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Zusammenfassung

Die vorliegende Dissertation berichtet über die wesentlichen Konzepte und Resul-
tate wissenschaftlicher Studien zur exakten Lösung zweier NP-schwerer Compiler-
Optimierungsprobleme, Instruction Scheduling und Offset Assignment, mittels ganz-
zahliger linearer Programmierung. Sie ist das Ergebnis mehrjähriger Forschung als
wissenschaftlicher Mitarbeiter am Lehrstuhl von Michael Jünger in Köln, mit einer
besonderen Ausrichtung darauf, mathematische Optimierungsverfahren auf prakti-
sche Problemstellungen aus dem Bereich der technischen Informatik anzuwenden.

Die beiden behandelten Probleme sind im Wesentlichen völlig unabhängig vonein-
ander, beschäftigen sich aber beide mit der Zuteilung von beschränkt zur Verfügung
stehenden Ressourcen und treten während der Erzeugung von Maschinencode inner-
halb eines Compilers auf. Instruction Scheduling behandelt die Zuteilung von Takt-
zyklen zu Instruktionen mit dem Ziel, die Gesamtausführungszeit aller Instruktio-
nen zu minimieren. Diese Zuteilung muss Datenabhängigkeiten, Latenzbedingungen
und Ressourcenbeschränkungen berücksichtigen. Beim Offset Assignment geht es um
Speicherlayouts von Programmvariablen und den effizienten Einsatz von Adressregis-
tern für Zugriffe auf diese Variablen, so dass der erforderliche Zusatzaufwand in Form
von expliziten Adressberechnungen minimiert wird. Im Gegensatz zum Instruction
Scheduling, das Bestandteil nahezu jedes Compilers ist, tritt das Offset Assignment
Problem hauptsächlich bei Compilern für spezialisierte Prozessorarchitekturen auf.

Instruction Scheduling ist ein bereits sehr intensiv studiertes Problem, zu dem diver-
se exakte und heuristische Verfahren entworfen und experimentell analysiert wur-
den. Diese Arbeit konzentriert sich auf das Basic-Block Instruction Scheduling Pro-
blem für Single-Issue Prozessoren. Basic Blocks sind Programmfragmente mit einem
einzigen Einstiegs- und Ausstiegspunkt. Es müssen daher alle Instruktionen eines
Basic Blocks ausgeführt werden, bevor der Kontrollfluss zu einem anderen Basic
Block übergeht. Single-Issue Prozessoren sind in der Lage, pro Taktzyklus mit der
Ausführung exakt einer neuen Instruktion zu beginnen. Eine Reihe von Techniken
zur Vorbehandlung von Basic Block Instanzen wurden in der Literatur vorgestellt.
Sie werden, mit einem Schwerpunkt auf aktuellere Verfahren seit dem Jahr 2000, in
dieser Arbeit ausgiebig diskutiert, denn sie führten zu einem Constraint Program-
ming Ansatz im Jahr 2006, der etwa 350000 Instanzen optimal lösen konnte, wobei
einige dieser Instanzen bis zu 2500 Instruktionen beinhalten. Der letzte Versuch,
das Problem mittels ganzzahliger Programmierung zu lösen, datiert hingegen aus
einer Zeit vor Veröffentlichung der jüngsten Vorbehandlungsmethoden. Es erwies
sich bei sehr restriktiven Latenzbedingungen als erfolgreich, konnte aber hunderte



der soeben benannten Instanzen, die große und stärker variierende Latenzen bein-
halten, nicht lösen. Des Weiteren basieren nahezu alle bisher vorgestellten Verfahren
auf sogenannten zeitindizierten Formulierungen, bei denen Entscheidungsvariablen
eine explizite Zuweisung von Instruktionen zu Taktzyklen modellieren. Die vorlie-
gende Arbeit beschreibt hingegen einen vollkommen neuen Ansatz basierend auf
dem Linearen Ordnungsproblem, das ein bereits sehr gut studiertes kombinatorisches
Optimierungsproblem ist. Die neuen Modelle führen zu einer alternativen Charakte-
risierung der zulässigen Lösungen des Basic-Block Instruction Scheduling Problems.
Sie ermöglichen den Einsatz von Branch-and-Cut Algorithmen, die auch größere In-
stanzen lösen können. Die Formulierungen werden außerdem durch zusätzliche Un-
gleichungen erweitert, die als Schnittebenen verwendet werden können. Kombiniert
mit den Methoden zur Vorbehandlung, die zum Teil ebenfalls noch erweitert und
verbessert werden, kann die entwickelte Implementierung vergleichbare Ergebnisse
wie der Constraint Programming Ansatz erzielen. Dieses Ziel zu erreichen hat einige
Jahre in Anspruch genommen. Die vorliegende Arbeit berichtet daher nicht nur über
die entwickelten Modelle, sondern auch über diverse Ideen und Nebenprodukte, die
in dieser Zeit entstanden und die inspirierend sein bzw. anderen Wissenschaftlern
helfen könnten, selbst wenn sie andere Lösungsverfahren einsetzen möchten.

Die Ausgangssituation bzgl. des Offset Assignment Problems war eine andere, da
insbesondere exakte Verfahren vor den in dieser Arbeit vorgestellten eher rar wa-
ren. Das Offset Assignment Problem kam in den neunziger Jahren auf und wird
in diversen Varianten betrachtet, die von theoretischer und praktischer Bedeutung
sind. In der einfachsten Variante wird angenommen, dass ein Prozessor lediglich ein
einzelnes Adressregister und sehr limitierte Möglichkeiten zur Adressierung von Pro-
grammvariablen ohne Verursachung zusätzlichen Aufwands bietet. Selbst für diese
einfachste Variante, die auch als Baustein für komplexere dient, ist das Berech-
nen einer Optimallösung jedoch bereits NP-schwer und somit wurde das Problem
im Wesentlichen im Sinne einer heuristischen Lösung studiert. Die wenigen exak-
ten Lösungsverfahren waren nicht in der Lage, mittelgroße Instanzen zu lösen, so
dass die tatsächliche Güte heuristischer Lösungen für eine lange Zeit kaum bekannt
war. Auch hier zeigte sich die Untersuchung der kombinatorischen Struktur der
verschiedenen Problemvarianten als Schlüsselansatz, um Branch-and-Cut Verfahren
entwerfen zu können, die von bekanntem Wissen über verwandte kombinatorische
Optimierungsprobleme profitieren. Die Implementierung zur Lösung der einfachsten
Problemvariante war dann die erste, die die große Mehrheit von etwa 3000 Instanzen
eines Standard-Benchmarks optimal lösen konnte. Im Anschluss konnten zunächst,
in Zusammenarbeit mit Roberto Castañeda Lozano, zusätzliche Techniken eingebun-
den werden, die es dem Ansatz erlaubten, auch über den Einsatz mehrerer Adress-
register zu optimieren. Erfreulicherweise konnten die Verfahren dann sogar noch
weiter verallgemeinert werden, um mit flexibleren Möglichkeiten zur Adressierung
von Programmvariablen umgehen zu können. Auf diese Weise beantwortet die vor-
liegende Arbeit nicht nur die Frage, wie groß der zusätzliche Adressierungsaufwand
ist, wenn Heuristiken verwendet werden, sondern liefert auch erste Resultate, die es
erlauben, die Auswirkungen flexiblerer Adressierungsmöglichkeiten auf die Laufzeit
und Größe realer Anwendungen zu analysieren.



Abstract

The dissertation at hand presents the main concepts and results derived when study-
ing the optimal solution of two NP-hard compiler optimization problems, namely
instruction scheduling and offset assignment, by means of integer programming. It
is the outcome of several years of research as an assistant at Michael Jünger’s com-
puter science chair in Cologne, with the particular aim to apply exact mathematical
optimization techniques to real-world problems arising in the domain of technical
computer science.

The two problems studied are rather unrelated apart from the fact that they both
take place during the machine code generation phase of a compiler and deal with
the handling of limited resources. Instruction scheduling is about the assignment of
issue clock cycles to instructions in the presence of precedence, latency, and resource
constraints such that the total time needed to execute all the instructions is mini-
mized. Offset assignment deals with storage layouts of program variables and the
efficient use of address registers for accesses to these variables. The objective is to
employ specialized instructions in order to minimize the overhead caused by address
computations. While instruction scheduling needs to be carried out by almost every
present compiler irrespective of the processor architecture, the offset assignment
problem occurs mainly in compilers for highly specialized processor designs.

Instruction scheduling is a well-studied field where several exact and heuristic ap-
proaches have been developed and experimentally evaluated in the past. In this
thesis, we concentrate on the basic-block instruction scheduling problem for single-
issue processors. Basic blocks are program fragments with no side-entrances and
-exits, i.e., every instruction of a basic block needs to be executed before the control
flow may leave it and enter another basic block. Single-issue processors are capable
of starting the execution of exactly one instruction per clock cycle. A number of
techniques to preprocess instances of the basic-block instruction scheduling problem
were proposed in the literature and are, with emphasis on the more recent ones that
arose since the year 2000, thoroughly reviewed in this thesis. They finally led to a
constraint programming approach in 2006 that was shown to solve about 350, 000
instances to optimality and where some of these instances comprised up to about
2, 500 instructions. The last attempt to tackle the problem using integer program-
ming however dates to a time prior to the publication of the latest preprocessing
advances. While being successful on a set of instances that impose very restrictive
latency constraints, it was shown to be unable to solve hundreds of instances from
the aforementioned benchmark set that comprises also large and varying latencies.



In addition, the previous integer programming models were almost all based on so-
called time-indexed formulations where decision variables model an explicit assign-
ment of instructions to clock cycles. In this thesis, a completely different and novel
approach is taken based on the linear ordering problem, a well-studied combinatorial
optimization problem. The new models lead to alternative characterizations of the
feasible solutions to the basic-block instruction scheduling problem. These facilitate
the employment of advanced integer programming methodologies, in particular the
design of branch-and-cut algorithms that can handle larger instances. The formu-
lations are further extended by additional inequalities that can be used as cutting
planes. Combined with the preprocessing routines that are partially extended and
improved as well, the respective solver implementation eventually turned out to be
competitive to the constraint programming method. Reaching this point has taken
some years and this thesis presents not only the derived models but also several
ideas and byproducts that arose in the meantime, and that can help and inspire
researchers even if they aim at the application of different solution methodologies.

The starting point regarding the offset assignment problem was a different one be-
cause especially exact solution approaches were rather rare prior to the models
presented in this thesis. The offset assignment problem arose in the 1990s and is
considered in several variants that are of theoretical and practical interest. In the
simplest one, a processor is assumed to provide only a single address register and only
very restricted possibilities to avoid address computation overhead. However, even
this simplest variant, that may serve as a building block for the more complex ones,
is already NP-hard and has been studied mainly from a heuristic point of view.
The few existing exact solution approaches were not capable to solve moderately
sized instances so that the quality of heuristic solutions relative to the optimum
was hardly known at all. Again, the inspection of the combinatorial structure of
the various problem variants turned out to be the key for designing branch-and-cut
implementations that can profit from knowledge about related combinatorial opti-
mization problems. The implementation targeting the simple problem variant was
the first capable to optimally solve the majority of about 3, 000 instances collected
in a standard benchmark set. The method could then be further generalized in two
steps. First, in a collaboration with Roberto Castañeda Lozano, additional tech-
niques could be incorporated into the approach in order to handle multiple address
registers. Fortunately, the methods could then even be further extended to as well
deal with more flexible addressing capabilities. In this way, the thesis at hand does
not only answer the question how large the address computation overhead can be
when using heuristics, but as well presents first results that allow to analyze the im-
pact of the mentioned increased addressing capabilities on the runtime performance
and size of real-world programs.
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Introduction

This thesis deals with the optimal solution of two optimization problems, instruction
scheduling and offset assignment, that arise in the machine code generation phase
of compilers for various processor architectures.

At a high abstraction level, a compiler can be considered to consist of two main com-
ponents that are respectively called frontend and backend of the compiler (cf. Fig. 1).
Roughly speaking, the frontend takes the input source code, analyzes the control
and data flow of the associated program and transforms it into some form of inter-
nal representation. The backend then uses this internal representation in order to
map the respective operations to machine code instructions of the target architec-
ture and applies several optimizations to it. The two problems addressed in this
thesis belong to the machine-dependent code optimizations in the backend part of
a compiler. Apart from that, both problems are rather unrelated to each other.

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Machine-Independent Code Optimizer

Machine Code Generator

Machine-Dependent Code Optimizer

source code

token stream

syntax tree

intermediate representation

intermediate representation

syntax tree

target machine code

target machine code

frontend

backend

Figure 1: A schematic and highly abstracted illustration of the organization of a
compiler. It is a close adaptation of an image from [ALSU86].

An instruction scheduler is implemented into almost any compiler irrespective of
the target processor architecture. It is responsible for deriving a processing order of
the machine code instructions generated in the instruction selection phase (and, de-
pending on the implementation, register allocation phase) preceding the instruction

1
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scheduling step within the backend. Almost all modern processors are pipelined.
They partition the execution of an instruction into several stages such that a new
instruction can enter the first stage while preceding ones are still being processed
by the other stages. However, the ideal flow of instructions through the pipeline is
harmed by dependencies between instructions on the one hand, and by the varying
latencies caused by the processor’s functional units and the transmission of data via
buses, registers and memory on the other. Functional units realizing more complex
instructions need more time in order to make their results available in logic than sim-
pler ones. Some particular operations may even be hard to integrate into the pipeline
at all and then need to be synchronized with the flow of pipelined instructions in
the case of data dependencies. Further, direct accesses to the main memory may be
slower than instructions operating on register values only. A too early insertion of an
instruction into the pipeline such that its operands are not yet present in logic when
they are needed can be detected by pipeline interlocks [HP07]. The pipeline is then
stalled for the respective necessary number of clock cycles, effectively prolonging
the total execution time. The objective of an instruction scheduler is to avoid such
delays caused by pipeline stalls as well as possible. Taking the latencies between
dependent instructions into account, an instruction scheduler may reorder the in-
structions as long as this preserves the semantics of the respective program, i.e., does
not violate any data dependencies invoked by the respective computations [ALSU86].
The instruction scheduling phase is therefore a critical step w.r.t. the later runtime
performance of a program, especially for in-order processors that exactly adhere to
the schedule provided by the compiler. Even if a processor is capable of processing
instructions out-of-order, the runtime performance of a program can be significantly
improved by a good or even optimal instruction scheduler.

