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Abstract

This thesis is concerned with the sequential detection of gradual changes in the lo-
cation of a stochastic process in two different settings: In Chapter 1 we consider a
general stochastic process with a linear drift term which exhibits a possible gradual
(non-linear) perturbation at some unknown time point. In Chapter 2 we approach
the question of how to detect a gradual change in the location of an unobservable
(renewal) process based on observations of the corresponding counting process. We
suggest to base the inference on the inverse of the counting process, which behaves
similarly as the underlying process itself. In both settings, we introduce detectors
and stopping times which follow a common approach on detecting gradual changes
(see e.g. Jarušková (1998) and Hušková (1998a)): Essentially the idea is to introduce
a weight function in order to put less weight on early observations - where a possible
change has either not occurred (yet) or is still quite small - and heavy weight on
late observations - where a possible change is at its current maximum. This idea is
further supported by a (quasi) maximum likelihood approach which suggests to use
the assumed type of gradual change as a weighting. Via asymptotic results under
the null hypothesis we obtain critical values for the suggested procedures. Under
the alternative we show the consistency of the procedures as well as the asymptotic
normality of the (standardized) delay times, i.e. the time lag between a change point
and its detection.

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der sequentiellen Aufdeckung gradueller Än-
derungen im Erwartungswert eines stochastischen Prozesses in zwei unterschiedlichen
Situationen: In Kapitel 1 untersuchen wir einen allgemeinen stochastischen Prozess
mit einem linearen Drift, der zu einem unbekannten Zeitpunkt eine graduelle (nicht-
lineare) Störung aufweist. In Kapitel 2 beschäftigen wir uns mit der Frage, wie man
eine graduelle Änderung im Erwartungswert eines unbeobachtbaren (Erneuerungs-)
Prozesses basierend auf Beobachtungen des zugehörigen Zählprozesses aufdecken
kann. Wir verfolgen den Ansatz, die Untersuchungen mit Hilfe des zum Zählprozess
inversen Prozesses durchzuführen, welcher sich ähnlich verhält wie der ursprüngliche
Prozess selbst. In beiden Szenarien stellen wir Detektoren und Stoppzeiten vor,
die einem allgemein üblichen Ansatz zur Aufdeckung gradueller Änderungen folgen
(siehe zum Beispiel Jarušková (1998) und Hušková (1998a)): Die wesentliche Idee
besteht darin eine Gewichtsfunktion einzuführen, mittels derer wir wenig Gewicht
auf frühe Beobachtungen - in denen eine mögliche Änderung entweder (noch) nicht
eingetreten ist oder bisher nur sehr klein ist - und stärkeres Gewicht auf die neuen
Beobachtungen - wo eine mögliche Änderung zum aktuellen Zeitpunkt maximal ist
- legen. Diese Idee wird zudem durch einen (quasi) Maximum Likelihood Ansatz
gestützt, welcher empfiehlt, die erwartete Art der Änderung als Gewichtung zu
verwenden. Mittels asymptotischer Resultate unter der Nullhypothese können wir



kritische Werte für die vorgeschlagenen Prozeduren herleiten. Unter der Alterna-
tive zeigen wir sowohl die Konsistenz der Testverfahren als auch die asymptotische
Normalität der (standardisierten) Verzögerungszeiten, sprich der Zeit zwischen dem
Auftreten und der Aufdeckung einer Änderung.
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Conventions

The following notations will be used frequently:

For any x ∈ R let

x+ := max{x, 0},
log(x) := ln

(
max{x, exp(1)}

)
,

sgn(x) :=


1 if x > 0,

−1 if x < 0,

0 if x = 0,

and [x] be the integer part of x.

For any two real-valued sequences {xn}n∈N and {yn}n∈N we denote

xn ∼ yn :⇔ xn/yn → 1 as n→∞,
xn ' yn :⇔ ∃ c > 0 : xn/yn → c as n→∞.

For any two sequences {Xn}n∈N and {Yn}n∈N of real-valued random variables we
denote

Xn
a.s.∼ Yn :⇔ Xn/Yn

a.s.−→ 1 as n→∞,

Xn
a.s.' Yn :⇔ ∃ c > 0 : Xn/Yn

a.s.−→ c as n→∞.

Further, let min ∅ :=∞ =: inf ∅.

By ϕ and φ we denote the density and distribution functions of the standard
normal distribution.





Introduction

A lot of decisions made nowadays (e.g. in finance, insurance or medicine) rely on
predictions made by statistical methods. Often, the underlying models depend on
parameters which are either known or estimated from past experience and assumed
to be constant over time. The aim of change point analysis is essentially to survey
the stability of model parameters in a given time series and, if necessary, to reveal
possible changes in those parameters.

The origins of change point analysis date back to Page (1954) who introduced a
control chart for the purpose of quality control. Since then, change point analysis
has developed into a wide research field with applications wherever statistical tech-
niques rely on the stability of certain patterns over time.

Probably the most studied model is a location model with a possible (single) sud-
den jump in the mean: Given n independent random variables X1, . . . , Xn with
means µi, such that Xi−µi are identically distributed, one wishes to test the null
hypotheses

H0 : µ1 = . . . = µn

against the alternative

H1 : µ1 = . . . = µk∗−1 6= µk∗ = . . . = µn,

where the change point k∗ and µ1 6= µk∗ are unknown.

Many results on this problem rely on almost sure approximations of the partial
sums

{∑k
i=1Xi − µi | k ∈ N} by a Wiener process. An invariance principle of this

type was first proposed by Strassen (1964), who constructed a Wiener process which
approximates the partial sums by the convergence rate of the law of the iterated
logarithm under the assumption of E|X1|2 <∞. His work paved the way for other
strong approximations, resulting in the seminal KMT-construction (see Komlós et al.
(1975), (1976)), which gives us the best possible rate of such a strong approximation
under the assumptions of E |Xi|1/κ <∞ for some 0 < κ < 1/2. A general overview
on this topic can be found e.g. in Csörgő and Révész (1981).

The approximation by a Wiener process motivates a derivation of a test statistic
via a maximum likelihood approach, where (for a moment) we assume Xi to be

1



2 INTRODUCTION

independently N(µi, σ
2)−distributed for some σ2 > 0. Denoting ϕ(x) as the

density of the standard normal distribution one rejects the null hypothesis if

ln

(
supµ

∏k∗

i=1 ϕ(Xi − µ) supµ̃ 6=µ
∏n
j=k∗+1 ϕ(Xj − µ̃)

supµ
∏n
i=1 ϕ(Xi − µ)

)

is large. Since k∗ is unknown the expression is further maximized over all possible
change points (i.e. all k = 1, . . . , n− 1), which yields a prominent cumulative sum
(CUSUM) statistic

max
k=1,...,n−1

∑k
i=1

(
Xi −

∑n
j=1Xj/n

)√
(k(n− k))/n

.

Many results have been published on this test statistic and various modifications
have been proposed. For a general overview we refer to Csörgő and Horváth (1997)
and Aue and Horváth (2013).

In many applications, however, not a sudden but a gradual change, i.e. a slowly
increasing or decreasing change, in the location of a process seems to be the far more
realistic scenario. For instance (if no obvious shock has occurred) meteorological
parameters, such as global temperature, elevation of lakes or average precipitation,
are more likely to change slowly than abruptly. Still, testing procedures that are
designed to detect gradual changes in the location of a process have gotten less at-
tention in the literature. Jarušková (1998) and Hušková (1998a), (1998b) started to
study models with linearly increasing changes at k∗, i.e. (in the latter case)

Xi = εi + δn

(
i− k∗

n

)γ
+

, i = 1, . . . , n,

where γ = 1, δn 6= 0 and εi ∼ (µ, σ2) being independently, identically distributed.
A generalization of this model, allowing for a slope parameter γ > 0 was further
analyzed by Hušková (1999), Hušková and Steinebach (2000), under weak depen-
dence by Steinebach (2000) and via a permutation approach by Kirch and Steinebach
(2006). Arguing as in the case of an abrupt change (via a quasi maximum likelihood
approach) one rejects the null hypothesis of “no change” if

max
k=1,...,n−1

ln

(
supµ

∏k
i=1 ϕ(Xi − µ) supδn 6=0

∏n
j=k+1 ϕ(Xj − µ− δn((j − k∗)/n)γ)

supµ
∏n
i=1 ϕ(Xi − µ)

)
is large, which leads to the following weighting of the observations in the test statistic:

max
k=1,...,n−1

∑n
i=1((i− k)/n)γ+

(
Xi −

∑n
j=1Xj/n

)√∑n
i=1

(
((i− k)/n)γ+ −

(∑n
j=1((j − k)/n)γ+

)
/n
)2 .

Heuristically speaking, one puts heavier weights on later observations - where a pos-
sible change will be currently maximal - in order to detect a change faster than by
putting the same weight on every observation.
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All of the procedures mentioned so far evaluate a given time series retrospectively, i.e.
after the n-th observation, having the disadvantage that a perturbed process might
have kept on running for long before the disorder is detected. Chu et al. (1996), on
the other hand, led the way to a sequential approach in change point analysis: The
idea is to decide with each newly made observation whether the null hypothesis of no
change is still justified or whether a significant change in the structure (i.e. in their
case in the coefficients of a linear regression model) has occurred. The idea inspired
further research in this area, among many others Aue (2003), Horváth et al. (2004),
Berkes et al. (2004), Kühn (2008) and Mihalache (2012).

Sequential (or monitoring) procedures can be subdivided into two classes: closed-end
and open-end procedures. For closed-end procedures one prescribes a fixed trunca-
tion point after which the monitoring of the process terminates even if no change
has been detected until then. Typically, the test statistic depends on the trunca-
tion point, hence the length of the monitoring period has to be known in advance.
Open-end procedures, on the contrary, have no fixed sample sizes, which has the
benefit that one does not have to decide in advance for how long the process shall
be monitored.

Chapter 1 of this thesis resumes the work by Steinebach and Timmermann (2011),
where a closed-end procedure for a (generalized) sequential version of the gradual
change model from above is introduced. In this thesis, we derive an open-end proce-
dure for a general stochastic process with a possible gradual change in the location
parameter and analyze its properties under the null hypothesis and under the alter-
native. Chapter 2 deals with structural breaks in counting processes. We investigate
a scenario where a gradual change appears in the location of the underlying (e.g.
partial sum) process, which is typically unobservable. We introduce a test statistic
based on the inverse of the counting process, which behaves similarly as the under-
lying process itself, establish closed-end and open-end monitoring procedures in this
setting and study their properties.
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Chapter 1

Monitoring general gradual changes

In this chapter we consider a general stochastic process with a linear trend which
exhibits a possible perturbation at some unknown time point, where we also allow
for a possible change in the scale parameter. We aim to keep the setting as general as
possible, focusing on the required invariance principles, yet, throughout this chapter
one should always keep in mind the standard example of

Z(k) =
k∑
i=1

(
εi + µ+ δm((i− T ∗)/m)γ+

)
, k ∈ N

where µ, γ, δm ∈ R, with γ > 0, δm 6= 0, T ∗ > m and {εi | i ∈ N} being indepen-
dently, identically distributed random variables, which is a sequential version of the
model investigated by Hušková (1998a) (see Example 1.1.1 for the precise setting).

This chapter is organized as follows: The testing problem is introduced in detail in
Section 1.1 and suitable detectors and stopping times, designed to detect the respec-
tive alternatives, are suggested in Section 1.2. Section 1.3 deals with the asymptotic
behavior of the stopping times under the null hypothesis. The results can be used
to adjust the stopping times such that the procedures attain a prescribed α−level
asymptotically. In the two sections following upon, we study the behavior of the
stopping times under the assumption that a change took place. In Section 1.4 we
show the consistency of the suggested procedures and develop a first approach on
approximating the delay time, i.e. the time lag between the change point and its
detection. Under stronger assumptions (namely in case of an “early” change point)
one can also show asymptotic normality of standardized delay times, which is done
in Section 1.5. Finally, the finite sample behavior of the monitoring procedures is
illustrated in a small simulation study given in Section 1.6 and some minor calcula-
tions are postponed to Section 1.7.

Our detectors will make use of the so called in-control parameters, i.e. the param-
eters which are constant ( “in control” ) under the null hypothesis but not constant
( “out of control” ) under the alternative. Typically, the in-control parameters are
unknown and have to be estimated, so each section is again divided into a subsection
which contains the results for known in-control parameters and another subsection,
where the results are transferred to the case of estimated in-control parameters.

5



6 CHAPTER 1. MONITORING GENERAL GRADUAL CHANGES

1.1 Setting of the problem

Assume, we sequentially observe a process

Z(t) =

{
bY (t) + at, 0 ≤ t ≤ T ∗,
bY (T ∗) + b∗Y ∗(t− T ∗) + at+ ∆m,γ(t− T ∗), T ∗ < t <∞,

(1.1.1)

at integer time points (i.e. we monitor Z(0), Z(1), Z(2), . . . ) where {Y (t) | t ≥
0} and {Y ∗(t) | t ≥ 0} are two stochastic processes for which the following in-
variance principles shall hold true: There are Wiener processes {W (t) | t ≥ 0} and
{W ∗(t) | t ≥ 0} and some 0 < κ < 1/2 such that

sup
0<t<T ∗

|Y (t)−W (t)|
tκ

= OP (1), (1.1.2)

sup
0<t<∞

|Y ∗(t)−W ∗(t)|
(t+ T ∗)κ

= OP (1). (1.1.3)

For the sake of generality, we only assume a weak approximation of Y (t) and
Y ∗(t). However, in many cases, where such weak approximations are known, they
were in fact deduced from strong approximations.

Further, let a, b, b∗ ∈ R where b, b∗ > 0. The “change” ∆m,γ(t − T ∗) shall
be a strictly in- or decreasing, deterministic function in t ≥ T ∗, possibly relying on
further parameters (indicated by γ) and on the length m of a so called “training
period”, i.e. an observation period during which we know that no change occurs.
The assumption of such a training period is known as “non-contamination assump-
tion” and formally states that m < T ∗, for all m ∈ N. All of the asymptotic
results presented in this thesis rely on m→∞. Moreover, for the sake of simplicity,
we assume Y (0) = Y ∗(0) = 0 a.s. and ∆m,γ(t− T ∗) = 0 for t ≤ T ∗.

We are interested in testing the null hypothesis

H0 : T ∗ =∞ “no change”

against either one of the following alternatives

H+
1 : T ∗ <∞, ∆ > 0 “one-sided, positive change”,

H−1 : T ∗ <∞, ∆ < 0 “one-sided, negative change”,
H1 : T ∗ <∞, ∆ 6= 0 “two-sided change”,

where by ∆ > 0 (< 0, 6= 0) we mean ∆m,γ(t− T ∗) > 0 (< 0, 6= 0) for all t > T ∗.

In the following examples we describe two processes {Z(t) | t ≥ 0} which fit into
the above framework. Further examples can be found e.g. following Horváth and
Steinebach (2000) and Steinebach (2000).
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Example 1.1.1. Assume we observe a process

Xi = εi + µ+ δm

(
i− T ∗

m

)γ
+

,

where µ, γ, δm ∈ R, with γ > 0, δm 6= 0 and {εi | i ∈ N} being independently,
identically distributed random variables with E(εi) = 0, Var(εi) = σ2 > 0 and
E|εi|1/κ < ∞ for some 0 < κ < 1/2. The parameter δ = δm may particularly
depend on m, where typically one is interested in so called “local alternatives”, i.e.
δm → 0 as m→∞. On setting

a = µ, b = b∗ = σ,

Y (t) =

[t]∑
i=1

εi,

Y ∗(t) =

[t]∑
i=[T ∗]+1

εi,

∆m,γ(t− T ∗) =

[t]∑
i=1

δm

(
i− T ∗

m

)γ
+

we obtain a process in the form of (1.1.1). Further, by Komlós et al. (1975) we know
that there is some Wiener process {W (t) | t ≥ 0} such that |

∑n
i=1 εi−σW (n) | a.s.=

O
(
nκ
)
, hence on approximating Y (t) by W (t) and Y ∗(t) by W ∗(t) := W (t+

T ∗) − W (T ∗) the invariance principles (1.1.2) and (1.1.3) are fulfilled. (In fact,
(1.1.2) and (1.1.3) are even fulfilled if we replace OP (1) by O(1) a.s.)

Example 1.1.2. Again, assume we observe

Xi = εi + µ+ δm

(
i− T ∗

m

)γ
+

with µ, γ, δm as above but εi being a linear process, i.e.

εi =
∞∑
k=0

ak ei−k,

where for ei it holds that

· {ei | i ∈ Z} are independently, identically distributed random variables with
E(ei) = 0, Var(ei) = σ2 > 0 and E|ei|1/κ̃ <∞ for some 0 < κ̃ < 1/2,

· the random variables are smooth with density function f satisfying

sup
−∞<s<∞

1

|s|

∫ ∞
−∞
|f(t+ s)− f(t)| dt <∞

and for the coefficients ak it holds that
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· ak = O
(
kβ
)

for some β < 3/2, as k →∞,

·
∑∞

k=0ak z
k 6= 0 for all z ∈ C with |z| < 1,

· η2 := σ2

(∑∞
k=0ak

)2

> 0.

Lemma 2.2 of Horváth (1997) states that there is some Wiener process {W (t) | t ≥ 0}
such that |

∑n
i=1 εi − ηW (n) | a.s.

= o
(
nκ
)

for some 0 < κ < 1/2, as n → ∞. On
setting a, Y (t), Y ∗(t), ∆m,γ(t), W (t) and W ∗(t) as in Example 1.1.1 and b = b∗ =
η we obtain a process as in (1.1.1), which fulfills the invariance principles (1.1.2)
and (1.1.3). (In fact, (1.1.2) and (1.1.3) are even fulfilled if we replace OP (1) by
O(1) a.s.)
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1.2 Stopping times

For our sequential testing procedure we are looking for stopping times τm such that
under the null hypothesis it holds for some fixed α ∈ (0, 1) that

lim
m→∞

P (τm <∞) = α

and under the alternative it holds that

lim
m→∞

P (τm <∞) = 1.

The stopping times suggested below are based on detectors that are evaluated with
each newly made observation to determine whether a suitably chosen threshold func-
tion is exceeded (in which case the sequential procedure is stopped) or not (in which
case the monitoring of the process is continued).

We standardize the observations by the in-control parameters, i.e. (in our case)
the location-parameter a and the scale-parameter b. If the in-control parame-
ters are unknown, which is usually the case, they have to be estimated. Detectors
and stopping times for known or unknown in-control parameters are introduced in
Section 1.2.1 or Section 1.2.2, respectively.

1.2.1 Stopping times for known in-control parameters

We pick up the approach of Jarušková (1998) and Hušková (1998a) constructing our
detectors as sums of weighted, standardized increments of the observed time series,
putting the heaviest weight on the latest observation, where the “size” of a possible
change is the largest. Denoting the increments by Zi = Z(i)−Z(i− 1) we consider
the following detectors:

Tk =

∑k
i=1 g(i/m) (Zi − a)

b
√
m

, k ≥ m, (1.2.1)

where m is a training period after which the sequential testing procedure shall start.
We present our results for a general weight function g which is further specified
in Assumption 1.2.1 below. However, throughout this chapter the standard example
for a weight function will be g(t) = tλ for some λ > 0, where for ∆m,γ as in
Example 1.1.1 and Example 1.1.2 a (quasi) maximum likelihood approach suggests
λ = γ as a proper choice (see Remark 1.2.2).

If, for a moment, we assume the increments Zi of the considered process to be
independently, identically distributed with mean a and variance b2, we have

Var
(
Tk
)

=

∑k
i=1 g

2(i/m) Var(Zi)

b2 m
=

∑k
i=1 g

2(i/m)

m
≈
∫ k/m

0
g2(x) dx.

Hence, we introduce the function

G(t) =

∫ t

0
g2(x) dx, (1.2.2)
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which we will use to standardize the detectors. In fact, G(t) is the variance
of the process

{ ∫ t
0g(x) dW (x) | t ≥ 1

}
, which will turn out to be the limit of

{Tk | k ≥ m} (see Theorem 1.3.1 below for details).

The idea is to stop the testing procedure as soon as the detectors exceed some
critical threshold function h, so our stopping times are

τ+
m = min

{
k = m, . . . ,∞ | Tk/h(G(k/m)) > 1

}
,

τ−m = min
{
k = m, . . . ,∞ | − Tk/h(G(k/m)) > 1

}
,

τm = min
{
k = m, . . . ,∞ | |Tk| /h(G(k/m)) > 1

}
,

where τ+
m shall detect the one-sided, positive alternative H+

1 , τ
−
m shall detect the

one-sided, negative alternative H−1 and τm shall detect the two-sided alternative
H1. In all cases the threshold function h has to be chosen in such a way that the
test attains a prescribed level α asymptotically. Possible threshold functions are
given in Remark 1.2.2 below.

For our asymptotic results we need the following set of assumptions on the weight
and threshold functions:

Assumption 1.2.1. Let g : [0,∞) → [0,∞) be an increasing and continuous
function which is differentiable on (0,∞) and (for the sake of simplicity) satisfies
g(0) = 0. Let h = hc : [G(1),∞)→ (0,∞) be an additional increasing (threshold)
function such that the following growth conditions hold true, as m→∞,

sup
t≥m

tκ g(t/m)√
m h(G(t/m))

→ 0, (1.2.3)

sup
t≥m

sup
0≤ξ≤1/m

g′(t/m− ξ)
√
t log log(t/m)

m3/2 h(G(t/m))
→ 0, (1.2.4)

sup
t≥m

∣∣∣∣1− h(G(t/m))

h(G([t]/m))

∣∣∣∣→ 0, (1.2.5)

where κ is defined in (1.1.2) and (1.1.3) and G(t) is defined in (1.2.2). Further,
the threshold function h shall be chosen such that supt≥G(1) |W (t)|/h(t) has a
non-degenerated distribution.

Remark 1.2.2. Possible choices of weight and threshold functions are g(t) = tλ, for
some λ > 0, which implies G(t) = t1+2λ/(1 + 2λ), and h = h

(i)
c where

h(1)
c (t) = c t, c > 0,

h(2)
c (t) =

√
t f−1(ln(t) + f(c)) , where f(t) = t2 + 2 ln(φ(t)), c > 0,

h(3)
c (t) =

√
t (c2 + ln(t)), ln(G(1)) > −c2.

The functions h
(1)
c (t) and h

(2)
c (t) are suggested for the one-sided stopping times

τ+
m and τ−m and h

(3)
c (t) is applicable for the two-sided stopping time τm (see

Remark 1.2.3). The growth conditions of Assumption 1.2.1 are verified in Section 1.7
and the fact that supt≥G(1) |W (t)|/h(t) has a non-degenerated distribution follows
from Remark 1.2.3.
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On choosing one of the threshold functions suggested in Remark 1.2.2 one can make
use of the following distributions, shown by Robbins and Siegmund (1970) (see Ex-
amples 1, 2 and 3 therein), to adjust the testing procedures such that they attain a
prescribed level α asymptotically (cf. Theorem 1.3.1 and Theorem 1.3.4 below).

Remark 1.2.3. Let {W (t) | t ≥ 0} be a Wiener process and f(t) = t2 + 2 ln(φ(t)).

1. It holds for all c > 0 and t0 > 0 that

P

(
max
t≥t0

W (t)

c t
< 1

)
= 2φ(c

√
t0)− 1.

2. It holds for f(t) = t2 + 2 ln(φ(t)), c > 0 and t0 = 1 that

P

(
sup
t≥t0

W (t)√
t f−1(ln(t) + f(c))

< 1

)
= φ(c)− ϕ(c) (c+ ϕ(c)/φ(c)).

A general expression of the distribution for arbitrary t0 > 0 is given in
Example 2 of Robbins and Siegmund (1970).

3. It holds for all c > 0 and ln(t0) > −c2 that

P

(
sup
t≥t0

|W (t)|√
t(c2 + ln(t))

< 1

)
= 2φ

(√
c2 + ln(t0)

)
− 2ϕ(c)

√
(c2 + ln(t0))/t0 − 1.



12 CHAPTER 1. MONITORING GENERAL GRADUAL CHANGES

1.2.2 Stopping times for unknown in-control parameters

The in-control parameters a and b are usually unknown, hence (in this case) they
have to be estimated. On estimating a we consider the empirical mean

âk =
1

k

k∑
i=1

(
Z(i)− Z(i− 1)

)
=

Z(k)

k
, k ≥ m, (1.2.6)

whereas on estimating b we consider a general (possibly sequential) estimate
b̂k which satisfies under the null hypothesis

sup
k=m,...,∞

| b̂k − b | = oP (1), k ≥ m. (1.2.7)

A possible choice for b̂k is given in Remark 1.2.6 below. Replacing the unknown
in-control parameters by their estimates we obtain the following detectors:

T̂k =

∑k
i=1 g(i/m) (Zi − âk)

b̂k
√
m

, k ≥ m.

If, for a moment, we assume the increments Zi = Z(i)−Z(i− 1) of the considered
process to be independently, identically distributed with mean a and variance
b2, we have

Var
(
T̂k
)
≈
∑k

i=1 g
2(i/m)

m
−
(∑k

i=1 g(i/m)
)2

mk

≈
∫ k/m

0
g2(x) dx−

( ∫ k/m
0 g(x) dx

)2
k/m

.

Hence, analogously to (1.2.2), we introduce the function

G̃(t) =

∫ t

0
g2(x) dx−

( ∫ t
0 g(x) dx

)2

t
, (1.2.8)

with G̃(0) := limt→0 G̃(t) = 0, which we will use to standardize our detectors. In
fact, G̃(t) is the variance of the process {U(t) | t ≥ 1}, (where U(t) is defined in
(1.3.14) below), which will turn out to be the limit of

{
T̂k | k ≥ m} (see Theorem

1.3.4 below for details).

We consider the following modified stopping times:

τ̂+
m = min

{
k = m, . . . ,∞ | T̂k/h(G̃(k/m)) > 1

}
,

τ̂−m = min
{
k = m, . . . ,∞ | − T̂k/h(G̃(k/m)) > 1

}
,

τ̂m = min
{
k = m, . . . ,∞ | |T̂k|/h(G̃(k/m)) > 1

}
,

where, as before, τ+
m shall detect the one-sided, positive alternative H+

1 , τ
−
m shall

detect the one-sided, negative alternative H−1 and τm shall detect the two-sided
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alternative H1. In all cases, the threshold function h is to be chosen in such a
way, that the test attains a prescribed level α asymptotically. Possible threshold
functions are given in Remark 1.2.5 below.

For our asymptotic results we need the following set of assumptions on the weight
and threshold functions:

Assumption 1.2.4. Let g : [0,∞) → [0,∞) be an increasing and continuous
function which is differentiable on (0,∞) and (for the sake of simplicity) satisfies
g(0) = 0 and g′(t) ≥ c̃ t−3/2 for some c̃ > 0 and for all t ≥ 1. Let h = hc :
[G̃(1),∞) → (0,∞) be an additional increasing (threshold) function such that the
following growth conditions hold true, as m→∞,

sup
t≥m

tκ g(t/m)√
m h(G̃(t/m))

→ 0, (1.2.9)

sup
t≥m

sup
0≤ξ≤1/m

g′(t/m− ξ)
√
t log log(t/m)

m3/2 h(G̃(t/m))
→ 0, (1.2.10)

sup
t≥m

∣∣∣∣1− h(G̃(t/m))

h(G̃([t]/m))

∣∣∣∣→ 0, (1.2.11)

where κ is defined in (1.1.2) and (1.1.3) and G̃(t) is defined in (1.2.8). Further,
the threshold function h shall be chosen such that supt≥G̃(1) |W (t)|/h(t) has a
non-degenerated distribution.

Remark 1.2.5. Possible choices of weight and threshold functions are g(t) = tλ, for
some λ > 0, which implies G̃(t) = λ̃ t1+2λ, where λ̃ = λ2/

(
(1+2λ)(1+λ)2

)
, and

h as in Remark 1.2.2. The growth conditions of Assumption 1.2.4 are verified in Sec-
tion 1.7 and the fact that supt≥G̃(1) |W (t)|/h(t) has a non-degenerated distribution
follows from Remark 1.2.3.

Remark 1.2.6. A possible choice for an estimate that fulfills (1.2.7) under the null
hypothesis is

b̂2k =
1

k̂(k − k̂ + 1)

k∑
j=k̂

(
Z(j)− Z(j − k̂)− k̂ Z(k)/k

)2
, k ≥ m,

where k̂ = kq for some 2κ < q < 1 (see Section 1.3.3 below). In order to preserve
the consistency under the alternative one can also estimate b non-sequentially, i.e.
not with every newly made observation, but rather by only using the data obtained in
the training period.
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1.2.3 Variance of the detectors

As illustrated in the previous sections the choice of the weight function g determines
the variance of the detectors, i.e. Var(Tk) ≈ G(k/m), where

G(t) =

∫ t

0
g2(x) dx,

and Var(T̂k) ≈ G̃(k/m), where

G̃(t) =

∫ t

0
g2(x) dx−

( ∫ t
0 g(x) dx

)2

t

with G̃(0) = 0. For our asymptotic results in this chapter we need that G([1,∞)) =
[G(1),∞), or G̃([1,∞)) = [G̃(1),∞), respectively. This is verified in the following
lemma:

Lemma 1.2.7. Let g : [0,∞) → [0,∞) be an increasing and continuous function,
which is differentiable on (0,∞) and satisfies g(0) = 0, and let G(t) and G̃(t) be
as above. Then G(t) and G̃(t) are increasing, differentiable and positive for all
t > 0. Furthermore, it holds that limt→∞G(t) = ∞ and if g′(t) ≥ c̃ t−3/2 for
some c̃ > 0 and for all t ≥ 1, it holds that limt→∞ G̃(t) =∞.

Proof of Lemma 1.2.7. Obviously, by the fundamental theorem of calculus G(t) and
G̃(t) are differentiable with G′(t) = g2(t) > 0 and

G̃′(t) = g2(t)−
2g(t)t

∫ t
0 g(x) dx−

( ∫ t
0 g(x) dx

)2
t2

=
g2(t)t2 − 2g(t)t

∫ t
0 g(x) dx+

( ∫ t
0 g(x) dx

)2
t2

=

(
g(t)t−

∫ t
0 g(x) dx

t

)2

> 0

for t > 0, where the strict inequalities follow by the fact that g is increasing. Hence
G(t) and G̃(t) are increasing and by G(0) = 0 = G̃(0) we have G(t) > 0 and
G̃(t) > 0 for all t > 0.

To see G(t)→∞ we note that (again by the fact that g(t) is increasing)

G(t) ≥
∫ t

1
g2(x) dx ≥ g2(1)(t− 1)→∞.

To see G̃(t)→∞ we rewrite

G̃(t) =

∫ t

0

(
g(x)x−

∫ x
0 g(y) dy

x

)2

dx
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and give the following lower bound for the square root of the integrand: By the
assumption on g′ it holds for all x ≥ 2 that

g(x)x−
∫ x

0 g(y) dy

x

=
g(x)x−

∫ x/2
0 g(y) dy −

∫ x
x/2 g(y) dy

x

≥ g(x)x− g(x/2)x/2− g(x)x/2

x

=
g(x)− g(x/2)

x/2

x

4

= g′(ξ) x/4 for some ξ ∈ [x/2, x]

≥ g′(ξ) ξ/4

≥ (c̃/4) ξ−1/2

≥ (c̃/4) x−1/2.

Hence, we have

G̃(t) ≥ c̃2

16

∫ t

2
x−1 dx→ ∞

as t→∞.

Remark 1.2.8. Note that the condition g′(t) ≥ c̃/t−3/2 for some c̃ > 0 and
for all t ≥ 1 (see also Assumption 1.2.4) is given for the sake of simplicity. The
proof of G̃(t) → ∞ in fact holds true, if there is some decreasing function r :
[0,∞) → (0,∞) such that g′(t) ≥ c̃ r(t)/t, for some c̃ > 0 and t sufficiently
large, and

∫∞
0 r2(t) dt = ∞. In Assumption 1.2.4 and Lemma 1.2.7 we considered

r(t) = t−1/2.
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1.3 Asymptotics under the null hypothesis

In this section we study the asymptotic properties of our test statistics under the
null hypothesis for known in-control parameters (Section 1.3.1) and unknown in-
control parameters (Section 1.3.2). The results of Theorem 1.3.1 or Theorem 1.3.4,
respectively, can be used to adjust the threshold functions such that the monitoring
procedures attain a prescribed α-level asymptotically. In Section 1.3.3 we suggest a
suitable estimate b̂k for estimating the scale parameter of the observed process.

1.3.1 Asymptotics for known in-control parameters

Theorem 1.3.1. Let {W (t) | t ≥ 0} be a Wiener process. With the notation and
assumptions of Section 1.1 and Section 1.2 it holds under the null hypothesis that

lim
m→∞

P
(
τ+
m =∞

)
= P

(
sup
t≥G(1)

W (t)/h(t) ≤ 1

)
,

lim
m→∞

P
(
τ−m =∞

)
= P

(
sup
t≥G(1)

W (t)/h(t) ≤ 1

)
,

lim
m→∞

P
(
τm =∞

)
= P

(
sup
t≥G(1)

|W (t)|/h(t) ≤ 1

)
.

A key tool throughout this thesis is the following a.s. bound for the increments of
a Wiener process, which was obtained by Csörgő and Révész (1979) and, for the
convenience of the reader, is partly restated here. A comprehensive overview on the
behavior of Wiener processes, as well as the proof of Proposition 1.3.2 can be found
in Csörgő and Révész (1981) (for the latter, see Theorem 1.2.1 therein).

Proposition 1.3.2. Let aT (T ≥ 0 ) be a monotonically non-decreasing function
of T such that 0 < aT ≤ T holds true and T/aT is monotonically increasing.
Then we have

lim sup
T→∞

sup
0≤t≤T−aT

sup
0≤s≤aT

βT |W (t+ s)−W (t)| a.s.
= 1,

where βT =
(
2 aT

(
log(T/aT ) + log log(T )

))−1/2
.

Further, we will frequently make use of the following index shift which is known as
summation by parts or Abel transformation.

Remark 1.3.3. For sequences {ai}i∈N0 and {bi}i∈N0 and k1, k2 ∈ N it holds
that

k2∑
i=k1

ai (bi − bi−1) =

k2∑
i=k1

aibi −
k2−1∑
i=k1−1

ai+1bi

= ak2bk2 − ak1bk1−1 −
k2−1∑
i=k1

(ai+1 − ai)bi,
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which further implies the following two upper bounds: If {ai}i∈N0 is increasing, it
holds that∣∣∣ k2∑

i=k1

ai (bi − bi−1)
∣∣∣ ≤ |ak2 | |bk2 − bk1−1| + 2 |ak2 − ak1 | max

k=k1−1,...,k2
|bk|,

∣∣∣ k2∑
i=k1

ai (bi − bi−1)
∣∣∣ ≤ 4|ak2 | max

k=k1−1,...,k2
|bk|.

In the following we give the proof of the main theorem of this section.

Proof of Theorem 1.3.1. The idea of the proof is to make use of the invariance prin-
ciple (1.1.2) to replace the standardized observations (Z(k)− ak)/b by Wm(k) :=
W (km)/

√
m which is by the Brownian scaling property again a Wiener process. The

corresponding Gaussian version of the detectors is then replaced by a stochastic inte-
gral and the resulting (Gaussian) process can be analyzed via its covariance function.

