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I

Zusammenfassung

Diese Arbeit beschäftigt sich mit der theoretischen Betrachtung von Fitness-
Landschaften im Kontext evolutionärer Prozesse. Diese verknüpfen das
Genom eines Organismus mit seiner Fitness; sie sind ein wichtiges Werkzeug
der theoretischen Evolutionsbiologie und seit wenigen Jahren auch im Blick-
punkt experimenteller Studien. Im Folgenden werden Modelle von Fitness-
Landschaften mit analytischen und numerischen Mitteln untersucht, mit der
Zielsetzung, charakteristische Eigenschaften zu identifizieren, welche eine
Zuordnung experimentell erschlossener Systeme ermöglichen. Desweiteren
werden verschiedene adaptive Prozesse betrachtet; zum einen jene, welche
mit Mutationen unter Selektion ablaufen, insbesondere sogenannte ‘Adaptive
Walks’. Zum anderen auch solche, bei denen Rekombination hinzukommt,
was die Komplexität der verwendeten Modelle erheblich steigert. Vor
allem die entstehende Nichtlinearität der Zeitentwicklung erschwert die
analytische Betrachtung, weswegen hier verstärkt auf Computersimulationen
zurückgegriffen wird.

Abstract

The focus of this thesis is on the theoretical treatment of fitness landscapes
in the context of evolutionary processes. Fitness landscapes connect an
organism’s genome to its fitness. They are an important tool of theoretical
evolutionary biology and in the recent years also experimental results became
available. In this thesis, several models of fitness landscapes are analyzed
with different analytical and numerical methods. The goal is to identify
characteristics in order to compare the model landscapes to experimental
measurements. Furthermore, different adaptive processes are examined. On
the one hand such which run with mutations under selection, especially
adaptive walks. On the other hand such which include recombination. Since
these are non-linear in time development, an analytical approach is hindered
which leads to an increasing use of computer simulations.
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The fact that we live at the bottom of a deep gravity well, on the
surface of a gas covered planet going around a nuclear fireball 90
million miles away and think this to be normal is obviously some
indication of how skewed our perspective tends to be. Adams [1]



Chapter 1

Introduction

In the recent years the number of physicists working on problems from
evolutionary biology grew steadily. Methods from theoretical physics can
be applied, analogies found and models built.

This chapter shall give a brief introduction into the field and the used
mathematics. Also the connection to theoretical physics will be made by
the discussion of spin glasses. In ch. 2 the Rough Mt. Fuji model will be
analyzed and certain properties will be calculated which lead to a suggestion
of parameters to fit the model to experimental data. In this way it shall
help to answer the question, which characteristics do such fitness landscapes
have, and how can one tell if they are realistic? To extend this, Ch. 3 will
present a way to reduce the number of data points to make statements about
fitness landscapes of a certain family. This results in an algorithm which can
also help to answer, how models can be fitted to experimental data. After
these chapters about static landscapes, it will be asked, how does adaptation
behave in certain evolutionary scenarios? Therefore dynamics are introduced
and ch. 4 shall contain several analytic and numeric results on adaptive walks,
amongst others a phase transition concerning the adaptive walk length in a
Rough Mt. Fuji model. Finally, ch. 5 concerns the question: Why is sex?
Sexual reproduction and genetic recombination will be discussed and various
results presented, most notable perhaps on the transient benefit of sex. A list
of some of the used symbols and probability distributions in the appendix
(app. A) shall avoid confusion. For completeness, the used algorithms that
are not presented in the main text are described in app. B.

Throughout this thesis, the style is chosen to be a mixture of “classical”
mathematics literature and “modern” physics literature. This means, that
important definitions and analytical results will be given separately with
a reference number, and will be connected by running text. Results will
usually be followed by a proof. Numerical results will not be stated in
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2 CHAPTER 1. INTRODUCTION

this way but in the form of prose and figures, as these can usually not be
formulated as exact and closed and need a description. The intention of this
mixed presentation is to simplify reading and mark important passages in the
inherent way of mathematical texts without exaggerated rigor. This means,
that also calculations and intermediate results will be stated as proofs and
results, which might not deserve the name from a mathematicians point of
view. Nevertheless this drawback is accepted for the benefit of more clarity.

1.1 Biological foundation &

mathematical description

When an organism proliferates, it gives hereditary information to its
offspring. This information is coded into its genome into a molecule which
is called Deoxyribonucleic acid (DNA). This molecule is arranged in such a
way, that the information is written in an alphabet of four bases, guanine
(G), adenine (A), thymine (T) and cytosine (C), and all is shaped in a double
helix, where bases are paired, G always with C and A always with T. This
information will be copied into every cell of the developing offspring, as it
was in the parent organism. A helpful metaphor gives Dawkins:

It is as though, in every room of a gigantic building, there was a
book-case containing the architect’s plans for the entire building. The
‘book-case’ in a cell is called the nucleus. The architect’s plans run
to 46 ‘volumes’ in a man – the number is different in other species.
The ‘volumes’ are called chromosomes. They are visible under a
microscope as long threads, and the genes are strung out along them
in order. It is not easy, indeed it may not even be meaningful, to
decide where one gene ends and the next one begins. [. . . ] ‘Page’ will
provisionally be used interchangeable with gene, although the division
between genes is less clear cut than the division between the pages of
a book. [. . . ] Incidentally, there is of course no ‘architect’. The DNA
instructions have been assembled by natural selection. Dawkins [2, p.
22].

In a simplified picture where all genomes are assumed to be of the same length
and also only haploid organisms are present, the genome is written with an
alphabet A of four letters: A = {A,C,G, T}. The genetic information can
be written as a sequence σ = (. . . , A, T, C, T,G, . . . ). All possible sequences
form the sequence space. Every position of σ is called locus, and all elements
of A which can be present at a locus are called alleles. Each realization σ
is called a genotype. Usually, minor changes to the genome, like a change at
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Figure 1.1: The binary sequence space is a hypercube of dimension L. Here, the
projection of a binary hypercube of dimension L = 4 is shown with the binary
alphabet A = {0, 1}. [3]

a single locus, do not have a large effect on the organism. Thus, within a
species, there are many genomes, which are different, but yield an organism of
a certain species. If the organism proliferates sexually, a subset of individuals
which can reproduce by mating is called a deme.

Of course, with a different alphabet A, also different systems can be
described, for example RNA has the same structure and alphabet size,
but different letters, proteins have a larger alphabet with 20 letters, each
corresponding to an amino acid. For the study of theoretical models it is
convenient to restrict to a binary alphabet A = {+1,−1} =: B. Although
this results in a lack of generality, and a generalization is often hard, it enables
the use of a many different analytical and numerical methods. And although
the reduction of biological information seems drastic, the binary system can
still be interpreted in a variety of biological ways, for example the presence
or absence of a gene, the state (active or passive) of a gene, or the absence or
presence of a mutation. Also, it is very close to the physical systems of spin
glasses. Following this tradition, this work is done using B, if not mentioned
otherwise.

In the binary alphabet, all sequences of a fixed length L span the L–
dimensional hypercube HL as sequence space, see fig. 1.1. HL is a metric
space equipped with the Hamming distance:

Definition 1.1. The Hamming distance is a metric on the hypercube. It is
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defined as

d : HL ×HL → {0, 1, . . . , L}

(σ, σ′) 7→
L
∑

i=1

1− δσi,σ′

i

with the Kronecker Delta δ. This implies that the maximal Hamming
distance between two sequences σ, σ′ is d(σ, σ′) = L. If d(σ, σ′) = L, σ′

is also called the antipodal of σ and will be labeled σ.

HL consists of 2L sequences. Each sequence σ has L neighbors σ′ with
d(σ, σ′) = 1 and in general the number of sequences at Hamming distance
d is

(

L
d

)

(see (A.4) for the convention on binomial coefficients). Thus, with
respect to a given σ ∈ HL most other σ′ ∈ HL lie at Hamming distance
d(σ, σ′) = L

2
, where

(

L
d

)∣

∣

d=L/2
= L!

(L/2)!
is maximal. In graph theoretical

notion, HL is a regular graph (because every sequence has the same amount
of neighbors), with 2L vertices (neighbors) and 2L−1L edges (connections
between neighbors). The information about the structure of HL is also
contained in the adjacency matrix of HL.

Definition 1.2. The adjacency matrix A is a 2L × 2L matrix, defined by

Aσ,σ′ =

{

1, d(σ, σ′) = 1

0, else.
(1.1)

1.2 The struggle for existence

The severe and often-recurrent struggle for existence will determine
that those variations, however slight, which are favorable shall be
preserved or selected, and those which are unfavorable shall be
destroyed. This preservation, during the battle for life, of varieties
which possess any advantage in structure, constitution, or instinct,
I have called Natural Selection; and Mr. Herbert Spencer has well
expressed the same idea by the Survival of the Fittest. Darwin [4]

“The Survival of the Fittest” is perhaps the most popular phrase
connected to evolutionary biology. Although evolutionary biologists
meanwhile refrain to use it due to its lack of generality and high potential
for misunderstanding, the impact is remarkable. It has been used in and
inspired works on early theories of evolution [5], economy, sociology and
politics [6]. And still, in hindsight, set in the correct context it gives a very
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nice description of evolutionary processes of many kinds, formulated in a
time when the molecular basis of evolution was not even set.

Nevertheless, the phrase was not only misunderstood often but was
also abused. The word ‘fittest’ can be interpreted in terms of physical or
economical strength and toughness, which lead to the attempt to build
a biological foundation and justification of the suppression of the weaker
[6]. The real meaning of fitness in the biological context is probably ‘best
adapted’. The confusion about the term fitness is nevertheless, it seems, not
only a problem outside evolutionary biology, but also for scientists in the field
[7]. Therefore, this section is intended to clarify the used terms, introduce
the mathematical language used to analyze evolutionary processes and give
a few basic results.

There are at least two commonly used definitions of the term fitness on
a molecular level.

Definition 1.3. If n(σ, t) individuals carry the genotype σ at time t the
Malthusian fitness F (σ) is defined by

d

dt
n(σ, t) = F (σ, t)n(σ, t). (1.2)

Hence, F (σ) is the growth rate of the organisms with genotype σ in
continuous time.

Definition 1.4. Based on the last definition, the Wrightian fitness w(σ)
is defined by solving the differential equation (1.2) defining the Malthusian
fitness:

n(σ, t+ 1) = w(σ, t)n(σ, t) (1.3)

which implies the relation w(σ, t) = e
∫ t

0 F (σ,t′)dt′ , or for time independent
fitness w(σ) = eF (σ). This fitness definition is particularly useful in a discrete
time scenario, where the generation time tg is set 1 for convenience. In the
following, if not mentioned otherwise, time independent fitness is of interest.

Although mostly F will be used to denote fitness, concerning the
properties of fitness landscapes the results do also apply to the Wrightian
fitness w. Nevertheless, if using w it has to be ensured that for all
σ ∈ HL : w(σ) ≥ 0, which is not necessary for the Malthusian fitness F .
Usually fitness is seen as a measure for reproductive success and thus the
above definitions are very common. Nevertheless, in experiments it might be
more convenient to measure a proxy for fitness. This might be for example
the output of a certain protein [8] or the resistance to an antibiotic [9].

Defining fitness in dependence of the genotype, it is natural to think of
F as a mapping from the sequence space into the real numbers.
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Definition 1.5. A fitness landscape is a mapping

F : HL → R

σ 7→ F (σ). (1.4)

The idea of a fitness landscape was according to McCoy [10] first
presented by Toulon in 1895 who used a different name. Nevertheless mostly
Wright is credited and he also introduced the notion ‘fitness landscape’
[11]. Before experimental data became available in the recent years (see
e.g. [12] for a review), the study of fitness landscapes was purely theoretical.
Early population geneticists often used additive fitness landscapes for their
mathematical analysis.

Definition 1.6. The Mt. Fuji landscape is an additive fitness landscape.
Given an arbitrary reference sequence σ∗, the fitness is distributed as

Fσ∗(σ) = −cd(σ, σ∗).

Additive means here, that all loci are independent from each other, and
the change in fitness resulting from the change of one locus never depends
on the rest of the genome, which is also called the genetic background. An
additive landscape only has one global fitness maximum: a point in the
landscape at which all neighbors have lower fitness. Perhaps the most
prominent arguments about the biological legitimacy of additive fitness
landscapes is ‘the beanbag genetics dispute’ between the two friends Mayr
and Haldane. While Haldane favored the simplicity of the additive model
due to the mathematical possibilities, Mayr rejected it, calling genetics on
such a model ‘beanbag genetics’ [13].

Opposed to the additive landscapes are the epistatic landscapes. Epistasis
means nothing but the absence of additivity. One distinguishes basically two
types. One is magnitude epistasis, where a beneficial (deleterious) mutation
will be beneficial (deleterious), regardless of the genetic background, but its
impact may vary. The other is sign epistasis [14] which means that not only
the magnitude of the effect of a mutation may vary, but also its sign, thus
a formerly beneficial mutation may become deleterious, depending on the
genetic background. While additive and magnitude epistatic landscapes can
only have one global fitness maximum, sign epistasis enables the possibility
of multiple fitness maxima, see fig. 1.2. Due to this property, landscapes
with a lot of sign epistasis are also called rugged. A model for such a rugged
landscape was introduced by Kingman [15] as follows:

Definition 1.7. If all fitness values F (σ) are identically and independently
distributed (i.i.d.) random variables, F is called House-of-Cards (HoC)
landscape.
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Figure 1.2: Illustration of the different types of epistasis in a two dimensional
hypercube with alphabet A = {0, 1}. Only in the case with sign epistasis multiple
fitness maxima are possible.

The HoC- and the Mt. Fuji-model describe in some sense contrary
extremes of fitness landscapes. Although the HoC-landscape is more complex
due to the high degree of epistatic interactions, it is still mathematically
well feasible. A natural generalization is an interpolation between these two
landscapes.

Definition 1.8. Let σ∗ ∈ HL be an arbitrary reference sequence, and let
{ξi} be a set of 2L i.i.d. random variables. Then with c ∈ R

Fc,σ∗(σ) = −cd(σ, σ∗) + ξσ

is called the Rough-Mt.-Fuji (RMF) landscape [16, 17, 18]. Note that for
c → ∞ and c → 0 the Mt. Fuji and the HoC-landscapes are retrieved,
respectively.

Definition 1.9. An alternative definition is given as follows. Let σ∗ ∈ HL

be an arbitrary reference sequence, and let {ξi} be a set of 2L i.i.d. random
variables. Then with c ∈ R

Fc,σ∗(σ) = cd(σ, σ∗) + ξσ

is also called the Rough-Mt.-Fuji (RMF) landscape

Note that both definitions of the RMF-model are equivalent in the sense,
that by a simultaneous change c → −c and d → L − d both can be
transformed into one another.

The RMF-model provides the possibility to tune the correlations in the
landscape. It is a more flexible model than the HoC which results in a more
complicated mathematical analysis as trade-off.
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Another popular model for fitness landscapes with epistasis is Kauffman’s
LK-model [19]1. The idea is that each locus interacts with K other loci. The
subsequence containing a locus and the loci it interacts with is called its LK-
neighborhood. Since an LK-neighborhood has the size K+1, it is convenient
to introduce k = K + 1.

Definition 1.10. Let {fi : Bk → R} be a set of i.i.d. random functions
and let {Ξ(σi)} be a set of LK-neighborhoods (Ξi ∈ Bk). The LK-model is
defined by the fitness function

F (σ) =
1√
L

L
∑

i=1

fi(Ξ(σi)).

Often used choices for LK-neighborhoods are for example the adjacent
neighborhood Ξ(σi) = (σi, σi+1, σi+2, . . . , σi+K), or the random neighbor-
hood, where besides σi all K other loci are chosen at random. Note, that
simple generalizations of the LK-model are achieved by altering the LK-
neighborhoods to vary in size or to exclude σi.

The LK-model is, as the RMF-model, suited to tune between the Mt.-Fuji
landscape (k = 1) and the HoC-landscape (k = L) [19, 20, 21, 22, 23, 24],
although the k values in between do not yield a ‘smooth’ transition as in the
RMF-landscape.

For convenience a fitness landscape with a random component which
is distributed according to a distribution function P will be called P -
distributed.

1.3 Evolutionary processes

The definitions of fitness 1.3 and 1.4 already imply an evolutionary process
of selection which is one of the three evolutionary forces:

Definition 1.11. The three evolutionary forces are the mechanisms
associated to the three parameters s (selection coefficient), N (population
size) and µ (mutation rate).

• Selection ∼ s is a relative fitness measure which leads to focusing
around particularly fit sequences. Its timescale is τs ∝ 1

s
.

1Kauffman called the model NK, referring to the sequence length as N , but because
it is more common to call the population size N , the model is re-labeled here.
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• Genetic drift ∼ 1
N

is caused by demographic stochasticity, fluctuations
in the number of offspring. Its timescale is τN ∝ N .

• Mutation ∼ µ leads to stochastic changes in the genome, the timescale
is τµ ∝ 1

µ
.

Note that mutation and genetic drift introduce two different types of
stochasticity.

Point mutations occur with probability µ. A point mutation is a
randomly occurring change of allele at one locus, more precisely given two
neighboring sequences σ, σ′ ∈ HL = BL a point mutation σ → σ′ at the
ith locus is a transition σi → −σi, comparable to a spin-flip in physics. If
only two neighboring sequences are available and the mutation rate is the
same in both directions, the following Langevin-equation is an extension of
def. 1.3 and describes the evolution of n(σ, t) under mutation, selection and
reproductive fluctuations. In the situation where two genotypes σ, σ′ with
d(σ, σ′) = 1 are present and thus n(σ′, t) = N − n(σ, t), it reads

d

dt
n(σ, t) = F (σ, t)n(σ, t) + χ(σ, t) + µ(N − 2n(σ, t)), (1.5)

with a random variable χ with 〈χ(σ)〉 = 0 and 〈χ(σ, t), χ(σ, t′)〉 = δ(t − t′).
It can be transformed into a Fokker-Planck-equation by Kramers-Moyale
expansion [25], see e.g. [26] for the calculation. In population dynamics this

is called Kimura equation. The frequency of σ is defined by p(σ) = n(σ)
N

. The
Kimura equation gives the change of the probability that a sequence σ has
frequency p at time t [27, 28]:

∂

∂t
P(p, t) =

1

2N

∂2

∂p2
p(1− p)P(p, t) (1.6)

− (F (σ, t)− F (σ′, t))
∂

∂p
p(1− p)P(p, t)

+ µ
∂

∂p
(1− 2p)P(p, t).

In this context, the drift term is composed of mutation and selection, while
the diffusion term is called genetic drift. Note, that in the presence of only
two sequences n(σ) + n(σ′) = N and thus p(σ) + p(σ′) = 1. The probability,
that all individuals will carry only one of the two sequences is called fixation
probability and was calculated by Kimura [29] to be

u(σ, σ′) =
1− e−2(F (σ′)−F (σ))

1− e−2N(F (σ′)−F (σ))
≈
{

0, F (σ′)− F (σ) < 0

1− e−2(F (σ′)−F (σ)), F (σ′)− F (σ) > 0

(1.7)
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where the approximation holds if N |F (σ′)− F (σ)| ≫ 1.
If more than two sequences are available, it is convenient to write the

evolutionary equations as a matrix equation.

Definition 1.12. The selection matrix S is defined by Sσσ′ = w(σ)δσσ′ . The
mutation matrix M is defined by Mσσ′ = (1−µ)δσσ′ + µ

L
Aσσ′ . To formulate

matrix equations it is necessary to understand n, p and w as vectors which
contain as elements n(σ), p(σ) and w(σ) respectively.

The mutation-selection equations in a discrete time setting are then

nt+1 =SMnt unnormalized

pt+1 =
SMpt

∑

σ∈HL (SMpt) (σ)
normalized (1.8)

where the time t is measured in generations.

1.4 Evolutionary regimes

A common way to start the analysis of population genetic problems is to
classify the problem according to its evolutionary regime, which is determined
by the relative size of the evolutionary parameters

• Nµ < 1 is the weak mutation regime: on average not every generation
a new mutant arises.

• Nµ > 1 is the strong mutation regime: on average every generation
more than one new mutant arises. This can lead to a very diverse
population.

• |Ns| ≪ 1 is the weak selection regime: the fixation probability is low
and a diverse population is probable.

• |Ns| ≫ 1 is the strong selection regime: beneficial mutants are very
likely to fix, while deleterious mutants will probably go extinct very
fast.

A combination of those regimes which is of particular interest in this thesis
is the Strong-Selection-Weak-Mutation regime (SSWM) first introduced by
Gillespie [30]. As the name indicates, selection is strong (|Ns| ≫ 1) while
only few mutations arise (Nµ ≪ 1). This leads to a situation, where double
mutations are impossible in the sense, that selection either fixes beneficial
mutations or kills individuals with deleterious mutations before a double
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mutation arises. Thus, the population is monomorphic, i.e. all individuals
have the same genome, all the time except for the short period of time when
a new mutant was created and is evaluated by selection. This means, that
besides the definition of the regime, mutation rate and population size do not
affect the dynamics because the fixation probability is approximated by (1.7).
The resulting evolutionary process is called adaptive walk, the population
can be seen as a walker on the hypercube which can only make steps to
neighboring sequences with a higher fitness. This implies, that the walker
must stop as soon as a local fitness maximum is reached, which is defined by
the absence of fitter neighbors. There are different kinds of adaptive walks,
which differ in the transition probability to the next sequence. It is common
to distinguish between three different processes:

Greedy adaptive walks (GAW): The next step is always taken to the
fittest sequence in the neighborhood.

Random adaptive walks (RAW): The next sequence is chosen at random
from the sequences of the neighborhood which are fitter than the
current one.

Natural adaptive walks (NAW): The next sequence is chosen from the
neighborhood with a probability proportional to the fitness difference

Pσi→σj
=

(F (σj)− F (σi))Θ(F (σj)− F (σi))
∑L

k=1(F (σk)− F (σi))Θ(F (σk)− F (σi))
. (1.9)

This transition probability was derived from (1.7) by Gillespie [31].

Since all three processes are restricted to increase fitness in every step they
will, for finite L, eventually stop after a finite number of steps. The mean
walk length ℓ is the mean number of steps until a local optimum is reached,
where the average is taken over runs and landscapes. ℓ is one of the most
important properties of adaptive walks.

If a sequence σ′ can be reached by an adaptive walk which started on
another sequence σ, a path must exist from σ to σ′ in which the fitness
increases in every step. If such a path exist, it is called accessible.

1.5 Recombination

A reproduction strategy which is very common in nature is recombination. It
leads to the genetic variation by introduction of (parts of) a second genome
which is intertwined with the first one. This can for example happen by
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sexual recombination, where the genome of two parents is recombined, but
also by transformation, a process in which certain kinds of bacteria take up
and incorporate exogenous genetic material. The success of recombination,
especially sex, is one of the great mysteries of modern science. Although its
apparent superiority in large parts of nature, it is not understood why sexual
reproduction can be of benefit at all. Very simple economic reasoning gives
rise to questions, e.g. the fact, that two parents are needed to reproduce
without increasing the number of offspring has become famous as the two-
fold cost of sex [32, 33]. But also without the costs, it is not clear whether
recombination gives any benefit at all [34, 35, 36, 37], one point being, that
recombination might break apart useful structures in the genome, which is
known as recombination load [38].

