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1 Introduction

1.1 Kurzbeschreibung der Arbeit

Diese Arbeit ist Teil eines Forschungsprojektes ([AHZ08, All10, AHL11]) zur Entwick-
lung harmonischer Analysis auf symmetrischen Superräumen. Motiviert durch An-
wendungen in der theoretischen Physik ist das übergeordnete Ziel, das Verständnis
der sphärischen Funktionen, d.h. K-biinvarianter Eigenfunktionen G-invarianter Dif-
ferentialoperatoren auf Quotienten, G/K, von Lie-Supergruppen. Ein solches ist uner-
lässlich um die Fourier-Transformation auf solche Superräume zu verallgemeinern, um
dadurch etwa physikalisch relevante partielle Di�erentialgleichungen lösen zu können.
Wir vermuten, dass, analog zum klassischen Fall, eine Charakterisierung sphärischer

Funktionen als Matrixkoe�zienten sphärischer Darstellungen möglich ist. Deshalb sind
symmetrische Paare, (g, k), reduktiver komplexer Lie-Superalgebren mit geeigneten re-
ellen Formen, d.h. gewöhnlichen Lie-Gruppen G0, der Ausgangspunkt dieser Arbeit.
Äquivalent zur Kategorie solcher Supergruppenpaare, (G0, g), ist die Kategorie der
cs-Lie-Supergruppen. Wir entwickeln im Folgenden beide Sichtweisen, da die erstere
besser zum Verständnis der algebraischen Darstellungstheorie geeignet ist, die letztere
hingegen sich besser für die Beschreibung von Integration über Supermannigfaltigkei-
ten eignet.
Das wesentliche Resultat dieser Arbeit ist unser Beweis von Theorem 3.60, dass

den klassischen Satz von Cartan-Helgason, [Hel84], Kapitel V, Theorem 4.1, verallge-
meinert, nämlich die Charakterisierung der sphärischen Höchstgewichtsdarstellungen
Vλ: Genau dann ist Vλ sphärisch (d.h. besitzt einen K-invarianten Vektor), wenn der
Höchtgewichtsvektor M -invariant ist; anders gesagt, wenn das höchste Gewicht λ auf
dem toroidalen Teil h ∩ k einer θ-invarianten Cartanunteralgebra h mit maximalem
Vektorteil a = h∩ p verschwindet. Des Weiteren ist der K-invariante Vektor in diesem
Fall bis auf Vielfache eindeutig. Hierbei ist G = KAN die Iwasawa Zerlegung von G
und Q = MAN eine entsprechende minimal parabolische Untergruppe von G.
Unser Beweis verallgemeinert imWesentlichen die Beweistechnik von [Sch84] auf den

Superfall. Im Fall von g = glq|r+s mit k = glq|s⊕gl0|r, auf den wir uns ab Abschnitt 3.3
konzentrieren, folgt in der Tat aus der K- die M -Invarianz und wir können somit eine
notwendige Bedingung für sphärische endlichdimensionale Darstellungen dieses Paa-
res angeben. Für die Umgekehrte Richtung, d.h. den Beweis, dass die M -Invarianz des
Höchstgewichtsvektors auch hinreichend für die existens eines K-invarianten Vektors
ist, müssen wir uns auf den Fall s = 1 und entweder r > q oder Darstellungen von
hinreichend hohem höchsten Gewicht einschränken, um ein konkretes Superintegral in
Abschnitt 3.5.1 berechnen zu können. Als Korollar erhalten wir analog zum klassischen
Fall eine, im eingeschränkten Fall vollständige, Charakterisierung der endlichdimen-
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1 Introduction

sionalen sphärischen Höchstgewichtsdarstellungen über ihr höchstes Gewicht.
Ein weiteres Ergebnis ist die Entwicklung von induzierten Darstellungen und der

Beweis von Frobeniusreziprozität in der Kategorie unendlichdimensionaler glatter Dar-
stellungen von Lie-Supergruppenpaaren in Abschnitt 3.4.
Diese Arbeit soll aus sich selbst heraus verständlich sein, d.h. beginnen wir in Ka-

pitel 2 mit einer ausführlichen Einführung der relevanten Konzepte, insbesondere der
Supermathematik die im folgenden benötigt wird. Kapitel 3 beginnt mit dem Verweis
auf einigen Fakten über die Darstellungstheorie von Lie-Superalgebren, meist ohne die
Beweise zu reproduzieren. Unsere eigene Arbeit beginnt in Abschnitt 3.3 mit einer
genauen Beschreibung von glq|r+s und ihrer Wurzelraumstruktur. Es folgen die oben
erwähnten Resultate und als abschlieÿende Anwendung werden zwei Darstellungen
von gl1|2+1 diskutiert. Das letzte Kapitel 4 enthält neben einer Zusammenfassung der
genauen Ergebnisse auch Hinweise auf eine Verallgemeinerung auf beliebige stark re-
duktive symmetrische Paare. Während sich unser Beweis für die notwendige Bedingung
für sphärische Darstellungen ohne Weiteres übertragen lässt, steht und fällt die Ver-
allgemeinerung der hinreichenden Bedingung mit der Berechnung des entsprechenden
super Integrals,

∫
K/M π(k)vλDk im verallgemeinerten Fall. Wir vermuten, dass sich

dies zumindest für glq|r+s mit s > 1 mit Hilfe einer Verallgemeinerung der Rangreduk-
tion ähnlich dem analogen Beweis in [Sch84] bewerkstelligen lässt. Für gl1|2+1 geben
wir die Matrixkoe�zienten als Kandidaten für sphärische Funktionen an, aber die ge-
naue Beziehung zu invarianten Di�erentialoperatoren bleibt das Ziel weiterführender
Untersuchungen.
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1.2 English introduction

1.2 Introduction

The idea of describing the eigenvalues of bosonic and fermionic �elds in quantum �eld
theory by commuting and anticommuting variables led to the development of super
manifolds in the 1970s. Of particular interest to condensed matter physicists studying
disordered systems are symmetric super spaces, i.e. quotientsG/K of Lie super groups,
because those arise for example as the target spaces of non-linear σ-models, which
are the e�ective low energy theories for disordered fermionic systems with quadratic
Hamiltonians in the thermodynamic limit. See [Zir98] for an elaborate discussion of
an application. An interesting development is [LSZ07] which proves that an important
step in the development of these physical models is indeed mathematically rigorous.
A recent example using this new technique can be found in [SZ10].
Recently, active research has been focused on the development of harmonic analysis

on symmetric super spaces ([AHZ08, All10, AHL11]). One goal here is to prove a super
Fourier inversion formula and hence obtain a tool to solve linear partial di�erential
equations involving G-invariant di�erential operators on G/K as appear in the afore
mentioned examples from physics. To this end one needs to understand spherical
functions, i.e. the K-biinvariant joint eigenfunctions of such di�erential operators and
in particular their asymptotics. We expect that, as in the classical case, those functions
can be characterised as matrix coe�cients of the spherical representations of G, i.e.
those containing a K-invariant vector. The goal of this thesis is therefore to determine
which �nite dimensional irreducible G representations are spherical. For concreteness
and to avoid problems stemming from non-compact real forms we restrict our attention
to the Lie super algebra level and study the symmetric pair g = glq|r+s with sub Lie
super algebra k = glq|r ⊕ gl0|s.
Our main result, Theorem 3.60 on page 53, is a generalisation of a classical theorem

due to Helgason, [Hel84], Chapter V, Theorem 4.1, which states that a representation
is spherical if and only if the highest weight vector is M -invariant, where Q = MAN
is a minimal parabolic subgroup of G. It turns out that this is exactly the same in the
super case. For the proof we use methods developed by Schlichtkrul, [Sch84], to reduce
the use of integration, which in the super world holds much more pitfalls. Similar to
the ordinary case we can then classify the spherical representations in terms of their
highest weights in Lemma 3.61 and the subsequent corollaries. At least for glq|r+1 with
r > q this classi�cation is complete, but see Chapter 4 for some immediate as well as
conjectured generalisations.

This thesis is meant to be reasonably self contained, therefore we will start by
introducing all relevant concepts in Chapter 2. In particular we will develop the notion
of Lie super groups from two di�erent perspectives as group objects in the category
of super manifolds as well as in terms of super group pairs (G0, g) of a classical real
Lie group and a complex Lie super algebra. The category of so called cs Lie super
groups is equivalent to the category of such super group pairs and hence the right
one for our purpose, because we want to investigate the question about the spherical
representation starting from the view point of the complex Lie super algebra g. The
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point is then to determine which g representations contain a k-invariant vector, but,
as in the classical case, we will need a global real form of g, namely G0, to make use
of the Iwasawa decomposition and Frobenius reciprocity and in order to formulate an
integral over K/M . In fact, half of the characterisation of spherical representations,
namely condition 3 in Lemma 3.61, only becomes visible on the exponentiated level.
Chapter 3 starts by reciting some facts about the representation theory of Lie super

algebras and the global Iwasawa decomposition. Here we mostly omit the proofs and
refer to the literature. From Section 3.3 on we narrow down the scope to glq|r+s and
present our own results, starting with the root space decomposition. In Section 3.4
we explain induced representations of possibly in�nite dimensional representations of
super group pairs and proof Frobenius reciprocity in this setting. Section 3.5 is con-
cerned with the proof of our main theorem, classifying spherical representations. We
then give two concrete examples of representations of gl1|2+1 for which we validate
the statements and conclusions from Section 3.5. Finally we conclude with some re-
marks about how to generalise our �ndings and about the future perspective for the
development of harmonic analysis. In particular, the necessary condition for spherical
representations, proven in Section 3.5, immediately generalises to all reductive sym-
metric pairs of even type for which the global Iwasawa decomposition exists, as long
as only �nite dimensional highest weight representations are taken into account. This
includes in particular all strongly reductive pairs, but note that glq|r+s is strongly re-
ductive if and only if q 6= r + s. All our results apply also in the case of q = r + s, as
long as (q, r + s) 6= (1, 1), as will be explicitly pointed out at the relevant points.

Although some heavy machinery using category and sheaf theory to de�ne super
Lie groups and invariant integration is developed and used, most of the results can be
formulated and understood in terms of Lie super group pairs consisting of Lie super
algebras and ordinary manifolds. If the reader wants to skip the more abstract parts,
an accessible overview can be gained starting from some basic de�nitions in Sections
2.2, 2.5.1 and 2.5.2 and some representation theory in Sections 3.1.1 and 3.2.1, maybe
proceeding with details about glq|r+s in Section 3.3, to come to the classi�cation results,
Corollary 3.63 and 3.64 which are exempli�ed in Section 3.6.
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2 Preliminaries

In this section we will de�ne the objects and notions to be used in this thesis and
study some of their basic properties. Most of the content can be found in [ABG+10],
[All10] and [All11b].

2.1 General concepts

We start by introducing the very basic notions of category and sheaf theory which will
be used in the following sections.

2.1.1 Categories

In this thesis we mostly consider locally small categories which are de�ned as follows.

De�nition 2.1. A category C consists of a collection of objects Ob(C) (which does
not need to be a set) and for each pair of objects X,Y ∈ Ob(C) there is a set of homo-
morphisms HomC(X,Y ). We will write X ∈ C meaning X ∈ Ob(C) and f : X → Y
meaning f ∈ HomC(X,Y ).
Further we need to have an operation of concatenation

◦ : HomC(Y, Z)×HomC(X,Y ) → HomC(X,Z)

(f, g) 7→ f ◦ g

with the following properties

1. ∀X ∈ C ∃ idX ∈ HomC(X,X)

2. ∀f : X → Y : idX ◦f = f = f ◦ idY

3. ∀f : A → B ∀g : B → C ∀h : C → D : (h ◦ g) ◦ f = h ◦ (g ◦ f)

Example 2.2. The category Sets has sets as objects and maps as morphisms. The
subcategory VS consists of vector spaces with linear maps as morphisms.

De�nition 2.3. A functor is a morphism of categories, i.e. for categories C and D a
functor F : C → D is given by maps (all denoted by the same symbol) F : Ob(C) →
Ob(D) and for each X,Y ∈ C we have F : HomC(X,Y ) → HomD(F (X), F (Y )) such
that F (idX) = idF (X) and F (g ◦ h) = F (g) ◦ F (h).

Remark 2.4. Note that the collection of all functors from C to D is in general not a
set.
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2 Preliminaries

De�nition 2.5. We will use the usual notions of endo-, iso- and automorphisms
∀X,Y ∈ C :

EndC(X) := HomC(X,X)

IsoC(X,Y ) := {f ∈ HomC(X,Y )
∣∣∃f−1 ∈ HomC(Y,X) :

f ◦ f−1 = idY and f−1 ◦ f = idX}
AutC(X) := IsoC(X,X)

And for X,Y ∈ C we write X ' Y :⇔ IsoC(X,Y ) 6= ∅.

De�nition 2.6. A subcategory D of a category C is a category such that ∀X ∈ D :
X ∈ C and ∀X,Y ∈ D : HomD(X,Y ) ⊂ HomC(X,Y ). It is called a full subcategory
:⇔ ∀X,Y ∈ D : HomD(X,Y ) = HomC(X,Y ).

De�nition 2.7. The product of G1, G2 ∈ C, if it exists, is denoted by G1 × G2 ∈
C,comes with projections pi ∈ HomC(G1 × G2, Gi) and is de�ned by the following
property

∀H ∈ C ∀fi ∈ HomC(H,Gi) ∃!f ∈ HomC(H,G1 ×G2) : pi ◦ f = fi

which can be nicely expressed as a commuting diagram

∀H G1 ×G2

G1

G2

∀f1

∀f2

p1

p2

∃!f

A terminal object, if it exists, is de�ned by

∗ ∈ C ∀G ∈ C ∃! ∗G ∈ Hom(G, ∗)

Note that by this de�nition all terminal objects are isomorphic. They can be thought
of as the product of 0 objects and hence by the existence of �nite products we mean in
particular the existence of a terminal object.

De�nition 2.8. Let C be a category where all �nite products exist. Then a group ob-
ject is an object G ∈ C together with a multiplication morphism, m ∈ Hom(G×G,G),
inversion morphism, i ∈ End(G), and a unit morphism, e ∈ Hom(∗, G), such that

1. m ◦ (idG×m) = m ◦ (m× idG) (associativity)

2. m ◦ (idG×i) ◦ δG = m ◦ (i× idG) ◦ δG = e ◦ ∗G (inverse) where δG = (idG, idG)
is the diagonal embedding G ↪→ G×G

6



2.1 General concepts

3. m ◦ (idG×e) ◦ (idG, ∗G) = m ◦ (e× id) ◦ (∗G, idG) = idG (neutrality)

A morphisms of group objects f : G → H is required to intertwine multiplication,
f ◦m = m′ ◦ (f × f), and inversion, f ◦ i = i′ ◦ f , and to preserve the unit morphism
f ◦ e = e′. This de�nes the subcategory of group objects.

De�nition 2.9. For X,Y ∈ C we will call the set

X(Y ) := Hom(Y,X)

the Y -points of X. This name is motivated by the ∗-points of a set being its elements
and similarly the ∗-points of a topological space are its ordinary points. We will write

x ∈Y X :⇔ x ∈ X(Y )

and for x ∈Y X and f ∈ Hom(X,Z) we denote

f(x) := (f ◦ x) ∈Y Z

Yoneda Lemma

The purpose of this section is to reproduce the general fact that in any category a
collection of maps (in between sets) fS : X(S) → Y (S) indexed by S ∈ C de�nes a
morphism f ∈ Hom(X,Y ) such that ∀p ∈S X : f(p) = fS(p) if and only if

∀p ∈S X ∀g ∈T S : fT (p(g)) = (fS(p)) (g) = fS(p) ◦ g

and if so, f ∈ Hom(X,Y ) is unique.
Hence homomorphisms can be given on the level of generalised points, i.e. in terms

of ordinary maps in the category of sets.

De�nition 2.10. For any category C there is an opposite category Cop which has the
same objects but HomCop(X,Y ) := HomC(Y,X) and f ◦op g := g ◦ f .

Remark 2.11. A functor Cop → D is called contravariant functor.

De�nition 2.12. A natural transformation is a morphism of functors, i.e. for F,G :
C → D a natural transformation θ : F → G is given by morphisms (all denoted by the
same symbol) θ ∈ HomD(F (X), G(X)) for all X ∈ C such that

∀f ∈ HomC(X,Y ) : θ ◦ F (f) = G(f) ◦ θ

This de�nes the category of functors from C to D. Note however that this category is
in general not locally small, i.e. natural transformations in between two given functors
might not form a set, unless C and D are small, i.e. the collections of objects are sets.

De�nition 2.13. For any category C denote by C∨ the category of functors Cop →
Sets. Particular objects in this category are the hom functors. For X ∈ C we de�ne
X(.) ∈ C∨ by X(Y ) = Hom(Y,X) as in De�nition 2.9 and for f ∈ HomC(Y, Z) we
de�ne X(f) ∈ HomSets(X(Y ), X(Z)) by X(f)(g) := g ◦ f .

7



2 Preliminaries

Lemma 2.14. The Yoneda Lemma states that for X ∈ C and F : Cop → Sets

HomC∨(X(.), F ) ' F (X)

Proof of 2.14. An isomorphism of sets is just a bijective map which we will now con-
struct. Let F ∈ C∨ and

Φ : HomC∨(X(.), F ) → F (X)

θ 7→ θ(idX)

This is well de�ned because for a natural transformation θ : X(.) → F we have in
particular θ : X(X) = Hom(X,X) → F (X). To construct the inverse let Ψ : F (X) →
HomC∨(X(.), F ) for a ∈ F (X) be de�ned by

Ψ(a) : X(Z) → F (Z)

x 7→ (F (x)) (a)

This is a natural transformation because for f ∈ HomC(Y, Z) and x ∈ X(Z) we have

F (f) (Ψ(a)(x)) = F (f) (F (x)(a)) = F (x ◦ f)(a) = Ψ(a)(x ◦ f) = Ψ(a) (X(f)(x))

and Φ(Ψ(a)) = Ψ(a)(idX) = F (idX)(a) = a. Conversely

Ψ(Φ(θ))(x) = F (X)(Φ(θ)) = F (x)(θ(idX)) = θ(X(x)(idx)) = θ(idX ◦x) = θ(x)

hence Ψ(Φ(θ)) = θ which completes the prove.

Corollary 2.15. In particular

HomC∨(X(.), Y (.)) ' Y (X) = HomC(X,Y )

which is the statement at the beginning of this section.

2.1.2 Sheaves

De�nition 2.16. For a topological space X with topology τ(X) := {U ⊂ X open} a
sheaf over X with values in a sub category C of Sets is a map

F : τ(X) → Ob(C)

together with restriction morphisms ∀U, V ∈ τ(X) :∣∣∣U
V
: F (U) → F (V )

f 7→ f
∣∣∣U
V

such that ∀V,U ∈ τ(X) and for any open cover
⋃

i Ui = U we have

8



2.2 Super algebras

1.
∣∣∣U
U
= idF (U)

2.
∣∣∣U
Ui

◦
∣∣∣V
U
=
∣∣∣V
Ui

3. ∀{fi ∈ F (Ui)} :

(
∀i, j : fi

∣∣∣Ui

Ui∩Uj

= fj

∣∣∣Uj

Ui∩Uj

⇒ ∃h ∈ F (U) ∀i : fi = h
∣∣∣U
Ui

)

4. ∀f, g ∈ F (U) :

(
∀i : f

∣∣∣U
Ui

= g
∣∣∣U
Ui

⇒ f = g

)
The elements of F (U) are called sections over U . For the rest of this thesis we will

use the notation f
∣∣
V
:= f

∣∣∣U
V
if f ∈ F (U) is understood.

De�nition 2.17. A homomorphism of sheaves over X, θ : E → F , is given by
homomorphisms θ : E(U) → F (U) for all U ∈ τ(X) such that for all V ∈ τ(X)∣∣

V
◦ θ = θ ◦

∣∣
V

This de�nes the category ShC(X) of sheaves over X with values in C.

De�nition 2.18. For F a sheaf over X and f : X → Y a continuous map of topo-
logical spaces the direct image sheaf f∗F is a sheaf over Y de�ned by f∗F (U) :=

F (f−1(U)) and
∣∣∣U
V
:=
∣∣∣f−1(U)

f−1(V )
. Note that f∗ is a functor.

De�nition 2.19. For F ∈ ShC(X), U ∈ τ(X) and f ∈ F (U) the germ of f at x ∈ U
is given by the equivalence class

[f ]x := {g
∣∣ ∃V,W ∈ τ(X), g ∈ F (V ), x ∈ W ⊂ V ∩ U : f

∣∣
W

= g
∣∣
W
}

The set of all germs at x, Fx = {[f ]x}, is called the stalk of F at x. Note that Fx ∈ C
because restrictions are homomorphism.

