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1 Introduction

1.1 Motivation

Quantum field theories have in many instances be successfully applied to qualitatively
and quantitatively understand fundamental questions in condensed matter physics.
Effective field theories emerge in many different settings and have, in the form of non-
linear σ-models, provided profound insight into the physics of disordered systems, for
an example see [Efe99].
The goal of this diploma thesis is to develop a field theory, for a specific class of

disordered bosonic systems, in order to study, whether disordered bosons generically
have universal statistical properties, similar to fermions.1

For fermionic systems the universality question is well understood. There exist
ten families of symmetry classes, as explained by Zirnbauer et. al. in [Zir98, AZ97,
HHZ04]. These classes determine the statistics, i.e. the probability distributions of
the correlation functions, of low-energy excitations of ergodic systems.
For bosons, one might doubt on physical grounds whether there is universal be-

haviour at low energies at all. In condensed matter, bosonic modes typically arise
as Goldstone modes, where low energy usually means long wavelength. But long
wavelength modes are insensitive to spatially uncorrelated weak disorder, which gets
effectively averaged out on the scale of the wavelength. This argument does, how-
ever, not apply in general. Long wavelength modes might be suppressed or forbidden
by boundary conditions, the disorder might be strong, in real systems the disorder
will never be spatially uncorrelated and, generally speaking, the multi particle ground
state might be such that low lying excitations have a comparatively short wavelength.
Anyhow, as soon as low lying excitations of a wavelength comparable to the length
scale of the disorder exist, it seems reasonable to assume that their behaviour will be
largely determined by symmetries, rather than by microscopic details, just as in the
fermionic case. In fact, hints to universal behaviour were found in [GC02] and also
[GA04] for systems where the bosonic excitations are not of Goldstone type.
In order to shed some light on those questions, the general idea is to investigate a

quadratic model, which should be thought of as being the lowest order approximation
of a system of small oscillations around the (interacting) many particle ground state.
Physical examples of such systems where the fluctuations quantise as bosons are

• vibrations of amorphous solids, see e.g. [GKK89],

• oscillations of the superfluid density of Bose-Einstein condensates,
1As such this thesis is part of the research project C3 ‘The universality question for disordered
low-frequency bosons’ within the SFB/TR12.
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1 Introduction

• excitations of Bose glasses, see e.g. [FWGF89],

• photons in an inhomogeneous optical medium,

• spin waves in disordered magnets, see e.g. [WW77],

• and normal modes of pinned charge density waves, see e.g. [GS88].

Now, if disordered bosons show system independent statistical features, the evident
question is whether the bosonic universality classes are different from the fermionic
ones. For fermions, the classification in terms of symmetric spaces is a largely alge-
braical one, which happens in a complexified setting before compact or non-compact
real forms are specified. Hence one can rightly state that all effective bosonic non-linear
σ-models are already classified within the ten fold way together with the fermionic ones.
And indeed, in the system studied in [LSZ06], well known universal GUE statistics
were found in the bulk and Lück finds GOE statistics in [Lü09], both for systems of
disordered bosons.
But for bosons non-linear σ-models are not everything. A subtle point about non-

interacting, i.e. quadratic, bosonic systems is stability. One single particle state
of negative energy for a bosonic system immediately leads to an unbounded many
particle Hamiltonian. For fermionic systems, a finite number of such single particle
states is of no concern, due to the Pauli principle. This important difference leads
to the well studied Gaussian ensembles not providing feasible distributions of bosonic
Hamiltonians. If, however, more complicated probability distributions are taken into
account, one has to be prepared to face a more complicated effective model than a
pure non-linear σ-model in the end. In this sense, an interesting question is whether
bosonic systems if they show universal behaviour lead to novel universality classes.
A hint to those might be the unusual density of states near zero energy that was
found in [LSZ06] or [GC02] and [GA04]. On physical grounds, one can expect the
commutation relations of bosons to have important effects at low frequencies, which
fits to the observations of [GC02] and [GA05].
In this thesis, we will develop and study a specific model, which is the next step

after the work of Lück, Sommers and Zirnbauer, [LSZ06], towards a more realistic
description of a disordered system of bosonic degrees of freedom. As in [LSZ06], our
model is still purely random, i.e. there is no limit of an underlying pure system and
we also stay with a model without global symmetries, such as time reversal or charge
conjugation. But we turn from the homogeneous, zero-dimensional model to a spatially
extended one and implement the physically important feature of locality. Furthermore,
we add an additional parameter to tune the number of modes per volume. In particular
we can hereby enforce a macroscopical number of zero modes. The goal is to study the
density of states of the new model and therefore to develop an effective field theory.
Throughout we will pay special attention to the region near zero frequency and watch
out for unusual, possibly universal features.
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1.2 Outline

1.2 Outline

In chapter 2 we will introduce the model to be studied in this thesis. A copy of
the zero-dimensional model which was solved in [LSZ06] is placed on each vertex of
a graph, which defines the spatial structure. Then we add random interactions in
between neighbouring vertices. Note that, although we will specialise to a regular
square lattice in chapter 3 to develop a continuum field theory, the results of chapter
2 are more general. One could also put the model on a more complicated graph to
emulate, e.g., a real system consisting of a few isolated grains or dots and only allow
for interactions in between specific sites. Or, a quasi one- or two-dimensional system,
which is extended in one but finite in another direction, might be constructed. Anyway,
no such system is considered here. As we are looking for universal features, rather than
trying to model a concrete real system, we will consider the simplest spatial structure.
Furthermore, the resolvent operator is introduced in section 2.2 and super-symmetry

methods are applied in order to average out the disorder, leading to the final step of
superbosonisation and hence to the exact formulation of the effective model as a lattice
field theory in equation (2.24).
Chapter 3 hosts the main part of this thesis. Here we will perform a continuum

limit and carefully study a saddle point approximation, justified by taking the limit of
a large number N of degrees of freedom per volume. Deriving the saddle point equa-
tions, considering the reachability of all possible saddle points for various parameter
configurations and expanding the fluctuations to quadratic order will take the sections
3.1.2 to 3.1.4.
In section 3.2 various notions from the differential geometry of Riemannian sym-

metric (super-) spaces will be introduced. Finally, we will propose a general form of
the effective action, describing the resolvent operator, in section 3.2.6 and determine
the coefficients therein from the coordinate based calculations in 3.1.4. This concludes
the derivation of the field theory as advertised in the title.
After this is finished, we turn our attention back to the zero dimensional case in

chapter 4. Here we will explicitly calculate the density of states to first order in 1
N and

compare to [LSZ06]. We allow a parameter which already exists in [LSZ06] to vary in
a much larger range. This parameter tunes the distribution for the random coupling
constants, which physically affects e.g. the number of zero modes in the model. The
significance of this parameter becomes visible in the figures 4.1 and 4.2.
For a summary of the results see section 5.
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1 Introduction

1.3 Einleitung

Quantenfeldtheorien sind ein probates und erfolgreiches Instrument zur qualitativen
und quantitativen Beschreibung, Untersuchung und Lösung fundamentaler Probleme
im Rahmen der Physik kondensierter Materie. Effektive Feldtheorien, insbesondere in
der Form nicht linearer σ-Modelle, haben in vielen Fällen zu tiefen Einsichten in die
Physik ungeordneter Systeme geführt, ein Beispiel hierführ ist das Buch von Efetov
[Efe99].
Das Ziel dieser Arbeit ist es eine Feldtheorie für eine bestimmte Klasse ungeordneter

bosonischer Systeme zu entwickeln und zu untersuchen, ob bosonische ungeordnete
Systeme universelle Eigenschaften haben, wie das bei fermionischen Systemen der Fall
ist.2

Die universellen Eigenschaften ungeordneter fermionischer Systeme sind ausgiebig
untersucht worden und es wurde insgesamt ein gutes Verständnis erreicht. Es gibt zehn
Universalitätsklassen wie von Zirnbauer u.a. in [Zir98, AZ97, HHZ04] beschrieben. Die
Zugehörigkeit zu einer dieser Klassen bestimmt die Statistik, d.h. die Wahrscheinlich-
keitsverteilung der Korrelationsfunktionen, der niederenergetischen Anregungen ergo-
discher Systeme.
Es ist nicht von vornherein klar, ob auch Bosonen universelle Eigenschaften bei nied-

rigen Energien zeigen. Typischerweise treten bosonische Anregungen in der Festkör-
perphysik in Form von Goldstone-Moden, für die niedrige Energie große Wellenlänge
bedeutet, auf. Solche langwelligen Moden sind unempfindlich gegenüber schwacher,
räumlich unkorrelierter Unordnung, da diese auf der Skala der Wellenlänge effektiv ge-
mittelt wird. Nun gibt es aber auch eine Vielzahl von Systemen auf die dieses Argument
nicht zutrifft, zum Beispiel wenn die Anregungen elementar bosonisch sind, z.B. Pho-
tonen, wenn langwellige Anregungen durch z.B. Randbedingungen unterdrückt werden
oder wenn die Unordnung hinreichend stark und oder räumlich korreliert ist, wobei zu-
mindest letzteres in realen Systemen immer zu einem gewissen Grad der Fall sein wird.
Und die thermodynamische Intuition lehrt, sobald die niedrig energetischen Anregun-
gen hinreichend stark von Unordnung beeinflusst werden, sollten ihre Eigenschaften
eher durch die Symmetrien des Systems bestimmt werden als durch mikroskopische
Details. Diese grundlegende Anschauung trifft auf Bosonen ebenso zu wie auf Fer-
mionen und in der Tat wurden in [GC02] und [GA04] Hinweise auf ein universelles
Verhalten bosonischer Systeme gefunden.
Um nun die Frage nach der Universalität für Bosonen systematisch zu untersuchen

betrachten wir Systeme mit Hamilton Operatoren quadratischer Ordnung. Diese soll-
ten als erste Näherung an reale, wechselwirkende Systeme verstanden werden, d.h. als
effektive Theorien kleiner Schwingungen um einen stabilen Vielteilchen-Grundzustand.
Physikalische Beispiele solcher Systeme, bei denen die Anregungen als Bosonen quan-
tisiert sind, wären

• Vibrationsmoden amorpher Festkörper, z.B. [GKK89],

2In diesem Sinne gliedert sich diese Arbeit in das Forschungsprojekt C3 ‘The universality question
for disordered low-frequency bosons’ des SFB/TR12 ein.
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1.3 German introduction

• Oszillationen der Superflüssigkeitsdichte von Bose-Einstein-Kondensaten,

• Anregungen von Bose-Gläsern, z.B. [FWGF89],

• Photonen in inhomogenen optischen Medien,

• Spinwellen in ungeordneten Magneten, z.B. [WW77],

• und Normalmoden von Ladungsdichtewellen, z.B. [GS88].

Falls bosonische Systeme nun universelle Eigenschaften zeigen stellt sich die Fra-
ge, ob diese in ähnlicher Art wie die fermionischen klassifiziert werden können und
ob sie sich sogar in die schon bekannten Symmetrieklassen einfügen, oder ob es zur
Beschreibung bosonischer Systeme neuer Symmetrieklassen bedarf. Da die Klassifizie-
rung fermionischer Systeme mittels symmetrischer Räume im wesentlichen algebraisch
ist könnte man nun annehmen, dass der von Zirnbauer u.a. beschriebene ‘ten fold way’
auch die bosonischen Systeme mit einschließt. In der Tat wurde in [LSZ06] gezeigt,
dass die n-Punkt Funktionen für das Modell auf dem diese Arbeit aufbaut, gerade die
des gausschen unitären Ensembles sind. In [Lü09] wurden Charakteristika des ortho-
gonalen Ensembles beobachtet.
Im allgemeinen muss man aber davon ausgehen, dass Systeme ungeordneter Boso-

nen nicht ohne weiteres auf reine nicht lineare σ-Modelle abgebildet werden können.
Ein wichtiger Punkt hierbei ist Stabilität des Grundzustandes um den entwickelt wird.
Hat der zugrundeliegende Einteilchen-Hamiltonoperator auch nur einen negativen Ei-
genwert, so ist das Spektrum des Vielteilchen-Operators unweigerlich nach unten hin
unbeschränkt, da kein Pauli-Prinzip wie bei Fermionen den Besetzungszahloperator
beschränkt. Daher eignen sich gaussche Ensemble mit unabhängig identisch verteilten
Matrixeinträgen des Hamiltonians grundsätzlich nicht zur Beschreibung bosonischer
Probleme. Daher ist die Frage nach neuen Universalitätsklassen nicht eine Frage nach
möglichen neuen Zielräumen für nicht lineare σ-Modelle. Diese sind vollständig klas-
sifiziert. Vielmehr lautet die Frage, ob und wie die Klasse der effektiven Feldtheorien
erweitert werden muss. Hinweise auf solche neuen Klassen könnten die ungewöhnliche
Zustandsdichten sein, die in [LSZ06] oder auch [GC02] und [GA04] gefunden wurden.
Falls solche neuen Klassen zu neuartigen universellen Wahrscheinlichverteilungen füh-
ren, so sollten diese am ehesten bei niedrigen Energien zu beobachten sein, was zu den
Beobachtungen in [GC02] und [GA05] passen würde.
In dieser Arbeit wird ein spezielles Modell ungeordneter Bosonen entwickelt und un-

tersucht werden, dass eine Weiterentwicklung des von Lück, Sommers und Zirnbauer,
[LSZ06], gelösten Problems darstellt. Das hier betrachtete Modell ist weiterhin rein
zufällig, d.h. es gibt keinen Grenzfall eines deterministischen Systems. In diesem Sinne
könnte man von einem Grenzwert unendlich starker Unordnung sprechen. Weiterhin
werden nach wie vor keine globalen Symmetrien, wie etwa Zeitumkehrsymmetrie, be-
trachtet. Aber das neue Modell ist in so fern realistischer, als das nun räumliche Aus-
dehnung in Betracht gezogen wird und der Hamiltonoperator nur lokal wirkt. Weiterhin
gibt es in unserem Modell einen zusätzlichen Parameter, d.h. wir erweitern die Fami-
lie der Wahrscheinlichkeitsverteilungen. Physikalisch bedeutet dies insbesondere, dass
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1 Introduction

Modelle mit einer makroskopischen Anzahl an Nullmoden in Betracht gezogen werden
können. Das Ziel ist es, ein effektives Modell zur Beschreibung der Zustandsdichte zu
entwickeln und insbesondere auf möglicherweise neuartige statistische Eigenschaften
im Sinne der oben gestellten Universalitätsfrage zu untersuchen.
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2 Model

In this chapter we derive a lattice field theory. All derivations should be reasonably
rigorous and, apart from the last step of superbosonisation for which we refer to
[LSZ07], self contained.

2.1 The setting

We extend the bosonic random matrix ensemble considered in [LSZ06] and [Lü09],
chapter 3, by adding spatial structure. Therefore, we will first review the general
structure of a quadratic bosonic Hamiltonian in 2.1.1 and then define what we mean
by spatial structure in 2.1.2 and describe the consequences for the ensemble of feasible
Hamiltonians in 2.1.3.
Independently, an additional parameter α will be introduced into the model which

can be tuned to enforce a macroscopical number of zero modes in all systems of the
ensemble. For the case where all neighboring modes are coupled, α can be related
to the parameter1 k, the power of a factor of Det(h) in the probability density. See
section 2.1.3, in particular the equations (2.8) and (2.9) for further details.
Depending on the physical system under consideration, e.g. phonons in a randomly

distorted lattice, it might be unclear why one should want to have a macroscopical
number of zero modes. But one should keep in mind that the pure random model,
which will be build in this thesis, is not supposed to be ultimately realistic. In a
subsequent step in the development of a complete picture of random bosonic systems,
one should add a deterministic part to the model to get closer to physically relevant
systems. In such a situation the zero modes of the random model will get mixed with
the deterministic modes and thus would not remain at zero. However, for the pure
random model itself, the zero modes have a positive effect, in so far, as the density of
states becomes more realistic. This will be discussed in detail in section 4.

2.1.1 A generic quadratic Hamiltonian

A quadratic Hamiltonian frequently arises when one linearises the equations of mo-
tion of a given system around a stable fixed point. We will now spell out what this
stability means for the Hamiltonian, i.e. specify which kind of disorder is feasible for
maintaining stable systems. The positivity constraint arising will be explained from
the classical as well as from the quantum point of view. In any case, an isolated sys-
tem can only be an idealisation of a system, which is weakly coupled to some sort of

1Note that our parameter k was called l in [Lü09].
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2 Model

environment. This idealisation has to break down for thermodynamic reasons, as soon
as it is possible for the system to go to arbitrarily low energies. This is the case for a
system of classical or bosonic quantum particles if there is a single particle state with
negative energy. Note that, due to the Pauli principle, this is no problem for fermionic
systems, where a finite number of single particle states of negative energy does not
spoil thermodynamics.
As the theory developed in this thesis applies to bosonic quantum mechanical as

well as classical systems, we will now introduce both viewpoints.