Offset assignment deals with the placement of variables in memory and with the
optimization of accesses to these variables employing the available address regis-
ters and specialized addressing instructions provided by the processor. Unlike in-
struction scheduling, the offset assignment problem occurs mainly in compilers for
application-specific processor designs with Harvard architectures such as, e.g., digital
signal processors. Harvard architectures (in contrast to von Neumann architectures)
strictly separate the storage and transmission of instructions and data. Further,
special-purpose processors often come with limitations compared to general-purpose
processors because they are designed at more restrictive cost conditions or they
are subject to hard constraints w.r.t. power dissipation, operating temperature, or
size [Mar06]. The processors we are considering for the offset assignment problem
have limited addressing capabilities that can lead to a significant overhead in code
size and execution time in that additional instructions are necessary to move between
the memory locations to be accessed. The overhead can however be at least partially
compensated by a smart application of specialized instructions in combination with
an optimized memory layout and address register use. This is a typical situation
where the reduced complexity of a processor design leads to an increase of complex-
ity on the software side because the generation of efficient machine code becomes
much more difficult. In this context, it is worth mentioning some processor design
paradigms that will be referred to especially in the context of scheduling. Very long
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instruction word (VLIW) and explicitly parallel instruction computing (EPIC) pro-
cessors adhere to the idea of moving complexity from hardware to software in an
extreme fashion. These design classes rely on compilers to specify complex bundles
of instructions to be executed in parallel. On the other hand, the reduced instruc-
tion set (RISC, for reduced instruction set computer) typically found in application-
specific processor designs may also simplify some particular tasks of a compiler. For
example, register files comprising a comparably large number of general-purpose
registers, instruction sets that avoid ambiguity, and a small number of instruction
formats can simplify other machine code generation tasks like the already mentioned
register allocation and instruction selection phases [ALSU86, HP07].

As indicated, optimizations in the machine code generation phase are crucial for a
good runtime performance and also for the size of the resulting programs. Many
of them, however, have a high computational complexity which is also true for the
two problems dealt with in this thesis. Their NP-hardness is the main reason why
they are usually solved heuristically in practice, even though this may result in sig-
nificant performance penalties. On the one hand, it is true that most computer
scientists and mathematicians believe that P 6= NP and hence no efficient exact
algorithms can be expected for this class of problems. On the other hand, it has
been demonstrated several times that the careful adaptation of mathematical opti-
mization techniques to particular problems can permit to compute optimal solutions
for instance sizes of practical interest in reasonable time. While it is certainly true
that the abstractions used in some ‘research problems’ can be hard to map to re-
ality and exact approaches are frequently not in a state to be effortlessly used in
production compilers, it is sometimes also a matter of missing acceptance if these
methods do not find their way to practical use. Nonetheless, the design of exact
approaches to compiler optimization problems is being explored by several research
groups around the world, not only because optimal solutions are essential in evalu-
ating the quality of heuristics, but also because exact techniques are evolving such
that optimal solutions become increasingly achievable. In the domain of technical
computer science and engineering, exact algorithms may have even another mean-
ing in answering questions like ‘To which extent can the exploitation of a particular
feature compensate the lack of another?’ as is, e.g., interesting w.r.t. the limited
addressing capabilities dealt with in the context of the offset assignment problem.
Still the exchange of knowledge between experts in hardware-software co-design,
compiler developers and experts in mathematical optimization is improvable. In a
way, this thesis aims at being a contribution in this sense, solving problems that the
author became aware of when specializing in computer architectures with methods
learned when studying mathematical optimization. The main difference of this work
to most others in this interdisciplinary field is that the addressed problems are not
considered to be ‘solved’ by mathematically modeling them and then passing them
as input to a black-box optimization software. Rather, the combinatorial structure
of a problem is investigated and taken into account when designing the respective
solution techniques. In particular, existing knowledge about the solution of closely
related and well-studied optimization problems, that (partially) characterize the fea-
sible solutions of the problems studied, is exploited in order to implement solvers
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that remain relatively compact and are able to solve problem instances of medium
or even large size. These approaches can as well inspire researchers and practitioners
interested in (provably) near-optimal solutions or more sophisticated heuristic and
approximation algorithms.

This dissertation starts by establishing the mathematical basis for the applied opti-
mization techniques in the first chapter. The second and third chapters deal with the
basic-block instruction scheduling problem for single-issue processors. Basic blocks
are program fragments with no side-entrances and -exits, i.e., every instruction of
a basic block needs to be executed before the control flow may leave it and enter
another basic block. Single-issue processors (ideally) start the execution of exactly
one instruction per clock cycle. Chapter 2 introduces the central definitions related
to the problem and discusses exact and heuristic solution approaches from the lit-
erature. Emphasis is then laid to some more recent preprocessing techniques that
permitted to solve large instances to optimality for the first time. In particular, a
constraint programming approach that was published in 2006 optimally schedules
about 350, 000 basic blocks of up to about 2, 500 instructions. It was reasonable
to suspect that the preprocessing methods can have a positive impact on other so-
lution approaches as well. The last attempt to tackle the problem using integer
programming was however not fully equipped with these techniques, and shown not
to be competitive to the constraint programming method on the mentioned large
benchmark set. Further, the previous integer programming models were almost all
based on so-called time-indexed formulations. This was the motivation for a com-
pletely different and novel integer programming approach that takes the mentioned
preprocessing techniques into account. This approach is the subject of Chapter 3.
It is based on linear ordering variables and leads to a new characterization of the
feasible solutions to the problem. After presenting the models and additional valid
inequalities, the corresponding branch-and-cut solver implementation is evaluated
using the same test instances that were used for the constraint programming ap-
proach. It is capable to solve all but about 150 of the instances to optimality in
less than a second of CPU time. There were only eleven instances where it timed
out after ten minutes (while only one timed out with the constraint programming
solver). The fourth and fifth chapters addressing the offset assignment problem are
built up in a similar way. First, Chapter 4 introduces and motivates several variants
of the problem, discusses existing approaches as well as known characterizations of
the respective sets of feasible solutions, and also some newly developed extensions to
these characterizations. Chapter 5 then presents novel integer programming models,
starting with the simplest problem variant in which the processor provides only a
single address register and very restricted possibilities to avoid address computation
overhead. The models are then subsequently extended to deal with multiple address
registers and with more flexible addressing capabilities. Finally, the corresponding
branch-and-cut solver implementations are evaluated and shown to yield optimal
solutions to the majority of about 3, 000 real-world instances collected in a stan-
dard benchmark set. The results do not only reveal the overhead incurred when
using heuristics, but also allow for a first estimation of the impact of the mentioned
addressing capabilities on the total address computation overhead.



Chapter 1

Preliminaries

This chapter covers the mathematical basics of the problems and

solution methodologies discussed and developed in this thesis. The

presentation is kept as complete and self-contained as necessary but

also as restrictive as possible since it is impossible to investigate

these topics as comprehensively as in the vast pertinent literature.

The reader interested in a deeper discussion is kindly referred to the

textbooks and articles cited in the respective sections. Furthermore,

familiarity with the basic concepts of computational complexity, in

particular the theory of NP-completeness, is assumed.

5



6 1.1. Combinatorial Optimization

1.1 Combinatorial Optimization

The compiler optimization problems considered in this thesis are particular instances
of a general class of combinatorial optimization problems. While several differing
definitions of combinatorial optimization problems can be found in the literature,
we will identify these problems using the common characteristic that their solutions
can be expressed as subsets F of a finite ground set E = {e1, e2, . . . , en} [NW88].
While we call each subset F ⊆ E a ‘solution’, we are particularly interested in
the set of of feasible solutions F = {F | F ⊆ E, F feasible}. Further given an
objective function c : F → R such that c(F ) denotes the objective function value
of each feasible solution F ∈ F , a combinatorial optimization problem Q can be
stated as Q = (E,F , c) = max{c(F ) | F ∈ F}. This definition naturally covers
also minimization problems that can be obtained by simply negating the coefficients
of the objective function. As soon as F is nonempty, it is clear that the optimum
objective function value will be attained by at least one of the feasible solutions
since F is a finite set [KV12]. Otherwise, we will say that the problem is infeasible.

Due to its finite nature, a combinatorial optimization problem Q = (E,F , c) can
in principle be solved by inspection of all possible combinations of elements from
E, provided that algorithms to evaluate the feasibility of a solution F ⊆ E and
the objective function value of a feasible solution F ∈ F are available. However,
since the number of solutions to inspect is exponential in |E|, such an enumerative
approach is intractable for larger problem instances. Even in the frequent case that
all the feasible solutions to Q can be constructed in a simple fashion, an enumera-
tive approach may be impractical since also the set F may be of exponential size.
Taking the simple offset assignment problem, that is addressed in the fourth and
fifth chapters of this thesis, as an example, one can consider E to correspond to
a set of n program variables and F to consist of all linear sequences that can be
constructed from them. While the construction of each linear sequence is easy, there
are n!

2 of them to evaluate (a sequence and its reverse sequence have the same ob-
jective function value). It is however a key observation that an exponential number
of feasible solutions does not necessarily mean that the corresponding problem is
not polynomial-time solvable. Regardless whether we can expect a polynomial-time
algorithm or not, we are interested in approaches that try to avoid the necessity to
explicitly consider the entire search space while determining an optimum solution.

In this thesis, we will mainly deal with the special case of linear combinatorial opti-
mization problems where the objective function can be expressed as a linear function
c : E → R. Typically, such an objective function assigns costs or weights to each
of the elements in E and the value of a solution F ⊆ E is then simply given by
c(F ) =

∑

f∈F c(f). Several problems with varying computational complexity fall
into this category. On the one hand, there are instances like the shortest path prob-
lem or the maximum spanning tree problem for which polynomial-time combinatorial
algorithms exist [CCPS98]. On the other hand, there are (strongly) NP-hard prob-
lems like the famous traveling salesman problem, the linear ordering problem or the
instruction scheduling and offset assignment problems that are all considered in this
thesis. For these, there are no polynomial-time algorithms unless P = NP .



1. Preliminaries 7

1.2 (Integer) Linear Programming

Combinatorial optimization problems as just defined usually admit a characteriza-
tion of their feasible solutions by linear constraints (equations and inequalities) on
a number of integral variables and may then be formulated as an integer (linear)
program (IP)

max

n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi for all i ∈ {1, . . . ,m}

xj ≥ 0 and integer for all j ∈ {1, . . . , n}

or max {cTx | Ax ≤ b, x ≥ 0 and integer} for short [Iba76, Wol98].

Here, A is an m × n matrix and b is an m-dimensional column vector, cT is an n-
dimensional row vector and x is an n-dimensional column vector of unknowns. Since
one usually formulates integer programs in order to solve them using a computer, it
is reasonable to assume that all the input data is rational, i.e., A ∈ Qm×n, b ∈ Qm,
and c ∈ Qn. The coefficient matrix A (left hand sides) and the vector of right hand
sides b together describe the linear constraints that need to be satisfied by (integral)
solutions x, and c imposes the linear objective function on the components of x.
As for combinatorial optimization problems, assuming a maximization objective is
without loss of generality since a minimization problem can again be obtained by
negating the objective function coefficients. The above definition naturally covers
also equations

n∑

j=1

aijxj = bi

since these can be represented by the two inequalities

n∑

j=1

aijxj ≤ bi and
n∑

j=1

−aijxj ≤ −bi.

Similarly, the trivial inequalities xj ≥ 0 for all j ∈ {1, . . . , n} do not impose a true
restriction since a general variable x′j can be modeled by constraining it to be the
difference of two nonnegative variables, i.e., y − z = x′j with y, z ≥ 0.

Solving integer programs is NP-hard in general [NW88] and the special case of
{0, 1}-IPs where each variable xj is restricted to be either zero or one is among
Karp’s compilation of 21 NP-hard problems [Kar72]. If the integrality restriction
is imposed only on some of the variables, then the formulation is called a mixed-
integer (linear) program (MIP) and solving it remains, in general, NP-hard [NW88].
Finally, if there is no integrality restriction at all, then we are given a linear program
(LP) that can be solved in polynomial time [Kha79, GL81, Kar84].

Throughout this thesis, we will use the following terminology w.r.t. (integer) linear
programs. A vector x∗ ∈ Rn, x ≥ 0, with at least one component x∗i 6∈ N0 will be
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referred to as being fractional. If Ax∗ ≤ b holds, then x∗ will be called a fractional
solution. For any vector x∗ ∈ Rn, irrespective whether fractional or integral, the
inequality

∑n
j=1 aijxj ≤ bi is said to be satisfied (by x∗), if

∑n
j=1 aijx

∗
j ≤ bi. Further,

we call the inequality binding (at x∗), if it holds that
∑n

j=1 aijx
∗
j = bi. Finally, we

say that the inequality is violated (by x∗) if
∑n

j=1 aijx
∗
j > bi.

1.3 Relaxations

Given some optimization problem Q, a relaxation R of Q is another optimization
problem that has a potentially larger solution space than Q while every solution to
Q is feasible for R as well. Hence, for a maximization problem, if z∗ is the value of an
optimum solution to Q, then an optimum solution z∗R to R must have an objective
function value z∗R ≥ z∗. In other words, z∗R provides an upper bound on the value z∗

of interest. This is useful, e.g., to evaluate the quality of a known feasible solution
to problem Q. In particular, if z∗R coincides with the objective function value of the
known solution, then it is proven to be optimal for Q. A relaxation can therefore
help to solve the original problem to optimality in an indirect way, for instance by
proving a solution to be optimal that has been obtained heuristically.

In the finite context of combinatorial optimization problems, we can describe relax-
ations as follows. Let Q = (E,F , c) be the original problem and let z∗ = max{c(F ) |
F ∈ F} be its optimal objective function value. Then a problem R = (E,F ′, c) is a
relaxation of Q if F ⊆ F ′ and z∗ ≤ max{c(F ) | F ∈ F ′} [NW88].

