) for some j € I. We distinguish two cases. First, if
T < t* then 7 € DP(e? ) for some 8 < « by induction hypothesis. Hence by
construction 7 € DP(e§). Second, if 7 > t* then 7 € PJ(e§) implies that
7 is of the form t* + 73n for some n € Ny and hence 7 € DP(€f) by con-
struction of €*. To prove (P.iv), let 7 € DP(ef). We again distinguish two
cases. First, if 7 < t* then 7 € [0, 7] for some 3 < a. By (P.iv) for (f'F, %),
Urss /( N7, 7] # 0 for any 7' € DP(e°)N]r, Next(ef, 7)[. Hence by con-
struction of €, ,_; J(fyF)N]7, 7] # 0 for any 7/ € DP(e*)N|7, Next(ef, 7)].
Second, if 7 > t* note that {J;., J(f;7)N]7, oo[= @ by definition of f**. Since

DP(e§)N]r, Next(e$, 7)[= () by construction of ¢*, the conclusion follows.
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(TR.ii) and (TR.iii) follow directly by induction hypothesis and the con-
structions of €* and ¢t“. To see (TR.iv) note that by induction hypothesis
(t7) s<q is strictly increasing and hence, as t* = limg_,, t°, (t%)5<, is strictly
increasing. Further, by induction hypothesis t* € Njer PJ(€5) for all B < o
and hence by construction t° € N ier PJ(€f) for all B < a. It follows from
(P.ii) that for all j € I, t* = Prev(e},t*) and thus that t* € [, PJ(€f).
(TR.v) holds by construction and induction hypothesis.

This completes the construction of the sequences. Transfinite recursion
now yields sequences (€*),cora and (t*)acora satisfying (TR.i)-(TR.v) for all
a € Ord. Then there exists a limit ordinal  such that t* = c0.'? Let o
be the first limit ordinal such that t* = co. As by (TR.iii) limg_,,- ¥ = o0,
Lemma B.2 implies that for all 7 € [t°, oo there is a unique § < o* such that
T € [tP,¢PT1]. Hence for all 7 € R, there is 8 € Ord such that 7 € [0,¢”].
Then, using (TR.ii), ¢; defined by ¢;(7) := €] B(r) if 7 € [0,t°] is well-defined.

From the construction of € and because (f*,¢’) € W by (TR.iii) for
every (3 € Ord, it follows that (', ¢) € W. To see that (f'*,€) agrees with
s; on [t,00] let T € [t, 00 be such that ¢;(7) > 0. Then there is § < a* such
that 7 € [0,¢°[ and ¢(7') = €(7') for all 7/ € [0,¢°[. Further, by (TR.v)
si (2L ((f'F,€%))) = c,( P, €%)), 65(7‘)>. Because zf ((f'F,€%)) =

af ((f'*,¢€)), it follows that s; (2 ((f*",€))) = s; (L ((f**,€”))) and as
e;(1) = € (1) the conclusion follows.

It remains to show that €(t) > 0. If t € J;; J(fi) then t € U, J(fiT)
and hence €;(t) > 0 by (P.i). If ¢t = ¢(f,¢) = t(f'",t) then (t) > 0 by (P.i)
and (P.iii).

(ii) Let €,¢ € E be such that w = (f'",€) and w’ = (f**,€’) agree with
s; on [t,00] and assume €;(7) # €,(7) for some 7 € [t,00[. Since t € J(f)
and w,w’ € W it follows from (P.i) and (P.ii) that ¢ € DP(e;) N DP(€).
Further, s;(zF(w)) = s;(xf (w')) since w and w’ have the same decision path
and t € DP(¢;) N DP(€;). Hence, as w and w’ agree with s; on [t, 00, it
follows that €;(t) = €.(t). Thus 7 > t and K = {7/ > tle;(7") # €i(7')} C
DP(e;) U DP(€;) is non-empty and well-ordered which by Lemma A.3(i)
implies that ¢ := min K exists. By Lemma A.5, because t € DP(¢;) UDP(€)

12Recall footnote 11.
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and f'" is constant on |t, +oo|, we obtain ¢ € PJ(e;) U PJ(€;). Note that
t € PJ(g) if and only if ¢ € PJ(€)) as €;(1) = €;(7) for all 7 € [t,{[. Hence
t € PJ(e) N PJ(€). Then, by (P.iii), t € DP(e;) N DP(€)) which yields
€i(t) = €;(t). This contradicts the construction of ¢.

(iii) Let €, € € E be such that (f*50+ ¢) and (f*5)* ¢) agree with s; on
[t(f,t),00[. We start by claiming that t' € PJ(¢;) if and only ift' € P.J(€]) for
all t' €]t(f,t), 00[. To prove this, let ¢ > t(f,t) be such that t' € PJ(¢;). By
(i), t(f,t) € DP(e;)NDP(€;) and hence Prev(e;, t') > t(f,t) and Prev(e,t') >
t(f,t). By (ii), €(7) = €(7) for all 7 € [t(f,?),00] and hence Prev(e;,t') =
Prev(e,,t'). Since t' € PJ(e;), either t = Prev(e;,t') = Prev(e,t') or t =
Next(e;, Prev(e;, t')) = Next(e,, Prev(e;, t')) where the second equality holds
because €;(1) = €(7) for all 7 € [t(f,t),00[ and Prev(e;,t') > t(f,t). In
either case t' € PJ(€;) which proves the claim. If ¢(f,¢) < t this already
proves PJ(e;) N [t,00[= PJ(e;) N [t,00[. If t(f,t) = t then by Lemma C.3
t € PJ(e;) N PJ(€;) and it follows that PJ(e;) N [t, 00[= PJ(€;) N [t,00]. O

Lemma C.4. Let f € F andt € R,. Ift(f,t) =1t thent € M(f,s;) for all
1€ 1 and all s; € S;.

Proof. By Lemma 3(i) there is € € E such that (f//% ¢) € W and it agrees
with s; on [t(f,t),00[. Hence, by Lemma C.3(ii), t € M(f, s;). O

Proof of Proposition 3. To see the first part of (CRM.i) consider first the
case t = 0. Note that by definition ¢(f,0) = 0 for all f € F and hence by
Lemma C.4, 0 € M(f, s;). Thus, for any f,f € F, by construction of %!,
we obtain o1 (f,0) = a;(f,0, s;) = a;(f,0,s;) = o*'(f,0), where the second
equality follows from the fact that xo((f’,€)) = W for any (f',¢) € W. Now
let t € Ry, and f, f € F be such that f(r) = f(7) for all 7 € [0,¢[. Then
t(f.t) = t(f,t). We claim that ¢ € M(f,s;) if and only if t € M(f,s;). If
t>t(f.t) =t(f,t) then fiFD+ = fHi0+ and hence t € M(f,s;) if and only
if t € M(f,s;) by Lemma 3(iii). If t = ¢(f,t) = t(f.t) then t € M(f,s;) N
M(f, s;) by Lemma C.4. This proves the claim. In view of this claim, we
distinguish two cases. First, if ¢ ¢ M(f,s;) U M(f,s;) then by construction
o ft) = fin(t) = fii(t) = o7 (f,1). Second, if t € M(f,s;) N M(f,s;)
then o' (f,t) = a;(f,t,s;) and o*'(f,t) = a;(f,t,s;). Further, there are
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€, € E such that (f{58+ ¢), ( ftft ¢) € Wand t € PJ(e) N PJ(&).
Note that by Lemma C.1(ii) f/U0%(r) = f(r) = f(r) = fiUDT (1) for all

€ [0,t[. By definition s;(:((f"V0%,€))) = ci(a:((fUIF, ), aif.t,5))
and s;(z,((F15DF, ) = iz (U 6), ai(f, ¢, 5:)). It follows from the
construction of the EDP that :L't((ft(ft ,€)) and (
same information set and hence that a;(f,t,s;) = a;
o3 (f, ) = 01 (F, 1),

To see the second part of (CRM.i), let f,f € F, and t € R, be such
that f(r) = f(r) for all 7 € [0,#]. Then t € U, J(f;) N LC(f;) if and
only if ¢ € U, J(f;) N LC(fi). We distinguish two cases. First, if ¢ ¢
Ujer J(f5) N LO(f;) (in which case t ¢ ;c; J(f;) N LC(f;)) by construction
o2 (f, 1) = filt) = f,(t) :Ao.szﬂ(f’ t)A Second, if t € Uae] J(f;) N LC(f:)
(in which case t € Ujel J(f;) N LO(f;)) we obtain oi"?(f,t) = al*(f,t,s;)
and o%"%(f,t) = af(f,t,s;). By Lemma C.2 there are ¢,é € E such that
(f,€),(f, &) € W. By construction of the game tree z2((f,€)),z8((f,€)) €
X;. Further, by definition s;(zf((f,€))) = ci(x((f,€)),al(f,t,s:)) and
si(2'((£,9)) = ai(@{((f,€)),a'(f. £, 51)). Since f(r) = f(r) forall 7 € [0,1],
E((f,€)) and zE((f,¢€)) are in the same information set. Hence a?(f,t,s;) =
aB(f.t,s;) and it follows that o™#2(f,t) = o*2(f,t).

To show (CRM.ii) let f € F and t € [,;c; LC(f;) U J(fi). The first part
holds because by construction o%?(f,t) = fi(t). To see the second part,
note that by (DP.i) there is € > 0 such that f is constant on |¢,t +¢[. We
distinguish two cases. First, if t € [,c; LO(f;) then ¢(f,7) = t(f,t) for
all 7 €]t,t +¢[. We claim that PJ(f,7,s;) = PJ(f,t,s;) N [r,o00[ for all
T €]t,t + ¢[. To see this let 7 €]t,t + ¢[. Since t(f,7) = t(f,t) it follows
that fif7+ = fiAH+ Hence, if € € F is such that (f/7% ¢) € W and
(fII7)F €) agrees with s; on [t(f,t), oo[ then also (f!F)F €) agrees with s; on
[t(f,t),00[. By definition it follows that PJ(f,7,s;) = PJ(f,t,s;) N [r, o0,
proving the claim. As f!/Y* is constant on Jt(f,t), oc[, if ¢ € E is such
that (fi{UD* €) € W and (f*F07F €) agrees with s; on [t(f,t), 00[ then by
(P.iv) there is & > 0 such that PJ(¢;)N]t,t +€'[= (). Hence, by Lemma 3(ii),
PJ(&)Nt, t+¢'[= 0 for all € € E is such that (f**,e) € W and (f't, €) agrees
with s; on [t, oo[ implying that PJ(f,t,s;)N]t,t + &'[= (). We obtain that for

f *€)) are in the
Z) implying that

(
(f,
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all 7 €]t,t + min{e, &'}, PJ(f,7,s;)Nt,t + min{e,e’}[= O and hence 7 ¢
M(f,s;). Thus o%'(f,7) = fi_(1) = fi(t) for all 7 €]t, ¢+ min{e, &'}[, where
the first equality holds by construction and the second because t € RK(f;)
and f is constant on J¢, t+e[. The latter in turn follows from ¢ € (;.; LC(f;)
and (DP.iil). Second, if t € J(f;) then ¢(f,7) =t for all 7 €]t, ¢t +¢[. As f'*
is constant on |, 00|, if € € E is such that (f*" ¢) € W and (f'",¢€) agrees
with s; on [¢, oo[ then by (P.iv) there is ¢’ > 0 such that PJ(&)N|t, t+¢&'[= 0.
Hence, by Lemma 3(ii), PJ(e;)N]t,t + €'[= 0 for all € € E is such that
(ft*,e) € W and (f**, €) agrees with s; on [t,00[. As f{/7+ = i+ for all
T €]t,t + ¢[, this implies that PJ(f, 7, s;)N]t, ¢ + &'[= 0 for all 7 €]t,t + ¢]
and hence 7 ¢ M(f,s;). We thus obtain o*!(f,7) = fi_(7) = fi(t) for all
T €]t,t + min{e, £'}[, where the second equality holds because t € J(f;) and
f is constant on |t,t + £[.

To prove (CRM.iii), let f € F and t € LC(f;) NU;; J(f;)- By (DP.)
there is € > 0 such that f is constant on |¢,t+¢[ which implies that t(f,7) =t
for all 7 €]t,t + ¢[. Since f* is constant on J¢,00[ if € € E is such that
(f,e) € W and (f'", €) agrees with s; on [¢, oo[ then by (P.iv) there is ¢’ > 0
such that PJ(e)N|t,t + &'[= 0. As fl0D+ = f+ for all 7 €]t,t + ¢, this
implies that PJ(f,7,s;)Nt,t +¢'[= 0 for all 7 €]t, t +&[. Hence o' (f, 1) =
fi— (1) = fir(t) for all 7 €], ¢t + min{e, £'}[, where the second equality holds

because f is constant on |t,t + £[. 0O

The remaining proofs in this section are simplified if one relies on the

following auxiliary concept and its characterization in Lemma C.5 below.

s2 € S; are CRM-equivalent if o = o .

R

Definition 12. For player i s}
Lemma C.5. Leti € I. Then s}, s? € S; are CRM-equivalent if and only if

(0.i) For all potential jump nodes x = x:((f,€)) € X;, if t € M(f,s}) N
M(f,s?) then s}(x) = s?(z).

(0.ii) For all potential jump nodes * = x,((f,€)) € X;, if t € M(f,sF)\
M(f, s7) for k #1 then si(zi((f,€))) = ci(ze((f,€)), fi-(1)).

(0.iii) For all reaction nodes x = xf((f,€)) € X;, s}(z) = s?(x).
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Proof of Lemma C.5. “If”: Let s; and s7 satisfy (0.i)-(0.iii) and let (f,t) €
F x R,. To prove that o®(f,t) = o}(f,t) we distinguish three cases.
First, if t ¢ M(f,s}) U M(f,s?) then o1 (f,t) = fi_(t) = o*'(f,t) by
construction. Second, if t € M(f,s}) N M(f,s?), then by (O.i) we obtain
si(z((f,€)) = s?(x((f,€))) for all potential jump nodes z;(f,¢) € X;. In
particular a;(f,t,s!) = a;(f,t,s?) and hence by construction o%'(f,t) =
o*UL(f,t). Third, if t € M(f,s!)\ M(f,s2) (and analogously if superindices
are exchanged) then by (O.ii) we obtain s} (z,((f,¢€))) = ci(z:((f,€)), fi (1))
for all potential jump nodes z((f, €)) € X;. Then by construction o' (f,t) =
fio(t) and o5 (f,t) = fi_(t) and hence o (f, 1) = o0 (f, 1).

To see that o%2(f,t) = o%2(f,t) we distinguish two cases. First, if
t € Ujer J(f5) N LC(fi) then by construction o*2(f,t) = aB(f,t,s}) and
o*U2(f,t) = af(f,t,s2). By (O.ii) it follows that af(f,t,s)) = aP(f,t,s2)
and hence 0% 2(f,t) = 0% 2(f,t). Second, if t € Njer LC(f5) U J(fi) then by
construction 0% 2(f, 1) = f;(t) = o%2(f, 1).

“Only if”: Let s!,s? € S; be such that ¢% = ¢%. To prove (0.i)
let = = z:((f,€)) € X; be such that t € M(f,s}) N M(f,s?). We have
si(z) = ci(z,a;(f,t,s})) and s?(x) = c;(z,a;(f,t,s?)). Further, since ¢t €
M(f,s)) N M(f,s2), by construction o1 (f,t) = a;(f,t,s}) and o1 (f,t) =
a;(f,t,s2). Since o% (f,t) = 0% (f,t) we obtain a;(f,t,s!) = a;(f,t,s?) and
hence s} (x) = s?(x). To see (0.ii) let x = z;((f,¢)) € X; be such that t €
M(f,s))\ M(f,s2). Since t ¢ M(f,s?), we obtain o !(f,t) = 001 (f, 1) =
fi_(t). Since t € M(f,s}), o*'(f,t) = ai(f,t,s!) and hence s!(z) =
ci(z,a;(f,t,s})) = ci(z, fi_(t)). The case where t € M(f, s?)\ M(f, s}) works
analogously. Finally, to see (O.iii) let z = 2Z((f, €)) € X; be a reaction node.
Then s} (x) = c;i(x,al(f,t,s})) and s?(x) = c;(z,al(f,t,s?)). Since z is a
reaction node for player i, t € (J;c; J(f;) N LC(f;) and hence ot 2(f,t) =
al(f.t,s}) and o 2(f,t) = a®(f,t,s?). Hence, since 0% 2(f,t) = 052(f, 1),

we obtain s} (z) = s2(z). O

Proof of Lemma 4. We will rely on Lemma C.5 and prove that if s} and
s? satisfy (0.i)-(O.iii) then s! ~ s2. Fix s_; € S_;. Let wk = (f*, &)

be the play induced by (s¥,s_;) for k = 1,2. Then, by construction w*
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agrees with s¥ on [t(f,t),00[ for every t € Ry, i.e. €/(7) > 0 implies that
si(zF (wk)) = c;(xf (w"), (7)) for all 7 € [t(f, 1), 0.

Assume by contradiction that f1 # f2. Since t(f*,0) = 0 by definition,
Lemma C.4 implies 0 € M(f',s}) N M(f',s?). Since W = zo(w'), (0.1
yields s}(W) = s?(W). Since for all j # i the action prescribed at W
is the same in both strategy profiles, we obtain f1(0) = f2(0). Then, by
(DP.i), f1(r) = f*(7) for all 7 € [0,¢[ for some € > 0. Since f! # f?
t:=inf{r > 0|f'(7) # f?(7)} exists and ¥ > 0.

We claim that £ € U ¢; J(f}) UU,e; J(fF). Suppose © & U, J(f}) U
Ujes J(f7). Then & € N, LC(f}) NN, LO(f}) which implies f'(f) =
f2(t). By (DP.) and (DP.iii) there is ¢ > 0 such that f'(r) = f(f) =
f2(t) = f*(7) for all 7 € [{, 7+ ¢'[, which contradicts the definition of Z. This
proves the claim. By (P.i) it follows that £ € (J;c; PJ(¢;) UU, e, PJ(€)).

Claim A. €j(7) = &;(7) for all 7 € [0,7[ and all j € I\ {i}.

To see this suppose that there is j € I'\ {i} such that €j(7) # €(7) for
some 7 € [0,7[. Then {7 < #[€j(7) # €}(1)} € DP(ej) U DP(€;) is nonempty
and well-ordered by Lemma A.3(i) and hence t* := min{r < t|ej(7) # €(7)}
exists. Note that since f1(0) = f2(0) and IPJ((e*,0) = IPJ((¢*,0) = I, it
follows from the construction of the EDP that z{’(w!) and x{’(w?) are in the
same information set and hence that s;(z{’ (w')) = s;(x (w?)) which implies
€;(0) = €2(0) and hence t* > 0. Further, note that f'(7) = f*(r) for all
7 € [0,t*], since t* <t and that ¢t* € PJ(e;) if and only if t* € PJ(€3) since
€;(1) = € (7) for all 7 € [0,¢*[. Suppose that t* € P.J(ej) N PJ(¢;). Then by
construction of the EDP zf (w') and xf (w?) are in the same information set
of player j. Hence s;(z{(w')) = s;(zf:(w?)) and it follows that €} (t*) = €;(t*)
which contradicts the construction of ¢*. Hence t* ¢ P.J(ej) U PJ(e3). If
€;(t*) = 0 then t* ¢ .., J(fi) by (Pii) and since t* < £, this implies
t* & Uiy J(f2). Further, note that ¢(f?,¢*) < ¢* by Lemma C.3(i) because
t* ¢ PJ(e}). Hence by Lemma C.1(i) f? is constant on Jt(f?, *),#*[. Since
t* ¢ Ues J(f7) it follows that f? is constant on ]t(f?,¢*),t*]. Since t* ¢
PJ(e5), t(f*,t*) < Prev(e}, t*) < t* < Next(e}, Prev(e, *)) and hence (P.iv)
vields €2(t*) = 0, which contradicts the definition of ¢*. We thus obtain

J
€;(t*) > 0 and analogously €(t*) > 0. Hence t* € DP(ej) N DP(€;) and
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in particular zf (w'), z{l(w?) € X;. Further, t* < 7 yields fi(t*) = f2(t")
and from the construction of the EDP it follows that z£ (w!) and zZ (w?) are
in the same information set which implies s;(zf (w')) = s;(zf (w?)). Thus
€;(t*) = €2(t*), a contradiction to the construction of t*. This proves the
claim.

For each j € I'\ {i}, since €j(1) = €;(7) for all 7 € [0,%[, we obtain that
t € PJ(¢j) if and only if t € PJ(€).

Claim B. For k = 1,2, 1 € PJ(¢¥) if and only if € M(f*, s%).

If t(f*,f) = ¢, then by Lemma C.3(i) and Lemma C.4, t € PJ(f) N
M(f*, s¥). Hence, suppose t(f*,T) < I. Let e € E be such that ((f*)""D+ )
agrees with s on [t(f* %), oo| and suppose there is 7 € [t(f*,7), ] such that
(1) # €¥(7). Then, let ¢ := min{r € [t(f*,1),?[ |e;(T) # €¥(7)}, which
exists since {T € [t(f*,1),7[ |ei(7) # €¥(1)} C DP(e;) U DP(eF) is well-
ordered by Lemma A.3(i). Note that ¢ < t(f*,7) because ¢ (t(f*,1)) > 0 by
Lemma 3(i) and then by definition of agreeing (Definition 8, equation (1.2))
6 (t(fE, 1) = ek (t(f*,7)). Since €;(7) = €(7) for all T € [t(f*,7),t] it follows
that ¢ € PJ(¢;) if and only if ¢ € PJ(e¥). Since ¢ € DP(¢;) U DP(e¥) and
both (f¥){*D+ and f* are constant on J¢(f*,7), [ by Lemma C.1(i), Lemma
A5 yields ¢ € PJ(e) U PJ(ef) and hence ¢ € PJ(¢;) N PJ(e). Thus
D (((fF) 5D+ €)) and 2 (w¥) are in the same information set of player i,
thus s¥ (2 (((f5)150F €))) = sk(zF (w*)) and &(t') = €¥(t), a contradiction
with our choice of #'. Thus €;,(1) = €¥(7) for all 7 € [t(f*,?), ] implying that
t € PJ(e}) if and only if £ € PJ(¢;). This proves the claim.

Claim C. f'(t) = f%().

We first prove f}(t) = f7(t) for all j € I\ {i}. By Claim A, either
te PJ(eg)NPJ(e)ort¢ PJ(e;) UPJ(e5). In the first case s;(zz(w')) =
sj(zz(w?)) and hence f/(f) = f7(f). In the second case, by (P.i) f;(f) =
fi-@) = f7-() = f3 (D).

It remains to show that f}(f) = f?(¥). We distinguish three cases. First ,

ift ¢ PJ(e})UPJ(e?), then by (P.i) f1(t) = fL(¥) and f2(¥) = f? (f). Since

A7) = f3(7) for all T € [0,%], fL(¢) = f2(t) and we obtain f}(¢) = f2(?).
Second, suppose that ¢ € PJ(e;) N PJ(€?). Note that since f(7) = f2(7)
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for all 7 € [0,%[, by construction of the EDP s (zz(w')) = s} (z7(w?)). By
Claim B, we obtain ¢ € M(f',s}) N M(f? s?). We now prove that { €
M(f*,s?). Since f(7) = f*(r) for all 7 € [0,7], it follows that ¢(f',#) =
t(f2,7). We distinguish two cases. If t(f1,7) = t(f2,7) < then (f1)!U"D =
(f>)!U0 and by Lemma 3(iii), PJ(f2,%,s2) = PJ(f',1,s?) implying that
t € M(f',s?). If on the other hand ¢(f',f) = ¢(f?,#) = t then by Lemma
C.3(i) t € PJ(g) for any € € E such that (f',¢) € W. In particular 7 €
PJ(e;) for any € € FE such that (f'¢) € W and (f!,¢) agrees with s? on
[t(f!, 7, 0o] implying that ¢ € PJ(f',t,s?). This proves that ¢ € M(f',s?).
Thus ¢ € M(f',s!) N M(f', s?) and (0.i) yields s}(xz(w?)) = s?(az(w?))
which implies s} (zz(w')) = s?(27(w?)); hence f1(t) = f2(%).