Classical Model

Let {Qi} denote the set of N canonical position variables with conjugate momenta
{Pi}. I.e. Q and P form a canonical coordinate system for the 2N -dimensional
symplectic phase space such that the symplectic form reads J = dQi ∧ dPi.
The most general quadratic Hamilton function is

H = QiAijQj +QiBijPj + PiCijQj + PiDijPj

=
(
QT P T

)( A B

C D

)(
Q

P

)

with QT := (Q1, Q2, . . . , QN ), similarly for PT, and A,B,C,D are N × N matrices.
We have A = AT, D = DT and B = CT and all matrix entries in the reals, because
classical observables are commuting and real valued. Throughout, ()T will denote the
usual matrix transpose. The important positivity constraint mentioned above is now
simply a demand on

h :=

(
A B

C D

)
= hT

to be positive semidefinite.
We stress again that this positivity is what makes the classical and bosonic random

matrix problems harder to handle than the fermionic ones, because we cannot simply
choose some i.i.d. Gaussian measure for the independent matrix elements of h to define
our ensemble.
Another way to see why positivity is needed is that the truncation of the expansion

of H at quadratic order is only sensible at a local minimum x = (Q0, P0) of H, i.e.
dH
∣∣∣
x

= 0 and the Hessian

h = Hess(H)
∣∣∣
x

being positive definite. Negative eigenvalues of h would correspond to unstable di-
rections, hence the system would leave the range of applicability of the quadratic
expansion and one would then have to include higher order terms, e.g. in a next step
proceed to a Ginsburg Landau type model.
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2.1 The setting

After considering the energy, let us now have a look at the equations of motion 2

−J
(
Q̇

Ṗ

)
= h

(
Q

P

)
where J =

(
0 1N

−1N 0

)
(2.1)

We are looking for a stable fixed point of the linearised differential equation ẋ =
Xx with X = Jh. Physically speaking, as there is no damping, i.e. no energy
dissipation mechanism, we will not find an attractive fixed point. Or, more formally,
X = −JXTJ−1 ∈ sp(2N) is in the symplectic Lie algebra, which implies Det(λ1 −
X) = Det(λ1 + X), i.e. all eigenvalues come in pairs, ±λ. Therefore demanding the
fixed point to be stable, i.e. <(λ) ≤ 0 for all eigenvalues, means that they actually all
have to be purely imaginary, λ = ±ı̇ω.
Having settled this reality constraint, we now come to positivity in the more formal

picture. For a thermodynamic description to make sense, the action needs to be
bounded from below in order for the partition function to exist. This leads to the
additional constraint, which is best phrased in a geometric picture. Here positivity of
the eigenfrequencies ω means that we have to restrict the domain of feasible random
matrices X to a cone within the symplectic Lie algebra

DX =

{
X = g

(
0 ω

−ω 0

)
g−1 | ω = diag(ω1, . . . , ωN ), ωi ∈ R+, g ∈ Sp(R2N )

}

where Sp(R2N ) =
{
g | gJgT = J

}
denotes the real symplectic group. Note that

U−1

(
0 ω

−ω 0

)
U = ı̇

(
−ω 0
0 ω

)
for U :=

1√
2

(
1N 1N

−ı̇1N ı̇1N

)
∈ U(2N)

i.e. this choice of DX indeed guarantees that X is diagonalisable with all eigenvalues
purely imaginary.
To see that DX is also well chosen with respect to the positivity constraint, we write

the Hamiltonian, h = J−1X, in the new basis given by the basis change g.3

H =
(
QT P T

)
gT h g

(
Q

P

)
=
∑
i

ωi

(
P̃ 2
i + Q̃2

i

)
Hence positivity of the ωi physically means positive mass and spring constant of the
harmonic oscillator modes. A negative mass term would lead to an unbounded spec-
trum {∑i niωi | ni ∈ N}, which leads to e−βH being non-integrable and hence the
partition function would be ill defined.

2We use the same symbol for the symplectic form and its matrix as long as there is no ambiguity
about the basis.

3g ∈ Sp(R2N )⇔ gT ∈ Sp(R2N )
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2 Model

Bosonic model

As usual we go from the classical to the quantum system by changing the Lie algebra
representation from Poisson brackets to −ı̇ times the commutator, but we keep the
symbols {Qi} for the bosonic ‘position’ operators with conjugate momentum operators
{Pi}. I.e.

[Qi, Pj ] = ı̇δi,j [Qi, Qj ] = [Pi, Pj ] = 0

where ı̇ :=
√−1. The most general quadratic Hamiltonian now formally looks exactly

the same as before.

H =
(
QT , P T

)( A B

C D

)(
Q

P

)
A,B,C,D are N × N matrices and we have A = AT , D = DT by the commutation
relations. To ensure Hermiticity of H we also need that B = C† and A,B,C,D all
real, so we get the same constituents for the matrix h as in the classical setting above.
Now we can view the positivity constraint from yet another perspective. Again

we diagonalise the symmetric bilinear form h by using the same symplectic4 g as
above. Now also the unitary matrix U from above will be recognised, namely as the
transformation to creation and annihilation operators a(†) = 1√

2
(Q̃ ± ı̇P̃ ) as usual.

Applying both transformations leads to

UTgT h gU =

(
0 ω

ω 0

)
and hence to the standard quantum harmonic oscillator

H =
(
a, a†

)( 0 ω

ω 0

)(
a

a†

)
=
∑
i

ωi(a
†
iai + aia

†
i )

where the ωi are twice the standard frequencies, as in the classical case. And again
we see that it is absolutely necessary to demand positivity of the ωi. We iterate that
unlike in the fermionic case, where the particle number operator is bounded (Pauli
principle), a single particle eigenstate with negative energy for a bosonic operator
leads immediately to an unbounded operator on Fock space.

2.1.2 Modelling the spatial structure

The underlying graph G

Throughout, we will denote the graph which defines the underlying spatial structure
by G = (V,E) where V is the (finite) set of vertices and E ⊂ (V × V ) /{(i, j) ∼ (j, i)}

4Whilst g being a symplectic transformation was most natural in the classical phase space, in the
quantum setting the reader might be more used to this group of transformations being called
‘canonical’ and the preservation of the commutation relations under basis change with g being
emphasised.
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2.1 The setting

the set of undirected edges. We use the convention (i, i) /∈ E, such that E describes
the actual spatial structure. But for the construction of the model we will mainly use
Er := E ∪ {(i, i) ∈ V × V } which can be visualised by an extra edge per vertex, see
Figure 2.1.

Figure 2.1: Visualisation of the two-dimensional square lattice with an extra edge per
site.

Although the considerations in this work apply, to a certain extent, to any kind of
graph, we will mostly think of a d-dimensional cubic lattice with periodic boundary
in the following. We denote the length of the sides of the cube (counting in number
of vertices) by L such that |V | = Ld and |Er| = |E|+ |V | = |V |(d+ 1).
Furthermore, for i ∈ V and e = (i, j) ∈ Er we introduce the convenient ‘adjacency

operator’ @ e := {i, j} and @ i := {f ∈ Er | ∃k ∈ V : f = (i, k)}. Instead of e ∈ @ i
we will just write e@ i.

Vector spaces on top of G

We equip the symplectic phase space with a spatial structure as follows:
At each site i ∈ V we have a symplectic vector space Si with symplectic form Ji to

model the local degrees of freedom. For simplicity we assume all Si to have the same
dimension 2N . The full phase space of the system is given by

S =
⊕
i∈V

Si

with the corresponding symplectic form J =
⊕

i∈V Ji. We denote the canonical pro-
jections by πSi : S � Si.
Additionally we introduce auxiliary Euclidean vector spaces for each edge, again all

with the same dimension ∀e∈ErOe ' RM and a total Euclidean space

O =
⊕
e∈E

Oe

with canonical projections πOe : S � Se. Those will be used to model the random
interactions in between neighbouring grains by e ∈ E and random couplings within
the grains, i, by (i, i) ∈ ER.

11
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2.1.3 Restrictions on the Hamiltonian

The matrix h defining the characteristic frequencies as in 2.1.1 has not only to be
positive, but additionally we require it to reflect the spatial structure imposed by the
underlying graph.

h ∈ S :=
{
h ∈ End(S) | h = hT positive semidefinite and

∑
(i,j)∈Er

πSi ◦ h ◦ πSj = h
}

Note that the last condition can equivalently be written as

πSi ◦ h ◦ πSj 6= 0⇒ (i, j) ∈ Er

and further that we only demand semidefiniteness, i.e. we also include the boundary
of our cone and pass to DX . In fact, later on we will see that only models which
explicitly enforce a macroscopical number of zero modes have a finite, non vanishing
density of eigenfrequencies near ω = 0 for d = 0.

Implementing the restrictions

To get our hands on a probability measure for h, we first decompose h = lT l. Thereby,
instead of demanding h to be symmetric positive semidefinite, we only need to require l
to be real. Secondly, to implement the spatial structure, we use the auxiliary Euclidean
vector spaces on the edges, as introduced in 2.1.2. We define the following space of
linear mappings

L :=

{
l : S −−−→

linear
O | l =

∑
i∈V
e@ i

πOe ◦ l ◦ πSi
}

(2.2)

Note the important summation constraint e@ i which means that l(Si) ⊂
⊕

e@ iOe
and lT (Oe) ⊂

⊕
i@ e Si. Therefore we get a well defined mapping

φ : L→ S
l 7→ h = lT l

The rest of this section will be spend on investigating the properties of φ. First, by
diagonalising

g lT l gT = diag(λ1, . . . , λ2N |V |)

with some g in the big orthogonal group O(R2N |V |), we see that φ(L) contains regular
elements if and only if

M |Er| ≥ 2N |V |
⇔ M ≥ 2N

|V |
|Er| =

2N
d+ 1

(2.3)

12



2.1 The setting

where the last equality holds for the d-dimensional cubic lattice. This inequality
motivates the introduction of the constant

α :=
(d+ 1)M

2N
+O

(
1
N

)
(2.4)

where we anticipate that we will only need α up to terms of order O ( 1
N

)
in the sequell.

α gets physical meaning by rephrasing the above observation: Our ensemble contains
systems without zero modes as soon as α ≥ 1. In this case the probability of having
zero modes is actually zero.5

Note, however, that O(R2N |V |) does not respect the spatial structure and φ will in
general not be surjective onto S. This can be seen by comparing dimensions

dim(L) = 2NM · (2|E|+ |V |)
dim(S) =

2N(2N + 1)
2

|V |+ (2N)2|E|
(2.5)

which means that φ can only be surjective for at least

M ≥ 2N + 1
2

|V |
2|E|+ |V | + 2N

|E|
2|E|+ |V | = N +

1
4d+ 2

i.e. α ≥ d+1
2 .

To get a more accurate estimate, one can easily see that the differential dφ
∣∣
l0
at

l0 =
⊕
v∈V

(
diag(1, . . . , 1) : Sv → O(v,v)

)
is surjective if and only if M ≥ 2N . This means that only for α ≥ d + 1 really all
modes in neighbouring grains are coupled almost surely.

Choosing a family of probability measures

Using the implementation of the restrictions from the last section, the question of
what would be a natural, or at least tractable, measure on the space of Hamiltonians
of interest given by S can now be traced back to defining a ‘good’ measure on L and
then pushing this forward with φ.
As explained in [Lü09], chapter 3.2, it is not possible to choose a measure like

e−Tr(Jh)2 , which is invariant under the full symplectic symmetry group, because Sp
is non-compact. Instead, as in [Lü09], we will consider a one-parameter family of
measures which is invariant under the maximal compact subgroup U of Sp.
On the level of l it is very natural to consider the Gaussian measure

dµ(l) ∝ e− 1
2

Tr(lT l)dl (2.6)

5Strictly speaking, for α = 1 the O
`

1
N

´
terms matter, even in the large N limit, as can be seen in

(2.3). However, for α ≥ 1 a realisation does almost surely not contain macroscopically many zero
modes.

13
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where dl is the flat measures on L. This measure is in fact invariant under the product
of unitary and orthogonal groups

∏
i∈V U(Si)×

∏
e∈Er O(Oe), acting by

l 7→ hlgT (2.7)

with h ∈∏e∈Er O(Oe) and g ∈∏i∈V U(Si) where U(Si) ⊂ Sp(Si) is understood.
If the differential dφ has full rank, i.e. α ≥ d + 1, this measure can be pushed

forward to
dµk(h) = φ∗(dµ(l)) ∝ e− 1

2
Trh Det(h)kdh (2.8)

where dh is the flat measure on the subset φ(L) ⊂ S. Otherwise the push forward of
dµ(l) will be concentrated on the subset φ(L) ⊂ S of lower dimension. In terms of the
original setting, our model is specified by dµ(h). Note that, in particular, we possibly
restrict the domain of Hamiltonians defining the model further, if supp(dµ(h)) ( S.
If α ≥ d+ 1 we can use equation (2.8) together with (2.5) to determine the relation in
between the parameters M and k. By a simple scaling argument we get

dim(L)
2N |V | = 2k +

2 dim(S)
2N |V |

⇔ (2d+ 1)M = 2k + 4Nd+ 2N + 1

⇔ k = (2d+ 1)
(

α

d+ 1
− 1
)
N − 1

2

(2.9)

where from the second line we specialise to the hyper cubic lattice.
Here we see directly that α = d + 1 + O ( 1

N

)
, as considered in [Lü09] and [LSZ06]

for d = 0, is a distinguished value for α, where k is independent of N . Furthermore,
we can see directly that pushing forward dµ(l) with α < d+ 1 will lead to a singular
measure for h.
In the sequel, the normalisation factors are chosen such that

∫
S dµ(h) = 1, hence∫

L dµ(l) = 1, i.e. both are probability measures.

2.2 The resolvent operator

2.2.1 Definition

The quantity to be studied is the disorder averaged resolvent operator of the equations
of motion (2.1)

G(z) := 〈Tr(z − Jh))−1〉 :=
∫
S

Tr(z − Jh)−1dµ(h)

because we are interested in the density of characteristic frequencies. We have seen in
2.1.1 that all eigenvalues of Jh are imaginary and by the so-called Dirac identity

lim
ε↘0

=
1

iω + ε− ı̇ω0
= πδ(ω − ω0) + ı̇P

(
1

ω0 − ω
)

14



2.2 The resolvent operator

where P denotes the principal part, we get

ρ(ω) = lim
ε↘0

1
π
< (G(ı̇ω + ε)) (2.10)

Note that G will be analytic, away from the imaginary axis, i.e. the conventions
here might differ by a ‘Wick rotation’ by ı̇ from the convention for the Greens function,
which the reader is used to. This is also visible in (2.10).
First we move from the original cone of operators S completely to L by using φ∗ and

rewriting the trace. Only in the following calculation we will emphasise which spaces
are traced over, in the rest of the text this should be clear from the context. For large
z we have

Tr
S

(z − JlT l)−1 =
1
z

Tr
S

(
1

1− z−1JlT l

)
=

1
z

Tr
S

( ∞∑
n=0

(z−1JlT l)n
)

=
1
z

(
Tr
S

(1)− Tr
L

(1) + Tr
L

( ∞∑
n=0

(z−1lJlT )n
))

=
dim(S)− dim(L)

z
+ Tr

L
(z − lJlT )−1

As G is analytic away from the imaginary axis, this has to hold not only for large, but
for all z /∈ ı̇R. In the following we will write

∆ dim := dim(S)− dim(L) =
(

2(2d+ 1)
(

1− 2α
d+ 1

)
N + 1

)
N |V |

for short. As mentioned already in section 2.1.3, α = d+1
2 + O ( 1

N

)
is the critical

value where ∆ dim changes sign. I.e. for α < d+1
2 , ∆ dim is positive and ∆ dim

z can be
interpreted as the contribution of the zero modes to the resolvent operator.

2.2.2 Gaussian integrals

The next step is to write the trace in terms of determinants.

Tr(z − lJlT )−1 = ∂z1

∣∣∣
z1=z2=z

Det−1

(
z2 −l
lT J

)
Det

(
z1 −l
lT J

)
(2.11)

This equality is verified by using

Det

(
A B

C D

)
= Det(D) Det(A−BD−1C)

which holds for any block matrix with invertible D, and

∂z Det(z1−A) = ∂ze
Tr ln(z−A) = Det(z −A) Tr(z −A)−1
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holds for any matrix A, as long as the expressions on both sides exist, i.e. z is not in the
spectrum of A. Note further, that for a differentiable function f which is non-vanishing
at y

∂x
∣∣
x=y

f(y)
f(x)

= −∂y
∣∣
x=y

f(y)
f(x)

(2.12)

hence we can in (2.11) as well differentiate with respect to z2, up to a change of sign.
The determinants are then expressed in terms of Gaussian integrals over complex

vectors

Det−1

(
z2 −l
lT J

)
=
∫

CM|Er |

dūdu
∫

C2N|V |

dv̄dv e−z2u
†u+u†lv−v†lTu−v†Jv (2.13)

and Grassmann variables, where we refrain from calling those complex,

Det

(
z1 −l
lT J

)
=
∫

GrM|Er |

dρdρ̄
∫

Gr2N|V |

dξdξ̄ ez1ρ
†ρ−ρ†lξ+ξ†lTρ+ξ†Jξ (2.14)

∫
GrM dρdρ̄ = ∂ρM

∣∣∣
0
∂ρ̄M

∣∣∣
0
. . . ∂ρ1

∣∣∣
0
∂ρ̄1

∣∣∣
0
denotes Berezin integration overM Grassmann

variables, which one should actually think of as differentiation. Note that ρ̄ does not
denote complex conjugation but is just another Grassmann variable independent of
ρ. Note further that we have chosen to integrate first with respect to ρ̄ and then
with respect to ρ which leads to the global plus sign in the exponent of the Gaussian
integral. Similarly, we denote the column vector ρ† := (ρ̄1, . . . , ρ̄M ) just for notational
similarity with the ()† symbol, not implying a Hermitian product. However, when a
row and a column vector meet, there is an implicit Euclidean scalar product or sum
over Grassmann wedge products, as usual.

Disorder average

Now we symmetrise and rearrange the expressions from (2.13) and (2.14) involving
the random matrix l (

u†lv − v†lTu− ρ†lξ + ξ†lTρ
)

= Tr(lTB) =
1
2
(
Tr(lTB) + Tr(BTl)

)
with the dyadic product

B = ūvT − uv† − ρ̄ξT − ρξ† (2.15)

and ()T still denoting the usual matrix transpose, i.e.

BT = vu† − v̄uT + ξρ† + ξ̄ρT
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2.2 The resolvent operator

where the minus signs are due to the interchange of Grassmann variables. Now we can
easily carry out the disorder average〈

exp
(
u†lv − v†lTu+ ρ†lξ − ξ†lTρ

)〉
=
∫
L

dl exp
(
−1

2
Tr
(
lTl
)

+ Tr
(
lTB

))

=
∫
L

dl exp

−1
2

Tr

∑
i∈V
e@i

lTπOe lπ
S
i

+ Tr

∑
i∈V
e@i

lTπOe Bπ
S
i




= exp

1
2

Tr

∑
i∈V
e@i

BTπOe Bπ
S
i




(2.16)

where we used the measure (2.6) and one-dimensional Gaussian integration, involving
the invariance of

∫
R e
−x2

dx under a shift of the integration contour by a complex offset.
In the second equality in (2.16) we have made the structure of L, as in (2.2), explicit,
to stress that the integration does not run over all possible matrix elements of l. This
leads to the appearance of the projection operators in the last step. Another way to
see B =

∑
i∈V
e@i

BTπOe Bπ
S
i is directly from (2.15), or (2.17) below, and u =

⊕
e∈Er ue,

v =
⊕

i∈V vi and similarly for the Grassmann variables.
Note that the last step looks like we have shifted l by Grassmann variables. If

the reader feels uncomfortable about this, let us look at any of the one-dimensional
Gaussian integrals in more detail. For b an element of the Grassmann algebra, b =
bC + ξ, where bC is the numerical part and ξ a Grassmann variable, we have∫

R

e−
1
2
x2+bxdx =

∫
R

e−
1
2
x2+bCx(1 + xξ)dx

= e−
1
2

(bC)2(1− bCξ) = e−
1
2
b2

Here we can see Wick’s theorem at work in the second step. As Tr(lTB) contains only
terms with at most one Grassmann variable this is all we need for (2.16). But Wick’s
Theorem of course works to all orders, so the formula generalises also to b containing
an arbitrary number of Grassmann variables.

