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INTRODUCTION
I Introduction

1.1 Epilepsy

The term “epilepsy” encompasses a number of different syndromes whose key
feature is defined by recurrent, unprovoked seizures (Berg et al. 2010). Epilepsy is
one of the most common chronic neurologic diseases worldwide with a prevalence of
0.5-1% and a lifetime incidence of 3% (Hauser et al., 1993). Recurrent seizures
critically change quality of life, particularly of those 30% of epilepsy patients who are
drug-resistant (Berg et al., 2009). The economic burden of epilepsies is high, it has
been estimated that the 6 million people with active epilepsy in Europe cost over €20

billion per year (Cross et al., 2011; www.who.int).

Epilepsy syndromes are highly heterogeneous in their clinical manifestation. In 1989,
the International League Against Epilepsy (ILAE) proposed a classification scheme
(Commission on Classification and Terminology of the International League against
Epilepsy, 1989.) which has been revised in recently (Berg et al., 2010). Epilepsy
syndromes are classified by their etiology and symptomatology. Symptomatic
epilepsy is considered an acquired disorder, developing in response to congenital or
acquired brain insults such as malformations, tumors or infections. Genetic (formerly:
idiopathic) epilepsies represent about 40% of all epilepsies in childhood and
approximately 20% of epilepsies in adulthood (Steinlein et al., 1999). Off note, due to
our previous studies on the same patient cohort, before classification change, we
keep in the presented follow up studies in this dissertation the term “idiopathic”
(Commission et al.,1989) epilepsies instead of "genetic" (Berg et al., 2010)
epilepsies. Idiopathic (genetic) epilepsies are characterized by recurrent seizures in
otherwise healthy individuals. The absence of known or suspected cerebral lesions
and their familial aggregation implicated a genetic basis (Ottman, 2005). Given the
strong impact of genetic factors in the pathogenesis of idiopathic epilepsies,
molecular genetic studies provide a promising approach to dissect the responsible
susceptibility genes and to determine molecular pathways in epileptogenes. The
most common forms of idiopathic epilepsies include the generalized i) idiopathic
generalized epilepsy (IGE) and the focal ii) rolandic epilepsy (RE) (Figure 1).
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Figure 1 Overview of common idiopathic epilepsy types. The epilepsy types are distributed by age of onset as well as
seizure type. Abbreviations: JAE= Juvenile absence epilepsy; JME= Juvenile myoclonic epilepsy; CAE= Childhood absence
epilepsy; RE= Rolandic epilepsy; ARE= Atypical rolandic epilepsy.

1.2 ldiopathic epilepsies investigated

1.2.1 Idiopathic generalized epilepsies (IGE)

The group of idiopathic generalized epilepsies (IGEs) represent about one-third of all
epilepsies (Jallon et al., 2011). These epilepsies are characterized by their age-
related manifestation of generalized seizure types (Nordli et al., 2005). Generalized
spike-wave discharges are the characteristic electroencephalographic signature,
which reflects a synchronized hyperexcitable state of thalamocortical circuits
(Blumenfeld et al., 2005). IGEs can be clinically subdivided by leading seizure types
and age-of-onset into four major IGE syndromes: childhood absence epilepsy (CAE),
juvenile absence epilepsy (JAE), juvenile myoclonic epilepsy (JME) and epilepsy with
generalized tonic—clonic seizures alone (EGTCS). In addition, a large variety of other
genetic epilepsies exist, however, quantitatively they represent a small minority of
less than 10% (Nordli et al., 2005). The characteristic seizure types of the common
IGE syndromes are absence seizures (CAE and JAE), bilateral myoclonic seizures

on awakening (JME) and generalized tonic—clonic seizures (EGTCS). Family and
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twin studies suggest a predominant genetic predisposition of common IGE

syndromes with heritability estimates up to 80% (reviewed in Helbig et al., 2008).

1.2.1.1 Genetics

A significant complex genetic predisposition is indicated by concordance rates of 70—
80% for IGE in monozygotic twin pairs (Berkovic et al., 1998) compared to rapidly
declining recurrence risks of IGEs in siblings ranging from four to 10% depending on
the IGE subtype (Beck-Mannagetta et al., 1991). IGEs follow a complex mode of
inheritance, suggesting that several genetic factors contribute to generalized seizures
(Greenberg et al., 1992; Sander et al., 1996; Berkovic et al., 1998). The recurrence
risk for IGE ranges from 70% to 95% in monozygotic twins and is 10- to15-fold higher
than for first-degree relatives (5-8%), and more than 100-fold greater than the
prevalence of 0.6% in the general population (ratio of sibling risk to population
prevalence: As = 8) (Sander et al., 1996). However, CAE, JAE and JME cluster in
families, and, frequently, absence seizures are followed by myoclonic seizures in the
same patient in an age-dependent manner. These observations support the
neurobiological concept that the common IGE subtypes share an overlapping genetic
predisposition (Berkovic et al., 1987; Beck-Mannagetta et al., 1991; Reutens et al.,
1991; Wirrell et al., 1991; Janz et al., 1997). Furthermore, supporting this concept,
the age-related expression of various seizure types arises from a genetically
determined impairment of brain maturation or is influenced by the stage of brain
maturation (Shinnar et al., 1991). In rare monogenic types of idiopathic epilepsies,
several genes have been identified of which the majority of genes encode voltage-
gated or ligand-gated ion channels (e.g. SCN1A, GABRA1l, KCNQ2, KCNQ3,
CHRNA4 and many others) (Reid et al., 2009). The molecular dissection of genes
conferring susceptibility to the genetically complex idiopathic epilepsies remains a
challenge. In contrast to gene mapping strategies applied in rare monogenic
epilepsies, a large number of linkage and candidate gene association studies failed
to identify susceptibility genes for common IGE syndromes with complex genetic
predisposition (Gardiner, 2005; Hempelmann et al., 2006; Kasperaviciute et al., 2010;
Greenberg and Subaran, 2011). The failure to identify replicable risk genes for
common epilepsies most likely reflects the underestimated degree of genetic

complexity and heterogeneity in human epilepsies.
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1.2.2 Rolandic epilepsy (RE) and the RE spectrum

Benign epilepsy with centrotemporal spikes (BECTS) was first described by Martinus
Rulandus in 1597 (Van Huffelen, 1989). The syndrome is now named rolandic
epilepsy (RE) because of the characteristic features of partial seizures involving the
brain region around the lower portion of the rolandic fissure. RE is one of the most
common epilepsy syndromes in children, accounting for about 15 % of epilepsies
beginning before the age of 16 years (Freitag et al., 2001; Shinnar et al., 2002).
Onset typically occurs from 4-12 years in otherwise healthy children (Lerman et al.,
1986). Seizures have a focal origin and frequently start with one-sided sensorimotor
symptoms of lips tongue, and face, resulting in hypersalivation and speech arrest
(summarized by Strug et al., 2009). The prognosis of RE is benign. It resolves
spontaneously and by far of most affected children remain intellectually normal.
There is, however, an increased comorbidity with attention deficit hyperactivity
disorder (ADHD) and specific mild cognitive deficits (approx. 20%) (Smith et al.,
2012).

RE is related to much rarer, and less benign epilepsy syndromes, including atypical
benign partial epilepsy of childhood (ABPE), Landau-Kleffner syndrome (LKS) and
epileptic encephalopathy with continuous spike-and-waves during sleep (CSWSS)
(Doose et al., 2001; Gobbi et al., 2006; Guerrini and Pellacani, 2012; Hahn et al.,
2001), referred to as RE related syndromes, or atypical rolandic epilepsy (ARE) by
some authors (Fejerman, 2009). RE and the ARE share blunt, high-voltage,
characteristically shaped centrotemporal spikes (CTS) of characteristic morphology in
the EEG. However, ARE denote more severe forms of focal childhood epilepsies with
various additional seizure types, developmental language delay or regression,
speech dyspraxia and variable neuropsychiatric deficits in up to 50% of the affected
(Gobbi et al., 2006; Hughes et al., 2011).

1.2.2.1 Genetics

The majority of RE patients have a complex genetic predisposition as implicated by
the relative decline of the recurrence risks of seizures in 9.8% of first-degree
relatives, 3% in second- and 1.5% in third-degree relatives as well as the intriguing
phenotypic variability observed among family members (Vears et al., 2012). The age-
dependent EEG endophenotype of centrotemporal sharp waves (CTS) represents

the electroencephalographic hallmark of RE. The CTS-EEG may also be present in
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clinically unaffected family members and was earlier reported to be inherited in an
autosomal-dominant manner (Heijbel et al., 1975; Bali et al., 2007). However these
findings were questioned for methodological reasons (Ottman et al., 1989) ARE
belongs to an extended spectrum of Rolandic epilepsy, a rate of 40% EEG
concordance for siblings investigated at the age of maximum expression (3 to 10
years) is observed (Doose et al., 2001). Despite the strong genetic predisposition of
the CTS-EEG trait, the etiology of epilepsies with centrotemporal spikes is largely
unknown. Various loci have been reported for classic or rare forms of RE (Scheffer et
al., 1995; Neubauer et al., 1998; Guerrini et al., 1999; Roll et al., 2006; Strug et al.,
2007; Strug et al., 2009).

Furthermore, rare variants in KCNQ2, KCNQ3 and SRPX2 have been associated
with the RE or ARE in small subsets of patients (Neubauer et al., 2008; Roll et al.,
2006). Recently, rare structural variations at 16pl13 deleting the genomic region of
GRINZ2A have been observed for patients with ARE (Reutlinger et al., 2010). All these
variants and loci have never been replicated and might account for only a small
fraction of the genetic risk for the rolandic epilepsies, whereas the major cause(s)

remain unknown.
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2 Goals and objectives

The aim of the present studies was the molecular genetic dissection of risk factors
with strong epileptogenic effects in idiopathic epilepsies (Figure 2) and the
elucidation of their molecular pathways in epileptogenesis. Taking into account the
low power of our case-control study for genome-wide scans, our current strategy
focused on a candidate gene/locus approach of genes and CNVs that have either
been implicated in the pathogenesis of epilepsy or represent plausible candidate
genes with a presumed impact on neuronal excitability. This candidate gene/locus
approach was restricted to the identification of genetic risk factors with a strong
impact on epileptogenesis according to the common disease-rare variant (CD-RV)
model (Pritchard, 2001; McClellan et al., 2007). The CD-RV model implies that
multiple, heterogeneous rare variants with strong effects contribute to the genetic
architecture underlying common idiopathic epilepsies. In line with the CD-RV model,
we had previously demonstrated that large recurrent microdeletions in the
chromosomal regions 15g11.2, 15g13.3 and 16p13.11 constitute individually rare but
collectively substantial genetic risk factors of IGE (Helbig et al., 2009; De Kovel et al.,
2010).

Penetrance
A
High
Mendelian
disease
variants
Low freq.
disease
Intermediate variants
GWAS
Variants
Low
0.001 0.01 01 >
Very rare Rare Uncommon Common

Allele frequency

Figure 2: Expected distribution of disease variants. Theory on common disease variation predicts a continuum of
frequency and effect size of disease variants present in the population. Rare high-risk variations are mainly
expected for Mendelian diseases. Less frequent disease variants with moderate to large effects (highlighted in blue)
will be detected in our CNV and mutation studies. The figure is modified from McCarthy et al., 2008.
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Two strategies were applied to identify genetic risk factors for idiopathic epilepsies: 1)
copy number variation (CNV) analysis using high-resolution SNP arrays and 2) whole
exome sequencing (WES) to detect mutations in the coding regions. Taking into
account our cohort sizes and the amount of expected variants, the study power was
small. Therefore, our analyses focused on genetic variants affecting genes involved

in neuronal excitability.

2.1 Discovery cohorts

The discovery cohorts of idiopathic epilepsies included two case-control cohorts: i)
1582 unrelated IGE and 2795 populations controls of North-Western European
descent, and ii) 308 patients with RE-spectrum epilepsies and 1512 controls of
European descent. In addition, we performed candidate gene sequence analysis in
242 patients with RE-spectrum epilepsies. The IGE study cohort was collected by a
European concerted action organized by the EPICURE Consortium (EPICURE
GWAS discovery cohorts; EPICURE et al.,, 2012). The standardized ascertainment
scheme, clinical protocols and diagnostic criteria are available at http://portal.ccg.uni-
koeln.de/ccg/research/epilepsy-genetics/sampling-procedure/. The cohort of 281
patients with RE-spectrum epilepsies were recruited in the framework of the
European collaborative research project EuroEPINOMICS. In a multi-centre effort,
RE/ARE patients were recruited from Germany, Austria, Canada and Australia.
Ninety-eight of the patients were ascertained through multiplex-families with at least
two affected siblings. Diagnosis of RE was performed according to the International
Classification of Seizures and Epilepsies (Commission on Classification and
Terminology of the International League against Epilepsy 1989; Berg et al., 2010).
The various syndromes classified as RE-spectrum epilepsies fulfilled the diagnostic
criteria as specified previously (Aicardi and Chevrie, 1982; Doose et al., 2001; Hahn
et al., 2001). In total, the discovery cohort comprised 230 patients affected by typical
RE and 51 patients with ARE (165 males and 116 females). Both screening cohorts
represent the largest assemblies of IGE and RE/ARE patients reported so far.

2.2 Molecular genetic screening methods

The present studies applied two molecular genetic screening techniques to identify
genetic risk factors with strong effects: i) copy number variation (CNV) analyses

using high-resolution SNP arrays (IGE and RE cohorts), and ii) candidate gene
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sequence analysis based on an ongoing whole exome sequencing project (RE/ARE,
n =242).

2.3 Selection of candidate genes

We investigated large recurrent CNVs at 1921, 15911.2, 159q13.3, 16p11.2, 16p13.11
and 22g11.2 (Helbig et al., 2009; Coe et al., 2012; De Kovel et al., 2013); as well as
the high-ranking candidate genes GRIN2A (Reutlinger et al., 2010; Lesca et al.,
2012), GPHN (Forstera et al., 2010; Lionel et al., 2013), RBFOX1 and RBFOX3
(Bhalla et al., 2004; Martin et al., 2007; Gallant et al., 2011; Gehman et al., 2011) as
well as DEPDCS5 (Dibbens et al., 2013; Ishida et al., 2013). The investigated CNV loci
have been implicated in the pathogenesis of epilepsies or other neurodevelopmental
disorders, whereas the candidate genes are presumed to have a strong functional

impact in pathways controlling neuronal excitability.

2.4 Scope of the ongoing research activities

In the presented cumulative thesis | report the results of our current CNV and
candidate gene sequence analyses resulting in three articles already published in
peer review journals (Lal et al., 2013a; Lal et al., 2013b, Lemke et al., 2013). Another
three papers are currently in revision (Lal et al., Dejanovic et al., Reinthaler et al.,).
Our ongoing studies identified CNVs at 16pl11.2, RBFOX1, RBFOX3 and GRIN2A
and putative deleterious sequence mutations in GRIN2A and DEPDCS5 in patients
with idiopathic epilepsies. These results offer new insight into the genetic architecture
of common epilepsy syndromes by: i) the delineation of the phenotypic spectrum
associated with these epilepsy genes, ii) the characterization of their allelic spectra
and modes of inheritance (de novo, inherited, estimates of the effect size,
penetrance, expressivity), and iii) a first step in the elucidation of the underlying
molecular pathomechanisms in epileptogenesis. In the long term, our study results
might accelerate the prospects to translate the rapidly increasing knowledge into

clinically relevant actions.
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SuMMARY
Purpose: Structural variations disrupting the gene
encoding the neuron-specific splicing regulator

RBFOXI have been reported in three patients exhib-
iting epilepsy in comorbidity with other neuropsychi-
atric disorders. Consistently, the Rbfox] knockout
mouse model showed an increased susceptibility of
seizures. The present candidate gene study tested
whether exon-disrupting deletions of RBFOXI increase
the risk of idiopathic generalized epilepsies (IGEs),
representing the largest group of genetically deter-
mined epilepsies.

Methods: Screening of microdeletions (size: >40 kb, cov-
erage >20 markers) affecting the genomic sequence of
the RBFOXI gene was carried out by high-resolution sin-
gle-nucleotide polymorphism (SNP) arrays in 1,408 Euro-
pean patients with idiopathic generalized epilepsy (IGE)
and 2,256 population controls. Validation of RBFOX| dele-

tions and familial segregation analysis were performed by
quantitative polymerase chain reaction (qPCR).

Key Findings: We detected five exon-disrupting RBFOX|
deletions in the IGE patients, whereas none was observed
in the controls (p = 0.008, Fisher’s exact test). The size of
the exonic deletions ranged from 68 to 896 kb and
affected the untranslated 5'-terminal RBFOX| exons. Seg-
regation analysis in four families indicated that the dele-
tions were inherited, display incomplete penetrance, and
heterogeneous cosegregation patterns with IGE.
Significance: Rare deletions affecting the untranslated 5'-
terminal RBFOXI exons increase risk of common IGE syn-
dromes. Variable expressivity, incomplete penetrance,
and heterogeneous cosegregation patterns suggest that
RBFOXI deletions act as susceptibility factor in a geneti-
cally complex etiology, where heterogeneous combina-
tions of genetic factors determine the disease phenotype.
KEY WORDS: ldiopathic generalized epilepsy, Microde-
letion, RBFOXI, Genetics.

The idiopathic generalized epilepsies (IGEs) affect up to
0.3% of the general population and account for 30% of all
epilepsies (Jallon et al., 2001). Genetic factors play a

Accepted November 21, 2012; Early View publication January 21, 2013.
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predominant role in the etiology of common IGE syn-
dromes. Heritability estimates are >80% and recurrence risk
for first-degree relatives varies between 4% and 9% depend-
ing on the IGE subtype (Helbig et al., 2008). The genetic
architecture is likely to display a biologic continuum, in
which a small fraction follows monogenic inheritance,
whereas the majority of IGE patients presumably display an
oligogenic/polygenic predisposition. Molecular genetic
studies have identified causative gene mutations in mainly
rare monogenic forms of genetic epilepsies. Most of the
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currently known genes for human genetic epilepsies encode
voltage-gated or ligand-gated ion channels (Reid et al.,
2009; Pandolfo, 2011). Despite extensive research, the
majority of genetic variants predisposing to common 1GE
syndromes remain elusive.

Large-scale analysis of structural genomic variations
using high-resolution whole-genome oligonucleotide arrays
suggests that copy number variations (CNVs) play a sub-
stantial role in about 3% of patients with idiopathic epilep-
sies (de Kovel et al., 2010; Heinzen et al., 2010; Mettord
et al., 2011). Recurrent microdeletions on 15ql11.2,
15q13.3, and 16pl13.11 increase risk of IGE and a wide
range of neurodevelopmental disorders (Helbig et al., 2009:
de Kovel et al., 2010; Heinzen et al., 2010; for review see
Hochstenbach et al., 2011). The genes deleted by these mic-
rodeletions are thought to play a key role in the regulation of
neuronal excitation and cortical synchronization.

Structural variations disrupting the gene encoding the
neuronal splicing regulator RBFOXI (also assigned as
A2BPI, HRNBPI, or FOXI) have been reported in three
patients exhibiting epilepsy in comorbidity with autism,
intellectual disability, or pontocerebellar hypoplasia (Bhalla
et al., 2004; Martin et al., 2007; Gallant et al., 2011). The
RBFOX! gene is located in the chromosomal region
16p13.3 to which a linkage locus for photoparoxysmal
response in families ot IGE subjects has been mapped (Pinto
et al., 2005). The RBFOX gene plays a key role in the regu-
lation of neuronal excitation and influences susceptibility of
epilepsy (Gehman et al., 2011: Voineagu et al., 2011). The
RBFOX]! protein regulates splicing of many neuronal tran-
scripts by binding the sequence (U)GCAUG in introns
flanking alternative exons (Jin et al., 2003; Auweter et al.,
2006; Voineagu et al., 2011; Fogel et al., 2012). A number
of RBFOXI target transcripts (e.g.. SNAP25, SCNSA,
GRINI, GABRG2, DCX, GAD2, KCNQ2, SLCI2A5, SV2B,
SYNI) have been implicated to play a role in epileptogenesis
(Barnby et al., 2005; Corradini et al., 2009: Papale et al.,
2009; Pandolfo, 2011; Fogel et al., 2012; Veeramah et al.,
2012) and show differentially spliced RNA transcripts in
RbfoxI knockout mice (Gehman et al., 2011) Notably,
brain-specific homozygous and heterozygous Rbfox]
knockouts in mice do notalter brain morphology but display
spontaneous seizures and a dramatic epileptogenic response
to kainic acid resulting in status epilepticus (Gehman et al.,
2011). Consistent with the splicing alterations in mice, a
RNA interference—mediated 50% knockdown of RBFOX/
transcripts in human neurons changes the alternative splic-
ing pattern and expression of primarily neuronal genes
involved in synapse formation and function (Voineagu
et al.,2011; Fogel et al.. 2012).

The present candidate gene association study tested
whether exon-disrupting deletions of RBFOX/ increase risk
of common IGE syndromes. We found a significant excess
of exon-disrupting deletions of the RBFOXI gene in IGE
patients compared to population controls. Familial cosegre-

Epilepsia, 54(2), 265-271,2013
doiz 10.1111/epi.12084

11

gation analysis implicates that exon-disrupting RBFOX1
deletions represent susceptibility factors that increase risk
of IGE but are not sufficient for the expression of IGE in
most of the families.

SUBJECTS AND METHODS

Study participants

The study protocol was approved by the local institu-
tional review boards of the participating centers, and all
study participants gave informed consent. The patients with
common IGE syndromes were recruited as a concerted
effort of epilepsy genetics programs integrated in the Euro-
pean EPICURE Project (http://www.epicureproject.eu;
EPICURE Consortium et al., 2012). Phenotyping and diag-
nostic classification of IGE syndromes were carried out
according to standardized protocols (available at: http://por-
tal.ccg.uni-koeln.de/ccg/research/epilepsy-genetics/sam-
pling-procedure). Patients with IGE exhibit unprovoked
generalized seizures but are typically otherwise normal and
have no anatomic brain abnormalities (Commission on
Classification & Terminology of the International League
Against Epilepsy, 1989; Nordli, 2005). Accordingly. the
ascertainment scheme applied in this multicenter study did
not include IGE patients with severe intellectual disability
(no basic education, permanently requiring professional
support in their daily life). All subjects of the case—control
association cohorts were typed by the Affymetrix Genome-
Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA,
U.S.A.). To ensure highly confident CNV calls, we
excluded all individuals (351 of 4,015) carrying a genome-
wide excess of more than 50 microdeletions (size >40 kb,
coverage >2() markers) prior to the assessment of RBFOX1
microdeletions (Elia et al., 2012).

The case—control sample included in this candidate gene
CNV study comprised 1,408 unrelated patients with IGE of
self-identified Northwestern European ancestry (869 females/
539 males; childhood absence epilepsy [CAE] n = 413, juve-
nile absence epilepsy [JAE] n = 207, unspecified idiopathic
absence epilepsy [IAE] n = 7, juvenile myoclonic epilepsy
[JME] n = 557, epilepsies with generalized tonic—clonic
seizures alone [EGTCS] n = 224) and 2,256 German
population controls (1,077 females/1,179 males). Array data
of 2,256 German control subjects were obtained from the
PopGen biobank (University Hospital Schleswig-Holstein,
Campus Kiel, Kiel, Germany) and the KORA (Cooperative
Health Research in the Region of Augsburg) research plat-
form representing epidemiologically recruited cohorts from
the Northern (Schleswig-Holstein, PopGen) and Southern
(Augsburg, KORA) regions of Germany. The control sub-
jects have not been screened for epilepsy or other neurodevel-
opmental disorders. EIGENSTRAT principal component
analysis (Price et al., 2006) was applied to remove ancestry
outliers and to match the European ancestry of the case—con-
trol cohorts (EPICURE Consortiumet al., 2012).
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RBFOX| Deletions Increase Risk of IGE

RBFOXI microdeletion screening

For all DNA samples of the case—control cohorts, we
assessed the signal intensities of 1.8 million probe sets on
the Affymetrix Genome-Wide Human SNP Array 6.0. CNV
analysis of all Affymetrix SNP 6.0 arrays was performed at
the Cologne Center for Genomics, using the algorithm
implemented in the Affymetrix Genotyping Console ver-
sion 4.1.1. To achieve high accuracy in CNV calling across
Affymetrix SNP 6.0 arrays processed at different laborato-
ries, microdeletion screening was restricted to deletions
covered by at least 20 probes and spanning >40 kb in size
(Pintoet al..2011).

Array-based screening of RBFOX]I deletions captured all
deletions affecting the genomic sequence of the RBFOX1
gene (chrl16:6,069,131-7,763,339, human genome build 37/
hgl19). The RBFOX1 gene is located in the chromosomal
region 16p13.3 and consists of 21 exons (NM_018723.3),
which form six mRNA transcripts encoding five known pro-
tein isoforms (Fig. 1; RBFOX! exon annotation adapted
from Fogel et al., 2012). Notably the 5'-terminal exons 1, 2,
3, 1B and part of exon 4 are untranslated (Fig. 1). All poten-
tial RBFOXI microdeletions were manually inspected for
the regional SNP heterozygosity state and log?2 ratios of the
signal intensities to exclude technical artifacts. Subse-
quently, the copy number state of all RBFOX1 microdele-
tions identified by the array-based CNV analysis was
examined by real-time quantitative PCR (qPCR), using
seven TagMan CNV assays covering the 5'-terminal
RBFOXI exons 1-4 (Life Technologies, Carlsbad, CA, U.S.A;
Fig. S1).

Statistical analysis
Case—control association analysis was carried out using a
two-sided Fisher’s exact test.

RESULTS

Detection of RBFOX1 deletions in patients with IGE and
controls

Microdeletions  (size >40 kb, coverage >20 markers)
affecting the genomic sequence of the RBFOXI gene were

Sale 1 Mb} {hgl?
chrlé: 6,000,000 6,500,000 7,000,000 7.500,000
EGOJ&Q— EPI&I3
L2364 EG0395
Do7u0s80 [l
RBFOXI I ST RN Y [FF ) ]
RBFOXI P rr e e b fE | TS
Raroxl—urwnnr-nnjr» Teé
RBFOXI “'HUJHE ™3
RBFOX | b3 34310 HHipTr2
RBFOX | b33 10 ikipi T
. Exon| Exon2 Exond ExonlB Exond
Fig I.

Exon-disrupting RBFOX | deletions. Overview of exon-disrupt-
ing RBFOX deletions, genomic localization, and overview of
the transcript variants (hgl9). The largest transcript variants 4
5 (NM_018723.3, NM_001142333.1) cover almost the entire
1.7 Mb of the gene and encode isoforms 4 and 5. The third larg-
est transcript variant 6 also encodes isoform 4
(NM_001142334.1), whereas transcript variants |, 2, and 3
cover only approximately 380 kb of the 3'-region of the gene.
Green bars represent microdeletion size and location for each
individual IGE patient. The red bars indicate the untranslated
5'-terminal RBFOX | exons. Tr., Transcript variant ID. The exon
annotation refers to the genomic organization of RBFOX| as
shown in Fogel et al. (2012).

Epilepsia © ILAE

found in 8 (0.6%) of 1,408 individuals with IGE, whereas
two deletions were observed in 2,256 controls (p = 0.017,
Fisher’s exact test; odds ratio [OR] 6.4, 95% confidence
interval [C1] 1.2-62.35; Figs 1 and S1). The size of the dele-
tions ranged from 41 to 896 kb. All 10 RBFOX] deletions
were located in the 5'-terminal RBFOX/ region encompass-
ing the untranslated exons 1-4. Remarkably, the two
RBFOXI deletions observed in the controls were both
located in intronic sequences and were smaller (41 and
56 kb) than the deletions observed in the IGE patients (68—
896 kb; Fig. S1). Specifically exon-disrupting RBFOX]I
deletions were present in 5 (0.35%) of 1,408 individuals
with IGE (Table 1) and none was detected in 2,256 controls
(p = 0.008, Fisher’s exact test; Figs 1 and S2). The hemizy-
gous copy number state of all RBFOX]/ deletions detected
by the array-based CNV scan could be confirmed in the IGE
patients by TagMan gPCR assays. DNA samples of the con-
trol subjects were not available for gPCR validation.

Table |I. RBFOXI exon-disrupting deletions in IGE index patients

Diagnosis/age-at-onset/seizure

Family  Index patient  Deletion size (kb) ~ Breakpointsat chrlé (Mb) types Familial comorbidity

| EGO0369 896 56166512 CAE:3/abs,7/GTCS Developmental delay, LD, sudden death
2 EPI613 68 6.797-6.865 JAE:1/FS,15/abs, I5/GTCS  No neuropsychiatric disorders

3 D07u0680 103 7.035-7.138 JME:1 6/myo,16/GTCS ASD, LD, myopia

4 EG0395 165 6.709-6.874 CAE:3/abs, 3/GTCS No neuropsychiatric disorders

- L2364 100 6.294-6.394 JME:1 4/myo, 14/GTCS No neuropsychiatric disorders

Values indicate the age-of-onset in years.

Diagnosis: ASD, autism spectrum disorder; CAE, childhood absence epilepsy; EGTCS, epilepsy with generalized tonic—clonic seizures alone; FS, febrile seizure;
JME, juvenile myoclonic epilepsy; IGE, idiopathic generalized epilepsy; LD, learning disability; Seizure types: myo, myoclonic seizure; abs, absence seizure.
Survey on RBFOX | exon-disrupting deletions in index patients with idiopathic generalized epilepsies.

Epilepsia, 54(2),265-271, 2013
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Figure 2.

Familial segregation of the exonic RBFOX/ deletions. Familial
segregation of exon-disrupting RBFOX| microdeletions. Dele-
tion carriers of RBFOX/ are marked with a red dot, “n” indi-
cates an analyzed sample without deletion. Crossed individuals,
deceased; black symbols, individuals affected by IGE; CAE,
childhood absence epilepsy; JME, juvenile myoclonic epilepsy;
EGTCS, epilepsy with generalized tonic—clonic seizures alone;
FS, febrile seizures; myo, myoclonic seizures; abs, absence
seizures; ASD, autism spectrum disorder.

Epilepsia € ILAE

Familial segregation and comorbidity analysis of the
exonic RBFOX1 deletions

The segregation of exonic RBFOX] deletions identified
in the IGE index cases was tracked in four families (Fig. 2).
The copy number status of the RBFOX1 was assessed in 20
available family members using TagMan qPCR assays
(Table S1).Intotal, 12 family members carried an exon-dis-
rupting RBFOXI deletion (6 females, 6 males). All
RBFOXI deletions identified in the IGE index patients were
inherited. Overall, the deletions were transmitted five times
maternally and one time paternally. Seven of 12 deletion
carriers were affected by IGE, and five carriers were clini-
cally unaffected. Seven of nine IGE patients investigated
carried an exonic RBFOX/ deletion. In families 1 and 2, ex-
onic RBFOX1 deletions were detected in all investigated
family members with IGE. In contrast, the RBFOX1 dele-
tion identified in the IGE index patient did not cosegregate
in family 3. The phenotypic features of the IGE syndromes
of the seven affected exonic deletion carriers did not differ
from those IGE patients lacking a RBFOXI deletion. Nota-
bly, six of seven IGE patients with RBFOXI exon-disrupt-
ing deletions exhibited typical absence seizures.

Epilepsia, 54(2), 265-271, 2013
doi: 10. 111 1/epi.12084

13

Comorbidity with other neuropsychiatric disorders was
observed in families | and 3. In family 1, the index patient
EGO0369 was affected by a classical CAE but also exhibited
neurodevelopmental problems with delayed speech and
attention and memory problems resulting in a learning dis-
ability that required special education. Learning disability
also occurred in the IGE-affected siblings of family 3
(DO7u680 and D0O6519). However, only DO7u680 carried a
RBFOX1 deletion, whereas the RBFOXT deletion was miss-
ing in sibling D06519, who was affected by IGE since the
age of 15 years but also had pervasive developmental disor-
der, which is part of the diagnostic group of autism spectrum
disorders. Moreover, vision impairment due to a strong
myopia was present in the IGE-affected mother and all three
siblings in family 3. Comorbidity with neuropsychiatric dis-
orders was not reported in families 2 and 4. Magnetic reso-
nance imaging scans of three 1GE patients carrying an
exonic RBFOXI deletion (family 1, EG0340; family 2,
EPI613; family 4, EG0395) did not reveal any structural
abnormalities of the brain, other than for bifrontal lesions in
patient EG0340 due to a traumatic brain contusion occur-
ring 16 years after the onset of the IGE.