By (1.1.2) and summation by parts (see Remark 1.3.3) we have

sup
k=m,...,∞

∣∣∣∣ Tk
h(G(k/m))

−
∑k

i=1 g(i/m)(Wm(i/m)−Wm((i− 1)/m))

h(G(k/m))

∣∣∣∣
≤ sup

k=m,...,∞

4 g(k/m)√
mb h(G(k/m))

sup
i=0,...,k

|Y (i)−W (i)|

≤ sup
k=m,...,∞

kκ g(k/m)√
m h(G(k/m))

OP (1)

= oP (1),

(1.3.1)

where the last equality follows from (1.2.3). Making use of Remark 1.3.3 once more
allows us to replace the sum of the increments of Wm(t) by a stochastic integral:

k∑
i=1

g(i/m)(Wm(i/m)−Wm((i− 1)/m))

= g(k/m)Wm(k/m)−
k−1∑
i=0

(g((i+ 1)/m)− g(i/m))Wm(i/m)

= g(k/m)Wm(k/m)−
k−1∑
i=0

∫ (i+1)/m

i/m
g′(y)Wm(i/m) dy

= g(k/m)Wm(k/m)−
k−1∑
i=0

∫ (i+1)/m

i/m
g′(y)Wm(y) dy

+
k−1∑
i=0

∫ (i+1)/m

i/m
g′(y) (Wm(y)−Wm(i/m)) dy

=

∫ k/m

0
g(y) dWm(y) +

k−1∑
i=0

∫ (i+1)/m

i/m
g′(y) (Wm(y)−Wm(i/m)) dy,

(1.3.2)
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where in the last line we applied the integration by parts formula for stochastic
integrals (see e.g. (3.8) on p.155 of Karatzas and Shreve (1991)). Making use of
the a.s. upper bound for the increments of Wiener processes (see Proposition 1.3.2)
we see that the second term of (1.3.2) (divided by the threshold function) does not
contribute to the asymptotic:

sup
k=m,...,∞

∣∣∑k−1
i=0

∫ (i+1)/m
i/m g′(y)(Wm(y)−Wm(i/m)) dy

∣∣
h(G(k/m))

≤ sup
k=m,...,∞

sup
i=0,...,k−1

sup
i/m≤y≤(i+1)/m

|Wm(y)−Wm(i/m)| g(k/m)

h(G(k/m))

a.s.
= sup

k=m,...,∞

√
log(k) g(k/m)√
m h(G(k/m))

O(1)

= o(1),

where the last equality follows by (1.2.3). On replacing the discrete process by a
time continuous one we need to confirm that

sup
t≥m

∣∣∣∣
∫ t/m

0 g(y) dWm(y)

h(G(t/m))
−
∫ [t]/m

0 g(y) dWm(y)

h(G([t]/m))

∣∣∣∣ = oP (1). (1.3.3)

This is shown via the following straightforward decomposition of the above expres-
sion:

sup
t≥m

∣∣∣∣
∫ t/m

0 g(y) dWm(y)

h(G(t/m))
−
∫ [t]/m

0 g(y) dWm(y)

h(G([t]/m))

∣∣∣∣
≤ sup

t≥m

∣∣∣∣
∫ [t]/m

0 g(y) dWm(y)

h(G(t/m))

∣∣∣∣ sup
t≥m

∣∣∣∣1− h(G(t/m))

h(G([t]/m))

∣∣∣∣
+ sup
t≥m

∣∣∣∣
∫ t/m

[t]/m g(y) dWm(y)

h(G(t/m))

∣∣∣∣.
As we proceed in the proof, we will see that the first term on the right hand side
is of order OP (1) whereas, by (1.2.5), the second term is of order o(1), hence
it remains to show that the third term is of order oP (1). Applying the law of the
iterated logarithm and Proposition 1.3.2 to the following

∫ t/m

[t]/m
g(y) dWm(y)

= g(t/m)Wm(t/m)− g([t]/m)Wm([t]/m)−
∫ t/m

[t]/m
g′(y)Wm(y) dy

(1.3.4)
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yields

sup
t≥m

∣∣ ∫ t/m
[t]/m g(y) dWm(y)

∣∣
h(G(t/m))

≤ sup
t≥m

∣∣(g(t/m)− g([t]/m))Wm(t/m)
∣∣

h(G(t/m))

+ sup
t≥m

∣∣g([t]/m) (Wm(t/m)−Wm([t]/m))
∣∣

h(G(t/m))

+ sup
t≥m

sup0≤ξ≤1/m |Wm(t/m− ξ)|
∫ t/m

[t]/m g
′(y) dy

h(G(t/m))

= sup
t≥m

sup
0≤ξ≤1/m

g′(t/m− ξ)/m
√
t/m log log(t/m)

h(G(t/m))
OP (1)

+ sup
t≥m

g([t]/m)
√

log(t)/m

h(G(t/m))
OP (1)

= oP (1),

where the last equation follows from (1.2.3) and (1.2.4). The two relations above
imply (1.3.3), which as a result gives us

sup
k=m,...,∞

Tk
h(G(k/m))

= sup
t≥m

∫ t/m
0 g(y) dWm(y)

h(G(t/m))
+ oP (1). (1.3.5)

Note that for 0 ≤ s ≤ t it holds true that

Cov

(∫ s

0
g(y) dWm(y),

∫ t

0
g(y) dWm(y)

)
=

∫ s

0
g2(y)dy

= min
{
G(s), G(t)

}
= Cov

(
W (G(s)),W (G(t))

)
,

(1.3.6)

hence by the fact that
{ ∫ t

0g(y) dWm(y) | t ≥ 0
}

is a Gaussian process, we have{∫ t

0
g(y) dWm(y) | t ≥ 0

}
D
= {W (G(t)) | t ≥ 0}.

Finally, note that by Lemma 1.2.7 we have

sup
t≥1

W (G(t))

h(G(t))
= sup

t≥G(t)

W (t)

h(t)
.

Combining this with (1.3.5) yields

sup
k=m,...,∞

Tk
h(G([t]/m))

D−→ sup
t≥G(t)

W (t)

h(t)
,
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which proves the assertion for the one-sided, positive stopping time τ+
m. The ana-

logue assertions for τ−m and τm follow in the same manner, where for the result on
τ−m we also use the fact that {W (t) | t ≥ 0} D= {−W (t) | t ≥ 0}.
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1.3.2 Asymptotics for unknown in-control parameters

In this section we transfer the results of Theorem 1.3.1 to the more realistic case of
unknown in-control parameters.

Theorem 1.3.4. Let {W (t) | t ≥ 0} be a Wiener process. With the notation and
assumptions of Section 1.1 and Section 1.2 it holds under the null hypothesis that

lim
m→∞

P
(
τ̂+
m =∞

)
= P

(
sup
t≥G̃(1)

W (t)/h(t) ≤ 1

)
,

lim
m→∞

P
(
τ̂−m =∞

)
= P

(
sup
t≥G̃(1)

W (t)/h(t) ≤ 1

)
,

lim
m→∞

P
(
τ̂m =∞

)
= P

(
sup
t≥G̃(1)

|W (t)|/h(t) ≤ 1

)
.

Proof of Theorem 1.3.4. First of all, we note that we can neglect the estimate b̂k in
our further considerations: Let T̃k := T̂k b̂k/b denote the test statistic with estimated
location but non-estimated scale parameter. By the assumption on the convergence
of b̂k (see (1.2.7)) it holds that

sup
k=m,...,∞

|T̂k − T̃k|
h(G̃(k/m))

≤ sup
k=m,...,∞

|T̃k|
h(G̃(k/m))

sup
k=m,...,∞

∣∣b/b̂k − 1
∣∣

= sup
k=m,...,∞

|T̃k|
h(G̃(k/m))

oP (1)

= oP (1),

(1.3.7)

where the last equality holds true if we confirm that

sup
k=m,...,∞

∣∣T̃k∣∣/h(G̃(k/m)) = OP (1),

which is a consequence of the remaining part of the proof.

We decompose T̃k into one part that corresponds to the detector for known in-
control parameters and another part that corresponds to the estimation of a:

T̃k = Tk +

k∑
i=1

g(i/m) (âk − a)

b
. (1.3.8)

Replacing G by G̃ in the proof of Theorem 1.3.1 and taking Assumption 1.2.4
into account allows us to approximate Tk as follows:

sup
k=m,...,∞

∣∣∣∣ Tk
h(G̃(k/m))

−
∫ k/m

0 g(x) dWm(x)

h(G̃(k/m))

∣∣∣∣ = oP (1). (1.3.9)
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In order to approximate the second expression of (1.3.8) in a similar manner we make
use of the invariance principle (1.1.2) to replace the estimate âk by a corresponding
Gaussian one:

sup
k=m,...,∞

∣∣∣∣∑k
i=1 g(i/m)(âk − a)√
m b h(G̃(k/m))

−
∑k

i=1 g(i/m)Wm(k/m)

k h(G̃(k/m))

∣∣∣∣
= sup

k=m,...,∞

∣∣∣∣∑k
i=1 g(i/m)(Z(k)− ka)

k
√
m b h(G̃(k/m))

−
∑k

i=1 g(i/m)W (k)

k
√
m h(G̃(k/m))

∣∣∣∣
= sup

k=m,...,∞

∑k
i=1 g(i/m) kκ

k
√
m h(G̃(k/m))

OP (1)

= oP (1),

(1.3.10)

where the last equality follows from (1.2.9). We replace the sum by an integral:

sup
k=m,...,∞

∣∣∣∣ ∑k
i=1 g(i/m)Wm(k/m)

k h(G̃(k/m))
−
∫ k/m

0 g(y) dy Wm(k/m)

k/m h(G̃(k/m))

∣∣∣∣
= sup

k=m,...,∞

√
log log(k/m)k/m

k/m h(G̃(k/m))

×
∣∣∣∣ 1

m

k∑
i=1

g(i/m)−
∫ k/m

0
g(y) dy

∣∣∣∣ OP (1)

= sup
k=m,...,∞

√
log log(k/m) g(k/m)√
k/m h(G̃(k/m)) m

OP (1)

= sup
k=m,...,∞

kκ g(k/m)√
m h(G̃(k/m))

√
log log(k/m)

kκ+ 1
2

OP (1)

= oP (1),

(1.3.11)

where the difference between the sum and the integral was approximated in the
obvious manner, i.e.∣∣∣∣ 1

m

k∑
i=1

g(i/m)−
∫ k/m

0
g(y) dy

∣∣∣∣
≤ 1

m

k∑
i=1

g(i/m)− g((i− 1)/m)

= g(k/m)/m.

On rewriting∫ k/m
0 g(y) dy Wm(k/m)

k/m

a.s.
=

∫ k/m

0

∫ k/m
0 g(y) dy

k/m
dWm(x) (1.3.12)

and combining (1.3.9), (1.3.10), (1.3.11) and (1.3.12) we obtain

sup
k=m,...,∞

∣∣∣∣ T̃k
h(G̃(k/m))

− U(k/m)

h(G̃(k/m))

∣∣∣∣ = oP (1), (1.3.13)
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where

U(t) =


∫ t

0

(
g(x)−

∫ t
0g(y) dy

t

)
dWm(x) for t > 0,

0 for t = 0.

(1.3.14)

The next step is to proceed to a time continuous argument:

sup
t≥m

∣∣∣∣ U(t/m)

h(G̃(t/m))
− U([t]/m)

h(G̃([t]/m))

∣∣∣∣
≤ sup

t≥m

|U(t/m)|
h(G̃(t/m))

∣∣∣∣1− h(G̃(t/m))

h(G̃([t]/m))

∣∣∣∣
+ sup

t≥m

|U(t/m)− U([t]/m)|
h(G̃([t]/m))

,

(1.3.15)

where in the remaining part of this proof we will see that the first term of (1.3.15)
is of order OP (1). Thus, by (1.2.11) we have

sup
t≥m

|U(t/m)|
h(G̃(t/m))

∣∣∣∣1− h(G̃(t/m))

h(G̃([t]/m))

∣∣∣∣ = oP (1). (1.3.16)

As to the second summand of (1.3.15) we have

sup
t≥m

|U(t/m)− U([t]/m)|
h(G̃([t]/m))

≤ sup
t≥m

∣∣ ∫ t/m
[t]/mg(x) dWm(x)

∣∣
h(G̃([t]/m))

+ sup
t≥m

∣∣∣∣
∫ t/m

0 g(y) dyWm(t/m)

t/m h(G̃([t]/m))
−
∫ [t]/m

0 g(y) dyWm([t]/m)

[t]/m h(G̃([t]/m))

∣∣∣∣.
On the one hand, similarly as from (1.3.4) onwards we see that

sup
t≥m

∣∣ ∫ t/m
[t]/mg(x) dWm(x)

∣∣
h(G̃([t]/m))

= oP (1).

On the other hand, by the law of the iterated logarithm, Proposition 1.3.2 and by
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(1.2.9) we have

sup
t≥m

∣∣∣∣
∫ t/m

0 g(y) dyWm(t/m)

t/m h(G̃([t]/m))
−
∫ [t]/m

0 g(y) dyWm([t]/m)

[t]/m h(G̃([t]/m))

∣∣∣∣
≤ sup

t≥m

Wm(t/m)
∫ t/m

[t]/mg(y) dy

t/m h(G̃([t]/m))

+ sup
t≥m

|
∫ [t]/m

0 g(y) dy Wm(t/m) |
t/m h(G̃([t]/m))

∣∣∣∣1− t/m

[t]/m

∣∣∣∣
+ sup

t≥m

∫ [t]/m
0 g(y) dy |Wm(t/m)−Wm([t]/m)|

[t]/m h(G̃([t]/m))

= sup
t≥m

√
t/m log log(t/m) g(t/m)/m

t/m h(G̃(t/m))
OP (1)

+ sup
t≥m

g(t/m)
√
t/m log log(t/m)

t h(G̃(t/m))
OP (1)

+ sup
t≥m

g(t/m)
√

1/m log(t)

h(G̃(t/m))
OP (1)

= oP (1).

(1.3.17)

Plugging (1.3.16) and (1.3.17) into (1.3.15) yields

sup
t≥m

∣∣∣∣ U(t/m)

h(G̃(t/m))
− U([t]/m)

h(G̃([t]/m))

∣∣∣∣ = oP (1),

which again yields in a combination with (1.3.13) that

sup
k=m,...,∞

T̃k
h(G̃(k/m))

= sup
t≥m

U(t/m)

h(G̃(t/m))
+ oP (1). (1.3.18)

Finally, we calculate the covariance of the process {U(t) | t ≥ 0}, where U(t) is
defined in (1.3.14). Let I(t) :=

∫ t
0g(x) dx/t and consider 0 < s ≤ t first:

Cov(U(s), U(t))

= Cov
( ∫ s

0 (g(x)− I(s)) dWm(x),
∫ t

0 (g(x)− I(t)) dWm(x)
)

=

∫ s

0
(g(x)− I(s)) (g(x)− I(t)) dx

=

∫ s

0
g2(x) dx− I(s)

∫ s

0
g(x) dx− I(t)

∫ s

0
g(x) dx+ s I(s) I(t)

=

∫ s

0
g2(x) dx− I2(s) s− I(t) I(s) s+ I(t) I(s) s

=

∫ s

0
g2(x) dx− 1

s

(∫ s

0
g(x) dx

)2

= G̃(s)

= Cov(W (G̃(s)), W (G̃(t))).

(1.3.19)
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For 0 = s ≤ t, on the other hand, we have

Cov(U(s), U(t)) = 0 = Cov(W (G̃(s)), W (G̃(t)))

and since
{
U(t) | t ≥ 0

}
is a Gaussian process it holds true that {U(t) | t ≥ 1

} D
={

W (G̃(t)) | t ≥ 1
}
. Hence, by G̃([1,∞)) = [G̃(1),∞) it follows that

sup
t≥1

U(t)

h(G̃(t))

D
= sup

t≥1

W (G̃(t))

h(G̃(t))
= sup

t≥G̃(1)

W (t)

h(t)
.

Combining this with (1.3.18) completes the proof for the one-sided, positive stopping
time τ+

m. The proof of the corresponding assertions for τ−m and τm follows by the
same arguments.
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1.3.3 Estimating the scale parameter

In this section we show that the sequential estimate b̂2k suggested in Remark 1.2.6
fulfills the convergence stipulated in (1.2.7) under the null hypothesis. In order to
preserve the consistency under the alternative, one can estimate b2 non-sequentially,
i.e. use b̂2k = b̂2m for all k ≥ m.

We consider an overlapping batch means estimate which was already studied by
Timmermann (2010), hence just the key steps of the proof are presented here.

Lemma 1.3.5. With the notation and assumptions of Section 1.1 let

b̂2k =
1

k̂(k − k̂ + 1)

k∑
j=k̂

(
Z(j)− Z(j − k̂)− k̂ Z(k)/k

)2
, (1.3.20)

where k̂ = k̂k is some integer sequence such that k̂ → ∞ but k̂/k → 0 as
k →∞. Then it holds under the null hypothesis that, as m→∞,

sup
k=m,...,∞

| b̂2k − b2 | = sup
k=m,...,∞

(
kκ
√

log(k/k̂)/
√
k̂ +

√
log log(k/k̂) k̂/k

)
OP (1).

Remark 1.3.6. On setting k̂ = kq for some 2κ < q < 1 we obtain the desired
consistency of the estimate, that is under the null hypothesis that, as m→∞,

sup
k=m,...,∞

| b̂2k − b2| = oP (1).

Proof of Lemma 1.3.5. The idea of the proof is to decompose the overlapping batch
means estimate b̂2k into k̂ non-overlapping batch means estimates

b̌2k,r =
1

k̂ [k/k̂]

[k/k̂]∑
j=1

(
Z(j, k̂, r, k, k)

)2
1[0,k](jk̂ + r), (1.3.21)

where r = 0, . . . , k̂ − 1 and

Z(j, k̂, r, l, k) := Z(j k̂ + r)− Z((j − 1)k̂ + r)− k̂Z(l)/k.

Note that

b̂2k =
k̂ [k/k̂]

(k − k̂ + 1) k̂

k̂−1∑
r=0

b̌2k,r,

hence, if we show that

sup
k=m,...,∞

max
r=0,...,k̂−1

| b̌2k,r − b2 |

= sup
k=m,...,∞

(
kκ
√

log(k/k̂)/
√
k̂ +

√
log log(k) k̂/k

)
OP (1),
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the assertion follows by

sup
k=m,...,∞

k̂ [k/k̂]

k − k̂ + 1
= O(1).

Denoting

W (j, k̂, r, l, k) := W (j k̂ + r)−W ((j − 1)k̂ + r)− k̂W (l)/k,

we have∣∣∣∣b̌2k,r − 1

k̂ [k/k̂]

[k/k̂]∑
j=1

b2
(
W (j, k̂, r, k, k)

)2
1[0,k](jk̂ + r)

∣∣∣∣
≤ max

j=1,...,[k/k̂]

(
|Z(j, k̂, r, k, k)− bW (j, k̂, r, k, k) |√

k̂

× |Z(j, k̂, r, k, k)− bW (j, k̂, r, k, k) + 2W (j, k̂, r, k, k) |√
k̂

)
.

Applying the invariance principle (1.1.2) yields uniformly for k = m, . . . ,∞, r =
0, . . . , k̂ − 1 and j = 1, . . . , [k/k̂] that

|Z(j, k̂, r, k, k)− bW (j, k̂, r, k, k) |√
k̂

= sup
k=m,...,∞

kκ/
√
k̂ OP (1).

Further, by Proposition 1.3.2 and the law of the iterated logarithm we have uniformly
for k = m, . . . ,∞, r = 0, . . . , k̂ − 1 and j = 1, . . . , [k/k̂] that

|W (j, k̂, r, l, k) |√
k̂

= sup
k=m,...,∞

√
log(k/k̂) OP (1),

where a combination of the two convergence rates from above yields the first rate in
(1.3.20). Finally, by the law of the iterated logarithm, making use of the fact that the
increments (W (i)−W (i−1))2 are independently, identically distributed with mean
1 we have uniformly for k = m, . . . ,∞, r = 0, . . . , k̂− 1 and j = 1, . . . , [k/k̂] that

1

k̂ [k/k̂]

[k/k̂]∑
j=1

((
W (j, k̂, r, k, k)

)2 − k̂) 1[0,k](jk̂ + r)

D
=

1

[k/k̂]

[k/k̂]∑
j=1

((
W (j, 1, r/k̂, k, k/k̂)

)2 − 1
)

1[0,k](jk̂ + r)

a.s.
= O(1) sup

k=m,...,∞

√
log log(k/k̂)k̂/k,

which completes the proof.
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1.4 Consistency of the testing procedures

The monitoring procedure is said to be consistent, if the probability of a correct de-
tection of a change (i.e. a stopping of the monitoring procedure at some time point
N < ∞) converges towards 1 as m → ∞. This is shown in Theorem 1.4.1 and
Theorem 1.4.3 of Section 1.4.1 or Section 1.4.2, respectively, under rather general
assumptions on the type of change, i.e. under general growth conditions which de-
pend on the type of gradual change ∆m,γ , the weight function g and the threshold
function h. In Section 1.4.3 we analyze the growth conditions for the type of change
introduced in Example 1.1.1 and Example 1.1.2 and the weight and threshold func-
tions suggested in Remark 1.2.2 and Remark 1.2.5.

Note that throughout this section the assumptions on the process Y ∗(t− T ∗) can
be weakened, namely we can replace Assumption (1.1.3) by

sup
T ∗≤t≤T

|Y ∗(t− T ∗) | = OP
(√
T
)

(1.4.1)

as T → ∞. This is of course the case if the invariance principle of (1.1.3) holds
true.

1.4.1 Consistency for known in-control parameters

Theorem 1.4.1. With the notation and assumptions of Section 1.1 and Section 1.2
it holds that

under H+
1 lim

m→∞
P
(
τ+
m ≤ N

)
= 1,

under H−1 lim
m→∞

P
(
τ−m ≤ N

)
= 1,

under H1 lim
m→∞

P
(
τm ≤ N

)
= 1,

where N = Nm > T ∗ is an arbitrary integer sequence fulfilling the following growth
conditions:

g(N/m)
√
N/m

h(G(N/m))
= O(1), (1.4.2)

but

|ΛN |
h(G(N/m))

→∞, (1.4.3)

where

Λk :=
k∑

i=K∗+1

g(i/m) (∆m,γ(i− T ∗)−∆m,γ(i− 1− T ∗))√
m b

denotes the deterministic perturbation of the detector Tk and K∗ := [T ∗] denotes
the last integer time point before the change point.
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Remark 1.4.2. Possible choices of weight and threshold functions are given in Re-
mark 1.2.2. If the change is of the type as introduced in Example 1.1.1 and Example
1.1.2, i.e.

∆m,γ(i− T ∗)−∆m,γ(i− 1− T ∗) = δ
((
i− T ∗

)
/m
)γ

+
,

where δ 6= 0 shall be constant and γ > 0, a possible choice of N is N =
[ρ T ∗] where 1 < ρ < (λ + 1)1/λ. If we choose h(1), Assumptions (1.4.2) and
(1.4.3) are fulfilled for any γ ≥ λ > 0 and if we choose h(2) or h(3), Assumptions
(1.4.2) and (1.4.3) are fulfilled for arbitrary γ, λ > 0, which is verified in Section
1.7 below.

Proof of Theorem 1.4.1. As stated above, let N = Nm > T ∗ be an integer sequence
depending of m. Since T ∗ will not be integer in general we consider K∗ = [T ∗],
so Z(K∗ + 1) is the first observation we make after the change point. By Theorem
1.3.1 the observations before K∗ + 1 are bounded in the following sense:

TN =
N∑

i=K∗+1

g(i/m) (Zi − a)√
m b

+
K∗∑
i=1

g(i/m) (Zi − a)√
m b

=
N∑

i=K∗+1

g(i/m) (Zi − a)√
m b

+OP (h(G(K∗/m))).

We decompose the remaining term into its stochastic part and its deterministic part
and show that under the growth conditions (1.4.2) and (1.4.3) the latter one is
dominating and tends to infinity. Via Remark 1.3.3 we have

N∑
i=K∗+1

g(i/m)(Zi − a)√
m b

=
g(N/m)(Z(N)− aN)√

m b

−
N−1∑

i=K∗+1

(g((i+ 1)/m)− g(i/m))(Z(i)− ai)√
m b

− g((K∗ + 1)/m) (Z(K∗)− aK∗)√
m b

=
g(N/m)√

m

(
Y (T ∗) +

b∗ Y ∗(N − T ∗)
b

+
∆m,γ(N − T ∗)

b

)
−

N−1∑
i=K∗+1

g((i+ 1)/m)− g(i/m)√
m

×
(
Y (T ∗) +

b∗ Y ∗(i− T ∗)
b

+
∆m,γ(i− T ∗)

b

)
− g((K∗ + 1)/m)Y (K∗)√

m
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=

N∑
i=K∗+1

g(i/m)
(
∆m,γ(i− T ∗)−∆m,γ(i− 1− T ∗)

)
√
m b

+
g(N/m) b∗ Y ∗(N − T ∗)√

m b

−
N−1∑

i=K∗+1

(g((i+ 1)/m)− g(i/m)) b∗ Y ∗(i− T ∗)√
m b

+
g((K∗ + 1)/m) (Y (T ∗)− Y (K∗))√

m

= ΛN + OP
(√

N/m g(N/m)
)
.

Combining this with (1.4.2) and (1.4.3) yields the assertion for the one-sided stopping
time τ+

m :

P
(
τ+
m <∞

)
≥ P

(
TN/h(G(N/m)) > 1

)
= P

(
ΛN/h(G(N/m))

+ OP
(√

N/m g(N/m)/h(G(N/m))
)

+OP (1) > 1
)

→ 1.

The analogue assertions for τ−m and τm follow in the same manner.
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1.4.2 Consistency for unknown in-control parameters

Theorem 1.4.3. With the notation and assumptions of Section 1.1 and Section 1.2
it holds that

under H+
1 lim

m→∞
P
(
τ̂+
m ≤ N

)
= 1,

under H−1 lim
m→∞

P
(
τ̂−m ≤ N

)
= 1,

under H1 lim
m→∞

P
(
τ̂m ≤ N

)
= 1,

where N = Nm > T ∗ is an arbitrary integer sequence fulfilling the following growth
conditions:

g(N/m)
√
N/m

b̂N h(G̃(N/m))
= OP (1), (1.4.4)

but

|Λ̂N |
b̂N h(G̃(N/m))

P→∞, (1.4.5)

with K∗ = [T ∗], b̂k being an estimate for which maxk=m,...,K∗ |b̂2k−b2| = oP (1) holds
true and

Λ̂k =

k∑
i=K∗+1

(
g(i/m)−

∑k
j=1g(j/m)/k

)
(∆m,γ(i−T ∗)−∆m,γ(i−1−T ∗))
√
m b

being the deterministic perturbation of Tk.

Remark 1.4.4. By estimating b non-sequentially, i.e. not with every newly made
observation but rather by only using the data obtained during the training period,
one can preserve the consistency of the estimate even if a change occurred. So, if
we choose b̂N = b̂m = b + oP (1), (see e.g. Remark 1.2.6 and Section 1.3.3), the
estimate b̂N in (1.4.4) and (1.4.5) can be dropped.

Remark 1.4.5. Possible choices of weight and threshold functions are given in Re-
mark 1.2.5. If the change is of the type as introduced in Example 1.1.1 and Example
1.1.2, i.e.

∆m,γ(i− T ∗)−∆m,γ(i− 1− T ∗) = δ
((
i− T ∗

)
/m
)γ

+
,

where δ 6= 0 shall be constant and γ > 0, a possible choice of N is N =
[ρ T ∗] where 1 < ρ < (λ+ 1)1/λ. If we choose h(1), Assumptions (1.4.4) and
(1.4.5) are fulfilled for any γ ≥ λ > 0 and if we choose h(2) or h(3), Assumptions
(1.4.4) and (1.4.5) are fulfilled for arbitrary γ, λ > 0, which is verified in Section
1.7 below.
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Proof of Theorem 1.4.3. Similar as in the proof of Theorem 1.4.1 we consider the
statistic for k = N and decompose the detector into its stochastic and its deter-
ministic parts, which yields

T̂N = Λ̂N/b̂N + OP
(√

N/m g(N/m)/b̂N
)

+OP
(
h(G̃(K∗/m)

)
.

Now the assertions follow by the growth conditions (1.4.4) and (1.4.5).
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1.4.3 Local alternatives

In this section we focus on the type of change introduced in Example 1.1.1 and
Example 1.1.2, i.e. on

∆m,γ(t) = δm

[t]∑
i=1

(
(i− T ∗)/m

)γ
+
,

where we particularly consider local alternatives, that is δm → 0 as m→∞. Our
objective is to find an upper bound for the time the test takes to detect a change de-
pending on the rate of convergence of δm and on the time when the change occurred.

For the sake of simplicity we assume the change point T ∗ to be integer, how-
ever, the same asymptotics hold true if this is not the case. Also, we focus on the
more realistic setting of unknown in-control parameters a and b. For known in-
control parameters the results can be obtained in the same manner.

We consider the weight function suggested in Remark 1.2.5, namely g(t) = tλ for
some λ > 0, which implies G̃(t) = λ̃ t2λ+1 where λ̃ = λ2/((2λ+ 1)(λ+ 1)2). We
aim to find a “small” N such that P

(
τ̂ ≤ N

)
→ 1, where τ̂ represents either

of the stopping times τ̂+
m, τ̂

−
m or τ̂m. By the calculations given in Section 1.7

(assuming that we have an estimate b̂N = b+ oP (1) and that N − T ∗ →∞) it is
sufficient to find a sequence N = Nm such that

F1 :=
|δm| (N − T ∗)1+γ (N/m)λ

m1/2+γ h(G̃(N/m))
' |δm|R1+γ (N/m)λ

m1/2+γ h(G̃(N/m))
→∞,

where R = N − T ∗ is an upper bound for the time the procedures take to detect a
change in the sense that P

(
τ̂ − T ∗ ≤ R

)
→ 1. The choice of N, however, depends

on whether R or T ∗ is dominant, hence we distinguish three cases:

R/T ∗ → 0: If

1

T ∗
m1/2+γ h(G̃(T ∗/m))(

T ∗/m
)λ |δm| → 0, (1.4.6)

one may choose

R =

(
m1/2+γ h(G̃(T ∗/m))(

T ∗/m
)λ |δm|

)1/(1+γ)

r(m),

where r(m) → ∞ such that R → ∞, but R/T ∗ → 0. Now, plugging
R into F1 yields F1 ' r(m)1+γ →∞.

T ∗ ' R: If (1.4.6) does not hold true, but

|δm| (T ∗/m)1+λ+γ √m
h(G̃(T ∗/m))

→∞ (1.4.7)
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does, one can choose R = T ∗. In this case we have

F1 '
|δm| (T ∗/m)1+λ+γ √m

h(G̃(T ∗/m))
→∞.

T ∗/R→ 0: If neither (1.4.6) nor (1.4.7) holds true, one has to choose R large
enough such that, for one thing, R/T ∗ →∞ and, for another thing,

F1 '
|δm| (R/m)1+λ+γ √m

h(G̃(R/m))
→∞.

Choosing h = h(1) of Remark 1.2.5 and γ > λ > 0 a possible choice is

R = max
{(
|δm|
√
m
)−1/(γ−λ)

m, T ∗
}
r(m),

and choosing h = h(2) or h = h(3), respectively, and if |δm|
√
m 6→ 0, a

possible choice is

R = max
{
m (|δm|

√
m)−1/(1+γ) , T ∗1+ε} r(m)

for some ε > 0 and if |δm|
√
m→ 0, a possible choice is

R = max
{
m (|δm|

√
m)−1/(1+γ)−ε , T ∗1+ε} r(m)

for some ε > 0, where in all three cases r(m)→∞ as m→∞.
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1.5 Asymptotic normality of the delay times

The results of the previous section state that under quite mild assumptions a change
is detected with probability tending to one. However, Theorem 1.4.1 and Theorem
1.4.3 do not give us much information about when a (detected) change took place. In
this section we will prove limit distributions for delay times, i.e. the time lag between
the change point and its detection. It turns out (under the assumptions below) that
the suitably standardized delay times are asymptotically normally distributed and
the results can be used to establish asymptotic confidence intervals for the change
point. However, these more sophisticated results also require a more narrow setting
compared to the one in Section 1.4. Particularly, we restrict the considerations to
changes which fulfill

∆m,γ(i− T ∗)−∆m,γ(i− 1− T ∗) = δ
((
i− T ∗

)
/m
)γ

+
, (1.5.1)

where δ 6= 0 is constant (see also Example 1.1.1 and Example 1.1.2). The tech-
niques of the proofs of Theorem 1.5.1 and Theorem 1.5.7 also require us to know
the “direction” of the change, that is whether δ is positive or negative, hence
the asymptotic distributions can only be shown for the one-sided stopping times
τ+
m, τ

−
m, τ̂

+
m and τ̂−m. Nevertheless, the results for the one-sided stopping times can

be used to construct asymptotic confidence intervals under the two sided alternative,
as well.

A key assumption in this section is an early-change scenario (see Assumptions (1.5.3)
and (1.5.19)) which states that the change occurs soon after the training period. Such
early-change settings are common assumptions if one wants to prove asymptotic nor-
mality of the delay times, cf. e.g. Aue and Horváth (2004) and Gut and Steinebach
(2009).

We stick to the pattern of showing the results for known in-control parameters a and
b first (Section 1.5.1), and then carrying those results over to the case of unknown
parameters (Section 1.5.2). Moreover, since we are working under the alternative the
standardization for the asymptotic distribution also depends on γ and δ, therefore
we introduce a consistent estimate for δ. The slope parameter γ is assumed to be
known.

1.5.1 Asymptotic normality of the delay times for known in-control pa-
rameters

Theorem 1.5.1. With the notation and assumptions of Section 1.1 and Section 1.2
as well as h(G(t)) being continuous at t = 1, (1.5.1) holding true with δ being
constant,

sup
1≤ξ≤H/m

|g′(ξ)| = O(1) (1.5.2)

(where H is defined in (1.5.5) below) and the early-change assumption

T ∗ = m+ o(m) (1.5.3)
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it holds for all x ≥ −h(G(1))/
√
G(1) under H+

1 that

lim
m→∞

P

( (
τ+
m − T ∗

)1+γ

+
g(1) δ

m1/2+γ (1 + γ) b
√
G(1)

− h(G(1))√
G(1)

≤ x

)
= φ(x),

and under H−1 that

lim
m→∞

P

( (
τ−m − T ∗

)1+γ

+
g(1) |δ|

m1/2+γ (1 + γ) b
√
G(1)

− h(G(1))√
G(1)

≤ x

)
= φ(x).

The rather longish proof of Theorem 1.5.1 is given further below.

By Slutsky’s lemma the convergences above still hold true if we replace δ by a
consistent estimate δ̂, where a possible choice is suggested in Lemma 1.5.2. Note
that in order to obtain consistency for δ̂ we need to have a sufficient amount of
observations made after the change point which might require to let the process
Z(t) run on (in its perturbed form) in order to determine at which time point the
change has occurred. In the following situation we obtain a consistent estimate:

Lemma 1.5.2. With the notation and assumptions of Section 1.1 let

δ̂m,k =

∑k
i=1((i−m)/m)γ+ (Zi − a)∑k

i=1((i−m)/m)2γ
+

.

If for some ζ > 1 it holds that

T ∗ −m = o
(
mζ
)
,

then we have under either of the alternatives H+
1 , H

−
1 or H1 that

δ̂m,m+mζ = δ + oP (1).

In Section 1.5.2 we give a proof for a slightly more general version of Lemma 1.5.2
(i.e. for a unknown), hence the proof is omitted here. Combining Theorem 1.5.1 and
Lemma 1.5.2 gives us the following asymptotic confidence intervals for the change
point:

Corollary 1.5.3. Let the assumptions of Theorem 1.5.1 hold true. On setting

q(χi) =

((
h(G(1))√
G(1)

+ χi

)
(1 + γ) b

√
G(1) m1/2+γ

g(1)
∣∣δ̂∣∣

) 1
1+γ

,

where δ̂
P→ δ is a consistent estimate (e.g. δ̂m,m+mζ from Lemma 1.5.2 for some

ζ > 1 ) and

χi =

{
φ−1

(
1− α̃+ φ(−h(G(1))/

√
G(1))

)
if i = 1,

φ−1
(
1− α̃+ 2φ(−h(G(1))/

√
G(1))

)
if i = 2,
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with

α̃ ∈

{(
φ(−h(G(1))/

√
G(1)), 1

)
for i = 1,(

2φ(−h(G(1))/
√
G(1)), 1

)
for i = 2,

(1.5.4)

we obtain for τ+
m and τ−m as in Section 1.2.1 and τ̃m := min{τ+

m, τ
−
m} that

P
(
τ+
m − q(χ1) ≤ T ∗ < τ+

m

)
= 1− α̃+ o(1),

P
(
τ−m − q(χ1) ≤ T ∗ < τ−m

)
= 1− α̃+ o(1),

P
(
τ̃m − q(χ2) ≤ T ∗ < τ̃m

)
≥ 1− α̃+ o(1)

under H+
1 , H

−
1 or H1, respectively.

Remark 1.5.4. Note that in Remark 1.2.2 we suggest different threshold functions
for the one-sided and two-sided stopping times, corresponding to the known (limit)
distributions of Remark 1.2.3. However, if one applies the same threshold function
for the one-sided and two-sided stopping times, it holds that τm = τ̃m.

The proof of Corollary 1.5.3 is given at the very end of this section. First, we give
the proof of the main theorem of this section, which is Theorem 1.5.1. For a better
readability the proof is subdivided into three steps and the following notation is
introduced: For x ≥ −h(G(1))/

√
G(1) we set

H := K∗ +
[
ν m

1/2+γ
1+γ

]
, (1.5.5)

where

K∗ := [T ∗], (1.5.6)

ν :=

((
1 + x

√
G(1)

h(G(1))

)
(1 + γ) b h(G(1))

g(1) |δ|

) 1
1+γ

. (1.5.7)

Further, let

Λk :=

∑k
i=K∗+1 g(i/m) δ ((i− T ∗)/m)γ

√
m b

(1.5.8)

denote the perturbation of the detectors. We state and prove two technical lemmata
which will be used in the proof of the main theorem. The first lemma covers the
convergence of some deterministic terms.