Nevertheless, this paradox has inspired several attempts to explain the
prevalence of recombination:

Muller’s ratchet & deterministic mutation hypothesis: recombination
enables a population to purge deleterious mutations [39, 40, 41] faster
than asexuals, which have to wait for a back-mutation.

Fisher-Muller- & Hill-Robertson-effect: If two beneficial mutations
occur in a population, both can spread fast, without the need of two
double mutations [42, 43, 44, 40].

Weismann effect: More variation is created [45].

Fisher’s fundamental theorem: Here, the benefit follows from the
Weismann effect, stating that the mean fitness increase is proportional
to the genetic variance [42]. Sadly, this result is not generally true
but assumes the absence of epistasis [46], or it needs a certain kind of
variance measure [47].

Red Queen Hypothesis: Recombination increases the speed of adapta-
tion, not necessarily the ultimate fitness. This way, organisms can
adapt quicker to the surroundings than other ever-evolving species [48].

The mathematical description of recombination will be done in a similar
manner as mutation above, following Stadler and Wagner [49]. And as before,
the sequence length is constrained to be constant.

Definition 1.13. The recombination operator R is a mapping into the
powerset of HL:

R : HL ×HL →P(HL)

(σ, σ′) 7→{σ′′|σ′′
i = σi ∨ σ′′

i = σ′
i}.
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R(σ, σ′) is the set containing all possible recombinations of σ and σ′ which
have the same length L.

The adjacency matrix is not the matrix containing the most valuable
information about the structure of the process anymore, as it was for
mutation. It is replaced:

Definition 1.14. The incidence matrix H is to recombination what the
adjacency matrix is for mutation. It is defined by

Hσ,(σ′,σ′′) =

{

1, σ ∈ R(σ′, σ′′)

0, else.

In terms of H, a recombinatorial transition matrix can be defined by

Tσ′→σ =
∑

σ′′∈HL

p(σ′′)p(σ′)
Hσ,(σ′,σ′′)

|R(σ′, σ′′)| .

There, | • | means the cardinality.

In the definition of T it becomes obvious, that recombination is
quadratic in the population frequency p and not, as mutation, linear.
There, recombination is incorporated by using a uniform crossover, i.e. the
recombined sequence is put together in such a way, that at each locus the
allele is taken from one of the corresponding parent genomes at random.
Other possible crossovers are, e.g., single point crossover, where the parent
genomes are cut at a certain point and the fronts and rears are exchanged. Or
the two-point-crossover where the genomes are cut two times and the middle
part is exchanged. At such a crossover two possible genomes are created of
which one has to be chosen at random. In the following, only the uniform
crossover will be analyzed.

1.6 Extremes: Fitness and probability

In ‘everyday statistics’ it is important to understand the average behavior of
apparently random events. One of the most used tools to do so is the central
limit theorem. Its statement is the following:
For every set of n i.i.d. random variables {Xi} with expected value µ and
variance σ2, the random variable

√
n (
∑n

i=1 Xi − µ) converges in distribution
to a Normal-distribution, more precisely

√
n

(

1

n

n
∑

i=1

Xi − µ

)

d−→ N (0,Var(Xi)) (n → ∞). (1.10)
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As mentioned above, the central limit theorem describes the average
behavior, which is reflected by the fact, that it is a statement about a sum of
random variables. Now, in some cases the average is not of particular interest.
For example is an average tide nothing to worry about. But what is of critical
interest is the height of extreme tides. If a city builds a levee, it has to know
that it is high enough to withstand not only the everyday flood, but also the
one-in-a-century flood. In evolutionary biology the extremes are important,
too. The sequence space is so large, that probably most of the possible
genomes are lethal. Only extraordinary fit sequences bear the possibility to
be viable. Instead of the average behavior, it is now important to describe
the maxima and the extraordinary large of a set of random variables. In the
last century this part of mathematics has become very successful under the
name Extreme-Value-Theory (EVT).

Definition 1.15. The Generalized-Extreme-Value-Distribution (GED) is
defined by the distribution function

G(x;µ, σ, κ) = exp

{

−
[

1 + κ

(

x− µ

σ

)]−1/κ
}

.

It has a scale parameter σ, a location parameter µ and a shape parameter κ
with the restriction 1 + κ(x− µ)/σ > 0.

Theorem 1 (Fisher-Tippett-Gnedenko [50, 51]). Let {Xi} be a set of n
i.i.d. random variables and Mn = max(X1, . . . , Xn). Suppose there exists a
sequence of constants an > 0, bn with

P

(

Mn − bn
an

≤ x

)

→ D(x) (n → ∞)

with a non-degenerate distribution function D, then parameters can be found
such that D(x) = G(x;µ, σ, κ).

The shape parameter κ governs the tail behavior of the GED. In terms
of κ three probability classes can be defined, each containing the probability
distributions which converge to a corresponding GED in terms of thm. 1:

• κ = 0: Defines the Gumbel class or type I distributions. This class
contains distributions with a tail vanishing faster than power law.

• κ > 0: Defines the Fréchet class or type II distributions. This class
contains all distributions with power law tail.
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• κ < 0: Defines the Weibull class or type III distributions. GED
has a support limited to the right by µ − σ

κ
. This class contains all

distributions with power law tail and bounded support.

Another approach to the analysis of extreme values is via Peaks-Over-
Threshold (POT). If P is some distribution function and u is a threshold,
the excess function is the distribution function for values over the threshold:

Eu(y) = P(X − u ≤ y|X > u) =
P (u+ y)− P (u)

1− P (u)
.

Definition 1.16. The Generalized-Pareto-Distribution (GPD) is defined by
the distribution function

GPD(κ,µ,σ)(x) =







1−
(

1 + κ(x−µ)
σ

)−1/κ

for κ 6= 0,

1− exp
(

−x−µ
σ

)

for κ = 0,

for x > µ when κ > 0, and µ 6 x 6 µ − σ/κ when κ < 0, where κ has the
same role as in the GED and gives the same information about the extreme
value class. µ and σ are location and scale parameter, respectively.

Theorem 2 (Pickands-Balkema-deHaan [52, 53]). Let {Xi} be a set of n
i.i.d. random variables. Then parameters can be found, such that:

Eu(y) → GPD(κ,µ,σ)(y) (u → ∞).

Although both approaches have been proved to be very powerful in the
past, usually for data analysis the limits n → ∞ or u → ∞ cannot be
satisfied. Thus, as an alternative to the above discussed ultimate EVT,
the penultimate EVT deals with the description of large but finite sets of
i.i.d. random variables. It might in such a case be better to describe a given
dataset with a distribution function which has a different κ than its limiting
distribution function. Assuming, that a set {Xi} of n i.i.d. random variables
with distribution function P which has a limiting distribution with κ = 0 (one
says it is in the domain of attraction of Gumbel type). Then the (1 − 1

n
)th

quantile q(n) = P−1(1− 1
n
) is an approximation for the typical largest value.

The hazard function is defined by

h(x) =
d
dx
P (x)

1− P (x)
. (1.11)

It has only a finite limiting value limx→∞ h(x) for distributions with
exponential tail. One choice of the shape parameter is then [54]

κn =
d

dx

(

1

h(x)

)∣

∣

∣

∣

x=q(n)

. (1.12)
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The fact that even distributions from the Gumbel class might behave like non-
Gumbel-class distributions for finite sample sizes emphasizes one thing: it is
always important to know how things are for distributions besides the domain
of attraction of Gumbel type. All experimental data sets are finite, which
implies the necessity to investigate the behavior of processes, correlations,
etc. for all three probability classes.

1.7 Spin glasses & other fields of interest

Spin glasses (also called amorphous magnets) are magnetic substances
in which the interaction among the spins is sometimes ferromagnetic
(it tends to align the spins; Jik > 0), sometimes antiferromagnetic (it
antialigns the spins; Jik < 0). The sign of the interaction is supposed
to be random. In some spin glasses the spins can take only two values
±1 (Ising spins) [. . . ]. Mezard et al. [55]

In the above quote, Jik are the couplings, or interactions, between two spins i
and k. Their supposed randomness leads to inherent disorder, more precisely
quenched disorder. Considering spin glasses of Ising spins means that spin
configurations σ are elements from the hypercube HL, and also, that HL is
the configuration space for this spin glass model. The spatial configuration
of the spins (chain, lattice, etc.) enters through the interactions. The energy
of each configuration is measured with help of the Hamiltonian H(σ) which
corresponds to negative fitness. Special states in the system are those which
minimize energy. Those are called (meta)stable states. This means, that
the Hamiltonian corresponds to a negative fitness landscape in the picture of
evolutionary biology where fitness maxima are (meta)stable. A stable state or
ground state corresponds to a global fitness maximum, whereas a metastable
state corresponds to a local fitness maximum. If a fitness landscape shows
sign epistatis, the corresponding situation in spin glass analysis is called
frustration. Both fields are in fact very similar. This is also expressed in
the similarity of models. A toy model which was proposed by Derrida [56] is
the Random Energy Model (REM) in which H(σ) are i.i.d. random variables.
This corresponds to the House-of-Cards model for fitness landscapes. As a
straight forward generalization Derrida [57] proposed the p-spin-model [58],
in which subsets of p of the L spins are interacting and the Hamiltonian takes
the form

H(σ) = −
∑

i1...ip

Ai1...ipσi1 . . . σip
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with random contributions Ai1...ip . This model is the analogue of the Fourier
expansion of a fitness landscape (see sec. 3.2 for details). Each coefficient
Ai1...ip introduces interactions between p spins. Since in the LK-model the
number of interacting loci is determined by K it can be understood as a
superposition of sparse p-spin-models since in general many coefficients are
null. The RMF-model corresponds to a REM model in an external magnetic
field, which has the Hamiltonian

H(σ) = aξσ − µ
L
∑

i=1

hσi

with a magnetic moment µ, field h and a constant a which ensures the correct
dimension.

Adaptive processes are linked to spin glasses as well. For example are
adaptive walks very similar to a Metropolis dynamics on a spin glass at
zero temperature [59]. The relaxation dynamics of a spin glass in an exterior
magnetic field have been studied in the context of spin-glass aging [60], which
is related to adaptive walks on an RMF-landscape.

Spin glasses are nevertheless not the only area, where similar models
apply. Basically in all fields, in which binary structures appear, similarities
occur. A very prominent example for that are several problems in computer
science (e.g. [61]).

The probability for the existence of accessible paths on fitness landscapes
[24] is closely connected to percolation [62]. Recently, in the context of an
RMF model on a Cayley tree (which is very similar to the hypercube for
large L) the term accessibility percolation was coined [63].

1.8 Experiments and fitness proxies

Although the basic ideas of fitness and fitness landscapes are several decades
old, the experimental tools for fitness measurements are quite new (or only
recently technically available). There are basically two approaches in the
experimental study of fitness landscapes [64].

For the first one, the evolution of organisms with a short generation time
is observed and the fitness development is measured and compared to the
ancestors (e.g. [65]). From the fitness changes, properties of the underlying
landscape can be inferred on a qualitative level. Although the generated data
sets may cover large regions of the genotype space, the resulting picture of the
fitness landscape is incomplete. Additionally, it is biased by the evolutionary
regime and the resulting adaptive dynamics.
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Fitness values which are obtained in a similar way are compared to an
RMF-landscape in sec. 2.3. The data from Miller et al. [66] are fitness
values of the bacteriophage ID11. The measurements were performed in
a bottleneck manner [67]: in several passages, the bacteriophage was allowed
to grow in a bacterial host medium, here Escherichia coli C, for one hour.
Then the process was stopped and the growth rate measured to calculate the
fitness.

The second approach relies on the analysis of predefined mutations,
which are created to observe the fitness in a tiny, but complete part of the
hypercube. For experimental convenience, it is common to not measure
Malthusian or Wrightian fitness itself, but a proxy, such as antibiotic
resistance.

In sec. 3.5 empirical landscapes of the second type are compared to model-
landscapes. One “real” fitness landscape is the L = 6 landscape from Hall
et al. [68] of yeast, fitness is measured as growth rate. Another one is the L =
8 growth rate landscape of the fungus Aspergillus niger presented by Franke
et al. [69]. Additionally two L = 9 landscapes which measure the output of
certain enzymes in Nicotiana Tobaccum as a fitness proxy, specifically the
enzymatic specificity of terpene synthases, that is, the relative production
of 5-epi-aristolochene and premnaspirodiene, presented by O’Maille et al. [8]
were analyzed. The last two landscapes are not complete, only 418 of the 512
fitness values are given. The missing data points are interpolated by fitting
a linear model [70].



Chapter 2

The Rough-Mt.-Fuji model

In this chapter, several properties of the RMF-model (def. 1.8) will be
calculated and it will be fitted to experimental data. It was introduced
by Aita et al. [16] in the context of biopolymers in a slightly more general
way. In the following, the calculations will be restricted to the def. 1.8 and
the reasoning is close to [18].

2.1 Further remarks on the definition

The Rough Mt. Fuji Landscape will in this chapter be used as defined in
def. 1.8. Because the mean fitness gradient is for c > 0 directed towards σ∗,
RMF-landscapes are not isotropic. On average, fitness increases in one and
decreases in another direction. These directions are defined by the change in
Hamming distance to σ∗, d(σ, σ∗).

Definition 2.1. The neighborhood-set ν of a sequence is defined by
ν(σ) = {σ′|d(σ, σ′) = 1}∪{σ}. This set is split in three parts (d(σ, σ∗) =: d):

• The uphill–neighborhood ν↑(σ) = ν(σ) ∩ {σ′|d(σ′, σ∗) = d − 1} which
contains all neighbors which are closer to σ∗ and thus have an average
fitness advantage of c,

• σ itself in ν(σ)• = {σ},
• and the downhill–neighborhood ν↓(σ) = ν(σ) ∩ {σ′|d(σ′, σ∗) = d + 1}
which contains all neighbors which are further away from σ∗ and thus
have an average fitness disadvantage of c.

Obviously ν(σ)↑ ∪ ν(σ)• ∪ ν(σ)↓ = ν(σ).

Note that the fitness values in the RMF-landscape are not i.i.d. but
correlated random variables.

19
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Figure 2.1: (a) The probability that a given sequence is a local fitness maximum
is shown as a function of the distance d to the reference sequence for several values
of c and L = 100. (b) The probability that the neighboring sequence of largest
fitness is in the uphill (solid lines) or downhill (dashed lines) direction is shown as
a function of d for different values of c and L = 100. Both plots show results of a
Gumbel distributed RMF-landscape.

2.2 Fitness maxima & correlations

One of the characteristic properties of a fitness landscape is the number of
fitness maxima. It gives information about the landscape’s roughness and is
also a so called ‘epistasis measure’ [12]. In the HoC-landscape, the probability
pmax, that F (σ) is a fitness maximum, is equal to the probability, that it is
the largest fitness value in {F (σ′)|σ′ ∈ ν(σ)} which is 1

|ν(σ)| =
1

L+1
. In the

RMF-model the probability depends additionally on the parameters c and
d as well as on the underlying probability distribution. If the distribution
function of the random variables is P , the probability can be written as

pmax
c (d) =

∫

dx p(x) (P (x− c))d (P (x+ c))L−d . (2.1)

The sums in the argument of the distribution function prevent a general
evaluation of the integral. A special case is the Gumbel distribution PG(x) =
e−e−x

. It is a limiting distribution in the Gumbel class, PG(x) = GEV0,1,0(x),
which comes with a very useful shifting property :

PG(x+ c) = e−e−x−c

= ee
−xe−c

=
(

e−e−x
)−e−c

= PG(x)
−e−c

(2.2)

Result 2.1 (pmax
c in the Gumbel case). In the Gumbel case, the probability

that a given sequence is a fitness maximum is given by

pmax

c (d) =
1

1 + dec + (L− d)e−c
.
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Proof. Using the shifting property on (2.1) yields:

pmax
c (d) =

∫

dx p(x) (P (x− c))d (P (x+ c))L−d

=

∫

dx p(x)
(

P (x)−ec
)d
(

P (x)−e−c
)L−d

=

∫

dPG P
−ecd−e−c(L−d)
G =

1

1 + dec + (L− d)e−c
.

The behavior of res. 2.1 for intermediate values of c is illustrated in
fig. 2.1(a).

Besides the special case of the Gumbel distribution, it is possible to
approximate (2.1) following [71, 72] by expanding in c:

pmax
c (d) =

1

L+ 1
+ c(L− 2d)IL−1 +O(c2) with IL−1 =

∫

dx p(x)2P (x)L−1.

(2.3)
Expressions for IL for representatives of the three extreme value classes have
been derived by Franke et al. [71]. For large L the integral behaves as [72]

IL ∼ L−(2+κ), (2.4)

where κ denotes the extreme value index from def. 1.15. This implies a
stronger effect of c on the number of maxima for Weibull class distributions
than for Fréchet or Gumbel class distributions.

The anisotropy of the landscape also inspires the question, in which
direction the fittest neighbor is positioned. Although the uphill neighbors
have a fitness benefit of c, the number of neighbors in ν↑ and ν↓ varies
with the position with respect to the reference sequence. The corresponding
probabilities to find the fittest of the neighborhood uphill or downhill are
p↑c(d) and p↓c(d). A modification of (2.1) restricted to ν↑(σ) and ν↓(σ) yields
the general expressions

p↑c(d) = d

∫

dx p(x)P (x)d−1P (x+ c)P (x+ 2c)L−d, (2.5)

p↓c(d) = (L− d)

∫

dx p(x)P (x)L−d−1P (x− c)P (x− 2c)d, (2.6)

which can be explicitly evaluated for the Gumbel distribution.
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Result 2.2 (Fittest is up/down in the Gumbel case). In the Gumbel case, the
probability, that the fittest of the neighborhood is positioned uphill/downhill
is given by

p↑c(d) =
d

d+ e−c + e−2c(L− d)
, p↓c(d) =

L− d

L− d+ ec + e2cd
.

Proof.

p↑c(d) = d

∫

dx p(x)PG(x)
d−1PG(x+ c)PG(x+ 2c)L−d

= d

∫

dPG p(x)PG(x)
d−1PG(x)

−e−c

(PG(x)
−e−2c

)L−d

= d

∫

dPG P
(d−1)+e−c+e−2c(L−d)
G

=
d

d+ e−c + e−2c(L− d)

and analogously for p↓c .

Note that p↑c + p↓c + pmax
c = 1 and p↑c = decpmax

c , p↓c = (L − d)e−cpmax
c .

d induces a benefit to the largest sub-neighborhood which is ν↑(σ) (ν↓(σ))
if d < L

2
(d > L

2
) just because the larger number of random variables in

it increases the expected largest value in it. This leads to a certain kind
of asymmetry, even in the case c = 0. For c > 0 the crossing point where
pupc = pdown

c moves towards the reference sequence with increasing c and is
generally located at d = L

1+e2c
, see fig. 2.1(b).

From the density (2.1) the total number of maxima M is calculated by
averaging over the landscape:

M =
L
∑

d=0

(

L

d

)

pmax
c (d)

=
L
∑

d=0

(

L

d

)
∫

dx p(x) (P (x− c))d (P (x+ c))L−d

=

∫

dx p(x)
L
∑

d=0

(

L

d

)

(P (x− c))d (P (x+ c))L−d

=

∫

dx p(x) (P (x− c) + P (x+ c))L . (2.7)

Using the linearized expression (2.3), c drops out of the expression. This
means, that c in linear order only influences the place, where maxima are
probable, not M , which depends obviously only on higher order terms.
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Result 2.3 (Higher order evaluation of M). Expanding (2.7) in c yields
corrections up to third order terms:

M =
2L

L+ 1
− c22L−2L(L− 1)JL +O(c4)

with JL =

∫

dx p(x)3P (x)L−2.

In terms of the GPD this yields JL ∼ L(3+2κ) for large L.

Proof. To calculate the expansion, the integrand of (2.7) is derived:

∂

∂c
(P (x+ c) + P (x− c))L = L(P (x+ c) + P (x− c))L−1(p(x+ c)− p(x− c))

∂2

∂c2
(P (x+ c) + P (x− c))L =

L(L− 1)(P (x+ c) + P (x− c))L−2(p(x+ c)− p(x− c))2

+L(P (x+ c) + P (x− c))L−1

(

∂

∂c
p(x+ c) +

∂

∂c
p(x− c)

)

.

Since all terms (p(x+ c)− p(x− c)) vanish for c = 0 they do not contribute
to the expansion, such that the integral up to O(c2) takes the form

M ≈
∫

dP (x) (2P (x))L +
c2

2
L

(

(L− 1) (2P (x))L−2 + L (2P (x))L−1 2
∂

∂c
p(x)

)

,

where the first part yields 2L

L+1
and the second arrives at −c22L−2L(L− 1)JL

after integration by parts.

Result 2.4 (Number of maxima in the exponential case). In an exponentially
distributed landscape (see (A.5)), the expected number of maxima is given by

M =
ec

L+ 1

(

(1− e−2c)L+1 − (1− e−c)L+1
)

+
2L
(

1− (1− e−c cosh(c))L+1
)

cosh(c)(L+ 1)
.

Proof. The exponential distribution function is P (x) = (1− e−x)Θ(x). This
leads for x > c to

P (x− c) + P (x+ c) = 2− e−x
(

e−c + e+c
)

= 2
(

1− e−x cosh(c)
)

= 2 cosh(c)

(

1

cosh(c)
− 1 + P (x)

)
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Includig the term for x < c it follows from (2.7):

M =

∫ c

0

dx p(x)P (x+ c)L +

∫ ∞

c

dx p(x) (P (x− c) + P (x+ c))L

=

∫ 1

p(c)

dp(x)
(

1− e−cp(x)
)L

+ 2L
∫ p(c)

0

dp(x) (1− p(x) cosh(c))L

which leads directly to the result.

Result 2.5 (M for uniform distribution). In a uniform distributed landscape,
the expected number of maxima is given by

M =

{

(2−c)L+1−2L((1−c)L+1+cL+1)
L+1

, c < 1
2

(2−c)L+1−2L(1−c)L+1

L+1
, c ≥ 1

2
.

Proof. Starting with (2.1) M is calculated as done in (2.7). The uniform
distribution has P (x) = xΘ(1− x)Θ(x) + Θ(x− 1) which leads to

M =
∑

d≥0

(

L

d

)[

Θ

(

1

2
− c

)
∫ 1−c

c

(x− c)d(x+ c)L−ddx +

∫ 1

1−c

(x− c)d
]

= Θ

(

1

2
− c

)
∫ 1−c

c

2LxL +

∫ 1

1−c

(1 + x+ c)L.

Which arrives at the result after simple integrations.

Result 2.6 (Number of maxima in the Gumbel case). In a Gumbel dis-
tributed landscape, the exact expression of M in terms of the hypergeometric
function is

M = (1 + Le−c)−1
2F1(−L, ζ; ζ + 1;−1) with ζ =

1 + Le−c

2 sinh(c)
.

Proof. The hypergeometric function is defined by [73]

2F1(a, b; c; z) =
∑

n≥0

(a)n(b)n
(c)n

zn

n!
=
∑

n≥0

tn

with the Pochhammer symbol

(x)n =

{

1 if n = 0
x(x+ 1) · · · (x+ n− 1) if n > 0.
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Figure 2.2: The density of local fitness maxima M/2L in a Gumbel distributed
RMF-landscape is shown as a function of the number of loci L. Symbols correspond
to the large L approximation (2.9) and lines to the exact result 2.6.

