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1 Abstract 

1.1 Deutsche Zusammenfassung 

Pre-mRNA Spleißen in Säugerzellen beeinflusst die Proteinzusammensetzung von Ri-

bonucleoproteinkomplexen (mRNP). Ein prominentes Beispiel hierfür ist der Exon- 

Verbindungs Komplex (‘exon junction complex’, EJC), der die gespleißte mRNA nahe 

der Exon-Exon Grenze bindet und so die ehemaligen Spleiß-Stellen markiert. Der EJC 

koordiniert viele wichtige Aspekte der Genexpression, so zum Beispiel den Export der 

mRNA ins Zytoplasma, ihre zelluläre Lokalisation, die Translations-Effizienz und die 

Qualitätskontrolle durch den Mechanismus des Nonsens-vermittelte mRNA-Abbaus 

(NMD). Doch obgleich die Zusammensetzung des EJC intensiv untersucht wurde, blieb 

bislang unklar, wie das Spleißosom den Zusammenbau des Komplexes reguliert.  

In dieser Studie beschreibe ich nun die Identifikation von CWC22 als einen essentiellen 

Spleiß-Faktor, der den Zusammenbau des EJC in humanen Zellen vermittelt. Die mitt-

lere Domäne (MIF4G) von CWC22 bindet direkt an das zentralen EJC Protein eIF4A3. 

Diese Bindung wiederum vermittelt die Interaktion zwischen eIF4A3 und dem Spleißo-

som. Bemerkenswert ist, dass CWC22 auch für das Spleißen von pre-mRNA benötigt 

wird. Diese Spleiß-Funktion des Proteins wird von einem zentralen Segment, 

bestehend aus der MIF4G Domäne und der benachbarten MA3 Domäne, vermittelt. 

Indem CWC22 sowohl das Spleißen von pre-mRNA, als auch den Aufbau von EJCs 

reguliert, nimmt das Protein eine duale Rolle in der Genregulation von Säugerzellen 

ein. Interessanterweise lassen sich beide Funktionen experimentell trennen, so dass 

die Überexpression einer dominant negativen Muntante von CWC22 zwar den Aufbau 

von EJCs inhibiert, gleichzeitig aber keinen Effekt auf das Spleißen von pre-mRNA hat. 

Die Überexpression dieser Mutante hat einen toxischen Effekt auf kultivierte Zellen, 

was die Bedeutung des EJC für die Kontrolle der Genexpression unterstreicht.  

Zusammenfassend lässt sich sagen, dass das Protein CWC22 die erste direkte Verbin-

dung zwischen dem EJC und dem Spleißosom darstellt, während die duale Funktion 

des Proteins die Komplexität der Genregulation in Säugerzellen illustriert.



 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

3 

 

1.2 Summary 

The exon junction complex (EJC) is a multi-protein complex that assembles on mRNA 

during splicing. It binds upstream of exon-exon junctions and preserves the positional 

information of the former splice sites within the mRNP architecture. In metazoan cells, 

the EJC coordinates several key aspects of gene expression, such as mRNA export, 

cytoplasmic localization, translation efficiency and quality control by nonsense-

mediated mRNA decay (NMD). Although the composition of EJCs is well understood, 

the mechanism mediating splicing-dependent EJC assembly and the factor(s) recruiting 

the EJC to the spliceosome remain elusive. 

Here, I describe the identification of CWC22 as an essential splicing factor that is 

required for EJC assembly in human cells. The central domain (MIF4G) of CWC22 

directly interacts with the EJC core protein eIF4A3, and this interaction is reminiscent 

of the eIF4A/eIF4G translation initiation complex. The interaction with CWC22 recruits 

eIF4A3 to the early spliceosomal complex and initiates EJC assembly. Mutations in 

eIF4A3 that disrupt the interaction with CWC22 also prevent splicing-dependent EJC 

assembly, but do not affect the formation of splicing-independent EJCs from 

recombinant components in vitro. Interestingly, CWC22 is also required for pre-mRNA 

splicing, and unspliced pre-mRNAs accumulate in CWC22-depleted cells. 

Complementation assays revealed that a central segment of CWC22, comprising of the 

MIF4G and an adjacent MA3 domain, supports pre-mRNA splicing in CWC22-depleted 

cells. By regulating both pre-mRNA splicing and EJC assembly, CWC22 plays a dual role 

in mammalian gene expression. The two functions of CWC22 can be experimentally 

separated, since over-expression of a CWC22-mutant that is unable to bind eIF4A3 

inhibits EJC assembly without affecting pre-mRNA splicing. Over-expression of this 

mutant is highly toxic to cells, demonstrating the importance of EJCs for gene 

regulation in human cells. 

Taken together, CWC22 represents the first direct link between the splicing machinery 

and the EJC, and the discovery of its dual function during pre-mRNA splicing highlights 

the complex interconnection of individual processing steps during mammalian gene 

expression.
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2 Introduction 

2.1 Regulation of eukaryotic gene expression 

Eukaryotic gene expression is a complex, multi-step process (Moore, 2005; Reed, 

2003). Transcription of protein-coding genes is carried out in the nucleus by the RNA 

polymerase II. But before a nascent RNA polymerase II transcript is transported to the 

cytoplasm, it usually undergoes 5' end capping, 3' end processing and pre-mRNA 

splicing. Eukaryotic cells have evolved an elaborate regulatory system to facilitate the 

proper coordination of individual mRNA processing steps and to ensure that only fully 

processed, mature mRNA molecules are exported. Most of the processing steps occur 

co-transcriptionally and RNA polymerase II itself plays a key role in orchestrating the 

sequential recruitment of processing factors to the nascent mRNA molecule, a function 

that is carried out by the C-terminal domain (CTD) of the largest subunit of RNA 

polymerase II (Armache et al., 2005). The CTD is a long, unstructured region, consisting 

of multiple heptad repeats (52 repeats (Tyr-Ser-Pro-Thr-Ser-Pro-Ser) in mammals). 

Each repeat contains three serine and one tyrosine residues that undergo sequential 

phosphorylation and dephosphorylation cycles during transcription (Egloff and 

Murphy, 2008). Phosphorylation of serine 5 (Ser5P) is a hallmark of early transcription, 

whereas serine 2 phosphorylation (Ser2P) marks later stages of transcription 

elongation (Komarnitsky et al., 2000). Many mRNA processing factors differentially 

associate with the phosphorylated CTD of RNA polymerase II, thus facilitating the 

integration of mRNA transcription and processing. The following three paragraphs will 

characterize the individual processing steps in more detail.  

2.1.1 5' end capping of mRNA 

The earliest mRNA processing event is 5' end capping. As soon as the nascent mRNA 

molecule reaches a length of 22-25 nucleotides (nt), it emerges from the RNA 

polymerase II exit channel and encounters several processing enzymes that catalyze 

the methyl-guanylation of its 5' end (Shatkin, 1976; Shuman, 2001). Capping requires 

three consecutive enzymatic reactions that are carried out by two proteins in 
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mammals: A triphosphatase guanylyltransferase removes a phosphate from the mRNA 

5' end and catalyzes the atypical 5'-5' addition of a guanosine-monophosphate (GMP) 

(Yamada-Okabe et al., 1998). Subsequently, a methyl transferase modifies the 

guanosine by adding a methyl group (Tsukamoto et al., 1998). The triphosphatase 

guanylyltransferase is recruited to the transcription machinery upon Serine-5 

phosphorylation of the RNA polymerase II CTD, thus coupling mRNA capping to early 

transcription elongation (Ho and Shuman, 1999). Marking the 5' end of an RNA 

polymerase II transcript with a 7-methyguanosine (m7G) cap helps to distinguish 

protein-coding mRNA from other types of RNA synthesized by RNA polymerase I or III. 

The newly synthesized m7G-cap is immediately bound by the cap-binding complex 

(CBC), consisting of the two major cap-binding proteins (CBPs) CBP20 and CBP80. 

Hence, the CBC is the first protein complex to associate with nascent mRNA. The 

complex interacts with many other mRNA binding proteins and thereby couples mRNA 

capping to subsequent events of mRNA metabolism, such as splicing, export, 

translation and both nuclear and cytoplasmic mRNA surveillance. During the first 

round of translation, the nuclear CBC is replaced by a different cap-binding protein 

complex, called eIF4F. EIF4F consists of the cap-binding protein eIF4E, the RNA helicase 

eIF4A and the large scaffolding protein eIF4G. The protein complex is an important 

regulator of bulk protein synthesis by recruiting the ribosomal pre-initiation complex 

to mRNA and initiating ribosomal scanning (Sonenberg and Hinnebusch, 2009). 

Moreover, eIF4G interacts with PABPC, thus forming a ‘closed loop’ of mRNA that is 

supposed to facilitate ribosomal recycling (Kahvejian et al., 2001).  

2.1.2 3’ end processing of mRNA 

Similar to capping of the 5' end, the 3' end of protein-coding transcripts is modified in 

a very characteristic way: 3' end processing includes cleavage of the mRNA and 

subsequent addition of up to 200 non-templated adenosine nucleotides (the so-called 

poly(A) tail) to the 3' hydroxyl end. These processing steps are carried out by cleavage 

and polyadenylation (CPA) factors that are recruited to transcribing RNA polymerase II 

through direct interaction of CTD-interacting domains (CIDs) with Ser2P CTD, as well as 

RNA-binding domains that specifically recognize the poly(A) signal (AAUAAA) on the 

nascent pre-mRNA (Bentley, 2005; Proudfoot, 2004). Polyadenylation is a dynamic 



 Introduction  

 

7 

process and the use of alternative polyadenylation sites can give rise to mRNA 

transcripts with different 3' UTRs (Elkon et al., 2013). Tight coupling of mRNA 

polyadenylation to export ensures that only correctly terminated transcripts are 

transported to the cytoplasm (Proudfoot, 2011). Moreover, polyadenylation generates 

the binding site for an important class of gene regulatory proteins, the poly(A) binding 

proteins (PABPs) (Kuhn and Wahle, 2004). PABPs impinge on both nuclear and 

cytoplasmic mRNA metabolism. Nuclear PABP (PABPN1) is involved in poly(A) tail 

synthesis itself by stimulating the processivity of poly(A) polymerases, whereas 

cytoplasmic PABP (PABPC) plays a crucial role during translation initiation and mRNA 

surveillance by interacting with the m7G-cap and forming a ‘closed loop’ between the 

5' end and the 3' end of the transcript (Kahvejian et al., 2001).  

Hence, by marking both ends of an mRNA molecule with characteristic modifications, a 

cell can ensure that only fully processed RNA polymerase II transcripts are translated 

into protein.  

2.1.3 Pre-mRNA splicing  

Splicing is undoubtedly the most extensive form of pre-mRNA processing. The 

spliceosome, a large multi-unit ribonucleoprotein (RNP) complex, catalyzes the 

excision of large non-coding intronic regions from the pre-RNA. In contrast to the 

rather invariant 5' and 3' modifications described before, splicing is a highly dynamic 

process and the use of alternative splice sites greatly enhances the complexity of the 

proteome in higher eukaryotes (Blencowe, 2006).  

Chemically, pre-mRNA splicing consists of two consecutive transesterification 

reactions. During the first step, a 2'-hydroxyl group of a conserved adenosine in the 

branch point sequence (BPS) of the intron attacks the phosphodiester bond at the 5' 

splice site (GU), generating a 5' exon with a free 3' hydroxyl group and an intron-lariat 

that is covalently linked to the 3' exon. Subsequently, the free hydroxyl group of the 5' 

exon attacks the phosphodiester bound of the 3' splice site (AG), simultaneously 

joining 5' exon to 3' exon and liberating the intron-lariat.  

The major structural components of the spliceosome are uridine-rich small nuclear 

RNAs (snRNAs) that associate with a variable number of proteins to form the 
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spliceosomal building blocks, called snRNPs (Rappsilber et al., 2002; Zhou et al., 2002). 

Interestingly, the spliceosome is not a rigid structure, but instead assembles stepwise 

on the mRNA (Wahl et al., 2009). In order to distinguish the individual snRNP 

complexes that form during splicing, the splicing intermediates have been designated 

as E, A, B, Bact
, B* and C complex (Figure 1).  

 

Figure 1: Pre-mRNA splicing is a multi-step process. Stepwise assembly of the spliceosome from 
individual snRNPs. The ATP-dependent remodeling steps and the respective DExD/H-box helicases are 
depicted in red.   

The first spliceosomal component that encounters the substrate mRNA is the U1 

snRNP. U1 binds the 5' splice site of the intron through base pairing. At the same time, 

the SF1/BBP protein and the U2 auxiliary factor (U2AF) interact cooperatively with the 

branch point sequence (BPS), the polypyrimidine tract and the AG-dinucleotide of the 

3' splice site. Thus, this initial spliceosomal complex (E complex, commitment complex) 

is involved in the definition of both 5' and 3' splice site of the intron. Next, the U2 

snRNP binds the BPS through base pairing, thereby displacing SF1/BBP and yielding the 

spliceosomal A-complex (pre-spliceosome). The base pairing is stabilized by two 
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protein complexes of the U2 snRNP, SF3a and SF3b. Subsequently, the pre-assembled 

U4/U6.U5 tri-snRNP is recruited to the pre-mRNA, forming the B complex (pre-catalytic 

spliceosome). Release of U1 and U4 yields the activated spliceosome (Bact complex) 

that is further rearranged by the helicase Prp2 to form the catalytically active B* 

complex (Bessonov et al., 2010; Bessonov et al., 2008). The first catalytic step of 

splicing transforms B* to C complex, while further rearrangements and the second 

catalytic step of splicing generate the post-spliceosomal complex and mediate the 

release of spliced mRNA, U2, U5 and U6 snRNP (Wahl et al., 2009).   

Although the transesterification reactions are energetically neutral, most of the 

spliceosomal rearrangements are catalyzed through ATP hydrolysis. Eight evolutionary 

conserved helicases function at different steps during splicing to mediate the ATP-

dependent remodeling of RNA-RNA interactions within the spliceosome. They all 

belong to the family of DExD/H-box RNA-dependent ATPases/helicases and will be 

further discussed in chapter 2.4.  

Apart from modifying the mRNA molecule itself, all mRNA processing steps described 

here facilitate the assembly of protein complexes on the mRNA. These RNA-binding 

proteins (RBPs) regulate and integrate many different steps of the mRNA life cycle, 

from synthesis in the nucleus until degradation in the cytoplasm. A few of these RBPs 

(CBP20, CBP80, PABP) have already been briefly introduced; a more detailed 

description of the assembly and function of mRNPs will follow in the next chapter.  

2.2 mRNP assembly connects different steps of gene expression  

Analogous to DNA-packaging into chromatin, cellular mRNAs associate with many RBPs 

to form ribonucleoprotein complexes (mRNPs). The first proteins engage the mRNA 

during early transcription elongation and subsequent remodeling steps in the nucleus 

and cytoplasm generate a diverse pool of different mRNPs. The composition of 

individual mRNPs reflect the character of the bound mRNA molecule as well as the 

history of earlier processing events. The roles of different RBPs are as diverse as the 

composition of the individual mRNPs. Some RBPs mainly induce the condensation of 

the mRNA molecule (Konig et al., 2010). Others are involved in regulating and 

integrating the different steps of gene expression (Moore and Proudfoot, 2009; 
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Muller-McNicoll and Neugebauer, 2013). And yet another function of RBPs is the 

prevention of R-loop formation (Aguilera and Klein, 1990; Huertas and Aguilera, 2003; 

Li and Manley, 2005). These DNA:RNA hybrids form during transcription when the 

newly synthesized single-stranded mRNA  invades the DNA duplex behind the 

elongating polymerase, thus leading to elongation defects and genomic instability 

(Mischo et al., 2011). 

Many studies aimed to characterize the mRNA interactome. Initial experiments 

focused on the analysis of individual mRNPs that were generated through in vitro 

splicing of mRNA substrates (Merz et al., 2007). Mass spectrometric analyses of these 

model mRNPs identified ~45 RNA-interacting proteins (Merz et al., 2007). Using a more 

global approach, two recent studies applied in vivo UV crosslinking and 

immunoprecipitation to compile a comprehensive list of proteins bound to 

endogenous mRNAs in human embryonic kidney (HEK) 293 and HeLa cells, respectively 

(Baltz et al., 2012; Castello et al., 2012). Both studies identified around 800 RNA-

binding proteins, many of which were not previously known to interact with mRNA 

(Baltz et al., 2012; Castello et al., 2012). The large number of identified RBPs illustrates 

the high complexity of the mRNA interactome. Apart from canonical RBPs that 

invariantly interact with each mRNA transcript, differentially regulated RNA-protein 

complexes are likely to integrate many cellular signals and to adjust gene expression to 

the metabolic state of a cell. In line with this hypothesis is the finding that several 

metabolic enzymes interact with mRNA in vivo (Castello et al., 2012). 

RBPs use diverse mechanisms to interact with mRNA. While some RBPs bind to mRNA 

through structural elements (e.g. sequence motifs, secondary structures or chemical 

modification such as the m7G-cap), the recruitment of other RBPs is linked to certain 

mRNA processing steps. A prominent example for the latter is the exon-junction 

complex (EJC), a multi-protein complex that assembles on mRNA during splicing. 

2.3 The exon junction complex is part of the splicing-dependent mRNP 

Apart from enhancing the complexity of the proteome, pre-mRNA splicing in higher 

eukaryotes plays a crucial role in shaping the protein composition of mRNPs. A central 

component of post-splicing mRNPs is the exon junction complex (EJC). This multi-
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protein complex binds mRNA in close proximity to the exon-exon junction, thus 

conserving the knowledge of the completed splicing reaction within the mRNP 

architecture (Le Hir et al., 2000a). The EJC is exported to the cytoplasm as an integral 

component of the post-splicing mRNP where it acts as a key regulator of gene 

expression. The details of EJC structure (2.3.1), assembly and disassembly (2.3.2) and 

function (2.3.3) will be discussed in the following chapters. 

2.3.1 Structure of the EJC  

The core of the EJC is a stable heterotetramer consisting of the proteins eIF4A3 

(DDX48), MAGOH, Y14 (RBM8A) and Barentsz (BTZ, also known as MLN51 or CASC3) 

(Palacios et al., 2004; Shibuya et al., 2004). In living cells, the EJC core forms the 

binding platform for the dynamic assembly of many peripheral EJC components that 

mechanistically link the complex to downstream events in mRNA metabolism (Le Hir et 

al., 2001; Tange et al., 2005). In vitro, the EJC core can be reconstituted from 

recombinant proteins, allowing the analysis of its stable, yet sequence-independent 

interaction with RNA (Andersen et al., 2006; Ballut et al., 2005; Bono et al., 2006).  

The major RNA-binding protein within the EJC is the DEAD-box protein eIF4A3 (for 

more details on DEAD-box helicases see chapter 2.4). EIF4A3 has a helicase core, 

consisting of two RecA-like domains (the N-terminal RecA1 domain and the C-terminal 

RecA2 domain) that are connected by a flexible linker. It is a close homolog of the 

eukaryotic translation initiation factor 4A (encoded by eIF4A1 and eIF4A2) and has an 

RNA-dependent ATPase and ATP-dependent RNA helicase activity in vitro (Li et al., 

1999). But while eIF4A unwinds secondary structures in the mRNA 5'UTR during 

translation initiation, eIF4A3 anchors the EJC to spliced mRNA (Ferraiuolo et al., 2004; 

Kataoka et al., 2001; Palacios et al., 2004; Shibuya et al., 2004). The non-processive 

RNA binding of eIF4A3 is achieved through inhibition of the ATPase activity within the 

complex (Ballut et al., 2005). The molecular mechanism of this stable RNA interaction 

was revealed by two independent crystal structures of the EJC core at 2.2-2.3Å 

resolution (Andersen et al., 2006; Bono et al., 2006). EIF4A3 was crystallized in 

complex with the SELOR-domain of BTZ (residues 137–286), MAGOH, a piece of Y14 

(66–154), polyuracil RNA and the non-hydrolyzable ATP analogue ADPNP (Andersen et 

al., 2006; Bono et al., 2006). The structures revealed that EJC-bound eIF4A3 adopts a 



 Introduction  

 

12 

‘closed’ conformation with the two RecA-like domains in close proximity to each other 

(Figure 2). This conformation generates a deep interdomain cleft that holds the 

ADPNP. The RNA is bound in a shallow cleft across the two RecA-like domains at the 

surface opposite to the ATP binding pocket. Six nucleotides are resolved in the crystal 

structure, showing that the RNA binds to eIF4A3 in a bend conformation with the 3' 

end interacting with the RecA1 domain and the 5' end binding to RecA2 (Figure 2, 

bottom panel). EIF4A3 mainly contacts the ribose-phosphate backbone of the RNA, 

which explains the sequence-independent RNA binding, while interactions with the 2' 

OH-groups of the ribose explain the specificity for RNA.  

The interaction between MAGOH and Y14 within the complex is almost identical to the 

conformation of the isolated heterodimer (Fribourg et al., 2003; Lau et al., 2003; Shi 

and Xu, 2003), suggesting that the two proteins form a constitutive unit. The 

MAGOH/Y14 heterodimer interacts mostly with the RecA2 domain of eIF4A3 and the 

flexible interdomain linker (Figure 2). Interestingly, the heterodimer can only interact 

with the ATP- and RNA-bound conformation of eIF4A3. Thus, the interaction with 

MAGOH and Y14 locks eIF4A3 in its ‘closed’ conformation on the RNA. This explains 

why MAGOH and Y14 inhibit the ATPase activity of eIF4A3 in vitro (Ballut et al., 2005). 

The EJC crystal structure with non-hydrolysable ATP analogue ADPNP does not define 

whether binding of MAGOH/Y14 to eIF4A3 prevents ATP hydrolysis itself or the release 

of the products (Le Hir and Andersen, 2008). This question was solved by replacing 

ADPNP with ADP-AIF(3), a mimic of the transition state during ATP hydrolysis (Nielsen 

et al., 2009). The ATP binding pocket within the EJC-ADP-AIF(3) complex was 

essentially identical to EJC-ADPNP,  demonstrating that ATP hydrolysis can take place 

within the complex and proving that that MAGOH/Y14 do not inhibit the ATPase 

activity of eIF4A3 but rather the release of ADP and inorganic phosphate (Nielsen et 

al., 2009). Of note, disruption of the canonical Walker A and Walker B motifs of eIF4A3 

inhibit the RNA-dependent ATPase activity, but had no effect on EJC formation 

(Shibuya et al., 2006). Together with the structural data, this suggested that nucleotide 

binding, but not ATP hydrolysis is required for EJC assembly. 

Neither MAGOH, nor Y14 directly interact with the RNA in the crystal (Andersen et al., 

2006; Bono et al., 2006). Instead, the SELOR domain of BTZ contributes to the RNA 
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binding pocket through stacking interactions with the 5' base of the RNA (Figure 2, 

bottom panel). This observation suggests that BTZ increases the RNA-binding affinity 

of eIF4A3 and explains why BTZ stimulates the ATPase activity of eIF4A3 in vitro (Ballut 

et al., 2005). Most of the BTZ residues in the crystal structure are disordered except for 

two distinct EJC-interaction patches. Residues 214-248 interact with the RecA1 domain 

of eIF4A3, whereas residues 168-196 bind to RecA2, RNA and the MAGOH/Y14 

heterodimer. Of note, the same C-terminal residues of BTZ mediate the interaction 

with apo-eIF4A3 in the eIF4A3-BTZ crystal, whereas the interactions with the RecA2 

domain of eIF4A3 are specific for the EJC.  

 

 

 

Figure 2: Crystal structure of the EJC. EIF4A3 in complex with the MAGOH/Y14(66-154) heterodimer, 
BTZ (137–286), poly(U) RNA and ADPNP (PDB file 2J0S). View from the side (top panel) and rotated 90°C 
(bottom panel)  

 



 Introduction  

 

14 

Comparison of eIF4A3 as part of the EJC and in complex with BTZ revealed large 

conformational changes upon complex formation (Figure 3). When bound to BTZ, 

eIF4A3 adopts an ‘open’ conformation. In this conformation, the two RecA-like 

domains are tilted at an angle of approximately 180°, which leads to a disruption of the 

ATP and RNA-binding sites (Figure 3). This suggests that eIF4A3 has to undergo drastic 

structural rearrangements to form the EJC. How these changes are initiated during 

pre-mRNA splicing is discussed in the following chapter.    

 

 

Figure 3: EIF4A3 undergoes large conformational rearrangements upon EJC assembly. Overlay of the 
structure of eIF4A3 as part of the EJC (in orange, PDB file 2J0S) and apo-eIF4A3 (in yellow, PDB file 
2J0U). The picture was generated by superimposing both RecA1 domains. Note that the RecA2 domain 
of apo-eIF4A3 is tilted approximately 180° compared to its position within the EJC. The MAGOH/Y14 
heterodimer is depicted in grey. 

 

2.3.2 Assembly and disassembly of EJCs  

EJC assembly on nascent mRNAs is mediated by the spliceosome (Kataoka et al., 2000; 

Le Hir et al., 2000b). Independent of the mRNA sequence, the complex assembles 20-

24 nt upstream of the splice site (Le Hir et al., 2000a; Mishler et al., 2008).  

