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Abstract  

Size dependent quantum confinement and differential characteristics of the 

anisotropic ZnO and TiO2 nanomaterials have attracted huge interest in the quest 

of new functional materials. In order to synthesize ZnO QD’s for visible light 

emission applications, surface modulation for stability in dispersions and defect 

control at the surface is vitally important. Therefore long alkyl chain group (e.g. 

oleate) and biological molecule cysteine were used as vectors to regulate 

reactivity of the ZnO QD’s and their visible light emission. Sol-gel chemistry 

serves as a versatile tool for the fabrication of controlled synthesis of quantum 

dots and to modify their properties for emission applications such as cell 

labeling, cell toxicity, solid-state light emission and to understand size/property 

correlation. High temperature liquid phase synthesis methods, namely heating 

up and hot injection method were applied toward the synthesis of anisotropic 

ZnO and TiO2 nanoparticles. Using different ligand concentrations and reaction 

conditions, semiconductor nanostructures of unusual geometrical shapes were 

synthesized and characterized. Hexagonal crystal growing habit of ZnO 

provided unusual geometrically distorted examples of the hexagonal geometry 

that have not been reported so far in the literature. Furthermore, TiO2 

nanostructures with significant absorption in visible range of the solar spectrum 

were obtained by hot injection method and nitrogen doping. The rapid injection 

and decomposition of Ti-precursor and amine enabled to produce self assembled 

ball like and multibranched structures with remarkable visible range absorption. 

Utilization of different concentrations for the precursors provided the possibility 

of band gap engineering for the anisotropic TiO2 nanostructures.  

 



 



 

Zusammenfassung 

Größenabhängige ZnO und TiO2 anisotroper Nanomaterialien haben ein 

enormes Interesse bei der Suche nach neuen Funktionalisierten hervorgerufen. 

Für die Herstellung von ZnO Nanoteilchen „Quantum Dots“ für die Emission 

sichtbaren Lichts sind Veränderungen der Oberfläche - für die Stabilität in 

Dispersionen - sowie eine Kontrolle an der Oberflächen vorhandenen Defekte 

von wesentlicher Bedeutung. Zu diesem Zwecke wurden ZnO Nanopartikeln 

durch Einbringung von langkettige Alkyl-Gruppen (z. B. Oleate) sowie 

biologisch relevante Molekülen wie Cystein modifizierte, um die Reaktivität der 

ZnO „Quantum Dots“ und deren Emission seigen von sichtbarem Licht zu 

regulieren. Sol-Gel Prozesse dienen dabei als vielseitige Werkzeuge zur 

gezielten Synthese von Nanoskaligen Materialen und zum Modifizieren der 

Eigenschaften für die jeweiligen Anwendungen wie zum Beispiel für die 

Emission wie die Markierung von Zellen, Photokatalysator und UV- Absorber. 

Hochtemperaturmethoden in flüssiger Phase wie gezieltes Aufheizen und „Hot 

Injection“ wurden in dieser Arbeit, zur Synthese Kristallbau ZnO und TiO2 

Nanopartikel angewendet. Durch Verwendung unterschiedlicher 

Ligandenkonzentrationen und Reaktionsbedingungen konnten Halbleiter-

Nanostrukturen in ungewöhnlichen geometrischen Formen erzeugt und 

charakterisiert werden. Die Kontrolle der Kristallwachstumprozesse von ZnO 

Nanostrukturen ermöglichte es, ungewöhnliche Morphologien zu erzeugen, die 

bisher in der Literatur noch nicht beschrieben wurden. Des Weiteren wurden 

TiO2-Nanostrukturen durch die „Hot injection“-Methode erhalten, die eine 

signifikante Absorption auf Grund einer N-dotierung in sichbaren Bereich 

aufweisen. Die äußerst schnelle Injektion und spontane Zersetzung des Ti-

haltigen Präkursors in Gegenwart eines Amins erlaubte die Darstellung 

selbstangeordneter Kugelartiger und verzweigter Standformiger Sternförmiger 

Strukturen mit bemerkenswerten Absorptionen im Bereich des sichtbaren 

Lichtes. Das Nutzen unterschiedlicher Präkursor-Konzentrationen ermöglicht 

den gezielten Aufbau anisotroper TiO2-Nanostrukturen mit variabler 

Bandlücken. 
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1 Introduction  

1.1 Nanomaterials: Opportunities and Challenges  

Among various metal oxide structures ZnO and TiO2 have found wide spread 

applications due to their structural
[1-4]

, electronic
[5-7]

 and surface properties
[8-10]

. 

Generally metal oxide nanomaterials have already begun to effect fundamental 

characteristics of future materials due to their unique, easy to manipulate and 

novel performances. Industrial applications of these metal oxides, require 

established synthesis strategies for scaled up production and detailed 

investigations of nanoparticles on possible toxicological effects on the living 

organisms. It is widely experienced that metal oxide nanomaterials, due to 

nanoparticle anisotropy, quantum confinement effects and surface reactivity 

need broad attention by an interdisciplinary (the chemical, physical,biological, 

material science) society. Detailed investigation of these properties, enable the 

synthesis of programmable nanomaterials which having specific material 

characteristics like particle size<10 nm, or selectively elongated facets of 

nanoparticles for better catalytic efficiency
[11-12]

. Since optical and 

morphological control leads to control of the light emission or defect oriented 

new properties, extremely sensitive synthesis methods are required to develop 

long term stable nanostructures. In addition to that catalytic or photocatalytic 

properties can be improved by fine control over shape and morphology during 

the selected synthetic methods. Higher yields for photovoltaic or water splitting 

features have been already observed for a variety of metal oxide 

nanostructures
[13-14]

. On this basis, control of the synthetic methods for 

anisotropic nanomaterials, real time toxicologic observation of as-synthesized 

nanomaterial effects on the immune system of the living organisms which 

related to surface modification and their energy and clean environment 

applications such as photocatalysis applications have been aimed as main 

platform for the greener and cleaner energy solutions
[15-18]

.  

1.2 Scope 

In this thesis the scientific focus was on the liquid phase room and high 

temperature synthesis of anisotropic ZnO and TiO2 nanostructures through 

Hydro-solvothermal (HS), Hot Injection (HI) and Heating Up (HU) methods. A 

control over nucleation process that can be tuned by controlling the processing 

conditions (precursor concentration, temperature) as well as by extrinsic factors 

(addition of surfactants, seeded growth) is expected to deliver reproducible 
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synthetic materials for controlled synthesis of functional nanomaterials. In this 

context, the specific objective of this doctoral thesis research were; 

i) Synthesis of ZnO, TiO2 nanostructures by decomposition of different metal-

organic precursors (Figure 1) followed by intrinsic encapsulation of as-formed 

nuclei by suitable ligands to control their shape, band gap and size  

 

Figure 1 General ZnO and TiO2 nanostructure synthesis 

ii) Development of a library of inorganic-organic core-shell morphologies to 

produce Ligand@ZnO-TiO2 nanostructures (Figure 2) with ligand shell and with 

different surface chemistry for the aim to obtain water dispersable ZnO-TiO2 

nanoparticles required to carry out cell tests and incorporate them into different 

polymer matrices 
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Figure 2 Ligand library for the surface modification and core/shell protection of 

the nanoparticles. 

iii) Phase transfer studies as the ZnO nanoparticles synthesized in organic 

solvent need to be transferred to aqueous and protic (e.g. alcohol) reagents to 

undertake evaluation of their functional properties. Within this project it was 

necessary to investigate the optical (emission) properties, photocatalytic 

behaviours and cell toxicological influence of the substituted ligands 

iv) Incorporation of the ZnO and TiO2 to various polymer or hybrid structures to 

synthesize nanocomposites based on the chemical anchoring of metal oxide 

nanocrystals in polymer matrices by appropriate combination of coupling 

chemistry. By this anchoring it is aimed to obtain superhydrophilic, broadband 

antibacterial, selective UV absorptive, blue to red solid state visible light 

emitting, biodegradable or inorganic organic nanocomposites and modulation of 

the photocatalytic activity and cytotoxic control have been targeted (Figure 3).  
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Figure 3 Several applications of ZnO and TiO2 nanostructures. 

v) Multi-morphological nanoparticles of ZnO and TiO2 by controlling the 

nucleation and growth environment. Further, the influence of surface capping 

agents (surfactants) will be investigated to achieve a kinetic control over the 

evolution of particle databases. It is known that low metal ion concentration and 

low degree of supersaturation promotes the formation of acicular (needle like) 

structure that show unique properties due to their single crystalline nature and 

high aspect ratio.  
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2 State-of-the-Art: Nanostructure Synthesis 

2.1 General Concepts of Nanostructure Fabrication  

Controlled synthesis of nanomaterials is achieved basically by two methods 

which describe their starting point to reach the final form of the nanostructures. 

Bottom-up method starts from a well designed molecular complex and Top-

down uses a miniaturization process to fabricate the nanostructures
[19]

.  

2.1.1 Bottom-up and Top-down method 

In Top-down approach, macroscopic structure can be miniaturized by applying 

appropriate etching and/or re-such as lithographic techniques
[20]

, UV light 

applications
[21]

, e-beam method
[22]

, nano imprinting lithography
[23]

, ball 

milling
[24]

 and mechanic attrition
[2-26]

. This method found wide range 

applications in the commercial manufacturing processes for example electronics 

and daily life materials (Figure 4)
[27-30]

. 

 

Figure 4 (taken from ref.19 ) Scheme of complementary “top-down” and 

“bottom-up” approaches for fabrication of micro- and nano-structures. For the 

bottom-up strategies: (1) host–guest chemistry, (2) covalent immobilization onto 

substrate, (3) electrostatic layer-by-layer deposition, (4) self-assembly . For the 

top-down strategies: (1) ink jet printing, (2) capillary assembly , (3) 

photolithography , (4) nanoimprinting lithography 
[1].
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On the other hand, bottom-up approach is mostly used in the fabrication of 

nanostructures which requires atomic precision and well characterized beginning 

conditions and components such as designed molecular precursors. Several 

subclasses of this method are present such as supramolecular self-assembly
[31]

, 

surface directed ordering at interfaces (liquid crystals; LC)
 [32]

, Langmuir–

Blodgett (LB) synthesis method
[33]

, chemical vapour synthesis
[34]

, liquid phase 

methods 
[35-36]

 (hot injection, microwave), combustion methods
[37-38]

.  

2.2 La-Mer theory for the nanoparticle formation: Nucleation and 

Growth 

Solution based production of nanocrystals follow two important steps; a) 

nucleation and b) growth of the nanocrystals. These processes are widely 

investigated and formulated.  

La Mer and coworkers studied nucleation and growth of sulphur based 

structures and developed a theory which covers the formation of nanocrystals 

from homogeneous, supersaturated conditions. According to their mechanism 

synthesis of the colloid structure should be arranged in a way that the 

concentration of initial species increases rapidly and rising above the required 

saturation concentration for a short period of time so that the fast burst of 

nucleation occurs with the formation of a large number of nuclei in a short time. 

Particle growth is extremely fast and therefore lower the concentration below 

the nucleation level slowest step in the growth process. 

 

Figure 5 Schematic diagram illustrating La Mer’s condition for stable 

nucleation
[39]

. 

javascript:popupOBO('CMO:0001305','b926146j')
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Therefore nucleation and growth become separated in time. Basic La Mer’s 

mechanism is shown schematically in the Figure 5. It is easily seen that for 

monodispersed nanoparticles high rate of nucleation leading to the burst of 

nuclei formation in a short time is necessary. Thus an initial fast rate of growth 

of these formed nuclei to bring the concentration amount below the available 

nucleation concentration fastly is possible. By this, an eventual slow rate of 

growth causing elongated growth period if compared to the nucleation time is 

made. La Mer mechanism was later widely accepted and applied in preparation 

of various nearly-monodisperse particles from homogeneous solutions. In the 

early stages of nucleation available complexes collide to produce small clusters 

that are thermodynamically unstable and therefore can easily dissolve before 

they reach a critical radius (Figure 6) (r*) or overcome a critical free energy 

barrier (ΔG*) and become thermodynamically stable nuclei to grow further. 

These nuclei grow into nanoparticles at the constant consumption of free atoms 

in solution or unstable small clusters (r < r*). In the classical nucleation theory, 

the nucleation process can be described according to Gibbs free energy. The 

excessive free energy (∆G) basically contains two competing terms, i.e. the 

changes in surface and bulk free energies, reaches the self maximum when 

clusters grow to the critical size. The excess free energy can be described 

mathematically by the following equations. 

∆G = ∆GS + ∆Gv Eq 1 

= 4πr
2
γ + (-) 4/3 πr

3 
∆Gv Eq 2 

here ∆Gv is the free energy change of the transformation per unit volume and γ 

is the interfacial tension i.e., between the developing crystalline surface and the 

supersaturated solution
[39]

 in which it is located. Right side terms of the Eq 2 

have opposite sign so their nucleus diameter dependency is completely different. 

According to these information we can easily understand that free energy ∆G , 

passes through a maxima called ∆Gcrit corresponds to critical nucleus rcrit . For a 

spherical cluster we can derive the equation below by maximizing the Eq 2 and 

by setting;  

d∆G/dr=0 ; d∆G / dr = 8 π r γ + 4πr
2
 ∆Gv = 0 Eq 3 

by rearranging the equation  

rcrit = -2 γ / 4 ∆Gv Eq 4 

 where ∆Gv is a negative quantity. We can also find the  
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∆Gcrit=16πγ
3
/ 3 (∆Gv) = 4πγrc

2
 / 3 Eq 5 

Particles which are smaller than this critical size of the nucleus will dissolve or 

evaporate due to the thermodynamical conditions, because this is the only way 

for achieving reduction in the free energy. Oppositely if the nucleus size bigger 

than this critical size they will continue to grow. The rate of nucleation J, e.g. 

formed nuclei number per unit time per unit volume, can be expressed by widely 

known Arrhenius equation which is generally used for the thermally activated 

process;  

 

 

Figure 6 Free energy diagramme explaining the critical nucleus
[40]

. 

J = A exp ( - ∆Gv / t) Eq 6 

Where k is the Boltzmann constant, T temperature in K, A is a constant. Basic 

Gibbs/Thomson relationship for a non electrolyte solution can be written ;  

ln S = 2 γ ν / kT r Eq 7 

where S is defined by another equation and ν is the molecular volume : 

- ∆Gv = 2γ / r = kTln S / ν Eq 8 

By using this equations from Equation 5; 

∆Gcrit. = 16 γ
3
ν

2
 / 3 (kTlnS)

2
 Eq 9 

and by rearranging with Eq 4;  

J = A exp ( - 16 γ
3
ν

2
 / 3 k

3
T

3
(lnS)

2
) Eq 10 

can be obtained. This equation shows that three main variable govern the 

nucleation rate;  
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a) Temperature b) degree of supersaturation (S) and c) interfacial tension. It was 

later observed that La Mer’s condition for nucleation is not completely 

necessary and sufficient for monodispersity and specific growth mechanisms 

also play an important role in deciding the size and the size distribution. 

Regardless of the rigorous validity of La Mer’s prediction in the complex 

systems, the main idea of separating the nucleation stage and growth process in 

time is often used to obtain nearly monodisperse particles.  

2.2.1 Growth of the Nanoparticles 

Nucleation process takes place with constant monomer concentration and time. 

There will be a time which eventually surface growth of clusters seen to occur 

depleting the monomer supply. Thus if monomer concentration falls below the 

critical level for nucleation which is called critical supersaturation, then 

nucleation ends. Basically, the surface/volume ratio in smaller particles is quite 

high and therefore large surface area observed (Figure 7). In these particles 

surface excess energy becomes more and more important in lower sizes, forms a 

big percentage of total energy. 

 

Figure 7 Schematic of nucleation and growth of the nanocrystals in La Mer 

theory
[41]

. 

For the thermodynamic equilibrium, a mechanism which is allowing the 

formation of larger particles by consuming smaller particles reduces the surface 

energy and hence plays an important role in the nanocrystal formation. Basically 

colloidal crystals grow by available monomer diffusion onto the freshly obtained 
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nucleus surface followed by monomer reactions on the attached surface. These 

phenomena causing coarsening of the crystals is controlled either by mass 

transport or diffusion which generally known as Ostwald ripening process.  

2.2.2 Ostwald ripening  

Coarsening of the nanocrystals is a very important process which gives the latest 

shape of the nanoparticles. It was first time observed by Lifshitz and Slyozov 

then by addition of Wagner modern LSW theory has been formed
[42]

. Since 

diffusion is dominated by the surface energy of the nanoparticle, interfacial 

energy gains enormous importance. This term is the energy associated with an 

interface due to various differences between the chemical potential of atoms in 

an interfacial area and atoms in neighboring bulk phases. So when the case is 

solid particle, chemical potential of this particle increases with decreasing 

particle size, the equilibrium solute concentration for a small particle is much 

higher than for a large particle (Figure 8).  

 

Figure 8 Sketch of Ostwald ripening process 
[43] 

. 

This phenomena is also described by the Gibbs–Thompson equation. 

Concentration gradients causes solid transportation from smaller to bigger 

particles.The equilibrium concentration of the nanocrystal’s equilibrium 

concentration in the liquid phase is highly dependent on the local character of 

the solid phase. If there is differences in the local equilibrium concentrations, 

due to variations in local character, concentration gradients are rearranged and 

leads the growth of larger particles at the costs of smaller particles. Due to the 

surface, concentration and other effects there are 3 different coarsening 

mechanism; 

a) Diffusion Limited Growth: Lifshitz–Slyozov–Wagner (LSW) Theory and 

other Post-LSW theories  

b) Reaction-limited Growth 
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c) Mixed Diffusion–Reaction Control 

d) Details of these three coarsening processes can be found in the literature 

very widely.  

2.3 Kinetic versus Thermodynamic Control of Anisotropic Particles  

Anisotropic nanocrystals do not show the same characteristics throughout the 

crystal
[44-45]

. For example elongated nanocrystals can have different optical and 

band gap structures from its spherical one while chemical composition is the 

same. Basically three method can be representative for the shape-controlling 

mechanisms in anisotropic nanocrystals
[45]

.  

1) Seed-mediated solution–liquid–solid (SLS) growth  

2) Shape transformation through oriented attachment  

3) Kinetically induced anisotropic growth 

It has been widely proposed and proved that, all of these growth mechanisms 

have a facile separation between the nucleation and growth stages, which is a 

prerequisite for the shape-controlled nanocrystal fabrication 

2.3.1 Seed-Mediated Solution–Liquid–Solid (SLS) Growth  

Use of proper nanocrystal seeds can facilitate highly anisotropic crystal growth. 

Under gas-phase like chemical vapor deposition (CVD), 1D silicon and 

germanium wires are obtained on a substrate through a vapor–liquid–solid 

(VLS) growth mechanism. 

Using a similar approach for the anisotropic nanocrystals it is possible to obtain 

semiconductor nanowires by a solution–liquid–solid (SLS) process and this 

shows a simple example for the SLS fabrication. 

Decomposition of the well characterized metal organic molecular precursor at 

defined high temperature produces different monomeric species in organic 

media which diffuse onto the seeds to form an alloy structure. If we increases 

the dissolution of monomers onto the seed, the supersaturated pure solid 

nanowire structures can grow out of the seed. 
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Figure 9 Alloy formation of the solution grown nanowires
[45]

. 

Ge nanowires were obtained using gold nanocrystal seeds. As known above 

360°C, Ge and Au would form an alloy first in equilibrium but when 

supersaturation occurs pure solid Ge expelled from medium (Figure 9)
 [45]

.  

2.3.2 Oriented attachment  

Second anisotropic nanocrystal formation method is inorganic self-assembly 

through an oriented attachment process. Owing to the high surface to volume 

ratio of synthesized nanocrystals, the surface energy contributes to the total 

energy and as the surface area is reduced by aggregation processes, the total 

energy of the nanocrystal structures will decrease. The concept of “oriented 

attachment” was remarkably discussed by hydrolytic synthesis of TiO2 

nanocrystals (Figure 10). Truncated diamond-shaped  anatase TiO2 nanocrystals 

have three different facets: {001}, {121}, and {101}. Donnay–Harker rules 

predicts the surface energy of the available facet (001) is higher than other 

nanoparticle surfaces. Basically if sufficient thermal energy is available in the 

system then system would remove the high-energy surfaces which is 

thermodynamically favorable.  
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Figure 10 Schematic representation of oriented attachment processes
[45]

. 

By this method diamond- shaped nanocrystals attached to each other along the 

[001] resulting necklace-shaped nanocrystal. The initial 0D nanocrystals align 

and come together along their dipole direction. After surface reconstruction to 

minimize the surface energy, 1D rod-based structures are obtained. Similar 

observations were made in the cases of both the hydrolytic growth of CdTe 

nanowires and the growth of ZnO and PbSe nanocrystals. 

2.3.3 Kinetically Induced Anisotropic Growth 

Anisotropical nanostructures are easily produced by kinetically labile molecular 

precursors. Due to the highly energetic facets and preferred surface ligand 

adsorption on initially formed nanocrystals, many different morphologies can be 

obtained. Three key factors determine the nanocrystal shape as presented below.  

2.3.3.1 Surface energy and selective adhesion 

Energetic character of the crystallographic faces of the nanocrystals has 

remarkable effect on the anisotropic growth patterns of the nanocrystals.  
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Figure 11 Surface energy of wurtzite ZnS nanocrystals. The (001) surface has 

the highest surface energy. Since the growth rate is exponentially proportional to 

the surface energy, the fastest growth occurs along the [001]direction in the 

kinetic growth regime; G=growth rate, S=surface energy
[45]

. 

As an example, the surface energy of the (001) face (e.g. 0.9 Jm
2
 for ZnS) is 

larger than other faces such as (100) and (110) (e.g. 0.5 J m
2
). Since the crystal 

growth rate is exponentially correlated to the surface energy, increase in surface-

energy values induce much faster growth along the more active [001] direction 

of ZnS than the other directions, resulting in formation of ZnS nanorod 

elongated along the [001] direction (Figure 11).  
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Figure 12 Surface modulation effects induced by surface-selective surfactants 

on either a) anisotropic rod or b) disc growth. When surfactant molecules 

specifically bind to the {100} and {110} surfaces of a hexagonal structure, 

preferential growth along the h001i directions and therefore rod growth is 

facilitated (a). In contrast, when surfactant molecules bind to the {001} surfaces 

of a hexagonal structure, it prevents growth along the {001} direction and 

therefore disc shapes are obtained (b)
 [45]

.  

TiO2 anatase structure normally has a tetragonal arrangement an anisotropic c-

axis (Figure 13). When TiO2 nucleus with a truncated octahedral, bipyramidal 

shape terminated by {001} and {101} faces nucleate, high-energy surface {001} 

induced complete elimination of the {001} of the surfaces which results in 

arrow- and diamond shaped nanocrystals seen. Lauric acid strongly binds to the 

{001} faces and reduces the growth rate along the {001} directions. Therefore 

growth of both direction is induced in {001} and {101} but the area of the 

{001} surface remains same, which finally produces nanorod. Excess lauric acid 

triggers growth along {101} which resulted in the formation of branched rods 

with a [101] branching direction. 
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Figure 13 Shape evolution of TiO2 nanocrystals through the surface energy 

modulation effect by using surface selective lauric acid (LA) surfactants. a) 

Bullet- and diamond-shaped nanocrystals are formed at low LA concentration. 

b,c) At higher LA concentrations rods (b) and branched rods (c) are formed
[45,46]

. 

Similar examples of wurtzite structure have also been observed in various 

reports
[46]

. The surface energy of the nanocrystals can be modulated by 

introducing surfactants which selectively adsorb onto surfaces of growing 

crystallites. After surfactants stabilize selective surfaces by “selective adhesion” 

then the growth rate difference between different crystallographic directions can 

be seen easier. Especially chalcogenide nanocrystals like CdSe shows 

remarkable differences in the nanorod synthesis In hot injection synthesis if 

dimethylcadmium and TOPSe are injected into a hot mixture of TOPO and 

HPA, HPA amount that binds to the surfaces {100} and {110} of the growing 

crystallites modulates the growth pattern. At low HPA concentration or in the 

absence of HPA, only spherical nanocrystals are formed which shows exactly 

the role of surfactants. However, with higher HPA concentrations, nanorods are 

obtained since the surface-bound HPA molecules serve reduce the growth along 

{100} and {110} surfaces (Figure 12). Selective adhesion of surfactants can also 

induce compression along other axes.For example, in the formation of CuS 

nanodiscs if there is surface selective alkanethiol ligands attached to {001} faces 

by lowering the surface energy, 2D Cu2S nanodiscs are formed. Beside other 

nanocrystal structures, anatase TiO2 nanocrystals are another model system for 
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surfactant-assisted, surface-energy modulated anisotropic nanoparticle 

formation.  

