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Kurzzusammenfassung

In dieser Arbeit wird die Klassifizierung ungeordneter Fermionen auf die Beschreibung
translations-invarianter Grundzustände übertragen. Anknüpfend an die Arbeit von
Kitaev vervollständigen wir die Umwandlung von Symmetrien in Pseudo-Symmetrien,
die eine Clifford-Algebra bilden. Dieser mathematische Rahmen wird genutzt, um
einen homotopietheoretischen Beweis für die Einträge im “Periodensystem topologi-
scher Isolatoren und Supraleiter” in der verallgemeinerten Version, die die Anwesen-
heit eines Gitterdefekts erlaubt, zu formulieren. Wir erweitern diese Klassifizierung,
indem wir die Einschränkung einer Mindestanzahl von Valenz- und Leitungsbändern
aufheben. Hierdurch erfassen wir den Hopf-Isolator, sowie eine hier erstmals identifi-
zierte topologische Phase, den Hopf-Supraleiter. Im verallgemeinerten Rahmen zeigen
wir, dass die Konzepte von “starken” und “schwachen” topologischen Phasen neu de-
finiert werden müssen, um zu vermeiden, dass starke topologische Phasen durch das
Stapeln topologischer Phasen niedrigerer Dimension realisiert werden können.
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Abstract

We transfer the classification results for disordered free fermions to the setting of
translation-invariant ground states and complete the framework developed by Kitaev
in which true symmetries are encoded as pseudo-symmetries satisfying Clifford algebra
relations. In this mathematical setting, we give a homotopy theoretic proof of the
Periodic Table for topological insulators and superconductors in its generalized form
allowing for the presence of a defect. Permitting arbitrary numbers of valence and
conduction bands, we extend the homotopy classification to include the Hopf insulator
and a newly identified topological phase we call the Hopf superconductor. In this
general setting, we show that the distinction between strong and weak topological
phases needs to be altered in order to prevent strong phases from being realized by
stacking lower dimensional phases.
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1. Introduction

Soon after the foundations of quantum mechanics were laid, the theory was applied to
the problem of electrons moving in the periodic potential of a crystalline solid. The
resulting dispersion relation (energy bands) of a single particle was the starting point
for band theory. This theory assumes non-interacting fermions filling the energy
bands according to the Fermi-Dirac distribution. Surprisingly, the assumption of
independent particles turned out to be quite general if “particle” is replaced by “quasi-
particle”. This is the content of Fermi liquid theory: For the majority of crystals,
interactions between particles can be neglected at the cost of renormalizing properties
like their mass.

In recent years, the old band theory resurfaced at the forefront of condensed matter
research, triggered by the discovery [vKDP80] of the quantum Hall effect in two-
dimensional materials penetrated by a strong magnetic field. This presented the first
example of a topological phase called a topological insulator, being characterized by an
insulating interior with currents along its boundary and a quantized conductivity. It
was soon recognized [Hal88] that this new topological state can be realized on a lattice,
resulting in the concept of the “Chern insulator”. Some years later, it was shown that
by introducing symmetries [KM05, BHZ06, FK07] a whole zoo of new topological
phases could be realized. Starting with the time-reversal invariant analog of the
Chern insulator in two dimensions [KM05, BHZ06, KWB+07], a similar topological
phase was predicted [FKM07] and subsequently realized [HQW+08, XQH+09] in three
dimensional materials. In both cases, theory preceded experiments since it was in
materials suggested by theorists that the existence of these topological phases was
confirmed. In contrast, the experimental discovery of superconductivity preceded the
microscopic theory by a good 50 years.

In this new and very active field of research, the search for topological phases
soon matured into attempts at classifying all of them. After enumerating the possible
invariants that could be found for a given dimension and symmetry [SRFL08], a beau-
tiful pattern between these invariants was revealed in [Kit09] using algebraic tools in
connection with K-theory. These results were later confirmed by an analysis of possi-
ble topological terms in non-linear sigma models describing Anderson delocalization
on the surface of a topological insulator [RSFL10]. An open question which we address
in this thesis is the classification of topological insulators outside the range where the
K-theory framework applies, capturing for instance the Hopf insulator [MRW08].

A further generalization was the introduction of lattice defects, augmenting the clas-
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1. Introduction

sification by position-like (rather than momentum-like) coordinates for surfaces en-
closing a defect [TK10]. Recently, a first step towards further generalization was taken
in [ZK14] by considering phase differences in Josephson junctions between topologi-
cal superconductors (viewed as topological insulators of Bogoliubov quasi-particles),
which are neither position- nor momentum-like.

The point of view of homotopy theory is often adopted as a starting point, but
results are then derived by more indirect means either through algebraic constructions
as in [Kit09, SCR11, FM13] or the calculation of homotopy invariants.

In the present work, a homotopy theoretic derivation of the classification of topolog-
ical insulators is developed in the general setting of [TK10]. We rediscover the known
results entirely from this natural perspective and extend them beyond the stable K-
theory regime while giving the exact conditions under which the previously derived
results hold. Furthermore, we investigate how concepts like the distinction between
“strong” and “weak” topological insulators can be generalized to the extended setting.

This thesis is organized as follows: In Chapter 2, the setting of independent quasi-
particles and the description of ground states is introduced. After reviewing the rele-
vant tools of homotopy theory in Chapter 3, we introduce the concept of topological
phases by defining an equivalence relation between ground states, contrasting some
alternative approaches taken in the current literature. In Chapter 4, we determine
all topological phases in the stable regime, reproducing as a corollary the K-theory
classification of [Kit09] as well as the stable classification involving defects in [TK10].
The exact conditions of applicability of these stable results are derived in Chapter 5.
All cases where these conditions are violated are investigated in Chapter 6 in order to
complete the classification of topological phases. The fruit of this labor is the discov-
ery of a new topological phase which we call the Hopf superconductor in symmetry
class C, a close cousin to the Hopf insulator of [MRW08]. For the generalized setting
encompassing both the stable and unstable regime, we revisit the notions of strong
and weak topological phases in Chapter 7, giving a modified definition of these terms
which we show is consistent in general. The physical implications of non-trivial topo-
logical phases are considered in Chapter 8, cumulating in a discussion of interactions
and disorder.
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2. Quasi-particle ground states

The goal of this chapter is to introduce the concept of a quasi-particle ground state for
a translation invariant Hamiltonian. We start by describing the single particle setting,
which will then be used to define the many-body ground states of an extended class
of Hamiltonians given by quadratic operators on Fock space. This will be followed by
the introduction of symmetries and the relations they impose on ground states. As a
final result, we systematically construct symmetry groups representing each of the ten
possible symmetry classes by successively adding symmetries, a procedure that was
started, but left incomplete, in [Kit09] (and hence will be referred as as the “Kitaev
sequence”).

2.1. Single particle setting

We assume that there is a d-dimensional lattice Zd with minimal distance normalized
to 1, describing, for example, the positions in a lattice of atoms or, more generally, unit
cells. To every unit cell in Zd, we associate a Hilbert space Cn for the electrons (or more
generally fermions) in the crystal. The n complex degrees of freedom introduced in
this manner can have many physical interpretations, including the spin of an electron,
the orbitals associated to the underlying atoms, the number of atoms per unit cell
or any combination of these. The single particle Hilbert space H will therefore be
defined as

H := `2(Zd)⊗ Cn. (2.1)

Another name for this setting is the tight binding representation.
It is useful to fix a basis {|x〉 ⊗ |i〉} ≡ {|x, i〉} of H, where |x〉 ∈ `2(Zd) stands for

the series on Zd with value 1 at x and 0 everywhere else and |i〉 with i = 1, . . . , n is
some orthonormal basis of Cn (for instance the basis of orbitals).

A Hermitian scalar product is defined on the basis states as

〈x, i|y, j〉 := δxyδij . (2.2)

With respect to this scalar product, a translation ta by a ∈ Zd is defined as a unitary
operator

ta|x, i〉 := |x + a, i〉 (2.3)

3



2. Quasi-particle ground states

and a single particle Hamiltonian H = H† : H → H is translation invariant if

taH = Hta (2.4)

for all a ∈ Zd. In that case, it has the general form

H|x, i〉 =
∑
y;j

hji(y)|x + y, j〉, (2.5)

where h(y) : Cn → Cn are the hopping matrices which satisfy h(y) = h(−y)† to ensure
hermiticity of H. For a local Hamiltonian, the magnitude of these terms decreases
exponentially with |y| := max(|yi|)i=1,...,d. In common models (called tight binding
models) only terms with |y| ≤ 1 (nearest neighbor hopping) or |y| ≤ 2 (next-nearest
neighbor hopping) are non-vanishing.

The translation invariance of H allows for a further simplification: A simultaneous
eigenbasis of all operators ta can be defined using the discrete Fourier transform

|k, i〉 :=
1√
V

∑
x

eik·x|x, i〉, (2.6)

where k is an element of the d-dimensional torus Td (the dual of Zd) and V is the
volume of the system, which is introduced as a regularization to render the set {|k, i〉}
an orthonormal basis of H (with the goal of sending V → ∞).1 Indeed, applying ta
yields

ta|k, i〉 = e−ik·a|k, i〉. (2.7)

Since eq. (2.4) implies thatH must leave the eigenspaces of all translations ta invariant,
H acts block diagonally as

H|k, i〉 =
1√
V

∑
x;j

eik·xhji(y)|x + y, j〉

=
1√
V

∑
x′;j

eik·(x
′−y)hji(y)|x′, j〉

=
∑
j

Hji(k)|k, j〉, (2.8)

where we have defined the Bloch Hamiltonian as

H(k) :=
∑
y

e−ik·yh(y). (2.9)

1The vectors |k, i〉 are not well defined for V → ∞, but a proper regularization takes care of this
problem. For instance, one may consider an arbitrarily large, but finite subset of Zd with volume V
and periodic boundary conditions in order to enable the implementation of translation invariance.
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2. Quasi-particle ground states

In other words, the Hilbert space H decomposes as an orthogonal sum

H =
⊕
k

Hk (2.10)

of eigenspaces Hk corresponding to the eigenvalue e−ik·a under translations. The
Bloch Hamiltonian is simply given by the restriction of the Hamiltonian H to one of
these eigenspaces and due to (2.4), its image is contained in the same component:

H(k) = H|Hk
: Hk → Hk. (2.11)

2.2. Fock space and many-body ground states

Up to this point, the setting was that of a single particle on a lattice with a Hamiltonian
that is invariant under lattice translations. In order to describe many-body states,
the first step is to specify the exchange statistics. In our case, we will be interested in
fermions (usually electrons), so the proper many-body Hilbert space is given by the
Fock space F , which is the exterior algebra

F := ∧(H) =
⊕
m

∧m(H). (2.12)

Here ∧m(H) is the subspace of m-particle states |φ1〉 ∧ · · · ∧ |φm〉 with |φi〉 ∈ H. The
orthonormal basis {|k, i〉} of H induces a basis of ∧m(H) given by the set

{|k1, i1〉 ∧ · · · ∧ |km, im〉} (2.13)

and the union over the number of fermions m yields a basis for all of F . In this basis,
a Hermitian scalar product can be defined by〈

|k1, i1〉 ∧ · · · ∧ |km, im〉, |k′1, i′1〉 ∧ · · · ∧|k′m, i′m〉
〉

:= δk1,k′1
· · · δkm,k′mδi1,i′1 · · · δim,i′m .

(2.14)

For two states with different particle numbers, it is defined to be 0.
We denote by c†i (k) the operator which creates a particle in the state |k, i〉, realized

in F through exterior multiplication by |k, i〉. Its Hermitian conjugate with respect to
the scalar product defined above will be denoted by ci(k). This operation annihilates
the particle which is in the state |k, i〉 and it is realized in F by contraction with
the form 〈k, i| ∈ H∗. These operators fulfill the canonical anti-commutation relations
(CAR):

c†i (k)c†i′(k
′) + c†i′(k

′)c†i (k) = 0

ci(k)ci′(k
′) + ci′(k

′)ci(k) = 0 (2.15)

c†i (k)ci′(k
′) + ci′(k

′)c†i (k) = δii′δk,k′ .
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2. Quasi-particle ground states

We call these creation and annihilation operators bare, as opposed to linear combina-
tions of them which will appear later.

Single particle operators O : H → H are extended to operators Ô : F → F by

Ô(|k1, i1〉 ∧ · · · ∧ |km, im〉) := (O|k1, i1〉) ∧ · · · ∧ (O|km, im〉) (2.16)

and linear extension thereof for general elements in F . Alternatively, all single parti-
cle operators may be expressed succinctly through particle creation and annihilation
operators as

Ô =
∑

k,k′;i,j

Oij(k,k
′)c†i (k)cj(k

′). (2.17)

In particular, the translation operator ta has the many-body form

t̂a =
∑
k;i

e−ik·ac†i (k)ci(k), (2.18)

while the Hamiltonian H is turned into

Ĥ =
∑
k;i,j

Hij(k)c†i (k)cj(k), (2.19)

with the Bloch Hamiltonian H(k) as introduced in eq. (2.9). Of course, the analog of
relation (2.4) still holds true, so Ĥ is translation invariant:

t̂aĤ = Ĥt̂a. (2.20)

In an eigenbasis of H(k) with creation and annihilation operators c̃†i (k) and c̃i(k)
corresponding to creating (and respectively, annihilating) a particle with energy Ei(k)
in the eigenstate |ψi(k)〉, it has the form

Ĥ =
∑
k;i

Ei(k)c̃†i (k)c̃i(k). (2.21)

We choose to order the energies according to Ei(k) ≤ Ej(k) for i < j. The many-
body ground state |g.s.〉 ∈ F is obtained by filling the energy eigenstates from the
one with least energy upwards. The energies Ei(k) are continuous2 functions of the
momentum k forming the i-th energy band and if the associated eigenstates are filled
for all k ∈ Td, this band is called an occupied (or valence) band. We will exclusively
consider the case of insulators (as opposed to conductors), where the first p bands are
occupied and the remaining n−p bands, called conduction bands, are empty, with an

2The eigenstates |ψi(k)〉, however, need not be continuous functions of k in general. In fact, in many
cases of topological insulators there cannot be a continuous choice.
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2. Quasi-particle ground states

energy gap Ep(k) < Ep+1(k) for all k ∈ Td as illustrated in Figure 2.1. In that case,
the ground state of Ĥ is an element in F given by

|g.s.〉 =
∏
k∈Td

c̃†1(k)c̃†2(k) · · · c̃†p(k)|0〉, (2.22)

where |0〉 ∈ ∧0(H) = C is the vacuum state.

E(k)

k

energy gap

p

n

Figure 2.1.: Schematic illustration of energy bands in dimension d = 1 with n = 3
bands of which p = 2 bands are occupied and n − p = 1 band is empty.
Periodic boundary conditions due to k ∈ T1 = S1 are indicated by the
dashed lines on the left and on the right.

Notice that in order to specify the ground state, any set of p linearly independent
operators in the vector space

C(k) := spanC{c̃
†
1(k), c̃†2(k), . . . , c̃†p(k)} (2.23)

applied to |0〉 at every momentum k would yield a state proportional to |g.s.〉. Indeed,
if a new set of operators is constructed from the one introduced above through an in-
vertible matrix Sk : C(k)→ C(k) (not required to be continuous in k), then eq. (2.22)

with c̃†i (k) replaced by Sk(c̃†i (k)) would be identical up to a factor
∏

k det(Sk) 6= 0.
For all physical observables, only the ray C · |g.s.〉 is relevant, so the result is physically
identical.

Furthermore, unlike the eigenstates |ψi(k)〉, the subspace C(k) varies continu-
ously with k ∈ Td: Modeling the torus Td as the quotient space Rd/2πZd, non-
degenerate eigenstates |ψi(k)〉 merely have to satisfy the condition that both |ψi(k)〉
and |ψi(k + G)〉 be eigenstates of H with the same eigenvalue for all reciprocal lattice

7



2. Quasi-particle ground states

vectors G ∈ 2πZd, so that

|ψi(k + G)〉 = λG|ψi(k)〉, (2.24)

with non-zero λG ∈ C, the phase of which can be interpreted as a Berry phase [Ber84].
In the degenerate case, the eigenspaces at k and k + G are related by some invertible
complex matrix. In either case, we have

C(k + G) = C(k). (2.25)

An alternative view of C(k), which will be useful for the generalization of the current
setting in the next section, presents itself by introducing generalized annihilation
operators

αi(k) :=

{
c̃i(k) for i > p

c̃†i (−k) for i ≤ p.
(2.26)

These operators have the property that they all annihilate the ground state |g.s.〉
and, taken together with their Hermitian conjugates, they fulfill the canonical anti-
commutation relations (2.15). Shifting the energies by a constant (the chemical po-
tential) such that, for all k ∈ Td, Ei(k) < 0 for i ≤ p and Ei(k) > 0 for i > p, the
Hamiltonian expressed in terms of the new operators reads

Ĥ =
∑
k;i

|Ei(k)|α†i (k)αi(k) + const. (2.27)

This expression makes manifest that a state in F is the ground state of Ĥ if and only
if it is annihilated by all αi(k), which confirms that |g.s.〉 is indeed the ground state.

Quasi-particle excitations are given by α†i (k)|g.s.〉 and correspond to the creation of
particles (i > p) or holes (i ≤ p).

We now formalize the role of the new set of operators by introducing the 2n-
dimensional vector space Wk of all linear combinations of creation and annihilation
operators that decrease the momentum by k,

Wk := spanC{α1(k), . . . , αn(k), α†1(−k), . . . , α†n(−k)} (2.28)

= spanC{c̃1(k), . . . , c̃n(k), c̃†1(−k), . . . , c̃†n(−k)} (2.29)

= spanC{c1(k), . . . , cn(k), c†1(−k), . . . , c†n(−k)}. (2.30)

This space splits as Wk = H∗k ⊕ H−k and corresponds to a component of what is
known as Nambu space

H∗ ⊕H =
⊕
k

(H∗k ⊕H−k) =
⊕
k

Wk. (2.31)

8



2. Quasi-particle ground states

In this decomposition, we have identified the space of bare annihilation operators with
H∗ by restricting annihilators to maps ∧1(H) → ∧0(H), where we can identify the
domain with H and the codomain with C. Under this identification, the component
H∗k corresponds to bare annihilators reducing the momentum by k. Similarly, the
bare creation operators restrict to ∧0(H) → ∧1(H) and we can identify them with
their image of |0〉 to obtain elements in H. From this point of view, the component
H−k contains bare creation operators also decreasing the momentum by k.

There is a canonical bijection H → H∗ which assigns to a vector v ∈ H the function
〈v, ·〉 ∈ H∗. Using this bijection on the subspace H ⊂ H∗ ⊕ H and its inverse on
H∗ ⊂ H∗ ⊕ H defines an anti-linear map γ : H∗ ⊕ H → H∗ ⊕ H with γ2 = 1. In
the interpretation of H∗ ⊕ H as the space of all linear combinations of creation and
annihilation operators, γ is simply given by Hermitian conjugation. Its restriction to
Wk ⊂ H∗ ⊕H can be written explicitly as

γ :Wk →W−k∑
i

uici(k) + vic
†
i (−k) 7→

∑
i

ūic
†
i (k) + v̄ici(−k). (2.32)

Another structure on H∗ ⊕H is the pairing given by the anti-commutator

{·, ·} : (H∗ ⊕H)⊗ (H∗ ⊕H)→ C, (2.33)

which can only be non-zero for pairs taken from components with opposite momentum
and therefore descends to a pairing

{·, ·} :Wk ⊗W−k → C. (2.34)

Using the anti-commutator above in conjunction with the map γ, we can define a
natural Hermitian scalar product for w,w′ ∈ Wk:

〈w,w′〉 := {γw,w′}. (2.35)

This definition gives the standard scalar product on C2n in a basis of Wk consisting
of operators obeying the CAR (2.15):

〈ci(k), c†j(−k)〉 = 0 = 〈c†i (−k), cj(k)〉 (2.36)

〈ci(k), cj(k)〉 = δij = 〈c†i (−k), c†j(−k)〉. (2.37)

For general elements inWk, we extend anti-linearly in the left and linearly in the right
argument as usual.
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2. Quasi-particle ground states

With respect to this scalar product, the map γ is seen to be anti-unitary, since, for
all w,w′ ∈ Wk,

〈γw, γw′〉 = {γ2w, γw′}
= {w, γw′}
= {γw′, w}
= 〈w′, w〉. (2.38)

We now return to the connection between the ground state and its annihilators: The
continuous map assigning to every k ∈ Td the n-dimensional subspace

A(k) := spanC{α1(k), α2(k), . . . , αn(k)} ⊂ Wk, (2.39)

subject to the constraint

{A(k), A(−k)} = 0 (2.40)

for all k ∈ Td due to the CAR (2.15), uniquely determines the ground state |g.s.〉.
The reason is that, with respect to the scalar product defined in eq. (2.35), A(k) splits
into an orthogonal sum

A(k) = Ap(k)⊕Ah(k), (2.41)

where Ap(k) := spanC{αp+1(k), αp+2(k), . . . , αn(k)} and Ah(k) = C(−k) from eq.
(2.23). The superscripts p and h stand for particle and hole, since Ap(k) ⊂ H∗k an-
nihilates particles, while Ah(k) ⊂ H−k annihilates holes (= creates particles). Thus,
specifying either one of Ah(k) or Ap(k) determines the other as its orthogonal comple-
ment and therefore suffices to determine A(k). Notice that the constraint of eq. (2.40)
is automatically fulfilled here.

In the present setting, the framework introduced above is equivalent to specifying
the map k 7→ C(k) from before. However, it will be necessary for the generalized
setting of the next section, where A(k) is still well-defined in contrast to C(k).

2.3. Superconductors

We now wish to expand the framework introduced in the previous section by gener-
alizing the Hamiltonian Ĥ of eq. (2.19) to

Ĥ =
∑
k;i,j

Hij(k)c†i (k)cj(k) + ∆ij(k)c†i (k)c†j(−k) + ∆ij(k)cj(−k)ci(k). (2.42)

10
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The additional terms allow for a mean-field description of superconductors by includ-
ing the creation and annihilation of Cooper pairs. This Hamiltonian is still translation
invariant, since translations act on creation and annihilation operators as

t̂ac
†
i (k)t̂−1a = e−ik·ac†i (k) (2.43)

t̂aci(k)t̂−1a = eik·aci(k). (2.44)

Hence, for a translation invariant Hamiltonian, pairs have to be created and annihi-
lated with opposite momenta. This is reasonable physically as translation invariance
leads to momentum conservation and the only way to achieve this whilst creating or
annihilating a pair of particles is to assign opposite momenta to each constituent.

Repeating the analysis of the previous section, we require a new set of operators
c̃†i (k) and c̃i(k) such that

Ĥ =
∑
k;i

|Ei(k)|α†i (k)αi(k) + const., (2.45)

In contrast to before, if the coefficients ∆ij(k) in eq. (2.42) are non-vanishing, the

new operators are required to be linear combinations containing both types c†i (k) and
ci(−k). The generalized setting introduced in the previous section applies to this
situation: The ground state is the state annihilated by all αi(k) and specifying it is
equivalent to specifying the space of these annihilators in the form of a continuous
map k 7→ A(k) ⊂ Wk subject to the constraint (2.40).

More formally, the vector spaces Wk are, by construction, isomorphic to (Cn)∗ ⊕
Cn ' C2n, independent of k. In the language of vector bundles, we therefore have
a trivial bundle {Wk}k∈Td ' Td × C2n. Thus, we can identify all fibers and often
writeWk ≡ W ≡ C2n for simplicity. There may be situations where the vector bundle
is non-trivial, for instance in effective low energy theories which discard some bands
and only focus on the ones closest to the Fermi energy. In any case, the assignment
k 7→ A(k) defines a sub-vector bundle of {Wk}k∈Td . Focusing on the case where
{Wk}k∈Td is trivial, we are now in a position to give a formal definition of what kinds
of ground states we will examine in this work:

Definition 2.1. By an IQPV (insulator quasi-particle vacuum) we mean a complex

sub-vector bundle A ρ→ Td with fibers ρ−1(k) ≡ A(k) ⊂ W = C2n of dimension n
such that all pairs of fibers A(k) and A(−k) annihilate one another with respect to
the CAR pairing:

∀k ∈ Td : {A(k), A(−k)} = 0. (2.46)

There is an alternative, yet equivalent description which will be adopted throughout
the later parts of this thesis. It formalizes the notion of the map k 7→ A(k) ⊂ C2n by

11



2. Quasi-particle ground states

defining its codomain to be the Grassmannian

Grn(C2n) := {Subvector spaces A ⊂ C2n with dim(A) = n}. (2.47)

The CAR constraint (2.40) can be realized on Wk ' C2n by defining an involution

τ0 : Grn(C2n)→ Grn(C2n)

A 7→ A⊥, (2.48)

where

A⊥ := {w ∈ C2n : {w,w′} = 0 for all w′ ∈ A}. (2.49)

The alternative definition can now be given as

Definition 2.2. By an IQPV (insulator quasi-particle vacuum) we mean a continuous
map

A : Td → Grn(C2n)

k 7→ A(k), (2.50)

subject to the condition

A(−k) = τ0(A(k)). (2.51)

It will turn out to be useful to denote by τ : Td → Td the involution τ(k) = −k
such that the constraint in the definition above may be rephrased as an equivariance
condition

A ◦ τ = τ0 ◦A. (2.52)

Remark 2.3. The Hamiltonian Ĥ given in eq. (2.42) can be associated with an en-
domorphism3 HBdG(k) : Wk → Wk in analogy to the Bloch Hamiltonian H(k) :

Hk → Hk defined in eq. (2.11). Writing (c1(k), . . . , cn(k), c†1(−k), . . . , c†n(−k))t ≡
(c(−k), c†(k))t, it is given by

Ĥ =
∑
k

(
c†(k) c(−k)

)(1
2H(k) ∆(k)
∆†(k) −1

2H(−k)T

)
︸ ︷︷ ︸

HBdG(k)

(
c(k)

c†(−k)

)
+ const. (2.53)

3The subscript “BdG” is short for Bogoliubov-de Gennes and HBdG(k) is often referred to as the
BdG- or Bogoliubov-de Gennes Hamiltonian.

12
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In the basis {c1(k), . . . , cn(k), c†1(−k), . . . , c†n(−k)}, the matrix HBdG(k) is an endo-
morphism of Wk and due to the CAR (2.15), it is restricted by the relation

∆(k) = −∆(−k)T . (2.54)

Finding the set of annihilators {αi(k)} annihilating the ground state amounts to
finding a transformation diagonalizing HBdG(k) such that Ĥ can be written as

Ĥ =
1

2

∑
k

(
α†(k) α(−k)

)(diag (|Ei(k)|) 0
0 diag (−|Ei(−k)|)

)(
α(k)
α†(−k)

)
+ const.

(2.55)

It follows that the space spanned by the eigenstates of HBdG(k) with negative eigen-
value is equivalent to the space of annihilators at k, while the space spanned by those
with positive eigenvalue corresponds to the space of creators at −k.

2.4. Symmetries

Symmetries are introduced into our framework through a symmetry group G which is
represented by unitary or anti-unitary operators on the single particle Hilbert space
H that commute with the Hamiltonian. We assume that translations form a normal
Abelian subgroup Π ⊂ G and that all other symmetries commute with elements in
this subgroup. Therefore, on H, we have the relation

tag = gta (2.56)

for all translations ta ∈ Π and g ∈ G (note that we use the same notation for elements
of the abstract group G and the corresponding operators on H).

Unitary and anti-unitary representations on H have a natural extension to

H∗ ⊕H =
⊕
k

(H∗k ⊕H−k) =
⊕
k

Wk (2.57)

by assigning to an operator g : H → H the operator

(g−1)T ⊕ g : H∗ ⊕H → H∗ ⊕H. (2.58)

Given an eigenvector of translations |ψ〉 ∈ Hk with ta|ψ〉 = e−ik·a|ψ〉, applying an
element g ∈ G yields another eigenvector with

tag|ψ〉
(2.56)

= gta|ψ〉 = ge−ik·a|ψ〉 =

{
e−ik·ag|ψ〉 for unitary g

eik·ag|ψ〉 for anti-unitary g.
(2.59)
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Therefore,

g|Wk
:Wk →Wk for unitary g, (2.60)

whereas

g|Wk
:Wk →W−k for anti-unitary g. (2.61)

We are now in a position to introduce the concept of a G-symmetric IQPV:

Definition 2.4. An IQPV has a symmetry group G with the described properties if,
for all k ∈ Td,

gA(k) = A(k) (2.62)

for all unitary g ∈ G/Π and

gA(k) = A(−k) (2.63)

for all anti-unitary g ∈ G/Π.

It is sufficient to consider the reduced symmetry group G/Π, since all translations
act as scalars on A(k) by construction:

taA(k) = e−ik·aA(k) = A(k). (2.64)

The type of IQPVs introduced in section 2.3 are recovered by setting G = Π, so that
G/Π is the trivial group and only the CAR constraint (2.40) needs to be satisfied.
On the other hand, the setting of section 2.2 is recovered by setting G = Π × U1, so
G/Π = U1. This symmetry implements particle number conservation and is intact
if ∆(k) = 0 in eq. (2.42) (no pair creation or annihilation). For later use, we write
elements in U1 as eiθQ for some θ ∈ [0, 2π] and generator Q which acts as −1 on H∗k
and as +1 on H−k. We will often make use of Q rather than the exponentiated eiθQ

by exploiting the fact that

eiθQA(k) = A(k) ⇐⇒ QA(k) = A(k). (2.65)

2.5. Kitaev sequence

We will now construct ten examples of reduced symmetry groups G/Π by systemati-
cally adding symmetries to the setting of Section 2.3. In the end, we will show that
these ten cases already give all possible settings for the kind of symmetry groups in-
troduced in the preceding section. They will be split into two sets, one containing two
classes known as the complex symmetry classes and another containing eight classes
known as the real symmetry classes.

The accumulation of symmetries can be described systematically and succinctly by
turning the symmetries into a set of pseudo-symmetries, which are defined as follows:
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2. Quasi-particle ground states

Definition 2.5. An IQPV k 7→ A(k) has s pseudo-symmetries if there is a set of
k-independent, orthogonal and unitary operators J1, . . . , Js :Wk →Wk satisfying the
Clifford relations

JlJm + JmJl = −2δlm (l,m = 1, . . . , s) (2.66)

and, for all k ∈ Td,

〈A(k), J1A(k)〉 = · · · = 〈A(k), JsA(k)〉 = 0. (2.67)

Remark 2.6. An orthogonal unitary transformation J of Wk is a C-linear operator
with the properties

〈Jw, Jw′〉 = 〈w,w′〉 and {Jw, Jw′} = {w,w′} (2.68)

for all w,w′ ∈ Wk.
The condition 〈A(k), JA(k)〉 = 0 can equivalently be written as JA(k) = A(k)c,

where A(k)c denotes the orthogonal complement of A(k) in Wk. This makes the
difference to true unitary symmetries apparent: The space A(k) is not conserved, but
rather mapped to its orthogonal complement.

2.5.1. Complex symmetry classes

The complex sequence starts with the setting of section 2.2, which fits into the frame-
work of IQPVs by imposing a reduced symmetry group G/Π = U1.

Definition 2.7. By an IQPV of complex class s with s = 0, 1, 2, . . . we mean an
IQPV with reduced symmetry group G/Π = U1 and s pseudo-symmetries as defined
in Definition 2.5.

The following table summarizes the two complex classes and the symmetries im-
posed:

class symmetries s pseudo-symmetries

A Q 0 none
AIII Q, C (twisted particle-hole) 1 J1 = iγCQ

Complex class s = 0 (alias class A)

For s = 0, the setting corresponds precisely to the one in section 2.2: Due to the
U1 symmetry, the ground states are given by an orthogonal sum A(k) = Ap(k) ⊕
Ah(k), which renders the CAR constraint (2.40) superfluous. Therefore, no additional
restrictions are imposed.
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Complex class s = 1 (alias class AIII)

We now add the symmetry of twisted particle hole conjugation

C := γS = Sγ :Wk →W−k. (2.69)

For S = 1, this map is the operation γ of Hermitian conjugation as introduced in
eq. (2.32), but in general we allow for a twisting in the form of a k-independent,
unitary and orthogonal map

S :Wk →Wk, (2.70)

which is block diagonal with respect to the decompositionWk = H∗k⊕H−k and fulfills
S2 = 1.

Since γ is anti-unitary and S is unitary, their composition C is anti-unitary. There-
fore, according to eq. (2.63) in Definition 2.4, an IQPV with this symmetry needs to
satisfy

CA(k) = A(−k) (2.71)

for all k ∈ Td.
We define the pseudo-symmetry J1 to be the composition

J1 := iγCQ = iSQ = iQS, (2.72)

where we have used γ2 = 1 and SQ = QS (since S is block-diagonal and Q is
proportional to the identity on each block). The map S is unitary and orthogonal by
definition and so is iQ, as the replacements

cj(k)→ −icj(k) (2.73)

c†j(−k)→ ic†j(−k) (2.74)

leave both {·, ·} and 〈·, ·〉 invariant. Thus, J1 is unitary and orthogonal. Since it also
squares to −1 (as Q and S commute and square to +1), it remains to inspect its
action on the subspaces of annihilators:

J1A(k) = γCQA(k) = γCA(k) = γA(−k) = γA(k)⊥ = A(k)c, (2.75)

where the last step follows from the definition of γ in eq. (2.35) relating {·, ·} with
〈·, ·〉. The calculation above shows that J1 indeed qualifies as a pseudo-symmetry
according to Definition 2.5.

Remark 2.8. In the physics literature, the operator J1 is often called the chiral operator
or a chiral symmetry. We emphasize here that it is not a true symmetry, but a pseudo-
symmetry.

We will argue at the end of this chapter that there is no new setting to be gained by
adding further pseudo-symmetries. Thus, we have already completed the description
of the complex symmetry classes and can now proceed to the more involved sequence
of the eight real ones.
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2.5.2. Real symmetry classes

Unlike in the complex symmetry classes, we start the real ones without the U1-
symmetry and define

Definition 2.9. By an IQPV of real symmetry class s with s = 0, 1, 2, . . . we mean
an IQPV with s pseudo-symmetries as defined in Definition 2.5.

The following table summarizes the symmetries to be introduced, as well as the
corresponding pseudo-symmetries formed from them:

class symmetries s pseudo-symmetries

D none 0 CAR constraint
DIII T (time reversal) 1 J1 = γT
AII T,Q (charge) 2 J2 = iγTQ
CII T,Q, C (twisted particle-hole) 3 J3 = iγCQ

C S1, S2, S3 (spin rotations) 4 see text
CI S1, S2, S3, T 5
AI S1, S2, S3, T , Q 6
BDI S1, S2, S3, T , Q, C 7

Real symmetry class s = 0 (alias class D)

This class is described in Definitions 2.1 and 2.2 and is realized here by a symmetry
group G = Π consisting exclusively of translations.

Real symmetry class s = 1 (alias class DIII)

The first symmetry to be imposed is the operation of time-reversal, which is repre-
sented on H by an anti-unitary operator T with T 2 = −1. This operator commutes
with translations and therefore, as prescribed in eq. (2.61), it mapsWk toW−k. Orig-
inating from an operator on H, it is block diagonal with respect to the decomposition
Wk = H∗k ⊕H−k. Using T , we can define the first pseudo-symmetry as

J1 := γT = Tγ. (2.76)

Note that this is a different J1 than the one introduced in eq. (2.72) for the complex
symmetry classes. Since γ2 = 1 and T 2 = −1, the map J1 squares to −1. As
a composition of two anti-unitary maps γ and T , it is unitary, while orthogonality
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follows from the following calculation:

{J1w, J1w′} = {γTw, γTw′}
= 〈Tw, γTw′〉
= 〈Tw, Tγw′〉
= 〈γw′, w〉
= {w′, w}
= {w,w′} (2.77)

for all w ∈ Wk and w′ ∈ W−k.
Moreover, it acts on the annihilator spaces A(k) of an IQPV as

J1A(k) = γTA(k) = γA(−k) = γA(k)⊥ = A(k)c, (2.78)

where the second equality holds since T is a true symmetry.