Another form of relaxation that we will frequently deal with is a linear program
that is derived from an IP (or a MIP) by neglecting any integrality restriction on
the variables xj, j ∈ {1, . . . , n}. It is called the linear programming relaxation of
the respective program. A linear programming relaxation is a continuous relaxation
since the set of integer feasible solutions is augmented by all solutions x ∈ Rn, x ≥ 0,
with fractional components satisfying the inequality system Ax ≤ b. Moreover, we
will see in Sect. 1.4.3 that even the solution sets associated to integer programs need
not necessarily be finite. Regardless of that, a linear programming relaxation is a
true relaxation since we have that

z∗LP = max{cTx | Ax ≤ b, x ≥ 0, x ∈ Rn} ≥ max{cTx | Ax ≤ b, x ≥ 0, x ∈ Nn
0} = z∗.

For a particular optimization problem Q, the maximum quotient z∗LP /z
∗ that can

be attained for any instance of Q is called the integrality gap of the LP relaxation.

1.4 Linear Programming and Polyhedral Theory

A considerable part of the practical success of linear and integer linear programming
techniques stems from investigations of the solution sets associated to the respec-
tive problem formulations. Before we dive into this topic in more detail, we need
some basic concepts from linear algebra. The following descriptions and results are
based on the presentations by Grötschel and Padberg [GP85], Schrijver [Sch86],
and Nemhauser and Wolsey [NW88]. Most of the results are restated without their
associated proofs that can also be found in the cited references.
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1.4.1 Combinations and Independence of Vectors, Convexity

Let k, n ∈ N such that k ≤ n. Consider k vectors x1, . . . , xk ∈ Rn and k scalars
λ1, . . . , λk ∈ R. A vector x ∈ Rn that can be written as x = λ1x

1+· · ·+λkx
k is called

a linear combination of the vectors x1, . . . , xk ∈ Rn. If the additional restriction
∑k

i=1 λi = 1 holds, then x is called an affine combination of these vectors.

Closely related to these definitions are the following notions of independence. If the
only linear combination satisfying the equation 0 = λ1x

1 + · · · + λkx
k has λi = 0

for all i ∈ {1, . . . , k}, then the vectors are said to be linearly independent. In
any other case, the vectors x1, . . . , xk ∈ Rn are called linearly dependent. Simi-
larly, we call the vectors x1, . . . , xk ∈ Rn affinely independent if the only solution to
0 = λ1x

1 + · · · + λkx
k,

∑k
i=1 λi = 0, has λi = 0 for all i ∈ {1, . . . , k}, and affinely

dependent otherwise. We observe that the vectors x1, . . . , xk are linearly (affinely)
independent if and only if none of them can be expressed as a linear (affine) combi-
nation of (a subset of) the others.

By definition, any set S ⊆ Rn that contains the zero vector is linearly dependent.
The maximum number of linearly independent vectors from Rn is n, while the maxi-
mum number of affinely independent vectors is n+1. In particular, if x1, . . . , xk ∈ Rn

are linearly independent, then 0, x1, . . . , xk ∈ Rn are affinely independent.

Besides linear and affine combinations, we consider conic combinations where λi ≥ 0
for all i ∈ {1, . . . , k}. The vector x ∈ Rn, x = λ1x

1 + · · · + λkx
k is called a convex

combination of the vectors x1, . . . , xk if it is both, an affine and a conic combination.
Moreover, we call a set S ⊆ Rn convex, if any convex combination of any two points
x, y ∈ S, z = λx + (1− λ)y, λ ∈ [0, 1], is again contained in S.

Provided with a set of vectors x1, . . . , xk ∈ Rn, we are particularly interested in the
set of points that can be represented by the different forms of combinations of these
vectors. The set of all linear combinations of the vectors x1, . . . , xk,

lin({x1, . . . , xk}) :=

{
k∑

i=1

λix
i | λ ∈ Rk

}

,

is called their linear hull. Especially, if S is a set of n linearly independent vectors
in Rn, then lin(S) = Rn and S is a basis of Rn.

The set of all affine combinations of the vectors x1, . . . , xk,

aff({x1, . . . , xk}) :=

{
k∑

i=1

λix
i | λ ∈ Rk,

k∑

i=1

λi = 1

}

,

is called their affine hull.

Analogously, the set of all conic combinations of the vectors x1, . . . , xk,

cone({x1, . . . , xk}) :=

{
k∑

i=1

λix
i | λ ∈ Rk, λi ≥ 0

}

,

forms a cone or a conic subspace in Rn.
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We will also need the set of all convex combinations of the vectors x1, . . . , xk,

conv({x1, . . . , xk}) :=

{
k∑

i=1

λix
i | λ ∈ Rk, λi ≥ 0 and

k∑

i=1

λi = 1

}

,

that is called their convex hull.

1.4.2 Rank and Dimension

The rank of a set S ⊆ Rn, rank(S), is the maximum number of linearly independent
vectors contained in S. Similarly, the affine rank of S, arank(S), is the maximum
number of affinely independent vectors contained in S. In particular, if the zero
vector can be expressed as an affine combination of the vectors in S (0 ∈ aff(S)),
then arank(S) = rank(S) + 1, and arank(S) = rank(S) otherwise. The dimension
dim(S) of S is defined as dim(S) = arank(S) − 1. In case that dim(S) = n, then
the set S is called full-dimensional.

Let A ∈ Rm×n be a matrix. The rank of A is equally given by the maximum num-
ber of linearly independent rows or columns of A. If A defines the left hand sides
of inequalities or equations, we will sometimes say ‘linear independent inequalities
(equations)’ and mean the linear independence of the vectors given by their asso-
ciated matrix rows. The linear equation system Ax = b has at least one solution
x ∈ Rn if rank(A) = rank([A b]) where [A b] is the augmented matrix that results
when interpreting b as a further column appended to A. In other words, in order
for Ax = b to have a solution, the vector b must be expressible as a linear com-
bination of the columns of A. In particular, Ax = b has a unique solution x∗ if
rank(A) = rank([A b]) = n.

1.4.3 Polyhedra

The following definition of a polyhedron combines those given in [GP85] and [NW88].

Definition 1.4.1. (Polyhedron, Polytope [GP85, NW88]). A set P ⊆ Rn is called
a polyhedron, if there exists an m ∈ Z≥0, a matrix A ∈ Rm×n and a vector b ∈ Rm

such that P = {x ∈ Rn | Ax ≤ b}. A polyhedron P is also called a polytope if it is
bounded, i.e., if there exists a scalar w ∈ R, w ≥ 0, such that P ⊆ {x ∈ Rn | −w ≤
xi ≤ w for all i ∈ {1, . . . , n}}.

Comparing this definition with the one given for linear programs in Sect. 1.4, it can
be seen directly that the solution set described by the inequalities of an LP is a
polyhedron and that the solution set of the associated IP consists of the integral
points contained in it. This is depicted in the left picture of Fig. 1.1 for the case of a
two-dimensional polytope. Classical results by Minkowski [Min96] and Weyl [Wey35]
state that any polyhedron has a second characterization besides the one by linear
inequalities. If a polyhedron P = {x ∈ Rn | Ax ≤ b} is not bounded, then there are
vectors r ∈ Rn such that x+λr ∈ P for all x ∈ P and λ ≥ 1. The vectors r represent
an unbounded direction of P and are also called rays of P . Moreover, the finite set
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Figure 1.1: A two-dimensional polytope defined by inequalities aTi x ≤ bi (left) and
as the convex hull of extreme points x1, . . . , x5 ∈ R2 (right).

R = {r1, . . . , rl} of P ’s rays that cannot be expressed as a convex combination of any
other rays are called P ’s extreme rays. The mentioned classical results state that P
can then be expressed by the Minkowski sum of the convex sets given by all convex
combinations of its extreme points {x1, . . . , xk} and all conic combinations of its
extreme rays {r1, . . . , rl}, i.e., P = conv{x1, . . . , xk}+cone{r1, . . . , rl} (cf. Fig. 1.2).
Here, the Minkowski sum of two sets X,Y ⊆ Rn is defined as X + Y = {x + y |
x ∈ X, y ∈ Y }. If P is a polytope, the conic part is not needed and P can be
expressed as the convex hull of its extreme points only, as is depicted in the right
picture of Fig. 1.1. While it is possible to transform a polyhedral description by
linear inequalities into a description by extreme points (and extreme rays), this is
usually an expensive operation. Any extreme point of P = {x ∈ Rn | Ax ≤ b}
is given by the intersection of n linearly independent inequalities. Consequently, if
the matrix A has m rows, then P can have up to

(
m
n

)
extreme points. Hence, it is

possible that the description by extreme points has a size that is exponential in n.
Moreover, the number m of inequalities necessary to completely describe P can itself
be already exponential in n.

r1

x
1

x
2

r2

Figure 1.2: A polyhedron defined by the extreme points x1, x2 ∈ R2 and the ex-
treme rays r1, r2 ∈ R2. The dashed lines indicate how the Minkowski sum translates
the cone spanned by r1 and r2 onto conv{x1, x2}, i.e., the line between x1 and x2.

For many polyhedra that are associated with combinatorial optimization problems,
no complete description of their feasible region by linear inequalities is known. If it
is known though, then the corresponding problem can be solved as a (huge) linear
program. In case that the number of the inequalities is polynomial in the input
size of the problem, the optimization could then be carried out in polynomial time.
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However, usually only a problem description is known that defines a polyhedron
whose integral points correspond to the set of feasible solutions, but the inequalities
do not define the convex hull of these points. In this case, where a problem Q
is modeled as an integer program max {cTx | Ax ≤ b, x ≥ 0, x ∈ Nn

0}, i.e., the
variables are explicitly constrained to be integer without expressing this in terms
of inequalities, often a comparably small number of inequalities suffices in order to
characterize the feasible solutions to Q. Still ‘comparably small’ may mean that the
number of necessary constraints is exponential in n. Compare the two polytopes
in the left image of Fig. 1.3. Both describe the same set of integer feasible points.
However the larger one includes some more fractional points that are exactly cut off
by the additional inequalities of the smaller one. Every extreme point of the inner
polytope corresponds to an integral feasible solution and lies in the intersection of
exactly two inequalities. It can further be observed that the optimal solutions of
the inner and outer polytopes do not coincide w.r.t. the example objective function
shown in the right picture of Fig. 1.3 that focuses on the upper right corner of the
left one.

c

Figure 1.3: Two polytopes with the same set of integral solutions. Only the inner
one completely describes their convex hull by linear inequalities. The right image
shows an objective function leading to different optima w.r.t. the two polytopes.

1.4.4 Hyperplanes, Faces and Facets

Let P = {x ∈ Rn | Ax ≤ b} be a polyhedron. Consider the i-th inequality aTx ≤ bi
of P . If a 6= 0, the associated set S = {x ∈ Rn | aTx ≤ bi} is called a halfspace
since it partitions the Rn into the sets of points {x ∈ Rn | aTx ≤ bi} (that satisfy
the inequality) and {x ∈ Rn | aTx > bi} (that violate the inequality). In particular,
provided that the row vectors of A are all nonzero vectors, they define halfspaces
and therefore any polyhedron P ( Rn is the intersection of finitely many halfspaces.
The boundary H = {x ∈ Rn | aTx = bi} of a halfspace is called a hyperplane.

Of special interest are inequalities whose associated hyperplanes provide a good
characterization of the solutions to a certain problem. An inequality aTx ≤ bi is
called valid w.r.t. to a polyhedron P if P ⊆ {x ∈ Rn | aTx ≤ bi}. The associated
hyperplane H = {x ∈ Rn | aTx = bi} is called a supporting hyperplane if P ∩H is
nonempty or, equivalently, if max {aTx | x ∈ P} = bi. The intersection of P with
a (supporting) hyperplane H is called a face of P . We then say that the face F
is defined (or induced) by the inequality aTx ≤ bi associated to the hyperplane H.
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A face F is a proper face of P if F 6= P and a nontrivial face of P if F is proper
and nonempty. Of central interest is the dimension dim(F ) of a face F . It can
be shown that if F is a proper face of the polyhedron P = {x ∈ Rn | Ax ≤ b}
with A being an m × n matrix, then there exists an index set R ⊆ {1, . . . ,m}
such that F = {x ∈ P |

∑n
j=1 arjxj = br for all r ∈ R} [GP85]. Let AR and bR

be the respective rows of A and b. Then the dimension dim(F ) of F is given by
dim(F ) = n− rank([AR bR]) [Sch86]. In particular, 0 ≤ dim(F ) ≤ dim(P )− 1. We
already came across the zero-dimensional faces of a polyhedron P , called vertices,
that are exactly its extreme points. By the above relation, for any vertex x∗ ∈ P
there exists a submatrix AR of A consisting of n linearly independent rows such that
rank([AR bR]) = n and x∗ = A−1

R bR. The one-dimensional faces of P are referred
to as edges. Moreover, the faces of dimension dim(P ) − 1 are called facets and the
inequalities corresponding to their supporting hyperplanes are called facet-inducing.
Facet-inducing inequalities are particularly important due to the following theorem
that classifies the role of facets in terms of minimal descriptions of polyhedra.

Theorem 1.4.1. ([NW88]). Any polyhedron P has a unique (up to scalar multipli-
cation) minimal representation by a finite set of linear equations and inequalities. In
particular, for each facet Fi of P , the minimal representation contains an inequality
aTx ≤ bi (unique up to scalar multiplication) representing Fi.