 

2.3.3.2 Influence of the phase of the crystalline seed 

Crystallographic phase of the nucleated seeds is another important actor for the 

synthesis of anisotropic nanostructures. For example in a special case, if seed 

crystals are of the zinc blende phase, they tend to grow isotropically along the 

three crystallographic axes (a, b, and c directions), resulting in 0D shapes which 

means spheres and cubes. However, when seeds are formed in a wurtzite 

structure, crystals oppositely grow anisotropically and they yield in shapes such 

as rods and discs. Therefore crystalline phase control of the used seeds and 

further growth is of particular interest. Crystal seeds can potentially have a 

variety of different crystallographic phases and the stable phase is highly 

dependent on the environment and treated temperature. For example seed with a 

rocksalt phase is favourable at higher temperatures (>200 °C) and due to this 

crystalline character isotropic cubes are easily formed. On the other hand, at 

lower temperature of around 120 °C, where the wurtzite phase is more stable, 

the growth of nanorods becomes favoured. Shapes of CdS nanocrystals can also 

be modified and adjusted by this temperature-mediated phase control of the 

initial seeds for obtaining desired morphology in nanocrystals If we use high 

temperatures like (300 °C) CdS seed are in the wurtzite phase and selectively 1D 

nanorod formation is observed whereas at lower temperatures zinc blende nuclei 

are preferred and tetrahedral seeds with four {111} faces are seen. 
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Figure 14 Temperature-mediated crystalline-phase control of a,b) MnS and c,d) 

CdS nanocrystals. At high temperature the formation of rock salt phase MnS 

nanocubes is preferred (a), while at low temperature branched MnS nanowires 

of wurtzite phases are obtained (b). Similarly, at high temperature CdS rods are 

grown from seeds in the wurtzite phase (c), while at low temperature CdS 

bipods are grown from zinc blende tetrahedral seeds (d)
 [45]

 are seen.The 

epitaxial growth of wurtzite pods along the [001] direction from the {111} faces 

occurs and as a result, CdS bipods are formed (Figure 14). For obtaining 

multibranched nanostructures such crystalline-phase effects should be analysed 

carefully.  

2.3.3.3 Thermodynamic or kinetic control of the growth regime.  

Morphology control of nanocrystals is a platform which is governed by 

thermodynamic and kinetic growth regimes effect differently. If there is 

thermodynamic growth regime it is easily understand as the final shape of the 

nanocrystal becomes isotropic. Thermodynamic control means;  
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a) sufficient supply of thermal energy (kT)  

b) low flux of monomers  

On the contrary, anisotropic control along a specific direction is favoured by 

kinetic regime and it is promoted by high flux of monomers. A growth model 

which was proposed by Peng and co-workers by the diffusion flux of monomers 

and according to this model, thermal reaction of CdO and alkylphosphonic acids 

(APAs) react and form Cd–APA complexes which are relatively stable and 

maintains a high monomer concentration in the diffusion layer of the growing 

crystallites.  

 

Figure 15 a,b) Heterostructured rods formed by adding CdSe extensions to each 

end of CdS nanorods. c,d) Branched rods result from the nucleation of zinc 

blende CdTe on either end of the CdSe nanorods.e,f) Extending each arm of a 

CdSe tetrapod linearly with wurtzite CdTe yields extended tetrapods. h,g) 

Branched tetrapods result from the nucleation of zinc blende CdTe branch points 

on the end of each arm of a CdS tetrapod
[45]

. 

So if analysis is done for the crystal growth of CdSe nanocrystals (Figure 15) 

results show growth through four modes:  

1) 1 D growth, 2) 3D growth, 3) 1D to 2D ripening, 4) Ostwald ripening  

During a 1D favoured growth, a high diffusion flux of monomers into the 

diffusion layer promotes the preferential 1D growth of monomers on the highest 

energy (001) surface. If monomer concentration decreases diffusion flux also 
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decreases. If there is relatively low diffusion flux this favoures an equi-

directional growth of the nanocrystals (the 3D growth stage).  

 

Figure 16 Comparison of a) thermodynamic and b) kinetic growth of PbS 

nanocrystals. At high temperature, the formation of thermodynamically stable 

structures (truncated cubes) is preferred. At low temperature, however, a shift of 

growth regime to the kinetic process results in rod growth
[45]

. 

If the concentration of available monomers is low then system reaches 

equilibrium by dissolution and re-growth of the monomers from the (001) face 

onto the other growing faces (the 1D to 2D ripening stage). At last, if there is 

very low amount of concentration for the monomer, the nanocrystals grow by an 

interparticular Ostwald ripening process. PbS nanocrystals also show rock salt 

structure which have interesting shape variations and can be examined as a 

model for such growth regimes. In the method if we inject molecular precursor 

of PbS quickly, this promotes the formation of tetrahedral seeds that are 

terminated by {100} and {111} faces. These faces also competitively behave 

during the growth stage which determines the latest shape and morphology of 

the nanocrytals. (Figure 16) Interestingly at this stage if there is dodecanethiol 

surfactants, this causes that {100} surface has a higher surface energy than the 

{111} surface. When we provide excess thermal energy (i.e. high temperature), 

formation of thermodynamically stable 0D truncated-cube-shaped PbS 

nanocrystals observed. Interestingly again, in lower temperature conditions (120 

°C), the growth process of the nanocrystals shifts into the kinetic regime which 

provides 1D rods and multipod structures.  
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2.4 Nano-Synthetic Methods  

As mentioned earlier top down and bottom up methods generally covers the 

concept of nanomaterial synthesis. But in this thesis bottom-up methods have 

been used for the nanomaterial synthesis which can be explained shortly as 

follows.  

2.4.1 Hot Injection Synthesis  

Detailed understanding of hot injection synthesis started in 1993 when Murray 

published
[47-48]

 the controlled synthesis and characterization of the nearly mono-

dispersed CdX (X=Se, Te, S) nanocrystals in trioctylphosphine oxide (TOPO) as 

solvent. This work was based on the decomposition of a room temperature 

(cold) precursor solution by injecting it into the hot solvent with another 

surfactants. Investigations showed that upon fast injection of this cold precursor 

was inducing a high degree of supersaturation quickly which leads a short burst 

of nucleation (Figure 17). During nucleation process precursor concentration in 

the mixture decreases abruptly
[47]

. Cold injection of the precursor molecules 

causes a drop in the temperature and in addition to that low concentration of 

unreacted remaining precursor prevent another nucleation process. After that 

temperature of the reaction mixture is increased to the value that is allowing the 

controlled and slow growth of the nuclei to larger nanocrystals. Still the 

nucleation process is suppressed and under control. This is the method of 

separation for the nucleation and growth which provides monodispersed and 

narrow size distributed nanocrystals. Different surface ligands or surfactants 

consisting of a coordinating head group and a long alkyl chain are adsorbed onto 

the nanocrystal surfaces reversibly during the growth process. This adsorbed 

layer stabilizes the nanocrystal in the solution beside its help for growing. 

Especially the surfactants with different functional groups and binding affinities 

allow remarkable control over nanocrystal size and distribution. After 

nanocrystals have been separated by an organic solvent they can be re-dispersed 

in a suitable, usually polar and organic solvents. Since surface ligands provide 

protection and stability, it is possible to exchange the ligands by another proper 

surface agent to increase the dispersibility which is called phase transfer. Phase 

transfer synthesis enable the redispersion of these nanocrystals in another polar 

or apolar solvent. Preparation of II-VI, IV-VI and III-V semiconductor 

nanocrystals is easier and repeatable by hot injection method. Hot injection 

synthesis has been extended to the metal and metal oxide nanostructures. For 

example Trentler et al. applied hot injection synthesis method to the TiO2 
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nanocrystals. Cold injection provided nearly spherical anatase titania 

nanocrystals with TOPO and heptadecane. One example of the particle surface 

control can be observed here which surface selective lauric acid and TOPO as 

non selective surfactant. Hot injection synthesis was also applied for MnO, ZnO, 

ZrO2, CeO2 or Fe2O3 nanocrystals.  

 

Figure 17 Experimental set-up and reaction scheme for the hot-injection 

method
[49]

.  

2.4.2 Heating Up Method for Nanostructures  

Heating Up method is slightly different from hot injection synthesis in terms of 

the temperature control. Raction mixture is being prepared at low temperature 

and by controlled heating crystallization process begins. After crystallization 

process proper ligands are removed for obtaining nanostructure. Heating up 

method generally requires specific precursors for the desired nanostructure 

formation. Still heating up method has particular advantages when compared to 

hot injection method. For example it is possible to produce large scale 

nanostructures and size uniformity can be also achieved with high precision. 

First noticeable synthesis for the Heating Up method has been made by pioneer 

Hyeon et al. for obtaining large scale monodispersed iron oxide nanoparticles
[50]

. 

Previous procedure by Bentzon et al. was published for the production of iron 

oxide by the decomposition of iron pentacarbonyl into a mixture of octyl ether 

and oleic acid at 100 °C. This method simply produces iron oleate intermediate 

complexes which then decomposed further at high temperatures like 300 °C into 

metallic iron and by oxidation Fe2O3 is obtained using mild oxidant 

trimethylamine oxide. Crystal size and morphology can be modified by carbonyl 

to oleic acid ratio as in the hot injection method. Heating up method became 

very important in the last decade for the synthesis and large scale production of 

metal oxide nanomaterials. Simply starting from acetylacetone complexes of 



2 State of the Art: Nanostructure Synthesis 

23 

iron and manganese 1,2 hexadecanediol, oleic acid and oleylamine in benzyl 

ether can be used for iron or manganese oxides. As previously mentioned 

heating up procedure is scalable which is contrast to other nanocrystal synthesis 

techniques. Many different nanostructure synthesis have been successfully 

conducted with desired conditions using heating up method.  

2.4.3 Sol Gel Method for Synthesis  

Sol gel chemistry based on the hydrolysis and condensation reactions of the 

proper precursors generally silicon and transition metal alkoxides. In addition to 

that carboxylates, chlorides, nitrates, sulphates and other salt type precursors of 

transition metals also known as sol-gel precursor. Materials are synthesized via 

the hydrolytic polycondensation of the precursors at room temperature from 

liquid precursors under controlled conditions
[51]

.,  

M−OR + H2O ⇌ M−OH + R−OH 

M−OH + HO−M  ⇌ M−O−M  + H2O 

M−OR + HO−M  ⇌ M−O−M +R−OH 

Figure 18 Basic reactions of sol gel method from metal alkoxide. 

The synthesis is generally carried out in an organic solvent (alcohols generally, 

through simultaneous or sequential reactions of hydrolysis (Figure 18) and 

polycondensation releasing water and/or alcoholas shown above.  

 

Figure 19 Morphological variation schema for sol-gel method
[52]

. 
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Hydrolysis and condensation reactions of the sol gel method do not proceed with 

the same speed when we compared silicon and other transition metal alkoxides. 

Due to the low polarity of the Si-O bonding (δ+= 0,32) in silicon-oxygen 

containing polymers, acidic or basic catalysis is necessary for the silicon 

alkoxides. Acidic or basic catalyzed reactions (Figure 19) have a huge effect on 

the final materials since catalysts trigger and fasten specifically hydrolysis or 

condensation reactions.  

2.4.3.1 Organically Modified Nanostructures by Sol Gel Method 

Alkoxysilanes are the far most used sol gel precursors. They also used for the 

surface modification and inorganic organic hybrid nanostructure preparations. 

They have a general denotation of R’Si (OR)4-R which R’ is a functional organic 

group
[53]

. Theoretically all the organically modified alkoxysilanes do the same 

hydrolysis and condensation reaction of the tetraalkoxysilane (TEOS). 

Additionally because they have R’ functional group (e.g. epoxy, amino, acrylic, 

thiol, isocyanate etc.) they can give extra functionality to the synthesized 

nanostructure. Organically modified alkoxysilanes are very widely used in the 

nanoparticle surface modifications for functionalization. When they are used on 

the functionalization process they follow the same hydrolysis and condensation 

reactions on the nanoparticle surface which is generally accepted as –OH. It is 

also possible to make finely arranged spherical silica particles by a method 

called Stöber Process. Stöber Process uses ammonia water, alcohol and 

tetraalkoxysilane to produce perfectly spherical nanoparticles. When a particle is 

used together with Stöber Process then we can easily obtain core/shell 

nanoparticles. After this step when we use another organically functional 

alkoxysilane we can functionalize the surface of core/shell structures for further 

applications.  

2.4.4 Hydro-Solvo Thermal Method for Nanostructures 

Hydro-Solvothermal method is a bottom-up way to produce nanomaterials. It 

can be used in the synthesis of metals, semiconductors, ceramics, and polymers. 

Generally when a proper solvent is used under moderate to high pressure 

(typically between 1 atm and 10,000 atm) and temperature (typically between 

100 °C and 1000 °C) these conditions increases the precursor interaction and 

nanomaterial synthesis.  
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Figure 20 Solvo/hydrothermal synthesis installation
[54]

. 

When we use water as solvent material, the method is called “hydrothermal 

synthesis.” The synthesis under hydrothermal conditions requires lower 

temperatures since water has a supercritical point as 374 °C. It is possible to 

obtain many anisotropic structures, single crystals, and nanocrystals. It is also 

possible to control the morphology of the solvent by manipulating the solvent 

supersaturation, chemical of interest concentration, and kinetic control (Figure 

20). The method can be used to prepare thermodynamically stable and 

metastable states including novel materials that is hard to synthesize by other 

traditional methods
[55]

.  

2.5 MOx/Polymer Nanocomposites 

Nanocomposite structures are basically mixture of two different component in 

the nano regime which provides a sum of each properties arising from the each 

components. Interaction of the polymer/particle interface can be manipulated for 

obtaining better mixtures some other extra specific properties. Organic 

polymeric structures are generally suffer from the low thermal resistance, easy 

deformation and low durability. Incorporation of nano-micro particles into these 

organic polymers may lead enhancement of the thermal character, gas diffusion 

features, increase in the durability and stiffness.  

2.5.1 Hybrid Inorganic Organic Polymer/MOx Nanocomposite 

Hybrid inorganic organic nanostructures represents “a thing made by combining 

two different elements”. In the material science this concept can be written like 

“something that is obtained by mixing different types of materials” and we can 

obtain a new material that can be called hybrid material or nanocomposite
[56-58]

. 

Shortly a hybrid of organic and inorganic is a combination of organic materials 
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(polymers) and inorganic materials (inorganic polymers, nanoparticles etc.). In 

order to distinguish them from the conventional composite structures which are 

simple mixtures, it is necessary to call the materials “hybrid materials” when the 

level of interaction for different types of materials is at the nanometer level, or 

sometimes at the molecular level. By synthesizing such hybrid materials, it is 

possible to observe very interesting features that are not found in the organic 

polymer or the inorganic material independently. As an example, polymer 

structures are flexible and not resistant to heat and inorganic structures are 

brittable and requires high temperature applications for preparation.  

 

Figure 21 Example of a hybrid formulation consisting of acrylic alkoxysilane, 

biodegradable PLA and ZnO QD’s.  

But in hybrid nanomaterials we can observe a material which is like plastic but 

have excellent mechanical strength and thermal stability. Organically modified 

silanes or (ORMOSIL’s) and Organically Modified Ceramics (ORMOCER’s) 

are very broad examples of these hybrid materials. In addition to these examples 

we can also use conventional polymers like epoxy, polyurethane, acrylate or 

biodegradable structures like polylactide in the process of hybrid material 

preparation. Generally second and third part (if necessary) is introduced into 

conventional polymers for novel material applications. Synthesized final hybrid 

nanostructure therefore carries the properties of each component due to the fine 

interaction of these components. Hydrogen bonding, common polymeric chain 

interaction, chemical encapsulation or modification, soft-hard acid base 

interaction are the main interaction examples of these finely mixed 

nanocomposite items. Since composite term is used generally for the simple 
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mixed systems, nanocomposite is also used for these finely controlled and 

molecularly engineered inorganic organic hybrid nanostructures (Figure 21).  

2.5.2 MOx@Clay Nanocomposite Structures  

Clays have layered structure and these layers are built from tetrahedral sheets in 

which a silicon atom is surrounded by four oxygen and additionally octahedral 

sheets in which a metal like aluminium or magnesium is surrounded by eight 

oxygen atoms.  

 

Figure 22 Idealized structure montmorillonite clay (without organic 

modification) showing two tetrahedral-site sheets fused to an octahedral-site 

sheet. Red Sphere= oxygen Grey spheres=Si, Al, or Mg atoms. Purple spheres 

=Na or K ions. 

The tetrahedral (T) and octahedral (O) sheets are fused and connected properly 

by sharing the oxygen atoms. (Figure 22) When oxygen atoms are not bonded 

they transform into hydroxyl form. Two main arrangements of tetrahedral and 

octahedral sheets fused and connected for producing one layer structure of clay. 

If one T is fused with O (1:1) kaolin group is formed with the general formula of 

Al2Si2O5(OH)5 and the layer thickness of ~ 0.7 nm. If structure consists of one 

octahedral sheet sandwiched between two tetrahedral sheets (2:1) with the total 

thickness of 0.94 nm is well known as phyllosilicates.  
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Figure 23 Exfoliated (left) and intercalated (right) clay structures by polymeric 

architectures.  

The 2:1 phyllosilicate layers are generally electrostatically neutral with no inter 

layer ion (not K or Na) present known as pyrophyllite. Since there is no 

interlayer cations the layers do not expand in water. But when silicon in 

tetrahedral sheets is replaced by aluminium atoms, the 2:1 structure is formed 

which called mica. The layers of these structures stay almost together with a 

regular layer gap between two layer. This gap is generally called inter layer or 

gallery. The thickness of one to one layer is called d-spacing (d 001) or basal 

spacing which can be determined by small angle X -Ray. The inter layer 

distance is about 1 nm for montmorillonite. The unique intercalation/exfoliation 

(Figure 23) behavior of clay minerals which is responsible to the high aspect 

ratio of clay type makes these minerals an important component of the polymer 

nanocomposites technology. Since their reinforcing filler effects can enforce a 

polymer’s gas barrier, thermal stability, stiffness, optical properties modification 

of these clays play an important role for the final materials obtained from 

polymers hybrid nanostructures
[59-60]

. If we can properly modify the surface of 

the clays by selected special chemical precursors like organically modified 

alkoxy silanes or quantum dot nanoparticles, it is possible to extend the 

application areas of the nanocomposite structures; like visible (blue, green, 

orange, yellow light emitting) light emitting or selective UV protected 

nanocomposites.  



 

29 

3 Experimental Part 

3.1 Experimental procedures  

In this section the synthesis and analytical characterization methods for the 

nanostructures are presented. 

3.1.1 Synthesis of ZnO Nanostructures 

 

Figure 24 Würtzite crystal structure of ZnO.  

Zinc oxide is a direct, wide bandgap semiconductor and has promising 

properties for optoelectronics
[61]

, spintronic devices
[62]

 and sensor 

applications
[63]

. It is generally used for sunscreens
[64]

, catalysts
[65]

, paint 

pigment
[66]

 and as transparent conducting electrodes
[67]

. Its band gap is 3.37 eV 

makes it transparent in visible light and operates in the UV to blue wavelengths. 

The exciton binding energy is ∼60 meV for ZnO and this higher exciton binding 

energy enhances the luminescence efficiency of light emission. ZnO has a 

hexagonal wurtzite crystal structure, with lattice parameters a=3.25Å and c=5.12 

Å. The Zn atoms are tetrahedrally coordinated with four O atoms (Figure 24), 

where the Zn d-electrons hybridize with the O p-electrons. The bonding between 

the Zn atoms and O atoms is highly ionic, due to the large difference in their 

electronegative values (1.65 for Zn and 3.44 for O). Alternating Zn and O layers 

form the crystal structure. There is a separation between the nanoparticles and 

quantum dots in a way that the particle as a quantum dot is so small that its 

exciton levels are confined in all three spatial x,y and z dimensions. Therefore a 
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quantum dot is another concept (subclass) of the nanoparticles. For 

investigations of quantum dot basics, ZnO is quite proper since its size regime 2-

7 nm reveal quantum size effects, for example shift in the band gap, at the same 

time as they are big particle enough to be observed by X-ray diffraction. Even 

though ZnO is not a perfect material for light harvesting due to its narrow UV 

absorption it can be used as a proper model system for charge transport and UV 

absorption phenomena
[4]

. 

3.1.1.1 Salt Elimination method for Zn(Oleate)2 

For the formation of zinc-oleate complex 1 eqv zinc chloride (ZnCl2, 36,6 mmol, 

Acros, 98%) was reacted by 2 eqv. sodium oleate. In a typical synthesis, 5.0 g of 

zinc chloride and 24.35 g of sodium oleate (80 mmol, Sigma Aldrich, 99%) 

were dissolved together in a three neck flask in a mixture solvent composed of 

80 mL ethanol, 60 mL distilled water, and 140 ml hexane. This mixture was 

heated to 70 °C and refluxed at that temperature for 4-5 h. When reflux ended 

,the upper organic layer containing the zinc – oleate complex was separated by 

separation funnel and washed with 15 mL distilled water. 

  Table 1 Synthesis concentrations of Zn-Oleate complex.  

  2NaOleate + ZnCl2  Zn(Oleate)2 + 2 NaCl 

Mol.Weight 304.45 136.29 628.31 58.5 

Equivalence 2 eqv 1 eqv 1 eqv 2 eqv 

Mass 22.3 g 5.0 g 2299 g 4.288 

Mol  0.0733 0.0366 0.0366 0.0733 

The resulting waxy solid has became solid after hexane was evaporated by 

rotary evaporator. Resulted material is the zinc - oleate complex in its solid form 

and generally quite clear white. When colour is yellowish then it should be 

washed again with water and less amount of hexane.  

3.1.1.2 Amide Method for Zn(Oleate)2 Precursor  

For the synthesis of ZnO QD’s, Zinc-oleate complex has been prepared from a 

organometallic precursor was used that can be obtained in high purity.For a 

typical synthesis, 1 equivalent (H-DMS) HSi(NMe3)2 was reacted with 1 

equivalent n-BuLi for the lithiated intermediate synthesis in a liquid 

nitrogen/EtOH bath at –78 °C. To this intermediate mixture, 0.5 equivalent 
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ZnCl2 in absolute THF was introduced at  –78 °C and allowed to react for at 

least 30 h at this temperature. After the reaction was completed [Zn(SiMe3)2] 

(Figure 25) was collected by distillation under reduced pressure (p=1.10
-2

 mbar).  

 

Figure 25 Amide procedure of ZnO QD synthesis from an organometallic 

precursor.  

3.1.2 Ligand Controlled ZnO Quantum Dot Synthesis 

In this part the synthesis methods of ZnO QD’s with different ligand 

modifications is described. 

3.1.2.1 Acetate Controlled ZnO QD Synthesis 

For a general synthesis of acetate modified ZnO quantum dots, 5 mmol from of 

Zn(CH3COO)2.2H2O (Acros, MW: 219,50 g/mol) was dissolved in the EtOH. 7 

mmol LiOH.H2O (Aldrich, MW: 41,96 g/mol) was dissolved in MeOH. Zn ws 

quickly added to the clean solutions of precursor which was dissolved in EtOH. 

The resulting mixture was refluxed for 90 min at defined temperature (with or 

without nitrogen atmosphere), whereby aliquots were collected at different time 

intervals (10, 30, 60, and 90 min). This method is called “Swift Synthesis”. As 
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prepared quantum dots were precipitated out by hexane and washed with H2O, 

ETOH and hexane when necessary. This method is a modification of the 

Meulenkamp
[68]

 method for ZnO QD synthesis which has been applied in all 

quantum dot synthesis cases.  

3.1.2.2 Cysteine capped zwitterionic ZnO QD Synthesis 

Cystein capped ZnO QDs were prepared by using 5 mmol of Zn 

(CH3COO)2.2H2O dissolved in EtOH under vigorous stirring at 50 °C. The 

resulting clear solution was mixed with a mixture of different amount of 

cysteine and 7 mmol LiOH.H2O in MeOH. The amount of cysteine was varied 

to obtain quantum dots of different sizes. The diluted reaction mixture was 

refluxed for 90 min at 55 °C under nitrogen atmosphere, whereby aliquots were 

collected at different time intervals (10, 30, 60, and 90 min) to record the 

particle size evolution by optical absorption spectra. The prepared ZnO QDs 

were precipitated out by adding hexane to the solutions and were washed with 

water, ethanol and hexane respectively and dried in vacuum for 6 h. 

3.1.2.3 Oleate Capped ZnO QD Synthesis 

Oleate controlled ZnO QD’s have been prepared by using 5 mmol Zn(Oleate)2 

dissolved in EtOH at defined temperature and addition of this milky solution 

into 7 mmol LiOH.H2O/MeOH mixture. Nitrogen atmosphere can be used for 

the protection. Aliquots have been collected at different time intervals for 

photoluminescence and particle size distribution investigation. By changing the 

temperature and reactant ratio, it was possible to obtain different visible light 

emission and particle size. For example 5:7 proportion of LiOH:Zn has been 

used for the long term investigation of the oleate modified ZnO QD’s at 80°C 

(ZnO-1). Synthesis at 50-55 °C with the same proportion of reactants resulted 

with a very bright blue visible emission in swift synthesis (ZnO-2). When the 

LiOH:Zn proportion was 1:2 green emitting ZnO quantum dots were obtained 

(ZnO-3). Prepared ZnO QD’s were precipitated out by adding hexane to mixture 

after completed the reflux time followed by repeated washing with H2O, EtOH 

and acetone respectively.  