Purified spliceosomal B and C complexes contain the EJC core proteins eIF4A3, MAGOH 

and Y14, indicating that those proteins are recruited to the spliceosome prior to exon 
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ligation (Bessonov et al., 2008; Deckert et al., 2006). Interestingly, BTZ is absent from 

spliceosomal purifications. Accordingly, in vitro splicing experiments showed that 

eIF4A3, MAGOH and Y14, but not BTZ, interact with splicing intermediates that are 

stalled after the first catalytic step of splicing (Gehring et al., 2009a; Merz et al., 2007; 

Reichert et al., 2002).  Moreover, disruption of the BTZ-interaction site on eIF4A3 did 

not prevent splicing-dependent EJC assembly (Gehring et al., 2009a). Together, these 

findings suggest that BTZ is dispensable for early EJC formation. This led to the 

proposal of a stable trimeric ‘pre-EJC’, consisting of eIF4A3, Y14 and MAGOH (Gehring 

et al., 2009a). In mammalian cells, BTZ is predominantly localized in the cytoplasm 

(Degot et al., 2004); it is therefore conceivable that it interacts with the preassembled 

trimeric pre-EJC after nuclear export of the mRNP (Gehring et al., 2009a). This idea is 

supported by the observation that BTZ can bind to mRNA after completion of the 

splicing reaction (Gehring et al., 2009a). In this regard, BTZ behaves more like a 

peripheral EJC component that requires the assembled pre-EJC, but not the splicing 

reaction itself, to interact with mRNA.  

Even though eIF4A3, MAGOH and Y14 all associate with spliceosomal B and C 

complexes, in vitro splicing experiments revealed differences concerning their 

interaction with spliced mRNA (Gehring et al., 2009a). Whereas the MAGOH/Y14 

heterodimer requires the EJC binding site (position -24) on the mRNA to interact with 

splicing intermediates, the early spliceosomal interaction of eIF4A3 is independent of 

this mRNA sequence. Furthermore, the MAGOH/Y14 heterodimer requires the 

interaction with eIF4A3 for its recruitment to the spliceosome, whereas eIF4A3 is able 

to interact with the splicing machinery independently of the heterodimer (Gehring et 

al., 2009a). Nevertheless, the binding of MAGOH/Y14 to eIF4A3 is required to stabilize 

the EJC on the mature mRNA, presumably through inhibition of the ATPase activity of 

eIF4A3 (Ballut et al., 2005; Gehring et al., 2009a). Together, these results led to the 

current model for the stepwise assembly of EJCs on spliced mRNA (Figure 4 (Gehring et 

al., 2009a)):  

(1) EJC assembly is initiated when eIF4A3 is recruited to the spliceosomal B or C 

complex in an RNA-independent manner. 
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(2) Upon interaction with the mRNA 20-24 nt upstream of the splice site, eIF4A3 

adopts its closed conformation, thereby forming a binding platform for the 

recruitment of the MAGOH/Y14 heterodimer. 

(3) Binding of MAGOH/Y14 inhibits the ATPase activity of eIF4A3 and stabilizes the 

complex on the mRNA.  

(4) Binding of BTZ to the pre-EJC (in the nucleus or cytoplasm) further stabilizes the 

complex. 

How the interaction between EJC proteins and the splicing machinery is established is 

currently unknown. It was suggested however, that the intron-binding protein IBP160 

might be involved in the recruitment of EJC proteins to spliced mRNA (Ideue et al., 

2007). 

While the assembly of EJCs is closely linked to pre-mRNA splicing, disassembly of the 

complex is connected to yet another important step of gene expression, the 

translation of mRNA in the cytoplasm (Dostie and Dreyfuss, 2002; Lejeune et al., 2002). 

It is believed that the processive helicase activity of the ribosome itself is sufficient to 

displace RBPs from the mRNA (Takyar et al., 2005). However, the ribosome-associated 

protein PYM has been shown to aid the translation-dependent disassembly of EJCs 

(Gehring et al., 2009b). The C-terminal part of PYM binds the 40S subunit of the 

ribosome (Diem et al., 2007), whereas the N-terminus can interact with the 

MAGOH/Y14 heterodimer (Bono et al., 2004). The binding of MAGOH/Y14 to either 

PYM or eIF4A3 is mutually exclusive, so that PYM most likely triggers EJC disassembly 

by displacing eIF4A3 (Bono et al., 2006; Gehring et al., 2009b). PYM-mediated 

disassembly of EJCs is important for the recycling of EJC proteins, as evidenced by an 

accumulation of cytosolic EJC components in PYM-depleted cells (Gehring et al., 

2009b). Through interaction with the 40S ribosomal subunit, PYM-mediated EJC 

disassembly is restricted to mRNAs that undergo their initial round of translation. This 

close link to translation ensures that EJCs stay associated with the mRNA until they 

have fulfilled their regulatory role during mRNA metabolism (e.g. in NMD, discussed in 

chapter 2.3.3). 
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Figure 4: Assembly and disassembly of EJCs*. EJCs assemble on the mRNA during pre-mRNA splicing in 
the nucleus (1-3). After export as a component of the mRNP, EJCs regulate the cytoplasmic fate of the 
mRNA (4). EJCs are disassembled by the translating ribosome (5) and the individual components are 
reimported into the nucleus. For details see paragraph 2.3.2.  *The image was inspired by drawings from 
Niels Gehring. 

 

This chapter described the sequence-independent assembly of canonical EJCs in close 

proximity to the splice site. At least in Drosophila melanogaster however, it has been 

shown that certain cis-acting sequence elements can regulate the differential EJC 

assembly on spliced mRNA (Sauliere et al., 2010). This observation suggested that EJC 

assembly might not be a constitutive consequence of splicing, but indeed a regulated 

process. The hypothesis was further supported by two recent studies that applied 

deep sequencing approaches to analyze EJC binding sites in human cells on a 

transcriptome-wide level (Sauliere et al., 2012; Singh et al., 2012). While both studies 

show that EJC proteins mainly associated with spliced mRNAs and around half of the 

sequence reads correspond to canonical EJC deposition sites (cEJC), they also 
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identified a large number of non-canonical EJC (ncEJC) binding sites. Interestingly, 

occurrence of ncEJCs correlated with a high propensity for purine-rich sequences, 

exonic splice enhancers (ESE) and binding sites for SR proteins. Moreover, a physical 

interaction between adjacent EJCs seems to lead to a higher density of ncEJCs in the 

vicinity of cEJC sites. This is in line with the observation that EJC proteins form higher 

order mRNP structures comprising of several EJCs and super-stoichiometric amounts 

of SR proteins (Singh et al., 2012).  

The EJC is a key regulator of post-transcriptional gene expression. The recent discovery 

of non-canonical EJC binding sites and EJC-SR super-complexes has therefore added 

another layer of complexity to the EJC-dependent gene regulatory network. In order to 

understand the implications of these findings for gene expression in human cells, the 

different cellular functions of the EJC will be described in the following chapter. 

2.3.3 The EJC regulates different steps of the mRNA life cycle 

As an important component of the post-splicing mRNP, the EJC regulates and 

integrates many steps of the mRNA life cycle. To this end, the core EJC differentially 

interacts with many accessory proteins often referred to as peripheral EJC (Le Hir et 

al., 2001; Tange et al., 2005). Among these peripheral EJC components are proteins 

involved in mRNA export, splicing and mRNA quality control. 

(a) EJCs stimulate protein synthesis 

It has been known for a long time that the presence of introns in the coding sequence 

of genes enhances protein synthesis (Braddock et al., 1994; Callis et al., 1987; 

Matsumoto et al., 1998). The effect of splicing on translational yield can be directly 

attributed to the presence of EJCs on the mRNA (Nott et al., 2004; Wiegand et al., 

2003). To date, three different mechanisms have been proposed to explain the 

stimulatory effect of EJCs on translation. The first mechanistic insight came from a 

study showing that the protein PYM, through interaction with MAGOH/Y14 and the 

48S pre-initiation complex, recruits EJC-bound mRNAs to the translation machinery 

(Diem et al., 2007). A second study described a link between EJC and mTOR1 pathway 

through recruitment of activated S6 kinase 1 (S6K1) to newly transcribed mRNAs by an 

EJC-bound protein called SKAR (S6K1/AlyREF-like target) (Ma et al., 2008). The mTOR 
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pathway regulates cellular growth in response to external and internal stimuli and its 

key component S6K1 promotes translation initiation by phosphorylating stimulatory 

and inhibitory factors bound to the 5' end of the mRNA (Bhaskar and Hay, 2007). The 

third link between EJC and translation machinery was established by a recent study 

that attributed the EJC-dependent translation activation to a direct interaction 

between the EJC core protein BTZ and the translation initiation factor eIF3 (Chazal et 

al., 2013).  

Importantly, all described mechanisms influence early translation initiation. Since EJCs 

are disassembled during the first round of translation (see chapter 2.3.2), EJC-

dependent translational activation is restricted to newly synthesized transcripts. The 

preferential translation of new mRNAs reduces the delay time between transcription 

activation and protein synthesis, therefore allowing a faster response to external 

stimuli (Giorgi and Moore, 2007). 

(b) EJCs stimulate mRNA export 

The increased translational yield of spliced mRNA might also be partly due to a 

stimulatory effect of EJCs on the nucleocytoplasmic export of mRNA (Le Hir et al., 

2001; Luo and Reed, 1999; Luo et al., 2001; Zhou et al., 2000). The peripheral EJC 

contains several proteins with known functions in mRNA export. The best studied 

export factors of the peripheral EJC are the proteins ALYREF (THOC4) and UAP56 (Luo 

et al., 2001; Rodrigues et al., 2001; Stutz et al., 2000; Zhou et al., 2000). Both function 

as export adaptors that mediate the recruitment of the nuclear export receptor 

NXF1/TAP:p15 to the mRNA (Stutz et al., 2000). The subsequent interaction of 

NXF1/TAP:p15 with the nuclear pore complex promotes the export of mRNA (Bachi et 

al., 2000). ALYREF and UAP56 are also components of another RNA-binding protein 

complex, the TREX1 (transcription export) complex. Like the EJC, the TREX1 complex 

preferentially assembles on spliced mRNAs (Masuda et al., 2005). Nevertheless, a 

splicing-independent, cap-dependent TREX1 assembly has been described (Cheng et 

al., 2006; Nojima et al., 2007). This suggests that the export adaptors ALYREF and 

UAP56 might also function in the export of intronless mRNAs. 
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(c) EJCs regulate the subcellular localization of mRNA 
 A well-documented function of EJCs is the localization of oskar mRNA in the 

Drosophila oocyte. Together with the EJC proteins eIF4A3, BTZ, Mago Nashi and 

Tsunagi (the Drosophila orthologs of MAGOH and Y14), oskar mRNA localizes to the 

posterior pole of the oocyte (Hachet and Ephrussi, 2001; Mohr et al., 2001; van Eeden 

et al., 2001). The subsequent local translation of mRNA is required for the formation of 

germ line and abdomen in the developing embryo. So far, no similar mechanism of 

subcellular mRNA localization through EJC proteins has been described in other 

organisms. However, the localization of eIF4A3, MAGOH, Y14 and BTZ to neuronal 

dendrites suggested that EJC proteins might also function in other cell types that 

require a regulated local mRNA translation (Giorgi et al., 2007; Glanzer et al., 2005; 

Macchi et al., 2003; Monshausen et al., 2004).  

(d) EJCs regulate nonsense-mediated mRNA decay 

The best-characterized function of EJCs is the identification of faulty transcripts during 

nonsense-mediated mRNA decay (NMD). NMD is a cellular quality control mechanism 

that detects and degrades transcripts with premature translation termination codons 

(PTCs) (Conti and Izaurralde, 2005). A termination codon is recognized as premature 

when it is situated at least 50 nt upstream of an exon-exon junction that is marked by 

an EJC (Le Hir et al., 2000a; Nagy and Maquat, 1998; Thermann et al., 1998). 

Alternatively, NMD can be triggered by other features of the mRNA (e.g. long 3' UTRs) 

that inhibit efficient translation termination (Amrani et al., 2004), but this alternative 

(and EJC-independent) NMD will not be further discussed in this chapter. NMD is a 

translation-dependent process that requires the crosstalk between the stalled 

ribosome and factors bound to the downstream EJC. Genetic screens in yeast and 

caenorhabditis elegans identified a number of evolutionary conserved NMD factors, 

among them the Upf proteins Upf1, Upf2 and Upf3 (Upf3a and Upf3b in humans) and 

the SMG proteins SMG1, SMG5, SMG6 and SMG7 (Cui et al., 1995; He et al., 1997; 

Hodgkin et al., 1989; Leeds et al., 1991). The current model for NMD activation in 

mammalian cells suggests that Upf1 and SMG1 are recruited to the stalled ribosome 

through interaction with the release factors eRF1 and eRF3, forming the so-called 

SURF (SMG1-Upf1-eRF1-eRF3) complex (Czaplinski et al., 1998; Kashima et al., 2006). 

Binding of Upf1 to Upf2 and Upf3 at the downstream EJC activates the kinase SMG1, 
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which in turn phosphorylates serine-residues at the N- and C-terminal domain of Upf1 

(Chamieh et al., 2008; Yamashita, 2013). Phosphorylated Upf1 serves as a binding 

platform for the recruitment of SMG6 and the SMG5/SMG7 heterodimer through 14-

3-3 like domains in all three proteins (Ohnishi et al., 2003; Okada-Katsuhata et al., 

2012). SMG5, SMG6 and SMG7 act in concert to promote the endo- and exonucleolytic 

degradation of the target mRNA. SMG6 has an endonuclease activity that directly 

cleaves the mRNA in the vicinity of the PTC (Eberle et al., 2009; Huntzinger et al., 

2008), whereas the SMG5/SMG7 heterodimer recruits a deadenylase complex to the 

mRNA, thus initiating deadenylation, deadenylation-dependent decapping and 5' to 3' 

exonucleolytic decay of NMD targets (Loh et al., 2013). Moreover, Upf1 itself is 

involved in target mRNA degradation through recruitment of decapping factors (Loh et 

al., 2013; Lykke-Andersen, 2002). Apart from promoting target mRNA degradation, 

SMG5, SMG6 and SMG7 trigger the dephosphorylation of Upf1 by protein phosphatase 

2A (PP2A), thereby terminating the reaction and initiating the disassembly of the 

surveillance complex (Anders et al., 2003).  

Originally considered as a cellular surveillance mechanism that prevents the 

generation of faulty and possibly toxic gene products, it has become more and more 

evident that the NMD machinery also targets endogenous mRNA. Around 5-10% of 

naturally occurring transcripts are regulated by NMD (Mendell et al., 2004). Among the 

endogenous NMD targets are genes that require very fast and limited bursts in protein 

expression. A prominent example is Arc, an immediate early gene involved in neuronal 

plasticity and consolidation of long-term memory (Giorgi et al., 2007). The Arc mRNA 

contains two introns in its 3' UTR, making it susceptible to translation-dependent 

NMD. The mRNA is stable as long as it remains translationally quiescent, but is rapidly 

degraded upon translation activation. This ensures a very tight control of gene 

expression, probably generating only one protein per transcript (Giorgi et al., 2007). 

A different example for NMD-controlled gene expression is an auto-regulatory 

feedback-loop implemented by several splicing regulators (Lareau et al., 2007; Ni et al., 

2007). Members of the SR-family of splicing regulators (e.g. SRSF2 (SC35) and SRSF3), 

promote the alternative splicing of their own transcripts, leading the generation of 

NMD-sensitive splicing variants (Sureau et al., 2001). This ‘unproductive splicing’ 
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tightly couples the amount of newly translated protein to the abundance of the 

respective SR protein within the cell.    

(e) EJCs function in splicing regulation 

Recently it was discovered that the EJC is not only an important regulator of post-

splicing mRNA metabolism, but can also influence the splicing process itself (Ashton-

Beaucage et al., 2010; Haremaki and Weinstein, 2012; Michelle et al., 2012; Roignant 

and Treisman, 2010). The first indication that EJCs are involved in pre-mRNA splicing 

came from two studies in Drosophila that identified EJC components as regulators of 

MAPK (mitogen-activated protein kinase) signaling (Ashton-Beaucage et al., 2010; 

Roignant and Treisman, 2010). They demonstrated that eIF4A3, Mago and Tsunagi (the 

orthologs of human eIF4A3, MAGOH and Y14) are required for splicing of mapk 

transcripts in Drosophila. Interestingly, mapk transcripts contain particularly long 

introns and whole transcriptome analyses revealed that other long-intron containing 

genes are susceptible to EJC-depletion in Drosophila. This finding suggested a general 

role for EJC proteins during the excision of long introns in Drosophila, presumably 

through a mechanism known as exon definition (Ashton-Beaucage et al., 2010; 

Roignant and Treisman, 2010). Furthermore, eIF4A3 is required for the splicing of the 

ryanodine receptor mRNA during early embryonic development in Xenopus laevis 

(Haremaki and Weinstein, 2012). And finally, EJC proteins have been linked to 

alternative splicing of a subset of human pre-mRNAs (Michelle et al., 2012). Depletion 

of both core (eIF4A3, Y14) and auxiliary (RNPS1, Acinus, SAP18) EJC proteins shifted 

the splicing pattern of the apoptotic regulator Bcl-x to the proapoptotic isoform Bcl-xs 

(Michelle et al., 2012). Interestingly, the function of EJC components during splicing 

regulation of Bcl-x depended on cis-acting elements, suggesting that the splicing-

function of the EJC differs from its canonical role (Michelle et al., 2012). Whether EJC 

proteins regulate pre-mRNA splicing of other human transcripts is still unknown. In 

contrast to Drosophila, human transcripts contain many long introns and undergo 

numerous alternative splicing events (Kim et al., 2007; McGuire et al., 2008). Of note, 

several known splicing regulators (e.g. RNPS1, SAP18, SRm160, SR proteins) interact 

with the EJC (Mayeda et al., 1999; Schwerk et al., 2003; Singh et al., 2012; Singh et al., 
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2010). It is therefore conceivable that the role of the EJC during pre-mRNA splicing in 

human cells goes far beyond the control of the apoptotic regulator Bcl-x.     

2.3.4 EJC-independent functions of eIF4A3 

EIF4A3 is conserved from yeast to humans, even though yeast cells lack additional EJC 

proteins and NMD in yeast is independent of pre-mRNA splicing (Gonzalez et al., 

2001). This suggests that a different function of eIF4A3 preceded its role in the EJC. 

And indeed, Fal1p, the yeast homolog of eIF4A3, is involved in ribosomal RNA (rRNA) 

processing. Depletion of Fal1p leads to reduced 18S rRNA levels and a deficiency in 40S 

ribosomal subunits (Kressler et al., 1997). The function of Fal1p/eIF4A3 during rRNA 

biogenesis is conserved from yeast to humans. Both yeast Fal1p and human eIF4A3 

require the interaction with an additional protein to function in rRNA processing. This 

protein is called Sgd1p in yeast and NOM1 in humans and interacts with Fal1p/eIF4A3 

via a conserved MIF4G domain (Alexandrov et al., 2011).    

A different EJC-independent function of eIF4A3 is the regulation of selenoprotein-

synthesis. Selenium is incorporated into proteins as selenocysteine through a specific 

recoding of the UGA stop codon. The recoding mechanism requires stem loop 

structures in the 3'UTR of the selenoprotein mRNA (SECIS elements) as well as certain 

trans acting proteins that bind to the SECIS element (Seeher et al., 2012). During 

selelenium deficiency, some selenocysteine-containing proteins are preferentially 

produced at the expense of others. EIF4A3 is involved in the differential synthesis of 

selenoproteins through directly binding to SECIS elements (Budiman et al., 2009). 

EIF4A3-binding prevents the recruitment of other trans-acting factors to the mRNA 

and thereby inhibits selenocysteine incorporation. Strikingly, eIF4A3 only binds to a 

subset of SECIS elements, which is in stark contrast to the sequence-independent RNA 

interaction observed for the EJC (Budiman et al., 2011). Of note, in the absence of 

UGA-recoding, the codon is recognized as a PTC, leading to the mRNA degradation 

through NMD (Moriarty et al., 1998). Thus, EJC-independent and EJC-dependent 

functions of eIF4A3 act in concert to regulate the expression of selenoproteins during 

selenium deficiency.   



 Introduction  

 

24 

The diverse functions of eIF4A3 described in this chapter all rely on its activity as an 

ATP-dependent RNA-binding protein. This activity is carried out by the conserved 

helicase core of eIF4A3, which is shared with many other proteins of the DExD/H-box 

family. The characteristics of DExD/H-box proteins are further discussed in the 

following chapter. 

2.4 DExD/H-box helicases are key regulators of mRNA metabolism 

Most aspects of mRNA metabolism involve extensive remodeling of RNA-RNA and 

RNA-protein interactions. These structural rearrangements are usually catalyzed by a 

class of enzymes referred to as RNA helicases. Helicases are defined by their ability to 

unwind DNA or RNA duplexes at the expense of NTP hydrolysis. According to structural 

similarities, helicases can be grouped into 5 superfamilies (SF1-5). SF3, SF4 and SF5 

helicases are multimeric enzymes that are predominantly found in bacteria and viruses 

(Patel and Picha, 2000). In contrast, SF1 and SF2 helicases function as monomers or 

dimers and contain an overall similar structure (Tuteja and Tuteja, 2004a, b). Most 

RNA helicases belong to superfamily 2 (SF2) and are further categorized as DEAD-box, 

DEAH and DExH helicases (collectively referred to as DExD/H-box helicases) depending 

on certain conserved sequence elements along their helicase core (Fairman-Williams 

et al., 2010; Jankowsky and Fairman, 2007; Linder et al., 1989). The conserved 

structure of DExD/H-box helicases and their function during mRNA metabolism will be 

further discussed in chapter 2.4.1 and 0, respectively. 

2.4.1 Structure of DExD/H-box helicases 

DExD/H-box helicases are conserved across all phyla and involved in virtually all 

aspects of RNA metabolism (Cordin et al., 2006). They share a conserved helicase core 

of around 350-400 residues, consisting of two globular RecA-like domains (the N-

terminal RecA1 domain and C-terminal RecA2 domain) that are connected by a flexible 

hinge region (Figure 5A (Caruthers and McKay, 2002)). RecA is a bacterial DNA-binding 

protein involved in homologous recombination. The RecA-like domain consists of 5 ß-

strands surrounded by 5 α-helices (Story and Steitz, 1992). In the absence of ATP and 

RNA, the relative orientation of the two domains is not well defined. This variability is 
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caused by the flexible interdomain linker and is probably important for the enzymatic 

activity of the protein. Upon binding of ATP and RNA, the two domains are brought in 

close proximity to each other and form a deep interdomain cleft (Bono et al., 2006; 

Sengoku et al., 2006). The nucleotide binds inside the cleft and the RNA interacts with 

both domains at the base of the helicase core, almost perpendicular to the cleft. This 

ATP- and RNA-bound state is often referred to as the ‘closed’ conformation of the 

helicase (as opposed to the ‘open’ conformation in the absence of ATP and RNA).  

Several short, highly conserved sequence motifs line the interdomain cleft and 

coordinate the binding of RNA and ATP (I, Ia, Ib, II, III, IV, V, VI) (Figure 5, (Cordin et al., 

2006)). Among the conserved motifs are the well-defined Walker A and Walker B 

motifs required for ATPase activity (Walker et al., 1982). The amino acid sequence of 

the Walker B motif determines the helicase subclass (e.g. Asp-Glu-Ala-Asp (D-E-A-D) 

for DEAD-box helicases). Whereas motif I (Walker A), motif II (Walker B) and motif VI 

regulate ATP-binding and hydrolysis, motif III (S-A-T) couples ATP hydrolysis to RNA 

unwinding and motif Ia, Ib, IV and V bind the RNA substrate (mostly through 

interaction with the sugar-phosphate backbone) (Cordin et al., 2006). Interactions 

between the different motifs ensure that nucleotide hydrolysis is coupled to changes 

in RNA affinity, thus connecting ATPase and helicase activity. Additional motifs (e.g. 

the Q motif and the GG motif) are present in some but not all DExD/H-box helicases 

and further fine-tune the regulatory network (Cordin et al., 2004; Linder and 

Jankowsky, 2011; Tanner et al., 2003). Even though DExD/H-box proteins are classified 

as helicases, most members of this group display very weak strand separation activity 

in vitro. In contrast to the highly processive duplex unwinding activity of many DNA 

helicases, DExD/H-box proteins rarely unwind duplexes exceeding two helical turns 

(Jankowsky and Fairman, 2007). However, this lack of processivity is not likely to limit 

the activity of DExD/H-box proteins in vivo, since most cellular substrates are short 

RNA duplexes, such as rRNA-snRNA interactions during ribosomal biogenesis or 

snRNA-snRNA and snRNA-mRNA interactions during pre-mRNA splicing (Yang and 

Jankowsky, 2006). Hence, DExD/H-box proteins might be more appropriately 

considered as ATP-dependent RNA-binding proteins (Jankowsky and Fairman, 2007). 

How these RNA-binding proteins can shape the gene regulatory network of a cell will 

be discussed in the following chapter. 
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Figure 5: Structural features of DEAD-box helicases. (A-B) Crystal structure of the DEAD-box helicase 
eIF4A as part of the eIF4A/eIF4G complex (PDB file 2VSO). The conserved sequence motifs that line the 
interdomain cleft are color-coded as depicted in (C). 

 

2.4.2 DExD/H-box proteins function as components of large RNP complexes 

DExD/H-box proteins regulate processes as divers as mRNA transcription, pre-RNA 

splicing, nucleocytoplasmic export, ribosome biogenesis, translation initiation and 

mRNA degradation (Silverman et al., 2003). To catalyze the remodeling of large RNP 

complexes, they unwind short RNA duplexes and resolve RNA secondary structures, 

but also act as RNPases in displacing proteins from mRNA or as stable mRNA clamps, 

as exemplified by the function of eIF4A3 within the EJC (see chapter 2.3).  