2.2.3 Superbosonisation

The general idea of superbosonisation is to exploit the symmetries of an integrand
to reduce the number of integration variables. In our case we will use the symme-
try (2.7) to reduce the macroscopicaly large number of integrations to 8 integrations
independent of N , at each site. As we are going to make use of a special version of su-
perbosonisation, which is rightly dubbed ‘orthogonal’ or ‘real’, we will now completely
abandon the ()† symbol and explicitly use ()

T
instead.
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From here on we will make use of some super-mathematics, an introduction to which
can be found e.g. in the book by Efetov [Efe99], chapter 2. Though we use a slightly
different convention than Efetov and write the complex variables upstairs and the
Grassmann variables downstairs in column vectors. We will therefore also briefly state
the definitions of the super-operations used here as they appear. During this work we
will always deal with four by four super-matrices(

A B

C D

)
where the four blocks are two by two each. A is called boson-boson block, D is called
fermion-fermion block and both contain only even elements of the Grassmann algebra.
In this section this will be products of two Grassmann variables for D and A will be
numerical valued, after superbosonisation we will have just numbers in both. B and
C are called fermion-boson and boson-fermion block and contain only odd elements of
the Grassmann algebra. Note that this whole nomenclature does not refer to physical
bosonic or fermionic particles, but to the commuting or anti-commuting nature of the
variables.
To sum up what was just said, one can more concisely demand a super-matrix to

represent a morphism of Z2 graded linear spaces. These morphisms are naturally
(Z2)2 graded where 0 and 1 translate to ‘boson-’ and ‘fermion-’. ⊕ : (Z2)2 → Z2 where
a ⊕ b = a + b mod 2 gives the Z2 grading of super-morphisms, hence the diagonal
blocks are even and the off diagonal ones are odd. For writing super-matrices in a
concise way we introduce the elementary (Z2)2 graded matrices

EBB :=

(
1 0
0 0

)
EFF :=

(
0 0
0 1

)
11|1 :=

(
1 0
0 1

)
We start the derivation by decomposing B again

Be,i := πOe Bπ
S
i =

(
u ū ρ ρ̄

)
e


−v̄T

vT

−ξ̄T

−ξT


i

(2.17)

to rewrite

−BT
e,iBe,i =

(
v −v̄ ξ −ξ̄

)
i
Pe


v̄T

−vT

ξ̄T

ξT


i

where we have introduced the dyadic product

Pe =


ūT

uT

ρ̄T

−ρT


e

(
u ū ρ ρ̄

)
e

=


ūTu ūTū ūTρ ūTρ̄

uTu uTū uTρ uTρ̄

ρ̄Tu ρ̄Tū ρ̄Tρ 0
−ρTu −ρTū 0 ρ̄Tρ


e
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2.2 The resolvent operator

This Pe is the matrix of all O(M) invariants which we can form out of u and ρ and
this is where superbosonisation will take place. Throughout we will use dividers in
super-matrices to make the (Z2)2 grading visible. For further explanation see below.
One should keep in mind that we have M -dimensional objects u and ρ at each edge

and 2N -dimensional objects v and ξ at each vertex. To unclutter the notation we
have pulled the indices i and e denoting the corresponding vertex or edge, outside the
super-objects.
To prepare for the Gaussian integration over v and ξ we conclude rewriting

1
2

TrBT
e,iBe,i = −1

2
ΦT
i

((
h1P

ST
e h2

)⊗ 12N

)
Φi (2.18)

where (
A B

C D

)ST

=

(
AT CT

−BT DT

)
denotes super-transposition. Further we have composed the super-vectors

Φi =


vi

v̄i

ξi

ξ̄i

 ⇒ ΦT
i =

(
vT
i v̄T

i ξT
i ξ̄T

i

)

The reshuffling matrices

h1 =

(
−ı̇σ2 0

0 σ1

)
and h2 =

(
σ3 0
0 12

)

will be of no importance later.
Next we rearrange

−z2ū
T
e ue + z1ρ̄

T
e ρe = −1

2
STr (z̃Pe) (2.19)

where we introduced the four by four super-matrix

z̃ :=

(
z2 12 02

02 z1 12

)

and we are using the super-trace

STr

(
A B

C D

)
= Tr(A)− Tr(D)

for the first time. Note that in general this is a super-function, i.e. it takes values in
the even part of the Grassmann algebra.
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Finally, we also rewrite the parts of the exponent containing the symplectic J from
(2.13) and (2.14).

− v†iJivi + ξ†i Jiξi

= −1
2

Tr
C2N

(
Ji
(
vv̄T − v̄vT + ξξ̄T + ξ̄ξT

)
i

)

= −1
2

Tr
C2N

Ji ( v −v̄ ξ −ξ̄
)
i
Σ3


v̄T

−vT

ξ̄T

ξT


i


= −1

2
ΦT
i

(
(h1ΣST

3 h2)⊗ Ji
)

Φi

(2.20)

Here

Σ3 = 11|1 ⊗ σ3 =

(
σ3 0
0 σ3

)
= ΣST

3

is again a matrix in 2|2-dimensional super-space, whilst the trace runs over the 2N -
dimensional complex space at the corresponding vertex i. All objects J , v and ξ are
understood to live at this vertex.
Now we collect all terms from (2.18), (2.19) and (2.20) to get a formula for the ratio

of determinants (2.11)

Det−1

(
z2 −l
lT J

)
Det

(
z1 −l
lT J

)
=∫

CM|Er |

dūdu
∫

GrM|Er |

dρdρ̄ e−
1
2

STr(z̃
P
e∈Er Pe)

∏
i∈V

∫
C2N

dv̄idvi
∫

Gr2N

dξidξ̄i

exp

(
−1

2

(
ΨT
i

(∑
e@ i

(h1P
ST
e h2)⊗ 12N + (h1ΣST

3 h2)⊗ Ji
)

Ψi

))
(2.21)

Note the explicit tensor product to distinguish the 4 by 4 super-matrix space from the
2N by 2N matrix space at the vertex.

Next we can integrate out the auxiliary variables on the vertices

(2.21) ∝
∫

CM|Er |

dūdu
∫

GrM|Er |

dρdρ̄ e−
1
2

STr(z̃
P
e∈Er Pe)

∏
i∈V

SDet2|2⊗Det2N

(
(h1ΣST

3 h2)⊗ Ji +
∑
e@ i

(h1P
ST
e h2)⊗ 12N

)− 1
2

Again we emphasise the distinct spaces over which we have to take the determinant
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2.2 The resolvent operator

and we use the super-determinant for the first time.

SDet

(
A B

C D

)
= Det(A) Det

(
D − CA−1B

)−1 = Det
(
A−BD−1C

)
Det(D)−1

(2.22)
Note that this is again a super-function with values in the Grassmann algebra, i.e. the
ordinary determinant appearing in the definition is to be understood as a polynomial
in the matrix entries, not as a real valued function. Note further that the Gaussian
super-integral yield the super determinant. This is proven completely analogously to
the ordinary complex or pure Grassmann Gaussian integrals.
One of the products is very simple, writing J = 1N ⊗ ı̇σ2, 12N = 1N ⊗12 and using

the elementary determinant Det(x12 + yı̇σ2) = x2 + y2 = (x− ı̇y)(x+ ı̇y) we get

(2.21) ∝
∫

CM|Er |

dūdu
∫

GrM|Er |

dρdρ̄ e−
1
2

STr(z̃
P
e∈Er Pe)

∏
i∈V

SDet−
N
2

(∑
e@ i

Pe + ı̇Σ3

)(∑
e@ i

Pe − ı̇Σ3

)

Now we also dropped the constant factors SDet(hj) and used SDet(X) = SDet(XST).
This can be simplified further by using the symmetry of P

P = ΓP STΓ−1

with

Γ = EBB ⊗ σ2 + EFF ⊗ ı̇σ2 =

(
σ1 0
0 ı̇σ2

)
Furthermore, ΓΣST

3 Γ−1 = −Σ3, so we get SDet(P − ı̇Σ3) = SDet(P + ı̇Σ3) and finally
we can apply superbosonisation to turn the integrals over u and ρ into matrix super-
integrals over P .
For a comprehensive explanation of the method see [LSZ07] and note that we are

using the version for orthogonal symmetry.6 More precisely we exploit the O(O)
symmetry in (2.7).∫

CM

dūdu
∫

GrM

dρdρ̄ F (P (ue, ūe, ρe, ρ̄e)) ∝
∫

(Gl2|2 /OSp2|2)

dµ(Pe) SDet
M
2 (Pe) F (Pe)

holds for each of the |Er| sets of variables indexed by e. Note that the invariant
measure

dµ(P ) = SDet
q−p−1

2 (P )dP

6For direct comparison with [LSZ07] note that our matrix P is of the form of equation (1.6), with
β = 1 and we are going to use their result (1.13).
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where p is the dimension of the boson-boson and q of the fermion-fermion block,
contributes, in our case, p = q = 2, another SDet−

1
2 (P ) and dP is the flat measure on

the matrix space under consideration. See (2.27) below for an explicit form of dP and
the integration domain Gl /OSp in coordinates in a slightly different representation.
In the end we perform the derivative in (2.11) and end up with

G(z)− ∆ dim
z

∝
∫

(Gl2|2 /OSp2|2)|Er |

(
∏
e∈E

dPe)
∑
e∈E

Tr(Pe,FF )
e−

z
2

P
e STrPe

∏
e∈E SDetP

M−1
2

e∏
i∈V SDetN (

∑
e@i Pe − ı̇Σ3)

where Tr(Pe,FF ) := STr ((EFF ⊗ 12)Pe) denotes the trace over the fermion-fermion
block only. Note that we could as well average the trace over the boson-boson block,
−Tr(Pe,BB), as explained in 2.2.2 above.
We perform a final change of representation to compare with an unpublished variant

of [LSZ06].
P̃ := gPg−1

with

g =
eı̇φ√

2

(
12|2 − ı̇Σ1

)
where φ = −π

4 , Σ1 = 11|1 ⊗ σ1 is similar to Σ3 and 12|2 = 11|1 ⊗ 12. This redefinition
leads to

SDetN (P − ı̇Σ3) = SDetN (P̃ − ı̇Σ2)

with Σ2 = 11|1⊗σ2 whilst SDet and STr are invariant under conjugation. As g ∝ 11|1
is diagonal in super-space, also the traces over the boson-boson or fermion-fermion
block are individually conserved. Or, in other words, g commutes with z̃, therefore
we can still choose whether to average the trace over boson-boson, or fermion-fermion
block. The symmetry of the new P̃ is given by

P̃ ST = γ−1P̃ γ

with

γ = gΓg =

(
12 0
0 σ2

)
(2.23)

From now on we omit˜and use

G(z)− ∆ dim
z

∝
∫
· · ·
∫

(Gl2|2 /OSp2|2)|Er |

(
∏
e∈E

dPe)
∑
e∈E

Tr(Pe,FF )
e−

z
2

P
e STrPe

∏
e∈E SDetP

M−1
2

e∏
i∈V SDetN (

∑
e@i Pe − ı̇Σ2)

(2.24)
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2.2 The resolvent operator

where the new version of Gl2|2 /OSp2|2 is defined by

Gl2|2 /OSp2|2 =
{
P = γP STγ−1

}
(2.25)

The domain of integration is given by the boson-boson block being real, symmetric
and positive and the fermion-fermion block being 12 ⊗U(1) with arbitrary radius for
U(1) ↪→ C. The flat measure can now be explicitly given in coordinates a0, a1, a3 ∈ R
with a2

0 − a2
1 − a2

3 > 0 and b ∈ U(1)

P =

(
a012 + a1σ1 + a3σ3 F

(Fσ2)T b12

)
with F =

(
χ1 χ2

χ3 χ4

)
(2.26)

where χ1, . . . χ4 are independent Grassmann variables and the flat measure is simply

dP = da0da1da3db ∂χ4∂χ3∂χ2∂χ1 (2.27)

For more details about the Riemannian symmetric super-space Gl2|2 /OSp2|2 and
super-integration see section 3.2, appendix A.1 and [Zir98].

In summary of this chapter, a concise form of the resolvent operator for the specified
model of disordered bosons was found in (2.24), which involves only a few integrals
per lattice site. This is the starting point for further development of the theory in the
next chapter.
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3 Field theory

In this chapter we will discuss several approximations and discuss some general aspects
of differential geometry to obtain a continuum field theory in the end. The reasoning
and derivations here will be more physicist style and, from a mathematical point of
view, less rigorous in places. Especially for the super-mathematics in section 3.2, we are
not aware of a comprehensive standard reference where those concepts are explained
and proven in a mathematically rigorous fashion.
First, we will pass from the lattice field theory derived in the last chapter to a

continuum field theory in section 3.1.1, i.e. we send the spacing in between the grains
to 0 whilst the number of grains goes to infinity. This step involves turning from
discrete integrals at each point to field integrals, involving the usual issues about
existence and uniqueness of such a limit. However, those will not be discussed here.
Secondly, we will make use of the large N limit, i.e. we think of having macroscopi-

cally many degrees of freedom per grain. Thanks to superbosonisation, this limit now
enables us to apply a saddle point approximation to our super-integral. In section
3.1.2 we will therefore derive the saddle point equations and investigate which sad-
dle points are amenable. For this part of the discussion, only spatially homogeneous
configurations will be considered.
In section 3.2 we review some facts about the differential geometry of symmetric

spaces to finally phrase the field theory, which this thesis is aiming at, in equation
(3.23) in a coordinate free fashion. On the way we dwell on the decomposition of the
model at the band centre into massless and massive modes in section 3.2.4.

3.1 Approximations

3.1.1 Continuum limit

We start from the super-matrix model living on the edges Er of our graph (2.24) and
constrain our considerations to the hyper-cubic lattice. To start with a well defined
model, we think of a finite lattice Λ ⊂ Zd with periodic boundary conditions, but of
course we will be interested in the Λ → Zd limit, as our system should stay of finite
physical size, whilst the lattice spacing is sent to 0.
Such a continuum limit is possible if P : Zd → Gl2,2 /OSp2,2 is sufficiently slowly

varying on the scale of the lattice spacing, which we call 2e. I.e. we embed the hyper
cubic lattice Zd ↪→ Rd, identifying a vertex with the corresponding point in real space
via

Zd 3 v = (z1, . . . , zd) 7→ x(v) = (2e z1, . . . , 2e zd) ∈ Rd
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3 Field theory

Further we specify the position of the edges by interpolating to the centre point in
between the bounding vertices

e = (v1, v2) 7→ x(e) =
1
2

(x(v1) + x(v2)) ∈ Rd

In particular the extra loops (i, i) ∈ Er are mapped to the position of their hosting
vertices (v, v) 7→ x(v).
The crucial part of the continuum limit is lifting P to a function P : Rd →

Gl2,2 /OSp2,2. We denote both, the original function P on the lattice and its lift
to a continuous function on Rd by the same symbol. This should not cause confu-
sion, as we will stress which one is meant by using an index for the argument of the
lattice function and brackets for the argument of the continuation. The smoothness
assumption above can now be made more precise by demanding Pe to be sufficiently
slow varying such that P (x) exists as a differentiable function and in the limit e→ 0
the choice of interpolation does not matter.
Turning P into a function means turning the integrals over Gl2|2 /OSp2|2 at each

edge into a field integral∫
· · ·
∫

(Gl2|2 /OSp2|2)|Er |

(∏
e∈E

dPe

)
7−→

∫
Rd→Gl2|2 /OSp2|2

DP =:
∫

DP

As usual, this step should, from a rigorous perspective, be thought of as being
purely symbolic. But, as long as we carry out only Gaussian integrals in the end, we
are confident that the symbolic notation provides good insight.
The next step in the continuum limit is rewriting the lattice sums as integrals. For

any smooth function f : Gl2|2 /OSp2|2 → R we write

∑
e∈Er

f(Pe) =
1
2

(∑
v∈V

(
f(P(v,v)) +

∑
e@ v

f(Pe)

))

→
∫
Rd

ddx
(2e)d

(
(d+ 1)f(P (x)) +

e2

2
∇2(f(P (x)) + . . .)