2.2 Super algebras

De�nition 2.20. A super vector space is a Z2 graded vector space, V = V0 ⊕ V1.
Morphisms of super vector spaces are degree preserving linear maps denoted by HomSVS

which de�nes the category of �nite dimensional real super vector spaces SVS. Unless
otherwise speci�ed we will assume super vector spaces to be �nite dimensional and the
base �eld to be R. The elements of V0/1 are called even/odd respectively and both are
called homogeneous. We will denote the degree by ∀x ∈ Vi : |x| := i.

Lemma 2.21. The product of �nite dimensional super vector spaces V1 and V2 exists
and is given by V1 × V2 = V1 ⊕ V2. The terminal object in SVS is given by ∗ = 0.

9
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Proof of 2.21. Projections are given by

pi : V1 × V2 → Vi

x1 ⊕ x2 7→ xi

and for W ∈ SVS and fi : W → Vi the unique f completing the diagram in 2.7 is

f : W → V1 × V2

y 7→ f1(y)⊕ f2(y)

De�nition 2.22. Let Hom(V,W ) consist of all linear maps in between the super vector
space V and W , i.e. the underline denotes forgetting the super structure and consid-
ering V and W as objects in the category of ordinary vector spaces, VS. Hom inherits
a super vector space structure

Hom(V,W ) := HomVS(V,W ) = (Hom(V,W ))0 ⊕ (Hom(V,W ))1
= (Hom(V0,W0)⊕Hom(V1,W1))⊕ (Hom(V0,W1)⊕Hom(V1,W0))

In the following we will indicate whether homomorphisms of super vector spaces are
required to respect the grading or not by this underline and hence drop the subscript.

Hom(V,W ) := HomSVS(V,W )

End(V ) := Hom(V, V ) = EndVS(V ) End(V ) := EndSVS(V )

Iso(V,W ) := IsoVS(V,W ) Iso(V,W ) := IsoSVS(V,W )

Aut(V ) := Aut(V ) Aut(V ) := AutSVS(V )

Note that Hom(V ) = (Hom(V,W ))0 = Hom(V0,W0)⊕Hom(V1,W1) and similarly for
End(V ), Iso(V,W ) and Aut(V ).

De�nition 2.23. A Z2 graded algebra A = A0⊕A1 over C with AiAj ⊂ Ai+j is called
super algebra. It is called unital if there is a unit element which is then automatically
even. A morphism of (unital) super algebras is a (unital) algebra morphism which
preserves the degree. The category of associative unital super algebras will be denoted
by SAlg.

Example 2.24. End(V ) as introduced above with the multiplication given by ◦ is an
associative unital super algebra.

De�nition 2.25. A super algebra is called super commutative

:⇔ ∀a, b ∈ A : ab = (−1)|a||b|ba

and super anticommutative

:⇔ ∀a, b ∈ A : ab = −(−1)|a||b|ba

10
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2.2.1 Lie super algebras

De�nition 2.26. A Lie super algebra A = A0⊕A1 is a graded super anticommutative
(non-associative, usually non-unital) algebra with the product denoted by [. , .], which
additionally ful�ls the super Jacobi identity1, written in a mnemonic form as

∀x, y, z ∈ A : [x, [y, z]] + (−1)|x|(|y|+|z|)[y, [z, x]] + (−1)|z|(|x|+|y|)[z, [x, y]] = 0

This de�nes the category LSAlg as a full subcategory of complex super algebras.

Example 2.27. The linear endomorphisms of a complex super vector space End(V )
together with the super commutator

[X,Y ] = X ◦ Y − (−1)|X||Y | Y ◦X

form a super Lie algebra which is denoted gl(V ).

De�nition 2.28. The universal enveloping algebra of a Lie super algebra g is de�ned
as the associative algebra

U(g) :=

( ∞⊕
n=0

g⊗n

)
/
(
x⊗ y − (−1)|x||y|y ⊗ x ∼ [x, y]

)
i.e. the tensor algebra modulo the Lie super algebra relations. U(g) inherits a natural
Z2 grading from that of the tensor algebra which is preserved by the equivalence relation.

Lemma 2.29. We have an isomorphism of vector spaces

U(g0)⊗ U(g1) ' U(g0)⊗
∧

g1
∼−→ U(g)

u0 ⊗ u1 7→ u0β(u1)

which holds by the Poincaré-Birkho�-Witt theorem: For any basis {a1, . . . , ap} of g0
and any basis {b1, . . . , bq} of g1 a basis of U(g) is given by

{ak11 . . . a
kp
p bi1 . . . bil

∣∣ki ≥ 0, 0 ≤ l ≤ q, i1 < i2 < . . . il}

Proof of 2.29. See Theorem 2.1 in [Ros65].

De�nition 2.30. We will in the following use the antipode of a graded algebra U
which is the even linear map S : U → U de�ned by

S(1) : = 1

∀x ∈ U1 : S(x) : = −x

∀x, y ∈ Un≥1 : S(xy) : = (−1)|x||y|S(y)S(x)

1Alternatively one may write the Jacobi identity as ad([x, y]) = [ad(x), ad(y)] i.e. ad de�ned

by ad(x) := [x, .] is a representation of g on gl(g). Another interpretation is ad(x)([y, z]) =
[ad(x)(y), z] + (−1)|x||y|[y, ad(x)(z)] i.e. ad(x) is a super derivation on g.

11
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Remark 2.31. Note that S([x, y]) = −[S(x), S(y)], in particular SU(g)

∣∣
g
= − idg is a

Lie super algebra anti-automorphism.

Lemma 2.32. Let A ∈ SAlg then the Lie super algebra morphisms HomLSAlg(g, A),
where the bracket on A is given by the super commutator, are in one-to-one correspon-
dence with morphisms of unital super algebras HomSAlg(U(g), A).

Remark 2.33. This will be used later in the case of A = U(h).

Proof of 2.32. The extension of a Lie super algebra homomorphism to the tensor alge-
bra by acting on each generator simultaneously respects the equivalence relation which
de�nes U. Hence this is the unique extension of a LSAlg morphism to a unital SAlg
morphism. The inverse is given by restriction.

2.3 Super ringed spaces

The �rst two de�nitions introduce the category of super (ringed) spaces, SRSp.

De�nition 2.34. A pair X = (X0, OX) where X0, called base, is a topological space
and OX a sheaf of super commutative super algebras over X0 is called super (ringed)
space.

De�nition 2.35. A morphism of super (ringed) spaces X and Y is given by a pair
of maps f = (f0, f

∗) where f0 : X0 → Y0 is continuous and f∗ : OY → (f0)∗OX is a
morphism of sheaves over Y0 (with values in super algebras).

De�nition 2.36. For an open subset U ⊂ X0, X
∣∣
U

= (U,Ox

∣∣
U
) denotes the open

subspace of X with base U . Note that the embedding i : U ↪→ X0 and sheave restriction
p : OX → OX

∣∣
U
de�ne an embedding (i, p) : X

∣∣
U
↪→ X of super ringed spaces.

The following lemma shows that super ringed spaces can be glued.

Lemma 2.37. Let X0 be a topological space with an open cover {Ui} and sheaves Fi

with values in super algebras over Ui together with isomorphisms φi,j : Fj

∣∣
Ui,j

' Fi

∣∣
Ui,j

such that

φi,i = idFi φi,j ◦ φj,i = id
Fi

∣∣
Ui,j

φi,k ◦ φk,j ◦ φj,i = id
Fi

∣∣
Ui,j,k

where Ui,j := Ui ∩ Uj. Then there exists a sheaf F and isomorphisms φi : F
∣∣
Ui

→ Fi

such that φi

∣∣
Ui,j

= φi,j ◦ φj

∣∣
Ui,j

and F and the φi are unique up to isomorphism.

Proof of 2.37. See [All11b], Proposition 3.18.

2.4 Super manifolds

In this section we de�ne cs manifolds, where cs stands for complex super, as introduced
in [DM99], de�nition 4.8.1, but, since no other type of super manifolds is considered
here, we will mostly leave away the pre�x cs.
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2.4 Super manifolds

2.4.1 Linear super manifolds

De�nition 2.38. With a �nite dimensional real super vector space V = V0⊕V1 ∈ SVS,
we can associate the linear super manifold V = (V0,C

∞
V0

⊗
∧

V ∗
1 ) where C∞

V0
denotes

smooth functions from V0 to C considered as an algebra over C. I.e. although V0 and
V1 are real, we consider a complexi�ed structure sheaf.

Remark 2.39. The category SVS is equivalent to a category of linear super man-
ifolds with linear morphisms, i.e. (φ0, φ

∗) : V → W consisting of a linear map
φ0 ∈ HomSVS(V,W ) and φ∗ extending φ∗∣∣

W ∗ ∈ HomSVS(W
∗, V ∗). But as in the

ordinary case the point about manifolds is the de�nition of smooth and not only linear
maps.

De�nition 2.40. Let R
p|q
C

:= Rp ⊕Rq = (Rp,C∞
Rp ⊗

∧
(Rq)∗) denote the linear super

manifold associated with the super vector space Rp ⊕Rq. Because we will throughout
this thesis exclusively deal with manifolds with complex structure sheaf, we will drop

the index and write Rp|q := R
p|q
C

deviating from the standard notation. Note that SVS
is equivalent to its Rp|q subcategory.

2.4.2 General super manifolds

De�nition 2.41. Let X = (X0, OX) ∈ SRSp. A pair (U, φ) with x ∈ U ⊂ X0

and φ : X
∣∣
U

↪→ Rp|q an open embedding (i.e. an isomorphism onto an open subset)
is called a chart of X around x and U a coordinate neighbourhood of x. If {xi, ξj}
are the standard homogeneous coordinates of Rp|q, i.e. standard coordinates of Rp

together with the standard basis of (Rq)∗, then {φ∗(xi), φ
∗(ξj)} are called a system of

local coordinates on U .

De�nition 2.42. A collection of charts (Ui, φi) such that the Ui form an open cover
of M0 for M = (M0, OM ) ∈ SRSp is called an atlas of M .

De�nition 2.43. The category of cs super manifolds, SMan is a full subcategory of
SRSp where we additionally require each super manifold to have a Hausdorf and para
compact2 base, M0, and to admit an atlas. In other words, super manifolds are locally
isomorphic to Rp|q. We will in the following assume that super manifolds are of pure
(�nite) super dimension, i.e. p|q =: SDim(M) is the same for all charts.

Remark 2.44. For M = (M0, OM ) ∈ SMan and U ⊂ M0 open the sub super ringed
space M

∣∣
U
is again a super manifold since we can restrict an atlas of M to one of

M
∣∣
U
.

De�nition 2.45. Let M ∈ SMan of super dimension p|q and (U, φ∗) a chart with local
coordinates (xi, χj). By De�nition 2.41 we can uniquely express f ∈ OM (U) in local
coordinates by

f = φ∗(
∑
|α|≥0

gαξα) =
∑
|α|≥0

fαχα

2Given that M0 is Hausdorf, this is equivalent to M0 being metrizable and also to each connected

component of M0 being second countable.
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where {ξj} is the standard basis of (Rq)∗, gα ∈ C∞(U), α = (α1, . . . , α|α|) is an ordered
multi index, 1 ≤ αi < αi+1 ≤ q, χα := χα1 ∧ . . . ∧ χα|α| and fα = φ∗(gα) ∈ OM (U)0.
This is called the local expansion of f with respect to these local coordinates.

De�nition 2.46. For M ∈ SMan and x ∈ M0 we denote by mOM ,x the maximal ideal
of non-invertible elements of (OM )x and by NOM ,x the maximal ideal of nilpotents.

Lemma 2.47. We have for an open domain U ⊂ Rp|q and x ∈ U0 that

(OU )x = C⊕mOU ,x mOU ,x = mC∞
U0

,x ⊕Nx

where mC∞
U0

,x = {[f ]x ∈ C∞(U)x
∣∣f(x) = 0}.

Proof of 2.47. By de�nition C∞(U)x = C⊕mC∞
U0

,x and (OU )x = C∞(U)x ⊕Nx.

Remark 2.48. For M ∈ SMan, M0 is an ordinary smooth manifold which can be
identi�ed with the purely even super manifold (M0,C

∞(M0)).

De�nition 2.49. For f ∈ OM (U) and p ∈ U denote by f̃(p) ∈ C the unique number,
considered as a constant section f̃(p) · 1 ∈ OM (U), such that

∀V ⊂ U open, p ∈ V : (f − f̃(p))
∣∣
V
is not invertible

which means not invertible as an element of the unital algebra OM (V ).3 Then f̃(p) is
called the numerical part of f of p.

Lemma 2.50. With the notation of De�nition 2.45 we have for f ∈ OM (U) in a chart

(U, φ) around p that f̃(p) = f̃∅(p).

Proof of 2.50. All χα for α 6= ∅ are nilpotent and for any nilpotent fn ∈ OM (U) we
have that

(f + fn)
−1 = f−1

∑
k≥0

(−fnf
−1)k =

∑
k≥0

(−f−1fn)
kf−1

exists if and only if f is invertible.

De�nition 2.51. The morphism of super manifolds

j0 : M0 → M (j0)0 = idM0 j∗0(f)(p) = f̃(p)

is called canonical embedding of M0 into M . Note however that this is not an open
embedding in the above sense.

Lemma 2.52. We have that mOM ,p is �nitely generated by {[xi−j∗0(xi)(p)]p, [ξj ]p} for
local coordinates {xi, ξj} around p.

3In other words, the germ [f − f̃(p)]p is not invertible.
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Proof of 2.52. The problem is local hence most has been said already in Lemma 2.47.
The nilpotents NOM ,p are generated by {[ξj ]p} and if f ∈ C∞(U0) for a ball U0 ⊂ Rp

vanishes at p we can write it as f =
∑

i(xi − xi(p))fi with fi : p 7→
∫ 1
0 ∂if(tp)dt.

Lemma 2.53. For f ∈ HomSMan(X,Y ), g ∈ OY (Y ) and p ∈ X0 we have

j∗0
(
f∗(g)

)
(p) = j∗0

(
g
)
(f0(p))

Proof of 2.53. For λ ∈ C we have that f∗(g − λ) = f∗(g)− λ is invertible if and only
if g − λ is invertible since f∗ is a unital algebra morphism. And since f0 is smooth,
U is a neighbourhood of p ∈ X if and only if f0(U) is a neighbourhood of f0(p) ∈ Y .

Corollary 2.54. For the local expansion of f =
∑

α f
αχα ∈ OM (U) with fα = φ∗(gα)

and gα ∈ C∞(U) we have
j∗0(f

α) = gα

Corollary 2.55. We have

mOM ,x = {[f ]x
∣∣ j∗0(f)(x) = 0}

by Lemma 2.47.

Corollary 2.56. For f ∈ HomSMan(X,Y ) we have f∗(mOY ,f0(x)) ⊂ mOX ,x.

Lemma 2.57. If f ∈ OM (U) has the local expansion f =
∑

α f
αχα for a chart (U, φ)

with local coordinates (xi, χj) and ∀α : j∗0(f
α) ≡ 0 then f = 0.

Proof of 2.57. By de�nition fα = φ∗(gα) for some gα ∈ C∞(φ0(U)). But by Corrolary
2.54 we have j∗0(f

α) = gα ≡ 0 hence fα = φ∗(0) = 0.

Corollary 2.58. If f ∈ OM (U) has a local expansion f = f∅ and j∗0(f) ≡ 0 then
f = 0.

Corollary 2.59. If M ∈ SMan is of super dimension p|q and f ∈ OM (U) such that
∀x ∈ U : [f ]x ∈ (mOM ,x)

q+1 then f = 0.

Proof of 2.59. We have

[f ]x ∈ (mOM ,x)
q+1 ⇒ [fα]x ∈ (mOM ,x)

q+1−|α| ⊂ mOM ,x

since |α| ≤ q hence by Corollary 2.55 we can use Lemma 2.57.

Lemma 2.60. For S ∈ SMan and V ∈ SVS the S points of V are given by

φS : V (S)
∼−→ HomSVS(V

∗, OS(S0)R) =
(
OS(S0)⊗ V

)
0,R

where φ is bijective and natural, i.e. for R ∈ SMan, f ∈R S and g : S → V we have

φR(g(f)) = f∗ ◦ φS(g)

15
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Here OS(S0)R := {f ∈ OS(S0)
∣∣ j∗0(f)(S0) ⊂ R} are the super functions that take

real values and(
OS(S0)⊗ V

)
0,R

:=
{∑

i

fi ⊗ vi ∈ OS(S0)⊗ V
∣∣ |fi| = |vi|, j∗0(fi)(S0) ⊂ R

}
Proof of 2.60. In the following it is important to keep in mind that V is a real super
vector space.
Note that V ∗ ⊂ OV (V0) to de�ne

φS(g)(µ) := g∗(µ)

for g ∈ V (S) and µ ∈ V ∗. Note that φS is natural by de�nition.
Then for p ∈ S0 we have ∀µ ∈ V ∗ : j∗0

(
φS(g)(µ)

)
(p) = j∗0(µ)(g0(p)) = µ(g0(p))

by Lemma 2.53, hence g0 is uniquely determined by φS(g) and µ(g0(p)) ∈ R hence
φs(g)(µ) takes real values.
To show that φS is injective let g′ ∈ V (S) with φS(g) = φS(g

′) and h =
∑

α h
αξα ∈

OV (V0) = C∞(V0)⊗
∧

V ∗
1 where {ξi} is a basis of V ∗

1 . Then

g∗ (h) =
∑
α

g∗ (hα) g∗ (ξα) =
∑
α

g∗ (hα) g′
∗
(ξα)

Further at each point x ∈ V0 we can use ordinary Taylor expansion hα = T q
x (hα) +

Rq+1
x (hα) with the Taylor polynomial T q

x (hα) ∈ C[{xi}]/({xi})q for a basis xi of V ∗
0

used as coordinates on V0 and Rq+1
x (hα) ∈ mq+1

C∞(V0),x
where p|q := SDim(S). Then

g∗(T q
x (hα)) = g′∗(T q

x (hα)) and (g∗ − g′∗)(Rq+1
x (hα)) ∈ mq+1

(g0)∗OS ,x
. Since this can be

done at each point we must have ∀x : (g∗ − g′∗)(hα) ∈ mq+1
(g0)∗OS ,x

and hence we can

use Corollary 2.59 to conclude g = g′.
On the other hand, f ∈ HomSVS(V

∗, OS(S0)R) determines a map g0 : S0 → V0 by
∀µ ∈ V ∗

0 : µ(g0(x)) := j∗0(f(µ))(x) ∈ R which is smooth because all j∗0(f(µ)) are.
g∗ is de�ned using the Taylor series, i.e. for h =

∑
α h

αχα and

hαβ := ∂xβ1
. . . ∂xβ|β|

hα

the ordinary |β|-fold directional derivative of hα ∈ C∞(V0) we de�ne

g∗(h) :=
∑
α

∑
0≤|β|<∞

1

β!

(
hαβ ◦ g0

)
(f(yβ)− yβ ◦ g0) f(ξα)

Because Taylor expansion is a unital algebra homomorphism so is g∗ and by de�nition
φS(g) = f . So φS is also surjective.

Corollary 2.61. In particular for any S ∈ SMan we have OS(S0) ' HomSMan(S,R
1|1)

which justi�es calling the global sections OS(S0) super functions.
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Corollary 2.62. For M,N ∈ SMan and h : N → M , then locally, i.e. on N
∣∣
h−1
0 (U)

for

a chart (U, φ) of M with local coordinates {xi, χj}, h is in one to one correspondence
with the data {h∗(xi), h∗(χj)}.

Corollary 2.63. More generally for M,N ∈ SMan, p|q := SDim(N), (U, φ) a chart
of N with local coordinates {xi, ξj}, V ⊂ M0 open, {z1, . . . , zp} ⊂ OM (V )0 and
{ζ1, . . . , ζq} ⊂ OM (V )1 there exists a unique g ∈ HomSMan(M

∣∣
V
, N
∣∣
U
) such that

∀i, j : zi = g∗(xi) and ζj = g∗(χj) if and only if ∀i : j∗0(ui)(V ) ⊂ j∗0(xi)(U).

Proof of 2.63. One direction is established by Lemma 2.53. For the other one we
generalise Lemma 2.60 to open subsets of linear super manifolds and apply it to g ◦φ.
More details can be found in [Lei80], Theorem 2.1.7.