Real symmetry class s = 2 (alias class AII)

In this class, the additional symmetry we impose is the U1-symmetry of particle
number conservation. The present setting is therefore equivalent to that of complex
class s = 0 (class A) with the addition of time-reversal symmetry. Accordingly, we
have the familiar decomposition of the annihilator space as A(k) = Ap(k) ⊕ Ah(k),
albeit with the restriction

TA(k) = A(−k). (2.79)

Remark 2.10. Since T is block diagonal with respect to Wk = H∗k ⊕ H−k and since
Ap(k) ⊂ H∗k and Ah(k) ⊂ H−k, relation (2.79) can be reduced to the valence bands
only:

TAh(k) = Ah(−k). (2.80)

Using the perspective of Definition 2.1, an IQPV in the present class is given by a
complex sub-vector bundle subject to (2.80). This kind of bundle is called quaternionic
in [Dup69, DNG14a]. Note that the term quaternionic does not refer to the field
underlying the vector spaces involved (these are always complex), but rather the
presence of a quaternionic structure mapping fibers at k to fibers at τ(k) = −k. A
quaternionic structure is defined as a map which is anti-linear map and squares to
−1, both criteria being fulfilled by T .

The second pseudo-symmetry we define as

J2 := iJ1Q. (2.81)
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Since both Q and J1 are unitary and orthogonal, so is their composition J2. The
Clifford algebra relations (2.66) are fulfilled, as the following calculations demonstrate:

J2
2 = iJ1QiJ1Q = iγTQiγTQ = −i2γ2T 2Q2 = −1 (2.82)

J1J2 = iJ1QJ1 = −iJ1J1Q = −J2J1. (2.83)

In the first line we have used the fact that all involved maps commute except for γ
and Q, which anti-commute. The minus sign in the second line appears for the same
reason.

Recalling that the U1-symmetry implies QA(k) = A(k), we conclude

J2A(k) = iJ1QA(k) = J1A(k) = A(k)c. (2.84)

Real symmetry class s = 3 (alias class CII)

We now augment the symmetry group by twisted particle-hole conjugation C as in-
troduced in eq. (2.69). For the third pseudo-symmetry it turns out that we can reuse
the first one of the complex sequence:

J3 := iγCQ = iSQ = iQS, (2.85)

This does not come as a surprise since the setting of real class s = 2 (class AII)
resembles that of the complex class s = 0 (class A), the only difference being the
addition of time-reversal symmetry. Thus, using the calculations in class A, we can
already conclude that J3 is unitary and orthogonal, squares to −1 and fulfills

J3A(k) = A(k)c. (2.86)

It remains to verify that it anti-commutes with J1 and J2, which were not present in
the treatment of class A. We find that

J3J1 = iQSγT = γiQST = −γT iQS = −J1J3 (2.87)

and

J3J2 = J3iJ1Q = −iJ1J3Q = −iJ1QJ3 = −J2J3. (2.88)

In the second line, we used the fact that J3 commutes with Q. In conclusion, J3 is a
valid member among the three pseudo-symmetries in this class.

In order to proceed to the remaining four real symmetry classes s = 4, 5, 6 and 7,
an interlude introducing what is known as the (1, 1)-isomorphism is required. This
isomorphism will play an important role in the homotopy classification of IQPVs and
will therefore be introduced in a sufficiently general manner.
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2.5.3. The (1, 1)-isomorphism

Denoting by Cl(Rp,q) the real Clifford algebra with p generators squaring to −1 and
q generators squaring to +1, there is an algebra isomorphism

Cl(Rp+1,q+1) ' Cl(Rp,q)⊗ Cl(R1,1) (2.89)

' Cl(Rp,q)⊗ R(2). (2.90)

In the second line we have used the fact that Cl(R1,1) is isomorphic to the algebra
R(2) of real 2-by-2 matrices. One possible realization of this isomorphism is given by
assigning to the positive generator of Cl(R1,1) the Pauli matrix σ3 and to the negative
generator the matrix iσ2. Using the fundamental representation on the factor R(2),
there is a one-to-one correspondence of real representations of Cl(Rp+1,q+1) and those
of Cl(Rp,q). We will use a variation of this fact in the following.

We start with the familiar spaceWk ≡ W, but with double the dimension as before.
Hence, it is a 4n-dimensional Hilbert space which is equipped with a non-degenerate
symmetric bilinear form {·, ·}.

Let there be q ≥ 2 Clifford generators J1, . . . , Jq realized as unitary operators on
W. In contrast to the pseudo-symmetries introduced in def. 2.5, we require only the
first q − 1 of them to be orthogonal, while the last one obeys

{Jqw, Jqw′} = −{w,w′} (2.91)

for all w,w′ ∈ W. A Clifford generator with this property will be dubbed “imaginary”,
while the standard, orthogonal ones will be called “real”.

Due to their special role in the following (they are the analogs of the additional
positive and negative generator of Cl(Rp+1,q+1) as compared to Cl(Rp,q), we rename
the last two generators:

I := Jq−1 (2.92)

K := Jq. (2.93)

Since K2 = −1, K has eigenvalues ±i with corresponding eigenspaces W±. These
give an orthogonal decomposition

W =W+ ⊕W−. (2.94)

Since J1, . . . Jq−2 and I anti-commute with K, they exchange these eigenspaces, which
implies that dim(W+) = dim(W−).

The idea of this section is to reduce all structure to the subspace W+ ⊂ W. The
first step is to restrict the non-degenerate symmetric bilinear form {·, ·} from W×W
to W+ ×W+. This procedure immediately yields another symmetric bilinear form,
which is also non-degenerate since, for all w+ ∈ W+ and w− ∈ W−,

{w+, w−} = {iw+,−iw−} = {Kw+,Kw−} = −{w+, w−} = 0. (2.95)

20



2. Quasi-particle ground states

Similarly, the Hermitian scalar product on W restricts to one on W+, where the non-
degeneracy of the restricted pairing again follows from that of the unrestricted one.
Indeed, for all w+ ∈ W+ and w− ∈ W−,

〈w+, w−〉 = −〈iw+,−iw−〉 = −〈Kw+,Kw−〉 = −〈w+, w−〉 = 0. (2.96)

Therefore, also γ :W →W restricts to an anti-unitary operator γ :W+ →W+.
Let A ⊂ W be an n-dimensional subvector space obeying the orthogonality condi-

tions

J1A = · · · = Jp−2A = IA = KA = Ac. (2.97)

The last two conditions imply that A is invariant under the operator L := iIK. Since
L2 = 1, it has eigenvalues ±1 with associated eigenspaces E±1(L) and A splits into
an orthogonal sum

A =
(
A ∩ E+1(L)

)
⊕
(
A ∩ E−1(L)

)
, (2.98)

Let P± := 1
2(1± iK) be the projectors onto W± and

A± := P+

(
A ∩ E±1(L)

)
⊂ W+. (2.99)

As part of the reduction to W+, we would like to show that A ⊂ W can be reduced
to A+ ⊂ W+ with relations (2.97) replaced by

j1A+ = · · · = jp−2A+ = Ac
+, (2.100)

where we define jl := LJl|W+ and Ac
+ is the orthogonal complement of A+ inW+. As

a first step, we prove the following:

Lemma 2.11. The space A is completely determined by A+. More precisely, the
projection map P+ restricted to A ∩ E±1(L) gives isomorphisms

A ∩ E±1(L) ' A± (2.101)

and, within W+,

Ac
+ = A−. (2.102)

Furthermore,W admits an orthogonal decomposition into the following four subspaces:

A ∩ E+1(L) = {w + Lw | w ∈ A(+)}, Ac ∩ E+1(L) = {w + Lw | w ∈ A(−)},
A ∩ E−1(L) = {w − Lw | w ∈ A(−)}, Ac ∩ E−1(L) = {w − Lw | w ∈ A(+)}.

(2.103)
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Proof. Any v ∈ E±1(L) can be written

v = P+v + P−v

= P+v ± P−Lv
= P+v ∓ LP+v. (2.104)

Therefore, P+v = 0 implies that v = 0, so P+ is injective. By definition it is also
surjective and hence an isomorphism. Therefore, all w ∈ A+ can be written w = P+v
with v ∈ A ∩ E+1(L) and w + Lw = v. Similarly, all w′ ∈ A− can be written
w′ = P+v

′ with v′ ∈ A ∩ E−1(L) and w′ − Lw′ = v′. On the other hand, we have
w′ + Lw′ ∈ Ac ∩ E+1(L) since

w′ + Lw′ = −iK(w′ − Lw′) ∈ KA = Ac. (2.105)

Since 〈A,Ac〉 = 0, it follows that 0 = 〈w + Lw,w′ + Lw′〉 = 2〈w,w′〉, so A+ is
orthogonal to A−. Furthermore,

dimA(+) + dimA(−) = dimA ∩ E+1(L) + dimA ∩ E−1(L) = dimA = dimW+,
(2.106)

implying that they are indeed orthogonal complements of each other in W+.
The last statement follows from the calculations above.

The remaining ingredient in the reduction to W+ is the reduction of J1, . . . , Jp−2.
Since the operators Jl and L commute for all l = 1, . . . , q− 2, the relations (2.97) can
be refined to

LJl
(
A ∩ E±1(L)

)
= Jl

(
A ∩ E±1(L)

)
= Ac ∩ E±1(L). (2.107)

The operators LJl commute with K and hence also with the projections P±. Applying
P+ to the equation above yields

jlA+ = LJlA+ = A− = Ac
+ (2.108)

for all l = 1, . . . , q − 2.
The operators jl obey the relations

jljm + jmjl = −2δlm (2.109)

for l,m = 1, . . . , q − 2.
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2. Quasi-particle ground states

2.5.4. Real classes s ≥ 4

We now apply the reduction procedure to the case where s pseudo-symmetries are
present. For this purpose, we define

K := iJ1J2J3, (2.110)

I := J4. (2.111)

The pseudo-symmetries J5, . . . , Js correspond to J1 . . . Jq−2 in the previous section
with an index shift of 4 and q = s− 2. The crucial difference is the presence of three
additional operators J1, J2 and J3, which commute with K and therefore leave W+

invariant. Accordingly, we define jl := Jl
∣∣
W+

for l = 1, 2, 3 and jl := LJl
∣∣
W+

for

l ≥ 5 as before, where L = iIK = J1J2J3J4. This set of reduced operators obeys the
following algebraic relations:

jljm + jmjl = −2δlmIdW+ (1 ≤ l,m ≤ 2),

jljm − jmjl = 0 (1 ≤ l ≤ 2; 5 ≤ m ≤ s), (2.112)

jljm + jmjl = −2δlmIdW+ (5 ≤ l,m ≤ s).

The pseudo-symmetry conditions for J1, J2 and J3 can be refined to

Jl
(
A ∩ E±1(L)

)
= Ac ∩ E∓1(L), (2.113)

since J1, J2 and J3 anti-commute with L and therefore exchange its eigenspaces. On
the other hand, they commute with K and therefore also with P±. Applying P+ to
eq. (2.113) and using Lemma 2.11 then yields

jlA+ = A+, (2.114)

for l = 1, 2, 3. Only two of these restrictions are independent, since j1j2j3 is the
identity onW+. We settle on the arbitrary choice of choosing l = 1, 2 and disregarding
l = 3.

In contrast, we know from the previous section that, for l ≥ 5,

jlA+ = Ac
+. (2.115)

We summarize the reduced setting in the following definition:

Definition 2.12. A reduced IQPV of real symmetry class s ≥ 4 is an IQPV k 7→
A+(k) ⊂ W+ = C2n constrained by

jlA+(k) = A+(k) (1 ≤ l ≤ 2),

jlA+(k) = A+(k)c (5 ≤ l ≤ s), (2.116)

A+(k)⊥ = A+(−k),

for all k ∈ Td. The jl are unitary and orthogonal operators satisfying the relations
(2.112).
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2. Quasi-particle ground states

It remains to be shown that the reduction procedure yields an equivalent description.
Thus we prove that IQPVs of real symmetry class s can be reconstructed from their
reduced versions:

Lemma 2.13. Fix a decomposition W = W+ ⊕W− ≡ E+1(J1J2J3) ⊕ E−1(J1J2J3)
and an isomorphism J1J2J3J4 ≡ L : W± → W∓. Then there exists a one-to-one
correspondence between the IQPVs of symmetry class s ≥ 4 and the reduced IQPVs
of the same class s.

Proof. We have already shown how to obtain the reduced IQPV from the original
one. Thus, we prove the converse: Given a reduced IQPV k 7→ A+(k) ⊂ W+,
we construct the original IQPV in the same symmetry class. For this purpose, we
fix an isomorphism L↓ : W+ → W− with inverse L↑ : W− → W+ in order to obtain
L = L↓+L↑ :W →W. Setting K = i(IdW+−IdW−), the extended pseudo-symmetries
are reconstructed as

J1 := j1 − L↓j1L↑, (2.117)

J2 := j1 − L↓j2L↑, (2.118)

J3 := iKJ1J2, (2.119)

J4 := iLK, (2.120)

Jl≥5 := L↓jl + jlL↑. (2.121)

These operators are orthogonal, unitary and satisfy the Clifford relations (2.66).
The original IQPV k 7→ A(k) is recovered from k 7→ A+(k) by defining

A(k) := {w + w′ + L↓(w − w′) | w ∈ A+(k), w′ ∈ A+(k)c}. (2.122)

By construction, the relations (2.116) translate back to the pseudo-symmetry condi-
tions (2.67). Moreover, since L↓ is orthogonal and A+(k)⊥ = A+(−k), we conclude
that A(k)⊥ = A(−k).

In the following, we use the notion of reduced IQPVs in order to introduce the same
sequence of symmetries as for s = 0, 1, 2, 3 with the addition of spin rotation symmetry
SU2. Nambu space will be denoted byW+ (without k-dependence) to emphasize that
we start in the reduced setting before doubling the space in order to incorporate all
pseudo-symmetries.

Real symmetry class s = 4 (alias class C)

The setting in this class is that of real symmetry class s = 0 (class D) with an addi-
tional spin-1/2 degree of freedom and a corresponding SU2 spin rotation symmetry.
Possible physical realizations of this class include superconductors with spin-singlet
pairing.
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2. Quasi-particle ground states

The Nambu space of creation and annihilation operators reducing the momentum
by k is given by W+ = Cn/2⊗ (C2)spin, which emphasizes the spin degree of freedom.
The group SU2 is represented on W+ by unitary operators, implying that its three
generators j1, j2 and j3 are anti-Hermitian (for n = 2, they are given by jl = iσl).
Since j21 = j22 = j23 = −1, these three operators have the additional property of
being unitary. Moreover, since the representation of SU2 on W+ is derived from a
representation on the single particle Hilbert space, j1, j2 and j3 commute with γ and
are therefore also orthogonal.

In the present symmetry class, spin rotations constitute the only symmetries besides
translations. Thus, the reduced symmetry group is given by G/Π = SU2 and IQPVs
k 7→ A+(k) with this symmetry group satisfy

j1A+(k) = j2A+(k) = j3A+(k) = A+(k). (2.123)

Due to the relation j3 = j2j1, only two of these conditions are independent and we
focus on the leftmost ones involving j1 and j2. The setting here is now precisely
that of a reduced IQPV of real symmetry class s = 4. Hence, after doubling the
space to W+ ⊕W− with a unitary and orthogonal map L↓ :W+ →W−, we may use
Lemma 2.13 to construct pseudo-symmetries J1, J2, J3 and J4.

Real symmetry class s = 5 (alias class CI)

As announced previously, the treatment of the remaining real symmetry classes will
parallel that of the first four with the addition of spin-rotation symmetry. Just like
real symmetry class s = 4 was the analog of real symmetry class s = 0, the present
real symmetry class s = 5 is analogous to s = 1. Hence, the reduced symmetry group
G/Π = SU2 is enhanced by the introduction of time-reversal symmetry T . Being
represented by an anti-unitary operator, this new symmetry merits the additional
requirement that

TA+(k) = A+(−k). (2.124)

Similarly to s = 1, this leads to a pseudo-symmetry

j5 := γT = Tγ, (2.125)

which has the same properties as J1 in real class s = 1 as defined in eq. (2.76). It
therefore squares to −1, is unitary, orthogonal and leads to the pseudo-symmetry
condition

j5A+(k) = A+(k)c. (2.126)

Being unitary and orthogonal, j1 and j2 commute with γ. On physical grounds, time
reversal T inverts spin (analogous to T inverting angular momentum) and since j1 and
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2. Quasi-particle ground states

j2 are spin operators multiplied by i, they commute with T due to its anti-unitarity.
Therefore, j1 and j2 commute with j5 and the IQPV at hand is a reduced one of real
symmetry class s = 5. Alternatively, we can reformulate it as an unreduced IQPV
with five pseudo-symmetries using Lemma 2.13.

Real symmetry class s = 6 (alias class AI)

Continuing in the same fashion, we introduce the U1-symmetry of particle number (or
charge) conservation with generator Q, which is a unitary and orthogonal operator
on W+. In other words, we require

QA+(k) = A+(k). (2.127)

Similarly to s = 2, this leads to an additional pseudo-symmetry

j6 := ij5Q. (2.128)

This operator is the analog of J2 in eq. (2.81) and has the same properties. Hence,
it squares to −1, is unitary as well as orthogonal and fulfills the pseudo-symmetry
condition

j6A+(k) = A+(k)c, (2.129)

in addition to the one imposed by j5. Moreover, j6 anti-commutes with j5 (for the
same reasons that J1 anti-commutes with J2, see eq. (2.83)) and commutes with j1
and j2, so we arrive at the setting of a reduced IQPV of real symmetry class s = 6.
Again, using Lemma 2.13, we can switch perspectives and reformulate the data above
with six pseudo-symmetries.

Real symmetry class s = 7 (alias class BDI)

The final real symmetry class we consider is obtained as an analog of real symmetry
class s = 3, but combined here with spin-rotation invariance. Accordingly, we assume
that twisted particle-hole conjugation C is a symmetry. Since this symmetry is anti-
unitary, it follows that

CA+(k) = A+(−k). (2.130)

In complete analogy to real symmetry class s = 3, we form the pseudo-symmetry

j7 := iγCQ = iSQ = iQS. (2.131)
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2. Quasi-particle ground states

The set {j5, j6, j7} corresponds to the set {J1, J2, J3} in the real symmetry class s = 3
and shares all of its properties, among which are unitarity, orthogonality, the Clifford
algebra relations and the pseudo-symmetry properties

j5A+(k) = j6A+(k) = j7A+(k) = A+(k)c. (2.132)

Additionally, j7 commutes with j1 and j2 since we require C to do so. The setting is
therefore that of a reduced IQPV in the real symmetry class s = 7. Once again, we are
free to convert to the setting with seven pseudo-symmetries according to Lemma 2.13.

2.6. Classifying spaces

In the previous section we have introduced a physical realization for IQPVs with any
number s = 0, . . . , 7 of pseudo-symmetries. This gives a well defined mathematical
setting, which we describe in more detail in the present section. Given a set of s
pseudo-symmetries J1 . . . , Js, we define

Cs(n) := {A ⊂ C2n | J1A = · · · = JsA = Ac} (2.133)

= ∪2np=0Grp(C2n). (2.134)

To allow for more generality, we include more components than Grn(C2n) as in
eq. (2.47) by removing the restriction on the dimensionality of subspaces A.

Recall from eq. (2.51) the map

τ0 : C0(n)→ C0(n)

A 7→ A⊥. (2.135)

Since Cs(n) is a subset of C0(n) and since JiA = Ac implies that JiA
⊥ = (A⊥)c, the

map τ0 restricts to maps

τs := τ0
∣∣
Cs(n)

: Cs(n)→ Cs(n). (2.136)

We introduce the following notation for the fixed point sets of these maps:

Rs(n) := {A ∈ Cs(n) | τs(A) = A}. (2.137)

An IQPV in the real symmetry class s can therefore be described as an equivariant
map

ψ : Td → Cs(n),

ψ ◦ τ = τs ◦ ψ. (2.138)
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2. Quasi-particle ground states

There is an alternative picture, which will help us make a connection to the existing
literature. To each element A ∈ C0(n) we may assign an operator

J(A) := i(PA − PAc), (2.139)

where PA and PAc are the orthogonal projectors onto the space A and its complement
Ac respectively. This operator is unitary and satisfies J(A)2 = −1. Since it is anti-
Hermitian, we can form the Hermitian operator (reinstating the dependence on k ∈
Td)

H(k) := iJ(A(k)), (2.140)

which is known as the flattened, or flat-band Hamiltonian. Indeed, it can be obtained
from the original Hamiltonian defining the IQPV as its ground state if its eigenvalues
Ei(k) are set to −1 for all annihilation operators and +1 for all creation operators
(see eq. (2.53)).

Using the transpose gT of an operator g with respect to {·, ·}, i.e.

{w, gw′} = {gTw,w′} (2.141)

for all w,w′ ∈ W, we obtain the relation Pτ0(A) = (PAc)T and therefore

(J ◦ τ0)(A) = −J(A)T = J(A)−1T . (2.142)

It follows that the involution τ0 on the level of subspaces A ⊂ W translates to an
involution on unitary operators

τCAR : U(W)→ U(W)

g 7→ (g−1)T ≡ g−1T . (2.143)

We use the subscript CAR to indicate that the origin of this involution is the CAR
restriction of eq. (2.40). The fixed points of τCAR are the orthogonal operators O(W) ⊂
U(W).

In the presence of s pseudo-symmetries J1, . . . , Js, the operator J(A) fulfills the
relations

JiJ(A) = −J(A)Ji, (2.144)

for i = 1, . . . , s, owing to JiA = Ac. Thus, if J(A) ∈ Fix(τCAR), or equivalently if
A = τ0(A), then J(A) presents a choice of another pseudo-symmetry Js+1 extending
the original set. Since the assignment A 7→ J(A) is a bijection, we can give an
alternative view of the spaces Cs(n) and Rs(n) in terms of unitary operators:

Cs(n) = {J ∈ U(W) | J2 = −1 and JiJ = −JJi for i = 1 . . . , s} (2.145)

Rs(n) = {J ∈ Cs(n) | τCAR(J) = J} (2.146)
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These spaces are well known: Cs(n) is the space of all extensions of a unitary Clifford
algebra representation and Rs(n) is the space of all extensions of an orthogonal Clifford
algebra representation. They are used in the seminal work [Kit09] and have been deter-
mined in [Mil63] and more recently in [SCR11] with the result displayed in Table 2.1.
The Clifford algebra isomorphisms Cl(Cs+2) ' Cl(Cs)⊗C(2) of complex Clifford alge-
bras and Cl(Rs+8,0) ' Cl(Rs,0)⊗R(16) of real Clifford algebras (see [ABS64, LM89])
yield a periodicity Cs+2(2n) = Cs(n) and Rs+8(16n) = Rs(n) [SCR11]. This is the
reason we stopped the sequence of introducing additional pseudo-symmetries at s = 1
for the complex symmetry classes and at s = 7 for the real symmetry classes: Further
pseudo-symmetries would not produce any new settings.

In order to obtain the symmetric spaces displayed as quotient spaces of Lie groups
in Table 2.1, we need to fix a basis ofW. Any orthonormal basis will do for identifying
U(W) with U2n. If we construct this orthonormal basis solely using elements fixed
under γ, then we obtain a basis known as a Majorana basis [Kit09] and we can
additionally identify O(W) with O2n. It is shown in [SCR11] that the spaces Cs(n)
can be obtained as a union of orbits of the group

GC
s (n) := {g ∈ U(W) | Jig = gJi for i = 1 . . . , s} (2.147)

on appropriate elements in Cs(n). For instance, C0(n) is the union of orbits gJg−1

of g ∈ Un ≡ GC
0 (n) on 2n + 1 elements J ∈ C0(n) that have p eigenvalues +i and q

eigenvalues −i for all combinations of p and q. The stabilizer for each of these orbits
is the product Up × Uq. Since U2n/Up × Uq is none other than the Grassmannian
Grp(C2n), the identification in eq. (2.134) follows. The next space C1(n) is given by
an orbit of GC

1 (n) = Un × Un on J2 ∈ C1(n) with stabilizer the diagonal subgroup
Un ⊂ Un×Un, producing the quotient listed in Table 2.1. Due to the 2-fold periodicity
Cs+2(n) = Cs(n/2), all other spaces Cs(n) can be obtained from C0(n) and C1(n).

A similar, but more involved analysis can be applied to the spaces Rs(n), which
can be realized as (unions of) orbits of

Gs(n) := {g ∈ O(W) | Jig = gJi for i = 1 . . . , s}
= {g ∈ GC

s (n) | τCAR(g) = g}. (2.148)

In this case, all spaces Rs(n) are generated by a single orbit except for s = 2 and
s = 6, where Rs(n) is a union of quaternionic and real Grassmannians respectively.

2.6.1. General symmetry groups

We now argue that every IQPV with general symmetry group G containing transla-
tions as a central subgroup can be constructed from the ten classes we have introduced.
In order to accomplish this, we use the classification result of [HHZ05] for Hamiltonians
acting on Nambu space H∗ ⊕H. Denoting by G0 the unitary symmetries containing
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s Cs(8r) Rs(8r)

0 ∪p+q=16rU16r/(Up ×Uq) O16r/U8r

1 (U8r ×U8r)/U8r U8r/Sp8r

2 ∪p+q=8rU8r/(Up ×Uq) ∪p+q=4rSp8r/(Sp2p × Sp2q)

3 (U4r ×U4r)/U4r (Sp4r × Sp4r)/Sp4r

4 ∪p+q=4rU4r/(Up ×Uq) Sp4r/U2r

5 (U2r ×U2r)/U2r U2r/O2r

6 ∪p+q=2rU2r/(Up ×Uq) ∪p+q=2rO2r/(Op ×Oq)
7 (Ur ×Ur)/Ur (Or ×Or)/Or

Table 2.1.: Realization of Cs and Rs = Fix(τs) as homogeneous spaces.

the translations Π as a central subgroup, the most general symmetry group in our
setting is given by a subgroup

G ⊂ G0 ∪ TG0 ∪ CG0 ∪ CTG0. (2.149)

The examples we have given correspond to G0 = Π (all complex classes and the
real classes s = 0, 1, 2, 3) and G0 = Π × SU2 (real classes s = 4, 5, 6, 7). The result
of [HHZ05] states that for any reductive group G0, the Hamiltonian is given by a
direct sum of blocks each of which is restricted to be an element of the tangent space
associated to one of ten types of symmetric spaces. In the setting with Π ⊂ G0,
the first part of this reduction is the decomposition of Nambu space H∗ ⊕ H into
blocks Wk. This reduces the unitary symmetries to the quotient group G0/Π and all
further unitary symmetries in this quotient lead to an orthogonal decomposition of
Wk =

⊕
iW i

k with the Hamiltonians acting block-diagonally. Thus, in order to find
the building blocks for the general situation, we may restrict the discussion to a single
blockW i

k. Since the CAR constraint as well as all subgroups of the form TG0 and CG0
map the sector W i

k to W i
τ(k), the setting for τ(k) 6= k is that of the symmetry classes

A and AIII in [Zir10]. Therefore, all Hamiltonians are elements of the tangent space
to either a unitary group or a Grassmannian. For τ(k) = k, the full classification
of [HHZ05] applies and all symmetries in eq. (2.149) are relevant if they are present.
In this case, there are ten possible symmetric spaces whose tangent space contains the
Hamiltonians, all of which are listed in Table 2.1.

We have shown that there is a one-to-one correspondence between IQPVs and
the flattened version of their defining Hamiltonian in eq. (2.140). In fact, imposing
the condition of flat spectra on the space of Hamiltonians tangent to a symmetric
space Cs(n) in the complex classes and Rs(n) in the real classes, gives symmetric
spaces Cs+1(n) and Rs+1(n) respectively [SCR11]. For example, the tangent space
to C1(n) = Un (class AIII) is given by its Lie algebra un containing (i times) the
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Hamiltonians of complex class s = 2 ≡ 0 (class A). Imposing a flat spectrum leads to
the union of Grassmannians displayed in Table 2.1.

Thus, we can apply the classification result of [HHZ05] to arrive at the statement
that an IQPV with arbitrary symmetry group containing and centralizing translations
is described by a collection of IQPVs, one for each index i inWk =

⊕
iW i

k, each being
in one of the ten complex or real symmetry classes s.
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In this chapter, we introduce a collection of tools which are tailored for the determi-
nation of topological phases as pursued in the remainder of this work. Starting with
the definition of the notion of homotopy, we will introduce homotopy groups, their rel-
ative versions and various different realizations thereof, accompanied by some useful
tools for their computation. This will be followed by a generalization to equivariant
homotopy theory with an introduction of G-CW complexes and the G-Whitehead
theorem, both of which are a vital ingredient in the homotopy theoretic derivation
of the Periodic Table for topological insulators. We will finish with some facts about
loop spaces and suspensions that will help formalize the notion of adding position-like
and momentum-like dimensions to the configuration space of an IQPV.

Throughout this work and in particular throughout this chapter, we will use the
category of topological spaces with morphisms being continuous maps. This being
understood, we will omit the attributes “topological” when talking about spaces and
the term “continuous” when referring to maps.

3.1. Homotopy

The backbone of homotopy theory is, as the name suggests, the notion of homotopy :

Definition 3.1. Two maps f0, f1 : X → Y are called homotopic (written f0 ' f1)
if and only if there exists a continuous interpolation, or homotopy, ft : X → Y with
t ∈ [0, 1].

The property of being homotopic is an equivalence relation on the set of all maps
X → Y , which therefore organize into equivalence classes called homotopy classes.
The set of these classes will be denoted by [X,Y ]. There is a corresponding equivalence
relation on spaces: Two spaces X and Y are said to be homotopy equivalent if there
exist maps f : X → Y and g : Y → X, called homotopy equivalences, such that
f ◦ g ' IdY and g ◦ f ' IdX . This is a coarser equivalence relation than that of
homeomorphism, where the stronger statements f ◦ g = IdY and g ◦ f = IdX are
required. Thus, homeomorphisms are examples of homotopy equivalences, but not
the other way around.

It is convenient to introduce the following notation: Given sequences of subsets
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Xn ⊂ · · · ⊂ X1 ⊂ X and Yn ⊂ · · · ⊂ Y1 ⊂ Y , we denote by

f : (X,X1, . . . , Xn)→ (Y, Y1, . . . , Yn) (3.1)

a map f : X → Y with f(Xi) ⊂ Yi for all i = 1, . . . , n. We say that two such maps are
homotopic if there exists a homotopy respecting these restrictions. The corresponding
set of homotopy classes we denote by

[(X,X1, . . . , Xn), (Y, Y1, . . . , Yn)]. (3.2)

A common situation is that ofXn = {x0} and Yn = {y0}, where x0 ∈ X and y0 ∈ Y are
distinguished points referred to as base points. In this case, we simplify the notation:

[(X,X1, . . . , Xn−1, {x0}), (Y, Y1, . . . , Yn−1, {y0})] (3.3)

≡ [(X,X1, . . . Xn−1, x0), (Y, Y1, . . . , Yn−1, y0)] (3.4)

≡ [(X,X1, . . . Xn−1), (Y, Y1, . . . , Yn−1)]∗. (3.5)

In this case, homotopies are called base point preserving, since f(x0) = y0 stays fixed
throughout. A construction central to many results in this thesis is of this kind: For
X = Sd the d-dimensional sphere (d ≥ 0), we define the d-th homotopy group

πd(Y, y0) := [(Sd, s0), (Y, y0)]. (3.6)

We often drop the base point y0 from the notation and simply write πd(Y ) with the
base point preserving property being understood. There are two alternative definitions
of the d-th homotopy group due to the fact that Sd is homeomorphic to the quotient
Dd/∂Dd of the d-dimensional disk Dd by its boundary ∂Dd and, similarly, to the
quotient Id/∂Id of the d-cube Id by its boundary ∂Id (see Appendix A.1 for details).
Thus,

πd(Y, y0) = [(Dd, ∂Dd), (Y, y0)] (3.7)

= [(Id, ∂Id), (Y, y0)]. (3.8)

The realization using the d-dimensional cube Id := [−π, π]d lends itself for the defini-
tion of a group structure on these sets of homotopy classes. Given two representatives
f, g : (Id, ∂Id)→ (Y, y0) with d > 0, we form their product as the concatenation along
the first coordinate (any other choice of coordinate would lead to the same group
structure, see Lemma 3.2 below):

(f ∗ g)(k1, k2, . . . , kd) :=

{
f(2k1 + π, k2 . . . , kd) for −π ≤ k1 ≤ 0

g(2k1 − π, k2 . . . , kd) for 0 < k1 ≤ π.
(3.9)
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Though formulated for representatives, this definition descends to the level of homo-
topy classes to give a multiplication on πd(Y ). It can be shown [Hat02] that this
multiplication is associative, has a neutral element (represented by the constant map
to the base point y0 ∈ Y ) and inverses can be constructed by inverting the sign of the
first coordinate (k1 → −k1). Note that π0(Y ) is not equipped with a group structure
in general.

Viewing Dd as the unit ball in Rd, it inherits a Euclidean structure. The action
of the orthogonal group Od on Rd restricts to Dd, so we can formulate the following
useful lemma generalizing the construction of inverses:

Lemma 3.2. Let Y be a space with base point y0 ∈ Y and f : (Dd, ∂Dd) → (Y, y0)
a representative of the class [f ] ∈ πd(Y ) with d ≥ 1. Then the concatenation with an
orthogonal transformation g ∈ Od yields

[f ◦ g] =

{
[f ] for det(g) = 1,

[f ]−1 for det(g) = −1.
(3.10)

Proof. The group Od has two connected components distinguished by the value of the
determinant. Therefore, given g ∈ Od with det(g) = 1, there is a continuous path to
any other orthogonal matrix with determinant 1. In particular, there is a path γ(t)
with γ(0) = g and γ(1) = Id. This yields a homotopy

Ft := f ◦ γ(t) (3.11)

with F0 = f ◦g and F1 = f . Since ∂Dd is invariant under orthogonal transformations,
all maps in this homotopy are base point preserving.

For the case of det(g) = −1, we use a path γ(t) with γ(0) = g and γ(1) =
diag(−1, 1, . . . , 1). In this case, the homotopy Ft interpolates between f ◦ g and
f ◦diag(−1, 1, . . . , 1). Under the homeomorphism u−1 described in Appendix A.1, the
latter maps to a representative of the class [f ]−1, which finishes the proof.

Two important consequences of this Lemma 3.2 are the following:

Corollary 3.3.

(i) A permutation σ of the coordinates in Id maps [f ] ∈ πd(Y ) to [f ◦ σ] = [f ] if
sgn(σ) = 1 and to [f ◦ σ] = [f ]−1 if sgn(σ) = −1.

(ii) A representative of the inverse class [f ]−1 can be obtained from f by inverting
the sign of any odd number of coordinates in Id. Inverting the sign of any even
number of coordinates leaves the class [f ] invariant.
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Figure 3.1.: Homotopy equivalence (I2, ∂I2, J1)→ (D2, S1, s0): J
1 (the boundary with

one side removed) is contracted to the point s0. To relate the left picture
to the definitions, note that the first coordinate runs vertically and the
second horizontally.