)

= (d+ 1)
∫
Rd

ddx
(2e)d

f(P (x))

where the ellipsis contains further derivatives of f(P (x)), ∇2 :=
∑d

i=1 ∂
2
xi

and in the
last step we have ignored boundary terms. Further we used∑

v∈V
→ |V |

Vol

∫
[0,2Le]d

ddx→ 1
(2e)d

∫
Rd

ddx

Note that these sums appear in the action. Therefore the prefactors are of cru-
cial interest, while we are rather sloppy with global factors, as in the field integral
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3.1 Approximations

∫
DP , because those can easily be restored by demanding the resulting integrals to be

normalised, see equation (2.11).
The point how to treat the term

∑
e@ v Pe which appears inside the super-determinant

in the denominator is a bit more subtle. Although Gl2|2 /OSp2|2 is defined by a linear
relation P = γP STγ−1 inside Gl2|2, the real form over which we are integrating is not
a vector space, but a positive cone in the boson-boson block and U(1) in the fermion-
fermion block. Hence, to make sense out of a derivative of P , we have to drop these
constraints for the real form. Then we can write∑

e@ v

Pe → (2d+ 1)P (x(v)) + e2∇2
∣∣
x(v)

P +O(e2∇4)

If the reader feels uncomfortable about this, the right-hand side may also be understood
as a symbolical limit of the left hand side for small e. For a more precise discussion of
covariant derivatives in the non linear setting see section 3.2.5.
Finally we use some more super-mathematics in rewriting

SDet(
∏
i

Xi) = e
P
i STr(ln(Xi))

Hence we obtain the continuum version of (2.24)

∂z1

∣∣∣
z1=z2

∫
DP

(
e

1
2N

d+1
2d+1

STr(z̃P ) SDet(P )α

SDet(P + e2

2d+1∇2P − ı̇Σ2)

)N
(3.1)

which can be written as follows

G(z)− ∆ dim
z
∝
∫

DP

 ∫
Rd

ddx
(2e)d

Tr(PFF (x))

 e−N |V |S[P ]

with the action

S[P ] =
1

Vol

∫
Rd

ddxL(P (x)) (3.2a)

and the Lagrangian

L(P ) =
z

2N
d+ 1
2d+ 1

STr(P )−
(
α STr ln(P )− STr ln(P +

e2

2d+ 1
∇2P − ı̇Σ2)

)
(3.2b)

where we did not write terms of order O(e4∇4), scaled P by a factor of 2d + 1 and
used the same parameter as in (2.4)

α =
M − 1

2N
(d+ 1)
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3 Field theory

3.1.2 Saddle point equations

In this section and the following we investigate for which parameters α and z the
integral determining the resolvent operator can be treated within the saddle point
method, which becomes exact in the limit N →∞.
Assuming the saddle point configuration to be spatially homogeneous, i.e. PS(x) ≡

PS ∈ Gl2|2 /OSp2|2, we introduce coordinates on the skeleton

P =

(
a01 + a1σ1 + a3σ3 0

0 b1

)

The Grassmann part is unimportant for the saddle point discussion and will be in-
cluded later.
In section 3.1.4 we will see that for slowly varying P , going from a constant to a

spatially varying field increases the action, i.e. the saddle points are not degenerate
in this direction. However, even if the saddle point is stable against non-constant
variations, there might in general also be spatially non-constant saddle points. If
those are separated from the constant ones by a region, where the action takes larger
values, they will not be detected. We can think of solitons or any kind of topologically
stabilised field configurations, known to be of great importance in other field theories.
The possibility of such saddle points is not investigated here.
For a short review of the saddle point method see section 4.3.1. As shown above in

equation (3.2), restricting to constant fields means that we consider an integrand of
the form

F [P ]
(
e−ẑ STr(P ) SDet(P )α

SDet(P − iΣ2)

)N |V |
=: F [P ]e−N |V | S[P ]

with ẑ := (d+1)
2(2d+1)

z
N and as before α = (d+1)M

2N +O ( 1
N

)
. Furthermore we have carried

out the integration in the action, i.e. summed over V .
Remember, we have α ≥ d+ 1 for the model which almost surely couples all neigh-

bouring modes and α ≥ 1 for almost surely not having (macroscopically many) zero
modes. But in general we allow for any α > 0.1

Bulk scaling

ẑ will be considered to be O(1) in the bulk scaling limit.

S[P ] = 2ẑ(a0 − b) + 2α ln(b)− ln(b2 + 1)

+ ln(a2
0 − a2

1 − a2
3 + 1)− α ln(a2

0 − a2
1 − a2

3)
(3.3)

1In this section α will always be specified only up to terms of the order O
`

1
N

´
, which are irrelevant

for the saddle point discussion.
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3.1 Approximations

Now we look for saddle points, i.e. critical points of the action functional

dS =
(

2ẑ +
2a0

a2
0 + 1− a2

1 − a2
3

− α 2a0

a2
0 − a2

1 − a2
3

)
da0

+
(
−2ẑ +

2α
b
− 2b
b2 + 1

)
db

+
(
α

2a1

a2
0 − a2

1 − a2
3

− 2a1

a2
0 + 1− a2

1 − a2
3

)
da1

+
(
α

2a3

a2
0 − a2

1 − a2
3

− 2a3

a2
0 + 1− a2

1 − a2
3

)
da3

= 0

⇔ (a1 = 0 ∧ a3 = 0) ∨
(
α 6= 1 ∧ a2

0 − a2
1 − a2

3 = − α

α− 1

)
∧ ẑ = a0

(α− 1)(a2
0 − a2

1 − a2
3) + α

(a2
0 − a2

1 − a2
3)(a2

0 + 1− a2
1 − a2

3)
=

(α− 1)b2 + α

b(b2 + 1)

(3.4)

⇒ (a1 = 0 ∧ a3 = 0) ∨ (ẑ = 0 ∧ α 6= 1)

For the bulk scaling we have ẑ 6= 0⇒ a1 = a3 = 0.

⇒ (α− 1)a2
0 + α

a0(a2
0 + 1)

= ẑ =
(α− 1)b2 + α

b(b2 + 1)
(3.5)

Edge scaling

In edge scaling the action (3.3) looks the same, except for ẑ now being considered as
O ( 1

N

)
. Hence it can be set to 0. From (3.4) we see that now a0, a1 and a3 are all

equally important and the new saddle point equations are

b2 = − α

α− 1
= a2

0 − a2
1 − a2

3 (3.6)

and we have saddle points (away from infinity) only if α 6= 1 And, more importantly,
we now have to deal with a two-dimensional manifold of saddle points.

3.1.3 Action landscape

For general energy parameter ẑ, none of the possible saddle point configurations lies
on the integration contour. So we need to take a close look at the landscape of the
action functional in order to decide which solutions of the saddle point equations are
amenable for a detour. Further we need to make sure that the saddle points, even
if they lie on the original contour, mark globally minimal values of the action along
this contour. Not surprisingly, we find qualitatively different behaviour for α > 1 and
α < 1.
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3 Field theory

No zero modes α ≥ 1

The saddle point equations for the bulk (3.5) are polynomials of third order and the
three solutions are distinct, hence we have 9 saddle point candidates. In order to obtain
the density of states we will be interested in ẑ = ı̇ω̂+ε where ε is small, real and positive
to ensure convergence and ω̂ = (d+1)

2(2d+1)
ω
N is the rescaled (real) characteristic frequency

in focus. Since the spectrum is symmetric with respect to ω̂ 7→ −ω̂, we will restrict
the discussion to ω̂ ≥ 0.
To investigate the behaviour of the action functional, we fix b at one of its saddle

point values and plot

C→ R
a0 7→ < (S[a0, bSaddle])

We could also plot the action vice versa for fixed a0 and varying b, but we observe
S[a0, b] = −S[b, a0] once we have set a1 and a3 to 0. Furthermore, since the action
decouples nicely, inserting different bSaddle will only lead to a constant shift. Hence we
only need to look at one set of three saddle points to understand the full picture.
First we take a look at the model without zero modes, α > 1. This holds in particular

for α = d+ 1 in d > 0 dimension. Here we start with at the band centre ω̂ → 0.2 The
action is depicted in Figure 3.1.
There is a pair of solutions which are complex conjugates of each other for real z

and tend towards ±ı̇
√

α
α−1 as z goes to 0. However, the integration contour for a0

has to start at 0 and run towards +∞. Now, for small ε the area where the action is
larger than the saddle point value is separated into disjoint regions around 0 and ∞.
Hence the contour for a0 cannot be deformed as to run through those saddle points
such that it obtains its global minimum at one of those.
For b the landscape looks similar up to a global sign change of the action and the

original contour now being U1 ' S1 ↪→ C. Note that the only relevant singularity now
is at the origin, as the action going to +∞ just means that the integrand runs through
0. Only S → −∞ actually marks a pole. Hence the radius of S1 does not matter,
as it should generally be the case for the compact real form of the fermion-fermion
part after superbosonisation. Again we cannot deform the contour so as to obtain a
global minimum at one of the afore mentioned saddle points. Looking at the left part
of Figure 3.1 we see that the contour has to run through the saddle points roughly
parallel to the imaginary axis, after which one ends up in a small compact region and
the contour cannot be closed without crossing the separatrix S[b] = SSaddle again.
The third solution is real for real ẑ and goes to ∞ for ẑ → 0. This solution actually

lies on the contour for a0 in the ω̂ = 0 case and also for general ẑ = iω+ε we can deform
the contours for both, a0 and b, to run through this saddle point, whilst respecting the
global constraints. This will in the following be examined more carefully. By a simple
coordinate change, a0 7→ a−1

0 , we get a better view on the important separatrix and
2Keep in mind that this is still the bulk picture, i.e. we are looking at ω → 0 at an O(N) scale. The
fine scale behaviour will be investigated later.
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Figure 3.1: Here we plot the a0 ∈ C plane and in there the separatrix {a0 |
<(S[a0, bs]) = <(S[as, bs])} for each of the three saddle points as. Re-
gions, where the action takes larger values than at the saddle point, are
shown in dark gray, i.e. integration contour must run only through these.
A possible contour for the a0 integration is depicted as the dashed path .
The singularities where the action goes to±∞ are marked with black/white
dots. For b 7→ <(S[a0,Saddle, b]) we get the same picture with an overall sign
change and hence the roles of the dark and light areas and dots swapped.
A possible contour for b is depicted as the solid path. For this picture we
chose α = 2, ε = 0.3 for having the saddle point in the real axis relatively
close by and ω̂ = 0, hence the other two saddle points lie on the same level.

whether it is possible to join 0 and∞ crossing it exactly once at the saddle. Note that
da−1

0 = a−2
0 da0 leads only to an unimportant O ( 1

N

)
term in the action, if we change

coordinates right at the level of integration. So we can as well perform the inversion
of the coordinate system only at the end when plotting the action landscape.

In figure 3.3 we observe that, at some ω̂ ∈ O(1), one of the two so far unimportant
saddle points sinks down to the same level as the relevant saddle point. Here the
separatrix opens towards +∞. Hence, judging from the shape of the separatrix alone,
it would become possible to run the contour for a0 through this saddle point. But a0 7→
S[a0, bSaddle] goes to −∞ at the singularities at ±ı̇, i.e. these are indeed singularities of
the ratio of super-determinants and must not be crossed when deforming the contour.
Thus the two saddle points, which were forbidden before, stay out of reach. For the
integration over b, the qualitative picture stays the same as for ω̂ = 0 and we still have
a unique feasible saddle point, which stays finite for finite ω̂, even if ε→ 0.

For α = 1 and ω̂ 6= 0 the picture still looks qualitatively the same. The only
difference is that now all saddle points escape to ∞.

So for α ≥ 1 there is a unique saddle point, on which the integral localises. It is
given by a0 = b =: s, where the exact expression for s is given in the Appendix, (A.3).
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Figure 3.2: Same picture as Figure 3.1 but in an inverted coordinate system. Here the
action diverges at the origin to ±∞ depending on whether it is approached
from the dark or bright region. α = 2, ω̂ = 0, ε = 0.3.
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Figure 3.3: α = 2, ε = 0.025, ω̂ = 0.5 in inverted coordinates.

It is the solution with the largest real part of (3.7b).

PS = s

(
1 0
0 1

)
(3.7a)

ẑ =
(α− 1)s2 + α

s(s2 + 1)
(3.7b)

The saddle point value of the action is

S[PS ] = 0

In equation (3.6) we saw that we still have two saddle points for the edge scaling case,
ẑ = 0, if α 6= 1. But as was just investigated as the ẑ → 0 limit, we can not deform
the integration contour to run through these saddle points due to global constraints.
Hence the saddle point method is not applicable at the centre of the spectrum for
α ≥ 1. In [LSZ06] there is a complete discussion of the α = 1 case. This is the only
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3.1 Approximations

value for α where also the unaccessible saddle points escape to infinity and the saddle
point equations do not have any solutions for ẑ = 0. Hence the edge scaling limit with
ẑ = 0 can be treated with the saddle point method only for α < 1, the model with a
macroscopic number of zero modes.
Before we continue with the α < 1 case, we note that for large values of ω̂ we still

have a feasible saddle point, but above a critical value it lies on the imaginary axis for
ε→ 0. In section 4 below we will see that this means that the density of states is zero
and the critical value of ω, i.e. the position of the spectral edge, will be calculated.
For a picture of the action landscape at large ω see figure 3.4.
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Figure 3.4: Relevant saddle point for α = 2, ε = 0.01, ω̂ = 5 in inverted coordinates.

Macroscopically many zero modes α < 1

For α < 1 and ω̂ � ε the picture does not change much compared to α > 1, as can be
seen by comparing Figure 3.5 and 3.3. For ε→ 0 one saddle point escapes to ı̇∞ while
the other two stay finite. As above there is a unique saddle point to run through and
still it is the one with the largest real part.
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Figure 3.5: α = 0.5, ε = 0.1, ω̂ = 0.5 in inverted coordinates.
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For ω̂ = 0, i.e. real ẑ 6= 0, and ε small all solutions become real and two of them go
to ±

√
α

1−α as ẑ → 0, whilst the third one runs to −∞. See figure 3.6 for ε > 0 and
3.7 for the ẑ = 0 case, which can now be handled.
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Figure 3.6: α = 0.5, ε = 0.025, ω̂ = 0 in inverted coordinates.
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Figure 3.7: α = 0.5, ẑ = 0 in inverted coordinates.

Again, judging from the shape of each separatrix, we could deform the integration
contour to run through either of the two close to real saddle points, which survive the
ẑ → 0 limit without disappearing to ∞. But as before only the saddle point with the
largest real part is relevant for the a0 contour, due to the singularities.
For ẑ = 0 we encounter a new phenomenon. Now both saddle points, ±

√
α

1−α , need
to be taken into account for the b contour. This is the same for all values 0 < α < 1.

Edge scaling

By sending ẑ → 0 and replacing a2
0 by a2

0−a2
1−a2

3 we can apply the above investigation
of the action landscape also to the edge scaling case. We conclude that the manifold of
solutions of the edge saddle point equations 3.1.2 is feasible for localising the integral
if and only if α < 1.
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3.1 Approximations

Note that the boson-boson block of P is constrained to positive matrices, which in
particular means Det(PBB) = a2

0−a2
1−a2

3 > 0, hence the integration runs through the
saddle point manifold only for α < 1. But it takes the considerations above to make
sure that it is impossible to deform the integration contour such as to run through the
solution manifold in the case α > 1. This would correspond to localising at the the
imaginary saddle points, which was found to be impossible in figure 3.1. So for α ≥ 1
we cannot apply saddle point analysis to the edge scaling limit. In fact we will show
in section 4 below that ω = 0 lies within a spectral gap for α > 1, hence trying to look
at some fine scale behaviour does not make sense here. The α = 1 case is singular and
discussed in detail in [LSZ06], as mentioned already.
For α < 1, however, we found that

a0 = +
√

α

1− α + a2
1 + a2

3

is the relevant saddle point for the boson-boson block. Again this is as expected, as
the other possible saddle point manifold, a0 = −√. . ., would correspond to a negative
definite matrix. In the discussion of the action landscape above we saw that this saddle
point is prohibited due to the singularities. For the fermion-fermion block on the other
hand, both b = ±

√
α

1−α need to be taken into account, see figure 3.7.

3.1.4 Fluctuations

Now that we have found the relevant saddle points, we will turn our attention to
fluctuations around those. In order to complete the saddle point method, we need to
expand the action to second order and integrate out the fluctuations, which leads to
a functional determinant.
Of course, we cannot expect fluctuations to be spatially homogeneous so we must

take the nearest neighbour interactions back into consideration. Recall the form of the
Lagrangian (3.2b), which was derived within the continuum limit above. In this section
we will write out ∇2 =

∑d
i=1 ∂

2
xi

but the
∑d

i=1 symbol will be omitted throughout and
summation over indices that appear twice is understood.

Bulk scaling

We decompose the field P into its saddle point value and fluctuations

P (x) = PS + δP (x)

where PS = s1 is given by (3.7). The situation with two saddle points, ẑ ∈ O ( 1
N

)
and α < 1, will be treated separately below.
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We start by expanding the logarithms in (3.2b) to second order in the fluctuations

STr ln
(
PS + δP (x) +

e2

2d+ 1
∂2
xiδP (x)− iΣ2

)
= STr ln (PS − iΣ2) (3.8a)

+ STr
(

(PS − iΣ2)−1

(
δP (x) +

e2

2d+ 1
∂2
xiδP (x)

))
(3.8b)

− 1
2

STr
(

(PS − iΣ2)−1

(
δP (x) +

e2

2d+ 1
∂2
xiδP (x)

))2

(3.8c)

+O(δP )3

The part without derivatives of (3.8b) goes into the saddle point equation and the rest
is a total derivative. Line (3.8a) goes into the saddle point value of the action. Using
the saddle point (3.7) and writing the fluctuations as 3

δP =

(
δa01 + δa1σ1 + δa3σ3 0

0 ı̇δb1

)

we obtain the quadratic part of the effective action for the fluctuations

−(s2 + 1)2(3.8c) =(s2 + 1)

((
δa1 +

e2

2d+ 1
∂2
xiδa1

)2

+
(
δa3 +

e2

2d+ 1
∂2
xiδa3

)2
)

+ (s2 − 1)

((
δb+

e2

2d+ 1
∂2
xiδb

)2

+
(
δa0 +

e2

2d+ 1
∂2
xiδa0

)2
)

+O(e∂)4

The logarithm of the numerator is more easily expanded

STr ln (PS + δP (x))
= STr ln (PS) (3.9a)

+ STr
(
P−1
S δP (x)

)
(3.9b)

− 1
2

STr
(
P−1
S δP (x)

)2 (3.9c)

+O(δP )3

Again (3.9b) goes into the saddle point equation and (3.9a) into the saddle point value.
The contribution of the fluctuation therefore reads

(3.9c) = −a
2
0 + a2

1 + a2
3 + b2

s2

3Note that we have rotated δb by a factor ı̇, such that δb ∈ R is now the right direction to run
through the saddle point on the real axis.
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3.1 Approximations

Inserting everything into the action (3.2a) we get

S[P ] = S[PS ] +
1

Vol

∫
Rd

ddx L(2) +O(δP )3 +O(e∂)4

with

L(2) =
∣∣∣∣(α− 1)s2 + α

s2(s2 + 1)

∣∣∣∣ ((δa1)2 + (δa3)2
)

+
∣∣∣∣(α− 1)s4 + (2α+ 1)s2 + α

s2(s2 + 1)2

∣∣∣∣ ((δa0)2 + (δb)2)

+
1

s2 + 1
2e2

2d+ 1
eı̇ϕ1

(
(∂xiδa1)2 + (∂xiδa3)2

+
s2 − 1
s2 + 1

eı̇(ϕ2−ϕ1)
(

(∂xiδa0)2 + (∂xiδb)
2
))

(3.10)

If the reader prefers a more symmetric expression, note (α−1)s4+(2α−1)s2+α
s2(s2+1)2

= (α−1)s2+α
s2(s2+1)

.
The absolute value is due to the method of steepest decent. We should run the inte-
gration contour through the saddle point in such a direction that the real part of the
coefficients of the second order expansion is maximal. In other words, the complex
phases eı̇ϕj of the fluctuations ai and b have to be chosen such that they exactly can-
cel the phases of the coefficients. This is most conveniently expressed by choosing the
coordinates to be real valued and introducing the above absolute value.
For the derivatives, however, we need to take these phases into account writing

ϕ1 := − arg
(

(α− 1)s2 + α

s2(s2 + 1)

)
ϕ2 := − arg

(
(α− 1)s4 + (2α+ 1)s2 + α

s2(s2 + 1)2

) (3.11)

Those phases are discussed below in section 3.1.5.
Further we note that the saddle point value of the action is exactly zero, S[PS ] = 0,

because the saddle point can be written as 11|1⊗12, where the important point is that
it is proportional to 11|1 in super-space. The same holds for Σ2, hence STr(PS) = 0
and SDet(PS) = 1 = SDet(PS− ı̇Σ2). Hence the value of the integral is to lowest order
in 1

N given by the integrand evaluated at the saddle point divided by the fluctuation
determinant. This will be carried out in chapter 4.