Third, if £ € PJ(e})\ PJ(€?) (and analogously if ¢ € PJ(e2)\ PJ(e})), we
obtain t € M(f',s})\ M(f?,s?) by Claim B. We claim that ¢ ¢ M(f', s?).
Since t(f1,%) = t(f?,1) = t would imply ¢ € M(f?, s?) by Lemma C.4, we
obtain t(f1,%) = t(f% 1) < t. By Lemma 3(iii) PJ(f',¢,s?) = PJ(f? t,s?)
and since ¢ ¢ PJ(f? t,s?) this implies t ¢ PJ(f',,s?) which proves the
claim. (O.ii) now yields s}(zz(w')) = ¢;(zz(w?), fL (¥)) implying that f}(f) =
fL (). Further, since ¢ ¢ PJ(¢?), it follows by (P.i) that f2(¢) = f2 (f).
Since f1(7) = f2(r) for all 7 € [0,7], fL(¥) = f2 (f) holds and we obtain
f1(t) = f2(t). This proves the claim.

Hence f!(7) = f2(7) for all 7 € [0,7] and in particular IJ(f',t) =
LI(f?,#). Since t € U, J(f})UU,e; J(f7) we obtain IJ(f1,1) = IJ(f 1) #
@ and by (DPii) it follows that f}, (f) = f;(t) = f;({) = f7.(f) for all
jeIJ(f',t) = IJ(f?1). Further, by construction of the EDP, s;(2f(w')) =
sj(xF(w?)) and hence f}, (t) = f?,(t) for all j € I\ IJ(f',1), j # i. We

now distinguish two cases. If ¢ € I.J(f' %) then by (DP.i) f1. (1) = f2.(7).
If on the other hand, i ¢ IJ(f',) then zff(w'),zf(w?) € X; which by
(O.iii) implies that s;(zf(w')) = s(xF(w')). Since f'(7) = f*(r) for all

7 € [0,1], by construction of the EDP s?(zf(w')) = s7(zf(w?)). This yields

t

st(zf(w')) = s?(xf(w?)) and hence f} (f) = f2 (). In both cases, we obtain
f1(t) = f3(t), which by (DP.i) contradicts our choice of . O
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Proof of Proposition 4. (i) Fix ¢ > 0 and Let s; : X; — C; be a mapping
fulfilling (1S.1)-(IS.iii) and s;(xf ((f,€))) = c;(xzF((f,€)),¢) for all peek nodes
zP((f,€)) € X; such that E%(f,t) = 0. We will show that s;'(c) = P(c)
for all ¢ € s;(X;). Let (f,e) € W. Note that c;(z((f,¢€)),00(f,t) =
ci(zy ((f',€), 0l (f',t)) € C; if and only if t = t/, f(1) = f/(7) for all T €
[0,¢[, and t € PJ(¢;) and ¢’ € PJ(¢}). Hence if ¢ = ¢;(z:((f,€)), 0l (f,1)) € C
then by (IS.i)

sii(e)={a((f,) eN | f(r)=f(r)Vrelot] tePI()}="Pl).

Analogously s;'(c) = P(c) follows if ¢ = ¢;(xf(w),02(f,t)) € Ci, ¢
(@ (), e(f,0)) € Cr, or ¢ = ex(al(w), €) € C.

(ii) Let s;, s; € S(0;). We will show that s; and s; are CRM-equivalent by
showing that (O.i)-(0.iii) are satisfied (Lemma C.5). Lemma 4 then yields
s~ s;. By (IS4) si(((f,€))) = ci(a((f,€)), 0 (f,1)) = si(2:((f, €))) for all
potential jump nodes x;((f, €)) € X; and hence in particular (O.i) holds.

To see (O.ii), let z((f,€)) € X; be such that t € M(f,s;) \ M(f,s,). As
t ¢ M(f,s;),t(f,t) <t (by Lemma C.4) and there is 7" € [t(f, ), [ such that
e (f,t,8)(1") # e f,t,5) (7). We claim that E% (f'/D+ F) = () for some 7 €
[t(f,t),t[. Suppose E%(f{SD+ 1) #£ Q) for all 7 € [t(f,t),t[. By definition of
agreeing (Definition 8, Equation 1.2) and Lemma 3(ii) for all 7 € [t(f,t),t[ if
&i(f,t,5:)(r) > 0 then si(xf (f1V97,€))) = ci(af (FV,€)), el f, 1, 51)) for
any € € E such that (f//9F ¢) € W agrees with s; on [t(f, ), 0o[. By (IS.iii),
since E%(f*UOF 1) #£ (), this implies €(f,t,5)(7) = % (1D 1) for all

€ [t(f,t),t] such that €(f,t,s;)(T) > 0. An analogous argument yields

e (f,t,8) (1) = o (f{0F ) for all 7 € [t(f,t),t] such that & (f,t, s})(T) > 0.
Hence €;(f,t,s:)(1) = €;(f, t,s;)(7) for all 7 € [t(f,1), 1], a contradiction. This
proves the claim that E% ( ')+ 7) = () for some 7 € [t(f,t),t[. Since f{/ 0+
is constant on Jt(f,t),00[ and 7 € [t(f,t),t[, E%(f{UD+ F) = @ implies
that o} (f{00+ 7) = t(f’t)Jr(_) for all 7 €|7,00[. Since by Lemma C.1(ii)
ftft (1) = f(7) for all T € [0,t[ we hence obtain o}(f,t) = o} (ft(f'“r t) =
( ) where the first equality follows by (CRM.i). Further fZ 3 ( ) =

fi(

( ) and by Lemma C.1(ii) fZE T(t) = fi_(t). Hence o} (f,t) = t).
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Finally (O.iii) holds since by (IS.ii), s;(xf((f,€))) = c;(zE((f,€)),02(f, 1)) =
si(zR((f,¢€))) for all reaction nodes z%((f,¢€)) € X;. O

Lemma C.6. Let (f,t) € F xRy, i €1, 0, € %, and s; € S(o;). If
t ¢ M(.fa Si) then Uil(fa t) = fz—(t)

Proof. By Lemma 3(i) there is € € E such that (/Y% ¢) € W agrees with
s; on [t(f,t),00]. By Lemma 3(iii), ¢t ¢ M(f,s;) yields t ¢ P.J(¢;) and hence
t := Prev(e;,t) < t < Next(e;,t). By Lemma A.1(i), ¢ € DP(e;). Since
e(t(f,t)) > 0 by Lemma 3(i), t(f,t) < f < t and hence f(r) = f*(r)
for all 7 € [0,¢[ by Lemma C.1(ii). We distinguish two cases. First, if
E%(f,%) = 0, then o}(f,t) = o} (f*,t) = fir(f) = fi_(t). The first equal-
ity holds by (CRM.i), the second because E%(f,t) = () and the third be-
cause f is constant on Jt(f,t),t[ by Lemma C.1(i). Second, if E%(f,t) # 0,
then, since < t and f(7) = f{$)+(7) for all 7 € [0,¢[ by Lemma C.1(ii),
we obtain E7(f,7) = E%(f'U9% 7) and (IS.ii) yields s;(zf (0% €)) =
ci(zz((f1ID* €)), e (fF1UD* 1)), Since (fU0F €) agrees with s; on [t(f, 1), oo]
and ¢ € DP(g), it follows that () = e%(fUD* f) and Next(e;, ) =
T+ eoi(fUA0F T) implying that T < t < T + &% (DT 7). Since E%(f,1) =
Eoi ({0 ) £ () we obtain % (f,T) = % (f*)* 7) and hence o} (f,t) =
ol (f,t) = fir(t) = fi_(t). The first equality follows from (CRM.i), the
second from the definition of £%(f,¢) and ¢t < ¢ 4 £%(f, ), and the third
holds because f is constant on |t(f,t),t[ by Lemma C.1(i). O

Proof of Theorem 2. (i) Let (f,t) € F xRy, 0, € ¥;, and s; € S(o;). To
show ol (f t) = ol (f,t) we distinguish two cases. First, if t ¢ M(f,s;) then
ol(f,t) = fi_(t) by Lemma C.6. Since o*'(f,t) = f;_(t) by construction,
we obtain o®*!(f,t) = o;(f,t). Second, if ¢ € M(f,s;) then by construction
ol (f, 1) = ai(f.t,s0). As by (ISH) si(z.((f,€))) = ci(a((f. €)),0i(f.1)) for
all potential jump nodes z,((f,€)) € X;, it follows that a;(f,t,s;) = o} (f,1)
since by Lemma 3(i) there is € € E such that (/) ¢) € W agrees with s;
on [t(f,t),00[. Hence a*o!(f,t) = ol (f,t).

To prove o"*(f,t) = o2(f,t), we again distinguish two cases. First, if
t e mjel LC(f;) U J(f;) then oZ(f,t) = fi(t) = o%?*(f,t) where the first

equality holds by (CRM.ii) and the second by construction. Second, if ¢ ¢
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Njer LC(f;) U J(f;) then by (IS.i) si(z7((f,€))) = ci(2((f. €))), o7 (£, 1)) for

all reaction nodes zf((f,€)) € X;. Hence o%2(f,t) = o2(f,t) by construction
of g%2,

(ii) Let s; € S; and s, € S(o®). We will show that s;, s; satisfy (O.i)-
(O.iii) and hence are CRM-equivalent by Lemma C.5. By Lemma 4 s; ~ s.
To see (O.1), let z4((f,€)) € X; with t € M(f,s;)NM(f,s;). By construction,
o (f,1) = ai(f,t,5:). By (IS4), si(x((f,€) = cilal(f,€)), 07 (f,1)).
Hence si(z¢((f, €))) = ci(z:((f, €)), ai(f, 1, 5:)) = si(z:((f €))).

To prove (O.ii), first let z,((f,€)) € X; with ¢t € M(f,s}) \ M(f,s;). By
construction, o (f,¢) = f;_(t). Since si(x,((f,€))) = ci(z((f,€)), % (f, 1))
by (IS.i), we have s}(x;((f,€))) = ci(z:((f,€)), fi_(t)). Second, let z;((f,€)) €
X; with t € M(f, si) \ M(f,s!). By Lemma C.6, o*(f,t) = fi_(t). Since

Z

t € M(f,si), o*'(f,t) = a;(f,t,s;) by construction of ¢% and it follows by
construction of a;(f,t,s;) that s;(x,((f,€))) = ci(xi((f,€)), fi_(t)).

Finally, we prove (O.iii). Let 2f((f,¢)) € X; be a reaction node. Then
t € Ujer J(fy) N LC(f;) by construction of the game tree, implying that

s2(f t) = al (f t,s;) by construction of o%. By (IS.ii), si(z®((f,€))) =
cz(xt ((f,€)),o%2(f,t)) which yields aZ(f,t, s}) = a®(f,t, s;). We thus obtain
si(@((f,€)) = si(z*((f,)))-

(i) Let 0 = (0y)ier € X and (s;)ier € XierS(0y). Further denote by
w = (f, €) = wticl the play induced by (s;)ie;. Suppose that f # f7. Then
t:=inf{t|f(t) # f7(t)} exists. Since W = zo(f,€') for any € € F such that
(f,€) € W, by (IS.i) s;(W) = ¢;(W,a}(f,0)) for all i € I and we obtain
f:(0) = o}(f,0) = a}(f7,0) = f7(0) for all i € I where the first equality
follows from the fact that f is the outcome induced by (s;);es, the second
equality follows from (CRM.i) and the third from the definition of f?. By
(DPii), f+(0) = f(0) and f7(0) = f?(0). Hence (by (DP.i)) there is ¢ > 0
such that f(7) = f7(7) for all 7 € [0, e[ which implies £ > 0. We claim that
t € Uics J(fi) UlUies J(f7). Otherwise t € LC(f;) NLC(f7) for all i € I and
hence by (DP.iii) ¢ € RK(f;)NRK(f7) for all i € I. This implies (by (DP.i))
that there is € > 0 such that f(7) = f7(7) for all 7 € [0, + €] contradicting
the definition of ¢. This proves the claim.
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Claim: t € J,.; PJ(e)-

If ¢ € J(f) this immediately follows from (P.i) and Lemma C.3(i).
Hence, suppose ¢ ¢ J(f). Then t € (U, J(f7). Since f(r) = fo(7)
for all 7 € [0,¢[ it follows that ¢(f7,t) = t(f,t) < t. By Lemma C.1(ii),
(fOUID*H(7) = fo(r) for all 7 € [0,7] implying that o} ((f7)UVD* 1) =
ol(f7,t) by (CRM.i). Now let i € I be such that ¢ € J(f?). Then
o (f7,t) = f7(t) # f7(t) = f2.(¢(f7,%)) where the inequality follows be-
cause f7 (%) exists since by Lemma C.1(i) f9 is constant on |¢(f7, %), [ and the
last equality holds for the same reason. This implies that E% (f7,¢(f,t)) # 0
and that €% (f7,¢(f,t)) = min E% (f7,¢t(f7,t)) exists and is strictly positive
(by Lemma 2). Further, that (f7)/D*(r) = fo(r) for all 7 € [0,7] im-
plies that o} ((f)!VD* 1) = ol (f7,7) = fo(7) = fir(7) for all 7 €]t(f,7),1]
where the first equality follows from (CRM.i), the second follows because f7

is the outcome induced by o, and the third follows because f is constant

on |t(f,t),t[. This yields % (f7,t(f°,t)) = t — t(f?,t). Since s; € S(0y)
and E%(f,t(f,t)) # 0 we obtain si($§f7f)(w)) = ci(zﬁfvz)(w),e"i(f,t(f,f)))
by (IS.iii) and hence that €;(¢t(f,t)) = €% (f,t(f,t)). This yields & (¢t(f, 1)) =
t—t(f,t) > 0. By (P.iv) ¢(7) =0 for all 7 €]t(f,t),t[ because f is constant
on Jt(f,t),t[. Thust(f,t) = Prev(e;, t) implying that ¢ = Next(e;, Prev(e;, 1)).
This proves the claim.

Claim: f(t) = f7(%).

To prove this, we distinguish two cases. First, if IPJ(e,t) = I, then
si(zg(w)) = ci(xg(w),o}(f,)) holds by (IS.i) implying that fi(f) = f7(7)
for all © € I. Second, if IPJ(e,t) € I, then by Lemma C.3(i), t(f,?) < t.
For all i € IPJ(e,t), si(zp(w)) = ci(xz(w),a}(f,t)) holds by (IS.i) and we
obtain that f;(t) = f7(¢) for all i € IPJ(e,t). By (P.i) fi(t) = fi—(¢) for all
i ¢ IPJ(e,t). Further since t ¢ PJ(¢;) and w agrees with s; on [¢t(f, %), 00]
we obtain (by Lemma 3(iii)) ¢ ¢ M(f,s;) for all i ¢ IPJ(e,t). By Lemma
C.6, ol (f,t) = fi_(t) and hence f;(t) = f7 (%) for all i ¢ IPJ(e, ). This

proves the claim.

As t € Ui (J(fi) UJ(f7)), by the last claim t € U, (J(fi) N J(f7))

and IJ(f,t) = IJ(f°,t). For all i € IJ(f,t) we obtain f;y(t) = fi(t) =
f7(t) = f7.(t), where the first and third equalities hold by (DP.ii). For all i ¢
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LJ(f,%), 2f(w) € X; and by (IS.ii) s;(af(w)) = ¢;(xF(w), 07 (f,1)). Hence

f
fir () = o2(f.t) = o2(f°,t) = f2.(), where the first and third equalities
hold since f and f? are the outcomes induced by s and o, respectively, and
the second follows from (CRM.i). Thus f(7) = f°(7) for all 7 € [0,7] and
f+({#) = f9(t). By (DP.) there is ¢ > 0 such that f(r) = f7(r) for all
7 € [0,7 + €[, a contradiction with the choice of t. Hence f = f7.

(iv) Let s € S and denote f := f(@)ict, For each i € I, let 5; € S(c%).
By (ii), 5, ~ s; for all i € I implying that f° = f15-1. Applying (ii)
again, yields f(1:52:Giz12) — fls1.52,6)iz12) | Jteratively proceeding this way,
we obtain fGiier = f5. By (iii), fGicr = f implying that f = f*. O]

Appendix 1.D: Proposition 5

Proposition 5. Let B = {(b;)icr|b; : H xR, — A; satisfies (B.1)-(B.v) Vi €
IY. Then {h € H|3b € B s.t. b(h,t) = hi(t) for allt € R, i e I} = F.

Proof of Proposition 5. Let
H' :={h € H|Fbe B s.t. bij(h,t) = hi(t) forall t e Ry,i € I}.

“C Let h = (hy)ier € H and b = (b;);e; € B be such that b;(h,t) = h;(t)
for all t € Ry and all ¢ € I. (DP.i) holds because by (B.ii)-(B.v) for every
t € R, and every ¢ € I there is ¢ > 0 such that h; ‘(t,t+e) is constant. To
see (DPii), let t € Ry and i € [ be such that t ¢ LC(h;). If t = 0 then
t € RK(h;) by (B.ii). If t > 0, by (B.iv) there is ¢ > 0 such that h;(7) =
bi(h,7) = bi(h,t) = h;(t) forall 7 € [t,t+¢[,i.e. t € RK(h;). To prove (DP.iii)
we will show the contrapositive. Let t € Ry be such that t ¢ (J,.; Ji(hi).
Then by (B.iii) there is € > 0 such that h;(7) = b;(h, 7) = b;i(h,t) = h;(t) for
all 7€ [t,t+cland alli€ I, iet e (), RK(h;) and hence t ¢ | J,.; R(hi)-

“D7 Fix f € F. For h € H, define

inf{t € R |h(t) # f(t)} if h# f,
00, if h = f.

tr(h) =
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For each 7 € I define

fi(t), if h(7) = f(r) for all 7 € [0,¢]

bi(h, 1) =
0 fi(ts(h)), otherwise.

Fix i € I. Property (B.i) is satisfied by construction. To see (B.ii), note that
since 0 € RK(f;) there is € > 0 such that f;(7) = f;(0) for all 7 € [0,¢[. If
ty(h) = 0 then b;(h,7) = fi(0) = b;i(h,0) for all 7 € [0,e[. If t;(h) > 0 then
bi(h,7) = fi(T) = f:(0) = b;i(h,0) for all 7 € [0, min{e, t¢(h)}.

To prove (B.iii), let h € H and t € Ry be such that ¢ € (;; LC(hy).
We distinguish two cases. First, if t¢(h) < t, then by construction b;(h,7) =
fi(tg(h)) = bi(h,t) for all T € [t, 00[. Second, if t;(h) > t then by construction
there is € > 0 such that b;(h,7) = fi(7) for all 7 € [t,t + ¢[. Further
t € (e LC(f;) since f(r) = h(r) for all 7 € [0,¢;(h)[. By (DP.i) and
(DP.ii) it follows that ¢ € RK(f;) and hence there is ¢’ > 0 such that
bi(h,7) = fi(1T) = fi(t) = b;(h,t) for all T € [t,t + £[.

To show (B.iv), let h € H and t € Ry be such that t ¢ LC(h;). If
tr(h) <t then b;(h,7) = fi(ts(h)) = b;(h,t) for all 7 € [t,00[. If t < ty(h)
then there is ¢ > 0 such that b;(h,7) = fi(7) for all 7 € [t,t + ¢[. Since
t ¢ LC(f;), by (DP.i) t € RK(f;). Hence there is ¢’ > 0 such that b;(h,7) =
fi(r) = fi(t) = bi(h,t) for all T € [t,t +€'].

Finally, we will prove (B.v). Let h € H and t € Ry be such that ¢t €

LC(hi)\;; LC(h;). Once more, we distinguish two cases. First, if ty(h) <t
then b;(h, 7) = fi(t;(h)) = b;j(h,t) for all T € [t, 00[. Second, if ¢ < ty(h) then
there is € > 0 such that b;(h,7) = f;(7) for all 7 €]t,t + €[. Since by (DP.i)
f is piecewise constant, the conclusion follows.

Thus b; € B; for every i € I and by construction b;(f,t) = f;(t) for all
teR,and alli e . Thus f € H'. O
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CHAPTER 2

COMMENT ON “TREES AND EXTENSIVE FORMS”

2.1 Introduction

This paper corrects the formulation of a property in Alés-Ferrer and Ritzberger
(2008) (henceforth referred to as AR) which determines when an Extensive
Decision Problem! (EDP) is called an Extensive Form (EF). We present a
corrected formulation of the property and show which and how results in
AR are affected by the reformulation. We further present a counterexample
which shows that some of the original results do not hold under the restated
version of the property.

The rest of the paper is organized as follows. Section 2.2 introduces the
necessary notation. Section 2.3 presents the correctly stated version of the
property and illustrates in detail which and how results in AR change under
the new formulation. Finally, Section 2.4 contains a counterexample for the

results that do not hold under the new version of the property.

2.2 Preliminaries

We will rely on the notation and concepts introduced in Sections 1.2.1 and
1.3.1. Some additional notation is required, however. For a game tree T" =
(N, D), a history is a nonempty chain h in N that is not maximal in 7" and
for which 1« C h for all x € h. For as history h in T" a continuation is
the complement of h in a play that contains h. A game tree is weakly up-
discrete if all maximal chains in | z \ {z} have maxima, for all nodes z € N

for which | x \ {2} # 0. A game tree is coherent if every history without

1See Definition 2 in Section 1.2.1.
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2 Given a move

minimum has at least one continuation with a maximum.
x € X and a play w € x the perfect information choice v(x,w) C W is
the set of plays y(z,w) = U{z | we zelz\{z}}. A game tree (N, D)
has awvailable choices if y(x,w) C x for all w € x and all z € X. Let
(T) = {vy(z,w) | we x e X} be the set of perfect information choices and
S(N) be the set of strange nodes in N. If a game tree T has available choices
then II(T") = (T, C}) where C; = I'(T') U S(N) is a single-player EDP (AR,
Theorem 1).> A game tree is selective, if for all w,w’ € W, w # w’ implies
that there is € X such that w,w’ € x and v(z,w) # y(z,w’).

For an EDP, given a strategy profile s = (s;)ic; € S and a history h,
a node x € N is discarded at h, if x C W(h) = (g, y and there are z €
T a\{z}, i € I(z), and ¢ € A;(2) such that z C W(h) and = C ¢ # s;(2).
D"(s) denotes the set of all nodes discarded at h and U"(s) = {z | = C
W (h)} \ D"(s) is the set of undiscarded nodes at h. The strategy profile
(Si)ier € S induces an outcome after history h if there is w € W (h) such that
w € RM'(w), where R (w) = N{si(z) |w e x CW(h), z € X, i € I(x)}. If
every strategy profile induces an outcome after every history then the EDP

is everywhere playable.

2.3 Corrected Formulation and Changes

In AR, an EF is defined as an EDP which satisfies a stronger version of

property (EDP:.iii), namely

(EDP.iii’) for all y,4' € N, if y Ny’ = () then there are i € I and ¢, € C;
such that y C ¢,y C ¢, end =0, and P(c) N P(c) # 0.

This property is misstated in AR. The correct formulation is as follows:

(EDP.iii’) for all y,y' € N, if y Ny’ = () then there are € X, i € I(x) and
¢,d € C;such that x € P(e)NP(¢),y CaxNe,y CzNd,and end = 0.

%It can be shown (AR, Corollary 3) that for regular game trees weak up-discreteness
and coherence is equivalent to up-discreteness.

3Theorem 1 in AR actually states that a game tree T having available choices is equiv-
alent to II(T') being a single-player EDP.
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In what follows the numbering of results and definitions corresponds to
that in AR. With the corrected formulation of (EDP.iii") provided here,
Proposition 7, Proposition 9, Theorem 5, and Corollary 4 are true as stated.
Propositions 5 and 8(b) do not hold with the new version of (EDP.iii’).
Proposition 10 remains true as stated, but requires a different proof. Fi-
nally, Theorem 6 and Corollary 5 remain true with a (slight) change of the

hypotheses. We now explain the necessary changes in more detail.
Proposition 7, Proposition 9, Theorem 5, and Corollary 4

All those results are true as stated, with the corrected formulation of (EDP.iii’)

stated here. The proofs (with minor, straightforward adaptations) remain as
in AR.

Proposition 7. An EDP (T, C) satisfies (EDP.iii’) if and only if T is selec-

tive and

(EDPAi) @ N [Nigyw )] = (@, w) for some w € N [Nigy, )] for all
(¢i)ici(z) € Xici@)Ai(x) and for all v € X.

This is not true for the version of (EDP.iii’) incorrectly stated in the paper,

but holds under the new formulation.

Proposition 9. An EDP (T,C) with a weakly up-discrete tree T' = (N, D)
1s an EF if and only if T is selective.

Theorem 5. Consider an EF and fix a pure strateqy combination s € S. If
w € Ry(w) then (a) Ry(w) = {w}, and (b) if w' € Rg(w') then w' = w.

Corollary 4. The tree of an EF is selective and, hence, reqular.