The defining property of the hypergeometric function is that the terms tn
satisfy t0 = 1 and

tk+1

tk
=

(k + a)(k + b)

k + c

z

k + 1
.

M =
1

1 + Le−c

∑

d≥0

(

L

d

)

pmax
c (d)(1 + Le−c) =:

1

1 + Le−c

∑

d≥0

td,

ensuring that t0 = 1, the fractions td+1/td have to be calculated according to

td+1

td
=

(

L− d

d+ 1

)

1 + Le−c + 2d sinh(c)

1 + Le−c + 2(d+ 1) sinh(c)
=

( −1

d+ 1

) (d− L)
(

d+ 1+Le−c

2 sinh(c)

)

d+ 1 + 1+Le−c

2 sinh(c)

.

By comparison the arguments a, b, c and z can be identified.

For large L, the binomial coefficients become peaked around d = L
2
which

yields the approximation

M
L≫1≈ 2Lpmax

c (L/2) =
2L

L cosh(c) + 1
. (2.8)

Nevertheless the approximation violates M ≥ 1 (c → ∞), which can be fixed
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Figure 2.3: This figure illustrates the behavior of the number of Maxima M .
The number of local maxima is normalized by its asymptotic value in the HoC-
case 2L

L and plotted in dependence on the sequence length L. Panel (a) shows
res. 2.4 for an exponentially distributed RMF-landscape (ξ ∼ e−x, Gumbel class).
The dashed horizontal lines show, that for large L the expression converges to

1
cosh(c) . Panel (b) shows the numerical evaluation of (2.7) for a Pareto distributed

random contribution (ξ ∼ 2x−3, Fréchet class). In accordance with res. 2.8 (the
distribution corresponds to κ = 1

2) the expression converges to unity for large
L. Panel (c) shows res. 2.5 in comparison to (2.7). Panel (d) shows results for

a Weibull distributed RMF-landscape (ξ ∼ e−xβ
, Gumbel class) for β = 2. The

points are from numerical evaluation of (2.7) while the lines are obtained by fitting
a factor to res. 2.7.
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by

Mapprox = 1 +
2L

L cosh(c) + 1
. (2.9)

As can be seen in fig. 2.2 this approximation describes the data from
numerical evaluation of res. 2.6 quite well.

As mentioned in sec. 1.6, the Gumbel class contains also distributions
with a tail lighter or heavier than the exponential distribution. To study the
behavior of such slight changes in the tail, the Weibull distribution P (x) =
(

1− e−xβ
)

Θ(x) (see also (A.6)) will be studied in the context of the number

of maxima, particularly the behavior for β 6= 1.

Result 2.7 (Number of maxima for different tails in the Gumbel class).
In a Weibull distributed RMF-landscape, the leading order of the number of
maxima for large L is given by

M ≈
{

2L

L
e−βc log(L)

1− 1
β
, β > 1

2L

L
, β < 1.

Proof. In the calculations above, the occuring integrals were split into parts
to respect the support of the distribution. One for x ∈ [0, c] and one for
x ∈ [c,∞). The determining part of M is the latter one, with x ∈ [c,∞).
This means explicitly

M ≈ 2L
∫ ∞

c

dx p(x)

(

1− 1

2

(

e−(x+c)β + e−(x−c)β
)

)L

(2.10)

such that the different behavior for β > 1 and β < 1 is determined by e−(x+c)β

e−(x−c)β
:

lim
x→∞

e−(x+c)β

e−(x−c)β
=

{

1, β < 1

0, β > 1.

This means that for β < 1 the shift by c does not contribute significantly
which implies that M ∼ 2L

L
if L ≫ 1. For β > 1 on the other hand, the

vanishing limit is induced by the fact that for large x: e−(x−c) ≫ e−(x+c)

which justifies the following approximation of (2.10):

M ≈ 2L
∫ ∞

c

dx p(x)

(

1− 1

2
e−(x−c)β

)L

≈ 2L
∫ ∞

c

dx p(x) exp

(

−L

2
e−(x−c)β

)

=: 2L
∫ ∞

c

dx I(x, c)
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To get I(x, c) > 0 significantly, the exponent has to be of such order that

Le−(x−c)β ∼ 1, which leads to x ≈ c + (log(L))
1
β =: x∗. Since the integrand

vanishes extremely fast for large L, the Laplace-like integral approximation
at x∗ is applicable and yields

M ≈ 2LI(x∗, c) = 2L (1− P (x∗)) ≈ 2L

L
e−βc log(L)

1− 1
β

.

A similar analysis of the leading order behavior in L can also be done for
the other probability classes in dependence of the EVT index κ in addition
to the above results. For the Fréchet class, the Pareto distribution P (x) =
(1− x−α)Θ(x− 1) (see also (A.8)) is chosen, where α corresponds to 1

κ
.

Result 2.8. In the Fréchet class, the leading order behavior of the number
of maxima is given by

M ∼ 2L

L
.

Proof. With focus on the second integral in the calculation of M , as above,
it reads

M ≈ 2L
∫ ∞

1+c

dx p(x)

(

1− 1

2

(

(x+ c)−α + (x− c)−α
)

)L

≈ 2L
∫ ∞

1+c

dx p(x) exp

(

−1

2
Lx−α

(

(

1 +
c

x

)−α

+
(

1− c

x

)−α
))

.

With a substitution z = Lx−α the integral can be evaluated:

M ≈ 2L

L

∫ L
(1+c)α

0

dy exp

(

−y

2

(

(

1 + c
( y

L

)
1
α

)−α

+

(

1− c
( y

L

)
1
α

)−α
))

L≫1∼ 2L

L
.

For the Weibull class, the Kumaraswamy distribution P (x) =
(1− (1− x)ν)Θ(x)Θ(1−x)+Θ(x−1) (see also (A.7)) with ν corresponding
to − 1

κ
is analyzed.
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Result 2.9 (Number of maxima for Weibull class distributions). In a Weibull
class distributed RMF-landscape, the number of maxima is asymptotically
given by

M ∼

(

2− c−
1
κ

)L

L− 1
κ

.

Proof. Assuming c < 1
2
, the occurring integrals will look similar to those

in the calculation of the uniform case. And again, the main contribution
is expected from the integral which has the upper support boundary as
integration boundary. This enables the approximation

M ≈ 2L
∫ 1

1−c

dx p(x)

(

1− 1

2
(1− x+ c)ν

)L

= 2L
∫ c

0

dy νyν−1

(

1− 1

2
(y + c)ν

)L

in which the main contribution comes the region of small y. In order to
transform to an integral which resembles the Gamma function (see (A.2)),
(2−c)ν is factored out, and then (y+c)ν is expanded to linear order, i.e. (y+
c)ν ≈ νcν−1y + cν , leading to

M ≈ (2− cν)L
∫ c

0

dy νyν−1 exp

(

−νcν−1Ly

2− cν

)

L≫1≈ νΓ(ν)

(νcν−1)ν
(2− cν)L+ν

Lν
.

This implies the asymptotic behavior M ∼
(

2−e−
1
κ

)L

L−
1
κ

for c > 0 since it is the

same for c > 1
2
.

To summarize, in the Fréchet class, the number of maxima is
asymptotically independent of c and M ∼ 2L

L
, as it is for heavy tailed

Gumbel class distributions. For light tailed Gumbel class distributions,

M ∼ 2L

L
e−βc log(L)

1− 1
β

for Weibull distributed landscapes with parameter

β > 1. For the Weibull class, M ∼
(

2−c−
1
κ

)L

L−
1
κ

. Illustrations and numerical

results are presented in fig. 2.3.
In the LK-model (def. 1.10), the number of maxima depends on L in

a different way. The K-parameter has to be scaled with L to resemble a
similar situation as in the HoC case. Depending on the choice of the scaling,
several exponential and algebraic connections between L andM can be found
[74, 75, 76, 77, 78]. As shown above, for the RMF-model, various scalings
can be achieved with the choice of the distribution, for example a behaviour
proportional to the HoC case.
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As mentioned above, the linear drift in the RMF-landscape introduces
correlations between the fitness values, which is measured in a fitness
correlation function [79, 80].

Result 2.10 (Correlation function of the RMF-model1). The autocorrelation
function (see sec. 3.2 for further details) of the RMF fitness landscape is given
by

RRMF

d =
c2

4
(L− 2d) + vδd,0

c2L
4

+ v
.

where v denotes the variance of the random component of the landscape,
which has to be finite.

Proof. Introducing angular brackets as average over the sequence space as
well as over the random component ξ and additionally 〈•〉d as the average
over all sequence pairs at Hamming distance d, the correlation function reads

Rd =
〈(F (σ)− 〈F (σ)〉)(F (σ′)− 〈F (σ′)〉)〉d

〈(F (σ)− 〈F (σ)〉)2〉d
with a normalization which ensures R0 = 1. The abbreviations η(σ) =
ξ(σ) − E(ξ), v = Var(ξ) = Var(η), f(σ) = −cd + η(σ), d = d(σ, σ∗) (and
d′ = d(σ′, σ∗)) simplify the analysis of the correlation function:

〈(F (σ)− 〈F (σ)〉)(F (σ′)− 〈F (σ′)〉)〉r = 〈(f(σ)− 〈f(σ)〉)(f(σ′)− 〈f(σ′)〉)〉r
= c2[〈dd′〉r − 〈d〉2] + vδσ,σ′ .

The evaluation of 〈dd′〉r needs one sum over all σ and one over all σ′ in
distance r for each σ. Defining k = |{i|σ′

i 6= σi ∧ σi 6= σ∗
i }|, the correlator is

〈dd′〉r =
1

2L

L
∑

d=0

(

L

d

)

d
(

L
r

)

r
∑

k=0

(

L− d

r − k

)(

d

k

)

(d+ r − 2k)

=
1

2L

L
∑

d=0

(

L

d

)

d

[

d

(

1− 2r

L

)

+ r

]

=
L2

4
+

L

4

(

1− 2r

L

)

= 〈d〉2 + L

4

(

1− 2r

L

)

,

where the combinatorial identities [73]

∑

k≥0

(

j

l + k

)(

m

n− k

)

=

(

j +m

l + n

)

and k

(

n

m

)

= n

(

n− 1

k − 1

)

have been used. Finally, the correlation function can be expressed as claimed.

1Parts of this calculation were done by Ivan G. Szendro.
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2.3 On the number of exceedances

As mentioned in the introduction, experimental fitness landscapes are quite
a new tool in genetics. Since various kinds of theoretical works are present,
the next step is now to identify the theoretical models which fit to the
experimental results. But in the case of fitness landscapes this is not so easy
due to the usually high dimension of the landscape. It is hence necessary
to reduce to a few characteristic features of the fitness landscape for a
comparison. One attempt is to compare the Number of Exceedances (NoE)
[66].

Definition 2.2. Given a set of n random variables {Xi}, the order statistics
{X(1), . . . , X(n)} are a set of random variables defined by the sorting of the
values {Xi} in increasing order.

Definition 2.3. Given {Xi} and {X(i)} as above, the rank ofX(i) is r(X(i)) =
n− i+ 1.

Definition 2.4. Let {xi} be a realization of n random variables. If xj = y
has rank r in this set, let ñ random variables be redrawn. The number
of exceedances (NoE) is defined by N n,ñ

r (y) = |{x̃j|x̃j > y}| where x̃j are
realizations from the ñ newly drawn random variables.

With these definitions the concept can be used on fitness landscapes. The
random numbers of interest are the L+1 fitness values of the neighborhood of
a sequence σ. The rank of σ, rσ(σ) is the rank of F (σ) in the set {F (σ′)|σ′ ∈
ν(σ)}. If a mutation σ → σ′ occurs, it is important to distinguish between
rσ(σ

′) which is the rank of σ′ in F (ν(σ)) and rσ′(σ′), which is the rank of σ′

in F (ν(σ′)). Note that ν(σ) ∩ ν(σ′) = {σ, σ′}.
For i.i.d. random variables (HoC-model or RMF with c = 0), the

distribution of the NoE can be calculated.

Result 2.11 (NoE-distribution for i.i.d. random variables). The distribution
of the number of exceedances x over the mth largest among n observations in
N future trials is given by [81]

w(n,m,N, x) =

(

n
m

)

m
(

N
x

)

(N + n)
(

N+n−1
m+x−1

) .

Proof. A sketch of the proof by Gumbel and von Schelling [81] shall be given
here: Consider a continuous variate ξ with distribution function P and let



32 CHAPTER 2. THE ROUGH-MT.-FUJI MODEL

ξm be the mth largest of n observations. The probability, that in N future
trials ξm is exceeded x times is given by

w1(P (ξm), N, x) =

(

N

x

)

(1− P (ξm))
xP (ξm)

N−x.

The distribution of the frequency P (ξm) of the mth largest among n values
is given by

v(n,m, ξm)dP (ξm) =

(

n

m

)

mP (ξm)
n−m(1− P (ξm))

m−1dP (ξm) .

To eliminate P (ξm), the distribution of the number of exceedances is obtained
by integrating:

w(n,m,N, x) =

∫ 1

0

w1(P (ξm), N, x)v(n,m, Fm)dP (ξm) .

Remark For N = n large and m and x small, Stirling’s formula yields a
vast simplification:

w(n,m, n, x) ≈
(

x+m− 1

x

)(

1

2

)m+x

.

This distribution is known as negative binomial, and has 〈x〉 = m.

In the context of fitness landscapes the NoE appears, whenever a mutation
occurs: If the fitness values are random variables, the neighborhood change
discussed above leads to the following situation: a mutation σ → σ′ leads to
a rank change. Based on def. 2.4 the NoE can be written as

N L+1,L
rσ (σ → σ′) = rσ′(σ′)− 1. (2.11)

With the remark of res. 2.11, for the HoC-landscape (due to the
i.i.d. property) the following can be shown.

Known result 2.1 (Mutational rank change [82]). On a HoC-landscape,
after a transition σ → σ′, for the approximation L ≫ 1 ⇒ L ≈ L + 1 the
NoE is

〈N〉 ≈ rσ(σ
′).
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Proof. First mentioned by Rokyta et al. [82], Gumbel’s distribution of the
number of exceedances stands in direct connection to the neighborhood
change problem. For F (σ′) the jth largest among the L + 1 elements of
ν(σ), the probability that F (σ′) is exceeded x times in ν(σ′) is given by the
probability w(L + 1, j, L, x). For large L, since L ≈ L + 1, the results from
the remark of lemma 2.11 can be used, and the probability for exceeding
F (σ′) x times in the new neighborhood is given by

w(L, j, x) ≈
(

x+ j − 1

x

)(

1

2

)j+x

.

Since 〈x〉 ≈ j, 〈rσ′(σ′)〉 = j + 1.

An application of the NoE was made on the evolution experiments with
the microvirid bacteriophage ID11. Miller et al. [66] identified 9 beneficial
second step mutations on the background of a mutation, named g2534t,
that had been found to have the largest effect among 16 beneficial first step
mutants. Assuming that the rank of g2534t among all beneficial first step
mutations is at most 3, according to Gumbel and von Schelling [81] three
beneficial second step mutations would have been expected if fitness values
were identically and independently distributed. Thus, the observation of 9
beneficial second step mutations allowed Miller et al. [66] to reject the HoC
hypothesis with high confidence (P < 0.02).

If the HoC-model does not describe the experimental data, the RMF-
landscape might. Due to the non-isotropy of the RMF-model, the NoE will
depend on the position, i.e. the distance to the reference state and on whether
the adaptive step was taken in the uphill or downhill direction. Also, the
mean slope c of the landscape will now matter as well as the underlying
probability distribution.

In a correlated landscape, the calculation of the NoE in the evolutionary
sense is much harder. Starting with the distribution equivalent to res. 2.11
yields:

Result 2.12 (NoE-distribution in an RMF-landscape [83]). Let Fc,σ∗ be
an RMF-landscape on HL. Let its random component ξ be distributed with
distribution function P and density p. The distribution of exceedances, the
probability, that after a step to some sequence σ with rank m, it will be
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exceeded k times in the new neighborhood is given by:

P(Nm = k) =

∫ 1

0

k
∑

i=0

(

d(σ, σ0)

i

)

(1− P (ξ − c))iP (ξ − c)d(σ,σ0)

×
(

L− d(σ, σ0)− 1

k − i

)

(1− P (ξ + c))iP (ξ + c)L−d(σ,σ0)−1−k+i

×
(

m

k
∑

i=0

(

d(σ, σ0)− 1

i

)

(1− P (ξ − 2c))iP (ξ − 2c)d(σ,σ0)

×
(

L− d(σ, σ0)− 2

k − i

)

(1− P (ξ))i−1P (ξ)L−d(σ,σ0)−2−k+i

+m
k
∑

j=0

(

d(σ, σ0) + 1

i

)

(1− P (ξ))iP (ξ)d(σ,σ0)+1

×
(

L− d(σ, σ0)

k − i

)

(1− P (ξ + 2c))iP (ξ + 2c)L−d(σ,σ0)−k+i

)

dP (ξ) .

Since the above expression does not seem to yield a reasonable conclusion
for the expected number of exceedances it might be a good idea to try another
attempt.

As mentioned in def. 2.1, on an RMF-landscape Fc,σ∗ the neighborhood
ν(σ) with d(σ, σ∗) = d is divided into the uphill neighborhood with the
corresponding distribution function P ↑(x) = P (x + c(d − 1)), σ itself with
distribution function P •(x) = P (x+cd), and the downhill neighborhood with
distribution function P ↓(x) = P (x+ c(d+1)). The full distribution function
of fitness values is then given by [18]

Π(x) =
1

L+ 1

(

dP ↑(x) + P •(x) + (L− d)P ↓(x)
)

(2.12)

=
1

L+ 1
(dP (x+ c(d− 1)) + P (x+ cd) + (L− d)P (x+ c(d+ 1)))

and the expectation of the kth largest fitness value is obtained as [84]

µk = (L+ 1)

(

L

L+ 1− k

)
∫ 1

0

xΠ(x)L−k+1(1− Π(x))k−1dΠ(x). (2.13)

In general, the evaluation of this expression is complicated, because the
different components of Π do not have the same support. For distributions
with unbounded support, like a Gauß-distribution this is no problem, but
the occurring integrals are very complicated. By using an exponential
distribution P (x) = 1− e−x, an approximative expression can be found.



2.3. ON THE NUMBER OF EXCEEDANCES 35

Result 2.13 (kth mean largest in an exponential RMF-landscape). In an
RMF-landscape with exponential random component the mean kth largest in
one neighborhood is approximately

µk = log(ξ(c, d, L)) +HL+1 −Hk−1 ≈ log

(

e−cd

k − 1

(

dec + (L− d)e−c + 1
)

)

,

(2.14)

with ξ(c, d, L) = e−cd

L+1
(dec + 1 + (L− d)e−c).

Proof. Inserting the exponential distribution function P (x) = 1 − e−x into
(2.12) yields

Π(x) = 1− e−x+log( 1
L+1

e−cd(dec+1+(L−d)e−c))) (2.15)

=: 1− e−x+log(ξ(c,d,L)) = P (x− log(ξ(c, d, L))) (2.16)

with

ξ(c, d, L) =
e−cd

L+ 1

(

dec + 1 + (L− d)e−c
)

. (2.17)

The fact that (2.15) only holds on the intersection of the supports of P ↑,
P • and P ↓ is ignored. Instead the common support of Π(x) is introduced
by [log(ξ(c, d, L)),∞), such that Π(log(ξ)) = 0. The full distribution of
fitness values defined in (2.12) is replaced by a simple exponential that is
shifted in a d-dependent way (by log(ξ)). The expected value mk,n of the
kth largest out of n identically and independently exponentially distributed
random variables is given by [84]

mn,k = Hn −Hk−1 ≈ log

(

n

k − 1

)

. (2.18)

The integral in (2.13) can be solved after inserting the approximation (see
also (A.1)). It follows that the mean of the kth largest fitness value in an
RMF neighborhood is approximately given by

µk ≈ log(ξ(c, d, L)) +HL+1 −Hk−1 ≈ log

(

e−cd

k − 1

(

dec + (L− d)e−c + 1
)

)

.

In the RMF-landscape, the NoE have to be calculated for a step up and
a step down separately.
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Result 2.14 (NoE after a step up). After a step σ → σ′ with d(σ, σ∗) =
d(σ′, σ∗)− 1 when the rank in the old neighborhood was r, the expected NoE
is

N up
r ≈ min(k↑, d− 1) + min(k↓, L− d+ 1)

d≫1≈ 2 + (r − 1)ec

k↑ = 1 +
(d− 1)(r − 1)e2c

dec + 1 + (L− d)e−c

k↓ = 1 +
(L− d+ 1)(r − 1)

dec + 1 + (L− d)e−c
.

Proof. The kth largest of n i.i.d. random variables is labeled by mn,k. For the
exponential distribution mn,k = Hn−Hk−1 [84]. The idea is now to compare
the mn,k in both neighborhoods with µk from (2.13) to find out, how many
sequences are expected to have a larger fitness in the new neighborhood. To
obtain the mean Number of Exceedances, after a transition from a sequence
at distance d to one at distance d − 1 with rank r in the old NH has taken
place, it has to be summed over Heaviside-theta-functions:

Nr =
d−1
∑

k=1

Θ(mk,d−1 − c(d− 2)− µr(L, c, d))

+
L−d+1
∑

i=1

Θ(mi,L−d+1 − cd− µr(L, c, d))

=:
d−1
∑

k=1

Θ(a↑k) +
L−d+1
∑

i=1

Θ(a↓i ).

To make further simplifications, all harmonic numbers have to be
approximated as logarithms. Then, the solution of

a↑k = 0 and a↓i = 0

returns the values k↑ (k↓) which are the first ranks exceeding in the uphill
(downhill) neighborhood. Thus, NoE is given by

N = k↑Θ(d− 1− k↑) + (d− 1)Θ(k↑ − d+ 1)

+k↓Θ(L− d+ 1− k↓) + (L− d+ 1)Θ(k↓ − L+ d− 1)

k↑ = 1 +
(d− 1)(r − 1)e2c

dec + 1 + (L− d)e−c

k↓ = 1 +
(L− d+ 1)(r − 1)

dec + 1 + (L− d)e−c
.
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The constraints k↑ !

≤ d − 1 and k↓ !

≤ L − d + 1 are not always satisfied by
the approximate expressions. Incorporating these by hand leads to

N up = min(k↑, d− 1) + min(k↓, L− d+ 1).

For d ≫ 1 and ec not too large the above expressions give k↑+k↓ = 2+(r−1)ec

while the min-constraints can be ignored, such that N up = k↑ + k↓.

Result 2.15 (NoE after a step down). After a step σ → σ′ with d(σ, σ∗) =
d(σ′, σ∗) + 1 when the rank of σ′ in the old neighborhood was r, the expected
NoE is

N down
r = min(k↑, d+ 1) + min(k↓, L− d− 1)

d≫1≈ 2 + (r − 1)e−c

k↑ = 1 +
(r − 1)(d+ 1)

dec + 1 + (L− d)e−c

k↓ = 1 +
(r − 1)(L− d− 1)e−2c

dec + 1 + (L− d)e−c
.