Edge scaling

Now we have a look at the situation α < 1, ẑ ∈ O ( 1
N

)
. From the perspective of

fluctuations, not much changes at the two saddle points where a1 = a3 = 0 and
b = ±s. Already in figure 3.7 we can see that the action landscape for ẑ → 0 becomes
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symmetric upon inversion at the imaginary axis. The only thing that changes is the
direction of the integration contour for the fluctuations δb, but, not surprisingly, the
bilinear form L(2) is invariant under δb 7→ −δb. Of course, the value of the action at
the saddle point does change, as described in section 3.1.3 above.
However, the saddle point manifold now being invariant under the action of ÕSp2|2

is more important. For the boson-boson part, the saddle point manifold is invariant
under an Sl(R2) action and in fact given by

{g(s1)gT | g ∈ Sl(R2)} ' Sl(R2)/SO(2)

In coordinates this means a2
0 − a2

1 − a2
3 = b2 = α

1−α =: s2, as calculated above. More
precisely, our investigations in section 3.1.3 showed that a0 = +

√
s2 + a2

1 + a2
3 is the

relevant part of the saddle point manifold. Hence one should change coordinates and
use Det(PBB) = a2

0 − a2
1 − a2

3 as the coordinate that still gets localised and treat the
other two dimensions separately. This is done in chapter 4 where we will see that
in fact for the edge scaling it is not sufficient to take only the contribution from the
fluctuation determinant into account.

3.1.5 Consistency check

Now it is time to reconsider some assumptions that were made during the derivation
of the effective action. We took care about the masses m2

i of a2
i being positive when

analysing the action landscape of constant fields and we disregarded saddle points
where this condition could not be fulfilled.
Now one might worry about the coefficients ci of the kinetic terms

∑
j (∂xjδai)

2. In
fact, by numerical inspection, we find that for all parameters α > 0 and ẑ = ε+ ı̇ω̂ 6= 0
at least one pair of coefficients have a negative real part. Now, if all modes are massive,
i.e. ω̂ 6= 0, a negative kinetic term is of no concern, as long as the fields are slowly
varying. By the usual Fourier transform δai(x) =

∑
k δai,ke

ı̇kx for finite volume, or
with

∑
k →

∫
k for infinite volume, we can diagonalise the bilinear functional L(2) and

get
m2
i (δai,0)2 +

∑
k 6=0

(m2
i + cik

2)δai,kδai,−k

Hence, for large positive m2 and small k, even a negative real part of ci will not lead
to negative eigenvalues of the Hessian of the action. Consequently the saddle point is
also stable against slow fluctuations. And if large momentum modes were important,
we would have to reconsider the derivation of the effective action, where terms of order
p4 were ignored from the beginning, and we would even have to question whether a
continuum limit makes sense in the first place.
Furthermore, we are actually free to choose an individual phase for each mode δai,k

by which we can compensate the phase of m2
i + cik

2.
Now, for ω̂ → 0 the masses m1 = m3 go to 0. In the edge scaling, where those

masses are zero from the outset, the phase ϕ1 of these modes is not determined by
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3.2 Coordinate free description

(3.11) and can be freely chosen such as to make c1 = c3 positive. Hence the kinetic
terms are of no concern here, either.
Finally we can also smoothly connect the bulk with the edge scaling by noting that

the kinetic coefficients c1 = c3 in fact become positive for ω̂ → 0. Here s →
√

α
1−α ∈

R+ and ẑ ∈ R+ and hence

<(c1) = <(c3) = <
(

1
s2 + 1

2e2

2d+ 1
eı̇ϕ1

)
∈ <

(
s¯̂z

|ẑ|2(s2 + 1)

)
R+

=
ε

|z|2
s

s2 + 1
R+ ⊂ R+

Note that the seemingly divergent factor 1
z in fact comes from the angle ϕ1 which

becomes undetermined for ẑ = 0.
In conclusion, we found that the Hessian of the action is positive for all α < 1 and

all z, in bulk as well as in edge scaling.

3.2 Coordinate free description

To get a better understanding of the field theory, we need to take a step back and
rephrase everything in a coordinate free fashion. Therefore we will first have a closer
look at the relevant structures, namely the super-groups forming and acting on Gl2|2 /OSp2|2
and then describe the objects from which a super field theory involving those groups
can be built.
Note, however, that we will often use results which are well known for ordinary

spaces in our super context without proof of applicability. As explained in section
3.2.1 below, we have been and will be dealing only with so called split super-spaces.
For such it should be possible to generalise the relevant theorems about ordinary
spaces. But we will not do this here, therefore this section is from a mathematical
point of view the least rigorous part of this thesis.

3.2.1 Symmetric super-spaces

In this work we understand a Riemannian super-space in the sense of [Zir98]. I.e. as a
pair (M,Mr) whereM is a super-manifold of complex super- (or graded) dimension
(p|q). The underlying ordinary complex manifold of complex dimension p(also called
skeleton or support) is denoted by Ms or just M and Mr ⊂ M is a sub manifold of
real dimension p. Mr has to be chosen such that the super-geometry ofM restricted
to Mr is Riemannian. A super-manifold is locally modelled by C∞(Cp)⊗∧(Cq), the
algebra of analytic functions with values in the Grassmann algebra. But we will not
go into details about the global structure of the most general super-manifold, because
here we are in the fortunate position to consider only split super-manifolds, which is
to say that the super-functions can be understood as sections of the exterior bundle
of some vector bundleM = Γ (

∧
E) where E is a vector bundle over M of dimension

q. This means that we do not have to dwell on the sheaf theory of super-functions.
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We have already introduced integration over Cp|q in section 2.2.2 and over split
super-spaces with respect to a given system of coordinates in section 2.2.3. There we
have already seen how a super-differential operator, like dP , of rank (0|q) with values
in the (real) p forms on Mr is used to define the integral of a super function f onM
as ∫

M
f =

∫
Mr

dP (f)

What was not mentioned, yet, is the transformation behaviour of dP under coordinate
change. For two sets of coordinates, (xi, ξi) and (yi, χi) we do unfortunately not get
a coordinate free definition of integration if we take only the Berezinian, which is the
super-Jacobian, into account.

dy1 ∧ . . . ∧ dyp ⊗ ∂ξ1 . . . ∂ξq
= Ber

(
(yi, ξi)
(xi, χi)

)
dx1 ∧ . . . ∧ dxp ⊗ ∂χ1 . . . ∂χq + α

(
(yi, ξi)
(xi, χi)

)
with

Ber
(

(yi, ξi)
(xi, χi)

)
:= SDet

 ∂y
∂x

∂y
∂χ

∂ξ
∂x

∂ξ
∂χ


and α = 0 might not give the same value of the integral if the even coordinates are
shifted by nilpotents, ∂y∂χ 6= 0. The extra term α is called anomaly or boundary term,
since it takes values in the exact p forms. For more details see [Zir98] and references
therein.

3.2.2 Super-groups

In this section we will always start from the big super-group Gl2|2 of even isomorphisms
of a graded (2|2)-dimensional complex vector space C2|2. To avoid cryptic notation we
will not use a calligraphic font for super-groups, but indicate the skeleton by an index
s.
One may introduce global coordinates and think of Gl2|2 as the set of invertible 4 by

4 matrices with matrix entries in the Grassmann algebra Gr8 =
∧

C8. In fact, in a very
simple situation like the current one, when the super-manifold is not only split, but
also the skeleton is an open subset of Cn, it is perfectly sensible to give a super-space in
terms of coordinate functions. Anyway, Gl2|2 is given by C∞(Gl(C2)⊕Gl(C2))⊗Gr8

and hence is (8|8)-dimensional. The boson-boson block and fermion-fermion block
contain only even elements of the Grassmann algebra, while the fermion-boson and
boson-fermion block contain only odd elements, which is just another way of saying
that Gl2|2 consists of even morphisms.
Note that the inverse of a super-matrix is defined, like all super-functions, in terms of

an expansion in the Grassmann variables, which necessarily terminates at the highest
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3.2 Coordinate free description

order, given by the product of all Grassmann generators. Hence, once a super-matrix
g = A+B is split into numerical part A and nilpotent part B, the sum

(A+B)−1 = A−1
∑
i=0

(−BA−1)i (3.12)

terminates. This is equivalent to solving the system of linear equations gg−1 = 1

for g−1. The solution exists, i.e. g is invertible, if and only if both boson-boson and
fermion-fermion block are invertible. From the definition of the super-determinant
(2.22) or directly from (3.12) we see that in fact a super matrix is invertible if and
only if the numerical part is. This confirms that the skeleton of Gl2|2 is indeed Gl(C2)×
Gl(C2).
The geometry of Glp|q is defined by the invariant bilinear super-trace form (X,Y ) 7→

STr(XY ) which is a function on the super Lie algebra gl2|2 of Gl2|2. This trace form
restricts to a multiple of the Killing form of the super-subgroups of Glp|q whenever the
Killing form is non-degenerate. Otherwise it is preferable to use STr instead of the
Killing form.
This means that

(
Gl2|2

)
r

=
(
Gl(C2)/U(2)

)×U(2) is a real form of Gl2|2 as Tr(X2) ≥
0 for X ∈ T[U(2)](Gl(C2)/U(2)) = {X = X†} Hermitian and −Tr(Y 2) ≥ 0 for
Y ∈ u(2) = {Y = −Y †} anti-Hermitian. Throughout we will denote the tangent space
of M at p by TpM . Further for H super-subgroup of Gl2|2 we will take Hr to be a
Riemannian submanifold of

(
Gl2|2

)
r
.

3.2.3 Involutions and subgroups

A good way to define the Lie subgroups appearing in this section is as the fixed point
sets of involutions, i.e. Lie group automorphisms that square to the identity. In the
definition of the symmetric super-space Gl2|2 /OSp2|2 in (2.25) we have already seen
one such involution at work. Σ2 = 11|1 ⊗ σ2 maps γ = EBB ⊗ 12 + EFF ⊗ σ2 from
(2.23) to another important element of Gl2|2, namely

γ̃ := Σ2γ = EBB ⊗ σ2 + EFF ⊗ 12

By conjugation with these matrices we have the following two involutions of Gl2|2:

θ : Gl2|2 → Gl2|2
g 7→ γ(g−1)STγ−1

fixes OSp2|2 ↪→ Gl2|2 and

θ̃ : Gl2|2 → Gl2|2
g 7→ γ̃(g−1)STγ̃−1

fixes ÕSp2|2 ↪→ Gl2|2 which is in the complex picture just another embedding of
OSp2|2 ↪→ Gl2|2. For more details about the similarities and differences of those two
groups see appendix A.1.3.
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An important point to notice is that (gST)ST = SgS−1 6= g with S = (EBB ⊗
1 − EFF ⊗ 1) = S−1 being the super-parity. Therefore, a mapping of type g 7→
h(g−1)STh−1 for h ∈ Gl is an involution if and only if ∀g∈Gl(hgSTh−1)ST = h−1gh.
This condition is satisfied, e.g. for h = EBB ⊗ A + EFF ⊗ B with A ∈ O(2) and
B−1 = −BT ‘skew orthogonal’, or vice versa. h ∈ {γ, γ̃,Γ, . . .} are all of this type.
Whether A or B is skew determines which sector of the real form of the fixed group is
enforced to be compact by the fixed point condition.
Now if we have a Lie super-group, like G = Gl2|2 and a Lie super-subgroup, like
H = OSp2|2, given as the fixed point set of an involution Θ and if we furthermore
have a super Riemannian structure on G and Θ is an isometry of this structure, then
the quotient space G/H ' {g = Θ(g−1)} is a Riemannian symmetric super-space.
In [Hel62], chapter IV, in particular § 3, one can find more details about ordinary
Riemannian symmetric spaces. For Riemannian symmetric super-spaces see [Zir98].
The important point is that we demand the real form (G/H)r = Gr/Hr to be a
Riemannian symmetric space with respect to the induced geometry. For more details
about this geometry see the next section 3.2.5. Throughout we will denote elements
of coset spaces [g] ∈ G/H by [g] := gH := {gh | h ∈ H}.
Further one gets a transitive action of the big group G on the symmetric space G/H

by twisted conjugation. In our case Gl2|2 acts on

Gl2|2 /OSp2|2 =
{
P = θ(P )−1

}
=
{
g1θ(g)−1 | g ∈ Gl2|2

}
by twisted conjugation P 7→ ADθ(g)P := gPθ(g−1). The last equality is known as the
Cartan embedding of Gl2|2 /OSp2|2 ↪→ Gl2|2. Throughout we will denote the action
by twisted conjugation of the form

ADΘ(h)g := hgΘ(h−1)

by writing the twisting involution Θ as an upper index and AD for the action on the
group or symmetric space similar to Ad for the action on the Lie algebra.
Now, why did we introduce ÕSp? We have seen in section 3.1 that there is an

important difference in between the edge scaling and the bulk scaling limit. Or in
other words, for z → 0 something in the model changes qualitatively. In fact this can
be seen directly from the action. There is an exact symmetry of the denominator

SDet(P − ı̇Σ2) = SDet(ADθ(h−1)P − ı̇Σ2)

⇔ ADθ(h)Σ2 = Σ2

⇔ hγ̃h−1 = γ̃

⇔ h ∈ ÕSp

and the numerator SDet(P ) is also invariant under ADθ(h) for h ∈ OSp2|2. Only the
super-trace is not invariant under twisted conjugation, so the term z STr(P ) breaks
this symmetry. But for z = 0, ÕSp2|2 is an exact symmetry of the whole action
and it should shed some light on the edge scaling and the centre of the band in the
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3.2 Coordinate free description

bulk scaling if we could factor out this symmetry group from the symmetric space
Gl2|2 /OSp2|2.
To do this we need to complete the picture of relations of OSp, ÕSp and Gl and

consider two further groups. Acting with θ on ÕSp or with θ̃ on OSp we can define a
new group as the fixed point sets of both involutions, namely

H0 = OSp2|2
⋂

ÕSp2|2 ' Gl1|1

Fortunately [γ, γ̃] = 0, therefore also the involutions θ and θ̃ commute and there is
only one more important player, i.e.

H′ :=
{
g ∈ Gl2|2 | g = θ ◦ θ̃(g)

}
' Gl1|1×Gl1|1

For more details about the explicit form of H0 and H′ see appendix A.1.3.

3.2.4 Bundle decomposition

Decomposition of the Lie super-algebra

The involutions Θ : Gl2|2 → Gl2|2 that fix the subgroups K lead to Cartan involutions
dΘ of gl2|2. Introducing two binary indices we can decompose this Lie super-algebra
into

gl2|2 = g0,0 ⊕ g1,0 ⊕ g0,1 ⊕ g1,1

where gi,j : =
{
x ∈ gl2|2 | dθ(x) = (−1)ix and dθ̃(x) = (−1)jx

}
with dθ(x) = −γxSTγ−1 and dθ̃(x) = −γ̃xSTγ̃−1 being the differentials of the Lie
group involutions. This decomposition of the Lie algebra corresponds to the respective
Lie groups via the following table:

Lie super-group Gl2|2 OSp ÕSp H′ H0

Lie super-algebra gl2|2 g0,0 ⊕ g0,1 g0,0 ⊕ g1,0 g0,0 ⊕ g1,1 g0,0

Therefore we have

T[1](Gl2|2 /OSp2|2) ' g0,1 ⊕ g1,1 ' T[1](ÕSp/H0)⊕ T[1](H
′ /H0)

which may be considered as the a posteriori motivation for introducing H′. For more
details about these Lie super-algebras see appendix A.1.1.

