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Preface

Soft surfaces experience morphological changes upon interaction with objects at
various length scales. Two important classes of soft surfaces are membranes and
interfaces. In presence of particles, through surface-mediated interactions soft sur-
faces exhibit diverse phenomena in nature. A fluid membrane which acts as a pro-
tective periphery enclosing cellular material can be described as a two dimensional
mathematical surface characterized by ‘bending elasticity’ and ‘membrane tension’.
Similarly, interfaces at the boundary of two liquid phases or a liquid and a gas
phase are characterized by their interface tension. Interestingly, a close interplay
of the deformation energy of these soft surfaces and the geometry and form of the
particles allows the particles to interact. Thus, the study of interactions of particles
with membranes and interfaces forms the basis of this work.

The mechanistic aspects of cellular entry via membrane wrapping for particles
of various geometries are studied theoretically and numerically. Such systems
are characterized by the membrane bending rigidity κ, the membrane tension σ,
and the adhesion strength w. The different wrapping states exhibited are “non
wrapped", “partially wrapped" (with low and high wrapping fraction), and “com-
pletely wrapped". There are two kinds of phase boundaries: a continuous bind-
ing transition and a discontinuous transition either between two partially-wrapped
states or from a partially-wrapped to a completely wrapped state. The theoretical
analysis predicts stable partially wrapped states for nonspherical particles. Non-
spherical particles having flat sides can show preferential initial binding though
the decisive factor for encapsulation is the ratio of the width to the length of the
particles and the softness of its edges. Wrapping energy contributions of the ery-
throcyte membrane to the invasion energetics for a malarial merozoite that has an
asymmetric “egg-like” shape is assessed. Furthermore cell adhesion to nanopat-
terned substrates is characterized to predict optimal shapes of 3D nanoelectrodes
for efficient coupling to cells using deformation energy calculations.

For a fluid interface dominated by an interfacial tension σ, self-assembly via cap-
illary interactions for micron-sized nonspherical particles is reported. A nonspher-
ical particle can induce interface distortion due to an undulating contact line cre-
ating excess interfacial area. Neighboring particles interact to minimize the excess
area via long-range interface-mediated capillary forces. The particle-induced inter-
face distortion due to single ellipsoidal or cuboidal particles are calculated. The
near-field nature of the capillary interactions between a pair of particles in different
relative orientations is characterized using power-law fits.
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Zusammenfassung

Weiche Flächen erfahren bei der Wechselwirkung mit Teilchen verschiedener
Größenskalen morphologische Veränderungen. Zwei wichtige Klassen weicher
Flächen sind Membranen und Grenzflächen. Eine fluide Membran, die als schützende
Hülle zelluläres Material einschließt, kann als zweidimensionale mathematische
Fläche, deren mechanische Eigenschaften durch die Biegesteifigkeit und die Mem-
branspannung gegeben sind, beschrieben werden. Analog hierzu wird eine Gren-
zfläche zwischen zwei Flüssigkeiten oder zwischen einer flüssigen Phase und einer
Gasphase durch eine mathematische Fläche und die Grenzflächenspannung mod-
elliert. Interessanterweise kann ein enges Wechselspiel der Deformationsenergie
der weichen Flächen mit der Geometrie und der Form der Teilchen zu einer Wech-
selwirkung zwischen den Teilchen führen. Die Untersuchung der Wechselwirkung
der Teilchen mit Membranen und Grenzflächen ist die gemeinsame Grundlage für
alle Teile dieser Arbeit.

Die mechanischen Aspekte der Aufnahme von Teilchen in eine Zelle durch
Einwickeln in die Zellmembran werden für Teilchen verschiedener Formen theo-
retisch und numerisch untersucht. Diese Systeme sind durch die Biegesteifigkeit
κ der Membran, durch die Membranspannung σ und durch die Bindungsstärke w
charakterisiert. Die Zustände des Systems können "nicht eingewickelt", "teilweise
eingewickelt" (mit geringem und hohem eingewickelten Anteil) und "komplett
eingewickelt" sein. Es treten zwei Arten von Phasengrenzen zwischen den Zustän-
den auf, kontinuierliche Bindungsübergänge und diskontinuierliche Übergänge
zwischen zwei teilweise eingewickelten Zuständen oder zwischen einem teilweise
eingewickelten und einem komplett eingewickelten Zustand. Die theoretischen
Berechnungen in dieser Arbeit sagen für asphärische Teilchen stabile teilweise
eingewickelte Zustände voraus. Asphärische Teilchen mit flachen Seiten binden
leichter an Membranen als sphärische Teilchen, das komplette Einwickeln eines
Teilchens wird jedoch durch dessen Aspektverhältnis und durch die Weichheit
seiner Kanten bestimmt. Der energetischen Kosten der Membrandeformation der
roten Blutkörperchen für das Eindringen des eiförmigen Malariaparasiten in die
Zelle wird numerisch berechnet. Ebenfalls mit Hilfe von Biegeenergieberechnun-
gen wird die optimale Form dreidimensionaler Elektroden auf nanostrukturierten
Oberfächen für die beste Kopplung der Zellen an die Elektroden vohergesagt.

An Grenzfächen wird durch die Grenzflächenspannung σ die Selbstorganisation
von mikrometergrossen Teilchen durch Kapillarwechselwirkungen beobachtet. Ein
aspärisches Teilchen verformt durch seine undulierende Kontaktline die Gren-
zfläche in seiner Umgebung, wodurch die Grenzfläche vergrößert wird. Benach-
barte Teilchen wechselwirken durch langreichweitige Kapillarkräfte, um diese
zusätzliche Grenzfläche zu minimieren. Die durch Teilchen induzierte Gren-
zflächenverformung wird für ellipsoidförmige und quaderförmige Teilchen berech-
net. Die Kapillarwechselwirkung zwischen zwei Teilchen mit verschiedenen rela-
tiven Orientierungen wird im Nahfeld durch Potenzgesetze charakterisiert.
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1
Introduction

Sir D’Arcy Wentworth Thompson (1860-1948) a Scottish zoologist in his profound
masterpiece [1], “On Growth and Form” first published in 1917 remarks “the form of
an object is a ‘diagram of forces’ ”. In the same spirit, stressing the need for under-
standing biophysical forms using principles of mechanics, the general aims of this
thesis are outlined to investigate how particles interact with soft surfaces. An in-
terplay of the elasticity of soft surfaces with geometry and form of particles leads
to a plethora of rich and interesting phenomena in nature. Biological systems ex-
hibit diverse morphological forms at different length scales ranging from lengths
as minuscule as cells to macroscopic lengths in the organismal level. Experimen-
tal and theoretical approaches revealing the principles of self-organization both in
biological and soft matter systems have generated an immense interest towards
understanding the role of geometry in nature and driven technological attempts in
imitating natural forms for widespread applications. Delving into the interactions
of particles with different soft surfaces like biological membranes or interfaces be-
tween different fluid environments, we discover fascinating aspects where shape
matters !

Nanoparticle interaction with biological membranes, in particular their entry
into cells, forms the basis for understanding toxicological effects of nanoparticles,
and a quantification and prediction of these effects is of immense importance for
health and safety. Potential applications of nanoparticles in various fields such as
designing efficient drug/gene delivery agents provide further motivation for this
study. In the first part of this thesis, the investigations contribute to fill the long-
standing gap in the understanding of uptake pathways for different nanoparticles,
viruses and bacteria into the host cell. It is well known that cellular entry path-
ways can vary depending on shape [2–4], size [5,6], and surface characteristics [7,8] of
the cargo and membrane properties. In particular, non-spherical particles interact-
ing with fluid membranes are studied in Chapter 2 and Chapter 3 of this thesis.
Fluid membranes acts as boundaries providing mechanical protection for the cel-
lular constituents within it as well as facilitating essential communication with the
external environment. Membranes are ubiquitous structural elements in all liv-
ing cells. Fluid membranes due to their inherent “softness” can easily conform to
morphological changes under various physiological conditions. For instance, a cell
can shed membrane in form of spherical or tubular bud-like structures which may
enclose cargo molecules allowing cellular transport via membrane budding [9–11].
Particles adhering at a membrane cause the membrane to deform due to a close
interplay of membrane deformation energy with the membrane-particle adhesion
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energy. The aim of these calculations is to obtain “wrapping phase diagrams” [12–15]

that show for which membrane bending rigidities, surface tensions, and nanopar-
ticle adhesion strengths; the membrane binds and wraps around a particle either
partially or completely. These results can aid to optimize design of suitable deliv-
ery vehicles in form of nanoparticles which may be specifically introduced to target
diseased cells by releasing drugs and protect healthy tissues. Viruses [16] occur in
different shapes- spherical viruses like human immunodeficiency virus (HIV) or fil-
amentous viruses [17,18] like Ebola or Marburg which cause deaths to several million
people worldwide. Future medicines can be significantly improved from investiga-
tions targeting pathogen invasion pathways. The results presented here on mem-
brane budding for different shapes e.g. nanospheres, nanorods and nanocubes can
provide valuable insight towards this goal.

A particularly interesting case of particle wrapping and ceullar uptake is the in-
vasion of the malarial parasite into the cell. During the malaria life-cycle the par-
asite attains an asymmetric egg-like shape in the merozoite stage before invasion
into a human erythrocyte. The malaria parasite, from the genus Plasmodium, must
target and invade the circulating erythrocytes to complete its development. The
molecular mechanisms that underlie this rapid and complex process have been the
focus of intensive efforts for many years to develop drugs or vaccines that might
block invasion and thus prevent or treat this major global disease. Several decades
of research into the biological events that govern each stage of invasion, from at-
tachment through reorientation and penetration, have made great strides towards
building a molecular and cellular model of how complete entry is achieved. To
date, however, models have predominantly centered on parasite contributions to
the energetics of entry (seen as an extension of parasite cell movement) leaving
the role played by the erythrocyte membrane largely unexplored. The perception
of a passive erythrocyte in invasion has largely arisen from two sources: Firstly,
the misconception that the red blood cell, as a terminally differentiated cell lack-
ing a translation machinery, is completely inactive; and secondly, convincing data
demonstrating that parasite actin-myosin motor force is essential for invasion and
therefore is assumed to solely govern the whole process. Recent data, however,
shows that the related parasite Toxoplasma gondii can invade host cells in the ab-
sence of its motor, suggest the role of the red cell in invasion needs reassessment.
Towards this goal a complete biophysical model is presented based on membrane
energetics describing the entry pathway in two main stages (i) the reorientation
phase where the egg-shaped parasite orients with its pointed end towards the ery-
throcyte membrane followed by (ii) the invasion phase where the merozoite gradu-
ally invades within the cell. Different invasion possibilities are provided as a wrap-
ping phase diagram for different values of mechano-elastic parameters used to de-
scribe the model. Strikingly, it is found that the entry is a delicate balance between
parasite’s biological machinery and the host cell contributions. Thus contrary to es-
tablished views where the erythrocyte’s role in invasion is largely disregarded we
suggest that membrane energetics indeed plays a significant role during invasion.
The parasite through evolution has therefore learned to take advantage of this and
has evolved machinery like motors and other proteins to facilitate invasion. These
studies which shed light on the role of the erythrocyte membrane in conjunction
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to the parasite machinery shall not only help to design future biophysical experi-
ments to unravel the “delicate balance” but also provide impetus to development
of future medicines which take advantage of this balance to terminate proliferation.

Similar processes as in the wrapping of nanoparticles by cell membrane are also
observed when a cell adheres to nanostructured surfaces. The response of cells at
such structured interfaces are important for developing biosensors and investigat-
ing cellular signaling. For recording cellular signals at the single cell level, several
established techniques exist. However, the need to understand how several cells
interact in a network has caused huge interest in recent years towards develop-
ing nanostructured interfaces which can be electrically coupled to obtain informa-
tion regarding intracellular communication. Multi electrode arrays [19,20] (MEAs)
are nanostructures at the cellular interface which act as biosensors that allow to
measure cellular signaling. There good mechanical coupling to cells makes them
promising candidates for coupling biological cells to electronic devices. Previous
studies [21,22], have successfully demonstrated how neuronal or cardiac cells can en-
gulf three dimensional micro and nano structures similar to the uptake of a solid
nanoparticle by a cell during endocytosis. Planar electrodes when modified into
three dimensional structures like pillars due to better coupling improves the record-
ing or stimulation of electrogenic cells. Two particular kinds of pillar geometry-
cylindrical pillars and mushroom shaped pillars are investigated. Proper recording
from such devices necessarily requires an optimal engulfment of the nanostruc-
ture by the cell membrane. We therefore aim to gain mechanistic insights as to
how shape/dimensions of the structures, cell membrane properties, and the rela-
tive positioning between the cells to the structures affect the bio-mechanical cou-
pling. Such characterization of an optimal shape for an individual electrode shall
facilitate efficient design for future biosensors.

In the second part of the thesis, long range capillary forces of non-spherical parti-
cles at a fluid interface are investigated. A fluid interface acts as boundary between
two fluid phase environments or between a fluid and vapor/gas phase. Capillary
interactions between floating particles are caused due to particle-induced distor-
tions of the fluid interface. In order to minimize the total surface energy due to in-
terfacial tension, there arise long range interactions which cause self-assembly [23]

at an interface. The particle-induced interface deformation due to a single par-
ticle is investigated numerically. We further predict the effective power-law be-
havior of interaction potentials between neighboring particles in the near-field.
Strong capillary forces help to direct, orient and assemble anisotropic particles at
an interface forming self assembled two-dimensional structures such as worm-like
chains [24–26], colloidosomes [27,28], capillary arrows [29], 2D lattice crystals [26,30–32]

etc. over several length scales [23,33,34]. They also help in stabilizing surfactant free
or Ramsden-Pickering emulsions [35–39], bijels [40,41] and particle-stabilized foams.
The self-assembly behavior displayed by these colloidal particles at a fluid inter-
face due to the interfacial tension may even help to understand how proteins [42–44],
viruses and nanoparticles may cluster at a fluid membrane which is a soft surface
characterized in addition to membrane tension by bending elasticity. To unravel
mysteries associated with membrane mediated interactions and the implications of
geometry in these interactions at the nanoscale are questions of great significance.
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1.1
Cell membranes

A plasma membrane acts as an interface separating the interior of a cell from
the external environment, thereby maintaining a vital biochemical balance essen-
tial for life. Moreover it provides mechanical protection and enables communica-
tion across the membrane via exchange of molecules and ions. Several membrane
bound organelles each with different functional roles are embedded within the cel-
lular matrix or cytoplasm. Membranes thus form key building blocks for all cells.
A cell membrane has a bilayer structure with a thickness of few nanometers (∼ 5
nm). The upper and lower leaflets of the bilayer are formed via self-assembly of
amphilic molecules called lipids as shown in the schematic Fig. 1.1 (a). An am-
phiphilic molecule has a polar hydrophilic head group and a non-polar hydropho-
bic tail group. Amphiphilic molecules in aqueous solvents at concentrations higher
than the critical micellar concentration, tend to self aggregate reducing interfacial
tension on by packing the non-polar tails towards the center of the aggregate while
the polar heads face towards the aqueous environment, thereby forming a nearly
spherical bag enclosed by a monolayer of surfactants called a micelle (in case of
amphiphiles dispersed in non-polar solvents inverse micelles are formed where
the non-polar tails are directed away from the center of the micellar aggregate).
At even higher concentrations, the surfactants tend to form planar aggregates that
eventually form vesicles; having a bilayer structure formed of the polar heads fac-
ing towards the aqueous solvent while the tails form a hydrophobic core. At phys-
iological temperatures, membranes exist in the fluid phase [45] which is necessary
for several biological functionality. General building blocks [46,47] of membranes
are phospholipids, cholesterols and other sterols. Chief phospholipid classes be-
ing phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylser-
ine (PS), phosphatidylinositols (PI), sphingomyelin (SM) , cardiolipin (CL), gly-
colipids see Tab. 1.2. The lipid-bilayer remains associated to several other macro-
molecules/proteins that can be either embedded within the hydrophobic core or
grafted/adsorbed on either leaflets as shown in the schematic Fig. 1.1 (b). There
is a large variability in the lipid compositions of different membranes either be-
longing to the same cell (e.g. between the plasma membrane and the nuclear
membrane) and between the plasma membranes of different cells. Compositional
changes also occur between the inner and outer leaflet of the plasma membrane.
Usually [45], a plasma membrane is linked with an underlying network of poly-
mers that constitute the cell cytoskeleton which remains closely associated with the
changes in shape and deformation of a membrane. An asymmetry between two
leaflets of a bilayer can be introduced providing the membrane a preferred curva-
ture. Different mechanisms [48–50] (a) due to hydrophobic mismatch [51] of different
lipid constituents or integral proteins, (b) by membrane scaffolding through cy-
toskeletal filaments/proteins/grafted polymers [52,53], (c) by insertion of proteins
like the amphiphysin helix [54], (d) in presence of intrinsically curved proteins like
the bar-domains [55], and the recently attributed mechanism via (e) macromolecular
crowding [56,57] are shown schematically in Fig. 1.3.
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(a)

(b)

Figure 1.1: (a) A typical schematic for a lipid bilayer formed of amphiphilic lipid molecules having a
polar head (in blue) and a non-polar tail (in red). (b) A cartoon of a typical fluid membrane compris-
ing of a lipid bilayer structure associated with other macromolecules like proteins, polymer chains
and an underlying polymerized network of filaments comprising the cell cytoskeleton. (Taken from
public domain : Wikipedia)

Table 1.2: Lipid head group composition of various membranes from some mammalian liver cells,
erythrocytes, and nerve cells in weight by percentage. Abbreviations used: phosphatidylcholine
(PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositols (PI), sphin-
gomyelin (SM) , cardiolipin (CL). (Taken from Ref. [58], originally published in Ref. [59]).
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Figure 1.3: Different ways to bend a bilayer by generating a preferred curvature of the membrane
due to asymmetry between the bilayer leaflets ((a),(c)) or proteins ((b),(d), and (e)). (Taken from
Ref. [48])
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1.2
Cellular transport

Lipid-bilayer membranes compartmentalize cells containing several membrane-
bound organelles. Nevertheless, a controlled exchange of molecules and particles
is required for proper functioning of a cell. Cellular trafficking involves a complex
physiological process whereby this controlled exchange of cargo is accomplished-
either intracellularly between different organelles like the Endoplasmic reticulum
and Golgi apparatus, or across the plasma membrane with the intracellular en-
vironment. A cell continuously uptakes and releases materials within character-
istic time scale of a few seconds [60,61] via membrane budding. Membrane bud-
ding [9–11,62,63] is generally the first step for intracellular transport and allows cells
to exchange material with its environment while shedding a part of its membrane
which is used to wrap around the cargo to form a bud. Bud-like structures which
can be either spherical [64] or tubular [17,18,65] in shape and have typical dimensions
which range from a few nanometer to few microns. Thus cells have devised sev-
eral efficient pathways for cellular cargo transport as shown in Fig. 1.2. Smaller
molecules like peptides, ions and small nanoparticles penetrate [66–69] through the
membrane via diffusion or across membrane channels. Larger macromolecules
are taken up via endocytosis. Despite the importance of membrane budding and
wrapping of particles several aspects of this process still remain elusive. Thus
how membrane budding proceeds, assisted by the biological machinery compris-
ing of curvature-inducing proteins like clathrin [44,62,70], bar-proteins [55,71], other ac-
cessory endocytic proteins [65,72] and the cytoskeletal [4,73] contributions from actin
filaments [74,75], motors [76,77] is a question of great significance.

Figure 1.4: Different cellular uptake pathways [9–11,62,63] can be roughly classified as- (i) Endocytic
pathways : Uptake of solid particles of sizes comparable to a micron can occur via “eating by cells”
i.e., phagocytosis similar to process by which the cell takes up (extracellular) fluids via “drinking by
cells” i.e., macropinocytosis. Other forms of endocytosis involve uptake of relatively smaller particle
with typical dimensions ranging from 20- 200 nm via clathrin-mediated assembly or caveolae-
mediated assembly or other passive endocytic pathways independent of clathrin/caveolae molecules
(ii) Non-endocytic pathways usually involve uptake by direct penetration via diffusion or through
translocation across membrane channels or other unknown mechanisms.(Taken from Ref. [63])
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1.3
Membrane mechanics at different length and time scales

Depending on the length and time scales of interest, different membrane models
have to be used, as shown schematically in Fig. 1.5(a)-(f). For example, to investi-
gate events like membrane receptor-ligand binding or functioning of a membrane
ion channel which occur in relatively small time scales of the order of few nanosec-
onds and where the biochemical details are relevant a fully-atomistic simulation
method can be employed. For investigating biophysical events occurring at slightly
longer time-scales ranging from few µs to ms; different coarse-grained models like
those shown in Fig. 1.5 (b)-(d) can be used where the molecular resolution of the
membrane structure is preserved but certain chemical specificity is neglected. Such
methods are extensively used for studying fusion-pore dynamics [78] by character-
izing the role of proteins related to exocytosis, like the SNARE complex. However,
to describe conformational changes occurring at length scales comparable to the
overall cell size to few microns, or investigate changes in cell shape as in endo-
cytosis which occur at even longer time scales of the order of few seconds [60,61],
such methods shall prove computationally intractable. The typical thickness of a
lipid bilayer is 5 nm and is much smaller than the overall dimensions of the cells
or the organelles (∼ 1-10 µm), which gives the justification to describe membranes
by two-dimensional mathematical surfaces with curvature-elasticity. Hence to un-
ravel the mysteries at intermediate length scales (ranging from few nanometers up
to few micrometers), mesoscopic models describing cell membranes in the contin-
uum limit as a two-dimensional surface with associated curvature-elastic parame-
ters as shown in Fig. 1.5 (d)-(e) prove to be extremely useful.

( f )

Figure 1.5: Different membrane simulation techniques used for different length scales:(a) all-
atomistic model, (b) coarse-grained model with explicit solvent, (c) solvent-free molecular model,
(d) meshless-membrane model, (e) dynamically-triangulated membrane description (Taken from
Ref. [79]) (f) Different length and time scales relevant to membrane simulations. (Taken from Ref. [80])
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1.4
Continuum representation of membrane conformations and energetics

On a curve, curvature (c), the measure for change of the normal vector is given
by the inverse of the radius (r) of a circle drawn at that point. Similarly, at each
point of a two-dimensional mathematical surface, there exists two principal curva-
tures given by c1 and c2, which correspond to the inverse of the radius of the circles
drawn at that point having the maximum (r1) and minimum radius (r2), respec-
tively, as shown in Fig. 1.6. The average sum of these two curvatures is termed as
mean curvature (H) is given by, H = (c1 + c2)/2 = (1/r1 + 1/r2)/2. The product
of the principle curvatures gives the Gaussian curvature K = c1c2 = 1/r1r2. The
mean curvature H and the Gaussian curvature K are two invariants of the curva-
ture tensor [81] which is a 3× 3 matrix. Twice the mean curvature is given by the
sum of the diagonal elements or the trace of the matrix. The sum of the minors of
the matrix gives the Gaussian curvature K.

Figure 1.6: Right: A two-dimensional surface described as a height field given by , h(x, y) is shown
with its projection in the x− y plane. Left: Two principal curvatures can be defined at each point of a
surface having a normal given by, n. The curvatures are given by the inverse of the radii r1 and r2 of
two circles having the maximum and minimum radius drawn at that point of the surface.

For certain special surfaces, the principal curvatures and thus associated mean
and Gaussian curvatures as follows :
• For a sphere of radius R, c1 = c2 = 1/R, H = 1/R, K = 1/R2.
• For a cylinder of radius R, c1 = 1/R, c2 = 0, H = 1/(2R), K = 0.
• For a saddle-like surface, c1 = 1/R, c2 = −1/R, H = 0, K = −1/R2.
• For a plane, c1 = c2 = 0, H = 0, K = 0.

A saddle-like surface belongs to an interesting class of mathematical surfaces
known as minimal surfaces. At each point on such a surface the two principal
curvatures are equal in magnitude but opposite in the sign and hence the sum of
these two curvatures results a null value. Thus minimal surfaces are characterized
by zero mean curvature (H = 0). One of my personal favourite minimal surface is
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(a) (b)

Figure 1.7: (a) Minimal surfaces : Gyroid, Diamond, a Schwarz P surface (from left to right). These
structures having a zero mean curvature at all points on their surfaces. (Taken from Ref. [82]) (b)
The catenoid surface formed by a soap-film between two coaxial rings. The total mean curvature
vanishes everywhere on such a surface since the surface has the two principal curvatures of same
magnitude but opposite sign at each point on the surface. (Image credit : www.soapbubble.dk/)

a catenoid which is a form often seen in soap films enclosed between two coaxial
rings, see Fig. 1.7 (b) . A catenoid is also a surface which has interesting implications
in membrane budding as often the neck of a spherical bud attains a catenoidal
shape which gradually shrinks and finally disappears as the bud pinches off. Some
other minimal surfaces are Gyroid, Diamond and Schwarz P surfaces as shown in
Fig. 1.7 (a) and often these structures are found in different systems in nature like
microemulsions1.

A mathematical statement connecting the Gaussian curvature of a surface to its
global topology characterized by the Euler characteristic (χ) is given by the Gauss-
Bonnet theorem [84],

∫
S

dSK +
∫

∂S
dskg = 2πχ(S) = 4π(n− g). (1.1)

where kg is the geodesic curvature at the boundaries which also contributes to the
integral over K for surfaces with open boundaries. The contribution of the geodesic
curvature can be neglected for closed surfaces with fixed topology and for open
surfaces [84–86] where the slope at the outer boundary does not change. The Euler
characteristic of a surface is given by χ = 2(n− g) where n is the number of objects
and g is the number of handles. The theorem states the integral of the Gaussian cur-
vature remains unaffected as long as the global topology remains unchanged. Thus,
the integral has the same value for a torus and a coffee cup with a handle since each
individual object has only one handle i.e., g = 1 and thus an Euler characteristic
of χ = 0. Different vesicle morphologies like prolate, oblate, dumbbell-like [87,88],
and starfish [89] geometries of giant unilammelar vesicles (GuV’s) have been ob-
served under different experimental conditions. Shape transformations of vesicles
between such morphologies due to changes in the spontaneous curvature [90,91],
have been studied theoretically using an elastic description for membranes. All

1) Due to massive reduction in interfacial free energy, phases with large in-
ternal surface area can become possible - like in the lamellar phase where
the monolayers form a one-dimensional stack or a microemulsion [82,83]

phase where the monolayers form a random isotropic array.

www.soapbubble.dk/
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vesicle geometries mentioned above, can be studied as an overall perturbation of
the spherical shape (as all of the forms have no handles i.e., genus zero g = 0)
and therefore have the same Euler characteristic, χ = 2. Therefore, all such forms
have a (constant) Gaussian curvature contribution of 4π which can be neglected for
studying shape transformations.

Helfrich and Canham in their seminal works [92,93] proposed more than 40 years
ago, that fluid membranes can be described as soft surfaces characterized by an
elastic deformation energy using,

Ebend =
∫

Atot
dS
[
2κ(H − c0)

2 + κ̄K
]

, (1.2)

which is an integral over the entire membrane surface area, Atot. The bending
rigidity κ, is an elastic modulus of the membrane. Through various biophysical
techniques like micropipette-aspiration [94] of vesicles and cells or through inves-
tigations of membrane fluctuations [95,96]values of the bending rigidity can be es-
timated. The bending rigidity κ, for typical membranes is found to range in the
order of 10-100 kBT. Gaussian saddle splay modulus κ̄, affects the energetics of a
system only if there are any global topological changes in the geometry/shape of
the vesicle. From theoretical analysis [97] it can be shown that the values must be
negative and range from −2κ ≤ κ̄ ≤ 0. Experimental measures for κ̄ are difficult.
An asymmetry between two leaflets of membrane may arise in different conditions
as shown schematically in Fig. 1.3, providing the membrane a preferred curvature
termed as spontaneous curvature, c0. Shape transformations [90,98] (e.g. during the
budding/tubulation) in vesicles and cells can result due to changes in the sponta-
neous curvature. For symmetric bilayers, the spontaneous curvature contribution
vanishes i.e. c0 = 0 and the membrane shape is then determined using the changes
in squared mean curvature (H2) and Gaussian curvature (K) terms and its associ-
ated moduli κ and κ̄, respectively. For morphological transitions where there are no
changes in the global topology the contribution of the Gaussian curvature can be
neglected allowing us to describe the energetics using the first term in Eq. 2.2 only.

For membrane deformations characterized without any overhangs i.e., where the
membrane does not cross itself or deforms strongly avoiding multiple height values
when projected on to a reference plane; the membrane height can be described by
the “Monge representation”, where the surface is described by a height field, h(ρ),
where ρ = (x, y) are the coordinates in the reference plane as shown in Fig. 1.6. The
bending energy for the membrane is

Ebend =
κ

2

∫
Atot

dA
√

1 + (∇h(ρ))2

[
∇ · ∇h(ρ)√

1 + (∇h(ρ))2

]2

, (1.3)

with
∫

dA the integral over the reference plane. For an almost planar membrane,
using small-gradient expansion of the integrand allowing to approximate the mean
curvature as H = ∇2h(ρ)/2 gives the total bending energy as

Ebend =
∫

Atot
dA

κ

2
(∇2h(ρ))2 . (1.4)
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Axisymmetric membrane shapes can be investigated by employing different
parametrizations [93,99–102]. Such parametrizations can describe membrane over-
hangs as well. Some approaches using functional parametrizations for example
using spherical harmonics [103], Cassini ovals [92], and Fourier functions [104] can
also describe non-axisymmetric shapes. The basic strategy in these approaches is
to formulate an Euler-Langrange variation of Helfrich Hamiltonian which gives a
fourth-order partial non-linear differential equation [105] and then exploit the sym-
metry of the system to obtain solutions to the Euler-Lagrange equations in an ap-
propriate parametrization. For example, a suitable choice of parameters which
can efficiently describe shapes having axisymmetry is the arc-length parametriza-
tion. In the arc-length parametrization, the membrane shape is described using
the arc-length (s) and tangent angle (ψ) at the membrane contour as shown in the
schematic Fig. 1.8 and after the variation of the Helfrich Hamiltonian a set of sec-
ond order non-linear ordinary differential equations is obtained. These are then
solved numerically [13,14,106–108] using appropriate boundary conditions. Using this
parametrization, the principal curvatures are obtained as, c1 = − sin(ψ)/r and
c2 = −dψ/ds and thus the bending energy for a tensionless membrane is given by,

Ebend =
∫ ∞

0
ds

κ

2

[
dψ

ds
+

sin(ψ)
r

]2

. (1.5)

Figure 1.8: Arc-length parametrization of a membrane shape. (Adapted from Ref. [102]

Apart from the bending cost, when a fixed patch of membrane deforms there
is an additional cost due to membrane tension which is proportional to the total
surface area of the membrane and is given by,

Etension =
∫

Atot
dS σ , (1.6)

where membrane tension σ acts as a Lagrange parameter to the membrane sur-
face area. Thus the total elastic deformation energy due sum of both bending and
tension contributions can be written as,

Edef = Ebend + Etension =
∫

Atot
dS
[
2κ(H − c0)

2 + σ
]

, (1.7)
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assuming there are no contributions from changes in the Gaussian curvature term
as the topology remain preserved.

During membrane budding as the membrane wraps around a particle, the de-
formation costs of the membrane must be accounted for by a competing energy.
One possibility is to pay this deformation costs is through the gain in adhesion en-
ergy by virtue of contact of the particle with the membrane. For a homogeneous
sticky particle of adhesion strength w, the gain due to contact is proportional to the
adhered area Aad and is given by,

Eadhesion = −w
∫

Aad

dS . (1.8)
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1.5
Domain-induced budding

Budding transformation can be understood as competition between different ener-
getic terms. For example Fig. 1.9 depicts domain-induced budding [109–112] where
there exists a line energy along the domain boundaries of two components α and β

having different compositions like liquid ordered (L0) and liquid disordered (Ld)
phases [113]. Initially smaller circular domains of membrane coalesce to form a
larger circular domains of radius R thereby reducing the energy penalty due to
line tension γ given by, Eline = γ

∮
C dl = 2πRγ. A completely budded spherical

domain has a total bending energy Ebud = 2κ ( 1
R )

2 4πR2 = 8πκ. After smaller
domains have coalesced to form a larger circular domain as shown in state (1)
in Fig. 1.9, if the line energy of the domain exceeds 8πκ at a critical domain size
Rc = 8πκ/2πγ = 4κ/γ it decides to bud out like in states (2) & (3) of Fig. 1.9. Thus
intramembrane domain induced budding can be understood as a competition be-
tween the Ebend vs. Eline. The relevant length scale describing such a system is
given by κ/γ such that domains smaller than this characteristic length shall remain
flat while larger domains bud out. Thus using this simple model, it is shown how
two competing energies can result in changes in membrane shape.

Figure 1.9: Domain-induced budding due to competition of bending energy and line energy at the
domain boundary between two domains α and β. (Taken from Ref. [109])



1.6 Two-state model for membrane wrapping 15

1.6
Two-state model for membrane wrapping

Wrapping of rigid particles can be understood as a competition of the gain in the
adhesion energy due to contact interaction between the particle and membrane ver-
sus deformation energy due to bending and membrane tension. Figure. 1.10, de-
picts a simple two-state model for wrapping of a rigid spherical particle of radius
R and homogeneous adhesion strength w. For a tensionless state of the membrane
the free membrane wrapped around the particle can be neglected since it attains a
catenoidal deformation which is a minimal surface with null costs due to bending
energy. Due to an energetic competition, the bending costs of a completely en-
capsulated state, 8πκ, must be balanced by the corresponding gain due to contact
energy which is 4πR2w for attain a complete-wrapped state; thereby giving a criti-
cal adhesion strength w∗ = 8πκ/4πR2 = 2κ/R2 above which the system proceeds
spontaneously without any energy barrier from a non-wrapped as in state (a) to a
completely wrapped state (b), as shown in Fig. 1.10. Bending energy thus plays a
significant role during uptake for typical particles sizes ranging from 20 nm to few
hundred nanometers, where a competition between Ebend vs. Eadhesion, determines
a relevant length scale given by,

√
κ/w. However for uptake of large macroscopic

particles (as in phagocytosis), the role of bending energy becomes less dominant
and wrapping then is more a competition between the membrane surface tension
and adhesion energy. One can describe the critical adhesion strength in terms of a
dimensionless quantity called reduced adhesion w̃ = 2wR2/κ, such that the system
attains a full wrapping configuration for reduced adhesion values w̃ ≥ 4. Experi-
mental studies [5,6] have shown a size dependency for uptake of nanoparticles via
endocytosis. Previous works [114–116], assuming a similar two-state description for
membrane wrapping of spherical particles but accounting for the gain in contact
using receptor-mediated interactions instead of a homogeneous adhesive nature
estimate an optimal radius in a range between 25-30 nm. For typical values of
κ = 50 kBT and w = 0.25 kBT/nm2 in w̃ = 4, a minimal particle size of R∗ = 20
nm is estimated above which a non-wrapped state directly jumps into a complete-
wrapped state. This estimate agrees with the typical particle sizes which undergo
uptake via membrane wrapping and for stiffer membranes, i.e., higher κ, or less
sticky particles the estimated lower limit is larger. Using a reduced adhesion is
thus advantageous since it allows us to describe both the role of particle dimension
and bending stiffness of the membrane using a single dimensionless variable.