Interestingly, the ATPase activity of most isolated DExD/H-box proteins is rather weak 

(Ballut et al., 2005; Li et al., 1999). Considering the large number of cellular DExD/H-

box proteins and the high conservation of the helicase core, it seems reasonable that 

the activity of DExD/H-box proteins is tightly regulated. Thus, most DExD/H-box 

proteins do not function alone, but in the context of larger RNP complexes. The 

interaction with both stimulatory and inhibitory proteins ensures the spatial and 

temporal control of ATPase and helicase activity (Silverman et al., 2003).  
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For example, the weak ATPase activity of eIF4A is stimulated through interactions with 

the large scaffolding protein eIF4G. Together with the cap-binding protein eIF4E, they 

form the translation initiation complex eIF4F. Within this complex, the helicase activity 

of eIF4A is restricted to the cap-proximal 5' UTR of mRNAs, where it causes melting of 

secondary structures and thereby facilitates scanning of the small ribosomal subunit 

(Svitkin et al., 2001). Another example of regulated ATPase activity is the mRNA export 

factor Dbp5 (Ddx19 in humans). Dbp5 confers directionality to mRNA export by 

removing the export receptor Mex67:Mtr2 (NXF1:p15 in humans) from mRNA. The 

RNPase activity of Dbp5 is restricted to the cytoplasmic face of the nuclear pore 

complex (NPC) through interaction with the regulatory protein Gle1. Gle1 interacts 

with cytoplasmic nucleoporins and locally activates the ATPase activity of Dbp5 (Hodge 

et al., 2011; Montpetit et al., 2011; Noble et al., 2011). Thus, Dbp5 only remodels 

mRNPs that have exited the nuclear pore.  

Interactions with regulatory proteins are usually mediated through highly variable N- 

and C-terminal domains that flank the conserved helicase core of most DExD/H-box 

proteins. However, not all helicases possess N- and C-terminal extensions to regulate 

their activity. Among the ‘minimal’ RNA helicases are the aforementioned eIF4A and 

Dbp5. To regulate the ATPase activity of eIF4A and Dbp5, interacting proteins need to 

directly bind to the conserved helicase core. Interestingly, both eIF4G and Gle1 use 

similar α-helical structures to interact with eIF4A and Dbp5, respectively (Montpetit et 

al., 2011). In eIF4G this domain is called MIF4G (middle domain of initiation factor 4G). 

MIF4G domains are found in several other proteins that bind DExD/H-box helicases. 

Their conserved structure and function will be further introduced in the following 

chapter. 

2.4.3 The MIF4G-domain has evolved as a helicase interaction domain 

The MIF4G domain was named after the translation initiation factor eIF4G, where it 

was first described. It belongs to the HEAT repeat protein family. The HEAT domain is a 

solenoid protein domain named after 4 HEAT repeat containing proteins (Huntingtin, 

elongation factor 3 (EF3), protein phosphatase 2a (PP2A), yeast kinase TOR1). It 

consists of tandem repeats of antiparallel α-helices (the HEAT repeats) linked by 

flexible loops and arranged around a common axis to form a rod-like structure 
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(Andrade et al., 2001). HEAT repeat domains are often involved in protein-protein 

interactions.  

The MIF4G domain of eIF4G contains 10 α-helices that form a right-handed solenoid. 

The convex surface of the MIF4G domain interacts with both RecA-like domains of 

eIF4A. Whereas the N-terminal helices of the MIF4G domain bind to the RecA2 domain 

of the helicase, the C-terminal helices contact the RecA1 domain (Schutz et al., 2008). 

This interaction holds eIF4A in an extended conformation. In this conformation, both 

RecA-like domains are in close proximity and the conserved DExD/H-box motifs face 

towards the inner side of the helicase core. Thus, the extended helicase is poised for 

ATP and RNA binding, explaining the stimulatory effect of eIF4G on the ATPase activity 

of eIF4A. Interestingly, the affinity of eIF4A for eIF4G is mostly determined by the 

interaction of the RecA2 domain with the N-terminal part of the MIF4G domain 

(Schutz et al., 2008). The weaker interactions between RecA1 and the C-terminus of 

MIF4G are important to maintain the extended conformation, but can be easily 

resolved when the helicase adopts its closed conformation upon ATP and RNA binding 

(Schutz et al., 2008). Apart from the MIF4G domain, eukaryotic eIF4G contains two 

more HEAT repeat domains, a MA3 domain and a W2 domain. The closely related MA3 

domain was shown to also contribute to eIF4A binding of eIF4G. Interestingly, the 

tumor suppressor Pdcd4 (programmed cell death 4) also contains two MA3 domains 

and competes with eIF4G for eIF4A binding. But whereas eIF4G stimulates the ATPase 

activity of eIF4A, Pdcd4 traps the helicase in an inhibited conformation and thereby 

blocks translation initiation (Loh et al., 2009). When bound to Pdcd4, eIF4A adopts an 

open conformation with several of its DEAD-box motifs facing the solvent rather then 

the interdomain cleft (Loh et al., 2009). This example demonstrates that similar 

interaction domains can stabilize DExD/H-box helicases in activated or inhibited 

conformations. Very subtle differences in the binding motifs determine whether the 

interaction has a stimulatory or an inhibitory effect. This high degree of specificity is 

also reflected in the choice of binding partners. For example eIF4A3, a very close 

homolog of eIF4A does not bind the MA3 domain of eIF4G (Li et al., 1999). 

Several other proteins have been described to bind DExD/H-box helicases through a 

very similar mechanism. The export mediator Gle1 comprises an all α-helical HEAT 
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repeat protein that binds the DEAD-box helicase Dbp5 (Montpetit et al., 2011). 

Analogues to the interaction between eIF4G and eIF4A, the stable interaction between 

both proteins primarily involves the RecA2 domain of Dbp5, whereas secondary 

transient interactions between RecA1 and Gle1 regulate the activity of the helicase 

(Montpetit et al., 2011). A unique feature of the interaction between Gle1 and Dbp5 is 

the requirement for the small molecule inositol hexakisphosphate (IP6), which bridges 

the protein-protein interaction (Montpetit et al., 2011). Because Gle1 stabilizes Dbp5 

in a partially open conformation it was suggested that the interaction stimulates RNA 

release and enzyme recycling (Montpetit et al., 2011).  

A recent study identified yet another protein interaction that is mediated via a similar 

mechanism. NOM1 binds the DEAD-box helicase eIF4A3 through its MIF4G-domain 

(Alexandrov et al., 2011). Mutational analyses suggested that the interaction between 

both proteins resembles the interaction between eIF4G and eIF4A. Even though 

biochemical and structural studies of the NOM1-eIF4A3 interaction are still pending, 

the genetic interaction between both proteins during rRNA biogenesis in yeast and 

humans implied that NOM1 is an evolutionary conserved regulator of the DEAD-box 

protein eIF4A3 (Alexandrov et al., 2011).   

The introductory section of this thesis focused on the function of RNA-binding protein 

complexes during eukaryotic gene expression; starting from the general role of RBPs in 

mRNA metabolism and ending with the particular example of the EJC as a splicing 

dependent protein complex. Special emphasis was placed on the role of the DEAD-box 

helicase eIF4A3 within the EJC. To better understand this protein, the general 

structural and functional characteristics of DExD/H-box helicases were discussed in 

more detail. The section ended with the description of the MIF4G domain and related 

structures and their role in regulating the enzymatic activity of DExD/H-box helicases. 

In the experimental part of this thesis, I will now describe the discovery and 

characterization of another MIF4G-domain containing protein that interacts with 

eIF4A3. The results presented in the following chapters will shed light on the 

relationship between the EJC and the splicing machinery and further expand our 

knowledge of the RNP interaction network. 
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3 Aims and Significance of the project 

The EJC is a key regulator of mRNA metabolism that assembles on mRNA during 

splicing. It binds the mRNA in a sequence-independent manner 20-24 nt upstream of 

exon-exon junctions. The description of the EJC crystal structure and subsequent 

biochemical studies have led to a comprehensive model for the stepwise assembly of 

the EJC core on the mRNA. Although it is well established that EJC assembly is a 

splicing-dependent process, the factors that mediate the interaction between the EJC 

and the splicing machinery are still unknown.  

The aim of this study is to establish a physical link between the spliceosome and the 

EJC. To this end, I seek to identify a direct spliceosomal interaction partner of eIF4A3, 

the DEAD box helicase that anchors the complex on the mRNA. A very promising 

candidate for this function is the spliceosomal protein CWC22. CWC22 displays 

significant sequence identity with the recently identified eIF4A3 binding partner 

NOM1. Moreover, CWC22 features a MIF4G and a MA3 domain, both of which have 

been previously shown to bind DEAD-box helicases.  

The initial goal of this study is to verify the interaction between CWC22 and eIF4A3 in 

mammalian cells. Furthermore, the direct interaction between both proteins will be 

investigated using purified proteins in vitro. Subsequently, the interaction site will be 

further characterized through deletion mutants and site-directed mutagenesis. The 

overall aim is to identify CWC22 binding-deficient point mutants of eIF4A3 that can be 

employed to analyze the influence of CWC22 on EJC assembly during pre-mRNA 

splicing. To complement the in vitro findings, siRNA mediated knockdown experiments 

will further clarify the function of CWC22 in living cells. 

Based on these experiments, I intend to generate a model for the molecular 

mechanism of EJC assembly in human cells, which can explain the splicing-dependent 

nature of this process. 
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4 Results 

The aim of this work was the identification of a direct link between the EJC and the 

spliceosome. For structural reasons, the Results section is divided into three main 

parts. Section 4.1 describes the identification of CWC22 as a direct spliceosomal 

interaction partner of the EJC core protein eIF4A3. Functional data presented in 

section 4.2 demonstrate that the interaction between CWC22 and eIF4A3 is crucial for 

splicing-dependent EJC assembly. The role of CWC22 in pre-mRNA splicing is analyzed 

in section 4.3, concluding with the observation that pre-mRNA splicing and EJC 

assembly are two distinct functions of CWC22 that can be experimentally uncoupled. 

4.1 CWC22 is a direct interaction partner of eIF4A3 

The nuclear EJC consists of the three proteins eIF4A3, MAGOH an Y14 that assemble 

on pre-mRNA during splicing (Gehring et al., 2009a). Previous work has shown that the 

interaction of eIF4A3 with the early spliceosome is independent of MAGOH and Y14, 

leading to the hypothesis that it is the first EJC protein to engage the splicing 

machinery (Gehring et al., 2009a). As a DEAD-box helicase, eIF4A3 binds directly to 

mRNA, thus forming an assembly platform for the other EJC factors (Le Hir et al., 

2001). This distinguished role during EJC assembly prompted me to search for a 

spliceosomal interaction partner of eIF4A3 that would explain the splicing-dependent 

nature of the assembly process.  

4.1.1 An in silico search identifies CWC22 as a putative eIF4A3 binding protein 

In order to identify putative new interaction partners of eIF4A3, a BLAST (Basic Local 

Alignment Search Tool) search against the non-redundant human genome database 

was performed to find spliceosomal factors with homology to any of the known 

eIF4A3-binding proteins. Interestingly, NOM1, a protein that interacts with yeast and 

human eIF4A3 during rRNA biogenesis (Alexandrov et al., 2011), shared significant 

sequence identity with the spliceosomal protein Complexed With Cef1 (also known as 

KIAA1604, Figure 6A). The more detailed analysis of the alignment revealed that the 
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sequence conservation is restricted to the central part of both proteins (amino acid 

residues 325-772 of NOM1 aligned with amino acid residues 120-572 of CWC22). 

 

 
 

Figure 6: CWC22 is a homolog of NOM1. (A) Alignment of the protein sequences of human CWC22 
(Q9HCG8) and human NOM1 (Q5C9Z4). The alignment was generated with ClustalW and boxshade 3.21. 
The MIF4G domain is indicated by the red line and the MA3 domain by the blue line. (B) Domain 
structure of CWC22, NOM1 and eIF4G1. 

 

Interestingly, structural predictions (using SMART (Schultz et al., 1998)) revealed that 

both proteins harbor a MIF4G domain (middle domain of translation initiation factor 

4G) (approximately between residues 362-559 of NOM1 and 163-346 of CWC22) 

followed by an MA3 domain (between residues 655-761 of NOM1 and 455-561 of 

CWC22), giving them an overall similar domain structure (Figure 6B). Both MIF4G and 

MA3 domain belong to the family of α-helical HEAT repeat domains and are often 

involved in binding to DExD/H-box helicase. They were first described in the translation 

initiation factor eIF4G, where they facilitate the interaction with the RNA helicase 

eIF4A (Schutz et al., 2008). Moreover, similar domains are present in Gle1 and the 

apoptotic regulator Pdcd4 (programmed cell death 4), where they mediate the 
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interaction with the nuclear export factor Dbp5 and the translation initiation factor 

eIF4A1, respectively (Dossani et al., 2009; Yang et al., 2004).  

4.1.2 CWC22 interacts with eIF4A3 in cell extracts 

To test whether CWC22 is a true interaction partner of eIF4A3, FLAG-tagged CWC22 

was cloned into a eukaryotic expression vector and expressed in HeLa cells. The 

interaction with endogenous eIF4A3 was analyzed by co-immunoprecipitation (Co-IP) 

with anti-FLAG beads followed by western blotting (Figure 7). Both RNase A and RNase 

I were included in the IP-buffer to prevent unspecific interactions through RNA-

bridging. FLAG-CWC22 co-precipitated endogenous eIF4A3 in an RNase-insensitive 

manner but failed to bind the closely related protein eIF4A1 (Figure 7A). To verify the 

specificity of the assay, the interaction between FLAG-CBP80 and eIF4A3 was tested. 

CBP80 is a component of the cap-binding complex and contains several MIF4G-like 

domains, but unlike FLAG-CWC22 it did not co-precipitate endogenous eIF4A3 (Figure 

7B). To further confirm the interaction between eIF4A3 and CWC22, FLAG-eIF4A3 was 

expressed in HeLa cells and the interaction with endogenous CWC22 was analyzed by 

co-immunoprecipitation with anti-FLAG beads. Indeed, FLAG-eIF4A3 co-precipitated 

endogenous CWC22 but not CBP80 (Figure 7C), whereas the negative control FLAG-

eIF4A1 failed to interact with CWC22 (Figure 7D). Taken together, these results show 

that CWC22 interacts with eIF4A3 in a highly specific manner. 

 

Figure 7: CWC22 interacts with eIF4A3. FLAG-immunoprecipitation from cell lysates treated with RNase 
A (A, C) or RNase I (B, D). (A-B) FLAG-CWC22 and FLAG-CBP-80 were immunoprecipitated and co-
precipitated endogenous eIF4A3 and eIF4A1 were detected by immunostaining with specific antibodies. 
(C-D) FLAG-eIF43 and FLAG-eIF4A1 were immunoprecipitated and co-precipitated endogenous CWC22 
and CBP80 were detected with specific antibodies. Unfused FLAG served as a negative control. 10% of 
the lysate was loaded as input. 
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4.1.3 eIF4A3 binds the MIF4G domain of CWC22 

The role of MIF4G and MA3 domains in binding to DExD/H-box helicases suggested 

that either one or both domains mediate the interaction between CWC22 and eIF4A3. 

To test this hypothesis, several truncations of FLAG-CWC22 were tested in Co-IP 

experiments for their ability to interact with endogenous eIF4A3 (Figure 8A). As 

expected, deletion of either C-terminal (CWC22(1-665)) or both C- and N-terminal 

domains of the protein (CWC22(110-665) had no effect on eIF4A3 precipitation (Figure 

8B, lane 3 and 4). Interestingly, the MA3 domain could also be deleted (CWC22(110-

409)) without compromising eIF4A3 binding (Figure 8B, lane 5). In contrast, a CWC22 

deletion mutant that lacked the MIF4G domain (CWC22(340-665)) failed to interact 

with eIF4A3 (Figure 8B, lane 6). Hence, the minimal eIF4A3-interaction domain 

comprised of amino acid residues 110-409 (Figure 8B, lane 5), indicating that the 

MIF4G domain of CWC22 is both required and sufficient for the interaction with 

eIF4A3.  

 

 

Figure 8: EIF4A3 interacts with the MIF4G domain of CWC22. (A) Schematic representation of 
truncated CWC22 used for FLAG-immunoprecipitation. (B) FLAG-tagged CWC22 was immunoprecipited 
from RNase A treated cell lysates and co-precipitation of endogenous eIF4A3 was detected by 
immunostaining with a specific antibody. Unfused FLAG served as a negative control. 10% of the lysate 
was loaded as input. 

4.1.4 Pulldown experiments confirm a direct interaction of eIF4A3 and CWC22  

All interactions described until now were analyzed in cell lysates. Even though RNase 

was included in the assay buffer to prevent non-specific RNA-bridging, this does not 

exclude the possibility that other proteins in the cell lysate mediated the interaction 

between CWC22 and eIF4A3. To test whether CWC22 directly binds to eIF4A3, both 

proteins were purified from E.coli and analyzed through in vitro pulldown experiments 
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(Figure 9). Full-length eIF4A3 with an N-terminal Strep (S2) and N-terminal FLAG-tag 

(S2-FLAG-eIF4A3) was purified from bacterial cultures on streptactin resin (Figure 9A). 

CWC22 was expressed as a GST-fusion protein and purified via Glutathion-Sepharose. 

Since full-length CWC22 was poorly expressed in E.coli, three truncated versions of 

CWC22 were used, GST-CWC22(110-665), comprising both MIF4G and MA3 domain, 

GST-CWC22(110-409), which contains only the MIF4G domain and GST-CWC22(340-

665), which contains only the MA3 domain (Figure 9A). To analyze complex formation, 

purified S2-FLAG-eIF4A3 was pre-incubated with each of the CWC22 variants, followed 

by FLAG-immunoprecipitation. The precipitated proteins were resolved by SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) and visualized by coomassie staining 

(Figure 9B). 

 

 

Figure 9: EIF4A3 directly interacts with the MIF4G domain of CWC22. (A) Schematic representation of 
the recombinant proteins expressed in E.coli. (B) In vitro pulldown experiment. S2-FLAG-eIF4A3 was 
immobilized on anti-FLAG beads and incubated with CWC22 pieces. Co-precipitated proteins were 
resolved by SDS-PAGE and stained with coomassie. Samples without S2-FLAG-eIF4A3 served as a 
negative control. 10% of the assembly reaction was loaded as input.  

 

In line with the previously described Co-IP experiments, FLAG-tagged eIF4A3 co-

precipitated GST-CWC22(110-665) and GST-CWC22(110-409) but failed to bind GST-

CWC22(340-665), demonstrating that the MIF4G domain of CWC22 is required for 
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direct binding to eIF4A3. The MA3 domain did not contribute to eIF4A3 binding, and 

the construct lacking the MA3 domain (CWC22(110-409)) even exhibited slightly better 

co-precipitation efficiencies (Figure 9B, compare lane 2 and land 4).    

4.1.5 CWC22 does not interact with the other EJC proteins 

In living cells, eIF4A3 binds stably to Y14, MAGOH and Barentsz (BTZ) to form the core 

of the EJC. With regard to its role in complex formation, it is important to understand 

whether CWC22 binds eIF4A3 alone or as part of the EJC. In order to address this 

question, FLAG-CWC22 and FLAG-BTZ were expressed in HeLa cells and Co-IP 

experiments were performed as described in paragraph 4.1.2. As expected, FLAG-BTZ 

co-precipitated the endogenous EJC proteins eIF4A3, Y14 and MAGOH from cell 

lysates, demonstrating that an EJC was formed under these conditions (Figure 10A, 

lane 3). In contrast, FLAG-CWC22 co-precipitated comparable amounts of eIF4A3, but 

failed to interact with Y14 and MAGOH, indicating that CWC22 only interacts with 

eIF4A3 but not with the assembled EJC (Figure 10A, lane 2).  

To further confirm these observations, the interaction between purified GST-

CWC22(110-409)-FLAG and a recombinant EJC was analyzed in vitro. To this end, the 

EJC proteins eIF4A3, Y14, MAGOH and the central domain of BTZ were expressed in 

bacterial lysates and affinity-purified on streptactin resin. Since Y14 and MAGOH form 

a stable heterodimer, they can be co-expressed in bacteria and un-tagged MAGOH is 

co-purified together with C-terminally Strep-tagged Y14 (Y14-S2). The BTZ construct 

used in this study comprised of the SELOR (speckle localizer and RNA binding module) 

domain and was expressed with C-terminal Strep-tag and either with or without a N-

terminal FLAG-tag (BTZ(110-372)-S2 and FLAG-BTZ(110-372)-S2). Previous studies have 

shown that the SELOR domain is sufficient to bind eIF4A3 and the EJC (Degot et al., 

2004). Furthermore, the SELOR domain is required in vitro to stabilize the interaction 

between eIF4A3, Y14 and MAGOH (Ballut et al., 2005). 

To form the recombinant EJC eIF4A3, Y14, MAGOH and BTZ(110-372) were pre-

incubated together with poly(U) RNA and the non-hydrolysable ATP analog ADPNP in 

the presence (Figure 10B, lane 2) or absence (Figure 10B, lane 1 and 3) of CWC22(110-

409). The complexes were then precipitated with immobilized FLAG-tagged 

CWC22(110-409) (Figure 10B, lane 2) or FLAG-tagged BTZ(110-372) (Figure 10B, lane 
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3), respectively.  As a negative control, no FLAG-tagged protein was included in lane 1 

to exclude unspecific interactions with the beads used for immunoprecipitation. The 

precipitated protein complexes were resolved by SDS-PAGE and visualized with 

coomassie. In line with published data (Ballut et al., 2005), FLAG-BTZ(110-372)-S2 co-

precipitated eIF4A3, Y14 and MAGOH, proving that the recombinant proteins can form 

an EJC in vitro (Figure 10B, lane 3). GST-CWC22(110-409)-FLAG on the other hand did 

interact with eIF4A3 and BTZ(110-372), but not with Y14 and MAGOH (Figure 10B, lane 

2). These results corroborate previous Co-IP experiments and suggest that the inability 

of CWC22 to interact with EJC-bound eIF4A3 stems from a general inaccessibility of the 

binding site within the complex. 

 

 

 

 

Figure 10: CWC22 interacts with eIF4A3 but not with Y14 and MAGOH. (A) Immunoprecipitation of 
FLAG-CWC22 and FLAG-BTZ from RNase A treated cell lysates. Co-precipitated endogenous eIF4A3, Y14 
and MAGOH were detected by staining with specific antibodies. Unfused FLAG served as a negative 
control. 10% of the lysate were loaded as input. (B) Interaction between recombinant CWC22 and EJC 
proteins in vitro. S2-eIF4A3, BTZ(110-372)-S2, Y14-S2 and MAGOH were incubated under EJC assembly 
conditions and the complexes were immunoprecipitated with immobilized GST-CWC22(110-409)-FLAG 
(lane 2) or FLAG-BTZ(110-372)-S2 (lane 3). BTZ(110-372)-S2 without a FLAG tag served as a negative 
control (lane 1). Protein complexes were resolved by SDS-PAGE and visualized with coomassie. 10% of 
the assembly reaction was loaded as input. (C) Immunoprecipitation of FLAG-CWC22 from RNase A 
treated cell lysates. Co-precipitation of V5-eIF4A3 and V5-BTZ was detected by immunostaining with a 
V5-specific antibody. Unfused FLAG served as a negative control. 10% of the cell lysate was loaded as 
input. 

 

Interestingly, GST-CWC22(110-409)-FLAG co-precipitated BTZ(110-372) together with 

eIF4A3, demonstrating that simultaneous binding of eIF4A3 to CWC22 and BTZ is 

possible. Since eIF4A3 can bind BTZ in the absence of Y14 and MAGOH (Andersen et 
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al., 2006; Bono et al., 2006), it is conceivable that such a CWC22/eIF4A3/BTZ complex 

could also form in living cells. To test this hypothesis, the interaction between FLAG-

CWC22 and BTZ was analyzed through Co-IP experiments (Figure 10C). Because no 

good antibody against endogenous BTZ was available, V5-tagged BTZ and V5-tagged 

eIF4A3 were co-expressed with FLAG-CWC22 in HeLa cells. Surprisingly, FLAG-CWC22 

co-precipitated V5-eIF4A3 but failed to interact with V5-BTZ. The discrepancy between 

Co-IP and in vitro pulldown experiments could be explained by the fact that CWC22 is a 

nuclear protein whereas full length BTZ resides predominantly in the cytoplasm. 

Hence, even though CWC22, eIF4A3 and BTZ can form a complex in vitro, this complex 

is most likely not formed in living cells.  

4.1.6 CWC22 is no component of the post-splicing mRNP 

Mass spectrometric studies revealed that CWC22 is part of the human spliceosome 

(Agafonov et al., 2011). Moreover, the yeast homolog of CWC22 is involved in the first 

catalytic step of splicing through interaction with the DExD/H-box helicase Prp2 (Yeh et 

al., 2011). However, detailed information on the role of human CWC22 during pre-

mRNA splicing is still missing. To shed further light on the function of CWC22 during 

splicing, the interaction of CWC22 with spliced mRNA was studied in an in vitro splicing 

system. This assay allows for the splicing of an in vitro transcribed mRNA substrate that 

is body-labeled with radioactive α-32P-GTP in HeLa nuclear extracts (for a detailed 

description of the assay see Material and Methods). The splicing reaction is 

supplemented with whole cell extracts from HEK293 cell that express the FLAG-tagged 

protein of interest, so that the interaction between FLAG-tagged protein and spliced 

mRNA can be analyzed by FLAG-immunoprecipitation. After RNA extraction and 

denaturing PAGE, the co-precipitated mRNA can be visualized by autoradiography. This 

method was applied to analyze the interaction of FLAG-CWC22 with spliced mRNA and 

to compare it to the mRNA-interaction pattern of its binding partner eIF4A3, as well as 

the non-interacting EJC protein Y14 (Figure 11).  