1.4.5 Basic Solutions and the Simplex Algorithm

We want to elaborate on the connection between polyhedra and linear programs
in some more detail. Let us recall from Sect. 1.4.4 that, for any vertex x∗ of a
polyhedron P = {x ∈ Rn | Ax ≤ b}, there exists a submatrix AR consisting of n
linearly independent rows of A so that rank([AR bR]) = n and x∗ = A−1

R bR is the
unique solution to the system ARx = bR. Geometrically, x∗ lies in the intersection of
the hyperplanes associated to the n linearly independent rows of A. In the general
discussion of polyhedra in Sect. 1.4.3 and Sect. 1.4.4, we did not assume the vectors
satisfying the system of inequalities Ax ≤ b to be nonnegative but required the m×n
matrix A to have rank n which ensures that the associated polyhedron has at least
one vertex. Now, we reinstall the nonnegativity property and consider polyhedra
of the form P = {x ∈ Rn | Ax ≤ b, x ≥ 0} corresponding to the feasible regions
of linear programs as defined in Sect. 1.2. In this case, we can sacrifice the rank
assumption on A because the trivial inequalities, xj ≥ 0 for all j ∈ {1, . . . , n}, are
clearly linearly independent. So if rank(A) < n, then P has vertices that lie on some
of the axes. For each such vertex x∗, we may use the corresponding trivial inequalities
to build a matrix AR such that rank([AR bR]) = n. Since the row and column vectors
of AR form a basis of Rn, a vertex solution x∗ that is feasible w.r.t. all the inequalities
Ax ≤ b is also called a basic feasible solution. In the special case that the feasible
region P is empty, we call the associated linear program infeasible. Further, if there
is an objective function cTx such that max{cTx | x ∈ Rn, Ax ≤ b, x ≥ 0} =∞, then
the associated linear program is unbounded. If a linear program is neither infeasible
nor unbounded then there is an optimum solution that will be attained and the
following theorem provides us with a useful characterization of LP optima.
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Theorem 1.4.2. ([NW88]). Let P = {x ∈ Rn | Ax ≤ b, x ≥ 0} be a nonempty
polyhedron and let max{cTx | x ∈ Rn, Ax ≤ b, x ≥ 0} be an objective function
that does not correspond to an unbounded direction of P . Then there exists a vertex
x∗ ∈ P such that cTx∗ = max{cTx | x ∈ Rn, Ax ≤ b, x ≥ 0}.

Theorem 1.4.2 gives rise to the well-known simplex algorithm to solve linear pro-
grams. The simplex algorithm finds the vertices of P indirectly by considering the
possible combinations of (at least) n inequalities (those from A plus the trivial ones)
to be satisfied with equality. A first feasible basic solution can be found by solving
an auxiliary problem with a modified objective function (and potentially some addi-
tional column exchange operations). This is usually referred to as phase one of the
simplex algorithm. Assuming a maximization problem, the main routine (phase two)
of the algorithm starts from a basic feasible solution and then iteratively moves to
an adjacent basic feasible solution (another vertex) with a nondecreasing objective
function value as long as this is possible. By Theorem 1.4.2, it must eventually find
an optimum solution to the linear program. The motion from one basic solution to
an adjacent one is carried out by exchanging so-called basic and non-basic variables
(within the simplex algorithm, there are more than n variables due to the addition of
slack variables in order to turn inequalities into equations). In general, there can be
several candidate variables to make (non-)basic at each iteration and the subroutine
to decide which one to choose is known as the pivoting rule. There is no proof known
for any particular pivoting rule that bounds the number of iterations necessary to
arrive at an optimum vertex by a polynomial in the size of the input data. However,
and even though provably polynomial-time LP methods exist, the simplex algorithm
is still frequently used in practice. Some important reasons for this fact are that (i)
the number of iterations observed in practice is often small, (ii) solution methods
for linear equation systems can be implemented very efficiently, and (iii) particular
variants of the simplex algorithms can be easily ‘warmstarted’ after adding variables
or constraints to the linear program [Sch86]. This will be particularly helpful for
the techniques discussed in Sect. 1.5. Nonetheless, for various pivoting rules used in
practice, worst case instances with an exponential number of vertices traversed have
been reported (see, e.g., [Sch86]).

1.4.6 Cutting Planes and their Separation

1.4.6.1 Cutting Planes

Suppose we want to solve the linear program max{cTx | x ∈ Rn, Ax ≤ b, x ≥ 0}
and assume that the number m of constraints (of A’s rows) is large. As we already
stated, m may be even a number that is exponential in n for some particular integer
programming formulations of combinatorial optimization problems. So consider the
case where we relax the linear program by neglecting some of its inequalities. In
principle, it suffices to keep enough inequalities such that the associated polyhedron
is not unbounded w.r.t. the objective function cTx. Let A1 be a matrix that results
from removing some of A’s rows, let b1 be the right hand sides corresponding to the
rows in A1 and suppose that we solve the LP max{cTx | x ∈ Rn, A1x ≤ b1, x ≥ 0}.
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Let x∗ be a solution to this relaxed linear program. Then two cases may occur:
Either, it also holds that Ax∗ ≤ b, i.e., the solution x∗ satisfies the neglected inequal-
ities without having this enforced explicitly. Or, there exists at least one inequality
∑n

j=1 aijxj ≤ bi such that
∑n

j=1 aijx
∗
j > bi. By subsequently adding the inequality

to the relaxed linear program, we know that x∗ cannot be a solution anymore if we
resolve it. We also say, that the solution x∗ is cut off or separated by the inequality
and call it a cutting plane or shortly a cut. By the interleaved solution of linear
programs and addition of cutting planes, we will finally arrive at some solution x∗

that is feasible for our original problem, i.e., x∗ is an optimum solution to the linear
program max{cTx | x ∈ Rn, Ax ≤ b, x ≥ 0}. When using cutting plane algorithms,
we hope to arrive at such a solution without the necessity to add all of the initially
neglected inequalities. In general, to avoid that LP relaxations become too large, it
is also possible to remove some of the separated inequalities again at a later point of
time. A typical strategy is then to remove those inequalities that were satisfied with
a large slack in the last LPs, i.e., the term bi −

∑n
j=1 aijxj is (comparably) large.

1.4.6.2 Separation

The cutting plane approach just indicated gives rise to the so-called separation prob-
lem. Given an LP solution x∗, find a yet neglected inequality

∑n
j=1 aijxj ≤ bi such

that
∑n

j=1 aijx
∗
j > bi or prove that no such inequality exists. Besides the option

to separate necessary inequalities, i.e., those that are needed to characterize the
set of integer feasible solutions, one may also consider to separate additional in-
equalities that are not necessary in this sense but cut off further fractional solutions
(cf. Sect. 1.4.3). However, the separation problem associated to a particular class
of inequalities may itself be NP-hard. In this case one might consider to design a
heuristic separation procedure that may find one or several violated inequalities if
they exist but cannot prove that no such inequality exists.

The following famous result is usually attributed to Grötschel, Lovász and Schri-
jver [GLS81, GLS84]. According to Korte and Vygen [KV12], it has been indepen-
dently discovered also by Karp and Papadimitriou [KP80, KP82], and Padberg and
Rao [PR81]. Here, the theorem is stated in a way that suits for our purposes while
the original formulation is even more general.

Theorem 1.4.3. ([GLS81, GLS84]). An optimization problem (over a bounded poly-
hedron P ) can be solved in polynomial time if and only if its associated separation
problem (given P and a point x∗ ∈ Rn, either conclude that x∗ ∈ P or find an
inequality aTx ≤ b such that aTx∗ > b) can be solved in polynomial time.

It should be mentioned that this theorem has been proven based on the ellipsoid
method [GLS81, GLS84] and considers general points x∗ ∈ Rn (not necessarily
vertices), as this will be of importance for a discussion in the following subsection.
While each different class of inequalities has its own associated separation problem,
Theorem 1.4.3 refers to all the separation problems of any nonredundant class of
inequalities that define the polyhedron P associated to the feasible solutions of the
optimization problem. In particular, if the optimization problem requires integrality
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of its variables, then the theorem states that the optimization problem is polynomial-
time solvable if and only if all inequalities necessary to obtain the integer hull of the
polyhedron are separable in polynomial time.

1.4.6.3 General Cuts for Integer Programs: Chvátal-Gomory Cuts

Related to the previous considerations is the question whether we can separate
certain classes of inequalities that are valid for each integral solution but violated
by any fractional solution of an integer program. A well-known class of inequalities
of this kind are the Chvátal-Gomory cuts that can be applied to any linear program
with integral input data, i.e., a linear program max{cTx | x ∈ Rn, Ax ≤ b, x ≥ 0}
with A ∈ Zm×n and b ∈ Zm. They can be generated as follows.

We first recognize that any inequality that results as a nonnegative linear combina-
tion of some of the inequalities from Ax ≤ b by choosing a λ ∈ Rm, λ ≥ 0,

m∑

i=1

λi

n∑

j=1

aijxj ≤
m∑

i=1

λibi,

is a valid inequality to the original linear program. For ease of notation, define
a′ij =

∑m
i=1 λiaij and b′i =

∑m
i=1 λibi, so that we can rewrite the above inequality as

n∑

j=1

a′ijxj ≤ b′i.

Since x ≥ 0 and
∑n

j=1(a
′
ij − ⌊a

′
ij⌋) ≥ 0, any solution satisfying this inequality must

also satisfy the inequality
n∑

j=1

⌊a′ij⌋xj ≤ b′i.

Now, since ⌊a′ij⌋xj is integer for any xj ∈ Z, we can finally round down also the
right hand side and obtain the Chvátal-Gomory inequality

n∑

j=1

⌊a′ij⌋xj ≤ ⌊b
′
i⌋.

Gomory [Gom58, Gom63] showed that one can derive a violated Chvátal-Gomory
inequality from each fractional basic feasible solution. Moreover, Chvátal [Chv73]
showed that the integer hull of the polyhedron associated to the LP max{cTx | x ∈
Rn, Ax ≤ b, x ≥ 0} with A ∈ Zm×n and b ∈ Zm can be obtained by adding a finite
number of Chvátal-Gomory inequalities. Being more precise, he proved that a finite
number of inequalities suffices in order to obtain the polyhedron that results from
adding all the Chvátal-Gomory inequalities associated to the original inequality sys-
tem Ax ≤ b (called the first Chvátal-Gomory closure). The polyhedron obtained by
adding all Chvátal-Gomory inequalities corresponding to the first Chvátal-Gomory
closure is called the second closure and so on. Chvátal then showed that there exists
some i such that the i-th Chvátal-Gomory closure is the integer hull of Ax ≤ b.



1. Preliminaries 17

At first glance, it looks like we are now stuck in a contradiction. One the one hand,
we know that we can compute the integer hull of any polyhedron given by integral
input data using Chvátal-Gomory inequalities only, and we are given a polynomial-
time separation procedure that constructs such an inequality for each fractional
solution. And on the other, we know that the solution of general integer programs
is NP-hard. Combined with Theorem 1.4.3 that states equivalence of optimization
and separation, this appears to be impossible. However, there is no contradiction,
since the theorem is based on the ellipsoid method - and in this method one cannot
make assumptions about LP solutions x∗ such as requiring them to be a vertex of the
respective polyhedron [FL07]. In fact, the general separation problem that, given any
point x∗ ∈ Rn, decides whether there exists a λ ∈ Rm such that ⌊λTA⌋x∗ > ⌊λT b⌋,
is NP-hard [Eis99]. Moreover, despite the fact that Gomory’s separation method
can be performed in polynomial time w.r.t. the size of the LP, the number of such
Chvátal-Gomory inequalities necessary to reach the integer hull can be exponential
in the number of the original inequalities [FL07].

To close this subsection, it is worth mentioning a special case of Chvátal-Gomory
inequalities that will be referred to in Chapter 3. These inequalities where all λi ∈
{0, 12}, i = 1, . . . ,m are called {0, 12}-Chvátal-Gomory cuts or, for short, just {0, 12}-
cuts. The separation problem associated to {0, 12}-cuts is NP-hard [CF96] as well.

1.4.7 Total Unimodularity

For some particular combinatorial optimization problems, we are in the fortunate
situation that there is no need to explicitly enforce the integrality of the variables
used in linear programming formulations. This is the case if the associated constraint
matrix A has only integral entries and the determinant of each square submatrix
of A is either zero, one, or minus one. Such a matrix is called totally unimodular.
The following variant of a theorem by Hoffman and Kruskal [HK56], that is taken
from [CCPS98], provides us with the opportunity to solve the respective problem in
polynomial time using an LP while being guaranteed to obtain an integral solution.

Theorem 1.4.4. ([CCPS98]). Let A ∈ Zm×n be an integral matrix. Then the poly-
hedron P = {x ∈ Rn | Ax ≤ b, x ≥ 0} has exceptionally integer basic feasible
solutions for any b ∈ Zm if and only if A is totally unimodular.

1.5 Branch-and-Bound and Branch-and-Cut

This section covers some basic concepts of the two solution methodologies named
in the title. It deals only with those concepts that were used and implemented
for the models presented in this thesis, or at least referred to at some points in
this thesis. For the many possible variants, tuning parameters, and extensions to
these methods, we refer the interested reader to [EGJR01, Thi95], that served as a
basis for the descriptions made here, and to the corresponding textbooks about the
solution of general integer programs.
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1.5.1 Branch-and-Bound

Branch-and bound is a general enumerative approach to combinatorial optimization
problems that resembles a particular instance of divide and conquer algorithms.
Using the definition of combinatorial optimization problems from Sect. 1.1, branching
means to decompose a problem Q = (E,F , c) = max{c(F ) | F ∈ F} into a finite
set of smaller subproblems {Qi = (E,Fi, c)}, i ∈ {1, . . . , k}, in such a way that
⋃k

i Fi = F . The subproblems Qi are derived from Q by adding further constraints to
the problem formulation or by restricting the feasible ranges of some of its variables
(which is technically the same since any bound on the value of a variable can be
expressed as a constraint). The recursive decomposition of a problem into smaller
subproblems yields a tree, called the branch-and-bound tree which has the original
problem as its root. Each (sub-)problem Qi is represented by a vertex whose adjacent
children are the subproblems created from it. Hence, the subtree rooted at Qi is
made up of all the subproblems that are recursively generated from Qi. In particular,
none of these subproblems can contain a solution that is better than the best one to
Qi. The bounding character of the approach comes from the idea to maintain and
exploit lower and upper bounds on the optimum objective function value (as before,
we assume a maximization objective) in the following fashion.

• Any feasible solution found in any subproblem of the branch-and-bound tree
yields a lower bound on the optimum objective function value. The best, i.e.
maximal, among these is a global lower bound and a solution that attains this
currently best known objective function value is called an incumbent solution.
A different opportunity to obtain incumbent solutions and global lower bounds
is to use a heuristic or approximation algorithm.