3.1.2.4 Phase Transfer Synthesis of ZnO QD’s  

For the phase transfer synthesis of ZnO QD’s, Oleate@ZnO quantum dots were 

dispersed in CHCl3 and ultrasonicated for 5 minutes to obtain a clear solution. 

Concentration of the ZnO defines the milky character of the mixture probably 

due to the formation of large agglomerates. When the ZnO quantum dots from 

this organic phase were transferred to water phase, we dissolve the chosen 
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organic acid (for example, gluconic acid, mandelic acid, citric acid etc.) in the 

water phase and mix it with the CHCl3 which contains the ZnO QD’s. Small 

ultrasonication period, 5 minutes was enough for the phase transfer synthesis. 

Still for a better coverage of the substituted ligand it is possible to reflux the 

quantum dots after phase transfer. Excess amount of the acidic ligands caused 

dissolution. After phase transfer quantum dots have been washed with aceton 2 

times and dried in oven at 80°C.  

3.1.3 Heating Up Synthesis of Anisotropic ZnO Nanoparticles 

Heating up synthesis of the ZnO nanocrystals have been achieved by heating the 

(290-300 °C) mixture of Zn(Oleate)2/Oleylamine (% 80-90 Riedel Haen)/Oleic 

acid (Riedel Haen) in the three necked flask. Using different precursor 

combinations it was possible to obtain plate like, nanorod, triangle-pyramid like 

ZnO nanocrystals[69-70] (Figure 26). For a common synthesis the required 

amount of precursor mixture was placed in a three necked flask. This flask has 

been heated with 5 °C/min heating range under the argon atmosphere untill the 

 

Figure 26 Non hydrolytic high temperature formation mechanism of ZnO 

nanoparticles from oleate precursor  

 280-320 °C temperature. After reaching this temperature they have kept at this 

temperature 1 h.have been kept 1 hour (Figure 27). Cloudy,yellowish mixture of 

suspensions of nanoparticles have been observed during and after the reaction.  
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Figure 27 Experimental set-up for the heating up method for ZnO nanocrystal 

synthesis. 

After reaction flask was cooled down the room temperature, large amount of 

EtOH was added for precipitation and nanoparticles have been centrifuged at 11 

000 rpm by washed 4-5 times by this solvent and dried under vacuo. Reaction 

mechanism follows a non-hydrolytic decomposition (Figure 26) route for the 

formation of ZnO nanoparticles. It is possible to follow the nanoparticle 

formation by FT-IR spectroscopy.  

3.1.3.1 Salt Assisted Surface Modification of ZnO Nanostructures 

Obtained ZnO nanocrystals have been modified (Figure 28) by different type of 

surface agents for controlling the surface character and solubility. In a typical 

synthesis 250 mg nanoparticle have been dispersed in 50 ml toluene 

ultrasonicated 15 minutes. In another flask, modification agent (mandelic acid 

for example) has been dissolved in 10 ml of EtOH and ultrasonicated untill a 

clear solution was obtained. 
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Figure 28 General  carboxylic acid modification of ZnO nanoparticles. 

Mixture was sonicated 10 more minutes and refluxed at 75° C for 2 hours. In 

order to remove the excess acidic agent, obtained nanoparticles have been 

washed with EtOH and acetone and modified particles have been dried under 

vacuo. 

3.1.3.2 SiO2@ZnO Core/Shell (Encapsulated) Nanostructures with 

Different Surface Modifications 

In a flask 500 mg ZnO nanoparticles were dispersed and ultrasonicated as much 

as possible in 50 ml water. Then 30 ml water 100 ml EtOH mixture is added and 

mixture was stirred for 10 minutes. Concentrated ammonia (NH3) was used for 

bringing the pH value up to around 10.0-10.5 which was measured by pH-meter. 

This mixture was stirred around 30 minutes more and then 2 ml TEOS 

(Tetraethoxysilane) was drop by drop added. Long chain organic molecules and 

long chain alcohols (like octanol) may enlarge the size of the silica. Whole 

addition must be completed in 30 minute-1 hour period. After completing the 

addition, mixture is stirred around 20 hours at room temperature. After 

centrifugation, particles are washed with EtOH, water and aceton. This method 

is a slightly modified Stöber method for the core shell nanoparticles. Particles 
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are dried at 80°C for 24 hours under vacuuo. For increasing the solubility we 

can modifiy the surface of silica shell by different ligans. For example; 100 mg 

of SiO2@ZnO particles have been dispersed in 30 ml EtOH and stirred 30 

minutes. Then 20 mg mercaptopropyl trimethoxysilane, aminopropyl 

trimethoxysilane which was dissolved in 10 ml EtOH/2 ml water mixture added 

into the above solution. After stirring at 60°C around 10 hours, particles were 

centrifuged and washed with EtOH and acetone respectively. 

3.1.4 Synthesis of TiO2 Nanostructures 

Titanium dioxide (TiO2) is a transition metal oxide and widely used 

semiconductor
[71]

 which mainly has three crystal structures: anatase, rutile, 

brookite. It is an n-type semiconductor which means electrons are the majority 

charge carriers. Additionally it has been reported that 3 synthetic (monoclinic, 

orthorhombic and triclinic) and 5 high temperature modification of TiO2 have 

also been observed, three metastable phases can be produced synthetically 

(monoclinic[72], tetragonal[73] and orthorhombic[74]), and five high-pressure 

forms (α-PbO2-like[75], baddeleyite-like[76], cotunnite-like[77], orthorhombic 

OI[78], and cubic[79] phases). Generally, anatase crystal structure and rutile 

crystal structure are most investigated forms of TiO2 due to their wide solar , 

photocatalytic, nanoelectronics and water splitting applications[71]. Especially 

photocatalytic or light assisted oxidation properties make TiO2 as an ideal 

photocatalytic nanomaterial. Still its application areas are limited to the 

Ultraviolet (UV) region of the light spectrum. Due to its high band gap energy, 

(Anatase= 3,2 eV) only 4% of the solar radiation can be harvested and used 

appropriately. 

Lattice structure for anatase and rutile modifications (Figure 29) is generally 

described as distorted octahedra of TiO6
2-

.This geometry simply means that Ti 

center atom (cation) (Ti
4+

) surrounded by 6 oxygen (O
2-

) atoms (anions). There 

is some small differences in the rutile and anatase structures but these small 

differences cause electronic differentiations. Each octahedron a) has an amount 

of distortion and b) different shape of these octahedral connections . For 

example, in anatase structure four octahedron share the edge oxygen pairs and 

also four octahedron share a corner oxygen pair. As a result each octahedron is 

in contact with eight neighboring octahedrons. As a contrast in rutile structure 

each octahedron is in contact with 10 neighboring octahedrons. Also two 

octahedrons share the edge oxygen pairs and in addition to that eight 

octahedrons share the corner oxygen atoms. These contact geometries show us 

http://en.wikipedia.org/wiki/Monoclinic_crystal_system
http://en.wikipedia.org/wiki/Tetragonal_crystal_system
http://en.wikipedia.org/wiki/Baddeleyite
http://en.wikipedia.org/wiki/Cotunnite


3 Experimental Part  

37 

that anatase has highly distorted structure if we compared to rutile. This 

distortion causes longer Ti-O-Ti bonds but shorter Ti-O bonds in rutile . Small 

orthorhombic distortion of the rutile structure is responsible for the energy band 

gap difference between the anatase (3,2 eV) and rutile (3,0 eV) crystal 

structure[71]. 

 
a)Rutile b) Anatase c) Brookite 

 

Figure 29 Crystal structures of TiO2 phases and tomic orientation in the TiO2 

crystal structures.  

Even though rutile has a smaller band gap energy it has been confirmed that 

anatase shows more reactivity in the exciton formation and photocatalytic 

activity.Irregularities in the crystal structure cause oxygen deficiencies and 

remarkable changes in the photocatalytic activity. 

3.1.4.1 Synthesis of one-dimensional TiO2 nanofibers by hydrothermal 

method 

Elongated fiber like TiO2 can be prepared from commercial TiO2 

nanoparticles
[80-81]

. In order to obtain fibers, 30 ml, 10 M NaOH and 500 mg 

(Acros, TiO2 Aeroxide P-25, MW: 79,88 g/mol) has been ultrasonicated 30 
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minutes and then placed into hydrothermal tube and kept under the conditions of 

200 °C, 24 h. After synthesis, elongated nanostructures have been centrifuged 

and washed with acetone 3 times.  

3.1.4.2 Synthesis of Spherical TiO2 nanoparticles by Heating Up Method  

Synthesis of TiO2 nanoparticles by heating up method has been employed by the 

same installation as in ZnO nanocrystal synthesis.  

 

Figure 30 Spherical TiO2 formation by Hot Injection method. 

All syntheses (Figure 30) were carried out under air-free conditions using a 

standard Schlenk line setup. 2,5 ml Octadecene (2 g) 3,37 ml Oleic acid ( 1 eqv ) 

and 28 ml Oleylamine (9 eqv %85) have been loaded into a three-neck flask and 

heated at 120°C for 30 min. After the half an hour mixture was cooled down to 

50°C under N2 flow and 0,88 ml TiCl4 (Fluka, MW: 189.68, 1 eqv) was 

introduced into the flask and heated to 290°C. Reaction mixture has been kept 

for an hour at this temperature for the non-hydrolytic decomposition of Ti-

precursor and nanocrystal formation. When kept at this temperature reaction 

mixtures color transforms to light blue from colourless then dark blue and to 

brown gradually. If temperature, reactant concentration and heating time are 

changed resulting particles are also show different characteristics. Final mixture 

was white milky which shows the nanoparticle formation. EtOH has been added 

to precipitate the nanoparticles and centrifugation has been done at 10 000 rpm, 

5 min was applied. Nanocrystals have been washed with EtOH, water and 

aceton respectively ( 3 times) and particles have been dried under vacuo.  

3.1.4.3 Synthesis of multibranched, elongated TiO2 nanostructures by Hot 

Injection Method  

Hot Injection synthesis of TiO2 has been done with a small modification to 

heating up method. After formation of TiO2 nanoparticles a defined amount of 

precursor mixture has been injected into the reaction flask (Figure 31).  
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Figure 31 Hot Injection Synthesis of multibranched TiO2. 

For a typical synthesis, which has been carried out under air-free conditions 

using a standard Schlenk line setup, 3.81 ml ODE (3 g) , 0.42 ml OLAC (1 eqv 

75%) and 20.20 ml OLAM (52 eqv, %85) have been transferred into a three-

neck flask and heated at 120°C for 30 min. Mixture then cooled down to 50 °C 

under N2 flow and TiCl4 (1 eqv) mmol has been introduced and the flask has 

heated up to 290°C.Temperature was kept at 290 °C, 1 h. In another flask an 

injection mixture prepared as 1,17 ml OLAM, 1.27 ml ODE and 0,33 ml 

TiCl4.After 1h heating, injection mixture was injected slowly for arranging the 

monomer flux properly into the reaction mixture at 290 °C. This injection 

mixture has been change for the synthesis of different TiO2 nanoparticles. 

During the reaction aliquots have been collected for the observation of particle 

evolution. After a non-hydrolytic decomposition of Ti-precursor and kinetic 

control of the nanocrystal formation we have obtained hyperbranched, 

spherically assembled, spherical nanocrystals. During the injection flask was 

almost dark reddish brown and turn into yellowish gradually. After completing 

the heating, final mixture has been diluted with EtOH and centrifuged. 

Afterwards they have been washed with acetone and dried under vacuo
[82-84]

. 

 

3.1.5 Inorganic Organic Hybrid Polymer/ZnO Nanocomposite Synthesis 

Nanoparticle filled inorganic organic nanocomposites synthesis has been 

employed for the TiO2 and ZnO nanoparticles. For a ZnO embedded 

nanocomposite material, organically modified trialkoxysilane precursor should 

be hydrolysed firstly for increasing the –OH amount in the precursor polymer. 

For this reason 1 eqv amount of 0,1 M HCl is added into the organically 

modified trialkoxysilane for hydrolyzing the structure. Actually trialkoxysilane 

has 3 hydrolysable alkoxy groups. Therefore instead of full hydrolysis by 0,1 M 

HCl, partial hydrolysis is employed which should be 3 eqv 0,1 M HCl. After 6 



3 Experimental Part   

40 

hours,due to the After 6 hours nanofiller (ZnO or TiO2) is introduced for 

increasing the dispersion and hydrolysis and condensation reactions an 

oligomeric siloxane structure is formed carrying organic functional groups on a 

silicon skeleton
[85] 

(Figure 32). surface modification effect of the nanoparticles. 

Due to the unique propagation method of the sol-gel reaction, it is possible to 

disperse the particles and obtain an homogeneous nanocomposite structure. 

Afterwards highly dispersed nanoparticle coantaining structure is polymerized 

according to its polymerizable group (Figure 33) such as acrylate, epoxy, double 

bond etc. 

 

Figure 32 Partial hydrolysis of epoxy modified trialkoxysilane. 

These interactions are vitally important since when nanoparticle is modified and 

introduced correctly, obtained nanocomposite becomes transparent. Application 

methods of these polymeric hybrid formulations are widely known such as spin 

coating, spray coating etc.  
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Figure 33 Epoxy ring opening reactions in hybrid nanocompoites. 

Depending on the introduced nanoparticle and organically functional group type, 

these obtained nanocomposite structures can be cured by UV, IR or thermally 

and they show antibacterial, photocatalytic, superhydrophilic, UV 

protective,scratch and abrasion resistant properties due to the introduced 

nanoparticles formulations
[85]

. Figure 34 shows an interaction between a particle 

and alkoxysilane backbone.  

 

Figure 34 Schema for the nanoparticle surface modification. 

3.1.5.1 PLA/Hybrid Polymer/NP Nanocomposite Synthesis 

Hybrid polymer/ PLA (Dow Coring) nanocomposite structure was synthesized 

similarly to the previous description
[85]

. Methacryloxypropyl trimethoxy silane 

(MEMO, Dynasilane) was incorporated into the PLA/THF mixtures varying 

from %10 to %50 (w/w). Before incorporation, MEMO/Benzophenone (Sigma 

Aldrich, MW: 182,22 g/mol) mixture was prepared and hydrolysation of the 
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MEMO according to its hydrolizable alkoxy groups was acquired during 6h. 

During water addition the solution was stirred vigorously. Nanoparticles have 

been introduced by dispersing them in the hydrolysed hybrid precursor. After 

addition of the nanoparticles, final formulation was stirred half an hour for 

homogenity. Solvent was removed and UV light and thermal treatment were 

used for curing. Synthesized novel hybrid structures were coated onto the glass 

substrates by spin coating method with 2000 rpm, 10 second conditions. 

Biodegradability was tested in a commercial compost at 55±2 °C. 

3.1.5.2 ZnO@Clay Nanocomposite Preparation 

ZnO QD@Clay structure synthesis has been conducted for rod like and and 

plate like clays. During the preparation of the composite structure firstly 5 mmol 

Zn(CH3COO)2 precursor was dissolved in EtOH at 85 °C and after obtaining a 

clear solution, 2 g of clay particles has been introduced in to the reaction 

mixture. After introducing clay, reaction mixture was stirred for more than an 

hour. This step is for the adsorption of zinc on the clay surface. After adsorption 

process 7 mmol LiOH.H2O has been added into the solution which dissolved in 

MeOH prior to addition. Reflux has been conducted 24 hours at 85 °C and 

aliquots have been taken for the nanoparticle evolution analysis. Finally mixture 

has been centrifuged and washed with aceton and composite structure has been 

dried in oven at 90°C.  

3.2 Characterization techniques  

3.2.1 Transmission and High Resolution Transmission electron microscopy  

In Transmission Electron Microscopy a beam of electrons is transmitted through 

a nanomaterial or thin structure interacting with the structure as it passes 

through. Due to the interaction of the electrons the image is magnified and 

focused and transmitted into a computer screen or it is detected by a sensor such 

as a CCD camera. Since small de Broglie wavelength of electrons it is possible 

to get remarkably higher resolutions for the observation of nanocrystals. TEM 

images of the nanostructures have been analyzed on the Cu grids dropped from 

its solution. Particle size and morphology have been investigated with TEM 

(LEO 912 Omega, Zeiss, Oberkochen, Germany) operated at 120kV with zero 

loss conditions. The energy-filtered electron micrographs were recorded with a 

high-speed scanning camera (sharp: eye, 2048 x 2048 pixels, TRS, Moorenweis, 

Germany) under remote control using the image acquisition system (iTEM, 

Olympus Soft Imaging Solutions GmbH, Münster, Germany).  
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3.2.2 Scanning electron microscopy (SEM) and Electron Diffraction X-Ray 

(EDX)  

Scanning electron microscope (SEM) produces detailed images by scanning 

nanomaterials, small items, thin films with a high-energy beam of electrons in a 

raster scan pattern. When electrons interact with surface and scatter electrons, 

the detector of microscope collects this information and produce signals that 

contain information about the sample's surface topography, composition, and 

other properties such as electrical conductivity. The types of signals produced by 

an SEM include secondary electrons, back-scattered electrons (BSE), 

characteristic X-rays, light, specimen current and transmitted electrons. 

Basically X-rays are emitted by beam material interaction ad if electron beam 

removes an inner shell electron from the sample, causing a higher energy 

electron to fill the shell and release energy. Therefore these X-rays are used to 

identify the composition and measure the abundance of elements in the sample 

which called as Energy Dispersive X-ray spectroscopy (EDX). Surface 

morphology of the QD layer and EDX analysis were acquired by Nova Nano 

SEM 430 on silicon substrates which ultrasonically cleaned in aceton bath 

before use. 

3.2.3 X-Ray Diffraction spectroscopy  

In X-ray scattering scattered intensity of an X-ray beam hitting a sample as a 

function of incident and scattered angle, polarization, and wavelength or energy 

is recorded. Especially X-ray powder diffraction method is mostly used for the 

identification of unknown crystalline materials and mixtures in some cases. This 

method makes also possible to define fine-grained minerals, identification of 

unit cell dimensions and sample purity. Additionally by XRD technique it is 

possible to determine crystal structures using Rietveld refinement and 

characterize thin films samples. 

n λ = 2 d sin (θ) Eq 11 

Where d is interplane distance (d) of crystal was calculated by Bragg’s Law, λ is 

the wavelength of the x-ray, θ is the angle of the diffracted wave and n is the 

integer known as the order of the diffracted beam. The powder X-ray diffraction 

(XRD) patterns of as-synthesized and thermally treated ZnO QD’s were 

measured with a STOE-STADI MP vertical system in transmission mode using 

Cu Kα (α=0.15406 nm) radiation.  
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3.2.4 Thermogravimetric Analysis 

Thermogravimetric analysis measures the changes of materials in weight in 

relation to change in temperature. Therefore analysis require high precision for 

the measurement of weight, temperature, and temperature change. Thermal 

analysis and surface modification properties of the prepared structures was 

carried out in the temperature range from 30 to 800°C with a heating rate of 

10°C/min under nitrogen atmosphere (flow rate; 25 ml/min) using Mettler 

Toledo TGA/DSC 1 Stare systems.  

3.2.5 Atomic force microscopy (AFM)  

In the Atomic Force Microscopy, a sharp tipped cantilever is placed onto the 

substrate surface which scans it with different modes namely contact or non-

contact mode. Information obtained is the substrate surface topography and 

chemical/physical character of the surfaces. Analysis of the AFM have been 

done with XE 100 Park Systems in non contact method.  

3.2.6 Photoluminescence Spectroscopy  

Photoluminescence (PL) spectroscopy is the investigation of spontaneous 

emission of light from a material under optical excitation. When material 

absorbs photons (electromagnetic radiation) it shoud re-emit photons which 

means an excitation to a higher energy state and then a return to a lower energy 

state accompanied by the emission of a photon possessing energy corresponding 

to the band gap. In this thesis Fluoromax 3 Yvon Horuiba has been used for the 

determination of PL structures of the nanomaterials. Nanomaterial first 

dispersed in EtOH and afterwards measurement showed the desired spectra.  

3.2.7 UV-Visible Spectroscopy  

Ultraviolet-visible spectrophotometry (UV-Vis or UV/Vis) refers to absorption 

spectroscopy or reflectance spectroscopy in the ultraviolet-visible spectral 

region of the electromagnetic spectrum. Due to its highly energetic nature, 

molecules can undergo electronic transitions. UV/Vis spectroscopy is widely 

used in analytical chemistry for the quantitative determination of different 

analytes and optical properties of the nanomaterials. Generally in the thesis, UV 

Vis measurements have been done with Perkin Elmer Lambda 950 in 200-800 

nm range. Since photocatalytic investigations use also this same technique, it is 

possible to determine photocatalytic decomposition rates.  
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3.2.8 Surface contact angle 

Contact angle is used for detecting water or some specific other liquid 

repellency or affinity of the surfaces. One drop is given onto the surface and 

with the help of a camera contact angle is measured. In this thesis Krüss systems 

have been used for the contact angle measurements.  

3.2.9 Dynamic Light Scattering (DLS)  

 Dynamic light scattering method or photon correlation spectroscopy is a 

method which can be used to determine the hydrodynamic size distribution 

profile of small particles in suspension or polymers in solution. In this method 

photon correlation spectroscopy (PCS), measures source laser light that is 

scattered from dissolved items or suspended particles. Since there is a Brownian 

motion of the molecules and particles in solution fluctuations of the scattering 

intensity can be observed. In this thesis Malvern Nano ZS has been used for the 

determination of DLS values of the nanoparticles which generally dispersed in 

water. PMMA cuvettes have been used as solvent container.  

3.2.10 Zeta Potential Measurements 

Zeta potential is a term which is realated to the particle surface in a liquid media. 

According to widely known theory small structures form a double electrical 

layer in the solutions and these electrical double layer defines the fate of the 

small structures. Zeta potential (ζ) is used to predict the stability of the dispersed 

formulations and potentially provides valuable information for long-term 

stability. The general dividing line between stable and unstable suspensions is 

accepted as +30 or -30 mV. If the particles have more positive than +30 mV or 

more negative than -30 mV, they are normally considered to be stable. These 

observations and results are affected by pH, conductivity of the medium and 

concentration. In this thesis Malvern Nano ZS has been used with a specifically 

designed cells for the zeta potential measurements.  

3.2.11 FT-Infrared Spectroscopy 

FT-IR stands for Fourier Transform InfraRed, the preferred method of infrared 

spectroscopy. In infrared spectroscopy, IR radiation is passed through a sample 

which some of the radiation is absorbed by the sample and some of it is 

transmitted. The resulting spectrum represents the molecular absorption and 

transmission characteristics, creating a molecular finger print of the sample. This 

makes infrared spectroscopy useful for several types of analysis. For the analysis 

by FT-IR we have used Perkin Elmer 400, 4000-400 cm
-1

 range and simply 
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dropped a little material onto the measuring platform on ATR Universal 

Sampling Accesory.  

3.2.12 NMR Spectroscopy 

NMR spectra have been recorded with a Bruker AVANCE II 300 spectrometer 

at 298 K, with NMR spectroscopic frequencies (external standarts) 1H: 300,1 

MHz (TMS) for the detection of surface attachment and other applications.  

3.2.13 Confocal Microscopy 

It has been used for the detection of luminescent species under the microscope 

for cell labeling applications. Leica LSM TCS SP5, Germany system and 

necessary excitation wavelength have been used for the imaging studies. 

3.3 Material Properties Testing 

Synthesized nanoparticles have been used for the some specific applications in 

the nanocomposite form. This part described the specific tests of the obtained 

nanomaterials. 

3.3.1 Cell Cytotoxicity Tests 

The cell toxicity studies performed on the particles described in this thesis were 

performed in collaboration with internal and external partners. The procedures 

described here are based on the protocols developed by Mr. Karim Arroub 

(Ph.D. student, Research Group Prof. Dr. Sanjay Mathur).  

 

Figure 35 MTT test for the cell viability.  
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Cytotoxicity of quantum dot or nanoparticles have been determinated by the 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Carl 

Roth, Karlsruhe, Germany). Mitochondrial dehydrogenases of viable cells 

reduce the water soluble yellow MTT to water-insoluble formazan crystals 

(Figure 35) . These were solubilized with 4mM HCl in isopropanol containing 

0,1% Tergitol solution (Sigma Aldrich, Steinheim, Germany). After exposure to 

the different amount of modified nanoparticles, 20µl MTT solution (5mg/ml 

stock solution) was added to each well and incubated at 37°C for different time 

periods. Medium was removed and 200µl MTT solvent was added to each well 

and mixed thoroughly. The absorbance was read at 620 nm by enzyme-linked 

immunosorbent assay (ELISA) (Elx800, Biotek). The results were computed in 

relation to an untreated control. 

