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Abstract

The Uncertain Volatility model is a non-linear generalisation of the Black-Scholes
model in the sense that volatility and correlation can take arbitrary values in given
intervals. The value of an option is then given by a non-linear partial differential
equation of Hamilton-Jacobi-Bellman type. For this type of equation the concept of
viscosity solution has to be considered since in general no smooth solutions in the
classical sense exist.
To assure the convergence of a discrete scheme it has to be consistent, stable and
additionally monotone. Starting from a Finite Difference discretisation we first
derive general and structural conditions to adequately price options in the Uncertain
Volatility model. Additionally, an optimisation problem has to be solved which can
either be done exactly or only approximatively where this choice depends on the
discretisation. Finally, sufficient conditions are derived for the different discrete
schemes to assure their convergence to the viscosity solution.
The obtained theoretical results are finally tested in numerical experiments. The
rates of convergence, the effort for excecuting the policy iteration, and the possible
gain by using non-uniform grids are analysed.



Zusammenfassung

Das Uncertain-Volatility-Modell stellt eine nicht-lineare Erweiterung des Black--
Scholes-Models insofern dar, dass Volatilität und Korrelation beliebige Werte in
vorgegebenen Intervallen annehmen können. Der Wert einer Option ist dann durch
eine nicht-lineare partielle Differentialgleichung vom Hamilton-Jacobi-Bellman-Typ
bestimmt. Da Lösungen im klassischen Sinne für solche im Allgemeinen nicht exi-
stieren, wird das Konzept der Viskositätslösungen, für die die Existenz einer Lösung
der PDE garantiert werden kann, verwendet.
Um die Konvergenz eines Verfahrens sicherzustellen, muss zusätzlich zu Konsistenz
und Stabilität Monotonie nachgewiesen werden. Ausgehend von einem Ansatz mit-
tels finiter Differenzen werden zu erst allgemeine und strukturelle Bedingungen her-
geleitet um Optionen im Uncertain-Volatility-Modell zu bewerten. Abhängig von der
Diskretisierung der Gleichung gehört dazu auch die exakte oder approximative Lö-
sung von nicht-linearen Optimierungsproblemen. Anschließend werden hinreichende
Bedingungen nachgewiesen, um die Konvergenz der einzelnen Verfahren garantieren
zu können.
Die entwickelten theoretischen Resultate werden anschließend in numerischen Expe-
rimenten praktisch untersucht. Dabei werden insbesondere die Konvergenzraten, der
Aufwand für die policy iteration sowie der Nutzen der Verwendung nicht-uniformer
Gitter betrachtet.



Preface

In the past decades the Black-Scholes model was the one which helped to price op-
tions and to estimate market risks. With certain enhancements it is still the one
used most in this area. Financial crisis and collapses unveiled that market risks are
not displayed correctly by the model. Within the assumptions of the Black-Scholes
model these properties of the market can not be included. Thus, on the one hand
extensions to and generalisations of the model have been developed. On the other
hand new models have been introduced. The model which is analysed from a nu-
merical point of view in the present thesis is a generalisation of the Black-Scholes
model.

In 1995 Avellaneda, Levy, and Paras [ALP95] and Lyons [Lyo95] independently in-
troduced this generalisation. They relaxed the assumption that volatility is constant
and instead assumed it to lie in a compact bounded interval. If several assets are
modelled also the correlation between two of them can be assumed to take its values
in such an interval. Since no additional assumptions like a stochastic process for
volatilities and correlation are made the model is also called the Uncertain Volatility
model.
The price of an option on assets modelled under these assumptions is then given by
a non-linear partial differential equation. This pde is of Hamilton-Jacobi-Bellman
type. It was called the Black-Scholes-Barenblatt equation by Avellaneda et al. For
options on one as well as on more assets, its structure is very similar to the Black-
Scholes equation. The difference lies the diffusion term where volatility occurs. This
term is non-linear since volatilities and correlation depend on the second derivatives
of the option value.

Non-linear pdes do not have a smooth solution in the classical sense, generally. In
the 80’s Crandall and Lions [CL83, CIL92] introduced the concept of viscosity solu-
tions. It is constructed via auxiliary functions which enfold the solution and locally
approximate its derivatives. Fleming and Soner [FS06] showed that in a financial
context the viscosity solution is the meaningful one. Vargiolu [Var01] proved under
some assumptions that there exists a unique viscosity solution of the BSB equation.
Moreover, he showed that every solution of the BS equation calculated with volatili-



ties and correlation lying in the interval of the Uncertain Volatility model is smaller
than the solution of the BSB equation.
To properly solve the BSB equation numerical schemes have to converge to this
solution. Barles and Souganidis [BS90] investigated under which conditions this
convergence can be guaranteed. They proved that if the pde satisfies a maximum
principle, see below (v. i.), and the scheme is consistent, stable, and monotone it
converges to the unique viscosity solution of the BSB equation.

In the present thesis we develop a numerical scheme to solve the BSB equation. The
focus is put on multi-asset options and on efficiency increase. The task is twofold.
On the one hand, a discretisation has to be constructed which possesses all proper-
ties to converge to the viscosity solution. On the other hand, algorithms are needed
to solve the maximisation problems incorporated in the BSB equation.
A well known scheme is the Kushner-Dupuis scheme [KD01]. Different approaches
via a Finite Volume method have been performed by Pooley, Forsyth, and Vetzal
[PFV03b], Wang and Forsyth [WF08], and Forsyth and Labahn [FL07] among oth-
ers. Finite Difference methods have been applied to the one-dimensional Uncertain
Volatility model by Heider [Hei10] and Schaeling [Sch10].
The basis for the discretisation in the present thesis are Finite Difference methods.
For the two- and three-dimensional Uncertain Volatility model we extend the re-
sults already present in the literature and construct a complete algorithm to price
options. We prove the convergence of the schemes to the viscosity solution under
certain conditions.
In the first chapter of this thesis we give a general introduction to the mathematical
framework which is needed for the rest of this thesis. We first consider the Black-
Scholes model and its extension the Uncertain Volatility model. Hereafter we give
the existence and uniqueness results of Vargiolu and the convergence result of Barles
and Souganidis.
The next chapter treats the discretisation of the pde. As representative case the
two-dimensional Uncertain Volatility model is examined. The results obtained here
for the spatial discretisation either apply for the higher dimensional cases or can
easily be transferred to them.
Of special interest is the underlying spatial grid. It influences the monotonicity of
the scheme and in which way the occurring optimisation problems can be solved.
The last sections of this chapter focus on the discretisation in time and the pricing
of American options.
As last step to solve the BSB equation, optimisation problems have to be solved.
Since their structure depends on the spatial grid and the discretisation several cases



have to be analysed. Chapter 3 treats this local optimisation at each grid point.
Furthermore, due to the dependence of option value and volatilities and correlation
on each other we introduce an iteration presented by Forsyth and Labahn [FL07].
In Chapter 4 we prove the convergence of the considered schemes to the unique
viscosity solution of the BSB equation. The results of the one-dimensional schemes
are of similar type compared to those given in [Hei10] and [Sch10].
The last chapter concludes with the numerical results for the schemes introduced
above. We analyse runtime and speed of convergence as well as efficiency increase
due to the use of non-uniform grids. Np(x, y)

Munich, October 2013 Albrecht Budke
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1 Introduction

In this chapter we introduce the most basic concepts for the present thesis. In the
first section we give an introduction to elementary terms and definitions of modern
numerical and stochastical finance. Only those definitions, which are needed for
the famous Black-Scholes (BS) model, are brought into focus. We directly address
the case of a market consisting of n assets and a money market account. The one-
dimensional case is trivially contained. As basic results for the chapters hereafter
we introduce the BS equation for European options and the linear complementary
problem for American options on n assets each. The section is closed with the in-
troduction of different types of options we want to price in Chapter 5.
In the second section we introduce the non-linear model, which represents the pricing
framework for the whole thesis: the Uncertain Volatility model. All necessary defini-
tions and assumptions are given. Finally, we introduce the Black-Scholes-Barenblatt
(BSB) equation, while the derivation of the pricing equation itself is omitted.
A general non-linear partial differential equation (pde) does not have to have a
smooth solution in the classical sense. Therefore, the viscosity solution has been
developed. In the third section this concept is presented in a short introduction.
Hereafter, the existence and uniqueness results for the viscosity solution of the BSB
equation are given. The last part of the section then focuses on the question which
conditions a discrete scheme has to fulfil in order to converge to this viscosity solu-
tion.

1.1 The Black-Scholes model

In 1973 Black and Scholes [BS73] and Merton [Mer73] independently developed the
model which is now often named the Black-Scholes model after the first two authors.
It marks the first important step to model stock market dynamics mathematically.
Modern mathematical finance is in many cases based on or at least motivated by
this model. Many different modifications and ameliorations have been introduced to
improve it. For their work Scholes and Merton received the Nobel Memorial Price
in Economic Sciences in 1997.

1



1.1 The Black-Scholes model

We assume that the market in the BS model consists of n ∈ N assets or stocks
S1, . . . , Sn and a money market account where money can be borrowed or invested
at a constant interest rate r ≥ 0. The dynamics of the assets are modelled by a
stochastic process, which we will introduce in the following.

Definition 1.1 (Wiener process1).
A stochastic process {Wt}0≤t≤T is called Wiener process, if:

1. W0 = 0.

2. Wt is continuous in time.

3. The random variable Wt is normally distributed: Wt ∼ N1(0, t). That is, it
has expected value E(Wt) = 0 and variance V ar(Wt) = t.

4. For 0 ≤ t1 < t2 ≤ t3 < t4 ≤ T the increments Wt1 −Wt2 and Wt3 −Wt4 are
stochastically independent.

With the definition of a Wiener process we now define the driving process of the
market within the Black-Scholes model.

Definition 1.2 (Geometric Brownian2 motion).
A stochastic process {St}0≤t≤T ⊂ Rn is called a Geometric Brownian motion if it
satisfies the stochastic differential equation

dSt = adiag(St)dt+ bdiag(StdW t,

whereW t = (W1,t, . . . ,Wn,t)
T is an n-dimensional Wiener process with stochastically

independent scalar Wiener processes W1,t, . . . ,Wn,t, a ∈ Rn a vector, and b ∈ Rn×n

a matrix.

For a detailed introduction to stochastic processes in finance we refer the reader to
the book of Shreve [Shr04].

For each asset Sµ a volatility σµ ∈ R+, µ ∈ In := {1, . . . , n} is known. Furthermore,
for two assets Sµ and Sν , µ 6= ν, a correlation ρµ,ν ∈ [−1, 1] is known. Of course, we
have ρµ,µ = 1, µ ∈ In.
The model is based on several assumptions which are restrictive in some ways.

Assumption 1.3.
The market in the BS model is assumed to satisfy the assumptions that

1The name is due to the mathematician Norbert Wiener.
2The name is due to the botanist Robert Brown who analysed the movement of pollen in water.

2



1.1 The Black-Scholes model

• the interest rate r ≥ 0 and the dividends δµ ≥ 0, µ ∈ In, are constant3,

• the volatility σµ, µ ∈ In and the correlations ρµ,ν , µ 6= ν, µ, ν ∈ In, are constant,

• the market is frictionless that is (i. e.) there are no fees like transaction costs
or taxes, every information is accessible for every market participant, every
stock can be traded at every time and in every amount, and single transactions
do not influence the price of an asset,

• the dynamic of each asset is given by Geometric Brownian motion,

• there is no arbitrage in the market, i. e. no market participant can expect a
positive payment without taking any risk.

In Assumption 1.3 there obviously are some crucial points that do not match the real
world market. For modifications and ameliorations compare the literature mentioned
in Chapter 1.2. Especially the assumption of constant volatilities and correlation
will be relaxed in this work.

Going on from Assumption 1.3, we introduce the fundamental stochastic differential
equation of the BS model. Let γ′BS ∈ Rn×n be the covariance matrix of the n assets:
(γ′BS)µ,ν = σµσνρµ,ν . Since γ′BS is by construction symmetric positive definite, the
unique Cholesky decomposition exists. Let γBSγTBS = γ′BS.
Then the classical Black-Scholes model for n dividend-paying assets S1, . . . , Sn is
given by

dSµ,t = (r − δµ)Sµ,tdt+
n∑
ν=1

(γBS)µ,νSν,tdWν,t, µ ∈ In, (1.1a)

⇔ dSt = (r − δ)diag(St)dt+ γBSdiag(St)dW t, (1.1b)

with the vector notation mentioned in Definition 1.2. The vector r contains the rate
r in each component and the vector δ contains the specific dividend rates δµ at the
relevant component. We say that the process {St} ⊂ Rn

+ has drift (r − δ)diag(St)

and diffusion γBSdiag(St) where diag(v) is a diagonal matrix with the vector v on
its diagonal. By construction of (1.1) the process Sµ,t and Sν,t are correlated with
ρµ,ν , see for example [Shr04].

The value function of the derivative, we want to price, is denoted by V (t, St) for
St ∈ Rn

+, t ∈ [0, T ]. At t = T the value is given by the payoff function ΨA(ST ),

3In the original model the assets were also assumed to be dividend-less. But dividends can easily
be included if they are assumed to be at a constant rate.
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1.1 The Black-Scholes model

where ΨA is the payoff of the option of type A. Our aim is now to determine the
current (t = 0) value V (t, St) of a European style option . That is: only at t = T

the owner of the option gets V (T, ST ) = ΨA(ST ). The option cannot be exercised
during its runtime. For different choices of Ψ, see (s.) below.
By constructing a self-financing portfolio whose value in t = T is equal to the
derivative’s value, we obtain a pde for V by using the Lemma of Itô , cp. [Shr04],
and the no-arbitrage assumption. The equation is the famous Black-Scholes equation
for n assets:

∂V

∂t
+

1

2
tr

((
∂2V

∂Sµ∂Sν

)
µ,ν

diag
(
S
)
σσTdiag(S)

)

+
n∑
ν=1

(r − δν)Sν
∂V

∂Sν
− rV = 0, 0 ≤ t < T,

(1.2)

V (ST , T ) = Ψ(ST ).

The interested reader is referred to the original works of Black and Scholes [BS73]
and Merton [Mer73] and the books of Shreve [Shr04] and Levy [Lev04] to get a
detailed insight in the derivation of the BS equation (1.2).

For American options it has to be taken into account that at every time 0 ≤ tex ≤ T

the owner of the option can exercise at tex and receives the payoff Ψ·(Stex). The
value of such an option is determined by a linear complementary problem. If we
write

LnBS :=
1

2
tr

((
∂2V

∂Sµ∂Sν

)
µ,ν

diag(S)σσTdiag(S)

)
+

n∑
ν=1

(r − δν)Sν
∂V

∂Sν
− rV,

it is given by:

∂V

∂t
+ LnBS(V ) ≤ 0(

∂V

∂t
+ LnBS(V )

)
(V −Ψ) = 0

V ≥ Ψ

(1.3)

The derivation of (1.3) can be found in the article of Jaillet, Lamberton, and Lapeyre
[JLL90] and the book of Lamberton and Lapeyre [LL08]. The approach introduced
above is not the only one to price American options via pdes, see for example the
algorithm of Brennan and Schwartz [BS77]. But for options with possibly non-
convex payoffs or those depending on several assets it is the most workable. For the
numerical solution of the complementary problem see Section 2.4.
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1.1 The Black-Scholes model

In the remainder of this section we introduce different types of options, some of
which we will analyse in the following chapters. We will consider standard options
and several ones of exotic type like butterfly options. For an overview over more
exotic payoffs we confer to the books of Deutsch [Deu09] and Wilmott, Dewynne,
and Howison [WDH00].

The simplest options on one asset are Vanilla options, the European put, and the
European call. They are the standard instruments at a derivative market and are
for example used to hedge a position in a stock or to speculate on growing stock
prices. Their payoff for a given strike price K is given via

ΨP (S) := max{S −K, 0} and ΨC(S) := max{K − S, 0}.

For ease of notation we will write (S)+ := max{S, 0}.
Furthermore, we will consider some options which are not that standard. The first
ones are the butterfly spread and the digital call respectively put. Their payoff
functions are defined as follows

ΨBfS(S) :=


S −K + α, K − α ≤ S < K

K + α− S, K ≤ S ≤ K + α

0, otherwise

, α ∈ [0, K],

ΨDiC(S) :=

0, S < K

1, S ≥ K
, and ΨDiP (S) :=

1, S < K

0, S ≥ K
.

In Figure 1.1 two payoff functions are plotted.
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Fig. 1.1: Payoff of a butterfly spread (left) and a digital call (right) with
K = 20 and α = 5.

The last class of exotic options are barrier options. The value directly depends on
the realised development of the stock price. If the price oversteps (up) or undercuts
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1.1 The Black-Scholes model

(down) a predefined barrier B, it comes into existence (in) or its existence is extin-
guished (out). By combining these four characteristics and the distinction between
put and call, there are eight possible barrier options. In Figure 1.2 the payoff of an
up-in call and a down-out put are diagramed.
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Fig. 1.2: Payoff of a (knocked in) up-in call (left) with B = 26 and a down-
out put (not knocked out) (right) with B = 8. It is K = 20.

The payoffs of these two options are given by

ΨuiC(S) :=

(S −K)+, ∃t ∈ [0, T ] : St ≥ B

0, otherwise

and

ΨdoP (S) :=

0, ∃t ∈ [0, T ] : St ≤ B

(K − S)+, otherwise
.

For the remainder of the six other barrier options see for example the book of
Wilmott, Dewynne, and Howison [WDH00].
In opposite to the Vanilla options, the payoffs of the latter ones are not convex and
for the digital and the barrier options not even continuous. These properties will
make them interesting for the non-linear model we are going to analyse.

There are four different standard types of options on several assets: minimum and
maximum options and geometric and arithmetic average options. Each of them can
be constructed as a put as well as a call.
For a given strike price K we have

ΨMinP (S1, . . . , Sn) := (K −min(S1, . . . , Sn))+ and

ΨMaxC(S1, . . . , Sn) := (max(S1, . . . , Sn)−K)+
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1.1 The Black-Scholes model

for a minimum put and a maximum call, s. also Figure 1.3.
The payoffs of the geometric average put and the arithmetic-average call are given
by

ΨGeoP (S1, . . . , Sn) :=

K −( n∏
i=1

Sni

) 1
n

+

and

ΨAriC(S1, . . . , Sn) :=

(
1

n

n∑
i=1

Si −K

)+

for a fixed strike price K. For all payoffs a capped version can be constructed by
defining

ΨcA(S1, . . . , Sn) = min{ΨA(S1, . . . , Sn), α}, α ∈ R+,

s. also Figure 1.3.
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Fig. 1.3: Payoff of a minimum put (left) and a capped minimum put (right)
with K = 20, α = 12. (Notice the rotation of the axis.)

The remaining payoffs can be constructed in an analogous way.
Another type of basket option is the extension of the butterfly spread for two un-
derlying assets. For a strike price K and a constant α ∈ R+ its payoff is given
by:

ΨBfS(S1, S2) := (max(S1, S2)−K + α)+ + (max(S1, S2)−K − α)+

−2(max(S1, S2)−K)+

which is plotted in Figure 1.4.

All introduced payoffs share the property that they are not differentiable. For the
barrier options the payoff is not even continuous.
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1.2 Uncertain Volatility model
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Fig. 1.4: Payoff of a butterfly spread on two assets with K = 20 and α = 5.

1.2 Uncertain Volatility model

It is well known that the model developed by Black, Scholes [BS73], and Merton
[Mer73] is based on assumptions that do not take into account some of the basic dy-
namics of the market. In the model volatility is assumed to be independent of time,
asset value, etc. Instead it is a commonly known effect that the implied volatility
calculated of market data is not constant. But it varies depending among others on
the strike price which gives the so called volatility smile, confer (cf.) [CF02, Shi93].
Furthermore, modelling correlation is in general a difficult task. It often is only
modelled for different asset classes, cf. [LS95].
Therefore, many different approaches have been developed in order to include non-
constant volatility. One important example is the Heston model [Hes93]. Here the
dynamic of volatility itself is modelled by an Ornstein-Uhlenbeck process. Another
example is the ansatz of Dupire [Dup94]. He modelled volatility as a deterministic
function of strike and maturity of derivatives traded at the market. The function
itself is the solution of a pde.

In this chapter we introduce the Uncertain Volatility model developed independently
by Avellaneda, Levy and Paras [ALP95] and Lyons [Lyo95] in 1995. Here no assump-
tions about a driving process or a deterministic function for the volatility are made.
The only point, we will assume, is that each volatility and correlation lies somewhere
in between given specific upper and lower bounds, respectively. Considered this way,
the model is quite general. In the resulting pricing equation, the actual volatilities
and correlations depend on different derivatives of the value function.
Since classical solutions of the derived pricing equations do not have to exist, we
shortly introduce the concept of viscosity solution. Finally, we remind the reader
which requirements schemes for the discrete pricing equation have to fulfil in order
to converge to the desired solution.
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1.2 Uncertain Volatility model

Assume that there are given n assets S1, . . . , Sn with volatility σµ, µ ∈ In, and cor-
relations ρµ,ν , µ, ν ∈ In, between two assets Sµ and Sν . Of course ρµ,µ = 1, µ ∈ In.
For all of the above parameters no assumptions on driving processes or other depen-
dencies are made. We only assume that we know intervals in which the volatil-
ities and correlations can take values. Let Vµ := [σµ, σµ] ⊂ R+, µ ∈ In, and
Cµ,ν := [ρ

µ,ν
, ρµ,ν ] ⊂ [−1, 1], µ, ν ∈ In, be the intervals for the volatilities and the

correlations, respectively:

σµ ∈ Vµ, µ ∈ In, and ρµ,ν ∈ Cµ,ν , µ, ν ∈ In (1.4)

To handle all possible combinations of volatilities and correlations, we will define
the so called set of admissible covariance matrices.

Definition 1.4 (set of admissible correlation matrices).
The set of admissible covariance matrices Γ′n is defined as the set of all correlation
matrices which is obtained by choosing σµ ∈ Vµ, µ ∈ In, and ρµ,ν ∈ Cµ,ν , µ, ν ∈ In.

Γ′n :=
{
γ′ ∈ [−1, 1]n×n | γ′ = (σµσνρµ,ν)µ,ν , σµ ∈ Vµ, ρµ,ν ∈ Cµ,ν , µ, ν ∈ In

}
(1.5)

For each element γ′ ∈ Γ′n we now define the set of admissible volatilities as the set
of Cholesky decompositions of all admissible correlation matrices. Since these are
positive definite [Kwo08] by construction they can be decomposed in the required
way [GvL96].

Definition 1.5 (set of admissible volatilities).
The set of admissible volatilities is defined as

Γn :=
{
γ ∈ Rn×n | γγT = γ′, γ′ ∈ Γ′n

}
. (1.6)

Starting with these preliminaries, we can now introduce the Uncertain Volatility
model. Finally, we receive a non-linear pde which can be used to value financial
derivatives in this model.
Let {σt} = {(σµ,νt )} , µ, ν = 1, . . . , n, t ≥ 0, be an arbitrary stochastic process defined
over A(Γ) which is the smallest sigma algebra (cf. [Fel08]) defined by the set of
admissible volatilities Γn. We model the dynamics of the n assets by Geometric
Brownian motion where {σt} represents volatility. Let {Wµ,t}, µ ∈ In, be n stochastic
independent Wiener processes [Fel08]. The single process for the µ-th asset will be
denoted by Sµ,t, µ ∈ In. Then our model is given by the stochastic differential
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1.2 Uncertain Volatility model

equations

dSt = rStdt+ diag(St)σtdW t, (1.7a)

⇔ dSµ,t = rSµ,tdt+
n∑
ν=1

σµ,νt Sν,tdWν,t, µ ∈ In. (1.7b)

Up to the volatility {σt}, equation (1.7) is identical to the multi-dimensional BS
model.

Using a super-replication approach via delta-hedging (see also Subsection 1.3.1) and
the lemma of Itô, compare (cp.) [Shr04], the following pricing equation can be
derived for the value of a European option during time [ALP95, Lyo95].

Problem 1.6 (Valuing European options).
Solve

∂V

∂t
+

1

2
max
σ∈Γn

{
tr

((
∂2V

∂Sµ∂Sν

)
µ,ν

diag(S)σσTdiag(S)

)}

+
n∑
ν=1

(r − δν)Sν
∂V

∂Sν
− rV = 0, 0 ≤ t < T,

(BSBn)

V (T, ST ) = Ψ(ST )

on Ωn := [0, T ]× Rn
+.

In the literature the equation (BSBn) is also known as the Black-Scholes-Barenblatt
equation4. It is a non-linear partial differential equation of Hamilton-Jacobi-Bellman
type. For results on the existence and the uniqueness of the viscosity solution of
(BSBn) and its properties see Section 1.3.1.

Example 1.7 (Black-Scholes-Barenblatt equation for one asset).
In the case of one asset the volatility σ1 is assumed to lie in the interval [σ1, σ1].
The pricing equation for the option value V (t, S1,t), (t, S1,t) ∈ Ω1, for a European
vanilla option is then determined by

∂V

∂t
+

1

2
S2

1σ
2
1

(
∂2V

∂S2
1

)
∂2V

∂S2
1

+ (r − δ1)S1
∂V

∂S1

− rV = 0, 0 ≤ t < T (BSB1)

V (T, S1,T ) = Ψ(S1,T )

4This denomination stems from Avellaneda, Levy and Lyons [ALP95] who chose the name after
the physicist G.I. Barenblatt. He introduced an equation with similar structure compared to
the Black-Scholes-Barenblatt-equation (BSBn) [Bar96].
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1.3 Viscosity solutions

where

σ1(x) :=

σ1, sign (x) > 0

σ1, else

holds, cf. [ALP95].
Up to the volatility function σ(·) the structure of equation (BSB1) is strongly remi-
niscent to the BS equation.

For options of American style we assume that the value is given by a complementary
problem [JLL90, WDH00].

Problem 1.8 (Valuing American options).
Solve

∂V

∂t
− FBSB

(
t, x, V,DxV,D

2
xV
)
≤ 0,

V −Ψ ≥ 0,(
∂V

∂t
− FBSB

(
t, x, V,DxV,D

2
xV
))

(V −Ψ) = 0,

Here

FBSBn(t, x, u, a, A) := −1

2
max
σ∈Γ

{
tr
(
A diag(x)σσTdiag(x)

)}
−

n∑
ν=1

(r − δν)xνaν + ru,

DxV , and D2
xV respectively denote the gradient and the Hesse matrix of V with

respect to x.

Remark 1.9.
For the linear version of Problem 1.8 it is a known result that the price of an Amer-
ican option is given by the linear complementary problem, s. for example the paper
of Jaillet, Lamberton, and Lapeyre [JLL90]. For the BSB model we do not know
about a similar result and thus we have to assume that the non-linear complemen-
tary problem is the right representation.

1.3 Viscosity solutions

Non-linear partial differential equation do not have a classical solution in the sense
that it is continuously differentiable. Therefore, the concept of viscosity solution
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1.3 Viscosity solutions

has been developed in the 90s.
This section is subdivided into three smaller parts. In the first one we give a short
introduction to viscosity solutions. Only the principals and the results we will need in
the sections hereafter are reviewed. The second part treats properties like existence
and uniqueness of the viscosity solutions for the BSB equation. It possesses a nice
financial interpretation as we will see later on.
In the third part we consider the viscosity solution from a numerical point of view.
To ensure convergence of a given scheme to this solution, it has to satisfy certain
assumptions. The main result in this field stems from Barles and Souganidis [BS90].
We introduce the necessary notation for the schemes and finally state their result.

The following example illustrates, that non-linear pdes do not have a solution in the
classical sense in general, cf. [Eva10].

Example 1.10 ([Eva10, FS06]).
We are looking for a solution of the non-linear pde of Eikonal5 type

|u′(t)| = 1, t ∈ (−1, 1), u(−1) = u(1) = 0 (1.8)

If we assume a classical solution to exist, then by the mean value theorem of differ-
ential calculus, there has to be a ξ ∈ (−1, 1) for which u′(ξ) = 0 holds true. Thus,
there is no classical solution.

In order to circumvent this fact, the concept of viscosity solution has been developed
by Crandall and Lions in the 90s, cf. [CL83]. A nice survey article on this subject has
been published by Crandall, Ishii, and Lions [CIL92]. More basic information can be
found in the books of Bardi and Dolcetta [BD97], Kushner and Dupuis [KD01], and
Fleming and Soner [FS06]. Especially in the financial context the viscosity solution
is a meaningful solution [DL97, FS06, Chapter X].
The idea of viscosity solutions is to construct the solution of a pde via test functions.
Loosely speaking, the viscosity solution itself will be enfolded by these from above
and below. The properties they possess can be transferred to the viscosity solution
of the pde.

Consider the general pde

∂u

∂t
− F

(
t, x, u,Dxu,D

2
xu
)

= 0, (t, x) ∈ Ω (1.9)

on a compact domain Ω where F is continuous and F : R×Rn×R×Rn×S(n)→ R
5Eikonal equations are a special type of non-linear pdes which are for example used in physics.
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1.3 Viscosity solutions

and S(n) ⊂ Rn×n is the set of symmetric matrices.
We now introduce some notation which will be needed to formulate the definition
of the viscosity solution.

Notation 1.11.
Let A = (ai,j)i,j, B = (bi,j)i,j ∈ Rn×n, i, j ∈ In, be matrices. We write

A > B, A ≥ B, A < B, A ≤ B

if for any pair of indices (i, j) the condition ai,j > bi,j, ai,j ≥ bi,j, ai,j < bi,j, ai,j ≤ bi,j

holds true, respectively.
The same notation is used for vectors.

In order to give a meaningful definition of viscosity solutions, F should satisfy the
following assumptions, cp. [CIL92].

Assumption 1.12.
Assume that for every u, v ∈ R, u ≤ v,

F (t, x, u, a, A) ≥ F (t, x, v, a, A), (1.10)

holds true where (t, x) ∈ Ω, a ∈ Rn, and A ∈ Rn×n.
Furthermore, assume that for every A,B ∈ Rn×n, A ≤ B,

F (t, x, u, a, A) ≤ F (t, x, u, a, B), (1.11)

where (t, x) ∈ Ω, u, a ∈ Rn, is satisfied.

If F fulfils (1.10), it is called proper and elliptic if (1.11) is satisfied. Assumption
1.12 as a whole is called monotonicity assumption.

Remark 1.13.
In the publication [CIL92] these assumptions are formulated for the elliptic case

F (x, u,Dxu,D
2
xu) = 0.

The parabolic case (1.9) can be transformed to this one by considering the n + 1-
dimensional problem with state variable (t, x) ∈ Rn+1, cf. [Lio83, CIL92].

We now define the viscosity solution of the pde (1.9) in two steps. First, we define
viscosity sub- and supersolutions in
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1.3 Viscosity solutions

Definition 1.14 (viscosity sub- and supersolution of a pde).
Let a pde of the form (1.9) be given. Let F satisfy Assumption 1.12. A function v is
called viscosity supersolution of equation (1.9) if for all test functions u ∈ C1,2(Ω),
where (x∗, t∗) ∈ Ω is a minimum of v − u, the inequality

∂

∂t
u(t∗, x∗)− F

(
t∗, x∗, u(t∗, x∗), Dxu(t∗, x∗), D2

xu(t∗, x∗)
)
≥ 0 (1.12)

is satisfied.
A function is called viscosity subsolution of equation (1.9) if we replace “minimum”
by “maximum” and “≥” by “≤” in (1.12) of the above definition.