Di1SCUSSION

The present candidate gene CNV study revealed a signifi-
cant excess of intronic and exonic deletions affecting the
neuron-specific RBFOXI gene in patients with IGE com-
pared with population controls. Specifically, we found
RBFOX1 exon-disrupting deletions in 5 (0.35%) of 1,408
IGE patients, whereas none was detected in 2,256 controls.
Considering the key role of the splicing regulator RBFOX1
in the control of neuronal excitation and seizure susceptibil-
ity (Gehman et al., 2011), the present findings suggest that
rare microdeletions affecting the RBFOX gene increase the
risk of common IGE syndromes.

The four exonic RBFOXI deletions tested for familial
segregation were all inherited. They differed considerably
in size, ranging from 68 to 896 kb, and were all located in
the 5'-terminal RBFOX! region encompassing the untrans-
lated exons 1-4 (Fig. S1). The RBFOX! 5'-terminal exons
represent highly conserved genomic sequences (Fig. S3)
and are predominantly expressed in brain, suggesting that
the 5'-terminal RBFOX]I region contains important regula-
tory elements (Damianov & Black, 2010). Consistent with
our findings, the structural genomic variations of the
RBFOX1 gene reported previously in three single patients
with neurodevelopmental disorders and epilepsy also dis-
rupted the 5-terminal RBFOX1 exons (Bhalla et al., 2004;
Martin et al., 2007; Gallant et al., 2011). Moreover, a
female with autism carrying a deletion of RBFOX1 exon 1
due to a de novo translocation t(15p;16p) displayed a signif-
icantly reduced RBFOXI mRNA expression in lymphocytes
(Martin et al., 2007). Accordingly, a similar reduction in
RBFOXI1 mRNA expression can be expected in the
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members of IGE-multiplex family 1 carrying the large
896 kb microdeletion that deletes the RBFOX1 exons 1-2.
IGE-multiplex family 1 is of particular interest because of
the consistent cosegregation of the IGE trait with the
RBFOX]1 deletion (Fig. 2). Notably, none of the previously
identified IGE-associated microdeletions at 15q11.2,
15q13.3, and 16p13.11 (Helbig et al., 2009; de Kovel et al.,
2010; Heinzen et al., 2010; for review see: Hochstenbach
et al., 2011) was found in the IGE index patients carrying a
RBFOX1 deletion.

The potential functional alterations of the four smaller
deletions involving the RBFOX1 5'-terminal exons 2—4 and
exons 1B and 4 remain clusive (Figs 1 and S1). In particu-
lar, IGE-multiplex family 3 does not show a co-segregation
of the IGE-trait with the 163 kb spanning deletion affect-
ing exon 4. Similar heterogeneous cosegregation patterns,
incomplete penetrance, and variable phenotypic expressivi-
ty have been observed for the recurrent 15q13.3 microdele-
tion, representing the strongest genetic risk factor for IGE
(OR 68; 95% CI 29-181) identified so far (Dibbens et al.,
2009; Helbig et al., 2009; de Kovel et al., 2010; Mefford
et al., 2011; Mulley et al., 2011). Together these lines of
evidence support an oligogenic/polygenic heterogeneity
model for the genetic architecture of the majority of com-
mon IGE syndromes and other common neurodevelopmen-
tal disorders. Accordingly, the effect of each genetic risk
factor alone is not sufficient to express IGE phenotypes,
but the interactive effects of heterogeneous sets of rare and
low frequency susceptibility factors together promote icto-
genesis  and  epileptogenesis  (Dibbens et al.,,  2007).
Depending on the heterogenecous composition of genetic
risk factors, the phenotypic expression of exonic RBFOX]1
microdeletions is likely to exhibit extensive phenotypic
variability as observed for the large recurrent microdele-
tions at 1g21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11, and
22q11.2 (Coe et al., 2012). These pathogenic microdele-
tions seem to affect normal neurodevelopment, resulting in
an impaired homeostatic regulation of neuronal networks.
In combination with other genetic susceptibility factors, a
set of genomic structural variations may contribute to the
genetic variability and phenotypic overlap of a wide spec-
trum of common neuropsychiatric diseases sharing a neu-
rodevelopmental pathogenesis (Coe et al., 2012). With
regard to the pivotal role of RBFOXI in regulating both
splicing and transcriptional networks in human neurodevel-
opmental processes (Fogel et al., 2012), the highly variable
spatiotemporal expression of the RBFOX/ gene in differen-
tiating human neurons (Gehman et al., 2011; Fogel et al.,
2012; Lin et al., 2012) and the variable expressivity of the
large number of downstream gene transcripts may also
contribute to the pleiotropic effects of exon-disrupting
RBFOX]I deletions. In line with the oligogenic/polygenic
heterogeneity model, we observed a familial comorbidity
with other neurodevelopmental disorders, such as learning
disability and autism spectrum disorder, in two families

doi: 10.1111/epi.12084

(1 and 3) with RBFOXI exon-disrupting deletions
(Table 1, Fig. 2). Taking into account that the ascertain-
ment scheme for subjects with IGE applied in this study
leads to an exclusion of individuals with severe intellectual
disability or predominant neuropsychiatric disorders, com-
orbidity of generalized seizures with other neurodevelop-
mental disorders should be more common.

In summary, the present candidate gene CNV study of the
neuron-specific splicing regulator gene RBFOX]! suggests
that microdeletions affecting the untranslated 5'-terminal
RBFOXI exons increase risk of common IGE syndromes.
The present findings warrant further studies to replicate an
involvement of RBFOXI in the genetic predisposition of
IGE syndromes and other common neurodevelopmental
disorders and to elucidate the pathogenic mechanisms of
epileptogenesis resulting from RBFOX1-mediated altera-
tions of the splicing process of neuronal genes.
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Overview of all deletions affecting the RBFOX1 gene including locations of the

TagMan gPCR assays. Green bars define microdeletion size and location in

IGE patients, brown bars in population controls; purple vertical lines indicate

the genomic location of each individual TagMan Copy Number Assay (1.-7.);

the red bars indicate the untranslated 5'-terminal RBFOX1 exons 1-4. All

deletions were hemizygous and (if possible) have been confirmed by qgPCR

using copy number assays located in the deletions. RBFOX71 genomic

organization and exon annotation adapted from Fogel et al., 2012.
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UCSC Genome Browser RBFOX71 regulatory annotation tracks. RBFOXT1
Genomic Evolutionary Rate Profiling (GERP) scores. The rejected
substitutions score (RS) is based on an alignment of 35 mammal scores, only
peaks above a RS score of 2 are shown. A RS score threshold of 2 provides
high sensitivity while still strongly enriching sequence conservation sites
(http://www.genome.ucsc.edu). For RBFOX1, high RS scores were observed

across the entire gene including the introns.
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Table S1

RBFOX1 qPCR CN states

1 EG0369 CAE:3/abs,7/GTCS 1 1 1 2

JME:8/abs,8/myo,9GTCS,

1 EGO340 28/unexpected sudden death

1 EG0368 2 2 2 2

1 12630-11 2 2 2 2

2 BL7907 2 2 2
2 BL7948 2 1 2
4 EG0395 CAE:3/abs,3/GTCS 2 1 2

4 EG0405 2 2 2

4 EG1013 2 2 2

3 D06519 EGTCS:18/GTCS,ASD 2 2 2

3 D06620 EGTCS:15/GTCS 2 2 2

EZ741 JME:5/myo,15/GTCS,gsw,PPR 2 1 2

L2364 JME:14/myo,14/GTCS 2 1 2

Epilepsy phenotype of individuals examined by qPCR and overview of all
RBFOXT1 deletions validated by TagMan gPCR assays. Bold sample IDs
indicate index-cases for which the RBFOX7 deletion was initially detected by
the Affymetrix SNP 6.0 array. The copy number state of 1 (CN = 1) indicates a
hemizygous deletion, whereas a CN = 2 represents the normal diploid copy

number. All estimates of the CN states examined by gPCR achieved the
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highest confidence level according to the quality scores assessed by the
CopyCaller Software (Life Technologies, Carlsbad, CA, USA). The genomic
position of the TagMan CNV assays refers to the physical nucleotide position
on chromosome 16 according to the human genome build 37/hg19: Assay 1:
6070126bp, Assay 2: 6360716 bp, Assay 3: 6494059 bp, Assay 4: 6837750
bp, Assay 5. 6927498 bp, Assay 6: 7000712 bp, Assay 7: 7058025 bp.
Abbreviations: Diagnosis: ASD = autism spectrum disorder; CAE = childhood
absence epilepsy; EGTCS = epilepsy with generalized tonic-clonic seizures
alone; FS = febrile seizure; JME = juvenile myoclonic epilepsy; IGE =
idiopathic generalized epilepsy; LD = learning disability; Seizure types: myo =
myoclonic seizure; abs = absence seizure. Values indicate the age-of-onset in

years.
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Dejanovic B*, Lal D*, Catarino BC*, Arjune S et al. Exonic microdeletions of the gephyrin
gene exert a dominant-negative effect on GABAergic synaptic inhibition in two patients with

idiopathic generalized epilepsy. Human Molecular Genetics (in revision)

*These authors contributed equally to this work

20



PUBLICATION: GPHN IN IGE

Exonic microdeletions of the gephyrin gene impair GABAergic synaptic

inhibition in patients with idiopathic generalized epilepsy

Borislav Dejanovic'’, Dennis Lal***, Claudia B. Catarino®, Sita Arjune’, Ali A. Belaidi’,
Holger Trucks?®, Christian Vollmar®, Rainer Surges®®, Wolfram S. Kunz®®, Susanne

Motameny?, Janine Altmiller?, Anna Koéhler', Bernd A. Neubauer?, EPICURE Consortium?,

1,3,7#

Peter Niirnberg®*"®, Soheyl Noachtar®, Giinter Schwarz'*"* and Thomas Sander®®

1. Department of Chemistry, Institute of Biochemistry, University of Cologne, 50674
Cologne, Germany

2. Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne,
Germany

3. Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated

Diseases (CECAD), University of Cologne, 50674 Cologne, Germany

4. Department of Neuropediatrics, University Medical Center Giessen and Marburg,

35392 Giessen, Germany

5. Epilepsy Center, Department of Neurology, University of Munich, 81377 Munich,

Germany
6. Department of Epileptology, University Clinics Bonn, 53105 Bonn, Germany

7. Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne,

Germany

8. EPICURE Consortium

* Authors contributed equally

# Equal senior authorship

TEPICURE Consortium participants are listed in Appendix

21



PUBLICATION: GPHN IN IGE

To whom correspondence should be addressed at:

Gunter Schwarz, Institute of Biochemistry, University of Cologne, Zilpicher Str. 47, 50674
Cologne, Germany, Phone: +49-221-470-6441, Fax: +49-221-470-5092, Email:

gschwarz@uni-koeln.de

Thomas Sander, Cologne Center for Genomics, University of Cologne, Weyertal 115b,
50931 Cologne, Germany, Phone: +49-221-478-96800, Fax: +49-221-478-96866, Email:

thomas.sander@uni-koeln.de

22



PUBLICATION: GPHN IN IGE

ABSTRACT

Gephyrin is a postsynaptic scaffolding protein, essential for the clustering of glycine
and y-aminobutyric acid type-A receptors (GABAaRS) at inhibitory synapses. An
impairment of GABAergic synaptic inhibition represents a key pathway of
epileptogenesis. Recently, exonic microdeletions in the gephyrin gene (GPHN) have
been associated with neurodevelopmental disorders including autism spectrum
disorder, schizophrenia and epileptic seizures. Here we report the identification of
novel exonic GPHN microdeletions in two patients with idiopathic generalized
epilepsy (IGE), representing the most common group of genetically determined
epilepsies. The identified GPHN microdeletions involve exons 5-9 (A5-9) and 2-3
(A2-3), both affecting the gephyrin G-domain. Molecular characterization of the
GPHN A5-9 variant demonstrated that it perturbs the clustering of regular gephyrin at
inhibitory synapses in cultured mouse hippocampal neurons in a dominant-negative
manner, resulting in a significant loss of y,-subunit containing GABAxRs. GPHN A2-3
causes a frameshift resulting in a premature stop codon (p.vV22Gfs*7) that most likely
leads to haplo-insufficiency of the gene. Our results demonstrate that structural
exonic microdeletions affecting the GPHN gene constitute a rare genetic risk factor
for IGE and other neuropsychiatric disorders by an impairment of the GABAergic

inhibitory synaptic transmission.

KEYWORDS

Idiopathic generalized epilepsy; Microdeletion; GPHN; gephyrin;

ABBREVIATIONS

GABAAR, y-aminobutyric acid type-A receptors; CNV, copy number variations; IGE,

idiopathic generalized epilepsie; TMS, transcranial magnetic stimulation; DTI,

23



PUBLICATION: GPHN IN IGE

diffusion tensor imaging; HEK293, Human Embryonic Kidney 293; TLE, temporal

lobe epilepsy; gPCR, quantitative polymerase chain reaction;
INTRODUCTION

Epilepsy is characterized by recurrent spontaneous seizures due to a neuronal
hyperexcitability and an abnormal cortical synchronization. Approximately 3% of the
general population are affected by epilepsy until the age of 40 years *. The idiopathic
generalized epilepsies (IGEs) represent the most common group of genetically
determined epilepsies, accounting for 20-30% of all epilepsies 2. Their clinical
features are characterized by age-related recurrent unprovoked generalized seizures,
in the absence of detectable brain lesions or metabolic abnormalities **. Genetic
factors play a predominant role in the etiology of IGE with heritability estimates of
80%. However, the vast majority of IGE syndromes have an oligo-/polygenic

predisposition and their genetic basis remains elusive °.

Structural genomic copy number variations (CNVs) account for a substantial fraction
of the genetic variance in about 3% of patients with idiopathic epilepsies .
Recurrent microdeletions at 15q11.2, 15q13.3, 16p13.11 ®’ and exonic deletions in
NRXN1 '° and RBFOX1 ! increase the risk of IGE and a wide range of

neurodevelopmental disorders 2.

Recently, exonic microdeletions in the gene
encoding the synaptic scaffolding protein gephyrin (GPHN) have been found to
represent a rare cause of neurodevelopmental disorders, including autism spectrum

disorder (ASD), schizophrenia and epileptic seizures 3. Two out of six patients

carrying exonic GPHN deletions exhibited seizures *°.

Gephyrin is a postsynaptic scaffolding protein, essential for the clustering and

localization of glycine and a subset of GABA, receptors at inhibitory synapses ***°.
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Gephyrin is composed of three domains - the C-terminal E-domain binds directly to
the glycine and GABA,a receptor subunits, whereas the N-terminal G-domain is
crucial for gephyrin’s oligomerization. Both domains are connected by the central (C)
domain 8. Aberrant function of gephyrin impairs GABAergic synaptic inhibition, which
thereby may promote neuronal hyperexcitability and seizure susceptibility.
Previously, we have reported a gephyrin-specific effect in temporal lobe epilepsy
(TLE), where stress-induced irregular splicing of GPHN resulted in the expression of
truncated gephyrin variants that impaired the function of regular gephyrin by
dominant-negative interaction %°. Additionally, reduced gephyrin expression has been
detected in temporal lobe surgical specimens of patients with medically refractory
TLE, as well as in rat models 2. These accumulating lines of evidence support the
hypothesis that gephyrin dysfunction impairs GABAergic synaptic inhibition and
thereby contributes to epileptogenesis %2 In the present study, we screened the
GPHN gene for microdeletions in 1469 European patients with common IGE
syndromes and 2256 population controls **. We identified exonic GPHN deletions
affecting the gephyrin N-terminal G-domain in two IGE patients and characterized the
underlying molecular mechanism causing functional alterations in gephyrin clustering

thus promoting epileptogenesis.
MATERIALS AND METHODS

Study cohort and CNV screening

This study has been approved by the local Research Ethics Committees. All study
participants including the family members of the GPHN deletion-carriers provided an
informed written consent. CNV screening of the genomic GPHN sequence
(chr14:66,974,125-67,648,525; human genome build 37/hgl9) was carried out in

1,469 unrelated patients with IGE of self-identified North-Western European ancestry
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and 2,256 German population controls **. DNA samples were investigated by the
Affymetrix Genome-Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA, USA).
CNV analysis was performed, using the Birdsuit algorithm implemented in the
Affymetrix Genotyping Console version 4.1.1. Regional log2 ratios of the signal
intensities and the SNP heterozygosity state were visualized in the Chromosome
Analysis Suite v1.2.2 (Affymetrix, Santa Clara, CA, USA). The copy number state of
the GPHN microdeletions identified by the array-based CNV analysis were examined
by real-time quantitative PCR (gPCR), using a TagMan® CNV assays located in
GPHN exon 7 (Assay ID: Hs01711518 cn) and intron 2 (Assay ID: Hs07084813 cn;
Life Technologies, Carlsbad, CA, USA). Genome-wide CNV screening beyond the
GPHN locus was restricted to CNVs with a segment size > 500kb 2 and a minimum
of 50 markers to achieve a high accuracy and reliability. Again, regional log2 ratios of
the signal intensities and the SNP heterozygosity state were visualized for all CNVs
in the Chromosome Analysis Suite v1.2.2 (Affymetrix, Santa Clara, CA, USA) and

were manually inspected.

Transcript analysis

RNA was isolated from whole blood samples using the PAXgene Blood RNA Kit
(Qiagen, Hilden, Germany). For amplification of the A5-9 deletion flanking primers
were designed: Forward (within exon 4) AGGAACAGGATTTGCACCAC and reverse
(within exon 13) GCGATGTCTTCTAGCCACCT. Amplification of the A2-3 deletion
was performed with primers: Forward (within exon 1)
CCGAGGGAATGATCCTTACTAA and reverse (within exon 7)
TCAAGTTCATCATGCACCTCC. The sizes of the amplified DNA fragments were
assessed using a 1.5% agarose gel electrophoresis and the Agilent 2200

TapeStation Nucleic Acid System (Agilent Technologies, Santa Clara, California,
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USA). Bidirectional Sanger sequencing of the identified GPHN cDNA amplicons was

done following standard protocols.

Paired-pulse transcranial magnetic stimulation

For Family 1, the patient, his father and six healthy controls with no personal history
of seizures or other neurological disorders and no medication (three females, median
age 38 years, range 24-44 years) had transcranial magnetic stimulation (TMS). After
evaluating the resting motor threshold (MT), paired-pulse TMS was used to study
intra-cortical inhibition (ICI; interstimulus interval [ISI] of 3 ms) and intra-cortical
facilitation (ICF; ISI of 13 ms). The protocol used was adapted from Werhahn and

colleagues %*. IBM SPSS Statistics 21.0 software was used for statistical analysis.

Expression construct

Regular enhanced green fluorescent protein (EGFP)-tagged gephyrin % served as
the basis for A5-9geph expression constructs. Fragments encoding gephyrin exons
1-4 and 10-30 were amplified from regular gephyrin construct and connected by
fusion PCR. The two fragments were connected by fusion PCR and introduced into
the pEGFP-C2 vector (Clontech) using Xhol and Hindlll restriction sites. To create
myc-tagged gephyrin, EGFP-tagged gephyrin was amplified with primers that
introduce the sequence for the myc-tag (EQKLISEEDL) at the N-terminus of gephyrin
and a stop-codon after the last amino acid of gephyrin. Fragment was introduced into
pPEGFP-N2 the vector (Clontech, Mountain View, CA, USA) using Xhol and Hindlll

restriction sites.

Hippocampal neuron cultures and transfection
Primary neuron cultures were prepared from hippocampi of C57BL/6 mice and plated
on poly-L-lysine coated coverslips at a density of 75,000/24-well dish. Neurons were

cultured in Neurobasal medium, supplemented with B-27, N-2 and glutamine.
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Neurons were transfected after 11 days in vitro (DIV) unless otherwise stated.
Transfection was carried out with Lipofectamin 2000 (Invitrogen) according to
manufactures manual. Constructs were expressed for 48 hours unless otherwise

stated.

Human embryonic kidney cell culture and transfection

Human embryonic kidney (HEK293) cells were grown in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal calf serum and 2 mM L-glutamine at 37 °C and
5% CO,. For confocal laser-scanning microscopy, 1 x 10° HEK-293 cells were
seeded on collagenized coverslips in 12-well plates and immediately transfected with
polyethylenimine (1 mg/ml, diluted in H,O, pH 7.0) using standard protocols. Cells

were grown for 24-48 h depending on the assay.

Immunostaining of cultured cells

Cells were fixed with 4% PFA for 10 min at room temperature. Unspecific binding
sites were blocked with blocking solution (2% BSA, 10% goat serum, 0.2% Triton X-
100) for 1h and primary antibodies were applied for 1 h in 10% goat serum. After
three washing steps in PBS, cells were incubated with secondary antibodies in 10%
goat serum for 1 h at room temperature. After the final three washing steps in PBS,
slides were mounted on cover slips with Fluoro gel Il containing DAPI (Science
Service, Munich, Germany) to stain the nuclei. Antibodies used for the staining:
mouse anti-gephyrin (1:50 cell culture supernatant, clone 3B11); rabbit anti-gephyrin
(1:1,000, rGeph-C, epitope EDLPSPPPPLSPPP, Eurogentec, Belgium); guinea-pig
anti-GABAAa-gamma2 receptor (Jean-Marc Fritschy, ETH, Zurich); rabbit anti-VGAT
(2:500, Synaptic Systems, Gottingen, Germany); mouse anti-myc-tag (1:10 cell
culture supernatant, clone 9E10). Secondary antibodies were all goat raised Alexa

Fluor antibodies (1:500, Invitrogen, Carlsbad, CA, USA).
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Image analysis and quantification

Images were acquired with a confocal laser scanning microscope (Nikon Al) at 60x
using a resolution of 1024x1024. Images were processed using the software NIS
Elements (NIKON). For analysis of neuronal cultures at least two independent
preparations per condition were used. Images were acquired as a z-stack with three
optical sections with 0.5 ym steps. Maximum intensity projections were created and
analyzed using NIS Elements software. Usually two 20 x 5 ym region of interests
(ROI) were placed on dendrites and clusters were counted using the analyze
particles option in NIS Elements. For statistical analysis, gephyrin cluster were
compared pairwise between EGFP and A5-9geph expressing neurons. Mean values
were compared for significance using Student’s t-test with the software SigmaPlot
(Systat Software, Chicago, IL, USA). Errors are presented as standard error of the
mean (SEM). Significance levels are indicated as *P < 0.01, **P < 0.05, ***P < 0.001.

Images were processed with the software ImageJ (NIH).

Co-immunoprecipitation

Protein extracts were prepared in an IP-buffer (25 mM Tris, pH 7.4, 150 mM NacCl,
1% Triton X-100, protease and phosphatase inhibitor cocktail (Roche, Mannheim,
Germany)). The post-nuclear fraction was incubated with primary antibodies for 1 h at
room-temperature or overnight at 4 °C. 20 ul Protein-G Sepharose beads were
incubated with the extracts for 2 hours at room temperature. After a brief
centrifugation (500 g for 3 min), the immune-beads were washed three times with IP
buffer. The adsorbed proteins were eluted from the immune-beads by boiling in 50 pl
SDS-loading buffer. Immunoprecipitated samples were subjected to SDS-PAGE

followed by immunoblotting.
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Western Blot analysis and antibodies

For immunoblotting, a standard protocol was followed and detection was carried out
using chemiluminescence and an ECL system with a cooled CCD camera (Decon
Science Tec, Germany). The following primary antibodies were used and diluted in
TBS-Tween containing 1% dry-milk: anti-Gephyrin (1:50, clone 3B11 cell culture
supernatant), rabbit anti-3-tubulin (1:100, Santa Cruz, Santa Cruz, CA, USA), rabbit
anti-GFP (1:5,000, Abcam, Cambridge, UK), mouse anti-myc-tag (1:10 cell culture
supernatant, clone 9E10). As secondary antibodies anti-mouse or anti-rabbit

conjugates were used in a 1:10,000 dilutions in TBS-Tween containing 1% dry milk.

RESULTS

Detection of exonic GPHN microdeletions and mRNA transcription analysis

We screened the genomic GPHN sequence (14q23.3:66,974,124-67,648,524,
reference coding sequence: NM_020806, CCDS9777.1; hgl9) for microdeletions
(size > 40 kb, number of probe sets > 20) using high coverage microarrays from
1,469 unrelated European patients with common IGE syndromes and 2,256 German
population controls. We identified two hemizygous exonic GPHN microdeletions in
the IGE cohort: i) a 129 kb microdeletion (chr14:67,314,917-67,443,729) affecting
GPHN exons 5-9 (A5-9) in a German male patient with juvenile myoclonic epilepsy
(JME, Family 1), and ii) a 158 kb microdeletion (chrl4:67,136,658-67,295,196)
encompassing GPHN exons 2-3 (A2-3) in a German male patient with myoclonic
astatic epilepsy (Doose syndrome, Family 2) (Fig. 1A). None of the 2,256 German
controls carried a microdeletion at the GPHN locus. The hemizygous copy number

state of the GPHN deletions was validated by TagMan quantitative PCR (gPCR).
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Exome sequencing of the GPHN coding regions and exon/intron boundaries did not
reveal any additional indels and rare missense mutations in the parent-offspring trio
of Family 1. Direct blood cDNA amplification of GPHN exons 4-13 for Family 1 and
exons 1-7 for Family 2 followed by Sanger sequencing of the major amplicons
confirmed the transcription of the truncated GPHN variants and revealed a paternal
transmission of both microdeletions (Fig. 1B-D and Supplementary Material S1).

6,8,9,26,27

Genome-wide screening for CNVs previously associated with epilepsy :

revealed no additional known pathogenic CNVs in both index patients.

On protein level, the GPHN A5-9 microdeletion leads to the truncation of the gephyrin
G- and C-domain (hereafter termed “A5-9geph” - Fig. 1E). Given that residue 22 is
encoded by a splitted codon composed by exons 1 and 2, the GPHN A2-3 variant
results in a frameshift and a premature stop codon (p.V22Gfs*7, Fig. 1F). We
assume that, although through first strand synthesis we were able to amplify the
GPHN A2-3 variant, most of the transcript will be degraded by nonsense-mediated
MRNA decay, a translation-dependent posttranscriptional process that selectively
recognizes and degrades mRNAs whose open reading frame is truncated by a

28

premature translation termination codon “°, resulting in negligible amounts of the

protein.

Clinical features of the GPHN deletion carriers and segregation analysis

Family 1 (GPHN A5-9 deletion)

The pedigree of Family 1 is presented in Fig. 1A. The non-consanguineous German
parents (57-years-old father, 55-years-old mother) and the patient’s 30-year-old sister
had no unequivocal history of seizures. The GPHN A5-9 deletion was paternally

inherited. The mother showed a diploid copy humber status at the GPHN locus. DNA
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from the clinically unaffected sister was not available. The 33-year-old male index
IGE patient was born at term after an uneventful pregnancy and delivery. He had
recurrent simple febrile seizures from the age of six months to six years, unprovoked
generalized tonic-clonic seizures since the age of five years and myoclonic seizures
recorded by video-EEG starting at the age of 16 years. Complete remission of
epileptic seizures by monotherapy with levetiracetam was reached since the age of
24 years. Neurological examinations and brain MRIs (3-T) were normal. The epilepsy
diagnosis was classified as JME. Neuropsychiatric and developmental comorbidities
were mild deficits in motor coordination, hyperactivity, and learning difficulties during
childhood. Neuropsychological testing at the age of 19 years showed normal
cognitive abilities with average performance scores. Recurrent episodes of major
depression with suicide attempts started at the age of 16 years, accompanied by
generalized anxiety, panic attacks and phobic vertigo. Non-epileptic psychogenic
attacks became evident since the age of 32 years. The patient’s father experienced
three unprovoked events of loss of consciousness between 4 and 6 years of age.
There is a strong family history of migraine affecting the maternal branch of the
family. Any history of psychiatric disorders, dysmorphism, developmental delay,

intellectual disability or miscarriages was absent.

Neurophysiological examinations

To evaluate cortical excitability, we performed paired-pulse transcranial magnetic
stimulation (TMS) in Family 1 ?°. For both, the JME index-patient and his father, intra-
cortical inhibition was significantly reduced as compared to six healthy controls (P <
0.001), while intra-cortical facilitation was more pronounced than in controls (P <
0.001- Fig. 2). Likewise, diffusion tensor imaging (DTI) showed an enhanced

structural connectivity between the mesial frontal region and the descending motor
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pathways in the index patient and his father that was beyond the range seen in
healthy controls (Supplementary Material Fig. S3). For the patient the peak voxels
reached statistical significance for the connectivity to the motor pathways (P < 0.001),
whereas the father's values showed only a trend but did not reach statistical

significance.

Family 2 (GPHN A2-3 deletion)

The pedigree of Family 2 is presented in Fig. 1A. The non-consanguineous parents
(50-year-old father, 48-year-old mother) are of German ancestry. The GPHN A2-3
deletion was paternally inherited. The mother and the brother had diploid copy
numbers at the GPHN locus. The 16-year-old male index IGE patient was affected by
febrile seizures at the age of 15 months and by myoclonic astatic seizures starting at
the age of 1.5 years. Since antiepileptic treatment with valproate, which was started
shortly after epilepsy-onset, he is seizure-free. The EEG exhibited irregular sharp-
slow wave discharges at 3-Hz. The patient showed a normal physical but delayed
cognitive development with persistent learning disability. His epilepsy was classified
as idiopathic myoclonic-astatic epilepsy (Doose syndrome). The father had no history
of seizures and a normal psychomotor development. The mother experienced three
seizures during infancy with spontaneous remission and normal psychomotor
development. Her EEGs displayed interictal epileptiform discharges. The 18-year-old
brother of the index patient had two febrile seizures during childhood while no
subsequent history of afebrile seizures, normal psychomotor development and EEG

were reported. None of the family members had a history of psychiatric disorders.

Molecular and biochemical characterization of the GPHN A5-9 variant

Gephyrin forms postsynaptic clusters along the neurites as well as soma, while

following its overexpression in non-neuronal cells, it forms cytosolic protein-
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aggregates (“blobs”, Fig. 3A,B). To examine the effects of the GPHN A5-9 deletion,
we expressed GFP-tagged A5-9geph in cultured hippocampal neurons and HEK293
cells. A5-9geph-GFP was homogenously distributed in the cytosol of HEK293 cells
and neurons including all morphological structures, i.e. spines (Fig. 3A,B), suggesting
its inability of form postsynaptic clusters. To see how clustering deficient A5-9geph
influences regular gephyrin, we first co-expressed myc-tagged gephyrin and A5-
9geph-GFP in HEK293 cells. We found that gephyrin blobs were dissolved resulting
in either diffuse regular gephyrin or the formation of microclusters co-localizing with
A5-9geph-GFP (Fig. 3C,D). This demonstrates a dominant-negative effect of A5-
9geph on the oligomerization of regular gephyrin. Notably, A5-9geph-GFP was stably
expressed at levels equivalent to regular gephyrin-GFP (Fig. 3E). The observed
dominant-negative effect on regular gephyrin clustering is mediated by direct

interaction with A5-9geph, as shown by co-immunoprecipitation (Fig. 3F).

To evaluate the consequences of dominant-negative A5-9geph action on neuronal
gephyrin clustering, we expressed A5-9geph-GFP or GFP alone in cultured
hippocampal neurons. To distinguish between endogenous gephyrin and A5-9geph-
GFP, we used a monoclonal antibody against a peptide in the C-domain that is
deleted in A5-9geph (rGeph-C, Fig. 4A). Expression of A5-9geph-GFP significantly
reduced the number of endogenous gephyrin clusters confirming the previously
stated dominant-negative effect (Fig. 4B,C). Moreover, remaining gephyrin clusters
were significantly reduced in size indicating that A5-9geph disturbs the clustering of
regular gephyrin (Fig. 4D). To determine how A5-9geph-GFP expression influences
the clustering of GABAARS, we visualized the y,-subunit (Fig. 4E), which plays a
central role in gephyrin-dependent postsynaptic clustering of GABAaRs ****. Number

and cluster size of y,-containing GABAaRs were significantly decreased in the
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presence of A5-9geph-GFP (Fig. 4F,G). Together with the observed reduced quantity
of gephyrin clusters, our data imply that receptor homeostasis responds to decreased

amounts of clustered gephyrin.