Proof. The calculation of the NoE after a step is taken in the downhill
direction is analogous to the previous one. In terms of Heaviside functions:

N =
d+1
∑

k=1

Θ(mk,d+1 − cd− µr(d, c))

+
L−d−1
∑

i=1

Θ(mi,L−d−1 − c(d+ 2)− µr(d, c)).

Analyzing the sum, the first summand should vanish as c → ∞. If now
the approximation of the harmonic numbers as logarithms take place, this
will not happen any more, as a log(0) term appears, which will keep the Θ
function to be unity. Therefore, the first summand should be neglected, as
further simplifications are not possible with the exact harmonic numbers.
Again the arguments of the Theta functions give rise to linear equations
which are solved for k↑ and k↓:

N = Θ(d+ 1− k↑) + (d+ 1)Θ(k↑ − d− 1)

+k↓Θ(L− d− 1− k↓) + (L− d− 1)Θ(k↓ − L− d− 1)− 2

k↑ = 1 +
(r − 1)(d+ 1)

dec + 1 + (L− d)e−c

k↓ = 1 +
(r − 1)(L− d− 1)e−2c

dec + 1 + (L− d)e−c
.

With the same arguments as before, a simplified approximation for small c
and large d is found.
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Figure 2.4: This figure shows the expected number of exceedances for a sequence
which had rank r in its old neighborhood. L = 1000 and d = 50. Symbols show
results from simulations and lines show plots of res. 2.14 and 2.15 for various r
values. (a) shows results for a step taken uphill and the lines are a plot of the more
complex approximation of result 2.14 which were evaluated numerically. (b) shows
a similar plot for the situation after a step was taken down in comparison with
the more complex approximation from res. 2.15. Although the analytic expression
in (a) show an edge which is not visible in the data, in (a) and (b) the simulation
results are well described by the analytic results. In (c) the same symbols are
shown as in (a) but the lines shows the large d, intermediate c approximation from
res. 2.14. (d) shows the symbols from (b) but with the large d, intermediate c
approximation from res. 2.15. The limiting values of the NoE areN up = N down = r
for the HoC-model (c = 0) and N up = d, N down = 0 for a smooth landscape
(c → ∞). Obviously the approximation in (d) does not yield the large c limit,
which can be fixed easily by omitting the 2 in the formula, at the cost of a bad
small c description.
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Figure 2.5: This figure shows the expected number of exceedances for a sequence
which had rank r in its old neighborhood. L = 1000 and d = 950. Symbols show
results from simulations and lines show plots of res. 2.14 and 2.15 for various r
values. (a) shows results for a step taken uphill and the lines are a plot of the
more complex approximation of result 2.14 which were evaluated numerically. (b)
shows a similar plot for the situation after a step was taken down in comparison
with the more complex approximation from res. 2.15. In (c) the same symbols
are shown as in (a) but the lines show the large d, intermediate c approximation
from res. 2.14. Obviously, there is no maximum in the data which makes the
approximation better until N = L − d is reached. (d) shows the symbols from
(b) but with the large d, intermediate c approximation from res. 2.15. Here the
approximation is not as good, but for larger r the approximation becomes better
for small c. In (d) the approximation converges to 2 for larger c, omitting the 2 in
the approximation would lead to a better description of the data in this limit.
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To summarize: For large d and small to intermediate c, the NoE is fairly
well described by the simple form

N up ≈ 2 + (r − 1)ec, N down ≈ 2 + (r − 1)e−c. (2.19)

For the HoC-landscape (c = 0) (2.19) yield N up = N down = r + 1, which
differs slightly from the exact result N = r (as shown in res. 2.1) as a
consequence of the approximations involved in the derivation. Figure 2.4
compares the full expressions as well as the simple forms to numerical
simulations, showing good agreement.

The evaluation of the NoE in the RMF-model shows that for the adaptive
step uphill, there is a maximum for intermediate c. At this point, the NoE
is considerably larger than 1, the HoC result. Hence it seems to be easy to
choose a set of parameters to fit Miller et al. [66]’s data. But the problem is,
that even if an RMF-model would describe the data well, it is neither known
which distribution would fit, nor which distance to the reference sequence
would be adequate nor if the step was taken uphill or downhill. Since the
derivation of the above results does not seem to allow a generalization, the fit
to the data was made with help of simulations. The distance to the reference
sequence was chosen to be relatively small in an L = 1000, GPD RMF-
landscape. The choice of the distance seems justified by the assumption, that
the wild-type is already well adapted. The GPD distribution allows sampling
through all probability classes. Simulations were performed by creating a
landscape and choosing a sequence at d = 50 with rank 1 and 3 respectively.
Then an adaptive step was taken with the transition probability (1.9). This
was repeated while varying c until the NoE was 9, as in the experiment. The
results are averaged over realizations of landscapes and sampled for c and κ.
The results are shown in fig. 2.6. The parameters which are in accordance
with the experimental data are κ = −0.29 (this was estimated in [66] from
a maximum likelihood analysis of the fitness values of 16 first step beneficial
mutations) and, depending on d, c between 0.86 and 1.04 for starting rank 1
and 0.44 and 0.76 for starting rank 3. Obviously the required c value depends
strongly on the starting rank, d and κ. As seen in fig. 2.6 the appropriate
c value varies from close to 0 in the Weibull regime to 10 in the Fréchet
regime and seems to diverge towards κ → 1

2
, where the variance of the GPD

distribution diverges.
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Figure 2.6: The figure shows an attempt to fit a GPD RMF-landscape to the
experimental results of Miller et al. [66]. Therefore, by means of simulations,
a minimal value of the RMF parameter c required to generate on average 9
exceedances after an adaptive step was found. Panel (a) and (b) show results for
initial rank 1 and panel (c) and (d) for initial rank 3. Different curves correspond
to different values of the initial distance d to the reference sequence. In (a) and
(c) the parameter c is plotted versus κ, while in (b) and (d) c is also divided

by the corresponding standard deviation
√

Var(κ) =
(

(1− κ)2(1− 2κ)
)− 1

2 for a
comparison between shift by c and the width of the distribution. In (e) and (f) the
resulting c is divided by the corresponding support 1− 1

κ to show, that the shift by
c is still relatively small compared to it. The experimental estimate κ ≈ −0.29 of
the EVT index is indicated by a vertical line. The total number of loci is L = 1000.
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Chapter 3

Amplitude spectra of fitness

landscapes

“Can One Hear the Shape of a Drum?” is the title of a famous article by Kac
[85]. If a drum of unknown shape is approximated as a membrane with a
fixed boundary, then the domain D of the drum has Dirichlet eigenvalues λn.
The corresponding eigenfunctions fn can also be assumed to be unknown.
Still, from the eigensystem

−∆fn = λnfn (3.1)

information about the shape of the drum can be retrieved by investigation
of the spectrum of the Laplace operator, the frequencies {λn} at which the
drumhead can vibrate and which can be heared. In the following, a similar
approach is used to retrieve information about fitness landscapes and reduce
the number of the used parameters. In the last part the eigensystems of
experimentally measured fitness landscapes and theoretical models are used
to compare and fit the both. The reasoning follows [86].

3.1 Fourier expansion and spectrum

Spectral theory can also be applied on discrete structures, like graphs. A
graph Laplacian for L-regular graphs can be defined as

∆ = A− LI (3.2)

43
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Figure 3.1: A fitness landscape can be decomposed in terms of eigenfunctions of
the graph Laplacian. These so called Walsh-functions are visualized here for L = 3.

where I denotes the identity matrix. When it acts on a fitness landscape, it
yields

∆F (σ) =
∑

σ′∈HL

Aσ,σ′F (σ′)− LF (σ)

=
∑

σ′∈HL,

d(σ,σ′)=1

F (σ′)− LF (σ). (3.3)

When σi denotes the i–th element of σ, the eigenfunctions of −∆ are given
by the Walsh-functions φi1,...,ip(σ) = 2−

L
2 σi1 . . . σip with p ∈ {1, . . . , L},

0 < i1 ≤ i2 · · · ≤ ip ≤ L and φ0 = 1. The corresponding eigenvalues are
λp = −2p which are hence

(

L
p

)

fold degenerate. The set of all eigenfunctions

φi(σ) forms an orthonormal basis. See fig. 3.1 for the visualization of three
eigenfunctions on an L = 3 hypercube [49].

Definition 3.1. Every fitness landscape on the binary hypercube can be
decomposed in terms of Walsh-functions. This decomposition is called
Fourier expansion [87], which reads

F (σ) =
L
∑

p=0

∑

i1...ip

ai1...ipφi1...ip(σ). (3.4)

The Fourier expansion of a fitness landscape motivates a change
of variables. Because of the orthonormality of the Walsh functions,
multiplication yields the coefficients

∑

σ∈HL φi1,...,ipF (σ) = ai1,...,ip . No
information is lost, but it is now contained into the ai1,...,ip . Since the
variability of the Walsh-functions increases with increasing order p, the
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coefficients provide information about the fitness interactions in the genome.
While the ai1 ’s contain the information about the relative influence of the
non-epistatic contributions on fitness, the higher order coefficients ai1...ip
with p > 1 describe the relative strength of the contributions of p–tupels
of interacting loci. The zero order coefficient a0 is proportional to the mean
fitness of the landscape,

a0 = 2−
L
2

∑

σ∈HL

F (σ),

where the pre-factor reflects the normalization of the Walsh functions. It is
obvious, that for certain landscapes, the transformation into the coefficients
can yield great insights into the structure of the landscape, e.g. if certain
orders vanish completely. But generally, one is still left with 2L parameters.

3.2 The amplitude spectra

It is useful to reduce the number of parameters in a clever way to remain
with as much information as possible. One possibility of doing so is the
introduction of the amplitude spectra as done by Stadler and Happel [88].

Definition 3.2. The amplitude spectrum of a fitness landscape is calculated
by averaging and normalizing the coefficients of the Fourier expansion
(def. 3.1). The order of normalization and averaging distinguishes between
two possible choices of amplitude spectra. The first one reads

Bp =

〈
∑

i1...ip
|ai1...ip |2

∑

q 6=0

∑

i1...iq
|ai1...iq |2

〉

for p > 0 and B0 = 0, where the angular brackets denote an average over
realizations of landscapes. The second one is

B̃p =
bp

b0 +
∑

q 6=0 bq

with bp =
∑

i1...ip
〈|ai1...ip |2〉 for all p ≥ 1. b0 is not defined in terms of the

Fourier coefficients ai, but is proportional to the mean covariance,

b0 = 2−L
∑

σ,σ′∈HL

[〈F (σ)F (σ′)〉 − 〈F (σ)〉〈F (σ′)〉] , (3.5)

as defined1 in [49].

1The prefactor of b0 given in [49] appears to be incorrect.
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For additive fitness landscapes B1 = 1 and Bsum =
∑

i>1 Bi = 0 while for
a landscape with epistasis Bsum > 0. In [12] Bsum was used as a quantifier
for epistasis in experimentally obtained fitness landscapes.

As shown by Stadler and Wagner [49] the amplitude spectra are closely
connected to the correlations of the fitness landscapes. Similar to the
definitions of the amplitude spectra they differ by the order of averaging.
The direct correlation function describes correlations of sequence pairs of
Hamming distance d as

ρd =
1

(

L
d

)

2L

∑

σ,σ′∈HL

d(σ,σ′)=d

(F (σ)− F )(F (σ′)− F )

F 2 − F
2 , (3.6)

where “ ” denotes the average over one landscape realization. It is connected
to Bp according to

〈ρd〉 =
∑

p≥0

Bpωp(d) (3.7)

where the ωp are orthogonal functions in the sense, that
∑

d≥0 Cdωp(d)ωq(d) ∼
δpq with a combinatorial weight Cd. The exact form depends on the
underlying graph structure [88]. The autocorrelation function Rd is defined
as

Rd =
〈F (σ)F (σ′)〉d −

〈

F
〉2

〈

F 2
〉

−
〈

F
〉2

, (3.8)

where 〈. . .〉d denotes a simultaneous average over all possible pairs (σ, σ′)
with d(σ, σ′) = d as well as over the realizations of the landscape. Note, that
the original definition was restricted to landscapes with ∀σ∈HL : 〈F (σ)〉 = a0.
This is not fulfilled for all landscapes considered in this work. Nevertheless,
the original definition was also working on partitions of the underlying graph
and thus more general. Since here only the full graph is of interest, the
underlying theorem 5 of Stadler and Happel [88] which deals with the spatial
average of fitness values is still valid, although it is restricted to landscapes
with constant mean fitness. This restriction is not needed if the only partition
of interest is the full hypercube. Rd is linked to the amplitude spectrum B̃p

according to [89]

Rd =
∑

p≥0

B̃pωp(d). (3.9)
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On the hypercube ωp(d) are closely related to the Krawtchouk polynomials
Kpd [49]:

ωp(d) =

(

L

p

)−1

Kpd,

where [90, 91]

Kpd =
∑

j≥0

(−1)j
(

d

j

)(

L− d

p− j

)

. (3.10)

The Krawtchouk polynomials can be understood as an L×L matrix K with
elements Kpd. The amplitude spectrum and the correlation function can be
written as vectors B̃, R ∈ RL with elements B̃i and Rd respectively. Then
(3.9) can be rewritten as

KB̃ = R. (3.11)

Here, the focus is on the calculation of analytical expressions of the B̃p

for known Rd. Thus, an inversion is needed. Defining K̃pd =
(

L
d

)

Kpd,
multiplication from the left to (3.9) results in

K̃TKB̃ = K̃T ·R. (3.12)

Since the Krawtchouk Polynomials are known to be orthogonal in the sense
that (see e.g. [92])

〈Kp, Kq〉 =
∑

d≥0

(

L

d

)

KpdKqd = 2L
(

L

p

)

δpq, (3.13)

the last step yields in components:

(

K̃TKB̃
)

q
=
∑

d≥0

∑

i≥0

(

L

d

)

(−1)i
(

d

i

)(

L− d

q − i

)

× (3.14)

∑

p≥0

(

L

p

)−1
∑

j≥0

(−1)j
(

d

j

)(

L− d

p− j

)

B̃p

=
∑

p≥0

(

L

p

)−1

2Lδqp

(

L

p

)

B̃p = 2LB̃q =
(

K̃TR
)

q
. (3.15)

Thus, the application of K̃T results in an inversion. In general, it follows
directly, that 2−LK̃T = K−1 and

B̃q = 2−L
∑

d≥0

Kqd

(

L

d

)

Rd. (3.16)
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Figure 3.2: The autocorrelation function (a) and the amplitude spectrum (b) of
the LK-model with L = 100 and different values of k.

Now, the calculation of amplitude spectra from the autocorrelation functions
is possible and at least numerically any spectrum can be calculated from
a given correlation function. But for some landscape models analytical
solutions can be calculated, as will be shown in the following.

3.3 LK-model

The LK-model was defined in def. 1.10. Although the interpretation of the
parameters is not as clear as in the RMF-case, its autocorrelation function
has the remarkably simple form

RLK
d =

(

L− k

d

)(

L

d

)−1

, (3.17)

which was calculated by Campos et al. [93], see fig. 3.2. A very interesting
point is that Rd neither depends on the underlying probability distribution,
nor on the choice of the LK-neighborhood2.

Result 3.1 (Amplitude Spectra of LK-landscapes). The amplitude spectrum
of an LK-landscape is given by

B̃q = 2−k

(

k

q

)

.

2This is in contrast to results found in the literature. Some incorrect expressions for
the correlation functions have been reported [94]. The erroneus conclusion that the choice
of the LK-neighborhood affects the amplitude spectra [49] is based on that.
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Proof. Inserting (3.17) into (3.16) yields

B̃q = 2−L
∑

d≥0

Kqd

(

L− k

d

)

. (3.18)

Stoll [91] gives an alternative but equivalent formulation for the Krawtchouk
polynomials:

K
(2)
qd =

∑

i≥0

(−2)i
(

d

i

)(

L− i

q − i

)

.

Inserting this into (3.18) yields

B̃q =
∑

d≥0

Kq(d)

(

L− k

d

)

= 2−L
∑

i≥0

∑

d≥0

(−2)i
(

d

i

)(

L− i

q − i

)(

L− k

d

)

.

The identity [95]

∑

d≥0

(

d

i

)(

L− k

d

)

= 2L−k−i

(

L− k

i

)

,

helps to calculate the sum:

B̃q = 2−L
∑

i≥0

(−2)i
(

L− i

q − i

)(

L− k

i

)

2L−k−i

= 2−k
∑

i≥0

(−1)i
(

L− i

q − i

)(

L− k

i

)

. (3.19)

Although (A.4) claims positivity on the entries of the binomial coefficients,
a very helpful trick is to neglect this during the calculation. This allows an
‘upper negation’ [73] in the first binomial factors in (3.19),

(

L− i

q − i

)

= (−1)q−i

(

q − L− 1

q − i

)

.

Using the Vandermonde identity [73] the remaining sum can be calculated:

B̃q = 2−k(−1)q
∑

i≥0

(

q − L− 1

q − i

)(

L− k

i

)

= 2−k(−1)q
(

q − k − 1

q

)
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A second upper negation leads to the final result

B̃q = 2−k
∑

i≥0

(−1)i(−1)q−i

(

L− k

i

)(

q − i− (L− i)− 1

q − i

)

= 2−k(−1)q
∑

i≥0

(

L− k

i

)(

q − L− 1

q − i

)

= 2−k(−1)q
(

q − k − 1

q

)

= 2−k

(

k

q

)

.

As the autocorrelation, this result is characterized by remarkable
simplicity (see fig. 3.2 for illustration). The amplitude spectrum vanishes
for q > k as expected [24, 96] and the known case of the HoC-model
(B̃q = 2−L

(

L
q

)

) is reproduced for k = L. The spectra satisfy the symmetry

B̃q = B̃k−q and are maximal for q = k/2, as was conjectured in [49].
A straightforward generalization of LK-landscapes is achieved by con-

struction of superpositions of LK-models, in the sense that LK-landscapes
are added independently. Let {Fm(σ) = 1√

L

∑

j f
(m)
j (σj1 , . . . , σj

k(m)
)} be a

family of n LK fitness landscapes with neighborhood sizes k(m), m = 1, ..., n.
Then its superposition F is defined by

F : σ 7→
n
∑

m=1

Fm(σ)

=
n
∑

m=1

1√
L

L
∑

j=1

f
(m)
j (σj1 , . . . , σj

k(m)
). (3.20)

Since the different LK-landscapes {Fm} are independent, the correlation
functions are additive,

RF
d =

∑n
m=0

(

L−k(m)

d

)(

L
d

)−1
Dm

∑n
j=0 Dj

=:
L
∑

i=1

Ci

(

L− i

d

)(

L

d

)−1

, (3.21)

with statistical weights

Ci =
∑

{m|k(m)=i}

Dm
∑n

j=0 Dj

,
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Figure 3.3: The autocorrelation function (a) and the amplitude spectrum (b) of
the RMF-model with L = 100, D1 = 0, DL = 1 and various values of c.

whereDm = Var(f (m)) and the sum is over all landscapes with neighborhoods
of size i. The amplitude spectrum of the superposition is thus of the form

B̃F
p =

∑

i≥0

2−iCi

(

i

p

)

. (3.22)

The consistent interpretation of an empirical fitness landscape as a
superposition of LK-landscapes requires all Ci to be positive. Nevertheless,
it can be useful to consider superpositions containing negative Ci to calculate
amplitude spectra of fitness landscapes constructed by different means (see
section 3.4 for an example).

3.4 RMF-model

The RMF-model used here was introduced in def. 1.8 and its autocorrelation
function was calculated in sec. 2.2. The amplitude spectrum of RMF-
landscapes can be calculated by using the fact, that the RMF-model is a
superposition of an additive with a HoC-landscape. Since an LK-model
with k = 1 is additive and k = L is a HoC-landscape, the RMF-landscape
can be understood as a generalized LK-model in the sense of (3.20).

Result 3.2 (Amplitude spectrum of an RMF-landscape). The amplitude
spectrum of an RMF-landscape is given by

B̃RMF
p =

(

D1 +
c2

4

)

Lδp1 +DL2
−L
(

L
p

)

(

D1 +
c2

4

)

L+DL

,

with Di as before.
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Proof. Writing the autocorrelation function RRMF
d (see res. 2.10) as a linear

combination of correlation functions of the LK-model with different ks yields
RRMF

d =
∑L

k=0Ck

(

L−k
d

)

/
(

L
d

)

with expansion coefficients

C0 = −

(

D1 +
c2

4

)

L
(

D1 +
c2

4

)

L+DL

, C1 =
2
(

D1 +
c2

4

)

L
(

D1 +
c2

4

)

L+DL

,

CL =
DL

(

D1 +
c2

4

)

L+DL

, (3.23)

and Ck = 0 for all other ks. Exploiting the linearity of (3.16) the spectrum
follows immediately:

B̃RMF
p =

(

D1 +
c2

4

)

Lδp1 +DL2
−L
(

L
p

)

(

D1 +
c2

4

)

L+DL

. (3.24)

See fig. 3.3 for an illustration of the autocorrelation functions and
amplitude spectra for the RMF-model with D1 = 0. The zeroth order
coefficient is something like a shift in fitness. It does not contain epistatic
information and can thus be chosen freely to fit the model. In the LK
superposition picture, RMF-models always have C1, CL > 0 and Ci = 0 for
1 < i < L.

3.5 Applications & experimental results

In sec. 2.3 the NoE was used to fit an RMF-landscape to experimental data.
There, only isolated steps of adaptation where present. Now, the full fitness
landscape will be fitted to experimentally obtained fitness landscapes with
help of the amplitude spectra of the generalized LK-landscapes. Although
in experiments it is not always Wrightian or Malthusian fitness which is
measured, but some proxy of it as described in the introduction. The
discussed landscapes are the L = 6 growth rate landscape from Hall et al.
[68] of yeast, the L = 8 growth rate landscape of the fungus Aspergillus niger
presented by Franke et al. [69] and additionally two L = 9 landscapes which
measure the output of certain enzymes in Nicotiana Tobaccum.

In order to fit generalized LK-models to these fitness landscapes, it is
helpful to use the following guidelines to achieve reasonable fits via the
coefficients Ci

3:

3The fitting was performed by Ivan G. Szendro
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Figure 3.4: Spectra corresponding to various experimentally measured fitness
landscapes. Blue boxes are retrieved from the experimental data. By fitting
the spectrum of a superposition of LK-models to the data, a landscape was
created which should resemble the properties of the measured landscapes, the
fit is presented as a red line. To demonstrate the strength of the HoC component,
the brown line, proportional to

(

L
p

)

, showing the spectrum expected for a HoC
component, is plotted for comparison.
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• for a good comparability, a renormalized amplitude spectrum

B̃∗
p =

B̃p
∑

q>0 B̃q

=
bp

∑

q>0 bq
. (3.25)

should be considered,

• the fit should have as few nonzero Ci as possible,

• ∀i : Ci ≥ 0,

• recursive fitting might be needed, in the sense, that a fit is done, the
negative Ci and the very small Ci (compared to the rest) are constrained
to 0 and another fit is done,

• C0 is not needed in the fit as it can be fitted trivially (it is still just an
additive constant).

Fig. 3.4 shows the data for the normalized amplitudes B̃∗
p (blue points)

with the fit (red curve), the HoC component ∝
(

L
p

)

is separately shown

(brown curve). It is obvious, that the HoC component seems to be very
strong. For the A. niger landscape the errors are expected to be [26] too
small to explain the strong HoC component as stemming from noise in the
measurement.