3.3.2 Cell Labeling by Visible Light Emitting QD’s 

Labeling studies have been done with Dr. Muhammed Sajid Hussein, Institute of 

Biochemistry and Genetics, University of Cologne. For the labeling applications 

used quantum dots have been introduced into necessary cell medium and 

incubated at 37 °C for different time periods. For the labeling applications, as an 

example HEK 293 human kidney cells were cultured on 12 mm coverslips, 

together with ZnO quantum dots. Then prepared cells were mounted on glass 

slides with gelvatol. Glass slides are placed onto the holder under microscope 

objective and images are taken by corresponding excitations by confocal 

microscope (Leica, Germany, LSM TCS SP5). 

3.3.3 Photocatalytic Activity Tests 

Photocatalytic activity in semiconductors is the term which is used for the 

process of recombination of charge carriers obtained by light irradiation. Since 

TiO2 and ZnO are metal oxide semiconductors their HOMO is termed valence 

band and LUMO is termed conduction band. Light absorption by this metal 

oxides effectively results that electrons from oxygen are transferred to the 

vacant titanium d-orbitals.  
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Figure 36
 
: Photocatalytic process for the formation of charge carriers of 

TiO2
[86]

. 

For anatase (3.2 eV) and rutile (3.0 eV) and (3.2 eV) for ZnO, this transition is 

in the UVA region, resulting in a sharp absorption band at 300-400 nm. 

Therefore promotion of an electron from valence to conduction band, on 

irradiation by UV (or visible) light, results in a ‘hole’ in the valence band that 

assigned a positive charge for showing its loss of negative electron (denotation 

is arbitrary) (Figure 36). The hole has the power of oxidation since valence band 

and (or oxygen orbital) requires to retrieve its own electron density after losing 

electron by irradiation. This process can be done by returning the electron from 

conduction band, recombining with the valence band called recombination is a 

sum of radiative (i.e. emission may be observed) and non-radiative processes. 

Many different pathways are possible which make the materials a 

photocatalysts. Obtained hole has the potential to oxidise water which maybe on 

the surface of the semiconductor resulting in the formation of hydoxyl radicals. 

Hydroxyl radicals are very powerful oxidating agents can easily oxidise any 

organic and inorganic molecules which are available in nearby untill carbon 

dioxide (CO2) and water (H2O). Conduction band at the same time is where the 

electron has no hole to recombine with, since it has oxidised surface bound 

water. It achieves an alternative to reduce and therefore reduces oxygen to form 

the superoxide anion. This anion subsequently react with water to form hydroxyl 

radical. This process provides a very useful photocatalytic self cleaning 

procedure
[71]

. In the photocatalytic experiments, methylene blue has been used to 

evaluate the photocatalytic activity of the bare and modified nanoparticles. 

Before applications, absorption maxima has been found for the MB. Defined 
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amount of MB was dissolved inwater and nanoparticle were dispersed. To 

ensure the the adsorption of the dye, solution were stirred at dark conditions 

during the 1 h. Subsequently solution was irradiated with mercury lamp (352 

nm) or solar simulator and UV-Vis absorption measurements have been taken 

consecutively. Particles were centrifuged and seperated before the UV-Vis 

measurements.  

 



 

 

 



 

51 

4 Results and Discussion 

4.1 Ligand Modulated Visible Light Emitting ZnO QD’s 

In this chapter, synthesis and characterization of the ligand and surface 

controlled synthesis of ZnO QD’s have been analysed thoroughly.  

4.1.1 Fundamental Properties of ZnO QD’s and Their Visible Light 

Emission 

As an n-type semiconductor
[4]

 ZnO is a very important material for gas 

sensors
[87]

, optical waveguides
[88]

, and solar cells
[89-90]

. Among many different 

morphological examples of ZnO QD’s
[91-96]

 are gaining great interest due to their 

size dependent visible light emission characteristics
[95]

. Generally ZnO 

photoluminescence has two basic components
[96]

. One is the typical exciton 

emission or near-band-edge emission, i.e., photo-generated electron 

recombination with holes in the valence band or in traps near the valence band. 

For this process, generally 370 nm emission (UV light) is seen due to room 

temperature band gap (3.37 eV ) character of ZnO
[]
. Beside that there is a visible 

light emission or deep-level emission related with oxygen vacancies, but the 

description of this emission mechanism is not perfectly clear so far
[97]

. Two 

widely known mechanism are available for the visible light emission of ZnO 

QD’s
[97]

 (Figure 37). a)recombination of a shallowly trapped electron with a hole 

in a deep trap and b) recombination of an electron in singly occupied oxygen 

vacancies with a photo-generated hole in the valence band. Since it is difficult to 

determine the exact location and the energy it is also difficult to determine the 

exact location and the energy level of the deep traps bu there are some theories 

like, van Dijken and co-workers
[98-100]

 assigned ZnO visible emission (green–

yellow) to the deep hole trap by comparing the PL shift of ZnO quantum dots of 

different diameters with a theoretical model based on the intensity ratio between 

two emission peaks. 
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Figure 37
[97]

: Photoluminescent processes suggested for ZnO nanoparticles. (A) 

Typical exciton emission, (B) recombination of a shallowly trapped electron 

with a deeply trapped hole, and (C) recombination of a shallowly trapped hole 

with a deeply trapped electron. In order to simplify the maps, the shallow traps 

near the valence band (VB) and the conductance band (CB) are not marked here. 

No matter how many different theoretical explanation exists there is one clear 

thing that ZnO visible emission intensity depends on its different defect 

concentrations. So if we can increase the defect density we can increase the 

visible emission intensity. For the liquid systems sol–gel technique at room 

temperature is a very easy and common method to obtain ZnO with highly 

visible emission since obtained particles have a lot of defects. Visible 

luminescent ZnO nanoparticles colloids were invented and studied intensively 

which was obtained by hydrolyzing zinc acetate in ethanol, which appears as a 

very simple method.  

4.1.2 Acetate as Controlling Ligand for ZnO QD’ s  

After the work by Spanhel and Anderson
[101]

, Meulenkamp
[68]

 at 1998 developed 

a synthesis and more importantly a particle size determination method for ZnO 

quantum dots from the UV Visible absorption spectrum. The preparation 

procedure described by Spanhel and Anderson, which has also been used by 

other groups, was used but it was modified slightly. According to the procedure 
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5 mmol sample of Zn(CH3COO)2.2H2O was dissolved in 50 mL of boiling 

ethanol at atmospheric pressure. Contrary to Spanhel and Anderson and other 

workers, solution was not refluxed but cooled down to 0 C. 7 mmol sample of 

LiOH.H2O was dissolved in 50 mL of ethanol at room temperature in an 

ultrasonic bath and cooled to 0 ° C. The hydroxide-containing solution was 

added dropwise to the Zn(CH3COO)2.2H2O suspension under vigorous stirring 

at 0°C. The ZnO sol was stored at 4°C to prevent rapid particle growth. Since 

ZnO shows quantum size effects until >7-8 nm UV/vis absorbance spectra 

provide a convenient way to investigate particle growth. Therefore to equate Eg 

(band gap) with the wavelength at which the absorption is 50% of that at the 

excitonic peak (or shoulder), called λ½. According to the investigations it has 

been found that curves are fitting to an equation like ;  

 1240 / λ½ = a+ b/D + c/ D
2 

Eq 12 in nm, diameter D in Å). Generally it is taken 

as a= 3.301 b) 294.0 c) 1.09 Meulenkamp equation
[]
 provides a fundamental 

understanding on the particle size and its quantum confinement. Acetate 

modified ZnO QD’s represent an easy way for the synthesis and investigatins of 

the ZnO QD fabrication. Optical evolution of the as-synthesized QD’s has also 

been detected by UV-Vis absorption spectroscopy.  

4.1.2.1 UV-Visible Investigation and Particle Size Calculation  

 

Figure 38 UV Visible evolution of Acetate@ZnO QD’s. 

Optical properties of the as-synthesized ZnO QD’s have been presented in 

Figure 38. According to the Meulenkamp equation quantum dot size can be 

calculated from the UV visible absorption data (Table 2).  
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Figure 39 a) TEM investigation of Acetate@ZnO QD’s b) QD size distribution. 

Theoretical calculations showed that, since UV absorption maxima does not 

remarkably change during the reflux and UV absorption measurement QD’s size 

has been listed between as 4,0 and 5,0 nm. But after TEM investigation of the 

Acetate@ZnO QD’s, analysis has revealed that quantum dot size was actually 

varying from 3,0-4,0 nm and exactly 3,77 in this case.(Figure 39). HR-TEM 

investigation showed a clear wuertzite type crystal structure which elongates 

through [002] direction. By HR-TEM analysis we could reveal that the d–d 

spacing of Acetate@ZnO QD’s is 0.26 nm. 

4.1.2.2 Photoluminescence Properties and Visible Light Emission 

Expectedly swift synthesis and visible light emission of Acetate@ZnO QD’s 

exhibits conventional characteristics of mentioned quantum dot properties.  

 

Figure 40 Visible green emission from the Acetate@ZnO QD’s (aliquot times 

have been written in minutes below the solution).  

If quantum dot solutions are prepared in alcoholic medium at room temperature 

conditions, they appear like slightly milky transparent solutions. However if 

they are illuminated with a commercial UV source (λ= 354 nm) effects of the 

quantum confinement can be seen easily (Figure 40). PL spectra of the as- 

synthesized quantum dots shows 2 main peaks (Figure 41). One which is placed 

on the λem= 365-370 nm arises from the band gap emission of the ZnO quantum 
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dots and lies within the UV region. Additionally its peak intensity is lower than 

the visible light emission peak. Second emission which appears first at λem=546 

nm is the visible light emission which is due to the oxygen defects of the 

quantum dot surface structure.  

In addition to the oxygen defects, there are many proposed sources for the 

visible light emission of the ZnO quantum dots but this feature generally 

attributed to the oxygen defects.  

 

Figure 41 PL spectra for the QD’s before and after storage.  

As-synthesized and washed Acetate@ZnO QD’s which are showing green 

emission are not effectively protected from the particle interaction and therefore 

quantum dots start to agglomerate. 

 

Figure 42 Green to orange light shift for Acetate@ZnO QD’s.  

Interestingly also quantum dots changed their visible light emission from green 

to orange (λem=580-610 nm) after storage as evidenced (Figure 42). Additionally 

TEM images after storage unveiled the morphological differences of the 
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Acetate@ZnO QD’s since agglomerated quantum dots (Figure 43) are seen as 

monolayers which effects the visible light emission. Due to the Ostwald 

ripening, smaller quantum dots gets attached to the bigger ones and defect 

oriented visible light peak shifts toward red region.  

 

Figure 43 Acetate@ZnO QD agglomeration and monolayer formation. 

Obtained characteristic properties provided a platform to obtain a deeper control 

on the surface defect modulation for the surface controlled growth of ZnO QD’s.  

4.1.3 Cysteine Molecule as Surface Controlling Ligand for ZnO QD’s  

Inadequate stability of the common Acetate@ZnO QD’s requires surface 

modulation for controlling the defects on the QD surface. For this aim, 

appropriate solvents can be used as a quencher after the nucleation burst by 

using their strong adsorption properties onto the different formed structures. 

Additionally, micelle formation for the control of the particle/polymer interface 

or injection of suitable capping ligands, even wide range biomolecules like 

glutamic acid
[102]

 and histidine
[103]

 can be used to control the particle growth of 

the ZnO QD’s. If we change the surface controlling agent we can also 

functionalize the quantum dots surface and add an additional chemical feature. 

Change in the capping ligand or polymer leads to anisotropic or hierarchical 

structures such as elongated prisms or flowerlike aggregates, respectively. By 

taking these coordinative effects altogether, the use of capping ligands 

possessing high chemical affinity toward ZnO due to the hard-soft acid base rule 

or interfacial chelation has proved to be effective method in exemplifying an 

arrested growth of nanoparticles as well as to control the hierarchy and 

orientation of the nanocrystals. For this aim we have used cysteine which is a 

biologically important molecule containing amino, thiol, and carboxylic 

functional groups and also capable of undergoing specific reactions with the 
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metal centers(Figure 44). Investigation of cysteine capping on the synthesis of 

ZnO QDs resulted many different concepts
[104]

.  

 

Figure 44 Cysteine-functionalized ZnO QDs and intermolecular interaction 

among surface-bound and free cysteine ligands. 

In order to compare the differences with the common acetate modification we 

have varied the cysteine amount systematically for controlling the emission and 

size evolution. Therefore 2.5, 5.0, and 7.5 mmol cysteine introduced into the 

common acetate directed system and samples have been labeled as C1, C2, and 

C3, respectively. By keeping the Acetate@ZnO QD’s as C0. The diluted 

reaction mixture was refluxed for 90 min at 55 °C under nitrogen atmosphere, 

whereby aliquots were collected at different time intervals (10, 30, 60, and 90 

min) to record the particle size evolution by optical absorption spectra.  

4.1.3.1 Optical Evolution and Band Gap Modulation of ZnO QD Formation 

under Cysteine Control 

As mentioned before electronic transition from valence to conduction band 

determines the shape of the UV absorption and therefore the confinement effects 

observed in nanoscopic particles caused an enlargement of the band gap (Eg).  

 

Figure 45 UV visible Evolution of the Cysteine @ ZnO QD’s.  
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For theoretical size calculation, the half of the excitonic peak width from the 

absorption spectra of ZnO suspensions at various reaction times was also 

measured and substituted in the Meulenkamp equation to calculate the average 

Eg values. This calculation have been done for different amount of cysteine 

modified ZnO QD’s and compared with Acetate@ZnO’s. If we compare UV-

visible absorbance spectra of Acetate@ZnO and Cysteine@ZnO (Figure 45) 

synthesized under different reaction conditions at various reflux time periods we 

can simply calculate the band gaps by the following equation: 

αhν = C (hν – Eg) Eq 13 

where where α is the absorption coefficient, C is a constant, hν is the photon 

energy in eV, and Eg is the band gap energy of the semiconductor. The 

calculated band gap energies (Figure 46) showed that increasing amount of 

cysteine decreased the band gap energy of QDs. 

 

Figure 46 Band gap calculation of the ZnO quantum dot.  

It is known that by using a suitable capping agent like cysteine, it is possible to 

control and manipulate coarsening effects in nanoparticles. It was observed that 

the particle size increased upon increasing the cysteine amount (Table 2). In 

solution, surface complexation or solution coordination takes place for chelation 

of zinc species in Zn(OH)4.Under the basic conditions, cysteine plays a major 

role for the formationof ZnO QDs. Apparently, thiol groups cause the zinc 

release or acceleration of the release process to form zinc–cysteine complexes.  
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Table 2 Band gap variation of growing Cysteine@ZnO QD’s 

Time(min) C 1(eV) C 2(eV) C 3(eV) Ac(eV) 

10  3.81 3.79 3.67 3.44 

30/20  3.78  3.72 3.62 3.44 

60 3.74  3.68 3.60 3.44 

90  3.72  3.67 3.59 3.43 

Therefore increasing the cysteine amount, the zinc concentration is relatively 

decreased in the medium due to the formation of soluble zinc–cysteine 

complexes.  

 

Figure 47 Band gap variation of Cysteine@ZnO QD’s. 

Calculated band gap and particle size values have been shown in Figure 47, 

Figure 48 Table 2. As for Zn(OH)2, it has lower thermodynamic stability than 

ZnO and this intermediate transforms into ZnO spontaneously. When the 

concentration of the zinc hydroxide species in the medium exceeds a critical 

value, ZnO begins to self nucleate. However by systematic cysteine 

complexation, zinc concentration is decreased, which favors aggregation of ZnO 

nanocrystals to form larger particles. 
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Table 3 Time dependent particles size variation according to UV visible 

investigation  

Time (min) AC (nm) C1 (nm) C2 (nm) C3 (nm) 

10 4.71 2.52 2.55 2.89 

20/30 4.71 2.66 2.78 2.98 

60 4.71 2.72 2.85 3.09 

90 5.04 2.78 3.01 3.29 

 

 

Figure 48 Particle size evolution for the formation of Cysteine@ZnO QD’s. 

4.1.3.2 Real Crystal Size, Morphology and Surface Properties  

of Cystein@ZnO QD’s 

TEM investigation of the Cystein@ZnO QD’s provided a real time 

understanding on the cysteine capped quantum dots. Intermolecular interaction 

among surface-attached cysteine molecules evidently induced particle 

agglomeration with particle size gradually increasing upon increasing cysteine 

concentration (Figure 49) (C1: 2.5 nm, C2: 2.8 nm, and C3: 3.1 nm). However, 

the common Acetae@ZnO QD’s prepared under similar conditions displayed an 

average size of 3.8 nm, which indicates that particle growth is suppressed due to 

the presence of cysteine as a surface chelating agent. XRD patterns of 

Acetate@ZnO and Cysteine@ZnO nO QDs at different cysteine concentrations 

showed wurtzite structure in both cases (JCPDS Card No.36-1451) (Figure 50). 

As in Acetate@ZnO no other crystalline impurities or residues were for 
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Cysteine@ZnO while the peak broadenings can again be attributed to the very 

small grain size (<5 nm). Conventional (C0) and cysteine-functionalized ZnO 

QDs (C1–C3). Sharpness of the diffraction patterns are slightly different and 

Acetate@ZnO shows better patterns. 

 

Figure 49 TEM images and calculated particle size distribution of 

Cysteine@ZnO QD’s. 

As presented above, Transmission electron microscopy (TEM) revealed 

spherical grains with a predominantly narrow size distribution HR-TEM 

analysis revealed that again ZnO QDs have the growth direction as [002] in with 

a d–d spacing of 0.26 nm that corresponds to ZnO.  

 

Figure 50 XRD patterns of C1,C2,C3 and Acetate@ZnO QD’s. 

 

C3 

C2 

C1 
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Figure 51 FTIR spectra of (a) free cysteine, (b) C0, (c) C3, (d) C2, and (e) C1 

samples. 

In order to analyse the surface characteristics of the Cysteine@ZnO QD’s 

Fourier Rransform Infrared (FTIR) spectra (Figure 51) has been used. Starting 

from pure cysteine, Acetate@ZnO QD’s and Cystein@ZnO QD’s have been 

analysed accordingly. Cysteine-capped QDs exhibited zwitterionic (internal 

salts) structure and showed the spectral characteristics of both carboxylic and 

primary amine groups (Fig. 51 FTIR ). In the case of free cysteine, peaks at 

1588 and 1392 cm
-1

 correspond to the asymmetric and symmetric carbonyl 

stretching. The peak at 1525 cm
-1

 is due to N–H bending, whereas a broad band 

of N–H stretching is observed in the range 3000–3500 cm
-1

 together with the 

acidic function. These results are in good agreement with the reported FTIR 

spectra of a general amino acid. A shift in the position of COO
-
 and N–H 

stretching is likely due to a change in their dipole moment when cysteine binds 

to metal or metal oxide surface with high electron density. Consequently, the 

large band from 2300 to 3300 cm
-1

 has shifted to higher wave numbers.Zn–O 

band at 450–460 cm
-1

 is evident in all ZnO QDs (C0, C1, C2, and C3), although 

the amount of the cysteine caused a systematic shift as seen in Fig. 7. The 

carbonyl stretching peak is at 1606 cm
-1

 (C1), 1578 cm
-1

 (C2), and 1570 cm
-1

 

(C3) showing possible changes in the carbonyl asymmetric and symmetric 

stretching with different loading of cysteine amount.  
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4.1.3.3 PL Features and Stability of Cysteine Modified ZnO QD’s 

Photoluminescence measurements on Cystein@ZnO QD’s dispersed in ethanol 

showed visible yellow luminescence. It has been found that there is no huge 

effect of cysteine concentration on the visible light emission peak position 

(Figure 52 and Figure 53). More important hing here is the stability of covered 

ZnO QD surface. As presented before, visible emission from conventional 

Acetate@ZnO QDs showed a shift toward longer wave lengths due to the 

Ostwald ripening and particle growth whereas the visible emission color of C3 

remained unchanged upon storage for a week (Figure 54). As in Acetate@ZnO 

QD’s emission spectra of the quantum dots have 2 different emission peaks. 

 

Figure 52 Cysteine (C1) modified ZnO QD’s visible light emission.  

First one represents the band gap emission and the second one represents the 

surface defect emission of the ZnO QD’s. The observed visible luminescence in 

ZnO QDs evident as a broad band with maximum between 2.20 and 2.10 eV 

supported that it possibly originates from the native oxygen defects, which their 

synthesis and characterization have attracted a reasonable interest by scientists,  

 

Figure 53 Photoluminescence feature of C2 QD’s. 
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can be controlled by surface modification. The emission in the UV region for 

both cysteine-modified and conventional ZnO QDs was attributed to the 

recombination of trapped shallow charge carriers (exciton emission). 

 

Figure 54 Photoluminescence stability of Cysteine@ZnO QD’s, before (left 

solution) and after (right solution) 1 week (C3). 

For cysteine-modified ZnO QDs, the intensity of UV and visible emission peaks 

decreased slightly over a period of 18 h, but the peak position remained 

unchanged for more than a week supporting their colloidal stability. Stability of 

the ZnO QD’s provide us many positive feedbacks like long term use, 

unchanged peak position and known surface character for the further reactions. 

Due to the highly stable nature of the cysteine capped ZnO quantum dots it is 

possible to use them as a cell marker by introducing these quantum dots into the 

cell available medium. By observing the time resolved photoluminescence 

spectra of the C3 we have detected the efficiency of the radiative recombination. 

The photoluminescence decay spectra of the C3 with exponential fits were given 

in Figure 55. For the detection of lifetime sample was recorded at 375 nm 

excitation wavelength at room temperature and lifetime of the sample was 

calculated by using specific fit-software (Pico Quant Fit) and analysed. 



4 Results and Discussion 

65 

 

Figure 55 Fluorescence lifetime and automatic correction of cysteine capped 

ZnO QD’s (C3) 

Analysis has been done according to the equation below;. 

I(fl)= ∑iαi e(-t/τi) Eq 14 

where i is the number of exponentials and τi and ɑi are the lifetime and the 

preexponential factor for each components. Calculated average lifetime has been 

found as 6 nanoseconds. Automatic correction of the fluorescence lifetime has 

also been presented. 

Another additional property of the synthesized quantum dots are their zwitter 

ionic character. Cysteine-functionalized zwitterionic ZnO QDs exhibiting 

interesting optical absorption behavior in the visible range and extraordinary 

colloidal stability over a wide pH range due to the zwitterionic nature of the 

surface. The stability of the optical emission in cysteine@ZnO nanoparticles 

was attributed to the chemical coordination of the ligands to Zn centers that 

concomitantly reduce the numerical density of oxygen defects on or near the 

surface. In addition, the presence of a sterically compact hydrophilic (thiol) shell 

can be detected by EDX spectroscopy as presented (Figure 56). To the best of 

our knowledge, this is the first report on single amino acid coated ZnO QD’s, 

which in view of their excellent solubility are suitable for investigating cell–

nanoparticle interactions.  
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Figure 56 EDX analysis and SEM images of the C1, C2 and C3. 

Elemental analysis measurement revealed an increasing amount of cysteine 

immobilization due to the multilayer adsorption on the ZnO QD’s. Cystein 

adsorption on the surface of the ZnO QD’s causes interparticle interaction and 

due to this interaction, multilayers of the cysteine molecules are seen. EDX 

analysis reveal this increasing amount of cysteine level with their morphological 

structure as shown in the SEM images.  

 

Figure 57 TGA investigation of Acetate@ZnO and C3.  
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Another additional information about the surface character of the Cystein@ZnO 

QD’s is their thermal decomposition profiles. Since increasing amount of 

cysteine would increase the thermal weight loss this can be also another 

evidence for the cysteine protection. Figure 57 and Figure 58 show TG/DTA 

analysis of the Acetate@ZnO and Cystein@ZnO QD’s. For the conventional 

Acetate@ZnO, in the first (until 250 °C) and second steps (250–432 °C), 

volatile components, adsorbed humidity, and organic groups were removed 

which is 73% of the total removed amount. After this, event decomposition was 

terminated at around 800 °C. By analyzing the pure cysteine decomposition 

profile (Figure 54), it was found that the decomposition of cysteine occurred in a 

single step. 

 

Figure 58 TG-DTA analysis of pure cysteine, C1 and C2.  

Since it is an organic molecule, till 230 °C, organic groups and adsorbed 

humidity were removed, whereas the complete decomposition ended at 450 °C. 

Increased amount of surface-bound cysteine and its removal during the 

differential thermogravimetric analysis was observed in C1:10% , C2:12% , 

C3:16% in the given order. C1, C2, and C3 decomposed in four steps, whereby 

the first two steps can be attributed to the removal of adsorbed humidity and 

partial cysteine removal of the cysteine shell. With increasing cysteine, 
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decomposition accordingly increased (Fig. S3) (C1:10% C2:12% C3:16%). 