To investigate whether A5-9geph-mediated reduction in GABAergic innervation
influences synaptic spines, typical morphological structures of the excitatory synapse
32 we visualized spines in control and A5-9geph-GFP-expressing neurons by
thresholding the EGFP-signal to an identical value. Spine head morphology and

amount was similar in EGFP and A5-9geph-expressing neurons, suggesting that

diminished GABAergic synapses did not interfere with synaptic spines (Fig. 4H-J).

Besides its synaptic function, gephyrin catalyzes the last step of the molybdenum
cofactor (Moco) biosynthesis being essential for the activity of four molybdenum-
dependent enzymes ***. We measured typical urinary biomarkers of two Moco-
dependent enzymes, xanthine oxidase (uric acid, xanthine) and sulfite oxidase (S-

sulfocysteine) as well as the Moco degradation product urothion ¢

in the patient
and his parents of Family 1. Concentrations of all analyzed metabolites were
inconspicuous, suggesting that the hemizygous GPHN A5-9 variant did not cause

any subclinical Moco deficiency phenotype in the affected patient (Supplementary

Material Fig. S3).
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DISCUSSION

We present a comprehensive clinical, genetic, functional and neurophysiological
characterization of two IGE patients with novel hemizygous microdeletions
encompassing GPHN exons that code for the N-terminal gephyrin G-domain. Our
finding strengthens a previous report of six unrelated subjects with a wide range of
neurodevelopmental disorders (ASD, schizophrenia, seizures) who carried
hemizygous GPHN microdeletions affecting the gephyrin G-domain *3, and extends
the phenotypic spectrum related to N-terminal GPHN microdeletions by IGE
syndromes (Supplementary Material Fig. S4). The study reported by Lionel et al.
deduced evidence of pathogenicity of GPHN microdeletions from the significant
association with neurodevelopmental disorders (P = 0.009; 6/8,775 cases versus
3/27,019 controls) and found that three out of five GPHN microdeletions tested for
inheritance arose as de novo events 3. In this study, we present additional functional
data elucidating the molecular mechanisms by which the N-terminal GPHN deletions
cause dysfunctional GABAergic synaptic inhibition and thereby increase susceptibility
of IGE.

Molecular characterization demonstrates that the truncated GPHN A5-9 variant
(Family 1) exerts a dominant-negative effect on the structural synaptic organization of
gephyrin and GABAAR clusters. Gephyrin oligomerization is thought to be a

concerted interaction mediated by G-domain trimerization *®, G- and E-domain

18

interaction *®, E-domain dimerization %

and C-domain binding to other proteins
controlled by posttranslational modifications *. The truncated A5-9geph protein itself
is not able to form clusters and impairs the oligomerization process of regular
gephyrin (Fig. 4), which can be explained by the loss of the G-domain trimerization
interface encoded mainly by exon 6 2. Instead, A5-9geph probably forms irregular
25

dimers by interaction of the intact E-domain with regular gephyrin E-domains
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Thereby, it stochastically affects oligmerization of regular gephyrin in a dominant-
negative manner. Importantly, the size of remaining gephyrin and GABAAR clusters
was significantly reduced, which will probably impair the recently described
homeostatic regulation of gephyrin scaffolds and normal development of the neuronal
inhibitory GABAergic circuits *°. Consistently with our findings, it was speculated that
cellular stressors such as elevated temperature or alkalosis, which can arise from
seizure activity, might induce irregular exon skipping in GPHN mRNA leading to
deletions within the G- and C-domain thus causing a dominant-negative effect on the
oligomerization of synaptic gephyrin clusters ?°. Moreover, given the constitutional
expression of the truncated A5-9geph protein, it is also likely that during development
A5-9geph expression negatively affects the establishment of certain networks which

cumulatively contribute to the genetic variance of the IGE phenotype.

In Family 2, the GPHN A2-3 variant causes a frameshift with premature stop codon,
resulting in a truncated GPHN protein consists of the first 21 amino acids encoded by
exon 1, followed by seven residues encoded by out of frame codons before the
premature stop codon (p.V22Gfs*7 — Fig. 1F). Notably, five out of six GPHN multi-
exon deletions (A2-5 (n = 2), A3-8, A3-11 and A3-12) reported by Lionel et al. ** in
patients with neurodevelopmental disorders result in frameshifts and premature stop
codons, causing truncated GPHN proteins including the first 21 or 47 amino acids
encoded by exon 1 or exons 1-2, respectively. Although truncated gephyrins
comprising the first 47 amino acids have the capacity to impair the oligomerization of

regular gephyrin 2°

, the expression of these frameshift-causing GPHN multi-exon
deletions will probably be negligible due to nonsense-mediated mRNA decay 2.
Considering the fact that we were able to amplify the GPHN A2-3 transcript in cDNA

derived from blood cells (Supplementary Material Fig. S2), at least a partial
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expression of the GPHN A2-3 transcript is possible. However, we assume that in
these patients the pathogenic effect of the truncated GPHN results predominantly

from haplo-insufficiency rather than from effects on the oligomerization of regular

gephyrin.

Given the intriguing impact of an impaired GABAergic synaptic transmission in
epileptogenesis *!, the reduced amount of synaptic GABAaRS in the presence of
truncated gephyrins exerts a functionally convergent effect similar to that observed by
mutations of genes encoding GABAAR subunits (GABRA1, GABRB3, GABRG2 and
GABRD) in rare families with dominantly inherited IGE syndromes (for reviews see
4243 "On molecular level, GABR gene mutations generally lead to a reduced surface
expression of GABAaRS, which results in the reduction of the amplitude of GABA-
evoked currents. Although GPHN deletions also should affect glycine receptor

clustering, this seems to have no significant pathogenic consequences considering

that typical symptoms of glycinergic deficits, such as hyperekplexia, are missing.

Interestingly, in Family 1, the clinically unaffected father as well as the JME-affected
index patient carrying the GPHN A5-9 deletion exhibited an impaired cortical
inhibition leading to hyperexcitability, as demonstrated by TMS, which mainly reflects
the functional state of GABAergic interneuronal circuits **. This imbalance of the
inhibitory/excitatory ratio corresponds well with the experimentally validated
dominant-negative effect of the GPHN A5-9 deletion on the reduced size and number
of GABAAR clusters at inhibitory synapses. Moreover, diffusion tensor imaging
showed a statistically significant increase in the structural connectivity of the mesial
frontal region and the descending motor circuits in the JME-affected index patient
and a slightly enhanced connectivity in the father of Family 1. An altered structural

connectivity of the mesial frontal region has recently been found in JME *° and may
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explain the predominant manifestation of myoclonic seizures in the JME-index patient
of Family 1. Altogether, our present findings add to convergent lines of evidence that
dysfunctional GABAergic synaptic inhibition represent a key pathogenic process
shared by a wide spectrum of neurodevelopmental disorders, such as epilepsy, ASD,

schizophrenia, and intellectual disability “°.

Consistently, a high prevalence of
epilepsy has been found in autism spectrum disorder (ASD), ranging from 21% in
ASD subjects with an intellectual disability to 8% in those without intellectual disability
7 Notably, the index patient of Family 1 had a typical JME but also exhibited a broad

range of psychiatric and behavioral disorders.

Carriers of GPHN microdeletions encompassing the N-terminal exons display a high
phenotypic variability and incomplete penetrance, strongly depending on the genetic
background. This pleiotropic expression has been observed for all microdeletions (at
1921.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11, 22q11.2, A2PB1, NRXN1) that have
been associated with IGE or other neurodevelopmental disorders “®. Most likely,
these microdeletions impair neurodevelopmental processes in a rather unspecific
manner and contribute to the genetic variance of a wide spectrum of
neurodevelopmental disorders. The individual disease phenotype is probably further
specified by the interplay with genetic background effects and environmental
influences following an oligo-/polygenic inheritance model with substantial genetic
heterogeneity °. In particular, bi-parental genetic risk factors may contribute to the
epilepsy phenotype of the index subject. Accordingly, segregation analysis in Family
2 suggests a complex bi-parental inheritance pattern composed by a paternal
inheritance of the GPHN A2-3 deletion and a predominant epileptogenic susceptibility
factor(s) transmitted by the mother, who had afebrile seizures during infancy.

Likewise, the brother showing a diploid GPHN copy status had a history of febrile
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seizures. Similar inheritance patterns were also reported earlier for exonic GPHN
microdeletions ** and other recurrent microdeletions increasing risk for IGE ***3. As
we did not observe metabolic Moco deficiency symptoms, the hemizygous
microdeletions of N-terminal GPHN exons presumably affect only the synaptic
functions of gephyrin. However, it cannot be excluded that minor alterations in the
Moco-enzymes activity during brain development might contribute to disease

manifestation.

In summary, our study strengthens a previous statistical association of GPHN
microdeletions affecting the gephyrin G-domain with a wide range of neuropsychiatric
disorders and expands this spectrum to IGE syndromes 3. GPHN microdeletions
affecting the N-terminal gephyrin domain confer a susceptibility effect with high
phenotypic variability and incomplete penetrance depending on the genetic
background. We provide genetic, functional and neurophysiological evidence that
structural exonic microdeletions affecting the gephyrin G-domain can increase
neuronal excitability by an impairment of GABAergic synaptic inhibition, and thereby

confer susceptibility for IGE.

SUPPLEMENTARY DATA

Further data are provided as Supplementary Material.
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FIGURE LEGENDS

Figure 1. Genetic analyses of GPHN microdeletions

(A) Genomic localization (hg19) and GPHN deletions identified in the IGE index
patients. The deletion segregating in Family 1 is spanning approximately 129 kb
involving exons 5-9. The microdeletion of Family 2 is approximately 158 kb in size
and deletes exons 2-3. (B) Familial segregation of exonic GPHN microdeletions.
Deletion carriers are indicated by copy number state (CN) = 1, whereas CN = 2
represents an analyzed individual without deletion; black symbols = affected by IGE;
TMS path.= increased cortical excitability without seizures; arrows highlight index
cases. (C) Electropherogram of the cDNA A5-9 GPHN transcript sequence of the
index patient F11l.1 and his father F1l.1, confirming the transcription of a truncated
A5-9 GPHN transcript. Arrow separates the sequence of exon 4 from the fused
adjacent sequence of exon 10. The exon annotation refers to the genomic
organization of GPHN (NM_020806.4). (D) Electropherogram of the cDNA A2-3
GPHN transcript sequence of the index patient F211.2, confirming the transcription of
a truncated A2-3 GPHN transcript (NM_020806.4). Arrow separates the sequence of
exon 1 from the fused adjacent sequence of exon 4. (E) Schematic structure of
regular gephyrin and A5-9geph with numbering of deleted residues in A5-9geph. (F)
Sequence of the truncated A2-3 GPHN transcript expressed by father and son F2I1.2.
Residue Val22 is encoded by a splitted codon composed by exons 1 and 2; the
GPHN A2-3 variant results in a frameshift and a premature stop codon (p.V22Gfs*7,

NP_001019389.1).
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Figure 2. Paired-pulse transcranial magnetic stimulation

The relative variation of the average peak-to-peak amplitude of the motor evoked
potential in relation to the baseline (set at 100%), is plotted as a percentage, for the
conditions “intracortical inhibition” (ISI 3 ms), white bars; and “intracortical facilitation”
(ISI 13 ms), black bars. Both the patient and his father exhibited an increased cortical
excitability, with decreased ICI and increased ICF, statistically significant compared

to healthy controls (***P < 0.001, ANOVA).

Figure 3. A5-9geph interacts with regular gephyrin and affects oligomerization
in a dominant-negative manner.

(A) Morphology and localization of GFP-tagged regular gephyrin and A5-9geph in
cultured hippocampal neurons. Insets show high-magnification of the dendrites.
Arrowheads point to spine heads, morphological structures of excitatory synapses.
Scale bar = 20 ym. (B) Myc-tagged gephyrin forms large “blobs” upon expression in
HEK293 cells, while A5-9geph-GFP is diffusively distributed. Upon co-expression,
A5-9geph-GFP dominant negatively affected gephyrin oligomerization leading to
either completely diffuse regular gephyrin (C1) or the formation of microclusters
harboring regular and truncated gephyrin-variants (C2). (D) Quantification of gephyrin
blobs and diffuse gephyrin in 100 cells of each condition derived from three
independent transfections. (E) Immunoblots of GFP-tagged gephyrin and A5-9geph
expressed in HEK293 cells indicate that the truncated gephyrin is stable and
expressed at equivalent levels to regular gephyrin. -tubulin served as loading
control. (F) A5-9geph-GFP immunoprecipitated with myc-tagged gephyrin in HEK293

cell-lysates following co-expression of both proteins.
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Figure 4. GABAergic innervation is decreased upon expression of A5-9geph-
GFP

(A) Schematic structure of gephyrin and the epitope of the rGeph-C antibody, which
was used to distinguish between endogenous gephyrin and A5-9geph.
Representative dendrites (20 pm) of EGFP- or AS5-9geph-expressing cultured
hippocampal neurons (11+2 DIV) immunostained for endogenous gephyrin (B),
GABAAR y2 subunit (E) or VGAT (H). (B-G) A5-9geph-GFP significantly reduced
number and size of endogenous gephyrin clusters and GABAa Yy2-containing
receptors. (H-J) Morphology and numbers of spine heads were not affected by A5-
9geph-GFP. Arrowheads point to exemplary spines that have been quantified. Scale
bar = 10 um. All data are expressed as mean + SEM (**P < 0.05; **P < 0.001,

Student’s t-test; n = 14-18 neurons per condition from two independent preparations).
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FIGURES

Figure S1. Genetic analyses (A) Familial segregation of exonic GPHN
microdeletions. Deletion carriers are indicated by copy number state (cn) = 1,
whereas cn = 2 represents an analyzed individual without deletion; black symbols =
affected by IGE; TMS path.= increased cortical excitability without seizures; arrows
highlight index cases. (B) Genomic localization (hg19) and GPHN deletions identified
in the IGE index patients. The deletion segregating in Family 1 is spanning
approximately 129 kb involving exons 5-9. The microdeletion of Family 2 is
approximately 158 kb in size and deletes exons 2-3. (C) Electropherogram of the
cDNA A5-9 GPHN transcript sequence of the index patient F1ll.1 and his father
F11.1, confirming the transcription of a truncated A5-9 GPHN transcript. Red coloring
indicates the sequence of exon 4 whereas the sequence of exon 10 is highlighted in
blue. The exon annotation refers to the genomic organization of GPHN
(NM_020806.4). (D) Schematic structure of regular gephyrin and A5-9geph with
numbering of deleted residues in A5-9geph. (E) Electropherogram of the cDNA A2-3
GPHN transcript sequence of the index patient F211.2, confirming the transcription of
a truncated A2-3 GPHN transcript (NM_020806.4). Red coloring indicates the
sequence of exon 4 whereas the sequence of exon 1 is highlighted in blue. (F)
Sequence of the truncated transcript (see panel E) expressed by father and son
F211.2. The arrow highlights the fusion of exon 1 and 4. Residue Val22 is encoded by
a splitted codon composed by exons 1 and 2; the GPHN A2-3 variant results in a
frameshift and a premature stop codon (p.V22Gfs*7, NP_001019389.1).

Figure S2. Family 1 (GPHN A5-9 deletion). Assessment of the copy number state by
TagMan gPCR assay located in GPHN exon 7 (Assay ID: Hs01711518 cn; Life
Technologies, Carlsbad, CA, USA). The copy number state of 1 (CN = 1) indicates a
hemizygous deletion, whereas a CN = 2 represents the normal diploid CN state.

Figure S3. Blood cell cDNA amplification with primers flanking the GPHN A5-9
deletion in Family 1. Left: Agarose gel electrophoresis illustrates the expression of
the truncated A5-9 GPHN transcript in F11l.1 (index-patient) and F11.1 (father). Right:
Analysis of the same cDNA by more sensitive Agilent 2200 TapeStation Nucleic Acid
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System indicates also the presence of the 793 bps wt transcript in father and patient.
Targeted band sizes are highlighted by asterisks; green = 793 bps wt transcript; red =
125 bps truncated A5-9 GPHN transcript.

Figure S4. Blood cell cDNA amplification with primers flanking the GPHN A2-3
deletion in Family 2. Using the sensitive Agilent 2200 Tape Station Nucleic Acid
System, the 544 bps wt transcript of the G-domain is present in all cDNAs analyzed.
The truncated GPHN A2-3 transcript of 407 bps was observed in the father (F2I.1)
and the index patient (F2I1.2).

Figure S5. Diffusion tensor imaging of GPHN A5-9 deletion carriers of Family 1.
Results of the probabilistic tractography from the mesial frontal region in healthy
controls (blue) compared to the index patient and his father (yellow/orange), overlaid
on the MNI 152 T1 template image in three orthogonal slices (MNI coordinates given
in figure). The connectivity reaches beyond the range seen in healthy controls, both
in the index-patient and his father.

Figure S6. Validation of the rGeph-C antibody. A5-9geph was transiently expressed
in HEK293 cells and immunostained either with the commercial mouse monoclonal
3B11 antibody (top panels), that binds to the E-domain or rabbit monoclonal antibody
here termed rGeph-C (lower panels), whose epitope lies within the C-domain that is
deleted in A5-9geph. The antibody only recognizes endogenous gephyrin but not A5-
9geph. Scale bar = 25 ym.

Figure S7. Representative images of cultured hippocampal neurons expressing either
EGFP or A5-9geph. Framed dendritic segments are shown at higher magnification in

Figure 3. Scale bar = 20 pm.

Figure S8. Urinary metabolite analysis of samples derived from the patient (P), his
mother (M) and father (F), control and Moco deficient individuals (MoCD), who were
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previously diagnosed (1). All concentrations of metabolites were normalized to

creatinine concentration in urine samples.

Figure S9. Genomic localization (hgl19) of the GPHN microdeletions identified in the
IGE index-patients in this study (dark grey) and six patients with autism,

schizophrenia and seizures recently reported by Lionel et al. (light gray) (2).
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MATERIALS AND METHODS
Exome sequencing

Sequence analysis of the whole exome was performed in the IGE proband and both
parents using next generation sequencing techniques as described previously (3).
The exome data had an average coverage >30x for 78-79% of the exome target
sequences. The GPHN gene an average coverage of 49-55x with a minimal
coverage for an exon of 16x (ENST00000478722, NM_020806.4). Variants were
fillered for high-quality novel GPHN variants compared to an in-house variation
database (>400 exomes, dbSNP build 135 (www.ncbi.nlm.nih.gov/projects/SNP/),
1000Genomes database (www.1000genomes.org/) and the Exome Variant Server

(http://evs.gs.washington.edu/EVS/).

Diffusion tensor imaging

Data was acquired in Family 1 for the index-patient, his father and 15 healthy controls
with no personal history of seizures or other neurological disorders and no
medication (7 female, mean age 34 years, range 22-54 years). The mother could not
tolerate any MRI studies due to claustrophobia. Images were recorded on a 3T GE
Excite HDx scanner using an acquisition scheme with 64 diffusion weighted
directions (b-value 1,000 s/mm2) and one BO image with a slice thickness of 2.4 mm
and 96 x 96 voxels in plane resolution, a TE of 87 ms and TR of 16,000 ms. Images

were processed using FSL 4.1.9 software (www.fmrib.ox.uk), estimating a two fibre

per voxel model. Probabilistic tractography was performed as recently described (4)
seeding from a region of interest (ROI) in the left mesial frontal lobe and normalizing

the resulting tracts to a common acquisition specific template in MNI space.
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Figure S2

F1l1.2

F11.1

F111.1

Control 5

Control 4

Control 3

Control 2

Control 1

2
0

—
Jaquinn Ado)

Figure S3

Same cDNA amplicon

D1K ScreenTape

I

Agarose Gel

[bp

<A5-9 GPHN

1 Primer only
11 1 Control 3
-} 1} Control 2
_- . Control 1
- D Ll
N GE
- - F111.1
- - Marker
d

a

ll -«
* = wt
—

*

-
—

= .
o -
S

1500
1000

Primer only
Control 3
Control 2
Control 1
F11.1

F11.2

F111.1
Marker

g g

62



PUBLICATION: GPHN IN IGE

Figure S4
MW [Bp]
1000 —
700 — v .
500 .—c_ B
I
300 —
100 . ‘
25 L — 4
M M UL
= § I 3 <
= 2 = 5 =
- — N
2 o
Figure S5

63



PUBLICATION: GPHN IN IGE

Figure S6
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Figure S7
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3.2 Publications on RE

3.2.1 RBFOX genes in RE (published)

Lal D, Reinthaler EM, Altmuller J, Toliat MR, Thiele H, et al. (2013) RBFOX1 and RBFOX3
Mutations in Rolandic Epilepsy. PLoS ONE 8: €73323. doi:10.1371/journal.pone.0073323.
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RBFOXT and RBFOX3 Mutations in Rolandic Epilepsy
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Abstract

Partial deletions of the gene encoding the neuronal splicing regulator RBFOXT have been reported in a range of
neurodevelopmental diseases, including idiopathic generalized epilepsy. The RBFOX1 protein and its homologues (RBFOX2
and RBFOX3) regulate alternative splicing of many neuronal transcripts involved in the homeostatic control of neuronal
excitability. In this study, we explored if structural microdeletions and exonic sequence variations in RBFOX1, RBFOX2,
RBFOX3 confer susceptibility to rolandic epilepsy (RE), a common idiopathic focal childhood epilepsy. By high-density SNP
array screening of 289 unrelated RE patients, we identified two hemizygous deletions, a 365 kb deletion affecting two
untranslated 5’-terminal exons of RBFOXT and a 43 kb deletion spanning exon 3 of RBFOX3. Exome sequencing of 242 RE
patients revealed two novel probably deleterious variants in RBFOX1, a frameshift mutation (p.A233Vfs*74) and a
hexanucleotide deletion (p.A299_A300del), and a novel nonsense mutation in RBFOX3 (p.Y287%). Although the three
variants were inherited from unaffected parents, they were present in all family members exhibiting the RE trait clinically or
electroencephalographically with only one exception. In contrast, no deleterious mutations of RBFOXT and RBFOX3 were
found in the exomes of 6503 non-RE subjects deposited in the Exome Variant Server database. The observed RBFOX3 exon 3
deletion and nonsense mutation suggest that RBFOX3 represents a novel risk factor for RE, indicating that exon deletions
and truncating mutations of RBFOX7 and RBFOX3 contribute to the genetic variance of partial and generalized idiopathic
epilepsy syndromes.
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an increased rate of RE, febrile seizures, and an “‘epilepsy aphasia
spectrum disorder” in relatives of children with RE [6]. To date, a
number of loci or genes have been linked to varicus forms of
idiopathic focal epilepsies or the EEG endophenotype of
centrotemporal spikes (CTS). Linkage was reported to markers
on 15q13.2 and to 16pl2-11.2 [7,8]. But no causative gene has
been reported at either loci yet. In a small number of cases variants

Introduction

Rolandic epilepsy (RE), or benign epilepsy with centrotemporal
spikes (BECTS), is one of the most common epilepsy syndromes of
childhood, comprising about 15% of epilepsies in children under
the age of 16 years [1]. Age of onset ranges from years 3 to 13 and
peaks between 8-9. Characteristic features are 1.) a somatosensory

onset with unilateral paresthesias involving the tongue, lips, gums,
and inner cheeks 2.) unilateral, tonic, clonic or tonic-clonic
convulsions involving the face, lips, tongue as well as the
pharyngeal and laryngeal muscles, causing 3.) speech arrest and
drooling due to sialorrhea and saliva pooling. At this stage the
seizure may end, or it may develop into a generalized tonic clonic
seizure. Nocturnal seizures, the most frequent variant of this
syndrome, frequently become generalized. The electroencephalo-
graphic hallmark, a prerequisite of diagnosis, are blunt high-
voltage characteristically shaped centrotemporal spikes (CTS),
often followed by slow waves [2,3]. Based on a number of family
studies it is generally assumed that, like in all other common
idiopathic epilepsies a multifactorial mode of inheritance appears
most likely [2,4,5]. The most recent family study on RE reported
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and mutations in KGNQ2 and KCNQ3 were found to be associated
with RE and the respective EEG trait [9]. In addition, mutations
in SRPX? in two families with mental retardation, severe language
dysfunction and rolandic seizures have been reported [10]. By
genome-wide linkage analysis RE and the CTS trait have been
associated with the elongator protein complex 4 [11]. Further-
more, in a girl with early-onset epileptic encephalopathy and CTS
a de nove GRIN24 mutation was identified [12]. However, all these
findings in single or few patients or small families still lack
replication.

Rare copy number abnormalities of RBFOX! have also been
associated with mental retardation in comorbidity with and
without seizures, attention deficit disorder and autism
[18,14,15,16]. Recently, we have shown in 1408 idiopathic
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generalized epilepsy (IGE) patients and 2256 population controls
that deletions affecting 5’ located exons of RBFOXI are
significantly enriched in IGE cases compared to population

matched controls [17]. The RBFOX genes (RBFOXI:
chr16:6069132-7763340, NM_001142333; RBFOX2:,
chr22:36134783-36424585, NM_001082578, and RBFOX3:

chr17:77085427-77512230; NM_001082575) encode neuron-spe-
cific splicing factors predicted to regulate neurconal splicing
networks. Several epilepsy candidate genes are downstream targets
of Rbfox proteins (FLNA, SLCIA3, DCX, GABRB3, GAD2, KCNQ?2,
SCN8A, SLCI245, SV2B, S¥NI) and their regulation of expression
and splicing has been demonstrated [18,19]. FOX family
members regulate splicing of the other FOX members and
autoregulate themselves [20,21].

The present candidate gene analysis tested whether (i) deletions
in RBFOXI, RBFOX2 and RBFOX3 might increase risk of RE and
(ii) exonic mutations affecting the protein structure occur more
frequently in RE compared to control subjects.

Methods

The institutional review board of the University Giessen,
Germany specifically approved this study. Registration number:
No 03/11. Written informed consent was obtained from all
subjects or their legal guardians according to study protocols
approved by the institutional ethical review board of the
University Giessen, Germany under the title “genomic variation
in patients with idiopathic epilepsy”.

Diagnostic Criteria

Diagnosis of RE was performed according to the International
Classification of Seizures and Epilepsies as described [3]. Sleep
activation, characteristic shape, and classification by two indepen-
dent individuals were required for classification of the EEG trait.
Electrical Status Epilepticus in slow sleep (ESES) was diagnosed if
prolonged generalized discharges of CTS dominated sleep EEG
recordings [22,23,24]. Atypical benign partial epilepsy of child-
hood (ARE) was diagnosed employing the following criteria:
Characteristic EEG trait of CTS, however, with trains of
continuous generalized nocturnal discharges as a prerequisite of
diagnosis in all ABPE cases. In addition at least one of the
following two features needed to be present: (1) seizures
compatible with BECTS plus one or more additive seizure types
like astatic seizures, atypical absences (‘‘dreamy states”) or
myoclonic seizures as reported. (2) seizures compatible with
BECTS plus a significant mental handicap, and/or severe
developmental speech disorder [25,26,27]. If a child had a seizure
symptomatology compatible with BECTS but had prolonged
generalized discharges of CTS during sleep EEG, without any
additional seizure types and a normal global and speech
development it was diagnosed as BECTS.

Patient Cohort

Families. The investigated cohort consisted of 98 index cases
selected from 98 multiplex families with at least two affected
siblings. In 96 families at least one of the affected probands
suffered from RE or ARE, the second affected sibling presented
either with RE, ARE or the EEG trait only. In two families all
affected children did not suffer from seizures, but displayed the
EEG trait only. Of all 98 index patients tested, 78 presented with
RE, 15 with ARE, 3 with ESES, and 2 with CTS only.

Sporadic cases. 191 non-familial cases were included into
the study cohort. Of these patients 153 suffered from dassic RE,
11 from ESES, 26 from ARE and 1 with CTS only.

PLOS ONE | www.plosone.org
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Genotyping and Copy Number Variation Detection

Whole blood DNA from the patients was genotyped for using
the Infinium OmniExpressExome BeadChip (Illumina Inc., San
Diego, CA) according to the manufacture’s protocol. Briefly,
200 ng of DNA were amplified, biotin labeled, and hybridized to
the microarray. CNV calls were generated with the PennCNV
software [28], using the log R ratic (LRR) and B allele frequency
(BAF) for 730.525 probes designed for the genotyping array. CNV
analysis was restricted to microdeletions covered by at least 20
probes and spanning 40 kb or more in size. To exclude technical
artifacts, all potential microdeletions were manually inspected for
regional SNP heterozygosity state and log2 ratios of the signal
intensities using the Illumina Genome Viewer (Ilumina Inc., San
Diego, CA). Only one RBFOXI deletion and one RBFOX3
deletion could be confirmed by manual variant evaluation.
Segregation in the families of the microdeletions was examined
by real-time quantitative PCR using TagMan CNV probes
(RBFOXI1: Hs04461212_cn; RBFOX3: Hs03975574_cn) (Life
Technologies, Darmstadt, Germany).

Exonic Sequence Analysis

Sequence analysis was performed using next generation
sequencing techniques. In brief, DNA was fragmented using
sonification technology (Covaris, Woburn, MA, USA) and
fragments were end repaired and adaptor ligated. SeqCap EZ
Human Exome Library® v2.0 (Roche NimbleGen, Madison, WI,
USA) was used for enrichment and samples were analyzed on the
Illumina HiSeq 2000%® sequencer. For 242 patients exome data
were generated which featured an average coverage >30x for
77% of the target sequences. Data were filtered using Illumina
Realtime Analysis® (RTA) software v1.8 and mapped to the
human genome reference build hgl19 via the ELANDv2 alignment
algorithm on a multinode compute cluster. PCR duplicates were
excluded using CASAVA v1.8. Variant calling was performed by
SAMtools (version 0.1.7) for InDel detection. Scripts developed in-
house at the Cologne Center for Genomics (Cologne, Germany)
were applied to detect protein changes, affected splice sites, and
overlaps with known variants. In particular, variants were filtered
for high-quality unknown variants in RBFOXI, RBFOX2, and
RBFOX3 by comparison to an in-house variation database, dbSNP
build 137 (www.ncbinlm.nih.gov/projects/SNP/), 1000 Ge-
nomes database (www.1000genomes.org/), and the Exome
Variant Server (http://evs.gs.washington.edu/EVS/). Variant
validation and segregation analyses were performed by Sanger
sequencing following standard protocols.

Results

Detection of RBFOX7 and RBFOX3 Microdeletions in RE
Patients

In total, 289 RE patients were screened for copy number
variations in RBFOX1, RBFOX?, and RBFOX3 using the Infinium
OmniExpressExome BeadChip® (Illumina Inc., San Diego, CA).
We identified one RE patient among 289 (0.34%) with a
hemizygous deletion in both RBFOX] and RBFOX3. A deletion
of 365 kb was found to be located in the genomic region of
RBFOXT affecting the untranslated 5'-terminal exons 3 and 1B
(Fig. 1A, S1, exon annotation according to [17]) whereas a smaller
deletion of 43 kb affected RBFOX3 by removing exon 3 of the
known isoform NM_001082575 along with flanking intronic
sequences (Fig.1B, S1). The RBFOXI gene deletion affects the
largest transcript variants 4-5 and 6 (NM_018723,
NM_001142333, NM_001142334). No additional mutations were
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Figure 1. Overview of RBFOXT7 and RBFOX3 affecting variants. Hg19 genomic localization and overview of known transcript variants. Red bars
represent microdeletion size and location for the patient. Red dashes indicate the genomic location of single nucleotide variants. (A) Overview

RBFOX1 (B) RBFOX3.
doi:10.1371/journal.pone.0073323.g001

identified in the remaining undeleted RBFOX! and RBFOX3
exonic sequences.