Now, we can define the viscosity solution for pde of type (1.9).

Definition 1.15 (viscosity solution of a pde).
A function v is called a viscosity solution of the pde (1.9) if it is both a viscosity
sub- and a viscosity supersolution.

Example 1.16 (Continuation of Example 1.10).
Although equation (1.8) has no classical solution, v(t) = 1−|t| is a viscosity solution.
For all t ∈ [−1, 1]\{0} v is differentiable and solves (1.8). Thus, for every test
function u ∈ C1([−1, 1]) where v−u has a maximum / minimum at t0 ∈ [−1, 1]\{0}
the inequality (1.12) holds true with equality.
The interesting point is t0 = 0. Let t0 be a maximum of v − u with u(t0) = v(t0).
We have −|x| ≤ v(x)− v(0) ≤ u(x)− u(0). By this inequality we obtain |u′(t0)| ≤ 1

in the limit. Therefore, v is a subsolution of (1.8) for all t ∈ [−1, 1]. On the other
hand, if we assume that t0 is a minimum, we do not obtain the same limits for the
derivative from the right and the left, respectively. This means that there are no test
functions touching v from below and v trivially is a viscosity supersolution for all
t ∈ [−1, 1]. Collectively, v is a viscosity solution of equation (1.8).

Now that we have defined the viscosity solution for the parabolic pde (1.9) the
interesting question is what types of equations satisfy Assumption 1.12. In the pub-
lication [CIL92] a couple of examples are given. One of them is a general Hamilton-
Jacobi-Bellman (HJB) pde which includes the BSB equation (BSBn).
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1.3 Viscosity solutions

1.3.1 Viscosity solution of the Black-Scholes-Barenblatt

equation

First we state that the BSB equation (BSBn) satisfies Assumption 1.12. Then we
will restate a result proven by Vargiolu [Var01].

Lemma 1.1.
The Black-Scholes-Barenblatt equation (BSBn) satisfies

1. inequality (1.10) if r ≥ 0 holds true and

2. inequality (1.11) if σσT is positive definite.

Thus, Assumption 1.12 is satisfied if 1. and 2. hold.

The proof of the lemma is left to the reader.

Remark 1.17.
The converse of statement 1.1. in Lemma 1.1 is also true [ALP95].

Remark 1.18.
In an economical context the first statement of Lemma 1.1 is negligible in a normal
economical environment. On the contrary, the second one is crucial. The set of
admissible correlation matrices Γ′ (s. Definition 1.4) also could contain matrices
where γ′ ≥ 0, is violated. Thus, the Black-Scholes-Barenblatt operator is not elliptic
for all choices of correlation matrices.
To ensure the operator to be elliptic and thus have a well defined concept of viscosity
solution, we will restrict ourselves to positive definite covariance matrices in the
following.

The remaining open question for the rest of this section is: when does a viscosity
solution of the Black-Scholes-Barenblatt equation (BSBn) exist? One answer to this
question is the result proven by Vargiolu [Var01].

The following assumption summarises the necessary properties of model (1.7) which
have to be fulfilled to apply the results of Vargiolu.

Assumption 1.19.
As in the stochastic process (1.7), let f(S, σ) = rS and g(S, σ) = diag(S)σ on
Rn × Γn denote the convection and the diffusion terms, respectively.
It is assumed that
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1.3 Viscosity solutions

1. f, g are continuous,

2. for σ ∈ Γn fix f(·, σ), g(·, σ) are continuous differentiable,

3. there are constants c1, c2 ∈ R+ so that |DSf |, |DSg| ≤ c1 and |f(0, σ)| +
|g(0, σ)| < c2,

4. if Ψ̃ is a continuous extension of Ψ on Rn, then |Ψ̃(S)| ≤ c3(1 + |S|k) for
c3 ∈ R+, k > 0.

It is clear that Assumption 1.19 is satisfied by model (1.7). We now state the
existence and uniqueness result for the viscosity solution of equation (BSBn).

Theorem 1.2.
Let the set of admissible volatilities Γn be compact. Furthermore, let Assumption
1.19 hold and let the payoff Ψ(S) be continuous on Rn.
Then there exists a unique viscosity solution V (S, t) of the Black-Scholes-Barenblatt
equation (BSBn) on [0, T ]× Rn

+ with V (S, T ) = Ψ(S).

For further details on how the value function V (S, t) can be constructed via delta-
hedging arguments compare the paper of Vargiolu.

As already mentioned earlier the viscosity solution of the BSB equation is con-
structed via a super-replication strategy. It is impossible to exactly replicate the
option value by a hedging portfolio, since the market is incomplete due to the un-
known volatility.
As for the BS model, a self-financing portfolio Πt(mt, DSV (S, t)) consisting of a
certain number of units mt in the money market account and

(
DSV (S, t)

)
µ
units of

asset Sµ, µ ∈ In, is constructed at every time t ∈ [0, T ]. Here V (S, t) denotes the
viscosity solution of equation (BSBn).
The following theorem has been proven by Romagnoli and Vargiolu [RV00].

Theorem 1.3.
If V (S, t) ∈ C1,2(Rn

+ × [0, T ]) is a solution of the Black-Scholes-Barenblatt equation
(BSBn), then the above strategy is a super-hedging strategy. That is Πt ≥ V (S, t),
for all t ∈ [0, T ]. Furthermore, there is no super-hedging strategy for a V ′(S, t)

solving (BSBn) with V ′ < V .

The theorem above shows that the viscosity solution of the BSB equation is the min-
imal super-hedging strategy. At t = 0 the super-hedging portfolio Πt opens up the
possibility to make arbitrage by holding a short position in the option and buying the
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1.3 Viscosity solutions

portfolio. At time t = T an investor would receive the amount PT − V (ST , T ) ≥ 0.
Thus, the value V (S, t), t ∈ [0, T ] gives an upper bound for arbitrage free prices of
the contingent claim.
Similarly, if we solve the BSB equation with a minimisation instead of a maximisa-
tion, we would obtain a value giving a lower bound for the arbitrage-free prices of
the contingent claim.
Summing up, all option prices VBS(S, t) calculated in the BS model with a fixed
correlation matrix γ ∈ Γn lie in between the values V min

BSB(S, t) and V max
BSB(S, t) cal-

culated in the BSB model with minimisation and maximisation, respectively.

It has also been proven in the publication of Romagnoli and Vargiolu that for the
log-price version of the Black-Scholes-Barenblatt equation and for regular γ ∈ Γn

the smoothness conditions of Theorem 1.3 are fulfilled, cp. [RV00, Theorem 5]. The
transformed Black-Scholes-Barenblatt equation is given by

∂v

∂τ
− 1

2
max
σµ∈Vµ

ρµ,ν∈Cµ,ν
µ,ν∈In


n∑
µ=1

σ2
µ

(
∂2v

∂x2
µ

− ∂v

∂xµ

)
+

n∑
µ,ν=1
µ 6=ν

2σµσνρµ,ν
∂2v

∂xµ∂xν


−

n∑
µ=1

(r − δµ)
∂v

∂xµ
+ rv = 0,

for details see Section 2.1. Here τ = T − t denotes backward time.
Thus, under the assumption that the correlation matrices are positive definite, we
always will assume this property.

1.3.2 Numerical convergence to the viscosity solution

To solve the BSB equation (BSBn) numerically for a given n, we transfer it into a
discretisation scheme which is solved instead. In this section we examine abstractly
under which conditions convergence of the discrete solution to the continuous is
given if the scheme is refined. The findings presented here serve as basis for all
following convergence results. Otherwise we cannot guarantee convergence form a
theoretical point of view. Practical examples where certain schemes do not con-
verge to the viscosity solution can be found in [Poo03]. On the other hand, there
are schemes whose convergence cannot be proven but nevertheless seem to converge
[Hei09].

Additionally to the classical conditions consistency and stability, an important prop-
erty is the monotonicity of the scheme (s. Definition 1.23).
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1.3 Viscosity solutions

Let us consider a general pde of the form (1.9)

∂v

∂t
− F

(
t, x, v,Dxv,D

2
xv
)

= 0, (t, x) ∈ Ω (1.13)

and assume that a unique viscosity solution of this equation exists.
The discretisation of this pde is constructed on a grid G. In order to properly denote
a grid, we use

Notation 1.20 ((n+ 1)-dimensional grid).
Consider a given space Ωn. Let L ∈ N be the number of grid points in time. Each
time level is denoted by ti, i ∈ JL, where Jn := {0, . . . , n}. At every time level
a specific spatial grid is given. For each the number of nodes is M0, . . . ,ML ∈ N,
respectively. For the spatial grid points we use the notation xi

j
∈ Rn, j ∈ JM i , i ∈ JL.

For a regular grid in several spatial dimensions the index j is the lexicographical
index, cp. also Notation 2.5. If M i

1, . . . ,M
i
n ∈ N denote the number of spatial grid

points at time level i for the different spatial directions, we have M i =
∏n

j=1 M
i
j .

By S i :=
{
xij | j ∈ JM i

}
⊂ Rn we denote the set of all grid points in space at time

level i.
The complete, possibly non-uniform grid in Ωn is then denoted by

G
(
L, {ti}, {S i},Ωn

)
={(ti, xij) ∈ [0, T ]× Rn | j ∈ JM i , i ∈ JL}.

By ∆t and H we denote the maximal step width in time and space, respectively.
If the spatial grid does not change across time levels, i. e. M0 = . . . = ML, we
denote the grid by G (L, {ti},S,Ωn) and only write M for ease of notation. In the
same way we omit the superindex i if the structure of the grid is time independent.

Let a grid G (L, {ti}, {S i},Ωn) be given on which we solve the discretised pde (1.13).
Let one time step from ti−1 to ti be described by the discrete equation

Di
(
vi; ti,S i, ti−1,S i−1, vi−1

)
= 0 (1.14)

where vi ∈ RM i is a vector with the entries vi
j
denoting the approximation to

V (ti, xi
j
), j ∈ JM i on the grid S i.
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1.3 Viscosity solutions

Example 1.21.
One time step of the Explicit Euler (EE) scheme on a uniform grid for the pde (1.9)
has the form

Di
(
vi; ti,S, ti−1,S, vi−1

)
=

vi − vi−1 − (ti − ti−1)
(
Fj(t

i−1, xi−1
j
, vi−1, Dxvi−1

j
, D2

xv
i−1
j

)
)
j∈JM

where Dxv
i−1
j

and D2
xv

i−1
j

denote discrete approximations to the first respectively
second derivative at the j-th node of the grid at time level ti with respect to x.

In order to properly define the monotonicity of a discrete scheme, we will need some
more notation for the discretisation (1.14).

Notation 1.22.
Let x ∈ Rn be a vector. Then by [x]i we denote the vector in Rn where the i-th
component of x is set to zero and the remaining ones stay unchanged: ([x]i)j =

xj, j ∈ In, j 6= i and ([x]i)i = 0.
For all time levels i ∈ IL at every grid point (ti, xi

j
) ∈ G (L, {ti}, {S i},Ωn), j ∈ JM i ,

we denote the discretisation by

Di
j

([
vi
]
j
, vi
j
; ti,S i, ti−1,S i−1, vi−1

)
= 0. (1.15)

Using this notation, we are able to consider the value at the current grid point and
at the remaining points separately.
With (1.15) we have

Di
(
vi; ti,S i, ti−1,S i−1, vi−1

)
=(

Di
j

([
vi
]
j
, vi
j
; ti,S i, ti−1,S i−1, vi−1

))
j∈JMi

.

We now give the definition of a monotone scheme. In order to keep the definition
short we a priori agree on a sign convention, s. Remark 1.24.

Definition 1.23 (Monotonicity of a scheme).
Let Di (vi; ti,S, ti−1,S, vi−1) = 0, i ∈ IL, be a discretisation of a pde of the form
(1.13) over Ωn following Notation 1.22. Furthermore, let G (L, {ti},S,Ωn) be a
uniform grid as introduced in Notation 1.20.
We call a discretisation Di(·) = 0 monotone if the following conditions hold for all
time levels i ∈ IL and grid all points (ti, xi

j
) ∈ G, j ∈ JM i:
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1.3 Viscosity solutions

1. For all εi−1, εi ∈ RM
+ the following inequality is valid:

Di
j

([
vi + εi

]
j
, vi
j
; ti,S, ti−1,S, vi−1 + εi−1

)
≤

Di
j

([
vi
]
j
, vi
j
; ti,S, ti−1,S, vi−1

) (1.16a)

2. For all εi
j
∈ R+ the following inequality holds:

Di
j

([
vi
]
j
, vi
j

+ εi
j
; ti,S, ti−1,S, vi−1

)
≥

Di
j

([
vi
]
j
, vi
j
; ti,S, ti−1,S, vi−1

) (1.16b)

Remark 1.24.
Let α be the coefficient in front of vi

j
if we write out discretisation Di

j
(·) in Definition

1.23 in full. We agree on the convention α ≥ 0. Otherwise the symbols “≤” and “≥”
in the inequalities (1.16a) and (1.16b) must be changed to “≥” and “≤”, respectively.

If the spatial grid is time-dependent, Definition 1.23 has to be extended to non-
uniform spatial grids.

Two additional definitions are needed to give a complete formulation of the conver-
gence theorem we want to formulate. We have to define when a scheme is consistent
and when it is stable.

Definition 1.25 (Stability of a scheme).
A numerical scheme Di (vi; ti,S, ti−1,S, vi−1) = 0 for a pde of form (1.9) is stable
regarding the maximum norm if for all time levels i ∈ IL the solution vi is bounded
independently of ∆t and H. That is, there exists a constant C ∈ R+ independent of
∆t and H so that

‖vi‖∞ ≤ C, i ∈ JL.

Definition 1.26 (Consistency of a scheme).
A numerical scheme Di (vi; ti,S, ti−1,S, vi−1) = 0 for a pde of form (1.9) is consis-
tent if ∣∣∣∣∂v∂t − F (t, x, v,Dxv,D

2
xv
)
−Di

(
vi; ti,S, ti−1,S, vi−1

)∣∣∣∣→ 0

for ∆t,H → 0.
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1.3 Viscosity solutions

The definitions given above are standard in the numerical literature and can for
example be found in the book [SB02].
Being prepared this way, it is possible to guarantee the convergence of a discretisation
to the viscosity solution of a pde. The main result has been established by Barles
and Souganidis [BS90, BDR95]. The result is as follows

Theorem 1.4 (Convergence to the viscosity solution).
Let a pde of the form (1.13) with unique viscosity solution v be given. Furthermore,
the pde is discretised on a grid G (L, {ti},S,Ωn) by a numerical scheme which is
given by the discretisation

Di
j

([
vi
]
j
, vij; t

i,S, ti−1,S, vi−1
)

= 0 (1.17)

at a grid point (ti, xj) ∈ G. For ∆t, H → 0 the approximation vi, i ∈ JL, solving
(1.17) converges to the unique viscosity solution v if the scheme is

1. consistent in the sense of Definition 1.26,

2. stable in the sense of Definition 1.25,

3. monotone in the sense of Definition 1.23,

and the equation satisfies the Strong Comparison Principle.

The proof of this theorem can be found for example in [BS90].

Theorem 1.4 gives a path to construct a scheme which converges towards the right
solution in the financial context. The first and the second condition will be no severe
difficulty in constructing such a scheme. The most challenging task is to maintain
monotonicity of the scheme and prove this property for a maximal set of model
parameters.

Remark 1.27.
From Definition 1.23 it is easy to see that at a grid point (ti, xi

j
) ∈ G the coefficients

in front of the variables vi
j
should be non-negative and additionally those in front

of vim,m ∈ IM ,m 6= j, should be non-positive. In the literature schemes with these
features are known as positive coefficient6 schemes. They have been investigated in
several publications. Among these are [WF08, ZFV01, ZFV03, FL07].

6In the cited publications the positive coefficient scheme is defined with inverse signs compared
to the postulation above. The sign convention is demanded for a matrix A, where B = I − A
is the iteration matrix. In this work we require the signs of B to fulfil this convention.
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1.3 Viscosity solutions

Lemma 1.5.
Let Ai ∈ Rn×n, i ∈ JL, be a matrix with non-positive off-diagonal entries and non-
negative diagonal entries, where all entries could possibly depend on t and x. The
index i displays the dependency of Ai of the current time level.
Then the discretisation scheme of a pde with one time step on a grid G (L, {ti},S,Ωn)

given by

Di
(
vi; ti,S, ti−1,S, vi−1

)
= Aivi − vi−1 − bi = 0, (1.18)

where bi ∈ Rn is a vector independent of vi−1 and vi, is monotone.

Proof.
We will directly verify the conditions of Definition 1.23.
Let εi−1, εi ∈ RM

+ be two vectors. Then for every grid point (ti, xi
j
) ∈ G we have

Di
j

(
[vi + εi]j , v

i
j
; ti,S, ti−1,S, vi−1 + εi−1

)
= Ai

j
vi + Ai

j

[
εi
]
j︸ ︷︷ ︸

≤0

−vi−1
j
− εi−1

j
− bi

j

aij,jε
i
j
=0

≤ Ai
j
vi − vi−1

j
− bi

j

= Di
j

(
[vi]j , v

i
j
; ti,S, ti−1,S, vi−1

)
,

where Ai
j
denotes the j-th row of Ai. Thus condition (1.16a) for monotonicity holds.

Moreover, for εi
j
∈ R+ we have

Di
j

(
[vi]j , v

i
j

+ εi
j
; ti,S, ti−1,S, vi−1

)
= Ai

j
vi + εi

j
Ai
j
ej − vi−1

j
− bi

j
aij,jε

i
j
≥0

≥ Ai
j
vi − vi−1

j
− bi

j

= Di
j

(
[vi]j , v

i
j
; ti,S, ti−1,S, vi−1

)
Thus also condition (1.16b) holds and the discretisation (1.18) is monotone.

�
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2 Monotone discretisations

In the previous chapter we have seen three criterions a discretisation scheme has to
satisfy in order to converge to the unique viscosity solution of a non-linear partial
differential equation. As we will see the one which is the most restrictive one is
monotonicity.
In this chapter we thoroughly analyse the applicability of general Finite Differ-
ence schemes which we will formulate for rectangular nonuniform grids. Sufficient
conditions to guarantee monotonicity are derived for different versions and dimen-
sionality of the pricing equation. A necessity is the distinction between one- and
multi-dimensional Finite Difference schemes since the criterions differ. Exemplarily
for the latter one, we consider the discretisation for the two-dimensional pricing
problem. The results obtained here can easily be transferred to higher dimensional
pricing problems.
In all cases we prove that we can construct a scheme which satisfies monotonicity
under specific assumptions and procedures. The grid on which the Finite Difference
schemes will be based is one key point in this context. In order to build a grid with
many sampling points in the area of interest without increasing their total num-
ber, we develop a method for building non-uniform grids. The discretisation matrix
associated with the resulting schemes possesses an immanent property which helps
proving their convergence.

In the first section we transform the Black-Scholes-Barenblatt equation for multi-
dimensional pricing problems. It is considered in backward time and with log-prices.
The main part of this chapter is the second section in which the Finite Difference
discretisation in space is performed. We commence with the two-dimensional pricing
problem in transformed coordinates and the properties of the corresponding grid.
We derive a general condition for the volatility set which has to hold so that the
desired properties can at all be preserved by skilled construction. In the following
section we focus on sufficient conditions for the spatial step sizes regarding mono-
tonicity.
Hereafter, we generalise the results towards the pricing of options on more than two
assets. In the last subsection of Section 2.2 we focus on the one-dimensional pricing
problem.
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2.1 Transformation of the Black-Scholes-Barenblatt equation

The schemes for the discretisation in time are introduced in Section 2.3. We finally
formulate the complete Finite Difference schemes for pricing European options in a
general form.
In the fourth section M-matrices are introduced and we address the M-Matrix prop-
erty of the discretisation matrix.
At last, the fifth section focusses on the problem of pricing American options and
introduces the well known penalty iteration to approach the associated complemen-
tary problem.

2.1 Transformation of the

Black-Scholes-Barenblatt equation

The Black-Scholes-Barenblatt equation (BSBn) is not discretised directly, but will
at first be transformed to log-prices and backward time. We define new variables

τ = T − t, t ∈ [0, T ], and xi = log

(
Si
K

)
, i ∈ In, (2.1)

where K is the strike price of the option. This means that we change the original
domain Ωn to Ω̃n := [0, T ]× Rn.
By transformation (2.1) we obtain the following Hamilton-Jacobi-Bellman equation
for an option on n assets

∂v

∂τ
− 1

2
max
σi∈Vi
ρk,l∈Ck,l
i,k,l∈In


n∑
i=1

σ2
i

(
∂2v

∂x2
i

− ∂v

∂xi

)
+

n∑
k,l=1
k 6=l

2σkσlρk,l
∂2v

∂xk∂xl


−

n∑
i=1

(r − δi)
∂v

∂xi
+ rv = 0,

(2.2)

compare the notations introduced in Section 1.2.
The existence of a solution v of equation (2.2) in the viscosity sense is guaranteed
by the used transformation, cp. the book of Bardi and Dolcetta [BD97], since a
viscosity solution of equation (BSBn) exists.

In the following text we will often use the term “controls” to comprise volatilities
and correlations. It stems of the context of Hamilton-Jacobi-Bellman equations.
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2.1 Transformation of the Black-Scholes-Barenblatt equation

Notation 2.1.
For the set of admissible controls we write

Θn :=
n⊗
i=1

Vi ×
n⊗

i,j=1,i 6=j

Ci,j ⊂ Rn+0.5(n−1)n.

A single control is denoted by γ ∈ Θn.

Now, we formulate the three pricing problems which are of basic interest for the
remainder of this thesis. We denote with vx and vxx the first and second order
continuous derivatives of v in x-direction, respectively.

Problem 2.2 (European options on one underlying asset).
Solve the equation

vτ −
1

2
max
σ1∈Θ1

{
σ2

1 (vxx − vx)
}
− rvx + rv = 0

v(0, x) = Ψ(x)

(2.3)

on Ω̃1.

Problem 2.3 (European options on two underlying assets).
Solve the equation

vτ −
1

2
max

(σ1,σ2,ρ1,2)∈Θ2

{
σ2

1 (vx1x1 − vx1) + 2ρ1,2σ1σ2vx1x2 + σ2
2 (vx2x2 − vx2)

}
−r (vx1 + vx2) + rv = 0

v(0, x1, x2) = Ψ(x1, x2)

(2.4)

on Ω̃2.

Pricing problems for options on more than two assets can be formulated analogously.
In short notation we rewrite (2.2) as

∂

∂τ
v + LnBSBv = 0, n ∈ N,

where LnBSB is defined accordingly.
The value of an American option is then assumed to be deterined by a non-linear
complementary problem.
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2.2 Spatial discretisation

Problem 2.4 (American Options on n underlying assets).
Solve

∂v

∂t
− LnBSBv ≤ 0,

v −Ψ ≥ 0,(
∂v

∂t
− LnBSBv

)
(v −Ψ) = 0,

on Ωn.

2.2 Spatial discretisation

The idea of Finite Differences is to approximate the derivatives of v via difference
quotients at every sampling point of a given grid. This proceeding results in a system
of equations which has to be solved at every spatial grid point and successively in
time.

We will approach the pricing problem with a general rectangular grid. We now
introduce the non-equidistant difference quotients for the first and second derivative
in a single direction. They can all be derived by Taylor expansion.
As usual we do not solve the pricing equation (2.2) on Ω̃n = [0, T ] × Rn, but we
solve (2.3) on a truncated domain ΩD

1 := [0, T ]× [xmin, xmax] and analogously (2.4)
on ΩD

2 := [0, T ]× [xmin1 , xmax1 ]× [xmin2 , xmax2 ].

Notation 2.5.
Let a grid G (L, {ti}, {S i},Ωn) ⊂ ΩD

n as in Notation 1.20 be given. The grid points in
xµ-direction, µ = 1, . . . , d, will be denoted by xν,iµ , ν ∈ JMµ. With our usual notation
we have

(τ i, xj) = (τ i, xν1,i1 , . . . , xνd,id ) ∈ G,

where j denotes the lexicographical ordering at each time level:

j = j(ν1, . . . , νd) :=
d∑

k=1

k−1∏
l=1

(M i
l + 1) + νk.

With hν,iµ := xν,iµ − xν−1,i
µ , ν ∈ IMµ, the spatial step sizes of the grid are denoted.

Without loss of generality (w. l. o. g.) we assume hν,iµ < H. The step width for the
discretisation in time is denoted by hiτ := τ i − τ i−1.

The difference quotients are introduced in
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2.2 Spatial discretisation

Notation 2.6.
Let us assume that a two-dimensional grid is given. We write vik,j for the approxi-
mation of v(τi, x

k
1, x

j
2). Then the spatial derivatives can be approximated as follows.

1. For the approximation first derivative we write

δfx1v
i
k,l :=

1

hk+1
1

(
vik+1,l − vik,l

)
, (2.5a)

δbx1v
i
k,l :=

1

hk1

(
vik,l − vik−1,l

)
, and (2.5b)

δcx1v
i
k,l :=

1

hk1 + hk+1
1

(
hk1
hk+1

1

vik+1,l −
(

hk1
hk+1

1

− hk+1
1

hk1

)
vik,l −

hk+1
1

hk1
vik−1,l

)
(2.5c)

for the forward, backward, and centered difference quotient, respectively.

2. For the approximation of the second derivative in x1-direction we write

δ2
x1
vik,l :=

2

hk+1
1 + hk1

(
vik−1,l

hk1
−
(

1

hk1
+

1

hk+1
1

)
vik,l +

vik+1,l

hk+1
1

)
. (2.6)

3. In a two-dimensional example the mixed derivative is approximated by

δ+
x1x2

vik,l :=
1

2hk1h
l
2

(
vik−1,l−1 − vik,l + hl2δ

·
x2
vik,l + hk1δ

·
x1
vik,l
)

− 1

2hk1h
l
2

(
1

2

(
hl2
)2
δ2
x2
vik,l +

1

2

(
hk1
)2
δ2
x1
vik,l

)
+

1

2hk+1
1 hl+1

2

(
vik+1,l+1 − vik,l − hl+1

2 δ·x2v
i
k,l − hk+1

1 δ·x1v
i
k,l

)
− 1

2hk+1
1 hl+1

2

(
1

2

(
hl+1

2

)2
δ2
x2
vik,l +

1

2

(
hk+1

1

)2
δ2
x1
vik,l

)
(2.7a)

and

δ−x1x2v
i
k,l := − 1

2hk1h
l+1
2

(
vik−1,l+1 − vik,l − hl+1

2 δ·x2v
i
k,l + hk1δ

·
x1
vik,l
)

+
1

2hk1h
l+1
2

(
1

2

(
hl+1

2

)2
δ2
x2
vik,l +

1

2

(
hk1
)2
δ2
x1
vik,l

)
− 1

2hk+1
1 hl2

(
vik+1,l−1 − vik,l + hl2δ

·
x2
vik,l − hk+1

1 δ·x1v
i
k,l

)
+

1

2hk+1
1 hl2

(
1

2

(
hl2
)2
δ2
x2
vik,l +

1

2

(
hk+1

1

)2
δ2
x1
vik,l

)
(2.7b)

The difference quotients in 1. and 2. are used in an analogue way if we approximate
derivatives in x2-direction. We use the notation δ·x1 to clarify that all three difference
quotients introduced for the first derivative can be used.
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2.2 Spatial discretisation

The difference quotient δ+
x1x2

for the mixed derivative can be constructed by choosing
a convex combination of the Taylor expansion of vik+1,l+1 and vik−1,l−1 and omitting
terms of higher order. In the same way the second one can be constructed by
considering vik−1,l+1 and vik+1,l−1. They are used in different situations, v. i.. The
difference quotients stated here can be found for example in the paper by Ikonen
and Toivanen [IT07]. If we work on a uniform grid, all difference quotients simplify
to the standard ones which can be found in the book of Seydel [Sey12], for example.

The accuracy of the single approximations can be derived by Taylor expansion. We
just state the results. The forward and backward difference quotients are first order
accurate:

δfx1v
i
k,l −

∂

∂x1

v(ti, xk1, x
l
2) =

1

2
hk+1

1

∂

∂x1

v(ti, ξ) +O
((
hk+1

1

)2
)

δbx1v
i
k,l −

∂

∂x1

v(ti, xk1, x
l
2) =

1

2
hk1

∂

∂x1

v(ti, ξ) +O
((
hk1
)2
)

For the centered difference quotient we have the error estimation

δcx1v
i
k,l −

∂

∂x1

v(ti, xk1, x
l
2) =

1

6
hk1h

k+1
1

∂3

∂x3
1

v(ti, ξ) + t. h. o.,

with the abbreviation t. h. o. used for terms of higher order. For the approximation
of the second partial derivative we obtain

δ2
x1
vik,l −

∂2

∂(x1)2
v(ti, xk1, x

l
2) =

1

6

(
hk1 − hk+1

1

) ∂3

∂x3
1

v(ti, ξ)

+
∂4

∂x4
1

v(ti, ξ)

(
hk1
)3

+
(
hk+1

1

)3

24(hk1 + hk+1
1 )

+ t. h. o.

Here ξ ∈ R2 always denotes an appropriately chosen point.

We now start to discretise equation (2.4).

2.2.1 Options on two assets

This section is the basis for all sections on spatial discretisation to follow. We intro-
duce notation which can be used analogously in the one- and general n-dimensional,
n > 2, case. The results which will be derived also apply to discretisations in dif-
ferent dimensions, cp. Section 2.2.3 and Section 2.2.4. The pricing problem is given
by Problem 2.3.
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2.2 Spatial discretisation

In their book [KD01] Kushner-Dupuis (KD) analyse the so called KD scheme for a
general class of HJB equations. These are discretised on a completely rectangular
and uniform spatial grid. In opposite to the present approach the KD scheme uses
one-sided difference quotients for the convection terms. They prove the monotonic-
ity of the scheme if all correlation matrices of the set Γn are diagonally dominant.
The approach in this thesis differs in the way the first derivatives are discretised.
As we will see, a consequence is that we have to take a close look at the spatial step
sizes. But we also might gain a scheme of higher order. Furthermore, we can prove
for the present scheme that it is applicable to a more general set of parameters.

Let a grid G (L, {ti}, {S i},Ω2)⊂ Ω̃D
2 as introduced in Notation 2.5 be given. For the

discretisation of equation (2.4) we assume a non-zero correlation ρ1,2 for the time
being. For the case ρ1,2 = 0 see Remark 2.14.