(a) (b)

Figure 1.10: Two-state model for membrane wrapping of a spherical particle of radius R with homo-
geneous adhesion strength w. State (a) corresponds to no-wrapping state. State (b) corresponds to
full wrapping with a total cost of bending energy 8πκ and a gain by contact interaction of 4πR2w.
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1.7
Phase diagram for wrapping of a spherical particle

From the two-state model described in the previous section we learn that for a
“tensionless state” of the membrane there are only two possible states namely (i)
non-wrapped state and (ii) complete-wrapped state and the relevant parameters
for the system being adhesion strength w and bending rigidity κ. The reduced ad-
hesion w̃ is a dimensionless parameter that can be constructed by choosing a length
scale given by the particle radius a, and an energy scale given by, κ such that for
w̃ > 4 the system spontaneously achieves complete wrapping. It also allows to
gain insight about the characteristic length scale

√
κ/w which exists due to the en-

ergetic competition. Biological cell-membranes exhibit a wide range of membrane
tensions [117] with typical values between 0.1-10 mN/m. Therefore it is important to
understand the role of membrane tension in wrapping. Accounting for the defor-
mation costs due to tension, the significance of the energetic competition between
Ebend vs. Etension is studied using a simple model presented below.

(a)

Figure 1.11: Wrapping of a particle by a fluid membrane such that the adhered membrane domain α
(in red) and the free membrane β is around the particle (in blue).

In Fig. 1.11, the membrane domain α adhered on the particle is shown in red
while the free membrane domain β around the particle is shown in blue. The goal
is now to understand the different possible states during wrapping a system might
be in for different bending rigidity κ, adhesion strength w, and membrane tension
σ. The total energy of such a system is given by,

Etotal = Eα
bend + E β

bend + Eadhesion + Etension , (1.9)

where Eα
bend and E β

bend correspond to the bending energy due to the free membrane
and adhered membrane respectively.

In Fig. 1.12, the spherical particle of radius a is wrapped partially at a wrapping
angle given by θ. The wrapping fraction is defined as a ratio of the sphere wrapped
to the total area of the sphere,

z =
Aad

Atotal
=

2πa2
∫ θ

0 dθ sin θ

4πa2 =
(1− cos θ)

2
. (1.10)

The height of the center of the sphere below the detachment plane is a cos θ hence
the height of the particle above is a(1− cos θ) = 2za, which is the penetration depth
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Figure 1.12: For a wrapping angle θ, a spherical particle of radius a is partially wrapped with a
wrapped area, Aad. The wrapping fraction z, is the ratio of the wrapped area to the total area of
the sphere i.e., z = Aad/4πa2. The penetration depth (of the sphere into the membrane) given
by, 2za as a fraction of the particle radius is described by the wrapping fraction such that for z = 0
the sphere is non-wrapped with null penetration while at z = 1, the penetration depth equal to the
particle diameter of 2a signifies complete wrapping.

expressed as a fraction of the particle radius a which is wrapped by the membrane
at a particular contact angle θ.

The free membrane for a tensionless state of the membrane can form a catenoid
and thereby provides a null contribution to the deformation energy. For nonzero
tension, the contribution due to the bending energy of the free membrane given
by, Eα

bend needs to be accounted for. However to estimate for this energy term
accounting for membrane tension is not straightforward and requires more in-
volved numerical approaches [12–14,106] and hence is neglected for the time being.
The assumption to neglect Eα

bend should be valid at low membrane tension val-
ues as shown using a deformed catenoid approximation calculations in our recent
work [12].

Bending energy due to the adhered membrane can be written using Eq. 2.2 as

E β
bend = 2κ(

1
a
− co)

2
(

2πa2
∫ θ

0
dθ sin θ

)
= 2κ(

1
a
− co)

2
[
2πa2(1− cos θ)

]
. (1.11)

Simplifying the above equation using Eq. 1.10, we get

E β
bend = 8πκ(

1
a
− co)

2 a2z . (1.12)

The adhesion energy is can be written using Eq. 1.8 as,

Eadhesion = −w
∫

Aad

dS = −2πa2w
∫ θ

0
dθ sin θ = −2πa2w(1− cos θ) . (1.13)

Using Eq. 1.10, we can simplify the above equation as

Eadhesion = −4πa2wz . (1.14)

To evaluate the contribution of the membrane tension (due to only the part of the
membrane adhered to the particle) requires to calculate the total excess area ∆A
which is given as the difference of the adhered area Aad = 4πa2z and its projected
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area in the x-y plane. The projected area Aproj
ad is equal to a the area of a circle of

radius ρ = a sin θ. Thus the contribution due to membrane tension is given by

Etension = σ∆A = σ
(

Aad − Aproj
ad

)
= σ(4πa2z− πa2sin2θ) . (1.15)

Using Eq. 1.10 replacing sin2 θ = 4z(1− z), we can simplify the above equation as

Etension = 4πσa2z2 . (1.16)

Thus neglecting the free membrane bending energy contribution in Eq. 1.9, using
Eqs. 1.12, 1.14, and 1.16, the total wrapping energy as a sum of the elastic en-
ergy cost due to bending of the adhered membrane, gain in adhesion energy and
deformation cost due to membrane tension is given by,

Etotal = −
[

w− 2κ(
1
a
− c0)

2
]

4πa2z + 4πσa2z2 . (1.17)

Next, using dimensionless variables like reduced energy as Ẽ = Etotal/2πκ , re-
duced adhesion as w̃ = 2wa2/κ, reduced spontaneous curvature as c̃0 = ac0 and
reduced tension as σ̃ = σa2/κ we can rewrite Eq. 1.17 as,

Ẽ = −
[
w̃− 4(1− c̃0)

2
]

z + 4σ̃z2 . (1.18)

For a symmetric bilayer since there is no preferred curvature i.e., c0 = 0, we can
describe the wrapping model using two reduced dimensionless variables w̃, and σ̃

given as

Ẽ = −(w̃− 4)z + 2σ̃z2 . (1.19)

For describing a phase transition near a critical point, one can approximate the
free energy of the system as a power series of the order parameters describing the
system. Such an expansion is known as a Ginzburg-Landau free energy form and
can be used to predict phase transitions near a critical point. Comparing Eq. 1.20
with even power of the order parameter ξ and a positive coefficient b, we obtain

F (ξ) = aξ2 +
b
2

ξ4 . (1.20)

where a = −(w̃− 4) and b = 4σ̃ and the order parameter of the system ξ is given
by the square root of the wrapping fraction i.e., ξ =

√
z. The system undergoes a

transition for a > 0 which implies w̃ > 4. At this adhesion strength for a tensionless
membrane a spherical particle undergoes a transition from a non-wrapped to a
complete-wrapped state as discussed using a two state model in Sec 1.6. Next,
to calculate the minimum energy condition for complete-wrapping for a non-zero
membrane tension by evaluating Ẽ ′(z)|z=1 = 0 or equivalently, F ′(ξ)|ξ=1 = 0 we
obtain a + b = 0 i.e w̃ = 4 + 4σ̃. The wrapping fraction at which this transition
occurs if given by ξ2|ξc = ξ2

c = −a/b or, z|z∗ = z∗ = (w̃− 4)/4σ̃. Fig. 1.13 (b) shows
different membrane deformation profiles at different partial wrapping fractions.
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(a) (b)

Figure 1.13: (a) A wrapping phase diagram obtained for a spherical particle of radius a adhering
with a homogeneous adhesion strength w to a membrane with bending rigidity κ and membrane
tension σ. We assume the contributions to the deformation energy due to the free membrane around
the particle to be negligible and obtain three different wrapping behaviors namely, (i) No wrapping,
(ii) Partial wrapping and (iii) Complete wrapping for different values of reduced adhesion (w̃) and
reduced tension (σ̃). We see two kinds of transitions, a continuous binding transition which sets in
at w̃ = 4 and the particle spontaneously attains from a non-wrapped state either to a complete-
wrapped state for zero membrane tension, or jumps to a bound state for systems with membrane
tension. At higher adhesion values given by, w̃ = 4 + 4σ̃, the partially wrapped states jump to a
complete-wrapped state. This transition is a discontinuous transition and has an energy barrier asso-
ciated to it; which has been calculated accounting for the free membrane deformation costs as well
in Refs. [12–14]. (b) Membrane deformation profiles for a spherical particle being partially wrapped
at different wrapping fractions are calculated using a triangulated membranes. At zero membrane
tension, all these deformation profiles correspond to unstable states and the free membrane (shown
in blue) forms catenoid-like minimal surface with null costs due bending energy.

Using this simple model one can understand the different wrapping states (no-
wrapping, partial-wrapping and complete-wrapping), the characteristic length
scales if the system namely,

√
κ/w and

√
κ/σ described using the two dimension-

less parameters w̃ and σ̃, and the nature of transitions between different states hav-
ing different wrapping fractions. In order to correctly estimate the phase bound-
aries, the energy barrier at the discontinuous transition and its associate spinodals
the free membrane deformation costs needs to be taken into account and this re-
quires a more involved numerical approach as presented in the following Chap-
ter. 2.
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1.8
Capillarity at a fluid interface

Figure 1.14: An ellipsoidal particle at a fluid-fluid or fluid-gas interface. The three interfacial tensions
γsv, γsl , γlv correspond to three different phases solid (s) , liquid (l), and vapor/another liquid (v).
At equilibrium, a force balance as given by the Young Dupré condition is valid at all points along the
three-phase contact line for a particular wetting angle θc.

A fluid interface is the boundary between a two liquid phases like an oil-water
interface or between a liquid and gas/vapor phase like an air-water interface. The
molecular forces at an interface are different from those in the bulk environment
since at an interface interactions are predominantly due to a surface energy cost
per unit area of the interface or otherwise termed as surface tension. At equilib-
rium, the forces acting along a contact line of a solid particle at a fluid interface due
to different interfacial tensions (γsv, γsl , and γlv) associated with the three different
phases solid (s), liquid (l), vapor (or another liquid) (v) must balance each other for
a particular wetting angle θc as shown schematically in Fig. 1.14. The contact angle
(θc) of a particle at the fluid interface is given by the Young-Dupré equation [118]. At
a fluid interface, micron-sized homogeneous non-spherical colloidal particles can
distort the fluid interface around it. An interface in presence of particles can be dis-
torted either due to externally directed fields like gravity/particle weight [119–121],
and electromagnetic fields [122–125] or due to particle heterogeneity [126] arising due
to chemical patterning [127–130] or particle roughness [131,132]. For smaller particles
with sizes less than a few microns the effects due to particle weight are negligible.

Thus for a homogeneous micron-sized spherical particle at a fluid interface, to
satisfy the equilibrium condition along all points of the contact line, the inter-
face around the particle remains flat for all contact angles as shown in the ex-
periments [133] in Fig. 1.15 (a). However, for an ellipsoidal particle [133] in similar
conditions an undulating contact line causes a quadrupolar distortion of the the
interface such that it rises along the flat sides of the ellipsoid and dips near the tips
for θc < 90◦. Due to the induced distortion, neighboring particles can interact to
self-assemble to minimize the excess interfacial area. Similarly [126], in Fig. 1.15 (b),
in presence of an ellipsoidal micro-post at a fluid interface, the interface undergoes
a quadrupolar distortion and then employing this curvature field they could pref-
erentially assemble smaller cylindrical particles near the tips where the interface
undergoes a depression. A biological situation where capillary forces are in action
is seen in Fig. 1.15(c) where a water-strider or Gerridae distorts the water surface
and uses the resulting capillary forces to effortlessly skim on the surface of the
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(a) (b)

(c) (d)

Figure 1.15: Different examples of capillarity in experiments and nature. (a) Comparison of interface
deformation due to a micron-sized spherical and ellipsoidal particle. (Taken from Ref. [133]), (b)
Migration of rod like particles near the tips of a an elliptical micro-post due to induced interface
distortion. (Taken from Ref. [126], (c) A water strider skims the water surface. (Taken from public
domain : Wikipedia), (d) Rafts formed by mosquito eggs. (Taken from Ref. [134])

water. Another biological example is seen in Fig. 1.15 (d) where millimeter sized
ellipsoidal mosquito eggs [134,135] due to long-range capillarity at a water interface
tend to form chains where individual eggs align mostly side-by-side. A physical
motivation to study capillarity is to understand these self-assembly [23,33,34,136,137]

principles for anisotropic micron-sized particles and characterize these interactions
between neighboring particles approaching in different orientations. Knowledge
of interaction potentials provides beautiful insight about the rheological properties
of particulate monolayers [138–142] which is rich model system in soft matter science
with promising applications. Capillarity within particulate suspensions [35–39] can
result in striking consequences like supression of the “coffee-ring” [143–145] effect.
Droplets of spherical particles on a solid surface while evaporating leave a ring-
like deposition of spherical particles known as a the “coffee-ring ” effect whereas
droplets containing anisotropic particles like ellipsoids [146–148] can supress the ring
formation and result in uniform deposition of particles due to particle aggrega-
tion on the droplet surface via capillary forces. Fundamental understanding of
capillary interactions at interfaces may also facilitate a deeper understanding to
self-assembly of proteins [43,44,149], viruses [16] and nanoparticles [12,15] at a biolog-
ical membrane due to membrane-mediated interactions as both membranes and
interfaces are dominated by surface-mediated interactions.
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2
Wrapping of ellipsoidal nano-particles by fluid membranes

2.1
Abstract

Membrane budding and wrapping of particles, such as viruses and nano-
particles, play a key role in intracellular transport and have been studied for
a variety of biological and soft matter systems. We study nano-particle wrapping
by numerical minimization of bending, surface tension, and adhesion energies.
We calculate deformation and adhesion energies as a function of membrane elas-
tic parameters and adhesion strength to obtain wrapping diagrams. We predict
unwrapped, partially-wrapped, and completely-wrapped states for prolate and
oblate ellipsoids for various aspect ratios and particle sizes. In contrast to spheri-
cal particles, where partially-wrapped states exist only for finite surface tensions,
partially-wrapped states for ellipsoids occur already for tensionless membranes.
In addition, the partially-wrapped states are long-lived, because of an increased
energy cost for wrapping of the highly-curved tips. Our results suggest a lower
uptake rate of ellipsoidal particles by cells and thereby a higher virulence of
tubular viruses compared with icosahedral viruses, as well as co-operative bud-
ding of ellipsoidal particles on membranes.

2.2
Introduction

Budding and subsequent vesiculation of lipid bilayer membranes is essential for
transport in biological cells [1–3]. Biomembranes usually consist of a variety of lipids
and proteins, therefore buds can be induced by lipid domain formation [4–7], by
membrane spontaneous curvature [8–12], or by a combination of both [13–15]. For par-
ticle wrapping, in addition to the membrane properties, the particle shape and the
adhesion strength have to be taken into account [16–20]. Biological examples are vi-
ral budding [21,22] and — for designing efficient drug delivery systems and other
nano-engineered techniques for medical diagnosis — the uptake of small parti-
cles by cells [17,20,23,24]. Elongated viruses have been found to form patterns on cell
membranes [25], and ellipsoidal nano-particles are used for drug delivery [26] and as
markers [27,28] in cell biology.
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Techniques to fabricate nano-particles of different shapes and sizes are well es-
tablished, thus wrapping has been studied experimentally using both vesicles and
cells. To gain insight into the basic mechanism of cellular uptake, the role of shape
and size has been investigated both in vitro [16,17,20,23] and as well as in vivo [29–31]

studies.
Computer simulations and numerical calculations are available based on coarse-

grained lipid models [32–38] that are most relevant for wrapping of small particles
2, and continuum membrane models that apply if the particle size is considerably
larger than the membrane thickness [39–50].

Describing the membranes as a mathematical surface with appropriate curvature-
elastic constants, continuum models predict wrapping as function of bending rigid-
ity κ, spontaneous curvature c0, surface tension σ, and for lipid domain formation
also the line tension γ at the domain boundary. Bending rigidity and surface ten-
sion oppose wrapping, whereas the adhesion strength w favors wrapping. For
example, for a completely wrapped sphere of radius R and for a lipid bilayer with-
out surface tension, an adhesion energy gain of −4πR2w is opposed by a bending
energy cost of 8πκ. Complete wrapping occurs if the adhesion strength exceeds
w∗ = 2κ/R2, while for smaller values the sphere remains unwrapped.

Wrapping of spherical particles has been studied systematically using continuum
membranes and is well understood. A particle wrapped by an infinitely large pla-
nar membrane without surface tension is fully described by the simple calculation
above. Neglecting a surface or volume constraint, also the energy of a vesicle that
wraps a particle has been obtained analytically [45]. For membranes with surface
tension, the deformation energy of the membrane can be calculated using approx-
imate models [29,39] or shape equations that are evaluated numerically [41–43]. Simi-
larly, the deformation energy for wrapping of infinitely long cylinders has been cal-
culated [40,48], which is qualitatively different from wrapping of spheres. Regarding
the example given above, the free membrane around the sphere forms a catenoid
without any bending energy cost, whereas for a cylinder wrapped by an infinite
planar membrane, the deformation energy of the free membrane has to be taken
into account.

In this article, we investigate wrapping of ellipsoidal particles by homogeneous
membranes without spontaneous curvature. In section 2.4.1, we calculate the wrap-
ping energy as function of the wrapping fraction for membranes with and with-
out surface tension. We obtain phase diagrams that show a non-wrapped state,
a partially-wrapped state, and a fully-wrapped state, see section 2.4.2. While the
transition between the unwrapped and the partially wrapped state is continuous,
the partially-wrapped state is separated from the fully-wrapped state by an energy
barrier. In section 2.4.3, we characterize the energy barrier and the hysteresis that
is found for the transition between the partially-wrapped and the fully-wrapped
state. Finally, in section 2.4.4 we discuss the role of the shape for the wrapping
energy.

2) Small particles might as well cross a lipid bilayer membrane by penetra-
tion instead of wrapping
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2.3
Theoretical model and methods

2.3.1
Continuum membrane model

Figure 2.1: Deformation profile of membrane adhering to a rigid nano-particle. The free membrane
around the particle is labeled α and the membrane adhered to the particle β.

Using the continuum membrane model, our system is constructed in order to
include the minimal ingredients required to characterize wrapping of ellipsoidal
particles. The uptake process can be understood as a competitive tug of war be-
tween the elastic deformation energy and the contact interaction between particle
and membrane. The elastic deformation energy Edef of the lipid bilayer is [51,52]

Edef =
∫

Atot
dS
[
2κ(H − c0)

2 + κ̄K + σ
]

, (2.1)

which is an integral over the entire membrane surface area, Atot. The membrane
shape is described by the mean curvature, H = (c1 + c2)/2, and the Gaussian cur-
vature, K = c1c2; c1 and c2 are the principal curvatures of the membrane. The
surface tension σ is the Lagrange multiplier conjugate to the excess area that is gen-
erated due to wrapping on the particle relative to the unwrapped flat membrane.
Because we assume a symmetric lipid bilayer, we use c0 = 0. The integral over the
Gaussian curvature with the constant saddle splay modulus κ̄ is determined by the
topology of the membrane (and by the geodesic curvature at a boundary). In our
case of an infinite planar membrane, the integral is a constant during the wrapping
process. Thus, the total energy for a membrane-particle wrapping complex is

Etot =
∫

Atot
dS
[
2κH2 + σ

]
− w

∫
Aad

dS . (2.2)

The contact interaction with adhesion strength w is proportional to the membrane
area Aad adhered to the particle, see Fig. 2.1.

Our continuum model in Eq. (2.2) is applicable for particle sizes that are larger
than a few times the thickness of a lipid bilayer, which is about 5 nm. For particle
sizes smaller than

√
κ/σ both bending energy and surface tension contribute, for

larger particle sizes surface tension is dominant [42]. A characteristic length scale for
each system is the particle size a, typically 20− 100 nm and a characteristic energy
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scale is the bending rigidity κ, typically 10− 100 kBT. We therefore describe our
system in terms of dimensionless parameters, which we choose to be consistent
with those in Refs. [42,43]. This gives

Ẽ =
1

2πa2

(∫
Atot

dS
[
4(aH)2 + 2σ̃

]
− w̃

∫
Aad

dS
)

, (2.3)

with the reduced energy Ẽ = Etot/(πκ), the reduced surface tension σ̃ = σa2/κ,
and the reduced adhesion strength w̃ = 2wa2/κ.

2.3.2
Energy minimization

There are three approaches to calculate the membrane deformation for particle
wrapping [53]. (i) Solving the Euler-Lagrange equation: the Euler-Lagrange equa-
tion is obtained from Eq. (2.2) using variational calculus; it is a fourth-order partial
non-linear differential equation [54] and a general solution does not exist. Exploit-
ing symmetry and choosing an appropriate parametrization [52,55,56] , such as the
arc-length parametrization proposed in Ref. [56], one obtains a set of second order
non-linear ordinary differential equations. This method has been employed both
for spherical particles in Refs. [41–43,46] and for infinite cylinders in Refs. [46,48]. In
the weak-wrapping limit, the Monge parametrization and the approximation for
almost planar membranes can be used [40–43]. (ii) Exploiting a variational approach:
minimum energy shapes are found using appropriate functional parametrization,
e. g. spherical harmonics [57], Cassini ovals [51], and Fourier functions [58]. The set
of parameters obtained from energy minimization describes the membrane defor-
mation. This method has been used for wrapping in Ref. [59] and can treat non-
axisymmetric shapes as well. (iii) Using triangulated membranes: the method of-
fers a high flexibility and has been used to study both minimal energy shapes [60,61]

and systems at finite temperature [62–65]. The membrane is constructed by small
triangles and discretized expressions for the deformation and interaction energies
are used. Triangulated membranes provide a huge amount of freedom regarding
the choice of shape and local properties of the membrane and has been used to
study wrapping of single as well as multiple particles [49,50,65]. We employ “Sur-
face Evolver” [60] for our calculations, a finite-element code for surfaces formed of
vertices, edges and facets; the discretization of the bending energy is discussed in
appendix 3.8.

2.3.3
Wrapping energy calculations

Deformation energies are calculated such that the membrane wraps the particle
starting from the lowest curvature region progressively. Therefore, ellipsoidal par-
ticles are oriented with their major axis aligned parallel to a membrane patch that
is enclosed by a circular wire frame of radius 20 a, see Fig. 2.2. This orientation is
energetically favorable until about half wrapping compared with the perpendicu-
lar orientation. It ensures a maximum gain of adhesion energy and a minimal cost
due to bending and surface tension contributions. We characterize the ellipsoids



2.3 Theoretical model and methods 37

Figure 2.2: Membrane deformation for membrane-particle systems that have been discretized using
triangulated surfaces.

by their polar radius a and their aspect ratio b/a. Prolate ellipsoids correspond to
b/a > 1 and oblate ellipsoids correspond to b/a < 1.

From numerical calculations for ellipsoids with parallel orientation, we obtain
the deformation energy as function of the fraction of the particle area that is
wrapped, Aad/A 3. Snaphots of partially-wrapped particles with different wrap-
ping fractions are shown in Figs. 2.3 (b), 2.4 (b), and 2.4 (d) 1. The energy of the
membrane relative to the unwrapped state is denoted by ∆E, which gives the wrap-
ping energy cost ∆Ẽ = ∆E/πκ in reduced units. To calculate small energy differ-
ences and derivatives with sufficient accuracy, this deformation energy profile is fit
to the generalized logistic function,

f
(

Aad
A

)
= c1

[(
1 + exp

c2 − Aad/A
c3

)−1
−
(

1 + exp
c2
c3

)−1
]

, (2.4)

with the fit parameters c1, c2, and c3. This monotonic function describes the numer-
ical data very well and vanishes for a completely detached particle, see Figs. 2.3
and 2.4. However, it cannot capture the partially-wrapped state encountered dur-
ing the unwrapping transition at almost complete wrapping. This high wrapping
fraction partially-wrapped state that has been found in Ref. [42] is a very shallow
energy minimum, which we cannot identify in our numerical calculations. Further
analysis is done using the fit function, in particular the wrapping energy at any

3) The wrapping fraction is defined as the ratio of the particle area adhered
to the membrane, Aad, to the total area of the particle, A. Aad/A = 0
corresponds to the unwrapped state, while Aad/A ≈ 1 indicates a
fully-wrapped state.

1) Unlike for prolate ellipsoids at a phase boundary dominated by interfa-
cial tension [66], and although the boundary between the adhered and the
free membrane is allowed to adjust freely in early stages of the energy
minimization, we find an elliptical contact line in Fig. 2.4 (b) without
significant variation in its height.
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reduced adhesion strength is

∆E(Aad/A, w)

πκ
= f

(
Aad
A

)
− w̃

Aad
A

. (2.5)

Figs. 2.3 (a), 2.4 (a), and 2.4 (c) show energies as function of the wrapping fraction
at reduced tension σ̃ = 1 for wrapping of spherical, prolate, and oblate particles
respectively. The open circles are the numerically calculated deformation energies
that are fit by the solid line given by Eq. (2.4). The deformation energy thus in-
creases monotonic with the wrapping fraction, the unwrapped state is stable. For
finite adhesion strengths, the wrapping energies that are calculated using Eq. (2.5)
are non-monotonic functions of the wrapping fraction, such that partially and fully-
wrapped states can be the stable states.

2.4
Results

2.4.1
Wrapping energy

The numerical data for the deformation energy without any adhesion in Figs. 2.3 (a),
2.4 (a), and 2.4 (c) is fit by the function given in Eq. (2.4). For increased adhesion
strength, the onset of wrapping occurs for the adhesion strength w1 for that the
bending-energy cost equals the adhesion-energy gain at the contact point, see ap-
pendix 2.5. For all adhesion strengths w < w1 the stable state for the particle is
the unwrapped state. Increasing the adhesion strength further, we find the envel-
opment transition from the partially-wrapped to the completely-wrapped state at
adhesion strength w2. For adhesion strengths w1 < w < w2, a global minimum of
the wrapping energy is found for a small wrapping fraction, 0 < Aad/A � 1. For
adhesion strengths w > w2, a stable completely-wrapped state is found. The line
E, where the energy of the unwrapped state equals the energy of the completely-
wrapped state is a good estimate for the binodal W2.

Whereas there is a continuous transition from the unbound to the bound
state, the envelopment transition between the partially-wrapped and completely-
wrapped state is characterized by an energy barrier, ∆Ẽbarrier. For w1 < w < w2,
in addition to the stable partially-wrapped state at small wrapping fraction,
a metastable completely-wrapped state is found; similarly at higher adhesion
strengths, in addition to the completely wrapped state a metastable partially-
wrapped state is found. Indicated by the spinodal S22 that is associated with
W2, the energy barrier between the metastable partially-wrapped state and the
completely-wrapped state vanishes at an adhesion strength that is even larger than
w2. Starting from a completely-wrapped state and continuously decreasing the
adhesion strength, below a threshold value w1 a spontaneous transition between
the completely-wrapped state and the unwrapped state is observed, which is in-
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Figure 2.3: (a) Energies for wrapping a spherical particle as function of the wrapping fraction Aad/A
for reduced membrane tension σ̃ = 1. The figure shows the wrapping energy profiles for six adhe-
sion strengths: the numerically calculated data for zero adhesion strength and the corresponding fit
function, E with equal energy for the non-wrapped and the completely-wrapped states (w̃ = 5.99),
the binding transition W1 between the unwrapped and the partially-wrapped (w̃ = 4.00), the binodal
W2 between the partially-wrapped and the completely-wrapped state (w̃ = 6.12), and the spinodals
S21 and S22 that are associated with W2 (for w̃ = 2.46 and w̃ = 8.02 respectively). The phase
boundaries separate 5 regimes in the phase diagram with stable and metastable completely wrapped
(CW), partially-wrapped (PW), and and non-wrapped states (NW); the stable state is underlined. The
wrapping fractions that are plotted in Fig. 2.5 are marked by circles and the energy barrier shown in
Fig. 2.9 is indicated. (b) Sketches for spherical particles for wrapping fractions 0.25, 0.50, 0.85 and
0.96, with the adhered membrane in red and part of the free membrane in blue.

dicated by the second spinodal for W2, S21
4. The system shows strong hysteresis,

such that no partially wrapped state with small wrapping fraction is encountered
during this unwrapping transition. The height of the energy barrier between the
partially-wrapped and the completely-wrapped state, ∆Ẽbarrier, can be character-
ized by barrier height for w = w2, as indicated in Figs. 2.3 and 2.4. High energy
barriers for ellipsoids with increased aspect ratio lead to an increased stability of
the partially-wrapped state, compare section 2.4.3.

Special wrapping fractions are marked by points in Figs. 2.3 and 2.4, and are plot-
ted in Fig. 2.5 as function of the surface tension for several aspect ratios. The wrap-
ping fraction p1 denotes the wrapping fraction for the stable partially-wrapped

4) Our numerical calculations and the fit function cannot capture a
partially-wrapped at very high wrapping fraction, see Ref. [42]. Therefore
the adhesion strength for that S21 occurs is obtained from the condition
that the slope of the energy is zero at complete wrapping.
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Figure 2.4: Wrapping energies for (a) a prolate ellipsoid (PE) with aspect ratio 2 and (c) an oblate
ellipsoid (OE) with aspect ratio 0.75, analogous to Fig. 2.3 for a sphere. (b) and (d) Sketches for
ellipsoids with wrapping fractions 0.30, 0.49, 0.84 and 0.95.

state, while p2 is the wrapping fraction for the energy maximum, both for adhe-
sion strength w2. The saddle point of the energy, when the barrier between the
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Figure 2.5: Wrapping fractions for special points marked on the wrapping-energy functions in
Figs. 2.3 and 2.4 for several values of the reduced surface tension of the membrane and for sev-
eral aspect ratios. At adhesion strength w2, the partially-wrapped state is found at wrapping fraction
p1 and the energy maximum at wrapping fraction p2; p3 is the wrapping fraction for that the energy
barrier between partially-wrapped and completely-wrapped state vanishes.

partially-wrapped and the completely-wrapped state vanishes on the spinodal S22,
occurs at wrapping fraction p3. All wrapping fractions for special points depend
only weakly on the surface tension, but decrease slightly with the increasing sur-
face tension at small surface tensions.

When the partially-wrapped state has the same energy as the completely-
wrapped state, the wrapping fractions for the partially-wrapped state are always
well below 0.5. However, a strong dependence of the wrapping fraction on the
particle shape is observed: whereas for prolate ellipsoids and spheres p1 ≈ 0.2,
for oblate ellipsoids it increases strongly with decreasing aspect ratio. The maxima
of the energy barriers are found for wrapping fractions between 0.6 and 0.7. For
adhesion strengths w > w2 the partially-wrapped state becomes metastable; in this
regime, the wrapping fraction at which the metastable partially-wrapped state ap-
pears increases with increasing adhesion strength until it reaches the critical value
p3, which is found at approximately half wrapping.

2.4.2
Wrapping diagrams

For wrapping a spherical particle by a tension-less membrane, the only relevant
energies that determine the uptake process are bending and adhesion energy for
the adhered part. At every point of the sphere the bending energy is constant and
the free membrane around the particle forms a catenoid-like deformation, i. e., a
minimal surface with vanishing bending energy cost. Thus there exist only 2 pos-
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Figure 2.6: Wrapping states for spherical particles with reduced adhesion strength w̃ and reduced
surface tension σ̃. Non-wrapped (NW), partially-wrapped (PW), and completely-wrapped (CW) states
are found, stable and metastable states are indicated, stable states are underlined. The binodal
W1 separates a stable non-wrapped and a stable partially-wrapped state, the binodal W2 separates
a stable partially-wrapped and a stable completely-wrapped state. The two spinodals S21 and S22
belong to W2. For all states on E, the unwrapped state has the same energy as the completely-
wrapped state.

sible stable states, viz. a non-wrapped and a completely-wrapped state, that are
separated by a continuous transition at w̃ = 4. For a spherical particle and a finite
membrane tension, also a stable partially-wrapped state is found, compare section
2.4.1. For ellipsoidal particles this partially-wrapped state exists both for finite and
for vanishing surface tension.

In the wrapping diagrams for surface tension and adhesion strength in Figs. 2.6,
2.7, and 2.8, five regimes can be identified with different combinations of stable and
metastable unwrapped, partially wrapped, and completely wrapped states. For
small adhesion strengths, a stable non-wrapped state is found. In between the spin-
odal for the spontaneous transition between the completely-wrapped and the non-
wrapped state S21, and the binodal for the binding of the colloid to the membrane
W1, in addition to the stable non-wrapped state a metastable completely-wrapped
state with high wrapping fraction appears 5. The binding transition occurs at ad-
hesion strength w̃1(PE) =

[
1 + (b/a)−2]2 and w̃1(OE) = 4(b/a)2 for prolate and

oblate ellipsoids respectively and is independent of the surface tension, see ap-
pendix 2.5 and Refs. [30,42,67]. Beyond the threshold adhesion strength for binding,
a partially-wrapped state coexists with the metastable completely-wrapped state.
For adhesion strengths beyond those for the binodal W2, the completely-wrapped

5) It should be a partially-wrapped state at high wrapping fraction [42], but
this cannot be described by the function in Eq. (2.4).
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Figure 2.7: Wrapping states for prolate ellipsoidal particles with aspect ratios (a) 1.5 and (b) 2,
plotted analogously to Fig. 2.6.

state becomes stable and the partially-wrapped state becomes metastable. Finally,
beyond the spinodal S22, the energy barrier between the completely-wrapped and
the partially-wrapped state vanishes.

For spherical particles, all phase boundaries meet at a triple point for zero sur-
face tension, see Fig. 2.6. However, as shown in Figs. 2.7 and 2.8 for ellipsoids, even
for zero surface tension W1 is shifted to smaller values of the adhesion strength
compared with spherical particles, while the binodal W2 is shifted to higher val-
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Figure 2.8: Wrapping states for oblate ellipsoidal particles with aspect ratios (a) 0.75 and (b) 0.5,
plotted analogously to Fig. 2.6.

ues of the adhesion strength. For comparable aspect ratios, this effect is stronger
for oblate ellipsoids than for prolate ellipsoids. This range of adhesion strengths,
for which stable partially-wrapped states are found, increases both with the aspect
ratio of the particle and the surface tension of the membrane. For increased as-
pect ratio it is easier to attach particles to the membrane, but at the same time it
is more difficult to achieve completely-wrapped state. Binding occurs already for
smaller adhesion strengths because of the reduced particle curvature at the point
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of first contact, whereas complete wrapping requires higher energies because of the
increased curvature of the particle at the tips. For high aspect ratios and rather ’flat’
particles, the dependence of the binodal W2 and both associated spinodals on the
surface tension decreases.

2.4.3
Energy barrier
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Figure 2.9: Energy barriers between partially-wrapped and completely wrapped state for the ad-
hesion strength w2 where partially and completely-wrapped state have equal energies. The barrier
energies are plotted for several aspect ratios as function of the reduced surface tension σ̃ and fit by a
function ∆Ẽbarrier = Ẽ0 + Ẽ1σ̃ν. The values for the sphere are compared with those from Ref. [42].

In Figs. 2.3 and 2.4, the wrapping energy for adhesion strength w2 shows a
partially-wrapped state at a wrapping fraction p1 that is separated by an energy
barrier ∆Ẽbarrier from the completely-wrapped state. For w > w2, the height of the
barrier between a metastable partially-wrapped state and the completely-wrapped
state determines the dynamics for the wrapping process. The activation energy
that is needed for complete wrapping can be provided either by thermal kicks or
by active forces from motor proteins. A comparison of the height of the energy
barrier shown in Fig. 2.9 with the thermal energy kBT therefore allows to estimate
a characteristic time for the transition [13].

The energy barriers vary with the surface tension of the membrane and with
particle shape. While for spherical particles the energy barrier vanishes for the
tension-free case and can be fit by a power law [42], it levels off to finite values both
for prolate and oblate ellipsoids. The energy barriers for ellipsoidal particles thus
can be orders of magnitude higher than those for spherical particles. We fit the en-
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Figure 2.10: Energy barrier Ẽ0 as a function of the aspect ratio b/a for vanishing surface tension.
Oblate particles have b/a < 1 and prolate particles have b/a > 1.

ergy barriers as function of the wrapping fraction by ∆Ẽbarrier = Ẽ0 + Ẽ1σ̃ν. While
the exponent ν is similar for all particles, the prefactors Ẽ0 and Ẽ1 strongly depend
on the particle shape.