Detection of Rare Exonic Variants in RBFOX7and RBFOX3

Mutational screening of RBFOXI1, RBFOX?2, RBFOX3 in
242 RE patients did not reveal any mutation in RBFOX2, while
a total of three rare mutations {1.2%) were identified in RBFOX1
and RBFOX3 (Fig. 1A,1B; Table 1). In contrast to the identified
RBFOXI and RBFOX3 microdeletions, all exonic variants were
located near the 3'-terminal region of both genes. The identified
exonic variants included two RBFOXI variants in exon 11
(.690_696delGTATCCAiIns(GTATCCA)2; p-A233Vfs*74,
NM_001142333) and exon 13 (c.893_898delCTGCCG,
p-A299_A300del, NM_001142333), as well as a nonsense
mutation in exon 13 of the RBFOX3 gene (c.861C>A, p.Y287*,
NM_001082575). The p.A299_A300del variant of patient E699
(Table 1, S1) deletes two out of three consecutive alanine residues
which are conserved among mammals but not vertebrates (Fig. S2,
S3).

To our knowledge nonsense mutations in FOX genes have not
been described in the literature and are not found in any of the
available databanks. They are absent from 6503 individuals whose
exomes were deposited in the EVS database. Furthermore, no
deleterious mutations have been identified in >450 exomes of our
in-house database (various non epilepsy projects; about 80%
Caucasian ancestry). In the truncated proteins the C-terminal
fragments of RBFOX1 and RBFOXS3 are affected which are
critical for cassette-exon activation and repression [29] and the
nuclear localization of the FOX proteins [21,30,31].

Familial Segregation and Comorbidity Analysis

The segregation of RBFOX1 and RBFOX3 variants identified in
the RE index-patients were tracked in four families (Fig. 2). Where
testing was possible (n = 3), all variants identified were inherited,
one maternally and two paternally. Five out of ten variant carriers
were affected by RE, one by an encephalopathy with status
epilepticus during sleep (ESES) and one by the RE-characteristic
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CTS EEG-trait only. The transmitting parents were all unaffected
at the date of evaluation. Notably, we cannot rule out that the
parents might have expressed the RE-characteristic CTS EEG-
trait at younger age, considering its age-related expression with
maximum manifestation during childhood. Six out of eight family
members affected by either RE, CTS or ESES carried one exonic
variant of RBFOX1 or RBFOX3 and one RE patient had a deletion
in both genes (Fig. 2). The index patient in Family 1 had RE and
exon-removing microdeletions in both RBFOXI and RBFOX3
whereas her sister with the CTS EEG-trait alone carried only the
RBFOX1 microdeletion. In Families 1, 2 and 4, all affected family
members carried a RBFOXI deletion or one of the truncating
mutations. In family 3, the RBFOX1 p.A299_A300del deletion
identified in the RE-index patient was not present in his RE-
affected sister. The phenotypic RE features of the four variant
carrying index cases did not differ from those RE patients lacking
RBFOX1 and RBFOX3 variants (Table 1). The ESES phenotype
variant is generally assumed to represent the most severe
expression of the RE CTS EEG-trait. A mild to moderate
developmental speech delay, that frequently resolves later, is a
known feature in many RE patients [32].

Discussion

A previous study of 1408 unrelated individuals with idiopathic
generalized epilepsy revealed exon-removing RBFOX1 microdele-
tions in five patients, whereas none was found in 2256 ethnically
matched controls [17]. Furthermore, rare copy number abnor-
malities of RBFOXI have been reported for patients with
neurological diseases like epilepsy, mental retardation and autism
[13,14,15,16] strongly indicating that partial RBFOXI deletions
are a recurrent risk factor of neurodevelopmental defects in
human. The heterozygous Rbfox! knockout mouse model shows
deregulated splicing which impacts genes involved in synaptic
transmission and membrane excitability, leading to an increased
susceptibility for seizure events. Notably, homo- and heterozygous
Rbfox] knockouts display normal brain morphology [33]. Consis-
tent with the splicing alterations in mice, RNA interference-
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Table 1. RBFOXTand RBFOX3 variants and phenotype of index-patients.
Index- Epilepsy
Family patient Patient Variant Syndrome Diagnosis/seizure types Comorbidity
1 X E103 RBFOX1:365kb Deletion, RE Nocturnal generalized tonic clonic seizures, None (normal global development, normal
RBFOX3:43 kb Deletion Postictal speech arrest speech acquisition)
1 E103b  RBFOX1:365 kb Deletion CTS only No seizures, EEG trait only None (normal global development, normal
speech acquisition)
2 X EG1208 RBFOX1: p.A233Vfs*74 RE Nocturnal rolandic seizures with postictal Initially delayed language development,
speech arrest later normal
2 EG1209 RBFOX1: p.A233Vfs*74 RE Nocturnal and diurnal rolandic seizures with Initially delayed language development,
postictal speech arrest later normal
3 X E699 RBFOX1: p.A299_A300del RE Nocturnal rolandic seizures with postictal None (normal global development, normal
speech arrest speech acquisition)
3 E699b - RE Nocturnal rolandic seizures with postictal None (normal global development, normal
speech arrest speech acquisition)
4 X E136 RBFOX3: p.Y287* RE Nocturnal generalized tonic clonic seizures Initially delayed language development,
with postictal speech arrest later normal
4 E679c  RBFOX3: p.Y287* ESES ESES without seizures Moderate developmetal delay, delayed
speech development, mild oral dyspraxia
Survey on RBFOX1 and RBFOX3 variants in patients. Seizure type and comorbidity overview of variant carrier. Abbreviations: RE =rolandic epilepsy; CTS = centrotemporal
spikes; ESES = epileptic encephalopathy with status epilepticus during sleep.
doi:10.1371/journal.pone.0073323.t001

Figure 2. Segregation of RBFOX7 and RBFOX3 affecting variants. For three mutations for which DNA samples of family members were
available, segregation analyses could be performed. The respective RBFOX1 and RBFOX3 truncating mutations co-segregated with a variable
phenotype of either seizures or pathologic EEG patterns in most family members. Only a few individuals carried the respective familial mutation but
did not present any clinical features, indicating incomplete penetrance of the mutations. However, subclinical phenotypes (e.g. EEG patterns) have
not been investigated in these individuals (indicated by question mark). In family 3 the variant (deletion of two consecutive alanine residues at
position 299-300 of RBFOX1) did not segregate with the epilepsy phenotype. Abbreviations: n.a=DNA was not available for testing; RE= rolandic
epilepsy; CTS = centrotemporal spikes; ESES =encephalopathy with status epilepticus during sleep.

doi:10.1371/journal.pone.0073323.g002
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mediated 50% knockdown of RBFOXI transcripts in human
neurons changes the alternative splicing pattern and expression of
primarily neurcnal genes involved in synapse formation and
function [19].

Our identification of a RE patient carrying a rare microdeletion
affecting the 5’ part of RBFOXT replicates the association found in
idiopathic epilepsy, but now in an entirely different, i.e. focal,
epilepsy syndrome. Her sister, who also carried the deletion,
exhibited the RE-specific EEG trait but did not suffer from overt
seizures. In agreement with our previous IGE study, this indicates
that RBFOXI microdeletions act as a susceptibility factor but not
as a highly penetrant variant. The frequency of the RBFOXI
deletion in the RE patient cohort (0.34%) is in the range of that
observed for IGE (0.35%; [17]). The RBFOXI microdeletion
presented here is located in the untranslated 5’-terminal region of
the gene, like the previously reported microdeletions and
translocations [13-17]. A female with autism carrying a 5'-
terminal microdeletion of RBFOX! due to a de nove translocation
t(15p;16p) displayed a significantly reduced RBFOX7 mRNA
expression in lymphocytes [14]. A second FOX microdeletion also
detected in patient E103 is affecting the paralogous RBFOX3 gene
which also encodes the highly conserved RNA recognition motif
(RRM) [20]. Interestingly, the sister of E103, who also carries the
RBFOXT deletion but lacks the RBFOX3 deletion, only expressed
CTS but without having epileptic seizures. Due to the lack of
further statistical and functional evidence, we can only hypothesize
that both deletions affect neuronal splicing in Family 1 synergis-
tically. Microdeletions in RBFOX3 are extremely rare. Only two
other exon-removing microdeletions have been noted in the
Database of Genomic Variants (DGV, accessed 2/2013) in the
general population. Being present in control individuals might
indicate a variable expressivity of RBFOX3 microdeletions or a
lack of careful assessment of neuropsychiatric phenotypes in these
probands. Both microdeletions do not delete exon 3
(NM_001082575) of RBFOX3 as in our RE patient. It has been
demonstrated that Rbfox3 regulates alternative splicing and
nonsense mediated decay of Réfox2 mRNA [21]. This complex
interplay of Fox family members has been further reported in the
Rbfox] knockout mouse model where the loss of Rbfox inhibits an
upregulation of Rbfox2 [33]. Mutational screening did not reveal
any exonic mutation in RBFOX?2, while three rare mutations have
been identified (1.2%) in RBFOXI and RBFOX3 together. The C-
terminal fragment is critical for cassette-exon activation and
repression [29] in RBFOXT as well as for nuclear localization for
RBFOXI1 [30,3]] and RBFOX3 [21]. These mechanisms are
likely to be affected by the observed mutations. Furthermore, no
frameshift nor nonsense mutations have been found in the exomes
of 6503 control subjects reported in the ESV database. All
individuals with an epileptic phenotype were carriers of the
truncating mutations in family 1, 2 and 4. Only in family 3 the
variant (deletion of two consecutive alanine residues at position
299-300 of RBFOXI) did not segregate with the epilepsy
phenotype. This deleted sequence is conserved among mammals
only, suggesting that most likely only truncating variants may be
risk-conferring for RE. /n wiro studies demonstrated that the C-
terminal domain is critical for cellular localization in both FOX
genes and also for targeted splicing in RBFOXT [21,30,31]. As a
model for haploinsufficiency  w#ro knock down of RBFOXT in
primary human neural stem cells resulted in an altered expression
and splicing of several epilepsy candidate genes (FLNA, SLCIA3,
DCX, GABRB3, GAD2, KCNQ2, SLCI245, SV2B, SYNI) [19].
Interestingly, variants and mutations in KCNQ2 were recently
found associated with RE [9].

PLOS ONE | www.plosone.org
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In summary, cur results strengthen the association of partial
RBFOXI deletions in neurodevelopmental diseases and extend the
RBFOXI-related phenotypic spectrum by RE. The present
RBFOX3 mutations highlight this neuronal gene as a plausible
novel genetic risk factor of RE, and suggest that besides genomic
microdeletions affecting the 5’-terminal exons, truncating muta-
tions of RBFOX] and RBFOX3 increase the risk of RE.

Supporting Information

Figure S1 Raw SNP intensity data of all samples
carrying exon-disrupting microdeletions affecting the
RBFOX1 and RBFOX3 genes. Red frames represent the area of
the observed microdeletions. Signal intensities of a SNP probe are
represented by dots, one dot per each probe (Log R ratio track). A
decline of neighboring probe signal intensities and B allele
frequencies (B Allele Freq track) near 1 and 0 indicate a genomic
deletion. The deletions have been visualized using the Ilumina
Genome Studic Software.

(DOC)

Figure §2 UCSC Genome Browser RBFOXI transcript,
common SNP and GERP conservation annotation tracks.
Top track: Highlighted in red, deleted nucleotides of patient E699.
Middle track: The deleted sequence is abundant all six known
RBFOXI transcripts. Lower track: No common SNP (=1%) is
annotated in dbSNP137 for the shown sequence interval. Bottom
track: RBFOXI Genomic Evolutionary Rate Profiling (GERP)
scores. The rejected substitutions score (RS) is based on an
alignment of 35 mammal scores. A RS score threshold of 2
provides high sensitivity while still strongly enriching sequence
conservation sites (http://www.genome.ucsc.edu). For the deleted
sequence of RBFOXI, high and low RS scores are shown.
(DOC)

Figure 83 Multiple Sequence Alignment RBFOXI vari-
ant A299_A300del (c.893_898delCTGCCG, p.A299_A300-
del, NM_001142333). Multiple sequence alignments: The top
line indicates the human amino acid sequence according to
genome build hgl9. Amino acids highlighted in red are
hemizygously deleted in patient E699. Three alanine residues
are conserved among mammalians but only one alanine residue in
none mammalian vertebrates. Sequence annotations were taken
from the UCSC Genome Browser (http://www.genome.ucsc.edu)
and for multiple sequence alignments we used ClustalW (http://
www.ebl.ac.uk/ Tools/services/web_clustalw2/).

(DOC)

Table §1. RBFOXI and RBFOX3 exonic sequence vari-
ant.

(DOC)
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Figure S1

affecting the RBFOX1 and RBFOX3 genes
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Figure S3 Multiple Sequence AlignmentRBFOX1 variant A299 A300del (c.893 898delCTGCCG;
NM_001142333)

hgl9 ATBARYS
Pan troglodytes Chimp ATAAAYS
Macaca mulatta Rhesus ATAAAYS
Bos taurus Cow ATAAAYS
Mus musculus Mouse ATAAAYS
Canis familiaris Dog  ATAAAYS
Gallus gallus Chicken G-ADIY-
Danio rerio Zebrafish G-ADIY-
* *

Table S1. RBFOXland RBFOX3 exonic sequence variants

Start End Type HGNC CCDS Consequence MutCDNA MutProt Patient
16 7703830 7703836 INDEL RBFOX1 CCDS55984.1 FRAMESHIFT €.690_696delGTATCCAInS(GTATCCA)2  p.A233Vfs*74 EG1208
16 7703830 7703836 INDEL RBFOX1 CCDS55983.1 FRAMESHIFT €.771_777delGTATCCAIns(GTATCCA)2  p.A260Vfs*74 EG1208
16 7703830 7703836 INDEL RBFOX1 CCDS55983.1 FRAMESHIFT €.771_777delGTATCCAIns(GTATCCA)2  p.A260Vfs*74 EG1208
16 7703830 7703836 INDEL RBFOX1 CCDS10531.1 FRAMESHIFT €.831_837delGTATCCAIns(GTATCCA)2  p.A280Vfs*51 EG1208
16 7703830 7703836 INDEL RBFOX1 CCDS45405.1 FRAMESHIFT €.831_837delGTATCCAIns(GTATCCA)2  p.A280Vfs*51 EG1208
16 7703830 7703836 INDEL RBFOX1 CCDS10532.1 FRAMESHIFT €.831_837delGTATCCAIns(GTATCCA)2  p.A280Vfs*51 EG1208
16 7726819 7726824 DEL RBFOX1 CCDS10531.1 DELETION €.1037_1042delCTGCCG p.A347_A348del E699
16 7726819 7726824 DEL RBFOX1 CCDS55984.1 DELETION €.893_898delCTGCCG p.A299_A300del E699
16 7726819 7726824 DEL RBFOX1 CCDS55983.1 DELETION €.974_979delCTGCCG p.A326_A327del E699
16 7726819 7726824 DEL RBFOX1 CCDS45405.1 DELETION €.1037_1042delCTGCCG p.A347_A348del E699
16 7726819 7726824 DEL RBFOX1 CCDS10532.1 DELETION €.1037_1042delCTGCCG p.A347_A348del E699
16 7726819 7726824 DEL RBFOX1 CCDS55983.1 DELETION €.974_979delCTGCCG p.A326_A327del E699
17 77090608 77090608 SNP RBFOX3 CCDS45805.1 STOP_GAINED c.861C>A p.Y287* E136

Hg19, detailed description of variants identified in RBFOX1 and RBFOX3
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3.2.2 GRIN2A in RE (published)
Lemke JR*, Lal D*, Reinthaler EM*, Steiner I, Nothnagel M, et al. (2013) Mutations in GRIN2A
cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 45: 1067-1072. doi:10.1038/ng.2728.

*These authors contributed equally to this work
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Mutations in GRIN2A cause idiopathic focal epilepsy with

rolandic spikes

Johannes R Lemke!-2°%, Dennis Lal>~>~9, Eva M Reinthaler?6°9, Isabelle Steiner’, Michael Nothnagel?,
Michael Alber®, Kirsten Geider®, Bodo Laube?, Michael Schwake!?, Katrin Finsterwalder!!, Andre Franke!2,
Markus Schilhabell2, Johanna A Jahn?11, Hiltrud Muhle?!!, Rainer Boor!-13, Wim Van Paesschen!4,
Roberto Caraballo!, Natalio Fejerman!®, Sarah Weckhuysen2-16-18 Peter De Jonghe®16:17:12 Jan Larsen20,
Rikke S Moller?20, Helle Hjalgrim>29, Laura Addis?!, Shan Tang?!, Elaine Hughes?2, Deb K Pal>21,

Kadi Veri223, Ulvi Vaher?23, Tiina Talvik?23, Petia Dimova?4, Rosa Guerrero Lépez>?, José M Serratosa®23,
Tarja Linnankivi2>2%, Anna-Elina Lehesjoki®?7, Susanne Ruf8, Markus Wolff®, Sarah Buerki2?, Gabriele Wohlrab2?,
Judith Kroel?®, Alexandre N Datta®!, Barbara Fiedler?, Gerhard Kurlemann??, Gerhard Kluger3?,

Andreas Hahn2”, D Edda Haberlandt?4, Christina Kutzer?, Jiirgen Sperner39, Felicitas Becker237,

Yvonne G Weber237, Martha Feucht?8, Hannelore Steinbock3®, Birgit Neophythou*?, Gabriel M Ronen?!,
Ursula Gruber-Sedlmayr#2, Julia Geldner®3, Robert ] Harvey*, Per Hoffmann%>46, Stefan Herms*»4,
Janine Altmiiller>-3, Mohammad R Toliat?3, Holger Thiele23, Peter Niirnberg?-447, Christian Wilhelm?,
Ulrich Stephani®!1-13 Ingo Helbig>11, Holger Lerche237, Fritz Zimprich>%>1, Bernd A Neubauer?>°1,

Saskia Biskup”-43:4%51 & Sarah von Spiczak>11-°1

Idiopathic focal epilepsy (IFE) with rolandic spikes is the

most common childhood epilepsy, comprising a phenotypic
spectrum from rolandic epilepsy (also benign epilepsy with
centrotemporal spikes, BECTS) to atypical benign partial
epilepsy (ABPE), Landau-Kleffner syndrome (LKS) and epileptic
encephalopathy with continuous spike and waves during slow-
wave sleep (CSWS)1-2, The genetic basis is largely unknown.
We detected new heterozygous mutations in GRIN2A in 27

of 359 affected individuals from 2 independent cohorts with
IFE (7.5%; P =4.83 x 1078, Fisher’s exact test). Mutations
occurred significantly more frequently in the more severe
phenotypes, with mutation detection rates ranging from
12/245 (4.9%) in individuals with BECTS to 9/51 (17.6%) in
individuals with CSWS (P = 0.009, Cochran-Armitage test for
trend). In addition, exon-disrupting microdeletions were found
in 3 of 286 individuals (1.0%; P = 0.004, Fisher’s exact test).
These results establish alterations of the gene encoding the
NMDA receptor NR2A subunit as a major genetic risk factor
for IFE.

Within the spectrum of idiopathic (genetic) focal epilepsy (IFE)
with rolandic spikes, BECTS is characterized by focal and sec-
ondarily generalized seizures, which usually remit by puberty.
Electroencephalograms (EEGs) show rolandic spike-and-wave dis-
charges (mainly centrotemporal spikes, CTS) as a hallmark?® ABPE,

CSWS and LKS represent more severe disorders with various seizure
types and/or a highly pathological (sleep) EEG?# as well as cognitive,
language and behavioral deficits.

The genetic causes of IFE are largely unknown, although family
studies have provided evidence for presumed autosomal dominant
inheritance of CTS>®. Linkage studies identified loci for CTS on chro-
mosomes 15q14 (ref. 7) and 11p13 (ref. 8). Association of CTS with
markers in ELP4 has been replicated, but no causative mutation has
yet been identified®. Following hints from a microdeletion study pub-
lished by our group that GRIN2A, encoding the o2 subunit (NR2A;
also known as GluNR2A) of the N-methyl-p-aspartate (NMDA)-
selective glutamate receptor, could be an interesting candidate gene
in IFE1?, we here identify various mutations in GRIN2A in two large
independent cohorts comprising the whole spectrum of IFE.

We first performed a mutation analysis in cohort I (screening
cohort) comprising 39 individuals with IFE and CTS (for details on
all cohorts, see Supplementary Table 1). One subject (index subject 1;
1/39; 2.6%) with BECTS and learning difficulties was found who
carried a newly identified missense mutation (¢.728C>T; p.Ala243Val;
family history and segregation unknown, parents unavailable) in
GRIN2A predicted to be located in the Zn?+binding domain of the
glutamate-gated NR2A subunit (Fig. 1a,b). Maximal inducible cur-
rents, agonist affinities and relative open-state probabilities of mutant
NRI1-NR2A Ala243Val receptors were not significantly different,
upon heterologous expression, from those of the respective receptors

“Afull list of affiliations appears at the end of the article.
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Figure 1 Structural and functional a
consequences of the missense mutation in
GRINZ2A encoding p.Ala243Val. Functional
analysis of the missense alteration p.Ala243Val
(index subject 1) showed a significant reduction
in high-affinity Zn?+ inhibition, whereas current
amplitude, glutamate and glycine affinities

and relative open-state probability remained
unchanged. (a) Topology model of an NR1 and
an NR2A subunit. The position of p.Ala243Val 0 (
is indicated by a star in the NR2A subunit
consisting of an N-terminal domain (NTD), the
ligand-binding domain (LBD) including the S1
and S2 peptide segments, three transmembrane
segments (M1-M3), a re-entrant pore loop (P)
and an intracellular C-terminal domain (CTD).
Ala243 lies within the Zn?*-binding NTD in
NR2A. (b) Model of the NR2A NTD (cyan)
together with an adjacent NR1 NTD (green).

An enlarged view shows Ala243 within the
ZnZt-binding NR2A NTD. (¢) Pharmacological
characterization of the apparent agonist
affinities of wild-type and mutant NMDA
receptors. Glutamate dose-response curves

of wild-type NR1-NR2A (black triangles) and
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mutant NR1-NR2A Ala243Val (red squares) NMDA receptors were measured upon heterologous expression in Xenopus laevis oocytes by two-electrode
voltage clamping (TEVC; n=5). Similar glutamate and glycine (data not shown) concentrations were required for a half-maximal response (ECsg);
representative dose-response curves are shown for wild-type and mutant receptors. ///ya is the relative current, normalized to the maximal inducible
current (in pA). (d) Maximal current responses and kinetics of the open-channel blocker MK-801 for wild-type and mutant NMDA receptors show similar
channel activity. The maximal agonist-inducible currents and rate kinetics of MK-801-mediated inhibition were used to determine the relative open-
state probability (#,) of wild-type NR1-NR2A compared to mutant NR1-NR2A Ala243Val NMDA receptors. Data are shown as mean + s.d. (e) Inhibition
of agonist-evoked currents by low concentrations of Zn2* at wild-type and mutant NMDA receptors. Currents for NR1-NR2A, NR1-NR2A-NR2A
Ala243Val and NR1-NR2A Ala243Val receptors show a gradual loss of high-affinity inhibition by 0.1 uM Zn2?* (n = 5; P< 0.01, Student's t test).
Traces show currents for the NMDA receptors in the absence (black) and presence (red) of 0.1 uM Zn2+.

containing the wild-type NR2A subunit (Fig. 1¢,d). In contrast, cur-
rents for NR1-NR2A, NR1-NR2A-NR2A Ala243Val and NR1-NR2A
Ala243Val receptors showed a gradual loss of high-affinity inhibition
by 0.1 uM Zn?* (P < 0.01; Fig. le), suggesting increased activation
in vivo due to impaired tonic inhibition of NR1-NR2A Ala243Val
receptors at physiological concentrations of Zn?*. Furthermore,
2 different mutations in GRIN2A were identified by next-generation
sequencing of >300 known and suggested epilepsy genes for diag-
nostic purposes!! in 2 individuals with LKS not included in cohort I.
Index subject 2 carried a new truncating mutation, ¢.2041C>T, encod-
ing p.Arg681* (pedigree shown in Fig. 2), and index subject 3 carried
a new splice-site mutation, ¢.1007+1G>A (positive family history,
segregation unknown, parents unavailable), both predicted to result
in non-functional proteins.

Motivated by these findings and to evaluate the relevance of these
preliminary results, we recruited cohort II (validation cohort) com-
prising 119 additional independent individuals with IFE. Sanger
sequencing of GRIN2A identified mutations in 8 of 119 subjects
(6.7%) that were not listed in dbSNP, the 1000 Genomes Project data-
base or the Exome Variant Server (EVS). With respect to the different
subentities, mutations were found in 0 of 3 subjects with isolated CTS,
1 of 48 subjects with BECTS (2.1%), 1 of 17 subjects with ABPE (5.9%),
0 of 17 subjects with LKS and 6 of 34 subjects with CSWS (17.6%)
(Table 1, Supplementary Fig. 1 and Supplementary Tables 1-3).
Finally, we replicated these findings in cohort III (replication cohort)
comprising 240 additional individuals who underwent whole-exome
sequencing and subsequent validation by Sanger sequencing. The
proportion of GRIN2A mutation carriers in the replication cohort
was similar to that in the validation cohort, with an overall mutation
rate of 19/240 (7.9%). Mutations were identified in 0 of 2 subjects

with isolated CTS, 11 of 197 subjects with BECTS (5.6%), 4 of
20 subjects with ABPE (10.0%), 1 of 4 subjects with LKS (25.0%) and
3 of 17 subjects with CSWS (17.6%) (Table 1, Supplementary Fig. 1
and Supplementary Tables 1-3).

We then combined cohorts IT and IIT for subsequent statistical
analysis, including a total of 359 subjects. Mutations occurred at
significantly higher frequency in our cohort of affected individu-
als (27/359; 7.5%) than in EVS (37/6,503; 0.6%), which was used as
a reference panel of unaffected controls (P = 4.83 x 10718, Fisher’s
exact test). Restricting the comparison to affected individuals and
controls of European ancestry yielded similar results (26/315 ver-
sus 27/4,300; P = 1.18 x 10719, Fisher’s exact test). The frequency
of mutations significantly increased with more severe phenotypes
(P =0.009, Cochran-Armitage test for trend; Supplementary Fig. 2).
Furthermore, severity of phenotypes showed substantial association
with the type of mutation (Pearson’s corrected contingency coefficient
Ceorr = 0.52; Supplementary Fig. 3). For index subject 2 and 19 cases
from cohorts IT and II1, additional family information was available.
Of these cases, two were found to have different de novo mutations.
The remaining 17 cases each had a newly identified mutation that
cosegregated with a phenotype of different epileptic disorders (often
but not exclusively associated with CTS) and various degrees of intel-
lectual disability within the family (Fig. 2). The GRIN2A locus showed
significant linkage to phenotype in these 17 families (2-point para-
metric logarithm of odds (LOD) score of 3.55 under a dominant risk
model with reduced penetrance of 80% and complete linkage).

In addition, 286 individuals with IFE were screened for copy
number variations (CNVs) in GRIN2A using the Illumina
HumanOmniExpress BeadChip (cohort IV, CNV cohort). This
cohort included all affected individuals from cohort III (an overlap
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Figure 2 Pedigrees of affected individuals with available family information. Analysis of possible segregation of the respective mutation in family
members could be performed for index subject 2 and for 19 of 27 mutation carriers in cohorts 11 and 111 where DNA samples were available from family
members. The respective GRIN2A mutation segregated with a variable phenotype of seizures, pathologic EEG patterns and/or intellectual disability

in family members. A few individuals carried the familial mutation but did not present any clinical features, indicating incomplete penetrance of the
mutations or mosaicism. However, subclinical phenotypes (for example, EEG patterns) have not been investigated in these individuals. Pedigree 87-4
suggests phenocopy in the proband’s brother. WT, wild type.
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Table 1 Newly identified mutations detected in GRIN2A

NMDA receptors are tetrameric ligand-

ID Case Epilepsy syndrome DNA mutation Protein alteration gated ion channels composed of two NRI1
Ki-index1 BECTS 0. 728CT p.Ala243val subunits and two of four possible NR2 sub-
Brn-index2 LKS ¢.2041C>T pArge81* units (NR2A-NR2D), which bind glutamate
Brn-index3 LKS ¢, 1007 +1G>A VsS4, p.? and determine the location of the NMDA

1 Ant-18 BECTS ¢.1108C>T p.Arg370Trp receptor subtype as well as functional proper-
2 Ant-11 CSWS ¢.2140G>A p.Glu7 14Lys ties of synaptic transmission and plasticity!®.
3 Ki-11 csws €.2927A>G p-Asn9763er Changes in NMDA receptor function have
4 Ki-40 ABPE ¢.594G>A p.Trp198* been demonstrated in animal models of tem-
5 Hel-1 Panayiotopoulos/CSWS ¢.1001T>A p.Leu334* poral lobe epilepsy following induced status
6 Lon-2b ABPE/CSWS €.2334_2338delCTTGC p.Leu779Serfs*b epﬂepticusls—w and in the Stargazer mouse
7 Hel:5 GSWS 6:2829656 pTyrB4SY model of idiopathic absence epilepsy!®.
g Dlgcs LSvR 82007+ 1cea, o7 A Earlier studies also provided evidence for
g Bl ERRFee Gt RIICTAE a role of GRIN2A alterations in individual

1? ZOLSOznPl EESTS Z'Z;;j; EE;S;;SST”; subjects with epilepsy!®20.21,. NMDA recep-

12 EPW 1109P1 BECTS ¢.869C>T p.Ala290Val tarsate Fomigally inmibifed l?y Z,I12+’ ey

ia Bl ABPE - 0.CysA36Arg nism that ha’s been shown in vitro to pr'otect

14 EPW1011P1 BECTS ¢.2095C5T p.Pro699ser neurons against NMDA receptor-mediated

15 3619 BECTS 6.2113A5G b.Met705Val overexcitation and glutamate toxicity.

16 EPW 1083P1 BECTS ¢.2179G>A p.Ala7 27 Thr Functional analysis of the missense

17 397 BECTS £.2200G>C pVal734Leu alteration p.Ala243Val (index subject 1)

18 EPW 1128P1 ABPE ¢.2314A5G p.Lys772Glu demonstrated impaired reduction of recep-

19 EPW 1125P1 BECTS ¢.2441T5C p.lle814Thr tor currents by low concentrations of Zn?*,

20 E106 BECTS ¢ 2710AST p. 116904 Phe suggesting increased activation of the NR1-

21 ROL 057P1 ABPE ¢.2927A5G p.AsSn976Ser NR2A heteromer due to reduced high-

22 D202 BECTS ¢.90delTins(T)2 p.Pro31Serfs*107 affinity Zn?*-mediated inhibition in vivo.

23 E256 BECTS ¢.1585delG p.Val529Trpfs*22 Accordingly, relief of NMDA receptors from

24 109-4 ABPE/CSWS c.1637_1639delCTT p.Serb47del tonic Zn?*-mediated inhibition results in

25 EB42 ABPE c.1007+1G>A VsS4, p.? higher susceptibility to repeated activation

26 E677d BECTS ¢, 1007+1G>A VsS4, p.7 and enhanced Ca?* influx. This mechanism

27 E252 ABPE/CSWS ¢.1007+1G>T V84, p.? should be of particular importance at syn-

28 NB3 ABPE CNV deletion CNV deletion aptically localized NRI1-NR2A receptors,

29 72-3 BECTS CNV deletion CNV deletion owing to their hlgh—afﬁmty Zn2+_b'1nd'1ﬂg

30 EPW 1111P1 BECTS CINV deletion CINV deletion site. This ﬁnding is in stark contrast to the

31 145 CSWS CNV duplication CNY duplication

loss of function predicted for truncating

BECTS, benign epilepsy with centrotemporal spikes (rolandic epilepsy); Panayiotopoulos, Panayiotopoulos syndrome;
ABPE, atypical benign partial epilepsy; LKS, Landau-Kleffner syndrome; CSWS, epileptic encephalopathy with con-
tinuous spike and wave during sleep. Phenotype appears in bold for individuals who had either BECTS or ABPE and

electrical status in sleep, which were subsumed under the phenotype of CSWS.

aprray-based CGH (aCGH) analysis identified a duplication at 8q11.23 and a duplication at 15q26.1926.2. PaCGH analysis
identified a de novo microduplication at 22q11.21 and a small maternally inherited intronic deletion of NRXNVI.

