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Abstract 

Soil protists occupy key nodes in soil food webs due to their high abundance, fast turnover 

and functional importance as bacterial grazers. However, methodological drawbacks obscure 

the knowledge of soil protists, so that many taxa remain unknown. The structure of natural 

protist communities and taxa-specific ecological functions are also largely unknown. This 

thesis aims to increase the knowledge on soil protists using a variety of approaches.  

In the first part, naked amoebae being presumably the most neglected protist morphogroup 

were cultivated from several distinct geographical locations across Europe and from high 

altitude sites in Tibet. During the course of this study, 16 new species and seven new genera 

were discovered, representing two eukaryotic supergroups (Amoebozoa and Excavata), 

three classes (Discosea, Variosea and Heterolobosea), and 12 genera (Cochliopodium, 

Stenamoeba, Acanthamoeba, Ischnamoeba n.g., Darbyshirella n.g., Heliamoeba n.g., 

Arboramoeba n.g., Angulamoeba n.g., Telaepolella, Schizoplasmodiopsis, Allovahlkampfia 

and Pagea n.g.). This vast number of taxonomic descriptions unveils the tremendous lack of 

knowledge especially on soil naked amoebae. 

The second part aims at deciphering the diversity and community structure of soil protists 

using four different techniques. First, a modified cultivation technique enabled the 

quantification of individual morphogroups, allowing determination often up to genus level. It 

was shown that soil moisture not only impacts the total abundance, but also affects the 

community composition of soil protists. Second, established cultures of morphologically 

indistinguishable Acanthamoeba spp. were sequenced, enabling differentiation to strain-

level. Highly diverse Acanthamoeba communities were detected that differed between 

geographically remote soils. Third, a high-throughput amplicon sequencing approach 

targeting the protist phylum Cercozoa illustrated that cercozoan communities strongly 

differed between geographically distant soils and that community composition depended on 

the type of land management. Finally, a metatranscriptomic approach unveiled the entire 

active protist community in different soil and litter samples, uncovering a previously 

unknown diversity. Each of these methods confirmed that soils harbour an enormous 

diversity of protists and all methods detected differences in soil protist communities 

depending on geographic origin or treatment. Therefore it is important to understand the 

respective advantages and disadvantages associated with each of those methods. Further, 
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available skills, equipment and financial resources need to be considered before applying a 

method to study soil protists. 

The third part of this thesis aims to elucidate rarely considered ecological functions 

performed by soil protists. Generally, soil protists are considered as bacterivores, but diverse 

protists facultatively consumed fungi. The small amoeba Cryptodifflugia operculata revealed 

another feeding mode – trapping and consuming nematodes. Metatranscriptomic data 

revealed high relative abundances of both functional groups in all terrestrial soil samples 

indicating wider ecological functions carried out by soil protists as has been suggested 

before. 
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Zusammenfassung 

Bodenprotisten nehmen aufgrund ihrer hohen Abundanzen und Reproduktionsraten sowie 

ihrer Rolle als Hauptkonsumenten von Bakterien eine Schlüsselposition in Nahrungsnetzen 

ein. Diese funktionelle Bedeutung weist eine deutliche Diskrepanz zur Berücksichtigung in 

ökologischen Studien und dem bestehenden Detailwissen über Protisten auf. Methoden der 

Isolierung und quantitativen Analyse der Protistengemeinschaft in Böden detektieren nur 

einen Bruchteil der Organismen. Die genaue Artenzusammensetzung und individuelle 

ökologische Bedeutungen bleiben somit im Verborgenen. Diese Arbeit zielt darauf, die 

Gemeinschaften von Bodenprotisten und deren Funktion durch eine breite 

Methodennutzung genauer zu charakterisieren. 

Im ersten Teil dieser Arbeit liegt der Fokus auf der Kultivierung und Beschreibung bisher 

unbekannter Amoeben, die aus deutschen, italienischen, tibetanischen und 

niederländischen Böden isoliert wurden. Dieser Kultivierungsansatz ermöglichte die 

Beschreibung von 16 neuen Arten sowie sieben neuen Gattungen, die sich in die 

eukaryotischen Supergruppen Amoebozoa und Excavata, Klassen Discosea, Variosea und 

Heterolobosea, und 12 Gattungen (Cochliopodium, Stenamoeba, Acanthamoeba, 

Ischnamoeba n.g., Darbyshirella n.g., Heliamoeba n.g., Arboramoeba n.g., Angulamoeba n.g., 

Telaepolella, Schizoplasmodiopsis, Allovahlkampfia und Pagea n.g.) aufteilen. Trotz deren 

hohen Abundanz und Diversität beweist diese hohe Anzahl an Neubeschreibungen die 

lückenhafte (Arten-) Kenntnis über Bodenamoeben.  

Im zweiten Teil der Arbeit liegt der Schwerpunkt auf der Untersuchung der Diversität und 

dem Vergleich ganzer Gemeinschaften von Bodenprotisten. Es wurden vier grundsätzlich 

verschiedene Analysewege genutzt. Eine modifizierte Kultivierungsmethode erlaubte die 

Bestimmung und Quantifizierung von Morphogruppen, oft bis auf Gattungsebene. In 

Abhängigkeit von der Bodenfeuchte variierte die Gesamtabundanz sowie die anteilige 

Zusammensetzung der Protistengemeinschaft. Des Weiteren wurden morphologisch nahezu 

identische Amoeben der Gattung Acanthamoeba molekular bis auf (Unter-) Artebene 

bestimmt, die im Vorfeld kultiviert wurden. Acanthamoeben zeigten eine hohe Diversität 

innerhalb und zwischen geographisch entlegenen Böden. Zur Bestimmung des 

Protistenphylums Cercozoa diente eine primerbasierte, high-throughput 

Amplikonsequenzierung. Die Cercozoengemeinschaft, deren hohe Diversität in allen Böden 
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bestätigt wurde, variierte je nach Landnutzung und Geographie. Eine Analyse der aktiven 

Protistengemeinschaft erfolgte durch einen Metatranskriptomansatz. Neben der 

detaillierten Bestimmung aller Protistengruppen der Proben, die sich untereinander stark 

unterschieden, fanden sich in terrestrischer Umgebung bislang unbekannte 

Protistengruppen. Jede dieser Methoden zeigt einen unterschiedlichen Ausschnitt der 

Protistendiversität und geht mit Vor- und Nachteilen einher, die vor Nutzung erörtert 

werden müssen, da alle eine Option zur Bestimmung der Protistengemeinschaft bleiben. 

Im dritten Teil werden funktionelle Nischen der Bodenprotisten in Nahrungsnetzen gezeigt. 

Eine Vielzahl von Protisten konsumierten neben Bakterien auch Pilze und sind daher eher als 

omnivor einzustufen. Bei der kleinen Schalenamoebe Cryptodifflugia operculata ging der 

Fraß von deutlich größeren Nematoden mit einer erhöhten Reproduktionsrate einher. 

Metatranskriptomdatensätze zeigen hohe relative Abundanzen für sowohl omnivore als 

auch nematophage Protisten. Dies legt nahe, dass Protisten über die bakterivore Rolle 

hinaus ein weites funktionelles Spektrum in Böden einnehmen. 
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General Introduction 

Soil Protists 

Heterotrophic protists are among the most abundant soil organisms with estimated 

numbers usually ranging between 103 and 104 per gram soil (Bamforth 1980, Clarholm 1985, 

Finlay et al. 2000, Domonell et al. 2013). The majority of soil heterotrophic protists 

(hereafter simplified as “protists”) is suggested to be small (< 200 µm), unicellular, 

reproduce asexually and feed on bacteria, but exceptions to all of these features are the rule 

rather than the exception (Levine et al. 1980, Darbyshire 1994, Adl and Gupta 2006, Esteban 

et al. 2006). Soil protists are classically divided into the four most abundant morphological 

groups, i.e. naked amoebae, testate amoebae, flagellates and ciliates. The taxonomical 

classification of protists has, however, undergone rapid and fundamental changes in the last 

decades due to technical developments, such as electron microscopy and most 

fundamentally by molecular tools (Levine et al. 1980, Cavalier-Smith 1993, Cavalier-Smith 

1998, Adl et al. 2005, Adl et al. 2012). Heterotrophic, autotrophic and mixotrophic protists 

turned out to be highly paraphyletic, being intermingled throughout the eukaryotic tree of 

life, and represent the vast majority of eukaryotic organisms at least in terms of diversity 

(Cavalier-Smith 1998, Adl et al. 2005, Adl et al. 2012). Therefore, the term “protozoa” 

deriving from their nutritional requirements, is diminishing from scientific use (Adl et al. 

2014). Flagellates, naked and testate amoebae are composed of paraphyletic species that 

branch in distant places in eukaryotic phylogenies, while only ciliates form a monophyletic 

group (Cavalier-Smith 1998, 2003, Adl et al. 2005, Adl et al. 2012). The dominant soil 

flagellate groups, i.e. small amoeboid cercozoans, free-swimming “Spumella”-like and 

“Bodo”-like flagellates (Finlay et al. 2000, Ekelund et al. 2001, Domonell et al. 2013) 

comprise taxonomically unrelated groups, such as “Bodo” in the supergroup Euglenozoa, and 

both Cercozoa (former supergroup Rhizaria) and “Spumella” (former supergroup 

Stramenopiles) being in the huge supergroup SAR (= Stramenopiles, Alveolates and Rhizaria 

(Burki et al. 2007, Adl et al. 2012)). Ciliates are members of Alveolata in the remaining SAR 

clade. Testate amoebae are found in both supergroups Amoebozoa and SAR (Rhizaria) 

(Nikolaev et al. 2005). The majority of naked amoebae belong to Amoebozoa, while most of 

the remaining naked amoebae are members of the supergroup Excavata (class 
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Heterolobosea) and SAR (Rhizaria) (Adl et al. 2005, Adl et al. 2012). Knowledge on most 

other protists in soils is sparse, but there is evidence that some typically aquatic organisms 

inhabit soils, such as Foraminifera (Meisterfeld et al. 2001, Lejzerowicz et al. 2010), Heliozoa 

(Stout 1984), Dinoflagellata (Bates et al. 2013) and Choanoflagellata (Ekelund et al. 2001, 

Tikhonenkov et al. 2012). Additionally, parasitic Apicomplexa seem to be widespread 

members of soil protist communities (Bates et al. 2013).  

Protist species numbers are difficult to estimate because the species concept differs 

between protist groups and an enormous cryptic diversity within morphologically similar 

species has been detected by molecular techniques (Boenigk et al. 2005). The use of 

sequence data is largely based on the small subunit of the ribosomal DNA (SSU), and this 

sequence data is useful to supplement morphological information on distinct species or 

strains (Pawlowski et al. 2012). As a consequence, sequence information for (soil) protists is 

rapidly accumulating and molecular tools now allow soil surveys without intensive 

cultivation efforts. Environmental cloning and sequencing and the recent advent of high-

throughput sequencing (HTS) techniques therefore provided and keep on providing new 

insights on the community composition of soil protists, resulting in the discovery of entirely 

new groups or groups unknown from soils (Fell et al. 2006, Lara et al. 2007a, Lejzerowicz et 

al. 2010, Bates et al. 2013). Nevertheless, knowledge on soil protists on both, individual and 

community level is still in its infancy, with new taxa being discovered in basically every soil 

survey (Urich et al. 2008, Lejzerowicz et al. 2010, Bates et al. 2013, Heger et al. 2013). 

Classical cultivation-based studies are, however, still essential to increase the reference 

database in order to assign morphological and eventually functional information to the 

sequence data. 

Naked Amoebae 

Testate amoebae, hereafter referred to as “testates” are fairly well investigated due to 

comparably large body sizes and stable morphological characters (Foissner 1999b, 2006, 

Wilkinson and Mitchell 2010, Lahr et al. 2013), while knowledge on their non-testate, naked 

counterparts, hereafter simplified as “amoebae”, remains sparse. Amoebae are particularly 

difficult to identify due to their small size, transparent cell body and the lack of stable 

morphological characters. Expert knowledge is thus indispensable for their reliable 
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identification (Foissner 1999b, Smirnov et al. 2008). Amoebae cannot be extracted from 

soils, and their isolation requires establishment of tedious enrichment cultures (Ekelund and 

Rønn 1994, Foissner 1999b, Smirnov 2003). Consequently, direct enumeration of amoebae is 

impossible in soils and largely relies on diverse modifications of the most probable number 

technique (MPN) (Darbyshire et al. 1974, Rønn et al. 1995). MPN is based on a serial dilution 

of a soil suspension, but protist detection is hampered by high loads of particles remaining 

especially in low dilutions, which restrict reliable identification of protists. Therefore, MPN 

studies usually lump soil protists into very rough morphogroups without further taxonomic 

differentiation, such that paraphyletic amoebae are commonly treated as a single group 

(Zwart et al. 1994, Scherber et al. 2010, Gabilondo and Bécares 2014). The liquid aliquot 

method (LAM) uses highly diluted aliquots of the soil suspension and allows a much more 

detailed deeper determination of amoebae (Butler and Rogerson 1995, Finlay et al. 2000, 

Domonell et al. 2013), but the drawback are its high work- and time-intensity and reliance 

on profound taxonomic expertise (Smirnov et al. 2008, De Jonckheere et al. 2012). Recent 

LAM studies grouped soil amoebae according to morphogroups (Butler and Rogerson 1995, 

Smirnov and Brown 2004, Domonell et al. 2013), but most morphogroups turned out to 

contain distinct paraphyletic taxa (Amaral-Zettler et al. 2000, Lahr et al. 2011, Smirnov et al. 

2011b). The taxonomic resolution of LAM studies thus differs considerably from the latest 

taxonomy. This again raises the issue that detailed information on the abundance and 

community structure of soil amoebae is largely missing.  

Molecular tools promised to fill that information gap by avoiding many problems involved 

with cultivation-based methods especially when studying amoebae. However, when applying 

“general eukaryotic primers” on soil DNA that target a wide range of protists, amoebae, 

especially the supergroup Amoebozoa, turned out to be largely underrepresented (Berney et 

al. 2004, Baldwin et al. 2013, Bates et al. 2013, Risse-Buhl et al. 2013). Reasons are inferior 

SSU amplification due to above-average length of the SSU and common mismatches in 

primer regions (Berney et al. 2004, Epstein and López-García 2008). Specific amoebozoan-

wide primers do not exist, and more specific primers targeting groups within Amoebozoa 

have not yet been applied in soil surveys. Such focused studies on other protists have, 

however, revealed a much deeper resolution of the protist diversity (Bass and Cavalier-Smith 

2004, Lara et al. 2007b, Lejzerowicz et al. 2010, Vannini et al. 2013). Most of all, a reliable 
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comprehensive reference database to extrapolate more meaningful information from soil 

molecular surveys is urgently needed. 

Diversity, distribution and community structure 

The limited knowledge on the diversity of soil protists, and especially amoebae, has resulted 

in an ongoing debate about the diversity and distribution of these organisms (Finlay 1998, 

Foissner 1998, Finlay 2002, Foissner 2006). Recent molecular information targeting some 

protist groups, however, strongly suggests that heterogeneous spatially distinct soil 

communities exist even within morphologically indistinguishable protist groups (Bass et al. 

2007, Boenigk et al. 2007, Heger et al. 2013). For amoebae, one study found different 

sequences within the morphologically indistinguishable amoeba species Vannella simplex 

that differed between sites of isolation (Smirnov et al. 2002). Sequence data are rapidly 

accumulating in the genus Acanthamoeba. A plethora of sequenced Acanthamoeba spp. 

indicate an enormous hidden diversity within morphologically indistinguishable species in 

this genus with unique sequences being discovered in basically all studies (Gast et al. 1996, 

Stothard et al. 1998, Qvarnstrom et al. 2013, Risler et al. 2013). The morphological species 

concept of Acanthamoeba spp. has thus been replaced by sequence types to cope with the 

enormous sequence diversity in Acanthamoeba (Page 1988, Gast et al. 1996, Stothard et al. 

1998, Risler et al. 2013). Several of these sequence types include, however, different distinct 

species that have formerly been described based on morphological features. 

Some studies evaluated the community composition of soil protists with a morphotype 

approach and found that soil protist communities are largely influenced by precipitation, soil 

moisture and organic matter content of soils (Anderson 2000, Bass and Bischoff 2001, 

Anderson 2002). Information about the community composition of soil protists acquired 

with molecular tools are still sparse, but moisture content has also been identified as the key 

driver affecting the protist community in a large-scale 454 study (Bates et al. 2013). In this 

study the authors detected an increasing change of the protist community with distance, 

supporting the notion that deep molecular studies will fundamentally revolutionize the 

knowledge on soil protist communities. Also plants and even distinct plant species might 

strongly affect the soil protist community (Turner et al. 2013). 
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Nevertheless, molecular tools are not without limitations. Amplification efficiency is strongly 

dependent on primer choice with amoebae are being underrepresented (Berney et al. 2004, 

Epstein and López-García 2008). DNA of dead or inactive organisms can be transcribed 

(Pawlowski et al. 2011), while fundamental differences in SSU copy numbers between 

protists exclude quantitative comparisons (Gong et al. 2013). PCR errors further inflate 

protist-specific sequence numbers (Medinger et al. 2010, Behnke et al. 2011). Therefore, 

evaluating the community composition of soil protist with molecular techniques based on 

DNA are strongly hampered. Using RNA in metatranscriptomic approaches combined with 

reverse-transcribing RNA with random hexamers is a promising alternative and avoids most 

problems associated with DNA and primers. Few studies demonstrating the suitability of this 

approach have successfully recovered diverse protist communities from soils revealing more 

plausible protist community compositions than comparable DNA based studies (Urich et al. 

2008, Tveit et al. 2012, Turner et al. 2013). As expected, amoebae represented a significant 

proportion of protist sequences in those studies. By capturing the active protist community, 

metatranscriptomic approaches might therefore even outperform cultivation-based 

techniques, that have been suggested to predominantly enumerate inactive, encysted 

protists that might be less important in soil functioning (Foissner 1987, Berthold and 

Palzenberger 1995). Depending on the question being addressed, all methods seem to find 

their eligibility in soil surveys, but (dis)advantages of the respective methods have to be 

considered. 

Ecological importance  

Protists and especially amoebae occupy key positions in soil systems. They are considered to 

represent the major bacterial grazers, thereby linking nutrient flow to higher trophic soil 

organisms (Hunt et al. 1987, De Ruiter et al. 1995, Crotty et al. 2011). They also liberate 

nutrients from the consumed bacterial and stimulate plant growth (Clarholm 1985, 

Bonkowski 2004). However, most information on the impact of protist grazing on bacterial 

communities has been obtained in studies with just one or few model protists. Since the 

diversity of protists in morphology and phylogeny is enormous (Cavalier-Smith 1993, 

Cavalier-Smith 1998, Adl et al. 2012), it seems inevitable that at least certain protists differ in 

their ecological functions. Glücksman et al. (2010) investigated the impact of cercozoan 

flagellates and found that the bacterial community was changed in a species-specific 

http://www.dict.cc/englisch-deutsch/inevitable.html
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manner. Most strikingly, they found substantial feeding differences even between closely 

related species. Similarly, different feeding impacts on the bacterial community were shown 

for related ciliates (Weisse et al. 2001), while amoebae-specific feeding differences have not 

yet been studied. More natural conditions investigating interactive effects of different 

protists and potential feeding differences are even more rarely approached. Recent studies 

showed that an increased diversity of the protist community enhanced bacteria community 

diversity by reducing bacterial competition in favour of subdominant species, while total 

bacterial abundance was reduced (Saleem et al. 2012, Saleem et al. 2013).  

Protists are generally treated as bacterivores, but other functional feeding groups and 

respective ecological functions have rarely been addressed. Cryptic information, however, 

strongly suggests that trophic interactions among protists are common, as successful 

cultivation of various protists is only possible in presence of other protists. For instance, 

Paradermamoeba levis has been cultivated on small vannellid amoebae (Smirnov et al. 

2007), Deuteramoeba algonquinensis needed small amoebae or flagellates for growth (Mrva 

2010) and Thecamoeba spp. has been co-cultivated on other amoebae or ciliates (Page 

1977). Not surprisingly, also algae serve as prey for a variety of amoebae (Smirnov and 

Brown 2004, Mrva 2010, Smirnov et al. 2011a, Hess et al. 2012, Berney et al. 2013). Several 

protist taxa are further known to feed on fungi, for example flagellates (Hekman et al. 1992, 

Ekelund 1998, Flavin et al. 2000), ciliates (Petz et al. 1985, Petz et al. 1986, Foissner 1999a) 

and a variety of amoebae (Old and Oros 1980, Chakraborty and Old 1982, Chakraborty et al. 

1983, Mrva 2010). Among soil fauna, nematodes have been shown to be affected by 

protists. Small flagellates have been shown to kill, but not feed on nematodes (Bjørnlund 

and Rønn 2008), while larger testate amoebae (Yeates and Foissner 1995), ciliates 

(Doncaster and Hooper 1961) and amoebae (Sayre 1973) directly feed and grow on 

nematodes. In addition to direct feeding, non-trophic interactions, both positive and 

negative have been reported between protists and fungi (Rønn et al. 2002a, Vohník et al. 

2011, Koller et al. 2013), nematodes (Neidig et al. 2010, Bjørnlund et al. 2012) and 

earthworms (Bamforth 1988, Bonkowski and Schaefer 1997, Winding et al. 1997, Tiunov et 

al. 2001). Detailed knowledge on all of these interactions remains, however, on a very crude 

taxonomic level. It seems that we only grasped the tip of the iceberg on deciphering the 

importance and the multitude of ecological functions carried out by soil protists.  
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Further, some soil protists pose direct risks to human health. Among the facultative 

pathogens are amoebae of the genus Acanthamoeba, which are ubiquitous and very 

abundant in soils (Page 1988). Several Acanthamoeba spp. cause the eye infection Amoebic 

Keratitis (Schuster 2002, Siddiqui and Ahmed Khan 2012), and also fatal Granulomatous 

Amoebic Encephalitis (GAE) (Schuster 2002, Khan 2006, Qvarnstrom et al. 2013). Similiarly, 

GAE can be caused by Naegleria fowleri and Balamuthia mandrillaris (Visvesvara et al. 1993, 

Schuster 2002, De Jonckheere 2004). While N. fowleri has so far only been reported from hot 

water environments (De Jonckheere 2004), soils are likely to represent environmental niches 

for B. mandrillaris (Dunnebacke et al. 2004, Ahmad et al. 2011). In addition to these directly 

hazardous protists, endosymbiontic pathogenic bacteria are common in amoebae, such as 

Mycobacterium, Legionella, Salmonella and Listeria (Anand et al. 1983, Abu Kwaik 1996, 

Greub and Raoult 2004, Lamoth and Greub 2010). Protists are therefore considered to be 

“Trojan horses” for pathogenic bacteria to evade the human immune defence (Greub and 

Raoult 2004, Horn and Wagner 2004). Taken together, soil protists are highly diverse 

members of the soil food web and their ecological importance is commonly being accepted, 

but detailed knowledge on a wide range of species, the community compositions and taxon-

specific ecological functions of soil protists is largely missing.  

Aims 

The main objective of this thesis was to increase the knowledge on abundant taxa, 

community structures and functions of soil protists. Therefore, a variety of distinct 

approaches were applied that are summarised in three major parts. 

Part 1 

This part, aimed at increasing the knowledge on soil protists focusing on amoebae, through 

extraction and cultivation from geographically distant soils across Europe and Tibet. These 

cultures form the basis for the description of new species and genera from four distinct 

clades of amoebae, summarized in four chapters; 

Chapter 1 – Two Stenamoeba species, S. sardiniensis n. sp. and S. berchidia n. sp. isolated 

from the same soil on Sardinia, Italy are described, revealing morphological 

characters that help in taxonomic re-classification of the class Discosea.  
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Chapter 2 – Cochliopodium plurinucleolum n. sp. also extracted from Sardinian soil is 

described and the genus Cochliopodium spp. is revised. 

Chapter 3 – Six new genera of the class Variosea cultivated from diverse soils (and 

freshwater) are erected, enabling a deep re-structuring of Variosea. 

Chapter 4 – The new heterolobosean genus Pagea and six new Allovahlkampfia spp. are 

described cultivated from a range of soils from Tibet, Sardinia and the 

Netherlands.  

Part 2 

This part aimed at amending existing information on the diversity, abundance and 

community composition of soil protists. Four different methods are applied to target distinct 

questions on soil protist communities, each depicted in a single chapter; 

Chapter 5 – The abundance and diversity of soil protists is investigated microscopically 

using a modified enrichment cultivation technique, to analyse the impact of 

changes in soil moisture conditions on the protist community. 

Chapter 6 – Cultures of Acanthamoeba established in the first part of this thesis 

(Chapters 1 - 4) are subject to more focused molecular analyses followed by 

phylogenetic analyses to investigate potential cryptic diversity of 

Acanthamoeba spp. 

Chapter 7 – The protist phylum Cercozoa is targeted in a HTS approach applying specific 

primers to compare cercozoan community compositions in a range of 

geographically distant soils and between different levels of soil treatment in 

order to evaluate main drivers determining cercozoan soil communities. 

Chapter 8 – The entire soil protist community is analysed using a metatranscriptomic 

approach to investigate and compare active protist communities between 

soils and to explore protist clades uncommon for soils. 

Part 3 

The last part aimed at deciphering ecological functions performed by soil protists focusing 

on feeding interactions other than with bacteria. Using predominantly cultures obtained in 
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Part 1, interactions between protists and other soil eukaryotes are being investigated, to 

evaluate whether the current classification of protists as mainly bacterivorous holds true. 

Chapter 9 – A wide range of cultivated soil protists were tested for facultative fungal-

feeding potential. Further, the presence and relative abundance of known 

obligate fungal feeding protists is determined using datamining approaches, 

e.g. from sequences obtained in Chapter 8. 

Chapter 10 – The interaction of a small testate amoebae, Cryptodifflugia operculata with 

soil nematodes are investigated and the presence and potential importance of 

this interaction in soil investigated in terrestrial ecosystems examined using 

the metatranscriptomic data obtained in Chapter 8. 
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Part 1 

Cultivation and descriptions of new protist 

species and genera  
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Part 1 – Chapter 1 

Two new species of the genus Stenamoeba (Discosea, 

Longamoebia): Cytoplasmic MTOC is present in one more 

amoebae lineage 

Geisen Stefan2, Weinert Jan2, Kudryavtsev Alexander1, Glotova Anna1, Bonkowski Michael2, 

Smirnov Alexey1 

1 Department of Invertebrate Zoology, Faculty of Biology and Soil Sciences, Saint Petersburg State 
  University, Russia 
2 Department of Terrestrial Ecology, Institute for Zoology, University of Cologne, Germany 

Abstract 

Two new species of the recently described genus Stenamoeba, named S. berchidia and 

S. sardiniensis were isolated from a single soil sample on Sardinia, Italy. Both share 

morphological features characteristic to Stenamoeba and form in phylogenetic analyses 

together with other Stenamoeba spp. a highly supported clade within the family 

Thecamoebidae. The ultrastructural investigation of Stenamoeba sardiniensis revealed the 

presence of cytoplasmic microtubule-organizing centers (MTOCs), located close to one of 

several dictyosomes found inside the cell. This is the first report of cytoplasmic MTOCs 

among Thecamoebidae. The presence of MTOCs is now shown in five of nine orders 

comprising the class Discosea and potentially could be a phylogenetic marker in this group. 

We re-isolated Stenamoeba limacina from German soils. This strain shows a similar 

morphology and an almost complete SSU rDNA sequence identity with the type strain of 

S. limacina originating from gills of fishes, collected in Czech Republic. 
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Introduction 

Naked lobose amoebae (gymnamoebae) belong to the phylum Amoebozoa Luhe 1913, 

which comprises a number of phylogenetic lineages, covering all groups of lobose amoeboid 

protists (Cavalier-Smith 1998; Smirnov et al. 2011a). Among them, gymnamoebae are 

distributed among three groups currently recognized in the rank of classes - Tubulinea, 

Discosea and Variosea (Smirnov et al. 2011a). While Tubulinea are well outlined and proven 

to be monophyletic, and the same is probably true for Variosea, the monophyly of Discosea 

is more ambiguous, since they appear paraphyletic in most analyses (Cavalier-Smith et al. 

2004, Smirnov et al. 2005, Tekle et al. 2008, Kudryavtsev et al. 2009a, Pawlowski and Burki 

2009, Lahr et al. 2011). Discosea usually segregate into a number of relatively independent 

lineages with unstable position; a remarkable exception is the stable coupling of the orders 

Vannellida and Dactylopodida. However, Dermamoebida, Thecamoebida and 

Centramoebida showed weak statistical support in recent analyses (e.g. Kudryavtsev and 

Pawlowski 2013), but a surprisingly stable tendency to form a clade, recognized as the 

subclass Longamoebia in Smirnov et al. (2011b). Morphologically Thecamoebida, 

Centramoebida and Dermamoebida are rather different and until now there is no evident 

character that could be considered as a synapomorphy of this clade.  

The genus Stenamoeba (order Thecamoebida, family Thecamoebidae) was established in 

2007 to accommodate the former Platyamoeba stenopodia Page 1969 after the genus 

Platyamoeba was abandoned based on molecular data by Smirnov et al. (2007). It comprises 

oblong, linguiform amoebae with a large anterior area of hyaloplasm, usually occupying half 

or more of the cell. During locomotion several longitudinal ridges similar to those in 

Thecamoeba occasionally appear, but they never remain stable such as in Thecamoeba. 

A single nucleus is usually positioned at the border separating hyaloplasm and granuloplasm. 

Amoebae with Stenamoeba-like morphology are common in various environments, but 

Stenamoeba was monotypic until S. limacina and S. amazonica isolated from organs of 

freshwater fish hosts added (Dyková et al. 2010) Both of these species display characteristic 

morphological features unique to Stenamoeba, supported by molecular data revealing a 

solid monophyly of the genus Stenamoeba (Dyková et al. 2010b). This was the first indication 

that the genus Stenamoeba may be rather species-rich, but many new species may have not 

been recognized earlier due to morphological similarities with S. stenopodia and the 
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shortage of discriminating characters. Recent add-ons of sequences, probably belonging to 

unnamed members of the genus Stenamoeba to the GenBank database further supported 

this idea. 

In the present paper we describe two more species of Stenamoeba and show the presence 

of cytoplasmic microtubule-organizing centers (MTOCs) in one of the newly described 

isolates. We also report a new strain of Stenamoeba limacina isolated from soil of the 

Hainich-Dün region (Germany) that shares profound morphological and almost complete 

sequence identity with the type strain described by Dyková et al. (2010b). 

Materials and Methods 

Sampling sites 

Samples were taken from the upper 20 cm of mineral soil of an intensively managed 

grassland plot at Berchidda-Monti long term observatory, managed by the University of 

Sassari, on the island of Sardinia (Italy), Berchidda district, 40°46′N, 9°10′E (Lagomarsino et 

al. 2012), the upper 20 cm of an ex-arable field in the central part of the Netherlands 

(52°06′N, 6°00′E), and the upper 10 cm of a beech forest in the Hainich Dün region 

(Germany), 50°56’ - 51°22’N, 10°10’ - 10°46’E. Sampling was performed in the course of two 

different projects, EcoFINDERS (http://ecofinders.dmu.dk/) in 2011 (Sardinian site), and 

Biodiversity Exploratories (Fischer et al. 2010), http:/www.biodiversity-exploratories.de 

/1/home/, in the year 2008 (German site).  

Isolation and cultivation 

Soil samples were incubated in 90 mm Petri dishes with 0.15 % wheat grass (WG) medium, 

made by adding vacuum-dried wheat grass powder (Weizengras, Sanatur, Singen, Germany) 

to PJ medium (Prescott and James 1955) to the weight concentration of 0.15 %. The medium 

was autoclaved and sterile filtered through 0.45 µm Whatman filter paper. Parallel samples 

were inoculated with the same medium and agarised by adding non-nutrient agar 

(AppliChem, Darmstadt, Germany) at a final concentration of 1.5 % (WG agar). The agar was 

autoclaved (122 oC, 20’) prior to use. Enrichment cultures were maintained for 10 - 14 days 

at room temperature and ambient light. To establish clonal cultures, amoebae were picked 

manually with a tapered glass pipette using an inverted phase-contrast microscope, and 
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transferred to 60 mm Petri dishes with WG medium. Amoebae were subcloned once or 

twice until free from other eukaryotes, and fed on the accompanying non-identified 

bacteria. Observations and measurements of live cultures in Petri dishes were made using 

Leica DMI3000 inverted microscope equipped with PhaCo (Phase contrast) and IMC 

(Integrated modulation contrast) optics. Observations and photographs of amoebae moving 

across the glass surfaces were done using either a Leica DM2500 microscope equipped with 

PhaCo and DIC (Differential Interference Contrast) optics or a Nikon Eclipse 90i equipped 

with PhaCo and DIC optics. 

Electron microscopy 

For transmission electron microscopy (TEM) amoebae were fixed at 4 °C with a 2.5 % 

solution of glutaraldehyde in a 0.05 M sodium cacodylate buffer (pH 7.4) for 40’ followed by 

postfixation with 1 % osmium tetroxide prepared with the same buffer for 60’. Cells were 

washed with buffer (3 x 5’) between fixation steps. Fixation was initiated in Petri dishes by a 

quick replacement of culture medium with glutaraldehyde. During buffer washes cells were 

scraped away from the Petri dish bottom and collected by gentle centrifugation. After 

osmium tetroxide treatment, cells were washed with buffer (2 x 5’) followed by a gradual 

decrease in buffer concentration down to glass-distilled water. Amoebae were finally 

embedded in 2 % agar prepared with glass-distilled water; blocks of agar (ca 1 mm3) 

containing cells were subsequently cut out, dehydrated in a graded ethanol series followed 

by 100 % acetone, infiltrated and embedded in Epon 812 epoxy resin (Fluka). Silver to light 

gold sections were cut with a diamond knife on a Leica Ultracut 6 ultramicrotome and 

double-stained with 2 % uranylacetate prepared with 70 % ethanol and Reynolds’ lead 

citrate. Sections were observed using a JEOL JEM1400 transmission electron microscope 

operated at 80 kV. 

DNA Extraction 

DNA was extracted with guanidine isothiocyanate buffer (Maniatis et al. 1982). To collect 

cells, 60 mm Petri dishes containing amoebae were washed 2 - 3 times with fresh medium. 

The medium was always completely discarded form the dish. Subsequently, 100 µl guanidine 

isothiocyanate buffer was added to the dish and distributed across its entire bottom. Cells 

were scraped off using a disposable cell scraper, and the buffer with floating cells was 
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collected with a Pasteur pipette and transferred into an Eppendorf tube before being 

precipitated with isopropanol and ethanol according to above cited protocol. 

PCR 

SSU rDNA gene fragments were amplified using universal eukaryotic primers (Table 1). The 

cycling conditions included a 5’ initial denaturation at 95 °C followed by 30 cycles (each 

comprising 95 °C for 30’’, 50 °C for 60’’, and 72 °C for 120’’), and a final elongation step at 

72 °C for 5’. Subsequently, 8 µl of the PCR product were purified by adding 0.15 µl 

Endonuclease I (20 U * µl-1, Fermentas GmbH, D-68789 St. Leon-Rot), 0.9 µl Shrimp Alkaline 

Phosphatase (1 U * µl-1, Fermentas GmbH) and 1.95 µl water to a final volume of 11 µl. This 

mixture was incubated for 30’ at 37 °C, and for another 20’ at 85 °C. Afterwards (partial) PCR 

products were sequenced using the Big Dye Terminator Cycle sequencing kit and an 

ABI PRISM automatic sequencer. Primers used for sequencing are listed in Table 1. 

Table 1. Primers used for amplification, lengths of fragments and accession numbers at GenBank as well as the 
Culture Collection of Algae and Protozoa (CCAP). Primer sequences are as follows: RibA (5' - acc tgg ttg atc ctg 
cca gt - 3'), RibB (5’ - tga tcc atc tgc agg ttc acc tac - 3’) S12.2 (5’ - gat cag ata ccg tcg tag tc - 3’) S20R (5’ - gac 
ggg cgg tgt gta caa - 3’) (Cavalier-Smith and Chao 1995, Pawlowski 2000) 

Species Primer pair Sequence length GenBank accession number 

S. berchidia RibA-RibB 2124 bp KF547921 
S. sardinensis S12.2-S20R 772 bp KF547922 
S. limacina RibA-S20R 698 and 963 bp KF547923 and KF547924 

Phylogenetic analysis 

For phylogenetic analysis newly obtained sequences were aligned with an extensive 

alignment covering all major groups of eukaryotes using Seaview 4 (Gouy et al. 2010); the 

alignment was manually polished. To increase sampling of Stenamoeba-related sequences, 

sequences obtained in the present study and all named Stenamoeba sequences downloaded 

from GenBank were used as a query for BLASTn search using default search parameters in 

GenBank; top 10 hits were downloaded; mounted in the same alignment and analyzed using 

PhyML (1,148 sites, GTR + Г model with 4 rate categories, optimized proportion of invariable 

sites). Sequences that robustly grouped with Stenamoeba species were added to the 

analysis; the rest were removed. 

The phylogenetic analysis to obtain maximum-likelihood (ML) tree was performed using a 

subsample of the alignment containing all Stenamoeba-related sequences and a 
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representative amoebozoan sample. RaxML (Stamatakis 2006) was used with the following 

parameters: 1,605 sites; GTR+Г model, 25 rate categories (Lanave et al. 1984), optimized 

proportion of invariable sites. The tree showing the best likelihood value was bootstrapped 

with 100 replicates. Bayesian analysis was performed using MrBayes 3.2 (Huelsenbeck and 

Ronquist 2001) with the GTR+Г model, 8 rate categories and the covarion model. The 

analyses were performed as two separate runs of four chains each with default parameters, 

until they ceased to converge (final average standard deviation of the split frequencies less 

than 0.01); this required about 1 million generations; the first 30 % of generations were 

discarded as burnin. Calculations were performed using the facilities of Bioportal of the 

University of Oslo (Kumar et al. 2009). 

GenBank numbers of newly obtained sequences are represented in the Table 1; type 

cultures of Stenamoebae sardinensis and S. berchidia as well as a strain of S. limacina 

isolate 61 are deposited with CCAP under the accession numbers CCAP 2571/1 – 

CCAP 2571/3. 

Results 

Morphological observation 

Stenamoeba berchidia n. sp. 

Light microscopy (Figure 1 - 4): Active, moving trophozoites were oblong, or linguiform 

(Figure 1). The hyaloplasm was very pronounced, covering up to 2/3 of the cell. S. berchidia 

was broader than S. sardiniensis, occasionally exhibiting a nearly fan-shaped appearance. 

The granular part of the cell was narrower than the hyaline part, often pointed at the 

posterior end. No distinct uroidal structure was observed. Pronounced longitudinal surface 

ridges were formed during active locomotion (Figure 2, black arrow) and transverse waves 

running over the hyaloplasm were observed occasionally. A single contractile vacuole was 

always located in the posterior part of the cell. 

Average length of the locomotive form was 18.9 µm (range 12 - 24 µm), and the average 

breadth 8.6 µm (range 6 - 12 µm). The average length / breadth ratio was 2.3 (range 1.4 -

 3.7). 
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Non-directionally moving cells adopted variable shapes, often forming dactylopodia-like 

projections or assuming an irregular crescent-like shape (Figure 3). As S. berchidia was very 

active, amoebae virtually never formed a stationary phase during observations. Floating 

amoebae produced several small pseudopods, not reaching far out of the central cell mass; 

cells floated not readily and only for a short time under our conditions of observation, so 

these forms might not have represented developed floating forms. 

A single, vesicular nucleus was always located close to the border between the hyaloplasm 

and the granuloplasm (Figures 2 and 3, white arrows). The average diameter of the nucleus 

was 1.7 µm (range 1.3 - 2.2 µm); the average diameter of the nucleolus was 0.75 µm (range 

0.5 - 0.9 µm). No inclusions such as crystals were observed. Amoebae produced spherical, 

double-walled cysts of ca 10 µm (Figure 4) in diameter in old cultures. 

Stenamoeba sardiniensis n. sp. 

Light microscopy (Figures 5 - 9): Trophozoites in active locomotion were oblong or 

linguiform, with a distinct frontal area of the hyaloplasm, occupying about 1/2 of the cell 

(Figure 5). The granular part of the cell was in general narrower and thicker than the hyaline 

part, almost pointed at the posterior end in some individuals. No distinct uroidal structures 

could be observed. At times small longitudinal surface ridges occurred on the dorsal surface 

of moving cells (Figure 5, black arrow), but they never stayed stable for a long time. The 

single contractile vacuole was always located in the posterior part of the cell. 

Average length of the locomotive form was 17.0 µm (range 13 - 24 µm), and the average 

breadth 6.1 µm (range 5 - 7 µm). The average length / breadth ratio was 2.8 (range 2.2 - 3.9). 

During non-directional movement, cells sometimes produced very short dactylopodia-like 

cytoplasmic projections, or became narrow and stretched, or even temporarily branched; 

the latter was especially characteristic when amoebae tried to adhere both to the object 

slide and the coverslip (Figure 6). Stationary amoebae usually adopted an irregular shape 

with no distinctive characteristics or most often floated just above the cover slip surface, 

without adopting a pronounced floating form. Notable was also the extremely low ability of 

trophozoites to attach to the glass slides, making it difficult to observe the typical locomotive 

morphology. Fully developed floating forms produced up to three thin, blunt and radiating 

pseudopods of different length (Figure 9). 
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Figures 1-9. Light microscopic images of newly described Stenamoeba species; Scale bars: 10 μm 
1-4. Stenamoeba berchidia. 1. Locomotive form, ranging from oblong and linguiform to almost fan-shaped. 
2. Pronounced longitudinal surface ridges, occasionally formed in few cells (black arrow); single nucleus located 
at the border between granuloplasm and hyaloplasm (white arrows). 3. Stationary amoebae of irregular shape. 
White arrow shows nucleus. 4. Mature cyst.  
5-9. Stenamoeba sardiniensis. 5. Locomotive form, demonstrating characteristic oblong, linguiform shape. 
some cells show short-lived small longitudinal surface ridges (black arrow); 6. Cells in non-directed movement. 
7. The single nucleus located at the border between granuloplasm and hyaloplasm (white arrow). 8. Mature 
cyst. 9. Floating form. 
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The cells observed contained a single vesicular nucleus, always located at the border of 

hyaloplasm and granuloplasm (Figure 7, white arrow). The average diameter of the nucleus 

was 1.7 µm (range 1.5 - 2.1 µm), the average diameter of the nucleolus 0.65 µm (range 0.5 -

0.9 µm). Cells contained no crystals or any other remarkable inclusions. Amoebae in old 

cultures formed smooth, spherical, double-walled cysts ca 10 µm in diameter (Figure 8). 

Electron microscopy 

The majority of observed cells were covered with the plasma membrane without any visible 

glycocalyx on its surface (Figure 10). However, in a few cases a layer of fuzzy material 

20 - 30 nm thick was observed in a limited part of the cell surface area that looked like a 

food cup under formation (Figures 11 - 12). The peripheral part of the cytoplasm contained 

filamentous material that looked like a microfilament network, and some of these filaments 

were seen to form bundles extending into the cytoplasmic projections (Figure 13). The 

nucleus was irregularly rounded in sections, and contained a rounded, central electron-

dense nucleolus that sometimes contained more transparent areas visible in sections, and 

numerous patches of electron-dense heterochromatin scattered in the nucleoplasm 

(Figure 14). Mitochondria in sections were rounded or oval, containing an electron-dense 

matrix and tubular cristae. Associations of mitochondria with cisternae of rough 

endoplasmic reticulum were regularly observed (Figure 15). 
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Figures 10-15. Stenamoeba sardiniensis. General ultrastructure. Scale bar: 0.2 μm in 10-11, 1 μm in 14, 0.5 μm 
in others. 
10-11. Plasma membrane and cell coat (note a layer of fuzzy material over the plasma membrane in 11). 
12. Formation of a food cup for ingestion of a bacterium. Arrowheads indicate glycocalyx-like fuzzy layer over 
the plasma membrane. 13. Cytoplasmic projection with bundles of microfilaments (arrowheads). 14. Nucleus, 
mitochondria and cisternae of rough endoreticulum (arrowheads). 15. Mitochondrion and associated cisternae 
of rough endoreticulum. 

Large dictyosomes consisting of ca 10 flattened cisternae were scattered in the cytoplasm 

(Figure 16). In all cells numerous microtubules were observed around the dictyosomes 

expanding into the cytoplasm. In few sections an electron-dense body was seen close to the 

dictyosomes with numerous microtubules radiating from it (Figures 17 - 18). Therefore, it 

was interpreted as a microtubule-organizing center (MTOC). This MTOC was most probably 

cylindrical as it looked in sections either as a rounded body ca 100 nm in diameter, or had an 
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elongated shape ca 600 nm in length. No internal structure of a MTOC could be seen in 

sections. The very low frequency of occurrence of MTOCs in sections suggests that each cell 

had a single MTOC that was always located close to the dictyosomes. Not all dictyosomes in 

the cytoplasm were, however, associated with the MTOC. 

 

Figures 16-18. Stenamoeba sardiniensis. Dictyosomes and MTOC. Scale bar = 0.5 μm. 
16. Part of the cytoplasm showing dictyosomes, mitochondria and cisternae of rough endoreticulum. 
17. Microtubule-organizing center adjacent to a dictyosome (d) in a longitudinal section; arrowheads indicate 
microtubules. 18. Dictyosome and a putative microtubule-organizing center in a cross-section (arrowhead). 

Stenamoeba limacina strain 61 

Light microscopy (Figure 19) 

Locomotive morphology and other features of trophozoites were very similar to those 

presented in the original description of S. limacina (Dyková et al. 2010b). Following this 

description, we also noted the poor adhesion of amoebae to the glass surface, which made 

light microscopic observations very difficult. Amoebae detached from substratum started to 

move only after several hours. Average length of trophozoites was 19.9 µm (range 
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15 - 29 µm), breadth 6.9 µm (range 4 - 11 µm) and length / breadth ration (L / B) 3.0 (range 

1.6 - 4.9). The average diameter of the nucleus was 2.7 µm (range 2.0 - 3.5 µm), the average 

diameter of the nucleolus 1.3 µm (range 0.9 - 1.7 µm). Cells contained no crystals or any 

other remarkable inclusions. We have not seen cysts in our cultures. 

 

Figure 19. Light microscopic images of Stenamoeba limacina strain 61 in locomotion. The single nucleus is 
located at the border between granuloplasm and hyaloplasm (white arrow). Scale bar = 10 μm. 

Molecular phylogeny  

The resulting phylogenetic tree (Figure 20) revealed three large clades, corresponding to the 

classes Discosea, Variosea and Tubulinea; the class Discosea divided into two subclasses - 

Flabellinia and Longamoebia with high PP but negligible bootstrap support. The same 

pattern occurred across the entire tree with high posterior probabilities for nearly all 

branches, and with often much lower bootstrap values. The present analysis revealed a well-

supported clade unifying the genera Thecamoeba, Sappinia and Stenamoeba, which 

corresponded to the order Thecamoebida sensu Smirnov et al. (2011b) and a clade unifying 

the orders Dermamoebida, Centramoebida as well as environmental sequences of a so-

called LKM74 clade. All three Stenamoeba sequences investigated in the present study 

robustly grouped within the clade corresponding to the genus Stenamoeba. Among these, 

S. limacina strain 61 in two sequenced fragments, 698 bp in the 5’ and 963 bp in the 

3’ region of the SSU rDNA gene (including a fragment of the V4 region) showed nearly 

complete sequence identity (1 bp difference at position 601 of S. limacina) with the 

sequence of S. limacina studied by (Dyková et al. 2010b), which is congruent with their 

morphological similarity. Two new species, named here S. sardiniensis and S. berchidia 

showed distinct sequence differences from all yet known Stenamoeba strains. Although 

these species form short branches within the Stenamoeba clade (Figure 20), this should not 
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be interpreted as evidence of close sequence similarity, because sequences belonging to 

distinct species and isolates mostly differ in variable regions not included in the phylogenetic 

analysis, while the sequence differences within the set of sites used for the Amoebozoa-wide 

analysis were minimal. 

 

Figure 20. Phylogenetic tree based on the SSU-rDNA gene. Strains described in this study are in bold. Support 
values at each node indicated as RAxML / PP value. Black dots on nodes indicate 1.00 / 100 support level; 
smaller black dots show 1.00 PP values. Indications in nodes without strong support (< 60 % (RAxML) and < 0.60 
(BI) omitted). All branches are drawn to scale. 

Manual analysis of the alignment revealed that the V4 region of the SSU rDNA gene 

sequence in S. berchidia possessed a unique 56 bp long signature sequence ranging from 

position 686 to 742 (AGGGAGAGGGGCGGGGAGGGGCGACCCTCCTCGTTTTCCTTCTCCCTTC 

GTGCGGC). The V7 region in S. berchidia also included a unique signature motif, i.e. 

GTTCCTTTC (position 1849 - 1857). The SSU rDNA gene sequence of S. sardiniensis has a very 

distinct V7 region with characteristic motifs at position 595 - 622 
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(TTTATCGAACACCGTCTCTTCTTCCTTC) followed by a G-rich area in position 623 - 641 

(GCGGGAGGGGGGGGCGGCG), differentiating it strongly from all other Stenamoeba strains. 

Discussion 

Identification of Stenamoeba limacina strain 61 and justification to establish two new 

species - Stenamoeba berchidia n.sp. and Stenamoeba sardiniensis n.sp. 

Stenamoeba limacina strain 61. The S. limacina strain 61 in morphology and size is very 

similar to Stenamoeba limacina Dyková et al., 2010. The limax-like locomotive form reported 

for S. limacina was less pronounced in our strain as the posterior end seemed to narrow 

more strongly as originally described for S. limacina. Our strain was slightly larger than the 

type one (length 15 - 28 µm against 15.4 - 19.2 μm reported for the type strain) but 

maintained similar length to breadth ratio. Trophozoites overloaded with phagocytosed 

bacteria noted by Dyková et al. (2010b) were not observed in our strain, which probably 

depends on the culture conditions. We have not seen cysts in our cultures, but this also may 

be a physiological property of a particular strain and cannot serve as a distinctive character. 

Based on the sequence similarity we have to conclude that these differences represent 

intraspecific polymorphisms. We provide a slightly revised diagnosis of S. limacina to 

incorporate our data on this species and to remove some characters repeated in the 

diagnosis of the higher taxon (the genus Stenamoeba) (Smirnov et al. 2007). 

The type strain of S. limacina was isolated from kidney tissue of the freshwater fish Gobio 

gobio Linnaeus (Cypriniformes), which was caught in the Lužnice River (Czech Republic, 

South Bohemia), whereas our strain was isolated from a mineral soil of a beech forest in the 

Hainich-Dün region (Germany, Thuringia). This is a remarkable (and quite rare) case of 

reliable amoebae species re-isolation from two very different and relatively distant locations 

(ca 550 km linear distance), confirmed both at the morphological and molecular level. The 

finding of S. limacina free-living in the environment supports the idea on its amphizoic 

nature (Dyková et al. (2010b) and show that this species is not necessarily a freshwater fish-

associated one, but can live in soil as well. 

Stenamoeba berchidia: Cells of S. berchidia were on average slightly longer (18.9 µm) and 

explicitly broader (5.9 - 11.6 µm) than those of S. sardiniensis and S. limacina. Sometimes 



Part 1 - Chapter 1  Stenamoeba sardiniensis n.sp. and S. berchiddia n.sp.   Discussion 

  

35 

S. berchidia demonstrated an almost fan-shaped appearance, similar to the shape of 

S. amazonica, but only for short periods. A remarkable character distinguishing S. berchidia 

from all other Stenamoeba species is the strong tendency to attach and move on coverslips; 

trophozoites of S. berchidia were always very active, and nearly never stationary. Wave-like 

surface ripples passing from the anterior to the posterior edge of the cell during locomotion 

are characteristic for S. berchidia. Similar ripples were only documented for species of the 

genus Clydonella, but waves in this genus move in the opposite direction from the posterior 

to the anterior edge of moving cells (Sawyer 1975). 

Stenamoeba sardiniensis: Cells of S. sardiniensis shared several characteristics with 

S. limacina such as shape, ratio of hyaloplasm to granuloplasm, low attachment to 

coverslips, size and length / breadth ratio. However, cyst morphology allows a differentiation 

as S. sardiniensis forms double walled cysts, while cysts in S. limacina, if present, appear 

single-walled. Further, the average cyst diameter of ca 10 µm is larger in S. sardiniensis. 

However, the most reliable way to differentiate these two species remains the SSU 

sequence, detailed below. 

Cytoplasmic MTOC as a phylogenetic marker among lobose amoebae 

In contrast with many other groups of amoeboid protists, naked lobose amoebae move 

predominantly with their acto-myosin cytoskeleton; cytoplasmic microtubules are rare and 

never form cortical networks or organized bundles (Grebecki 1994). However, a number of 

amoebae species are known to possess cytoplasmic microtubule-organizing centers (MTOCs) 

showing a characteristic pattern of microtubules, radiating from an amorphous or lamellar 

central mass (e.g. Bowers and Korn 1968). Normally MTOCs in naked amoebae are 

associated with dictyosomes, but in lobose amoebae dictyosomes were never shown to be 

specifically associated with the nucleus unlike in most other organisms; moreover, in 

amoebae MTOC may be associated with only one of numerous dictyosomes, as it as shown 

in the present study. Among lobose amoebae, cytoplasmic MTOCs are known in 

Centramoebida (Bowers and Korn 1968); members of the genera Stygamoeba (Smirnov 

1996), Gocevia (Pussard et al. 1977), Endostelium (Bennett 1986), Cochliopodium 

(Kudryavtsev 2004); Thecamoeba and Pellita (Kudryavtsev et al., unpublished). The present 

study adds the genus Stenamoeba to this list. All these genera belong to different 

phylogenetic lineages comprising the class Discosea and represent five of nine orders, 
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currently included in this class. Therefore, the presence of MTOC theoretically could be a 

synapomorphic character, unifying several lineages of Discosea.  

Among the known discosean lineages, cytoplasmic MTOCs were never shown in the clade 

comprising Vannellida and Dactylopodida despite these groups were the subject of close 

attention and various TEM studies (e.g. Page and Blakey 1979; Page 1980; Dyková et al. 

2000; Dyková et al. 2003). Therefore, it seems that MTOCs are absent in this clade. Among 

other discosean lineages, MTOCs are not yet reported in the orders Trichosida and 

Dermamoebida. However, EM studies of both orders never specifically aimed at recovering 

cytoplasmic structures. Among various TEM data available for Trichosphaerium (Angell 1975, 

1976, Rogerson et al. 1998), only Schuster (1976) provided detailed TEM data. His study did 

not reveal MTOCs, but a single study of a single species might miss to identify these delicate 

structures and thus provide no conclusive answer to such a minute detail in the 

ultrastructure. For example, a rather detailed study of the ultrastructure of the genus 

Stenamoeba (Dyková et al. 2010) revealed no MTOCs (also we cannot reject the hypothesis 

that it might be absent in some species, such as S. limacina or S. amazonica). Another group 

not showing MTOCs is Dermamoebida, but, similarly, there are few studies dedicated to the 

general ultrastructure of their cells – Mayorella pussardi was studied by Hollande et al. 