Lemma 1.5.5. Under the assumptions of Theorem 1.5.1 it holds for all x ≥
−h(G(1))/

√
G(1) that, as m→∞,

H − T ∗

m
→ 0, (1.5.9)

H ∼ K∗, (1.5.10)

sgn(δ) ΛH
h(G(H/m))

→ 1 + x

√
G(1)

h(G(1))
, (1.5.11)

max
k=K∗+1,...,H

sgn(δ) Λk
h(G(k/m))

→ 1 + x

√
G(1)

h(G(1))
, (1.5.12)

where H, K∗ and Λk are defined in (1.5.5), (1.5.6) and (1.5.8).
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Proof of Lemma 1.5.5. The first two assertions are immediate consequences of the
definition of H and of the early-change assumption (1.5.3). On showing (1.5.11)
we first note that the early-change assumption (1.5.3) allows us to approximate
the argument of the weight function and the threshold function in the considered
expression by 1:∣∣∣∣ ΛH

h(G(H/m))
−
∑H

i=K∗+1 g(1) δ ((i− T ∗)/m)γ
√
m b h(G(1))

∣∣∣∣
≤
∑H

i=K∗+1|δ| ((i− T ∗)/m)γ
√
m b

max
j=K∗+1,...,H

∣∣∣∣ g(j/m)

h(G(H/m))
− g(1)

h(G(1))

∣∣∣∣.
On the one hand, by the definition of H it holds that∑H

i=K∗+1((i− T ∗)/m)γ
√
m

≤
(
H − T ∗

m

)γ (H −K∗)√
m

=
(
m(1/2+γ)/(1+γ)−1

)1+γ √
m O(1)

= O(1)

and, on the other hand, by the continuity of the weight function and of the threshold
function it holds that

max
j=K∗+1,...,H

∣∣∣∣ g(j/m)

h(G(H/m))
− g(1)

h(G(1))

∣∣∣∣
≤ max

j=K∗+1,...,H

∣∣∣∣g(j/m)− g(1)

h(G(H/m))

∣∣∣∣+

∣∣∣∣ g(1)

h(G(H/m))
− g(1)

h(G(1))

∣∣∣∣
=

g(H/m)− g(1)

h(G(H/m))
+ o(1)

= o(1).

Thus it is sufficient to consider
∑H

i=K∗+1((i − T ∗)/m)γ/
√
m. In a next step, we

replace the usually non-integer change point T ∗ by K∗, which is the last integer
before the change point. By 0 ≤ T ∗ −K∗ ≤ 1 we have∣∣∣∣ H∑

i=K∗+1

(
i−K∗

m

)γ
−

H∑
i=K∗+1

(
i− T ∗

m

)γ∣∣∣∣
=

H−K∗∑
i=1

(
i

m

)γ
−
(
i− (T ∗ −K∗)

m

)γ

≤
H−K∗∑
i=1

(
i

m

)γ
−
(
i− 1

m

)γ
=

(
H −K∗

m

)γ
= o(1).
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Now we can show that
∑H

i=K∗+1((i−K∗)/m)γ/
√
m converges towards ν1+γ/(1+γ),

where ν is defined in (1.5.7):

1√
m

H∑
i=K∗+1

(
i−K∗

m

)γ

=
(H −K∗)1+γ

mγ+1/2

H−K∗∑
i=1

(
i

H −K∗

)γ 1

H −K∗

=
(H −K∗)1+γ

mγ+1/2

( 1

1 + γ
+ o(1)

)
=

ν1+γ

1 + γ
+ o(1).

Combining the assertions above we have

sgn(δ) ΛH
h(G(H/m))

=
sgn(δ) g(1) δ ν1+γ

b h(G(1)) (1 + γ)
+ o(1)

= 1 + x
√
G(1)/h(G(1)) + o(1),

which proves assertion (1.5.11). On proving (1.5.12) note that by the fact that
sgn(δ) Λk and h(G(k/m)) are increasing in k we have

sgn(δ) ΛH
h(G(H/m))

≤ max
k=K∗+1,...,H

sgn(δ) Λk
h(G(k/m))

≤ sgn(δ) ΛH
h(G(H/m))

h(G(H/m))

h(G(K∗/m))
,

hence (1.5.12) follows by the continuity of h(G(t)) at t = 1.

The next lemma allows us to replace the current detector (at time point k > T ∗ )
by the last detector before the change point and the deterministic perturbation of
Tk.

Lemma 1.5.6. Under the assumptions of Theorem 1.5.1 it holds that, as m→∞,

max
k=m,...,H

|Tk − TK∗ − Λk |
h(G(k/m))

= oP (1).

Proof of Lemma 1.5.6. We demonstrate the proof for k = K∗ + 1, . . . ,H. For
k = m, . . . ,K∗ the assertion follows by the same argument, yet in a more simple
manner. By the definition of Z(t) we have for k = K∗ + 1, . . . ,H

|Tk − TK∗ − Λk |
h(G(k/m))

≤
k∑

i=K∗+2

g(i/m) |Y ∗(i− T ∗)− Y ∗(i− 1− T ∗) |√
m b h(G(k/m))

+
g((K∗ + 1)/m) |Y ∗(K∗ + 1− T ∗) |√

m b h(G(k/m))

+
g((K∗ + 1)/m) |Y (T ∗)− Y (K∗) |√

m b h(G(k/m))
.
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Hence, by the invariance principles (1.1.2) and (1.1.3) it holds that

max
k=K∗+1,...,H

|Tk − TK∗ − Λk |
h(G(k/m))

≤ max
k=K∗+1,...,H

k∑
i=K∗+2

g(i/m) |W ∗(i− T ∗)−W ∗(i− 1− T ∗) |√
m b h(G(k/m))

+ max
k=K∗+1,...,H

g((K∗ + 1)/m) |W ∗(K∗ + 1− T ∗) |√
m b h(G(k/m))

+ max
k=K∗+1,...,H

g((K∗ + 1)/m) |W (T ∗)−W (K∗) |√
m b h(G(k/m))

,

+ max
k=K∗+1,...,H

g(k/m) Hκ

√
m h(G(k/m))

OP (1),

where by (1.2.3), (1.5.3) and (1.5.10) the last term is of order oP (1). A further
approximation by Remark 1.3.3 yields

k∑
i=K∗+2

g(i/m) |W ∗(i− T ∗)−W ∗(i− 1− T ∗) |

≤ 4 g(k/m) max
l=K∗+1,...,k

|W ∗(l − T ∗)|

and by Proposition 1.3.2 we have
∣∣W (T ∗)−W (K∗)

∣∣ = OP
(√

log(T ∗)
)

= OP
(√
H −K∗

)
.

Thus, by (1.2.3), H ∼ m and (H −K∗)/m→ 0 it holds that

max
k=K∗+1,...,H

|Tk − TK∗ − Λk |
h(G(k/m))

= max
k=K∗+1,...,H

g(k/m) Hκ

√
m h(G(k/m))

OP (1)

+ max
k=K∗+1,...,H

g(k/m)
√
H −K∗√

m h(G(k/m))
OP (1)

= oP (1),

which completes the proof.

We are now in the position to prove the main theorem of this section.

Proof of Theorem 1.5.1. As done before, we show the assertion for the positive stop-
ping time τ+

m (i.e. on δ > 0 ) in detail and the proof for the negative stopping time
τ−m (i.e. for δ < 0 ) follows analogously. The first step of the proof is to show that

P
(
τ+
m ≤ H

)
= P

(
max

k=m,...,H
Tk/h(G(k/m)) > 1

)
→ P

(
W (1) > −x

)
.

Once again we decompose the test statistic into its stochastic and its deterministic
parts, where, heuristically speaking, the former shall give us W (1) and the latter
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shall give us −x. By Lemma 1.5.6 and an approximation of the maximum in an
obvious manner we have

TK∗

h(G(H/m))
+

ΛH
h(G(H/m))

+ oP (1)

≤ max
k=m,...,H

Tk
h(G(k/m))

≤ max
k=m,...,H

TK∗

h(G(k/m))
+ max
k=K∗+1,...,H

Λk
h(G(k/m))

+ oP (1),

(1.5.13)

where in the last line, we also used the fact that Λk = 0 for k ≤ K∗, but Λk > 0 for
k > K∗. The continuity of h(G(t)) at t = 1 in combination with Lemma 1.5.5
yields

max
k=m,...,H

Tk
h(G(k/m))

=
TK∗

h(G(K∗/m))
+ 1 +

x
√
G(1)

h(G(1))
+ oP (1).

Now, along the lines of the proof of Theorem 1.3.1 we obtain

TK∗

h(G(K∗/m))
=

∫K∗/m
0 g(x) dWm(x)

h(G(K∗/m))
+ oP (1)

and by K∗ ∼ m it holds that∫K∗/m
0 g(x) dWm(x)

h(G(K∗/m))

D
=

√
G(K∗/m)W (1)

h(G(K∗/m))
=

√
G(1)W (1)

h(G(1))
+ oP (1).

Hence, under the alternative H+
1 it holds that

P
(
τ+
m ≤ H

)
→ P (W (1) > −x) = φ(x). (1.5.14)

Similarly, under the alternative H−1 we have

−TK∗

h(G(H/m))
+

−ΛH
h(G(H/m))

+ oP (1)

≤ max
k=m,...,H

−Tk
h(G(k/m))

≤ max
k=m,...,H

−TK∗

h(G(k/m))
+ max
k=K∗+1,...,H

−Λk
h(G(k/m))

+ oP (1),

hence by Theorem 1.3.1 and Lemma 1.5.5 we obtain

max
k=m,...,H

−Tk
h(G(k/m))

=
−
∫K∗/m

0 g(x) dWm(x)

h(G(K∗/m))
+ 1 +

√
G(1)

h(G(1))
x+ oP (1),

(1.5.15)

and therefore

P
(
τ−m ≤ H

)
→ P (−W (1) > −x) = φ(x). (1.5.16)
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Finally, by the fact that ν m(1/2+γ)/(1+γ) is non-negative we see that

P
(
τ+
m ≤ H

)
= P

(
τ+
m − T ∗ ≤

[
ν m

1/2+γ
1+γ

])
= P

( (
τ+
m − T ∗

)
+
≤ ν m

1/2+γ
1+γ + O(1)

)
= P

(
(τ+
m − T ∗)

1+γ
+

m1/2+γ
≤ ν1+γ + o(1)

)

= P

(
(τ+
m − T ∗)

1+γ
+ g(1) |δ|

m1/2+γ (1 + γ) b
√
G(1)

− h(G(1))√
G(1)

≤ x+ o(1)

)
.

Combining this with the convergence obtained in (1.5.14) shows the assertion for the
one-sided, positive stopping time τ+

m. Replacing τ+
m by τ−m in the calculation

above and combining this with (1.5.16) completes the proof.

Finally, we give the proof of Corollary 1.5.3.

Proof of Corollary 1.5.3. Note that for i = 1, 2, χi ≥ −h(G(1))/
√
G(1), hence

the following applications of Theorem 1.5.1 hold true: For the one-sided, positive
stopping time τ+

m we have under H+
1 that

P
(
τ+
m − q(χ1) ≤ T ∗ < τ+

m

)
= P

(
0 < τ+

m − T ∗ ≤ q(χ1)
)

= P
(
τ+
m − T ∗ ≤ q(χ1)

)
− P

(
τ+
m − T ∗ ≤ 0

)
= P

((
τ+
m − T ∗

)1+γ

+
≤ q(χ1)1+γ

)
− P

((
τ+
m − T ∗

)1+γ

+
≤ 0
)

→ 1− α̃+ φ
(
− h(G(1))/

√
G(1)

)
− φ

(
− h(G(1))/

√
G(1)

)
= 1− α̃,

where the same holds true under the one-sided alternative H−1 for the stopping
time τ−m. We demonstrate the corresponding assertion for the two-sided stopping
time τ̃m for the case of δ > 0. We decompose the suggested confidence interval as
follows:

P
(
τ̃m − q(χ2) ≤ T ∗ < τ̃m

)
= P

(
T ∗ < τ̃m ≤ T ∗ + q(χ2)

)
= P

(
min{τ+

m, τ
−
m} ≤ T ∗ + q(χ2)

)
− P

(
min{τ+

m, τ
−
m} ≤ T ∗

)
= P

(
τ+
m ≤ T ∗ + q(χ2)

)
+ P

(
τ−m ≤ T ∗ + q(χ2)

)
− P

(
max{τ+

m, τ
−
m} ≤ T ∗ + q(χ2)

)
−
(
P
(
τ+
m ≤ T ∗

)
+ P

(
τ−m ≤ T ∗

)
− P

(
max{τ+

m, τ
−
m} ≤ T ∗

))
≥ P

(
T ∗ < τ+

m ≤ T ∗ + q(χ2)
)
− P

(
τ−m ≤ T ∗

)
,

(1.5.17)
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where for the first expression, since δ > 0, we can make use of Theorem 1.5.1 once
more. Similar as above we have

P
(
T ∗ < τ+

m ≤ T ∗ + q(χ2)
)

→ 1− α̃+ 2φ(−h(G(1))/
√
G(1))− φ(−h(G(1))/

√
G(1))

= 1− α̃+ φ(−h(G(1))/
√
G(1)).

On the other hand, by the early-change assumption (see (1.5.15) for details) we have

max
k=m,...,T ∗

−Tk
h(G(k/m))

=
−
∫K∗/m,

0 g(x) dWm(x)

h(G(K∗/m))
+ oP (1).

(Note that by k < T ∗ the deterministic term in (1.5.15) disappears.) Further, by

−
∫ 1

0 g(x) dWm(x)

h(G(1))

D
=
−W (1)

√
G(1)

h(G(1))

it holds that

P
(
τ−m ≤ T ∗

)
→ P

(
−W (1) > h(G(1))/

√
G(1)

)
= φ

(
− h(G(1))/

√
G(1)

)
.

Combining the two relations above yields the confidence interval under H1 in case of
positive δ. For negative δ, the assertion follows in the same way, yet by exchanging
the roles of the stopping times τ−m and τ+

m.
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1.5.2 Asymptotic normality of the delay times for unknown in-control
parameters

In this section we prove a theorem corresponding to Theorem 1.5.1 for the case of
unknown in-control parameters a and b.

Theorem 1.5.7. With the notation and assumptions of Section 1.1 and Section 1.2
as well as h(G̃(t)) being continuous at t = 1, (1.5.1) holding true with δ being
constant,

sup
1≤ξ≤H̃/m

|g′(ξ)| = O(1) (1.5.18)

(where H̃ is defined in (1.5.21) below) and the early-change assumption

T ∗ = m+ o(m) (1.5.19)

it holds for all x ≥ −h(G̃(1))/
√
G̃(1) under H+

1 that

lim
m→∞

P

((
τ̂+
m − T ∗

)1+γ

+

(
g(1)−

∫ 1
0 g(x) dx

)
δ

m1/2+γ (1 + γ) b
√
G̃(1)

− h(G̃(1))√
G̃(1)

≤ x

)
= φ(x)

and under H−1 that

lim
m→∞

P

((
τ̂−m − T ∗

)1+γ

+

(
g(1)−

∫ 1
0 g(x) dx

)
|δ|

m1/2+γ (1 + γ) b
√
G̃(1)

− h(G̃(1))√
G̃(1)

≤ x

)
= φ(x).

By Slutsky’s lemma the convergences above still hold true if we replace b and δ by
consistent estimates b̂ and δ̂, where possible choices are suggested in Remark 1.2.6
and Lemma 1.5.8. (See also the discussion on δ̂ of Section 1.5.1.)

Lemma 1.5.8. With the notation and assumptions of Section 1.1 let

δ̂m,k =

∑k
i=1((i−m)/m)γ+ (Zi − Z(m)/m)∑k

i=1((i−m)/m)2γ
+

.

If in addition for some ζ > 1 it holds that

T ∗ −m = o
(
mζ
)
,

then we have under either of the alternatives H+
1 , H

−
1 or H1 that

δ̂m,m+mζ = δ + oP (1).

The proof of Lemma 1.5.8 is given at the very end of this section.

Combining Theorem 1.5.1 and Lemma 1.5.8 gives us the following asymptotic confi-
dence intervals for the change point:
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Corollary 1.5.9. Let the assumptions of Theorem 1.5.1 hold true. On setting

q(χi) =

((
h(G̃(1))√
G̃(1)

+ χi

)
(1 + γ) b̂m

√
G̃(1) m1/2+γ

g(1)
∣∣δ̂∣∣

) 1
1+γ

,

where δ̂
P→ δ and b̂m

P→ b are consistent estimates (e.g. δ̂m,m+mζ as in Lemma
1.5.8 with ζ > 1 and b̂m as in Remark 1.2.6) and

χi =

{
φ−1

(
1− α̃+ φ(−h(G̃(1))/

√
G̃(1))

)
if i = 1,

φ−1
(
1− α̃+ 2φ(−h(G̃(1))/

√
G̃(1))

)
if i = 2,

with

α̃ ∈

{(
φ(−h(G̃(1))/

√
G̃(1)), 1

)
for i = 1,(

2φ(−h(G̃(1))/
√
G̃(1)), 1

)
for i = 2,

(1.5.20)

we obtain for τ̂+
m and τ̂−m as in Section 1.2.1 and τ̌m := min{τ̂+

m, τ̂
−
m} that

P
(
τ̂+
m − q(χ1) ≤ T ∗ < τ̂+

m

)
= 1− α̃+ o(1),

P
(
τ̂−m − q(χ1) ≤ T ∗ < τ̂−m

)
= 1− α̃+ o(1),

P
(
τ̌m − q(χ2) ≤ T ∗ < τ̌m

)
≥ 1− α̃+ o(1)

under H+
1 , H

−
1 or H1, respectively.

The proof of Corollary 1.5.9 follows along the lines of the proof of Corollary 1.5.3 and
is therefore omitted. Hence, we turn to the proof of Theorem 1.5.7. As in the previous
section the proof of the main theorem is subdivided into three steps and to shorten
the upcoming proofs we introduce the following notation: For x ≥ −h(G̃(1))/

√
G̃(1)

and K∗ = [T ∗] let

H̃ := K∗ +
[
ν̃ m

1/2+γ
1+γ

]
, (1.5.21)

where

ν̃ :=

((
1 + x

√
G̃(1)

h(G̃(1))

)
(1 + γ) b h(G̃(1))(

g(1)−
∫ 1

0 g(x)dx
)
|δ|

) 1
1+γ

.

Further, let

Λ̂k :=

∑k
i=K∗+1 δ((i− T ∗)/m)γ

(
g(i/m)−

∑k
j=1 g(j/m)/k

)
√
m b

(1.5.22)

denote the deterministic perturbation of the detectors.
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Lemma 1.5.10. Under the assumptions of Theorem 1.5.7 and with K∗, H̃ and
Λ̂k as in (1.5.6), (1.5.21) and (1.5.22) it holds for x ≥ −h(G̃(1))/

√
G̃(1), as

m→∞:

H̃ − T ∗

m
→ 0, (1.5.23)

H̃ ∼ K∗, (1.5.24)

sgn(δ) Λ̂H̃
h(G̃(H̃/m))

→ 1 + x

√
G̃(1)

h(G̃(1))
, (1.5.25)

max
k=K∗+1,...,H̃

sgn(δ) Λ̂k
h(G̃(k/m))

→ 1 + x

√
G̃(1)

h(G̃(1))
. (1.5.26)

Proof of Lemma 1.5.10. The first two assertions are immediate consequences of the
definition of H̃ and of the early-change assumption (1.5.19). On proving (1.5.25)
we decompose Λ̂H̃ in the typical manner, i.e.

Λ̂H̃ = ΛH̃ −
∑H̃

i=K∗+1 δ((i− T ∗)/m)γ
∑H̃

j=1 g(j/m)/H̃
√
m b

, (1.5.27)

where Λk is defined in (1.5.8). Along the lines of the proof of Lemma 1.5.5 one can
show that the ΛH̃ converges towards δν̃1+γg(1)/(b(1 + γ)). As to the second term
we note that, for one thing, by (1.5.24)

H̃∑
j=1

g(j/m)

H̃
=
m

H̃

(∫ H̃/m

0
g(x) dx+O

(
g(H̃/m)/m

))
=

∫ 1

0
g(x) dx+ o(1) (1.5.28)

and, for another thing, similar as in Lemma 1.5.5∑H̃
i=K∗+1 δ((i− T ∗)/m)γ
√
m b h(G̃(H̃/m))

=
δ ν̃1+γ

b (1 + γ) h(G̃(1))
+ o(1).

Combining the two assertions above yields

sgn(δ) Λ̂H̃
h(G̃(H̃/m))

→
sgn(δ) δ ν̃1+γ

(
g(1)−

∫ 1
0 g(x) dx

)
(1 + γ) b h(G̃(1))

= 1 + x

√
G̃(1)

h(G̃(1))
.

By elementary calculations we see that sgn(δ) Λ̂k−sgn(δ) Λ̂k−1 > 0, hence sgn(δ) Λ̂k is
increasing and the convergence of (1.5.26) follows along the lines of (1.5.12).

Lemma 1.5.11. Under the assumptions of Theorem 1.5.7 it holds that, as m→∞,

max
k=m,...,H̃

| T̃k − T̃K∗ − Λ̂k |
h(G̃(k/m))

= oP (1),

where T̃k := T̂k b̂k/b shall denote the test statistic with an estimated location but a
non-estimated scale parameter.
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Proof of Lemma 1.5.11. We demonstrate the proof for k = K∗ + 1, . . . , H̃; for
k = m, . . . ,K∗ the assertion follows by the same arguments, but in a more simple
manner. In order to make use of the results for known in-control parameters, we
detach the proportion of the detectors which is due to the estimation: For k =
K∗ + 1, . . . , H̃ we have

T̃k − T̃K∗ − Λ̂k

= Tk − TK∗ − Λk

−
∑k

i=1 g(i/m)
(
âk − a− δ

∑k
j=K∗+1((j − T ∗)/m)γ/k

)
√
m b

+

∑K∗

i=1 g(i/m)
(
âK∗ − a

)
√
m b

= Tk − TK∗ − Λk

−
∑k

i=1 g(i/m) (b Y (T ∗) + b∗ Y ∗(k − T ∗))
k
√
m b

+

∑K∗

i=1 g(i/m)Y (K∗)

K∗
√
m

,

where as in Lemma 1.5.6 (taking Assumption 1.2.4 into account) we have

max
k=m,...,H̃

|Tk − TK∗ − Λk |
h(G̃(k/m))

= oP (1).

We look at the additional terms, which arise from the estimation of a: By the
invariance principles (1.1.2) and (1.1.3) an approximation of the respective sums in
the manner of (1.5.28) we have uniformly for k = K∗ + 1, . . . , H̃∑K∗

i=1 g(i/m)Y (K∗)

K∗
√
m

−
∑k

i=1 g(i/m)Y (K∗)

k
√
m

= oP (1)

and by Proposition 1.3.2 we have uniformly for k = K∗ + 1, . . . , H̃∑k
i=1 g(i/m)Y (K∗)

k
√
m

−
∑k

i=1 g(i/m)Y (T ∗)

k
√
m

= oP (1).

Further, taking (1.1.3) into account, it holds uniformly for k = K∗ + 1, . . . , H̃ that∑k
i=1 g(i/m) b∗ Y ∗(k − T ∗)

k
√
m b

= OP
((
H̃κ +

√
H̃ −K∗

)
/
√
m
)

= oP (1),

which completes the proof.

By the means of Lemma 1.5.10 and Lemma 1.5.11, the proof of Theorem 1.5.7 follows
along the lines of the proof of Theorem 1.5.1, hence it is omitted. Finally, we give
the proof of the consistency of the estimate δ̂.
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Proof of Lemma 1.5.8. Note that by T ∗−m = o
(
mζ
)

it holds for sufficiently large
m, that T ∗ < m+mζ . We start by separating the stochastic and the deterministic
parts of δ̂m,m+mζ :

m+mζ∑
i=1

((i−m)/m)γ+ (Z(i)− Z(i− 1)− Z(m)/m)

=
K∗∑

i=m+1

((i−m)/m)γ b (Y (i)− Y (i− 1)− Y (m)/m)

+ ((K∗ + 1−m)/m)γ b (Y (T ∗)− Y (K∗)− Y (m)/m)

+ ((K∗ + 1−m)/m)γ b∗ Y (K∗ + 1− T ∗)

+
m+mζ∑
i=K∗+2

((i−m)/m)γ (b∗ Y ∗(i− T ∗)− b∗Y ∗(i− 1− T ∗))

−
m+mζ∑
i=K∗+2

((i−m)/m)γ b Y (m)/m

+ δ
m+mζ∑
i=K∗+1

((i−m)/m)γ((i− T ∗)/m)γ ,

(1.5.29)

where that the last (deterministic) sum converges towards δ and the remaining
(stochastic) terms do not contribute to the asymptotic. For the latter, we confine
ourselves to showing that the fourth sum is of order oP (1); the same follows for
the remaining four stochastic terms in a similar manner. As usual, the first step is
to make use of the invariance principle (1.1.3) to replace Y ∗(i − T ∗) by a Wiener
process. Note that

m+mζ∑
i=1

((i−m)/m)γ+ ' mζ(γ+1)−γ = mγ(ζ−1)+ζ ,

m+mζ∑
i=1

((i−m)/m)2γ
+ ' mζ(2γ+1)−2γ = m2γ(ζ−1)+ζ ,

which gives us via Remark 1.3.3 the following rate of convergence:∑m+mζ

i=K∗+2((i−m)/m)γ+(Y ∗(i− T ∗)− Y ∗(i− 1− T ∗))∑m+mζ

i=1 ((i−m)/m)2γ
+

=

∑m+mζ

i=K∗+2((i−m)/m)γ+(W ∗(i− T ∗)−W ∗(i− 1− T ∗))∑m+mζ

i=1 ((i−m)/m)2γ
+

+
mγ(ζ−1)mζ κ

m2γ(ζ−1)+ζ
OP (1)

=
m(γ(ζ−1)+ζ)

√
log(m)

m2γ(ζ−1)+ζ
OP (1) + oP (1)

= oP (1),
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where in the last two equalities we used ζ > 1. Now, we show that the deterministic
part of (1.5.29) (i.e. the last summand) converges to δ, which is equivalent to
showing that∑m+mζ

i=1 (i−m)γ+
(
(i−m)γ+ − (i− T ∗)γ+

)∑m+mζ

i=1 (i−m)2γ
+

→ 0.

The latter term vanishes for i ≤ K∗ = [T ∗], hence we have

m+mζ∑
i=1

(i−m)γ+
(
(i−m)γ+ − (i− T ∗)γ+

)
=

K∗∑
i=m+1

(i−m)2γ
+ +

m+mζ∑
i=K∗+1

(i−m)γ+
(
(i−m)γ+ − (i− T ∗)γ+

)
.

On the one hand, we have∑K∗

i=m+1(i−m)2γ
+∑m+mζ

i=1 (i−m)2γ
+

= O
((

(T ∗ −m)/mζ
)2γ+1

)
= o(1).

On the other hand, we have by the Cauchy–Schwarz inequality and the mean value
theorem for some ξi ∈ [i− T ∗, i−m] that∑m+mζ

i=K∗+2(i−m)γ+
(
(i−m)γ+ − (i− T ∗)γ+

)∑m+mζ

i=1 (i−m)2γ
+

≤

(∑m+mζ

i=K∗+2(i−m)2γ
+

)1/2(∑m+mζ

i=K∗+2

(
(i−m)γ+ − (i− T ∗)γ+

)2)1/2

∑m+mζ

i=1 (i−m)2γ
+

= O
(
mζ(2γ+1)/2/mζ(2γ+1)

) (m+mζ∑
i=1

(
ξγ−1
i (T ∗ −m)

)2
)1/2

= O
(
m−ζ(2γ+1)/2

)
O
(
mζ(2γ−1)/2 (T ∗ −m)

)
= O

(
(T ∗ −m)/mζ

)
= o(1),

where the last equality follows by our assumption on ζ.
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1.6 Finite sample behavior

In this section we present some simulation results in order to demonstrate the finite
sample behavior of the suggested procedures. As introduced in Example 1.1.1 we
consider a process Zi = εi + δ((i− T ∗)/m)γ+, where the innovations εi are indepen-
dently, identically distributed. For the results below we choose εi ∼ Exp(1). We
consider different lengths of the training period m, where in each case the pro-
cess is monitored for time period of 10m and the null hypothesis is kept if no
change has been indicated until then. For the results under the alternative we choose
T ∗ = m + m0.5, which fulfills the early-change assumption of Theorem 1.5.1 and
Theorem 1.5.7. Moreover, we choose different sizes for the parameters δ and γ,
varying in between 0.5 and 3 or 0.2 and 2, respectively.

For the testing procedure we follow Remark 1.2.2, Remark 1.2.3 and Remark 1.2.5:
As a weight function we use g(t) = tλ, where we consider λ = 0.2, λ = 0.5 and
λ = 1.5, and as a threshold function we use h(t) = c t where c is adjusted such
that we attain the prescribed level α asymptotically. In case of unknown in-control
parameters, the parameter b is estimated (non-sequentially) by

b̂k = b̂m =
1

m̂(m− m̂+ 1)

m∑
j=m̂

(
Z(j)− Z(j − m̂)− m̂Z(m)/m

)2
,

where m̂ = m0.25 (see Remark 1.2.6). Each result is based on 5000 repetitions.

Table 1.1 and Table 1.2 show the relative frequency of a false alarm for known or
unknown in-control parameters, respectively, with a prescribed asymptotic level of
α = 5% and α = 10%. We see that the asymptotic level is (mostly) well attained,
where, as one would expect, in case of known in-control parameters the simulated
sizes are slightly closer to the prescribed asymptotic size.

For the simulation results under the alternative we restrict ourselves to the case
of α = 5%. The consistency of the testing procedure is investigated in Table 1.3
and Table 1.4 (for known in-control parameters) and Table 1.5, Table 1.6 and Table
1.7 (for unknown in-control parameters), where each table gives the power of the
procedure for a fixed λ. In case of known in-control parameters and λ = 0.2 all
changes were detected, hence the corresponding table is omitted. Note that the case
of γ = 0.5 and λ = 1.5 does not fulfill the assumptions of the consistency results
obtained in Theorem 1.4.1 and Theorem 1.4.3 (i.e. λ ≤ γ, see Remark 1.4.2, Re-
mark 1.4.5 and Section 1.7) which explains the poorer detection rate in this case.

Finally, we illustrate the asymptotic normality of the delay times (see Theorem
1.5.1 and Theorem 1.5.7) by comparing histograms of the standardized delay times
with the density function of the standard normal distribution. For training peri-
ods of length m = 500 and m = 1000 we consider the parameter combinations
λ = 0.2, γ = 0.5 and λ = γ = 0.5. For larger λ and γ the results become
worse and the histograms have a stronger tendency to the right, which indicates that
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a smaller λ might be the better choice in practice. In Figure 1.2, the parameter
δ was estimated by δ̂m,m+mζ of Lemma 1.5.8, where we choose ζ = 1.05, whereas
for Figure 1.1 we used the true values of δ.

α = 5% α = 10%

m λ = 0.2 λ = 0.5 λ = 1.5 λ = 0.2 λ = 0.5 λ = 1.5

25 .0576 .0590 .0684 .1036 .0956 .1044
50 .0604 .0644 .0572 .1110 .1006 .1054
100 .0574 .0592 .0524 .0952 .1076 .1038
250 .0500 .0478 .0606 .1030 .0956 .1048
500 .0538 .0534 .0558 .1008 .0986 .1020
1000 .0512 .0628 .0610 .0968 .1044 .0990

Table 1.1: Relative frequency of a false alarm under the null hypothesis for known
in-control parameters

α = 5% α = 10%

m λ = 0.2 λ = 0.5 λ = 1.5 λ = 0.2 λ = 0.5 λ = 1.5

25 .0864 .0922 .0730 .1584 .1624 .1212
50 .0564 .0650 .0518 .1112 .1268 .0916
100 .0620 .0616 .0576 .1092 .1138 .0928
250 .0520 .0450 .0392 .0932 .1016 .0846
500 .0454 .0480 .0340 .1054 .1060 .0928
1000 .0518 .0452 .0458 .0982 .1022 .0816

Table 1.2: Relative frequency of a false alarm under the null hypothesis for unknown
in-control parameters for m̂ = m0.25

λ = 0.5 γ = 0.5 γ = 2

m δ = 0.5 δ = 1 δ = 2 δ = 0.5 δ = 1 δ = 2

25 .0872 1 1 1 1 1
50 .9950 1 1 1 1 1
100 1 1 1 1 1 1
250 1 1 1 1 1 1
500 1 1 1 1 1 1
1000 1 1 1 1 1 1

Table 1.3: Relative frequency of a correct detection of a change for known in-control
parameters for λ = 0.5, T ∗ = m+m0.5 and α = 5%
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λ = 1.5 γ = 0.5 γ = 2

m δ = 0.5 δ = 1 δ = 2 δ = 0.5 δ = 1 δ = 2

25 .0690 .0680 .1184 .0610 .1316 1
50 .0656 .0750 .9792 .0572 1 1
100 .0620 .2076 1 .9660 1 1
250 .1040 1 1 1 1 1
500 .6248 1 1 1 1 1
1000 .1 1 1 1 1 1

Table 1.4: Relative frequency of a correct detection of a change for known in-control
parameters for λ = 1.5, T ∗ = m+m0.5 and α = 5%

λ = 0.2 γ = 0.5 γ = 2

m δ = 0.5 δ = 1 δ = 2 δ = 0.5 δ = 1 δ = 2

25 .9170 1 1 1 1 1
50 .9978 1 1 1 1 1
100 1 1 1 1 1 1
250 1 1 1 1 1 1
500 1 1 1 1 1 1
1000 1 1 1 1 1 1

Table 1.5: Relative frequency of a correct detection of a change for unknown in-
control parameters for λ = 0.2, T ∗ = m+m0.5, m̂ = m0.25 and α = 5%

λ = 0.5 γ = 0.5 γ = 2

m δ = 0.5 δ = 1 δ = 2 δ = 0.5 δ = 1 δ = 2

25 .2824 .9984 1 1 1 1
50 .9256 1 1 1 1 1
100 1 1 1 1 1 1
250 1 1 1 1 1 1
500 1 1 1 1 1 1
1000 1 1 1 1 1 1

Table 1.6: Relative frequency of a correct detection of a change for unknown in-
control parameters for λ = 0.5, T ∗ = m+m0.5, m̂ = m0.25 and α = 5%
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λ = 1.5 γ = 0.5 γ = 2

m δ = 0.5 δ = 1 δ = 2 δ = 0.5 δ = 1 δ = 2

25 .0960 .0984 .4754 .0804 .9648 1
50 .0666 .1040 .8540 .0560 1 1
100 .0772 .3394 1 .0718 1 1
250 .0828 .9068 1 1 1 1
500 .2450 1 1 1 1 1
1000 .8982 1 1 1 1 1

Table 1.7: Relative frequency of a correct detection of a change for unknown in-
control parameters for λ = 1.5, T ∗ = m+m0.5, m̂ = m0.25 and α = 5%
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Figure 1.1: Histograms of the standardized delay times for known in-control param-
eters for α = 5% and T ∗ = m+m0.5
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(b) λ = 0.2, γ = 0.5, m = 1000 
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Figure 1.2: Histograms of the standardized delay times for unknown in-control pa-
rameters for α = 5%, T ∗ = m+m0.5, m̂ = m0.25 and ζ = 1.05
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1.7 Some calculations

In this section we verify the growth rates of Assumption 1.2.1 and Assumption 1.2.4
and the growth conditions of Theorem 1.4.1 and Theorem 1.4.3 for the weight and
threshold functions suggested in Remark 1.2.2 and Remark 1.2.5 and the type of
change suggested in Example 1.1.1 and Example 1.1.2.

Recall that g(t) = tλ, which implies

G(t) = t1+2λ/(1 + 2λ)

and

G̃(t) = λ̃ t1+2λ, where λ̃ = λ2/((1 + 2λ)(1 + λ)2)

and

h(1)(t) = c t,

h(2)(t) =
√
t f−1

(
ln(t) + f(c)

)
, where f(t) = t2 + 2 ln(φ(t)),

h(3)(t) =
√
t (c2 + ln(t)).

The following remark implies h(2)(t) ∼ h(3)(t) and therefore

sup
t≥m

t1/2+λ/ h(i)(G(t)) = O(1)

and

sup
t≥m

t1/2+λ/ h(i)(G̃(t)) = O(1)

for i = 1, 2, 3.