0f 83.9%) and 46 additional individuals with IFE. Out of 286 cases,
3 (1.0%) were identified with exon-disrupting microdeletions within
GRIN2A (Supplementary Fig. 4). An additional intronic duplication
was found to segregate with the phenotype but remains of unknown
significance (Supplementary Fig. 4). CNVs of GRIN2A occurred sig-
nificantly more often in affected individuals than in controls (3/286
versus 0/1,520; P = 0.004).

Our investigations have identified mutations as well as exon-
disrupting CNVs within GRIN2A in asignificant subset of individuals
with IFE. We therefore postulate that genetic alterations in GRIN2A
are not only a major genetic risk factor but are also compatible with
IFE being a monogenetic trait in up to 7.5% of affected individuals.
Additional modifying factors might explain phenotypic variability. As
in other idiopathic epilepsies'?, mutations were occasionally identi-
fied in apparently unaffected relatives, suggesting mosaic status or
incomplete penetrance (although EEG abnormalities and rare sei-
zures might have been missed in these individuals). A significant
trend toward higher mutation rates in more severe phenotypes was
demonstrated, which is similar to what has been observed for other
epilepsy-associated genes such as SCN1AI»14,

mutations, frameshift mutations and dele-
tions of GRIN2A!%20. However, different
molecular alterations of NMDA receptor
subunit genes might lead to similar changes
in subunit composition, resulting in com-
parable changes in the electrophysiological
properties of the receptor??. Moreover, similar phenomena are known
from other epilepsy-associated genes, such as activating and deacti-
vating mutations and deletions of SCN1A that have been described in
Dravet syndrome?3,

IFE is characterized by an age-dependent clinical phenotype.
NMDA receptor subunit composition is also age dependent, with
a switch from predominantly NR2B expression in early devel-
opment to more prominent NR2A expression at later stages!®.
Therefore, alterations in NR2A may become relevant only in specific
age groups?4.

In summary, we report genetic alterations in GRIN2A in 7.5% of
individuals with IFE, rendering alterations of GRIN2A a major genetic
risk factor. This finding is particularly noteworthy, as NMDA recep-
tors are promising targets for epilepsy treatment?®.

URLs. dbSNP Build 135, http://www.ncbi.nlm.nih.gov/projects/SNP/;
1000 Genomes Project database, http://www.1000genomes.org/;
Exome Variant Server (release ESP6500SI, accessed November 2012),
http://evs.gs.washington.edu/EVS/; PolyPhen-2, http://genetics.bwh.
harvard.edu/pph2/; MutationTaster, http://www.mutationtaster.org/;
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SpliceView, http://zeus2.itb.cnr.it/~webgene/wwwspliceview_ex.html;
HSF2.4, http://www.umd.be/HSF/; R statistical environment
v2.15.1, http://www.R-project.org/; EuroEPINOMICS, http://www.
euroepinomics.org/.

METHODS
Methods and any associated references are available in the online
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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ONLINE METHODS

Study design. The overall study design is shown in Supplementary Figure 5.
Following reports on microdeletions including GRIN2A in individuals with
complex neurodevelopmental phenotypes, epilepsy and CTS as a common fea-
ture of the EEG10, we started sequencing a small cohort of 39 individuals with
IFE (screening cohort) and identified a first index subject with BECTS, learn-
ing difficulties and a missense mutation (encoding p.Ala243Val) in GRIN2A.
In addition, consecutive next-generation sequencing epilepsy panel analysis
for diagnostic purposes identified two further index subjects with LKS and
mutations in GRIN2A (¢.1007+1G>A; IVS4, p.? and encoding p.Arg681*). In
these subjects, molecular genetic analysis of 323 genes that are known to be
involved in epilepsy was performed using a targeted next-generation sequenc-
ing approach (epilepsy panel version 2) as recently described!l. No other
subjects with mutations in GRIN2A have been identified using this analysis
method so far.

Motivated by these findings, we analyzed a second cohort (validation
cohort) of 119 individuals with IFE and confirmed our findings by analysis of
a third cohort (replication cohort) of an additional 240 affected individuals.
For statistical analysis, data from cohorts I and ITI were combined, giving a
total cohort of 359 subjects with IFE of childhood, and compared to publically
available control sequence data from EVS.

In addition to sequence analysis, we performed CNV analysis in a fourth
cohort (CNV cohort) and compared these data to CNV data from 1,520
platform- and ancestry-matched in-house controls.

Subjects. Cohort I (screening cohort) comprised individuals with IFE
with rolandic spikes recruited at the Department of Neuropediatrics
at the University Hospital Schleswig-Holstein (Kiel, Germany) and the
Northern German Epilepsy Center for Children and Adolescents
(Schwentinental, Germany).

For follow-up studies, study cohort II (validation cohort) was recruited by
partners at European and Argentinian epilepsy centers, children’s hospitals
and departments of neuropediatrics and neurology.

For replication, subjects for study cohort III (replication cohort) were
recruited by collaborating centers of the EuroEPINOMICS- CoGIE (Complex
Genetics of Idiopathic Epilepsies) initiative.

Cohort IV for CNV analysis (CNV cohort) included all subjects from
cohort IIT as well as additional affected individuals recruited at the
participating centers.

A summary of cohorts I-IV is given in Supplementary Table 4.

Phenotyping was performed according to the 2001 and 2010 International
League Against Epilepsy (ILAE) classification schemes:2¢, For analysis, the
following epilepsy syndromes were used: benign childhood epilepsy with cen-
trotemporal spikes (BECTS, also rolandic epilepsy), atypical benign partial
epilepsy (ABPE), Landau-Kleffner syndrome (LKS) and epileptic encepha-
lopathy with continuous spike and waves during sleep (CSWS). Rare forms of
benign occipital epilepsy (Panayiotopoulos syndrome and Gastaut syndrome)
were subsumed under BECTS, as these syndromes often show overlapping
features. Individuals who had either BECTS or ABPE and electrical status in
sleep were subsumed under the phenotype of CSWS, asthis is a rather atypical
feature in these epilepsy syndromes and will influence and probably change
clinical outcome. In LKS, electrical status in sleep is a frequent symptom of the
syndrome. CSWSwas used synonymously with electrical-status epilepticus in
slow-wave sleep (ESES)?7,

All affected individuals and/or their legal guardians gave written informed
consent. The study protocol was approved at all sequencing centers (Kiel,
Tiibingen, Cologne, all in Germany). Approval for subject recruitment and
inclusion in epilepsy genetics studies is available at all participating centers.
The investigators were not blinded to allocation during experiments and out-
come assessment.

Control cohorts. For statistical analysis of mutation frequencies, control data
were derived from EVS from the National Heart, Lung, and Blood Institute
(NHLBI) GO Exome Sequencing Project (ESP).

Data from CNV analysis were compared to those for 1,520 in-house controls
matched for analysis platform and geographic origin. This cohort was drawn
from the HNR (Heinz Nixdotrf RECALL) population-based epidemiological

study consisting of males and females aged 45 to 75 years from an unselected
urban population from the Ruhr area in Germany?,

DNA extraction from blood samples. DNA from individual blood samples was
extracted locally at the recruitment centers using commercially available kits.

Mutation screening and CNV analysis. Sequence analysis of cohortsI and I1.
For cohorts I and II, mutation analysis of GRIN2A4, including all coding
exons and exon-intron boundaries, was performed using the primers whose
sequences are given in Supplementary Table 5a,b. PCR amplification and
bidirectional sequencing were carried out following standard protocols?®, New
and known polymorphisms as well as indels were identified by NovoSNP3¢
and Sequence Pilot (JSI Medical Systems).

Sequence analysis of cohort II1. Sequence analysis of cohort ITI was performed
using next-generation sequencing techniques. In brief, DNA was fragmented
using sonication technology (Covaris), and fragments were end repaired and
adaptor ligated. SeqCap EZ Human Exome Library v2.0 (Roche NimbleGen)
was used for enrichment, and samples were analyzed on the Illumina HiSeq
2000 sequencer. Only exome data with an average coverage of >30x for 85%
of the target sequences were included in the analysis. Data were filtered using
Illumina Real-Time Analysis (RTA) software v1.8 and mapped to human
genome reference build hg19 via the ELANDv?2 alignment algorithm on a
multinode compute cluster. PCR duplicates were excluded using CASAVA v1.8.
Variant calling was performed by SAMtools (version 0.1.7) for indel detection.
Scripts developed in house at the Cologne Center for Genomics (Cologne,
Germany) were applied to detect protein changes, affected splice sites and over-
laps with known variants. In particular, variants were filtered for high-quality,
previously unknown variants in GRIN2ZA compared to an in-house variant
database, dbSNP Build 135, the 1000 Genomes Project database and EVS.

The pathogenic implications of identified coding variants were assessed
by different in silico analysis programs (PolyPhen-2 and MutationTaster).
For intronic SNPs, splice-site analysis was performed using SpliceView
and HSF24.

CNV analysis. Whole-blood DNA was genotyped for 730,525 markers
using the Illumina HumanOmniExpress BeadChip according to the manufac-
turer’s protocol. Genotypes were analyzed with the Illumina GenomeStudio
genotyping module (v.2011). CNV calls were generated using PennCNYV soft-
ware®! by the use of the log R ratio (LRR) and B allele frequency (BAF) for all
probes included on the genotyping chips. Analysis was restricted to CNVs
larger than 30 kb and coverage of at least five consecutive probes. All potential
microdeletions were manually inspected for the regional SNP heterozygosity
state and log, ratios of the signal intensities to exclude technical artifacts.
Subsequently, GRIN2A CNV validation of the index subject and CNV seg-
regation in the family was conducted by multiplex ligation-dependent probe
amplification (MLPA; MRC-Holland) and CNV analysis of whole-exome
sequencing data, respectively.

Statistical analysis. Sequencing studies. For statistical analysis of sequencing
data, affected individuals from cohorts I and III (validation and replication
cohorts) were combined. Owing to the small sample size of cohort I and iso-
lated index subjects 2 and 3, affected individuals from this screening cohort
were excluded from statistical analysis.

Fisher’s exact test was used to compare mutation frequencies in cases
and EVS controls. To exclude potential population stratification effects, an
additional analysis was performed comparing only affected individuals with
European ancestry (with geographic origin determined by surname and/or
self-reported ancestry; excluding individuals from Turkey and Russia, as these
countries cross borders between Europe and Asia) against the EVS European-
American controls.

Cochran-Armitage test for trend was used to test the hypothesis of higher
mutation frequencies in more severe phenotypes, and Pearson’s corrected con-
tingency coefficient was calculated to demonstrate an association between
the severity of phenotypes and the type of mutation. All tests were carried out
using the R statistical environment v2.15.1.

Two- point linkage analysis was performed using the LINKAGE package®?.
We assumed a dominant mode of inheritance with a reduced penetrance of
80% and complete linkage between GRIN2A and the disease locus.
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CNV studies. A Fisher’s exact test was used to compare the frequency of
exon-disrupting CNVs in cases and in-house controls.

Functional studies. For X, laevis oocyte experiments, GRIN2A and GRIN1
constructs and capped cRNAs were generated as described previously?!.
Individual oocytes between stages V and VI were obtained from anesthetized
frogs and were isolated by collagenase treatment. Total GRINI and GRIN2A
cRNAs (10 ng) were injected into oocytes. After injection, oocytes were kept at
17 °C in ND96 solution (96 mM NaCl, 2 mM KCl, 1.8 mM CaCl,, 1 mM MgCl,
and 5 mM HEPES, pH 7.4). Glutamate, glycineand Zn?* dose-response curves
for wild-type NR1-NR2A and mutant NR1-NR2A Ala243Val NMDA receptors
were analyzed by two-electrode voltage clamp recording. Molecular modeling
of the NMDA receptor subunits was performed according to Endele ef a2,
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Supplementary Table 1a Characteristics of novel GRIN2A mutations in patients with idiopathic focal epilepsy

______ PolyPhen2' MutationTaster? .
Protein Inheritance/ | gpgnp
# Case | Phenotype | Nucleotide Mutation Alterati . Proba- . Segregation MAF 1
eration Score Rating 5 Rating (y/n)
bility y
Ki- Probably Poly-
- BECTS c.728C>T p.Ala243Val 1.0 dsPEGInG 0.917 tristghit Unknown Novel
L. LKS c.2041C>T p.Arg681* - - 0009 | DSt | Maternal,y Novel
1 | Ant-18 | BECTS c.1108C>T PAIGSTOTrp | 10 | ooPSBY | ooee | DS | Unknown Novel
2 | Ant11 | csws ¢.2140G>A pOIT14Lys | 019 | Bengn | 0720 | SO¥ | Unknown Novel
3| K11 CSWs C.2927A>G pASnO76Ser | 0186 | Bemgn | 0571 | D=°%% | Unknown Novel
4 | Ki-40 | ABPE c.594G>A p.Trp198* ’ . 10| Jmeee® | Unknown Novel
5 | Hel1 csws c.1001T>A p.Leu334* - - 0999 | D°e%% | Paternal,y Novel
6 | Lon2 | CSWS |c.2334 2338delCTTGC | PLOW79Ser | 2 10 | D% | Paternal,n Novel
7 | Hel5 | csws ¢.2829C>G p.Tyro43* - - 0900 | DF2%* | Paternal,y Novel
BECTS/ Probably Disease
9 E102 CSWS c.236C>G p.Pro79Arg 1.0 dafessing 0.833 caliETRg Maternal, y Novel
ROL Probably Poly-
10 041P1 BECTS c.547T>A p.Phe183lle 1.0 heatere. 0.723 e Paternal, n Novel
11| 745 LKS c.692G>A pCys231Tyr | 10 | eP80¥ | 0996 | e | Maternal,y Novel
EPW Possibly Poly-
12 1109P1 BECTS c.869C>T p.Ala290Val 0.593 dafaging 0.968 e Unknown Novel
13 | 87-4 ABPE c.1306T>C PCysd36Arg | 10 | ;oY | 0909 | DR | De novo,n Novel
EPW Probably Disease
141 1011P1 BECTS €.2095C>T p.Pro699Ser 1.0 dariaging | 2% SR De novo, - Novel
Probably Disease
15 | 3619 | BECTS c.2113A>G pMet70sval | 10 | gPNY | oeee | CSSESE | Maternal,y Novel
EPW Probably Disease
16 | 1083P1 BECTS c.2179G>A p.Ala727Thr 1.0 damaging | 0998 causIHa Unknown Novel
Probabl Di
17 | 897 BECTS €.2200G>C pval73dleu | 10 | RN | 0999 | BSERS | Paternal,y Novel
EPW Probably Disease
18 1128P1 ABPE c.2314A>G p.Lys772Glu 1.0 o | 0.889 —— Unknown Novel
19 | SPW | BeCTS ¢.2441T>C pllestaThr | 0157 | Benign | o083 | DSea% | poterngy Novel
20 | E106 | BECTS c.2710A>T plleS04Phe | 0411 | Bemign | 0809 | D=e%% | Paternal,y Novel
21| SoU | ABPE c2927AG pAsnO76Ser | 0188 | Benign | 0571 | D% | Unknown Novel
. p.Pro31Ser Disease
22 D202 BECTS ¢.90delTins(T)2 5107 1.0 - Maternal, n Novel
Val529T Di
23 | E256 | BECTS c.1585delG e * 10 e | Maternal, y Novel
ABPE/
24 | 109-4 CSWS €.1637_1639delCTT p.Ser547del Unknown, y Novel

y = yes, n = no; MAF = Minor Allele Frequency; phenotype underlined: patients who had either BECTS or ABPE and electrical status in sleep were subsumed under the
phenotype of CSWS.
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Supplementary Table 1b Characteristics of novel GRIN2A splice site mutations in patients with idiopathic focal epilepsy

Nature Gene

: HSF? SpliceView" Inheritance/
; ; Protein : ID dbSNP,
# Case Phenotype | Nucleotide Mutation Altaration Marias Predict- Segregation MAF
tion ion w ol (yn)
Brn- donor
: LKS c.1007+1G>A IVS4, p.? -32,77% | splicesite | DSS80% | NoDSS Unknown Novel
index3 disrupted
donor
8 Dia-6 CSWS c.2007+1G>A IVS7, p.? -27,63% | splicesite | DSS89% | NoDSS Paternal, y Novel
disrupted
donor
25 E542 ABPE c.1007+1G>A IVS4, p.? -32,77% | splicesite | DSS80% | No DSS Maternal, y Novel
disrupted
donor
26 | E677d RE c.1007+1G>A IVS4, p.? -32,77% | splicesite | DSS80% | NoDSS Maternal, y Novel
disrupted
ABPE/ i
27 E252 c.1007+1G>T VsS4, p.? -32.77% | splicesite | DSS80% | NoDSS Unknown, y Novel
CSWS disrupted

wt = wildtype allele, mut = mutated allele, y = yes, n = no; MAF = Minor Allele Frequency; DSS = Donor Splice Site; phenotype underlined: patients who had either BECTS or

ABPE and electrical status in sleep were subsumed under the phenotype of CSWS.

Discussion of Supplementary Tables 1a and 1b:

For nonsense and missense mutations as well as for analysis of splice site mutation, two in-sifico prediction programs were used to assess the

potential pathogenic impact of the mutations. We used two complementary programs to increase the validity of the prediction. Most variants are

supposed to have a disease causing effect on protein function and both programs give consistent predictions in most cases. One mutation

(c.2140G>A, p.E714K) was rated to be a polymorphism rather than a pathogenic variant. However, only subsequent functional studies will be

able to fully assess the role of these mutations in the pathophysiology of idiopathic focal epilepsies.

doi:10.1038,
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Supplementary Table 2 Characteristics of known GR/N2A non-synonymous, coding sequence alterations in patients with idiopathic focal

epilepsy (cohorts | — lII)

. . brotein PolyPhen2' MutationTaster® | . . o
ugEe | Flenogps | Neceoide Mool | gieston | S Rating Proba- Rating Segregation WAk
bility (y/n)
Ki-28 BECTS c.91C>A p.Pro31Thr 0.0 Benign | 0837 | DS | Unknown | (knownin EVS")
112-3 ABPE c.422C>T pThri41Met | 0016 | Benign | 0626 E;iia::g S 78631453
C;)_Z%ft ABPE €.2899G>C p.Val9s7Leu 0 Benign 0.984 mg;glg'i-s | Unknown rse10 _733 :65,
C;)_q;rt une%;gi%yed ¢.2899G>C p.Val967Leu 0 Benign 0.984 mgglms | Unknown rse‘é _75’3 2;55,
C;:_gc;ft BECTS €.2899G>C p.Val9s7Leu 0 Benign 0.984 mg;'hyi-s | Unknown r5610 ?gg 2165,
Ki-5 ABPE ¢.2899G>C p.Valg67Leu 0 Benign | 0984 | O | Unknown | S07S1IE%
152':;/;,/1 BECTS c.2899G>C p.Val967Leu 0 Benign 0.984 mc';g'hyi; | Unknown rs610 ?gg 2165,
15:&’;,’1 BECTS c.2899G>C p.Valo67Leu 0 Benign | 0984 | "o | Unknown | S078165
15;’;,’1 BECTS c.2899G>C p.Valo67Leu 0 Benign | 0084 | “OV. | Unknown | S07SVES
1§g5 BECTS €.2899G>C p.Val967Leu 0 Benign 0.984 mg;ms | Unknown r5610 ?g,g :65,
15 %1 BECTS €.2899G>C p.Val967Leu 0 Benign 0.984 mggh’i-s - Urikniawr r5610 ?gg :65,
038'51 BECTS €.2899G>C p.Val967Leu 0 Benign 0.984 mgglg'i-s | Unknown r5610 ?33 2165,
88-4 BECTS ¢.2899G>C p.Val967Leu 0 Benign 0.984 mcf:glgi_sm Unknown r5610-7332165,
E130f | BECTS c.3190A>G p.Thr1084Ala 0 Benign | 0994 mg;‘ms | Unknown rS138808501,
Cr_ r;cért BECTS ¢.3228G>C p.Asn1076Lys | 0.997 d?:q';:?r'é 0.995 E;ﬁf:g Unknown e 1
Tar-13 | BECTS ¢.3228G>C p.Asn1076Lys | 0997 d?;';zki’r']é 0.995 E;f’[‘:g Paternal,? | *°0o5
Brn-7 LKS €.3228G>C pAsntOT6Lys | 0907 | DORERY | 0005 | DS%ee | Maternal,n | (SOLEES
C10_ ggrt BECTS c.3827A>G p.Ala1276Gly | 0517 d':‘;::‘gbi:}’g 0.874 [C);e:l‘:ge Unknown | 142963086,
K20 | Csws ¢.3827A>G pAEI276Gl | 0517 | pobY | 0874 | Deese | ynknown | "SI0

y = yes, n = no; MAF = Minor Allele Frequency; N/A = not known
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Supplementary Table 3 Phenotypic characteristics of patients with novel mutations in GRIN2A

Age-at-

Lemke etal., 2012 | 9

Protein Epilepsy i Motor Cognitive Speech
¥ Case Alteration 8::2) Syndrome Ees Sejzure Types Development Development Development FH
Ki- ’ Learning
it dascd p.Ala243Val 5.8 BECTS CTS Rolandic sz. Normal problems Normal na
Auditory agnosia,
. . receptive+
Brn- Multifocal sw/ ; Learning .
’ p.Arg681* 35 LKS No seizures Normal SR expressive +
index2 ssw, CSWS disability language
disorder
Multifocal + Auditory agnosia
Brn- c.1007+1G>A h Rare nocturnal Mental !
A 4 LKS bitemporal sw, Normal z severe language +
index3 V84, p.? CSWS sec. GTCS retardation disorder
Nocturnal focal
1 Ant-18 p.Arg370Trp ¥ BECTS CTS sz., postictal Normal Normal Normal +
hemiparesis
IWd Epaces of Mild attention
2 Ant-11 p.Glu714Lys 45 CSWs CTS, CSWS non-convulsive Normal deficit Normal na
status epilepticus
3 Ki-11 . Asn976Ser na CSWs CSWS No seizures Normal Dyslexia Normal
p. Y
Milestones
s % Multifocal sw, 1 delayed, mild Delayed, slurred
4 Ki-40 p.Trp198 35 ABPE cTS Atonic sz. FiiSEUlAR Delayed speech na
hypotonia
< Multifocal sw, ' R
Panayiot./ e R Rolandic sz. Mild fine motor Lower normal
5 Hel-1 p.Leu334* 4 activation in ) vy " Delayed o
CSWS sleep, CSWS ictal vomiting clumsiness range
A Motor Difficulties in
6 Lon-22 p.Leu779Ser 4 ABPE/ Ct'gsf}oer:;t;r;c::gg Focal atonic sz., coordination social Nl
fs*5 CsSws fietal. CSWS staring episodes difficulties, right communication
pa } hemineglect and attention
7 | Hel5 p.Tyr943* 2 CSWS CTS, CSWS Rolandic sz Fine/grassmefor: | Milc-mederats Delayed +
' 3 ' clumsiness retardation
i ' . ' - ‘Problems in
8 | Dia6 el csws csws Absences | T nelgross motor Normal expressive +
P language
BECTS/ Severe attention
9 E102 p.Pro79Arg 6 CSWS CSWS Nocturnal GTCS Normal deficit S. Delayed +
ROL ; g
10 041P1 p.Phe183lle na BECTS CTS Rolandic sz. na Mildly delayed na na
1 | 745 p.Cys231Tyr 3 LKS csws FS, GTCS Delayed Wid inslleciusl Delayed +
) ? impairment
EPW ’
12 1109P1 p.Ala290Val 8.3 BECTS CTS Rolandic sz. Normal Normal Normal +
Nocturnal GTCS, ;
13 87-4 p.Cys436Arg 4 ABPE CTS atenhic sel3uras Normal Normal Mild delay *
14 1 §m1 p.Pro699Ser 8.0 BECTS CTS Rolandic sz. Normal Normal Normal -
15 3619 p.Met705Val 8 BECTS CTS GTCS Normal Mild delay Delayed +
EPW A
16 1083P1 p.Ala727Thr 6.0 BECTS CTS Rolandic sz. Normal Normal Normal +
17 897 p.Val734Leu 6 BECTS CTS Rolandic sz. Normal na na +
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Lemke etal., 2012 | 11

18 1 5%1 p.Lys772Glu 26 ABPE crs, g;;lltifocal FS, rolandic sz. Normal . ela—gswg‘i;%glzz% s Normal na
19 1‘15;5‘)’;1 p.lle814Thr 48 BECTS CTiﬁﬁgfita' CPS, GTCS Normal Normal Normal :

20 | E106 p.lle904Phe 7 BECTS cTs Raenpos, | Midtekyegine: | Lower ng‘;rma' Delayed +
8 | pAsn976Ser | 37 ABPE cTs mﬁi’iiﬁii 3 Normal na Normal na
22 D202 p":;;?%;e’e & 4 BECTS CTS Rolandic sz. Normal na na +
23 | E256 R¥aCCTIP 2 BECTS cTS Rolandic sz. Clumsy .“rﬂ:fa:pﬁfé'ﬁf o Delayed +

B S A R regression

24 | 109-4 p.Ser547del 4 e CSwWs Nocturnal GTCS Delayed Mi:ﬁ];)”;ﬁlf:;;‘a' Delayed +
25 ES42 C1|3g4+1pG;A 4 ABPE CTS Serial astatic sz. Normal Delayed Delayed +
2% | E677d °'1|322T1p%”'* 4 BECTS CcTs Nocturnal GTCS Normal Delayed Delayed +
27 | E252 & 18‘;2‘:)%” 4 égpﬂ% CSWs Rolandic sz. Normal Mild delay Delayed +
28 NB3 CNVdel na ABPE na na na na na na
2 | 723 CNVdel na BECTS CcTS NoglE R Normal Im;’)‘;lm"e’:ﬂ Severe delay | na
20 | 50, CNVdel %7 BECTS cTs - Normal Normal Delayed -

31| 145 CNVdupl na CsWs csws No seizures Normal I'n”::gﬁg:gi't Delayed 4

Abbreviations: FH = family history with respect to epilepsy, EEG abnormalities and/or febrile seizures, m = male, f = female, BECTS = benign epilepsy with centrotemporal

spikes (rolandic epilepsy), Panyiot.

Panayiotopoulos syndrome, ABPE = atypical benign partial epilepsy, LKS = Landau-Kleffner syndrome, CSWS = epileptic

encephalopathy with continuous spike-wave during sleep, CTS = centrotemporal spikes/sharp-waves, sw = sharp-waves, ssw = sharp-slow-waves, PPR = photoparoxysmal

response, sz. = seizure, sec. GTCS = secondary generalized tonic-clonic seizure, na = unknown, phenotype underlined: patients who had either BECTS or ABPE and

electrical status in sleep were subsumed under the phenotype of CSWS.

! Array-CGH analysis revealed a duplication at 8q11.23 and a duplication at 15¢26.1¢26.2. ? Array-CGH analysis showed a de novo microduplication at 22q11.21 and small

maternally inherited intronic deletion of NRXN1.
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Supplementary Figure 1 Localization of novel GRIN2A mutations
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Figure Legend

Supplementary Figure 1 Localization of novel GRIN2A mutations

This figure illustrates the localization of novel GRIN2A mutations in a protein model of NR2A.
The colors indicate the different phenotypes of mutation carriers: red = BECTS, blue =

ABPE, purple = LKS, orange = CSWS. Mutation p.N976S (= p.Asn976Ser) occurs twice, in a
patient with ABPE and a patient with CSWS.
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Supplementary Figure 2 Distribution of phenotypes in cohorts Il and Il

Distribution of phenotypes in cohorts lI+lll
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No mutation Mutation

Figure Legend

Supplementary Figure 2 Distribution of phenotypes in cohorts Il and Il

The frequency of mutation carmriers significantly increased trend towards more severe
phenotypes (p=0.009; Cochran-Armitage test of trend).