However, this process was accompanied with temperature shifts (290 °C for 

C1,300 °C for C2, and 310 °C for C3) probably due to physisorbed layers of 

cysteine molecules. In the third step, chemisorbed cysteine molecules were 

removed until 450 °C and chemisorbed residual organic moieties were 

eliminated from the surface. Theoreticall if a monolayer of the cysteine ligand is 

available on the smaller quantum dots surface, since its surface area is bigger, 

we would see a bigger weight loss. But analysis here shows that this concept is 

not completely valid here. Total weight loss increased from C1 to C3, which can 

be attributed to the higher concentration of immobilized cysteine molecules on 

the QDs and multilayered ligand adsorption.  

4.1.3.4 Cysteine Triggered Self Assembly in the ZnO QD’s  

Owing to the zwitterionic character of immobilized cysteine molecules on the 

ZnO QD’s, it is possible to modulate the surface charging by zeta potential (ζ) 

measurements which were conducted at different pH values (pH: 2–13) (Figure 

59). The zeta potential of conventional ZnO QDs was found to decrease with 

increasing pH, however around pH . 6, an increase was observed that was 

attributed to the ion adsorption on ZnO QDs. Functional groups on the quantum 

dot surface causes a specific situation. Every kind of functional group like 

carboxy, thiol or amino groups and their distribution on the nanoparticle surface 

may contribute to the short range intermolecular interaction.  

 

Figure 59 Zeta potential measurements for Acetate@ZnO and Cysteine@ZnO.  

Among these interactions hydrogen bonding would be sufficient enough to bring 

nanoparticles together but not strong enough for a complete regular self 

assembly formation. Hence when the particles are close enough van der Waals 

interactions and dipole-dipole forces between them contribute to the final 

structure and form the spherical structures ranging from 150-200 nm. Cysteine 
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molecules on the QD surface therefore are bringing the nanoparticles together 

providing a self assembly in the ethanolic solutions. This self assembly 

formation (Figure 60) can also be defined by hydrodynamic measurements since 

hydrodynamic size (Figure 61) of the quantum dots have been increased into the 

values which are observable in SEM as presented above.  

 

Figure 60 Assembly of ZnO QDs to form supra-structures and their 

hydrodynamical property observation with time. 

As mentioned before, surface defect structure can be controlled by surface 

ligands and extra functional character of the ligands can favor different 

assembly nanostructures as presented above. Still the total control of the ZnO 

QD surface should be always accessible somehow that anytime when you need a 

quantum dot size, quantum dot functionality or quantum dot stability one only 

need to select the proper precursor conditions. For this reason oleate capped 

ZnO QD’s and synthesis concept have been developed.  
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Figure 61 Hydrodynamic size variation before and after self assembly. 

4.1.4 Ultrastable Oleate@ZnO QD’s for Phase Transfer and Storage 

In this section, ultrastable oleate capped, visible light emitting ZnO quantum 

dots (QD’s) have been synthesized by a modified sol-gel method and their 

properties were examined for a fabrication of large amount ZnO QD synthesis. 

As explained before it is challenging to fabricate stable ZnO QD’s due to the 

surface and agglomeration effects. We have modified sol-gel method to obtain 

Oleate@ZnO QD’s and NMR investigation clearly revealed surface chelation 

with oleate ligand. Observed PL measurements with UV-Visible evolution 

curves showed fine control on the particle growth and profound steric effect of 

oleate groups. Since the behavior of oleate groups present on the surface of the 

synthesized quantum dots final properties have been changed. HR-TEM 

investigation with XRD results confirmed the crystalline und highly 

monodispersed ZnO QD’s. Investigated ZnO QD’s are easily controllable in the 

desired size range, visible light emission wavelength and extremely stable with 

bulky ligands providing surface defect control confirmed by NMR on the 

surface. This is a quite new method for large scale quantum dot synthesis. 

Synthesized ZnO QD’s are suitable to be hydrophilic when oleate groups are 

substituted with desired hydrophilic ligand by phase transfer synthesis even after 

long time storage. Therefore, synthesized quantum dots can be stored long time 

and can be reactivated for the aqueous applications. This phase transfer method 

provides wide range applications for the visible light emitting ZnO QD’s like 

ink-jet printing for nano-electronics, cell labelling or ZnO QD embedded light 

emitting hybrid nanocomposites for the required applications.  
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4.1.4.1 General and Swift Synthesis of Blue to Yellow Visible Light 

Emitting Oleate@ZnO QD’s  

Due to the size dependent photoluminescence properties of the ZnO 

nanomaterials, they attract significant interest in the last decade
[]
. As presented 

in previous section we have also attempted to develop a method for a general 

use and fabrication of ZnO QD’s. Contrary to chalcogenide quantum dots, ZnO 

emission is less studied despite its easy to prepare conditions and low cost. By 

varying the surface character which indirectly means the oxygen vacancy 

control, it is possible to tune the emission properties of the ZnO nanoparticles. 

Generally for tuning the visible luminescence properties of ZnO in the 

conventional method, molar ratio of (LiOH/Zn) provides the most important 

parameter. Additionally many report have arised using different basic conditions 

but Li and OH method is more or less the essential. By changing the molar ratio 

we basically change the particle size of the ZnO QD’s and visible luminescence 

properties as well. It is already known that radiative recombination of the 

conduction band electron/valence band hole and its direct association with the 

UV absorption points that ZnO UV emission is size dependent because of the 

nanoparticles quantum confinement which means a direct relationship with the 

emission. In this manner, oxygen vacancies (Vo), oxygen interstitials (Oi), zinc 

vacancies (Vzn) and zinc interstitials (Zi) were assigned as responsible for the 

emission of the ZnO nanoparticles
[105-111]

. In previous section, it has shown that 

cysteine provided a method for the control of these defects. Conventionally 

synthesized ZnO quantum dots by sol-gel method
[]
 (e.g. acetate@ZnO ) are tend 

to aggregate and gradually grow which leads to the red-shift in the fluorescence 

spectra. This has been already shown in the first part. It is known that room 

temperature conditions are suitable for Ostwald ripening and fluorescence shift. 

We therefore reporti a facile method for the synthesis, visible light emission 

tuning and ultrastable ZnO QD’s.  
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Figure 62 Synthesis of Oleate@ZnO QD’s by modified sol-gel method. 

Starting from well designed precursor Zn(oleate)2, ZnO QD’s have been 

fabricated by modified sol-gel method. By increasing the reflux time and 

varying the (LiOH/Zn) ratio it is possible to modulate emission properties which 

means the direct defect control of the quantum dot surface. Fabrication of the 

ZnO QD’s (Figure 62) produced oleate capped QD’s which are capable of 

ultrastability for long time storing
[112]

.For a general blue to yellow Oleate@ZnO 

QD’s synthesis, prepared and analyzed molecular precursor Zn(Oleate)2 has 

been dissolved in EtOH at 80 °C and calculated LiOH/MeOH mixture was 

added into this solution. This starts the formation of quantum dots immediately. 

Addition of the LiOH/MeOH mixture causes the fast formation of the oleate 

capped intermediate zinc precursors due to the higher concentration of the oleate 

molecules and a white milky colour was observed. At the early stages of the 

synthesis, oleate precursor in alcoholic mixture at 80 °C was completely 

transparent. For the complete control reactions shave been done under the 

nitrogen atmosphere and solution mixture was refluxed for different time 

periods (10, 30, 60, 90 minutes and 7, 21, 30, 96 hours) at constant temperature. 

In this part we have rexlused 96 hours for observing the final effects and and 

this quantum dots etiquetted as ZnO-1 after cleaning and washing procedure.  

Additionally here, we are presenting a new, so called “swift method” which 

composed of 90 minutes reflux of the precursor under the controlled temperature 

and (LiOH/Zn) ratio conditions for the fabrication. Additionally, conditions 
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provided by swift synthesis method eliminate the other competitive parameters 

which is bringing extra costs and parameters, like uncontrolled particle growth, 

inadequate stability which is leading to possible uncontrolled modulation in the 

visible light emission due to the aggregation have been overcome. In the swift 

synthesis, reflux time was limited until 90 minutes and temperature with 

Zn/LiOH ratio have been varied and for example at 55 °C, 5/7 Zn/LiOH ratio 

has been labeled ZnO-2, 1/2 Zn/LiOH ratio 55°C ZnO-3 and of course for 

comparison, common Acetate@ZnO QD’s have been synthesized from 

Zn(CH3COO)2.H2O in 5/7 Zn/LiOH ratio at 55 °C and etiquetted as ZnO-4.  

UV Visible absorption spectra (Figure 63) for the ZnO-1 Oleate@ZnO QD’s it 

is seen that, depending on the Zn/LiOH ratio, UV absorption shows an 

increasingly shifting peak position. This generally starts from 290 untill 350 nm 

as presented. It is possible to calculate the band gap and particle size from the 

UV absorption plottings by a method as presented before. It is necessary to 

control the real size of the Oleate@ZnO 

 

Figure 63 Evolution of the optical properties of Oleate@ ZnO QD’s (ZnO-1). 

QD’s obtained from TEM investigation with theoretical calculations for 

comparison of results. cording to these results we need to control the real size of 

the Oleate@ZnO QD’s to control if these theoretical results are consistent with 

the results. Results showed that oleate groups provided an extra situation and 
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governed the surface defects. UV Visible and effective mass calculation results 

are slightly different and higher from real TEM and HR-TEM image 

measurements of the ZnO-1 QD’s which were presented in Table 4. Selective 

area electron diffraction (SAED) pattern and QD’s crystal structure (Figure 64) 

has been detected as wuertzite by measuring their d-spacing of [002] facets as 

0,26 nm. Same observations have been confirmed in ZnO-2, ZnO-3 and ZnO-4 

by measuring the same fridges.  

Table 4 Size, band gap and emission maxima list for ZnO a) Obtained from 

UV-Vis absorption b) Obtained from effective mass model (me = 0.26 mo, mh = 

0.59mo, mo is the,free electron mass, ε= 8.5, and Eg bulk = 3.3 eV) c)From UV-

Vis absorption. 

Synthesis 

Time 

Size
a
 

(nm) 

Size
b
 

(nm) 

Band Gap
c
 

(eV) 

Visible 

Maxima 

(eV) 

UV Maxima 

(eV) 

10 min --- ---  2.76 3.72 

30 min 2.08 2.5 3.60 2.63 3.56 

60 min 2.20 2.7 3.58 2.62 3.51 

90 min 2.20 2.7 3.58 2.62 3.51 

7 h 2.33 
2.9 

3.41 2.46 3.35 

21 h 3.08 3.8 3.34 2.40 3.17 

30 h 3.19 3.9 3.22 2.35 3.14 

96 h 3.30 4.1 3.01 2.29 3.08 

When we observe the emission characteristics of the quantum dots synthesized, 

there are some specific points which are recognized easily. First thing is that the 

visible emission intensity is always higher than UV intensity meaning that 

proximity of the surface defects are high which is not surprising due to the 

extremely small size of the ZnO quantum dots. Extremely small ZnO quantum 

dots provide big surface areas for the available oxygen defects which can be 

controlled by the surface ligants as shown with cystein here.  
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Figure 64 TEM, HR-TEM and SAED patterns of ZnO-1. 

Secondly as the size of the quantum dots (Figure 65) gets bigger and bigger so 

that a shift is observed towards to higher wavelengths in the UV and visible light 

emission peak position. 

 

Figure 65 Size distributions in Oleate@ZnO nanoparticles.  

This naturally arises from the quantum confinement of the Oleate@ZnO QD’s. 

Therefore we can conclude that oleate groups serve an important performance of 

producing the ZnO QD’s and inhibiting the grain growth. They control the 

emission properties, they control the agglomeration which will be showed and 

clarifiedlater they control the morphology, they control the stability and 
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 Figure 66 Visible light emission characteristics of ZnO-1. 

particle size together shortly most fundamental characteristics of the ZnO 

quantum dots. Visible emission character of the Oleate@ZnO QD’s are 

presented in Figure 66. According to these visible emission spectra it is obvious 

that ZnO-1 shows an amazing shift starting from about 440 nm until 545 nm. 

Ongoing reflux for the ZnO-1 provided that light shift will be more and more 

representing higher difference from the early stages of quantum dot growth. In 

addition to that if it is analyzed, other swift synthesis method results (Figure 67 

and Figure 68) of the quantum dots which can see a clear blue emission at 

λmax=442 nm for the ZnO-2 which is apparently higher (almost 10 times) from 

the acetate capped ZnO QD’s (emission λmax=537 nm) (ZnO-4) as observed by 

their UV-Visible and PL measurements. This revealed that visible emission 

intensity of acetate@ZnO is almost 2 times higher than its UV emission. It is 

widely known that UV emission arises from the band gap feature of the particle 

but visible emission has different sources[97]. Detailed TEM investigation 

shows that ZnO-4 is heavily agglomerated. It is widely known that high 

temperature show fast growth and therefore it was anticipated that decrease in 

temperature could provide a better control on the QD growth. Analysis results 

showed that, Zn(Oleate)2 based quantum dots form  



4 Results and Discussion 

77 

 

Figure 67 Visible emissions of a)ZnO-2, b)ZnO-3 and c)Acetate@ZnO. 

core(ZnO)-shell(Oleate) like structure which was detected by NMR analysis 

(Figure 69, Figure 70 and Figure 72) and TEM images. TEM images clearly 

showed the core/shell morphology of the quantum dots with a homogeneous 

coverage and remarkably monodispersed quantum dot structures with same 

particle size. Calculated particle sizes and their statistical analysis have also 

supported this monodispersed distribution. 

a 

b 

c 

λem=442 nm  

λem=502 nm  

λem=574 to 600 
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Figure 68 Optical properties of ZnO-2, ZnO-3 ve ZnO-4, Inset images represent 

visible emission colour of the quantum dots.  

Especially TEM images revealed that Oleate@ZnO QD’s have an organic shell 

which is around 3.5-4 nm in thickness averagely (Figure 73) . Interestingly, 

during this organic shell investigation FT-IR peaks (Figure 71) showed only two 

main peaks (at 1552 and 1402 cm
-1

) which may arise from the regular 

orientation of oleate groups on the surface. Oleate groups also govern the 

emission process by controlling the surface defects. TEM and HR-TEM images 

of the ZnO-1 QD’s have already presented in Figure 60 with selective area 

electron diffraction (SAED) pattern and QD’s crystal structure have been 
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detected as wuertzite by measuring their d-spacing of [002] facets as 0,26 nm. 

Same observations have been confirmed in ZnO-2, ZnO-3 and ZnO-4 by 

measuring the same fringes (Figure 74). 

4.1.4.2 NMR Measurements for Identification of Oleate Ligand  

Identification of the oleate groups on the surface of the ZnO quantum dots have 

been conducted by FT-IR and NMR measurements which is essential for the 

ligand recognition
[113-114]

.  

 

Figure 69 1H NMR for the Zn(Oleate)2 precursor. 

Since Zn(Oleate)2 complex was used as starting material, complete analysis for 

the pure ligand (oleic acid) was necessary. Oleic acid contains simply a double 

bond on the carbon atoms number 9 and 10 which can be easily seen as singlet 

at around 4,5 ppm. Additionally carboxylic acid hydrogen appears at 12 ppm as 

a broad singlet. Hydrogen atoms which are close to carbonyl group can be 

differentiated due to the polar character of the carbonyl group and its 

environmental effects on the hydrogen atoms. Neighboring hydrogen atoms to 

carbonyl is at 2,1 ppm. This is quite a common behavior of these hydrogen 

atoms in the NMR characterizations.  

 

Figure 70 NMR investigation of ZnO quantum dot precursor Zn(Oleate)2. 
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Since all the other hydrogen atoms are more or less similarly effected from the 

environment they appear as a multiplet between 1 and 2 ppm as presented at 

Figure 69. NMR solvent CDCl3 appears at 7,4 ppm. When this capping ligand 

oleic acid was transformed into the molecular precursor Zn(Oleate)2 a number of 

changes have been observed in the NMR spectra due to its coordination to the 

metal center. The resonance peak of the double bond protons (CH=CH) slightly 

shifted to 5,36 ppm as other resonance peaks of the methylene (-CH2) protons. 

Methylene protons (-CH2) which are adjacent to the carbonyl (-C=O) group 

appears at 2,34 ppm and β-methylene protons (-CH2) shifted to the 1,60 ppm 

due to the ionic character of the zinc-carbonyl bonding. After synthesis, 1H-

NMR spectra of oleate capped ZnO QD’s clearly shows the hydrophobic nature 

of the surface modification. In case of Oleate@ZnO QD’s, oleate ligand has 

attached onto the surface which is detected by its asymmetric and symmetric 

carbonyl stretching peaks (Figure 71) at 1564 and 1405 cm
−1

 which is different 

those of free ligand.  

 

Figure 71 FT-IR observation of transformation of molecular precursor in the 

Oleate@ZnO QD. 

In Oleate@ZnO QD’s, oleate ligand has attached onto the surface which is 

detected by its asymmetric and symmetric carbonyl stretching peaks at 1564 and 

1405 cm
−1

 which is different from molecular precursor itself . In the range 

starting from 585 till 470 cm
−1

 we have found it as reported for the 

Zn(CH3COO)2.2H2O
[68]

. 
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Even though QD’s purification process involves hexane washing, this spectra is 

a clear evidence that hexane treatment for the precipitation of the ZnO QD’s 

leaves no residue that would appear at 0,85 and 1,23 ppm. The NMR spectrum 

of Oleate@ZnO QD’s (Figure 72) exhibited broadening of the NMR peaks, due 

to interactions of protons which are adjacent to the carbonyl groups (especially α 

and β protons) with the ZnO QD’s. The methylene protons (-CH2) which are 

adjacent to the carbonyl (-C=O) group and β-methylene protons (-CH2) almost 

disappeared because the proton motion of the oleate methylenes under the 

 

Figure 72 NMR investigation of Oleate@ZnO QD’s.  

effect of this local inhomogenities is highly restricted. Since proton motion is 

restricted because of the attachment onto the ZnO QD’s, effect of the magnetic 

field on these methylene proton relaxations become only slightly observable and 

causes disappearence or extreme broadening of the corresponding peaks. This is 

another clear evidence of oleate modification for ZnO QD’s which revealed very 

interesting results when their visible emission characteristics were investigated. 

The highly bulky oleate groups provide surface coverage which is easily 

detected also by FT-IR spectroscopy.  

4.1.4.3 Ultrastability and Agglomeration Free Feature of Oleate@ZnO 

QD’s 

As previously pointed out, results showed that, Zn(Oleate)2 based quantum dots 

form core(ZnO)-shell(Oleate) like structure, which was detected by NMR and 

FT-IR analysis and TEM images like below. Especially TEM images revealed 

that Oleate@ZnO QD’s can form an organic shell which is around 3.5-4 nm in 

thickness.  



4 Results and Discussion 

82 

 

Figure 73 Core-shell structure of the Oleate@ZnO QD’s for the synthesized 

Oleate@QD’s. 

Interestingly, during this organic shell investigation FT-IR peaks showed only 

two main peaks (at 1552 and 1402 cm
-1

) which may arise from the regular 

orientation of oleate groups on the surface as discussed before. TEM images 

clearly showed that there is a lighter coverage (Figure 73) on the ZnO quantum 

dots (Figure 74) . Since NMR and FT-IR investigations already proved the 

oleate availability, this deposition on the quantum dot surface provide amazing 

stability to the ZnO QD’s. Generally oleate groups are considered as slightly 

weak ligand for the protection of the surface but due to the concentration and 

careful reaction conditions a new kind of protection was achieved. This 

protection provides an amazing stability and agglomeration free Oleate@ZnO 

QD’s. Inadequate protection of the ZnO surfaces is detrimental for the optical 

properties since proximal surface defects are not protected. Since defects 

ZnO core 

Oleate shell 

ZnO core 

Oleate shell 
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gradually disappear, PL efficiency of the quantum dots disappears at the same 

time. Core shell structure of the Oleate@ZnO QD’s was deeper by analyzing 

their ligand removal features. Since oleate is a carboxylic acid attached to the 

surface the metal oxide structure we can substitute or remove this protection for 

example by heating or phase transfer reactions. Figure 71 reveals the TEM result 

of the heated Oleate@ZnO QD’s. As expected at 300 °C oleate groups have 

been removed. 

 

Figure 74 TEM and HR TEM images of ZnO-2 (left) and ZnO-3 right. 

Surface of the ZnO quantum dot can  be seen easily in Figure 71. This also 

affects the crystallinity of the quantum dots as observed in the XRD patterns in 

Figure 76 and Figure 77. As seen clearly from the TEM images, surface 

covering oleate groups has been removed successfully and this led to formation 

of the uncovered quantum dots that allowed to measure the quantum dot size 

(Figure 75). 

 

Figure 75 TEM investigation of oleate removal for ZnO-1. 
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XRD patterns also reveal the better crystallinity of the heat treated quantum 

dots.  

 

Figure 76 XRD patterns of ZnO-1 before and after heat treatment. 

 

Figure 77 XRD patterns of the Acetate@ZnO and ZnO-2, ZnO-3.  

Even though [002] peak is not perfectly sharp, other peaks of the wurtzite 

structure were identified properly. For comparison of the agglomeration 

behavior we can check TEM images as given in Figure 78.  
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Figure 78 Comparison of the agglomeration behavior of a b)Acetate@ZnO and 

c-d) Oleate@ZnO QD’s. 

Since Acetate@ZnO QD’s have no proper protection they agglomerate and form 

a quantum dot monolayer as presented. Here again we compare the 

Acetate@ZnO QD’s with Oleate@ZnO QD’s and see that due to the oleate 

factor as-synthesized quantum dots have an amazing non-agglomerating 

behavior.  

a b 

c d 
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Figure 79 Stability observation of the Oleate@ZnO QD’in in EtOH (a-b-c) and 

CHCl (d-e-f) during 6 month with their TEM analysis after storage. 

It is seen clearly that no attaching quantum dots available. Oleate ligand brings 

an ultrastability to the ZnO quantum dots (Figure 79) . Their visible emission 

character do not show change upon storage. Even after storing no agglomeration 

occurs as presented in TEM images in Figure 79. Since we have used different 

amount of ratios for the Oleate@ZnO synthesis we obtain different amount of 

surface ligant loadings as presented in Figure 80. TGA analysis of the 

Oleate@ZnO QD’s (ZnO-1, ZnO-2, ZnO-3) showed physical and chemical 

adsorbed ligands and water for Acetate@ZnO QD’s (ZnO-4) as their mass 

removal shows 2 and 3 main steps respectively. For ZnO-4 until 250 °C water 

a 

b 

c 

d 

e 

f 
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and solvents if available and other physically adsorbed ligands are removed (% 

8-9) whereas chemically bonded acetate groups are removed at 435 °C, (% 8). 

 

Figure 80 TGA analysis of oleate loading for ZnO QD’s.  

After this point, small difference in weight detected until 800 °C which means a 

complete removal of all organic species (% 7). For ZnO-1 nanoparticles there 

are 2 main steps observed composed of partial and full oleate removal. Since 

oleate group has a higher molecular weight, mass removal causes a big 

difference with a small amount of possible adsorbed solvent molecules as seen 

in ZnO-1. Until 475 °C % 41 of the total removal has been completed and until 

800 °C this increased to %51 for ZnO-1. Total oleate loading is % 30 for ZnO-2 

which only %25 of full loading till 475 °C is removed and the rest (%5) takes 

until 800 °C. As for ZnO-3 %19 of total oleate loading is removed until 475 °C 

and leaves only %5 which will be removed until 800 °C.  

4.1.4.4 Phase Transfer Synthesis for Water Soluble ZnO QD’s and other 

techniques for visible light emission manipulation  

Storing the ZnO QD’s has its own difficulties but as previously mentioned, 

Oleate@ZnO brings a new concept for the quantum dot storage.  
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Figure 81 a)Oleate@ZnO QD’s to Gluconic@ZnO QD b)Appearance before 

and phase transfer under UV illumination (λmax= 354 nm) c) TEM images before 

and after phase transfer with gluconic acid. 

It was observed in the controlled experiments that ZnO QD’s visible emission 

with the same intensity even after several months but it is possible modulate 

(switch to another wavelength or quench its visible light emission) by using 

phase transfer or encapsulation method. In phase transfer method we can simply 

transfer ZnO QD’s (Figure 81) from apolar (for example CCl4) solvents into the 

aqueous phase and use of this solutions for ink-jet printing or nanocomposite 

structure applications. This allows to obtain ZnO QD’s that are intractable even 

after several weeks and can be modified as per requirements of further studies or 

applications. Using different ligands can cause quenching or extremely lowering 

the visible light emission. Another method is encapsulating these quantum dots 

in the silica structures. Since we have completely masked/repaired the defect 

structure almost no visible emission is seen even though UV emission is still 

present and observable.  