Lemma 2.64. Super manifolds are modulo isomorphism uniquely determined by their
cocycles. More precisely, let X0 be a metrizable Hausdor� topological space with an
open cover {Ui} and super manifolds Mi with (Mi)0 = Ui together with isomorphisms
φi,j : Mj

∣∣
Ui,j

= Mi

∣∣
Ui,j

such that

φi,j = φ−1
j,i φi,k ◦ φk,j ◦ φj,i = id

Mi

∣∣
Ui,j,k

Then there exists a super manifold M with M0 = X0 and isomorphisms φi : M
∣∣
Ui

→
Mi such that φi

∣∣
Ui,j

= φi,j ◦ φj

∣∣
Ui,j

and M and the φi are unique up to isomorphism.

Proof of 2.64. This follows from the corresponding property of super ringed spaces,
Lemma 2.37.

Lemma 2.65. Finite products of linear super manifolds exist in the category of super
manifolds SMan.

Proof of 2.65. By Lemma 2.21 the product in SVS of V1, V2 ∈ SVS exists. Hence we
have a product of linear super manifolds V1 and V2 which is given by V1×V2 = V1 ⊕ V2

and ∗ = 0 = (0,C∞
{0}⊗

∧
{0}∗) = (0,C).

But we need to check that

V1 ⊕ V2 = ((V1)0 ⊕ (V2)0,C
∞
(V1)0⊕(V2)0

⊗
∧

((V1)1 ⊕ (V2)1)
∗

also is the direct product in SMan with projections pi : V1 × V2 → Vi given by

(pi)
∗ : C∞

(Vi)0
⊗
∧

((Vi)1)
∗ → ((pi)0)∗C

∞
(V1)0⊕(V2)0

⊗
∧

((V1)1 ⊕ (V2)1)
∗

f ⊗ x 7→ ((v, w) 7→ f(v))⊗ x

where (pi)0 is the usual projection as in Lemma 2.21 and for U ⊂ (V1)0 open

((p1)0)∗C
∞
(V1)0⊕(V2)0

(U) = C∞
(V1)0⊕(V2)0

(U × (V2)0)
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So let X ∈ SMan and fi ∈ HomSMan(X,Vi). The main point is

HomSVS((V1 ⊕ V2)
∗, OZ(Z0)R) ' HomSVS(V

∗
1 , OZ(Z0)R)⊕HomSVS(V

∗
1 , OZ(Z0)R)

which is just a statement of linear algebra but by Lemma 2.60 it establishes

HomSMan(Z, V1)×HomSMan(Z, V2) ' HomSVS((V1 ⊕ V2)
∗, OZ(Z0)R)

' HomSMan(X,V1 ⊕ V2)

and hence there is a unique f1 ⊕ f2 ' f ∈ HomSMan(X,V1 ⊕ V2) which completes the
diagram de�ning the product.

Lemma 2.66. Finite products exist in SMan.

Proof of 2.66. Since by de�nition every super manifold is locally linear, products exist
locally due to Lemma 2.65. Due to Lemma 2.64 this su�ce for the global existence of
the product. The terminal object is the same as for linear super manifolds.

2.4.3 Tangent and cotangent space

De�nition 2.67. A �bre bundle over B ∈ SMan with �bre F ∈ SMan is given by
X ∈ SMan together with a projection p ∈ HomSMan(X,B) such that there exists an
atlas of local trivialisations. This is an open cover

⋃
i Ui = B0 together with open

embeddings τi : B
∣∣
Ui

× F ↪→ X such that the following diagrams commute

B
∣∣
Ui

× F X

B
∣∣
Ui

B

τi

p

where the unlabelled arrows are the canonical projection and embedding. In other words,
locally we have X

∣∣
(px)

−1
0 (Ui)

' B
∣∣
Ui

× F .

A morphism of �bre bundles pX : X � B and pY : Y � C over φ : B → C is given
by f ∈ HomSMan(X,Y ) such that pY ◦ f = φ ◦ pX . This de�nes the category of �bre
bundles as a subcategory of super manifolds.

Lemma 2.68. We can glue �bre bundles, i.e. for an open cover {Ui} of B ∈ SMan,

F ∈ SMan and Xi := B
∣∣
Ui

together with φi,j ∈ IsoSMan

(
Xj

∣∣
Ui,j

, Xi

∣∣
Ui,j

)
such that

φi,j◦φj,k = φi,k

∣∣
Ui,j,k

, there exists a unique (up to isomorphism) �bre bundle p : X � B

with an atlas {(Ui, τi)} such that τi ◦ φi,j = τj.

Proof of 2.68. This follows from gluing para compact Haussdorf spaces and Lemma 2.64.
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2.4 Super manifolds

De�nition 2.69. If pX : X � B is a �bre bundle, Y ∈ SMan and pY ∈ HomSMan(Y,B)
then X ×B Y ∈ SMan together with morphisms p1 ∈ HomSMan(X ×B Y,X) and
p2 ∈ HomSMan(X ×B Y, Y ) is called �bre product of X and Y over B if

∀Z ∈ SMan ∀fX : Z → X ∀fY : Z → Y ∃!h : Z → X ×B Y

such that the following diagram commutes:

X ×B Y Y

X B

Z

p2

p1

pX

pY

fY

fX

h

Lemma 2.70. Fibre products in SMan exist.

Proof of 2.70. Since pX : X � B is a �bre bundle we have atlas of local trivialisations
{(Ui, τi)} such that τi : B

∣∣
Ui

×F
∼−→ X

∣∣
(px)

−1
0 (Ui)

. Hence we can de�ne X×B Y locally

to be F × Y with the canonical projection p2 : F × Y → Y . For S ∈ SMan we de�ne
p1 : F × Y → X by

F (S)× Y (S) → X(S)

(f, y) 7→ τi(pY (y), f)

For given fX ∈ HomSMan(Z,X) and fY ∈ HomSMan(Z, Y ) and z ∈S Z such that
pY ◦ fY (z) = pX ◦ fX(z) ∈S B

∣∣
Ui

we have the unique

h(z) := (p2(τ
−1(fX(z))), fY (z)) ∈S F × Y

(this p2 projects onto F ) completing the diagram de�ning the �bre product.
The global X ×B Y is then obtained by gluing.

De�nition 2.71. Identifying b ∈ B0 with b : ∗ ↪→ B we call Xb := X ×B b the �bre
of the �bre bundle p : X � B at b.

Corollary 2.72. By the de�ning property of the �bre product we have ∀Z ∈ SMan

{x ∈Z X
∣∣pX(x) = b} ' Xb(Z)

and hence each τi with b ∈ Ui induces an isomorphism Xb ' F by De�nition 2.67.

De�nition 2.73. A �bre bundle p : X � B is called vector bundle if the �bre F is a
linear super manifold and all induced isomorphisms Xb ' F are linear. By demanding
morphisms to be linear in the �bre direction we obtain the category of vector bundles
as a subcategory of �bre bundles.
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2 Preliminaries

Now, as in the ordinary world, one can think of the tangent space in terms of
derivations or as a pointwise linearisation of the super manifold.

De�nition 2.74. Let X ∈ SMan, (U, φ) be a chart with local coordinates {yi, χj}, and
f ∈ OX(U) which we expand locally as

f =
∑
|α|≥0

fαχα

Then we de�ne even derivatives by ordinary derivatives

∂yif :=
∑
|α|≥0

(∂yif
α)χα

and odd derivatives by

∂χif :=
∑
|α|≥0

fα∂χiχα

where [∂χi , χj ] := δi,j (and ∂χi(1) = 0). These partial derivatives form a basis over
OX(U) of the graded derivations

Der(OX(U)) = {d ∈ Hom(OX

∣∣
U
, OX

∣∣
U
)
∣∣ d(fg) = d(f) g + (−1)|f ||d|f d(g)}

The sheaf T X = Der(OX) is also called tangent sheaf of X.

De�nition 2.75. In the notation of De�nition 2.74 above, the OX(U) dual of
Der(OX(U)) is denoted by Ω1

X(U) and the dual basis of {∂yi , ∂χj} by {dyi,dχj}, i.e.

dxi(∂xj) = dχi(∂χj) = δi,j dxi(∂χj) = dχi(∂xj) = 0

The corresponding sheave of OX(U) modules over X0 is denoted by Ω1
X and called

cotangent sheaf of X.

Now for the linearised point of view.

De�nition 2.76. The tangent functor T from super manifolds to vector bundles has
the following properties: ∀X,Y, S ∈ SMan :

1. ∀U ⊂ X open subspace, TU ⊂ TX is an open subspace

2. ∀V ∈ SVS : (TV )(S) ' (OS(S0)[D]⊗ V )0,R

3. ∀f : X → Y locally for x ∈S U ⊂S X we have T f(x+ εv) = f(x) + ε(df(x))v

where D = C[ε]/ε2 and

(OS(S0)[D]⊗ V )0,R =
{∑

i

f0
i ⊗ x0j + εf1

i ⊗ x1i
∣∣ f j

i ∈ OS(S0), x
j
i ∈ V,

|f j
i | = |xji |, j

∗
0

(∑
i

f j
i x

j
i

)
(S0) ⊂ V0

}
and (df(x))v =

∑
i ∂xif(x)vi.

20



2.5 Lie super groups

Lemma 2.77. The tangent functor T is uniquely determined by the properties in 2.76.

Proof of 2.77. This follows from super manifolds being locally isomorphic to Rp|q, the
local expansion of super functions and the gluing Lemmas.

2.5 Lie super groups

We start with a categorical de�nition, a more down to earth point of view not involving
sheaves is given in Section 2.5.1. For the general linear group the picture is very
concrete from both points of view, as explained in Section 2.5.2.

De�nition 2.78. Lie super groups (LSG) are group objects in SMan. The de�nition
makes sense because �nite products exists according to Lemma 2.66.

Remark 2.79. For a super Lie group (G0, OG) ∈ LSG, G0 is an ordinary Lie group.

2.5.1 Super group pairs

The following two de�nitions assemble the category of super group pairs.

De�nition 2.80. A cs super group pair (G0, g), is given by a classical real Lie group
G0 and a complex Lie super algebra g together with a linear (even) action by Lie
super algebra automorphisms, i.e. an ordinary group homomorphism Ad : G0 →
AutLSAlg(g). We demand that the Lie algebra of G0 is a real form of g0 = C ⊗ g0,R,
i.e. g0,R = Lie(G0), Ad extends the adjoint action of G0 on g0 and ad = dAd is given
by the super Lie bracket, i.e. extends the action of g0 on g.

De�nition 2.81. A morphism of super group pairs is a pair

(φ0,dφ) : (G0, g) → (H0, h)

such that φ0 : G0 → H0 is a morphism of ordinary Lie groups and dφ extends dφ0 :
g0 → h0 to a Lie super algebra morphism. Further dφ has to intertwine the Ad actions,
i.e.

∀g ∈ G0 ∀x ∈ g : dφ(AdG(g)x) = AdH(φ(g))dφ(x)

De�nition 2.82. (H0, h) is called subgroup pair of (G0, g) if H0 is a Lie subgroup of
G0, h is a sub Lie super algebra of g and ∀h ∈ H0 : AdG0(h)

∣∣
h
= AdH0(h). As usual,

a homomorphism of super group pairs which is an isomorphism onto its image with
the later being a subgroup pair is called an embedding.

Lemma 2.83. The categories of super group pairs and Lie super groups are equivalent.
Hence we can, modulo isomorphy, identify a Lie super group with its super group pair
and vice versa.

We will not give a full prove of the equivalence of categories. But never the less we
state below how to obtain the group object associated to a pair. For more details see
[ABG+10], section 4.4.
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2 Preliminaries

Some important ideas from the proof of 2.83. How to obtain a group pair from a Lie
super group amounts to computing the Lie super algebra of the group. This can be
done in general as mentioned in Remark 2.87 and is explicitly carried out for the
general linear super group in 2.86.
Going the other way involves a little more e�ort. With a super group pair Gp =

(G0, g) we can associate the Lie super group G = C(Gp) = (G0, OG) where

OG(U) = HomU(g0) (U(g), OG0(U))

= {f : U(g) → OG0(U)
∣∣∀x0 ∈ g0∀y ∈ U(g) : f(x0y) = Lx0f(y)}

where U denotes the universal enveloping algebra. I.e. g0 acts on OG0 by left invariant
vector �elds, ∀g ∈ U : f(x0y)(g) = ∂t

∣∣
0
f(y)(getx0).4 The algebra structure is de�ned

by
(f · h)(y) := f(y)h(1) + f(1)h(y)

for y ∈ g and f, g ∈ OG(U). This Lie super algebra morphism

g → U(g)⊗ U(g)

y 7→ y ⊗ 1 + 1⊗ y

is uniquely extended to a morphism of unital super algebras to de�ne f · h on all
of U(g). The sheaf structure of OG is inherited from the sheaf of ordinary smooth
functions, OG0 , on the manifold G0, i.e.(

f
∣∣
V

)
(g) := (f(g))

∣∣
V

which turns OG into a sheaf as well.
Choosing an atlas A = {(Uα, (φα)0)} of G0 we obtain one of C(Gp) by completing

φα to homomorphisms of SRSp, φα : G
∣∣
U

↪→ Rp|q. To this end we use Lemma 2.29
and consider

O
Rp|q((φα)0(U)) = C∞

((φα)0(U)⊗
∧(

R
0|q
)∗

' OG0(U)⊗
∧

g∗1

(by de�nition, see 2.40) to write

φ∗
α : OG0(U)⊗

∧
g∗1

∼−→ OG(U)

with

∀f ∈ OG0(U) ∀x ∈
∧

g∗1 ∀u0 ∈ g0 ∀u1 ∈ g1 ∀g ∈ U :((
φ∗
α (f ⊗ x)

)
(u0β(u1))

)
(g) := (Lu0f) (g) · x(u1)

4The rough idea here is that the coe�cients in the local expansion are given by odd derivatives

gα = j∗0 (∂ξαf) ∈ OG0 . Hence we need to know these for all directions in g1 and hence for all

ξa ∈ (g1) ⊂ U(g). But since the ideal generated by g1, (g1), might contain parts or even the whole

of U(g0), depending on the Lie super algebra relations, we include all y ∈ U(g) in the de�nition

of �f(y) = ∂yf � and demand that the even derivatives act as usual. This way of thinking is also

useful for understanding the de�nition of the algebra structure which reassembles the Leibniz rule.
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2.5 Lie super groups

To see that φ∗
α is indeed a super algebra isomorphism it is easy to check that

(φ∗
α)

−1 : HomU(g0)

(
U(g), OG0(U)

)
→ OG0(U)⊗

∧
g∗1

F 7→
(
(g, u1) 7→

(
F (β(u1))

)
(g)
)

is the inverse. So we have a (super) atlas and hence C(Gp) ∈ SMan.

To see that C(Gp) is indeed a group object we additionally need the structure
morphisms. The multiplication morphism m : G × G → G and inversion i : G → G
are of course on the base given by group multiplication and inversion in G0. For
f ∈ OG(U);u, v,∈ U(g); g, h ∈ G0 the super part m∗ : OG → OG ⊗OG is given by

((m∗f)(u⊗ v)) (g, h) :=
(
f(Ad(h−1)(u)v)

)
(gh)

and i∗ : OG → OG by (
i∗(f)(u)

)
(g) :=

(
f
(
Ad(g)(S(u))

))
(g−1)

where S : U(g) → U(g) is the linear continuation of inversion in g as introduced in
2.30.
Now to establish that these morphisms actually de�ne a group structure, that the

mappings from groups to pairs and back are actually functorial and yield an equivalence
of categories, we refer to the literature, e.g. [ABG+10], Section 4.4.

2.5.2 The general linear super group

In this work we will be concerned with subgroups of the Lie super group of auto-
morphisms of �nite dimensional super vector spaces. Although Aut(V ) by de�nition
is an ordinary group, the Lie super group structure needs some more explanation.
Throughout this section let V be a real super vector space V = V0 ⊕ V1 of dimension
p|q.

De�nition 2.84. The general linear super group pair of V ∈ SVS is given by

Gl0(V ) := Aut(V ) = Gl0(V0)×Gl0(V1)

where the Gl0(Vi) factors are just the ordinary general linear groups, and the Lie
super algebra gl(V ) was introduced in Example 2.27. The adjoint action is de�ned by
considering Gl0(V ) = Aut0(V ) ⊂ End(V ) and for g ∈ Gl0(V ) and x ∈ gl(V )

Ad(g)x := g ◦ x ◦ g−1 ∈ End(V ) = gl(V )

As usual this de�nes a Lie super algebra automorphism because

Ad(g)(x ◦ y) = Ad(g)(x) ◦Ad(g)(y)
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2 Preliminaries

is already an automorphism on the level of the super algebra x, y ∈ End(V ), see Lemma
2.32. Further we have gl0(V ) = End(V ) = End(V0)⊕ End(V1) = gl0(V0)⊕ gl0(V1) =
Lie(Gl0(V )) because gl0(Vi) is just the ordinary Lie algebra of Gl0(Vi). Finally ad =
dAd extends the Lie bracket as in the ordinary case.

∂t
∣∣
0
etx ◦ y ◦ e−tx = x ◦ y − y ◦ x = [x, y]

for x ∈ gl0. So Gl(V )p := (Gl0(V ), gl(V )) is a super group pair. Note that by con-
struction it comes with a standard representation on C⊗ V .

De�nition 2.85. The super ringed space on which we de�ne the general linear super
group as a group object is an open subspace of the linear super manifold End(V ). Since
Aut(V ) ⊂ End(V ) = (End(V ))0 is an open subset, we can de�ne the super manifold
Gl(V ) := End(V )

∣∣
Aut(V )

, i.e.

Gl(V ) =
(
Gl0(V ),C∞

Gl0(V )⊗
∧

(End1(V ))∗
)

with Gl0(V ) = Aut(V ) as above. De�nition 2.89 establishes multiplication, inversion
and unit by Yoneda's Lemma.

Lemma 2.86. The two de�nitions agree, i.e. Gl(V ) = C(Gl0(V ), gl(V )).

Proof of 2.86. Using Lemma 2.83 it su�ces to calculate the Lie algebra of Gl := Gl(V )
together with the adjoint action and to show that this reproduces the pair.
Hence, in terms of De�nition 2.76 and 2.71, let the Lie super algebra of Gl(V )

be determined by gR := (TGl)1. By De�nition 2.76 and 2.89 TGl comes with a
multiplication which is on S ∈ SMan points given by

(TGl)(S)× (TGl)(S) → (TGl)(S)

(g + εx, h+ εy) 7→ gh+ ε(xh+ gy)

which yields the linear structure of gR(S) by restriction

(1 + εx)(1 + εy) = 1 + ε(x+ y)

and further more a left and right action of Gl on TGl. This can be composed to the
adjoint action of g ∈S Gl on (TGl)1(S)

Ad(g)(1 + εx) = g(1 + εx)g−1 = 1 + εgxg−1

The Lie bracket is de�ned by p2 ◦ TAd where p2 : TV ' V × V → V amounts to
the usual identi�cation of the tangent space of a super vector space V at a point with
V itself, i.e. here p2 : T gR → gR. More explicitly for (1 + εx), (1 + δy) ∈ (TGl)1

(TAd)(1 + εx, 1 + δy) = (1 + εx)(1 + δy)(1 + εx)−1

= 1 + δy + δε(xy − yx) ∈ (T(TGl)1)y
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2.5 Lie super groups

hence [1 + εx, 1 + δy] = xy − yx.
Now in the particular case of S = R1|1 points we have gR(S) = (O

R1|1(R) ⊗
g)0,R = gR due to 2.60 hence we can give the bracket more concretely. Denote the odd
generator of R1|1 by ξ and let x = 1⊗x0+ ξx⊗x1 and y = 1⊗ y0+ ξy ⊗ y1 ∈ g(R1|1).
Then

xy − yx = 1⊗ (x0y0 − y0x0) + ξx ⊗ (x1y0 − y0x1) + ξy ⊗ (x0y1 − y1x0)

+ ξyξx ⊗ (x1y1 + y1x1)

So the bracket is indeed the super commutator and we get g = C ⊗ gR = gl as Lie
super algebras and also the adjoint action of Gl0 on gl is the same as in 2.84.

Remark 2.87. An alternative de�nition of the Lie super algebra of any G ∈ LSG is
given by

g := {x ∈ Hom(OG(G0),C)
∣∣ ∀v, w ∈ OG(G0) : x(vw) = x(v)e∗(w) + e∗(v)x(w)}

Note that e∗(v) = 0 for odd v hence no sign appears.
This gisves rise to the notion of a left invariant vector �eld associated to x ∈ g via

idG⊗x acting on the tensor product OG ⊗OG ⊂ OG×G by

L : g → Der(OG(G0))

x 7→ Lx := (id∗G⊗x) ◦m∗

Here all tensor products are meant to be graded, in particular

idG⊗x(v ⊗ w) = (−1)|v||x|vx(w)

In fact one can extend L to all of OG×G by continuous linear extension in the proper
topology. Details can be found in [All10], Appendix B.