94



PUBLICATION: GRIN2A IN RE

Lemke et al., 2012 | 15

Supplementary Figure 3 Distribution of mutation types in cohorts Il and I
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Figure Legend

Supplementary Figure 3 Distribution of mutation types in cohorts Il and 11|

More severe phenotypes tended to co-occur with different types of mutations then less
severe one. Pearson’s cormrected contingency coefficient C.,, equaled 0.52, evidencing
substantial association between severity of phenotype and type of mutation.
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Supplementary Figure 4 Copy Number Variations in cohort [V

200 kb} | hg19
chr16: | 9850000 9,900,004 9,950,000 10,000,000 10050000 10.100,000 10,150,000 10,200,000 10,250,000 10,300,000

EPW1111-1 72-3 |

NB3

GRIN2A/NM_000833 } }

Figure Legend

Supplementary Figure 4 Copy Number Variations in cohort IV

Hg19 genomic localization and overview of transcript NM_000833. Dark grey bars represent
size and location of microdeletions detected. The light grey bar represents size and location

of an intronic duplication of unknown significance.
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Supplementary Table 4 Summary of cohorts | - IV

Lemke etal., 2012 | 17

Isolated
Cohort CTS BE(.:TS AB.PE L}I(S CSYVS Total
abs. | % abs. | % abs. | % abs. | % abs. | %
Cohort |
(screening cohort) 0 0 32 | 821 6 15.4 0 0 1 2.6 39
Gt 11 3 | 25 | 48 | 403 | 17 | 143 | 17 | 286 | 34 | 143 119
(confirmation cohort)
Cohort Il
(replication cohort) 2 0.8 197 | 821 20 83 4 1.7 17 74 240
Total cohort
for statistical analysis 5 1.4 245 | 68.2 37 10.3 21 5.8 51 14.2 359
(= cohorts II1+l11)
Cohort IV
(CNV cohort) 2 0.7 231 | 80.8 | 32 192 4 1.4 17 59 286
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Supplementary Table 5a Primers for sequence analysis of GR/IN2A in cohort 1

#PROBE Pome | “ogalza- FORWARD_PRIMER REVERSE_PRIMER i S(Léng (Sr\.lrc?t':l‘:l,
(bp) Build 37) | Build 37)
Primer 3* Promotor | CACTGGGGGAGGAGGAAG GTTTGAGGGCGAGTGTGTGT 640 10276740 | 10277379
Pr001177516.1 | RSA001422348 Exon1 tgtaaaacgacggccagtGAGGGAGGTGGATCTTTCCCA caggaaacagctatgaccACCGCAGCAGAAAGACGCC 599 10276384 | 10276983
Pr001177476.1 | RSA001422655 Exon2 tgtaaaacgacggecagtCTCCTGCACTTCGCCGCTG caggaaacagctatgaccGGGCTCCCATTCTCCTGTGC 557 10275601 10276158
Pr001187950.1 | RSA000647835 Exon3 tgtaaaacgacggecagtGGCTGTGACCCAGCATCACC caggaaacagctatgaccTCCGTGATCCCAGCAGCCTA 279 10274139 10274418
Pro01177515.1 | RSA001422346 Exon3 tgtaaaacgacggecagtTGGTTCTCACCAGGGCCAGT caggaaacagctatgaccCACCTTGCAGGGACCGTCAG 592 10273704 | 10274296
Pr001177459.1 | RSA001422955 Exon4 tgtaaaacgacggecagt CGCCTCCAGGCTGTAGTCCC caggaaacagctatgaccTGCTCAGGAATGTCTGCAAATGA 579 10031953 | 10032532
Pr001177514.1 | RSA001422345 Exon4 tgtaaaacgacggecagtGTGTGCATCGGGACCTCTGG caggaaacagctatgaccGTGGGCTGGGACATGCAGAA 412 10031825 | 10032237
Pr001177510.1 | RSA001422336 Exon4 tgtaaaacgacggccagt CAGACAGATCGATCAATCCCAGG caggaaacagctatgaccCCTTGGCCTCACCGGGTATG 542 10031546 | 10032088
Pr001187948.1 | RSAD00647825 Exon5 tgtaaaacgacggecagt GCTCAACAGGAAATGCGTGGG caggaaacagctatgaccGCAAGCAGCTTCCTTCAGGG 541 9984744 9985285
Pr001177508.1 | RSA001422333 Exon6 tgtaaaacgacggecagtAAGGGTTGGGCACGTTCAGG caggaaacagctatgaccGGCTGGGATGGAGAACTGCC 445 9943571 9944016
Pr001177469.1 | RSA001422954 Exon6 tgtaaaacgacggecagtTGTCTGTGGAGTCAGTTGGACCAC caggaaacagctatgaccCCGTGTGGCCCAGGTACAAG 51 9943267 9943778
Primer 3* Exon7+8 TGAACAAACCTTCCAGTGCT GTCCCATCCTCTGAGCAAAC 586 9934429 9935014
Primer 3* Exon8 TGATTAGCTTCTTTTGAAGGATCA CACCATGCCTGGTCTAGAGT 369 9927860 9928228
Pr001177513.1 | RSA001422330 Exon10 tgtaaaacgacggecagtGGATTCTGGACAGGCACGGA caggaaacagctatgaccTCCCGCTGAATTGCATGGTT 521 9923422 9923943
Pr001177512.1 | RSA001422329 Exon10 tgtaaaacgacggccagtAGGAAACACGACCACTCGGG caggaaacagctatgaccTCTGGCAACCTTCGGTGCTG 585 9923026 9923611
Pr001187899.1 | RSA000651856 Exon11 tgtaaaacgacggecagtGGGCCCATCTGGACCACAGT caggaaacagctatgaccTGCATGCATTTACCTCCTAACACCA 415 9915989 9916404
Pr001189738.1 | RSA000412231 Exon12 tgtaaaacgacggccagt GGGAGCAAACTCATCATGCAAAGA caggaaacagctatgaccGGGATGGAGAGGCCATGAGTC 428 9892028 9892456
Primer 3* Exon13 TCACTGCAACAATATTAGGTAGGC CCCAAGCGCTTTTCTAAACC 500 9862649 9863148
Pr001187898.1 | RSA000651854 Exon13 tgtaaaacgacggecagt TTCTCATGTCCCGCCTGCTG caggaaacagctatgaccTCCTCACTGCCTGTGAATGTTGTG 499 9862481 9862980
Primer 3* Exon14 CCCTATGCTTTGCAACTTGTC GAATCCACGGATTTCTTCCA 650 9858342 9858991
Pr001177529.1 | RSA001422323 Exon14 tgtaaaacgacggecagtTTTCAGGTAGGTGCGCTCGAC caggaaacagctatgaccCCCTCATCATGGACATGGTTTCA 535 9858080 9858615
Pr001177528.1 | RSA001422321 Exon14 tgtaaaacgacggccagtAGGCAGGCATCGCACTTGAA caggaaacagctatgaccGGACCCACTCCCTAAAGAGCCC 594 9857682 9858276
Pro01177524.1 | RSA001422369 Exon14 tgtaaaacgacggccagtCGTTGGTCATCCCTGTGGGAG caggaaacagctatgaccGGGCTTTCCAACAACGACCA 598 9857274 9857872
Pr001189794.1 | RSA000389524 Exon14 tgtaaaacgacggccagt TGGACATCCAACATTTACCCTCCA caggaaacagctatgaccCCTCAAGGACAGGGAACGGC 537 9856928 9857465
Pro01177523.1 | RSA001422368 Exon14 tgtaaaacgacggccagtTCAGGTTTACATGCACACCATATTGC | caggaaacagctatgaccTCGGAGCATGTTATGCCTTATGC 565 9856563 9857128
For sequence analysis, primers of the NCBI Primer Set RSS000057426.1 were used. * Primers designed using Primer3 (www.primer3.sourceforge.net)
Supplementary Table 5b Primers for sequence analysis of GRIN2A in cohort 2
Localiza- PRODUCT | START STOP
tion FORWARD_PRIMER REVERSE_PRIMER SIZE (NCBI (NCBI
(bp) Build 37) | Build 37)
Exon3 TGGCTCCTAGAGCAGGAAGCCAAG GGGTTGGAGAGGCAAGACCTGGTT 692 10273685 | 10274376
Exon4 TGCTCAGGAATGTCTGCAAATGATTGA CGATCAATCCCAGGTGTAGGTTTCCA 978 10031555 | 10032532
Exon5 TGGTCAACTAGCAATGGTTGCATGG GAGAAAGCATTCCAATTGCACCTTACAGA 479 9984656 9985134
Exon6 TGCCCGTTTGTCTTAGCACAGAAGTAGA GGGCAAAACTACTCACCTCATATTGCTGGT 594 9943382 9943975
Exon7+8 TGCTATAATTAAGGACACTTTCTGCTTTTGCTG TGCCATGGCCAAACAGAGCTAAACA 752 9934392 9935143
Exon9 TGCAAATGGATGTCTGGGCTTCCT CCATGCCTGGTCTAGAGTAATGTGTTCTAA 310 9927862 9928171
Exon10 GGTGGCTGCTGCGTGGTTGTC TCAATGAGAGGCACCTGAATCTCTTCC 398 9923192 9923589
Exon11 TCCTGGAGCTCACAGACTGGCTGA TCAGAAGGAAACCTGGGATGCTCA 552 9915937 9916488
Exon12 TGCTTTCAGGATCAGGCCTCAGGA TCATGCAAAGATCCACTGGGAAGC 365 9892041 9892405
Exon13 TTTGTCCTCACTGCAACAATATTAGGTAGGC GTGACATGCCCAAGAAAGGCTGGT 569 9862587 9863155
Exon14.1 CCAGGGCTCCTGCAAGAAGTGC TGGGGTATTTGGAGGCCACTGA 805 9858113 9858919
Exon14.2 | CCCAGAGGGATGAGGCAACAGC GCTCCGGGAGGGCCTGCTAA 836 9857471 9858306
Exon14.3 | CCAGCAGGACTGGGCACAGAA TCCTCTTAGCAGGGCACTATTGGACA 693 9856908 9857600
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Supplementary Figure 5 Study design

Step 1: Motivation Cohort I: Screening Cohort

39 patients: 2 patients:

Mutation screening ~ NGS Epilepsy Panel 3 mutations

Step 2: Validation Cohort II: Validation Cohort —,  Statistical Analysis
359 patients
119 patients ——> 8 mutations (6.7%) N
27 mutations (7.5%)
Step 3: Replication Cohort Ill: Replication Cohort Comparisonto
6503 EVS controls

240 patients ——> 19 mutations (7.9%) — (p=4.83x10-9)

Statistical Analysis
Step 4: CNV Analysis ~ Cohort IV: CNV Cohort

286 patients ——> 3 deletions (1%) Comparisonto

1520 in-house controls
(p=0.004)

Figure Legend
Supplementary Figure 5 Study design
This flow-chart demonstrates the overall study design illustrating our three-step design of

motivation, validation and replication. Additionally, a CNV analysis was performed.
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typical and atypical Rolandic epilepsy. BRAIN
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Abstract

Rolandic Epilepsy is the most common idiopathic focal childhood epilepsy. Its
molecular basis is largely unknown though a complex genetic etiology is generally
assumed. We demonstrate that genomic duplications between breakpoints 4 and 5
at the 16p11.2 locus, previously associated with neurodevelopmental disorders, are
also associated with typical and atypical Rolandic epilepsy. In a cohort of 393
patients, we identified five patients with the typical recurrent 600 kb (29.5-30.1Mb)
duplication and a sixth case with an atypical shorter rearrangement (in total 1.53%).
This differed significantly from the prevalence observed in the general population of
European origin [32/62403; (0.05%) Fisher's exact test P = 1.4 x 10”7, OR = 30.2,
95% CI: 10.3-73.9]. The duplication is not associated with all forms of epilepsies, as
none was detected in 330 and 1408 patients with either temporal lobe epilepsy or
genetic generalized epilepsies, respectively. In a subsequent screen among
children carrying the 16p11.2 600 kb rearrangement we identified three patients in
117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion.
The 16pl11.2 duplication is the second recurrent structural variant after GRIN2A

mutations and deletions identified for typical and atypical Rolandic epilepsy.

Keywords: rolandic epilepsy; microduplications; 16p11.2; genetics

Abbreviations: RE= rolandic epilepsy; ARE= atypical rolandic epilepsy; CTS=
centrotemporal spikes; CNV= copy number variation; SNP= single nucleotide

polymorphism
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Introduction

Rolandic epilepsy (RE), also known as benign epilepsy with centrotemporal spikes
(BECTS), is the most common childhood epilepsy with a prevalence of 0.2 —
0.73/1000 (i.e. about 1/2500) (Beilmann et al., 1999; Sidenvall et al., 1996; Waaler
et al., 2000). RE is related to rarer, and less benign epilepsy syndromes, including
atypical benign partial epilepsy (ABPE), Landau-Kleffner syndrome (LKS) and
epileptic encephalopathy with continuous spike-and-waves during sleep (CSWSS)
(Doose et al., 2001; Gobbi et al., 2006; Guerrini and Pellacani, 2012; Hahn et al.,
2001), referred to as RE related syndromes, or atypical Rolandic epilepsy (ARE) by
some authors (Fejerman, 2009). RE and ARE share blunt, high-voltage,
characteristically shaped centrotemporal spikes (CTS) of characteristic morphology
in the EEG. In ARE spikes become generalized during slow wave sleep,
morphology, location and background activity may vary to some extend (Doose et
al., 2001; Fejerman, 2009). The CTS EEG trait is not entirely specific to RE, as it is
also found in 2-4% of healthy children (Eeg-Olofsson et al., 1971; Okubo et al.,
1994), in 10-28% of children with autism spectrum disorder (ASD) (Chez et al.,
2006; Lewine et al.,, 1999; Tuchman and Rapin, 1997) and in the Fragile-X-
Syndrome (Musumeci et al., 1991; Musumeci et al.,, 1999). RE is further
characterized by focal (perioral sensorimotor) seizures and secondarily generalized
seizures, which resolve spontaneously during adolescence. ARE denote more
severe forms of focal childhood epilepsies with various additional seizure types,
developmental language delay or regression, speech dyspraxia and variable

neuropsychiatric deficits (Gobbi et al., 2006; Hughes, 2011).
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The underlying etiologies of RE remain largely unknown although a genetic basis
has been postulated. Multiplex family studies have suggested an autosomal
dominant inheritance of the EEG trait CTS (Bali et al., 2007; Heijbel et al., 1975).
However several other arguments, amongst them the distribution of seizure-risk in
relatives of patients with RE, argue for a complex mode of inheritance (Vears et al.,
2012). Linkage studies identified loci for CTS on 15q14 (LOD 3.56) and 11p13 (LOD
4.30) (Neubauer et al., 1998; Strug et al., 2009). Fine mapping of the latter locus
revealed an association with the ELP4 gene, but causative mutations have not yet
been identified (Strug et al., 2009). Markers linked to chromosome 16pl12-11.2
(LOD 3.68) were found in one family affected by RE with paroxysmal exercise-
induced dystonia and writer's cramp (Guerrini et al., 1999), while disease-
associated variants in the SRPX2 gene were found in a family with X-linked rolandic
epilepsy, oral and speech dyspraxia and intellectual disability and in one patient
with perisylvian polymicrogyria and rolandic seizures (Roll et al., 2006). Rare
variants in KCNQ2 and KCNQ3 were identified in a small number of patients with
RE (Neubauer et al., 2008). Very recently it was shown that mutations in GRIN2A
are major genetic risk factors for idiopathic focal epilepsies with CTS, with and
without language dysfunction (Carvill et al., 2013; Lemke et al., 2013; Lesca et al.,
2013).

Copy number variants (CNV) are an important source of structural genomic
variation. Whereas many CNVs, especially non-recurrent ones, are not necessarily
related to a clinical phenotype, six prominent recurrent CNVs (1921, 15q11.2,
15q13.3, 16p11.2, 16p13.11 and 22qgl11.2) are strongly associated with seizures
and a range of neurodevelopmental and neuropsychiatric disorders including autism
(Cook and Scherer, 2008; Cooper et al., 2011; de Kovel et al., 2010; Helbig et al.,

2009; Sebat et al., 2007; Stefansson et al., 2008). One of the characteristic features
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of these recurrent CNVs is their remarkable phenotypic variability suggesting a
shared genetic basis of the above diseases. The 16p11l.2 600 kb BP4-BP5
microdeletion (OMIM #611913) is associated with ASD, obesity and intellectual
disability with and without epilepsy, whereas the reciprocal duplication (OMIM
#614671) is linked to schizophrenia, microcephaly, intellectual disability and being
underweight (Bijlsma et al., 2009; Jacquemont et al., 2011; McCarthy et al., 2009;
Shinawi et al., 2010; Walters et al., 2010; Weiss et al., 2008; Zufferey et al., 2012).
Recurrent microdeletions at 15q11.2, 15913.3 and 16p13.11 have been identified
as important risk factors for genetic generalized epilepsy (GGE) accounting for
about 1% of these patients but are also associated with a range of other
neuropsychiatric symptoms (de Kovel et al., 2010; Dibbens et al., 2009; Helbig et
al., 2009). These pleiotropic effects and the associations between recurrent CNVs
and GGE prompted us to investigate the frequency of these six recurrent CNVs and

novel large CNVs in a cohort of children with RE or ARE.

Subjects and Methods

Study participants

In a multi-centre effort RE/ARE patients were recruited from Germany, Austria,
Canada and Australia. 98 of the patients were ascertained via multiplex-families
with the minimum criteria of at least two affected siblings. The index case had to be
diagnosed with RE or ARE, and the affected sibling(s) either with RE, ARE, or the
EEG trait only. All other 183 RE/ARE were patients recruited consecutively at the
participating clinics, as soon as the diagnosis of RE/ARE was present, irrespective
of their family history for seizures. Diagnosis of RE was performed according to the
International Classification of Seizures and Epilepsies (Berg et al., 2010). The

various related types of atypical Rolandic epilepsy were diagnosed as specified
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previously (Aicardi and Chevrie, 1982; Doose et al., 2001; Hahn et al., 2001). The
discovery set included a total of 281 unrelated patients of Caucasian ancestry
affected by RE (n = 230) and ARE (n = 51) (165 males and 116 females), and 1512
platform matched, unscreened German population controls (755 males and 757
females). The replication cohort consisted of 112 cases with RE (n = 109) and ARE
(n = 3) (63 males and 49 females), from Australia (n = 78) and Austria (n = 34)
ascertained with the diagnosis of RE/ARE irrespective of whether they have a family
history of seizures. Additional SNP-array data were obtained from 1408 genetic
generalized epilepsy (GGE) patients, 330 mesial temporal lobe epilepsy (MTLE)
patients and 2256 German population controls (KORA: n = 1250, POGEN: n=
1006). We also studied 319 children carrying a 600kb 16pl1.2 rearrangement.
These patients were assembled by screening neurodevelopmental disorders
cohorts through a network of cytogenetic centers (Jacquemont et al., 2011; Zufferey
et al., 2012). For summarized description of all cohorts see Supplementary Table 1.
Written informed consent was obtained from all participating patients and, when
appropriate, from both parents and adolescents. This study was approved by all

respective local institutional review boards.

Genotyping, copy number variation detection and validation

CNVs were detected by high-density SNP genotyping arrays (lllumina
HumanOmniExpress BeadChip) and subsequent CNV calling was carried out with
the PennCNV software (Wang et al., 2007). CNVs were considered to match
published recurrent CNVs if they overlapped at least 80% of the respective CNV-
length. All called recurrent candidate CNVs were more than 350 kb in size and
covered with 100 - 756 consecutive SNP-probes. Smaller CNVs of at least 50 kb

nested within the recurrent candidate regions were considered if they included one
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of the previously proposed candidate genes (de Kovel et al., 2010; Dibbens et al.,
2009). Genome-wide CNV screening beyond the six candidate regions was
restricted to CNVs with a segment size > 500 kb (Nicoletti et al., 2012) and a
minimum of 50 markers to achieve a high accuracy and reproducibility of CNV
callings across different array platforms, laboratory sites and calling algorithms
(Pinto et al., 2011). CNVs were manually inspected in the Illumina Genome Viewer
Software for the regional SNP heterozygosity state (BAF) and log2 ratios of the
signal intensities (LRR). 1512 controls genotyped on
llluminaHumanOmniExpressBeadChip and 330 mTLE patients genotyped on
llluminaHap550 array were analyzed with PennCNV. Regions of CNVs detected in
patients were manually inspected in the control samples for the presence of
duplications and deletions. CNV calling for samples genotyped on Affymetrix 6.0
array were performed as previously reported (de Kovel et al., 2010; Lal et al., 2013).
Recurrent CNV validation and segregation in families was performed with real-time
guantitative PCR (gPCR) using TagMan CNV probes (Supplementary Table 2; Life
Technologies, Darmstadt, Germany) and custom array-CGH for the 16p11.2
duplication (Agilent Technologies, Santa Clara, CA). This custom array contains
about 544 probes in the 16p11.2 region (chrl16:29,500,000-30,200,000, hg19) with

an average probe spacing of 1.3 kb.

Results

CNV detection

In our discovery cohort we identified CNVs at four of the six investigated recurrent
candidate loci (15911.2, 15913.3, 16p11.2 and 22g11.2) (Table 1) as well as other
CNVs (Table 2). We found a significant enrichment of 16p11.2 duplications in

RE/ARE patients when compared with controls. Four out of 281 patients (1.42%)
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carried a ~600 kb 16p11.2 microduplication compared to only one in 1512 controls
(0.07%) [Fisher's exact test, P =0.0026, OR = 21.8; 95% CI: 2.14-1068.36] (Table
1). We identified one additional patient with a smaller partial duplication
(approximately 110kb of unique sequence; hgl9 chrl6:29,650,000-29,760,000).
This atypical rearrangement starts at BP4 and encompasses the genes SPN,
QPRT, and C160rf54 within the unique sequence (Supplementary Fig. 1). Of note,
we identified one additional individual carrying the classical 16p11.2 duplication. He
was screened with the initial discovery cohort, but was finally not included as not all
inclusion criteria were met (suspected focal cortical dysplasia). All six tentative
16pl11.2 duplications, including the one later removed due to the uncertain MRI
result, were validated by Tagman quantitative real-time PCR and custom array-
CGH. We established the breakpoint boundaries at the classical BP4 and BP5
hotspots (Zufferey et al., 2012) in all five 600 kb sized typical 16p11.2 duplications.
To confirm our findings we subsequently screened the 16pll1.2 locus in an
independent replication cohort of 112 patients with RE/ARE. This screen revealed
one further classical recurrent 600 kb-microduplication (0.89%) (Fig. 1) which could
be validated by gPCR.

We also identified a nominally significant increase of duplications at the 15q11.2
locus (approximate genomic coordinates according to hg19 22,750,000-23,350,000)
in our discovery cohort. Six patients displayed the duplication in comparison to 8 out
of 1512 controls [Fisher’s exact test, P = 0.014, OR =4.1; 95% CI: 1.16-13.59]. This
borderline association did not remain significant after Bonferroni correction for
multiple comparisons.

To validate the previously reported prevalence of 16pl11.2 duplications among the
general population we examined array data from an additional cohort of 2256

healthy individuals from Germany (KORA, PopGen) unscreened for epilepsy (Lal et

110



PUBLICATION: 16p11.2 DUP IN RE

al., 2013) but did not detect any new 16p11.2 duplications or deletions. This is in
accordance with previous work setting the prevalence of the duplication at 0.05% in
the European population (31 duplications out of 58,635 tested individuals)
(Jacquemont et al., 2011). In a joint analysis of the discovery and replication cohorts
with both control cohorts, 16p11.2 duplications were seen at a frequency of 1.3 %
among patients and were thus significantly associated with RE/ARE [5/393 cases
vs. 1/3768 controls, Fisher's exact test, P = 4.1x10° OR = 48.4, 95% CI: 5.40-
2264.08]. Inclusion of the atypical duplication at the 16p11.2 locus further increased
the significance of this association [P =4.42x10® OR= 58.27].

To explore whether the 16p11.2 duplication is a general genetic risk factor for
common epilepsies, we screened 1408 European patients affected by GGE and
330 German patients diagnosed with mesial temporal lobe epilepsy (mTLE) for

16p11.2 duplications using high-density SNP arrays, but detected none.

Clinical data and segregation analysis

Patients harboring the 16p11.2 duplication either suffered from typical RE (n = 5) or
atypical RE (n = 1) (Table 3). Three patients (F1-11.1, F3-11.1, F5-I.1) had in addition
a history of febrile seizures, which can be expected in about 20% of children with
RE or ARE (Doose et al., 1997). All patients diagnosed with typical RE showed
normal development and their neuropsychological assessments fell within the
normal range. Only patient F1-11.1, diagnosed with ARE/LKS, presented with severe
developmental delay. For individuals F3-1l.1 and F6-l.1 calculations of the Body
Mass Index (BMI) were possible, revealing severely to moderately reduced BMIs
(F3-11.1: 13.31; F6-1.1: 18.6) consistent with previous reports (Jacquemont et al.,
2011). No data were available on the BMIs of the remaining duplication carriers and

on head circumferences of all patients. Duplications were inherited in all four cases
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where testing was possible (Fig. 2) with a maternal transmission in three of them.
The smaller atypical duplication was inherited from the father who himself had a
history of febrile seizures (Family 5). While the classical duplication co-segregated
with RE in one family (Family 2), two other families displayed reduced penetrance
with reportedly unaffected mothers carrying the duplication (F1-1.2 and F4-1.2). We
could not determine whether these mothers did exhibit RE-characteristic EEG trait
during their childhood. Family 1 is interesting as it demonstrates the variability of the
phenotypes in the duplication carriers, as the index case (F1-1.1) was affected by
severe ARE/LKS, while his younger sister only displayed CTS in EEG (F1-I1.3).
Notably, the third sibling in this family (F1-11.2) presented the EEG trait without being
a duplication carrier (Fig. 2). This family is not only affected by the 16pl1.2
duplication but also recently reported carrying a novel p.C231Y GRIN2A mutation
(Lemke et al., 2013). Whereas the GRIN2A variation segregates with the CTS trait,
the 16p11.2 duplication seems not to be necessary for the electroclinical component
of the phenotype. In Family 4, we detected in addition to the 16p11.2 duplication a
novel missense variation of unknown significance in the DEPDC5, a gene which
was recently identified in focal epilepsies (Dibbens et al., 2013; Ishida et al., 2013).
In this family the 16p11.2 duplication was inherited from the unaffected mother and
the DEPDCS variant from the unaffected father, resulting in a mutational load in the
child. Which of those two or if both genetic alterations synergistically contribute to

the phenotype is not known.

Genotype-phenotype correlations in the 16p11.2 rearrangement cohort
To further specify the association between RE/ARE and 16p11.2 duplications, we
examined a large cohort of 319 children (<18yrs) with 600 kb BP4-BP5

rearrangements (202 deletions and 117 duplication carriers) from the 16p11.2
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European consortium. We detected an equal rate of 18% of patients with epilepsies
(combining unspecified, focal, generalized epilepsies and infantile spasms) among
the duplication carriers (n=22/117) and deletion carriers (n=37/202) (Supplementary
Table 3). In the duplication group, three individuals were diagnosed with RE/ARE
(Supplementary Table 4). One patient presented with typical RE (short nocturnal
motor facial seizures and centro-temporal spikes activated by sleep). He also
suffered from reading and spelling difficulties and was diagnosed with an attention
deficit disorder. The second patient displayed the same electro-clinical features but,
in addition, also presented with a delay of language, a behavioral disorder, a
borderline 1Q (75) and an early age of onset (2 years of age). He was therefore
diagnosed as atypical RE. The third patient displayed an ARE-epileptic
encephalopathy (initially CSWSS, but eventually language regression and ASD
traits which led to the diagnosis of LKS). An additional (fourth) patient had only CTS
activated by sleep without seizures. In the deletion group, a single patient had CTS
activated by sleep without seizures but none suffered from RE/ARE. Hence
RE/ARE occurred only in duplication carriers (2.6% n=3/117) but not in deletion
carriers (n=0/202) [Fisher’s exact test, P = 0.05]. Although it was not possible to
assess the exact prevalence of RE/ARE in the complete cohorts screened (i.e.
including cases without 16p11.2 rearrangements), we note that RE/ARE features
are enriched approximately 30-fold in the 16p11.2 duplication cohort as compared
to the general population given an RE-prevalence of 0.05% (Jacquemont et al.,
2011).

Other structural rearrangements

To investigate whether other large CNVs beyond the above six candidate regions
were present in our RE/ARE patients we performed a genome-wide screen for

CNVs larger than 500 kb in all 281 individuals of the discovery cohort. In particular,
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we were interested whether 16p11.2 duplication carriers might display additional
large CNVs. We found 23 additional CNVs in the 281 RE/ARE patients screened
(Table 2). Six of these CNVs were partially overlapping with CNVs previously
reported in patients with epilepsy (Heinzen et al., 2010; Lesca et al., 2012; Mefford
et al., 2007; Mefford et al., 2010; Mefford et al., 2011; Valvo et al., 2012). With the
exception of one duplication mapping to chromosome 12924.33, which was
identified in two patients and in two out of 1512 controls from the discovery cohort,
all other CNVs occur as single events in our patient dataset. Interestingly, in one
16p11.2 duplication carrier (F3-l1l.1) we identified a second large duplication
(2.03Mb) on chromosome 22g11.21. Of note, this duplication is shorter than the
recurrent 22q11.21 duplication which is 3 MB in size (OMIM #608363) and it does

not include the proposed candidate gene COMT.

Discussion

In summary, we report a highly significant association of the recurrent 16p11.2
microduplication with RE/ARE spectrum epilepsies. We detected the 16p11.2
duplication in 1.53% of RE-patients (six individuals including the smaller atypical
rearrangement), which equals a more than 30-fold enrichment when compared to

the prevalence in the general population (0.05%) (Jacquemont et al., 2011).

Our cohorts partly included patients that were required to have a positive family
history for RE/ARE or the EEG trait as an entry criterion (98 of 393 patients). As
inherited genetic factors might be enriched in cases with a familial background a
multiplex pedigree ascertainment method might lead to an overestimation of the
frequency of such variants in the overall patient population. However, we believe

that the bias in this study was small as the majority of patients (75%) were enrolled
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irrespective of their family history and because the frequency of the duplication
carriers was similar in the multiplex and singly ascertained cohorts (4/295 and 2/98
respectively). However, this potential sampling bias does not play a_role for our
conclusion that the 16p11.2 is a susceptibility factor for RE because sampling of
unrelated cases with a positive family history has no influence on the expected
prevalence of the 16p11.2 duplication in the patient cohort under the assumption of
the alternative null hypothesis.

Although the effect size appears considerable the penetrance is incomplete as
illustrated by the presence of clinically apparently unaffected duplication carriers in
our families (with the caveat that mild childhood phenotypes might have been
missed or not reported in the adult carriers). Likewise, the severity and expressivity
of the phenotypes varied considerably between affected members of the same
family. Similar observations have been made with other CNVs that are nevertheless
firmly established as risk factors for epilepsies (de Kovel et al., 2010).

One remarkable feature of the 16p11.2 rearrangements is the wide diversity of the
associated phenotypes. The BP4-BP5 duplication and its reciprocal deletion were
previously associated with schizophrenia/autism, micro-/macrocephaly and
underweight/obesity mirror phenotypes as well as impairment in cognitive
performance (Jacquemont et al., 2011; McCarthy et al., 2009; Shinawi et al., 2010;
Walters et al., 2010; Weiss et al., 2008). In this present report we extend the list of
neurodevelopmental disorders associated with the recurrent 16p11.2 CNV even
further to the full spectrum of the RE/ARE phenotype ranging from mild RE cases to
severe forms of ARE with epileptic encephalopathies. Fitting with clinical
observations which have long suggested a shared etiology between RE and a
whole host of other neuropsychiatric syndromes and symptoms [e.g. cognitive

deficits, language disorders, autism, ADHD (Clarke et al., 2007; Danielsson and
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Petermann, 2009; Kavros et al., 2008; Tovia et al., 2011) we have identified the
16p.11.2 duplication as one shared genetic susceptibility factor. In light of the
phenotypic variability in two families additional modulating genetic variants are

already identified and further are expected and will be the focus of future research.

The 600 kb long chromosomal region between BP4 and BP5 on 16p11.2 contains
29 genes (Fig. 1). Most of these genes are expressed in the brain and might thus
contribute singly or jointly to the etiology of RE and related disorders. Several
studies on model organisms have attempted to narrow down the dosage sensitive
genes for the observed brain-related traits. Haploinsufficiency of ALDOA and KIF22
have been related to change in brain morphology in zebrafish (Blaker-Lee et al.,
2012), while alterations in head size anticorrelated with levels of KCDT13, MAPK3
and MVP in teleosts and rodents (Golzio et al., 2012). One patrticularly interesting
candidate is the PRRT2 gene with a putative role in synaptic vesicle functioning, as
it has been associated with a range of different childhood epilepsies. Mutations in
PRRT?2 are, for instance, the main cause of benign familial infantile seizures (BFIS)
and other infantile epilepsy syndromes as well as paroxysmal kinesigenic
dyskinesia (Chen et al., 2011; Heron et al., 2012; Schubert et al., 2012; Wang et al.,
2011; Wood, 2012).

Although atypical CNVs in the 16p11.2 interval are rare they are valuable in
narrowing down the critical genomic interval. We detected one partial 110 kb
duplication excluding PRRT2 but encompassing SPN, QPRT and Cl60rf54 in a
patient who suffered from RE. The QPRT gene is of interest as it encodes an
enzyme (quinolinate phosphoribosyltransferase), which converts quinolinic acid to
NAD+ and thus detoxifies this excitotoxic compound (Foster and Schwarcz, 1985;

Schwarcz et al., 2012). Intracerebral injection of quinolinic acid causes seizures in
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mice (Lapin, 1978; Vezzani et al., 1989) and elevation of quinolinate levels in the
human brain is associated with neurodegenerative disorders (Nemeth et al., 2005;
Vamos et al., 2009). While dosage differences in QPRT might explain the observed
phenotype, this single, isolated rearrangement does not allow us to draw any firm
conclusions, especially as we do not have any information on the CTS status of the
single previously reported additional individual, who carried a partially overlapping

136 kb duplication, encompassing the QPRT gene (Jacquemont et al., 2011).

Of interest, the detected borderline association of the 15q11.2 duplication with
RE/ARE is supported when the comparison is made with its previously reported
frequency in the general population (Cooper et al., 2011) [6/281 cases Vs.
44/9841controls, Fisher’'s exact test, P = 0.0025]. Hopefully these findings will
encourage further studies on larger RE/ARE cohorts to assess whether the 15q11.2

duplication really confers any risk to RE/ARE.

In conclusion, we have identified the 16p11.2 duplication as an important genetic
risk factor for RE/ARE with 1.53 % of patients carrying the variation. Our results
suggest that the 16p11.2 duplication confers susceptibility mainly for RE/ARE but
not for other common epilepsy syndromes, such as GGEs or TLE. However, one
reservation that has to be made is that due to the ascertainment method our cohort
was biased towards patients with a positive family history and a more severe
phenotype. To a certain extent this limits conclusions on the exact frequency of the
duplication and its distribution within the RE/ARE disease spectrum. Another open
guestion that remains to be further clarified is the nature of the additional
phenotypes associated with the duplication in patients with RE/ARE. And finally, an

interesting but unresolved point concerns the role of additional genetic factors
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modulating the penetrance and the variable clinical features of the disease. Future
studies on other well phenotyped cohorts could shed more light on these open

issues.
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Figure legends

Figure 1 16p11.2 duplications

GRCh37/hg19 region on chromosome 16p11.2. The extent of the BP4-BP5 16p11.2
duplications found in the discovery cohort is compared with that of the small atypical
duplication. The duplication is flanked by low-copy repeat segmental duplications
depicted by yellow, orange and greys bars. Note that only the unique sequences of

the duplications are shown.