Propositions 5 and 8(b)

These results are not true for the corrected version of (EDP.iii’) (see Example
14 in Section 2.4). There is a common mistake in the proofs of Propositions
5 and 8(b) that is as follows. The construction of a strategy s selecting both
w and w' fails when, for a node x with w € x but v’ ¢ x, s;(x) is required

to pick up the choice leading to w. For a different node x’ with w’ € 2’ but
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w ¢ ', s;(z") will be required to pick up the choice leading to w’. However, it
might be the case that x and 2’ belong to the same information set of player
7, in which case an incompatibility arises.

This problem cannot appear under perfect information. Therefore, the
statement remains true for the game II(7'). In this case, it follows from
Proposition 7 that the corrected version of (EDP.iii’) reduces to selective-
ness, because (EDP.ii") is always fulfilled for TI(7"). The resulting property
coincides with the original formulation of Proposition 8(a) in AR. The fol-

lowing result replaces the original versions of both Proposition 5 and 8.

Proposition 5. Consider a game tree T with available choices. If T is not

selective, then the perfect information EDP II(T') fails outcome uniqueness.

Consider the class of weakly up-discrete trees. This includes the class on
which every EDP is everywhere playable. By Theorem 5, Proposition 9,
and the new version of Proposition 5 above, a weakly up-discrete tree T is

selective if and only if every EDP (T, C') satisfies outcome uniqueness.
Proposition 10

The statement of Proposition 10 is the following.

Proposition 10. Fiz a history h for a game tree T = (N,D). If for an
arbitrary EF (T,C) every strategy combination induces outcomes after h,

then for the problem II(T) every strategy induces outcomes after h.

Proposition 10 is correct as stated also with the version of (EDP.iii’) given
here. But its proof contains the same mistake pointed out for Propositions

5 and 8(b). The correct proof is as follows..

Proof of Proposition 10. Suppose for some history h there is a strategy s for
II(T") that does not induce an outcome after h. Let h’ be a maximal chain
in U"(s') (the undiscarded nodes after h) and W (h') = (), ¢. Fix a play
w as follows. If A’ has a minimum z (which then cannot be a terminal node
by hypothesis), let w € s'(z). Otherwise, let w € W(R'). If U"(s') = 0 (and
hence there is no such chain #’), fix an arbitrary w € W(h).
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Consider now an arbitrary EF (7, C). By Proposition 7 T" is selective.
We construct a strategy profile in (7', C') as follows. For all y € N such that
w ey C W(h)and i € I(y), choose s;(y) such that y() [ﬂig(y) Si(y)] =
s'(y). This is possible by (EDP.ii’) and (EDP.iv). If y € I/, then of course
s'(y) = v(y,w). For any other node, specify the strategy profile s arbitrarily.
Notice that we determine s only along a play, which is possible by (EDP.iv).
We claim that w ¢ R(w). For, if it were, by construction of s, we would
obtain w € R"(w) for TI(T'), a contradiction.

Let w' € W(h) with w’ # w. By selectiveness there exists € X such
that w,w’ € x and y(z,w)(y(z,w’) = 0 (by Proposition 1(a) in AR).
Notice that, necessarily, « C W (h). There are two possibilities. If z ¢ I/,
x € D(s") for II(T) which implies by construction that z € D"(s) for (T, C).
Hence w' ¢ RMw'). If z € W, then s'(z) = ~y(z,w) # ~y(x,w'). Since
s(x) =z [ﬂiEJ(m) si(:c)}, it follows that w' ¢ RM(w'). Since w' € W (h)
was arbitrary, we conclude that s does not induce an outcome after h in

(T, C). O

Theorem 6 and Corollary 5

The “only if” direction of Theorem 6 relied on (the original version of)
Proposition 5 and needs to be (slightly) reformulated by changing the hy-
pothesis that (T, C) is an EDP to the hypothesis that it is an EF:

Theorem 6. An EF (T, C) satisfies (A1) and (A2) if and only if the (rooted)

game tree T = (N, D) is regqular, weakly up-discrete, and coherent.*

The proof of the “if” implication remains essentially the same as in AR. The
only caveat is that Proposition 9 refers to the corrected version of (EDP.iii’)
provided here and hence Theorem 5, which requires this version, can be
used. To see the “only if” direction, note that Proposition 7 implies that 7" is
selective. Hence it is also regular by Proposition 6(a) in AR. By Proposition
10 the game II(7") fulfills (A1). By Corollary 2 in AR, every EDP defined on
T satisfies (A1l). Theorem 3 in AR then implies that 7" is up-discrete, hence

4See Section 1.3.1 for the statements of (A1) and (A2).
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weakly up-discrete and coherent by Corollary 3 in AR. This argument does
not make use of Proposition 5.
The statement of Corollary 5 remains true when EDP is replaced by EF

in its formulation:

Corollary 5. (a) If an EF satisfies (A1) and (A2), then so does every EF
with the same tree.

(b) An EF satisfies (A1) and (A2) if and only if its tree is reqular and up-
discrete. Furthermore, the EDP is then everywhere playable.

2.4 Example

Consider the direct approach to modeling repeated games in continuous time
presented in Section 1.2.2 where W is the set of functions f : R, — A, and
A is some fixed set of actions containing at least two elements. Defining
N ={z(f) | teRy, f €W}, where 2(f) ={g € W | g(r) = f(r) V7T €
[0,t[} for f € W and t € R, it can be shown that T = (N, D) is a game
tree (Alos-Ferrer and Ritzberger, 2005). One can define an EDP on this tree
using choices ¢;(f,a) = {g € x:(f) | g(t) =a} foreveryt € Ry, f € W, and
a € A (Alés-Ferrer and Ritzberger, 2005, Example 16). The resulting EDP
is referred to as the differential game.

There is a mistake in Example 7 of AR concerning the computation of
the perfect information choices for the tree of the differential game. There it
is falsely stated that for a play g € z;(f) € N, the perfect information choice

Y(z(f),9) = ci(f,a). The correct expression, however, is as follows:
v(xe(f),9) = {h € W |37 >t such that h|j, = g |-}

The differential game is hence different from I1(7") for the tree T'. In Example
13 in AR, this gives rise to another mistake. There it is stated that the tree
of the differential game is not selective. In fact, the tree of the differential
game is selective. To see this, let f,g € W with f # g. If f(0) # ¢(0), then
VW, f) # 7(W,g). T F(0) = g(0), let t* = sup{7 > 0| f o = g
Then - (f) = @ (9) and y(@e-(f), f) # v(@e(f), 9)-

[0,7[ }
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The point of Example 13 in AR was to provide a counterexample showing
that a regular game tree is not necessarily selective, i.e. that the converse of
Proposition 6(a) in AR does not hold. Yet, this is already accomplished by
Example 4 in AR.

The differential game actually fails (EDP.ii’) and hence (by Proposition
7) also the corrected version of (EDP.iii’). On the other hand, the game I1(7")
based on the same tree is, in fact, an EF. The comment after the statement
on Proposition 7 needs to be adjusted accordingly (AR, p.240-241).

We now provide a common counterexample to the statements of Propo-

sitions 5 and 8(b) under the corrected formulation of (EDP.iii’) given here.

FExample 14. Let T be the tree of the differential game as above. Consider an
EDP (T,C) based on this tree as follows. There is a continuum of players,
I = R,. Each player chooses an action a € A. Player t is the only player
who plays at time ¢. All nodes at period ¢ belong to the same information
set, i.e. no player ever learns any previous decision. That is, the choices of
player ¢ are of the form ¢;(a) = {f € W|f(t) = a}. The set of nodes where
player t is active is the “slice” X; = {z;(f)|f € W}. Further, each such slice
is the only information set of the corresponding player, where all choices of
the form ¢;(a) are available, P(¢;(a)) = X, for all a € A.

This game is just the “cascading information sets” version of the normal-
form game where each player in I = R, chooses an action a € A. The
strategy of player ¢ is simply an action a € A and the outcomes (plays) of
the game are simply functions f : R, — A. Hence, (Al) and (A2) follow
immediately.

Recalling the expression of v(z;(f), g) given above, it is immediate that
this EDP fails (EDP.ii’), hence (by Proposition 7) also (EDP.iii’). Since
outcome uniqueness (A2) is satisfied, this shows that Propositions 5 and
8(b) as stated in AR do not hold with the corrected version of (EDP.iii’).
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CHAPTER 3

CIRCULANT GAMES

3.1 Introduction

Games with cyclical structures are ubiquitous in game theory. Simple ex-
amples like Matching Pennies and Rock-Paper-Scissors are routinely used to
illustrate the concepts of mixed strategies and mixed strategy Nash equi-
libria in any introductory class to game theory. Beyond their pedagogical
value, these simple examples have a wide range of application in game theory.
Evolutionary game theory is one prominent example and, e.g., the mating
strategies of the common side-blotched lizard have been shown to follow a
rock-paper-scissors pattern (Sinervo and Lively, 1996). A cyclical game struc-
ture can be captured by circulant payoff matrices, in which each row vector
is rotated by one element relative to the preceding row vector (Hofbauer,
Schuster, Sigmund, and Wolff, 1980; Diekmann and van Gils, 2009). Games
with circulant payoff matrices have been studied extensively in the literature
on evolutionary game theory (Hofbauer and Sigmund, 1998) and population
dynamics (Hofbauer, Schuster, Sigmund, and Wolff, 1980; Diekmann and van
Gils, 2009). Circulant payoff matrices also underly certain classes of coordi-
nation games, starting with matching games, that have been studied in the
literature on symmetries and focal points (Casajus, 2000; Janssen, 2001).!
The class of games we study here is important for at least two fields
of applications. First, the analysis of the convergence properties of various
evolutionary dynamics for cyclical game structures has often focused on uni-
formly mixed strategies. Games in which this strategy profile is the unique

equilibrium constitute important examples of convergence failure (see, e.g.,

IThe simplest example of a matching game is Heads and Tails. If both players match
the strategy of the other player each player gets a payoff of 1, otherwise each player receives
a payoff of zero.
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Sandholm, 2010, Chapter 9.2.1, pp. 327-330). Still, many games with a cycli-
cal structure have more than one equilibrium and the non-convergence to one
particular equilibrium may not be conclusive for the convergence properties
of the whole system. Second, matching games and more general coordination
games constitute an archetypal framework to analyze features external to the
games’ formal structure. The cyclical game structure provides a framework
where strategies cannot be differentiated according to differences in payoffs.
Yet, matching games are just one particular representation of such symmetric
frameworks and many different, equally appropriate cyclical game structures
may exist (see, e.g., Alos-Ferrer and Kuzmics, 2013). A rigorous characteri-
zation of the set of Nash equilibria of cyclical game structures in general is
still missing.

The aim of this paper is to bridge these gaps and provide a more general
analysis of games with a cyclical structure. More precisely, we investigate a
class of finite two-player normal-form n x n games we coin circulant games, in
which the players’ payoff matrices are circulant. We also require that the first
row of each matrix is ordered. This approach allows us to integrate classical
examples from Game Theory into one single class of games. Well-known
games such as the ones mentioned above, as well as subclasses of common-
interest and coordination games (including matching games) belong to the
class of circulant games.

Our results shed new light on the common features shared by these games.
Our main results identify the ezact number of (pure or mixed) Nash equilib-
ria in circulant games. We also obtain necessary and sufficient conditions for
the existence of pure strategy Nash equilibria and, in case of non-existence,
for the uniqueness of the uniformly mixed Nash equilibrium (a profile which
we show to be a Nash equilibrium for all circulant games). As a consequence
of our main results we obtain that the maximal number of Nash equilibria in
these games is exactly 2" — 1. The number of pure strategy Nash equilibria
is either 0, 1, 2, or n. Further, we are also able to characterize the structure
of the set of mixed Nash equilibria. The best response correspondences in-
duce an equivalence relation on each player’s set of pure strategies. In any

Nash equilibrium all strategies within one equivalence class are either played
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with strictly positive or with zero probability. We show how to derive the
equivalence classes, allowing for a characterization of the support of all Nash
equilibrium strategies.

Our results also contribute to the literature on the number of Nash equi-
libria in finite two-player normal-form n x n games. Provided that such a
game is non-degenerate the number of Nash equilibria is finite and odd (see,
e.g., Shapley, 1974). Quint and Shubik (1997) show that for any odd integer
number y between 1 and 2" — 1, there exists a game with exactly y Nash
equilibria. However, as shown in von Stengel (1997), 2" — 1 is not an upper
bound on the number of Nash equilibria in such games. New upper bounds
on the number of distinct Nash equilibria are established in Keiding (1998)
and von Stengel (1999). For the class of coordination games 2" — 1 is the
(tight) upper bound on the number of equilibria (Quint and Shubik, 2002).
Our results show that this is also true for the class of circulant games.

Recently, several other articles have analyzed subclasses of games with
a special focus on different notions of cyclicity. Duersch, Oechssler, and
Schipper (2012) consider symmetric two-player zero-sum normal-form games
and define generalized rock-paper-scissors matrices (gRPS) in terms of best
response cycles. In their setting, a game has a pure strategy Nash equilibrium
if and only if it is not a gRPS. Bahel (2012) and Bahel and Haller (2013)
examine zero-sum games that are based on cyclic preference relations on the
set of actions and characterize the set of Nash equilibria. In the former paper,
actions are distinguishable, i.e., one specific actions is the beginning of the
cyclic relation, and there exists a unique Nash equilibrium. In the latter,
actions are anonymous, i.e., each action can be seen as the beginning of the
cycle without affecting the relation, and depending on the number of actions
the Nash equilibrium is unique or there exists an infinite number of Nash
equilibria.

The remainder of this paper is structured as follows. Section 3.2 intro-
duces the class of circulant games. Section 3.3 states the main results and
presents a recipe to characterize the support of all Nash equilibrium strategies
for a given circulant game. Section 3.4 presents generalizations of circulant

games and Section 3.5 concludes. All proofs are relegated to the appendix.
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3.2 Circulant Games

Let I' = ((S1,52), (m1,m2)) be a finite two-player normal-form game where
S; = {0,1,...,n; — 1} denotes player i’s set of pure strategies and m; :
S1 x Sy — R denotes player i’s payoff function for i = 1,2.2 We will write
player i’s payoff function as the n; X ny matrix A; = (a};)res, .15, given by
ay; = mi(k,1). Thus in both matrices each row corresponds to a pure strategy
of player 1 and each column to a pure strategy of player 2. Following the
notation in e.g. Alos-Ferrer and Kuzmics (2013), we will also write m;(s|s)
for player i’s payoff if he chooses a strategy s and player —i chooses strategy
s’. The set of mixed strategies for player i is denoted by ¥;. For o; € %,
0;(s) denotes the probability that o; places on the pure strategy s € S;. The
set of all pure strategies played with strictly positive probability is denoted
by supp(o;). Payoff functions are extended to the sets of mixed strategies
through expected payoffs. Given a mixed strategy o_; of player —i, a best
response for player i against o_; is a strategy o; such that m;(o;|lo_;) >
mi(ollo_;) for all o] € ;. The set of best responses for player i against a
strategy o_; of the other player is denoted by BR;(0_;). A finite two-player
normal-form game is non-degenerate (Quint and Shubik, 1997) if for any
mixed strategy o; of player i with | supp(o;)| = m, player —i has at most m
pure strategy best responses against o;. In what follows I',, denotes a finite
two-player normal-form game in which S; = Sy = S" ={0,...,n— 1}.

The following two results are well-known and will be used throughout the

paper.

Proposition 1 (Best Response Condition, Nash, 1951). Let I be a finite
two-player normal-form game. Then o; € ¥; is a best response to o_; € ¥_;
if and only if for all s; € S;

Ui(5i> > 0= 7TZ'(SZ'|O'_Z') = Ii%XWi(S‘U_i).

2We choose to label players’ strategies from 0 to n; — 1 as this will later simplify notation
significantly.
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Proposition 2 (Shapley, 1974; Quint and Shubik, 1997). Let I" be a finite
non-degenerate two-player normal-form game with strategy set S = S = S.
Then

(i) T has a finite and odd number of Nash equilibria.

(ii) if Ty,Ty C S then I' has at most one Nash equilibrium (oy,05) such
that supp(o1) = Ty and supp(os) = Ts.

Circulant games will be defined through circulant matrices (see Davis,

1979) which we introduce now.

Definition 1. A matrix A € R™*" is circulant if it has the form

Qo a az -+ Ap—1

Ap—1 Qo ay ... Qp—2
A= |Gyp2 Gp—1 Qo ... Qp-3

a1 az as --- Qo

and anti-circulant if

Qo o Ap—3 QAp—2 Qp-1

a1 o Up—2 Qp—1 )

A= a ap—1 Qg aq
Ap—-1 *°+ Ap—4 0Ap-3 0ap—2

Circulant and anti-circulant matrices are hence fully specified by the first
row vector. Each remaining row vector is rotated by one element relative to

the preceding row vector. We are now ready to define a circulant game.
Definition 2. A two-player normal-form game I, is a circulant game if
(i) each player’s payoff matrix is either circulant or anti-circulant,
(ii) af >aj > --->al_;, and

n—19
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(iii) either a_, > a_,., - > ap gy or

2

—

2 2
Ak > Ay k1 2

1<k <n.

a

v v

C 2
>

(AVARAY

2 2
1 a;_j,, for some

The parameter k is called the shift of T',,.

The shift describes the position of player 2’s largest payoff in the first row
of his payoff matrix. As we will see later, knowing the shift and the number
of pure strategies suffices to determine the exact number and structure of
Nash equilibria in circulant games.

Note that if A; is circulant then a;; = a;_; and if A; is anti-circulant
then a;; = a;+; where the indices are to be read modulo n, eg. -1 =

n—1,n+1=1, etc. In a circulant game, if player 1’s payoff matrix is

circulant then 7 (s|s’) = al,_,
1

then m(s|s’) = a,, . Similarly if player 2’s payoff matrix is circulant then

mo(s|s’) = a?__, and if player 2’s payoff matrix is anti-circulant then m(s|s’) =

a2, . Throughout the paper the sum and difference of two strategies (and

and if player 1’s payoff matrix is anti-circulant

the multiplication of a strategy with an integer) in a circulant game is to be
read modulo n.

In a circulant game the entries in the first row of player 1’s payoff matrix
(weakly) decrease when moving from left to right with af being the unique
maximum payoff. The entries in the first row of player 2’s payoff matrix
(weakly) decrease either when moving from the largest payoff to the right, or
when moving from the largest payoff to the left. The shift k is determined
by the position of the unique maximum payoff in the first row of player 2’s
payoff matrix. A shift of k¥ = n corresponds to a3 being player 2’s largest
payoff. A shift of £ = 0 is of course possible but for notational convenience
is formally represented by a shift of £k = n.

Since in a circulant game the sum of the payoffs in each row and each
column is constant, if one player plays the completely uniformly mixed strat-
egy, then all of the other player’s pure strategies yield the same payoff. An

immediate consequence of this is the following.

Lemma 1. Let I',, be a circulant game. Then o* = (o7, 03) where of(s) =
1/n for all s € S™, i = 1,2, is a Nash equilibrium of T',,.
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We can classify circulant games according to whether the players’ payoff

matrices “rotate” in the same or in opposite directions.

Definition 3. A circulant game is iso-circulant if the players’ payoff matri-
ces are either both circulant or both anti-circulant matrices. It is counter-
circulant if one player’s payoff matrix is circulant and the other player’s

payoff matrix is anti-circulant.

For n = 2 every iso-circulant game is also counter-circulant and vice versa,
as any circulant 2 x 2 matrix is also anti-circulant. For n > 3, however, the
class of iso-circulant games is disjoint from the class of counter-circulant
games. Iso-circulant games with shift k& = n capture the class of (weakly

ordered) circulant coordination games.

Ezample 15 (Matching Pennies).
The game given by

1 -1 -1 1
Al - ) A2 =
—1 1 1 -1

is the well-known Matching Pennies game. Both players’ payoff matrices are
circulant (and anti-circulant) and for player 2, a2, = a? = 1 is the largest
payoff. Hence, it is an iso-circulant (and also a counter-circulant) game with
shift £ = 1. [(1/2,1/2),(1/2,1/2)] is a Nash equilibrium of this game. As we

will show later it is the unique one.

Ezxample 16 (Rock-Paper-Scissors).
The game given by

321 123
Air=12131, Ay=1231
132 312

is Rock-Paper-Scissors. Strategies are labeled such that for player 1, strategy
0 is ‘Rock’, strategy 1 is ‘Scissors’, and strategy 2 is ‘Paper’ and for player
2, strategy 0 is ‘Scissors’, strategy 1 is ‘Rock’, and strategy 2 is ‘Paper’.

Both players’ payoff matrices are anti-circulant and for player 2, a? | =
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a3 = 3 is the largest payoff. This is an iso-circulant game with shift k¥ = 1.
[(1/3,1/3,1/3),(1/3,1/3,1/3)] is a Nash equilibrium of this game. As we

will see later it is the unique one.

Ezxample 17 (4 x 4 Coordination Game).
The game given by

5432 5432
2543 2543
Al - 9 A2 =
32514 32514
4325 4325
is an example of an iso-circulant game with shift & = 4 as both play-

ers’ payoff matrices are circulant and for player 2, a? , = a? = 5 is the
largest payoff. The uniform probability distribution over all pure strategies,
[(1/4,1/4,1/4,1/4), (1/4,1/4,1/4,1/4)], constitutes a Nash equilibrium. It
is, however, not the only one. As we will see later, our results immediately

imply that this game has 15 Nash equilibria.

The following two games are examples of counter-circulant games. In
both games player 1’s payoff matrix is anti-circulant and player 2’s payoff

matrix is circulant.

Example 18.
4 3 21 143 2
3214 2143
Alz 9 A2:
2143 3214
14 3 2 4 3 21

This is a counter-circulant game with shift k& = 3 as for player 2, a?_, = a? =

4 is the largest payoff. The uniform probability distribution over all pure
strategies [(1/4,1/4,1/4,1/4),(1/4,1/4,1/4,1/4)] is a Nash equilibrium of

this game. As we will see later this game has 3 Nash equilibria.
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Example 19.

A1: Ay =

=N W e Ot
Ot =N W
=~ Ot = N W
W = Ot =N
N W &~ Ot =
N = Ot W
= Ot s W N
W N = Ot

This is a counter-circulant game with shift & = 2 as for player 2, a?_, = a3 =
5 is the largest payoff. The uniform probability distribution over all pure
strategies [(1/5,1/5,1/5,1/5,1/5),(1/5,1/5,1/5,1/5,1/5)] is a Nash equi-

librium of this game. As we will see later this game has 7 Nash equilibria.

3.3 Main Results

In this section we present the main results on the number and the structure of
Nash equilibria in circulant games. We start by presenting some preliminary

lemmata. All proofs are relegated to the appendix.

3.3.1 Preliminaries

Lemma 2. Let I'), be a circulant game with shift k in which player 1’s payoff

matriz is anti-circulant and let d = ged(k,n).

(i) If Ty, is iso-circulant, then in any Nash equilibrium (oy,05), for all
s € 8", 0i(s) = 0 if and only if o;(s+km) =0 for allm =0,...,5—1,
i=1,2.

(i1) If Ty, is counter-circulant, then in any Nash equilibrium (o1, 03), for all
s € S", o1(s) =0 if and only if o1(—s + k) = 0 and o2(s) = 0 if and
only if oo(—s — k) =0

Given an iso-circulant game I',,, we can define an equivalence relation ~
on the set S™ by s ~ 5" if and only if s = s’ + mk for some 0 <m < 5 —1,

where d = ged(n, k). Denote the equivalence class of s € S™ by I(s).
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Note that, s' +mik # s’ + mok for all 0 < m; < my < 5 — 1. Hence
I(s) = {s + mkl0 < m < % — 1} contains n/d elements and there are d
different equivalence classes. Let I(S™) = {I(s)|s € S™} be the set of equiv-
alence classes. Suppose player 1’s payoff matrix is anti-circulant. By Lemma
2(i) two strategies are equivalent if and only if in any Nash equilibrium ei-
ther both are simultaneously played with positive probability or both are
simultaneously played with zero probability.

For a counter-circulant game let Cy(s) = {s, —s+k} and Cy(s) = {s, —s—
k} for all s € S™. Note that any class Ci(s) contains at least one and at
most two elements. It contains one element if —s + k = s mod n and two
elements if —s+k Z s mod n. The former occurs if and only if either 2s = k

or 2s = n + k. Thus there is a singleton class if and only if either g e S" or

(n+k)
2

can be at most two singleton classes. Similarly, any class Cs(s) contains one

€ 5", i.e. if either k or (n + k) is an even number. In particular there

element if —s — k = s mod n and two elements if —s — k #Z s mod n. The
former occurs if and only if either 2s = n — k or 2s = 2n — k. Thus there
is a singleton class if and only if either n — k or 2n — k is an even number,
which holds if and only if either k or (n + k) is an even number, i.e. if and
only if £ € 5" or w € S". We define C;(S™) := {C;(s)|s € S}, i =1,2.
Suppose player 1’s payoff matrix is anti-circulant. Then, by Lemma 2(ii),
s' € Cy(s) if and only if in any Nash equilibrium either both s and s are
simultaneously played with positive probability or both are simultaneously
played with zero probability. It can be shown (Lemma B.3 in the appendix)
that the sets C;(S™), i = 1,2, form a partition of S™.