In Chapter 1.3.2 we pointed out that the off-diagonal elements of the discretisation
matrix have to be non-positive and the diagonal elements non-negative. This nec-
essary property reduces the number of possible answers to the question on how to
deal with convection dominance. That is, the coefficient multiplied to the convection
term is bigger than the one multiplied to the diffusion term. A sum of these coeffi-
cients amount to the elements of the discretisation matrix and thus determines its
sign. We will handle this task by an appropriate choice of the difference quotients.
It is important to keep in mind that convection dominance can occur “suddenly”
due to the uncertain character of volatility.
In order to do a complete discretisation of equation (2.4), we also will have to dis-
cretise the control (σ1, σ2, ρ1,2) ∈ Θ2. In the discrete setup, we must determine this
triple at every grid point. In this subsection we assume the controls to be constant,
but always keep in mind the more general case by adjusted notation. The sub-
script γ indicates this dependence. The discretisation of the controls and the final
determination of the “right” or “optimal” control is the topic of Chapter 3.

Notation 2.7.
Let a grid G (L, {ti}, {S i},Ω2) with M i grid points in space at each time level as
introduced in Notation 2.6 be given. With γik,l = (σi

1,j
, σi

2,j
, ρi

1,2,j
) ∈ Θ2 we denote the

discrete control at the grid point (τ i, xk1, x
l
2). To keep notation simple, we do not use

a time index at every single control. By the matrix γi = (γik,l)k,l ∈ ΘM i

n we denote
all controls on the grid in space at time level i, where ΘM i

n := (Θn)M
i×n.

The subscript γ combined with matrices, discretisations, etc. will denote their de-
pendence on the control.
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2.2 Spatial discretisation

Now we start discretising equation (2.4). For sake of simplicity we omit the time
index i since we consider a fixed time level τ i. For the time being let γ ∈ ΘM

n be fix.
We commence by looking at the discrete version of the equation at an inner grid
point with index (·, k, l), k = 1, . . . ,M1−1, l = 1, . . . ,M2−1. The time discretisation
is not yet performed.

Without loss of generality we will assume C1,2 ⊂ R+ and use the approximation
δ+
x1x2

for the mixed derivative in (2.4). For the other cases see Remark 2.18. At
an arbitrary inner grid point we obtain the following equation by rearranging terms
and using (2.7a):

vτ + dk,l1,γδ
2
x1
vik,l + dk,l2,γδ

2
x2
vik,l + ck,l1,γδ

·
x1
vik,l + ck,l1,γδ

·
x2
vik,l + (r − ak,l1,γ − a

k,l
2,γ)v

i
k,l

+ak,l1,γv
i
k+1,l+1 + ak,l2,γv

i
k−1,l−1 = 0,

(2.8a)

where

dk,l1,γ = −1

2
σ2

1,j
+

1

4
ρ1,2,jσ1,jσ2,j

(
hk1
hl2

+
hk+1

1

hl+1
2

)
, (2.8b)

dk,l2,γ = −1

2
σ2

2,j
+

1

4
ρ1,2,jσ1,jσ2,j

(
hl2
hk1

+
hl+1

2

hk+1
1

)
, (2.8c)

ck,l1,γ =
1

2
σ2

1,j
− r + δ1 −

1

2
ρ1,2,jσ1,jσ2,j

(
1

hl2
− 1

hl+1
2

)
, (2.8d)

ck,l2,γ =
1

2
σ2

2,j
− r + δ2 −

1

2
ρ1,2,jσ1,jσ2,j

(
1

hk1
− 1

hk+1
1

)
, (2.8e)

ak,l1,γ = −1

2
ρ1,2,jσ1,jσ2,j

1

hk+1
1 hl+1

2

, and (2.8f)

ak,l2,γ = −1

2
ρ1,2,jσ1,jσ2,j

1

hk1h
l
2

(2.8g)

In order to obtain a monotone scheme, our aim is to construct a seven or nine point
finite difference stencil for the space discretisation, which results in a matrix with
non-positive off-diagonal entries and non-negative diagonal-entries. We introduce
the following

Notation 2.8.
At a grid point with index (·, k, l) the difference stencil is denoted by: 0 ak,l+1

k,l,γ ak+1,l+1
k,l,γ

ak−1,l
k,l,γ ak,lk,l,γ ak+1,l

k,l,γ

ak−1,l−1
k,l,γ ak,l−1

k,l,γ 0

 (2.9)

The lower index (k, l, γ) denotes the grid point in consideration and the dependence
on the control. The upper indices tag the index of the corresponding option value
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2.2 Spatial discretisation

which is multiplied to the entries.
In the discretisation matrix the coefficients are placed in row j(k, l).
For the indices of the adjacent grid points to (xk1, x

l
2) we write

N(k, l) := {(k − 1, l), (k + 1, l), (k, l − 1), (k, l + 1), (k − 1, l − 1), (k + 1, l + 1)}.

Notice that if the correlation is negative equation (2.8a) and the stencil would be of
slightly modified form.

Going on from (2.8), the monotone scheme can be developed. The coefficients in
(2.8f) and (2.8g) represent the off-diagonal elements in the discretisation matrix.
Therefore, they have to be non-positive. Thus, due to the sign of vik+1,l+1 and
vik−1,l−1 in δ+

x1,x2
, we use this approximation for positive correlation.

Non-negativity condition. The next step is to assure the non-negativity of the
diffusion coefficients (2.8b) and (2.8c). In the remainder of this section we clarify
why we start from this point. For (2.8b) it is

dk,l1,γ ≤ 0 ⇔ hk1
hl2

+
hk+1

1

hl+1
2

≤
σ1,j

σ2,jρ1,2,j

+
σ1,j

σ2,jρ1,2,j

which is satisfied for

hk1 ≤
σ1,j

σ2,jρ1,2,j

hl2 and hk+1
1 ≤

σ1,j

σ2,jρ1,2,j

hl+1
2 . (2.10a)

Analogously, for

hl2 ≤
σ2,j

σ1,jρ1,2,j

hk1 and hl+1
2 ≤

σ2,j

σ1,jρ1,2,j

hk+1
1 (2.10b)

the inequality dk,l2,γ ≤ 0 holds true.
At every grid point the four inequalities in (2.10) have to be fulfilled. Moreover, we
have to take account of the fact that volatilities and correlations are determined by
a bandwidth and not a single figure. For fixed controls (2.10a) and (2.10b) hold true
if

σ1,jρ1,2,j

σ2,j

hl2 ≤ hk1 ≤
σ1,j

σ2,jρ1,2,j

hl2,
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2.2 Spatial discretisation

for all k, l. We now also take the constraints on volatility and correlation into
account. The inequalities to hold become

Ξd
1,2h

l
2 ≤ hk1 ≤ Ξu

1,2h
l
2 with

Ξu
1,2 :=

σ1

σ2 ρ1,2

and Ξd
1,2 =

σ1 ρ1,2

σ2

(2.11)

for all k ∈ IM1 , l ∈ IM2 .

A consequence of (2.11), which a priori has to be fulfilled by the model itself, is

Assumption 2.9.
For the coefficients Ξd

1,2 and Ξu
1,2 depending on the bounds of the control we assume

the inequality

Ξd
1,2 ≤ Ξu

1,2

to hold true.

With the same argumentation presented above we obtain

1

Ξu
1,2

≤ hl2
hk1
≤ 1

Ξd
1,2

, k ∈ IM1 , l ∈ IM2 , ⇒ dk,l2,γ ≤ 0.

Thus, Assumption 2.9 is sufficient for both spatial directions.

It is the only condition which cannot be handled by an appropriate choice of the
numerical parameters like step sizes. For a better understanding of Assumption 2.9
we illustrate it in the following

Example 2.10.
The following three cases display three different situations:

1. If the set of diffusion matrices Γ′2 only contains strictly diagonally dominant
matrices, Assumption 2.9 is always satisfied. We have

σ2
1 > σ1σ2ρ1,2 ⇒ 1 <

σ1

ρ1,2σ2

and σ2
2 > σ1σ2ρ1,2 ⇒ 1 >

ρ1,2σ1

σ2

for all choices of controls and thus especially for Ξu
1,2 and Ξd

1,2. For the more
general case see Assumption 2.23 and Example 2.25.

2. The set V1×V2×C1,2 = [0.3, 0.4]× [0.1, 0.2]× [0.6, 0.8] fulfils Assumption 2.9.
Although the corresponding correlation matrices are not diagonally dominant.
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2.2 Spatial discretisation

3. For V1×V2×C1,2 = [0.2, 0.4]× [0.1, 0.3]× [0.6, 0.8] the criterion is not satisfied.
We have Ξd

1,2 = 32
30
≥ 25

30
= Ξu

1,2, although it will occur in a financial context.

The deliberations and the example above lead us to the following

Definition 2.11.
Let Assumption 2.9 be satisfied. A two-dimensional grid G (L, {ti},S,Ω2) is called
monotone if it satisfies condition (2.12).

In Figure 2.1 the influence of correlation on the maximal intervals for volatility is
displayed. Here, a uniform grid is assumed with hk1 = hl2, k, l ∈ IM . For all sets Θ2

lying in the coloured area the uniform grid is monotone. The bigger the maximal
correlation gets the smaller the possible choices for Θ2 become. Finally, for ρ1,2 ≈ 1

no meaningful choice might be possible.

0.15
0.35

0.55

0.35

0.55

0.75

0.2

0.3

0.4

σ1

ρ1,2

σ
2

Fig. 2.1: Example of the dependence of correlation and volatility on each
other. The values σ1 = 0.15 and σ2 = 0.2 are fixed. The upper
bounds are given by (2.11). The blue and green surfaces display
the lower and upper bound for σ1 and σ2, respectively. In the red
area there is no possible choice.

Since for a fixed l ∈ IM2 and all k ∈ IM1 and vice versa the four constraints (2.11)
have to hold true, we combine them to

Ξd
1,2 max

l∈JM2

{hl2} ≤ hk1 ≤ Ξu
1,2 min

l∈JM2

{hl2}, k ∈ IM1 , and (2.12a)

1

Ξu
1,2

max
k∈JM1

{hk1} ≤ hl2 ≤
1

Ξd
1,2

min
k∈JM1

{hk1}, l ∈ IM2 . (2.12b)
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2.2 Spatial discretisation

We conclude the construction with the following remarks.

Remark 2.12.
If we had not chosen the transformed version of the Black-Scholes-Barenblatt equa-
tion (2.4), the constants Ξu

1,2 and Ξd
1,2 could have become impractical to handle. Due

to the structure in (BSBn) the quotient S1

S2
would have been a part of them. Es-

pecially in the upper left and the lower right corner of the grid they would have
been quite big respectively small. Thus, by inequality (2.12), the effort to obtain a
monotone scheme would have been comparatively high.

Remark 2.13 (Assumption 2.9).
Assumption 2.9 may not be satisfied for all sets of parameters being financially mean-
ingful. Thus, the discretisation introduced so far does not have to be monotone.
Nevertheless, the smaller the bounds of the correlation are the bigger the set of
volatilities we can deal with gets.

Remark 2.14.
If the correlation is zero, i. e. C1,2 = {0}, the construction so far can be neglected.
Just the following explanation how to combine the approximations for the second
and first derivatives is needed to construct a monotone scheme.

Choosing the difference quotients. Up to now, the contribution of the second
order and the mixed derivative to the off-diagonal entries is non-positive and the one
to the diagonal entry is non-negative by construction of the grid and the structure
of the difference quotient (2.6). In the next step we explain how to discretise the
first derivatives in x1-direction and x2-direction. Since for the second derivative we
always use (2.6), we have to ensure by the choice of the discretisation for the first
derivative that the signs of the elements so far do not change. We only consider the
variable x1. For x2 the discretisation is completely analogue.
If we use δfx1v

i
k,l, the inequality

2

hk+1
1 + hk1

dk,l1,γ + ck,l1,γ ≤ 0 (2.13a)

has to be satisfied to guarantee a non-positive coefficient ak+1,l
k,l of vik+1,l in the stencil

(2.9). The factors in front of dk,l1,γ and ck,l1,γ result from the difference quotients (2.5a)
and (2.6). Analogously, to use δbx1v

i
k,l the inequality

2

hk+1
1 + hk1

dk,l1,γ − c
k,l
1,γ ≤ 0 (2.13b)
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2.2 Spatial discretisation

has to hold true. In both cases the coefficient ak,lk,l of v
i
k,l is by construction non-

negative if r ≥ 0, cp. (2.18).
We use central differencing in x1-direction if

hk1c
k,l
1,γ + 2dk,l1,γ ≤ 0 and − hk+1

1 ck,l1,γ + 2dk,l1,γ ≤ 0 (2.13c)

both are fulfilled. The following lemma gives a sufficient condition for (2.13c).

Lemma 2.1.
Let the conditions (2.13a) and (2.13b) hold true. Then the inequalities

Cak+1,l
k,l,γ =

hk1
hk+1

1

ck,l1,γ +
2

hk1
dk,l1,γ ≤ 0, (2.14a)

Cak−1,l
k,l,γ = −h

k+1
1

hk1
ck,l1,γ +

2

hk+1
1

dk,l1,γ ≤ 0, and (2.14b)

Cak,lk,l,γ = −
(

hk1
hk+1

1

− hk+1
1

hk1

)
ck,l1,γ −

(
1

hk1
+

1

hk+1
1

)
dk,l1,γ ≥ 0 (2.14c)

with C = hk+1
1 + hk1 are valid and centered difference quotients can be applied.

The inequalities (2.14a) and (2.14b) stem from the combination of δcx1v
i
k,l and δ2

x1
vik,l

representing the sign of vik−1,l and vik+1,l, respectively. The last inequality (2.14c)
represents the sign requirement for the coefficient ak,lk,l,γ of vik,l if central differencing
is utilised.

Proof.
With the choice of the forward difference quotient we have

(2.13a)⇒ − 2

Chk+1
1

dk,l1,γ ≥
hk1
C

1

hk+1
1

ck,l1,γ ⇒ (2.14a),

since dk,l1,γ ≤ 0, hk1
C
< 1, and C ∈ R+.

The implication (2.13b) ⇒ (2.14b) can be shown analogously. The converse state-
ments do not have to be valid.
We can rewrite (2.14c) as two summands where each one of them is non-positive by
(2.14a) and (2.14b) respectively.

�

To assure the maximal use of central differencing, we proceed as follows. If (2.14) is
fulfilled, then central differencing is used. Otherwise, depending on the validity of
(2.13a) and (2.13b) forward or backward differencing respectively is used.
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2.2 Spatial discretisation

The inequalities in x2-direction can be derived by the same considerations as before.
For completeness they are listed below. We use forward differencing if

2

(hl2 + hl+1
2 )

dk,l2,γ + ck,l2,γ ≤ 0, (2.15a)

backward differencing if

2

(hl2 + hl+1
2 )

dk,l2,γ − c
k,l
2,γ ≤ 0, and (2.15b)

centered differencing if

hl2c
k,l
2,γ + 2dk,l2,γ ≤ 0 and − hl+1

2 ck,l2,γ + 2dk,lx,γ ≤ 0 (2.15c)

hold true, respectively.
An analogue result to Lemma 2.1 holds true, too. Thus, the difference quotients are
chosen in the same manner as in x1-direction.

According to the results above we define the areas where the different difference
quotients will be used. This is necessary since the choice of the optimal control and
the used difference quotients depend on each other.

Definition 2.15 (Domain of backward / forward / centered differencing).
Let a grid G (L, {ti},S,Ω2) ⊂ ΩD

2 be given. For a grid point (xk1, x
l
2) we define the

set

Θk,l
cc :=

{
(σ1, σ2, ρ1,2) ∈ Θ2 | 2dk,la,γ ± (hba + hb+1

a )ck,la,γ ≤ 0, (a, b) ∈ {(1, k), (2, l)}
}

(2.16)

as the set of controls where only central differencing is used. Analogously, the sets
Θk,l
bb and Θk,l

ff are defined with “-” and “+” instead of “±” in the inequality, respec-
tively.
For the use of different difference quotients in the space dimensions we set for ex-
ample

Θk,l
bc :=

{
(σ1, σ2, ρ1,2) ∈ Θ2 | 2dk,l1,γ − (hk1 + hk+1

1 )ck,l1,γ ≤ 0, 2dk,l2,γ ± (hl2 + hl+1
2 )ck,l2,γ ≤ 0

}
(2.17)

All other sets Θk,l
bf ,Θ

k,l
cf ,Θ

k,l
cb ,Θ

k,l
fb , and Θk,l

fc for the different combinations of different
quotients are defined in a similar way by guaranteeing the appropriate combination
of inequalities.
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2.2 Spatial discretisation

Altogether, we have nine sets which form a partition of Θ. Of course, some of these
sets may be nil. In Section 3 we will need these sets again for determining the
optimal controls and for guaranteeing convergence of the methods. In Figure 2.2 an
exemplary illustration of the different domains is plotted.

σ1 σ1

σ2

σ2

Θcc

Θbf

Θcf

Θfc

d·1,γ + c·1,γ = 0 d·1,γ − c·1,γ = 0
d·2,γ − c·2,γ = 0

Fig. 2.2: Domains of forward, backward, and centered differencing. For
r = 0.035, δ1 = 0.019, δ2 = 0.01, ρ = 0.7, V1 = [0.16, 0.26], and
V2 = [0.23, 0.27].

Now we can give a complete definition of the seven point stencil (2.9) at an inner
grid point (τ i, xk1, x

l
2), k = 1, . . . ,M1 − 1, l = 1, . . . ,M2 − 1. It is

ak+1,l
k,l,γ =

2dk,l1,γ

(hk1 + hk+1
1 )hk+1

1

+



ck,l1,γ

hk+1
1

, (2.13a), not (2.13b),

0, (2.13b), not (2.13a)

ck,l1,γh
k
1

(hk1 + hk+1
1 )hk+1

1

, (2.13c),

(2.18a)
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ak−1,l
k,l,γ =

2dk,l1,γ

(hk1 + hk+1
1 )hk1

−



0, (2.13a), not (2.13b)

ck,l1,γ

hk1
, (2.13b), not (2.13a)

ck,l1,γh
k+1
1

(hk1 + hk+1
1 )hk1

, (2.13c),

(2.18b)

ak,l+1
k,l,γ =

2dk,l2,γ

(hl2 + hl+1
2 )hl+1

2

+



ck,l2,γ

hl+1
2

, (2.15a), not (2.15b),

0, (2.15b), not (2.15a)

ck,l2,γh
l
2

(hl2 + hl+1
2 )hl+1

2

, (2.15c),

(2.18c)

ak,l−1
k,l,γ =

2dk,l2,γ

(hl2 + hl+1
2 )hl2

−



0, (2.15a), not (2.15b),

ck,l2,γ

hl2
, (2.15b), not (2.15a),

ck,l2,γh
l+1
2

(hl2 + hl+1
2 )hl2

, (2.15c),

(2.18d)

ak+1,l+1
k,l,γ = aγ1 , ak−1,l−1

k,l,γ = aγ2 , and (2.18e)

ak,lk,l,γ = r − ak+1,l
k,l,γ − a

k−1,l
k,l,γ − a

k,l+1
k,l,γ − a

k,l−1
k,l,γ − a

k+1,l+1
k,l,γ − ak−1,l−1

k,l,γ . (2.18f)

The validity of the last equality for ak,lk,l,γ can be checked by summing all coefficients
for the distinct usage of forward, backward and central differencing.

Boundary conditions. For the boundary conditions we use the ansatz which is
for example explained in the book of Randall and Tavella [RT00]. Accordingly, we
assume that there is no contribution from the mixed derivatives at the grid points
on the boundary of ΩD

2 . In this case equation (2.8a) reduces to

vτ −
1

2
σ2

1,j
δ2
x1
vik,l +

(
1

2
σ2

1,j
− r + δ1

)
δ·x1v

i
k,l

−1

2
σ2

2,j
δ2
x2
vik,l +

(
1

2
σ2

2,j
− r + δ2

)
δ·x2v

i
k,l + rvik,l = 0,

(2.19)

where either k = 0,M1 and l ∈ JM2 or l = 0,M2 and k ∈ JM1 . Since the boundary
conditions depend on time, we will use the index i for time again.
We will suppose Neumann boundary conditions of the form

∂v

∂xj
= βi,jk,l, (2.20)

where j = 1, 2 denotes the direction and the index (i, k, l) as usual the considered
grid point. Our aim is to choose the difference quotients in (2.19) so that the
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2.2 Spatial discretisation

monotonicity of the discretisation is maintained. We will demonstrate that this can
be achieved by equidistant central difference quotients across the boundary.
Let us take a closer look at a grid point with index k = 0 and l = 1, . . . ,M2− 1. By
discretising the first derivative, we obtain

vi1,l − vi−1,l

2h1
1

= βi,10,l ⇒ vi−1,l = vi1,l − 2h1
1β

i,1
0,l .

Here vi−1,l is the value of the option at an artificial point left of the left boundary.
The approximation of the second derivative becomes

vi1,l − 2vi0,l + vi−1,l

(h1
1)

2 =
2

(h1
1)

2

(
vi1,l − vi0,l

)
−

2βi,10,l

h1
1

.

By this construction the coefficients in the finite difference stencil (2.9) at the grid
point (τ i, x0

1, x
l
2) are given by

a1,l
0,l,γ = 0,

a0,l
0,l,γ = r − a1,l

0,l,γ − a
1,l
0,l,γ − a

0,l+1
0,l,γ − a

0,l−1
0,l,γ , and

a1,l+1
0,l,γ = 0,

where the unlisted coefficients a0,l+1
0,l,γ and a0,l−1

0,l,γ are defined as in (2.18) with zero
correlation. The coefficients a−1,l

0,l,γ and a−1,l−1
0,l,γ of the artificial grid points are treated

as zero. As we can see, the off-diagonal entries are non-positive and the diagonal
entry is non-negative. The constant parts of the difference quotients are collected
in a vector, see below.
For all other grid points of the grid the boundary conditions can be included in the
same way. At the four corners of the grid the above performance is done in both
directions. The off-diagonal entries are always non-positive and the diagonal entries
are non-negative.
We define a vector biγ :=

(
bij
)
j
∈ RM to completely incorporate the boundary con-

ditions via

bik(M2+1)+l :=



(
2
d0,l1,γ,0

h11
− c0,l

1,γ,0

)
βi,10,l , k = 0, l = 1, . . . ,M2 − 1,

−
(

2
d
M1,l
1,γ,0

h
M1
1

+ cM1,l
1,γ,0

)
βi,1M1,l

, k = M1, l = 1, . . . ,M2 − 1,(
2
dk,02,γ,0

h12
− ck,02,γ,0

)
βi,2k,0, k = 1, . . . ,M1 − 1, l = 0,

−
(

2
d
k,M2
2,γ,0

h
M2
2

+ ck,M2

2,γ,0

)
βi,2k,M2

, k = 1, . . . ,M1 − 1, l = M2 − 1

(2.21a)
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on the edges except the skews,

bi0 :=

(
2
d0,0

1,γ,0

h1
1

− c0,0
1,γ,0

)
βi,10,0 +

(
2
d0,0

2,γ,0

h1
2

− c0,0
2,γ,0

)
βi,20,0, (2.21b)

biM2
:=

(
2
d0,M2

1,γ,0

h1
1

− c0,M2

1,γ,0

)
βi,10,M2

−

(
2
d0,M2

2,γ,0

hM2
2

+ c0,M2

2,γ,0

)
βi,20,M2

, (2.21c)

biM−M2−1 := −

(
2
dM1,0

1,γ,0

hM1
1

+ cM1,0
1,γ,0

)
βi,1M1,0

+

(
2
dM1,0

2,γ,0

h1
2

− cM1,0
2,γ,0

)
βi,2M1,0

, (2.21d)

biM−1 := −

(
2
dM1,M2

1,γ,0

hM1
1

+ cM1,M2

1,γ,0

)
βi,1M1,M2

−

(
2
dM1,M2

2,γ,0

hM2
2

+ cM1,M2

2,γ,0

)
βi,2M1,M2

,

(2.21e)

on the skews and

bi
j

= 0 (2.21f)

at all inner grid points. Here we denote with ck,l1,γ,0, etc. the coefficients defined in
(2.18) with the correlation set to zero.

For the Betas we fall back on the Deltas of the options which can be determined
analytically for certain types of options. For the maximum and minimum options
the βi,1k,l and β

i,2
k,l for (τ i, xk1, x

l
2) ∈ ∂G are calculated via the analytic formulas of the

multi-dimensional Black-Scholes model. In the paper of Stulz [Stu82] formulas of
this type are given for the option value. For options on more than two assets the
results of Stulz have been extended by Johnson [Joh87]. Beginning with these Reiß
and Wystup [RW01] derive closed form expressions for the Greeks of these options.
The Delta is given by

∂V (t, S1, S2)

∂Sj
= φ exp(−δj(T − t))N2 (φdp1 , ηdp2 , φηdp3) , p1, p2, p3 ∈ {1, . . . , 6}

where N2(x, y, z) is the distribution function of the multi-variate normal distribution
with mean zero, variances one, and correlation z. The constants dp, p = 1, . . . , 6,
depend on the particular choice of the option. For more details regarding those and
the numerical evaluation of the distribution function N2 see Appendix A.2.
The option‘s Delta is essentially influenced by volatility and correlation which are
incorporated into the constants dp. Thus, every βi,jk,l is calculated with the corre-
sponding control (σ1,j, σ2,j, ρ1,2,j). The Neumann boundary conditions for maximum
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and minimum options are now realised by setting

βi,jk,l =
∂V (ti, S1, S2)

∂Sj
Sj, j = 1, 2. (2.22)

The price of a Geometric Average call option equals the price of a Vanilla call in the
standard Black-Scholes model with modified volatility σ̃ and dividend rate δ̃:

σ̃2 :=
1

4

n∑
i,j=1

σiσjρi,j and δ̃ :=
1

2

n∑
i=1

(
δi +

1

2
σ2
i

)
− 1

2
σ̃2, (2.23)

cf. [LO08]. The one-dimensional space variable is given by:

y =
n∏
i=1

exp

(
Si
n

)

Applying the chain rule of differentiation gives a formula for the Delta of Geometric
Average call option

∂V (t, S1, S2)

∂Sj
= φ exp(−δ̃(T − t))y

n
N1(φd1),

where d1 depends on the volatility and the dividend rate given in (2.23). The con-
stant φ ∈ {−1, 1} is chosen according to the valuation of a call or a put, respectively.
For more details see section A.3.
Algorithms for the evaluation of the (multi-variate) standard normal distribution
function are given in Section A.1.

Remark 2.16.
The constants dp1 , dp2 , dp3 with p1, p2, p3 ∈ {1, . . . , 6} depend on the control, cp.
Appendix A.1. During the determination of the optimal control, cp. Chapter 3,
the actual value of the optimal control will vary. To assure that the determination
of the controls converges, we do not recalculate the boundary conditions for every
variation, cp. the proof of Theorem 3.1. Instead we use the controls of the previous
time step.

In Table 2.1 an overview of the different boundary conditions we use in the numerical
experiments at the different boundaries is given.

Here c0, c1, c2 denote the appropriately chosen discount factors and N2(·) the two-
dimensional cumulative normal distribution function with corresponding arguments
for the specific option. With Neumann boundary conditions the option value is not
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Tab. 2.1: Overview of the boundary conditions for different options on two
assets.

option βi,10,l βi,1M1,l
βi,2k,0 βi,2k,M2

Butterfly Spr. 0 0 0 0
Min. put −c1N2(·) 0 −c2N2(·) 0
Min. call 0 c1N2(·) 0 c2N2(·)

Min. put cap. 0 0 0 0
Max. put −c1N2(·) 0 −c2N2(·) 0
Max. call 0 c1N2(·) 0 c2N2(·)

Max. call cap. 0 0 0 0
Geom. Av. put −c0

y
2
N1(−d1) −c0

y
2
N1(−d1) −c0

y
2
N1(−d1) −c0

y
2
N1(−d1)

Geom. Av. call c0
y
2
N1(d1) c0

y
2
N1(d1) c0

y
2
N1(d1) c0

y
2
N1(d1)

invariant to translations by a constant. To fix this issue we use Dirichlet boundary
conditions at one edge of the computational domain ΩD

2 where the payoff is zero.
This is possible for all types of options considered in this thesis. Numerically the
Dirichlet boundary condition is easily implemented by setting (Aiγ)j = ej where j is
the lexicographic index of the corresponding edge.

Matrix representation. The representation of equation (2.8) for all grid points
can now be constructed as a tridiagonal block matrix Aiγ ∈ RM×M :

Aiγ :=



Ac0,γ Au0,γ 0 · · · 0

Ad1,γ Ac1,γ Au1,γ 0

0
. . . . . . . . .

...
... . . . . . . . . . 0

0 AdM1−1,γ AcM1−1,γ AuM1−1,γ

0 · · · 0 AdM1,γ
AcM1,γ


, (2.24a)

where each matrix Ack,γ, Adk,γ, Auk,γ ∈ R(M2+1)×(M2+1) itself is of tridiagonal structure:

Ack,γ :=



ak,0k,0,γ ak,1k,0,γ 0 · · · 0

ak,0k,1,γ ak,1k,1,γ ak,2k,1,γ 0

0
. . . . . . . . .

...
... . . . . . . . . . 0

0 ak,M2−2
k,M2−1,γ ak,M2−1

k,M2−1,γ ak,M2

k,M2−1,γ

0 · · · 0 ak,M2−1
k,M2,γ

ak,M2

k,M2,γ


, k ∈ JM1 ,

(2.24b)
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Auk,γ :=



ak+1,0
k,0,γ ak+1,1

k,0,γ 0 · · · 0

0 ak+1,1
k,1,γ ak+1,2

k,1,γ 0

0
. . . . . . . . .

...
... . . . . . . . . . 0

0 ak+1,M2−1
k,M2−1,γ ak+1,M2

k,M2−1,γ

0 · · · 0 0 ak+1,M2

k,M2,γ


, k ∈ JM1−1 (2.24c)

Adk,γ :=



ak−1,0
k,0,γ 0 · · · 0

ak−1,0
k,1,γ ak−1,1

k,1,γ 0

0
. . . . . . . . .

...
... . . . . . . . . .

0 ak−1,M2−2
k,M2−1,γ ak−1,M2−1

k,M2−1,γ 0

0 · · · 0 ak−1,M2−1
k,M2,γ

ak−1,M2

k,M2,γ


, k ∈ IM1 (2.24d)

We remind the reader that for ease of notation we omit the indices i in the tridiagonal
matrices.
By the construction performed before we have proven the following

Lemma 2.2.
Let G (L, {ti}, {S i},Ω2) be a grid where Assumption 2.9 is satisfied. Let the space
discretisation be given by (2.18) and the corresponding boundary conditions (2.20).
Then the matrix Aiγ in (2.24) has non-positive off-diagonal entries and non-negative
diagonal entries for all γi ∈ ΘM i

2 and i ∈ IL, if r ≥ 0 holds.

Remark 2.17.
The matrix Aiγ is a sparse matrix. In the case of non-zero correlation it has seven
respectively nine diagonals unequal to zero. Otherwise there are only five diagonals
unequal to zero, s. (2.24).
This fact can be exploited for the implementation of the final algorithm. It also
influences the choice of the solver for the system of equations. A direct solver would
possibly fill up the zero entries of the matrix and thus require much more memory.
Iterative solvers instead take advantage of the sparse structure and are therefore
more efficient.