Figure 2 Pedigrees of 16p11.2 microduplication carriers

Familial segregation of 16p11.2 microduplications. Index cases are depicted by the
letter “P” and an arrow. Individuals diagnosed with RE/ARE, Centrotemporal spikes
(CTS) and Febrile seizures (FS) are represented as filled black symbols, unaffected
family members are indicated by open symbols. Question marks denote unaffected
family members in whom a possible EEG-phenotype in childhood cannot be

excluded; RE, Rolandic Epilepsy; ARE, Atypical Rolandic Epilepsy;
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Tables

Table 1Recurrent CNVs in 281 RE/ARE probands and 1512 Controls

Cases Controls
(n=281) (n=1512)
CNV Position CNV | n PID Phenotype n OR P value P value
locus (Mb)? (size) detected uncorrected Bonferroni®
corrected
15911.2 22.8- DEL |1 | GGRE14 | RE 0 - n.s.
23.3
DUP | 6 | AVRE10 | RE 8 4.1; | 0.014* 0.17
AVRE11
AVRE12
AVRE13
AVRE14
GGRE15
15913.3 30.9- DEL | 1° | AVRE15 | ARE 1 n.s.
325
DUP | 2° | AVRE12 | RE 7° n.s.
AVRE16 1
16pl1.2 29.5- DUP | 4 | F1-ll.1 3xRE, 1 21.8 | 0.0026* 0.03*
30.1 F2-111.1 1XARE
F4-11.1
F5-11.1
16p13.11 14.8- DEL | O 2 - n.s.
16.4
DUP | O 1 - n.s.
22q11.2 19.1- DUP |1 | AVREO4 | RE 0 - n.s.
22.2
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Table 1 Legend

Table 1 Recurrent candidate microdeletions/microduplications in the discovery
cohort

& approximate genomic coordinate according to hg19

P corrected for 12 comparisons (for six loci with two CNV states each)

¢ deletion is greater than the classical recurrent 1.4Mb deletion

d duplications are smaller (~ 430 kb) than the classical recurrent 1.4 Mb duplication
but encompass the CHRNA7 gene

Abbreviations: ARE: atypical Rolandic Epilepsy, RE: Rolandic Epilepsy,

n.s. = not significant
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Table 2 Heterozygous CNVs greater than 500kb in 281 RE/ARE patients

Gend |Cytoba |Coordinates® |Siz |[CN |Included Contro | Previously
CaseID er nd (hg19/Build37) |e |V |Genes® Is reported®
(kb) N=151
2
AVREO1 Femal | 1g31.2- |Chr1:19369488 | 221 |dup | None 0
e g31.3 0-195909031 |4
GGREO1 Male |1p36.32 |Chrl:4529544- |514 |del |AJAPL, 0
5043734 BC037321
GGREO02 Male |2p24.1 |Chr2:21683285 190 |del |AK090620 0
-23585786 3
GGREO3 Male |2p22.3 |Chr2:32659489 |576 |dup |BIRCS, 4
-33235324 MIRS58,
TTC27,
LOC285045,
LOC1002718
32,LTBP1
GGREO4 Male |3g24 Chr3:14317852 | 261 | dup | SLCOAY, 0
5-145790803 |2 NHES,
C3orf58,
PLOD2
AVREO2 Male |3g29 Chr3:19546054 | 636 | dup | MUC20, 0 Recurrent
9-196096451 ¢ |MUC4, Hotspot
TNK2, 3g29duplicat
AK1276009, o
SDHALP1,
TFRC,
BC151150,
BC144580,
ZDHHC19,
OSTalpha,
AF088041,
PCYT1A,
TCTEX1D2,
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TM4SF19,
AK124973,
OCTM4,
UBXN7
AVREO3 Male |5p15.2 |Chr5:12543792|769 |del |TAG1
-13312470
GGREO5 Femal |5p14.3 |Chr5:20886878 |551 |dup | AK093362,
e -21437412 LOC728411
GGREO0O6 Femal | 5915 Chr5:96507017 | 546 |del |RIOK2 (Heinzen et
e -97053083 al., 2010)
AVREO4 Male |[7pl11.2 |Chr7:57256128|623 |dup |DQ598473,
-57878853 ZNF7186,
L37717
GGREOQ7 Femal |8913.3 |Chr8:70931383 |807 |del |PRDM14,
e -71738054 NCOA2,
TRAM1,
LACTB2,
XKR9
AVREO04 Male |8021.13 |Chr8:82517136 |250 |del |IMPAL, (Mefford et
-q21.2 |-85021548 4 SLCI10AS, al., 2010)
ZFAND1,
CHMPA4C,
SNX16,
BC038578
AVREOQ5 Femal | 10g21.1 | Chr10:5628886 | 551 |dup | PCDH15 (Lesca et al.,
e 5-56840255 2012)
GGREO8 Male [11gl1- |Chr11:5469570 115 |dup | TRIM48,
gql2.1  |6-55849535 4 AB231737,
OR4A16,
OR4A15,
ORA4C15,
ORA4C16,
ORA4C11,
OR4P4,
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OR4S2,
ORA4C6,
OR5D13,
OR5D14,
ORS5L1,
ORS5D18,
OR5L2,
OR5D16,
SPRYDS5,
OR5W?2,
OR5I1,
OR10AG1,
ORT7ESP,
ORS5F1,
OR5AS1

GGREO09;GGR
E10

Male

12q24.3
3

Chr12:1298069
80-130479794

673

dup

TMEM132D

AVREO6

Male

14q22.2
-q22.3

Chr14:5462994
1-56027815

139

del

CDKN3,
AY257479,
UNQ155,
CNIH,
GMFB,
CGRRF1,
SAMDA4A,
AK096898,
KIAA1053,
GCHL1,
WDHD1,
SOCS4,
MAPK1IP1L,
LGALSS,
DLGAPS5,
FBX034,
KIAA0831,
TBPL2,
C140rf33

GGRE11

Male

16q12.1

Chr16:4888917

580

dup

CBLN1,
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7-49469134

C160rf78

GGRE12

Fema

17912

Chr17:3481555

1-36182400

136

dup

ZNHITS3,
MYO19,
PIGW,
GGNBP2,
DHRS11,
MRM1,
BC084573,

LHX1, AATF,

ACACA,
C170rf78,
TADAZ2A,
TADAZ2L,
DUSP14,
SYNRG,
AP1GBP1,
DDX52,
HNF1B

Recurrent

Hotspot

17912
duplication

(Mefford et
al., 2007)

AVREO7

Femal

17g25.1

Chr17:7183417

1-72622965

789

dup

RPL38,
MGC16275,
TTYH2,
749982,
DNAIZ2,
BX648926,
KIF19,
BTBD17,
GPR142,
GPRC5C,
AK126429,
CD300A,
CD300LB,
CD300C,
CD300LD,
Cl7orf77,
CD300E

AVREOS8

Male

18p11.2
1

Chr18:1376029

0-14988113

122

dup

RNMT,
MCS5R,
MC2R,
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ZNF519,
BC034578,

ANKRD20AS5,

AX747360,
DQ578597,
DQ587539,
DQ590589,
DQ583161,
DQ596563,
DQ596206,
LOC284233,
CXADRP3,
POTEC,
ANKRD30B

F3.11.1

Male

22011.2
1

Chr22:1889257
5-19921640

102

dup

DGCRE,
PRODH,
KIAA1647,
DGCRS,
DGCRY,
DGCR10,
DGCR2,
DGCR14,
TSSK2,
GSCz2,
SLC25A1,
CLTCL1,
HIRA,
MRPL40,
C220rf39,
BX648073,
CR625276,
UFD1L,
UFD1,
u84523,
CDC45L,
CLDNS5,
BC042984,
LOC150185,
SEPTS5,

Recurrent

Hotspot

(Valvo et al.,
2012)
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GP1BB,
TBX1,
GNBLL,
C220rf29,
KIAA1645,
TXNRD2,
TRXR2A

GGRE13 Male |22q13.3 |Chr22:4939641|592 |dup |BC033837 |0
2- 3-49988815
q13.33

AVREO09 Male |Xp22.31 |ChrX:6470011- |166 |dup | HDHD1A, 0 (Mefford et

8135053 5 STS, VCX, al., 2010)
PNPLAA4,

MIR651

Table legend
@ Start and end positions of the CNVs were assessed with PennCNV.

® Genes are based by PennCNV-boundaries and ENSEMBL database. Genes which are

partially affected are included.

¢ CNV overlaps partly with CNV previously reported in epilepsy CNV studies. Reference is

given when CNVs are from the same type.

4 CNV overlaps with hotspot but does not contain the proposed candidate gene
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Table 3 Individuals with 16p11.2 duplication and electro-clinical features

PID Phenotyp | Gender Age at Seizures EEG MRT/ | Neuropsycholog Language Family 16p11.2
e onset CcT ical development History/  |Juplication/Siz
development Relationship e
Discovery cohort
F1-11.1 ABPE/LK M 1.0 FS/IGTCS | ESES | normal Severe delay Severe delay, | Siblingof F1- ~600kb
S yrs/3.0yrs speech 1.3
regression
F1-1.3 EEG only F Tyrs Noseizures | CTS normal Mild delay Mild delay Sibling of F1- ~600kb
1.1
F2-11.2 RE F ? nocturnal CTs normal normal normal motherof F2- ~600kb
TCS (dyslexia) 1.1
F2-11.1 RE M 2.5yrs nocturnal CTS normal normal normal positive/ ~B00kb
TCS, sonof F2-11.2
Rolandic
seizures
F3-11.1 RE M 0.5/5yrs FS/noctun CTS normal normal normal negative ~600kb
al TCS
F4-11.1 RE F Syrs TCS CTS/ | normal normal normal negative ~600kb
transie
nt
ESES
F5-1.1 FS M ? FS ? ? ? ? father of F5- ~110kb
1.1
F5-11.1 RE F 1.6/5.5yrs FS/TCS, CTS normal normal normal positive / ~110kb
Rolandic daughter of
seizures F5-1.1
Confirmation
cohort
Fé-1.1 RE F 6yrs Nocturnal CTS normal normal normal negative ~600kb
TCS,
starring

Clinical characteristics of 16p11.2 duplication carrier. RE: Rolandic Epilepsy, ABPE:

Atypical benign partial epilepsy of childhood, FS: Febrile seizures, TCS: Tonic clonic

seizures, ESES: Electrical status epilepticus during slow sleep, CTS: Centrotemporal

spikes LKS: Landau-Kleffner syndrome
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Figures
Figure 1
16p11.2 Duplications
Window Position Human Feb. 2009 (GRCh37/hg19)
Scale 200 kbf ]
chr16: | 30,000,000
16p11.2
LOC388242] SLC7A5P1 C16orf54f  CDIPT| TAOK2H] TBX6j sSLXx1B|
LOC100132247 | SPN R ZG16| ASPHD1 DOC2A| MAPK3{
NPIPL3 || QPRTHH  KIF22|}f TMEM219f} PPP4Ci] LOC613037] |
BOLAQ” << s
LOC440354 == MAZ| HIRIP3| YPEL3|
PRRT2{ INOSOEl| GDPD3}
C160rf53 fi C160rf92 | CORO1A|
MVP HHi FAMS57B | BOLA2B|
sezeL2 i ALDOA| SuULT1A3|
KCTD13 [H LOC388242 |
Segmental DupsiJ HHIE> > B A EIE

F1- 1.1 |
F2 - . 1 |
Fa- 1.1
Fa- 1.1 |
Fe- 1.1
Fs- 1.1 [
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Figure 2
F1
1.1 1.2
? ?
wt/wt 16p11.2dup/wt
. 16p11.2dup/wt
2 1.1 1.2 1.3
ARE CTS CTS
|6p11.2dup/wt wt/wt 16p11.2dup/wt
F4
F2 . 1.2
? ?
D : wt/wt 16p11.2dup/wt
1.1 1.2
? ?
n.a. wt/wt p/ 11
RE
16p11.2dup/wt
1.1 1.2 1.3 F5
? RE ?
wt/wt 16p11.2dup/wt n.a.
1.1 L
FS ?
atyp. wt/wt
16p11.2dup/wt
Vel A
P A 0.2 P A
RE ? RE
16p11.2dup/wt wt/wt atyp.16p11.2dup/wt
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Supplementary information

16p11.2 600 kb Duplications Confer Risk for Typical and Atypical Rolandic
Epilepsy

Figures

Figure Legend

Supplementary Fig. 1 GRCh36/hgl8 region on chromosome 16pl11.2. Green box
highlights genomic region of the atypical CNV detected in patient F5-II.1 inherited by
her father F5-1.1. The CNV covers the genes SPN, QPRT and C160rf54 but not the

epilepsy associated gene PRRT2.
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Tables

Supplementary Table 1 Summary of the Samples Used in This Study

Cohort Phenotype Sample Size Gender Method
m/f
RE/ARE discovery cohort? 281 162/116 IHluminaHumanOmniExpr
essExomeBeadChip
RE 230
ARE 51
German inhouse controls® 1512 755/757 IHluminaHumanOmniExpr
essBeadChip
RE/ARE confirmation cohort® 112 63/49 IHluminaHumanOmniExpr
essBeadChip
MLPA & qPCR
RE 109
ARE 3
Population controls® 2256 1179/1077
PopGen 1006 Affymetrix 6.0
KORA 1250 Affymetrix 6.0
Generalized Epilepsy GGE 1408 Affymetrix 6.0
cohort®
Focal Epilepsy cohort’ mTLE 330 IlluminaHap550 array
16p11.2 CNV cohort? Children 319 Various techniques™
ascertained
for ND
Deletion cases  with epilepsy 371202
Duplication cases  with epilepsy 22/117

Table Legend

Supplementary Table 1 Summary of the Samples Used in This Study
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a) Patients were recruited by collaborating centers of the EuroEPINOMICS-COGIE
initiative. Samples were collected at the Department of Neurology, Medical University
of Vienna, Austria and at the Department of Neuropediatrics, University Medical
Clinic Giessen, Germany. 98 Samples were collected via multiplex pedigrees the
remaining 183 samples were all single patients. Rolandic Epilepsy (RE); Landau-
Kleffner syndrome (LKS), atypical benign partial epilepsy (ABPE) and electrical
status epilepticus in slow wave sleep (CSWS) are subsumed under atypical Rolandic
Epilepsy (ARE). b) In-house controls matched for analysis platform and geographic
region. Population-based epidemiological controls drawn from the HNR (Heinz
Nixdorf RECALL) study consisting of males and females aged 45 to 75 from the Ruhr
area in Germany (n=1317) and additional in-house German control population
(n=195). c) Additional RE/ARE patients recruited by collaborating centers of the
EuroEPINOMICS-COGIE initiative and collected at the Department of Neurology,
Medical University of Vienna, Austria (n=34). RE patients collected at the Epilepsy
Research Centre, Melbourne Brain Centre, Department of Medicine, University of
Melbourne, Australia (n=78) d) German control subjects available from the PopGen
biobank (Population-Based Recruitment for Genetics Research) and KORA
(Cooperative Health Research in the Region of Augsburg) e) genetic generalized
epilepsy (GGE) patients collected by the EPICURE Project, for further description
see (Lal et al., 2013) f) patients with mesial temporal lobe epilepsy (mTLE) provided
by the Department of Neuropathology, University of Bonn Medical Center, Bonn,
Germany g) 16pl1.2 rearrangement carriers recruited for neurodevelopmental
disorders (ND) including : developmental delay (DD), intellectual disability (ID) and
severe learning disorders (LD) through a network of more than 30 European

cytogenetic centers.
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Supplementary Table 2 CNV TagMan Assay probes for the validation of the 16p11.2

and 15qg11.2 duplications.

3.23.1

TagMan CNV Assays

3.23.2

Gene

3.23.3 AssaylD

3.2.34

CNV

3.2.3.5

QPRT

3.2.3.6  Hs02383672_cn

3.2.3.7

16p11.2

3.2.338

SEZ6L2

3.2.39 Hs01431215 cn

3.2.3.10

16p11.2

3.23.11

MAPK3

3.2.3.12 Hs02001681_cn

3.2.3.13

16p11.2

3.23.14

CYFIP1

3.2.3.15 Hs02065338_cn

3.2.3.16

15q11.2

Supplementary Table 3. Frequency

European consortium

of different type

of epilepsies in the 16pl11.2

Partial Generalized Infantile Unspecified
spasms
DUP N=117 (%) | 9(7.7) 3(2.5) 3(2.5) 7 (6)
DEL N=202 (%) 12 (6) 7(3.4) 2(1) 16 (8)
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ID | Phenotyp | Gende | W/H/ Age at Seizures EEG MRI Neuropsychol | Langu | Family
e r HC seizures ogical age history
(Zscor onset development | develo
e) pment
526 RE M NA/- 7yrs Rolandic CTS normal | VIQ 95, NVIQ | normal | Brother
1/-0.3 seizures 86, FSIQ 85,° with
Attention RE
deficit, reading
difficulties
815 ARE M -1.3/- 2yrs Rolandic CTS normal FSIQ 75, delaye
1.5/-2 seizures behavioral d
impairment
567 | ARE/LK M NA 1.6yrs Atypical ESES normal severe delay, speech
S absences autistic signs | regress
ion
Table legend

Supplementary Table 4 Clinical features, MRI and EEG of individuals with RE/ARE from the
16pl11.2 European consortium

PID: Patient Identity; RE: Rolandic Epilepsy; ARE: Atypical Rolandic Epilepsy; LKS:
Landau-Kleffner Syndrome; W/H/HC: Weight, Height, Head Circumference; CTS: Centro-
Temporal Spikes; ESES: Electrical Status Epilepticus during Sleep ; VIQ: Verbal
Intelligence Quotient; NVIQ: Non Verbal Intelligence Quotient; FSIQ: Full Scale Intelligence
Quotient; NA: Not Available; a) Wechsler Intelligence Scale Children-Third Edition
performed at 10 years old; b) Wechsler Preschool and Primary Scale of Intelligence-Third
Edition performed at 5,6 years old.

Reference

Lal D, Trucks H, Moller RS, Hjalgrim H, Koeleman BP, de Kovel CG, et al. Rare exonic
deletions of the RBFOX1 gene increase risk of idiopathic generalized epilepsy. Epilepsia
2013; 54: 265-71.
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hg18
chri6:  29,600,000| 29,700,000| 29,800,000] 29,900,000| 30,000,000 30,100,000] 30,200,000| 30,300,000|
SPNm ci6orfsaf KIF22HH  coipTH TMEM219H ALDOA w4 COrRO1AH 1 - ZNFas)
SPNm ZG16§)  LOCA440356H TMEM219H{l ALDOAH] CORO1AH}] LO 4 HHHHAH MYLPF |
QPRT ==l Mazl sszsl_zm TAOKZ:H: ALDOA:H LOC6067241 CDZBPZ:
mazl  SEzsL2 TAOK2 ALDOA BOLA2B CD28BP2
MAzZl) sEzsL2 Taok2 HiH ALDOA W BOLA2 TBC1D108 HY
MAZWH  SEZBL2 Hmwaa pr4cH) SLXlA SerT1fl
MAZHM  SEZ6L2 HIRIP3 TBX6H SLX1A ZNF 484
PRRT2H sezsLz HHHH INO YPEL3| sLx1s ZNF 48 b=
PRRT2§ ASPHD1H D YPEL3H sLxis i ZNFagh
PRRT2H KCTD13H c GDPD3H SULT1A4 ) ZNFT71H
PAGR1H o MAPK3 SULT1A3 W ZNF771H9
MVP Fams7a MAPK3 L 381
MVP MAPK3HH  LOC3882421
LOC440356 H SLX1B-SULT1A4
SLX1A-SULT1A3 M
Lo 37 B
16p11.2

Segmental Dups §35%

IR
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3.2.4 DEPDC5 in RE (in revision)

Lal D*, Reinthaler EM*, Schubert J*, Muhle M, et al., (2013) DEPDC5 mutations in Rolandic
epilepsy spectrum. Annals of Neurology (submitted)
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DEPDC5 mutations in Rolandic epilepsy spectrum

Dennis Lal, MS,*?** Eva M. Reinthaler, MS,** Julian Schubert,>®* Hiltrud Muhle, MD,’
Erik Riesch, MD,® Gerhard Kluger, MD,® Kamel Jabbari, PhD," , Amit Kawalia,'
Christine Baumel, MD,° Hans Holthausen, MD,? Andreas Hahn, MD,? Martha Feucht,
MD,*° Birgit Neophytou, MD,** Edda Haberlandt, MD,** Felicitas Becker, MD,> Janine
Altmiller, MD,! Holger Thiele, MD,* EuroEPINOMICS Consortium,** Johannes R.
Lemke, MD,** Holger Lerche, MD,> Peter Nurnberg, PhD,***® Thomas Sander, MD,*
Yvonne Weber, MD,® Fritz Zimprich, MD, PhD,* and Bernd A. Neubauer, MD?

" These authors contributed equally

From the 'Cologne Center for Genomics, University of Cologne, 50931 Cologne,
Germany; “Department of Neuropediatrics, University Medical Center Giessen and
Marburg, 35385 Giessen, Germany; °Cologne Excellence Cluster on Cellular Stress
Responses in Aging-Associated Diseases (CECAD), University of Cologne,
50931Cologne, Germany; “Department of Neurology, Medical University of Vienna,
1090 Vienna, Austria; “Department of Neurology and Epileptology, Hertie Institute of
Clinical Brain Research, University of Tiibingen, 72076 Tilbingen, Germany; ®Graduate
School of Cellular and Molecular Neuroscience , University of Tibingen , 72076
Tibingen, Germany; ’‘Department of Neuropediatrics, University Medical Center
Schleswig-Holstein (Kiel Campus), Schwanenweg 20, 24105 Kiel, Germany; CeGaT
GmbH, Tubingen, Germany; °Department of Neuropediatrics and Neurorehabilitation,
Epilepsy Center for Children and Adolescents, Schoen Clinic Vogtareuth, 83569
Vogtareuth, Germany; °Department of Pediatrics and Neonatology, Medical University
of Vienna;1090 Vienna, Austria; ''St. Anna Children’s Hospital, Department of
Neuropediatrics, 1090 Vienna, Austria;*’Department of Pediatrics, Medical University of
Innsbruck, 6020 Innsbruck, Austria; **EuroEPINOMICS consortium, contributing partner
are listed in the Appendix; **Division of Human Genetics, University Children’s Hospital
Inselspital, Bern, Switzerland; °Center for Molecular Medicine Cologne (CMMC),

University of Cologne, 50931 Cologne, Germany

146



PUBLICATION: DEPDCS5 IN RE

Abstract

Two recent studies have identified DEPDCS5 loss-of-function mutations in familial focal
epilepsy with variable foci, autosomal dominant nocturnal frontal epilepsy and familial
temporal lobe epilepsy. We report on four patients with classic Rolandic epilepsy and
novel variants in DEPDC5, one with a truncating effect. In addition, we identified three
families with atypical phenotypes carrying truncating mutations in DEPDC5. The
detected variants were all novel, inherited and present in all family members exhibiting
the epilepsy trait clinically or electroencephalographically. Altogether, our findings
suggest that mutations of DEPDC5 contribute to the genetic variance of genetic focal

childhood epilepsy syndromes including Rolandic epilepsy.

Key words:

DEPDCS5, Rolandic epilepsy, focal genetic epilepsy, focal idiopathic epilepsy, mutation,

gene
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Introduction

Rolandic epilepsy (RE), or benign epilepsy with centrotemporal spikes (BECTS), is a
common focal epilepsy syndrome of childhood.* RE is considered related to much
rarer, less benign epilepsy syndromes, referred to as atypical Rolandic epilepsy (ARE)
by some authors.® Notably, “atypical benign partial epilepsy” (ABPE) with astatic
seizures and atypical absences,*>® Landau-Kleffner syndrome (LKS) with acquired
speech dyspraxia, epileptic encephalopathies with continuous spike-and-wave during
sleep (CSWS), and “epilepsy aphasia spectrum” with language delay and autistic
features”® may belong to a spectrum with RE on its benign and CSWS/LKS on its

severe end.>%®

Mutations in DEPDCS5 encoding the Dishevelled, Egl-10 and Pleckstrin [DEP] domain-
containing protein 5, have recently been identified as the major cause of inherited focal
epilepsies including familial focal epilepsy with variable foci (FFEVF), autosomal
dominant nocturnal frontal epilepsy (ADNFLE) and familial temporal lobe epilepsy
(FTLE).>*® DEPDCS is a member of the GATOR2 complex that interacts with the mTOR

complex1 which is potentially accessible by mTOR inhibitors.**

The present study tested whether DEPDC5 mutations contribute to genetic focal

childhood epilepsies.

148



PUBLICATION: DEPDCS5 IN RE

Patients and Methods
DEPDCS5 screening cohort

To investigate an involvement of DEPDCS5 in the etiology of focal epilepsies in
childhood, two cohorts comprising 290 European patients were included in the DEPDC5

mutation screen:
Patients - RE cohort

Patients of European ancestry were recruited at several centers from Germany, Austria
and Canada. The study was approved by all respective local institutional review boards.
The investigated cohort consisted of index patients selected from 88 multiplex families
with at least two affected siblings. In 88, families at least one of the affected probands
suffered from RE or ARE, the second affected sibling presented either with RE, ARE or
the EEG trait only. Of all 88 familiar index patients tested (male=54, female=34), 73
presented with RE, 12 with ARE, and 3 with ESES. In addition we included 120 non-
familial patients (69 males, 51 females). Of these sporadic patients 111 suffered from
RE, and nine from ARE.

Sequencing - RE cohort

For all 208 patients, exome data were generated which featured an average coverage
>30x for 77% of the target sequences (for details see’?). Variants were filtered for high-
quality rare variants in DEPDC5 by comparison to an in-house variation database,
dbSNP build 137 (www.ncbi.nlm.nih.gov/projects/SNP/), 1000Genomes database
(www.1000genomes.org/), and the Exome Variant Server
(http://evs.gs.washington.edu/EVS/). Variant validation and segregation analyses were

performed by Sanger sequencing following standard protocols.
Screening for DEPDC5 mutations in non-Rolandic genetic focal epilepsy syndromes

Furthermore, mutations in DEPDCS5 were screened in a cohort of 82 families comprising
a broad spectrum of genetic focal epilepsy phenotypes, with variable degrees of
intellectual disability. This cohort was analyzed using a targeted next generation
sequencing (NGS) panel approach covering 285 epilepsy-associated genes as

described previously.*®
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Results
Detection and inheritance testing of rare variants in DEPDC5

Mutational screening of DEPDCS5 in 208 RE patients identified a total of two novel,
heterozygous truncating mutations (Fig 1; Fig 2, Table 1), including a frameshift variant
p.11139Mfs*24 (c.3417delA; according to reference transcript NM_001242896.1,
reference protein NP_001229825.1) and a splice site variant ¢.59-1G>C . Furthermore,
we detected two novel nonsense variants p.R865* (c.2593C>T) and p.R243*
(c.727C>T). In addition, we identified three missense mutations (p.V272L, c.814G>T;
p.VI0I, c.268G>A; p.S1153G, ¢.3457A>G) of uncertain significance in the RE cohort
(Figure 1). The p.V272L and the p.S1153G mutations are predicted to be disease
causing whereas the p.V90I exchange is predicted to effect splicing by in silico analysis
using the Mutation T@ster Tool (http://www.mutationtaster.org). The variants were
distributed through the whole gene and protein (Fig 2). None of the seven DEPDC5
variants was present in dbSNP137, the 1000 Genomes Project database or in the 6,503
exomes for which variants are currently listed in the National Heart, Lung, and Blood
Institute (NHLBI) exome variant server (EVS, accessed 06/2013) database. One stop
codon generating variant and one frameshift variant in DEPDC5 have been annotated in
the 6,503 exomes listed in the EVS database, whereas no deleterious mutation was
observed in >450 exomes of our in-house database fulfilling the same exome
sequencing quality filters (various non-epilepsy projects; about 80% Caucasian
ancestry). DEPDC5 mutations occurred significantly more often in the RE cohort of
affected individuals (2/208; P = 0.005 Fisher’s exact test).

Familial Segregation analysis

The segregation of DEPDCS5 variants identified in the RE index patients were tracked in
seven families (Fig 1). In Family 3 the mutation was introduced by the grandfather and
transmitted to the index patient by the mother. In the remaining five families the variants
were inherited, once maternally and four times paternally. Four out of 18 variant carriers
were affected by RE, one by Rolandic epilepsy persisting to adulthood (REPA), two by
ABPE and two by unclassified epilepsies as well as one affected by unclassified
cryptogenic epilepsy. Therefore, the penetrance for the epilepsy is incomplete. All
tested individuals exhibiting seizures carried mutations in DEPDC5. Notably, we cannot

rule out that seizure-free family members might have expressed the RE-characteristic
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CTS EEG-trait at younger age, considering its age-related expression with maximum

manifestation during childhood.

Clinical features of individuals with deleterious DEPDC5 mutations
Family 1 (p.I11139Mfs*24; c.3417delA)

The index patient (F1-11.1) was diagnosed (classic) RE.

Family 2 (c.59-1G>C, splice site)

The male index patient (F2-11.1; ¢.59-1G>C) suffered from sensorimotor seizures of his
right arm and revealed a characteristically shaped fronto-central sharp wave focus. He
was diagnosed with RE and treated successfully with carbamazepine. After weaning the
medication seizures reoccurred. The epilepsy was tentatively labeled “RE persisting to
adulthood” (REPA in fig.1). His younger sister (F2-11-2; ¢.59-1G>C) presented with
atypical absences (starring attacks) at age 3.5 years. Centrotemporal spikes were
recorded bilateral at age 3.5 years, and left sided only at age 5.5 years. At age 8 years
she suffered from repeated exercise-induced atypical absences preceded by an
unspecific aura. She is seizure-free under ongoing oxcarbazepine therapy. The epilepsy

was classified as ABPE (RE with atypical absences).
Family 3 (p.R865%; ¢.2593C>T)

The mother (F3-11.1; p.R865*) presented atonic seizures, starting at age 3 years, without
any intellectual deficits. First documented EEG at 9 years and later at 9.5 years
revealed temporo-posterior sharp waves bilateral. Since age 10 years she remained
seizure-free without medication. Repeated EEG recordings were normal. The benign
epilepsy is consistent with ABPE (RE with astatic seizures). Her son (F3-1.1, p.R865%)
expressed myoclonic, atonic, and generalized tonic-clonic seizures started already at
age 12 weeks. The epilepsy proved therapy-resistant and the child’s development
remained severely impaired. The epilepsy was labeled unclassified cryptogenic focal
epilepsy. The grandfather in this family (F3-111.2) suffered from a unclassified epilepsy

(no more details available).
Family 4 (p.R243* ; c.727C>T)

The father (F4-11.2, DNA not available for testing) of our index patient reportedly had a

focal epilepsy that resolved spontaneously during adolescence, possibly consistent with
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RE. The available index patient (F4-1.3, p.Arg243*) however, did not present with a
benign course. The patient’s seizures started at age 8 month. At age 2 years he
showed myoclonic seizures with centro-temporal spikes, later during adulthood focal
tonic seizures and multifocal spikes were documented. The epilepsy syndrome

remained unclassified.

Clinical features of individuals with DEPDC5 missense mutations

Family 5 (pV272L; c.814G>T), Family 6 (p.V90l; c.268G>A), Family 7 (p. S1153G;
c.3457A>G)

For all index patients in these families (F5-1l.1, F6-Il.1, F7-Il.1) the epilepsy was
diagnosed as (classic) RE. In Family 5 the mutation carrying healthy brother (F5-11.2;
pV272L) also displayed a characteristic EEG focus at age 4.9 years.
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Discussion

Our DEPDCS5 screen revealed in total seven rare mutations, of those four are predicted
to be severely damaging due to the insertion of a stop codon or splice site alterations,
whereas the missense variations are of uncertain significance. However, in silico
analysis predicted two out of three missense variants as disease causing and one
modifying splicing. Five families were part of our initial RE screening cohort (Fam.
1,2,5,6 and 7). Two families (Fam. 3 and 4) were members of the second cohort

comprising 82 families with unclassified genetic focal epilepsies.

The observed penetrance in the analyzed families is like in previous reports
incomplete.®*® One truncating mutation (Family 1) and three missense variants
(Families 5-7) were found in individuals that were diagnosed as typical RE. The
observed frequency of 2% (4/208) is lower compared to the previous reports on familial
focal epilepsy with variable foci, autosomal dominant nocturnal frontal epilepsy and
familial temporal lobe epilepsy.®*° In Family 2 carrying the tentative diagnosis “Rolandic
epilepsy persisting to adulthood” a splice site variant was detected. In today’s view this
family might also receive the diagnosis of “familial focal epilepsy with variable foci”.
However, EEG records in this family repeatedly reported EEG findings characteristic for
RE. Two additional families (Fam. 3 and 4) revealed a more or less private phenotype
that differs greatly between affected individuals including intractable epilepsy and

cognitive impairment.