While in section 2.4.2 an extended parameter range for a partially-wrapped
regime has been found for ellipsoidal particles compared with spherical particles,
the energy barrier characterizes the stability of metastable partially-wrapped states.
This can practically imply that partially-wrapped ellipsoidal particles are found in
experiments even for adhesion strengths much higher than w2, for that wrapping
diagrams already predict a completely-wrapped particle. In Fig. 2.10, the energy
barriers for vanishing surface tension are plotted as function of the aspect ratio of
the particle. Only for Ẽ0 < kBT/(πκ) the barrier height is comparable to thermal
energy and complete wrapping is expected to occur at w2. Ẽ0 is of the order of 1
already for prolate ellipsoids with aspect ratio 1.5 thus corresponds to an energy
barrier of about πκ. This implies that for particles whose shape considerably de-
viates from a sphere, adhesion strengths that are considerably higher than w2 are
required to wrap the particle and the partially-wrapped regime might extend al-
most up to the spinodal S22.

2.4.4
Role of shape anisotropy

Stable non-wrapped, partially-wrapped and completely-wrapped regimes can be
identified in Fig. 2.11, where the state of the system depends on membrane sur-
face tension, particle aspect ratio, and adhesion strength. For spherical particles,
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Figure 2.11: Stable wrapping states for different aspect ratios b/a, reduced adhesion strengths w̃,
and for σ̃ = 0 and for σ̃ = 2. Prolate ellipsoids (PE) have aspect ratios b/a > 1, while for oblate
ellipsoids (OE) have aspect ratios b/a < 1. Stable wrapping states are the non-wrapped state
(NW), the partially-wrapped state (PW), and the completely-wrapped state (CW); the roman numbers
correspond to those used in Figs. 2.6, 2.7, and 2.8. For blue open squares labeled with index dc, the
deformed catenoid approximation has been used.

the transition from the non-wrapped to the completely-wrapped state occurs at the
triple point for w̃ = 4. For ellipsoids, the transition from the non-wrapped to the
partially-wrapped state is found already for w1 < 4, where w1,PE → 1 for pro-
late ellipsoids with high aspect ratio and w1,OE → 0 for disc-like oblate ellipsoids,
compare Eqs. (2.12) and (2.13). The limiting cases for w2 correspond to an infinite
cylinder [40,48] and a flat disc [46,68] respectively. For the envelopment transition, we
find an increased adhesion strength w̃2 for the prolate and oblate ellipsoids with
increasing asphericity; an additional shift towards higher adhesion strength is ob-
served for finite surface tension.

Besides the numerical minimization technique to calculate w2, we have used a
deformed-catenoid approximation to estimate the wrapping energy that allows to
estimate w2 even for high aspect ratios such as 10. For a tensionless membrane, we
numerically calculate the deformation energy for a wrapped ellipsoid by deform-
ing a sphere with a catenoidal membrane patch, without any actual minimization.
This method works well, because without surface tension the contribution of the
deformation of the membrane patch around the particle is small. For oblate par-
ticles and bending-only, the membrane patch around the particle will assume a
catenoid shape with vanishing bending energy and therefore does not have to be
calculated.
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As discussed in section 2.4.3, for w̃ >W2 the stable state is the completely-
wrapped state (CW), but still the particles may be stuck in metastable partially-
wrapped states unless there are sufficiently large fluctuations such that the energy
barrier can be crossed, compare Fig. 2.9. Thus, for a given adhesion strength that
is smaller than the one for the spinodal for spontaneous wrapping, we predict a
considerably smaller amount of completely-wrapped particles the stronger the as-
phericity is.

2.5
Summary & conclusions

Complete wrapping a spherical particle using a tensionless free membrane occurs
at reduced adhesion strength w̃ = 4, directly from the unwrapped to the wrapped
state without any energy barrier. For a membrane with surface tension the envel-
opment transition is shifted to higher adhesion strengths, while the binding tran-
sition remains at w̃ = 4. The new partially-wrapped state is separated from the
completely-wrapped state by an energy barrier. We find that a partially-wrapped
state also exists for ellipsoidal particles, in a wider region of the phase diagram and
with a higher energy barrier to the fully-wrapped state than for spherical particles.
Therefore, the spherical shape facilitates complete wrapping for single particles; a
biological example is the uptake and budding of almost spherical viruses [44,47].

In addition to a shift due to a membrane surface tension, for ellipsoidal particles
the envelopment transition additionally shifts to higher adhesion strengths with in-
creasing non-sphericity. The binding transition shifts to smaller adhesion strengths:
for very long prolate ellipsoids w1 → 1 and for very flat oblate ellipsoids to w1 → 0.
The partially-wrapped state is additionally stabilized by a higher energy barrier to
the completely-wrapped state. Therefore, attachment of ellipsoidal particles to a
membrane and partial wrapping is facilitated compared with spheres, while com-
plete wrapping is hindered; typical wrapping fractions are 20 − 40%. Elongated
viruses are found to form patterns on the membrane, see Ref. [25]. However, similar
to curved inclusions the particles may bud cooperatively [9,12].

For typical lipid bilayer bending rigidities of κ = 20 kBT, the reduced energies
Ẽ ≈ 1 correspond to typical energies E ≈ 60 kBT. Energy barriers at adhesion
strengths where the energy of the partially-wrapped state equals the energy of the
completely wrapped state can thus be of the order of 100 kBT. Often the length
scale for the particle in soft matter and biological system is of the order of hundred
nanometer, therefore σ̃ = (a2/κ)σ = 500 σ nm2/kBT; a biologically relevant surface
tension for the cell membrane, σ = 0.003 dyn/cm [69] corresponds to σ̃ ≈ 1 for a
particle size a = 100 nm, to σ̃ ≈ 0.25 for a particle size a = 50 nm, and to σ̃ ≈ 4 for
a particle size a = 200 nm. At a reduced tension σ̃ = 0.25, the energy barrier to the
completely wrapped state is an order of magnitude higher for prolate ellipsoids of
aspect ratio 2 and oblate ellipsoids of aspect ratio 0.5 than for a spherical particle.

A typical adhesion strength can be estimated based on the binding strength
of the HIV virus, w ≈ 0.1 kBT/nm2 [44]. The reduced adhesion strength is thus
w̃ = 2(a2/κ)w = 100 for a particle with size a = 100 nm, w̃ ≈ 25 for a = 50 nm,
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and to w̃ ≈ 400 for a = 200 nm. All adhesion strengths are well in the region
where wrapping occurs. However smaller adhesion strengths may occur for other
viruses or smaller receptor densities in the membrane. An increased reduced ten-
sion hinders budding, but because σ̃ and w̃ both scale with the squared size of the
particle, according to our calculations and previous wrapping calculations larger
nano-particles are more likely to be wrapped completely. A lower limit for uptake
is ≈ 20 nm, when the adhesion energy balances the bending energy [3,70–72]. How-
ever, there is also an upper limit given either by the length scale

√
κ/σ where the

wrapping becomes surface-tension dominated [42] or by receptor availability [70–72].
Our theoretical calculations predict an enhanced stability of partially-wrapped

states for ellipsoidal particles. For cells, a lower uptake for ellipsoidal particles
has been found experimentally [16,17,20], partially adhered ellipsoidal particles are
also discussed in particular in Ref. [20], similarly disk-shaped particles show an in-
creased adhesion to membrane and lower uptake [73,74]. Receptor-mediated wrap-
ping of ellipsoidal particles has been studied in Ref. [75] with similar findings as
in our work, but without surface tension of the membrane. The partially wrapped
state can be of advantageous both from an application point of view as well as from
a biological point of view: for example, elongated particles can be used as markers
for imaging that stay in the cell membrane [27,28] and Ebola and Marburg viruses
are not easily taken up by macrophages and may thus have a high virulence [3].

Appendix A: Triangulated membranes

Triangulated membranes are a powerful tool to study membranes and inter-
faces [5,8,60–65]. Using Surface Evolver [60], the membrane shape can be minimized
with different schemes and the triangulation can be refined at any stage. In this
appendix, we present the discretization that has been used to calculate the en-
ergy in Eq. (2.2). Surface tension and adhesion energies are proportional to the
area of the membrane, they can be calculated basically as sum over all trian-
gle areas. The bending energy is calculated, using the Surface Evolver method
“star_perp_sq_mean_curvature”, which assumes every vertex has incident trian-
gles forming a star network around it, such that av is the average area associated
locally with the vertex. The force acting on a vertex when the area changes thereby
causing the vertex to move is given by the gradient of the area (∇av) associated
with the vertex. For a smooth surface the gradient of the volume (∇Vv) is equal to
the magnitude of the area. But for a triangulated patch, the facets around the vertex
tilt and thus the area is greater than the magnitude of the gradient of the volume.
For a membrane patch, with a central vertex v and neighboring vertices v1, v2, v3,
... vn a volume is given by

Vv =
1
6

v ·
[
v1 × v2 + v2 × v3 + ...vn × v1

]
, (2.6)

and the gradient of the volume is therefore

∇Vv =
1
6

[
v1 × v2 + v2 × v3 + ...vn × v1

]
. (2.7)
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The local mean curvature (hv) at the vertex is

hv =
1
2
∇av ·∇Vv

∇Vv ·∇Vv
. (2.8)

Thus the discretized form of total squared mean curvature integral is given by,

Ebend = 2κ
n

∑
v=1

avh2
v . (2.9)

Once assembled, the surface can be minimized using different schemes, default
being moving towards the direction of steepest descent of the energy linearly, while
the mesh may be refined or smoothed at any stage. One may employ other mini-
mization schemes like Hessian approach which calculates the energy of the surface
configuration for a small perturbation and then uses the Hessian, a square matrix
formed of the second derivatives of the energy which determines the best quadratic
approximation of the energy to look for minimum energy states. Once converged
to a minimum energy state, the surface may be analyzed for deformation profiles.

Appendix B: Binding transition (W1)

The binding transition for particles to a membrane is determined by the mean cur-
vature of the particle at the contact point and is independent of surface tension [42].
To calculate the binding transition for any particle shape, the Monge parametriza-
tion can be used, where the surface is described by a height field, h(ρ), where
ρ = (x, y) are the coordinates in the reference plane. For an almost planar mem-
brane, a small-gradient approximation for the bending energy gives

Edef =
∫

dA
κ

2
(∇2h(ρ))2 , (2.10)

with
∫

dA the integral over the reference plane.
The critical adhesion strength at the binding transition marks the onset of ad-

hesion, separating the unwrapped regime from the (partially) wrapped regime.
Because it is completely determined by the competition between adhesion energy
and bending energy, at the transition the mean curvature must equal the adhesion
strength w̃1,

w̃1 = a2
[
∇2h(ρ = 0)

]2
, (2.11)

for the contact point between membrane and particle at ρ = 0. For spheres[
∇2h(ρ = 0)

]2
= 4/a2, we find w̃1 = 4, for prolate ellipsoids of aspect ratio b/a,

such that the they are wrapped with their long axis parallel to the membrane,

w̃1(PE) =
[

1 +
( a

b

)2
]2

, (2.12)

and for oblate ellipsoids,

w̃1(OE) = 4(b/a)2 . (2.13)
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Corrections: Chapter 2

The corrected eqn (5) is

∆E(Aad/A, w̃)

πκ
= f

(
Aad
A

)
− w̃A

2πa2
Aad
A

. (2.5)

In Fig. 4, 7, 8 and 11, the numerical values for the adhesion strengths of all
phase boundaries except W1 have to be multiplied by 4πa2/A. Corrected labels
are S21(0.53), E(4.76), W2(5.23) and S22(9.31) in Fig. 4 (a) and S21(1.28), E(6.78),
W2(7.73) and S22(12.49) in Fig. 4 (b). Corrected Figs. 7 , 8 and 11 are provided.
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Figure 2.7: Wrapping states for prolate ellipsoidal particles with aspect ratios (a) 1.5 and (b) 2,
plotted analogously to Fig. 6.
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Figure 2.8: Wrapping states for oblate ellipsoidal particles with aspect ratios (a) 0.75 and (b) 0.5,
plotted analogously to Fig. 6.



54 2 Wrapping of ellipsoidal nano-particles by fluid membranes

Figure 2.11: Stable wrapping states for different aspect ratios b/a, reduced adhesion strengths w̃,
and for σ̃ = 0 and for σ̃ = 2. Prolate ellipsoids (PE) have aspect ratios b/a > 1, while for oblate
ellipsoids (OE) have aspect ratios b/a < 1. Stable wrapping states are the non-wrapped state
(NW), the partially-wrapped state (PW), and the completely-wrapped state (CW); the roman numbers
correspond to those used in Figs. 6, 7, and 8. For blue open squares labeled with index dc, the
deformed catenoid approximation has been used.
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3
Shape and Orientation Matter for the Cellular Uptake of Non-
spherical Particles

3.1
Abstract

Recent advances in nanotechnology have made a whole zoo of particles of differ-
ent shapes available for applications, but their interaction with biological cells
and their toxicity is often not well understood. Experiments have shown that
particle uptake by cells is determined by an intricate interplay between physico-
chemical particle properties like shape, size, and surface functionalization, but
also by membrane properties and particle orientation. Our work provides sys-
tematic understanding, based on a mechanical description, for membrane wrap-
ping of nanoparticles, viruses, and bacterial forms. For rod-like particles, we find
stable endocytotic states with small and high wrapping fraction; an increased
aspect ratio is unfavorable for complete wrapping. For high aspect ratios and
round tips, the particles enter via a submarine-mode, side-first with their long
edge parallel to the membrane. For small aspect ratios and flat tips, the particles
enter tip-first via a rocket-mode.

3.2
Introduction

Transport within a biological cell and exchange of material across its membrane
are basic processes that the cell uses to interact with its environment. Depend-
ing on size, shape, and surface properties, nanoparticles and micro-organisms can
cross a cellular membrane either by penetration [1–3] or wrapping. For example,
filo-viruses [4,5] and also brick-shaped intracellular mature virions [6] of the family
Poxviridae (fowl-pox and pigeon-pox) get wrapped by the host plasma membrane.
In particular, the Ebola [4,5] and the Marburg virus [5] are of much interest due to
their enhanced virulence leading to high mortality rates. Their prolonged blood
circulation time has inspired development of tubular filamentous vehicles [7] as po-
tential drug-delivery agents for treating cancer. While wrapping of spherical parti-
cles has been studied in great detail [8–11], there is no systematic study and under-
standing for the wrapping of non-spherical particles [12–17].

Elongated viruses [4–6], such as Ebola, Marburg, and pox viruses, as well as the
bullet-shaped Rhabdoviruses [18,19], exhibit competition between a submarine and
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a rocket mode for cell entry via membrane wrapping. In submarine mode, the long
axis of the particle is oriented parallel to the membrane and in rocket mode, it is
oriented perpendicular to the membrane. Similar modes for uptake have been re-
ported for rod-like nanoparticles [15–17,20] and multi-wall carbon nanotubes [21]. The
aspect ratio is an important parameter to characterize the shape of elongated par-
ticles. Experimentally, a high aspect ratio has been found to suppress uptake com-
pared to spherical particles of similar size [15,16]. More recently, uptake experiments
with cube-like particles have been performed [17,22], but there is no systematic study
for different sizes available so far. However, experiments and molecular dynam-
ics simulations that show a role of shape [23–26], aspect ratio [15–17,20], and orienta-
tion [1,27–30] stress the importance of these geometric parameters for cellular uptake
and toxicity studies.

Physically, nanoparticle attachment and wrapping is controlled by the compe-
tition between the adhesion-energy gain for contact between a nanoparticle and a
membrane and the deformation-energy cost for the lipid bilayer. Attachment (bind-
ing) occurs when the adhesion strength is large enough to compensate the local
bending-energy cost at the surface point of smallest curvature. This binding tran-
sition is predicted to be continuous (without an energy barrier) [11,31]. For higher
values of the adhesion strength between particle and membrane, a discontinuous
transition (with an energy barrier) occurs either between two frustrated endocy-
totic, partially-wrapped states or between a partially-wrapped and the completely-
wrapped state. Only in the case of spherical particles and for a vanishing mem-
brane tension the entire wrapping process is continuous. Special cases of wrapping
of non-spherical nanoparticles have been addressed theoretically, such as the en-
hanced stability of partially-wrapped states for soft [32] and ellipsoidal [31] nanopar-
ticles, the reorientation of ellipsoidal [33] and spherocylindrical [27,34] nanoparticles
during uptake, and the perpendicular entry of cylindrical nanoparticles [27]. Many
of these studies have been performed by molecular dynamics simulations.

Figure 3.1: Shapes of non-spherical nanoparticles. Top row: rod-like particles of aspect ratio 2 with
blunt tips and increasing edge curvature, defined by [(x2 + y2)/a2](n/2) + (z/b)n = 1 with n = 4,
n = 6, and n = 20. Bottom row: sphere, ellipsoid, Hauser’s cube. We characterize the particles by
their size a, which is the radius of the sphere, the half edge-length of the cube, and the short axis of
the ellipsoidal and rod-like particles.
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i. Binding state j. Shallow (SW) k. Deep (DW) l. Complete (CW) 

Figure 3.2: Modes of entry for nanoparticle uptake by membrane wrapping: (I) Submarine mode
with the long axis of the particles oriented parallel to the membrane, (II) rocket mode with the long
axis oriented perpendicular to the membrane, and (III) competition between submarine and rocket
mode as observed for rod-like particles with high aspect ratios. The complete-wrapped particle is
connected by an infinitely small catenoidal neck to the membrane, the particle orientation in this state
is irrelevant.

In our work, we systematically investigate the role of nanoparticle shape (Fig. 3.1)
and size, as well as membrane bending rigidity and tension, on membrane wrap-
ping and cellular uptake. We predict phase diagrams for two classes of nanoparti-
cles, nanorods and nanocubes, with varying aspect ratio and edge curvature. Pos-
sible modes of entry for elongated particles are shown in Fig. 3.2. Our phase dia-
grams for nanorods show a qualitatively different wrapping behavior compared
to nanospheres and nanoellipsoids. In particular, we find two distinct partial-
wrapped states, with shallow and deep wrapping. We show that global parameters
like particle size and aspect ratio alone are by far not sufficient to determine particle
endocytosis. Instead, local geometrical properties, such as the extrema of the local
mean curvature, matter and change the wrapping behavior qualitatively.

All our calculations are based on the curvature energy [35] of lipid-bilayer mem-
branes combined with a contact adhesion energy for the particle-membrane inter-
action. Thus, the total energy is

Etot =
∫

S
dS
[

H2 + σ
]
− w

∫
Sad

dS , (3.1)

where S is the entire membrane area, Sad the adhered membrane area, H the mean
membrane curvature, κ the bending rigidity, σ the membrane tension, and w the
adhesion strength for the interaction between membrane and nanoparticle. We use
triangulated membranes and Surface Evolver to minimize the membrane deforma-
tion energies [36,37].

We model cube-like particles as Hauser’s cube using x6 + y6 + z6 = a6, and
rod-like particles using [(x2 + y2)/a2](n/2) + (z/b)n = 1 as regular ellipsoids with
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n = 2 and as supereggs with n ≥ 4. We consider nanorods with aspect ratios
1 ≤ b/a ≤ 3, and n = 4 as well as n = 6; high values of n correspond to very
flat tips, such that the shape becomes cylinder-like. We describe our system using a
characteristic length scale, such as the particle size a (Fig. 3.1), typically 20− 100 nm
and a characteristic energy scale, such as the bilayer bending rigidity κ, typically
10− 100 kBT. We then define dimensionless parameters, like the reduced deforma-
tion energy Ẽ = Etot/(πκ), the reduced membrane tension σ̃ = σa2/κ, and the
reduced adhesion strength w̃ = wA/2πκ, where A is the particle surface area. Us-
ing these parameters for the axes of our phase diagrams, our predictions apply for
arbitrary particle sizes.

All our calculations are based on the curvature energy [35] of lipid-bilayer mem-
branes combined with a contact adhesion energy for the particle-membrane inter-
action. Thus, the total energy is

Etot =
∫

S
dS
[

H2 + σ
]
− w

∫
Sad

dS , (3.2)

where S is the entire membrane area, Sad the adhered membrane area, H the mean
membrane curvature, κ the bending rigidity, σ the membrane tension, and w the
adhesion strength for the interaction between membrane and nanoparticle. We use
triangulated membranes and Surface Evolver to minimize the membrane deforma-
tion energies [36,37].

We model cube-like particles as Hauser’s cube using x6 + y6 + z6 = a6, and
rod-like particles using [(x2 + y2)/a2](n/2) + (z/b)n = 1 as regular ellipsoids with
n = 2 and as supereggs with n ≥ 4. We consider nanorods with aspect ratios
1 ≤ b/a ≤ 3, and n = 4 as well as n = 6; high values of n correspond to very
flat tips, such that the shape becomes cylinder-like. We describe our system using a
characteristic length scale, such as the particle size a (Fig. 3.1), typically 20− 100 nm
and a characteristic energy scale, such as the bilayer bending rigidity κ, typically
10− 100 kBT. We then define dimensionless parameters, like the reduced deforma-
tion energy Ẽ = Etot/(πκ), the reduced membrane tension σ̃ = σa2/κ, and the
reduced adhesion strength w̃ = wA/2πκ, where A is the particle surface area. Us-
ing these parameters for the axes of our phase diagrams, our predictions apply for
arbitrary particle sizes.

3.3
Ellipsoidal nanoparticles

We first consider uptake of ellipsoidal nanoparticles. Recent experimental [14,38] and
theoretical [31] work shows enhanced binding, but lower uptake compared with
spherical particles. For these particles, an extended region of the phase diagram
exists with stable, frustrated endocytotic states at low wrapping fractions for which
the long axis is oriented parallel to the membrane (Fig. 3.2(c)). A reorientation from
parallel to perpendicular upon increased wrapping has been suggested recently [33].
We have determined phase diagrams for this system (see supplementary material),
and confirm the presence of a perpendicular state at high wrapping fraction. In ad-
dition, we predict the complete-wrapping transition to be continuous. Surprisingly,
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our results show that after reorientation from parallel to perpendicular, the adhe-
sion strength required for complete wrapping is well above the adhesion strength
required without reorientation. Reorientation thus leads to unfavorable, arrested
endocytotic states (analogously to Fig. 3.2(g)), because wrapping the highly curved
tip of the ellipsoid requires a high bending energy cost per area. Thus, a suppres-
sion of reorientation, as it might occur for fast wrapping, facilitates particle uptake.

3.4
Cube-like nanoparticles

The wrapping of cube-like and rod-like particles compared to the wrapping of
spheres and ellipsoids is qualitatively different. For nanocubes, the binding oc-
curs for almost vanishing adhesion strength with a ‘flat’ side oriented towards the
membrane (Fig. 3.4(a)), because it requires hardly any membrane deformation. The
bound state corresponds to the shallow-wrapped state (SW) in Fig. 3.4(b) that is
separated by an energy barrier from the deep-wrapped state (DW). The transition
from the deep-wrapped to the complete-wrapped state (CW) is also discontinuous,
which further stabilizes the partially-wrapped states. The existence of shallow-
and deep-wrapped states is a consequence of the inhomogeneous curvature distri-
bution on the nanoparticle surface. The adhesion strength has to exceed a threshold
for the adhesion energy of the lateral sides of the cube to compensate the deforma-
tion energy at the upper edges of the cube in Fig. 3.4(a). The deformation energy
at the lower edges is even higher, because the membrane now has to nearly double
back on itself, so that complete wrapping requires an even larger w. Note that a
discontinuous transition between the DW and CW states does not exist for ellip-
soids, because the curvature maxima are point-like (see supplementary material).
The dependence of the phase boundaries on particle size a is taken into account
by our dimensionless variables. The values of adhesion strength w and membrane
tension σ for the phase transitions scale directly with the particle surface area A
and inversely with the membrane bending modulus κ.

Figure 3.4(c) shows the phase diagram for wrapping of a nanocube. Because of
the flat sides, the shallow-wrapped region starts for infinitesimal adhesion strength
w. However, the translational and orientational entropy of the cube in the unbound
state competes with the energy gain for adhesion. Adhesion therefore occurs only
if wa2 & kBT. In terms of the phase diagram, the unbound region due to entropy is
a very small stripe for small adhesion strength of width kBT/κ (not shown). Deep
wrapping occurs for an adhesion strength that is about twice the adhesion strength
for complete wrapping of a sphere with equal surface area, wsph = 2κ/a2. Com-
plete wrapping is found for an adhesion strength about three times higher than for
a sphere. With increased membrane tension, both transitions from the shallow- to
the deep-wrapped state (W2) and from the deep-wrapped to the complete-wrapped
state (W3) shift to higher adhesion strengths.
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(a)

(b)

(c)

Figure 3.3: (a), (b): Membrane deformation for wrapping of Hauser’s cube. The network of edges
and triangles describes the membrane shape and is used for the numerical calculation of the curva-
ture energy. Membrane conformations are shown at fixed tension σ̃ = 0.50 for two corresponding
states at the W2 phase boundary: (a) a shallow-wrapped state with approximately 10% of particle
wrapped, and (b) a deep-wrapped state with a wrapping fraction of approximately 80%. (c): Phase
diagram for wrapping of Hauser’s cube for membrane tension σ̃ and adhesion strength w̃; the param-
eters are given in dimensionless form. We find a shallow-wrapped (SW), a deep-wrapped (DW), and
a complete-wrapped (CW) state, separated by two discontinuous wrapping transitions, W2 and W3.
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3.5
Rod-like nanoparticles

Next, we consider rod-like particles with blunt tips and different edge curvatures,
characterized by the parameter n and the aspect ratio, see Fig. 3.1. Phase diagrams
are shown in Fig. 2. At negligible membrane tension, the transition W2 between
shallow-wrapped and deep-wrapped states corresponds to adhesion strengths that
are comparable with those required for complete wrapping of spherical particles;
the transition shifts to higher adhesion strengths with increasing membrane ten-
sion. The envelopment transition W3 is largely independent of the membrane ten-
sion, because the change in wrapped area between deep-wrapped and complete-
wrapped state is small. Both increased aspect ratio and sharper edges suppress
uptake, as can be seen in the phase diagrams of Fig. 2 by the shift of the W3 transi-
tion to higher adhesion strengths, w̃. The parameter region for the deep-wrapped
state widens with increasing aspect ratio, because the transition from the shallow-
wrapped to the deep-wrapped state remains almost unaltered. This is due to the
competition between the larger adhesion energy gain at the sides of the particles
for higher aspect ratios and the increasing edge curvature (for fixed particle area).

Rod-like particles first bind with the long axis perpendicularly to the membrane
(Fig. 3.2(e)) [30], because adhesion at the blunt tips minimizes the deformation en-
ergy cost. For rounded edges (n = 4) or higher aspect ratios (Fig. 2(a), (b), and (d)),
the particle switches to parallel orientation (Fig. 2(e)) after initial binding and back
to perpendicular orientation for the deep-wrapped state (Fig. 2(f)). However, for
the special case of sharper edges (n = 6) and aspect ratio 1.5 (Fig. 2(c)), the par-
ticle enters in rocket mode only (Fig. 2(g) and (h)). In virus and nanotube uptake
experiments [4–6], both submarine and rocket modes have indeed been observed.

We have characterized the critical wrapping fractions for both stable states in
Fig. 3(a) and (b). For the transition between shallow-wrapped and deep-wrapped
states (W2), and for both aspect ratios 1.5 and 2, the wrapping fraction jumps from
about 10 % to about 80 %. For the envelopment transition (W3), the wrapping frac-
tion jumps from 80 %− 90 % to complete wrapping. For both discontinuous tran-
sitions, W2 and W3, we have also estimated spinodals (S22 and S32 in Fig. 2) for
spontaneous wrapping and upper bounds for the energy barriers (Fig. 3(c) and
(d)). The energy barriers, ∆Ebar(W2) and ∆Ebar(W3), are of the order of πκ. Both
the energy barriers and the associated spinodals for the W2 transitions (shallow-
to deep-wrapped) are approximate values, because of the piecewise nature of the
energy profile in our calculations (see supplementary material). By calculating the
wrapping energies for all possible orientations, exact values for energy barriers and
spinodals can be obtained, but the phase boundaries remain unaffected. The en-
ergy barriers and spinodals for the W3 transition (deep- to complete-wrapped) are
not connected with any orientation changes and are therefore exact; spontaneous
complete wrapping occurs for adhesion strengths that are as much as 5− 10 times
higher than for spherical nanoparticles.
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Figure 3.4: (a)-(d): Phase diagrams for wrapping of rod-like particles with equal surface areas and
various aspect ratios, showing shallow-wrapped (SW), deep-wrapped (DW), and complete-wrapped
(CW) states. A discussion for the cases of equal size a and equal volume (for a spherocylinder) is
presented in the supplementary material. (e)-(f): Membrane and particle conformations for subma-
rine and rocket states. As indicated below the phase diagrams, in most cases the transition from
the SW to the DW state is associated with an re-orientation of the particle from submarine to rocket
orientation. For the special case of aspect ratio 1.5 and n = 6, the particle is in rocket orientation
both in the shallow-wrapped and the deep-wrapped state.
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Figure 3.5: (a),(b): Wrapping fractions for stable states for the discontinuous wrapping transitions W2
and W3 for aspect ratios 1.5 and 2 and for n = 4 and 6. The shallow-wrapped states correspond to
wrapping fractions of 10− 20%, the deep-wrapped states to wrapping fractions of 80− 90%. (c),(d):
The energy barriers for both transitions, between the shallow-wrapped and the the deep-wrapped
state and between the deep-wrapped and the complete-wrapped state, are of the order πκ and
increase with the sharpness of the edges.
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Figure 3.6: Role of edge curvature (characterized by n) on the wrapping behavior of a tensionless
membrane for nanoparticles with fixed aspect ratio (a) b/a = 1 and (b) b/a = 2. The particle
orientation in the shallow-wrapped (SW) and deep-wrapped (DW) states is indicated by the symbols
⊥ and ‖, corresponding to rocket and submarine orientation, respectively. Non-wrapped states are
marked by light-blue lines.
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particle
shape

membrane binding
transition

shallow-
wrapped
state

deep-
wrapping
transition

deep-
wrapped
state

envelopment
transition

spherical κ cont., for w =
2κ/a2

- - - ≡ binding

spherical κ and σ cont., for w =
2κ/a2

yes - - discont.

ellipsoidal κ, κ and σ cont., indep. of
σ

yes,
submarine

discont.,
reorient.

yes, rocket cont.

ellipsoidal (*) κ, κ and σ cont., indep. of
σ

yes,
submarine

- - discont.

cube-like κ, κ and σ at vanishing w yes discont. yes discont.
spherocylinder κ, κ and σ at vanishing w,

rocket
yes,
submarine

discont.,
reorient.

yes, rocket discont.

rod-like κ, κ and σ at vanishing w,
rocket

yes,
submarine

discont.,
reorient.

yes, rocket discont.

rod-like (*) κ, κ and σ at vanishing w,
rocket

yes,
submarine

- - discont.

rod-like (**) κ, κ and σ at vanishing w,
rocket

yes, rocket discont. yes, rocket discont.

Table 3.1: Shape dependence of particle wrapping, based on Refs. [11,31] and this work. The mem-
brane can be characterized by bending rigidity only, ‘κ’, or by bending rigidity and membrane tension,
‘κ and σ’; the binding transition can occur at finite or vanishing adhesion strength w; the particle can
be in submarine or rocket orientation; transitions can be continuous (cont.) or discontinuous (dis-
cont.) and may involve reorientation (reorient.). The binding transition for ellipsoids is independent of
the membrane tension and is given in Ref. [31]. (*) Fast wrapping at high adhesion strength, such that
a bound ellipsoid cannot reorient to rocket orientation. (**) Rocket mode for supereggs with blunt tips
and small aspect ratio (e. g. n = 4 and b/a = 1.5).

3.6
Role of shape and orientation

To elucidate the role of particle shape further, we show in Figs. 3.6 and 3.7 wrap-
ping phase diagrams of nanorods as function of edge curvature and particle as-
pect ratio, respectively, both for fixed particle surface area. Figure 3.6 displays the
wrapping states for varying edge sharpness in case of a tensionless membrane,
at fixed aspect ratios b/a = 1 and b/a = 2. For spherical particles (Fig. 3.6(a),
n = 2), the non-wrapped state directly transits to the completely-wrapped state,
whereas for ellipsoidal particles (Fig. 3.6(b), n = 2), a partially-wrapped state can
exist even for a tensionless membrane due to the high curvature at the tips. The
sharp edges of rod-like particles with n > 2 imply two discontinuous transitions,
W2 and W3, separating shallow-wrapped and deep-wrapped, and deep-wrapped
and complete-wrapped states. The deep-wrapped regime extends strongly with
increasing edge sharpness. Because of locally flat parts of their surface, rod-like
nanoparticles adhere to the membrane already for very small adhesion strengths,
in contrast to spheres and ellipsoids. For rod-like nanoparticles with b/a = 1,
the rocket orientation is preferred for both partially-wrapped states independent
of edge sharpness; for b/a = 2, nanoparticles reorient from submarine to rocket
orientation when they cross the discontinuous transition W2.
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Figure 3.7: Role of aspect ratio on the wrapping behavior of a tensionless membrane for rod-like
nanoparticles with (a) smoother edges (n = 4) and (b) sharper edges (n = 6). The particle
orientation in the shallow-wrapped (SW) to deep-wrapped states (DW) is indicated by the symbols ⊥
and ‖, corresponding to rocket and submarine orientation, respectively.

Fig. 3.7 shows the wrapping states for rod-like nanoparticles with smoother (n =
4) and sharper edges (n = 6) as a function of the aspect ratio, with 1 ≤ b/a ≤ 3. In-
creased edge sharpness increases the regime with rocket orientation in the shallow-
wrapped state, but hardly affects the phase boundary between shallow-wrapped
and deep-wrapped states. However, the phase boundary between deep-wrapped
and completely-wrapped states shifts significantly to larger adhesion strengths for
increased edge sharpness.
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3.7
Conclusions

Interaction with cells and a successful passage through the plasma membrane is
the primary step both for applications and the toxicity of nanoparticles. The versa-
tile properties of nanoparticles predicted by our model of non-spherical nanopar-
ticles provide interesting perspectives for their use as bio-sensors for optical imag-
ing [39,40], as membrane-protein binding sensors [40], as drug delivery agents, and
for use in photo-chemical treatment [22] using surface plasmon resonance tech-
niques. Also, wrapping in systems containing many spherical colloidal particles
can be rationalized by our model of elongated particles. Partially-attached spher-
ical particles aggregate [41,42] and form necklace-like linear and tubular aggregates
on the membrane [43,44] with increased adhesion strength. This is analogous to our
frustrated endocytotic states with parallel and perpendicular orientation of rod-like
colloids to the membrane. In Tab. S1, we summarize basic properties for wrapping
of particles with different shapes as necessary prerequisites for predicting any de-
sired or toxic effects.

Our results emphasize the importance for both, calculations using continuum
membranes in equilibrium that provide a systematic understanding of wrapping
energies [11,31,43–45], and dynamic molecular simulations [1,27,28,34] that add details
for specific systems and further investigate dynamical aspects of the budding path-
way.

Based on energy minimization, we find two different modes with parallel and
perpendicular orientation for entry of elongated particles into cells. Particles with
high aspect ratio bind in parallel orientation, but transit from deep to complete
wrapping in perpendicular orientation. However, a major part of the wrapping
process for spherocylinders studied in Ref. [27] seems to occur in parallel orien-
tation. Parallel orientation favors complete wrapping, because a stable deep-
wrapped state is avoided (see supplementary material). Calculations for specific
particle sizes, which include dynamical, non-equilibrium aspects, show that the
orientation also depends on the speed of internalization [21,34]; such dynamical cal-
culations thus complement our systematic study of the influence of particle shape
in equilibrium.