Remark 2.18.
For the discretisation of the BSB equation (BSBn) we assumed w. l. o. g. that C1,2 is
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a subset of the positive real figures. Analogously to the construction above, we would
also obtain a discretisation matrix with seven diagonals for the case C1,2 ⊂ R−.
In the most general case C1,2 ⊂ R, we possibly have to switch between the different
quotients δ+

x1,x2
and δ−x1,x2. As a consequence the discretisation matrix might have up

to nine non-zero diagonals. But they still fulfil the requirements regarding the sign
and Lemma 2.2 thus still applies.

2.2.2 Choice of step sizes and construction of non-uniform

monotone grids

In this section we analyse how the choice of the grid a priori influences the use of the
different difference quotients in the discretisation. We consider grids with uniform
spatial step sizes in every space direction. Furthermore, we point out the special
case for zero correlation.
This analysis is important for the final algorithm, since we learn how to determine a
priori which approach we have to choose for the optimisation part, cp. Section 3.2.
Therefore we are interested in bounds as close as possible.
The second part of this section gives a procedure how a monotone non-uniform grid
can be constructed. If it is thoroughly constructed the accuracy of the resulting
option value may be increased meanwhile keeping the number of sampling points
constant.

Bounds for the step widths. In the following all results are formulated for only
one spatial dimension. Of course, they are of general nature and can be applied
for any direction with the obvious changes. The basis for the following lemmas and
corollaries are the conditions for the combination of difference quotients given in
Section 2.2.1.

Lemma 2.3.
Let a monotone grid G (L, {ti}, {S i},Ω2) with uniform spatial step sizes in each
direction be given, that is h1

j = . . . = h
Mj

j , j = 1, 2.
Then only centered difference quotients can be used for the spatial discretisation if
for

i) r ≤ δ1 the inequality

h·1 ≤ min
x∈V1

{
x2 − xΛ

1
2
x2 − r + δ1

}
, (2.25a)
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ii) r > δ1 the inequality

h·1 ≤ min
x∈B

{
x2 − xΛ

max{
∣∣1

2
x2 − r + δ1

∣∣ , ξ}
}
, where (2.25b)

B := {σ1, σ1} ∪
(
{z1,

√
2(r − δ1)+ ± 0.02(Λ)+} ∩ V1 ∩B1

)
,

B1 :=
[√

2(r − δ1)+ + 0.02(Λ)+,
√

2(r − δ1)+ − 0.02(Λ)+
]
,

respectively, holds true.
The values in the above inequalities are given by:

Λ :=
∆

2
ρ1,2σ2, ∆ :=

h1
1

h1
2

,

z1 :=
Λ

2
,

ξ :=
1

h1
1

min
{
σ1

2 − Λσ1, σ1
2 − Λσ1, 2Λ

}

Proof.
Since the grid is assumed to be monotone we have dk,l1,γ ≤ 0, cp. Section 2.2.1. The
proof is done by showing that (2.13c) holds true for the conditions (2.25). We start
the analysis by noting that for all σ2 ∈ V2 and ρ1,2 ∈ C1,2 we have

h·1

(
1

2
σ2

1 − r + δ1

)
− σ2

1 +
∆

2
ρ1,2σ2σ1 ≤ 0

⇒ h·1

(
1

2
σ2

1 − r + δ1

)
− σ2

1 +
∆

2
ρ1,2σ2σ1 ≤ 0

since the grid is uniform. Which is why we focus on the first inequality.
Let us start with case i). And let an index k be fixed. We have ck,l1,γ = 1

2
σ2

1−r+δ1 > 0

for all σ1 ∈ V1. Thus, the inequality

h·1 ≤
σ2

1 − ∆
2
ρ1,2σ2σ1

1
2
σ2

1 − r + δ1

has to hold. Thus, we directly obtain the desired appraisal.

Case ii) is a little more elaborate. We cannot a priori determine the sign of ck,l1,γ.
But the conditions (2.13c) are symmetric in the sense that we may pass over to

h·1

∣∣∣∣12σ2
1 − r + δ1

∣∣∣∣− σ2
1 +

∆

2
ρ1,2σ2σ1 ≤ 0
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Moreover, dividing by |ck,l1,γ| would include a dispensable pole into our considerations.
If ξ is defined as above we have a non-negative lower bound to |ck,l1,γ| for which the
above inequality holds. We thus pass over to

h·1 max

{∣∣∣∣12σ2
1 − r + δ1

∣∣∣∣ , ξ}− σ2
1 +

∆

2
ρ1,2σ2σ1 ≤ 0

and obtain as upper bound for h·1, which depends on σ1,

h·1 ≤
σ2

1 − ∆
2
ρ1,2σ2σ1

max
{∣∣1

2
σ2

1 − r + δ1

∣∣ , ξ}
The minimum for the right hand side of the above inequality can possibly be attained
on ∂V1. Or it is attained, for ξ larger than |ck,l1,γ|, at the point z1 if z1 ∈ B1 or at the
boundaries of B1 given they lie in V1. Which gives us the result we looked for.

�

Lemma 2.3 gives us a simple criterion to guarantee the exclusive use of centered
difference quotients with just the knowledge of the ratio of the step sizes towards each
other. The ratio ∆ can be appraised from above by the constant Ξu

1,2. Furthermore
ξ can be reduced by replacing h0

1 by the larger constant H. Thus, the bounds can
be made completely independent from any monotone grid.

As a direct consequence of Lemma 2.3 we can derive

Corollary 2.4.
Let C1,2 = {0} and let a monotone grid G (L, {ti}, {S i},Ω2) be given. The exclusive
use of central differencing in the discretisation given by (2.18), (2.24), and (2.21)
results in a discretisation with non-positive diagonal entries and non-negative off-
diagonal entries, if for µ = 1, 2 for all ν ∈ IMµ

hνµ ≤


min

x∈{σµ,σµ}

x2

1
2
x2 − r + δµ

, r > δµ

min
x∈{σµ,σµ}

x2

max
{∣∣1

2
x2 − r + δµ

∣∣ , σµ2

hνµ

} , else
(2.26)

holds true.

Remark 2.19.
The above lemma can be considered as a generalisation of a similar result proven
by Schaeling and Heider [SH11] for non-linear one-dimensional equations on an
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equidistant grid, compare also section 2.2.4.

For a general non-uniform grid we can deduce a similar result, which due to the
more general approach is not as pleasant as the one of Lemma 2.3.

Lemma 2.5.
Let a non-uniform monotone grid G (L, {ti}, {S i},Ω2) be given.
Then only centered difference quotients can be used in x1-direction, if the following
inequality is fulfilled for all k ∈ JM1−1:

hk1 ≤ min
x∈C

x2 − xΛk

max{
∣∣1

2
x2 − r + δ1

∣∣ , ξ}+ xΥ
, with (2.27)

C :=
{
σ1, σ1

}
∪
(
{z1,

√
2(r − δ1)+ ± 0.02(Λ)+} ∩ V1 ∩ C1

)
,

C1 :=
[√

2(r − δ1)+ + 0.02(Λ)+,
√

2(r − δ1)+ − 0.02(Λ)+
]
,

where

Λk :=
∆k

2
ρ1,2σ2, ∆k := max

l∈JM2−2

{
hk1
hl2

+
hk+1

1

hl+1
2

}
,

Λ := max
k

Λk ∆ := max
k

∆k

Υ :=
1

2
(ρ1,2σ2)+ max

l∈JM2−1

∣∣∣∣ 1

hl2
− 1

hl+1
2

∣∣∣∣ , and

z1 and ξ as in Lemma 2.3.

Proof.
Centered difference quotients are used, if (2.13c) is assured. Due to the dependence
on the step widths in x2- direction we start by appraising the coefficients dk,l1,γ and
ck,l1,γ. It is

dk,l1,γ = −1

2
σ2

1 +
1

4
ρ1,2σ1σ2

(
hk1
hl2

+
hk+1

1

hl+1
2

)
≤ −1

2
σ2

1 +
1

4
σ1ρ1,2σ2 max

l∈JM2−2

{
hk1
hl2

+
hk+1

1

hl+1
2

}
≤ 0 and∣∣∣ck,l1,γ

∣∣∣ =

∣∣∣∣12σ2
1 − r + δ1 −

1

2
ρ1,2σ1σ2

(
1

hl2
− 1

hl+1
2

)∣∣∣∣
≤
∣∣∣∣12σ2

1 − r + δ1

∣∣∣∣+
1

2
σ1ρ1,2σ2 max

l∈JM2−2

∣∣∣∣ 1

hl2
− 1

hl+1
2

∣∣∣∣
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We still have dk,l1,γ ≤ 0 due to the appraisal h
k
1

hl2
≤ Ξu

1,2 for all step widths.
Using the above estimates we conclude analogously to the proof of Lemma 2.3, that

hk1 ≤
σ2

1 + Λkσ1∣∣1
2
σ2

1 − r + δ1

∣∣+ σ1Υ

The minimum value of the right hand side either is attained at the boundaries of V1,
at z1 for V1 ∩C1, or at the boundaries of C1, if they lie in V1. Which concludes the
argumentation.

�

The bounds for hk1 given in the above lemma are not as simple as those of Lemma 2.3.
The maximum term in ∆ can be estimated from above by 2Ξu

1,2. But for the term
contained in Υ it is difficult to give an appropriate bound a priori. Nevertheless,
given a monotone non-uniform grid we can verify if only centered difference quotients
can be used. Especially for the case C1,2 = {0} the bound (2.27) becomes much more
less restrictive and non-uniform grids can easily be used, cp. Chapter 5.

Non-uniform monotone grid. The aim of this passage is to develop a method
for constructing a non-uniform monotone grid. Here we perform the construction
for d = 2. For higher dimensional problems the method can be generalised in an
intuitive way.
The sampling points should be distributed in such a way that near a specified point,
mostly the strike price, they lie dense and moving towards the boundary, their
distance increases. The structure of the grid will be as follows

1. small, constant step sizes near the strike price,

2. increasing steps moving towards the boundary, and

3. larger, constant step sizes close to the boundary.

The latter point should be satisified in order to preserve the monotonicity of the
grid, that is to assure inequality (2.12) to hold true, see below.

Before we start, we assume w. l. o. g. xminµ ≤ 0 ≤ xmaxµ .

Let a set of indices JMµ be given. The idea of constructing a non-uniform grid is to
assign to each index ν ∈ JMµ a grid point xνµ via a function ξµ(ν) = xνµ, ν ∈ JMµ .
The set {xνµ}ν∈JMµ forms the non-uniform grid in xµ-direction. Let minimal step
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sizes hmin1 , hmin2 which satisfy

Ξd
1,2h

max
2 ≤ hmin1 ≤ hmax1 ≤ Ξu

1,2h
min
2 and

1

Ξu
1,2

hmax1 ≤ hmin2 ≤ hmax2 ≤ 1

Ξd
1,2

hmin1

(2.28)

be given, cp. Section 2.2.2.
The following example illustrates two possible choices.

Example 2.20.
The inequalities (2.28) are satisfied for

1. hmin1 = hmin2 chosen freely and hmax1 = Ξu
1,2h

min
2 , hmax2 = 1

Ξd1,2
hmin1

2. hmin1 chosen freely and hmax1 =
Ξu1,2
Ξd1,2

hmin1 . We then deduce from the second

inequality of (2.28) that hmin2 = hmax2 = 1
Ξd1,2

hmin1 .

Example 2.20 illustrates in which strong manner the choice of spatial step sizes
depends on the ratio Ξu1,2

Ξd1,2
. We saw that for a two-dimensional grid the (restricted)

freedom of choice can either be concentrated on only one spatial dimension or be
distributed equally on both.

To obtain the desired structure of the grid mentioned above, we divide [xminµ , xmaxµ ]

into subintervals :

[xminµ , xmaxµ ] = [xminµ ,−dx+
µ ] ∪ [−dx+

µ ,−x+
µ ] ∪ [−x+

µ , x
+
µ ] ∪ [x+

µ , dx
+
µ ] ∪ [dx+

µ , x
max
µ ],

with 2x+µ
hminµ

∈ N and d ∈ R, d > 1. The number of grid points is hereby counted
cumulatively starting with N1

µ for the most left interval up to N5
µ = Mµ for the

complete interval [xminµ , xmaxµ ].

For the central interval we define:

ξµ(ν) := hminµ (ν −N2
µ)− x+

µ , N2
µ ≤ ν ≤ N3

µ,

where N2
µ and N3

µ will be defined below.
For the increasing step sizes on [x+

µ , dx
+
µ ] we choose the N4

µ − N3
µ sampling points

according to

ξµ(ν) = x+
µ + hminµ

ν −N3
µ + ξc

ν−N3
µ∑

ι=1

ι

 , N3
µ < ν ≤ N4

µ,
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where ξc is chosen to satisfy for all N3
µ < ν ≤ N4

µ

xνµ − xν−1
µ = hminµ

ν −N3
µ + ξc

ν−N3
µ∑

ι=1

ι

− hminµ

ν − 1−N3
µ + ξc

ν−1−N3
µ∑

ι=1

ι

 !

≤ hmaxµ

⇒ ξc
!

≤
(
hmaxµ

hminµ

− 1

)
1

N4
µ −N3

µ + 1

As a result we obtain the next part of the sampling point function N3
µ < ν ≤ N4

µ

ξµ(ν) := x+
µ + hminµ

ν −N3
µ + ξc

ν−N3
µ∑

ι=1

ι


Next, for the most right interval we apply the approach

ξµ(ν) = hmaxµ

(
ν −N4

µ

)
+ ξµ(N4

µ), N4
µ < ν ≤ N5

µ.

Finally, the number of grid points for each subinterval has to be calculated. We
have

N1
µ =

⌊−dx+
µ − xminµ

hmaxµ

⌋
+ 1 N5

µ −N4
µ =

⌊
xmaxµ − dx+

µ

hmaxµ

⌋
+ 1

N3
µ −N2

µ =
2x+

µ

hminµ

N2
µ −N1

µ = N4
µ −N3

µ = 2

⌈
(d− 1)x+

µ

hmaxµ − hminµ

⌉
,

(2.29)

where the last equation is derived from the requirement to span the whole interval
[x+
µ , dx

+
µ ]. Which is guaranteed if the inequality

dx+
µ − x+

µ ≤ hminµ

(
n+ ξc

n(n+ 1)

2

)
where n is the quantity in question, holds.
For the intervals [−dx+

µ ,−x+
µ ] and [xminµ ,−dx+

µ ] we use the analogous construction as
for their positive counterparts. Summing up, a sampling point function for building
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2.2 Spatial discretisation

a non-uniform grid in xµ-direction is given by:

ξµ(ν) =



−hmaxµ

(
N1
µ − ν

)
+ ξµ(N1

µ), 0 ≤ ν < N1
µ

−x+
µ − hminµ

N2
µ − ν + ξc

N2
µ−ν∑
ι=1

ι

 , N1
µ ≤ ν < N2

µ

hminµ (ν −N2
µ)− x+

µ , N2
µ ≤ ν ≤ N3

µ

x+
µ + hminµ

ν −N3
µ + ξc

ν−N3
µ∑

ι=1

ι

 , N3
µ < ν ≤ N4

µ

hmaxµ

(
ν −N4

µ

)
+ ξµ(N4

µ), N4
µ < ν ≤ N5

µ

(2.30)

Remark 2.21.
The above formula for a non-uniform grid might yield grid points which might not
coincide with xminµ and xmaxµ . This mismatch can easily be handled by adjusting the
appropiate step sizes.

Remark 2.22.
The non-uniform grid has a nice property by construction. If hmin1 is halved, then
all other step sizes are also scaled in the same way. This fact can be seen directly by
the definition of ξµ in (2.30). Accordingly, the number of sampling points is doubled,
cp. (2.29).
Of course, if hmin1 is halved, this also holds for the step sizes in x2-direction, cp.
Example 2.20.

In order to actually build the grid, we have to provide several parameters. One
possible triple is the number of steps on minimal size N3

µ −N2
µ, the boundary of the

central interval x+, and the growth factor of the intervals d. All other parameters
are then intrinsically determined by the choice of the maximal step size and the
construction of the grid.

2.2.3 Options on three and more assets

In this section we summarise the most important facts for the discretisation of the
BSB equation (BSBn) for at least three space dimensions. The results given here
can be derived from those of Section 2.2.1, since the task can be decomposed into
several two-dimensional ones for which the same argumentation applies.
The construction performed for the two-dimensional case in Section 2.2.1 has now
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Fig. 2.3: Example of a two-dimensional non-uniform monotone grid with
M1 = 21 and M2 = 18 points. The bounds are Ξu1,2 = 2.5 and
Ξd1,2 = 0.24. The sampling point functions ξ1 and ξ2 are plotted
on the back of the graph.

to be done for every tuple (xi, xj), i 6= j, 1 ≤ i, j ≤ n of space variables. Accordingly,
we have to make

Assumption 2.23.
For every tuple (i, j), i 6= j, 1 ≤ i, j ≤ n, we assume that either

1. for a uniform grid the correlation matrix is diagonally dominant, or

2. for an arbitrary non-uniform grid the inequality

(n− 1)Ξd
i,j ≤

hµi
hνj
≤ 1

(n− 1)
Ξu
i,j, i < j (2.31)

holds for all µ ∈ JMi−1, ν ∈ JMj−1.

Remark 2.24.
The first point of the above assumption is the one which can be found for example
in the book of Kushner and Dupuis [KD01].

The following example shows that these two assumptions are not equivalent to each
other.
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2.2 Spatial discretisation

Example 2.25.
In the first case point 1 of Assumption 2.23 does not hold but point 2. In the second
case we have the reverse situation.

1. Consider the intervals V1 = [0.2, 0.25], V2 = [0.3, 0.33], V3 = [0.25, 0.28], and
C1,2 = [0.3, 0.4], C1,3 = [0.25, 0.3], C2,3 = [0.2, 0.25].
For the tuples (i, j) = (1, 2), (1, 3), (2, 3) we have 2 Ξd

i,j ≤ 0.5 Ξu
i,j and the

selection h·1 = 0.7h·2 = 0.7h·3 fulfils the second point of Assumption 2.23. But
since σ1

2 < σ1σ2ρ1,2 +σ1σ3ρ1,3 holds at least one matrix in Γ′3 is not diagonally
dominant.

2. Let the volatilities σ1 = 0.32, σ2 = 0.25, and σ3 = 0.27 be constant and
the correlations be uncertain: C1,2 = [0.2, 0.35], C1,3 = [0.4, 0.55], and C2,3 =

[0.2, 0.25].
It can easily be verified that the set Γ′3 only consists of diagonally dominant
matrices. But we have 2 Ξd

1,3 ≈ 1.3037 > 1.0774 ≈ 0.5 Ξu
1,2.

The discretisation matrix Aiγ ∈ RM i×M i now has 2n2 − 2n + 3 non-zero diagonals
in the case of strictly negative or positive correlation, respectively. Otherwise, there
are 2n2 + 1 diagonals. The boundary conditions at each boundary of ΩD

3 are im-
plemented as in the two-dimensional case. The results of Reiß and Wystup [RW01]
can be transferred and an algorithm for the evaluation of the three-dimensional cu-
mulative normal distribution function is given in the book of Haug [Hau06].

The next step is to prove that we can guarantee the non-positivity of the associ-
ated off-diagonal entries by an adequate choice of forward, backward, and centered
difference quotients.

Lemma 2.6.
Let a monotone grid G (L, {ti}, {S i},Ω3)⊂ ΩD

3 be given and let Assumption 2.23
be satisfied. Then, for every γ ∈ Θn and by choosing between forward, backward
and centered difference quotients as described in Section 2.2.1 for each spatial direc-
tion, the discretisation matrix has only non-positive off-diagonal and non-negative
diagonal entries, if r > 0.

Proof.
We prove the above statement for the second case of Assumption 2.23. We start by
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2.2 Spatial discretisation

showing djµ,γ ≤ 0, µ ∈ Id, for an inner grid point with lexicographic index j. We have

djµ,γ =− 1

2
σ2
µ,j

+
1

4

n∑
ν=1,ν 6=µ

ρµ,ν,jσµ,jσν j

(
hkµ
hινν

+
hk+1
µ

hιν+1
ν

)

≤ −1

2
σ2
µ,j

+
1

2(n− 1)

n∑
ν=1,ν 6=µ

ρµ,ν,jσµ,jσν,jΞ
u
µ,ν

≤ −1

2
σ2
µ,j

+
1

2
σµσµ,j ≤ 0

where j is the lexicographic index to the indices k ∈ JMµ−1, and ιν ∈ JMν−1.
From the constructions of Section 2.2.1, especially Lemma 2.1, we can assure (in-
cluding the maximal use of central difference quotients) that the off-diagonal entries
corresponding to the µ-th spatial direction of the grid point with lexicographic index
j are non-positive.
At the boundary points we use, as before, difference quotients with equidistant step
sizes. Here the off-diagonal entries are non-positive by construction.
Furthermore, since the diagonal entry for each grid point is the negative sum of all
off-diagonal entries plus the interest rate r, it is non-negative.

�

The results of the previous section for the choice of the spatial step sizes also apply
in this more general setting since they were derived independent of any dimension.
The set of admissible volatilities is now possibly divided into at most 3n subsets Θ....
Each of them representing one combination of the chosen difference quotients for
each of the different spatial directions.

2.2.4 Options on one asset

In this section we shortly transfer the results of the Sections 2.2.1 and 2.2.2 to the
discretisation of the non-linear Black-Scholes equation (2.3). The pricing problem is
given by Problem 2.2. A similar Finite Difference discretisation has been performed
by Heider [Hei10] for European and Schaeling [Sch10] for the pricing of American
options. A similar transformation as (2.1) was applied by them, but the value func-
tion was additionally scaled by the underlying’s value. Their results are calculated
on an equidistant grid in space and in time.
In the present thesis the discretisation is performed on a non-equidistant grid. The
foregoing and the results are similar to the ones of the previous sections and the
mentioned publications. Thus, we keep this section short and refer to the mentioned
papers and the previous sections.
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2.2 Spatial discretisation

Let a grid G (L, {ti}, {S i},Ω1) be given. We use the notations introduced in Nota-
tion 1.20 and 2.7. At the i-th time level the M i + 1 grid points are denoted by xk1,
k ∈ JM i and the discrete value v(τ i, xk1) are denoted by vik. (We omit the time index
in order to keep notation simple.) For the time being, let the volatility σi1 ∈ Ω1 be
fix.
Without loss of generality, we now consider (2.3) at an inner grid point (τi, x

k
1). By

rearranging terms we obtain

vτ + dk1,γδ
2
x1
vk + ck1,γδ

·
x1
vk + rvk = 0, (2.32)

where

dk1,γ = −1

2
σ2

1,j
and

ck1,γ =
1

2
σ2

1,j
− r + δ1.

For the spatial discretisation we use the standard Finite Difference stencil for one
dimension. Our aim is again to choose central differencing as often as possible. For
the inner grid points the choice of forward, backward, and central differencing is
thus done as described in Lemma 2.1. We obtain:

vτ + ak+1
k vk+1 + akkvk + ak−1

k vk−1 = 0,

where

ak+1
k =

2dk1,γ

(hk1 + hk+1
1 )hk+1

1

+



ck1,γ

hk+1
1

, (2.13a), not (2.13b),

0, (2.13b), not (2.13a),

ck1,γh
k
1

(hk1 + hk+1
1 )hk+1

1

, (2.13c),

ak−1
k =

2dk1,γ

(hk1 + hk+1
1 )hk1

−


0, (2.13a), not (2.13b),

ck1,γ
hk1

, (2.13b), not (2.13a),

ck1,γh
k+1
1

(hk1 + hk+1
1 )hk1

, (2.13c),

akk = r − ak+1
k − ak−1

k

(2.33)

The equations (2.33) describe the three cases for the choice of forward, backward,
and central differencing, respectively.
The discretisation is completed by prescribing the behaviour of v at the boundary of
the grid. We will use a combination of Neumann and Dirichlet boundary conditions.
An alternative choice for Vanilla options is to use their asymptotic behaviour for
x→ ±∞ like it was done in [Hei10, Sch10]. For more advanced options like Barriers,
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2.2 Spatial discretisation

Dirichlet conditions are inevitable at the barrier. On the other boundaries we use
Neumann conditions given by the options‘ Delta.
At the boundary points we use central difference quotients. The Neumann boundary
conditions are incorporated by assuring

δcx1v
i
k = βik, k = 0,M i (2.34)

for a given constant βki ∈ R, cp. Table 2.2. A calculation analogue to the two asset
case, cp. Section 2.2.1, yields the modified coefficients for the grid‘s boundary points
and those adjacent to them. Collectively, we obtain the discretisation matrix

Aiγ =



a0
0 a1

0 0 . . . 0

a0
1 a1

1 a2
1 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0 aM1−2
M1−1 aM1−1

M1−1 aM1
M1−1

0 . . . 0 aM1−1
M1

aM1
M1


(2.35)

and the vector bi = (bij)j ∈ RM i
1+1

bi1 =

(
2
d0

1,γ

h0
1

− c0
1,γ

)
βi0, biM i

1
= −

(
2
d
M i

1
1,γ

h
M i

1
1

+ c
M i

1
1,γ

)
βiM i

1
, and

bij = 0, j ∈ IM i
1−1.

(2.36)

Dirichlet boundary conditions are incorporated by setting

vik = βik, k = 0,M i
1. (2.37)

where βik is the given value at (τix
k
1). To include them into the system of equations

we modify the first or the last row of Aiγ, respectively.

Remark 2.26.
Here we handle the controls implicitly contained in the boundary conditions as de-
scribed in Remark 2.16.

The following table gives an overview of the two different boundary conditions for
different types of options.

By construction we have a one-dimensional analogon to Lemma 2.2.
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2.2 Spatial discretisation

Tab. 2.2: Overview of the boundary conditions for different options on one
asset.

βi0 βkM i

Option Dirichlet Neumann Dirichlet Neumann
Call 0 - - N1(d1)SM1

Put - −N1(−d1)S0 0 -
Butterfly sp. 0 - 0 -
DaO put 0 - 0 -
DaO call 0 - - N1(d1)SM1

UaO call 0 - 0 -

Corollary 2.7.
Let G (L, {ti}, {S i},Ω1) be a grid. Let the space discretisation be given by (2.33) and
(2.36) and the corresponding boundary conditions by (2.34) or (2.37).
Then, for r > 0, the matrix Aiγ in (2.35) has non-positive off-diagonal entries and
non-negative diagonal entries for all i ∈ IL and γi ∈ Θ1.

Proof.
The coefficient dk1,γ is always negative for σ1 6= 0. Thus, the result holds for the
inner grid points by the construction done in Section 2.2.1. For the boundary points
the result holds by definition for the Dirichlet conditions and by construction for the
Neumann conditions.

�

From Section 2.2.1 we know that if the correlation is zero it is always possible
to guarantee the use of central differencing by choosing the steps in each space-
dimensions small enough, cp. Lemma 2.4. In the one-dimensional case the terms
brought into by correlation do not occur and we thus can apply this lemma to
compute an upper bound for the step width h1.

Corollary 2.8.
Let a grid be given and let the discretisation be as in the previous Corollary. Then,
only centered difference quotients can be used for all γ ∈ Θ1 at every grid point, if

hk1 ≤


min

x∈{σ1,σ1}

x2

1
2
x2 − r + δ1

, r > δµ

min
x∈{σ1,σ1}

x2

max
{∣∣1

2
x2 − r + δ1

∣∣ , σ12
hk1

} , 0 ≤ r ≤ δµ
(2.38)

holds.

The above result is equivalent to the one given in [Sch10, Hei10]. The slight differ-
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ences are due to the distinct transformation we applied.

Completing the spatial discretisation, we have a system of (non-linear) coupled or-
dinary differential equations

vτ + A·γv = b·.

for every time step. This system is of the same structure as are those for the multi-
dimensional cases before. Therefore, the discretization is performed as in these cases,
cp. Section 2.3.

2.3 Discretisation of time and general properties

In this section we complete the discretisation and analyse their properties. These
will be of great importance for the final algorithm.

Discretisation of time. So far we have performed a semi-discretisation of the
BSB equation (2.8)

∂

∂τ
v(τ) + Aγv(τ) = b, γ ∈ Θd (fixed) (2.39)

for options on one, two, and more than two assets, respectively. Now we do the last
step and execute the discretisation for the time variable. For the moment we will
focus on an equidistant grid in time. The treatment of the more general case can
be found in the following chapters.
We will consider the following three time-stepping methods: 1-step backward dif-
ferentiation formula (BDF1), 2-step backward differentiation formula (BDF2), and
Crank-Nicolson (CN). They belong to the standard instruments for time integration
in financial methods. For further details we refer to the book of Seydel [Sey12].

Let a grid G (L, {ti},S,Ω2) with equidistant sampling points τ i, i ∈ JL, be given.
We consider a general time step from level τ i−1 to τ i, i ∈ IL−1. The initial condition
for all options is given by their specific payoff

v0
j

= Ψ(xj).

The BDF1 method results if we discretise the time derivative by the backward
difference quotient. If we apply both forward and backward difference quotient and
combine them we obtain the CN method. For ease of notation we use the common
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2.3 Discretisation of time and general properties

θ-notation

(I + θhτA
i
γ)v

i = (I − (1− θ)hτAi−1
γ )vi−1 + hτ

(
θbi + (1− θ)bi−1

)
. (2.40a)

For θ = 1 we obtain BDF1 time-stepping with discretisation error in time of O(hτ ).
For θ = 1

2
we get CN time-stepping with an (theoretical) error of O(h2

τ ) in time, cf.
[Sey12]. The EE scheme would result for θ = 0. But it is of no further interest, cp.
Remark 4.2.
For ease of notation we write

Bi
γ,θ = (I + θhτA

i
γ), (2.40b)

Ci−1
γ,θ = (I − (1− θ)hτAi−1

γ ), and (2.40c)

riθ = hτ
(
θbi + (1− θ)bi−1

)
. (2.40d)

The BDF2 scheme uses the difference quotient 1
hτ

(1.5vi − 2vi−1 + 0.5vi−2) to ap-
proximate the first order derivative. Thus, it (theoretically) is of second order. The
complete discretisation then reads(

3

2
+ hτA

i
γ

)
vi = −2vi−1 +

1

2
vi−2 + ri (2.41)

for constant hτ . The schee can also be generalised to non-uniform grids in τ .
Analogously to (2.40) we redefine Bi

γ,θ, C
i−1
γ,θ , and r

i
γ in an appropriate way and set

D := 0.5I. The three schemes are then combined into one notation by

Bi
γ,θv

i = Ci−1
γ,θ v

i−1 +Dvi−2 + riθ. (2.42)

Remark 2.27.
Obviously, the BDF2 scheme is not monotone. Due to the term −2vi−1 on the
right hand side of equation (2.41) condition 1. of Definition 1.23 can in no case be
fulfilled.

From a theoretical point of view the CN and the BDF2 scheme only are of second
order if the value function is continuous differentiable in time. This condition is not
satisfied in general for option pricing problems. From the numerical point of view
this problem can be improved if we use Rannacher timestepping [Ran84] for the first
few time steps. That is, the first few time steps are done with the BDF1 method.
Thereafter, we use the prescribed scheme. Some numerical evidence on this topic
can be found in [GC06, PVF03]. The Rannacher approach also provides the first
two points for the initialisation of the BDF2 method.