The first mRNA substrate used in this study was MINX, a derivative of the viral mRNA 

Adenovirus major late (AdML), that contains two exons and one intron and is very 

efficiently spliced in vitro (Figure 11A, left panel) (Bell et al., 2002; Zillmann et al., 

1988). As expected, both FLAG-eIF4A3 and FLAG-Y14 specifically precipitated the 
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spliced mRNA, but no pre-mRNA, indicating that they have been successfully 

incorporated into a splicing-dependent EJC (Figure 11A, lane 4 and 5). Despite being 

well expressed (Figure 11C), FLAG-CWC22 bound neither pre-mRNA nor spliced mRNA, 

demonstrating that it is no part of the post-splicing mRNP (Figure 11A, lane 3). This is 

not surprising since spliceosomal subunits dissociate from the mRNA after the splicing 

process is completed. Indeed, splicing is a very dynamic process that requires many 

rearrangements, and spliceosomal proteins rarely stay attached to the spliceosome 

throughout the whole splicing process (Wahl et al., 2009).  

4.1.7 CWC22, eIF4A3 and Y14 interact with the C-complex spliceosome 

To further delineate at which step during splicing CWC22 engages the human 

spliceosome, a different mRNA substrate was used. AdML-PT60 is a version of AdML 

mRNA that lacks the second exon. Instead, AdML-PT60 has an elongated 

polypyrimidine tract consisting of 60 pyrimidines (C and U). This elongated 

polypyrimidine tract enhances the overall splicing efficiency and thereby allows the 

first transesterification reaction to occur even in the absence of a second exon. 

Without this second exon however, the splicing reaction cannot proceed and instead 

the spliceosome arrests in a stage known as C-complex (Bessonov et al., 2010). The 

mRNA bands that can be visualized on the gel after splicing of AdML-PT60 correspond 

to lariat mRNA (top band), unspliced AdML (middle band) and first exon (bottom 

band). Both FLAG-eIF4A3 and FLAG-Y14 precipitated C-complex mRNA (top and 

bottom band), which shows that they already interact with the spliceosome before the 

second catalytic step of splicing (Figure 11B, lane 4 and 5). Of note, FLAG-CWC22 

precipitated comparable amounts of mRNA, marking it as a component of the 

spliceosomal C-complex (Figure 11B, lane 3). These results are in accordance with 

published data from mass spectrometric analyses and a yeast-2-hybrid screen, which 

recently defined CWC22 as a constituent of activated B complexes (Bact) and C-

complexes (Agafonov et al., 2011; Hegele et al., 2012). Moreover, the data show that 

CWC22 and the EJC proteins eIF4A3 and Y14 interact with the spliceosome at the same 

time, which is a prerequisite for a possible role of CWC22 during EJC assembly. 
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Figure 11: Interaction of CWC22, eIF4A3 and Y14 with spliced mRNA. (A) 32P-body-labeled MINX mRNA 
was spliced in the presence of FLAG-CWC22, FLAG-eIF4A3, FLAG-Y14 or unfused FLAG as a negative 
control. After FLAG-immunoprecipitation of mRNPs, the RNA was extracted, resolved on a denaturing 
urea-gel and visualized by phosphor imaging autoradiography. 10% of the splicing reaction was loaded 
as input. Schemes on the right site of the panels depict the splicing products. (B) Splicing and 
immunoprecipitation of AdML-PT60 mRNA as described in (A). (C) Expression of FLAG-tagged proteins in 
HEK293 extracts was detected by immunostaining with a FLAG-specific antibody. Tubulin served as a 
loading control. 

4.1.8 CWC22 uses multiple domains to interact with the spliceosome 

In order to identify the part of CWC22 that mediates the interaction with the 

spliceosome, splicing of AdML-PT60 was repeated in the presence of different 

truncated versions of FLAG-CWC22 (Figure 12A). Surprisingly, only full-length CWC22 

interacted well with spliced AdML-PT60 (Figure 12C, lane 3). In contrast, deletion of 

the C-terminal part of the protein including the MA3 domain (CWC22(1-409)) or an N-

terminal deletion that removed the MIF4G domain (CWC22(340-908)) completely 
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eliminated mRNA binding (Figure 12C, lane 4 and 5). Furthermore, a construct that 

contained both MIF4G and MA3 domain but lacked the N- and C-terminal parts of the 

protein (CWC22(110-665)) showed a consistent, but strongly reduced interaction with 

AdML-PT60 (Figure 12C, lane 6). Taken together, these results show that even though 

the MIF4G domain of CWC22 is sufficient to bind eIF4A3 (Figure 12B), the MA3 

domain, as well as elements in the N- and C-terminus of the protein, is important for 

the function of CWC22 in the spliceosome.  

 

 

 

 

Figure 12: CWC22 uses multiple domains to interact with AdML-PT60 mRNA. (A) Schematic 
representation of the deletion mutants used in this assay. (B) FLAG-immunoprecipitation of CWC22 
deletion mutants from RNase A treated cell lysates. Co-precipitated endogenous eIF4A3 was detected 
by staining with a specific antibody. Unfused FLAG served as a negative control. 10% of the cell lysate 
was loaded as input. (C) Splicing of AdML-PT60 mRNA in the presence of FLAG-CWC22 deletion mutants 
or unfused FLAG as a negative control. FLAG-containing mRNP complexes were immunoprecipited, the 
extracted RNA was resolved by urea-PAGE and visualized by autoradiography. 10% of the splicing 
reaction was loaded as input. Schemes on the right site depict the splicing products. (D) Expression of 
FLAG-tagged proteins in HEK293 extracts was detected by immunostaining with a FLAG-specific 
antibody. Tubulin served as a loading control. 
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4.1.9 Initial spliceosome interaction of CWC22 and eIF4A3 is independent of the EJC 

deposition site on spliced mRNA  

The EJC always assembles on the mRNA at a fixed distance (20-24nt) upstream of the 

splice site. Shortening exon 1 of the mRNA substrate to less than 20 nt will therefore 

prevent EJC assembly (Gehring et al., 2009a; Le Hir et al., 2000a). The role of this EJC 

deposition site during spliceosomal recruitment of CWC22, eIF4A3 and Y14 can be 

analyzed using an AdML-PT60 mRNA substrate with a first exon that consists of only 18 

nucleotides (AdML-PT60/e1(18)). To be able to compare the pulldown of AdML-

PT60/e1(18) to AdML-PT60 mRNA, the  intensity of precipitated lariat mRNA (top 

band) relative to the input was analyzed. Since 10% of the total reaction was loaded as 

input, equal band intensities in input and IP lanes corresponded to 10% pulldown 

efficiency (Figure 13B).  

Shortening the first exon had no effect on the interaction of FLAG-CWC22 with AdML-

PT60 (Figure 13A, lane 3; compare to Figure 11B, lane 3; quantification Figure 13B). 

The same was true for FLAG-eIF4A3 (Figure 13A, lane 4; compare to Figure 11B, lane 4; 

quantification Figure 13B), which indicates that the initial interaction of both proteins 

with the spliceosome is independent of the EJC-binding site on the pre-mRNA. In 

contrast, FLAG-Y14 displayed a strongly reduced ability to interact with AdML-

PT60/e1(18) compared to AdML-PT60 (Figure 13A, lane 5; compare to Figure 11B, lane 

5; quantification Figure 13B). Thus, Y14 can only interact with the spliceosome when 

the EJC binding site on the mRNA is already present. This observation is in accordance 

with a model for EJC assembly where eIF4A3 is initially recruited to the spliceosome in 

an RNA-independent manner, then binds the mRNA 20-24nt upstream of the splice 

site and thereby forms a platform for the subsequent recruitment of the Y14/MAGOH 

heterodimer.   

The analogous spliceosomal interaction pattern of CWC22 and eIF4A3 is compatible 

with a putative role for CWC22 in recruiting eIF4A3 to the spliceosome. To test this 

hypothesis, a comprehensive mutational analysis of the CWC22/eIF4A3 interaction 

surface was conducted and the mutants were functionally analyzed in vitro and in cell 

extracts. The results of this investigation will be presented in the next chapter. 
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Figure 13: Y14, but not CWC22 and eIF4A3, needs the EJC-assembly site to interact with AdML-PT60. 
(A) Splicing of AdML-PT60/e1(18) mRNA in the presence of FLAG-CWC22, FLAG-eIF4A3, FLAG-Y14 or 
unfused FLAG as a negative control. After immunoprecipiting FLAG-containing mRNP complexes, the co-
precipitated RNA was resolved by urea-PAGE and visualized by autoradiography. 10% of the splicing 
reaction was loaded as input. Schemes on the right site depict the splicing products. The asterisk (*) 
denotes an unspecific splicing product. The corresponding western blot for protein expression is shown 
in Figure 11C. (B) Quantification of precipitated AdML-PT60 mRNA (long exon 1, Figure 11B) compared 
to AdML-PT60/e1(18) (short exon 1, Figure 13B). Error bars represent standard deviation (n=3, p = 
0.0156). 

4.2 CWC22 recruits eIF4A3 to the spliceosome and mediates EJC 

assembly 

4.2.1 The CWC22/eIF4A3-interaction can be modeled with an existing eIF4G/eIF4A 

crystal structure 

Co-IP and in vitro pulldown experiments revealed that eIF4A3 interacts directly with 

the MIF4G domain of CWC22. At the time when the initial experiments were 

performed, no structural information on CWC22 was available that would allow a more 

detailed analysis of the interaction surface. In several other protein complexes, 

however, MIF4G domains mediate the interaction with DExD/H-box helicases, among 

them the well-characterized eIF4A/eIF4G complex. Human eIF4A1 and eIF4A3 share 

65% sequence identity (Li et al., 1999). Because of this high degree of sequence 

conservation, an existing X-ray structure of the yeast eIF4A/eIF4G-MIF4G complex 

(Schutz et al., 2008) can be used to predict a model for the interaction between eIF4A3 

and CWC22 (Figure 14). To this end, the structures of eIF4A3 (as part of the EJC; PDB 

2JOS) and eIF4A (in complex with the eIF4G; PDB 2VSO) were superimposed using 

DaliLite (Holm and Park, 2000) and the MIF4G domain of eIF4G served as a surrogate 

for the MIF4G domain of CWC22 (Figure 14). Of note, the structures of eIF4A and 
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eIF4A3 do not completely align in this model, because eIF4A adopts an extended 

conformation in complex with eIF4G, whereas eIF4A3 is in its closed conformation 

when bound to the EJC (Bono et al., 2006; Schutz et al., 2008). However, the RecA-like 

domains of both eIF4A and eIF4A3 display an overall similar orientation, with the 

DEAD-box motifs facing each other at the active site cleft between RecA1 and RecA2 

(Bono et al., 2006; Schutz et al., 2008). 

 

 

 

Figure 14: Modeling the interaction between eIF4A3 and CWC22 with an existing eIF4A/eIF4G crystal 
structure. Left side: X-ray structure of the yeast eIF4A/eIF4G-MIF4G interaction (Schutz et al., 2008). 
Right side: A model for the interaction between eIF4A3 and CWC22 was generated through 
superimposition of eIF4A (PDB: 2VSO) and eIF4A3 (as part of the EJC; PDB 2JOS). The MIF4G-domain of 
eIF4G served as a surrogate for the MIF4G domain of CWC22. Note that eIF4A and eIF4A3 used for 
modeling adopt different conformations (extended vs. closed).  

The model was used for structure-guided mutagenesis of residues at the putative 

eIF4A3-CWC22 interaction surface. Subsequently, the mutants were analyzed in Co-IP 

and in vitro pulldown experiments (Figure 15 and Figure 16). I was able to identify two 

residues (Asn-171 and Lys-172) on the surface of CWC22 that were crucial for eIF4A3 

binding. Mutating Asn-171 and Lys-172 to Aspartate and Glutamate respectively (NK-

171/2-DE) completely abolished the interaction between FLAG-CWC22 and 

endogenous eIF4A3 in cell lysates (Figure 15A). Likewise, recombinant CWC22(NK-

171/2-DE) failed to interact with eIF4A3 in vitro (Figure 15B). Interestingly, Asn-171 

and Lys-172 map to a 12 amino acid conserved sequence motif of yeast eIF4G that 

forms the largest contiguous interaction surface with eIF4A in the co-crystal 

(KSLLNKLTLEMF) (Schutz et al., 2008). Moreover, two mutations within the same 

sequence motif of the yeast NOM1 homolog Sgd1p (NSSLNKLSDSNI) mediated its 



 Results  

 

47 

genetic interaction with the yeast homolog of eIF4A3, Fal1 (Alexandrov et al., 2011). 

These observations imply that eIF4G, NOM1 and CWC22 use similar residues to 

interact with eIF4A and eIF4A3 respectively, and suggest that the overall mode of 

interaction between DEAD-box helicases and their MIF4G interaction partners is 

conserved.  

 

Figure 15: Mutations at the putative eIF4A3/CWC22 interaction surface disrupt binding in cell lysates 
and in vitro. (A) Modeled interaction between eIF4A3 and the MIF4G-domain of eIF4G. The respective 
mutated residues on the MIF4G-domain (Asp-171 and Lys-172) are depicted in red. (B) 
Immunoprecipitation of FLAG-CWC22(WT) and FLAG-CWC22(NK-171/2-DE) from RNase A treated cell 
lysates. Co-precipitated endogenous eIF4A3 was detected by immunostaining with a specific antibody. 
Unfused FLAG served as a negative control. 10% of the cell lysate was loaded as input. (C) Interaction 
between recombinant proteins in vitro. Co-precipitation of GST-CWC22(110-409) or GST-CWC22(110-
409; NK-171/2-DE) with immobilized S2-FLAG-eIF4A3. The protein complexes were resolved by SDS-
PAGE and visualized with coomassie. 10% of the assembly reaction was loaded as input.    

 

Three point mutations were identified in the RecA2 domain of eIF4A3 (DLYD-270-KLYK, 

TI-276-GD and NFT-301-LAG) that impaired both the interaction with endogenous 

CWC22 in Co-IP experiments (Figure 16A) and the binding of recombinant eIF4A3 to 

CWC22 in vitro (Figure 16B). Interestingly, mutation of residues in the RecA1 domain of 

eIF4A3 or the corresponding surface of CWC22 did not impair the interaction between 
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eIF4A3 and CWC22 (Supplementary Figure 1 and Figure 21C). This observation is 

analogous to published data on the eIF4A/eIF4G and Dbp5/Gle1 complex, which 

showed that the C-terminal domains (RecA2) of the helicases display similar affinities 

for the MIF4G domain as the full-length protein (Dossani et al., 2009; Schutz et al., 

2008). The mutational analysis of eIF4A3 thus corroborates results from the CWC22 

mutagenesis, further strengthening the hypothesis that eIF4A3 and CWC22 form an 

eIF4A/eIF4A-like interaction pair.  

A year after our initial report of the interaction between CWC22 and eIF4A3 

(Steckelberg et al., 2012), a crystal structure of eIF4A3 and the MIF4G domain of 

CWC22 was published (Buchwald et al., 2013), which confirmed the interaction 

between the  N-terminal helices of CWC22-MIF4G and the RecA2 domain of eIF4A3 

proposed by this model (discussed in paragraph 4.2.6 and chapter 5). 

 

Figure 16: Mutations at the putative eIF4A3/CWC22 interaction surface disrupt binding in cell lysates 
and in vitro. (A) Modeled interaction between eIF4A3 and the MIF4G-domain of eIF4G. The mutated 
residues on eIF4A3 (DLYD-270-KLYK, TI-276-GD and NFT-301-LAG)) are depicted in red. (B) 
Immunoprecipitation of FLAG-eIF4A3 and the respective mutants from RNase A treated cell lysates. Co-
precipitated endogenous CWC22 was detected by immunostaining with a specific antibody. Unfused 
FLAG served as a negative control. 10% of the cell lysate was loaded as input. (C) Interaction between 
recombinant proteins in vitro. Co-precipitation of recombinant S2-eIF4A3 and the indicated mutants 
with immobilized GST-CWC22(110-409)-FLAG. The protein complexes were resolved by SDS-PAGE and 
visualized with coomassie. 10% of the assembly reaction was loaded as input.    
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4.2.2 CWC22-binding deficient eIF4A3 mutants form an EJC in vitro 

CWC22 is the first reported spliceosomal interaction partner of eIF4A3. As such, it is an 

ideal candidate for the recruitment eIF4A3 to the spliceosome and the subsequent 

initiation of EJC assembly. The eIF4A3 mutants described in paragraph 4.2.1 provide an 

elegant tool to test the putative role of CWC22 during splicing-dependent EJC 

assembly. But before the mutants can be analyzed in splicing reactions, their 

functionality and proper folding should be verified in vitro. The mutated residues do 

not overlap with binding sites for Y14/MAGOH or BTZ on eIF4A3 (Figure 17A); 

nevertheless, the general ability of eIF4A3 mutants to interact with the EJC proteins 

Y14, MAGOH and BTZ was confirmed in pulldown experiments. To this end, Y14-

S2/MAGOH, FLAG-BTZ(110-372)-S2 and either WT or mutant S2-eIF4A3 were 

expressed in E.coli and purified as described in paragraph 4.1.5. EJC assembly was 

initiated by incubating the proteins in the presence of poly(U) RNA and ADPNP and 

complex formation was analyzed through FLAG-immunoprecipitation (Figure 17B, lane 

1-4).   

Importantly, all eIF4A3 versions precipitated comparable amounts of Y14 and MAGOH, 

which demonstrates that the mutants were able to incorporate into recombinant EJCs 

as efficiently as the WT protein (Figure 17B, lane 1-4). Hence, the mutations did not 

perturb the overall folding of the protein. To confirm that the complexes exhibit the 

characteristics of an EJC, the experiment was repeated in the absence of RNA and 

ADPNP (Figure 17B, lane 5-8). EIF4A3 can only interact with the Y14/MAGOH 

heterodimer when it adopts its closed conformation in a nucleotide- and RNA-bound 

state. Omitting RNA and ADPNP from the reaction prevented EJC assembly and served 

as a specificity control of the assay (Figure 17B, lane 5-8). Of note, FLAG-BTZ(110-372)-

S2 can interact with S2-eIF4A3 in the absence of RNA and ADPNP (Figure 17B, lane 5-

8), but no Y14-S2 and MAGOH was co-precipitated under these conditions, 

demonstrating that the observed protein complexes indeed possess the characteristics 

of EJCs.  



 Results  

 

50 

 

Figure 17: CWC22-binding deficient eIF4A3 mutants can form an EJC in vitro. (A) Crystal structure of 
eIF4A3 in complex with Y14 and MAGOH (PDB 2JOS). The mutated residues are depicted in red. (B) In 
vitro EJC assembly with WT and mutant eIF4A3. FLAG-BTZ(110-372)-S2, Y14-S2, MAGOH and S2-eIF4A3 
(WT or mutant) were purified from E.coli and incubated under EJC assembly conditions. The protein 
complexes were co-precipitated with immobilized FLAG-BTZ(110-372)-S2, resolved by SDS-PAGE and 
visualized with coomassie. EJC assembly in the absence of RNA and ADPNP served as a specificity control 
(lane 5-8). 10% of the assembly reaction was loaded as input. 

 

4.2.3 CWC22-binding deficient eIF4A3 mutants fail to form splicing-dependent EJCs 

Whereas the EJC core assembles in vitro without the help of additional factors, EJC 

assembly in living cells and cell extracts is strictly splicing-dependent (Gehring et al., 

2009a; Le Hir et al., 2000a; Le Hir et al., 2000b). The CWC22-binding deficient eIF4A3 

mutants were therefore analyzed using the in vitro splicing system introduced in 

paragraph 4.1.6. Splicing of the MINX mRNA substrate was carried out in the presence 

of HEK293 extracts expressing either WT or mutant FLAG-eIF4A3. Subsequent FLAG-

immunoprecipitation revealed that FLAG-eIF4A3 specifically precipitated spliced 

mRNA, marking it as part of the splicing-dependent EJC (Figure 18A, lane 2). However, 

none of the FLAG-eIF4A3 mutants was able to precipitate MINX (Figure 18A, lane 3-5), 
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demonstrating that the CWC22-binding site on eIF4A3 is crucial for its splicing-

dependent interaction with mRNA. To further delineate which step of eIF4A3 

recruitment is impaired, the splicing reaction was repeated using a MINX-version with 

an AGGG mutation of the splice acceptor site (MINX-GG, Figure 18B). Like the AdML-

PT60 construct introduced in paragraph 4.1.7, MINX-GG leads to an arrest of the 

splicing reaction after the first catalytic step (during C-complex formation). Whereas 

MINX-GG could be precipitated with FLAG-eIF4A3(WT), none of the eIF4A3 mutants 

showed any interaction with the mRNA (Figure 18B, lane 3-5). These data imply that 

the mutations compromise the initial interaction between eIF4A3 and the 

spliceosome, and suggest a role for CWC22 during the early recruitment of eIF4A3 to 

spliced mRNA. Of note, mutations in the RecA1 domain of eIF4A3 did not impair the 

splicing-dependent EJC assembly (Supplementary Figure 4). 

 

   

Figure 18: CWC22-binding deficient eIF4A3 mutants fail to form a splicing-dependent EJC. (A) In vitro 
splicing of 32P-MINX was carried out in the presence of FLAG-eIF4A3, the indicated mutants of eIF4A3 or 
unfused FLAG as a negative control. After immunoprecipitation of FLAG-containing mRNPs, the co-
precipitated mRNA was resolved by urea-PAGE and visualized by autoradiography. 10% of the splicing 
reaction was loaded as input. The western blot (bottom) shows the expression of FLAG-tagged proteins 
in HEK293 whole cell extracts. (B) In vitro splicing and immunoprecipitation of 32P-MINX-GG mRNA as 
described in (A). The corresponding western blot for protein expression is shown in (A). 
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The results described here provide strong evidence for a role of CWC22 during 

spliceosomal recruitment of eIF4A3. Nevertheless, the use of CWC22 binding deficient 

mutants is an indirect proof and does not exclude the possibility that the mutated 

residues have a different, CWC22-independent effect on eIF4A3. Further evidence that 

CWC22 is indeed the factor linking eIF4A3 to the spliceosome will therefore be 

provided in the following paragraphs.  

4.2.4 Recombinant CWC22(110-409) disturbs EJC assembly in vitro  

Previous experiments showed that recombinant CWC22 is unable to interact with the 

assembled EJC in vitro (Figure 10B). However, it remains to be elucidated, whether 

recombinant CWC22 has an effect on in vitro EJC assembly itself. Hence, a 

recombinant EJC was assembled from purified S2-eIF4A3, BTZ(110-372)-S2, MAGOH 

and FLAG-Y14(1-154)-S2 in the presence or absence of GST-CWC22(110-409). 

Assembled complexes were precipitated with anti-FLAG beads and analyzed by SDS-

PAGE and coomassie staining (Figure 19).  

Earlier experiments had revealed the mutually exclusive binding of eIF4A3 to either EJC 

or CWC22 (Figure 10B). To selectively analyze EJC-bound eIF4A3, the complex was 

precipitated with FLAG-tagged Y14 instead of FLAG-tagged BTZ(110-372), as before. A 

slightly shorter version of Y14 (comprising of residues 1-154) was used to prevent the 

co-migration of FLAG-Y14 with the antibody light chain on the SDS-gel. This should not 

affect complex formation, since Y14(1-154) possesses identical EJC binding affinities as 

the full-length protein (Bono et al., 2006).  

Interestingly, addition of GST-CWC22(110-409) to EJC assembly reactions severely 

reduced the ability of FLAG-Y14(1-154)-S2 to co-precipitated S2-eIF4A3 and BTZ(110-

372)-S2, indicating that in vitro EJC assembly is impaired in the presence of 

recombinant CWC22 (Figure 19, lane 3). To prove that this effect is specific, the 

experiment was repeated with the mutant GST-CWC22(110-409(NK-171/2-DE)). In 

contrast to the WT protein, GST-CWC22(110-409/NK-171/2-DE) had no effect on the 

co-precipitation of S2-eIF4A3 and BTZ(110-372)-S2, demonstrating that a direct 

interaction between CWC22 and eIF4A3 is required to block EJC assembly (Figure 19, 

lane 4). This observation suggests that GST-CWC22(110-409) competes with the EJC 
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proteins for eIF4A3 binding, and addition of excess CWC22(110-409) can outcompete 

EJC assembly in vitro.  

 

 

 

 

Figure 19: Recombinant CWC22(110-409) impairs EJC assembly in vitro. Recombinant EJCs were 
assembled in the presence of GST-CWC22(110-409) (lane 3) or GST-CWC22(110-409; NK-171/2-DE) (lane 
4). Complexes were immunoprecipitated by anti-FLAG beads, resolved by SDS-PAGE and stained with 
coomassie. An EJC containing no FLAG tag served as a negative control. 10% of the assembly reaction 
was loaded as input. 

 

 

4.2.5 Recombinant CWC22(110-409) disturbs EJC assembly in cell extracts 

The experiments described so far demonstrate that the interaction between CWC22 

and eIF4A3 is necessary for EJC assembly in cell extracts. But the same interaction is 

dispensable or even deleterious for the assembly of recombinant EJCs in vitro. This 

discrepancy reflects the differential depenance of EJC assembly on pre-mRNA splicing. 