Our basic wrapping picture can be modified by additional parameters, such as
surface functionalization or the more complex structure of the cell membrane. Sur-
face functionalization [20,46] or coating of nanoparticles by corona proteins is cap-
tured by our model, as long as the particle’s surface properties are homogeneous
and can be expressed by an overall adhesion strength w. Inhomogeneous surface
coatings require more detailed models and calculations. Also, a multicomponent
membrane or the cell cytoskeleton may have to be taken into account for specific
wrapping calculations, such as phagocytosis of E. coli with high aspect ratio. In this
case, the cytoskeleton plays a significant role and contrary to our predictions, high
aspect-ratio bacteria with rounded ends are wrapped starting at the tip in a “race
to the pole” [30]. However, this does not invalidate our calculations based on mem-
brane mechanics, but rather indicates that further energy or dynamic contributions
may have to be taken into account.
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Supporting material

Details about numerical calculations and additional images.
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Supplementary material:
Shape and Orientation Matter for the Cellular Uptake of Non-
spherical Particles

We present here details about numerical methods and additional information about
geometrical properties of the investigated nanoparticles, wrapping energies as a
function of wrapping fraction that have been used to calculate the phase diagrams
discussed in the main text, and provide further wrapping energies and phase dia-
grams for spheres [1], ellipsoids [2,3], rod-like particles [4–8], spherocylinders [9], and
nanocubes [6,10]. Wrapping energies are shown in Figs. S1, S2, S3, and S4, phase
diagrams are shown in Figs. S5 and S6.

Methods

Triangulated membranes are a powerful tool to numerically minimize the Helfrich
curvature-elastic energy to obtain equilibrium membrane deformations with high
accuracy [2,11]. Using Surface Evolver [12], we calculate the membrane deformation
energy for cube-like and rod-like particles both with parallel and perpendicular
orientation of the long axis of the particle to the membrane. Membrane tension
and adhesion energies can be calculated as sum over all relevant triangle areas.
For the discretization of the bending energy, we use the Surface Evolver algorithm
“star_perp_sq_mean_curvature”. The bending energy is given by

Ebend = 2κ
n

∑
v=1

avh2
v (3.3)

with the local mean curvature at each vertex v,

hv =
1
2
∇av ·∇Vv

∇Vv ·∇Vv
. (3.4)

The area associated with each vertex is av and the volume is

Vv =
1
6

v ·
[
v1 × v2 + v2 × v3 + ... + vn × v1

]
, (3.5)

such that

∇Vv =
1
6

[
v1 × v2 + v2 × v3 + ... + vn × v1

]
, (3.6)

where the postition vector for the vertex v is v, while v1, v2, v3, ..., vn are the posi-
tion vectors for the neighboring vertices.
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We calculate the deformation energies for membrane patches enclosed by circular
wire frames with radius 20 a, where a is the radius of a sphere, the half edge-length
of a cube, and the short axis of an ellipsoidal or rod-like particle. The slope of the
membrane at the boundary and the height of the particle above the wire frame can
adjust freely. Once the system is assembled, the energy is minimized by moving the
vertices towards the direction of steepest descent of the energy landscape, while
the mesh is adaptively refined several times in-between the energy minimization
steps. During the initial steps of the energy minimization, the contact line, where
the membrane detaches from the particle, can vary its shape freely. For the final
minimization steps, we fix the shape of the contact line to improve numerical sta-
bility and use the Hessian algorithm for minimization, which is the best quadratic
approximation of the energy and helps to converge quickly to the minimum energy
state. Although we allow the contact line to optimize its shape, we do not observe
a significant contact line undulation for our systems. A significant undulation of
the contact line has been observed for ellipsoids attached to small vesicles [3], the
energy gain for deforming the contact line therefore appears to be much bigger for
these systems than for the planar membranes in our calculations.

The deformation energies for non-spherical particles that can change orientation
are constructed as piecewise functions of the wrapping fraction by always choos-
ing the minimum energy for both particle orientations. We calculate deformation
energies up to almost complete wrapping and are therefore able to evaluate the
transition from the shallow-wrapped to the deep-wrapped and—for cube-like and
rod-like particles—the transition from the deep-wrapped to the complete-wrapped
state, which has not been possible for the ellipsoids that are wrapped by small vesi-
cles in Ref. [3].

In our study, we do not account for the process where the particle pinches off
from the membrane patch that would be connected with a change of membrane
topology, but rather calculate the membrane deformation energy costs until the
particle is (almost) completely wrapped. In the highest wrapping state, the mem-
brane has a very small catenoid-like connection to membrane patch that does not
contribute significantly to the deformation energy. The wrapping energy curves for
both orientations connect smoothly to the energy for the completely-wrapped state
with Aad/A = 1 that has been calculated for an isolated particle, see Figs. S1 and
S4.

Geometric properties of investigated nanoparticles

For all investigated nanoparticles, we provide in Tab. S1 the aspect ratio (b/a), the
surface area A, and the integral of the squared mean curvature of the particles,
H2, over the entire particle surface area, which is proportional to the total bending
energy for wrapping. The particle shapes are defined by x6 + y6 + z6 = a6 for cube-
like particles and [(x2 + y2)/a2](n/2) + (z/b)n = 1 for rod-like particles (regular
ellipsoids have n = 2 and super-eggs n ≥ 4).
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particle shape b/a A
∫

H2dS
nanocube 1.0 19.61 26.43
prolate ellipsoid, n = 2 1.25 14.71 12.88
oblate ellipsoid, n = 2 0.80 10.93 12.93
nanorod, n = 4 (n = 6) 1.0 15.46 (16.56) 15.94 (20.10)
nanorod, n = 4 (n = 6) 1.5 20.84 (22.26) 16.09 (19.52)
nanorod, n = 4 (n = 6) 2.0 26.34 (28.05) 17.11 (20.12)
nanorod, n = 4 (n = 6) 2.5 31.92 (33.91) 18.44 (21.17)
nanorod, n = 4 (n = 6) 3.0 37.55 (39.79) 19.93 (22.43)

Table S1: Geometric properties of studied nanoparticles with aspect ratio b/a and area A.

Wrapping energies of spherocylinder and rod-like nanoparticles

In Fig. S1, membrane deformation energies as function of the wrapping fraction
of the particle are shown for ellipsoidal and rod-like particles at fixed membrane
tension σ̃ = 0.8. The energies are plotted both for submarine (parallel) and rocket
(perpendicular) orientation. Physically relevant is the lower branch of the energy
profiles at each wrapping fraction, see also Fig. S4. These energy functions, together
with a double-tangent construction, are the basis for calculating wrapping phase
diagrams for w̃ and σ̃. Fig. S1 demonstrates, for example, that the dip for a rod-like
particle with perpendicular orientation at Aad/Atotal ' 0.8 becomes much more
pronounced with increasing n from n = 2 to n = 6, which signals the increased
stability of a deep-wrapped rocket state.

3.8.1
Spherocylinders

In Fig. S2, membrane deformation energies for spherocylindrical particles are com-
pared with those of spherical particles. All energy profiles for spherocylinders
show a partially-wrapped state in parallel orientation at small wrapping fraction,
due to the weakly concave shape of the wrapping energy functions at small wrap-
ping fraction, and a partially-wrapped state in perpendicular orientation at high
wrapping fraction. The energy cost per wrapped area for the spherical caps is twice
as high as for the cylindrical parts; the energy profiles for inclined states between
parallel and perpendicular wrapping fall in-between these two limiting energy pro-
files [13]. Inclined states therefore change the energy barrier, but the do not change
the minimal energy states that are used to calculate the phase boundaries. The
sharply bent membrane, where it detaches from the nanoparticle on one side for
small inclination angles, will further increase the bending energy costs for inclined
orientations compared with rocket and submarine orientation.

Figure S2 demonstrates that the comparison of spherical and spherocylindrical
particles is not unique, but also depends on whether radius, surface area, or volume
are the same in both cases. For a spherocylinder with the same radius a as the
sphere, the transition from the deep-wrapped to the complete-wrapped state occurs
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for the same adhesion strength as wrapping of the sphere. This explains why the
uptake limit for the binding strength determined in Ref. [9] has been found to be
almost the same for a sphere and for two different spherocylinders, all with the
same radius. For spherocylinders with equal surface area and equal volume, the
transition between the deep-wrapped state and the complete-wrapped state occurs
at higher adhesion strength than for wrapping of a corresponding sphere. In these
cases the increased particle aspect ratio hinders complete wrapping, which might
be the reason why many viruses have an almost spherical, icosahedral shapes.

The binding in rocket orientation that is predicted by our calculations has been
observed for both dynamical calculations in Ref. [9] and in Ref. [13]. In Ref. [9]—with
a high receptor density and therefore for fast wrapping—the transition to com-
plete wrapping orientation occurs in submarine orientation. For slower wrapping,
deep-wrapped cylinders have rocket orientation [13], as suggested by our wrapping
energy calculations.

3.8.2
Rod-like particles

In Fig. S3, membrane deformation energies for rod-like particles with blunt tips
and rounded edges (n = 4) and aspect ratio b/a = 2.0 are plotted as function of
the wrapping fraction analogously to Fig. S1, but for various membrane tensions σ.
With increased membrane tension, the energy difference between the complete-
wrapped state with and without membrane tension increases proportionally to
σAparticle. As shown in the phase diagrams for particles with equal surface ar-
eas in Fig. 4 of the main text, we find a membrane-tension dependence mainly
for the value of the adhesion strength for the W2 transition between the shallow-
wrapped and the deep-wrapped state. Wrapping phase diagrams for particles with
equal radii a are given in Fig. S6. Figure S3 demonstrates that for rod-like particles
the membrane tension is important for the adhesion strengths that characterise the
wrapping process (i. e., for the slope of the deformation energy as function of the
wrapping fraction), but does not qualitatively change the deformation energy func-
tions.

In Fig. S4, membrane deformation energies and wrapping energies for a rod-like
particle with n = 4, b/a = 1.5 and σ̃ = 0.8 are plotted as function of the wrap-
ping fraction. The figure demonstrates how the boundaries in the wrapping phase
diagrams are calculated. The phase diagrams in this work are obtained from the
piecewise deformation energy function given by the minimum energy for parallel
and perpendicular particle orientation, as shown in Fig. S4(a). While the bind-
ing transition occurs for vanishing adhesion strength, the wrapping energies for
phase boundaries between the shallow-wrapped and the deep-wrapped state and
between the deep-wrapped and the complete-wrapped state correspond to finite
values of the adhesion strength, see Fig. S4(b).
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Wrapping Phase Diagrams

3.8.3
Ellipsoids

In Fig. S5, wrapping phase diagrams are compared for ‘fast’ wrapping of ellipsoids
in submarine orientation and for ‘slow’ wrapping that allows for reorientation from
parallel to perpendicular. The ’fast-wrapping’ scenario applies when wrapping is
fast compared with particle reorientation [2]. In this case, the particle achieves a
complete-wrapped state directly from the shallow-wrapped states (and may detach
from the membrane into the cell before it enters the deep-wrapped state with high
wrapping fraction). This transition occurs for similar adhesion strengths as the
transition from the shallow-wrapped to the deep-wrapped state for wrapping with
reorientation.

Reorientation of ellipsoids has been suggested previously for wrapping of
nanoparticles by vesicles with sizes comparable to the ellipsoid size [3], whereas our
calculations apply for interaction of nanoparticles with giant unilamellar vesicles
and cells. Our calculations show that reorientation to the rocket-like orientation
does not help to achieve the complete-wrapped state, because of the very steep
increase of the bending energy just before complete wrapping. Complete wrap-
ping with reorientation (not shown) thus requires significantly higher adhesion
strengths than wrapping without reorientation, see Fig. S2. Figure S5 demon-
strates that ’fast’ wrapping that suppresses particle reorientation facilitates com-
plete wrapping in this case; similar observations apply to rod-like particles.

3.8.4
Wrapping diagrams for particles with same size

In Fig. S6, wrapping phase diagrams for several particles with fixed size a are
shown, where the radius of the sphere in Fig. S6(a) equals half the length of the cube
in Fig. S6(b), and the length of the short axes of the rod-like particles in Fig. S6(c)-
(f). Our phase diagram for spherical particles agrees with the phase diagram shown
in Ref. [1]. For cube-like and rod-like particles, wrapping is qualitatively different
than for spherical particles and depends not only on particle size and aspect ratio,
but also on the sharpness at the edges. Comparison with the phase diagrams in
Fig. 4 of the main text shows that for equal surface areas of rod-like particles the W3
transition from the deep-wrapped to the complete-wrapped state that is relevant
for complete uptake is shifted to higher adhesion strengths for higher aspect ratios,
but remains unchanged for particles with equal sizes. The comparison of Fig. S6
with Fig. 4 in the main text shows the importance of both, the particle shape and
the characteristic particle size, see also Fig. S2.
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(c) rod-like particle, n = 4 (d) rod-like particle, n = 6
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Figure S1: Membrane deformation energies for various particles at fixed membrane tension σ̃ = 0.8
as function of the wrapping fraction: (a) oblate ellipsoid, (b) prolate ellipsoid, (c) rod-like particle with
n = 4, and (d) rod-like particle with n = 6. All figures show data for perpendicular (per) and parallel
(par) orientation of the symmetry axis of the particle to the membrane. Numerical data (points)
and fit functions (lines) are plotted. The fit functions are constructed for ellipsoids by one sigmoidal
function, and for rod-like particles by a sum of two sigmoidal functions and a product of a linear
function, a monotonously increasing Fermi function, and a monotonously decreasing Fermi function.
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(a) b/a = 1.5, equal size acyl = asph (d) b/a = 2.0, equal size acyl = asph
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(b) b/a = 1.5, equal area A, acyl = 0.82asph (e) b/a = 2.0, equal area A, acyl = 0.71asph
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(c) b/a = 1.5, equal volume V, acyl = 0.83asph( f ) b/a = 2.0, equal volume V, acyl = 0.74asph
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Figure S2: Membrane deformation energies for a sphere with radius a (see Fig. 1 of the main
text) and spherocylinders with aspect ratios b/a = 1.5 and b/a = 2 for vanishing membrane
tension. The deformation energy cost for the free membrane around the adhered particle is not
taken into account. All figures show data for perpendicular (per) and parallel (par) orientation of the
spherocylinders to the membrane. For a sphere and a spherocylinder with b/a = 1.5, the wrapping
energies are plotted for (a) equal particle radii a, (b) equal surface areas A and (c) equal volumes
V of the nanoparticles. The subfigures (d), (e), and (f) are analogous plots for spherocylinders with
aspect ratio b/a = 2.0.
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Figure S3: Membrane deformation energies as function of the wrapping fraction for rod-like particles
with n = 4 and for reduced membrane tensions 0 ≤ σ̃ ≤ 1.
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(a) (b)
Piecewise               Perpendicular              Parallel

n = 4 , b/a = 1.50 

= 0.80

W2           W3          S22          S32

n = 4 , b/a = 1.50 
= 0.80

Figure S4: Membrane deformation energies and wrapping energies as function of the wrapping
fraction for rod-like particles with blunt tips and rounded edges (n = 4), aspect ratio 1.5, and reduced
membrane tension σ̃ = 0.8. (a) Membrane deformation energy. Exploiting energy minimization,
the physically relevant membrane deformation energy is the minimum energy with a given wrapping
fraction for all potential orientations of the particle relative to the membrane. We have approximated
the energy deformation profile obtained from all possible particle orientations by piecewise functions
obtained by considering only parallel and perpendicular orientation. (b) Wrapping energy, given by
the sum of deformation and adhesion energy. At the phase boundary W2 the shallow-wrapped and
the deep-wrapped state have equal energy; these two energy minima are separated by the energy
barrier ∆Ebar(W2). At the phase boundary W3 the energy for the deep-wrapped state is equal to the
energy of the complete-wrapped state, both states are separated by the energy barrier ∆Ebar(W3).
The spinodal S22 is approximated by the wrapping energy profile where the slope of the energy
for parallel orientation at the point where parallel and perpendicular orientation have equal energy
vanishes. For the spinodal S32 the transition from the deep-wrapped to the complete-wrapped state
occurs spontaneously (and the energy barrier between both states vanishes).



86 3 Shape and Orientation Matter for the Cellular Uptake of Nonspherical Particles

(a) (b)

0

0.2

0.4

0.6

0.8

1

0 5 10 15

σ̃

w̃

b/a = 0.80, n = 2

W1

W2 pcw

S22 pcw

W2 par

S22 par

0

0.2

0.4

0.6

0.8

1

0 5 10 15

σ̃

w̃

b/a = 1.25, n = 2

W1

W2 pcw

S22 pcw

W2 par

S22 par

Figure S5: Wrapping phase diagrams of (a) an oblate and (b) a prolate ellipsoidal particle for mem-
brane tension and adhesion strength. Phase boundaries are plotted for fast wrapping (parallel orien-
tation only, par) and for slow wrapping (reorientation parallel to perpendicular, pcw). Binding occurs
for the ellipsoid oriented parallel to the membrane and is independent of membrane tension (W1).
The phase boundary W2 is the transition between the shallow-wrapped and the complete-wrapped
state if there is no reorientation, and between the shallow-wrapped and the deep-wrapped state if the
particle reorients from parallel to perpendicular. The spinodals for the spontaneous transition to the
complete-wrapped or deep-wrapped state are given by S22.
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(a) (b)

(c) (d)

(e) ( f )

Figure S6: Wrapping phase diagrams for a spherical particle of radius a, (b) a nano-cube with edge-
length 2a and (c-f) nano-rods of varying shapes with short axes of length a. For the spherical particle
we find non-wrapped (NW), partially-wrapped (PW) and complete-wrapped (CW) states; for cube-like
and rod-like particles we find shallow wrapped (SW), deep-wrapped (DW), and complete-wrapped
(CW) states. To facilitate the comparison for particles with the same size a, the phase diagrams are
plotted for w̄ = 2wa2/κ, where w̃/w̄ = A/4πa2.
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4
Membrane-wrapping contributions to malaria parasite inva-
sion of the human erythrocyte

4.1
Abstract

The blood stage malaria parasite, the merozoite, has a small window of oppor-
tunity during which it must successfully target and invade a human erythrocyte.
The process of invasion is nonetheless remarkably rapid. To date, mechanis-
tic models of invasion have focused predominantly on the parasite actomyosin
motor contribution to the energetics of entry. Here, we have conducted a nu-
merical analysis using dimensions for an archetypal merozoite to predict the
respective contributions of the host-parasite interactions to invasion, in partic-
ular the role of membrane wrapping. Our theoretical modeling demonstrates
that erythrocyte membrane wrapping alone, as a function of merozoite adhesive
and shape properties, is sufficient to entirely account for the first key step of the
invasion process, that of merozoite reorientation to its apex and tight adhesive
linkage between the two cells. Next, parasite-induced reorganization of the ery-
throcyte cytoskeleton and release of parasite-derived membrane can also account
for a considerable energetic portion of actual invasion itself, through membrane
wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte
combined with parasite-derived membrane release can markedly reduce the ex-
pected contributions of the merozoite actomyosin motor to invasion.Wetherefore
propose that invasion is a balance between parasite and host cell contributions,
evolved toward maximal efficient use of biophysical forces between the two
cells.

4.2
Introduction

The asexual cycles of infection, through replication, rupture, and reinfection of hu-
man erythrocytes by Plasmodium parasites are responsible for all malaria disease
pathology. Extensive effort has focused on understanding the cellular and molec-
ular basis for each stage of the process, invasion in particular, with a view to de-
signing novel chemotherapeutics or vaccines to prevent or treat the disease [1].
Invasion of the erythrocyte itself is mediated by the blood stage parasite, called
the merozoite, which is thought to use an internal molecular motor based on actin
and myosin to drive itself into the red cell [2]. Conceptually, the process can be
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divided into discrete steps, defined by a range of imaging studies using electron
[3–5], tomographic [6], fluorescence [7–10], and video microscopy [11,12] as shown
schematically in Fig. 1. Invasion commences with low affinity, long-range (12 to 40
nm), and nondirectional binding of the erythrocyte by the merozoite, which then
reorients such that the merozoite apex directly contacts the target cell.

Formation of a close-range interaction follows (4 nm or less), leading to the es-
tablishment of an erythrocyte-merozoite tight junction [3,4]. This critical structure,
seen as an electron dense zone between erythrocyte and merozoite by electron mi-
croscopy, is the organizing nexus around which invasion events appear to be or-
chestrated. It acts as the aperture through which the merozoite passes during in-
vasion and segregates erythrocyte membrane from an emerging vacuolar mem-
bran (likely parasite membrane-derived in part), which fuses to form the para-
sitophorous vacuole into which the parasite moves and develops postinvasion (see
[3,14], and references therein). Each of these steps is facilitated by an array of mero-
zoite surface proteins (MSPs), which permanently pattern the parasite surface, and
apically secreted parasite antigens, released at egress from the infected cell before
reentry. Many of the latter group are lead candidates for inclusion in developmental
blood stage vaccines, including the apical membrane antigen (AMA)-1, erythrocyte
binding antigens, and reticulocyte binding antigen homolog (Rh) proteins, which
interact to varying degrees, and at varying distances, with erythrocyte membrane
componen [1].

Several studies have attempted to map out a broad model of invasion, incorpo-
rating the breadth of molecular and cellular events (e.g., [7,9,10]). However, few
studies have taken into consideration the biophysical interactions between host
and parasite cells, in particular the contribution that the erythrocyte membrane
and underlying cytoskeleton might play [15]. This has largely been influenced
by longstanding evidence that activity of the parasite actomyosin motor alone de-
fines successful host-cell entry [16,17]. Surprisingly, such a parasite-centric model
is quite unique among human intracellular pathogens, which almost universally
employ a degree of host involvement in invasion [18]. Instead, its broad accep-
tance relies heavily on the general perceived inactivity of the mature erythrocyte
[19] and studies using the related apicomplexan parasite, Toxoplasma gondii, which,
until recently, was believed to invade independently of host-cell remodeling pro-
cesses [20]. Recently, this view has started to be challenged by studies showing
that host cell cytoskeletal rearrangements do occur during Toxoplasma and nonery-
throid Plasmodium invasion [21] and the recent demonstration of a residual level
of invasion in the absence of myosin and actin in Toxoplasma [22]. These studies
clearly suggest that a role of processes other than motor-driven force production in
facilitating apicomplexan invasion deserves focused attention.

Certainly, there is a body of evidence that the erythrocyte responds, at least
minimally, to invasion both physically, with the membrane oscillating or flexing
[11–13], and biochemically (reviewed in [19]). The physical response, with visible
folds on parasite binding, is expected for a membrane that has a shear modulus
[23,24], which is caused by the regular spectrin network that supports the erythro-
cyte membrane [25,26]. Biochemical contributions have also been widely studied,
and hint at a potential membrane contribution to the parasitophorous vacuole [14].
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To date, however, no strong evidence exists to suggest an energetic contribution to
invasion from the erythrocyte.

Here, we have sought to assess the energetic contributions of the Plasmodium
parasite and wrapping by the erythrocyte and parasite-derived membranes to in-
vasion. In contrast to previous membrane wrapping calculations that have ex-
plored models involving spherical, ellipsoidal, or rod-like particles [27–34], we
have uniquely incorporated the asymmetrical egg-like shape of the merozoite,
which influences differentially wrapped states. Using numerical calculations of
membrane interactions and membrane wrapping processes between an experi-
mentally determined archetypal egg shaped merozoite and the erythrocyte, we
present evidence that membrane wrapping of the erythrocyte can account for mero-
zoite reorientation to its apex in an entirely parasite energy independent manner.
Furthermore, a considerable portion of the energy requirements for subsequent
stages of full parasite invasion (i.e., for complete membrane wrapping) can also be
achieved through parasite-induced modifications to the erythrocyte membrane and
by parasite-injected membrane material that may alter surface tension and sponta-
neous curvature of the wrapping membrane. Wrapping under these conditions
requires only a small energetic input from the parasite actomyosin motor for entry,
i.e., overcoming energy barriers between stable membrane-wrapped states. Seen
in this light, we propose that erythrocyte invasion should be considered as evolved
toward a state of maximal energetic efficiency, exploiting both innate host cell prop-
erties and parasite motor force to facilitate complete entry.

Our article is organized as follows.We first use cryo-x-ray tomography to con-
struct an idealized merozoite that approximates the experimentally observed mero-
zoite shape. We then calculate the energetic contributions of membrane wrapping
to merozoite reorientation and subsequent invasion into the erythrocyte, using a
model with bending-rigidity and membrane tension contributions for the curva-
ture elastic energy of the erythrocyte membrane, an adhesive interaction between
the merozoite and the erythrocyte, and a line tension for the tight junction. For
several parameter values in our theoretical model, we quantify the required mo-
tor force for invasion. Finally, we summarize our complete biophysical model for
merozoite invasion assessing likely contributions of the actomyosin motor of the
merozoite and wrapping energy contributions of the erythrocyte membrane.

4.3
Materials and methods

4.3.1
Experimental derivation of merozoite dimensions

The culture of Plasmodium falciparum parasites using donated blood from the Aus-
tralian Red Cross Society has been approved by The Walter and Eliza Hall Institute
Human Ethics (HEC 86/17) Committee. P. falciparum parasites (from a D10 parental
strain [35]) were maintained using standard culturing procedures in human O+
erythrocytes at 4% hematocrit with 0.5 % wt/vol Albumax II (Life Technologies,
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Figure 1: The stages of merozoite invasion. Schematic representation depicting different wrapping
phases of the merozoite from reorientation through to invasion and postinvasion (see below for
definitions of wrapped states).

Grand Island, NY). Cultures were maintained in synchrony using 5 % Sorbitol treat-
ment or via treatment with 30 infectious units (∼ 230µg/mL) heparin (Pfizer) [35]
and cultured through to schizogony for merozoite isolation. Free merozoites were
filtered through a 1.2 µm, 32 mm syringe filter (Sartorius Stedim Biotech, Epsom,
UK) as described [35], and then cryo-preserved for X-ray analysis and imaged as
detailed previously [6]. Merozoite dimensions, volume, and surface area were cal-
culated on rendered tomographic images following segmentation and alignment
with IMOD with rendering via Blender (www.blender.org).

4.3.2
Deformation energy calculations and dimensionless parameters for erythrocyte-
membrane wrapping

Toward calculating the energetic costs required to deform the erythrocyte mem-
brane sufficiently to facilitate complete invasion, we decoupled the invasion pro-
cess into two critical energetic steps (see Fig. 1): i), reorientation of the merozoite
toward its apex (the site at which adhesive proteins are released and the required
direction for successful invasion [11]); and ii), invasion itself (movement through
the tight junction into the erythrocyte [3]). The physics of wrapping that charac-
terizes the adhesion contribution to both reorientation and invasion is governed
by bending energy and tension of the erythrocyte membrane, the contact energy
between merozoite surface and erythrocyte membrane, and the line tension at the
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position of the tight junction where the merozoite squeezes through. Thus, the total
energy required is

E = Ebending + Emembrane tension + Eadhesion + Eline tension . (4.1)

To calculate the total energy for the erythrocyte with the adhered merozoite,
bending rigidity and membrane tension, adhesion strength, and line tension con-
tributions are integrated over the entire membrane area, Serythrocyte, the adhered
membrane area, Sadhered, and the length of the contact line where the erythrocyte
membrane detaches from the merozoite, respectively, so that

E = 2κ
∫
Serythrocyte

dS(H − c0)
2 + σ

∫
Serythrocyte

dS − w
∫
Sadhered

dSH + γ
∮

contact line
dl . (4.2)

The various contributions to Eq. 2 are explained in more detail below. We calcu-
late the energy on the parasite surface only assuming the outer membrane to be flat,
i.e., we employ a cap-like model analogous to the model used in [36]. We do not
account for a direct contribution of the shear modulus of the red blood cell mem-
brane, because we assume that successful invasion requires a destruction of the
cytoskeleton on the membrane that wraps the merozoite. However, in our model
the cytoskeleton around the merozoite remains intact and contributes to the line
tension γ. Details of the numerical calculations are described in the Supporting
Material.

Membrane wrapping of the merozoite can be understood as a competition be-
tween two energetic contributions: the elastic deformation energy of the membrane
adhered to the merozoite and the specific contact interaction between merozoite
and membrane. Note that the vacuolar membrane enveloping the merozoite after
successful invasion is likely composed of both erythrocyte membrane and parasite-
derived vacuolar membrane (added differentially during the stages of invasion
stage). A key determinant for the membrane model is the curvature elasticity of
the erythrocyte membrane, with bending rigidity κ, where the energy required for
bending the membrane is determined by the squared mean curvature H2 of the
membrane at every point [37]. The mean curvature is H = (c1 + c2)/2, with c1
and c2 being the principal curvatures corresponding to the maximum and mini-
mum curvatures at each point of the membrane (38). The preferred average shape
of the membrane is characterized by its spontaneous curvature c0. A finite value
for c0 indicates that either the membrane or its surrounding is asymmetric and that
consequently the preferred shape of the membrane is not flat, a feature clearly ap-
plicable to the erythrocyte [39,40]. The bending energy is complemented by an en-
ergetic cost for the excess membrane area characterized by the membrane tension
σ. This excess area can either be attributed to flattening out part of the intrinsic
membrane fluctuations [41,42] or to other mechanisms. The tension term contains
a contribution from the spectrin network that is adsorbed to the membrane [26,43].

For the merozoite to successfully enter the erythrocyte, the energy gain due to the
contact of merozoite surface and the enveloping membrane must be sufficiently
large, such that the completely wrapped state corresponds to the lowest energy.
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Furthermore, wrapping alone also requires a downhill pathway in the energy land-
scape, but–as discussed later–the actomyosin motors of the parasite may help to
overcome energy barriers. A measure for both nonspecific adhesion and receptor
binding is given by the adhesion strength w. Individual protein-mediated adhesion
may couple to the membrane shape via membrane proteins that prefer curved re-
gions [44–47], and we therefore assume in our model that the adhesion strength is
dependent on the mean local membrane curvature H (if not stated otherwise). This
also allows us to implement higher adhesion strengths at the tip-shaped apex of the
merozoite, which accounts for the secretion of adhesion molecules from this region
of the parasite (see description below). However, other distributions of receptors
and thus adhesion strength are also possible including a homogeneous receptor
distribution on the parasite surface, but will not change our general conclusions.

To complete the energetic contributions during invasion, we associate a line ten-
sion γ with the tight junction [3,4], where the parasite squeezes through the ery-
throcyte membrane into the nascent parasitophorous vacuole [14]. The line tension
may arise either from proteins within the tight junction itself, from lipid segregation
next to the entering cell [48–50], from stretching of the cortical spectrin cytoskeleton
underlying the erythrocyte membrane, from sharp bending of the membrane next
to the tight junction, or a combination of these contributions. Either way it acts as
a natural demarcation line between regions with different biophysical properties:
the membrane at the site of invasion within the boundaries of the line tension and
the membrane beyond (i.e., outside of the boundary of the line tension), where the
spectrin cytoskeleton is expected to remain intact.

The parameters κ, c0, σ, w, and γ together with the shape of the merozoite thus
determine the energetic cost for the erythrocyte membrane deformation required
for entry. These parameters are illustrated in Fig. S1 (see the Supporting Material).
Electron microscopy images in Fig. S2 A show close contact of the merozoite and
the erythrocyte membrane that motivates the adhesion energy contribution.

The absolute values for the model parameters can be translated into dimension-
less parameters using the radius of a sphere with the same surface area as the par-
asite a , as the basic length scale of the system, and the membrane bending rigid-
ity κ as the energy scale. These dimensionless parameters indicated by a tilde,
c̃0 = c0a2H0, σ̃ = σa2/2κ, w̃ = (wH04πa2)/2κ, and γ̃ = γa/2κ. The average mean
curvature of the merozoite can be calculated as surface integral using the archetypal
merozoite defined in the next section, H0 =

∫
merozite dSH/

∫
merozite dS = 2.5/a.The

spontaneous curvature can be used to construct an effective adhesion strength,
w̃e f f = w̃ + c̃0, and and effective surface tension, σ̃e f f = σ̃ + c̃2

0/(aH0)
2, such that

the phases for different values of the spontaneous curvature can be extracted using
the effective parameter values.
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4.4
Results and discussions

4.4.1
An archytepal merozoite

To calculate the contribution of erythrocyte membrane wrapping to malaria para-
site invasion, we first had to develop a standardized model of a blood stage par-
asite. Deriving figures for such a cell from any imaging approach is not trivial,
because each naturally produces errors as a result of cryopreservation or fixation
with wide associated variances [6]. We have recently shown that cryo-x-ray tomog-
raphy preserves physical parameters of the blood stage merozoite most accurately
[6]. Using this approach, we derived experimental measurements from 11 recon-
structions of cryopreserved merozoites for length and width as well as estimates
for mean volume and surface area. This enabled us to mathematically define an
archetypal merozoite(Fig. 2, A–B).

Figure 2: Defining an idealized archetypal merozoite. (A) A section through cryo-x-ray imaged
free P. falciparum merozoites cryopreserved in a capillary. Apical secretory organelles (specifically
rhoptries) are visible as dense spots indicated by arrows. (B) Isosurface rendered merozoites from
(A). (C) The idealized archetypal merozoite simulated as an asymmetrical egg-shaped rigid particle.

Mean physical measurements were L = (1.98± 0.08) µm length, W = (1.40±
0.06) µm width, with volume and surface area averaging Vactual = (1.71± 0.15) µm3

and Aactual = (8.06± 0.72) µm2, respectively, where the errors are given by the stan-
dard deviations of the measurements. These dimensions give a width/length ratio
of the egg-shaped merozoite as 0.71. These measurements led to a model particle
that allows a mathematical description of merozoite shape with a pointed apex and
rounded base (as shown in Fig. 2 C). This was used throughout subsequent ener-
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getic calculations. It is currently unclear whether surface convolutions observed
at the macroscopic level are indicative of a native ruffled organization at the mero-
zoite surface or an artifact of imaging. For modeling purposes, we therefore assume
(conservatively) that the merozoite has a smooth surface. Conceptually, incorpora-
tion of ruffling or rippling would provide additional contact area and thus adhesion
energy, but would also increase the bending-energy costs.

The egg shape of the merozoite is defined by (x2 + y2 + z2)2 = Rax3 + (Ra −
Rb)x(y2 + z2) with Ra = 1 µm and Rb = 0.7 µm, which also describes the shape of
a chicken egg [51]. We find good agreement for surface area (Aidealized) and volume
(Videalized) of this idealized merozoite with the values measured experimentally. We
use two constants, k1 and k2, where Aidealised = k1L2 and Videalised = k2L3 to charac-
terize the shape. For the idealized merozoite, k1 = 2.04, giving Aidealised = k1L2 =
8.01 µm2. The surface area derived from rendered X-ray images of the merozoite
solves k1 as Aactual/L2 = 2.06. For the idealized merozoite, we find k2 = 0.27, giv-
ing Videalised = k2L3 = 2.08 µm2. The volume measured from the rendered x-ray
images above solves k2 as Vactual/L3 = 0.22. Comparison of the surface area of the
idealized merozoite with the surface area of a sphere, 4πa2 = 8.01 µm2, defines a
characteristic length scale a = 0.8 µm for the wrapping model described below.

4.5
Merozoite attachment and reorientation via erythrocyte membrane wrapping

Merozoites, at egress from the infected erythrocyte, are released into the blood
stream with an array of surfacebound membrane proteins (MSPs) [1]. Concurrent
with release, apical organelles (specifically the micronemes) commence secretion of
additional classes of high-affinity binding ligands onto the surface, which diffuse
toward the merozoite base [7,10,52,53]. This defines a two-stage adhesive surface
potential ranging from low affinity and evenly distributed at egress to high affinity,
with an apical bias, before or at commencement of the invasion process beginning
with reorientation.

Traditionally, merozoite reorientation has been viewed as occurring either via
random rolling of the parasite or being entirely parasite driven [13] with few stud-
ies considering host-cell membrane dynamics [15,39]. In the absence of directional
motility(which has not been described for the free merozoite), we expect the mero-
zoite to hit a target erythrocyte in random orientation. This primary, loosely at-
tached state (governed by surface MSPs) involves very shallow wrapping and is
clearly reversible[11,12]. To reach a state of stable attachment, the energy gain due
to the adhesion strength has to exceed the bending-energy cost for wrapping the
erythrocyte membrane around the merozoite. Because the tight junction has not
yet formed at reorientation and the membrane is not yet stretched, Eq. 2 reduces to
its first and third term only [28], i.e., reorientation in our model is determined by
the membrane bending rigidity and the adhesion strength only.