Proof. The homeomorphism u defined in Appendix A.1 commutes with the operations
of inverting the signs and permutation of coordinates, so we can use Lemma 3.2.
Statement (i) is obtained by using the subgroup of Od consisting of permutation
matrices. Similarly, statement (ii) is obtained from the diagonal subgroup of Od.

A generalization of homotopy groups is given by the relative homotopy groups

πd(Y, Y1, y0) := [(Dd, ∂Dd, s0), (Y, Y1, y0)] (3.12)

= [(Dd, Sd−1, s0), (Y, Y1, y0)] (3.13)

= [(Id, ∂Id, Jd−1), (Y, Y1, y0)]. (3.14)

Here we have defined Jd−1 := ∂Id\(Id−1 × {−π}) to be the boundary with one side
removed (the one with last coordinate equal to −π). Figure 3.1 illustrates the two
definitions in the case d = 2 as well as the homotopy equivalence between the respec-
tive domains. Similarly to the homotopy groups, the set πd(Y, Y1, y0) is equipped with
a group structure by concatenation in the first coordinate of Id. However, since the
last coordinate is assigned a special role, this group structure is only defined for d ≥ 2
in general. We often suppress the base point and write πd(Y, Y1) ≡ πd(Y, Y1, y0).

Homotopy groups together with their relative versions fit into a long exact sequence
(d ≥ 0)

· · · πd(Y1) πd(Y ) πd(Y, Y1) πd−1(Y1) πd−1(Y ) · · ·id jd ∂d id−1

The map id is induced by the inclusion Y1 ↪→ Y and jd by the inclusion (Y, {y0}) ↪→
(Y, Y1). Given a representative f : (Dd, Sd−1) → (Y, Y1) of a homotopy class [f ] ∈
πd(Y, Y1), the map ∂d is defined by

∂d[f ] := [f
∣∣
Sd−1 ] ∈ πd−1(Y1). (3.15)

35



3. Tools of homotopy theory

The end of the exact sequence reads

· · · π1(Y1) π1(Y ) π1(Y, Y1) π0(Y1) π0(Y ).
i1 j1 ∂1 i0

It takes on a special role as the three sets on the very right do not form groups in
general. In particular, among the four maps only i1 is guaranteed to be a homomor-
phism. Note that all of these sets have a distinguished element represented by the
constant map. We can therefore still speak about the kernel of a map as the preimage
of this distinguished element. Hence, also the notion of exactness is still well defined.

The exact sequence above is closely related to the exact sequence of a fibration
Y1 ↪→ Y

p→ B. In fact, the projection p induces an isomorphism (see [Hat02], p. 376)

p∗ : πd(Y, Y1)→ πd(B), (3.16)

for all d ≥ 1. Defining δd := ∂d ◦ (p∗)
−1, there is an exact sequence

· · · πd(Y1) πd(Y ) πd(B) πd−1(Y1) πd−1(Y ) · · ·id p∗ δd id−1

3.2. Equivariant homotopy

In the real symmetry classes, IQPVs are given by equivariant maps and accordingly,
we extend the notion of homotopy to this equivariant setting. Thus, we generalize the
notion of topological spaces to include the action by a group G (which will be finite
for all applications) and introduce

Definition 3.4. Given two G-spaces X and Y , an equivariant homotopy between two
equivariant maps f0, f1 : X → Y is a continuous family ft : X → Y of equivariant
maps.

The property of being equivariantly homotopic is an equivalence relation on the set
of all equivariant maps X → Y and we denote by [X,Y ]G the corresponding set of
equivalence classes. We use notation analogous to the one introduced in Section 3.1,
in particular [X,Y ]G∗ denotes the set of base point preserving G-equivariant homotopy
classes. The base point of a spaceX is always chosen to lie within the set of fixed points
XG of the G-action. We often use the language free homotopy classes for [X,Y ]G as
opposed to based homotopy classes for [X,Y ]G∗ . Note that in the real symmetry classes
of Section 2.5.2, the group action is given by the special case G = Z2.

Up to this point, we have considered the case X = Td with Z2 acting through the
involution τ : Td → Td defined as τ(k) = −k. For a more general configuration space,
we make the following definition:
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Definition 3.5. The set of topological phases of the real symmetry class s with con-
figuration space X is given by

[X,Cs(n)]Z2 or [X,Cs(n)]Z2
∗ , (3.17)

depending on whether or not the space of annihilators is fixed for some point in X.
In the complex symmetry class s, the set of topological phases with configuration space
X is given by

[X,Cs(n)] or [X,Cs(n)]∗. (3.18)

An example of a physical setting in which base point preserving homotopy classes are
relevant is given in the presence of a compactified momentum space X = Rd ∪{∞} =
Sd. In this case we require IQPVs to map to the same point in Cs(n) for infinite
momentum and that this property is preserved under homotopies.

The physically relevant configuration spaces X that we will encounter in this thesis
are products of spheres and as such can be described as maps from cubes with ap-
propriate boundary conditions. If the domain is a product Sd1 × · · · × Sdm , then the
corresponding cube is the product Id1 × · · · × Idm = Id1+···+dm . Maps from this cube
satisfy the property that the image of points with components on the boundary ∂Idj

of one of the factors is invariant if these components are changed within ∂Idj . For
instance, with d1 = · · · = dm = 1 we have the torus Tm realized on Im with periodic
boundary conditions, whereas for m = 1 we have Sd1 realized on Id1 with the property
that the entire boundary ∂Id1 is mapped to a single point.

The possible Z2-actions on these kinds of configuration spaces can therefore be
reduced to Z2-actions on a cube. Since a cube is simply a product of intervals [−π, π],
we need to choose a representation of Z2 on every one of the intervals. There are
only two choices: Either the non-trivial element acts as the identity or it inverts the
interval coordinate. We call this coordinate trivial or non-trivial respectively. If there
are dx trivial coordinates and dk non-trivial coordinates, then we will always order
them so that the trivial ones come first and the non-trivial ones last and denote the
corresponding dx + dk-dimensional cube by Idx,dk .

The most important examples of spaces realized by imposing boundary conditions
on cubes are

• X = Td realized as Id with d non-trivial coordinates,

• X = Sdx,dk ≡ Sdx+dk realized as Idx+dk with the first dx coordinates trivial and
the last dk coordinates non-trivial,

• X = Sdx × Tdk realized as Idx+dk with the first dx coordinates trivial and the
last dk ones non-trivial.
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The domain X = Sdx×Tdk was previously used in [TK10] for the purpose of classifying
topological phases in the presence of a defect. If a defect has codimension dx + 1, it
can be enclosed by a large sphere Sdx , and at every point of this sphere, we can use
the approximation of having translation invariance as before. Thus, the domain is
enhanced to Sdx × Tdk . In Chapter 7, we prove that one may replace Sdx × Tdk by
Sdx,dk at the expense of losing “weak” invariants.

The based maps Sdx,dk → Cs(n) and the corresponding sets of (equivariant) homo-
topy classes according to Definition 3.5 will be studied extensively in Chapter 4. In
this context, another important space with Z2-action will appear:

Definition 3.6. Given a Z2-space Y , the equivariant loop space Ωdx,dkY is the space
of based maps f : Sdx,dk → Y equipped with the Z2-action f 7→ g · f · g−1. The set of
Z2 fixed points (Ωdx,dkY )Z2 is the subset of based equivariant maps. The base point of
Ωdx,dkY is the constant map.

This definition enables us to reformulate the set of (based) topological phases with
configuration space X = Sdx,dk as

[Sdx,dk , Cs(n)]Z2
∗ ' π0((Ωdx,dkCs(n))Z2)

' πdx((Ω0,dkCs(n))Z2)

≡ πdx(M s
dk

). (3.19)

In the last line we have introduced the abbreviation M s
dk

:= (Ω0,dkCs(n))Z2 . For the
frequently occurring loop spaces with one momentum-like or position-like coordinate,
we will often use abbreviations Ω0,1 ≡ Ω̄ and Ω1,0 ≡ Ω.

We can now prove a useful connection to the previously introduced concept of
relative homotopy groups [TZMV12]:

Lemma 3.7. For all dx ≥ 0, the set of topological phases in the real symmetry class
s with configuration space X = Sdx,dk can be expressed by the relative homotopy group

[Sdx,dk , Cs(n)]Z2
∗ = πdx+1(Ω

0,dk−1Cs(n),M s
dk−1). (3.20)

Proof. Throughout this proof, we adopt the formulation in terms of cubes as domains.
Thus, the space Sdx,dk is treated as Idx+dk with coordinates (x1, . . . , xdx , k1, . . . , kdk).
Given a map f : Idx+dk → Cs(n) representing a class in [Sdx,dk , Cs(n)]Z2

∗ , we may view
it as a map Idx → M s

dk
as in the identification (3.19). The crucial construction is

shown in Figure 3.2: The domain of maps (ψ : Idk → Cs(n)) ∈ M s
dk

is cut in half

at the (dk − 1)-plane (0, k2, . . . , kdk) ∈ Idk and only points with coordinate k1 ≥ 0
are kept since the Z2-equivariance condition ψ(−k) = τs(ψ(k)) determines the value
of all other points. We assign an equivalence class [f̃ ] ∈ πdx+1(Ω

0,dk−1Cs(n),M s
dk−1)

38



3. Tools of homotopy theory

according to

f̃ : (Idx+1, ∂Idx+1, Jdx)→ (Ω0,dk−1Cs(n),M s
dk−1, const.)

(x1, . . . , xdx , k1) 7→ f(x1, . . . , xdx)(k1, ·, . . . , ·), (3.21)

where const. denotes the constant map to the base point A∗ ∈ Rs(n) ⊂ Cs(n) and the
last coordinate k1 now runs from 0 to π rather than −π to π due to the cut. Hence,
the definition of Jdx is changed to Jdx := ∂Idx+1\(Idx × {0}).

−π 0 π

(−π,−π) (π,−π)

(−π, π) (π, π)

Figure 3.2.: Illustrating the cutting procedure for dx = 0: Domains of elements in
(from left to right) M s

1 , M s
2 and M s

3 are shown, with a cut along the
points with first coordinate equal to zero. This shows the restriction of
M s
d to M s

d−1 along the cut: On the left, restriction to 0 results in maps
to Rs = M s

0 , the fixed point set of the involution τs. In the middle,
restriction to the dashed line results in a map in M s

1 and finally, on the
right, the restriction of a map in M s

3 to the plane spanned by the dashed
lines gives an element in M s

2 . The gray region contains all information
about the mappings, since all points in the white regions are determined
by the Z2-equivariance condition.

For arbitrary x1, . . . , xdx and k1, f̃(x1, . . . , xdx , k1) is a map Idk−1 → Cs(n), which
maps the boundary ∂Idk−1 to the base point of Cs(n) (because maps in M s

dk
do so).

Therefore, f̃(x1, . . . , xdx , k1) ∈ Ω0,dk−1Cs(n).
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The subset Jdx ⊂ ∂Idx+1 corresponds to one of x1 to xdx being ±1 or k1 = 1. Since
f(∂Idx) = const. as well as f(Idx)(∂Idk) = A∗, it follows that f̃(Jdx) is the constant
map to A∗.

The remaining face in ∂Idx+1 is the one along the cut, namely the plane with k1 = 0.
With this coordinate removed, the Z2-equivariance condition of M s

dk
reduces to the

one of M s
dk−1, so f̃(∂Idx) ⊂M s

dk−1.

Since the assignment f 7→ f̃ is merely a reinterpretation of f on half of its domain,
while the other half is determined by the Z2-equivariance relation, it is clear that
this map is well defined at the level of homotopy classes and f ' g ⇔ f̃ ' g̃ for all
f, g ∈ [Sdx,dk , Cs(n)]Z2

∗ .

Using Lemma 3.7 to translate the set [Sdx,dk , Cs(n)]Z2
∗ to a relative homotopy group

πdx+1(Ω
0,dk−1Cs(n),M s

dk−1), we can determine its elements through the exact se-
quence associated to relative homotopy groups, provided the homotopy groups as
well as the maps in the sequence are known. In fact, for dx ≥ 1, we can use the group
structure of the relative homotopy group and the fact that the maps in the exact
sequence are homomorphisms to arrive at the general result

Lemma 3.8. For dx ≥ 1, all preimages under ∂dx+1 of elements in πdx(Y1) are in
bijection with im(jdx+1) ⊂ πdx+1(Y, Y1). Therefore, as a set,

πdx+1(Y, Y1) = im(jdx+1)× im(∂dx+1). (3.22)

Proof. From the long exact sequence associated to the relative homotopy groups, we
take the map

∂dx+1 : πdx+1(Y, Y1)→ πdx(Y1). (3.23)

As a set, πdx+1(Y, Y1) is the disjoint union of preimages of ∂dx+1. All of these preimages
contain the same number of elements: Choosing two elements β1 ∈ ∂−1dx+1(δ1) and

β2 ∈ ∂−1dx+1(δ2), a bijection is given by

∂−1dx+1(δ1)→ ∂−1dx+1(δ2)

α 7→ αβ−11 β2, (3.24)

with inverse

∂−1dx+1(δ2)→ ∂−1dx+1(δ1)

α 7→ αβ−12 β1. (3.25)

Notice that this construction makes use of the fact that, for dx ≥ 1, the map ∂dx+1 is
a group homomorphism. With the bijection above, we can identify all preimages with
the preimage of the neutral element 1 ∈ πdx(Y1):

∂−1dx+1(1) = ker(∂dx+1) = im(jdx+1), (3.26)
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where we have used exactness in the second equality. This completes the proof.

The case dx = 0 requires separate treatment since π1(Y, Y1) is not a group in general
and therefore ∂1 cannot be a homomorphism. However, even in this case there is some
structure in the form of a right action of the group π1(Y ) on π1(Y, Y1) (see [tD08,
p. 129]). Making the base point y0 ∈ Y1 ⊂ Y explicit, this action is defined by
assigning to a representative path α : [0, π] → Y with α(π) = y0 and α(0) ∈ Y1
the concatenation [γ] · [α] := [α ∗ γ] ∈ π1(Y, Y1) with [γ] ∈ π1(Y ). It enables us to
formulate the following statements analogous to those in Lemma 3.8:

Lemma 3.9. The orbit of the right action of π1(Y ) on an element [α] ∈ ∂−11 ([y]) ⊂
π1(Y, Y1) generates all of ∂−11 ([y]). The isotropy group of [α] is isomorphic to the
image of π1(Y1, y) in π1(Y ) under the map fα[γ] := [ᾱ ∗ γ ∗α], where ᾱ is the inverse
path of α. In particular, the union of all orbits is in bijection with the entire preimage
∂−11 (π0(Y1)).

Proof. Since the action is defined through representatives, we first check that it is well
defined on the level of homotopy classes. If two maps α0 and α1 represent the same
class [α0] = [α1] ∈ π1(Y, Y1), then there exists a homotopy αt : [0, π]→ Y interpolating
between the two, with αt(π) = y0 and αt(0) ∈ Y1. This yields a homotopy αt ∗ γ
implying that [α0 ∗γ] = [α1 ∗γ] in π1(Y, Y1). Similarly, a homotopy between two loops
γ0 and γ1 gives a homotopy α∗γt, so that [α∗γ0] = [α∗γ1] ∈ π1(Y, Y1) and the action
is indeed well defined.

The map ∂1 maps every orbit to a single connected component of Y1 since

∂1[α] = [α(0)] = ∂1[α ∗ γ] (3.27)

for all [γ] ∈ π1(Y ). Conversely, if two elements [α], [β] ∈ π1(Y, Y1) satisfy ∂1[α] =
∂1[β], the points α(0) and β(0) lie in the same connected component of Y1. Therefore,
we can find a homotopy of, e.g., α to another representative α̃ which satisfies α̃(0) =
β(0). The concatenation of the two paths gives a class of loops [β−1 ∗ α̃] ∈ π1(Y ) and
its action on β yields

[β−1 ∗ α̃] · [β] = [β ∗ β−1 ∗ α̃] = [α̃] = [α]. (3.28)

Thus, [α] and [β] lie in the same orbit.
For the remainder of the proof, we need to make base points explicit. The stabilizer

of [α], where α is a path from y0 to y ∈ Y1 ⊂ Y , is given by elements [γ] ∈ π1(Y, y0)
with [γ] · [α] = [α], i.e. α ∗ γ ' α. This property implies that

[α ∗ γ ∗ ᾱ] = [α ∗ ᾱ] = [const.] ∈ π1(Y, Y1, y). (3.29)

41



3. Tools of homotopy theory

Using the exact sequence associated to π1(Y, Y1, y) (note the change to the base point
y rather than y0), it follows that [α ∗ γ ∗ ᾱ] ∈ ker(j1) = i1(π1(Y1, y)). The map fα is
an isomorphism between π1(Y, y) and π1(Y, y0) and we identify

fα[α ∗ γ ∗ ᾱ] = [ᾱ ∗ α ∗ γ ∗ ᾱ ∗ α] = [γ] ∈ π1(Y, y0). (3.30)

Conversely, any [ω] ∈ π1(Y1, y) is mapped under j1 ◦ i1 to the trivial element in
π1(Y, Y1, y) and therefore(

fα[ω]
)
· [α] = [α ∗ ᾱ ∗ ω ∗ α] = [ω ∗ α] = [α] ∈ π1(Y, Y1, y0). (3.31)

An example where the preimages under ∂1 are not in bijection is illustrated in
Figure 3.3, where we take the example of Y1 ⊂ Y ⊂ R2. In this example, we have
π1(Y1) ' π1(Y ) ' Z, where the homotopy class n ∈ Z corresponds to a winding num-
ber n around the hole in Y (white region in Figure 3.3). On the other hand, π0(Y ) = 0
(Y is connected) and π0(Y1) = Z2 as a set (Y1 has two connected components). This
gives the following exact sequence:

...
...

...

±3 ±3 ±3

±2 ±2 ±2

±1 ±1 ±1 1

0 0 0 0 0

Z Z Z Z2 0

π1(Y1) π1(Y ) π1(Y, Y1) π0(Y1) π0(Y )
i1 j1 ∂1 i0

Due to exactness, ∂1 has to be surjective. In other words, there is only one connected
component of Y , so all connected components of Y1 can be reached by paths. Since i1 is
a bijection and in particular surjective, exactness implies that ker(j1) = π1(Y ) = Z. It
follows that im(j1) = ker(∂1) contains only one element represented by the constant
map. If ∂1 were a homomorphism, a trivial kernel would imply that it is injective
and therefore π1(Y, Y1) would contain only two elements. However, due to the lack
of group structure, a trivial kernel does not imply injectivity as illustrated in the
diagram above.

From the perspective of the previous two lemmas, we can also inspect preimages
under ∂1. The preimage of the connected component of Y1 containing the base point
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Y
Y1

y0

(a)

Y
Y1

y0

(b)

Y
Y1

y0

(c)

Y
Y1

y0

(d)

Figure 3.3.: Example illustrating non-bijective preimages under ∂1 with Y1 (dark gray)
a subset of Y ⊂ R2 (light gray). There are two preimages since Y1 has
two connected components (π0(Y1) = Z2 as a set). The preimage of the
connected component containing the base point y0 includes the two paths
shown in (a) and (b). Both are homotopic to the constant map (in fact,
the preimage contains only one homotopy class). In contrast, (c) and
(d) are not homotopic (the preimage contains infinitely many homotopy
classes).

43



3. Tools of homotopy theory

y0 contains only one element represented by the constant map to y0. In other words,
the action of π1(Y1) is trivial (no matter how many loops are added, they can all be
retraced within Y1). On the other hand, acting by π1(Y1) on the path in Figure 3.3(c)
yields infinitely many non-homotopic paths, one of them being 3.3(d). Thus, the
preimage of the other component of Y1 under ∂1 contains infinitely many elements.

Sometimes it is possible to avoid using relative homotopy groups in order to obtain
statements about equivariant homotopy classes. The following lemma is useful when-
ever a (non-equivariant) homotopy group has a generator which is represented by an
equivariant map.

Lemma 3.10. Let α : Sdx,dk → Y be a based and equivariant map, where we denote
by τ the involution on Sdx,dk and by τY the involution on Y . If [α] is the generator
of πdx+dk(Y ) = Z, then every (non-equivariant) homotopy class in πdx+dk(Y ) has an
equivariant representative.

Proof. Let [α] = 1 ∈ Z. Then the map ᾱ obtained by inverting the sign of first
coordinate of α represents the class [ᾱ] = [α]−1 = −1 ∈ Z. Any other homotopy class
n ∈ Z is represented by αn for n ≥ 1 or ᾱn for n ≤ −1 (the constant map represents
the neutral element 0 ∈ Z), where we define

αn(x1, . . . , xdx+dk) :=α(nx1 + (n− 2m− 1)π, x2, . . . , xdx+dk),

for x1 ∈
[
−π +m2π

n ,−π + (m+ 1)2πn
]
, (3.32)

with m = 0, . . . , n− 1.

This definition is illustrated in Figure 3.4: The domain of αn is divided into n parts
along the x1 direction and to each part the map α is applied. For n = 2, this
construction reduces to the product defined in eq. (3.9) and for larger n it is homotopic
to n-fold iteration of eq. (3.9) in the sense of α ∗ (α ∗ · · · ∗ (α ∗α) · · · ), which does not
split the first coordinate into equal parts.

The equivariance of α implies the equivariance of ᾱ: If τ1 denotes the map which
inverts the first coordinate in Sdx,dk , then

ᾱ ◦ τ = α ◦ τ1 ◦ τ = α ◦ τ ◦ τ1 = τY ◦ α ◦ τ1 = τY ◦ ᾱ. (3.33)

Inspecting eq. (3.32), we see that

τY ◦ αn = (τY ◦ α)n = (α ◦ τ)n = αn ◦ τ, (3.34)

and the same for ᾱ. These relations are obvious for dx ≥ 1 since the first coordinate is
unchanged under τ in that case. For dx = 0, observe that the m-th interval in (3.32)
is exchanged with the (n −m)-th interval and both are inverted. Since all intervals
contain the same map α, the last equation follows.
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α3 α α α=

x1

x2

Figure 3.4.: Visualization of the domain of αn as defined in eq. (3.32) for n = 3 and
dx + dk = 2.

3.3. G-CW complexes

The construction of homotopy groups and their relative versions require the use of
disks and their boundary spheres (or homotopy equivalent spaces) as domains. In this
section, we introduce a class of spaces called CW complexes, as well as their equivari-
ant generalization, G-CW complexes. These spaces are built by successively attaching
disks of various dimensions along their boundary spheres and, not surprisingly, there
are intimate ties to the homotopy groups. This fact will be exploited in the formula-
tion of the Whitehead theorem and its equivariant generalization, the G-Whitehead
theorem.

Definition 3.11. A finite CW complex is defined inductively: Starting with a finite
set of points X0 called the 0-skeleton, we form the 1-skeleton X1 by attaching n1 cells
I1 (intervals) along their boundary ∂I1 according to maps

φ1i : ∂I1 → X0, (3.35)

with i = 1, . . . , n1.
Having constructed the (m − 1)-skeleton Xm−1, we similarly form the m-skeleton

by attaching nm cells Im (m-cubes) along their boundary ∂Im as prescribed by the
attaching maps

φmi : ∂Im → Xm, (3.36)

with i = 1, . . . , nm.
We stop this procedure after d steps to arrive at the finite CW complex X = Xd of

dimension d.

Example 3.12 (Sphere Sd). The sphere Sd can be viewed as a CW complex with a
single point in X0 = X1 = · · · = Xd−1, and Xd obtained by attaching the boundary of
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a single cell Id to this point. However, this construction is not unique: An alternative
CW structure, which generalizes to the equivariant case introduced later, is given by
Xm = Sm. Thus, we start with two points (X0 = S0) and form X1 by attaching two
intervals I1 as the two hemispheres of X1 = S1. This in turn is the equator of X2 = S2,
which is constructed by attaching the two hemispheres I2, etc.

Proposition 3.13. Products of finite CW complexes are again finite CW complexes.

Proof. Given two CW complexes X and Y with skeleta Xi and Yj , where i ≤ d1
and j ≤ d2, the product X × Y is a finite CW complex with skeleta Xm × Ym for
m ≤ max(d1, d2). The attaching maps are given by the products of the individual
ones for X and Y . This construction can be iterated to arrive at a statement about
arbitrary products.

In physical applications, it is the configuration space which will be a CW complex.
In order to incorporate the action of Z2 on this space, we introduce a generalization
in the form of G-CW complexes for a finite group G, which includes the special case
G = Z2.

Definition 3.14. A finite G-CW complex X is constructed inductively: Starting with
a set of points X0 with trivial G-action, we construct the m-skeleton Xm from the
(m− 1)-skeleton Xm−1 by attaching nm cells of the form Im ×G/Hm

i with subgroups
Hm
i ⊂ G through equivariant attaching maps

φmi : ∂Im ×G/Hm
i → Xm, (3.37)

with i = 1, . . . , nm. The group G acts as the identity on Im (and thus on ∂Im) and
by left multiplication on G/Hm

i . The largest value d for which nd 6= 0 is called the
dimension of the G-CW complex X = Xd.

Remark 3.15. Taking Hm
i = G for all m and i, we have Im × G/Hm

i = Im and the
definition reduces to that of an ordinary CW complex with non-equivariant attaching
maps φmi .

Example 3.16 (Sphere Sdx,dk). The sphere Sdx,dk with dx trivial coordinates and
dk non-trivial coordinates can be equipped with the structure of a Z2-CW complex.
We start by constructing the part with trivial involution Xdx = Sdx as an ordinary
CW complex according to Example 3.12. The (dx + 1)-skeleton is then formed by
equivariantly attaching the pair Idx+1 × Z2 as the two hemispheres of Xdx+1 = Sdx,1,
leaving Xdx = Sdx as its equator which is fixed under the Z2-action. We iterate this
process until we arrive at the full Z2-CW complex Xdx+dk = Sdx,dk . This construction
is illustrated in Figure 3.5 for (dx, dk) = (0, 1).
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Z2

Z2

Figure 3.5.: Construction of S0,1 visualized as a circle (left) and as an interval with
boundary (two black points) identified (right). Starting with X0 consist-
ing of two points (one gray, one black), the cell I × Z2 comprising two
parts related by the Z2-action is attached equivariantly.

Proposition 3.17. Products of finite Z2-CW complexes are again finite Z2-CW com-
plexes. In particular, since Sdx,dk is a Z2-CW complex for all dx and dk, so are the
following spaces:

Td =
d∏
i=1

S0,i (Brillouin zone) (3.38)

Sdx × Tdk = Sdx,0 ×
d∏
i=1

S0,i (Brillouin zone with defect) (3.39)

Proof. The product of two cells Im1 and Im2 is the cell Im1+m2 with trivial Z2-action.
Similarly, the product of Im1×Z2 and Im2 is Im1+m2×Z2 with Z2-action on the factor
Z2. The only difficulty arises in the product of Im1×Z2 and Im2×Z2 which is given by
Im1+m2×Z2×Z2 and does not immediatly fit into Definition 3.14 of a Z2-CW complex.
However, the action of Z2 on Z2 × Z2 leaves invariant the two subsets {(0, 0), (1, 1)}
and {(0, 1), (1, 0)}, so we have a splitting

(Im1 × Z2)× (Im2 × Z2) = Im1+m2 × (Z2 × Z2)

= Im1+m2 × (Z2 t Z2)

= (Im1+m2 × Z2) t (Im1+m2 × Z2). (3.40)

Note the factors Z2 in the above should be considered not as groups but rather as sets
with two elements. The non-trivial element of the group Z2 acts by exchanging these
two elements.

Given two Z2-CW complexes X and Y , their product X × Y can now be equipped
with a Z2-CW structure. Given the m-skeleta Xm and Ym of X and Y respectively,
the m-skeleton of X×Y is given by the union of all sets Xm1×Ym2 with m1+m2 = m.
Denoting the attaching maps of X and Y by φmi for X and θmi for Y respectively,
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Figure 3.6.: Z2-CW structure of the Brillouin zone torus T2 = S0,1×S0,1 as described
in Example 3.18.

the attaching maps of X × Y are given by all products φm1
i × θ

m2
j , where we include

m1 = 0 and m2 = 0 by defining φ0i to be the constant map to the i-th element in
X0 (and similarly for θ0j ). If two attaching maps both have a domain with non-trivial
Z2-action, we use eq. (3.40) to obtain two separate attaching maps in place of their
product.

Example 3.18 (Brillouin torus T2). The Brillouin zone torus T2 = S0,1×S0,1 has the
following Z2-CW complex structure shown in Figure 3.6: Opposing sides are identified,
so the 0-skeleton consists of 4 points, to which 4 products I1×Z2 (a total of 8 intervals)
are attached to form the 1-skeleton. The 2-skeleton is formed by attaching the product
of the two 1-cells of the two circles S0,1, which splits as I2×Z2×Z2 = (I2×Z2)t(I2×Z2),
corresponding to the 4 gray squares in the diagram. The resulting action of the non-
trivial element of Z2 is indicated by the arrows.

3.3.1. The G-Whitehead Theorem

Computing homotopy classes [X,Y ] and especially their equivariant generalization
[X,Y ]G is a hard problem in general. For instance, even the seemingly innocent sets
[Sm,Sn] are unknown to a large extent. However, with knowledge about the homotopy
groups of Y , there are substantial simplifications if X is a G-CW complex. In order
to formalize this statement, we introduce the concept of maps being connected:
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Definition 3.19. A map f : Y → Z is said to be m-connected if the induced map

f∗ : πd(Y )→ πd(Z)

[g] 7→ [f ◦ g]

is an isomorphism for all d < m and surjective for d = m.

More generally, let Y and Z be G-spaces and f : Y → Z an equivariant map. If we
denote by Y H and ZH the fixed point sets under a subgroup H ⊂ G, we have a more
general notion:

Definition 3.20. If G is a group, let m denote an integer-valued function H 7→ m(H)
defined on all subgroups H of G. Then a G-equivariant map f : Y → Z is called
m-connected if for any subgroup H ⊂ G the restriction fH : Y H → ZH is m(H)-
connected.

We are now in a position to formulate the G-Whitehead theorem, which formalizes
the statement that knowledge about homotopy groups can be used to infer knowledge
about the sets of homotopy classes involving a G-CW complex as a domain.

Theorem 3.21 (G-Whitehead Theorem). If X is a G-CW complex and the base-
point preserving and G-equivariant map f : Y → Z is m-connected, then the induced
maps

f∗ : [X,Y ]G∗ → [X,Z]G∗ , [g] 7→ [f ◦ g],

f∗ : [X,Y ]G → [X,Z]G, [g] 7→ [f ◦ g],

are bijective if dim(XH) < m(H) for all subgroups H of G. They are surjective if
dim(XH) ≤ m(H) for all subgroups H of G.

We refer to the many references for the proof of this theorem. The base-point
preserving statement can be found in [MG95, Ada84] and the statement about free
homotopy classes is found in [tD87, Wan80, Mat71].

3.4. Relating based and free homotopy classes

The G-Whitehead Theorem 3.21 offers statements about both base-point preserving
and free homotopy classes. In this section, we state the relation between the two. More
explicitly, we formulate a relation between the set [X,Y ]Z2

∗ of based Z2-equivariant
homotopy classes and the set [X,Y ]Z2 of free Z2-equivariant homotopy classes in the
case of a Z2-CW complex X and a G-space Y . For if X is a Z2-CW complex, we can
use the Z2-homotopy extension property [tD87] in order to define a right action of
π1(Y

Z2) on the set [X,Y ]Z2
∗ as follows. Given a class [γ] ∈ π1(Y Z2), we can interpret
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any of its representatives γ as a homotopy of Z2-equivariant maps ft : {x0} → Y
with t ∈ [0, 1] and base point x0 ∈ XZ2 ⊂ X. Given some based Z2-equivariant
map F0 : X → Y , we use the equivariant homotopy extension property of X to
extend the homotopy ft from {x0} to all of X to yield a homotopy Ft : X → Y
through equivariant maps. At t = 0 and t = 1 this construction gives two based and
equivariant maps F0 and F1 and the assignment

[X,Y ]Z2
∗ × π1(Y Z2)→ [X,Y ]Z2

∗

[F0]× [γ] 7→ [F1] (3.41)

defines a right action of π1(Y
Z2) on [X,Y ]Z2

∗ . Denoting by [X,Y ]Z2
∗ /π1(Y

Z2) the set
of orbits under this action, we can formulate the following result:

Lemma 3.22. For a Z2-CW complex X and a G-space Y with path-connected fixed
point set Y Z2, there is a bijection

[X,Y ]Z2
∗ /π1(Y

Z2) ' [X,Y ]Z2 .

The proof of this statement can be found in [Whi78, p. 101]. A more detailed and
elementary exposition in the case of trivial Z2-actions is presented in [Hat02, p. 421].
The main idea is the following: During a free homotopy between two based equivariant
maps F0 and F1, the base point traces out a loop in Y Z2 . Therefore, even though
there may be no based homotopy between F0 and F1, they lie within the same orbit
under the π1(Y

Z2)-action, see Figure 3.7.

3.5. Path spaces and suspensions

Given a configuration space X, we would like to formalize the notion of adding
position-like and momentum-like coordinates. For example, we would like to construct
Sdx+1,dk and Sdx,dk+1 given X = Sdx,dk . The following construction accomplishes this
goal:

Definition 3.23. The position-like suspension SX and momentum-like suspension
S̄X of a Z2-space X are both given by the quotient

X × [0, 1]/X × {0} ∪X × {1}, (3.42)

which is a Z2-space where the non-trivial element of Z2 acts on the suspension coor-
dinate t ∈ [0, 1] as

t 7→ t for SX
and t 7→ 1− t for S̄X.
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Y
y0

Figure 3.7.: Example of the action of π1(Y
Z2) on [X,Y ]Z2

∗ with X = S1, Y ⊂ R2 (gray
with two holes), trivial Z2-actions and base point y0 ∈ Y Z2 = Y . The red
and blue loops represent distinct elements in [X,Y ]Z2

∗ , but share the same
orbit under the action of π1(Y

Z2), a representative of which is indicated
by the dotted loop. Indeed, they are freely homotopic by a homotopy
tracing out the dotted loop.
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Example 3.24. For X = Sdx,dk , we obtain

SX = SSdx,dk = Sdx+1,dk (3.43)

S̄X = S̄Sdx,dk = Sdx,dk+1 (3.44)

Another space of interest which is closely related to the suspension construction is
the space of paths in a Z2-space:

Definition 3.25. The position-like path space Ω(X,x1, x2) and the momentum-like
path space Ω̄(X,x1, x2) of a Z2-space X both consist of all paths in X starting in
x1 ∈ X and ending in x2 ∈ X. They are Z2-spaces with the non-trivial element of Z2

acting point-wise on points on the path and as

t 7→ t for Ω(X,x1, x2)

and t 7→ 1− t for Ω̄(X,x1, x2)

on the path coordinate t ∈ [0, 1].

Note that in order for the path space to be different from the empty set, the points
x1 and x2 need to lie within the same connected component of X.

Given a base point x∗ ∈ XZ2 ⊂ X, there are natural base points for its suspension
and path space: For both SX and S̄X, we choose the point (x∗, 1/2), which is fixed
by either Z2-action. In the case of the path spaces Ω(X,x0, x1) and Ω̄(X,x0, x1), we
take some fixed Z2-equivariant path from x0 to x1.