Remark 1.7.1. The function

f : R≥0 → R≥f(0), t 7→ t2 + 2 ln(φ(t)),

is continuous, increasing and surjective, hence it is invertible with a continuous, in-
creasing inverse function f−1 : R≥f(0) → R≥0. We do not have an explicit expression
of f−1, however the following properties can easily be shown:

1. f(t) ∼ t2 as t→∞, supt≥1 f(t)/t2 <∞,

2.
√
t < f−1(t) <

√
t+ 1 for all t ≥ 0,

3. f−1(t) ∼
√
t as t→∞, supt≥1 f

−1(t)/
√
t <∞.

Proof of Remark 1.7.1. The first assertion is trivial. The second assertion immedi-
ately implies the third one, hence we focus on the second assertion: Note that, on
the one hand, for all t ≥ 0

t = f(f−1(t)) = (f−1(t))2 + 2 ln(φ(f−1(t))) < (f−1(t))2,
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hence
√
t < f−1(t). On the other hand, we have for all t ≥ 0

t < t+ 1 + 2 ln(φ(1)) < t+ 1 + 2 ln(φ(
√
t+ 1)) = f(

√
t+ 1).

Via the monotonicity of f−1 this implies f−1(t) <
√
t+ 1.

Now, we verify Assumption 1.2.1 and Assumption 1.2.4. Since G̃(t) ' G(t) it
is sufficient to consider the latter one. The following convergences hold true for
i = 1, 2, 3 and uniformly for t ≥ m as m→∞:

tκ g(t/m)
√
m h(i)(G(t/m))

=
tκ−1/2 (t/m)λ+1/2

h(i)(G(t/m))
= o(1)

and

sup
0≤ε≤1/m

g′(t/m− ε)
√
t log log(t/m)

m3/2 h(i)(G(t/m))
=

√
log log(t/m)

t
O(1) = o(1).

Concerning Assumptions (1.2.5) and (1.2.11) we have for h(1):∣∣∣∣ 1− t/m

[t]/m

∣∣∣∣ =

∣∣∣∣ [t]− t
[t]

∣∣∣∣ ≤ 1

m
= o(1).

Showing the same assertion for h(2) is somewhat more tedious since we do not have
an explicit expression for f−1. Decomposing∣∣∣ 1− h(2)(t/m)

h(2)([t]/m)

∣∣∣ =

∣∣∣∣1−
√
t/m√
[t]/m

f−1
(

ln(t/m) + f(c)
)

f−1
(

ln([t]/m) + f(c)
)∣∣∣∣

we have, on the one hand,∣∣√t/[t]− 1
∣∣ = o(1)

and, on the other hand, for some ξ ∈ [ln([t]/m) + f(c), ln(t/m) + f(c)],∣∣∣∣ f−1
(

ln(t/m) + f(c)
)

f−1
(

ln([t]/m) + f(c)
) − 1

∣∣∣∣
=

∣∣∣∣f−1
(

ln(t/m) + f(c)
)
− f−1

(
ln([t]/m) + f(c)

)
f−1

(
ln([t]/m) + f(c)

) ∣∣∣∣
=

∣∣∣∣
(
f−1(ξ)

)′
ln(t/[t])

f−1
(

ln([t]/m) + f(c)
)∣∣∣∣

= o(1)
1

f ′(ξ)

= o(1),

which shows the growth rates of Assumption 1.2.1 and Assumption 1.2.4 for h(2)

and (analogously) for h(3).



58 CHAPTER 1. MONITORING GENERAL GRADUAL CHANGES

Next, we show that the assumptions needed for the consistency of the procedure
hold true with the weight and threshold functions suggested above and

∆m,γ(i− T ∗)−∆m,γ(i− 1− T ∗) = δ
((
i− T ∗

)
/m
)γ

+
,

for some (constant) δ 6= 0 and γ > 0, where by Remark 1.4.4 we know that we
can neglect the estimate b̂N . Conditions (1.4.2) and (1.4.4) can easily be verified:
For any sequence N > m it holds for i = 1, 2, 3 that

g(N/m)
√
N/m

h(i)(N/m)
=

(N/m)λ+1/2

(N/m)λ+1/2
O(1) = O(1).

On showing (1.4.3) and (1.4.5), we focus on the latter one, which is the stronger
condition. If N −K∗ →∞ it holds that

|Λ̂N |
h(G̃(N/m))

=
|δ|
∑N

i=K∗+1

(
(i− T ∗)/m

)γ (
(i/m)λ −

∑N
j=1(j/m)λ/N

)
√
m h(G̃(N/m))

=
|δ|
∑N

i=K∗+1

(
(i− T ∗)/m

)γ
(N/m)λ

√
m h(G̃(N/m))

×

∑N
i=K∗+1

(
(i− T ∗)/m

)γ(
(i/N)λ −

∑N
j=1(j/N)λ/N

)
∑N

i=K∗+1

(
(i− T ∗)/m

)γ
=
|δ|
∑N−T ∗

i=1

(
i/(N − T ∗)

)γ
/(N −K∗) (N −K∗)1+γ (N/m)λ

m1/2+γ h(G̃(N/m))

×

(∑N−T ∗

i=1 iγ
(
(i+ T ∗)/N

)λ∑N−T ∗

i=1 iγ
−

N∑
j=1

(j/N)λ/N

)

' |δ| (N −K
∗)1+γ (N/m)λ

m1/2+γ h(G̃(N/m))

×

(∑N−T ∗

i=1 iγ
(
(i+ T ∗)/N

)λ∑N−T ∗

i=1 iγ
− 1

λ+ 1
+ o(1)

)
=: F1 × (F2 + o(1)). (1.7.1)

We show that F2 does not contribute to the asymptotic for any integer sequence
N with N − T ∗ →∞. On the one hand we have

F2 ≤ 1− 1

λ+ 1
=

λ

λ+ 1
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and on the other hand we have

F2 =

∑N−T ∗

i=1 iγ
(
(i+ T ∗)/i

)λ (
i/N

)λ∑N−T ∗

i=1 iγ
− 1

λ+ 1

≥ 1

Nλ

(
N

N − T ∗

)λ ∑N−T ∗

i=1 iγ+λ∑N−T ∗

i=1 iγ
− 1

λ+ 1

=
1(

N − T ∗
)λ
((

N − T ∗
)1+λ+γ(

N − T ∗
)1+γ

1 + γ

1 + λ+ γ
+ o(1)

)
− 1

λ+ 1

=
λ γ

(1 + λ+ γ) (1 + λ)
+ o(1),

hence the convergence is determined by F1. A possible choice of N is N = [ρ T ∗] for
some 1 < ρ < (λ+ 1)1/λ, which yields

F1 '
(ρ− 1)1+γ T ∗1+γ+λ

m1/2+γ+λ h(G̃(ρ T ∗/m))
' (T ∗/m)1+γ+λ√m

h(G̃(ρ T ∗/m))
.

For h(1) it holds that

F1 '
(
T ∗

m

)γ−λ√
m→∞

if γ ≥ λ. For h(2) and h(3) it holds that

F1 '
(
T ∗

m

)1/2+γ √
m/ log(T ∗/m)→∞

for arbitrary γ, λ > 0.

Note that in this section we assumed δ to be constant. Possible choices of N for
δm → 0 can be found in Section 1.4.3.





Chapter 2

Monitoring gradual changes in renewal processes

In this chapter we establish results on detecting gradual changes in an unobserv-
able (renewal) process based on observations of the corresponding counting process.
Counting processes appear in many applications in various areas such as manufac-
turing, physics or insurance. For a general survey on counting processes and renewal
theory we refer to Asmussen (2003) and Gut (2009) and for some application exam-
ples of counting processes we refer to Parzen (1999).

Gut and Steinebach (2002), (2009) considered the following scenario: One wishes
to (sequentially) detect an (abrupt) change in the location of an unobservable pro-
cess {Sk | k ∈ N0} , where Sk is the sum of k independently, and up to a possible
shift in the mean identically distributed random variables, via observations of the
corresponding counting process N(t) := inf{k |Sk > t}. They suggest stopping
times and detectors based on (equally weighted) increments of the observed process
N(t). Motivated by Gut (2011), who investigated the behavior of first passage times,
with an underlying partial sum process that exhibits a non-linear trend, the question
arises how to detect a gradual change in the above setting. As described earlier, if
one expects to detect a gradual change, it is reasonable to put heavier weights on
later observations where a (quasi) maximum likelihood approach suggests to choose
a weight function based on the assumed type of change. The idea which we pursue
in this chapter is to consider S̃k := inf{t ∈ N0|N(t) > k}, i.e. the inverse process
corresponding to our observed process {N(t) | t ∈ N0}, expecting that S̃k behaves
similarly as Sk does. Hence, we construct our detectors as we would, if we observed
{Sk} directly, i.e. we consider weighted increments of the observations S̃k, where
the weight function is deduced from the (assumed) type of change.

This chapter is organized as follows: The testing problem is introduced in detail
in Section 2.1. Suitable detectors and stopping times for closed-end and open-end
monitoring procedures are introduced in Section 2.2. In Section 2.3 we demonstrate
how a strong approximation of {Sn |n ∈ N0} implies a strong approximation of
{S̃n |n ∈ N0} under the null hypothesis and under the alternative. Making use of
these results we can describe the asymptotic behavior of the stopping times under
the null hypothesis (Section 2.4), show consistency of the suggested testing proce-
dures (Section 2.5) and establish results on the asymptotic normality of the (suitably
standardized) delay times (Section 2.6) under the alternative. Each section is again
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subdivided with respect to known and unknown in-control parameters. The finite
sample behavior is investigated in a small simulation study in Section 2.7.
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2.1 Setting of the problem

Consider the following counting process

N(t) = inf{k |Sk > t}, t ≥ 0,

sequentially observed at integer time points (i.e. we monitor N(0), N(1), N(2), . . . ),
where {St | t ≥ 0} is an unobservable process that consists of a cumulated noise
term Y and a mean function M :

St = Y (t) +M(t).

More precisely {Y (t) | t ≥ 0} shall be a general stochastic process, which fulfills a
strong invariance principle

sup
0≤t≤T

|Y (t)− σW (t) | = sup
0≤t≤T

|St −M(t)− σW (t) | a.s.
= O(T κ) (2.1.1)

for some σ > 0, some 0 < κ < 1/2 and some Wiener process {W (t) | t ≥ 0}. (Ex-
amples for such processes are given in Section 1.1 and e.g. in Section 2.1 of Kirch
(2006).)

We are interested in testing for a possible change in the mean function M, which
we characterize via its increments denoted by µ(k) = M(k) −M(k − 1). We as-
sume that S̃k has a linear drift in the in-control state, i.e. constant increments
M(k) −M(k − 1) =: µ0 > 0, which might start to in- or decrease (monotonously)
towards a (different) level µ1 := µ0 + δ > 0 at some unknown time point k∗:

µ(k) = µ1 − δ (1 + (k − k∗)+)−γ = µ0 + δ
(
1− (1 + (k − k∗)+)−γ

)
, (2.1.2)

where for the sake of simplicity we assume k∗ ∈ N. For the consistency results (see
Section 2.5) we also allow for local alternatives, i.e. δ = δm → 0 as m→∞.
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Figure 2.1: µ(x) for µ0 = 2, µ1 = 1/2, γ = 1/4 and k∗ = 20
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One may think for example of N(t) as the number of insurance claims arriving
in a certain time period. Calculations, like pricing insurance policies, can be based
on the frequently collected counting data rather than on the (possibly unobservable)
inter-arrival times and in our framework one may test whether the frequency of e.g.
accidents increases.

We want to consider a closed-end as well as an open-end scenario. In both set-
tings we rely on the non-contamination assumption, i.e. we assume that we have
some training period of length

m < µ0 k
∗, m ∈ N, (2.1.3)

during which µ(k) stays constant. In the closed-end setting we also have a fixed
truncation point T = Tm = [ϑmρ], where the sequential testing procedure will
finally terminate, even if no change has been detected up to that time point. The
truncation point shall either be a multiple of the training period, i.e. ρ = 1 and
ϑ > 1, or dominate the training period in the sense that ρ > 1 and ϑ ≥ 1. To
shorten the notation we further introduce

ϑ̃ :=

{
1/ϑ if ρ = 1

0 if ρ > 1.

In the open-end scenario we have no such fixed time horizon, but rather monitor the
process until we either detect a change or (theoretically speaking) forever.

We are interested in testing the null hypothesis

H0 : δ = 0 “no change”

against either one of the following closed-end alternatives

Hclosed
1,+ : δ > 0, k∗ < T/µ0 “one-sided, positive change”,

Hclosed
1,− : δ < 0, k∗ < T/µ0 “one-sided, negative change”,

Hclosed
1 : δ 6= 0, k∗ < T/µ0 “two-sided change”,

or one of the following open-end alternatives

Hopen
1,+ : δ > 0, k∗ <∞ “one-sided, positive change”,

Hopen
1,− : δ < 0, k∗ <∞ “one-sided, negative change”,

Hopen
1 : δ 6= 0, k∗ <∞ “two-sided change”.

Remark 2.1.1. The term “renewal process” usually refers to partial sums of in-
dependently, identically distributed random variables, which are almost sure non-
negative (e.g. inter-arrival times), whereas the more general case considered here
is also known under the heading “renewal theory for random walks”. Further, the
term “counting process” rather refers to N ′(t) = sup{k |Sk ≤ t} than to N(t) =
inf{k |Sk > t}, which are known as “first passage times”. If non-negative summands
are assumed, N(t) = N ′(t) + 1. For general summands, however, it is essential to
consider the first passage times N(t) which are stopping times with respect to the
filtration {Fn}n∈N, where Fn = σ{Sk, k ≤ n} (cf. Section 3 of Gut (2011)).
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2.2 Stopping times

In this section we introduce detectors and stopping times for testing the null hypoth-
esis of no change against either of the alternatives introduced in the previous section.
In our setting we assume that a change might occur in a process {St | t ≥ 0}, how-
ever, we only observe the corresponding counting process N(t) = inf{k |Sk >
t}. The observations are made at discrete time points, i.e. in the closed-end setting

t ∈ {0, . . . ,m, . . . , T} =: Ic

and in the open-end setting

t ∈ {0, . . . ,m, . . . ,∞} =: Io.

Our test statistic will make use of the inverse of N(t), that is

S̃k = inf{t ∈ I |N(t) > k}, k ∈ N0,

where I denotes either Ic or Io, depending on the setting we are working with.

The general idea is that {S̃n |n ∈ N0} behaves similarly to the unobservable real-
izations of {Sn |n ∈ N0}. This duality is further described in Section 2.3, where we
resume how the invariance principle for {Y (t) | t ≥ 0} (or {St | t ≥ 0}, respectively)
can be converted into an invariance principle for {S̃n |n ∈ N0}. One problem arising
in this setting is that the number of observations of S̃n depends on N(t), hence
it is random. In Section 2.2.1 we give some asymptotics for the length of the train-
ing period m and the truncation point T. In Section 2.2.2 and Section 2.2.3 we
propose detectors and stopping times for known or unknown in-control parameters,
respectively. Note that in this setting we do not allow for a change in σ2, so strictly
speaking, σ2 is not an in-control parameter. However, for the sake of clarity, we
will still refer to µ0 and σ2 as such.

2.2.1 Randomness of the sample size

The sequential testing procedure shall start after the training period, that is after
m observations of the counting process N(t) are made. At this time point we have
S̃k <∞ if and only if k < N(m), hence we have m̃ = N(m)−1 observations of the
process {S̃k}. The asymptotic size of N(t) is determined by the following strong
law of large numbers for counting processes: Under the null hypothesis it holds that

N(t)

t

a.s.−→ 1

µ0
,

which is a well known result if Sn is e.g. the sum of independently, identically
distributed random variables (cf. e.g. Theorem 3.4.1 of Gut (2009)) and, in our
case, is an immediate consequence of Assertion (2.3.1) below. Hence, it holds that

m̃
a.s.
= m/µ0 + o(m).
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In the closed-end setting we also have to take the total number ñ of observations
of S̃n into account. By the same arguments as above we have that under the null
hypothesis

ñ
a.s.
= T/µ0 + o(T ),

where T is the total number of observations of N(t).

Under the alternative we do not have a precise asymptotic for N(T ) but rather
asymptotic upper and lower bounds. In case of µ1 < µ0, i.e. δ < 0, the bounds
are derived as follows: Note that under the alternative we have µ1 ≤ µ(k) ≤ µ0 for
all k, hence

Nµ0(t) ≤ N(t) ≤ Nµ1(t),

where Nµ0(t) and Nµ1(t) are the counting processes based on {Y (n) + nµ0} or
{Y (n) + nµ1}, respectively. Similarly as above, we obtain

1

µ0

a.s.
≤ lim inf

T→∞

ñ

T
≤ lim sup

T→∞

ñ

T

a.s.
≤ 1

µ1
. (2.2.1)

Conversely, in case of µ1 > µ0 (2.2.1) holds true with 1/µ1 as a lower and 1/µ0 as
an upper bound.



2.2. STOPPING TIMES 67

2.2.2 Stopping times for known in-control parameters

The monitoring procedure will be based on the weighted, standardized increments
of the process S̃k, i.e

Rk =
k∑
i=1

g(i)
(
S̃i − S̃i−1 − µ0

)
σ

, k ≥ m̃,

where g(t) = 1 − (1 + t)−λ for some λ > 0. The choice of the weight function
is, as in the previous chapter, motivated by a (quasi) maximum likelihood approach
which suggests to use (µ(t)−µ0)/δ as a weight function. Note that in our case the
relation between the weight and the change function is g(t) =

(
µ(t+ k∗)−µ0)/δ, if

λ = γ.

On standardizing our detectors, we will make use of the function

G(t) =

∫ t

0
g2(x) dx,

which will turn out to be asymptotically the variance of our detectors (see the cor-
responding discussion in Section 1.2.1).

We shall stop the monitoring procedure as soon as a detector (divided by a threshold
function) exceeds some critical value c, thus our stopping times for the alternatives
Hclosed

1,+ , Hclosed
1,− and Hclosed

1 are

τ closedm,+ = min
{
k = m̃, . . . , ñ | Rk/h1(k, T ) > c

}
,

τ closedm,− = min
{
k = m̃, . . . , ñ | −Rk/h1(k, T ) > c

}
,

τ closedm = min
{
k = m̃, . . . , ñ | |Rk|/h1(k, T ) > c

}
,

whereas our stopping times for Hopen
1,+ , Hopen

1,− and Hopen
1 are

τ openm,+ = min
{
k = m̃, . . . ,∞| Rk/h2(k, m̃) > 1

}
,

τ openm,− = min
{
k = m̃, . . . ,∞| −Rk/h2(k, m̃) > 1

}
,

τ openm = min
{
k = m̃, . . . ,∞| |Rk|/h2(k, m̃) > 1

}
,

where h1 and h2 are suitably chosen threshold functions. It seems natural that
the different settings (closed-end and open-end) require different threshold functions
to bound the detectors. In the closed-end setting we will use

h1(t, T ) = G(t)βG(T/µ0)1/2−β, 0 ≤ β < 1/2,

where the parameter β controls the sensitivity of the testing procedure towards
early or late changes. If an early change is expected, one would rather choose a large
β, whereas if a late change is expected, one would rather choose a small β (also
cf. Aue (2003), Sections 2.3 and 2.6).
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In the open-end setting we consider the following threshold functions: For the one
sided stopping times τ openm,+ and τ openm,− we bound the detectors by

h2(t, m̃) =
√
G(t) f−1(ln(G(t)/G(m̃)) + f(c)) ,

with f(t) = t2+2 ln(φ(t)) and c > 0, and for the two-sided stopping time τ openm we
bound the detectors by

h2(t, m̃) =
√
G(t) (ln(G(t)/G(m̃)) + c2),

with c > 0. These two threshold functions are chosen such that one can obtain
critical values for the testing procedure via the distributions quoted in Remark 1.2.3
(see Theorem 2.4.2 and Theorem 2.4.6 for details).
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2.2.3 Stopping times for unknown in-control parameters

In this section we suggest estimates for the typically unknown in-control parameters
µ0 and σ2. The mean is estimated via

µ̂0,k =
1

k
S̃k,

whereas the variance σ2 is replaced by a general estimate σ̂2
k which fulfills under

the null hypothesis

sup
k=m̃,...,∞

∣∣σ̂2
k − σ2

∣∣ = oP (1). (2.2.2)

By replacing the unknown in-control parameters by the corresponding estimates we
obtain the following detectors:

R̂k =

k∑
i=1

g(i)
(
S̃i − S̃i−1 − µ̂0,k

)
σ̂k

, k ≥ m̃,

where g(t) = 1− (1 + t)−λ for some 0 < λ < 1/2− κ (see the discussion on λ in
Remark 2.2.1 below). Further, to shorten the notation we introduce Λ := 1− 2λ.

Due to the estimate µ̂0,k the variance of the detectors slightly changes (see the
corresponding discussion in Section 1.2.2). Hence, instead of standardizing the de-
tectors by G(t) we now have to standardize them by

G̃(t) =

∫ t

0
g2(x) dx−

( ∫ t
0 g(x) dx

)2
t

. (2.2.3)

We consider the following stopping times: for the alternatives Hclosed
1,+ , Hclosed

1,− and
Hclosed

1

τ̂ closedm,+ = min
{
k = m̃, . . . , ñ | R̂k/ĥ1(k, T ) > c

}
,

τ̂ closedm,− = min
{
k = m̃, . . . , ñ | − R̂k/ĥ1(k, T ) > c

}
,

τ̂ closedm = min
{
k = m̃, . . . , ñ | |R̂k|/ĥ1(k, T ) > c

}
and for the alternatives Hopen

1,+ , Hopen
1,− and Hopen

1

τ̂ openm,+ = min
{
k = m̃, . . . ,∞| R̂k/ĥ2(k, m̃) > 1

}
,

τ̂ openm,− = min
{
k = m̃, . . . ,∞| − R̂k/ĥ2(k, m̃) > 1

}
,

τ̂ openm = min
{
k = m̃, . . . ,∞| |R̂k|/ĥ2(k, m̃) > 1

}
.

The corresponding threshold function for the closed-end setting is

ĥ1(t, T ) = G̃(t)βG̃
(
T/µ̂0,[t]

)1/2−β
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and the corresponding threshold functions for the open-end setting are either for the
one-sided stopping times τ̂ openm,+ and τ̂ openm,− ,

ĥ2(t, m̃) =
√
G̃(t) f−1(ln(G̃(t)/G̃(m̃)) + f(c)) ,

with f(t) = t2 + 2 ln(φ(t)) and c > 0, or for the two-sided stopping time τ̂ openm

ĥ2(t, m̃) =
√
G̃(t)

(
ln(G̃(t)/G̃(m̃)) + c2

)
with c > 0.

Remark 2.2.1. The restriction on λ arises from the fact that (e.g. on prov-
ing the limit behavior of the testing procedure under the null hypothesis) we need
tκ/
√
G̃(t) → 0, as t → ∞. Since G̃(t) ' tΛ (cf. Section 2.2.4 below) this holds

true for κ < Λ/2. Note that this assumption is not needed in case of known in-
control parameters, since G(t) ' t (cf. Section 2.2.4), hence tκ/

√
G(t) → 0, as

t→∞, is an immediate consequence of κ < 1/2.

Remark 2.2.2. A possible choice for an estimate fulfilling (2.2.2) under the null
hypothesis is

σ̂2
k =

1

k̂(k − k̂ + 1)

k∑
j=k̂

(
S̃j − S̃j−k̂ − k̂ S̃k/k

)2
, k ≥ m̃,

where k̂ = kq for some 2κ < q < 1. (See Section 1.3.3; note that by Theorem
2.3.1 the assertion of Lemma 1.3.5 carries over in this setting if we replace Z(k) by
S̃k.) In order to preserve the consistency under the alternative one can also estimate
σ2 non-sequentially, i.e. not with every newly made observation but rather by only
using the data obtained in the training period.
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2.2.4 Variance of the detectors

In this section we analyze the functions

G(t) =

∫ t

0
g2(x) dx

and

G̃(t) =

∫ t

0
g2(x) dx−

(∫ t
0 g(x) dx

)2

t
,

which were introduced in Section 2.2.2 and Section 2.2.3. Note that the function
g(t) = 1−(1+t)−λ fulfills the assumptions of Lemma 1.2.7 (where for G̃(t)→∞ the
restriction λ < 1/2 applies), hence the assertions of Lemma 1.2.7 hold true in the
setting of this chapter, as well. The following additional growth rates will help us to
prove the asymptotic results on the behavior of the test statistic.

Lemma 2.2.3. Let g(t) = 1− (1 + t)−λ for some λ > 0 and Λ = 1− 2λ.

1. It holds that G(t) ∼ t (as t → ∞), supt≥1 t/G(t) < ∞ as well as
supt≥1G(t)/t <∞.

2. If 0 < λ < 1 we have G̃′(t) ∼
(
λ/
(
(1− λ)tλ

))2 as t→∞.

3. If 0 < λ < 1/2 we have

lim
t→∞

G̃(t)

tΛ
=

λ2

Λ (1− λ)2 > 0,

supt≥1 G̃(t)/tΛ <∞ and supt≥1 t
Λ/G̃(t) <∞.

Proof of Lemma 2.2.3. We prove the three assertions separately.

1. Integration yields

G(t) = t− 2
(1 + t)1−λ − 1

1− λ
+

(1 + t)Λ − 1

Λ
∼ t,

as t→∞. The latter two assertions follow by the continuity of G(t)/t.

2. Plugging the particular definition of g(t) into the derivative calculated in
Lemma 1.2.7 we obtain for t > 0

G̃′(t) =

(
g(t) t−

∫ t
0 g(x) dx

t

)2

=

(−(1 + t)−λt−
∫ t

0 −(1 + x)−λ dx

t

)2

=

(
(1 + t)−λ − (1 + t)1−λ

t (1− λ)
+

1

(1− λ) t

)2
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= t−2λ

((
1 + t

t

)−λ
− 1

1− λ

(
1 + t

t

)1−λ
+

1

(1− λ) t1−λ

)2

∼
(

λ

(1− λ) tλ

)2

.

3. Once again, integration yields for t > 0

G̃(t) =
(1 + t)Λ − 1

Λ
− 1

t

(
(1 + t)1−λ − 1

1− λ

)2

and therefore, since λ < 1/2,

G̃(t)

tΛ
=

(1 + 1/t)Λ − 1/tΛ

Λ
−
(

(1 + 1/t)1−λ − 1/t1−λ

1− λ

)2

→ 1

Λ
− 1

(1− λ)2

=
λ2

Λ (1− λ)2
> 0.

The remaining two assertions follow by the continuity of G̃(t)/tΛ.
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2.3 Preliminary results

Horváth (1986) has shown that under the null hypothesis the strong approximation
for {St | t ≥ 0} (see (2.1.1)) implies a strong approximation for the corresponding
inverse process N(t) = inf{k |Sk > t} by the same Wiener process with the best
possible rate being (t log log(t))1/4 log(t)1/2. Csörgő et al. (1987) on the other hand,
have constructed a different Wiener process which preserves the approximation rate
of the underlying process. In Section 2.3.1 we apply their result to S̃n and obtain
a strong approximation with the same rate as the strong approximation of Sn. In
Section 2.3.2 we give an invariance principle for S̃n and (as a consequence) a
growth rate for S̃n, which holds true under the null hypothesis and under any of
the alternatives introduced in Section 2.1.

2.3.1 Invariance principle under the null hypothesis

Theorem 2.3.1. With the notation and assumptions of Section 2.1 it holds under
the null hypothesis that, as n→∞,

sup
0≤k≤n

∣∣∣∣ S̃k − k µ0

σ
− W̃ (k)

∣∣∣∣ a.s.
= O

(
nκ
)
,

where {W̃ (t) | t ≥ 0} is a Wiener process.

Proof of Theorem 2.3.1. By Theorem 3.1 of Csörgő et al. (1987) we know that (2.1.1)
implies that there exists a Wiener process {W (1)(t) | t ≥ 0} such that

sup
0≤t≤T

∣∣∣∣N(t)− t/µ0

σ/µ
3/2
0

−W (1)(t)

∣∣∣∣ a.s.
= O

(
T κ
)
, (2.3.1)

where N(t) = inf{k |Sk > t}. Denoting Z(t) = N(t)µ
3/2
0 we have

sup
0≤t≤T

∣∣∣∣Z(t)− t√µ0

σ
−W (1)(t)

∣∣∣∣ a.s.
= O

(
T κ
)
.

Hence, by the same argument as above there is some Wiener process {W (2)(t) | t ≥
0} such that

sup
0≤t≤T

∣∣∣∣N∗(t)− t/√µ0

σ/µ
3/4
0

−W (2)(t)

∣∣∣∣ a.s.
= O

(
T κ
)
,

where

N∗(t) = inf{s |Z(s) > t}

= inf
{
s |N(s) > tµ

−3/2
0

}
= inf

{
k ∈ N|N(k) > tµ

−3/2
0

}
+ O(1)

= S̃
tµ

−3/2
0

+ O(1),
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where the transition from a continuous to a discrete argument follows by N(t) being
non-decreasing. Thus,

sup
0≤t≤T

∣∣∣∣N∗(t)− t/√µ0

σ/µ
3/4
0

−W (2)(t)

∣∣∣∣
= sup

0≤t≤T

∣∣∣∣ S̃tµ−3/2
0

− t/√µ0

σ/µ
3/4
0

−W (2)(t)

∣∣∣∣ + O(1)

= sup
0≤s≤S

∣∣∣∣ S̃s − s µ0

σ/µ
3/4
0

−W (2)
(
s µ

3/2
0

)∣∣∣∣ + O(1),

where S = µ
−3/2
0 T. Setting W̃ (t) = µ

−3/4
0 W (2)

(
t µ

3/2
0

)
yields

sup
0≤k≤n

∣∣∣∣ S̃k − k µ0

σ
− W̃ (k)

∣∣∣∣ a.s.
= O

(
nκ
)
.
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2.3.2 Behavior under the alternative

The following two results hold true under the null hypothesis as well as under any
of the alternatives introduced in Section 2.1. However, under the null hypothesis we
can make use of the invariance principle of Theorem 2.3.1 which is certainly easier
to handle. Thus, Theorem 2.3.2 can be seen as an analogue of Theorem 2.3.1 under
the alternative.

Theorem 2.3.2. With the notation and assumptions of Section 2.1 it holds that, as
n→∞,

max
k=1,...,n

∣∣S̃k − V (k)
∣∣ a.s.

= O(nκ),

where

V (k) := max
l=1,...,k

(
σW (l) +M(l)

)
, (2.3.2)

with
{
W (t) | t ≥ 0

}
, σ and κ as in (2.1.1).

Proof of Theorem 2.3.2. By the duality

{N(t) > k} = {max{S1, . . . , Sk} ≤ t}

we have

S̃k = inf{t ∈ I | max{S1, . . . , Sk} ≤ t} ,

hence we can rewrite

S̃k =

{[
max{S1, . . . , Sk}

]
+ 1 if max{S1, . . . , Sk} 6∈ N,

max{S1, . . . , Sk} if max{S1, . . . , Sk} ∈ N.

This yields, as n→∞,

max
k=1,...,n

∣∣S̃k − V (k)
∣∣

≤ max
k=1,...,n

max
l=1,...,k

∣∣Sl − σW (l)−M(l)
∣∣ + O(1)

a.s.
= O

(
nκ
)
.

Via Theorem 2.3.2 one can show the following growth rate for S̃k:

Corollary 2.3.3. With the notation and assumptions of Section 2.1 it holds that,
as n→∞,

max
k=1,...,n

∣∣S̃k −M(k)
∣∣ a.s.

= O
(√

n log log(n)
)
.
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Proof of Corollary 2.3.3. By Theorem 2.3.2 and the law of the iterated logarithm we
have, as n→∞,

max
k=1,...,n

∣∣S̃k −M(k)
∣∣

a.s.
= max

k=1,...,n

∣∣V (k)− max
l=1,...,k

M(l)
∣∣ + O

(
nκ
)

≤ max
l=1,...,n

|σW (l)| + O
(
nκ
)

a.s.
= O

(√
n log log(n)

)
.
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2.4 Asymptotics under the null hypothesis

In this section we establish results on the asymptotic behavior of the stopping times
introduced in Section 2.2.2. Theorem 2.4.1 and Theorem 2.4.2 can be used to adjust
the threshold functions, such that the testing procedures attain a prescribed level
α asymptotically.

2.4.1 Asymptotics for known in-control parameters

Theorem 2.4.1. With the notation and assumptions of Section 2.1 and Section 2.2
we have under the null hypothesis for any c ∈ R

lim
m→∞

P (τ closedm,+ =∞) = P

(
sup
ϑ̃≤t≤1

W (t)/tβ ≤ c
)
,

lim
m→∞

P (τ closedm,− =∞) = P

(
sup
ϑ̃≤t≤1

W (t)/tβ ≤ c
)
,

lim
m→∞

P (τ closedm =∞) = P

(
sup
ϑ̃≤t≤1

|W (t)|/tβ ≤ c
)
.

Theorem 2.4.2. With the notation and assumptions of Section 2.1 and Section 2.2
we have under the null hypothesis for any c > 0

lim
m→∞

P (τ openm,+ =∞) = P

(
sup
t≥1

W (t)√
t f−1(ln(t) + f(c))

≤ 1

)
,

lim
m→∞

P (τ openm,− =∞) = P

(
sup
t≥1

W (t)√
t f−1(ln(t) + f(c))

≤ 1

)
,

lim
m→∞

P (τ openm =∞) = P

(
sup
t≥1

|W (t)|√
t (ln(t) + c2)

≤ 1

)
.

Before we turn to the proofs of the theorems, we state two remarks which ensure the
applicability of the results in practice.

Remark 2.4.3. All of the random variables appearing on the right hand sides in
the two theorems above have a non-degenerated limit distribution (cf. Lemma 2.1
in Section 4.2 of Csörgő and Horváth (1993), Theorem 1.5.1 of Csörgő and Révész
(1981) and Example 2 and Example 3 of Robbins and Siegmund (1970)). The distri-
butions of supϑ̃≤t≤1W (t)/tβ and supϑ̃≤t≤1 |W (t)|/tβ are not explicitly known for
β, ϑ̃ 6= 0, thus they have to be simulated in applications. Some selected simulated
critical values are given by Horváth et al. (2004). The distributions of the random
variables on the right hand sides in Theorem 2.4.2 are known (see Remark 1.2.3).

Remark 2.4.4. By choosing the constant c we can adjust the threshold functions
such that the probabilities on the right hand sides equal to 1−α. In Theorem 2.4.2
we are limited to the case of c > 0. However, this restriction does not interfere in
practice since it is fulfilled, if the asymptotic false alarm rate α ∈ (0, 1/2+1/π) (for
τ openm,+ and τ openm,− ,) or α ∈ (0, 1) (for τ openm ), respectively (see Remark 1.2.3).
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Proof of Theorem 2.4.1. We make use of Remark 1.3.3, Lemma 2.2.3 and Theorem
2.3.1 to approximate the difference between our test statistic and the corresponding
“Gaussian analogue”:

max
k=m̃,...,ñ

∣∣Rk −∑k
i=1 g(i)(W (i)−W (i− 1))

∣∣
h1(k, T )

≤ max
k=m̃,...,ñ

4 g(k) maxl=1,...,k

∣∣(S̃l − µ0l)/σ −W (l)
∣∣

h1(k, T )

a.s.
= max

k=m̃,...,ñ

kκ

h1(k, T )
O(1)

= max
k=m̃,...,ñ

kκ

kβ T 1/2−β

(
k

G(k)

)β( T/µ0

G(T/µ0)

) 1
2
−β
O(1)

a.s.
= max

k=m̃,...,ñ
(k/T )

1
2
−β kκ−1/2 O(1)

= m̃κ−1/2 O(1)
a.s.
= o(1).

(2.4.1)

Next, we approximate the sum of the weighted increments of {W (t) | t ≥ 0} by a
Wiener integral:

k∑
i=1

g(i) (W (i)−W ((i− 1))

a.s.
= g(k)W (k)−

k−1∑
i=0

(g(i+ 1)− g(i))W (i)

= g(k)W (k)−
k−1∑
i=0

∫ i+1

i
g′(x)W (i) dx

=

∫ k

0
g(x) dW (x) +

k−1∑
i=0

∫ i+1

i
g′(x)(W (i)−W (x)) dx,

where by Proposition 1.3.2 it holds that

max
k=m̃,...,ñ

∣∣∣∣ k−1∑
i=0

∫ i+1

i

g′(x)(W (i)−W (x))

h1(k, T )
dx

∣∣∣∣
≤ max

k=m̃,...,ñ
max

i=0,...,k−1
sup

i≤x≤i+1
|W (i)−W (x)|

∫ k
0 g
′(x) dx

h1(k, T )

≤ max
0≤z≤ñ−1

max
0≤ε≤1

|W (z)−W (z + ε)| max
k=m̃,...,ñ

g(k)

h1(k, T )

a.s.
= O

(√
log(T )

)
max

k=m̃,...,ñ

(G(T/µ0)/G(k))β√
G(T/µ0)

= O
(√

log(T ) T β−
1
2
)

= o(1).