By comparing the bending energy and the adhesion energy at the point of con-
tact, we find the critical adhesion strength w∗ (or the dimensionless value w̃∗ =
w∗a2/2κ). The bending-energy cost is proportional to the squared local mean cur-
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vature of the merozoite and, for a homogeneous adhesion strength on the mero-
zoite surface, binding with the least curved point at the side of the merozoite is
thus energetically favorable. The distribution of local adhesion strength, which is
required to induce merozoite adhesion in all orientations with equal probability, is
plotted in Fig. 3. From the minimal reduced adhesion strength w̃∗ = w∗a2/2κ = 5,
we can estimate a minimal adhesion strength for this stable attached binding as
w∗ = 10−4 kBT/nm2 for an archetypal merozoite with a = 0.8 µm and bending
rigidity κ = 50 kBT. This value is below those of conventional receptor-ligand
bonds (e.g., involved in viral invasion [54]), which could be expected for the in-
vasion proteins known to be present on the merozoite’s surface during entry. Thus,
at reasonable levels of surface-protein binding to the erythrocyte membrane a mini-
mal adhesion strength readily leads to stable attachment of the nonorientated mero-
zoite.

Figure 3: Modeling adhesive interactions between the merozoite and erythrocyte. Calculated
threshold adhesion strength (using Eq. 1 with bending and adhesion terms only) w∗a2/2κ for attach-
ment of the merozoite as a function of the azimuthal angle in a polar representation of the merozoite
shape: (a) v = 0, (b) 0 > v > π, and (c) v = π correspond to the flat basal end, the side, and the
apex adhered to the membrane, respectively (see Materials and Methods).

To achieve a tip-first orientation of the merozoite, a gradient of the adhesion
strength that favors attachment of the tip over other orientations is required. As
discussed previously, such a gradient of adhesion strength from apex to base is en-
tirely reasonable. Apical membrane antigen 1 (AMA-1), is translocated onto the
merozoite surface at parasite egress [53], existing in a clear apical-basal gradient,
which then freely diffuses around the merozoite periphery [52]. To achieve reorien-
tation each newly formed adhesion toward one end will require detachment at the
side opposing the rolling direction. As long as the difference of the sum of adhesion
and bending energy between newly formed and lost adhesion sites is negative, an
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energy funnel will drive merozoite rolling and reorientation. The adhesion strength
at the tip has to be about nine times higher than at the side of the merozoite for it
to reorient to the apex.

Evidence that inhibition of AMA-1 function disrupts merozoite reorientation di-
rectly supports its involvement in apical realignment by a natural apical-basal ad-
hesive gradient [55]. Wrapping forces and their change down an energy gradi-
ent during reorientation alone could therefore entirely explain apical reorientation
without a need for parasite motor force or for host membrane buckling. Entrap-
ment in metastable states that correspond to local minima in the energy landscape
for reorientation may be overcome by additional input of energy from motor forces.
Evidence for the low rates of invasion efficiency of free merozoites, however, could
suggest that arrest in such energetic dead ends is a major cause for failed invasion
[35].

4.6
Merozoite invasion via erythrocyte membrane wrapping

We next sought to determine the contribution of membrane wrapping for the actual
process of invasion. True invasion, involving formation of a junction and a nascent
parasitophorous vacuole, is only initiated once apical reorientation has occurred
[11]. At this point in time, three key cellular and molecular events occur: 1), se-
cretion of a complex of proteins across the erythrocyte membrane that likely define
two sides of the merozoite erythrocyte tight junction; 2), secretion of membrane
material from parasite apical stores (namely the rhoptries); and 3), activation of a
parasite actomyosin motor. Toward assessing how the contributions of membrane-
wrapping might facilitate invasion, post attachment and reorientation, we calcu-
lated numerically phase diagrams of the wrapping states of the system based on
the native tip-first orientation and the global minimum in the energy landscape for
a given adhesion strength (Fig. 4).

In Fig. 4 A, the state of the system is characterized by adhesion strength w, mem-
brane tension σ, and for a fixed line tension γ, i.e., a fixed energy cost per length
for the tight junction between parasite and red cell. The value that we used for
the line tension, ∼ 0.1 kBT/nm is comparable to the line tension at lipid domain
boundaries [56], and might mimic a line tension due to protein aggregation. How-
ever, our model does not rely on this specific value and can be used for any value of
the line tension that might be generated by one of the other mechanisms described
in the Materials and Methods section. In Fig. 4 B, we show a phase diagram for
vanishing membrane tension and the phases are plotted for various values of adhe-
sion strength and line tension. In both phase diagrams, we find parameter regimes
where the merozoite is free (non wrapped, NW), where it is partially wrapped by
the erythrocyte membrane (PW I and PW II), and where it is completely wrapped
(CW) (see also Fig. 1). A more detailed discussion of the phase diagrams can be
found in the Supporting Material.

For small adhesion strengths, the merozoite does not attach to the erythrocyte
(NW). For higher adhesion strengths, PW I, PW II, and CW states are found. From
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a physical point of view, adhesion strengths 5 ≥ w̃ ≤ 15, where partially wrapped
states are found, are likely of most significance with regard to invasion energetics.
The values of w for the transition to wrapped states are given by the phase bound-
aries between the NW regime to PW regimes (W0 and the part of W1 for small
surface and line tensions) and the boundary between NW and CW regimes (E). For
low surface tensions (σ̃ < 7.5) there is an energy barrier between PW states with
a small and high wrapping fractions, whereas for a large enough surface tension
(σ̃ ≥ 7.5), the energy barrier between PW I and PW II disappears and the wrap-
ping fraction increases continuously with the adhesion strength. Large adhesion
strengths allow immediate complete wrapping and erythrocyte entry, but might
also be associated with unspecific binding to other membranes and problems as-
sociated with membrane surface-coat shedding. Thus, lower affinity interactions
seem to be favorable. Fig. 4 shows that a minimal value w̃ = 5− 7 is large enough
to generate a stable, PW state. Successful invasion requires an end state in the CW
region of the phase diagram. However, if the energy barrier of the transition to
the CW state is high but invasion is assisted by additional forces, such as motor
forces (see below), successful invasion might occur already for smaller adhesion
strengths.

Fig. 5 shows the critical wrapping fractions of the merozoite surface area between
which the W1 and W2 transitions (shown in Fig. 4 A) occur as a function of the
reduced adhesion strength for a reduced line tension γ̃ ≈ 0.20. In the PW region
I, tip-wrapped states (as experimentally observed in early stages of invasion) occur
with 20 % of the merozoite surface area in contact with the erythrocyte. States with
a higher wrapping fraction of the merozoite up to 90 % are found in the PW region
II. In Fig. 5 the hatched regions correspond to unstable states that form the energy
barriers associated with the discontinuous phase transitions. The unstable region
between the PW states vanishes for adhesion strengths larger than w̃ = 12, which
corresponds to the critical point in Fig. 4 A.

The line tension, at which the erythrocyte membrane detaches from the mero-
zoite, is a key determinant for the stability of PWstates, both hindering the entry
of the parasite for early stages and favoring wrapping at later stages (Fig. 4 B, ar-
row d). This contact line, seen as an electron-dense zone in electron micrographs
[3,6], must be stretched at the onset of entry and will contract after the point of
maximal diameter of the merozoite has passed. In the phase diagram in Fig. 4 B,
invasion is considered with respect to wrapping states across values of line tension
and adhesion strength, while keeping the adhesion strength fixed. For small values
of the line tension, PW states with high wrapping fraction are found, whereas for
large values of the line tension (larger than γ̃ ≈ 0.35) the transition occurs directly
from the free, NW state to the CW, invaded state. In this way, a robust line ten-
sion helps to facilitate complete invasion and avoid PW states with high wrapping
fraction. Thus, from a biological point of view, there are clear adaptive advantages
associated with formation of a demarking tension between the parasite and host
cell. This may in part explain the origin of the tight junction as a strategy for dif-
ferentiating between membrane regions and contributing to reducing the energetic
requirements for reaching an invaded state rather than, necessarily, only as a point
of motor traction [16].
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Figure 4: Wrapping phase diagram for fixed line tension or membrane tension. (A ) Wrapping states
of the system of a tip-first-oriented merozoite for fixed reduced line tension γ̃ = 0.20 and several
values of effective adhesion strength and effective membrane tension: non wrapped merozoite (NW),
partially wrapped merozoite with small (PW I) and high wrapping fractions (PW II), and completely
wrapped/fully invaded merozoite (CW), see Fig. 1. The transition W0 is a continuous transition,
whereas the transitions W1, W2, and E are associated with energy barriers. The transition W1 ends
at a critical point where the difference between PW I and PW II vanishes. The terms in Eq. 2 can be
rearranged, such that the spontaneous curvature c0 can be combined with the membrane tension
and the adhesion strength to an effective membrane tension, σe f f = σ̃ + c̃2

0/(aH0)
2 , and an

effective adhesion strength, w̃e f f = w̃ + c̃0, respectively. The critical point is indicated by a black
point (•). (B) Wrapping states of the system of a tip-first-oriented merozoite for vanishing effective
membrane tension, σ̃e f f = 0, and several values of effective adhesion strength and line tension.
The notation is analogous to A. Both phase diagrams with additional wrapping spinodals that indicate
the values of the adhesion strength beyond which the energy barrier vanishes and spontaneous
wrapping occurs, are shown in Fig. S3. However, the energy barriers may also be crossed by other
mechanisms: arrow a indicates the effect of unstructured membrane secreted by the merozoite (Fig.
S2B), arrow b shows the effect of favorable spontaneous curvature, arrow c the effect of increased
adhesion strength, and arrow d the effect of increased line tension.
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Figure 5: Merozoite surface coverage for different adhesion strengths. Merozoite surface coverage
for different adhesion strengths and reduced line tension γ̃ = 0.20. W1, W2, and E, are the phase
boundaries and lines demarking equal energy of free and CW states, see Fig. 4 A. The critical
point is indicated by a black point (•). The wrapping fractions where the system jumps between
discontinuous transitions are indicated using the dotted or the solid lines, corresponding states are
connected by tie-lines. Wa

1 and Wa
2 indicate lower, whereas Wb

1 and Wb
2 higher wrapped fractions

of the merozoite surface area for the W1 and W2 transitions, the two phase regions in the phase
diagram indicated by the black tie-lines are unstable and correspond to the energy barriers.

During the invasion process, experimental evidence clearly shows both secre-
tion of unstructured membrane by the merozoite (discharged from the rhop-
try organelles) and gross changes in the membrane curvature of the erythrocyte
[6,7,13,57] (Fig. S2 B). The effect of such events on the status of invasion can be
directly interpreted in light of the phase diagram in Fig. 4. When the lipid bilayer
area of the erythrocyte is increased by additional unstructured membrane from the
parasite, the tension of the membrane that wraps the merozoite is lowered consid-
erably. This corresponds to a move in the wrapping diagram from a PW to a CW
state (Fig. 4 A, arrow a). In addition to extra membrane area being provided, the
unstructured nature of this membrane as well as any detachment or reorganization
of the spectrin cytoskeleton from the bilayer [19,39] can change the spontaneous
curvature of the membrane to a value that is more favorable for wrapping (Fig. 4
A, arrow b). Mathematically, the spontaneous curvature can be taken into account
using the effective adhesion strength and the effective surface tension, otherwise
leaving the wrapping phase diagrams unchanged (see Materials and Methods).
These results point to specific benefits that would arise from local disruption of the
spectrin network, either directly or indirectly, by the merozoite, something that has
been observed empirically by electron microscopy of invading parasites [58].
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4.6.1
Merozoite invasion supported by motor activity

Having explored the role of adhesive forces (from parasite invasion adhesins),
bending rigidity, membrane tension, line tension, and spontaneous curvature of the
erythrocyte membrane to membrane wrapping states, we next sought to estimate
the degree of active forces required from the parasite to overcome energy barriers
and facilitate transitions to completed invasion. The current model for the source
of parasite active motor force posits that an anchored myosin motor inside the par-
asite cell (directly tethered to a cytoskeletal compartment within the cell pellicle)
transmits force directly through a short polymerized actin filament, which itself is
linked to the surface-bound adhesin. The binding of this surface adhesin to a red
cell receptor and their combined passage towards the base of the merozoite length
(through the fluid plasma membrane) is then thought to generate a rearward force
driving the parasite forward (Fig. 6, A and B) [59].

Two energetic events could be envisaged to require the force generated by this
actomyosin motor: breaking or moving aside of the erythrocyte cytoskeleton at the
site of invasion (to allow entry) and overcoming wrapping energy barriers.

At the specific site of entry, we assume that the cytoskeleton of the erythrocyte
gets disassembled, which is experimentally supported by evidence that there is an
erythrocytic ATP requirement for invasion [60,61] and the dependency of cytoskele-
tal reorganization on ATP [43,62]. This implies that, at the onset of true invasion
(postattachment), the merozoite is wrapped by a membrane without an explicit
contribution of the shear modulus. For local disassembly of the cytoskeleton, a
stretching force would be required that may be contributed by motor activity. A
rough estimate shows that for the cross-sectional area of the merozoite ( ∼ 1 µm2

[6]), a few hundred spectrin bonds would have to be broken/segregated to accom-
modate an entering merozoite (for a spectrin bond length of ∼ 60− 100 nm, the
average length between the protein complexes that bind the ends of the spectrin
filaments to the lipid bilayer membrane [25]).

The second, and more obvious energetic barrier requiring parasite motor force
in our model is clear from the stable states depicted in Fig. 4. For intermediate
adhesion strengths, energy barriers (see the Supporting Material) separate the PW
states internally (W1) and the completely invaded state from the PW states (W2).
The energy barriers between NW and CW states decrease with increasing adhesion
strength [32] but increase with increasing line tension. Spontaneous invasion from
adhesion alone could only occur with unreasonably large adhesion strengths com-
bined with a small line and surface tensions. Therefore, it is far more likely that
application of force by the merozoite itself facilitates the transitions between NW,
PW, and CW states. Estimates of the required motor activity to wrap the merozoite
can be derived from the force calculated for merozoite invasion without adhesion
energy (Fig. 6 C). The maximal force Fz (besides a very small wrapping fraction
below 5 %) is of the order of 20 κ/a = 1 kBT/nm , or ∼ 5pN. Typical estimates
of the force related to a single, motility-dependent adhesion site for a Plasmodium
preerythrocytic parasite on a glass substrate (though not necessarily a single mo-
tor) are ∼ 6.5 pN [63]. Therefore, a small number of adhesion sites in the context
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Figure 6: The contribution of motor driving forces in merozoite invasion. (A) The current model
for the topology of the parasite actomyosin motor and its linkage with the red blood cell surface
through secreted invasins. (B) Actomyosin force supports merozoite invasion. ft is the force acting
tangentially along the membrane-cortex surface as it wraps along the particle, whereas the fz is
the component of this tangential force along the z axis whose role is to inject the particle into the
membrane while the component fr is balanced by an equal magnitude force acting along the other
side of the membrane. (C) Estimate for the motor driven forces required to push a nonadhesive
merozoite into the erythrocyte membrane to achieve complete invasion. Fz = 2πr fz, is the estimate
for the total invasive force acting along the symmetry axis required to inject the merozoite as a
function of the fraction of the merozoite surface covered by erythrocyte membrane; r is the radius of
the rim where the merozoite detaches from the membrane.

of an invasion event could be easily sufficient to overcome the energy barriers re-
quired for entry. T. gondii myosin A, considered the direct ortholog of that involved
in merozoite invasion [64], has a step size of 5.2 nm [65]. Although its stall force
is not known, most myosin types generate forces in the order of 0.5 to 5 pN per
motor molecule [66,67]. Given that myosin A is only single headed and cannot be
processive, and assuming a small duty ratio of 5 % (approximately that for muscle
myosin [68]), at each instant between 2 and 10 motors should be bound. Using a
stochastic attachment model and assuming 5 motors are bound, invasion would
require ∼ 5/0.05 = 100 motors (lower and upper limits being 40 to 200 motors) to
perform without failure under these conditions.

As shown in Fig. 6 C, the required force for invasion can be reduced by orders
of magnitude if factors such as favorable spontaneous curvature of the erythrocyte
membrane or expulsion of unstructured membrane accompany invasion. There is



104 4 Membrane-wrapping contributions to malaria parasite invasion of the human erythrocyte

strong evidence for both (see above), which suggests that the energetic contribu-
tion of the motor estimated previously could be much lower. Irrespective of the
alternative contributions of parasite adhesion or membrane remodeling, the need
for an active directional motor force, such as that generated by the parasite acto-
myosin machinery, cannot be eliminated: due to energy barriers between stable
membrane-wrapped states (see the Supporting Material), the motor likely plays an
essential role for achieving robust invasion. In this way, our modeling is consistent
with experimental evidence suggesting that actomyosin motor activity is essen-
tial for merozoite invasion [16,17,64]. Residual invasion following complete mo-
tor inactivity in the related apicomplexan T. gondii might suggest alternative host-
cell processes that are not possible in the erythrocyte (such as phagocytosis) or re-
dundant invasion machinery in the parasite that is currently unaccounted for [22].
What is clear, however, is that at its most energy efficient, theoretical predictions for
erythrocyte invasion envision a balance between passive host cell-dependent pro-
cesses (nonetheless stimulated and controlled by the parasite) and those that are
parasite-energy dependent. This rejects the perceived dogma wherein merozoite
invasion is entirely parasite driven.

4.7
A complete biophysical model for invasion incorporating membrane wrapping

By integrating basic parasitological observations of merozoite maturation and sur-
face protein biology with biophysical consideration of membrane wrapping, we
can now propose a complete mechanistic model of invasion (Fig. 7).

At the outset, it is clear that the early stages of invasion are setup at merozoite
egress from the infected erythrocyte [10,53,69]. Daughter merozoites are liberated
into the blood stream (Fig. 7 A) with a surface studded evenly with MSPs, which
provide low-strength reversible (and nonorientated) attachment to a target ery-
throcyte [1] (Fig. 7 B). At egress, a second, variable population of adhesive pro-
teins (which we term adhesins [8]) are released apically from secretory micronemes
(Fig. 7 B). Their diffusion through the merozoite plasma membrane sets up a tran-
sient adhesive gradient from apex to base on its surface (Fig. 7 B). This gradient
is biologically dependent on many factors, not least the timing of release [53], and
may compensate the increased bending energy cost at the apex required for mero-
zoite reorientation. The initial apical gradient transitions the merozoite from a re-
versible (MSP determined) to an irreversible (adhesin determined) attached state
on the target erythrocyte surface that can be sufcient alone to reorientate the mero-
zoite without parasite energy-dependent forces (Fig. 7 C). Of note, mature mero-
zoites with complete surface release of adhesins (and homogeneity through the
plasma membrane at times tending toward ∼ 10 min, Fig. 7 B) will be unable to
reorientate by wrapping forces alone, possibly explaining their short invasion half-
life [35]. Once reorientation has occurred, the merozoite typically exists in a stable,
tip-wrapped/PW state with < 10 % of the parasite wrapped (Fig. 7 C and Fig. 4
and Fig. 5, PW I).
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Figure 7: Schematic for biophysical interactions between the Plasmodium merozoite and the human
erythrocyte. A complete biophysical model for merozoite invasion of the erythrocyte from release (A
and B), to attachment and reorientation facilitating a stable, tip-wrapped state (C), to PW states (D
and E), and full invasion/CW states (F). See main text for details.

A∼ 10 % PW state (Fig. 7 C, right panel) is also found in our wrapping energy cal-
culations (Fig. 4 and Fig. 5, PW I) and in the biological system likely coincides with
(or is directly preceded by) apical release of a third population of invasion-specic
adhesive proteins, which we term invasins [8] (green) to distinguish them from ad-
hesins. These are associated with either a second population of micronemes or the
rhoptry organelles [8,70] (Fig. 7 D). Some of these are secreted inside the target
erythrocyte [7], with others staying with the merozoite surface [8]. Combined, the
rhoptries and the proteins released facilitate four key processes (Fig. 7 D and Fig. 4,
arrows): i), establishment of the merozoite-erythrocyte tight junction (dark green),
which in our model acts as line tension (γ); ii), a (still to be determined) class of
proteins, predicted to be secreted inside the erythrocyte, which may facilitate dis-
ruption of the underlying erythrocyte cytoskeleton (thick to thin dashed line) [19,71]
leading to a more favorable spontaneous curvature (c0); iii), secretion of membrane
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from the merozoite’s apical stores [7,57] lowering the tension of the erythrocyte
membrane (σ) facilitating further wrapping (Fig. 7 E, right panel, and Fig. 4, arrow
a), which has a favorable spontaneous curvature and reduces surface tension; and
iv) a nal class of proteins, released onto the surface of the merozoite, which engage
with the actomyosin motor inside the merozoite permitting force generation (F)
[72]. We suggest that each of these factors helps the merozoite to overcome energy
barriers associated with transitions between low and high PW states (Fig. 4, Fig. 5,
and Fig. 7, D and E). Motor force allows the merozoite to then cross the remaining
energy barriers and to achieve invasion up to ∼ 90 % wrapping. At this critical
juncture in invasion (Fig. 7 E, Fig.S3, and Fig. S5, PW II), the merozoite will either
jump to a CW/invaded state (Fig. 7 F) or invasion will fail. In reality, these scenar-
ios likely coexist and are continuations of the previous stages of invasion. They are
also entirely reasonable given known experimental observations (e.g., [57,71], Fig.
S2 B). The successfully invaded parasite now lies within a vacuole inside the target
erythrocyte [14]. At this stage, the vacuole will need to be sealed and erythrocyte
cytoskeleton reformed.

Two core conclusions can be drawn from this model. First, that reorientation
to irreversible attachment can be simply viewed as a parasite energy-independent,
shape/adhesin-dependent wrapping process. Second, that membrane wrapping
during merozoite invasion combined with other biophysical considerations can ac-
count for the major energetic requirements of invasion. Successful invasion re-
quires traversal across energy barriers (associated with the discontinuous transi-
tions), which are likely achieved via actomyosin motor contributions. However,
what is striking is that our calculations for membrane wrapping together with bio-
logical evidence suggest mechanisms that make parasite entry into the erythrocyte
energetically more favorable compared to a model that is parasite motor-driven
alone. Nonmotor contributions such as cytoskeletal remodeling and the line ten-
sion from the junction thus contribute to invasion energetics in ways that have
perhaps not been appreciated. It is worth stressing that, irrespective of wrapping
models, motor force does still appear to be a constant requirement [17,64]. Our
work demonstrates that even when membrane-wrapped states are stable, the es-
sential role of the motor likely lies in overcoming energy barriers between the PW
and CW states.

Clearly, it is now paramount to actually measure the forces experienced by the
merozoite, and assess the contributions from membrane-wrapping and myosin mo-
tors. In addition, direct assessment of the membrane contributions from the para-
site apex to the nascent vacuole [14] and the search for factors that modulate the
erythrocyte cytoskeleton either directly or indirectly to facilitate invasion [19] also
become important. This latter point is particularly worth highlighting. A parasite-
induced role for the host cell is clearly documented if one looks beyond Toxoplasma
and Plasmodium spp. to other apicomplexan parasites [73–75]. Could the erythro-
cyte be stimulated to contribute in a similar fashion to invasion? The erythrocyte
membrane and cytoskeleton play a particularly active role during erythroblast enu-
cleation, which involves extensive cytoskeletal remodeling that helps expel the nu-
clear compartment [76,77]. Given the presence of such a machinery combined with
evidence that the mature erythrocyte cytoskeleton and membrane exist in a dy-
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namic cycling state [43,78] it is certainly conceivable that the parasite might stimu-
late innate active processes within the erythrocyte to further reduce the energy cost
for entry.

In summary, our results point to an evolutionarily balanced consideration of
merozoite invasion, strongly favoring a model by which passive processes, such
as adhesion-driven wrapping, and active parasite-induced processes, such as ery-
throcyte cytoskeleton remodeling and membrane injection (and of course motor
contribution), combine to maximize invasion efciency. Strategies targeting either of
these facets of invasion, or a combination of the two, may therefore be important as
we strive for more effective antimalarial therapeutics.

Supporting material

Four figures, supporting data, some details of the theoretical analysis, a discussion
of discontinuous transitions in the phase diagram, and reference (79) are available.
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Supplementary material: Membrane-wrapping contributions
to malaria parasite invasion of the human erythrocyte

Description Of Erythrocyte-Membrane Wrapping

Towards calculating membrane-wrapping contributions to invasion we sought to
identify core parameters associated with parasite entry. Four key parameters were
selected, adhesive forces, bending energy, target membrane tension and a line ten-
sion (Fig. S1).

Figure S1: Schematic explanation of the different energetic contributions used to model the role of
the host membrane in merozoite invasion. A. adhesion strength, B. bending energy, C. membrane
tension and D. line tension (see main text for details).

When the host membrane (Fig. S1, orange) comes close to the parasite membrane
(Fig. S1 A, blue), adhesion molecules form an attractive interaction between the
two membranes (illustrated with red springs). The adhesion strength, wH0, which
quantifies the adhesion energy, depends on the local concentration of the adhesion
molecules. In experiments, close contact between the merozoite and the erythrocyte
membrane is observed [1] that supports a close adhesive interaction between the
two cells (Fig. S2 A).
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Figure S2: Electron micrographs of merozoites from Plasmodium falciparum in the process of in-
vading an erythrocyte. A. Demonstration of the close proximity between plasma membrane of the
merozoite and the plasma membrane of the erythrocyte during invasion as revealed by high pres-
sure freezing and freeze substitution (as compared with other approaches which can give rise to a
substantial slack space between parasite and host cell in nascent parasitophorous vacuole). Imaging
conditions as described in [1]. B. Release of membrane from apex of parasite during the invasion
process. Here merozoite invasion is arrested with cytochalasin D (an inhibitor of invasion), which
prevents completion of invasion but does not prevent release of membrane whorls from rhoptry bulb.
Imaging conditions as described in [1].

Bending a membrane also requires energy that is determined by two contribu-
tions; the bending modulus κ, which reflects the rigidity of the membrane against
a forced bending, and the actual degree of bending which is quantified by the cur-
vature C (Fig. S1 B). The curvature ! can be simply visualized by fitting a circle
along the curve and then taking the inverse radius of this circle: C = 1/R. Hence,
high curvature corresponds to a small circle radius, while a flat membrane has no
curvature, which corresponds to an infinite radius. Since the membrane is a two-
dimensional (2D)) surface, curvature can exist at any point in the two directions.
The relevant curvature is the mean curvature, H = (1/Rx + 1/Ry)/2.

Two tension forces play key roles in the invasion process. Host membrane ten-
sion relates to an energetic cost that is related to a lateral pulling on the membrane
(Fig. S1 C). Typically, biological membranes are soft enough to fluctuate because
of thermal movement, which is analogous to the Brownian diffusion of a small
particle. This movement means that the apparent membrane area measured when
looking on the membrane is smaller than the real area that includes the area “hid-
den” in the fluctuations. Physically, it means that when a pulling force is applied
(red arrows), the apparent membrane area increases. The membrane tension can
also be reduced by release of membrane from the apex of the parasite (Fig. S2 B).
The membrane tension is then defined by the force required to increase the mem-
brane area. Hence high tension (represented by the term σ) means that high forces
are required to increase the apparent area.
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A final energetic contribution comes from the spring-like behaviour of the cy-
toskeleton along the furrow at the membrane inclusion, referred to here as a line
tension (Fig. S1 D). This spring-like behaviour can be modelled by an elastic rub-
ber band that lies around the furrow, and hence wants to constrict the furrow. The
spring stiffness of this rubber band is modelled by the line tension (represented by
the term γ). Physically, in the first phase on invasion (PW I) the merozoite has to
stretch this rubber band, which costs energy. However, once over the point of max-
imal diameter (PW II), the line tension actually helps pushing the merozoite inside
the host cell.

Calculation of the merozoite wrapping energy

The key ingredients for calculating the energy for wrapping a merozoite are the
shape of our archetypal merozoite and our model for the deformation energy de-
fined by Eq. 2 of the main text. The egg shape of the archetypal merozoite is
(x2 + y2 + z2)2 = Rax3 + (Ra − Rb)x(y2 + z2) with Ra = 1 µm and Rb = 0.7 µm.
For the calculation of the deformation energy, the shape is parametrized in spheri-
cal coordinates using the polar angle u and the azimuthal angle v,

x(u, v) =
[ (2Ra − Rb) sin(v)

4
+

Rb sin(2v)
8

]
cos(u)

y(u, v) =
[ (2Ra − Rb) sin(v)

4
+

Rb sin(2v)
8

]
sin(u)

z(u, v) =
[2Ra + Rb cos(v)

4
]

cos(v) ,

where 0 ≤ u < 2π and 0 ≤ v < 2π. The distance from the symmetry axis as
function of the azimuthal angle is

ρ(v) =
√

x2 + y2 =
[ (2Ra − Rb) sin(v)

4
+

Rb sin(2v)
8

]
,

and the radial coordinate of the merozoite surface,

r(v) =
√

x2 + y2 + z2 =

√[ (2Ra − Rb) sin(v)
4

+
Rb sin(2v)

8
]2

+
[2Ra + Rb cos(v)

4
]2 cos(v)2 .

In spherical coordinates, Eq. 2 in the main text becomes

E = 2π
∫ vwrap

0
dv gρv ρ(v) [2 κ(H(v))2 + σ− wH(v)] + 2πρ(v)γ ,

where gρv =
√

dρ2 + dv2 = (2Ra − Rb) sin(v)/4+ Rb sin(2v)/8, and vwrap deter-
mines the degree of wrapping. Note that in our model the membrane deformation
energy is only calculated for the membrane that is attached to the merozoite. The
integrals are evaluated numerically using the computer algebra program Maple.
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Both the bending energy and the adhesion energy contributions in our model re-
quire the calculation of the mean curvature. The mean curvature can be expressed
by the fundamental forms of the merozoite surface [2],

H =
eG− 2 f F− gE

EG− F2

where E, F, and G are the first fundamental forms and e, f, and g are the second
fundamental forms.

Discontinuous phase transitions with energy barriers

The phase boundary W0 between the NW and the PW states in Fig. S3 and Fig. 4
in main text is the binding transition that we use to discuss reorientation based on
the local adhesion strength and bending energy. With a small membrane and line
tension, PW and even CW regions may extend to smaller adhesion strengths than
those associated with the threshold adhesion strength for W0. This might at first ap-
pear to be surprising, since for very shallow wrapping the value of the membrane
tension would not be expected to alter the transition [3,4]. However, the nature of
the W0 transition and the W1, W2, and E transitions in the phase diagram are differ-
ent: while the W0 transition is a continuous transition, the transitions W1, W2 and
E are associated with an energy barrier (E also indicates when the unwrapped and
the completely-wrapped state have equal energy). These latter transitions corre-
spond to a jump in the fraction of the merozoite surface that is in contact with the
enveloping membrane as the transition is passed (Fig. 4). For adhesion strengths
very close to those phase boundaries, transitions cannot occur spontaneously.

For the phase boundaries W1 and W2, the spinodals S12 and S22 indicate the pa-
rameter regime where the transition occurs spontaneously and beyond that the en-
ergy barrier vanishes with increasing w̃ + c̃0. Only for values of adhesion strength
that are larger than those of the spinodals does the energy barrier vanish and fur-
ther wrapping occur spontaneously. In Fig. 5 in main text, we indicate the wrap-
ping fractions of the stable states between which the discontinuous transitions oc-
cur; the tie lines mark the parameter region that corresponds to states on the en-
ergy barrier. In Fig. S4 we show the energy profile for a state on the discontinuous
transition W1 when the system traverses from a low wrapping fraction (PW I) to
a higher wrapping fraction (PW II). The profile shows explicitly the energy barrier
that needs to be overcome for further wrapping at the adhesion strength w̃ = 10.066
for reduced membrane tension σ̃ = 4.5. The low wrapping fraction state is found
at Sad/S = 0.045 and the high wrapping fraction state at Sad/S = 0.575. The max-
imum of the energy barrier with height ∆E/2κ = 0.228 is located at Sad/S ≈ 0.25.
In order to jump from the PW I state to a PW II state, there is thus a need for an
“activation energy” that facilitates invasion. The energy barrier for the W2 transi-
tion that separates the partially-wrapped state with high wrapping fraction from
the completely-wrapped state is typically much smaller than the energy barrier for
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Figure S3: Phase diagrams Fig. 4 in the main text including the upper spinodals. S12 indicates
the adhesion strengths at which the transition associated with the phase boundary W1/E occurs
spontaneously, while the spinodal S22 belongs to the phase boundary W2. Spontaneous wrapping
therefore occurs in the blue part of the CW region, while in the yellow part an energy barrier has
to be overcome. A. Wrapping states for fixed reduced line tension γ̃ = 0.20 and several values of
adhesion strength and membrane tension. B. Wrapping states of the system of a tip-first oriented
merozoite for vanishing effective membrane tension and several values of adhesion strength and line
tension.

the W1 transition. Hence, the spinodal is found for adhesion strengths close to
values where the W2 transition occurs. Actomyosin motor activity may be a key
determinant to overcome wrapping energy barriers and the barriers can be used



122 4 Membrane-wrapping contributions to malaria parasite invasion of the human erythrocyte

Figure S4: Energy profile for a state on the W1 phase boundary. Energy profile at reduced effective
adhesion strength w̃ = 10.066 and reduced membrane tension σ̃ = 4.5, see Figs. 4 and 5 in main
text. The transition between the PW I state for Sad/S = 0.045 and the PW II state for Sad/S = 0.575
is associated with an energy barrier ∆E/2κ = 0.228 whose maximum is found at Sad/S ≈ 0.25.

to estimate the required motor activity. However, activity alone is not sufficient to
study invasion. When the motor stops to act (e.g. once invasion is almost complete)
the merozoite will only remain wrapped in cases where its final state lies within the
CW region of the phase diagram (Fig. S3 and Fig. 4 in main text).
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5
Interfacing Electrogenic Cells with 3D Nanoelectrodes:
Position, Shape, and Size Matter

5.1
Abstract

An in-depth understanding of the interface between cells and nanostructures is
one of the key challenges for coupling electrically excitable cells and electronic
devices. Recently, various 3D nanostructures have been introduced to stimulate
and record electrical signals emanating from inside of the cell. Even though such
approaches are highly sensitive and scalable, it remains an open question how
cells couple to 3D structures, in particular how the engulfment-like processes
of nanostructures work. Here, we present a profound study of the cell interface
with two widely used nanostructure types, cylindrical pillars with and without a
cap. While basic functionality was shown for these approaches before, a system-
atic investigation linking experimental data with membrane properties was not
presented so far. The combination of electron microscopy investigations with a
theoretical membrane deformation model allows us to predict the optimal shape
and dimensions of 3D nanostructures for cell-chip coupling.