There is a useful relation connecting suspension and path spaces, which is stated
as follows:

Proposition 3.26. Given a Z2-CW complex X and a Z2-space Y , there are bijections

[SX,Y ]Z2
∗ ' [X,Ω(Y, y0, y1)]

Z2
∗ (3.45)

[S̄X,Y ]Z2
∗ ' [X, Ω̄(Y, y0, y1)]

Z2
∗ (3.46)

Proof. Put simply, the correspondence is established by reinterpreting the suspension
coordinate as a path coordinate and vice versa. However, there is a mismatch when it
comes to homotopies fixing base points: While in the suspension only a single point
is fixed, in the path space the entire path constituting the base point is fixed. This
discrepancy is remedied by considering a version of the suspension called the reduced
suspension ΣX or Σ̄X obtained by additionally collapsing the subspace {x∗} × I in
SX or S̄X to a point. In the case of a Z2-CW complex X, there are Z2-homotopy
equivalences ΣX ' SX and Σ̄X ' S̄X (see [Ada84, p. 491]). Analogously, we modify
the path spaces Ω(Y, y0, y1) and Ω̄(Y, y0, y1) of a Z2-space Y to be loop spaces ΩY
and Ω̄Y by taking y1 = y0 and choosing the base point to be the constant loop to
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y0 ∈ Y Z2 ⊂ Y . Again, there are Z2- homotopy equivalences Ω(Y, y1, y0) ' ΩY and
Ω̄(Y, y0, y1) ' Ω̄Y . The reduced suspension and the based loop space are adjoints of
one another in the sense that there are bijections

[ΣX,Y ]Z2
∗ ' [X,ΩY ]Z2

∗ (3.47)

[Σ̄X,Y ]Z2
∗ ' [X, Ω̄Y ]Z2

∗ . (3.48)

In both cases, the suspension coordinate on the left hand side is reinterpreted as the
loop coordinate on the right hand side and there are no longer issues regarding base
points. Due to the homotopy equivalences between reduced and unreduced suspen-
sions as well as loop spaces and path spaces, the original statement follows.
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The goal of this chapter is to determine the set [Sdx,dk , Cs(n)]Z2
∗ with n � dx, dk

for all dx, dk and complex and real symmetry classes s. The results of this endeavor
are displayed in Table 4.1. In the absence of defects (dx = 0), this table is known
as the Periodic Table for topological insulators and superconductors [Kit09] and has
been generalized in [TK10] to all dx. On a historical note, the entries of the Periodic
Table were initially not presented as in Table 4.1, but were rather calculated case
by case for low dimensions. Indeed, there is no a priori reason for expecting the di-
agonal pattern that only exhibits itself if the symmetry classes are arranged in the
presented order. The latter was first realized by Kitaev [Kit09] by noticing that there
is a deep relation to a mathematical result known as Bott periodicity [Bot59]. The
plan of this chapter is to make use of Bott periodicity in order to prove that there
are bijections [X,Cs(n)]Z2

∗ ' [S̄X,Cs+1(2n)]Z2
∗ and [X,Cs(n)]Z2

∗ ' [SX,Cs−1(n)]Z2
∗

for path-connected Z2-CW complexes X with dimX � n (S̄X and SX denote the
suspension of X which adds a momentum-like or position-like dimension to X respec-
tively, see Section 3.5). Specializing to X = Sdx,dk , the result shown in Table 4.1
follows.

Before we proceed with the homotopy classification, we point out crucial differences
to other choices of equivalence relations that are used widely in the literature.

4.1. Alternative equivalence relations

There are two mathematical languages in which IQPVs may be viewed, as introduced
in Definitions 2.1 and 2.2 in the setting without symmetries. Both capture the fact
that the spaces of annihilators should vary continuously with some parameter in a
configuration space X (e.g. with momentum k ∈ X = Td). We can either encode this
feature in the form of a continuous map from X to a classifying space or by viewing
the collection of annihilator spaces as a sub-vector bundle over X.

More formally, and in the presence of symmetries, we may view it as a rank-n
complex sub-vector bundle A ρ→ X with fibers ρ−1(k) = A(k) ⊂ Wk = C2n subject to
A(k)⊥ = A(τ(k)) and the pseudo-symmetry conditions (2.67). On the other hand, we
may describe it by a classifying map A : X → Cs(n) subject to the Z2-equivariance
condition τs ◦A = A ◦ τ .

We used the description in terms of classifying maps with the natural equivalence
relation of being homotopic in order to define topological phases of IQPVs. In this
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index symmetry dk − dx
s label 0 1 2 3

complex 0 A Z 0 Z 0
classes 1 AIII 0 Z 0 Z

0 D Z2 Z2 Z 0
1 DIII 0 Z2 Z2 Z
2 AII Z 0 Z2 Z2

real 3 CII 0 Z 0 Z2

classes 4 C 0 0 Z 0
5 CI 0 0 0 Z
6 AI Z 0 0 0
7 BDI Z2 Z 0 0

Table 4.1.: The sets [Sdx,dk , Cs(n)]Z2
∗ for 1 ≤ dx + dk � n, also known as the Peri-

odic Table for topological insulators and superconductors. The complex
symmetry classes are included with trivial Z2-actions. The entries 0, Z2

and Z mean sets with one, two and (countably) infinitely many elements,
respectively. They are groups only when dx ≥ 1. For dx = dk = 0, the
three entries of Z change to Z2n+1 (class A), Zn/2+1 (class AII) and Zn/4+1

(class AI), corresponding to the connected components of C0(n) (class A),
R2(n) (class AII) and R6(n) (class A); see Table 2.1.
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section, we point out two alternative equivalence relations based on the vector bundle
description, both of which will turn out to give, in general, a coarser classification than
using homotopy. These differences can already be illustrated for the complex class
s = 0 (class A), where IQPVs can be viewed either as classifying maps X → Grp(Cn)
or complex p-dimensional sub-vector bundles of X × Cn. We assume here that X is
path-connected and thus focus on only one connected component of C0(n). In other
words, the dimension of the fibers will be constant.

Two such sub-vector bundles A0 and A1 with p-dimensional fibers and projections
ρ0 : A0 → X and ρ1 : A1 → X are said to be isomorphic if there exists a homeomor-
phism h : A0 → A1 which maps fibers to fibers (ρ1 ◦ h = ρ0) by linear isomorphisms.
This notion defines an equivalence relation and its equivalence classes, called isomor-
phism classes, will be denoted by VectCp (X).

There is a bijection [Hus66]

VectCp (X) ' [X,Grp(Cn)] if 2(n− p) ≥ dimX, (4.1)

so the two equivalence relations lead to the same equivalence classes if the condition
on the dimensionality of X is met. However, if it is violated, it may occur that two
IQPVs are isomorphic as sub-vector bundles but not homotopic. A concrete example
is provided by the “Hopf insulator” [MRW08] for X = S3 with n = 2 and p = 1,
where 2(n − p) = 2 < 3 = dim S3. Indeed, while all complex line bundles over S3

are isomorphic to the trivial one (VectC1 (S3) = 0), such vector bundles, viewed as
subbundles of S3 × C2, organize into distinct homotopy classes:

[S3,Gr1(C2)] = π3(S
2) = Z. (4.2)

These homotopy classes are distinguished by what is called the Hopf invariant (see
Section 6.3 for details).

A standard approach used in the literature is to work with a further reduction of the
topological information contained in isomorphism classes, by adopting the equivalence
relation of stable equivalence between vector bundles. Two vector bundles A0 → X
and A1 → X are stably equivalent if they are isomorphic after adding trivial bundles
(meaning trivial valence bands in physics language), i.e. if there exist m1,m2 ∈ N
such that

A0 ⊕ (X × Cm1) ' A1 ⊕ (X × Cm2). (4.3)

Under the direct-sum operation, the stable equivalence classes constitute a group
called the reduced complex K-group of X, denoted as K̃C(X). Inverses in this group
are given by the fact that for compact X, all complex vector bundles A have a partner
A′ such that A⊕A′ ' X × Cn for some n ∈ N, where the right-hand side represents
the neutral element. In the limit of a large number of valence and conduction bands,
called the stable regime, the elements of the reduced K-group are in bijection with
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the homotopy classes of maps into the classifying space [Hus66]:

K̃C(X) ' [X,Grp(Cn)] if 2(n− p) ≥ dimX

and 2p ≥ dimX.
(4.4)

Outside the stable regime, stably equivalent vector bundles need not be isomorphic,
much less homotopic. A class of examples demonstrating the differences between all
three equivalence relations is provided by imposing, on top of the U1-symmetry of
the complex symmetry class A, the combined operation T ◦ I of time-reversal and
inversion as a symmetry with T 2 = 1 and I2 = 1 as well as T ◦ I = I ◦ T . Although
fundamentally time-reversal squares to −1 for fermions, the property T 2 = 1 can be
realized by the reduction of an SU2 symmetry as carried out in the real class s = 6
(class AI) in Section 2.5.4. Since both T and I invert the momentum (k 7→ −k),
their combination fixes it and therefore the spaces of annihilators are restricted by the
condition (T ◦ I)A(k) = A(k). The anti-linear map T ◦ I acts as a real structure on
Wk = Cn and due to the condition on the spaces of annihilators, we may restrict our
attention to the +1 eigenspace of this real structure, defining a real subspace Rn ⊂ Cn.
Accordingly, the IQPVs in this setting are given by classifying maps X → Grp(Rn) or
p-dimensional real sub-vector bundles of X ×Rn, where X is momentum space. Note
that this realization falls outside of the complex and real symmetry classes introduced
in Section 2.4 since inversion I does not commute with translations. To stay within the
scope of the symmetry classes introduced earlier, we could instead impose only time-
reversal T with T 2 = 1 and choose X to exclusively have position-like coordinates.
This would lead to the same description and correspond to the real class s = 6 (class
AI).

We will focus on the choice X = Sd which is to be understood as S0,d if X is
momentum space and Sd,0 if all dimensions of X are position-like. The latter can be
interpreted as a measuring surface around a defect of codimension d+ 1. In any case,
the analogs of equations (4.1) and (4.4) read

VectRp (X) ' [X,Grp(Rn)] if n− p− 1 ≥ dimX (4.5)

and

K̃R(X) ' [X,Grp(Rn)] if n− p− 1 ≥ dimX

and p− 1 ≥ dimX.
(4.6)

Setting p = 1 and X = S1, we have a bijection VectR1 (S1) ' [S1,Gr1(Rn)] ' Z2 for
n ≥ 3, where the non-trivial element is represented by the Moebius bundle [Hat03].
For n = 2 we see the difference between homotopy classes and isomorphism classes:
Since Gr1(R2) = S1, it is clear that [S1,Gr1(R2)] = [S1, S1] ' Z, where the homotopy
classes are distinguished by their winding number. However, the bundle which twists
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by 2π when traversing the base space S1 and thus has a non-trivial winding number
2 is isomorphic to the trivial bundle.

Taking now X = S2, we can combine equations (4.5) and (4.6) to obtain the state-
ment that there is a bijection K̃R(S2) ' VectRp (S2) for p ≥ 3. Indeed, violating the

latter requirement with p = 2, we have VectR2 (S2) ' N0 while K̃R(S2) = Z2. A rep-
resentative of the non-trivial class 2 ∈ N0 = VectR2 (S2) is the tangent bundle to S2

denoted by TS2. By regarding S2 as the unit sphere in R3, we can also construct
the normal bundle NS2 ' S2 × R. The direct sum of TS2 and NS2 is S2 × R3 and
therefore TS2 is stably equivalent to the trivial bundle. Yet, the isomorphism class
of TS2 differs from that of the trivial bundle. The result VectR2 (S2) = N0 can be
found in [Hat03] and, in the context of classifying topological phases, in Table A.1 of
[DNG14b].

The notion of isomorphism (and stable equivalence) classes of vector bundles can be
extended to the two real symmetry classes s = 2 (class AII) and s = 6 (class AI). In
these symmetry classes, there is an additional time-reversal operator T acting on the
total space of a bundle A ρ→ X with T 2 = −1 for class AII and T 2 = +1 for class AI.
This action covers the involution τ on the base space, i.e. Tρ−1(x) = ρ−1(τ(x)). These
bundles are called Real vector bundles [Ati66] or Quaternionic vector bundles [Dup69]
(with capital R and Q in order to distinguish them from vector bundles over the real
and quaternionic numbers). An isomorphism of two Real or Quaternionic vector bun-
dles is an isomorphisms of the underlying complex vector bundles with the additional
property that it commutes with T . The corresponding reduced K-groups are written
K̃R(X) [Ati66, DNG14b] and K̃Q(X) [Dup69, DNG14a].

The K-theory groups for the other symmetry classes can be inferred indirectly by
an algebraic construction using Clifford modules as in [Kit09, FM13]. In all cases, the
K-theory groups of momentum space X are in bijection with [X,Cs(n)]Z2 as a set, in
the limit of large n (as well as large p where applicable, see Table 2.1).

To sum up, the natural equivalence relation for us to use is that of homotopy. It
is a finer tool than stable equivalence (as considered in [Kit09]) and even ordinary
isomorphy of vector bundles (as considered in [DNG14a, DNG14b] for s = 2, 6), and
is therefore adopted as our topological classification principle. In Chapter 5 we give
the precise bounds on the number of conduction and valence bands for all complex and
real symmetry classes beyond which the three equivalence relations differ, including
equations (4.1), (4.4), (4.5) and (4.6) as special cases.

4.2. The diagonal map

In this section we prove the bijection [X,Cs(n)]Z2
∗ ' [S̄X,Cs+1(2n)]Z2

∗ for any path-
connected Z2-CW complex X. For this purpose we introduce the “diagonal map”
increasing the momentum-like dimension as well as the symmetry index by one.
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The spaces Cs(n) and their τs-fixed point sets Rs(n) are defined through pseudo-
symmetries satisfying Clifford algebra relations (see Section 2.6). To formulate the
diagonal map, we exploit this close connection to Clifford algebras by using the
counterpart of the algebra isomorphisms Cl(C2) ⊗ Cl(Cs) ' Cl(Cs+2) as well as
Cl(R1,1) ⊗ Cl(Rs,0) ' Cl(Rs+1,1). Recall that Cl(Cm) is the complex Clifford al-
gebra with m generators and Cl(Rp,q) is the real Clifford algebra with p negative and
q positive generators.

The following treatment is analogous to the one in Section 2.5.4. Let there be s real
pseudo-symmetries j1 . . . , js onW+ = C2n forming the space Cs(n) with τs-fixed point
set Rs(n) as defined in Section 2.6. We now choose to view W+ as part of a space
W = W+ ⊕ W− = C4n on which an imaginary generator K acts with eigenspaces
W± for its eigenvalues ±i. We fix an isomorphism L↓ : W+ → W− with inverse
L↑ : W− → W+ and set L := L↓ + L↑. A new set of s + 2 generators can now be
defined on W as

Jl := L↓jl + jlL↑ (l = 1, . . . , s) (4.7)

Js+1 := iLK (4.8)

Js+2 := K. (4.9)

We interpret this set of operators as a set of pseudo-symmetries on the doubled space
W. The pseudo-symmetries J1, . . . , Js+1 are real, while Js+2 is imaginary by con-
struction. This enhanced set of pseudo-symmetries defines the space Cs+2(2n) with
fixed point set Rs+1,1(2n) (we use a double subscript to indicate that the number of
real and imaginary pseudo-symmetries). In Section 2.5.4, we have constructed a map
Cs+2(2n) → Cs(n) which restricts under τs+2 to a map Rs+1,1(2n) → Rs(n). The
following assignment constitutes the inverse of this map:

f : Cs(n)→ Cs+2(2n)

A+ 7→
{
w + w′ + L↓(w − w′) | w ∈ A+, w

′ ∈ Ac
+

}
. (4.10)

This map is well defined since

J1f(A+) = · · · = Js+2f(A+) = f(A+)c. (4.11)

Furthermore, if A = A⊥ then f(A) = f(A)⊥, so f restricts to a map f ′ : Rs(n) →
Rs+1,1(2n).

In order to define the diagonal map adding a momentum-like coordinate, recall from
eq. (2.139) that we can associate to a subspace A ⊂ W the anti-Hermitian operator

J(A) = i(PA − PAc). (4.12)

with the properties J(A)2 = −1 and τCAR(J(A)) = J(A⊥).
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Given A ∈ Cs+2(2n) and the eigenspace E+i(K) associated to the eigenvalue +i of
K, we can define the heart of the diagonal map as the one-parameter family

βt(A) := e(tπ/2)KJ(A) · E+i(K). (4.13)

The following lemma summarizes the key features of this map.

Lemma 4.1. The assignment [0, 1] 3 t 7→ βt(A) for A ∈ Cs+2(2n) is a curve in
Cs+1(2n) with initial point β0(A) = E+i(K), final point β1(A) = E−i(K), and mid-
point β1/2(A) = A. It is Z2-equivariant in the sense that βt(A)⊥ = β1−t(A

⊥).

Proof. Since the Clifford generators J1, . . . , Js, and I anti-commute with K, they
exchange the two eigenspaces E+i(K) and E−i(K) = E+i(K)c, so E±i(K) ∈ Cs+1(2n).
Similarly, J(A) anti-commutes with all generators J1, . . . , Js, I, implying that the
latter commute with the product KJ(A) as well as the unitary operator e(tπ/2)KJ(A).
Therefore, since E+i(K) lies in Cs+1(2n), so does e(tπ/2)KJ(A) · E+i(K) = βt(A). In
other words, βt(A) satisfies the pseudo-symmetry relations

J1βt(A) = . . . = Jsβt(A) = Iβt(A) = βt(A)c. (4.14)

To see that the curve ends at E−i(K), we recall that K2 = J(A)2 = −1 and KJ(A) =
−J(A)K (due to KA = Ac). These relations imply that (KJ(A))2 = −1 and

β1(A) = e(π/2)KJ(A) · E+i(K)

= sin(π/2)KJ(A) · E+i(K)

= J(A) · E+i(K)

= E−i(K), (4.15)

since J(A) swaps the eigenspaces of K.
The property that the midpoint of the curve evaluates as β1/2(A) = A can be

deduced by computing

e(π/4)KJ(A) = cos(π/4)IdW + sin(π/4)KJ(A)

= (IdW +KJ(A))/
√

2. (4.16)

Applying this to any w ∈ E+i(K) we get

(IdW +KJ(A))w = w − iJ(A)w

= −iJ(A)(w − iJ(A)w)

∈ E+i(J(A)) = A. (4.17)

The linear transformation e(π/4)KJ(A) : E+i(K)→ A, w 7→ w− iJ(A)w, is an isomor-
phism because J(A) · E+i(K) = E−i(K). Hence

β1/2(A) = e(π/4)KJ(A) · E+i(K) = A. (4.18)
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Turning to the property stated last, we use τCAR(J(A)) = J(A⊥) and τCAR(K) = −K
(since K is imaginary) as well as E+i(K)⊥ = E−i(K) to obtain

βt(A)⊥ = τCAR

(
e(tπ/2)KJ(A)

)
· E+i(K)⊥

= e(−tπ/2)KJ(A
⊥) · E−i(K)

= β1−t(A
⊥), (4.19)

where we have additionally used the identity (g·A)⊥ = τCAR(g)·A⊥ for all g ∈ GL(W).
Thus t 7→ βt(A) is Z2-equivariant in the stated sense.

Let the notation for the space of paths in Cs+1(2n) from E+i(K) to E−i(K) be
abbreviated to

Ω̄(Cs+1(2n), E+i(K), E−i(K)) ≡ Ω̄KCs+1(2n). (4.20)

Interpreting the parameter t in the definition of βt as a path parameter, we obtain an
equivariant map

β : Cs(n)→ Ω̄KCs+1(2n)

A+ 7→ {t 7→ βt(f(A+))}. (4.21)

Due to its Z2-equivariance, it restricts to a map

β′ : Cs(n)Z2 = Rs(n)→ (Ω̄KCs+1(2n))Z2 , (4.22)

where the Z2-action on the path space is the one introduced in Section 3.5.
Let an IQPV in the real symmetry class s with configuration space X be described

by the map ψ : X → Cs(n). Using β, we can form β ◦ ψ : X → Ω̄KCs+1(2n) and in-
terpret this map as a map S̄X → Cs+1(2n) describing an IQPV in the real symmetry
class s+ 1 with double the number of bands and an additional momentum-like coor-
dinate in its configuration space (see Section 3.5). In the following, we demonstrate
these features on an example.

Example 4.2 (From (d, s) = (0, 0) to (1, 1)). Starting with a superconductor ground
state in the real symmetry class s = 0 (class D) in zero dimensions (X = S0,0) and
with W+ = C2 (n = 1), applying the construction above produces the ground state of
a time-reversal invariant superconductor in class DIII in one dimension (S̄X = S0,1).
Recall that both points of X = S0,0 are fixed under the involution τ and therefore the
image of a map describing an IQPV is restricted to lie within R0(1) ⊂ C0(1), which
consists of only two points:

R0(1) = {C · c,C · c†}, (4.23)
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which correspond to the empty and occupied state |0〉 and |1〉 respectively. Choosing
the base point to be C|0〉, there are two based maps S0 → R0(1): the constant
map and the map ψ assigning to the point in S0 which is not the base point the
image |1〉. The procedure of doubling the number of bands amounts to forming the
tensor product with the two-dimensional spinor space (C2)spin to obtain the space
W =W+⊕W− = C4 = (C2)BdG⊗ (C2)spin, where we use the subscript “BdG” as for
the Bogoliubov-de Gennes Hamiltonian of eq. (2.53). We set

K := i(σ1)BdG ⊗ (σ1)spin, (4.24)

so the image of A = C · c† ∈ R0(1) under f as defined in eq. (4.10) is given by

f(A) = spanC{c
†
↑, c
†
↓}, (4.25)

while the base point A∗ = C · c ∈ R0(1) is mapped to

f(A∗) = spanC{c↑, c↓}. (4.26)

The operator I is chosen to be the pseudo-symmetry J1 introduced in Section 2.5.2
as part of the Kitaev sequence:

I ≡ J1 = γT = (σ1)BdG ⊗ (iσ2)spin. (4.27)

We can now apply βt with t ∈ [0, 1] to obtain a one-dimensional IQPV in the real
symmetry class s = 1 (class DIII). Since the parameter t will play the role of the
momentum coordinate, we use the parametrization k := π(t− 1/2) to obtain

A(k) = βt/π+1/2(f(A))

= e(k/2−1/2)KJ(A) · E+i(K)

= e(k/2)KJ(A) ·A

= spanC

{
c†σ(−k) cos(k/2)− c−σ(k) sin(k/2)

}
σ=↑,↓

. (4.28)

Similarly, the base point f(A∗) ∈ R1,1(2) maps to

A∗(k) = spanC

{
cσ(k) cos(k/2)− c†−σ(−k) sin(k/2)

}
σ=↑,↓

. (4.29)

Since A(±π/2) = A∗(±π/2), the two parts A(k) and A∗(k) fit together to produce
a single Z2-equivariant map S̄S0,0 = S0,1 → C1(2), as shown in Figure 4.1. In fact,
the part A∗(k) can be absorbed into the part A(k) by extending the range of k from
[−π/2, π/2] to [−π, π].
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Z2

Z2

A∗(−π/2) = A(−π/2) A∗(π/2) = A(π/2)

A∗(0) = f(A∗)

A(0) = f(A)

Figure 4.1.: The additional coordinate introduced may be viewed as a suspension co-
ordinate since A∗(k) (lower arc) and A(k) (upper arc) agree at k = ±π/2,
producing a domain S0,1. The Z2-action on S0,1 is indicated by the arrows.

The many-body ground state which is annihilated by all elements in A(k) for all
k ∈ [−π, π] can be written as

|g.s.〉 = exp
(∑

k cot(k/2)P (k)
)
|vac〉, (4.30)

with

P (k) := c†↑(k)c†↓(−k). (4.31)

There are other choices of imaginary generator K, for instance the family K(α) =
i(σ1)BdG ⊗ (σ1 cosα+ σ3 sinα)spin. With respect to an arbitrary choice of α, the
generalized Cooper pair operator Pα(k) reads

Pα(k) = c†↑(k)c†↓(−k) cosα+
(
c†↑(k)c†↑(−k)− c†↓(k)c†↓(−k)

)
sinα, (4.32)

manifesting the spin-triplet pairing of the superconductor at hand.

Example 4.3 (From (d, s) = (1, 1) to (2, 2)). Starting from the result of the previous
example, we now apply the diagonal map once more to arrive at a two-dimensional
system in the real symmetry class s = 2 (class AII). The result of this exercise will be a
representative of the topological phase known as the quantum spin Hall effect. Having
already introduced spin, doubling the dimension of W has the physical interpretation
of introducing two bands, which we label by p and h. Applying the (1, 1)-isomorphism
f of eq. (4.10) to the outcome of the previous example yields

f(A(k1)) = spanC

{
a↑,+(k1), a↓,−(k1), b

†
↓,−(−k1), b†↑,+(−k1)

}
, (4.33)
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with

aσ,ε(k1) = cσ,p(k1) cos(k1/2) + iεc−σ,h(k1) sin(k1/2), (4.34)

bσ,ε(k1) = cσ,h(k1) cos(k1/2)− iεc−σ,p(k1) sin(k1/2). (4.35)

Here we have used a convenient basis in order to avoid linear combinations of creation
and annihilation operators, in anticipation of the particle number (or charge) conser-
vation to be introduced. The following operators present a set of pseudo-symmetries:

J1 = γT = (σ1)BdG ⊗ (iσ2)spin ⊗ Idph, (4.36)

I = J2 = iQJ1 = (σ2)BdG ⊗ (iσ2)spin ⊗ Idph, (4.37)

K = iIdBdG ⊗ (σ1)spin ⊗ (σ1)ph. (4.38)

We now translate the subspace f(A(k1)) ⊂ C8 to the operator J(f(A(k1))) according
to eq. (2.139):

J(f(A(k1))) = i(σ3)BdG⊗ (Idspin ⊗ (σ3)ph cos(k1) + (σ2)spin ⊗ (σ1)ph sin(k1)) . (4.39)

The diagonal map can now be evaluated as

A(k) = e(k2/2)KJ(A(k1)) ·A(k1)

= spanC

{
ã↑,+(k), ã↓,−(k), b̃†↓,−(−k), b̃†↑,+(−k)

}
, (4.40)

where k = (k1, k2) and

ãσ,ε(k) = (cσ,p(k) cos(k1/2) + iεc−σ,h(k) sin(k1/2)) cos(k2/2)

− (c−σ,h(k) cos(k1/2) + iεcσ,p(k) sin(k1/2)) sin(k2/2), (4.41)

b̃σ,ε(k) = (cσ,h(k) cos(k1/2)− iεc−σ,p(k) sin(k1/2)) cos(k2/2)

− (c−σ,p(k) cos(k1/2)− iεcσ,h(k) sin(k1/2)) sin(k2/2). (4.42)

By construction, the space A(k) is k1-independent for k2 = ±π/2, so the momentum
space can be viewed as S̄S0,1 = S0,2. In order to verify that the present IQPV
represents the non-trivial phase called the quantum spin Hall phase, we follow [KM05]
and consider the bilinear form assigning to w,w′ ∈ Ak the complex number

θk(w,w′) := 〈Tw,w′〉 = {J1w,w′}, (4.43)

where we identify Wk ≡ W−k = C8. A short computation using the facts that J1 is
orthogonal with respect to {·, ·} and J2

1 = −1 reveals that θk is skew:

θk(w,w′) = {J1w,w′}
= {J2

1w, J1w
′}

= −{w, J1w′}
= −{J1w′, w}
= −θk(w′, w). (4.44)
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The Kane-Melé Pfaffian [KM05] is defined to be the Pfaffian of the skew bilinear form
θk and evaluates in the present example as

Pf(θk) ∝ cos2(k2). (4.45)

This expression vanishes only for the two points with k2 = ±π/2. The fact that
the zeros occur in a pair at k and −k is guaranteed due to θk(w,w′) = θk(Tw, Tw′)
and TA(k) = A(−k). Being zeros of a complex-valued function, all zeros of the
Pfaffian carry a vorticity and homotopies of IQPVs can only create zeros in pairs
with opposite vorticities. Furthermore, at the special momenta k = −k the form θk
is non-degenerate so the Pfaffian cannot vanish and pairs of zeros cannot be created
or annihilated there. Thus, the property of having an even or odd number of pairs
of zeros is an invariant and since the trivial topological phase is represented by a
constant map, all of its representatives belong to the even sector. On the other hand,
the result of applying our diagonal map yields a Kane-Melé Pfaffian with a single pair
of zeros and therefore represents the quantum spin Hall phase.

4.3. Homotopy theory of the diagonal map

Having constructed the equivariant map β that maps an IQPV X → Cs(n) to an
IQPV S̄X → Cs+1(2n), we now investigate its induced map on equivariant homotopy
classes (= topological phases):

βZ2
∗ : [X,Cs(n)]Z2

∗ → [S̄X,Cs+1(2n)]Z2
∗ . (4.46)

We wish to apply the Z2-Whitehead theorem (Theorem 3.21) in order to show that,
under certain circumstances, βZ2

∗ is a bijection and therefore leads to the diagonal pat-
tern in the Periodic Table 4.1. First, we identify [S̄X,Cs+1(2n)]Z2

∗ = [X, Ω̄Cs+1(2n)]Z2
∗

according to Proposition 3.26. The problem now fits the format given in Theorem 3.21
with Y = Cs(n) and Z = Ω̄KCs+1(2n). Therefore, in order for βZ2

∗ to be a bijection for
d� n, both the map β (forgetting its equivariance) and its restriction β′ to Z2-fixed
points (see eq. (4.22)) need to induce bijections on the level of all homotopy groups
πd for d� n.

The first of these statements follows immediately from a result known as complex
Bott periodicity [Bot59], since our map β reduces to the complex Bott map when the
Z2-action is ignored:

Proposition 4.4. The induced map

β∗ : πd(Cs(n))→ πd(Ω̄KCs+1(2n)) (4.47)

is an isomorphism for all s and 1 ≤ d� n.
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We exclude the case d = 0 since, for instance, π0(C0(n)) = π0
(
∪2nq=0 Grq(C2n)

)
=

Z2n+1 but π0(Ω̄KC1(2n)) = π1(Un) = Z. Often this discrepancy is evaded in the
literature by the ad hoc definition C0(n) = Z × Grn(C2n). However, in the physical
setting there is no justification for this adjustment and with some care, our proofs will
work without it for d ≥ 1, leaving d = 0 to be treated separately.

The second statement, which concerns the connectivity of the map β′ defined in
eq. (4.22), is more intricate and we will devote the remainder of this section to it. As
a first step, we know from Section 3.5 that we can identify the equivariant path space
with the equivariant loop space. Using Lemma 3.7, we know that loops are already
determined by half of their length, so we can conclude

πd((Ω̄KCs+1(2n))Z2) ' πd((Ω̄Cs+1(2n))Z2) ' πd+1(Cs+1, Rs+1) (4.48)

for all d ≥ 1. Thus, showing that β′ is highly connected amounts to showing that

β′∗ : πd(Rs(n))→ πd+1(Cs+1, Rs+1) (4.49)

is an isomorphism for 1 ≤ d� n.
In the next subsection, we prove the above statement for the two real symmetry

classes s = 2 and s = 6. The other classes will be handled by a more indirect proof
based on this result.

4.3.1. Bijection for s ∈ {2, 6}

In order to show that β′∗ is highly connected, we will make use of the fact that there
is, for s = 2 or s = 6, a fibration (actually, even a fiber bundle)

Rs+1(2n) ↪→ Cs+1(2n)
p−→ R̃s,1(2n), (4.50)

for a base space R̃s,1(2n) ' Rs,1(2n) to be introduced. Inspecting the spaces in
Table 2.1, these two fiber bundles correspond to

Spn ↪→ Un
p−→ Un/Spn (s = 2), (4.51)

On/4 ↪→ Un/4
p−→ Un/4/On/4 (s = 6), (4.52)

where n needs to be a multiple of 2 for the first one and a multiple of 4 for the second
one.

The projection p induces an isomorphism

p∗ : πd+1(Cs+1(2n), Rs+1(2n))→ πd+1(R̃s,1(2n)) (4.53)

for all d by basic principles (see [Hat02, p. 376]). On the other hand, we will show
that the map β′ can be interpreted as a map β̃∗ into ΩKR̃s,1 rather than (Ω̄KCs+1)

Z2 ,
yielding the real analog of Proposition 4.4 in the form of isomorphisms

β̃∗ : πd(Rs(n))→ πd+1(R̃s,1(2n)). (4.54)

66



4. Homotopy classification

Ultimately, we will show that β′◦p = β̃ which proves that β′∗ also induces isomorphisms
on homotopy groups.

The outlined strategy is summarized in the diagram below: Since the diagram is
commutative and two out of three maps are isomorphisms (p∗ and β̃∗), the third map
β′∗ has to be an isomorphism as well. In fact, it will turn out that the step of halving
the interval of the path coordinate in the map β′ to t ∈ [0, 12 ] in order to arrive at the
relative homotopy group will be reversed under the projection p which doubles the
interval to t ∈ [0, 1] again.

πd+1(Cs+1(2n), Rs+1(2n))

πd(Rs(n)) πd+1(R̃s,1(2n))

p∗

double

β̃∗

β′∗

half

Changing the CAR involution

Recall that the CAR pairing of W is given by the anti-commutator bracket {·, ·} for
fermionic operators. Using the two pseudo-symmetries I and K in the definition of
Cs+2(2n), we can form the operator

u0 := 1√
2
(1− IK). (4.55)

This operator is unitary since IK is anti-Hermitian and (IK)2 = −1:

u0u
†
0 = 1

2(1− IK)(1 + IK) = 1
2(1− (−1)) = 1. (4.56)

Using u0, we define another bracket

˜{w,w′} = {u0w, u0w′}, (4.57)

for w,w′ ∈ W.
Since I is a real and K an imaginary pseudo-symmetry, I preserves the bracket
{·, ·}, while K reverses its sign. Therefore,

˜{w,w′} = 1
2{w − IKw,w

′ − IKw′} = {−IKw,w′} = {(IK)−1w,w′}. (4.58)

This implies that if {w,w′} = 0, then ˜{IKw,w′} = 0, so the modified bracket results
in a modified involution τ̃s+1 : Cs+1(2n)→ Cs+1(2n) related to the original involution
by

τ̃s+1 = IK ◦ τs+1. (4.59)
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Consequently, also the involution τCAR on operators is modified to

τ̃CAR = IK ◦ τCAR ◦ (IK)−1, (4.60)

and in particular

τ̃CAR(I) = IKτCAR(I)(IK)−1 = KIK−1 = −I, (4.61)

τ̃CAR(K) = IKτCAR(K)(IK)−1 = I(−K)I−1 = +K. (4.62)

Thus, the roles of I and K are reversed under the modified bracket: I becomes an
imaginary pseudo-symmetry, while K is turned into a positive one. All remaining
pseudo-symmetries commute with the product IK and therefore

τ̃CAR(Jl) = τCAR(Jl) = Jl (4.63)

for l = 1, . . . , s. These s pseudo-symmetries define the space Cs(2n) as before and we
now have two options of extending the set of pseudo-symmetries by an imaginary one
to obtain Cs+1(2n): Either we take K with the usual involution τCAR leading to the
fixed point set

Rs,1(2n) = {A ∈ Cs(2n) | KAc = A = τs+1(A)}, (4.64)

or we choose I with the modified involution τ̃CAR, which results in a different fixed
point set

R̃s,1(2n) = {A ∈ Cs(2n) | IAc = A = τ̃s+1(A)}. (4.65)

These two spaces are in bijection (Rs,1(2n) ' R̃s,1(2n)), since they are related by the
invertible transformation u0.