(2.4.2)
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Hence, it holds that

sup
k=m̃,...,ñ

Rk
h1(k, T )

a.s.
= sup

k=m̃,...,ñ

∫ k
0 g(x) dW (x)

h1(k, T )
+ o(1). (2.4.3)

Analyzing the covariance structure of the processes (see (1.3.6)) yields{∫ t

0
g(x) dW (x)

∣∣ t ≥ 0

}
D
=
{
W (G(t)) | t ≥ 0

}
. (2.4.4)

The next step is a transition to a continuous argument:

sup
m̃≤t≤ñ

∣∣∣∣W (G([t]))

h1([t], T )
− W (G(t))

h1(t, T )

∣∣∣∣
≤ sup

m̃≤t≤ñ

|W (G([t]))|
h1([t], T )

(
1− h1([t], T )

h1(t, T )

)
+ sup
m̃≤t≤ñ

|W (G([t]))−W (G(t))|
h1(t, T )

= oP (1),

(2.4.5)

where we already plugged in the following three asymptotic relations:

1. As we proceed in the proof, we see that

sup
m̃≤t≤ñ

|W (G([t]))|
h1([t], T )

= OP (1).

2. If β = 0, we have 1 − h1([t], T )/h1(t, T ) = 0. If β > 0, we have by the
mean value theorem

sup
m̃≤t≤ñ

(
1− h1([t], T )

h1(t, T )

)
= sup

m̃≤t≤ñ

Gβ(t)−Gβ([t])

Gβ(t)

= sup
m̃≤t≤ñ

β
Gβ−1(ξ) g2(ξ)

Gβ(t)
for some ξ ∈

[
[t], t

]
≤ sup

m̃≤t≤ñ
β

(
G(ξ)

G(t)

)β 1

G([t])
a.s.
= O(1/m)

= o(1).

(2.4.6)

3. Since 0 ≤ G(t)−G([t]) =
∫ t

[t]g
2(x) dx ≤ 1, we have by Proposition 1.3.2 and
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Lemma 2.2.3 that

sup
m̃≤t≤ñ

|W (G(t))−W (G([t]))|
h1(t, T )

a.s.
= sup

m̃≤t≤ñ

√
log(T )

tβ T 1/2−β O(1)

=
√

log(T ) m̃−(β+ρ(1/2−β)) O(1)
a.s.
= o(1),

(2.4.7)

where the last rate of convergence follows by β < 1/2.

On setting b1 = G(m̃)/G(T/µ0) and b2 = G(ñ)/G(T/µ0) we have

sup
m̃≤t≤ñ

W (G(t))

h1(t, T )
= sup

m̃≤t≤ñ

W (G(t))/
√
G(T/µ0)

(G(t)/(G(T/µ0)))β
D
= sup

b1≤t≤b2

W (t)

tβ
. (2.4.8)

Note that by Lemma 2.2.3 and T = [ϑmρ] we have

b1 =
G(m̃)

G(T/µ0)
=
G(m̃)

m̃

T/µ0

G(T/µ0)

m̃

T/µ0

a.s.−→ ϑ̃ =

{
1/ϑ if ρ = 1,

0 if ρ > 1,

and

b2 =
G(ñ)

ñ

T/µ0

G(T/µ0)

ñ

T/µ0

a.s.−→ 1.

Thus, we have by the almost sure continuity of W (t)/tβ

sup
b1≤t≤b2

W (t)

tβ
a.s.−→ sup

ϑ̃≤t≤1

W (t)

tβ
. (2.4.9)

Combining (2.4.3), (2.4.4), (2.4.5), (2.4.8) and (2.4.9) yields

sup
k=m̃,...,ñ

Rk
h1(k, T )

D−→ sup
ϑ̃≤t≤1

W (t)

tβ
, (2.4.10)

which yields the first assertion of Theorem 2.4.1. The latter two assertions follow by
similar arguments.

Proof of Theorem 2.4.2. By Remark 1.7.1 we know that, as t→∞,
√
t f−1(ln(t) + f(c)) ∼

√
t (ln(t) + c2),

hence if we show the assertion for the stopping time τ openm,+ , the proof carries over
to the assertions for the stopping times τ openm,− and τ openm .

Much of the proof follows along the lines of the proof of Theorem 2.4.1. As usual,
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the first step is the transition to a Gaussian version of our test statistic. Along the
lines of (2.4.1) we have by Lemma 2.2.3

max
k=m̃,...,∞

|Rk −
∑k

i=1 g(i)(W (i)−W (i− 1))|
h2(k, m̃)

a.s.
= max

k=m̃,...,∞

g(k) kκ

h2(k, m̃)
O(1)

a.s.
=

m̃κ√
G(m̃)

O(1)

a.s.
= o(1).

(2.4.11)

Following (2.4.2) we find that

max
k=m̃,...,∞

∣∣∑k
i=1 g(i)(W (i)−W (i− 1))−

∫ k
0 g(x) dW (x)

∣∣
h2(k, m̃)

a.s.
= O(1) max

k=m̃,...,∞

g(k)
√

log(k)

h2(k, m̃)
a.s.
= o(1).

(2.4.12)

Hence, we can make use of (2.4.4) again. As in (2.4.5) we see that

sup
t≥m̃

∣∣∣∣ h2(t, m̃)

h2([t], m̃)
− 1

∣∣∣∣ a.s.
= o(1) (2.4.13)

and

sup
t≥m̃

|W (G(t))−W (G([t]))|
h2(t, m̃)

a.s.
= o(1), (2.4.14)

yield the transition to a time continuous process, i.e. (if (2.4.13) and (2.4.14) hold
true) we have

sup
k=m̃,...,∞

W (G(k))

h2(k, m̃)
= sup

t≥m̃

W (G(t))

h2(t, m̃)
+ oP (1).

Further, by Lemma 2.2.3 we then obtain

sup
t≥m̃

W (G(t))

h2(t, m̃)

D
= sup

t≥m̃

W
(
G(t)/G(m/µ0)

)√
G(t)/G(m/µ0) f−1

(
ln(G(t)/G(m̃)) + f(c)

)
a.s.−→ sup

t≥1

W (t)√
t f−1(ln(t) + f(c))

,

(2.4.15)

which shows the first assertion of Theorem 2.4.2 and, as before, the second and third
assertion follow by the same arguments. Thus, we focus on proving (2.4.13) and
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(2.4.14): Assertion (2.4.14) can easily be verified: Via Proposition 1.3.2 and Lemma
2.2.3 we have

sup
t≥m̃

∣∣W (G(t))−W (G([t]))
∣∣

h2(t, m̃)

a.s.
= sup

t≥m̃

√
log(t)√
G(t)

O(1)
a.s.
= o(1).

Proving Assertion (2.4.13) is somewhat more tedious: On rewriting

0 ≤ h2(t, m̃)

h2([t], m̃)
− 1 =

√
G(t)

G([t])

f−1(ln(G(t)/G(m̃)) + f(c))

f−1(ln(G([t])/G(m̃)) + f(c))
− 1

we see that, on the one hand,

1 ≤ sup
t≥m̃

G(t)

G([t])
= sup

t≥m̃

G(t)−G([t])

G([t])
+ 1 ≤ 1

G(m̃)
+ 1

a.s.
= 1 +O(m−1)

and, on the other hand, it holds by the mean value theorem for some ξ ∈ [G([t])/G(m̃)+
f(c), G(t)/G(m̃) + f(c)] that

1 ≤ f−1(ln(G(t)/G(m̃)) + f(c))

f−1(ln(G([t])/G(m̃)) + f(c))

=
f−1′(ξ)

f−1(ln(G([t])/G(m̃)) + f(c))
ln

(
G(t)/G(m̃) + f(c)

G([t])/G(m̃) + f(c)

)
+ 1

≤ f−1′(ξ)

c
ln

(
1 +

G(t)−G(G([t]))

G([t]) +G(m̃) f(c)

)
+ 1

≤ f−1′(ξ)

c
ln

(
1 +

1

G([t]) +G(m̃) f(c)

)
+ 1.

By Lemma 2.2.3 we have

sup
t≥m̃

ln

(
1 +

1

G([t]) +G(m̃) f(c)

)
a.s.
= o(1)

and since f ′(t) = 2t+ 2ϕ(t)/φ(t) ≥ 2t it holds that

sup
ξ≥f(c)

f−1′(ξ) = sup
ξ≥f(c)

1

f ′(f−1(ξ))
≤ sup

ξ≥f(c)

1

2 f−1(ξ)
≤ 1

2 c
. (2.4.16)

Combining the assertions above yields (2.4.13), which completes the proof.



2.4. ASYMPTOTICS UNDER THE NULL HYPOTHESIS 83

2.4.2 Asymptotics for unknown in-control parameters

Theorem 2.4.5. With the notation and assumptions of Section 2.1 and Section 2.2
we have under the null hypothesis for any c ∈ R

lim
m→∞

P
(
τ̂ closedm,+ =∞

)
= P

(
sup
ϑ̃≤t≤1

W (t)/tβ ≤ c
)
,

lim
m→∞

P
(
τ̂ closedm,− =∞

)
= P

(
sup
ϑ̃≤t≤1

W (t)/tβ ≤ c
)
,

lim
m→∞

P
(
τ̂ closedm =∞

)
= P

(
sup
ϑ̃≤t≤1

|W (t)|/tβ ≤ c
)
.

Theorem 2.4.6. With the notation and assumptions of Section 2.1 and Section 2.2
we have under the null hypothesis for any c > 0

lim
m→∞

P
(
τ̂ openm,+ =∞

)
= P

(
sup
t≥1

W (t)√
t f−1(ln(t) + f(c))

≤ 1

)
,

lim
m→∞

P
(
τ̂ openm,− =∞

)
= P

(
sup
t≥1

W (t)√
t f−1(ln(t) + f(c))

≤ 1

)
,

lim
m→∞

P
(
τ̂ openm =∞

)
= P

(
sup
t≥1

|W (t)|√
t (ln(t) + c2)

≤ 1

)
.

Proof of Theorem 2.4.5. We start by eliminating the estimate µ̂0,k in the threshold
function: Denoting by

h̃1(t, T ) := G̃(t)βG̃(T/µ0)
1
2
−β

the function corresponding to ĥ1, yet with the estimate µ̂0,t being replaced by the
true value µ0, we have

max
k=m̃,...,ñ

∣∣∣∣ R̂k

ĥ1(k, T )
− R̂k

h̃1(k, T )

∣∣∣∣
≤ max

k=m̃,...,ñ

|R̂k|
h̃1(k, T )

max
k=m̃,...,ñ

∣∣∣∣( G̃(T/µ0)

G̃(T/µ̂0,k)

)1
2
−β
− 1

∣∣∣∣.
(2.4.17)

As we will see later on in this proof, the first factor is of order OP (1) as m→∞.
We take care of the second factor: By the mean value theorem we have∣∣∣∣ G̃(T/µ0)

G̃(T/µ̂0,k)
− 1

∣∣∣∣ =

∣∣∣∣G̃(T/µ0)− G̃(T/µ̂0,k)

G̃(T/µ̂0,k)

∣∣∣∣ =
G̃′(ξ)

G̃(T/µ̂0,k)

∣∣∣∣ Tµ0
− T

µ̂0,k

∣∣∣∣
where ξ = ξk ∈ [T/µ0, T/µ̂0,k] or ξ ∈ [T/µ̂0,k, T/µ0], respectively. Hence, by
Lemma 2.2.3 we have

max
k=m̃,...,ñ

∣∣∣∣ G̃(T/µ0)

G̃(T/µ̂0,k)
− 1

∣∣∣∣
= max

k=m̃,...,ñ

ξ−2λ T/µ̂0,k

(T/µ̂0,k)1−2λ

∣∣∣∣ µ̂0,k

µ0
− 1

∣∣∣∣ O(1)

a.s.
= o(1),

(2.4.18)
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where for the last equality we used

max
k=m̃,...,ñ

|µ̂0,k − µ0|
a.s.
= O

(√
log log(m)/m

)
= o(1),

which is a consequence of Theorem 2.3.1 and the law of the iterated logarithm.
Plugging this in (2.4.17) yields

sup
k=m̃,...,ñ

∣∣∣∣ R̂k

ĥ1(k, T )
− R̂k

h̃1(k, T )

∣∣∣∣ = oP (1).

In addition, note that by the same arguments as in (1.3.7) we can neglect the estimate
σ̂2
k in our further considerations, thus we focus on determining the limit distribution

of maxk=m̃,...,ñ R̃k/h̃1(k, T ), where R̃k := (σ̂k/σ) R̂k. Decomposing

R̃k

h̃1(k, T )
=

Rk

h̃1(k, T )
+

(µ0 − µ̂0,k)
∑k

i=1 g(i)

σ h̃1(k, T )

we see that if

sup
k=m̃,...,ñ

∣∣∣∣ Rk

h̃1(k, T )
−
∫ k

0 g(x) dW (x)

h̃1(k, T )

∣∣∣∣ a.s.
= o(1) (2.4.19)

and

sup
k=m̃,...,ñ

∣∣∣∣(µ0 − µ̂0,k)
∑k

i=1 g(i)

σ h̃1

(
k, T

) −
∫ k

0 g(x) dxW (k)/k

h̃1(k, T )

∣∣∣∣ a.s.
= o(1) (2.4.20)

hold true, we have

sup
k=m̃,...,ñ

∣∣∣∣ R̃k

h̃1(k, T )
− U(k)

h̃1(k, T )

∣∣∣∣ a.s.
= o(1),

where

U(t) =


∫ t

0

(
g(x)−

∫ t
0g(y) dy

t

)
dW (x) for t > 0,

0 for t = 0.

(2.4.21)

Analyzing the covariance structure as in (1.3.19) and taking the fact that {U(t) | t ≥
0} is a Gaussian process into account gives us{

U(t) | m̃ ≤ t ≤ ñ
} D

=
{
W
(
G̃(t)

) ∣∣ m̃ ≤ t ≤ ñ}. (2.4.22)

So, if (2.4.19), (2.4.20) and, in addition,

sup
m̃≤t≤ñ

∣∣∣∣W (G̃([t]))

h̃1

(
[t], T

) − W (G̃(t))

h̃1

(
t, T
) ∣∣∣∣ = oP (1) (2.4.23)
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hold true, we have similarly as in (2.4.10), that

sup
k=m̃,...,ñ

R̃k

h̃1(k, T )

D−→ sup
ϑ̃≤t≤1

W (t)

tβ
, (2.4.24)

which then completes the proof for the one-sided stopping time τ closedm,+ .

(2.4.19) follows along the lines of Theorem 1.3.1, yet we have to check that the
convergence rates hold true for h̃1(k, T ) instead of h1(k, T ). Recall that Λ =
1− 2λ > 0. Concerning (2.4.1) we note that

max
k=m̃,...,ñ

g(k) kκ

h̃1(k, T )

a.s.
= max

k=m̃,...,ñ
kκ−Λ/2

(
k

T

)Λ(1/2−β)

O(1)
a.s.
= o(1)

by our assumptions on λ. As to (2.4.2) we have

√
log(T ) max

k=m̃,...,ñ

g(k)

h̃1(k, T )

=
√

log(T ) max
k=m̃,...,ñ

k−Λ/2

(
k

T

)Λ(1/2−β)

O(1)

a.s.
=
√

log(T ) m−Λ/2 O(1)

= o(1)

which shows (2.4.19). As to (2.4.20) we have by the invariance principle of Theorem
2.3.1

max
k=m̃,...,ñ

∣∣∣∣∣(µ0 − µ̂0,k + σW (k)/k)
∑k

i=1 g(i)

σ h̃1(k, T )

∣∣∣∣∣
a.s.
= max

k=m̃,...,ñ

kκ

h̃1(k, T )

∑k
i=1 g(i)

k
O(1)

a.s.
= o(1)

(2.4.25)

and further

sup
k=m̃,...,ñ

∣∣∣∣∑k
i=1 g(i)W (k)/k

h̃1(k, T )
−
∫ k

0 g(x) dx W (k)/k

h̃1(k, T )

∣∣∣∣
= sup

k=m̃,...,ñ

∣∣∣∣ W (k)

h̃1(k, T ) k

( k∑
i=1

g(i)−
∫ k

0
g(x) dx

)∣∣∣∣,
(2.4.26)

where, on the one hand, we have

sup
k=m̃,...,ñ

∣∣∣∣ W (k)

h̃1(k, T ) k

∣∣∣∣ a.s.
= sup

k=m̃,...,ñ

√
k log log(k)

kΛ/2 k
O(1)

a.s.
= o(1)
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and, on the other hand, we have uniformly for m̃ ≤ k ≤ ñ∣∣∣∣ k∑
i=1

g(i)−
∫ k

0
g(x) dx

∣∣∣∣ ≤ k∑
i=1

g(i)− g(i− 1) = O(1),

which yields (2.4.20). Concerning (2.4.23) we decompose

sup
m̃≤t≤ñ

∣∣∣∣W (G̃([t]))

h̃1([t], T )
− W (G̃(t))

h̃1(t, T )

∣∣∣∣
≤ sup

m̃≤t≤ñ

|W (G̃([t]))|
h̃1([t], T )

(
1− h̃1([t], T )

h̃1(t, T )

)
+ sup
m̃≤t≤ñ

|W (G̃([t]))−W (G̃(t))|
h̃1(t, T )

= oP (1),

where in the last line we took the following relations into account:

1. By the arguments of (2.4.24) we obtain

sup
m̃≤t≤ñ

|W (G̃([t]))|
h̃1([t], T )

D
= sup

m̃≤t≤ñ

|W
(
G̃([t])/G̃(T/µ0)

)
|(

G̃([t])/G̃(T/µ0)
)β = OP (1).

2. Similar as in (2.4.6) it holds that

sup
m̃≤t≤ñ

(
1− h̃1([t], T )

h̃1(t, T )

)
≤ β

G̃([t])

a.s.
= o(1).

3. By the mean value theorem and Lemma 2.2.3 there is some ξ ∈
[
[t], t

]
such

that

0 ≤ G̃(t)− G̃([t]) ≤ G̃′(ξ) =

(∫ ξ
0 g(ξ)− g(x) dx

ξ

)2

≤ g(t)2 ≤ 1,

hence by Proposition 1.3.2 we find that

sup
m̃≤t≤ñ

|W (G̃([t]))−W (G̃(t))|
h̃1(t, T )

a.s.
=

√
log(T )

mΛ/2
O(1) = o(1).

The corresponding assertions for τ̂ closedm,− and τ̂ closedm follow by the same arguments.

Proof of Theorem 2.4.6. As in the proof of Theorem 2.4.5 it is sufficient to show the
assertion for R̃k = (σ̂k/σ) R̂k. Decomposing

R̃k

ĥ2(k, m̃)
=

Rk

ĥ2(k, m̃)
+

∑k
j=1 g(j)

(
µ0 − µ̂0,k

)
σ ĥ2(k, m̃)
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we aim to show that, for one thing,

sup
k=m̃,...,∞

∣∣∣∣ Rk

ĥ2(k, m̃)
−
∫ k

0 g(x) dW (x)

ĥ2(k, m̃)

∣∣∣∣ a.s.
= o(1) (2.4.27)

and that, for another thing,

sup
k=m̃,...,∞

∣∣∣∣
∑k

j=1 g(j)
(
µ0 − µ̂0,k

)
σ ĥ2(k, m̃)

−
∫ k

0 g(x)dx W (k)/k

ĥ2(k, m̃)

∣∣∣∣ a.s.
= o(1), (2.4.28)

which combines to

sup
k=m̃,...,∞

∣∣∣∣ R̃k

ĥ2(k, m̃)
− U(k)

ĥ2(k, m̃)

∣∣∣∣ a.s.
= o(1),

where U(t) is defined in (2.4.21). Analyzing the covariance structure of U (see
(1.3.19)) we have {U(t) | t ≥ m̃} D= {W (G̃(t)) | t ≥ m̃}. Thus, if we show that

sup
t≥m̃

∣∣∣∣W (G̃([t]))

ĥ2

(
[t], m̃

) − W (G̃(t))

ĥ2

(
t, m̃

) ∣∣∣∣ = oP (1) (2.4.29)

holds true, the assertion for τ openm,+ follows by the arguments of (2.4.15) and the
assertions for τ openm,− and τ openm follow in the same manner. In conclusion we find
that the proof is complete if we show that (2.4.27), (2.4.28) and (2.4.29) hold true.

(2.4.27) follows along the lines of the proof of Theorem 2.4.2, yet we have to show
that the convergence rates hold true for ĥ2(t, m̃) instead of h2(t, m̃). Concerning
(2.4.11) we note that

max
k=m̃,...,∞

g(k) kκ

ĥ2(k, m̃)
O(1)

a.s.
= mκ−Λ/2 O(1) = o(1).

As to (2.4.12) we note that by Λ > 0

max
k=m̃,...,∞

g(k)
√

log(k)

ĥ2(k, m̃)

a.s.
=

√
log(m)

mΛ/2
O(1) = o(1).

Furthermore, assertions (2.4.13), (2.4.14), (2.4.25) and (2.4.26) carry over to the case
of ĥ2(t, m̃) in the same manner, hence (2.4.28) and (2.4.29) hold true.
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2.5 Consistency of the testing procedures

In this section we show that if the detectors contain a sufficient amount of per-
turbed data, i.e. observations made after the change point, the testing procedures
have asymptotic power 1. Sufficiently many perturbed observations means that(
ñ− k∗

)
/T needs to be a.s. bounded away from zero as m→∞.

In Section 2.5.1 and Section 2.5.2 we show consistency of the testing procedures
for known and unknown in-control parameters. The assumptions in case of known
in-control parameters are generally rather mild, whereas the assumptions on the
slope parameters γ and λ in case of unknown in-control parameters are more
restrictive.

2.5.1 Consistency for known in-control parameters

Theorem 2.5.1. With the notation and assumptions of Section 2.1 and Section 2.2
and if, in addition, |δ|

√
T/ log log(T ) → ∞ and k∗ ≤ θ T for some 0 < θ <

min{1/µ0, 1/µ1}, it holds that

under Hclosed
1,+ , lim

m→∞
P
(
τ closedm,+ ≤ ñ

)
= 1,

under Hclosed
1,− , lim

m→∞
P
(
τ closedm,− ≤ ñ

)
= 1,

under Hclosed
1 , lim

m→∞
P
(
τ closedm ≤ ñ

)
= 1.

Hence, the tests are consistent.

Theorem 2.5.2. With the notation and assumptions of Section 2.1 and Section 2.2
it holds that

under Hopen
1,+ , lim

m→∞
P
(
τ openm,+ <∞

)
= 1,

under Hopen
1,− , lim

m→∞
P
(
τ openm,− <∞

)
= 1,

under Hopen
1 , lim

m→∞
P
(
τ openm <∞

)
= 1.

Hence, the tests are consistent.

Proof of Theorem 2.5.1. Our assumption on k∗ ensures that a.s. we have realiza-
tions of S̃k that contain observations made after the change point: Without loss of
generality, assume µ0 < µ1. As in Section 2.2.1 we denote by Nµ1(t) the counting
process based on

{
Y (n) + nµ1

}
. Then we have for sufficiently large T

ñ = T
N(T )− 1

T
≥ T Nµ1(T )− 1

T

a.s.
= T

(
1/µ1 + o(1)

)
> Tθ = k∗. (2.5.1)

Hence, we can proceed under the assumption of k∗ < ñ. We split the detector into
two parts, where the first one only contains observations made before the change
point and the second one also contains observations made after the change point:

max
k=m̃,...,ñ

Rk
h1(k, T )

≥ Rñ
h1(ñ, T )

=
Rk∗

h1(k∗, T )

h1(k∗, T )

h1(ñ, T )
+
Rñ −Rk∗
h1(ñ, T )

.
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The first summand is of order OP (1), as m → ∞. We take a closer look at the
second summand: Using the decomposition of Remark 1.3.3 and the growth rates of
(2.2.1) and Corollary 2.3.3 we obtain

|Rñ −Rk∗ |
a.s.
=

∣∣∣∣ ñ∑
i=k∗+1

g(i) (µ(i)− µ0)

σ

∣∣∣∣+ g(ñ) O
(√

ñ log log(ñ)
)

a.s.
≥ |µ(k∗ + 1)− µ0|

σ

ñ∑
i=k∗+1

g(i) + O
(√

T log log(T )
)

≥ |δ| (1− 2−γ)

σ

ñ∑
i=k∗+1

g(i) +O
(√

T log log(T )
)
.

Now, since g(t) is increasing we have for sufficiently large T

ñ∑
i=k∗+1

g(i) ≥ T
( ñ
T
− k∗

T

)
g(1)

a.s.
≥ T (min{1/µ0, 1/µ1} − θ + o(1)) g(1)

and therefore

max
k=m̃,...,ñ

|Rk|
h1(k, T )

a.s.
≥
√
T |δ| (d+ o(1))

√
T

h1(ñ, T )
+OP

(√
T log log(T )/h1(ñ, T )

)
,

where d = (1− 2−γ) g(1) (min{1/µ0, 1/µ1} − θ)/σ > 0. Note that

h1(ñ, T )√
T

=

(
G(ñ)

T

)β (G(T/µ0)

T

)1/2−β
, (2.5.2)

where the second factor has a constant, positive limit and, by (2.2.1), the first factor
is a.s. bounded below and above by positive constants for sufficiently large T. Com-
bining this with |δ|

√
T log log(T )→∞ completes the proof.

Proof of Theorem 2.5.2. Let N = Nm be some sequence satisfying k∗ ≤ θ N for
some θ < 1 and δ

√
N/ log(N)→∞, as m→∞. A possible choice for N is for

example

N =

{
k∗/(θ |δm|3) if δm → 0,

k∗/θ if δm 6→ 0.

As in the proof of Theorem 2.5.1 we have for sufficiently large N

|RN |
a.s.
≥ |δ| (1− 2−γ)

σ

N∑
i=k∗+1

g(i) +OP
(√

N log log(N)
)

≥ |δ| d (N − k∗) +OP
(√

N log log(N)
)
,
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where d = (1− 2−γ) g(1)/σ > 0. Hence,

|RN |
h2(N, m̃)

a.s.
≥ |δ| d N − k∗

h2(N, m̃)
+OP

(√
N log log(N)/h2(N, m̃)

)
≥ |δ| d θ N

h2(N, m̃)
+ OP

(√
N log log(N)/h2(N, m̃)

)
.

Finally, the assertions follow by h2(N, m̃)
a.s.'

√
N log(N/m) (cf. Remark 1.7.1)

and our assumptions on N.
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2.5.2 Consistency for unknown in-control parameters

Theorem 2.5.3. With the notation and assumptions of Section 2.1 and Section 2.2
and, in addition, k∗ ≤ θ T for some 0 < θ < min{1/µ0, 1/µ1},

|δ|T 1/2−λ−γ√
log log(T )

→∞,

as m→∞, and σ̂k being an estimate such that

|δ|T 1/2−γ

σ̂ñ

P→∞,

as m→∞, we have

under Hclosed
1,+ , lim

m→∞
P
(
τ̂ closedm,+ ≤ ñ

)
= 1,

under Hclosed
1,− , lim

m→∞
P
(
τ̂ closedm,− ≤ ñ

)
= 1,

under Hclosed
1 , lim

m→∞
P
(
τ̂ closedm ≤ ñ

)
= 1.

Hence, the tests are consistent.

Theorem 2.5.4. With the notation and assumptions of Section 2.1 and Section 2.2
and, in addition, some sequence N = Nm satisfying k∗ ≤ θ N for some θ < 1,

|δ|N1/2−λ−γ√
log log(N)

→∞,

as m→∞, and σ̂k being an estimate such that

|δ|N1/2−γ√
log(N/m) σ̂N

P→∞,

as m→∞, we have

under Hopen
1,+ , lim

m→∞
P
(
τ̂ openm,+ <∞

)
= 1,

under Hopen
1,− , lim

m→∞
P
(
τ̂ openm,− <∞

)
= 1,

under Hopen
1 , lim

m→∞
P
(
τ̂ openm <∞

)
= 1.

Hence, the tests are consistent.

Remark 2.5.5. If σ̂k = σ̂m̃ for all k, i.e. if we estimate σ only by observations
made in the training period, and if λ+γ < 1/2, a possible choice for N in Theorem
2.5.4 is

N =

{
k∗/(θ |δm|1/(1−λ−γ)) if δm → 0,

k∗/θ if δm 6→ 0.
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Proof of Theorem 2.5.3. The first part of the proof follows along the lines of the
proof of Theorem 2.5.1, i.e. we have k∗ < ñ a.s. We focus on the detectors with
known variance, i.e. R̃k = (σ̂k/σ) R̂k, first and replace σ by its estimate later on
in the proof. Via the decomposition of Remark 1.3.3, the growth rates of (2.2.1) and
Corollary 2.3.3 and Theorem 2.4.1 we obtain for k∗ < ñ

R̃ñ = R̃k∗ +Rñ −Rk∗

+

k∗∑
i=1

g(i) (S̃k∗/k
∗ − µ0)

σ
−

ñ∑
i=1

g(i) (S̃ñ/ñ− µ0)

σ

= OP
(
ĥ1(k∗, T )

)
+

ñ∑
i=1

g(i)(µ(i)− µ0)

σ

+ OP
(√

T log log(T )
)
−

ñ∑
i=1

g(i)(
∑ñ

j=1 µ(j)/ñ− µ0)

σ

= Λ̂ñ +OP
(√

T log log(T )
)
,

(2.5.3)

where

Λ̂k :=
k∑
i=1

g(i)
(
µ(i)−

∑k
j=1 µ(j)/k

)
σ

.

Hence, we have to find the rate of convergence of Λ̂ñ. To shorten the notation we
introduce

µ̄k =
1

k

k∑
i=1

µ(i) and ḡk =
1

k

k∑
i=1

g(i).

By elementary calculations we obtain the following representation of the increments
of Λ̂k for all k = 1, . . . , ñ− 1:

Λ̂k+1 − Λ̂k =
k+1∑
i=1

g(i) (µ(i)− µ̄k+1)

σ
−

k∑
i=1

g(i) (µ(i)− µ̄k)
σ

=
k

k + 1

(g(k + 1)− ḡk) (µ(k + 1)− µ̄k)
σ

.

(2.5.4)

Before the change point the mean function µ(k) is constant, thus µ(k)− µ̄k = 0 for
k ≤ k∗ and therefore Λ̂k = 0 for k ≤ k∗. Hence, we can express Λ̂ñ as the
following telescoping series and make use of representation (2.5.4):

Λ̂ñ =

ñ∑
i=k∗

Λ̂i − Λ̂i−1 =

ñ∑
i=k∗

i

i+ 1

(g(i+ 1)− ḡi) (µ(i+ 1)− µ̄i)
σ

.

For the sake of simplicity, we restrict ourselves to the case of δ > 0, i.e. the case
of µ(k) being increasing. The weight function is assumed to be increasing, too, so
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it holds that µ(i+ 1)− µ̄i ≥ 0 and g(i+ 1)− ḡi ≥ 0, hence

Λ̂ñ ≥
1

2σ

ñ∑
i=k∗

(g(i+ 1)− ḡi) (µ(i+ 1)− µ̄i) .

We take a closer look at the two factors separately: On the one hand, we have

g(i+ 1)− ḡi

= −(2 + i)−λ +
1

i

i∑
j=1

(1 + j)−λ

≥ −(2 + i)−λ +
1

i

∫ i+1

1
(1 + x)−λ dx

= −(2 + i)−λ +
(2 + i)1−λ − 21−λ

(1− λ) i

= (2 + i)−λ
(

1

1− λ
− 1

)
+

(2 + i)−λ

1− λ

(
2 + i

i
− 1

)
− 21−λ

(1− λ) i

=
λ

1− λ
(2 + i)−λ +

(2 + i)−λ

1− λ
2

i
− 21−λ

(1− λ) i
.

On the other hand, it holds that

µ(i+ 1)− µ̄i

= δ
(
− (2 + i− k∗)−γ +

1

i

(
k∗ +

i−k∗∑
j=1

(1 + j)−γ
))

≥ δ

(
− (2 + i− k∗)−γ +

1

i

(
k∗ +

∫ i−k∗+1

1
(1 + x)−γ dx

))
= δ

(
− (2 + i− k∗)−γ +

1

i

(
k∗ +

(2 + i− k∗)1−γ − 21−γ

1− γ

))
= δ (2 + i− k∗)−γ

(
1

1− γ
− 1

)
+ δ

(
(2 + i− k∗)−γ

1− γ

(
2 + i− k∗

i
− 1

)
+
k∗

i
− 21−γ

(1− γ) i

)
≥ δ γ

1− γ
(2 + i)−γ + δ

(
k∗

i

(
1− (2 + i− k∗)−γ

1− γ

)
− 21−γ

(1− γ) i

)
.

(2.5.5)

The second sum of the right hand side of (2.5.5) is positive (hence can be dropped)
if and only if i > k∗+ Γ, where Γ := (1−γ)−1/γ−2 is constant. So, for one thing,
we have

∣∣∣ k∗+[Γ]∑
i=k∗

(g(i+ 1)− ḡi) (µ(i+ 1)− µ̄i)
∣∣∣ ≤ (Γ + 1) |µ0 − µ1| = O(1),
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and, for another thing, we have

ñ∑
i=k∗+[Γ]+1

(g(i+ 1)− ḡi) (µ(i+ 1)− µ̄i)

≥
ñ∑

i=k∗+[Γ]+1

λ γ δ

(1− λ) (1− γ)
(2 + i)−(λ+γ) + r(i),

(2.5.6)

where, for some constant d > 0, |r(i)| ≤ d i−min{λ,γ}−1 and therefore∣∣∣ ñ∑
i=k∗+[Γ]+1

r(i)
∣∣∣ ≤ d

∫ ñ+1

k∗
x−min{λ,γ}−1 dx

= d
k∗−min{λ,γ} − ñ−min{λ,γ}

min{λ, γ}

=
d

min{λ, γ}
k∗−min{λ,γ}

(
1− (k∗/ñ)−min{λ,γ}

)
a.s.
= O

(
m−min{λ,γ}

)
= o(1).

The first summand on the right hand side of (2.5.6) gives us the required rate of
convergence:

ñ∑
i=k∗+[Γ]+1

(2 + i)−(λ+γ)

≥
∫ ñ−2

k∗+[Γ]+1
(2 + x)−(λ+γ) dx

=
ñ1−(λ+γ) − (k∗ + [Γ] + 3)1−(λ+γ)

1− (λ+ γ)

≥ ñ1−(λ+γ) − (θT + [Γ] + 3)1−(λ+γ)

1− (λ+ γ)

=
T 1−(λ+γ)

1− (λ+ γ)

((
ñ

T

)1−(λ+γ)

−
(
θT + [Γ] + 3

T

)1−(λ+γ)
)

a.s.
≥ T 1−(λ+γ)

1− (λ+ γ)

(
(1/µ0)1−(λ+γ) − θ1−(λ+γ) + o(1)

)
,

where by our assumptions on θ it holds true that (1/µ0)1−(λ+γ) − θ1−(λ+γ) >
0. Combining the inequalities above yields

Λ̂ñ
a.s.
≥ (d̃+ o(1)) δ T 1−λ−γ , (2.5.7)

where

d̃ =
λ γ ((1/µ0)1−(λ+γ) − θ1−λ−γ)

2σ(1− λ)(1− γ)(1− λ− γ)
> 0.
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Plugging this relation into (2.5.3) yields∣∣R̂ñ∣∣
ĥ1(ñ, T )

a.s.
≥
(
d̃+ o(1)

) δ T 1−λ−γ

ĥ1(ñ, T ) σ̂ñ
+OP

(√
T log log(T )/

(
ĥ1(ñ, T ) σ̂ñ

))
.

By the definition of ñ (see Section 2.2.1) we have

S̃ñ = inf{t ∈ Ic |N(t) > N(T )− 1} = T,

thus the estimate µ̂0,ñ and the threshold function simplify to

µ̂0,ñ = S̃ñ/ñ = T/ñ

and

ĥ1(ñ, T ) = G̃β(ñ)
(
G̃(T/µ̂0,ñ)

)1/2−β
= G̃1/2(ñ)

a.s.' ñ1/2−λ.

Hence, by (2.2.1) it holds for some ď > 0,

R̂ñ

ĥ1(ñ, T )

a.s.
≥
(
ď+ o(1)

) δ T 1/2−γ

σ̂ñ
+OP (

√
log log(T )T λ/σ̂ñ).

By the first assumption on the convergence of T in Theorem 2.5.3 we know that
the deterministic part on the right hand side of the upper expression dominates the
stochastic part and by the second assumption on the convergence of T we know
that the deterministic part converges to infinity, hence (if δ > 0 )

R̂ñ

ĥ1(ñ, T )

P→∞.

The case of δ < 0 follows in the same manner.