CHCl3 

H2O 

CHCl3 

H2O 
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Figure 82 FT-IR confirmation of the phase transfer for gluconic acid  

Figure 82 is the FT-IR confirmation of the transfer of Oleate@ZnO QD’s from 

organic into aqueous phase by gluconic acid phase transfer reaction. Driving 

force of this substitution is the removal of oleate group with a lower pKa value 

acid ligand, gluconic acid in this case. When we compare the pKa values of the 

oleic acid (pKa: 9.85) and gluconic acid we conclude that gluconic acid can 

attach to the surface in salt like interaction. This has also been proved by NMR 

investigation (Figure 83) showing a salt like Zn-gluconate bonding. When 

carboxylic acid ligands with pKa values smaller than pKa: 9.85, ligands have the 

pKa values smaller than pKa: 9.85 are introduced, reaction provides phase  

 

Figure 83 Salt like attachment of gluconate after phase transfer synthesis.  
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transfer for the Oleate@ZnO QD’s. This concept can cause small problems if 

introduced ligand is extreme in concentration. The effect of pKa values has been 

proved by mandelic acid (pKa: 3.41) and also polyfunctional carboxylic acids 

like citric acid (pKa1:2.8, pKa2:4.1 and pKa3:5.3) as phase transfer has been 

confirmed by their FT-IR spectras (not shown). The pKa values closer to 9.85, 

cause difficulties since reaction requires substitutional hydrogen transfer. An 

important point is anticipation of ZnO QD aggregation after phase transfer. Due 

to its highly hydroxyl containing nature, gluconic acid caused an aggregation as 

evidenced clearly in the TEM (Figure 81) image and FT-IR spectra after phase 

transfer. This is an important concept since extreme agglomeration can cause 

decrease in the emission properties. TEM image of the phase transfer product, 

revealed its agglomeration due to the intermolecular interactions of gluconate 

ligand. Hydroxyl groups on the gluconic acid provided water solubility but due 

to the extreme hydrogen bonding and van Der Waals interactions TEM images 

reveal the embedded ZnO QD’s in gluconate medium. After phase transfer, 

spectral position (542 nm) of the visible emission (not shown) for the 

Gluconate@ZnO QD’s showed a slight bathochromic shift (emission λmax=547 

nm) as compared to Oleate@ZnO QD’s which confirmed by their visible 

emission analysis. In the phase transfer image of Oleate@ZnO QD’s, due to the 

organic nature of the environment (CHCl3) visible emission seen as greenish-

yellow even though aqueous solution of the gluconic modified ZnO QD’s seem 

profoundly yellow. 

 

Figure 84 ZnO QD’s solutions for different visible light emissions.  

Intensity of the visible emission has been slightly decreased. This possibly arises 

due to the substitution of the surface ligand and decrease in the oxygen 
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deficiencies on ZnO QD’s by substitution. Storage of these phase transferred 

QD’s led agglomeration on the bottom of the tube since they are not protected 

by a long chain surface agent. FT-IR investigation also established the ligand 

change by functional group detection. For manipulating the visible light 

emission (Figure 84) encapsulation has been achieved for the ZnO quantum dots 

in the silica shell. Results show that visible light emission of the quantum dots 

disappeared. This can be attributed to; 

a. Extreme huge size (200 nm) of the encapsulation spheres when compared 

to ZnO QD’s  

b. Saturation of the ZnO surface defects by silica  

c. Attack of basic component (OH
-
) to the surface of the quantum dots 

 

Figure 85 Silica encapsulation causes quenching in visible light emission.  

As highlighted before, for the encapsulation a basic mixture has been utilized. 

This mixture may cause several variations on the introduced ZnO QD’s. Since 

encapsulation process (Figure 85) starts with pH arrangement, basic reaction 

environment causes defect saturation and therefore addition of the silica shell 

precursor encapsulates the quantum dots and visible emission vanishes. SEM 

images and TEM investigation of the as-synthesized silica spheres provided no 

500 nm 
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detailed information about the ZnO quantum dots (Figure 85). Even though 

(w/w) 5% addition into the silica shell from the ZnO quantum dots, did not show 

any sign from the visible light emission. Interestingly UV emission is always 

detectable and its spectral position does not change during encapsulation. SEM 

and TEM images showed that encapsulated Oleate@ZnO QD’s in highly 

spherical silica spheres and their visible emission peak sis not visible anymore 

(not shown). Still we can simply detect the UV emission which is a clear proof 

for the encapsulation reaction. Even though UV emission provides a proof 

investigated TEM images are not providing enough support for the clear 

evidence. Due to the extremely small size of the quantum dots they are not 

detectable on the encapsulation spheres.  

4.1.5 Nanomaterials and Discussion of Ligand@ZnO QD’s 

Due to the their visible light emission and antibacterial property, size dependent 

selective UV absorption characters, ZnO QD’s have been used for many 

material applications.  

4.1.5.1 Cytotoxicity and Cell Labeling by Ligand@ZnO QD’s 

After phase transfer process aqueous solution of the gluconate@ZnO QD’s were 

used in labeling of Human Embryonic Kidney 293 (HEK 293) cells. 

Cytotoxicity level of the gluconate@ZnO QD’s on HEK 293 cells was already 

determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) assay (Carl Roth, Karlsruhe, Germany). According to the process, 

formazan crystals that formed were solubilized with 4mM HCl in isopropanol 

which contains 0,1% Tergitol solution (Sigma Aldrich, Steinheim, Germany). 

Different amount of gluconate@ZnO QD’s (10µg/ml, 30 µg/ml, 50 µg/ml, 100 

µg/ml) added into 20µl MTT for the each well and incubation has been carried 

out at 37°C for 4h. After removal of medium 200µl MTT solvent was added to 

each well and mixed. The absorbance was read at 620 nm by enzyme-linked 

immunosorbent assay (ELISA) (Elx800, Biotek). The results were computed in 

relation to an untreated control. It is alrady known that ZnO nanoparticles show 

dose dependent cellular toxicity.By using the same method HEK 293 cells have 

been treated by introducing gluconate@ZnO QD’s (20µg/ml) incubating them at 

37°C in 2 hours. 
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Figure 86: a) Confocal images of the HEK cells after 2h incubation b) MTT test 

for the cell viability during 4h with different dosing. 

Since ZnO QD’s can not directly diffuse into the cell’s and therefore can not be 

available inside due to their high pH dependent dissolution character, 

synthesized D’s provide us an easy method for the cell labeling and an easy 

application as addition to the previous fabrication and applications of the ZnO 

QD’s.30-35 MTT results already revealed viability loss only around % 3-5 

during 4 hours treatment as presented in Figure 9. Prepared HEK 293 cells were 

mounted on glass slides with gelvatol and confocal images of the HEK cells 

were obtained under the particles corresponding excitations. It is really hard to 

obtain water mixture with Oleate@ZnO but gluconate modification provides 

water solubility. Same anticipation can also be made for the cysteine modified 

quantum dots. Their cytotoxicity degree is remarkably low and their usage for 

cell labeling gives positive results as presented in Figure 86.  
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Figure 87 Cysteine capped ZnO cell labeling and cytotoxicity.  

Visible light emission of the cysteine-capped ZnO QDs was used in labeling of 

human embryonic kidney 293 (HEK 293) cells (Figure 87). Cytotoxicity of 

cysteine-capped ZnO QDs on HEK 293 cells was determined by the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Carl Roth, 

Karlsruhe, Germany) as explained before. After exposure to the different 

amounts of cysteine-capped ZnO QDs (5, 10, 15, and 20 μg/mL), 20 μl MTT 

solution was added to each well and incubated at 37 °C for 2 h. The medium 

was removed and 200 μl MTT solvent was added to each well and mixed 

thoroughly. The absorbance was read at 620 nm by enzyme-linked 

immunosorbent assay (ELISA) (Elx800, Biotek, Germany). The results were 

computed in relation to an untreated control. In previous reports it has been 

revealed that ZnO nanoparticles show dose dependent cellular toxicity during 24 

and 48 h incubation. In this study ,HEK 293 cells have been treated in the same 

manner by introducing C3 quantum dots (20 μg/mL), incubating them at 37 °C 

but in shorter times 1–2 h.MTT assay test revealed that only ;5–8% of the cell 

viability loss was observed during 2 h treatment. 

4.1.5.2 Selective UV-A (400-315 nm) and UV-B (315-280) Region Protection 

by ZnO QD’s and Antibacterial, Transparent, Hybrid 

Nanocomposites 

Due to the size dependent UV absorption and antibacterial properties of the as-

synthesized quantum dots, it is possible to embed these quantum dots into the 

inorganic organic hybrid polymers for UV protective transparent coatings, 

visible light emitting material synthesis and nanocomposites. Since zinc release 

provides antibacterial properties, quantum dot introduced formulations have 

been prepared and analyzed thoroughly after quantum dots introduced into the 

nanocomposite structures. Additionally, ZnO QD’s may absorp the UV light in 

the thin films for the transparent UV protective surfaces on different substrates.  
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4.2 Anisotropic ZnO Nanoparticles by Heating Up Method 

Heating up method is highly effective way to synthesize monodispersed 

nanocrystals
[115-129]

. Especially for the metal oxide nanocrystals it is easier and 

controllable. In this section it has been given the details of the heating up 

method and anisotropic ZnO nanocrystal synthesis for the surface modification 

and cytotoxicity applications.  

4.2.1 Basics of ZnO Heating Up Method 

Previously characterized molecules or mixtures are heated up to 250-350 °C and 

this process basically utilizes the precipitation of decomposed precursors in 

organic solutions for the formation of nanostructures. Proper high temperature 

solvents and precursors helping the nanocrystal formation are basic components. 

Generally long-chain hydrocarbons such as 1-octadecene or other high boiling 

solvents are used as reaction medium. Contrary to hot injection method there is 

no additional precaution that abruptly induces high supersaturation. This is done 

in hot injection method for the anisotropic nanocrystal formation. Precursors are 

analysed before the reaction for the completion of before to do operations. 

Especially reaction kinetics should be investigated since so far heating up 

procedure have been used for the nanocrystals starting from the metal 

carboxylates
[125]

. It is well known that metal carboxylate complexes thermally 

decompose at temperatures near 300 °C or proper higher temperatures to 

produce metal oxide nanocrystals and additionally some other compounds like 

CO, water, ketones, esters, amides and various hydrocarbons. We can simplify 

the metal carboxylate decomposition by assuming that they are forming the side 

compounds after the reaction  

M-OOCR -MOx
.
 + RCOOH + RCOOR’ 

Figure 84 Thermal decomposition of metal carboxylate precursor.  

It is known that highly energetic intermediate nanostructures are produced 

during the heating process and as a result of that intermediate, structures form 

non soluble oxo clusters which is obtained finally as nanoparticles. These 

nanoparticles have their own specific charcter and nanostructure due to the 

unique preparation technique. Additionally these intermediates can be directly 

controlled by the surface directing agents or surfactants.  
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4.2.2 Plate like and and Pyramidal ZnO Nanoparticles by Heating Up  

For a proper control of the reaction, it is important to identify which temperature 

is proper for the decomposition of the precursor mixture.  

 

Figure 88 Thermal decomposition profiles of precursor mixtures.  

When this onset is properly found, this temperature is used for the nanocrystal 

synthesis.The TGA curves of the different precursor compositions showed that 

main thermal decomposition occurs in two main steps (Figure 88). The weight 

loss occurred below 250 
0
C can be attributed to the dehydration of adsorbed 

water or humidity and solvent removal if available. Evaporation of the volatile 

organic components is esily understood by a broad endothermic peak observed 

also around 260 °C.  

For the proper decomposition temperature detection of the precursors 5 different 

compound and mixture were analysed namely; Zn(Oleate)2, Oleylamine, 

Zn(Oleate)2+Oleylamine+Oleic Acid, Zn(Oleate)2+Oleic Acid, 

Zn(Oleate)2+Oleylamine. 
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Figure 89 Decomposition mechanism of ZnO precursor and FT-IR observation

 . 

Oleylamine thermogravimetric analysis (black) shows a weight loss starting 

from around 60 
0
C and continues untill 260 

0
C. After this temperature slight 

prominent exothermic peak is observed which can be attributed to the residual 

organic groups. Zn(Oleate)2+Oleylamine (green) and Zn(Oleate)2+Oleylamine+ 

Oleic Acid (blue) thermogravimetric peaks are almost similar which is only 

differentiating slightly in their slightly in their shape. On the other side 

Zn(Oleate)2+Oleylamine+ Oleic Acid (blue) composition continues to lose 

weight untill near 390 
0
C. This aspect can be explained by the new formed 

composition and its relative resistance against to thermal decomposition. 

Addition of oleylamine triggers the decomposition of the Zn(Oleate)2 complex 

starting from around 210 
0
C which is confirmed by FT-IR observation (Figure 

89) of the precursor mixtures. All three oleylamine ligand containing curves of 

the mixtures start to decompose by thermally via insertion of amine functional 

group and its attack onto the carbonyl function leading to the amide formation. 

In the absence of the oleylamine precursor, precursor mixture is highly resistant 

to the thermal decomposition which requires high nucleation and growth 

temperature. As a result, it has been thought that a thermal decomposition which 

is fixed around 290-300 
0
C would provide ZnO uniform crystals. 
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Figure 90 FT-IR spectra for the comparison of beginning and final composition. 

In Figure 90 FT-IR spectroscopy clearly showed that amide formation is 

occurred as expected. Especially N-H stretching for the amide band is clearly 

seen with other molecular movements in 1635 cm
-1

 and 3311 cm
-1

. After 

completion of the heating up method, they have been precipitated with ethanol 

and washed many times with EtOH and acetone respectively.  

4.2.3 Distorted Examples of Anisotropic ZnO Nanoparticles by  

Heating Up Method 

According to the TEM investigation for the nanoplates, diameter and length 

values have been detected. They have been found as 25 nm in length and 12 nm 

in diameter (Figure 92). This unveils the concept of proportioned growth for the 

ZnO nanocrystals. Plate nanostructures have formed agglomerations as seen in 

the TEM images and they are monodispersed in size and geometry. Deeper 

analysis and magnified images clearly showed that nanoplates have flat tips in 

addition to slightly distorted morphologies (Figure 91). 

 

Figure 91 Nanoplate morphology for the ZnO nanoparticles.  
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During the synthesis of nanoplates, temperature has been kept at the 

corresponding decomposition temperature (285-290 °C) and fluctuations in the 

temperature has been prevented. During nucleation and growth process of the 

ZnO nanocrystals it has been proved that oleic acid provides a great “ steric 

hindrance” which inhibits the formation of new planes onto the initial nuclei
[129]

.  

 

Figure 92 TEM investigation of the nanoplates diameter and length. 

If the oleic acid is used as only capping agent it was revealed that high polar 

structure of the ZnO nanostructure is driven by its components and instead of 

elongated structures we obtain plate like nanoparticles. Another ligant and 

morphology controller is oleyl amine for the final structure.  



4 Results and Discussion 

100 

  

Figure 93 Hexagonal morphology of the ZnO nanocrystals. 

ZnO crystal is basically highly polarized and contains chemically active Zn
2+

 

terminated [0001] polar surface and naturally O
2-

 terminated [0001-] polar but 

inert side. Therefore decomposed precursor zinc oleate provides constituent Zn
2+

 

cation which deposited on the ZnO core while negatively charged alkyl chain 

strongly bound on the highly polarized Zn
2+

 surface. In order to synthesis of 

uniform particles, entire process must be kept under the control. While 

nanocrystals are being formed, inhibition of the other new nanocrystal formation 

during growth procedure is the key point for the monodispersed nanocrystal 

synthesis. Therefore by this synthesis method by applying the given proportion 

we have obtained nanocrystals which have cylindrical structures due to the 

anisotropic growth control of the ligants. When another another precursor 
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proportion is used for the synthesis of another anisotropic nanocrystals, we have 

seen that, after the TEM investigation, it was possible to obtain hexagonal 

structure (Figure 93) and its distorted examples (Figure 94) with like pyramidal 

and nanorod type nanocrystals which are to be shown later. ZnO has a natural 

habit to grow in hexagonal structure. Therefore even though we try to vary the 

conditions of growth deeply by applying different ligands, we observed easily 

that hexagonal nanocrystals are easily produced if there is vigorous 

manipulation conditions. By examining these nanocrystals it has been found that 

crystal sizes were also around 25-30 nm and it was easy to see the hexagonal 

edges. It is easily noticeable that crystals are not perfectly hexagonal but edges 

are seemed to have very sharp morphologies.  

 

Figure 94 Distorted hexagonal nanocrystals of the ZnO.  

This is clearly seen in Figure 93. Still there are some crystals which are seen like 

their sharp edges are consumed during the crystal growth and these crystals are 

starting to become more and more curvy as presented in Figure 94. 

TEM investigations have also revealed that these distorted hexagonal structures 

are equal in proximity during the formation of other morphologies. Nanoparticle 

size investigation has been done by TEM images and it has been found that 

nanocrystal sizes are about 35 nm average but there are many other particles like 

42 nm and 29 nm which reveals undesired formation of slightly monodispersed 

crystals (Figure 95).  
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Figure 95 Particle size distribution of the ZnO-distorted hexagonal 

nanoparticles. 

There are remarkably much particle which are bigger or smaller than average 

particle size. Therefore uniformity in the size and shape has not been perfectly 

observed. Precursor variation led also pyramidal or triangle shaped nanocrystals. 

These nanocrystals show monodispersed behavior as TEM investigation 

presented in Figure 96. Additional one concept is the nanoparticle attachment 

due to the surface interactions. Since we used acidic and amine type ligands they 

cause interparticle interaction and nanoparticle surfaces therefore attached to 

each other in order to decrease the surface energy. 

 

Figure 96 Particle size distribution of the pyramid like ZnO NP’s. 

After cleaning procedure nanoparticles are washed with acetone several times 

for TEM (Figure 97) but it should be always noted that nanoparticles have -OH 

groups on the surface. These groups cause also an easy interparticle attachment 

for the projected nanocrystals. 
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Figure 97 TEM investigation of the pyramidal ZnO nanocrystals. 

Since ZnO nanostructures are simply deformed examples of the hexagonal 

crystals it was possible to observe other morphological nanocrystals as 

presented in the Figure 98.  

 

Figure 98 Heart shaped assemply from pyramidal ZnO nanoparticles.  

Enlargement of the nanocrystals in TEM revealed that when morphology 

evolution is investigated, some faces of the hexagonal nanostructure seems more 

energetic than the other faces. Therefore these faces are growing faster than the 

other ones and form anisotropic pyramid shaped nanocrystals.  
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Figure 99 Nanoparticle twins of the pyramidal ZnO NP’s. 

Pyramid shaped nanoparticles have been also exhibiting some self assembly 

nanoarchitectures as it has been showed in Figure 98 and Figure 99. During the 

growth of the nanoparticles, when small nanocrystals come together they may 

attach to each other with different positions to yield heart or twin type 

morphologies. Detailed investigatation has been revealed that if they attach to 

each other like head to head then it is seen heart shape but when they attach to 

head to feet then it is seen twin shaped nanoparticles. These type of interactions 

for self assembly is because to lower the surface energy and form a stable 

structure during the formation. When particles lower their facial energy and 

activity by doubling themselves under suitable conditions they generally act in 

the favor of less energetical state. As presented when energetical situation is 

proper is also possible that nanocrystals. If reaction mechanism of the 

Zn(Oleate)2 precursor is investigated, results clearly revealed that amine is 

attacking onto the carbonyl structure, but it should be anticipated that due to the 

sterical hindrance amine attack decomposes the precursor into the final material 

very slowly. In order to facilitate the amine attack, oleyl amine attack onto the 

sterically less Zn(CH3COO)2.2H2O precursor has been studied. In this case the 

precursor molecule contains water and therefore it should be degassed and kept 

at proper temperature before the amine attack starts. For this reason precursor 

has been dissolved in amine and mixture has been kept at 130 °C degree for 1 

hour in order to remove the water. After one hour reaction mixture has been 

heated up to 250 °C degree for the metal oxide formation. 
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Figure 100 TEM and particle size investigation of the ZnO nanorods.  

As expected ZnO formation requires less energy for the sterically less hindered 

molecule. Therefore we do not need to go to the higher temperatures like 300 

°C. TEM investigation of this attempt provided elongated ZnO nanorods Figure 

100 within the nano range. According to the TEM investigation nanorods have 

an average 420-440 nm length and 30-40 nm diameter in size. Even though 

these magnitudes are in the nanometer range, it has been also observed that 

some nanorods are exceeding micrometer range. This situation reveals that 

during decomposition either time can be elongated or the amount of the 

oleylamine can be changed. If synthesized nanorods are analysed thoroughly it 

is seen that, tips of the nanorod structures are much sharper than the middle of 

the nanorods. But still structures do not exhibit bullet like type of morphology. 
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4.2.4 Crystallinity and surface modification of the Anisotropic  

ZnO nanostructure  

In the Figure 101, XRD pattern of the as-synthesized ZnO nanorod has been 

given. 

 

Figure 101 XRD pattern of the as-synthesized ZnO Nanorod. 

All obtained XRD patterns of ZnO nanocrystals can be matched with JCPDS= 

36-1451. Pattern in Figure 101 shows an extremely sharp peaks and [101] face 

of the pattern is higher in intensity if compared to other peaks. This actually 

shows the elongated character of the ZnO nanostructures. Same phenomena is 

observed in the ZnO nanoplates and if we compare the results, as expected [101] 

peak is simply higher in intensity.Still it should be noticed that [101] intensity of 

the nanorod structure is remarkably higher than the nanoplate (Figure 102) 

structures.  

 

Figure 102 XRD pattern of the nanoplate like ZnO.  
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As seen again in the Figure 102, nanoplates have also [002] patterns which is 

higher in intensity than the [001]. Comparison of the same patterns with the 

pyramidal ZnO nanoparticles resulted that most 

 

Figure 103 XRD pattern of the pyramidal ZnO.  

is the lower intensity of the [002] peak. [101] is still the highest peak but there is 

another difference.Generally if we have elongated nanostructures [002] peak is 

not lower in intensity than the [100] peak. Strangely for the pyramidal 

nanostructures (Figure 103) it has been found that [002] is comparatively lower 

in intensity when we directly compare with nanorods and nanoplates. Therefore 

[002] intensity order can be written as ; nanorod> nanoplate> nanopyramidal . 

Other hexagonal nanostructure (Figure 104) shows the more or less the same 

pattern as in the nanopyramidal structure but comparatively [100] peak is higher 

in intensity if we compare it with the [110] peak of the nanopyramidal 

structures.  

 

Figure 104 XRD pattern of the distorted hexagonal ZnO nanostructure.  

XRD investigation of the synthesized nanostructures clearly revealed the 

selective facet growth of the ZnO. In addition to that for cytotoxicity and gene 

expression investigations and photocatalytic activity testing of these obtained 

nanocrystals have been conducted by naked and modified nanocrystals for 

understanding the different carboxylic acid ligants on the material properties. 
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List of the modification has been given in the Table 5. Surface modification of 

the ZnO nanocrystals is extremely important for the water solubility, functional 

group attachment, nanobiological applications and catalysis. In quantum dot 

synthesis chapter, it has been shown that oleate group plays an important role for 

the extreme stability of the quantum dots by forming so called core/shell 

structure and protecting the surface from external attacks. In this thesis 

synthesized nanocrystals have been modified with many functional carboxylic 

ligands for the same targets. Thermal analysis and FT-IR investigation provides 

great information for the organic modification of the nanocrystals. Additionally 

NMR has been employed for the mandelic acid modification for showing the 

peak broadening effect for the salt like surface modifications of the nanocrystals. 

Optical and aqueous properties have also been listed accordingly. 

Table 5 Modification list for the ZnO nanocrystals. 

Nanocrystal  Ligand 

ZnO nanorod Folic acid 

ZnO nanopyramid Citric acid 

ZnO nanoplate Mandelic acid 

ZnO hexagonal Mandelic acid 

4.2.5 Optical, thermal and aqueous properties of the surface modified ZnO 

nanocrystals  

Nanocrystal modification was confirmed by FT-IR analysis, photochemical 

activity measurement and TG-DTA analysis. NMR spectrums of mandelic acid 

modified ZnO nanoparticles have been measured for showing the salt-type 

surface modification effect on the ZnO nanocrystals.  