Global decomposition

In the last section 3.2.4 we motivated the decomposition

Gl2|2 /OSp2|2 ' ÕSp×H0 H′ /H0
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to split off the Goldstone modes from the action. On the Lie algebra level, i.e. locally,
we already saw that this decomposition makes sense. To get our hands on the global
situation we define the straight forward multiplication map

φ : ÕSp×H0 H′ /H0 → Gl2|2 /OSp2|2
[h̃;h′] 7→ [h̃h′]

where the equivalence classes [h̃ ;h′] = {(h̃h0, h
−1
0 h′h′0) | h0, h

′
0 ∈ H0} and [h̃h′] =

{h̃h′h | h ∈ OSp2|2} denote elements of the respective coset spaces.4 This is to say
that the H0 action is by simultaneous multiplication with h0 from the right in the ÕSp
component and with h−1

0 from the left in the H′ component which does not change the
product. Now our task is to show that this mapping is a diffeomorphism. In fact, as
we are only interested in this decomposition with respect to integration, it is sufficient
if φ is a diffeomorphism only locally and almost everywhere. Which is equivalent to
saying that dφ should be an isomorphism almost everywhere.
By introducing normal coordinates around [1 ;1] it is easy to see that the differential

at this point dφ
∣∣
[1 ;1]

is an isomorphism. But since we are interested in the global
picture, let us embed the whole situation into Gl2|2 and use the Maurer Cartan form
there to get back into the Lie algebra where we have just sorted out the orthogonal
decomposition into the respective tangent spaces.5 The Maurer Cartan form is an
isomorphism of vector spaces at each point, hence the differential dφ at [h̃ ;h′] will be
an isomorphism T[h̃ ;h′] ÕSp×H0 H′ /H0 → T[h̃h′] Gl2|2 /OSp2|2 if and only if (φ)−1 dφ

is an isomorphism T[h̃ ;h′] ÕSp ×H0 H′ /H0 → g1,0 ⊕ g1,1.6 To check whether it is, we
will use orthogonal projection onto the subspaces gi,j , denoted by Πgi,j .
Further we will use the matrix identity

e−X0∂t

∣∣∣
0
eX0+tX =

∞∑
n=0

(− ad(X0))n

(n+ 1)!
X =:

1− e− ad(X0)

ad(X0)
X (3.13)

where ad(X) : Y 7→ XY − Y X is the matrix commutator, i.e. the differential of the
adjoint action Ad. For a comprehensive derivation of this formula for principal bundles
of compact Lie groups, see [BGV04], chapter 5.1.
After these introductory words we finally come to the calculation of dφ. We will spell

out the directional derivative in the directions X̃ ∈ g1,0 and X ′ ∈ g1,1 at h̃ ∈ ÕSp2|2
and [h′] = eX

′
0 H0 ∈ H′ /H0 with X ′0 ∈ g1,1, where we used the Cartan decomposition

4Note that φ in this chapter denotes a different mapping than in section 2.1.3.
5The Maurer Cartan form is a differential one form with values in the Lie algebra given by the push
forward of left translation in the group. L∗g−1 : Tg G

∼−→ TeG ' g. Note that pushing a vectorfield
forward just means applying the differential, i.e. L∗g−1 = dLg−1 .

6To unclutter the notation we leave away L∗ and write (φ)−1 dφ instead of L∗φ−1 ◦ dφ, because left
translation as well as its pushforward is for matrix Lie groups just given by matrix multiplication.
Note however that here (φ)−1 always denotes Lie group, i.e. matrix inverse, not the inverse of the
mapping φ.
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for H′ /H0, which is diffeomorphic almost everywhere.

Πg1,0⊕g1,1

((
h̃h′
)−1

d
(
h̃h′
))

= Πg1,0⊕g1,1

(
1− e− ad(X′0)

ad(X ′0)
X ′ + e− ad(X′0)h̃−1dh̃

)

=
sinh(ad(X ′0))

ad(X ′0)
X ′ + cosh(ad(X ′0)) Πg1,0

(
h̃−1dh̃

)
− sinh(ad(X ′0)) Πg0,0

(
h̃−1dh̃

)
(3.14)

where we used that the commutator is compatible with the Cartan involutions, i.e.
[gi,j , gk,l] ⊂ gi+k,j+l with the index sums understood in Z2. Now one could apply
(3.13) also to h̃ = eX̃0 , using that for connected Lie groups exp is a diffeomorphism
onto a dense open set, but since X̃0 ∈ g0,0 ⊕ g1,0 has in general a component in g0,0

this would not simplify the situation.
To understand (3.14) better we should rather diagonalise the adjoint action ad(X ′0).

So we choose a maximal (in the even part of g1,1) commutative subalgebra (of g0,0 ⊕
g1,1), call it a1,1 ⊂ g1,1, and decomposeX ′0 = Ad(h0)a with h0 ∈ H0 /Za1,1 and a ∈ a1,1.
On the global scale this corresponds to H′ /H0 ' eg1,1 ' (H0 /Za1,1)×ea1,1 , where Za1,1

is the centraliser of a1,1 in H0 with respect to the Ad action. We use

f(ad(X ′0)) = Ad(h0) ◦ f(ad(a)) ◦Ad(h−1
0 )

for any analytic function f . Further we pass from the directional derivative to the
differential itself

dX ′0 = Ad(h0)
(
da− ad(a)(h−1

0 dh0)
)

Note that Ad(h0) commutes with all projectors Πgi,j since h0 ∈ H0 so we get

(3.14) = Ad(h0)

(
da− sinh(ad(a))(h−1

0 dh0)

+ cosh(ad(a)) Πg1,0

(
(h̃h0)−1d(h̃h0)− h−1

0 dh0

)
− sinh(ad(a)) Πg0,0

(
(h̃h0)−1d(h̃h0)− h−1

0 dh0

))

= Ad(h0)

(
da+ cosh(ad(a)) Πg1,0

(
h̃−1d(h̃)

)
− sinh(ad(a)) Πg0,0

(
h̃−1d(h̃)

))
(3.15)

where in the last equation we shifted h̃ 7→ h̃h−1
0 . One should keep in mind that we

are working in ÕSp2|2 ×H0 H′ /H0, hence shifting h′ 7→ h0e
ah−1

0 and simultaneously
h̃ 7→ h̃h−1

0 does not change [h̃;h′].
Now one might worry about the vanishing of dh0. But a closer look at the above

computation shows that we in fact decomposed

ÕSp×H0 H′ /H0 ' ÕSp/Za1,1 × ea (3.16)
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3 Field theory

even further than originally intended. The dh0 component is now included in h̃−1dh̃
of ÕSp, which did not have this component on the left hand side of (3.16) due to the
×H0 . This is equivalent to our original statement X̃ ∈ g1,0.
So from (3.15) one can see that dφ will indeed be an isomorphism as long as

cosh(ad(a)) and sinh(ad(a)) are, because the adjoint group action Ad(H0) is always
an isomorphism which does not mix the gi,j components, so there is no cancellation
of different terms, and the Maurer Cartan form h̃−1dh̃ of ÕSp2|2 is at each point an
isomorphism onto g0,0 ⊕ g1,0, so nothing gets lost in the projection.
An additional benefit from the above calculation is that we can now immediately

read off the Berezinian for changing coordinates and decomposing the integral.7

∫
Gl2|2 /OSp2|2

f(gOSp2|2)dµ(g)

∝
∫

a1,1

da
∫

gOSp1|1/Za1,1

dµ(h̃)f(h̃ea OSp2|2) SDet (sinh(ad(a))) SDet (cosh(ad(a)))

(3.17)

The determinants can be computed by diagonalising the adjoint action, and we get

SDetg1,0 (cosh(ad(a))) =
1

cosh2(x− y)

with x− y = 1
2 STr(a), see equation (A.1), and

SDet (sinh(ad(a))) = − 1
sin2(x− y)

see equation (A.2). Here the determinant is understood with respect to the vol-
ume forms induced by STr, i.e. d Volg0,0/Za1,1

=: Det(f)f∗
(
d Volg1,1/a1,1

)
for f :

g0,0/Za1,1 → g1,1/a1,1.
Finally, specifying the real form of ea1,1 by the STr being positive, we get

(3.17) ∝ −
∫
R

dx
∫

[0;2π]

dy
∫

gOSp1|1/Za1,1

dµ(h̃)
f(h̃exEBB+yEFF OSp2|2)

sin2(x− y) cosh2(x− y)

Unfortunately, this Berezinian is not the full truth. As mentioned in section 3.2.1,
we get additional anomalous terms, if the integrand does not vanish at the boundaries,
x→ ±∞. This leads to the decomposition not being applicable to the field theory, as
we would get anomalous terms at every point in space.

7Note that a similar computation can be found in appendix A of [ZH95].
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3.2 Coordinate free description

3.2.5 Differential super-geometry

In this section we introduce some general concepts about Riemannian symmetric
(super-) spaces, mainly taken from [Zir98], which we need to finally write down the
action in the next section.

Vector fields and metric

In general, for G a super Lie group (Gl2|2) with invariant bilinear form B (STr) and
Riemannian real form Gr and with H a Lie super-subgroup of G (OSp) given as the
fixed point set of an isometric involution (θ) we have the following:
We already used that the super Lie algebra of G is split into an orthogonal sum with

respect to the super-trace form, g = h ⊕ p where h = {X ∈ g | dΘ(X) = X} is the
super Lie algebra of H and p = {X ∈ g | dΘ(X) = −X} is isomorphic to the tangent
super-space T[H] G/H. The sum is orthogonal because for X ∈ h and Y ∈ p we have
STr(XY ) = STr(dΘ(X)dΘ(Y )) = −STr(XY ) by Θ being an isometry.
We have already seen that the Maurer Cartan form maps tangent vectors, or left

invariant vector fields, into Lie algebra elements. Now, of course, we can also go the
other way and associate Lie algebra elements with left invariant vector fields. To do
so we again use that G acts on G/H by left translation. In combination with the
exponential map exp : g→ G we can use this to define a mapping

g→ Γ(G/H)

X 7→ X̂

X̂
∣∣∣
[g]
f := ∂s

∣∣∣
0
f(exp(sX)gH)

The super-geometry on G/H is then given by the unique (up to a multiplicative con-
stant) invariant bilinear form which is induced by the one on G via

〈X̂, Ŷ 〉
∣∣∣
g

= B
(
Πp

(
Ad(g−1)X

)
,Πp

(
Ad(g−1)Y

))
(3.18)

The adjoint action is due to the coset structure as described in (3.19) and particularly
(3.20) below. Additionally one needs to fix a maximal Riemannian (in the geometry
that was just described) submanifold of Gr/Hr ⊂ Gs/Hs to complete the data for a
Riemannian symmetric super-space. In our setting this means that we have a metric
on ÕSp2|2/H0 and H′ /H0 which are both induced by the same super-geometry of
Gl2|2 which restricts to super-geometry of the subgroups. On the Lie algebra level
this is more simply said, we are just using the same invariant bilinear form STr on all
components gi,j of gl.

Associated vector bundles

In section 3.2.3 we saw that it might be a good idea to split a ÕSp2|2 component
off from our super-field P , which becomes massless as z goes to zero, and in 3.2.4
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3 Field theory

the remaining H′ /H0 component was identified. As the latter will stay massive, it
should be sensible to expand the action locally around the saddle point value, hence
we pass from H′ /H0 to TPs H′ /H0 ' g1,1. And instead of the full non-linear field
P : Rd → Gl2|2 /OSp2|2 ' ÕSp ×H0 H′ /H0 we will consider Ψ : Rd → ÕSp ×H0 g1,1,
where the associated vector bundle ÕSp×H0 g1,1 is defined via the adjoint action Ad
of H0 on g1,1. Therefore we will recall some basic facts about sections of associated
vector bundles in the following two subsections. First note

T(G/H) ' G×H p

∂t

∣∣∣
0
(getx)←[ [g;x]

y 7→ [g; (g−1dg)p(y)]

(3.19)

where in the last line g ∈ π(y) and ‘(g−1dg)p’ denotes the p component of the Maurer
Cartan form at g. The action of H in G×H p is given by

[g y] = [gh ; Ad(h−1)y] (3.20)

from which one immediately sees that both maps are well defined and evidently inverse
to each other, which establishes the diffeomorphism. This was already used when
formulating the metric above and will again be useful in section 3.2.6.
For sections of an associated vector bundle we further have

Γ(G×H V ) ' C∞(G,V )H

by Θ : ([g] 7→ [g;ϕ(g)]) 7→ ϕ
(3.21)

where V is some left H module and C∞(G,V )H denotes smooth functions from G
to V that are H equivariant, i.e. ϕ(gh) = h−1.ϕ(g). Here by H.V we denote the
action (representation) of H on V . (3.21) is a Diffeomorphism because for s = ([g] 7→
[g, ϕ(g)]) ∈ Γ(G×H V ) a section and h ∈ H we have

s([g]) = [g;ϕ(g)] = [gh;h−1.ϕ(g)] by definition of G×H V

= s([gh]) = [gh;ϕ(gh)] by definition of G/H

therefore ϕ indeed has to be an equivariant function and conversely every equivariant
function defines a section of Γ(G×H V ).

Covariant derivative on associated vector bundles

Now we define a covariant derivative on vector fields via the Lie derivative L on equiv-
ariant functions by completing the following diagram

Γ(G×H V ) C∞(G,V )H

C∞(G,V )HΓ(G×H V )

Θ

∇ L

Θ−1
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3.2 Coordinate free description

For a vector [g, x] ∈ T[g](G/H) and a section s : [g] 7→ [g, ψ(g)] we take the Lie
derivative with respect to the left invariant vector field associated to x ∈ g1|1.

∇[g,x]s := [g; ∂t
∣∣∣
0
ψ(getx)] (3.22)

But note that this notation is deceptive in that it does not look well defined when
another representative of s ≡ sh = ([g] 7→ [gh(g), h(g)−1.ψ(g)]) for any smooth h :
G → H is taken into account. However, by the above diagram, i.e. writing ∇ =
Θ−1 ◦ L ◦Θ it becomes clear that

∇[g,x]sh = [g, ∂t
∣∣∣
0
h(t).ψ(gh(t)etAd(h(t)−1)x)] = ∇[g,x]s

6= [gh(t), ∂t
∣∣∣
0
ψ(gh(t)etAd(h(t)−1)x)]

In our setting the Ψ is not just a pull back of a section of ÕSp ×H0 g1,1 but more
generally

Ψ : Rd → ÕSp×H0 g1,1

x 7→ [h̃(x), ψ(x)]

Fortunately we can still adapt the notion of covariant derivative (3.22) on ÕSp×H0 g1,1

to the pullback bundle by

∇yΨ(x) := [h̃(x), ∂t
∣∣∣
0
eth̃∗yψ(x)]

3.2.6 The action

So now finally we have collected all the structures to write down a general form of the
action S =

∫ L where L is a d-form which is by the structure of the theory fixed up
to numerical constants ci, m and m̃ and terms of higher order.

L = c1 ||dh̃||2 + c2 ||∇Ψ||2 + m̃ ||ϕ||2 +m′ ||ψ||2 (3.23)

Here we have introduced a d form valued product • of

T
[
ÕSp2|2 ×H0 g1,1

]
' ÕSp2|2 ×H0 (g1,0 ⊕ g1,1)

valued forms on Rd and wrote X •X =: ||X||2. By (3.18) we get the metric on this
bundle via the STr form on gl.

(X • Y )
∣∣∣
h̃

:= STr
(

Ad
(
h̃−1

)
X ∧ ∗Ad

(
h̃−1

)
Y
)

where ∗ is the Hodge star operator on Rd. Note that dh̃ •∇Ψ = 0 therefore the above
terms are all that one can possibly write down up to higher orders in the fields.
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The individual terms have the following physical meaning: dh̃ is a one form with
values in T ÕSp2|2/H0. dh̃•dh̃ is the usual kinetic term of a non-linear σ-model given
by h̃ : Rd → ÕSp2|2/H0 alone. For ẑ 6= 0, i.e. in the bulk scaling limit, also these ÕSp
modes will oscillate with a finite mass around their fixed point value h̃s. In this case
h̃ = eϕh̃s is a sensible expansion and m̃ the mass of these modes. Here ϕ is a zero
form, hence the wedge product is just multiplication and ∗1 yields the volume form.
For ẑ → 0 the mass m̃ has to go to zero, so it does not matter that ϕ will not be a
well defined field any more.
In addition to this non-linear σ-model with emerging mass term for z 6= 0, we have

the additional massive field ψ, again a 0 form. The mass is given by m′ and should be
positive everywhere for the expansion to make sense.
∇Ψ • ∇Ψ finally is the kinetic term of this new field which also couples h̃ and ψ in

a gauge field like fashion. The covariant derivative ∇Ψ, as explained above, is here
understood as a one form on Rd.

Coefficients

To fix the coefficients in the general form of the action we now go back to the quadratic
expansion (3.10) and change coordinates using the explicit forms of the Lie algebras
as in A.1.1 to write

PS + δP = Adθ(eϕ) Adθ(eψ)PS = eϕeψPSγe
ψST

eϕ
ST
γ

with

ϕ =

(
ϕ1σ1 + ϕ2ı̇σ2 + ϕ3σ3 0

0 ϕf,2σ2

)
∈ g0,0 ⊕ g1,0

and

ψ =

(
ψ1 + ψ2ı̇σ2 0

0 ψf1 + ψf,2σ2

)
∈ g0,0 ⊕ g1,1

We get

a0 = 2sψ0 +O(ψ,ϕ)2

a1 = 2sϕ1 +O(ψ,ϕ)2

a3 = 2sϕ3 +O(ψ,ϕ)2

b = 2sψf +O(ψ,ϕ)2
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3.2 Coordinate free description

And inserting this into the second order Lagrangian (3.10) we can read off the coeffi-
cients

L(2) =
∣∣∣∣4(α− 1)s2 + α

(s2 + 1)

∣∣∣∣ (ϕ2
1 + ϕ2

3

)
+
∣∣∣∣4(α− 1)s4 + (2α+ 1)s2 + α

(s2 + 1)2

∣∣∣∣ (ψ2
0 + ψ2

f )

+
4s2

s2 + 1
2e2

2d+ 1
eı̇φ1

(
(∂xiϕ1)2 + (∂xiϕ3)2

+
s2 − 1
s2 + 1

eı̇(φ2−φ1)
(

(∂xiψ0)2 + (∂xiψf )2
))

Hence the mass of the ÕSp modes is

m̃ =
∣∣∣∣4(α− 1)s2 + α

(s2 + 1)

∣∣∣∣
and we remember from the saddle point equation for s, (3.7b), that (α − 1)s2 + α
indeed goes to 0 for ẑ → 0.
The mass of the H′ modes is given by

m′ =
∣∣∣∣4(α− 1)s4 + (2α+ 1)s2 + α

(s2 + 1)2

∣∣∣∣
and does indeed not vanish. Further we can read off the coefficients of the kinetic
terms

c1 =
8s2

s2 + 1
e2

2d+ 1
eı̇φ1 and c2 =

8s2(s2 − 1)
(s2 + 1)2

e2

2d+ 1
eı̇φ2

This completes the derivation of the effective action.
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4 Density of states in dimension zero

In this chapter we turn back to the zero-dimensional model, where we can calculate
the density of states explicitly. Here we will investigate the effect of the zero modes
controlled by the parameter α to compare with [LSZ06] and look for universal be-
haviour.
The original definition of super-integration tells us that one should first integrate

out the Grassmann variables. This is done by differentiation, i.e. one expands the
integrand super-function in Grassmann variables and then picks the coefficient of the
product of those Grassmann variables, which we are integrating out. In equation (2.24)
only the super-determinants are super-functions, everything else is numerical valued as
long as boson-boson and fermion-fermion block contain only numbers. So to integrate
out the Grassmann variables one needs to expand

SDet(P )αN

SDet(P − ı̇Σ2)N

and pick the coefficients of the highest order nilpotent element, χ4χ3χ2χ1 where the χi
are the Grassmann variables in (2.26). In this chapter we will write N instead of N |V |
as in dimension zero |V | = 1 anyway. For finite |V |, scaling N |V | 7→ N also looks
harmless but in the spatially extended case one should think more carefully about the
two limits N →∞ and |V | → ∞. However this will not be discussed here.
The expansion in Grassmann variables is carried out explicitly in the appendix,

(A.4). The result is

∂χ4∂χ3∂χ2∂χ1

(
SDet(P )α

SDet(P − ı̇Σ2)

)N
=: Gr(Det(A),Det(B), N)

(
Det(A)
Det(B)

)αN (Det(A) + 1
Det(B) + 1

)−N
(4.1)

where Gr is a rational function, in particular it does not contain any powers of N .
The exact form of Gr can be read off from equation (A.4), but more importantly the
action has, to order O(N), the same form as in 3.1.2 where we started by just setting
the Grassmann variables to 0. Hence we can use the saddle point equations and the
global facts about the action landscape that we found in 3.1.2 and 3.1.3.