5.2
Introduction

Several techniques for interfacing excitable cells with electrical devices have been
developed to study ion channel functionality over the long-term [1], restore lost
sensing capabilities [2], control motor disorders [3], and control heartbeat [4]. The
success of the numerous extracellular interface concepts proposed in basic science
is limited by problems ranging from improper cell adhesion to inadequate device
stability [5]. To overcome such limitations, the design of engineered interfaces
[6,7] is mainly based on successful application of emerging technologies, such as
nanotechnology [8-11]. The interface between cells and nanostructures has been
studied extensively [12-16]. In particular, the morphology of cells interfacing 3D
nanoelectrodes has been investigated in detail [17-27], as these are prominent can-
didates to solve the aforementioned problems. Potential mechanisms for coupling
between electrogenic cells and multiple 3D nano- and microstructures are proposed
and used for extracellular applications [6,9,10,26,28-32]. Most of these 3D nano and
microstructures can be classified under twomain types: cylindrical pillars with and
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without a cap. Here, the cell response depends on the cytoskeletal contribution
driven by an actin ring, which forms around the 3D nanostructures [33], enabling
the engulfment-like event [34-36]. Former studies lack information about how a
cell interfaces a single 3D nanostructure, which is the basic investigation needed
for understanding the cell interaction with multiple 3D nanostructures. Moreover,
several important and fundamental questions were not addressed yet. Which of
the two most-used structures leads to a better engulfment-like event by the cell?
How does the position of the engulfment-like event affect the cell response and the
coupling to the 3D nanostructure ? Here, we present a methodical investigation of
the cell-3D nanostructure interface using focused ion beam (FIB) and scanning elec-
tron microscopy (SEM). We characterize the position of the engulfment-like event
of 3D nanopillars by cardiomyocyte-like HL-1 cells [37] and the deformation of the
extracellular membrane. Finally, we investigate which 3D nanoelectrodes are opti-
mal for engulfment by cardiomyocyte-like cells to find the best design in terms of
dimension and shape, and explain the biological driving forces that favor one struc-
ture over the other. This work will facilitate a prediction of the optimal parameter
combination for the best coupling of electrogenic cells with 3D nanoelectrodes for
in vitro and in vivo applications.

5.3
HL-1 Cells on 3D Nanostructures: Position of the Engulfment like Event

First, we analyzed the location of the engulfment-like event as schematically shown
in Fig. 1 a. It is known that during a typical endocytic event, the cell membrane
wraps around the particle that is then internalized by a cell [38,39]. We investi-
gated the relative position of an engulfment-like event by an electrogenic cell type
(HL-1 cells) on cylindrical nanopillars with and without mushroom-shaped caps.
We fabricated nanostructure arrays with a pitch of 25 µm, to ensure that in most
cases a cell adheres only to a single 3D nanostructure. We tested nanopillars with
stalk height, H, from 300 up to 1000 nm and radius, RsS, from 150 to 400 nm (exam-
ples are given in Fig. 1 b, i-vi), with aspect ratio, γ (H/2Rs), of the stalk in the range
of 0.4-3.3 (see Supporting Information S1). For cylinders with caps, we considered
a cap radius, Rc, that varied in the range of 300-1000 nm. HL-1 cells [37] were cul-
tured on 3D nanostructures for 3 days invitro (DIV) and then chemically fixed. The
membrane and the nucleus were fluorescently stained. The cells were observed
with fluorescent microscopy (Fig. 1 c, i-iv) and SEM after critical point drying. To
quantify the relative position of a single 3D nanostructure, the cell shape was fit
with three equidistant and concentric elliptical regions of interest (ROIs) with re-
spect to the ellipse axes (Fig. 1 d-f). The blue ROI determines the edge of cell, the
red ROI defines the middle of the cell and the black ROI represents the center of the
cell, where the nucleus was located in most cases. We found 23 % of engulfment-
like events in the center, 37 % in the middle and 40 % at the edge of the cell. When
normalizing the rate to the effective area, we find double the occurrence of struc-
tures in the center of the compared to the middle and at the edge of the cell (Fig. 1
(g)).
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Figure 1: Investigation of engulfment-like events of HL-1 cells on 3D nanostructures. (a) schematic
for the position of the engulfment-like event in the cell on cylinders with and without caps (different
stalk aspect ratios); (b) example of nanostructured gold cylinders without caps (i-iii) and cylinders
with caps (iv-vi) on planar gold (scale bar 0.8 µm, tilt 52◦); (c) DIC image of HL-1 cells on an array
of 3D nanostructures (i) HL-1 nuclei stained with DAPI in blue (ii), wheat germ agglutinin (WGA)
staining of the cell membrane in green (iii) and merged DIC, DAPI, and WGA image (iv) (scale bar
25 µm); (d) scanning electron micrograph (SEM) of an HL-1 cell engulfing a 3D nanostructure in the
center; (e) in the middle; (f) at edge of the cell (yellow cross indicates the position of the pillar, scale
bars 15 µm); (g) normalized occurrence of engulfment events in the center, middle, and edge of the
cell.
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5.4
Nanostructures Engulfed at the Edge of the Cell Favor Engulfment and Free Mem-
brane Deformation.

Next, we studied engulfment-like events at the edge of the cell in more detail. From
our SEM investigation, we observed cells deforming their cell membrane according
to the shape of the nanopillar (Fig. 2 a, Fig. 3a). To further characterize the inter-
face between the cell membrane and the 3D nanopillars, we performed sequential
cross sectioning (see Supporting Information S2) of cells (N = 110) with FIB and
acquired images with SEM. The junctional membrane detaches from the planar
substrate revealing the rough planar gold, which was further analyzed by atomic
force microscopy (AFM) measurements (see Supporting Information S5). We refer
to the extracellular membrane domain facing the substrate as “junctional” mem-
brane, and the domain facing the culture medium as “free” membrane as previ-
ously established in literature [40]. Analyzing the cross sections through the center
of the nanopillar, we trace the shape of the free membrane (solid line) as in Fig. 2 b,
Fig. 3 b. At the cell edge, we found that the junctional membrane adheres around
the nanopillar for all shapes and dimensions and also remains attached to the sur-
rounding flat gold substrate while the free membrane develops different shapes.
For a detailed study of the free membrane response to nanopillars with different
dimensions and shapes, we plot the membrane shapes for different H and Rs, as
shown in Fig. 2 c,d and Fig. 3 c,d. Cylinders without caps favor a “tent-like” de-
formation of the free membrane (Fig. 2 c,d) independent of the actual cylinder di-
mensions. Independent of Rs, tent-like deformations were observed only around
cylinders with caps only in the case of small H (and thus low γ), as shown in Fig. 2
d. High pillars with caps promote an hourglass shape, in particular for the smallest
Rs (150 nm) as shown in Fig. 3 c with γ = 3.3. From our experimental investigation,
we could distinguish two elementary scenarios: hourglass-like membrane shapes,
as induced by taller capped cylinders (Fig. 3 e), and tent-like shapes, as induced by
cylinders without caps (Fig. 2 e) or small capped cylinders. These two scenarios
can be better understood by analyzing the FIB/SEM micrographs in Fig. 2 b and
Fig. 3 b, where we observe that the intracellular region is very thin because of the
nearly 2D structure of the cytoskeleton [41] at the edge of the cell. Motivated by
the experimental observations described above, we construct a theoretical model
to investigate the role of capped pillar height by neglecting the cytoskeletal contri-
bution, and estimating the deformation energy by a continuum curvature-elasticity
Helfrich description of the membrane [42]. We considered a semispherical cap of
radius Rc placed at height H above the planar substrate. The free membrane wraps
around the cap and flattens onto the planar substrate at detachment length, Rd,F,
closely paralleling the junctional membrane, with only a thin layer of intracellular
material. To investigate how the pillar height influences the free membrane re-
sponse, we define the ratio H/Rc as a fundamental parameter. We assume that the
membrane has a bending rigidity, κ, which expresses the resistance of the mem-
brane to bending deformations. A final parameter is Rd,F/Rc, which indicates the
cell’s response to the planar substrate vs the width of the cap. We use κ = 50 kBT
(resulting in a Young’s modulus E ∼ 106 − 107 Pa for a thin membrane sheet), as
previously shown for red blood cells [43]. We evaluate the free membrane’s shape
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at equilibrium by calculating the deformation energy for several values of H/Rc
as a function of the detachment length, i.e., as a function of Rd,F/Rc. Hourglass
membrane shapes occur only at intermediate H/Rc (i.e., 2 and 2.5) and only when
Rd,F/Rc is small. In these cases, the deformation energy is smaller than that for
low or high H/Rc with small Rd,F/Rc (Fig. 4 (a)). However, the hourglass mem-
brane profiles (states (i) and (ii) in Fig. 4) for small Rd,F/Rc require higher deforma-
tion energy costs Ebend than tent-like shapes with large Rd,F/Rc (states (iii) and (iv)
in Fig. 4 (see also Supporting Information S8). An effective contact interaction of
the free membrane can be characterized by the adhesion strength w which can be
extracted from the local mean curvature of the free membrane at the detachment
point (see Supporting Information S8). In our experiments, we utilized caps with
an average radius of 400 nm, and H/Rc = 1.25 or H/Rc = 2.5 that correspond to
stalk heights of 0.5 µm and 1 µm, respectively. We calculate the membrane defor-
mation profiles for structures of these two heights for different detachment lengths
(see Supporting Information S8). As expected from the deformation energy cal-
culations, hourglass deformations are found for these favorable nanopillar heights
(Fig. 3 c), while the shorter pillars, as in Fig. 3 d are wrapped less. Fig. 3 c and
d illustrate that the membrane deformation scales with stalk radius, Rs, for cylin-
drical pillars, as expected for systems dominated by bending rigidity. However,
the higher bending-energy costs for the hourglass states compared to the tent-like
states need to be compensated; we believe that this is achieved by the actin of the
free membrane joining toward the junctionalmembrane (Fig. 3 b) thereby providing
higher effective contact interaction.
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Figure 2: Free membrane deformation at the edge of the cell as response to 3D cylindrical nanos-
tructures without caps. (a) SEM micrographs of individual fixed HL-1 cells, each engulfing a cylinder
without a cap ((i) scale bar 10 µm, (ii) scale bar 1 µm, (iii) scale bar 0.2 µm); (b) FIB cross sections
of fixed HL-1 on cylinders without caps (scale bars 0.3 µm); (c) membrane profiles for different di-
ameter pillars with cylinder height of 1 µm; (d) membrane profiles for different diameter pillars with
cylinder height of 0.3 µm; (e) schematic of a cell promoting an engulfment-like event of a cylindrical
nanopillar without cap at the edge of the cell.
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Figure 3: Free membrane deformation at the edge of the cell as response to 3D cylindrical nanos-
tructures with caps. (a) SEM micrographs of individual fixed HL-1 cells engulfing a cylinder with a
cap ((i) scale bar 5 µm, (ii) scale bar 1.5 µm, (iii) scale bar 250 nm); (b) FIB cross sections of fixed
HL-1 on cylinders with caps (scale bars 0.3 µm); (c) membrane profiles for different stalk diameters
with stalk height 1 µm; (d) membrane profiles for different stalk diameter pillars with cylinder height of
0.3 µm; (e) schematic of a cell promoting an engulfment-like event of a cylindrical nanopillar with cap
at the edge of the cell.
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Figure 4: Theoretical analysis of the membrane deformation profiles at the edge of the cell. (a)
Bending energy for different stalk heights,H, and cap radii, Rc, as a function of the detachment
length, Rd,F/Rc. Because of the scale invariance, the bending energy depends only on the ratios
H/Rc and Rd,F/Rc and not on the absolute values of the dimensions. (b) Membrane shapes for the
parameter values indicated by the arrows in the inset of (a).

5.5
Nanopillar Shape and Dimension Induce Differences in Junctional Membrane Defor-
mation at the Cell Center.

Finally, we investigated the interface of HL-1 cells on 3D nanostructures when an
engulfment-like event occurs at the center of the cell. We observed that the free
membrane does not sense the structure underneath, which allows us to focus on
the interaction of the 3D nanostructure with the junctional membrane. During the
endocytosis of a nanoparticle, the actin filaments provide key active forces during
membrane wrapping [34-36]. In the case of 3D nanostructures fixed on a substrate,
the membrane does not form a complete bud encapsulating the structure, but the
junctional membrane deforms and establishes a ring-like assembly around the 3D
structure [33] In the center of the cell, the central junctional membrane only par-
tially attaches to the pillar, and detaches from the flat gold surface of the substrate
(Fig. 5 a,b). These phenomena were previously observed for Neuro-2a [18] and
primary neurons, [44] where the membrane engulfing a mushroom-like nanostruc-
ture in the center of the cell detached from the planar substrate. We investigated
the junctional membrane responses to the 3D nanostructures by analyzing FIB cross
sections through the center of the pillar (Fig. 5 a,b). The junctional membrane was
characterized with regard to four independent parameters as shown in Fig. 5 c,d
(see also Supporting Information S2). Rd,J), the cross-sectional area of the detaching
membrane (A), the engulfment length (de), and the attachment angle (α. Rd,J is the
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horizontal distance from the membrane attachment point on the planar substrate to
the central z-axis of the pillar. de is evaluated as the vertical projection from the top
of the pillar to the membrane attaching point on the pillar stalk, as shown in Fig. 5
c. α is the angle between the curving membrane and the vertical of the pillar, at the
point where the membrane is not attached to the stalk under the cap (see Support-
ing Information S3). On the one hand, for stalk aspect ratios between 0.4 and 0.75,
Rd,J for the nanopillars with and without cap are comparable (0.75 µm in average)
as shown in Fig. 5 (e). On the other hand, when the aspect ratio is highest (3.3), we
observed an average Rd,J of 0.25 µm on for a nanopillar without a cap, while Rd,J
was more than 10 times higher (2.6 µm) for a nanopillar with a cap. The difference
in Rd,J causes the resulting difference in A of 0.42 µm2 and 0.04 µm2 for a cylinder
with a cap and without a cap, respectively (Fig. 5 (f)). We calculate the engulfment
percentage, f , as the ratio between de and the total height of the pillar (Fig. 5 (g)).
For both shapes, the highest engulfment percentage was achieved at the highest as-
pect ratio (γ = 3.3). In this case, the cells engulf 75 % of the volume of nanopillars
without cap and up to 95 % of the volume of nanopillars with cap. To analyze α, the
tangent of the junctional membrane was extended to the vertical axis of the pillar
(see Supporting Information S3). We define a threshold engulfment angle when the
membrane forms an angle less than 90◦ with the vertical axis of the pillar, as shown
in Fig. 5 h and described in details in the Supporting Information S3. According
to our data, all nanopillars with caps promote an engulfment-like event, except for
structures of the lowest aspect ratio, γ = 0.4. We assume that the curvature of
the junctional membrane is influenced mostly by the cytoskeletal forces pulling the
junctional membrane toward the free membrane while the actin ring around the
nanopillar is mostly generating forces pulling the junctional membrane toward the
substrate.36 Moreover, we assume that the actin filaments influence the membrane
attachment point on the stalk (Fig. 5 i). At highest aspect ratio (i.e., 3.3), we found
the biggest detachment length (and thus the area), the highest engulfment percent-
age and the smallest attachment angle. The angle, in particular, is a very important
parameter since angles lower than 90◦ indicate that the membrane highly deforms
around the 3D nanostructure. In fact, such a high wrapping state is comparable
to what happens for complete phagocytosis events where the membrane deforms
around the particle until the complete encapsulation. This means that for typical
phagocytosis events, the membrane pulls toward the particle to form an invagina-
tion. Here, the membrane “tries” to invaginate the 3D nanostructures and deforms
accordingly. Since the 3D nanostructure is fixed on the planar substrate, the cell is
not able to internalize it but the cell membrane stays in the invaginating deform-
ing status. For angles greater than 90◦ the membrane has a tent-like deformation,
which is clearly a sign for a nonencapsulating-like membrane. On the basis of the
calculated parameters, we approximated effective seal resistances in the vicinity
of the nanoelectrodes with an assumed constant gap between adhered junctional
membrane and the nanoelectrode (see Supporting Information S6).

We analyzed the central membrane deformation profiles theoretically (see Sup-
porting Information S7) by the same model used for the description of the engulfment-
like event at the edge of the cell. In addition, we consider the contribution of the
cytoskeleton stress, which we quantify by an effective pressure, p, normal to the
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planar substrate. For fixed engulfment percentage and detachment length, we
find a transition from a tent-like deformation without cytoskeletal stress, to more
curved shape of the junctional membrane at high cytoskeletal stress (Fig. 6 a, i-iv).
The theoretical model is applicable for fitting every experimental data set with good
agreement, here we show few examples in Fig. 6 d-g. This agreement justifies the
choice of an effective pressure for the cytoskeleton stress in our model, as schemat-
ically shown in Fig. 6 b. As done previously for the edge of the cell, we assumed
a bending rigidity of κ = 50 kBT for the junctional membrane. The cytoskeletal
stress and adhesion strength of the cell to the substrate are extracted from the av-
eraged experimental data (Fig. 6 c and inset). The cytoskeletal stress for cylinders
without caps is p < 440 Pa, which is comparable to cytoskeletal stress reported for
fibroblasts [45] (range from 10 Pa to several kPa). Up to γ = 1.6, the cytoskeletal
stress increases with the pillar’s aspect ratio. Then it appears to have decreased
again at γ = 3.3. However, the uncertainty for the calculated high cytoskeletal
stress is large, as discussed in the Supporting Information S7. Surprisingly, in the
case of cylinders with caps, the cytoskeletal stress is 1 order ofmagnitude smaller
than for cylinders without caps for that the cytoskeletal stress is p < 30 Pa. This
shows that the cell is actively responding to the presence of the nanopillars and that
the cytoskeleton adapts to the substrate underneath. This distinguishes our model
from the model of Xie et al. [27] where the membrane deformation is influenced
mostly by gravitational forces. For capped nanopillars with γ = 1.6 and γ = 3.3,
we find cytoskeletal stresses of only p = 2 Pa. This indicates that capped nanopil-
lars with high aspect ratio more easily promote an engulfment-like event by HL-1
cells than all other nanopillars that we have studied. Points of attachment with
enriched adhesion molecules have been reported previously on 3D nanostructures
[46]. We find for cylinders with and without cap that these regions of presumably
higher adhesion strength correspond to areas requiring strong cytoskeletal pulling
forces to achieve the membrane deformations observed (inset Fig. 6 6c). We found
adhesion strengths between the cell and the substrate of up to w = 5µJ/m2 for
cylinders without cap and down to w = 500nJ/m2 for cylinders with cap. The
values of the adhesion strengths are similar to those that have been measured for
adhered vesicles47 but smaller than those quoted by Xie et al [27].
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Figure 5: Junctional membrane deformation investigation in the center of the cell. (a) FIB cross
section of HL-1 engulfing a cylinder with a cap in the center of the cell (scale bar 1 µm); (b) FIB
cross section of HL-1 engulfing a cylinder without a cap in the center of the cell (scale bar 1 µm);
(c) schematic of experimental parameters calculated for cylinders with caps and (d) schematic of
junctional membrane attaching a cylinder without cap; (e) junctional membrane detachment length,
Rd,J , plotted as a function of the stalk aspect ratio, γ; (f) area, A, plotted as a function of γ; (g)
engulfment percentage, f , plotted as a function of γ; (h) angle, R, plotted as a function of γ, with the
engulfment threshold at 90◦; (i) ring like structure on the stalk at different values of γ (I and ii scale
bar, 1 µm; iii and iv scale bar, 1.5 µm).
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Figure 6: Theoretical analysis of the membrane deformation profiles in the center of the cell. (a)
Membrane deformation for fixed pillar radius, Rs, membrane height at the stalk height, H, and
detachment length, Rd,F, and several values of cytoskeletal stress, p. (b) Schematic describing the
theoretical model. (c) Cytoskeletal stress and strength of adhesion to the substrate for several aspect
ratios, extracted from the experimental data given in Figure 5d-g), comparison of experimental and
theoretical deformation profiles.
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5.6
Conclusion

Previous works regarding in-cell recordings considered the possibility to have a
3D nano- or microelectrode in the very proximity of the cell junctional membrane.
This very close contact, confirmed also by TEM studies, improved the electrical
seal resistance and, thus, the quality of the recorded action potentials from elec-
trogenic cells. In this work, we have studied the effect of shape and dimensions
of 3D nanopillars/nanoelectrodes using a systematic approach for analyzing the
cell- nanoelectrode interface. First, we found that HL-1 cells prefer to engulf 3D
nanostructures in the center of the cell compared to the periphery. Cells deform
their membranes in different ways depending on the position of the engulfment-
like event. It is very likely that the engulfed nanopillar is stabilized by an actin
network in the center of the cell, while this network is in a much more dynamic
state at the edge of the cell, driving the filopodia on the planar substrate. Then,
we performed combined experimental and theoretical studies at the periphery of
the cell, which allow the prediction of free membrane deformations by consider-
ing simple lipid-bilayer deformations. For the center of the cell, we need to addi-
tionally account for the contribution of the cytoskeletal stress. Consequently, we
can estimate the junctional membrane deformation depending on nanopillar shape
and dimensions, assuming that the free membrane cannot sense the 3D nanostruc-
ture underneath due to the intervening contents of the cell. We conclude that in
both scenarios;edge and center-higher membrane coverage of the 3D electrode is
observed for the cylinder with cap. We estimated the effective seal resistance in
the vicinity of our nanoelectrode from the SEM images according to the method
described by Fendyur et al. [20], assuming a cleft between the adhered cellmem-
brane and nanoelectrode of 25 nm (see Supporting Information S6). In the center
of the cell, we obtained seal resistances of about 6 and 54 MΩ for γ, respectively,
for capped cylinders. These values are similar to those reported before by mod-
eling [20,24]. Beside the shape of the 3D nanostructures, the dependency of the
seal resistance on the engulfment-like position suggests that for in-cell recording
the position of the cell on the active electrode plays a key role for the quality of
the signal. In summary, capped cylinders with γ = 3.3 energetically and biome-
chanically favor hourglass-like adhesion compared to nanopillars with smaller γ.
We can conclude that for interfacing electrogenic cells with 3D nanoelectrodes po-
sitioned within the cell, the shape and size of the 3D nanoelectrodematter. Future
studies shall focus on recordings of electrogenic cells with nanopillars whose caps
have been designed on the basis of the results presented here. Furthermore, we
will investigate whether neuronal cell membranes respond differently to the HL-1
cells considering that neuronal cells are definitely less stiff than cardiomyocytes-
like cells, which are typically as stiff as fibroblasts.
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5.7
Methods

Chemicals

Unless otherwise noted, all the chemicals were provided by Sigma Aldrich, St.
Louis, USA

5.7.1
Fabrication of gold spines

Gold micro spines were fabricated similarly as previously shown [21]. In sum-
mary, a layer of evaporated gold of 40 nm was deposited on a 10×10 mm2 silicon
substrate.To fabricate the micro spines with different stalk heights, three different
e-beam resists have been spin-coated on to the substrates: AR-P 669.04, 679.04 and
669.07 (Allresist GmBH, Berlin, Germany) at 3000 rpm, which resulted in a resist
thickness of about 300, 500,and about 1000 nm, respectively. The arrays of circular
apertures (300, 500, 800 nm of diameter) were created by means of e-beam lithog-
raphy with a pitch of 25 µm. Next, the samples were baked at high temperature
in order to form round shaped aperture edges. Subsequently, these apertures were
filled with gold by electrodeposition. In the case of the mushroom shaped pillar the
electrodepostion was performed in order to have caps of 300-2000 nm in diameter.
As final step of spine preparation, the resist was removed in acetone releasing the
free standing gold micro spines. The samples were then cleaned in 2-propanol and
flowing distilled water for 4 h, sterilized with UV and coated with fibronectine and
of 0.02 % Bacto Gelatin (Fisher Scientific) for 1h.

5.7.2
HL-1 culture

Confluent HL-1 cells [48] in a T-25 flask were treated with 0.05 % 4 Trypsin/EDTA
(Life Technologies), suspended in 5 ml of Claycomb medium and centrifuged for
5 minutes at 1700 rpm. The cell pellet was resuspended in 5 ml of medium; 15 µl
of the suspension was then plated on every substrate, after 1h the medium volume
was filled up to 3 ml for every sample.

5.7.3
Membrane stain and fixation of cells

After 2DIV, the cells were washed with in Phosphate Buffer Saline (PBS) solution
(137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 1.8 mM KH2PO4), chemically fixed
with 3.2% glutaraldehyde in PBS. Cell membranes and nuclei were stained with
1:1000 dilution in PBS of Wheat Germ Agglutinin Alexa Fluor 488 (Life Technolo-
gies) and 1:500 in PBS of DAPI. The cells were observed in a fluorescence micro-
scope (AxioImager Z.1, Carl Zeiss AG) and then, prepared for the scanning elec-
tron microscope. For the actin stain, themembrane was permeablized with 0.1%
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TritonX in milk blocking solution, Phalloidin-Biotin-XX (Life Technologies) com-
pound was diluted in a 1:500 concentration in the total volume, and, finally, Strep-
tavidin Nanogold-AlexaFluor 488 (Life Technologies) was used in a dilution of 1:50
in milk blocking solution. In addition, the samples were stained with 0.5% osmium
tetroxide and washed with water. The water was replaced with ethanol in different
concentrations (10%-100% v/v), and finally, the cells on the substrates were dried
by critical point drying (see Supporting Information S4). Before the SEM, a thin
layer of platinum was sputtered on the samples.

5.7.4
Scanning Electron Microscopy and Focused Ion Beam

The focused ion beam cross-sectioning was performed with a Helios Nanolab Dual-
beam (FEI Company). First, a 0.4 µm layer of platinum was deposited via electron
beam induced deposition (EBID). The sample was then tilted by 52◦ and an addi-
tional 0.4 µm thick platinum layer was deposited by ion beam induced deposition
(IBID) with a current of 0.43 nA at 30 kV. The milling and the polishing of the cross
sections have been performed using a voltage of 30 kV and a current of 80 pA [49].
The images were then acquired in scanning electron mode fixing a voltage at 3 kV.

5.7.5
Image processing and analysis

Images were processed and analyzed with ImageJ. The contrast and the bright-
ness were not varied from the original SEM pictures. All the parameters evalu-
ated and discussed in the paper were manually analyzed, except for the membrane
profile, in the case of the pillar positioned at the edge of the cell. In this case, an
automatic macro utility was used for the outline recognition (courtesy of Zhanna
Santybayeva, ICS-7, Forschungszentrum Juelich, Germany). For data analysis and
plotting, we used Origin 8.2

5.7.6
Theoretical model

The deformation energy cost due to bending energy for a fluid membrane is given
by ,

Ebend = 2κ
∫

A
dSH2 , (5.1)

where κ is the bending rigidity of the membrane, H = (c1 + c2)/2 the mean cur-
vature, and S the entire membrane area. The curvatures c1 and c2 are the prin-
cipal curvatures, i. e., the smallest and the largest curvature at each point of the
membrane. We show that the experimentally measured membrane deformation
profiles can be described well even with a vanishing surface tension contribution.
The adhesion energy gain is given by the contact energy between the pillar and the
nanostructure,

Ead = −w
∫

Sad

dS , (5.2)
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where w is the adhesion strength and Sad the membrane area adhered to the struc-
tured substrate. For calculating the deformation profile of the lower membrane, we
use in addition a homogeneous pressure term, −ph(x, y), where the membrane is
described by a height field h(x, y) and the pressure mimics the contractile forces of
the cytoskeleton. Assuming a perfect wetting condition, i.e., a contact angle of π at
the detachment point of the tensionless membrane with either the substrate (for the
junctional membrane deformation at centre of the cell) or on the junctional mem-
brane (for the free membrane deformation at the edge of the cell) , we estimate an
effective strength of the adhesion w using the local curvature c at the detachment
point such that, c =

√
2w/κ.

Supporting material

Details about numerical calculations and additional images.
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S1 : Base aspect ratio

Figure S1: Scheme of all stalk aspect ratios considered in the image analysis.

The fabricated nanopillars (cylindrical and mushroom shaped), were of 3 differ-
ent stalk heights H: 300 nm, 600 nm, 1000 nm. For the radii Rs, we had: 150 nm,
300 nm, 400 nm. As aspect ratio we considered H/2Rs, so the final aspect ratios
were 0.4 (0.3 µm/0.8 µm), 0.5 (0.3 µm/ 0.6 µm), 0.75 (0.6 µm/ 0.8 µm), 1 (0.3 µm/0.3
µm, 0.6 µm/0.6 µm, 1 µm/ 0.8 µm was also approximated to 1), 1.6 (1 µm/ 0.6 µm),
3.3 (1 µm/ 0.3 µm). The aspect ratio 2 (0.6 µm/ 0.3 µm) was not considered for
the statistics due to the small number of measurements. For cylinders with caps,
we considered a cap radius, Rc, in the range of 0.15-1 µm. Depending on the pa-
rameters of the cylinder: typically the cap radius increased linearly with the stalk
radius.
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S2: FIB image analysis for pillars engulfed in the center of the cell

Sequential cross sections were obtained with FIB [1], considering a sequence thick-
ness of 100-200 nm depending on the dimensions of the pillars (Fig. S2-I). The image
processing and analysis were performed with ImageJ. Fig. S2-II (a) shows an exam-
ple of the analyzed parameters in the case of the pillar with a mushroom shape,
Fig. S2-II (b) shows an example of the attachment angle α measurements in case
of cylindrical pillars. For the angle measurements, we used the plug-in “ThreeP-
ointsCircularROI” (freeware provided by G.Landini).
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Figure S2: -I: a) Sequential cross sections of an HL-1 engulfing a cylinder with cap in the center
(scale bar 2 µm) ; b) sequential cross sections of HL-1 engulfing a cylinder without cap in the center
(scale bar 2 µm).
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Figure S2: -II: a) example of cross section for cylinder with cap engulfed in the center (scale bar 0.5
µm); b) indication of membrane contact angle analyzed for HL-1 engulfing a cylinder without cap in
the center (scale bar 0.4 µm).



5.8 Supplementary material 151

S3: Attachment angle analysis

The angle α is determined as the angle between the attaching membrane and
the vertical axis of the pillar. We distinguished three attachment scenarios: α <
90◦ , α = 90◦ , α > 90◦ as shown in the schematic of Fig. S3.

Figure S3: Attachment angle analysis
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S4: Immuno-gold-stain of actin filaments

HL-1 cells were washed with PBS solution and fixed after 2 DIV with 3.2 % glu-
taraldehyde for 15 min at room temperature. After washing with PBS, the samples
were in milk blocking solution (BS) for 1 hour and then the membrane was per-
meabilized for 15 min with 0.1 % TritonX at room temperature. After washing,
the actin was stained first with 1:500 dilution of Phalloidin-XX- Biotin (Life Tech-
nologies) and then with 1:50 dilution of Streptavidin- Nanogold- Alexa 488 (Life
Technologies) in BS for 1 h each. Afterwards, the samples were carefully washed
and treated with 0.02 M sodium citrate for 10 min. In addition, the samples were
stained with 0.5 % osmium tetroxide for 1h. Finally, the samples were washed with
distilled water, dehydrated with ethanol ranging in concentration from 10 % up to
100 % (5 minutes each) and dried using critical point drying (the ethanol was ex-
change 10 times with liquid CO2. Fig. S4 (a) shows a FIB cross section of a HL-1 cell
engulfing the pillar in the middle. In order to visualize the gold nanoparticles on
the actin filaments the contrast was enhanced (Fig. S4 b) and colored for analysis of
the nanoparticles distribution. The gold nanoparticles stain allowed us to visualize
the actin filaments and bundles morphology.

Figure S4: a) SEM image of immuno-gold stain of actin in case of HL-1 engulfing a cylindrical
pillar in the middle; b) contrast enhancement of SEM image with actin immuno-gold staining; c) red
colored gold nanoparticles on actin (scale bars 100 nm).

S5: Analysis of membrane detachment

Our investigation was focused on FIB sectioning and SEM image acquisition. We
minimized artifacts due to sample preparation and performed a step-by-step pro-
tocol, [1] considering an optimal current of 80 pA for platinum IBID, sectioning and
polishing of the cross sections. Fig.S5 (a-b) show two examples of FIB cuts when
a pillar was engulfed in the center and at the edge of the cell, respectively. We
ensured that the material underneath the cell, visible from the detached cell mem-
brane, is the gold substrate. Moreover, we compared the gold morphology from
Fig.S5 (a) with a flat gold area without cells on the same substrate. In order to es-
timate the roughness of the flat gold, we observed first a mushroom shaped pillar
at an 85◦ tilt(Fig.S5 c-d) and then acquired images of the planar gold without any
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Figure S5: a) Cross section of HL-1 engulfing a cylinder with cap in the center showing the junc-
tional membrane detaching from the planar substrate (scale bar 0.4 µm); b) cross section of cell
engulfing a cylinder with cap at the edge with junctional membrane completely attached to the planar
substrate (scale bar 0.25 µm); c) SEM image of a cylinder with row of caps (scale bar 1.5 µm, tilt
85◦); d) SEM image of a single cylinder with cap (scale bar 0.5 µm) tilt 85◦); e) SEM image of planar
gold (scale bar 250 nm); f) AFM measurement of planar gold substrates.

pillar. In Fig.S5 (e), it is visible that the planar gold substrate is not planar on the
nanoscale but rather showing some nanograins. In order to verify that SEM obser-
vations, we performed AFM measurements on the planar gold allowing us to mea-
sure a mean roughness of about 10 nm. We therefore conclude that this morphology
on the nanoscale is not originating from organic materials but just from the rather
rough gold substrates. If we compare Fig.S5 (a) with Fig.S5 (b): fixing the con-
trast, brightness, we observe that the junctional membrane in Fig.S5 (b) is showing
a darker color value than the values of the gold pillars. In SEM investigations, dark
regions often indicate not highly conductive materials, such as biological materials,
which consist mainly of carbon.
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S6: Calculating effective seal resistances

We estimated the effective seal resistance in the vicinity of our nanoelectrode ac-
cording to Fendyur et al. [2] by assuming in series connected resistive elements of
an equivalent circuit. Consequently, we estimate for a capped cylinder the effective
seal resistance Rseal,c :

Rseal,c = Rstalk + Rrim + Rcap . (5.3)

Accordingly we describe for a non-capped cylinder the seal resistance Rseal,nc :

Rseal,c = Rstalk + Rrim , (5.4)

The stalk contribution Rstalk is determined by:

Rstalk = ρhstalk/(2πdjrstalk) . (5.5)

with the rim contribution Rrim is given by:

Rrim = ρ/(2πdj) ln(
rcap

rstalk
) . (5.6)

Furthermore, we approximate the resistance contributions Rcap and Rtop by ap-
proximating this as a special case of Rrim for a r‘cap considering the curvature of
the spherical cap and a very small effective r‘stalk value. The stalk heights are given
by hstalk, rcap equals the cap radius and rstalk the stalk radius. The conductivity (ρ)
within the cleft is assumed to be 100 Ω cm, the cleft thickness for cardiomyocytes
is approximated with dj = 25 nm [3]. The seal resistance (Fig.S6 is then obtained by
considering the engulfment percentage in the center of the cell (Fig. 5 g). The abso-
lute seal resistances Rseal,c and Rseal,nc in this elementary approximation are highly
dominated by the stalk contribution for aspect ratios greater than 1.0 and can reach
54 MΩ for a capped cylinder with an aspect ratio of 3.3.
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Figure S6: Effective seal resistance in the vicinity of a nanoelectrode as a function of the structural
aspect ratio (H/D) in the center of the cell (engulfment < 100%).
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Theoretical analysis for pillars engulfed in the center of the cell

In the center of the cell, the junctional membrane detaches from the substrate
around the pillar due to the pulling forces of the cytoskeleton. The membrane can
be described in Monge gauge by a height field h(x, y) above a reference plane. For
almost planar membranes, the mean curvature can be expressed by the Laplacian,
H = ∇2h(x, y)/2, and the membrane deformation energy is

E =
∫

A
dA
[κ

2
(∇2h(ρ))2 − ph(ρ)

]
. (5.7)

where ρ = (x, y) is the vector in the reference plane and the center of the pillar
is located at ρp = (0, 0); A is the membrane area projected to the reference plane.
The membrane bending energy is characterized by the bending rigidity κ ; the cy-
toskeletal stress is modeled by the pressure p. The optimal membrane profile is
found by energy minimization and satisfies the Euler-Lagrange equation [4],

∇4h(ρ) = p/κ . (5.8)

The deformation profile that solves the equation is,

ρ =
ρ2

4
(2c2 − c3) + c4 + (c1 +

ρ2

2
c3) ln(ρ) +

ρ4

64
p
κ

, (5.9)

where the integration constants are determined by the boundary conditions for
the detachment from pillar and substrate. Two boundary conditions are given by
the detachment height at the pillar, h(rd) = 0 and h(rs) = hs, with stalk radius
rs = Rs and the detachment radius of the membrane from the substrate, rd = Rd,J .
The membrane detaches smoothly from the substrate, such that the third bound-
ary condition is dh(ρ)/dρ|ρ=rd = 0. The detachment angle at the pillar is un-
known, which implies that the corresponding natural boundary condition at the
stalk, ∇2h(ρ)2|ρ=rs = 0, has to be fulfilled.