It also implies that the interaction between CWC22 and the spliceosome is absolutey 

essential for EJC assembly in living cells and cell extracts. To test this hypothesis, I 

performed in vitro splicing reactions of MINX mRNA, supplemented with increasing 

amounts of recombinant GST-CWC22(110-409) (Figure 20F). This piece of CWC22 is 

sufficient to bind eIF4A3 but does not interact with the spliceosome (Figure 12B, lane 3 

and Figure 12C, lane 4). 
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EJC assembly on spliced mRNA was analyzed through oligonucleotide-directed RNase H 

digestion (Figure 20A). After splicing, a DNA-oligonucleotide complementary to the 

EJC-deposition site on MINX (-24nt upstream of the splice site) was added to the 

reaction. This oligonucleotide forms a DNA/RNA heteroduplex with MINX and thereby 

activates RNase H, present in nuclear extracts, to cleave the RNA. The cleavage is 

visible as a decrease of full-lengths mRNA. However, if an EJC is bound to the mRNA 

upstream of the exon-exon junction, this sequence is protected from RNase H 

cleavage, and the reduced cleavage activity serves as a direct indicator for EJC 

formation (Le Hir et al., 2000a). The maximal cleavage activity of RNase H was 

determined using an intronless version of MINX (MINX∆intron) (Figure 20B). 

MINX∆intron is not spliced, and accordingly no EJC protects the mRNA from RNase H 

cleavage. The maximal cleavage activity thus achieved ranged from 80 to 90 % (Figure 

20B). In the absence of GST-CWC22(110-409), splicing of MINX initiated very efficient 

EJC assembly, so that almost no RNase H cleavage of spliced mRNA was detected 

(Figure 20C, lane 1-2). Supplementing the splicing reaction with increasing amounts of 

GST-CWC22(110-409) led to a concentration-dependent deprotection of the spliced 

mRNA, indicating that GST-CWC22(110-409) reduces the number mRNA molecules 

that carry an EJC (Figure 20C, lane 4-9 and quantification Figure 20E). To test the 

specificity of this assay, the RNase H-protection assay was repeated in the presence of 

GST-CWC22(110-409(NK-171/2-DE)) (Figure 20D). Of note, no increase in RNase H 

digestion could be observed in the presence of mutated CWC22 (Figure 20D, lane 4-9), 

demonstrating that a direct interaction between eIF4A3 and recombinant GST-

CWC22(110-409) is required to prevent EJC assembly.  

These data are in accordance with the previously described in vitro results, showing 

that binding of eIF4A3 to CWC22 in the absence of additional spliceosomal factors 

adversely affects EJC assembly. A piece of CWC22 that binds eIF4A3 but fails to 

interact with the spliceosome thus represents a dead end and inhibits EJC assembly. 
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Figure 20: GST-CWC22(110-409) prevents splicing-dependent EJC assembly. (A) Schematic 
representation of the RNase H digestion assay. (B) Oligonucleotide-directed RNase H digestion of 32P-
MINX∆intron mRNA. (C-D) Oligonucleotide-directed RNase H digestion of 32P-MINX mRNA that was 
spliced in the presence of increasing amounts of recombinant GST-CWC22(110-409) (C) or GST-
CWC22(110-409; NK-171/2-DE) (D). (E) Quantification of RNase H degradation activity in the presence of 
GST-CWC22(110-409) (WT) or GST-CWC22(110-409; NK-171/2-DE) (171-DE). The cleavage activity on 
intronless mRNA (MINX∆intron) was set to 100. (F) 5 µg of GST-CWC22(110-409) and GST-CWC22(110-
409; NK-171/2-DE) were resolved by SDS-PAGE and visualized with coomassie. 
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4.2.6 CWC22 interaction with the spliceosome is independent of eIF4A3 

In vitro splicing experiments presented in paragraph 4.1.8 showed that a CWC22-

construct, which lacked the MIF4G domain, failed to precipitate AdML-PT60 mRNA 

(Figure 12C, lane 5). Since the MIF4G domain mediates the binding to eIF4A3, it should 

be elucidated whether the interaction with eIF4A3 is required for the spliceosomal 

recruitment of CWC22. To address this question, CWC22 with mutated eIF4A3-binding 

sites was analyzed through in vitro splicing reactions (Figure 21). Apart from the 

CWC22(NK-171/2-DE) mutant introduced in paragraph 4.2.1, two new CWC22 mutants 

were analyzed in this assay (CWC22(Y-133-E/R-140-E) and CWC22(KR-330/1-DE)). Both 

mutants were designed on the basis of a recently published co-crystal structure of 

eIF4A3 and the MIF4G domain of CWC22 (Buchwald et al., 2013) (Figure 21A). 

CWC22(Y-133-E/R-140-E) was directly adopted from this publication. Isothermal 

titration calometry (ITC) experiments revealed that this mutant possesses a 100 fold 

lower affinity for eIF4A3 than the wild type protein (3 µM compared to 30 nM 

(Buchwald et al., 2013). In Co-IP experiments, this decrease in affinity resulted in a 

complete loss of binding to endogenous eIF4A3, comparable to that observed for 

CWC22(NK-171/2-DE) (Figure 21B, lane 3-4). The second mutant was designed to 

disrupt the interaction between the N-terminal part of CWC22 and the RecA1 domain 

of eIF4A3. According to the crystal structure, amino acid residues Lys-330, Tyr-334 and 

Val-338 of CWC22 interact with Cys-99 of eIF4A3. Cys-99 is one of the few interacting 

amino acid residues that are not conserved between eIF4A3 and eIF4A1, making it a 

potential candidate for the specificity of CWC22-binding. Interestingly, mutating Lys-

330 and Arg-331 did not affect the binding to endogenous eIF4A3 in Co-IP experiments 

(Figure 21B, lane 5) and resulted in similar binding affinities in ITC experiments 

(Supplementary Figure S2).  

The analysis of all three CWC22 mutants revealed that neither the interaction with 

RecA2, nor the binding to the RecA1 domain of eIF4A3 is required for the interaction 

of CWC22 with AdML-PT60 mRNA (Figure 21D). Since the mutations NK-171/2-DE and 

Y-133-E/R-140-E both completely inhibit the ability of CWC22 to interact with eIF4A3 

in cell lysates (Figure 21B), this data clearly demonstrate that the interaction of CWC22 

with the spliceosome is independent from its binding to eIF4A3.  
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Figure 21: Interaction between CWC22 and the spliceosome is independent of eIF4A3-binding. (A) X-
ray structure of eIF4A3 in complex with the CWC22 MIF4G-domain (PDB: 4C9B, (Buchwald et al., 2013). 
The mutated residues are depicted in red. (B) FLAG-immunoprecipitation of CWC22 mutants from 
RNase A treated cell lysates. Co-precipitated endogenous eIF4A3 was detected by staining with a 
specific antibody. Unfused FLAG served as a negative control. 10% of the cell lysate was loaded as input. 
(C) Expression of FLAG-tagged proteins in HEK293 extracts was detected by immunostaining with a 
FLAG-specific antibody. Anti-Tubulin served as a loading control. (D) Splicing of AdML-PT60 mRNA in the 
presence of FLAG-CWC22, the indicated mutants or unfused FLAG as a negative control. FLAG-
containing mRNP complexes were immunoprecipited, the extracted RNA was resolved by urea-PAGE 
and visualized by autoradiography. 10% of the splicing reaction was loaded as input. Schemes on the 
right site depict the splicing products. 
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4.3 CWC22 is required for pre-mRNA splicing in human cells 

4.3.1 siRNA knock down of CWC22 leads to an accumulation of pre-mRNA 

CWC22 has been characterized as an essential splicing factor in Saccharomyces 

cerevisiae (Yeh et al., 2011). It is recruited to the pre-catalytic spliceosome and stays 

associated with the splicing machinery throughout the whole splicing reaction. 

Interestingly, the DExD/H-box helicase Prp2 was identified as an interaction partner of 

yeast CWC22. Functionally, CWC22 is required for the first catalytic step of splicing by 

coupling the ATPase activity of Prp2 to the release of the U2 components SF3a and 

SF3b from the branch site of the mRNA (Yeh et al., 2011). In contrast, the role of 

human CWC22 during pre-mRNA splicing is only poorly understood. 

Since many splicing factors are conserved from yeast to humans it is very likely that 

CWC22 also functions during pre-mRNA splicing in human cells. To verify this 

assumption, CWC22 was depleted from HeLa cells using two different short interfering 

RNAs (siRNAs) (Figure 22A). The CWC22-depletion efficiency was assessed through 

immunoblotting with an antibody against endogenous CWC22. Both siRNA constructs 

led to a reduction of protein levels to approximately 20% (Figure 22A, lane 5-6). An 

siRNA targeting luciferase (Luc) mRNA served as a negative control (Figure 22A, lane 1-

4). The effect of CWC22 depletion on pre-mRNA splicing was subsequently 

investigated by quantitative real time PCR (qRT-PCR). To this end, two different 

reporter mRNAs were transfected in siRNA-treated cells. The β-globin (HBB) reporter 

contains two introns whereas the triose phosphate isomerase (TPI) reporter has six 

introns, but both mRNAs are very efficiently spliced in control cells. Mature mRNA 

levels were specifically amplified with intron-spanning primer pairs whereas pre-mRNA 

was detected with primers that targeted intronic sequences (Supplementary Figure 3). 

All results were normalized to the expression of the intronless neomycin resistance 

cassette (APH 3’ II) of the eukaryotic expression vector pCI-neo. Upon depletion of 

CWC22, pre-mRNA levels were 10 to 30-fold up-regulated and the corresponding 

mature mRNAs were reduced down to 5%, demonstrating that splicing is severely 

impaired in CWC22-depleted cells (Figure 22B, left graph). To further confirm these 

results, the effect of CWC22 depletion on endogenous mRNAs was analyzed. Both, 

splicing of actin β (ACTB) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) 
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was investigated using specific primer pairs designed to target pre-mRNA and mature 

mRNA, respectively. As previously observed for the reporter mRNAs, both endogenous 

mRNAs displayed a strong splicing defect upon CWC22 knock down (Figure 22B, right 

graph). On average, the pre-mRNA was approximately 10-fold up-regulated and the 

mature mRNA was reduced to 50% compared to control cells (Figure 22B, right graph). 

The effect on the endogenous transcripts was less severe, which can be explained by 

the long half-life of both mRNAs. Whereas the reporter constructs were only 

expressed 12 hours after depletion of CWC22, endogenous mRNAs detected in this 

assay represent a mixed population of mRNAs that were transcribed (and spliced) 

before and after siRNA-induced depletion of CWC22. Nevertheless, the overall results 

for both types of mRNA are similar and provide very strong evidence for an essential 

role of CWC22 during pre-mRNA splicing in human cells. 

 

 

Figure 22: siRNA-mediated knockdown of CWC22 impairs pre-mRNA splicing. (A) HeLa cells were 
transfected with two different siRNAs (CWC22(A) and CWC22(B)) targeting CWC22 mRNA. siRNA against 
luciferase mRNA (Luc) served as a negative control. The knock down efficiency was assessed by 
immunoblotting with an antibody against endogenous CWC22. Tubulin served as a loading control. (B) 
qRT-PCR analysis showing the fold change of pre-mRNA and mRNA levels upon CWC22-depletion for β-
globin and TPI reporter mRNAs (left side) and endogenous ACTB and GAPDH transcripts (right side). 
Numbers beside the bars represent the ratio between pre-mRNA and mRNA. Error bars represent the 
standard deviation between 3 individual experiments. 
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4.3.2 MIF4G and MA3 domains of CWC22 are required for pre-mRNA splicing 

In yeast, a segment of Cwc22 consisting of the MA3 domain and a conserved 

downstream region is sufficient to rescue growth in CWC22-deficient cells (Yeh et al., 

2011). Moreover, the corresponding recombinant piece of CWC22 could complement 

splicing in CWC22-depleted cell extracts (Yeh et al., 2011). Taken together, these 

results demonstrate that the MA3, but not the MIF4G domain of Cwc22, is sufficient to 

support pre-mRNA splicing in yeast.  

In order to decipher which parts of CWC22 are required for pre-mRNA splicing in 

human cells, I performed complementation experiments with siRNA-resistant CWC22-

constructs in CWC22-depleted cells. To circumvent the need for transient transfection, 

stable HEK293 Flp-In T-REx cell lines (Invitrogen) expressing doxycycline-inducible 

CWC22 were generated. This system deploys the FLP DNA recombination system 

derived from S.cerevisiae to facilitate the targeted integration of a transgene into the 

genome of mammalian cells (see Material and Methods (Craig, 1988; Sauer, 1994)). 

The inserted gene is expressed under the control of the human cytomegalovirus 

immediate-early (CMV) promotor and two tetracycline operator (TO) sites (derived 

from the E.coli tetracycline resistance operon (Hillen and Berens, 1994)) so that 

protein expression is constitutively repressed by a Tet-repressor (TetR) and only 

induced when doxycycline (a tetracycline-derivative) is added (see Materials and 

Methods).  

A total of six stable cell lines was generated, expressing siRNA-resistant FLAG-

CWC22(WT), FLAG-CWC22(1-409), FLAG-CWC22(340-908), FLAG-CWC22(110-665), as 

well as the mutant versions FLAG-CWC22(NK-171/2-DE) and FLAG-CWC22(110-665; 

NK-171/2-DE). Flp-In 293 cells without an integrated transgene served as a negative 

control. Protein expression upon doxycycline treatment was verified by 

immunoblotting with an antibody against the FLAG-tag (Figure 23A, Figure 24A, Figure 

26A). Subsequently, the effect of CWC22-depletion was analyzed by qRT-PCR as 

described in paragraph 4.3.1. Prior to this, CWC22 had only been depleted in HeLa cells 

(Figure 22); to test if Flp-In 293 cells are equally amenable to siRNA-mediated knock 

down, the effect of CWC22-depletion on splicing of GAPDH and ACTB mRNA was 

analyzed in control cells (Figure 23B). To avoid the need for an internal unspliced 
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control, the ratio of pre-mRNA/mRNA was calculated for each sample. Notably, the 

change in the pre-mRNA/mRNA ratio upon CWC22-depletion was less pronounced in 

Flp-In 293 cells compared to HeLa cells (2-6 fold compared to 13-19 fold; Figure 23B 

and Figure 22B). Flp-In 293 cells tend to grow in heaps, which possibly resulted in a 

lower knock down efficiency compared to HeLa cells. Since stronger effects were 

observed for GAPDH mRNA compared to ACTB, all subsequent complementation 

experiments were performed using GAPDH primer pairs.  

Importantly, expression of siRNA-resistant FLAG-CWC22 completely restored pre-

mRNA splicing in knock down cells, which confirms the specificity of the knock down 

and demonstrates the feasibility of the complementation experiment (Figure 23C). 

Analyzing three truncated versions of CWC22 revealed that neither the N-terminal half 

of CWC22 (FLAG-CWC22(1-409)), nor the C-terminal segment of the protein (FLAG-

CWC22(340-908)) were able to restore splicing in CWC22-depleted cells (Figure 23C). 

In contrast, the central piece of CWC22 that contains both MIF4G and MA3 domain 

(FLAG-CWC22(110-665)) displayed a similar rescuing potential as the WT protein 

(Figure 23C). This observation is surprising, since only the full length protein, but not 

the truncated version (FLAG-CWC22(110-665)) was able to efficiently precipitate 

AdML-PT60 in in vitro splicing experiments (Figure 12C). The results show that even 

though CWC22(110-665) interacts less efficiently with the spliceosome, it is sufficient 

to rescue pre-mRNA splicing in an over-expression system. The central piece of 

CWC22, containing both MIF4G and MA3 domain, thus represents the minimal 

fragment that can support pre-mRNA splicing in human cells.  
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Figure 23: The MIF4G and MA3 domain of CWC22 are required for pre-mRNA splicing. (A) Stable Flp-In 
293 cells were induced with doxycycline and expression of FLAG-CWC22 constructs was assessed by 
immunoblotting with an FLAG-specific antibody. (B) Fold change in pre-mRNA/mRNA ratio of GAPDH 
and ACTB upon CWC22-depletion in Flp-In control cells was quantified by qRT-PCR. Bars represent the 
mean of three independent experiments; error bars depict the standard deviation (SD). (C) CWC22 
complementation assay. Protein expression in Flp-IN 293 cells was induced by doxycycline and the 
change in pre-GAPDH/GAPDH ratio upon CWC22-depletion was analyzed as described in (B).       

4.3.3 The interaction between CWC22 and eIF4A3 is dispensable for splicing 

In vitro splicing experiments showed that the binding of CWC22 to eIF4A3 is not 

required for the interaction between CWC22 and AdML-PT60 mRNA (Figure 21). 

Whether this interaction is equally dispensable for the function of CWC22 during pre-

mRNA splicing, remains elusive. Hence, the link between pre-mRNA splicing and 

eIF4A3 interaction was investigated using an eIF4A3-binding deficient mutant of 

CWC22.  

Surprisingly, the over-expression of FLAG-CWC22(NK-171/2-DE) induced massive cell 

death, even in the absence of CWC22-depletion, indicating that the protein has a 

dominant negative effect on cell viability (discussed in paragraph 4.3.4). Depleting 

endogenous CWC22 in FLAG-CWC22(NK-171/2-DE)-expressing cells further aggravated 

the effect and made it impossible to analyze pre-mRNA splicing by qRT-PCR.  

Since FLAG-CWC22(110-665) had a similar rescuing potential as full-length FLAG-

CWC22 (Figure 23C), the experiment was repeated with this shorter version of CWC22. 

Of note, over-expression of FLAG-CWC22(110-665; NK-171/2-DE) did not promote cell 

death, so that the mutant could be compared to FLAG-CWC22(110-665) in 

complementation experiments. Interestingly, both FLAG-CWC22(110-665)  and FLAG-

CWC22(110-665; NK-171/2-DE) were able to restore splicing in CWC22-depleted cells 

(Figure 24B), indicating that the interaction with eIF4A3 is not required for the function 

of CWC22 during pre-mRNA splicing.  
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Figure 24: The interaction between CWC22 and eIF4A3 is not required for pre-mRNA splicing. (A) 
Expression of FLAG-CWC22 constructs in doxycycline-induced stable Flp-In 293 cells was assessed by 
immunoblotting with an antibody against FLAG. (B) CWC22 complementation assay. Protein expression 
in Flp-IN 293 cells was induced with doxycycline and the change in pre-GAPDH/GAPDH ratio upon 
CWC22-depletion was analyzed by qRT-PCR. Bars represent the mean of three independent 
experiments; error bars depict the standard deviation (SD).  

4.3.4 Over-expression of FLAG-CWC22(NK-171/2-DE) is toxic for HEK293 cells 

Over-expression of FLAG-CWC22(NK-171/2-DE) in Flp-In 293 cells led to massive cell 

death. The observed effect was quantified with a luminescence-based cell viability 

assay. The CellTiter-Glo assay (Promega) uses ATP from metabolically active cells to 

catalyze the mono-oxygenation of luciferin, which results in a stable luminescent 

signal. The measured luminescence is therefore directly proportional to the number of 

viable cells.  

Equal numbers of Flp-In cells with integrated FLAG-CWC22(WT), FLAG-CWC22(NK-

171/2-DE) or without an integrated transgene were grown in 96-well plates in 100 µl 

cell culture medium.  Twelve hours after seeding, transgene expression was induced 

by adding doxycycline and the number of viable cells was determined after 0, 12, 24, 

36 and 48 hours using the CellTiter-Glo assay (Figure 25). Interestingly, Flp-In cells 

expressing FLAG-CWC22(NK-171/2-DE) already displayed severely reduced numbers of 

viable cells after 12 hours. In contrast, over-expression of FLAG-CWC22(WT) had no 

effect on the survival of cells. These observations demonstrate that over-expression of 

FLAG-CWC22(NK-171/2-DE) has a very rapid effect on cell viability and suggest that the 

FLAG-CWC22(NK-171/2-DE) might impinge on both proliferation and survival of cells. 

Additional tests that distinguish between cytotoxic and cytostatic effects will be 

necessary to identify the exact mechanism by which over-expression of FLAG-

CWC22(NK-171/2-DE) impairs cell viability. 
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Figure 25: Over-expression of FLAG-CWC22 (NK-171/2-DE) decreases the number of viable cells. 
CellTiter-Glo assay on Flp-In cells over-expressing FLAG-CWC22 (WT), FLAG-CWC22(NK-171/2-DE) (171-
DE) or no protein (neg.) Luminescent signal (relative light units, RLU) is proportional to the number of 
viable cells per well. Error bars represent the standard deviation (SD) of 4 experiments.  

 

4.3.5 Over-expression of FLAG-CWC22(NK-171/2-DE) inhibits EJC assembly without 

impairing pre-mRNA splicing 

Over-expression of FLAG-CWC22(NK-171/2-DE) in Flp-In 293 cells induced cell death. 

Since this effect was detectable in the presents of endogenous CWC22, it implied that 

FLAG-CWC22(NK-171/2-DE) exerts a dominant negative effect on vital cellular 

processes. The crucial role of CWC22 during pre-mRNA splicing and EJC assembly 

suggested that either one or both of these functions are impaired in FLAG-CWC22(NK-

171/2-DE) over-expressing cells. To identify the cause of cell death, splicing in Flp-In 

293 cells was analyzed by qRT-PCR. To this end, expression of FLAG-CWC22, FLAG-

CWC22(NK-171/2-DE) and FLAG-CWC22(110-665; NK-171/2-DE) was induced with 

doxycycline (Figure 26A). 48 hours after transgene expression, the change in the pre-

GAPDH/GAPDH ratio compared to un-induced control cells was determined by qPCR 

(Figure 26B). Neither the expression of FLAG-CWC22, nor of FLAG-CWC22(110-665; 

NK-171/2-DE) had any effect on pre-mRNA splicing (Figure 26B). Over-expression of 

FLAG-CWC22(NK-171/2-DE) led to a very small increase (~2-fold) in pre-mRNA/mRNA 

ratio, indicating that splicing is slightly impaired (Figure 26B). However, this small 

splicing defect is not likely to cause the observed cell death, since depletion of CWC22 

results in a more pronounced splicing defect (Figure 22-23) but appeared to be less 

toxic.  
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Figure 26: Over-expression of FLAG-CWC22(NK-171/2-DE) does not affect pre-mRNA splicing. (A) 
Expression of FLAG-CWC22 constructs in doxycycline-induced stable Flp-In 293 cells was assessed by 
immunoblotting with an antibody against FLAG. (B) Flp-IN 293 cells were induced with doxycycline and 
the change in pre-GAPDH/GAPDH compared to un-induced control cells was analyzed by qRT-PCR. Bars 
represent the mean of three independent experiments; error bars depict the standard deviation (SD).  

 

The effect of FLAG-CWC22(NK-171/2-DE) over-expression on EJC assembly was 

analyzed next. Since there is no reliable assay to quantify the number of EJCs in living 

cells, I measured the expression of endogenous NMD targets as an indirect marker for 

EJC assembly. Endogenous NMD targets are naturally occurring transcripts, whose 

expression is regulated by the NMD machinery. It most cases, the degradation of 

endogenous NMD targets is initiated by an EJC downstream of the termination codon. 

Thus, inhibition of EJC assembly will prevent NMD and lead to an up-regulation of 

endogenous NMD targets. 

I determined mRNA levels of the endogenous NMD targets SC35 (1.7 kb version) and 

GAS5, normalized to an internal control (tata box binding protein (TBP)). The 1.7 kd 

transcript of splicing factor SC35 (also known as SRSF2) is part of an auto-regulatory 

feedback loop that controls SC35 expression by PTC-activated NMD (Sureau et al., 

2001). Likewise, the snoRNA-encoding pseudogene GAS5 (growth arrest-specific 5) 

contains a PTC and is rapidly degraded by NMD. As expected, siRNA mediated knock 

down of the EJC proteins Y14 and eIF4A3 resulted in a drastic increase in SC35 and 

GAS5-mRNA levels (Figure 27B), demonstrating that both mRNAs are negatively 

regulated by EJC-dependent NMD. Interestingly, over-expression of FLAG-CWC22(NK-

171/2-DE), but not FLAG-CWC22 or FLAG-CWC22(110-665;NK-171/2-DE), caused an 
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equally strong up-regulation of SC35 (1.7kd) and GAS5 mRNA (Figure 27A). These 

results suggest that over-expression of CWC22(NK-171/2-DE) impairs EJC assembly, 

thereby causing the observed toxic effect. It is interesting to note that over-expression 

of the shorter version FLAG-CWC22(110-665;NK-171/2-DE) did not change the 

expression levels of SC35 and GAS5 mRNA. This could be due to a weaker expression of 

FLAG-CWC22(110-665;NK-171/2-DE) compared to FLAG-CWC22(NK-171/2-DE) (Figure 

26A). Alternatively, it might indicate that only the full-length version CWC22, which 

very efficiently interacts with the spliceosome (Figure 12), can exert a dominant 

negative effect over endogenous CWC22.  

 

Figure 27: Over-expression of FLAG-CWC22(NK-171/2-DE) leads to an up-regulation of endogenous 
NMD targets similar to the effect of EJC-protein depletion. (A) Flp-In 293 cells were induced with 
doxycycline and the change in SC35 (1.7kb) and GAS5 mRNA levels compared to uninduced control cells 
were quantified by qRT-PCR. (B) Quantification of the change in SC35 (1.7kb) and GAS5 mRNA levels 
upon depletion of EJC proteins Y14 and eIF4A3. All bars represent the mean of three independent 
experiments. Error bars = SD.  