 

Figure 105 FT-IR spectra for the bare ZnO nanocrystals.  
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In the FT-IR method surface modification agent alone (Figure 105) and surface 

modified ZnO nanocrystal FT-IR spectra is recorded and overlapped in order to 

identify the molecular peak differences throughout the modification. In bare 

ZnO nanocrystal, FT-IR spectra was ,as expected, containing only metal-oxygen 

Zn-O bands appear in the fingerprint region. Adsorbed organic molecules 

caused by washing /cleaning process or adsorbed by the crystal formation has 

also very weak and broad peak at 1500-1100 cm
-1

 region. Since carboxylic acid 

molecules are used for the modification υ(C=O) stretching peak of the 

carboxylic acid should be tracked since its remarkable shift shows the salt type 

modification on the ZnO surfaces. Folic acid (Figure 106) , citric acid (Figure 

107) and optical (Figure 108) and NMR effect for mandelic acid (Figure 106) 

pictures show these highly used ligands for the nanoparticle control and surface 

modulation. In the pure mandelic acid spectra carbonyl stretching band appears 

at 1708 cm
-1

 which is quite characteristic for the carboxylic acid structures but 

after the surface modification of the ZnO nanocrystals, this band shifts to the 

1592 cm
-1

 proving the Zn-mandelate complex structure and surface modification 

of the ZnO nanocrystal. Same situation is valid for the citric acid. Carbonyl 

assymetrical stretching shifts to 1582 cm
-1

 and 1410 cm
-1

 for the symmetrical 

stretching.  

 

Figure 106 FT-IR and UV Vis- absorption spectra of the folic acid modified 

ZnO Nanorods. 

Folic acid acid modification on the ZnO can be confirmed by N-H (1617 cm
-1

) 

and carbonyl (1563 cm
-1

) group shifting by the electron density of the ZnO 

surface. Optical absorption characteristics do not change remarkably since a 

shift in the UV absorption means a particle size variation.  
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Figure 107 FT-IR and UV –Vis absorption spectra of the citric acid modified 

nanopyramids. 

UV Vis spectras of the modified nanoparticles show a λmax= 380 nm, 356 nm 

and 352 nm respectively for the Folic@ZnO nanorod, Citric@ZnO 

nanopyramid, Mandelate@ZnO nanoplates. 

 

Figure 108 UV Vis spectrum for the Mandelate@ZnO nanoplate. 

As seen in the 1H NMR spectra, if organic ligands mandelate attaches to the 

surface of the nanoplate, a broadening is observed in the peaks due to the higher 

electron density on the nanoparticle surface. Especially NMR spectra (in 

DMSO) in the below (ZnO-mandelic), clearly shows even a broadening in the 

aromatic groups at the chemical shift 7.3.  
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Figure 109 NMR spectra for mandelic acid modification of ZnO nanoplates.  

They seem clearly splitted into two symmetrical appearance. Since mandelic 

acid molecules are on the nanocrystals magnetic field relaxation takes a slightly 

little more time. This causes the broadening and it is visible in the NMR spectra. 

There is one interesting point about the surface modification. If modification 

ligand is used more than necessary there is a surface corrosion which has been 

detected by TEM investigation.  

 

Figure 110 TEM investigation of the mandelic acid modified ZnO nanoplates. 

Nanoplate structures have lost their plate like morphology due to the dissolution 

by mandelic acid. Investigated nanoparticle size is nearly reduced 1 nanometer 

which has been detected by statistical evaluation unting aftersurface 

modification. 
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Figure 111 Thermal weight loss of the folic acid modified ZnO nanorods. 

Additionally TEM investigation for the modified nanoparticles showed that 

oriented attachment of the nanoplate structures are hardly visible due to the 

dissolution. Nanoparticles are seen transformed into spherical morphology 

(Figure 110) which is detectable easily. Statistical particle size analysis resulted 

that average size is reduced almost 1 nanometer. 

 

Figure 112 Thermal decomposition pattern of the citric acid modified ZnO 

nanopyramids.  

Citric acid modified ZnO nanopyramids have shown 3 step decomposition 

which can be attributed to the multiple decomposition of the organic ligand and 

adsorbed volatile components. As FT-IR also detected, thermal decomposition 

pattern clearly reveals the organic attachment onto the ZnO nanocrystals. 

Especially weight loss between the 200 and 800°C is a fair sign for the organic 

molecule loaded na nocrystals.  
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4.2.6 Ligand@ZnO Nanostructures as Nanobiotechnology Nanomaterials  

Synthesized nanocrystal structures have been used for the gene regulation, 

cytotoxicity assessment and photocatalytic activity measurements. Especially 

after surface modification water soluble nanocrystals have been used for the cell 

– particle interactions. Since for the nanotoxicologic invetigations and 

theranostic applications surface of the nanocrystals must be modulated and they 

should be made water soluble, surface modification concept is a vital point for 

the nanocrystal processing. As presented before, nanocrystal surfaces of the ZnO 

have been modified many proper ligands to make them water soluble and tested 

againt to immune cells for the investigation of nanomaterial-cell interactions. 

Results clearly showed that, unmodified nanocrystals are relatively more toxic 

than the modified nanocrystals. Degree of surface protection depends of the 

bonding type between the ligand and crystal. If ligand attaches to the ZnO 

surface by an ether bond and covers the whole surface for the full protection, it 

is possible to observe decrease in the nanotoxicity.  

4.2.6.1 Ligand Effect for the Nanotoxicity and Gene Regulation 

As mentioned, surface of the ZnO nanocrystal is composed of weakly bonded 

atoms and  they need to be protected by an external ligand which interacts with 

the surface atoms and covers them against dissolution. If ZnO nanocrystals are 

used in the slightly basic conditions, it is widely kown that this medium causes 

dissolution from the ZnO nanoparticles as ICP-MS ( Inductive Coupled Plasma-

Mass Spectroscopy) or AAS (Atomic Absorption Spectroscopy) methods can 

detect. Detection of the released zinc cation from the nanoparticles surface can 

be correlated with the corresponding nanotoxicity data. In a previous 

publication,it has been highlighted that if the release amount of Zn cation is 

high, nanotoxicity of the nanoaprticles were also considerably high. This lead us 

new model as presented in Figure 113
[130-131]

. 
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Figure 113  : Schematic representation of some key events of ZnO toxicity in 

Jurkat cells. The illustration combines results of this study on ZnO NPs and 

some of the existing knowledge on zinc ions. Zn(II) ions are predominantly 

released from ZnO NPs extracellularly and are taken up by cells likely by zinc 

transporters of the ZIP family. Excess free Zn(II) in the cells is stored in 

zincosomes and binds to MT, which are highly upregulated in Zn(II)-overloaded 

cells. If the amount of intracellular Zn(II) is too high, the cells undergo apoptotic 

cell death not via the classical extrinsic or mitochondrial apoptosis pathways 

(dashed gray lines) but through a yet unknown alternative, caspase-independent 

pathway that is independent of the formation of ROS. Casp: caspase; FasR: Fas 

receptor; MRE: metal response element; MT: metallothionein; MTF-1: metal-

regulatory transcription factor-1; ROS: reactive oxygen species; Zip: Zrt- and 

Irt-like proteins (SLC39); ZnT: zinc transporters (SLC30); Zn(II): zinc ions
[131]

. 

Gene expression results have also showed that when the amount of zinc release 

is increased there was a small change in regulation and variations. Release of the 

zinc cations ha sbeen detected by zinc sensitive fluorescence dye Zincoin. As 

the nanoparticle concentration increases with time , observation under the 

confocal microscopy shows the increasing zinc dissolution from the 

nanoparticles as presented in Figure 114. 
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Figure 114 Increasing amount of dissolution by the incrasing amount of zinc 

species
[131]

 . 

4.2.6.2 Cell Labeling by Fluorescein modified ZnO nanoplates  

Nanoplate and nanopyramid ZnO structures have been modified with widely 

known fluorescein ligant to use the nanoparticles for the cell labeling 

applications. After synthesis and characterization, fluorescein attached 

nanoplates have been used for the labeling applications of the HEK cells by 

confocal microscopy.  

Confocal images showed that nanoparticles are easily attached to the surface of 

the nanoparticles. Surface modified ZnO nanoplates have been used for this 

application. After HEK cells have been prepared in the cell medium, fluorescein 

loaded ZnO nnaocrystals have been introduced and cells and for the real time 

testing they have been stored for 2 hours. 
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Figure 115 Fluorescein@ZnO nanoplate/nanopyramid cell labeling (bar=10 

micrometer).  

For the confocal microscopy analysis, prepared nanoparticle attached cells have 

been immobilized on glass. After excitation, fluorescein attached nanoparticles 

clearly showed that cells are labeled (Figure 115) .  

4.2.6.3 Photocatalytic activity of the nanostructures for the decomposition 

of methylene blue 

Effect of the modification on the nanoparticle photocatalysis has been studied by 

methylene blue (MB) dye. Naked and surface modified ZnO nanocrystals have 

been tested by UV illumination to test their decomposition capacity for the 

simply an oxidation mechanism for the organic compounds. Obtained ZnO 

photocatalytic activity results (Figure 116) showed some fundamental points in 

the ligand modified ZnO photocatalysis;  

i)  Naked ZnO nanoparticles shows always higher photocatalytic activity 

when compared to its organic acid ligand modified nanoparticle form  

ii) If surface ligand concentration is higher than usual necessary limits on 

nanoparticle surface and  if they attached with ester or ether bond to the 

particle, (more than % 30-35) this causes high surface deactivation and 

decrease in photocatalytic activity. 
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 Figure 116 Photocatalytic activity of ligand modified ZnO nanoparticles 

 (Top A, from left to right B1:Mandelate@ZnO Nanoplate and  A1: Bare ZnO 

 Nanoplate,  B2: Mandelate@Hexagonal ZnO NP and A2: Bare Hexagonal ZnO 

 NP, B3: Citrate@ZnO Nanopyramids and A3:Bare ZnO Nanopyramids ( bare 

 particles gave better activity) Below B,  A: blank sample, B:Oleate@ZnO QD, 

 C:Mandelate@ZnO Nanoplate, D: Mandelate@Hexagonal ZnO NP, E: 

 Citrate@ZnO Nanopyramid, F= Folate@ZnO Nanorod ).  

 

iii)  Extremely small ZnO quantum dots (<6 nm) show almost no photocatalytic 

activity due to their complete surface protection by long alkyl chain 

(oleate) since they may form complex structures like core/shell.  

iv)  Clear evidences showed that if salt type surface modification is available 

on the particle surface, at the end of photocatalytic activity tests, ligands 

may be removed from the surface during catalytic process. Therefore some 

anomalies are seen in the photocatalytic activity.  

v)  Nanorods have shown better photocatalytic activity when compared to 30-

40 nm distorted hexagonal ZnO examples of nanoparticles. This is possible 

due to the inefficient surface coverage of the nanorod structure which 

facilitates the active radical and/or exciton formation and transportation of 

these species to the nanoparticle surface. 

A1 A2   A3 B1     B2      B3 

A 

B 
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4.3 Synthesis of Visible Light Active, Multibranched TiO2 

Nanostructures by Hot Injection Method 

Hot injection method is generally used for the fabrication of monodispersed 

chalcogenide type of nanostructures which is capable of the visible or IR light 

emission
[133-134]

. Hot injection method have been applied for the production of 

complex nanostructures of the metal oxide TiO2 which is not easy to obtain by 

other nanosynthestic techniques
[135-136]

. In hot injection synthesis, after the 

production of quantum dot or nanocrystal many modifications can be achieved 

as classified below
[49]

;  

a)  Growth control with surfactants other than TOPO: For the surface 

modification TOPO and TOP are most used surfactants due to its capability 

of resist up to high temperatures. By varying this parameter crystal 

properties are changed.  

b)  Ligand exchange after synthesis: The surface properties and chemical 

interaction character of as synthesized high-quality nanocrystals can be 

further modified by post-preparation methods by the ligand exchange or 

phase transfer reactions. This is for the modification of particle 

biocompatibility or quantum yield of the nanocrystals.  

c)  Inorganic passivating shells: Optical features can be positively increased by 

the synthesis of another type of nanocrystal which is grown additionally on 

top of the fabricated nanocrystal. There should not be a big mismatch in the 

core/shell interface. Also thin shells can produce defect structures which is 

not desirable and should be prevented.  

d)  Synthesis of nanocrystals with a non-spherical shape: If the total growth 

rate is slow then nanocrystals form generally a spherical structure which 

minimizes the surface area. This is the necessity of thermodynamics. If we 

can manipulate growth conditions of nanocrystals in a way that different 

crystal facets grow with different growth rates then it is possible to 

fabricate highly anisotropic nanocrystals with hot injection method. 

Nanocrystal shape control is under the kinetic control and heterogeneous 

equilibrium of the coordinating molecules (chemisorbed versus dissolved) 

that is different for different crystal facets. 

e)  Alternative precursors and/or solvents: Hot injection solvents are generally 

toxic organometallic precursors and coordinating solvents. They have been 

investigated at the beginning of the method evolution. If alternative 
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solvents are used like fatty acids, amines or even non coordinating solvents 

such as octadecene it is also possible to modify the crystal structures. 

4.3.1 Thermogravimetric Analysis of TiO2 Precursor for Hot Injection 

Method 

For the hot injection synthesis synthesis of TiO2 nanostructures (Figure 117) we 

should define the decomposition profile of the titanium liquor for the 

nanostructure fabrication. Thermogravimetric analysis provide a very useful 

information of the precursor mixtures before hot injection or thermal 

decomposition procedures since they need a temperature definition for the 

proper injection time. If necessary injection is done under inappropriate 

conditions, desired nanoparticle formation control, anisotropy or kinetic 

conditions can be concluded with irregularity in nanoparticle monodispersity or 

anisotropic growth direction. Therefore injection temperature is examined and 

analyzed for a proper controlled anisotropic nanoparticles.  

 

Figure 117 TiO2 precursor mixture evolution during the hot injection synthesis.  

 Since used ligands (oleylamine and oleic acid) have different affinity for 

attaching onto the different titanium facets in the early stages of nanocrystal 

formation, decomposition profile of the precursor liquor gives a basic idea for 

the behavior of the formed primitive nanocrystals or nucleus during 

decomposition phase.  
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Figure 118 TGA decomposition profile of Ti precursor mixtures.  

Decomposition curves for the TiO2 precursors showed that while Oleic acid Ti-

precursor is following a multistep decomposition (Figure 118) it was possible to 

obtain one step decomposition by the addition of oleylamine into the mixture. 

 

Figure 119 FT-IR confirmation of the amide formation until 150 °C.  

Theoretically if there is only oleic acid present in the mixture first step should be 

a transition situation which produces highly reactive intermediate species. It 

should be noted from the FT-IR investigation in Figure 119 and Figure 120 that, 

precursor mixtures have very different decomposition Especially analysis of the 

triple mixture as seen in Figure 118 resulted that total decomposition and 

nanoparticle formation occurs starting from the 280 °C. As can be seen from the 

analysis of FT-IR spectra that during thermal decomposition reaction, amide 

formation which is formed by amine attack to carbonyl group triggers the TiO2 

formation. This reaction basically starts at 200-250°C range as presented in 

Figure 120.  
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Since amide band is formed via oleylamine and oleic acid this transformation is 

visible in the FT-IR spectra. Interestingly if FT-IR spectra is analysed carefully, 

it has been revealed that until 250 °C, 

 

Figure 120 FT-IR confirmation of the amide formation for the Ti precursor.  

amide formation is not quite visible. Visible amide peak at 3380 cm
-1

 is seen 

only after this point. Results clearly showed that nanoparticle formation and 

molecular transformation can be monitored by FT-IR spectroscopy. If we take 

the real time photos for presenting the colour change from the aliquots it is seen 

that after first portion is given to the reaction mixture, it starts to form a pale 

yellow colour which is assumed as molecular amine complexes of the Ti 

precursor (Figure 117). Colour transforms orange and then brown respectively if 

we proceed slowly. Colour gets darker and more brownish with the time. This is 

a clear visual observation of the nanoparticle formation in the hot injection 

synthesis
[82]

. 

4.3.2 Visible Light Active Spherical TiO2 by Hot Injection Method 

For the formation of TiO2 nanostructures, we have started to use Ti precursor 

mixtures with octadecene as reaction medium. It is generally known as non-

coordinative solvent in the chalcogenide nanocrystal synthesis. In this system it 

has been also used as solvent due to its high boiling point. Reactions in this 

medium provides homogeneous reaction conditions for the fabrication of TiO2 

nanocrystals
[84]

.  
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4.3.2.1 Synthesis and Morphology Investigation of Visible Light Active 

Spherical TiO2 

For the spherical visible light active nanoparticle synthesis
[137, 82]

 we have used 

started to mix the oleylamine, oleic acid and octadecene and heat them up to 120 

°C under vigorous N2 gas protection. We keep the precursor mixture at this 

temperature for the removal of water molecules if available. After this point 

TiCl4 precursor has been added into the reaction mixture and mixture has been 

heated up to 300 °C with a heating rate of 10 °C per minute. Reaction mixture 

has been kept at this temperature and pre-defined amount of injections have 

been made.  

 

Figure 121 Self assembly formation of the spherical TiO2 nanoparticles.  

When another defined mmol amount of  Ti precursor injection has been 

performed into the reaction system together with the other components, 

spherical self assembled nanoparticles have been formed. According to the SEM 

images, nanoparticles are forming spherical balls. This is due to the extreme 

amount of surfactants. Since long chain oleic acid and oleyl amine is available, 

after decomposition and particle formation they attach to each other for these 

self assembly structures as presented in Figure 121. These balls are clearly 

evolved from the surface modified TiO2 nanoparticles due to the extreme 

amount of long chain oleyl ligands. Nanoparticles are formed but organic long 

chain and extreme concentration of this long chains favor the ball like self 

assembly.  
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Figure 122 Self assembly spheres of TiO2 and their size distribution. 

One interesting point of the these nanoparticles, under SEM investigation it has 

been clearly shown that, these balls are comprised of smaller particles. TEM 

investigation of the spherical nanoparticles before and after the injection showed 

that there is no big difference possibly due to the hindrance of the organic pool 

as presented in TEM . Primary particle size is about 30 nanometer.These ball 

like self assembly structures are having an average size distribution of 3,10 

micrometer which has been contributed by nanoparticles. Real size detection has 

been done by a detailed statistical analysis of the SEM figures as presented in 

Figure 122. As clearly seen in the figures, small nanoparticles have formed 

morphologically spherical and various sizes of organically modified ball like 

nanostructures. Interestingly enough, color of the fabricated nanocrystals was 

stangely orange-deep yellow. Comparison of this deep yellow-orange color of 

the spherical TiO2 assemblies with commercial TiO2 P-25 enlightened the 

difference between the commercial and as-synthesized particles. According to 

the literature
[138-140]

 this type of color arises when TiO2 is doped with a non 
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metallic (especially N) anion. Images obtained from the literature are clearly 

showed that when N is a dopant color of the TiO2 nanocrystals evolve from pale 

yellow to the deeper yellow-orange. In order to analyze this issue we calculated 

the band gap energy of the TiO2 nanocrystals as presented below.  

4.3.2.2 Band Gap Calculation of Spherical TiO2 Nanostructures 

Dark yellow colored nanocrystals are clearly different from the commercially 

available P-25 white nanoparticles. When they are deeply compared, it is widel 

known that %70 anatase and %30 rutile mixture of the commercial 

nanoaparticles have the band gap of 3,2 eV. This is clearly in the UV range. But 

when fabricated spherical nanoparticles UV-Vis absorption properties are 

measured and required calculations made, it has been found that band gap of the 

fabricated nanocrystals was in the visible range as Eg= 2,39 eV (Figure 

123).According to Kubelka- Munk function it is possible to calculate the band 

gap characteristics of a metal oxide nanoparticle. In this procedure absorption 

spectra is recorded and transformed into energy units by required calculations.  

 

Figure 123 Band Gap calculation and SEM images of TiO2 nanoparticles and 

color comparison of spheres with P-25.  

4.3.3 Crystallinity, Surface and Thermal Properties  

Fabricated nanoparticles showed anatase crystal structure. Due to the low 

intensity of the peaks nanoparticles have been heated to 300 °C for overnight to 

increase the crystallinity but similar patterns have been observed as presented in 

Figure 124.  
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Figure 124 XRD patterns of the spherical TiO2 nanoparticles. 

 
Figure 125 FT-IR investigation of the spherical TiO2 nanoparticles.  

Analyzed peaks established that crystalline structure is anatase and no rutile 

modification has been detected. Still due to the extreme organic surfactant 

loading, surface features should be investigated for the further understanding. 

FT-IR spectra (Figure 125) of the spherical nanocrystals has revealed the 

organic oleate groups and small amount of water molecules attached on the 

surface. Zeta potential measurements pointed that these nanocrystals have 

aroung -12 mV as a surface charging which can contribute the these self 

assembly structures. High organic content on the nanoparticle surface resulted 

also high weight loss during the thermal analysis and EDX resulted only Ti and 

O atoms as presented in Figure 126.  
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Figure 126 Thermogravimetric analysis and EDX of the spherical TiO2 

nanoparticles. 

%27 weight loss from the thermal analysis of nanoparticles and carbonyl and 

CH groups which are visible in FT-IR spectra which presented before, proves 

the organic loading.  

4.3.4 Visible Light Active, Multibrached TiO2 NR by Hot Injection Method  

In order to investigate nanoparticle evolution for TiO2 another injection 

experiments have been performed. Due to the excessive amount of injection in 

previous section resulted spherical particles, it has been applied only 3 fold more 

of Ti precursor during the injection process. Hot injection method served as a 

morphology and crystallinity manipulator as injected precursor provided 

elongated nanostructures. Most important mark of this reaction is that, injected 

mixture has been given very slowly to the reaction (about half an hour) mixture, 

so that monomer flux for the kinetic control can be arranged accordingly.  
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4.3.4.1 Synthesis and Crystallinity of Visible Light Active Multibranched 

TiO2 Nanostructures  

 

Figure 127 SEM images of the multibranched TiO2 nanocrystals and EDX 

investigation. 

After hot injection synthesis, 3 fold injected particles have been analysed by 

SEM. Results unveiled the elongated nanocrystal morphology. Interestingly, 

elongated nanostructures (Figure 127) have been showing multibranched 

geometry which arises from the kinetical control of the nanoparticle synthesis. 

Presented EDX result revealed that the composition of the elongated 

nanostructures showing only titanium and oxygen. This is a clear evidence of 

the pure TiO2 nanocrystals which is also showing the visible light activity. 

Compared with P-25 it is quite visible that the nanocrystals are remarkably 

different and very close to deep yellow orange (Figure 128) which means the 

visible light absorption. UV spectra and band gap analysis of the elongated 

nanocrystals revealed Eg=2,34 eV band gap energy which is in the visible range 

of the electromagnetic spectra.  
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Figure 128 XRD spectra and color difference of elongated TiO2. 

XRD spectra of the elongated TiO2 (Figure 128) nanostructures showed an 

interesting results since it seems that the elongated nanocrystals have rutile 

crystal pattern. There are only 2 peaks which are not matching with the rutile 

peak list and they are very low in intensity compared to rutile peaks. Still peak at 

about 38 can attribute to anatase and peak at 44,8 can be attributed to brookite 

crystal structure. Since there is no other supporting data on these crystal 

structures it can be simply accepted that they are artifacts. It is extremely 

interesting phenomena due to the anatase to rutile transformation. As in another 

reaction it has been heated only precursor mixture without further injection. 

Crystal structure of these nanocrystals were also anatase and more or less the 

same with spherical nanocrystals. But as indicated here, well arranged and slow 

injection seems changed the crystal structure from anatase to rutile. There is no 

other parameter but concentration which transforms the crystal structure from 

anatase to rutile. By hot injection this direct crystal transformation for the TiO2 

nanostructures has been observed.  

4.3.4.2 TEM Investigation of the Multibranched, Visible Light Active TiO2 

Due to the highly anisotropic character of the TiO2 nanostructures TEM and 

HR-TEM analyses provided additional information about the fabricated 

nanocrystals. General results revealed that TiO2 nanostructures have the 

elongated bullet like and they seemed clearly attached selectively to each other. 

When it is focused to size distribution, angle distribution between attached 

nanorods, multibranched gallery of the nanocrystals, one can get the information 

that nanorods are slowly transforming themselves to the multibranched 

nanostructures as the time continues. Therefore basically it is possible to define 

three fundamental rules for the elongated TiO2 nanostructures which will be 
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analysed. Since elongated nanorods have bullet like structures it was possible to 

detect the sharp tips and larger bottom of the nano rod shaped structures. 

4.3.4.3 Fundamental Nanorod Morphology for the TiO2 Nanostructures 

Detailed TEM investigation revealed that basic rule for the TiO2 nanorods, is 

they form elongated bullet like nanostructures which one side is sharp and other 

side is broad.  

 

Figure 129 Schematic perspective of multibranching in the TiO2 nanostructures. 

Elongated nanoparticles also form dipod, tripod, tetrapod and multipod like 

structures  

 

Figure 130 Dipod like TiO2 nanostructures. 

(Figure 129). According to the TEM investigation, sharper tips of the elongated 

nanostructures are always visible and larger bottoms are attaching to each other 
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to form multipod geometriesDipod like structures basically formed with two 

elongated bullet like nanorods. Due to the attachment orientation, dipods can be 

two side sharp rod or V type morphology as shown in Figure 130.  

 

Figure 131 Tripod like nanostructures of TiO2 . 