(1981), and although no MTOCs were detected, the authors noted a microtubular layer 

“surrounding the nucleus”, which was never recovered in any other amoebae species. Other 

TEM studies of Dermamoebida were either aimed to the cell coat structure (Page 1983, Page 

1988, Smirnov and Goodkov 2004, Smirnov et al. 2007) or to the general overview of the 

ultrastructure (Cann 1981; Smirnov et al. 2011b). Cytoplasmic MTOCs are tiny structures, 

often visible only in a few TEM sections of many examined ones and requiring good fixation 

quality to be preserved. They can easily be missed if a study not specifically aims at 

recovering cytoplasmic structures, and from this point of view both mentioned lineages 

require more detailed study to prove or disprove the presence of cytoplasmic MTOCs. 

The above analysis shows that the presence on MTOCs potentially may be a shared 

character of Discosea with the exception of the clade containing Vannellida and 

Dactylopodida. The later clade is also unified by the presence of unique surface structures - 

pentagonal glycostyles that led Cavalier-Smith et al. (2004) to establish a taxon Glycostilida. 

Later we have abandoned this group as a taxon (Smirnov et al. 2005; Smirnov et al. 2011a), 
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but the present data indicate that this might have been premature. Distribution of MTOCs 

along with the accumulation of molecular data and increasing quality of phylogenetic 

analysis support the hypothesis that Discosea might split in two groups, differing in 

composition from the present Flabellinia and Longamoebia (Smirnov et al. 2011a). Those 

would be the previously mentioned “glycostilida” (Vannellida and Dactylopodida) and a 

group combining the remaining lineages within Discosea. This suggestion is weakly 

supported by some molecular data, where Stygamoebida and Himatismenida tend to group 

with other members of the subclass Longamoebia, thus reducing numbers of independent 

discosean lineages (e.g. Kudryavtsev and Pawlowski 2013) and shaping a sort of larger clade 

within Discosea. Support for this remains, however, weak and more data and analyses are 

required to prove or reject this hypothesis.  

MTOCs are also known in amoebae of the genera Corallomyxa and Stereomyxa (Benwitz and 

Grell 1971a, b, Grell and Benwitz 1978), classified by Page (1987) in a separate suborder 

Leptoramosina within the order Leptomyxida. Leptomyxida are members of Tubulinea, 

however in modern systematics both Stereomyxa and Corallomyxa are placed as Lobosa 

incertae sedis (Smirnov et al. 2011b). The reason for this is that none of those strains were 

studied using molecular methods, and no reliable re-isolations of these amoebae are 

recorded. A strain, resembling Corallomyxa and named C. tenera (Tekle et al. 2007) was 

shown to belong to the rhizarian genus Filoreta (Bass et al. 2009a). These two genera share a 

very specific morphology and there is no agreement on the phylogenetic position of both. 

Page (1983) lists the genus Stygamoeba in the family Stereomyxidae together with 

Stereomyxa and Corallomyxa based on certain morphological characters, especially for the 

species Stygamoeba polymorpha (Sawyer 1975). Smirnov (1995) showed the Stygamoeba 

differs from Stereomyxa and Corallomyxa by the shape of mitochondrial cristae, but the 

value of this character remains uncertain since all phylogenetic relatives of Stygamoeba 

share tubular cristae. However, in the system by Page (1987) Stygamoeba was missing, while 

Stereomyxa placed in Leptomyxida (together with Gephyramoeba), and Corallomyxa formed 

a separate order Loboreticulatida (Page 1987 p. 206). All this indicates that the position of 

Corallomyxa and Stereomyxa is uncertain, and unless the opposite is proven we can assume 

that cytoplasmic MTOCs are not present in Tubulinea.  
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Finally, MTOCs are present in all lineages of Conosa (Cavalier-Smith 1998). This suggests that 

the presence of cytoplasmic MTOCs is a plesiomorphic feature of Amoebozoa, while its 

absence in certain lineages such as Tubulinea and “glycostilida” probably is a secondary loss.  

Stenamoeba - a widely distributed and probably species-rich genus 

Stenamoeba stenopodia was long believed to represent a single species of this genus, 

because even before this genus was erected, no other platyamoebian with similar 

morphology was described. To a certain extent, the marine species Lingulamoeba leei 

Sawyer 1975 somehow resembled S. stenopodia, but molecular studies clearly place L. leei in 

a separate lineage (Peglar et al. 2003, Kudryavtsev et al. 2005, Smirnov et al. 2005). More 

recently, Stenamoeba stenopodia-like species were recorded at Valamo Island (North-West 

Russia) by Smirnov and Goodkov (1999) and meanwhile detected in soil samples from many 

different locations, including various sites in Russia, Switzerland, Denmark and Canada 

(Smirnov, unpublished observations), as well as The Netherlands, Germany and high altitude 

soils from Tibet (Geisen, unpublished observations). Stenamoeba limacina isolated from gills 

of fishes (Dyková et al. 2010b) and the present isolation of this species from a soil habitat, as 

well as a number of unnamed environmental sequences and sequences from strains 

identified at the morphological level as Stenamoeba spp. (see Figure 20), suggest that this 

amoeba genus may be another widely distributed taxon consisting of no less than 

10 different species hard to identify by light microscopic characters. Molecular markers will 

be helpful to discriminate species and estimate the true diversity within this amoeba genus. 

Diagnoses 

Stenamoeba berchidia n.sp. 

Diagnosis: Length in locomotion 12 - 24 µm (average 18.9 µm), breadth 6 - 12 µm (average 

8.6 µm), L / B ratio 1.4 - 3.7 (average 2.3). Pronounced frontal hyaloplasm covering up to 2/3 

of the cell. Sometimes nearly fan-shaped appearance in addition to the typical oblong or 

linguiform locomotive form. Posterior part of the cell narrower than anterior hyaloplasm, 

often pointed. Pronounced longitudinal surface ridges formed during active locomotion, 

sometimes transverse waves running over the hyaloplasm. Single nucleus usually located at 

the border of hyaloplasm and granuloplasm with average diameter of 1.7 µm (range 
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1.3 - 2.2 µm), nucleolus 0.75 µm (range 0.5 - 0.9 µm). Smooth, spherical double-walled cysts 

ca 10 µm in diameter.  

Food: bacterivorous; habitat: soil; ethymology: the species name refers to the geographic 

area of the origin (Berchidda); type location: soil, Sardinia region (Italy), Berchidda district, 

40°46′N, 9°10′E; type material: type culture Stenamoeba berchidia strain 22 deposited with 

CCAP, accession number CCAP 2571/2. 

Differential diagnosis: Morphologically typical for the genus Stenamoeba, with size 

dimensions similar to S. limacina. High activity even on cover slips, the absence of a 

pronounced floating form and the large hyaline area (up to 2/3 of the cell) are unique to 

S. berchidia. A new feature in the genus Stenamoeba present in S. berchidia are transverse 

waves running over the hyaloplasm as has been observed in the genus Clydonella (Sawyer, 

1975a). Distinct SSU rDNA gene sequence and nucleotide pattern in region V4 of the 

SSU rDNA gene sequence starting in positions 686 - 742 and a short V7 region differentiate 

this species from any other known Stenamoeba. 

Stenamoeba sardiniensis n. sp. 

Diagnosis: Length in locomotion 13 - 24 µm (average 17.0 µm), breadth 5 - 7 µm (average 

6.1 µm), L / B ratio 2.2 - 3.9 (average 2.8). Posterior granular part of the cell is thicker than 

the frontal hyaline part, narrowing to the pointed end. Longitudinal surface ridges on the 

dorsal surface are occasional and briefly present on the moving cell. Floating form with up to 

three thin, blunt and radiating pseudopods of different length. Single nucleus located at the 

border of hyaloplasm and granuloplasm with an average diameter of 1.7 µm (range 1.5 -

 2.1 µm), nucleolus 0.65 µm (range 0.5 - 0.9 µm). Smooth, spherical double-walled cysts 

ca 10 µm in diameter. 

Food: bacterivorous; habitat: soil; ethymology: the species name refers to the geographic 

area of the origin (Sardinia); type location: Sardinia region (Italy), Berchidda district, 40°46′N, 

9°10′E; type material: type culture Stenamoeba sardiniensis strain 17 deposited with CCAP, 

accession number CCAP 2571/1. 

Differential diagnosis: Locomotive form typical for members of the genus Stenamoeba. Size 

and length / breath ratio are only within the values reported for S. limacina. Also the 

tendency to detach from the substratum is a shared feature of S. sardiniensis and S. limacina 
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but cysts differentiate both; S. sardiniensis has larger (10 µm), double walled cysts, while 

those of S. limacina are smaller (5.6 µm) and single walled. A unique SSU rDNA gene 

sequence with a distinct V7 region is characteristic for S. sardiniensis. 

Stenamoeba limacina Dyková, Kostka et Pecková 2010, emend. 

Flattened amoeba of elongated limax-like or linguiform shape with anterior part round or 

truncate; anterior hyaline area covering up to 1/2 of the cell, posterior part granular; single 

contractile vacuole; length in locomotion 15 - 28 µm (average 19.9 µm), breadth 4 - 11 µm 

(average 6.9 µm), L / B ratio 1.6 - 4.9 (average 3.0); transitory folds or wrinkles on the 

surface of trophozoites, floating form with blunt radiating pseudopodia; cysts spherical, 

single walled. Stenamoeba limacina deposited with CCAP (accession number CCAP 2571/3). 
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New insights into the phylogeny of the genus Cochliopodium 

(Amoebozoa, Himatismenida) with the description of 

Cochliopodium plurinucleolum n. sp. 

Geisen Stefan2, Kudryavtsev Alexander1, Bonkowski Michael2, Smirnov Alexey1  

1 Department of Invertebrate Zoology, Faculty of Biology and Soil Sciences, Saint Petersburg State 
 University, Russia 
2 Department of Terrestrial Ecology, Institute for Zoology, University of Cologne, Germany 

Abstract 

Amoebae of the genus Cochliopodium are characterized by a tectum that is a layer of scales 

covering the dorsal surface of the cell. A combination of scale structure, morphological 

features and, nowadays, molecular information allows species discrimination. Here we 

describe a soil species Cochliopodium plurinucleolum n. sp. that besides strong genetic 

divergence from all currently described species of Cochliopodium differs morphologically by 

the presence of several peripheral nucleoli in the nucleus. Further, we unambiguously show 

that the Golgi attachment associated with a dictyosome in Cochliopodium is a cytoplasmic 

microtubule organizing center (MTOC). Last, we provide detailed morphological and 

molecular information on the sister clade of C. plurinucleolum, containing C. minus, 

C. minutoidum, C. pentatrifurcatum and C. megatetrastylus. These species share nearly 

identical sequences of both, small subunit ribosomal RNA and Cox1 genes, and nearly 

identical structure of the scales. Scales of C. pentatrifurcatum differ, however, strongly from 

scales of the others while sequences of C. pentatrifurcatum and C. minus are nearly identical. 

These discrepancies urge for future sampling efforts to disentangle species characteristics 

within Cochliopdium and to investigate morphological and molecular patterns that allow 

reliable species differentiation. 
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Introduction 

The genus Cochliopodium Hertwig et Lesser, 1874, comprises lens-shaped amoebae covered 

by a flexible layer of carbohydrate scales (tectum) located only on the dorsal surface of the 

cell (Bark 1973, Kudryavtsev 2004, Kudryavtsev et al. 2005, Kudryavtsev 2006). When the cell 

is viewed from the top during locomotion, it shows a thick central granuloplasmic mass 

surrounded by a broad peripheral sheet of hyaloplasm. It is widely accepted that scales 

comprising the tectum of Cochliopodium are species-specific, so that details of scale 

structure allow unambiguous identification of morphospecies (Bark 1973, Kudryavtsev 1999, 

2004, 2005, 2006). However, it was demonstrated previously that there is a group of 

morphospecies in Cochliopodium that can be distinguished based on light microscopic data, 

while sharing nearly identical scales. Namely, these are C. barki, C. minutoidum and several 

strains morphologically resembling C. minus (Kudryavtsev et al. 2004, Kudryavtsev 2006). 

The distinction of these morphospecies may be facilitated by using gene sequence data 

(Kudryavtsev et al. 2005, Kudryavtsev et al. 2011, Anderson and Tekle 2013, Tekle et al. 

2013). Therefore it seems unavoidable to decipher how morphological and ultrastructural 

differences are related to the genetic divergence between strains. Yet, the number of 

sequenced species is relatively small compared to the total number of around 

20 morphologically defined Cochliopodium spp., and this is the main obstacle for 

understanding the evolutionary relationships within the genus and borders between 

morphospecies. 

In the present paper we revise the phylogenetic relationships in a clade of Cochliopodium 

comprising closely related species C. megatetrastylus, C. minus, C. minutoidum and 

C. pentatrifurcatum (hereinafter referred to as minus-clade) and describe a new soil species 

C. plurinucleolum whose scale structure is very similar to the members of this clade. 

However, molecular trees show only distant relationships between this species and 

members of the minus-clade. 
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Materials and Methods 

Establishing cultures 

Soil from the upper 20 cm of an intensively managed grassland plot at the Berchidda-Monti 

long term observatory, managed by the University of Sassari, Italy, 40°46′N, 9°10′E (Bagella 

et al. 2013) was collected after 2 mm sieving and transferred in thermo isolated containers 

to the lab. For inoculation, 50 g of soil mixed with 50 ml of sterile distilled water were 

shaken for 20’ and allowed to settle for 15’. Ten enrichment cultures were established by 

transferring 5 µl of the soil suspension in 90 mm Petri dishes filled with soil extract solution 

(Page 1988). Each dish was carefully examined twice (at days 10 - 14 and 24 - 28) with an 

inverted Nikon Diaphot phase contrast microscope under 100 x and 400 x magnifications. To 

establish clonal cultures, amoebae of different morphotypes were individually transferred 

with a glass pipette to new 60 mm Petri dishes filled with Prescott-James (PJ) medium (Page 

and Siemensma 1991), enriched with 0.15 % wheat grass (WG) (Weizengras, Sanatur, Singen, 

Germany). Two strains of C. plurinucleolum n. sp. designated 8 and 86 were isolated and 

shown to be identical in gene sequence data and light microscopic characters; therefore, 

only one (strain 8) was further described in detail. A freshwater strain of Cochliopodium 

minus CPE was donated by Dr. Rolf Michel (Department of Parasitology, Central Institute of 

the Federal Armed Forces Medical Services, Koblenz, Germany). It was isolated from Elodea 

canadensis purchased from a local pet shop in Neuwied, Germany, and cultured initially on 

1.5 % non-nutrient agar prepared with PJ medium. Later the strain was transferred into 

0.025 % Cerophyl infusion (roughly equivalent to WG) prepared with PJ. C. minus CCAP 

1537/1A was obtained from CCAP on NN agar supplemented with Escherichia coli and 

further cultured on Cerophyl infusion. 

Light and electron microscopic observations 

Several hundred cells of each clonal culture of C. plurinucleolum were placed on glass cover 

slips and observed using a Leica DM2500 microscope with an attached Nikon DS-Fi 1 digital 

5-megapixel microscope camera; 30 cells were measured. C. minus CPE was observed using a 

Carl Zeiss Axiovert 200 inverted microscope. Both microscopes were equipped with phase 

contrast and differential interference contrast optics (DIC). For transmission electron 

microscopy (TEM), amoebae were briefly (up to 5’) prefixed at 4 °C with 0.5 % (w/v) osmium 
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tetroxide followed by fixation with 2.5 % (v/v) glutaraldehyde for 30 – 40’ and postfixation 

with 1 % (w/v) osmium tetroxide for 1 hour; all fixatives were prepared with 0.05 M 

cacodylate buffer, pH 7.4. Cells were washed with the same buffer (3 x 5’) between fixation 

steps and before dehydration. Dehydration was conducted in a graded ethanol series, 

followed by 100 % acetone and embedding in medium hardness epoxy embedding medium 

(Fluka) or Araldite M (Serva Electrophoresis). Silver to light gold ultrathin sections were cut 

with Reichert Ultracut E or Leica UC 6 ultramicrotomes, double stained with 2 % (w/v) uranyl 

acetate in 70 % ethanol for 20 – 30’ and Reynolds’ lead citrate for 10’ and observed with 

Philips EM208 and Jeol JEM 1400 electron microscopes. Whole mounts of the cells for TEM 

observations were prepared by rinsing amoebae with glass-distilled water and placing the 

cell suspension on formvar-coated copper grids. Cells were allowed to settle and fixed for 5’ 

with osmium vapor. Grids were then air-dried and shadowed with chromium at an angle of 

ca 15 ° using a Jeol JEE-420D vacuum evaporator. Grids were observed with TEM as 

described above. 

Molecular phylogenetic studies 

Genomic DNA was isolated from fresh cell cultures using a guanidine isothiocyanate method 

(Sambrook et al. 1989). In short, liquid medium was replaced with 100 µl of guanidine 

isothiocyanate after rinsing the dishes twice with sterile WG. Amoebae were scraped off the 

plate using a disposable cell scraper, and transferred into 2 ml centrifuge tubes. Subsequent 

stages were performed according to the cited protocol. 

The gene encoding the small subunit (SSU) ribosomal RNA (rRNA) was fully amplified from 

strains 8 and 86 using the universal eukaryotic primers RibA (5' - ACC TGG TTG ATC CTG CCA 

GT - 3') and RibB (5’ - TGA TCC ATC TGC AGG TTC ACC TAC - 3’) (Cavalier-Smith and Chao 

1995, Pawlowski 2000). Cycling consisted of initial denaturation at 95 °C for 5’, followed by 

35 cycles of denaturation at 95 °C for 30’’, annealing at 50 °C for 45’’ and elongation at 72 °C 

for 90’’ with a final elongation at 72 °C for 5’. 8 µl of the PCR products were enzymatically 

purified by adding 0.15 µl Endonuclease I (20 U * µl-1, Fermentas GmbH, St. Leon-Rot, 

Germany), 0.9 µl Shrimp Alkaline Phosphatase (1 U * µl-1, Fermentas, Germany) and 1.95 µl 

H2O and incubating the mixture for 30’ at 37 °C followed by incubating the samples at 85 °C 

for 20’ to stop the reaction. Subsequently, purified products were partially sequenced by 

GATC (Konstanz, Germany) using RibB as a sequencing primer. Lengths of the resulting 
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sequences was 1073 bp and 1145 bp for strains 8 and 86, respectively. In addition, we 

amplified, cloned and sequenced the full SSU rRNA gene of Cochliopodium minus CPE, 

C. minutoidum CCAP 1537/7 (type strain of C. minutoidum) and C. minus type strain CCAP 

1537/1A. To increase the number of nucleotide positions available for phylogenetic analysis, 

we also updated previously published incomplete SSU rRNA gene sequences of C. kieliense 

and C. minus CCAP 1537/5 (AY785057 and AY785056, respectively in Kudryavtsev et al. 2005) 

by amplification, cloning and sequencing the full-length SSU rDNA from the same DNA 

samples that were used in the previous study (op. cit.). PCR primers used and procedures for 

amplification, cloning and sequencing were as described in Kudryavtsev et al. (2009a). 

5’ fragment of mitochondrial Cox1 gene was in all cases amplified from the same DNA 

samples as SSU rDNA. We sequenced this marker for all strains used in this study as well as 

C. actinophorum CCAP 1537/10 and Cochliopodium sp. previously identified as C. minus 

(Kudryavtsev et al. 2011). Amplicons of all strains except Cochliopodium sp. 8 and 86 were 

cloned, and 5 - 8 molecular clones from each amplicon were sequenced in both directions. 

Primers and protocol for amplification, cloning and sequencing were the same as in 

Nassonova et al. (2010).  

Sequences were manually aligned in Seaview 4 (Gouy et al. 2010) using all published 

sequences within the genus Cochliopodium (SSU rRNA: 14 sequences in total with 1,404 

unambiguously aligned positions, Cox1: 24 sequences in total with 495 aligned nucleotide 

positions). Ovalopodium and Parvamoeba were treated as outgroups in the trees based on 

SSU rRNA gene; Vannella spp. were used as outgroup in Cox1 gene trees. Phylogenetic trees 

were reconstructed using maximum likelihood algorithm with RaxML (Stamatakis 2006). 

A GTR+γ+I model of evolution with 25 substitution rate categories was applied for the 

analysis. All model parameters were estimated from the data. The stability of the clades was 

assessed using a non-parametric bootstrap with 1,000 pseudoreplicates. Bayesian 

reconstructions of phylogenetic relationships were performed using Mr Bayes Version 3.2.1 

with covarion and autocorrelation models for among-site rates (Huelsenbeck and Ronquist 

2001). Two runs of four simultaneous Markov chains were performed for 5,000,000 

generations (default heating parameters) and sampled every 100 generations; 25 % of the 

samples were discarded as a burnin. All analyses were run at the University of Oslo Bioportal 

computer service (http://www.bioportal.uio.no; Kumar et al. 2009. 
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Results 

Microscopic observations of Cochliopodium strains 

Cochliopodium plurinucleolum n. sp.  

Trophic amoebae were highly variable, showing most frequently oval, fan-shaped, or 

crescent-shaped locomotive forms (Figure 1A-B). Many amoebae temporarily adopted a 

triangular, drop-shaped locomotive form with length greater than breadth caused by 

adhesion of the posterior end to the substratum (Figure 1C). The granuloplasm in above 

view was entirely surrounded by a thin hyaloplasmic sheet (Figure 1A-C), which never 

exceeded 1/5th of the total body length and was often equally broad at the anterior and 

lateral parts of the body. The dorsal surface of the hyaloplasmic sheet was often completely 

covered by the most peripheral scales of the tectum (Figure 1A-B). Sometimes the anterior 

margin of the hyaloplasm extended beyond the border of the scale layer; it was then smooth 

or slightly irregular (Figure 1C). Subpseudopodia were never seen. Few short trailing 

adhesive filaments were visible in the posterior end of the cell during fast, directed 

locomotion (Figure 1A-C). Amoebae in non-directed movement (Figure 1D) were oval, 

triangular, or had an irregular shape, often angulate and stretched over the substratum, with 

the hyaloplasm split into several flattened projections on distinct sites of the cell margin. The 

stationary form was nearly rounded, sometimes slightly wrinkled or oval without any 

extensions of the peripheral hyaline area, which was equally broad but retracted in 

comparison to the locomotive form. 

A differentiated floating form was rarely developed, and only when the cell was artificially 

disturbed. Amoebae contracted shortly after detachment from the substratum; the central 

granuloplasmic area became spherical, and the peripheral hyaloplasmic sheet contracted 

and produced several hyaline pseudopodia. Those pseudopodia were mostly short, but 

extended and became longer than the central cell body in amoebae getting closer to the 

substratum and attaching to it. Amoebae started locomotion immediately after settling 

down on the substratum. 

A single spherical nucleus (Figure 1E) was located in the central part of the granuloplasm 

close to the dorsal surface of the cell. It had finely granular contents and several spherical 

pieces of nucleolar material at the periphery (1 - 2 of these pieces were usually visible 
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simultaneously). The nucleus was inconspicuous and often concealed by the organelles and 

inclusions in the granuloplasm such as abundant food vacuoles or crystals of varying sizes 

and shapes. Several asynchronously working contractile vacuoles, capable of fusing together, 

were present in different areas of the granuloplasm. Cysts (Figure 1F) were always formed in 

older cultures. The cyst wall consisted of two layers; the outer one incompletely enclosing 

the cell was made up of the scales comprising the tectum in a trophic amoeba. No cyst pores 

were observed. Cysts could survive at least several weeks of complete drought in culture. 

Amoebae were feeding on bacteria and multiplied both in liquid and on agar media. 

 

Figure 1. Cochliopodium plurinucleolum n. sp., light micrographs, DIC. A-C. Locomotive forms on the glass 
surface. D. Amoebae during non-directional movement. E. Nucleus in an amoeba partly squeezed with a 
coverslip (arrowheads indicate nucleoli). F. Cyst (arrowheads indicate margins of an outer cyst wall formed by 
scales). Scale bar = 10 µm in all figures. 

Transmission electron microscopy showed that the tectum consisted of scales of uniform 

structure (Figure 2) located on the dorsal surface of the cell (Figure 3A). Scales had flat, 

circular base plates with a grid-like structure formed by a square mesh (mesh size 0.015 μm; 

Figure 2, 3B-D). Four vertical stalks were rising from the center of the base plate and 

terminated with a funnel-shaped apical part consisting of ca 15 fine radial spokes and a 

dense outer rim. The material between radial spokes was organized in poorly discernible 



Part 1 – Chapter 2 Phylogeny of Cochliopodium with C. plurinucleolum n.sp.  Results 

 

48 

concentric rings thus giving an apical part a somewhat spiderweb-like appearance 

(Figure 3C-D). 

 

Figure 2. Diagram representing scale reconstruction in Cochliopodium plurinucleolum n. sp. and C. minus CPE 
based on the ultrathin sections. A. Drawing of a scale, scale bar = 0.1 µm. B. Scheme of the scale appearance at 
different levels of sectioning in C. minus CPE (left) and C. plurinucleolum n. sp. (right), not to scale. 

The nucleus in sections was oval or irregular in shape (Figure 3A, E). It contained numerous 

dense patches of heterochromatin. In most of the sections one or two rounded nucleolar 

pieces were visible at the periphery of the nucleus (Figure 3E). A single large dictyosome was 

located between nucleus and dorsal surface of the cell (Figure 3E). An elongated granular 

structure, the “Golgi attachment”, was located close to the side of a dictyosome opposite to 

the nucleus, and numerous microtubules often emerged from the Golgi attachment into the 

cytoplasm (Figure 3F). Mitochondria in sections were rounded or ovoid with tubular cristae 

(Figure 3G). Cysts in sections were ovoid, with the denser and more poorly preserved 

cytoplasm than in the trophic amoebae. The cyst wall consisted of an inner layer of medium 

electron density that was 0.1 - 0.2 μm thick and an outer layer consisting of scales 

(Figure 3H). The scale layer occupied the part of the cyst surface where the tectum on the 

surface of a trophic amoeba was located, in accordance to what was seen with light 

microscopy (Figure 1F, 3H). 
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Figure 3. Transmission electron micrographs of Cochliopodium plurinucleolum n. sp., strain 8. A. Cross-section 
of the cell adhering to the substratum showing dorsal surface covered with tectum (above) and ventral, naked, 
surface (below). Nucleus is seen in the center. B. Vertical section of scales on the dorsal cell surface. 
C-D. Details of the scales in tangential sections: grid-like base plates (b) and apical parts (a). E. Nucleus (note 
2 peripheral nucleoli) and a dictyosome. F. Detail of the dictyosome: note microtubules (arrowheads) adjacent 
to the dictyosome’s side opposite to the nucleus. G. Mitochondria. H. Cyst (note inner cyst wall underlying 
tectum; the latter covers only part of the surface; arrowheads indicate margins of an outer cyst wall formed by 
scales). Scale bar = 1 μm in all figures except F, where it is 0.2 μm. 
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Cochliopodium minus strain CPE 

Length of the locomotive form in this strain was 12 - 30 µm (average 20 µm), breadth 18 -

 46 µm (average 28 µm), length / breadth ratio was 0.42 - 1.08 (average 0.73; n = 76). 

Amoebae, in above view, were generally broadly triangular, oval or fan-shaped during 

locomotion, and changed their outline very quickly (Figure 4A). The central mass of 

granuloplasm was located posteriorly and surrounded by a peripheral hyaline sheet 

(Figure 4C-D). Anterior and lateral parts of the hyaline sheet were usually much wider than 

the posterior one, their width was equal to approximately one-third of the cell length. The 

margin of the hyaline sheet was very uneven, producing numerous waves, irregularities and 

short subpseudopodia (Figure 4C-D), sometimes deeply cleaved into several lobes. 

Occasionally, the anterior area of the hyaloplasm retracted, and lateral parts became wider. 

In this case amoebae temporarily expanded in two opposite directions before resuming 

locomotion in one direction. Rear parts of the lateral hyaline margins, as well as the 

posterior end of the cell often adhered to the substratum producing a number of trailing 

filaments (Figure 4C-D), occasionally becoming as long as the remaining cell body. Non-

directionally moving and stationary amoebae (Figure 4E) showed either irregular shapes with 

the cytoplasm split into several lobes, or were rounded, with the central granuloplasmic 

mass completely surrounded by the hyaline sheet of approximately equal breadth from each 

side. A floating form was only occasionally seen in cultures and occurred more frequently 

when amoebae were placed on a glass slide. When floating, amoebae usually contracted and 

their central granuloplasm became a spherical compact mass. The peripheral hyaloplasm 

folded and often produced several hyaline pseudopodia (Figure 4F). The floating form was 

usually maintained for a maximum of 20’ until amoebae settled back to the substratum and 

started locomotion. 

The majority of cells possessed a single vesicular nucleus (Figure 4B), but cells with 2 or 3 

nuclei were occasionally seen, that were usually larger than the uninucleate ones. The 

nucleus was spherical, with a conspicuous envelope and a large central nucleolus that 

sometimes contained one or several small cavities. The nuclear envelope was sometimes 

outlined with a coarse layer consisting of fine granules. The diameter of the nucleus was 

4.3 - 9.2 µm (average 6.3 µm), that of the nucleolus 1.9 - 5.1 µm (average 3.6 µm) (n = 32). 

Amoebae possessed several asynchronously working contractile vacuoles. The granuloplasm 
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contained 5 to 15 refractile crystals of a bipyramidal shape 1 - 2 µm in length (Figure 4C, E). 

Several food vacuoles and a number of spherical or elongated granules below 1 µm in size 

were also present. The tectum was clearly visible in phase contrast or DIC optics covering the 

dorsal surface of the granuloplasm (Figure 4E) and the hyaloplasmic surface in non-

directionally moving and stationary amoebae, as a number of granules over the surface. In 

cultures amoebae encysted regularly producing spherical or ovoid double-walled cysts 

ca 15 µm in diameter. 

Scales reconstructed from TEM sections (Figure 4G-J) appeared to be identical in structure 

and dimensions to those of Cochliopodium plurinucleolum (Figure 2). A very slight difference 

in their appearance was a less dense periphery of the top part, with concentric rings being 

better visible, but this may vary between individual fixations. Dimensions of scales are given 

in Table 1. The nucleus was rounded in sections containing a central, electron-dense 

nucleolus (Figure 5A). Rounded or oval mitochondria had electron-dense matrix and tubular 

cristae (Figure 5A-B). Each cell possessed a single dictyosome located close to the nuclear 

envelope between nucleus and the dorsal surface of the cell. A Golgi attachment (Figure 5C) 

visible as a dense granular structure was located close to the dictyosome, opposite to the 

nucleus. Cysts of this strain had the same structure as those of C. plurinucleolum 

(Figure 5D-E). The dense inner wall was fibrous and contained a number of cavities filled 

with granular material in a young cyst that also occupied the space between the folded 

plasma membrane of the encysting cell and the cyst wall (Figure 5E). 
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Figure 4. Cochliopodium sp. CPE. Light (A-F) and electron (G-J) micrographs. A, C-D. Locomotive forms on glass 
surface. B. Nucleus (indicated by arrowhead). E. Amoeba in non-directed movement. F. Floating form. G. Scales 
(s) on the dorsal surface of a cell in a vertical section. H-J. Serial tangential sections showing scales cut at 
different levels. Note tangentially sectioned base plates (b), apical parts (a) and central columns (arrowheads). 
Scale bar = 20 µm in Figure A, 10 µm in B-F, 1 µm in other figures. 
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Figure 5. Cochliopodium sp. CPE, electron micrographs. A. Section of a trophic amoeba showing nucleus (n) and 
mitochondria (m). B. Mitochondria at a higher magnification. C. Dictyosome and a Golgi attachment 
(arrowhead). D. Cyst wall in oblique section. E. Transverse section of a (young) cyst wall; arrowheads indicate 
underlying plasma membrane. Scale bar = 0.5 µm in A, 1 µm in other figures. 
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Table 1. Comparison of the scale characteristics among Cochliopodium species with scales of “Category 1” (Anderson and Tekle 2013). Source references are in brackets after 
species names, numbers in brackets show average values where available 

Species Base plate diameter (µm) Top part diameter (µm) Scale height (µm) Number of spokes in top part 

C. plurinucleolum n. sp. 0.465-0.76 (0.627) 0.445-0.577 (0.5) 0.185-0.3 (0.25) ca 15 
Cochliopodium minus CPE 0.538-0.788 (0.671) 0.475-0.654 (0.56) 0.185-0.338 (0.25) 15-17 
Cochliopodium sp. NYS strain (probably actinophorum; 
Nagatani et al. 1981, Yamaoka et al. 1984) 

0.64 0.8 0.7 24 

C. barki (Kudryavtsev et al. 2004) 0.7–1 (0.81) 0.6–0.85 (0.67) 0.35-0.45 20 
C. minutoidum CCAP 1537/7 (Kudryavtsev 2006) 0.49-0.63 (0.56) 0.47-0.6 (0.54) 0.26-0.3 14-17 
C. minus CCAP 1537/1A (Kudryavtsev 2006) 0.64-0.77 0.58-0.69 0.21-0.25 17-19 
C. minus CCAP 1537/5 (Kudryavtsev 2006) 0.64-0.77 0.58-0.69 0.17-0.18 17-19 
C. megatetrastylus (Anderson and Tekle 2013) 0.6-1 0.5-0.7 0.2-0.4 (0.3) 16 
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Sequence data analysis 

SSU rRNA gene 

Sequenced pieces of the SSU rRNA gene in Cochliopodium plurinucleolum strains 8 and 86 

were identical to each other and had a GC content of 40 %. In other studied strains, cloning 

of the SSU rDNA amplicons demonstrated slight variation among different molecular clones 

obtained from the same PCR product. The range of this variation was 0.1 - 0.3 % in 

Cochliopodium minus CPE (n = 5), 0.4 - 1 % in C. minutoidum CCAP 1537/7 (n = 4), 1.8 - 1.9 % 

in C. kieliense and 0.3 % in C. minus CCAP 1537/5 (n = 2). Among 8 sequenced clones of 

C. minus CCAP 1537/1A 4 clones were identical, the other 4 varied by 0.1 - 0.3 %. 

Cochliopodium minus CCAP 1537/1A was obtained from the culture collection and re-

investigated to facilitate a more precise molecular identification of C. minus CPE strain 

studied here, and to evaluate the identity of a sequence JF298257 previously assigned to 

Cochliopodium minus CCAP 1537/1A (Kudryavtsev et al. 2011). Several newly obtained light 

and electron micrographs of these amoebae are shown in Figure 6A-G. Our results show that 

the strain investigated in this study is identical to the one previously studied microscopically 

(Kudryavtsev 2006; several new micrographs of the scales are shown in Figure 6F-G). Yet, the 

SSU rRNA gene sequence of the newly obtained strain is highly divergent from a sequence 

JF298257 previously designated as C. minus CCAP 1537/1A (Kudryavtsev et al. 2011). 
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Figure 6. Cochliopodium minus CCAP 1537/1A, newly obtained light (A-E) and electron (F-G) micrographs of re-
ordered and sequenced strain. A-C. Locomotive forms on glass surface; C showing scales of the dorsal surface 
of the cell. D. Nucleus in a living amoeba. E. Cyst. F-G. Scales in a whole-mount TEM preparation shadowed 
with chromium. Scale bar = 10 µm in A-E, 0.5 µm in F-G. 

The use of improved primers and cycling conditions enabled us to update the available 

sequence database of Cochliopodium spp. by obtaining complete SSU rRNA sequences of 

C. kieliense and C. minus CCAP 1537/5. Previously, the SSU rRNA gene of both strains was 

partially sequenced from the amplicons obtained with the primer pair s6 - RibB, therefore 

missing approximately 600 nucleotides from the 5’ end (Kudryavtsev et al. 2005; GenBank 

accession numbers AY785057 and AY785056 respectively), as the full-length amplicons could 

not be obtained. During this study we obtained and sequenced the full-length amplicons of 

SSU rRNA genes from the same DNA samples as used in the previous work, and additionally 

obtained partial Cox1 gene sequences of these species. The newly obtained SSU rRNA gene 

sequences are largely identical to the previous ones. Differences in several nucleotides are 

most probably due to a sequencing protocol used during the present study that applied a 

BigDye Terminator sequencing kit in a single reaction run on a capillary electrophoresis, 

while the previous one applied 4 separate sequencing reactions and gel electrophoresis 

(Kudryavtsev et al. 2005) that may have a higher error rate. We therefore substitute the 
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previously published sequences AY785056 and AY785057 with the new ones, to enable the 

inclusion of more nucleotide positions in phylogenetic analyses. 

The phylogenetic trees based on maximum likelihood and Bayesian algorithms robustly 

placed sequences of C. plurinucleolum n. sp. (strains 8 and 86) within the monophyletic 

genus Cochliopodium in the same position. They branched as a sister to a monophyletic 

clade comprising C. actinophorum, C. kieliense and a minus-clade consisting of very shortly 

branching species C. minus, C. minutoidum, C. megatetrastylus and C. pentatrifurcatum 

(Figure 7) with strong support (PP / BS= 1.0 / 92). 

 

Figure 7. Maximum likelihood phylogenetic tree based on the SSU-rDNA gene (1,404 nucleotide positions) 
using RaxML program version 7.3.2 (Stamatakis 2006) with GTRGAMMAI model of nucleotide substitution. 
Numbers at nodes indicate Bayesian posterior probability / bootstrap values if above 0.5 / 50; solid circles = 
1.00 / 100. The tree is rooted with Parvamoeba and Ovalopodium spp., scale bar = 0.04 substitutions / site. 

In the phylogenetic trees Cochliopodium minus CPE branched closely together with C. minus 

CCAP 1537/1A and CCAP 1537/5, C. pentatrifurcatum ATCC 30935 and C. megatetrastylus 

ATCC 30936 in the minus-clade. C. minutoidum CCAP 1537/7 was always sister to the clade 

formed by different strains of C. minus, and the whole minus-clade was robustly sister to a 

clade comprising C. kieliense and C. actinophorum. Extremely short branches in the minus-

clade were in agreement with very high sequence similarity between these strains 

(Supplementary Table 1). Yet, distinct nucleotide motifs could be identified in these 

sequences (Supplementary Table 2), so that each species and clade could be characterized 

by specific nucleotide signatures. Therefore, a robust topology obtained by phylogenetic 

analyses was in accordance with gene sequence features. 
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Cox1 mitochondrial gene 

Amplified and sequenced fragments of the mitochondrial Cox1 gene of each strain studied 

were 666 base pairs long not including PCR primers, and did not contain any indels. Cloning 

of the amplicons has shown identical sequences among different molecular clones in 

C. actinophorum, Cochliopodium minus CPE and C. minutoidum CCAP 1537/7, whereas 

C. minus CCAP 1537/1A, C. minus CCAP 1537/5 and C. kieliense have shown differences in 

nucleotide sequences between molecular clones obtained from the same amplicon in the 

range of 1 - 3 variable nucleotide positions per sequence. Six out of 8 sequenced molecular 

clones of C. minus CCAP 1537/1A have shown a complete identity to the Cox1 gene 

sequence of C. pentatrifurcatum ATCC 30935 (KC489470; Tekle et al. 2013) at the nucleotide 

level. Partial Cox1 gene sequences of C. actinophorum CCAP 1537/10 and C. minutoidum 

CCAP 1537/7 obtained earlier (Nassonova et al. 2010; GQ354207 and GQ354208, 

respectively) were completely identical to sequences from the same strains obtained during 

the present study. The analysis of translated sequences revealed that differences between 

molecular clones within a single amplicon were synonymous in most cases, but caused 

variability in 1 to 2 amino acid positions in two molecular clones of C. minus CCAP 1537/1A 

and C. minus 1537/5 amplicons, respectively. C. plurinucleolum n. sp. differed from other 

Cochliopodium spp. included in this study by an average of 12.9 % at the nucleotide level 

(11.8 - 16.4 %), based on 495 nucleotide positions, and by 5.6 % (3.7 - 11.6 %) at the amino 

acid level. The identity matrix between all strains of the minus-clade is shown in 

Supplementary Table 3. The maximum likelihood phylogenetic analysis of Cox1 sequences of 

Cochliopodium spp. (Figure 8) basically resulted in the same tree topology and branch 

support values as in the tree based on the SSU rRNA gene revealing two clades of 

Cochliopodium spp., one comprising C. actinophorum and C. kieliense, and the second one 

corresponding to a minus-clade outlined above. C. plurinucleolum n. sp. forms the most 

basal branch of the minus-clade, being sister to a monophyletic branch comprised by the 

other strains. Phylogenetic analysis of amino acid sequences (not shown) resulted in the 

same topology. However, as most of the substitutions were synonymous in the minus-clade, 

the latter did not show any defined topology, while C. plurinucleolum n. sp. was sister to it. 
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Figure 8. Maximum-likelihood phylogenetic tree of Cochliopodium spp. based on the partial nucleotide 
sequences of mitochondrial Cox1 gene (495 nucleotide positions). The tree shown was derived using a RaxML 
program version 7.3.2 (Stamatakis 2006) with GTRGAMMAI model of nucleotide substitution. Numbers at 
nodes indicate Bayesian posterior probability / bootstrap values if above 0.5 / 50; solid circles = 1.00 / 100. The 
tree is rooted with Vannella spp., scale bar = 0.1 substitutions / site. 

Discussion 

Morphological identification of the studied strains 

Cochliopodium plurinucleolum n. sp.  

Light and electron microscopic analyses unambiguously identify the studied strains 8 and 86 

as a species of the genus Cochliopodium due to the presence of a tectum and a characteristic 

locomotive form. Several morphological characteristics specific for this species distinguish it 

from all other currently described Cochliopodium spp., including C. barki that is 

morphologically most similar to C. plurinucleolum, and is one of the few isolates reported so 

far to occur in soils (Kudryavtsev et al. 2004). Cells of C. barki are, however, bigger, 

sometimes produce subpseudopodia and occasionally contain more than one nucleus. The 

structure of the nucleus is the character that best distinguishes C. plurinucleolum from all 

other known Cochliopodium spp. This presence of multiple nucleoli appears to be a reliable 

character, because no variation of the observed nuclear structure among the studied cells 

was seen, and the results of the electron microscopic study corresponded to the light 

microscopic data. The only described species that has a similar nucleus with peripheral 
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nucleoli is C. clarum Schaeffer, 1926. However, this species is larger, was isolated from 

marine habitats and has generally a smoother outline of the cell with several short 

subpseudopodia (Schaeffer 1926). Other described species of Cochliopodium possess a 

vesicular nucleus containing a large central nucleolus (Dyková et al. 1998, Kudryavtsev 1999, 

Kudryavtsev 2000, Kudryavtsev 2004, Kudryavtsev et al. 2004, Kudryavtsev 2005, 2006, 

Kudryavtsev and Smirnov 2006, Anderson and Tekle 2013, Tekle et al. 2013). We therefore 

recognize C. plurinucleolum as a new species. The scale structure of this species is very 

similar to that of C. barki, C. megatetrastylus, C. minus and C. minutoidum (Dyková et al. 

1998, Kudryavtsev 2004, 2006, Anderson and Tekle 2013). Size differences between scales in 

these species are summarized in Table 1. We have to admit that the structural pattern of the 

scales is identical, and the slight quantitative differences between them may be purely 

intraclonal, but no statistical data are available to check this at the moment. A study 

investigating statistical variation of the scale parameters in genetically identical isolates of 

Cochliopodium would be highly appreciated to reliably resolve boundaries between species. 

Cochliopodium minus CPE 

Based on the light microscopic characters of trophic amoebae and cysts, Cochliopodium 

minus CPE could be identified as most similar to C. minus and C. minutoidum as described by 

Kudryavtsev (2006). The most significant characters to identify C. minus CPE are oval and 

almost fan-shaped locomotive forms with a very uneven margin of the frontal hyaline area 

producing numerous subpseudopodia. This strain differs from C. minutoidum by forming 

cysts, but this character may vary depending on individual clones: for example, Page (1976b) 

mentioned “encystment present in some strains” for C. minus. Scales of Cochliopodium sp. 

CPE strain were most similar to those of C. minutoidum as described by Kudryavtsev (2006). 

Ambiguous identification of this strain based on the microscopic data demands a more 

precise identification based on the combination of morphology / ultrastructure and gene 

sequences. We therefore obtained and analyzed sequences of SSU rRNA and Cox1 genes 

from all available strains similar to C. minus and C. minutoidum in addition to 

С. plurinucleolum. 
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Molecular phylogeny and species distinction in Cochliopodium 

Phylogenetic position and relationships of C. plurinucleolum n. sp.  

Analysis of both SSU rRNA and Cox1 gene sequences were in accordance with morphological 

data, unambiguously placing C. plurinucleolum n. sp. as a distinct species within 

Cochliopodium. The new species branches deeply in the phylogenetic tree, but trees based 

on SSU rRNA and Cox1 genes demonstrate conflicting topologies: whereas in the SSU rRNA 

gene tree C. plurinucleolum n. sp. is a sister to the clade comprising C. minus and related 

species, as well as C. actinophorum and C. kieliense, Cox1 gene analysis places this species as 

a sister to the minus-clade, while C. actinophorum and C. kieliense branch outside this clade 

(Figures 7 - 8). Visual comparison of the aligned nucleotide sequences of Cox1 gene shows 

that no shared sequence motifs that may serve as molecular signatures to support the 

topology of either SSU rRNA or Cox1 gene trees can be found in C. plurinucleolum n. sp.; 

there are a number of positions with the motifs shared between C. plurinucleolum n. sp. and 

species of the minus-clade, as well as some positions that are identical in C. plurinucleolum 

n. sp. and C. kieliense, but differ in other species. Several explanations of this incongruence 

between different markers are currently possible, but none of them can provide sufficient 

clarifications based on the present data. As the position of C. plurinucleolum n. sp. in the tree 

based on the Cox1 gene was less resolved, as well as several other deep nodes of the tree, it 

is possible that the tree based on the Cox1 gene may be misleading due to incomplete taxon 

sampling compared to the tree based on the SSU rRNA gene, and a lower number of 

nucleotide positions available for phylogenetic analysis (495 nucleotide positions compared 

to 1,404 available for the SSU rRNA gene). Moreover, faster evolution of the Cox1 gene 

compared to SSU rRNA with unevenly conserved nucleotide positions across the gene (as 

Cox1 is a coding gene, third codon position is less conserved than the other two) may lead to 

the saturation of the 3rd codon positions resulting in homoplasies, favoring the evolutionary 

scenario reconstructed based on the SSU rRNA over Cox1 gene. We also cannot exclude the 

putative presence of multiple copies of the Cox1 gene in a genome or incongruence in the 

evolutionary history between nuclear and mitochondrial genomes in these species, in which 

case not all markers will yield gene trees congruent to a species tree. 

Anyway, the position of C. plurinucleolum n. sp. in the phylogenetic tree reconstructed based 

on both markers is in accordance with scale structure and molecular synapomorphies 
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present in the SSU rRNA gene of this species. The scale structure of these amoebae is 

identical to that of the whole minus-clade (scales of Category 1 according to Anderson and 

Tekle 2013; Figure 2). Although no data on the scale structure of C. actinophorum 

CCAP 1537/10 have been published, our data show (Kudryavtsev, submitted) that scales of 

this species were described by Nagatani et al. (1981) and Yamaoka et al. (1984), as was first 

reasonably suggested by Page (1987). This means that the scale structure of C. actinophorum 

also belongs to Category 1 (Anderson and Tekle 2013). The suggestion that this type of scales 

is a synapomorphy of the clade unifying C. plurinucleolum n. sp., C. actinophorum and the 

minus-clade is rather attractive. But as this type of scales is not the only type of scales known 

among these species with Cochliopodium kieliense Kudryavtsev, 2006 and a recently 

described C. pentatrifurcatum Tekle et al. (2013) possessing completely different scale 

structures, while robustly branching close to C. actinophorum and among the minus-clade, 

respectively. Moreover, whereas C. kieliense forms a relatively long branch that is distantly 

related to C. actinophorum in the trees based on both, SSU rRNA and Cox1 genes, gene 

sequences of C. pentatrifurcatum are completely identical to the majority of molecular 

clones that we sequenced for the type strain of C. minus. Currently, we do not have a clear 

explanation for these discrepancies on morphological and molecular levels, but an artifact 

seems unlikely, as the same was independently observed by Y. Tekle (pers. comm.). If this 

identity is not due to the errors occurred at the stage of data collection caused by erroneous 

assignment of either the sequences or the scale structure, we have to suggest that this is the 

first case of sequence identity between distinct morphospecies that considerably differ from 

each other based on the scale structure. The first explanation for this case may be that both 

genetic markers sequenced are not capable to distinguish two different species that may 

differ from each other in other markers. The second possible explanation is that 

C. pentatrifurcatum and C. minus are indeed genetically identical, and differences in scale 

structures may reflect environmental plasticity within a single species, e.g. depending on life 

stage or environmental differences. Presently there are no data that might favor any of 

these explanations, and additional studies are necessary to clarify this situation. 

The demonstrated position of C. plurinucleolum n. sp. in the phylogenetic tree is also in 

accordance with the molecular synapomorphies revealed within its SSU rRNA gene 

sequence. A secondary structure pattern of helices 28 - 30 of the SSU rRNA previously 

demonstrated for Cochliopodiidae (Kudryavtsev et al. 2011) is also present in this species 
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(Figure 9A). Comparison of this structure among different species of Cochliopodium reveals 

characters that appear to be synapomorphies of different phylogenetic lineages within this 

genus. In particular, there are several distinct patterns of nucleotides between helices E29-1 

and E29-2. C. plurinucleolum n. sp., all species belonging to a clade that comprises 

C. actinophorum, C. kieliense and species related to C. minus share an 8- to 18-nucleotide 

AT-rich insertion that forms an extensive loop (Figures 9A-H). In the same site, C. spiniferum 

and C. cf. bilimbosum that form Cochliopodium clade contain only 2 or 3 adenines 

(Figures 9I-J), whereas C. larifeili branching separately at the base of the Cochliopodium tree 

possesses an additional helix consisting of 17 nucleotides in this site (Figure 9K). 
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Figure 9. Secondary structure of the SSU rRNA helices 28 - 30 in Cochliopodium spp. A. C. plurinucleolum n. sp. 
B. C. minus CCAP 1537/1A and C. pentatrifurcatum ATCC 30935 (KC247747). C. Cochliopodium sp. CPE, C. minus 
CCAP 1537/5 and C. megatetrastylus ATCC 30936 (KC747718). D. C. minutoidum CCAP 1537/7. E. C. kieliense. 
F. C. actinophorum CCAP 1537/10 (JF298250). G. Cochliopodium sp. CCAP non-identified (JF298257). 
H. Cochliopodium sp. from rice (Oryza sativa cDNA clone OSIGCRA115O12, CT837767). I. C. spiniferum CCAP 
1537/3 (AY775130). J. C. cf. bilimbosum (JF298252). K. C. larifeili CCAP 1537/8 (JF298253). Arrowheads mark a 
loop between helices E29-1 and E29-2 defining major clades of Cochliopodium. Asterisk in C marks a single 
extra nucleotide that distinguishes this structure from B. 

Molecular identification of C. minus CPE and borders between species related to C. minus 

Whereas identification and position of C. plurinucleolum n. sp. in the phylogenetic tree of 

Cochliopodium are relatively clear apart from incongruence of SSU rRNA and Cox1 

phylogenies, identification of Cochliopodium minus CPE is more problematic, and 
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relationships between species comprising a minus-clade are obscure. Our results presented 

here reveal that the SSU rRNA sequence JF298257 was wrongly attributed to C. minus CCAP 

1537/1A, and now we provide correct sequences of this strain. This error is due to the 

source of DNA material used to obtain the previous sequence, which was a genomic DNA 

sample available in the collection of amoebozoan DNA kept at the University of Geneva and 

designated as C. minus CCAP 1537/1A dating back to early 2000s. SSU rRNA, actin and Cox1 

gene sequences were obtained from this DNA sample; sequences of the first two genes were 

published (Kudryavtsev et al. 2011) and attributed to C. minus CCAP 1537/1A as there was 

no reason to doubt the identity of the source DNA sample. However, accumulation of 

further sequences of amoebae similar to C. minus and C. actinophorum raised doubts about 

this identity. Therefore, a strain of C. minus 1537/1A was ordered from CCAP and sequenced 

again. The sequences obtained differ significantly from the one previously published by 

Kudryavtsev et al. (2011; JF298257). At the same time, the identity of the presently 

sequenced strain could be confirmed morphologically, whereas no morphological data that 

might help to identify the previously used DNA sample are available. In this case we have to 

conclude that the identity of the previously published sequence was erroneous due to a 

mislabeled DNA sample. Yet, this sequence robustly branches within Cochliopodium being 

most closely related to C. actinophorum (Figure 7). We therefore retain the published SSU 

rRNA gene sequence JF298257 and actin gene sequences JF298270-JF298272 (Kudryavtsev 

et al. 2011) in the database and designate them as Cochliopodium sp. to avoid confusion 

during subsequent studies. Correct sequences of a type strain of C. minus are now made 

available for analyses as the result of this study. 

As mentioned above, all species of the minus-clade have virtually identical scales (Table 1), 

with the exception of C. pentatrifurcatum, whose scales are significantly different and mostly 

resemble those of C. kieliense (Tekle et al. 2013). Yet this species is virtually identical to 

C. minus based on sequence data. Another striking example is C. megatetrastylus that shares 

an identical scale structure and gene sequences with C. minus, while being significantly 

larger (up to 60 µm) and possessing a smoother outline without pronounced 

subpseudopodia (Anderson and Tekle 2013). Finally, C. minutoidum CCAP 1537/7 has 

virtually the same scales and only slightly differs from C. minus by the continuous peripheral 

hyaloplasmic sheet in most of the cells and the absence of cysts (Kudryavtsev 2006). 

C. minutoidum comprises the smallest members of this clade, despite the size range of this 
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species largely overlaps with that of the others. These differences may be due to variability 

between individual strains, yet C. minutoidum clearly differs from the remaining species on 

the molecular level (sequence difference of about 4 % in the SSU rRNA and about 7 % in 

Cox1, Supplementary Table 1, 3). 

In the situation outlined, Cochliopodium minus CPE can hardly be assigned to any listed 

species on the basis of specific characters, as borders between species based on molecular 

data are only partly congruent with those that can be outlined from morphological and 

ultrastructural data. On the basis of gene sequences, we have to recognize that 

C. megatetrastylus seems to be the closest relative of Cochliopodium minus CPE that 

contradicts strongly the morphological dissimilarities of these species outlined above. 

C. minus strains CCAP 1537/1A and CCAP 1537/5 are the next closest relatives of 

Cochliopodium minus CPE; morphologically more similar to this strain than 

C. megatetrastylus. We therefore provisionally identify the studied amoeba as another strain 

of C. minus. At the same time our data clearly revealed that species borders in at least some 

of the phylogenetic lineages in Cochliopodium are far from being clear, and additional 

extensive studies on other closely related strains of the minus-clade, evaluating their 

morphological, ultrastructural and genetic diversity are necessary to clarify the taxonomy of 

this part of the Cochliopodium phylogenetic tree. To facilitate further studies, we provide a 

checklist of all described strains of C. minus and species closely related to it, with literature 

references and gene sequence data accession numbers where available. 