• If an appropriate method is available, a local upper bound for each subproblem
may be computed (e.g., by relaxing it such that an upper bound can be easily
retrieved). If the local upper bound is smaller than or equal to the global lower
bound, it is not necessary to further consider the subtree associated to this
subproblem in which case we say that it is pruned or fathomed. The same is
true if the subproblem (or its relaxation) turns out to be infeasible.

• The largest among all local upper bounds of nonfathomed subproblems is a
global upper bound on the optimal objective function value. In particular, if
this value is found to be smaller than or equal to the global lower bound, then
the current incumbent solution is proven to be optimal.

In the context of integer programming, each subproblem of the branch-and-bound
tree is an integer program and the relaxation that is solved there is usually its linear
programming relaxation (other opportunities exist). If the LP solution associated
to any subproblem is integer (and all necessary constraints are either present or at
least not violated), then the subproblem is solved and, potentially, a new incum-
bent solution and global lower bound is found. If the solution is not integer and
the subproblem is not infeasible, then let x∗i be some fractional variable. The com-
mon approach to carry out a branching step is to restrict xi to be less or equal



1. Preliminaries 19

to ⌊xi⌋ in Q1 and to greater than or equal to ⌈xi⌉ in Q2. Clearly, this procedure
does neither add nor remove any integer feasible solutions when both problems are
considered to replace the former one. Again, there exist several alternatives and it is
also possible to create more than two subproblems. The union of the set of feasible
solutions to the created subproblems must however match the feasible solutions of
the decomposed one. In general, the routine that specifies how to select a variable
to branch on (or the constraints to add), and how subproblems shall be created, is
called a branching rule. A computationally intensive strategy is to tentatively carry
out branching decisions for multiple candidates (e.g., variables) and to solve all the
associated subproblem relaxations in order to decide which branching candidate to
take ultimately. This strategy is called strong branching. Further situations exist in
which decisions must be made that may have a large impact on the solution process.
For example, whenever there are a number of created but not yet solved (open) sub-
problems, it must be decided which one to process next. A depth-first construction
of the branch-and-bound tree emphasizes on a quick generation of feasible solutions.
A breadth-first construction promotes the retrieval of useful upper bounds. Several
other strategies that try to combine the advantages (and alleviate the disadvantages)
of these two extreme strategies exist. For instance, the best-first strategy selects a
subproblem that has the currently weakest (largest) local upper bound. One the one
hand, this subproblem currently offers the best opportunity to comprise a solution
with maximum objective function value. And on the other, if this subproblem is the
only one with the currently weakest upper bound and this value can be improved
by the branching step, then this will also improve the global upper bound.

Another common concept that is applied in combination with LP-based branch-and-
bound are primal heuristics. Primal heuristics try to construct a feasible solution
by exploiting the LP solution obtained at a subproblem. Since the LP solved is
a relaxation, is it reasonable to assume that, in general, one may conclude on the
importance of some of the variables w.r.t. optimal solutions by inspecting their LP
values. For some particular problems, it is then easy to implement some form of a
greedy algorithm in order to construct a feasible solution. But of course also more
sophisticated variants are possible, yielding a trade-off situation between running
time and the quality of solutions. Since linear programs often remain with at least
some fractional variables, primal heuristics are often crucial for a quick computation
of strong (i.e., large) global lower bounds.

1.5.2 Branch-and-Cut

Branch-and-cut describes the integration of LP-based branch-and-bound with the
generation of cutting planes. The solution of one linear programming relaxation
at each branch-and-bound vertex is replaced by the solution of (potentially) several
linear programs that arise from the iterative addition of cutting planes. Since every
added cutting plane is a further restriction of the feasible region, one may hope to
obtain better local upper bounds at the respective subproblems or to even arrive
at an integer feasible solution. Again, several tuning parameters can be considered
that can have a larger impact of the solution process. Of importance are especially
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the parameters that determine (i) the number of iterations where cutting plane
generation shall be considered, (ii) a limit on the number of cutting planes generated
per iteration, and (iii) which classes of inequalities shall be separated in which order.
There is often a trade-off between the invested time for separation and the resulting
improvement of the solution process. One may of course add cutting planes until no
more further ones of a certain class of inequalities can be found, or install a fixed
number of maximum iterations. A more sophisticated idea is to add cutting planes
only as long as they have some impact on the objective function value, i.e., lead to
better local upper bounds. This is known as a tailing-off strategy.

1.6 Standard Linearization Approaches

When formulating combinatorial optimization problems, it is sometimes necessary
to model a class of inequalities or an objective function that involves products of
variables. Since the inequalities as well as the objective function need to be linear
expressions in the variables in order to use linear programming techniques, it may
be convenient to apply a linearization to the quadratic (or even higher degree) terms
of a model. The following shortly summarizes some standard methods [McC76] to
linearize products of variables since they will be applied frequently in this thesis.

We first discuss the linearization of a product of two {0, 1}-variables. Let xi, xj ∈
{0, 1} be two binary variables and suppose we want to model the product of xi and
xj. Then this can be modeled by introducing a new variable yij ∈ [0, 1] and enforcing
it to take the value of the product for any integral solution using the inequalities:

yij ≤ xi

yij ≤ xj

yij ≥ xi + xj − 1

The correctness of this construction is easy to verify. The variable yij = xixj is
equal to one, if and only if xi and xj are both one. In this case, the third constraint
enforces yij to attain value one while the first two ones impose no restrictions on
yij (since yij ≤ 1 always holds). In the other cases where either xi or xj (or both)
are zero, the first two inequalities make sure that yij is also zero while the third one
becomes redundant (since yij ≥ 0 always holds). It is not necessary to explicitly
require integrality of yij in the problem formulation, since the above inequalities
make sure that yij is integer whenever xi and xj are.

Now we move to the case of a product of a {0, 1}- and a general integer variable.
Let x ∈ {0, 1} be a binary variable and y ∈ Z, y ≥ 0 be a general integer variable.
Suppose further, that y ≤ Y holds for some upper bound Y . Then a variable z = xy
can be constructed in a similar manner to the binary case:

z ≤ y

z ≤ Y x

z ≥ y + Y x− Y
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This time, we want to achieve that z attains the value of y if x is one, and that it
attains value zero if x or y is zero. The latter cases are again handled by the first
two constraints. The coefficient Y in the second inequality is necessary to not be
too restrictive in the case x = 1, since then it must be possible for z to attain any
value of y. So if x = 1, then the term Y x − Y in the third inequality equals zero,
and (together with the first inequality) z is enforced to attain the same value as y.
On the other hand, if x = 0, then the subtraction of Y in the third inequality makes
sure that this constraint is never binding for z independent from the value of y.

1.7 Constraint Programming

Like in integer programming, a constraint programming model or constraint satis-
faction problem characterizes solutions to a problem by formulating constraints over
a finite set of variables X = {x1, . . . , xn}. Each of the variables xi has an associ-
ated domain D(xi) that specifies the possible values xi may attain. Constraints are
expressions on allowed combinations of values for the variables X. A solution to a
constraint satisfaction problem is an assignment of values to all the variables such
that xi ∈ D(xi) for all i ∈ {1, . . . , n} and all constraints are satisfied. A central dif-
ference between constraint programming (CP) and LP-based integer programming
approaches is that integrality is never relaxed in CP solvers. Instead, the optimiza-
tion process interleaves the application of branching and propagation phases. After
fixing some variables at certain values, the constraints are used to remove infeasible
values from the domains of not yet fixed variables, as we will describe in further
detail below. Iterating this procedure leads to either the construction of a feasible
solution or the detection that none exists with the currently fixed variable setting.
In the latter case, a backtracking in the branch-and-bound tree is carried out. So in
contrast to integer programming, constraint programming lays emphasis on feasibil-
ity instead of optimality. While it is, in general, possible to formulate any objective
function as a constraint and, therefore, to incorporate it into a CP model, it is not
necessarily straightforward to direct the search towards optimal solutions. A com-
mon way to use constraint programming for optimization is to solve feasibility (or
decision) problems associated to distinct objective function values and then to show
whether solutions with these values exist or do not exist [Hoo11].

Another difference to integer programming is that the constraints of a CP model
may also have a symbolic character or nonlinear nature. An illustrative example for
such a constraint, that is also used in the CP models addressed in Chapter 2, is the
alldifferent constraint. The following explanations are based on the description
in [vH01]. The constraint

alldifferent(x1, . . . , xn) = {(d1, . . . , dn) | di ∈ D(xi), di 6= dj for i 6= j},

states that all of the variables x1, . . . , xn have to attain different values. This is equiv-
alent to an expression of the form x1 6= x2 6= · · · 6= xn that is nonlinear. Nonlinear
constraints are possible since solutions to a CP model are not computed by optimiz-
ing over a polyhedron. Instead, as already indicated, solutions are constructed and
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the consistency of constraints is tested iteratively. This is done by special filtering
algorithms for each of the constraints. Based on the already assigned values, they
try to exploit logical implications in order to reduce the domains on yet undecided
variables by removing values that can never appear in any solution to the constraint
in the remaining search space. If the domain of a variable is reduced, it is possible
that this has implications on other constraints where this variable appears so that
their corresponding filtering algorithms are afterwards invoked as well. This process
is called constraint propagation. If at a certain stage no more inconsistent values are
detected, the filtering algorithms have reached some distinct form of consistency.
There exist different forms and levels of consistency some of which we want to ad-
dress in the following. Thereby we assume that the involved variable domains are
finite subsets of an ordered base set.

Definition 1.7.1. (Domain consistency [vH01]). We call a constraint C(x1, . . . , xm),
m > 1, domain consistent if, for all i ∈ {1, . . . ,m} and all values di ∈ D(xi), there
exist values dj ∈ D(xj) for all j ∈ {1, . . . ,m}\{i} such that (d1, . . . , dm) satisfies C.

The meaning of domain consistency is basically that if any variable being part of
the constraint is selected and fixed at one of its potential values, then there must
be feasible values for all of the other variables present in their domains. This is a
strong form of consistency which might be further relaxed in several ways.

Definition 1.7.2. (Range consistency [vH01]). We call a constraint C(x1, . . . , xm),
m > 1, range consistent if, for all i ∈ {1, . . . ,m} and all values di ∈ D(xi),
there exist values dj ∈ [minD(xj),maxD(xj)] for all j ∈ {1, . . . ,m} \ {i} such that
(d1, . . . , dm) satisfies C.

The intrinsic relaxation of range consistency over domain consistency is that the
domains of variables are now treated as they would be dense, i.e., fully populated
intervals.

Definition 1.7.3. (Bounds consistency [vH01]). We call a constraint C(x1, . . . , xm),
m > 1, bounds consistent if, for all i ∈ {1, . . . ,m} and all value assignments
di ∈ {minD(xi),maxD(xi)}, there exist values dj ∈ [minD(xj),maxD(xj)] for
all j ∈ {1, . . . ,m} \ {i} such that (d1, . . . , dm) satisfies C.

To be bounds consistent, a constraint needs to be satisfiable only for each extreme
domain value assignment of each of its associated variables, again assuming dense
intervals for all of the variables like in the case of range consistency.

Since weaker levels of consistency are typically faster to establish, the different levels
allow for a trade-off between the amount of propagation (and therefore, reduction
of the remaining search space) and the running time invested at each subproblem of
the branch-and-bound tree.



Chapter 2

Instruction Scheduling

This chapter introduces, explains and motivates instruction schedul-

ing which is the main compiler optimization problem dealt with in

this thesis. It also provides an overview of existing solution ap-

proaches as well as basic and commonly used definitions and nota-

tions. After that, several techniques to reduce the search space for

optimal solutions to the basic-block instruction scheduling problem

are discussed. These include existing as well as newly developed

reduction approaches. Further, ideas to improve or better exploit

some of the existing methods are presented. As a whole, the chap-

ter prepares for the novel exact basic-block instruction scheduling

models presented in the subsequent chapter.
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2.1 Motivation

In this chapter, we consider the task to optimally schedule a set of instructions to be
executed by a single pipelined single-issue processor. A pipelined processor partitions
the execution of an instruction into several steps called pipeline stages [ALSU86].
Typically, a new instruction can be inserted into the pipeline (issued) every clock
cycle while preceding instructions are still being processed by the other stages. This
way, an instruction pipeline yields one form of instruction-level parallelism. An ideal
flow of instructions through a simple five-stage pipeline for (integer) arithmetical and
logical operations in a load-store RISC architecture, as it has been implemented for
instance in the MIPS R2000 processor [HP07], is shown in Fig. 2.1.

Clock cycle
Instruction 1 2 3 4 5 6 7 8

I1 IF ID EX MEM WB
I2 IF ID EX MEM WB
I3 IF ID EX MEM WB
I3 IF ID EX MEM WB
I4 IF ID EX MEM
I5 IF ID EX

Figure 2.1: Instructions passing through a five-stage instruction pipeline.

In the instruction fetch (IF) stage, an instruction is read from the instruction cache
using the program counter that is afterwards incremented. The fetched instruction
is then decoded (ID stage), i.e., the logic involved in executing the instruction is
prepared and operands are read from source registers. In case of a branch instruction,
the potential branch target address is computed at this point. In the execution stage
(EX), arithmetical and logical operations are performed or, if the instruction is a
load or a store, the effective memory address to be accessed is calculated. For the
latter, the actual memory access is then carried out in stage MEM. The result of
an arithmetical or logical instruction as well as the operand of a load instruction is
written back into a register in the write back stage (WB).

Pipeline stages of classical RISC processors are designed such that their associated
operations can be performed within exactly one clock cycle (uni-cycle instructions).
Since each instruction needs to pass every pipeline stage, the ideal number of clock
cycles needed to complete the execution of an instruction is equal to the number
of stages which is also referred to as the depth of the pipeline. The ‘slowest’ stage
limits the potential clock frequency. Modern processor designs further subdivide the
execution of an instruction which leads to a deeper pipeline, more instruction-level
parallelism, and a higher clock frequency [HP07]. In order to achieve additional
instruction-level parallelism, many processors are also capable to issue more than
one instruction per clock cycle (single-issue vs. multiple-issue processors) [ALSU86].