The following lemma covers the connection between the support of a

strategy of player ¢ and the best response of player —i against that strategy.

Lemma 3. Let '), be a circulant game in which player 1’s payoff matriz is

anti-circulant.

(1) If T, is iso-circulant then if o; € ¥; and I(s) € 1(S™) are such that
supp(o;) N I(s) =0 then BR_;(c;) N I(—s) = 0.

(11) If T, is counter-circulant then if supp(o_;) N C_;(s) = O for C_;(s) €
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3.3.2 The Number of Nash Equilibria

Theorem 1. Let I',, be an iso-circulant game with shift k and let d =
ged(k,n) denote the greatest common divisor of k and n. Then T, has 2% —1

Nash equilibria.

Since by definition k < n, necessarily ged(k,n) < n. It follows that an
iso-circulant game can have at most 2" — 1 Nash equilibria. Further, an iso-
circulant game has a unique Nash equilibrium if and only if ged(k,n) = 1.
Together with Lemma 1, this implies that if ged(k,n) = 1 then the unique
Nash equilibrium is the one where both players choose the uniformly mixed
strategy. Some immediate consequences of these results are the following.

Matching Pennies (Example 15) is an iso-circulant game with shift & = 1.
Hence, [(1/2,1/2),(1/2,1/2)] is the unique Nash equilibrium. Rock-Paper-
Scissors (Example 16) is an iso-circulant game with shift £ = 1. Hence, the
unique Nash equilibrium is [(1/3,1/3,1/3),(1/3,1/3,1/3)].

Proposition 3. Let I'), be an iso-circulant game with shift k. T',, has n pure
strategy Nash equilibria if and only if k = n. Further, I',, has no pure strategy
Nash equilibrium if and only if k # n.

By the last proposition an iso-circulant game I',, has either 0 or n pure
strategy Nash equilibria. The 4 x 4 coordination game in Example 17 is an
iso-circulant game with shift k¥ = 4. As ged(4,4) = 4, by Theorem 1, this
game has 2% — 1 = 15 Nash equilibria. By Proposition 3 four of these are in

pure strategies.
Theorem 2. Let I'), be a counter-circulant game with shift k.

(i) If n is odd, then T',, has exactly 2" — 1 Nash equilibria.

(i4) If both n and k are even, then T',, has evactly 22+ — 1 Nash equilibria.
(i4i) If n is even and k is odd, then ', has evactly 2% — 1 Nash equilibria.

It follows that a counter-circulant game can have at most 224" — 1 Nash

equilibria. Further, a counter-circulant game has a unique Nash equilibrium
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if and only if n = 2 and £k = 1. Example 18 is a counter-circulant game
with shift £ = 3. As n is even and k is odd, by Theorem 2(iii) the game
has 22 — 1 = 3 Nash equilibria. Example 19 is a counter-circulant game with
shift k& = 2. As n is odd, by Theorem 2(i) the game has 23 — 1 = 7 Nash

equilibria.
Proposition 4. Let I',, be a counter-circulant game with shift k.

(i) Ty, has exactly one pure strateqy Nash equilibrium if and only if n is
odd.

(i1) Ty, has exactly two pure strategy Nash equilibria if and only if both n

and k are even.

(11i) T, has no pure strateqy Nash equilibrium if and only if n is even and
k is odd.

In Example 18 n is even and k is odd, hence by Proposition 4(iii) none of
its three Nash equilibria are in pure strategies. In Example 19 n is odd, hence
by Proposition 4(i) one of its seven Nash equilibria is in pure strategies.

It follows from (i) and (ii) in Proposition 4 that the class of counter-
circulant games with even shift is a class of games for which a pure strategy

Nash equilibrium always exists.

3.3.3 The Structure of Nash Equilibria

The next lemma shows that only specific subsets of S™ can arise as the

support of a Nash equilibrium strategy of player 1.

Lemma 4. Let '), be a circulant game in which player 1’s payoff matriz is

anti-circulant.

(i) If T is iso-circulant then for any union U = \JJ_, I(s7) of elements of
I(S™) there is a unique Nash equilibrium (o1, 09) such that supp(oq) =
U. Further, for any Nash Equilibrium (oq,03) there is a union U =
U™, I(s?) of elements of 1(S™) such that supp(oy) = U.

J=1
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(ii) If T, is counter-circulant then for any union U = (], Ci(s’) of ele-
ments of C1(S™) there is a unique Nash equilibrium (oq,02) such that
supp(oy) = U. Further, for any Nash Equilibrium (o1, 02) there is a
union U = Jj_, C1(s’) of elements of C1(S™) such that supp(a1) = U.

By Lemma 4, there exists a straightforward way to characterize the sup-
port of all Nash equilibrium strategies for a given circulant game. Moreover,
once we know what to look for the weights of the strategies in the support
can be easily derived.

Consider first the case of an iso-circulant game with n and k, and let d =
ged(n, k). We can transform the game so that player 1’s payoff matrix is anti-
circulant (see Lemma A.1(i) in the appendix). Recall that by Lemma 2(i) the
circulant structure of the payoff matrices allows us to define an equivalence
relation on the set of pure strategies S™ for each player. For a pure strategy
s € S", the corresponding equivalence class I(s) = {s +mk|0 <m < Z —1}
contains n/d elements and there are d different equivalence classes. In any
Nash equilibrium all strategies within one equivalence class are either played
with strictly positive or with zero probability. It follows from Lemma 4(i)
that in any Nash equilibrium the support of either player’s strategy is the
union of classes in I(S™) = {I(s)|s € S™} and further that for any such union
of classes in [(S™) there is a unique Nash equilibrium in which player 1’s
strategy has this union as its support. Further, if the mixed strategy profile
(01, 02) is a Nash equilibrium with supp(o1) = ;- I(s’) for some strategies
s',...,s™ € S™ then by Lemma 3(i) it follows that supp(os) = /L, I(—s7).
The actual probabilities for each pure strategy of course depend on the actual
payoffs, however, the structure of the supports is the same for all iso-circulant
games with the same shift and the same number of pure strategies.

Let us revisit the 4 x 4 Coordination game from Example 17. We can
transform this game so that both payoff matrices are anti-circulant (see Ta-
ble 3.1 in appendix 3.C and Lemma A.1(i) in Appendix 3.A). In this game
n =k = d = 4 and hence there are four (singleton) classes: I(0) = {0},
I(1) = {1}, 1(2) = {2}, and I(3) = {3}. Each class is part of a (pure
strategy) Nash equilibrium in which supp(oy) = I(s) and supp(oq) = I(—s),

and there are four such combinations. For instance, in one Nash equilibrium
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player 1 plays the strategy s = 1, i.e. chooses support I(1) and player 2 plays
s = 3, chooses support I(—1) = I(3). Analogously, the three remaining pure
strategy Nash equilibria are given by the profiles (0,0), (2,2), and (3,1). Fur-
ther, each union of two classes is part of a (mixed strategy) Nash equilibrium
in which supp(oy) = I(s') U I(s?) and supp(o3) = I(—s') U I(—s?). There
are six such combinations, e.g., in one Nash equilibrium player 1 puts posi-
tive probability only on 7(0) and I(1) and player 2 puts positive probability
on I(—0) U I(—1) = I(0) U I(3). The probabilities are easily derived from
the corresponding indifference conditions and the Nash equilibrium strategy
profile is [(1/4,3/4,0,0), (3/4,0,0,1/4)]. Similarly, there are four Nash equi-
libria in which the support of player 1’s (and player 2’s) strategy is the union
of three classes, e.g., [(1/4,1/4,1/2,0), (1/2,0,1/4,1/4)]. Finally, there is
one Nash equilibrium where player 1’s (and player 2’s) strategy put posi-
tive probability on all four equivalence classes, i.e. plays a completely mixed
strategy: [(1/4,1/4,1/4,1/4), (1/4,1/4,1/4,1/4)].3

Consider now the case of a counter-circulant game with given n and k.
We can transform this game so that player 1’s payoff matrix is anti-circulant
(see Lemma A.1(ii) in the appendix). Recall that by Lemma 2(ii) we can
define an equivalence relation on set of pure strategies for each player. For
all s € S let Cy(s) = {s, —s + k} denote the corresponding equivalence class
of player 1 and Cy(s) = {s,—s — k} the one of player 2. Note that any
class C(s), Cq(s) contains at least one and at most two elements. It follows
from Lemma 4(ii) that in any Nash equilibrium the support of player 1’s
strategy is a union of classes in C}(S™) = {C}(s)|s € S™} and that for any
union of classes in C(S™) there is a Nash equilibrium in which the support of
player 1’s strategy has this union as its support. Further, if (o1, 09) is a Nash
equilibrium with supp(o1) = ]2, C1(s’) for some strategies s',...,s™ € S"
then by Lemma 3(ii) it follows that supp(os) = J;2, Ca(—s7).

Let us revisit the game in Example 18. Here, n = 4 and k = 3. There are
two classes for player 1: C1(0) = C1(3) = {0,3} and Cy(1) = C1(2) = {1, 2}.
Correspondingly there are two classes for player 2: Cy(0) = Cy(1) = {0,1}
and Cy(2) = C9(3) = {2,3}. There are two Nash equilibria in which the

3Table 3.1 in the appendix contains the remaining Nash equilibrium profiles.
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support of player 1’s (and player 2’s) strategy consists of a single class, e.g.
[(1/4,0,0,3/4),(1/4,3/4,0,0)]. Further there is one equilibrium in which
both players play the completely mixed strategy [(1/4,1/4,1/4,1/4)].4

3.4 Generalizations

By our definition there are games that are not circulant games, but can be
transformed into one by a simple relabeling of strategies. We chose to exclude
those games from our definition for ease of exposition. However, the results
presented above also apply for these games.

It is not necessary to insist on each row containing the same entries. All
our proofs go through if payoffs are transformed in a way that preserves the

order of entries in each row and in each column of the payoff matrices.

Example 20. In the 3 x 3 game with payoff matrices

3.1 1.9 08 0.7 2.2 3.5
A= 1509 34 |, Ay=1 1.8 26 0.1
0.5 3.2 21 3.0 0.5 2.8

the order of payoffs in each row and in each column is the same as in Rock-
Paper-Scissors (Example 16). The proof of Theorem 1 can easily be general-
ized to this case to show that this game has a unique Nash equilibrium. As
the sum of payoffs in each row is not constant, however, the unique Nash equi-
librium is not the strategy profile in which both players play the uniformly

mixed strategies.

In this sense, our results on the number and the structure of Nash equi-
libria only depend on the order of payoffs in the rows and columns of the
payoff matrices.

Our results further generalize to coordination games in which players

obtain a strictly positive payoff if and only if they use the same strategy

4Table 3.2 in the appendix shows the Nash equilibria and the equivalence classes for
the two counter-circulant games we introduced in Example 18 and 19.
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and a payoff of 0 otherwise i.e., so-called games of pure coordination. The

resulting payoff matrices are of the form

@ 0 0 - 0 @ 0 0 - 0
0 a 0 ... 0 0 a 0 ... 0
A=]0 0 a ... 0|,  A4=[0 0 a 0
0 0 0 - any 0 0 0 - any

Proving that such games have 2" — 1 Nash equilibria works analogously to

the proof of Theorem 1.

3.5 Conclusion

In this paper we introduce and investigate a class of two-player normal-form
games we coin circulant games. Such games have a straightforward repre-
sentation in form of circulant matrices. Each player’s payoff matrix is fully
characterized by a single row vector, which is rotated to obtain the rest of the
matrix. All circulant games have a Nash equilibrium where players random-
ize between all pure strategies with equal probability (uniformly mixed Nash
equilibrium), but might have many other pure and mixed Nash equilibria.
The circulant structure underlying the payoff matrices has interesting
implications. First, the best response correspondences induce a partition on
each players’ set of pure strategies into equivalence classes. In any Nash
Equilibrium all strategies within one class are either played with strictly
positive or with zero probability. Second, there exists a simple one-to-one
correspondence between the players’ respective equivalence classes. If some
player puts zero probability on one class, the other has one corresponding
equivalence class he plays with zero probability. Finally, a single parameter
k fully determines the strategy classes and the relation between the players’
classes. The parameter itself only depends on the position of the largest
payoff in the first row of a player’s payoff matrix. For a given circulant

game, knowing k and the number of pure strategies n suffices to calculate
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the exact number of Nash equilibria and to describe the support of all Nash
equilibrium strategies. As an immediate consequence of our main results we
establish 2" — 1 as the tight upper bound on the number of Nash equilibria
in these games.

The class of circulant games contains a large variety of games with cycli-
cal payoff structures including well-known games such as Matching Pen-
nies, Rock-Paper-Scissors or subclasses of coordination and common interest
games. We shed new light on the features these games have in common
focusing on the circulant structure of their payoff matrices. For example
Matching Pennies is the two-strategy variant of Rock-Paper-Scissors. Be-
yond their zero-sum property the two games belong to the same sub-class
circulant games. Both are characterized by k£ = 1 and the only Nash equilib-
rium is the uniformly mixed one. The common denominator that connects
these games is the balanced payoff structure induced by the circulant ma-
trices with a shift of £ = 1. Moreover, this reinterpretation is robust in the
sense that only relative payoffs matter. We can write down many variants of
Rock-Paper-Scissors, including asymmetric evaluations of wins or losses and
variants that cannot be transformed into zero-sum games. Yet, the balanced
structure is preserved and the best players can do is to randomize between

all pure strategies with equal probability.
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Appendix 3.A: Transformation of Games

Lemma A.1. (i) Let I, be an iso-circulant game in which both players’
payoff matrices are circulant. There is a permutation of row vectors
that fizes the first row in both matrices and transforms both players’

payoff matrices into anti-circulant matrices.

(ii) Let T',, be a counter-circulant game in which player 1’s payoff matrix
1s circulant. There is a permutation of row vectors that fixes that first
row in both matrices and transforms player 1’s payoff matrix into an

anti-circulant matriz and player 2’s matrix into a circulant matriz.

Proof. (i) A matrix A is anti-circulant if and only if A = PC, where C is a

circulant matrix and

10 00 0
0 0 00 1
0 0 010
P=1g ¢ 100
01 ---000

(Davis, 1979, p. 162, Corollary). The matrix P switches rows ¢ and n+1—14
and fixes the first row. Using this result, we obtain that PA; and PA, are
anti-circulant matrices since both A; and A, are circulant matrices.

(ii) Using the matrix P defined as in (i), we obtain that PA; is anti-
circulant (Davis, 1979, p. 162, Corollary). As A, is anti-circulant, Ay = PC
for some circulant matrix C' (Davis, 1979, p. 162, Corollary). Hence PA; =
P(PC) and since P = P~! (Davis, 1979, p.28, equ. (2.4.22)), we obtain that
PA, is a circulant matrix.

O
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Appendix 3.B: Proofs of Main Results

We remind the reader that the sum and the difference of strategies in a
circulant game as well as multiplications of integers with strategies are read
modulo n. Central to the proofs of our main results is Proposition 5 below.

Proposition 5 identifies sufficient conditions under which the number of
Nash equilibria of a finite two player normal-form game can be calculated
by merely identifying one parameter of the game. Under the hypotheses of
Proposition 5, each Nash equilibrium strategy of a player corresponds to one
specific combination of elements of a partition of that player’s strategy set.
Moreover, for each possible combination of elements of the partition there
exists exactly one corresponding Nash equilibrium strategy. The parameter
necessary to determine the number of Nash equilibria is the cardinality of
the partition.

The proof of Theorem 1 (Theorem 2) first establishes that iso-circulant
(counter-circulant) games satisfy the hypotheses of Proposition 5. Determin-

ing the cardinality of the partitions is then merely a counting exercise.

Proposition 5. For the two-player normal-form game T, let Sy = {[s]1|s €
S} and Sy = {[s]a]s € S™} be partitions of S™ such that |Si| = |Sa|. If Ty,
S1, and Sy satisfy

(a) for all Nash equilibria (01,09), and all s,s' € S, if s € [s]; then
0i(s) = 0 if and only if 0;(s") =0,

(b) for all o; € %, i = 1,2, supp(o;) N [s]; = O for [s]; € S; implies
BR_Z'(O'Z') N [_5]—1' = @,

(c) for all s € S™, Iy, has a Nash equilibrium (o1, 04) with supp(o1) = [s]1
and supp(oz) = [—$]s,
then
(i) for any M C S, T, has a unique Nash equilibrium (o, 02) with supp(o1) =
U[sheM[S]l;

(ii) T, has ezactly 2151 — 1 Nash equilibria.
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Proof. (i) Given §) # M C Sy let —M := {[—s]z|[s]; € M} C and let T'M be
the reduced game where player 1’s set of strategies is U[S]1 car18h and player
2’s set of strategies is (Jiy,cp[—5l2 (and the payoff functions are restricted
accordingly).

Claim A: Let M’ C M C S; be a nonempty subset of S; and let
(oM o) be a completely mixed Nash equilibrium of I'M’. Then (oM, o)
defined by oM(s) = o}'(s) if [s]; € M’ and o (s) = 0 otherwise, and
oM (s) = a3 (s) if [s], € =M’ and ¢37(s) = 0 otherwise is a Nash equilibrium
in '™,

Since (o', 73") is a completely mixed Nash equilibrium of I'M’ | all strate-
gies in Jgy,cpr[—sl2 vield the same payoff for player 2 against oM. By hy-
pothesis (b), since supp(oM) = Ugjenr[sl: no strategy outside Uy, cpp[—52
can be a best response for player 2 against oM. Analogously all strate-
gies in (Jy, cppr[s]h vield the same payoff for player 1 against o). and since
supp(adl) = — Upsemr[—8)2, no strategy outside Uy, cpp[sh is a best re-
sponse for player 1 against o)/, Hence, by Proposition 1, (¢}, 537) is a Nash

equilibrium in T'™. This proves the claim.

Claim B: For any () # M C Sy, the reduced game I'' has exactly one

completely mixed Nash equilibrium.

Let ) # M C S; be such that |M| = m. We will prove the claim by
induction over m. Note first, that by hypothesis (b), in any Nash equilibrium
(01,09) of TM supp(oy) is a union of elements of M.

For m = 1, this follows by hypothesis (¢). For m > 1, by induction
hypothesis we obtain that for all () # M’ C M the reduced game I'’M" has a
unique completely mixed Nash equilibrium. By Claim A, for every () £ M’ C
M there is a Nash equilibrium (o, ¢37) in TM with supp(oM) = Ugjen[s]-
As by Proposition 2(ii) for any () # M’ C M there can be at most one
Nash equilibrium (o, 03) in TM with supp(o;) = M’ we obtain that there is
exactly one such Nash equilibrium. This implies that T'M has at least 2™ — 2
Nash equilibria.

Suppose there is no completely mixed Nash equilibrium in I'. Then '’
has exactly 2™—2 Nash equilibria. From hypotheses (a) and (b) it follows that

108



CHAPTER 3
CIRCULANT GAMES

I', is non-degenerate and hence that I'M is non-degenerate. By Proposition
2(i) TM must have an odd number of Nash equilibria, which contradicts the
fact that 2™ — 2 is even. Hence there is at least one completely mixed Nash
equilibrium and again because I'! is non-degenerate by Proposition 2(ii)
there is exactly one. This proves the claim.

By Claim B, for § # M C S;, I' has exactly one completely mixed
Nash equilibrium (o, o2?). By Claim A, this induces a Nash equilibrium
(01,02) in I';, with supp(o1) = Uy, en[sli- Any Nash equilibrium (o7, 03) #
(01, 02) with supp(c’) = Uy, e [sh would induce a completely mixed Nash
equilibrium in TM different from (0¥, 02?), a contradiction. Hence T',, has
exactly one Nash equilibrium (o1, 02) with supp(o1) = Uy, e (8-

(ii) From (i) it follows that for any () # M C S there is a unique Nash
equilibrium (01,02) in I';, such that supp(o1) = Uy eplsli- Further, by
hypothesis (a), for any Nash equilibrium (oy, 09) of T',, there is () # M C Sy
such that supp(oy) = U[s]leM[S]l' As S; has 2/5 — 1 nonempty subsets, T,
has exactly 2/°11 — 1 Nash equilibria.

O
The following lemma is required in the proofs of Lemmata 2 and 3.

Lemma B.1. Let I, be a circulant game with shift k in which player 1’s

payoff matrix is anti-circulant.
(i) For all o9 € ¥y and all s € S™ if 09(s) = 0 then —s ¢ BRy(03) .

(i1) If T, is iso-circulant, then for all oy € 31 and all s € S™ if o1(s) =0
then (—s — k) ¢ BRy(07) .

(iii) If Ty, is counter-circulant, then for all oy € ¥y and all s € S™ if 041(s) =
0 then (s — k) ¢ BRy(01) -

Proof. (i) Let 09 € 35 be such that o9(s) = 0 for some s € S™. Since player

I’s payoff matrix is anti-circulant m(s|s’) = al,,. We will show that there

exists a strategy for player 1 that yields a strictly higher payoff against oo

than strategy —s. Let [ := min{s < ' < s+n—1|oz(l') > 0}. Since n > 1 the
set {s <l' < s+n—1|oy(l") > 0} is non-empty and [ exists. By construction
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of [, o9(s) = -+ = 09(l = 1) = 0. We claim that m(—s|os) < m(=l|os). To

see this, note that

s+n—1

mi(=sloz) = Z oa(t)a;_,

t=l

and

s+n—1

m(=lloa) = > oa(t)ay .

t=l
1

1—s>

Comparing these payoffs for ¢ = [ we obtain that a;_; = aj > a}_, =a
where the strict inequality holds by part (ii) of Definition 2. Further, for
|<t<s+n—1wehave 0 <t—[ <t—s<n—1and hence that a; , > a]_,
again by part (i) of Definition 2. Since by construction of [, o3(1) > 0 we
obtain 7y (—s|oe) < m1(—l|o2) which proves the claim. Hence —s ¢ BR;(03).

(i) Let 0y € X1 and s € S™ be such that o1(s) = 0. Since player 2’s payoff

matrix is anti-circulant, ma(s|s’) = a2, for s,s’ € S. Since T, is a circulant

s'+s
game, by part (iii) of Definition 2 either a2_, >a2_, ., > -+ > a2 | > af >

ai == 0T Gn > an 22 > a5 > Ay 2 2 A g
We will only prove the result for the former case as the proof for the latter
works analogously .

Let [ := min{s < I' < s+ n — 1|oy(I') > 0} which exists since {s < I’ <
s+mn—1loy(l') >0} #0. Then o1(s) =--- =o01(l — 1) = 0. We claim that
mo(—s — k|oy) < ma(—1 — k|oq). To see this, note that

s+n—1

7T2(—S — kf|0'2) = Z Ul(t)a?—s—k

t=l

and

s+n—1

M=l = klow) = Y o1(t)ay .

t=l
— 2 _ 2 2 _ 2 ~
For t = | we have a;_;, , = a,_, > a;_, , = aj_,_;, where the strict

inequality holds by part (iii) of Definition 2. Further, forl <t < s+n—1 we
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have a? ;_, > al ,_, by part (iii) of Definition 2 since t = — k <t —s —k,
—k<t—-l—-k<n—-—k—1and -k <t—s—k <n—Fk—1. Since by
construction of I, oy(l) > 0 we obtain that my(—s — k|o1) < ma(—1 — k|oy)
which proves the claim. Hence (—s — k) ¢ BRy(01).