Connection with real Bott periodicity

We recall from eq. (4.21) the definition of the map β : Cs+2(2n) → Ω̄K(Cs+1(2n))
adding a momentum-like coordinate:

βt(A) = e(tπ/2)KJ(A) · E+i(K).

Lemma 4.5. For A ∈ Rs+1,1(2n) the curve t 7→ βt(A) lies entirely within R̃s,1(2n).

Proof. By inspecting the definitions (4.65) and (2.137) one sees that

Rs+1,1(2n) = R̃s,1(2n) ∩Rs+1(2n). (4.66)

Indeed, the two spaces on the right-hand side have the same pseudo-symmetries
J1, . . . , Js and I, but the points of the second space are fixed with respect to τs+1
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while the first space is the fixed-point set of τ̃s+1. As a consequence, all elements
A ∈ R̃s,1(2n) ∩Rs+1(2n) are fixed under the map IK:

IKA = IKτs+1(A) = τ̃s+1(A) = A. (4.67)

Since I is a pseudo-symmetry, it follows that

KA = KIKA = IA = Ac. (4.68)

Therefore the intersection on the right-hand side of Eq. (4.66) does give the space on
the left-hand side.

Owing to (4.66) all points A of Rs+1,1(2n) lie in both Rs+1(2n) and R̃s,1(2n). Also,
the product KJ(A) commutes with all generators J1, . . . , Js and I. It follows that the
one-parameter group of unitary operators e(tπ/2)KJ(A) preserves the pseudo-symmetry
relations of R̃s,1(2n). Moreover, e(tπ/2)KJ(A) is real with respect to the C̃AR structure
since τ̃CAR(K) = +K and

τ̃CAR(J(A)) = J(τ̃s+1(A)) = J(A).

Hence βt(A) ∈ R̃s,1(2n) for all t ∈ [0, 1] as claimed.

As a consequence, the map β′ : Rs(n) → (Ω̄KCs+1(2n)) may be reinterpreted as a
map

β̃ : Rs(n)→ ΩKR̃s,1(2n) (4.69)

by using the modified involution τ̃CAR on Cs+1(2n). After identifying R̃s,1(2n) '
Rs,1(2n) ' Rs−1(n), this map corresponds to the well known real Bott map [Bot59]
and we therefore have the result

Proposition 4.6. The induced map

β̃∗ : πd(Rs(n))→ πd+1(R̃s,1(2n))

is an isomorphism for 1 ≤ d� n.

Thus, the only ingredient remaining is the projection p.

The projection p

For the remainder of this section, we adopt the simplified notation

Cs+1 ≡ Cs+1(2n), (4.70)

Rs+1 ≡ Rs+1(2n), (4.71)

Rs+1,1 ≡ Rs+1,1(2n), (4.72)

R̃s,1 ≡ R̃s,1(2n). (4.73)
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We reiterate the following relations between these spaces:

Rs+1 ⊂ Cs+1, (4.74)

R̃s,1 ⊂ Cs+1, (4.75)

Rs+1,1 = Rs+1 ∩ R̃s,1. (4.76)

Recall that all of the pseudo-symmetries J1, . . . , Js and I anti-commute with the
operatorK, so they map the eigenspace E+i(K) to its orthogonal complement E−i(K).
Thus, Ei(K) is an element in Cs+1 and we may realize the latter as an orbit

Cs+1 = U · E+i(K), (4.77)

by the group

U := {u ∈ U(W) | u = J1uJ
−1
1 = . . . = JsuJ

−1
s = IuI−1} (4.78)

with stabilizer

UK := {u ∈ U | u = KuK−1}. (4.79)

Note that we met U in Section 2.6 as U = GC
s+1(2n). In that section, we pointed out

that the spaces Cs+1 can all be realized by orbits for even s and as unions of orbits for
odd s. We focus on the case with even s and thus a single orbit, since our goal will be
to apply the machinery developed here to the case s ∈ {2, 6}. For odd s, some details
would have to be changed, including the replacement of Cs+1 by one of its connected
components.

Since all u ∈ U commute with I, the stabilizer UK can be realized alternatively as
the fixed point set of the Cartan involution

θ(u) := IKu(IK)−1, (4.80)

rendering Cs+1 a symmetric space. Indeed, for all odd s it is a unitary group, see
Table 2.1. The involution θ has the useful property that it relates the two involutions
τ̃CAR and τCAR on Cs+1 by the formula

τ̃CAR = θ ◦ τCAR, (4.81)

see eq. (4.60). In fact, all three involutions commute with one another.
The two subgroups of U fixed by the involutions τ̃CAR and τCAR will play an im-

portant role in this section:

G := Fix(τCAR) ⊂ U, (4.82)

G̃ := Fix(τ̃CAR) ⊂ U. (4.83)
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Similar to the realization of Cs+1 as an orbit of U , we can realize Rs+1 and R̃s,1 as

orbits of G and G̃ respectively:

Rs+1 = G ·A∗, (4.84)

R̃s,1 = G̃ · E+i(K) = G̃/H, (4.85)

where we have chosen a base point A∗ ∈ Rs+1∩R̃s,1 = Rs+1,1 and defined the stabilizer
subgroup

H := UK ∩ G̃ = UK ∩G = G ∩ G̃. (4.86)

The situation is illustrated in Figure 4.2: The groups G and G̃ generate Rs+1 (blue)
and R̃s,1 (green), which intersect in the space Rs+1,1 (red circle) containing the base
point A∗.

The different realizations of H follow from eq. (4.81). Since the Cartan involution θ
restricts to G̃ and has H as its fixed points within G̃, the space R̃s,1 is also a symmetric
space. A construction which will be used in the proof of the next lemma is the Cartan
embedding G̃/H ≡ U(G̃/H) ⊂ G̃ defined by the bijection

G̃/H → U(G̃/H) (4.87)

g̃H 7→ g̃θ(g̃)−1. (4.88)

We omit an analogous discussion for Rs+1 since it will not be required for the following.

Lemma 4.7. Suppose that the principal bundle U → U/UK = Cs+1 admits a global
section, i.e. a map σ : Cs+1 → U with σ(A) · E+i(K) = A for all A ∈ Cs+1. Suppose
further that

(i) for all A ∈ Cs+1, the group element σ(A) commutes with its images under θ and
τ̃CAR, and

(ii) for all A ∈ R̃s,1 the relation τCAR(σ(A)) = σ(A)−1 holds.

Then the mapping p : Cs+1 → Cs+1 defined by

p(A) := τCAR(σ(A))−1 ·A (4.89)

has the following properties:

1. p is onto R̃s,1.

2. p(βt(A)) = β2t(A) for all A ∈ Rs+1,1.

3. p(Rs+1) = E−i(K).
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Rs+1,1
Rs+1

R̃s,1

E+i(K)

E−i(K)

G̃

G

Cs+1

Figure 4.2.: Schematic visualization of the setting in Lemma 4.7: The orbits under
the groups G̃ and G are the spaces R̃s,1 and Rs+1 (green and blue) re-
spectively. Their intersection (red) is the space Rs+1,1. The projection p
squares (“doubles”) in the green direction (property 1 and 2) and thereby
sends the blue part to the south pole E−i(K) (property 3).
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4. Homotopy classification

Proof. Before proving that p is onto R̃s,1, we show that the image of p is con-

tained in R̃s,1. For this purpose, we write p(A) = Σ(A) · E+i(K) with Σ(A) =
τCAR(σ(A))−1σ(A) and send p(A) to its image under the Cartan embedding:

p(A) 7→ Σ(A)θ(Σ(A))−1 ≡ g̃.

Using the fact that τCAR(Σ(A)) = Σ(A)−1 as well as assumption (i), applying τ̃CAR

to g̃ evaluates to

τ̃CAR(g̃) = τ̃CAR

(
Σ(A)θ(Σ(A))−1

)
= (θ ◦ τCAR)(Σ(A))τCAR(Σ(A))−1

= θ(Σ(A))−1Σ(A)

(i)
= Σ(A)θ(Σ(A))−1

= g̃.

This implies that θ(g̃) = τCAR(g̃) = g̃−1 and therefore g̃ lies in the Cartan embed-
ding U(G̃/H). This in turn implies that p(A) ∈ G̃ ·E+i(K) and therefore p maps into
R̃s,1. To see that it is in fact surjective, let A = σ(A) · E+i(K) ∈ R̃s,1 ⊂ Cs+1. By
assumption (ii), the expression for p(A) in this case takes the form

p(A) = τCAR(σ(A))−1 ·A = σ(A)2 · E+i(K). (4.90)

Thus p : R̃s,1 → R̃s,1 is the operation of squaring (or doubling the geodesic distance)
from the point E+i(K): in normal coordinates by the exponential mapping with
respect to E+i(K) it is the map

p(A) = p(exp(X) · E+i(K)) = exp(2X) · E+i(K). (4.91)

Since the squaring map is surjective, it follows that p : Cs+1 → R̃s,1 is onto. In
Figure 4.2, the property of squaring can be visualized as “stretching” by a factor of
two into the green direction.

Now for A ∈ Rs+1,1 ⊂ R̃s,1 we recall that βt(A) = e(tπ/2)KJ(A) · E+i(K). The
second stated property is then an immediate consequence of the squaring property in
eq. (4.90):

p(βt(A)) =
(
e(tπ/2)KJ(A)

)2 · E+i(K) = β2t(A).

Turning to the third property, we observe that σ as a section of U → U/UK satisfies,
for all u ∈ U ,

σ(u ·A) = uσ(A)h(u,A), (4.92)
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4. Homotopy classification

for some h(u,A) taking values in the isotropy group UK of E+i(K). By specializing
this to A = g ·A∗ ∈ Rs+1 for u = g ∈ G and using g = τCAR(g) we obtain

p(A) = τCAR(σ(A))−1σ(A) · E+i(K) (4.93)

= τCAR(h)−1τCAR(σ(A∗))
−1σ(A∗) · E+i(K) (4.94)

= τCAR(h)−1p(A∗) (4.95)

= τCAR(h)−1E−i(K) (4.96)

= E−i(K). (4.97)

In the second to last line we have used the second property of p in the form p(A∗) =
p(β1/2(A∗)) = β1(A∗) = E−i(K) and in the last line we have used the fact that
τCAR(h)−1 ∈ UK since the subgroup UK of θ-fixed points is stable under τCAR (as θ
and τCAR commute). In the schematic picture presented in Figure 4.2, this property
corresponds to p sending the entirety of the blue subset Rs+1 ⊂ Cs+1 to the south
pole E−i(K).

Remark 4.8. The section σ with the stated properties, whose existence is a necessary
condition for the statement of Lemma 4.7 to hold, exists if and only if s ∈ {2, 6}.

Proposition 4.9. The map β′∗ of eq. (4.49) is an isomorphism for s ∈ {2, 6} and
1 ≤ d� n.

Proof. Let s = 2 for definiteness. Then U = Un×Un and the Cartan involution θ has
the effect of exchanging the two factors of U = Un×Un, so the subgroup Fix(θ) = UK
is the diagonal subgroup Un ⊂ Un × Un. The involution τCAR acts by τSp in each
factor, where we define τSp : Un → Un to be the involution with Fix(τSp) = Spn.

Hence G = Fix(τCAR) = Spn × Spn and G̃ = Fix(τ̃CAR) = Un, with intersection
H = G ∩ G̃ = Spn. The orbit of G̃ on E+i(K) is R̃2,1 = G̃/H = Un/Spn.

The principal bundle U → U/UK = Cs+1 is the projection Un×Un → Un×Un/Un

and is trivial. We may take σ to be of the form σ(A) = (u, 1), with the second factor
being the identity. The involution τCAR does not mix the two factors, implying that
the second factor of τCAR(σ(A)) is still the identity. Because the Cartan involution
θ exchanges factors and thus moves the identity map to the first factor, θ(σ(A))
commutes with σ(A) and τCAR(σ(A)), as is required in order for the first condition of
Lemma 4.7 to be met. Moreover, an element A ∈ R̃2,1 lifts to σ(A) = (uτSp(u)−1, Id)
for some u ∈ Un. In this case one has τCAR(σ(A)) = (τSp(u)u−1, 1) = σ(A)−1, which
means that also the second condition of Lemma 4.7 is satisfied. The case of s = 6
proceeds along the same lines with the substitutions n→ n/4 and Sp→ O.

Thus Lemma 4.7 applies, and from the properties stated there it follows that for
s ∈ {2, 6} we have a short exact sequence of spaces

Rs+1 ↪→ Cs+1
p−→ R̃s,1, (4.98)
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where the first map is simply the inclusion of Rs+1 = p−1(E−i(K)) into Cs+1. The
second map, p : Cs+1 → R̃s,1, has the so-called homotopy lifting property: for any

mapping f : X × [0, 1]→ R̃s,1 there exists a mapping F := σ ◦ f : X × [0, 1]→ Cs+1,

which is a lift of f in the sense that p ◦ f̃ = f . This means that the short exact
sequence (4.98) is a fibration.

It is a standard result of homotopy theory (see [Hat02, Thm. 4.41,p. 376]) that the
mapping p∗ induced by the projection p of a fibration induces isomorphisms

p∗ : πd+1(Cs+1, Rs+1, A∗)→ πd+1(R̃s,1, E−i(K))

for all d (for clarity, we make the base points explicit here). By composing p∗ with
the mapping β′∗ of eq. (4.49)), we arrive at the map

p∗ ◦ β′∗ : πd(Rs(n), A∗)→ πd+1(R̃s,1(2n), E−i(K)). (4.99)

By the second property of p stated in Lemma 4.7, we have

p∗ ◦ β′∗ = β̃∗ (4.100)

and since, in addition to p∗, the induced map β̃∗ is an isomorphism by Proposition 4.6,
so is β′∗ for all 1 ≤ d� n.

Remark 4.10. To draw the same conclusion for all real classes s, one would need eight
fibrations of the following type:

U/Sp ↪→ (U×U)/U −→ (O×O)/O,

Sp/(Sp× Sp) ↪→ U/(U×U) −→ O/U,

(Sp× Sp)/Sp ↪→ (U×U)/U −→ U/Sp,

Sp/U ↪→ U/(U×U) −→ Sp/(Sp× Sp),

U/O ↪→ (U×U)/U −→ (Sp× Sp)/Sp,

O/(O×O) ↪→ U/(U×U) −→ Sp/U,

(O×O)/O ↪→ (U×U)/U −→ U/O,

O/U ↪→ U/(U×U) −→ O/(O×O).

The third (s = 2) and seventh (s = 6) of these are the fibrations discussed in the
proof of Proposition 4.9. While the others are available [Gif96] in the K-theory limit
of infinitely many bands (n→∞), they do not seem to exist at finite n.

We are now in a position to use the Z2-Whitehead Theorem 3.21 in order to prove
the following:
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Proposition 4.11. Let X be a path-connected Z2-CW complex, and let s = 2 or
s = 6. Then the map (4.46) between homotopy classes of Z2-equivariant maps,

βZ2
∗ : [X,Cs(n)]Z2

∗ → [S̄X,Cs+1(2n)]Z2
∗ ,

which increases the symmetry index and the momentum-space dimension of a topo-
logical phase by one, is bijective for dimX � n.

Proof. After the identification [S̄X,Cs+1(2n)]Z2
∗ = [X, Ω̄KCs+1(2n)]Z2

∗ given by Propo-
sition 3.26, our statement is an immediate consequence of the Z2-Whitehead Theorem
(Theorem 3.21). Recall that in order for that theorem to apply in the case of a Z2-
equivariant map β : Y → Z, one has to show that βH : Y H → ZH is highly connected
for all subgroups H of Z2. We have done so (with the identifications Y = Cs(n)
and Z = Ω̄KCs+1(2n)) for H = {e} (by Proposition 4.4) and H = Z2 (for s = 2
and s = 6 by Proposition 4.9). In both cases, the fact that (for s = 2, 6) there is
no bijection between π0(Cs(n)) and π0(Ω̄KCs+1(2n)) (resp. between π0(Rs(n)) and
π0
(
(Ω̄KCs+1(2n))Z2

)
) is remedied by the assumption that X is path-connected. In-

deed, under that condition the image of the base-point preserving map β (resp. βZ2)
lies entirely within the connected component of ΩKCs+1(2n) (resp. (ΩKCs+1(2n))Z2)
containing the base point and we may simply restrict to that single connected com-
ponent. With this detail in mind, the Z2-Whitehead Theorem indeed applies to give
the stated result.

4.4. Classification for all s

In this section we extend the statement of Proposition 4.11 to all real symmetry
classes s. In order to do so, we construct a mapping which increases the position-
like dimension of the configuration space X by one (rather than the momentum-like
dimension as before) while decreasing (as opposed to increasing) the symmetry index.
As a corollary, choosing the configuration spaceX = Sdx,dk as introduced in Section 3.2
will allow us to recover the generalized Periodic Table for topological phases (Table 4.1)
including the presence of a single defect with codimension dx + 1 as put forward in
[TK10]. The connection to the physical configuration spaces given by the Brillouin
zone Tdk without defect and the product Sdx ×Tdk in the presence of a defect will be
made in Chapter 7: There we prove that, in the stable regime, the sets of topological
phases [Tdk , Cs(n)]Z2

∗ and [Sdx ×Tdk , Cs(n)]Z2
∗ decompose into a product with factors

exclusively of the form [Sdx,r, Cs(n)]Z2
∗ , 0 ≤ r ≤ dk, all of which are determined here.

4.4.1. Additional position-like dimensions

Recall from Definition 4.13 that the map β is given by

βt(A) = e(tπ/2)KJ(A) ·A.
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In the following, we use the same definition, for A ∈ Cs(n) (rather than the previous
A ∈ Cs+2(2n)) and with τCAR(K) = K (rather than τCAR(K) = −K). Thus, all
pseudo-symmetries J1, . . . , Js−1,K are assumed to be of the real type. The change
of the formerly imaginary generator K to a real one has an important consequence:
the second property listed in Lemma 4.1 changes from βt(A)⊥ = β1−t(A

⊥) to βt(A)⊥ =
βt(A

⊥). Hence, the additional coordinate t is now position-like rather than momentum-
like. This means that the modified curve t 7→ βt(A) agrees with the original Bott map
[Bot59, Mil63]: all Z2-fixed points A ∈ Rs(n) ⊂ Cs(n) are now mapped to Z2-fixed
points βt(A) ∈ Rs−1(n) ⊂ Cs−1(n) for all t. A treatise on the relationships between
complex and real Bott periodicity can be found in [MQ12]. The alternative use of β
described here leads to the following result:

Theorem 4.12. For a path-connected Z2-CW complex X with dimX � n, the orig-
inal Bott map β induces a bijection

[X,Cs(n)]Z2
∗

∼−→ [SX,Cs−1(n)]Z2
∗ .

Proof. We use Proposition 3.26 to identify [SX,Cs−1(n)]Z2
∗ = [X,ΩKCs−1(n)]Z2

∗ and
in order to be able to apply the Z2-Whitehead Theorem (Theorem 3.21). For the
trivial subgroup {e} ⊂ Z2, the map β : Cs(n) → ΩKCs−1(n) is the complex Bott
map and therefore highly connected. Similarly, for the full group Z2, the map β
restricts to the real Bott map Rs(n) → ΩKRs−1(n), which is also highly connected.
The obstruction that there may be a mismatch between π0 for Cs(n) resp. Rs(n) and
ΩKCs−1(n) resp. ΩKRs−1(n), is avoided by the reasoning described in the proof of
Proposition 4.11.

By specializing the result above to the case of X = Sdx,dk (which is path-connected
unless dx = dk = 0) and using SX = S(Sdx,dk) = Sdx+1,dk we immediately get the
following:

Corollary 4.13. There exists a bijection

[Sdx,dk , Cs(n)]Z2
∗

∼−→ [Sdx+1,dk , Cs−1(n)]Z2
∗

for 1 ≤ dx + dk � n.

4.4.2. Additional momentum-like dimensions

We now state and prove for all real symmetry classes s an analog of Theorem 4.12 for
an increase in the momentum-like dimension:

Theorem 4.14. For a path-connected Z2-CW complex X with dimX � n there is,
for any real symmetry class s, a bijection

[X,Cs(n)]Z2
∗ ' [S̄X,Cs+1(2n)]Z2

∗ .
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Proof. The idea of the proof is to first apply Theorem 4.12 repeatedly in order to
adjust the symmetry index s to be either 2 or 6 (for concreteness, we settle on the
arbitrary choice of 2 here), then use the statement of Proposition 4.11 to increase the
momentum-like dimension of X by one, and finally go to the symmetry index s + 1
by retracing the initial steps.

To spell out the details, let s = 2 + r with r ≥ 0 (the cases s = 0 and s = 1 are
included as s = 8 and s = 9 respectively by making use of the eightfold periodicity
Cs(n) = Cs+8(n/16) and Rs(n) = Rs+8(n/16)). Then Theorem 4.12 implies that
there is a bijection

[X,Cs(n)]Z2
∗ ' [SrX,C2(n)]Z2

∗ ,

where SrX is the r-fold suspension of X. Here we made use of the fact that if X is
path-connected, then so is its suspension. We next apply Proposition 4.11 to obtain
a bijection

[SrX,C2(n)]Z2
∗ ' [S̄SrX,C3(2n)]Z2

∗ .

Finally, we observe that S̄SrX = SrS̄X and carry out r applications of Theorem 4.12
in reverse:

[SrS̄X,C3(2n)]Z2
∗ ' [S̄X,Cs+1(2n)]Z2

∗ ,

which completes the proof.

Specializing once more to X = Sdx,dk we have

Corollary 4.15. For 1 ≤ dx + dk � n, there is a bijection

[Sdx,dk , Cs(n)]Z2
∗ ' [Sdx,dk+1, Cs+1(2n)]Z2

∗ .

Proof. Although this result follows directly from the more general one in Theo-
rem 4.14, it may be instructive to repeat the proof in order to show our chain of
reasoning for a special case of importance in physics:

[Sdx,dk , Cs(n)]Z2
∗ ' [Sdx+s−2,dk , C2(n)]Z2

∗

' [Sdx+s−2,dk+1, C3(2n)]Z2
∗

' [Sdx,dk+1, Cs+1(2n)]Z2
∗ .

From the combination of the Corollaries 4.13 and 4.15, the entries of Table 4.1 are
determined by just specifying one column of entries for variable symmetry index s but
fixed values for the dimensions dx and dk, subject to dx + dk ≥ 1. For example, one
may take (dx, dk) = (1, 0), in which case [S1,0, Cs(n)]Z2

∗ is none other than the well-
known fundamental group π1(Rs(n)) for the real symmetry classes and π1(Cs(n)) for
the complex ones.
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In stating our Theorems 4.12 and 4.14, we simply posed the qualitative condition
d = dimX � n, leaving their range of validity unspecified. In this chapter, we fill
this quantitative void and formulate precise conditions on d (as a function of n) in
order for the theorems to apply. This sets up the investigation of changes to the
homotopy classification displayed in Table 4.1 to be carried out in Chapter 6.

5.1. Connectivity of inclusions

In the definition of the space Cs(n) with involution τs fixing the subspace Rs(n),
the dimension n takes values in msN for a minimal integer ms ≥ 1 which depends
on the symmetry class s. This restriction n ∈ msN stems from the requirement
that W = C2n must carry a representation of the Clifford algebra generated by the
pseudo-symmetries J1, . . . , Js. The numbers ms can be obtained by choosing the
minimal parameters in Table 2.1 and are related to the ones found in [ABS64, Table 2]
and [SCR11, Table V]. The result is shown in the following list, which can be continued
beyond s = 8 by the relation ms+8 = ms/16:

s 0 1 2 3 4 5 6 7 8

ms 1 2 2 4 4 4 4 8 16

Let the Clifford generators in the definition of Cs(n) be denoted by Jl and those
of Cs(ms) by J ′l (l = 1, . . . , s). For any symmetry class s, let a fixed element A0 ∈
Rs(ms) ⊂ Cs(ms) be given. We then have a natural inclusion

is : Cs(n) ↪→ Cs(n+ms), A 7→ A⊕A0, (5.1)

where Cs(n + ms) is defined with Clifford generators Jl ⊕ J ′l (for l = 1, . . . , s). The
map is has the property of being equivariant with respect to the Z2-action on its
image and domain:

is(A)⊥ = A⊥ ⊕A⊥0 = A⊥ ⊕A0 = is(A
⊥). (5.2)

In particular, its restriction iZ2
s to the fixed point set Cs(n)Z2 = Rs(n) has image in

Cs(n+ms)
Z2 = Rs(n+ms).

The goal of this chapter is to prove the following theorem:
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Theorem 5.1. Given a path-connected Z2-CW complex X and a number (of bands)
n = msr for some integer r ∈ N, the induced map

(is)∗ : [X,Cs(n)]Z2
∗ → [X,Cs(n+ms)]

Z2
∗

is bijective if dimX < d1 and dimXZ2 < d2, and remains surjective under the weak-
ened conditions dimX ≤ d1 and dimXZ2 ≤ d2. The values of d1 and d2 are given
in the following table (the complex symmetry classes are included by replacing the Z2-
actions on X,Cs(n) and Cs(n + ms) by the trivial one and neglecting the conditions
on XZ2):

s Cs(msr)0 – d1 Case

even Up+q/Up ×Uq – min(2p+ 1, 2q + 1) (iv)
odd Ur – 2r (i)

s Cs(msr)0 Cs(msr)
Z2
0 d2 Case

0 U2r/Ur ×Ur O2r/Ur 2r − 1 (ii)
1 U2r U2r/Sp2r 4r (ii)
2 U2p+2q/U2p ×U2q Sp2p+2q/Sp2p × Sp2q min(4p+ 3, 4q + 3) (iv)

3 U2r Sp2r 4r + 2 (i)
4 U2r/Ur ×Ur Sp2r/Ur 2r + 1 (iii)
5 Ur Ur/Or r (iii)
6 Up+q/Up ×Uq Op+q/Op ×Oq min(p, q) (iv)
7 Ur Or r − 1 (i)

For the complex symmetry classes with even s (class A) as well as the real classes
s = 2 (class AII) and s = 6 (class AI), the single parameter r is refined to r = p + q
in order to accommodate the possibility of the base point lying in different connected
components of Cs(msr).

Remark 5.2. The choice of p and q in the refinement r = p + q amounts to choosing
a chemical potential and thus declaring the number of valence bands to be p and the
number of conduction bands to be q (or vice versa).

Proof. Since X is path-connected and all maps are base-point preserving, we may re-
place Cs(n) = Cs(msr) by its connected component (denoted by Cs(msr)0 in the
table) containing the base point A∗ ∈ Rs(n) ⊂ Cs(n). Then, by applying the
Z2-Whitehead Theorem, we obtain the desired statements provided that is is d1-
connected and iZ2

s is d2-connected, with numbers d1 and d2 that are yet to be deter-
mined. The latter is done in the remainder of the proof, where we distinguish between
four cases.
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Case (i)

We start with the three rows attributed to case (i) in the tables. These enjoy the
property of having Lie groups for their target spaces and we can make use of the
following three fiber bundles:

Or ↪→ Or+1 → Or+1/Or = Sr,

Ur ↪→ Ur+1 → Ur+1/Ur = S2r+1,

Sp2r ↪→ Sp2r+2 → Sp2r+2/Sp2r = S4r+3,

each of which gives rise to a long exact sequence in homotopy. By using πl(S
d) = 0

for l < d, we infer from these sequences the following values of d1 and d2:

d2 = r − 1 for Or ↪→ Or+1,

d1 = 2r for Ur ↪→ Ur+1,

d2 = 4r + 2 for Sp2r ↪→ Sp2r+2.

For the next two cases, (ii) and (iii), the target spaces are quotients Gr/Hr with
Gr and Hr being either an orthogonal, a unitary or a symplectic group. The strategy
in the following will be to apply the result of case (i) to the exact sequence associated
to the fiber bundle

Hr ↪→ Gr → Gr/Hr.

We distinguish between case (ii) where the inclusion Gr ↪→ Gr+1 is at most as con-
nected as the inclusion Hr ↪→ Hr+1, and case (iii) where it is more connected.

Case (ii)

Let Gr ↪→ Gr+1 be m-connected, where m is less than or equal to the connectivity of
Hr ↪→ Hr+1. Then for all j ∈ N with 1 ≤ j ≤ m−1 there is the following commutative
diagram:

πj(Hr) πj(Gr) πj(Gr/Hr) πj−1(Hr) πj−1(Gr)

πj(Hr+1) πj(Gr+1) πj(Gr+1/Hr+1) πj−1(Hr+1) πj−1(Gr+1)

' ' (i
Z2
s )∗ ' '

The Five-Lemma (for j ≥ 2) and the Special Five-Lemma (for j = 1) of Appendix A.2
imply that (iZ2

s )∗ is an isomorphism for all j with 1 ≤ j ≤ m − 1. The map
(iZ2
s )∗ : π0(Gr/Hr) → π0(Gr+1/Hr+1) needs to be investigated separately. This task

is facilitated by the fact that domain or codomain only contain more than one element
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for Gr/Hr = O2r/Ur. In that case, π0(O2r/Ur) = Z2 = π0(O2r+2/Ur+1). In the real-
ization of O2r/Ur as an orbit, all elements A ∈ O2r/Ur may be written A = gA∗ for
a fixed A∗ ∈ O2r/Ur and g ∈ O2r. The two connected components are distinguished
by det(g) = ±1 and we compute

iZ2(A) = iZ2(gA∗)

= gA∗ ⊕A0

= (g ⊕ Id)(A∗ ⊕A0). (5.3)

Since det(g ⊕ Id) = det(g), it follows that the map (iZ2)∗ is a bijection on π0.
By considering the part further left in the long exact sequences, we obtain the

commutative diagram

πm(Gr) πm(Gr/Hr) πm−1(Hr) πm−1(Gr)

πm(Gr+1) πm(Gr+1/Hr+1) πm−1(Hr+1) πm−1(Gr+1)

surjective (i
Z2
s )∗ ' '

Here, the second Four-Lemma (see Lemma A.2 of Appendix A.2) implies that (iZ2
s )∗

is surjective. Combining all results, it follows that the inclusion iZ2
s is m-connected,

so d2 = m.

Case (iii)

Consider now the complementary case, where Hr ↪→ Hr+1 is m-connected with m less
than the connectivity of Gr ↪→ Gr+1. We again use parts of the long exact sequence
associated to the bundle Hr ↪→ Gr → Gr/Hr in order to determine the connectivity
of the inclusion iZ2

s . Similar to the previous case, consider the following commutative
diagram for 1 ≤ j ≤ m:

πj(Hr) πj(Gr) πj(Gr/Hr) πj−1(Hr) πj−1(Gr)

πj(Hr+1) πj(Gr+1) πj(Gr+1/Hr+1) πj−1(Hr+1) πj−1(Gr+1)

surjective ' (i
Z2
s )∗ ' '

Again, the Five-Lemma and the Special Five-Lemma of Appendix A.2 imply that
(iZ2
s )∗ is an isomorphism for all j with 1 ≤ j ≤ m. Notice that a difference to

the previous case is the fact that the leftmost vertical map is only surjective. The
extension to j = 0, where the diagram above is not defined, is trivial here since all
spaces in involved are path-connected. Further to the left in the exact sequence, we
find the commutative diagram
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πm+1(Gr) πm+1(Gr/Hr) πm(Hr) πm(Gr)

πm+1(Gr+1) πm+1(Gr+1/Hr+1) πm(Hr+1) πm(Gr+1)

' (i
Z2
s )∗ surjective '

The second Four-Lemma A.2 again implies that (iZ2
s )∗ is surjective. Therefore, in this

case, iZ2
s is (m+ 1)-connected, so that d2 = m+ 1.

Case (iv)

In the remaining three rows of the table, the target space has the form of a quotient
Gp+q/Gp × Gq. For the product of any two spaces Y and Z, one has a natural
isomorphism [Hat02]

πj(Y × Z) ' πj(Y )× πj(Z) (5.4)

for all j ≥ 0. Setting Y = Gp and Z = Gq, it is compatible with the inclusions
Gp ↪→ Gp+1 and Gq ↪→ Gq+1 giving a commutative diagram

πj(Gp ×Gq) πj(Gp+1 ×Gq+1)

πj(Gp)× πj(Gq) πj(Gp+1)× πj(Gq+1)

' '

Hence, if Gp ↪→ Gp+1 is m-connected and Gq ↪→ Gq+1 m
′-connected, then Gp×Gq ↪→

Gp+1 ×Gq+1 is min(m,m′)-connected. In particular, excluding the trivial case where
p = 0 or q = 0, the inclusion Gp ×Gq ↪→ Gp+1 ×Gq+1 is always less connected than
Gp+q ↪→ Gp+q+2 and we can follow the steps of case (iii) with Hr replaced by Gp×Gq.
As a result, d1 = min(m,m′) + 1 = min(m + 1,m′ + 1) (and the same for d2). This
completes the determination of d1 and d2 and, hence, the proof of the theorem.

Specializing to the physically most relevant case of X = Sdx,dk , we obtain

Corollary 5.3. The induced map

(is)∗ : [Sdx,dk , Cs(n)]Z2
∗ → [Sdx,dk , Cs(n+ms)]

Z2
∗

is bijective if 1 ≤ dx + dk < d1 and dx < d2 and surjective if 1 ≤ dx + dk ≤ d1 and
dx ≤ d2.

Once the conditions for (is)∗ to be bijective are met, we are in what is called the
stable regime. In that case, given some path-connected finite Z2-CW complex X,
Corollary 5.3 can be applied repeatedly to give a bijection

(is)∗ : [X,Cs(n)]Z2
∗ → [X,Cs(∞)]Z2

∗ , (5.5)
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where Cs(∞) is the direct limit under is. This is the limit where K-theory applies
for arbitrary Z2-CW complexes X of finite dimension. For example, taking complex
class A (even s and trivial Z2-actions), the right hand side is often written [X,BU]∗
and is in bijection with K̃C(X).

Returning to the case of a fixed configuration space X, Theorem 5.1 gives the exact
boundary to the stable regime of K-theory. However, as discussed in Section 4.1,
on the unstable side there is a further distinction in some symmetry classes between
homotopy classes and isomorphism classes of vector bundles. This is the case for the
real symmetry classes s = 2 (class AII) and s = 6 (class AI) as well as the complex
symmetry class with even s (class A), all three of which have been handled in case (iv)
in the proof of Theorem 5.1. In these symmetry classes, there is a U1-symmetry leading
to a decomposition of the fibers A(x) ∈ Cs(n) (x ∈ X) as A(x) = Ap(x)⊕Ah(x), where
p stands for particles or conduction bands and h for holes or valence bands. Recall
from Section 2.2 that A(x) is already determined by Ah(x). The bundle with fiber
Ah(x) over x ∈ X is a Quaternionic vector bundle in the sense of [Dup69] (class AII),
a Real vector bundle in the sense of [Ati66] (class AI) or an ordinary complex vector
bundle (class A) over X. In [DNG14b] and [DNG14a], these vector bundles have been
classified up to isomorphism for X = Sdx,dk with dk ≤ 4 and dx ≤ 1. However, as
was emphasized in Section 4.1, in the situation at hand, where we have subvector
bundles, isomorphism classes agree with homotopy classes only when dimAp(x) is
large compared to dimX and dimXZ2 . It is the goal of the following to specify
precisely what is meant by “large” in the three symmetry classes respectively.