 

The results presented in the paragraph 4.3.3 and 4.3.5 indicated that the functions of 

CWC22 during pre-mRNA splicing an EJC assembly are not directly linked. An eIF4A3-

binding deficient mutant of CWC22 was able to support pre-mRNA splicing in CWC22-

depleted cells (Figure 24), whereas the dominant negative mutant of CWC22 inhibited 

EJC assembly without impairing pre-mRNA splicing. The implications of these findings 

for gene regulation in human cells will be discussed in the next section of this thesis. 



 Discussion  

 

67 

5 Discussion 

5.1 CWC22 links pre-mRNA splicing and EJC assembly 

The EJC is a key regulator of mRNA metabolism that assembles preferentially on 

spliced mRNA in the nucleus. Even though the composition and function of EJCs have 

been studied extensively, the mechanism of splicing-dependent EJC assembly re-

mained elusive. In this study, I describe the identification of CWC22 as a direct spliceo-

somal interaction partner of the EJC protein eIF4A3, thus establishing a first link be-

tween the splicing machinery and the EJC. 

Using a combination of biochemical and cell biological assays, I could demonstrate that  

(a) CWC22 directly interacts with eIF4A3 via its MIF4G domain;  

(b) the interaction between CWC22 and eIF4A3 is required for splicing-dependent EJC 

assembly; 

(c) CWC22 is an essential pre-mRNA splicing factor in human cells; and 

(d) the functions of CWC22 during pre-mRNA splicing and EJC assembly can be experi-

mentally uncoupled.  

The data of this study is supported and complemented by three recent reports that 

describe the biochemical and structural characterization of the CWC22-eIF4A3 

interaction in vitro and in cell extracts (Alexandrov et al., 2012; Barbosa et al., 2012; 

Buchwald et al., 2013).    

5.2 The eIF4A3-CWC22 complex shows a conserved interaction pattern 

5.2.1 The CWC22/eIF4A3 structure confirms a eIF4G/eIF4A-like interaction 

Immunoprecipitation experiments with deletion mutants of CWC22 revealed that the 

MIF4G domain of CWC22 directly interacts with eIF4A3 (Figure 8, Figure 9). This highly 

conserved domain is also found in other proteins that bind DEAD-box helicases, such 

as eIF4G, NOM1 and Gle1, where it mediates the interaction with eIF4A1, eIF4A3 and 
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Dbp5, respectively. Successful modeling of the interaction between CWC22 and eIF4A3 

with an existing eIF4G-eIF4A X-ray structure suggested that both protein complexes 

use a similar interaction pattern (Figure 14-16). This hypothesis was supported by the 

recently solved crystal structure of eIF4A3 in complex with the MIF4G domain of 

CWC22 (Buchwald et al., 2013). Importantly, the crystal structure confirmed several of 

the interacting residues previously identified by site-directed mutagenesis based on 

the CWC22-eIF4A3 model (Figure 28-29). The MIF4G domain of CWC22 comprises 

amino acid residues 149–345. Similar to the MIF4G domain of eIF4G, it features 5 

HEAT repeats (10 α-helices) that form a crescent shaped molecule. In the co-crystal 

structure, helix α1 and α4 of CWC22-MIF4G contact the RecA2 domain of eIF4A3, 

whereas helix α10 interacts with RecA1 (Buchwald et al., 2013). Moreover, an N-

terminal extension (residues 123–141) of the molecule is involved in binding to eIF4A3. 

Tyr-133 and Arg-140 of the N-terminal extension contact Asp-270 and Asp-266 of 

eIF4A3, explaining why mutating Asp-270 of eIF4A3 strongly reduced the interaction 

between both proteins (Figure 16).  

 

Figure 28: An N-terminal extension of the CWC22 MIF4G domain interacts with the RecA2 domain of 
eIF4A3. Crystal structur of eIF4A3 in complex with the MIF4G domain of CWC22 (PDB file 4C9B). The 
interacting residues are highlighted in light blue (CWC22) and light organge (eIF4A3).The interacting 
residue Asp-270 has been identified by homology modeling. 

Furthermore, the crystal structure revealed that Asn-171 on helix α1 of CWC22 

(together with Phe-211 and Tyr-215 on helix α4) contacts eIF4A3 Arg-329, whereas 

Lys-172 and Lys-164 of CWC22 form hydrogen bonds with Asp-270, Asp-273 and Ala-

300 of eIF4A3. In line with the structural data, I could show that mutating CWC22 Asn-

171 and Lys-172, as well as eIF4A3 Asp-270, Asp-273 and the amino acids adjacent to 

Ala-300 (NFT-301-LAG) strongly reduced the interaction between CWC22 and eIF4A3 

in Co-IP and in vitro pulldown experiments (Figure 15-16). In summary, all point 
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mutants identified through homology modeling are directly involved in the interaction 

between CWC22 and eIF4A3, or in very close proximity to interacting residues (Figure 

28, 29).   

Interestingly, Asp-270 of eIF4A3 is involved in two intermolecular interactions at once. 

The importance of this residue is further highlighted by the fact that an AspGly 

mutation has been found in a patient with Richieri-Costa-Pereira syndrome, an 

autosomal-recessive craniofacial disorder (Favaro et al., 2014).   

 

Figure 29: A crystal structure confirms interacting residues identified by homology modeling. Crystal 
structur of eIF4A3 in complex with the MIF4G domain of CWC22 (PDB file 4C9B). The interacting 
residues are highlighted in light blue (CWC22) and light organge (eIF4A3). Asp-270 and Asp-273 of 
eIF4A3 and Lys 172 of CWC22 have been identified by homology modeling.  

 

5.2.2 The MIF4G domain of CWC22 regulates the conformation of eIF4A3 

The co-crystal structure revealed that the major interaction surface of eIF4A3 and 

CWC22 is composed of the RecA2 domain of eIF4A3 and the N-terminal helices (HEAT1 

and HEAT2) of CWC22-MIF4G (Buchwald et al., 2013). This observation was further 

supported by ITC experiments, showing that the affinity of eIF4A3 for CWC22 is mostly 

determined by the RecA2 domain (Buchwald et al., 2013). These findings explain why I 
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was unable to identify point mutants in the RecA1 domain of eIF4A3 or the C-terminal 

part of CWC22-MIF4G that impair the interaction between both proteins (Figure 21C 

and Supplementary Figure 1). Whereas strong interactions anchor the RecA2 domain 

of eIF4A3 to the N-terminal helices of CWC22-MIF4G, additional weak interactions 

between the RecA1 domain of eIF4A3 and helix α10 of CWC22-MIF4G determine the 

relative orientation of the RecA-like domains within the complex. By interacting with 

both RecA-like domains of eIF4A3, the MIF4G domain fixes the helicase in an extended 

conformation (Buchwald et al., 2013). A similar mechanism has been described for the 

interaction of eIF4G with eIF4A and Gle1 with Dbp5 (Montpetit et al., 2011; Schutz et 

al., 2008). In all three cases, the N-terminal helices of the MIF4G domain bind the 

RecA2 domain of the helicase, whereas the C-terminal helices are involved in a 

‘latching’ mechanism that determines the orientation of RecA1 relative to RecA2. But 

while eIF4G and Gle1 stabilize their respective DEAD-box helicases in an activated 

conformation, CWC22-MIF4G has the opposite effect on eIF4A3. Upon binding to 

CWC22-MIF4G, the RecA-like domains of eIF4A3 are rotated approximately 90° with 

respect to each other, adopting a conformation that is incompatible with RNA and ATP 

binding (Buchwald et al., 2013). It has been suggested that this conformation is 

responsible for the inhibitory effect of CWC22 on the ATPase activity of eIF4A3 ob-

served in vitro (discussed in chapter 5.3 (Barbosa et al., 2012; Buchwald et al., 2013).  

Taken together, eIF4G, Gle1 and CWC22 use similar mechanisms to interact with 

eIF4A, Dbp5 and eIF4A3 respectively, suggesting that the overall mode of interaction 

between DEAD-box helicases and their MIF4G interaction partners is conserved. Subtle 

differences in the ‘latching’ mechanism determine whether the interaction has a 

stimulatory or inhibitory effect on the helicase (Buchwald et al., 2013; Montpetit et al., 

2011; Schutz et al., 2008). Despite the overall conserved interaction pattern, MIF4G-

domain proteins display a high degree of specificity for their respective helicases. This 

is exemplified by the fact that I was unable to co-precipitate eIF4A3 together with 

CBP80 or eIF4A1 together with CWC22 (Figure 7). Small variations at the interaction 

surface confer specificity and thus ensure that only the appropriate helicase is 

regulated.     
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5.2.3 The MIF4G-domain emerges as a common regulator of RNA helicases 

Considering the large number of DExD/H-box helicases involved in RNA metabolism, it 

is intriguing to speculate that other RNA helicases are regulated in a similar way. Sev-

eral proteins involved in mRNA metabolism contain one or more MIF4G domains, 

among them the NMD factor Upf2 (3 MIF4G domains), the cap-binding protein CBP80 

(1 MIF4G and 2 MIF4G-like domains), the CBP80/20-dependent translation initiation 

factor (CTIF, 1 MIF4G domain) and the polyadenylate-binding protein-interacting pro-

tein 1 (PAIP1, 1 MIF4G domain). The interaction of PAIP1 with the DEAD-box helicase 

eIF4A1 exerts a stimulatory effect on translation initiation (Craig et al., 1998). The 

crystal structure of the MIF4G domain of PAIP1 revealed that it adopts a similar fold as 

the MIF4G domain of eIF4G (Lei et al., 2011). Most importantly, the major eIF4A-

interaction surface on helix α1 of eIF4G is conserved in PAIP1, suggesting that both 

proteins use equivalent residues to interact with the DEAD-box helicase (Lei et al., 

2011). Further studies will be required to verify whether PAIP1 uses a similar 

mechanism as eIF4G to regulate the ATPase activity of eIF4A1. So far, no direct 

DExD/H-box interaction partners have been described for Upf2, CBP80 or CTIF, but 

their intimate connection to mRNP remodeling makes them likely candidates for the 

regulation of RNA helicases. Moreover, it is conceivable that some MIF4G-domain 

proteins have more than one target helicase. In particular, CWC22 might be involved in 

the regulation of spliceosomal DExD/H-box helicases. In yeast, Cwc22 controls the 

DEAH-box helicase Prp2 by coupling ATP hydrolysis to spliceosomal remodeling (Yeh et 

al., 2011). To date, no similar function has been described for human CWC22, but the 

high degree of conversation between yeast and human spliceosome suggests that 

CWC22 might also regulate the human Prp2 homolog DHX16. Further studies will be 

required to identify novel MIF4G-DExD/H-box interaction pairs. The available 

structural information on eIF4G-eIF4A, Gle1-Dbp5 and CWC22-eIF4A3 complexes will 

likely help to generate models for the interaction and aid the structure-guided 

mutagenesis as described for CWC22 and eIF4A3 in this study. The discovery of other 

MIF4G-proteins and their respective helicases will expand our understanding of the 

regulatory network that controls the spatial and temporal activation of RNA helicases 

during mRNP remodeling and eukaryotic gene expression.   



 Discussion  

 

72 

5.3 CWC22 mediates splicing-dependent EJC assembly 

The direct interaction of eIF4A3 with the spliceosomal protein CWC22 pointed to a role 

for CWC22 during EJC assembly. And indeed, I was able to show that eIF4A3 mutants 

that are unable to interact with CWC22 fail to form EJCs during in vitro splicing reac-

tions (Figure 18). This effect was strictly splicing-dependent, since the same point mu-

tations did not impair the assembly of EJCs from recombinant components (Figure 17). 

Taken together, these results strongly suggest that CWC22 has a prominent role during 

EJC assembly. This hypothesis was further supported by two recent reports 

(Alexandrov et al., 2012; Barbosa et al., 2012). They showed that co-expression of 

recombinant CWC22 promotes the incorporation of eIF4A3 into splicing-dependent 

EJCs (Barbosa et al., 2012). Furthermore, knockdown of CWC22 impaired the 

interaction of eIF4A3 with cellular mRNAs and triggered the up-regulation of en-

dogenous NMD targets (Alexandrov et al., 2012; Barbosa et al., 2012). Finally, mutating 

Thr-304 on eIF4A3 decreased the affinity for spliced mRNA, an effect that was exacer-

bated by the co-expression of mutant CWC22(G168Y) (Alexandrov et al., 2012).  

5.3.1 CWC22 recruits eIF4A3 to the spliceosome 

CWC22 is an abundant component of the activated spliceosome and spliceosomal C-

complex (Bessonov et al., 2008). Together with the finding that CWC22-binding defi-

cient eIF4A3 mutants fail to interact with early splicing intermediates (Figure 18B), this 

suggested that CWC22 mediates EJC assembly by recruiting eIF4A3 to the early 

spliceosome. To carry out this function, CWC22 needs to interact with the splicing 

machinery. The domains of CWC22 that mediate spliceosomal interaction are not well 

defined, but in vitro splicing experiments revealed that only full-length CWC22 

interacted strongly with the splicing machinery (Figure 12). Whereas CWC22(110-665) 

showed residual binding to splicing intermediates, all shorter pieces of CWC22 

completely failed to interact with the spliceosome (Figure 12). In line with this 

observation, recombinant GST-CWC22(110-409), which binds eIF4A3 but does not 

interact with the splicing machinery, had a dominant negative effect on splicing-

dependent EJC assembly (Figure 20). In contrast, a slightly larger piece of CWC22, 

comprising MIF4G and MA3 domain (amino acid residues 100-665), was able to 

promote EJC assembly in cell extracts, demonstrating that in an over-expression 
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system, the residual spliceosomal interaction of CWC22(100-665) is sufficient to recruit 

eIF4A3 to the spliceosome (Barbosa et al., 2012). Notably, size fractionation of cell 

lysates revealed that CWC22 and eIF4A3 exist in large RNase-resistant protein 

complexes together with the spliceosomal protein Prp19 (Barbosa et al., 2012). It will 

be interesting to determine which other proteins associate with CWC22 and eIF4A3. 

The identification of spliceosomal interaction partners of CWC22 will be instrumental 

in unraveling the mechanism of eIF4A3 recruitment and EJC assembly. 

5.3.2 The core EJC proteins are recruited to the spliceosome via different routes 

In cell extracts, CWC22 does not interact with the MAGOH/Y14 heterodimer or BTZ 

(Figure 10A, C), supporting the prior notion that the EJC core components are 

recruited to the spliceosome via separate routes (Gehring et al., 2009a). Whereas BTZ 

might be able to associate with the pre-EJC after disassembly of the spliceosome, 

incorporation of MAGOH/Y14 into EJCs is strictly splicing-dependent (Gehring et al., 

2009a). To fully understand the mechanism of splicing-dependent EJC assembly, it is 

therefore important to identify factors that mediate the spliceosomal recruitment of 

MAGOH/Y14. Immunoprecipitation of endogenous EJCs identified a large number of 

interacting proteins, among them many spliceosomal proteins and splicing factors 

(Singh et al., 2012). Especially SR proteins were found to be over-represented in the 

EJC interactome. However, the high complexity of the splicing machinery hampers the 

identification of individual proteins that might mediate the spliceosomal recruitment 

of MAGOH/Y14. In the future, more detailed interaction studies and in vitro binding 

assays will be required to identify direct spliceosomal interaction partners of MAGOH 

and Y14.  

5.3.3 EJC assembly requires a rearrangement of the eIF4A3-CWC22 interaction 

In vitro pulldown experiments revealed that binding of eIF4A3 to MAGOH/Y14 and 

CWC22 is mutually exclusive (Figure 10B). This observation implies that during EJC 

assembly, the interaction between CWC22 and eIF4A3 has to be resolved in order to 

allow binding of MAGOH/Y14. Accordingly, CWC22 is not found in post-splicing mRNPs 

(Figure 11A). In vitro, MAGOH/Y14 and CWC22 compete for the binding to eIF4A3, so 

that an excess of recombinant CWC22 impairs the assembly of recombinant EJCs 
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(Figure 19), while the presence of MAGOH/Y14 reduces the affinity of eIF4A3 for 

CWC22 (Barbosa et al., 2012). It remains to be elucidated whether a similar 

competition mechanism mediates EJC assembly in living cells. It should be noted that 

MAGOH/Y14 only interact with the closed conformation of eIF4A3, whereas CWC22 

holds eIF4A3 in an open conformation (Andersen et al., 2006; Bono et al., 2006; 

Buchwald et al., 2013). It is possible that MAGOH/Y14 play an active role in displacing 

CWC22 from eIF4A3. However, because the heterodimer can only interact with the 

closed helicase, this would require eIF4A3 to switch from open to closed conformation 

while still bound to CWC22. Binding of MAGOH/Y14 to eIF4A3 would then displace 

CWC22 and fix the assembled complex on the mRNA. Alternatively, an additional 

(spliceosomal) factor might regulate the rearrangement. This factor would actively 

break the interaction between CWC22 and eIF4A3, thereby allowing the helicase to 

adopt its close conformation and facilitating the binding of MAGOH/Y14. Many 

spliceosomal proteins could be involved in remodeling the eIF4A3-CWC22 interaction 

during splicing. In particular, spliceosomal DExD/H-box helicases might compete with 

eIF4A3 for CWC22-binding. An interesting candidate is the spliceosomal DEAH-box 

helicase Prp22. Prp22 is involved in the late stages of splicing by mediating exon 

ligation and the release of mRNA from the intron-lariat-spliceosome (ILS) (Company et 

al., 1991; Fourmann et al., 2013; Schwer, 2008). Moreover, is has been suggested that 

the ATPase activity of Prp22 (HRH1 in human cells) is required for the assembly of EJCs 

on spliced mRNA (Zhang and Krainer, 2007). In line with a possible role for Prp22 in 

breaking the association between eIF4A3 and CWC22, is the observation that Prp22 

triggers the release of CWC22 from the post-catalytic spliceosome (Fourmann et al., 

2013). It is therefore conceivable that the individual EJC components are recruited to 

the spliceosome prior to exon ligation (as part of the C-complex), but stable complex 

assembly takes place after the second catalytic step of splicing, upon Prp22-mediated 

release of CWC22 from eIF4A3. Even though this model would provide a plausible 

explanation for the role of Prp22 during EJC assembly, it is difficult to reconcile with 

previous data showing that MAGOH/Y14 require the interaction with eIF4A3 and the 

EJC deposition site to bind the early spliceosome (Gehring et al., 2009a). Further 

studies will be required to unravel how and when the EJC assembles on spliced mRNA 
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and whether DExD/H-box helicases or additional spliceosomal proteins play a 

regulatory role in the process. 

Based on the current knowledge, I propose a four-step model for the CWC22-mediated 

assembly of EJCs (Figure 30). The initial event in EJC assembly is the binding of eIF4A3 

to CWC22 (step 1). It remains to be elucidated wether both proteins engage the 

spliceosome individually or as a heterodimer. The spliceosomal interactions of CWC22 

anchor eIF4A3 to the splicing machinery (step 2). In the following step, the interaction 

between CWC22 and eIF4A3 is broken to allow MAGOH/Y14 to bind to the helicase 

(step 3). Finally, spliceosomal remodeling leads to the release of the intron-lariat 

spliceosome and CWC22 from the spliced mRNP (step 4).  

 

 

Figure 30: A 4-step model for the CWC22-mediated assembly of EJCs. For further description, see 
paragraph 5.3.3. 

 

5.3.4 The ATPase activity of eIF4A3 is dispensable for spliceosomal recruitment 

A recent study showed that CWC22 reduces the affinity of eIF4A3 for ssRNA in vitro 

(Barbosa et al., 2012). Likewise, CWC22 inhibits the RNA-dependent ATPase activity of 

eIF4A3 (Barbosa et al., 2012). It was suggested that CWC22 prevents RNA-binding and 

ATP hydrolysis by fixing eIF4A3 in an inactive conformation (Buchwald et al., 2013). 

This inactive conformation was proposed to prevent premature RNA binding of eIF4A3. 

It should be noted however, that the ATPase activity of eIF4A3 in the absence of BTZ is 

very weak (Ballut et al., 2005). Moreover, the weak latching interaction between the 

RecA1 domain of eIF4A3 and the MIF4G domain of CWC22 might allow the helicase to 

adopt its closed conformation while still being tightly anchored to CWC22 via its RecA2 



 Discussion  

 

76 

domain (Buchwald et al., 2013). It therefore remains to be elucidated whether the 

inhibition of ATPase activity is required for EJC assembly in living cells. Notably, 

mutating Cys-99 on the RecA1 domain of eIF4A3 did not affect the incorporation of 

FLAG-eIF4A3 into splicing-dependent EJCs (Supplementary Figure 4). In the crystal 

structure, Cys-99 contacts Lys-330, Tyr-334 and Val-338 of CWC22, thus composing the 

main CWC22-interacting residue of the RecA1 domain (Figure 31 (Buchwald et al., 

2013)). It remains to be experimentally verified whether the eIF4A3(C-99-Q) mutant is 

indeed immune to ATPase inhibition through CWC22. However, the observation that 

this mutant displays no EJC assembly defect is a first hint that ATPase inhibition might 

not be required for EJC assembly in vivo.  

 

 

Figure 31: Interactions between the RecA1 domain of eIF4A3 and helix α-10 of CWC22 fix the helicase 
in an inactive conformation. (A) Crystal structur of eIF4A3 in complex with the MIF4G domain of CWC22 
(PDB file 4C9B). Cys-99 of eIF4A3 is depicted in red, the interacting residues of CWC22 are highlighted in 
light blue. (B) Scheme of the relative orientation of the RecA-like domains of eIF4A3 in complex with the 
MIF4G domain of CWC22. Note the solvent-exposed ATP-binding site of RecA1.  

 

Whereas the importance of ATPase inhibition is still under debate, there is ample 

evidence that CWC22 does not stimulate the ATPase activity of eIF4A3 (Barbosa et al., 

2012; Buchwald et al., 2013). This is in line with a previous report, showing that ATP 

hydrolysis is not required for eIF4A3-incorporation into spliceosomes (Shibuya et al., 

2006). Instead of regulating the ATPase activity of eIF4A3, CWC22 might simply 

function as an adapter protein that mediates the association of eIF4A3 with the 

spliceosome.  
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5.4  CWC22 is required for pre-mRNA splicing in human cells 

Cwc22 was originally described in Saccharomyces cerevisiae as one of 26 proteins that 

associate with the splicing factor Cef1/Ntc85 (named CWC for complexed with Cef1) 

(Ohi and Gould, 2002). Cef1/Ntc85 is an integral component of the NTC (nineteen 

complex) that is named for its association with the spliceosomal protein Prp19. The 

NTC is involved in spliceosomal activation by stabilizing the interaction of U5 and U6 

snRNPs with the pre-mRNA (Chan and Cheng, 2005). A more recent study reported 

that Cwc22 is not tightly associated with the NTC, but requires the presence of the NTC 

for the stable association with the spliceosome (Yeh et al., 2011). Like the NTC, Cwc22 

associates with the pre-catalytic spliceosome and stays associated with the splicing 

machinery until the completion of the catalytic reaction (Yeh et al., 2011). In yeast, 

Cwc22 functions in the first catalytic step of splicing by coupling the ATP hydrolysis of 

the DEAH-box helicase Prp2 to the release of the U2 components SF3a and SF3b from 

the branch point sequence of the pre-mRNA (Yeh et al., 2011). In human cells, CWC22 

is found in the activated spliceosome and spliceosomal C-complex, but the exact 

function during pre-mRNA splicing remained elusive (Bessonov et al., 2010; Bessonov 

et al., 2008).      

Using siRNA-mediated depletion of CWC22, I could show that CWC22 is an essential 

splicing factor in human cells (Figure 22). Knockdown of CWC22 led to severe up-

regulation of pre-mRNAs and concomitant reduction of mature mRNA levels. This 

observation was supported by an independent report that showed a down-regulation 

of spliced mRNA upon CWC22 depletion (Alexandrov et al., 2012). In both cases, the 

effect could be rescued by over-expressing siRNA-resistant CWC22, which confirmed 

the specificity of the knockdown. Surprisingly, a third report did not observe a splicing 

defect upon CWC22 depletion (Barbosa et al., 2012). This discrepancy might be due to 

an insufficient knockdown in the latter study.  

5.4.1 MIF4G and MA3 domain are required for pre-mRNA splicing in humans   

Interestingly, a fragment of CWC22 comprising of MIF4G and MA3 domain was 

required for pre-RNA splicing in human cells (Figure 23). This is in contrast to data 

obtained in yeast, where a segment of Cwc22 containing the MA3 domain and a short 
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conserved downstream region is sufficient to support pre-mRNA splicing and cellular 

growth (Yeh et al., 2011). The disparity in domain requirement demonstrates that, 

even though the overall role of CWC22 in pre-mRNA splicing is conserved from yeast to 

humans, the mechanism of splicing regulation differs between species. In yeast, the 

function of CWC22 during splicing has been linked to the regulation of the DEAH-box 

helicase Prp2 (Yeh et al., 2011). It will be interesting to determine if this function 

requires a direct interaction between the MA3 domain of Cwc22 and Prp2, and 

whether the mechanism is conserved in human cells. And if so, is binding of CWC22-

MA3 to Prp2 compatible with a concomitant binding of CWC22-MIF4G to eIF4A3? 

Yeast cells do not form splicing-dependent EJCs and accordingly, eIF4A3 is not found in 

the yeast spliceosome (Fabrizio et al., 2009). It is tempting to speculate that the 

requirement for the MIF4G domain during pre-mRNA splicing in human cells, but not 

in yeast, is directly linked to the function of CWC22-MIF4G during EJC assembly. 