(iii) Let oy € ¥p and s € S™ be such that oy (s) = 0. Since player 2’s payoff

matrix is circulant, my(s|s’) = a?_, for s, s’ € S. Since I, is a circulant game,

by definition either a2_, > aZ_, . > - > a2 > aj>af > - >a2_,_,
orai_, > ai_,q > - >ai >ay > a5y > - > ar .. We will

only prove the result for the former case as the proof for the latter works
analogously. Let [ := min{s <!’ < s+ n — 1|oy({') > 0} which exists since
{s <l <s+n—1lo1(I') > 0} #0. Then oy(s) =---=01(l—1) =0. We
claim that my(s — k|oy) < ma(—1 — k|oy). To see this, note that

s+n—1

mo(s — klog) = Y ou(t)al

t=l

and

mo(l —klos) = Y ou(t)ai

For t = [ we have a} , , = a>_, > a?>_,_, = a*> ,_,. Further, for [ <
t < s+n—1we have a} , , > a® ,_, by part (iii) of the definition of
circulant game since | — k —t >s—k—t, -k>1l—k—t>-n—Fk+1,
and —k > s —k—t > —n —k+ 1. Since by construction of I, o1(I) > 0
we obtain that my(s — k|oy) < ma(l — k|oy) which proves the claim. Hence

(s — k) ¢ BRy(01). O

Lemma B.1 allows us to rule out certain strategies as best responses for
player i if player —¢ plays some strategy with zero probability in the case that
player 1’s payoff matrix is anti-circulant. By (i) if player 2 plays a strategy s
with probability 0 then for player 1 strategy —s cannot be a best response.
Similarly, (ii) and (iii) state that if in an iso-circulant (counter-circulant)
game player 1 places probability 0 on strategy s then —s — k (s — k) cannot

be a best response for player 2.
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We are now ready to prove Lemmata 2 and 3. It follows from Lemma
2(i) and Lemma 3(i) that iso-circulant games satisfy hypotheses (a) and (b)
in Proposition 5. Analogously, Lemma 2(ii) and Lemma 3(ii) establish that

counter-circulant games fulfill (a) and (b) in Proposition 5.

Proof of Lemma 2. (i) The “if” part is trivial. To see the “only if” part let
(01, 02) be a Nash equilibrium of I',, and let s € S™ be such that oy (s) = 0. By
Lemma B.1(ii), o5(—s—k) = 0 and consequently by Lemma B.1(i) oy (s+k) =
0. Iterating this argument yields o1(s +mk) =0 for all m =0,..., 5 — 1. If
o9(s) = 0 the argument works analogously.

(ii) By Lemma B.1(i) and (iii) for any Nash equilibrium (o4, 05) and any

s € S™ we obtain

01(s) =0=09(s —k)=0=01(—s+k)=0

and
o1(—s+k)=0= 09(—s) =0=oy(s) = 0.

Analogously, for player 2, we obtain
Ug(S) =0= 0'1(—S> =0= 0'2(—8 — k) =0

and
oy(—s—k)=0=01(s+ k) =0= 0a(s) =0.

O

Proof of Lemma 3. (i) First, let s € S™ be such that supp(oq) N I(s) = 0.
By Lemma B.1(ii), —s — (m + 1)k ¢ BRy(0y) for all 0 < m < n/d — 1. As
{=s—=(m+1)k|0 <m <n/d—1} = I(—s) we obtain BRy(o1)NI(—s) = 0.

Next, let s € S™ be such that supp(oq) N I(s) = (. By Lemma B.1(i),
—s —mk ¢ BRi(09) forall 0 < m < n/d—1. As {—s —mk|0 < m <
n/d — 1} = I(—s) we obtain BRy(0q) N I(—s) = .

(i) If supp(o_;) N C_i(s) = 0 for C_;(s) € C_;(S™), then, since C_;(s) =
{s,—s+(—1)""1k}, by Lemma B.1(i) and (iii), —s, s+ (—1)""'k ¢ BR;(c_;).
Hence BR;(0_;) N Ci(—s) = 0.
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The following Lemma B.2 establishes that iso-circulant games fulfill hy-
pothesis (c¢) in Proposition 5 and is used in the proofs of Theorem 1 and

Proposition 3.

Lemma B.2. Let '), be an iso-circulant game in which both players’ payoff
matrices are anti-circulant. For every s € S™, there is a Nash equilibrium

(01, 02) such that supp(oy1) = I(s) and supp(oz) = I(—s).

Proof. Given 5 € S™, define 01(s) = d/n for all s € I(3) and oy(s) = d/n
for all s € I(—5). By construction supp(oy) = I(3) and supp(oz) = 1(—3).
By Lemma 3(i), no strategy outside I(3) can be a best response for player 1
against oo and no strategy outside I(—35) can be a best response for player
2 against ;. Further, m(s|og) = an/io_l %as+§+mk = m1(8|op) for all 5,5 €
I(3) and analogously my(s|o1) = ma(s'|oq) for all s,s" € I(—35). Proposition 1

yields that (o1, 09) is a Nash equilibrium of T',,. O
We are now ready to prove Theorem 1 and Proposition 3.

Proof of Theorem 1. 1f T, is an iso-circulant game in which both players’
payoff matrices are anti-circulant then by Lemma 2(i), Lemma 3(i) and
Lemma B.2, I',, and S; = Sy = I(S™) as defined in section 3.3.1 then satisfy
the hypotheses of Proposition 5. As |I(S™)| = d, it follows that T, has 2¢ —1
Nash equilibria. If I, is an iso-circulant game in which both players’ payoff
matrices are circulant, there is a permutation of row vectors that transforms
both players’ payoff matrices into anti-circulant matrices while fixing the first
row in both matrices (Lemma A.1(i)). This permutation, which is essentially
a relabeling of the players’ strategies, does not affect the number of equilibria.

Hence, the proof is complete. O

Proof of Proposition 3. Note first that if both players’ payoff matrices are
circulant then by Lemma A.1(i) the game can be transformed into a different
version of the same game in which both players’ payoff matrices are anti-
circulant by a permutation of row vectors. Since such a permutation does
not affect the number of pure strategy Nash equilibria, we assume wlog that

both players’ payoff matrices are anti-circulant.
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To see the “if” part suppose k = n. Then by construction, each class I(s)
is a singleton set and there are n disjoint classes. Hence by Lemma B.2, ',
has at least n pure strategy Nash equilibria. By Lemma 2(i), in any pure
strategy Nash equilibrium (o4, 09), supp(o;) = I(s) for some s € S and hence
I',, has exactly n pure strategy Nash equilibria.

To prove the “only if” part let I',, have n pure strategy Nash equilibria
and let (s1,$2) be one of them. By Lemma 2(i), I(s;) must be a singleton
set. By construction, I(s;) is a singleton set if and only if £ = n.

This proves the first part of the theorem.

To see the second part, note that by construction of the classes I(s) is
a singleton set if and only if & = n for any s € S. Further by Lemma 2(i)
and Lemma B.2, I, has a pure strategy Nash equilibrium if and only if there
is a singleton equivalence class I(s). Hence, I',, has no pure strategy Nash

equilibrium if and only if k£ # n. O

Before we can turn to the proofs of Theorem 2 and Proposition 4 we
require a couple more preliminary lemmata. One hypothesis in Proposition
5 requires the sets S; and Sy to be partitions of the strategy set. While
this is true by construction for 7(S™) in the case of iso-circulant games, the
following Lemma B.3 shows that the C;(S™) and Cy(S™) form a partition of
ST

Lemma B.3. Let T, be a counter-circulant game. Fori = 1,2 the set C;(S™)

s a partition of S™.

Proof. We will prove the result for + = 1 as the proof for ¢+ = 2 works
analogously. Since s € C(s) for all s € S, it follows that (J, ¢, C1(s) = S™.
If there is 5 € C1(s) N Cy(s') for some s,s" € S™, then then since 5 € C}(s)
cither s =sors=—-s+k Ifs=sthen Ci(s) = Ci(5). f5=—-s+k
then =5+ k =s—k+k = s. In any case it follows that C,(5) = C}(s).
Using the same argument one obtains C'(5) = C4(s’) and hence that C(s) =
C1(s). O

The following Lemma B.4 establishes that counter-circulant games fulfill

property (c) in Proposition 5.
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Lemma B.4. Let I, be a counter-circulant game in which player 1’s payoff

matriz is anti-circulant and let o = (01, 09) € 3 X s,
(i) Ci(s) is a singleton set if and only if C_;(—s) is a singleton set.

(i1) Foreverys € S™, there is a Nash equilibrium (o1, o) such that supp(oy) =
Ci(s) and supp(oz) = Ca(—s).

Proof. (i) Suppose that C;(s) is a singleton. By construction, s = —s +
(—=1)"'k mod n which is equivalent to —s = s+ (—1)’k4 mod n. This holds
if and only if C_;(—s) is a singleton.

(i) Note that this follows from (i) and Lemma 3(ii) if C(s) is a singleton
set. Hence, suppose that Ci(s) = {s, —s + k} contains two elements. Then,
by (i), Co(—s) = {—s,s — k} contains two elements and neither 2s = k
nor 2s = n + k. Choose oy(s) as the solution to za?,, + (1 — z)a?, =

za*, + (1 —x)a3, o, i-e.

2 2
Aos_op — Ay
2 2 2 2 -
Adg_of = Uy T Qg — Qg

ai(s) =

By definition a?_, is player 2’s largest payoff implying that a2, ,, —a?_, <0
since 2s # n+k and that a2 _,, —a?_, < 0 since 2s # k. Hence o,(s) €0, 1].

n—2s
s - 1 1 1
Choose 03(—s) as the solution to zag+ (1 —x)ay,_, = zal ., + (1 —x)ag,
le. . .
s _ Ay — Ao,
02(_5) -1 1 + 1 _
ap — g T Ay — @

1 .
—2s+k

By definition a} is player 1’s largest payoff. Hence as 2s # k aj —aj, , > 0
and aj — al,,,, > 0 implying that os(—s) €]0,1[. By Lemma 3(ii) and

Proposition 1, (01, 09) is a Nash equilibrium. a

The set C1(S™) is a partition of the strategy set for player 1 while Cy(S™)
is a partition of the strategy set for player 2. By Lemma 3(ii) a class C(s) of
player 1 “corresponds” to a class Cy(—s) of player 2 in the sense that if player
1 puts probability 0 on all strategies in C(s) then none of the strategies in
C(—s) are a best response for player 2 and vice versa. Part (i) of Lemma B.4

states that two corresponding classes contain the same number of elements.
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By (ii) for every class Ci(s) there is always a Nash Equilibrium such that
player 1’s strategy has this class as its support while player 2’s strategy has
support Cy(—s). The equilibrium constructed to prove (ii) is such that player
1 chooses his strategy (with support C(s)) such that player 2 is indifferent
between all strategies in Cy(—s) (and vice versa). As I, is a non-degenerate
game, by Proposition 2(ii) this is the unique equilibrium (oq,03) such that
supp(o1) = C(s) and supp(oz) = Ca(—s).
We are now ready to prove Theorem 2 and Proposition 4.

Proof of Theorem 2. If T, is a counter-circulant game in which player 1’s
payoff matrix is anti-circulant and player 2’s payoff matrix is circulant then
by Lemma B.3, C1(S™) and C(S™) as defined in section 3.3.1 are partitions
of S™. Further, by Lemma B.4(i), |C1(S™)| = |C3(S™)| and by Lemmata
2(ii), 3(ii), and B.4(ii), T, S1 = C1(S™), and Sy = Cy(S™) satisfy properties
(a)-(c) in Proposition 5 and hence I',, has 2/1(5") — 1 Nash equilibria.

To prove (i)-(iii) it hence suffices to determine |C}(S™)|. Note that any
class C(s) contains either one or two elements. It contains one element if
and only if —s+k = s which occurs if and only if either 2s = k or 2s = n+k.
Further, there are at most two singleton classes.

(i) If n is odd, then either n — k is odd (if & is even) or 2n — k is odd (if
k is odd). Hence there is one singleton class in C}(S™) and since all other
elements of C(S™) contain two elements, |C1(S™)| = (n—1)/2+1 = (n+1)/2.

(ii) If both n and k are even, then both k and n+k are even and k/2, (n+
k)/2 € S™. Hence there are two singleton classes in C}(S™) and since all other
elements of C(S™) contain two elements, |C1(S™)| = (n—2)/24+2 = (n+2)/2.

(iii) If n is even and k is odd, then n+k is odd and hence neither k/2 € S™
nor (n+k)/2 € S™. Hence there is no singleton class and hence all elements
of C1(S™) contain 2 elements, implying that |C}(S™)| =n/2 =n/2.

If T',, is a counter-circulant game in which player 1’s payoff matrix is
circulant and player 2’s payoff matrix is anti-circulant, there is a permutation
of row vectors that transforms player 1’s payoff matrix into an anti-circulant
matrix. Applying the same permutation of row vectors to player 2’s payoff

matrix yields a different version of the same game in which strategies are
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differently labeled and player 1’s payoff matrix is anti-circulant and player
2’s payoff matrix is circulant (Lemma A.1(ii)). This permutation does not
affect the number of Nash equilibria and hence the proof of Theorem 2 is

complete. O

Proof of Proposition 4. Note first that if player 1’s payoff matrix is circulant
then by Lemma A.1(i) the game can be transformed into a different version
of the same game in which player 1’s payoff matrix is anti-circulant by a
permutation of row vectors. Since such a permutation does not affect the
number of pure strategy Nash equilibria, we assume wlog that player 1’s
payoff matrix is anti-circulant.

(i) By Lemmata 2(ii) and B.4(ii), I',, has one pure strategy Nash equi-
librium if and only if one of the classes Ci(s) is a singleton set, which by
construction happens if and only if n is odd.

(ii) By Lemmata 2(ii) and B.4(ii), I',, has two pure strategy Nash equi-
libria if and only if two of the classes Ci(s) are singleton sets, which by
construction happens if and only if both n and £ are even.

(iii) By Lemmata 2(ii) and B.4(ii), I',, has no pure strategy Nash equi-
librium if and only if none of the classes C(s) is a singleton set, which by

construction happens if and only n is even and k is odd.
O

Finally, we prove Lemma 4.

Proof of Lemma 4. (i) To see the first part, let M = (JI_, I(s’) be a union of
elements of 1(S™). By Lemma 2(i) and Lemma B.2, T',, and S; = S, = I(S™)
as defined in section 3.3.1 then satisfy the hypotheses of Proposition 5. Hence,
there is a unique Nash equilibrium (o7y, 09) with supp(o;) = M.

To prove the second part, let (0, 09) be a Nash equilibrium. By Lemma
2(i), supp(oq) is a union of elements in 7(S™).

(ii) Too see the first part, let M = (Ji“, Ci(s?) be a union of elements
of C1(S™). By Lemma B.3, C1(S™) and C5(S™) as defined in section 3.3.1
are partitions of S™. Further, by Lemma B.4(i), |C1(S™)| = |C2(S™)| and by
Lemma 2(ii), Lemma 3(ii), and B.4(ii), I',, S; = C1(S™), and Sy = Cy(S™)
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satisfy properties (a)-(c) in Proposition 5. It follows that there is a unique
Nash equilibrium (oq, 02) with supp(o;) = M.
To prove the second part, let (01, 02) be a Nash equilibrium. By Lemma

2(ii), supp(oy) is a union of elements in C;(S™). O
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Appendix 3.C: Tables

Table 3.1: Examples of iso-circulant games.

Matching Pennies Rock-Paper-Scissors 4 x 4 Coordination

3 9 1 5 4 3 2
Matrix Player 1 (_% _%) <2 1 3> (é g g i)
L3 2 2 5 4 3
5 4 3 2
1 2 3
Matrix Player 2 (_% _%) (2 3 1> (é g g i)
312 2 5 4 3
Shift & 1 1 4
ged(n, k) 1 1 4
Number of Equilibria 1 1 15
Equivalence Classes I(0)={0} 1(0)={0} I(0)={0}
1(1)={1} I(1)={1} I(1)={1}
1(2)={2} 1(2)={2}
1(3)={3}
Nash Equilibria
Pure s1=0,s2=0
s1=1,s2=3
S1=2,80=2
s1=3,s2=1
Support 2 Classes o1 =(1/2,1/2 o1 =(1/4,3/4,0,0)
oz = (1/2,1/2) o2 = (3/4,0,0,1/4)
g1 = (1/27 0, 1/27 0)
02 = (1/27 0, 1/27 0)
01 = (3/47 0,0, 1/4)
o2 =(1/4,3/4,0,0)
01 = (07 1/47 3/47 0)
02 = (07 0, 1/47 3/4)
01 = (07 1/27 07 1/2)
02 = (07 1/27 0, 1/2)
o1 = (07 07 1/47 3/4)
02 = (07 1/47 3/47 0)
Support 3 Classes o1 =(1/3,1/3,1/3 o1 =(1/4,1/4,1/2,0)
o2 =(1/2,1/3,1/3 o2 =(1/2,0,1/4,1/4)
01 = (1/471/27071/4)
02 = (1/47 1/27 07 1/4)
01 = (1/27071/471/4)
o2 =(1/4,1/4,1/2,0)
01 = (071/471/471/2)
02 = (07 1/47 1/47 1/2)
Support 4 Classes o1 =(1/4,1/4,1/4,1/4
op = (1/4,1/4,1/4,1/4
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Table 3.2: Examples of counter-circulant games.

Matrix Player 1

Matrix Player 2

Shift &k

n
Number of Equilibria
Equivalence Classes

Player 1
Singleton

2 Elements

Player 2
Singleton

2 Elements

Nash Equilibria
Pure
Support 1 Class mixed

Support 2 Classes

Support 3 Classes

Example 4
4 3 2 1
3 2 1 4
2 1 4 3
1 4 3 2
1 4 3 2
2 1 4 3
3 2 1 4
4 3 2 1

3
4
3

C1(0) = C1(3) = {0, 3}
Ci(1) =C1(2) ={1,2}
C>(0) = Ca(1) = {0,1}
C2(2) = C2(3) = {2,3}
o1 = (1/4,0,0,3/4)
o2 = (1/4,3/4,0,0)
o1 = (0,3/4,1/4,0)
o2 = (0,0,1/4, 3/4)
o1 = (1/4,1/4,1/4,1/4)
oo = (1/4,1/4,1/4,1/4)
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Example 5

DO = O QO = B Qo s Ot
[ NI CRS TS CR NN
T UTRD U QO N i U b GO
00N = T QO s U1 N
O = TS DO GO s Ut

C2(4) = {4}
C2(0) = C2(3)
Ca2(1) = C2(2)

,0,2/5,1/5,1/5)
,1/5,1/5,2/5,0)
/5,0,2/5,1/5)
5,2/5,0,2/5)
5,1/5,1/5,1/5)
5,1/5,1/5,1/5)
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CHAPTER 4

PREFERENCE REVERSALS: TIME AND AGAIN

4.1 Introduction

The concept of preference is of fundamental importance for decision theory
and economic analysis. Yet, preferences are not a primitive but a derived
object which structures choices as long as they exhibit some basic consistency,
e.g. in the form of the weak axiom of revealed preference. If choices are
consistent, a number of elementary predictions can be derived, which form the
basis for decision theory, microeconomics, consumer research, and judgment
and decision making. One such prediction is that choices should agree with
valuations: if a decision maker chooses one option over another, he should
value the former more than the latter.

This common-sense prediction is at odds with observed decisions under
risk. The preference reversal phenomenon, first documented in psychology by
Slovic and Lichtenstein (1968) and Lindman (1971), describes a situation in
which participants are asked to state monetary valuations for a series of lot-
teries (usually through minimum selling prices), and separately choose from
pairs of those lotteries. The pairs consist of a P-bet, which has a high prob-
ability of paying a moderate amount of money, and a $-bet, which has a low
probability of paying a high amount of money. A preference reversal occurs
if either the P-bet is chosen from a pair in which the $-bet is priced higher
or the $-bet is chosen from a pair in which the P-bet is priced higher. The
preference reversal phenomenon is characterized by a high rate of reversals
of the first type (between 40 and 80 percent in most experiments), which are
called predicted reversals. Reversals of the second type, termed unpredicted,
are less frequent (between 5 and 30 percent). The asymmetry between both
types of reversals is especially problematic, for, if reversals were due to e.g.

participants’ errors, one should expect similar numbers of both types. In
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other words, while one could explain away unpredicted reversals as noisy ob-
servations, predicted reversals remain a serious challenge to basic economic
analysis.

It is no surprise that preference reversals have received a great deal of
attention in the last half century. After the first replication in economics by
Grether and Plott (1979), a large number of experimental and theoretical
studies has shown that the phenomenon is extremely stable. It has been
replicated in various ways using hypothetical and real payments, different
payment schemes, and different elicitation methods for lottery prices (for a
survey, see e.g. Seidl, 2002). Preference reversals of this particular form have
been documented beyond lottery choice, e.g. in the field of health utility
measurements (Stalmeier, Wakker, and Bezembinder, 1997; Bleichrodt and
Pinto Prades, 1994; Oliver, 2013). They have also been shown to be relevant
for decision making under ambiguity (Maafi, 2011; Trautmann, Vieider, and
Wakker, 2011; Ball, Bardsley, and Ormerod, 2012). Furthermore, other forms
of inconsistencies between different preference elicitation methods have been
established in the literature, including reversals between pricing and rat-
ing (Schkade and Johnson, 1989) as well as discrepancies between certainty
and probability equivalents (Hershey and Schoemaker, 1985; Johnson and
Schkade, 1989; Delquié, 1993). In addition to their conceptual importance
for decision analysis, these phenomena are of great relevance for applied eco-
nomics, since they cast doubts on the validity of e.g. consumer valuations,
and, accordingly, on demand estimations and policy decisions based on those
valuations.

The present research provides new evidence on the determinants of pref-
erence reversals. We propose a simple, process-based model which predicts
the observed pattern of reversals. Specifically, we disentangle the causes be-
hind the existence of reversals and their asymmetry, i.e. the predominance of
predicted preference reversals. The key determinant behind the existence of
reversals of both types is the presence of noise in the evaluation phase, or,
in other words, imprecise preferences (Schmidt and Hey, 2004; Butler and
Loomes, 2007). The asymmetry of reversals, on the other hand, is caused by

an overpricing phenomenon due to anchoring of evaluations on the largest
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monetary outcomes of a lottery (Tversky, Sattath, and Slovic, 1988; Tversky,
Slovic, and Kahneman, 1990). This phenomenon is itself a consequence of
the cardinal /monetary framing of the evaluation phase.

Received evidence on preference reversals could potentially be explained
by a number of alternative, “as if” models. Our model, however, delivers
additional, testable predictions on decision times. In particular, choices as-
sociated to reversals of either type are predicted to be slower than corre-
sponding non-reversals. Measuring decision times hence allows us to put our
model to a more stringent test than if we relied on choice data only, and we
consequently do so in two experiments.!

Our first experiment confirmed the predictions of the model, both for
choices and decision times. We established the basic effects using different
payment methods to incentivize pricing tasks. Specifically, we employed the
BDM procedure (Becker, DeGroot, and Marschak, 1964) and an ordinal pay-
ment scheme (Goldstein and Einhorn, 1987; Tversky, Slovic, and Kahneman,
1990; Cubitt, Munro, and Starmer, 2004). The aim of our second experiment
was to disentangle the two causes of preference reversals. To do so, we set
out to eliminate the overpricing phenomenon by moving away from cardinal
elicitation tasks. Instead, we employed two different ranking methods (plus
a control BDM replication), one with a price framing, and one where we
carefully removed all references to prices. In terms of our model, eliminating
overpricing in the lottery evaluation phase should reduce the occurrence of
predicted reversals should be reduced. However, the basic predictions for de-
cision times remain unaffected as they arise from the assumption of noise in
the evaluation phase only. As hypothesized, predicted reversals were greatly

reduced, but decisions times associated with reversals remained significantly

!The measurement of decision times or response times is a standard tool in psychology
(see, e.g., Bargh and Chartrand, 2000). To our knowledge, the first studies employing them
in economics were those of Wilcox (1993, 1994), who related them to decision costs in the
context of risky choice. Decision times were also used by Moffatt (2005) relying on risky-
choice data from Hey (2001). More recently, Piovesan and Wengstrom (2009) measured
response times in a dictator game. Rubinstein (2007) advocated the measurement of
decision times in large-scale, web-based experiments to better understand the process of
reasoning behind economic decisions. Achtziger and Alos-Ferrer (2013) measured response
times within a Bayesian-updating paradigm in order to study intuitive decision making in
economic contexts.
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longer than those associated with non-reversals.

Our research also delivers additional theoretical and methodological in-
sights. A first, interesting prediction was unexpected before the development
of the model. On the basis of our assumptions, we are able to prove that
decisions where the riskier $-bet is chosen without giving rise to a reversal
should be slower than those non-reversals where the P-bet is chosen. This
nontrivial prediction arises as a consequence of the conjunction of impre-
cise preferences and the overpricing phenomenon, and hence was predicted
for (and observed in) the first experiment but not for the second. A fur-
ther, striking observation was that choices in the treatment with unframed
ranking-based evaluations were much faster than those in other treatments,
in spite of the fact that choice phases were identical across treatments. This
fact has a simple process-based explanation within our model. Last, our
design specifically allowed comparing the number of preference reversals oc-
curring when prices are elicited before the choice phase to the number of
preference reversals occurring when prices are elicited after the choice phase.
This comparison was motivated by evidence from psychology (see Section
4.2.3 below) indicating that choices might sharpen and even modify previ-
ously imprecise preferences. In agreement with this literature, we show that
ordering effects, although small, are present in the measurement of reversals.