As shown in fig. 3.4(a), the spectrum of the yeast landscape [68] is nicely
fitted with only C1 and CL chosen different from zero. This is, as mentioned
earlier the same spectrum as of an RMF-landscape. Only the value at p = L
seems too small to be fitted by this model. However, this value corresponds
to a single component of the decomposition (3.4) and the large deviation may
be due to the lack of averaging. A nice and sparse fit with nonzero coefficients
C1, C2, and CL is obtained for the A. niger landscape from Franke et al. [69]
(see fig. 3.4(b)). The significant value of C2 implies that there are important
interactions between pairs of loci which rejects the modeling with an RMF
type landscape, although the number of accessible pathways would allow this
[69].

The spectrum of the 5-epi-aristolochene N. tabaccum landscape from [8] is
fitted quite well with C1, C2, C6 and CL different from 0 (see fig. 3.4(c)). This
might indicate, that there are additionally one or several groups consisting
of 6 strongly interacting alleles. The premnaspirodiene landscape yields less
convincing results, as the large p part of the spectrum seems to be poorly
fitted (see fig. 3.4(d)). Introducing more components into the fitting Ansatz
yields better results for this part of the spectrum, but such approaches can
hardly be considered sparse anymore.
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It is important, that a bad fit as above does not a priori mean, that the
fitness landscape is not of the generalized LK type. For example, it might be,
that the measured fitness or fitness proxy is inappropriately in the sense, that
the measuring mechanism alters it. If F ′(σ) means the ‘real’ fitness (proxy)
which would yield a sparse fit then the measurement procedure could act as
a nonlinear transformation G, such that F = G ◦ F ′ does not fit sparsely.
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Chapter 4

Adaptive walks

The basic concept of adaptive walks is explained in sec. 1.4. In the following,
besides a brief recollection of known results, new results for adaptive walks
on uncorrelated as well as on correlated landscapes will be given.

4.1 Previous work

Several properties of adaptive walks have been calculated, especially on a
HoC-landscape. There, the GAW is known to have a constant walk length
ℓ = e−1 ≈ 1.7, independent of the sequence length L [97] and the underlying
distribution function. While for the RAW a logarithmic dependency exists:
ℓ ≈ log(L) + 1.09931 [59]. This is also true for the NAW. Gillespie’s
model [31] was used for the calculation: The neighborhood change after
every step is ignored and the transition probability (1.9) is used on the
L + 1 random numbers of one neighborhood (see fig. 4.1). The result is
ℓ ≈ 1

2
log(L) + 1

2
(γ + 1) + 0.44 [30, 98] but is restricted to landscapes which

are distributed according to a Gumbel class distribution. The independence
of the distribution as long, as it is in the Gumbel class is due to the fact, that
particularly high fitness values are preferred by the transition probability.
This increases the importance of the tail of the distribution and motivates a
treatment in terms of EVT.

It has also been shown, that for a more general underlying distribution,
like the GPD, the walk length is given by

ℓs ≈
1− κ

2− κ
log(s) + const. (4.1)

from which the RAW and GAW results are retrieved as limits κ → −∞ and
κ → 1 [99, 83, 100]. s is the rank of the sequence the process started on.

57
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Figure 4.1: This figure visualizes the Gillespie approximation, in which the
neighborhood change is ignored. Usually, a step is made from the ith to the jth
fittest sequence in one neighborhood. Then the new neighbors occur, which will
on average change the rank from j to j′ (on the left). In Gillespie’s approximation,
only the step from i to j is taken into account, such that the process stops when
it reaches rank 1 (on the right).

4.2 The GPD approach

In previous work, the results for other extreme value classes than Gumbel
were calculated by using different distributions for each class and assemble
them afterwards. Here the results shall be calculated directly from the GPD.

Following the calculation in [83], an approximative solution is yielded
using Gillespie’s model. The process starts at a certain starting rank s and
stops when rank 1 is reached. ℓ is then the number of steps taken from s to
1. In the following, Fk will label the kth largest value in the neighborhood.
The spacings are defined by ∆k = Fk − Fk+1. Gillespie [30] calculated the
mean walk length in one realization of the landscape, which can be expressed
in terms of λn =

∑n−1
k=1 k∆k as

ls =
s−1
∑

j=1

[

1

j
− λj

λs

1

s− 1
−

s−1
∑

n=j+1

λj

λn

1

n(n− 1)

]

. (4.2)

Result 4.1 (Mean kth largest of i.i.d. GPD variates). The mean kth largest
value of n i.i.d. random variables with GPD function GPDκ,1,0 is given by

µk,n = n

(

n− 1

n− k

)

1

κ
(B(n− k + 1, k − κ)−B(n− k + 1, k))

with the Beta-function B(x, y) (see also (A.3)).

Proof. For simplicity, define Pκ(x) = GPDκ,1,0(x) = 1 − (1 + κx)−
1
κ . Then
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the mean kth largest value is calculated straightforwardly [84]:

µk,n = n

(

n− 1

n− k

)
∫ 1

0

xPκ(x)
n−k(1− Pκ(x))

k−1dPκ(x)

= n

(

n− 1

n− k

)
∫ 1

0

1

κ
(1 + κx− 1)Pκ(x)

n−k(1 + κx)(k−1)(− 1
κ
)dPκ(x)

= n

(

n− 1

n− k

)

1

κ

∫ 1

0

P n−k
κ (1− Pκ(x))

κ+k−1 − P n−k
κ (1− P (x))k−1dPκ(x)

= n

(

n− 1

n− k

)

1

κ
(B(n− k + 1, k − κ)− B(n− k + 1, k)) .

The appropriate combinatorial factor is n
(

n−1
n−k

)

.

Result 4.2 (Spacings of i.i.d. GPD variates). The mean kth spacing 〈∆k〉
of n i.i.d. GPDκ,1,0 distributed random variables is given by

〈∆k〉 =
Γ(n+ 1)Γ(k − κ)

Γ(k + 1)Γ(n− κ+ 1
.

Proof. The Beta-function can alternatively defined via the Γ-function:
B(x, y) = Γ(x)Γ(y)

Γ(x+y)
. With res. 4.1 this leads to

µk,n = n

(

n− 1

n− k

)

1

κ
(B(n− k + 1, k − κ)−B(n− k + 1, k))

=
n

κ

Γ(n)

Γ(n− k + 1)Γ(k)

[

Γ(n− k + 1)Γ(k − κ)

Γ(n− κ+ 1)
− Γ(n− k + 1)Γ(k)

Γ(n+ 1)

]

=
1

κ

[

Γ(n+ 1)Γ(k − κ)

Γ(k)Γ(n− κ+ 1)
− 1

]

where the identities nΓ(n) = Γ(n + 1) and
(

n
k

)

= Γ(n−1)
Γ(k−1)Γ(n−k)

where used.
From this, the spacings are calculated:

〈∆k〉 = µk,n − µk+1,n

=
1

κ

[

Γ(n+ 1)Γ(k − κ)

Γ(k)Γ(n− κ+ 1)
− 1

]

− 1

κ

[

Γ(n+ 1)Γ(k + 1− κ)

Γ(k + 1)Γ(n− κ+ 1)
− 1

]

=
1

κ

Γ(n+ 1)Γ(k − κ)k − Γ(n+ 1)Γ(k + 1− κ)

Γ(k + 1)Γ(n− κ+ 1)

=
Γ(n+ 1)Γ(k − κ)

Γ(k + 1)Γ(n− κ+ 1)
.
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Following Gillespie [30] {λk} will be a set of i.i.d. random variables if L

is large. Using the approximation 〈 λi

λj
〉 ≈ 〈λi〉

〈λj〉 , the mean walk length can be

calculated.

Result 4.3 (Mean walk length in a GPD distributed HoC-landscape). The
mean natural adaptive walk length in a GPDκ,1,0 distributed HoC-landscape
from starting rank s is approximately

ℓs ≈
1− κ

2− κ
log(s) + const.

Proof. The calculation needs lemmas 9, 10, 11, 12 and part of the proof of
result 2.2 from [83]:

1.
∑n

k=1
Γ(k+a)
Γ(k)

= nΓ(n+1+a)
(1+a)Γ(n+1)

2.
∑n

k=1
Γ(k+a)
Γ(k−1)

= (n−1)Γ(n+1+a)
(2+a)Γ(n)

3. B(x, y) ≈ x−yeyΓ(y) for x ≫ y.

4.
∑i−1

j=1

∑i−1
n=j+1

(

j−1
n−1

)κ 1
n(n−1)

=
∑i−2

j=2
Hj−1,−κ

jκj(j+1)
with the generalized

harmonic numbers Ha,b =
∑a

k=1
1
kb

5. Hj−1,k ≈ jk
(

j
k+1

− 1
2

)

In the following, these expressions will be called by their number in this
enumeration. For convenience all 〈•〉 are omitted since all expressions are
averaged.

λi =
i−1
∑

k=1

Γ(n+ 1)Γ(k − κ)

Γ(k + 1)Γ(n− κ+ 1)
k =

Γ(n+ 1)

Γ(n+ 1− κ)

i−1
∑

k=1

Γ(k − κ)

Γ(k)

1.
=

Γ(n+ 1)Γ(i− κ)

(1− κ)Γ(n+ 1− κ)Γ(i− 1)

⇒
i−1
∑

j=1

λj

λi

2.
=

i− 2

2− κ
.

After rewriting the fraction of λk’s in terms of Beta-functions, the following
approximation is needed:

λj

λi

1

n(n− 1)
=

B(n− 1, 1− κ)

n(n− 1)B(j − 1, 1− κ)

3.≈
(

j − 1

n− 1

)1−κ
1

n(n− 1)
.
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Using this on (4.2) yields:

ℓs =
s−1
∑

j=1

[

1

j
− λj

λs

1

s− 1
−

s−1
∑

n=j+1

λj

λn

1

n(n− 1)

]

= Hs−1 −
s− 2

2− κ

1

s− 1
−

s−1
∑

j=1

s−1
∑

n=j+1

λj

λn

1

n(n− 1)

4.
= Hs−1 −

s− 2

2− κ

1

s− 1
−

s−2
∑

j=2

Hj−1,−κ

jκj(j + 1)

5.
=

1− κ

2− κ
Hs−1 −

1

2− κ

(

s− 2

s− 1
− 3

2

)

+
1

4
s≫1≈ 1− κ

2− κ
log(s) + const.

Note, that the underlying Markov process of the NAW in a HoC-model
is similar to other processes, notably the dynamics in a quasispecies model
and the one dimensional Jepsen gas. In the quasispecies model, the sequence
space is distributed with a certain population distribution. Selection will
alter it until the fittest sequence is also the most populated one. Until then,
the most populated sequence is not necessarily very fit. The number of times,
the most populated sequence changes until the fittest one is most populated,
behaves exactly as the number of adaptive steps of a NAW [101, 102]. The
one dimensional Jepsen gas on the other hand is a gas in which particles
can move freely without interactions with a velocity, which is distributed at
random at the beginning of the process. The number of times, the leading
particle is overtaken behaves also like the number of adaptive steps of a NAW
[103]. For the Jepsen gas the variance of the number of overtaking processes
Var(ℓs), where s is the starting position of the fastest particle, is known to
be

Var(ℓs) =
(κ− 1) (2 + κ(κ− 2))

(κ− 2)3
log(s) + const.[κ] for κ ≤ 1. (4.3)

Recently, also results for the NAW beyond the Gillespie approximation
became available. Starting with an approach similar to the one used by
Flyvbjerg and Lautrup [59], Jain and Seetharaman [100] arrived at a similar
expression as res. 4.3. Further calculations following the same approach even
resulted in an expression for higher moments, with variance equal to (4.3)
[104].



62 CHAPTER 4. ADAPTIVE WALKS

4.3 Adaptation in correlated fitness land-

scapes

As indicated in the previous sections, experimental results suggest fitness
landscapes to be correlated (see sec. 2.3 and 3.5). Despite this fact, the
results in this field are scarce. Most results cannot a priori be transferred
from a HoC- to an RMF- or LK-model, since they depend heavily on
the i.i.d. property. Starting with single adaptive steps and proceeding to
adaptive walks in this section the focus is on adaptation in the SSWM-limit
on correlated fitness landscapes of the RMF type.

4.3.1 Single adaptive steps

Before studying adaptive walks, single steps of adaptation shall be
investigated. For the HoC-model this has been done by Orr [98] and Joyce
et al. [105] who arrived at results for all three probability classes in terms of
the GPD with κ < 1

2
(distributions with existing second moment). Starting

from the transition probability of NAWs (1.9), the question was how the
rank changes on average in each step, if the next sequence is chosen under
selective pressure. Given, that the populated sequence has rank i in the old
neighborhood before the step and thus rank j after the step is taken, in the
new neighborhood expected value and variance of j are given by [105]

〈j〉 = 1 +
i− 2

2

(

1− κ

2− κ

)

,

Var(j) =
(1− κ)(i− 2)[(κ2 − 4κ+ 7)i+ 6(1− κ)]

12(3− κ)(2− κ)2
. (4.4)

To be precise, only the calculation of the variance needs κ < 1
2
, while the

expectation of j can be calculated up to κ < 1, until the first moment of
the GPD diverges. The biological meaning and significance, as well as the
validity of (1.9) (in the derivation s is assumed to be relatively small) is
heavily discussed, see e.g. [9]. The equations (4.4) reduce to the previously
known [98] results in the Gumbel class for κ → 0:

〈j〉 = i+ 2

4
, Var(j) =

(i− 2)(7i+ 6)

144
. (4.5)

Since these results are based on the transition probability (1.9) which does
only depend on the spacings ∆k, their validity in the RMF model should
depend on the form of the spacings. For an exponentially distributed RMF-
landscape as in def. 1.8, an expression was derived for the mean kth largest
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Figure 4.2: (a) Mean and (b) variance of the fitness rank after an adaptive step in
the exponentially distributed RMF-landscape is shown as a function of the initial
rank. Simulation results for different values of c are compared to the analytical
expressions (4.5) for the HoC- landscape (c = 0). Here L = 1000 and d = 50.

in the neighborhood, µk, see (2.14). Obviously, in this expression of µk the
parts which depend on the rank k and those which depend on the landscape
properties c and d are connected with a ‘+’. This means, that the spacings
are independent of the landscape properties. The remaining expressions are
equal to those from an exponentially distributed HoC-landscapes. Thus, the
results from the Gumbel class (4.5) should be the same for an exponentially
distributed RMF-model. Of course, this is only valid in the regime where
(2.14) is valid, which is reasonably small c. Simulations were performed for
various values of c and the results are presented in fig. 4.2 with a comparison
to (4.5).

To check the behavior of adaptive steps on non-exponentially distributed
RMF landscapes simulations were performed as well for GPD landscapes
and the results are presented in fig. 4.3 with a comparison to (4.4). In
both cases, exponential distribution and GPD, the analytical results from
the HoC-landscape fit the simulations data very well, although for larger |κ|
deviations increase. Nevertheless, it is quite astounding, that the statistics
of single adaptive steps are hardly influenced by the introduction of a fitness
gradient c.

4.3.2 Adaptive walks: Numerical results

Because results of the form of res. 4.3 are not at hand, simulations were
performed to investigate the behavior of NAWs on GPD RMF-landscapes,
according to def. 1.8. For these simulations the sequence length L = 2000
was chosen, while d, c and the starting rank r were varied. Results for an
exponentially distributed RMF-model are shown in fig. 4.4. For small c the
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Figure 4.3: (a) Mean and (b) variance of the fitness rank after an adaptive step
in the GPD RMF-landscape is shown as a function of the initial rank. Simulation
results for different values of κ and c = 0.5 are compared to the analytical
expressions (4.4) for the HoC- landscape (c = 0). Here L = 1000 and d = 50.

walk length seems to be independent of d and shows logarithmic behavior in
the starting rank and can be fitted by res. 4.3. If c gets a bit larger, fitting
is not possible anymore, but the walk length seems to be still logarithmic
in r. A d-dependence emerges for the values c > 0.3. The walk length
becomes linear in d for c = 1, where it also becomes independent of the
starting rank. Simulations were also performed for a GPD RMF-model with
κ different than zero. The results are presented in fig. 4.5. For c = 0.5
the d-dependence seems to be linear for all analyzed κ values. The slope
of the fitting functions depends on κ and increases with negative κ, as the
support of the distribution decreases, which leads to a stronger influence of
c. The dependence on the starting rank is described by res. 4.3, although
the deviations from this expression increase also for negative κ. From these
results, the form of an analytical expression comparable to res. 4.3 can be
conjectured, which would lead to the obtained results:

ℓ(r, c, d, κ) =
1− κ

2− κ
log(r) + α(c, κ)d+ β(c, κ) (4.6)

with so far unknown, nonlinear functions α, β with α(0, κ) = 0 and β(0, κ) >
0.

Closely connected to the adaptive walk length, especially considering the
very long walks for large d and c values, is the question of the crossing
probability PCr(c). PCr(c) is the probability, that a walk which starts on
the antipodal of σ∗, i.e. d = L, is completed on σ∗ and thus crosses the
complete sequence space. Such a crossing depends crucially on the existence
of adaptively accessible paths in the sequence space. A path of length ℓ is
a sequence of elements from the hypercube P = (σ1, . . . , σℓ). It is called
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Figure 4.4: Mean length of adaptive walks in Gauß-distributed RMF-landscapes.
(a) Mean walk length for randomly chosen starting rank versus initial Hamming
distance d to the reference sequence. Straight line illustrates the linear dependence
of the walk length on d for large c. (b) Mean walk length for constant initial
Hamming distance d = 1000 versus starting rank r. The horizontal line connecting
the data points for c = 1 illustrates that walk length becomes independent of
starting rank for large c. Insets show the data for small c on logarithmic scales for
d and r, respectively. Horizontal line in the inset in panel (a) illustrates that the
walk length is independent of initial distance d for c = 0.01, but acquires such a
dependence with increasing c. Straight lines in the inset of panel (b) illustrate the
logarithmic dependence of the walk length on initial rank for small c. The number
of loci is L = 2000.
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Figure 4.5: Mean length of adaptive walks in GPD RMF-landscapes. In both
figures c = 0.5. (a) Walks with randomly chosen starting rank and varying initial
Hamming distance d to the reference sequence. Inset shows results for κ = −0.7.
(b) Walks starting at constant Hamming distance d = 1000 and varying starting
rank r. In the main panel the walk length for r = 100 has been subtracted for
clarity, and the corresponding values of ℓ100 are shown in the inset. Simulations
were carried out for various choices of the EVT index κ. The lines in (a) correspond
to fits assuming a linear d-dependence, lines in (b) show the HoC result (res. 4.3).
The number of loci is L = 2000.
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Figure 4.6: The probability for an adaptive walk starting from the antipodal
sequence σ∗ to reach the reference sequence σ∗ and terminate there. Results are
shown for Gumbel-distributed random fitness components. Numerical results are
displayed by symbols connected with lines, while the corresponding lines without
symbols show the upper bound given in Eq.(4.7).

accessible, if ∀i,j∈[1,ℓ]∀σi,σj∈P : i < j ⇒ F (σi) < F (σj). For a crossing event
an accessible path has to exist from σ∗ to σ∗. The existence of such paths
has been of recent interest [26, 24, 63]. For a special case of the RMF-
model in which the global maximum is constrained to be at σ∗, Hegarty and
Martinsson [106] found that the probability, that at least one accessible path
from σ∗ to σ exists converges to one for L → ∞ and c > 0. On a general
RMF-model, additionally to the existence of such a path, σ∗ has to be a
maximum, which it is with probability

pmax
c (0) =

1

1 + Le−c
(4.7)

for a Gumbel distributed RMF-landscape (see res. 2.1). Since pmax
c (0) →

0 (L → ∞), it is unclear, how much insight the results from Hegarty and
Martinsson [106] give to the problem in this setting. Nevertheless, pmax

c (0)
works as an upper limit of PCr as can be seen in fig. 4.6 where it is compared
to results obtained by simulations.

4.3.3 Greedy walks and correlations

The previous chapters dealt with adaptation with the ‘natural’ transition
probability (1.9). Now the focus is on greedy adaptive dynamics an an RMF-
model from def. 1.8, where the step is always taken to the fittest sequence of
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Figure 4.7: The figure compares the analytic results from the Gumbel distributed
dRMF-model in the L → ∞ limit (res. 4.5) with results retrieved from simulations
on a Gumbel distributed RMF-landscape with finite L. Obviously for the c values
analyzed here, the analytic expression describes the data very well.

the neighborhood. To get analytical results, the sequence length is assumed
to be so large, that the change of the number of neighbors from uphill and
downhill are negligible on the (relative to L) short adaptive walks, which
start at σ∗. This motivates the introduction of the diminishing RMF-model
(dRMF-model) [107]: based on an RMF-model, only the uphill neighborhood
is seen from each sequence, which diminishes each step. For later convenience,
the q-analogue of a function is defined:

Definition 4.1. The q-analogue [108] of a known function is a generalization
with parameter q, which converges to the known function for q → 1. Starting
with the q-number (or q-bracket) [n]q = 1−qn

1−q
→ n (q → 1), various q-

functions can be defined straightforwardly:

• q-Pochhammer symbol (a; q)n =
∏n−1

k=0(1− aqk)

• q-factorial [n]q! =
∏n

k=1[k]q =
(q;q)n
1−q

• q-Gamma function Γq(n+ 1) = [n]q! for n ∈ N

• q-exponential eq(z) =
∑∞

n=0
zn

[n]q !
=
∑∞

n=0
zn(1−q)n

(q;q)n
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• and many more.

Result 4.4 (Probability for l steps in the Gumbel case). The probability,
that a GAW takes at least ℓ steps on a Gumbel distributed dRMF-landscape
in the limit L → ∞ is given by

Qℓ = ([ℓ]e−c !)−1 .

Proof. An approach similar to the one used in the HoC landscape for greedy
walks by Orr [97] is used here. The idea is to develop the expression for the
lth step as the product of the probability to have taken l − 1 steps (Ql−1)
times the probability to make the lth step, which equals the probability that
the largest value of all visited neighborhoods is among the L− l fitness values
of the lth neighborhood.

Q1 =P(don’t start on a maximum) =

∫ 1

0

(

1− P (x− c)L
)

dP (x)

=

∫ 1

0

(

1− P (x)e
cL
)

dP (x) = 1− 1

L+ ec

Q2 =P(one step is made)×
P(largest from the neighborhoods with benefit 0 and c is in this neighborhood)

=

∫ 1

0

Q1(L− 1)P (x+ 2c)P (x+ c)LdP (x) = Q1
L− 1

e−2c + Le−c

Qℓ =P(ℓ steps are taken)×
P(largest from the ℓ visited neighborhoods is among these L− ℓ values)

=Qℓ−1(L− ℓ)

∫ 1

0

P (x+ ℓc)

(

ℓ−1
∏

n=1

P (x+ (ℓ− n)c)L−n

)

dP (x)

=Qℓ−1(L− ℓ)

∫ 1

0

P (x)−ℓc

(

ℓ−1
∏

n=1

P (x)(L−n)e−(ℓ−nc)

)

dP (x)

=Qℓ−1
L− ℓ

1 + e−ℓc +
∑ℓ−1

n=1(L− n)e−(ℓ−n)c

→Qℓ−1
1

∑ℓ−1
n=1 e

−nc
(L → ∞)

=Qℓ−1
1− e−c

1− e−cℓ
=

Qℓ−1

[ℓ]e−c

=
1

[ℓ]e−c !
.
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Result 4.5 (GAW length on a Gumbel RMF). On a Gumbel distributed
dRMF-landscape, the mean GAW length in the limit L → ∞ is given by

ℓ = ee−c(1)− 1.