“Golgi     c m n ” in Cochliopodium is a MTOC: electron microscopic evidence 

Members of the genus Cochliopodium possess a characteristic cytoplasmic structure that 

looks like an electron-dense bar adjacent to a dictyosome usually referred to as “Golgi 

attachment” (Yamaoka et al. 1984, Kudryavtsev 2004, Kudryavtsev et al. 2004, Kudryavtsev 

et al. 2005, Kudryavtsev 2006). Previous results published by Kudryavtsev (2004) and 

Kudryavtsev et al. (2004) suggested that this structure is in fact a microtubule-organizing 

center (MTOC). However, we admit that the data on which this suggestion was based were 

rather ambiguous. Several published electron micrographs have shown elongated structures 

that were connected with one tip to the Golgi attachment and continuing into the cytoplasm 

(see Figure 13 in Kudryavtsev 2004 and Figure 8 in Kudryavtsev et al. 2004). These structures 

were cautiously interpreted as microtubules; therefore the Golgi attachment was suggested 



Part 1 – Chapter 2 Phylogeny of Cochliopodium with C. plurinucleolum n.sp. Diagnosis 

 

67 

to be a MTOC. Here we confirm this initial idea by using a fixation of better quality compared 

to the earlier works, clearly demonstrating that microtubules are radiating from the Golgi 

attachment into the cytoplasm (Figure 3F). Therefore, in addition to our recent data on 

Stenamoeba (Geisen et al. 2014), and earlier published results on Centramoebida (Bowers 

and Korn 1968), Stygamoeba (Smirnov 1996), Gocevia (Pussard et al. 1977), Endostelium 

(Bennett 1986), Pellita (Kudryavtsev et al., in press), and Corallomyxa and Stereomyxa 

(Benwitz and Grell 1971a, b, Grell and Benwitz 1978), Cochliopodium appears to be another 

lineage of amoebae where the presence of a cytoplasmic MTOC associated with dictyosomes 

is confirmed. 

Diagnosis 

Phylum Amoebozoa, Subphylum Lobosa, Class Discosea, Order Himatismenida, Family 

Cochliopodiidae, Genus Cochliopodium 

Cochliopodium plurinucleolum n. sp.  

Length in locomotion 8.8 - 16.4 µm (mean 12.0 µm), breadth 10.2 - 14.8 µm (mean 12.0 µm), 

length: breadth ratio 0.7 - 1.3 (mean 1.0); shape variable, sometimes oval, triangular, fan-

shaped, round or crescent; thin, hyaloplasmic veil surrounding the remaining cell smooth or 

slightly irregular; traversed by stripes with the hyaloplasm between slightly bulging out; 

hyaloplasm only in fast directed locomotion reduced in the posterior and sometimes 

replaced by one or more short trailing filaments; no sub-pseudopodia; one single spherical 

nucleus, 2.2 - 4.0 µm diameter (mean 3.4 µm) with one or more small, often decentralized 

nucleoli ranging in diameter from 0.6 to 1.2 µm (mean 1.0 µm). Stable double-walled cysts 

formed in older cultures. Scales made up of a circular, grid-like base plate with the mesh size 

of 0.015 µm, 4 stalks attached to the base plate converging towards a funnel-shaped apical 

part consisting of ca 15 radial spokes with very fine, poorly discernible concentric filaments 

between them. Diameter of a base plate 0.465 - 0.76 µm (average 0.627 µm), of the apical 

part, 0.445 - 0.577 µm (average 0.5 µm), height of a scale 0.185 - 0.3 µm (average 0.25 µm). 

Etymology: The peculiar presence of several nucleoli inside the nucleus was eponymous for 

designating the species name “plurinucleolum”; type material: type culture is deposited with 
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CCAP (UK), accession number CCAP 1537/11; observed habitat: Grassland soil on Sardinia, 

Italy (40°46′N, 9°10′E). 

Differential diagnosis: Due to its unique nuclear structure, C. plurinucleolum is only 

comparable to C. clarum Schaeffer, 1926. However, it differs from this species in being 

smaller, having a more irregular outline, and inhabiting soils in contrast to marine habitats. 

Checklist for Cochliopodium minus-similar strains and species 

C. minus Page, 1976 CCAP 1537/1A (type strain). References: Dyková et al. 1998, 

Kudryavtsev 2006, Page 1968 (as Hyalodiscus actinophorus var. minor), 1976, 1988 

C. minus CCAP 1537/5 (strain perished in CCAP). References: Kudryavtsev 2006, Kudryavtsev 

et al. 2005 

C. minus CPE (CCAP 1537/12). References: this study 

C. barki Kudryavtsev et al., 2004 CCAP 1537/4 (type strain, perished in CCAP). References: 

Bark 1973, Kudryavtsev et al. 2004 

C. megatetrastylus Anderson et Tekle, 2013 ATCC 30936 (type strain). References: Anderson 

and Tekle 2013; GenBank accession numbers: KC747718 (SSU rRNA), KC747719- KC747720 

(Cox1) 

C. minutoidum Kudryavtsev, 2006 CCAP 1537/7 (type strain). References: Kudryavtsev 2006, 

this study 

C. pentatrifurcatum Tekle et al., 2013 ATCC 30935 (type strain). References: Tekle et al., 

2013; GenBank accession numbers: KC247747 (SSU rRNA), KC489470 (Cox1). 
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Supplementary 

Supplementary Table 1. Percentage difference between SSU rRNA gene sequences of different strains within the Cochliopodium minus / C. minutoidum / C. megatetrastylus / 
C. pentatrifurcatum clade 

 C. minus CCAP 1537/1A C. minus CCAP 1537/5 C. pentatrifurcatum ATCC 30935 Cochliopodium sp. CPE C. megatetrastylus ATCC 30936 

C. minus CCAP 1537/5 0.7     

C. pentatrifurcatum ATCC 30935 0.1 0.8    

Cochliopodium sp. CPE 0.9 0.9 0.9   

C. megatetrastylus ATCC 30936 0.9 0.4 0.8 0.1  

C. minutoidum CCAP 1537/7 3.9 4 4 3.9 4 

 

 

Supplementary Table 3. Average percentage difference between Cox1 gene sequences of different strains within Cochliopodium minus / C. minutoidum / C. megatetrastylus / 
C. pentatrifurcatum clade based on nucleotide and amino acid (bold number in brackets) data 

 C. minus CCAP 1537/1A C. minus CCAP 1537/5 C. pentatrifurcatum Cochliopodium sp. CPE C. megatetrastylus 

C. minus CCAP 1537/5 2.3 (0.5)     

C. pentatrifurcatum  Identical sequences 2.3 (0.4)    

Cochliopodium sp. CPE 2.8 (0) 2.7 (0.4) 2.7 (0)   

C. megatetrastylus  3.1 (1) 3 (1.4) 3 (1) 0.4 (0.5)  

C. minutoidum 6.8 (0.7) 7.3 (1.1) 6.7 (0.7) 6.7 (0.7) 7 (1.6) 
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Supplementary Table 2. SSU rDNA sequence motifs distinguishing the Cochliopodium minus / C. minutoidum / C. megatetrastylus / C. pentatrifurcatum clade; - : GAP position 

Helix # 
Start position (in 

C. pentatrifucatum) 
Length 

Seq. in C. minutoidum 

CCAP 1537/7 

Seq. in C. minus 

CCAP 1537/1A 

Seq. in 

C. pentatrifurcatum 

Seq. in 

C. megatetrastylus 
Seq. in C. CPE 

Seq. in C. minus 

CCAP 1537/5 

9-11 150 1 T T T - - - 

9-11 215 1 A G G G G G 

9-11 237 1 T C C C C C 

9-11 241 5-8 TAACAAAG TTAAAG TTAAAG TTAAG TTAAG TTAAG 

9-11 251 1 A A A G G G 

9-11 256 2-3 CTT CTT CTT CT CT CTT 

16 467 1 G A A A A A 

16 469 1 A T T T T T 

17 510 4 GGGA AGGA AGGA AGGG AGGG AGGG 

17/18 543 1 - - - C - - 

E23-1-7 775 1 A A A T T A 

E23-13 895 1 T G G A A G 

E23-13 906 1 G C C T T T 

24 1033 1 T A T T T T 

29 1146 6-7 TCTAAA TTCAAA TTCAAA TTCAAAA TTCAAAA TTCAAAA 

E43 1489 1 C T T C C C 

E43 1495 2 AG AA AA GA GA GA 

E43 1507 1 T T T C C C 

E43 1513 1 A G G A A A 

E43 1559 1 T C C T T C 

E43 1578 2 GA AA AA GG GG GG 

E43 1588 1 T C C T T T 

E43 1612 1 T C C T T T 

43 1624 1 T T T T T A 

49 1979 1 T A A A A G 

49 2000 1 T C C T T C 

49 2007 1 A A A A G A 
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Abstract 

Amoebae able to form cytoplasmic networks or displaying a multiple branching morphology are 

found across the eukaryote tree of life but remain very poorly studied. We sequenced the 

small-subunit ribosomal RNA gene of 14 new amoeboid isolates, 13 of which are branching or 

network-forming amoebae (BNFA). Phylogenetic analyses showed that these isolates are all 

grouping within Variosea, a poorly-known and weakly-defined group within Amoebozoa. They 

are resolved into six lineages corresponding to distinct new morphotypes, and we describe 

them as new genera Angulamoeba (type species Angulamoeba fungorum n. gen., n. sp), 

Arboramoeba (type species Arboramoeba reticulata n. gen., n. sp), Darbyshirella (type species 

Darbyshirella terrestris n. gen., n. sp), Dictyamoeba (type species Dictyamoeba vorax n. gen., n. 

sp), Heliamoeba (type species Heliamoeba mirabilis n. gen., n. sp), and Ischnamoeba (type 

species Ischnamoeba montis n. gen., n. sp). We also isolated and sequenced four additional 

variosean strains, one belonging to the genus Flamella, one related to Telaepolella tubasferens, 

and two members of the cavosteliid protosteloid lineage. Using the sequences from our new 

isolates and the members of eleven previously characterized variosean lineages, we identified a 

further 104 putative variosean environmental clone sequences in Genbank, comprising up to 

14 lineages that may prove to represent additional novel morphotypes when characterised. We 

show that BNFA are phylogenetically widespread in Variosea; they are morphologically very 

variable, both within and between lineages, and in some cases this variability is influenced by 

food source. 
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Introduction 

Naked heterotrophic reticulose and branching amoebae are characterized by more or less thin 

cytoplasmic extensions from, or as part of, their cell bodies. The appearance of the cytoplasmic 

extensions varies considerably. Some lineages are able to fuse (anastomose) cytoplasm from 

different parts of their own cells or different cells, whereas others do not do this. While this 

characteristic is known for some taxa, in general the distinction is difficult to make because 

most lineages are highly understudied. Some highly branching amoebae are not known to form 

networks (e.g. Mesofila; Bass et al. 2009), whereas others appear to form networks under some 

conditions but perhaps not others. Where networks occur they can be very fine, with or 

without distinct cell bodies (e.g. Filoreta and Reticulamoeba; Bass et al. 2009, 2012), or more 

compact with proportionally smaller lacunae (e.g. Leptomyxa, Protomyxa, and some 

vampyrellids; Berney et al. 2013; Goodley, 1915; Hess et al. 2012; Rhumbler, 1904; Smirnov et al. 

2008), sometimes resembling ‘sheets’ of cytoplasm within which lacunae may occur, e.g. 

Thalassomyxa (Berney et al. 2013). In these cases lacunae are often formed by cleavage of the 

cytoplasm into separate streams, so there is no clear distinction between cell body and 

cytoplasmic network. A large range of intermediate morphotypes can be found between these 

main forms. 

Despite their morphological distinctiveness, these branching and network-forming amoebae 

(BNFA) are remarkably poorly known. Ultrastructural and molecular phylogenetic studies have 

revealed that BNFA can be found in many places across the eukaryotic tree of life within major 

groups such as Amoebozoa, Rhizaria, and Stramenopiles. However there are also many such 

amoebae described in the literature for which sequence data are not available yet (e.g. Adl et 

al. 2012; Lee et al. 2000; Bass et al. 2009; 2012). Their range of food items is strikingly wide, 

including bacteria, other protists, diatoms, algae, fungi, and even small metazoans. In other 

cases feeding behaviour has been elusive, further emphasizing the interesting nutritional 

modes shown by BNFA. It is thought that cytoplasmic networks enable BNFA to be more 

efficient than many heterotrophic protists in finding and ingesting surface-attached prey, and 

exploiting food sources in interstitial spaces in particulate sediments (Rogerson et al. 1996, 

Butler and Rogerson 1997). Networks are often very thin and flat and maximize the cell-surface 

to volume ratio (i.e. foraging area), making them theoretically more energetically efficient in 

certain microhabitats in comparison with larger, rounder cells. Per cell volume they have been 
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shown to consume bacteria more quickly than non-reticulose cells, and there is evidence that 

some lineages can digest bacteria or other prey such as diatoms within the pseudopodia 

themselves (Grell 1994, 1995, Rogerson et al. 1996) 

The current state of knowledge of BNFA suggests that, although they can be found across the 

whole eukaryotic tree of life, there are only a small number of lineages with these 

morphological characteristics, and that they are relatively rare in the environment. However, 

this perception is influenced by some important factors: the cells are easily disrupted and 

broken by standard sample collection methods, they are often very slow growing in culture or 

do not thrive in standard laboratory culturing conditions (which usually favour relatively fast-

growing bacterivores and ecological generalists). They are not readily seen or recognized due to 

lack of dispersed expertise and because they are rarely the focus of experimental work. 

Rogerson et al. (1996) found that although they were not as numerous as other heterotrophic 

protists, direct counting methods suggested they were an order of magnitude more abundant 

in some coastal marine sediments than culturing-based estimates allowed. Feest and Campbell 

(1986) found BNFA in most soils they investigated, and correlated abundance of BNFA and 

dictyostelids with low levels of take-all disease. Branching amoeboid morphologies may also 

confer nutritional advantages for parasites and predators of relatively large organisms: 

Grellamoeba has recently been identified from fish kidney tissue (Dyková et al. 2010a), the 

stramenopile labyrinthulids include parasites of seaweeds and green plants, Protogenes and 

Protomyxa are particularly associated with the seaweeds Gelidium and Bryopsis respectively 

(perhaps ectoparasitically), and some vampyrellids enter host algal cells in the process of 

consuming their contents (Hess et al. 2012). It is perhaps significant that some BNFA taxa are 

evolutionarily very close to important parasite groups, for example vampyrellids to 

phytomyxids (Berney et al. 2013) and Filoreta and Gromia to Ascetosporea (Bass et al. 2009a). 

The large physical extent / reach of the cells, the ability to take up and metabolize prey at 

relatively high rates, and the wide prey range suggest that BNFA may play diverse, distinct, and 

significant ecological roles. We provide new evidence for this by revealing previously unknown 

but apparently common variosean (Amoebozoa) BNFA lineages from soils that represent novel 

morphotypes and are also phylogenetically very diverse. 
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Materials and Methods 

Sample collection, culture isolation, microscopy, and DNA extraction 

Localities and dates of collection of samples for isolation are given in Table 1. In the culture lab, 

samples were placed in Volvic mineral water (Danone, Paris, France) or Prescott-James medium 

(Page 1991), enriched with 0.15 % wheat grass (Weizengras, Sanatur GmbH, Singen, Germany) 

and grown at room temperature and / or in a 16 °C incubator. Dishes were checked regularly 

for the presence of BNFA. Amoebae of interest were subcultured and when possible purified by 

serial dilution until devoid of any other eukaryotic organism. For some observed morphotypes, 

a subset of dishes was supplemented with distinct selected food sources (bacteria alone, 

baker's yeasts, or a freshwater diatom Achnanthes sp.) to see if it had any influence on the 

growth rate and morphology of the amoeba’s active trophic stage. For differential interference 

contrast (DIC) light micrographs, we used either a Nikon (Tokyo, Japan) Eclipse 80i microscope 

with x 40 (NA 0.6) and x 60 (NA 1.0) DIC water immersion lenses, or a Nikon Eclipse 90i with 

x 63 (NA1.0) DIC oil immersion lenses. Phase contrast micrographs were taken from a Leica 

(Wetzlar, Germany) DM IRB microscope or a Nikon Eclipse TS100 microscope. Images were 

recorded on a Sony (Tokyo, Japan) HD HDR-XR155 camcorder, a HDV 1080i Handycam, or 

Nikon DIGITAL SIGHT DS-fi1 camera. Frames were captured using the software PMB version 5.2 

(Sony) or Final Cut Express HD 3.5.1 (Apple Inc., Cupertino, CA, USA). DNA was extracted either 

early on from mixed cultures where a single BNFA morphotype was observed and had reached 

a reasonable density or, whenever possible, later on from purified clonal cultures. In some 

cases, this was done by picking individual cells (20 to 50) with a micropipette. DNA extraction 

was then performed either by using the UltraClean™ Soil DNA Isolation Kit (MoBio Laboratories, 

Carlsbad, CA, USA) following the Maximum Yield Protocol, or by placing the cells in guanidine 

thiocyanate buffer and using a protocol described in Sambrook et al. (1989). In other cases, 

total DNA extractions were performed on the whole culture. Most of the culture medium was 

decanted off, and using a sterile scraper, cells were collected from the bottom of the culture 

dish. Total DNA was then extracted from the pellet of organic material using the UltraClean™ 

Soil DNA Isolation Kit as above. 

Ethics statement: No specific permission or permits were required for the described field 

studies. The sites were not privately owned or protected in any way and were fully open to 

public access. No endangered or protected species were involved in this study. 
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Amplification and sequencing of the SSU rDNA 

The complete or nearly complete SSU rDNA sequence was amplified from all isolates except F2. 

For the latter we only amplified a 644 bp fragment spanning the variable regions V4 and V5, 

which turned out to be more than 98 % identical to the sequence of isolate 23-6A. SSU rDNA 

sequences were obtained in a single or up to three overlapping fragments, using different 

possible combinations of universal (eukaryotic) and lineage-specific primers. PCR amplifications 

were done in a total volume of 30 l with an amplification profile typically consisting of 

35 cycles with 30’’ at 95 °C, 30’’ at 56 °C, and 90’’ at 72 °C, followed by 5’ at 72 °C for the final 

extension. PCR products of clonal strains or individually picked cells were quality controlled for 

the expected length of amplification product on a 1.5 % TAE agarose gel and subsequently 

purified by adding 0.15 µl Endonuclease I (20 U * µl-1, Fermentas, St. Leon-Rot, Germany), 0.9 µl 

Shrimp Alkaline Phosphatase (1 U * µl-1, Fermentas, St. Leon-Rot, Germany) and 1.95 µl H2O. 

The resulting mixture was incubated for 30’ at 37 °C, followed by 20’ at 85 °C. In non-clonal 

cultures, bands of the appropriate length were excised, and cleaned following the protocol of 

the QIAquick® Gel Extraction Kit (Qiagen, Hilden, Germany). Purified PCR amplicons were 

sequenced directly, or when necessary cloned into StrataClone™ SoloPack® Competent Cells 

using the StrataClone™ PCR Cloning Kit (Stratagene, Agilent Technologies, Santa Clara, CA, 

USA). White colonies were screened using the primers M13for (5’ - CGT TGT AAA ACG ACG GCC 

AGT - 3’) and M13rev (5’ - CAC AGG AAA CAG CTA TGA CCA - 3’). Positive PCR products were 

cleaned using a polyethylene glycol (PEG) protocol: for 20 µl PCR reactions, 20 µl of a 20 % 

PEG * 2.5 M-1 NaCl mixture was added to each tube. The tubes were mixed by vortexing and 

incubated for 30’ at 37 °C, then centrifuged at 3,000 rpm for 30’ to pellet the PCR products. 

Supernatant was discarded by pulse-spinning the inverted tubes at 600 rpm. The pellet was 

then washed with ice-cold 75 % ethanol, spun for ten minutes at 3,000 rpm, again inverted and 

pulse-spun to remove the supernatant. The ethanol wash was repeated; the PCR pellet was re-

suspended in de-ionised water, and stored at –20 °C. Sequencing was performed with the Big 

Dye Terminator v1.1 Cycle Sequencing Kit, and analysed with an ABI-3730xl DNA sequencer 

(Applied Biosystems, Life Technologies, Carlsbad, CA, USA). 

BLASTn searches and construction of the sequence datasets 

The new SSU rDNA sequences were edited and aligned manually using the BioEdit software 

(Hall 1999), following the secondary structure model proposed by Wuyts et al. (2000). Visual 
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screening of the sequences in search of sequence signatures, BLASTn searches (Altschul et al. 

1990) against the NCBI GenBank database using default parameters, and preliminary 

phylogenetic analyses performed on a large dataset including a wide range of eukaryotes 

congruently suggested that our isolates all belong to class Variosea within phylum Amoebozoa. 

A first dataset was constructed to confirm this phylogenetic placement of our isolates; it 

contains 1,350 unambiguously aligned positions and 115 taxa, and includes all our isolates, 

representatives of all morphologically identified lineages within class Variosea and of all other 

morphologically defined higher-order taxa of lobose amoebae, and ten outgroup sequences 

(belonging to opisthokonts and apusomonads). The GenBank accession numbers of all 

sequences used in this dataset are given in Supplementary Table 1. The highly divergent 

sequences of Macromycetozoa (cellular and acellular slime moulds) and Archamoebae 

(entamoebids and pelobionts) were excluded from the analyses (see Discussion). 

Exhaustive BLASTn searches (default parameters) were then performed using both our new and 

existing Variosea SSU rDNA sequences to seed searches to identify all Variosea clone sequences 

from environmental libraries present in the NCBI GenBank database. Further BLASTn searches 

were performed using manually truncated sequences (both at the 5’ and 3’ ends) as queries. 

This allowed retrieval of shorter clone sequences that would escape identification when using 

complete sequences as queries because of lower overall similarity scores compared to more 

distantly related but full-length sequences. All identified Variosea sequences were used as 

additional queries in further rounds of BLASTn searches until no more new unambiguous 

Variosea sequences could be found. Clones shorter than 500 bp were not considered. The 

presence of sequence chimeras was assessed by visual screening of the alignment in search for 

contradictory sequence signatures, and potential chimeric clones were confirmed as such by 

distance analyses based on different subsets of unambiguously aligned regions (as described in 

Berney et al. 2004). In total, we identified 20 environmental clones as chimeric out of a total of 

114. A second dataset was then constructed to refine phylogenetic relationships and highlight 

lineage diversity within Variosea. It contains 1,375 unambiguously aligned positions and 

100 taxa, and includes all our isolates, most morphologically identified members of class 

Variosea, a selection of identified Variosea environmental clones, and four outgroup sequences 

from other Amoebozoa lineages. Only environmental clones longer than 1,000 bp and spanning 

both the V4 and V7 variable regions of the SSU rDNA were included. Whenever multiple highly 

similar clones from a same environmental library had been identified, only one was kept to 
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avoid over-populating the figure. Missing data in partial environmental sequences were 

encoded as such (Ns). The non-Variosea part of any chimeric sequence included in this dataset 

was also encoded as missing data. 

Maximum likelihood and Bayesian phylogenetic analyses 

All phylogenetic analyses for both datasets were performed on the CIPRES server (Miller et al. 

2010). Maximum likelihood (ML) analyses (Felsenstein 1981) were performed with the program 

RaxML version 7.6.6 (Stamatakis 2006), using the GTRGAMMA model with 25 rate categories. 

All necessary parameters were estimated from the datasets. The best ML topology was selected 

from 200 inferences with distinct maximum parsimony starting trees. The reliability of internal 

branches was assessed with the bootstrap method (Felsenstein 1985) using 2,000 replicates. In 

addition, Bayesian analyses were performed with MrBayes version 3.1.2 (Huelsenbeck and 

Ronquist 2001, Ronquist and Huelsenbeck 2003) using a GTR + gamma model with 8 rate 

categories. Two runs of four simultaneous chains were run for 2,500,000 generations (heat 

parameters set to default), and trees were sampled every 100 generations. For each run 

25,000 trees were sampled, 5,000 of which were discarded as the burn-in. Posterior 

probabilities of the branching pattern were estimated from the 40,000 remaining trees and 

mapped onto the ML tree when present. For both datasets the Bayesian posterior probability 

50 % majority-rule consensus tree was fully compatible with the corresponding ML tree. 

Results 

Morphology and phylogenetic placement of our new isolates 

We isolated 18 strains of amoebae (most with a BNFA morphotype), information about which is 

summarised in Table 1, and obtained SSU rDNA sequences from all of them.  
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Table1. Origin of the 18 new variosean strains isolated in this study; NA: Information not available 

Isolate Taxonomic identity Collection date Geographic origin Sample type Phylogenetic position 

Tib190 Telaepolella sp. 2011 Mila mountain, Tibet High altitude grassland soil lineage V07 
FN414 Flamella sp. NA NA NA lineage V08 
M71 Schizoplasmodiopsis sp. 2011 Veluwe, the Netherlands Grassland soil lineage V11 
F3 undetermined cavosteliid 2012 Flörsheim, Germany Grassland soil lineage V11 
Tib85 Ischnamoeba montis, gen. et sp. nov. 2011 Sejila Mountain, Tibet High altitude grassland soil lineage V12 
F4 Ischnamoeba sp. 2012 Flörsheim, Germany Grassland soil lineage V12 
FN352 Ischnamoeba sp. NA NA NA lineage V12 
Tib177 Darbyshirella terrestris, gen. et sp. nov. 2011 Sejila Mountain, Tibet High altitude grassland soil lineage V13 
Esthw Darbyshirella sp. NA Oxford, England, UK NA lineage V13 
M68 Darbyshirella sp. 2011 Veluwe, the Netherlands Grassland soil lineage V13 
JDgam Darbyshirella sp. NA Oxford, England, UK soil from a garden? lineage V13 
M77 Darbyshirella sp. 2011 Veluwe, the Netherlands Grassland soil lineage V13 

WalEn Dictyamoeba vorax, gen. et sp. nov. NA Gregynogg, Wales, UK 
mixture of soil, moss and lichens from 

garden 
lineage V14 

M134 Heliamoeba mirabilis, gen. et sp. nov. 2011 Veluwe, the Netherlands Grassland soil lineage V15 
Tib182 Arboramoeba reticulata, gen. et sp. nov. 2011 Sejila Mountain, Tibet High altitude grassland soil lineage V16 
23-6A Angulamoeba fungorum, gen. et sp. nov. NA Oxford, England, UK NA lineage V17 
F2 Angulamoeba sp. 2012 Flörsheim, Germany Grassland soil lineage V17 
FN806 undetermined angulamoebid NA NA NA lineage V17 
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An appropriate sequence dataset was constructed to refine the phylogenetic placement of our 

isolates with respect to morphologically characterised amoebozoan taxa. The results of our 

analyses are shown in Figure 1 and confirm that all isolates belong to Variosea. The isolates fall 

into nine main lineages. Some were closely related to previously characterised lineages, 

congruently with their morphology: FN414 is a Flamella sp., Tib190 is related to and resembles 

the recently described species Telaepolella tubasferens (Lahr et al. 2012), F3 is very close to 

Schizoplasmodiopsis vulgaris (EF513180) within the cavosteliid lineage, and M71 branches at 

the base of that lineage and is likely to represent a novel or previously unsequenced species 

within or near the genus Schizoplasmodiopsis. The 14 other isolates were not closely related to 

known taxa and form six new variosean lineages with novel, distinct morphotypes. We describe 

below six new genera for these lineages, with one isolate designated as a type species in each 

one. One of the novel lineages, Angulamoeba n. gen., of which we isolated three strains, is 

highly divergent from all described varioseans in terms of SSU rDNA sequence (Figure 1). 

Another substantial, but short-branched clade was identified by our isolates, comprising two 

lineages - one with five reticulose isolates (Darbyshirella n. gen.) and one with three branching 

but not reticulose isolates (Ischnamoeba n. gen.). The remaining three isolates branch 

individually as three additional lineages; one of them is filose / ramose (M134, Heliamoeba n. 

gen.) while the other two are reticulose (WalEn, Dictyamoeba n. gen. and Tib182, 

Arboramoeba n. gen.). 
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Figure 1. Maximum likelihood tree showing the monophyly of Variosea as sister to the orders of the class Discosea 
inside the supergroup Amoebozoa; new taxa described in this study highlighted in white. 

With the exception of FN414 (Flamella sp.) and M134 (Heliamoeba n. gen.; Figure 5), all of our 

isolates were markedly branching (ramose) or network-forming (reticulose). None were seen to 

produce fruiting bodies of any kind, despite some being maintained in variable culture 

conditions for up to several years. However at least two (F3 and M71) clearly belong to a 

protosteloid lineage (the cavosteliids) where described taxa can produce fruiting bodies. 

Morphological variation between individual cells within each isolate is typically very high, and 

can exceed that between genetically different isolates within a lineage or even that between 

distantly related lineages, especially in younger, smaller cells. Nevertheless, by observing many 

cells within an isolate it becomes clear that each lineage corresponds to a distinct morphotype 

and is distinguishable from all others based on the shape, size, and / or organisation of the cells 

and networks. 
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The reticulose genera Darbyshirella (five isolates), Dictyamoeba (isolate WalEn), and 

Arboramoeba (isolate Tib182) all form indefinitely large networks. In Darbyshirella (Figure 4) 

the branches of the network are relatively long and thin and regularly spaced, and the network 

is formed through what appear to be random anastomoses between branches. The density of 

the network is relatively regular but with lacunae of various sizes, and often no clear direction 

of movement can be determined. In cases where a clear direction of movement can be 

observed, the network does appear denser at the anterior front. In Dictyamoeba young 

reticulose trophozoites have quite thin branches, with one or few non-branching, non filose 

posterior endings and a visibly denser branching / reticulose area at the front; they resemble 

small networks of the genus Darbyshirella. As the network grows in presence of suitable food 

(yeasts seem to be preferred) the branches become markedly thicker and more evenly spaced 

and the network can then grow in all directions, with many “terminal” areas where denser, fine 

branching extensions gradually replace the network. Arboramoeba (Figure 6) exhibits the 

densest and most impressive networks and in older cultures always looks “tree-like”, with one 

or few non-branching, non filose posterior endings and an extremely branching and reticulose 

anterior front forming a wide, non-permeable frontier, significantly denser than the posterior 

part of the network. These three morphotypes are not directly related according to our 

phylogenetic analyses. 

The branching genera Ischnamoeba (three isolates) and Angulamoeba (three isolates) were 

never observed to become reticulose. In both morphotypes the branching pattern usually 

remains quite simple, more so than in the similar genus Acramoeba (Smirnov et al. 2008). In 

Angulamoeba (Figure 7), the cell body separates into three main branches on average (rarely 

more than four), which can sometimes (but rarely) be further subdivided. The branches are 

thicker at the base and quite short, ending with filose extensions. In Ischnamoeba (Figure 3), 

branches are thinner overall on average, more commonly further subdivided, and more 

randomly distributed, not all originating from a common central point as in Angulamoeba. They 

vary more in size and length but also end in filose extensions. Finally, isolate Tib190 displays 

many of the morphological characteristics of Telaepolella tubasferens (ATCC 50593), with young 

amoebae resembling Flamella spp. while older ones become much larger, branching forms, 

sometimes reticulose with lacunae. 



Part 1 - Chapter 3 High diversity of branching and network-forming Variosea   Results 

 

82 

Like many Variosea, our new isolates strongly vary in size, often even within clonal cultures. The 

number of nuclei per cell varies widely. Directed movement as present in most representatives 

within the supergroup Amoebozoa and even in the related variosean genera Filamoeba and 

Flamella was not easily visible in most of our BNFA isolates because of its extreme slowness; 

only in a time series of micrographs taken over several hours does it become clear that these 

amoebae can display directed movement. A shared feature of all isolates was the presence of 

fine filose pseudopodia, typical for amoebae in the class Variosea but not generally across 

Amoebozoa (Lahr et al. 2012). These pseudopodia can be observed all around the cell but are 

typically denser at the end of branches or at the anterior front of the reticulose genera. 

Movement could only be observed when the filose pseudopodia attached or detached from the 

substratum, while locomotion of entire trophozoites was very slow and could usually not be 

observed microscopically. In contrast, intracellular activity was high as granuloplasm movement 

and vacuolar activity was permanently visible. All isolates formed cysts in older cultures, which 

often varied strongly in size and shape. 

Variosea: phylogeny and lineage diversity 

Five species of the newly described Darbyshirella have been isolated and described as the first 

described taxon in a clade including a single environmental sequence (JN825696). All were 

morphologically indistinguishable. Three Ischnamoeba cultures formed the sister genus 

separated only by little genetic difference, but were morphologically smaller and therefore 

distinguishable from Darbyshirella. Dictyamoeba branches separately from all of our other 

isolates in a heterogenous short-branch group including Multicilia and the schizoplasmodiids 

(Lahr et al. 2011). Similarly, Arboramoeba forms a long-branch in this clade. Heliamoeba forms 

a long-branch sister genus to Filamoeba (Figures 1 + 2). 

Using existing variosean sequences plus our new sequences as BLASTn search seeds against 

NCBI GenBank we recovered further variosean sequences. Phylogenetic analysis of all these 

sequences resulted in 31 phylogenetic clusters, based on shared morphotype where known 

and / or phylogenetic clustering with bootstrap support > 50 % (Figure 2). Only 16 of these 

31 lineages have a known morphological identity. Of the remaining 15 we provide the first 

morphological data for six: lineage 12 – Ischnamoeba, lineage 13 – Darbyshirella, lineage 14 – 

Dictyamoeba, lineage 15 – Heliamoeba, lineage 16 – Arboramoeba, lineage 17 – Angulamoeba. 

Figure 1, Figure 2 and Supplementary Figure 2 show phylogenetic analyses for these including 
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more identified sequences placing in Variosea which are shown in Supplementary Table 1. 

 

Figure 2. Maximum likelihood tree showing major variosean lineages where clones including both marker 
sequences in V4 and V7 were represented. 
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The length of the SSU rDNA sequences of our new isolates ranged from around 1,850 bp to 

almost 2,100 bp. This is above the average length of the SSU rDNA for most eukaryotes 

(typically in the range 1,750 - 1,850 bp), and in all isolates we observed an expansion of helix 43 

in the variable region V7. The presence of a highly specific secondary structure signature 

associated with this expansion of helix 43 (see below) suggested that all isolates belong to a 

diverse, morphologically heterogeneous clade known as Variosea, which is part of the 

supergroup Amoebozoa. All isolates of the genera Ischnamoeba and Darbyshirella also 

exhibited expansions in the variable region V4 of the SSU rDNA. This region (that has been 

defined as a universal “pre-barcode” for protists; (Pawlowski et al. 2012) has an average length 

of 380 - 400 bp in eukaryotes (and in all of our other isolates) but is about 450 bp long in the 

Ischnamoeba isolates, and 530 - 570 bp long in the Darbyshirella isolates. 

Diagnosis 

Genus descriptions 

V12 Ischnamoeba n. gen. (Figure 3) 

Uninucleated soil naked amoeba extending over a distance from 37 to 142 µm with narrow cell 

body width of often only 2 µm (up to 12 µm in rarely found non-elongated amoebae). Cells 

usually thin, extended and flat, showing no well-defined cell body. The nucleus containing part 

often only slightly broadening. Whole cells often bent, but little branching. Branching more 

pronounced in condensed cells or in condensed parts of individual cells, usually not at 

intermediate, connecting parts of the cell body. Filose pseudopodia produced almost 

exclusively at condensed and distal parts of cells and more pronounced in condensed 

organisms. Pseudopodia often branching into subpseudopodia. Never reticulate. 

Movement of entire cells not directly observable. No distinct floating form. Cysts round, 

sometimes oval, from 6 to 16 µm in diameter. Exclusively bacterivorous.  

Ischnamoeba montis Tib85 as type species; with “85” as a type species. Etymology: from Greek 

“Ischnos” (thin). 
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Figure 3. Pictures illustrating different morphological adaptions of Ischnamoeba montis. 

V13 - Darbyshirella n. gen. (Figure 4) 

Multinucleated soil naked amoeba extending over a distance of more than 600 µm. Cell body 

usually extended over the entire cell with the exception of pseudopods. Usually narrow cell 

body especially in extending parts, often below 2 µm, while more condensed parts reached 

width of 34 µm. Pronounced branching pattern across the entire cells with branching 

pronounced in condensed parts, also containing the majority of (sub)pseudopodia. 

Pseudopodia and branches usually formed when cells condensed in the anterior extending 

regions, resulting in up to three new branches. Posterior usually pointed with no or few 

pseudopodia and no branching. Grade of reticulosity strongly differing between amoebae, but 

branching parts of the cell body, even distal parts fusing on contact. Elongated amoebae 

consequently less reticulate than more condensed amoebae. Vacuoles in high numbers and 

activity present in entire cell. 

Movement of entire cells not observable under the microscope. No distinct floating form was 

observed. Cysts with two clearly separate cell walls varying both in size and shape. Sizes from 

9 to 42 µm in diameter and shape spherical, oval or bean shape. Bacterivorous.  

Darbyshirella terrestris Tib177 as type species in honour of John F. Darbyshire. 
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Figure 4. Darbyshirella terrestris showing high morphological plasticity. 

V14 – Dictyamoeba, n. gen. 

Very large (several 100 µm across), flattened, highly branching and reticulate naked amoebae 

with slender, pointed, sometimes branched subpseudopodia, lacking cilia or flagella. Simple life 

cycle including trophozoite and cyst stages. Trophozoites moving too slowly to be seen in light 

microscopy; main cell body multiply branched and anastomosing even in its simplest form (up 

to 100 µm), which can grow into gigantic networks (several hundred µm) with intersecting 

segments of varying width and numerous terminal branching areas; abundant fine 

subpseudopodia concentrated mostly at the extremity of lateral and terminal branches, 

especially in complex networks, but can be formed anywhere around the cell body in simpler 

forms; numerous contractile vacuoles observed everywhere in the network, but more 
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commonly at intersections of the main branches. Cysts of varying sizes and shapes, the simplest 

ones rounded and about 35 µm in diameter, the larger ones irregular in shape and > 300 µm 

across; at encystment a large network contracts simultaneously in different areas, leading to 

the formation of very many cysts of all possible sizes and shapes, the position of which mirrors 

the original layout of the network. Type species: Dictyamoeba vorax n. sp. 

Etymology: from the Latin "vorax" (insatiable) in reference to the very rapid rate of 

consumption of yeasts when available, and "rete" (network) in reference to the very large and 

complex reticulate form adopted by the amoeba in presence of abundant food. 

V15 – Heliamoeba n. gen. (Figure 5) 

Binucleated soil naked amoeba reaching up to 168 µm from the most distal parts. Single, clearly 

distinct cell body always present with maximum length of 58 µm (width 10 µm), with 

pronounced pseudopodia at usually at anterior and posterior ends, contributing mostly to total 

cell dimensions. Very rarely and little branching at edges of the cell body. Pseudopodia, often 

branching into subpseudopodia present in anterior and posterior regions of cells if fully 

extended, everywhere around the main cell body in condensed cells. When disturbed under a 

coverslip, cells often condense, form filose pseudopodia all around the main cell body and 

eventually produce short, round, lobose-like extensions all around the main cell body formed. 

Never reticulate.  

Slow movement of entire cells observable under the microscope. For movement, cell bodies 

narrowed at the posterior and widened at the anterior, where new pseudopodia are formed. 

A distinct floating form with the cell body condensed in a sphere and numerous filose 

pseudopodia radially extending is produced if detached from substratum. Amoebae rapidly 

form an extended shape when re-attaching. Cysts similar; round, with two clearly separate cell 

walls ranging from 10 to 15 µm in diameter. Feeding on bacteria, fungi and small flagellates.  

Heliamoeba mirabilis M134 as a single type species; Etymology: from Greek “helios” (sun) due 

to the often sun-like morphology of trophozoits 
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Figure 5. Heliamoeba mirabilis in different growth stages. 

V16 – Arboramoeba n. gen. (Figure 6) 

Multinucleated soil naked amoeba extending over a distance of up to 600 µm. Cells containing 

no distinct cell body, but a large reticulate network filled entirely filled with cell contents, such 

as nuclei. Pronounced branching pattern and high reticulosity most pronounced in anterior 

where a large “boarder” towards prey organisms is formed leaving behind a nearly sterile zone 

in posterior. Posterior of cells little reticulate and branching, ending in few single points. Filose, 

branching pseudopodia most pronounced in anterior, but also found all along the cell body, 

regularly fusing with other parts of the cell. Extreme load and activity of vacuoles in cells.  

Movement of entire cells not observable under the microscope; No distinct floating form was 

observed. Cells completely retain shape when carefully detached from substratum; Cysts with 

two clearly separate cell walls varying both in size and shape. Sizes from 10 to 21 µm in 
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diameter and shape never perfectly round, often ovoid. Feeding on bacteria, fungi and small 

flagellates. 

Arboramoeba reticulate Tib182 as a single type species. Etymology: from Latin “arbor” (tree) as 

expanding amoeba often take on the shape of a tree. 

 

Figure 6. Expanding Arboramoeba reticulate trophozoits. 

V17 -- Angulamoeba n. gen. (Figure 7) 

Medium-sized (50 to 300 µm across), flattened, branching naked amoebae with slender, 

pointed, sometimes branched subpseudopodia, lacking cilia or flagella. Simple life cycle 

including trophozoite and cyst stages.  

Trophozoites moving too slowly to be seen in light microscopy; main cell body elongated, 

consisting of up to four main branches often with several small lateral branches, never forming 

a network; numerous fine subpseudopodia concentrated mostly at the extremity of the lateral 

and terminal branches, but can be formed anywhere around the cell body; several contractile 

vacuoles can be observed. Cysts small (about 20 µm in diameter) and rounded, of very regular 

size and shape.  



Part 1 - Chapter 3 High diversity of branching and network-forming Variosea   Discussion 

 

90 

Type species: Angulamoeba fungorum. Etymology: latin “angulus” (angle) due to the often 

reticulate morphology. 

 

Figure7. Angulamoeba fungorum in different growth stages, often showing the angle-like morphology. 

Discussion 

Expanding our understanding of Variosea 

Class Variosea is a morphologically puzzling assemblage of mostly amoeboid but sometimes 

flagellated organisms within Amoebozoa. It was never recognised as a potential taxon before 

the advent of molecular phylogenies because of the highly disparate morphologies observed 

among its members. Variosea provide an excellent example of the many challenges that 

modern protistologists have to face when defining higher-level clades based primarily on 

molecular data, in absence of an obvious morphological identity. In the case of Variosea, that 

task was made all the more difficult for two reasons. Firstly, amoeboid organisms can be 

particularly difficult to distinguish and more easily misidentified as other taxa. Until very 
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recently, their taxonomy has suffered greatly from a striking underestimation of their true 

diversity; as a result new morphotypes would often more likely be mistaken for members of a 

few long-known genera instead of being correctly described as new ones. Secondly, the 

molecular marker used to define the clade (here the SSU rDNA) is unfortunately highly prone to 

phylogenetic reconstruction artefacts in Amoebozoa, because of the unusually wide range of 

evolutionary rates observed between the various sequenced lineages. As a result, the history of 

the recognition of class Variosea has been plagued with several issues that obscured the 

evolutionary and ecological significance of the group for more than a decade. Classically, the 

various genera and / or morphotypes that we now know belong to Variosea fell in one of the 

three following categories: (1) described genera that were previously classified with non-

Variosea amoebae based on convergent characters such as general pseudopod morphology, for 

instance the genera Filamoeba and Flamella (see below); (2) described genera that had been 

left incertae sedis in classification systems of eukaryotes, or placed in monotypic higher-level 

taxa, such as Phalansterium and Multicilia; and (3) organisms that represent amoeboid 

morphotypes that had never been properly described before, and when observed were 

generally ignored as unidentifiable filose or reticulose amoebae - this is true for most of the 

new isolates described in the present study. 

The first molecular evidence for the existence of Variosea was published when Amaral-Zettler 

et al. (2000) showed a relationship between the genus Filamoeba and an ATCC strain (50654) 

that was then believed to belong to the leptomyxid genus Gephyramoeba. This result was 

surprising (see, e.g. Smirnov et al. 2008) because Filamoeba was believed to be closely related 

to the tubulinid amoebozoan genus Echinamoeba based on seemingly shared pointed 

subpseudopodia, since then revealed as the result of convergent evolution (category 1 above). 

In addition, later re-investigation of the ATCC strain 50654 by Smirnov et al. (2008) conclusively 

showed that it is actually not the leptomyxid described by Goodey (1915) but corresponds to a 

new genus that they named Acramoeba. Class Variosea was introduced by Cavalier-Smith et al. 

(2004) when a third member, the flagellate Phalansterium was sequenced. Later Nikolaev et al. 

(2006) showed that the mysterious multiflagellated taxon Multicilia also belongs to this 

assemblage; both genera are typical examples of taxa belonging to category 2 above. Since 

then, Kudryavtsev et al. (2009b) added the long known genus Flamella to the list of taxa 

belonging to Variosea, showing that it is not related to flabellinids as traditionally believed. 

Another ATCC strain (50593) has been shown to belong to Variosea (Tekle et al. 2008); initially 
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it was tentatively identified as a potential member of the cercozoan genus Arachnula but was 

since described as a new genus Telaepolella (Lahr et al. 2012). Finally, several lineages of 

amoebae with a protosteloid life cycle have been shown to be possibly related to or part of 

Variosea (Brown et al. 2007, Shadwick et al. 2009). 

In the present study, the combined effect of increased taxon sampling and use of secondary 

structure information in the variable region V7 of the SSU rDNA allows us to indisputably define 

which of the Amoebozoa morphotypes sequenced to date are part of class Variosea, and how 

many clones from environmental SSU rDNA libraries represent additional lineages of yet 

unknown morphology that also belong to Variosea. We identify 31 lineages that clearly belong 

to Variosea based on both strong phylogenetic support and V7 secondary structure patterns 

(see Supplementary Table 1; Figure 2). Of these, 16 have a known morphotype, six of which are 

novel and described here for the first time as new genera. In particular, we confirm that four of 

the sequenced lineages of protosteloid amoebae belong to Variosea (protosteliids, 

schizoplasmodiids, soliformoviids, and cavosteliids), but show that the protosporangiids do not, 

and that their position in the tree presented by Shadwick et al. (2009) must have resulted from 

a long-branch attraction artefact. The other eight Variosea lineages presented in Figure 1, 

Supplementary Figure 1 and Table 1 are known only from environmental clone libraries so far.  

Members of the Macromycetozoa (dictyosteliids and myxogastrids) and Archamoebae 

(pelobionts and entamoebids) have very divergent SSU rDNA sequences. In recent phylogenetic 

studies containing a good taxon sampling for Amoebozoa, they often appear to branch within 

class Variosea, either together or separately, usually next to some of the fast evolving 

protosteloid lineages within that class (Nikolaev et al. 2006, Tekle et al. 2008, Shadwick et al. 

2009). This apparent paraphyly of Variosea with respect to Macromycetozoa and Archamoebae 

could be genuine, especially for Macromycetozoa, in agreement with the idea that cellular and 

acellular slime moulds evolved from a protosteloid ancestor. However it could also be the result 

of long-branch attraction artefacts. Importantly, no member of the Macromycetozoa and 

Archamoebae seem to possess the V7 secondary structure signature of the Variosea, but again 

this could be a result of the highly divergent nature of their SSU rDNA sequences. Multigene 

datasets including protein-coding genes will be necessary to resolve this issue. Therefore, 

because SSU rDNA alone cannot be expected to resolve the position of Macromycetozoa and 

Archamoebae within Amoebozoa, we decided to exclude these taxa from the present analyses 
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to minimise artefacts when inferring internal relationships within Variosea. Our results suggest 

that even in absence of these highly divergent taxa, the range of evolutionary rates observed in 

SSU rDNA sequences between the various Variosea lineages probably precludes confident 

resolution of their relationships based on that gene alone. Only a few well-supported 

relationships can be inferred from our analyses, such as that between the Telaepolella lineage, 

the Flamella lineage, and environmental lineage V18. Again, other molecular markers will 

evidently be needed to resolve further the relationships between the various Variosea lineages 

identified in this study. 

Variosean BNFA: ecology, abundance, food preference, etc. 

As well as improving the resolution and limits of the variosean phylogeny, our results also 

provide the first morphological data for lineages previously only represented by environmental 

sequences. In addition, our new data also demonstrate that other sequences in Genbank also 

belong to Variosea, even though they are annotated differently, e.g. some sequences classified 

as “Eiimeridae”, Acanthamoeba (EF023424) and Choanozoa (AY969212) (O'Brien et al. 2005, 

Lesaulnier et al. 2008) 

It is striking that most of our new isolates require to be described as new genera; we found no 

corresponding taxa previously described in the literature. Recently, sequence data has been 

published for several non-sporocarp-forming branched and reticulate amoebae taxa that were 

previously only represented by (sometimes basic) morphological descriptions, e.g. the 

rhizarians Thalassomyxa, Penardia, Vampyrella, Leptophrys (Hess et al. 2012, Berney et al. 

2013), Reticulamoeba (Berney et al. 2013), Arachnula (Bass et al. 2009a), the stramenopile 

Leukarachnion (Grant et al. 2009), and the amoebozoans described above. Others, superficially 

similar to those described in this paper remain unsequenced, e.g. Asterocaelum, Branchipocola, 

Chichkovia, Cinetidomyxa, Enteromyxa, Gymnophrydium, Protomyxa, Synamoeba (from Lee et 

al. 2000). However, none of these corresponded to our new isolates.  

This high rate of lineage discovery is particularly interesting in light of the fact that BNFA were 

encountered in almost all soil samples analysed, suggesting that they are numerically abundant 

in many soils, as well as being phylogenetically highly diverse. A modified version of the liquid 

aliquot culturing method (Chapter 4) did not detect known fruiting body-forming protosteliids 

or BNFA from other groups, for example the rhizarian vampyrellids. Some Mycetozoa were 
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isolated, but at low frequency – fewer than 1,000 per gram of soil, which is at the lower limit of 

detection using LAM. In contrast, BNFA were recovered at a rate of 1,000 – 5,000 per gram of 

soil, and represented 5 - 20 % of all amoebae isolated per sample. Every culturing / cell isolation 

method has biases, so we cannot use our results to postulate that variosean BNFA are 

necessarily more abundant in soils than other BNFA taxa, although this may well be the case. 

The liquid aliquot method is likely biased towards bacterivores that can survive the physical 

disruption of this approach, or survive as resistant encysted stages until the culture conditions 

favour them. Nonetheless our results show that BNFA are likely to be key ecological players in 

soil habitats, and raises the hypothesis that non-sporocarp-forming variosean amoebae are the 

dominant BNFA taxa in soils. There are several reasons why their diversity and prevalence has 

not previously been recognised using culturing methods: 1) they take longer to appear and 

grow in culture than protists normally detected by these methods, 2) at least in their early 

stages they are morphologically similar, which without molecular analyses would give no 

indication of their genetic diversity, and means they could even be misidentified as smaller 

amoebae such as Filamoeba, and 3) their unusual morphotypes are often not recognised, or 

confused with other organisms, e.g. fungi. Even molecular sequencing studies have drastically 

underestimated them; their SSU rDNA sequences are often divergent in sequence and length, 

leading to biases against them in general eukaryote surveys, while misidentifications due to 

wrongly labelled sequences as detailed above lead to further confusion. 

The physical nature of BNFA also points to their exerting a significant and distinctive ecological 

impact in soils. The networks / branches comprise a great range of cell body and pseudopodial 

dimensions, of extreme morphological plasticity, allowing the amoeba to probe interstitial 

spaces of many dimensions, range of relatively large areas, cross and both exploit and survive 

chemical and ecological microgradients, and potentially acquire and re-locate large amounts of 

resource around the cells. Therefore it is viable for them to exploit unusually small (or difficult 

to access) and large food resources, from bacteria to small metazoans. The fact that the BNFA 

morphology has evolved several times across the eukaryotic tree of life, often followed by 

significant radiations (in many amoebozoan and rhizarian lineages, stramenopiles, fungi, etc.) 

demonstrates the success of this foraging strategy. In culture their ability to densely cover large 

areas can rapidly virtually eliminate bacterial and eukaryote prey populations. Their eukaryote 

prey range is large, including fungi, diatoms, green algae, and possibly other heterotrophic 

protists and small metazoans. Some lineages, in particular Darbyshirella and Dictyamoeba, 
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develop particularly dense and extensive networks in the presence of eukaryotic prey, but will 

also grow in the presence of bacteria alone. Heliamoeba and Arboramoeba may require other 

eukaryotes as food, but this requires further testing. Their flat, extensive cells are often closely 

associated with soil particles, which as well as allowing highly efficient food acquisition may 

also protect them from being eaten themselves; in any case they are multinucleate and 

individuals can be fragmented by physical disruption and presumably also attack by other 

organisms, and then re-grow. 