De�nition 2.88. Sub Lie super groups of Gl(V ) will be called matrix Lie super groups
because we can use Lemma 2.60 to rewrite

(End(V )) (S) ' (Γ(OS)⊗ End(V ))0,R

i.e. we can write g ∈S Gl(V ) ⊂S End(V ) as a matrix valued super function (or a
matrix with coe�cients in the super functions)

g =

(
A B

C D

)

with A ∈ Γ(OS)0,R⊗End(V0), D ∈ Γ(OS)0,R⊗End(V1), B ∈ Γ(OS)1⊗Hom(V1, V0)1,
C ∈ Γ(OS)1 ⊗ Hom(V0, V1)1. Throughout we will indicate the Z2 grading of matrices
in End(V ) by blocks as above.
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2 Preliminaries

De�nition 2.89. Similarly matrix Lie groups act on End(V ) and in particular on
themselves by matrix multiplication. For g ∈S G ⊂S End(V ) and x ∈s End(V ) we
have m(g, x) := g ◦ x where ◦ denotes concatenation in End(V )(S).

De�nition 2.90. The standard action of Gl(V ) on V , Gl(V )× V → V , is given for
S ∈ SMan, g ∈S Gl(V ) and v ∈S V by

π(g)v := A(v0) +B(v1)⊕ C(v0) +D(v1) ∈S V

with the notation of De�nition 2.88 above. Because End(V ) is given by maps in between
super vector spaces, this de�nition is natural in S and hence de�nes the action by
Yoneda's lemma.

2.6 Representations

Although the super vector spaces used to de�ne super manifolds and groups are over
the reals, we will in the following be interested on representations on complex super
vector spaces.

De�nition 2.91. A representation π of a Lie super group G = (G0, OG) on a �nite
dimensional super vector space V ∈ SVS is a morphism of group objects in SMan,
π : G → Gl(V ). It extends linearly to a representation on C⊗ V .

For Lie super group pairs we will also want to consider in�nite dimensional represen-
tations because the induced representations introduced in Section 3.4 are potentially
in�nite dimensional. Therefore we need to dwell a little bit on what it means for
such a representation to be smooth. Note that, although we consider complex repre-
sentations, we only demand smoothness, not analyticity. This follows the cs spirit of
complexifying the structure sheaf without passing from smooth to analytic functions.

2.6.1 Some functional analysis

De�nition 2.92. A locally convex topological vector space V is a (possibly in�nite
dimensional) vector space together with a topology generated by a set of semi norms
{||.||i : V → R}i∈J by de�ning balls of radius ε > 0 around v ∈ V

Bi
ε(v) := {x ∈ V

∣∣||x− v||i < ε}

such that {
UI,ε(x) :=

⋂
i∈I

Bi
ε(x)

∣∣I ⊂ J, |I| < ∞, ε > 0, x ∈ V

}
form a basis of the topology which we additionally require to be Hausdor�.

The category of locally convex vector spaces, LCVS, is the subcategory of vector
spaces with objects de�ned above and linear continuous morphisms.
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2.6 Representations

Remark 2.93. This means a net x : A → V for a directed set A converges to x̄

limxn = x̄ ⇔ ∀i ∈ I ∀ε > 0 ∃N ∈ A ∀n ≥ N : ||xn − x̄||i < ε

Lemma 2.94. A linear mapping f : V → W in between locally convex vector spaces V
and W with de�ning sets of semi norms {||.||Vi : V → R}i∈I and {||.||Wj : W → R}j∈J
is continuous if and only if it is bounded, i.e.

∀j ∈ J ∃i1(j), . . . , inj (j) ∈ I ∃cj ∈ R ∀v ∈ V : ||f(v)||Wj ≤ cj ·
nj

max
k=1

||v||Vik(j)

Proof of 2.94. f is continuous if and only if lim f(xn) = f(x) for any convergent net
x : A → V with limxn = x. Due to linearity of f it su�ces to consider the case
of x = 0. Then for a net converging to 0 the convergence of f(xn) is ensured by
boundedness.

∀j1, . . . , jl ∈ J :
l

max
k=1

||f(xn)||Wjk ≤ l
max
k=1

(cjk) ·
l

max
k=1

njk
max
m=1

||xn||Vim(jk)

so using remark 2.93 we see that ||f(xn)|| is a zero sequence in W . On the other hand,
if f is not bounded then

∃j ∈ J ∀A ⊂ I �nite ∀c > 0 ∃v ∈ V : ||f(v)||j > cmax
a∈A

||f(v)||a

hence we can de�ne a directed set C = N× {A ⊂ I �nite} with

(n,A) ≥ (m,B) :⇔ n ≥ m and A ⊂ B

and a net x : C → V such that maxa∈A ||x(n,A)||a = 1
n and

||f(x(n,A))||j > nmax
a∈A

||x(n,A)||a

Note that we can simultaneously ful�l both conditions due to linearity of f , i.e. we
can rescale v without changing ||f(v)||/||v||. Now limxn = 0 but ||f(xn)||j > 1 hence
f does not converge to f(0) = 0, i.e. f is not continuous.

De�nition 2.95. The directional derivative of f : V → W at v ∈ V in the direction
x ∈ V is as usual de�ned as

∂x
∣∣
v
f := (∂xf)(v) := ∂tf(v + tx) := lim

t→0

f(v + tx)− f(v)

t

whenever this exists. This de�nes the di�erential of f

df : V × V → W

(x, v) 7→ ∂x
∣∣
v
f

and we call f (continuously) di�erentiable if the map df exists and is continuous.
This de�nition can be iterated as usual to de�ne f ∈ Ck(V,W ) if and only if dkf

exists and is continuous and f is called smooth if and only if f ∈ C∞(V,W ).

De�nition 2.96. The category of complex locally convex super vector spaces, LCSVS,
is a sub category of complex LCVS where the objects are additionally Z2 graded and
the morphisms are additionally even.
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2.6.2 Representations of group pairs

De�nition 2.97. A smooth (linear) representation of a super group pair Gp = (G0, g)
on V ∈ LCSVS is a pair π = (π0, πg) given by a representation of G0, i.e. a morphism
π0 : G0 → Gl(V )0 of ordinary groups, and an even Lie super algebra morphism πg :
g → gl(V ) = End(V ). Further we demand the following smoothness and compatibility
conditions to hold.

1. The G0 action, i.e.

G0 × V → V

(g, v) 7→ π0(g)v

is continuous.

2. All vectors are smooth, i.e. ∀v ∈ V :

G0 → V

g 7→ π0(g)v

is a smooth map.

3. The g action, i.e.

g× V → V

(x, v) 7→ πg(x)v

is continuous.

4. The super Lie algebra action extends the di�erential of the Lie group action,
πg
∣∣
g0,R

= dπ0, i.e.

∀x ∈ g0,R = Lie(G0)∀v ∈ V : ∂t
∣∣
0
π0(e

tx)v = πg(x)v

5. The actions are compatible with the adjoint action of the pair, i.e.

∀x ∈ g ∀g ∈ G0 : πg(Ad(g)x) = π0(g) ◦ πg(x) ◦ π0(g)−1

Remark 2.98. We can apply some results about ordinary representations on locally
convex topological vector spaces here.

• By [Nee10], theorem 4.4, conditions 1 and 2 are equivalent to a smooth G0 action.

• Since (x, v) 7→ πg(x)v is bilinear, condition 3 is equivalent to a smooth g action.

• By [Nee10], lemma 4.2, condition 1, 2 and 4 imply that πg
∣∣
g0,R

is continuous,

hence condition 3 is actually about the odd part g1.
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De�nition 2.99. Morphisms of Gp representations π on V and ρ on W of a super
group pair Gp are given by

HomGp(V,W ) := {f ∈ HomLCSVS(V,W )
∣∣∀g ∈ G0 : f ◦ π0(g) = ρ0(g) ◦ f and

∀x ∈ g : f ◦ πg(x) = ρg(x) ◦ f}

De�nition 2.100. The representation (π0, πg) of the pair Gp is called irreducible if
V does not contain any non-trivial πg(g) stable subspaces.

De�nition 2.101. The dual representation π∗ = (π∗
0, π

∗
g) on V ∗ to π = (π0, πg) on

V for �nite dimensional V is given for g ∈ G0, x ∈ g, µ ∈ V ∗ and v ∈ V by

π∗
0(g)(µ)v := µ(π0(g

−1)v)

π∗
g(x)(µ)v := µ(πg(S(x))v)

De�nition 2.102. For a representation π of Gp on V ∈ LCSVS and Kp a subgroup
pair we de�ne the Kp-invariant subspace of V by

V Kp = {v ∈ V
∣∣ πg(k)v = 0 and π0(K)v = v}

Lemma 2.103. If in the de�nition above V is �nite dimensional, G = C(Gp) and
π also denotes the corresponding representation of the Lie super group G on V then
∀S ∈ SMan

V K(S) := {v ∈S V
∣∣ ∀k ∈S K : π(k)v = v} = V Kp(S)

and hence V K = V Kp . We will also use the notation π(K)v = v to say v ∈ V K .

Proof of 2.103. This follows from the equivalence of categories of Lie super groups and
super group pairs.

2.7 Integration

Here we introduce super integration as explained in [AHP11], Section 2, and [All10],
Appendix C. Throughout we will use densities instead of volume forms to avoid ques-
tions of orientability.

2.7.1 The Berezinian sheaf

De�nition 2.104. For V ∈ SVS, S ∈ SMan and g ∈S Gl(V ) we use De�nition 2.88
to de�ne the Berezinian or super determinant Ber : Gl(V ) → R1|1 by

SDet(g) := Ber(g) := Det
(
A−BD−1C

)
Det(D−1) = Det(A)Det

(
D − CA−1B

)−1

where Det is to be understood as a polynomial in the matrix coe�cients. Further we
de�ne the absolute Berezinian by

|Ber| (g) := sign (j∗0 (Det(A))) Ber(g)
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2 Preliminaries

De�nition 2.105. For a super manifold X ∈ SMan of pure super dimension p|q, an
atlas {(Ui, φi)} and the cotangent sheaf Ω1

X as de�ned in 2.75 we de�ne the absolute
Berezinian sheaf of X, |Ber|X , as the free OX module sheaf over X0 of rank 0|1 or 1|0
if q is odd or even respectively by the cocycle {Ui,j , |Ber| (dφi,j)} where

dφi,j ∈ Gl(Ω1
X)(Ui,j) := Gl(span({dyi,dχj}))(X

∣∣
Ui,j

)

We denote the single generator with respect to the local coordinates {dyk,dχl} of Ω1
X(U)

by |D(dyk,dχl)|.

De�nition 2.106. An isomorphism f ∈ IsoSMan(X,Y ) de�nes a sheaf morphism
f∗ : |Ber|Y → (f0)∗ |Ber|X in coordinates (yk, χl) on U ⊂ Y0 by

f∗(h|D(dyk,dχl)|) := f∗(h)|D(df∗(yk),df
∗(χl))|

for h ∈ OY (U).
Hence for another coordinate system (zi, ζj)

|D(dzi,dζj)| = |Ber| (J) |D(dyi,dχj)|

where

J =

(
∂yz ∂yζ

∂χz ∂χζ

)ST

and the operation of super transposition is given by(
A B

C D

)ST

=

(
AT CT

−BT DT

)

Note however that Ber(J) = Ber(JST). In fact this is one of the reasons for the extra
sign in the de�nition as compared to the ordinary case.

2.7.2 Compact integration

De�nition 2.107. For X ∈ SMan of super dimension p|q we de�ne the integral of
f ∈ OX(U) with compact support over a chart (U, φ) with local coordinates (xi, ξj) by
using the local expansion 2.45 to write down∫

X
∣∣
U

|D(dxi,dξj)|f := (−1)s(p,q)
∫
U

j∗0
(
f1,2,...,q

)
|dx̃1 ∧ . . . ∧ dx̃p| ∈ C

In other words Berezin integration means di�erentiation with respect to all odd co-
ordinates followed by ordinary integration of the remaining function, up to a sign.
For the sign one sometimes chooses s(p, q) = pq or, depending on the chosen order-

ing of the odd variables, s(p, q) = q(q−1)
2 . Although we �nd s(p, q) = 0 more conve-

nient there is no need to �x this sign for our purposes. In the following we abbreviate
|Dx| := |dx̃1 ∧ . . . ∧ dx̃p|.
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2.7 Integration

Remark 2.108. The behaviour of |D(dxi,dξj)| under coordinate change is de�ned
exactly in such a way as to make the integral over U independent of the choice of local
coordinates. For the detailed proof see [Lei80], Theorem 2.4.5. Note that this is not
true if we drop the assumption of f being compactly supported, then the value of the
integral may change if ∂χz 6= 0, i.e. if the even coordinates are shifted by nilpotents.
See [AHP11] for the details.

De�nition 2.109. For ω ∈ |Ber|X (X0) compactly supported we choose an atlas
{(Uα, φα)} of X and a subordinate partition of unity ρα in OX to de�ne

∫
X

ω :=
∑
α

∫
X
∣∣
Uα

ραω

the Berezin integral of ω.

2.7.3 Retractions and non-compact integration

De�nition 2.110. A homomorphism r ∈ HomSMan(M,M0) is called retraction if
j0 ◦ r = idM0 . In this case r∗ (OM0(M0)) is called a function factor.

Remark 2.111. Note that using 2.50 and 2.54 only the (r∗(f))∅ component of the local
expansion is determined by this de�nition, hence in general there exist many possible
retractions and corresponding function factors. By [RS83], Lemma 3.2, there always
exists at least one retraction on any super manifold. (Complexi�cation of the structure
sheaf as compared to the reference does not change this fact.)

De�nition 2.112. Let (U, φ0) be a chart of M0 with local coordinates {xi} and r :
M → M0 a retraction. Then {r∗(xi)} are called even coordinates associated to {xi}
and r. Conversely if {yi, ξj} are local coordinates of M then by Corollary 2.63 there
is a unique retraction r such that ∀i : yi = r∗(j∗0(yi)). This one is called retraction
associated with the even coordinates {yi}.

Lemma 2.113. Let r : M → M0 be a retraction associated to both local coordinate sys-
tems {xi, ξj} and {yi, χj} on U and let ω ∈ |Ber|M (M0) with ω

∣∣
U
= |D(dxi,dξj)|f =

|D(dyi,dχj)|g then

f̃1,2,...,q|Dx| = g̃1,2,...,q|Dy|

where each function is expanded with respect to its respective coordinate system.

Proof of 2.113. This holds because we can choose a bump function h ∈ C∞
c (U) and
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then use compact integration 2.107 to compute

(−1)s(p,q)
∫
U

hf̃1,2,...,q|Dx| =
∫

X
∣∣
U

|D(dxi,dξj)|r∗(h)f =

∫
X
∣∣
U

r∗(h)ω

=

∫
X
∣∣
U

|D(dyi,dχj)|r∗(h)g

= (−1)s(p,q)
∫
U

hg̃1,2,...,q|Dy|

where we used that compact integration is invariant under coordinate changes but
also in the �rst and last step that x and y de�ne the same retraction. The claim
follows by the ordinary du Bois-Reymond Lemma (fundamental lemma of the calculus
of variations).

Remark 2.114. Hence retractions locally de�ne a choice of an integral of non-compactly
supported densities similar to De�nition 2.107 as well as a choice of even local coor-
dinates would. The point is that retractions unlike even coordinates exist globally and
hence can be used to de�ne integration globally as we will do in the following.

De�nition 2.115. Due to Lemma 2.113 we can use a retraction r : M → M0 to de�ne
a �ber integration map r! : |Ber|M (M0) → |Ωp|M0(M0), where the latter denotes the
sheaf of ordinary densities on M0, locally on U with local even coordinates {xi} by

(r!(ω))
∣∣
U
:= (−1)s(p,q)f̃1,2,...,q|Dx|

where ω
∣∣
U
= |D(dxi,dξj)|f ∈ |Ber|M (U).

Remark 2.116. By de�nition and Lemma 2.53 we have supp(r! ∗ ω) ⊂ supp(ω) and
r!(r

∗(g)ω) = gr!(ω) for g ∈ C∞(M0) and ω ∈ |Ber|M (M0).

De�nition 2.117. We call ω ∈ |Ber| (M) integrable with respect to the retraction
r : M → M0 if r!(ω) is an integrable ordinary density on M0 and in this case we de�ne
the integral of ω with respect to r by∫

M,r

ω :=

∫
M0

r!(ω)

De�nition 2.118. On a Lie super group G the canonical retraction rG : G → G0 is
de�ned by

∀x ∈ g1 : Lx ◦ r∗G ≡ 0

By the integral over G we mean the integral with respect to the canonical retraction.

Remark 2.119. This retraction is unique because using

OG(U) = {f : U(g) → OG0(U)
∣∣ ∀x0 ∈ g0∀y ∈ U(g) : f(x0y) = Lx0f(y)}

we see that
{f ∈ OG(U)

∣∣ ∀x ∈ g1 : Lxf ≡ 0} ' OG0(U)
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2.7.4 Quotients and unimodularity

De�nition 2.120. Let G ∈ LSG and H ⊂ G a closed subgroup (i.e. we have j :
H → G such that j0 : H0 ⊂ G0 a closed embedding and j∗ an epimorphism) then
G/H = (G0/H0, OG/H) exists as explained in [AH09] and

OG/H(U) =
{
f ∈ OG(π

−1
0 (U)

∣∣ m∗f = p∗1f ∈ OG×H(π−1
0 (U)×H0)

}
De�nition 2.121. G/H is called analytically unimodular if there exists a non-zero
G bi-invariant section of |Ber|G/H . G is called analytically unimodular if G×G/G is.

Lemma 2.122. If G and H are analytically unimodular, so is G/H. If g is strongly
reductive (see De�nition 3.3) or nilpotent and G0 is connected then G is analytically
unimodular.

Proof of 2.122. See Proposition C.10 in Appendix C of [All10].

Lemma 2.123. Gl(Rp|q) is analytically unimodular for all p, q.

Proof of 2.123. For p 6= q this follows from the previous lemma. But one can show
directly that the left invariant section of |Ber|Gl is in fact bi-invariant for any p, q. To
this end let S ∈ SMan and g ∈S Gl and denote the left and right action of Gl on gl
as introduced in the proof of Lemma 2.86 by L and R. Then Ad(g) = L(g) ◦ R(g)−1

and |Ber| (Ad(g)) = |Ber| (L(g)) |Ber| (R(g))−1. But on S points L(g) is just matrix

multiplication, i.e. L(g) acts on R(p|q)×(p|q) :=
(
Rp|q)⊗p ⊗

(
R0|1 ⊗

(
Rp|q)⊗q

)
. Hence

|Ber| (L(g)) = |Ber| (g)p−q = |Ber| (R(g)) and |Ber| (Ad(g)) = 1, also for p = q.
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In this section we recall some facts about the representation theory of strongly re-
ductive Lie super algebras and about the Iwasawa decomposition of super Lie groups.
Then we prove Frobenius reciprocity for induced representations of super group pairs.
Section 3.5 is devoted to our main theorem, a generalisation of the Cartan-Helgason
Theorem, [Hel84, Sch84]. More concretely, we prove a necessary and for s = 1 and
r > q also su�cient condition for being spherical for highest weight representations of
(glq|r+s, glq|r⊕gl0|s). From here we establish in Corollary 3.63 and 3.64 a classi�cation
of all �nite dimensional irreducible spherical highest weight representations in terms
of their highest weights, similar to the classical case.

3.1 Iwasawa decomposition

3.1.1 Restricted roots

In this section, we give the necessary de�nitions and state some facts about the Iwasawa
and restricted root space decomposition on the Lie algebra level. We will not give any
proofs. Those can be found in [All10], Section 2, which we follow closely.

De�nitions

De�nition 3.1. A Lie super algebra g ∈ LSAlg together with θ an involutive auto-
morphism which de�nes the decomposition g = k ⊕ p into the ±1 eigenspaces of θ is
called symmetric super pair and denoted by (g, k) when θ is understood.

De�nition 3.2. A Lie super algebra g is called reductive if g0 is reductive in g, the
centre is even, z(g) ⊂ g0, and there exists a non-degenerate, even, g-invariant super
symmetric bilinear form b on g. A symmetric super pair (g, k) is called reductive if g
is reductive and b is additionally θ-invariant.