However, my finding that a CWC22-mutant, which is unable to interact with eIF4A3, 

can rescue splicing in CWC22-depleted cells, implies that the MIF4G domain might 

have an EJC-independent role during pre-mRNA splicing (Figure 24). Notably, a 

segment of yeast Cwc22 containing MIF4G and MA3 domain, but not the conserved 

downstream sequence, supported cellular growth in yeast, suggesting a functional 

redundancy between the MIF4G domain and the C-terminal extension of the MA3 

domain (Yeh et al., 2011). Further studies will be required to unravel the role of 

CWC22 during pre-mRNA splicing in yeast and humans. In this regard, it will be 

particularly interesting to identify direct interaction partners of MIF4G and MA3 

domain. Both eIF4A3 and Prp2 belong to the family of DExD/H-box helicases. 

Considering the conserved function of MIF4G and MA3 domains in regulating RNA 

helicases, it is reasonable to speculate that other DExD/H-box helicases might interact 

with CWC22. Eight conserved DExD/H-box helicases are involved in pre-mRNA splicing 

in human and yeast, all of which represent possible candidates for an interaction with 

CWC22.  

It will be equally important to understand whether MIF4G and MA3 domain have 

cooperative or independent functions during pre-mRNA splicing. A cooperative 

regulation has been described for the protein eIF4G, where both MIF4G and MA3 

domain are involved in regulating eIF4A (Marintchev et al., 2009). Alternatively, MIF4G 
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and MA3 domain might control different steps of pre-mRNA splicing. Of note, CWC22 

binds to the pre-catalytic spliceosome and remains associated with the splicing 

machinery throughout the whole splicing reaction (Fourmann et al., 2013). It is 

therefore conceivable that CWC22 regulates several consecutive steps of splicing. 

5.4.2 N- and C-terminal domains of CWC22 regulate spliceosomal recruitment 

Whereas the central part of CWC22 is highly conserved, the N- and C-terminal regions 

are more variable, and their size can differ considerably between species. Interestingly, 

the N- and C-terminal domains of CWC22 were not required to rescue pre-mRNA 

splicing in CWC22-depleted cells (Figure 23). This is surprising, since only the full-length 

protein successfully bound the spliceosomal C-complex (Figure 12). Most likely, over-

expression of the truncated protein could compensate for the reduced spliceosomal 

affinity. Nevertheless, it will be interesting to determine how additional sequences in 

the N- and C-terminus regulate the interaction of CWC22 with the spliceosome. Of 

note, a dominant negative point mutation of CWC22 only impaired cell viability in 

context of the full-length protein, suggesting that the truncated version is unable to 

displace endogenous CWC22 (Figure 25). 

A yeast-two-hybrid screen (Y2H) recently identified two putative spliceosomal 

interaction partners of CWC22 (Hegele et al., 2012). Like CWC22, FRG1 is a component 

of the activated spliceosome (Bact), whereas FAM32A is found in the spliceosomal C-

complex. To date, the functions of both proteins remain elusive. Further research will 

be required to verify the interaction of FAM32A and FRG1 with CWC22 and to 

determine whether they cooperate with CWC22 to regulate pre-mRNA splicing and EJC 

assembly.  

Pre-mRNA splicing and EJC assembly are closely linked processes. But whereas it is well 

established that splicing promotes EJC assembly, it remains unknown to what extent 

the EJC influences splicing. The interconnection of both events will be discussed in the 

following chapter.   
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5.5 The roles of CWC22 in pre-mRNA splicing and EJC assembly can be 

functionally uncoupled 

5.5.1 Pre-mRNA splicing and EJC assembly are closely linked processes 

Recently it was discovered that EJCs do not only regulate post-splicing mRNA 

metabolism, but can also influence the splicing process itself. Initially described for a 

small subset of genes in Drosophila, EJC proteins have also been found to regulate the 

splicing of certain mRNAs in Xenopus laevis and in human cells (Ashton-Beaucage et 

al., 2010; Haremaki and Weinstein, 2012; Michelle et al., 2012; Roignant and Treisman, 

2010). To date it is unknown how EJC proteins influence splicing and whether this 

function represents a general mechanism or is restricted to specific mRNAs. The dual 

function of CWC22 in EJC assembly and pre-mRNA splicing suggested a possible role 

for this protein in linking both processes. It has been proposed that EJC proteins might 

influence splicing by stabilizing the interaction between the spliceosome and the 

mRNA (Ashton-Beaucage et al., 2010). Accordingly, a direct interaction between the 

splicing factor CWC22 and RNA-bound eIF4A3 could facilitate the detection of 5' splice 

sites in a mechanism known as exon definition (Fox-Walsh et al., 2005). It should be 

noted however, that several nuclear EJC proteins regulate pre-mRNA splicing, but only 

eIF4A3 directly interacts with CWC22. This implies that additional factors are involved, 

or else the splicing function of EJC proteins is independent of CWC22.  

5.5.2 EIF4A3 does not influence the splicing function of CWC22 

The MIF4G domain of CWC22 is involved in both eIF4A3 binding and pre-mRNA 

splicing. In order to analyze whether both functions are directly linked, I aimed to 

experimentally uncouple pre-mRNA splicing from EJC assembly. To this end, 

endogenous CWC22 was replaced by a mutant protein (NK-171/2-DE), which is unable 

to bind eIF4A3 (Figure 24). Interestingly, the CWC22-mutant was as efficient in 

restoring pre-mRNA splicing in CWC22-depleted cells as the wild type protein. This 

demonstrates that the interaction between CWC22 and eIF4A3 is not required for pre-

mRNA splicing, and implies that the MIF4G domain has additional, EJC-independent 

functions. Consistent with this finding, the interaction with eIF4A3 was not required 

for the incorporation of CWC22 into the spliceosome (Figure 21). Taken together, 
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these results show that eIF4A3 does not significantly influence the spliceosomal 

recruitment or function of CWC22.  

5.5.3 The selective inhibition of EJC assembly is toxic in human cells 

Notably, the complementation assays with mutant CWC22 could only be performed 

with a truncated version of CWC22 (amino acid residues 110-665), because the 

mutated full-length protein had a dominant negative effect on cell viability (Figure 25). 

The toxic effect was most likely caused by an inhibition of EJC assembly, as shown by a 

drastic up-regulation of endogenous NMD targets upon expression of CWC22(NK-

171/2-DE) (Figure 27). Even though CWC22(110-665; NK-171/2-DE) is equally deficient 

in binding eIF4A3, it had no negative effect on cell viability and EJC assembly. This can 

be explained by the lower affinity of truncated CWC22 for the spliceosome (Figure 12). 

Although over-expressed CWC22(110-665; NK-171/2-DE) can replace the function of 

endogenous CWC22 during pre-mRNA splicing, it is less efficiently recruited to the 

splicing machinery. Residual endogenous CWC22 could therefore maintain basal EJC 

levels and prevent the cytotoxic effect.   

To date it remains unknown why the inhibition of EJC assembly causes cytotoxicity. A 

recent report linked the growth arrest observed upon NMD inhibition to the up-

regulation of the non-coding RNA GAS5 (growth-arrest specific transcript 5) 

(Mourtada-Maarabouni and Williams, 2013). Importantly, I observed a significant up-

regulation of GAS5 upon expression of CWC22(NK-171/2-DE) (Figure 27). Considering 

the key role of EJCs during mammalian gene expression, it is very likely that additional 

cellular processes are impaired upon CWC22(NK-171/2-DE) expression. On note, the 

growth arrest was already apparent after 12-24 hours, suggesting that fast cellular 

processes dictate the toxic response to CWC22(NK-171/2-DE) expression. 

Interestingly, expression of CWC22(NK-171/2-DE) caused an increase of SC35 and 

GAS5, but did not affect the mRNA levels of another NMD target, called UHG (Figure 

27 and Supplementary Figure 5A). In contrast, the knockdown of CWC22 led to and up-

regulation of UHG, but had a less pronounced effect on SC35 and GAS5 

(Supplementary Figure 5B (Alexandrov et al., 2012)). In the latter case, impaired pre-

mRNA splicing most likely masked the effect of defective EJC assembly. This example 

highlights the importance of distinguishing between the two functions of CWC22 and 
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demonstrates that EJC inhibition cannot be faithfully recapitulated by depleting 

CWC22. In contrast, expressing the dominant negative CWC22(NK-171/2-DE) caused a 

similar effect as the depletion of the integral EJC proteins eIF4A3 and Y14 (Figure 27). 

This confirms that the CWC22-mutant can indeed be used to selectively disrupt EJC 

assembly without changing the expression levels of endogenous EJC proteins. 

5.6 Concluding remarks 

In this study I presented the identification and characterization of CWC22 as an 

essential splicing factor that mediates EJC assembly in human cells. The finding that 

CWC22 directly binds the core EJC protein eIF4A3 and mediates its recruitment to 

spliced mRNA is a first step to understanding the splicing-dependant nature of EJC 

assembly. Nevertheless, more extensive research is required to fully unravel the 

molecular mechanism of EJC assembly in living cells. In particular, it will be important 

to identify factors that recruit the EJC proteins MAGOH and Y14 to the spliceosome. 

Moreover, it remains to be elucidated how and when the rearrangements of the 

catalytic spliceosome initiate the EJC assembly on spliced mRNAs. Finally, the current 

model does not explain why EJCs assemble invariantly 20-24 nt upstream of the exon-

exon junction. It will therefore be especially interesting to determine the factors that 

regulate the spacial control of EJC assembly. A comprehensive molecular model of 

splicing-dependent EJC assembly will eventually help to explain how mammalian cells 

integrate the individual processing steps of gene expression.  

Apart from identifying a key regulator of splicing-dependent EJC assembly, my work 

has uncovered a novel DEAD-box/MIF4G-protein interaction pair. Together with 

previous data on similar protein complexes, this suggests a conserved role for MIF4G 

domain proteins in regulating the function of RNA helicases. This study is a good 

example for the identification and characterization of novel interaction partners based 

on homology modeling. With regard to the structural conservation of the described 

protein-protein interaction, it is conceivable that other interactions can be found in a 

similar way. The identification of additional MIF4G proteins and their DExD/H-box 

interaction partners could explain the spacial and temporal control of RNA helicases 

and thereby extend our knowledge on mammalian gene expression regulation.  
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6 Material and Methods 

6.1 Plasmids 

6.1.1 Mammalian expression plasmids 

For protein expression in mammalian cell culture, modified versions of the pCI-neo 

expression vector (Promega) were used, that harbor an N-terminal FLAG (DYKDDDDK) 

tag (pCI-FLAG) or N-terminal V5 (GKPIPNPLLGLDST) tag (pCI-V5). Transgene expression 

was initiated by the CMV immediate-early enhancer/promoter region upstream of the 

multiple cloning site.   

6.1.2 Bacterial expression plasmids 

Strep-tagged proteins were expressed from pET51b (Novagen), GST-tagged proteins 

from pGEX6p3 (GE Healthcare) and the pETDuet-1 vector (Novagen) was used for the 

co-expression of two proteins (MAGOH and Y14). All three vectors contain an 

ampicillin resistance gene for positive selection and the T7 system that allows 

controlled protein expression upon induction with IPTG (Isopropyl-ß-D-

thiogalactopyranosid).  

6.1.3 Plasmids for in vitro transcription 

The templates for in vitro transcription of radiolabeled mRNA were cloned with 

EcoRI/BamHI into pGEM-4Z (Promega). pGEM-4Z harbors an SP6 promotor on the 5’ 

side of the inserted template DNA.  

6.2 Mammalian cell culture 

6.2.1 Mammalian cell lines 

All mammalian cell culture experiments were performed in HeLa Tet-Off (HTO) cells 

(Clontech) or human embryonic kidney (HEK) 293 cells (life technologies). The cells 

were grown in Dulbecco’s Modified Eagle Medium (DMEM) GlutaMAX (Gibco), 



 Material and Methods  

 

84 

supplemented with 1% penicillin/streptomycin and 10% fetal bovine serum (FBS) at 

37°C and 5% CO2. The cells were passaged every 2-3 days (at approximately 90% 

confluency) by trypsinizing.  

6.2.2 Generation of stable cell lines 

HEK293 cells stably expressing doxycycline-inducible FLAG-tagged proteins were 

generated using the Flp-InTM system and Flp-InTM T-RExTM 293 cells from life 

technologies. This system allows the targeted integration of a gene of interest into a 

single site of the host genome. Integration of the new gene is achieved through FLP 

recombinase mediated homologous recombination between a single Flp 

Recombination Target (FRT) site in the genome of the host cell line and two FRG sites 

flanking the gene of interest in the vector pcDNA5/FRT/TO. A hygromycin resistance 

gene is inserted into the host genome together with the gene of interest, allowing the 

selection for successful recombination on the basis of hygromycin resistance.  

To generate stable cell lines, FLAG-tagged CWC22 or the respective mutants were 

cloned between the FRT sites of pcDNA5/FRT/TO using XhoI and NotI restriction 

enzymes. The siRNA CWC(A) targeting sequence (5’-AAAAGTAGTGTGGCACAGATAAAA-

3’) (codons 2-9 of the CWC22 ORF) was replaced by the resistant sequence 5’-

AAATCATCAGTGGCCCAAATCAAA-3’ to allow the rescue of siRNA-mediated CWC22-

knockdown. 2x105 293 Flp-In T-REx cells (life technology) were seeded into 6-well 

plates containing 2 ml DMEM (supplemented with FBS and antibiotics). 24 hours after 

seeding, the cells were transfected with 0.5 µg pcDNA5/FRG/TO, 4.5 µg pOG44 (the 

expression vector for the FLP recombinase) and 0.3 µg pCI-Venus as a transfection 

control. 24 hours after transfection, the cells were splitted 1:3 into new 6-well plates 

containing fresh medium supplemented with 150 µg/ml Hygromycin B. Selection in 

hygromycin-containing medium was continued for approximately 3 weeks until single 

hygromycin-resistant colonies became visible in the cell culture dish. Single colonies 

were picked, expanded and tested for expression of the FLAG-tagged protein by 

western blot analysis. To induce protein expression, the Flp-In cells were cultured in 

the presence of 1 µg/ml doxycycline for 48 hours. 
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6.2.3 Transfection of plasmid DNA 

Plasmid DNA was transfected with the BBS/Calciumphosphate method. Cells were 

seeded 24 hours prior to transfection at the appropriate density to achieve ~60% 

confluency on the next day (see Table). The medium was changed once 2-6 hours 

before the transfection. To prepare the transfection mix, the plasmid DNA was diluted 

in ultra pure water (90 µl, 180 µl or 450 µl for transfections in 6-well plates, 6cm dishes 

or 10cm dishes, respectively). CaCl2 was added to the diluted DNA to a final 

concentration of 250 mM. The DNA-CaCl2 solution was mixed with an equal volume of 

2xBBS and vortexed vigorously. After 15 minutes incubation at room temperature (RT), 

the transfection mix was added to the cell culture dish and distributed by gentle 

shaking. On the following day, the medium was changed to remove calcium-phosphate 

precipitates. The cells were harvested 48 hours after transfection. The amount of 

transfected plasmid DNA depended on the particular experiment and will be indicated 

for each type of experiment separately. A plasmid expressing mVenus (pCI-mVenus) 

was included in each experiment and served as a transfection control. 

Overview of transfection mix 

 6-well plate 6cm dish 10cm dish 

Number of cells 2.4x105 6.5x105 1.3x105 

Volume of medium (ml) 2 4 10 

Volume of H2O + DNA (µl) 90 180 450 

Volume of 2.5M CaCl2 (µl) 10 20 50 

Volume of 2xBBS 100 200 500 

Volume of total mix (µl) 200 400 1000 

 

2x BBS 

50 mM  BES (N, N-bis(Hydroxyethyl)-2-Aminoethansolfonate) 
1.5 mM  Na2HPO4 

280 mM NaCl 
adjust pH to 6.96 
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6.2.4 Transfection of siRNA 

For transfection of siRNAs, approximately 2x105 cells were seeded in 6-well plates 24 

hours prior to transfection. On the next day the medium was changed to DMEM 

without antibiotics and siRNAs were transfected with Lipofectamine RNAiMAX (life 

technologies) according to the manufacturers instructions. In brief, 30pmol siRNA and 

5 µl RNAiMAX were each diluted in 250 µl OptiMEM. Both dilutions were mixed, 

vortexed briefly, incubated for 15 minutes at RT and added to the cells. 24 hours after 

transfection the medium was replaced by DMEM supplemented with FBS and 

antibiotics and the cells were harvested after 48 hours. siRNA targeting luciferase 

mRNA was used as a negative control.   

List of siRNAs used in this study 

Name Sequence 

siCWC22(A) 5’-AAAGTAGTGTGGCACAGATAA-3’ 

siCWC22(B) 5’-CTCGCACTGGTGGAGCATATA-3’ 

eIF4A3 5’- CGAGCAATCAAGCAGATCA-3’ 

Y14 5’-ATATGAAACATACAAGGAA-3’ 

Luciferase 5’-AACGUACGCGGAAUACUUCGATT-3’ 

6.2.5 Cell viability assay 

The CellTiter-GloTM Luminescent cell viability assay (Promega) was applied to analyze 

the number of viable cells per well. To this end, 10000 Flp-InTM T-RExTM 293 cells 

expressing FLAG-CWC22, FLAG-CWC22(NK-171-DE) or no protein were seeded into 96-

well plates in 100 µl DMEM (supplemented with FBS and antibiotics). 12 hours after 

seeding, protein expression was induced with 1 µg/ml doxycycline and the number of 

viable cells per well was determined after 0, 12, 24, 36 and 48 hours using CellTiter-Glo 

reagent according to the manufactures instructions. In brief, 100 µl CellTiter-GloTM-

reagent was added directly to the cells. After shaking for 2 minutes at 700 rpm and 

incubation at RT for 10 minutes the luminescent signal was measured using the Centro 

XS3 LB 960 Luminometer (Berthold Technologies). Four replicates were measured for 
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each condition and time point. DMEM without cells served as a control for background 

luminescence. 

6.2.6 Preparation of cell lysates 

To prepare cell lysates for western blot analysis or immunoprecipitation, confluent 

cells were washed once with PBS and scraped from the cell culture dish in PBS. The cell 

suspension was transferred to 1.5 ml reaction tubes and pelleted for 5 min at 200xg. 

The PBS was removed, the cell pellet resuspended in IP lysis buffer (1x TBS, 0.5% Triton 

X-100 (Sigma-Aldrich), 50 µg/ml RNaseA (Applichem), protease inhibitor cocktail 

(Sigma-Aldrich #P2714-1BTL, diluted 1:200)) and the lysate frozen at -20°C for at least 

4 hours. 

6.3 Molecular biology 

6.3.1 Cloning 

The full length CWC22 gene was PCR-amplified from HeLa cDNA using Phusion DNA 

polymerase (Finnzymes). 5' XhoI and 3' NotI restriction sites were introduced with the 

primer sequences. The PCR product was separated through agarose gel 

electrophoresis and purified using the NucleoSpin Gel and PCR Clean-up kit (Macherey-

Nagel). The purified PCR product was digested with XhoI and NotI (NEB) over night at 

37°C, purified again with the NucleoSpin Gel and PCR Clean-up kit. Using T4 ligase 

(Promega), the PCR product was ligated into a XhoI/NotI-linearized pCI-neo vector 

(Promega) containing a FLAG-tag (DYKDDDDK) (pCI-neo-FLAG). Ligated plasmids were 

transformed into the chemically competent E.coli strain XL1-blue and plasmid DNA was 

subsequently extracted from single clones using the ZR Plasmid Miniprep kit (Zymo 

Research). Deletion mutants and point mutants of CWC22 were generated by PCR, 

using the pCI-FLAG-CWC22 plasmid as a template. All sequences were verified by 

Sanger sequencing. Mammalian expression plasmids for eIF4A3, eIF4A1, CBP80, 

MAGOH, Y14, BTZ, and BTZ(110-372) were already present in the laboratory.  
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6.3.2 Site-directed mutagenesis 

To induce point mutations in pCI-FLAG-CWC22 and pCI-FLAG-eIF4A3, a two-step PCR-

based site directed mutagenesis strategy was applied. The wild type expression 

plasmid served as a template in both PCRs. The first PCR was performed with gene-

specific primers harboring the desired point mutations and the primer pCI-antisense 

that anneals to the vector sequence at the 3' end of the gene. Thus, the PCR generates 

a product with the point mutation at the 5' end and a short sequence of vector DNA on 

the 3' end. This PCR product was used as a reverse primer in the second PCR. In 

combination with the pCI-sense primer, the second PCR generated a product that 

covers the whole gene and has short stretches of vector sequence on both ends. The 

short vector sequences contain the restriction sites that were used for the initial 

cloning of the gene. The PCR product was digested with XhoI/NotI and ligated into 

linearized pCI-neo-FLAG as described before.   

6.3.3 Plasmid preparation 

Plasmid DNA was amplified in E.coli XL1-blue and extracted with alkaline lysis using the 

ZR Plasmid Miniprep kit (Zymo Research) or the NucleoBond Xtra Midiprep kit 

(Macherey Nagel) according to the manufacturer’s instructions. In general, 4 ml 

bacterial over night culture in LB medium supplemented with 100 µg/ml ampicillin was 

used for a mini-scale plasmid preparation and 100 ml overnight culture was used for 

midi-scale plasmid preparations. 

6.3.4 RNA extraction from cell lysates 

Total RNA was extracted from cells using the phenol/guanidine-based Isol-RNA Lysis 

Reagent™ (5 Prime). Cells were washed once with PBS and harvested directly in Isol-RNA 

Lysis Reagent™. 1 ml Isol-RNA Lysis Reagent™ was added to each well of a 6-well plate. The 

cells were lysed through pipetting up and down and the suspension was transferred to a 1.5 ml 

reaction tube. Phase separation was induced by adding 100 µl (1/10) 1-Bromo-3-

chloropropane (BCP) followed by vigorous vortexing and 5 min incubation at RT. Afterwards, 

the mix was centrifuged for 10 min at 20000xg and 4°C. After centrifugation, the upper, 

aqueous phase (~400 µl) was transferred to a new 1.5 ml reaction tube. One volume 2-

propanol was added, mixed by vortexing and incubated at least 20 min on ice. Subsequently, 
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the RNA was precipitated by centrifuging for 20 min at 20000xg and 4°C. The supernatant was 

removed and the pellet was washed twice with 1 ml 75% ethanol (centrifuging 10 minutes at 

20000xg and 4°C). After the last washing step, the ethanol was removed completely and the 

RNA pellet was air dried for a few minutes. The pellet was resuspended in ultra pure H2O (20 

µl) through shaking for 15 minutes at 700rpm and 65°C. The RNA concentration was 

determined by measuring the absorption at 260nm (A260) using a Nanodrop 

spectrophotometer (Thermo Scientific). 

6.3.5 Removal of genomic DNA 

Prior to cDNA synthesis (chapter 6.2.6) the purified total RNA was incubated in the 

presence of DNase I (NEB) to remove residual contaminants of genomic DNA. 1 µl 

DNase (2 units) was added to up to 5 µg of total RNA and incubated for 30 min at 37°C. 

Afterwards, the RNA was recovered using the RNA clean and Concentrator-5 kit (Zymo 

Research) according to the manufacturer’s instructions. 

6.3.6 cDNA synthesis 

cDNA was generated by reverse transcribing total RNA using the ProtoScript II reverse 

transcriptase (NEB). 2-4 µg of total RNA (after DNase I-digest, see chapter 6.2.5) was 

mixed with 1 µl oligo dT-primer (dT(18), 100 µM) and 1 µl dNTPs (10 mM each) in a 

total volume of 12.5 µl. In order to unfold secondary structures, the mix was heated 

for 5 min at 70°C, followed by chilling on ice for 2 minutes. The transcription was 

started by adding 2 µl DTT (0.1M), 4 µl ProtoScript II reaction buffer, 1 µl ProtoScript II 

and 0.5 µl RNasin (Promega), followed by incubation at 42°C for one hour. Afterwards, 

the enzyme was heat-inactivated at 80°C for 5 minutes. 

6.3.7 Quantitative real-time PCR 

Quantitative real time PCR (qRT-PCR) was performed using the iQ SYBR green supermix 

(Bio-rad) and the CFX96 touch thermal cycler. DNase I-treated cDNA served as a 

template for the qPCR. The qPCR was performed in a 96-well clear optical reaction 

plates. For each reaction 5 µl of the 2x iQ SYBR green supermix was mixed with 2 pmol 

of each primer and 4 µl of dilution cDNA (1:5 dilution of the cDNA described in chapter 
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6.2.6). The reaction mix was filled up to 10 µl with ultra pure H2O and analyzed on a 

CFX96 touch thermal cycler. 