The remainder of the paper is organized as follows. Section 4.2 spells
out our model and derives its predictions and corresponding experimental
hypotheses. Sections 4.3 and 4.4 describe the first and second experiments

and their results, respectively. Section 4.5 concludes.

4.2 A Simple Model of Preference Reversals

and Decision Times

In this section we present our formal model, which is meant to be as simple
as possible. We first state and discuss the underlying assumptions, and
then derive a number of predictions concerning preference reversals and the

assoclated decision times.
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The building blocks of our model are grounded on received evidence from
the literature on preference reversals. First, evidence by Schmidt and Hey
(2004) suggested that part of the preference reversal phenomenon might be
due to pricing errors, while choice errors play a minor role. Butler and
Loomes (2007) found that subjects in preference reversal experiments ex-

2 Our model incorporates

hibit imprecise monetary valuations of lotteries.
these observations by assuming a noisy evaluation phase, in comparison to
a relatively noise-free choice phase. Second, we rely on the compatibility
hypothesis proposed by Tversky, Sattath, and Slovic (1988) and further in-
vestigated by Tversky, Slovic, and Kahneman (1990), according to which
attributes that naturally map onto the evaluation scale are given predomi-
nant weight in the evaluation phase. Since the evaluation scale usually refers
to prices, the monetary outcomes of the lotteries might anchor valuations,
giving rise to an overpricing of the $-bet, where a large monetary outcome is

salient.?

4.2.1 Model and Rationale

We consider a choice between a P-bet and a $-bet and the pricing decisions
for both bets. Let up and ug denote the “true” utilities of the P-bet and the $-
bet, respectively. Denote by C'Ep and C Eg the elicited certainty equivalents
of the P-bet and the $-bet, respectively.

Relying on evidence by Schmidt and Hey (2004) and Butler and Loomes
(2007), we assume that the price elicitation phase is noisier than the choice
phase. This is formalized in two parts. The first assumption states that the

pricing of lotteries is a noisy process.

2See Blavatsky (2009) for a formal model focused on those findings.

3Tversky, Slovic, and Kahneman (1990) used a design with additional choices between
the bets and cash amounts and showed that at least part of the predicted reversals arise
because of an overpricing of $-bets. Tversky, Sattath, and Slovic (1988) also proposed
the prominence hypothesis, which assumes a bias in the choice stage rather than in the
evaluation stage (see also Fischer, Carmon, Ariely, and Zauberman, 1999). Cubitt, Munro,
and Starmer (2004) investigated a number of alternative hypotheses including prominence
and compatibility and dismissed each of them in isolation, concluding that a combination
of hypotheses would be a more reasonable explanation of their findings.
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Assumption 1. CEp = up + (p and C'Eg = ug + (5, where (p and (g are

independent error terms with everywhere positive density functions.*

In contrast, the choice phase should be comparatively noise-free. For sim-
plicity, the second assumption postulates that choices follow the underlying
utilities. Write ¢(P,$) = P if the P-bet was chosen in the choice task and
¢(P,$) = $ if the $-bet was chosen.

Assumption 2. ¢(P,$) = P whenever u, > ug and c¢(P,$) = $ whenever

Up < Ug.

The main element of our model relies on the compatibility hypothesis
(Tversky, Sattath, and Slovic, 1988; Tversky, Slovic, and Kahneman, 1990).
It implies that, when pricing lotteries, it is likely that subjects focus their
attention on the salient monetary outcomes. Since the $-bet yields a large
outcome with moderate probability and the P-bet pays a moderate outcome
with high probability, subjects will tend to state a higher price for the $-bet.
This overpricing phenomenon can be captured by simply assuming a strictly

positive mean for the error term associated with the valuation of the $-bet.

Assumption 3. There is a tendency to overprice the $-bet, i.e. E[(s] = K >
0 but E[Cp] = 0. Further, the densities of (p and (g are symmetric around

the means and unimodal.’

It is a well-established fact that decision times reflect preferences in the
sense that hard choices, where the decision maker is close to being indif-
ferent, results in longer decision times than easy choices, where one option
is clearly better (Wilcox, 1993; Shultz, Léveillé, and Lepper, 1999; Moffatt,
2005; Chabris, Laibson, Morris, Schuldt, and Taubinsky, 2009; Sharot, De-
Martino, and Dolan, 2009; Alos-Ferrer, Grani¢, Shi, and Wagner, 2012). To

model this effect in a simple way, we postulate that the choice time DT only

4The second part of the assumption is for technical convenience. The analysis goes
through, with more cumbersome proofs, if the error terms have bounded support.

A density function is unimodal with mode m if it is nondecreasing for all x < m and
nonincreasing for all x > m. For example, normally distributed error terms fulfill our
assumptions.
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depends on the utility difference |up — ug|. To avoid unnecessarily compli-
cating the model, we make the simplifying assumption that decisions are of
two kinds, easy and hard. Easy decisions correspond to utility pairs (u,, ug)
such that |up — ug| > ¢ for some 6 > 0, while utility pairs (u,,ug) with
|lup —ug| < 9 lead to hard decisions. Denote by Ty = E[DT¢| |up — ug| > ¢]
and Ty = E[DT¢| |lup —ug| < 9] the expected choice times for easy and hard
decisions, respectively. The next assumption captures the idea that choice
decisions in which a subject is close to indifference between two items are

harder than “obvious” choices.
Assumption 4. Hard choices take longer than easy choices, i.e. Ty > Tg.

Our assumptions are meant to reflect the basic principles involved in
preference reversal experiments without unnecessarily complicating the ex-
position and the analysis. Of course, one could postulate more involved
formulations, as e.g. a continuously monotonic relation between choice times
and closeness to indifference. The next section shows that the simple versions

postulated above are enough to provide testable hypotheses.

4.2.2 Predictions

In preference reversal experiments, results refer to a relatively large num-
ber of evaluation and choice decisions. Systematic biases are avoided, e.g.
by offering choices between lotteries of similar expected values, or counter-
balancing the difference in expected values across pairs. Hence, to obtain
experimental hypotheses, it is reasonable to treat the utilities ug and up as
random variables. Specifically, we assume that the utilities of the lotteries in
an experiment are drawn from i.i.d. continuous random variables with some
fixed distribution. Since, in our model, both choices and decision times are
assumed to depend on utility differences only, the analysis relies on the dis-
tribution of up — ug. We assume that this distribution has an everywhere

positive density h.5

6Since up and ug are ii.d, up — ug and ug — up have the same distribution. If the
distribution of up and ug has density v then h = (v *v~), where v~ (s) = v(—s) for all s
and the symbol * denotes the convolution operator.
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Our model makes four predictions which can be experimentally tested.
The first one concerns a well-established observation in the literature, namely

that predicted reversals are more frequent than unpredicted ones.
Proposition 1. Under Assumptions 1, 2, and 3,

(i) there are more predicted than unpredicted preference reversals, i.e

Pr(CEs > CEp,c(P,$) = P) > Pr(CEp > CEs, c(P,$) = $);

(i1) and the reversal rate is higher for predicted preference reversals than for
unpredicted preference reversals, i.e. Pr(CEg > CEplc(P,$) = P) >
Pr(CEp > CFEs|c(P,$) = 9).

The intuition for this result is straightforward. Both kinds of reversals re-
sult from noise in the evaluation phase shifting the evaluations of the lotteries
in opposite directions. A reversal occurs when, due to noisy realizations, the
evaluation ranking is reversed with respect to the one derived from utilities.
The overpricing phenomenon helps produce predicted reversals: initially, the
$-bet is ranked lower than the P-bet (ug < wup), but overpricing tends to
shift the valuation of the $-bet higher than that of the P-bet. Overpricing,
however, makes unpredicted reversals harder: the $-bet is initially ranked
higher and overpricing tends to increase its evaluation with respect to the
P-bet even more.

We can reformulate the predictions arising from the last proposition

straight away as experimental hypotheses.

H1la. The average number of predicted preference reversals per subject is
larger than the average number of unpredicted reversals.

H1b. The average rate of predicted reversals (i.e. percentage of reversals
over all P-choices) per subject is larger than the average rate of unpredicted

reversals (i.e. percentage of reversals over all $-choices).

These predictions fit received evidence in the literature on preference
reversals, and are hence a first validation of the model. We will, of course,
also test them with our own data. The added value of the model, however,

is given by the following, novel predictions, which concern decision times
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in the choice task. The first refers to decision times in “conflict situations”
as compared to those in “non-conflict situations”, i.e. for choices leading to

preference reversals vs. choices not leading to preference reversals.

Proposition 2. Let DT denote the decision time in the choice phase. Un-

der Assumptions 1, 2, and 4,

(i) the decision time for a P-bet leading to a preference reversal is longer
than the decision time for a P-bet that does not lead to a preference
reversal, i.e. E[DT¢|CEy > CEp,c(P,$) = P] > E[DI¢|CEp >
CFEs,c(P,$) = PJ;

(i1) and the decision time for a $-bet leading to a preference reversal is
longer than the decision time for a $-bet that does not lead to a prefer-
ence reversal, i.e. E[DT¢|CEp > CFEg,c(P,$) =8| > E[DT¢|CEs >
CEp,c(P,3) = 9.

The intuition for this result is again simple. Since the origin of reversals
lies in the noise arising in the evaluation process, it is clear that reversals
are more likely when utilities were close, and hence errors in the evaluation
phase are more likely to reverse the order of the lotteries. Decisions where
utilities are close are comparatively harder and hence take longer. In other
words, reversals are more likely to involve hard choices than non-reversals,
which leads to longer decision times.

This proposition translates into the following experimental hypotheses.

H2a. The average decision time for predicted preference reversals is longer
than the average decision time for comparable non-reversals (i.e. non-reversals
where the P-bet is chosen).

H2b. The average decision time for unpredicted preference reversals is
longer than the average decision time for comparable non-reversals (i.e. non-

reversals where the $-bet is chosen).

The next prediction is orthogonal to preference reversals. At the same
time, it represents an a priori unexpected feature of the model and is hence

especially valuable for its validation. It concerns decision times when the
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$-bet was chosen given that it was priced higher compared to decision times

when the P-bet was chosen given that it was priced higher.

Proposition 3. Under Assumptions 1, 2, 3, and 4, the decision time for a $-
bet that does not lead to a preference reversal is longer than the decision time
for a P-bet that does not lead to a preference reversal, i.e. E{DT¢|CEg >
CEp,c(P,$) =9%] > E[DT¢c|CEp > CEs,¢(P,$) = PJ.

This result seems less intuitive. On the one hand, under overpricing, it is
more likely that $-bets will be priced higher than P-bets than the other way
around. Hence, the probability that a hard (slow) $-bet-choice will result
in a non-reversal is larger than the probability that a hard P-bet-choice will
result in a non-reversal. On the other hand, an easy (fast) $-bet-choice is also
more likely to result in a non-reversal than an easy P-bet-choice. The reason
for this is that in the first case ug > w, and overpricing pushes the evaluations
further apart, while in the second case ug < u, and overpricing pushes the
evaluations together. Proposition 3 holds because the relative likelihood for
a hard choice to lead to a non-reversal compared to the likelihood for an easy
choice to lead to a non-reversal is larger for $-bets than for P-bets.”

This result leads to our next experimental prediction.

H3. The average decision time for non-reversals where the $-bet is chosen
is longer than the average decision time for non-reversals where the P-bet is

chosen.

4.2.3 Order Effects and Preference Reappraisal

Preference-reversal experiments include a pricing/evaluation phase and a
choice phase. Up to date, the literature has remained silent on order ef-
fects, i.e. on whether there is any difference between experiments where the
choice phase precedes the evaluation phase, and experiments where the or-
der of the tasks is the opposite. Preference reversals have been established

in experiments using either of the two possible orderings.

“In particular, the arguments in the proof of this result hold only for non-reversals. No
analogous version of Proposition 3 for reversals can be established.
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We argue, however, that order effects need to be taken into account. The
reason is that, as discussed above, imprecise preferences have been identified
as one of the factors driving preference reversals. If preferences are impre-
cise, a large literature in psychology indicates that they might become more
precise, or be generally altered, by the mere act of making choices. In the
classical Free-Choice Paradigm (Brehm, 1956), subjects first face a rating
(ranking) task, then a choice task, and finally another rating (ranking) task
identical to the first one. The chosen options are usually evaluated more pos-
itively in the second rating (ranking) task while the options that were not
chosen tend to be evaluated more negatively.® According to Cognitive Dis-
sonance Theory (Festinger, 1957), this happens because in the reevaluation
phase subjects attempt to reduce the tension between the negative aspects
of a chosen option and the positive aspects of an option that was not chosen.
Self-Perception Theory (Bem, 1967), on the other hand, attributes this phe-
nomenon to the fact that subjects learn their preferences better by making
choices and hence ratings (rankings) in the second phase more closely re-
semble the “true preferences”. This raises the question of whether preference
reversals are affected by the order of valuation and choices. More precisely, if
preference reappraisal occurs during the choice phase, there should be fewer
preference reversals if the valuation task follows the choice task. This yields

an additional hypothesis.

HA4. Preference reversals are reduced if the valuation task follows the choice

task, compared to the opposite ordering.

More generally, and in view of the discussion above, our expectation was
that effects would in general be more clear when considering post-choice
evaluations than when relying on pre-choice ones. For example, if one relies
on self-perception theory, classifying choices as reversals or non-reversals on
the basis of pre-choice evaluations will result in some false classifications,
effectively adding more noise to all measurements. However, since preference

reversals have been established in the literature using both possible task

8 Although this classical task has recently been shown to be affected by statistical
biases, improved versions of the task have meanwhile re-established the basic effect. See
e.g. Alos-Ferrer, Grani¢, Shi, and Wagner (2012).
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orderings, we expected order effects to be subtle. The difference should be
more clear for unpredicted reversals, because, if those are purely due to noise,
any reduction of noise in the evaluation task should eliminate at least part
of them.

Finally, it should be noted that there is evidence from fMRI (Jarcho,
Berkman, and Lieberman, 2011) as well as response time studies (Alos-Ferrer,
Grani¢, Shi, and Wagner, 2012) indicating that preference reappraisal and
process conflict resolution in the Free-Choice Paradigm occur during the
choice phase. Incorporating this additional observation into our model would

not affect our predictions, as discussed in the next subsection.

4.2.4 Process Conflict and Decision Times

In psychological terms, the compatibility hypothesis suggests that several
decision processes might be at work when choosing from a pair of lotteries.
Overpricing might result from a process focusing on monetary outcomes only,
which competes with a more global decision process that evaluates lotteries
by taking both outcomes and winning probabilities into account.

Taking the process view into account is important because this view deliv-
ers standard predictions regarding process data (specifically, decision times).
According to dual-process models from psychology (Schneider and Shiffrin,
1977; Strack and Deutsch, 2004; Rottenstreich, Sood, and Brenner, 2007;
Evans, 2008; Weber and Johnson, 2009; Alés-Ferrer and Strack, 2013) de-
cision processes can be either automatic and fast, corresponding to quick
heuristics, or controlled and slow. In our interpretation, overpricing should
result from an automatic (impulsive) process, while a more global valuation
should be associated with a more cognitive, controlled process. The quick
“look-at-monetary-outcomes” process is more prevalent in the pricing task
and causes an overpricing of the $-bets. We hypothesize that this process is
also active in the choice task, but there it is often inhibited, which leads to
a choice causing a preference reversal.

A basic prediction of dual-process models is that inhibiting automatic

processes costs time and cognitive resources. More generally, conflict de-
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tection and resolution is time consuming, that is, decision times are longer
when several processes conflict than when processes are aligned. If reversals
result from an automatic process which affects the pricing of lotteries but is
inhibited in the choice phase, preference reversals should be associated with
longer decision times in the choice phase.

This observation can be incorporated into our model by postulating that
decision times in the choice task, DT, are noisy and consist of two com-
ponents, choice time DTy and conflict resolution time DTy, ie. DT =
DTc 4+ DTR. The next assumption reflects the considerations above and

concerns conflict resolution time only.

Assumption 5. Conflict resolution is time-consuming, i.e. conflict resolu-
tion time is longer for a reversal than for a comparable non-reversal:
E[DTg|CEp > CEg,¢(P,$) = 8] > E[DIg|CEs > CEp,c(P,$) = $] and
E[DTg|CEg > CEp,c(P,$) = P| > E[DTg|CEp > CEg,c(P,$) = PJ.

How does this assumption affect our predictions? Hypotheses Hla and
H1b do not concern decision times and are hence unaffected. Hypothesis H3 is
equally unaffected since this prediction does not concern preference reversals.
The additional assumption affects the interpretation of Hypotheses H2a and
H2b. Since total decision time is now viewed as the sum of choice time and
conflict resolution time, Proposition 2, which states that choice times are
longer for reversals than for non-reversals, does not directly translate into
experimental hypotheses anymore. However, by Assumption 5, also conflict
resolution time is on average larger for reversals. Hence, both effects are
aligned and Hypotheses H2a and H2b still obtain.

4.3 Experiment 1: Preference Reversals and

Decision Times

The objective of our first experiment was to test the predictions of the model
with regard to both choices and decision times. This would allow us to con-

clude that the combination of imprecise preferences in the evaluation phase
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and an overpricing phenomenon arising from the compatibility hypothesis is
able to explain received evidence on preference reversals while at the same

time fitting novel evidence on process data.

4.3.1 Experimental Design and Procedures

We followed a between-subject design comprised of three independent, con-
secutive single-decision making parts. The first and third phases were evalu-
ation tasks, while the second, intermediate phase contained the choice task.
This way, we can consider two kinds of preference reversals. On the one hand,
we have “Price-Choice Reversals” which occur comparing the evaluations in
the first phase and the choices in the second phase. On the other hand, we
have “Choice-Price Reversals” which occur comparing the evaluations in the
third phase and the choices in the second phase. Each of our Hypotheses
H1 to H3 can be tested either on Price-Choice or Choice-Price reversals (or
non-reversals), and we will report the results for both possibilities, keeping in
mind that we expect clearer results for the Choice-Price ordering. Comparing
both orderings allows us to test Hypothesis H4.

The stimuli were 40 different lotteries, which are presented in Table 4.5
in Appendix 4.B. Each of the pairs in the choice task contained one P-bet
and one $-bet from this set of lotteries, with the former being defined by
a high probability of winning a moderate amount of money and the latter
being defined by a low probability of winning a high amount of money.”

We employed a pricing method for the evaluation of lotteries in phases
1 and 3. In these two pricing tasks participants were asked to state their
minimum selling price for each of the 40 lotteries which were presented se-

quentially in fully randomized order (“State the lowest price for which you

90f the 20 lottery pairs, pairs 3 to 8 were such that the expected value of the P-bet was
higher than the expected value of the $-bet (with a difference between €1.00 to €3.40).
Pairs 9 to 14, which most closely resemble the ones commonly used in the literature, had
roughly equal expected values. In pairs 15 to 20, the $-bet had a higher expected value
than the P-bet (difference between €1.60 to €4.80). Finally, lottery pairs 1 and 2 were
such that one bet dominated the other strictly and were only included as a basic rationality
check. Only 2 out of 141 subjects chose one of the two strictly dominated lotteries in phase
2. These two lottery pairs are therefore excluded from the analysis.

136



CHAPTER 4
PREFERENCE REVERSALS: TIME AND AGAIN

are just willing to sell the presented lottery.”). Subjects were only allowed to
state prices between €2 (the lower amount to win) and the higher amount
to win. An example screen display for the pricing tasks is shown in Figure
4.6(a) in Appendix 4.C. The colors in the pie charts (green and blue) were
counterbalanced across subjects. In phase two, the choice task, subjects faced
the 20 lottery pairs sequentially and had to choose the lottery they would
prefer to play out. See Figure 4.6(c) in Appendix 4.C for an example screen
of the choice task. The order of the pairs and the onscreen position of the
P-bet (i.e. left or right) was randomized. For each choice, we recorded the
individuals’ decision times as the time elapsed between the presentation of
the lottery pair and clicking the button (“This lottery”) underneath one of
the two lotteries.

After the three tasks, participants filled in a questionnaire containing var-
ious questions on their statistical knowledge, sociodemographic background,
and personality attitudes.

All three tasks were incentivized. Payoffs were determined independently
for each task after completion of the ex-post questionnaire to prevent spillover
effects between tasks (e.g. through wealth effects). The two treatments in
this experiment, BDM and OrdP»M, differed only in the payment scheme
used in the pricing tasks (phases 1 and 3). The former used a BDM payment
scheme (Becker, DeGroot, and Marschak, 1964), and the latter a variant of
the Ordinal Payment Method (Goldstein and Einhorn, 1987; Tversky, Slovic,
and Kahneman, 1990; Cubitt, Munro, and Starmer, 2004). We included
these two treatments to ensure that our results were robust with respect to
the elicitation method.

The two schemes determined the payment in an evaluation task as follows.
In the BDM treatment, after one of the 40 lotteries was picked at random the
computer drew a price from a uniform distribution over the interval |2, A|,
where A denotes the higher of the two amounts to win. If this price was
higher than or equal to the price stated by the subject, the subject received
this amount. If it was lower, the subject played the lottery and the payment
was the realized outcome of that lottery. This was done separately for each

pricing task. In the OrdPM treatment, two lotteries were chosen at random.
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The more highly priced lottery of the two was then played out and the realized
outcome was the payoff for this phase (in case of a tie, the computer chose
one at random). As in the BDM treatment, this procedure was conducted
separately for the two pricing phases. Note that under the ordinal payment
scheme, the absolute prices do not play a role, but only the induced ordering
matters.

The payment method for the choice task in phase 2 was identical in both
treatments. One of the 20 lottery pairs was picked at random, then the
lottery the subject had chosen from this pair was played out and the realized
outcome of that lottery was the payment for this round. The total payment
a participant received in the experiment was the sum of realized payoffs in

the three decision tasks.

4.3.2 Procedures

Before the experiment started, participants were briefly informed that the
session consisted of three decision tasks, that payment for each task was
partly determined by their decisions and partly by luck, that the tasks were
paid independently of one another and that lotteries from each phase were
not played out before the end of the experiment. In addition, four control
questions had to be answered, using pencil and paper, before the start of the
experiment to ensure that participants understood the concept of a lottery
and its pie chart representation. Detailed instructions about each individual
decision-making task (phase 1 to 3) and how payments would be determined
in each phase were handed to the participants prior to the start of each phase.

The experiment was programmed in z-tree (Fischbacher, 2007). Par-
ticipants were university students with majors other than psychology and
economics. FEach student participated in only one session. We conducted
7 sessions with a total of 141 participants (91 female). Of those, 67 were
allocated to the BDM treatment and 74 to the OrdPM treatment. A session
lasted about 2 hours with average earnings of €24.76 in the BDM treatment
and of €23.03 in the OrdPM treatment.
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Table 4.1: Preference reversal rates, Experiment 1.

Treatment Predicted Reversals Unpredicted Reversals

Price-Choice Choice-Price  Price-Choice Choice-Price

BDM 48.75 47.20 18.80 8.99
OrdPM 40.96 35.47 17.69 11.14

Note: Predicted (resp. unpredicted) reversal rates computed as percentage of reversals

over all P-bet-choices (resp. $-bet-choices).

4.3.3 Results of Experiment 1

As a first illustration, Table 4.1 contains the average reversal rates in the
BDM and the OrdPM treatments in Experiment 1. The rate of predicted
(unpredicted) reversals is computed as the number of predicted (unpredicted)
reversals divided by the number of P-bet choices ($-bet choices). Figure 4.1
further depicts the average number of preference reversals per participant for
both treatments. It is already apparent from Table 4.1 and Figure 4.1 that
predicted reversals are more frequent than unpredicted reversals, that mea-
suring reversals with respect to post-choice attitudes reduces their quantity,
possibly by reducing noise, and that there might be some minor differences
between treatments. We now proceed to test for these observations and our
experimental hypotheses.

Predicted vs. unpredicted reversals (H1). We conducted two-sided Wil-
coxon Signed-Rank (hereafter WSR) tests to assess whether participants gen-
erated more predicted than unpredicted reversals. Tests were highly signif-
icant both for the BDM (Price-Choice, N = 67, z = 6.060, p < 0.0001;
Choice-Price, N = 67, z = 6.439, p < 0.0001) and the OrdPM treatments
(Price-Choice, N = 74, z = 6.177, p < 0.0001; Choice-Price, N = 74,
z = 5.770, p < 0.0001). This confirms our Hypothesis Hla. To confirm
Hypothesis H1b, we computed the predicted and unpredicted preference re-
versal rates for each subject individually as the percentage of P-bet/$-bet
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Figure 4.1: Average number of reversals per subject, Experiment 1.