In conclusion, the new genera and species we describe in this paper possibly represent a much 

larger diversity of branching or network-forming variosean Amoebozoa that are abundant in 

many soil / sediment types, where they occupy a very distinctive niche. We infer from their 

morphology and behaviour in culture that they are significant grazers of bacteria and predators 

of a wide range of other eukaryotes, and therefore likely to have a large impact on soil ecology, 

which nonetheless has been largely overlooked in ecological studies. Other BNFA groups have 

been better studied in soils, for example amoebae feeding on pathogenic fungi and plant 

parasitic nematodes (Sayre 1973, Old and Darbyshire 1980, Old and Oros 1980), but those are 

either in different groups (Arachnula and Theratromyxa are vampyrellids) or do not correspond 

to our isolates. Furthermore it will be necessary to ensure that these often highly genetically 

divergent lineages are accounted for in molecular soil ecology studies, by revising existing 

primers, designing new ones, and / or by RNA-based and metagenomic approaches that are 

perhaps more likely to detect such lineages. 
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Supplementary 

 

Supplementary Figure 1. Maximum likelihood tree showing all sequences included in the phylogenetic analysis of 
Figure 1. 
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Supplementary Table 1. Informtation on new and published Variosean sequences indicating newly defined Variosean lineage numbers and name, accession numbers with 
respective species name, origin of isolation, size of published SSU rDNA fragment (entire length / length of variosean specific sequence in chimeras), variosean specific 
signature sequences in V4 and V7 region and the reference; Lin = Variosean lineage; (T) = Type strain 

Lin Name Accession Species Habitat Size V4 V7 Reference of 18S sequence 

V01 Filamoeba AF293896 Filamoeba "nolandi" ATCC 50430 MA - USA, offshore sediment core, North Carolina 1846 Y Y Amaral Zettler et al. 2000 

  AY714369 Filamoeba sinensis CH26 (T) FW - China, gills of Carassius gibelio 1839 Y Y Dyková et al. 2005 

  AY714368 Filamoeba nolandi CCAP 1526/1 (T) FW - USA, shore of Little Deer Lake, Minnesota 1839 Y Y Dyková et al. 2005 

  AB425944 Filamoeba sp. H9a_6E FW - Italy, rice field soil 1802 Y Y Murase & Frenzel 2008 

  AB425947 Filamoeba sp. I4_5E FW - Italy, rice field soil 1802 Y Y Murase & Frenzel 2008 

  EF032804 clone HAVOmat-eukA09 FW - Hawaii, lava cave cyanobacterial mat 778 N Y Brown et al. unpub. (2006) 

  GU320603 Filamoeba sp. COHH87 BR - USA, shore of Mt Hope Bay, Massachusetts 1784 Y Y Gast et al. unpub. (2011) 

  GU320604 Filamoeba sp. COHH88 BR - USA, shore of Mt Hope Bay, Massachusetts 1139 Y N Gast et al. unpub. (2011) 

  GU320578 Filamoeba sp. COHH101 BR - USA, shore of Mt Hope Bay, Massachusetts 1845 Y Y Gast et al. unpub. (2011) 

  GQ371176 Filamoeba sp. JIH56 FW - Czech Republic, hot-water piping system 1840 Y Y Peckova et al. unpub. (2012) 

V02 Acramoeba AF293897 Acramoeba dendroida ATCC 50654 (T) FW - USA, pond in Grand Haven, Michigan 1859 Y Y 
Amaral Zettler et al. 2000; 

Smirnov et al. 2008 

  AB695507 clone MPE2-12 FW - Antarctica, lake moss pillars 1817 Y Y Nakai et al. 2012 

  AB695457 clone MPE1-14 FW - Antarctica, lake moss pillars 1817 Y Y Nakai et al. 2012 

  KC306576 clone KF_Euk_A1R FW - Germany, groundwater of a karstic aquifer 1186 Y N Risse-Buhl et al. 2013 

  KC306569 clone KF_Euk_F7 FW - Germany, groundwater of a karstic aquifer 1157 Y N Risse-Buhl et al. 2013 

  KC306572 clone KF_Euk_A9R FW - Germany, groundwater of a karstic aquifer 1162 Y N Risse-Buhl et al. 2013 

  KC306575 clone KF_Euk_F7R FW - Germany, groundwater of a karstic aquifer 1157 Y N Risse-Buhl et al. 2013 

  KC306581 clone KF_Euk_A1 FW - Germany, groundwater of a karstic aquifer 1186 Y N Risse-Buhl et al. 2013 

  KC306594 clone KF_Euk_A9 FW - Germany, groundwater of a karstic aquifer 1162 Y N Risse-Buhl et al. 2013 

  KC306611 clone KF_Euk_D12R FW - Germany, groundwater of a karstic aquifer 1186 Y N Risse-Buhl et al. 2013 

  KC306613 clone KF_Euk_D12R FW - Germany, groundwater of a karstic aquifer 1186 Y N Risse-Buhl et al. 2013 

V03 Phalansterium AF280078 Phalansterium cf. solitarium ATCC 50327 FW - USA, outdoor bath at hot springs area, West Virginia 1876 Y Y Cavalier-Smith et al. 2004 

  EF143966 Phalansterium filosum Thailand (T) FW - Thailand, forest soil near flooded stream 1858 Y Y Smirnov et al. 2011 

  FK539978 Phalansterium sp. 1 JFP-2013 FW - contaminant in Monomorphina aenigmatica UTEX 1284 1873 Y Y Pombert et al. 2013 

V04 Multicilia AY268037 Multicilia marina MA - Ukraine, surface of brown algae, Black Sea 2746 Y Y Nikolaev et al. 2006 

V05 AND16 AY965863 undetermined amoeba AND16 FW - Spain, silty clay soil, Andújar 1831 Y Y Lara et al. 2007 

  EU798715 clone 18S1-22 FW - China, lignocellulose decomposing forest soil 1024 Y N Huang et al. unpub. (2008) 

V06 Protosteliids EU004603 Protostelium mycophagum RTF06-1A-4-1 FW - habitat where strain was isolated not provided 1790 Y Y Brown et al. 2007 
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  EU004604 Planoprotostelium aurantium BR33 FW - habitat where strain was isolated not provided 1865 Y Y Brown et al. 2007 

  FJ766481 Protostelium nocturnum ATCC PRA-194 FW - habitat where strain was isolated not provided 1800 Y Y Shadwick et al. 2009 

  FJ766482 Protostelium okumukumu ATCC PRA-156 (T) FW - USA, Hawaii, on plants 1813 Y Y Shadwick et al. 2009 

  FJ766483 Protostelium mycophagum HI04-85a-1b FW - habitat where strain was isolated not provided 1819 Y Y Shadwick et al. 2009 

  FJ766484 Protostelium mycophagum ATCC PRA-154 (T) FW - USA, on reed dead inflorescence, New Jersey 1809 Y Y Shadwick et al. 2009 

  FJ766440 Protostelium mycophagum HI07-6L-3 FW - habitat where strain was isolated not provided 1808 Y Y Shadwick et al. unpub. (2010) 

  FJ766441 Protostelium mycophagum HI07-22L-4 FW - habitat where strain was isolated not provided 1808 Y Y Shadwick et al. unpub. (2010) 

  FJ766442 Protostelium mycophagum TB-A2-1 FW - habitat where strain was isolated not provided 1808 Y Y Shadwick et al. unpub. (2010) 

  FJ766443 Protostelium mycophagum PBR-A3-1 FW - habitat where strain was isolated not provided 1808 Y Y Shadwick et al. unpub. (2010) 

  FJ766444 Protostelium mycophagum BRNFDF05-11A-3 FW - habitat where strain was isolated not provided 1811 Y Y Shadwick et al. unpub. (2010) 

  FJ766445 Protostelium mycophagum KA-T02-1 FW - habitat where strain was isolated not provided 1812 Y Y Shadwick et al. unpub. (2010) 

  FJ766446 Protostelium mycophagum KEN-5A-2 FW - habitat where strain was isolated not provided 1811 Y Y Shadwick et al. unpub. (2010) 

  FJ766447 Protostelium mycophagum HI06-7A-1 FW - habitat where strain was isolated not provided 1814 Y Y Shadwick et al. unpub. (2010) 

  FJ766448 Protostelium mycophagum HI07-4a-III FW - habitat where strain was isolated not provided 1830 Y Y Shadwick et al. unpub. (2010) 

  FJ766449 Protostelium mycophagum WWL06-3a-1 FW - habitat where strain was isolated not provided 1828 Y Y Shadwick et al. unpub. (2010) 

  FJ766450 Protostelium mycophagum HI06-9a-2 FW - habitat where strain was isolated not provided 1812 Y Y Shadwick et al. unpub. (2010) 

  FJ766451 Protostelium mycophagum KA-T15-1 FW - habitat where strain was isolated not provided 1800 Y Y Shadwick et al. unpub. (2010) 

  FJ766452 Protostelium mycophagum KA-T15-3 FW - habitat where strain was isolated not provided 1811 Y Y Shadwick et al. unpub. (2010) 

  FJ766453 Protostelium mycophagum OMBS04-1-1 FW - habitat where strain was isolated not provided 1800 Y Y Shadwick et al. unpub. (2010) 

  FJ766454 Protostelium mycophagum SI04-01A-1 FW - habitat where strain was isolated not provided 1791 Y Y Shadwick et al. unpub. (2010) 

  FJ766455 Protostelium mycophagum MFB-b FW - habitat where strain was isolated not provided 1789 Y Y Shadwick et al. unpub. (2010) 

  FJ766456 Protostelium mycophagum BRNFDF05-11A-1 FW - habitat where strain was isolated not provided 1789 Y Y Shadwick et al. unpub. (2010) 

  FJ766457 Protostelium mycophagum HI06-10a-2 FW - habitat where strain was isolated not provided 1810 Y Y Shadwick et al. unpub. (2010) 

  FJ766458 Protostelium mycophagum HI07-2L-3 FW - habitat where strain was isolated not provided 1819 Y Y Shadwick et al. unpub. (2010) 

  FJ766459 Protostelium mycophagum HI07-2a-2 FW - habitat where strain was isolated not provided 1819 Y Y Shadwick et al. unpub. (2010) 

  FJ766460 Protostelium mycophagum ATCC PRA-128 FW - USA, plants on lake shore near Seattle, Washington 1791 Y Y Shadwick et al. unpub. (2010) 

  FJ766461 Protostelium mycophagum BRNFDF05-7C FW - habitat where strain was isolated not provided 1794 Y Y Shadwick et al. unpub. (2010) 

  FJ766462 Planoprotostelium aurantium LEE06-21-3-1 FW - habitat where strain was isolated not provided 1815 Y Y Shadwick et al. unpub. (2010) 

  FJ766463 Protostelium mycophagum MFA-c FW - habitat where strain was isolated not provided 1794 Y Y Shadwick et al. unpub. (2010) 

  FJ766464 Protostelium mycophagum KA-T15-2 FW - habitat where strain was isolated not provided 1803 Y Y Shadwick et al. unpub. (2010) 

  FJ766465 Protostelium mycophagum HI07-20L-IV FW - habitat where strain was isolated not provided 1812 Y Y Shadwick et al. unpub. (2010) 

  FJ766466 Protostelium mycophagum QE07-15-1 FW - habitat where strain was isolated not provided 1814 Y Y Shadwick et al. unpub. (2010) 

  FJ766467 Protostelium nocturnum MCWTKF06-10L-2-1 FW - habitat where strain was isolated not provided 1810 Y Y Shadwick et al. unpub. (2010) 

  FJ766468 Protostelium nocturnum BADL04-A FW - habitat where strain was isolated not provided 1821 Y Y Shadwick et al. unpub. (2010) 



Part 1 - Chapter 3 High diversity of branching and network-forming Variosea       Supplementary 

 
 

99 

  GU290108 clone TKR07M.106 FW - Lake Tanganyika, metalimnion 1845 Y Y Tarbe et al. unpub. (2010) 

V07 Telaepolella EU273440 Telaepolella tubasferens ATCC 50593 FW - habitat where strain was isolated not provided 1934 Y Y 
Tekle et al. 2008; 
Lahr et al. 2012 

  NEW isolate SG-K190 this study  Y Y this study 

V08 Flamella EU186021 Flamella aegyptia A1-3 FW - Egypt, river Nile near Assuan 1858 Y Y Kudryavtsev et al. 2009 

  EU186022 Flamella arnhemensis KWK - CCAP 1525/2 FW - Netherlands, cooling water circuit, Arnhem 1834 Y Y Kudryavtsev et al. 2009 

  EU186023 Flamella balnearia WiII8a - CCAP 1525/3 FW - Germany, physiotherapy hospital pool, Wildbad 1832 Y Y Kudryavtsev et al. 2009 

  EU186024 Flamella fluviatilis FW - Australia, soil in the floodplain of the Murray river 1824 Y Y Kudryavtsev et al. 2009 

  EU186025 Flamella sp. WBT FW - Germany, drinking water treatment plant near Bonn 1845 Y Y Kudryavtsev et al. 2009 

  NEW isolate FN-414 this study  Y Y this study 

  AF372778 clone LEMD267 FW - USA, anoxic lake sediment 1460 Y Y Dawson & Pace 2002 

  AM114809 clone WIM81 FW - Netherlands, 1975 agricultural field sample 1869 Y Y Moon-van der Staay et al. 2006 

  AY626163 clone Borok FW - Russia, waste treatment plant, Borok 1824 Y Y Nikolaev et al. 2006 

  DQ409131 clone VNP13 FW - France, hyper-eutrophic lake picoplankton 983 Y N Lepère et al. 2007 

  FJ355431 clone NewOrleansYard3_YD3_032406_090 FW - USA, New Orleans yard, Louisiana 1135 Y Y Amaral-Zettler et al. 2008 

  EF023373 clone Amb_18S_704 (chimera) FW - USA, trembling aspen rhizosphere 1865/ 
1393 

Y Y Lesaulnier et al. 2008 

  EF023606 clone Amb_18S_844 (chimera) FW - USA, trembling aspen rhizosphere 1865/ 
1393 

Y Y Lesaulnier et al. 2008 

  EF023634 clone Amb_18S_879 (chimera) FW - USA, trembling aspen rhizosphere 1865/ 
1393 

Y Y Lesaulnier et al. 2008 

  EF023656 clone Amb_18S_908 (chimera) FW - USA, trembling aspen rhizosphere 1868/ 
1393 

Y Y Lesaulnier et al. 2008 

  EF023685 clone Amb_18S_948 (chimera) FW - USA, trembling aspen rhizosphere 1865/ 
1393 

Y Y Lesaulnier et al. 2008 

  EF023712 clone Amb_18S_991 (chimera) FW - USA, trembling aspen rhizosphere 1865/ 
1393 

Y Y Lesaulnier et al. 2008 

  EF023441 clone Amb_18S_1015 (chimera) FW - USA, trembling aspen rhizosphere 1865/ 
1393 

Y Y Lesaulnier et al. 2008 

  EF023478 clone Amb_18S_1064 (chimera) FW - USA, trembling aspen rhizosphere 1865/ 
1393 

Y Y Lesaulnier et al. 2008 

  EF023545 clone Amb_18S_1147 (chimera) FW - USA, trembling aspen rhizosphere 1864/ 
1392 

Y Y Lesaulnier et al. 2008 

  EF023826 clone Amb_18S_1275 (chimera) FW - USA, trembling aspen rhizosphere 1865/ 
1393 

Y Y Lesaulnier et al. 2008 

  EF023984 clone Amb_18S_1455 (chimera) FW - USA, trembling aspen rhizosphere 1865/ 
1393 

Y Y Lesaulnier et al. 2008 
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  EF024977 clone Elev_18S_1525 FW - USA, trembling aspen rhizosphere 1873 Y Y Lesaulnier et al. 2008 

  AB425943 Flamella sp. H9a_3E FW - Italy, rice field soil 1829 Y Y Murase & Frenzel 2008 

  JF826388 clone North_Pole_SW170_108 (chimera) MA - North Pole, 170 m-deep water under sea ice 1699/ 
1457 

Y Y Bachy et al. 2011 

  FR874405 clone ws_96, clone 1802F11 MA - Norway, fjord coastal water, Bergen 1872 Y Y Newbold et al. 2012 

  FJ153641 clone GoC1_G12 MA - Baltic Sea, anoxic water sample, Gotland Deep 1280 Y Y Stock et al. unpub. (2008) 

V09 
Schizo-

plasmodiids 
FJ544418 Schizoplasmodium cavostelioides ATCC PRA-197 FW - habitat where strain was isolated not provided 1920 Y Y Shadwick et al. 2009 

  FJ544419 Ceratiomyxella tahitiensis HI04-93L-1 FW - habitat where strain was isolated not provided 1883 Y Y Shadwick et al. 2009 

  FJ544420 Nematostelium ovatum JDS 6241 FW - habitat where strain was isolated not provided 1918 Y Y Shadwick et al. 2009 

V10 Soliformoviids FJ766479 Soliformovum expulsum ATCC 48083 (T) FW - habitat where strain was isolated not provided 1878 Y Y Shadwick et al. 2009 

  FJ766480 Soliformovum irregulare ATCC 26826 (T) FW - Mexico, on purple bean pods 1881 Y Y Shadwick et al. 2009 

  GQ438740 Grellamoeba robusta 4168 clone 111 FW - Czech Republic, gills of Sander lucioperca 1880 Y Y Dyková et al. 2010 

  GQ438741 Grellamoeba robusta 4168 clone 122 FW - Czech Republic, gills of Sander lucioperca 1880 Y Y Dyková et al. 2010 

  GQ438742 Grellamoeba robusta 4168 clone 841 FW - Czech Republic, gills of Sander lucioperca 1880 Y Y Dyková et al. 2010 

  EF513181 Soliformovum irregulare ATCC 26826 (T) FW - Mexico, on purple bean pods 1848 Y Y Fiore-Donno et al. 2010 

  HE614594 Soliformovum irregulare ATCC 26826 (T) FW - Mexico, on purple bean pods 1785 Y Y Nandipati et al. unpub. (2012) 

V11 Cavosteliids FJ766475 
Schizoplasmodiopsis pseudoendospora 

ATCC PRA-195 
FW - habitat where strain was isolated not provided 1786 Y Y Shadwick et al. 2009 

  FJ766476 Cavostelium apophysatum ATCC 38567 (T) FW - Granada, on plants 1777 Y Y Shadwick et al. 2009 

  FJ766477 Schizoplasmodiopsis amoeboidea ATCC 46943 (T) FW - Cook Islands, on pigeon pea pods 1927 Y Y Shadwick et al. 2009 

  FJ766478 Schizoplasmodiopsis amoeboidea BG7A-12B FW - habitat where strain was isolated not provided 1876 Y Y Shadwick et al. 2009 

  FJ792703 Tychosporium acutostipes KEA-11A-L FW - Kenya, more details not provided 1818 Y Y Shadwick et al. 2009 

  FJ792704 Tychosporium acutostipes NZ05-15a-2 FW - New Zealand, more details not provided 1818 Y Y Shadwick et al. 2009 

  EF513172 Cavostelium apophysatum ATCC 38567 (T) FW - Granada, on plants 1732 Y Y Fiore-Donno et al. 2010 

  EF513179 Schizoplasmodiopsis amoeboidea ATCC 46943 (T) FW - Cook Islands, on pigeon pea pods 1909 Y Y Fiore-Donno et al. 2010 

  EF513180 Schizoplasmodiopsis vulgaris FW - Switzerland, on dead grass leaves near Geneva 1812 Y Y Fiore-Donno et al. 2010 

  NEW isolate SG-M071 this study  Y Y this study 

  NEW isolate SG-F003 this study  Y Y this study 

V12 "Ischnamoeba" NEW Ischnamoeba montis Tib85 (T) this study 

 
Y Y this study 

  NEW Ischnamoeba sp. F4 this study  Y Y this study 

  NEW Ischnamoeba sp. FN352 this study  Y Y this study 

  AB425950 undetermined amoeba Mb_5C FW - Italy, rice field soil 1891 Y Y Murase & Frenzel 2008 

  EF023260 clone Amb_18S_564 (chimera) FW - USA, trembling aspen rhizosphere 2226/ 
789 

N Y Lesaulnier et al. 2008 



Part 1 - Chapter 3 High diversity of branching and network-forming Variosea       Supplementary 

 
 

101 

  EF023267 clone Amb_18S_572 (chimera) FW - USA, trembling aspen rhizosphere 1897/ 
789 

N Y Lesaulnier et al. 2008 

  EF023369 clone Amb_18S_699 (chimera) FW - USA, trembling aspen rhizosphere 1900/ 
789 

N Y Lesaulnier et al. 2008 

  HE575399 uncultured amoeba FW - Italy, water purification plant 1900 Y Y Chiellini et al. 2012 

  AB695456 clone MPE1-13 FW - Antarctica, lake moss pillars 1923 Y Y Nakai et al. 2012 

  AB695508 clone MPE2-13 FW - Antarctica, lake moss pillars 1923 Y Y Nakai et al. 2012 

V13 "Darbyshirella" NEW Darbyshirella terrestris Tib177 (T) this study 

 
Y Y this study 

  NEW Darbyshirella sp. Esthw this study  Y Y this study 

  NEW Darbyshirella sp. JDgam this study  Y Y this study 

  NEW Darbyshirella sp. M68 this study  Y Y this study 

  NEW Darbyshirella sp. M77 this study  Y Y this study 

  JN825696 clone Alchichica_AQ2_5E_20 FW - Mexico, alcaline lake microbialite 1272 Y N Couradeau et al. 2011 

V14 "Dictyamoeba" NEW Dictyamoeba vorax WalEn (T) this study 

 
Y Y this study 

  AB695458 clone MPE1-15 FW - Antarctica, lake moss pillars 1860 Y Y Nakai et al. 2012 

V15 "Heliamoeba" NEW Heliamoeba mirabilis M134 (T) this study 

 
Y Y this study 

V16 "Arboramoeba" NEW Arboramoeba reticulata Tib182 (T) this study 

 
Y Y this study 

  AY969212 clone dfmo4344.099 FW - USA, mixed hardwood soil, North Carolina 734 Y N O'Brien et al. 2005 

  EF023424 clone Amb_18S_765 FW - USA, trembling aspen rhizosphere 1862 Y Y Lesaulnier et al. 2008 

V17 "Angulamoeba" NEW Angulamoeba fungorum 23-6A (T) this study 

 
Y Y this study 

  NEW Angulamoeba sp. F2 this study  Y N this study 

  NEW Angulamoeba sp. FN806 this study  Y Y this study 

  DQ123626 undetermined amoeba CRIB-09 FW - Switzerland, hospital water network 568 Y N Thomas et al. 2006 

  HM017143 uncultured amoeba clone A1WVB FW - Belgium, hypertrophic urban pond 1714 Y Y Van Wichelen et al. 2010 

  HM017144 uncultured amoeba clone A2WVB FW - Belgium, hypertrophic urban pond 1475 Y Y Van Wichelen et al. 2010 

  JN825704 clone Alchichica_AQ2w_5E_66 FW - Mexico, alcaline lake microbialite 1001 Y N Couradeau et al. 2011 

  HM161754 "Cyanidioschyzon sp." Y16 FW - France, Phytophthora parasitica biofilm 1870 Y Y Galiana et al. 2011 

  AB695473 clone MPE1-30 FW - Antarctica, lake moss pillars 1804 Y Y Nakai et al. 2012 

  AB695474 clone MPE1-31 FW - Antarctica, lake moss pillars 1850 Y Y Nakai et al. 2012 

  AB695529 clone MPE2-35 FW - Antarctica, lake moss pillars 1803 Y Y Nakai et al. 2012 

  AB695530 clone MPE2-36 FW - Antarctica, lake moss pillars 1841 Y Y Nakai et al. 2012 

  JN547325 clone S9-1 FW - France, Sep reservoir artificial lake 1576 Y Y Lepere et al. unpub. (2012) 

V18 RT5 AY082976 clone RT5iin21 FW - Spain, green biofilm in the acidic and iron-rich Rio Tinto 1912 Y Y Amaral Zettler et al. 2002 
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  AY082989 clone RT5iin44 FW - Spain, green biofilm in the acidic and iron-rich Rio Tinto 1914 Y Y Amaral Zettler et al. 2002 

  AM114808 clone WIM80 FW - Netherlands, 1975 agricultural field sample 1961 Y Y Moon-van der Staay et al. 2006 

  EF441963 clone RT07C_2E_32 FW - Spain, endolithic community in the acidic Rio Tinto basin 1738 Y Y Lopez-Garcia et al. unpub. (2012) 

  EF441972 clone RT07C_2E_9 FW - Spain, endolithic community in the acidic Rio Tinto basin 1732 Y Y Lopez-Garcia et al. unpub. (2012) 

  EF441973 clone RT07C_2E_43 FW - Spain, endolithic community in the acidic Rio Tinto basin 1731 Y Y Lopez-Garcia et al. unpub. (2012) 

V19 Mariager AY605217 clone Sey088 FW - Switzerland, river sediment near Geneva 883 N Y Berney et al. 2004 

  DQ103790 clone M1_18H06 MA - Denmark, anoxic Mariager Fjord 1656 Y Y Zuendorf et al. 2006 

  DQ103816 clone M1_18G11 MA - Denmark, anoxic Mariager Fjord 1654 Y Y Zuendorf et al. 2006 

  EF526901 clone SA1_4A12 MA - Norway, anoxic Framvaren Fjord 1367 Y N Behnke et al. 2010 

  HQ868115 clone SHAO448 (chimera) MA - Canada, micro-oxic water column near Vancouver 908/ 
595 

Y N Orsi et al. 2012 

V20 WIM1 AM114811 clone WIM1 FW - Netherlands, 1975 agricultural field sample 1893 Y Y Moon-van der Staay et al. 2006 

  AB695494 clone MPE1-51 FW - Antarctica, lake moss pillars 1839 Y Y Nakai et al. 2012 

V21 WIM5 AM114801 clone WIM5 FW - Netherlands, 1975 agricultural field sample 1871 Y Y Moon-van der Staay et al. 2006 

  AB695495 clone MPE1-52 FW - Antarctica, lake moss pillars 1833 Y Y Nakai et al. 2012 

  AB695538 clone MPE2-44 FW - Antarctica, lake moss pillars 1833 Y Y Nakai et al. 2012 

V22 Amb_18S_6341 EF024087 clone Amb_18S_6341 (chimera) FW - USA, trembling aspen rhizosphere 
1877/ 
1668 

Y Y Lesaulnier et al. 2008 

V23 SAWY402 DQ423701 clone SAWY402 FW - USA, acid mine drainage biofilm, California 1163 Y Y Baker et al. 2009 

  DQ423693 clone SAWY394 FW - USA, acid mine drainage biofilm, California 1146 Y Y Baker et al. 2009 

  DQ423694 clone SAWY395 FW - USA, acid mine drainage biofilm, California 1155 Y Y Baker et al. 2009 

  DQ423699 clone SAWY400 FW - USA, acid mine drainage biofilm, California 1146 Y Y Baker et al. 2009 

  DQ423700 clone SAWY401 FW - USA, acid mine drainage biofilm, California 1157 Y Y Baker et al. 2009 

  DQ423702 clone SAWY403 FW - USA, acid mine drainage biofilm, California 1089 Y Y Baker et al. 2009 

  DQ423705 clone SAWY406 FW - USA, acid mine drainage biofilm, California 1155 Y Y Baker et al. 2009 

  DQ423706 clone SAWY407 FW - USA, acid mine drainage biofilm, California 1172 Y Y Baker et al. 2009 

  DQ423709 clone SAWY410 FW - USA, acid mine drainage biofilm, California 1160 Y Y Baker et al. 2009 

  DQ423710 clone SAWY411 FW - USA, acid mine drainage biofilm, California 1022 Y Y Baker et al. 2009 

  DQ423711 clone SAWY412 FW - USA, acid mine drainage biofilm, California 1097 Y Y Baker et al. 2009 

  DQ423716 clone SAWY417 FW - USA, acid mine drainage biofilm, California 1151 Y Y Baker et al. 2009 

  DQ423721 clone SAWY422 FW - USA, acid mine drainage biofilm, California 1150 Y Y Baker et al. 2009 

  DQ423725 clone SAWY426 FW - USA, acid mine drainage biofilm, California 1091 Y Y Baker et al. 2009 

  DQ423728 clone SAWY429 FW - USA, acid mine drainage biofilm, California 1028 Y Y Baker et al. 2009 

  DQ423735 clone SAWY437 FW - USA, acid mine drainage biofilm, California 1164 Y Y Baker et al. 2009 
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  DQ423737 clone SAWY440 FW - USA, acid mine drainage biofilm, California 1180 Y Y Baker et al. 2009 

  DQ423740 clone SAWY444 FW - USA, acid mine drainage biofilm, California 1168 Y Y Baker et al. 2009 

  DQ423742 clone SAWY446 FW - USA, acid mine drainage biofilm, California 1074 Y Y Baker et al. 2009 

  DQ423745 clone SAWY449 FW - USA, acid mine drainage biofilm, California 1158 Y Y Baker et al. 2009 

  DQ423748 clone SAWY452 FW - USA, acid mine drainage biofilm, California 1130 Y Y Baker et al. 2009 

  DQ423762 clone SAWY466 FW - USA, acid mine drainage biofilm, California 1135 Y Y Baker et al. 2009 

  DQ423764 clone SAWY468 FW - USA, acid mine drainage biofilm, California 1161 Y Y Baker et al. 2009 

  DQ423765 clone SAWY469 FW - USA, acid mine drainage biofilm, California 1148 Y Y Baker et al. 2009 

  DQ423774 clone SAWY479 FW - USA, acid mine drainage biofilm, California 1040 Y Y Baker et al. 2009 

  JN825703 clone Alchichica_AQ1B_5E_11 FW - Mexico, alcaline lake microbialite 1118 Y N Couradeau et al. 2011 

V24 PRS2_4E_19 GU479959 clone PRS2_4E_19 FW - Switzerland, peat bog in the Jura mountains 1539 Y Y Lara et al. 2011 

V25 MPE1-44 AB695487 clone MPE1-44 FW - Antarctica, lake moss pillars 1874 Y Y Nakai et al. 2012 

  AB695493 clone MPE1-50 (chimera) FW - Antarctica, lake moss pillars 1790/ 
1217 

Y N Nakai et al. 2012 

V26 LP30ME5 FJ903024 clone LP30ME5 FW - Mexico, phreatic limestone sinkhole 857 Y Y Sahl et al. unpub. (2009) 

V27 Elev603 EF024236 clone Elev_18S_603 (chimera) FW - USA, trembling aspen rhizosphere 
1957/ 

643 
N Y Lesaulnier et al. 2008 

V28 9_69 EU087280 clone 9_69 MA - Korea, 9 cm deep core sediment in the East Sea 924 Y N Park et al. 2008 

V29 9_174 EU545726 clone 9_174 MA - Korea, 9 cm deep core sediment in the East Sea 989 Y N Park et al. 2008 

V30 Alchichica_31 JN825689 clone Alchichica_AQ2_5E_31 FW - Mexico, alcaline lake microbialite 1038 Y N Couradeau et al. 2011 

V31 Alchichica_65 JN825698 clone Alchichica_AQ1_5E_65 FW - Mexico, alcaline lake microbialite 1119 Y N Couradeau et al. 2011 

  JN825697 clone Alchichica_AQ1_5E_60 (chimera) FW - Mexico, alcaline lake microbialite 1032/ 
487 

N N Couradeau et al. 2011 
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genus of the Vahlkampfiidae, Heterolobosea 
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1 Department of Terrestrial Ecology, Institute for Zoology, University of Cologne, Germany 
2 College of Resources and Environmental Sciences, China Agricultural University, Beijing, P R China 
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Abstract 

Seven strains of amoebae were isolated from soil samples taken in Tibet (at high altitude), 

Sardinia and the Netherlands. They seemed to belong to one morphospecies. However, 

sequences of the small subunit rDNA and internal transcribed spacers, including the 

5.8S rDNA, revealed that six represent different species of the genus Allovahlkampfia while 

one belongs to an unknown genus of which the closest relative is the genus Fumarolamoeba. 

Some unnamed strains of which the sequences had been published before are also given 

species status within the genus Allovahlkampfia. 

  



Part 1 – Chapter 4 New genus and species in Heterolobosea Introduction 

 

105 

Introduction 

The name “Heterolobosea” was coined by Page and Blanton (1985) for amoebae with 

eruptive locomotion, often a differentiated flagellate stage and distinct ultrastructural 

features. Despite morphological similarities to organisms within the supergroup Amoebozoa, 

phylogenetic analyses place the Heterolobosea distantly in the supergroup Excavata sister to 

the morphologically different Euglenozoa (Adl et al. 2012). Identification of heterolobosean 

amoebae based on morphology is difficult. The flagellate stage and cyst structure have been 

used to enable species description (Page 1988), but due to the high morphological similarity 

amongst Heterolobosea, only molecular tools have made a breakthrough by detecting 

cryptic species and genera within morphospecies. Within the Heterolobosea 

(Vahlkampfiidae) the genus Naegleria has been investigated in most detail as Naegleria 

fowleri causes a fatal disease in humans, i.e. primary amoebic meningoencephalitis (De 

Jonckheere 2002, Visvesvara et al. 2007, De Jonckheere 2011). Many species within the 

genus Naegleria have been described based on the sequence of the internal transcribed 

spacers (ITS) (De Jonckheere 2004). In a similar way, other Vahlkampfiidae have been 

separated into different genera based on the small subunit (SSU) rDNA (Brown and De 

Jonckheere 1999) and ITS, including the 5.8S rDNA, (De Jonckheere and Brown 2005) 

sequences. Vahlkampfiid amoebae without a flagellate stage are morphologically very 

similar and were traditionally placed all together in a single genus Vahlkampfia (Page 1988). 

Only with the advent of DNA sequencing, this genus was found to be paraphyletic and was 

subsequently split into four different genera: Tetramitus, Vahlkampfia, Neovahlkampfia, and 

Paravahlkampfia (Brown and De Jonckheere 1999). 

The diversity within the Heterolobosea is enormous despite that only about 150 species 

have so far been described; it contains organisms that either only adopt an amoeboid or a 

flagellate stage, others alter between both, while even multicellular forms exist (Page and 

Blanton 1985, Brown et al. 2012). Heteroloboseans seem to have an ubiquitous distribution, 

occupying also extreme environments (Amaral-Zettler et al. 2002, De Jonckheere 2006, De 

Jonckheere et al. 2011a, Park and Simpson 2011, Pánek et al. 2012).  

We have investigated 7 new vahlkampfiid strains from diverse environments, four of which 

were cultivated from extremely high altitudes (> 4100 meters). As these strains are nearly 

indistinguishable morphologically, the work is focused primarily on molecular tools, i.e. the 
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ITS, including the 5.8S rDNA, and SSU rDNA sequences. Six strains from highly diverse soil 

conditions are closely related and branch in phylogenetic analyses together with Solumitrus 

palustris (Anderson et al. 2011) and Allovahlkampfia spelaea (Walochnik and Mulec, 2009), 

and we describe them as different species belonging to the genus Allovahlkampfia. 

Furthermore, we describe a new genus for a strain which clusters in phylogenetic trees with 

several environmental sequences, of which the closest relative is Fumarolamoeba ceborucoi 

(De Jonckheere et al. 2011b).  

Materials and Methods 

Site description, amoebae isolation and cultivation  

The top 10 cm of soils were sampled from a pasture soil in the Netherlands, from high 

altitudes in Tibet and the Berchidda-Monti long term observatory, managed by the 

University of Sassari, Italy (Table 1).  

Table 1. List of strains with their origin 

Strain Location Location (Label) GPS Elevation (m) 

A. sardiniensis Sar9 Italy Sardinia 
N 40°46′, 

E 9°10′ 
181 

A. parasardiniensis Sar37 Italy Sardinia 
N 40°46′, 

E 9°10′ 
181 

A. nederlandensis Nl64 The Netherlands Veluwe 
N 52°06′, 

E 6°00′ 
57 

Pagea alta Tib23 Tibet Mila East Slope 
N 29°52′ 
E 92°33′ 

4149 

A. tibetensis Tib32 Tibet Mila Mountaintop 
N 29°49′ 
E 92°20′ 

5033 

A. paratibetensis Tib50 Tibet Mila West Slope 
N 29°42′ 
E 92°10′ 

4149 

A. neotibetensis Tib191 Tibet Mila East Slope 
N 29°52′ 
E 92°33′ 

4149 

50 g of each soil was suspended in 200 ml sterile ddH2O and incubated on a shaker at room 

temperature for 10’. 200 µl of each suspension was subsequently transferred to ten 90 mm 

Petri dishes filled with autoclaved liquid wheat grass medium (WG), made by adding 

vacuum-dry wheat grass powder (Weizengras, Sanatur, Singen, Germany) to PJ medium 

(Prescott and James 1955) to the weight concentration 0.15 % to stimulate bacterial growth. 

Individual dishes were investigated with an inverted microscope (Nikon Eclipse TS100) after 

14 and 28 days and individual amoebae were transferred and maintained in 60 mm Petri 

dishes containing fresh WG. Detailed light-microscopic analyses of each clonal culture and 
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measurements were performed using a Nikon Eclipse 90i with differential interference 

contrast (DIC) equipped with a Nikon DIGITAL SIGHT DS-fi1 camera. The strains were tested 

for growth at temperatures of 30 °C and 37 °C. Formation of flagellate stages was tested by 

flooding spores grown in a petri-dish with distilled water. Formation of fruiting forms were 

tested by adding autoclave-sterilized Quercus alba bark soaked in a sterile slurry of 

Rhodotorula mucilaginosa in H20dest as described in Brown et al. (2012). The isolates were 

feeding on the bacteria that grew with them upon isolation, but they were also tested to see 

whether they could grow when fed with yeast, by transferring isolates into a culture of the 

ascomycete Saccharomyces cerevisiae and the basidiomycete R. mucilaginosa. We 

subsequently investigated microscopically, whether amoebae actively take up yeast and use 

those as a food source. 

DNA extraction, amplification and sequencing 

Petri dishes with dense growth of amoebae were washed 3 times with fresh medium and 

replaced with 100 µl of guanidine isothiocyanate buffer. Cells were then scraped off the 

bottom using a sterile metal cell scraper and the buffer containing amoebae was transferred 

to an Eppendorf tube. After vortexing, the solution was heated to 72 °C for 10’, cooled down 

to room temperature, 200 µl isopropanol was added and left at -20 °C overnight. After 

vortexing and centrifugation for 15’ at 15,000 rpm the supernatant was removed and 

replaced by 100 µl 70 % EtOH. After another centrifugation step for 10’ at 15,000 rpm, the 

supernatant was removed and DNA was resuspended in 50 µl ddH2O. DNA was stored 

at -20 °C until further use (Maniatis et al. 1982). 

Small subunit (SSU) ribosomal DNA was amplified using the universal eukaryotic primers 

EukA and EukB (Medlin et al. 1988), while the primers JITS-F and JITS-R were used to amplify 

and sequence the ITS region, including the 5.8S rDNA (De Jonckheere and Brown 2005). PCR 

reactions were run in 30 µl volume consisting of 0.6 µl of each primer (10 µM), 0.6 µl 

nucleotides (10 mM), 2 µl template DNA, 24.5 µl H2O, 3 µl GreenTaq Buffer and 0.15 µl 

GreenTaq polymerase (5 U * µl-1) (Fermentas, St. Leon-Rot, Germany). The cycling conditions 

included a 5’ initial denaturation at 95 °C, followed by 30 cycles of 95 °C for 30’’, 50 °C for 

60’’, and 72 °C for 120’’, and a final extension at 72 °C for 5’. 8 µl of the PCR products were 

enzymatically purified by adding 0.15 µl Endonuclease I (20 U * µl-1, Fermentas, St. Leon-Rot, 

Germany), 0.9 µl Shrimp Alkaline Phosphatase (1 U * µl-1, Fermentas, St. Leon-Rot, Germany) 
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and 1.95 µl H2O. The resulting mixture was incubated for 30’ at 37 °C, followed by 20’ at 

85 °C. Cleaned PCR products were subsequently sequenced (GATC, Konstanz, Germany) 

using all amplification end primers and internal ones to obtain full length sequences of the 

SSU rDNA. 

Phylogenetic analyses 

Sequences obtained were subjected to BLAST searches to establish taxonomic affiliations. All 

sequences were aligned using Clustal Omega directly implemented in SEAVIEW v. 4.4.2 

together with all closest BLAST hits of cultivated taxa, a subset of sequences of uncultivated 

taxa and sequences of other heterolobosean genera in order to obtain better resolved 

phylogenetic affinities of our strains. Two datasets including sequences of the SSU rDNA and 

the 5.8S rDNA were analyzed. 43 sequences were aligned in the SSU rDNA dataset resulting 

in 1,527 unambiguously aligned positions, while 23 sequences were aligned in the 5.8S rDNA 

dataset resulting in 145 unambiguously aligned positions. ITS1 and ITS2 could not reliably be 

aligned and were consequently excluded from phylogenetic analyses of all vahlkampfiids. To 

explain species differentiation of clones closely resembling A. spelaea we aligned the entire 

ITS region of A. spelaea, S. palustris and six new strains obtained in this study, increasing 

unambiguously aligned positions to 340. 

A general time-reversible model with a proportion of invariable sites and γ distribution 

(GTR+I+gamma) as proposed by jModeltest v. 2.1.3 under the Akaike Information Criterion 

(Darriba et al. 2012). These were performed directly in SEAVIEW with 5 random starting 

trees using nearest-neighbor interchange and subtree pruning and regrafting algorithms for 

tree searching (Guindon and Gascuel 2003, Hordijk and Gascuel 2005). The stability of the 

clades was assessed using a non-parametric bootstrap with 100 pseudoreplicates using 

unambiguously aligned positions. Further, a Bayesian analysis was performed using Mr Bayes 

Version 3.1.2 (Huelsenbeck and Ronquist 2001) with the GTR+I+gamma model of 

substitution. Two runs of four simultaneous Markov chain Monte-Carlo analyses starting 

from different random trees were performed for 5,000,000 generations (default heating 

parameters), sampled every 100 generations. Convergence (average deviation of split 

frequencies < 0.01) was reached after 210,000 generations (SSU dataset) and 

300,000 generations (5.8S dataset). All trees before convergence was reached were 

discarded as burnin and a consensus tree was built from the remaining trees. 
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Another focused phylogenetic analysis was performed on a clade containing A. spelaea to 

decipher species relations within that clade. Those sequences were aligned using 

Clustal Omega and subsequently modified manually. Most of the ITS regions could still not 

reliably be aligned and only the remaining reliable positions shared by all Allovahlkampfia 

spp. were used for subsequent phylogenetic analyses. Maximum likelihood and Bayesian 

analyses were performed as described above, but only running 2,000,000 generations in the 

Bayesian analysis as the runs converged after 70,000 generations, leaving sufficient numbers 

of trees after burning to construct a consensus tree. This focused alignment is uploaded to 

TreeBASE (treebase.org), submission ID 15118. 

New nucleotide sequences from all Heterolobosea described in this study are available in 

GenBank under the accession numbers KF547907, KF547908, KF547909, KF547910, 

KF547911, KF547912 and KF547913 for the SSU-rDNA; KF547914, KF547915, KF547916, 

KF547917, KF547918, KF547919 and KF547920 for the ITS region including the 5.8S rDNA. 

Type cultures are deposited at the Culture Collection of Algae and Protozoa (CCAP) under 

the accession numbers CCAP 2502/1 to CCAP 2502/6.  

Results 

Cultivation and morphology 

All isolated amoebae grew well at room temperature, as well as 30 °C, except for strain Nl64 

(Table 2). Growth performance of Tib23 could not be tested as the strain went extinct before 

temperature tests (and any growth tests) could be completed (Table 2). 
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Table 2. Characteristics of strains 

Strain Morphology 
Temp 

(max)° 

Trophozoite 
length (µm) 

Trophozoite 
width (µm) 

Cyst diameter 
(µm) 

A. sardiniensis Sar9 Mostly limax < 37 °C 
18.2 – 28.8 
23.6 ± 3.4 

3.6 – 5.2 
4.6 ± 0.6 

5.6 – 10.8 
7.4 ± 1.2 

A. parasardiniensis Sar37 Limax < 37 °C 
20.8 – 30.0 
23.8 ± 2.4 

3.4 – 6.0 
4.6 ± 0.6 

5.4 – 8.4 
6.6 ± 0.8 

A. nederlandensis Nl64 Mostly flabellate < 30 °C 
21.8 – 50.8 
33.2 ± 10.0 

3.6 – 8.6 
5.8 ± 1.4 

5.0 – 7.8 
6.2 ± 0.8 

Pagea alta Tib23 Limax * 
14.8 – 31.1 
20.9 ± 4.8 

3.9 – 13.4 
7.9 ± 3.1 

5.3 – 6.2 
5.7 ± 0.4 

A. tibetensis Tib32 Mostly flabellate < 37 °C 
21.2 – 31.2 
25.2 ± 4.0 

5.6 – 9.2 
6.6 ± 1.2 

5.0 – 8.2 
6.6 ± 0.8 

A. paratibetensis Tib50 Limax or flabellate < 37 °C 
27.6 – 36.0 
30.0 ± 2.8 

5.0 – 8.8 
7.4 ± 1.4 

5.8 – 9.2 
8.0 ± 1.0 

A. neotibetensis Tib191 Limax < 37 °C 
19.4 – 26.4 
23.0 ± 2.2 

4.2 – 7.6 
6.2 ± 1.0 

6.4 – 8.6 
7.6 ± 0.6 

*: could not be tested, culture extinct. 
°: Temp (max) = maximum temperature tolerance. 

None of all isolates actively took up and fed on the yeast species tested, i.e. S. cerevisiae and 

R. mucilaginosa. Sorocarp formation was not observed under any condition tested. Most of 

the isolates showed the typical morphology of vahlkampfiid amoebae including eruptive 

lobopodia and an elongated “limax” form during locomotion (Figure 1 and Figure 3), 

although flabellate forms were regularly seen in some. Further, all were uninucleate and 

often produced uroidal structures. However, the strains differed in morphology and could be 

classified in four groups; group I included organisms that mostly adopted an elongated 

“limax” shape when active (strains Sar37 [Figure 1B] and Tib191 [Figure 1F]), group II rarely 

moved in an elongated form most often adopting a flabellate shape (strains Nl64 [Figure 1C] 

and Tib32 [Figure 1D]), group III regularly switched between the two forms of locomotion 

(strains Sar9 [Figure 1A] and Tib50 [Figure 1E]) and group IV adopting a limax shape but 

morphologically differentiating it from all previously described strains by a more eruptive 

formation of pseudopodia and the presence of only a small, centrally located nucleolus 

(Tib23, Figure 3).  
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Figure 1. Differential interference contrast (DIC) pictures showing trophozoits in locomotive form of all new 
Allovahlkampfia strains described in this study, drawn at the same scale. A. A. sardiniensis Sar9. 
B. A. parasardiniensis Sar37. Note size difference between the trophozoite and cyst. C. A. nederlandensis Nl64. 
D. A. tibetensis Tib32. E. A. paratibetensis Tib50. Note pronounced length of uroidal filaments. 
F. A. neotibetensis Tib191. Scale bar: 10 µm. 

All strains produced cysts (Figure 2), with Tib23 again differing strongly in cyst morphology 

by forming dimorphic cysts, but always of a similar size (Figure 3C). None of the cultures 

formed a flagellate stage. Size differences even within strains were usually profound so size 

differences between strains were negligible (Table 2).  
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Figure 2. Differential interference contrast (DIC) pictures showing cysts of all new Allovahlkampfia strains 
described in this study, drawn at the same scale. A. A. sardiniensis Sar9. B. A. parasardiniensis Sar37. 
C. A. nederlandensis Nl64. D. A. tibetensis Tib32. E. A. paratibetensis Tib50. F. A. neotibetensis Tib191. 
Scale bar: 10 μm. 

Despite some morphological and locomotive differences the lack of reliable uniform and 

constant characteristics, which is typical for Vahlkampfiidae, necessitate an identification 

based on molecular analyses (Brown and De Jonckheere 1999, De Jonckheere and Brown 

2005). 

 

Figure 3. Differential interference contrast (DIC) pictures showing Pagea alta Tib23. A. Locomotive forms. Note 
pronounced uroidal filaments. B. Amoeba in indirect locomotion forming eruptive pseudopodia everywhere at 
cell body. C. Irregular cysts. Upper cyst wrinkled, lower cyst round. 

Phylogenetic analyses 

Full length sequences of the ITS region, including the 5.8S rDNA, were obtained for all 

strains. The sizes of ITS1 and ITS2 differed strongly between most strains, while the 5.8S 

rDNA were always 161 bp long, with the exception of Sar37 and Tib191, where it was 2 bp 

longer (Table 3). 
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Table 3. Length (bp) of the SSU rDNA available, presence and length of SSU group I intron, and length of ITS1, 
5.8S and ITS2 

Strain SSU rDNA Group I intron ITS1 5.8S ITS2 Origin 

A. sardiniensis Sar9 2038 - 163 161 128 Italy 
A. parasardiniensis Sar37 2026 - 117 163 130 Italy 
A. nederlandensis Nl64 2060 1358 155 161 127 The Netherlands 
A. tibetensis Tib32 1962 - 154 161 127 Tibet 
A. paratibetensis Tib50 2032 - 153 161 125 Tibet 
A. neotibetensis Tib191 2010 - 129 163 162 Tibet 
A. palustris 671 - 339 161 152 USA 
Soil amoeba AND12 2178 - NA NA NA Spain 
A. canadensis BA 2125 1313 NA NA NA Canada 
A. paracanadensis OSA 2129 - NA NA NA Canada 
A. spelaea 2138 - 166 161 108 Slovenia 
Pagea alta Tib23 1738 - 163 157 162 Tibet 
F. ceborucoi 2371 - 133 154 125 Mexico 
P. ustiana 1903 - 129 158 316 Czech Republic 
P. lenta NA - 120 159 397 UK 
P. francinae 1880 - 129 158 270 USA 
Paravahlkampfia sp. A1PW2 1921 - NA NA NA Germany 
Paravahlkampfia sp. LA 1909 - NA NA NA Canada 
Paravahlkampfia sp. li3 1876 - NA NA NA USA 

-: absent 
NA: Not available 

Nearly full length sequences of the SSU rDNA, except for the very beginning and end, were 

obtained. Interestingly, one of our isolates (Nl64) contained a group I intron, which is only 

present in one other strain investigated in this group (Heterolobosea BA). The intron in strain 

Nl64 was located at the same position as in Heterolobosea BA, but sequence dissimilarity 

exist not only in the intron region (21.1 % dissimilarity), but also in the remaining sequence 

of the SSU rDNA (1.2 % dissimilarity) (Table 4). The group I intron in both strains contains an 

open reading frame, coding for a homing endonuclease with a His-Cys box (Wilmark et al. 

2006). 

Blast searches based on the SSU rDNA indicated closest affinities of strains Sar9, Sar37, Nl64, 

Tib32, Tib50 and Tib191 with Allovahlkampfia spelaea (Walochnik and Mulec, 2009), 

unnamed Heterolobosea BA and OSA (Shut and Gray, unpublished), and Solumitrus palustris 

(Anderson et al. 2011). Blast searches based on the entire ITS region including the 5.8S rDNA 

similarly detected closest affinities of Sar9, Sar37, Nl64, Tib32, Tib50 and Tib191 with 

A. spelaea and S. palustris. Blast hits of Tib23 based on the SSU rDNA matched best with 

several uncultured eukaryotes, followed by Fumerolamoeba ceborucoi (De Jonckheere et al. 

2011). The latter, F. ceborucoi, represented the best hit when a Blast search was based on 

the ITS region.  
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Maximum likelihood and Bayesian phylogenetic analyses of the SSU rDNA alignments 

(Figure 4) confirmed a strongly supported group of our six isolates with A. spelaea, S. 

palustris and Heterolobosea BA and OSA. The Allovahlkampfia clade formed a strongly 

supported sister clade to species of the genus Acrasis with the uncultivated sequence “soil 

amoeba AND12” (Lara et al. 2007a) branching outside the Allovahlkampfia spp. 

Strain Tib23 formed a clade with several uncultured sequences (Valster et al. 2009, Valster et 

al. 2010, Valster et al. 2011, Farhat et al. 2012), with Fumarolamoeba (De Jonckheere et al. 

2011b) as the most closely related genus, while Paravahlkampfia formed a separate branch. 

 
Figure 4. Maximum likelihood tree based on SSU rDNA sequences. Support values at each node presented for 
RAxML / BI. RAxML ML bootstrap values and BI posterior probabilities equal to 100 % / 1.00, respectively, are 
represented by a black dot, whereas – is placed for unrecovered topologies and support values < 50 % 
(RAxML) / 0.50 (BI). 
Note: Phylogenetic relations within most genera omitted for convenience; relationships within Allovahlkampfia 
discussed in text. GenBank accession numbers of SSU sequences used in analyses listed next to taxon names. 
Scale bar represents evolutionary distance in changes per site. 
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Phylogenetic analyses based on the 5.8S rDNA resulted in a similar pattern (Figure 5); the 

Fumarolamoeba and Paravahlkampfia genera formed strongly supported branches with 

isolate Tib23. The six other new isolates formed a clade with A. spelaea, including 

S. palustris. The Sequence similarities for the SSU rDNA of our isolates most closely 

resembling A. spelaea in phylogenetic analyses ranged from 95.3 to 96.9 % (Table 4), 

indicating that they belong to the genus Allovahlkampfia, but that they should be treated as 

different species. The high sequence similarity of the 5.8S rDNA, between 95.4 and 99.4 % 

(Table 5), confirmed that they belong to the same genus Allovahlkampfia. Heterolobosea BA 

and OSA had similar high sequence similarities of the SSU rDNA compared to A. spelaea, 95.9 

and 97.1 %, respectively. Therefore, these two should also be considered to be different 

species within the genus as well. On the other hand, S. palustris showed somehow lower 

sequence similarities for both molecules, 89.2 and 94.3 %respectively, but this could be due 

to the short sequence length of the SSU rDNA reported and the possibility of sequencing 

errors, as several mismatches were found in highly conserved regions in both genes. Strain 

AND12, with 90.3 % sequence similarity of the SSU rDNA compared to A. spelaea, and 89.2 

to 91.2 % compared to our new isolates probably might represent a different genus other 

than Allovahlkampfia or a very basal species of Allovahlkampfia. 
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Figure 5. Maximum likelihood tree based on 5.8S rDNA sequences. Support values at each node presented for 
RAxML / BI. RAxML ML bootstrap values and BI posterior probabilities equal to 100 % / 1.00, respectively, are 
represented by a black dot, whereas – is placed for unrecovered topologies and support values < 50 % 
(RAxML) / 0.50 (BI). 
Note: Phylogenetic relations within most genera omitted for convenience; relationships within Allovahlkampfia 
discussed in text. GenBank accession numbers of the sequences used in analyses listed next to taxon names. 
Scale bar represents evolutionary distance in changes per site. 
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Table 4. Percentage identity matrix obtained with manually modified Clustal Omega alignments of the SSU rDNA in the Allovahlkampfia clade 

 Sar9 Sar37 Nl64 Tib32 Tib50 Tib191 A. palustris Soil amoeba AND12 A. canadensis BA A. paracanadensis OSA A. spelaea 

A. sardiniensis Sar9 100           
A. parasardiniensis Sar37 95.1 100          
A. nederlandensis Nl64 98.4 94.9 100         
A. tibetensis Tib32 98.4 94.9 99.9 100        
A. paratibetensis Tib50 96.0 96.0 95.6 95.7 100       
A. neotibetensis Tib191 95.4 98.3 95.0 94.9 96.0 100      
A. palustris 89.0 90.3 87.8 87.8 90.0 90.4 100     
Soil amoeba AND12 90.2 90.2 89.9 89.2 91.2 90.6 83.7 100    
A. canadensis BA 99.1 95.5 88.8 89.1 95.8 95.1 97.2 90.3 100   
A. paracanadensis OSA 96.0 96.0 95.5 95.6 99.8 96.0 89.8 90.6 95.9 100  
A. spelaea 96.1 96.6 95.3 95.3 97.0 96.9 89.2 90.3 95.9 97.1 100 

 

Table 5. Percentage identity matrix obtained with manually modified Clustal Omega alignments of the 5.8S rDNA in the Allovahlkampfia clade 

 Sar9 Sar37 Nl64 Tib32 Tib50 Tib191 A. palustris A. spelaea 

A. sardiniensis Sar9 100        
A. parasardiniensis Sar37 95.5 100       
A. nederlandensis Nl64 99.4 94.6 100      
A. tibetensis Tib32 100 95.0 99.4 100     
A. paratibetensis Tib50 97.5 94.0 98.1 97.5 100    
A. neotibetensis Tib191 96.3 98.8 95.7 96.3 95.0 100   
A. palustris 93.8 93.4 93.2 93.8 92.5 93.2 100  
A. spelaea 99.4 95.4 98.8 98.4 98.1 96.9 94.3 100 
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Strain Tib23 had sequence similarities of 85.9 % with F. ceborucoi and between 80.7 and 

80.9 % with the Paravahlkampfia spp. for the SSU rDNA (Table 6) and even lower for the 

5.8S rDNA, 80.7 and 70.4 %, respectively (Table 7). Therefore, strain Tib23 should be 

considered to represent a new genus. 