De�nition 3.3. A reductive Lie super algebra or symmetric super pair is called strongly
reductive if g′ := [g, g] is the direct sum of b-non-degenerate simple graded ideals.

Lemma 3.4. If g is strongly reductive then g = z(g)⊕ g′.

De�nition 3.5. For a symmetric super pair (g, k) we call a ⊂ g an even Cartan
subspace of p if a ⊂ p0, a is maximally commutative in p, i.e. a = zp(a), and ad(a)

∣∣
g0

consists of semi simple endomorphisms. If such an even Cartan subspace exists we call
(g, k) of even type.
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De�nition 3.6. A cs form of (g, k) of a reductive symmetric super pair is a θ-invariant
real form g0,R of g0 which is b-non-degenerate. We will write X0,R := X ∩ g0,R for
subspaces X ⊂ g.

De�nition 3.7. An ordinary real Lie algebra g0 is called ρ-compact for an ordinary
representation ρ on a vector space V0 if ρ(g0) is the Lie algebra of a compact analytic
subgroup of Gl(V0).

Lemma 3.8. An ordinary real Lie algebra g0 is adg0-compact if and only if adg0(g0)
consists of semi simple elements with imaginary spectra.

De�nition 3.9. The real form g0,R of a symmetric super pair will be called non-
compact if k0,R ⊕ ı̇ p0,R is adg-compact.

Lemma 3.10. For any strongly reductive symmetric super pair (g, k) there exists a
non-compact cs form. If (g, k) is of even type there exists a real even Cartan subspace,
i.e. a0,R ⊗C = a.

Decompositions

From now on let (g, k) be a reductive symmetric super pair of even type with an even
Cartan subspace a. Let m := zk(a) denote the centraliser of a in k.

De�nition 3.11. For α ∈ a∗ \ {0} we call

gα := {x ∈ g
∣∣ ∀h ∈ a : [h, x] = α(h)x}

a restricted root space and α a restricted root of g with respect to a if gα 6= 0. We
denote the set of restricted roots of g with respect to a by Σ(g : a) or just Σ if g and a
are understood. If gα∩g0/1 6= 0 we will call the root α even/odd respectively. Note that
Σ = Σ0 ∪ Σ1 is the union of even and odd roots, but these are possibly not disjoint.

De�nition 3.12. By assumption g is a semi-simple a module hence

g = m⊕ a⊕
⊕

α∈Σ(g:a)

gα

which is called restricted root space decomposition of g with respect to a.

De�nition 3.13. We call Σ+ ⊂ Σ a positive system if

Σ = Σ+∪̇ − Σ+ and
(
Σ+ +Σ+

)
∩ Σ ⊂ Σ+

We de�ne by

n :=
⊕
α∈Σ+

gα n̄ :=
⊕
α∈Σ+

g−α

the nilpotent algebras with respect to Σ+ and Σ− = −Σ+.
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De�nition 3.14. A positive root α ∈ Σ+ is called simple if it can not be decomposed
into a sum of positive roots. We denote the set of simple roots by

Π = {α1, . . . , αr} := Σ+ \
(
Σ+ +Σ+

)
Lemma 3.15. We have

g = k⊕ a⊕ n

which we call Iwasawa decomposition of g with respect to θ, a and Σ+.

3.1.2 Global Iwasawa decomposition

De�nition 3.16. We call a super group pair (G0, g) with connected G0 together with
an involutive automorphism ϑ of G0 a global cs form of the symmetric pair (g, k)
if g0,R = Lie(G0) the ordinary real Lie algebra of G0 is a real form of (g, k) and
θ
∣∣
g0,R

= dϑ such that

∀g ∈ G0 : Ad(ϑ(g)) ◦ θ = θ ◦Ad(g)

A global cs form is called non-compact if g0,R is non-compact and Ad(K0) ⊂ AutLSAlg(g)
is compact for the analytic subgroup K0 ⊂ G0 with Lie algebra k0,R.

Lemma 3.17. For a strongly reductive symmetric super pair (g, k) of even type with
real even Cartan subspace a0,R and Σ+ a positive system, there exists a so called
standard global cs form (G0, g). Using the analytic subgroups K0, A0 and N0 of G0

with Lie algebras k0,R, a0,R and n0,R, respectively, we de�ne the Lie super subgroups
K := C(K0, k), A = (A0,C

∞(A0)) and N = C(N0, n) of G = C(G0, g). Then the
multiplication morphism of G yields an isomorphism of super manifolds

m ◦ (m× idG) : K ×A×N
∼−→ G

Lemma 3.18. More generally we have the Iwasawa Isomorphism G ' K×A×N for
any global cs form G of a reductive symmetric super pair (g, k) of even type whenever
the ordinary Iwasawa decomposition of the base G0 ' K0 ×A0 ×N0 exists.

Remark 3.19. Lemma 3.17 ensures the existence of a global Iwasawa decomposition
of glp+q|r+s for p+ q 6= r+ s which is strongly reductive. But also for p+ q = r+ s > 1
we have a global decomposition because each factor of G0 = U(p, q) × U(r, s) has
an ordinary Iwasawa decomposition (see [Hel84]). Note that in the particular case of
glq|r+s the �rst factor is contained inK and only the second one needs to be decomposed.

3.2 Irreducible representations of reductive Lie super

algebras

In this section we recapitulate some basics of the representation theory of ordinary Lie
algebras and facts from [Kac78] about Lie super algebras. Although Kac considers only
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basic classical Lie super algebras, we can apply his results also to strongly reductive
ones due to Lemma 3.4. More concretely, we are interested in glq|r+s with the bilinear
form b given by the super trace form b(x, y) = STr(xy) and since for q 6= r+ s we have
glq|r+s = span{1}⊕slq|r+s, where sl is the subspace of STr ≡ 0 matrices, we essentially
need what is known about the so called A series from [Kac78]. But all statements below
also hold for q = r + s 6= 1, although here zg = span(1) ⊂ g′ = slq|r+s and hence b
becomes degenerate upon restriction to g′, which is why one better stays with gl or,
as in [Kac78], proceed to sl/zg. We prefer the former. Hence let g in the following be
a strongly reductive Lie super algebra or g = glq|q with q 6= 1 which is reductive but
not strongly reductive (see Lemma 3.46).

3.2.1 Root space decomposition

De�nition 3.20. In Section 3.1.1 we introduced the notion of the restricted roots of a
symmetric pair. If we perform this for the particular pair (g, 0), we drop the attribute
'restricted' and denote the Cartan subalgebra of g by h ⊂ g0 and the set of roots of g
by ∆ = Σ(g : h). By de�nition we now have m = 0 and we call the decomposition from
De�nition 3.12 in this case root space decomposition of g

g = h⊕
⊕
α∈∆

gα

Note that zg ⊂ h.

Lemma 3.21. For a root space decomposition of g we have ∀α, β ∈ ∆,

• dim gα = 1

• ∆0 ∩∆1 = ∅

• [gα, gβ] ⊂ gα+β

• α /∈ {±β} ⇒ b(gα, gβ) = 0

• Cα ∩∆ ⊂ {±2α,±α}

• ±2α ∈ ∆ ⇔ α ∈ ∆1 and b(α, α) 6= 0

Note that 2∆1∩∆ ⊂ ∆0 hence for α ∈ ∆1 we have b(α, α) = 0 if and only if 2α /∈ ∆0.

De�nition 3.22. A positive root system is called distinguished if there is exactly one
simple odd root Π ∩ ∆1 = {ao}. We can always choose such a distinguished positive
root system.

Lemma 3.23. We can for each simple root αi choose

ei ∈ gαi fi ∈ g−αi hi ∈ h \ {0}
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such that

[ei, fj ] = δi,jhi , [hi, hj ] = 0 , [hi, ej ] = ai,jej , [hi, fj ] = −ai,jfj

with ai,j ∈ Z, ai,i ∈ {0, 2} and ai,i = 0 ⇒ ai,i+k = 1 for k = min{k
∣∣ai,i+k 6= 0}.

Further {ei, fi, hi} generate g/zg and {hi} is a basis of h/zg upon projection. The
correspondence between αi and the coroot hi is given by ∀h ∈ h : αi(h) = b(hi, h), in
this sense hi = α∗

i . Note however that for isotropic roots αi(α
∗
i ) = 0.

De�nition 3.24. The matrix (ai,j) is called Cartan matrix of g with respect to ∆+.
It can be translated into a Dynkin diagram by drawing a white node for every even
simple root αi and a crossed or black node for each odd simple root that squares to
0 or 2 and then connecting each pair of nodes by |ai,jaj,i| many lines. Note that
ai,jaj,i = 0 ⇒ ai,j = aj,i = 0 and ai,i = 2 ⇒ ai,k 6=i ≤ 0.

Restricting roots

As we introduced root space decomposition as a special case of restricted root space
decomposition one might wonder how the adjective is justi�ed. The following Lemma
explains how one can indeed obtain a restricted root space decomposition by restrict-
ing the roots of the full decomposition, provided the Cartan subalgebra was chosen
accordingly.

Lemma 3.25. For a symmetric super pair (g, k) of even type with even Cartan subspace
a ⊂ p0 one can always choose an even Cartan subspace of g, h ⊂ g0, such that a ⊂ h
and h = (h ∩ k)⊕ a where h ∩ k ⊂ m. Then

Σ(g : a) = {α
∣∣
a

∣∣∣ α ∈ Σ(g : h) = ∆} \ {0}

and for β ∈ Σ(g : a)

gβ =
⊕
α|a=β

gα

Similarly m contains those root spaces whose roots restrict to 0

m = (h ∩ k)⊕
∑
α|a=0

gα

in particular zg ⊂ (h ∩ k) ⊂ m.

De�nition 3.26. Given a symmetric super pair we call a system of positive roots ∆+

of g for a root space decomposition as above compatible with the pair if ∆+
∣∣
a
= Σ+

is a positive system of restricted roots. In the following it will be important to choose
such a compatible system.
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3.2.2 Highest weight representations

Let in this section g be a strongly reductive Lie super algebra or glq|q with q 6= 1, h ⊂ g0
a Cartan subalgebra and ∆+ a distinguished system of positive roots. We assume in
the following that all appearing representations of g are semi simple as representations
of h. For g strongly reductive this is equivalent to the action of the centre being semi
simple.

De�nition 3.27. For a subalgebra q ⊂ g and a representation πq of q on V we de�ne
the induced Lie super algebra representation

Indgq(V ) := U(g)⊗U(q) V = (U(g)⊗ V ) / ∼

where gh⊗ v ∼ g ⊗ πq(h)v for g ∈ g, h ∈ q, v ∈ V . p ∈ g acts on Indgq(V ) by

ρ(p) (g ⊗ v) := (pg)⊗ v

Lemma 3.28. If ρg is an irreducible representation of g on V then V is a factor
module of Indgq(V ).

Lemma 3.29. If q contains g0 and we have {g1, . . . , gt} ⊂ g1 such that their projec-
tions into g/q form a basis then the sum

Indgq(V ) =
⊕

1≤i1<...<is≤t

gi1 . . . gisV

is direct as a sum of vector spaces, in particular dim Indgq(V ) = 2t dimV .

De�nition 3.30. For λ ∈ h∗ let b := h ⊕ n act on the even super vector space
V λ := span{vλ} by h(vλ) = λ(h)vλ for h ∈ h and n(vλ) = 0. Then the g representation
Indgb V

λ contains a unique maximal ideal I and

Vλ := Indgb V
λ/I

is called the irreducible representation of highest weight λ.

De�nition 3.31. For µ ∈ h∗ we call

V µ = {v ∈ V
∣∣ ∀h ∈ h : π(h)(v) = µ(v)v}

weight space of weight µ and µ a weight of V if V µ 6= 0.
We denote the set of all weights of V by P (V ). Further we denote by P (V ) =

P+∪̇P− = P+∪̇P− = P0∪̇P1 various subsets of the weights, namely P−(a) = 0, P± =
P (V )∩ (h∗)± where (h∗)± is spanned by the positive / negative roots and P0/1 are the
even / odd weights, respectively. Intersections will be denoted by multiple indices, for
example P+

−,0 are the even positive weights that vanish on a. Note that the roots are
the weights of the adjoint representation ∆(g) = P (g).

Lemma 3.32. For the highest weight representation Vλ we have
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3.2 Irreducible representations

• {v ∈ Vλ

∣∣ nv = 0} = V λ
λ and dim(V λ

λ ) = 1

• Vλ ' Vλ′ ⇔ λ = λ′

• Vλ =
⊕

µ∈P (Vλ)
V µ and all V µ are �nite dimensional

Further more, all �nite dimensional representations of g on which the h action
is semi simple are highest weight representations. This is in particular the case for
strongly reductive Lie super algebras if the action of the center is semi simple.

Lemma 3.33. For g = glp|q we have that Vλ is �nite dimensional if and only if for a
distinguished positive system

∀i 6= o : λ(hi) ∈ N

with {hi} as in Lemma 3.23. Note that the weight of the odd simple root, λ(ho) ∈ C,
is arbitrary.

Corollary 3.34. If Vλ is �nite dimensional then λ(∆) ⊂ Z + λ(ho)Z. If λ(∆) ⊂ Z

then Vλ is �nite dimensional. Note however that it depends on the chosen positive
system which weight of a given representation will be the highest.

Lemma 3.35. If Vλ is �nite dimensional and V 0
λ is the ordinary highest weight module

with highest weight λ of g0 considered as a g0 ⊕ n1 module via n1V
0
λ = 0 then

V̄λ := Indgg0⊕n1 V
0
λ

is �nite dimensional and has a unique maximal submodule I and

Vλ = V̄λ/I

De�nition 3.36. A �nite dimensional highest weight module Vλ is called typical if
Vλ = V̄λ.

3.2.3 Weyl group and odd re�ections

The following facts about the (even) Weyl group are well known from classical rep-
resentation theory. The statements about odd re�ections are in general for basic Lie
super algebras proven in [CW] but in the simple case of glq|r+s we can check them
directly, also for q = r+s, with the details about the root system given in Section 3.3.

De�nition 3.37. For each even root α ∈ ∆0 ⊂ h∗ the re�ection at the hyperplane
which is b-orthogonal to α is denoted by rα ∈ O(h∗). The �nite group generated by
these re�ections is called the Weyl group of g0 and denoted by W0(g) or simply W0.

Lemma 3.38. The Weyl group is generated by simple re�ections, i.e. by {rα
∣∣ α ∈ Π0}.

Lemma 3.39. The Weyl group stabilizes the even and odd weights of any �nite di-
mensional representation V of g, i.e. W0(P0) = P0 and W0(P1) = P1.
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3 Representation Theory

De�nition 3.40. For an odd isotropic positive root α ∈ ∆+
1 , |α|2 := b(α, α) = 0, we

denote by rα the change of positive root system from ∆+ to rα(∆
+) := {−α}∪∆+\{α}.

This is called odd re�ection with respect to α.

Lemma 3.41. If Π is the set of simple roots for ∆+ then

rα(Π) := {β ∈ Π \ {α}
∣∣ b(β, α) = 0} ∪ {β + α

∣∣ β ∈ Π and b(β, α) 6= 0} ∪ {−α}

is the one for rα(∆
+).

Remark 3.42. Although rα is called odd re�ection and r−α ◦ rα = id, it can not be
extended to a linear map in O(h∗) which sends Π to rα(Π) and ∆+ to rα(∆

+).

Remark 3.43. For a distinguished positive root system ∆+(glp|q) the single odd simple
root αo is isotropic. Further all ∆′+ ∈ W0(∆

+) are distinguished but rα(∆
+) is not

for (p, q) 6= (1, 1).

Lemma 3.44. If π on Vλ is a highest weight representation with highest weight vector
vλ of weight λ and α ∈ Π then

λ(hα) = 0 ⇒ π(fα)vλ = 0

Proof of 3.44. For even roots this is a classical result due to the invariance of the roots
under Weyl group re�ections. If α is an isotropic odd simple root the statement follows
from [CW], Lemma 1.36.
But one can in general also just compute directly

∀β ∈ Π : π(eβ)π(fα)vλ = π([eβ, fα])vλ = δα,βπ(hα)vλ = δα,βλ(hα)vλ = 0

and fαV
λ ⊂ V λ−α hence by Lemma 3.32 we have π(fα)vλ ∈ V λ ∩ V λ−α = 0.

3.3 Concretion: g = glq|r+s

As announced earlier, we will primarily focus on the case g = glq|r+s in this thesis.
This is sloppy notation for the symmetric super pair (g, k = glq+r⊕gl0|s), the concrete
details of which will be spelled out in this section. We will use the notation introduced
in Section 3.1.1 and 3.2.1.
Let throughout this section q, r, s ∈ N0, w.l.o.g. r ≥ s, V := Cq|r+s = Cq⊕Cr⊕Cs

which is Z2 graded by considering Cq as even and Cr ⊕ Cs as odd. In order to
give explicit matrix expressions for the constructions below, we choose the standard
homogeneous basis for Cq|r+s, denoted by {e1, . . . , eq+r+s}, which yields the dual basis
{e∗1, . . . , e∗q+r+s} and the corresponding basis {Ei,j = ei ⊗ e∗j} of V ⊗ V ∗ ' End(V ).

Note that E†
i,j = Ej,i with respect to the standard hermitian scalar product which will

be used to de�ne a real form.
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3.3 Concretion: g = glq|r+s

De�nition 3.45. The involution de�ning g = k⊕ p is

θ :
g → g

X 7→ σXσ−1
with σ =

 1q 0 0

0 1r 0

0 0 −1s


Hence we have the following block decomposition

g =


 k0 k1 p1

k1 k0 p0

p1 p0 k0




The End(Cq) part in the depicted direct sum decomposition which is even in all
respects, will be called boson-boson block and the End(Cr+s) part, which is even with
respect to the Z2 grading but contains even and odd parts with respect to θ, will be
called fermion-fermion block.

Lemma 3.46. The super trace form, b(X,Y ) := STr(XY ), is a non-degenerate, even,
super symmetric, g and θ-invariant bilinear form on g. Further (g, k) together with b
is a strongly reductive symmetric super pair if and only if q 6= r + s. If q = r + s 6= 1
then (g, k) is never the less reductive.

Proof of 3.46. The facts about the super trace form follow from its de�nition, it is
always non degenerate on glq|r+s also for q = r + s.
We have g′ = slq|r+s which is b-non-degenerate and basic classical for q 6= r+ s and

zg = span(1q+r+s) ⊂ g0. For q = r + s however zg ⊂ g′ because[(
0 1q

1q 0

)
,

(
0 1q

1q 0

)]
= 12q

hence glq|q is not strongly reductive by Lemma 3.4.

Lemma 3.47. A non-compact cs form of (g, k) is given by

g0,R =


 C 0 0

0 B A

0 D E

 =

 −C† 0 0

0 −B† D†

0 A† −E†




Proof of 3.47. With this choice, θ-invariance comes by de�nition. The spectrum of
ad(g0,R) can be red of from the root space decomposition in the next section, see
Corollary 3.54.

Remark 3.48. Note that b
∣∣
gl

q|0
0,R

and b
∣∣
p0,R

are negative de�nite and b
∣∣
gl

0|r
0,R⊕gl

0|s
0,R

is

positive de�nite. Hence k0,R = gl
q|0
0,R⊕ gl

0|r
0,R⊕ gl

0|s
0,R is non-degenerate as an orthogonal

sum of non degenerate subalgebras.
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3 Representation Theory

Lemma 3.49. We can choose a real even Cartan subspace subspace a0,R ⊂ p0,R using
the following notation

A :
Cs → Hom(Cs,Cr) ↪→ g

a 7→ A(a) =
∑s

i=1 ai Ei+q,i+r+q

i.e. A(a) =

 0 0 0

0 0 diag(a)

0 0 0


to set a =

{
(A+A†)(ı̇Rs)

}
.1

Proof of 3.49. The computation of the root space decomposition below shows that a
is maximally commutative and ad(a) is semisimple.

Lemma 3.50. The following choice of h is a Cartan subalgebra of g with a ⊂ h. We
use the notation

B : Cs × Cr−s → End(Cr+s) ↪→ g

(b(1), b(2)) 7→
s∑

i=1

b
(1)
i (Ei+q,i+q + Ei+q+r,i+q+r) +

r−s∑
i=1

b
(2)
i Ei+q+s,i+q+s

and

C : Cq → End(Cq) ↪→ g

c 7→
q∑

i=1

ciEi,i

to write down

h0,R =
{
h(a, b, c) := A(a) +A†(a) +B(b) + C(c)

∣∣ a ∈ ı̇Rs, b ∈ ı̇Rr, c ∈ ı̇Rq
}

which in matrix form looks like

h(a, b, c) =


diag(c) 0 0 0

0 diag(b(1)) 0 diag(a)

0 0 diag(b(2)) 0

0 −diag(a) 0 diag(b(1))


Remark 3.51. Using the elementary super commutator

[Ei,j , Ek,l] = δj,kEi,l − (−1)|Ei,j ||Ek,l|δl,iEk,j

it is now a straight forward task to diagonalise ad h. Since h is even we actually always
use the ordinary commutator and hence obtain the known ordinary results adjusted to
our choice of h.