Note: Reversals for the Price-Choice (dark bars) and Choice-Price (light bars) task order-

ings. Error bars depict the 95 percent confidence interval.

choices (respectively) resulting in reversals. The rates for predicted rever-
sals were significantly higher than the rates of unpredicted reversals for both
treatments and both possible task orderings (BDM Price-Choice, N = 60,
z = 4.170, p < 0.0001; BDM Choice-Price, N = 60, z = 5.140, p < 0.0001;
OrdPM Price-Choice, N = 69, z = 4.585, p < 0.0001; OrdPM Choice-Price,
N =69, z = 3.595, p < 0.0005).1°

Order effects (H4). In both treatments, there were significantly fewer
unpredicted reversals when prices are elicited after choices (Choice-Price)
than when they are elicited before choices (Price-Choice) according to two-
sided WSR tests (BDM, N = 67, z = —3.487, p < 0.0005; OrdPM, N =
74, z = —2.858, p = 0.004). There were no significant differences in the
number of predicted reversals, although there seems to be a trend towards
fewer predicted Choice-Price reversals in the OrdPM treatment (BDM, N =
67, z = —0.169, p = 0.865; OrdPM, N = 74, z = —1.526, p = 0.127).
Since unpredicted reversals are essentially due to noise, this is consistent with
the interpretation that measuring reversals through post-choice evaluations

reduces noise.

10T he tests for reversal rates include of course only the participants for which both rates
can be computed. For instance, if a participant never chose a $-bet, no rate of unpredicted
reversals can be computed.
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(a) BDM treatment, Exp. 1 (b) BDM treatment, Exp. 1
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Figure 4.2: Average decision time per individual in the choice task, Experiment 1.

Note: Predicted reversals are compared to non-reversals where the P-bet was chosen,
unpredicted reversals to non-reversals where the $-bet was chosen. Error bars depict the

95 percent confidence interval.

Treatment effects (reversals). We compared the individual numbers of
reversals across treatments using Mann-Whitney-U (MWU) tests. We found
significantly fewer predicted reversals in the OrdPM treatment than in the
BDM treatment, for both task orderings (Price-Choice, z = —2.101, p =
0.036; Choice-Price, z = —2.688, p = 0.007). There were, however, no
significant differences for unpredicted reversals (Price-Choice, z = —0.735,
p = 0.462; Choice-Price, z = 1.067, p = 0.286).

Decision times and reversals (H2). Figure 4.2 displays the decision times
for reversals and comparable non-reversals for both treatments and both task

orderings. Each type of reversal is compared with the correct counterfactual,
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i.e. predicted reversals are compared with non-reversals where the P-bet was
chosen, and unpredicted reversals with non-reversals where the $-bet was
chosen.

Two-sided WSR tests confirmed that predicted reversals involved signif-
icantly longer decision times than comparable non-reversals, both for Price-
Choice and for Choice-Price, both for the BDM (Price-Choice N = 61,
z = 2.758, p = 0.006; Choice-Price;, N = 54, z = 3.625, p < 0.0005)
and the OrdPM treatments (Price-Choice, N = 66, z = 2.894, p = 0.004;
Choice-Price, N = 57, z = 2.987, p = 0.003).1* Unpredicted reversals were
also associated with significantly longer decision times in the OrdPM treat-
ment (Price-Choice, N = 39, z = 2.854, p = 0.004; Choice-Price, N = 22,
z = 1.883, p = 0.060), but there were no significant differences for unpre-
dicted reversals in the BDM treatment (Price-Choice, N = 31, z = 0.950,
p = 0.342; Choice-Price, N = 17, z = —0.947, p = 0.344).

Decision times and non-reversals (H3). Non-reversals were clearly slower
when the $-bet was chosen than when the P-bet was chosen. The differ-
ence was highly significant independently of whether choices were declared
non-reversals according to pre-choice or post-choice evaluations, for both the
BDM treatment (Price-Choice, N = 56, z = 3.242, p = 0.001; Choice-Price,
N =51, z = 2995, p = 0.003) and the OrdPM treatment (Price-Choice,
N = 64, z = —3.681, p < 0.0005; Choice-Price, N = 59, z = —3.204,
p = 0.001). The differences are illustrated in Figure 4.3.

4.3.4 Regression Analysis for Experiment 1

We also conducted a random effects panel regression analysis (with stan-
dard errors clustered at the subject level) to further investigate the relation
between preference reversals and decision times, and to further test our hy-
potheses while controlling for a number of natural variables, e.g. individual
and lottery-pair covariates. Since decision times are always positive, we used

the log of decision times (log DT') as the dependent variable. The main re-

HEvery test on decision times was conducted for the population of subjects for which
the involved average decision times could be computed. For instance, if a subject did not
display any unpredicted reversal, no decision time can be computed for this category.
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(a) Price-Choice (b) Choice-Price
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Figure 4.3: Average non-reversal decision time per individual in the choice task,
Experiment 1.

Note: Choices classified as non-reversals according to the indicated task ordering, Price-

Choice (left) and Choice-Price (right). Error bars depict the 95 percent confidence interval.

sults of these regressions are displayed in Table 4.2. For each treatment, we
report a regression including a dummy variable for Price-Choice reversals
and an analogous one with a dummy variable for Choice-Price reversals. We
also ran a number of additional regressions and found the main effects to
be robust (in magnitude and significance) to the inclusion or exclusion of
additional control variables.

The regressions include dummies for choices which were part of reversals,
for $-bet-choices, and the interaction thereof. Hence we can make any com-
parison among reversals and non-reversals where the $-bet or the P-bet was
chosen, either directly through specific regression coefficients or via appro-
priate postestimation tests, which are also reported in the table.

Predicted reversals vs. non-reversals. Hypothesis H2a states that decision
times for predicted preference reversals should be longer on average than de-
cision times for comparable non-reversals, i.e. non-reversals where the P-bet
was chosen. Since a $-choice dummy is included, the comparison between
predicted reversals and non-reversals where the P-bet was chosen corresponds
to the reversal dummy in the regression, which is highly significant and pos-

itive for both regressions for the OrdPM treatment, and for the Choice-Price
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Table 4.2: Random effects panel regressions for decision times, Experiment 1.

Treatment BDM BDM OrdPM OrdPM
Order P-C C-P P-C C-P
ReversalPC 0.018 0.078**
(0.029) (0.025)
ReversalCP 0.083*** 0.109***
(0.031) (0.027)
$-Choice 0.127**  0.155"*  0.126™*  0.151"**
(0.054) (0.031) (0.027) (0.026)
$-Choice -0.097 0.107*
x ReversalPC (0.073) (0.052)
$-Choice -0.189** 0.058
x Reversal CP (0.095) (0.064)
DiffEV -0.023* -0.022* -0.021*  -0.023**
(0.012) (0.012) (0.009) (0.009)
Ratio 0.041***  0.036™*  0.038**  0.038***
(0.011) (0.011) (0.008) (0.008)
StatedDiff-1 -0.010 -0.009 -0.008**  -0.009***
(0.007) (0.007) (0.003) (0.003)
StatedDiff-3 -0.010 -0.011* -0.011%*  -0.011**
(0.006) (0.006) (0.003) (0.003)
Round -0.008***  -0.008**  -0.005**  -0.005***
(0.003) (0.003) (0.002) (0.002)
Female -0.286**  -0.290**  -0.156™  -0.151**
(0.113) (0.113) (0.072) (0.071)
Position 0.016 0.015 -0.012 -0.009
(0.023) (0.023) (0.019) (0.019)
Color -0.021 -0.019 0.088 0.084
(0.111)  (0.112)  (0.070)  (0.068)
Constant 2.666™*  2.649"*  2.563*  2.556™**
(0.106) (0.105) (0.073) (0.072)
Nr. Obs. 1340 1340 1480 1480
Nr. Groups 67 67 74 74
R2-Overall 0.103 0.101 0.118 0.119
Wald test 0.000 0.000 0.000 0.000
Postestimation tests
Reversal -0.079 -0.106 0.185**  0.167**

+($-ChoicexReversal) (0.072) (0.094) (0.045) (0.056)

Note: All regressions are random-effects panel estimations, with log decision time as de-

pendent variable. Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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regression for the BDM treatment. This indicates that predicted reversals
took longer than comparable non-reversals, confirming Hypothesis H2a.

Unpredicted reversals vs. non-reversals. Hypothesis H2b states that un-
predicted reversals should take longer than non-reversals where the $-bet
was chosen. The difference between both types of choices corresponds to
BReversal + B$—Choicex Reversal, Which is highly significant and positive in both
regressions for the OrdPM, confirming Hypothesis 2b. However, the postes-
timation tests are not significant for the BDM treatment.

Comparison of non-reversals. According to Hypothesis H3, non-reversals
where the $-bet was chosen should take longer than non-reversals where the
P-bet was chosen. Since reversals dummies are included, this comparison
corresponds to the $-choice dummy, which is highly significant and positive
for all four regressions. Hence, conditional on the absence of a preference
reversal, $-bet-choices took longer, confirming Hypothesis H3.

Controls: Lotteries. We included a number of covariates in order to con-
trol for differences in the lottery pairs. The ratio of the two higher amounts
to win in the $-bet and the P-bet (Ratio) had a significant positive effect in
both treatments. The absolute value of the difference in expected values of
the P-bet and the $-bet (DiffEV) had a weakly significant negative effect in
both treatments. We further included the absolute difference in the prices
stated for the lotteries in phases one and three (StatedDiff-1, StatedDiff-3)
as a rough measure of how similar (or different) the participant viewed the
lotteries within a pair. Both were highly significant in the OrdPM treatment,
but essentially not significant in the BDM treatment.

Other controls. Decision time measurements in repeated tasks usually
capture a learning effect as participants gain familiarity with the interface.
We controlled for this effect by including the round in which the choice
was made as a regressor (Round). This was significantly positive in both
treatments. A dummy variable controlling for gender (Female) was also
significant in both treatments. Finally, we controlled for onscreen position
(Position) of the P-bet and the $-bet and for the colors used in the pie-chart
(Color) to verify that these factors did not influence the results. As expected,

these variables never had significant effects.
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4.3.5 Discussion of Experiment 1

The analysis of the data confirms our predictions as derived from the model
in Section 4.2. First, predicted reversals are clearly more frequent than un-
predicted ones, in agreement with previous experiments. Second, preference
reversals appear to involve longer decision times. This effect is clear for an
ordinal-based elicitation of prices; in the BDM treatment, the effect is also
present albeit less pronounced. Third, in both treatments we found that
$-bet-choices which are part of non-reversals take significantly longer than
P-bet-choices part of non-reversals.

In view of the evidence, we conclude that the data is compatible with the
idea that preference reversals arise from the combination of two factors. First,
as pointed out by Schmidt and Hey (2004) and Butler and Loomes (2007),
monetary valuations of lotteries are typically imprecise, and hence preference
elicitation through pricing tasks is much noisier than actual choices. Second,
as summarized by the compatibility hypothesis (Tversky, Sattath, and Slovic,
1988; Tversky, Slovic, and Kahneman, 1990), the use of pricing tasks causes
an overpricing phenomenon which anchors up the evaluation of bets where
a relatively high monetary outcome is salient. These observations produce
testable hypotheses for both choice data and decision times once we incor-
porate the observation that easier choices (where the alternatives are farther
away from indifference) take longer (e.g. Wilcox, 1993; Shultz, Léveill¢, and
Lepper, 1999; Moffatt, 2005).

Regarding ordering effects, we observe small but systematic differences
suggesting that a Price-Choice ordering, where the evaluation task precedes
actual choices, might be noisier than the opposite order, hence producing
both more reversals and slightly less clear effects. This is compatible with
self-perception theory (Bem, 1967), which holds that actual choices serve as
“self-signals” which help reduce noise in future evaluations of alternatives.

Last, we observe small but definite treatment effects, pointing out that
price evaluations conducted through the BDM “price-list” scheme might be
noisier than those conducted according to a more intuitive, ordinal-like scheme.

This is reflected by the fact that preference reversals (and especially unpre-
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dicted ones, which are presumably due to noise) are more frequent in the
BDM case. It is also compatible with the general observation that effects are

often more clearly observed in the OrdPM treatment than in the BDM one.

4.4 Experiment 2: Eliminating Reversals

The objective of our second experiment was twofold. First, we wanted to
show that the overpricing phenomenon can be next to eliminated by using
ordinal, ranking-based evaluation tasks. Second, this manipulation would
allow us to disentangle the two building blocks of our model. The absence of
the overpricing phenomenon should result in a reduction of predicted pref-
erence reversals, while the assumption of imprecise preferences still delivers

predictions on decision times.

4.4.1 Motivation and Hypotheses

In our first experiment we found that the method used to elicit participants’
minimum selling prices affects the rate of preference reversals. According
to the compatibility hypothesis, predicted reversals appear because partici-
pants focus more on monetary outcomes when their preferences are elicited
through prices. Notably, preference reversals were also present in the OrdPM
treatment, where the use of prices in the evaluation task was simple framing,
with no direct monetary consequences. This raises the natural hypothesis
that the overpricing phenomenon predicted by the compatibility hypothesis
arises due to a price-based, cardinal framing (i.e., a “rating task”) in the eval-
uation phases. As a consequence, moving away from a cardinal evaluation
task towards a more natural, ordinal-based one (a “ranking task”) should
greatly reduce preference reversals.

Specifically, suppose that, by employing a ranking-based evaluation task,
we were able to shut down the decision process responsible for the overpric-
ing phenomenon. In terms of the model in Section 4.2, this would imply
K = 0 in Assumption 3. It is easy to revisit our theoretical predictions

and derive new experimental hypotheses for such a situation. First, Propo-
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sition 1 crucially depends on Assumption 3, and hence we would not expect
Hypotheses Hla/H1b to hold in this setting. Although from the point of
view of the model we would expect no differences in reversal rates, this rests
upon the implicit assumption that there is no other (second-order) latent
process causing unpredicted reversals. Even if this was the case, a conser-
vative hypothesis derived from our theoretical analysis is that the number
and frequency of predicted preference reversals should be greatly reduced in

comparison to treatments with price-framed evaluations.

H5. There will be fewer predicted preference reversals if ordinal, ranking-

based evaluation tasks are used than if rating-based tasks are used.

The first decision-times predictions spelled out in Proposition 2, however,
do not depend on Assumption 3. Hence, independently of whether evaluation

tasks are based on ratings or rankings, we would expect Hypotheses H2a /b
to hold.

H6a/b. Even if ordinal, ranking-based evaluation tasks are used, choices
associated with predicted preference reversals take longer than P-bet-choices
associated with non-reversals, and choices associated with unpredicted pref-

erence reversals take longer than $-bet-choices associated with non-reversals.

Proposition 3 depends on Assumption 3. If K = 0, we would a priori ex-
pect no differences in the decision times associated with non-reversals where
the P-bet or the $-bet was chosen.

H7. If ordinal, ranking-based evaluation tasks are used, the average decision
time for non-reversals where the P-bet is chosen is not different from the

average decision time for non-reversals where the $-bet is chosen.

4.4.2 Design of Experiment 2

The basic setup of our second experiment was almost identical to Experiment
1, with the exception that we used different evaluation tasks. We used two
different ranking-based tasks and one BDM task. The former were meant to
shut down the overpricing decision processes; the latter was intended as a

control treatment. In each of the three treatments, presentation of lotteries
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was such that participants faced a total of three blocks consisting each of
six lotteries, i.e. a total of 18 pairs.!? In the Rank-Unframed treatment, we
used a purely ranking-based task. Participants were asked to assign ranks
(from most preferred to least preferred) to the lotteries according to how
much they would like to play each lottery, separately for each block. Most
importantly, we did not make any reference to prices (see Figure 4.6(b) in
Appendix 4.C for an example screen display of the two ranking treatments).
In this sense, the task was unframed. The Rank-Framed treatment was identi-
cally programmed. The only difference was in the experimental instructions.
Participants were asked to rank the lotteries (from 1 to 6) according to their
minimum selling price, separately for each block. However, they were not
asked to type in or otherwise state the prices, but merely to think about
them and use them for the ranking. Finally, in the BDM2 treatment, par-
ticipants had to complete a pricing task that was identical to the one in the
BDM treatment in Experiment 1, with the only exception that (for compa-
rability with the other treatments) lotteries were presented one after another
in three blocks of six lotteries each. Again, colors and onscreen positions of
the lotteries were completely randomized in all treatments.

As in Experiment 1, all three tasks were incentivized and payoffs for
each task were determined independently. Payoffs for the evaluation task
of the BDM2 and the choice tasks of all three treatments were determined
in the same way as in Experiment 1. Payoffs for the evaluation phases for
Treatments Rank-Unframed and Rank-Framed were determined as follows.
First, the computer picked one of the six blocks at random. From the six
lotteries contained in that block, the computer again randomly picked two.
The one that had been ranked higher by the participant was then played out
and the participant received the outcome of that lottery as payment for that
round. In all three treatments, payments were determined and presented
to participants only after all three tasks had been completed. Since in both
ranking treatments there was no actual “pricing” task, we will refer to the two
possible task orderings for these treatments as “Rank-Choice” and “Choice-

Rank”.

12We only used 18 of the lottery pairs that had been used in Experiment 1 (pairs 3-20
in Table 4.5), excluding pairs 1 and 2 which contained stochastically dominated lotteries.
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4.4.3 Procedures

We followed the same procedures as in Experiment 1. We conducted 12
sessions with a total of 215 participants (102 female). Of those, 73 were allo-
cated to the Rank-Unframed treatment, 73 to the Rank-Framed treatment,
and 69 to the BDM2 treatment. Sessions in the Rank-Unframed treatment
lasted roughly an hour with average earnings of €23.36. Sessions in the
Rank-Framed treatment lasted one hour and 20 minutes with average earn-
ings of €24.07, while sessions in the BDM2 treatment lasted about 2 hours
with average earnings of €28.44.

4.4.4 Results of Experiment 2

Table 4.3 shows the average reversal rates for all three treatments for both
Price/Rank-Choice and Choice-Price/Rank reversals. As before, the per-
centage of predicted (unpredicted) reversals is computed as the number of
predicted (unpredicted) reversals divided by the number of P-bet choices ($-
bet choices). Figure 4.4 shows the average number of reversals per subject in
the three treatments. The basic trends are already apparent. Predicted re-
versals were enormously reduced in both ranking treatments, and especially
in the rank-unframed one, to the extent of dropping below the levels of un-
predicted reversals. Further, as in Experiment 1 we observe that measuring
reversals with respect to post-choice attitudes reduces their quantity.

BDM replication. The first observation is that, as expected, there is no
qualitative difference between the results of Treatment BDM2 and Treatment
BDM of Experiment 1. For instance, in Treatment BDM2 the number of
predicted reversals is significantly higher than the number of unpredicted
ones (WSR tests; Price-Choice, N = 69, z = 6.658, p < 0.0001; Choice-Price,
N =69, z = 6.680, p < 0.0001). Likewise, the rates of predicted reversals
(relative to the number of P-bet-choices) are significantly higher than the
rates of unpredicted reversals (relative to the number of $-bet-choices) (Price-
Choice, N = 68, z = 4.495, p < 0.0001; Choice-Price, z = 4.585, p < 0.0001).

Reduction of predicted reversals (H5). Kruskal-Wallis tests confirmed that

the number of predicted reversals was significantly different across treatments
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Table 4.3: Preference reversal rates, Experiment 2.

Treatment Predicted Reversals Unpredicted Reversals

Price-Choice Choice-Price  Price-Choice Choice-Price

BDM 46.87 44.66 16.05 11.32
Rank-Framed 17.67 13.57 34.78 32.95
Rank-Unfr. 12.64 8.39 49.32 45.95

Note: Predicted (resp. unpredicted) reversal rates computed as percentage of reversals

over all P-bet-choices (resp. $-bet-choices).

(Price/Rank-Choice, x* = 71.304, df= 2, p < 0.0001; Choice-Price/Rank,
X2 = 81.095, df= 2, p < 0.0001). To confirm that the differences were
between the ranking treatments and the control BDM2 treatment, we con-
ducted two-sided MWU tests with Holm-Bonferroni correction to account
for multiple comparisons (p-values below are the adjusted values). Both
ranking treatments generated significantly fewer predicted reversals than
the BDM2 treatment (Rank-Framed Price/Rank-Choice, z = —6.769, p <
0.0001; Rank-Framed Choice-Price/Rank, z = —7.040, p < 0.0001; Rank-
Unframed Price/Rank-Choice, z = —7.745, p < 0.0001; Rank-Unframed
Choice-Price/Rank, z = —8.210, p < 0.0001). The difference in the num-
ber of predicted reversals across both ranking treatments was not signifi-
cant for the Rank-Choice ordering (z = —0.824, p = 0.410), but for the
Choice-Rank ordering there were significantly fewer predicted reversals in the
Rank-Unframed treatment than in the Rank-Framed treatment (z = —2.248,
p = 0.025). This last result agrees with the idea that the Rank-Unframed
treatment goes one step further in the elimination of the overpricing process
than a ranking-based but still price-framed approach.

Order effects. As in Experiment 1, there were significantly fewer un-
predicted reversals in the BDM2 treatment when prices were elicited after
choices than when they were elicited before choices (N = 69, z = —1.884,
p = 0.059), but no significant differences for predicted reversals (N = 67,
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Figure 4.4: Average number of reversals per subject, Experiment 2.

Note: Reversals for the Price/Rank-Choice (dark bars) and Choice-Price/Rank (light bars)

task orderings. Error bars depict the 95 percent confidence interval.

z = —0.470, p = 0.638). We found no differences in the Rank-Framed treat-
ment (unpredicted reversals, N = 73, z = —0.532, p = 0.595; predicted
reversals, N = 73, z = —1.154, p = 0.248). For the Rank-Unframed treat-
ment, we only found differences for predicted reversals (unpredicted reversals,
N =173, z = —0.513, p = 0.608; predicted reversals, N = 73, z = —2.245,
p = 0.025).

Decision Times and Reversals (H2/H6). Figure 4.5 displays the decision
times for reversals and comparable non-reversals for all three treatments
and both task orderings, comparing each type of reversal with the appro-
priate non-reversals. Two-sided WSR tests confirmed that predicted rever-

sals involved longer decision times than comparable non-reversals, both for
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Price/Rank-Choice and for Choice-Price/Rank, for all treatments. For both
ranking treatments, the differences were highly significant (Rank-Framed
Rank-Choice, N = 42, z = 3.551, p < 0.0005; Rank-Framed Choice-Rank,
N = 45, z = 2.743, p = 0.006; Rank-Unframed Rank-Choice, N = 43,
z = 2.614, p = 0.009); Rank-Unframed Choice-Rank, N = 34, z = 3.163,
p = 0.002). This confirms that the decision times effect predicted by our
model, which is independent of the overpricing assumption, is still present
under ordinal (ranking) evaluation tasks. In the case of the BDM2 treat-
ment, the test missed significance for the Price-Choice ordering (N = 64,
z = 1.595, p = 0.111), but the difference was significant for Choice-Price
(N =58, z =3.004, p = 0.003).

For both ranking treatments unpredicted reversals were again signifi-
cantly slower than comparable non-reversals independently of task ordering
(Rank-Framed Rank-Choice, N = 49, z = 2.875, p = 0.004; Rank-Framed
Choice-Rank, N = 45, z = 3.014, p = 0.003; Rank-Unframed Rank-Choice,
N =49, z = 1.930, p = 0.054); Rank-Unframed Choice-Rank, N = 47,
z = 3.656, p < 0.0005). In the BDM2 treatment the decision time differ-
ences were not significant for the Price-Choice ordering (N = 30, z = 1.131,
p = 0.258), but unpredicted reversals were significantly slower for the Choice-
Price ordering (N = 23, z = 1.992, p = 0.046).

Decision times and non-reversals (H3/H7). Treatment BDM2 success-
fully replicated the finding that non-reversals are slower when the $-bet is
chosen than when the P-bet is chosen, as predicted in Hypothesis H3 (WSR
tests; Price-Choice, N = 60, z = 1.984, p = 0.047; Choice-Price, N = 58,
z = 2.609, p = 0.009). However, for ranking treatments we expected no
differences (Hypothesis H7). There is still a significant difference for the
Rank-Choice ordering (Rank-Framed, N = 57, z = 1.835, p = 0.066; Rank-
Unframed, N = 54, z = 1.825, p = 0.068), but there is clearly no significant
difference for the (presumably more appropriate) classification according to
the Choice-Rank ordering (Rank-Framed, N = 55, z = 0.733, p = 0.463;
Rank-Unframed, N = 48, z = 0.385, p = 0.701). Figure 4.6 illustrates these

results.
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Figure 4.5: Average decision time per individual in the choice task, Experiment 2.
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Figure 4.6: Average non-reversal decision time per individual in the choice task,
Experiment 2.