59



2.3 Discretisation of time and general properties

With the results from the previous sections we could expect a scheme of second order
for CN and BDF2 schemes if only centered difference quotients are used. Since it is
not guaranteed for all choices of difference quotients to be applicable permanently,
we generally could not expect the space discretisation to be of second order. But by
using them as much as possible we hope to not only obtain first order errors (for a
continuous option value).
For the BDF1 scheme we could only expect first order convergence for the whole
scheme.
For all schemes the influence of changing controls may have an impact on their ac-
curacy.

General properties. Having completed the discretisation of the BSB equation in
a general manner, we now analyse the properties of the discrete equation.
Let us introduce the concept of M-matrices. We only give a short introduction at
this point. For more information see for example the book of Horn and Johnson
[HJ94] or the one of Berman and Plemmons [BP94].

Definition 2.28 (M-matrix).
A matrix A = (ai,j)i,j ∈ Rn×n, i, j ∈ In, is called M-matrix if all off-diagonal entries
are non-positive: ai,j ≤ 0, i, j ∈ In, i 6= j, and the real part of all Eigenvalues of A is
positive.

M-matrices have some very helpful characterisations which we will use in the fol-
lowing sections. Here we summarise them as

Lemma 2.9.
Let A = (ai,j)i,j ∈ Rn×n be a matrix with ai,j ≤ 0, i, j ∈ In, i 6= j. The following
statements:

1. A is an M-matrix.

2. The matrix A is regular and inverse positive, that is A−1 ≥ 0.

3. The matrix A is monotone, i.e. for x ∈ Rn it follows from Ax ≥ 0 that x ≥ 0.

4. The diagonal entries of A are non-negative and there is a vector x ∈ Rn so
that Ax ≥ 0.

5. There exists a positive diagonal matrix D ∈ Rn×n
+ so that the matrix AD is
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2.3 Discretisation of time and general properties

strictly diagonal dominant, i. e.

di,i|ai,i| >
n∑
j=1
j 6=i

|ai,j|dj,j, i ∈ In.

are equivalent [HJ94, BP94].

The proofs of the single equivalences can be found in [HJ94] or [BP94], respectively.

Lemma 2.9 enables us to prove one important property of the discretisation matrix
Bi
γ,θ in (2.42).

Lemma 2.10.
Let a grid G (L, {ti},S,Ω2) satisfying Assumption 2.9 or Assumption 2.23, respec-
tively, be given. Let the spatial discretisation be given by 2.18 and (2.19), or (2.33)
and (2.36) or the corresponding generalisations for n ≥ 3. Furthermore, let r ≥ 0.
Then, for every time step ti−1 → ti and every control γ ∈ Θn the discretisation
matrix Bi

γ,θ in (2.42) is an M-matrix

Proof.
From Lemma 2.2, Lemma 2.6, Corollary 2.7, applied for the respective n, we know
that Aiγ has non-positive off-diagonal entries and non-negative diagonal entries. Ob-
viously, the same holds true for Bi

γ,θ.
By definition of the diagonal entries of Aiγ in (2.18) the matrix is strictly diagonally
dominant for r > 0 by the triangle inequality. This property can be maintained for
r ≥ 0 for the matrix Bi

γ,θ since we add a positive constant to each scaled diagonal
entry.
By Lemma 2.9 with D = I the proof is completed.

�

The result of Lemma 2.10 is very useful for pricing American options, s. the next
section, and the determination of the optimal control γ ∈ Θn, s. Section 3.1.
From the above proof we know that we always get a discretisation matrix Bi

γ,θ with
the M-matrix property in (2.42) if a discretisation of the Black-Scholes-Barenblatt
equation as described in Section 2.2 can be constructed. Thus the main difficulty is
to construct such a discretisation. The monotonicity of the scheme in the sense of
Definition 1.23 does not result from this construction generally, s. Chapter 4.
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2.4 American options

In the previous section we derived the discretisation for the European option pricing
for an option on n assets. In this section we explain how the value of an American
option can be calculated numerically. From arbitrage reasons we know that the
option value could not fall below its payoff. Either it is equal to the payoff and
does not satisfy the pricing equation or it is larger than the payoff and the pricing
equation is satisfied. This fact is reflected in the complementary problem of Problem
2.4 on page 26.
We will apply the well known penalty iteration for this purpose. The intrinsic idea is
to solve the pricing equation for a European option, but whenever the option value
falls below the payoff it is penalised. Thereby, the option value is increased to the
payoff at the next step of the iteration. If the calculated value is larger than the
payoff, no penalisation is necessary. Numerically, this aim is reached by adding an
artificial term, the penalty term, to the pricing equation. This iteration repeats as
long as the changes in the option value are above a predefined tolerance level.
In the literature the term

Pv :=
1

ε
(Ψ− v)+ (2.43)

where ε is a small positive figure, is widely used, cf. [FV02, ZWYT09, KLM07]. In
the notation used above and the formulation of Problem 2.4 the problem of valuing
an American option can be reformulated as

Problem 2.29 (Valuing American options via the Penalty method).
Solve the equation

∂

∂τ
− LnBSBv − Pv = 0 (2.44)

on Ωn.

We remind the reader that we previously assumed that the price of an American
option in the non-linear model is given by the assigned non-linear complementary
problem, cp. Remark 1.9.

The open question is: How accurate is the discrete solution of the penalised pricing
equation (2.44)? The answer is the following: the quality of the solution depends on
the choice of ε. For the standard Black-Scholes equation it can be shown that the
smaller we choose ε the more accurate the complementary problem is solved by the
penalised solution, cf. [FV02]. For the one-dimensional Uncertain Volatility model
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this property has also been proven by Schaeling and Heider [SH11].

If we solve the penalised pricing equation (2.44) numerically, we handle the penalty
term implicitly for all three methods. That is we want to solve the equation

Bi
γ,θv

i = Ci
γ,θv

i−1 +Dvi−2 + riθ + hτPε(v
i)
(
p− vi

)+ (2.45)

where Pε(vi) ∈ RM i×M i is a matrix defined by

(
Pε(v

i)
)
j,k

:=

1
ε
, vk < pk, j = k

0, else

and p is a vector which contains the payoff at the grid points in lexicographical
ordering. The factor hτ is due to the time discretisation.
Collectively, we obtain a non-linear system of equations to approximately solve the
discrete, non-linear complementary problem. We solve the non-linear scheme (2.45)
by a generalised Newton iteration.

Notation 2.30.
In the j-th iteration step we denote by vi,(j) the current value at time level ti.

If we define the generalised Jacobi-matrix DPε(v) ∈ RM i×M i via

(DPε(v))j,k =

(
∂

∂vk
Pε (pj − vj)+

)
j,k

:= (Pε(v))j,k

the Newton iteration can be formulated as(
Bi
γ,θ + Pε(v

i,(j))
)

∆v(j) = −Bi
γ,θv

i,(j) + Ci
γ,θv

i−1 +Dvi−2

+ riθ + hτPε(v
i,(j))

(
p− vi,(j)

)+

vi,(j+1) = vi,(j) + ∆v(j)

(2.46)

The generalised Newton method is summarised in
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2.4 American options

Algorithm 2.1: Newton iteration for the Penalty method.
Input: θ, hτ , Bi

γ,θ, C
i−1
γ,θ , D, r

i
θ, v

i−1, vi−2, p, ε

Output: vi

1 penalty_iteration(θ, hτ , Bi
γ,θ, C

i−1
γ,θ , D, r

i
γ,θ, v

i−1, vi−2, p, ε)
2 j ← 1;
3 vi,(0) ← vi−1;
4 err ← 1 ;
5 while err ≥ 10−6 do
6 calculate Pε ← Pε

(
vi,(j−1)

)
;

7 solve
(
Bi
γ,θ − hτPε

)
vi,(j) = Ci−1

γ,θ v
i−1 +Dvi−2 + riθ + hτPεp;

8 err ← ‖vi,(j−1) − vi,(j)‖∞ ;
9 j ← j + 1;

10 return vi,(j−1);

As initial value for the Newton iteration we use the numerical approximation to the
option value of the previous time step vi−1. As we will see in the following theorem,
the convergence can be guaranteed for any start value.

Remark 2.31.
The system of equations in line 6 of Algorithm 2.1 is not the original Newton it-
eration (2.46), but an equivalent one. In this special form the numerical effort is
reduced. We save one matrix-vector-multiplication and two vector-additions per it-
eration.

The convergence of Algorithm 2.1 can be guaranteed if the iteration matrix is an
M-matrix, compare section 2.3. The following theorem states the convergence. A
proof can be found in [FV02].

Theorem 2.11 (Convergence of Algorithm 2.1.).
Let the matrix Bi

γ,θ ∈ RM i×M i in (2.45) be an M-matrix. Then the iteration of
Algorithm 2.1 converges monotonically in a finite number of iterations to a unique
solution of the discrete non-linear pricing equation (2.45).

The idea of the proof is to use the property of M-matrices to preserve positivity, cp.
point 3. of Lemma 2.9.

Additionally to the convergence of the penalty iteration, the error of the discrete
complementary problem has to be investigated. In the publication [FV02] Forsyth
and Vetzal analysed this question for a Finite Volume method for the standard
Black-Scholes model. The result, though, is more general and also applies in this
case.
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2.4 American options

Lemma 2.12.
Let the matrix Bi

γ,θ ∈ RM i×M i in (2.45) be an M-matrix and Ci
γ,θ ∈ RM i×M i

+ be
positive.
Then for every time level i the solution vi of Algorithm 2.1 solves

Bi
γ,θv

i − Ci
γ,θv

i−1 − riθ ≥ 0,

vi − p ≤ −εC,

Bi
γ,θv

i − Ci
γ,θv

i−1 − riγ,θ = 0 ∨ |vi − p| ≤ εC,

where C ∈ R+ is a constant independent of hτ , h1, and h2.

Accordingly to the above result, the smaller we choose ε > 0 the more accurate the
discrete complementary problem will be solved.
The conditions for the discretisation matrices Bi

γ,θ being an M-Matrix will be inves-
tigated thoroughly in Chapter 4.

65





3 Optimal controls

In Chapter 2 we have constructed different types of Finite Difference discretisation
for the n-dimensional BSB equation. Provided that the set of volatility parameters
fulfils some assumptions their properties we need in this chapter are guaranteed for
all controls γ ∈ Θn.
In the previous chapters we assumed that they optimal controls respectively volatil-
ities and correlations for each spatial grid point were known. In this context optimal
means that volatilities and correlations a locally determined to optimise an objective
function including the approximated derivatives of the option value. In this chapter
a solution for several distinctive tasks is presented. By the given structure of the
pricing problem it is obvious that at a time level i the option value and the optimal
control for each grid point strongly depend on each other. Thus, we need two dif-
ferent things: first, a method to find the optimal relation between option value and
control and second a procedure to solve the optimisation problem at a grid point.
The first one has global character since it works on the whole spatial grid while
the latter one only works local. To solve the first task we introduce an iteration
developed by Forsyth and Labahn [FL07]. With the discretisations constructed in
Chapter 2 its convergence can be easily guaranteed.
For the local optimisation problem we resort to standard optimisation results as
much as possible. We analyse the n-dimensional optimisation problem for n = 1, 2, 3.
We have to take into account that also the control and the choice of the difference
quotient depend on each other, cp. Section 2.2.1. If only central difference quotients
are used we use the Karush-Kuhn-Tucker (KKT) conditions to find optimal points.
Otherwise the optimisation becomes much more costly and we have to relax it.
This chapter is divided into two sections. The first one introduces the so called
policy iteration for the global aspect of the determination of the optimal controls.
The complete proof and a detailed algorithm for the method are given, cp. Section
3.1. The second section focusses on the local optimisation at a single grid point, s.
Section 3.2.
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3.1 Global determination of the optimal controls

3.1 Global determination of the optimal controls

The aim of this section is to determine the option value vi and the control γi ∈ ΘM i

n

in such a way that they solve the discrete version of the transformed BSB equation
(2.2) and the discrete optimisation problem

max
σi∈Vi
ρk,l∈Ck,l


n∑
i=1

σ2
i

(
δ2
xi
vi
j
− δ·xiv

i
j

)
+

n∑
k,l=1
k 6=l

2σkσlρk,lδ
·
xkxl

vi
j

 (3.1)

at the same time. We remind the reader that the solution of 3.1 is included in
the discrete schemes (2.42). The optimisation problem is independent of the fact
whether we price American or European options.

We use the following notation to properly describe the policy iteration.

Notation 3.1.
In the j-th iteration step we denote by vi,(j) the current value at time level ti. Simi-
larly, we write Ai,(j)γ , bi,(j)γ , and γi,(j)...

Let us for now assume that we know an optimal control γi,(j) for each vi,(j), s. Section
3.2.
The idea of the iteration by Forsyth and Labahn [FL07] is to calculate the optimal
control, the so called policy, over the last iterate vi−1. With adequately updated
iteration matrix the next iterate is then calculated by solving (2.42). We remind the
reader that the controls contained implicitly in the Neumann boundary conditions
are not updated, cp. Remark 2.16. The stopping criterion is fulfilled if the difference
between the last two iterates in the Euclidean norm is smaller than a predefined
tolerance level.
As initial values the option value vi−1 and the control γi−1 of the previous time level
are chosen. For the very first iteration we use constant controls.

In Algorithm 3.1 a pseudocode of the described iteration is given.

The function det_control(·) called in line 8 of Algorithm 3.1 will be explained in
the next section, s. Algorithms 3.2 and 3.3.
The policy iteration has successfully been applied to different stochastic control
problems like asset allocation, cf. [WF10], or unequal borrowing and lending interest
rates [FL07].
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3.1 Global determination of the optimal controls

Algorithm 3.1: Policy iteration for implicit option value.
Input: θ, hτ , vi−1, vi−2, γi−1, Bi−1

γ,θ , C
i−1
γ,θ , D, r

i
θ

Output: vi,(j), Bi−1,(j)
γ,θ , r

i,(j)
θ

1 pol_iteration
(
θ, hτ , v

i−1, vi−2, γi−1, Bi−1
γ,θ , C

i−1
γ,θ , D, r

i−1
θ

)
2 j ← 0, err ← 1;
3 vi,(0) ← vi−1, γi,(0) ← γi−1;
4 B

i,(0)
γ,θ ← Bi−1

γ,θ , r
i,(0)
θ ← ri−1

θ ;
5 while err ≥ 10−6 do
6 for (x1,k, x2,l), k ∈ JM1 , l ∈ JM2 do
7 calculate a, b, c as derivatives of vi,(j) ; //s. (3.6)
8 γ

i,(j+1)
k,l = det_control(·);

9 update B
i,(j+1)
γ,θ x B

i,(j)
γ,θ ;

10 solve B
i,(j+1)
γ,θ vi,(j+1) = Ci−1

γ,θ v
i−1 +Dvi−2 + r

i,(j+1)
θ ;

11 err ← ‖vi,(j+1) − vi,(j)‖2;
12 j ← j + 1;

13 return vi,(j), B
i,(j)
γ,θ , r

i,(j)
θ ;

To prove the convergence of Algorithm 3.1 we need some properties of the determined
control at every step of the algorithm. They are summarised in

Remark 3.2.
The control γi,(j) ∈ ΘM i

n calculated in the j-th step of Algorithm 3.1 satisfies

γi,(j) ∈ arg max
γ∈ΘMi

n

{
−Bi,(j−1)

γ,θ vi + r
i,(j−1)
θ

}
. (3.2)

The maximisation in (3.2) is understood component wise, which means for each grid
/ row j point separately. Relation (3.2) holds, since the j-th row of the system of
equations equals the objective function (3.1) at the corresponding grid point with
some additional constants independent of the control. Remark the sign of Bi

γ,θ by
comparing (2.4) and (3.6).
We write “∈” instead of “=” since a unique optimal control does not necessarily
exist.

The returned value vi,(j) of Algorithm 3.1 is accepted as the option value vi. For the
practical implementation an additional variable itermax is included in order to limit
the iteration steps.
Huang, Forsyth, and Labahn prove that the iteration converges from every starting
point vi−1and that the limit is unique. The theorem is as follows.
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3.1 Global determination of the optimal controls

Theorem 3.1 (cf. [HFL12, WF10]).
Let an initial value vi−1 be given. Furthermore let the matrices Bi

γ,θ, C
i−1
γ,θ , and D

of equation (2.42) as well as vi−1 and vi−2 be bounded in the maximum norm.
If Bi

γ,θ is an M-matrix for all γ ∈ Θn then Algorithm 3.1 converges monotonously
to a unique value v∗.

Proof (cf. [HFL12, WF10]1).
First we show that the iterates vi,(j) are bounded independently of j. From Algorithm
3.1, line 10 we have

∥∥vi,(j+1)
∥∥
∞ ≤

∥∥∥∥(Bi,(j+1)
γ,θ

)−1
∥∥∥∥
∞

(∥∥Ci−1
γ,θ v

i−1
∥∥
∞ +

∥∥Dvi−2
∥∥
∞ +

∥∥∥ri,(j+1)
θ

∥∥∥
∞

)
≤ C1‖vi−1‖∞ + C2‖vi−2‖∞ + C3,

where C1, C2, C3 are a positive constants independent of vi,(j). The constant may be
chosen as the maximum of the matrix norm over all feasible controls in Θ2. Thus,
sincce the approximations of the option value vi−1 and vi−2 for previous time levels
are bounded this also holds true for the sequence of the algorithm
The next step is to prove that the vi,(j) form a non-decreasing sequence. From Algo-
rithm 3.1, line 10 we have

B
i,(j+1)
γ,θ (vi,(j+1) − vi,(j)) = Ci−1

γ,θ v
i−1 +Dvi−2 + r

i,(j+1)
θ −Bi,(j+1)

γ,θ vi,(j)

−
(
−Bi,(j)

γ,θ v
i,(j) + Ci−1

γ,θ v
i−1 +Dvi−2 + r

i,(j)
θ

)
︸ ︷︷ ︸

=0

= −Bi,(j+1)
γ,θ vi,(j) + r

i,(j+1)
θ −

(
−Bi,(j)

γ,θ v
i,(j) + r

i,(j)
θ

)
≥ 0.

(3.3)

The last appraisal follows from Remark 3.2.
With Lemma 2.9 we have vi,(j+1) ≥ vi,(j) for Bi,(j)

γ,θ is an M-matrix.
Since the sequence vi,(j) is non-decreasing and bounded Algorithm 3.1 converges.
Finally, the uniqueness of the limit v∗ is shown. Assume that there are two solutions
v∗ and w∗ which satisfy

B
i,(j)
γ1,θ

v∗ = Ci−1
γ,θ v

i−1 +Dvi−2 + r
i,(j)
θ , γ1 ∈ arg max

{
−Bi

γ,θv
∗ + riθ

}
B
i,(j)
γ2,θ

w∗ = Ci−1
γ,θ v

i−1 +Dvi−2 + r
i,(j)
θ , γ2 ∈ arg max

{
−Bi

γ,θw
∗ + riθ

}

1The proof given in [HFL12] gives a result for a more general case than the one considered here.
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3.2 Local determination of the optimal controls

for j ∈ N. By rearranging the two equations, we obtain

B
i,(j)
γ1,θ

(v∗ − w∗) = −Bi,(j)
γ1,θ

w∗ + Ci−1
γ,θ v

i−1 +Dvi−2 + r
i,(j)
θ

−
(
−Bi,(j)

γ2,θ
w∗ + Ci−1

γ,θ v
i−1 +Dvi−2 + r

i,(j)
θ

)
= −Bi,(j)

γ1,θ
w∗ + r

i,(j)
θ −

(
−Bi,(j)

γ2,θ
w∗ + r

i,(j)
θ

)
≤ 0

Since γ2 maximises −Bi
γ,θw

∗ + riθ and B
i,(j)
γ,θ is an M-matrix we have v∗ ≤ w∗. If we

interchange v∗ and w∗ we obtain the equality of the both solutions.
Collectively, Algorithm 3.1 converges monotonously to a unique solution v∗.

�

With Theorem 3.1 we can guarantee the convergence of Algorithm 3.1 for the BDF1,
the BDF2, and the Crank-Nicolson scheme for every time level. For all three schemes
the matrix Bi

γ,θ is an M-matrix by Lemma 2.10 for all γ ∈ Θn and i ∈ IL.

Remark 3.3.
Another method that solves the same problem as the iteration by Huang, Forsyth,
and Labahn has been developed by Witter and Reisinger [WR11]. The idea here
is to penalise all choices of controls that are non-optimal. For their method they
consider a discretised domain for the control. In each step of the iteration a matrix-
vector multiplication has to be evaluated for every discrete control. Compared to the
iteration of Huang, Forsyth, and Labahn the effort doing this would be to high for
our three-dimensional control space combined with the size of the iteration matrix.

3.2 Local determination of the optimal controls

A key feature of the controls in Algorithm 3.1 was their maximisation property of
the constraint quadratic equation given for any grid point by the discrete BSB equa-
tion, s. Remark 3.2.
In this section we describe how the associated optimisation problem can be solved.
Speaking in the terms of Algorithm 3.1 the construction of the function det_control(·)
is now described.
For only one unknown the task is quite simple. If the BSB equation depends on
two or more spatial variables it becomes more costly. Moreover, due to the possible
non-convexity of the problem and the constraints which arise from the choice of dif-
ference quotients for the first order derivative the problem is more elaborate. Thus,
we have to investigate carefully, whether the conditions derived in Section 2.2.2 for
the exclusive use of central difference quotients are satisfied.
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3.2 Local determination of the optimal controls

We start by giving a general suitable representation of the optimisation problem.
Then, in the following two subsections we separately focus on those problems where
only central difference quotients are applied and those where this is not the case. In
the rest of this section we always consider w. l. o. g. the grid point xj. For ease of
notation we omit the index j where possible.

One asset only. For the one-dimensional Problem 2.2 the optimisation is quite
simple. The use of centered difference quotients only can be assured by choosing
the step widths small enough, cp. Corollary 2.8. The optimal control σ∗1,k ∈ Θ1 at
the grid point (τ i, xk) can be chosen according to the sign of δ2

xv
i
k − δ·xvik:

σ∗1,k =

σ1, sign (δ2
xv

i
k − δ·xvik) ≥ 0,

σ1, else
(3.4)

If the step sizes are not small enough, monotonicity is maintained as described in
Section 2.2.4. The interval is then divided into (at most) three subintervals. Their
limits are implicitly given by equations (2.13) with the constants in (2.32). For each
of the subintervals the maximising volatility is taken as above and then the one of
these with maximal objective function is taken as σ∗1,k. Compare also the following
section for an analogue approach.

Two and more assets. The optimisation problem arising in the pricing equation
for options on at least two assets is in general more difficult. The two-dimensional
problem was formulated in Problem 2.3.
In the discrete setting considered here, we think of the optimal control at time level
τ i as a matrix γi ∈ ΘM i

n ⊂ RM i×n, n ≥ 2, cp. Notation 2.7.
It is important to notice that vi and γi do depend on each other. In the previous
section we introduced an iteration that converges to a (unique) vi for a sequence of
controls γi,(l), l = 1, . . . . A necessary key feature for the controls in every step of
the iteration was their property of maximising the discrete equation at every grid
point.
Now, we explain how to get the optimal control γi,(j) = γi,∗ ∈ ΘM i

n at each grid
point xj, j ∈ IM i .
We rewrite the optimisation problem 3.1 at this grid point in the form

max
Θn

 d∑
µ=1

aµσ
2
µ +

d∑
µ,ν=1
µ6=ν

b′µ,νσµσνρµ,ν

 (3.5)
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3.2 Local determination of the optimal controls

Here aµ and b′µ,ν represent the discrete approximation of the factors used in the
transformed equation (2.4)

aµ := δ2
xµv

i
j
− δ·xµv

i
j
, b′µ,ν := δ+

xµ,xνv
i
j

(3.6)

For the first order derivative the approximating difference quotient is not yet speci-
fied. Their choice implicitly also determines the approximation of the mixed deriva-
tive. We use the same difference quotients for the maximisation problem (3.5) that
have been used to construct the monotone discretisation. This is absolutely neces-
sary, to guarantee the convergence of Algorithm 3.1, cp. Remark 3.2 and the proof
of Theorem 3.1.

The maximisation for the correlation can be done separately. If b′µ,ν is negative we
choose ρ∗µ,ν = ρµ,ν and ρ∗µ,ν = ρµ,ν otherwise. With bµ,ν := b′µ,νρ

∗
µ,ν we obtain an

equivalent optimisation problem to (3.5).

Problem 3.4.
Solve:

− min
V1×...×Vn

znj (σ1, . . . σn) := − (σ1, . . . , σn)Gn
j

(
σ1, . . . , σn

)T
,

where Gn
j = (gnµ,ν)µ,ν with gnµ,ν :=


aµ,ν , µ = ν

bµ,ν
2
, else

(3.7)

Summing up, we have to solve a general constraint quadratic optimisation problem.
This class of problems can be split up. The function znj is not necessarily a convex
function, since Gn

j does not have to be positive definite. Non-convex problems are
known to be NP-hard2, cp. [PV91]. Problems of this class cannot be solved in
polynomial time. Finding efficient algorithms to solve those problems is still a vast
field in research. A survey on existing literature is given in the article of Floudas
and Gounaris [FG09].
Meanwhile, for the convex case a solution can be found in polynomial time.
Furthermore, we have not taken into account, the different choices of difference
quotients in the constants aν and bν,µ. This will be done in the two sections to
follow.

2For a detailed introduction to NP-problems we refer to the books of Garey and Johnson [GJ90]
and Cormen et al. [CLRS01].
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3.2 Local determination of the optimal controls

3.2.1 Centered difference quotients only

In the case where only centered difference quotients are used we have to solve only
one optimisation problem per grid point. In this section we show how the optimi-
sation can be done for n = 2, 3. These are the dimensions where Finite Difference
Methods are practicable. For both cases we assume Θ2 ⊂ Θj

cc and Θ3 ⊂ Θj
ccc, re-

spectively. For the optimisation problem this means that there are no restrictions
but the bounds for volatility and correlation.
The above condition can easily be tested at every grid point xj by checking if all
vertices of V1 × . . . × Vn satisfy the inequalities necessary for central differencing.
For the two-dimensional problem the necessary inequalities are given by (2.13c) and
(2.15c).
Another possibility is to choose the spatial step sizes a priori according to the bounds
given in Section 2.2.2. So we have two criterions one of local and one of global char-
acter. For a uniform grid in a spatial direction these two are equivalent.

Options on two assets. We will use the Karush-Kuhn-Tucker (KKT) conditions
to solve the corresponding optimisation problem. For an introduction to optimisa-
tion theory we refer to the books of Strang [Str86] and Fletcher [Fle00]. The proof
of the following theorem which will be very useful for our task can be found in their
books.

Theorem 3.2.
Let z : Rn → R be a smooth quadratic function. Furthermore, let W ∈ Rm×n and
w ∈ Rm. Then there exists a vector λ ∈ Rm

+ , so that for every solution x∗ of the
constrained optimisation problem

max z(x), subject to Wx ≤ w

the tuple (x∗, λ) satisfies the KKT conditions

∇z(x) + λTW = 0, (3.8a)

(Wx− w)λ = 0, (3.8b)

Wx ≤ w,

λ ≥ 0.

The converse statement of Theorem 3.2 does not have to be true for our type of
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3.2 Local determination of the optimal controls

optimisation. For Problem 3.4, n = 2, we have

W :=


1 0

−1 0

0 1

0 −1

 and w :=


σ1

σ1

σ2

σ2

 .

and thus the KKT conditions are given by

(−2aσ − b1,2σ2,−2a2σ2 − b1,2σ) + (λ1 − λ2, λ3 − λ4) = 0 (3.9a)

(σ − σ1)λ1 + (σ1 − σ)λ2 + (σ2 − σ2)λ3 + (σ2 − σ2)λ4 = 0 (3.9b)

W

(
σ1

σ2

)
≤ w

λ ≥ 0

The procedure now is as follows. We determine all points ξ1, . . . which solve the
KKT-conditions and compare their objective values z2

j
(ξ1), . . . step by step.

There are three possible cases for the optimal solution γi,∗
j
∈ Θ2 that can occur:

2DO-a. It is at the vertices:
σ∗1 ∈ ∂V1, σ

∗
2 ∈ ∂V2

2DO-b. At one coordinate it is at the vertices and the other one on the edges except
the vertices:
σ∗1 ∈ ∂V1, σ

∗
2 ∈ V◦2 or σ∗1 ∈ V◦1 , σ∗2 ∈ ∂V2

2DO-c. It is in the interior:
(σ∗1, σ

∗
2) ∈ (V1 × V2)◦

In the third case 2DO-c all differences in (3.9b) are negative and thus we have λ = 0.
From (3.9a) we get the optimal solution by solving

G2
j

(
σ1

σ2

)
= 0

If G2
j is of full rank the optimal solution would be zero which is not reasonable for

volatility. Otherwise, if detG2
j = 0 ⇔ 4a2 = b2

1,2 we get the linear dependency
b1,2σ2 = 2aσ1 and thus z2

j
simplifies to a quadratic function in one variable. If the

corresponding control to the minimum of z2
j
is feasible, it is taken into account.

In the case 2DO-b z2
j
only depends on one variable if we consider the other one

fixed at a vertex. Via (3.9) we can express the free variable in dependence on the
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3.2 Local determination of the optimal controls

fixed one. If the corresponding point is feasible the value of the objective function
is calculated.
In the first case 2DO-a we simply compare all possible objective values and take
those values of the controls where the minimum is attained.
Collectively, we have twelve different cases. Algorithm 3.2 gives a pseudocode to
solve Problem 3.4 at every grid point.