Table 6. Percentage identity matrix obtained with manually modified Clustal Omega alignments of the 
SSU rDNA in the Fumerolamoeba-Paravahlkampfia clade 

 P. alta Tib23 F. ceborucoi P. ustiana P. francinae P. sp. A1PW2 P. sp. LA P. sp. li3 

Pagea alta Tib23 100       
F. ceborucoi 85.9 100      
P. ustiana 80.7 83.1 100     
P. francinae 80.9 83.2 99.7 100    
Paravahlkampfia sp. 
A1PW2 

80.7 82.9 98.3 98.7 100   

Paravahlkampfia sp. LA 80.8 82.6 98.7 98.9 98.0 100  
Paravahlkampfia sp. li3 80.9 82.9 99.5 99.8 98.4 98.7 100 

 

Table 7. Percentage identity matrix obtained with Clustal Omega alignments of the 5.8S rDNA in the 
Fumerolamoeba-Paravahlkampfia clade 

 P. alta Tib23 F. ceborucoi P. ustiana P. francinae P. lenta 

Pagea alta Tib23 100     
F. ceborucoi 80.7 100    
P. ustiana 72.3 68.5 100   
P. francinae 71.6 67.8 99.3 100  
P. lenta 70.4 68.1 97.9 98.6 100 

 

Generally, all strains showed distinct molecular sequence patterns in different parts of 

helix 23 of the SSU rDNA, i.e. the V4 region. Shared molecular signatures provided further 

evidence of the classification mentioned above; a clade separating the Allovahlkampfia clade 

including soil amoeba AND12 from Acrasis was supported by several molecular patterns, 

which are unique for the respective clades. For instance, the motif 5’ - TACACTT - 3’ in helix 8 

of the SSU rDNA is specific for the Allovahlkampfia clade, whereas the motif in Acrasis is 

5’ - TACTCGT - ‘3. Another example is the addition of a C in helix 17 of the SSU rDNA specific 

in the Allovahlkampfia clade, where there is a gap in Acrasis. 

Similar patterns were detected for all other clades denoted above, e.g. the separation of 

Fumarolamoeba, Tib23 and several uncultured environmental sequences from 

Paravahlkampfia, e.g. the profile 5’ - AAGGTTTGG - 3’ shared by Fumarolamoeba, Tib23 and 

the uncultured environmental sequences at the end of helix 17 is strikingly different from 

the pattern of all Paravahlkampfia spp., which share the sequence 5’ – TCGGTTTGC - 3’. 
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More sequence patterns distinguishing Fumarolamoeba, Tib23, uncultured sequences and 

Paravahlkampfia are shown in Supplementary Table 1. 

Discussion 

New isolates 

We provide molecular evidence that the genus Allovahlkampfia includes several distinct 

species as all SSU rDNA and ITS sequences obtained were dissimilar. Until now, A. spelaea 

was the only cultivated and described species in this genus (Walochnik and Mulec 2009). We 

propose the following species names for the new isolates: A. sardiniensis (Sar9), 

A. parasardiniensis (Sar37), A. nederlandensis (Nl64), A. tibetensis (Tib32), A. paratibetensis 

(Tib50) and A. neotibetensis (Tib191), all names indicating the origin of the type strains.  

In vahlkampfiids, morphology is not a reliable character to differentiate species. As such, 

morphologically similar species formerly united in the genus Vahlkampfia are now being 

placed in several distinct genera based on phylogenetic information (Brown and De 

Jonckheere 1999, De Jonckheere and Brown 2005). Therefore, we base the description of 

the species largely on molecular information. We are, however, aware that some species 

have very similar sequences, such as A. nederlandensis and A. tibetensis. Nevertheless, we 

are confident that these sequence differences are reliable characters to distinguish species 

as both sequenced phylogenetic marker molecules, ITS and SSU contain differences. Another 

example of species differentiation based on small sequence differences are found in the 

related vahlkampfiid genus Tetramitus (De Jonckheere and Brown 2005, Robinson et al. 

2007). Similar examples of (nearly) identical SSU with profound differences in ecological 

functioning are reported for chrysophytes and cercocoan flagellates, suggesting cryptic 

species (Bass et al. 2007, Boenigk et al. 2007). Some morphologically different species of 

vannellid amoebae located in the supergroup Amoebozoa vary by as little as 3 bp in the 

entire SSU (Smirnov et al. 2007), while even the independent genera Rhizamoeba and 

Leptomyxa have nearly identical sequences, despite differing strongly in morphology 

(Smirnov et al. 2009). 

We have performed several independent PCRs and sequence reactions to build consensus 

sequences and they always supported the differences observed between species. Therefore, 
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we are confident that the sequence differences observed are reliable positions to 

differentiate species, and not errors introduced by PCR or sequencing. Furthermore, the 

most closely related species based on molecular information A. nederlandensis and 

A. tibetensis show differences in temperature tolerance, suggesting even functional 

differences between these two strains, reinforcing the need to treat both as separate 

species. 

In addition to the Allovahlkampfia spp. we isolated a strain, which cannot be included in any 

described genus. It forms a clade with several environmental sequences and the most closely 

related genera are Fumarolamoeba and Paravahlkampfia. We propose the genus name 

Pagea, in honor of Frederick Page, who not only created the name Heterolobosea, but also 

described many genera and species; the species name alta, indicates the high altitude from 

where the type strain originates. The large numbers of similar published environmental 

sequences indicate that species related to P. alta Tib23 are common soil inhabitants. Having 

no remaining culture P. alta Tib23 undoubtedly is a disadvantage, but we obtained 

sequenced of the entire SSU and ITS region, have pictures of the morphology and have 

frozen DNA as a type material. Therefore, we conclude that a formal genus description of 

Pagea is useful in order to assign sequences obtained in the increasing number of 

environmental sequencing surveys (Lara et al. 2007a, Bates et al. 2013). 

Published sequences 

‘Solumitrus palustris’ has been recently been erected as a new genus closely related to 

Allovahlkampfia (Anderson et al. 2011). Brown et al. (2012) put ‘S. palustris’ between 

inverted commas and placed it into a single clade together with the genus Allovahlkampfia. 

They suggested that it could eventually be considered as a species of Allovahlkampfia, which 

was further supported by phylogenetic analyses of another study (Harding et al. 2013). Also 

our phylogenetic analyses of both 5.8S and SSU rDNA, which included several other related 

species, consistently placed ‘S. palustris’ within the Allovahlkampfia clade (Figure 4 and 5, 

respectively). Our new Allovahlkampfia isolates had 95.3 to 97.0 % sequence similarities 

with A. spelaea. ‘S. palustris’ had lower sequence similarities of 89.2 % for the SSU rDNA 

(Table 4) and 94.3 % for the 5.8S rDNA (Table 5) compared to the type strain. As especially 

the beginning and end of the sequence of ‘S. palustris’ showed several mismatches in highly 

conserved regions we strongly suspect that there are serious sequencing errors in both 
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molecules. Therefore, we suggest that the sequencing for ‘S. palustris’ needs to be repeated. 

But we do suggest already renaming it A. palustris. Other authors already suggested that it 

should be included in A. spelaea (Brown et al. 2012, Harding et al. 2013).  

In their trees Brown et al. (2012) and Harding et al. (2013) have also placed the 

Heterolobosea BA and OSA into A. spelaea. From our phylogenetic analyses we conclude 

that they have to be considered different species within the genus Allovahlkampfia, as the 

SSU rDNA sequences of strains BA and OSA showed sequence similarities of 95.9 and 97.1 %, 

respectively to A. spelaea (Table 4). Therefore, we propose species names for these two 

isolates: A. canadensis (strain BA) and A. paracanadensis (strain OSA), names which indicate 

the origin of the type strains. A sequence of the entire ITS region of these two strains is 

highly desirable in order to support the species relationship within the genus 

Allovahlkampfia. 

Phylogenetic implications 

Individual strains formed several distinct branches consistently in the SSU and 5.8S rDNA 

(and Allovahlkampfia focused ITS) phylogeny suggesting the existence of several distinct 

species. As mentioned above, even the most closely related strains in our study based on 

phylogeny, i.e. A. tibetensis Tib32 and A. nederlandensis Nl64 are distinct not only by the 

presence of a long group I intron in A. nederlandensis Nl64, but also in the differential 

growth ability at different temperatures. 

One sorocarp formation in one Allovahlkampfia strain (the BA isolate) could be more a 

plesiomorphic artifact and does not necessarily lead to the inclusion of allovahlkampfiids 

into the family Acrasidae (Brown et al. 2012). Sorocarps were not formed by any of the new 

Allovahlkampfia strains in the media tested and has only been observed once (Brown et al. 

2012). Therefore, taking into account clear phylogenetic differences we propose to keep 

these two genera separately without unifying both into a single family Acrasidae (Brown et 

al. 2012) until more information is obtained on other lineages that gap Allovahlkampfia and 

Acrasis, such as strain AND12. The formation of a simple sorocarp within the BA strain of 

Allovahlkampfia was also reported to be very distinct from the ones in the genus Acrasis. 

Taken together, a clear separation even at the family level can be inferred between acrasiids 

and allovahlkampfiids. ITS sequences of species within Acrasis and consequent phylogenetic 
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analysis of these are needed and will eventually clarify the designation on higher levels 

between acrasiids and allovahlkampfiids.  

Our phylogenetic analyses also indicate that Allovahlkampfia is sister to the soil amoeba 

AND12 (Lara et al. 2007a). Due to significant sequence variations we agree with De 

Jonckheere et al. (2011b) and consider it as a separate genus. This organism is of specific 

interest as it bridges the genus Allovahlkampfia, where only once a form resembling an 

acrasid slime mold has been reported (Brown et al. 2012), with the purely acrasid slime mold 

forming genus Acrasis (Brown et al. 2012). No stage of soil amoeba AND12 that resembled 

an acrasid slime mold has been described yet. Therefore it is possible that the ability to form 

sorocarps might have been present in the progenitor of all organisms within that family, but 

has been lost in several species inside the genus Allovahlkampfia. It is also possible that 

individual Allovahlkampfia species only rarely form sorocarps and under highly specific 

conditions which are not yet known. But as currently sorocarp formation in Allovahlkampfia 

seems rare, at least under laboratory conditions, and detailed information on species that 

bridge the genera Acrasis and Allovahlkampfia are lacking, further research is needed in 

order to propose a sensible prediction on the higher level taxonomic affinities between both 

genera. 

Pagea alta Tib23 undoubtedly represents a new genus based on phylogenetic information 

from both the 5.8S and SSU rDNA. Based on morphology, P. alta Tib23 shares several 

features with the closely related genera Paravahlkampfia and Fumarolamoeba such as high 

eruptive activity and the presence of both hyaline and granular regions (Figure 3). The 

presence of pronounced uroidal filaments, a single nucleus and a limax shape during 

locomotion differentiates P. alta Tib23 from Fumarolamoeba and makes it similar to 

Paravahlkampfia. Cyst sizes are, however, smaller than reported for any Paravahlkampfia 

species and in the lower range of cysts of Fumarolamoeba. Unfortunately, the strain went 

extinct before further morphological investigations and growths tests could be performed, 

so we are unable to compare specific features distinguishing it from other genera. 

Nevertheless, the phylogenetic information from both the SSU rDNA and 5.8S genes prove 

that Fumarolamoeba is the sister genus, and both are strongly different from the genus 

Paravahlkampfia. 
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The establishment of the genus Fumarolamoeba (De Jonckheere et al. 2011b) is appropriate 

and is supported by our analyses, and P. alta Tib23 proves to represent its closest relative. 

Considerable sequence dissimilarity suggests that P. alta Tib23 and several uncultured 

sequences (Valster et al. 2009, Valster et al. 2010, Valster et al. 2011, Farhat et al. 2012) 

should be considered as a separate genus, most likely containing several independent 

species. 

Ecological implications 

A. tibetensis Tib32, A. paratibetensis Tib50 and A. neotibetensis Tib191, and the new genus 

P. alta, were isolated from extreme altitudes in Tibet. Interestingly, De Jonckheere (2006) 

detected distinct species in the genus Naegleria that were identical in the arctic and sub-

antarctic, but have not been detected anywhere else. We suspect that these particular 

Naegleria spp. might also be present at high altitude, but we were unable to isolate any 

Naegleria strain from the high altitude in Tibet. Maybe this is due to the isolation method 

used in our investigation, which is not the common procedure for isolating Naegleria strains. 

Also Robinson et al. (2007) described two closely related Tetramitus species both from cold 

and alpine sites.  

Species of the class Heterolobosea have often been isolated from extreme environments 

such as low pH (Amaral-Zettler et al. 2002, Baumgartner et al. 2009), high salinity (Park and 

Simpson 2011) and extreme heat (De Jonckheere et al. 2011a) or cold (De Jonckheere 2006). 

In general it seems that strains of heteroloboseans can easily adapt to adverse conditions, 

as, in addition to those species isolated form high altitudes, A. sardiniensis Sar9 and 

A. parasardiniesis Sar37 came from hot and dry soil in Sardinia. Further, 

T. thermoacidophilus (Baumgartner et al. 2009) is an extreme thermophile (54 °C) and 

acidophile (pH 1 to 5), while most of the closely related Tetramitus spp. grow under ‘normal’ 

conditions. This suggests that a large variety of vahlkampfiid species are resistant to extreme 

environmental conditions, and might carry out important ecological functions in these 

environments. The environmental niche of closely related organisms seems also to be large 

within the genus Allovahlkampfia as the closely related strains Nl64 and Tib32 were isolated 

at very distant locations from soils, while ‘S. palustris’ renamed here A. palustris (see above), 

was isolated from temperate freshwater. Therefore, tolerance of extreme conditions seems 
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not a characteristic of the genus, apparently many heterolobosean taxa show a marked 

tendency toward adaptation to extreme environments. 

All genera within the family Allovahlkampfiidae seem to have a ubiquitous distribution and 

contain soil and freshwater species with a broad environmental niche.  

Diagnosis 

Genus Allovahlkampfia  

Uninucleated amoebae, without a known flagellate stage, sharing eruptive pseudopodia 

formed during locomotion. Locomotive form limax or flabellate with eruptive pseudopodia. 

Uroidal filaments of different lengths often present during locomotion. Size and shape of 

amoebae strongly differing even within strains. Also the spherical cysts without pores 

produced in culture vary strongly in size. Usually no distinct multicellular stage formed. 

No growth observed at 37 °C.  

Food: mainly bacterivorous, some showing facultative feeding on yeast  

Habitat: Soil, freshwater or tree bark 

Molecular patterns: sequences of both SSU and 5.8S rDNA with > 95 % similarity between 

strains, with diverse molecular sequence patterns such as motif 5’ - TACACTT - 3’ in helix 8 

only shared by members in this clade. Closest phylogenetic relationship based on the SSU 

rDNA with soil amoeba AND12 (~ 10 % bp difference) and the genus Acrasis (> 15 % bp 

differences). All species show sequence differences in the V4 region of the SSU rDNA. 

Species A. sardiniensis (Sar9), A. parasardiniensis (Sar37), A. nederlandensis (Nl64), A. 

tibetensis (Tib32), A. paratibetensis (Tib50) and A. neotibetensis (Tib191) 

A. sardiniensis Sar9 

Diagnosis: Length of trophozoites among the smallest in Allovahlkampfia ranging from 

18.2 - 28.8 µm (average 23.6 µm) in length and 3.6 - 5.2 µm (average 4.6 µm) in width. 

Locomotion usually in a limax form, but often also flabellate. No pronounced uroidal 

filaments formed. Cyst diameter 5.6 µm - 10.8 µm (average 7.4 µm). 
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As the morphology is very similar to the type species of the genus Allovahlkampfia, the 

species can only be identified by ITS and / or SSU rDNA sequences (EBI accession N°s: 

KF547907 and KF547914, respectively). It has a specific length and sequence in both the ITS1 

(163 bp) and ITS2 (128 bp) and the molecular sequence profile 

5’ - TTCAGCAATGGAGGAACGT - 3’ in V4 of the SSU rDNA allowing its identification. 

Type locality: the type strain A. sardiniensis Sar9 isolated on the island of Sardinia (N40°46’, 

E9°104) at 181 m altitude from grassland soil under a cork oak silvo-pastoral system (Bagella 

et al. 2013).  

Reference material: The culture is maintained in the cryopreserved state in liquid nitrogen at 

the Culture Collection of Algae and Protozoa (CCAP) accessioned as Allovahlkampfia 

sardiniensis strain Sar9 under number CCAP 2502/1. 

A. parasardiniensis Sar37 

Diagnosis: Length of trophozoites ranging from 20.8 - 30.0 µm (average 23.8 µm) with very 

small width of 3.4 - 6.0 µm (average 4.6 µm). Locomotion almost exclusively in a limax 

shape. Uroidal filaments occasionally produced, sometimes as long as the cell body. Cyst 

diameter 5.4 - 8.4 µm (average 6.6 µm). 

Only molecular sequences provide reliable evidence for the designation of this species (EBI 

accession N°: KF547908 and KF547915, respectively). Specific length and sequence in both 

the ITS1 (117 bp) and ITS2 (130 bp). Length of the 5.8s rDNA (163 bp in contrast to 161 bp in 

other allovahlkampfiids) and the molecular sequence profile 5’ - TCGGTCTCCGGGTGG 

GTTAC - 3’ only shared with A. neotibetensis. However, A. parasardiniensis possesses a 

unique sequence profile 5’ - ATCTCCAGT - 3’ in the beginning of V4. 

Type locality: Type strain A. parasardiniensis Sar37 isolated on the island of Sardinia 

(N40°46’, E9°104) at 181 m altitude from grassland soil under a cork oak silvo-pastoral 

system (Bagella et al. 2013). 

Reference material: The culture is maintained in the cryopreserved state in liquid nitrogen at 

the CCAP accessioned as Allovahlkampfia parasardiniensis strain Sar37 under number 

CCAP 2502/2. 
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A. nederlandensis Nl64 

Diagnosis: Length of trophozoites is the longest found in the genus, in the range of 

21.8 - 50.8 µm (average 33.2 µm), width 3.6 - 8.6 µm (average 5.8 µm). Despite large 

trophozoites, very small cysts formed (5.0 - 7.8 µm, average 6.2 µm). Locomotion mostly 

flabellate with long uroidal filaments, sometimes as long as the cell body. Cyst diameter 

5.6 - 10.8 µm (average 7.4 µm). Very fast growth in liquid cultures, but the only species of 

the genus not growing at 30 °C. 

Identification only possible with phylogenetic information. The molecular sequence profile 

5’ - CTCAGCAATGGGGAACGC - 3’ in V4 specific for A. nederlandensis. (EBI accession N°: 

KF547909 and KF547916, respectively). The type strain has a long group I intron (1,358 bp) in 

the SSU rDNA. 

Type locality: type strain A. nederlandensis Nl64 isolated from a pasture soil in the 

Netherlands (N52°06′, E6°00′) at 57 m altitude. 

Reference material: The culture is maintained in the cryopreserved state in liquid nitrogen at 

the CCAP accessioned as Allovahlkampfia nederlandiensis strain Nl64 under number 

CCAP 2502/3. 

A. tibetensis Tib32 

Diagnosis: Length of trophozoites 27.6 - 36.2 µm (average 30.0 µm), width 5.0 - 8.8 µm 

(average 7.4 µm). Locomotion mostly flabellate with less pronounced uroidal filaments. Cyst 

diameter 5.0 - 8.2 µm (average 6.6 µm). 

Specific identification only possible with detailed molecular analyses, as sequences of both 

the ITS region and SSU rDNA are similar to those of A. nederlandensis. However, the 

molecular sequence profile 5’ - CTCAGCGATGGGGAACGC - 3’ in V4 is specific for 

A. tibetensis. (EBI accession N°: KF547910 and KF547917, respectively). 

Type locality: type strain A. tibetensis Tib32 isolated from a high altitude soil in Tibet 

(N29°49’, E92°20) at 5033 m altitude. 

Reference material: The culture is maintained in the cryopreserved state in liquid nitrogen at 

the CCAP accessioned as Allovahlkampfia tibetensis strain Tib32 under number CCAP 2502/4. 
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A. paratibetensis Tib50 

Diagnosis: Length of trophozoites 21.2 - 31.2 µm (average 25.2 µm), width 5.6 - 9.2 µm 

(average 6.6 µm). Locomotion limax or flabellate with pronounced uroidal filaments, often 

much longer then the moving cell. Very fast production of cysts even in young cultures 

(~ 5 days) with diameters of 5.8 - 9.2 µm (average 8.0 µm). 

Specific identification only possible based on sequence information of the ITS region and SSU 

rDNA. Close sequence similarity to Heterolobosea OSA but the molecular sequence profile 

5’ - GCCTTTTGGTCTCCAGGG - 3’ in V4 specific for A. paratibetensis. (EBI accession N°: 

KF547911 and KF547918, respectively). 

Type locality: type strain A. paratibetensis Tib50 isolated from a high altitude soil in Tibet 

(N29°42’, E92°10) at 4149 m altitude. 

Reference material: The culture is maintained in the cryopreserved state in liquid nitrogen at 

the CCAP accessioned as Allovahlkampfia paratibetensis strain Tib50 under number 

CCAP 2502/5. 

A. neotibetensis Tib191 

Diagnosis: Length of trophozoites 19.4 - 26.4 µm (average 23.0 µm), width 4.2 - 7.6 µm 

(average 6.2 µm). Locomotion predominantly limax. Uroidal filaments mostly present, but 

shorter than moving cell. Cyst diameter 6.4 - 8.6 µm (average 7.6 µm). Fast growth at room 

temperature. 

Characteristic 5.8S rDNA sequence length of 163 bp and the molecular sequence profile 

5’ - TCGGTCTCCGGGTGGGTTAC - 3’ shared with A. parasardiniensis. Length of the ITS1 and 

ITS2 are, however, longer in A. neotibetensis and differ at several positions (EBI accession N°: 

KF547912 and KF547919, respectively). Furthermore, A. neotibetensis also has the unique 

profile 5’ - ATTCCCAGT - 3’ in the beginning of V4.  

Type locality: the type strain A. neotibetensis Tib191 was isolated from a high altitude soil in 

Tibet (N29°52’, E92°34) at 4149 m altitude. 
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Reference material: The culture is maintained in the cryopreserved state in liquid nitrogen at 

the CCAP accessioned as Allovahlkampfia neotibetensis strain Tib191 under number 

CCAP 2502/6. 

Genus Pagea 

Uninucleated amoebae, no known flagellate stage, exhibiting high eruptive activity while 

forming pseudopodia. Locomotive form limax. Uroidal filaments, sometimes branching, 

formed during locomotion, often longer than actual cell body. Cysts of almost equal 

diameter but of different shape varying from round to wrinkled forms. 

Food: bacterivorous  

Habitat: Soil 

Only one species known. But environmental sequences might represent other species of the 

genus. 

Pagea alta Tib23 

Length of trophozoites 14.8 - 31.1 µm (average 20.9 µm) in length and 3.9 - 13.4 µm 

(average 7.9 µm) in width. Locomotion with highly eruptive pseudopodia in limax form. 

Pronounced uroidal filaments formed. Cysts differing little in size (diameter 5.3 - 6.2 µm, 

average 5.7 µm) but differing in shape (wrinkled to round). Very distinct molecular 

sequencing profile both in the entire ITS region, including the 5.8S rDNA, and SSU rDNA (EBI 

accession N°: KF547913 and KF547920, respectively). 

Type locality: type strain P. alta Tib23 isolated from a high altitude soil in Tibet (N29°52’, 

E92°34) at 4149 m altitude. 

Reference material: the culture went extinct, but frozen DNA as a type material is available 

upon request.  
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Supplementary 

 

Supplementary Figure 1. Maximum likelihood tree based on the entire ITS region focusing on 
Allovahlkampfia spp. Support values at each node presented for RAxML / BI. RAxML ML bootstrap values and BI 
posterior probabilities equal to 100 % / 1.00, respectively, are represented by a black dot, whereas – is placed 
for unrecovered topologies and support values < 50 % (RAxML) / 0.50 (BI). 
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 Supplementary table 1. SSU rDNA sequence motifs of Pagea alta Tib23, closely related uncultivated clones, Fumarolamoeba ceborucoi, and Paravahlkampfia spp.; - : SSU 
region not sequenced 

 

  

Helix # 
Starting position 
(in F. ceborucoi) 

Pagea alta Tib23 
Uncultured eukaryote (HQ998889, 
HQ999738, HQ999786, EU860662, 
GU970145, GU970340, GU970378) 

Uncultured eukaryote 
GQ861576 

Fumarolamoeba 
ceborucoi 

Paravahlkampfia spp. 

5 44 GTCTT GTCTT - GCTAG GCTCG 
7 116 CTAGCTTCTTTTAT CTAGCTTAAAGTTAA - CTAGCTTCTTTTAT CTAGTTTWTCTTAC 

9-10 165 GAACCAAAGCT GAACCAAAGCT - GAATCAACGTC GCTCAAAAGCC 
11 268 GGA GGA - GAA GAG 
12 319 GGCCGTCA GGCCGTCA - GGCTATCA GACACTTA 
13 335 GAAAATTGGGGTTT GAAAATTGGGGTTT - GGGAATCAGTGTTT GGGAATCAGTGTTC 
15 381 T T - C G 
16 426 AT AT - AT AATT 
17 454 TCCTTC TCCTTC - TCCTTA ACCTCA 
18 505 CAAATT CAAATT - CAAACT TAAATC 

18-19 523 ACA ACA - ACA TCG 
32 2245 T - T T C 

35-36 1733 GCGGGA - ACGGGA GCGGGA GCGGGG 
36 1751 AT - AT AC TT 

36-38 2047 G - G G T 
37 1761 ATGAG - ATGAG GTTAA GGAGA 
37 1780 ATATG - ATATG ATTTG GA 
37 1799 TTTTGGAA - TTTTGGAA CTCTGGAA CTTTGATT 
43 1882 TTAAC - TTAAC TTAAC CTAAT 

43-44 1978 A - A A G 
44 2010 A - A A G 
45 2080 C - C T T 

45-46 2084 G - G C A 
47-48 2190 A - A G G 
48-49 2234 T - T T C 
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Part 2 

Diversity analyses characterizing soil protist 

communities with four different techniques 
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Abstract 

Drought and heavy rainfall are opposite conditions expected to result from increasingly 

extreme weather conditions during climate change; and both scenarios will strongly affect 

the functioning of soil systems. However, little is known on the specific responses of soil 

microorganisms, whose functioning is intimately tied to the magnitude of the water-filled 

pore space in soil. Soil heterotrophic protists, being an important part of aquatic soil 

organisms are considered as key-regulators of microbial carbon and nutrient turnover. We 

investigated the responses of distinct protist taxa to changes in soil water availability using a 

modified enumeration technique that enabled quantification of protist taxa up to genus 

level. Our study revealed a non-linear shift of protist abundance with decreasing soil water 

availability and this became already apparent at a maximum water-filled pore size of 

≤ 40 µm. Generally, taxa containing large specimen were more severely affected by drought, 

but responses to either drought or rewetting of soils were not uniform among taxa. Changes 

in water availability may thus affect the functioning of soil ecosystems long before 

aboveground “drought” effects become apparent  
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Introduction 

Global temperature has increased and is expected to further increase in the coming century, 

with annual daily maximum temperature rising by about 3 °C by mid-21st century and by 

about 5 °C by the late 21st century, resulting in more frequent and extreme drought events 

in many parts of the world (IPCC 2012, Sherwood et al. 2013). The term ‘drought’ is generally 

associated with the damage of plants due to lack of soil water (Kramer 1983), but limited 

water availability can impair the function of soil ecosystems long before symptoms become 

visible aboveground. This is especially true for processes performed by microbial soil 

organisms, whose functions are intimately tied to the magnitude and connectivity of water 

films around soil particles. We are, however, still largely ignorant of specific responses of soil 

organisms to these global change phenomena (de Vries et al. 2012a, de Vries et al. 2012b, 

Bradford 2013).  

Soil protists, due to their high biomass, and with estimated annual production rates of 

> 100 kg ha-1 (Bouwman and Zwart 1994) are considered to be key players in carbon (C) and 

nutrient cycling in soils (Schröter et al. 2003, Christensen et al. 2007, Crotty et al. 2012b). 

Protists are the most basal microbial consumers, being a fundamental source for C transfer 

to higher trophic levels in the soil food web (Crotty et al. 2012a). Direct effects of protists 

result from their high grazing impact on microbial communities, but more important appear 

indirect effects of protists that lead to a stimulation of microbial turnover and respiration 

(Clarholm 1985, Bonkowski 2004, Anderson 2008) and plant performance (Koller et al. 2013). 

For example laboratory experiments with planted soil have shown that consumption of 

microbial biomass by protists led to a 20 - 40 % increased microbial activity and CO2-C 

release (Alphei et al. 1996, Rosenberg et al. 2009) and microbial liberation of CO2 from 

decomposing plant litter increased up to 100 % in presence of protists (Bonkowski et al. 

2000a). 

Despite living in soil, protists are aquatic organisms, and their function ultimately depends 

on the availability of water in the three-dimensional pore space in soil availability (Anderson 

2000, Griffiths et al. 2001). Decreasing soil water availability has been shown to reduce 

protist replication rates due to limited mobility of protist grazers in the microvolumes of soil 

water and hence reduced accessibility to bacterial prey (Darbyshire 1976). This can result in 

significantly negative effects on soil nutrient cycling and plant growth (Kuikman et al. 1991). 



Part 2 – Chapter 5 Protist community affected by soil moisture Introduction 

 

134 

Protists, are extremely diverse and individual taxa differ fundamentally based on 

phylogenetic relatedness, morphology and behavior (Cavalier-Smith 1998, Adl et al. 2012). 

The size of individual taxa can differ by at least 3 orders of magnitude in soil (Foissner 1998, 

Finlay 2002, Glücksman et al. 2010). Consequently, taxon-specific dependencies on soil 

water levels are likely, simply because large, free-swimming taxa will be more vulnerable to 

desiccation than small, surface-associated forms. However, it is largely unknown, how 

complex, natural protist communities respond to altered soil moisture regimes.  

Taxonomic studies on natural populations of soil protists have mainly been restricted to 

groups with larger specimens that dominate the upper humus layers and share fixed, readily 

determinable morphological characters, such as testate amoebae and ciliates (Bamforth 

1971, Foissner 1987, 1999b, Bamforth 2007, Krashevska et al. 2007). In comparison, 

knowledge on the taxonomic composition of communities of flagellates and naked amoebae 

is extremely limited, despite these groups contain a huge diversity of soil species, and vastly 

outnumber other groups in the mineral soil horizons (Elliott and Coleman 1977, Finlay et al. 

2000, Scharroba et al. 2012, Domonell et al. 2013). Unlike suspension and filter feeders such 

as many ciliated protists, naked amoebae and amoeboid flagellates can directly graze on the 

bacterial colonies and biofilms attached to substrates (Darbyshire et al. 1989, Parry et al. 

2004), and their flexible bodies seem particularly suited to survive in the tiny water films 

around mineral particles. They still can access prey in water-filled soil pores of only 2 µm in 

diameter with help of their elongate pseudopodia (Elliott et al. 1980, Darbyshire 2005), but 

their overall activity is expected to decline. Profoundly fast changes in abundance of 

flagellates and naked amoebae were reported with increasing soil moisture using 

cultivation-based enumeration studies (Clarholm 1981, Anderson 2000, Bischoff 2002), but 

none of these studies aimed to resolve the taxonomic composition of the protist 

communities. Recent high-throughput soil surveys confirmed strong impacts of moisture on 

the community composition of soil protists (Baldwin et al. 2013, Bates et al. 2013), but these 

methods in turn failed to provide quantitative information on protist abundance (Medinger 

et al. 2010, Pawlowski et al. 2011, Weber and Pawlowski 2013, Stoeck et al. 2014). Further it 

is unclear if protist abundance will decline in a linear manner. Since protists are so extremely 

diverse, a linear decline of total protist abundance can be assumed. Therefore, detailed 

quantitative studies distinguishing the responses of specific protist taxa to changes in soil 

moisture regimes are needed. 
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The purpose of our study was to obtain quantitative estimates of the abundance of 

amoeboid soil protists with high taxonomic resolution, and to relate their expected changes 

in community composition to specific moisture conditions. The study was performed as part 

of a controlled semi-field experiment in Terrestrial Model Ecosystems (TME) (Knacker et al. 

2004). We expected higher abundances of protists at higher soil water availability as habitat 

space and connectivity between particles would increase with increasing water films. 

Further, we hypothesized stronger changes in community composition and shifts towards 

smaller species at decreasing water availability.  

Materials and Methods 

Study site and experimental setup 

A controlled semi-field experiment in terrestrial model ecosystems (TME) consisting of 

undisturbed soil cores was set up close to Flörsheim, Germany (N50°04′; E8°40′) in order to 

manipulate soil moisture and evaluate effects on soil meso- and microfauna (www.bik-f.de). 

These soil cores (30 m diameter, 40 cm depth) were excavated from a meadow on alluvial 

clay. Soil texture was a silty clay with 9.9 % sand, 41.9 % clay and 28.2 % silt, that contained 

2.93 % organic matter (pH (CaCl2) = 6.9) and had a water holding capacity of 58.7 %.  

After the TME had been extracted in the field they were incubated in plastic cylinders of 

corresponding size, which could be drained at the bottom on temperature-controlled carts 

under laboratory conditions (see Knacker et al. 2004 for details of the TME approach). The 

temperature of the soil cores was kept at 18 - 24 °C and 300 ± 50 µE m-2 s-1 light intensity. 

The volumetric soil water content of each TME was monitored in the upper 6 cm using hydra 

probes (accuracy ± 3 % v/v, ecotech Umwelt-Meßsysteme GmbH, Bonn, Germany). This 

monitoring enabled to adjust the daily irrigation volumes individually for each TME replicate. 

Depending on the watering volume either a pump disperser or “rain heads” (i.e. acrylic glass 

vessels with micropipettes at their bottom) were used for irrigation (Knacker et al. 2004). 

Moisture manipulation started at the beginning of the experiment (start: March 29th, 2013) 

in all TMEs, aiming for 30 %, 50 % and 70 % of the water holding capacity (WHC). The desired 

WHC levels were reached after 2, 9, and 31 days after starting the study, respectively. One 

week before harvest (harvest: July 19th, 2013), the irrigation scheme was changed in half of 

the TMEs in order to simulate heavy rain events and samples checked daily to retain the 
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targeted moisture values. Individual moisture treatments were replicated three times 

(Figure 1).  

To estimate the diameter of water filled pores at a given moisture level, water holding 

capacities were converted into water potentials using the SPAW graphical interface (Saxton 

and Rawls 2006). The pore neck diameter of the largest water-filled pores (µm) was then 

calculated using the formula D = 300 * P-1, where D is the pore neck diameter of the largest 

water-filled pores (μm), and P is the water potential (kPa) according to Carson et al. (2010). 

By calculating maximum water filled pore sizes at any given soil moisture level, it might be 

possible to infer the habitable pore space and to generalize results on protist performance at 

different soil moisture levels. 

 

Figure 1. Left: Schematic diagram of the experimental design (TME: Terrestrial Model Ecosystem; WHC: Water 
Holding Capacity); largest water filled pore sizes (µm) estimated according to SPAW graphical interface; 
Treatment names as they are used in the present manuscript; they reflect the aspired soil moisture during the 
first 15 weeks and during the last week of the experiment. 

After destructive sampling the TME’s, soil samples were stored at 5 °C for up to one week. 

Soil water content was determined after oven drying of a small subsample for 2 days at 

80 °C. The mean values are depicted in Figure 1. 
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Enumeration of protists 

Protist numbers were determined by a liquid aliquot method (LAM) according to Butler and 

Rogerson (1995) with slight modifications to simplify the procedure. Briefly, 20 g fresh 

weight soil of each replicate was homogenized by vigorous shaking in a plastic bag for 10’’. 

A subsample of 1 g dry wt was suspended in 200 ml Neff’s Modified Amoeba Saline (NMAS; 

Page 1976) by vigorous shaking at 100 rpm, on an orbital shaker for 10’ (Köttermann, 

Germany) followed by inversing the suspension and shaking vigorously for 10’’ to detach 

protists from soil particles. The homogenized samples were left to settle for 5’, before 5 µl 

aliquots from the centre of the suspension were inoculated each to one of 144 wells of two 

96 well microtitre plates (flat bottom, Sarstedt, Germany) which were filled each with 195 µl 

0.15 % wheat grass medium (WGM) (Weizengras, Sanatur, Singen, Germany). Plates were 

sealed with Parafilm and incubated at 15 °C in the dark. Each well was checked twice after 

14 and 28 days for presence of protists with an inverted microscope (Nikon Eclipse TS100) at 

100 x and 200 x magnification. 

Protists were determined and grouped to morpho-group level according to Lee et al. (2000), 

Smirnov and Brown (2004), Smirnov et al. (2011b) and Jeuck and Arndt (2013). Naked 

amoebae were identified to genus level whenever possible. The most recent phylogeny of 

amoebae was then used to combine individual genera together into higher taxonomic levels 

(Smirnov et al. 2011b). Figure 2 gives an overview of all genera of Amoebozoa identified with 

their respective phylogenetic classification. Small amoebae (< 7 µm) could not be reliably 

identified by light microscopy and were grouped together as “Nanoamoebae”, which 

consequently represents an artificial taxonomic assembly of amoeba. 

Finally, total numbers of flagellates and amoebae were calculated from the cumulative 

abundances in the 96 well-plates, the relative proportions of individual groups were 

determined and corrected using a Poisson distribution. 
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Figure 2. Phylogenetic classification of the identified amoebae according to Smirnov et al. (2011b) and morpho-
groups according to Smirnov and Brown (2004). 

Statistical analyses 

Because relative ratios of protist taxa were not independent of each other, the data were 

analysed by multivariate analysis of variance (MANOVA, Roy’s Greatest Root). In case of 

significant MANOVA followed a one-way analyses of variance (ANOVA), i.e. ‘protected 

ANOVA’ (Scheiner and Gurevitch 2001). 

Relative contributions of individual protist taxa were arcsinus transformed to approximate 

homogeneity of variance. All ANOVAs were performed in R version 3.0.2 (R foundation for 

statistical computing; available at http://www.R-project.org). Spearman rank correlations 

between protist taxa were performed to investigate if taxa responded similar to changes in 

moisture levels. Correlations were tested for significance using GraphPad Prism software, 

version 5 (GraphPad Software, San Diego, CA, USA). The Shannon–Weaver index was applied 

to compare protist diversity between treatments (Shannon and Weaver 1949), 

    ∑  

 

       

where    is the proportion of the ith morpho-group. 

The Simpson index (D) was applied to determine the evenness of protist communities 

(Simpson 1949) 

    ∑
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where    is the number of individuals of one morpho-group and   is the total number of 

individuals. 

Results 

Abundance 

As expected, total protist numbers were significantly affected by soil moisture levels 

(F[5, 12] = 3.39, p < 0.05). Total protist abundance differed 8-fold between the two most 

extreme moisture treatments, i.e. Tdry-dry and Tmoist-wet (Figure 3). Total flagellate numbers 

tended to increase with increasing soil moisture (F[5, 12] = 2.64, p = 0.08), but the higher 

number of total protists was mainly caused by an increased abundance of amoebae 

(F[5, 12] = 3.59, p < 0.05), which reached 7.2-fold higher numbers in Tmoist-wet compared to 

Tdry-dry (Figure 3). 

 

Figure 3. Total abundance of protists (individuals g
-1

 soil dry weight) showing the abundance of major clades of 
flagellates and amoebae with increasing soil moisture levels. For an explanation of moisture treatments see 
Figure 1. Underlined: Classes of amoebae; Means ± SD. Bars with different letter are statistically significant 
(Tukey’s HSD test; p ≤ 0.05). 
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Generally, protist numbers responded positively with increasing soil moisture contents. 

Overall both, flagellates and amoebae increased, but numbers of amoebae increased 

relatively stronger than flagellates as seen by the lower than 1:1 slope in Figure 4.  

Although a general uniform positive response of protist abundance to increasing soil water 

availability was observed, correlations revealed two distinct clusters of protists that 

responded more uniformly to each other. The Spearman’s rho revealed a statistically 

positive relationship between the amoeba classes the Discosea with both Tubulinea 

(ρ = 0.79, R² = 0.70, p < 0.001) and Variosea (ρ = 0.69, R² = 0.46, p < 0.001). Similarly 

Heterolobosea abundance changed parallel with the flagellate genera Euglenozoa (ρ = 0.7, 

R² = 0.45, p < 0.001), Cercozoa (ρ = 0.6, R² = 0.38, p < 0.01), and Chrysophyceae (ρ = 0.5, 

R² = 0.26, p < 0.01). 

 

 

Figure 4. Correlation of the abundances of flagellates to amoebae; dotted line: y = x. 

Almost all protist taxa could still be detected even in the extreme moisture treatments, but 

significant shifts in relative abundance of specific clades were detected in specific clades of 
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amoebae. For instance, amoebae of the class Discosea were most abundant in moist soils 

(Tmoist-wet and Tmoist-moist) averaging 7,900 ind g-1 dry wt soil. Numbers decreased to 33 % and 

15 % in Tdry-moist and Tdry-dry, respectively (F[5, 12] = 6.49, p < 0.01). Within Discosea, numbers of 

Longamoebia decreased most strongly with decreasing soil moisture (F[5, 12] = 5.02, p < 0.05), 

and among Longamoebia the genus Stenamoeba responded most sensitive to decreasing soil 

moisture (F[5, 12] = 13.92, p < 0.001; Figure 3), while the genus Acanthamoeba decreased only 

marginally at the lowest soil moisture treatment (F[5, 12] = 2.39, p = 0.09) (Figure 5). 

Heterolobosea increased in Tmoist-wet and decreased in Tdry-dry compared with Tmed-med, but the 

overall effect of soil moisture on Heterolobosea was only marginal (F[5, 12] = 2.74, p < 0.07).  

Among flagellates, both Cercozoa and Euglenozoa tended to increase in Tmoist-wet with 1.8- 

and 3.6-fold numbers, respectively compared to Tmed-med, while decreasing to 15 % and 22 % 

of Tmed-med in Tdry-dry, respectively, albeit with marginal significance (Cercozoa: F[5, 12] = 2.63, 

p = 0.08; Euglenozoa: F[5, 12] = 2.55, p = 0.09).  

 

 

Figure 5. Abundance of the genera Stenamoeba and Acanthamoeba within the order Longamoebia; 
Means ± SD. Bars with different letter are statistically significant (Tukey’s HSD test; p ≤ 0.05). 
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Community structure 

Amoebae always slightly dominated the protist community comprising between 59 and 69 % 

of total protist abundance. Within amoebae, the class Discosea represented always the 

numerically dominant group (28 - 49 % of all amoebae [OA], 16 - 31 % of all protists [OP]) 

with the exception of unidentified Nanoamoebae, which were dominant in Tdry-moist (44 % 

OA, 26 % OP) and Tmed-moist (36 % OA, 24 % OP). Nanoamoebae represented the second most 

abundant clade comprising 21 - 44 % OA (15 - 26 % OP). The classes Variosea (6 - 29 % OA, 

4 - 19 % OP), Tubulinea (10 - 21 % OA, 6 - 9 % OP,) and Heterolobosea (3 - 5 % OA, 2 - 4 % 

OP) were less abundant. At the genus level, Acanthamoeba represented always the most 

dominant genus of all identified amoebae comprising between 11 to 40 % of all amoebae, 

while the genera Cochliopodium and Flamella were always rare (≤ 3 %). 

Flagellates comprised 33 - 43 % OP. The dominant flagellate taxa were Cercozoa (39 - 79 % of 

all flagellates [OF], 19 - 24 % OP), followed in descending order by Euglenozoa (12 - 33 % OF, 

5 - 13 % OP), Chrysophycea (7 - 21 % OF, 3 - 7 % OP) and others (0 - 12 % OF, 0 - 4 % OP). On 

a finer taxonomic resolution, cercomonads were most abundant (32 - 77 % OF, 

16 - 24 % OP), followed by bodonids (11 - 30 %, 4 - 12 % OP) and chrysomonads (7 - 21 % OF, 

3 - 7 % OP). 

Diversity 

Neither overall protist diversity nor evenness were altered by moisture treatments 

(Figure 6). Only the diversity of flagellates was reduced in Tdry-dry compared to Tmed-med from 

0.92 to 0.61 (p < 0.05). 

Similarly, the overall ratio of amoebae to flagellate numbers was not affected by soil 

moisture. Some individual groups, however, responded with a proportional shift in 

abundance to soil moisture changes. The contribution of the class Variosea to the protist 

community peaked their maximum contribution peaked in Tmed-med and reached its minimum 

in Tdry-dry (F[5, 12] = 3.11, p < 0.05), which was caused by a reduction of larger, branched 

amoebae (F[5, 12] = 4.47, p < 0.05). The genus Stenamoeba was strongly reduced to 1 % OP 

(2 % OA) in Tmed-moist and a to 3 % OP (4 % OA) in Tdry-dry, while Stenamoeba contributed most 

to the abundance of protists (12 %) and amoebae (18 %) in Tmoist-moist (F[5, 12] = 4.26, p < 0.05). 

None of the flagellate groups were affected by soil moisture.  
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Figure 6. Relative abundance of major classes of flagellates and amoebae. Underlined: Classes of amoebae. 

Habitable pore space and protist performance  

As expected, reduced water availability reduced protist numbers, but surprisingly, strong 

reductions in protist abundance occurred only at the most extreme drying treatment when 

the maximum size of water filled pores (Pmax) had dropped to ~ 0.25 µm. Protist community 

composition was extremely resilient, and did almost not change even at this extreme 

dryness. Moistening the dry soil for one week to Pmax > 75 µm increased total protist 

numbers fourfold to exactly the same level as in Tmed-med where Pmax was ~ 38 µm. 

Moistening Tmed-med to Pmax > 75 µm for one week, however, did not affect protist 

abundance at all. Significantly higher protist numbers were only observed at an initial 

Pmax ≥ 75 µm, as in Tmoist-moist and Tmoist-wet (Figure 2). Using these rough estimates on 

habitable pore space, we propose the following model:  

Highest protist abundance was observed when all soil pores larger than 100 µm were water-

filled. When the habitable pores space became smaller (~ 75 µm), the abundance of the 

protist community slightly decreased, but dropped almost by half, when the size of water-

filled pores became lower than ~ 50 µm. Extrapolating these data to protist abundance at 

Pmax of ~ 1 µm, where the protist abundance had 10-fold decreased and most likely only 
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few cysts remained, indicates that the protist community might have already sharply 

declined at a Pmax of ~ 10 µm (Figure 7). However, individual taxa reacted differently to 

differences in water availability. As expected, the largest protists decreased with increasing 

soil dryness, but in particular Nanoamoebae dominated in dry soils and not flagellates as we 

initially expected. Other taxa reached highest numbers only in fully water-saturated soils and 

readily decreased when the habitable pore space became smaller, e.g. Stenamoeba (Figure 

7-2). Other taxa appeared to be more resistant to decreasing water and only decreased at a 

later stage of drought (Pmax < 60 µm), e.g. the abundant genus Acanthamoeba (Figure 7-1). 

Finally, some clades such as Variosea became relatively more abundant when Pmax was still 

~ 30 - 40 µm when relative numbers of Stenamoeba and Acanthamoeba were already in 

decline (Figure 7-3).  

Interesting, individual responses of protist taxa to increased soil water availability at the end 

of the experiment strongly differed from their responses to decreasing soil water availability. 

After rewetting soils for one week, Variosea showed maximum numbers at a small Pmax 

~ 10 - 40 µm, but did not further increase with increasing soil moisture, while Acanthamoeba 

showed a constant increase in abundance with increasing water availability. Numbers of 

Stenamoeba on the other hand only started to increase when Pmax was larger than 

~ 50 - 80 µm. 
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Figure 7. Conceptual graph of drying and re-wetting on relative abundance of three different taxa of amoeboid 
protists: Acanthamoeba (1), Stenamoeba (2) and Variosea (3) at different soil moisture levels, expressed as 
largest water-filled pore size (LWPS). Acanthamoeba peaked below 70 LWPS, Variosea at ~ 30 µm LWPS. 
Stenamoeba had highest relative numbers at highest LWPS, and gradually decreased with decreasing LWPS. All 
Amoebae strongly declined below ~ 25 µm LWPS. Active trophozoits could still be detected at 0.1 µm LWPS. 

Discussion 

Total protists 

Protist densities in soil will mainly be regulated by the availability of water and food. As 

expected, protist numbers strongly decreased on average from 32,500 to 4,000 ind. g-1 soil 

dry wt in wet to dry soil, respectively. This is well within the range reported for soil protists 

(Darbyshire 1994, Finlay et al. 2000, Domonell et al. 2013). However, measures of protist 

community composition, such as diversity and evenness did barely change within the range 

of 84 % to 26 % WHC of our soils. Amoebae were slightly more numerous than flagellates in 

all treatments, and amoeba did also benefit stronger from increased soil water content.  
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As protists essentially depend on the water layer connecting soil pores to move, feed and 

multiply, the habitat size of these organisms will increase or shrink with changing soil water 

contents. Consequently, maximum protist numbers are often found during moist seasons 

and after rainfall (Anderson 2000, Bass and Bischoff 2001, Rodriguez-Zaragoza et al. 2005). 

Interestingly, protist abundance did not increase in our study, when soils were kept at 

50 % WHC or brought from 50 % to 70 % WHC (Tmed-med and Tmed-moist). Foissner (1987) 

explained this effect with the accumulation of microbial antibiotics in moist soils, and 

meanwhile a strong chemical warfare of bacteria against protist grazers has been well 

confirmed (Matz and Kjelleberg 2005, Bonkowski and Clarholm 2012, Jousset 2012). Only 

when soil moisture levels were suddenly increased drastically, more than in our experiment, 

inhibitory substances are diluted and maximum protist numbers are observed. In addition, 

the quick recovery of protist abundances after drought may be explained by fast growth and 

recovery of other (prey) microorganisms few days after drought (Meisner et al. 2013, 

Fuchslueger et al. 2014). 

Due to their small size, protists can rapidly respond to increasing soil moisture regimes after 

drought. As mentioned above, it is well known that rewetting of air-dried soils will lead to 

strongly enhanced protist abundance (Foissner 1987). In a long-term study Anderson (2000) 

found precipitation, but not soil moisture, to be the most important environmental factor 

influencing the abundance of amoebae. Similarly, precipitation after a prolonged drought led 

to a 20-fold enhanced abundance of naked amoebae four days after rainfall (Clarholm 1981), 

and also Finlay et al. (2000) reported the period of 4 - 6 days after rewetting of air-dried soils 

to determine maximum numbers of flagellates. These findings support our results where 

protist numbers essentially recovered within one week in the Tdry-moist treatment, but the 

increase was not uniform. Individual taxa responded with different proportion than during 

decreased water availability and also the increase of protist abundance was not uniform 

with increasing soil water availability in the different treatments.  

Individual groups 

This is the first soil ecological study classifying individual amoebae according to recent 

phylogenetic classifications (Smirnov et al. 2011b, Adl et al. 2012). The individual 

distinguished clades of amoebae responded differently to changes in soil water availability. 

Since even closely related protist taxa exert different feeding strategies (Page 1977, Boenigk 



Part 2 – Chapter 5 Protist community affected by soil moisture Discussion 

 

147 

and Arndt 2002, Glücksman et al. 2010), drought-induced shifts in the relative abundance of 

specific protist taxa can be expected to influence the composition and functioning of 

microbial communities (Saleem et al. 2012). 

In line with the classic note of Page (1988) that Acanthamoeba is “the most frequently 

isolated and probably the most common genus of gymnamoebae, possibly even the most 

common free-living protozoon”, Acanthamoeba was also the most abundant genus in our 

study. Acanthamoeba have also been found to represent the most abundant group in 

deserts (Rodriguez-Zaragoza et al. 2005) and grassland soils (Elliott and Coleman 1977, 

Brown and Smirnov 2004). Our results indicate that significant shifts in protist community 

composition at decreasing soil water availability may occur well before these extreme values 

are reached. Surprisingly, the activity of Acanthamoebae in our study rapidly decreased 

below a Pmax of 40 µm. The limiting pore size for protist activity in soil has been estimated 

to be 3 - 6 µm, which may be reached at a water potential of -0.15 MPa, corresponding to a 

pF-value of 3.2 (Alabouvette et al. 1981), but more recent investigations have set this 

threshold of Pmax even to 2 µm (Darbyshire 2005). 

The functions of Acanthamoeba in soil systems have been intensively studied and it was 

shown that these amoebae can strongly control bacterial abundance, shape the bacterial 

community composition and positively influence plant growth (Bonkowski 2004, Kreuzer et 

al. 2006, Rosenberg et al. 2009, Bonkowski and Clarholm 2012, Koller et al. 2013). 

Acanthamoeba can tolerate long periods of dehydration (Rodriguez-Zaragoza et al. 2005) 

and correspondingly, we found that Acanthamoebae made up the highest proportions 

among protists in the driest soils, indicating their superior resistance to environmental 

stress. This is important since several Acanthamoeba strains can cause human infections or 

harbour pathogenic bacteria (Schuster and Visvesvara 2004, Khan 2006, Visvesvara et al. 

2007), revealing that targeted analyses of this genus are essentially needed to evaluate in 

more detail their functional role and niches of survival in soils. 

The group most strongly affected by moisture was the genus Stenamoeba. Its abundance 

peaked in treatments with the highest average soil water availability, indicating that these 

amoebae fundamentally depend on high water contents. This genus was long considered as 

being a single species within the genus Platyamoeba (now Vannella), and only recently it 

became an independent genus within a completely different subclass in Amoebozoa 
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(Smirnov et al. 2007). Meanwhile four new species of Stenamoeba have been described, two 

were amphizoic species isolated from fish organs (Dyková et al. 2010b) and two more from 

soils (Geisen et al. 2014), indicating that Stenamoeba is a species-rich genus. Characteristics 

of Stenamoeba in cultures are rapid growth and a low attachment to the substratum. The 

latter might therefore explain the changes caused by decreasing soil water availability.  

Since both Stenamoeba and Acanthamoeba responded strongly to moisture, the subclass 

and class combining both genera, i.e. Longamoebia and Discosea were affected by soil 

moisture availability. However, the detailed phylogenetic information retrieved in our study 

allowed us to clearly separate the responses of Stenamoeba and Acanthamoeba, which 

became only apparent at the higher taxonomic resolution used here. These results show 

that the way of grouping protist taxa can fundamentally alter the outcome of a study, and it 

is advisable to identify protists to the deepest taxonomic level possible.  

It is possible to differentiate the smallest taxa using light microscopy and grouped them 

together as Nanoamoebae, representing a variety of different families, among them most 

likely heteroboseans, Echinamoeba, Nolandella and most likely currently unknown amoebae, 

such as the recently described Micriamoeba (Atlan et al. 2012). Nanoamoebae generally 

comprised the majority of amoebae which is in line with other studies that reported highest 

numbers of small amoebae in soil (Elliott and Coleman 1977, Anderson 2000). Due to their 

slow motion compared to flagellates and extremely small size Nanoamoebae are easily 

overlooked in cultivation-based enumeration techniques. Their share was disproportionately 

high in the rewetted treatments suggesting that these small amoebae have faster recovery 

rates than larger amoebae. Their proportion increased particularly in the rewetted dry soil 

where their fast reproduction rates might have provided them with a decisive head start 

compared to larger protists such as Acanthamoeba (~ 3 - 5 x in biomass) and Variosea 

(~ 5 - 100 x in biomass). The latter, being the largest protist in this study, seem to be 

desiccation resistant and significantly increased in proportion among amoebae at 

intermediate soil moisture and were most abundant in soils with medium and high initial 

moisture.  