The inclusion is adds dimensions to both Ap and Ah, corresponding to the addition
of conduction bands and valence bands. This increases q to q+1 and p to p+1, as was
considered in case (iv) of Theorem 5.1 above. This inclusion can be refined by two
separate inclusions: Given a fixed A0 = Ap

0 ⊕ Ah
0 ∈ Cs(ms), one may add additional

valence bands,
ihs : Cs(n) ↪→ Cs(n+ms/2), A 7→ A⊕Ah

0 , (5.6)

or additional conduction bands,

ips : Cs(n) ↪→ Cs(n+ms/2), A 7→ A⊕Ap
0 . (5.7)

Since the situation is entirely symmetric, we will focus on ips for the remainder of this
section. In the realization of Cs(n) and Rs(n) as (unions of) homogeneous spaces, we
have (restricting to one connected component as in Theorem 5.1)

ip2 : U2p+2q/U2p ×U2q ↪→ U2p+2q+2/U2p ×U2q+2,

(ip2)Z2 : Sp2p+2q/Sp2p × Sp2q ↪→ Sp2p+2q+2/Sp2p × Sp2q+2,

ip6 : Up+q/Up ×Uq ↪→ Up+q+1/Up ×Uq+1,

(ip6)Z2 : Op+q/Op ×Oq ↪→ Op+q+1/Op ×Oq+1.

(5.8)
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Note that the complex symmetry class A may be included in this treatment by taking
the inclusion ip6 with Z2-action ignored.

All of these maps have the form

ips : Gp+q/Gp ×Gq ↪→ Gp+q+1/Gp ×Gq+1. (5.9)

Since the inclusion Gp+q ↪→ Gp+q+1 is always more connected than the inclusion
Gq ↪→ Gq+1, we find ourselves in the setting of case (iii) in the proof of Theorem
5.1. Thus, if Gq ↪→ Gq+1 is m-connected, then the inclusion ips is (m+ 1)-connected,
independent of the parameter p. Using the Z2-Whitehead Theorem once more, we
can now prove the following:

Corollary 5.4. For a path-connected Z2-CW complex X, the induced map adding a
conduction band,

(ips )∗ : [X,Cs(n)]Z2
∗ → [X,Cs(n+ms/2)]Z2

∗ ,

is bijective or surjective according to the following table:

bijective surjective

class A dimX < 2q + 1 dimX ≤ 2q + 1
class AI dimX < 2q + 1 and dimXZ2 < q dimX ≤ 2q + 1 and dimXZ2 ≤ q
class AII dimX < 4q + 3 dimX ≤ 4q + 3

Proof. The proof is analogous to that of Theorem 5.1. For class A, the fact that ip6 is
(2q + 1)-connected leads to the result. Proceeding to class AI, we have a non-trivial
Z2-action and therefore the additional requirement on dimXZ2 due to the fact that
(ip6)Z2 is q-connected. For class AII, there is a slight change in the requirement for
dimX due to the factor two in the indices (q → 2q, see eq. (5.8)). Furthermore,
since (ip2)Z2 is (4q + 3)-connected while ip2 is only (4q + 1)-connected, the additional
requirement on dimXZ2 is always fulfilled due to dimXZ2 ≤ dimX.

For X = Sdx,dk , the table in the Corollary simplifies to the following:

bijective surjective

class A dx + dk < 2q + 1 dx + dk < 2q + 1
class AI dx + dk < 2q + 1 and dx < q dx + dk ≤ 2q + 1 and dx ≤ q
class AII dx + dk < 4q + 3 dx + dk ≤ 4q + 3

Notice the difference to the result in Theorem 5.1: Rather than requiring both p
and q to be large, only one of the two indices is required to be large. In fact, if the
configuration space X meets the conditions for bijectivity as listed above, the set of
(equivariant) homotopy classes is in bijection with the set of isomorphism classes of
rank-p complex vector bundles (class A), rank-p Real vector bundles (class AI) and
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rank-2p Quaternionic vector bundles (class AII) with fixed fibers over the base point
of X. Thus, we have derived the exact boundary, within the unstable regime, below
which isomorphism classes of vector bundles may differ from homotopy classes.

Remark 5.5. The restriction of fixed fibers over the base point of X can be removed
by applying the free version of the Z2-Whitehead Theorem (rather than the one with
fixed base points, see Theorem 3.21) for a connected component of Cs(n).

The following table qualitatively summarizes the relationship between the three
equivalence relations in this context:

p and q large homotopy = isomorphism = stable equivalence

p arbitrary and q large homotopy = isomorphism ⊃ stable equivalence

p and q arbitrary homotopy ⊃ isomorphism ⊃ stable equivalence

The first line is the setting of Chapter 4, since this is the regime where Bott periodicity
holds. The meaning of “large” in this case is derived in Theorem 5.1. The second line
includes the regime discussed above, where the conditions of bijectivity in Corollary 5.4
are met. These conditions are allowed to be violated in the third line, which includes
the regime where all three equivalence relations may be different.

We now list all potentially unstable cases violating the conditions of bijectivity in
Corollary 5.3 and Corollary 5.4. There are infinitely many possibilities in general if dx
and dk are unrestricted. However, the physically most relevant cases are those with
dk ≤ 3 and dx < dk. The latter inequality is needed on physical grounds since the
dimension of the defect is dk − dx − 1 ≥ 0. Table 5.1 lists all cases which are not in
the stable regime and may therefore differ from the stable classification.

In Table 5.1, the cases in which isomorphism classes of vector bundles give the same
classification as homotopy classes are included. In order to leave this intermediate
regime (i.e to have more homotopy classes than isomorphism classes), the conditions
for q need to be met additionally by p. For instance, neither the stable classification
nor the classification of complex vector bundles give any non-trivial topological phases
for dk + dx = 3 in class A, but the Hopf insulator [MRW08] with q = p = 1 has a
homotopy classification by Z. In the next chapter, we investigate all potential changes
beyond the stable regime in the part of Table 5.1 with dx = 0 (no defect).
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complex symmetry dx = 0 dx = 1 dx = 2
class s label dk = 1 dk = 2 dk = 3 dk = 2 dk = 3 dk = 3

even A q = 1 q = 1 q = 1 q ≤ 2
odd AIII r = 1 r = 1 r = 1 r ≤ 2 r ≤ 2

real symmetry dx = 0 dx = 1 dx = 2
class s label dk = 1 dk = 2 dk = 3 dk = 2 dk = 3 dk = 3

0 D r = 1 r = 1 r = 1 r ≤ 2
1 DIII r = 1 r = 1
2 AII
3 CII r = 1 r = 1
4 C r = 1 r = 1 r = 1 r ≤ 2
5 CI r = 1 r = 1 r = 1 r ≤ 2 r ≤ 2
6 AI q = 1 q = 1 q = 1 q ≤ 2
7 BDI r = 1 r = 1 r = 1 r ≤ 2 r ≤ 2 r ≤ 3

Table 5.1.: All potentially unstable cases for dk ≤ 3 and dx < dk.

87



6. Novel topological phases

In this chapter, we will go through all possible exceptions to the Periodic Table cu-
mulating in the result displayed in Table 6.1.

6.1. One dimension (dk = 1)

We begin in the lowest dimension dk = 1, where the only possible exception resides
in the real symmetry class BDI. In this case, we have C7(m7) = U1 with τ7 being
complex conjugation, which leads to a fixed point set R7(m7) = O1. The reason that
this case violates the conditions of Theorem 5.1 is the fact that π1(O1) is trivial while
π1(O2) = Z and π1(On) = Z2 for all n ≥ 3. The topological phases in this setting are
given by the set

[S0,1,U1]
Z2
∗ = Z, (6.1)

since there is a bijection with its non-equivariant analog [S1,U1]∗ = π1(U1) = Z.
Thus, the topological phases here are already in bijection with the stable classification
[S0,1,Un]Z2

∗ = Z for n ≥ 2, but since all countably infinite sets are in bijection with
each other, we aim for the stronger statement that this bijection is induced by the
inclusion i : U1 ↪→ Un. If i∗ were not surjective, then some topological phases would
be lost for n = 1 and if it were not injective, then there would be some additional
topological phases for n = 1.

The generator for π1(U1) = Z can be chosen to be the loop f(k) = eik, which has
the property of being equivariant: f(−k) = f(k). Therefore, every non-equivariant
homotopy class has an equivariant representative. Recall that the inclusions

U1 ↪→ U2 ↪→ · · · ↪→ Un

are equivariant (as a special case of eq. (5.2)) and induce isomorphisms on π1 by
Theorem 5.1. Therefore, for any n ∈ N, the set [S0,1,Un]Z2

∗ is in bijection with π1(Un)
for the same reason as the one given for n = 1. In fact, there is a commutative diagram

[S0,1,U1]
Z2
∗ π1(U1)

[S0,1,Un]Z2
∗ π1(Un)

i∗ i∗ (6.2)
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complex symmetry dx = 0
class s label dk = 1 dk = 2 dk = 3

even A 0→ Z
odd AIII 0→ 0 Z→ 0

real symmetry dx = 0
class s label dk = 1 dk = 2 dk = 3

0 D 0→ 0
1 DIII
2 AII
3 CII
4 C 0→ Z2

5 CI 0→ 0 Z→ 0
6 AI 0→ 0
7 BDI Z→ Z 0→ 0 0→ 0

Table 6.1.: Comparison between the stable classification of Table 4.1 (entries located
to the left of the arrows) and the classification outside the stable regime
(entries to the right of the arrows) which is neither captured by K-theory
nor by isomorphism classes of vector bundles. Entries here are for the case
of r = q = 1 and dx = 0 in Table 5.1.
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and thus i∗ is the bijection [S0,1,U1]
Z2
∗ = [S0,1,Un]Z2

∗ = Z. The classification in this
case is therefore identical to the stable classification. The same arguments apply when
the restriction for maps to be base-point preserving is lifted, since [S1,Un] = π1(Un).
This follows from Lemma 3.22, since the action of π1(Un) on itself is trivial (the action
is given by conjugation in this case and π1(Un) is Abelian).

6.2. Two dimensions (dk = 2)

For dk = 2, there are three symmetry classes to consider. In all of these the stable
classification leads to only one topological phase. We start with the complex sym-
metry class AIII, where the set of topological phases to determine is given by the
non-equivariant homotopy classes

[S2,U1]∗ = π2(U1) = π2(S
1) = 0. (6.3)

From this it is immediate that also the set of free homotopy classes is trivial. Thus,
the fact remains that there is no non-trivial topological phase.

For the real symmetry class s = 5 (class CI) with dk = 2, the target space is
C5(m5) = U1 with τ5 being the identity1 and therefore R5(m5) = C5(m5) = U1.
Using Lemma 3.7, the set of (based) topological phases in this case can be rewritten
as

[S0,2,U1]
Z2
∗ = π1(ΩU1,M

5
1 ), (6.4)

where M5
1 stands for the set of IQPVs in the real class s = 5 and dimension dk = 1.

The set on the right hand side fits into an exact sequence, part of which is displayed
in the following diagram:

π1(ΩU1) π1(ΩU1,M
5
1 ) π0(M

5
1 )

0 0

(6.5)

On the right, we have used the fact that for dk = 1 there is no unstable regime (see
Table 5.1). Alternatively, we may use Lemma 3.7 to rewrite π0(M

5
1 ) = π1(U1,U1),

which is trivial (π1(Y, Y ) is trivial for any Y since all paths can be retraced). Due to
the exactness of the sequence shown in the diagram above, we conclude that

[S0,2,U1]
Z2
∗ = 0. (6.6)

Using Lemma 3.22, this also holds without base points being preserved.

1For more bands, τ5 is the operation of taking the transpose, but here we deal with scalars, on which
the transpose acts as the identity.
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The last case to consider for dk = 2 is the real symmetry class s = 7 (class BDI),
which we have considered for dk = 1 previously. In fact, we can use the previous
result in conjunction with diagram (6.5) (with s = 7 rather than s = 5 and a different
Z2-action on U1) to show that [S0,2,U1]

Z2
∗ = 0 (and therefore also [S0,2,U1]

Z2 = 0
using Lemma 3.22).

6.3. Three dimensions (dk = 3)

The number of possible exceptions to the stable classification increases to seven for
dk = 3 (see Table 5.1). We begin by investigating the three symmetry classes which
we have already encountered in the previous two sections for dk = 1 and dk = 2.
Starting with the complex symmetry class AIII, we find immediately that

[S3,U1]∗ = π3(U1) = π3(S
1) = 0 (6.7)

and the same for the free homotopy classes. This marks the first change to the stable
classification: For n ≥ 2, π3(Un) = Z 6= 0, so there exist non-trivial phases which are
absent for n = 1.

Turning to the real symmetry classes CI and BDI, we can use a diagram similar
to (6.5) but for one dimension higher:

[S0,3,U1]
Z2
∗

π1(Ω
2U1) π1(Ω

2U1,M
s
2 ) π0(M

s
2 )

π3(U1) [S0,2,U1]
Z2
∗

0 0

(6.8)

In the right column we have used the previous results (no non-trivial phases in dk = 2
for both CI and BDI) and the left column follows from the basic fact that πd(S

1) = 0
for all d ≥ 2. The exactness of the sequence again implies that [S0,3,U1]

Z2
∗ (and

therefore also [S0,3,U1]
Z2) is trivial for the classes CI and BDI. In the case of class

CI this marks a change from a Z classification to a trivial one.
The rest of this section will be devoted to the remaining four symmetry cases, for

which the Hopf fibration will play a major role since the target space will be Gr1(C2) =
S2 rather than U1 = S1. This treatment will reveal cases where there are more
topological phases than in the stable regime, including the Hopf insulator [MRW08]
and a newly identified phase we call the Hopf superconductor.

We will continue with our strategy of determining based homotopy classes first.
In the complex symmetry class A, the set of (based) topological phases is the set of
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non-equivariant homotopy classes

[S3,Gr1(C2)]∗ = π3(Gr1(C2)) = Z. (6.9)

This group Z on the right hand side is generated by the celebrated Hopf map h
(meaning that [h] = 1 ∈ Z). It is the projection map of a fibration

S1 ↪→ S3 h−→ Gr1(C2) (6.10)

and defined as follows: We view S3 as the unit sphere in C2 by assigning to an element
(x1, x2, x3, x4) ∈ S3 the two complex numbers z1 := x1 + ix2 and z2 := x3 + ix4, where
the requirement x21 +x22 +x23 +x24 = 1 translates to |z1|2 + |z2|2 = 1. The Hopf map h
is the canonical map assigning to the point (z1, z2) ∈ C2 the complex line in Gr1(C2)
which passes through the origin and this point. The preimage of this line consists of
all pairs (λz1, λz2) with λ ∈ U1 = S1, explaining the fiber in the above sequence.

In the following, we deviate from this canonical definition by identifying both do-
main and codomain of h with spaces which are more suitable for computations and
visualizations. First, we identify Gr1(C2) with S2 by assigning to a complex line
through (z1, z2) its complex slope z1/z2 ∈ C ∪ {∞} and subsequently using the in-
verse of the stereographic projection p2 : S2 → C ∪ {∞} as defined in Appendix A.1.
Explicitly, we obtain the expression

(p−12 ◦ h)(z1, z2) = (2Re(z1z̄2), 2Im(z1z̄2), |z1|2 − |z2|2) (6.11)

= (2x1x3 + 2x2x4,

2x2x3 − 2x1x4,

x21 + x22 − x23 − x24) (6.12)

Furthermore, we will often use the homeomorphism r ◦ p3 : S3 → I3/∂I3 as defined in
Appendix A.1 and thus replace h by the composition

p−12 ◦ h ◦ (r ◦ p3)−1 : I3 → S2, (6.13)

with the property that ∂I3 is mapped to a point in S2. We take the liberty of denoting
all of these variations of the Hopf map by the same symbol h, since we will be interested
in its homotopy-invariant properties which are not affected by homeomorphisms.

The fact that π3(S
2) = Z and that it is generated by [h] can be deduced from part

of the exact sequence associated to the fibration (6.10):

π3(S
1) π3(S

3) π3(S
2) π2(S

1)

0 Z Z 0

h∗
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Exactness implies that h∗ has to be an isomorphism. Using the basic fact that πd(S
d) =

Z is generated by the homotopy class of the identity map, [Id] = 1 ∈ Z = πd(S
d) for

all d ≥ 1 (to be introduced in more detail later), the generator of π3(S
2) is given by

h∗[Id] = [h ◦ Id] = [h]. (6.14)

Although they will not be necessary for the computations in the remainder of this
chapter, we complete the discussion here by introducing integral formulas for the ho-
motopy invariants distinguishing the homotopy classes in π2(S

2) = Z (by an invariant
called the mapping degree) and π3(S

2) = Z (by the Hopf invariant). Starting with the
former, let there be a differentiable representative f : S2 → S2 of a homotopy class in
π2(S

2). Given the volume 2-form ω on S2 with normalization
∫
S2 ω = 1, the mapping

degree n of the map f is defined to be the integer

ndeg(f) :=

∫
S2
f∗ω. (6.15)

The fact that the identity on S2 represents the generator of π2(S
2) = Z is reflected in

the fact that

ndeg(Id) =

∫
S2
ω = 1. (6.16)

For a differentiable map g : S3 → S2, we again use the pullback g∗ω. However, this
time a 3-form is needed that can be integrated over S3, so we form the wedge product
with a 1-form α chosen as follows: The second de Rham-cohomology group is trivial
on S3 (H2

dR(S3) = 0), implying that all closed 2-forms on S3 are exact. Therefore,
since dg∗ω = g∗dω = 0, we choose a 1-form α with dα = g∗ω. The Hopf invariant of
g is defined to be the integral

nHopf(g) :=

∫
S3
α ∧ dα. (6.17)

The Hopf invariant of the Hopf map h is

nHopf(h) = 1. (6.18)

Both invariants described above have canonical generalizations: The mapping degree
can be generalized to maps Sd → Sd giving a complete invariant of πd(S

d) = Z for all
d ≥ 1 (all homotopy classes are distinguished by this invariant). Alternatively, it may
be generalized to the Chern number [Nak03] of maps S2 → Grm(Cn) with general m
and n. The Hopf invariant can be generalized to maps S2d−1 → Sd, giving a partial
invariant of π2d−1(S

d) (maps with different Hopf invariants are not homotopic, but
the converse is not true in general for d 6= 2).
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The set of (based) topological phases with configuration space S3 in class A was
given in (6.9) with the Hopf map h representing the phase known as the Hopf insula-
tor [MRW08]. All other topological phases in this case may be realized by making use
of the addition in π3 (an alternative way of obtaining representatives in these phases
is described in [DWSD13]).

Continuing on to the three real symmetry classes D, C and AI, we need to under-
stand how the Hopf map behaves under the different Z2-actions. Even though the
ultimate goal is to determine topological phases for dk = 3 and dx = 0, we find it use-
ful to keep the more general Z2-action on the domain, so I3 = Idx,dk with dx + dk = 3
as introduced in Section 3.2. On the codomain S2, there are three different Z2-actions
with non-trivial element τs : S2 → S2, corresponding to the three real symmetry
classes according to the following list:

τs(x1, x2, x3) =


(−x1,−x2, x3) for s = 0 (class D)

(x1, x2, x3) for s = 4 (class C)

(−x1, x2, x3) for s = 6 (class AI).

(6.19)

We take this opportunity to point out that s = 2 (class AII) is excluded, since the
minimal number of bands in that case is at least four, with two of them occupied,
(p = q = 1 in Gr2p(C2p+2q), see Table 2.1). This doubling is required in order to satisfy
the conditions imposed by the pseudo-symmetries or, in the most prominent physical
realization thereof, the conditions of particle number conservation and time-reversal
symmetry.

Hence, the space (S2)Z2 of Z2-fixed points is given by

(S2)Z2 =


S0 = O2/U1 for s = 0 (class D)

S2 = Sp2/U1 for s = 4 (class C)

S1 = Gr1(R2) for s = 6 (class AI).

(6.20)

Our aim for the remainder of the section is to determine the set [S0,3, Cs(ms)]
Z2
∗ =

[S0,3,S2]Z2
∗ for the three cases listed above. Similarly to previous calculations, we

employ Lemma 3.7 to identify

[S0,3, Cs(ms)]
Z2
∗ = π0(M

s
3 ) ' π1(Ω2S2,M s

2 ), (6.21)

where M s
2 denotes the space of 2-dimensional, 2-band IQPVs in class s. The relevant
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part of the associated exact sequence is displayed in the following diagram:

[
S0,3, Cs(ms)

]Z2

∗

π1(M
s
2 ) π1(Ω

2S2) π1(Ω
2S2,M s

2 ) π0(M
s
2 ) π0(Ω

2S2)

π3(S
2) π2(S

2)

Z Z

i1 j1 ∂1 i0

(6.22)

The entry on the right, π2(S
2) = Z, is the set of homotopy classes of based maps

S2 → S2, which are distinguished by the mapping degree. In order to determine
the set [S0,3, Cs(ms)]

Z2
∗ using the diagram above, we will show that ker(i0) contains

only the trivial element, which must be the only element in the image of ∂1 due to
exactness. This will be established in the next proposition and will enable us to apply
Lemma 3.9 to obtain a bijection

[S0,3, Cs(ms)]
Z2
∗ ' π1(Ω2S2)/i1(π1(M

s
2 )), (6.23)

for s = 0, 4, 6.

Proposition 6.1. For the three cases s = 0, 4, 6 we have the following result for
π0(M

s
2 ) in diagram (6.22):

π0(M
s
2 ) =


Z for s = 0 (class D)

2Z for s = 4 (class C)

0 for s = 6 (class AI),

(6.24)

and the invariant distinguishing all homotopy classes is the mapping degree. In partic-
ular, for all three cases s = 0, 4, 6, the image of the map ∂1 : π1(Ω

2S2,M s
2 )→ π0(M

s
2 )

in diagram (6.22) consists only of the class represented by the constant map.

Proof. The cardinalities of these results follow from the fact that dx = 0 and dk = 2
are sufficiently low to be in the stable regime (c.f. Table 5.1). However, in order
to prove the important statement about the mapping degree, and to be able to use
details about the nature of representatives at a later stage, we need to go into more
detail. Starting with the last line (s = 6), there is a diagram (we take the liberty of
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writing AI in the superscript in place of s = 6 for clarity)

π0(M
AI
2 )

π1(M
AI
1 ) π1(ΩS2) π1(ΩS2,MAI

1 ) π0(M
AI
1 ) π0(ΩS2)

π2(S
2,S1) π2(S

2) π1(S
2,S1) π1(S

2)

Z× Z Z 0 0

i1 j1 ∂1 i0

(6.25)

The bottom row needs some explanation. The two entries on the right, π1(S
2) and

π1(S
2, S1), are trivial since loops on S2 as well as paths ending on the equator S1 ⊂ S2

can be contracted to a point. The leftmost result, π2(S
2,S1) = Z×Z, can be deduced

from the associated exact sequence

π2(S
1) π2(S

2) π2(S
2,S1) π1(S

1) π1(S
2)

0 Z Z× Z Z 0

i2 j2 ∂2

δ

i1

(6.26)

The fact that, as a set, π2(S
2, S1) = Z×Z follows from Lemma 3.8 using the injectivity

of j2 and the surjectivity of ∂2, both statements being implied by the exactness of
the sequence above. However, we wish to use the group structure of π2(S

2,S1), so a
more detailed analysis is required which can be found, for instance, in [Hil53, p. 41].
As indicated in diagram (6.26), there is a splitting δ : π1(S

1) → π2(S
2,S1), defined

as follows: The inclusion i : S1 ↪→ S2 is (based) homotopic to the constant map to
the base point of S2 (see Figure 6.1). Therefore, for any loop γ representing a class
[γ] ∈ π1(S1), the composition i ◦ γ is homotopic to the constant map. By taking the
homotopy parameter as part of the domain, we obtain a map (D2,S1) → (S2, S1),
which descends to the map δ on homotopy classes.

From this definition, it is clear that ∂2 ◦ δ = Id on π1(S
1). Recalling the injectivity

of j2, we conclude that every element of π2(S
2, S1) is uniquely represented by a sum

j2[α] + δ[β] for [α] ∈ π2(S
2) and [β] ∈ π1(S

1). Since j2(π2(S
2)) is contained in the

center of π2(S
2,S1) (see [tD08, p. 128]), the latter is isomorphic to a direct product

of groups

π2(S
2,S1) ' j2(π2(S2))× δ(π1(S1)) ' Z× Z. (6.27)

It remains to determine the map i1 : π1(M
AI
1 ) → π2(S

2) in diagram (6.25), which
assigns to an equivariant map S1,1 → S2 its mapping degree. For this purpose, it
is necessary to use the equivariance relation in order to double the domain in the
isomorphism π2(S

2, S1) ' π1(M
AI
1 ). Since i1 is a homomorphism, it is sufficient to
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Figure 6.1.: Homotopy between i : S1 ↪→ S2 and the constant map to the base point.

know its values on the generators of Z×Z = π2(S
2, S1). The generator (0, 1) ∈ Z×Z

is given by δ[Id] for [Id] = 1 ∈ Z = π1(S
1). Since the involution on both domain and

codomain is reflection about the equator, it extends to the identity map on S1,1. On
the other hand, the generator (1, 0), which is given by j2[Id] for [Id] ∈ π2(S2), extends
to the concatenation Id ∗ Id (as defined in eq. (3.9)) on S1,1. Therefore, the map i1
evaluates as

i1 : Z× Z→ Z
(m,n) 7→ 2m+ n. (6.28)

In particular, it is surjective and exactness implies that j1 : π2(S
2) → π0(M

AI
2 ) has

to be the constant map. At the same time, j1 has to be surjective since im(j1) =
ker(∂1) = π0(M

AI
2 ). Hence, π0(M

AI
2 ) can only contain a single element and we write

π0(M
AI
2 ) = 0. (6.29)

Turning to the case s = 0 (class D), we have an exact sequence

π0(M
D
2 )

π1(ΩS2) π1(ΩS2,MD
1 ) π0(M

D
1 ) π0(ΩS2)

π2(S
2) π1(S

2,S0) π1(S
2)

Z Z2 0

j1 ∂1 i0

(6.30)
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The only changes to diagram (6.25) used for the calculations with s = 6 (class AI)
are the omission of the leftmost column (which will not be required here) and the fact
that (S2)Z2 = S0 rather than S1.

The entry π0(M
D
1 ) = π1(S

2,S0) can be computed through the following exact se-
quence:

π1(S
0) π1(S

2) π1(S
2,S0) π0(S

0) π0(S
2)

0 0 Z2 0

i1 j1 ∂1 i0

(6.31)

It immediately follows that the map ∂1 is an isomorphism. The two homotopy classes
of π1(S

2, S0) = Z2 are paths that start and end at the base point, represented by the
constant map, and those that start at the base point and end at the other point of
S0. Physically, these two homotopy classes are the trivial and non-trivial topological
phase in one-dimensional class D superconductors, both of which can be realized, for
instance, in the Kitaev Majorana chain model [Kit01].

is the constant map to the trivial homotopy class (with mapping degree 0).
Returning to diagram (6.30), we see that the map ∂1 has to be surjective due

to exactness (note that the two maps named ∂1 in diagrams (6.30) and (6.31) are
different). Thus, the set π0(M

D
2 ) = π1(ΩS2,MD

1 ) is the disjoint union of the two
preimages under ∂1. Using Lemma 3.9, each preimage can be realized as an orbit of
π1(ΩS2) = Z. One is the orbit on the constant path as illustrated in the upper part of
Figure 6.2 and the other is the orbit on a path of loops ending in the non-trivial loop
of π0(M

D
1 ) = Z2 as shown in the lower part of Figure 6.2. In order to construct an

element in the latter orbit, we can use the fact that the identity map Id : S2 → S2 is
Z2-equivariant in symmetry class D (since the involution happens to be the same on
domain and target) and restricting it to one hemisphere gives a path of loops ending
in the non-trivial element of π0(M

D
1 ) = Z2.

Upon doubling the domain by using the Z2-equivariance to undo the application
of Lemma 3.7 and return from π1(ΩS2,MD

1 ) to π0(M
D
2 ), the action by an element of

π1(ΩS2) = π2(S
2) with mapping degree n ∈ Z effectively adds a mapping degree 2n.

The reason is that two coordinates of the extended part of the domain are inverted,
which is a transformation with determinant 1 leaving the homotopy class invariant
according to Lemma 3.2, while the involution on the target S2 is homotopic to the
identity. Therefore the action of π1(ΩS2) = π2(S

2) = Z on the constant map yields all
even mapping degrees, while the action on the element corresponding to the identity
map yields all odd mapping degrees, as illustrated in Figure 6.2. The result is

π0(M
D
2 ) = Z, (6.32)

with elements distinguished by their mapping degree. Note that the stabilizers of both
orbits have to be trivial since the action of any non-trivial element in π1(ΩS2) = Z
changes the mapping degree and therefore also the homotopy class.
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7→

7→

Figure 6.2.: Illustration of the action of 1 ∈ Z = π1(ΩS1) = π2(S
2) on the constant

path in π1(ΩS2,MD
1 ) (upper row) and on a path ending in the non-trivial

element of π0(M
D
1 ) (lower row), creating representatives with mapping

degree 2 and 3 respectively. Depicted is the domain and different colors
indicate different images. The cut of Lemma 3.7 is indicated by the
dashed line. For instance, the lower left is the identity map of S2 (which
is equivariant for class D) and can be viewed as a path ending in the
non-trivial element of π0(M

D
1 ) when restricted to the right half.
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The last case to consider is that of symmetry class s = 4 (class C), where we have
(S2)Z2 = S2 and the following exact sequence:

π0(M
C
2 )

π1(M
C
1 ) π1(ΩS2) π1(ΩS2,MC

1 ) π0(M
C
1 ) π0(ΩS2)

π2(S
2,S2) π2(S

2) π1(S
2,S2) π1(S

2)

0 Z 0 0

i1 j1 ∂1 i0

(6.33)

Here the situation is particularly simple: Both relative homotopy groups π2(S
2,S2)

and π1(S
2, S2) vanish due to the general statement that πd(Y, Y ) = 0 for all spaces Y

and dimensions d ≥ 1. As a consequence, j1 is an isomorphism and all homotopy
classes in π1(ΩS2,MC

1 ) are represented by maps S2 → S2 and classified by their
mapping degree. Upon the identification π1(ΩS2,MC

1 ) = π0(M
C
2 ), the domain is

doubled and so is the mapping degree, since the involution on the target S2 is the
identity. We have therefore arrived at the final result

π0(M
C
2 ) = 2Z. (6.34)

We have shown that the elements of π0(M
s
2 ) are distinguished by the mapping

degree in all cases s = 0, 4, 6. It follows that the map i0 in diagram (6.22) has trivial
kernel for all s = 0, 4, 6 and therefore, due to exactness, the image of ∂1 can only
contain one element. Hence, for s = 0, 4, 6,

[S0,3, Cs(ms)]
Z2
∗ = π1(Ω

2S2,M s
2 ) = ker(∂1). (6.35)

This situation constitutes a special case of Lemma 3.9 where there is only one preimage
under ∂1 and therefore the left hand side of the equation above may be realized as a
single orbit under π1(Ω

2S2) = π3(S
2) with stabilizer i1(π1(M

s
2 )). For later reference,

we summarize this result in the following lemma:

Lemma 6.2. For s ∈ {0, 4, 6}, there is a bijection

[S0,3, Cs(ms)]
Z2
∗ ' π1(Ω2S2)/i1(π1(M

s
2 )).

Before proceeding to the main result of this section, we take a moment to unravel
some of the indirect arguments that were necessary to prove Lemma 6.2 above. For
this purpose, we make the usual identification of domains Sdx,dk with Idx,dk , where it
is understood that the entire boundary of Idx,dk is mapped to a point.
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Any equivariant map ψ : I0,3 → S2 restricts to an equivariant map I0,2 → S2

when any of its three momentum-like coordinates is set to zero. For concreteness
let (k1, k2, k3) be the coordinates of I0,3 with −π ≤ ki ≤ π, then ψ(0, k2, k3) is said
restriction (we make the arbitrary choice of setting the first coordinate to zero). It
must have mapping degree zero, since ψ is continuous and a homotopy to the constant
map is given by ψ(t, k2, k3) for t ∈ [0, π] (recall that the boundary of I0,3 is mapped
to a single point). This homotopy is through non-equivariant maps in general, but we
have proved that there always exists a homotopy through equivariant maps as well
(ker(i0) is trivial in diagram (6.22), a corollary to Proposition 6.1). Consequently,
every homotopy class of equivariant maps I0,3 → S2 has a representative that is
constant in the k2, k3-plane, which we still denote by ψ. The domain of ψ can be
viewed as two 3-spheres joined in a point, one being the part with k1 ≥ 0 and the
other the one with k1 ≤ 0. We can therefore assign two well defined Hopf invariants
n+ = nHopf(ψ+) and n− = nHopf(ψ−), where ψ+ and ψ− are the map ψ restricted to
k1 ≥ 0 and k1 ≤ 0 respectively. Note that these numbers are only well-defined (and
in particular invariant) as long as the k2, k3-plane maps to a single point. They are
not independent, since ψ is equivariant and therefore

ψ+ = τs ◦ ψ− ◦ τ. (6.36)

Pulling back the volume 2-form ω of S2 by the composition τs ◦ g rather than g yields

(τs ◦ g)∗ω = g∗τ∗s ω = ±g∗ω, (6.37)

where the sign is positive for the orientation preserving involutions τ0 and τ4 (class D
and class C respectively) and it is negative for the orientation-reversing τ6 (class AI).
Thus dα in eq 6.17 is changed to ±dα. However, this sign change is compensated for
since the same sign needs to be chosen for the potential 1-form α, so the form α∧ dα
stays invariant for all three τs (s = 0, 4, 6). As a consequence, nHopf(τs◦g) = nHopf(g),
or in other words, (τs)∗ : π3(S

2) → π3(S
2) is the identity. The involution τ on the

domain inverts three coordinates and therefore det(τ) = −1. Lemma 3.2 then implies
that [g ◦ τ ] = [g]−1 for [g] ∈ π3(S2) or nHopf(g ◦ τ) = −nHopf(g) (this can also be seen
directly in eq. (6.17)). Collecting these results, we can relate n+ and n−:

n+ = nHopf(ψ+)

= nHopf(τs ◦ ψ− ◦ τ)

= nHopf(ψ− ◦ τ)

= −nHopf(ψ−)

= −n−. (6.38)

Hence, the total Hopf invariant of ψ is zero and the Hopf insulator in the complex
symmetry class A does not have an immediate equivariant realization in the real sym-
metry classes. However, this does not mean that there is only the trivial topological
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phase. As an analogy, the topological phases in the complex symmetry class A in two
dimensions are distinguished by the Chern number (and hence are often called Chern
insulators [Hal88]) and this is always zero when imposing time-reversal symmetry in
the real symmetry class AII. Yet, there is a Z2-classification with the non-trivial phase
represented by the quantum spin Hall effect [KM05] we met in Example 4.3.

In the situation at hand, we have constructed a representative ψ for an arbitrary
class in [S0,3, Cs(ms)]

Z2
∗ which maps the k2, k3-plane to a point, but general homotopies

through equivariant maps do not respect this property. In fact, any such general
homotopy ψt between two representatives ψ0 and ψ1, both of which map the k2, k3-
plane to a point, restricts to a loop in M s

2 for k1 = 0. As such, it represents an element
in π1(M

s
2 ). If this element has a non-trivial Hopf invariant, then n+ (and therefore

also n−) may be changed by this number. This is the reason for the quotient in
Lemma 6.2. It will turn out that for the symmetry classes s = 0 and s = 6 (class D
and class AI), all Hopf invariants are realized in π1(M

s
2 ), while for class s = 4 (class

C) only even Hopf invariants can be realized. The former means that there are no
non-trivial topological phases in classes D and AI, while the latter implies that there
is one non-trivial topological phase in class C: A representative with odd n+ can
never be deformed to the constant map with n+ = 0.