Algorithm 3.2: Determination of the optimal control for the 2D-problem.
Input: a1, a2, a3, b

′
1,2,V1,V2, C1,2

Output: σ1, σ2, ρ1,2

1 det_control_2D
(
a1, a2, a3, b

′
1,2,V1,V2, C1,2

)
2 if b1,2 ≤ 0 then
3 b1,2 ← b′1,2ρ1,2; ρ1,2 = ρ1,2;
4 else
5 b1,2 ← b′1,2ρ1,2; ρ1,2 = ρ1,2;

6 (σ1, σ2)← arg min{g2
j (σ1, σ2), g2

j (σ1, σ2), g2
j (σ1, σ2), g2

j (σ1, σ2)};
7 for (x, y) =

(
σ1,

−b1,2
2a2

σ1

)
,
(
σ1,

−b1,2
2a2

σ1

)
,
(
−b1,2

2a
σ2, σ2

)
,
(
−b1,2

2a
σ2, σ2

)
do

8 if (x, y) ∈ V1 × V2 then
9 (σ1, σ2)← arg min{g2

j (σ1, σ2), g2
j (x, y)};

10 if 4a2 = b2
1,2 then

11 for (x, y) =
(
σ1,

2a
b1,2
σ1

)
,
(
σ1,

2a
b1,2
σ1

)
,
(
σ2,

b1,2
2a
σ2

)
,
(
σ2,

b1,2
2a
σ2

)
do

12 if (x, y) ∈ V1 × V2 then
13 (σ1, σ2)← arg min{g2

j (σ1, σ2), g2
j (x, y)};

14 return (σ1, σ2, ρ1,2);

At the grid points on the boundary we use the Neumann boundary conditions (2.20)
to calculate aµ, µ = 1, 2. Remember that the correlation is assumed to be zero on
the boundary

Options on three assets. For the optimisation problem 3.4 for n = 3 we proceed
analogously as before. The optimal control γk

j
∈ Θ3 is found by analysing four cases

stemming from the KKT conditions (3.8). Of course, with out loss of generality
we assume the optimal correlations ρ∗1,2, ρ∗1,3, and ρ∗2,3 to be known. The optimal
volatilities are determined according to the following four cases

3DO-a. they lie at the vertices of Θ3:
σ∗1 ∈ ∂V1, σ∗2 ∈ ∂V2, and σ∗3 ∈ ∂V3,
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3.2 Local determination of the optimal controls

3DO-b. they lie on the edges of Θ3:
σ∗µ ∈ ∂Vµ, σ∗ν ∈ ∂Vν , and σ∗ι ∈ V◦ι , ι, µ, ν ∈ {1, 2, 3}, µ, ν 6= ι, µ < ν,

3DO-c. they lie on the faces of Θ3:
σ∗µ ∈ ∂Vµ, σ∗ν ∈ V◦ν , and σ∗ι ∈ V◦ι , ι, µ, ν ∈ {1, 2, 3}, µ < ν, ι 6= µ, ν,

3DO-d. they lie in the interior of Θ3 and:

i. G3
j
is of rank two,

ii. G3
j
is of rank one.

The first case 3DO-a is handled in the exact same way as before.
To analyse the next instance 3DO-a let σν , σµ, and σι be given as described in 3DO-
b. Furthermore let the first two be fix. Inserting these assumptions into (3.8) we
then obtain the result that σι is given by

σι = − 1

2aι
(bι,µσµ + bι,νσν) , ι ∈ {1, 2, 3}\{µ, ν}

to satisfy the KKT conditions. If σι,j is feasible we calculate the value of the objective
function.
For the third case 3DO-c we consider the function in two-variables z3

j
(σµ,j, σν,j, σι,j)

and z3
j
(σµ,j, σν,j, σι,j) over (Vµ × Vν)◦ for ι, µ, ν ∈ {1, 2, 3}, µ 6= ν, ι 6= µ, ν. Again

from the KKT conditions, σµ and σν have to satisfy a system of equations(
2aµ bµ,ν

bµ,ν 2aν

)(
σµ

σν

)
=

(
bµ,ισι

bν,ισι

)
, σι ∈ {σι, σι}. (3.10)

This system can be solved as in the two-dimensional case. If it has a unique and
feasible solution, we calculate the corresponding value of the objective function.
Otherwise, since also G3

j is not of full rank, we actually are in a situation as in case
3DO-d.
The fourth case 3DO-d is clearly more difficult. We omitted the case when G3

j is of
full rank. The solution σ∗1 = σ∗2 = σ∗3 = 0 can be excluded w. l. o. g., since it has no
financial interpretation.
Let G̃3

j
= (g̃k,l) be the equivalent upper triangular matrix of G3

j
= where we w. l. o. g.

that no permutations have been used. If G3
j
has rank two z3

j
reduces to a function

in one variable: z3
j
(σ̃1, σ̃2, σ3), where

σ̃1 := − 1

g̃1,1

(g̃1,2σ̃2 + g̃1,3σ3) , σ̃2 := − g̃2,2

g̃2,3

σ3, (3.11)
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3.2 Local determination of the optimal controls

and σ3 is free. Thus, we have a one-dimensional function which has to be minimised
over V3. This task can be done with standard methods.
If G3

j has rank one the objective function reduces to a function with two unknowns:
z3
j (σ̃1, σ2, σ3), where

σ̃1 := − 1

g̃3
1,1

(
g3

1,2σ2 + g̃3
1,3σ3

)
,

and σ2 and σ3 are free. Therefore, we have a quadratic optimisation problem in two
variables with box constraints given by the set V2 × V3. With adjusted coefficients,
this problem can be solved by Algorithm 3.2.

The above deliberations are summarised in Algorithm 3.3.

At the boundary points we use the information of the Neumann boundary conditions
to calculate the optimal controls. The three correlations are set to zero.

Remark 3.5.
By the detailed analysis of the three-dimensional optimisation Problem, we hope to
save some effort. Of course, the problem could be treated approximately by suitable
methods. But since the problem is in general NP-hard this does not seem like a
promising approach. Especially, since the optimisation has to be done many times
just for one time step. Proceeding the way described above though, we obtain the
optimum at a single grid point in a known number of steps.

3.2.2 Mixed difference quotients

In Section 2.2.1 we learned that for certain sets of controls and / or to big step sizes
we have to use different difference quotients for the first order derivative in order
to obtain a discretisation matrix with the M-matrix property. This choice again
determines the objective function of Problem 3.4. Thus, if we cannot guarantee
the exclusive use of centered difference quotients, special care has to be taken when
solving Problem 3.4.
In this subsection we focus on the optimisation problem for n = 2. The three-
dimensional analogon can be treated in the same way with some additional compu-
tational effort.

In the following deliberations we consider a fixed grid point with lexicographical
index j and therefore omit it where possible.
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3.2 Local determination of the optimal controls

Algorithm 3.3: Determination of the optimal control for the 3D-problem.
Input: a1, a2, a3, b

′
1,2, b

′
1,3, b

′
2,3,V1,V2,V3, C1,2, C1,3, C2,3

Output: σ1, σ2, σ3, ρ1,2, ρ1,3, ρ2,3

1 det_control_3D
(
a1, a2, a3, b

′
1,2, b

′
1,3, b

′
2,3,V1,V2,V3, C1,2, C1,3, C2,3

)
2 for (µ, ν) ∈ {(1, 2), (1, 3), (2, 3)} do
3 if bµ,ν ≤ 0 then
4 bµ,ν ← b′µ,νρµ,ν ; ρµ,ν = ρµ,ν ;
5 else
6 bµ,ν ← b′µ,νρµ,ν ; ρµ,ν = ρµ,ν ;

7 for all vertices (x, y, z) of V1 × V2 × V3 do
8 (σ1, σ2, σ3)← arg min{g3

j (σ1, σ2, σ3), g3
j (x, y, z)};

9 for (x, y) ∈
{

(σµ, σν), (σµ, σν), (σµ, σν), (σµ, σν)|µ, ν ∈ {1, 2, 3}, µ < ν
}
do

10 ι← {1, 2, 3}\{µ, ν}; z ← −(2aι)
−1(bι,µx+ bι,νy);

11 if z ∈ Vι then
12 (σ1, σ2, σ3)← arg min{g3

j (σ1, σ2, σ3), g3
j (x, y, z)};

13 for (x, y, z) ∈
{

(σι, σµ, σν), (σι, σµ, σν)|µ, ν, ι ∈ {1, 2, 3}µ < ν, ι 6= µ, ν
}
do

14 if bµ,ν 6= 2aµ, 2aν then
15 calculate (y, z) as solution of equation system (3.10);
16 if (y, z) ∈ Vµ × Vν then
17 (σ1, σ2, σ3)← arg min{g2

j (σ1, σ2, σ3), g2
j (x, y, z)};

18 if rank(G3
j) = 1 then

19 (x, y, z)← det_control_2D(·);
20 (σ1, σ2, σ3)← arg min{g2

j (σ1, σ2, σ3), g2
j (x, y, z)};

21 else if rg(G3
j) = 2 then

22 (σ1, σ2, σ3)← arg min{g2
j (σ1, σ2, σ3), g2

j (x, y, z)} with y = −(g̃3
1,1)−1g̃3

2,3z
and x = −(g̃3

1,1)−1(g̃3
1,3z + g̃3

1,2y); // cp. (3.11)

23 return (σ1, σ2, σ3, ρ1,2, ρ1,3, ρ2,3);

Continuous optimisation. For now, let us assume that we know a subset

Θ ⊂ {Θff ,Θbb,Θcc,Θfb,Θfc,Θbf ,Θbc,Θcf ,Θcb},

with non-empty elements for every grid point (xk1, x
l
2). We have

Θ =
⋃
θ⊂Θ

θ.

In opposite to the previous sections we cannot determine ρ1,2 a priori. The choice of
the first order difference quotient might also affect the sign of the mixed derivative
and therefore also the correlation ρ12 . The foregoing is as follows, we split up
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3.2 Local determination of the optimal controls

Problem 3.4 into p different optimisation problems.

Problem 3.6.
Solve

min
(σ1,σ2,ρ1,2)∈Θuw

Θuw⊂Θ

σ2
1

(
δ2
x1
vik,l − δux1v

i
k,l

)
+ σ1σ2ρ1,2δ

+
x1,x2

vik,l + σ2
2

(
δ2
x2
vik,l − δwx2v

i
k,l

)
,

for u,w ∈ {f, b, c}.

So, we have to solve at most nine quadratic optimisation problems with non-linear
constraints for each grid point. Problem 3.6 consists of an objective function and
constraints which are non-convex and the additional box constraints. Thus, it is
contained in the class of NP-hard problems, see above (v. s.) Problem 3.4.
Compared to the previous section this is not only a strong increase concerning the
number of problems but also in the difficulty of solving it.

Let γuw ∈ Θuw ⊂ Θ be the optimal solution of Problem 3.6. Then, we set

(σ∗1, σ
∗
2, ρ
∗
1,2) = arg min

γuw∈Θuw
Θuw∈Θ

zuw(γuw), (3.12)

where we denote by zuw(γuw) the objective function minimised in Problem 3.6. The
tuple (u,w) for which the optimal value is obtained determines the difference quo-
tients which are used at the actual grid point: in x1- direction we use δux1 and in x2-
direction we use δwx2

The remaining question is convergence of Algorithm 3.1. The key property of the
determined controls was

−Bi,(j+1)
γ,θ vi,(j) + r

i,(j+1)
γ,θ −

(
−Bi,(j)

γ,θ v
i,(j) + r

i,(j)
γ,θ

)
≥ 0,

which was guaranteed by relation (3.2), cp. (3.3). The sets Θuw ⊂ Θ are independent
of the actual option value vi,(j). Therefore, for each Θuw ⊂ Θ and γ ∈ Θuw optimal
the above inequality would hold. This is also true for the tuple (u,w) chosen as in
(3.12).
The uniqueness of the solution can be proven as in the proof of Theorem 3.1.
So, the following lemma holds.

Lemma 3.3.
For a time step ti−1 → ti let the solution vi−1 and the control γi−1 ∈ ΘM i

2 of the
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3.2 Local determination of the optimal controls

previous time level and an iterate vi,(j) and controls γi,(j), γi,(j−1) ∈ ΘM i

2 , j > 1,

calculated via (3.12) be given.
Then Algorithm 3.1 converges monotonously and in a finite number of iterations to
a unique solution.

The effort to determine which sets Θuw are non-empty and to solve the corresponding
non-linear optimisation problems for each grid point in each iteration would possibly
burst runtime. Therefore we relax the optimisation problems if several difference
quotients might be used.

Relaxed optimisation. We will only solve a relaxed version of Problem 3.6, which
does not require explicit optimisation any longer. For this purpose we choose a finite
set of points

D2 :=

{
(ξi1, ξ

i
2, ξ3)

∣∣∣∣ ξiµ = σµ + i
σµ − σµ
cMµ

, i = 0, . . . , cMµ, µ = 1, 2, ξ3 ∈ {ρ1,2, ρ1,2}
}
,

(3.13)

where cM1, cM2 ∈ N. We call D2 ⊂ Θd the discrete set of admissible controls. We
have to make one further assumption if we only allow ξ3 ∈ {ρ1,2, ρ1,2} in (3.13).
This is necessary because the choice of the difference quotient and that of ξ3 might
depend on each other. Assume that for a specific selection of difference quotients
ρ1,2 is optimal because of the sign of δ+

x1x2
. But for ρ1,2 these difference quotients

might not result in a monotone discretisation. These cases are excluded by

Assumption 3.7.
Assume that for all grid points there are no ρ+

1,2, ρ
−
1,2 ∈ C1,2 for which

sign
(

2

hk+1
1 + hk1

dk,l1,γ(ρ
−
1,2) + ck,l1,γ(ρ

−
1,2)

)
6= sign

(
2

hk+1
1 + hk1

dk,l1,γ(ρ
+
1,2) + ck,l1,γ(ρ

+
1,2)

)
and

sign
(

2

hk+1
1 + hk1

dk,l1,γ(ρ
−
1,2)− ck,l1,γ(ρ

−
1,2)

)
6= sign

(
2

hk+1
1 + hk1

dk,l1,γ(ρ
+
1,2)− ck,l1,γ(ρ

+
1,2)

)
It is also assumed that these two conditions hold for the x2-direction.

If Assumption 3.7 is fulfilled the problem described above does not exist any longer.

Example 3.8.
For the following two cases Assumption 3.7 is fulfilled
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3.2 Local determination of the optimal controls

1. The grid is uniform in each spatial direction. In this situation ck,l·,γ does not
depend on correlation.

2. Correlation is not uncertain.

Now, instead of solving the original problem for every element of Θ, we look for the
point where the minimal value of the objective function restricted to D2 is attained

(σ∗1, σ
∗
2, ρ
∗
1,2) = arg min

q∈D2∩Θuw
Θuw⊂Θ

z2
uw(q) (3.15)

As in the continuous case inequality (3.3) is satisfied, but only for the discrete set
D2. Thus we have

Corollary 3.4.
For a time step ti−1 → ti let the solution vi−1, the control γi−1

j
∈ Θuw ∩ D2 of the

previous time level, and an iterate vi,(j) and controls γi,(j)
j

, γ
i,(j−1)

j
∈ Θuw ∩ D2, j >

1, u, w ∈ {b, c, f}, for all j ∈ J iM , calculated via (3.15) be given. Furthermore, let
Assumption 3.7 hold.
Then Algorithm 3.1 converges monotonously and in a finite number of iterations to
a unique solution.

Given the set D2 we can a priori determine for every grid point which difference
quotients have to be used to preserve monotonicity of the iteration matrix, provided
Assumption 3.7 holds. For this purpose we check conditions (2.13) and (2.15), re-
spectively, for each grid point. During the run of the final algorithm the optimisation
reduces to calculation of at most (cM1 + 1)(cM2 + 1) evaluations of the objective
function and comparisons.

Remark 3.9.
For the relaxed optimisation problems the optimal value of (3.1) is in general not
attained. But the approximated one is at least as good as if we would calculate
with constant volatilities and correlation. Thus, we would expect the option value
calculated with relaxed optimisation to lie between those of the linear BS model and
of the non-linear BSB model.
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4 Convergence of schemes

In this chapter we analyse the convergence for the Finite Difference schemes con-
structed in Chapter 2. In Section 1.2 the theoretical framework to prove convergence
to the viscosity solution of the BSB equation was provided. For each scheme, con-
sistency, stability and monotonicity have to be verified. We consider BDF1 and CN
schemes. For the BDF2 scheme convergence cannot be proven within the theoretical
framework at hand, cp. Remark 2.27.
In the first subsections the convergence of schemes for the two-dimensional pricing
problem is treated. All the proofs given here are to the knowledge of the author
new to the literature and are therefore given in more detail. Then we focus on the
schemes for one-dimensional pricing problems. Here convergence results have been
established, cf. Heider [Hei10] and Schaeling [Sch10]. In both subsections we only
consider the pricing of European options.
In the last subsection we then take a general look at the convergence of schemes for
pricing American options.

For the whole chapter we assume that the discretisation is constructed on a grid
G (L, {ti},S,Ω2), cp. Notation 2.5. The grid in time however might be non-uniform.
The set of controls is given by Θ2, cp. Notation 2.7. In order to properly de-
note which optimization technique is used we add a superscript to the index of the
discretisation. By Dc,i

j,γ
(vi, τ i,S i, τ i−1,S i−1, vi−1) = 0 we denote the discretisation

where continuous optimisation is used. Otherwise, “c” is replaced by “d”.
We remind the reader that the BDF1 and the CN methods for European option
pricing can be denoted in the form

Bi
γ,θv

i = Ci−1
γ,θ v

i−1 + riθ, (4.1a)

with

Bi
γ,θ = (I + θhτA

i
γ), (4.1b)

Ci−1
γ,θ = (I − (1− θ)hτAi−1

γ ), and (4.1c)

riθ = hτ
(
θbi + (1− θ)bi−1

)
, (4.1d)
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4.1 Convergence of two-dimensional schemes

cp. equations (2.40) and (2.41). The BDF1 scheme is obtained for θ = 1 and the
CN scheme for θ = 1

2
. The matrix Aiγ and the vector bi, i ∈ IL−1, depend on the

dimension of the problem and the method we used for the discretisation, cp. Chapter
2. Additional to consistency, stability and monotonicity we need the equation itself
to fulfil a maximum principle. Thus, we make the following

Assumption 4.1.
For all n ∈ N for two solutions u(t, x), v(t, x) of the BSB equation we have

u ≤ v,

whenever u(0, ·) ≤ v(0, ·).

4.1 Convergence of two-dimensional schemes

In this section we prove the convergence of the BDF1 and the CN scheme for the
two-dimensional pricing problem under certain restrictions regarding the step size
hiτ , i ∈ IL−1. For the first method the result is quite clear from the work that has
already been done. For the latter one a more thorough analysis has to be conducted.
The following theorems are formulated for those problems where only continuous
optimisation, cp. Sections 2.2.2 and 3.2.1, can be used. For those cases where the
optimisation might be done over D2 we have to make some additional effort. Not
only the convergence of the discretisation in time and space has to be analysed, but
also the one for the discrete optimisation, i. e. cM1, cM2 → ∞. Having established
the necessary framework, we state the convergence results in seperate corollars, v. i.

Convergence for continuous optimisation. To assure that only continuous
optimisation techniques, i. e. Algorithm 3.2, are used, the spatial step sizes have to
be bounded as stated in (2.25) and (2.27), respectively.

Theorem 4.1 (Convergence of the BDF1 scheme).
Let a grid G (L, {ti},S,Ω2) which satisfies Assumption 2.9 be given. The spatial step
sizes are assumed to be chosen in such a way that only centered difference quotients
may be used. Furthermore, let r ≥ 0 and let Assumption 3.7 hold.
Then the BDF1 scheme given by

Dc,i
γ

(
vi, τ i,S, τ i−1,S, vi−1

)
= Bi

γ,1v
i − Ci−1

γ,1 v
i−1 − ri1 = 0

for a time step ti−1 → ti converges to the unique viscosity solution of the Black-
Scholes-Barenblatt equation (2.4) for maxi{hiτ}, H → 0.
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4.1 Convergence of two-dimensional schemes

Proof.
Since all conditions of Lemma 1.5 are fulfilled we know that the BDF1 scheme is
monotone. For the spatial discretisation only central difference quotients are used,
since (2.25) and (2.27) hold , respectively. Thus, for every time step we find a unique
solution vi for the next time level ti by Algorithm 3.1 since Bi

γ,1 is an M-matrix on
G, see Lemma 2.10 and Theorem 3.1 with Ci−1

γ,1 and D = 0.
The stability of the method is proven as follows. We consider equation (4.1) for
θ = 1 at an inner grid point (ti, xk1, x

l
2).

Furthermore, we assume |vik,l| = maxµ∈JM1
,ν∈JM2

{viµ,ν}. Using the notation of the
difference stencil (2.9), the method is given by

(1 + hiτa
k,l
k,l,γ)v

i
k,l = −hiτ

∑
(µ,ν)∈N (k,l)

aµ,νk,l,γv
i
µ,ν + vi−1

k,l + (ri1)k,l

Since ak,lk,l,γ ≥ 0 and −aµ,νk,l,γ ≥ 0, (µ, ν) ∈ N (k, l), by the choice of the grid, and
(ri1)k,l = 0 we have

(1 + hiτa
k,l
k,l,γ)‖v

i‖∞ ≤ hiτ
∑

(µ,ν)∈N (k,l)

−aµ,νk,l,γ‖v
i‖∞ + ‖vi−1‖∞

By rearranging terms and using the definiton of ak,lk,l,γ in (2.18) we obtain(
1 + hiτ

(
ak,lk,l,γ +

∑
(µ,ν)∈N (k,l)

aµ,νk,l,γ︸ ︷︷ ︸
= r

))
‖vi‖∞ ≤ ‖vi−1‖∞.

We now conclude

‖vi‖∞ ≤
1

1 + hiτr

∥∥vi−1
∥∥
∞ ≤ ‖v

i−1‖∞,

since r ≥ 0.
This argumentation also holds true for the boundary points of the grid. At the
boundary points of the grid a similar appraisal con be done, taking into consideration
the definition of the boundary conditions given by ri1.
Thus, since v0 is bounded by construction all iterates vi, i ∈ JL, are bounded.
The consistency of the scheme is guaranteed, see for example [SB02].
Thus with Assumption 3.7 and by Theorem 1.4 of Barles and Souganidis the BDF1
scheme converges to the unique viscosity solution.

�
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4.1 Convergence of two-dimensional schemes

To prove the convergence of the CN scheme to the viscosity solution we will proceed
in several steps. First, we prove a technical result which will be needed for mono-
tonicity and stability results. Subsequently, we prove the actual convergence result.

The following lemma gives sufficient conditions to guarantee 1− hiτ
2
ak,lk,l,γ ≥ 0 to hold

true. This property will be needed to appraise the explicit terms of the CN scheme.

Lemma 4.2.
Let a grid G (L, {ti},S,Ω2) which satisfies Assumption 2.9 be given. Let the con-
stants a·k,l,γ of the stencil (2.9) be given as defined in (2.18). Then we have

1− hiτ
2
ak,lk,l,γ ≥ 0, for k ∈ JM1 , l ∈ JM2 , (4.2)

if

max{cff , cfc, cfb, ccf , ccc, ccb, cbf , cbc, cbb}+H2r + ρ1,2σ1σ2 ≤
2h̃2

x

hτ
, (4.3)

where 0 ≤ h̃x ≤ hk1, h
l
2 ≤ H, k ∈ IM1 , l ∈ IM2 and

cff := −fx1 − fx2 cfc := −fx1 − cx2 cfb := −fx1 − bx2
ccf := −cx1 − fx2 ccc := −cx1 − cx2 ccb := −cx1 − bx2
cbf := −bx1 − fx2 cbc := −bx1 − cx2 cbb := −bx1 − bx2

are constants originating from the combined use of forward (f), centered (c), and
backward (b) difference quotients in the two space dimensions. They only depend on
the bounds of volatilities and correlation.

The exact definitions of the above constants are given in the following proof.

Proof.
We will not consider all nine possible combinations of forward, centered, and back-
ward difference quotients. Instead the three choices of the same difference quotients
in each space direction are analysed and combined to one part of appraisal (4.3)
each.
Before we start to derive the appraisals we recollect that for the grid in consideration
the inequalities

Ξd
1,2 ≤

hµ1
hν2
≤ Ξu

1,2 and
1

Ξu
1,2

≤ hν2
hµ1
≤ 1

Ξd
1,2

(4.4)

hold for all µ ∈ JM1 , ν ∈ JM2 by Assumption 2.9.
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4.1 Convergence of two-dimensional schemes

For the rest of the proof let (k, l) be a fixed index of an inner grid point. First
we consider the usage of backward differentiation δbvik,l for the first derivative. By
(2.18) and definition of h̃x it is

ak,lk,l = r −
2dk,l

1,j

hk1h
k+1
1

−
2dk,l

2,j

hl2h
l+1
2

+
ck,l

1,j
hk+1

1

hk1h
k+1
1

+
ck,l

2,j
hl+1

2

hl2h
l+1
2

− aγ1 − a
γ
2

≤ r − 1

h̃2
x

(
(2dk,l

1,j
− ck,l

1,j
hk+1

1 ) + (2dk,l
2,j
− ck,l

2,j
hl+1

2 )− ρ1,2,jσ1,jσ2,j

) (4.5)

Now we separately appraise each of the four summands from above. We only use
backward differentiation if (2.13b) and (2.15b) hold true. Thus all four summands
are assumed to be non-positive. We have

0 ≥ 2dk,l
1,j
− ck,l

1,j
hk+1

1

= −σ2
1,j
− hk+1

1

(
1

2
σ2

1,j
− r + δ1

)
+

1

2
ρ1,2,jσ1,jσ2,j

hk1 + hk+1
1

hl2
(4.4)

≥ −σ2
1,j

(
1 +

hk+1
1

2

)
+ hk+1

1 (r − δ1)− + Ξd
1,2ρ1,2,jσ1,jσ2,j

≥ −σ2
1

(
1 +

H

2

)
+H(r − δ1)− + ρ

1,2
ρ1,2σ1σ1 =: bx1 (4.6)

and

0 ≥ 2dk,l
2,j
− ck,l

2,j
hl+1

2

= −σ2
2,j
− hl+1

2

(
1

2
σ2

2,j
− r + δ2

)
+

1

2
ρ1,2,jσ1,jσ2,j

hl2 + hl+1
2

hk1
(4.4)

≥ −σ2
2,j

(
1 +

hl+1
2

2

)
+ hl+1

2 (r − δ2)− +
1

Ξu
1,2

ρ1,2,jσ1,jσ2,j

≥ −σ2
2

(
1 +

H

2

)
+H(r − δ2)− + ρ

1,2
ρ1,2σ2σ2 =: bx2 (4.7)

We now insert (4.6) and (4.7) into (4.5) to obtain

ak,lk,l,γ ≤ r − 1

h̃2
x

(
bx1 + bx2 − ρ1,2σ1σ2

)
where we used hk+1

1 , hl+1
2 ≤ H. By claiming condition (4.3), constraint (4.2) is

ensured to hold true since

1

2

(
cbb +H2r + ρ1,2σ1σ2

)
hiτ ≤ h̃2

x ⇒
hiτ
2
ak,lk,l,γ ≤ 1 (4.8)

can easily be verified with h̃x ≤ 1.

86



4.1 Convergence of two-dimensional schemes

The argumentation for the use of forward differentiation applies a similar argumen-
tation as in the case presented above. We only state the main steps. For the element
ak,l,γk,l the appraisal

ak,lk,l,γ ≤ r − 1

h̃2
x

(
(2dk,l

1,j
+ ck,l

1,j
hk+1

1 ) + (2dk,l
2,j

+ ck,l
2,j
hl+1

2 )− ρ1,2,jσ1,jσ2,j

)
(4.9)

is valid. All summands are non-positive since we can assume (2.13a) and (2.15a)
to hold true. The first two can be gauged by

0 ≥ 2dk,l
1,j

+ ck,l
1,j
hk1 ≥ −σ2

1 −H(r − δ1)+ + ρ
1,2
ρ1,2σ1σ1 =: fx1 (4.10)

and

0 ≥ 2dk,l
2,j

+ ck,l
2,j
hl2 ≥ −σ2

2 −H(r − δ2)+ + ρ
1,2
ρ1,2σ2σ2 =: fx2 . (4.11)

Inserting these two appraisals into (4.9) we obtain

ak,lk,l,γ ≤ r − 1

h̃2
x

(
fx1 + fx2 − ρ1,2σ1σ2

)
.

If condition (4.3) holds true, with h̃x ≤ 1, and by the implication

1

2

(
cff +H2r + ρ1,2σ1σ2

)
hiτ ≤ h̃2

x ⇒
hiτ
2
ak,lk,l,γ ≤ 1, (4.12)

constraint (4.2) is satisfied.

For the use of central differentiation we proceed in the same way as before. Only the
terms become a little longer. For the diagonal entry the inequality

ak,lk,l,γ ≤ r − 1

h̃2
x

((
2dk,l

1,j
+ ck,l

1,j

(
hk1 − hk+1

1

))
+
(

2dk,l
2,j

+ ck,l
2,j

(
hl2 − hl+1

2

))
−ρ1,2,jσ1,jσ2,j

) (4.13)

is valid. The first summand can be appraised by

0 ≥ 2dk,l
1,j

+ ck,l
1,j

(
hk1 − hk+1

1

)
≥ −σ2

1,j
−
(
hk1 − hk+1

1

)(1

2
σ2

1,j
− r + δ1

)
+

1

2
ρ1,2,jσ1,jσ2,j

(
hk1 − hk+1

1

hl2
− hk1 − hk+1

1

hl+1
2

)
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≥ −σ2
1,j

(
1 +

hk1
2

)
−H|r − δ1|+

(
Ξd

1,2 − Ξu
1,2

)
ρ1,2,jσ1,jσ2,j

≥ −σ2
1

(
1 +

H

2

)
−H|r − δ1|+

(
ρ

1,2
ρ1,2 − 1

)
σ1σ1 =: cx1 (4.14)

and in an analogue manner we obtain

0 ≥ 2dk,l
2,j

+ ck,l
2,j

(
hl2 − hl+1

2

)
≥ −σ2

2

(
1 +

H

2

)
−H|r − δ2|+

(
ρ

1,2
ρ1,2 − 1

)
σ2σ2 =: cx2 . (4.15)

Combining these two inequalities and (4.13) with each other, we obtain the appraisal

ak,lk,l,γ ≤ r − 1

h̃2
x

(
cx1 + cx2 − ρ1,2σ1σ2

)
.

As in the two cases above, we now obtain

1

2

(
ccc +H2r + ρ1,2σ1σ2

)
hiτ ≤ h̃2

x ⇒
hiτ
2
ak,lk,l,γ ≤ 1 (4.16)

which in combination with (4.2) leads us to (4.3).
For the remaining six combinations of the three differencing methods a similar combi-
nation of the appraisals (4.6), (4.7), (4.10), (4.11), (4.14), and (4.15) can be derived.
The resulting constants are defined as given in the formulation of the lemma.
For the boundary points of the grid we have C1,2 = {0}. A close look to (4.6), (4.7),
(4.10), (4.11), (4.14), and (4.15) reveals that these appraisals also hold for all bound-
ary points.
Combining all these appraisals for each single case we conclude that (4.3) needs to
be fulfilled to guarantee (4.2).

�

With Lemma 4.2 we can now prove the convergence of the CN scheme to the unique
viscosity solution of the Black-Scholes-Barenblatt equation (2.4) under certain as-
sumptions.

Theorem 4.3 (Convergence of the CN scheme).
Let a grid G (L, {ti},S,Ω2) which satisfies Assumption 2.9 be given. The spatial step
sizes are assumed to be chosen in such a way that only centered difference quotients
are used. Furthermore, let the following conditions hold true

1. r ≥ 0

2. h̃x ≤ 1
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4.1 Convergence of two-dimensional schemes

3. the terms of Lemma 4.2 hold.

Then the CN scheme given by

Dc,i
γ

(
vi, τ i,S, τ i−1,S, vi−1

)
= Bi

γ, 1
2
vi − Ci−1

γ, 1
2

vi−1 − ri1
2

= 0

for a timestep ti−1 → ti converges to the unique viscosity solution of the Black-
Scholes-Barenblatt equation (2.4) for maxi{hiτ}, H → 0.