In the notation introduced in De�nition 3.31 we will distinguish between roots which
vanish on restriction to a, ∆−, and those which have non vanishing overlap with a∗,
denoted by ∆+.

1Note that any a′ =
˘
(A+A†)(eı̇φRs)

¯
would also be a possible choice, but [a, a′] 6= 0 unless a′ = a

as the Pauli matrices σx and σy do not commute.
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3.3 Concretion: g = glq|r+s

Even roots

Lemma 3.52. The even roots containing an a component, ∆+,0, and the corresponding
root spaces are given by

root α(h) gα spanned by for

b
(2)
i−q−s − b

(1)
j−q ± ı̇aj−q Ei,j ± ı̇Ei,j+r q + s < i ≤ q + r

q < j ≤ q + s

b
(1)
i−q − b

(2)
j−q−s ± ı̇ai−q Ei,j ± ı̇Ei+r,j q < i ≤ q + s

q + s < j ≤ q + r

b
(1)
i−q − b

(1)
j−q ± ı̇ (ai−q − aj−q) Ei,j ± ı̇ (Ei+r,j − Ei,j+r) + Ei+r,j+r q < i 6= j ≤ q + s

b
(1)
i−q − b

(1)
j−q ± ı̇ (ai−q + aj−q) Ei,j ± ı̇ (Ei+r,j + Ei,j+r)− Ei+r,j+r q < i, j ≤ q + s

Note that in particular ±2ı̇ai is a root for s > 0 (otherwise we have the standard
root space decomposition of the ordinary gl with respect to the standard h of diagonal
matrices).

The even roots not containing an a component, ∆−,0, are given by

root α(h) gα spanned by for

ci − cj Ei,j 1 ≤ i 6= j ≤ q

b
(2)
i−q−s − b

(2)
j−q−s Ei,j q + s < i 6= j ≤ q + r

Odd roots

Lemma 3.53. The odd roots containing an a component, ∆+,1, are given by

root α(h) gα spanned by for

ci − b
(1)
j−q ± ı̇aj−q Ei,j ± ı̇Ei,j+r i ≤ q , q < j ≤ q + s

b
(1)
i−q − cj ± ı̇ai−q Ei,j ± ı̇Ei+r,j q < i ≤ q + s , j ≤ q

The odd roots not containing an a component, ∆−,1, are given by

root α(h) gα spanned by for

ci − b
(2)
j−q−s Ei,j i ≤ q , q + s < j ≤ q + r

b
(2)
i−q−s − cj Ei,j q + s < i ≤ q + r , j ≤ q

Corollary 3.54. By inspection we see Spec(ad(a0,R)) ⊂ R and Spec(ad(h0,R ∩ k)) ⊂
ı̇R. This proves Lemma 3.47 using Lemma 3.8.
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3 Representation Theory

Corollary 3.55. By Lemma 3.25 we obtain the restricted roots Σ(g : a) from the roots
calculated above.

Σ(g : a) = {±ı̇ai, ı̇(ai − aj),±ı̇(ai + aj)}

with the multiplicities mα := SDim(gα) given by

m±ı̇ai = (2(r − s)|2q) mı̇(ai−aj) = (2|0) m±ı̇(ai+aj) = (1|0)

and SDim(m) = (q(q−1)+(r−s)(r−s−1)|2q(r−s))+SDim(h∩m) with SDim(h∩m) =
(q + r|0) where the latter includes the centre.

Remark 3.56. For g = glq|r+s we have g0 = gFF⊕gBB, where we denote the 'fermion-
fermion block' by gFF = glq|0 and the 'boson-boson block' by gBB = gl0|r+s. Since
the sum is a direct sum of ordinary Lie algebras and g0 preserves the Z2 grading we
immediately get for an �nite dimensional g module V

V =
⊕
s∈Z2

⊕
(λ,µ)∈t∗0

C
m(λ,µ) ⊗ V s

λ ⊗ V s
µ

where the sums are direct as sums of g0 modules and V
0/1
λ is the even/odd isotopic

component with respect to gBB of highest weight λ and V s
µ likewise for gFF and highest

weight µ.

This is a nice starting point for investigating the structure of g representations. For
typical highest weight representations Vλ, Kac even has a formula for the multiplic-
ities m(λ,µ), see [Kac78] Proposition 2.11. Unfortunately it turns out that spherical

representations of glq|r+s are always atypical.

Note further that taking together Lemma 3.35 and 3.29 (Proposition 2.4 and 2.1
of [Kac78]) we also get a decomposition of V̄λ as a vector space into homogeneous
subspaces but this is not a decomposition into modules and in particular not the nice
decomposition into representations of the even part above, even if Vλ = V̄λ is typical.

3.4 Induced representations

Although we will later on start of from a �nite dimensional representation space V ,
the induced representation will in general be in�nite dimensional, hence in this section
we will be general and consider representations in LCSVS as introduced in 2.97 right
away.

De�nition 3.57. Let Hp = (H0, h) be a subgroup pair of Gp = (G0, g) and π = (π0, πg)
a representation oh Hp on W ∈ LCSVS. From this data we can construct a Gp

representation which is called induced representation. The underlying super vector
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space is given by

Ind
Gp

Hp
(W ) := HomSVS

(
U(g),C∞ (G0,W

))U(g0),Hp

= {f : U(g) → C∞(G0,W )
∣∣∀x ∈ U(g) ∀x0 ∈ g0 ∀g ∈ G0 ∀y ∈ h ∀h ∈ H0 :

(f(x0x))(g) = Lx0(f(x))(g) = ∂t
∣∣
0
f(x)(getx0) (3.1a)

∧ f(x)(g) = π0(h)
(
(f(Ad(h−1)x))(gh)

)
(3.1b)

∧ (f(xy))(g) = (−1)|y|(|x|+|f |)πh(S(y))
(
f(x)(g)

)
} (3.1c)

The action of Gp is given by ρ = (ρ0, ρg) where ∀g, p ∈ G0 ∀u ∈ U(g) ∀x ∈ g :(
ρ0(g)f

)
(u)(p) : = f(u)(g−1p)(

ρg(x)f
)
(u)(p) : = (−1)|f ||x|f

(
Ad
(
p−1
) (

S(x)
)
u
)
(p)

Lemma 3.58. The induced representation is a representation of Gp.

Proof of 3.58. Firts we show that the above action de�nes a representation of the group

pair Gp on f ∈ V := HomSVS

(
U(g),C∞ (G0,W

))U(g0) without the Hp-invariance
constraints. The homomorphism properties can easily be checked.

∀g, h, p ∈ G0 ∀x, y, z ∈ U(g) ∀λ ∈ C :(
ρ0(gh)f

)
(z)(p) = f(z)((gh)−1p) =

(
ρ0(g)(ρ0(h)f)

)
(z)(p)(

ρ0(1)f
)
(z)(p) = f(z)(p)(

ρg(xy)f
)
(z)(p) = (−1)|f |(|x|+|y|)f

(
Ad(p−1)

(
S(xy)

)
z
)
(p)

= (−1)|f |(|x|+|y|)f
(
(−1)|x||y|Ad(p−1)

(
S(y)

)
Ad(p−1)

(
S(x)

)
z
)
(p)

= (−1)|f |(|x|+|y|)+|x||y|−(|f |+|y|)|x|(ρg(x)f)(Ad(p−1)
(
S(y)

)
z)(p)

=
(
ρg(x)ρg(y)f

)
(z)(p)

where we made use of 2.32 to extend ρg to U(g).
Then we need to check that the U(g0)-invariance as in (3.1a) is preserved. Therefore

consider f ∈ V and x ∈ U(g), x0 ∈ g0, g ∈ G0, and v ∈ g and compute

(−1)|f ||v|(ρg(v)f)(x0x))(g)

= f(Ad(g−1)(S(v))x0x)(g)

= −f([Ad(g−1)(S(v)), x0]x)(g) + f(x0Ad(g
−1)(S(v))x)(g)

= ∂t
∣∣
0

(
f(Ad(e−tx0g−1)(S(v))x)(g) + f(Ad(g−1)(S(v))x)(getx0)

)
= (−1)|f ||v|Lx0((ρg(v)f)(x))(g)

hence U(g0)-invariance is indeed preserved by the ρg action and trivially also by the
ρ0 action since for p ∈ G0

(ρ0(g)f)(x0x))(p) = ∂t
∣∣
0
f(x)(g−1petx0) = Lx0(ρ0(g)f(x))(p)
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3 Representation Theory

Next we need to check smoothness and compatibility, therefore we de�ne the locally
convex topology on V by the set of semi norms indexed by (j, u,K) ∈ J×U(g)×{K ⊂
G0

∣∣ compact}, where J is the index set of a family of semi norms de�ning the topology
on W .

||f ||j,u,K := sup
p∈K

||f(u)(p)||Wj

1. Let (g, f) : A → G0 × V be a net converging to (ḡ, f̄). Now since the action is
linear

ρ0(gn)fn − ρ0(ḡ)f̄ = ρ0(gn)
(
fn − f̄

)
+ (ρ0(gn)− ρ0(ḡ))(f̄)

and we can show convergence in two steps. First we need to show that ρ0(gn)fn
converges to 0 for f̄ = 0. Now for some j ∈ J , u ∈ U(g) and p ∈ G0

||ρ0(gn)fn(u)(p)||Wj = ||fn(u)(g−1
n p)||Wj

and all fn(u) are smooth functions on G0. To exploit this we introduce normal
coordinates around (ḡ)−1p, denote xn := log(g−1

n p) from the N ∈ A on where
it exists and note that xn is a net converging to 0 in Tḡ−1pG0 ' g0,R. Now we
have

||fn(u)(g−1
n p)||Wj ≤ ||fn(u)(ḡ)||Wj + sup

t∈[0,1]
||D
∣∣
e−txp

(fn(u)) (xn)||Wj

where we identify Te−txpW ' W as usual for vectorspaces. Finally D(fn(u)) is
smooth, hence bounded, xn converges to zero and so does ||fn(u)(ḡ)||Wj because
fn is a net converging to 0, hence lim (ρ0(gn)fn(u)(p)) = 0.

The second part to consider is (ρ0(gn)−ρ0(ḡ))(f̄) where we can assume ḡ = 1 and
hence need to show that lim ρ0(gn)(f̄) = f̄ . Like above we can write gn = exn in
exponential coordinates around 1 for n ≥ N for some N ∈ A. Then

|| (ρ0(gn)− 1) f̄(u, p)||Wj = ||f̄(u)(e−xnp)− f̄(u)(p)||Wj

= ||
1∫

0

∂s
∣∣
0
f̄(u)(e−(t+s)xnp)dt||Wj = || −

1∫
0

f̄(Ad(p)(xn)u)(e
−txnp)dt||Wj

≤ sup
t∈[0,1]

||f̄(Ad(p)(xn)u)(e−txnp)||Wj

≤ ||Ad(p)||Op,g||xn||g
dim g0,R∑

i=1

sup
t∈[0,1]

|f̄(eiu)(e−txnp)| (3.2)

for some basis ei of g0,R and ||
∑

i yiei||g := maxi yi. Now since we need to
consider the supremum over p ∈ K for some compactum K, Ad : G0 → Aut(g)
is smooth and all f(eiu) are smooth, all terms in (3.2) are bounded and ||xn||g
converges to 0. Hence lim ρ0(gn)(f̄) = f̄ and all in all the action G0 × V → V is
continuous.
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2. In part 1 we already used the fact that inversion and the left action on G0 are
smooth and we start from smooth functions hence everything is smooth in G0.
More explicitly we can Taylor expand

f(u)(e−txp) = et∂t
∣∣
0

(
f(u)(e−txp)

)
and

∂t
∣∣
0
f(u)(e−txp) = −D

∣∣
p
(f(u)) (x)

is smooth in p and likewise are all higher derivatives due to smoothness of f , so
every term in the Taylor expansion is a member of V . Hence all vectors f are
smooth with respect to the ρ0 action.

3. Take a convergent net lim(xn, fn) = (x̄, f̄) in g×V . Like in 1 we can decompose

ρg(xn)fn − ρg(x̄)f̄ = ρg(xn)(fn − f̄) + (ρg(xn)− ρg(x̄))f̄

and for the �rst step assume f̄ = 0 due to linearity. Then for u ∈ U(g), p ∈ K ⊂
G0 and j ∈ J we have

||(ρg(xn)fn)(u)(p)||Wj = ||fn(Ad(p−1)(S(xn))u)(p)||Wj

≤ ||Ad(p−1)||Op,g||xn||g
dim g0,R∑

i=1

||fn||j,eiu,K (3.3)

where the last step is similar to (3.2) and fn converging to 0 means that all
||fn||j,u,K and in particular ||fn||j,eiu,K converge to 0. And since xn is converging
so is lim ||xn||g = ||x̄||g hence the whole (3.3) converges to 0.

For the second step we may assume x̄ = 0. Then we get

||(ρg(xn)f̄)(u)(p)||Wj ≤ ||Ad(p−1)||Op,g||xn||g
dim g0,R∑

i=1

||f̄ ||j,eiu,K

just like above but now ||f̄ ||j,eiu,K is �xed and ||xn||g is converging to zero which
again yields lim ρg(xn)f̄ = 0. Taking both steps together the action g× V → V
is continuous.

4. Let x ∈ g0,R, f ∈ V , u ∈ U(g), p ∈ G0 then

∂t
∣∣
0
f(u)(e−txp) = ∂t

∣∣
0
f(u)(pe−tAd(p−1)x)

= LAd(p−1)S(x)f(u)(p)

= f(xu)(p) = (ρg(x)f) (u)(p)

hence ρg extends the derivative of ρ0.
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5. Let x ∈ g, f ∈ V , u ∈ U(g), p, g ∈ G0 then(
ρ0(g) ◦ ρg(x) ◦ ρ0(g−1)f

)
(u)(p) = (ρ0(g) ◦ ρg(x)f) (u)(gp)

= (−1)|f ||x| (ρ0(g)f) (Ad((gp)
−1)(S(x))u)(gp)

= (−1)|f ||x|f(Ad(p−1) ◦Ad(g)(S(x))u)(p)
= (−1)|f ||x|f(Ad(p−1)(S(Ad(g)((x))))u)(p)

= (ρg(Ad(g)x)f) (u)(p)

using that S commutes with the adjoint action. Hence the action intertwine
adjunction as demanded.

So all in all V carries indeed a representation of the group pair Gp.

Secondly, to see that HomSVS

(
U(g),C∞ (G0,W

))U(g0),Hp is a subrepresentation we
need to show that the action of the group preserves the Hp-invariance. To see that
the H0-invariance as in (3.1b) is preserved take h ∈ H0,

f ∈ HomSVS

(
U(g),C∞ (G0,W

))U(g0),Hp and x ∈ U(g), x0 ∈ g0, g ∈ G0, y ∈ h and
v ∈ g and compute

(ρg(v)f)(x))(g) = (−1)|f ||v|f(Ad(g−1)(S(v))x)(g)

= (−1)|f ||v|π0(h)
(
f(Ad(h−1)(Ad(g−1)(S(v))x))(gh)

)
= (−1)|f ||v|π0(h)

(
f(Ad((gh)−1)(S(v))Ad(h−1)(x))(gh)

)
= π0(h)

(
(ρg(v)f)(Ad(h

−1x)(gh)
)

The ρ0 action does also not interfere with the H0-invariance because it leaves the
�rst argument of f alone and in the second argument acts from the left whilst the
H0-invariance acts on the right hand side.
Similarly, since ρg multiplies the argument of f from the left hand side and h-

invariance is de�ned in (3.1c) by acting on the right hand side, the two do not interfere.
Finally h-invariance is not a�ected by ρ0 since the two act on di�erent arguments.

Hence we see that indeed theGp action preservesHomSVS

(
U(g),C∞ (G0,W

))U(g0),Hp

inside HomSVS

(
U(g),C∞ (G0,W

))U(g0) and hence the former is a subrepresentation
of the latter.

3.4.1 Frobenius reciprocity

Theorem 3.59. For the induced representation Frobenius reciprocity occurs, i.e. for
a super group pair Gp with subgroup pair Hp we have

HomGp(V, Ind
Gp

Hp
(W )) ' HomHp(V,W )
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Proof of 3.59. On the right hand side V is naturally also considered as a representation
of Hp via πV

∣∣
Hp

and we will omit the explicit restriction symbol in the following.
Consider the linear map

Φ : HomGp(V, Ind
Gp

Hp
(W )) → HomHp(V,W )

T 7→
(
v 7→ ((T (v))(1))(1)

)
where 1 ∈ U(g) and 1 ∈ G0. To see that this map is well de�ned take
T ∈ HomGp(V, Ind

Gp

Hp
(W )), v ∈ V , h ∈ H0 and y ∈ h and compute

Φ(T )(πV
0 (h)v) = T (πV

0 (h)v)(1)(1)

= (ρ0(h)T (v))(1)(1) (3.4a)

= T (v)(1)(h−1) = T (v)(Ad(h)(1))(1h−1)

= πW
0 (h)

(
T (v)(1)(1)

)
(3.4b)

= πW
0 (h)Φ(T )(v)

where we used that T intertwines Gp representations in (3.4a) and (3.4b) is a de�ning
property of the induced representation. Similarly

Φ(T )(πV
g (y)v) = (ρg(y)T (v))(1)(1)

= (−1)|T (v)||y| T (v)(Ad(1)S(y))(1)

= (−1)|T (v)||y|(−1)(|T (v)|+|1|)|y| πW
h (y)(T (v)(1)(1)) = πW

h (y)(T (v)(1)(1))

So we see that indeed Φ(T ) ∈ HomHp(V,W ).
Further for u ∈ U(g) and g ∈ G0 note that

T (v)(u)(g) = (−1)|v||u|
(
ρg(S(u)) ◦ ρ0(g−1)T (v)

)
(1)(1)

= (−1)|v||u|T
(
πV
g (S(u))π

V
0 (g

−1)v
)
(1)(1)

= (−1)|v||u|Φ(T )
(
πV
g (S(u))π

V
0 (g

−1)v
)

which means Φ−1 ◦ Φ(T ) = T for

Φ−1 : HomHp(V,W ) → HomGp(V, Ind
Gp

Hp
(W ))

R 7→
(
v 7→

(
u 7→

(
g 7→ (−1)|v||u|R

(
πV
g (S(u))π

V
0 (g

−1)v
))))

This de�nition of Φ−1 also yields Φ ◦ Φ−1(R) = R. But it remains to be shown that
Φ−1 is well de�ned in the �rst place. Therefore take p ∈ G0 and u ∈ U(g) and compute

Φ−1(R)(πV
0 (g)v)(u)(p) = (−1)|v||u|R

(
πV
g (S(u))π

V
0 (p

−1)πV
0 (g)v

)
= (−1)|v||u|R

(
πV
g (S(u))π

V
0 ((g

−1p)−1)v
)

= Φ−1(R)(v)(u)(g−1p) =
(
ρ0(g)Φ

−1(R)(v)
)
(u)(p)
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hence Φ−1(R)(πV
0 (g)v) = ρ0(g)Φ

−1(R)(v) and with x ∈ g

Φ−1(R)(πV
g (x)v)(u)(p) = (−1)(|v|+|x|)|u|R

(
πV
g (S(u))π

V
0 (p

−1)πV
g (x)v

)
= (−1)(|v|+|x|)|u|R

(
πV
g (S(u)Ad(p

−1)(x))πV
0 (p

−1)v
)

= (−1)(|v|+|x|)|u|+|x||u|R
(
πV
g (S(S(Ad(p

−1)(x))u))πV
0 (p

−1)v
)

= Φ−1(R)(v)(Ad(p−1)(S(x))u)(p)

=
(
ρg(x)Φ

−1(R)(v)
)
(u)(p)

so we also have Φ−1(R)(πV
g (x)v) = ρg(x)Φ

−1(R)(v) and Φ−1(R) is indeed equivariant.