Tripods are generally have the morphology (Figure 131) that all rods are 

oriented into the same axis which forms a shape like Poseidon’s trident. Y shape 

has also been observed but trident was more abundant. Tetrapod geometry has 

basically 3 different orientation. First (T1) one is a visible X shape which all 

arms are (with very small angle variation) in the same plane (Figure 132). 

Second orientation (T2) shows that only one of the arms has been grown up on 

the z axis while other three arms are on the same plane. Therefore it looks a 

tetrahedral geometry when if the edges are drawn but angles between the arms 

were not perfectly matching with the expected geometry. Third orientation (T3) 

revealed the geometry that if not only one but two of the arms grown up on the 

two other arms while the latter are in the same plane. Grown arms of the paticles 

are  not in the same geometric plane if compared to each other.  
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Figure 132 Examples of tetrapod like TiO2 nanostructures.  

 

Figure 133 Obtained multipod TiO2 Nanostructures.  

In addition to the dipod, tripod, tetrapod structures multipod  nanostructures 

have been also observed as presented in Figure 133. Multipod structure is like 

tetrapod but the main skeleton seems that it is thicker and longer than the side 

arms. Since in previous examples of the multipod structures, arms are 

completely same in size and thickness, this new structure provides another 

example for the multipod fabrication. Side arms orientation is in the same 

direction when they are in the same side of the main skeleton but also opposite 

arms represent a symmetrical perspective. Synthesis of these elongated 

nanostructures have been classified according to their morphology. 

T1 

T2 
T3 

T1 
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Figure 134 Fabricated alphabet nanogallery of TiO2 without size bars.  

This classification with TEM images have been presented in Figure 134. This is 

the gallery of the elongated TiO2 nanostructures or can be accepted as some 

parts of the Latin alphabet as nanorods clearly seen as in the form of capital 

letters from alphabet. 

Detailed TEM investigation have shown that V shape is the most available form 

among the fabricated nanostructures. If we also assume that nanorod shaped 

structures belong to same family with V shape which means dipodic 

morphology, 60 % of the of the whole multipod geometry are in the dipodic 

state (Figure 135).  
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Figure 135 Proximity of the different TiO2 nanostructures.  

Tripod like, tetrapod like structures and after that multiple branched structures 

follow the proximity order respectively. Formation mechanism of these 

nanorods have been rarely observed and reported as twinning mechanism or 

selective facet growth. Both of the mechanisms can be observed here by 

analyzing the TEM images.  

4.3.4.4 Angle Between the Attaching Nanorods 

According to the detailed TEM analysis it has been detected that V shaped dipod 

structures have some specific angles between the arms
[137]

.  

 

Figure 136 Angle distribution between the V shaped dipod structures.  



4 Results and Discussion 

134 

The angle between two elongated arm actually follows a regularity in high 

percent.  

 

Figure 137 HR-TEM image and SAED pattern of the TiO2 nanorods.  

This angles are between 50-60 and 110-120 degree. This can be explained by the 

truncated growth of the primer crystal. Since truncated nanostructures have 

energetically more active facets, during the kinetical growth under the monomer 

flux control, more energetic facets grow faster than lower energetical facets. 

This lead V type morphology and since angles between these facets are in the 

similar values, this angles can be anticipated. This bimodal distribution of the 

angles are averagely 65 and 120 degree respectively. They intensively adapt into 

two angles as shown in the corresponding morphology in Figure 136.  

2 nm 
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Figure 138 HR TEM investigation for the junction points.  

HR TEM investigation of the elongated nanostructures shows clear crystal 

orientation and atomic orientation (Figure 137). Rutile crystal structure has been 

detected by facet corresponding [001] fringes of the nanocrystals(Figure 138) 

the rutile phase.As shown in Figure 138, there is a continuation in the crystal 

structures which confirms of the TiO2 without other phases. 

4.3.4.5 Possible Formation Mechanism for the TiO2 Multibranched 

Nanostructures 

Alivisatos
[46]

 has shown in a previous study that that growth of the 

multibranched TiO2 nanocrystals depend on the truncated cores and growth 

proceeds from highly energetic facets as shown in Figure 139.  

5 nm 2nm 
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Figure 139 Shape evolution of TiO2 nanocrystals through the surface energy 

modulation effect by using surface selective lauric acid (LA) surfactants. a) 

Bullet- and diamond-shaped nanocrystals are formed at low LA concentration.  

b,c) At higher LA concentrations rods (b) and branched rods (c) are formed. 

Beginning precursor mixture for TiO2 formation forms transient carboxylic acid 

complexes of the titanium and amine. These structures perform condensation 

reactions in the acidic media since attachment to the titanium requires hydrogen 

removal and therefore reaction medium is extremely acidic (<2 pH). Under these 

conditions with the help of amine and oleic acid ligands form kinetic control 

instead of random growth (Figure 140) 
[46]

.  

We can simply propose that results are arises from a growth regime where 

thermodynamic pathways, related to the crystal-structure-directing effect of the 

initially nucleated seeds. Therefore surface energy variation causes a kinetic 

control due to the controlled high monomer flux. Crystals showed clearly that in 

the early stages of the reaction crystals Especially with diffusion-limited 

monomer flux and surfactant-induced stabilization causes elongated 

nanocrystals with kinetic control. For the mechanism investigation aliquot has 

been taken from the early stage growth of the nanorods. 
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Figure 140: Titanium alkoxide for the elongated nanostructures
[83]

. 

(Figure 141) have cube like or truncated shapes which is to be grown later with 

a kinetic control. Investigated TEM images showed that synthesized 

nanocrystals are generally showing distorted truncated nanostructures with 

different geometrical edges. Cubes or trigonal pyramids or elongated square 

pyramids are visible. This shapes are the clear proof for the kinetic control and 

ligand modulated crystal shape evolution. Since TiCl4 has been used as 

precursor, during the injection process pH value of the solution is extremely low 

as evidenced by qualitative examination of the solution after the injection and 

during the reaction. Additionally, HCl is available also in gas form which allows 

low pH value in all locations of the reaction flask. Therefore reaction is 

programmed for a kinetic control and elongated nanorods have been obtained.  
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Figure 141 Distorted truncated and cube like truncated structures in the early 

stages of nanorod formation. 

4.3.4.6 Nanomaterial Applications of Spherical and Multibranched Visible 

Light Active TiO2 Nanostructures 

Synthesized nanostructures have been used for the visible light photocatalysis 

and for the decomposition of organic dye methylene blue. For this aim solar 

illuminator as visible light source has been used as presented in Figure 142.  

4.3.5 Solar Light Driven Photocatalysis of Visible Light Active TiO2  

 
Figure 142 Solar light spectrum and solar driven visible light photocatalysis.  

Fabricated nanocrystals have been mixed with the defined concentration of 

methylene blue dye. This stock solution has been used for the visible light 
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photocatalysis during the decomposition of methylene blue (Figure 143) 

solutions. It has been showed that synthesized visible light active TiO2 

nanostructures show remarkable photocatalytic activity as compared to 

commercial P-25 TiO2. Organic dye solutions have been cleaned within a very 

short time which is almost impossible by the commercial P-25 nanoparticles. 

Multibranched nanorods show slightly higher activity when compared to 

spherical nanoparticles. Especially photocatalytic activity of TiO2 has been 

enhanced about %60 when compared to P-25. This is the proof for the nitrogen 

availability in TiO2.  

 

 

Figure 143 Photocatalytic comparison activity of of P-25, TiO2 Rod and TiO2 

Spheres by solar light (A: decomposition of MB by P-25, B: decomposition by 

TiO2 NR, C-D: comparion of activities, visual observation of MB 

decomposition.  

A B 

D 

C 
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4.4 Metal Oxide / Polymer Nanocomposites 

Metal oxide nanoparticles are widely used for the MOx/polymer 

nanocomposites due to their optical
[142-143]

, emission
[144-145]

, photocatalytic
[146-

148]
, antibacterial

[149-152]
 and hydrophilic-hydrophobic

[153-154]
 features. 

Accordingly, analysis and material properties of ZnO-TiO2/Polymer hybrid 

nanocomposites for light emission, antibacterial activity, superhydrophilic 

surface and selective UV protection properties.  

4.4.1 Hybrid Inorganic Organic Polymer/MOx Nanocomposites 

Inorganic organic hybrid nanocomposites have been used for their enhanced 

thermal
[155]

, anti scratch
[156]

, anti abrasive
[157]

 and chemical durability
[158]

 

features.  
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Figure 144 Hybrid nanocomposite preparation techniques left) UV curable 

right) epoxy amine.  

Introduced nanoparticles are attached into the growing silica network by 

hydroxyl or alkoxy groups
[159-160]

. Since alkoxysilane acts also as surface 

modifier with the contribution of other polymers nanoparticle dispersion is in 

the nano level (Figure 144). Particle introduction basically can be done by two 

different method; 
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a)  In situ nanoparticles formation ; where nanoparticle spontaneously is 

formed in the hybrid network during hydrolysis and condensation reactions  

b)  Direct introduction; where the nanoparticles are synthesized somewhere 

else and introduced into the nanocomposite network during the hydrolysis, 

condensation and polymerization processes.  

Co-polymers in addition to alkoxysilanes provide additional thermal, optical and 

flexibility features to the nanocomposite.  

4.4.1.1 TiO2 Nanowire/Epoxy-amine Superhydrophilic Nanocomposite 

For the synthesis of superhydrophilic surfaces, 10 M, 100 ml NaOH, has been 

mixed with 2 gr P-25 nanoparticles and ultrasonically dispersed. After that 30 

ml from this mixture has been placed into the hydrothermal tube and reaction 

has been conducted at 150 °C about 48 hours. Obtained nanostructure has been 

washed with excessive water, EtOH and aceton respectively and dried in vacuo. 

There are very similar synthesis methods for the nanowire synthesis in the 

literature
[161-162]

. SEM images of the fabricated material showed that TiO2 

(Figure 145) was a nanowire type material. For the fabrication of 

superhydrophilic nanocomposite coatings, it has been prepared a nanocomposite 

of alkoxysilane and with nanowires. For the synthesis of nanocomposite, a 

mixture of Glycydyloxy propyl trimethoxysilane and water with diluted HCl 

 

Figure 145 TiO2 Nanowires by hydrothermal method by self dissolution of TiO2 

nanoparticles. 

(GLYMO)/Tetraethoxysilane (TEOS) mixture has been prepared at 1/10 

proportion for the nanocomposite formulation and stirred for the homogenenity 



4 Results and Discussion 

142 

 

Figure 146 Superhydrophilic nanocomposite coatings on glass (surface angle < 

5°). 

and %10 w/w TiO2 nanowire compared to polymer  total weight has been added 

and homogeneously dispersed. After hydrolysis and condensation reactions 

about 3 hours, aminopropyl trimethoxysilane has been added as an amount of 

%10 mol amount of total epoxy compound. Prepared reaction mixture has been 

coated onto the glass slides with spin coating method with 2000 rpm 15 second. 

Nanocomposite coatings have been cured at 150 °C, 10 minutes. Observation of 

contact angles after synthesis showed that droplets formed a contact angle which 

is lower than 5 degree (Figure 146).These hybrid coatings can be coated onto 

glass, metal or plastic surfaces for superhydrophilic film applications.  

4.4.2 Polymer and ZnO QD Nanocomposites  

Oleate@ZnO quantum dots have been phase transferred with gluconic acid and 

washed with EtOH and acetone respectively and dried 24 h in an oven at 80°C. 

In another flask methacryloxypropyl trimethoxysilane has been hydrolysed with 

0,1 M HCl and gluconic acid modified ZnO quantum dots have been introduced 

into this mixture with different variations.  

 

Figure 147 %5 (left) and %10 (right) percent ZnO QD containing 

nanocomposite coatings antibacterial testing. 
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After addition of radical starter with %3 (benzophenone) transparent 

nanocomposite mixtures have been obtained which were coated onto the glass 

substrates with the spin coating method as 2000 rpm, 10 second. After that UV 

lamps have been used for curing the nanocomposites with 354 nm. After 20 

minutes nanocomposite coatings have also been cured within an oven thermally 

at 150 °C, 10 minutes. These coatings have been tested against to a broad band 

bacteria such as; E.Coli, S. Aureus, MRSA, Salmonella which are similar to 

previous studies
[163-164]

. It has been shown that quantum dot embedded 

nanocomposite coatings are completely transparent, showing broadband 

antibacterial activity and quite durable against chemicals. Therefore growth of 

extremely dangerous bacterias like E.Coli and can be prevented with different 

ZnO concentration as shown in Figure 147. Same nanocomposite coating system 

with %5 and %10 ZnO QD concentration is also efficient against to S. Aureus 

and P. Aeruginosa bacterias (Figure 148).  

 

Figure 148 Antibacterial test for 5% ZnO QD containing nanocomposite against 

to Pseudomonas Aeruginosa (ieft) and S. Aureus (right). 

Prepared coatings systems have been tested on the glass samples after curing the 

spin coated films. Results showed that obtained water soluble ZnO quantum dots 

can be homogeneously dispersed and coated onto the glass samples for 

antibacterial applications.  

4.4.2.1 Selective UV Protective Transparent ZnO/Hybrid Nanocomposites 

Since fabricated ZnO and TiO2 nanoparticles have specific UV absorption 

capacits, it is possible to use especially ZnO QD’s for the Uv filtering 

transparent nanocomposites. For this aim, ZnO quantum dots have been firstly 

prepared and introduced into the hybrid nanocomposite structures. Since 

quantum dots extremely small, they do not form agglomerates and therefore 
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coating seems transparent which is decoratively desirable. Synthesized 

nanocomposite formulations can be applied on any surface for the UV protective 

transparent nanocomposite materials due to the quantum dot absorption features. 

Since quantum dot size selectively filters some wavelengths, whole coatings can 

be used for the same reason.  

4.4.3 Biodegradable PLA/Metal Oxide Nanocomposites 

Biodegradable PLA polymer attacting big interest in the last decade. Since its 

synthesis is done huge amounts in the world for the different aims it is possible 

to modulate the PLA polymers by fabricating nanocomposite structures. They 

have been generally applied as coating for the glass and metal surfaces.  

4.4.3.1 PLA/MEMO/ZnO QD Nanocomposites  

 

Figure 149 PLA/MEMO hybrid nanocomposite preparation.  

PLA is an incredibly important polymer since it degrades in the nature and its 

products and nanocomposites can be improved mechanically and chemically.  

As an example ZnO QD embedded PLA nanocomposites have been prepared 

with co-polymerization of UV curable alkoxysilane MEMO 

(methacryloxypropyl trimethoxysilane) as shown in Figure 149. During 

synthesis and homogenization, ZnO quantum dots have been introduced into the 
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polymer structure for obtaining visible light emitting nanocomposite materials 

(Figure 150).  

+

%10

%20

%30

%40

%50

hv

BP-Acrylate

PLA

Mixture

UV Curable PLA-Acryloxysilane Composite

ZnO Quantum Dots

+

Light Emitting Nanocomposites  

Figure 150 ZnO QD addition into the PLA/MEMO nanocomposite structures 

for light emitting nanocomposites. 

Introduction of the ZnO quantum dots into the hybrid system can be done by 

dispersing them in the solvents of the nanocomposite system prior to 

PLA/MEMO co-polymers like in EtOH or H2O. 

FT-IR analysis (Figure 151 and Figure 152) clearly showed that polymerization 

of double bond can be tracked by disappearing of corresponding peak as also 

shown in [165]. 

 

Figure 151 FT-IR investigation of UV curable PLA/MEMO nanocomposite 

mixtures. 
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Figure 152 Effect of UV curing for the PLA/MEMO nanocomposite structure.  

Analysis showed that after %30 MEMO addition, UV curing confronts with 

viscosity and time period problems which cause long term curing (more than 30 

minutes) necessity. Therefore addition of increasing amount of MEMO (Figure 

152) should be more carefully analysed in sense of disappearing double bond 

peak. Prepared nanocomposite structures have been coated onto the glass 

substrates and surface characteristics have been analyzed.  

 

Figure 153 Deformation by e-beam for the PLA/%10 MEMO nanocomposite  

 

Figure 154 Change of roughness from PLA/%10 MEMO to PLA/%50 MEMO. 
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SEM investigations revealed that if only %10 MEMO is introduced into the 

PLA, thermal durability of the nanocomposite is still inefficient for analysis 

under SEM and this situation can be very easily observed in the corresponding 

SEM image (Figure 153) where nanocomposite coating is deformed after 

contacted to e-beam . AFM investigation (Figure 154) and SEM images (Figure 

155) clearly revealed that average surface roughness decreases as MEMO 

content increases due to the effective film forming character of the MEMO. 

Prepared nanocomposite structures have been coated onto the glass substrates 

and surface characteristics have been analyzed. Transparency of the 

nanocomposite structure found quite proper for the daily applications even at the 

%50 MEMO content (Figure 156). Additionally, increase of MEMO content in 

the nanocomposite formulation increases the resistance against to water 

diffusion as shown in Figure 157. Introduction of %2 ZnO quantum dot amount 

into the hybrid nanocomposite resulted as visible light emitting materials but 

had no remarkable effect on the regular biodegradation (Figure 158).  

 

Figure 155 Cross sectional SEM analysis with increasing MEMO content (from 

%20 to %50 respectively).  

ZnO quantum dots with different particle size can provide visible light emitting 

nanocomposite materials as shown in Figure 159. Blue, yellow and even orange 

colour emitting hybrid nanocomposites have been obtained. But due to the 
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defect oriented visible emission other particles like Eu@In2O3 should be used 

for the red emitting nanocomposites.  

 

Figure 156 Transparency of the %30 MEMO/PLA nanocomposite polymer. 

 

Figure 157 Contact angle increase with increasing MEMO content. 

Distribution of the metal oxide particles can be detected by FIB technique after 

analysis of frozen nanocomposites. Since back scattering features are different 

for polymer and Eu@In2O3 nanoparticles, it is possible to differentiate the 

particles as white items distributed in the nanocomposite structure as shown in 

Figure 160. Introduced nanoparticles provide visible light emission for the 

whole structure in nanocomposite but there are solid and porous part of the final 

material as seen in Figure 161.  
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Figure 158 PLA biodegradation with a commmercial compost formulation. 

 

Figure 159 Solid state light emitting nanocomposites. 

Since distribution of the nanoparticles is vitally important for the homogeneous 

emission features, this FIB-backscattering method should have been developed 

for the visible and detailed detection of the nanoparticles distributed in the 

organic polymer. 
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Figure 160 FIB-Back scattering images of metal oxide/PLA for observing 

particle dispersion.  

 

Figure 161 FIB image of liquid N2 frozen MOx/PLA nanocomposite structure. 

SEM images therefore resulted huge amount of description possibilities for the 

particles. According to these images it has been detected that particles are 

available both in this porous and solid structure inside the nanocomposite. 

Therefore distribution has been achieved successfully. Therefore this method 

can be generalized for any kind of particle dispersed in the organic polymer. 

Colour difference (which can also be modulate and selected as red, green or 

other) provide the positions of the particles stabilized by polymer backbone. Still 

they do not lose their light emitting character. One drawback of this method is 

the size limitation. Since there would be a need of high resolution for quantum 

dot dispersed polymers either we need to find high agglomerations of quantum 

dots or fill the whole system with the solid particles. 
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4.4.4 ZnO QD@Clay Nanocomposites For Light Emitting Clays 

Since size dependent emission can be used for visible light emitting colorful 

structures , clays with ZnO quantum dots have been prepared.  

 

Figure 162 ZnO QD@Nanorod Clay Nanocomposites.  

One example is nanorod shaped clay structure (Attapulgite) which has been 

decorated with ZnO quantum dots as shown in Figure 162.  

It is clear that ZnO quantum dots are sitting on the clay structure and therefore, 

they would provide corresponding visible light emission. It was possible to 

observe clay nanocomposites emitting visible light from blue to yellow by 

different size of ZnO quantum dots. Same quantum dots can be also used for the 

decoration of plate like clays as shown in Figure 163.  
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Figure 163 ZnO QD decoration for the plate like clays.  

TEM and HRTEM analysis showed that ZnO quantum dots were changing from 

2-7 nm in size. Measurement of [002] fringe of the ZnO has proved the 

composition of ZnO. An interesting observation obtained is that ZnO quantum 

dots were only growing on the clays but not separately. This phenomena is 

actually offers the mechanism of the ZnO growth on the clay structure. In the 

beginning Zn(CH3COO)2.H2O is adsorbed by the clay and concentration of the 

zinc is increased on the clay surfaces. This local concentration difference causes 

that growth of the ZnO should propagate on the clay surfaces. Homogeneous 

feeding of the zinc cation and basic environment provides a homogeneous 

formation of the quantum dots attached on the surface of the clays as presented 

in the TEM images. This kind of clay based growth of the nanoparticles can be 

used for the other metal oxide nanoparticles and nanocomposites
[166-170]

.  
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5 Conclusions and Outlook 

In this part complete thesis has been shortly analzed and future study points 

have been highlighted. Since obtained nanostructures revealed that they allow us 

the molecular manipulation for the anisotropy and band gap engineering future 

aims should be targeted.  

5.1 Conclusions 

As emphasized before, ZnO and TiO2 nanomaterials occupy broad band 

applications in the material science. Due to their relatively low band gap, low 

cost, easy manipulation and doping for optical application features, they attract 

enourmous interest nowadays. Hence, focus on the extremely low size (quantum 

dots) and anisotropic morphology of these two metal oxide can trigger the large 

amount of quantum dot or anisotropic particle production with desired optical 

and doping properties.  

 

Figure 164 Oleate@ZnO QD’s and solid state light emitting nanocomposites. 

ZnO has been synthesized by heating up and modified sol gel chemistry. It has 

been found that surface modification of the ZnO QD’s govern the quantum 

dot/nanoparticle stability and surface defects which are responsible for the 

tunable visible light emission. In addition to the common acetate modified 

synthesis of ZnO quantum dots, molecular ligands such as cysteine, oleate 

manipulates the surface character and emission properties as presented in Figure 

164. This implies that surface modification and defect control can be achieved 

by using long chain structures which prevents the widely known red shift. Long 

chains can be adsorbed on the quantum dot surface chemically or physically but 

this ligand should be electively long to achieve the homegenity and long term 
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stability. Anisotropic ZnO nanoparticles basically follow the hexagonal 

formation rules due to its crystal growing habit but precursor type and ligand 

proportions can esily modifiy the obtained nanostructure as shown in Figure 

165.  

 

Figure 165 ZnO morphology gallery obtained by heating up method. 

By manipulation of the ligand mixtures and different temepratures it is possible 

to form a table for the anticipation of the nanocrystals after a detailed TEM 

investigation. Anisotropy is highly dependent on these selectively adsorbing 

ligands and in addition to the amine and carboxylic acid group other functional 

groups like thiol or halogenides can provide many different anisotropic 

nanoparticles which showing different toxicity, stability, optical and 

morphological properties. Since hexagonal growth habit is set for the ZnO 

nanoparticles, it is possible to obtain distorted hexagonal morphology. By 

different ligands these morphologies can be manipulated and oriented 

attachment or self assembly processes can be observed for the fabrication of 

extremely unusual complex structures. Another anisotropic morphology 

fabrication is made for the TiO2. Hot injection method has been first time used 

in order to synthesize visible light active (Eg= 2,3 eV), multibranched or 

spherical nanoparticles.  
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Figure 166 TiO2 morphology gallery and HR-TEM of TiO2 by Hot Injection. 

Spherical morphology of the nanoparticles form micron sized self assembled (3 

micrometer) balls which composed of nanoparticle self alignment from the long 

chain modified nanoparticles. Their band gap is in the visible range which has 

been also confirmed by band gap calculation and photocatalytic experiments. If 

we control the hot injection method to synthesize elongated nanostructures of 

TiO2, it has been observed that multibranched nanorods, V shaped particles, 

tripods, ,tetrapods are formed within some pre confirmed rules. These nanorods 

show better photocatalytic activity properties as compared to commercially 

available P-25 TiO2. Accordingly hot injection method can be used for the other 

metal oxide nanostructure synthesis. It may be possible to obtain attached metal 

oxides with different band gap and composition as shown in Figure 166. 

5.2 Outlook and Future Prospects 

High temperature liquid systems for the anisotropic nanoparticle preparation are 

very attractive fabrication methods even though their drawbacks like high 

boiling point solvents or hard heating control for reactions. It has been 

concluded that by manipulation of the precursor ligands, concentration and 

temperature for further modulation of the anisotropy it is possible to produce 

extremely attractive nanostructures for nanoelectronics, theranostics and 

2 nm 
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catalytic applications. Therefore other systematic investigations should be done 

for the predictable extremely hard geometrical shaped metal oxide nanoparticles.  

Cytotoxicity, gene regulation and investigations on nano-biological interactions 

should be expanded for the further understanding of the nano-human interface 

and reciprocative behaviours. Since modified sol-gel method has also provided 

ultrastable visible light emitting systems one can easily focus on the other 

nanoparticle systems for the long term stability and easy to manipulate quantum 

dots for the industrial applications.  
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