Proof.
We will prove Theorem 4.3 in three steps by verifying monotonicity, stability, and
consistency of the scheme. The result then follows with Assumption 3.7 by Theorem
1.4 of Barles and Souganidis [BS90].
To show monotonicity we directly verify the two conditions of Definiton 1.23.
Let εi, εi−1 ∈ RM i

+ be two vectors.
W. l. o. g. we consider an inner grid point with index (k, l). For ease of notation
we denote by a·k,l the entries of the matrix Ai−1

γ , compare the definition of Ci−1
γ, 1

2

in
(4.1c).
Then the following inequality holds true:

Dc,i

j,γ

([
vi + εi

]
j
, vi
j
, τ i,S, τ i−1,S, vi−1 + εi−1

)
=

(
1 +

hiτ
2
ak,lk,l,γ

)
vik,l +

hiτ
2

∑
(µ,ν)∈N (k,l)

aµ,νk,l,γ(v
i
µ,ν + εiµ,ν)

+
hiτ
2

∑
(µ,ν)∈N (k,l)

aµ,νk,l,γ(v
i−1
µ,ν + εi−1

µ,ν )−
(

1− hiτ
2
ak,lk,l,γ

)
(vi−1
k,l + εi−1

k,l )

≤
(

1 +
hiτ
2
ak,lk,l,γ

)
vik,l +

hiτ
2

∑
(µ,ν)∈N (k,l)

aµ,νk,l,γv
i
µ,ν

+
hiτ
2

∑
(µ,ν)∈N (k,l)

ak,lk,l,γv
i−1
k,l −

(
1− hiτ

2
aµ,νk,l,γ

)
vi−1
µ,ν

= Dc,i

j,γ

([
vi
]
j
, vi
j
, τ i,S, τ i−1,S, vi−1

)
,

by Lemma 4.2 and since all off-diagonal entries aµ,νk,l,γ, (µ, ν) ∈ N (k, l), are non-
positive.
Let now εi ∈ R+. Since the diagonal entries of Bi

γ, 1
2

are non-negative, we have

Dc,i

j,γ

([
vi
]
j
, vi
j

+ εi, τ i,S, τ i−1,S, vi−1
)

=

(
1 +

hiτ
2
ak,lk,l,γ

)(
vik,l + εi

)
+
hiτ
2

∑
(µ,ν)∈N (k,l)

aµ,νk,l,γv
i
µ,ν
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4.1 Convergence of two-dimensional schemes

+
hiτ
2

∑
(µ,ν)∈N (k,l)

aµ,νk,l,γv
i−1
µ,ν −

(
1− hiτ

2
ak,lk,l,γ

)
vi−1
k,l

≥
(

1 +
hiτ
2
ak,lk,l,γ

)
vik,l +

hiτ
2

∑
(µ,ν)∈N (k,l)

aµ,νk,l,γv
i
µ,ν

+
hiτ
2

∑
(µ,ν)∈N (k,l)

aµ,νk,l,γv
i−1
µ,ν −

(
1− hiτ

2
ak,lk,l,γ

)
vi−1
k,l

= Dc,i

j,γ

([
vi
]
j
, vj, τ

i,S, τ i−1,S, vi−1
)
,

So, the monotonicity of the scheme is proven for an inner grid point. At the bound-
ary points similar appraisals also hold true due to the definition of the boundary
conditions given by ri1

2

.
Thus, the Crank-Nicolson scheme is monotone if the conditions of the theorem are
satisfied.

To prove the stability of the scheme we show that each iterate vi, i ∈ IL, is bounded
from above by a constant. This is true by construction for v0. For the inner grid
point with index (k, l) we now also assume w. l. o. g.

vik,l = max
µ∈JM1

,ν∈JM2

{viµ,ν}.

For the Crank-Nicolson scheme at this grid point we then have(
1 +

hiτ
2
ak,lk,l,γ

)
‖vi‖∞ ≤

hiτ
2

∑
(µ,ν)∈N (k,l)

−aµ,νk,l,γ|v
i
µ,ν |+

(
1− hiτ

2
ak,lk,l,γ

)
|vi−1
k,l |

+
hiτ
2

∑
(µ,ν)∈N (k,l)

−aµ,νk,l,γ|v
i−1
µ,ν |

≤ hiτ
2

∑
(µ,ν)∈N (k,l)

−aµ,νk,l,γ‖v
i‖∞ +

(
1− hiτ

2
ak,lk,l,γ

)
‖vi−1‖∞

+
hiτ
2

∑
(µ,ν)∈N (k,l)

−aµ,νk,l,γ‖v
i−1‖∞,

by the non-positivity of the off-diagonal entries aµ,νk,l,γ, (µ, ν) ∈ N (k, l), and Lemma
4.2.
If we now rearrange terms and exploit the definition of ak,lk,l,γ in (2.18), we obtain(

1 +
hiτ
2
r

)
︸ ︷︷ ︸

≥1

‖vi‖∞ ≤
(

1− hiτ
2
r

)
︸ ︷︷ ︸

≤1

‖vi−1‖

90



4.1 Convergence of two-dimensional schemes

⇔ ‖vi‖∞ ≤
1− hiτ

2
r

1 + hiτ
2
r
‖vi−1‖∞

≤ ‖vi−1‖∞,

where we used

ak,lk,l,γ +
∑

(µ,ν)∈N (k,l)

aµ,νk,l,γ = r

which holds for all inner grid points. For the points on the boundary we can replace
“=“ with “≥“ because some negative summands of the sum are missing.
Since biγ, i ∈ IL, and ‖v0‖ are bounded independent of hiτ and H we conclude by
induction that all iterates vi, i ∈ IL of the scheme are also bounded independently of
the stepwidth in time and space.

The CN scheme is consistent, see for example [SB02].
�

Remark 4.2.
For the EE scheme, cp. Example 1.21, the right hand side would contain the matrix
I − hiτAiγ. Thus, the conditions to guarantee stability and monotonicity will be even
more restrictive as for the CN scheme. Meanwhile the method is only first order and
we have no possibility to determine optimal controls due to the explicit character.

Convergence for discrete optimisation. Now we allow that at some grid points
backward or forward difference quotients are used. In this situation we pass over to
a relaxed, discrete optimisation problem in order to keep the overall effort easy to
handle, cp. Section 3.2.2. To guarantee the convergence of the BDF1 and the CN
scheme towards the viscosity solution we, have to make sure that the discretisation
error of the discrete optimisation decreases for cM1, cM2 → ∞. For all u,w ∈
{b, c, f} we want∣∣∣∣ min

γuw∈Θuw∩D2

z2
uw(γuw)− min

γuw∈Θuw
z2
uw(γuw)

∣∣∣∣→ 0, for cM1, cM2 →∞. (4.17)

Condition (4.17) holds if the discrete derivatives are bounded and z2
uw is a contin-

uous function of the controls for all u,w ∈ {b, c, f}, cp. [WF08]. Therefore, (4.17)
holds for the problems which are considered in this thesis.

The following lemma states the convergence result for the discretisations with dis-
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4.2 Convergence of one-dimensional schemes

crete optimisation.

Lemma 4.4.
Let a consistent, stable, and monotone discretisation Dc,i

γ (vi, τ i,S, τ i−1,S, vi−1) = 0

with continuous optimisation be given. And let it converge to the unique viscosity
solution of the BSB equation (BSBn) for n = 2. Furthermore, let 4.17 hold.
Then the solution of the discretisation Dd,i

γ (vi, τ i,S, τ i−1,S, vi−1) = 0 converges to
the unique viscosity solution of the BSB equation (BSBn), n = 2, for H, hτ → 0

and cM1, cM2 →∞.

Proof.
Stability and monotonicity of the scheme are not affected whether we use continu-
ous or discrete optimisation. They were directly derived from the properties of the
discretisation matrix Bi

γ,θ. Their properties are indpendent of the controls at each
single grid point as long as they are in Θ2.
For the consistency we have

∣∣vτ − L2
BSBv −Dd,i

γ (vi, τ i,S, τ i−1,S, vi−1)
∣∣

≤
∣∣vτ − L2

BSBv −Dc
i (v

i, τ i,S, τ i−1,S, vi−1)
∣∣︸ ︷︷ ︸

→ 0

+
∣∣Dc,i

γ (vi, τ i,S, τ i−1,S, vi−1)−Dd,i
γ (vi, τ i,S, τ i−1,S, vi−1)

∣∣︸ ︷︷ ︸
(4.17)→ 0

→ 0

Thus, also the solution of the discretisation with discrete controls converges to the
unique viscosity solution for an increasing number of points in D2 and decreasing
step sizes H and hτ .

�

A similar result to the lemma above has been proven by Wang and Forsyth [WF08].

4.2 Convergence of one-dimensional schemes

The convergence results for the one-dimensional non-linear schemes can be proven
analogue to the proofs of section 4.1. We will obtain similar conditions for the con-
vergence of each scheme.
The pricing of options on one asset in the BSB model is a known problem in the liter-
ature. Pooley, Forsyth and Vetzal [PFV03a] apply a Finite Volume (FV) method to
the BSB equation BSB1. Heider [Hei10] and Schaeling [Sch10] consider convergence
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4.2 Convergence of one-dimensional schemes

of Finite Difference (FD) methods. In the latter two papers the pricing equation
is transformed to log-prices and then additionally scaled by the underlying’s value.
In the publication mentioned first the equation is solved in the original variables.
In all papers the non-linearity is handled by Newton iteration in each time step.
Its convergence is guaranteed if the iteration matrix is an M-matrix [PFV03a]. In
[Sch10] it is proven that for an appropriate choice of the stepwidth in space their
iteration matrix is an M-matrix. This result also applies to the discretisation in
[Hei10].
The results we present are of the same quality as those in [Hei10] and [Sch10]. Thus,
we keep this section short. They can be understood as a special case of the results
presented in Section 4.1. For the pricing of American options, see the results in
Section 4.3.

For the determination of the optimal control at a time level i Algorithm 3.1 is used.
Its convergence is guaranteed by Theorem 3.1 since we know from Lemma 2.10 that
the iteration matrix is an M-matrix.
Thus, the remaining task is the proof of convergence of the BDF1 and the CN scheme
to the unique viscosity solution of equation (2.3). As before, we assume that the
spatial grid is constant over time. For the BDF1 scheme we have

Lemma 4.5.
Let a grid G(L, {ti}, {S},Ω1) be given and let r ≥ 0. Furthermore, let the spatial
step sizes be bounded so that only centered difference quotients are used.
Then the BDF1

Di
γ

(
vi, τ i,S i, τ i−1,S i−1, vi−1

)
= Bi

γ,1v
i − Ci−1

γ,1 v
i−1 − ri1 = 0

converges to the unique viscosity solution of the BSB equation (2.3) for hτ , H → 0

and cM1 →∞.

The proof is completely analogue to the one of Theorem 4.1.

For the CN scheme we need an additonal condition to assure its convergence.

Lemma 4.6.
Let a grid G (L, {ti}, {S i},Ω1) be given and let r ≥ 0. Furthermore, let

max{cf , cb, cc}hτ ≤ h̃2
x, (4.18)
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where

h̃x ≤ hk1, k ∈ IM i , cf =
1

2

(
σ2

1

(
1 +

H

2

)
+H2r

)
,

cb =
1

2

(
σ2

1 + r
(
H +H2

))
, cc =

1

2

(
σ2

1

(
1 +

H

2

)
+
(
H +H2

)
r

)
.

Then the CN scheme

Di
γ

(
vi, τ i,S i, τ i−1,S i−1, vi−1

)
= Bi

γ, 1
2
vi − Ci−1

γ, 1
2

vi−1 − ri
γ, 1

2
= 0

converges to the unique viscosity solution of the BSB equation (BSB1) (2.3) for
hτ , h1 → 0.

The proof can be performed analogously to the one of Lemma 4.2.

Proof.
We only give the appraisal of each diagonal entry of the matrix Aiγ defined in (2.33).
The stability and the monotonicity of the Crank-Nicolson scheme can then be de-
duced by the same arguments used in the proof of Lemma 4.2.
W. l. o. g. we consider a grid point with index (·, k). By the construction of the dis-
cretisation we know that the minuends in the following inequalities are non-positive.
If we use central differencing, we have

akk,γ ≤ r − 1

h̃2
x

(
2dk,l

1,j
+ ck,l

1,j

(
hk1 − hk+1

1

))
≤ 1

h̃2
x

(
σ2

1

(
1 +

H

2

)
+H2r −H|r − δ1|

)
︸ ︷︷ ︸

=2cc

.

For backward differencing we obtain the appraisal:

akk,γ ≤ r − 1

h̃2
x

(
2dk,l

1,j
+ cx1γh

k
1

)
≤ 1

h̃2
x

(
σ2

1 +H2r +H(r − δ1)−)
)︸ ︷︷ ︸

=2cb

Finally, for the use of forward differencing we have

akk,γ ≤ r − 1

h̃2
x

(
2dk,l

1,j
− cx1γhk+1

1

)
≤ 1

h̃2
x

(
σ2

1

(
1 +

H

2

)
+H2r −H(r − δ1)+

)
︸ ︷︷ ︸

=2cf

.
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Defining c := max{cf , cc, cb}, we have:

chiτ ≤ h̃2
x ⇒

hiτ
2h̃2

x

c ≤ 1⇒ 1

2
hiτa

k
k ≤ 1

Now, if inequality (4.18) is satisfied, we could proceed proving stability and mono-
tonicity as in the proof of Theorem 4.3.
If discrete optimisation has to be used, the discretisation error converges to zero for
cM1 →∞, cp. Lemma 4.4 .

�

4.3 Convergence of schemes for American option

pricing

In Section 2.4 we learned that the value of an American option can be approximated
by solving a penalized version of the pricing equation for European options instead
of solving a complementary problem directly. For the linear BS model we saw that
Algorithm 2.1 converges to the solution of the discretised pricing equation, compare
Theorem 2.11. In this section we extend this result and those of Section 4.1 to the
discrete schemes for Problem 2.29 for pricing American options. This problem is a
valid formulation for the one-dimensional as well as the multi-dimensional pricing
problems.
On the one hand a convergence result for the combination of the Penalty iteration
(Algorithm 2.1) and the Policy iteration (Algorithm 3.1) has to be established. On
the other hand we have to prove that the discrete schemes represented by (2.45) also
converge to the solution of Problem 2.29. Of course, as mentioned in Remark 1.9,
we only can assume that there exists a unique viscosity solution to this problem.

We assume that the spatial grid is constant over time, i. e. S0 = . . . = SL. We recall
that the θ-scheme for a time step ti−1 → ti is given by

Bi
γ,θv

i = Ci
γ,θv

i−1 + riθ + hiτPε
(
vi
) (
p− vi

)+
.

For the definitions of the matrices and vectors see Section 2.4.

We now proof a lemma which guarantees the convergence of scheme (2.45) for the
penalized equation whenever the corresponding scheme (2.40) for the non-penalized
equation is convergent.
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Lemma 4.7.
Let a grid G(L, {ti}, {S},Ωn) be given. Assume that a time step ti−1 → ti of the
scheme for solving the pricing equation for European options on n assets

Di
γ

(
vi; ti,S i, ti−1,S i−1, vi−1

)
= Bi

γ,θv
i − Ci

γ,θv
i−1 − riθ

is monotone, stable, and consistent.
Then, the corresponding scheme for solving the penalized pricing equation (2.45)

Di,pen
γ

(
vi; ti,S i, ti−1,S i−1, vi−1

)
= Bi

γ,θv
i − Ci

γ,θv
i−1 − riθ − hiτPε

(
vi
) (
p− vi

)+
(4.19)

also is monotone, consistent and stable. Thus, it converges to the unique viscosity
solution of the penalized equation.

Proof.
We first verify the monotonicty of (4.19) by verifying Definition 1.23. Let εi, εi−1 ∈
RM i

+ . Without loss of generality we consider the grid point with index (i, k, l) with
lexicographical index j for spatial grid points. We have

Di,pen

j,γ

([
vi + εi

]
j
, vi
j
; ti,S i, ti−1,S i−1, vi−1 + εi−1

)
≤ Di

j,γ

([
vi
]
j
, vi
j
; ti,S i, ti−1,S i−1, vi−1

)
− hiτPε

(
vi +

[
εi
]
j

)
j

(
p− vi −

[
εi
]
j

)+

= Di,pen

j,γ

([
vi
]
j
, vi
j
; ti,S i, ti−1,S i−1, vi−1

)
,

since Pε(v) is a diagonal matrix and the disturbance εi does not effect the diagonal
element with index j.
Let ξi ∈ R+. Then the following inequality holds true

Di,pen

j,γ

([
vi
]
j
, vij + ξi; ti,S i, ti−1,S i−1, vi−1

)
≥ Di

j,γ

([
vi
]
j
, vij; t

i,S i, ti−1,S i−1, vi−1
)
− hiτPε

(
vi + ejξ

i
)
j

(
p− vi − ejξi

)+

≥ Di,pen

j,γ

([
vi
]
j
, vi
j
; ti,S i, ti−1,S i−1, vi−1

)
,

where ej is the j-th canonical unit vector in RM .
Thus, also the penalized discretisation is monotone.
The stability of the penalized scheme can be shown analogously to the one of the
non-penalized one, since the penalty term is bounded from above.
We already know that the non-penalized discretisation is consistent. By adding the
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penalty term the consistency of the scheme for the penalized equation is not affected.
The scheme remains consistent.
The determination of the optimal controls is for both continuous and discrete opti-
misation the same as for European options. All results regarding convergence also
hold. �

To use the penalized discretisation for American option pricing in the BSB model
we need an algorithm to solve the discrete non-linear equation (2.45). The following
one realizes the Penalty iteration and the Policy iteration at the same time. It is a
combination of Algorithm 3.1 and Algorithm 2.1. That is, we execute the Newton
iteration for the penalty method with an iteration matrix which is updated in every
step by the optimal control.
Let p ∈ RM i denote a vector in lexicographical ordering containing the payoff on
the grid in space.

Algorithm 4.1: Combined Penalty and Policy iteration.
Input: θ, hτ , vi−1, γi−1, Bi

γ,θ, C
i−1
γ,θ , r

i−1
θ , p

Output: vi,(j), Bi,(j)
γ,θ , r

i,(j)
θ

1 pen_pol_iteration
(
θ, hτ , v

i−1, γi−1, Bi−1
γ,θ , C

i−1
γ,θ , r

i
θ, p
)

2 j ← 0, err ← 1;
3 vi,(0) ← vi−1, γi,(0) ← γi−1;
4 B

i,(0)
γ,θ ← Bi−1

γ,θ , r
i,(0)
γ,θ ← ri−1

θ ;
5 while err ≥ 10−6 do
6 for (x1,k, x2,l), k ∈ JM1 , l ∈ JM2 do
7 calculate a1, a2, a3 as derivatives of v

i,(j) ; //s. (3.6)
8 γ

i,(j)
k,l = det_control(·);

9 update B
i,(j+1)
γ,θ x B

i,(j)
γ,θ ;

10 calculate P
i,(j)
ε ← Pε

(
vi,(j)

)
;

11 solve
(
B
i,(j+1)
γ,θ + hτP

i,(j)
ε

)
vi,(j+1) = Ci−1

γ,θ v
i−1 + r

i,(j+1)
θ + hτP

i,(j)
ε p;

12 err ← ‖vi,(j+1) − vi,(j)‖2;
13 j ← j + 1;

14 return vi,(j), B
i,(j)
γ,θ , r

i,(j)
θ ;

The following lemma states a convergence result for Algorithm 4.1.

Lemma 4.8.
Let a start value vi−1 be given. Furthermore, let the matrices Bi

γ,θ and Ci−1
γ,θ in

equation (4.19) be bounded in the maximum norm.
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4.3 Convergence of schemes for American option pricing

If Bi
γ,θ is an M-matrix for all γ ∈ Θd

· and θ ∈ {0.5, 1}, then Algorithm 4.1 converges
monotonously to a unique solution vi.

The arguments in the proof are analogue to those used to prove Theorem 3.1. With
the iteration matrix being an M-matrix and the boundedness of the iterates the
mentioned results can be deduced directly.

Proof.
We consider one step j → j + 1 of the iteration.
Since Bi

γ,θ is bounded by assumption this is also true vor Bi
γ,θ + hiτPε(v

i,(j)) the
boundedness of the iterates can be affiliated from equation (4.19) as in the proof of
Theorem 3.1.
The monotone convergence and the uniqueness of the solution in the proof of The-
orem 3.1 were an instantaneous result of the M-matrix property of the iteration
matrix. The matrix Bi

γ,θ + hiτPε(v
i,(j)) maintains this property. We only add a

non-negative figure to every diagonal entry and thus the off-diagonal entries remain
non-positive. Applying the triangle inequality and Lemma 2.9 the M-Matrix prop-
erty of Bi

γ,θ + hiτPε(v
i,(j)) is proven. Therefore the monotone convergence and the

uniqueness of the solution of the above algorithm follow directly.

�
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5 Numerical Results

In this chapter an analysis of the numerical results for the methods introduced in the
Chapters 2 and 3 is given. We will investigate accuracy, convergence, and runtime.
The analysis is presented for options on one and on two assets. For both we con-
sider European as well as American options for several sets of parameters. Different
schemes with different approaches to the optimization problem included are com-
pared among each other. In addition we analyse the behaviour of the methods if
the theoretical conditions for convergence, cp. Chapter 4, are not met.
For one two-dimensional option we show the evolution of the controls over time in
order to clarify the nature of the optimal control problem for options on financial
markets.
In the first section of this chapter we briefly address certain aspects of the imple-
mentation. Hereafter, we focus on methods for options on two assets and conclude
with those for single-asset options.

5.1 Aspects of implementation

Before we present the results for the methods introduced in the previous chapters
let us make some preliminary remarks.
All methods which will be used are implemented in C++. They were executed on a
MacBook Air with two 1.7 GHz processors and an internal memory of 4GB. The
timekeeping was done via the “clock()” - function of the “time.h” package provided
by C++.
For the solution of the systems of equations with more than six diagonals the package
“lsolver” is applied. It is provided by C. Badura [Bad98], v. i.. Here several iterative
solvers are implemented. The implementation is based on routines of the LAPACK

[LAP] and Blas [BLA] packages.
For those systems which are in tridiagonal form we use the Thomas algorithm, cf.
[SB02].

To keep the algorithm efficient the discretisation matrix is initialised as a sparse
matrix with seven or three diagonals, respectively. Each diagonal is stored in a
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5.2 Detailed numerical results

separate array, where an element of the matrix can be accessed by the lexicographical
index of its row and column index. Furthermore, all calculations regarding the choice
of difference quotients and the dependent approach to the optimization method are
done a priori.
The algorithm could easily be made more efficient by including parallelisation. There
are two main aspects to apply it. For every spatial grid point the optimization has
to be done independently of all others. This is an obvious starting point to benefit
of the use of several cores. Additionally, the update of the discretisation matrix for
each step of the policy iteration also is done for each grid point separately. Applying
parallelisation in this context could be as beneficial as for the optimization.

5.2 Detailed numerical results

In this section we present a numerical analysis of the different approaches which
were introduced in the previous chapters for solving Problem 2.3 and Problem 2.29
for n = 2. Especially Sections 2.2.1, 2.3, 2.4, and 4.1 and Chapter 3 serve as basis for
the numerical experiments. For n = 3 we will not perform numerical experiments.
For the one-dimensional pricing problems a detailed analysis can be found in the
publications of Heider [Hei10] and Schaeling [Sch10].

For every time step of the considered schemes we have to solve a system of equations
several times. This system is of sparse structure and can be solved efficiently by
iterative methods. Direct methods could cause a fill-in in the matrix Bi

γ,θ of the
linear system and might therefore require much memory and become slow. Since
it is not symmetric or positive definite a quite general iterative solver is chosen. In
the following we will use the Biconjugate Gradient Stabilized (BiCGSTAB) method
developed by van der Vorst [vdV92]. It is an extension of the Conjugate Gradient
method for non-symmetric matrices. A detailed introduction to this method among
others can be found in the book of Saad [Saa03]. Since the BiCGSTAB works
iteratively an error tolerance has to be provided for the algorithm to quit. We set
εIS := 10−12. As initial value we use the option value of the previous time level.
This choice should reduce the overall iterations perceptibly.

We start with the three schemes (BDF1, BDF2, CN) constructed on uniform grids
where continuous optimisation is possible. A reasonable criterion to validate their
performance is the calculation of the convergence rates. Moreover, we look at the
number of iterations needed by the policy iteration and the BiCGSTAB, respectively.
Hereafter, we compare the schemes constructed on a uniform grid using continuous
optimisation with those constructed on a uniform grid with discrete optimisation
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5.2 Detailed numerical results

and those constructed on a non-uniform grid with discrete optimisation. The focus
of this comparison lies on run time and accuracy of the solution.

For the numerical experiments we choose ΩD
2 = [0, T ] × [−3, 4] × [−3, 4]. For the

BDF2 and the CN scheme Rannacher (cp. [Ran84]) time stepping was used for
the first five time steps. By ∆S

C ,∆
t
C , IPI , and IIS we denote the convergence rates,

the number of iterations executed by the policy iteration and those of the iterative
solver, respectively. In Table 5.1 the parameters for the first analysis are given.

Tab. 5.1: Parameter set #1 for options on two assets.
K S1,0 S2,0 r T δ1 δ2 V1 V2 C1,2

1 1 1 0.05 1 0.01 0.01 [0.3,0.4] [0.2,0.35] [0.2,0.3]

Let us furthermore assume that the spatial step sizes of the uniform grid are small
enough so that only centered difference quotients can be used, cp. Lemma 2.3. The
first example is a put on the minimum of two assets with the parameters given in
Table 5.1 which is at the money.

Tab. 5.2: Results for an increasing number of spatial grid points of the
BDF1 (top), BDF2 (middle), and CN (bottom) scheme for a
European minimum put with parameters given in Table 5.1, and
N = 500 time steps.
M1,M2 v(0, ·) ∆S

C IPI IIS time [sec.]
50 0.196481 - 2.0 1.74 0.7
100 0.198950 - 2.06 2.05 3.8
200 0.199551 4.11 2.76 2.49 23.3
400 0.199700 4.02 3.27 4.15 144.7
800 0.199737 4.01 3.96 9.02 1182.8

M1,M2 v(0, ·) ∆S
C IPI IIS time [sec.]

50 0.196547 - 2.0 1.69 0.7
100 0.199013 - 2.01 1.95 3.7
200 0.199613 4.11 2.57 1.95 20.7
400 0.199763 4.02 3.02 3.74 129.3
800 0.199800 4.01 3.86 7.27 1005.0

M1,M2 v(0, ·) ∆S
C IPI IIS time [sec.]

50 0.196547 - 2.0 2.0 1
100 0.199013 - 2.02 2.10 5.1
200 0.199613 4.11 2.73 2.81 30.6
400 0.199763 4.02 3.18 4.64 174.4
800 0.199800 4.01 3.89 9.65 1311.4

We consider the convergence rates in time and in space separately. For the results
in Table 5.2 the number of grid points in the two spatial directions was doubled
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for every run. The number of iterations increases with the doubling of M1 and
M2. Which is reasonable since with the number of grid points also the influence of
the controls grows. Thus the difference between the iterates of the policy iteration
decays more slowly. Of course for a minimum put we would not expect a strong
variation of the controls neither in time nor in space due to the structure of the
option value.
For all three schemes the policy iteration almost needs the same number of iterations.
In each run the number of iterations is nearly constant.
A conspicuous conduct is the increasing time for each run. We would expect the run
time to quadruple with each doubling ofM1 andM2. However, due to the increasing
average iterations IPI and IIS it grows with a factor of five to seven stronger than
expected.

Tab. 5.3: Results for an increasing number of grid points in time of the
BDF1 (top), BDF2 (middle), and CN (bottom) scheme for a
European minimum put with parameters given in Table 5.1,
M1 = M2 = 400.
N v(0, ·) ∆t

C IPI IIS time [sec.]
50 0.198981 - 3.54 10.43 4.0
100 0.199297 - 3.23 6.61 10.0
200 0.199455 2.0 3.03 4.21 20.1
400 0.199535 2.0 2.82 3.08 37.3
800 0.199574 2.0 2.6 2.13 65.4

N v(0, ·) ∆t
C IPI IIS time [sec.]

50 0.199557 - 3.24 8.96 3.5
100 0.199600 - 3.11 5.33 9.0
200 0.199610 4.0 2.87 3.33 18.0
400 0.199613 3.99 2.7 2.48 33.5
800 0.199614 4.02 2.31 2.05 58.3

N v(0, ·) ∆t
C IPI IIS time [sec.]

50 0.199554 - 3.52 9.89 4.3
100 0.199599 - 3.31 6.45 11.5
200 0.199610 3.97 3.0 4.24 23.3
400 0.199613 3.98 2.8 3.1 43.4
800 0.199614 3.99 2.43 2.66 76.9

In Table 5.3 the convergence results are given for a doubled number of time steps
for each run. The convergence rates are nearly identical to the theoretical ones.
We obtain a rate of two for the BDF1 scheme and of four for the BDF2 and the
CN scheme. For all three the average number of policy iterations is similar and de-
creases slowly with an increasing number of time steps. For the BiCGSTAB solver
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5.2 Detailed numerical results

the average effort decreases while the step size hτ decreases. This behaviour can
be explained regarding the condition of the discretisation matrix. For hτ → 0 its
structure becomes more and more similar to the identity matrix and so the condition
reduces. Thus, the convergence speed increases.

For an American minimum put the results are of similar quality as those presented
above. They can be found in Appendix B.1 in Tables B.1 and B.2. The convergence
rates are close to four and two for doubling the number of spatial grid points and
those in time, respectively. The average number of policy iterations is slightly in-
creased. This circumstance is explained by the additional penalty term included in
the iteration. The convergence speed of BiCGSTAB iteration instead is noticeably
smaller. With the penalty term added to the diagonal of the discretisation matrix
its condition deteriorates and thus the the error decays more slowly.

The convergence rates given in Tables 5.2 and 5.3 above were quite close to the
theoretical ones. In the numerical examples presented hereafter we will see that this
conformity is not what could be expected in general.

The next example is a capped minimum put, cp. Figure 1.3. The parameters of the
underlying model are given in Table 5.4. Also in this case all conditions are satisfied
so that only centered difference quotients are used and the optimisation problems
are solved analytically.

Tab. 5.4: Parameter set #2 for options on two assets.
K S1,0 S2,0 r T δ1 δ2 V1 V2 C1,2

1 1 1 0.05 1 0.0 0.0 [0.4,0.5] [0.2,0.35] [0.25,0.25]

For the parameter set #2 the condition of Lemma 2.3 is satisfied and only centered
difference quotients are used.
For this type of option the Deltas as well as the Gammas change their sign for
change values of x1 and x2. In Table 5.5 the data for the analysis of the convergence
behaviour in space are given. As for the European minimum put all three schemes
converge to the same option value despite the fact that the BDF2 scheme is not
monotone at all and the CN scheme does not possess this property for the last run.
The average number of iterations of the policy iteration is nearly constant. For
each run the first few time steps require some additional iterations. But for the
majority only two iterations are needed for convergence. The computational costs
for the iterative solver are of the same quality as in the previous example. With a
discretisation getting finer also the average effort increases.
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5.2 Detailed numerical results

Tab. 5.5: Results for an increasing number of spatial grid points of the
BDF1 (top), BDF2 (middle), and CN (bottom) scheme for a
European capped minimum put with parameters given in Table
5.1, N = 500.
M1,M2 v(0, ·) ∆S

C IPI IIS time [sec.]
50 0.126311 - 2.02 1.73 0.6
100 0.128963 - 2.02 2.02 3.3
200 0.129200 11.81 2.06 2.21 14.9
400 0.129330 1.81 2.12 3.5 82.9
800 0.129350 6.42 2.21 7.57 702.4

M1,M2 v(0, ·) ∆S
C IPI IIS time [sec.]