The last thing to be shown is that Φ−1(R)(v) ∈ Ind
Gp

Hp
(W ). Linearity and smooth-

ness, i.e. Φ−1(R)(v) ∈ HomSVS(U(g),C
∞(G0,W ), are due to the linearity and smooth-

ness of R, πV
g and smoothness of πV

0 . To check (3.1a) let x0 ∈ g0, u ∈ U(g) and g ∈ G0

and compute

Φ−1(R)(v)(x0u)(g) = (−1)|v||u|R(πV
g (S(x0u))π

V
0 (g

−1)v)

= (−1)|v||u|R(πV
g (S(u))π

V
g (−x0)π

V
0 (g

−1)v)

= ∂t
∣∣
0
(−1)|v||u|R(πV

g (S(u))π
V
0 (e

−tx0g−1)v)

= ∂t
∣∣
0
Φ−1(R)(v)(u)(getx0)

For (3.1b) let h ∈ H0 then

πW
0 (h)Φ−1(R)(v)(Ad(h−1u)(gh) = (−1)|v||u|πW

0 (h)

R
(
πV
g (S(Ad(h

−1u))πV
0 (h

−1g−1)v
)

= (−1)|v||u|R(πV
g (S(u))π

V
0 (g

−1)v)

= Φ−1(R)(v)(u)(g)

where we used that R is a morphism of Hp representations. Finally to check (3.1c) let
y ∈ h then

Φ−1(R)(v)(uy)(g) = (−1)|v||u|R(πV
g (S(uy))π

V
0 (g

−1)v)

= (−1)|v||u|+|u||y|R(πV
g (S(y))π

V
g (S(u))π

V
0 (g

−1)v)

= (−1)|u||y|πV
g (S(y))Φ

−1(R)(v)(uy)(g)

where we used the intertwining property of R again.
So Φ−1(R)(v) ∈ Ind

Gp

Hp
(W ) and Φ−1 is indeed the well de�ned inverse of Φ which is

thereby an isomorphism.

3.5 Spherical representations

In this section we prove our main Theorem 3.60 which is a generalisation to certain
super cases of the classical Theorem by Helgason, [Hel84], Chapter V, Theorem 4.1,
using methods introduced by Schlichtkrull, [Sch84].

52



3.5 Spherical representations

We want to make a statement about the spherical representations of the symmetric
super pair (g, k) of complex Lie super algebras g = glq|r+s and k = glq|r ⊕ gls, i.e. we
seek to characterise which �nite dimensional irreducible g representations contain a
non trivial k-invariant subspace. As in the classical case we will make use of a global
real (in our case cs) form with base G0 = U(q)×U(r, s) andK0 = U(q)×U(r)×U(s), in
the proof. More precisely we will employ the Iwasawa decomposition G := C(G0, g) =
KAN with K = C(K0, k) as explained generally in Section 3.1.
A su�cient condition for a representation to be spherical can be given under rather

general conditions using algebraic arguments. To show that this condition is also
necessary we unfortunately need to employ super integration which currently restricts
the range of applicability to s = 1, although a generalisation to higher rank cases along
the line of in [Sch84] should be possible.
We will use the same notation as in Section 3.3. The minimal parabolic subgroup

will be denoted by Q = MAN and the super Lie algebras of the Lie super groups
are denoted by the corresponding German letters. By an irreducible representation
of glq|r+s we mean slq|r+s-irreducible or in the case of q = r + s, slq|q/z-irreducible.
This ensures that irreducible �nite dimensional representations are highest weight
representations. Then the only case to be excluded in the following is (q, r+s) = (1, 1).

Theorem 3.60. Let πg be a �nite dimensional irreducible representation of g = glq|r+s

on V . Then πg is a highest weight representation. Let G be a global cs form such that
the global Iwasawa decomposition G = KAN exists. Let π be a representation on V
which extends πg and denote the highest weight by λ ∈ h∗ and a highest weight vector
by vλ ∈ V N \ {0}.
Consider the following conditions:

1. vλ ∈ V M

2. V K 6= {0}

Then for any q, r, s ∈ N we have that 2 implies 1. Conversely if s = 1 and
b(λ, αa) > 2(q − r) for {αa} := Σ+ \ 2Σ+ then 1 implies 2.

In any case dim(V K) ≤ 1.

Proof of 3.60. The correspondence of irreducible and highest weight representations
is a basic fact, see Lemma 3.32 and [Kac78], Proposition 2.2.
We start by proving the second implication for which we will use the notion of

generalised points for S ∈ SMan as introduced in De�nition 2.9 and integration on Lie
super groups as explained in Section 2.7. So let vλ ∈ V M . For v ∈s V denote by

πv : G → V

G 3S g 7→ π(g)(v) ∈S V

and de�ne

v0 :=

∫
K/M

πvλ
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Now we need to show that this integral exists and is non zero. Then we get π(K)v0 = v0
by invariance of the measure. To this end, let w∗

µ ∈S V ∗ be the lowest weight vector
of π∗ and consider the following calculation which we will validate step by step.

v0 =

∫
N̄

π (k(n̄)) vλ e
−2ρ(H(n̄))Dn̄ (3.5a)

=

∫
N̄

π(n̄)vλe
−(λ+2ρ)(H(n̄))Dn̄ (3.5b)

⇒ w∗
µ(v0) =

∫
N̄

w∗
µ(π(n̄)vλ)e

−(λ+2ρ)(H(n̄))Dn̄

= w∗
µ(vλ)

∫
N̄

e−(λ+2ρ)(H(n̄))Dn̄ 6= 0 (3.5c)

To see that (3.5a) holds we need a generalisation of Helgason's proof ([Hel84], Thm.
5.20, p. 198) to the super case. This is given in [All11a], section 4, and uses the
following maps. First the commutative diagram

M K K/M

Q G G/Q

ϕ

de�nes ϕ which is in fact an isomorphism due to the Iwasawa decomposition being
one. Then, due to g = n̄⊕ q, there is a local isomorphism φ : N̄ → G/Q. Composing
the two we get a local isomorphism ϑ−1 ◦ φ : N̄ → G/Q. The next step is the super
version of [Hel84] Prop. 5.1, p. 181, namely [All10] Proposition 3.4, Equation (3.4),∫

G

f(g)Dg =

∫
K×A×N

f(kan)e2ρ(log a)DkDaDn

where
e2ρ(x) := SDetAd ex ⇒ 2ρ =

∑
α∈Σ+(g:a)

αmα

Here mα = SDim gα denotes the multiplicity of the root α, which might be negative
for odd roots and we used

SDetAd ex = eSTr adx

Finally [All11a] Proposition 4.4 explains how to derive (3.5a) from these facts.
For (3.5b) we use the Iwasawa decomposition of n̄ ∈S N̄ ⊂S G

n̄ = k(n̄)eH(n̄)n(n̄) ⇒ k(n̄) = n̄ (n(n̄))−1 e−H(n̄)
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hence
π(k(n̄))vλ = π(n̄)π

(
(n(n̄))−1

)
π
(
e−H(n̄)

)
vλ = π(n̄)e−λ(H(n̄))vλ

where we used that vλ is a highest weight vector in the last step.
For (3.5c) suppose w∗

µ(vλ) = 0.

∀n ∈ n : πg(n)vλ = 0

⇒ ∀u ∈ U(n) : 0 = w∗
µ(vλ) = w∗

µ(πg(u)vλ) = (π∗
g(S(u))w

∗
µ)(vλ)

But, since w∗
µ is the lowest weight vector and the dual of an irreducible representation

is irreducible, π∗
g(U(n))w

∗
µ = V ∗ and hence (v∗λ)

∗ = 0 which is incompatible with
vλ 6= 0. We can even be a little more concrete here, by Corollary 3.70 we have in fact
that w∗

µ(vλ) = 1 for a properly chosen dual w∗
µ.

Now �nally we need to restrict to s = 1 and λ(ha) > 2(q − r) to use the computation
in Section 3.5.1 to shows that ∫

N̄

e−(λ+2ρ)H(n̄)Dn̄ 6= 0 (3.6)

1⇒2

To show that 2⇒1 no restrictions on q, r, s ∈ N are needed.
The outline of the argument is as follows. First we need to embed V := Vλ by

α : V ↪→ IndGMAN (V N ) (3.7a)

which turns out to be rather lengthy and is therefore postponed to Section 3.5.2 below.
Then the multiplicity of any irreducible K representation W is given by the dimension
of

HomK

(
W, IndGMAN (V N )

)
= HomM

(
W,V N

)
(3.7b)

⇒ dim
(
V K
)
∈ {0, 1} (3.7c)

where (3.7b) holds by Frobenius reciprocity, Theorem 3.59.
Now for (3.7c) note that V N is M irreducible. Hence the multiplicity of the one

dimensional trivial K representation, which is of course also the irreducible trivial
M ⊂ K representation, in IndGMAN (V N ) can be only 0 or 1. Using the inclusion
V ↪→ IndGMAN (V N ) this means that also the multiplicity in V , which is dimV K , is at
most 1 as claimed.
Now, assuming that there is an invariant vector v0, we have V K = span{v0}. Hence

with W = V K the left hand side of (3.7b) has dimension (at least) one. This means
that the right hand side contains a non zero element f ∈ HomM

(
V K , V N

)
. Observe

M ⊂ K so we have

∀w ∈S V K ,m ∈S M : π(m)f(w) = f(π(m)w) = f(w)

and since f is in particular surjective, any vector in V N is M -invariant.
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Lemma 3.61. Let (g, k) be a reductive pair of even type with a non-compact global cs
form G = KAN and corresponding minimal parabolic Q = MAN . Let h ⊂ g be a
Cartan subalgebra and ∆+ a positive root system compatible with the pair. Let λ ∈ h∗

such that π on Vλ is a �nite dimensional highest weight module with highest weight
vector vλ. Then vλ ∈ V M if and only if

1. λ
∣∣
h∩k ≡ 0

2. ∀α ∈ Σ+ : b(λ, α) ∈ 2N

3. πg

(∑
β∈∆+

−,1
g−β

)
vλ = 0

where ∆+
−,1 denotes the positive odd roots which restrict to zero on a.

Proof of 3.61. We have by de�nition vλ ∈ V M if and only if πg(m)vλ = 0 and
π0(M0)vλ = vλ.
Since

m = k ∩ h⊕
∑

β∈∆−

gβ

(see 3.25) and ∀h ∈ h : πg(h)vλ = λ(h)vλ we see immediately that πg(m)vλ = 0 implies
1 and 3.
For the converse note that for β ∈ ∆+, πg(gβ)vλ ⊂ Vλ+β = 0 because λ is a highest

weight. If β ∈ ∆+
−,0 is even, hence a weight of Vλ considered as a g0 representation,

then there is an associated Weyl group re�ection sβ in the ordinary Weyl group W0

of g0 such that λ − β = sβ(λ + β) since λ
∣∣
h∩k = 0. But since the weights are W0

stable this means that πg(g−β)vλ ⊂ Vλ−β = 0. So the additional condition 3 ensures

πg

(∑
β∈∆−

gβ
)
(vλ) = 0. Hence 1 and 3 imply πg(m)vλ = 0.

For the M0 part we can use the result from the ordinary case (see Halgason's prove
of Theorem 4.1 in Chapter 5 of [Hel84])

{x ∈ ı̇a0,R : ex ∈ M0} = spanZ{ı̇πα∗∣∣α ∈ Σ+}

Note that we have to look at the coroots of the restricted roots instead of the coroots
{hi} from Lemma 3.23. Hence given πg(m)vλ = 0 we have π0(M0)vλ = vλ if and only
if ∀α ∈ Σ+ : λ(α∗) ∈ 2N.

Remark 3.62. By Lemma 3.44 we have that 1 implies 3 since for α ∈ ∆− we have
α∗ ∈ h∩k and for ∆+ compatible with the pair we have that ∆+

− is generated by ∆+
−∩Π.

Corollary 3.63. Let g = glq|r+1, λ ∈ h∗ with Vλ �nite dimensional and λ
∣∣
h∩k ≡ 0,

λ(α∗) ∈ 2N and λ(α∗) > 2(q − r) for the single simple restricted root α ∈ Σ+ \ 2Σ+.
Then Vλ is a spherical representation.

Corollary 3.64. For g = glq|r+s and Vλ a �nite dimensional irreducible spherical
representation we have λ

∣∣
h∩k ≡ 0 and ∀α ∈ Σ+ : λ(α∗) ∈ 2N.
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Corollary 3.65. All spherical representations of g are atypical if ∆+
−,1 6= ∅. This is

the case for g = glq|r+s if g1 6= 0.

Proof of 3.65. By Lemma 3.35 and 3.29 we have

V̄λ =

|∆+
1 |⊕

s=0

⊕
βi∈∆+

1

fβ1 . . . fβsV
0
λ

where fβ ∈ g−β \ {0}. In particular fβvλ ∈ fβV
0
λ ⊂ V̄λ for β ∈ ∆+

−,1 ⊂ ∆+
1 but by

Lemma 3.61 fβvλ /∈ Vλ \ {0} hence Vλ 6= V̄λ.

3.5.1 Computation of the super integral

Most of computation in this section is due to Wolfgang Palzer and came to our knowl-
edge in private communication. It is to appear in one of his future publications.

To compute the integral (3.6) we �rst need to determine H(n̄), i.e. the a component
of the global Iwasawa decomposition. More concretely K×a×N

∼−→ G can be inverted
to de�ne morphisms of super manifolds (K,H,N) : G → K × a × N such that for
S ∈ SMan and g ∈S G we have g = k(g)eH(g)N(g). In particular this can be applied
to decompose n̄ ∈S N̄ ⊂S G. To compute the morphism H explicitly we get rid of the
K component using the de�ning involutive automorphism θ : G → G that �xes K.

θ(n̄)−1n̄ = θ(N(n̄))−1e2H(n̄)N(n̄) (3.8)

Using Section 3.3, in particular Corollary 3.55, we choose a system of positive re-
stricted roots Σ+ = {ı̇ai, ı̇(ai + aj), ı̇(ai − aj)} where for the third term i > j. Then

n =


0 C 0 ı̇C

D G+ E + F B ı̇(G+ F − E)

0 A 0 ı̇A

ı̇D ı̇(E + F −G) ı̇B E − F +G


Here A ∈ C(r−s)×s, B ∈ Cs×(r−s), C ∈ Cq×s and D ∈ Cs×q parametrise

⊕
i g

ı̇ai ,
E,G ∈ Cs×s and E strictly upper and G strictly lower triangular parametrise⊕

i<j g
ı̇(ai−aj) and F ∈ Cs×s parametrises

⊕
i,j g

ı̇(ai+aj).
So n is nilpotent of degree s+1 and hence for s = 1 things become quite computable.

Let x ∈ n̄ be parametrised by

x =


0 C 0 −ı̇C

D F B −ı̇F

0 A 0 −ı̇A

−ı̇D −ı̇F −ı̇B −F


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then solving (3.8) yields

H(ex) =
1

2
log
(
(1− (BA+DC))2 − 4F 2

)
h

with the single generator of a being

ha =


0 0 0 0

0 0 0 −ı̇

0 0 0 0

0 ı̇ 0 0


Using the non compact cs form of Lemma 3.47 for the even part means B = −A†

and F ∈ ı̇R.
Hence we can express the relevant integrand in coordinates. For S ∈ SMan and

n̄ ∈S N̄ we have

eλ(H(n̄)) =

(1 +

r−1∑
i=1

ziz
∗
i +

q∑
j=1

ξ2j−1ξ2j)
2 + 4x2


λ(ha)

2

From here Palzer computes

∫
N̄

e−(λ+2ρ)H(n̄)Dn̄ ∝
∫

R2r−1|2q

(1 +

2r−2∑
i=1

x2i +

q∑
j=0

χjχ
∗
j )

2 + y2

−( 1
2
λ+ρ)(ha)

|D(x, y, χ, χ∗)|

=
πr22−(λ+2ρ)(ha)Γ((λ+ 2ρ)(ha)− r + q)

Γ2((12λ+ ρ)(ha))

∝ Γ(λ(ha) + r − q)

Γ2((12λ(ha) + r − q)

where the proportionality factors are non zero, ρ(ha) = 1
2(2 + (2(r− s)− 2q)) = r− q

and λ(ha) ≥ 0. By Corollary 3.64 we have λ(ha) even, hence the integral is non zero
if and only if 1

2λ(ha) > q − r.

3.5.2 Embedding

In this section let G = KAN be the Iwasawa decomposition of G (see Section 3.1), Q =
MAN the corresponding minimal parabolic subgroup and π = (π0, πg) an irreducible
�nite dimensional highest weight representation of Gp on V . In this section we will
drop the subscript and write G = Gp and similarly for the other super group pairs
and work only with those.

Lemma 3.66. There is an isomorphism of G representations

IndGQ
(
V N
)
' IndGQ

((
(V ∗)N̄

)∗)
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Proof of 3.66. We will show that

Φ : V N →
(
(V ∗)N̄

)∗
v 7→ (µ 7→ µ(v))

is an isomorphism of Q representations which implies the above. Therefore note that
Φ intertwines the representation π of Q on V with π∗∗ on V ∗∗ by De�nition 2.101 of
the dual representation. Further observe that Φ is injective because

Φ(v) = 0

⇒ ∀µ ∈ V ∗N̄ : Φ(v)(µ) = µ(v) = 0

⇒ ∀x ∈ n ∀µ ∈ V ∗N̄ : µ(πg(S(x)v)) = (π∗
g(x)µ)(v) = 0

⇒ U(π∗
g(n))

(
V ∗N̄

)
(v) = V ∗(v) = 0 ⇒ v = 0

where we used that v ∈ V N and the lowest weight vector of V ∗ is contained in V ∗N̄ .
Hence dimV N ∗ ≤ dimV ∗N̄ , but interchanging the roles of N and N̄ we can also
construct an injective map in the other direction, hence the dimensions are equal and
Φ is an isomorphism.

Lemma 3.67. There is an embedding of G representations

α : V ↪→ IndGQ

((
(V ∗)N̄

)∗)
α(v)(u)(g)(µ) := (−1)|u||v|+|µ|(|u|+|v|)µ

(
π0(g

−1)πg(Ad(g)S(u)) v
)

Proof of 3.67. The map α is well de�ned, because for g ∈ G0, v ∈ V , u ∈ U(g),
µ ∈ V ∗N̄ and p ∈ Q0(
π∗
0
∗(p)α(v)(Ad(p−1)u)(gp)

)
(µ) = (−1)|u||v|+|µ|(|u|+|v|)

µ
(
π0 (p)π0

(
(gp)−1

)
πg
(
Ad(gp)S(Ad(p−1)u)

)
v
)

= α(v)(u)(g)(µ)

and similarly for y ∈ q

α(v)(uy)(g)(µ) = (−1)(|u|+|y|)|v|+|µ|(|u|+|y|+|v|)µ
(
πg(S(uy))π0(g

−1)v
)

=
(
(−1)(|u|+|v|)|y|π∗

g
∗(S(y))α(v)(u)(g)

)
(µ)

and also for x0 ∈ g

α(v)(x0u)(g)(µ) = (−1)|u||v|+|µ|(|u|+|v|)µ
(
πg(S(x0u))π0(g

−1)v
)

= (−1)|u||v|+|µ|(|u|+|v|)µ
(
πg(S(u))πg(−x0)π0(g

−1)v
)

= (−1)|u||v|+|µ|(|u|+|v|)µ
(
πg(S(u))∂t

∣∣
0
π0(e

−tx0g−1)v
)

= ∂t
∣∣
0
α(v)(u)(getx0)(µ)
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Further more α is a map of Gp representations because for h ∈ G0 we have

α(π0(h)v)(u)(g)(µ) = (−1)|u||v|+|µ|(|u|+|v|)µ
(
πg(S(u))π0(g

−1)π0(h)v
)

= (−1)|u||v|+|µ|(|u|+|v|)µ
(
πg(S(u))π0((h

−1g)−1)v
)

= (ρ0(h)α(v))(u)(g)(µ)

and for x ∈ g

α(πg(x)v)(u)(g)(µ) = (−1)|u|(|v|+|x|)+|µ|(|u|+|x|+|v|)

µ
(
π0(g

−1)πg(Ad(g)S(u))πg(x)v
)

= (−1)|u||v|+|µ|(|u|+|x|+|v|)

µ
(
π0(g

−1)πg(Ad(g)S
(
Ad(g−1)(S(x))u

)
)v
)

= (−1)|x||v|α(v)(Ad(g−1)(S(x))u)(g)(µ)

= (ρg(x)α(v))(u)(g)(µ)

Finally α 6= 0 because

α(vλ)(1)(1)(µ−λ) = µ−λ(vλ) 6= 0

for the highest weight vector vλ of V and the lowest weight vector µ−λ of V ∗ and V
is G irreducible, so V ' α(V ) as G representations.