We summarize and prove these results in the following:

Theorem 6.3. The topological phases of two-band IQPVs in the real symmetry classes
s = 0, 4 and 6 in three spatial dimensions (dk = 3) without defect (dx = 0) are

[S0,3, Cs(ms)]
Z2 = [S0,3, Cs(ms)]

Z2
∗ =


0 for s = 0 (class D)

Z2 for s = 4 (class C)

0 for s = 6 (class AI).

Proof. We use the identification [S0,3, Cs(ms)]
Z2
∗ ' π1(Ω2S2)/i1(π1(M

s
2 )) of Lemma 6.2

and determine the subgroup i1(π1(M
s
2 )) ⊂ π1(ΩS2) = π3(S

2) = Z. This task is equiv-
alent to determining which classes in π3(S

2) = Z can be realized by equivariant maps
Sdx,dk → S2 with dx = 1 and dk = 2.

As a first attempt, it is instructive to see whether the Hopf map h̃ as defined in (6.13)
is already equivariant as it is. If it were so, the fact that no homotopy through non-
equivariant maps to the constant map exists implies that in particular no homotopy
through equivariant maps does. Therefore, a non-trivial class would be realized. The
Hopf map is equivariant if it fulfills the condition

τs ◦ h = h ◦ τ (6.39)

for a pair of involutions τs on S2 (with s ∈ {0, 4, 6}) and τ on Idx,dk (with dx + dk =
3). We would like to make use of the Hopf map as written explicitly in eq. (6.12),
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so we need to transfer the involution on Idx,dk to Sdx,dk using the homeomorphism
p−13 ◦ r−1 : Idx,dk/∂Idx,dk → Sdx,dk . The latter is given by

(p−13 ◦ r
−1)(x) 7→ f1(|x|)

(
x, f2(|x|)

)
(6.40)

for some functions f1 and f2 (see Appendix A.1), so the involution τ is realized on
Sdx,dk ⊂ R4 by acting as the identity on the first dx coordinates and as multiplication
by −1 on the next dk coordinates. The last coordinate is always left invariant as it
only depends on the absolute value of coordinates in Idx,dk . Furthermore, permuting
coordinates of Idx,dk corresponds to permuting the first 3 coordinates of Sdx,dk ⊂ R4

while leaving the last coordinate in place. Hence, we may resort to studying the
original Hopf map as displayed in eq. (6.12) with x4 fixed under τ .

Starting with dx = 0 and dk = 3, we have

h(−x1,−x2,−x3, x4) = (2(−x1)(−x3) + 2(−x2)x4,
2(−x2)(−x3) + 2(−x1)x4,
(−x1)2 + (−x2)2 − (−x3)2 − x24). (6.41)

While the third component in the image remains invariant, the sign changes for only
one of the summands in the first and second component respectively. Therefore, the
right hand side does not equal τs ◦ h for any s, which comes as no surprise in view of
the derivation leading to eq. (6.38), where we showed that the Hopf invariant always
vanishes for equivariant maps in classes s = 0, 4, 6.

Turning to the case dx = 1 and dk = 2, which corresponds to the leftmost entry in
the diagram 6.22, we have

(h ◦ τ)(x1, x2, x3, x4) = h(x1,−x2,−x3, x4)
= (2x1(−x3)− 2(−x2)x4,

2(−x2)(−x3) + 2x1x4,

x21 + (−x2)2 − (−x3)2 − x24)
= (−[2x1x3 − 2x2x4],

2x2x3 + 2x1x4,

x21 + x22 − x23 − x24)
= (τ6 ◦ h)(x1, x2, x3, x4), (6.42)
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so the Hopf map can be realized directly as an equivariant map S1,2 → S2 for s = 6
(class AI). Composing h with a transformation σ which permutes the first three
coordinates cyclically, we compute

(h ◦ σ ◦ τ)(x1, x2, x3, x4) = (h ◦ σ)(x1,−x2,−x3, x4)
= h(−x2,−x3, x1, x4)
= (2(−x2)x1 − 2(−x3)x4,

2(−x3)x1 − 2(−x2)x4,
(−x2)2 + (−x3)2 − x21 − x24)

= (−[2x2x1 − 2x3x4],

− [2x3x1 + 2x2x4],

x22 + x23 − x21 − x24)
= (τ0 ◦ h)(x2, x3, x1, x4)

= (τ0 ◦ h ◦ σ)(x1, x2, x3, x4). (6.43)

Hence, h ◦ σ is equivariant as a map S1,2 → S2 for s = 0 (class D). Recall that cyclic
permutations of the coordinates leave the homotopy class invariant (see Lemma 3.2),
so [h ◦ σ] = [h] = 1 ∈ Z. In fact, using Lemma 3.10, all classes n ∈ Z = π3(S

2)
have equivariant representatives S1,2 → S2 for s = 0 (class D) and s = 6 (class
AI). Therefore, for these two classes the map i1 in diagram (6.22) is surjective and
Lemma 6.2 implies that

[S0,3, Cs(ms)]
Z2
∗ ' π1(Ω2S2)/i1(π1(M

s
2 )) ' i1(π1(M s

2 ))/i1(π1(M
s
2 )) = 0. (6.44)

It remains to investigate symmetry class s = 4 (class C), where the Hopf map
cannot be realized equivariantly as above. Using Lemma 3.7 to identify π1(M

C
2 ) =

π2(ΩS2,MC
1 ), we can utilize the following exact sequence:

π1(M
C
2 )

π2(M
C
1 ) π2(ΩS2) π2(ΩS2,MC

1 ) π1(M
C
1 ) π1(ΩS2)

π3(S
2,S2) π3(S

2) π2(S
2,S2) π2(S

2)

0 Z 0 Z

i2 j2 ∂2 i1

(6.45)

The trivial entries follow again from πd(Y, Y ) = 0 for all d ≥ 1 and the non-trivial
entries Z are familiar from before. Due to exactness, j2 is an isomorphism, so every
map (D2, S1) → (ΩS2,MC

1 ) is homotopic to one that maps the entirety of S1 to
the base point, yielding a map S2 → ΩS2 whose homotopy class is determined by
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the Hopf invariant. Upon doubling the domain in order to undo the application of
Lemma 3.7, two coordinates are inverted and since the involution on the target space
S2 is simply the identity, the Hopf invariant is also doubled (see Lemma 3.2). Thus,
every representative in π1(M

C
2 ) has even mapping degree and we write

π1(M
C
2 ) = 2Z. (6.46)

Returning to the computation of [S0,3, S2]Z2
∗ in the present symmetry class C, we apply

Lemma 6.2 to obtain the final result

[S0,3,S2]Z2
∗ ' π1(Ω2S2)/i1(π1(M

C
2 )) ' Z/2Z = Z2.

For all three real symmetry classes s = 0, 4, 6, the topological phases with a pre-
served base point coincide with the free topological phases. For s = 0 and s = 6 this is
obvious as there is only one based topological phase and the freedom of being able to
move the base point during homotopies cannot yield more homotopy classes. More for-
mally, we can use Lemma 3.22: If [X,Y ]Z2

∗ = 0, then [X,Y ]Z2 = [X,Y ]Z2
∗ /π1(Y

Z2) = 0.
For symmetry class s = 4, the fundamental group of the fixed points of τ4 is trivial,
π1((S

2)Z2) = π1(S
2) = 0, so the action is trivial and

[S0,3,S2]Z2 = [S0,3,S2]Z2
∗ /π1(S

2) = [S0,3,S2]Z2
∗ . (6.47)

In conclusion, we have identified a superconducting analog in the real symmetry
class C of the Hopf insulator in complex symmetry class A, which we propose to call
the Hopf superconductor.

6.3.1. Many bands

In general, the Hopf insulator and superconductor only have non-trivial topology when
realized in a situation with exactly two bands. However, there is a generalization to
many-band models, which we present for the Hopf insulator in complex symmetry
class A. Using the homogeneous space model Gr1(C2) = U2/U1 × U1, an alternative
view of the fact that π3(U2/U1 × U1) = Z presents itself by considering the fiber
bundle

U1 ×U1 ↪→ U2 → U2/U1 ×U1. (6.48)

Part of the associated long exact sequence reads

π3(U1 ×U1) π3(U2) π3(U2/U1 ×U1) π2(U1 ×U1)

0 Z 0

(6.49)
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It follows immediately that π3(U2/U1 ×U1) = Z.
In the presence of more conduction or valence bands, the leftmost map becomes sur-

jective due to π3(Um) = Z for m ≥ 2 and we retrieve the familiar2 result π3(Un/Up×
Uq) = 0 for p > 1 or q > 1 (or both) from Table 4.1 (class A with dk = 3 and dx = 0).
If we however impose the condition that no energy levels are degenerate and that this
property is preserved under all homotopies, the space of annihilators turns into the
flag manifold

Un/(U1)
n, (6.50)

where (U1)
n := U1 × · · · × U1 is an n-fold product with factors U1. This is the

space of all collections of n mutually orthogonal, one-dimensional subspaces of Cn.
In the physics literature, it was considered for the integer quantum Hall effect in
two dimensions [ASS83], in which the assumption about separated energy levels is
justified, since the Landau levels are flat with constant energy differences. In fact,
using the generalized fiber bundle

(U1)
n ↪→ Un → Un/(U1)

n, (6.51)

the associated exact sequence has a part

π2(Un) π2(Un/(U1)
n) π1((U1)

n) π1(Un)

0 Zn Z
(6.52)

The rightmost map assigns to a set of winding numbers (m1, . . . ,mn) ∈ π1((U1)
n)

their sum m1 + · · · + mn ∈ Z = π1(Un). In particular, it is surjective and therefore
exactness implies that π2(Un/(U1)

n) = Zn−1, the subset of Zn with sum equal to zero.
These invariants can be interpreted as Chern numbers of the line bundles associated
to each energy band with a zero sum rule due to the fact that the n-dimensional vector
bundle into which they are embedded is assumed to be trivial.

Moving to three dimensions, another part of the long exact sequence generalizes
diagram (6.49):

π3((U1)
n) π3(Un) π3(Un/(U1)

n) π2((U1)
n)

0 Z 0

(6.53)

Thus, the non-trivial result π3(Un/(U1)
n) = Z remains in this generalized setting with

an arbitrary number of bands.

2Actually, if one of p = 1 or q > 1 and vice versa, we are not yet in the stable regime, but in the
intermediate regime of vector bundle isomorphism classes. However, these turn out to be trivial
too.
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Up to this point we have exclusively computed (equivariant) homotopy classes for
IQPVs with configuration space Sdx,dk . In this chapter, we address the problem of
classifying topological phases with the important configuration spaces X = Td (the
Brillouin zone torus) and Sdx × Tdk (the Brillouin zone torus in the presence of a
defect of codimension dx + 1). The solution we present sheds new light on the notion
of strong and weak topological phases, especially outside the stable regime.

7.1. Stable regime

We begin the exposition in the stable regime and write Cs(n) ≡ Cs and Rs(n) ≡ Rs for
brevity throughout this section, with the understanding that n is always large enough
with respect to the dimension of the configuration space in order for the conditions of
bijectivity in Theorem 5.1 to be fulfilled. In the stable regime, we determined the set

[Sdx,dk , Cs]
Z2
∗ (7.1)

of base-point preserving equivariant homotopy classes in Chapter 4. For dx = 0, the
set

[S0,dk , Cs]
Z2
∗ (7.2)

can be interpreted physically as classifying topological phases invariant under a con-
tinuous translation group, which leads to momenta k ∈ Rdk . Imposing the physical
requirement that the image is fixed for |k| → ∞, momentum space compactifies to
S0,dk and the point ∞ is the base point with fixed image.

However, in the setting introduced in Chapter 2 with discrete translation group,
the set of topological phases in the absence of defects is

[Td, Cs]
Z2 , (7.3)

and in the presence of a defect with codimension dx + 1, it is

[Sdx × Tdk , Cs]
Z2 . (7.4)

In the following, we demonstrate that our results completely determine the above
sets of topological phases in the stable regime, since they decompose as a product of
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sets of the form given in eq (7.1). This result has been derived in [FHN+11, FM13]
using K-theory - here we give an independent proof from the perspective of homotopy
theory.

Theorem 7.1. In the stable regime, there are bijections

[Td, Cs]
Z2 '

d∏
r=0

(
[S0,r, Cs]

Z2
∗

)(dr)
,

[Sdx × Tdk , Cs]
Z2 '

dk∏
r=0

(
[Sdx,r, Cs]

Z2
∗

)(dkr )
,

for all real and complex symmetry classes s and dimensions d (respectively dx and
dk), with the exception of classes A, AI and AII, where we need to replace Cs by its
connected component (Cs)0 containing the base point and omit the factor with r = 0
on the right hand sides.

Before proving these statements, we introduce a tool called the equivariant free loop
fibration (for the non-equivariant version see [tD08, p. 116]; the equivariant extension
is found in [tD87]): Let Y be a Z2-space on which the non-trivial element of Z2 acts
by the involution τY . Then the space LY of free loops f : S0,1 → Y is equipped with
the Z2-action f 7→ τY ◦ f ◦ τ and the equivariant free loop fibration is defined by

(Ω̄Y )Z2 ↪→ (LY )Z2
p−→ Y Z2 , (7.5)

where p assigns to an equivariant loop f : S0,1 → Y its value f(s0) ∈ Y Z2 at the base
point s0 ∈ S0,1. Thus, the fiber over a point y ∈ Y Z2 is the space of equivariant loops
based at y.

Importantly, this fibration is equipped with a section q : Y Z2 → (LY )Z2 given by
assigning to y ∈ Y Z2 the constant loop at y, which results in p ◦ q = idY Z2 . Therefore,
the associated long exact sequence splits into short exact sequences

0 πd((Ω̄Y )Z2) πd((LY )Z2) πd(Y
Z2) 0

p∗

q∗
(7.6)

for all d ≥ 0. Note that the maps in these short exact sequences are homomorphisms
only for d ≥ 1. In that case, the splitting yields an isomorphism

πd((LY )Z2) ' πd((Ω̄Y )Z2) o πd(Y
Z2)

as sets' πd((Ω̄Y )Z2)× πd(Y Z2). (7.7)

Since we are interested in the set of topological phases and not any group structures
on this set, we only require the lower line stating a bijection between sets.
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The prerequisite d ≥ 1 is a crucial condition. In fact, there exists an identification

[Td, Cs]
Z2 ' π0((LdCs)Z2), (7.8)

where (LdkCs)
Z2 is the dk-fold iterated equivariant free loop space of Cs, and if eq. (7.7)

were true for d = 0, then a product decomposition would follow immediately, in con-
tradiction to the counter-examples that exist outside the stable regime (see eqs. (7.27)
and (7.31) in the next section). In the presence of a position-like dimension dx ≥ 1
on the other hand, we have

[Sdx × Tdk , Cs]
Z2
∗ ' πdx((LdkCs)

Z2)

' πdx((Ldk−1Ω̄Cs)
Z2)× πdx((Ldk−1Cs)

Z2)

...

'
dk∏
r=0

(
πdx((Ω0,rCs)

Z2)
)(dkr )

'
dk∏
r=0

(
[Sdx,r, Cs]

Z2
∗

)(dkr )
. (7.9)

This result holds independently of stability conditions. However, it assumes that a
base point is preserved, for which there is no physical justification in this case.

Remark 7.2. With dx = 1 and trivial Z2-actions, the left hand side of eq. (7.9) is
known as the dk-th torus homotopy group of Cs, a concept developed in [Fox45] (with
a more detailed exposition in [Fox48]) and applied in the seminal paper [ASS83] to
the homotopy theory of the quantum Hall effect.

Proof of Theorem 7.1. We now prove the statements of Theorem 7.1 without base
points, including the important case without defect. Assuming first that the symmetry
index s is odd in order for Cs to have only a single connected component, we use the
Bott map as in Theorem 4.12 in conjunction with the Z2-Whitehead Theorem 3.21 in
its free version to obtain bijections

[Td, Cs]
Z2 ' [Td,ΩCs−1]

Z2 (7.10)

and

[Sdx × Tdk , Cs]
Z2 ' [Sdx × Tdk ,ΩCs−1]

Z2 , (7.11)

for odd s. Notice that we choose to use the loop space rather than the space of
geodesics (see Section 3.5) and that the loop coordinate has the trivial Z2-action. We
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use this loop coordinate to identify the sets on the right hand side with a fundamental
group π1, enabling the use of the decomposition in eq. (7.7). Without defect, we find

[Td, Cs]
Z2 ' [Td,ΩCs−1]

Z2

' π1((LdCs−1)Z2)

' π1((Ld−1Ω̄Cs−1)Z2)× π1((Ld−1Cs−1)Z2)

...

'
d∏
r=0

(
π1((Ω̄

rCs−1)
Z2)
)(dr)

'
d∏
r=0

(
[S0,r,ΩCs−1]

Z2
∗

)(dr)

'
d∏
r=0

(
[S0,r, Cs]

Z2
∗

)(dr)
. (7.12)

In the last equation we used the Z2-Whitehead Theorem in reverse (the based version)
in order to readjust the symmetry index from s− 1 to s. A similar chain of bijections
is obtained for dx ≥ 1:

[Sdx × Tdk , Cs]
Z2 ' [Sdx × Tdk ,ΩCs−1]

Z2

' πdx((LdkCs−1)
Z2)

' πdx((Ldk−1Ω̄Cs−1)
Z2)× π1((Ldk−1Cs−1)Z2)

...

'
dk∏
r=0

(
πdx((Ω̄rCs−1)

Z2)
)(dkr )

'
dk∏
r=0

(
[Sdx,r,ΩCs−1]

Z2
∗

)(dkr )

'
dk∏
r=0

(
[Sdx,r, Cs]

Z2
∗

)(dkr )
. (7.13)

The difference to the result of eq. (7.9) is the lack of a base point condition at the
outset.

For even s, the requirements for the Z2-Whitehead Theorem are not met since there
are only a finite number of connected components of Cs in contrast to infinitely many
connected components of ΩCs−1 (see Table 4.1). We therefore resort to the same
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strategy as in the proofs of the theorems in Chapters 4 and 5 and replace Cs and
ΩCs−1 by their connected components (Cs)0 and (ΩCs−1)0 containing the base point
(the base point of ΩCs−1 being the constant loop at the base point of (Cs)0 ⊂ Cs−1).
The Z2-Whitehead Theorem then gives bijections

[Td, (Cs)0]
Z2 ' [Td, (ΩCs−1)0]

Z2 (7.14)

and

[Sdx × Tdk , (Cs)0]
Z2 ' [Sdx × Tdk , (ΩCs−1)0]

Z2 . (7.15)

In the first bijection, the right hand side is a subset of [Td,ΩCs−1]
Z2 . It can be iden-

tified in the decomposition (7.12) as the subset with the factor π1(C
Z2
s−1) = π1(Rs−1)

replaced by ker(i∗) ⊂ π1(Rs−1) as illustrated in Figure 7.1 for the case d = 1, where

i∗ : π1(Rs−1)→ π1(Cs−1) (7.16)

is the induced map of the inclusion i : Rs−1 ↪→ Cs−1.

π1(Rs−1)π1((Ω̄Cs−1)
Z2)

α

Figure 7.1.: Decomposition of [S1,ΩCs−1]
Z2 = π1((LCs−1)

Z2) into the product
π1((Ω̄Cs−1)

Z2)× π1(Rs−1) as viewed from the domain. Thick black lines
are mapped to the base point and lines with arrows all indicate the
same loop representing an element in π1(Rs−1). Elements in the sub-
set [S1, (ΩCs−1)0]

Z2 ⊂ [S1,ΩCs−1]
Z2 restrict to a loop α homotopic to the

constant loop, corresponding to an element α ∈ ker(i∗) ⊂ π1(Rs−1).

Similarly, the set on the right hand side of the other bijection (eq. (7.15)) is a
subset of [Sdx × Tdk ,ΩCs−1]

Z2 , which can be identified with the subset of the re-
sult in eq. (7.13) with the factor πdx+1(C

Z2
s−1) = πdx+1(Rs−1) replaced by ker(i′∗) ⊂

πdx+1(Rs−1), where this time

i′∗ : πdx+1(Rs−1)→ πdx+1(Cs−1). (7.17)
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We use a slightly different notation here in order to distinguish the two maps i∗ and i′∗
even though both are induced by the same map i. For the real symmetry classes with
even s 6= 2, 6, we have ker(i∗) = π1(Rs−1) and ker(i′∗) = πdx+1(Rs−1). Furthermore,
since Rs ⊂ (Cs)0 in these cases and since both Tdk and Sdx ×Tdk are path-connected,
it follows that

[Td, (Cs)0]
Z2 ' [Td, Cs]

Z2 (7.18)

and

[Sdx × Tdk , (Cs)0]
Z2 ' [Sdx × Tdk , Cs]

Z2 . (7.19)

Thus, the results for real symmetry classes with even s 6= 2, 6 are the same as for
odd s.

For the remaining symmetry classes – complex class A and real classes AII (s = 2)
and AI (s = 6) – the sets ker(i∗) and ker(i′∗) contain only one element. Therefore, the
factor with r = 0 in the product decompositions (7.12) and (7.13) vanishes. Moreover,
Rs 6⊂ (Cs)0 in these cases, so we cannot use eqs. (7.18) and (7.19). It follows that the
main statements of the theorem need to be modified as announced.

Remark 7.3. Physically, the replacement Cs → (Cs)0 amounts to choosing a chemical
potential which fixes the number of valence and conduction bands. In order to fully
classify all topological phases in symmetry classes A, AI and AII, one needs to move the
base point to every connected component of (Cs)0 and apply Theorem 7.1. In doing
so, one needs to be careful not to leave the stable regime, beyond which Theorem 7.1
is not valid in general.

Since we have determined in Chapter 4 all factors in the product decomposition
offered by Theorem 7.1, it follows that we have determined all topological phases
with configuration spaces Td and Sdx × Tdk in the stable regime. Another use of
Theorem 7.1 is the option of distinguishing topological phases according to certain
factors in the product decomposition. For instance, the notion of strong and weak
can be defined:

Definition 7.4. A topological phase is strong in the stable sense if the bijection in
Theorem 7.1 maps it to a product with non-trivial element in the factor [S0,d, Cs]

Z2
∗

(resp. [Sdx,dk , Cs]
Z2
∗ ) with domain of the largest dimension. Otherwise, it is called

weak in the stable sense.

The weak topological phases contain those phases that are realized simply by stack-
ing IQPVs with momentum-like dimension lower than d into d dimensions. In the case
where a defect is present, the weak phases contain those that are stacked at every point
of the measuring surface Sdx,dk . The distinction between strong and weak will be re-
visited and in fact revised when leaving the stable regime in the next section (hence
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the addendum “in the stable sense”). For now however, we stay in the stable regime
and give two examples of how the result in Theorem 7.1 can be applied to identify
the strong and weak topological phases.

Example 7.5 (Class AII). In the real symmetry class s = 2 (class AII) without defect
and d = 3, we pick a connected component (Cs)0 = Gr2p(C2p+2q) corresponding to 2p
valence bands and 2q conduction bands. Then Theorem 7.1 implies

[T3,Gr2p(C2p+2q)]Z2 ' Z2 × (Z2 × Z2 × Z2), (7.20)

since we know from Table 4.1 that

[S0,3,Gr2p(C2p+2q)]Z2
∗ = Z2, (7.21)

[S0,2,Gr2p(C2p+2q)]Z2
∗ = Z2, (7.22)

[S0,1,Gr2p(C2p+2q)]Z2
∗ = 0. (7.23)

This is the result given in the seminal work [FKM07] generalizing the two-dimensional
quantum spin Hall effect to three dimensions and predicting the existence of a three-
dimensional time-reversal invariant topological phase with no two-dimensional analog.
In that work, a quartet of independent invariants (ν0; ν1, ν2, ν3) is constructed with
νi ∈ Z2 corresponding to the four Z2 factors in eq. (7.20). The strong phases in this
example are those with ν0 = 1 (non-trivial value), while the weak phases are the
ones with ν0 = 0 (trivial value). All non-trivial weak phases have representatives
constructed by piling layers of two-dimensional quantum spin Hall phases into three
dimensions.

Example 7.6 (Class D). We have already considered real symmetry class s = 0 (class
D) in one dimension in Example 4.2, but with a fixed base point. Theorem 7.1 gives
the result

[T1, C0]
Z2 = [S0,1, C0]

Z2 ' Z2 × Z2, (7.24)

as the results listed in Table 4.1 imply

[S0,1, C0]
Z2
∗ = Z2, (7.25)

[S0,0, C0]
Z2
∗ = Z2. (7.26)

A representative of each topological phase is shown in Figure 7.2: Two of them (dis-
played as blue and red dashed lines) map to only one connected component of Rs
at both momenta k = 0 and k = ±π. These are homotopic to constant maps, but
not homotopic to one another. The remaining two representatives switch connected
components at k = 0 and k = ±π (blue and red solid lines). If a base-point is pre-
served, one of the choices of connected component is fixed and therefore only a Z2

classification remains.
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(R0(1))1

(R0(1))0

Figure 7.2.: Representatives of the four topological phases in [S0,1, C0(n)]Z2 = Z2 ×
Z2 of Example 7.6, for the (already stable) case n = 1. Shown is half
of each image (the other half is determined by the Z2-equivariance, see
Lemma 3.7). The τ0-fixed point set R0(1) has two connected components
(R0(1))0 and (R0(1))1 corresponding to the blue and red dot respectively.

7.2. Outside the stable regime

The proof of Theorem 7.1 required the use of Bott periodicity, a result applicable only
in the stable regime. The next two examples demonstrate that this is not merely a
shortcoming of the technique used in the proof, but rather that the product decom-
position does not exist in general.

Example 7.7. In Section 6.3, we introduced the Hopf insulator [MRW08] as a non-
trivial representative of the set [S3,Gr1(C2)]. On a lattice in three dimensions however,
the set of topological phases is given by [T3,Gr1(C2)]. This set has been determined
in [AK10]:

[T3,Gr1(C2)] = {(n0;n1, n2, n3) | n1, n2, n3 ∈ Z;

n0 ∈ Z for n1 = n2 = n3 = 0 and

n0 ∈ Z2·gcd(n1,n2,n3) otherwise},
(7.27)

where gcd(n1, n2, n3) is the greatest common divisor of the integers n1, n2 and n3.
This example demonstrates that invariants may not be independent of each other as

in the stable regime. Only for n1 = n2 = n3 = 0 do we find n0 ∈ Z = [S3,Gr1(C2)] ⊂
[T3,Gr1(C2)]. In all other cases, the range for n0 is finite.
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Example 7.8. The setting of this next example is the one introduced in Section 4.1.
Recall that this example is set in complex symmetry class A as above, but with the
additional symmetry T ◦I (combination of time-reversal and inversion with T 2 = I2 =
1). For this setup, Theorem 7.1 still applies by using the Z2-action of real symmetry
class s = 6 (class AI) on the target space and the trivial Z2-action on all domains.
Hence, for large values of p and q, the set of topological phases (without defect) in
two dimensions is given by

[T2,Grp(Rp+q)] = π2(Grp(Rp+q))×
(
π1(Grp(Rp+q))× π1(Grp(Rp+q))

)
= Z2 × (Z2 × Z2).

For dimensions greater than min(p, q), we find ourselves outside the stable regime (see
the table in Theorem 5.1). This is in particular the case for two dimensions with p = 1
and q = 3, where we have

[S2,Gr1(R3)] = N0, (7.28)

[S1,Gr1(R3)] = Z2. (7.29)

Elements in the first set are classified by the absolute value of their skyrmion number,
which is defined as follows: Consider the fiber bundle Z2 ↪→ S2 → Gr1(R3), where the
projection assigns to a point x ∈ S2 ⊂ R3 the line passing through the origin and x.
From the associated exact sequence, it follows immediately that the projection induces
an isomorphism π2(S

2) ' π2(Gr1(R3)). Since π2(S
2) = Z (classified by the mapping

degree, see eq. (6.15)), we conclude that π2(Gr1(R3)) = Z. We say a map S2 →
Gr1(R3) has skyrmion number n if it represents a class in π2(Gr1(R3)) originating
from a class in π2(S

2) with mapping degree n. The fact that only the absolute value
of the skyrmion number is a homotopy invariant is explained by applying Lemma 3.22
to obtain

[S2,Gr1(R3)] = π2(Gr1(R3))/π1(Gr1(R3)) = Z/Z2 = N0. (7.30)

The result of (7.29) has been discussed in the context of eq. (4.5): The single non-
trivial class is represented by the Moebius bundle.

With momentum space T2, the topological phases are given by [Jän87, BSH99,
Che12]

[T2,Gr1(R3)] = {(n0;n1, n2) | n1, n2 ∈ Z2;

n0 ∈ N for n1 = n2 = 0 and

n0 ∈ Z2 otherwise}. (7.31)

Again, only if the lower-dimensional invariants n1 and n2 vanish does the invariant
n0 have full range.
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From these two examples we take the lesson that, in general, we can only hope that
homotopy classes of maps from spheres will remain distinct as maps over a torus of
the same dimension. In this way, the results of Chapter 6 would still be valid in the
physically more relevant case with torus as a domain, with the slight drawback of
giving only a partial answer. This hope turns out to be justified, as we demonstrate
in the following theorem:

Theorem 7.9. The sets of topological phases without and with defect have subsets

[S0,d, Cs(n)]Z2 ⊂ [Td, Cs(n)]Z2 (7.32)

and

[Sdx,dk , Cs(n)]Z2 ⊂ [Sdx × Tdk , Cs(n)]Z2 . (7.33)

Both inclusions are defined by relaxing the appropriate boundary conditions for repre-
sentatives Id → Cs(n) (resp. Idx+dk → Cs(n)) on the left hand sides.

This theorem allows for a more general definition of the attributes strong and weak.

Definition 7.10. A topological phase is called strong in the general sense if it is non-
trivial and contained in the image of one of the maps in Theorem 7.9. Otherwise, it
is called weak in the general sense.

The statement of Theorem 7.9 translates to the following: If there is no homotopy
between two equivariant maps S0,d → Cs(n) (resp. Sdx,dk → Cs(n)) through equiv-
ariant maps with the same domain, then there cannot be a homotopy through maps
with domain Td (resp. Sdx×Tdk). Put differently, allowing homotopies through maps
that obey less strict boundary conditions on Idx,dk does not result in less homotopy
classes. The difficulty of proving this statement directly is illustrated in Figure 7.3.

Recall from Section 3.2 that we can model all maps from products of spheres with
arbitrary Z2-actions as maps from a cube of the appropriate dimension (and with the
appropriate Z2-action) and certain boundary conditions. We make use of this model
in the following and use the simple notation Id since all Z2-actions will be covered at
once. Similarly, we use ΩdY and LdY for the based and free loop spaces of Y without
specifying which coordinates are equipped with a non-trivial Z2-action.

In order to prove Theorem 7.9, we need to investigate some properties of Lemma 3.22
in the case where the domain is a sphere. If a Z2-space Y has a path-connected fixed
point set Y Z2 , then Lemma 3.22 gives a bijection

[Sd, Y ]Z2 ' [Sd, Y ]Z2
∗ /π1(Y

Z2). (7.34)

If Y Z2 has multiple connected components, we denote by Y Z2
0 the component contain-

ing the base point. Then a modified version of the above bijection holds:

[(Sd, s0), (Y, Y
Z2
0 )]Z2 ' [Sd, Y ]Z2

∗ /π1(Y
Z2), (7.35)
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t = 0 t = 1
4 t = 1

2 t = 3
4 t = 1

Figure 7.3.: Homotopy ht between maps from S2 (t = 0 and t = 1) through maps from
T2 (t = 1

4 ,
1
2 ,

3
4) in R3 with a point removed (black cross in the middle).

The homotopy uses the hole of T2 and it is not obvious how a homotopy
through maps from S2 can be constructed from it canonically.

where the left hand side stands for homotopy classes of equivariant maps Sd → Y
sending the base point into Y Z2

0 . This amounts to replacing Y Z2 by its connected
component Y Z2

0 and therefore follows from Lemma 3.22.
The identifications (7.34) and (7.35) have a simple geometrical interpretation: Points

on the boundary of Sd = [−π, π]d are always fixed under the Z2-action and therefore
have to map to Y Z2 . A loop γ representing an element in π1(Y

Z2) now acts on a
representative f of a class in [Sd, Y ]Z2

∗ by moving the image point of the boundary
along γ to give a map bd(γ, f) : Sd → Y (see Figure 7.4). In formulas,

bd(γ, f)(x) :=

{
f(2x) for |x| ≤ π

2

γ(3π − 4|x|) for |x| > π
2 ,

(7.36)

where |x| := max(xi)i=1...d.
Although defined on the level of representatives, eq. (7.36) yields a well-defined

action on the level of homotopy classes and the orbit of this action is identified on
the right hand side of (7.34). In the following special case, the map bd simplifies
considerably, which will be important for the proof of Theorem 7.9:

Lemma 7.11. For [γ] ∈ π1((LY )Z2) and [f ] ∈ [Sd,ΩY ]Z2
∗ ,

[bd(γ, f)] = [bd+1(γ(·)(0), f)] in [Sd, LY ]Z2
∗ , (7.37)

where the first coordinate of γ is the loop coordinate of π1 and f is interpreted as a
map Sd+1 → Y on the right hand side.
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(a) (b)

(c)

Figure 7.4.: The domain of bd(γ, f) for (a) d = 1, (b) d = 2 and (c) d = 3. The loop γ
is represented in blue with an arrow indicating the direction in which it
is traversed and the domain of f is depicted in gray. In (a) and (b), black
points are mapped to the base point y0 ∈ Y Z2 . In (c), the entire surfaces
of the two cubes are mapped to y0.
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Proof. The map γ is a based loop of free loops with base point being the constant
loop at y0 ∈ Y . Alternatively, it may be viewed as a free loop of based loops by
switching the two loop coordinates. The latter interpretation is shown in Figure 7.5a
for d = 1, where lines with arrows represent based loops. The fact that this is a free
loop of based loops is indicated by the color code: All these loops may be different,
but there are periodic boundary conditions (the most upper based loop is the same
as the lowest one, both being shown in orange). The goal of the present proof is to
construct homotopies in order to arrive at the picture in Figure 7.5d which illustrates
the right hand side of eq. (7.37) for d = 1: The argument “0” in γ(·)(0) is reflected in
the fact that all loops are the same (depicted in blue) and the origin of the increased
index in bd+1 (as opposed to bd) is the fact that this loop surrounds the domain of f ,
in contrast to the initial picture in Figure 7.5a (c.f. the difference between Figure 7.4a
and Figure 7.4b).

The map bd(γ, f)(·,±π) is homotopic to f(·)(±π), since f(x)(±π) = y0 and the
action fixes the neutral element. This can be seen in Figure 7.5a for d = 1: The upper
and lower boundaries correspond to the concatenation of the based loop γ(·)(±π)
(orange), the constant loop f(·)(±π) (black) and the reversed version of γ(·)(±π)
(orange, reversed arrow). This combination is clearly homotopic to the constant loop
and this homotopy is used to arrive at Figure 7.5b.