Several conflicts or hazards may disturb the ideal flow of instructions through the
pipeline. One distinguishes three main types of disturbances, namely data, struc-
tural and control hazards [HP07]. The main motivation for instruction scheduling
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are data hazards that reflect the cases where two instructions need to be processed
in a particular order to ensure correct results. They are caused by data dependen-
cies and, depending on the processor design, by limited capabilities to make results
produced by one pipeline stage accessible to another one. One classifies read after
write (RAW), write after read (WAR), and write after write (WAW) data dependen-
cies [HP07]. A WAW dependency reflects the case where an instruction I2 is writing
to the same register or memory location that is also written to by an instruction
I1 issued earlier. This can only be a problem if the pipeline is designed such that
results are written in more than one stage or multiple pipelines are present. Then,
it must be made sure that the write performed by I2 indeed takes place after the
write of I1. Similarly, in the case of a WAR dependency, I2 writes to a location
that is read by I1 such that I1 must read the value before I2 overwrites it. These
two types of dependencies impose orders on instructions but usually do not add any
other restrictions. If they are not accompanied by an additional RAW dependency,
i.e., they only refer to the same storage locations but not to the stored data, they can
potentially be resolved by substituting the assigned registers (register renaming) or
by using different or additional (load and store) instructions. At this point, instruc-
tion scheduling interferes with other central compiler tasks, namely especially with
register allocation and sometimes also with instruction selection [ALSU86]. Such an
alternative resolution is not possible for RAW dependencies which are in the main
focus of instruction scheduling. If an instruction I2 uses the result of an instruction
I1, it must be made sure that the respective operand is available in logic when I2
will try to access it. Suppose I1 and I2 are arithmetical instructions. Without any
further modification to the exemplified pipeline, I2 cannot enter the ID stage before
I1 has completed the WB stage. Hence, I2 needs to be delayed for three clock cycles
after I1 is issued. However, in case that no other instruction is ready to be executed
in the meantime, I2 can be issued but cannot leave the IF stage for the three cycles
as is indicated in Fig. 2.2. As a result the ID, EX, MEM and WB stages cannot
perform any useful work in the clock cycles 3− 5, 4− 6, 5− 7 and 6− 8 respectively.
Whenever an instruction cannot proceed to the next pipeline stage or no instruction
can be issued, the pipeline is said to be stalled. Being idle this way can also be seen
as executing a ‘no operation’ instruction (NOP for short).

Clock cycle
Instruction 1 2 3 4 5 6 7 8

I1 IF ID EX MEM WB
I2 IF stall stall stall ID EX MEM
I3 IF ID EX

Figure 2.2: Pipeline stalls due to data hazards.

Any stall has the effect that only the instructions issued before the one that causes
the stall proceed normally while all others are delayed by one clock cycle. The
increase of one cycle in the overall execution time is therefore independent from the
stage where the stall occurs. Neglecting the precise states of hardware units and
considering only the resulting execution time, it is equivalent to insert a NOP before
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issuing an instruction that would otherwise cause a stall or to stall the pipeline for
one cycle after issuing the instruction.

Modern processors mitigate data hazards by forwarding (or bypassing), i.e., by in-
troducing direct data paths between different stages of the pipeline. For instance,
for the exemplary MIPS pipeline, results calculated in the EX stage can be imme-
diately used as an input operand to the successive instructions entering that stage,
and the results produced in the MEM stage can be used by the next two successive
instructions (entering EX and MEM stages respectively) [HP07]. However, not all
data hazards can be resolved like this even if every pair of stages is equipped with
forwarding control logic. This is true since it can happen that a result is calcu-
lated just in the same or even a later cycle as it is needed by a successively issued
instruction [HP07]. For example, if an instruction in the ID stage needs the re-
sult of an arithmetical instruction that is just in the EX stage at the same time.
Even more, with increasing pipeline depths, more complex instruction types, and
additional nonpipelined functional units, different delays have to be respected when
one dependent instruction follows another. The actual delays are therefore highly
architecture-dependent but known in advance and can hence be taken into account
by a compiler. To do this, a latency is associated with each dependency between two
instructions I1 and I2. It specifies the number of clock cycles that need to pass by
after issuing I1 and before I2 can be issued without causing a pipeline stall. These
clock cycles can then be filled with either different instructions or, if unavoidable,
with NOPs. This way, the problem to derive a timing of the instructions that pre-
serves the semantics of the program and leads to as few NOPs as possible can be
solved by an instruction scheduler during machine code generation.

Another potential reason for pipeline stalls are structural hazards. They occur if
two instructions cannot execute at the same time since they compete for limited
resources of the processor such as special purpose registers, functional units or data
paths. This can be a challenging problem especially for the case of multiple-issue
and VLIW processors or when instruction scheduling is integrated with register
allocation. However, in an extreme setting, structural hazards might even occur
for a single functional unit that is responsible for different tasks of two or more
pipeline stages. As a simple example, if a processor uses the same data path for
loading operands and instructions, every load instruction currently in the MEM
stage would interfere with any other instruction that shall be fetched in the IF
stage [HP07]. Again, a pipeline stall would be necessary to resolve the conflict. Like
in this example, stalls caused by structural hazards are often unavoidable and due
to a cost-oriented processor design that avoids the replication of resources that are
seldom used in parallel or where the penalty of pipeline stalls is acceptable compared
to the cost of additional hardware. In the absence of other dependencies, structural
hazards do not impose an order on the two interfering instructions. Further, since
structural hazards only cause a stall if the instructions are precisely placed such that
they need the respective resource at the same time, they are much more difficult to
capture by a compiler. It is then necessary for an instruction scheduler to maintain a
list of critical instruction pairs together with the forbidden issue cycle differences (see
e.g. [AGG98]). Hence, except for VLIW processors, structural hazards are usually
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rather resolved by hardware-based detection using additional logic called pipeline
interlocks [HP07].

A third type of hazards are control hazards that are incurred by branching instruc-
tions. Since the actual execution path that the program will take at runtime is not
known at the time of compilation, the result of a branching instruction is usually
predicted. The corresponding instructions of the predicted execution path are then
issued and, if the prediction turns out to be wrong, a delayed issue of the correct
instructions will take place. Different approaches exist to deal with the unknown
runtime execution path from a compile-time perspective. One strategy is to first
decompose a program fragment at branching instructions and all places that the
control flow may jump to. The resulting branch-free subseries of instructions are
called basic blocks and the task to schedule each basic block individually is referred to
as basic-block instruction scheduling or local instruction scheduling [ALSU86]. This
emphasizes a good performance for each independent program fragment independent
from the execution path taken at runtime. However, especially for multiple-issue
processors, it can be beneficial to allow the semantic-preserving motion of instruc-
tion across basic block boundaries since this may increase the possible amount of
instruction-level parallelism. This general concept is referred to as global instruction
scheduling [ALSU86] and may be refined in several ways. For example, one may try
to optimize for the most probable execution path of a program, possibly by taking
traces into account. Alternatively, in the context of real-time embedded systems,
one might optimize for the execution time of the worst-case execution path [LM10].

Instruction scheduling is a central point for optimizations aiming at a sped up ex-
ecution of programs. However, as already indicated, it is heavily interdependent
with register allocation. Before register allocation, variables and temporary values
used in the program are assigned to virtual registers that can exceed the number of
available physical registers. While instruction scheduling deals with the assignment
of execution units and issue cycles to instructions, register allocation deals with the
assignment of physical registers to virtual ones. If the number of physical registers
does not suffice in order to map all the used virtual registers to them without in-
validating results, so-called spill code needs to be inserted into the program. These
are additional stores and loads that temporarily move register contents to and from
memory. Scheduling only prior to register allocation cannot take these additional
instructions into account and could also lead to invalid results if the processor lacks
pipeline interlocks. Scheduling only after register allocation would lead to avoidable
dependencies being added by the register allocator. Hence, instruction scheduling is
usually done twice, once before and once after register allocation [ALSU86], making
this task even more important.

2.2 The Local Instruction Scheduling Problem

In the following, we strive to optimally solve the local instruction scheduling problem
for a pipelined single-issue processor. In our context, an optimal solution minimizes
the makespan that is defined as the completion time of the last instruction [BEP+07].
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2.2.1 Preparations

The assumed properties of a processor have several immediate implications. Since
the processor is pipelined, the processing time of each instruction (apart from NOPs
that we may count separately) is uniform. Further, we assume that exactly one
new instruction can be issued every clock cycle. This allows to normalize all pro-
cessing times to one since we need not consider the processor to be occupied for
different durations depending on the concrete instruction. In the literature (see,
e.g., [GLLK79]), this is usually referred to as unit processing times. As an immedi-
ate consequence and with a similar abstraction of NOPs, the completion time of an
instruction is simply a constant number of cycles later than its starting time.

In our context, a schedule is a mapping of each instruction to a unique clock cycle
where it is issued. For ease of language, we will also call this clock cycle the issue
cycle of the instruction or simply say that an instruction is scheduled at this point in
time. A schedule starts at cycle zero by inserting the first instruction into the pipeline
and ends by inserting the last instruction into it. We consider the makespan to be
the issue time of the last instruction plus one cycle (its normalized processing time).
However, since this does not alter the optimization goal under the assumptions made,
we will sometimes also use the term makespan when referring to the starting time of
the last instruction. As already mentioned, there is no difference w.r.t. the makespan
whether a NOP is inserted before issuing an instruction that would otherwise cause a
stall or to stall the pipeline for one cycle after issuing the instruction. The number of
NOPs exactly corresponds to the number of cycles additionally needed to complete
the execution of a given set of instructions. Hence, the minimization of the makespan
is equivalent to the minimization of NOPs.

It is of course possible to consider the problem at hand much more generally than
in the context of instruction scheduling since it captures all settings that ask for an
optimized permutation and starting time assignment for a set of given tasks with
dependencies and minimum or fixed delays between each other.

2.2.2 Formal Problem Statement

In the local instruction scheduling problem, we are given a basic block that resem-
bles precedence-constrained instructions and the associated latencies. As already
discussed, a basic block does not comprise any side entrances or side exits. Further,
the underlying precedence relationship must be acyclic in order to allow for a feasible
sequencing of the instructions. More formally, we define the ISP as follows:

Definition 2.2.1. (Local Instruction Scheduling Problem) Given a set of uni-cycle
instructions I and an acyclic precedence relationship R ⊂ I × I along with a la-
tency function ℓ : R → N0, compute a schedule σ : I → N0 of the instructions
I respecting all the precedence relations R and latencies ℓ and whose makespan
M = 1 + max{σ(i) | i ∈ I} is minimum.

In the literature, the latencies are often also called delays and the problem may also
be named single-machine scheduling under delayed precedence constraints. Using



2. Instruction Scheduling 29

the widely accepted notation proposed in [GLLK79], this problem can be classified
as 1|prec(lij), pj = 1|Cmax or 1|prec(delays), pj = 1|Cmax.

2.2.2.1 A Note on Latencies

The notion of latencies used in this thesis complies to the one used in some older
articles about instruction scheduling (e.g. [BG89, PS93]) but differs from those
used in more recent articles targeting also multiple-issue processors, in particu-
lar [WLH00, vBW01, MMvB08].

For a precedence (i, j) ∈ R with associated latency ℓ(i, j), if ti is the cycle where
instruction i is scheduled, then j can be scheduled earliest in cycle ti + ℓ(i, j) + 1
(and not ti + ℓ(i, j)). In other words, the latency is the minimum number of cycles
that indeed need to be in between the issue cycles of the two instructions and not
the minimum issue cycle difference.

The definition used in the multiple-issue context stems from the fact that two in-
structions with a write after read dependency can typically be issued in the same
clock cycle since the read will take place before the write in the pipeline. However,
for single-issue processors, it leads to the peculiarity that there is no semantic differ-
ence between a zero- and a one-latency which is why the older definition is preferred.
This decision also simplifies some of the discussions concerning instructions located
between two dependent instructions that will be carried out in Chapter 3.

2.2.3 Complexity

If the latencies occurring are allowed to be arbitrary nonnegative integers, then the
problem to find a schedule minimizing the makespan is strongly NP-hard [HG83,
FL96]. However, if the latencies are restricted to be zero or one, then the prob-
lem with n instructions is optimally solvable in time O(n2) by using the algorithm
of Bernstein and Gertner [BG89]. Their solution is based on a modification of
the algorithm of Coffman and Graham [CG72] for optimally scheduling precedence-
constrained instructions on two processors (without latencies and with unit process-
ing times), P2|prec, pj = 1|Cmax. As is indicated by this result, there exists an
immediate relationship between scheduling precedence-constrained tasks on a sin-
gle processor with latencies bounded by at most L cycles and scheduling precedence-
constrained tasks on L+1 processors (without latencies) that has also been observed
by Hennessy and Gross [HG83]. As far as this is known to the author, it is still open
at the time writing this thesis whether the problem is NP-hard for fixed L, L > 1.

2.2.4 Results and Solution Approaches

We restrict our attention to research dealing with optimal basic-block instruction
scheduling since the general literature on scheduling is inexhaustible.