4.1 Bulk scaling

For N →∞ we can evaluate the remaining ordinary integrals within the saddle point
approximation. For a short review of this method see section 4.3.1 below and note
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4 Dimension Zero

that in bulk scaling the first order term does not vanish, so using this standard version
of the saddle point method is sufficient. The result is

G(z)− ∆ dim
z
∝ s Gr(s2, s2, N)

eNS[PS ]

N2
√
D

where D is the fluctuation determinant, which can be read off from (3.10).

√
D =

∣∣∣∣(α− 1)s2 + α

s2(s2 + 1)
(α− 1)s4 + 2(α+ 1)s2 + α

s2(s2 + 1)2

∣∣∣∣
Now its time to restore the proportionality factors which have been dropped every

now and then. By looking at (2.11) and (2.21), we see that our integral should be
= 1 if not for the derivative, which leads to the factor d+1

4d+2 Tr(PS,FF ) = d+1
2d+1s. This

means, in d = 0 and for N →∞ the proportionality factor C must be such that

Gr(s2, s2, N)
eNS[PS ]

N2
√
D

=
1
C

and a quick check yields C = 1
4 , i.e. all s and α dependent terms cancel, as expected.

So we obtain
G(z) =

∆ dim
z

+
d+ 1
2d+ 1

s

which means that the density of eigenfrequencies for ω 6= 0 is already given by the
saddle point s alone. And, conforming our observation in 2.2.2, 2s = Tr(PBB) =
−Tr(PFF ), i.e. we could perform the derivative with respect to the bosonic as well as
the fermionic energy parameter. Now (2.10) yields

ρ(ω) =
2
π
< (s(ı̇ω + ε))

For ω = 0, however, we get an additional divergent contribution from the ∆ dim
z

term. This can be interpreted as the contribution of the zero modes if ∆ dim > 0, i.e.
α < d+1

2 . For now we will drop this term from the discussion.
We have plotted the density of eigenfrequencies, normalised to

∫
R+ ρ(ω) = 1, for

some values of α < 1 in Figure 4.1 and for α > 1 in Figure 4.2. Note that the spectrum
is symmetric with respect to reflection at 0, therefore we plot only the positive half.
The relevant solution of the saddle point equation s(ẑ) is explicitly given in (A.3).
Obviously the most striking difference is that for α > 1 the spectrum consists of two

bands, which melt at α = 1 in the singular fashion that was investigated in [LSZ06].
For α < 1 we have a continuous single band spectrum without singularity at 0. Note
however that the ∆ dim

z term was ignored. This splitting of the spectrum explains why
we were unable to find a feasible saddle point at ω̂ = 0 for α ≥ 1 in section 3.1.3.
We also note that the maximal density of states for all cases lies at low frequencies.

For α ≤ 1 the density is maximal at ω̂ = 0, for α > 1 there is even an expressed
peak at moderately low frequencies. This might be a hint at the so-called boson peak
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Figure 4.1: Density of eigenfrequencies for α = 0.01, α = 0.2, α = 0.4 and α = 0.6,
α = 0.8, α = 0.99

as found in [GA05]. We did not rescale our plots by ω̂2, as [GA05] did, because our
dispersion is obviously not quadratic. In fact our model does not include a limit of a
pure system with any specific dispersion what so ever, but describes the pure random
part. So finding a peak in the spectrum itself seems reasonable.

4.2 Spectral edges

We can underline the above observations by computing the positions of the band edges.
By the implicit function theorem, the saddle point equation (3.7b) can (locally) be
inverted to produce the saddle point as a function s(ẑ) as long as ẑ is a regular value.
The singular points of (3.7b) are given by

s2 =
1 + 2α±√8α+ 1

2(1− α)
(4.2)

This means that for α > 1 we have s2 < 0, i.e. 4 singular points on the imaginary
axis. If s is purely imaginary, so is ẑ(s), hence we have four singular eigenfrequencies.
These are the edges of the spectrum. For α close to 1 two of the singular points s
diverge, i.e. the corresponding inner spectral edges ẑ go to 0. The other two go to s =
∓ı̇
(

1√
3

+ 2(α−1)

9
√

3
+O(α− 1)2

)
. Hence ẑ goes to ±ı̇

(
3
√

3
2 +

√
3(α− 1) +O(α− 1)2

)
.

Note that ẑ = d+1
2(2d+1)

z
N = z

2N for d = 0, so for α = 1 the band edges lie at ω = 3
√

3N ,
in agreement with [Lü09], chapter 3.5.
For α < 1 two of the singular points (4.2) and also the corresponding singular values

ẑ lie on the real axis. Hence they do not interfere with the spectrum, which is therefore
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Figure 4.2: Density of eigenfrequencies for α = 1.1, α = 1.2, α = 1.5, α = 2, α = 5
and α = 10

supported on a single interval, as observed above. It remains unclear whether there is
a physical interpretation of those real singular values.

4.3 Edge scaling

We have seen in 3.1.3 that if we want to look at the centre of the spectrum at ω̂ = 0
at a higher resolution, i.e. not scale z with N , we have to deal with a saddle point
manifold in the boson-boson sector, given by (3.6). In the fermion-fermion sector we
have to sum contributions from two separate saddle points, as visualised in figure 3.7.

4.3.1 Saddle point method reviewed

A much more severe point is that the saddle point method itself is not applicable as
straight forwardly as for the bulk scaling. To see this we need to review the local part
of the prove of why the saddle point method yields the right result for N →∞ and to
which order.
So let us consider the general situation of smooth functions f, S ∈ C∞(R) and we

want to calculate the integral ∫
R

f(x,N)e−NS(x)dx (4.3)

to a given order in the large parameter N . Note that in our case f also depends on
N which is why we need to worry about higher orders. But still f should be of finite
order in N , i.e. f ∈ O(Nk) for some k, which in the case of interest will be k = 2.
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4.3 Edge scaling

There are global constraints for the applicability of the saddle point method, as
usual. In essence one has to estimate the contributions of the integral far away from
the saddle point xs and show that they are small, which e.g. leads to the condition
of the saddle point being a global minimum of S. This part of the proof will not be
reviewed here, but this in particular rules out such cases where (4.3) is not convergent.
What will be done now is calculating the contribution to the integral which comes
from a region close to the saddle point. We start by expanding

(4.3) = e−NSs
∫
R

( ∞∑
n=0

f
(n)
s

n!
yn

)
e
−N

„
Ss+

P∞
n=3

S
(n)
s
n!

yn
«
e−N

1
2
S

(2)
s y2dy (4.4)

where we have shifted the integral to y = x − xs, a subscript s stands for evaluation
at the saddle point and a superscript (n) for the nth derivative, i.e. f (n)

s := ∂x
∣∣
xs
f(x).

Now we use Wick’s theorem

∫
R

xne−
N
2
λx2

dx =

0 n odd(− 2
N ∂λ

)n
2

√
2π
Nλ = (n−1)!!

(Nλ)n/2

√
2π
Nλ n even

where (−1)!! := 1 =: 0! to get

(4.4) = e−NSs
√

2π

NS
(2)
s

( ∞∑
n=0

(2n− 1)!!
2n!

f
(2n)
s(

NS
(2)
s

)n
−N

∑
n≥1,m≥3
n+m even

(n+m− 1)!!
n!m!

f
(n)
s S

(m)
s

(NS(2)
s )

n+m
2

+ . . .

)

Here the ellipsis stands for further terms similar to the last one and starting with
+N2

∑
n≥0,m≥3,p≥3
n+m+p even

. So we finally get

(4.3) = e−NSs
√

2π

NS
(2)
s

fs +
1
2
f

(2)
s

NS
(2)
s

− 1
2
f

(1)
s S

(3)
s

N
(
S

(2)
s

) +O
(
f

N2

) (4.5)

which includes all terms scaling with a positive power of N if f ∈ O (N2
)
.

If the reader is interested in more details about this expansion, note that, after
we calculated the term above, we found a paper by Kirwin, [Kir08], which gives a
complete discussion of higher order terms and even extends to non-smooth functions.
In their appendix one can find the terms which we have just calculated, although they
did not pull out the factor e−NSs in their definition of the coefficients which leads to
additional terms. 1

1Below we have Ss = 0 anyway.
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4.3.2 Density of frequencies

So how does this apply to our integral for the resolvent operator? Starting from (2.24)
with bosonic coordinates as in (2.26) and integrating out Grassmann variables as in
(4.1) we get∫

A=AT>0

da0da1da3

∫
U(1)

db e−z0a0+z1b Gr(Det(A), b2, N) e−NS(Det(A),b2) (4.6)

To separate massive from massless modes we will use Det(A) = a2
0 − a2

1 − a2
3 as a

coordinate instead of a0 =
√

Det(A) + a2
1 + a2

3. This means the integral is of the form
(4.3) with

f =
1

2a0
Gr(Det(A), b2, N)e−z0a0+z1b

S = α
(
ln(b2)− ln(Det(A))

)− ln(b2 + 1) + ln(Det(A) + 1)

Now the crucial point is that fs is not of order O(N2) at the saddle point s2 = α
1−α ,

because this contributions cancel, but only of order O(N). This means that all terms
in (4.5) are of the same order and hence need to be taken into account.
Applying the saddle point approximation for both b and Det(A) we get

(4.6) =
∫
R2

da1da3

∑
b=±s

2π
N

1√
S

(2,0)
s S

(0,2)
sfs +

1
2N

(
f

(2,0)
s

S
(2,0)
s

+
f

(0,2)
s

S
(0,2)
s

)
− 1

2N

f (1,0)
s S

(3,0)
s(

S
(2,0)
s

)2 +
f

(0,1)
s S

(0,3)
s(

S
(0,2)
s

)2


 (4.7)

where f (m,n)
s := ∂mDet(A)∂

n
b

∣∣
s
f . Now the computation of all terms is an algorithmic task

and one gets

(4.7) ∝
∫
R2

da1da3

a0

∑
b=±s

e−z0a0+z1b

a2
0

(
s(1 + a0z0) +

a2
0z1b

s

)
(4.8)

where only some factors of 2 and π have been dropped, i.e. the terms containing N and
α nicely cancel. Now we can perform the integration over the saddle point manifold.
As this is the orbit of a symmetry group, integrating out fluctuations has to produce
the invariant measure with respect to this group action. And in fact, we compute the
Sl2 invariant measure in appendix A.5 and find that it is

dµ =
da1da3

a0
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4.3 Edge scaling

which appears above. The integrals (4.8) finally yield

s cosh(z1s)
∫
R2

da1da3
1 + a0z0

a3
0

e−z0a0 + z1 sinh(z1s)
∫
R2

da1da3
1
a0
e−z0a0

=
e−z0s

z0s
(z0s cosh(z1s) + z1s sinh(z1s)) =: G(z0, z1)

Note that G(z, z) = 1, which means that this is the right normalisation as can be
seen from (2.11). Also the stronger condition ∂z1

∣∣
z
G(z, z1) = −∂z0

∣∣
z
G(z0, z) is fulfilled

as demanded from the start, see (2.12).
So we finally obtain the density of states at the centre of the spectrum

ρ(ω) = <
(
∂z1

∣∣∣
z
G(z, z1)

∣∣∣
z=ı̇ω

)
= <

(
s

(
1 +

1− e−2sz

2sz

) ∣∣∣
z=ı̇ω

)
= s

(
1 +

sin(2ωs)
2ωs

)
See figure 4.3 for a plot and note that for z → ∞, G approaches s =

√
α

1−α and
hence joins the z̃ → 0 limit in bulk scaling, as it should. Further note that this is the
universal density of states for symmetry class D.

−20 −10 10 20
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1

1.5
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ω

ρ

Figure 4.3: Density of frequencies on the edge scale for α = 1
2 , i.e. s = 1.
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5 Discussion

In summary, we accomplished the derivation of a lattice field theory for a certain one
parameter family of disordered bosonic systems which are a generalised and improved
version of the model considered in [LSZ06]. We developed this discrete model to a
continuum field theory and studied the mean field solution as well as spatially homo-
geneous fluctuations. Although our field theory describes only the density of states,
the generalisation to n-point functions should be straightforward. We confirm the ob-
servation of Lück, Sommers and Zirnbauer, [LSZ06], that our bosonic systems do show
universal behaviour. We found well known universal statistics of the density of states
at low frequencies which fits to the observed universality of correlation functions in
[LSZ06] and in fact refines their classification.

In the first part, chapter 2, we started from a reasonable, discrete model for a
physical system of very strongly disordered bosons and rigorously derived a lattice
super-field theory for the resolvent operator. Due to superbosonisation the target space
of the fields is of fixed dimension, independent of N , the number of degrees of freedom
per lattice site. The price to be paid for this low dimensionality are odd directions and a
non-trivial geometry, i.e. the target space was found to be the Riemannian symmetric
super-space Gl2|2 /OSp2|2. The super-dimension, (4|4), is rather small, because we
considered only the resolvent operator, i.e. the one-point function. For higher n-point
functions one would have to deal with larger super-spaces and one might want to use
more elaborate techniques than integrating out the Grassmann variables ‘by hand’ as
done in chapter 4. Therefore it might be fruitful if one could get the boundary terms,
which were not calculated in section 3.2.4, under control.
Apart from writing a symmetric positive semidefinite matrix as h = lTl, which was

already done in [LSZ06], the main idea in chapter 2 was to think of the auxiliary
matrices l as mappings from the physical phase space at the vertices to auxiliary
spaces, located at the edges of a graph. Another point was the introduction of an
extra edge per vertex, which nicely embeds the zero-dimensional model as a special
case into the spatially extended one. The technical challenge which was overcome in
section 2.2 was to apply the super-symmetry techniques, in particular to derive a form
of the resolvent operator amenable to superbosonisation.
In chapter 3 we applied physically motivated approximations, namely a continuum

limit along with a gradient expansion in the lattice spacing and saddle point expansion
in 1

N to lowest order. We carefully investigated global constraints for the saddle point
method and found the relevant saddle point for all energies and throughout the range
of the model parameter in section 3.1.3.
In section 3.2 we developed the actual continuum super-field theory from general
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5 Discussion

principles together with the structure of the target space. It turns out to consist of a
non-linear σ-model with an additional mass term, for non-zero bulk scale frequencies.
As in [LSZ06], we looked at different scaling limits, namely scaling the eigenfrequencies
as ω̂ = ω

N ∈ O(1), the so-called bulk scaling, in which the spectrum is compactly
supported, or ω ∈ O(1), the so called edge scaling. At the edge scale the σ-model
modes become massless, which is not surprising, since these are the Goldstone-Modes
of an ÕSp2|2 invariance of the action, hence the target space for this field is isomorphic
to the saddle point manifold, ÕSp2|2/H0. But this σ-model is coupled in a gauge field
like fashion to a second type of modes, which stay massive throughout the spectrum
and hence can be linearised. All in all we see that, as speculated in the beginning,
the effective field theory for our class of disordered bosonic systems is not only given
by a non-linear σ-model living in one of the well known symmetric spaces, but there
are additional massive modes in the picture to which the massless fields are coupled.
From our previous coordinate based calculations we could also read off the coupling
constants of the novel field theory in terms of the original microscopic parameters.

Then in chapter 4 we turned back to the zero dimensional or spatially homogeneous
case. Here we were able to calculate the density of states exactly to lowest order
in 1

N at the bulk as well as at the edge scale and for the whole model parameter
range, except for the point which was studied in [LSZ06] and which is singular in some
respects. To be more precise, already in [LSZ06] a one parameter-family of measures
was considered. But in our work we allow the same parameter to run through a larger
range, in particular it is allowed to be negative and of order N . In equation (2.9) we
pass from Lück’s notation in which our parameter is k ∈ O(N), to the more convenient
α ∈ O(1). And, in fact, we largely ignored terms of order 1

N in α, hence our approach
is in this respect complementary to [LSZ06]. The significance of this parameter is
that it controls how many Gaussian random variables are combined into one entry of
the random matrix that defines the Hamiltonian. The straight forward generalisation
of the previous approach would read α = d + 1 in terms of the new parameter, i.e.
the model investigated in [LSZ06] corresponds to α = 1. We found that only at this
point the density of states near ẑ = 0 diverges on the bulk scale and our saddle point
method is not applicable on the edge scale for α ≥ 1. The overall picture is that there
are two qualitatively different regimes for α < 1 and α > 1, separated by this singular
α = 1 case, which is characterised by a divergence of the density of eigenfrequencies
near zero. For α 6= 1 the density of eigenfrequencies on the bulk scale stays smooth
and finite throughout the spectrum. Note, however, that a ∆ dim

z term was removed
from the model to get this smooth picture.