Proof of Theorem 2.5.4. As in the proof of Theorem 2.5.1 we have

∣∣R̂N ∣∣ a.s.
≥ (d+ o(1))

|δ|N1−λ−γ

ĥ2(N, m̃) σ̂N

+ OP
(√

N log log(N)/
(
ĥ2(N, m̃) σ̂N

))
= (ď+ o(1))

|δ|N1/2−γ√
log(N/m) σ̂N

+ OP
(√

log log(N)T λ/
(√

log(N/m) σ̂N )
)

for some d̃, ď > 0, which, by our assumptions on N yields the assertion.
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2.6 Asymptotic normality of the delay times

In this section we restrict ourselves to an early-change setting (see (2.6.2) and (2.6.3)),
in which we are able show that the delay times of the testing procedures are asymp-
totically normal. The early-change assumption in the closed-end setting is somewhat
stronger because the interplay between T (the total number of observations) and
k∗ (the change point) has to be taken into account.

So far, the results in the closed-end setting are based on a truncation point T =
[ϑmρ] where ρ ≥ 1 (see Section 2.1), however, for the (closed-end) results below
we have to tighten this condition to ρ > 1. The reason for this restriction can be
found e.g. in the arguments of Lemma 2.6.14, where we prove that (in the early
change setting) the probability to stop before the change point is negligible.

For the sake of readability, the results of Section 2.6.1 and Section 2.6.2 are given
at the beginning of the respective section, whereas all the proofs are postponed to
Section 2.6.1.1 or Section 2.6.2.1, respectively.

On standardizing the delay times we introduce the function

r : [1,∞)→ [−γ/(1− γ),∞), x 7→ x− x1−γ

1− γ
, (2.6.1)

which is discussed further in Lemma 2.6.6 below.

2.6.1 Asymptotic normality of the delay times for known in-control pa-
rameters

Theorem 2.6.1. With the notation and assumptions of Section 2.1 and Section 2.2
as well as T = [ϑmρ] where 1 < ρ < (3/2 − 2β)/(1 − 2β) and ϑ ≥ 1, δ being
constant and being estimated by δ̂ = δ+ oP

(
m(1−ρ)(1/2−β)

)
, the critical value c being

positive and

k∗ = m/µ0 + O
(
mη
)

(2.6.2)

for some 0 < η < 1− (ρ− 1) (1/2−β) it holds for all x ∈ R under the alternative
Hclosed

1,+ that

lim
m→∞

P

(
δ̂ g(m̃) r

(
max{τ closedm,+ − k∗, 1}

)
/σ − c h1(m̃, T )√

G(m̃)
≤ x

)
= φ(x)

and under the alternative Hclosed
1,− that

lim
m→∞

P

(
|δ̂| g(m̃) r

(
max{τ closedm,− − k∗, 1}

)
/σ − c h1(m̃, T )√

G(m̃)
≤ x

)
= φ(x),

where r(x) is defined in (2.6.1).
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Theorem 2.6.2. With the notation and assumptions of Section 2.1 and Section 2.2
as well as δ being constant and being estimated by δ̂

P→ δ, the parameter c in the
threshold function h2 being positive and

k∗ = m/µ0 + O
(
mη
)

(2.6.3)

for some η < 1 it holds for all x > −c under the alternative Hopen
1,+ that

lim
m→∞

P

(
δ̂ g(m̃) r

(
max{τ openm,+ − k∗, 1}

)
/σ − c

√
G(m̃)√

G(m̃)
≤ x

)
= φ(x)

and under the alternative Hopen
1,− that

lim
m→∞

P

(
|δ̂| g(m̃) r

(
max{τ openm,− − k∗, 1}

)
/σ − c

√
G(m̃)√

G(m̃)
≤ x

)
= φ(x),

where r(x) is defined in (2.6.1).

In the following lemma we suggest a suitable estimate which fulfills the assumptions
of Theorem 2.6.1 or Theorem 2.6.2, respectively.

Lemma 2.6.3. With the notation and assumptions of Section 2.1 and Section 2.2
let

δ̂m,k =

∑k
i=1 µm̃(i)

(
S̃i − S̃i−1 − µ0

)∑k
i=1 µ

2
m̃(i)

, (2.6.4)

where

µl(k) := 1− (1 + (k − l)+)−γ =

{
1− (1 + k − l)−γ if k > l,

0 if k ≤ l.

If k∗ −m = o
(
mζ
)
, as m→∞, for some ζ > 1 it holds that, as m→∞,

δ̂m,m̃+mζ
a.s.
= δ +O

(
m1−ζ)+O

(
m−ζ γ

)
+O

(√
log log(m)m−ζ/2

)
.

On choosing

ζ > max
{

1 + (ρ− 1)(1/2− β), (ρ− 1)(1/2− β)/γ, (ρ− 1)(1− 2β)
}

the assumptions on δ̂ of Theorem 2.6.1 are fulfilled and on choosing ζ > 1 the
assumptions of Theorem 2.6.2 are fulfilled.

Since a slightly more general version of Lemma 2.6.3 (i.e. with unknown µ0 ) is
shown in Section 2.6.2 the proof is omitted here. Combining Lemma 2.6.3 with The-
orem 2.6.1 or Theorem 2.6.2, respectively, gives us the following confidence intervals
for the change point:
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Corollary 2.6.4. Let the assumptions of Theorem 2.6.1 hold true. On setting

q = r−1

(√
G(m̃)φ−1(1− α̃) + c h1(m̃, T )

|δ̂| g(m̃)/σ

)
,

where α̃ ∈ (0, 1), we obtain for τ closedm,+ , τ closedm,− and τ closedm as in Section 2.2.2
that, as m→∞,

P
(
τ closedm,+ − q ≤ k∗ < τ closedm,+

)
= 1− α̃+ o(1),

P
(
τ closedm,− − q ≤ k∗ < τ closedm,−

)
= 1− α̃+ o(1),

P
(
τ closedm − q ≤ k∗ < τ closedm

)
≥ 1− α̃+ o(1),

hold true under Hclosed
1,+ , Hclosed

1,− or Hclosed
1 , respectively.

Corollary 2.6.5. Let the assumptions of Theorem 1.5.1 hold true. On setting

q(χi) = r−1

(√
G(m̃)φ−1(χi) +G(m̃)

|δ̂| g(m̃)/σ

)
,

where

χi =

{
φ−1

(
1− α̃− φ(−c)

)
if i = 1,

φ−1
(
1− α̃− 2φ(−c)

)
if i = 2,

with

α̃ ∈

{(
φ(−c), 1

)
for i = 1,(

2φ(−c), 1
)

for i = 2,
(2.6.5)

we obtain for τ openm,+ and τ openm,− as in Section 2.2.2 and τ̃ openm := min{τ openm,+ , τ
open
m,− } that,

as m→∞,

P
(
τ openm,+ − q(χ1) ≤ T ∗ < τ openm,+

)
= 1− α̃+ o(1),

P
(
τ openm,− − q(χ1) ≤ T ∗ < τ openm,+

)
= 1− α̃+ o(1),

P
(
τ̃ openm − q(χ2) ≤ T ∗ < τ̃ openm

)
≥ 1− α̃+ o(1),

hold true under Hopen
1,+ , Hopen

1,− or Hopen
1 , respectively.

Note that in this section we assume σ to be known. Confidence intervals where
σ is being estimated as well can be found in Section 2.6.2.

2.6.1.1 Proofs

Before we turn to the proofs of the two main theorems, we introduce some notation
which we will use throughout this section. Let

H := k∗ +
[
w(k∗)

]
(2.6.6)
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with

w(k∗) := r−1

(√
G(k∗)σ

g(k∗) |δ|

(
h(k∗)√
G(k∗)

+ x

))
, (2.6.7)

where h(t) shall denote either c h1(t, T ) or h2(t, m̃), depending on the setting
we are working with. If not stated otherwise, throughout this section w shall
denote w(k∗). The idea of the proofs of Theorem 2.6.1 and Theorem 2.6.2 is to
show P (τ ≤ H) → φ(x) and then solve the inequality τ ≤ H(x) for x (where
τ shall indicate the respective stopping time). Remark 2.6.7, below, ensures that
the expression w in (2.6.7) is well-defined.

To further shorten the notation, let

Λk :=

k∑
i=1

g(i) (µ(i)− µ0)

σ
(2.6.8)

be the deterministic perturbation of the detectors and

A(a, b) :=

(
max

k=[a],...,[b]

sgn(δ)Rk
h(k)

− sgn(δ) ΛH
h(H)

)
h(k∗)√
G(k∗)

(2.6.9)

be the difference between the test statistic and the perturbation at time point
H, where again the expression h(t) shall denote either c h1(t, T ) or h2(t, m̃) de-
pending on the setting we are working with.

The following lemma will help us handling the term w (defined in (2.6.7)).

Lemma 2.6.6. The function

r : [1,∞)→ [−γ/(1− γ),∞), x 7→ x− x1−γ/(1− γ)

has an increasing, continuous inverse function r−1 : [−γ/(1− γ),∞)→ [1,∞) for
which r−1(x) ∼ x holds true as x→∞.

Proof. The existence of r−1 follows immediately by r being continuous and
increasing, where the latter can be seen via the derivative r′. As to the asymptotic
behavior of r−1, we note that, on the one hand,

x = r
(
r−1(x)

)
= r−1(x)−

(
r−1(x)

)1−γ
1− γ

< r−1(x),

hence

1 <
r−1(x)

x
.

On the other hand, for ξ ∈ (1− γ, 1) and x sufficiently large it holds that

r
(
x+ xξ

)
= x+ xξ −

(
x+ xξ

)1−γ
1− γ

> x,
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which yields for x sufficiently large that

r−1(x)

x
<
x+ xξ

x
→ 1

as x→∞.

Remark 2.6.7. By Lemma 2.6.6 we see that w(k∗) is well-defined if√
G(k∗)σ

g(k∗) |δ|

(
h(k∗)√
G(k∗)

+ x

)
≥ − γ

1− γ
,

which is equivalent to

x ≥ − γ g(k∗) |δ|
(1− γ)

√
G(k∗) σ

− h(k∗)√
G(k∗)

.

On the one hand, we have g(k∗)/
√
G(k∗) → 0, and, on the other hand, we have

either

c h1(k∗, T )√
G(k∗)

= c

(
G(T/µ0)

G(k∗)

)1/2−β
→∞

or

h2(k∗, m̃)√
G(k∗)

= f−1(ln(G(k∗)/G(m̃)) + f(c))
a.s.
≥ c

so in the closed-end setting, if the critical value is positive, the expression w is well-
defined for any x, yet, in the open-end setting, one has to restrict the considerations
to the case where x > −c.

The proofs of Theorem 2.6.1 and Theorem 2.6.2 are each subdivided into a sequence
of lemmata given in the two paragraphs below.

Proof of Theorem 2.6.1
We begin with some technical but important details on the interplay of the conver-
gence rates of the sequences m, k∗, w and H. Note that H is chosen such that
(2.6.13) is fulfilled.

Lemma 2.6.8. Under the assumptions of Theorem 2.6.1 we have, as m→∞,

w ' h1(k, T ) ' (G(k∗))β (G(T/µ0))
1
2
−β →∞, (2.6.10)

H ∼ k∗ ∼ m/µ0, (2.6.11)

h1(H,T )/h1(k∗, T ) =
(
G(H)/G(k∗)

)β
= 1 +O(w/m), (2.6.12)(

sgn(δ) c− ΛH
h1(H,T )

)
h1(k∗, T )√
G(k∗)

→ − sgn(δ)x, (2.6.13)

where H, w and Λk are defined in (2.6.6), (2.6.7) and (2.6.8).
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Proof of Lemma 2.6.8. Recall that

w = r−1

(√
G(k∗)σ

g(k∗) |δ|

(
c h1(k∗)√
G(k∗)

+ x

))
.

Via Lemma 2.2.3 and the early-change assumption (2.6.2) we have, as m→∞,

h1(k∗, T )√
G(k∗)

=

(
G(T/µ0)

G(k∗)

)1/2−β
→∞.

Combining this with Lemma 2.6.6 yields, as m→∞,

w ∼
√
G(k∗)σ

|δ| g(k∗)

(
h1(k∗, T )√
G(k∗)

+ x

)
' h1(k∗, T ),

which shows the first assertion. Combining this with the early-change assumption,
our assumption on ρ and Lemma 2.2.3 we have

0 ≤ w

k∗
=

k∗β T 1/2−β

k∗
O(1) = mβ−1+ρ(1/2−β) O(1) = o(1),

which yields the second assertion. As to the third one, we first note that for β = 0 it
holds true that h1(H,T )/h1(k∗, T ) = 1. If 0 < β < 1/2, on the other hand, it
holds by the mean value theorem that some ξ ∈ [k∗, H]

h1(H,T )

h1(k∗, T )
− 1 =

(
G(H)

G(k∗)

)β
− 1

=
Gβ(H)−Gβ(k∗)

H − k∗
H − k∗

Gβ(k∗)

= β G′(ξ)Gβ−1(ξ)
w

Gβ(k∗)

= O(w/m).

(2.6.14)

The last assertion of Lemma 2.6.8 requires some more effort: Since µ(k) = µ0 for
k ≤ k∗, we have

ΛH =

H∑
i=k∗+1

g(i)(µ(i)− µ0)

σ

=
g(k∗)

σ

H∑
i=k∗+1

(µ(i)− µ0) +O
(
(g(H)− g(k∗))w

)
=

δ g(k∗)

σ

[w]∑
i=1

(
1− (1 + i)−γ

)
+O

(
g′(m)w2

)
=

δ g(k∗)

σ

(
[w]− [w]1−γ

1− γ
+O

(
w−γ

))
+O

(
m−λ−1w2

)
=

δ g(k∗) r([w])

σ
+O

(
w−γ +m−λ−1w2

)
.
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Now, an application of the mean value theorem gives us that r([w]) = r(w) +
O(1), hence

ΛH =
δ g(k∗) r(w)

σ
+O

(
w−γ +m−λ−1w2 + 1

)
. (2.6.15)

Plugging this relation into (2.6.13) yields(
sgn(δ) c− ΛH

h1(H,T )

)
h1(k∗, T )√
G(k∗)

=
sgn(δ) c h1(k∗, T )√

G(k∗)
− δ g(k∗) r(w)

σ
√
G(k∗)

h1(k∗, T )

h1(H,T )

+O
(
w−γm−1/2 +m−λ−3/2w2 +m−1/2

)
=

sgn(δ) c h1(k∗, T )√
G(k∗)

− δ g(k∗) r(w)

σ
√
G(k∗)

+ o(1),

(2.6.16)

where we already made use of the following four asymptotic relations:

1. Since w →∞, as m→∞ we have w−γm−1/2 = o(1).

2. By our assumptions on ρ we have

m−λ−3/2 w2 = O
(
m−λ−3/2+2β+ρ(1−2β)

)
= o(1).

3. Making use of (2.6.12) and our assumptions on ρ, we have

r(w)√
G(k∗)

(
1− h1(k∗, T )

h1(H,T )

)
= O

(
w2/m3/2

)
= O

(
mρ(1−2β)+2β−3/2

)
= o(1).

4. Obviously it holds that m−1/2 → 0.

Plugging the definition of w into (2.6.16) yields the assertion.

The following lemma allows us to neglect the time period before the change point in
our asymptotic considerations.

Lemma 2.6.9. Under the assumptions of Theorem 2.6.1 we have, as m→∞,

A(m̃, k∗)
P→ −∞,

where A(a, b) is defined in (2.6.9).
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Proof of Lemma 2.6.9. Let 1 < ρ̃ < ρ. By Theorem 2.4.1 we have

max
k=m̃,...,k∗

|Rk|
h1(k, T )

≤ max
k=m̃,...,k∗

|Rk|
h1(k,mρ̃)

max
k=m̃,...,k∗

h1(k,mρ̃)

h1(k, T )

= OP (1) o(1)

= oP (1).

Combining this with sgn(δ) ΛH/(h1(H,T ))→ c > 0 (see (2.6.13)) and

h1(k∗, T )/
√
G(k∗) = (G(T/µ0)/G(k∗))1/2−β →∞,

yields the assertion.

To shorten the upcoming proofs we state another technical lemma, showing that
after the change point, the detectors are (asymptotically) driven by their proportion
up to k∗ and their deterministic perturbation.

Lemma 2.6.10. Under the assumptions of Theorem 2.6.1 we have, as m→∞,

max
k=k∗+1,...,H

|Rk −Rk∗ − Λk|
h1(k, T )

= oP
(√

G(k∗)/h1(k∗, T )
)
.

Proof of Lemma 2.6.10. Recall that M(k) =
∑k

i=1 µ(i) denotes the mean of Sk (see
Section 2.1). Via the approximation of Remark 1.3.3 we have for all k = k∗ +
1, . . . ,H that∣∣∣∣Rk −Rk∗ − Λk

h1(k, T )

∣∣∣∣
=

∣∣∣∣ k∑
i=k∗+1

g(i)(S̃i − S̃i−1 − µ0)

h1(k, T )
− Λk
h1(k, T )

∣∣∣∣
=

∣∣∣∣ k∑
i=k∗+1

g(i)
(
S̃i −M(i)− (S̃i−1 −M(i− 1))

)
σ h1(k, T )

∣∣∣∣
≤ g(k) |S̃k −M(k)− (S̃k∗ −M(k∗))|

σ h1(k, T )

+ 2
g(k)− g(k∗)

σ h1(k, T )
max

i=k∗,...,k
|S̃i −M(i)|.

On the one hand, by the mean value theorem we have

max
k=k∗+1,...,H

|g(k)− g(k∗)| = O
(
w/k∗λ+1)

and on account of Corollary 2.3.3 and Lemma 2.6.8 it holds that

max
i=k∗,...,H

|S̃i −M(i)| a.s.
= O

(√
k∗ log log(k∗)

)
.
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Combining the two relations yields

max
k=k∗+1,...,H

g(k)− g(k∗)

h1(k, T )
max

i=k∗+1,...,k
|S̃i −M(i)|

a.s.
= O

(√
log log(k∗) k∗−λ−1/2w/h1(k∗, T )

)
.

On the other hand, we have via Theorem 2.3.2 that

max
k=k∗+1,...,H

|S̃k −M(k)− (S̃k∗ −M(k∗))|
σ

a.s.
= max

k=k∗+1,...,H

|V (k)−M(k)−
(
V (k∗)−M(k∗)

)
|

σ
+ O

(
k∗κ
)

≤ 2 max
k=k∗,...,H

|V (k)− σW (k∗)−M(k)|
σ

+O
(
k∗κ
)
,

(2.6.17)

where V (k) = maxl=1,...,k

(
σW (l)+M(l)

)
(see (2.3.2)). For each k = k∗, . . . ,H we

squeeze the upper expression into the following two bounds: On setting l = k in
the maximum of V (k) we obtain as a lower bound(

V (k)− σW (k∗)−M(k)
)
/σ ≥ W (k)−W (k∗).

On establishing an upper bound we consider a sequence ς = ςm ∈ (0, 1) with
ςm → 0 but ςm

√
k∗ →∞. Taking into account the fact that M(k) in increasing

we obtain as an upper bound:(
V (k)− σW (k∗)−M(k)

)
/σ

≤

(
maxl=1,...,[k∗(1−ς)]

(
σW (l) +M(l)− σW (k∗)−M(k)

)
σ

)
+

+

(
maxl=[k∗(1−ς)]+1,...,k

(
σW (l) +M(l)− σW (k∗)−M(k)

)
σ

)
+

≤ Z(k∗)+ + max
l=[k∗(1−ς)]+1,...,k

∣∣W (l)−W (k∗)
∣∣,

where

Z(k∗) := max
l=1,...,[k∗(1−ς)]

(
W (l)−W (k∗)

)
+
M([k∗(1− ς)])−M(k∗)

σ

= max
l=1,...,[k∗(1−ς)]

(
W (l)−W (k∗)

)
−

k∗∑
i=[k∗(1−ς)]+1

µ(i)/σ

≤ max
l=1,...,[k∗(1−ς)]

(
W (l)−W (k∗)

)
− k∗ ς min{µ0, µ1}/σ

and, by the fact that W (t+ k∗)−W (k∗) is again a Wiener process,

max
l=[k∗(1−ς)]+1,...,k

∣∣W (l)−W (k∗)
∣∣

≤ max
l=[k∗(1−ς)]+1,...,k∗

∣∣W (l)−W (k∗)
∣∣+ max

l=k∗+1,...,k

∣∣W (l)−W (k∗)
∣∣

= OP
(√
ςk∗
)

+OP
(√
H − k∗

)
.
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Combining the upper and lower bound yields

max
k=k∗,...,H

|V (k)− σW (k∗)−M(k)|
σ

≤ Z(k∗)+ +OP
(√
ςk∗
)

+OP
(√
H − k∗

)
= OP (1) +OP

(√
ςk∗
)

+OP (
√
w),

where we already plugged in the fact that

P (|Z(k∗)+| > 0) = P (Z(k∗) > 0)

≤ P
(
OP
(√
k∗
)
− k∗ ς min{µ0, µ1}/σ > 0

)
= P

(
OP (1)−

√
k∗ ς min{µ0, µ1}/σ > 0

)
→ 0,

since
√
k∗ ς →∞. In conclusion we have

max
k=k∗+1,...,H

|Rk −Rk∗ − Λk|
h1(k, T )

= OP
(√

log log(k∗) k∗−λ−1/2w/h1(k∗, T )
)

+OP
(
k∗κ/h1(k∗, T )

)
+ OP

(√
k∗ςm/h1(k∗, T )

)
+OP

(√
w/h1(k∗, T )

)
= oP

(√
G(k∗)/h1(k∗, T )

)
,

(2.6.18)

where the last equation is a consequence of the following implications of Lemma 2.6.8
and our assumption on ρ:

1. k∗−λ−1/2w/
√
G(k∗) ' m−λ−1/2+(ρ−1)(1/2−β) → 0,

2. k∗κ/
√
G(k∗) ' k∗κ−1/2 → 0,

3.
√
k∗ ςm/G(k∗) ' √ςm → 0,

4.
√
w/G(k∗) '

√
w/k∗ → 0.

The next lemma allows us to restrict the range of the maximum to an area arbitrary
close to H.

Lemma 2.6.11. Let ε > 0 and Ȟ = Ȟ(ε) = k∗+
[
(1−ε)w

]
. Under the assumptions

of Theorem 2.6.1 it holds that, as m→∞,

P
(
A(k∗ + 1, H) = A(Ȟ,H)

)
→ 1.

Proof of Lemma 2.6.11. The proof follows essentially by the fact that ΛH − ΛȞ →
∞ sufficiently fast. For the sake of simplicity we demonstrate the proof for δ > 0.
The case of δ < 0 follows by the same arguments. The first step of the proof is to
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show that is sufficient to consider the (deterministic) perturbation of the detectors
in the respective range:

P
(
A(k∗ + 1, H) = A(Ȟ,H)

)
= P

(
A(k∗ + 1, Ȟ − 1) ≤ A(Ȟ,H)

)
≥ P

(
A(k∗ + 1, Ȟ − 1) ≤ A(H,H)

)
= P

(
max

k=k∗+1,...,Ȟ−1

Rk∗ +Rk −Rk∗
h1(k, T )

≤ RH
h1(H,T )

)
≥ P

(
max

k=k∗+1,...,Ȟ−1

Rk∗

h1(k, T )
+ max
k=k∗+1,...,Ȟ−1

Rk −Rk∗
h1(k, T )

≤ RH
h1(H,T )

)
= P

(
max

k=k∗+1,...,Ȟ−1

Rk −Rk∗
h1(k, T )

≤ RH −Rk∗
h1(H,T )

+ oP (1)

)
,

(2.6.19)

where in the last line we already plugged in that by Lemma 2.6.8 we have∣∣∣∣ max
k=k∗+1,...,Ȟ−1

Rk∗

h1(k, T )
− Rk∗

h1(H,T )

∣∣∣∣
≤ |Rk∗ |

h1(k∗, T )

(
max

k=k∗+1,...,Ȟ−1

h1(k∗, T )

h1(k, T )
− h1(k∗, T )

h1(H,T )

)
= OP (1)

(
1− h1(k∗, T )

h1(H,T )

)
= oP (1).

(2.6.20)

By Lemma 2.6.10 we know that the stochastic terms of (2.6.19) are asymptotically
negligible, hence

P
(
A(k∗ + 1, H) = A(Ȟ,H)

)
≥ P

(
max

k=k∗+1,...,Ȟ−1

Λk
h1(k, T )

≤ ΛH
h1(H,T )

+ oP (1)

)
= P

(
max

k=k∗+1,...,Ȟ−1

Λk
G(k)β

≤ ΛH
G(H)β

+ oP
(
T 1/2−β)).

By (2.6.13) and the fact that Λk is positive and increasing for k > k∗ we have
uniformly for k = k∗ + 1, . . . , Ȟ − 1

max
k

Λk
G(k)β

≤ max
k

Λk
G(H)β

(
G(H)

G(k∗)

)β
=

ΛȞ−1

G(H)β
(1 + o(1)),

which gives us

P

(
max

k=k∗+1,...,Ȟ−1

Λk
G(k)β

≤ ΛH
G(H)β

+ oP
(
T 1/2−β))

≥ P

(
0 ≤ ΛH

G(H)β
−

ΛȞ−1

G(H)β
(1 + o(1)) + oP

(
T 1/2−β))

= P
(

0 ≤ ΛH − ΛȞ−1 + o
(
ΛȞ−1

)
+ oP (h1(H,T ))

)
.

(2.6.21)
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Now, on the one hand, it holds that
ΛH − ΛȞ−1

w

=
δ

σ w

k∗+[w]∑
i=k∗+[(1−ε)w]

g(i)
(
1− (1 + i− k∗)−γ

)
≥ δ

σ
g(k∗ + [(1− ε)w])

(
1− (1 + [(1− ε)w])−γ

) ε [w]

w

→ δ ε

σ
.

On the other hand, we have ΛȞ−1 = O(w) and w ' h1(H,T ). Plugging this in
(2.6.21) yields

P
(

0 ≤ ΛH − ΛȞ−1 + o
(
ΛȞ−1

)
+ oP (h1(H,T ))

)
≥ P (0 ≤ δ ε+ oP (1))

→ 1,

which completes the proof.

The following lemma gives us the required convergence towards the standard normal
distribution.

Lemma 2.6.12. Under the assumptions of Theorem 2.6.1 we have under Hclosed
1,+ re-

spectively Hclosed
1,− that

lim
m→∞

P
(
τ closedm,+ ≤ H

)
= φ(x),

lim
m→∞

P
(
τ closedm,− ≤ H

)
= φ(x).

Proof of Lemma 2.6.12. We consider the one-sided, positive stopping time τ closedm,+ (i.e.
the case δ > 0) in detail: On combining Lemma 2.6.8, Lemma 2.6.9 and Lemma
2.6.11 we have

P
(
τ closedm,+ ≤ H

)
= P (A(m̃,H) > −x+ o(1))

= P (A(k∗ + 1, H) > −x+ o(1)) + o(1)

= P (A(Ȟ,H) > −x+ o(1)) + o(1).

(2.6.22)

We squeeze A(Ȟ,H) between the following bounds:

h1(k∗, T )√
G(k∗)

(
RH

h1(H,T )
− ΛH
h1(H,T )

)
≤ A(Ȟ,H)

=
h1(k∗, T )√
G(k∗)

max
k=Ȟ,...,H

(
Rk

h1(k, T )
− ΛH
h1(H,T )

)
≤ h1(k∗, T )√

G(k∗)
max

k=Ȟ,...,H

(
Rk

h1(k, T )
− Λk
h1(k, T )

)
+ o(1),

(2.6.23)
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where in the last line we used, for one thing, Λk being increasing for k > k∗ and, for
another thing, a combination of Lemma 2.6.8, the early change assumption (2.6.2)
and our assumptions on ρ, i.e.

h1(k∗, T )√
G(k∗)

max
k=Ȟ,...,H

∣∣∣ ΛH
h1(k, T )

− ΛH
h1(H,T )

∣∣∣
≤ h1(k∗, T )√

G(k∗)

|µ1 − µ0|w
h1(H,T )

max
k=Ȟ,...,H

∣∣∣h1(H,T )

h1(k, T )
− 1
∣∣∣

= O(1)
h1(k∗, T )√
G(k∗)

w

m

= o(1).

Applying Lemma 2.6.10 to the lower and upper bound of (2.6.23) yields

h1(k∗, T )√
G(k∗)

Rk∗

h1(H,T )
+ oP (1)

≤ A(Ȟ,H)

≤ h1(k∗, T )√
G(k∗)

max
k=Ȟ,...,H

Rk∗

h1(k, T )
+ oP (1),

where in a last step we confirm that we can replace the argument in the threshold
function by k∗: Making use of Lemma 2.6.8 and the assumption on ρ, once more,
we obtain

h1(k∗, T )√
G(k∗)

(
max

k=Ȟ,...,H

Rk∗

h1(k, T )
− Rk∗

h1(k∗, T )

)
≤ h1(k∗, T )√

G(k∗)

|Rk∗ |
h1(k∗, T )

max
k=Ȟ,...,H

∣∣∣h1(k∗, T )

h1(k, T )
− 1
∣∣∣

=
h1(k∗, T )√
G(k∗)

OP (1) O(w/m)

= oP (1).

Hence, the upper and lower bound are asymptotically equal and we obtain

A(Ȟ,H) =
Rk∗√
G(H∗)

+ oP (1).

Along the lines of the proof of Theorem 2.4.1 we have

Rk∗√
G(k∗)

=

∫ k∗
0 g(x) dW (x)√

G(k∗)
+ oP (1)

and
∫ k∗

0 g(x) dW (x)/
√
G(k∗)

D
= W (1). Hence, by (2.6.22) we have

P
(
τ closedm,+ ≤ H

)
= P (W (1) ≥ −x+ o(1)) + o(1)→ φ(x),
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which completes the proof of the assertion for the one-sided, positive stopping time
τ closed+ . We briefly outline the analogue steps on proving the assertion for the one-
sided, negative stopping time: Under Hclosed

1,− we have

P
(
τ closedm,− ≤ H

)
= P

(
max

k=m̃,...,H

−Rk
h1(k, T )

> c

)
= P

(
−
∫ k∗

0 g(x) dW (x)√
G(k∗)

+ oP (1) >

(
c+

ΛH
h1(H,T )

)
h1(k∗, T )√
G(k∗)

)

= P

(
−
∫ k∗

0 g(x) dW (x)√
G(k∗)

+ oP (1) > −x+ o(1)

)
→ P

(
W (1) < x

)
= φ(x).

(2.6.24)

Finally, we present the proof of the first main theorem of this section.

Proof of Theorem 2.6.1. Lemma 2.6.12 gives us the required convergence towards
the standard normal distribution. So, it just remains to solve τ closedm,+ ≤ H(x) =
k∗ + [w(k∗)] for x and to replace the unknown k∗ by m̃ (which is possible by
the early-change assumption). By Lemma 2.6.8 we have w → ∞, so it holds for
sufficiently large m that

P
(
τ closedm,+ ≤ H

)
= P

(
τ closedm,+ − k∗ ≤ [w]

)
= P

(
max{τ closedm − k∗, 1} ≤ [w]

)
.

Thus, we can apply the increasing function r on both sides of the inequality and
obtain

P
(
τ closedm,+ ≤ H

)
= P

(
r
(

max{τ closedm,+ − k∗, 1}
)
≤ r([w(k∗)])

)
. (2.6.25)

On replacing the unknown k∗ by m̃ we aim to show that

r([w(k∗)])
a.s.
= r(w(m̃)) + o(

√
m). (2.6.26)

An application of the mean value theorem shows that r([w(k∗)]) = r(w(k∗)) +
O(1). On comparing r(w(k∗)) and r(w(m̃)) we have, for one thing, that for some
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ξ ∈ [m̃, k∗]∣∣∣ √G(k∗)

g(k∗)
−
√
G(m̃)

g(m̃)

∣∣∣
≤
∣∣∣ √G(k∗)−

√
G(m̃)

g(k∗)

∣∣∣+
√
G(m̃)

∣∣∣ 1

g(k∗)
− 1

g(m̃)

∣∣∣
a.s.
=

1

2

g2(ξ)√
G(ξ)

| k∗ − m̃ | +O(
√
m) o(1)

a.s.
= O((k∗ − m̃)/

√
m) + o(

√
m)

a.s.
= o(

√
m)

(2.6.27)

and, for another thing, by the early-change assumption and a repeated application
of the mean value theorem that for 0 < β < 1/2∣∣∣ h1(k∗, T )

g(k∗)
− h1(m̃, T )

g(m̃)

∣∣∣
=
|h1(k∗, T )− h1(m̃, T )|

g(k∗)
+ h1(m̃, T )

∣∣∣ 1

g(k∗)
− 1

g(m̃)

∣∣∣
a.s.
= O

(
T 1/2−β) |(G(k∗))β − (G(m̃))β|

+ O
(
T 1/2−βmβ |k∗ − m̃| m−λ−1

)
a.s.
= O

(
T 1/2−β |k∗ − m̃ |mβ−1

)
+O

(
T 1/2−βmβ+η−λ−1

)
a.s.
= O

(
T 1/2−βmβ+η−1

)
= O

(
m(ρ−1)(1/2−β)+η−1/2

)
= o(

√
m).

For β = 0 the first term in the second line disappears, yet we obtain the same rate
of convergence. Hence, (2.6.26) holds true and therefore we have

P

(
|δ| g(m̃) r

(
max{τ closedm,+ − k∗, 1}

)
/σ − c h1(m̃, T )√

G(m̃)
≤ x

)
→ φ(x).

The proof is complete if we replace δ by its estimate δ̂ = δ+ oP
(
m(ρ−1)(1/2−β)

)
. De-

noting Xm := g(m̃) r
(

max{τ closedm,+ − k∗, 1}
)
/
(
σ
√
G(m̃)

)
we find that

|δ̂|Xm −
c h1(m̃, T )√

G(m̃)

=
(
|δ̂|/|δ|

)
|δ|Xm −

c h1(m̃, T )√
G(m̃)

= |δ|Xm −
c h1(m̃, T )√

G(m̃)
+ oP

(
m(1−ρ)(1/2−β)Xm

)
= |δ|Xm −

c h1(m̃, T )√
G(m̃)

+ oP
(
m(1−ρ)(1/2−β) h1(m̃, T )/

√
G(m̃)

)
,

= |δ|Xm −
c h1(m̃, T )√

G(m̃)
+ oP (1),
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which yields the first assertion. The same arguments hold true for τ closedm,− , hence
the proof is complete.
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Proof of Theorem 2.6.2

Lemma 2.6.13. Under the assumptions of Theorem 2.6.2 we have, as m→∞,

w
a.s.' h2(k∗, m̃)

a.s.−→ ∞, (2.6.28)

H
a.s.∼ k∗ ∼ m/µ0, (2.6.29)

G(H)/G(k∗)
a.s.
= 1 +O(w/k∗) (2.6.30)

h2(H, m̃)/h2(k∗, m̃)
a.s.
= 1 +O(w/k∗) (2.6.31)(

sgn(δ)− ΛH
h2(H, m̃)

)
h2(H, m̃)√
G(k∗)

a.s.−→ − sgn(δ)x. (2.6.32)

Proof of Lemma 2.6.13. Recall that

w = r−1

(√
G(k∗)σ

g(k∗) |δ|

(
h2(k∗, m̃)√
G(k∗)

+ x

))
.

By the non-contamination assumption (2.1.3) it holds that

h2(k∗, m̃)√
G(k∗)

≥ f−1(ln(G(m/µ0)/G(m̃)) + f(c))
a.s.−→ c,

so, by x > −c the sequence h2(k∗, m̃)/
√
G(k∗) + x is a.s. bounded away from

zero. Combining this with
√
G(k∗)/g(k∗) → ∞ and Lemma 2.6.6 yields the first

assertion. The second one can be seen as follows: By Remark 1.7.1, Lemma 2.2.3
and (2.6.28), we have

H − k∗

k∗
a.s.' h2(k∗, m̃)

k∗
∼
√
G(k∗)

k∗

√
ln(G(k∗)/G(m̃)) + f(c)

k∗
a.s.−→ 0.