An early integer programming approach targeting vector processors with multiple
functional units but only a single instruction to be issued per clock cycle was pro-
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posed by Arya [Ary85]. The experiments were however restricted to three instances
with up to 36 instructions and the optimization process needed to be interrupted
for the larger two of them. One of the first constraint programming approaches
to instruction scheduling was given by Ertl and Krall [EK91]. Their algorithm has
been developed for a particular processor with latencies in the range [1, 6] (Motorola
88100) and is shown to optimally schedule basic blocks with up to 20 instructions in
reasonable time. However, the results indicate that the running times do not scale
well for larger instances. Vegdahl [Veg92] proposed a dynamic programming algo-
rithm for instruction scheduling. In this model, however, the emphasis is on simple
precedences of instructions within a loop and latencies must be artificially repre-
sented by inserting dummy instructions - meaning that no other real instructions
could be scheduled in between. This is therefore a different problem as considered
here. Although the yet mentioned early exact approaches could only be applied
to small problem instances, several attempts were made to integrate instruction
scheduling with register allocation which considerably enlarges the solution space.
Not surprisingly, the proposed models could also be applied to small instances only,
e.g., the integer programming approaches proposed by Wilson et al. [WMGB93],
Chang et al. [CCK97], and the enumerative methods by Chou and Chung [CC95],
and Haga and Barua [HB01]. A good overview over further integrated approaches
developed prior to 2000 by Gebotys and Elmasry [GE91] as well as by Zhang [Zha96]
and strategies to use them in order to obtain good approximate solutions can be
found in Kästner’s thesis [Käs00]. Leupers and Marwedel [LM97] suggest an inte-
ger programming formulation to schedule a set of register-transfer-level operations
on a restrictive parallel architecture as it can be found, e.g., in digital signal pro-
cessors. As a seldom found feature, they incorporated side effects on live register
values and limitations on parallel execution due to resource conflicts stemming from
incompatible instruction formats into their model. However, it imposes a large
number of variables and the authors report running times in the order of minutes
already for comparably small sized problem instances. A similar integration of re-
strictions present in real-world DSPs concerning code selection, instruction schedul-
ing, and register allocation was also studied by Bashford and Leupers targeting
near-optimal solutions using constraint programming techniques [BL99]. Bednarski
and Kessler [KB06] present a larger set of experiments incorporating both dynamic
programming and integer programming approaches in order to integrate scheduling
and register allocation. Again, high solution times or memory exceedances already
for instances with 20 to 50 instructions are reported for both of the methods. A
more recent survey on combinatorial approaches to standalone and integrated ap-
proaches to (local and global) instruction scheduling and register allocation is given
by Castañeda and Schulte [LS14]. Despite the limited applicability of integrated ap-
proaches in the past, new sophisticated models and effective search space reduction
techniques have recently led to a novel constraint programming approach [LCBS14]
delivering near-optimal solutions.

The most recent contribution to attack the instruction scheduling problem with
integer programming was given by Wilken, Liu and Heffernan [WLH00] in 2000.
They were the first to optimally schedule a larger set of basic blocks with up to
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1, 000 instructions by applying some search space reduction techniques on the one
hand, and cutting planes on the other. However, their experiments were restricted
to instances with latencies in the range between zero and two clock cycles which does
not conform to most real-world architectures. Also, their method is not well scalable
since the number of variables and constraints depends on an upper bound on the
makespan, and is therefore pseudo-polynomial. Later it was then shown that the
method is not as successful on instances with larger and varying latencies [MMvB06].
An important result of their work is however that the reduction techniques are
essential to be able to schedule real-world instances to optimality. One year later,
van Beek and Wilken [vBW01] proposed a constraint programming approach that
could optimally schedule the instances used for the experiments by Wilken, Liu and
Heffernan even faster. After Heffernan and Wilken then proposed a set of methods
to even more effectively reduce the search space of basic block instances [HW05]
in 2005, Malik, McInnes, and van Beek [MMvB06, MMvB08] were able to improve
their CP approach to solve the problem also for multiple-issue processors on an even
larger set of instances (about 350, 000 basic blocks with up to 2, 600 instructions).
While the previous solvers from [WLH00] and [vBW01] could not solve hundreds
of these instances to optimality, there is only one instance that could not be solved
by the CP solver within a time limit of ten minutes of CPU and system time for
single-issue processors in our experiments presented in Sect. 3.7.

2.2.5 Motivation for a New Integer Programming Approach

The successful application of the constraint programming solver from [MMvB06,
MMvB08] to a large set of instances and more complex multiple-issue processors
has been the largest advance on solving the ISP so far. Taking a closer look on
their approach, however, makes apparent that many of the search space reductions
that are key to the success of their solver are not specific to constraint programming
and some of them may also be improved as we will discuss in detail in Sect. 2.4.
As just discussed, the previously best-performing IP solver published prior to the
most recent preprocessing advances was not capable to handle a large benchmark
set comprising instances with varying and large latencies. In general, it is interesting
from a research point of view whether integer programming methods can be equally
successful when they are combined with the search space reduction techniques used
before. Further, the existing IP models were all either based on time-indexed for-
mulations with binary variables or on disjunctive formulations with general integer
variables as is addressed in Sect. 3.1. As far as this is known to the author, there
has yet been no practically implemented method that tries to tackle the problem by
interpreting the ISP as a particular ordering problem. This was the final motivation
to design a completely novel integer programming approach that can deal with arbi-
trary latencies and takes the mentioned preprocessing techniques into account. This
approach, that is presented in Chapter 3, leads to a new characterization of the fea-
sible solutions to the problem. It allows for the application of polyhedral knowledge
from the mathematical optimization community which is also seldom observed in the
context of this problem (although we do not want to overlook that Wilken, Liu, and
Heffernan separate fractional LP solutions using problem-specific cutting planes).
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Finally, it is well conceivable that the new approach may be applicable to related
problems with different objective functions or at least inspire similar formulations
for these problems. The new approach will be subject to Chapter 3. For now, we
will turn the attention to the most important definitions and notations, and to some
central results and search space reduction techniques.

2.3 Basic Concepts and Notations

2.3.1 Predecessors, Successors, Independence

For each precedence relation (i, j) ∈ R, we call i a predecessor of j and j a successor
of i. Precedence relations are transitive, i.e., if (i, j) ∈ R and (j, k) ∈ R, then i
is also a predecessor of k and k is a successor of i. We will denote the transitive
closure of R with R∗. For ease of notation, if i (j) is a predecessor (successor) of j
(i), we also denote this by i ≺ j (j ≻ i). If neither i ≺ j nor j ≺ i, then i and j
are said to be independent (from each other) and we will sometimes denote this by
i ‖ j. For ease of reference, we will denote the immediate predecessor (successor)
set of an instruction v by P (v) (S(v)). If we want to refer to the entire (transitive)
predecessor (successor) set of an instruction, we will write P ∗(v) (S∗(v)) instead.

2.3.2 Data-Dependency Graphs

A basic block is usually modeled as a data-dependency DAG G = (V,A) along with
a weight function w : A → N0 where the vertices V identify the instructions I and
there is an arc (i, j) ∈ A for each (i, j) ∈ R with weight w(i, j) = ℓ(i, j). Each vertex
with no predecessor in G is said to be a source of G. Similarly, each vertex with no
successor in G is called a sink of G. We will assume that a DAG is normalized to
have a single super source b ∈ V and super sink e ∈ V . A super source (sink) has
a leaving (entering) arc to each source (from each sink) with zero weight. Fig. 2.3
shows an example.

Throughout this thesis, we will treat instructions and their corresponding vertices,
precedences and their corresponding arcs as well as latencies and their correspond-
ing arc weights interchangeably, thereby interpreting the super source and super
sink as pseudo-instructions that can be removed from the computed schedule after-
wards without altering optimality. We will also refer to data-dependency DAGs as
dependency DAGs or even just as DAGs. Further, analogously to the precedence
relationships R, we will denote the transitive closure of the arc set A with A∗.

2.3.2.1 Critical Paths and Distances, Transitivity

Let G = (V,A) be a dependency DAG and i, k ∈ V such that i ≺ k. Consider a
simple path P = i→ j1 → · · · → jp → k from i to k with p ≥ 0 intermediate vertices
in G. We refer to P ’s vertices by V (P ) and to its arcs by A(P ). The length of P
is given by the sum of its arc weights plus the number of intermediate vertices, i.e.,
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Figure 2.3: An example data-dependency DAG for a basic block consisting of the
computations x = (s+ t)∗(u− t) and y = w+(x∗(v+((s+ t) ·(t+u))) assuming the
presence of multiply-accumulate instructions (left) and its normalized version with
a topological numbering of its vertices (right).

by |V (P )| − 2 +
∑

(i,j)∈A(P )w(i, j). Any such path P induces a lower bound on the
gap between i and k in any feasible schedule. Hence, a longest among such paths
(called a critical path) between i and k in G imposes the tightest such lower bound,
the critical path distance cp(i, k).

There are several ways to obtain good lower bounds on the minimum number of
cycles between two instructions apart from considering paths only. Some of them
will be discussed in Sect. 2.4. To be unambiguous in notation w.r.t. the critical
path distances implied by the given dependency DAG G = (V,A), we introduce
a more general and intuitive concept of distances, and associate such a distance
di,k with every pair of instructions i, k ∈ I, i 6= k. At each point in time, the
distance di,k reflects the best known lower bound on the gap between i and k,
regardless how it has been obtained. We make the convention that di,k is greater
than or equal to zero if i ≺ k and set to −∞ otherwise. Clearly, it holds that
cp(i, k) ≥ ℓ(i, k) for each (i, k) ∈ A and di,k ≥ cp(i, k) for all (i, k) ∈ A∗. Naturally,
if some particular distance di,k can be improved, this can be equally exploited to
transitively propagate distance information as when considering critical paths. In
particular, for any path P as described above, di,k ≥ |V (P )| − 2 + d(P ) where d(P )
is the sum of the distances along the path. More generally, each valid set of distance
lower bounds for a given instance can itself be interpreted as a dependency DAG that
must have the same optimum makespan as the original DAG. Further, the distance
db,e ≥ cp(b, e) = cp(G) can be used to derive a lower bound on the makespan.

If i ≺ j, j ≺ k, and di,k = di,j + 1 + dj,k, the distance lower bound between i and
k is redundant information. In case that di,k > di,j + 1 + dj,k holds for all j ∈ I,
then the distance relation between i and k is not redundant (though the precedence
relation is). Also, the distances di,j and dj,k may remain nonredundant since they
may still partially characterize the position that j has to attain in between i and k.



34 2.3. Basic Concepts and Notations

2.3.2.2 Regions

The following notion of sub-DAGs called regions [WLH00] is useful.

Definition 2.3.1. (Region [WLH00]). Let G = (V,A) be a dependency DAG and
s, t ∈ V such that there are at least two vertex-disjoint paths between s and t. Define
Vs,t to be the set of vertices reachable on any s-t-path in G and As,t as the union of
the arcs of all these paths. Then the DAG Gs,t = (Vs,t, As,t) is called a region of G.
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Figure 2.4: A DAG and two example regions G3,9 and G2,9.

Regions can be nested. For example, the small region G2,7 (which is not shown
explicitly) is part of the region G2,9 in Fig. 2.4. In addition, regions may be classified
as single-entry-single-exit (SESE) regions and non-SESE regions. A region Gs,t =
(Vs,t, As,t) is said to be a SESE region if there is no vertex v ∈ Vs,t \ {s, t} with
a predecessor u 6∈ Vs,t (side-entry vertex) or successor w 6∈ Vs,t (side-exit vertex).
Wilken et al. proved the following claims connected to SESE and non-SESE regions.

Lemma 2.3.2. ([WLH00]). Let Gs,t = (Vs,t, As,t) be a SESE-region of a DAG G =
(V,A). Let σ be a schedule of Vs,t with associated order π. Then the order π can be
fixed for schedules of V without altering optimality if the following conditions hold:

• σ is a dense schedule, i.e., it does not contain any NOPs.

• If π(u) = π(s) + 1, then w(s, u) = min{w(s, v) | (s, v) ∈ As,t}.

• If π(u) = π(t)− 1, then w(u, t) = min{w(v, t) | (v, t) ∈ As,t}.

Lemma 2.3.3. ([WLH00]). Let Gs,t = (Vs,t, As,t) be a non-SESE-region of a DAG
G = (V,A). Let σ be a schedule of Vs,t with associated order π. Then the order π can
be fixed for schedules of V without altering optimality if the following conditions hold:

• σ satisfies the conditions for SESE regions from Lemma 2.3.2.

• If v is a side-exit vertex, then all vertices u with π(u) < π(v) must be prede-
cessors of v.

• If v is a side-entry vertex, then all vertices w with π(v) < π(w) must be
successors of v.



2. Instruction Scheduling 35

Lemmata 2.3.2 and 2.3.3 may be used to replace regions of a DAG by linear sequences
of vertices by, e.g., heuristically scheduling them and testing whether the conditions
for the respective type of region are satisfied.

2.3.3 Definitions Related to Lower and Upper Bounds

We denote the global lower and upper bounds on the optimum makespan M∗ by
Mlb and Mub. Furthermore, we consider lower and upper bounds on the issue cycles
of each instruction i ∈ I and denote them by lbi and ubi. In the literature, the lower
bounds lbi are also referred to as ASAP (as soon as possible) time steps. Similarly,
the upper bounds ubi are referred to as reverse lower bounds, or ALAP (as late
as possible) time steps. The interval [lbi, ubi] will frequently be referred to as the
(scheduling) range of an instruction i ∈ I.

We assume the super source b ∈ V to be assigned clock cycle zero. While lower
bounds on the issue cycles of instructions, and thus also an initial Mlb, can be
directly determined from the best known distance of an instruction from b, upper
bounds on the issue cycles are always related to a predetermined global upper bound
Mub. This becomes apparent in the following definitions and relations:

lbb = ubb = 0

lbe = Mlb − 1

ube = Mub − 1

lbi = db,i + 1 for all i ∈ V \ {b, e}

ubi = Mub − di,e − 1 for all i ∈ V \ {b, e}

lbk ≥ lbi + di,k + 1 for all (i, k) ∈ A∗

ubi ≤ ubk − di,k − 1 for all (i, k) ∈ A∗

2.4 Search Space Reduction Techniques

An effective restriction of the search space is key to every exact algorithm, especially
if the problem to be solved is known to be NP-hard. In case of the ISP, we are
interested in global lower and upper bounds on the schedule length on the one hand,
and in particular lower and upper bounds on the schedule position of each instruction
on the other. Once a global upper bound Mub has been determined, valid initial
upper bounds on the issue cycles of all instructions can be established using the
relation ubi = Mub−di,e−1 as described in Sect. 2.3.3. In addition to the discussion
of existing search space reductions, we will point out improvements on some of these
techniques. We will also derive new methods to improve on bounds and distances,
and to find new precedence relationships without altering the optimum schedule
length. These methods can, in principle, be applied with any instruction scheduling
approach. Further techniques that are however inherently related to the novel integer
programming models for the ISP developed in this thesis will be discussed separately
in Chapter 3.
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2.4.1 Global Upper Bounds

The length of any feasible schedule provides an upper bound on the makespan of an
optimum schedule. The predominant heuristic method to derive feasible schedules is
list scheduling [Gra69]. List scheduling subsumes a generic class of algorithms that
select instructions from a list of ready ones. We call an instruction i ready if (a) all
predecessors of i are already scheduled and (b) all latencies w.r.t. i are satisfied in
the currently considered clock cycle. If only (a) holds, we will sometimes call the
respective instructions waiting (to become ready).