Transcription program for the CFX96 touch thermal cycler 

(1) 95°C  3 min 

(2) 95°C  15 sec 

(3) 60°C  15 sec  + Plate read 

(4) 72°C  10 sec   to (2) x39 

(5) Melting curve 65°C – 95°C, increment 0.5°C, 5 sec, + Plate read 

 

After each round of amplification (after the annealing step (3)), the light emitted from 

the SYBR green dye bound to double-stranded DNA was detected as a direct indicator 

for the number of transcripts in the sample. The amplification cycle at which the 

fluorescence crosses a certain background level (cycling threshold, CT) directly 

corresponds to the number of mRNA-copies in the original cDNA sample. Differences 

in mRNA expression levels were calculated using the ∆∆CT method: 

Relative expression (fold change) = 2
-∆∆CT 

with   ∆CT  = CT(target) - CT(housekeeping gene) 

and   ∆∆CT = ∆CT(sample) -∆CT(reference) 

A melting curve was determined after the last amplification step to ensure that the 

amplification products represent a homogenous population. 
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List of qPCR primers used in this study 

Gene Forward primer Reverse Primer 

GAPDH 5’-GAGTCAACGGATTTGGTCGT-3’ 5’-TTGATTTTGGAGGGATCTCG-3’ 

Pre-GAPDH 5’-GAGCTGGGGAATGGGACT-3’ 5’-TGATGGCATGGACTGTGG-3’ 

ACTB 5’-GGACTTCGAGCAAGAGATGG-3’ 5’-AGCACTGTGTTGGCGTACAG-3’ 

Pre-ACTB 5’- AGAAAATCTGGCACCACACC-3’ 5’-AACGGCAGAAGAGAGAACCA-3’ 

β-globin mRNA 5’-AAGGCTCATGGCAAGAAAG-3’  5’-ACACCAGCCACCACTTTCT-3’ 

β-globin pre-mRNA 5’-AGTCCAAGCTAGGCCCTTT-3’ 5’-ACACCAGCCACCACTTTCT-3’ 

TPI mRNA 5’-AGTTCTTCGTTGGGGGAAAC-3’ 5’-CCACAGCAATCTTGGGATCT-3’ 

TPI pre-mRNA 5’-CTGGAAGGCTCTTCGAGTTG-3’ 5’-CCACAGCAATCTTGGGATCT-3’ 

APH 3’ II 5’-ATACTTTCTCGGCAGGAGCA-3’ 5’-TGAATGAACTGCAGGACGAG-3’ 

 

6.4 Protein biochemistry 

6.4.1 Immunoprecipitation 

Co-immunoprecipitations with anti-FLAG (M2) magnetic beads (Sigma-Aldrich) were 

performed to analyze the interaction of proteins in cell lysates. To this end HTO or 

HEK293 cells were seeded in 6cm plates and transfected on the next day with 1.5 µg of 

plasmid expressing the FLAG-tagged protein (in some cases together with 0.5 µg of 

plasmid expressing a V5-tagged protein) and 0.5 µg of plasmid expressing mVenus as a 

transfection control. The cells were harvested 48 hours after transfection in 400 µl IP 

lysis buffer (see chapter 6.1.6). The cell lysates were cleared by centrifugation (10 min, 

10000xg). 12 µl anti-FLAG (M2) magnetic beads were washed once with IP wash buffer 

(1xTBS, 0.5% Triton X-100). 40 µl of the cleared cell lysate was set aside as input and 

the rest was mixed with the washed anti-FLAG magnetic beads and rotated in an 

overhead shaker at 4°C for two hours or overnight. Subsequently the beads were 

washed three times with 600 µl IP wash buffer (each time 5 min incubation in the 

overhead shaker at 4°C) and eluted by adding 50 µl 1x SDS loading buffer to the beads. 
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12 µl of the IP and 12 µl of the input were loaded onto an SDS-poly acrylamide gel for 

further analysis.  

6.4.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-polyacrylamide gels were cast with the standard mini-gel system from Bio-Rad 

using 1 mm combs with 10 or 15 wells. The polyacrylamide gel mixes were prepared 

from Rotiphorese Gel 30 (37.5:1) stock solution (Roth) diluted in 2x stacking gel buffer 

(0.5M Tris-HCl, pH 6.8, 0.4% SDS) or separating gel buffer (1.5M Tris-HCl, pH 8.8, 0.4% 

SDS). Stacking gels contained 5% polyacrylamide and separating gels 10 or 12% 

polyacrylamide. Polymerization was induced by adding ammonium persulfate (100 µl 

of a 10% stock solution per 10 ml gel mix) and TEMED (Tetramethylethylendiamine, 15 

µl per 10 ml gel mix).  

Protein samples were diluted in SDS-loading buffer, boiled for 3-5 minutes at 95°C and 

loaded onto the gel. The gels were run 1x SDS-running buffer (25 mM Tris-HCl, 20 mM 

Glycine, 0.1% SDS) in vertical electrophoresis chambers at 200V for approximately one 

hour. 

6.4.3 Western blot 

After SDS-PAGE, the gel was equilibrated shortly with 1x Transfer buffer and 

electroblotted on Hybond-ECL nitrocellulose membrane (GE Healthcare) for 1-2 h at 12 

V using the semi-dry system and 1x Transfer buffer. To reduce unspecific antibody 

binding, the membrane was incubated in blocking solution (5% milk in 1xTBS, 0.2% 

Tween-20) for one hour at RT. Afterwards, the membrane was incubated with the 

primary antibody (diluted in blocking solution) over night at 4°C. On the following day, 

the membrane was washed 3x 10 min in TBST (1x TBS + 0.2% Tween 20) followed by 

incubation with an HRP-conjugated secondary antibody (diluted in blocking solution) 

for one hour at RT. Afterwards, the membrane was again washed three times with an 

excess of TBST. The HRP signal was detected with the western lightning plus ECL 

reagent (PerkinElmer) and visualized on the ImageQuant LAS-4000 (GE Healthcare) 

detection system. 
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List of Antibodies used in this study 

Antibody Species Company Dilution 

anti-FLAG rabbit Sigma-Aldrich 1:3000 

anti-V5 rabbit QED Bioscience 1:3000 

anti-eIF4A3 rabbit by GenScript with an N-
terminal peptide of eIF4A3 

1:2000 

anti-CWC22 rabbit Sigma-Aldrich 1:2000 

anti-Y14 rabbit Sigma-Aldrich 1:500 

anti-MAGOH mouse Abcam 1:2000 

anti-CBP80 rabbit Gift by Elisa Izaurralde 1:1000 

anti-eIF4A1 rabbit Abcam 1:2000 

anti-Tubulin mouse Sigma-Aldrich 1:10000 

anti-rabbit-HRP goat Jackson ImmunoResearch 1:10000 

Anti-mouse HRP goat Jackson ImmunoResearch 1:10000 

 

6.4.4 Coomassie brilliant blue staining 

After SDS-PAGE, the gel was shortly rinsed in water and then incubated for 15 minutes 

in coomassie staining solution (2.5g coomassie brilliant blue R-250 in 450 ml methanol, 

100 ml acetic acid, 400 ml H2O, filtered). Afterwards, the staining solution was 

removed and the gel incubated in coomassie destaining solution (450 ml methanol. 

100 ml acetic acid, 400 ml H2O) until the background staining had completely 

disappeared (after 1-5 hours). The destaining solution was changed several times 

during the destaining process.   

6.4.5 Bacterial expression of recombinant proteins 

Codon-optimized eIF4A3 (LIFE TECHNOLOGIES) and the respective mutants of eIF4A3, 

with an N-terminal Strep-tag with and without an N-terminal FLAG-tag were inserted 

into pET51. Y14 (full length or 1-154) with a C-terminal Strep-tag and MAGOH were 

cloned into multiple cloning site (MCS) 1 and MCS2 of pETDuet-1, respectively. The 
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SELOR domain of BTZ (110-372) with a C-terminal Strep-tag with or without an N-

terminal FLAG-tag was cloned into pETDuet-1. CWC22(110-409), CWC22(110-665) and 

CWC22(340-665) and the respective mutants were inserted into pGEX6p3.  

Recombinant proteins were expressed in E.coli Rosetta II pLysS. Single colonies of 

transformed bacteria were picked and a 10 ml pre-culture grown over night at 37°C in 

LB medium supplemented with 100 µg/ml ampicillin. On the following day, 500 ml 

expression culture was inoculated with the pre-culture. For expression of eIF4A3, the 

expression culture was grown at 37°C until an OD600 of 0.6 and then induced by adding 

0.2 mM IPTG. The bacterial culture was harvested after 6 hour incubation at 37°C. All 

other proteins were expressed in auto-induction medium (Studier, 2005). To this end, 

470 ml LB medium was supplemented with 10 ml 50x5052 (25% Glycerol, 140 mM 

Glucose, 292 mM α-D-lactose), 20 ml 25xM (1.25M Na2PO4, 1.25M KH2PO4, 2.5M 

NH4CL, 0.25M Na2SO4), 1M MgSO4 and 100 µg/ml ampicillin. After inoculation with the 

pre-culture the auto-induction culture was incubated over night at 28°C. Cells were 

harvested by centrifugation at 4000xg and the cell pellet was stored at -20°C.  

6.4.6 Affinity purification of recombinant proteins 

Purification of Strep-tagged proteins 

Cell pellets from 500 ml expression culture were lysed in 10 ml bacterial lysis buffer 

(NP buffer supplemented with 200 µg/ml Lysozyme, 50 µg/ml RNaseA, 50 µg/ml 

DNase I, 1:250 dilution of protease inhibitor cocktail (Sigma-Aldrich, #P2714-1BTL) and 

100 µg/ml PefaBloc) and incubated for 1 hour rotating at RT. Bacterial cells were lysed 

by sonication with 8x 15 pulses, 30% intensity, using a Branson sonifier 250 and a 3 

mm Microtip. The cell lysates were cleared by centrifuging 30 min at 15000xg and the 

cleared lysates loaded onto a 1 ml StrepTactin Superflow Plus Cartridge (QIAGEN) 

using the Äkta FPCL (GE Healthcare). The cartridge was washed with 10 column 

volumes NP buffer and the protein eluted in NP buffer supplemented with 2.5 mM 

desthiobiotin (Sigma-Aldrich). The StrepTactin cartridge was regenerated by washing 

with 15 column volumes NP buffer containing 1 mM HABA (2-(4-

Hydroxyphenylazo)benzoic acid).  
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Purification of GST-tagged proteins 

Cell pellets were lyses in 10 ml PBS (supplemented with 200 µg/ml Lysozyme, 50 µg/ml 

RNaseA, 50 µg/ml DNase I, 1:250 dilution of protease inhibitor cocktail, 100 µg/ml 

PefaBloc and 1 mM DTT). Cell lysates were incubated at RT, sonified and centrifuged as 

described for the StrepTactin purification above. The cleared lysate was loaded onto a 

1 ml GSTrap FF (GE Healthcare) column using the Äkta FPLC. The column was washed 

with 10 column volumes PBS and the protein was eluted with 10 mM glutathione in 50 

mM Tris (pH 8.0). 

Buffers for protein purification  

NP buffer  50 mM NaH2PO4, 300 mM NaCl, pH 8.0 

 PBS  Dulbecco’s phosphate buffered saline (Gibco) 

Buffer exchange and protein concentration 

PD-10 desalting columns were used for buffer exchange to rEJC buffer (20 mM HEPES 

KOH (pH7.9), 125 mM NaCl, 1 mM MgCl2, 2 mM CaCl2, 1 mM DTT, 10% Glycerol). The 

proteins were concentrated by ultracentrifugation using Amicon Ultra-15 Centrifugal 

filter units (Millipore), snap frozen in liquid nitrogen and stored at -80°C. The protein 

concentration was determined by measuring the absorption at 280nm (A280) using the 

NanoDrop or by Bradford assay (Bio-Rad protein assay). 

6.4.7 In vitro pulldown experiments 

For in vitro interaction studies, recombinant proteins (15 mg each) were mixed in 50 µl 

rEJC binding buffer (20 mM HEPES-KOH (pH7.9), 125 mM NaCl, 1 mM MgCl2, 2 mM 

CaCl2, 1 mM DTT, 2.5% Glycerol, 0.1% NP-40) and pre-incubated 30 min on ice. 10% of 

the assembly reaction was set aside as input, the rest was immunoprecipitated with 

FLAG-M2 magnetic beads in 400 µl rEJC binding buffer. After 2 hours incubation in an 

overhead shaker at 4°C the beads were washed 3x with rEJC binding buffer and the 

proteins were eluted in 30 µl 1x SDS loading buffer. Input and IP were analyzed by SDS-

PAGE and coomassie staining. 
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6.4.8 Assembly of recombinant EJCs 

For in vitro EJC assembly, recombinant proteins (15 mg each) where mixed in a total 

volume of 50 µl rEJC binding buffer supplemented with 10 mM ADPNP and 10 µM 

poly(U)15 ssRNA and incubated over night at 4C. FLAG-immunoprecipitations were 

performed with FLAG-M2 magnetic beads (Sigma) were performed as described 

above. When indicated, binding was performed in the absence of ADPNP and ssRNA to 

prevent EJC formation. 

6.4.9 Isothermal titration calometry (ITC) 

To determine the affinities of S2-eIF4A3 for GST-CWC22(110-409) and GST-

CWC22(110-409; KR-330/1-DE), ITC experiments were performed using the MicroCal 

iTC 200 system (GE Healthcare). Recombinant proteins were dialyzed over night at 4°C 

in rEJC binding buffer (20 mM HEPES-KOH (pH7.9), 125 mM NaCl, 1 mM MgCl2, 2 mM 

CaCl2, 10% Glycerol, 1 mM ß-mercaptoethanol). The proteins were diluted in dialysis 

buffer to a final concentration of 6 µM (S2-eIF4A3) and 60 µM (GST-CWC22(110-409) 

and GST-CWC22(110-409; KR-330/1-DE)). 300 µl diluted S2-eIFA3 was loaded into the 

sample cell of the isothermal titration calorimeter, 80 µl GST-CWC22 (WT or mutant) 

was loaded into the syringe. ITC measurements were performed at 20°C and 1000 

rpm, by injecting aliquots of 2,5 µl into the sample cell.  

6.5 In vitro splicing and RNP immunoprecipitation 

6.5.1 Generation of HEK293 whole cell extracts 

To generate HEK293 whole cell extracts, 1.6x106 HEK293 cells were seeded in 10cm 

dishes. 24 hours after seeding, cells were transfected with 8 µg of pCI-FLAG expressing 

the protein of interest and 1.5 µg pCI-mVenus as a transfection control. Transfections 

were performed with BBS/Calciumphosphate as described in chapter 6.2.3. The cells 

were harvested 48 hours after transfection. To this end, the cells were washed once 

with 2-3 ml PBS, scraped from the dish in 800 µl PBS and transferred to a 1.5 ml 

reaction tube. After centrifuging 5 min at 200xg and 4°C, the cell pellet was 

resuspended in 200 µl buffer E (20 mM HEPES-KOH (pH 7.9), 100 mM KCl, 0.2 mM 
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EDTA, 10% Glycerol, 1 mM DTT). The cells were lysed by sonification with 15 pulses, 

30% intensity, using a Branson sonifier 250 and a 3 mm Microtip. The cell lysate was 

cleared by centrifuging for 10 min at 10000xg and stored at -80°C until further use. 

6.5.2 In vitro transcription of radiolabeled mRNA 

The MINX and AdML sequence and their derivatives (MINX-GG, MINX Δintron, AdML-

PT60, AdML-PT60/e1(18)) were cloned into pGEM-4Z vector to serves as templates for 

in vitro transcription of radiolabeled mRNA. 6-8 µg of the pGEM-4Z plasmid was 

linearized with BamHI and purified via gel extraction. Capped transcripts were 

generated by run-off transcription with SP6 polymerase in the presence of m7GpppG 

cap analog (Promega) and α-32P-GTP. To this end 10 µl transcription reactions were 

assembled, containing 1 µl 10x transcription buffer, 1 mM DTT, 0.5 mM ATP, 0.5 mM 

UTP, 0.5 mM CTP, 0.05 mM GTP, 0.5 mM cap analog (Promega), 20 u SP6 polymerase 

(NEB), 20 u RNasin, 0.5 µg linearized template and 2.5 µl α-32P-GTP (800 Ci/mmol) and 

incubated for 40 min at 40°C. To digest the template DNA 2 u RNase-free Turbo DNase 

(Life technologies) was added and incubated for 15 min at 37°C. The RNA was 

extracted by Isol-RNA Lysis Reagent™/BCP extraction as described in chapter 6.3.4. 400 

µl Isol-RNA Lysis reagent was added to the transcription reaction and phase separation 

was induced by adding 60 µl BCP. After centrifuging for 10 min at 20000xg and 4°C, the 

upper aqueous phase (~200 µl) was transferred to a new 1.5 ml reaction tube. 1.5 µl 

Glycogen was added to the aqueous phase as a precipitation carrier. RNA precipitation 

was induced by adding 200 µl 2-propanol and 30 min centrifuging at 20000xg and 4°C. 

After the precipitation the liquid was removed completely and the RNA pellet 

immediately resuspended in 50 µl ultra pure H2O. 1 µl of the transcript was measured 

in a scintillation counter to determine the efficiency of transcription and α-32P-GTP 

incorporation. The transcript was diluted in H2O to a final working concentration of 

10000cpm/ µl (for MINX and AdML) or 7000cpm/ µl (for MINX-GG and AdML-PT60)   

6.5.3 In vitro splicing reaction 

The in vitro splicing reaction was carried out in HeLa nuclear extract (CIL Biotech, CC-

01-20-50) supplemented with whole cell extracts of HEK293 cells expressing the FLAG-

tagged protein of interest (see chapter 6.5.1). Extracts from HEK293 cells expressing 
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unfused FLAG served as a negative control. A 25 µl splicing reaction was prepared by 

mixing 5.4 mM MgCl2, 0.2 mM ATP, 40 mM creatine phosphate, 20% HeLa nuclear 

extract (CIL Biotech), 4.8% polyvinyl alcohol (PVA, MW 9000–10000 from Sigma 

Aldrich, prepare 12% stock solution in H2O), 44 mM HEPES-KOH (pH 7.3) and 80 u 

RNase inhibitor. 20 µl of cleared HEK293 whole cell extract (see chapter 6.5.1) and 5 µl 

diluted radiolabeled mRNA (see chapter 6.5.2) were added to the splice mix and the 

whole reaction incubated for 2 hours at 30°C. After the incubation time, 8 µl of the 

splicing reaction was set aside as input. 400 µl Isol-RNA lysis reagent was added to the 

input and the mix stored at -20°C until further use (see chapter 6.5.5). The rest of the 

splicing reaction was used for RNP immunoprecipitation with anti-FLAG M2 beads.  

6.5.4 RNP immunoprecipitation 

The RNP immunoprecipitation was performed with red anti-FLAG-M2 affinity gel 

(Sigma-Aldrich) in EJC buffer (20 mM HEPES-KOH (pH 7.9), 200 mM NaCl, 2 mM MgCl2, 

0.2% Triton X-100, 0.1% Nonidet P40, 0.05% Na-deoxycholic acid). 11 µl anti-FLAG-M2 

affinity gel and 200 µl EJC buffer were added to the splicing reacting and incubated 2 

hours in an overhead shaker at 4°C. After the incubation time, the beads were washed 

3 times with 600 µl EJC buffer. To this end the beads were centrifuged at 30xg for 30 

sec, the supernatant was removed and replaced by new EJC buffer. After the last 

washing step, the beads were resuspended in 400 µl EJC buffer and loaded onto an 

empty spin column (receiver column from Macherey-Nagel). The column was allowed 

to empty by gravity flow and the beads were washed twice with 400 µl EJC buffer (by 

gravity flow). Afterwards the column was dried through short centrifugation (15 sec at 

500xg). 400 µl Isol-RNA lysis reagent was added to the column in order to elute the 

RNA from the beads. The eluate was collected in a new 1.5 ml reaction tube.  

6.5.5 RNA extraction 

RNA was extracted from the splicing input (see chapter 6.5.3) and the RNP IP (chapter 

6.5.4) in parallel using Isol-RNA lysis reagent and BCP. 60 µl BCP was added to induce 

phase separation and the mix was centrifuged for 15 min at 20000xg. The aqueous 

phase (200 µl) was transferred to a new 1.5 ml reaction tube. 2 µl of a 1:1 mix of 

glycogen and blue Dextran (Sigma-Aldrich, #D5751) was used as precipitation carrier to 
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better visualize the small RNA pellets. 200 µl 2-propanol was added to the aqueous 

phase, the mix was vortexed vigorously and incubated over night at -20°C. On the 

following day the RNA was precipitated by centrifugation for 30 min at 20000xg and 

4°C. After precipitation, the RNA pellets were resuspended in 8 µl (IP) or 16 µl (input) 

RNA loading dye (80% formaldehyde, 2 mM EDTA, traces of bromophenol blue and 

xylene cyanol) and resolved through shaking for 10 min at 1100rpm and 55°C.  

6.5.6 Denaturing TBE-gel electrophoresis 

A 10% denaturing TBE-polyacrylamide gel mix was prepared from 10% acrylamide 

(19:1), 42% (w/v) urea, 1 TBE. Polymerization of the gel was induced by adding 50 µl 

fresh APS (10%) and 10 µl TEMED to 10 ml gel mix. Gels were cast with the standard 

mini-gel system from Bio-Rad using 1 mm combs with 10 wells. The gels were 

polymerized for at least 1 hour at RT or stored over night at 4°C. Before loading of the 

samples the gel was pre-run for 15–30 min at 15 mA in 1x TBE (89 mM Tris, 89 mM 

boric acid, 2 mM EDTA) running buffer. Immediately before loading, the wells were 

flushed with 1x TBE to remove urea that has diffused into the gel. The RNA samples 

were boiled for 3 minutes at 90°C and then directly loaded onto the gel. 8 µl input 

(50%) and 8 µl IP (100%) were loaded onto the gel, so that the input represented ~10% 

of the total splicing reaction. Unspliced mRNA transcript was diluted in RNA loading 

dye (~1000cpm in 5 µl loading dye) and loaded next to the splicing samples. The gel 

was run for approximately 1 hour at 15 mA in 1x TBE until the Xylene cyanol running 

front had reached the bottom quarter of the gel. The gel was rinsed 5 minutes in 

water, followed by 10 minutes incubation in 5% Glycerol (diluted in water). 

Afterwards, the gel was placed onto a wet filter paper (Whatman) and dried for 1.5 

hours at 80°C, using a vacuum-dryer (Model 583 gel dryer from Bio-rad). The 

radioactive signal was detected using a storage phosphor screen (exposed for 4 hours 

to overnight) and the Typhoon phosphor imaging system (GE life sciences). Band 

intensities were quantified using the ImageQuant TL software (GE life sciences). 

6.5.7 In vitro splicing and oligonucleotide-directed RNase H digestion 

To analyze the assembly of protein complexes at position -24 of spliced mRNA, the in 

vitro splicing assay was combined with an oligonucleotide-directed RNase H digestion. 
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To this end, an in vitro splicing reaction was assembled as described before. Instead of 

supplementing the reaction with 20 µl HEK 293 whole cell extract, the splicing was 

carried out in 25 µl HeLa nuclear extract. The splicing reaction was mixed with diluted 

radiolabeled mRNA substrate and increasing concentrations of recombinant GST-

tagged CWC22 (5 µg, 15 µg, 30 µg). After splicing for 2 hours at 30°C, 1 µl DNA oligo 

(100 µM) complementary to the mRNA at position -24nt was added to the reaction 

and the mix was incubated for another 20 min at 30°C. During this time, the RNase H 

present in HeLa nuclear extract digests DNA:RNA duplexes that form when the oligo 

anneals to the mRNA. The reaction was stopped by adding 400 µl Isol-RNA lysis 

reagent and the RNA was extracted as described before. After RNA-precipitation, the 

pellet was resuspended in 15 µl RNA loading dye and 5 µl of the sample (1/3) was 

loaded onto a 10% polyacrylamide-urea gel and analyzed as described before. Splicing 

and digestion of the intronless mRNA substrate MINX Δintron served as a positive 

control.   

6.6 Bioinformatics and statistics 

Homogolgy searches were performed using BLAST (NCBI). Domain structures were 

predicted with SMART (Schultz et al., 1998) or Phyre2 (Kelley and Sternberg, 2009). 

Structural superimpositions were generated with DaliLite  (Holm and Park, 2000) and 

structural images were rendered with PyMOL (DeLano, 2010). 

Statistical significances were calculated with sudents t test using the program 

GraphPad PRISM. 
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7 Supplementary Figures 

 

 

Supplementary Figure 1: Mutations in the RecA1 domain of eIF4A3 do not affect the binding to 
CWC22. Interaction between recombinant proteins in vitro. Co-precipitation of recombinant S2-eIF4A3 
and the indicated mutants with immobilized GST-FLAG-CWC22(110-665). The protein complexes were 
resolved by SDS-PAGE and visualized with coomassie. 10% of the assembly reaction was loaded as input. 

 

 

Supplementary Figure 2: Mutations in the C-terminal part of GST-CWC22(110-409) do not affect the 
affinity for eIF4A3. ITC experiments with recombinant S2-eIF4A3 and GST-CWC22(110-409) (left side) or 
GST-CWC22(110-409; KR-330/1-DE) (right side). The determined binding affinities of S2-eIF4A3 are 
53nM for GST-CWC22(110-409) and 37nM for GST-CWC22(110-409; KR-330/1-DE). 
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Supplementary Figure 3: Exon-intron structure of genes analyzed by qPCR. Arrows denote the primers 
used for the amplification of mRNA and pre-mRNA.   

 

 

 

 

Supplementary Figure 4: Mutations in the RecA1 domain of eIF4A3 do not affect the splicing-
dependent EJC assembly. 32P-body-labeled MINX mRNA was spliced in the presence of FLAG-eIF4A3, the 
respective mutants of FLAG-eIF4A3 or unfused FLAG as a negative control. After FLAG-
immunoprecipitation of mRNPs, the RNA was extracted, resolved on a denaturing urea-gel and 
visualized by phosphor imaging autoradiography. 10% of the splicing reaction was loaded as input. 
Schemes on the right site of the panels depict the splicing products. 
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Supplementary Figure 5: CWC22-depletion and CWC22(NK-171/2-DE) over-expression differentially 
affect endogenous NMD targets. (A)  (A) Flp-In 293 cells were induced with doxycycline and the change 
in SC35 (1.7kb), GAS5 and UHG mRNA levels compared to un-induced control cells were quantified by 
qRT-PCR. (B) Quantification of the change in SC35 (1.7kb), GAS5 and UHG mRNA levels upon depletion 
of CWC22.  
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