We therefore find the integration constants:

c1 =
64hsκr2

d [2(ln rd − ln rs)− 1] + pr2
d
[
5r4

s − 8r2
s r2

d + 3r2
d + 2(3r4

s − 2r4
d)(ln rd − ln rs)

]
64κ

[
(r2

s − r2
d) + 2r2

d(ln rd − ln rs)(1 + ln rs − ln rd)
]

c2 =
[
64κ(hs + 2hs ln rs) + p(r4

d + 4r2
dr2

s − 5r2
s + 2 ln rs(3r4

s + 3r4
d + 4r4

d ln rs))

−4r2
d(2r2

s + r2
d)(1 + 2 ln rs) ln rd + 16r2

s r2
d(ln rd)

2)

/
[
64((r2

s − r2
d)− 2r2

d(ln rs − ln rd)(1 + ln rs − ln rd))
]

c3 =
−64hsκ + p

[
3r4

s − 4r2
s r2

d + r4
d + 4r2

d(r
2
d − 2r2

s )(ln rs − ln rd)
]

32κ
[
(r2

s − r2
d)− 2r2

d(ln rs − ln rd)(1 + ln rs − ln rd)
]
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c4 =
[
64hsr2

d(2(1 + ln rs) ln rd − 1− ln rs − 2 ln r2
d)− pr2

d(2r4
d(ln rs)

2

+(3r4
s − 4r2

s r2
d + 3r4

d − 2(3r4
s + r4

d) ln rd) ln rs

−r2
s (r

2
s − r2

d − 2(r2
s − 2r2

d) ln r2
d + 6r4

s ln r2
d))
]

/
[
64κ((r2

s − r2
d)− 2r2

d(ln rs − ln rd)(1 + ln rs − ln rd))
]

The detachment angle of the stalk is :

α = π/2− tan−1
[
64(hs(r2

s − r2
d + 2r2

d(ln rd − ln rs)) + p((r2
d − r2

s )(r
4
s − 4r2

s r2
d + 3r2

d))

+ 2r2
d(r

4
d + 2r2

s r2
d − 3r4

s + 4r4
s (ln rs − ln rd))(ln rs − ln rd)))

]
/
[
(64rs(r2

s − r2
d − 2r2

d(ln rs − ln rd)(1 + ln rs − ln rd)))
]

In Fig. S7 (a), we plot α as function of the pressure p for stalk radius Rs = 0.3 µm ,
detachment height hs = 0.2 µm, and detachment length Rd,J = 0.9 µm , and for κ =
50 kBT. We find a large angle for small p and a small angle for high p . Furthermore,
for very high pressure the angle changes only weakly with the cytoskeletal stress.
Therefore a small error in the experimental measurement of the parameters in this
regime can lead to a large error for the cytoskeletal strength that we determine
from the experimental deformation profiles. Using the standard deviation from
the experimental values, we find that the error bar for the maximal cytoskeletal
strength in Fig. 6 of the main manuscript, p = 435 Pa , ranges from 135 Pa < p <
1,850 Pa.

In Fig. S7 (b), we plot the total energy for the junctional membrane around a pil-
lar as function of the detachment length for Rs = 0.3 µm, hs = 0.2 µm, κ = 50 kBT,
w = 12.5 µJ/m2, and several pressure values p = 0 , p = 52Pa, and p = 104Pa. The
minimum of the energy corresponds to the optimal detachment length, for high
pressure the membrane detaches from the substrate. The bending energy has a
minimum value at a specific detachment length; while a finite pressure decreases
the total energy of the system for increasing detachment length, the lack of ad-
hesion energy increases the total energy for increasing detachment length (Fig. S7
(c)). The optimal detachment length therefore increases with increasing pressure
(Fig. S7 (d)). The membrane deformation profiles change from catenoid-like for
vanishing pressure to cone-like for p = 57Pa, and to a strongly detached mem-
brane for p = 114Pa (Fig.S7 (a)).
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(a) (b)

(c) (d)

(e)

Figure S7: a) Angle α for the detachment of the junctional membrane for a pillar with stalk radius
Rs = 0.3 µm, detachment height hs = 0.2 µm, detachment length Rd,J = 0.9 µm and for κ = 50 kBT.
b) Total energy of the junctional membrane as function of the detachment length Rd,J for a pillar with
stalk radius Rs = 0.3 µm, detachment height hs = 0.2 µm, membrane bending κ = 50 kBT, adhesion
strength w = 12.5 µJ/m2, and p = 0 (red, solid), p = 52Pa (green, long dashed), and p = 104Pa
(blue, short dashed). c) Bending contribution (red, solid), adhesion contribution (blue, short dashed),
and pressure contribution (green, long dashed) to the total energy of the junctional membrane as
function of the detachment length Rd,J for a pillar with stalk radius Rs = 0.3 µm and detachment
height hs = 0.2 µm, membrane bending rigidity κ = 50 kBT, adhesion strength w = 12.5 µJ/m2, and
p = 52Pa. d) Membrane detachment length Rd,J as function of the pressure p for a pillar with stalk
radius Rs = 0.3 µm and detachment height hs = 0.2 µm, membrane bending rigidity κ = 50 kBT and
adhesion strength w = 12.5 µJ/m2. e) Membrane deformation profiles for a pillar with stalk radius
Rs = 0.3 µm, detachment height hs = 0.2 µm, membrane bending rigidity κ = 50 kBT, adhesion
strength w = 12.5 µJ/m2, and p = 0 (red, solid), p = 52Pa (green, long dashed), and p = 104Pa
(blue, short dashed).
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S8: Theoretical analysis for pillars engulfed at the edge of the cell

To investigate the deformation of a membrane adhering to a substrate we employ
triangulated [5] membranes using the finite element package Surface Evolver [6].
Fig. S8 (a) shows a membrane deforming around the hemispherical cap of radius
Rc at a height H from the substrate and detaching at a distance Rd,F. This model
elegantly captures the experimental situation of the free membrane deforming at
the edge of the cell in response to pillar geometry and detachment distance, Rd,F.

We next calculate the bending energy for a tensionless membrane of bending
rigidity κ that detaches tangentially at the cap and connects smoothly to the sub-
strate and detachment length Rd,F. The integral of the squared mean curvature, H2,
over the entire membrane area A is given by Ebend = 2κ

∫
A dAH2 and comprises

the deformation cost due to bending. This quantity is calculated numerically by
discretization on triangulated network.

We find the membrane deformation profile by minimizing the discretized squared
mean curvature energy over the triangulated network, using the Surface Evolver
method “star_perp_sq_mean_curvature”, as described in our previous work [7,8].
To search for the global minima in the energy landscape, the default method in Sur-
face Evolver is to estimate the negative gradient of the energy and move linearly
along the direction of steepest descent of the energy landscape. In addition to the
minimization steps, the network is refined and smoothened to achieve numerical
consistency with the estimated bending energy during energy minimization. To
avoid meta-stable states and ensure convergence with high precision for the esti-
mated value of bending energy, we also use the Hessian for minimization. This
approach uses the Hessian matrix formed by the second derivatives of the energy
to determine the best quadratic approximation of the energy to seek for equilibrium
profiles.

The choice of a tensionless membrane allows us to interpret the local curvature
c given by the inverse radius of a circle approximating the deformation profile at
the detachment point as an adhesion strength w between the membrane and the
substrate [9], since c =

√
2w/κ. Such an adhesion strength is difficult to estimate

in experiments and therefore the continuum membrane model is an efficient tool
to extract such information from the deformation profiles of the membrane. An-
other advantage of choosing vanishing membrane tension is that the deformation
costs due to bending are scale invariant, therefore the predictions from the model
are universally valid, independent of the chosen characteristic length scale of the
system given by the radius Rc of the cap.

A typical value for the cap radius used in our experiments is 0.4 µm. In Fig. S8
(b), we show the theoretical membrane deformation profiles for a small and high
stalk height, H=0.5 µm and H=1.0 µm. For each stalk height, varying the detach-
ment length Rd,F significantly affects the membrane profile around the cap each
equilibrium deformation profile corresponds to a particular deformation cost, see
Fig. 5 in the main text. Deep-wrapped states occur for small Rd,F with a higher
curvature c near detachment point of the membrane from the substrate than for
shallow-wrapped states with higher Rd,F values. This clearly indicates that deep-
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wrapped states require higher adhesion strengths to compensate the higher defor-
mation costs due to bending, as shown in Fig. 5 of main text.
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Figure S8: a) Membrane deformation profile (shown with dashed line) around a hemispherical
cap of radius R at a height H from the substrate. The membrane detaches from the substrate at a
distance Rd,F from the center of the pillar. For small Rd,F, a deep wrapped state (left) is found with
high curvature near the detachment point on the substrate compared with the shallow state (right)
where the membrane only weakly wraps the pillar in response to the pillar geometry. b) Membrane
deformation profiles for pillars with stalk heights H = 0.5 µm and H = 1 µm, cap radius Rc = 0.4
µm and several values of the detachment length given in the figure legend.
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6
Capillary Assembly of Microscale Ellipsoidal, Cuboidal, and
Spherical Particles at Interfaces

6.1
Abstract

Micron-sized anisotropic particles with homogeneous surface properties at a
fluid interface can deform the interface due to their shape. The particles thereby
create excess interfacial area and interact in order to minimize this area, which
lowers the total interfacial energy. We present a systematic investigation of the
interface deformations around single ellipsoidal particles and cuboidal particles
with rounded edges in the near field for various contact angles and particle aspect
ratios. The correlation of these deformations with capillary bond energies—the
interaction energies of two particles at contact—quantifies the relation between
the interactions and the near-field deformations. We characterize the interac-
tions using effective power laws and investigate how anisotropic particles self-
assemble by capillary forces. Interface deformations and particle interactions
for cuboidal particles are weaker compared with those for ellipsoidal particles
with the same aspect ratios. For both particle shapes, the bound state in side-by-
side orientation is most stable, while the interaction in tip-to-side orientation is
repulsive. Furthermore, we find capillary attraction between spherical and ellip-
soidal particles. Our calculations therefore suggest cluster formation of spherical
and ellipsoidal particles, which elucidates the role of spherical particles as stop-
pers for the growth of worm-like chains of ellipsoidal particles. The interaction
between spherical and ellipsoidal particles might also explain the suppression
of the “coffee-ring effect" that has been observed for evaporating droplets with
mixtures of spherical and ellipsoidal particles. In general, our calculations of
the near-field interactions complement previous calculations in the far field and
help to predict colloidal assembly and rheological properties of particle-laden
interfaces.

6.2
Introduction

For a system with more than one phase, an energetic cost is associated with the
interface where two phases are in contact. The presence of particles reduces the
area of direct contact between the phases, but nonspherical particles can lead to
interface deformations and therefore locally create excess interface area. Mini-
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mization of this excess area induces anisotropic, long-range interactions between
the particles [1–3]. These capillary interactions at fluid interfaces determine the as-
sembly of both mesoscopic and macroscopic particles [4–6]. An illustrative exam-
ple at the macroscopic scale is insects that exploit their capillary interaction with
walls to “climb up" the meniscus [7]. For micron-sized colloidal systems, capillary
interactions lead to self-assembled two-dimensional aggregates in various forms,
such as capillary arrows [8], rod-like assemblies [9], worm-like chains [10,11], and net-
works [12,13].

(a) (b)

Figure 1: (a)Shapes of anisotropic particles: ellipsoidal particle with aspect ratio 3, spherical par-
ticle, and cuboidal particles with aspect ratios 2.25 and 1. We characterize the particle size a by
half the minor axis of the ellipsoid, by the radius of a sphere, and by half the short edge of a cuboid.
(b) Schematic representation of an ellipsoidal particle trapped at a fluid interface. The interfacial
tensions between the different phases are γsv, γsl , and γlv, where s indicates the solid, l the liquid,
and v the vapor (or another liquid) phase. The contact angle θc is determined by the Young-Dupré
equation.

Colloids at interfaces can be used to fabricate colloidosomes, capsules with ad-
justable size and mechanical properties that can be applied for encapsulation and
controlled release of drugs [14]. Another example for colloidosomes is fat globules
in homogenized milk with mean diameter of less than 1 ¯m that are stabilized by
casein micelles with diameters between 50 and 600 nm [15]. Colloids can also lead
to the formation of surfactant-free Ramsden-Pickering emulsions [12,16,17] and bi-
jels [18]. However, particles at interfaces can also have a destabilizing effect. For
example, crushed mineral crystals like galena or hematite when immersed in thin
films destabilize foams used for froth floatation [19]. In general, capillary interaction
energies are proportional to the interfacial tension and increase with the amount
of excess area that is generated due to distortion of the interface around particles.
Stronger interface deformations result in stronger capillary interactions. For typical
particle sizes of several micrometers, capillary interaction energies are much larger
than the thermal energy kBT.

Technological advancement in fabrication techniques has facilitated experimen-
tal studies of colloidal assembly for anisotropic particles of various shapes, such
as ellipsoidal, cube-like, and peanut-like shapes [10,17]. nonspherical particles can
cause interface deformations solely due to their shape anisotropy. For example, for
ellipsoidal particles at an air-water interface, the interface is pushed down at the
tips and pulled up at the sides for contact angles θc < 90◦ [11,20]. This creates a
quadrupolar distortion of the interface height. In the far field, the interface distor-
tions for various particle shapes can be described using a multipole expansion. The
dominant multipole contribution for ellipsoidal particles is the quadrupole [21,22].
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However, for more complex particle shapes and for the calculation of particle-
particle interactions in the near field, a quadrupolar approximation is not sufficient.
Using numerical calculations employing triangulated surfaces, we calculate inter-
face deformations and interaction potentials for ellipsoidal and cuboidal particles,
see Fig. 1 (a).

For micron-sized spherical particles with homogeneous surface properties, a pla-
nar interface remains undeformed around the particle. Therefore two spherical
particles at a planar interface do not experience lateral capillary forces. Additional
forces are required to deform the interface and induce particle-particle interactions,
such as floatation forces due to the balance of buoyancy and gravity for large par-
ticles [23] and immersion forces due to partial wetting of particles confined in thin
films [24,25]. In addition, curved interfaces induce capillary interactions between
spherical particles (and modify interactions between nonspherical particles) [2,26].
We will show that a spherical particle interacts with a nonspherical particle at a
planar interface via interface deformation.

We first introduce the model and describe the numerical method employed.
Next, we present our numerical results for interface deformations around single
ellipsoidal and cuboidal particles and compare our results with experimental data
from the literature. Finally, we calculate interactions between two ellipsoidal par-
ticles, two cuboidal particles, and a spherical and an ellipsoidal particle.

6.3
Model

(a) (b) (c)

Figure 2: (a) Angles ω1 and ω2 indicate the orientation of the particle 1 or 2, respectively, with
respect to the vector joining the centers of the two particles. The center-to-center distance is given
by dcc for a particle of aspect ratio b/a. Triangulated interface around two cuboidal particles with
aspect ratios b/a = 3 for contact angle θc = 60◦ in (b) side-by-side, (c) tip-to-side orientation.

The energy cost per area of the interface is characterized by the interface ten-
sions. Typical adsorption energies of mesoscopic particles are several orders of
magnitude larger than the thermal energy kBT and lead to an almost irreversible
entrapment of the particle at the interface [27,28]. However, interface deformations
around the particles require much smaller energies than the detachment of a parti-
cle from the interface and can arise due to imposed electromagnetic or gravitational
fields [21,23,29,30], inhomogeneous chemical surface properties of the particles [10,31],
surface roughness [32,33], and particle shape [11,22,34–36].

The energy of smooth homogeneous particles at interfaces is given by

E = γlvSlv + γsvSsv + γslSsl , (6.0)
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where γlv, γsv, and γsl are the interface tensions. Here, s indicates the solid particle,
l the liquid phase, and v the vapor phase (or another liquid phase). Slv is the inter-
facial area between liquid and vapor, Ssv is the area of the particle that is exposed
to the vapor, and Ssl the area of the particle that is in contact with the liquid. The
contact angle θc is determined by the force balance at the contact line, see Fig. 1 (b).
Using the Young-Dupré equation, γsv = γlv cos θc + γsl , we rewrite Eq. (6.3) as

E = γlv(Slv − Ssl cos θc) + γsv(Ssl + Ssv) . (6.0)

The second term in Eq. (6.3) is constant, because Ssl + Ssv is the the total surface
area of the particle. For fixed contact angle, the energy of the system therefore de-
pends only on the first term, which is proportional to the liquid-vapor interfacial
tension γlv that we will refer to as γ henceforth. Typical values for interface ten-
sions are 70 mN/m for the air-water interface and 20 mN/m for an ethanol/air or
a methanol/air interface.

To satisfy the Young-Dupré equation locally at every point on the three-phase
contact line, the interface around an ellipsoidal particle or a cuboidal particle
with rounded edges cannot be planar. Only in mirror-symmetric situations with
θc = 90 ◦, a planar interface around these particles remains flat. The system’s ten-
dency is to reduce its total energy and therefore to reduce the total interface area.
The overlap of the interfacial deformations around the particles leads to long-range
interface-mediated interactions between the particles, also called (lateral) capillary
forces. The capillary forces determine the interaction of particles at interfaces to-
gether with direct interactions, such as electrostatic, magnetic, and elastic interac-
tions [21,29,30].

The importance of gravitational forces can be characterized by the Bond number,
also known as Eötvös number Eo, which is the ratio of gravitational and interfa-
cial forces, Bo = ∆ρga2/γ. ∆ρ is the density difference between particle and fluid,
g is the gravitational constant, and a the size of the particle. Gravitational forces
can be neglected if the Bond number is much smaller than 1. For a typical den-
sity difference between silica and water and for particle sizes in the micrometer
range [26], Bo ≈ 10−8. Hydrodynamic forces can be neglected if the capillary num-
ber, Ca = ηv/γ, is much smaller than 1. The capillary number is the ratio of viscous
forces and capillary forces, where η is the viscosity of the fluid and v is the veloc-
ity of the particle. For typical velocities of 100 ¯m/s for particles with sizes of few
micrometers in water [22], Ca < 10−5. Therefore, both direct hydrodynamic interac-
tions and a distortion of the interface due to particle motion do not have to be taken
into account for micron and submicron-sized particles.

Interaction energies between two particles are expressed with respect to the
undisturbed flat interface in absence of the particles, such that the energy of two
non-interacting particles (at large distances) vanishes. Lengths are usually given in
units of the particle size a, energies as ∆E/γa2. For a typical particle size a ≈ 1 µm
(Fig. 1 (a)) and a typical interfacial tension γ ≈ 20 kBT/nm2, γa2 ≈ 2× 107 kBT.



6.4 Method 169

(a)

z / a ×10-2

-1.5

0.0

1.5

(b)

z / a ×10-1

0.0

1.0

-1.5

(c)

z / a ×10-2

0.0

-6.0

-3.0

(d)

z /a ×10-3

-6.0

0.0

2.0

Figure 3: Deformation profiles of an interface around (a) an ellipsoidal particle with aspect ratio 1.25
at θc = 53.84 ◦, (b) an ellipsoidal particle with aspect ratio 5.0 at θc = 48.47 ◦, (c) a box-like particle
with aspect ratio 2.0 at θc = 62.93 ◦, and (d) a particle with Hauser’s cube shape at θc = 56.28 ◦.
For all particles, we have used the contact angle θc that corresponds to maximum particle-induced
interface distortion; see Fig. 4.

6.4
Method

We describe cuboidal particles by the shape equation (x/b)6 + (y6 + z6)/a6 = 1
and ellipsoidal particles by (x/b)2 + (y2 + z2)/a2 = 1. We vary the aspect ratios in
the range 1 ≤ b/a ≤ 10, where for b/a = 1 we obtain Hauser’s cube and a sphere,
respectively. The interface patches to which the particles are bound are delimited by
circular wire frames with radii between 20a and 50a. We investigate both ellipsoidal
and cuboidal particles with their long axes parallel to the interface. This is the stable
orientation for prolate ellipsoidal particles and a stable or metastable orientation for
cuboids [37,38]. We assume that this orientation of the particles remains unchanged
when the particles approach each other. For particles attached to membranes, the
orientation changes considerably when the inter-particle distance changes and a tilt
angle with respect to their azimuthal axis has to be taken into account [39].

In order to calculate the capillary interaction, we have to obtain an accurate in-
terface deformation for the boundary conditions given by the Young-Dupré equa-
tion and the particle shape. With the assumption of small deformations of the in-
terface, approximative approaches have been used, such as the superposition of
axisymmetric interfacial deformations due to single particles obtained from so-
lution of the linearized Young-Dupré equation [20,36,40], superposition of capillary
multipoles [1,22,33,41,42], an inclined-flat plate approximation [43], and a functional ex-
pansion of the interfacial energy for displacements of the contact line position [44].
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However, these approaches are limited in their applicability and generally hold for
large distances between the particles, i. e., in the far field. An analytical description
of the interface deformation for arbitrary particle shape remains elusive, because it
requires solving a fully non-linear second-order partial differential equation. There-
fore, there has been much interest in accurate numerical approaches using finite-
element methods [2,9,22,26,34,35,45,46] and boundary-element methods [3,8,47,48], which
are more flexible in terms of their applicability.

We use the finite-element program Surface Evolver [49] version 2.60 to minimize
the energy and to obtain deformation profiles, see Figs. 2 and 3. An interface is ini-
tially set up using a triangulated network of first-order Lagrange elements, where
edges are defined by straight lines and triangles by planar patches. The contact line
at the particle is optimized in regular steps to attain its equilibrium profile. During
the energy minimization we optimize the vertical position of the particle with re-
spect to the fluid interface boundary allowing it to attain its equilibrium position.
For single particles, this approach is equivalent to fixing the vertical position of the
particle and letting the interface at the far field free, such that it can adjust to its op-
timal height. The global minimum is approached using an algorithm that uses both
non-linear Hessian and steepest-descent energy minimization steps [49]. We refine
the mesh adaptively to obtain accurate values for the energy. For the final mini-
mization steps, the triangulation is switched to a network formed by second-order
Lagrange elements. In addition to the end-point vertices, each edge is endowed by
a midpoint vertex thereby describing it as a quadratic curve. This allows calcula-
tion of surface energies with an extremely high precision.

6.5
Interface Deformations

For a nonspherical particle with homogeneous surface composition, a constant con-
tact angle is usually not achieved for a planar interface and for θc 6= 90 ◦. Figure 3
shows calculated interface deformations h(x, y) around ellipsoidal and cuboidal
particles; the deformation is also experimentally accessible using phase-shift inter-
ferometry [3,8,11,20,50]. Quadrupolar symmetry for the interface deformation is found
for elongated particles, which is in good agreement with theoretical predictions
and experiments for polystyrene ellipsoidal particles at the air-water interface [3,20].
Therefore the deformation profile around elongated particles is often characterized
by the amplitude of an elliptical quadrupole [22], which can be extracted from the
interface deformation profiles along the long and short axes (shown in the Support-
ing Information).

While we expect cubes with sharp edges not to deform the interface, we observe
a considerable interface deformation for our cuboidal particles. The finite edge cur-
vature therefore plays a crucial role for the qualitative behavior of the particle at the
interface. For a cuboidal particle defined by (x/b)n + (yn + zn)/an = 1 with n > 4
and even, the edge curvature is cedge = 2(2−n)/2n(n− 1)/a. Our elongated cuboidal
particles with n = 6 and a face on the interface show interface deformations that are
dominated by the quadrupolar contribution, as observed for ellipsoids. Hauser’s
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cubes with n = 6 and aspect ratio b/a = 1 induce a qualitatively different inter-
face deformation with a leading octupolar contribution to the interface deformation
around the particle; see Fig. 3.

While the quadrupolar approximation for the interface deformation around sin-
gle ellipsoidal particles works very well in the far field, we will focus in the sub-
sequent part of the manuscript on numerical calculations for near-field interface
deformations that cannot easily be calculated analytically. We characterize the de-
formation by the difference of the maximal and minimal height along the contact
line at the particle, ∆u.

6.5.1
Near-Field Interface Deformations around Single Ellipsoidal and Cuboidal particles
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Figure 4: Maximal height difference ∆u of the contact line for (a) ellipsoidal particles and (b)
cuboidal particles with several aspect ratios 1 ≤ b/a ≤ 10. Our numerical data are normalized
by half the length of the minor axis a and plotted as function of the contact angle θc. The maximum
value of ∆u, depicted by ×, shifts to smaller contact angles with increasing particle aspect ratio, as
indicated by the gray lines that serve as guides to the eye.

Figure 4 shows the variation of ∆u/a with the contact angle for single ellipsoids
and cuboids with various aspect ratios, where a is the half the minor axis of an
ellipsoid and half the short edge of a cuboidal particle. In Ref. 3, the length chosen
to normalize ∆u is the radius R of the spherical particles that has been stretched
to obtain the ellipsoids. In order to compare these results with our reported ∆u/a
values, our data have to be rescaled by a/R = 3

√
a/b. With increasing contact

angle, ∆u/a grows nonlinearly from zero, attains a peak value ∆umax/a, and finally
decreases to zero for θc = 90◦. For ellipsoids, our numerically calculated values
are in excellent agreement with those from previous calculations using boundary
element methods [3] and multipole expansions [44], see Supporting Information.

For ellipsoids with aspect ratios 1.1 ≤ b/a ≤ 10, the position of the peak is
found for contact angles 43◦ < θc < 54◦, see Fig. 4 (a). The peak shifts from larger
to smaller contact angles with increasing aspect ratio of the particle [3], while the
height of the peak increases from ∆umax/a ≈ 0.013 for b/a = 1.1 to ∆umax/a ≈ 0.4
for b/a = 10; tabulated data are provided in the Supporting Information. We have
calculated ∆u/a for aspect ratios up to b/a = 13 (see Supporting Information) and
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find that the peak height increases monotonically with increasing aspect ratio for
fixed length of the small axis of the particle. Because larger interface deforma-
tions correspond to stronger interactions between particles, the 40-fold increase of
∆umax/a in our calculations predicts much more robust capillary interactions for
increased particle aspect ratios.

In Fig. 4 (b), ∆u/a is plotted for cuboidal particles with aspect ratios 1 ≤ b/a ≤
10. Contrary to a spherical particle, Hauser’s cube (that is obtained for b/a = 1)
leads to a finite contact line undulation. Our elongated cuboidal particles induce
contact line undulations that are about a factor of 1/2 weaker than for ellipsoidal
particles with the same aspect ratio. For aspect ratios b/a > 2, the position of
the peak in ∆u/a decreases from θc ≈ 63◦ for b/a = 2 to θc ≈ 55◦ for b/a = 10.
However, the weak dependence of ∆u/a on θc makes it difficult to evaluate the peak
position accurately. As for ellipsoids, the maximal interfacial deformation increases
with increasing aspect ratio from ∆umax/a ≈ 0.07 for b/a = 2 to ∆umax/a ≈ 0.24
for b/a = 10. We therefore also expect for cuboidal particles an increase of the
strength of the capillary interaction between particles with increased aspect ratio.

6.5.2
Comparison with Experimental Measurements

An experimentally measured ∆u/a value can correspond to two contact angles,
because of the nonmonotonic dependence of ∆u/a on the contact angle θc. This
results in a “contact angle mystery”, if one aims at extracting the contact angle and
therefore the surface properties of a particle from measurements of the interface
deformation.

In Fig. 5 (a), the contact angle solutions are plotted together with corresponding
experimental measurements of ∆uc/a taken from Ref.20. Note that this experimen-
tal value ∆uc/a is the height difference around the contour of the particle, which
is smaller than ∆u/a that is measured along the contact line [20]. The lower branch
for smaller θc has already been reported in Ref. 20, the upper branch more recently
in Ref. 3. We find good agreement with this data in the literature. Because all el-
lipsoids for the experimental measurements have been fabricated from polystyrene
spheres, the expectation is that the chemical properties of their surfaces are iden-
tical and θc does not vary with the aspect ratio. The variation of θc with b/a in
Fig. 5 (a) has therefore been attributed to the change of the surface properties upon
stretching the particle in the experiments [3,11].

In Fig. 5 (b), the branches of the contact angle are plotted for a fixed value of ∆u/a
independent of the aspect ratio. The contact angles on the upper branch increase
and the contact angles on the lower branch decrease monotonically with increasing
aspect ratio. For ∆u/a = 0.043, two branches are found already for small aspect
ratios, but they change only marginally with the aspect ratio for large aspect ratios.
For ∆u/a = 0.23, corresponding contact angles can only be found for b/a & 4;
therefore, there is a significant variation with the aspect ratio for 4 < b/a < 13. In
Fig. 6 (a), the branches are calculated for cuboidal particles at fixed ∆u/a = 0.045
and for 1.75 ≤ b/a ≤ 6. Contrary to ellipsoids, where the variation of the contact
angles with the aspect ratio is of similar magnitude for both branches, for cuboids
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Figure 5: Ellipsoidal particles. (a) Contact angles that correspond to experimentally measured val-
ues [20] for ∆uc (shown in the inset) for several aspect ratios b/a; see Fig. 4 (a). The upper branch
(red) is the solution for large θc, while the lower branch (blue) is the solution for small θc. Both con-
tact angle branches evaluated are in good agreement with previously reported data. [3,20] (b) Contact
angle branches as a function of the aspect ratio for ∆u/a = 0.043 (left) and ∆u/a = 0.23 (right).

the upper branch varies over a much smaller range of the contact angle, 79◦ < θc <
89◦, than the lower branch, 7◦ < θc < 39◦.

Due to the double-valued relation between the aspect ratio and the contact angle,
it is not sufficient to measure ∆u/a only to determine the surface properties of the
ellipsoids. In addition, the projected area S enclosed by the undulating contact line
can be determined by reflection illumination (as for interferometry). The ratio of
this projected area to the projected area for θc = 90 ◦, S/S0, is a monotonically
increasing function of θc. Because S(θc)/S0 is single-valued for all θc, it can be
used to “solve” the contact angle mystery and choose the correct branch. S/S0 for
ellipsoids has already been calculated in Ref. 3; our calculations agree well with
the data from the literature, as shown in Fig. S3 in the Supporting Information. In
Fig. 6 (b), we plot S/S0 for cuboidal particles. Our numerical results can therefore
be used to evaluate experimentally measured particle-induced interface distortions
around cuboidal particles.

6.6
Two-Particle Interactions

The total interface area and thus the total energy of a system of several particles can
be lowered or increased by the interference of the interface deformations around
particles. We have calculated the pair interactions between two ellipsoidal parti-
cles and two cuboidal particles that approach each other in various relative orien-
tations, see Figs. 7 and 2. We have also calculated the capillary interaction between
a spherical and an ellipsoidal particle, see Fig. 10.
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Figure 6: Cuboidal particles. (a) Contact angles θc as function of aspect ratio 1.75 ≤ b/a ≤ 6 at
∆u/a = 0.045, see Fig. 4 (b). The upper branch (red) is the solution for small θc, while the lower
branch (blue) is the solutions for small θc. (b) Ratio of projected area enclosed by the contact line for
the contact angle θc to the projected area enclosed by the contact line for θc = 90◦, S/S0 is plotted
for varying aspect ratio 1.00 ≤ b/a ≤ 5 .

6.6.1
Capillary Interaction between Ellipsoidal Particles

The interaction potential for particles at large distances between their centers of
mass, dcc, assuming a quadrupolar interface deformation due to each particle is [44]

∆Equad
cap /γa2 = −3π cos(2ω1 + 2ω2)(∆u/a)2(dcc/a)−4 . (6.0)

The angles ω1 and ω2 describe the particle orientation with respect to the line that
joins the centers of the particles for particle 1 and particle 2, respectively; see Fig. 2.
The equation is valid in the far field and assumes quadrupolar interface deforma-
tions around the particles. For ω1 = ω2 = 90◦ the particles are oriented side-by-
side (S-S) and for ω1 = ω2 = 0◦ tip-to-tip (T-T), see Figs. 7 (a) and (b). Equa-
tion (6.6.1) predicts attraction for S-S and T-T, but repulsion for tip-to-side (T-S)
orientation with ω1 = 0◦ and ω2 = 90◦, see Fig. 7 (c). The interaction potential de-
cays as (dcc/a)−4; interestingly, the magnitude of the predicted interaction energies
are equal in S-S, T-T, and T-S orientation for equal center-of-mass distances.

In Fig. 7, the pair interaction potentials for ellipsoidal particles are plotted for θc
= 50◦ and 80◦ for distances dcc/a . 15. The interactions are attractive in S-S and T-T
orientations and repulsive in T-S orientation. We fit the numerical data by effective
power laws, ∆E/γa2 = k(dcc/a)−m, where the exponent −m characterizes the de-
cay of the interaction. In S-S and T-T orientations the interaction potential decays
more slowly (m < 4) and more rapidly (m > 4) than in the far field, respectively.
Consequently we expect the values of the interaction energies at small distances
to differ from that predicted by Eq. (6.6.1). For the T-S orientation, m ≈ 4 is only
slightly smaller than in the far field, and the interaction potential is of the same or-
der of magnitude as the interaction potential predicted by Eq. (6.6.1). Therefore, in
general, the quadrupolar approximation does not describe the capillary interaction
quantitatively in the near field; the exponents obtained from the power-law fits and
the energies of the ellipsoids at contact are tabulated in the Supporting Information.
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The capillary forces are Fcap = ∂∆E/∂dcc and fit by the power law Fcap ∼
(dcc/a)−(m+1). Using Eq. (6.6.1), we find Fquad

cap ∼ (dcc/a)−5. Experimental mea-
surements of the interaction force in Ref. 11 give m = 4± 0.3 and m = 3.1± 0.2 for
particles with aspect ratios in the range 3 < b/a < 4.3 in T-T and S-S orientation,
respectively. Analogously to the evaluation of the experimental data, we fit our
numerical results to an effective power-law decay of the interaction potential in the
near field [11], where the power-law exponent m(b/a, θc, ω1, ω2) depends strongly
on the contact angle, the aspect ratios, and the relative orientations of the particles.
With increasing aspect ratio, m decreases for S-S orientation and increases for T-T
orientation.
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Figure 7: Two ellipsoidal particles with aspect ratios b/a = 3 for contact angle θc = 50◦ in (a) side-
by-side, (b) tip-to-tip and (c) tip-to-side orientation. The particles attract each other in side-by-side
and tip-to-tip orientation and repel each other in tip-to-side orientation. The side-by-side orientation
is energetically most stable. Interaction energies ∆E/γa2 for two identical ellipsoidal particles
with aspect ratios (d) b/a = 2 and (e) b/a = 3 and contact angles θc = 50◦ and θc = 80◦. The
energies are plotted as a function of dcc/a for side-by-side (S-S), tip-to-tip (T-T), and tip-to-side (T-S)
orientation. The interaction is attractive in S-S and T-T orientation and repulsive in T-S orientation.
Inset: fit of the numerical data using ∆E/γa2 = k(dcc/a)−m; the fit parameters are given in the
figure and tabulated in the Supporting Information.

The far-field description of the interaction potential in Eq. 6.6.1 predicts ∆Equad
cap ∼

(∆u/a)2, which connects the interface deformation around single particles calcu-
lated in Fig. 4 with the interaction potentials between two particles calculated here.
Based on the data of Fig. 4 (a), we expect to find maximal capillary interaction for
40◦ < θc < 50◦. Indeed, Fig. 7 shows the expected qualitative dependence of
the interaction potential on the aspect ratio. Furthermore, the interaction potential
between two ellipsoids with b/a = 3 is stronger than the interaction potential be-
tween two ellipsoids with b/a = 2, which agrees with our calculations for ∆u. The
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Figure 8: Energies of capillary bonds between two identical ellipsoidal particles at contact in side-by-
side (S-S) and tip-to-tip (T-T) orientation (filled circles and squares) and maximal contact line height
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energies of the “capillary bonds", when the particles touch each other, are shown
in Fig. 8 together with ∆u/a for b/a = 2 and b/a = 3, and for several contact an-
gles. The bond energies for S-S orientation are higher than for T-T orientation. For
S-S orientation, the bond energies roughly follow the predictions of Eq. (6.6.1), but
the bond energies in T-T orientation are one order of magnitude larger than those
obtained from Eq. (6.6.1).