Proof. If Ql is the probability, that at least l steps are taken, then the
probability, that exactly l steps are taken, Pl is given by the probability
to take at least l steps, minus the probability to go l + 1 steps, thus:

Pl = Ql −Ql+1.

The mean walk length is then the expectation of l:

ℓ = 〈l〉 =
∑

l>0

lPl =
∑

l>0

l (Ql −Ql+1) =
∑

l>0

lQl − (l + 1)Ql+1 +Ql+1

=
∑

l>0

lQl −
∑

l>1

lQl +
∑

l>1

lQl = Q1 +
∑

l>1

lQl −
∑

l>1

lQl +
∑

l>1

lQl

=
∑

l≥0

lQl −Q0 =
∑

l≥0

1

[l]e−c !
− 1

[0]e−c !
= ee−c(1)− 1.

Note, that for c → 0 the HoC result ℓ = e − 1 [97] is reached as the q-
exponential converges to the exponential function. A comparison between
this result and data from simulations on a finite hypercube with RMF-
landscape can be found in fig. 4.7. It shows clearly, that the simplifications
made to arrive at the analytic results do not compromise the validity of
res. 4.5 as it describes the data very nicely for all tested L and c values.

For the uniform distribution, another interesting effect has been
found. The largest value in the uphill neighborhood is approximated by
∫ 1

Fmax
dP (x) = 1

L
⇒ Fmax ≈ 1− 1

L
, where the diminishing by the walk length

is neglected. This leads to the idea, that a shift of c = 1
L
will always ensure,

that seen from the momentary sequence, the uphill neighborhood has the
largest value Fmax + c = 1 − 1

L
+ 1

L
= 1 which is the largest possible value

in a uniform distribution. It is thus plausible, that the greedy walk will be
of close to maximal length if c ≥ 1

L
and rather short (O(1)) for c < 1

L
which

can be verified by simulations, see fig. 4.8.
If the walk does not start at the antipodal of the reference sequence but

somewhere closer, the approximation by the dRMF-model is not justified,
because the sheer number of downhill neighbors increases the possibility of
a downhill step to a non-negligible level. Here, it is convenient to introduce

α = d(σ0,σ∗)
L

, for a starting sequence σ0, which is kept constant while L → ∞.
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Result 4.6 (GAW length for α < 1). In a Gumbel distributed RMF-model,
the GAW length with respect to α and c is approximately given by

ℓ ≈ e

(

1 +
2α− 1

4
c+

123 + 596α(1− α)

864
c2
)

− 1.

Proof. A detailed derivation1 of this expression is given in Park et al. [107],
here only a sketch is presented, since the detailed calculations are not very
illustrative. To analyze the walk length, it is necessary to keep track over the
steps taken up and down. Therefore, di ∈ {±1} is introduced as the change
in the Hamming distance to the reference sequence at the ith step, i.e. if the
sequence visited at the ith step is σi, then d(σi, σ∗) − d(σi−1, σ∗) = di. The
complete walk up to step l in terms of distance changes can be written as a
sequence dl = (d1, . . . , dl). The total change in distance after the lth step is
given by Ml =

∑l
i=1 di. If J(dl) is the probability, that the path dl has been

chosen, after the walk started at σ0, the probability, that at least l steps are
taken in an adaptive walk is

Ql =
∑

all dl

J(dl).

After some algebra and the assumption, that the walks are so small, that
the number of uphill and downhill neighbors is essentially constant, this
expression arrives at

Ql =
∑

all dl

l
∏

k=1

sdk
1 +

∑k−1
m=1 e

−cMm

, (4.8)

where s+1 =
αec

αec+(1−α)e−c and s−1 = 1− s+1. For c ≪ 1, Ql can be expanded
to the second order of c which leads to the mean walk length. Note, that
this result retrieves the HoC result e− 1 for c → 0.

Note, that the behavior of ℓ is non-monotonic and has a minimum in c for
small α which was first observed in numerical studies in [83]. The minimum
becomes more pronounced for decreasing α, i.e. for walks starting closer at
σ∗. If α is small enough, the expected walk length should be close to the
minimal value 1, which implies, that it can be well approximated by

ℓ− 1 ≈ Q2 =

(

s+1

1 + e−c
+

s−1

1 + ec

)

. (4.9)

Note, that ℓ > 1 since the probability to start on a maximum (i.e. l < 1)
vanishes for c > 0 and α > 0 as 1

αL
. See fig. 4.9 for an illustration of the

above expression with a comparison to simulation data.

1Most of the calculations were done by Su-Chan Park
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Figure 4.9: Mean length of a GAW in a Gumbel distributed RMF-landscape.
(a) Illustration of res. 4.6. (b) Illustration of the approximation of the mean
walk length (dots are simulation results for ℓ − 1) by Q2 (lines, see (4.9)). The
simulations were done with L = 260.

4.3.4 Phase transition in the random adaptive walk

Now the focus shall be on ‘random’ adaptation where the next sequence is
chosen at random from the beneficial neighbors and the transition probability
is

Pσi→σj
=

Θ(F (σj)− F (σi))Aij
∑

k Θ(F (σk)− F (σi))Aik

.

On HoC-landscapes, this process was analyzed by Flyvbjerg and Lautrup
[59]. On the RMF-landscape, it is convenient here to use def. 1.9 of the
RMF-model, where the average global minimum is located at the reference
sequence which is also the starting sequence of the walk. It is also helpful
to consider only walks in the uphill direction, away from σ∗. This way, the
mean fitness after l steps is cl〈ξ〉.

Result 4.7 (Phase transition on the RMF-model). In an exponentially
distributed RMF-model with λ = 1, a phase transition exists for the mean
adaptive walk length:

ℓ ∼











log(L)
1−c

, c < 1

log(L)2, c = 1

O(L), c > 1.

Proof. While a detailed derivation is given in [109] and the supporting
material2, here only a sketch shall be presented, since the details are rather
long and not very illustrative. Analogously to Flyvbjerg and Lautrup [59],

2Most of the calculations were done by Su-Chan Park
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the probability, to go at least l steps and reach fitness y + lc satisfies the
recursion relation

ql(y) =

∫ ∞

0

dy′ ql−1(y
′)
1− P (y′ − c)L−l

1− P (y′ − c)
p(y).

The integrand can be understood as the probability that l−1 steps are taken
and fitness y′ is reached (i.e. ql−1(y

′)), times the probability, that the next

fitness value is y, which has to be larger than y′ − c (i.e. p(y)
1−P (y′−c)

) times

the probability, that there is one value larger than y′ − c among the L − l
neighbors (i.e. 1 − P (y′ − c)L−l). The probability to walk at least l steps is
then given by

Ql =

∫ ∞

0

dy ql(y).

As in the GAW case, the probability to go exactly l steps is given by
Dl = Ql − Ql+1. The mean walk length is ℓ =

∑

l≥0 lDl. To evaluate
these expressions it is helpful to have a look at the L → ∞ limit of the
recursion relation of ql, which simplifies due to the fact, that P (x) < 1 and
thus ∀x∀l : P (x)L−l → 0 (L → ∞):

q∞l (y) =

∫ ∞

0

dy′
q∞l−1(y

′)

1− P (y′ − c)
p(y). (4.10)

If an approximation of ql(y) by q∞l (y) is justified or not, is decided by the
absolute value of ql(y)P (x− c)L−l which has to stay much smaller than unity
for a good approximation. To find a regime, where this is fulfilled, the mean
fitness after l steps with respect to q∞l (y) is defined as

zl =

∫ ∞

0

yq∞l (y)dy .

To estimate values of l for which the infinite L approximation is valid, the
maximum of zl with ql(y)P (x − c)L−l ≪ 1 is calculated and the equation
P (zl − c)L−l = 1

e
is solved for q∞l (y) which arrives after some lengthy

calculations at the relations

q∞l (y) = − d

dy

l
∑

n=0

y
(y + cn)n−1

n!
e−y−cn

⇒ zl = 1 +
l
∑

k=1

αl,
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Figure 4.10: Mean length of adaptive walks in an exponentially distributed RMF-
landscape. (a) Mean walk length in a dRMF-landscape. The phase transition can
be seen nicely at c = 1. For smaller c the behavior becomes linear while for larger c
faster increase is visible. Note the unusual double logarithmic plot with additional
log(L) on the x-axis. (b) shows the mean walk length in an RMF-landscape where
back-steps are allowed (lines) compared to a dRMF-landscape (points). The plot
shows, that both data sets are very close and that the relative deviation gets
smaller for larger L.

where αl = zl − zl+1 = (cl)l+1e−cl

l!

∫∞
0

dt te−cte(l−1)(log(1+t)−ct). Using Laplace’
method of integral approximation and Stirling’s formula, in the regime of
l ≫ 1, αl can be simplified to take the form

αl =

{

lle−l

l!
∼ 1√

2πl
, c = 1

max(1− c, 0) e
−l(c−1−log(c))√

2πl
c

(c−1)2l
, c 6= 1

⇒ zl = 1 +
l
∑

k=1

αk ∼















(1− c)l, c < 1
√

2l
π
, c = 1

finite, c > 1.

The standard deviation sl of Ql has been calculated and behaves as follows:

sl ∼
{

O(
√
l), c ≤ 1

O(1), c > 1.

This means Ql will be sharply peaked for large L and can thus be
approximated as δ(y − zl) if c > 1. If c ≤ 1, it can be assumed, that Dl

gives a significant contribution when log(F (zl + sl)) ∼ − log(L).

The effect from res. 4.7 can be seen in fig. 4.10. Obviously the differences
between dRMF and RMF-landscapes concerning the adaptive walk distance
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are negligible on a qualitative level and surprisingly small on a quantitative
level.

Following Park et al. [109], it can be argued, that the phase transition
will only occur for RMF-landscapes, which are distributed by a distribution
with exponential tail. Starting at (4.10), this equation can be modulated
into

zl+1 − zl =

∫ ∞

−∞

q∞l+1(y)

h(y)
dy − c (4.11)

with h(y) defined in (1.11), for distributions with unbounded support in both
directions. As mentioned in sec. 1.6, h has only a finite limit for distributions
with exponential tail. Based on (4.11), it will be assumed, that zl diverges
and checked, whether this is consistent, using the asymptotics of the hazard
function.

For the exponential distribution, that is h(y) → 1
λ
(y → ∞), which leads

to

zl+1 − zl ≈ λ− c ⇒ zl ≈ (λ− c)l.

This means linear growth if c < λ and inconsistencies with a large positive
zl for c > λ, which is a reproduction of the properties stated in the proof of
res. 4.7.

For a distribution which has a tail of the form log(p(y)) ∼ −yα, the
hazard function behaves like h(y) ∼ yα−1, which means, that zl only diverges

for α < 1 as zl ∼ l
1
α . This implies that the mean walk length is logarithmic

in L. If α > 1 and thus the tail thinner as exponential, the integral in (4.11)
stays small and zl is dominated by c, if c > 0. This yields a walk length
linear in L for c > 0 and logarithmic in L for c = 0 due to the then occurring
zl ∼ l

1
α .

For a distribution with power law tail p(y) ∼ y−(ν+1) the hazard function
behaves as h(y) ∼ 1

y
. This leads to an exponentially growing zl, implying

logarithmic walk length in L.
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Chapter 5

Recombination

Apart from the biological importance of an understanding of the benefits
of recombination the fact, that it leads to quadratic terms of p in the
unnormalized evolutionary equations makes it a very interesting but complex
process. It is not easy to find exact results for sequence lengths L > 2.
Nevertheless, if the focus is not on the complete evolutionary solution, but
only on parts, exact analytical expressions can be found. This approach will
be used in the first part of this chapter. For more detailed studies, numerical
simulations can be performed to give a more general understanding of the
mechanisms contributing to the evolution with and without recombination.
This will be done in the second part of this chapter.

5.1 Exploration of the sequence space

In the limit N → ∞ the evolutionary equations become deterministic. For
every starting condition, there is exactly one solution. Since the size of the
population is infinite, once a sequence became populated, it will never go
extinct, even if it has a very low fitness. This is due to the fact, that the
Wrightian fitness is a positive number. If fitness is set aside for now, the
evolution of a population on the hypercube reduces to the question whether
a sequence is populated or not.

One of the advantages recombination holds is the supposedly faster
exploration of the sequence space. For infinite populations, with single
mutations the complete L dimensional hypercube will be explored by a
mutation only process in L steps. In the following it will be shown, that
recombination leads to an exponential exploration of the sequence space and
is thus vastly faster.
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5.1.1 Properties of Hamming balls

In the following, the infinite population limit, N → ∞, with single mutations
only will be analyzed. When a population starts monomorphic, mutations
will occur equally distributed in all directions which leads to an isotropic
exploration of the sequence space. It is thus worth to analyze the properties
of Hamming balls

Bσ(r) = {σ′ ∈ HL|d(σ, σ′) ≤ r} (5.1)

which are the natural, discrete equivalent to a sphere. The maximal radius
of a Hamming ball in HL is thus L, and ∀σ∈HL : Bσ(L) = HL. The volume
of B is given by |Br(σ)| =

∑r
d=0

(

L
d

)

.

Result 5.1 (Intersection of Hamming balls). For two Hamming balls with
radius r around sequences σ, σ′ with d(σ, σ′) = d ≤ 2r, the number of
sequences in the union is given by

|Bσ(r) ∪ Bσ′(r)| = 2
r
∑

i=0

(

L

d

)

−
[r− d

2
]

∑

n=0

(

L− d

n

) r−n
∑

m=d−(r−n)

(

d

m

)

,

where the Gauß brackets [x] denote the closest integer number below x.

Proof. W.l.o.g., choose σ = (0, 0, . . . , 0) and σ′ = (1, . . . , 1, 0, . . . , 0) with
d(σ, σ′) = d. Then, define

Ξd
m,n = {ν ∈ HL|m times 1 in the first d loci and n times 1 in the last L− d loci}.

Now choose σ̃ ∈ Bσ(r) ∩ Bσ′(r) s.t. σ̃ ∈ Ξd
m,n. Then d(σ̃, σ) = m + n ≤ r

and d(σ̃, σ′) = d−m+n ≤ r and thus n ≤ r− d
2
and d+n− r ≤ m ≤ r−n,

which leads to

|Bσ(r) ∩Bσ′(r)| =
[r− d

2
]

∑

n=0

r−n
∑

m=max{0,d+n−r}
|Ξd

m,n|

=

[r− d
2
]

∑

n=0

(

L− d

n

) r−n
∑

m=d−(r−n)

(

d

m

)

|Bσ(r) ∪Bσ′(r)| = |Bσ(r)|+ |Bσ′(r)| − |Bσ(r) ∩ Bσ′(r)|

If d(σ, σ′) > 2r, the two balls do not intersect and hence |Bσ(r)∪Bσ′(r)| =
|Bσ(r)|+ |Bσ′(r)|.
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Result 5.2 (Pairs at distance d in a Hamming ball). The number of pairs
at a given distance d in a Hamming ball Bσ0(r) ⊂ HL is given by

n(d) =
1

2

r
∑

k=0

(

L

k

) [ 1
2
(r−k+d)]
∑

n=0

(

d− n

k

)(

n

L− k

)

.

Proof. W.l.o.g., choose σ0 = (0, 0, . . . , 0) and σ = (1, . . . , 1, 0, . . . , 0) with
d(σ0, σ) = k. Then, define

ζkm,n = {ν ∈ HL|m times 0 in the first k loci and n times 1 in the last L− k loci}.

Now choose σ̃ ∈ Bσ0(r) s.t. σ̃ ∈ ζdm,n and d(σ̃, σ) = d. Then d(σ̃, σ) =
m+ n = d and k−m+ n ≤ r and thus n ≤ 1

2
(r− k+ d), hence, the number

of pairs including σ with distance d is

nd(kσ) =

[ 1
2
(r−k(σ)+d)]
∑

n=0

|ζkd−n,n| =
[ 1
2
(r−kσ+d)]
∑

n=0

(

d− n

kσ

)(

n

L− kσ

)

.

When summing over all pairs, every pair is counted twice, such that for the
total number of pairs in the hypercube at distance d:

n(d) =
1

2

r
∑

k=0

(

L

k

)

nd(k).

Note, that the total number of pairs in the sequence space is 22L−1.

5.1.2 Recombination on the hypercube

To analyze recombination on the hypercube it is helpful to have a look on
recombination in Hamming balls. If a population starts monomorphic in
a flat landscape for large population size, mutations lead to a populated
Hamming ball in the first step, on which recombination can act. To begin
with, the total number of parents is calculated a given sequence can have on
the hypercube.

Result 5.3 (Total number of possible parent pairs in HL). The total number

of possible parent pairs for a given sequence is E = 3L−1
2

+ 1.
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Figure 5.1: The number of pairs in the ball which can recombine out of the ball
divided by the total number of pairs in the ball in dependence of the radius. L=100.

Proof. Let (σ′, σ′′) be a possible pair of parents to σ. This means, that if
d(σ, σ′) = L − κ, then d(σ, σ′′) ≤ κ. It has to be considered, that all pairs
are counted twice but (σ, σ). Thus this pair is omitted in the sum (−1) to
add it afterwards manually (+1) and a factor 1

2
is multiplied to the sum:

E =
1

2

(

L
∑

κ=0

L−κ
∑

i=0

(

L

κ

)(

L− κ

i

)

− 1

)

+ 1

=
1

2

(

L
∑

κ=0

(

L

κ

)

2L−κ − 1

)

+ 1 =
3L − 1

2
+ 1.

If a Hamming ball is populated the number of jumps and the exploration
of the sequence space will depend crucially on the number of sequence pairs
which can create offspring outside the populated ball.

Result 5.4 (Pairs which can recombine out of the ball). The number of pairs
in Bσ0(r) ⊂ HL which can recombine to sequences not included in this ball is
given by

Ω(r) =
1

2

r
∑

k=1

(

L

k

) k
∑

m=0

r−k+m
∑

n=r−k

(

k

m

)(

L− r

n

)

.
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Proof. W.l.o.g., choose σ0 = (0, 0, . . . , 0) and σ = (1, . . . , 1, 0, . . . , 0) with
d(σ0, σ) = k. Then, define ζkm,n as before. Choose σ′ ∈ Bσ0(r) s.t. σ

′ ∈ ζkm,n.
Let R(σ, σ′) * Bσ0(r) ⇒ n > r − k and k − M + n ≤ r, which yields for
the partners, with which σ can produce recombinations out of the Hamming
ball:

Ω(r; k(σ)) =
k
∑

m=0

r−k+m
∑

n=r−k

|ζk(σ)m,n |

and as before

Ω(r) =
1

2

r
∑

k=1

(

L

k

) k
∑

m=0

r−k+m
∑

n=r−k

|ζk(σ)m,n |.

Figure 5.1 shows the fraction of sequence pairs, which can recombine
out of the ball. The number of pairs in a Hamming ball is given by
1
2
|Bσ0(r)|2. If recombination is considered, the Hamming distance alone is

often not sufficient in calculations concerning recombination. This inspires
the following generalizations.

Definition 5.1. The mapping

D : HL ×HL ∋ (σ, σ′) 7→ {i1, . . . , id(σ,σ′)} (5.2)

= {i|σi 6= σ′
i} (5.3)

is designed to give information about the location of differences of two
sequences. Note, that |D(σ, σ′)| = d(σ, σ′).

Now it can be shown, how exactly recombination increases the populated
area in this setting.

Result 5.5 (Recombination doubles the radius in each step). As long as
r < L

2
, the radius of the populated ball is doubled in each generation:

⋃

(σ,σ′)∈(Bσ0 (r))
2

R(σ, σ′) = Bσ0(2r).

Proof. 1. “⊇”:
Choose σ ∈ Bσ0(r) arbitrarily. Choose δ ⊂ D(σ, σ0) s.t. |D(σ, σ0) \ δ| ≤ r
and |δ| ≤ r. ∃σ′∈Bσ0 (r)

: D(σ′, σ0) = δ; ∃σ′′∈Bσ0 (r)
: D(σ′′, σ0) = D(σ′′, σ) \ δ
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per definition of Bσ0(r). Thus, σ ∈ R(σ′, σ′′).X

2. “⊆”:
Choose (σ, σ′) ∈ (Bσ0(r))

2 arbitrarily. Thus d(σ, σ0) + d(σ′, σ0) ≤ 2r ⇒
∀σ̃∈(σ,σ′) : d(σ̃, σ0) ≤ 2r.X

This means, that with recombination, a population can explore the
sequence space exponentially in time, while with mutations only, exploration
is linear in time. If now Bσ(rt) denotes the populated ball at time t with
radius rt around σ, this means:

mutations only :Bσ(rt+1) = Bσ(rt + 1),

mutations and recombination :Bσ(rt+1) = Bσ(2(rt + 1)),

⇒ mutations only :Bσ(r(t)) = Bσ(r0 + t),

mutations and recombination :Bσ(r(t)) = Bσ(2
t(r0 + 2)− 2). (5.4)

A comparison of both processes is given in fig. 5.2. To get a better
understanding of how recombination can lead to jumps in Hamming distance
and thus increase the speed at which the hypercube is explored, it is necessary
to understand how many sequence pairs from inside a populated ball map
outside of this ball in dependence of the target distance. This way, it will
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be easier to estimate, how many pairs will in fact produce offspring which is
outside the ball and hence help to populate unpopulated areas of the genome
space.

Result 5.6 (Pairs to recombine to doubled radius). The number of pairs
(σ′, σ′′) ∈ (Bσ0(r))

2 ⊂ (H2
L)

2 which can recombine to σ ∈ Bσ0(2r) with
d(σ, σ0) = D > r is given by

mL(D) =
r
∑

n=D−r

(

D

n

) r−n
∑

m=0

(

L−D

m

)

×

r
∑

n′=D−n

(

D

n′ − (D − n)

) r−n′

∑

m′=0

(

L−D −m

m′

)

.

Proof. W.l.o.g., choose σ = (0, 0, . . . , 0) and σ′ = (1, . . . , 1, 0, . . . , 0) with
d(σ, σ′) = d. Then, define

Ξd
m,n = {ν ∈ HL|m times 1 in first d loci and n times 1 in last L− d loci}.

Now choose σ′ ∈ ΞD
m,n, σ

′′ ∈ ΞD
m′n′ such that σ ∈ R(σ′, σ′′). That means,

that n > D − r and n′ > D − n to get D 1s in the first D loci. At all the
places, where σ′ has 1s in the last L−D loci, σ′′ has to have 0s. The rest can
be chosen anywhere from the remaining loci. For each choice of n,m, n′,m′,
there are m chosen of L−D, then n′−(D−n) chosen of D, the rest is needed
to compensate the 0s in the first D. And m′ can be chosen anywhere, where
the partner has 0s, thus, out of L−D−m. The first n can be chosen out of
D. If now the sum is taken over all possible values, the result is reached.