For the next homotopies, the central part of the cube [−π, π]d+1 which is associ-
ated with f (gray area in Figure 7.5) will remain invariant. The surrounding part
is equivalent to a map Sd → ΩY , but since we will only use special homotopies that
leave the part with last coordinate xd+1 = 0 in [−π, π]d+1 invariant (the blue loops in
Figure 7.5b), we will restrict to only one hemisphere of Sd, which is a disk Dd. The
same homotopies will be applied to the other hemisphere.

We introduce the radial coordinate 0 ≤ r ≤ 1 of Dd, which corresponds to x1 =
· · · = xd = 0 at r = 0 and to xd+1 = 0 at r = 1. The result of using the homotopy
of bd(γ, f)(·,±π) to the constant map is a map α0 : Dd → ΩY depicted for d = 1 in
Figure 7.5b and given in general by

α0(r) :=

{
γ(π) for r ≤ 1

2

γ(2π(1− r)) for r > 1
2 ,

(7.38)

The next step takes the form of a homotopy

αt(r) :=

{
γ(π) for r ≤ 1−t

2

γ( 2π
1+t(1− r)) for r > 1−t

2 ,
(7.39)

where 0 ≤ t ≤ 1. For d = 1, this is the step from Figure 7.5b to Figure 7.5c: The
former shows α0 : D1 → ΩY , which maps to the orange loop at r = 0 and to the blue
loop at r = 1. The homotopy αt pushes the orange region completely to r = 0 while
“stretching” the remainder accordingly, which results in α1 shown in Figure 7.5c.
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(a) (b)

(c) (d)

Figure 7.5.: Steps in the proof of Lemma 7.11 for d = 1. The gray area corresponds to
the domain of f : S1 → ΩY interpreted as a map S2 → Y . All black lines
are mapped to the base point of Y . (a) shows the domain of b1(γ, f), in
this case given by conjugation of f by γ : S1 → (LY )Z2 . The latter can
be viewed as a free loop of based loops (colored lines) and arrows indicate
the direction in which the based loops are traversed. (b) shows the result
of applying the homotopy of the upper and lower sides to the constant
map, giving the configuration with α0. The stage at α1 = β0 is shown in
(c), while (d) depicts the final configuration with β1, which corresponds
to the domain of b2(γ(·)(0), f).

120



7. Strong and weak topological phases

Subsequently, all other loops are also pushed to r = 0 and “annihilate”, leaving
only the blue one. In formulas, this second homotopy is given by

βt(r) := γ(π(1− r)(1− t)), (7.40)

where β0 = α1. Since all Z2-actions introduced for Id+1 = [−π, π]d+1 fix the radial
coordinate r and at the same time all homotopies depend only on this coordinate r,
they all go through equivariant maps.

For the next result, we use Lemma 7.11 to show that the homotopy classes of maps
with periodic boundary conditions in one coordinate of [−π, π]d include the classes of
maps that map to a fixed point at the edges of that interval.

Lemma 7.12.

[(Sd, s0), (LY, (LY )Z2
0 )]Z2 ⊃ [(Sd+1, s0), (Y, Y

Z2
0 )]Z2 (7.41)

Proof.

[(Sd, s0), (LY, (LY )Z2
0 )]Z2 = [Sd, LY ]Z2

∗ /π1((LY )Z2) (7.42)

= [S1,ΩdY ]Z2/π1((LY )Z2) (7.43)

⊃ [(S1, s0), (Ω
dY, (ΩdY )Z2

0 )]Z2/π1((LY )Z2) (7.44)

=
(

[S1,ΩdY ]Z2
∗ /π1((Ω

dY )Z2)
)
/π1((LY )Z2) (7.45)

= [S1,ΩdY ]Z2
∗ /π1(Y

Z2) (7.46)

= [(Sd+1, s0), (Y, Y
Z2
0 )]Z2 (7.47)

This chain of equalities and inclusions needs some explanation: We first use the
relation (7.35) between based and unbased homotopy classes to arrive at (7.42). Then,
for eq. (7.43), the perspective is changed to viewing the (free) loop parameter of LY as
the domain and the d coordinates of Sd as the domain of elements in ΩdY . Importantly,
this effects a change from based homotopy classes to unbased ones. The inclusion
(7.44) is well defined on the quotient since (ΩdY )Z2

0 is fixed under conjugation by
elements in (LY )Z2 . Having arrived at (7.45) by again using (7.35), we use Lemma 7.11
to find a homotopy of the action of elements in [S1, (ΩdY )Z2 ]∗ as well as π1((LY )Z2) to
the action of some element in π1(Y

Z2), yielding (7.46). In the last step, we use (7.35)
again to complete the proof.

Proof of Theorem 7.9. We have now accumulated the necessary ingredients in order
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to prove Theorem 7.9: For the case without defects, if Y Z2 is connected,

[Td, Y ]Z2 = [S1, Ld−1Y ]Z2

⊃ [(S1, s0), (L
d−1Y, (Ld−1Y )Z2

0 )]Z2

⊃ [(S2, s0), (L
d−2Y, (Ld−2Y )Z2

0 )]Z2

⊃ · · ·
⊃ [(Sd−1, s0), (LY, (LY )Z2

0 )]Z2

⊃ [(Sd, s0), (Y, Y
Z2
0 )]Z2

= [Sd, Y ]Z2 (7.48)

If Y Z2 has several components Y Z2
n , we repeat the above steps for different base points

y0 ∈ Y Z2
n to obtain

[Td, Y ]Z2 =
∐
n

[(Td, s0), (Y, Y
Z2
n )]Z2

⊃
∐
n

[(Sd, s0), (Y, Y
Z2
n )]Z2

= [Sd, Y ]Z2 (7.49)

In the presence of defects, similar steps lead to the result of Theorem 7.9. Assuming
again that Y Z2 is connected,

[Sdx × Tdk , Y ]Z2 = [Sdx , LdkY ]Z2

⊃ [(Sdx , s0), (L
dkY, (LdkY )Z2

0 )]Z2

⊃ [(Sdx,1, s0), (L
dk−1Y, (Ldk−1Y )Z2

0 )]Z2

⊃ [(Sdx,2, s0), (L
dk−2Y, (Ldk−2Y )Z2

0 )]Z2

⊃ · · ·
⊃ [(Sdx,dk−1, s0), (LY, (LY )Z2

0 )]Z2

⊃ [(Sdx,dk , s0), (Y, Y
Z2
0 )]Z2

= [Sdx,dk , Y ]Z2 (7.50)

By the same argument as in (7.49), the result generalizes to fixed point sets Y Z2 with
multiple connected components by repeating the above for base points in all different
components. This completes the proof of Theorem 7.9.

7.3. Stacked IQPVs

The primary goal of introducing the distinction between strong and weak topological
phases is to grasp the dimensionality of a given topological phase. This is motivated by
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the fact that, given a d-dimensional IQPV in a non-trivial topological phase, there are
infinitely many realizations of IQPVs in dimensions greater than d produced simply
by stacking the original IQPV. For instance, a one-dimensional IQPV can be stacked
in two linearly independent ways into two dimensions and three linearly independent
ways into three dimensions, etc. Similarly, a two-dimensional IQPV can be extended
to a layered three-dimensional IQPV in three linearly independent directions.

In this section, we demonstrate at the hand of two examples the following state-
ments:

(i) Definition 7.10 gives the maximal set of strong topological phases if we require
that strong topological phases cannot be realized by stacking lower-dimensional
IQPVs.

(ii) There are also weak topological phases (in both stable and general sense) that
cannot be realized by stacking lower-dimensional IQPVs.

We begin by formalizing the notion of stacked IQPVs. For simplicity, we start from
the setting of Section 2.1 (corresponding to complex symmetry class A). Recall from
eq. (2.5) that a general translation-invariant Hamiltonian in this setting acts as

H|x, i〉 =
∑
y,j

hji(y)|x + y, j〉, (7.51)

with hji(y) = hij(−y) to ensure hermiticity, i, j = 1, . . . , n and x,y ∈ Zd. Changing
to a an eigenbasis of translations, we obtain the Bloch Hamiltonian (see eq. (2.9))

H(k) :=
∑
y

e−ik·yh(y), (7.52)

with k ∈ Td.
We now view the d-dimensional lattice Zd as being embedded into another lattice

ZD in a higher dimension D > d. In eq. (7.51), a canonical embedding is given
by letting x,y ∈ ZD and setting hji(y) = 0 whenever yi 6= 0 for i = d + 1, . . . , D.
Physically, this signifies no hopping of fermions into the new D − d directions or,
equivalently, that the system is stacked into these directions.

To generalize the stacking direction, we introduce an invertible, integer D-by-D ma-
trix A ∈ GLD(Z) and define the stacked Hamiltonian to be given by the replacement
hji(y) 7→ hji(A

−1y), corresponding to changing the hopping from the y-direction to
the Ay-direction.

Defining the projection P : TD → T d by P (k1, . . . , kD) := (k1, . . . , kd), the Bloch
Hamiltonian of the stacked system can be expressed by the lower-dimensional Bloch

123



7. Strong and weak topological phases

Hamiltonian:

Hstack(k) =
∑
y∈ZD

h(A−1y)e−ik·y

=
∑
y∈ZD

h(y)e−ik·(Ay)

=
∑
y∈ZD

h(y)e−i(A
Tk)·y

=
∑
y∈Zd

h(y)e−i(PA
Tk)·y

= H(PATk). (7.53)

The change in k-dependence descends to the level of IQPVs. Therefore, given an
IQPV ψ : Td → Cs(n), stacking it in D dimensions according to the matrix A yields
an IQPV

ψstack(k) = ψ(PATk), (7.54)

with k ∈ TD.
An important diagnostic is the following: Since AT is invertible and the projection

P has a (D − d)-dimensional kernel, there are exactly D − d linearly independent
directions in the Brillouin zone TD in which ψ is constant.

7.3.1. Stacked skyrmions

We begin by investigating Example 7.8 in more detail in order to explain why the
product formula in Theorem 7.9 fails and to show that only the strong topological
phases (in the general sense of Definition 7.10) do not have stacked representatives.
The result stated in eq. (7.31) can be derived following the more general procedure
outlined presently, which uses the free loop fibration introduced in the proof of The-
orem 7.1, but with trivial Z2-actions. Denoting by (LY )n the n-th connected compo-
nent of the free loop space LY , the set [T2, Y ] is a disjoint union of subsets labeled
by the pair (n1, n2), which contain classes whose representatives restrict to (LY )n1 on
S1×{s0} ⊂ T2 and to (LY )n2 on {s0}×S1 ⊂ T2. Notice that the number of elements
in a sector (n1, n2) is the same as in (n2, n1).

Let p : LY → Y be the evaluation map of the free loop fibration with trivial
Z2-action. Then the number of elements in a subset (n1, n2) can be determined by
computing [S1, (LY )n1 ] and counting the elements that map to (LY )n2 under the
induced map p∗. In our example with Y = Gr1(R3), the free loop space LY has two
connected components, since

[S1,Gr1(R3)] = π1(Gr1(R3)) = Z2. (7.55)
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Note that Lemma 3.22 implies that based and free homotopy classes agree in this
case, since π1 is Abelian and therefore the action on itself by conjugation is trivial.
We denote by (LY )0 the component containing the constant map and by (LY )1 the
component containing all non-trivial loops. The set we will study in the following is
[S1, (LY )1], which is the union of sectors of the form (n1, 1) or, equivalently, of the
sectors (1, n2), with n1, n2 ∈ {0, 1}. If Theorem 7.1 were applicable in the present
setting, all four sectors would satisfy (n1, n2) = N0, so in particular, any union of two
sectors would have to contain infinitely many elements. We will show that [S1, (LY )1]
contains only finitely many elements and thus confirm that Theorem 7.1 can only hold
in the stable regime.

We will show later that π1((LY )1) is Abelian and therefore Lemma 3.22 can be
used to obtain

[S1, (LY )1] = π1((LY )1). (7.56)

Choosing a base point in (LY )1, the long exact sequence associated to the free loop
fibration contains the right hand side of the above equation and reads

π2(Y ) π1((ΩY )1) π1((LY )1) π1(Y ) π0((ΩY )1)

Z Z Z2 0

∂2 i∗ p∗ ∂1

This exact sequence is not split like the one with a base point in (LY )0 in eq. (7.6).
Since the first map ∂2 is not the constant map as in the split case, but rather multipli-
cation by −2 [BSH99], exactness implies that π1((LY )1) must be a group with exactly
four elements. This leaves only the possibilities Z2×Z2 or Z4 and in either case, it is
an Abelian group as previously claimed and therefore [S1, (LY )1] also contains only
four elements.

The other point, that all phases not captured in the strong subgroup as defined in
Theorem 7.9 have stacked representatives in the present example, is explained by the
fact that π1((LY )1) = Z4 rather than Z2 × Z2 [Jän87, BSH99]. If ψ : S1 → Gr1(R3)
is a non-trivial topological insulator in one dimension, i.e. represents the non-trivial
class in π1(Gr1(R3)) = [S1,Gr1(R3)] = Z2, then the generator of π1((LY )1) = Z4 is
represented by ψ(k1 + k2), where k1 is the coordinate associated to π1 and k2 is the
free loop coordinate. Since the group structure in π1 is concatenation of loops (see
eq. (3.9)), all elements in Z4 are represented respectively by one of

ψ(mk1 + k2), (7.57)

with m = 0, 1, 2, 3. These configurations are illustrated in Figs. 7.6b (m = 0), 7.6d
(m = 2) and 7.6f (m = 3). The ones with even m belong to the sector (1, 0), while
the ones with odd m belong to the sector (1, 1). All of these maps correspond to
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6.: Maps T2 → Gr1(R3) visualized by placing the image of a point (a line
in R3) on the point itself. T2 is modeled here as a square with peri-
odic boundary conditions. Colors represent the angle to the axis out
of the plane. Using the notation (n0;n1, n2) as in eq. (7.31), (a) cor-
responds to (1; 0, 0), (b) to (0; 1, 0), (c) and (d) to (1; 1, 0) and (e) and
(f) to (1; 1, 1). Remarkably, all except (a) are homotopic to stacked one-
dimensional phases.
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the one-dimensional non-trivial IQPV stacked along the (−1,m)-direction of the two-
dimensional lattice Z2.

The above implies that the sectors (1, 1), (1, 0) and therefore also the sector (0, 1)
contain two elements, all of which have stacked representatives. Together with the
result of Theorem 7.9, which can be interpreted as stating that the sector (0, 0) is in
bijection with [S2,Gr1(R3)] = N0, the result shown in eq. (7.31) follows. Of the sector
(0, 0) only the class of the constant map has a stacked representative. Thus, the only
topological phases which cannot be realized by stacking are the non-trivial elements
in N0 = [S2,Gr1(R3)] ⊂ [T2,Gr1(R3)].

7.3.2. Weak but not stackable

The following is an example – in the stable regime – of a weak topological insulator (in
both the stable and the general sense), which cannot be constructed through stacking:
In two dimensions, consider a 4n-band model with 2n occupied and 2n empty bands
in complex symmetry class AIII (see Section 2.5.1). Let there be an additional U1-
symmetry, for example conservation of a spin component, which commutes with the
single pseudo-symmetry. Then all IQPVs are given by maps

ψ : T2 → Un ×Un, (7.58)

which can be viewed as two separate IQPVs as explained in Section 2.6.1. This view
carries over to the set of topological phases, since they split as

[T2,Un ×Un] = [T2,Un]× [T2,Un]. (7.59)

Therefore, we may apply Theorem 7.1 to each factor separately. We know from
Table 4.1 that

π2(Un) = 0, (7.60)

π1(Un) = Z, (7.61)

π0(Un) = 0, (7.62)

so we can conclude that

[T2,Un ×Un] = [T2,Un]× [T2,Un]

=
(
π1(Un)× π1(Un)

)
×
(
π1(Un)× π1(Un)

)
= (Z× Z)× (Z× Z). (7.63)

Writing ψ(k) = ψ(k1, k2) = (ψ1(k1, k2), ψ2(k1, k2)) ∈ Un × Un, the invariants in
eq. (7.63) are given by the winding numbers ni of det(ψi(k1, 0)) andmi of det(ψi(0, k2))
for i = 1, 2, arranged according to

(n1, n2)× (m1,m2) ∈ (Z× Z)× (Z× Z). (7.64)
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One-dimensional versions of this model are classified by [S1,Un × Un] = π1(Un) ×
π1(Un) = Z× Z, with invariants given by the winding numbers ni of det(ψi(k)) with
i = 1, 2 and k ∈ S1. Stacking a representative φ of the class (n1, n2) according to
some matrix A ∈ GL2(Z) yields two-dimensional IQPV (see eq. (7.54))

φstack(k) = φ(PATk)

= φ(A11k1 +A21k2)

= (φ1(A11k1 +A21k2), φ2(A11k1 +A21k2)), (7.65)

representing the topological phase

(A11n1, A11n2)× (A21n1, A21n2) ∈ (Z× Z)× (Z× Z). (7.66)

Not all classes can be of this form, the simplest counter-example being (1, 0)× (0, 1):
For the first and fourth invariant to be non-zero, both n1 and n2 would have to be
non-zero. However, this would imply that, in order for the second and third invariant
to vanish, A11 = A21 = 0, which would in turn lead to an invariant (0, 0) × (0, 0),
giving a contradiction.

The mathematical reason is the fact that Z×Z is generated by two elements rather
than only one. In physical terms, if the U1-symmetry is realized by the conservation
of a spin component, then the non-trivial winding for spin up takes place along a
linearly independent direction from that of the non-trivial winding for spin down and
therefore there is no corresponding one-dimensional system.
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One of the main outcomes of this thesis is a classification of topological phases
[Td, Cs(n)]Z2 as defined in Definition 3.5. We now address the physical properties
of IQPVs described by maps ψ0 : Td → Cs(n) representing a non-trivial topological
phase [ψ0] 6= [const.] ∈ [Td, Cs(n)]Z2 . By Definition 3.1, each member of a family
ψt depending continuously on a parameter t ∈ [0, 1] and satisfying the same set of
symmetries resides in the same topological phase: [ψt] = [ψ0] for all t ∈ [0, 1]. The
parameter t can always be associated to a continuous family of Hamilton operators
Ht with the same symmetries by assigning the flattened Hamiltonian at every t using
eqs. (2.139) and (2.140). As such, it can have a multitude of physical interpretations,
like the hopping amplitude or the strength of spin-orbit coupling. However, there
can be homotopies of Hamiltonians that do not descend to homotopies of IQPVs.
This is the case whenever the energy gap between the occupied and empty eigenstates
vanishes for some t0 ∈ [0, 1] and the system is no longer insulating – it becomes a
metal. Given a homotopy Ht from H0 with IQPV ψ0 to H1 with IQPV ψ1, the only
way to obtain distinct classes [ψ0] 6= [ψ1] is the presence of at least one such value t0
in order for ψt0 to be ill defined, allowing a “jump” into another topological phase.
Thus, the hallmark of a topological phase transition is the closing of the energy gap.

In the next sections, we discuss two important physical manifestations of the ho-
motopy parameter t.

8.1. Atomic limit

We start in the complex symmetry class A as introduced in Section 2.1. Recall from
eq. (2.5) the action of a generic translation-invariant Hamiltonian on a basis {|x, i〉}
of the Hilbert space `2(Zd)⊗ Cn:

H|x, i〉 =
∑
y;j

hji(y)|x + y, j〉,

with hopping matrix h(y)† = h(−y). Defining a homotopy Ht by

Ht|x, i〉 :=
∑
j

hji(0)|x, j〉+ (1− t)
∑
y;j

(y 6=x)

hji(y)|x + y, j〉, (8.1)
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with t ∈ [0, 1], we recover the original Hamiltonian at t = 0 (H0 = H). The end-
point H1 is called the atomic limit. During the homotopy Ht, the original hopping
amplitudes of H0 = H are gradually diminished until at t = 1 they vanish completely.
One may think of this process as a continuous increase of the inter-atomic separation
from the original one at t = 0 to infinity at t = 1, so that only the atomic n-by-n
Hamiltonian h(0) remains for each lattice site, completely oblivious of the other sites.

Repeating the steps outlined in Section 2.1, we arrive at the Bloch Hamiltonian
of Ht:

Ht(k) = h(0) + (1− t)
∑
y 6=x

e−ik·yh(y). (8.2)

For t = 0, this expression reduces to the Bloch Hamiltonian H0(k) = H(k) of eq. (2.9)
and, not surprisingly, there is no momentum dependence in the atomic limit, H1(k) =
h(0). The latter property descends to the IQPV associated to H1 and therefore the
topological phase [const.] ∈ [Td, Cs(n)]Z2 is represented by the IQPV of the atomic
limit. Here we fix a chemical potential in order to single out one connected component
of Cs(n), so that there is only one topological phase represented by a constant map.
The present discussion can be generalized to the setting of Section 2.2 by using the
BdG Hamiltonian in eq. (2.53) in place of the one from eq. (2.5) we used above. In
the presence of additional symmetries, we require Ht to have these symmetries for all
t ∈ [0, 1]. This may require a different homotopy than the one given in eq. (8.2), but a
homotopy always exists (recall the result of [HHZ05] stating that every Hamiltonian
decomposes into blocks each taken from the tangent space of a symmetric space, which
is always path-connected).

We have thus found a physical manifestation of non-trivial topological phases:
Whenever [ψ0] 6= [const.] ∈ [Td, Cs(n)]Z2 , the homotopy Ht to the atomic limit (with
H0 the defining Hamiltonian of ψ0) must undergo a topological phase transition in
the form of a gapless Hamiltonian. Conversely, if [ψ0] = [const.], there is always a ho-
motopy to the atomic limit varying exclusively through gapped Hamiltonians. These
features are used in [HPB11] to define the terms “topologically trivial” and “topo-
logically non-trivial”, agreeing with our definitions. In [HPB11], the entanglement
spectrum is used as a diagnostic tool: If it exhibits spectral flow, the atomic limit
cannot be reached without a topological phase transition.

8.2. Boundaries

While the process of taking the atomic limit may be assigned the status of a Gedanken-
experiment, there are features of topological phases that are more accessible exper-
imentally. Recall the reasoning for introducing the configuration space Sdx × Tdk :
If there is a defect of codimension dx + 1, then we may enclose it by a sphere Sdx .
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If the radius of this sphere is sufficiently large, then we can use the approximation
of translation-invariance at every point and treat the dependence on the position on
Sdx semi-classically as additional, independent continuous parameters. In a similar
fashion, we can describe the crossover between two representatives of the same topo-
logical phase in real space if the region of crossover is large enough. This crossover
can occur, in particular, to the atomic limit IQPV as shown in the lower part of
Figure 8.1. Thus, we have found yet another physical manifestation of the homotopy
parameter t ∈ [0, 1] in the form of the relative position within the crossover region in
real space between two IQPVs. If two IQPVs represent different topological phases,
we have learned that the energy gap is bound to close (there must be a topological
phase transition) if an interpolation between the corresponding Hamiltonians is cre-
ated. Therefore, in the crossover region there must be at least one gapless state. In
the example where one IQPV is that of the atomic limit, the crossover region can be
interpreted as a (continuous) boundary of the material as shown in Figure 8.1 and
the gapless state is located at this boundary. This relationship between topological
phases of the bulk and boundary properties is known as the bulk-boundary correspon-
dence. The experimental observation of topological phases has so far been limited to
the measurement of precisely these properties. For instance, the non-trivial phase of
two-dimensional systems in the real symmetry class AII (the quantum spin Hall phase)
was discovered by transport experiments [KWB+07], which confirmed that conduction
only occurred along the rim of the sample. Similarly, in its three-dimensional gen-
eralization, photo-emission spectroscopy was used to show that the two-dimensional
surface carried gapless states [HQW+08, XQH+09].

In real materials there are no large crossover regions forming continuous boundaries
as displayed in the lower part of Figure 8.1, but rather sharp boundaries as shown
in the upper part. For this case, more quantitative information is needed about the
attribute “sufficiently large” ascribed to the crossover region. In many models, it
can be verified numerically that the gapless boundary states persist for sharp bound-
aries. Under certain circumstances, there are rigorous proofs that this must be so:
in symmetry classes A and AII in d = 2, there is a proof in [GP13] for quite general
Hamiltonians and in [MS11] for Dirac Hamiltonians. Using a semi-classical approxi-
mation for the Green’s function akin to the one we introduced here for IQPVs, [EG11]
presents an argument for the bulk-boundary correspondence encompassing the other
symmetry classes.

However, it is not true that a sharp boundary on a non-trivial IQPV will carry gap-
less states in general when the semi-classical approximations break down. A counter-
example is given in [HPB11] in the form of a non-trivial inversion-symmetric IQPV
without gapless boundary states (a slight generalization of the setting in this thesis
allows the accommodation of inversion symmetry).
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8.3. Interactions and disorder

Although the many-body picture of independent particles as introduced in Section 2.2
seems limited at first glance, it covers a plethora of interacting systems that are well
described by non-interacting quasi -particles potentially differing from the elementary
particles in the microscopic description. In particular, interactions are essential for
the concept of superconductivity and are thus included in the mean-field description
of Section 2.2. These arguments only account for interacting topological phases that
are homotopic to non-interacting ones (in the sense that there is a homotopy through
gapped, interacting Hamiltonians) and there are many phases beyond this “weakly
interacting” regime, like the fractional quantum Hall phases [Lau99]. It was shown
in [MKF13, WPS14] that the bulk-boundary correspondence discussed in the last
section needs to be revisited in the realm of strong interactions, with an additional
possibility of exotic gapped ( rather than gapless) edge theories displaying topological
order much like the fractional quantum Hall states.

Another concept seemingly disregarded in this work is the possible presence of dis-
order, since translation-invariance is assumed from the outset. However, at least in
the stable regime of many valence and conduction bands, an argument previously
used in [NTW85, LP12, QWZ06] can be made to incorporate disorder into our frame-
work. Let a translation-invariant system with topological phases [Td, Cs(n)]Z2 be
given, where n is the number of complex degrees of freedom per unit cell (correspond-
ing to the factor Cn in the definition of the Hilbert space in eq. (2.1)). We now choose
to merge multiple unit cells in order to define a larger unit cell. For instance, we
can form a new unit cell containing Nd of the original unit cells in a cube of length
N . This amounts to changing n by nNd in eq. (2.1) defining the Hilbert space. The
topological phases with the enlarged unit cell are given by [Td, Cs(nN

d)]Z2 and due to
Theorem 5.1 in combination with Theorem 7.1, this set is in bijection with the original
set [Td, Cs(n)]Z2 if the latter resides in the stable regime. Thus, an arbitrary amount
of disorder repeating with a period of N lattice sites in real space does not alter the
topological phase (provided the energy gap remains open). Since N is arbitrary, we
can take N →∞ to remove the restriction on the disorder to be periodic.

Note that the statement derived here guarantees that if, in the stable regime, the
disorder is continuously increased starting from the clean system, the topological phase
cannot change as long as the energy gap remains open. However, generically even an
infinitesimal amount of disorder fills the energy gap (even though the density of states
may be small). We can still apply the formalism developed in this thesis since the
number of occupied states is the same for all k ∈ Td. In fact, any amount of disorder
leaving open a mobility gap rather than an energy gap will leave the topological
phase invariant [NTW85, LP12]. For completely general disorder it is still guaranteed
that the set of topological phases as a whole remains the same, but the disordered
topological phase may not be that of the clean system [LP12].
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sharp boundary

continuous boundary

Figure 8.1.: Comparison of sharp and continuous boundaries on a lattice Z2 (dots)
with hopping amplitudes indicated by the color of links (black: full am-
plitude, white: zero amplitude).
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9. Conclusion

In this thesis, we employed the natural notion of homotopy as an equivalence rela-
tion defining topological phases. The task of obtaining a broad classification of these
phases seems daunting at first given the many variables like dimensions, symmetries
and the number of conduction and valence bands. However, if translations are sym-
metries and all other symmetries commute with them, we showed that the problem
reduces to ten symmetry classes as in [HHZ05]. We have organized these ten sym-
metry classes systematically using pseudo-symmetries which satisfy Clifford algebra
relations. Furthermore, we have proved that there are critical numbers of conduction
and valence bands above which the set of topological phases stabilizes. For spheri-
cal configuration spaces with arbitrary numbers of momentum-like and position-like
dimensions, we have classified all topological phases in this stable regime for the ten
symmetry classes. While this result can be obtained by more algebraic means using
K-theory, we have given an independent homotopy theoretic derivation thereof.

On top of the alternative proof of the known results, we have extended the classifi-
cation beyond the stable regime. In this endeavor, we have identified the exact bound-
aries to the stable regime for all ten symmetry classes and determined all exceptions
in the case of spherical configuration spaces with up to three exclusively momentum-
like dimensions. These exceptions include the Hopf insulator of [MRW08], as well
as a newly identified topological phase which we call the Z2-Hopf superconductor in
symmetry class C. We have shown that all these results are also valid when the con-
figuration space is the physically more relevant Brillouin zone torus (or a product of
position-like sphere and this torus in the presence of a defect). In fact, in the stable
regime, the set of topological phases over the torus splits into a product of topolog-
ical phases over spheres, so we have given an exhaustive classification in that case.
Outside the stable regime, we showed the situation to be more intricate, since there
is no such product decomposition. However, we demonstrated that the results with
spherical configuration spaces give at least a partial answer to the full classification
problem there.

The question of sphere or torus as configuration space is intimately linked to the
concept of strong and weak topological insulators. While the latter distinction can
be defined in the stable regime using the product decomposition, we showed that
outside this regime a modified distinction has to be made in order to avoid strong
topological phases being realizable by stacking lower-dimensional systems. However,
we demonstrated that independent of which definition for the distinction between
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strong and weak is used, there can also be weak topological insulators that cannot be
stacked.
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A.1. Cubes, disks and spheres

In this appendix we spell out the homeomorphisms between Sd, Id/∂Id and Dd/∂Dd

leading to the equivalent definitions of the homotopy groups introduced in Chapter 3.
First, defining Id := [−π, π]d and Dd as the unit ball in Rd with radius π, we have

a homeomorphism

u : Id/∂Id → Dd/∂Dd

k 7→ kmax
k

|k|
(A.1)

with inverse

u−1 : Dd/∂Dd → Id/∂Id

k 7→ |k| k

kmax
, (A.2)

where kmax := max{|k1|, . . . , |kd|}. Since the boundaries are mapped to each other,
these maps are well defined on the corresponding quotient spaces.

The second homeomorphism between will be a composite r◦pd : Sd → Id/∂Id, where
we view Sd as the unit sphere in Rd+1. The first part is the stereographic projection

pd : Sd → Rd ∪ {∞}

(x, t) 7→ 1

1− t
x, (A.3)

with inverse

p−1d : Rd ∪ {∞} → Sd

y 7→ 1

1 + |y|2
(2y, |y|2 − 1). (A.4)

This is followed by a rescaling to the cube Id:

r : Rd ∪ {∞} → Id/∂Id

y 7→ π

1 + y2max

y, (A.5)
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with inverse

r−1 : Id/∂Id → Rd ∪ {∞}

x 7→ π

1− x2max

x. (A.6)

Note that r maps ∞ to the boundary ∂Id (and vice versa for r−1), so it descends to
the quotient Id/∂Id.

A.2. Four-Lemmas and Five-Lemma

Lemma A.1 (First Four-Lemma). Let there be groups Xi and Yi and homomorphisms
fi : Xi → Yi (i = 1, 2, 3, 4) forming the following commutative diagram with exact
rows:

X1 X2 X3 X4

Y1 Y2 Y3 Y4

g1

f1

g2

f2

g3

f3 f4

h1 h2 h3

If f1 is surjective and if f2 and f4 are injective, then f3 is injective.

Proof. Given any x3 ∈ ker(f3), commutativity implies that f4(g3(x3)) = h3(f3(x3)) =
h3(1) = 1 and therefore g3(x3) = 1 since f4 is injective. Due to ker(g3) = im(g2),
there is x2 ∈ X2 with g2(x2) = x3. Using commutativity again, we obtain 1 =
f3(x3) = f3(g2(x2)) = h2(f2(x2)) and since ker(h2) = im(h1), there is y1 ∈ Y1 with
h1(y1) = f2(x2). Surjectivity of f1 implies that there is an element x1 ∈ X1 with
f1(x1) = y1, so we can apply commutativity again to get f2(g1(x1)) = h1(f1(x1)) =
h1(y1) = f2(x2). Since f2 is injective by assumption, g1(x1) = x2 and exactness
implies that x3 = g2(x2) = g2(g1(x1)) = 1, proving that f3 is injective.

Lemma A.2 (Second Four-Lemma). Let there be groups Xi and Yi forming the fol-
lowing commutative diagram of homomorphisms with exact rows:

X2 X3 X4 X5

Y2 Y3 Y4 Y5

g2

f2

g3

f3

g4

f4 f5

h2 h3 h4

If f5 is injective and if f2 and f4 be surjective, then f3 is surjective.
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Proof. Let y3 ∈ Y3 be given. Then h3(y3) = f4(x4) for some x4 ∈ X4, since f4
is surjective. Applying h4 to this equation gives 1 = h4(h3(y3)) = h4(f4(x4)) =
f5(g4(x4)), where we have used exactness and commutativity. Since f5 is injective,
this implies that g4(x4) = 1. Thus, due to exactness, x4 = g3(x3) for some x3 ∈ X3.
It follows that h3(y3) = f4(x4) = f4(g3(x3)) = h3(f3(x3)) and therefore there is
y ∈ ker(h3) with y3 = y · f3(x3). Since ker(h3) = im(h2), there is an element y2 ∈ Y2
with h2(y2) = y. Furthermore, f2 is surjective, so there is some x2 ∈ X2 with
f2(x2) = y2. Collecting these results, we obtain

f3(g2(x2) · x3) = f3(g2(x2)) · f3(x3)
= h2(f2(x2)) · f3(x3)
= h2(y2) · f3(x3)
= y · f3(x3)
= y3.

Lemma A.3 (Five-Lemma). Let there be groups Xi and Yi and homomorphisms
fi : Xi → Yi (i = 1, 2, 3, 4, 5) forming the following commutative diagram with exact
rows:

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

g1

f1

g2

f2

g3

f3

g4

f4 f5

h1 h2 h3 h4

If f1 is surjective, f5 injective and if f2 and f4 are bijective, then f3 is bijective.

Proof. Injectivity of f3 follows from the first Four-Lemma A.1 and surjectivity from
the second Four-Lemma A.2.

A special version of the Five-Lemma relaxing the requirement of all entries to be
groups and all maps to be homomorphisms is given in [tD08, p. 129] and we reproduce
it here:

Lemma A.4 (Special Five-Lemma). Let there be two fiber bundles X1 ↪→ X
ρ1−→ A

and Y1 ↪→ Y
ρ2−→ B with a based map f : X → Y satisfying f ◦ ρ1 = ρ2 ◦ f , so that

f restricts to maps f : A→ B and f : X1 → Y1. Consider the resulting commutative
diagram with exact rows:

π1(X1) π1(X) π1(A) π0(X1) π0(X)

π1(Y1) π1(Y ) π1(B) π0(Y1) π0(Y )

f∗ f∗ f∗ f∗ f∗
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Additionally, suppose that all statements in the following list are true for all choices
of base point x0 ∈ A ⊂ X (and the corresponding base point f(x0) ∈ B ⊂ Y ):

• f∗ : π1(X1)→ π1(Y1) is surjective,

• f∗ : π1(X)→ π1(Y ) is bijective,

• f∗ : π0(X1)→ π0(Y1) is bijective,

• f∗ : π0(X)→ π0(Y ) is injective.

Then f∗ : π1(A)→ π1(B) is bijective for all choices of base point x0 ∈ A.
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