Assertion (2.6.30) is shown in Lemma 2.6.8 and just restated here for the sake of
completeness. Concerning (2.6.31) we first note that by the mean value theorem we
have for some ξ ∈ [G(k∗)/G(m̃) + f(c), G(H)/G(m̃) + f(c)], that

f−1(ln(G(H)/G(m̃)) + f(c))

f−1(ln(G(k∗)/G(m̃)) + f(c))
− 1

=
(
f−1(ξ)

)′ ln(G(H)/G(m̃))− ln(G(k∗)/G(m̃))

f−1(ln(G(k∗)/G(m̃)) + f(c))
,

where, on the one hand, by (2.4.16) (f−1(ξ))′ = O(1) and, on the other hand, by
a further application of the mean value theorem for some ξ̃ ∈ [1, H/k∗]

ln(G(H)/G(m̃))− ln(G(k∗)/G(m̃))

f−1(ln(G(k∗)/G(m̃)) + f(c))

≤ ln(G(H)/G(k∗))

f−1(ln(G(m/µ0)/G(m̃)) + f(c))

=
G(H)/G(k∗)− 1

c ξ̃ f−1(ln(G(m/µ0)/G(m̃)) + f(c))
a.s.
= O(w/k∗).
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Combining this with (2.6.30) yields

h2(H, m̃)

h2(k∗, m̃)
=

√
G(H)

G(k∗)

f−1(ln(G(H)/G(m̃)) + f(c))

f−1(ln(G(k∗)/G(m̃)) + f(c))

a.s.
= (1 +O(w/k∗)) (1 +O(w/k∗))

= 1 +O(w/k∗).

So, (2.6.32) remains to be shown. By (2.6.15) we have

ΛH
a.s.
=

δ g(k∗) r(w)

σ
+O

(
w−γ +m−λ−1w2 + 1

)
,

which yields(
sgn(δ)− ΛH

h2(H, m̃)

)
h2(H, m̃)√
G(k∗)

a.s.
=

sgn(δ) h2(H, m̃)√
G(k∗)

− δ g(k∗)r(w)

σ
√
G(k∗)

+ O
(
w−γm−1/2 +m−λ−3/2w2 +m−1/2

)
= sgn(δ)

(
h2(H, m̃)√
G(k∗)

− h2(k∗, m̃)√
G(k∗)

− x
)

+ o(1)

= sgn(δ)

(
h2(H, m̃)√
G(k∗)

(
1− h2(k∗, m̃)

h2(H, m̃)

)
− x
)

+ o(1)

a.s.
= − sgn(δ)x+ o(1),

and therefore completes the proof.

Lemma 2.6.14. Under the assumptions of Theorem 2.6.2 we have

max
k=m̃,...,H

|Rk −Rk∗ − Λk|
h2(k, m̃)

= oP (1).

Proof of Lemma 2.6.14. We consider the maximum for k ≤ k∗ and k > k∗ sep-
arately. Note that before the change point Λk = 0. By the invariance principle of
Theorem 2.3.1 we have

max
k=m̃,...,k∗

|Rk∗ −Rk|
h2(k, m̃)

a.s.
= max

k=m̃,...,k∗

|
∑k∗

i=k+1 g(i)(W (i)−W (i− 1))|
h2(k, m̃)

+ O
(
k∗κ/h2(m̃, m̃)

)
,

where the latter sum can be approximated as shown in Remark 1.3.3:∣∣∣ k∗∑
i=k+1

g(i)(W (i)−W (i− 1))
∣∣∣

≤ g(k∗) |W (k∗)−W (k)|+ 2 |g(k∗)− g(k + 1)| max
k≤t≤k∗

|W (t)|.
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Making use of the fact that W (t+k∗)−W (k∗) is again a Wiener process, the mean
value theorem and the law of the iterated logarithm we obtain

max
k=m̃,...,k∗

|Rk∗ −Rk|
h2(k, m̃)

= OP
(
k∗κ/h2(m̃, m̃)

)
+ OP

(√
(k∗ − m̃)/h2(m̃, m̃)

)
+ OP

(
(k∗ − m̃)

√
k∗ log log(k∗)/(m1+λ h2(m̃, m̃))

)
= OP

(
mκ−1/2

)
+ OP

(
m(η−1)/2

√
log(m)

)
= oP (1).

(2.6.33)

On the other hand, by replacing h1(k, T ) by h2(k, m̃) in Lemma 2.6.10 (cf.
(2.6.18)), we obtain

max
k=k∗+1,...,H

|Rk −Rk∗ − Λk|
h2(k, m̃)

= OP
(√

log log(k∗) k∗−λ−1/2w/h2(k∗, m̃)
)

+OP
(
k∗κ/h2(k∗, m̃)

)
,

+ OP
(√

k∗ςm/h2(k∗, m̃)
)

+OP
(
h2(k∗, m̃)−1/2

)
.

= oP (1),

where the last equality follows from w
a.s.' h2(m̃, m̃)

a.s.'
√
m.

Lemma 2.6.15. Under the assumptions of Theorem 2.6.2 we have under Hopen
1,+ re-

spectively Hopen
1,+ that

lim
m→∞

P
(
τ openm,+ ≤ H

)
= φ(x),

lim
m→∞

P
(
τ openm,− ≤ H

)
= φ(x).

Proof of Lemma 2.6.15. We consider the one-sided, positive stopping time τ openm,+ (i.e.
the case δ > 0) in detail: By Lemma 2.6.14 we have

max
k=m̃,...,H

Rk
h2(k, m̃)

− ΛH
h2(H, m̃)

= max
k=m̃,...,H

Rk∗ + Λk
h2(k, m̃)

− ΛH
h2(H, m̃)

+ oP (1),

where we replace the right hand side by Rk∗/h2(H, m̃) via the following three
arguments:

1. By (2.6.31) we have

max
k=m̃,...,H

∣∣∣∣ Rk∗

h2(k, m̃)
− Rk∗

h2(H, m̃)

∣∣∣∣ = OP (w/k∗) = oP (1).
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2. Since Λk = 0 for k ≤ k∗ but Λk > 0 for k > k∗ it holds that

max
k=m̃,...,H

Λk
h2(k, m̃)

− Λk
h2(H, m̃)

= max
k=k∗+1,...,H

Λk
h2(k, m̃)

− Λk
h2(H, m̃)

and by (2.6.32) and (2.6.31) we obtain

max
k=k∗+1,...,H

∣∣∣ Λk
h2(k, m̃)

− Λk
h2(H, m̃)

∣∣∣
= max

k=k∗+1,...,H

|Λk|
h2(H, m̃)

(
h2(H, m̃)

h2(k, m̃)
− 1

)
a.s.
= O

(
w/k∗

)
a.s.
= o(1).

3. Since Λk is non-decreasing in k, it holds that maxk=m̃,...,H(Λk − ΛH) = 0.

The three assertions can be combined as follows:∣∣∣∣ max
k=m̃,...,H

Rk∗ + Λk
h2(k, m̃)

− ΛH
h2(H, m̃)

− Rk∗

h2(H, m̃)

∣∣∣∣
=

∣∣∣∣ max
k=m̃,...,H

Rk∗ + Λk
h2(k, m̃)

− Rk∗ + ΛH
h2(H, m̃)

∣∣∣∣
≤ max

k=m̃,...,H

∣∣∣∣Rk∗ + Λk
h2(k, m̃)

− Rk∗ + ΛH
h2(H, m̃)

∣∣∣∣
≤ max

k=m̃,...,H

∣∣∣∣ Rk∗

h2(k, m̃)
− Rk∗

h2(H, m̃)

∣∣∣∣+

∣∣∣∣ Λk
h2(k, m̃)

− ΛH
h2(H, m̃)

∣∣∣∣
= oP (1).

(2.6.34)

Thus, it holds true that

max
k=m̃,...,H

Rk
h2(k, m̃)

− ΛH
h2(H, m̃)

=
Rk∗

h2(H, m̃)
+ oP (1)

and by the early-change assumption it holds that

h2(H, m̃)√
G(k∗)

a.s.' f−1(ln(G(H)/G(m̃)) + f(c))
a.s.
= O(1).

Combining the assertions above gives us

h2(H, m̃)√
G(k∗)

max
k=m̃,...,H

Rk
h2(k, m̃)

− ΛH
h2(H, m̃)

=
Rk∗√
G(k∗)

+ oP (1).

Along the lines of the proof of Theorem 2.4.2 we make use of the invariance principle
to replace our observations by a Wiener process. The Gaussian analogue of the
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detectors can be approximated by a Wiener integral which is again distributed as a
Wiener process. Combining this with (2.6.32) gives us

P
(
τ openm,+ ≤ H

)
→ P (W (1) > −x) = φ(x).

The same arguments yield in case of δ < 0 that

h2(H, m̃)√
G(k∗)

(
max

k=m̃,...,H

−Rk
h2(k, m̃)

+
Λk

h2(k, m̃)

)
=
−Rk∗√
G(k∗)

+ oP (1),

hence

P
(
τ openm,− ≤ H

)
= P

(
max

k=m̃,...,H
−Rk/h2(k, m̃) > 1

)
= P

(
−W (1) >

(
1 +

ΛH
h2(H, m̃)

)
h2(H, m̃)√
G(k∗)

)
+ o(1)

= P

(
−W (1) > −

(
sgn(δ)− ΛH

h2(H, m̃)

)
h2(H, m̃)√
G(k∗)

)
+ o(1)

= P
(
−W (1) > −x+ o(1)

)
+ o(1)

→ φ(x).

(2.6.35)

Now, we are in the position to prove of the second main theorem of this section.

Proof of Theorem 2.6.2. Lemma 2.6.15 gives us the required convergence towards
the standard normal distribution, however it remains to convert P (τ ≤ H) into
the expression given in Theorem 2.6.2. Since w

a.s.' h2(k∗, m̃)
a.s.−→ ∞, we have for

sufficiently large m

P
(
τ openm,+ − k∗ ≤ [w]

)
= P

(
max{τ openm,+ − k∗, 1} ≤ [w]

)
, (2.6.36)

which by Lemma 2.6.6 and Lemma 2.6.15 implies that for sufficiently large m

P
(
τ openm,+ − k∗ ≤ [w]

)
= P

(
r
(

max{τ openm,+ − k∗, 1}
)
≤ r([w])

)
.

An application of the mean value theorem allows us to replace r([w]) by r(w) +
O(1) and the early-change assumption (2.6.3) allows us to replace r(w(k∗)) by
r(w(m̃)), hence we obtain a standardization of the delay time independent of
k∗. The latter is carried out in detail: By (2.6.27) we have√

G(k∗)

g(k∗)
−
√
G(m̃)

g(m̃)

a.s.
= o

(√
m
)
.

Similar arguments as in the proof of (2.6.31) yield h2(k∗, m̃)/h2(m̃, m̃)
a.s.
= 1 +

o(1). Combining this with the mean value theorem, h2(m̃, m̃)
a.s.'
√
m and the
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early-change assumption yields

h2(k∗, m̃)

g(k∗)
− h2(m̃, m̃)

g(m̃)

=

(
1− h2(m̃, m̃)

h2(k∗, m̃)

)
h2(k∗, m̃)

g(k∗)
+ h2(m̃, m̃)

(
1

g(k∗)
− 1

g(m̃)

)
a.s.
= o

(√
m
)

+O
(
(k∗ − m̃)m1/2−λ−1

)
= o

(√
m
)

+O
(
mη−λ−1/2

)
= o

(√
m
)
.

The latter two assertions give us r(w(k∗)) = r(w(m̃)) + o(
√
m). Plugging this in

(2.6.36), solving the inequality for x and replacing δ by the consistent estimate
δ̂ completes the proof for the stopping time τ openm,+ . The corresponding result for
τ openm,− follows by similar arguments.
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Proofs of the corollaries

Proof of Corollary 2.6.4. First of all, note that√
G(m̃)φ−1(1− α̃) + c h1(m̃, T )

|δ| g(m̃)/σ

a.s.' h1(m̃, T )
a.s.−→ ∞,

hence q is a.s. well-defined for sufficiently large m and by Lemma 2.6.6 q
a.s.−→

∞. So, for sufficiently large m we have

P
(
τ closedm,+ − k∗ ≤ q

)
= P

(
max{τ closedm,+ − k∗, 1} ≤ q

)
.

Further, by the proof of Lemma 2.6.9 we have

P
(
τ closedm,+ ≤ k∗

)
≤ P

(
max

k=m̃,...,k∗
|Rk|/h1(k, T ) > c

)
→ 0.

Combining the assertions above yields

P
(
τ closedm,+ − q ≤ k∗ < τ closedm,+

)
= P

(
k∗ < τ closedm,+ ≤ k∗ + q

)
= P

(
τ closedm,+ − k∗ ≤ q

)
− P

(
τ closedm,+ ≤ k∗

)
= P

(
max{τ closedm,+ − k∗, 1} ≤ q

)
+ o(1).

Plugging in the definition of q and applying Theorem 2.6.1 yields the first assertion.
The second one follows in the same manner. On proving the third assertion one can
copy the arguments of (1.5.17): If δ > 0, we consider

P
(
τ closedm − q ≤ k∗ < τ closedm

)
≥ P

(
k∗ < τ closedm,+ ≤ k∗ + q

)
− P

(
τ closedm,− ≤ k∗

)
,

where similar as above we obtain

P
(
k∗ < τ closedm,+ ≤ k∗ + q

)
→ 1− α̃,

and

P
(
τ closedm,− ≤ k∗

)
→ 0.

Exchanging the roles of τ closedm,+ and τ closedm,− yields the assertion in case of δ < 0.

Proof of Corollary 2.6.5. By Lemma 2.6.6 and Lemma 2.6.8 we know that q(χi) is
a.s. well defined and q(χi)

a.s.−→ ∞, for i = 1, 2. Thus, for sufficiently large m we
have

P
(
τ openm,+ − k∗ ≤ q(χ1)

)
= P

(
max{τ openm,+ − k∗, 1} ≤ q(χ1)

)
= P

(
r
(

max{τ openm,+ − k∗, 1}
)
≤ r(q(χ1))

)
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and due to χ1 = φ−1(1− α̃+ φ(−c)) > −c we can apply Theorem 2.6.2 as follows:

P
(
τ openm,+ − k∗ ≤ q(χ1)

)
→ φ(χ1) = 1− α̃+ φ(−c). (2.6.37)

By Lemma 2.6.13 and Lemma 2.6.14 we have

P
(
τ openm,+ ≤ k∗

)
= P

(
max

k=m̃,...,k∗

Rk
h2(k, m̃)

> 1
)

= P

(
Rk∗√
G(k∗)

+ oP (1) >
h2(k∗, m̃)√
G(k∗)

)
.

Along the lines of Theorem 2.4.2 we have Rk∗/
√
G(k∗) =

∫ k∗
0 g(x) dW (x)/

√
G(k∗)+

oP (1) and
∫ k∗

0 g(x) dW (x)/
√
G(k∗)

D
= W (1). Further, by the early-change assump-

tion (2.6.3) we have h2(k∗, m̃)/
√
G(k∗)

a.s.
= c+ o(1), which yields

P
(
τ openm,+ − k∗ ≤ 0

)
→ P (W (1) ≥ c) = φ(−c). (2.6.38)

Combining (2.6.37) and (2.6.38) completes the proof for the one-sided, positive stop-
ping time τ openm,+ . The proof for the one-sided, negative stopping time τ openm,− follows
by the same arguments. On proving the assertion for the two-sided stopping time
τ openm we copy the arguments of Corollary 1.5.3.
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2.6.2 Asymptotic normality of the delay times for unknown in-control
parameters

In this section we carry over the results of the previous section to the case of unknown
in-control parameters.

Theorem 2.6.16. With the notation and assumptions of Section 2.1 and Section
2.2 as well as T = [ϑmρ] where

1 < ρ <
1/2 + Λ(1− 2β)

Λ(1− 2β)

and ϑ ≥ 1, δ being constant and being estimated by δ̂ = δ+ oP
(
m(1−ρ)Λ(1/2−β)

)
, σ be-

ing estimated by σ̂k = σ̂m̃ = σ + oP
(
m(1−ρ)Λ(1/2−β)

)
for all k = m̃, . . . , ñ, the

critical value c being positive, λ < min{1/2− κ, 1/4} and

k∗ = m/µ0 +O
(
mη
)

(2.6.39)

for some η < 1− Λ (ρ− 1) (1/2− β) it holds for all x ∈ R under the alternative
Hclosed

1,+ that

lim
m→∞

P

(
δ̂ λ̃m r

(
max{τ̂ closedm,+ − k∗, 1}

)
/σ̂m̃ − c ĥ1(m̃, T )√

G̃(m̃)
≤ x

)
= φ(x)

and under the alternative Hclosed
1,− that

lim
m→∞

P

(
|δ̂|λ̃m r

(
max{τ̂ closedm,− − k∗, 1}

)
/σ̂m̃ − c ĥ1(m̃, T )√

G̃(m̃)
≤ x

)
= φ(x),

where r(x) is defined in (2.6.1) and λ̃m = λ/(1− λ) m̃−λ.

Theorem 2.6.17. With the notation and assumptions of Section 2.1 and Section
2.2 as well as δ being constant and being estimated by δ̂

P→ δ, σ being estimated
by σ̂k = σ̂m̃

P→ σ for all k = m̃, . . . , ñ, the constant c from the threshold function
ĥ2 being positive, λ < min{1/2− κ, 1/4} and

k∗ = m/µ0 +O
(
mη
)

(2.6.40)

for some η < Λ it holds for all x > −c under the alternative Hopen
1,+ that

lim
m→∞

P

(
δ̂ λ̃m r

(
max{τ̂ openm,+ − k∗, 1}

)
/σ̂m̃ − c

√
G̃(m̃)√

G̃(m̃)
≤ x

)
= φ(x)

and under the alternative Hclosed
1,− that

lim
m→∞

P

(
|δ̂| λ̃m r

(
max{τ̂ openm,− − k∗, 1}

)
/σ̂m̃ − c

√
G̃(m̃)√

G̃(m̃)
≤ x

)
= φ(x),

where r(x) is defined in (2.6.1) and λ̃m = λ/(1− λ) m̃−λ.
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The following Lemma gives us a suitable estimate for δ, which fulfills the assump-
tions of Theorem 2.6.16 or Theorem 2.6.17, respectively.

Lemma 2.6.18. With the notation and assumptions of Section 2.1 and Section 2.2
let

δ̂m,k =

∑k
i=1 µm̃(i)

(
S̃i − S̃i−1 − S̃m̃/m̃

)∑k
i=1 µ

2
m̃(i)

,

where

µl(k) := 1− (1 + (k − l)+)−γ =

{
1− (1 + k − l)−γ if k > l,

0 if k ≤ l.

If k∗ −m = o
(
mζ
)
, as m→∞, for some ζ > 1 it holds that, as m→∞

δ̂m,m̃+mζ
a.s.
= δ +O

(
m1−ζ)+O

(
m−ζγ

)
+O

(√
log log(m)m−ζ/2

)
.

On choosing

ζ >max

{
1+(ρ− 1)Λ(1/2− β),

(ρ− 1)Λ(1/2− β)

γ
, (ρ− 1)Λ(1− 2β)

}
the assumptions on δ̂ of Theorem 2.6.16 are fulfilled and on choosing ζ > 1 the
assumptions of Theorem 2.6.17 are fulfilled.

The proof of Lemma 2.6.18 is given at the very end of this section. The following two
implications of Theorem 2.6.16 and Theorem 2.6.17 give us asymptotic confidence
intervals for the change point:

Corollary 2.6.19. Let the assumptions of Theorem 2.6.16 hold true. On setting

χ = r−1

(√
G̃(m̃)φ−1(1− α̃) + c ĥ1(m̃, T )

|δ̂|λ̃m/σ̂m̃

)
,

where α̃ ∈ (0, 1), we obtain for τ̂ closedm,+ , τ̂ closedm,− and τ̂ closedm as in Section 2.2.2,
that, as m→∞,

P
(
τ̂ closedm,+ − χ ≤ k∗ < τ̂ closedm,+

)
= 1− α̃+ o(1),

P
(
τ̂ closedm,− − χ ≤ k∗ < τ̂ closedm,−

)
= 1− α̃+ o(1),

P
(
τ̂ closedm − χ ≤ k∗ < τ̂ closedm

)
≥ 1− α̃+ o(1),

hold true under Hclosed
1,+ , Hclosed

1,− or Hclosed
1 , respectively.

Corollary 2.6.20. Let the assumptions of Theorem 2.6.17 hold true. On setting

q(χi) = r−1

(√
G̃(m̃)φ−1(χi) + G̃(m̃)

|δ̂| g(m̃)λ̃m/σ̂m

)
,



122 CHAPTER 2. MONITORING GRADUAL CHANGES IN RENEWAL PROCESSES

where

χi =

{
φ−1

(
1− α̃− φ(−c)

)
if i = 1,

φ−1
(
1− α̃− 2φ(−c)

)
if i = 2,

with

α̃ ∈

{(
φ(−c), 1

)
for i = 1,(

2φ(−c), 1
)

for i = 2,

we obtain for τ̂ openm,+ and τ̂ openm,− as in Section 2.2.2 and τ̌ openm = min{τ̂ openm,+ , τ̂
open
m,+ } that,

as m→∞,

P
(
τ̂ openm,+ − q(χ1) ≤ T ∗ < τ̂ openm,+

)
= 1− α̃+ o(1),

P
(
τ̂ openm,− − q(χ1) ≤ T ∗ < τ̂ openm,+

)
= 1− α̃+ o(1),

P
(
τ̌ openm − q(χ2) ≤ T ∗ < τ̌ openm

)
≥ 1− α̃+ o(1),

hold true under Hopen
1,+ , Hopen

1,− or Hopen
1 , respectively.

Corollary 2.6.19 and Corollary 2.6.20 can be shown along the lines of the proofs of
Corollary 2.6.4 and Corollary 2.6.5, hence the proofs are omitted.

2.6.2.1 Proofs

We start by introducing some notation which will be used in this section frequently.
Let

Ĥ := k∗ + [ŵ(k∗)] (2.6.41)

with

ŵ(k∗) := r−1

(√
G̃(k∗)σ

|δ| λ̃m

(
ĥ(k∗)√
G̃(k∗)

+ x

))
, (2.6.42)

where ĥ(t) shall denote either c ĥ1(t, T ) or ĥ2(t, m̃), depending on the setting we
are working with. If not stated otherwise, throughout this section ŵ shall denote
ŵ(k∗).

Remark 2.6.21. Along the lines of Remark 2.6.7 we see that in the closed-end
setting ŵ is a.s. well-defined for any x ∈ R, whereas in the open-end setting ŵ is
well-defined for any x > −c, where c is the critical value of the respective stopping
time.

To further shorten the notation let

Λ̂k :=

k∑
i=1

g(i)
(
µ(i)− 1

k

∑k
j=1 µ(j)

)
σ

, (2.6.43)

Â(a, b) :=

(
max

k=[a],...,[b]

sgn(δ) R̂k

ĥ(k)
−

sgn(δ) Λ̂Ĥ
ĥ(Ĥ)

)
ĥ(k∗)√
G̃(k∗)

,

where again ĥ(t) shall denote either c ĥ1(t, T ) or ĥ2(t, m̃).
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Proof of Theorem 2.6.16
Theorem 2.6.16 follows in a similar manner as Theorem 2.6.1, yet, for one thing,
we have to make sure that the estimate µ̂0,k does not cause any problems and,
for another thing, we have to check that the respective rates still hold true for
G̃, ĥ1, Ĥ and ŵ instead of G, h, H and w. We start with a technical lemma:

Lemma 2.6.22. Under the assumptions of Theorem 2.6.16 we have, as m→∞,

ŵ
a.s.' mλ

(
G̃(k∗)

)β (
G̃(T/µ0)

) 1
2
−β →∞, (2.6.44)

Ĥ
a.s.∼ k∗ ∼ m/µ0, (2.6.45)

G̃(Ĥ)/G̃(k∗)
a.s.
= 1 +O(ŵ/m), (2.6.46)

ĥ1(Ĥ, T )/ĥ1(k∗, T )
a.s.
= 1 +O(ŵ/m), (2.6.47)(

sgn(δ) c−
Λ̂Ĥ

ĥ1(Ĥ, T )

)
ĥ1(k∗, T )√
G̃(k∗)

a.s.−→ − sgn(δ)x, (2.6.48)

where Ĥ, ŵ and Λ̂k are defined in (2.6.41), (2.6.42) and (2.6.43).

Proof of Lemma 2.6.22. Recall that

w = r−1

(√
G̃(k∗)σ

|δ| λ̃m

(
c ĥ1(k∗, T )√

G̃(k∗)
+ x

))
.

Arguing as in (2.4.18) yields

ĥ1(k∗, T )√
G̃(k∗)

a.s.'
(
G̃(T/µ0)

G̃(k∗)

)1/2−β
→∞, (2.6.49)

hence by the definitions of ŵ and λ̃m and by Lemma 2.6.6 we get

ŵ
a.s.' ĥ1(k∗, T )

λ̃m

a.s.' mλ
(
G̃(k∗)

)β (
G̃(T/µ0)

)1/2−β
,

i.e. (2.6.44) holds true. Combining this with the early-change assumption (2.6.39)
yields

(Ĥ − k∗)/k∗ = ŵ/k∗
a.s.
= O

(
mλ−1+Λβ+ρΛ(1/2−β)

)
= o(1),

where the last equality follows from our assumptions on ρ. Further, by Lemma 2.2.3
and the mean value theorem we have for some ξ ∈ [k∗, Ĥ] that∣∣∣∣ G̃(Ĥ)

G̃(k∗)
− 1

∣∣∣∣ =
G̃′(ξ) (Ĥ − k∗)

G̃(k∗)

a.s.
= O

(
ŵ m−2λ k∗−Λ) = O(ŵ/k∗),

hence (2.6.46) holds true. By Ĥ
a.s.∼ k∗ and the growth rate of Corollary 2.3.3

we can show that the estimates up to µ̂0,Ĥ converge towards the in-control mean
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µ0, even though they contain (some) observations made after the change point:

max
k=k∗,...,Ĥ

|µ̂0,k − µ0|

≤ max
k=k∗,...,Ĥ

∣∣∣∣ S̃k −∑k
i=1 µ(i)

k
− µ0 +

∑k
i=1 µ(i)

k

∣∣∣∣
a.s.
= O

(√
log log(k∗)/k∗

)
+ max
k=k∗,...,Ĥ

|δ
∑k

i=k∗+1(1− (1 + i− k∗)−γ)|
k

= O
(√

log log(k∗)/k∗
)

+O(ŵ/k∗)
a.s.
= o(1).

(2.6.50)

Combining this with (2.6.46) (glimpsing at (2.4.18)) yields (2.6.47). On showing
(2.6.48) we decompose the Λ̂Ĥ into one part corresponding to the case of known
in-control parameters and another part corresponding to the estimation of µ0:

Λ̂Ĥ =
Ĥ∑
i=1

g(i) (µ(i)− µ0)

σ
+

Ĥ∑
i=1

g(i)
(
µ0 −

∑Ĥ
j=1 µ(j)/Ĥ

)
σ

. (2.6.51)

For the first part we make use of the asymptotic we derived for known in-control
parameters (see (2.6.15)):

Ĥ∑
i=1

g(i) (µ(i)− µ0)

σ
=
δ g(k∗) r(ŵ)

σ
+ O

(
ŵ−γ +m−λ−1ŵ2 + 1

)
. (2.6.52)

We approximate the second term in a similar manner. On the one hand, we have

Ĥ∑
i=1

g(i)
a.s.
= Ĥ − Ĥ1−λ

1− λ
+ O(Ĥ−λ) (2.6.53)

and, on the other hand,

µ0 −
∑Ĥ

j=1 µ(j)

Ĥ

= −δ
(

1−
∑Ĥ

j=1(1 + (j − k∗)+)−γ

Ĥ

)

= −δ
(

1−
k∗ +

∑Ĥ−k∗
j=1 (1 + j)−γ

Ĥ

)
a.s.
= −δ

(
1− k∗ + (Ĥ − k∗)1−γ/(1− γ)

Ĥ
+ O

(
ŵ−γ/Ĥ

))
= −δ

(
[ŵ]

Ĥ
− [ŵ]1−γ

Ĥ (1− γ)

)
+ O

(
ŵ−γ/Ĥ

)
=
−δ r(ŵ)

Ĥ
+O

(
ŵ−γ/Ĥ + 1/Ĥ

)
,

(2.6.54)
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which combines to

Λ̂Ĥ
a.s.
=

δ r(ŵ)

σ

(
g(k∗)− 1 +

Ĥ
−λ

1− λ

)
+O

(
ŵ−γ + ŵ2m−λ−1 + 1

)
=

δ r(ŵ)

σ

(
Ĥ
−λ

1− λ
− (1 + k∗)−λ

)
+O

(
ŵ−γ + ŵ2m−λ−1 + 1

)
=

δ r(ŵ)

σ m̃λ

((
m̃

Ĥ

)λ 1

1− λ
−
(

m̃

1 + k∗

)λ)
+ O

(
ŵ−γ + ŵ2m−λ−1 + 1

)
.

By applying the mean value theorem and the early-change assumption (2.6.39) we
have ∣∣(m̃/Ĥ)λ − 1

∣∣ a.s.
= O

((
Ĥ − m̃

)
/m
) a.s.

= O
((
ŵ +mη

)
/m
)

(2.6.55)

and ∣∣1− (m̃/(1 + k∗))λ
∣∣ a.s.

= O
(
mη−1

)
, (2.6.56)

which yields

Λ̂Ĥ
a.s.
=

λ δ r(ŵ)

σ (1− λ) m̃λ
+O

(
ŵ−γ + ŵ2m−λ−1 + ŵ mη−1−λ + 1

)
a.s.
=

δ λ̃m r(ŵ)

σ
+ o
(√

G̃(k∗)
)
,

(2.6.57)

where for the last equality we used that

1. λ̃m = λ/(1− λ) m̃−λ,

2. ŵ−γ/
√
G̃(k∗)

a.s.−→ 0,

3. ŵ2m−1−λ/
√
G̃(k∗)

a.s.
= O(m(ρ−1)Λ(1−2β)−1/2) = o(1),

4. ŵ mη−1−λ/
√
G̃(k∗)

a.s.
= O(mη−1+Λ(1/2−β)(1−ρ)) = o(1),

5. 1/
√
G̃(k∗)→ 0.

Now, plugging the approximation of Λ̂Ĥ into the left hand side of (2.6.48) yields(
sgn(δ) c−

Λ̂Ĥ
ĥ1(Ĥ, T )

)
ĥ1(k∗, T )√
G̃(k∗)

=
sgn(δ) c ĥ1(k∗, T )√

G̃(k∗)
−

Λ̂Ĥ√
G̃(k∗)

ĥ1(k∗, T )

ĥ1(Ĥ, T )

a.s.
=

sgn(δ) c ĥ1(k∗, T )√
G̃(k∗)

−
(
δ λ̃m r(ŵ)

σ
√
G̃(k∗)

+ o(1)

)(
1 +O

(
ŵ/m

))
=

sgn(δ) c ĥ1(k∗, T )− δ λ̃m r(ŵ)/σ√
G̃(k∗)

+ o(1).

Plugging the definition of ŵ in the equation above yields (2.6.48).
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Lemma 2.6.23. Under the assumptions of Theorem 2.6.16 we have

Â(m̃, k∗)
P→ −∞.

Proof of Lemma 2.6.23. Let 1 < ρ̃ < ρ. By Theorem 2.4.2 we have

max
k=m̃,...,k∗

|R̂k|
ĥ1(k, T )

≤ max
k=m̃,...,k∗

|R̂k|
ĥ1(k,mρ̃)

max
k=m̃,...,k∗

ĥ1(k,mρ̃)

ĥ1(k, T )

= OP (1) oP (1)

= oP (1).

Combining this with

sgn(δ) Λ̂Ĥ/(ĥ1(Ĥ, T ))
a.s.−→ c > 0

(see (2.6.48)) and

ĥ1(k∗, T )/
√
G̃(k∗)

a.s.−→ ∞

(see (2.6.49)) yields the assertion.

Lemma 2.6.24. Under the assumptions of Theorem 2.6.1 we have, as m→∞,

max
k=k∗+1,...,Ĥ

|R̂k − R̂k∗ − Λ̂k|
ĥ1(k, T )

= oP
(√

G̃(k∗)/ĥ1(k∗, T )
)
.

Proof of Lemma 2.6.24. We decompose the expression into one part which corre-
sponds to the case of known in-control parameters and a second part which corre-
sponds to the estimation of µ0: For k = k∗ + 1, . . . , Ĥ we have

R̂k − R̂k∗ − Λ̂k =
σ

σ̂m̃

(
Rk −Rk∗ − Λk

)
− σ

σ̂m̃

k∑
i=1

g(i)

σ

S̃k −M(k)

k
+

σ

σ̂m̃

k∗∑
i=1

g(i)

σ

S̃k∗ −M(k)

k∗

=
σ

σ̂m̃

(
Rk −Rk∗ − Λk

)
− σ

σ̂m̃

k∑
i=1

g(i)

σ

S̃k −M(k)−
(
S̃k∗ −M(k)

)
k/k∗

k

− σ

σ̂m̃

k∑
i=k∗+1

g(i)

σ

S̃k∗ −M(k∗)

k∗
,

(2.6.58)

where Rk and Λk are the counterparts of R̂k and Λ̂k in case of known in-
control parameters and M(k) =

∑k
i=1 µ(i) denotes the mean of Sk (see Section

2.1). A careful examination of the calculations in the proof of Lemma 2.6.10 with
ς = k∗−q for some q ∈ (2λ, 1/2) yields that from
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1. k∗−λ−1/2ŵ/
√
G̃(k∗) ' m−1/2+(ρ−1)Λ(1/2−β) → 0,

2. k∗κ/
√
G̃(k∗) ' k∗κ−Λ/2 → 0,

3.
√
k∗ ςm/G̃(k∗) ' m(2λ−q)/2 → 0,

4.
√
ŵ/G̃(k∗) ' m((ρ−1)Λ(1/2−β)−1+3λ)/2 → 0

we obtain

max
k=k∗+1,...,Ĥ

|Rk −Rk∗ − Λk|
ĥ1(k, T )

= oP
(√

G̃(k∗)/ĥ1(k∗, T )
)

(see (2.6.18)). Hence, we focus on the latter two summands of the right hand side of
(2.6.58). Concerning the first of the two summands we have

k∑
i=1

g(i)

σ

S̃k −M(k)−
(
S̃k∗ −M(k)

)
k/k∗

k

≤
max{µ0, µ1}

∣∣S̃k −M(k)− k/k∗
(
S̃k∗ −M(k∗)

)∣∣
σ

≤
max{µ0, µ1}

∣∣(S̃k −M(k)
)(

1− k/k∗
)∣∣

σ

+
max{µ0, µ1}

∣∣S̃k −M(k)− S̃k∗ +M(k∗)
∣∣k

σ k∗
.

By Corollary 2.3.3 and Lemma 2.6.22 we have

max
k=k∗+1,...,Ĥ

∣∣(S̃k −M(k)
)(

1− k/k∗
)∣∣

ĥ1(k, T )

= OP
(√

log log(k∗)/k∗ ŵ/ĥ1(k∗, T )
)

= oP
(√

G̃(k∗)/ĥ1(k∗, T )
)
,

(2.6.59)

where the last equality holds since our assumptions on λ and ρ yield√
log log(k∗)/k∗ ŵ/

√
G̃(k∗)

=
√

log log(k∗)m(ρ−1)Λ(1/2−β)+λ−1/2

→ 0.

Further, by the proof of Lemma 2.6.10 (see (2.6.17) onwards) and the calculations
above we have

max
k=k∗+1,...,Ĥ

∣∣S̃k −M(k)− (S̃k∗ −M(k∗))
∣∣

ĥ1(k, T )
= oP (

√
G̃(k∗)/ĥ1(k∗, T )

)
.

Finally, similar as in (2.6.59) we have

k∑
i=k∗+1

g(i)

σ

S̃k∗ −M(k∗)

k∗
= oP

(√
G̃(k∗)/ĥ1(k∗, T )

)
.

Combining the assertions above with the consistency of σ̂m̃ completes the proof.
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Lemma 2.6.25. Let Ȟ = Ȟ(ε) = k∗+[(1−ε)ŵ]. Under the assumptions of Theorem
2.6.16 it holds for any ε > 0 that, as m→∞,

P
(
Â(k∗ + 1, Ĥ) = Â(Ȟ, Ĥ)

)
→ 1.

Proof of Lemma 2.6.25. The proof is given for δ > 0, yet follows by the same
arguments if δ < 0. Along the lines of (2.6.19) and (2.6.20) we have

P
(
Â(k∗ + 1, Ĥ) = Â(Ȟ, Ĥ)

)
= P

(
max

k=k∗+1,...,Ȟ−1

R̂k − R̂k∗
ĥ1(k, T )

≤
R̂Ĥ − R̂k∗
ĥ1(Ĥ, T )

+ oP (1)

)
,

(2.6.60)

where to both terms in the latter expression we can apply Lemma 2.6.24: For the
first term we have

max
k=k∗+1,...,Ȟ−1

R̂k − R̂k∗
ĥ1(k, T )

= max
k=k∗+1,...,Ȟ−1

Λ̂k

ĥ1(k, T )
+ oP (1).