A plot of this result is given in fig. 5.3. In comparison to the total number
of pairs the number of parents which are capable of exploring sequences
outside the ball is very small, but the absolute value is quite large. Since the
number decreases with the distance from the center of the ball, it is of interest,
how many sequences would populate the maximum distance sequences at
double radius.

To do so, it will be assumed, that the ball is populated uniformly, i.e. that
every sequence is populated with same frequency, while outside the ball no
sequence is populated. This assumption is not biological but enables an
estimate and analytical methods. From the previous result follows that

(

2r
r

)

pairs of parents are present which could produce offspring with D = 2r.
Those parents have Hamming distance 2r and thus they can produce 22r

different sequences. If all sequences in the ball are populated with equal
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Figure 5.3: A ball with radius r = 30 is populated. The normalized number of
parents for a sequence outside the ball is plotted in dependence of its distance from
the center of the ball. L=100.

frequency p, this leads to a rate at which sequences in distance D = 2r are
populated by recombination of

2−2r

(

2r

r

)

p2. (5.5)

With the correct combinatorial factor the rate with which sequences
recombine from inside of the ball to any sequence at distance 2r from the
center is given by

T2r =

(

L

2r

)(

2r

r

)

4−rp2. (5.6)

When all sequences are populated with equal frequency, p2 = |Bσ0(r)|−2.
A plot of this expression is given in fig. 5.4. It is obvious, that this rate
decreases extremely fast with the balls radius, which means, that these long
jumps are very unlikely in the case of finite populations. But of course, then
the ball will not be populated uniformly and population distributions might
occur which enable long jumps with high probability. Nevertheless on average
it can be expected that a realistic frequency distribution enables even fewer
long jumps than the uniformly populated Hamming ball. Recombination
seems to have the ability to increase the speed, at which the sequence space
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is populated, but the long jumps it can lead to are not the key phenomena
of the benefit of sex.

5.2 Recombination in rugged fitness land-

scapes

If the simplifying conditions from above are relaxed and mutation
and selection are included, the analytical description of processes with
recombination becomes very complicated. This leads to the situation that
there are far more numerical studies at hand than theoretical, starting from
early works with few loci up to L dimensional hypercubic models with
epistasis (e.g. [110, 111, 112, 113, 114, 115]). The focus will now be on the
time series of fitness differences between recombining and non-recombining
populations, both under selection and with mutation. As will be shown in
the following, analysis of the time series reveals a common, transient benefit
of sex, which can be prolonged indefinitely if time varying fitness landscapes
are taken into account.
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5.2.1 The simulations

The following was published in [116]. Simulations were performed on an
exponentially distributed Wrightian RMF-landscape, which uses def. 1.9 to
ensure positivity of the fitness values. It comes with parameters c (the
mean slope) and λ (parameter from the exponential distribution). If not
mentioned otherwise the hypercube dimension in this chapter’s simulations
is L = 16. The results are averaged over runs and landscape realizations.
All runs start at σ∗ which has on average the smallest fitness value in the
landscape. The analyzed dynamics is of the Wright-Fisher type: for finite
N , first the population frequencies evolve with the mutation matrix and the
selection matrix:

pt+1 =
SMpt

∑

σ′∈HL (SMpt) (σ′)
.

Then, for each sequence σ the number of individuals carrying this sequence
is drawn from a Poisson distribution with mean p(σ)N . After this, the
actual number of individuals deviates on average by

√
N from N and thus a

renormalization is carried out. Recombination is performed by replacing an
individual by a recombinant created after choosing two parents at random.

In the limit N → ∞, the random sampling is not necessary any more (in
fact it is also impossible, obviously). Here, M is exchanged by M∞ for the
infinite population limit (see sec. 5.2.4) and recombination is realized with
the transition matrix T (see def. 1.14):

pt+1 =
T SM∞pt

∑

σ′∈HL (T SM∞pt) (σ′)
.

From the already existing studies several results and effects are known:

• In smooth fitness landscapes, recombination yields a faster adaptation
towards the global optimum due to Fisher’s fundamental theorem [117].
If the global optimum is reached, more diversity is produced around it
by recombination load, this can results in a small disadvantage in mean
fitness on the long run, compared to non-recombining populations.
Nevertheless, if selection is weak, recombination can be beneficial for
long times, especially on additive landscape . This can be explained
with the Hill-Robertson-effect, see e.g. [118].

• A setting which has been considered numerous times is quite similar
to this one, but includes an additional modifier allele [119] which
determines whether the individual proliferated sexually or asexually.
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This way selection for or against recombination can be studied in one
population. In a population with a modifier allele, arriving at the global
optimum can lead to a selection against recombination to achieve higher
mean fitness. This is called the reduction principle [120].

• On a two locus landscape (L = 2) with sign epistasis, it has been
shown, that for a population which is concentrated at the local fitness
peak, recombination can be helpful to cross the fitness valley, if r is
very small [14, 121, 122]. But the time to cross the valley grows for
larger r and diverges in the limit to a critical recombination probability
r → rc < 1 [123, 124] for N → ∞. This means, that for larger,
rough landscapes it may be expected that recombining populations
show increased incidents of trapping at local maxima.

• Two regimes have been identified [125]: if selection is weak
recombination can lead to a delocalization by creating diversity, if
selection is strong and recombination is weak (r is small) the population
becomes condensed at particularly fit genotypes. In the following the
second regime is analyzed.

5.2.2 The observables and parameters

In the simulations, several parameters control the general behavior of the
process. In brevity, those are:

N : Population size.

µ: Mutation rate, N and µ are often combined to the parameter Nµ which
is the average number of mutants per generation for finite N if double
mutations can be neglected.

r: Fraction of the population which recombines.

λ: Parameter from the exponential distribution P (x) = 1− e−
1
λ
x.

c: Mean slope of the RMF-landscape.

The following are the used observables of the simulations:

• ∆w(t) = 〈wr(t)〉 − 〈wnr(t)〉 is the average of the difference between the
fitness of the recombining population (subset ’r’) and the fitness of the
non-recombining population (subset ’nr’) at generation t.
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• The entropy S(t) = −∑σ∈HL pt(σ) log(pt(σ)) is used to measure
diversity in a population. In the same way as above the difference of
recombining and non-recombining population is denoted by ∆S(t) =
〈Sr(t)〉 − 〈Snr(t)〉.

5.2.3 Finite populations

At first, populations of finite size shall be analyzed. The results from
simulations1 are plotted in fig. 5.5. These plots show that the typical
behavior seems to be as follows: first ∆w(t) has a minimum below zero,
followed by a maximum which can be above zero and corresponds to the
most beneficial time of recombination just before the slope becomes negative
again and results in a disadvantage of recombination for later generations.
The negative ∆w(t) at short times can be explained with the monomorphic
starting condition: at t = 0 recombination cannot provide more diversity
because no mutants exist. After the first few generations, several mutations
might have been created, but in this case it is very probable that either both
parents, or at least one parent carries the wildtype genome. This increases
the probability, that the child has again the wildtype genome to 1/2. This
is not the case for the non-recombining population, where adaptation can
start faster because the chance for a back-mutation is 1/L. First mutations
have to create a more diverse population, before recombinations can increase
the number of populated genotypes, see sec. 5.1.2. This means, that in the
very beginning, recombination can decrease the adaptive process by reducing
diversity, although a look at the slightly positive ∆S(t) at short time scales
seems to indicate that this effect is not of importance here. More important
may be a variant of recombinational load. If enough mutants did arise,
recombination will create more diversity, this can again lead to a disadvantage
for the recombining population because it will decrease the mean fitness since
also very unfit sequences are populated. Especially compared to a population
which proliferates without recombination: strong selection will concentrate
the population around fit genotypes with a comparably small diversity and
thus a small amount of unfit populated sequences which could decrease the
mean fitness of the population. This can be validated by the plot of 〈Snr(t)〉.
The deficit for the more diverse population with recombination lies here in the
fact, that more diversity means also more less fit genotypes which decrease
the mean fitness. But obviously this starting deficit turns into a benefit at
intermediate times when the more diverse population can adapt faster in
direction of σ∗ which can result in a positive ∆w(t). This transitory benefit

1Most of the simulations for finite populations were performed by Stefan Nowak
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Figure 5.5: Plots of simulation results with N = 2000, Nµ = 4 and c = 1. Dashed
lines correspond to non-recombining populations and solid lines recombining ones.
The plots concerning fitness time series show the very typical behavior which can
produce a transient benefit of recombination on intermediate timescales. The
ones concerning entropy show that recombining populations produce much more
diversity than non-recombining ones.

of recombination follows after ∆S(t) becomes positive. The maximum of
∆w(t) follows the maximum of ∆S(t).

The Weismann effect thus seems to make a large contribution to the
dynamics. Due to the larger diversity, at which a benefit follows in the
recombining population, Fisher’s fundamental theorem might be involved,
too. ∆S(t) and ∆w(t) seem to be correlated, as the population with the
largest ∆S(t) yields the largest fitness advantage and the one with the
smallest ∆S(t) yields the smallest. Another benefit might stem from the
Fisher-Muller effect, which predicts a benefit of recombination from the
gathering of multiple beneficial alleles. On an RMF-landscape, the Fisher-
Muller effect allows recombining populations to make jumps in direction of
σ∗. This might be connected to a reason why increasing λ reduces the height
of the ∆w(t) maximum, because the landscape becomes rougher and more
fitness maxima can arise, which decreases the additivity of fitness effects and
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thus increases the probability that two fit parents recombine to a less fit
child. Another reason might be, that stronger selection induced by increased
λ leads to a decreased diversity which suppresses the Weismann as well as
the Fisher-Muller effect. This argument seems to be supported by the data
which shows smaller values of ∆S(t) if λ is increased.

If diversity is important, it is straightforward to consider Nµ, the
mutation supply. If the supply of mutants is on average constant Nµ =: m
it is not obvious what happens if N is increased. If mσ mutants are
newly created at some genotype σ, the corresponding frequency is given by
p̃(σ) = mσ

N
. As shown in sec. 5.1 recombination can make the largest steps

in the sequence space, if two sequences from the edge of the populated area
recombine. The sequences with p̃ > 0 thus are sequences, which could lead
to a great advantage if recombined with one other. But the probability for
this to happen is

P(σ, σ′are newly populated, recombine) = 2p̃(σ)p̃(σ′)

=
2mσm

′
σ

N2
< 2

(m

N

)2

→ 0 (N → ∞).

This means, that increasing N can decrease the possibilities of a recombining
population as can be seen in fig. 5.6. There plots are shown which
demonstrate, that ∆S(t) does decrease for larger N . Interestingly, although
on the smoother landscape (λ = 1) ∆w(t) reaches a higher maximum, on
the rougher landscape (λ = 1.5) ∆w(t) increases with increasing N , albeit
the decreasing ∆S(t). If N is kept constant and µ is increased, recombining
and non-recombining populations will benefit from a larger µ. This might be
related to section 5.1 where it was shown, that a population spreads faster,
if the initially populated Hamming ball is larger.

Fig. 5.7 shows data from simulations with different parameter choices for
fixed N and c. The plots show that the diversity for both reproduction types
benefits from large Nµ. But for a larger λ even though ∆S(t) is positive at
most times, ∆w(t) < 0 in most cases at all times. Additionally ∆w(t) reduces
with increasing µ. Nevertheless, the peak height of ∆S(t) is increased with
rising Nµ, and even if ∆w(t) is always negative as for λ = 2 and Nµ = 1,
at around t = 10 there is a positive peak in ∆S. But it decreases much
faster as in the setting with λ = 1. At around t = 30, only 20 generations
later, ∆S(t) ≈ 0. This happens in the smoother landscape with λ = 1 not
before t = 100. So in the smoother landscape with this particular setting,
a diversity advantage of the recombining population is maintained for over
100 generations, roughly four times longer than in the rougher landscape.

Obviously, recombination can under various circumstances lead to an
advantage in adaptation. But in all simulations considered in this section
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Figure 5.6: Plots of simulation results with Nµ = 8 and c = 1. Parameters λ and
µ are varied.
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Figure 5.7: Plots of simulation results with N = 1000 and c = 1. Dashed lines
correspond to non-recombining populations and solid lines to recombining ones.
Parameters λ and Nµ are varied.
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∆w(t) will get a negative slope at some point in time and become negative
eventually. In an attempt to understand why recombining populations
cannot maintain the adaptive advance it has on intermediate timescales, it
is helpful to look at results in small landscapes where also analytical results
are present [14, 121, 122, 123, 124, 126].

In a landscape on a two-dimensional hypercube with sign epistasis and
one local and one global maximum (similar to the illustration of sign epistasis
in fig. 1.2), a population which is concentrated on the local maximum would
benefit if the fitness valley could be crossed and the global maximum would
be reached. Therefore, a non-recombining population would have to create
mutants in the valley, which survive long enough to create a double mutant on
the global maximum, which gets the chance to populate the global maximum.
A recombining population additionally has the possibility to create mutants
in each of the valley states, which can recombine to the sequence of the
global maximum. The waiting time, until valley mutants have been created
and afterwards most of the population has moved to the global maximum is
called escape time tesc and is measured in generations. Despite the fact, that
for larger N more mutants are created, it has been shown, that a population
on a local fitness maximum has an expected escape time which increases with
N . If the fitness valley around the peak has a critical depths, for mutation
only populations, this time increases algebraically in N [14, 126], while for
populations with recombination a critical recombination rate rc exists and
the escape time is exponentially in N , log(tesc) ∼ N(r − rc)

3
2 for r close

to rc so that it diverges for r ≥ rc < 1 for N → ∞ [122]. This result
follows from the fact, that the recombining population has the disadvantage,
that if a mutant on the global maximum is created, it will most probably
recombine with one from the local maximum, which will with probability
1
4
recombine back to the local maximum and with probability 3

4
away from

it. This disadvantage is also present in larger fitness landscapes. Of course,
the larger L provides more possible paths away from the local peak to a
fitter sequence. This implies an advantage for larger L. Nevertheless, it also
implies, that for a peak which is high enough, recombining populations can
be trapped, because every possible escape path would have a corresponding
critical recombination rate rc < 1. If the populations with recombination are
then trapped longer than those without recombination, this would explain
the long time fitness deficit. From simulations, the escape rate fesc(r) was
measured2: on a landscape with λ = c = 1 the number of escape events
was measured as well as the number of trapping events for 500 generations.
Then the escape rate can be calculated as fesc(r) =

#escapes
#trappings

. A population

2The simulations on the escape rate were performed by Ivan G. Szendro
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Figure 5.8: The figure shows plots of simulation data for the escape rate fesc(r) for
two different population sizes and Nµ = 4. Panel (a) shows fesc(r) in dependence
of r, while (b) shows a normalized function fesc(r)/fesc(0). Here, a maximum
larger than 1 indicates, that an optimal recombination rate exists, for which the
escape time is reduced in comparison to non-recombining populations.

was assumed to be trapped on a maximum σ, if at some time t, pt(σ) ≥ 0.7.
A population is considered to have escaped, if at t′ > t: pt′(σ) < 0.5. The
data for Nµ = 4 is given in fig. 5.8. Note, that due to the fact that each
escape was preceded by a trapping event fesc → 1 (t → ∞). Nevertheless,
here escapes were so rare, that this rate is still a useful measure. Obviously,
the escape rate is dramatically smaller for r = 1, and is further decreased for
larger N , as expected.

In the context of the temporal development of sex, experimental results
of Becks and Agrawal [127] are at hand which can also be interpreted
with the results of this chapter. There, the facultatively sexual rotifer
Brachionus calyciflorus was used. These wheel animals can change their
reproduction scheme between sexual and asexual. In the experiment, the
rotifer was set under selective pressure by an environmental change. This
was conducted by a change of their algal food source and the concentration
of NaCl which set the population in an ‘unfit’ state. In the following phase
of adaptation the rate of sex increased, while after a fit state was reached, it
declined. Additionally, an estimate of fitness showed, that the mean fitness
of the sexually reproducing rotifers starts lower than the mean fitness of
the asexually reproducing directly after the environment change. But after
some generations the sexually reproducing gain higher mean fitness, until
at intermediate times the asexually reproducing overtake again and reach
the higher mean fitness towards the end of the experiment. Thus, these
experimental findings coincide nicely with the numerical results presented
in this chapter and show exactly the same pattern. This demonstrates the
significance of focus on temporal development and adaptation in the context
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Figure 5.9: Results of simulations in the limit N → ∞. Both figures show ∆w(t)
for different parameters. The overall phenomenology is quite similar to the finite N
results. Still there are parameters for which a transitory advantage can be found,
especially for small λ and µ. For larger λ, the benefit of recombination vanishes.
For increasing µ it decreases.

of evolutionary biology. Note, that the importance of transient, in contrast
to asymptotically or long time effects, was also stressed by Hastings [128] in
the context of ecological systems.

5.2.4 Infinite populations

Although in sec. 5.1.2 single step mutations were used in the context of
infinitely large populations to make the discussed problems analytically
feasible it is not very realistic. N → ∞ leads to µnN → ∞ for every
fixed µ < 1 and any n. This means, that double, triple, multiple mutations
in general will be produced and thus the whole sequence space will be
populated after one time step, each genotype with a frequency dependent
on the Hamming distance to the wild type. The single mutation matrix was
introduced in def. 1.12 and will get a superscript here:

M(1) = I(1− µ) +
µ

L
A.

To include double mutations, the matrix becomes

M(2) = I(1− µ) +
(

I(1− µ) +
µ

L
A
) µ

L
A.

For arbitrary orders n of mutations, the matrix is expanded in the same way

M(n) = I(1− µ) +
(

I(1− µ) +
(

I(1− µ) + . . .
µ

L
A
)

. . .
) µ

L
A

=
n
∑

j=0

(1− µ)
(µ

L
A
)j

. (5.7)



96 CHAPTER 5. RECOMBINATION

For matrices there exists a geometric series, which is given by
∑

n≥0 T =

(I− T )−1 if limk→∞ T k = 0. Applying this yields the mutation matrix for
infinite N [116]:

n
∑

j=0

(1− µ)
(µ

L
A
)j n→∞−→ (1− µ)

(

I− µ

L
A
)−1

= M(∞). (5.8)

As discussed above, M∞ populates every single genotype right after the
first application. Hence, after the first generation, all sequences are available
in the population. This means, that a faster exploration of the genotype space
is not a possible benefit anymore. Nevertheless, despite the naive guess, that
now recombination cannot yield an advantage, the situation is still far from
trivial. Still by increasing S recombination can yield more diversity. On the
other hand, as mentioned above, trapping can be more pronounced for larger
populations, which indicates, that this will be an important issue especially
for infinite population sizes. In fact, on empirical fitness landscapes trapping
has been observed in the infinite N limit [36].

Since the process is now deterministic in the sense, that recombination,
selection and mutation do not introduce stochasticity as in the finite N cases,
averaging has to be performed over landscapes, only. Due to the large number
of entries in the S matrix (2L × 2L × 2L) the considered sequence length is
reduced to L = 8 to prevent memory issues during the simulations. And
since ∀µ∈R : µN → ∞ (N → ∞), µ is the better parameter here. The
fig. 5.9 shows, that the qualitative behavior is similar to the finite N results.
Particularly the transient benefit of recombination can still be observed. This
means, that recombination does in fact accelerate adaptation not only by
exploring the sequence space faster, which is completed now after the first
generation. Nevertheless, the long period of disadvantage is also present in
the simulations. Thus, the trapping still occurs and ends the benefit of the
recombining population.

5.2.5 Seascapes

Up to now, this work only considered time independent fitness landscapes.
But of course, natural environments are changing. Either this might happen
without the organism changing its habitat, for example due to an Ice Age,
after an asteroid collision, etc., or if a population changes its location. Such
a time dependent fitness landscape is also called a fitness seascape [129].
Time dependent fitness landscapes have already been studied, but usually
the considered models had one, moving global optimum, e.g. [130, 131, 132,
38, 133]. Here, based on the RMF-model, two ways are chosen to change
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Figure 5.10: Plots of simulation results on seascapes. (a) shows time series as
before for seascapes with different changing probabilities pc. Note that in contrast
to previous figures no logarithmic scales were used. The chosen changing scheme
is the hard reset. The plot shows, that for some pc a plateau occurs in ∆w(t) > 0
which means, that recombination stays beneficial in these cases. In (b) the dots
are mean plateaus of ∆w(t) in a hard reset seascape in the sense, that from data
sets like the ones from (a) the mean plateau height was determined for a given pc.
For each pc there is a typical time at which the change of the seascape happens
and this is T = 1/pc. The solid line is for comparison and shows a time series of
∆w(t) without reset. The inset shows the mean plateau heights for soft reseted
seascapes. Parameters are c = 0.75, N = 2000, µ = 0.0025.

the fitness in time. In both cases, the random numbers are redrawn and the
reference sequence σ∗ changes its location in each time step with the changing
probability pc. In the soft reset setup, σ∗ moves to one of its neighbors, while
in the hard reset setup σ∗ moves to another sequence randomly picked from
HL. Connected to the changing probability is the typical changing time
Tc = 1

pc
. In the context of fitness seascapes, recombination gives a much

greater benefit if the time in which recombination leads to a faster adaptation
is tuned to the timely changes in the fitness seascape. Fig. 5.10 shows timely
varying fitness prolonging the benefit of recombination indefinitely. It also
shows that the optimal Tc (the one for which recombination is most beneficial)
coincides with the time at which in the static fitness landscape ∆w(t) has
its maximum. This behavior resembles resonance: the long time advantage
of recombination is maximized, if the changing frequency 1/Tc is close to the
‘resonance frequency’ of the intrinsic timescale of adaptation.

The Red Queen hypothesis was inspired by the following line from
Through the Looking-Glass [134]: “Now, here, you see, it takes all the running
you can do, to keep in the same place”. As mentioned in the introduction,
it states, that to survive in a changing environment it is not necessarily the
total fitness which can be achieved by an organism but the fitness benefit
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an organism can establish and maintain against a competing species. In
a changing environment, a fit state can fast become unfit and then it is
important to adapt fast. This coincides very nicely with the results from this
and the previous chapter which show, that in static fitness landscapes the
higher fitness is reached by non-recombining organisms, while in changing
environments a fitness benefit can be gained and maintained by recombining
populations.



Chapter 6

Conclusions

In this thesis, adaptive processes on theoretical models of fitness landscapes,
as well as the fitness landscapes themselves were analyzed with help of
analytical and numerical methods. Additionally two methods were presented
to fit theoretical model-landscapes to experimental data.

6.1 Summary

In sec. 2.2 the fitness maxima as well as the correlations in an RMF-landscape
[17, 16, 18] are discussed as characteristic features of this model. While for
the number of maxima an expression was found in the case of large L on
Gumbel distributed RMF-landscapes, the general behavior of M is described
in terms of EVT for arbitrarily distributed RMF-models. In order to clarify
the picture sec. 2.3 is devoted to the study of the number of exceedances which
is identified as an important indicator for or against a fitness landscape model
in the context of finding an appropriate description for a given experimental
fitness dataset [66]. Analytical expressions are presented for an exponentially
distributed RMF-landscape. For other distributions computer simulations
deliver reliable data. With help of a parameter scan a GPD RMF-landscape
is brought in line with experimental observations of Miller et al. [66].