Lemma 3.68. For a Gp representation π on V ∈ LCSVS there is an isomorphism of
Kp representations

IndGP (V ) ' IndKM (V )

Proof of 3.68. The restriction to U(k) ⊂ U(g) and K0 ⊂ G0 denoted by f 7→ Ψ(f) is
an injective map of Kp representations because G0 = K0A0N0 and g = k⊕a⊕n hence
U(g) ' U(k)⊗ U(a⊕ n) as vector spaces and

f(xy)(kan) = (−1)(|f |+|x|)(|y|)πg(S(y))π0(an)
−1f(x)(k)

for x ∈ U(k), y ∈ U(a ⊕ n),k ∈ K0, a ∈ A0 and n ∈ N0, so f ∈ IndGP (V ) is uniquely
determined by Ψ(f)(x)(k) = f(x)(k).
To de�ne the inverse we choose a homogeneous basis {ei} of U(a⊕ n) and denote

U(g)
∼−→ U(k)⊗ U(a⊕ n) (3.9)

x 7→
∑
i

[x]i ⊗ ei

where the sum is �nite for all x and we will drop the sum sign in the following,
summation over the index i always understood. Then

Φ : IndKM (V ) → IndGP (V )

Φ(f)(x)(kan) := (−1)(|f |+|[Ad(an)(x)]i|)|ei|π0(an)
−1πg(S(ei))f([Ad(an)(x)]i)(k)

60



3.5 Spherical representations

Note that we can as well use any decomposition of x =
∑

i,j µi,j xi⊗ yj with xi ∈ U(k)
and yj ∈ U(a⊕n) but using a basis saves us a bit of writing. Clearly Ψ◦Φ = idIndKM (V ).
But to see that Φ is well de�ned we need to check the equivariance properties (3.1a)
to (3.1c) which we will do for mostly the rest of this proof. Therefore let g = kan and
p = m′a′n′ ∈ P0 = M0A0N0, then

kanm′a′n′ =
(
km′) (aa′) ((m′a′)−1n(m′a′)n′) ∈ M0A0N0

where we used that M0 and A0 commute and we note Ad(MA)(N) ⊂ N . As a
shorthand we will use for x ∈ U(g)

z := Ad
((
aa′
) (

(m′a′)−1n(m′a′)n′)) (Ad(m′a′n′)−1(x)
)
= Ad

(
a(m′)−1n

)
(x)

in the following computation. With f ∈ IndKM (V ) we have

π0(m
′a′n′)

(
Φ(f)(Ad(m′a′n′)−1(x))(kanm′a′n′)

)
= π0(m

′a′n′)
(
(−1)(|f |+|[z]i|)(|ei|)π0(a(m

′)−1nm′a′n′)−1πg(S(ei))f([z]i)(km
′)
)

= (−1)(|f |+|[z]i|)(|ei|)π0(a(m
′)−1n)−1πg(S(ei))π0(m

′)−1f(Ad(m′)([z]i))(k) (3.10a)

= (−1)(|f |+|[Ad(an)(x)]i|)(|ei|)π0(an)
−1πg(S(ei))f([Ad(an)(x)]i))(k)

= Φ(f)(x)(kan)

where we used M -equivariance of f in (3.10a) and further am′ = m′a and Ad(M0)
preserves the decomposition (3.9) and hence commutes with the projections. So we
have veri�ed (3.1b). To check equivariance also on the algebra level, i.e. (3.1c), let
y ∈ U(g) and denote Ki := [Ad(an)x]i and Mj := [Ad(an)y]j and note KieiMjej =
Ki[ei,Mj ]ej+(−1)|ei||Mj |KiMjeiej with [ei,Mj ], eiej ∈ U(a⊕n) and Ki,KiMj ∈ U(k).
For the following computation summation over i and j is understood.

Φ(f)(xy)(kan) = (−1)(|f |+|Ki|)(|ei|+|Mj |+|ej |)π0(an)
−1πg (S([ei,Mj ]ej)) f(Ki)(k)

+ (−1)(|f |+|Ki|+|Mj |)(|ei|+|ej |)+|ei||Mj |π0(an)
−1πg (S(eiej)) f(KiMj)(k)

= (−1)(|f |+|Ki|)(|ei|+|Mj |+|ej |)π0(an)
−1πg (S(eiMjej)) f(Ki)(k)

− (−1)(|f |+|Ki|)(|ei|+|Mj |+|ej |)+|ei||Mj |π0(an)
−1πg (S(Mjeiej)) f(Ki)(k)

+ (−1)(|f |+|Ki|+|Mj |)|ej |+(|f |+|Ki|)|ei|π0(an)
−1πg (S(eiej))

(−1)|Mj |(|Ki|+|f |)πg(S(Mj))f(Ki)(k)

= (−1)(|f |+|Ki|)|y|+|ei||y|πg(S(y))

(−1)(|f |+|Ki|)|ei|π0(an)
−1πg (S(ei)) f(Ki)(k)

= (−1)(|f |+|x|)|y|πg(S(y))Φ(f)(x)(kan)

To check (3.1c) let now x ∈ g0 and denote K0 and AN0 part of the Iwasawa decom-
position of ketAd(an)xan for small t ∈ R by k(t)(an)(t). This de�nes curves in K0 and
AN0 for which we denote the derivative (or velocity) at t = 0 by k̇0 and ȧn0. Further
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3 Representation Theory

denote Mj(t)ej := Ad(an(t))y where Mj(t) are curves in a �nite dimensional subspace
of U(k) for which we denote the initial velocities by Ṁj . Then

∂t
∣∣
0
Φ(f)(y)(kanetx) = ∂t

∣∣
0
(−1)(|f |+|Mj(t)|)|ej |π0(an(t))

−1πg(S(ej))f(Mj(t))(k(t))

= (−1)(|f |+|Mj |)|ej |π0(an)
−1
(
− πg(ȧn0)πg(S(ej))f(Mj)(k)

+ πg(S(ej))f(Ṁj)(k)

+ πg(S(ej))Lk̇0
f(Mj)(k)

)
= (−1)(|f |+|Mj |)|ej |π0(an)

−1
(
πg(S(ej ȧn0))f(Mj)(k)

+ πg(S(ej))f(Ṁj)(k)

+ πg(S(ej))f(k̇0Mj)(k)
)

= Φ(f)
(
Ad(an)−1

(
Mjej ȧn0 + Ṁjej + k̇0Mjej

))
(kan)

= Φ(f)
(
yAd(an)−1(ȧn0) + [Ad(an)−1ȧn0, y]

+ Ad(an)−1(k̇0)y
)
(kan)

= Φ(f)
(
Ad(an)−1(k̇0 + ȧn0)y

)
(kan)

= Φ(f)
(
xy
)
(kan)

So all in all Φ is well de�ned.
Finally we check

(Φ ◦Ψ(f)) (x)(kan) = π0(an)
−1f([Ad(an)x]k[Ad(an)x]an)(k)

= π0(an)
−1f(Ad(an)x)(k)

= f(x)(kan)

hence Φ ◦Ψ = id
Ind

Pp
Gp

(V )
.

We did not mention smoothness of the action, but, due to our de�nition of rep-
resentations of Lie super group pairs, restriction of smooth representations is not an
issue and in the de�nition of φ only smooth functions appear, as π is smooth and the
induced representations are de�ned using smooth functions C∞(G0). I.e. by using
that the induced representations are smooth in the �rst place, see Lemma 3.58, we
indeed have IndGP (V ) ' IndKM (V ) also for in�nite dimensional V .

Corollary 3.69. Taking together all three lemmas in this section we obtain an em-
bedding of K representations

V ↪→ IndGMAN (V N )

as demanded in (3.7a) for the proof of Theorem 3.60.
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3.6 Example: gl1|2+1

The simplest example which is not purely even and where r > s ≥ 1 is gl1|2+1. So we
now explicitly write down the root space decomposition 3.3 in this low dimensional
case. Then we will explicitly compute one non-trivial example each of a spherical and
non-spherical representations.
So let in this section g = gl1|3 with involution θ(x) = σxσ−1 and σ = diag(1, 1, 1,−1).

We use b(A,B) := STr(AB) as the invariant bilinear form and the global cs form

G0 = U(1)× U(2, 1)

hence the base of the symmetric space is

G0/K0 = (U(1)/U(1))× (U(2, 1)/ (U(2)×U(1)))

' SU(2, 1)/S (U(2)×U(1)) ' CH2 (3.12)

where CH2 denotes the complex two dimensional hyperbolic space.

3.6.1 Roots and root spaces

In accordance with Section 3.3 we choose

a0,R = span




0 0

0 0 −ı̇

0 0 0 0

ı̇ 0 0




h0,R ∩ k = span




0 0

ı̇ 0 0

0 0 0 0

0 0 ı̇

 ,


0 0

0 0 0

0 0 ı̇ 0

0 0 0

 ,


ı̇ 0

0 0




and we will use the coordinates

h =




c 0 0 0

0 b1 0 a

0 0 b2 0

0 −a 0 b1

∣∣∣ a, bi, c ∈ C


Applying the results from Section 3.3 we have the even roots

∆0 = {b2 − b1 ± ı̇a, b1 − b2 ± ı̇a,±2ı̇a}

and odd roots
∆1 = {c− b1 ± ı̇a, b1 − c± ı̇a,±(c− b2)}
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3 Representation Theory

from which we choose a system of positive roots

∆+ =
{
α1 = b1 − c+ ı̇a, (3.13)

α2 = c− b2,

α3 = b2 − b1 + ı̇a,

α1 + α2, α2 + α3, α1 + α2 + α3

}
where the αi are the simple roots.
Note that this positive system is not distinguished, but it features ∆+

∣∣
a
\ {0} = Σ+

which is essential for the application of Corollary 3.63 and 3.64. In fact there is no
distinguished positive system which is compatible with the Iwasawa decomposition in
this sense.
The corresponding raising and lowering operators, fi and ei, can be read of from

the root spaces. The relations

[ei, fj ] = δi,jhi , [hi, hj ] = 0 , [hi, ej ] = ai,jej , [hi, fj ] = −ai,jfj (3.14)

for the three sub algebras then de�ne hi which is dual2 to αi and we get

e1 =
1√
2


0 0

1 0 0 0

0 0 0 0

ı̇ 0 0 0

 h1 =
1

2


2 0

1 0 −ı̇

0 0 0 0

ı̇ 0 1

 (3.15a)

e2 =


0 0 1 0

0 0

 h2 =


1 0

0 0 0

0 0 1 0

0 0 0

 (3.15b)

e3 =
1√
2


0 0

0 0 0

0 1 0 ı̇

0 0 0

 h3 =
1

2


0 0

−1 0 −ı̇

0 0 2 0

ı̇ 0 −1

 (3.15c)

and fi = e†i . Note that the anti commutator had to be used here for the �rst time to
determine h1 and h2.
The normalisation has been chosen such that the ai,j from (3.14) form the Cartan

matrix

(ai,j) =

 0 1 0

−1 0 1

0 −1 2


Hence we have the following Dynkin diagram (see De�nition 3.24)

2In the STr sense.
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Note that the white, i.e. even, subdiagram is not that of the ordinary sl3, because
we did not choose a distinguished positive system. Bu it is well suited for the Iwasawa
decomposition since it is the one of sl2 ⊂ k0 = gl1 ⊕ gl2 ⊕ gl1. Note further that the
roots do not span h∗ but (h/z)∗ as mentioned in Lemma 3.23. On the exponential
level there is a trivial U(1) subgroup corresponding to the centre which will drop out
on passing to the quotient. This can be seen already in Equation (3.12).

3.6.2 Invariant vectors

For our example we will determine directly whether there is an k-invariant vector
to check the validity of the general results in this simple setting. But to compare
with the general results we need the positive restricted roots Σ+ = {ı̇a, 2ı̇a} and in
particular the coroot of the simple restricted root hı̇a = h3 + h1 − 2h2 as well as
h ∩ k = span{h2, h1 − h3}. Hence by Corollary 3.63 and 3.64 we expect a highest
weight representation of weight λ to be spherical if and only if λ(h2) = 0 and λ(h1) =
λ(h3) ∈ N because this already implies λ(hı̇a) ∈ 2N.
Further note that k-invariant vectors need to be invariant under h2 and h1 − h3,

which means that they can only appear in

V K ⊂
⊕

µ(h2)=µ(h1−h3)=0

V µ (3.16)

and invariance under all of

k = m⊕ span {(e2,3 + f1), (e1 − f2,3), (e1,2 + f3), (e3 + f1,2), (e1,2,3 − f1,2,3)}

with
m = span{1, h2, h1 − h3, e2, f2}

will be checked directly. Here we use the notation

ei1,...,ik := [ei1 , ei2,...,ik ] (3.17)

and similarly for fi1,...,ik . For completeness note that the explicit matrices are given
by

e1,2 =
1√
2


0 0

0 1 0

0 0 0 0

0 ı̇ 0

 e2,3 =
1√
2


0 1 0 ı̇

0 0

 e1,2,3 =
1

2


0 0

1 0 ı̇

0 0 0 0

ı̇ 0 −1


and e1,3 = 0 = f1,3. Noting that fi = e†i gives f1,2 = e†1,2, f2,3 = −e†2,3 and f1,2,3 =

−e†1,2,3. Altogether this speci�es the basis of gl
1|3 which we are going to use.
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
0

1

0

ı̇


(1, 0, 0)


1

0

0

0


(1, 1, 0)


0

0

1

0


(0, 1, 1)

0

1

0

−ı̇


(0, 0,−1)

f1

f2

f3

Figure 3.1: Standard representation of gl1|3

3.6.3 Standard representation

The de�ning representation of gl1|3 is the irreducible module C1|3. All weight spaces
here are one-dimensional. Generators and weights are depicted in the weight diagram
in Figure 3.1 as column and row vectors, respectively. We do not try to adequately
depict the three dimensional geometry but place the dots rather arbitrarily, except for
the bar dividing even from odd representations and the even sl2 sub representations
being aligned vertically. The action of the simple lowering operators is depicted by
the arrows and all non vanishing actions of those are depicted.
The highest weight is λ(h1, h2, h3) = (1, 0, 0) as the corresponding vector is annihi-

lated by all raising operators. The representation is atypical since typical representa-
tions need to have at least dimension 23 = 8.
From (3.16) we see immediately that the standard representation does not contain

any k-invariant vectors. Since λ(h1) 6= λ(h3) for the highest weight λ this is in ac-
cordance with the general theory, Corollary 3.64. As explained in Section 3.6.2 the
standard representation must indeed not be spherical.

3.6.4 Adjoint representation

Using the notation introduced in (3.17) for non-simple raising and lowering operators
we produce the diagram indicating the weights for the adjoint representation in Figure
3.2. The arrows again depict the action of of the lowering operators. Horizontal
arrows stand for f1, vertical ones for f3 and the diagonal or bended ones for f2. Again
all non zero actions are depicted. The representation is decomposable even as a g
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e1,2,3

(1, 0, 1)

e2,3(1, 1, 1)

e2

(1, 0,−1)
e1,2

(1,−1,−1)

e1 (0,−1, 0)

e3 (0, 1, 2)

f1(0, 1, 0)

f3

(0,−1,−2)

(0, 0, 0)

1

f2

(−1, 0, 1)

f1,2

(−1, 1, 1)

f1,2,3

(−1, 0,−1)

f2,3 (−1,−1,−1)

Figure 3.2: Adjoint representation of gl1|3

representation into the trivial representation (1) and the g irreducible complement
sl1|3. All weight spaces are one dimensional, except for (0, 0, 0), which is spanned by
{1, h1, h2, h3} . Since [ei, e1,2,3] = 0 the highest weight is λ(h1, h2, h3) = (1, 0, 1). Also
the adjoint representation is atypical since all simple odd lowering operators annihilate
the highest weight.

Invariant vectors

Using (3.16) again, we identify (0, 0, 0) and ±(1, 0, 1) as the only weights for which
the corresponding weight space might contribute to the k-invariant sector. Now 1 is
trivially invariant, so interesting candidates are v0 ∈ span{h1, h2, h3, e1,2,3, f1,2,3}. But
demanding [e2, v0] = [e1,2 + f3, v0] = 0 yields

v0 = h2 + e1,2,3 + f1,2,3 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


And indeed v0 spans the centre of k/zgl1|3 = (gl1|2⊕gl0|1)∩sl1|3 and hence is k-invariant.
As explained in Section 3.6.2 the existence of a spherical vector is enforced by the

highest weight ful�lling λ(h1) = λ(h3) and λ(h2) = 0. Evidently, the two irreducible
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spherical components of the adjoint representation are the spherical representations
with the lowest possible highest weights, i.e. with the smallest possible dimensions.

3.6.5 Dual representations

Corollary 3.70. The dual representation of the highest weight representation Vλ of
highest weight λ is the lowest weight representation of lowest weight −λ.

Proof of 3.70. This holds in general for highest weight representations by De�nition
2.101 of the dual representation. The argument goes as follows: Choose a basis B of
Vλ consisting of weight vectors. Then vλ ∈ B and we denote by µ−λ the dual of vλ
with respect to this basis. Hence

∀v ∈ Vλ : π∗(fi)(µ−λ)(v) = −µ−λ(π(fi)v) = 0

because π(fi)v ∈ V λ ⇒ v ∈ Vλ+αi
= 0, so µ−λ is a lowest weight vector. We have

π∗(hi)(µ−λ)(vλ) = −λ(hi) hence µ−λ ∈ (V ∗
λ )

−λ.

Corollary 3.71. All �nite dimensional spherical representations of gl1|2+1 are self
dual.

Proof of 3.71. With the positive system of (3.13) we have −∆+ = rα2 ◦ rα1+α2+α3∆
+

where rα2 is the odd re�ection at α2 = rα1+α2+α3(α2) and rα1+α2+α3 ∈ W0 is an ordi-
nary Weyl group element. This means the lowest weight of Vλ is ν = rα2◦rα1+α2+α3(λ).
More concretely ν(h1, h2, h3) = λ(−h1, h2,−h3). But since λ(h2) = 0 for spherical rep-
resentations by Corollary 3.64 this means ν = −λ. By the previous Corollary 3.70 this
establishes self duality.
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As stressed throughout, the main point of this thesis is the generalisation of Helgason's
theorem, vλ ∈ V M

λ ⇔ V K
λ 6= 0, to the super case. For (g = glq|r+1, k = glq|r ⊕ gl0|1)

with r > q this has been accomplished and for high enough highest weight λ we can
also drop the restriction on r and q. The weak point in the proof causing the limitation
of the range of dimensions is the computation of the integral in Section 3.5.1. The next
step for improving this part would be to work out a reduction of rank argument from
s > 1 to the rank 1 case in a similar way as done in [Sch84]. We conjecture that hereby
our result should be generalisable to higher rank cases, i.e. to (glq|r+s, glq|r ⊕ gls) also
for s ≥ 1 without problems.
We have made an e�ort to stress that the general theory developed up until Section

3.3 is valid for any strongly reductive symmetric super pair of even type, in par-
ticular also for (glp+q|r+s) and ospm|n with a suitable involution. In fact our proof of
dim(V K

λ ) ≤ 1 and V K
λ 6= 0 ⇒ vλ ∈ V M

λ only relies on the existence of a global Iwasawa
decomposition of the super group pair and hence applies as it stands to any strongly
reductive symmetric super pair of even type. Hence by Lemma 3.61 we can in fact
conclude λ

∣∣
h∩k ≡ 0 and ∀α ∈ Σ+ : b(λ, α) ∈ 2N with respect to a compatible positive

system for any �nite dimensional spherical highest weight representation of any such
symmetric super pair. For the converse, however, the crucial point for further gener-
alisation of the method of proof by Schlichtkrul is again to show that

∫
K/M πvλ 6= 0.

Here some further work on either the concrete computation of super integrals of the
form of (3.6) for more general symmetric pairs or a more general argument is needed.

An interesting side development of this thesis was presented in Sections 3.4, namely
the generalisation of induced representations to the realm of in�nite dimensional mod-
ules of Lie super groups pairs. In Lemma 3.68 we showed that also in this setting
induction from a minimal parabolic subgroup to the full group is on the level of K
representations the same thing as induction from M to K. Further we could prove
Frobenius reciprocity in this rather general case.

The next step on the route to harmonic analysis of symmetric super spaces is to es-
tablish the relation to spherical functions and hence to invariant di�erential operators.
For gl1|2+1 we have shown that all spherical representations are self dual, hence we can
form the matrix coe�cient, i.e. for g ∈S Gl1|2+1 we can de�ne φ(g) := v∗0 (π(g)(v0))
where v0 is the K-invariant vector. By de�nition φ is K-biinvariant and it is easily
seen to be an eigenfunction of the super Laplacian, since Vλ is irreducible. It remains
to be shown that all spherical functions are matrix coe�cients and to investigate their
asymptotics.
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