Note: Choices classified as non-reversals according to the indicated task ordering. Error

bars depict the 95 percent confidence interval.

cantly quicker than in the other two treatments. The difference is substantial:
the median decision time over all choices was 13.41 s in BDM2, 12.52 s in
Rank-Framed, and only 9.61 s in Rank-Unframed. This difference is remark-
able, because the choice phases in which the decision times were measured
were completely identical across treatments; the differences across treatments
concerned only the evaluation phases. We will discuss this observation in de-
tail below.

A Kruskal-Wallis test confirmed that the decision times were significantly
different across treatments (y? = 35.545, df= 2, p < 0.0001). Two-sided
MWU tests with Holm-Bonferroni correction to account for multiple com-
parisons showed that decisions were faster in the Rank-Unframed treatment
than in both of the other treatments (BDM2, z = —5.722, p < 0.0001;
Rank-Framed, z = —4.225, p < 0.0001).13

13The difference between decision times in Treatments Rank-Framed and BDM2 missed
significance, z = —1.596, p = 0.111.
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4.4.5 Regression Analysis for Experiment 2

As for Experiment 1, we conducted a random effects panel regression anal-
ysis on the log of decision times from Experiment 2. The objective was to
confirm and clarify our results while controlling for natural individual and
lottery-pair characteristics; specifically, we included the same controls as in
Experiment 1.} Table 4.4 contains the main results of all treatments. For
each treatment, in the first regression reversals are classified as such according
to the Price/Rank-Choice task ordering, while in the second one the Choice-
Price/Rank is used. We present a single regression for each treatment and
task ordering, but the results are robust with respect to the control variables.

Predicted reversals vs. non-reversals. The reversal dummies were highly
significant in all treatments and task orderings, except for the “noisiest”
Price-Choice in Treatment BDM2. This indicates that, as in Experiment
1, predicted reversals took longer than comparable non-reversals, confirming
Hypothesis H2a.

Unpredicted reversals vs. non-reversals. Hypothesis H2b states that un-
predicted reversals should take longer than non-reversals where the $-bet was
chosen. The difference corresponds to Sreversai + B$—Choicex Reversal; Which is
indeed highly significant and positive in all four regressions for the rank-
ing treatments. The postestimation tests are not significant for the BDM2
treatment.

Comparison of non-reversals. The $-choice dummy is significant and
positive for Treatment BDM2. That is, as in Experiment 1, non-reversals
where the $-bet was chosen took longer than non-reversals where the P-
bet was chosen in this treatment (Hypothesis H3). As stated in Hypothesis
H7, we expected this effect to disappear for the purely ordinal, unframed
treatment Rank-Unframed. Indeed, the dummy is not significant in any
of the regressions for this treatment. The prediction is less clear for the

“intermediate” treatment Rank-Framed, where the evaluation task was also

4 For the two ranking treatments, StatedDiff-1 and StatedDiff-3 refer to the difference
in stated ranks between the two lotteries within a pair in phases 1 and 3, respectively.
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Table 4.4: Random effects panel regressions for decision times, Experiment 2.

Treatment BDM2 RankFramed RankUnframed
Order pP-C C-P R-C C-R R-C C-R
ReversalPC 0.049 0.135™ 0.108**
(0.031) (0.042) (0.044)
ReversalCP 0.100** 0.155* 0.199**
(0.032) (0.043) (0.051)
$-Choice 0.072**  0.098"* 0.073*  0.062* 0.030 -0.006
(0.033)  (0.033) (0.033) (0.033) (0.036) (0.035)
$-Choice 0.026 0.014 0.014
xReversalPC (0.069) (0.062) (0.061)
$-Choice 0.011 0.039 0.008
x Reversal CP (0.077) (0.064) (0.067)
DiffEV -0.022**  -0.020*  -0.026™ -0.025** -0.013 -0.008
(0.031)  (0.011)  (0.010) (0.010) (0.010)  (0.010)
Ratio 0.034** 0.033** 0.038™* 0.038* 0.044™*  0.043***

(0.011)  (0.011)  (0.010)  (0.010)  (0.009)  (0.009)
StatedDiff-1  -0.005  -0.004  -0.011  -0.014  -0.024** -0.026***

(0.005)  (0.005)  (0.010) (0.010)  (0.010)  (0.010)
StatedDiff-3  -0.003  -0.005  -0.046*" -0.041** -0.045*** -0.042"**

(0.005)  (0.005)  (0.010) (0.010)  (0.011)  (0.011)

Round -0.007**  -0.007*** -0.008* -0.007*** -0.003 -0.003
(0.002)  (0.002) (0.002) (0.002) (0.002) (0.002)
Female -0.190*  -0.181** -0.238"* -0.237** -0.217* -0.212**
(0.089)  (0.087)  (0.077)  (0.077)  (0.087)  (0.085)
Position 0.004 0.008 0.008 0.004 0.030 0.022
(0.023)  (0.023) (0.022) (0.022) (0.021) (0.021)
Color 0.108 0.112 0.088 0.085 -0.034 -0.040
(0.087)  (0.086) (0.077)  (0.077)  (0.085)  (0.083)
Constant 2.624*  2.595"*  2.649"**  2.645 2.391**  2.388***
(0.095)  (0.094) (0.087) (0.087)  (0.090)  (0.088)
Nr. Obs. 1242 1244 1314 1314 1314 1314
Nr. Groups 69 69 73 73 73 73
R2-Overall 0.066 0.069 0.128 0.140 0.104 0.122
Wald test 0.000 0.000 0.000 0.000 0.000 0.000
Postestimation tests
Reversal 0.075 0.111 0.149**  0.194™* 0.121**  0.207***

+($-ChxRev) (0.060)  (0.068) (0.043)  (0.044) (0.031)  (0.041)

Note: All regressions are random-effects panel estimations, with log decision time as de-
pendent variable. Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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ordinal but there was an indirect framing in terms of prices.!> For this
treatment, the $-choice was significantly positive, but e.g. only at the 10%
level for the Choice-Rank ordering.

Controls: Lotteries. As in Experiment 1, the ratio of the two higher
amounts to win in the $-bet and the P-bet (Ratio) had a significant positive
effect throughout. Likewise, the absolute difference in expected values of
the P-bet and the $-bet (DiffEV) had a weakly significant negative effect,
but not in the Rank-Unframed treatment. The absolute difference in the
prices/ranks stated for the lotteries in phases one and three (StatedDiff-1,
StatedDiff-3) was significant for Rank-Unframed but not for BDM2 (and only
the second measure was significant for Rank-Framed).

Other controls. As in Experiment 1, we controlled for learning and fa-
miliarity effects by including the round in which the choice was made as a
regressor. Also as in Experiment 1, female participants were significantly
quicker in all treatments and task orderings. The onscreen position (Posi-
tion) of the P-bet and the $-bet and the colors used in the pie-chart (Color)

had, as expected, no effect.

4.4.6 Discussion of Experiment 2

The analysis of the data confirms our predictions, strengthening our inter-
pretation that preference reversals arise from the combination of noisy evalu-
ations and an overpricing phenomenon. The almost-complete disappearance
of predicted reversals in the ranking treatments (especially when ordinally
framed) confirms that the overpricing phenomenon appears due to the cardi-
nal, rating-based frame used in standard evaluation tasks as those employed
in Experiment 1. The fact that reversals are still associated with longer
decision times (a prediction our model derives from noisy evaluations) even
though the overpricing process has been impaired is further evidence that
both noisy evaluations and the overpricing phenomenon need to be taken

into account as different ingredients in order to model preference reversals.

15We consider the framing “indirect” because, contrary to the tasks in Experiment 1 or
Treatment BDM2, participants did not actually write down prices.
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An important observation is that decision times in Treatment Rank-
Unframed were significantly lower than those in other treatments. To under-
stand this effect, recall our dual-process interpretation as sketched in Section
4.2.4. In this treatment, we removed all references to prices, and it is easy to
argue that the decision process which usually causes overpricing was simply
not activated at all. Hence, in the choice phase there was no process con-
flict, and no additional time was spent in conflict resolution. It is especially
interesting to observe that in the Treatment Rank-Framed, where the evalu-
ation task was also ordinal but the frame made a reference to prices, decision
times were closer to those of the rating treatments, even though predicted
reversals were also greatly reduced. Again, the interpretation is simple. The
price frame generally activated the process behind overpricing, but the fact
that the task was ultimately a purely ordinal one made it less likely that this
process actually shaped the decision in the evaluation tasks, hence reducing
reversals. However, since the process had been activated, it needed to be
inhibited in the choice phase, causing longer decision times.

Our results are consistent with evidence from Bateman, Day, Loomes,
and Sugden (2007). These authors also observed a reduction in predicted
preference reversal rates in an experiment where lotteries were ranked within
sets which also contained sure amounts. Their ranking task is not directly
comparable to ours because $-bets and P-bets were ranked separately, i.e.
within different sets, and the ranks of P-bets relative to $-bets were inferred
indirectly. Oliver (2013) used a similar method for the measurement of pref-
erences in the health domain (life expectancy).

Our main object of study have been predicted preference reversals, since
they are empirically more relevant and the compatibility hypothesis points
to an overpricing phenomenon as a reason for the predominance of these
reversals, while the origin of unpredicted ones might be just noisy evalua-
tions. Nonetheless, it is interesting to observe that the number and rate of
unpredicted reversals increased in the ranking treatments with respect to the
control (BDM2) treatment. We hypothesize that, when the cues on which
the overpricing process acts are removed, attention is diverted to probabili-

ties instead. Following the compatibility hypothesis, this would result in an
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over-evaluation of P-bets, for which a high probability is salient. However,
this process is weaker than the one causing overpricing of $-bets with pricing
frames, simply because monetary rewards are a more immediately accessible
concept than probabilities. Thus, in a standard preference-reversal study,
this second, probability-based process is overshadowed by the overpricing
of $-bets. Our evidence in this respect is consistent with Cubitt, Munro,
and Starmer (2004), where the rate of unpredicted reversals increased when
subjects were asked for “probabilistic valuations” instead of prices, trying to
induce a probability anchor and shift the predictions of the compatibility hy-
pothesis to unpredicted, rather than predicted reversals. However, the rates
of predicted reversals remained relatively high, suggesting that such valuation
tasks, being still cardinal, do not completely remove the salience of mone-
tary outcomes.'® Casey (1991, 1994) observed a higher rate of unpredicted
reversals compared to predicted ones using very high payoffs and maximum
buying prices (rather than minimum selling prices). Again, however, pre-
dicted reversal rates remained comparatively high. Casey (1994) argues that
high stakes might induce buyers to anchor on the smallest monetary outcome
of a lottery, adjusting the valuation upwards on the basis of probabilities, and
hence resulting in an overpricing of P-bets. In our terms, the setting of Casey
(1991, 1994) might correspond to a combination of elements enhancing the
second process mentioned above. If such a second process is assumed, the in-
crease of unpredicted reversals in our ranking treatments, in Cubitt, Munro,
and Starmer (2004), and in Casey (1991, 1994) can be easily explained within
our model.

Last, we observe order effects similar to those already seen in Experiment
1, again supporting our view that post-choice elicitation tasks carry less
noise than pre-choice analogues, possibly due to “preference sharpening” or

reappraisal in the sense of self-perception theory.

16Participants were asked for the probability p making them indifferent between a given
lottery and receiving a fixed, high monetary outcome X with probability p. Hence mone-
tary outcomes remained an important part of the frame.
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4.5 General Discussion and Conclusion

We propose a simple, parsimonious model which predicts both preference
reversals and a clear pattern of decision times in choices among lotteries.
We conducted two experiments which confirm the predictions derived from
the model. The consideration of decision times allows us to put our model
to a more stringent test than if we had relied exclusively on choice data.
At the same time, the insights provided by the analysis of decision times
allow us to deepen our understanding of the actual decision processes behind
preference reversals. Our model, which is based on insights from the previous
literature, postulates that reversals arise due to the interaction of noise in the
evaluation phases and a psychological process (or set thereof) which causes an
overpricing phenomenon of lotteries with a salient monetary outcome. In our
second experiment, we have been able to effectively shut down that process,
resulting in the practical elimination of predicted preference reversals and a
notable reduction of decision times.

Our experimental design also allowed us to evaluate different experimen-
tal possibilities with regard to the amount of noise they induce. By using two
evaluation phases, one pre-choice and one post-choice, we are able to con-
clude that post-choice evaluation tasks are in general more appropriate for
preference elicitation, in accordance with evidence on preference reappraisal
from psychology. By using different evaluation tasks across treatments, we
conclude that tasks based on the BDM procedure might add additional, un-
wanted noise and other tasks, as e.g. the Ordinal Payment Method, might
be more accurate. Finally, if one is interested in preferences rather than
certainty equivalents, our second experiment shows that the most accurate
evaluation method (in the sense of inducing fewer reversals) is to rely on
purely ordinal, ranking-based tasks.

Our research investigated (theoretically and experimentally) the mecha-
nisms and processes behind the preference reversal phenomenon. Previous
research (see e.g. Cubitt, Munro, and Starmer, 2004) has pointed out that a
combination of psychological mechanisms might be the simplest explanation

of the phenomenon. Given the fundamental importance of preference (and
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consumer demand) elicitation methods for both decision theory and applied
economics, and the amount of attention dedicated to the preference rever-
sal phenomenon in the last half century, we believe that fleshing out these
mechanisms is an important step. At the same time, we show that a sim-
ple parsimonious model can account for received evidence and provide new,
testable hypotheses. By using process data (decision times), we are able to
show that our model is more than an as if construction and, in spite of its
simplicity, is able to capture the essential features of the actual mechanisms

behind the phenomenon.
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Appendix 4.A: Proofs

Throughout the appendix, let A( = (p — (s + K. Under Assumption 3, (p
and (g are i.i.d. and unimodal, implying that A( is symmetrically distributed
around 0 and unimodal (cf. Purkayastha, 1998, Theorem 2.1).

Proof of Proposition 1. (i) Since K > 0 by Assumption 3, Pr(A¢ < —K —
s) < Pr(A¢ < K — s) for all s € [0, 00[ and the conclusion follows from the

following computations.

Pr(CEs > CEp,C(P,$) = P)

_ /oo Pr(CEs > CEplup—us = $)h(s)ds — /w Pr(AC < K — s)h(s)ds
0 0

Pr(CEp > CFEg,C(P,$) =9) / Pr(CEp > CFEg|lug — up = s)h(s)ds
0

- /oo Pr(A¢ > K + s)h(s)ds = /OO Pr(A¢ < —K — s)h(s)ds.

ii) Note that Pr(CEs > CEple(P,$) = P) = PACEZCOEPADIZR & opq
(i) 5 : ,

Pr(up>ug)
r ,c(P,$)=$ .
Pr(CEp > CEslc(P,$) = §) = & (CEgiffjugf =9 Since Pr(up > ug) =
Pr(ug > up), the conclusion follows from (i). O

The next lemma is used in the proof of Proposition 2.
Lemma A.1. Under Assumption 1, the following hold.
(i) Pr(CEg > CEp|0 < up —ug < d) > Pr(CEs > CEp|lup — ug > 9).
(i1) Pr(CEp > CFEg|0 < ug —up < ) > Pr(CEp > CEglug — up > 9).

Proof. We prove part (i). The proof of part (ii) is analogous. We have
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Pr(CEs > CEplup —ug = s) = Pr(A{ < K — s) and

Pr(CEs > CEp|0 < up — ug < 0)
1 5
- Pr(CE Eplup — ug =
Pr(0 < up—ug <) /0 r(CEs > CEplup — ug = s)h(s)ds
S 1
Pr(0<up—ug<9§

5
) / Pr(A¢ < K —9)h(s)ds = Pr(A¢ < K —9).
0
Similarly Pr(CEs > CEplup —ug = s) = Pr(A( < K — s) and

Pr(CEs > CEplup — ug > 0)

1 o]
- Pr(CE E —ug =
Pr(up—u$>5>/5 r(CEs > CEplup — us = 5)h(s)ds
1 00
Pr(A K — = Pr(A K —
< Prlup—w0) ), [rAC< K —0)hls)ds = Pr(A¢ < K =9)

and the conclusion follows. O

Proof of Proposition 2. (i) To shorten notation let Ay = Pr(CEg > CEp|0 <
up —ug < 0), Ay = Pr(CEg > CEplup —ug > 9), P° = Pr(0 < up — ug <
0|0 < up —ug), and P = Pr(CEg > CEp|lup > ug).

With these definitions, P = AgP°+A;(1—P°). We obtain E[DT¢|CEg >
CEp,c(P,$) = P] = 3[AgP Ty + Ay(1 — PP)Ty)], and E[DTo|CEp >
CEs,c(P,8) = P] = 25[(1 = Ag)P’Ty + (1 — Ay)(1 — P°)Tg]. A simple

calculation shows that

E[DT¢|CEs > CEp,c(P,$) = P] > E[DT¢|CEp > CEg, ¢(P,$) = P]
& P°Ty[Ag — P] > (1 — PO)Tg[P — A4]

As P = AgP° + Ay(1 — P?%), we obtain Ag — P = (1 — P°)(Ag — Ay)
and P — Ay = P°(Ag — Ay). Hence E[DTp|CEy > CEp,c(P,$) = P| >
E[DT¢|CEp > CEg,¢(P,$) = P] holds if and only if Ty(Ay — Ay) >
Tp(Ag — Ay). By Lemma A.1(i), Ag > A; and hence the inequality holds if
and only if Ty > Tg, which is true by Assumption 4.

(ii) is analogous to (i), using part (ii) of Lemma A.1 instead of (i). O
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The next lemma is used in the proof of Proposition 3.

Lemma A.2. Pr(0 < up —ug < 3|0 < up —ug) = Pr(0 < ug —up < 4|0 <

ug — up).

Proof. First note that since up and ug are i.i.d, up — ug and ug — up are

identically distributed and Pr(ug —up > 0) = Pr(ug—up < 0) = 1/2. Then

Pr(0<ug—up<d) _ Pr(0<up—ug<d) __
Pr(ug>up) T Pr(up>ug) - PT(O <

up —ug < 0|0 < up — ug). O

Pr(0 <ug—up < 9|0 < ug—up) =

Proof of Proposition 3. To shorten notation let Ay = Pr(CEs > CEp|0 <
ug—up < 0), Ay = Pr(CEs > CEplug—up > 0), Ay = Pr(CEp > CEg|0 <
up—ug < 9), Ay = Pr(CEp > CEglup—ug > ), P, = Pr(CEs > CEp|ug >
up), P, = Pr(CEp > CFEglup > ug). Let also P° be the probability given in
Lemma A.2.

With these definitions, we have that P, = AgP° + A(1 — P°) and P, =
Ay PP 4 Ag(1 — P°).

We obtain E[DTc|CEs > CEp,c(P,8) = 8] = 5[AcP Ty + Ay(1 -
P*)Tg] and E[DTc|CEp > CEs, o(P,$) = P| = £ [AgP T+ Ay(1—PY)T).
This yields.

E[DTo|CEs > CEp,¢(P,$) = $| > E[DTo|CEp > CEs, e(P,$) = P]
p=— P6(1 — P(S)TH[AoAg — AlAQ] > (1 — Pé)PéTE[AoAg — AlAg]

Since Ty > Ty by Assumption 4, the claim holds if A;Ay < AgAjs. The rest
of the proof is devoted to establish this fact. For this, we rely on ideas taken
from Wijsman (1985).
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First, note that

1
Pr(0<ug—up <4
1

A= Pr(A¢C < K
1 Pr(u$—up>6)/5 r(A¢ < K + s)h(s)ds,

AOI

) /05 Pr(AC < K + s)h(s)ds,

1 5
Ay = Pr(A¢ < —K d
= B0 < PR /0 r(A¢ < + s)h(s)ds, an

1 o0
Az ~Prlup —us > 0) /6 Pr(A¢ < —K + s)h(s)ds.

Now let fi(s) :== Pr(A¢ < K +s), fa(s) = Pr(A( < —K +s),

) — {h(S) s elocl o {h(s) if 5 € [0, 0],

0 otherwise, 0 otherwise.

As ug and up are i.id Pr(0 < ug —up < 0) = Pr(0 < up —ug < §) and
Pr(ug —up > 6) = Pr(up — ug > 9) and hence showing that A Ay < AgAs

boils down to showing that

/fl $)g1(s /f2 $)ga2(s d5</ f2(s)g1(s /fl $)ga(s

To see that this is true note that

2 ( | 5ais [~ poweis- [ penas [ fl(S)gz(S)dS)
- [ [ 6 sy

where F'(z,y) = fi(z) fa(y)—fi(y) fo(z) and G(z,y) = 91(2)92(y) —91(y) g2().
Further,

(fl) (s) = (K 4+ s)Pr(A( < —K+5s) — Pr(A( < K+ s)q(—K + s)
fa (Pr(A¢ < —K +5))? ’

where ¢ is the density of A{. Then (—;) (s) < 0 since 0 < ¢(K +s) <
¢(—K + s) and Pr(A¢ < —K +s) < Pr(A¢ < K + s) by Assumptions 3
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and 3.1 Thus % is strictly decreasing and hence F'(x,y) > 0 if z < y and
F(z,y) < 0if y < x (of course, F(x,y) = 0 if z = y). By construction
G(x,y) > 01if (z,y) €], 00[Xx[0,0], G(z,y) < 0 if (x,y) € [0,]x]d, oo[, and
G(z,y) = 0 otherwise. Hence F'(z,y)G(z,y) < 0 for all (z,y) € Ry xR, and
F(z,y)G(x,y) < 0 for all (x,y) €]9,00[x[0,6] U [0,6]x]d, co[. This implies
that fooo fooo F(x,y)G(x,y)dxdy < 0 which proves the claim. O

1"The fact that ¢(K +5s) < ¢(—K +5) follows by unimodality. If s > K then q(—K +s)
q(K + s) since ¢ is nonincreasing in the positive domain. If s < K then ¢(—K + s)
q(—K — s) = q(K + s) since ¢ is nondecreasing in the negative domain and symmetric.

<
>
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Appendix 4.B: Lotteries

Table 4.5: The lottery pairs.

Lottery P-bet $-bet
pair  Prob Outc EV  StdDev Prob Outc EV  StdDev

1 0.44 7 4.20 3.536 0.36 7 3.80 3.536
2 0.40 8 4.40 4.243 0.40 7 4.00 3.536
3 0.82 11 9.38 6.364 0.10 48  6.60  32.527
4 0.94 9 8.58 4.950 0.20 30 7.60 19.799
> 0.80 11 9.20 6.364 0.20 24 640 15.556
6 0.90 10 9.20 5.657 0.30 22 8.00 14.142
7
8
9

0.60 15 9.80 9.192 0.21 23 6.41 14.849
0.80 10 8.40 5.656 0.40 15 7.20 9.192
0.89 6 5.56 2.828 0.11 36 5.74  24.042
10 0.81 6 524 2.828 0.19 18  5.04 11.314
11 0.97 12 11.70 7.071 0.31 34 11.92  22.627

19 0.60 6.20 4.950 0.45 17 875 10.607
20 0.60 1 6.80 5.657 0.40 16 7.60 9.899

Note: All lotteries pay an amount of €2 with the corresponding converse probabilities.
The table shows for each P-bet and $-bet within a pair the probability with which the

outcome occurs, the expected value and the standard deviation. Lottery pairs 1 and 2,

2
12 0.94 8§ T7.64 4.242 0.39 16  7.46 9.899
13 0.82 9 774 4.243 0.50 13 7.50 7.778
14 0.87 7 6.35 3.536 0.50 11 6.50 6.364
15 0.68 7 540 2.828 0.20 25 6.60 16.971
16 0.79 8 6.74 2.828 0.30 24 8.60 15.556
17 0.80 6 5.20 2.828 0.40 18 840 11.314
18 0.90 6 5.60 2.828 0.30 18  6.80 11.314

9

0

containing strictly dominated bets, were only used in Experiment 1 as a basic rationality
check.
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Appendix 4.C: Screenshots

(a) Pricing phase (Experiment 1)

(b) Ranking phase (Experiment 2)

(¢) Choice phase (Experiments 1 and 2)

Figure 4.7: Screen displays.
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