A different approach is used in ch. 3. Here with help of a Fourier
analysis [87], the family of fitness landscapes which can be represented as
a superposition of LK-landscapes [19, 86] is examined and the amplitude
spectra are calculated. This results in condensing the landscapes information
from 2L to L data points. Although this happens not without loss of
information, it is argued, that important information about the correlations
and interactions within the models is conserved. By spectral deconstruction
of experimentally obtained fitness landscapes [68, 69], it is shown that by

99
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comparison to LK-landscape superpositions parameters can be identified
with which the spectrum of the model fits the experimental one. Since also
the RMF-model belongs to the family of LK-superpositions, the findings do
extend the previous chapter.

In ch. 4 adaptive processes in the SSWM limit, adaptive walks [30, 31],
were analyzed. Based on previous results [99, 83], a more systematic
calculation of the natural adaptive walk is presented on a GPD HoC-
model. The extension of the dynamics to the RMF-model is elaborated and
numerical as well as analytical results are shown. For the natural adaptive
walk [31] the walk length is analyzed with help of computer simulations
and the analytic form of the result is concluded. For the random adaptive
walk [59], a phase transition in the walk length is found on exponentially
distributed RMF-landscapes. The analysis of the greedy adaptive walk [97]
yields analytic results for the mean walk length on RMF- landscapes, but here
especially Gumbel distributed ones. It shall be emphasized, that these results
have pendants in the theory of spin glasses. Especially the phase transition
which is found for the random adaptive walk can also be interpreted as a zero
temperature kinetic phase transition of Metropolis dynamics on a random
energy model in a magnetic field. The phase transition then occurs between
a phase of weak field, where the dynamics gets trapped in a metastable state
and a strong field phase, in which the ground state is found.

Additionally to adaptation by mutation and selection, also recombinato-
rial processes are examined. Under simplifying assumptions rigorous results
are obtained by the analysis of Hamming balls on the hypercube, see sec. 5.1.
It can in particular be shown, that a population which proliferates with
single step mutations and recombination can explore the sequence space
exponentially fast in time, whereas a population without recombination
explores it only linearly in time. For more complex systems of recombining
populations on RMF-landscapes, results of numerical studies are presented in
sec. 5.2. Here it is shown, that recombining populations yield on intermediate
times more diversity, which is also known as the Weismann effect [45].
Furthermore, the simulation results show that recombining populations can
have a transient fitness benefit compared to populations which adapt on
the same landscape without recombination. But on the long run the non-
recombining populations have a higher mean fitness. From analytical work on
a two locus system with recombination [122], it is known, that recombination
prolongs the escape time which is needed to move away from a local fitness
maximum if a population is trapped there. By means of simulations it is
shown that this effect is also present in larger systems. It is thus concluded
that, if recombining population get trapped at a local fitness maximum, they
cannot escape for much longer times than non-recombining ones in a similar
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position. This way, the presented transient benefit of sex can be explained.
These findings coincide nicely with an experimental study on the adaptation
dynamics of a facultatively sexual rotifer [127], where the rate of sexual
reproduction as well as the fitness reached by sexually proliferating rotifers
increases in times of selective pressure and declines after the reach of fitness
plateaus. Furthermore, results are shown of adaptation with recombination
on a fitness landscape varying in time. Here, the fitness benefit of the
recombining populations can be maintained. This is because in a fluctuating
environment, the trapping is abrogated regularly while the populations have
an enduring need of fast adaptation. Because in the previous chapter
it was shown, that initially this is rather provided by proliferation with
recombination, a permanent benefit of sex can be established. This is in
accordance with the Red Queen hypothesis [48] which states, that the main
reason for adaptation is the survival of the species in competition with other
organisms in a permanently changing environment. This implies, that not
necessarily the ultimate fitness an organism achieves is important, but more
the possibility to maintain its current fitness and the fitness benefit it has
against other species. Which is exactly what recombination enables according
to the results of this section.

6.2 Outlook

In total, several results in evolutionary biology have been elaborated which
are partially connected and some go beyond the field. Since the RMF-
landscape could be fitted to different sets of experimental data it can be
assumed, that it is a fairly realistic model. Nevertheless, it might be the
case, that given the fact, that a landscape of size L ≤ 9 shows only a part of
the complete landscape, a full genotype to fitness mapping is in some areas
RMF-like, but not measured over the entire genome length. But since the
largest complete empirical fitness landscape known to the author is analyzed
in this thesis, the analysis of larger fitness landscapes and the question
if those are RMF-like remains to future research. This problem is also
known as the problem of scale [64]. Still, the successful fitting increases the
importance of the other results obtained for this landscape type, which are
mainly properties of the landscape structure and topography. Nevertheless,
the study of adaptive walks is also of relevance in this context, since the
adaptive walk length is closely connected to the number of fitness maxima.
The GAW length is an upper limit of the mean Hamming distance to the
closest fitness maximum. The behavior of the adaptive walk length with
increasing c is another indicator for the decreasing ruggedness in comparison
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to the HoC landscape, as is the decreasing number of maxima. Additionally,
together with the results of the study of recombination on rugged fitness
landscapes, the phase transition in the RAW length might indicate not only
two regimes in the context of adaptive walks, but also in the context of sexual
recombination. Since in the presence of many fitness maxima, the probability,
that a recombining population gets trapped is increased, recombination might
especially be beneficial on landscapes in the phase of long adaptive walks.
This leads to an open question: Are the fitness landscapes of recombining
organisms preferably in the phase of long adaptive walks, which has a lower
number of local maxima?

The study of the RMF-model and adaptive processes on it did also
reveal, that in contrast to the HoC case, EVT is important to understand
the phenomena, but it does not suffice. The linear drift of the landscapes
increases the importance of the tail behavior of the underlying probability
distribution. From this follows not only the phase transition for exponentially
distributed RMF-landscapes, but it is also of importance in the discussion
of the number of maxima and probably also has an impact on the number
of exceedances, which could not be calculated. The fact, that the three
probability classes are not enough to describe the general behavior could
imply other new, yet unknown, phenomena and emphasizes the importance
of analytical methods besides the standard tools, not only applied to theory
but especially in the evaluation of experimental data.

Beyond the RMF-landscape, it is now possible to fit superpositions of LK-
models to experimental data using the properties of the amplitude spectra of
the fitness landscapes. In fact, with enough fitting parameters, every possible
amplitude spectrum can be fitted by such a superposition. Nevertheless, the
use of fitting such a superposition might be questioned if it is not sparse
any more. But, if a sparse fit is possible, it can be done easily and the
resulting parameters give directly information about the interactions in the
genome and its implications to the fitness landscape. Of course, this method
is not restricted only to fitness landscapes, but all kinds of functions on a
hypercube, for example energy landscapes of spin glasses. This method is
very promising to understand more about the nature of fitness landscapes,
and it is up to future research to analyze especially larger complete data sets
for a better classification of the naturally occurring landscape types.

Regarding recombination, this thesis shows, how important the time
evolution of the observables of the dynamics is. Not only is the benefit of sex
on a static landscape only transient, but it can be prolonged indefinitely if the
fitness landscape is varying in time with an adequately chosen changing time.
The nature of both effects cannot be observed, if not the full time evolution is
measured. The benefit of sex in time dependent fitness landscapes indicates
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the importance of the analysis of fitness seascapes. Although the time
dependence in natural environments is obvious, the amount of research in
this field, especially concerning epistatic and correlated landscapes has many
unanswered questions and the analytical methods for large landscapes are
not sufficient. For experimental research an important open question is: How
can fitness landscapes of sexually reproducing organisms be characterized?
Besides the phase mentioned above, the epistatic interactions, the spectrum
and for time dependent fitness landscapes the investigation of the existence
of the recombinatorial resonance would give great insights of the causes and
nature of recombination, adaptation and fitness land- and seascapes.



104 CHAPTER 6. CONCLUSIONS



Bibliography

[1] D. Adams. Speech at Digital Biota 2, 1998. URL http://www.biota.

org/people/douglasadams/index.html. accessed: 5.5.14.

[2] R. Dawkins. the selfish gene. Oxford University Press, 2nd edition,
1989.

[3] Cburnett. Hamming distance cube for 4-bit binary numbers, 2006.
URL http://en.wikipedia.org/wiki/File:Hamming_distance_4_

bit_binary.svg. File: Hamming distance 4 bit binary.svg,

accessed: 14.4.14.

[4] C. R. Darwin. The variation of animals and plants under domestica-
tion, volume 1. John Murray, London, 1st edition, 1868.

[5] C. R. Darwin. On the origin of species, by means of natural selection or
the preservation of favoured races in the struggle of life. John Murray,
London, 5th edition, 1868.

[6] Thomas C. Leonard. Origins of the myth of social darwinism: The
ambiguous legacy of Richard Hofstadter’s social Darwinism in american
thought. J. Econ. Behav. Organ., 71:37–51, 2009.

[7] H. A. Orr. Fitness and its role in evolutionary genetics. Nature Review
Genetics, 10:531–539, 2009.

[8] P. E. O’Maille, A. Malone, N. Dellas, B. A. Hess, Jr., L. Smentek,
I. Sheehan, B. T. Greenhagen, J. Chappell, G. Manning, and J. P.
Noel. Quantitative exploration of the catalytic landscape separating
divergent plant sesquiterpene synthases. Nat. Chem. Biol., 4:617–623,
2008.

[9] M. F. Schenk, I. G. Szendro, M. L. M. Salverda, J. Krug, and J. A.
G. M. de Visser. Patterns of epistasis between beneficial mutations in
an antibiotic resistance gene. Mol. Biol. Evol., 30:1779–1787, 2013.

105



106 BIBLIOGRAPHY

[10] J. Wynne McCoy. The origin of the “adaptive landscape” concept.
Am. Nat., 113(4):610–613, 1979.

[11] S. Wright. The roles of mutation, inbreeding, crossbreeding and
selection in evolution. Int. Proceedings of the Sixth International
Congress on Genetics, 1:356–366, 1932.

[12] I. G. Szendro, M. F. Schenk, J. Franke, J. Krug, and J. A. G. M.
de Visser. Quantitative analyses of empirical fitness landscapes. J.
Stat. Mech.: Theor. Exp., P01005, 2013.

[13] V. Rao and V. Nanjundiah. J.B.S. Haldane, Ernst Mayr and the
Beanbag Genetics Dispute. J. Hist. Biol., 44:233–281, 2011.

[14] L. Chao D. M. Weinreich, R. A. Watson. Perspective: Sign epistasis
and genetic consraint on evolutionary trajectories. Evolution, 59:1165–
1174, 2005.

[15] J. F. C. Kingman. A simple model for the balance between selection
and mutation. J. Appl. Prob., 15:1–12, 1978.

[16] T. Aita, H. Uchiyama, T. Inaoka, M. Nakajima, T. Kokubo, and
Y. Husimi. Analysis of a local fitness landscape with a model of the
rough Mt. Fuji-type landscape: application to prolyl endopeptidase
and thermolysin. Biopolymers, 54:64–79, 2000.

[17] T. Aita and Y. Husimi. Adaptive walks by the fittest among finite
random mutants on a Mt. Fuji-type fitness landscape ii. effect of small
non-additivity. J. Math. Biol., 41:207–231, 2000.

[18] J. Neidhart, I. G. Szendro, and J. Krug. Adaptation in tunably rugged
fitness landscapes: The Rough Mount Fuji model. Genetics, 2014. doi:
10.1534/genetics.114.167668.

[19] S. A. Kauffman and E. D. Weinberger. The NK model of rugged fitness
landscapes and its application to maturation of the immune response.
J. Theor. Biol., 141:211–245, 1989.

[20] S. A. Kauffman. The Origins of Order: Self-Organization and Selection
in Evolution. Oxford University Press, USA, 1993.

[21] J. J. Welch and D. Waxman. The NK model and population genetics.
J. Theor. Biol., 234(4):329–340, 2005.



BIBLIOGRAPHY 107

[22] T. Aita. Hierarchical distribution of ascending slopes, nearly neutral
networks, highlands, and local optima at the dth order in an NK fitness
landscape. J. Theor. Biol., 254:252–263, 2008.

[23] B. Østman, A. Hintze, and C. Adami. Impact of epistasis and
pleiotropy on evolutionary adaptation. Proc. Roy. Soc. B, 279:247–
256, 2012.

[24] J. Franke and J. Krug. Evolutionary accessibility in tunably rugged
fitness landscapes. J. Stat. Phys., 148:705–722, 2012.

[25] N. G. van Kampen. Stochastic Processes in Chemistry and Physics.
North-Holland Personal Library, 2007.

[26] J. Franke. Statistical topography of fitness landscapes. PhD thesis,
Universität zu Köln, 2012.
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recombination on adaptation on fitness landscapes with limited peak
accessibility. PLoS Comput. Biol., 8(10):e1002735., 2012.



114 BIBLIOGRAPHY

[116] S. Nowak, J. Neidhart, I. G. Szendro, and J. Krug. Multidimensional
epistasis and the transitory advantage of sex. PLoS Comput. Biol., 10
(9):e1003836, 2014.

[117] T. Nagylaki. The evolution of multilocus systems under weak selection.
Genetics, 134:627–647, 1993.

[118] N. H. Barton. Genetic linkage and natural selection. Phil. Trans. R.
Soc. B, 365:2559–2569, 2010.

[119] N. Nei. Modification of linkage intensity by natural selection. Genetics,
57:625–641, 1967.

[120] M. W. Feldman and U. Liberman. An evolutionary reduction principle
for genetic modifiers. Proc. Nat. Acad. Sci. USA, 83:4824–4827, 1986.

[121] D. B. Weissman, M. W. Feldman, and D. S. Fisher. The rate of fitness-
valley crossing in sexual populations. Genetics, 186:1389–1410, 2010.

[122] A. Altland, A. Fischer, J. Krug, and I. G. Szendro. Rare events in
population genetics: stochastic tunneling in a two-locus model with
recombination. Phys. Rev. Lett., 106:088101, 2011.

[123] K. Jain. Time to fixation in the presence of recombination. Theor.
Popul. Biol., 77:23–31, 2010.

[124] S. C. Park and J. Krug. Bistability in two-locus models with selection,
mutation, and recombination. J. Math. Biol., 62:763–788, 2011.

[125] R. A. Neher, M. Vucelja, M. Mezard, and B. I. Shraiman. Emergence
of clones in sexual populations. J. Stat. Mech., P01008, 2013.

[126] D. B. Weissman, M. M. Desai, D. S. Fisher, and M. W. Feldman. The
rate at which asexual populations cross fitness valleys. Theor. Popul.
Biol., 75:286–300, 2009.

[127] L. Becks and A. F. Agrawal. The evolution of sex is favoured during
adaptation to new environments. PLoS Biol., 10(5):e1001317, 2012.

[128] A. Hastings. Transients: the key to long-term ecological understand-
ing? Trends Ecol. Evol., 19:39–45, 2004.
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Appendix A

Various definitions and remarks

For convenience it might be helpful to reintroduce some standard notations
to avoid confusion. The harmonic numbers are defined by the sum

Hn =
n
∑

k=1

1

k

H0 = 0 (A.1)

and they are connected to the logarithm in the limit of large n by the Euler-
Mascheroni constant γ ≈ 0.577

Hn − log(n) → γ (n → ∞)

Hn = log(n) + γ +O
(

1

n

)

.

The Gamma function is a generalization of the factorial n! = 1 · 2 · · · · · n to
the non-natural numbers and is defined by the properties

∀n∈N : Γ(n+ 1) = n!

and ∀x∈R : Γ(x+ 1) = xΓ(x). (A.2)

The Beta-function is defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt . (A.3)

Since at some points the binomial coefficients might be used ambiguously, it
is useful to reintroduce them:

(

L

k

)

=

{

L!
k!(L−k)!

, L ≥ k and L, k ≥ 0,

0, else.
(A.4)
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Probability distribution functions will usually be denoted by P and the
corresponding density by p. The exponential distribution with mean λ and
variance λ2 has a density

p(x) =

{

1
λ
e−

1
λ
x x ≥ 0,

0 x < 0
(A.5)

and distribution function

P (x) =

{

1− e−
1
λ
x x ≥ 0,

0 x < 0.

The Weibull distribution with mean Γ(1 + 1/β) and variance Γ
(

1 + 2
β

)

−
(

Γ
(

1 + 1
β

))2

has a density

p(x) =

{

βxβ−1e−xβ

x ≥ 0,

0 x < 0,
(A.6)

and a distribution function

P (x) = 1− e−xβ

.

The Kumaraswamy distribution with mean
Γ(1+

1
α
)

Γ(2+
1
α
)
and support [0, 1] has a

density

p(x) = αxα−1. (A.7)

and distribution function

P (x) = 1− (1− xα).

The Pareto distribution with mean α
α−1

for α > 1, variance α
(α−1)2(α−2)

for

α > 2 and support [1,∞) has a density

p(x) = αx−(α+1) (A.8)

and a distribution function

P (x) = 1− x−α.



Appendix B

On the algorithms used in

simulations

In this Appendix, the algorithms used for the simulations are presented
but for the ones in sec. 5.2 which are given directly there. All programs
are written in C++ and use the GNU Scientific Library [135], especially
its implementation of the Mersenne Twister [136] pseudorandom number
generator. In the following the main idea of the algorithms is given in
arranged prose to avoid confusion of ambiguous definitions from pseudocode
or distract by unnecessary syntax from the original program code. Although
not quite accurate, for convenience pseudorandom numbers will be referred to
as random numbers. In most simulations, the code creates the neighborhoods
on-the-fly which leads to an error of O( 1

L
) but enables the simulation of

larger landscape dimensions. Usually only the main part of the simulation is
described and has to be repeated for statistics.

B.1 Single adaptive steps on RMF-landscapes

The simulations for sec. 4.3.1 used the following algorithm.

• Draw L+ 1 GPD random numbers

• Create an RMF neighborhood with given d by adding c to d random
numbers, substract c from L− d and leave one unaltered, call it F0.

• If F0 is a fitness maximum repeat the previous step.

• Choose a fitness value F ′ > F0 at random and make a step with
probability (F ′ − F0)/(Fmax − F0) where Fmax is the maximal fitness
value from the neighborhood.
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• If the step is taken proceed, else repeat the previous step.

• Create a new RMF neighborhood with d altered according to the
direction F ′ is with respect to F0.

• Measure the rank and return the NoE.

B.2 Fitting an RMF-model with the NoE

In sec. 2.3, to fit an RMF-model to experimental data with help of the NoE, a
neighborhood change was simulated. Then a parameter scan was performed
and for κ ∈ [a, b] a c was found, such that the landscape has a typical NoE
which equals the one measured in experiments. The simulation starts with
κ = a and c = 0 while d has to be set by hand. Then the following algorithm
returns the parameters of interest.

1. Repeat the following for statistics

• Draw L+ 1 GPD random numbers

• Create an RMF neighborhood with given d by adding c to d
random numbers, substract c from L− d and leave one unaltered.

• Sort the RMF fitness values and pick the fitness with the desired
rank. If this fitness value is the one which is neither uphill nor
downhill, repeat step 1 because then no step is taken. The chosen
fitness value is the one, the step will go to.

• Redraw the L remaining fitness values of the new RMF
neighborhood and alter d to d + 1 if the step is taken downhill
and to d− 1 if the step was taken uphill.

• Measure the new rank.

2. Compare the mean rank after step with the experimental result, if the
simulated NoE is lower, increase c and repeat step 1. If it is higher,
save the parameters and go to step 3.

3. If κ < b increase κ and repeat step 1.

B.3 NAW on an RMF-landscape

Simulations in sec. 4.3.2 used the following algorithm.

• Draw L+ 1 GPD random numbers.
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• Create an RMF neighborhood with given d by adding c to d random
numbers, substract c from L − d and leave one unaltered, this will be
the momentary fitness F0. Make sure that F0 has the desired starting
rank.

1. Choose a fitness value F ′ > F0 at random and make a step with
probability (F ′−F0)/(Fmax−F0) where Fmax is the maximal fitness
value from the neighborhood.

2. If the step is taken proceed, else repeat step 1.

3. Create a new RMF neighborhood with d altered according to the
direction F ′ is with respect to F0.

4. Set F0 = F ′. If F0 is a fitness maximum return the number of
taken steps, else go to step 1.

B.4 GAW in high dimensions

Simulations in sec. 4.3.3 required a large sequence length, therefore the
algorithm for adaptive walks had to be altered. To produce random numbers
according to the distribution of the largest of n random numbers which are
drawn from a distribution with distribution function P (x) one can do the
following. Given a random number generator ξ which produces uniformly
distributed random numbers in (0, 1), the Ansatz P (x)n = ξ can be solved
for x(ξ) which will have the desired distribution, generated from ξ. This
way in each step only comparably few random numbers have to be generated
and large sequence lengths can be simulated. In the dRMF case, each step
requires only one new random number and the following algorithm was used.

• Set L and start with the number of steps l = 0. Draw the starting
fitness F0 from the desired distribution.

• 1. Draw a random number from the distribution of the largest of
L− l random numbers and call it h.

2. If h + c > F0 take the step by setting F0 = h, increase l by one
and go to step 1. Else return the number of steps taken.

If the dRMF-model was not sufficient, e.g. in the study of small α, two new
random numbers have to be generated each step. The following algorithm
was used.

• Set L and d as desired and start with the number of steps l = 0. Draw
the starting fitness F0 from the desired distribution.
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• 1. Draw a random number from the distribution of the largest of
L − d random numbers, call it h, for the downhill and from the
distribution of the largest of d random numbers, call it g, for uphill
neighborhood.

2. If max(g+ c, h− c) > F0 take the step uphill (downhill) by setting
F0 = g (F0 = h) if max(g + c, h− c) = g + c (max(g + c, h− c) =
g + c), alter d accordingly and increase l, afterwards go to step 1.
Else return the number of steps taken.

B.5 RAW in high dimensions

For study of the phase transition in sec. 4.3.4, long RAWs had to be
simulated. The following algorithm was used for walks on the dRMF.

• Set L and start with the number of steps l = 0. Draw the starting
fitness F0 from the desired distribution.

• 1. Create a counting variable i = 1, which counts the number of
neighbors which have been seen.

2. Check if a local maximum is reached by generating a random
number u ∈ (0, 1) and compare it to the probability that F0 is
a fitness maximum P (F0 − c)L−l. If u is smaller, a maximum is
found, return the number of steps, else proceed.

3. Draw a random number from the distribution of the RMF-model
and call it h.

4. If h+ c > F0 take the step by setting F0 = h, increasing l by one
and go to step 1. Else proceed to step 4.

5. If i ≤ L increase i by one and go to step 3. Else all neighbors
have been seen and have lower fitness, return the number of steps
taken.

For the walks with back-steps the following algorithm was used.

• Set L and d. Draw the starting fitness F0 from the desired distribution.

• Create a variable s ∈ {+1,−1}.

• 1. Set d′ := d and d′′ := L − d which are the neighbors up (d′′) and
down (d′) which have not been seen yet.
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2. Draw a random number in the range [1, d′+d′′] to cast a neighbor
from up- or downhill. If it is smaller or equal to d′, a step will
be made in direction of σ∗ and s := −1. Otherwise s := +1.
Decrease d′ (d′′) by one if s = −1 (s = +1).

3. Draw a random number from the distribution of the RMF-model
and call it h.

4. If h + s · c > F0 take the step by setting F0 = h. Set d := d + s
and go to step 1. Else proceed to step 5.

5. If d′ > 0 or d′′ > 0 go to step 2. Else return the number of steps
taken because all neighbors have been seen and no higher fitness
value was found.
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