50 0.126343 - 2.01 1.68 0.6
100 0.128988 - 2.02 1.93 3.2
200 0.129225 11.19 2.05 2.11 14.64
400 0.129355 1.81 2.09 3.02 73.15
800 0.129376 6.40 2.17 6.46 625.15

M1,M2 v(0, ·) ∆S
C IPI IIS time [sec.]

50 0.126343 - 2.01 2.0 0.8
100 0.128988 - 2.02 2.13 4.6
200 0.129225 11.19 2.05 2.38 21.0
400 0.129355 1.81 2.08 3.81 102.5
800 0.129376 6.4 2.15 8.16 709.9

The convergence rates are of special interest. For all three schemes these are es-
sentially the same. Still, for all three schemes the option value seems to converge
monotonically to the same value but not with the theoretical convergence rates.
With the smallest ratio of 1.81 we have at least first order convergence. The other
two ratios in opposite clearly indicate higher convergence speed as could theoreti-
cally be expected. In Table 5.6 the results with doubled N are displayed. For the
BDF1 scheme we observe the expected convergence rates of two. For the BDF2 and
the CN scheme convergence is slower. They still converge super linearly but with
rates of approximately 3.4 we do not have second order convergence. For the aver-
age iterations used by the policy iteration and the BiCGSTAB we observe the same
behaviour as in Table 5.3. The decreasing step size hτ accelerates the convergence
of the iterations.
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Tab. 5.6: Results for an increasing number of grid points in time of the
BDF1 (top), BDF2 (middle), and CN (bottom) scheme for a
capped minimum put with parameters given in Table 5.1, M1 =
M2 = 200.
N v(0, ·) ∆t

C IPI IIS time [sec.]
50 0.128972 - 2.68 10.22 2.9
100 0.129098 - 2.35 5.89 6.8
200 0.129162 2.0 2.2 3.42 12.8
400 0.129193 2.0 2.1 2.34 23.0
800 0.129209 1.99 2.03 1.84 41.3

N v(0, ·) ∆t
C IPI IIS time [sec.]

50 0.129201 - 2.66 8.40 2.6
100 0.129218 - 2.36 4.94 6.3
200 0.129223 3.44 2.19 2.98 11.9
400 0.129224 3.2 2.08 2.22 21.8
800 0.129225 3.42 2.02 1.77 39.8

N v(0, ·) ∆t
C IPI IIS time [sec.]

50 0.129198 - 2.64 9.60 3.2
100 0.129217 - 2.34 5.83 8.0
200 0.129222 3.43 2.65 3.53 15.9
400 0.129224 3.25 2.07 2.57 29.7
800 0.129225 3.4 2.02 2.15 56.0

The last example for schemes working on a completely uniform grid with continuous
optimisation is the butterfly spread, cp. Figure 1.4. The data for the model in which
we priced the options are given in Table 5.7.

Tab. 5.7: Parameter set #3 for options on two assets.
K α S1,0 S2,0 r T δ1 δ2 V1 V2 C1,2

1 0.2 1 1 0.05 1 0.02 0.01 [0.2,0.4] [0.35,0.5] [0.1,0.25]

Given the structure of the payoff there should be one change of the sign both for the
first and second derivative. Thus, the controls will vary across the spatial domain.
In Figure 5.1 the evolution of σ1 is displayed for different time levels and different
spatial discretisations.
In each graph the interesting area for S1, S2 ∈ [0, 2.5] is plotted. Those on the left
hand side contain 141 points in each direction and those on the right hand side 562.
The value of σ1, which is plotted at a grid point, is the one for which the objective
function attained its minimal respectively maximal value.
At first, we notice that the results for σ2 show a similar structure. For the correla-
tion the results directly depend on the sign of the mixed derivative, v. s.
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Fig. 5.1: Evolution of σ1 over time for a butterfly spread for two different
spatial discretisations. The data are for M1 = M2 = 200 on the
left hand side and forM1 = M2 = 800 on the right hand side. The
time levels τ = 0.1 (top), τ = 0.5 (middle), and τ = 1 (bottom)
are displayed. The colours display the volatility starting with σ1

(red) and ending with σ1 (blue).

The next observation is that mostly the minimal and maximal values of σ1, respec-
tively, occur. This fact will be of special interest, v. i.
For all three time levels σ1 shows the same structure for M1 = M2 = 200 and
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M1 = M2 = 800. With the spatial discretisation getting finer the different domains
of the controls refine and the structure does not change. Thus, the evolution of the
control over time seems to be “consistent” and independent of the spatial discretisa-
tion.
Similar results have been observed for other types of options. The results are dis-
played for the butterfly spread since the controls are most volatile for this option.
In the Tables 5.8 and 5.9 the convergence results for the butterfly spread are sum-
marised. The convergence rates in Table 5.8 vary around four for all three schemes.

Tab. 5.8: Results for an increasing number of spatial grid points of the
BDF1 (top), BDF2 (middle), and CN (bottom) scheme for a
European butterfly spread with parameters given in Table 5.7,
N = 500.
M1,M2 v(0, ·) ∆S

C IPI IIS time [sec.]
50 0.086776 - 2.09 1.8 0.6
100 0.078525 - 2.13 2.01 3.7
200 0.076995 5.39 2.31 2.51 19.1
400 0.076652 4.47 2.52 4.82 112.9
800 0.076551 3.39 2.66 10.63 935.3

M1,M2 v(0, ·) ∆S
C IPI IIS time [sec.]

50 0.086756 - 2.06 1.74 0.7
100 0.078518 - 2.10 1.91 3.6
200 0.076994 5.41 2.25 2.31 18.1
400 0.076654 4.47 2.44 4.19 102.7
800 0.076553 3.38 2.59 8.89 768.9

M1,M2 v(0, ·) ∆S
C IPI IIS time [sec.]

50 0.086756 - 2.04 2.0 0.8
100 0.078518 - 2.09 2.19 4.9
200 0.076994 5.41 2.25 3.08 24.6
400 0.076653 4.47 2.4 5.35 133.2
800 0.076552 3.38 2.59 11.04 967.1

But they are not as uniform as they can be observed for Finite Differences applied
to multi-dimensional Black-Scholes models. Which would suggest the assumption
that the varying controls influence the convergence of the schemes.
For the convergence in time smaller convergence rates can be observed for a smaller
number of time steps. But with increasing N convergence improves, cp. Table 5.9.

In the next segment we price the butterfly spread again with the parameters as
given in Table 5.4 and 5.7, respectively. But this time we use the discrete control
set D2 instead of Θ2. Consequently, we do not use the KKT conditions but compare
the objective values for each discrete control. To analyse the influence of how fine
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Tab. 5.9: Results for an increasing number of grid points in time of the
BDF1 (top), BDF2 (middle), and CN (bottom) scheme for a
European butterfly spread with parameters given in Table 5.7,
N = 400.
N v(0, ·) ∆t

C IPI IIS time [sec.]
50 0.076617 - 3.30 13.28 4.18
100 0.076612 - 3.09 7.56 9.94
200 0.076634 0.07 2.88 4.45 18.61
400 0.076648 1.13 2.44 2.91 31.59
800 0.076658 1.58 2.15 2.01 52.69

N v(0, ·) ∆t
C IPI IIS time [sec.]

50 0.076461 - 3.22 11.02 3.72
100 0.076560 - 3.07 6.35 9.15
200 0.076619 1.69 2.79 3.9 17.31
400 0.076648 2.0 2.35 2.60 29.71
800 0.076661 2.29 2.13 1.91 50.37

N v(0, ·) ∆t
C IPI IIS time [sec.]

50 0.076457 - 3.18 12.31 4.31
100 0.076557 - 3.06 7.47 10.96
200 0.076617 1.66 2.75 4.87 21.46
400 0.076647 1.99 2.31 3.36 37.94
800 0.076661 2.29 2.11 2.43 66.66

Θ2 is discretised we vary cM1, cM2 ∈ {3, 5, 7, 9, 11}. We omit the results for the
other options considered so far, since we have the biggest variations of control for
the butterfly spread. Therefore, the results for those do not offer any new findings.
In our experiments we observed that noticeable differences only occurred in a region
where the controls changed significantly across the spatial grid. One example is
displayed in Table 5.10. Here the butterfly spread was priced for S1,0 = 1.15,
S2,0 = 1.1 which is a point where the volatilities vary strongly, cp. Figure 5.1.
The difference between the option values calculated with continuous and discrete
optimisation are of order 10−6 for cM1 = cM2 = 3. With a growing number of
discrete controls the error reduces. For cM1 = cM2 = 11 the error is of order
10−8. The constants cM1 and cM2 have to be chosen carefully. To solve the KKT-
conditions for a two-dimensional problem we need at most twelve evaluations of the
objective function and some additional calculations. If the discretised optimisation
problem is solved (cM1 + 1)(cM2 + 1) evaluations of z2

uw have to be done for a single
grid point. For the example given in the table below the algorithm needed 91.9 sec.,
110.8 sec. and 141.1 sec. for cM1 = cM2 ∈ {3, 7, 11}, respectively. With continuous
optimisation the algorithm took 91.5 sec.

Before we analyse the utility of non-uniform grid we note the following. The exper-
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Tab. 5.10: Comparison of option values for continuous and discrete optimi-
sation with cM1, cM2 ∈ {3, 5, 7, 9, 11} for a European butterfly
spread with parameters given in Table 5.7 and S1,0 = 1.15,
S2,0 = 1.1. (M1 = M2 = 400, N = 500).

cont. discrete controls
controls cM· = 3 cM· = 5

BDF1 0.060419707 0.604188735 0.060419416
BDF2 0.060437554 0.060436725 0.060437264
CN 0.060437080 0.06436251 0.060436790

discrete controls
cM· = 7 cM· = 9 cM· = 11

BDF1 0.060419560 0.060419618 0.060419646
BDF2 0.060437406 0.060437465 0.060437493
CN 0.060436932 0.060436991 0.060437019

iments shown above are representative for the convergence behaviour we observed
during our test runs. The schemes converge monotonically to the viscosity solution
except for cases in which (S1,0, S2,0) lies in regions with volatile controls. But gener-
ally, the schemes cannot be expected to converge with the rates implied by theory.
For linear and almost linear problems these rates are roughly attained. For highly
non-linear problems this does not hold true, v. s..

In the last segment of this section we examine the efficiency increase which can be
gained by non-uniform spatial grids. From Section 2.2.2 we know that for most
non-uniform grids the discrete optimisation problem has to be solved at each grid
point. Therefore, for the solution of the pricing problem on a non-uniform grid with
discretised controls we have several limitations:

1. the scheme has to stay monotone and thus the step sizes are bounded as
described in Section 2.2.1,

2. the number of discrete controls can significantly increase the overall run time,
and

3. the number of discrete controls influence the accuracy of the final result.

Of course, the third point is the least restrictive one.

In the following example we apply a non-uniform grid as described in Section 2.2.2.
The upper bounds for the spatial step sizes are directly implied by the bounds for
volatility and correlation. As parameters for the non-uniform grid we used x+ = 0.5

and d = 5. Thus, the points K − α,K,K + α are all placed in a region where the
minimal step size is applied.
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In the following deliberations we consider two of the examples from above, namely
the minimum put and the butterfly spread with the parameters given in Tables 5.1
and 5.7, respectively. We do not analyse the convergence behaviour of the schemes
for increasing N , since it is similar to the results presented above.

In Table 5.11 the option values and the run time for the three different schemes and
with a different number of discrete controls are given.

Tab. 5.11: Option values for a European butterfly spread priced on a non-
uniform grid with discrete control, parameters given in Table
5.1, and N = 500.

M1,M2
cM· = 5 cM· = 9
v(0, ·) v(0, ·)

BDF1
29/17

0.09485323 0.09485324
BDF2 0.09482174 0.09482174
CN 0.09482168 0.09482168

BDF1
58/33

0.08011376 0.08011395
BDF2 0.08010682 0.08010701
CN 0.08010643 0.08010662

BDF1
116/66

0.07765864 0.07765875
BDF2 0.07765869 0.07765879
CN 0.07765799 0.07765809

BDF1
230/134

0.07677106 0.07677117
BDF2 0.07677217 0.07677229
CN 0.07677152 0.07677164

In the table above we see again the influence of the discrete controls as described
above. All three schemes converge to the same solution independent of the non-
uniform grid and the choice of cM1, cM2. In the following Figure 5.2 run time and
error are plotted against each other. For this purpose we used the option value
calculated on a uniform grid with M1 = M2 = 3200 grid points and continuous op-
timisation as benchmark. We focus on the BDF1 and the CN scheme. Additionally
to the results for the nonuniform grids, the butterfly spread was priced on grids with
(M1,M2) ∈{(20,20),(40,40), . . .} and (M1,M2) ∈{(30,30),(60,60), . . .} grid points,
respectively, and continuous optimisation. For the results obtained with discrete
optimisation we applied cM1 = cM2 = 5.
In Figure 5.2 we see that the schemes solved on non-uniform grid and with discretized
controls are slightly more efficient than those schemes executed on a uniform grid
with continuous controls. But the efficiency increase is quite small which is explained
by bounded maximal step sizes due to the volatility and correlation ranges. For the
experiment with the lowest number of spatial grid points h1

max = 0.4 was used. This
example illustrates the limited success adaptive Finite Difference methods might
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5.2 Detailed numerical results

have for option pricing in the Uncertain Volatility model. Of course, for special
cases, for example very small or zero correlation, the possible range for the spatial
step sizes is larger.
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BDF1, M1 = M2 = 20 · 2n, KKT CN, M1 = M2 = 20 · 2n, KKT
BDF1, M1 = M2 = 30 · 2n, KKT CN, M1 = M2 = 30 · 2n, KKT

Fig. 5.2: Plot of error versus runtime for option values calculated on uni-
form and non-uniform spatial grids. The BDF1 scheme on a uni-
form grid with continuous controls marked light red was calcu-
lated with M1 = M2 = 2n · 30 spatial grid points. While the
other BDF1 scheme calculated on a uniform grid and continuous
controls was calculated with M1 = M2 = 2n · 20, n = 0, . . . , 3
spatial grid points. The same holds for the uc-CN schemes. For
the schemes calculated on a non-uniform grid with discrete con-
trols we applied N3 −N2 = 2n · 5 for each spatial dimension and
cM1 = cM2 = 5.

To conclude this chapter, we give a short comparison of the considered methods. We
note that the BDF1 scheme is convergent for monotone discretisations and solves
the pricing problem faster than the Crank-Nicolson method. But it theoretically
and practically has the smaller rate of convergence. Assuring the convergence of the
Crank Nicolson scheme is more restrictive than for the BDF1 scheme due to the step
size condition. The rates of convergence of the CN scheme are higher than those of
the BDF1 scheme and comparable to those of the BDF2 scheme. The BDF2 scheme
is approximately as fast as the BDF1 scheme, but it converges with the rates of
the CN scheme. The scheme however is not monotone and its convergence to the
viscosity solution could not be proven.
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5.2 Detailed numerical results

For all three schemes non-uniform grids could be applied. Here the local optimisa-
tion problem should be approximated by considering discrete controls. The results
obtained are slightly improved compared to their counterparts on uniform grids.
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6 Conclusion

This chapter summarizes the analytical and practical results, which were elaborated
in the present thesis. The theoretical framework regarding the Uncertain Volatility
model and the concept of viscosity solution in which the introduced schemes are
included are given in the first chapter.
In the second chapter we performed the Finite Difference discretisation of the Black-
Scholes-Barenblatt equation for European options. For American options it was as-
sumed that the option value is given by a complementary problem which was then
approached by the well known penalty mehtod.
For the two-dimenisional option pricing problem the fundamental requirement is the
flexible choice of the difference quotients, which are used to approximate the first
derivative of the option value. But also with this additional flexibility of the dis-
cretisation there might be no monotone discretisation based on Finite Differences.
Applying this technique, it was shown that under certain sufficient conditions the
matrix representation of the non-linear pde is an M-matrix. These sufficient con-
ditions were transferred to the discretisation matrix of higher dimensional option
pricing problems.
The local choice of the difference quotient for the first order derivative has material
influence on the objective function of the discrete optimisation problem. The other
way around, the choice of the difference quotients is affected by the local volatilities
and correlations which are the solution of the optimisation problem itself. Thus, the
interconnection of the monotone discretisation and the discrete optimisation cause
the non-linearity of the discrete option pricing problem. To resolve this dependence,
a detailed analysis of the application of different quotients has been done. Further-
more, for the usage of mixed difference quotients a decomposition for the space of
admissible volatilities has been developed.
The second working field of solving the discrete option pricing problem concerns
the determination of the optimal volatilities and correlations and the global solu-
tion of the non-linear problem at every time step. For the global determination of
an approximation of the option value for a given time level we applied the policy
iteration described by Huang, Forsyth, and Labahn [HFL12] among others. The lo-
cal determination of optimal volatilities and correlations the optimisation problems
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6 Conclusion

belong to the class of NP-hard problems. The optimisation problem was analysed
for options on two and three assets in combination with situations where only cen-
tered difference quotients can be used. For discrete pricing problems where mixed
difference quotients have to be used several optimisation problems with additional
non-linear constraints arise. Therefore the original problem was replaced by one
where the control was discretised.
To assure the convergence of the schemes to the viscosity solution it is sufficient to
proove consistency, stability, and monotonicity of the scheme. The first two prop-
erties for the presented schemes are directly guaranteed as in the linear case. For
the BDF1 and the CN scheme we gave a detailed analysis under which conditions
monotonicity can be assured. These are similar to those for the schemes applied to
linear pdes. The BDF1 scheme is monotone if the discretisation is monotone. For
the Crank-Nicolson scheme its monotonicity can be guaranteed, if the step sizes in
space and time fulfil a condition of the form Chτ = h2

x, C ∈ R+. The properties
which were proven for the European option pricing problem also are valid for Amer-
ican option pricing problems.
The numerical results showed that the rates of convergence regarding time corre-
spond to those expectable from theory. In opposite, the rates which display the
speed of convergence if the spatial grid is refined did not match the theoretical ex-
pectations but even varied strongly for some examples. But nevertheless the option
value is approximated monotonically. Regarding the convergence in time, the CN
scheme and the BDF2 scheme -although not consistent- converge with roughly the
expected rates. In each example they converged faster than the BDF1 scheme. The
evolution of the control for an increasing number of time steps and spatial grid
points seems to be consistent, no deterioratioins were oberserved. There is no big
difference between option values calculated if the discrete optimisation problem is
solved with the KKT conditions or by considering discretised controls, respectively.
In fact, the error due to the discretisation of the pde seems bigger than the one
caused by using discrete controls.

For pricing problems of options on more than two assets Finite Difference schemes
can be applied. But one has to be aware of the fact that they might not always
result in a monotone and thus convergent scheme. Moreover, in order to assure con-
vergence a possible reduction of the rates of convergence has to be accepted. Due
to the restricitions of the step sizes it is limitedly efficient or difficult to apply on
non-uniform grids or even adaptive methods to increase the efficency of the scheme.
Adaptive might be an interesting possibility to increase the performance of schemes
for one-dimensional option pricing. But the monotonicity of those schemes has to
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6 Conclusion

be analysed carefully.
A possible way to improve the performance of the schemes is parallelization. Espe-
cially, for the local optimisation problems for each grid point, which are independent
of each other, an increase in efficiency could easily be accomplished. The update of
the iteration matrix in the policy iteration offers a similar opportunity.
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A Calculation of Deltas

In this chapter we shortly explain how the deltas of options on more than two assets
can be calculated. They are used for the Neumann boundary conditions of the
discrete non-linear pricing problem described in Chapter 2.
In the first section we give the algorithms and the necessary data to calculate the n-
variate cumulative standard normal distribution function for n = 1, 2. The resulting
algorithms are used for the calculation of the deltas. In the following section we focus
on the maximum and the minimum on several assets for which analytic formulas
are known. The third section gives an analytic formula for the delta of a geometric
average option.

A.1 Evaluating the (multi-variate) standard

normal distribution function

For the bivariate normal distribution function we apply the algorithm developed by
West [Gen04]. A detailed code is given in the book of Haug [Hau06]. The algorithm
needs two arrays v and w of constants which are given in Table A.1 and Table A.2.

Tab. A.1: Parameter v for the approximation of the bivariate normal dis-
tribution function N2

i vi,1 vi,2 vi,3

1 -0.932469514203152 -0.981560634246719 -0.993128599185095
2 -0.661209386466265 -0.904117256370475 -0.963971927277914
3 -0.238619186083197 -0.769902674194305 -0.91223448251326
4 - -0.587317954286617 -0.839116971822219
5 - -0.36783149899818 -0.746331906460151
6 - -0.125233408511469 -0.636053680726515
7 - - -0.510867001950827
8 - - -0.37370608871542
9 - - -0.227785851141645
10 - - -0.0765265211334973

116



A.1 Evaluating the (multi-variate) standard normal distribution function

Algorithm A.1: Approximation of the bivariate normal distribution func-
tion N2

Input: x, y, ρ
Output: v //approximation to N2(x, y, ρ)

1 BiVar_CumNormal(x, y, ρ)
2 initialise arrays w and v as in Table A.1 and A.2.;
3 NG← 3; LG← 10;
4 if |ρ| < 0.3 then
5 NG← 1; LG← 3;
6 else if |ρ| < 0.75 then
7 NG← 2; LG← 6;

8 h← −x; k ← −y; hk ← h · k; z → 0;
9 if |ρ| < 0.925 then

10 if ρ 6= 0 then
11 hs← 0.5(h2 + k2); asr = arcsin ρ;
12 for i = 1 to LG do
13 for ii = −1, step 2, to 1 do
14 sn← sin(asr · 0.5(ii ∗ v(i,NG) + 1));
15 z ← z + w(i,NG) · exp((sn · hk − hs) · (1− sn2)−1);

16 z ← z · asr · (4π)−1;

17 z ← z +N1(−h) · N1(−k);
18 else
19 if ρ < 0 then
20 k ← −k; hk ← −hk;
21 if |ρ| < 1 then
22 ass← (1− ρ) · (1 + ρ); bs← (h− k)2; c← 0.125 · (4− hk);
23 d← 0.0625 · (12− hk); asr ← −0.5 · (bs · ass−1 + hk);
24 if asr > 100 then
25 z ←

√
ass · exp(asr) · (1− 1

3c · (bs− ass)(1− 0.2.d · bs) + 0.2c · d · ass2);

26 if −hk < 100 then

27 z ← z−exp(−1
2hk)

√
2π ·N1

(
−
√

b
ass

)
·
√
bs ·(1− 1

3c ·bs ·(1−0.2d ·bs));

28 for i = 1 to LG do
29 for ii = −1, step 2, to 1 do
30 xs← (0.5

√
ass · (ii · v(i,NG) + 1))2; rs←

√
1− xs;

31 asr ← −0.5 · (bs · xs−1 + hk);
32 if asr > −100 then
33 z ← z + 0.5

√
ass · w(i,NG) · exp(asr) · (exp(−hk · (1− rs)(2 ·

(1 + rs))−1) · rs−1 − (1 + c · xs · (1 + d · xs)))

34 if ρ > 0 then
35 z ← −2z · π−1 +N1(−max{h, k});
36 else
37 z ← 2z · π−1 + max{0,N1(−h)−N1(−k)};

38 return z;
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A.1 Evaluating the (multi-variate) standard normal distribution function

Tab. A.2: Parameter w for the approximation of the bivariate normal dis-
tribution function N2

i wi,1 wi,2 wi,3

1 0.17132449237917 0.0471753363865118 0.0176140071391521
2 0.360761573048138 0.106939325995318 0.0406014298003869
3 0.46791393457269 0.160078328543346 0.0626720483341091
4 - 0.203167426723066 0.0832767415767048
5 - 0.233492536538355 0.10193011981724
6 - 0.249147045813403 0.118194531961518
7 - - 0.131688638449177
8 - - 0.142096109318382
9 - - 0.149172986472604
10 - - 0.152753387130726

For the evaluation of the uni-variate standard normal distribution we use the ap-
proximation of the distribution function of Hastings et al. [HHW55]. It is given
in

Algorithm A.2: Approximation of the uni-variate normal distribution func-
tion N1

Input: x
Output: y //approximation to N1(x)

1 UniVar_CumNormal(x)
2 b1 ← 0.319381530; b2 ← −0.356563782;
3 b3 ← 1.781477937; b4 ← −1.821255978;
4 b5 ← 1.330274429;
5 p← 0.2316419; c← 0.9189385332024672;
6 a← |x|;
7 t← (1 + a · p)−1 ;
8 s← ((((b5t+ b4)t+ b3)t+ b2)t+ b1)t;
9 y ← s · exp(−0.5x2 − c);

10 if x > 0 then
11 y ← 1− y;
12 return y;

The above algorithm has an accuracy error less than 7.5 ·10−8 according to Hastings
et al.

For the evaluation of the tri-variate normal distribution function a code is given in
the book of Haug [Hau06].
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A.2 Minimum and Maximum options

A.2 Minimum and Maximum options

The multi-variate normal distribution function of p multi-variate normal distributed
random variables X1, . . . , Xp with mean equal to zero, variances equal to one, and
correlations ρi,j, i, j ∈ In is defined as:

Np(x1, . . . , xp) =

∫ x1

−∞
· · ·
∫ xp

−∞
np(u1, . . . , up)dup · · · du1 (A.1)

with the associated density function

np(x1, . . . , xp) :=
1

(2π)
p
2 (detΣ)

1
2

exp

(
1

2
(xi)

T
i Σ−1(xi)i

)
,

where Σ is the non-singular covariance matrix of the p random variables.

Let φ, η ∈ {−1, 1}. Starting from the analytic formulas of Stulz [Stu82], Reiß
and Wystup [RW01] derived closed form expression for the delta of Maximum and
Minimum options on two assets. They are given below.
Let

σ̂2 = σ2
1 + σ2

2 − 2ρ1,2σ1σ2,

dj =
log
(
Sj
K

)
+
(
r − δj + 1

2
σ2
j

)
(T − t)

σj
√
T − t

, j = 1, 2,

d3 =
log
(
S2

S1

)
+
(
δ1 − δ2 − 1

2
σ̂2
)

(T − t)

σ̂
√
T − t

,

d4 =
log
(
S1

S2

)
+
(
δ2 − δ1 − 1

2
σ̂2
)

(T − t)

σ̂
√
T − t

,

d5 =
ρ1,2σ2 − σ1

σ̂
,

d6 =
ρ1,2σ1 − σ2

σ̂
.

Then the deltas are

∂V (t, S1, S2)

∂S1

= φ exp(−δ1(T − t))N2(φd1, ηd3, φηd5),

∂V (t, S1, S2)

∂S2

= φ exp(−δ2(T − t))N2(φd2, ηd4, φηd6),

where φ = 1 for a call, φ = −1 for a put, η = 1 for a minimum option, and η = −1

for maximum option.
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A.3 Geometric Average options

A.3 Geometric Average options

In Section 2.2.1 we have seen that a Geometric Average option can be modelled
as a Vanilla call / put option in the standard Black-Scholes model with modified
volatility and dividend rate

σ̃2 :=
1

4

n∑
i,j=1

σiσjρi,j, δ̃ :=
1

2

n∑
i=1

(
δi +

1

2
σ2
i

)
− 1

2
σ̃2,

and

y =
n∏
i=1

exp

(
Si
n

)
.

The delta of a Vanilla put / call is given by

∂V (t, y)

∂y
= φ exp(−δ̃(T − t))N1(φd1)

where N1(x) is the standard normal distribution function, c.f. (A.1),

d1 =
log
(
y
K

)
+
(
r − δ̃ + 1

2
σ̃2
)

(T − t)

σ̃
√
T − t

and φ = 1 for a call, and φ = −1 for a put.
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B Additional numerical results

In this chapter all additional results to those given in Chapter 5 are summarised.

B.1 Numerical results for an American minimum

put

In the following two tables the convergence results for an American minimum put
are given. Table B.1 contains the results for the doubling of M1 and M2 and Table
B.2 those for the doubling of N .

Tab. B.1: Convergence for increasing number of spatial grid points of the
BDF1 (top), BDF2 (middle), and CN (bottom) scheme for an
American minimum put with parameters given in Table 5.1, N =
500.
M1,M2 v(0, ·) ∆S

C IPI IIS time [sec.]
50 0.200462 - 2.13 3.41 1.1
100 0.203083 - 3.0 4.19 7.9
200 0.203742 3.98 3.02 6.27 39.9
400 0.203908 3.96 3.56 11.14 261.5
800 0.203949 3.99 5.0 22.67 2919.2

M1,M2 v(0, ·) ∆S
C IPI IIS time [sec.]

50 0.200540 - 2.1 3.3 1.1
100 0.203164 - 3.0 1.95 7.69
200 0.203825 3.97 3.01 5.41 38.0
400 0.203992 3.95 3.47 9.34 235.5
800 0.204034 3.98 4.53 18.06 2255.0

M1,M2 v(0, ·) ∆S
C IPI IIS time [sec.]

50 0.200540 - 2.13 3,83 1.3
100 0.203164 - 3.0 4.62 8.7
200 0.203825 3.97 3.01 6.71 47.7
400 0.203992 3.95 4.17 11.72 345.7
800 0.204034 3.98 4.55 26.73 3144.1
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B.1 Numerical results for an American minimum put

Tab. B.2: Convergence for increasing number of grid points in [0, T ] of
the BDF1 (top), BDF2 (middle), and CN (bottom) scheme for
an American minimum put with parameters given in Table 5.1,
M1 = M2 = 200.
N v(0, ·) ∆t

C IPI IIS time [sec.]
50 0.202980 - 4.08 25.58 25.63
100 0.203394 - 3.54 15.78 57.49
200 0.203609 1.93 3.19 10.1 100.77
400 0.203719 1.94 3.03 6.78 170.41
800 0.203776 1.96 3.0 5.12 292.14

N v(0, ·) ∆t
C IPI IIS time [sec.]

50 0.203620 - 4.04 21.09 22.71
100 0.203752 - 3.51 12.97 51.45
200 0.203802 2.64 3.13 8.57 92.2
400 0.203822 2.58 3.02 5.91 157.37
800 0.203829 2.64 2.88 4.43 269.33

N v(0, ·) ∆t
C IPI IIS time [sec.]

50 0.203617 - 4.18 25.67 27.36
100 0.203751 - 3.63 16.0 61.35
200 0.203802 2.65 3.2 10.55 107.72
400 0.203822 2.57 3.02 7.51 181.46
800 0.203829 2.68 3.0 5.79 318.63
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