In conclusion, our detailed analysis of amoebae and flagellates revealed that amoebae and 

amoeboflagellates dominated the protist community. As expected, protist abundance was 

lowest in the driest conditions and highest in soils with highest moisture, while diversity was 
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decreased in the driest soil. Our study shows that most protist groups uniformly increase 

with higher soil moisture, but that some groups differ from these general patterns showing 

different responses to changes in soil moisture contents. We identified three strategies of 

amoebae on changes in soil moisture that will be essential for further studies evaluating the 

impact of climate change on soil organisms. As protists represent important components 

within soil ecosystems playing fundamental roles in nutrient cycling in soil food webs, it is 

essential to distinguish protist taxa in order to evaluate individual roles in nutrient cycling 

and to estimate the impact of potentially altered soil protist communities induced by the 

global change. 
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Abstract 

Acanthamoeba, a genus within the supergroup Amoebozoa, are very abundant soil protists 

with fundamental importance in nutrient cycling, but several strains can also act as human 

pathogens. The systematics of the genus is still unclear: currently 18 small-subunit (SSU or 

18S) ribosomal RNA sequence types (T1-T18) are recognized, which sometimes contain 

several different morphotypes; on the other hand, some morphological identical strains 

belong to different sequence types, sometimes appearing in paraphyletic positions. Here we 

cultivated 65 Acanthamoeba clones from soil samples collected under grassland at three 

separate locations in the Netherlands, in Sardinia and at high altitude mountains in Tibet. 

We obtained 24 distinct partial sequences, which predominantly grouped within sequence 

type T4 followed by T2, T13, T16 and “OX-1” (in the T2/T6 clade). Our sequences were 

98 - 99 % similar, but none was identical to already known Acanthamoeba sequences. The 

community composition of Acanthamoeba strains differed between locations, T4 being the 

dominant sequence type in Sardinia and Tibet, but represented only half of the clones from 

soils in the Netherlands. The other half of clones from the Dutch soils was made up by T2, 

T16 and “OX-1”, while T13 was only found in Sardinia and Tibet. None of the sequences was 

identical between localities. Several T4 clones from all three localities and all T13 clones 

grew at 37 °C while one T4 clone was highly cytopathogenic.   
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Introduction 

The amoebozoan genus Acanthamoeba shows an ubiquitous worldwide distribution ranging 

from aquatic to terrestrial environments, and it might even be one of the most dominant 

protists in soil (Page 1988, Rodríguez-Zaragoza 1994). In these habitats, acanthamoebae are 

important grazers of the bacterial biomass, thereby not only controlling the abundance and 

turnover, but also the diversity of bacterial communities in soil and plant rhizsopheres 

(Griffiths et al. 1999, Rønn et al. 2002b, Kreuzer et al. 2006, Rosenberg et al. 2009). In the 

soil microbial loop Acanthamoeba liberates nutrients bound in the microbial biomass, 

ultimately benefiting plant growth (Bonkowski and Clarholm 2012). 

In the past decades special attention was also given to Acanthamoeba from a medical point 

of view as several species can cause human diseases such as Acanthamoeba keratitis and 

granulomatous amoebic encephalitis (Rodríguez-Zaragoza 1994, Schuster 2002, Schuster and 

Visvesvara 2004).  

Acanthamoeba belongs to the phylum Amoebozoa (Cavalier-Smith 1998) and the family 

Acanthamoebidae (Sawyer and Griffin 1975, Pussard and Pons 1977). Molecular phylogenies 

based on the small-subunit (SSU) ribosomal RNA gene provided further evidence for the 

monophyly of the genus Acanthamoeba with Balamuthia as sister genus (Amaral-Zettler et 

al. 2000, Smirnov et al. 2011b). Traditionally, species of Acanthamoeba were classified into 

three groups based on cyst morphology (Pussard and Pons 1977). Investigations based on 

molecular data confirmed the monophyly of group I (with the apomorphy of stellate 

endocysts) but not of the remaining two groups (group II: various endocysts, ectocyst 

wrinkled; group III: round endocyst, smooth ectocyst) (Pussard and Pons 1977). Although 

group II and III are related, sufficient divergence within these groups and of both groups to 

group I led to the progressive recognition of 18 SSU sequence types (T1 – T18), based on 

≥ 5 % sequence dissimilarity between sequence types (Gast et al. 1996, Stothard et al. 1998, 

Horn et al. 1999, Hewett et al. 2003, Corsaro and Venditti 2010, Nuprasert et al. 2010, 

Qvarnstrom et al. 2013). Current systematics within Acanthamoeba is obscured by several 

polyphyletic species, such as Acanthamoeba castellanii and A. polyphaga and an 

unavailability of type strains for the described species (Gast et al. 1996, Qvarnstrom et al. 

2013). Furthermore, T16 has independently been erected twice (Łanocha et al. 2009, 
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Corsaro and Venditti 2010), with both isolates described as T16 being in fact unrelated 

(Corsaro and Venditti 2011), but none has been abandoned yet.  

Lastly, neither morphological groups nor sequence types are indicators of pathogenicity, as 

pathogenic Acanthamoeba have been detected in all morphological groups and most 

sequence types (Qvarnstrom et al. 2013, Risler et al. 2013). The majority of human infections 

have been caused by amoebae belonging to the most prevalent sequence type T4 that is 

however intermingled with non-pathogenic ones (Gast et al. 1996, Stothard et al. 1998, 

Booton et al. 2002, Maciver et al. 2013, Risler et al. 2013). 

The main objective of this study was to assess the occurrence and diversity of the dominant 

cultivable Acanthamoeba spp. in soil samples from three spatially distinct locations, i.e. the 

Netherlands, Sardinia and Tibet. In total, we cultivated 65 strains of Acanthamoeba and 

obtained 24 distinct partial SSU rDNA sequences. We discuss the phylogenetic results in the 

light of ecology, biogeography and potential medical relevance.  

Materials and Methods 

Establishing cultures 

The top 20 cm of mineral soil from were collected from grassland sites in the Netherlands 

(Hedlund et al. 2003), in the Berchidda-Monti long term observatory on Sardinia, Italy 

(Bagella et al. 2013), and in mountain meadows at high altitudes of > 4100 m from Mila 

mountain in Tibet (Table 1). After 2 mm sieving the soil samples were transferred in thermo-

isolated containers to the laboratory. A soil suspension was prepared by mixing 50 g of dry 

wt soil with 50 ml of sterile distilled water. After gently shaking the soil suspension for 20’, 

soil particles were allowed to settle for 15’. From each site, 20 enrichment cultures were 

established by transferring 100 µl of the soil suspension each, into 10 standard Petri dishes 

(9 cm) filled with Prescott-James (PJ) medium (Page 1991), enriched with 0.15 % wheat grass 

(WG) (Weizengras, Sanatur GmbH, Germany), and into 10 Petri dishes filled with 1.5 % 

agarised PJ medium, respectively. Each dish was carefully examined twice (at days 10 - 14 

and 24 - 28) with an inverted Nikon Diaphot phase contrast microscope at 100 x and 400 x 

magnifications. To establish clonal cultures, single amoebae were transferred with a glass 

pipette to new 6 cm Petri dishes filled with PJ medium enriched with WG (WG medium). 
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Clonal cultures of amoebae were morphologically identified according to Pussard and Pons 

(1977), Page (1988), Smirnov and Brown (2004) and Smirnov et al. (2011b). 

Table 1. Description of soil samples used in this study 

Code used in 
this study 

Locality Soil origin and land use Geographic 
coordinates 

Altitude 
(m) 

NlMY The Netherlands, Veluuwe 
Ex arable field; 

2 years abandoned 
N52°21′, 

E5°82′ 
16 

NlMM The Netherlands, Veluuwe 
Ex arable field; 

9 years abandoned 
N52°01′, 

E5°99′ 
47 

NlMO The Netherlands, Veluuwe 
Ex arable field; 

22 years abandoned 
N52°03′, 

E5°80′ 
18 

NlLui The Netherlands, Veluuwe 
Ex arable field; 

34 years abandoned 
N52°06′, 

E6°00′ 
57 

Sar Italy, Sardinia, Berchidda-Monti Grassland 
N40°46′, 

E9°10′ 
181 

TibE Tibet, Mila mountain east slope Meadow 
N29°52′ 
E92°33′ 

4149 

TibT Tibet, Mila mountaintop Meadow 
N29°49′ 
E92°20′ 

5033 

TibW Tibet, Mila mountain west slope Meadow 
N29°42′ 
E92°10′ 

4149 

Testing for pathogenicity-related characters 

Thermophily was tested by growing Acanthamoeba strains at temperatures of 34 °C, 37 °C 

and 42 °C. 50 amoebae were inoculated in each well of a 24 well-plate containing 1 ml of WG 

medium. Growth of trophozoites was estimated every 24 hours for one week. Further, we 

tested temperature tolerance of all Acanthamoeba clones that multiplied at 37 °C by 

incubating them at 42 °C for one day followed by an incubation at 37 °C for one week using 

the same settings as described above. 

All strains that showed growth ≥ 34 °C (temperature of the human cornea) were subjected 

to cytopathogenicity testing as described earlier (Walochnik et al. 2000). In brief, cysts were 

harvested from plate cultures, washed in sterile saline solution, and incubated in 3 % HCl 

overnight to eliminate co-existing bacteria. After centrifugation (500 g, 10’) the pellet was 

washed once again in sterile saline solution and transferred into sterile-filtrated PYG 

medium (proteose peptone-yeast extract-glucose medium in a 4:2:1 mixture) (axenised 

suspension). In parallel, HEp-2 cells were cultured in a 1:1 mixture of PC-1 and CO2-

independent medium (Life Technologies, Ltd., Paisley, Scotland) supplemented with 

L-glutamine (2 mM) in 75 cm2 tissue culture flasks (Corning / Costar, Bodenheim, Germany) 

at 37 °C under sterile conditions. Subsequently, 1 ml of a 105-cell * ml-1 axenised suspension 
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of each isolate was inoculated into a culture flask containing a HEp-2 cell monolayer. Co-

cultures were incubated at 34 °C and monitored for 72 hours. All experiments were carried 

out in duplicates and repeated in an independent set-up. 

DNA extraction, amplification and sequencing 

Genomic DNA was isolated from fresh cell cultures using the guanidine isothiocyanate 

protocol (Maniatis et al. 1982). Briefly, WG medium was discarded, Petri dishes washed 

twice with sterile WG medium, which was subsequently replaced by 100 µl guanidine 

isothiocyanate. Amoebae were scraped off using a sterile metal cell scraper, and transferred 

to 2 ml centrifuge tubes. Subsequent stages were performed according to the cited protocol. 

The complete SSU rDNA was amplified from all strains using the universal eukaryotic primers 

RibA (all primers sequences written in the order 5' - 3': ACC TGG TTG ATC CTG CCA GT) and 

RibB (TGA TCC ATC TGC AGG TTC ACC TAC) (Cavalier-Smith and Chao 1995, Pawlowski 2000). 

PCR settings consisted of an initial denaturation at 95 °C for 5’, followed by 35 cycles of 

denaturation at 95 °C for 30 s, annealing at 50 °C for 45 s and elongation at 72 °C for 90’’ 

with a final 5’ elongation at 72 °C. PCR products were enzymatically purified by adding 

0.15 µl Endonuclease I (20 U * µl-1, Fermentas GmbH, St. Leon-Rot, Germany), 0.9 µl Shrimp 

Alkaline Phosphatase (1 U * µl-1, Fermentas, Germany) and 1.95 µl H2O. The mixture was 

incubated for 30’ at 37 °C, followed by 20’ at 85 °to stop the reaction. Sequencing was 

carried out at GATC (Konstanz, Germany) using the following sequencing primers: RibB, 12r 

(AAC GGC CAT GCA CCA CC) and JDP2 (CTC ACA AGC TGC TAG GGG AGT CA) (Dyková et al. 

1999). 

Alignments and phylogenetic analyses 

We obtained 65 sequences of which 24 were unique. These were deposited in GenBank 

under the accession numbers KF928933 to KF928956. Unique sequences were manually 

aligned in Seaview 4 (Gouy et al. 2010) together with representatives of the 18 currently 

described Acanthamoeba sequence types (Gast et al. 1996, Stothard et al. 1998, Horn et al. 

1999, Hewett et al. 2003, Corsaro and Venditti 2010, Nuprasert et al. 2010, Qvarnstrom et al. 

2013). We also used our new sequences to perform a BLASTn search against the NCBI 

nucleotide database online (http://blast.ncbi.nlm.nih.gov/; last accessed October 24th 2013). 

Five best hits for each sequence were added to our alignment. Five sequences of 
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Balamuthia spp. and two of Protacanthamoeba spp. were added as outgroups resulting in a 

total of 145 sequences.  

For phylogenetic analyses, 1,771 unambiguously aligned positions were retained, excluding 

ambiguous positions and several positions in variable regions especially in V2 (helices 9-11), 

V4 (helix E23), V5 (helix 29), V7 (helix 43), V8 (helices E45-1 and 46) and V9 (helix 49). 

Maximum likelihood phylogenetic analyses were run using RAxML v. 7.2.6 (Stamatakis 2006) 

with the GTR+γ+I model of evolution, as proposed by jModeltest v. 2.1.3 under the Akaike 

Information Criterion (Darriba et al. 2012), the γ approximated by 25 categories. 1,000 non-

parametric bootstrap pseudoreplicates were run. Bayesian phylogenetic analyses were run 

using Mr Bayes v. 3.2.1 with GTR+γ+I model of evolution and 8 categories (Huelsenbeck and 

Ronquist 2001). Two runs of four simultaneous Markov chains were performed for 4,000,000 

generations (with the default heating parameters) and sampled every 100 generations; 

convergence of the two runs (average deviation of split frequencies < 0.01) was not reached. 

Analyses of the two independent consensus trees revealed that both trees diverged in tree 

regions that were also unresolved in the maximum likelihood analysis. Therefore we decided 

to discard the first 30,000 trees and built a consensus tree from the remaining 10,000 trees, 

where the average deviation of split frequencies between runs was < 0.02. In order to 

improve the resolution between closely related sequences, we performed another 

phylogenetic analysis using the same settings as above, focusing on the Acanthamoeba 

clones obtained in this study. In total, 116 sequences with 1,947 sequences unambiguously 

aligned positions were included in maximum likelihood and Bayesian analyses as described 

above. Convergence of the two Bayesian runs was reached after 2,610,000 generations. The 

remaining 1,390,000 trees were used to build a consensus tree.  
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Results 

Cultures  

In total, 65 Acanthamoeba clones were retrieved from the enrichment cultures of all eight 

soils (32 clones from the Netherlands, 18 clones from Tibet and 15 clones from Sardinia; 

Table 2). Most cultures of Acanthamoeba (80 %) were obtained from agar medium, the 

others from liquid culture. Our clones belonged to morphogroups II and III, and none to 

morphogroup I. 

The tests on pathogenicity-related characters of 18 of the 24 Acanthamoeba clones that 

differed in their SSU rDNA sequences showed that all isolates grew well at 34 °C, half of the 

isolates at 37 °C, but none at 42 °C (Table 2). More specifically, several clones from each 

location grew at 37 °C, i.e. four from the Netherlands (clones Nl4, Nl123, Nl134 and Nl135), 

three from Sardinia (Sar44, Sar48 and Sar63) and two from Tibet (clones Tib1 and Tib122). 

Six clones (Nl4, Nl123, Nl134, Nl135, Sar63 and Tib122) tolerated 42 °C for 1 day and 

subsequently grew at 37 °C (Table 2). Only clone Nl123 rapidly multiplied on HEp-2 cell 

monolayers that were entirely destroyed within 48 hours. No other clone tested showed 

cytoplasmic effects on cell layers. However, morphological features of Nl123 did not reveal 

any morphological characters that distinguished this clone from the others. 

Sequences and phylogenetic analyses 

We obtained 24 different SSU rDNA sequences from the 65 clones. None of our sequences 

was identical to already published sequences, the similarities with each of the best hit using 

BLASTn ranged from 98 % to 99 %. Phylogenetic analyses of an alignment of 145 sequences 

and 1,771 positions resulted in several strongly supported clusters with a clade containing 

T7-T8-T9-T17-T18 in the most basal position within the genus Acanthamoeba 

(Supplementary Figure 1). This clade comprised species assigned to the morphogroup I. T5 

containing A. lenticulata formed a strongly supported clade, while the other clades were not 

highly supported using a Centramoebida-wide (Acanthamoeba, Protacanthamoeba and 

Balamuthia) phylogenetic analysis (Supplementary Figure 1).  

The second analysis aimed to assign the phylogenetic positions of our new sequences more 

precisely. Therefore outgroups and the two most basal clades were omitted, and the 
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remaining group was resolved into distinct clades with a deep dichotomy (Figure 1, 

Supplementary Figure 2). The first clade, T1-T2-T10-T12-T13-T14-T15-T16, contained two 

described T16 sequence types (Łanocha et al. 2009, Corsaro and Venditti 2010), accordingly 

we added the initials of the respective authors for clarity, i.e. T16 (C&V) for the type 

described by Corsaro and Venditti (2010) and “T16” (Ł) for that described by Łanocha et al. 

(2009). However, we place the latter in quotation marks to indicate that this sequence type 

has been described based on a partial sequence only, leading Corsaro and Venditti to 

abandon “T16” (Ł) as a sequence type (Corsaro and Venditti 2011). 

The other clade showed a dichotomy between T3-T4-T11 and T2-T6. The latter further split 

into different groups, named “OX-1”, “pol”, T2 (containing A. palestinensis “Reich”) and T6, 

as previously suggested (Corsaro and Venditti 2010, Corsaro and Venditti 2011, Risler et al. 

2013).  

All of our sequences branched into groups composed of known sequence types. The majority 

of our clones was placed across the largest sequence type T4. Three consensus sequences 

retrieved from 9 clones grouped in T16 (C&V), 3 consensus sequences from 5 clones in T13, 

one consensus sequence grouped in T2 (3 clones) and one consensus sequence grouped 

with “OX-1”. 

Growth performance varied between and within clades. Most Acanthamoeba clones from T4 

(75 %) and all T13 grew at 37 °C, while T16 (C&V) and “OX-1” did not grow at high 

temperatures. T13 clones did not tolerate 42 °C while all except one of the T4 clones 

growing at 37 °C tolerated a 24 hour incubation at this high temperature (Table 2). 

Comparison of the Acanthamoeba community composition in soils 

Despite the high number of isolated clones from each site, we never found a similar clone 

from distinct locations. Instead, a diverse community of at least five different sequences 

occurred at each location, i.e. the Netherlands, Sardinia and Tibet (Table 2). Almost all 

isolated clones from Sardinian and Tibetan belonged to T4 (93 % and 78 %, respectively), the 

remaining to T13 (7 % and 22 %, respectively; Table 2). 

The dominant community of Acanthamoebae from soils in the Netherlands was richer in 

distinct isolates and differed in composition from the other locations with only 
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approximately half of the clones belonging to T4 (56 %), followed by T16 (C&V) (28 %), T2 

(9 %) and “OX-1” (6 %), while T13 was not recovered (Table 2).  

 

Figure 1. Phylogenetic analysis focusing on sequence types and sequences associated with the new sequences 
obtained in this study. In total, 116 sequences with 1,947 unambiguously aligned positions were used, with 
only single representative sequences shown for individual sequence types and strains; the tree is unrooted; 
values higher than 60 for maximum likelihood analyses (left) and 0.60 for Bayesian analyses (right) are shown. 
Black circles represent full support; red: strains obtained in this study; boxes: associated sequence types with 
bright boxes containing clones obtained in this study; the entire figure showing all strains included in the 
analysis is shown in Supplementary Figure 2. 
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Table 2. Name, origin, SSU type, primers used, length of partial sequence obtained, temperature tolerance and cytopathogenicity of the Acanthamoeba strains obtained in this 
study; ND = not determined  
 

Strain Additional clones (Strain) Soil Origin SSU type 
Sequencing 

primers 
Sequence length 

obtained (bp) 
Growth 
@ 37 °C 

Growth @ 37 °C 
after 24h @ 42 °C 

Cytopathogenic 
on HEp-2 cells 

Nl2 1 (Nl76) NlMM,NlMO "OX1" RibB, 12r, JDP2 1869 No No No 

Nl4 1 (Nl8) NlO T4 RibB, 12r 1709 Yes Yes No 

Nl5 0 NlY T4 RibB 912 ND ND ND 

Nl9 2 (Nl41, Nl72) NlMY T2 RibB, 12r 1559 ND ND ND 

Nl14 0 NlM T4 RibB, 12r 1473 No No No 

Nl21 2 (Nl35, Nl49) NlY,NlMM T4 RibB, 12r 1371 ND ND ND 

Nl24 1 (Nl70) NlMY T16 (C&V) RibB, 12r 1269 No No No 

Nl123 1 (Nl150) NlLui T4 RibB, 12r 1591 Yes Yes Yes 

Nl130 5 (Nl141, Nl142, Nl145, Nl151, Nl156) NlLui T16 (C&V) RibB, 12r 1441 No No No 

Nl134 0 NlLui T4 RibB, 12r 1515 Yes Yes No 

Nl135 7 (Nl144, Nl149, Nl153, Nl154, Nl166, Nl172, Nl180) NlLui T4 RibB, 12r 1759 Yes Yes No 

Nl152 0 NlLui T16 (C&V) 12r 699 ND ND ND 

Sar43 5 (Sar46, Sar60, Sar65, Sar73, Sar91) Sar T4 RibB, 12r, JDP2 1939 No No No 

Sar44 3 (Sar47, Sar55, Sar84) Sar T4 RibB, 12r 1338 Yes No No 

Sar45 0 Sar T4 RibB, 12r, JDP2 1941 No No No 

Sar48 0 Sar T13 RibB, 12r 1501 Yes No No 

Sar63 2 (Sar76, SarSC2) Sar T4 RibB, 12r 1290 Yes Yes No 

Tib1 2 (Tib75, Tib170) TibE, TibW T13 RibB, 12r 2195 Yes No No 

Tib22 4 (Tib29, Tib 116, Tib125, Tib186) TibT,TibE,TibW T4 RibB, 12r 1331 No No No 

Tib79 1 (Tib157) TibW T4 12r 656 ND ND ND 

Tib121 1 (Tib185) TibE T4 RibB, 12r 1264 No No No 

Tib122 2 (Tib127, Tib171) TibE,TibW T4 12r 676 Yes Yes No 

Tib128 0 TibE T13 12r, JDP2 1041 No No No 

Tib142 1 (Tib160) TibE T4 12r 632 ND ND ND 
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Discussion 

We retrieved a wide variety of different Acanthamoeba clones from all samples, confirming 

the potential ubiquity, but also a significant diversity of these common amoebae in soils 

(Page 1988, Rodríguez-Zaragoza 1994). The phylogenetic analyses using the Centramoebida-

wide alignment revealed well-supported branches especially in basal Acanthamoeba 

sequence types (Supplementary Figure 1), while the topology of the more derived SSU types 

was only recovered in more focused phylogenetic analyses (Figure 1, Supplementary 

Figure 2). Combined information from the two phylogenetic analyses show stable clades 

such as T10-T12-T14, T13-T16 (C&V) and T2-T6 (Corsaro and Venditti 2010, Corsaro and 

Venditti 2011, Risler et al. 2013). As previously described, T2-T6 was split into independent 

lineages (Corsaro and Venditti 2010, Corsaro and Venditti 2011, Risler et al. 2013). The two 

T16 SSU types T16 (C&V) and T16 (Ł) represent distinct sequence types as suggested by 

Corsaro and Venditti (2011) and T13-T16 (C&V) formed a separate clade, but without 

bootstrap support. Perhaps the clade was destabilized by the inclusion of shorter sequences 

Tib1, Sar48 and Tib128, which branched intermediate between T13 and T16 (C&V); in an 

analysis including more sites aiming at placing Tib1, Sar48 and Tib128 revealed their 

unambiguous placement in T16 (C&V) (data not shown). Full sequences would likely have 

increased the phylogenetic resolution within T13-T16 (C&V) when more diverent sequence 

types are included in phylogenetic analyses, as shown by Corsaro and Venditti (2011).  

Our results confirm the predominance of the T4 sequence type, both in clinical and 

environmental samples (Gast et al. 1996, Stothard et al. 1998, Booton et al. 2002, Maciver et 

al. 2013, Risler et al. 2013). Several formally described species based on morphological 

features have been located in T4 such as A. royreba, A. hatchetti, A. divionensis, 

A. echinulata, A. polyphaga, A. rhysodes, A. lugdunensis and A. castellanii, making a 

subdivision of this genotype desirable as suggested by Booton et al. (2002), Maciver et 

al. (2013) and Risler et al. (2013). Several of our T4 clones showed clear differences in 

pathogenicity-related characters, indicating diverse environmental adaptations within this 

clade (Maciver et al. 2013) Similarly, the T2-T6 clade contains several named species, i.e. 

A. operculata, A. hatchetti, A. polyphaga, A. pustulosa and A. palestinensis. This clade has 

also been divided based on sequence information (Corsaro and Venditti 2010, Corsaro and 

Venditti 2011, Risler et al. 2013). This subdivision is confirmed by our isolates Nl9 resembling 
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T2 and Nl2 resembling “OX-1”, both not matching any sequences in GenBank. These two 

examples suggest that a more precise definition of Acanthamoeba species and subspecies is 

needed based on a combination of morphological features, multi-gene phylogenies and 

information on ecological functions or potential pathogenicity.  

Several Acanthamoeba clones of the T4 and T13 sequence types were isolated from soils at 

high altitudes in Tibet. These environments are characterized by harsh, often extremely cold 

conditions, which are in strong contrast to temperatures in the human body. Nevertheless, 

strain Tib1 proliferated at 37 °C revealing a broad ecological tolerance. As several other 

strains of Acanthamoeba from all locations grew at high temperatures and several exhibited 

cytopathogenicity on human cell monolayers, soils may act as a major source for potentially 

pathogenic Acanthamoeba. Generally, Acanthamoeba is known to have a broad ecological 

niche and has been found to dominate protist communities even in extreme environments 

such as deserts (Rodriguez-Zaragoza et al. 2005) or polluted soils (Lara et al. 2007a) and our 

findings of different Acanthamoeba isolates from high altitude soils add to this spectrum. 

The generally high numbers of Acanthamoeba in soils, the robustness of its cysts and their 

ease of spread with dust particles, and its growth on various substrates explains why 

potentially pathogenic Acanthamoeba strains are so widely distributed in the environment. 

The Dutch soils appeared to contain a different community of Acanthamoeba sequence 

types compared with soils from Sardinia and Tibet, including the only cytopathogenic clone 

NI123. As none of the individual sequences were identical between locations the real 

Acanthamoeba species diversity and their functional adaptations are likely underestimated. 

Although we cannot deliver an ultimate proof for the population structure of Acanthamoeba 

due to a too shallow sequencing depth to allow reliable statistical analyses, our study 

suggests that individual soil sites may harbour distinct communities of Acanthamoeba. 

Future studies are needed to investigate environmental niches, community structures and 

determine potential (a)biotic factors that shape Acanthamoeba populations in soils, such as 

recently conducted for other groups of soil protists (Heger et al. 2013, Vannini et al. 2013). 

Taken together, our study indicates that different soil types may harbour distinct 

communities of Acanthamoeba. Further, potentially pathogenic strains might be present in 

all soils, even in extreme altitudes. 
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Supplementary 

 

Supplementary Figure 1. Phylogenetic analysis of Centramoebida based on 145 SSU sequences (all 
18 described SSU types of Acanthamoeba represented) and 1,771 positions, with Balamuthia and 
Prothacanthamoeba as outgroups. Major clades and T4 are boxed. Only sequence types are named, while 
individual sequences were omitted for clarity, except for new sequences obtained in this study (in red). Support 
values > 50 % (maximum likelihood, left) or > 0.5 (posterior probability, right) are shown for branches leading 
to major clades. Filled circles represent full support in both analyses; boxes: clades of sequence types with 
bright boxes containing clones obtained in this study. 
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Supplementary Figure 2. Unrooted phylogenetic analysis focusing on sequence types and sequences 
associated with the new sequences obtained in this study. In total, 116 sequences with 1,947 unambiguously 
aligned positions were used; the tree is unrooted; only values higher than 60 for maximum likelihood analyses 
(left) and 0.60 for Bayesian analyses (right) are shown. Black circles represent full support; red: strains obtained 
in this study; boxes: associated sequence types with bright boxes containing clones obtained in this study. 
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Abstract 

Cercozoa are among the most abundant and diverse groups of soil protists. However, their 

diversity, community composition and the influence of environmental shaping that shape 

those remain largely unknown. We applied a high-throughput sequencing (HTS) approach 

using primers optimized to select for Cercozoa to evaluate potential differences in soil 

cercozoan communities and decipher factors that shape those. Cercozoan communities in a 

total of 122 samples from at least fourfold replicates of two land use intensity (LUI) 

treatments in five geographically distant sites across Europe were analysed and compared. 

All geographically distant sites differed profoundly in cercozoan community composition and 

LUI also influenced cercozoan diversity in some cases. However, the differences observed 

depended on the taxonomic level of analysis, with slight differences shown at high 

taxonomic resolution (class) and most profound differences at the lowest taxonomic level 

(OTU). Distinct OTUs showed strong association to treatment or site that were driving overall 

differences in the community composition of Cercozoa. The strong biogeographic patterns of 

soil cercozoan communities underline urgently needed follow-up studies to determine 

environmental factors that shape biogeographic patterns of soil cercozoan communities and 

those of protists in general. 
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Introduction 

Soil single-celled heterotrophic protists are key components in terrestrial soil food webs due 

to their high abundance, turnover, diversity and their functional roles as dominant 

bacterivores (Clarholm 1985, Ekelund and Rønn 1994, Adl et al. 2012). Cercozoa are among 

the most abundant soil protists are Cercozoa, confirmed both by traditional (Ekelund et al. 

2001, Bass and Cavalier-Smith 2004, Bass et al. 2009b, Howe et al. 2009, Scharroba et al. 

2012, Domonell et al. 2013) and recent high-throughput sequencing (HTS) studies (Urich et 

al. 2008, Baldwin et al. 2013, Bates et al. 2013). The phylum Cercozoa was only erected in 

1998 being the first phylum described based solely on molecular phylogenetic information 

(Cavalier-Smith 1998, Bass and Cavalier-Smith 2004). Several studies have now proven the 

tremendous diversity of taxa in the phylum Cercozoa, which include naked (e.g. 

vampyrellids) and testate amoebae (e.g. euglyphids), amoeboflagellates (e.g. cercomonads), 

flagellates (e.g. glissomonads), and plant / stramenopile parasitic protists (e.g. 

plasmodiophorids), with total estimated species numbers considerably exceeding a 

thousand (Bass and Cavalier-Smith 2004, Bass et al. 2007, Bass et al. 2009b, Howe et al. 

2009, Howe et al. 2011a, Adl et al. 2012, Berney et al. 2013, Neuhauser et al. 2014). Little, 

however, is known about the overall composition of soil Cercozoa and if communities differ 

between soils. 

Similarly, knowledge on biogeographic patterns of protists in general is scarce and has been 

debated intensely, especially in the last decade (Baas-Becking 1934, Finlay 2002, Foissner 

2006, Martiny et al. 2006). Recent evidence supports a wide distribution of dominant 

morphospecies of protists, while some species display a clearly more limited distribution 

(Foissner 2006, Bass et al. 2007, Heger et al. 2013). Undebated is, however, the high 

abundance and enormous diversity of protists. Especially soil protists show nearly a 

continuum of morphologically defined species, with molecular information often introducing 

a finer continuum within morphologically indistinguishable taxa (Bass et al. 2007, Epstein 

and López-García 2008, Adl et al. 2012, Bachy et al. 2013). The functional importance of this 

vast diversity of soil protists remains, however, largely unknown; the high diversity of 

bacteria, for instance, is suggested to act as an insurance for soil functioning to long term 

changes (Nielsen et al. 2011, Reich et al. 2012), and increasing resistance to pathogen 

invasion (van Elsas et al. 2012). Likewise, protist diversity might be important for the 
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resilience of soil functions, e.g. due to differential feeding on bacterial species (Glücksman et 

al. 2010, Saleem et al. 2012, Saleem et al. 2013), which in turn might alter plant growth and 

other ecosystem services (Clarholm 1985, Bonkowski 2004, Bonkowski and Clarholm 2012). 

Molecular tools, such as HTS techniques, enable the analysis of high sample numbers at the 

same time. Since many protists cannot be cultivated, molecular methods targeting DNA has 

resulted in the discovery of many novel protist lineages and avoids laborious cultivation 

(Moon-van der Staay et al. 2001, Dawson and Hagen 2009, Lejzerowicz et al. 2010, Bates et 

al. 2013). 

Until today, the few studies targeting soil protists with HTS techniques have focused on the 

broad taxonomic patterns of soil protist community composition, but detailed studies of 

specific taxonomic groups of free-living soil protists are virtually lacking with the exception 

of plant parasitic Phytophthora spp. (Vannini et al. 2013).  

In this study we developed new specific primers targeting protists of the phylum Cercozoa in 

a HTS approach. We hypothesised that the community composition of Cercozoa would differ 

between geographically distinct sites and that change in LUI further influence the cercozoan 

community structure.  

Materials and Methods 

Soil locations, sampling and DNA extraction 

Five well-characterized long term observatories (LTOs) were appointed within the EU project 

EcoFINDERS, which were located at distant sites across Europe and represented a variety of 

typical land management types of those regions (Table 1). Each LTO contained two 

contrasting types of LUI to discriminate local effects of land management form regional 

differences in species diversity. The following treatments were differentiated: Grasslands 

were sampled in England; one treatment was improved by application of fertilizers (Ei), the 

other unimproved (Eu), both represented by 15-fold replicatedsamples. Permanent 

grasslands (Fg) and grassland in a permanent agricultural rotation (Fc) were sampled in 

France, each fourfold replicated. Three treatments were differentiated in Italy, with 

intensively managed grassland (Ii), samples from grass patches (Ig) and under trees (It) taken 

from wooded land, all three replicated ninefold. Recently abandoned fields, two-five years 
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after agricultural use (Nl) were differentiated from long-term abandoned (20 - 25 years) 

fields in the Netherlands (Nh), replicated 9- and 12-fold, respectively. The last treatments 

were taken from fertilized (Sf) and unfertilized coniferous forests (Su) in Sweden, both being 

replicated 18-fold. A summary of these site and treatments characteristics are shown in 

Table 1. 

Sampling was conducted between March and June 2011. The upper 10 cm of the organic soil 

horizon were sieved, roots and stones removed and DNA was extracted according to a 

standardized ISO 11063 protocol (Plassart et al. 2012). 
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Table 1. Site and treatment characteristics; = mean value 

Site location Sampling time 
H2O 

(g/kg) 
Corg  

(g/kg) 

Total N 
(g/kg) 

C/N 
Organic matter  

(g/kg) 
pH 

P (P2O5 OLSEN) 
(g/kg) 

Land use 
(Label; sample # before /after quality filtering]) 

Lusignan,  
France 

March 2011 NA 
9 – 12; 

 = 10.7 

1.0 – 1.3;  

 = 1.2 

8.9 – 9.6;  

 = 9.3 

16 – 21;  

 = 18.5 
NA NA 

Permanent agriculture 
(Fc; 4 / 4) 

Permanent grassland 
(Fg; 4 / 4) 

Lancester, 
England 

June 2011 
21 – 46;  

 = 33.1 

43 – 95; 

 = 59.3 

2.8 – 8.7; 

 = 5.3 

9.8 – 15.1;  

 = 11.3 

74 – 165;  

 = 102.7 

4.8 – 6.6; 

 = 5.4 

0.009 – 0.170;  

 = 0.040 

improved grassland 
(Ei; 14 / 15) 

unimproved grassland 
(Eu; 13 / 15) 

Sardinia,  
Italy 

May 2011 
9 – 23;  

 = 15.1 

16 – 35; 

 = 24.0 

0.9 – 2.1; 

 = 1.5 

12.5 – 21.5;  

 = 15.9 

28 – 60;  

 = 41.4 

5.2 – 6.4; 

 = 5.9 

0.005 – 0.045;  

 = 0.015 

intensive grassland 
(Ii; 8 / 9) 

wooded land grass patch 
(Ig; 9 / 9) 

wooded land under tree 
(It; 8 / 9) 

Veluwe, 
Netherlands 

July 2011 
7 – 15;  

 = 11.2 

17 – 48; 

 = 29.3 

1.0 – 2.3;  

 = 1.4 

16.0 – 25.5;  

 = 21.5 

30 – 83;  

 = 50.7 

4.1 – 6.0; 

 = 5.4 

0.090 – 0.360;  

 = 0.227 

recently abandoned fields 
(Nl; 5 / 9) 

long abandoned fields 
(Nh; 8 / 12) 

Lamborn,  
Sweden 

July 2011 
5 – 42;  

 = 22.3 

21 – 178; 

 = 68.6 

0.6 – 4.7;  

 = 1.9 

31.3 – 49.8;  

 = 36.8 

36 – 308;  

 = 118.7 

4.0 – 4.9; 

 = 4.6 

0.005 – 0.042;  

 = 0.017 

fertilized forest 
(Sf; 11 / 18) 

unfertilized forest 
(Su; 12 / 18) 
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Primer design and amplicon preparation of 18S rRNA gene 

Amplicons of ~ 1,200 bp were generated from each sample using the cerocozan-specific 

primer combination 25F (5’ - CAT ATG CTT GTC TCA AAG ATT AAG CCA - 3’) and 1256R 

(5’ - GCA CCA CCA CCC AYA GAA TCA AGA AAG AWC TTC - 3’; Bass and Cavalier-Smith 2004)  

in a first round (94 °C for 1’, 35 cycles of 94 °C for 30’’, 70 °C for 60’’ and 72 °C for 2’ with a 

final extension for 5’ at 72 °C). PCR reactions were carried out in 31 µl volume consisting of 

0.6 µl of each primer (10 µM), 0.6 µl nucleotides (10 mM), 1.0 µl template DNA, 24.5 µl H2O, 

3 µl GreenTaq Buffer and 0.15 µl GreenTaq polymerase (5 U * µl-1) (Fermentas, St. Leon-Rot, 

Germany). 1.0 µl aliquots of the resulting PCR products were used as template for a hemi-

nested PCR step using the same reverse primer with the new forward primer “PreV4” 

(5' - GYT GCA GTT AAA AAG CTC GTA GTT G - 3'; this study) at the 5’ end of the SSU V4 

region, judged to be the most informative SSU barcoding region, because of its high variable 

nature and sufficient length for phylogenetic analyses (Pawlowski et al. 2012), while 

producing an amplicon of ~ 500 bp, appropriate for 454 sequencing. PreV4 was designed in 

silico and tested for specificity by sequencing environmental DNA from 14 clones extracted 

from Dutch soil. All sequences obtained were of cercozoan taxa (data not shown). 

PCR conditions of the second step were the same, except an annealing temperature of 66 °C 

and elongation for 90’’ were used. A five bp long MID-identifier was incorporated onto the 

5’ ends of both PreV4 and 1256R before the nested PCR step. Both PCRs were replicated 

twice for each sample to increase product yield and to reduce PCR errors. Duplicates from 

each sample were pooled, purified by gel extraction using the Agarose GelExtract Mini Kit 

(5PRIME, Hilden, Germany) and quantified by NanoDrop spectrophotometry (NanoDrop 

Technologies, Wilmington, USA).  

All 122 samples were devided into eight batches by equimolar pooling PCR products of 

15 - 16 random samples. Pooled libraries were sent for pyrosequencing using the standard 

protocol (titanium chemistry) on a Genome Sequencer FLX system (Beckman Coulter, 

Fullerton, USA). 

Bioinformatics analyses 

Sequences obtained were first demultiplexed according to their multiplex identifier (MID) 

using the sffinfo command of Mothur v.1.22.2 (Schloss et al. 2009), allowing one mismatch 
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per MID. Fasta and quality files were converted into fastq file using the faqual2fastq.py script 

of Usearch v7.0.1001 (Edgar 2013). All sequences were then labelled with a sample name 

and pooled.  

The raw sequences were filtered and trimmed using the fastq_filter command of Usearch 

with the option fastq_truncqual 10, such as sequences are truncated at the first position 

having a quality score ≤ 10. Sequences were then truncated to the length of 300 bp, with 

shorter sequences discarded using the option fastq_trunclen. Sequences from forward and 

reverse primers were sorted according to their primer sequences using the trim.seqs and 

split.groups commands of Mothur, allowing two mismatches. Sequences from reverse 

primers were removed from the analysis. Trimmed sequences were dereplicated to remove 

duplicated sequences using derep_fulllength command of Usearch. Dereplicated sequences 

were sorted by decreasing abundance and singletons were discarded using sortbysize 

command of Usearch. Operational taxonomic units (OTUs) were generated from abundance-

sorted sequences using the cluster_otus command of Usearch for 99 %, 98 %, 97 %, 96 %, 

95 % and 90 % similarity thresholds. For each similarity threshold considered, trimmed 

sequences (including singletons) were mapped against the OTU representative sequences 

using usearch_global of Usearch. Based on these mapping results, matrices containing the 

sequence abundances of different OTUs in each soil sample were generated using 

uc2otutab.py script of Usearch. To make comparable samples with different number of 

sequences, matrices were subsampled with an identical sequences number (n = 500) for 

each soil sample using the sub.sample command of Mothur. This sequence number was 

determined to conserve a minimum of four independent replicates for each treatment 

considered in the study. 

Taxonomic assignation was determined for each OTU representative sequences using the 

Basic Local Alignment Search Tool (BLAST) algorithm v 2.2.23 (Altschul et al. 1990) against 

the Protist Ribosomal Reference Database PR2 (Guillou et al. 2013). All assignations were 

determined using an e-value cut-off of 1e-5, an identity cut-off of 90 % and a coverage cut-off 

of 80 % of the query sequence covered in the alignments. 

Only sequences assigned to sequences specific for the phylum Cercozoa were subject to 

downstream comparisons and statistical analyses. The cercozoan OTUs were assigned to the 

different taxonomic levels class, order, family, genus, species and OTU level.  
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Statistics  

Statistical analyses were performed as suggested by Anderson and Willis (2003) including 

unconstrained ordination using principal coordinate analyses with Bray-Curtis distance 

matrices (Gower 2005), constrained analyses using canonical analysis of principal 

coordinates (Anderson and Willis 2003), statistical tests using analysis of similarities 

(ANOSIM) (Clarke 1993) and permutational multivariate analyses of variance (PERMANOVA) 

(Anderson 2001) and characterization of OTUs that shape the multivariate analyses using 

detrended correspondence analysis (DCA) and linear discriminant analyses (LDA). Further, 

two clustering methods (paired group (UPGMA, using Bray-Curtis similarity index) and 

Ward’s method (Euclidian similarity index) were applied. Global beta richness was assessed 

by combining all samples from each of the five distinct geographic origins. All analyses were 

performed in PAST (Hammer et al. 2001). Differences were considered as significant when a 

threshold of p < 0.05 was reached. 

After the initial taxonomic binning of 966 cercozoan OTUs several verification / refinement 

steps were carried out. A custom database was built incorporating as many taxonomically 

assigned cercozoan sequences as possible: the PR2 database (Guillou et al. 2013), 

unpublished cercomonad and glissomonad sequences (David Bass laboratory), and 

sequences from recent publications not yet incorporated into PR2. The 957 OTUs were 

locally BLASTn-searched against the custom database. All query sequences returning 

a BLASTn sequence identity result > 95 % were accepted as belonging to the genus indicated. 

The remaining 536 were aligned with a representative pared-down cercozoan alignment to 

identify sequence clusters in the OTUs and their broad taxonomic affiliations. Representative 

OTUs from the clusters were re-aligned with a comprehensive sequence dataset of the 

group to which they belonged. The genus-level affiliation of all the OTUs in the cluster was 

inferred from this. Where a genus-level affiliation was not possible due to the divergence of 

the sequence, order level was used instead, or a clear definition of an environmental clade. 

Our convention for reporting the taxonomic affiliations is to associate a genus with the OTU 

number that blasts to it (e.g. Cercomonas_[OTU]12), as robust affiliation to the species level 

is difficult to prove (possibly apart from the rare cases where the blast sequence identity 

match is 100 %); we have devised an approach that can be consistently applied across the 

dataset as a whole. 
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Results 

Amplicon analyses 

A total of 224,179 sequences were obtained from 122 sites after quality filtering. 28 samples 

with sequence numbers lower than 500 were discarded leaving 94 samples with an average 

of 2,343 sequences (546 - 7,994 sequences). OTU clustering at different levels revealed an 

exponential increase of assigned OTUs up to a similarity threshold of 98 % (r² = 0.975). 

Clustering to 99 % strongly outreached exponential growth and reducing the r² to 0.87 

(Figure 1). Similarly, reads were remapped confidently up to an OTU clustering of 98 % 

assuming an exponential decrease of assignable OTUs (r² = 0.98), while when including 

clustering at 99 % strongly deflated the successful re-assignment of reads (r² = 0.83, 

Figure 1). Therefore, subsequent analyses focused on an OTU clustering level of 98 %.  

 

 

Figure 1. Number of OTUs (diamonds and line in blue; right y-axis) and reads remapped (squares and 
polynomial line in red, left y-axis) at OTU assignment of 90 % and 95 - 99 %. Exponential fitting best explained 
increasing numbers of OTU (blue, r² = 0.87) and decreasing numbers of reads remapped (red, r² = 0.83) with 
increasing OTU clustering levels. 

The primers proved to be highly cercozoan specific with 81.9 % (1,919 sequences per 

sample) assigned as Cercozoa. 11.7 % of the sequences remained unassigned, 4.2 % were 

fungi and 1.7 % streptophytes. Other assigned phyla were negligible (> 0.4 %). OTU 
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clustering at 98 % sequence similarity resulted in a total of 1,636 OTUs of which 957 were 

cercozoan-specific, while 559 could not be assigned against the protist PR2 database. OTU 

numbers levelled off, but did not reach saturation either at sites (Figure 2) and only rarely in 

individual samples (Supplementary Figure 1). 

 

Figure 2. Rarefaction curves of amplicon data sets from all combined OTUs combining all samples of respective treatments. 

The 957 cercozoan sequences were assigned to 9 classes, 24 orders, 42 families, 65 genera 

and 110 species. Re-blasting using our own database revealed that most sequences could 

not reliably be assigned on the species level, often not even on genus or family level 

(Supplementary Table 2). The majority of OTUs showed identities < 99 % on the species 

level, strongly suggesting that these sequences were not necessarily equivalent to the 

assigned species. A subset of 47 OTUs is shown as an example for focused phylogenetic 

analyses of cercomonads and glissomonads in Supplementary Figures 2 and 3.  

We therefore focus our respective analyses on the lowest (i.e. OTU) taxonomic level and 

compare those to highest (i.e. class) levels. 

Cercozoan community structure and site comparisons 

We found strongly differing cercozoan community compositions (CCCs) between sites and 

treatments. The CCCs in coniferous forest sites in Sweden differed most strongly from 

grassland and arable field sites, suggesting that coniferous forests contain distinct CCCs. The 

level of taxonomic classification had a profound impact on the results. When CCCs were 
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analysed on the deepest level (OTU level), CCCs differed between all sites revealing 

similarities between 0.24 (Sweden and France) to 0.51 (England and France; Figure 3 and 4). 

The differences in CCCs were less pronounced when analysing the cercozoan communities at 

higher taxonomic levels, especially class level. Here, similarities ranged from 0.74 (England 

and Sweden) to 0.97 (Netherlands and Sweden; Supplementary Figure 4 and 5). However, 

multivariate analyses demonstrated that the CCCs clearly differed between locations 

irrespective of phylogenetic resolution (class: R = 0.43, p < 0.001 (ANOSIM) and F = 14.9, 

p < 0.001 (PERMANOVA); OTU: R = 0.63, p < 0.001 (ANOSIM) and F = 8.7, p < 0.001 

(PERMANOVA); Table 2).  

 
Figure 3. Rarified relative abundances of the 30 most abundant cercozoan OTUs in all samples at respective 
sites and treatments (x-axis); (see Table 1 for details on soil characteristics and treatment abbreviations). 

In general, LUI of specific land management types had a lower influence on CCCs than 

geographic location, indicating the existence of specific CCCs in different European soils. In 

line, the majority of treatments from respective sites clustered together, especially at lower 

taxonomic resolution (Figure 4; Supplementary Figure 4). Most similar were both English 

grassland treatments (class level: 0.97; OTU level: 0.71), while Swedish fertilized forest 
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samples were least similar to those of French culture at OTU level (similarity = 0.14; Figure 

4), while the lower resolution on CCC differences on class level revealed largest differences 

from intensive grassland in Italy with culture in France (similarity of 0.63; Supplementary 

Figure 4). Despite being grasslands, the CCCs in the respective treatments in England, France, 

the Netherlands and Italy clearly differed. Interestingly, the CCCs of recently abandoned 

agricultural fields in the Netherlands clustered with agricultural fields in France, suggesting 

that agricultural management provokes distinct and long-lasting changes in protist 

communities. Both multivariate statistical analyses (ANOSIM and PERMANOVA) proved that 

cercozoan communities differed between treatments (class: R = 0.49, p < 0.001 (ANOSIM) 

and F = 10.9, p < 0.001 (PERMANOVA); OTU: R = 0.67, p < 0.001 (ANOSIM) and F = 5.2, p < 

0.001 (PERMANOVA); Table 3). 

  

Figure 4. Similarity of cercozoan communities between sites (left) and treatments (right) based on OTU level 
using the paired group (UPGMA) analyses with Bray Curtis similarity; see Table 1 for details on soil 
characteristics and treatment abbreviations. 

Table 2. Differences of Cercozoan communities on the OTU level between geographic sites based on ANOSIM 
(ASIM) and PERMANOVA (POA) 
  England France Italy Netherlands Sweden 

 ASIM POA ASIM POA ASIM POA ASIM POA ASIM POA 

England   0.0012 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

France 0.0012 0.0001   0.1505 0.0001 0.0016 0.0002 0.0001 0.0001 

Italy 0.0001 0.0001 0.1505 0.0001   0.0036 0.0001 0.0001 0.0001 

Netherlands 0.0001 0.0001 0.0016 0.0002 0.0036 0.0001   0.0001 0.0001 

Sweden  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001     
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Table 3. Differences between treatments based on OTU level using the multivariate statistical analyses ANOSIM (ASIM) and PERMANOVA (POA); see Table 1 for details on soil 
characteristics and treatment abbreviations 

 England  
(Ei) 

England  
(Eu) 

France  
(Fc) 

France  
(Fc) 

Italy  
(Ii) 

Italy 
(Ig) 

Italy 
(It) 

Netherlands 
(Nh) 

Netherlands 
(Nl) 

Sweden  
(Su) 

Sweden 
(Sf) 

 
ASIM POA ASIM POA ASIM POA ASIM POA ASIM POA ASIM POA ASIM POA ASIM POA ASIM POA ASIM POA ASIM POA 

Ei   0,242 0,4334 0,0002 0,0007 0,1044 0,0034 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0002 0,0005 0,0002 0,0001 0,0001 0,0001 0,0001 

Eu 0,242 0,4334   0,0008 0,0007 0,2114 0,0005 0,0001 0,0001 0,0001 0,0002 0,0001 0,0001 0,0002 0,0001 0,0005 0,0001 0,0001 0,0001 0,0001 0,0001 

Fc 0,0002 0,0007 0,0008 0,0007   0,0303 0,0287 0,0021 0,003 0,0043 0,0018 0,1536 0,0016 0,0493 0,0063 0,014 0,0068 0,0003 0,0003 0,0011 0,0008 

Fg 0,1044 0,0034 0,2114 0,0005 0,0303 0,0287   0,0022 0,0017 0,0525 0,0014 0,488 0,0019 0,0025 0,0039 0,0162 0,0067 0,0005 0,0008 0,0014 0,0008 

Ii 0,0001 0,0001 0,0001 0,0001 0,0021 0,003 0,0022 0,0017   0,0002 0,0002 0,0002 0,0003 0,0002 0,0005 0,0007 0,0008 0,0001 0,0001 0,0001 0,0001 

Ig 0,0001 0,0001 0,0001 0,0002 0,0043 0,0018 0,0525 0,0014 0,0002 0,0002   0,0001 0,0001 0,0003 0,0001 0,0008 0,0012 0,0001 0,0001 0,0001 0,0001 

It 0,0001 0,0001 0,0001 0,0001 0,1536 0,0016 0,488 0,0019 0,0002 0,0003 0,0001 0,0001   0,0018 0,0001 0,0127 0,0007 0,0002 0,0002 0,0002 0,0001 

Nh 0,0001 0,0002 0,0002 0,0001 0,0493 0,0063 0,0025 0,0039 0,0002 0,0005 0,0003 0,0001 0,0018 0,0001   0,0095 0,009 0,0012 0,0019 0,0004 0,0004 

Nl 0,0005 0,0002 0,0005 0,0001 0,014 0,0068 0,0162 0,0067 0,0007 0,0008 0,0008 0,0012 0,0127 0,0007 0,0095 0,009   0,0006 0,0002 0,0005 0,0003 

Su 0,0001 0,0001 0,0001 0,0001 0,0003 0,0003 0,0005 0,0008 0,0001 0,0001 0,0001 0,0001 0,0002 0,0002 0,0012 0,0019 0,0006 0,0002   0,0311 0,0006 

Sf 0,0001 0,0001 0,0001 0,0001 0,0011 0,0008 0,0014 0,0008 0,0001 0,0001 0,0001 0,0001 0,0002 0,0001 0,0004 0,0004 0,0005 0,0003 0,0311 0,0006   
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For convenience restrain our analysis to the OTU level in the analysis of individual soil 

samples. Cercozoan communities followed the general trends observed on combined site 

and treatment analyses, with CCCs largely being separated between sites and treatments 

(Figure 5). All Swedish samples clustered distantly from other samples (brown symbols), 

English grassland sites grouped together (red symbols) and French agriculture (black circles) 

grouped with recently abandoned agricultural fields in the Netherlands (blue triangles; 

Figure 5). The most divergent communities according to LUI were found in the abandoned 

agricultural fields in the Netherlands (Figure 5). 

 

Figure 5. PCoA showing sample specific differences in the cercozoan communities on the OTU level; 
geographically distant sites are illustrated with different colours, treatments with different symbols; black dots: 
French culture (Fc); black plus: French grassland (Fg); green empty squares: Italian intensive grassland (Ii); 
green filled squares: Italian wooden land, grass patch (Ig); green X: Italian wooden land under tree (It); red 
circle: English improved grassland (Ei); red diamond: English unimproved grassland (Eu); blue triangle: Dutch 
recently abandoned fields (Nh); blue dash: Dutch long-term abandoned fields (Nl); brown bars: Swedish 
unfertilized forest; brown stars: Swedish fertilized forest. 

Taxon-specific patterns 

On the class level, differences in cercozoan communities were largely caused by changes in 

Thecofilosea. This class comprised the highest relative abundance of 40.7 % in English 

grasslands and lowest in Swedish forests (14.3 %), but a general dependence on land 

management, such as an association with grasslands could not be detected (Supplementary 

Figure 5; Supplementary Table 1). The dominant class Sarcomonadea was with 64.3 % of all 

cercozoan sequences significantly higher represented in France compared to Italy (45.8 %) 

and England (43.6 %; Supplementary Figure 5; Supplementary Table 1), while Imbricatea was 
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higher in Italy (27.0 %) and Sweden (21.7 %) compared to England (10.2 %) and France (8.8 

%; Supplementary Figure 5; Supplementary Table 1).  