In summary, our results strengthen DEPDC5 as a focal epilepsy gene and extend the

DEPDC5-related phenotypic spectrum to RE and related childhood epilepsies.
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Table RE patients with DEPDCS5 variants

. Family
MRT/ Neuropsychologic . DEPDCS5
PID Phenotype Gender Age at onset Seizures EEG i g Language History/
development
CT development Relationship Variant
F1-111 RE M 4 8 years No_cturnal CTS normal normal normal negative c.3417delA
seizures
p.11139Mfs*24
RE persisting
i i ibli ) €.59-1G>C
F2-I11 to adulthood M 8 years Sensorimotor | CTS bilateral normal normal normal Sibling of F2
seizures and frontal 1.2
(REPA) splice site
Atypical
absen_ces- CTS c.59-1G>C
ABPE Sensorimotor
F2-11.2 F 3.5 years selzures normal normal normal S'b"n‘? ;)f Fa-
with aura, .
exercise Multifocal splice site
induced
ABPE Atonic €.2593C>T
F3-11.1 F 3 years Seizures, ShW occipital n.d normal normal Mather of F3-
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Figure 1 Segregation of DEPDCS5 affecting variants

Segregation analyses could be performed for which DNA samples of family members were
available. The respective DEPDC5 mutations (NM_001242896.1, NP_001229825.1) co-
segregated with a variable phenotype of either seizures or pathologic EEG patterns in most
family members. Only a few individuals carried the respective familial mutation but did not
present any clinical features, indicating incomplete penetrance of the mutations. However,
subclinical phenotypes (e.g. EEG patterns) have not been investigated in these individuals
(indicated by question mark). Abbreviations: n.a = DNA was not available for testing; RE =
rolandic epilepsy; CTS = centrotemporal spikes; ABPE= atypical benign partial epilepsy of
childhood, REPA = Rolandic epilepsy persisting to adulthood.

Figure 2 Overview of DEPDCS5 variants

Top: Genomic localization and structure of the identified DEPDC5 variants
(NM_001242896.1, hgl19). Black dashes highlight the variant position. Bottom: Schematics
of the DEPDCS5 protein (NP_001229825.1), alterations are indicated.
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3.3 Publications derived from additional projects

3.3.1 NDUFV1 in IBSN (published)

Lal D, Becker K, Motameny S, Altmuller J, Thiele H, et al. (2013) Homozygous missense
mutation of NDUFV1 as the cause of infantile bilateral striatal necrosis. Neurogenetics 14:
85—87. d0i:10.1007/s10048-013-0355-z.
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Infantile bilateral striatal necrosis (IBSN) includes a heteroge-
neous group of disorders, characterized by symmetrical de-
generation predominantly of the caudate nucleus and the
putamen [1]. The clinical features encompass pyramidal and
extrapyramidal signs such as choreoathetosis, dystonia, spas-
ticity, dysarthria, and dysphagia in conjunction with develop-
mental regression or mental retardation, and additional
neurological symptoms [1]. The differential diagnosis has to
take into account a variety of toxic, infectious, metabolic, and
neurodegenerative disorders [1]. In familial cases, mutations
in the mitochondrial genes ATP6 and ND6, and in the nuclear
encoded genes nucleoporin 62 (NUP62) and mitochondrial
thiamine pyrophosphate transporter (SLC25419), have been
described [2]. We report two siblings with IBSN and a muta-
tion in NDUFV1, not yet linked to this condition.

The patients’ parents are unrelated, but belong to a popu-
lation of German settlers immigrating to Russia about

Electronic supplementary material The online version of this article
(doi:10.1007/s10048-013-0355-2) contains supplementary material,
which is available to authorized users.
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250 years ago (Fig. 1c). In both children, gait and speech
difficulties were noticed from age 4 years. Neurological ex-
amination at age 9 (F3) and 5 years (F5) revealed dysarthria,
muscular hypertonia with cogwheel rigidity, exaggerated deep
tendon reflexes, and bilateral Babinski signs, while MRI
demonstrated symmetric cystic lesions of the putamen
(Fig. 1a, b). The patients were treated with biotin and thiamine
before the definite diagnosis was established, and additionally,
with creatine, riboflavin, and other vitamins thereafter. This
resulted in a distinct and sustained improvement of their
neurological status until last examination atage 11 and 7 years,
respectively. Both still walk and attend regular schools.
Biochemical analysis of a muscle biopsy from patient
F3 revealed isolated complex I deficiency (0.08 U/U
citrate synthetase; normal 0.17-0.56). Therefore, we se-
quenced the entire mtDNA including the genes A7TP6
and ND6 without detecting pathogenic variants [3, 4].
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Fig. 1 MRI findings, pedigree
chart, and mutation analysis of
the family. a T2-weighted
coronal MR image of patient F3
at age 9 years, demonstrating
symmetric cystic lesions of the
putamen and the caudate head.
b T2-weighted coronal MR
image of patient F5 showing
bilateral liquor isotense lesions
of the putamen at age 5 years,
closely resembling those of his
older sister. ¢ Pedigree chart
and Sanger sequencing
electropherograms of all family
members demonstrating a
homozygous G=A transition at
position ¢.640 of NDUFV1
{arrows) in patients F3 and F35,
a heterozygous transition in
both parents (F7 + F2), and two
wild-type (w) alleles in the
healthy sister (F4) [5]
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Because sequencing of the nuclear IBSN candidate
genes NUP62 and SLCI9A43 also yielded normal results,
we sequenced the whole exome of both patients by
applying a filter strategy that assumed autosomal reces-
sive inheritance [3, 4]. Stringent filtering resulted in a
list of six top variants that included the homozygous
mutation ¢.640G>A (p.E214K) in NDUF¥I (Fig. 1c and
Supplementary material) [3 5].

The NDUFV1 protein is part ofrespiratory chain complex I
and is directly involved in electron transfer from NADH. At
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least 17 subjects with NDUFVI mutations are on record,
making it one of the most frequently reported genetic defects
in complex [ deficiency [6]. The majority of these patients
suffered from Leigh and Leigh-like syndromes or was affected
by progressive leukencephalopathies [5, 6].

Individuals with IBSN vary arbitrarily with respect to age
at onset, clinical features, and course of disease [1].
Hitherto, nonprogressive cowrse and discrepancy between
distinct extrapyramidal signs and well-preserved mental
functions were prominent features in our patients.
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The mutation p.E214K is located in a highly con-
served region of the NDUFV1 protein within the flavin
mononucleotide binding site and has been reported once
in a compound heterozygous state in a patient with a
Leigh phenotype [5]. This argues for the pathogenicity
of this variant, thereby expanding the phenotype asso-
ciated with NDUFVI mutations and extending the list of
genes associated with IBSN.
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Conflict of interest The authors declare that they have no conflict of
interest.

References

—

. Straussberg R, Shorer Z, Weitz R et al (2002) Familial infantile
bilateral striatal necrosis: clinical features and response to biotin
treatment. Neurology 59:983-989

. Spiegel R, Shaag A, Edvardson § et al (2009) SLC25A19 mutation
as a cause of neuropathy and bilateral striatal necrosis. Ann Neurol
66:419-424

3. Li H, Handsaker B, Wysoker A et al (2009) The sequence align-
ment/map format and SAMtools. Bioinformatics 25:2078-2079

. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads
and calling variants using mapping quality scores. Genome Res
18:1851-1858

. Bénit P, Chretien D, Kadhom N et al (2001) Large-scale deletion and
point mutations of the nuclear NDUFV1 and NDUFS1 genes in
mitochondrial complex I deficiency. Am J Hum Genet 68:1344-1352

. Koene S, Rodenburg RJ, van der Knaap MS et al (2012)
Natural disease course and genotype-phenotype correlations in
complex I deficiency caused by nuclear gene defects: what we
learned from 130 cases. J Inherit Metab Dis 35:737-747

[

B

w

=

@ Springer

163



PUBLICATION: NDUFV1 IN IBSN

Supplementary material to
Homozygous missense mutation of NDUFV1 as the cause of infantile bilateral striatal necrosis
NEUROGENETICS

Dennis Lal, Kerstin Becker, Susanne Motameny, Janine Altmiiller, Holger Thiele, Peter Niirnberg, Uwe Ahting,

Boris Rolinski, Bernd A. Neubauer, Andreas Hahn

Corresponding author: Andreas Hahn, MD, PhD
Department of Neuropediatrics, Justus-Liebig-University
Feulgenstr. 10-12, 35392 Giessen

Germany
Telephone ++49 641 98543481, Fax: ++49 641 98543489
e-mail: andreas.hahn(@paediat.med.uni-giessen.de

‘Whole-exome sequencing

Genomic DNA was prepared according to Illumina's TruSeq Sample Preparation v2 (Tllumina, CA, USA).
Capture was performed with Illumina's TruSeq Exome Enrichment according to the manufacturer's instructions,
targeting 62 megabases of functional sequences annotated, that include 20,794 target genes and 201,121 target
exons. Sequencing was done on Illumina's HiSeq2000 using 2x100 bp paired-end reads. Sequence data were
mapped using MAQ.[3] Duplicate reads were removed. Variant sites (single nucleotide variants and indels) were
called using SAM tools.[4] 7.9Gb and 6,5Gb target aligning sequence data was obtained and led to a coverage of
30 reads or more for 87.2% and 84.3% of the exome target sequences for individuals F3 and F5, respectively. In
total, 13533 (F5) and 13559 (F3) synonymous; and 13052 (F5) and 13185 (F3) non-synonymous variants were
identified. Sequence data were filtered against dbSNP136, the 1000 Genomes Project data, variants annotated at

the Exome Variant Server database (http://evs.gs.washington.edw/EVS/) and our in-house database of exome

variants (with data from > 400 exomes of individuals affected by different disorders). Due to their impact on
protein structure and function the analysis was focused on rare missense, nonsense, frameshift and splice-site
variants. The filters applied to narrow down the list of variants and the 6 top variants identified are presented in

table 1 and 2, respectively.
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Table 1: Applied exome data filter strategy

Step Applied Filter

1 Removal of all variants of known population frequency >0.001
2 Removal of all variants which are found more than 4 times in the in-house database
3 Removal of all variants which are not shared by both affected (F3,F5)
4 Base quality filter (Removal of all variants PHRED <14)
5 Coverage Filter (Removal of all variants TOTAL DEPTH <6)
6  Removal of all heterozygous variants: Removal of variants with read frequency <75%
7  Removal of synonymous, intergenic, UTR and intronic variants
Removal of all X and Y chromosome variants because of recessive model affecting male and female

siblings

Table 2 List of exome variants shared by both patients when using the recessive inheritance model and applying

stringent filter criteria shown in table 1.

Chromosome Base pair Reference Alternative Gene Protein
position allele allele change
11 67377981 G A NDUFV1 GluLys
1 110235888 i A GSTM1 SerThr
11 61017160 A G PGA4 ThrAla
1 13368530 G c PRAMEF5 ValLeu
11 64852639 A G ZFPL1 AsnSer
1 146246790 G A WI2-3658N16.1 GInX
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4 Overall discussion of the studies presented

4.1 Identified variants associated with IGE

We have previously shown that recurrent microdeletions at 15q11.2, 16p13.11 and
especially 15913.3 are genetic risk factors in up to 3% of common IGE syndromes
and other neurodevelopmental disorders (Helbig et al., 2009; De Kovel et al., 2010;
Mefford et al., 2010; Mulley et al., 2011). Our previous SNP-array CNV studies were
limited to analysis of large recurrent microdeletions (>500 kb). Advances in CNV
calling algorithms allowed us here to perform a deletion screening at single gene
resolution. With regard to the low statistical power and CNV size variability, we

focused on candidate microdeletions affecting genes involved in neuronal excitability.

We were able to detect microdeletions in two genes, the first encoding the neuronal
splicing regulator RBFOX1 (Lal et al., 2013a) and the second encoding the
postsynaptic scaffolding protein gephyrin (GPHN; Dejanovic et al., in review). We
demonstrated for the first time a significant association with deletions affecting
RBFOX1 with a disease (Lal et al., 2013a), thereby supporting previous single case
reports relating RBFOX1 deletions with a broad range of neurodevelopmental
disorders including epilepsy (Bhalla et al., 2004; Martin et al., 2007; Gallant et al.
2011). All RBFOX1 deletions identified were located within the highly conserved 5’-
untranslated exons and are predominantly expressed in brain, suggesting that the 5'-
terminal RBFOX1 region contains important regulatory elements (Damianov et al.,
2010), which when lost might alter translation efficiency and mRNA stability (Wang et
al., 2005). Consistent with our findings, the structural genomic variations of the
RBFOX1 gene reported previously in three single patients with neurodevelopmental
disorders, including epilepsy, also disrupted the 5'-terminal RBFOX1 exons (Bhalla et
al., 2004; Martin et al.,, 2007; Gallant et al. 2011). Furthermore, a recent study
published after our IGE study, could identify additional 12 deletions in RBFOX1 all
affecting the 5'-terminal RBFOX1 exons in a cohort of 2124 pediatric patients with

neurodevelopmental diseases (Zhao 2013). Six out of the 12 deletion carriers had

epilepsy.

In our study on GPHN, we identified two patients with deletions and none in 2792
controls (Dejanovic et al., in revision). These findings are in line with a recent study
that demonstrated significant association of rare GPHN microdeletions with
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neurodevelopmental disorders (P = 0.009; 6/8775 cases versus 3/27019 controls)
and found that three out of five GPHN microdeletions tested for inheritance arose as
de novo events (Lionel et al., 2013). In our study, we furthermore present additional
functional data elucidating the molecular mechanisms by which the N-terminal GPHN
deletions cause dysfunctional GABAergic synaptic inhibition and thereby increase
susceptibility of IGE (Dejanovic et al., in revision). Both GPHN deletions affected
exons of the gephyrin G-domain, alike previously reported GPHN deletions (Lionel et
al., 2013). We were able to show that one of our truncated gephyrin transcripts is
stably expressed in human cells and perturbs the clustering of wild-type gephyrin at
inhibitory synapses in cultured mouse hippocampal neurons in a dominant-negative
manner. This effect is consistent with previous observations where stress-induced
irregular splicing of GPHN resulted in curtailed postsynaptic gephyrin and GABAA a2
receptor scaffolds (Forstera et al., 2010). In contrast, the other GPHN deletion
causes a frameshift resulting in a premature stop codon (p.V22Gfs*7,
NP_001019389.1) and hence translating into a short non-functional protein, which
most likely leads to haplo-insufficiency of the gene. Our in vitro analysis showed a
reduced amount of the synaptic y-aminobutyric acid type A receptor (GABAAR) in the
presence of the truncated A5-9 gephyrin (Dejanovic et al., in review). This pathogenic
alteration results in a functionally convergent effect with a reduced GABAergic
synaptic inhibition similar to that observed with mutations of genes encoding
GABAAR subunits (GABRA1, GABRB3, GABRG2 and GABRD) in rare families with
dominantly inherited IGE syndromes (for reviews see Macdonald et al., 2013;
Cossette et al., 2012).

In summary, we detected a significant statistical association of RBFOX1 deletions
with common idiopathic epilepsies (Lal et al., 2013a; Lal et al., 2013b). In addition,
we provided genetic, functional and neurophysiological evidence that structural
exonic microdeletions affecting the gephyrin G-domain can increase neuronal
excitability by an impairment of GABAergic synaptic inhibition, and thereby confer
susceptibility to IGE (Dejanovic et al., in revision). Taken together with our previous
findings (Helbig et al., 2009; De Kovel et al., 2010), our results demonstrate that also
partial genomic deletions of genes collectively account for a significant fraction of the
heritability of common IGE syndromes. This observation is in line with studies on

other neurodevelopmental diseases like e.g. schizophrenia where all of the currently
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known risk CNVs are rare and confer substantial effects on risk (odds ratios 3—30;
Kirov et al., 2013).

4.2 ldentified variants associated with RE-spectrum epilepsies

Despite the strong genetic contribution to the CTS-EEG trait, as shown in several
family studies, the etiology of RE/ARE is largely unknown (Neubauer et al., 1998; Bali
et al., 2007; Strug et al., 2009). In the past, a significant genetic etiology of RE was
guestioned because of low concordance rates in monozygous twins (Vadlamudi et
al.,, 2004, 2006). In contrast, a recent study suggests that RE has a genetic
component consistent with complex inheritance based on the increased frequency of
epilepsies in relatives of RE patients (Vears et al., 2012). To clarify this question we
performed a comprehensive genomic screen for exonic coding mutations in 242
RE/ARE patients as well as CNVs in 308 RE/ARE patients representing the largest

cohort of RE-spectrum patients investigated up to date.

We demonstrate that mutations and CNVs in the GRIN2A gene encoding the NMDA-
receptor NR2A subunit represent a major genetic risk factor in 7.5% of children with
idiopathic focal epilepsies including RE (Lemke et al., 2013). This is of particular
interest as NMDA receptors are promising treatment targets. It has been shown that
NMDAR antagonists have antiepileptic effects in both clinical and preclinical studies
(Ghasemi et al.,, 2011). At least 20 NMDAR antagonists are marketed or in
development for a broad range of neurology indications. (Osherovich et al., 2013).
There is some evidence that conventional antiepileptic drugs may also affect NMDAR
function (Ghasemi et al., 2011). Based on our (Lemke et al., 2013) and convergent
results of other groups (Lesca et al.,, 2013; Carvill et al., 2013) commercial
companies (e.g. Naurex, Inc.) started physiological characterization of epilepsy-
associated mutations in cell culture and animal models (Osherovich et al., 2013;

http://www.naurex.com/).

We also found that exonic deletions and truncating mutations of RBFOX1 as well as
RBFOX3 contribute to the genetic variance of common idiopathic epilepsy
syndromes (Lal et al., 2013a; Lal et al., 2013b). In addition, our present results
demonstrate that mutations in DEPDC5 predispose specifically to focal epilepsies
including RE (Dibbens et al.,, 2013; Ishida et al., 2013; Lal et al., in revision).
Moreover, genome-wide CNV screening identified 16pl11.2 duplications as an
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important genetic risk factor for the RE-spectrum epilepsies (Reinthaler et al., in
revision), thereby further supporting the associations between 16p11.2 duplications
and early-onset neurodevelopmental disorders (Bijlsma et al., 2009; Jacquemont et
al., 2011; McCarthy et al., 2009; Shinawi et al., 2010; Walters et al., 2010; Weiss et
al., 2008; Zufferey et al., 2012). In summary, we were able to identify genetic risk
factors in a significant fraction (~10%) of RE and ARE patients investigated in our
study cohort. These results prove a significant genetic contribution to RE/ARE that
was challenged previously (Vadlamudi et al., 2004, 2006).

4.3 Epilepsy genetics

Epilepsy is one of the most common neurological disorders, characterized by
recurrent unprovoked seizures due to neuronal hyperexcitability and abnormal
synchronization (Hauser et al., 1993). We have genetically investigated two common
major subtypes of idiopathic epilepsies (i) idiopathic generalized epilepsies (IGES)
and (ii) the RE-spectrum epilepsies. Both groups are distinguishable by their leading
seizure types, age-dependent onset and electroencephalographic criteria. For IGE a
whole string of literature supports a strong genetic etiology (reviewed by Helbig et al.,
2008) whereas for RE the genetic impact in disease has been challenged previously
(Vadlamudi et al., 2004, 2006). Both idiopathic epilepsies were expected to have a
complex genetic architecture (Figure 3).

Environmental
factors only

Polygenic

Genetic impact

Monogenic

RE/ARE patients IGE patients

Figure 3 Expected genetic factors for idiopathic epilepsies. Dashed lines indicate the expected genetic contribution
to disease prior to our studies and solid lines indicate the current notion of the contributing genetic factors.
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We have identified genetic risk factors in RBFOX1land RBFOX3 (Lal et al., 2013a; Lal
et al., 2013b), GRIN2A (Lemke et a., 2013), GPHN (Dejanovic et al., in revision),
DEPDCS5 (Lal et al., in revision) as well as at the locus 16p11.2 (Reinthaler et al., in
revision). However, these variants are not prevalent in a similar frequency in all
epilepsy types. As an example, we detected GRIN2A mutations (Lemke et al., 2013)
in a broad range of focal childhood epilepsies but we did not observe these in
epilepsies with age-of-onset in adulthood (data not shown). Furthermore, DEPDC5
mutations are likely to be responsible for a fraction of focal epilepsies regardless of
age of onset (Dibbens et al., 2013; Ishida et al., 2013; Lal et al., in revision) but not
for generalized epilepsies (data not shown). The 16p11.2 duplication is absent in
temporal lobe epilepsies as well as IGE syndromes but constitutes, besides the RE-
spectrum (Reinthaler et al., 2013), an important genetic risk factor for autism (Weiss
et al., 2008) and obesity (Jacquemont et al., 2011). Otherwise, exonic deletions of
RBFOX1 are present in both types of common idiopathic epilepsies. Our identified
CNVs and gene mutations are not specific to epilepsy. Notably, the variants are also
implicated in other epilepsy types and a broad range of neurodevelopmental
diseases including autism, schizophrenia and intellectual disability (Coe et al., 2012;
Helbig et al., 2009; De Kovel et al., 2013; Mefford et al., 2010; Mulley et al., 2011;
Reutlinger et al., 2010; Lesca et al., 2012; Lionel et al., 2013; Forstera et al., 2010;
Bhalla et al., 2004; Martin et al., 2007; Gallant et al., 2011, Dibbens et al., 2013;
Ishida et al., 2013).

The penetrance for all identified variants is incomplete as illustrated by the presence
of apparently clinically unaffected variant carriers in the families. This is in agreement
with observations from large recurrent microdeletions previously identified in IGE
(Helbig et al., 2009; Dibbens et al., 2009; De Kovel et al., 2010) and a range of
neurodevelopmental disorders (reviewed by Carvill et al., 2013). Most likely, many
identified variants impair basic neurodevelopmental processes that affect a variety of
physiologic functions. However, a close relation between severe childhood epilepsies
and autism has been expected (reviewed in Coe et al., 2012). Likewise, the severity
and expressivity of the phenotypes varied considerably in all our studies between
affected members of the same family. Thus, the individual epilepsy phenotype is
probably further specified by the interplay of environmental influences with genetic
background following an oligo-/polygenic inheritance model with substantial genetic

heterogeneity (Mulley et al., 2011).
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DISCUSSION

Based on our small cohort sizes and the large amount of rare variants per individual
we had insufficient statistical power to analyze our data at a genome-wide level.
Extrapolation of effect sizes and frequencies from published studies show that
thousands of individuals are required to reach acceptable statistical power in WES
studies (Kiezun et al., 2012). Therefore, the presented studies are based on a priori
assumptions of a candidate gene/locus hypothesis. Consequently, a potentially large
part of the individual genetic disease predisposition is not explored. In the future, the
constantly increasing study sizes through worldwide collaborations may allow well-

powered screens for detection of mutations with major to modest effect sizes.

Furthermore, the individual epilepsy-causing genetic predisposition is also likely to be
influenced by common variants (Mullen et al., 2009). Studies on common genetic
variants like our recently published genome-wide association study for IGE (3020
IGE patients and 3954 controls) have identified common susceptibility loci with minor
effects (EPICURE Consortium et al.,, 2012). The translation of these results into
biological context is challenging (EPICURE et al., 2012, reviewed by Edwards et al.,
2013). In general, our ongoing WES-based mutation screening studies solely focus
on the CCDS-defined protein-coding regions. However, recent publications by the
ENCODE project have assign biochemical functions to 80% of the genome,
especially in genomic regions outside of the well-studied protein-coding regions
(ENCODE Project Consortium et al., 2012), opening new avenues for disease
research. Thus, studies on candidate genes, novel epilepsy associated genes, non-
protein coding regions of the genome and the epigentic landscape are warranted to

elucidate the complex genetic interplay in the etiology of idiopathic epilepsies.
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6 Summary/ Zusammenfassung

6.1 Summary

Epilepsy is one of the most common neurological disorders characterized by
recurrent unprovoked seizures due to increased neuronal hyperexcitability and
abnormal synchronization. | have explored the genetic architecture of the most
common types of idiopathic epilepsies, the idiopathic generalized epilepsies (IGEs)
and the spectrum of idiopathic focal epilepsies related to rolandic epilepsies (RES).
Both groups are distinguishable by the leading seizure types, age-dependent onset
and electroencephalographic criteria. For IGEs a complex genetic contribution is
indicated from family and twin studies, whereas the genetic basis of REs has been a
matter of debate. At present, the majority of genetic factors predisposing to common
idiopathic epilepsies remain elusive. The aim of the present studies was the
molecular genetic dissection of genetic risk factors with strong epileptogenic effects
in idiopathic epilepsies and the elucidation of their molecular pathways in
epileptogenesis. Therefore, our group conducted copy number variation (CNV)
analyses using high-resolution SNP arrays in two case-control cohorts comprising: i)
1582 IGE and 2795 populations controls, and ii) 308 patients with RE-spectrum
epilepsies and 1512 controls of European descent. In addition, we performed
candidate gene sequence analysis in 242 patients with RE-spectrum epilepsies. With
regard to the low power of our study samples for genome-wide scans, our current
strategies focused on a candidate gene/locus approach of genes and CNVs that
have been implicated in the pathogenesis of epilepsies and related
neurodevelopmental disorders, as well as candidate genes with a presumed impact
on neuronal excitability. In the present cumulative thesis, | report the results of our
current CNV and sequence analyses of highly plausible candidate genes based on
three peer-reviewed publications and another three manuscripts that are currently in

revision.

We are the first to show a significant statistical association for deletions affecting the
neuronal splicing regulator RBFOX1 with idiopathic epilepsies (Lal et al., 2013a).
Moreover, we also detected deletions and truncating mutations in RBFOX1 as well as
in the neuronal splicing regulator RBFOX3 in the RE cohort (Lal et al., 2013b). We
provide genetic, functional, and neurophysiological evidence that structural exonic

microdeletions affecting the GPHN gene, which codes for the synaptic scaffolding
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protein gephyrin, may increase neuronal excitability by an impairment of GABAergic
synaptic inhibition and thereby confer susceptibility for IGE (Dejanovic et al., in
revision). We also found that missense and truncating exonic mutations and
microdeletions of the GRIN2A gene encoding the NMDA-receptor NR2A subunit are
a major genetic risk factor in 7.5% of children with idiopathic focal epilepsies
including RE-spectrum epilepsies (Lemke et al., 2013). Notably, mutations in the
DEPDCS5 gene, encoding DEP domain-containing protein 5, preferentially predispose
to focal idiopathic epilepsies (Lal et al., in revision). Finally, screening for recurrent
CNVs revealed 16pll1.2 duplications as an important genetic risk factor for the
spectrum of REs (Reinthaler et al., in revision), thereby further supporting the
associations between 16p11.2 duplications and early onset neurodevelopmental

disorders.

In conclusion, our studies identified several genetic risk factors in a significant
fraction of idiopathic epilepsy patients. Moreover, the present study is the first that
clearly proves a genetic impact on the etiology of the common REs at the molecular
genetic level. We are aware that our small samples sizes provide insufficient power
for exome-wide rare-mutation or genome-wide rare-CNV association testing. Future
large-scale studies are warranted to identify additional pathogenic variants to better
understand the complex genetic architecture of the most common types of idiopathic

epilepsies.

183



SUMMARY / ZUSAMMENFASSUNG

6.2 Zusammenfassung

Epilepsie ist eine der haufigsten neurologischen Erkrankungen, charakterisiert durch
wiederkehrende, nicht provozierte epileptische Anfalle aufgrund neuronaler
Ubererregbarkeit sowie gesteigerter kortikaler Synchronisation. In der vorliegenden
Arbeit wurde die genetische Architektur der beiden héaufigsten Formen von
idiopathischen Epilepsien, den idiopathisch generalisierten Epilepsien (IGE) und der
idiopathisch fokalen Epilepsie (sog. Rolando Epilepsie, RE) untersucht. Beide
Gruppen unterscheiden sich hinsichtlich ihrer charakteristischen Anfallstypen, dem
altersabhangigen Auftreten und dem elektroenzephalographischen Muster. Familien-
und Zwillingsstudien belegen eine vorwiegend genetische Disposition der haufigen
IGE Syndrome, wahrend die Beteiligung von genetischen Einfliissen an der Atiologie
der RE bislang umstritten war. Bei den haufigen idiopathischen Epilepsien ist die
Mehrzahl der beteiligten genetischen Faktoren noch unbekannt. Das Ziel der
vorliegenden Arbeit war die molekulargenetische Identifikation von genetischen
Risikofaktoren. Aufgrund der geringen GroRRe unserer Kollektive war nur die
Identifikation von Varianten mit starken epileptogenen Effekten mdglich. Hierzu
haben wir copy number variation (CNV)-Analysen mit hochauflésenden SNP-Arrays
in zwei Patienten-Kontroll-Kohorten durchgefiihrt. Die Kollektive bestanden aus: i)
1582 IGE-Patienten und 2795 Kontrollen mit europaischer Herkunft und ii) 308
Epilepsie-Patienten aus dem RE-Spektrum und 1512 Populationskontrollen
europaischer Herkunft. Daruberhinaus haben wir Kandidatengen Sequenzanalysen
bei 242 Patienten mit RE durchgefihrt. Im Hinblick auf die geringe statistische Grol3e
unserer Studienkohorten waren unsere Strategien auf Kandidatengen/-lokus-Ansatze
ausgelegt. Daftr wurden Kandidatengene und -CNVs ausgewahlt, die eine Funktion
in der synaptischen Transmission aufweisen oder bei anderen neurologischen
Erkrankungen bereits als Risikofaktoren identifiziert wurden. In der vorliegenden
kumulativen Dissertation berichte ich Giber die Ergebnisse unserer aktuellen CNV und
Sequenzanalysen und beziehe mich auf drei veroffentlichte Manuskripte, sowie auf

drei weitere Artikel, die sich derzeit in Revision befinden.

Unsere Arbeiten belegen erstmals eine signifikante statistische Assoziation von

Mikrodeletionen, die den neuronalen Splei3-Regulator RBFOX1 betreffen, mit

idiopathischen Epilepsien (Lal et al., 2013a). Ferner konnten wir nachweisen, dass

Deletionen und loss-of-function-Mutationen von RBFOX1 und RBFOX3 in der RE-
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Kohorte auftreten (Lal et al., 2013b). Wir fanden genetische, funktionale und
neurophysiologischen Belege dafir, dass exonische Mikrodeletionen in GPHN die
neuronale Erregbarkeit durch eine Beeintrachtigung der GABAergen synaptischen
Hemmung steigern und dadurch das Risiko fur IGE erhéhen (Dejanovic et al., in
Revision). Wir konnten ebenso belegen, dass missense- und loss-of-function-
Mutationen sowie Mikrodeletionen von GRIN2A, das fir eine Untereinheit des
NMDA-Rezeptors NR2A kodiert, einen genetischen Risikofaktor bei 7,5 % der Kinder
mit idiopathischen fokalen Epilepsien darstellen (Lemke et al., 2013). SchlieRlich
konnten wir zeigen, dass Mutationen in DEPDC5 préaferentiell zu fokalen
idiopathischen Epilepsien pradisponieren (Lal et al., in Revision). Unser Screening fur
rekurrente CNVs identifizierte 16p11.2-Duplikationen als signifikanten genetischen
Risikofaktor fir das Spektrum der RE-assoziierten Epilepsien (Reinthaler et al., in
Revision). Dadurch konnten wir die Assoziation zwischen 16p11.2-Duplikationen und
frih einsetzenden neurologischen Entwicklungsstorungen erharten und das

phanotypische Spektrum um die RE erweitern.

Zusammenfassend haben unsere Studien mehrere genetische Risikofaktoren bei
einem bedeutenden Anteil der idiopathischen Epilepsie-Patienten identifiziert. Die
Ergebnisse unserer Untersuchungen belegen nunmehr das Vorliegen einer
genetischen Disposition fir die RE eindeutig. GrofRe, multizentrische
Studienkollektive werden die Vorrausetzung schaffen, um systematisch seltene
Mutationen und CNVs zu identifizieren. Die Identifikation von weiteren genetischen
Risikofaktoren wird die Grundlage zu einem besseren Verstéandnis der komplexen

genetische Architektur der Epilepsien bilden.
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