6.6.2
Capillary interaction between cuboidal particles

The interaction potentials for a pair of cuboidal particles with rounded edges are
plotted in Fig. 9 for aspect ratios b/a = 3 and contact angles θc = 40◦ and θc =
60◦. The interaction is attractive for S-S and T-T orientation and repulsive for T-S
orientation. As for ellipsoidal particles, the interaction in S-S orientation is stronger
than the interaction in T-T orientation. The logarithmic plots in the insets of Fig. 9
show that the near-field interaction potentials can again be fitted using effective
power-law functions. For both S-S and T-T orientation, the interaction potentials
differ considerably from the prediction for the far field by Eq. (6.6.1). Furthermore,
the interaction potential for T-T orientation decays faster than for S-S orientation,
which is analogous to our results for ellipsoids with b/a = 3, see Fig. 7.

As expected, larger interaction energies are found for contact angles θc that corre-
spond to larger undulations ∆u of the contact line, see Fig. 4 (b). The strength of the
capillary interaction also increases with increasing aspect ratio (not shown). How-
ever, the interface deformations around our cuboidal particles are smaller com-
pared with ellipsoidal particles. The capillary interaction in S-S orientation for our
cuboidal particle with aspect ratio b/a = 3 is about 1/2 of the capillary interaction
for an ellipsoidal particle with b/a = 3, while the capillary interaction for the T-T
orientation is similar for ellipsoid and cuboid. The bond energies for S-S orientation



6.6 Two-Particle Interactions 177

−0.02

−0.01

0

0.01

0.02

2 5 10 15 20

∆
E

/γ
a
2

dcc/a

θc, m

10−4

10−3

10−2

2 5 10

-∆
E

/
γ
a
2

10−4

10−3

10−2

4 6 8

S-S, 40◦, 1.90
S-S, 60◦, 1.84

T-T, 40◦, 5.70
T-T, 60◦, 6.28
T-S, 40◦, 3.80
T-S, 60◦, 3.72

Figure 9: Interaction energies ∆E/γa2 for two identical cuboidal particles with aspect ratios b/a = 3
and contact angles θc = 40◦ and θc = 60◦. The energies are plotted as function of dcc/a for
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in S-S and T-T orientations and repulsive in T-S orientation. Inset: fit of the numerical data using
∆E/γa2 = k(dcc/a)−m; the fit parameters are given in the figure and tabulated in the Supporting
Information.

are still considerably larger than for T-T orientation, such that we expect the forma-
tion of chain-like aggregates of our cuboidal particles in the same way as observed
for ellipsoids [10,11].

6.6.3
Capillary Interaction between a Spherical and an Ellipsoidal Particle

In Fig. 10, the interaction potential between an ellipsoidal particle with b/a = 5 and
a spherical particle is plotted. For both particles, the contact angle is θc = 48.73◦,
which corresponds to the maximal interface deformation around the ellipsoidal
particle. In our calculations, spherical particles with radii r = 3a and r = 4a ap-
proach the ellipsoidal particle either at its tip or at its side. The spherical particles
are found to preferably attach at the side of the ellipsoidal particle. For a sphere
with radius r = 3a, the bond energy at contact at the side is about twice the bond
energy at contact at the tip. For a spherical particle with radius r = 4a, the bond
energy at the tip is almost unchanged compared with the smaller particle, but the
bond energy at the side is about three times larger than the bond energy at the tip.

The capillary attraction of a spherical and an ellipsoidal particle may appear sur-
prising; spherical particles do not deform a planar interface and therefore do not
experience mutual capillary interaction. However, the origin of the capillary at-
traction with ellipsoids can be motivated by the deformation of curved interfaces
around spherical particles, which leads to a mutual capillary interaction of spher-
ical particles [26,51,52]. For a system with a spherical and an ellipsoidal particle, a
“curved interface” is locally generated by the ellipsoidal particle. Therefore, the
sphere interacts with the interface deformation around the ellipsoid, as shown by
deformed contact lines on the sphere, see Fig. S4 of the Supporting Information.
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The energy gain if an ellipsoidal particle attaches to a spherical particle is smaller
than if the ellipsoidal particle attaches to another ellipsoidal particle. Therefore, a
spherical particle in the middle of a chain of ellipsoidal particles is in a kinetically-
trapped, metastable state. However, our results have interesting implications for
mixtures of spherical and ellipsoidal particles. For example, the range of the in-
teraction between an ellipsoidal particle and a chain of ellipsoids that ends with
a spherical particle is shorter than between an ellipsoidal particle and a chain of
ellipsoids that ends with an ellipsoidal particle, see Fig. 7 (b) and (c) and Fig. 10.
Therefore spherical particles that are attached to the ends of chains acts as a “stop-
pers” that do not inhibit, but that hinder the further growth of the chains.

“Coffee rings” are observed after evaporation of droplets that contain spherical
particles [53,54], but the addition of ellipsoidal particles suppresses the coffee-ring
formation [55,56]. The suppression depends on the size of the particles [56]: small
spheres with diameter 1.3 µm form a coffee ring despite the presence of ellipsoids
with aspect ratio b/a = 3.5 that have been fabricated by stretching 1.3 µm-diameter
polystyrene spheres. However, systems that contain spheres with diameter 5 µm
mixed with the same ellipsoids at the same volume fractions exhibit coffee-ring
formation only for small volume fractions of ellipsoids; complete suppression of
the coffee ring is observed for sufficiently high volume fraction of ellipsoids. This
size dependence may be explained by our calculations for the interaction energies,
which indicate that the capillary attraction between an ellipsoidal particle and a
spherical particle is larger for a spherical particle with diameter 5 µm than for a
spherical particle with diameter 1.3 µm.

6.7
Summary and Conclusions

We have numerically calculated the deformation of a planar interface around el-
lipsoidal and cuboidal particles in the near field. For the contact angle that corre-
sponds to the maximal height difference of the contact line, the long-range interac-
tion between two identical particles is expected to be strongest. We have calculated
the interaction energies between particles and we have approximated the numer-
ical data by power-law functions of the interparticle distance to characterize the
interaction in the near field. Bonds between particles that touch each other in side-
by-side orientation are most stable. For cuboidal particles, a finite edge curvature
is crucial to induce an interface deformation.

Capillary interactions are the dominant interactions for a wide range of length
scales, e. g. for colloids in the micrometer range [10], for mosquito eggs in the mil-
limeter range [3], and for copper plates in the centimeter range [7]. Typical inter-
action energies for micrometer-sized ellipsoidal and cuboidal particles are on the
order of 108 kBT. Our calculations for the near-field interface deformations explain
the formation of chain-like and rod-like aggregates of elongated particles [9,10,17,48].
Cuboidal particles with aspect ratio b/a = 1, which assemble in tile-like aggre-
gates [9,17,48], experience only a weak mutual interaction.
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Figure 10: Interaction of a spherical particle with an ellipsoidal particle of aspect ratio b/a = 5. The
contact angle θc = 48.47◦ has been used for both particles. The energies are plotted for spherical
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of dcc/a between the centers of mass of the particles. Inset: double-logarithmic plot and the fit of the
numerical data to a power-law decay.

Although spherical particles do not deform a planar interface, we find a finite at-
tractive force between a spherical and an ellipsoidal particle. The spherical particles
preferably attach to the side of the ellipsoids. The interaction strongly depends on
the size of the spherical particles compared with the size of the ellipsoidal particles
and is weaker than the interaction between two ellipsoidal particles. Our calculated
interaction energies may explain recent experiments where addition of ellipsoidal
particles with aspect ratio b/a = 3.5 to droplets that contain spherical particles has
been found to suppress the formation of a “coffee ring” and to result in a more uni-
form deposition of particles when the droplet evaporates [55]. Consistent with our
calculations, suppression of the coffee ring for mixtures of spherical and ellipsoidal
particles is observed only for sufficiently large spherical particles. For droplets that
contain ellipsoidal particles only, a strong suppression of the coffee ring is already
observed for very moderate aspect ratios b/a ≈ 1.5 of the ellipsoids [55].

Quantitative knowledge about the interaction potentials between particle inter-
faces in the near field is fundamental for understanding rheological properties of
particle monolayers [1,28,42], which comprise beautiful soft matter model systems
with promising applications. Our results for ellipsoidal and cuboidal particles at
planar interfaces help to understand and predict experimental observations sys-
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tematically. However, other contributions than an anisotropic particle shape can
also induce colloidal interactions. In a pioneering work on capillary interactions
for small particles, where particle weight has no effect, Lucassen predicted that
box-like particles with pinned sinusoidal contact lines induce interface deforma-
tions that lead to attractive interactions in the far field and to repulsive interactions
if the undulations do not match exactly in the near field [36]. This has recently been
experimentally demonstrated [35].

The deformation of interfaces and capillary interactions can be viewed as limit-
ing “tension only” case for biological membranes, whose conformations are gov-
erned by both curvature elasticity and membrane tension. Although in lipid bi-
layer membranes the interaction between inclusions and attached particles is often
successfully studied using models with bending rigidity only [39,57], some quanti-
ties such as the membrane deformation around attached particles may also depend
significantly on membrane tension [58–60]. For example, the “capillary interaction”
of proteins immersed in biomembranes has been studied numerically in Ref. 24.

Triangulated surfaces are a versatile method for further investigations, such as
of the role of interface curvature, of line tension at the contact line for small parti-
cles [25], and of particles with chemically structured surfaces such as Janus particles.
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Supplementary material:
Capillary Assembly of Microscale Ellipsoidal, Cuboidal, and
Spherical Particles at Interfaces

In this supplementary material, we present numerical data to further characterize
the interface deformation around and the capillary interaction between ellipsoidal
and cuboidal particles. For a contact angle θc 6= 90 ◦, a constant contact angle can-
not be achieved for a planar interface around an ellipsoidal particle and around a
cuboidal particle with rounded edges. For θc < 90 ◦, the interface is pulled down at
the tips and pulled up at the sides of the ellipsoids, thereby creating excess interface
area. Fig. S1 shows the deformation of the interface around an ellipsoidal particle
in the directions of the long and the short axis. The deformation profiles are plot-
ted for contact angles θmax

c that correspond to maximal interfacial distortions for
the given aspect ratios of the particles. It is obvious that the interface deformation
increases with increasing aspect ratio, which implies that the capillary interaction
between two particles will also increase. The difference of the highest and lowest
points along the contact line normalized by the minor axis of a particle, ∆u/a, char-
acterizes the interface deformation in the near field. Fig. S2 shows a non-monotonic
variation of ∆u/a with θc together with data from the literature [1,2]. Our numerical
results show good agreement with the published data.

The maximal height difference ∆u/a along the undulating contact line vanishes
for mirror-symmetric conditions at θc = 0◦ and 90◦, and varies non-monotonically
for intermediate angles attaining a peak value ∆umax/a at particular contact angle
θmax

c . For ellipsoidal particles, the calculated peak value monotonically increases
from ∆umax/a = 0.0128 for b/a = 1.1 to ∆umax/a = 0.4307 for b/a = 13. Another
experimentally measurable quantity is the projected area enclosed by the undu-
lating contact line, S, which is obtained by calculating the area enclosed by the
polygon formed by the vertices of the contact line projected to the x-y plane. In
Fig. S3, we plot S/S0, where S0 is the area enclosed by the contact line for θc = 90◦.
The monotonically increasing function S/S0 allows to single out the correct contact
angle solution where ∆u is ambiguous. [1]

The peak values of ∆umax/a for all aspect ratios that we have calculated and the
corresponding contact angles that vary in the range 43◦ < θmax

c < 55◦ are reported
in Tab. S1. In Tab. S2, we report the peak values for the contact line deformation for
cuboidal particles. Because of the very small variation of ∆u/a with θc, it is difficult
to calculate the contact angles that correspond to the peak values at small aspect ra-
tios accurately. In Tab. S3, we report the parameters obtained by fitting the numeri-
cally calculated interaction potentials in the near field to ∆E/γa2 = k(dcc/a)−m, as
well as the bond angles at contact.
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Fig. S4 shows the deformation of the contact line on a spherical particle that is
next to an ellipsoidal particle. The contact line at the spherical particle is pulled
up if the spherical particle is located next to the side of the ellipsoid and is pulled
down if the spherical particle is located next to the tip of the ellipsoid. Part of
the excess area generated by the ellipsoidal particle is therefore reduced due to the
presence of the spherical particle, which leads to an attractive interaction between
both particles.
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Figure S1: Interface deformation around ellipsoidal particles with aspect ratios b/a = 1.25, b/a = 2,
b/a = 3, and b/a = 5 in the direction of (a) their long axis along the x axis and (b) their short axis
along the y axis. The contact angles have been chosen such that the difference between the highest
and the lowest point of the contact line is maximal.
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Figure S2: Maximal height difference along the contact line, ∆u, as function of the contact angle θc
for ellipsoidal particles. Our numerical data for aspect ratios b/a = 1.5, b/a = 2, b/a = 3, and
b/a = 5 are plotted together with data taken from Ref. [1] and Ref. [2].
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b/a ∆umax/a θmax
c

1.10 0.01284 54.12◦

1.25 0.0310 53.84◦

1.50 0.0600 52.34◦

1.75 0.0867 51.55◦

2.00 0.1110 50.95◦

2.25 0.1331 50.55◦

2.50 0.1530 50.10◦

2.75 0.1714 49.73◦

3.00 0.1872 49.67◦

4.00 0.2410 48.94◦

5.00 0.2803 48.47◦

6.00 0.3126 47.56◦

7.00 0.3483 45.20◦

8.00 0.3600 44.82◦

9.00 0.3762 44.61◦

10.00 0.3940 43.73◦

11.00 0.4091 43.31◦

12.00 0.4203 43.22◦

13.00 0.4307 43.21◦

Table S1: Peak values ∆umax of the maximal height differences ∆u along the contact line and
corresponding contact angles θmax

c for ellipsoidal particles with aspect ratios in the range 1.1 ≤
b/a ≤ 13.

b/a ∆umax/a θmax
c

2.00 0.0678 62.93◦

2.25 0.0806 62.73◦

2.50 0.0918 61.98◦

2.75 0.1030 61.63◦

3.00 0.1110 61.31◦

4.00 0.1417 61.11◦

5.00 0.1660 60.27◦

6.00 0.1850 59.38◦

7.00 0.2007 58.96◦

8.00 0.2147 58.36◦

9.00 0.2266 56.83◦

10.00 0.2375 56.47◦

Table S2: Peak values ∆umax of the maximal height differences ∆u along the contact line and
corresponding contact angles θmax

c for cuboidal particles with aspect ratios in the range 2 ≤ b/a ≤
10.
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Figure S3: Ratio of projected area S enclosed by the contact line for the to the projected area
enclosed by the contact line for θc = 90◦, S0, as function of the contact angle θc for ellipsoidal
particles with aspect ratios in the range 1.25 ≤ b/a ≤ 7. Our data are plotted together with numerical
data taken from Ref. [1]. For a spherical particle, S/S0 varies as sin2 θc, as shown by the solid line.
For all contact angles between 0◦ and 90◦, S/S0 attains higher values for ellipsoidal particles in
comparison to the analytical result for a spherical particle.

particle
shape

aspect
ratio

orientation θc k m bond
energy
∆E/γa2

Ellipsoidal

2

S-S
50◦ -0.0415 2.81 -0.00578
80◦ -0.0080 2.69 -0.00122

T-T
50◦ -3.2039 5.21 -0.00241
80◦ -3.4804 6.03 -0.00087

T-S
50◦ 0.2342 3.83 0.00349
80◦ 0.0421 3.56 0.00084

3

S-S
50◦ -0.0863 2.07 -0.01975
80◦ -0.0117 1.92 -0.00298

T-T
50◦ -310.682 6.03 -0.00667
80◦ -489.442 7.02 -0.00181

T-S
50◦ 1.89 3.73 0.01081
80◦ 0.2694 3.55 0.00196

Cuboidal 3

S-S
40◦ -0.0278 1.90 -0.00744
60◦ -0.0355 1.84 -0.00989

T-T
40◦ -107.6 5.70 -0.00395
60◦ -478.773 6.28 -0.00626

T-S
40◦ 1.2484 3.80 0.00643
60◦ 1.5979 3.72 0.00925

Table S3: Fit parameters k and m and bond energies for particles at contact obtained from the
fit functions. Data for ellipsoidal and cuboidal particles in side-by-side (S-S), tip-to-tip (T-T), and
tip-to-side (T-S) orientation is provided. The fit parameters correspond to the fits to the power law
∆E/γa2 = k(dcc/a)−m (where dcc is the distance between the centers of mass of the particles)
shown in the insets of Figs. 7 and 9 in the main manuscript; some of the bond energies are plotted in
Fig. 8 of the main manuscript. For the repulsive tip-to-side orientation, the largest repulsive energy
for direct contact of the particles is provided instead of a bond energy.



6.8 Supplementary material 189

(a)
-10

-5
0

5
10

-10
-5

0
5

10

-0.1

0

0.1

z/a

S, r/a = 4

x/a
y/a

z/a

(b)

-10
-5

0
5

-10
-5

0
5

10

-0.1

0

0.1

z/a

T, r/a = 4

x/a
y/a

z/a

Figure S4: Contact line deformations for a spherical particle of radius r = 4a and an ellipsoidal
particle of aspect ratio b/a = 5 at a fluid interface with contact angle θc = 48.47◦ for both particles.
The spherical particle approaches the ellipsoidal particle (a) at the side and (b) at the tip.
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7
Summary & outlook

7.1
Conclusion

Membrane budding initiates intracellular vesicle transport and has been studied
for a variety of soft matter systems. Cellular uptake of nanoparticles depending
upon particle size can occur via two possible pathways. For small nanoparticles,
the preferred “entry pathway” is via penetration [1] of cell membrane, which has
been studied extensively both via computer simulations [2–6] and experiments [7].
However for larger nanoparticles, the preferred pathway for uptake is via mem-
brane wrapping [1,8,9]. Due to a striking development in nanotechnology [10,11], a
large variety of shapes [12–14] and sizes have been synthesized, and the need for
their technological use for various purposes requires a thorough understanding of
the role of shape in cellular interaction and uptake. However, there remains a major
gap in the physical understanding to how non-spherical particles enter into cells.

Towards this goal, a holistic understanding of the mechanistic aspects of cellular
entry via membrane wrapping for various particle geometry is presented in Chap-
ters 2 and 3. A numerical analysis of the wrapping behavior for non-spherical par-
ticles like rods, ellipsoids, and cubes is conducted, based on competing energetic
contributions from membrane deformation due to curvature elasticity and surface
tension, and contact interaction between the nanoparticle and membrane. As wrap-
ping occurs over long length and time-scales [15,16], its numerical calculation poses
a computational challenge for a systematic study of such systems using dynamical
simulations. Therefore, using a mesoscopic approach the wrapping behavior is in-
vestigated, that not only allow us to characterize the role of individual parameters,
but also provide a generic prediction of the wrapping characteristics over a wide
range of parameters.

For both prolate and oblate ellipsoidal particles having the same length along
the short axis as the particle radius of a spherical particle, the binding transition
occurs at smaller adhesion strengths when they approach the membrane with their
lowest curvature end first. Partially-wrapped states exist only for finite surface ten-
sions for spherical particles. However, partially-wrapped states for ellipsoids occur
already for tensionless membranes. Partially-wrapped states for ellipsoidal parti-
cles are long-lived, due to higher energy cost for wrapping of the highly-curved
tips. An energy barrier separating the partially wrapped states from completely
wrapped states suggest a lower uptake rate of ellipsoidal particles by cells com-



192 7 Summary & outlook

pared to spherical particles as seen in recent experiments [17,18]. For rod-like, el-
lipsoidal, and spherocylindrical nanoparticles, particle reorientation from parallel
to perpendicular impedes complete endocytosis, as the particle remains stuck in a
frustrated endocytic state. On comparing wrapping energies for both a submarine-
and rocket-like mode predict that the submarine-like mechanism is a more effi-
cient wrapping strategy. For non-spherical particles like nanocubes and nanorods,
there are stable endocytic states at both low and high wrapping fractions which
allow the technological use of these particles a bio-markers [19,20], for development
of biosensors [21,22] and for photo-thermal treatment [23,24]. For nanorods, it is not
only the aspect ratio as the major geometric parameter that governs the membrane
wrapping – as proposed by current experimental/theoretical investigations – but
also the curvature of the tips. Depending on the local curvature at their tips, the
nanorods can exhibit competing modes (submarine-like or rocket-like) of entry – in
agreement with observations for several rod-like microorganisms [25,26].

Some novel aspects of the membrane wrapping investigations conducted in
Chapters 2 and 3 are following:
• For non-spherical particles considering orientation effects, the numerical cal-

culations predict generically two kinds of partially wrapped states with shal-
low and deep wrapping, and a discontinuous transition to complete wrap-
ping.
• The continuum description of membranes employed in this work does not

depend explicitly on the specific size of the nanoparticle, because the par-
ticle size only appears as a factor in dimensionless parameters. Thus these
calculations allow the prediction of wrapping properties over a wide range
of particle sizes. In contrast, molecular dynamics simulations with explicit
lipid molecules are typically restricted to nanoparticle sizes comparable to the
membrane thickness.
• The role of edge curvature and aspect ratio of nanorods is analyzed for the

first time systematically; both parameters are shown to play an important role
in particle wrapping.
• The thermodynamic approach allows a detailed prediction of reorientation ef-

fects. Three different kind of uptake modes are found to exist, (i) submarine
like (ii) rocket-like, and (iii) a competition of submarine and rocket mode. In
contrast, in dynamical simulations the dynamical aspects of particle reorien-
tation are difficult to disentangle form energetic contributions.
• The thermodynamic description allows the calculation of exact phase bound-

aries with both continuous and discontinuous transitions, as well as the corre-
sponding energy barriers at the transitions.

The results on membrane wrapping of non-spherical particles have strong impli-
cations in the design of drug delivery systems which target infected cells. Nanopar-
ticles which have a flat side bind more easily to cells and can act as membrane
binding sensors. Partially bound states as seen for the non-spherical particles can
be beneficial to escape the immune system and thereby make sure that drugs stay
for longer time in the blood stream as exhibited in experiments [27] by with filamen-
tous polymerosomes which managed to evade the macrophages for longer times
compared to spherical ones. These results also have strong implications in nano-
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toxicology studies and furthermore help to shed light to the entry mechanisms to
different viruses, pathogens. For example, the competing modes of budding seen
in filamentous viruses [25,26] like Ebola and Marburg can be explained using results
for wrapping of nanorods where due a close interplay between particle geometry
and membrane properties, the particles show different budding modes.

Furthermore, as an application of the membrane wrapping calculations in a bio-
logical system we address host cell membrane and parasite contributions to malar-
ial invasion into the human red blood cell in Chapter 4. A typical malarial para-
site during invasion phase within the red blood cell, has an asymmetric egg-like
shape and is called a merozoite. A numerical analysis of a mechanical model is
conducted for parasite membrane adhesion and deformation, in order to predict
the respective host and parasite energetic contributions to invasion, in particular
the role of erythrocyte membrane-wrapping. The theoretical model is based on
membrane curvature elasticity, surface tension, parasite adhesion energy, line ten-
sion, and active motor forces. Several aspects of the investigations reshape our
thinking on how the malaria parasite may in fact enter the erythrocyte. Foremost:
(i) Membrane-wrapping alone, as a function of parasite adhesive and shape prop-
erties, can be enough to account for the first key step of the invasion process, that of
parasite reorientation and tight adhesive linkage between the two cells; (ii) parasite-
stimulated reorganization of the erythrocyte cytoskeleton and release of parasite-
derived membranes, which modify the properties of the target cell membrane, can
account for a considerable energetic portion of actual invasion itself; (iii) contrary to
the prevailing dogma, host-centered energetic factors can markedly reduce (though
not eliminate) the expected contributions required by the parasite actin-myosin mo-
tor for invasion.

Some striking aspects of the investigations presented in Chapter 4 which con-
tribute to understanding the invasion of a merozoite into the red blood cell are:
• For the first time, through EM tomography, a quantitative measure of the

merozoite shape that is required to give accuracy in the wrapping calculations
is ascertained. The asymmetric egg shape of the merozoite is a key feature,
playing an essential role in the membrane energetics of both "reorientation"
and "invasion" phase of entry.
• To date, whilst experiments have clearly demonstrated that merozoites reori-

ent to their apex for successful invasion, the mechanism for reorientation has
not been explained. The numerical calculations show that reorientation of the
merozoite can be achieved exclusively by wrapping interactions requiring no
active parasite energy-dependent process. This would be a key new observa-
tion in invasion biology.
• A systematic study is presented based on membrane parameters such as bend-

ing rigidity, membrane tension, and spontaneous curvature, as well as line ten-
sion and adhesion strength between the merozoite and the membrane. Such
an approach allows us to perform a systematic study of the effect of mechano-
elastic parameters on reorientation and invasion – a framework in the form
of wrapping phase diagrams that provides detailed insight into energetic re-
quirements of invasion. This is not only key to our own discussions but will be
critical for further studies incorporating additional factors such as active cy-
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toskeletal forces that require dynamic simulations, which can now be guided
by the presented work.
• The theoretical model presented here allows the prediction of exact phase

boundaries for thermodynamic transitions during invasion, corresponding
spinodals, energy barriers and wrapping fractions at the wrapping transitions
for the egg-shaped merozoite. These values cannot be accessed using dynamic
simulations on the molecular length scale, stressing the importance of insights
that can be provided for the first time.
• Finally, and of key importance for the field of parasite invasion biology, the

model shows that motor forces whilst playing a significant role in the para-
site invasion (and for which there are no existent quantitative experimental
measurements) may not be as critical for invasion as previously thought. The
role of active forces arising from the acto-myosin machinery is discussed, and
numerical estimates for the required forces based on the wrapping model is
presented. This radically reshapes our thinking of invasion and helps estab-
lish hypotheses for future direct experiments to measure the contribution of
motor forces during invasion.

Combining these biophysical insights within a parasitological framework, draw-
ing on a broad foundation of molecular and cellular evidence, we propose that
invasion is a balance between parasite and host cell contributions, evolved towards
maximal efficient use of biophysical forces between the two cells. These findings
lay important foundations for defining the mechanisms that underlie invasion and
will be of significant value in understanding and eventually targeting host-cell spe-
cific processes in malaria treatment. As a direct outcome of this work, the red blood
cell itself will re-emerge as a major focus of research for understanding the process
of invasion.

Techniques like patch clamping have been established to perform cellular record-
ings for a single cell and such methods have been extensively used as a standard
tool in electrophysiological experiments. To understand cellular signaling between
a large network of cells, one needs to perform intracellular recordings of electri-
cal response from several cells simultaneously. Hence, much interests are driven
towards developing devices for efficient intracellular recordings. Patterned bio-
material substrates [28,29] is sought as a common platform for studying various bio-
mechanical and biochemical properties associated with cell signaling, cell-adhesion
and elasticity, and proliferation of bio-networks for cell guidance. One promising
technology in this direction is coupling three dimensional nano-structured inter-
faces with living cells. Particularly, interfaces with arrays of pillar-like structures
acting as electrodes known as multi electrode arrays (MEA) have emerged as a
promising candidate. However, to perform such experiments one has to ensure a
effective coupling between the cell membrane and the nanostructure. Previous re-
search [30,31], has shown that the engulfment of these pillars by cells are similar to
the situation where cells engulf solid nanoparticles via membrane wrapping.

Thus in Chapter 5, as another application using the membrane deformation cal-
culations in conjunction to experiments involving electrogenic cells grown on sin-
gle electrodes, we aim to predict an optimal shape for a nanopillar engulfed by a
cell. The deformation profile of the cell membrane engulfing nanostructures are
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obtained by transverse sectioning of the cell and the pillar using a focused ion
beam technique. Interestingly, the deformation profile describing the structural
coupling not only depends on the pillar geometry; but also on whether the engulf-
ment occurs near the periphery of cell or near the nucleus. Since the membrane
at the periphery has less association to a cortex hence it responds like a bilayer
membrane without any cortex. Thus using the Helfrich description, deformation
profiles around a pillar at the edge of a cell are obtained and the numerical results
are compared with the experimentally obtained membrane profiles. At interme-
diate heights the membrane wraps around the pillar to form deep engulfed states
while at extremal heights which are either too high or low, the membrane wraps
weakly around the pillar thus providing weak engulfment. Since, higher engulf-
ment promises better coupling, the height of the pillars plays an important role for
effective coupling. There exists a close association of the membrane with the cor-
tex at the center of the cell. Hence a “cytoskeletal pressure” is incorporated in the
theoretical model to compare the membrane deformation profiles around pillars
engulfed closer to nucleus and find good agreement with the experimental obser-
vations. These results shall help to design efficient devices for interfacing cells to
nanostructured interfaces and thereby conduct intracellular recordings to investi-
gate cellular signaling in a network of cells.

Fluid membranes are soft surfaces at the boundary of cells which are charac-
terized by mechano-elastic parameters namely, bending rigidity κ and membrane
tension σ. Fluid interfaces that act as the boundary between two fluid phases like
a oil-water interface or between a fluid and a vapor/gas phase like air-water inter-
face and remain entirely governed by surface tension. Particles at such a fluid in-
terface can deform the fluid interface either through direct interactions like particle
weight [32–34] or electromagnetic fields [35–38] or through indirect interactions due to
an particle heterogeneity [39,40] causing an undulating contact line thereby creating
an excess area. Neighboring particles thus interact to minimize this excess interfa-
cial area, which corresponds to lowering the energy of the system. By character-
izing this particle-induced distortion field, how anisotropic particles direct, orient
and self-assemble at a fluid interface via capillary forces is investigated in Chap-
ter 6. Strong capillary forces that help to direct, orient and assemble anisotropic
particles at an interface can lead to form loosely packed aggregates, open chains,
capillary arrows, tile formations and other self assembled two-dimensional struc-
tures over several length scales [41–43].

Strength and directionality of capillary interaction between neighboring particles
remains affected by both wetting characteristics and shape. A systematic investiga-
tion of the interfacial deformation due to single ellipsoidal and cuboidal particles
for varying contact angles and aspect ratio is conducted. Interface deformations
due to cuboidal particles create a weaker distortion field in comparison to ellip-
soidal particles of same aspect ratio. For both particle shapes, particles assembling
with either their longer edges parallel in a side-by-side orientation or with their
shorter edges aligned in a tip-to-tip assembly undergo capillary attraction. How-
ever, the numerics suggests side-by-side assembly to be more stable in compari-
son to tip-to-tip assembly due to stronger capillary attraction. These results can
be backed up by experimental observations where micron-sized ellipsoidal parti-
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cles [44] self assemble preferentially in side-side fashion or even for larger macro-
scopic objects like the ellipsoidal shaped mosquito eggs forming raft-like [45,46]

structures. Surprisingly, for a pair of ellipsoids and cube-like particles approach-
ing each other in side-to-tip orientation we observed a near-field capillary repul-
sion. This replusive nature of the interaction is unique and promises implications
in tailoring capillary assembly. Though, one can use multipole approximations
for the interface particle-induced distortion field, and superpose these multipole
contributions to obtain the interaction potential nature for approaching particles
in the far field but to obtain the near-field nature of these interactions are elusive.
The numerical results can not only predict the nature of the interactions but also
quantify the near-field nature of them using effective power-law-like behavior for
several particle shapes at varying contact angles. These results support existing
experimental observations for approaching [44] ellipsoidal particles. The near-field
repulsion for side-to-tip assembly for both particles and the interaction potential
for cuboidal particles have not been yet experimentally observed. Therefore, the
numerical results presented here can stimulate experiments directed at quantifying
these interactions using single particle tracking techniques. Using the knowledge
of interaction potentials, like the attractive and repulsive nature of capillarity and
its dependence on physical properties like shape, aspect ratio and also structural
and chemical composition shall help to facilitate controlled colloidal assembly of
well-defined complex structures with widespread applications. For instance, the
numerical investigations further suggest a capillary attraction between spherical
particles to neighboring ellipsoidal particle and the strength of attraction to be pro-
portional to the particle radius of spheres. This interesting observation can help
to explain the suppression of the “coffee-ring effect” observed for evaporating par-
ticulate droplets containing mixtures of spheres and ellipsoids. Moreover, a fluid
membrane in the continuum description is an interface-like two-dimensional sur-
face characterized with a membrane tension and curvature-elastic constants hence
in biological systems capillarity might induce membrane proteins [47–49], nanopar-
ticles [50] and inclusions [51] to aggregate due to membrane-mediated interactions.
Formation of membrane rafts [52] at small length scales comparable to 10-100 nm
and the implications of many nanoparticle mediated interactions on a membrane
for nano-toxicological studies are questions that remain still to be understood.
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7.2
Future perspectives

The results on particle wrapping in this thesis provide a systematic approach using
phase diagrams analogously to thermodynamic phase transitions. For a given com-
bination of parameters, the phase diagrams provide information whether the par-
ticle is not attached to the membrane, partially wrapped, or completely wrapped.
A natural extension of the results presented in this thesis are wrapping phase di-
agrams for multicomponent membranes. Modeling wrapping behavior of two-
component membrane using a mesoscopic description can be based on two sce-
narios. (i) The strong-segregation limit, where a domain boundary distinctly sep-
arates two membrane domains e.g. in a three component lipid mixture [53]. The
domains can have different bending rigidities and spontaneous curvature terms in
addition to a line tension along the domain boundary. For such a system, defor-
mation energies can be explicitly calculated using numerical approaches like shape
equations [54] or using triangulated membranes [55]. (ii) The weak segregation limit,
where molecules like membrane-bound receptors or endocytic proteins are incor-
porated into the lipid bilayer. A classic example of such a case would be receptor-
mediated endocytosis, [56–58] where one assumes that a smooth distribution of the
receptors provides a net gain in adhesion energy. Another example is the distribu-
tion of proteins like bar domains [59] and clathrins [49,60,61] which can provide a local
spontaneous curvature contribution to facilitate membrane deformation. Theoreti-
cal models [57,58,62] for receptor-mediated endocytosis generally assume a two-state
model for wrapping accounting only for a non wrapped and a fully wrapped state.
Such models neglect the changes in membrane deformation energies due to a re-
distribution of receptors as wrapping proceeds. Assuming a smooth distribution
function of the receptors in thermal equilibrium, it is possible to couple it via the
local adhesive strength with the membrane wrapping energy. Membrane deforma-
tions and receptor distribution can be alternatively calculated employing numeri-
cal minimization by triangulated membranes. Another interesting direction to the
research theme on membrane wrapping is to incorporate the role of cell cytoskele-
ton [63] by making a mechanistic model which accounts for a shear modulus term
of the underlying cortical cytoskeleton. A model that includes the cytoskeleton is
needed for example to understand the formation of a “phagocytic cup” [64] due to
assembly of actin filaments. Apart from single particle budding, one may also look
at cooperative effects during many particle budding.

At a fluid interface, interface-mediated interactions due to anisotropic non-
spherical particles have been investigated. For systems investigated within this
thesis, the fluid interface is assumed to have no preferential interfacial curvature
and remain flat in absence of the particles due to null pressure difference across the
fluid interface. To study capillary interactions at a curved interface [65–68] is a natu-
ral extension to this work. By calculating numerically the interactions at differently
curved surfaces like cylinder (H > 0, K = 0), catenoid (H = 0, K < 0), spheres
(H > 0, K > 0) one can estimate the contributions due to mean curvature H and
Gaussian curvature K to capillary interactions.
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