Especially on the OTU level the Swedish forests were clearly different to the other sites 

(Figure 3; Supplementary Table 3). Striking examples were Corythion OTU3 and 

Glissomonad_Z OTU 36 being highly dominant in Swedish sites unlike at other sites (Figure 3; 

Supplementary Table 3). Rhogostoma OTU2 represented by far the most abundant species in 

England, while it was less dominant in other sites, especially in Sweden. Euglypha OTU11 and 

Trinema OTU17 were more dominant in Italian compared with English soils, while 

Glissomonad_U OTU15 showed an inverse association with these two sites. Neoheteromita 

OTU5 was most dominant in French and Dutch soils especially in comparison to Italian soils 

(Figure 3; Supplementary Table 3). Other site difference patterns of the most abundant 

species are shown in Supplementary Table 3. 

Discussion 

This study reveals clearly distinct CCCs in different geographic locations, with Swedish 

coniferous forests most strongly differing, but even grasslands soils harbouring different 

cercozoan communities. Grassland sites were replicated across Europe with treatments in 

England, France, Italy and the Netherlands, but CCCs differed between them. Similarly, no 

common OTU was found that was indicative for grasslands, suggesting that a complex 

combination of geographic distance, land management and other abiotic factors shape 

cercozoan- and protist communities. In line, climatic factors such as moisture have been 

shown to strongly influence protist communities (Bischoff 2002, Bates et al. 2013, Heger et 

al. 2013). 

LUI had much less effect than geographic distance, but slight changes between low and high 

LUI were observed. These were most pronounced in France, the site with highest differences 

in LUI between treatments. CCCs in the intensively managed permanent agricultural fields in 

France more closely resembled those from recently abandoned fields in the Netherlands, 

suggesting a dominant and long lasting legacy effect of agriculture (Foissner 1997). We 

could, however, not detect a reduction in diversity or absence of major OTUs, indicating that 

synchronous shifts in nearly all OTUs might be underlying reasons rather than changes in 

only few groups. Testate amoebae have been suggested to be strongly reduced by 
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agriculture, while species richness of ciliates sometimes even being higher in agricultural 

soils (Foissner 1997). Therefore, the entire CCCs might more closely resemble those of 

ciliates. We have not detected significant changes in testate amoebae, but as the resolution 

to species level was not possible, we might have missed species-specific changes and losses 

in some larger, k-strategist testate amoebae might have been compensated for by closely-

related fast-growing r-strategists (Wanner et al. 2008). 

We found that differences in CCCs become much more pronounced with increasing 

taxonomic resolution, resulting in largest differences on the OTU level. This likely explains 

why cultivation-based studies that are often limited to low taxonomic identification levels 

fail to detect substantial differences in community compositions of Cercozoa and protist in 

general (Finlay et al. 2000, Domonell et al. 2013). Interesting, however, is that differences in 

CCCs were even observed at the highest taxonomic levels, i.e. class level. Therefore, 

cercozoan and protist communities in general seem to be much more divergent in soils as 

suggested before (Finlay et al. 2000, Esteban et al. 2006). 

The total of 957 distinct cercozoan specific OTUs placing at distant positions in phylogenetic 

analyses (Supplementary Figures 2 and 3), provide strong support for the enormous diversity 

of soil cercozoans (Bass and Cavalier-Smith 2004, Bass et al. 2009b, Howe et al. 2009, Howe 

et al. 2011a). Such an analysis depth within a single study can only be accomplished by HTS 

methods and confirms that HTS will eventually become the gold-standard in studying (soil) 

protist diversity (Bates et al. 2013, Stoeck et al. 2014). 

The results of different OTU clustering levels with an appropriate similarity threshold of 98 % 

is in line with a recent 454 study that targeted the V4 region in ciliates (Stoeck et al. 2014). 

Therefore it seems that this OTU clustering level when targeting the hypervariable region V4, 

as the suggested barcode region for protists (Pawlowski et al. 2012), is appropriate when 

analysing high-throughput data obtained with 454 pyrosequencing platforms. The need of 

OTU clustering to counteract sequencing errors and the non-existence of truly general, 

unbiased primers (Epstein and López-García 2008, Adl et al. 2014) currently lead to an 

underestimation of taxon richness in HTS. The use of recently developed PR2 database 

strongly reduced false OTU assignments that commonly introduce biases in HTS (Medinger 

et al. 2010, De Jonckheere et al. 2012, Stoeck et al. 2014). However, significant OTU numbers 

could not be assigned as protist sequence information is still highly underreported in 
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databases (Pawlowski et al. 2012, Stoeck et al. 2014). Intensive efforts using cultivation-

based approaches are needed to fill the immense gaps in public databases with reliable 

sequence information. 

Little is known about soil Cercozoa, their biogeography and environmental factors shaping 

cercozoan soil communities, especially on the species level. Therefore, classical indicator or 

flagship species (Foissner 2006, Foissner 2009) could not reliably be assigned. However, we 

detected individual clades, especially at the OTU level, preferentially being associated with 

certain sites and LUI. Cercozoan spp. associated with moss were dominant in Swedish 

coniferous forest soils, confirming strikingly different communities of other protist groups 

present in coniferous forest soils (Bamforth 1980, Wanner 1991, Foissner 1998, Bobrov 

2005). The testate amoebae Corythion spp. were among the dominant OTUs in Swedish 

forest, which have been shown to be dominant in moss-covered, grassland and forest soils 

(Heal 1965, Wanner 1991, Bamforth 2010, Carlson et al. 2010). The specious and widespread 

testate amoeba genus Euglypha is commonly found in mosses and litter layers (Wanner 

1991, Bamforth 2010). However, Euglypha laevis was reported in high abundances in a range 

of orchards (Wanner 1991), which is in line with the high fraction of Euglypha among 

Cercozoa in wooden sites in Italy. In contrast, Neoheteromita OTU5 comprised only a small 

fraction among Italian and Swedish cercozoans. The genus Neoheteromita formerly 

belonged within the abundant and geographically widespread species complex “Heteromita” 

globosa (Howe et al. 2009), geographic location seems not to be the driving factor impacting 

this genus. Glissomonad_Z OTU 36 was another OTU dominating in Swedish forest soil. The 

sequences of as yet uncultivated is known from forest soils in the USA (Lesaulnier et al. 

2008) and might be associated with forest soils. Rhogostoma is suggested to be abundant in 

freshwater and soil habitats (Howe et al. 2011b), rendering explanations of the dominance in 

English grassland sites difficult.  

Taken together, we reveal that the community structure of Cercozoa shows biogeographic 

patterns with soil management also affecting the CCC, by the broadest study targeting soil 

protists to date. The enormous diversity sequences assigned to non-described taxa further 

suggests that a plethora of cercozoan species still is undiscovered, encouraging future 

studies to combine cultivation-based and molecular tools to broaden the understanding of 

taxon-specific functions within communities of Cercozoa and protist in general. 
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Supplementary 

 

Supplementary Figure 1. Rarefaction curves of amplicon data sets from all individual soil samples. 

 

Supplementary Figure 2. Maximum likelihood phylogenetic analyses placing 28 cercomonad OTUs (top). Bold 
italic: OTUs obtained in this study. 
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Supplementary Figure 3. Maximum likelihood phylogenetic analyses placing 19 glissomonad OTUs. Bold italic: 
OTUs obtained in this study. 

 

Supplementary Figure 4. Similarity of cercozoan communities between sites (left) and treatments (right) based 
on class level using the paired group (UPGMA) analyses with Bray Curtis similarity; see Table 1 for details on soil 
characteristics and treatment abbreviations. 
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Supplementary Figure 5. Rarified relative abundances of cercozoan classes in all samples at respective sites 
and treatments (x-axis); (see Table 1 for details on soil characteristics and treatment abbreviations). 

Supplementary Table 1. Between-site comparisons of differences on cercozoan class level; E = England, F = 
France, I = Italy, N = Netherlands, S = Sweden; Stars indicate significant differences (* = q < 0.05, ** = q < 0.01) 

Class E-F E-I E-N E-S F-I F-S I-S 

Imbricatea  **  ** * *  
Sarcomonadea *    *   
Thecofilosea * ** * **   ** 
 

Supplementary Table3. Between-site comparisons of differences on cercozoan OTU level; E = England, F = 
France, I = Italy, N = Netherlands, S = Sweden; Stars indicate significant differences (* = q < 0.05, ** = q < 0.01) 

OTU E-F E-I E-N E-S F-I F-N F-S I-N I-S N-S 

Glissomonad_Z OTU 36 
   

** 
  

** 
 

** * 
Cercomonas OTU216 

   
** 

  
* 

 
** 

 Cercomonas OTU12 
        

** 
 Glissomonad_Y OTU103 

   
** 

      Corythion OTU3 
   

** 
  

** 
 

** * 
Teretomonas_Te OTU45 

   
** 

      Eocercomonas OTU7 
        

** 
 Euglypha OTU11 

 
** 

      
** 

 Euglypha OTU14 
 

* 
      

** 
 Euglyphida OTU21 

 
** 

     
* ** 

 Nudifila-relative OTU 293 
   

** 
  

** 
 

** 
 Cercomonad_undet OTU29 

   
** 

    
** 

 Glissomonad_U OTU15 sp. 
 

** 
 

** 
      Limnofila OTU93 

 
* 

        Neoheteromita OTU5 
    

* 
 

** * 
  Neoheteromita OTU34 

       
** 

  Paracercomonas OTU6 
   

** 
   

** 
  Peregrinia OTU63 

 
** 

   
* * 

   Rhogostoma OTU2 * ** * ** 
  

* 
 

** 
 Glissomonad_NF-D OTU167 

 
** 

        Thaumatomonas OTU32 
     

* ** 
 

** 
 Trinema OTU17 

   
** 

  
** 

   Trinema OTU13 * ** 
  

* * ** 
 

** 
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Supplementary Table 2. Overview of 30 most abundant cercozoan OTUs obtained in this study; blast from original 

OTU Class Genus Blast Re-blast including own database %IDENT Genus 

2 Filosa-Thecofilosea Rhogostoma HM628668 HQ121430 97,9 Rhogostoma 

1 Filosa-Thecofilosea Rhogostoma AY620264 HQ121430 91,0 Rhogostoma 

3 Filosa-Imbricatea Corythion EF456751 EF456751 96,2 Corythion 

8 Filosa-Sarcomonadea Flectomonas AY965866 SCCAP_H251 100 Flectomonas 

5 Filosa-Sarcomonadea Sandona U42447 ATCC50780p145at4____4173_bp 100 Sandona 

9 Filosa-Sarcomonadea Eocercomonas AF372741 A2_244_25 2309_bpDA_2 100 Eocercomonas 

15 Filosa-Sarcomonadea Glissomonad_U EF024447 AJ506007_06_URH506007_Ucultur 99,7 Glissomonad_U 

12 Filosa-Sarcomonadea Neocercomonas FJ790711 Wyth3_8p68p138at6LS_2 100 Neocercomonas 

167 Filosa-Sarcomonadea Glissomonad_NF-D JN207873 H63p80t19____2871_bp_____DA 97,9 Glissomonad_NF-D 

6 Filosa-Sarcomonadea Paracercomonas AY884342 WA42p142at4 100 Paracercomonas 

1155 Filosa-Thecofilosea Rhogostoma AB534325 HQ121430 97,5 Rhogostoma 

45 Filosa-Thecofilosea Teretomonas_Te EF024805 DQ303924 87,1 Teretomonas_Te 

18 Filosa-Thecofilosea Teretomonas_Te EF024805 AH51p125____3002_bp_____DA 86,2 Teretomonas_Te 

13 Filosa-Imbricatea Trinema EF023588 EF456752 96,1 Trinema 

41 Filosa-Thecofilosea Rhogostoma EU798722 HQ121430 92,3 Rhogostoma 

4 Filosa-Thecofilosea Rhogostoma EF023854 HQ121430 92,6 Rhogostoma 

17 Filosa-Imbricatea Trinema AJ418792 AJ418792 97,5 Trinema 

36 Filosa-Sarcomonadea Glissomonad_Z EU709266 HetAus17____2820_bp_____DA 97,2 Glissomonad_Z 

27 Filosa-Thecofilosea Rhogostoma AY620303 HQ121430 94,4 Rhogostoma 

28 Filosa-Sarcomonadea Sandona EU709147 AH15p125 100 Sandona 

7 Filosa-Sarcomonadea Eocercomonas EF023536 C24p65t4 99,7 Eocercomonas 

11 Filosa-Imbricatea Euglypha GQ330594 EF456753 95,4 k 

44 Filosa-Sarcomonadea Glissomonad_NF-E EU709178 AH11p125 99,3 Glissomonad_NF-E 

25 Filosa-Thecofilosea Rhogostoma EF023854 DQ303924 93,0 Rhogostoma 

29 Filosa-Sarcomonadea Cercomonad_undet AB695519 x7_4its 97,3 Cercomonad_undet 

16 Filosa-Sarcomonadea Paracercomonas FJ790723 B1a_198_25f____2211_bp_____DA 100 Paracercomonas 

95 Filosa-Imbricatea Trinema EF024634 AJ418792 97,2 Trinema 

463 Filosa-Sarcomonadea Glissomonad_Z EU709266 HetAus17____2820_bp_____DA 98,9 Glissomonad_Z 

23 Filosa-Sarcomonadea Eocercomonas AB534320 Z70.14_AH 88,1 Eocercomonas 

26 Filosa-Thecofilosea Rhogostoma EU798722 HQ121430 92,3 Rhogostoma 
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Abstract 

The vast number, enormous diversity and importance of protists in soil system has long been 

assumed, but the true diversity and community composition of these eukaryotes remains 

largely concealed. Traditional cultivation based methods miss a majority of taxa, while 

recent breakthroughs in sequencing technologies, promise to greatly add to the knowledge 

on soil protists. However, high-throughput sequencing (HTS) approaches have so far rarely 

been adopted to study protists and mainly targeted DNA, therefore introducing significant 

biases in obtained communities. Here we applied a metatranscriptomic approach specifically 

aimed at deciphering the protist community in high taxonomic resolution to compare 12 

terrestrial samples of five different treatments (temperate litter from forests and soils from 

temperate grassland, forest and soils from two distinct artic peatlands. We found that 

protist communities strongly differed between treatments, while biological replicates 

strongly resembled another. More importantly, we detected a strikingly different community 

composition of soil protists than previously shown in cultivation-based and DNA-based 

studies and reveal an enormous diversity of soil protists. Amoebozoan-specific sequences 

were highly diverse and represented a large part of all protist sequences, contrasting 

previous DNA-based studies. However and despite using a manually curated database, 

automatically assigned sequences were often falsely assigned especially on lower taxonomic 

levels, strongly indicating that taxonomic expertise and manual inspection is still 

indispensable in working with protists even when using sequence-based information only. 

Typically aquatic Foraminifera and Choanoflaggellida were detected in nearly all samples 

further emphasizing the knowledge gap on soil protists. Therefore, this study strongly 
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encourages focused investigations of the soil protist community and highlights the need of 

careful investigations. Taking these steps will undoubtedly reveal additional interesting 

insights on soil protists, which are essential to understand entire soil systems.  

Introduction 

Soils harbour a spectacular microbial diversity. Among the least studied soil microorganisms 

are single-celled protists. Despite being microscopic, protist biomass in soils largely exceeds 

that of most animal taxa (Schaefer and Schauermann 1990, Zwart et al. 1994, Schröter et al. 

2003), and protists have been shown to play major roles in controlling bacterial turnover and 

community composition, recycling of nutrients, and plant growth promotion (Clarholm 1985, 

De Ruiter et al. 1993, Bonkowski 2004). Protists display an enormous diversity of 

fundamentally different taxa, based on both, morphological features and phylogenetic 

relatedness (Cavalier-Smith 1993, Cavalier-Smith 2003, Adl et al. 2012), but a comprehensive 

understanding of the relative contributions of the dominant taxa and their activity in 

different soil systems has not yet been elucidated. 

The pervasive lack of knowledge on soil protist communities is mainly caused by the need to 

establish enrichment cultures, as protists cannot be extracted from soils, and the 

opaqueness of soil particles prevents direct microscopic observation of the majority of taxa 

(Foissner 1987, Clarholm et al. 2007). Expert knowledge is needed for the time-consuming 

microscopic identification (Foissner 1987, Smirnov et al. 2008, Fenchel 2010, De Jonckheere 

et al. 2012), and therefore traditional attempts to describe the full diversity of protist taxa in 

natural soils are rare (Finlay et al. 2000, Bamforth 2007, Domonell et al. 2013). As mainly 

dormant stages are captured with cultivation-based approaches, these methods only reflect 

a sum-estimate of past protist production or ‘growth potential’ in soil (Finlay et al. 2000, 

Domonell et al. 2013). A further bias in the estimates of species richness is introduced as 

different growth media select for different species, and only a subset of taxa is estimated to 

grow in cultures (Ekelund and Rønn 1994, Foissner 1999b, Smirnov and Brown 2004). The 

advent of molecular techniques along with a revised species concept that is largely based on 

the small subunit ribosomal RNA (SSU rRNA) gene has fundamentally altered the view on the 

“protist world”; relatedness of species are being fundamentally revised and a huge number 

of formerly undistinguishable species have since been described (Cavalier-Smith 1993, 
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Cavalier-Smith 2003, Adl et al. 2012). Further, environmental sequencing studies based on 

the SSU rRNA gene have revealed a huge diversity of previously unknown and often most 

likely uncultivable protists (Bass and Cavalier-Smith 2004, Berney et al. 2004, Lara et al. 

2007a, Lejzerowicz et al. 2010, Bates et al. 2013).  

Despite molecular tools have diminished some problems to decipher the community 

structure of soil protists, new biases are being introduced and still obscure the true protist 

diversity. Fundamental problems are created by (i) the lack of reference sequences for major 

protist clades, (ii) vast mislabelled sequences in published databases, and (iii) the enormous 

phylogenetic diversity of protist taxa, often leading to wrong assignment of protist taxa 

(Epstein and López-García 2008, Smirnov et al. 2008, Adl et al. 2012, De Jonckheere et al. 

2012). Further biases are introduced by the PCR step that usually precedes high-throughput 

sequencing (HTS) studies. “General” eukaryotic primers are often applied to decipher the 

community structure of protists, but these primers are in fact far from being truly universal 

(Adl et al. 2014). A strongly biased view of the true protist community in soils is being 

depicted by primer-based HTS studies as only a subset of the protist diversity is being 

recovered (Jeon et al. 2008, Hong et al. 2009) while others are being preferentially amplified 

by PCR-based methods (Berney et al. 2004, Medinger et al. 2010, Stoeck et al. 2014). 

Amoebae for instance, are notoriously underrepresented in molecular surveys due to long 

SSU sequences, common mismatches in primer regions and common presence of introns 

(Berney et al. 2004, Fiore-Donno et al. 2010, Pawlowski et al. 2012). Ciliates on the other 

hand are highly overrepresented due to their shorter SSU sequences that ease amplification, 

and the presence of extremely high SSU copy numbers (Gong et al. 2013). Similar to culture-

based approaches, PCR-based estimates on protist diversity in soils are further biased by the 

fact that cysts of some protist taxa accumulate in soil and may survive for decades (Goodey 

1915, Moon‐van der Staay et al. 2006), and even DNA from dead organisms might be 

amplified, making a reliable estimation of active organisms impossible (Pawlowski et al. 

2011).  

Most of these obstacles are avoided when directly targeting SSU rRNA instead of genes 

encoding SSU rDNA combined with randomly-primed reverse transcription in 

metatranscriptomic approaches. For example, Urich et al. (2008) generated cDNA from the 

total extracted RNA of soil communities by a non-targeted approach applying reverse 
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transcription with random-hexamers. The cDNA was subjected directly to 454 HTS without 

any prior PCR or amplification steps. Several of the above-mentioned biasing steps could 

therefore be circumvented. Although the fraction of SSU rRNA stemming from protists is 

comparably small, recent studies show that the sequencing depth of current HTS platforms 

allows sizable datasets of protist SSU rRNA sequences (Urich et al. 2008, Tveit et al. 2012, 

Turner et al. 2013). 

We used this PCR-free metatranscriptomic approach to characterise the active soil protist 

communities within six highly diverse natural soil systems in Europe, including forest soil and 

litter, grassland soil, and arctic peat substrates. We annotated all sequences to a database 

consisting of manually curated published protist sequences and compared the protist 

diversity and community composition between sites. Our non-targeted sequencing approach 

enabled for the first time an in-depth analysis of the community structure of the supergroup 

Amoebozoa, which, as mentioned above, is rarely detected in PCR-based approaches. 

Finally, our non-targeted approach led to the unexpected discovery of protist clades that are 

typically associated with freshwater and marine environments, but not considered as typical 

soil inhabitants. 

Materials and Methods 

Soil sampling and processing 

Arctic peat soils were sampled as described in Tveit et al. (2012). The grassland site (Park 

grass, Rothamstead) was sampled by coring, with intact cores being brought to the 

laboratory, top soil (5 - 10 cm) sieved (5 mm mesh size) and subsequently flash-frozen in 

liquid nitrogen. Beech forest soils were sampled as described in Kaiser et al. (2010), the top 

soil (5 - 10 cm) sieved (5 mm mesh size) and subsequently flash-frozen in liquid nitrogen. 

Litter from the same sites was homogenized with a coffee grinder and subsequently flash-

frozen in liquid nitrogen. 

Nucleic acid extraction, cDNA synthesis and sequencing 

Nucleic acids were extracted and processed as previously described (Urich et al. 2008). cDNA 

synthesis was performed as described in (Radax et al. 2012, Tveit et al. 2012). 
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454 - pyrosequencing was done either with FLX (forest soil) or FLX Titanium (grassland, peat 

soil) chemistry.  

Sequence processing and analysis 

Raw reads were processed as described in Tveit et al. (2012). Sequences were first filtered 

using LUCY (Chou and Holmes 2001), removing short (< 150 bp) and low-quality sequences 

(> 0.2 % error probability). Small subunit (SSU) ribosomal RNA sequences of eukaryotes were 

identified by MEGAN analysis of BLASTn files against a SSU rRNA reference database (Lanzen 

et al. 2011; parameters: min. bit score 150, min. support 1, top percent 10; 50 best blast 

hits). All eukaryotic SSU rRNAs were reanalysed with CREST (Lanzén et al. 2012) using the 

Silvamod database with LCA parameters min bit score 250, top percent 2 for classification of 

protist sequences. Correct taxonomic assignment was verified by manual BLASTn searches 

against the NCBI Genbank nt database. For the high-resolution taxonomic annotation of 

amoebozoa sequences, a custom-made database was constructed consisting of 

1,164 sequences from Silva (www.arb-silva.de) and currently unpublished sequences (Stefan 

Geisen lab). The taxonomy was set according to the most recent taxonomy of Amoebozoa 

(Smirnov et al. 2011b, Adl et al. 2012, Lahr et al. 2013) to enable high-resolution taxonomic 

placement of sequences. An overview of the taxonomic levels within Amoebozoa 

distinguished in this study is shown in Figure 1. Reference database and taxonomy were then 

generated with CREST, and Amoebozoa sequences were classified using the same 

parameters in Megan as described above. 

 

Figure 1. Overview of taxa and taxonomic classification of sequences assigned as Amoebozoa. 
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Unweighted Pair Group Method (UPGMA) as a cluster analysis was applied to evaluate 

differences between the protist community composition in all samples (Sokal 1961). 

Results 

 

Figure 2. Community composition of protist supergroups in the investigated soils. For detailed information see 
Table 1. 

In total, 32,808 SSU rRNA sequences of protists were obtained from the 12 soils (average of 

2,734 sequences per site). The numbers of recovered sequences strongly increased with the 

organic matter content of soils and in litter samples (Table 1). In all cases, both biological 

replicates of each site yielded a very similar community composition (Figure 2) and grouped 

together in cluster analysis (Figure 3). 
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Table 1. Site description and sequence numbers (± SD) obtained from each site; NA = Data not available; in 
italics: eukaryotic supergroups 

Sample name 
Grassland soil 

(Gs) 
Forest soil  

(Fs) 
Forest litter  

(Fl) 
Peatland soil 
Knutsen (PsK) 

Peatland soil 
Solvatn (PsS) 

# of replicates 2 4 2 2 2 

pH NA 4.8 NA 7.3 7.6 
Moisture (%) 25 20 15 91 90 
Horizon / soil type Mineral / A Mineral / A Organic / 

Litter horizon 
Organic peat /  

Top layer 
Organic peat / 

Top layer 
Vegetation Grassland Beech forest Beech forest Fen wet land, moss 

dominated 
Fen wet land, 

moss dominated 
Climatic zone Temperate Temperate Temperate Arctic Arctic 
Location Rothamstead, UK Vienna woods, 

Austria 
Vienna woods, 

Austria 
Svalbard, 
Norway 

Svalbard, 
Norway 

Protist sequences 253±21 961±470 4862±2579 2722±773 6631±210 
SAR 163±15 662±287 3494±1735 2058±844 5265±187 
·Stramenopiles 24±8 77±26 234±238 294±71 731±25 
·Alveolata 24±1 96±34 870±542 1295±756 3797±144 
·Rhizaria 115±7 489±236 2391±954 470±160 737±18 
Amoebozoa 65±4 250±87 1009±633 322±6 586±29 
Excavata 7±1 25±11 233±141 148±20 420±23 
Archaeplastida 12±6 11±7 47±19 144±93 222±10 
Ophistokonta 6±4 19±10 82±52 50±7 139±6 

 

 

Figure 3. UPGMA clustering analysis to evaluate differences shown by the soil protist communities between 
samples. For detailed information on soil characteristics and abbreviations see Table 1. 

Each of the five protist supergroups according to Adl et al. (2012) was represented at each 

site by a high number of different protist sequences (Table 1; Figure 2). The SAR group, 

consisting of the formerly independent supergroups Stramenopiles, Alveolata and Rhizaria, 

always dominated the active communities (62.7 - 81.2 %, average 71.0 ± 6.4 of all 

sequences [oas]) with sequences of Rhizaria being most numerous (11.1 - 57.8 %, average 

37.2 ± 17.7 % oas) and those again being almost exclusively comprised of Cercozoa (95.5 %) 
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with dominance of sequences specific for the small flagellates in the order Cercomonadida 

(42 %) and both, flagellated and amoeboid protists in the order Silicofilosea (31 %). 

Surprisingly, Foraminifera occurred in relatively constant, albeit low numbers in all samples 

(1.5 ± 1.7 % oas). Alveolata sequences were quite variable among samples (7.8 - 57.8 %, 

average 25.0 ± 20.5 % oas) with the dominant phylum Ciliophora (91.2 %) and its main 

orders Spirotrichea (26.9 %), Colpodea (19.7 %) and Oligohymenophorea (16.0 %). The third 

group in SAR, Stramenopiles, was less abundant (2.1 - 15.8 %, average 8.8 ± 3.4 % oas). The 

supergroup Amoebozoa represented overall 20.0 ± 7.8 % oas (8.7 – 29.9 %). The other 

supergroups, i.e. Excavata (2.3 - 6.7 %; average 4.1 ± 1.6 % oas), Archaeplastida (0.7 - 9.6 %; 

average: 2.9 ± 2.6 % oas) and Ophistokonta (1.3 - 3.4 %; average: 2.0 ± 0.7 % oas) were 

generally less abundant. The high variability in the occurrence of individual supergroups 

reflected marked differences in the distribution of major protist taxa depending on organic 

matter content and soil type. Sequences specific for Rhizaria in SAR were dominant in 

mineral forest and grassland soils, while alveolate sequences composed the majority of 

sequences in substrates of high organic matter content, such as litter and peat soil samples. 

Generally, the community composition of protists in artic peat soils differed most strongly to 

all other samples, partly due to a reduction of Amoebozoa and Rhizaria and an increased 

dominance of Alveolata (Figure 2). 

A more detailed taxonomic analysis of all detected protist taxa would exceed the scope of 

our manuscript, but the supergroup Amoebozoa is particularly suited to demonstrate the 

advantages of our approach, as it is usually markedly underestimated in PCR-based HTS 

studies (Baldwin et al. 2013, Bates et al. 2013), revealing further caveats in molecular protist 

community analyses. Our data enabled reliable deep phylogenetic analyses to the order 

level, often even to the genus level. The sequences affiliated to Amoebozoa were highly 

diverse at each sampling site, and could be assigned to at least four major classes, i.e. 

Tubulinea, Discosea, Variosea and Mycetozoa (Smirnov et al. 2011b). Only sequences of the 

anaerobic and parasitic Archamoebae were not represented. Tubulinea contributed the 

majority of sequences followed by Discosea, Mycetozoa and Variosea (53.2 ± 17.7, 

23.7 ± 12.3, 11.4 ± 7.1 and 8.1 ± 3.8 %, respectively). Major orders with decreasing 

dominance were Euamoebida, Leptomyxida, Arcellinida and Centramoebida (21.0 ± 6.4, 

15.4 ± 8.7, 14.8 ± 4.6 and 14.7 ± 8.6 % of all amoebozoan sequences). 
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The community composition within Amoebozoa differed largely between sites (Figure 4). 

The dominant class Tubulinea made up 53.2 ± 17.7 % of amoebozoan sequences on average 

(27.4 ± 0.0 % in Solvatn peat soil to 69.2 ± 7.3 % in forest soils). Discosea, being generally the 

second most abundant class represented 23.7 ± 12.3 % of amoebozoan sequences and 

reached dominance in Solvatn peat soil (41.6 ± 5.2 % oas). The classes Mycetozoa and 

Variosea were always less abundant (11.4 ± 7.1 % and 8.1 ± 3.8 % oas, respectively; 

Figure 4). Euamoebida dominated mineral soils of grasslands and forests on the order level 

in the class Tubulinea, while Echinamoebida and Nolandida were generally rare. The testate 

order Arcellinida became more abundant in rich organic layers of litter and peat soils. 

Leptomyxida were highly abundant in forest habitats. Among the class Discosea, the subclass 

Longamoebia represented 15.2 % oas, and was almost entirely (96.1 %) composed of the 

order Centramoebida. Sequences of the Longamoebian subclass Flabellinia was generally 

lower (7.0 % oas), mostly composed of the order Vannellida (50.1 % of Flabellinia). 

Sequences assigned to the subphylum Conosa could only reliably be assigned on the class 

level, as taxonomy and phylogeny affiliations especially of protists in the class Variosea are 

still largely unresolved (Adl et al. 2012). Variosea were most abundant in grassland, and 

forest soils and the Solvatn peat soil (7.7, 8.3, 14.5 % oas, respectively), while Mycetozoa 

were more abundant in forest litter and Knutsen peat soil (16.5 and 23.4 % oas, 

respectively). An overview of relative abundances of all amoebozoan clades up to the order 

level is shown in Figure 4. 
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Figure 4. Diversity and community composition on the order level within the supergroup Amoebozoa in 
investigated soils. Labels and sites as described in Table 1 and Figures 1 and 2. 

Widespread were protist sequences closely resembling potential human pathogens. Among 

them and occurring at most sites were diverse sequences affiliated with the genus 

Acanthamoeba and the species Balamuthia mandrillaris. In addition, sequences assigned as 

Naegleria fowleri (Heterolobosea in the supergroup Excavata) were found at all four arctic 

peatland samples. One sequence at Solvatn closely resembled the malaria causing agent 

Plasmodium vivax. It must be noted, however, that only few of the sequences assigned to 

these human pathogens showed perfect matches to described species.  

Finally, our approach revealed the occurrence of protist groups that have been only rarely 

reported from soil. Sequences of the typically marine groups Foraminifera and 

Choanoflagellida confirm their presence and activity in all investigated soils (Figure 6). They 

comprised between 0.1 and 3.5 % of all protist SSU rRNAs. 

Among Foraminifera three unknown SSU contigs ranging from 742 to 890 bp showed 

substantial sequence dissimilarity (maximum identity of 91 to 93 % to known sequences). 

Closest similarities were shared with sequences obtained in a focused molecular survey on 
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soil Foraminifera (Lejzerowicz et al. 2010). Several other sequences, however, closely 

matched sequences typically obtained from freshwater and marine environments, such as 

the genera Astrammina, Bathysiphon, Allogromia and diverse uncultured species among 

Foraminifera. Several sequences specific for Choanoflagellida matched with a maximum 

identity of ≥ 99 % with published sequences of uncultivated choanoflagellates (e.g. 

HQ219439, EF024012, JF706236, EF024012 and GQ330606) while the other sequences 

reached similarities of > 95 % with uncultivated choanoflagellate genera among typical 

freshwater and marine taxa, such as Monosiga, Codonosiga, Salpinoeca, and more rarely 

with Lagenoeca, Stephanoeca, Didymoeca, Diaphanoeca, Desmarella and Acanthoeca. Five 

contig reads (763 to 1163 bp) showed sequence similarities of 96 to 99 % to uncultivated 

freshwater choanoflagellates, but the closest hit to a formerly described species was < 92 %. 

Most sequences branched together with uncultivated choanoflagellates in a phylogenetic 

analysis (Figure 5). 
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Figure 5. Maximum likelihood tree of Choanoflagellida: The placement of obtained long contigs (red) is specific 
for newly discovered choanoflagellate lineages in soil. 
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Figure 6. Sequence abundance ± SD of formerly neglected soil protist groups Foraminifera and 
Choanoflagellida. Labels and sites as described in Figure 2 and Table 1. 

Discussion 

Cultivation-based studies have shown that protists are diverse, abundant and important 

(Clarholm 1985, Ekelund and Rønn 1994, De Ruiter et al. 1995, Finlay et al. 2000, Bonkowski 

2004, Epstein and López-García 2008, Adl et al. 2012, Pawlowski et al. 2012), but still miss a 

majority of taxa (Epstein and López-García 2008). In contrast, cultivation independent DNA-

based sequencing studies have revealed a far much higher diversity of soil protists as 

previous suggested (Lara et al. 2007a, Lejzerowicz et al. 2010, Bates et al. 2013), but fail to 

amplify a wide range of protists and cannot estimate abundance (Epstein and López-García 

2008, Weber and Pawlowski 2013, Stoeck et al. 2014). We here applied a primer-free 

metatranscriptomic approach to avoid the above-mentioned issues to obtain a more 

accurate picture of the true protist diversity in a wide range of terrestrial samples. 

We obtained on average 2,700 protist-specific SSU rRNA gene sequences per site, 

corresponding to a two- to fourfold higher coverage than earlier primer-based DNA- 

(Baldwin et al. 2013, Bates et al. 2013) and metatranscriptome studies (Urich et al. 2008, 

Tveit et al. 2012, Turner et al. 2013). Generally, HTS results impose major caveats, especially 
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when DNA serves as a template: (i) amplification of dormant cysts and extracellular DNA 

(Stoeck et al. 2007, Not et al. 2009, Pawlowski et al. 2011) and large differences in SSU copy 

numbers between protist taxa make DNA as a target molecule unreliable to obtain relative 

quantitative estimates (Zhu et al. 2005, Parfrey et al. 2012, Gong et al. 2013, Weber and 

Pawlowski 2013); (ii) Even the best ‘universal primers’ (Adl et al. 2014) are in fact unable to 

detect many common and even dominant taxa, showing a highly biased view of the protist 

community composition (Jeon et al. 2008, Hong et al. 2009, Lee et al. 2012, Pawlowski et al. 

2012), and (iii) PCR amplification rates strongly differ between taxa due to e.g. length 

variation in the amplification region, presence of introns, and variation of GC contents 

(Huber et al. 2009, Amend et al. 2010, Engelbrektson et al. 2010, Xie et al. 2011, Lee et al. 

2012, Shakya et al. 2013, Strien et al. 2013). For example, the negative selection for 

amoebozoan sequences when applying a primer based approach on DNA is well-known 

(Berney et al. 2004, Amaral-Zettler et al. 2009) and explains the absence of nearly the entire 

supergroup Amoebozoa in DNA-based HTS surveys (Baldwin et al. 2013, Bates et al. 2013), 

while on the other hand high rDNA copy numbers in ciliates (Gong et al. 2013) lead to their 

over-proportional representation in DNA-based HTS studies. Therefore, primer-based 

methods are inherently prone to severe biases and appear largely inappropriate to reveal 

the true community composition of soil protists.  

Not surprisingly, primer-free metatranscriptomic studies reveal a fundamentally different 

soil protist community structure than shown by those applying primers (and targeting DNA) 

(Urich et al. 2008, Tveit et al. 2012, Baldwin et al. 2013). Similarities are merely the 

dominance of the supergroup SAR with high sequence abundances of especially Rhizaria 

(and Alveolata in Arctic peatland soils) (Baldwin et al. 2013, Bates et al. 2013). However, 

sequence numbers assigned as Amoebozoa replaced those of Alveolata in all non-arctic soils. 

This is in line with cultivation-based studies that clearly show that small flagellates, especially 

Cercomonadida (Rhizaria) (Finlay et al. 2000, Ekelund et al. 2001, Howe et al. 2009) and 

amoebae appear to be the numerically dominant protists in mineral soils (Schaefer and 

Schauermann 1990, Ekelund and Rønn 1994, Finlay et al. 2000, Robinson et al. 2002, 

Domonell et al. 2013). Taking into account the high sequence coverage in our study, we are 

confident that our study provides the most detailed and potentially closest picture of the 

true composition of active protist communities in soils shown so far.  
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Still, also data from metatranscriptomic studies are not immune to misinterpretations, and a 

thorough taxonomic expert knowledge on protists is still indispensable, especially if 

sequences are analyzed to lower taxonomic levels. Public databases provide major obstacles 

that are filled with a great number of misidentified species and wrongly assigned sequences 

(Smirnov et al. 2008, Lahr et al. 2012), and even for many distinct and common taxa 

sequence information is still entirely lacking. Therefore we used our own manually curated 

database to assign our sequences, which fundamentally improved assignments, especially in 

the supergroup Amoebozoa.  

Therefore, we are confident to provide the first thorough analysis of the eukaryotic 

supergroup Amoebozoa in diverse European terrestrial samples. While recent 

metatranscriptomic approaches confirmed cultivation based studies showing high relative 

abundances of Amoebozoa (Urich et al. 2008, Tveit et al. 2012, Turner et al. 2013), within 

amoebozoan analyses have not yet been conducted. The diversity of Amoebozoa in 

terrestrial samples is largely unknown, because of the above-mentioned issues in 

cultivability of amoebae and difficulties in taxon identifications (Smirnov et al. 2005, Smirnov 

et al. 2008). Morphotype assignments that are mostly used in cultivation based approaches 

suffer from artificial establishment of paraphyletic morphogroups (Anderson and Rogerson 

1995, Finlay et al. 2000, Bass and Bischoff 2001, Domonell et al. 2013), and thus fail to 

distinguish and resolve major taxa (Brown and De Jonckheere 1999, Smirnov et al. 2007). 

Using our approach we detected enormous sequence diversity in all classes of Amoebozoa. 

The general dominance of the two classes Tubulinea and Discosea also confirms cultivation 

based studies (e.g. Finlay et al. 2000, Bass and Bischoff 2001, Domonell et al. 2013) but only 

metatranscriptome studies are able to reveal the high representations of Mycetozoa among 

Amoebozoa (and protists in general) (Urich et al. 2008). Mycetozoa are extemely species-rich 

and most species pass complicated life cycles that switch between single-celled amoebae, 

flagellate and cyst stages and large mulitcellular plasmodia (Stephenson et al. 2011). Their 

general absence in primer-based surveys can be easily explained by their long, intron-rich 

and strongly diverging SSU sequences (Stephenson et al. 2011). The high abundance of 

Varipodida is entirely novel. The order Varipodida was only erected in 2004 and hosts mostly 

large plasmodial, branching or reticulate amoebae (Cavalier-Smith et al. 2004, Smirnov et al. 

2008, Smirnov et al. 2011b). Only few species of Varipodida are formally described resulting 

in sparse molecular information (Berney et al. 2013). In order to verify these 
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metatranscriptomic data, we conducted targeted cultivation studies, and this indeed 

revealed an unprecedented diversity of these extremely large amoebae in mineral soils 

(Chapters 3 + 5). The addition of several of these new sequences to our reference database 

resulted in strongly increased sequence assignments of Varipodida-specific sequences and 

shows that this highly diverse and active group of amoebae has entirely been overlooked in 

earlier studies.  

Some other amoebozoan clades also remain unresolved. Especially taxonomic affinities 

within the order Euamoebida could not be resolved to deeper taxonomic levels. 

Hartmannella and Saccamoeba branch paraphyletically within Euamoebida with the entire 

taxonomy of Euamoebida strongly being debated (Dyková et al. 2008, Corsaro et al. 2010, 

Brown et al. 2011, Lahr et al. 2013). A recent metatranscriptomic study identified Glaeseria 

as one of the dominant soil protist genera in this group (Turner et al. 2013), which was 

confirmed by high relative abundance of automatic assigned sequences in our study. 

However, subsequent manual BLASTn searches of sequences assigned as Glaeseria revealed 

that none of the assigned sequences in fact matched Glaeseria mira, but more closely 

resembled other described and, to an even larger extend, undescribed taxa within 

Euamoebida. Therefore we omitted the lower level classification in the highly abundant 

order Euamoebida. Future re-classifications of this order are urgently needed to allow family 

and genus sequence assignments in future studies. 

Amoebozoan sequences closely resembling potential human pathogenic protists indicate 

that soils are potential reservoirs of pathogens. Acanthamoeba spp. are causative agents of 

the eye infection amoebic keratitis and Acanthamoeba spp., Balamuthia mandrillaris and 

Naegleria fowleri (Excavata, Heterolobosea) can cause Amoebic Encephalitis, a fatal human 

disease (Visvesvara et al. 1993, Schuster and Visvesvara 2004, Visvesvara et al. 2007, 

Siddiqui and Ahmed Khan 2012). We found sequences closely resembling all these protist 

taxa. The presence of Acanthamoeba in all samples was not surprising as this genus is 

ubiquitously present in soils and probably one of the most abundant amoebae (Page 1988), 

a number of which are pathogenic (Risler et al. 2013). The molecular identification for most 

heterolobosean amoebae such as N. fowleri is based on the ITS region and only few SSU 

sequences are available (De Jonckheere 1998, 2004). Therefore, sequences assigned to 

N. fowleri could have derived from non-pathogenic relatives and would need more reliably 
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reference database to be evaluated. B. mandrillaris is the only described species in the genus 

Balamuthia (Visvesvara et al. 1993), but as none of our sequences perfectly matched, but 

most closely resembled B. mandrillaris, it is likely that this genus is more diverse than 

previously suggested. Due to the high number and diversity of yet undescribed species, and 

our poor knowledge of protist pathogens, it remains elusive how many species in soil are 

true human pathogens. 

As many sequences could not reliably be assigned beyond orders or sometimes even class, 

significant taxonomic information gaps prevail in all soil protist supergroups, especially in 

Amoebozoa. In line, new species and genera are continuously being described (Epstein and 

López-García 2008, Atlan et al. 2012, Geisen et al. 2014). Therefore, traditional taxonomy 

and the desciption of new species in cultivation based methods are an essential prerequesite 

to increase the protist reference database and joint efforts are needed to curate and 

improve existing databases.The surprising finding of several typically marine protist groups 

corroborates the notion that a plethora of soil protist taxa have formerly been missed in 

both, cultivation- and primer-based studies. For example, we detected Choanoflagellata in 

all samples. These protists are typically marine and only few taxa are known from freshwater 

systems (Tong et al. 1997, Arndt et al. 2000, Stoupin et al. 2012). Very few cultivation-based 

studies have reported the choanoflagellate genera Monosiga, Codosiga and Salpingoeca in 

soils, but they did not provide molecular data (Ekelund and Patterson 1997, Ekelund et al. 

2001, Tikhonenkov et al. 2012). Only few molecular soil surveys found choanoflagellate 

specific sequences (Lesaulnier et al. 2008, Lara et al. 2011), several of those closely being 

resembled by sequences obtained in our study. However, other sequences, among them the 

longer contigs, more closely resembled sequences obtained in freshwater surveys (Chen et 

al. 2008, Monchy et al. 2011, Stoupin et al. 2012). As most sequences showed highest 

similarity with uncultivated species, the need to connect sequence information with 

morphological and functional information on the respective protist species in soil is 

essential. The substantial unknown diversity of choanoflagellates in soil might be significant 

for evolutionary studies, since choanoflagellates are based at the branching point to 

multicellular eukaryotes. 

Foraminifera represent another group of typically marine protists, commonly not associated 

with soils. Edaphoallogromia australica is to date the only foraminiferan species known from 
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soil (Meisterfeld et al. 2001). We detected Foraminifera-specific sequences in all samples, 

supporting a recent targeted molecular survey that detected diverse Foraminifera-specific 

sequences in 17 out of 20 soils (Lejzerowicz et al. 2010), confirming their wide distribution in 

terrestrial soil enironments. A number of our contig sequences strongly resembled the 

sequences obtained by Lejzerowicz et al. (2010), but the majority of sequences most closely 

resembled the typically marine genera Astrammina, Bathysiphon and Allogromia. Although 

Foraminifera comprise a small fraction of the total soil protist community, they appear 

highly diverse and ubiquitously distributed in terrestrial habitats. The finding of sequences 

reliably assigned as choanoflagellates and foraminiferans indicates that, despite being 

relatively rare, these organisms are widespread members of active soil protist communities. 

Taken together, our study clearly demonstrates the advantages of a metatranscriptomic 

sequencing approach, by circumventing major biases commonly associated with high-

throughput studies. Still, taxonomic expert knowledge is needed to interpret 

metatranscriptomic data on protists and a reliable, manually curated database is 

indispensable for the correct assignment of taxa. Accordingly, the composition of soil protist 

communities in our investigation differed strongly from previous studies and revealed an 

unprecedented diversity of soil protists, many belonging to formerly unknown taxa and 

widespread protists groups commonly associated with marine environments. The possibility 

to achieve a high taxonomic resolution with our approach was exemplified by a detailed 

description of the abundant supergroup Amoebozoa, which is generally largely 

underrepresented in primer-based studies. We are highly confident that our primer-free 

metatranscriptomic approach along with a curated reference database provides the best 

estimate of the community composition of active protist communities in European soils to 

date. 
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Abstract 

Soil biologists generally discriminate the nutrient flows in soil food webs into a bacterial and 

a fungal-based energy channel. Protists are considered to be the main consumers in the 

bacterial energy channel, while microarthropods and mycophagous nematodes are 

suggested to be the predominant consumers in the fungal energy channel. Taxonomic 

studies have, however, revealed that a range of protists are mycophagous. To get deeper 

insights on the distribution and functional role of mycophagous protists we tested 

facultative mycophagous feeding of several isolated soil protists. In addition, sequence data 

from high throughput sequencing studies were mined for known mycophagous protists, 

vampyrellid amoebae and grossglockneriid ciliates. The feeding studies revealed that a wide 

range of soil protists are able to feed and proliferate on yeast, some even on potential 

phytopathogens, such as Fusarium-fungi. The data-mining approach revealed that sequences 

specific for the two mycophagous protist groups were present in all terrestrial habitats 

representing a significant proportion of the entire protist community. These results strongly 

suggest that mycophagy among soil protists is common and the potential of this ecological 

function should be considered in soil food web analyses. Future studies need to investigate 

taxon-specific (facultative) mycophagy, decipher changes caused in the fungal community 

and quantitatively evaluate the functional importance of this trophic position in soil 

ecosystems.  
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Introduction 

In soil biological studies, protists are mainly considered as major consumers of bacterial 

biomass (Hunt et al. 1987, De Ruiter et al. 1995, Bonkowski 2004). The notion that soil 

protists are merely bacteria grazers stands in sharp contrast to taxonomic studies. 

Taxonomists have long realized that obligate and facultative protists are widespread in soils 

(Old and Darbyshire 1978, Petz et al. 1985, Ekelund 1998), but knowledge on their functional 

importance is largely lacking. A major reason for the biased view on soil protists derives from 

the extraction and cultivation methods of soil protists. Traditional cultivation methods rely 

on enrichment cultivation using bacterial growth media (Berthold and Palzenberger 1995, 

Ekelund 1998), thereby missing the majority of mycophages and selecting for bacterivores. 

Nevertheless, taxonomic studies have revealed a diverse range of mycophagous protists. All 

described ciliates of the family Grossglockneriidae are obligate mycophagous (Foissner and 

Didier 1983, Petz et al. 1985, Petz et al. 1986). Further facultative mycophagous protists 

(= omnivores) are soil vampyrellid amoebae (Old and Darbyshire 1978, Hess et al. 2012), 

Thecamoeba spp. (Bamforth 2004) and diverse testate amoebae (Mitchell et al. 2008, 

Wilkinson 2008, Wilkinson and Mitchell 2010), all being large often exceeding 100 µm. Even 

small flagellates have been shown to feed on fungi (Hekman et al. 1992, Flavin et al. 2000) 

and high abundances of undetermined mycophagous flagellates with biomasses in the range 

of those from bacterivores have been reported from soils (Ekelund 1998).  

Molecular tools nowadays provide an alternative to get insights on formerly uncultivable 

protists and revealed that the cultivable fraction of soil protists represents only a minor part 

of the actual protist diversity in soils (Foissner 1999b, Kamono et al. 2013, Risse-Buhl et al. 

2013). Among the molecular techniques of studying soil protists are cloning and sequencing 

(Lara et al. 2007a) and high-throughput sequencing approaches. It is, however, difficult to 

link molecular phylogenetic information with ecological functioning. Molecular information 

needs to be supplemented by functional information on ecological traits, which relies mainly 

on in-vitro studies on cultivated organisms. Directly targeting functional genes or using 

metatranscriptomic approaches promise a cultivation independent method to evaluate 

functional traits (Urich et al. 2008, Mitra et al. 2011, Tveit et al. 2012). 
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We hypothesized that also with traditional bacterial growth media a significant fraction of 

facultative fungal feeders can be isolated and that mycophagous protists are widespread and 

common in soils.  

Materials and Methods 

Evaluating facultative mycophagy among soil protists 

Soil samples were taken in Pulheim Stommeln (Germany; 51°01'N, 6°45'E); Müncheberg 

(52°30’N, 14°07’E), in Les Verrines (France; 46°25'N, 0°7'E) and Cologne (Germany; 

50°55′N, 6°55′ E). The organic soil horizon was sampled in two locations (upper 2 cm in 

Pulheim Stommeln, 10 cm in Müncheberg and 10 cm in Cologne), while soil from earthworm 

burrows (2 mm around burrows) was samples at Les Verrines (Table 1). 

Enrichment cultures with bacterial growth medium were established to isolate facultative 

mycophagous protists. From each soil sample, 1 g dry wt of soil was suspended in 250 ml 

Neff’s Modified Amoeba Salina (NMAS) according to Page (1988). After shaking on an orbital 

shaker (Köttermann, Germany) at 100 rpm for 10’ and fourfold dilution with NMAS, 20 µl of 

the strongly diluted soil suspension was added to wells of a 24 multiwell-plate (Sarstedt, 

Germany). 80 µl of a 0.4 g * l-1 NMAS solution of dried Saccharomyces cerevisiae (Ruf, 

Germany) was added to each well and 160 µl of a Fusarium culmorum spore solution with a 

concentration of four spores * µl-1. Plates were sealed with Parafilm and stored at 15 °C in 

the dark. These enrichment cultures were examined microscopically for mycophagous 

protists, i.e. growth on fungi and ingestion of fungal material, 7 and 21 days after incubation 

using an inverted microscope (Nikon Eclipse TS100, Japan) at 100 x and 400 x magnification. 

Subsequently, enrichment cultures with fungal growth medium, were initiated using malt 

extract agar (MEA; 1.5 %). MEA plates were prepared by adding malt extract (1.5 %; 

AppliChem, Darmstadt, Germany) and agarising it by adding non-nutrient agar followed by 

autoclaving (122oC, 20’). MEA plates were inoculated with 100 µl suspension of F. culmorum 

spores and hyphae in H2Odest to establish active fungal cultures. Yeast cultures with 

Cryptococcus laurentii were incubated on potato glucose agar (1.5 %; Sigma-Aldrich, St. 

Louis, USA) supplemented with yeast extract (0.5 %; Oxoid Limited; Hampshire, England). 
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For feeding experiments, specific protists amoebae and amoeboflagellates that showed 

indications of mycophagy (Table 1) were cultivated monoxenically on bacteria, by 

transferring individual protists to 60 mm Petri dishes filled with NMAS using a tapered glass 

pipette under an inverted phase-contrast microscope (Nikon TS-100, Japan). According to 

the observed feeding behaviour S. cerevisiae or F. culmorum were added as food source. 

These monoclonal protist cultures were incubated at room temperature. Observations and 

microphotographs of protists were performed on a Nikon Eclipse 90i (Japan) equipped with 

phase contrast and Differential Interference Contrast optics at 100 – 400 x magnification. 

Cultures of the potentially mycophagous protists were tested for their feeding preferences 

on S. cerevisiae, F. culmorum and C. laurentii. A low-density fungal suspension (100 µl fungal 

suspension) with a concentration of 300 cells * µl-1 (S. cerevisiae and C. laurentii) or 

40 cells * µl-1 (F. culmorum) was directly added to protist cultures. The protist cultures were 

growing on accompanying bacteria in 60 mm petridish for one week. The cultures were 

microscopically investigated for uptake of fungal material 2 and 24 hours after inoculation, 

and microphotographs of protists ingesting fungal material were recorded. 

A more detailed experiment was initiated to test the mycophagous potential of the 

bacterivorous model protist Acanthamoeba castellanii on four different fungi. Two strains of 

the single celled S. cerevisiae and two filamentous fungi, Neurospora crassa and Coprinus 

cinerea, were given as potential prey for A. castellanii axenically grown in proteose peptone-

yeast extract-glucose medium (PYG in a 4:2:1 mixture). The experiment was run in 96 well-

plates (flat-bottom; Sarstedt, Nümbrecht, Germany), filled with a 150 µl sterile mixture of 

NMAS enriched with nutrient broth (Merck, Darmstadt, Germany) at 1:9 v/v (NB-NMAS). The 

four fungi were grown either alone or with A. castellanii. The control treatment contained 

only NB-NMAS or A. castellanii in NB-NMAS. All treatments were replicated eight-fold. 

Before use, A. castellanii cultures were washed three times with sterile NMAS before 

approximately 100 amoebae were added to each well of the A. castellanii treatments. Plates 

were sealed with Parafilm and directly placed in an automated microplate reader (Varioscan, 

Thermo Scientific, Waltham, USA). Optical density (OD) as an estimate of fungal biomass was 

measured every hour for a total of four days. Plates were additionally examined 

microscopically for amoebae growth and contamination. For subsequent statistical analyses, 

24 OD measurements per analysis time were combined and growth changes were 
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compared. Biomass (OD) changes for N. crassa, C. cinerea and strains of S. cerevisiae were 

analysed by repeated measures analyses of variance with factors time and amoebae. Data 

were log ( x + 1) transformed when required to satisfy the assumption of ANOVA. SAS 8.0 

(Statistical Analysis System, SAS Institute Inc., Cary, USA) software package was used for 

statistical analyses.  