The effect of α > 1 is clearly visible in figure 4.1. A gap around zero energy
opens and the spectrum is split into two bands. In this case the single auxiliary
space that provides the Gaussian random variables was enlarged beyond the minimal
number of variables needed to potentially couple all modes. The effect of α > d + 1
on the probability distribution can be seen directly from equations (2.8) and (2.9).
Configurations with large eigenfrequencies become more probable by a macroscopically
large power and at the same time the probability to have zero modes is suppressed by
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a factor of frequency to the same power. From a technical point of view, this explains
the gap in the density of eigenfrequencies around ω = 0.
For α < 1 the spectrum consists of a single band and the density of eigenfrequencies

is non zero and finite at ω̂ = 0. It can be seen already on the level of model building
in section 2.1.3 that α < 1 leads to a macroscopic number of zero modes in any
sample system of the ensemble. One should, however, keep in mind the divergent
∆ dim
z contribution that was removed from the model, which explains the finite density

observed in figure 4.1. For this case it makes sense to look at the model within the
edge scaling limit and investigate the behaviour of the density of states near ω = 0
more closely.
In this scaling limit it turned out that we not only have to deal with a saddle point

manifold, but we also need to take lower order terms in 1
N into account, since the

highest order vanishes. This makes the saddle point method more laborious than in
the bulk scaling case, but aided by computer algebra we were able to compute the
density of states also in edge scaling and interestingly found the universal behaviour
of class D. This nicely fits to the observations in [LSZ06] where GUE statistics (class
A) was found for all correlation functions in bulk scaling, since at the bulk scale class
A and D cannot be distinguished.
We have further calculated the positions of the spectral edges for all α in section 4.2

and found those, as well as the whole density of eigenfrequencies in the bulk scaling
for α = 1, to agree with the results of [LSZ06]. We did, however, not check the edge
scaling results at α = 1, which in [LSZ06] were found to depend on terms of order
O ( 1

N

)
in α which we excluded from our discussion throughout.

Interpretation

All in all we found that the field theory for our spatially extended system of disordered
bosons contains more than just a non-linear σ-model. On the one hand we found for
the zero dimensional case, in agreement with [LSZ06], universal statistics that are
well known from the fermionic symmetry classes. On the other hand the non-linear
modes couple to the massive linear ones only via derivatives, hence it is not surprising
that they decouple in zero dimensions and the low energy range is dominated by the
Goldstone modes. This explains why the behaviour of our model at small energies fits
into one of the well known universality classes for 0 < α < 1 in d = 0.
Hence we conclude that

1. bosonic disordered systems indeed show universal features and

2. there is room for novel bosonic universality classes.

Our general form of the field theory in terms of a σ-model which in higher dimension
acts as a gauge field on a second massive field might be a hint of how to generalise the
picture of universality classes to include bosonic models.
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A Appendix

A.1 Explicit forms of the super-spaces

In this section we briefly state explicit forms of the groups introduced in section 3.2.2
to compare with the coordinate based computations. Therefore we will consider the
real forms embedded into the real form (Gl2|2)r as introduced in 3.2.2. For getting the
real forms right it is useful to first look at the tangent spaces.

A.1.1 Lie super-algebras

In the following we will spell out the decomposition of gl2|2 as introduced in 3.2.4
explicitly. Additionally we determine the possible maximal Abelian subalgebras of the
Grassmann even parts aij ⊂ (gij)0. Two ad actions of those will be diagonalised below.
In addition to the usual notation spanC{ei} for the complex vector space spanned by
the vectors {ei} we use spanGr{ei} for the Grassmann algebra generated by {ξi ⊗ ei}
with the number of independent Grassmann generators ξi given by |{ei}|.

g0,0 = spanC

{(
σ2 0
0 0

)
,

(
0 0
0 σ2

)}
⊕ spanGr

{(
0 1

σ2 0

)
,

(
0 σ2

−1 0

)}

The even part (w.r.t. the ‘super’ grading) of g0,0 is already Abelian.

a0,0 = spanC

{(
σ2 0
0 0

)
,

(
0 0
0 σ2

)}

g0,1 = spanC

{(
0 0
0 σ1

)
,

(
0 0
0 σ3

)}
⊕ spanGr

{(
0 σ1

−ı̇σ3 0

)
,

(
0 σ3

ı̇σ1 0

)}

Maximal Abelian are exactly the one-dimensional subspace of the even part.

g1,0 = spanC

{(
σ1 0
0 0

)
,

(
σ3 0
0 0

)}
⊕ spanGr

{(
0 σ1

ı̇σ3 0

)
,

(
0 σ3

−ı̇σ1 0

)}

One may choose an arbitrary one-dimensional subspace as the maximally Abelian
one.
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g1,1 = spanC

{(
1 0
0 0

)
,

(
0 0
0 1

)}
⊕ spanGr

{(
0 1

−σ2 0

)
,

(
0 σ2

1 0

)}
As for g0,0 the even part is already Abelian

a1,1 = spanC

{(
1 0
0 0

)
,

(
0 0
0 1

)}

A.1.2 Generalised ‘root space’ or ‘Iwasawa’ decomposition

In this section we will diagonalise the ad action of a1,1 on gk,l. This leads to the
decomposition

gk,l =
⊕

α∈Σ(gk,l:a1,1)

gαk,l

where Σ(gk,l : ai,j) ⊂ a∗i,j is the set of (generalised) roots. For i = j = 0 a root α ∈ a∗i,j
is defined by

gαk,l := {X ∈ gk,l | ∀a∈ai,j ad(a)X = α(a)X} 6= {0}
and gαk,l is called root space. Otherwise we have ad(a) : gk,l → gk+i,l+j 6= gk,l and we
have to look at generalised roots α ∈ a∗i,j given by

gα
2

k,l := {X ∈ gk,l | ∀a∈ai,j ad2(a)X = α2(a)X} 6= {0}

where gα
2

k,l is called generalised root space. Drawing the square root is not an issue, as
roots come in pairs ±α anyway. But note that gα

2
=
⊕

g±α if the latter exist. Hence,
generalised rootspaces have twice the dimension of rootspaces (which are at least in a
semi simple setting one dimensional).
In 3.2.4 we will in particular need Σ(a1,1 : g1,0) which is easily computed. There are

two generalised root spaces given by the Grassmann odd and even part of g1,0. The
corresponding roots are

α2
1 = 0 with g0

1,0 = spanC

{(
σ1 0
0 0

)
,

(
σ3 0
0 0

)}
which means that α1 is an even root of multiplicity +2 and

α2
2 (xEBB + yEFF ) = (x− y)2

with g
α2

2
1,0 = spanGr

{(
0 σ1

ı̇σ3 0

)
,

(
0 σ3

−ı̇σ1 0

)}
i.e. α2 is an odd root of multiplicity −2. So the upshot of this diagonalisation is

SDetg1,0 f(ad(a)) = (f(α2(a)))−2 (A.1)
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A.1 Explicit forms of the super-spaces

for any even analytic function f .1

The action of a1,1 on g0,0 will be needed even more explicitly. Note that an or-
thonormal basis (in a graded sense) of g0,0 is given by{

1
2

(
σ2 0
0 0

)
,
1
2

(
0 0
0 σ2

)
,

i

2
√

2

(
0 ξ11 + ξ2σ2

ξ1σ2 − ξ21 0

)
,

1
2
√

2

(
0 ξ11− ξ2σ2

ξ1σ2 + ξ21 0

)}

where orthogonality is understood as usual, STr(XY ) = 0, but by ‘normalised’ odd
elements we mean such for which STr(X2) = ξ1ξ2.
Again all of the even part of g0,0 is the centraliser, i.e. gets annihilated by ad a1,1.

In the odd part we observe

ad

(
x1 0
0 y1

)(
0 ξ11± ξ2σ2

ξ1σ2 ∓ ξ21 0

)

= (x− y)

(
0 ξ11± ξ2σ2

−(ξ1σ2 ∓ ξ21) 0

)

Of course ad(a1,1)g0,0 ⊂ g1,1, but

ad(a1,1) : g0,0/Za1,1 → g1,1/a1,1

is an isomorphism and maps an orthonormal basis to and orthogonal one, normalised
to −ξ1ξ2. This sign yields an extra factor ı̇, hence choosing the volume form on each
quotient to be ξ1ξ2, we get

SDet(f(ad(a))) =
(
f

(
ı̇

2
STr(a)

))−2

(A.2)

for an odd function f .

A.1.3 Lie super-groups

Here we give explicit forms of the super-groups considered in section 3.2.2. We start
by considering the underlying complex manifold of

OSp2|2 =
{
h̃ = γh̃STγ−1

}
which is given by (

OSp2|2
)
s

=

(
SO(C2)

Sp(C2)

)
1Note that the determinant here is understood for g1,0 → g1,0 mappings, i.e. f has to be even.
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By demanding the super-trace form to be positive definite on the Lie algebra and
exponentiating we get the real form

(
OSp2|2

)
r

=

(
SO(C2)/SO(R2)

U Sp(2)

)

where SO(C2)/ SO(R2) is a non-compact form of SO(2) given by

SO(C2)/ SO(R2) = exp{X = −XT = X†} = {cosh(λ)12 + sinh(λ)σ2 | λ ∈ R}

and U Sp(2) is the unitary symplectic group, a compact form of Sp(R2).2 Now, since we
are in just 2 dimensions, we notice Sp(C2) = Sl(C2), which leads to U Sp(2) = SU(2).
Next we have a look at

ÕSp2|2 =
{
h̃ = γ̃h̃STγ̃−1

}
which has skeleton (

ÕSp2|2
)
s

=

(
Sp(C2)

SO(C2)

)
The real form is given by

(
ÕSp2|2

)
r

=

(
Sp(C2)/U Sp(2)

SO(R2)

)

where we encounter yet another version of the symplectic group Sp(C2)/U Sp2 =
Sl(C2)/ SU2 which is non compact.
The skeleton of

H′ =
{
h′ = Σ2h

′Σ−1
2

} ' Gl1|1×Gl1|1

is

H′s =

(
Gl(C)×Gl(C)

Gl(C)×Gl(C)

)
with the embedding

Gl(C)×Gl(C) =

{(
a b

−b a

)
| a2 + b2 6= 0

}
= C∗ × SO(C2)

The real form is given by

H′r =

(
R∗ × SO(C2)/ SO(R2)

U(1)× SO(R2)

)
2USp(2) is sometimes also denoted by Sp(1) and considered as the quaternionic unitary group.
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with

U(1)× SO(R2) =

{
eiφ

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
| φ, θ ∈ [0, 2π]

}
and similarly

R∗ × SO(C2)/SO(R2) = {µ (cosh(λ)12 + sinh(λ)σ2) | µ ∈ R∗, λ ∈ R}
Finally H0 = OSp2|2 ∩ÕSp2|2 ' Gl1|1 is very simple. Exponentiating g0,0 we imme-

diately get

(H0)s =

(
SO(C2)

SO(C2)

)
with real form

(H0)r =

(
SO(C2)/ SO(R2)

SU(2)

)

A.2 Saddle point

The relevant saddle point as computed using Mathematica is the following solution s
of the Saddlepoint equation (3.5):

12ẑ s = 4(α− 1)

+
2

7
3

(
3ẑ2 − (α− 1)2

)(
−2(α− 1)3 − 9ẑ2(1 + 2α) + 3

√
3
√
ẑ2 (4ẑ4 + 4(α− 1)3α+ ẑ2(4α(5 + 2α)− 1))

) 1
3

+ 2
2
3 (1 + ı̇

√
3)

(
− 2(α− 1)3 − 9ẑ2(1 + 2α)

+ 3
√

3
√
ẑ2 (4ẑ4 + 4(α− 1)3α+ ẑ2(4α(5 + 2α)− 1))

) 1
3

(A.3)

A.3 Grassmann integral of the ratio of super-determinants

In this section we expand the ratio of super-determinants
(

SDet(P )α

SDet(P−ı̇Σ2)

)N
in Grass-

mann variables. This was first done by hand and then checked with the mathematica
package to handle Grassmann variables, which was written by Tobias Lück, [Lü09],
and slightly extended by the author. Here we use the following coordinates

P =

(
A F

−σ2F
T B

)
A = a01 + a1σ1 + a3σ3 B = b1 F = ξ01 + ξ1σ2 + ξ2ı̇σ2 + ξ3σ3
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The computation is best organised by first computing for arbitrary β ∈ R and n ∈ Z

SDet (P − ı̇βΣ2)n =
(

Det(A) + β2

Det(B) + β2

)n(

1 +
4ı̇n

(Det(A) + β2)(Det(B) + β2)

(
a0b (ξ1ξ3 − ξ0ξ2) + a1b (ξ1ξ2 − ξ0ξ3)

+ a3b (ξ0ξ1 − ξ2ξ3) + β2 (ξ1ξ3 + ξ0ξ2)
)

+
8n

((Det(A) + β2)(Det(B) + β2))2

(
(2N − 1)β4 + (Det(A)− 3 Det(B))β2

− (2N + 1) Det(A) Det(B)
)
ξ0ξ1ξ2ξ3

)

For β = 1, n = −N and β = 0, n = αN , respectively, this yield the two terms to be
multiplied. Then we pick the term which contains the product of all four Grassmann
variables.

∂χ4∂χ3∂χ2∂χ1

(
SDet(P )α

SDet(P − ı̇Σ2)

)N
=

8N
(

Det(A)
Det(B)

)αN (Det(B) + 1
Det(A) + 1

)N
(

2N + 1−Det(A) + 3 Det(B)−Det(A) Det(B)(2N − 1)
(Det(A) + 1)2(Det(B) + 1)2

+
4N Det(A) Det(B)− (Det(A) + 1)(Det(B) + 1)

Det(A)(Det(A) + 1) Det(B)(Det(B) + 1)
α− 2Nα2

Det(A) Det(B)

)
(A.4)

Inserting the saddle point Det(A) = s2 = Det(B) we get

(A.4) = 8N
(

2N + 1− s2(−2 + s2(2N − 1))
(s2 + 1)4

− (s2 + 1)2 − 4Ns4

s4(s2 + 1)2
α− 2Nα2

s4

)

A.4 Residue

The U(1) integral in the fermion-fermion sector in equation (3.1) can be performed
exactly in d = 0 dimension using the residue theorem, once the Grassmann variables
have been integrated out. We consider

∮
U(1)

dbe−z0a0+z1b

(
Det(A)α(b2 + 1)
b2α(Det(A) + 1)

)N
p(Det(A), b2)

b2(b2 + 1)2 Det(A)(Det(A) + 1)
(A.5)
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A.5 Invariant measure

where p is a polynomial which can be read off from equation (A.4). It is of second
order in b2, i.e. p(A, b2) = p0(A) + p1(A)b2 + p2(A)b4. So up to factors which depend
on A we have

(A.5) ∝
∮

U(1)

dbez1b
(
b2 + 1
b2α

)N
p(Det(A), b2)
b2(b2 + 1)2

=
2πı̇

(2αN + 1)!
∂2αN+1
b

∣∣∣
0

(
ez1b(b2 + 1)N−2p(Det(A), b2)

)
(A.6)

Now we can spell out all series and get

=
∞∑
n=0

N−2∑
k=0

2∑
i=0

zn2
n!

(
N − 2
k

)
pi(A)δ(n+2(k+i)),(2αN+1)

= 2πı̇
2∑
i=0

pi(A)
αN−i∑
k=0

z
2αN+1−2(i+k)
2

(2αN + 1− 2(i+ k))!

(
N − 2
k

)
Where one should probably consider 2αN as odd, due to equation (2.24) which means
that the integral is an even function of z2. Unfortunately we cannot say much more
about the resulting series.

A.5 Invariant measure

In this section we explicitly compute the invariant measure on Sl(R2)/ SO(R2) which
is the real form of the boson-boson part of ÕSp2|2/H0. Since the fermion-fermion part
is zero-dimensional this actually yields the invariant measure on the whole real form.
We now stop emphasising that the symplectic and orthogonal groups in this section

are always understood over the reals and start by introducing coordinates for g ∈ Sl2.

g =
√

1 + a2
1 − a2

2 + a2
3 1 + a1σ1 + a2ı̇σ2 + a3σ3

and compute the invariant Maurer-Catrtan form g−1dg in these coordinates. Since
this form is Lie-algebra, sl2, valued, it has 3 components. The wedgeproduct of those
yields the volume form on Sl2 which is invariant under left translation.

dµ(g) ∝ da1 ∧ da2 ∧ da3√
1 + a2

1 − a2
2 + a2

3

∝ d[g]
Tr(g)

where we denote the measure given by the wedge product of the differentials of inde-
pendent matrix entries by d[g].
Next we introduce similar coordinates for p ∈ Sl2 / SO2.

p =
√

1 + p2
1 + p2

3 1 + p1σ1 + p3σ3
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And via the Cartan embedding

Sl2 / SO2 ↪→ Sl2
p = ggT ←[ g

we obtain the change of coordinates

p1 = 2a1

√
1 + a2

1 + a2
3 p3 = 2a3

√
1 + a2

1 + a2
3

Note that the Sl2 action on 1 by twisted conjugation with respect to the involution
g 7→ (g−1)T that generates this orbit is the descendant of the ADθ action, as introduced
in section 3.2.3.
Further we note

dp1 ∧ dp3√
1 + p2

1 + p2
3

= 4 da1 ∧ da3

and integrating da2 out of the invariant measure dµ(g) yields a constant,
√

1+a2
1+a2

3∫
−
√

1+a2
1+a2

3

da2√
1 + a2

1 + a2
3 − a2

2

= π

hence the measure on Sl2 / SO2 in the above representation and coordinates which is
invariant under twisted conjugation is given by

dµ(p) ∝ dp1 ∧ dp3√
1 + p2

1 + p2
3

∝ d[p]
Tr(p)

In fact, one can check by direct computation that

∀g∈Sl2dµ(gpgt) = dµ(p)
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