By the fact that Λ̂k is increasing (see (2.5.4)) we have

Λ̂Ȟ−1

ĥ1(Ȟ − 1, T )
≤ max

k=k∗+1,...,Ȟ−1

Λ̂k

ĥ1(k, T )
≤ max

k=k∗+1,...,Ȟ−1

Λ̂Ȟ−1

ĥ1(k, T )
, (2.6.61)

which, in combination with (2.6.47) and (2.6.48), yields

max
k=k∗+1,...,Ȟ−1

Λ̂k

ĥ1(k, T )

a.s.
=

Λ̂Ȟ−1

ĥ1(Ĥ, T )
+ O

(
ŵ/k∗

)
.

Thus, by the fact that ŵ/k∗
a.s.−→ 0 we have

max
k=k∗+1,...,Ȟ−1

R̂k − R̂k∗
ĥ1(k, T )

=
Λ̂Ȟ−1

ĥ1(Ĥ, T )
+ oP (1)

and, similarly,

R̂Ĥ − R̂k∗
ĥ1(k, T )

=
Λ̂Ĥ

ĥ1(Ĥ, T )
+ oP (1).

Plugging the two assertions above into in (2.6.60) yields

P
(
Â
(
k∗ + 1, Ĥ

)
= Â

(
Ȟ, Ĥ

))
= P

(
0 ≤

(
Λ̂Ĥ − Λ̂Ȟ−1

)
/ĥ1(Ĥ, T ) + oP (1)

)
,

(2.6.62)

hence we approximate the difference between the two deterministic terms: Making
use of (2.6.52), (2.6.53) and (2.6.54) gives us

Λ̂Ĥ − Λ̂Ȟ−1

=
Ĥ∑
i=Ȟ

g(i)
(
µ(i)− µ0

)
σ

−
Ĥ∑
i=1

g(i)

σ

Ĥ∑
j=1

µ(j)− µ0

Ĥ

+
Ȟ−1∑
i=1

g(i)

σ

Ȟ−1∑
j=1

µ(j)− µ0

Ȟ − 1
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a.s.
=

δ g(k∗)
(
r(ŵ)− r((1− ε)ŵ)

)
σ

+O
(
ŵ−γ +m−λ−1ŵ2 + 1

)
−
(

1− Ĥ−λ

1− λ
+ O

(
Ĥ−λ−1

))(δ r(ŵ)

σ
+ O

(
ŵ−γ + 1

))
+

(
1−

(
Ȟ − 1

)−λ
1− λ

+ O
(
Ĥ−λ−1

))
×
(
δ r((1− ε)ŵ)

σ
+ O

(
ŵ−γ + 1

))
=

δ
(
r(ŵ)− r((1− ε)ŵ)

)
σ

(
g(k∗)− 1 +

Ĥ−λ

1− λ

)

+
Ĥ−λ −

(
Ȟ − 1)−λ

1− λ
δ r((1− ε)ŵ)

σ

+ O
(
ŵ−γ +m−λ−1ŵ2 + 1

)
=

δ
(
r(ŵ)− r((1− ε)ŵ)

)
m̃λ σ

((
m̃

Ĥ

)λ 1

1− λ
−
(

m̃

1 + k∗

)λ)
+ O

(
ŵ−γ +m−λ−1ŵ2

)
a.s.
=

δ λ
(
r(ŵ)− r((1− ε)ŵ)

)
m̃λ σ (1− λ)

+ O
(
ŵ−γ +m−λ−1ŵ2 + ŵ(ŵ +mη)m−λ−1 + 1

)
,

where the last equality is shown in (2.6.55) and (2.6.56). Further, by the definition
of r we have

r(ŵ)− r((1− ε)ŵ)

ε ŵ

a.s.
=

1

ε
− 1− ε

ε
+ O

(
ŵ−γ

)
= 1 + O

(
ŵ−γ

)
,

hence

Λ̂Ĥ − Λ̂Ȟ−1

ĥ1(Ĥ, T )

a.s.
=

δ λ ε ŵ

σ (1− λ) m̃−λ ĥ1(Ĥ, T )
+ o(1)

a.s.' δ ε λ

1− λ
+ o(1).

Plugging the relation above into (2.6.62) yields the assertion.

Lemma 2.6.26. Under the assumptions of Theorem 2.6.16 we have under Hclosed
1,+ re-

spectivly Hclosed
1,− that

lim
m→∞

P
(
τ̂ closedm,+ ≤ Ĥ

)
= φ(x),

lim
m→∞

P
(
τ̂ closedm,− ≤ Ĥ

)
= φ(x).

Proof of Lemma 2.6.26. On combining Lemma 2.6.22, Lemma 2.6.23 and Lemma
2.6.25 we have

P
(
τ̂ closedm,+ ≤ Ĥ

)
= P

(
Â(Ȟ, Ĥ) ≥ −x+ o(1)

)
+ o(1).



130 CHAPTER 2. MONITORING GRADUAL CHANGES IN RENEWAL PROCESSES

Along the lines of the proof of Lemma 2.6.12, taking Lemma 2.6.24 and the fact that
Λ̂k is non-decreasing (see (2.5.4)) into account we see that

Â(Ȟ, Ĥ) = R̂k∗/
√
G̃(k∗) + oP (1).

By the arguments of the proof of Theorem 2.4.5 we have

R̂k∗/
√
G̃(k∗) = U(k∗)/

√
G̃(k∗) + oP (1),

where U is defined in (2.4.21), and U(k∗)/
√
G̃(k∗)

D
= W (1). Hence, the assertion

for the one-sided, positive stopping time τ̂ closedm,+ holds true. The corresponding
result for the one-sided, negative stopping time τ̂ closedm,− follows similarly (cf. also
(2.6.24)).

Finally, we give the proof of the first main theorem of Section 2.6.2.

Proof of Theorem 2.6.16. By Lemma 2.6.26 and the arguments of the proof of The-
orem 2.6.1 we have

P
(
r
(

max{τ̂ closedm,+ − k∗, 1}
)
≤ r([ŵ(k∗)])

)
→ φ(x). (2.6.63)

In order to obtain a standardization of the delay time which is independent of k∗ we
aim to show that

r([ŵ(k∗)]) = r(ŵ(m̃)) + oP (
√
G̃(k∗)/λ̃m). (2.6.64)

By an application of the mean value theorem we obtain r([ŵ(k∗)])
a.s.
= r(ŵ(k∗)) +

O(1). Further, by the early-change assumption it holds that∣∣∣∣
√
G̃(k∗)−

√
G̃(m̃)

λ̃m

∣∣∣∣ λ̃m√
G̃(k∗)

a.s.
= o(1). (2.6.65)

The mean value theorem and our assumptions on η yield for 0 < β < 1/2 that∣∣∣∣ ĥ1(k∗, T )

λ̃m
− ĥ1(m̃, T )

λ̃m

∣∣∣∣ λ̃m√
G̃(k∗)

= O
(
TΛ(1/2−β)m−Λ/2

)(
(G̃(k∗))β − (G̃(m̃))β

)
= O

(
TΛ(1/2−β)m−Λ/2

)
mη (G̃(m̃))β−1 G̃′(m̃)

a.s.
= O

(
TΛ(1/2−β) m−Λ/2+η+Λ(β−1)−2λ

)
= o(1),

where the same rate of convergence holds true if β = 0. Plugging (2.6.64) into
(2.6.63) yields

P

(
|δ| λ̃m r

(
max{τ̂ closedm,+ − k∗, 1}

)
/σ − cĥ1(m̃, T )√

G̃(m̃)
≤ x

)
→ φ(x).
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Finally,

|δ| λ̃m r
(

max{τ̂ closedm,+ − k∗, 1}
)√

G̃(m̃)

= OP
(
ĥ1(m̃, T )/

√
G̃(m̃)

)
= OP

(
m(ρ−1)Λ(1/2−β)

)
and the convergence rates of δ̂ and σ̂ allow us to replace the unknown parameters by
the respective estimates, which completes the proof of the first assertion of Theorem
2.6.16. The second assertion follows by the same arguments.
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Proof of Theorem 2.6.17

Lemma 2.6.27. Under the assumptions of Theorem 2.6.17 we have, as m→∞,

ŵ
a.s.' mλ ĥ2(k∗, m̃)

a.s.−→ ∞, (2.6.66)

Ĥ
a.s.∼ k∗ ∼ m/µ0, (2.6.67)

G̃(Ĥ)/G̃(k∗)
a.s.
= 1 +O(ŵ/k∗), (2.6.68)

ĥ2(Ĥ, m̃)/ĥ2(k∗, m̃)
a.s.
= 1 +O(ŵ/k∗), (2.6.69)(

sgn(δ)−
Λ̂Ĥ

ĥ2(Ĥ, m̃)

)
ĥ2(Ĥ, m̃)√
G̃(k∗)

a.s.−→ − sgn(δ)x. (2.6.70)

Proof of Lemma 2.6.27. The first assertion follows along the lines of (2.6.28), taking
λ̃m ' mλ into account. The second assertion can be seen as follows: By Remark
1.7.1, Lemma 2.2.3 and (2.6.66) we have

ŵ

k∗
a.s.' mλ ĥ2(k∗, m̃)

k∗
∼
mλ
√
G̃(k∗)√
k∗

√
ln(G̃(k∗)/G̃(m̃)) + f(c)

k∗
→ 0.

(2.6.68) follows along the lines of (2.6.46) and (2.6.69) follows along the lines of
(2.6.31). So, (2.6.70) remains to be shown. Similar as in (2.6.57) we have

Λ̂Ĥ
a.s.
=

δ λ̃m r(ŵ)

σ
+OP

(
ŵ−γ + ŵ2m−λ−1 + ŵ mη−1−λ + 1

)
a.s.
=

δ λ̃m r(ŵ)

σ
+ oP

(√
G̃(k∗)

)
,

where for the last equality we used

1. ŵ−γ/
√
G̃(k∗)

a.s.
= o(1),

2. ŵ2m−1−λ/
√
G̃(k∗)

a.s.
= O

(
m−1/2

) a.s.
= o(1),

3. ŵ mη−1−λ/
√
G̃(k∗)

a.s.
= O

(
mη−1ĥ2(k∗, m̃)/

√
G̃(k∗)

) a.s.
= o(1),

4. 1/
√
G̃(k∗) = o(1).

The approximation of Λ̂Ĥ gives us(
sgn(δ)− Λ̂H

ĥ2(Ĥ, m̃)

)
ĥ2(Ĥ, m̃)√
G̃(k∗)

a.s.
=

sgn(δ) ĥ2(Ĥ, m̃)√
G̃(k∗)

− δ λ̃m r(ŵ)

σ
√
G̃(k∗)

+ o(1)

=
sgn(δ) ĥ2(Ĥ, m̃)√

G̃(k∗)
− δ

|δ|

(
ĥ2(k∗, m̃)√
G̃(k∗)

+ x

)
+ o(1)

=
sgn(δ) ĥ2(Ĥ, m̃)√

G̃(k∗)

(
1− ĥ2(k∗, m̃)

ĥ2(Ĥ, m̃)

)
− sgn(δ)x+ o(1)

a.s.
= − sgn(δ)x+ oP (1),
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where in the last equality we used (2.6.69).

Lemma 2.6.28. Under the assumptions of Theorem 2.6.17 we have

max
k=m̃,...,Ĥ

|R̂k − R̂k∗ − Λ̂k|
ĥ2(k, m̃)

= oP (1).

Proof of Lemma 2.6.28. On replacing ĥ1 by ĥ2 the assertion for k > k∗ follows
along the lines of Lemma 2.6.24, i.e.

max
k=k∗+1,...,Ĥ

|R̂k − R̂k∗ − Λ̂k|
ĥ2(k, m̃)

= oP (1).

For k ≤ k∗ we have Λ̂k = 0, thus in this case we consider

R̂k − R̂k∗ =
σ

σ̂m̃

(
Rk −Rk∗

)
− σ

σ̂m̃

(
k∑
i=1

g(i) (S̃k/k − µ0)

σ
−

k∗∑
i=1

g(i) (S̃i/k
∗ − µ0)

σ

)
.

For one thing, we have along the lines of Lemma 2.6.14, taking ĥ2(m̃, m̃)
a.s.'

mΛ/2 and our assumptions on λ and η into account, that

max
k=m̃,...,k∗

|Rk −Rk∗ |
ĥ2(k, m̃)

= oP (1).

For another thing, making use of Proposition 1.3.2, Theorem 2.3.1 and Corollary
2.3.3 we have uniformly for k = m̃, . . . , k∗

k∑
i=1

g(i) (S̃k/k − µ0)

σ
−

k∗∑
i=1

g(i) (S̃i/k
∗ − µ0)

σ

=
k∑
i=1

g(i) (S̃k/k − S̃k∗/k∗)
σ

+
k∗∑

i=k+1

g(i) (S̃k∗/k
∗ − µ0)

σ

a.s.
=

k∑
i=1

g(i)

σ

(
S̃k − S̃k∗

k
+
S̃k∗

k∗

(
k∗

k
− 1

))
+ O

(
mη−1/2

√
log log(m)

)
a.s.
=

k∑
i=1

g(i) (W (k)−W (k∗))

k
+O(mκ)

+ O
(
mη−1/2

√
log log(m)

)
a.s.
= O

(
mη/2

√
log(m) +mκ +mη−1/2

√
log log(m)

)
.
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Hence by ĥ2(m̃, m̃)
a.s.' mΛ/2 it holds that

max
k=m̃,...,k∗

∑k
i=1 g(i)(S̃k/k − µ0)−

∑k∗

i=1(S̃i/k
∗ − µ0)

σ ĥ2(k, m̃)
a.s.
= O

(
m(η−Λ)/2 +mκ−Λ/2 +mη−1/2−Λ/2

√
log log(m)

)
= o(1),

which yields in combination with the consistency of σ̂m that

max
k=m̃,...,k∗

|R̂Ĥ − R̂k∗ − Λ̂k|
ĥ2(k, m̃)

a.s.
= o(1)

and thus completes the proof.

Lemma 2.6.29. Under the assumptions of Theorem 2.6.17 we have under Hopen
1,+ re-

spectively Hopen
1,− that

lim
m→∞

P
(
τ̂ openm,+ ≤ Ĥ

)
= φ(x)

lim
m→∞

P
(
τ̂ openm,− ≤ Ĥ

)
= φ(x).

Proof of Lemma 2.6.29. By Lemma 2.6.28 we have

max
k=m̃,...,Ĥ

R̂k

ĥ2(k, m̃)
−

Λ̂Ĥ
ĥ2(Ĥ, m̃)

= max
k=m̃,...,Ĥ

R̂k∗ − Λ̂k

ĥ2(k, m̃)
−

Λ̂Ĥ
ĥ2(Ĥ, m̃)

+ oP (1),

(2.6.71)

where in the following we aim to replace the right hand side by R̂k∗/ĥ2(Ĥ, m̃):

1. By (2.6.69) we have

max
k=m̃,...,Ĥ

∣∣∣∣ R̂k∗

ĥ2(k∗, m̃)
− R̂k∗

ĥ2(Ĥ, m̃)

∣∣∣∣ = OP
(
ŵ/k∗

)
= oP (1).

2. Since Λ̂k = 0 for k ≤ k∗ but Λ̂k > 0 for k > k∗ it holds that

max
k=m̃,...,Ĥ

Λ̂k

ĥ2(k, m̃)
− Λ̂k

ĥ2(Ĥ, m̃)

= max
k=k∗+1,...,Ĥ

Λ̂k

ĥ2(k, m̃)
− Λ̂k

ĥ2(Ĥ, m̃)
a.s.
= o(1).

and by (2.6.69) and (2.6.70) we obtain

max
k=k∗+1,...,Ĥ

∣∣∣∣ Λ̂k

ĥ2(k, m̃)
− Λ̂k

ĥ2(Ĥ, m̃)

∣∣∣∣
= max

k=k∗+1,...,Ĥ

|Λ̂k|
ĥ2(Ĥ, m̃)

(
ĥ2(Ĥ, m̃)

ĥ2(k, m̃)
− 1

)
a.s.
= O

(
ŵ/k∗

)
.
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3. Since by (2.5.4) Λ̂k is non-decreasing in k it holds that maxk=m̃,...,Ĥ(Λ̂k −
Λ̂Ĥ) = 0.

Combining the three relations as in (2.6.34) and plugging the result into (2.6.71)
yields

max
k=m̃,...,Ĥ

R̂k

ĥ2(k, m̃)
− Λ̂H

ĥ2(Ĥ, m̃)
=

R̂k∗

ĥ2(Ĥ, m̃)
+ oP (1).

Since by the early change assumption

ĥ2(Ĥ, m̃)√
G̃(k∗)

a.s.' f−1(ln(G̃(Ĥ)/G̃(m̃)) + f(c) )
a.s.
= O(1)

it holds that

ĥ2(Ĥ, m̃)√
G̃(k∗)

max
k=m̃,...,Ĥ

R̂k

ĥ2(k, m̃)
−

Λ̂Ĥ
ĥ2(Ĥ, m̃)

a.s.
=

R̂k∗√
G̃(k∗)

+ o(1).

Along the lines of the proof of Theorem 2.4.6 we make use of the invariance principle
to replace our observations by a Wiener process. The Gaussian analogue of the test
statistic can be approximated by U(k∗)/

√
G̃(k∗), where {U(t) | t ≥ 0} is defined

in (2.4.21). Finally, the fact that U(k∗)/
√
G̃(k∗)

D
= W (1) and (2.6.32) yield

P
(
τ̂ openm,+ ≤ Ĥ

)
→ P

(
W (1) > −x

)
= φ(x).

The assertion for the one-sided, negative stopping time τ̂ openm,− follows analogously
(see also (2.6.35)).

Now, we are in the position to formulate the proof of the main theorem:

Proof of Theorem 2.6.17. The arguments of the proof of Theorem 2.6.2 carry over if
we ensure that

r−1(ŵ(k∗))
a.s.
= r−1(ŵ(m̃)) + o

(√
G̃(k∗)/λ̃m

)
.

By the early-change assumption we have, for one thing,∣∣∣∣
√
G̃(k∗)−

√
G̃(m̃)

λ̃m

∣∣∣∣ λ̃m√
G̃(k∗)

a.s.
= o(1)

and, for another thing,∣∣∣∣ ĥ2(k∗, m̃)

λ̃m
− ĥ2(m̃, m̃)

λ̃m

∣∣∣∣ λ̃m√
G̃(k∗)

=
∣∣f−1(ln(G̃(k∗)/G̃(m̃)) + f(c))− c

√
G̃(m̃)/G̃(k∗)

∣∣
a.s.
= o(1).

Combining this with the consistency of σ̂ and δ̂ completes the proof for the stopping
time τ openm,+ . The corresponding result for τ openm,− follows by similar arguments.
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Proof of Lemma 2.6.18

Proof of Lemma 2.6.18. Note that

m̃+mζ∑
i=1

µm̃(i) =

m̃ζ∑
i=1

(
1− (1 + i)−γ

)
= mζ +O

(
mζ(1−γ)

)
and similarly

m̃+mζ∑
i=1

µ2
m̃(i) = mζ +O

(
mζ(1−γ)

)
,

m̃+mζ∑
i=1

µm̃(i)µk∗(i) = mζ − k∗ +O
(
mζ(1−γ)

)
.

Making use of Remark 1.3.3 and Corollary 2.3.3 we obtain

δ̂m,m̃+mζ =

∑m̃+mζ

i=m̃+1 µm̃(i)
(
M(i)−M(i− 1)−M(m̃)/m̃

)∑k
i=1 µ

2
m̃(i)

+

∑m̃+mζ

i=m̃+1 µm̃(i)
(
S̃i −M(i)− S̃i−1 +M(i− 1)

)∑k
i=1 µ

2
m̃(i)

−
∑m̃+mζ

i=m̃+1 µm̃(i)
(
S̃m̃ −M(m̃)/m̃

)∑k
i=1 µ

2
m̃(i)

a.s.
=

∑m̃+mζ

i=k∗+1 µm̃(i) δ µk∗(i)∑k
i=1 µ

2
m̃(i)

+ O
(√

mζ log log(m)/mζ
)

= δ
mζ − k∗

mζ
+O

(
m−ζ γ

)
+ O

(√
log log(m)m−ζ/2

)
= δ +O

(
m1−ζ)+O

(
m−ζ γ

)
+ O

(√
log log(m)m−ζ/2

)
,

where in the last line we used k∗ −m = o
(
mζ
)
.
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2.7 Finite sample behavior

In this section we present a few simulation results in order to give an idea of the
finite sample behavior of the presented monitoring procedures. We consider an (un-
observable) process

Sk =

k∑
i=1

εi + µ(i),

where {εi | i ∈ N} are independently, Exp(1)-distributed random variables and

µ(k) = µ0 + δ
(
1− (1 + (k − k∗)+)−γ

)
determines the drift of the process, which (possibly) changes at k∗. We analyze
the case of a “negative” change, i.e. the case where the mean drops from a level
µ0 towards a lower level µ1 = µ0− δ (where δ > 0 is constant). The simulations
are carried out for different lengths of the training period, i.e. the number of obser-
vations of N(t) which are available at the beginning of the monitoring procedure.
Note that the corresponding number of available observations of the inverse process
S̃n is m̃ ≈ m/µ0. So, for the sake of comparability all simulations are carried out
with µ0 = 5 and σ2 = 1.

Due to the strict assumptions on λ and γ in case of unknown parameters (e.g.
T 1/2−λ−γ/

√
log log(T )→∞, as m→∞, see Theorem 2.5.3), the choice of λ and

γ is rather limited. Note however, that a small γ corresponds to a smooth, slowly
changing mean, whereas a large γ corresponds to a steep, almost abruptly changing
mean. Hence, we are interested in small values of γ and for the sake of clarity we
focus on the case of λ = γ = 0.2.

In case of unknown in-control parameters we estimate σ2 (non-sequentially) by

σ̂2
k = σ̂2

m̃ =
1

m̂(m̃− m̂+ 1)

m̃∑
j=m̂

(
S̃j − S̃j−m̂ − m̂ S̃m̃/m̃

)2
,

for all k ≥ m̃, where we set m̂ = m̃0.25 (see Remark 2.2.2). Further, for Figure 2.3
and Figure 2.5 we estimated the parameter δ by

δ̂m,m̃+mζ =

∑m̃+mζ

i=1 µm̃(i)
(
S̃i − S̃i−1 − S̃m̃/m̃

)∑m̃+mζ

i=1 µ2
m̃(i)

where we used ζ = 1.05 (see Lemma 2.6.18), while for Figure 2.2 and Figure 2.4
we used the true value of δ. Each result is based on 5000 repetitions.
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2.7.1 Closed-end setting

For the simulation results in the closed-end setting we fix a truncation point of
T = [m1.3], whereas we consider different values for the parameter β of the thresh-
old function, more precisely we consider β = 0, β = 0.25 and β = 0.49. Table
2.1 and Table 2.2 show the relative frequency of a false alarm for known and un-
known in-control parameters for an asymptotic level of the tests of α = 5% and
α = 10%. We see that the asymptotic levels are well attained, however for β close
to 1/2 the tests become very conservative.

Tables 2.3 and Table 2.4 show the relative frequency of a correct detection of a
change, where the change point is located in the middle of the time horizon in the
sense that µ0 k

∗ = T/2 and where we content ourselves with the case of α = 5%. We
see that the procedures have power 1 as the training period increases.

In Figure 2.2 and Figure 2.3 we compare histograms of the standardized delay
times with the density of the standard normal distribution (again for known or
unknown in-control parameters, respectively). Note that the convergence results of
Section 2.6 merely hold true under the early-change assumptions, hence we consider
k∗ = m/µ0 +m0.3. As one would expect, we obtain a better fit in case of known in-
control parameters, while in case of unknown in-control parameters the histograms
have a slight tendency to the left.

α = 5% α = 10%

m β = 0 β = 0.25 β = 0.49 β = 0 β = 0.25 β = 0.49

100 .0336 .0296 .0034 .0750 .0628 .0088
250 .0438 .0366 .0080 .0900 .0788 .0174
500 .0448 .0420 .0112 .0936 .0826 .0254
1000 .0466 .0474 .0138 .0924 .0854 .0336
2000 .0462 .0482 .0150 .0980 .0954 .0374
3000 .0486 .0476 .0200 .0990 .0934 .0402

Table 2.1: Relative frequency of a false alarm under the null hypothesis for known
in-control parameters for T = m1.3 and λ = 0.2

α = 5% α = 10%

m β = 0 β = 0.25 β = 0.49 β = 0 β = 0.25 β = 0.49

100 .0036 .0312 .0068 .0770 .0896 .0198
250 .0380 .0310 .0078 .0784 .0778 .0202
500 .0376 .0472 .0104 .0916 .0856 .0274
1000 .0458 .0408 .0106 .0918 .0868 .0234
2000 .0410 .0470 .0138 .0976 .0928 .0274
3000 .0474 .0464 .0164 .0976 .0972 .0290

Table 2.2: Relative frequency of a false alarm under the null hypothesis for unknown
in-control parameters for T = m1.3, λ = 0.2 and m̂ = m0.25
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β = 0 β = 0.25 β = 0.49

m δ = 1 δ = 2 δ = 3 δ = 1 δ = 2 δ = 3 δ = 1 δ = 2 δ = 3

100 .6980 .9950 1 .6596 .9918 1 .3718 .9696 1
250 .9986 1 1 .9966 1 1 .9826 1 1
500 1 1 1 1 1 1 1 1 1
1000 1 1 1 1 1 1 1 1 1
2000 1 1 1 1 1 1 1 1 1
3000 1 1 1 1 1 1 1 1 1

Table 2.3: Relative frequency of a correct detection of a change with known in-control
parameters for T = m1.3, k∗ = [T/(2µ0)], α = 5% and λ = γ = 0.2

β = 0 β = 0.25 β = 0.49

m δ = 1 δ = 2 δ = 3 δ = 1 δ = 2 δ = 3 δ = 1 δ = 2 δ = 3

100 .4286 .9586 .9998 .3814 .9428 1 .1212 .7530 .9908
250 .9446 1 1 .9278 1 1 .6804 1 1
500 1 1 1 1 1 1 .9988 1 1
750 1 1 1 1 1 1 1 1 1
1000 1 1 1 1 1 1 1 1 1
2000 1 1 1 1 1 1 1 1 1
3000 1 1 1 1 1 1 1 1 1

Table 2.4: Relative frequency of a correct detection of a change with unknown in-
control parameters for T = m1.3, k∗ = [T/(2µ0)], α = 5%, λ = γ = 0.2 and
m̂ = m0.25
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Figure 2.2: Histograms of the standardized delay times for known in-control param-
eters for λ = γ = 0.2, α = 5%, µ1 = 3, δ = 2, T = m1.3 and k∗ = m/µ0 +m0.3
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Figure 2.3: Histograms of the standardized delay times for unknown in-control
parameters for λ = γ = 0.2, α = 5%, µ1 = 3, δ = 2, T = m1.3, k∗ =
m/µ0 +m0.3, m̂ = m0.25 and ζ = 1.05
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2.7.2 Open-end setting

For the open-end simulations we consider a time horizon of T = 10m realizations
of N(t). Table 2.5 and Table 2.6 show the relative frequency of a false alarm for
known and unknown in-control parameters, where the asymptotic level of the test is
α = 5% or α = 10%, respectively. The asymptotic levels are well attained, in fact,
the procedures are quite conservative.

On illustrating the behavior of the monitoring procedures under the alternative,
we consider the case of k∗ = m/µ0 + m0.3 which corresponds to the early-change
setting under which the asymptotic behavior of the (standardized) delay times is
known. Table 2.7 and Table 2.8 show the relative frequency of a correct detection
of the change, where the histograms below (Figure 2.4 and Figure 2.5) compare the
standardized delay times with the density function of the standard normal distribu-
tion. The results are quite satisfactory as m increases.

H
HHH

HHα
m 100 250 500 750 1000 2000 3000

5% .0108 .0162 .0232 .0246 .0280 .0258 .0320
10% .0344 .0560 .0572 .0602 .0662 .0556 .0682

Table 2.5: Relative frequency of a false alarm under the null hypothesis for known
in-control parameters for λ = 0.2

HH
HHHHα

m 100 250 500 750 1000 2000 3000

5% .0262 .0256 .0272 .0338 .0289 .0322 .0344
10% .0508 .0516 .0698 .0634 .0604 .0708 .0656

Table 2.6: Relative frequency of a false alarm under the null hypothesis for unknown
in-control parameters for λ = 0.2 and m̂ = m0.25

H
HHH

HHδ
m 100 250 500 750 1000 2000 3000

0.5 .8342 .9992 1 1 1 1 1
1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1

Table 2.7: Relative frequency of a correct detection of a change with known in-control
parameters for α = 5%, λ = γ = 0.2 and k∗ = m/µ0 +m0.3



2.7. FINITE SAMPLE BEHAVIOR 143

HHH
HHHδ
m 100 250 500 750 1000 2000 3000

0.5 .1624 .4130 0.8096 .9584 1 1 1
1 .6850 .9896 1 1 1 1 1
2 .9950 1 1 1 1 1 1
3 1 1 1 1 1 1 1

Table 2.8: Relative frequency of a correct detection of a change with unknown in-
control parameters for α = 5%, λ = γ = 0.2, m̂ = m0.25 and k∗ = m/µ0 +m0.3
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Figure 2.4: Histograms of the standardized delay times for known in-control param-
eters for λ = γ = 0.2, α = 5% and k∗ = m/µ0 +m0.3
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Figure 2.5: Histograms of the standardized delay times for unknown in-control pa-
rameters for λ = γ = 0.2, α = 5%, k∗ = m/µ0 + m0.3, m̂ = m0.25 and
ζ = 1.05.



146 LITERATURE

Literature

S. Asmussen. Applied Probability and Queues. Springer, New York, 2003.

A. Aue. Sequential Change-Point Analysis Based on Invariance Principles. PhD
thesis, University of Cologne, 2003.

A. Aue and L. Horváth. Delay time in sequential detection of change. Statistics and
Probability Letters, 67(3):221–231, 2004.

A. Aue and L. Horváth. Structural breaks in time series. Journal of Time Series
Analysis, 34(1):1–16, 2013.

I. Berkes, E. Gombay, L. Horváth, and P. Kokoszka. Sequential change-point detec-
tion in GARCH(p,q) models. Econometric Theory, 20:1140–1167, 2004.

C.S.J. Chu, M. Stinchcombe, and H. White. Monitoring structural change.
Econometrika, 64(5):1045–1065, 1996.

M. Csörgő and L. Horváth. Weighted Approximations in Probability and Statistics.
Wiley, Chichester, 1993.

M. Csörgő and L. Horváth. Limit Theorems in Change-Point Analysis. Wiley,
Chichester, 1997.

M. Csörgő and P. Révész. How big are the increments of a Wiener process? The
Annals of Probability, 7(4):731–737, 1979.

M. Csörgő and P. Révész. Strong Approximations in Probability and Statistics. Aca-
demic Press, New York, 1981.

M. Csörgő, L. Horváth, and J. Steinebach. Invariance principles for renewal pro-
cesses. The Annals of Probability, 15(4):1441–1460, 1987.

A. Gut. Stopped Random Walks: Limit Theorems and Applications. Springer, New
York, 2009.

A. Gut. Renewal theory with a trend. Statistics and Probability Letters, 81(8):
1292–1299, 2011.

A. Gut and J. Steinebach. Truncated sequential change-point detection based on
renewal counting processes. Scandinavian Journal of Statistics, 29(4):693–719,
2002.

A. Gut and J. Steinebach. Truncated sequential change-point detection based on
renewal counting processes II. Journal of Statistical Planning and Inference, 139
(6):1921–1936, 2009.

L. Horváth. Strong approximations of renewal processes and their applications. Acta
Mathematica Hungarica, 47(1-2):13–28, 1986.



LITERATURE 147

L. Horváth. Detection of changes in linear sequences. Annals of the Institute of
Statistical Mathematics, 49(2):271–283, 1997.

L. Horváth and J. Steinebach. Testing for changes in the mean or variance of a
stochastic process under weak invariance. Journal of Statistical Planning and
Inference, 91(2):365–376, 2000.

L. Horváth, M. Hušková, P. Kokoszka, and J. Steinebach. Monitoring changes in
linear models. Journal of Statistical Planning and Inference, 126(1):225–251, 2004.

M. Hušková. Remarks on test procedures for gradual changes. In “Asymptotic Meth-
ods in Probability and Statistics” (B. Szyszkowicz, ed.), pages 577–583. Elsevier,
Amsterdam, 1998a.

M. Hušková. Estimators in the location model with gradual changes. Commenta-
tiones Mathematicae Universitatis Carolinae, 39(1):147–157, 1998b.

M. Hušková. Gradual changes versus abrupt changes. Journal of Statistical Planning
and Inference, 76(1-2):109–125, 1999.

M. Hušková and J. Steinebach. Limit theorems for a class of tests of gradual changes.
Journal of Statistical Planning and Inference, 89(1):57–77, 2000.

D. Jarušková. Testing appearance of linear trend. Journal of Statistical Planning
and Inference, 70(2):263–276, 1998.

I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Springer, New
York, 1991.

C. Kirch. Resampling Methods for the Change Analysis of Dependent Data. PhD
thesis, University of Cologne, 2006.

C. Kirch and J. Steinebach. Permutation principles for the change analysis of stochas-
tic processes under strong invariance. Journal of Computational and Applied Math-
ematics, 186(1):64–88, 2006.

J. Komlós, P. Major, and G. Tusnády. An approximation of partial sums of inde-
pendent r.v.’s and the sample df. I. Zeitschrift für Wahrscheinlichkeitstheorie und
verwandte Gebiete, 32(1-2):111–131, 1975.

J. Komlós, P. Major, and G. Tusnády. An approximation of partial sums of indepen-
dent r.v.’s, and the sample df. II. Zeitschrift für Wahrscheinlichkeitstheorie und
verwandte Gebiete, 34(1):33–58, 1976.

M. Kühn. Sequential Change–Point Analysis Based on Weighted Moving Averages.
PhD thesis, University of Cologne, 2008.

S. Mihalache. Strong approximations and sequential change-point analysis for diffu-
sion processes. Statistics and Probability Letters, 82(3):464–472, 2012.

E.S. Page. Continuous inspection schemes. Biometrika, 41(1-2):100–115, 1954.



E. Parzen. Stochastic Processes. Society for Industrial and Applied Mathematics,
Philadelphia, 1999.

H. Robbins and D. Siegmund. Boundary crossing probabilities for the Wiener process
and sample sums. The Annals of Mathematical Statistics, 41(5):1410–1429, 1970.

J. Steinebach. Some remarks on the testing of smooth changes in the linear drift of a
stochastic process. Theory of Probability and Mathematical Statistics, 61:173–185,
2000.

J. Steinebach and H. Timmermann. Sequential testing of gradual changes in the
drift of a stochastic process. Journal of Statistical Planning and Inference, 141(8):
2682–2699, 2011.

V. Strassen. An invariance principle for the law of the iterated logarithm. Zeitschrift
für Wahrscheinlichkeitstheorie und verwandte Gebiete, 3(3):211–226, 1964.

H. Timmermann. Monitoring-Verfahren für stochastische Prozesse mit graduellen
Strukturbrüchen. Diploma thesis, University of Cologne, 2010.



Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbstständig angefertigt,
die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Ar-
beit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken im
Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung
kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder
Universität zur Prüfung vorgelegen hat; dass sie – abgesehen von unten angegebenen
Teilpublikationen – noch nicht veröffentlicht worden ist sowie, dass ich eine solche
Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.
Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte
Dissertation ist von Prof. Dr. Josef G. Steinebach betreut worden.

Köln, im Februar 2014

(Hella Timmermann)


	Introduction
	Monitoring general gradual changes
	Setting of the problem
	Stopping times
	Stopping times for known in-control parameters
	Stopping times for unknown in-control parameters
	Variance of the detectors

	Asymptotics under the null hypothesis
	Asymptotics for known in-control parameters
	Asymptotics for unknown in-control parameters
	Estimating the scale parameter

	Consistency of the testing procedures
	Consistency for known in-control parameters
	Consistency for unknown in-control parameters
	Local alternatives

	Asymptotic normality of the delay times
	Asymptotic normality of the delay times for known in-control parameters
	Asymptotic normality of the delay times for unknown in-control parameters

	Finite sample behavior
	Some calculations

	Monitoring gradual changes in renewal processes
	Setting of the problem
	Stopping times
	Randomness of the sample size
	Stopping times for known in-control parameters
	Stopping times for unknown in-control parameters
	Variance of the detectors

	Preliminary results
	Invariance principle under the null hypothesis
	Behavior under the alternative

	Asymptotics under the null hypothesis
	Asymptotics for known in-control parameters
	Asymptotics for unknown in-control parameters

	Consistency of the testing procedures
	Consistency for known in-control parameters
	Consistency for unknown in-control parameters

	Asymptotic normality of the delay times
	Asymptotic normality of the delay times for known in-control parameters
	Asymptotic normality of the delay times for unknown in-control parameters

	Finite sample behavior
	Closed-end setting
	Open-end setting


	Literature