Table1. Overview on potential facultative mycophagous amoebae and amoebaflagellates Isolated in this study 

Genus Order Supergroup Morphotype Length Sample Coordinates 

Cercomonas Cercomonadida SAR Amoeboflagellate ~12µm Müncheberg 52°30’N;14°07’E 

Cercomonas Cercomonadida SAR Amoeboflagellate ~30µm Müncheberg 52°30’N;14°07’E 

Cryptodifflugia Arcellinida SAR Testate amoeba ~18µm Pulheim Stommeln 51°01'N;6°45'E 

Acanthamoeba-
like 

Centramoebida Amoebozoa Naked amoeba ~40µm Müncheberg 52°30’N;14°07’E 

Mayorella-like Dermamoebida Amoebozoa Naked amoeba ~40µm Les Verrines 46°25'N;0°7'E 

Mayorella Dermamoebida Amoebozoa Naked amoeba ~100µm Cologne 50°55′N;6°55′E 

Leptomyxa Leptomyxida Amoebozoa Naked amoeba >100µm Cologne 50°55′N;6°55′E 

Thecamoeba Thecamoebida Amoebozoa Naked amoeba ~50µm Cologne 50°55′N;6°55′E 

Acanthamoeba 
castellanii 

Centramoebida Amoebozoa Naked amoeba ~30µm Pacific Grove 36°60’N;121°93’W 

 

The presence and activity of mycophagous protists in soils 

Data obtained in a high-throughput amplicon sequencing (HTAS) study that investigated 

carbon flux from root exudates through bacterial, fungal and protist communities 

(Hünninghaus et al. in prep) were analysed for sequences specific to known fungal feeding 

vampyrellid amoebae, and for ciliates of the family Grossglockneriidae. In this experiment 

bulk soil and rhizosphere soil was sampled from rhizoboxes containing 135 g of fresh soil 

from an agricultural field side and young maize plants. RNA was extracted as described by 

Lueders et al. (2004) with minor modifications The primers 20f (5’ - TGC CAG TAG TCA TAT 

GCT TGT - 3’) and euk302r+3 (5’ - ATT GGA GGR CAA GTC TGG T - 3’) were used to amplify a 

> 500 bp long fragment from a wide range of soil eukaryotes using the conditions described 

by Euringer and Lueders (2008). HTAS data were obtained for two time points, 23 and 

26 days after planting. Only sequences longer than 250 bp were taxonomically assigned by 

MEGAN (settings: min. bit score 330, min support 1, top percent 2) using BLASTn against a 

Silvamod database (Urich et al. 2008). All sequences assigned to the orders Vampyrellida or 

the family Grossglocknerididae were manually subjected to BLASTn searches 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) using default parameters. Relative percentages of 

both vampyrellids and grossglocknerididae of the entire protist community were calculated 

for each sample. 
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Similarly, sequence data from diverse terrestrial samples (artic peatland soils, forest soils, 

forest litter, and grassland soils) obtained in a recent metatranscriptomic study (Chapter 8) 

were analysed for vampyrellid and grossglockneriid sequences. Parameters used were the 

same as described above, except that sequences longer than 155 bp were taxonomically 

assigned. 

Results 

Microscopic examination of facultative mycophagous protists  

A wide range of morphologically different amoebae and amoeboflagellates showed clear 

mycophagy in enrichment cultures and clonal cultures (Table 2). Microscopic observations 

revealed that all eight protist taxa ingested S. cerevisiae and C. laurentii, while four cultures, 

Cryptodifflugia sp, Cercomonas sp, Leptomyxa sp, and Mayorella sp. fed on spores of 

F. culmorum (Table 2, Figure 1). All these protists also reproduced in presence of the 

respective fungal prey.  

Table 2. Feeding experiment of isolated mycophagous protists on the three different fungi, F. culmorum, 
C. laurentii and S. cerevisiae. X = successful ingestion of fungal material; - = no ingestion observed 

Protist genus F. culmorum C. laurentii S. cerevisiae 

Cercomonas X X X 
Cercomonas - X X 
Cryptodifflugia X X X 
Acanthamoeba-like - X X 
Mayorella-like - X X 
Mayorella X X X 
Leptomyxa X X X 
Thecamoeba - X X 
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Figure 1. Isolated protists with ingested fungi; Pictures show: (a) Leptomyxa sp. with ingested F. culmorum 
(b) Thecamoeba sp. with ingested S. cerevisiae (c) Mayorella sp. feeding on F. culmorum (d) Cercomonas sp. 
with ingested S. cerevisiae (e) Cercomonas sp. with ingested C. laurentii (f) Cryptodifflugia sp. (g) Mayorella-like 
amoebae with engulfed S. cerevisiae (h) Acanthamoeba-like with ingested S. cerevisiae. Arrows indicate 
ingested fungal material; Scale bar = 10 µm. 
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Mycophagy in Acanthamoeba castellanii 

A. castellanii reduced optical density that we subsequently define as a measure of cellular 

biomass, and inhibited growth of C. cinerea and both S. cerevisiae strains (Figure 2). 

Trophozoits and cysts of A. castellanii were present throughout the experiment in controls, 

with C. cinerea and both yeast strains, but a reliable quantification of amoebae was 

impossible within the dense layer of fungal material. C. cinerea and both S. cerevisiae strains 

were strongly reduced in comparison to non-amoebae controls (Figure 2). However, biomass 

of N. crassa was not reduced and totally overgrew the amoebae (Figure 2), indicating that 

feeding differences strongly depended on the fungal prey. Both yeast strains immediately 

started to grow, while growth of N. crassa was delayed by > 40 hours until an increase in 

biomass was observed (Figure 2). A. castellanii reduced the initial growth of S. cerevisiae and 

C. cinerea by 30 and 90 % during the initial growth phase of the fungi (F = 17.5, p < 0.001; 

F = 545.1, p < 0.001, respectively), but S. cerevisiae gradually compensated predation losses, 

while C. cinerea remained in low numbers, resulting in 15 and 82 % biomass reductions at 

the end of the experiment after 4 days (F = 5.2, p < 0.05; F = 99.9, p < 0.001; Figure 2).  

 

Figure 2. Changes in fungal biomass over a period of 95 hours determined by changes in optical density (OD). 
Different colours represent different fungal treatments (Neurospora crassa, Coprinus cinerea and 

Saccharomyces cerevisiae) (± SD); + = fungi with A. castellanii. 
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Presence and relative abundance of mycophagous protists in soils 

In the plant rhizosphere we detected a substantial fraction of fungal feeding protists using a 

DNA based HTAS approach. Sequences of Grossglockneriidae and Vampyrellidae were 

obtained from all datasets. Four weeks after maize planting, sequences of 

Grossglockneriidae represented ~ 0.5 and 1 % of all protist sequences in bulk and 

rhizosphere soil, respectively. Sequences of Vampyrellidae represented ~ 6 % in bulk soil but 

only ~ 3.5 % of protist sequences in rhizosphere soil, respectively (Figure 3). BLASTn searches 

of sequences assigned as Grossglockneriidae yielded often perfectly matches to 

Pseudoplatyophora nana or Mykophagopphrya terricola. However, several sequences 

showed closer affinities to uncultured species with P. nana or M. terricola as the closest 

described species.  

 

 

Figure 3. Sequences assigned as grossglockerniids and vampyrellids shown as relative abundance of all protist 
sequences obtained in an amplicon sequencing study of soils using rRNA as a substrate; ± SD of both 
mycophagous groups together. 
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The diversity of sequences assigned as species within Vampyrellidae was more diverse, 

closely resembling different members of Vampyrellida, such as Theratromyxa weberi, 

Platyreta germanica or Vampyrella sp. However, BLASTn searches of many sequences 

yielded highest identity to sequences of undescribed vampyrelliids. Most sequences were 

not perfectly matching known taxa with similarities sometimes more than 5 % different to 

described species.  

Presence and relative abundance of metabolically active mycophagous protists in soils 

Sequences of vampyrellids and grossglockneriids were found in all soils in a 

metatranscriptomic dataset, representing between 0.1 and 3.0 % of all protist-specific 

sequences. While Vampyrellida and Grossglockneridae contributed little to the diversity of 

protists in artic peatlands (< 0.5 % of all protists), higher fractions were found in both forest 

soil and litter (1.5 % of all protists) with highest relative abundance in grassland (3.0 %; 

Figure 4).  

 

Figure 4. Sequences assigned as grossglockneriids and vampyrellids shown as relative abundance of all protist 
sequences obtained in a metatranscriptomic analyses of different soils. 
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P. nana represented the majority of sequences in Grossglockneridae and sequences specific 

to M. terricola were second most abundant. Especially short sequences showed identical 

similarities to both species, while others more closely resembled uncultivated species with 

P. nana and M. terricola being the closest hits. 

The majority of sequences assigned to Vampyrellida resembled most closely Theratromyxa 

and Arachnula, but also sequences closely resembling uncultivated vampyrellids were 

common. 

Discussion 

A hitherto unconsidered functional role of soil protists as mycophages and omnivores in soil 

food webs is highlighted in this work. Several soil protists, previously classified as 

bacterivores, were shown to selectively feed on yeasts and on spores of soil fungi, among 

them F. culmorum. It appears that a wide range of protists taxa are in fact opportunistic 

omnivores. 

Despite their enormous diversity, soil protists were generally considered as bacterivores in 

soil food webs (Hunt et al. 1987, De Ruiter et al. 1995). Taxonomists have shown that some 

protists feed on fungi, such as several amoebae, e.g. Thecamoeba, Gephyramoeba, 

Mayorella, Saccamoeba and Leptomyxa (Page 1977, Chakraborty and Old 1982, Chakraborty 

et al. 1983), ciliates of the family Grossglockneridae (Foissner 1980, Petz et al. 1986, Foissner 

1999a) and even small flagellates (Hekman et al. 1992, Ekelund 1998, Flavin et al. 2000). The 

importance of mycophagy among protists and the diversity of mycophagous protists in 

terrestrial ecosystems remain, however, largely unknown. 

Non-toxin producing yeast strains were preferentially being preyed upon by a variety of 

protists. Similarly, A. castellanii almost entirely prevented the growth of the non-toxic 

C. cinerea, and also reduced growth of baker’s yeast (S. cerevisiae), while N. crassa was 

entirely unaffected. The presence of putative antibiotics in the genome of N. crassa (Galagan 

et al. 2003) presumably acts anti-microbial, liberating N. crassa from being preyed upon by 

A. castellanii. If these results can be extrapolated to other fungi, fungal ability of toxin 

production seems to be an important factor determining potential mycophagy of soil 

protists. Future studies evaluating interactions of a wider range of fungi and mycophagous 
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protists are needed to prove this hypothesis. However, Tapilskaja (1967), Old and Oros 

(1980), Chakraborty and Old (1982) and Chakraborty et al. (1983) have shown that soil 

amoebae fed on spores of plant pathogenic fungi and even reduced the outbreak of 

pathogenic fungi in field experiments.  

Size and structure pf prey fungi, however, also most likely influence the edibility, as former 

studies often found that bacterivorous / facultative mycophagous protists ingest single-

celled yeasts (Heal 1963, Bunting et al. 1979, Allen and Dawidowicz 1990). Transport of 

yeasts inside amoebae without damage of the cells has been reported (Heal 1963, 

Chakraborty and Old 1982), but we could clearly oberve active digestion inside food vacuoles 

of protists leading to inhibition of fungal growth. All protists tested in this study consumed 

yeast cells, C. operculata and Cercomonas sp. ingested single yeast cells, whereas larger 

protists ingested several cells simultaneously. 

A. castellanii has been used as a bacterivore protist in a number of experiments (Weekers et 

al. 1993, Bonkowski and Brandt 2002, Rønn et al. 2002b, Neidig et al. 2010, Koller et al. 

2013) and was confirmed to strongly alter bacterial community composition in the plant 

rhizosphere (Kreuzer et al. 2006, Herdler et al. 2008, Rosenberg et al. 2009). Our results 

show that A. castellanii also exhibis selective feeding preference for fungal species. 

However, the formation of fungal hyphae was supressed by A. castellanii showing that also 

the growth of filamentous fungi can significantly be reduced by common opportunistic 

omnivorous protist species, such as Acanthamoeba spp. This genus is ubiquitous and highly 

abundant in aquatic and terrestrial environments (Page 1988, Rodríguez-Zaragoza 1994). 

Generally, amoebae in the genus, but especially those identified as A. castellanii, are treated 

as purely bacterivorous (Chakraborty et al. 1983, Bamforth 1988). Acanthamoeba spp. rely 

on phagocytosis to take up prey unlike larger mycophagous amoeba such as vampyrellids 

that have been shown to perforate hyphae (Old and Darbyshire 1978, Chakraborty and Old 

1982), excluding long hyphae from their food spectrum. However, we show that single-cell 

S. cerevisiae and fungal spores were ingested and reduced, but also hyphae of C. cinerea 

could not be produced under feeding pressure exhibited by amoebae. Acanthamoeba is very 

diverse (Gast et al. 1996, Stothard et al. 1998, Gast 2001, Corsaro and Venditti 2010, 

Qvarnstrom et al. 2013) with niche differentiation likely existing between taxa. The immense 

enzymatic repertoire detected in the sequenced A. castellanii Neff strain contained 
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chitinases (Anderson et al. 2005, Clarke et al. 2013), suggesting that A. castellanii might 

thrive on fungi. Also other Acanthamoeba spp. are likely to be opportunistic mycophages, 

indicated by presence of chitinases in A. culbertsoni (Krishna Murti and Shukla 1984) and 

consumption of Cryptococcus neoformans by A. polyphaga (Bunting et al. 1979). The obvious 

omnivory of Acanthamoeba spp. combined with their broad enzymatic repertoire might 

explain the ubiquity and high abundance of Acanthamoebae in basically all environments 

(Sawyer and Griffin 1975, Page 1988, Rodríguez-Zaragoza 1994). Further, it is shown for the 

first time that even hyphae-forming fungi can be impacted by A. castellanii probably by 

feeding on fungal spores. 

Distribution of mycophagous protists 

As the knowledge on mycophagous protists is sparse, a focused molecular sequence 

analyses was performed targeting only vampyrellids and grossglockneriids as known 

representatives of mycophagous protists (Old and Darbyshire 1978, Foissner 1980, Petz et al. 

1986, Hess et al. 2012). Grossglockneriidae have only been described in 1980 with currently 

nine species in six genera being described, all being obligate mycophages (Foissner 1980, 

Petz et al. 1985, Petz et al. 1986, Foissner 1999a). Cultivation based studies indicate their 

presence in almost all soils (Foissner 1999a), but still little is known on the distribution and 

ecological importance of these ciliates. Our molecular analyses supported these studies as 

we found sequences of grossglockneriids in all samples, representing up to 3 % of all protist 

sequences. The diversity in this family seems to be high in most samples, as several 

sequences showed highest similarity to undescribed grossglockneriid species, indicating that 

the entire diversity of this family is still not known. The only two available sequence data of 

Mykophagophrys terricola and Pseudoplatyophrya nana (Lynn et al. 1999, Dunthorn et al. 

2008) thus urgently need to be supplemented by sequences of the remaining described 

species to investigate how many species are likely to exist within this family of mycophagous 

ciliates. 

Vampyrellid amoebae have been the focus of a recent detailed investigation (Berney et al. 

2013). The authors found sequences of new vampyrellids in HTS datasets especially in 

marine environments, but also retrieved diverse vampyrellid sequences from soils. Our HTAS 

and metatranscriptomic data clearly support the findings of Berney et al. (2013), as 

vampyrellid sequences were highly diverse and ubiquitously found. Sequences of described 
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species, such as Theratromyxa weberi and Platyreta germanica were detected, but also a 

wide array of undescribed and uncultivated species in Vampyrellida. These data suggest that 

facultative mycophagous vampyrellids could play important ecological roles in soils 

(Figure 5). More cultivation based efforts are needed to clarify their ecological functions in 

terrestrial soil samples.  

We identified sequences specific for mycophagous protists using ribosomal rRNA mirrors the 

living and active community of protists (Urich et al. 2008, Tveit et al. 2012, Turner et al. 

2013). Vampyrelliids and grossglockneriids included in the molecular analyses only represent 

two clades of mycophagous protists and most likely represent a fraction of all (facultative) 

mycophagous soil protists shown in this work and before (Pussard et al. 1979, Chakraborty 

et al. 1983, Old et al. 1985, Ekelund 1998, Flavin et al. 2000). Therefore, and due to the 

ubiquituously detectable representation of grossglockeriids and vampyrellids in soils, 

mycophagy evidently should be considered as an important ecological function of soil 

protists supplementing nematodes and microarthropods as major consumers of fungi 

(Figure 5).  
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Figure 5. The soil food web revisited showing the diverse role of free-living heterotrophic protists; red: formerly 
largely ignored positions of protists.  
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Abstract 

In soil biology, heterotrophic protists are assumed to occupy a key position in soil food webs 

by controlling bacterial biomass. Their enormous phylogenetic diversity, however, suggests 

that bacterivory alone strongly underestimates the true functional importance of protists in 

soil. We investigated feeding interactions of the testate amoeba Cryptodifflugia operculata 

with other soil organisms and investigated the relative contributions of active C. operculata 

among soil protists in soil and litter samples using a metatranscriptomic approach. We show 

that tiny C. operculata actively preyed on a range of much larger bacterivorous nematodes. 

In turn, protist abundances strongly increased by preying on nematodes, while protist 

turnover with bacteria as sole nutrient source was much lower. This indicates that 

facultative nematophagous feeding of C. operculata is of essential importance for population 

fitness especially in view of the ubiquity of nematodes in soil. We detected sequences 

assigned to C. operculata in all samples investigated, representing up to 4 % of the entire 

protist community. This is the first study to show that even tiny protists feed and proliferate 

on nematodes and that these taxa are very common members of the active protist 

community in soils. Therefore, feeding on nematodes by distinct soil protist groups might be 

an important component in soil food webs.  
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Introduction 

Heterotrophic protists and bacterivorous nematodes are commonly assumed to be the 

major controllers of bacterial biomass in soils (Hunt et al. 1987, De Ruiter et al. 1995, 

Bjørnlund and Rønn 2008). Based on coarse morphological features heterotrophic protists, 

hereafter simplified as protists, have traditionally been classified as flagellates, ciliates and 

amoebae (Darbyshire 1994). Recent phylogenetic information, however, revealed that 

flagellates and amoebae are composed of a vast number of paraphyletic species, spreading 

all across the whole eukaryotic tree of life (Cavalier-Smith 1993, Cavalier-Smith 1998, Adl et 

al. 2012). In view of this enormous diversity, the concept used by soil biologists of treating 

protists as bacterivores is rather unlikely. 

Taxonomic studies have already provided evidence other trophic feeding groups, such as 

algivores (Smirnov et al. 2011a, Hess and Melkonian 2013) and mycophages (Old and 

Darbyshire 1978, Chakraborty and Old 1982, Petz et al. 1986, Ekelund 1998). Even 

nematodophagous protists are known, which generally are large taxa that directly consume 

nematodes; among them are the vampyrellid amoebae Arachnula impatiens, Platyreta 

germanica and Theratromyxa weberi (Sayre 1973, Hess et al. 2012), the testate amoebae 

Nebela vas and Difflugia lanceolata (Yeates and Foissner 1995) and the ciliates Stylonychia 

pustulata and Urostyla sp. (Doncaster and Hooper 1961). Direct feeding of smaller protists 

(< 30 µm) on nematodes (> 250 µm) is not known, despite small protists affect nematode 

behaviour (Bjørnlund and Rønn 2008, Neidig et al. 2010). Yeates and Foissner (1995) isolated 

nematodes with damaged tails and suggested that it might have been caused by predacious 

testate amoebae.  

Testate lobose amoebae are intermingeled with naked amoebae in Amoebozoa, placing 

monophyletic in the order Arcellinida (class: Tubulinea, supergroup: Amoebozoa) (Nikolaev 

et al. 2005, Smirnov et al. 2011b, Adl et al. 2012, Lahr et al. 2013). Amoebae of this order are 

well characterized and high numbers of species are described due to distinctions based 

mainly on scale morphology. Nearly 20 Cryptodifflugia spp. are described based on 

morphological differences mostly attributed to size and shape of the shell in the genus, 

which comprise among the smallest testate amoebae (10 - 55 µm in length) and show a wide 

distribution (Page 1966, Hedley 1977, Nicholls 2006). 
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We investigated intra-guilt predation interactions of Cryptodifflugia operculata on 

nematodes. Further we investigate the ecological distribution and activity of these amoebae 

in a wide range of soil habitats analysing a dataset obtained in a metatranscriptomic 

approach, to revealing presence, relative abundance and therefore potential significance of 

C. operculata in soil food webs. 

Materials and Methods 

Isolation and description of Cryptodifflugia operculata 

C. operculata was cultivated from the mineral layer of a pasture soil in the Netherlands 

(N52°01′, E5°99′). Cultures on accompanying bacteria were established in Petri dishes with 

Prescott-James medium (Page 1991), enriched with 0.15 % wheat grass (Weizengras, 

Sanatur, Singen, Germany), i.e. WG medium. C. operculata grew well in cultures with a 

diverse soil bacterial community. Cell sizes were determined microscopically using a Nikon 

Eclipse TE2000-E inverse microscope at 400 x magnification by measuring the average of 

20 cells. Shell dimensions were on average 16.9 ± 2.1 µm in length and 14.9 ± 1.8 µm in 

width. Genomic DNA was isolated using a guanidine isothiocyanate method (Maniatis et al. 

1982) followed by amplification of the small subunit (SSU) ribosomal DNA with primers, 

cycling conditions and enzymatic purification as described in Geisen et al. (2014). A partial 

sequence obtained revealed a perfect match to the C. operculata strain deposited under 

GenBank accession number JF694280 (Lahr et al. 2011) 

Intra-guilt predation of C. operculata on bacterial feeding nematodes 

The bacterial feeding nematodes Acrobeloides buetschlii, a bisexual A. sp., Rhabditis belari, 

R. dolichura and R. terricola were grown on Escherichia coli OP-50 on 2 % agar plates 

enriched with 0.1 % of 0.4 g cholesterol in 80 ml 95 % ethanol. Nematodes were suspended 

in WG medium, washed twice by centrifugation in fresh WG medium and numbers were 

subsequently determined microscopically using a Neubauer improved counting chamber 

(Roth, Karlsruhe, Germany).  

Interactions between C. operculata and all nematode species were studied in 24 well-plates 

(flat bottom, Sarstedt, Germany). Treatments containing C. operculata were prepared one 

week before start of the experiment as enumeration in suspensions proved to be unreliably 
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due to extremely low numbers. Therefore, C. operculata was pre-inoculated in 500 µl WG-

medium and enumerated at the beginning of the experiment. 500 µl sterile WG-medium was 

added to the remaining wells. The experiments were started by inoculating 

33 ± 9 nematodes in 200 µl WG-medium to each well of the respective treatments while 

200 µl sterile WG-medium was added to non-nematode treatments. In total, four replicates 

of each treatment (C. operculata alone or in combination with each of the nematodes) were 

setup resulting in 24 replicates in total. The 24 well-plates were sealed with Parafilm and 

incubated in the dark at room temperature for 18 days. The abundance of C. operculata in 

each well was determined microscopically at 100 x magnification 2, 4, 6, 8, 10, 14 and 

18 days past inoculation, while living numbers of nematodes were determined at days 8 and 

18. For convenience analyses were restricted to differences between initial and final 

abundances.  

To investigate potential feeding of C. operculata also on dead nematodes, A. buetschlii in 

WG medium were killed by addition of boiling H2Odest (1:1 v/v). 1 ml of the heat-killed 

nematode suspension was then added to wells of a 24 well-plate that had been pre-

inoculated with C. operculata. Attachment and feeding of C. operculata on the dead 

nematodes was investigated with an inverse microscope (Nikon Eclipse TE2000-E) at 

100 - 400 x magnification. 

Presence and activity of C. operculata in soils 

Sequence data retrieved in a metatranscriptomic analyses analysing forest litter and soils 

from grasslands, forests and arctic peatlands (Chapter 8) were analysed for Cryptodifflugia 

sequences. Only sequences longer than 150 bp, with high quality (< 0.2 % error rate) were 

taxonomically assigned by MEGAN using BLASTn against the Silva SSU database (Pruesse et 

al. 2007, Urich et al. 2008). All sequences assigned as C. operculata were manually controlled 

by performing BLASTn searches against GenBank using default parameters.  

Statistical analyses 

Differences in the abundances of C. operculata and nematode spp. were calculated as 

relative values and square root arc-sin transformed to homogenize variances and analysed 

by a generalized linear model (GLM) using SAS 9.1 (Cary, FL, USA). Comparison of the means 

for the individual treatments was done at the 5 % probability level with a Tukey-test (Tukey’s 
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honestly significant difference, HSD). Percentage data were square root arcsin-transformed 

prior statistical analyses.  

Results 

C. operculata consumed both, active and dead nematodes, and all nematode species were 

attacked and consumed. The feeding procedure was the following: nematodes were 

attached at their posterior end by one amoeba. Then other amoebae were attracted and 

fixed the anterior end. Attached nematodes were subsequently disintegrated from both 

ends by an increasing number of amoebae. The process of joint amoebae feeding dissolved a 

nematode within 12 hours. A sequential array of time-lapse photographs of the feeding 

procedure is shown in Figure 1. 

The different nematode species had strongly different effects on the reproduction of 

C. operculata. Populations of C. operculata decreased in control treatments by 41 %, but 

increased by factors of 2.4, 2.4, 2.2, A. buetschlii, R. dolichura, R. terricola, A. bisex and 

R. belari, respectively (F = 6.37, p < 0.01; Figure 2). However, the growth increase in 

C. operculata did not reflect the declines in nematode numbers. After 18 days, C. operculata 

had reduced the numbers of all nematode species. R. terricola by 89 % (F = 864, p < 0.001), 

A. bisex by 77 % (F = 99.4, p < 0.001), R. belari by 32 % (F = 10.7, p < 0.05), A. buetschlii by 

31 % (F = 5.12, p = 0.06) and R. dolichura by 25 % (F = 9.3, p < 0.05; Figure 3). Interestingly, 

the decline in A. buetschlii the nematode species that entailed the highest abundance 

increase of C. operculata was only marginally significant. 
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Figure 1. Feeding procedure of C. operculata on the nematode A. buetschlii over a period of 12 hours in 
intervals of one hour; scale bar = 100 µm. 
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Figure 2. Relative change in abundance of Cryptodifflugia operculata over the course of the experiment. 
Treatments are without nematodes (Ctrl) or with Acrobeloides buetschlii, A. sp. (bisex), Rhabditis belari, 
R. dolichura or R. terricola as nematode prey species. Different letters indicate significant differences (p = 0.05). 

 
Figure 3. Relative change in abundance of nematode species Acrobeloides buetschlii, A. sp. (bisex), Rhabditis 
belari, R. dolichura or R. terricola in presence of Cryptodifflugia operculata. Stars indicate significant differences 
at * p < 0.05; and *** p < 0.001. 
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The general abundance of active Cryptodifflugia spp. in different soils 

All samples from diverse terrestrial habitats in Europe contained sequences resembling 

C. operculata (Figure 5). Sequences assigned as C. operculata generally showed > 98 % 

sequence identity in BLASTn searches to the type species. A similar sequence identity was 

found for C. oviformis. However, especially sequences from forest sites more closely 

resembled uncultivated species with C. operculata as the first described species. Less than 

1 % of sequences were wrongly assigned to C. operculata and were manually removed as 

they most closely matched uncultivated Arcella spp. 

C. operculata sequences were particularly abundant in forest litter and soil samples, 

comprising up to 18 % of total Amoebozoa and 4 % of all protists sequences (Figure 5). 

C. operculata still represented 4.8 % of the amoebozoan sequences (1.1 % of all protists) in 

grasslands, while both Arctic peatland sites only hosted a relatively low fraction of 

C. operculata (< 5 % of Amoebozoa and < 0.7 % of all protist sequences; Figure 5).  

 

Figure 5. Sequences assigned as C. operculata shown as relative abundance of all sequences assigned to 
protists obtained in a metatranscriptomic study (Chapter 8).  



Part 3 – Chapter 10 Nematophagous protists Discussion 

 

227 

Discussion 

Predation of testate amoebae on nematodes has been shown before (Yeates and Foissner 

1995), but predation of protist on nematodes was seen more as the exception rather than 

the rule. Our data unambiguously demonstrate that predation of protists on nematodes 

must be regarded as an important trophic link in the soil food web.  

Sequences assigned as C. operculata are shown to represent high relative abundances of the 

entire active community of soil protists shown in metatranscriptomic datasets. Therefore, an 

inverse link of nematophagous protists in soil food webs might be of major importance. So 

far, C. operculata represents the smallest nematophagous soil protist, as the few taxa 

reported to feed on nematodes are 5- to 10-fold larger (Sayre 1973, Yeates and Foissner 

1995). Large vampyrellid amoebae Theratromyxa weberi directly fed, digested and reduced 

nematodes, but densities of amoebae appeared largely unaffected by nematophagy (Sayre 

1973).  

More recently, more sophisticated negative intra-guild interactions were reported between 

protists and nematodes. Exoproducts of amoebae repelled nematodes and exhibited marked 

nematostatic activity, while exoproducts of nematodes increased encystation and reduced 

growth of their bacterivore competitors (Neidig et al. 2010). Likewise Bjørnlund and Rønn 

(2008) found flagellates that killed nematodes without proliferating at high flagellate 

abundance, whereas nematodes consumed flagellates at lower density, both not benefiting 

from this interaction.  

In recent years it was shown that interactions of “bacterivorous” protists and nematodes are 

much more complex than depicted in current food-web models. Evidence from a number of 

experiments has clearly shown that “bacterivorous” nematodes can be important predators 

of naked amoebae (Anderson et al. 1977, Alphei et al. 1996, Rønn et al. 1996, Bonkowski et 

al. 2000b). Here, we demonstrate that intra-guild predation can be also an important 

strategy of amoebae to acquire a huge amount of food resources from nematodes.  

Interestingly, C. operculata can grow entirely on bacteria, while the other nematophagous 

protists are broader omnivores or predators, all needing nematodes, algae or fungi as 

supplementary food (Yeates and Foissner 1995, Hess et al. 2012, Berney et al. 2013). Also, 

the predation strategy of C. operculata strongly differs from other known nematophagous 
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protists. The larger amoebae T. weberi, N. vas and Difflugia sp. attack nematodes 

individually usually from the posterior end or at mid-body and ingest them entirely (Sayre 

1973, Yeates and Foissner 1995). Strongly different was the mode of pack hunting of 

C. operculata, where more and more conspecifics were attracted to an attacked nematode, 

most likely by chemical signals. However, reproduction of A. buetschlii, the nematode 

species that favoured most strongly reproduction of C. operculata, was only marginally 

affected, while other nematodes were strongly reduced. A. buetschlii might be less prone to 

predation losses as this species is an r-strategist characterized by asexual reproduction and 

short generation times (Frey 1971), while A. sp. was a sexual species that was more prone to 

predation. This suggests that indirect effects of C. operculata affecting the community 

composition of nematodes might be much more important than direct predation and the 

overall reduction in nematode numbers per se.  

The metatranscriptomic data revealed that sequences assigned as C. operculata represented 

a significant proportion of the entire protist community in a broad variety of soil and litter 

samples across Europe. Since the biomass of protists in soil is at least an order of magnitude 

greater than the biomass of nematodes (Paustian et al. 1990, Schaefer and Schauermann 

1990), relative abundances of C. operculata of up to 4 % of all protist sequences indicate a 

significant potential for widespread intraguild predation of protists on nematodes. It must 

be noted, however, that several sequences showed higher similarities to unknown 

uncultivated species, which might represent other unknown or unsequenced species within 

the genus Cryptodifflugia. Based on morphology, Cryptodifflugia is a species-rich genus with 

more than 20 described species (Page 1966), while sequence data is only available for 

C. operculata (Lahr et al. 2011) and C. oviformis (Gomaa et al. 2012). 

Taken together, this work shows that intraguild predation of a small testate amoebae 

C. operculata on nematodes might be of fundamental importance in soil food webs by 

shaping the nematode community composition. Sequences assigned as C. operculata 

represented a significant proportion of the entire fraction of active protists indicating an 

important ecological function of C. operculata in soils by controlling both bacterial biomass 

and nematode abundances.   
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General Discussion 

The work described in this thesis made significant contributions to fill the gaps of knowledge 

on the extremely abundant, diverse, and functionally important group of soil protists 

(Clarholm 1985, Foissner 1987, Ekelund and Rønn 1994, Finlay et al. 2000, Bonkowski 2004, 

Bonkowski and Clarholm 2012). It has been shown that specific protist taxa, and in particular 

amoebae, can exhibit important functions, but knowledge on the diversity and community 

composition of protists in soils was scarce. Those studies investigating and showing 

important ecological functions exhibited by soil protists largely focused on one or few taxa 

(Bonkowski and Brandt 2002, Krome et al. 2009, Pedersen et al. 2009, Koller et al. 2013, 

Saleem et al. 2013). Taken into account the enormous diversity of (soil) protists (Foissner 

1987, Cavalier-Smith 1998, Adl et al. 2012, Bates et al. 2013), generalizations on protists 

functioning derived from these simplistic studies more than likely provide an artificially 

oversimplified picture. Further, methodological drawbacks prevent assessing the real soil 

protist community composition with many species remaining undiscovered (Foissner 1999b, 

Moreira and L pez-Garc  a 2002, Epstein and López-García 2008).  

Within this thesis, several hundred amoebae were cultivated, classified into morphogroups 

and more specifically described using sequence information in order to increase the 

knowledge of soil protists. Using this information a total of 16 new species and 7 new genera 

have been formally described (Part 1, Chapters 1 - 4). These basal cultivation efforts 

targeting amoebae emphasized the enormous diversity of soil protist. To get a more 

exhaustive knowledge on the protists community, Part 2 of this thesis aimed to describe the 

community composition of soil protists by applying and optimizing a range of cultivation-

based, and cultivation-independent molecular methods (Part 2, Chapters 5 - 8). These 

studies further emphasise the enormous diversity of the soil protist community revealing 

that protist communities differ between soils and that the results strongly depend on the 

method being used. The last part aimed at increasing the knowledge of species-specific 

ecological functions performed by soil protists (Part 3, Chapter 9 - 10) and reveals that 

protists are far more than bacterial feeders. Distinct taxa were shown to feed on fungi and 

nematodes and environmental sequencing revealed that protists with these ecological 

functions are widely distributed and abundant in soils. 
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Cultivation efforts remain an essential component in the study of soil 

protists (Part 1) 

As the first major part of this thesis, the cultivation and description of 16 new species and 

even 7 genera of soil amoebae reveals that soil protists and especially amoebae are largely 

undersampled and reinforces the notion that a plethora of currently unknown protists 

inhabit soils (Moreira and L pez-Garc  a 2002, Epstein and López-García 2008).  

The description of two new Stenamoeba spp. shows that this genus is species-rich, despite 

the short history of the genus Stenamoeba (Smirnov et al. 2007) with currently only three 

described species (Dyková et al. 2010b). The presence of MTOCs in Stenamoeba further 

demonstrates the scarce knowledge about taxonomic and morphological characteristics 

specific for or shared between amoebae within the supergroup Amoebozoa. Therefore, 

morphological features still add pivotal information to taxonomic affinities of unresolved 

groups based on phylogenetic information, such as between members of the class Discosea 

(Cavalier-Smith et al. 2004, Smirnov et al. 2005, Kudryavtsev and Pawlowski 2013), here 

shown by the ultrastructural feature of MTOCs (Chapter 1).  

The description of another discosean amoeba, Cochliopodium plurinucleolum reveals that 

species-specific morphological characters and phylogenetic affinities even within a well-

investigated amoebozoan genus such as Cochliopodium are far from being deciphered. 

Several Cochliopodium spp. with nearly identical sequences are further shown to exhibit 

inconsistent morphological characters, indicating that only a combination of molecular and 

morphological tools enables reliable identification of Cochliopodium spp. These 

discrepancies need to be considered when identifying amoebae based on morphological 

characters. Even the differentiation between higher taxonomic ranks often are impossible, 

such as between vahlkampfiids (Brown and De Jonckheere 1999, De Jonckheere and Brown 

2005), tubulinids (Page 1985, Smirnov et al. 2011b), or the focus group of Chapter 3, i.e. 

“Variosea-like” amoebae (Smirnov et al. 2008, Lahr et al. 2012, Berney et al. 2013). 

Therefore, it is hardly surprising that amoebae described without providing molecular 

information have commonly been misidentified and later transferred to other positions in 

the eukaryotic tree (Brown and De Jonckheere 1999, Smirnov et al. 2007, Smirnov et al. 

2008, Smirnov et al. 2011b, Lahr et al. 2012). But as indicated by the results obtained within 
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this chapter, species-level identification based on purely molecular information need careful 

interpretation. Intra-specific differences are often higher than inter-specific differences 

(Smirnov et al. 2007, Qvarnstrom et al. 2013) and morphologically clearly distinguishable 

species or genera sometimes share identical sequences, especially when partial sequences 

are being used (De Jonckheere and Brown 2005, Smirnov et al. 2009, Anderson and Tekle 

2013). Further, annotated sequences are commonly mislabeled and some taxonomic 

affinities of and between groups remain uncertain, preventing reliable sequence 

assignments without knowledge on morphology (Berney et al. 2004, Smirnov et al. 2008, De 

Jonckheere et al. 2012). Therefore, identification up to species level should only be made by 

combining morphological with sequence information.  

The description of six new genera of amoebae in the class Variosea helped at strongly 

increasing the knowledge on the diversity of and phylogenetic affinities within Variosea. 

Morphologically species-differentiation within Variosea remains hardly impossible, due to 

profound intra-clonal morphological plasticity that often surpasses differences even 

between genera. The variosean morphology, i.e. cells more or less branching and extended 

with filose pseudopodia, generally seems widespread among amoebae and is adopted by 

amoebae in the orders Leptomyxida, Centramoebida and Varipodida (Amoebozoa) and 

Vampyrellida (Cercozoa) (Adl et al. 2005, Bass et al. 2009a, Smirnov et al. 2011b, Hess et al. 

2012). Therefore it is hardly surprising that many taxa have taken a long way until finding 

their current taxonomic affinity. One striking example is Leptomyxida that long combined all 

variosean-like amoebae but was later divided based on molecular information; Leptomyxa 

and Gephyramoeba are now placed in Leptomyxida, Balamuthia in Centramoebida, while 

Acramoeba dendroida (initially mislabelled as “Gephyramoeba”) (Smirnov et al. 2008), 

Grellamoeba robusta (Dyková et al. 2010a) and Telaepolella tubasferens (initially mislabelled 

“Arachnula impatiens”) (Lahr et al. 2012) found their home in Varipodida (Amaral-Zettler et 

al. 2000, Smirnov et al. 2011b). Morphological and molecular information on the new 

cultivated genera provided and by reliable placing many sequences from uncultivated 

species inside Variosea an enormous diversity of the class Variosea is shown. 

Similar to those species descriptions of amoebae in the supergroup Amoebozoa, seven new 

vahlkampfiid species including the new genus Pagea are described, revealing a high 

unknown diversity of heterolobosean amoebae (supergroup Excavata). Six new species 
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placed in the recently erected genus Allovahlkampfia (Walochnik and Mulec 2009) were 

isolated from all geographically distant soils indicating a wide distribution of Allovahlkampfia 

spp. in soils. “Solumitrus” palustris is included as A. palustris as it reliably placed inside this 

genus, confirming previous studies (Brown et al. 2012, Harding et al. 2013) and shows that 

taxonomic affinities of other protists and amoebae might still change in the future due to 

increased taxon-sampling and multi-gene approaches. Pagea alta as the type species of a 

new genus branched with only uncultivated taxa in phylogenetic analyses pointing out that 

cultivation efforts are necessary in assigning sequences obtained in cultivation-independent 

soil surveys such as by using high-throughput sequencing (HTS).  

The formal description of all these new species and genera of amoebae is in line with other 

recent descriptions of soil amoebae, which, however, remain rare (De Jonckheere et al. 

2011b, Atlan et al. 2012). Cultures of several other new species and genera were obtained as 

part of this PhD work. An overview of sequenced amoebae of the supergroup Amoebozoa is 

shown in Figure 1, demonstrating that several species only known from environmental 

sequencing approaches have been successfully cultivated, such as Vannellidae (e.g. strains 

Nl174, Sar32 and Tib97), Dermamoebidae (strains Sar17, Nl179 and Tib196), Angulamoeba 

sp. F2 and Variosea sp. (strains G5, Tib48, Tib90). Most other clones branch inside known 

genera but often sharing low identity to described species, so that they are likely to 

represent new species, such as Hartmannella sp. (strains Nl117, Sar7 and Tib2), 

Cochliopodium sp. (strains Tib64 and Tib174), Vannella sp. (strains Nl7, Nl176 and Sar88) and 

Filamoeba sp. (strain Tib69). Among the cultivated amoebae are also many known species, 

such as Saccamoeba limax (strain Nl46), Vermamoeba vermiformis (strains Sar34 and 

Tib103), Vannella simplex (Sar36) and Vexillifera bacilipedes (strain Nl6). Several more 

examples for each of those three categories are illustrated in Figure 1. Despite less diverse 

and lower abundant in cultures, several heterolobosean amoebae were also cultivated that 

can be placed in these three categories and also an amoeba showing unique morphology 

and molecular patterns that could not reliably be assigned to any eukaryotic supergroup 

(data not shown). All these examples prove that many species remain unknown or only 

known from environmental sequencing approaches (Lara et al. 2007a, Lejzerowicz et al. 

2010, Berney et al. 2013). However, the cultivation of entirely unknown amoebae or known 

only from environmental sequencing approaches reveals that at least a subset of the so-

called uncultivable amoebae are in fact cultivable. Molecular techniques such as HTS are 
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now rapidly being improved, replacing traditional cultivation-based studies (Lara et al. 

2007a, Urich et al. 2008, Medinger et al. 2010, Bates et al. 2013). Much, if not major 

information is currently lost as many sequences cannot reliably be assigned to known 

species, reinforcing the notion that traditional cultivation-based methods can- and should 

not entirely be replaced by molecular tools. In addition to the benefit of being able to assign 

molecular sequences to morphological information, cultivation-based efforts allow detailed 

ecological investigations on distinct species to eventually allow functional assignment to 

respective sequences.  
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Figure 1. Maximum likelihood phylogenetic tree of amoebozoan amoebae (classes Tubulinea, Discosea and 
Variosea) cultivated in this thesis with closest BLASTn hits (default parameters) obtained of each respective 
sequence. Amoebae most likely resembling known species are shown in red, new species and genera in pink; 
Genera of amoebae cultivated in this study highlighted in bold.  
RaxML analysis (version 7.3.2, Stamatakis 2006), 1,113 nucleotide positions of the SSU-rDNA gene, GTR+γ+I 
model of nucleotide substitution, rooted with Tubulinea; bootstrap values shown > 60, solid circles = 100. 
Branches with a break cut in half; scale bar = 0.08 substitutions / site.   
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Diversity, distribution and community structure (Part 2) 

The second major part of this thesis aimed at increasing the knowledge on the diversity and 

community structure of soil protists by applying a battery of different methods. Among 

those were a traditional cultivation based enumeration study combined with morphological 

protist identification (Chapter 5), a combination of cultivation and subsequent molecular 

identification of Acanthamoeba clones (Chapter 6), a HTAS study (Chapter 7) and a 

metatranscriptomic approach (Chapter 8). 

Traditional cultivation based methods have the longest history and used to provide the only 

possibility of studying the entity of soil protists (Darbyshire et al. 1974, Foissner 1987, 

Smirnov 2003). As a first method to study soil protist communities a modified liquid aliquot 

method (LAM) (Butler and Rogerson 1995), decreasing workload, allowing deeper taxonomic 

identification of protist clades and enabling to obtain information on abundances of 

respective taxa. The high taxonomic resolution according to the most recent taxonomic 

classification (Smirnov et al. 2011b, Jeuck and Arndt 2013) is the first in this depth and 

provides evidence, that global climate changes might impact distinct protist clades 

differentially and that soil moisture has a profound impact on the abundance of soil protists. 

Therefore, cultivation based studies allow answering specific questions such as in ecological 

studies and remain unique in providing biomass estimations of a range of soil protists. 

A major advantage of the LAM is that protist taxa are usually growing in monoclonal cultures 

enabling downstream deep taxonomic classifications using molecular sequencing (e.g. 

Chapter 6) and functional investigations (Chapters 9 and 10). 

An example for an approach using morphologically classified cultivated taxa from 

geographically distant locations with subsequent high-resolution molecular identification 

was applied in Chapter 6 as a second example of studying soil protist communities. 

Interestingly, all sequences obtained from morphologically often indistinguishable 

Acanthamoeba spp. are different to previously published sequences. Further, none of the 

sequences obtained at one location is identical to sequences recovered at another location 

and also the community composition was found to differ between sites. The fairly low 

number of sequenced clones might have missed known and strains of Acanthamoeba 

identical between sites. Nevertheless, the observed difference in the Acanthamoeba 
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community structure with only previously unknown strains sequenced strongly suggests that 

a huge diversity of Acanthamoeba strains remain to be discovered. Analysing a wider range 

of soils by deep-sequencing are needed to decipher the dispersal of sequence-identical 

Acanthamoeba strains and evaluate the factors that determine the community composition 

of Acanthamoeba spp. The observed patterns are even more profound taken into account 

that Acanthamoeba is among the best studied protists due to the presence of several 

facultative human pathogenicity strains (Schuster 2002, Schuster and Visvesvara 2004). One 

of the strains isolated in Dutch soils showed dramatic cytopathogenic characteristics, 

indicating that soils serve as a reservoir for pathogenic protists. Further functional 

investigations are highly desirable to investigate whether sequence differences between 

strains can be used to derive ecological functions and / or pathogenicity. 

A high-throughput amplicon sequencing (HTAS) approach using cercozoan specific primers is 

used in Chapter 7 as a third technique to investigate the diversity and community 

composition of soil protists. Sample throughput and depth of community analyses are highly 

increased and the need to cultivate protists is circumvented by directly targeting DNA 

(Dawson and Hagen 2009, Creer et al. 2010, Medinger et al. 2010). Fundamental differences 

in the cercozoan community are detected that differ depending on geographic location and 

soil treatment. Interestingly, cercozoan communities differ strongly even between 

comparable soil environments strongly opposing the famous hypothesis that “everything is 

everywhere, the environment selects” (Baas-Becking 1934, Finlay 2002) and support recent 

findings that challenged this concept (Foissner 2006, Bass et al. 2007, Fontaneto and Hortal 

2013, Heger et al. 2013). Further, this study shows that differences between soils become 

much more evident when increasing the level of taxonomic resolution suggesting that HTS 

approaches allow deciphering even minor differences in soil protist community structures.  

Using metatranscriptomics as a forth method to study the entire diversity and community 

structure of soil protists allows deep analyses and comparisons of soil and litter samples 

from distinct locations in Europe. The deepest resolution of the soil protist community 

obtained to date reveals that amoebae represent a high proportion of the protist community 

contrasting previous HTAS approaches (Baldwin et al. 2013, Bates et al. 2013), that protist 

communities differ between locations on taxonomic ranks from supergroup to genus level 

and that protist groups basically unknown from soils such as choanoflagellates and 
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foraminifera comprise a significant part of the protist community. Therefore it seems that 

research on soil protist diversity and community composition up to now only scratched the 

tip of the iceberg, with presumably only a small fraction of the entire protist community 

being known and a virtual absence of reliable information on protist community 

compositions. 

Biases for all of the applied methods remain and need to be considered when studying 

protists; despite applying a modified LAM (Chapter 5), cultivation based techniques suffer 

from low sample-throughput, the prerequisite of protist cultivability (Berthold and 

Palzenberger 1995, Foissner 1999b) and the need of expert skills to morphologically identify 

many protist groups even to shallow taxonomic levels, e.g. family or genus level (Foissner 

1999b, De Jonckheere and Brown 2005, Smirnov et al. 2008, Howe et al. 2009). Downstream 

sequencing of cultivated protists increases the taxonomic resolution and this combination of 

morphological and molecular tools remains the only reliable method to identify the majority 

of protists up to species level (De Jonckheere 1998, Brown and De Jonckheere 1999, 

Pawlowski et al. 1999, De Jonckheere and Brown 2005, Pawlowski and Burki 2009, 

Brabender et al. 2012). However, the work- and time-load synchronously increases 

dramatically, lowering the sample throughput to a minimum (Chapter 6). As the name 

suggests, “high-throughput” sequencing methods in form of HTAS or metatranscriptomics 

solve this problem. Additionally, HTS methods enable identification of uncultivable protists 

and avoid expert knowledge in protist identification. On the downside, high start-up costs, 

advanced bioinformatic capabilities and skills, taxonomic expertise in sequence 

interpretation by dealing with wrongly annotated sequences need to be considered (Berney 

et al. 2004, Epstein and López-García 2008, Medinger et al. 2010, Pawlowski et al. 2011). Not 

only do all those methods for studying protist diversity necessitate different prerequisites 

and skills, while all being affected by distinct sources of error, each method reveals a 

different picture on protist communities. This suggests that no single method allows 

deciphering the entire soil protist community in all aspects (Figure 2) and that the method of 

choice depends on the question being addressed.  

It has to be noted, however, that the methods applied here targeted different questions and 

were used to study dissimilar soils. Differences in observed protist communities are affected 

at least in part by abiotic factors such as differences in soil texture, organic matter content, 
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plant communities, land-use and moisture (Foissner 1997, 1999b, Anderson 2002, Bates et 

al. 2013). These differences render direct method comparisons based on our results 

impossible, but it remains unquestionable that each method reveals a different part of the 

protist community. Future direct comparisons of the entire battery of methods to study the 

soil protist community are essential to decipher inter-methodological differences that will 

ultimately allow to reliable identify information that can be extrapolated between methods. 

Only this knowledge will finally allow a reliable estimation of protist abundances, dispersal, 

diversity and community composition in soils, which until then remains highly speculative. 
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Figure 2. Simplified schematics comparing two major methodological approaches for studying soil protists, i.e. 
cultivation based (smaller blue circle; top left hand corner) and cultivation-independent (larger grey circle; 
bottom right hand corner). Differences between approaches are illustrating showing methodological artefacts 
that need to be considered when studying protist communities. Sphere sizes indicate (relative) abundances of 
respective protist clades; Equal colored spheres: comparable errors between methods 
Pro1 - 18: protist taxa. Pro1: abundant, well cultivable; Pro2: abundant, not-well cultivable; Pro3: abundant, 
uncultivable; Pro4: overrepresented when applying HTS technologies (e.g. multiple copies of target molecules, 
amplification of extracellular DNA as well as PCR-artefacts in HTAS or high numbers of rRNA transcripts in 
metatranscriptomics); Pro5: overrepresented in cultivation-based studies, e.g. mainly present inactively; 
Pro6: underrepresented due to low abundances close to the detection limit in cultivation efforts; Pro7: equally 
represented between methods; P o„8“: wrongly assigned (e.g. sequencing errors or mislabeled published 
sequence); P o„9“: morphologically misidentified; Pro10: adversely affected in sequencing (e.g. extraction of 
target molecules prevented by incomplete cell lyses or mismatches of primers in HTAS); 
Pro11 - Pro14: morphologically (nearly) identical, distinguishable only using cultivation-independent 
techniques; Pro15 - 18: low abundant taxa recovered only by HTS; ProX-ProZ²: uncultivable protists, sequences 
obtained but removed in quality filtering or very low abundant taxa, i.e. „missing diversity“. 
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Ecological importance (Part 3) 

The third major part of this thesis reveals that protists are more than bacterivores as is 

usually been suggested in soil food web models (Hunt et al. 1987, De Ruiter et al. 1995, 

Crotty et al. 2011). Mycophagous (Chapter 9) and nematophagous protists (Chapter 10) are 

described, both functional groups showing high relative abundances in diverse soil and litter 

samples.  

In the first study (Chapter 9) several protists previously suggested as bacterivorous are 

shown to feed on distinct fungi. True obligate mycophagous protists have rarely been 

studied, but few are known, such as ciliates in the family Grossglockneriidae (Foissner 1980, 

Petz et al. 1986, Foissner 1999a) and some facultative mycophagous groups, such as 

vampyrellid amoebae (Old and Darbyshire 1980, Old and Oros 1980, Hess et al. 2012). 

Sequences specific for these two protist groups were discovered in targeted sequence-

mining of HTAS and metatranscriptomic (Chapter 8) datasets, being present in all samples 

investigated and represent a substantial fraction of the entire protist community. Therefore, 

soil protists are likely more than bacterivores and mycophagous protists should be 

considered as an important trophic node in soil systems (Figure 3). 

A small and common testate amoeba, Cryptodifflugia operculata, is shown in a second study 

to interact with a range of other soil organisms, most profoundly feeding and proliferating 

on a range of nematodes. C. operculata grows in monoclonal cultures on bacteria only, but 

in presence of nematodes, abundances strongly increased suggesting that this facultative 

nematophagy suits as an important feeding strategy in soils. The high representation of 

Cryptodifflugia-like sequences among all protist sequences in the metatranscriptomic 

analyses of several soils (Chapter 8) provides further evidence that the trophic level of 

protists is not identical for all of these highly diverse taxa. Nematophagous or omnivorous 

protists are likely to deserve an own node in soil food webs and potentially constituting an 

important alternative link to other trophic levels (Figure 3). Also conceivable is that the 

microbial loop in soil and eventually plant growth (Clarholm 1985, Bonkowski 2004) is 

further stimulated by omnivorous protists as they supplement plants and bacteria with 

nutrients released from presumably higher trophic levels.  
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Due to their enormous diversity, vastly outreaching that of all multicellular eukaryotes 

(Cavalier-Smith 1993, Cavalier-Smith 1998, Adl et al. 2012) it is little surprising that protists 

occupy distinct environmental niches and perform alternate ecological functions, despite the 

contradictory view of treating protists in a single functional unit as bacterivores (Hunt et al. 

1987, De Ruiter et al. 1995). The studies in this chapter provide further evidence for feeding 

differences between protist taxa, confirming studies revealing strongly diverging feeding 

strategies, such as by feeding on other protists (Page 1977, Smirnov et al. 2007, Berney et al. 

2013), fungi (Old and Oros 1980, Petz et al. 1985, Ekelund 1998) and nematodes (Doncaster 

and Hooper 1961, Sayre 1973, Yeates and Foissner 1995). Peculiar, however, is the small size 

and high abundance of the newly found nematophagous amoeba C. operculata suggesting 

that food web anomalies are common and that higher turnover and abundances of these 

smaller organisms are of major ecological importance in controlling nematode numbers. The 

sequence information obtained from both mycophagous and nematophagous protists 

further shows their high representation in soils and litter indicating that traditional soil food 

webs need to be complemented by several nodes of functionally distinct protist clades, 

where e.g. nematophagous and mycophagous protists should find their home (Figure 3). 

Taken together, soil protists are a diverse assembly of organisms that host diverse 

functionally different groups most likely functioning as key nodes in soil food webs.  
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Figure 3. The soil food web focusing on protists; direct interactions indicated with arrows (red: interactions of 
protists with other soil organisms, grey: interactions between non-protists); different organisms encoded by 
different colors. 
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