List scheduling is flexible since it can easily handle parallel or multiple-issue pro-
cessors and different priority functions to decide which instruction to schedule next
when more than one is ready. It is a well-known result [Gra69] that, regardless how
priorities are assigned, list scheduling for precedence- (but not latency-) constrained
instructions with arbitrary processing times is a

(
2 − 1

m

)
-approximation algorithm

for m ≥ 2 processors. For the problem considered here (m = 1, unit processing
times, precedences and latencies), Bernstein, Rodeh, and Gertner [BRG89] show
that list schedules are no worse than 2 − 1

L+1 times the optimum where L is the
maximum latency occurring. Palem and Simons [PS93] generalized their result to an
approximation ratio of 2− 1

m(L+1) for m processors again. We study list scheduling
more detailed for single processors in the subsequent section.

2.4.1.1 List Scheduling

The following is a close-to-implementation description of a general list scheduling
algorithm for single processor scheduling. In this implementation, priority queues
rather than lists are used. It assumes the existence of a priority queue operation
return min() that, in contrast to the usual operation extract min(), returns the
current minimum object but does not remove it from the queue. The implementation
makes use of two priority queues, one that holds the set of ready instructions and
another one that holds the set of waiting instructions.

The procedure, that is depicted as Algorithm 1, starts by assigning the first cycle
to the artificial super source instruction. After issuing any instruction i, the earliest
starting times of successor instructions s of i are updated based on the associated la-
tencies. If any successor s is discovered whose predecessors are all already scheduled,
the instruction is temporarily stored in the waiting queue to be efficiently retrieved
when it becomes ready. Furthermore, this allows to ‘jump’ to the earliest clock cycle
in which an instruction will become ready if there is currently no ready instruction.
The keys of the instructions in the ready queue are their priorities and the keys in
the waiting queue are the earliest starting times. At each considered clock cycle
c instructions that become ready at c are inserted into the ready queue. Then, a
highest-priority instruction is selected from the ready queue and issued. The de-
scribed process is iterated until all the instructions are scheduled. NOPs are not
scheduled explicitly, since otherwise the running time would depend on the schedule
length and not only on the size of the input data.
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Algorithm 1 List Scheduling on a Single Processor

function ListSchedule(DAG G = (V,A) with latencies ℓ, Array of priorities P )
EST # Array of earliest starting times for each v ∈ V
CY C # Array of issue cycles for each v ∈ V
R← ∅ # Priority queue of ready instructions
Q← ∅ # Priority queue of waiting instructions
c← 0
R.insert(v0, 0) # Enqueue the super source
while R 6= ∅ or Q 6= ∅ do

while Q 6= ∅ and (Q.return min() == c) do
i← Q.extract min()
R.insert(i, P [i]) # Insert instructions that become ready at c

if R 6= ∅ then
i← R.extract min()
CY C[i]← c # Schedule i at cycle c
for all successors s of i do

if c + ℓ(i, s) + 1 > EST [s] then
EST [s]← c + ℓ(i, s) + 1 # Update earliest starting times

if all predecessors of s scheduled then
Q.insert(s, EST [s]) # Insert instruction into waiting queue

if R 6= ∅ then # Still ready instructions.
c← c + 1 # Just increment c.

else if Q 6= ∅ then # No ready, but waiting instructions.
c← EST [Q.return min()] # Increase c to minimum EST of waiting instr.

The amortized worst-case running time of this algorithm is O(|V | log |V | + |A|)
since each instruction is inserted and removed from a priority queue at most twice
and each arc of the DAG is scanned exactly once in order to update the earliest
starting times of successors and potentially release them.

There exist several strategies to determine priorities. The most common and also a
very successful strategy is to assign each instruction a priority that is equal to its
critical path distance to the sink. Hence, if multiple instructions are ready, one of
those with the smallest upper bound on its issue cycle is selected. In the literature,
this strategy is often referred to as critical path list scheduling. Many computational
experiments (see, e.g., [EK91, MMvB08, Mal08, WLH00]) reveal near-optimal per-
formance of critical path list scheduling when averaging results over a particular
set of instances. The fine-grained results in [MMvB08, Mal08] show, however, that
the number of basic blocks where list scheduling does not find optimal schedules
grows significantly with increasing size of the instances (up to 20% for basic blocks
with more than 250 instructions in their results). Another idea is to perform list
scheduling in a backward fashion which basically amounts to a reversion of all the
arcs [CSS98]. This way, instructions are potentially rather clustered around the sink
instead of around the source. There are instances where this leads to better solu-
tions, but the backward method can of course also perform worse than the standard
one.
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2.4.1.2 Excursion: A New Result On Coffman-Graham List Schedules

There is a subclass of list scheduling algorithms that partition the set of instruc-
tions into levels and then assign priority labels to the instructions. One instance
of this class is the algorithm of Coffman and Graham [CG72] that optimally sched-
ules precedence-constrained instructions on two processors (without latencies and
with unit processing times). A modified version by Bernstein, Rodeh, and Gert-
ner [BRG89] that takes latencies into account (and that is here reinterpreted with
latencies associated to arcs instead of instructions) is as follows.

1. Set the level h(t) of the super sink to zero. For each other instruction i ∈ I\{t},
recursively compute its level as h(i) = max{h(s) + ℓ(i, s) | s ∈ S(i)}. This
partitions I into m subsets Ia, 0 ≤ a ≤ m−1 such that for all i ∈ Ia, h(i) = a.

2. Process the subsets Ia in increasing order of a. Suppose the labels 1, . . . , k− 1
have already been assigned to the instructions in Ib, 0 ≤ b < a. Then, as-
sign the labels k, . . . , k + |Ia| − 1 to the instructions in Ia as follows: For
each i ∈ Ia whose successors s ∈ S(i) have all been already labeled, let
Ωi = {λ(s) | s ∈ S(i)}. Sort the values in each Ωi in decreasing order. Find an
instruction x ∈ Ia such that Ωx is lexicographically minimum. Set λ(x) = k.

3. Create a priority list placing instructions with a higher label first.

4. Perform a list schedule using the priority list.

For the special case that all the latencies are either L or zero, Bernstein, Rodeh and
Gertner show that this algorithm has a worst-case performance of 2 − 2

L+1 times
the optimum [BRG89]. This is slightly better than the worst-case performance
2 − 1

L+1 of general list schedules. In particular, the algorithm is optimal for L =
1. Without reference to the cited article, the optimality result for L = 1 was
extended to instructions with arbitrary processing times by Finta and Liu [FL96].
However, for the unit processing times case, it has been left open whether the better
approximation ratio still holds if latencies in {0, . . . , L} (instead of only {0, L})
are allowed. We may answer this question in the negative sense by providing a
corresponding worst-case instance.

Theorem 2.4.1. If arbitrary latencies from the range {0, . . . , L} are permitted, then
the above listed algorithm by Bernstein, Rodeh and Gertner has a tight worst-case
approximation ratio of 2− 2

L+1 .

Proof. For a maximum latency of L, the instance schematically depicted (without
super source and sink to ease the description) in Fig. 2.5 has exactly n = (L+1)(k+1)
instructions. Here, k > 0 is a scaling parameter that controls the number of different
levels that the above algorithm will assign to the instructions. The instance is
constructed such that vertices in the same row will be assigned the same levels by
the algorithm. Look at the precedence structure in Fig. 2.5. There are exactly k+ 1
rows each of which has exactly L + 1 vertices. To not overload the image, not all
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(b) A concrete example for L = 3

Figure 2.5: Worst-case instances for Coffman-Graham list schedules.

latencies associated to the precedence arcs are printed. Every weakly solid drawn
arc (downward or rightward) has latency L and every dark (leftward) arc has the
latency associated that is drawn next to the left of it.

In general, for j ≥ 1, instruction Bj has an arc with latency L to vertex Bj−1 and
latency zero to Cj−1. Further, it has arcs with latency x to each Aj−1x, 1 ≤ x ≤ L−1.
For any two vertices Ajx and Aj−1y with y < x there is an arc from Ajx to Aj−1y

with latency L − (x − y). The same applies to arcs (Ajx, Cj−1), i.e, the arcs have
the associated latency L − x. Each vertex in row j ≥ 1 has an L-weighted arc to
every vertex in row j − 1 with a right-or-equal position. For this reason, the levels
h(i) derived by the above algorithm will be jL for all vertices in row 0 ≤ j ≤ L.

To construct a worst-case schedule, we start with the instructions i on level (in
row) zero. According to the second step of the algorithm, we may choose their λ(i)
arbitrarily. We set λ(C0) = 1, λ(A01) = 2, . . . , λ(B0) = L + 1. Now consider the
Ω-sets for the vertices on level L (in row one). The vertices B1 and A1(k−1), . . . , A11

and C1 are all connected to all vertices on level zero, hence Ω(i) = {L+ 1, . . . , 1} for
all of them. Again, as all of these sets are lexicographically equal, we may choose
the λ-labels on level one arbitrarily and set them in the same manner as for level
zero. By applying this scheme until the last level, we obtain a complete labeling.

By inspecting the instance, one can see that, if the instructions are processed in the
inverse order of their λ-values, then an optimal schedule without any NOPs results.
However, if the vertices are scheduled in λ-order, then after each level there will be
exactly L NOPs since Cj (that is always scheduled last in its row) imposes a latency
of L on all vertices of level j − 1.

In order to prove that this leads to a worst case performance of 2 − 1
L+1 times

the optimum, we apply the same arguments as in [BRG89]. Clearly, the optimum
makespan Copt is n = (k+1)(L+1) while the constructed schedule will introduce kL
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NOPs, i.e., Ccg = n + kL. We evaluate the ratio R between both schedule lengths
as follows.

R =
Ccg

Copt
=

kL + n

n
=

kL + (k + 1)(L + 1)

(k + 1)(L + 1)
= 2−

k + L + 1

(k + 1)(L + 1)

The last equation holds since (k + 1)(L + 1) + kL + k + L + 1 = (k + 1)(L + 1) +
k(L + 1) + L + 1 = (k + 1)(L + 1) + (k + 1)(L + 1) = 2(k + 1)(L + 1). Hence, by
increasing k (the number of levels), R can be made arbitrarily close to 2− 1

L+1 .

Moreover, the instance shows that the ratio still holds when using the numbers of
successors or a combination of these with the critical path lengths as the priority
labels.

2.4.2 Global Lower Bounds

2.4.2.1 Trivial Critical Path Lower Bound

As already indicated, a lower bound on the distance between the super source and
the super sink of a dependency DAG G implies a lower bound on the makespan,
namely Mlb ≥ db,e + 2 ≥ cp(b, e) + 2. This lower bound can sometimes be improved
by a simple observation. Let P = b → i1 → · · · → i|V (P )|−2 → e be a source-sink
path in G. As defined in Sect. 2.3.2.1, its length is given by the sum of the distances
d(P ) along the path plus the number of immediate vertices |V (P )| − 2 between
the source and the sink. Consequently, the number of vertices not contained in P
is k = |V | − |V (P )| and these vertices may ideally be used to cover some of the
latencies d(P ). However, if k > d(P ), then some of the k vertices will contribute
additionally to the schedule length. As a simple formula, this yields:

Mlb ≥ db,e + 2 + max{0, k − d(P )}

2.4.2.2 A Relaxation Technique by Rim and Jain

In 1994, Rim and Jain [RJ94] presented a relaxation technique to obtain lower
bounds on the makespan of a given dependency DAG. We discuss the basic ideas
while matching the presentation with our notation of lower and upper bounds on
issue cycles. Their method exploits the already addressed fact that the upper bounds
on issue cycles depend on Mub. More generally, for any schedule of length M ,
instruction i must start at time ubMi = M − di,e − 1 the latest. Hence, setting

M = Mlb makes it possible to obtain upper bounds ubMlb

i on issue cycles that must
be respected if the schedule length Mlb shall be realized. Conversely, if we solve the
(relaxed) problem and find an instruction i that is assigned a cycle c > ubMlb

i , then
Mlb can be improved by the respective amount of violation.

We restate the associated mathematical problem formulation of the relaxed schedul-
ing problem by introducing variables xi,t that attain value one if instruction i is
assigned to clock cycle t ∈ T and zero otherwise. For our considerations, it is
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sufficient to have some (trivial) upper bound on the largest necessary clock cycle
provided by T , e.g., the corresponding algorithm to solve this model cannot assign
cycles to instructions that are larger than Mlb + |I|. We denote with g = M∗ −Mlb

the gap between Mlb and the unknown optimum schedule length M∗. Since Mlb is
a constant value, we can optimize for g instead of M∗. By the observations made
above, it holds that g ≥ (

∑

t∈T t xi,t)−ubMlb

i for each instruction i ∈ I. Rearranging

this inequality to
∑

t∈T t xi,t ≤ ubMlb

i + g, and adding the according inequalities for
lower bounds as well, one obtains the following relaxed problem formulation:

min g

s.t.
∑

t∈T

xi,t = 1 for all i ∈ I

∑

i∈I

xi,t ≤ 1 for all t ∈ T

∑

t∈T

t xi,t ≥ lbi for all i ∈ I

∑

t∈T

t xi,t ≤ ubMlb

i + g for all i ∈ I

xi,t ∈ {0, 1} for all i ∈ I, for all t ∈ T

g ∈ N0

In this relaxed scheduling problem, only lower and upper bounds, and the resource
constraints (at most one instruction at a time) are respected, but not the latency
constraints. Fortunately, this problem can be solved by a simple greedy algorithm
(listed as Algorithm 2) that was also given by Rim and Jain [RJ94].

Algorithm 2 Greedy Algorithm by Rim and Jain

function RimJain(G = (V,A), lb, ubMlb)
BucketSort(V, ubMlb) # Sort instructions in increasing order of ubMlb

g ← 0
for all v ∈ V do

Assign v to the earliest free cycle c ≥ lbv
if c− ubMlb

v > g then
g ← c− ubMlb

v
return g

For ease of reference, we will refer to the schedules produced by this procedure
as Rim-Jain schedules. Rim and Jain propose to compute lower bounds lbi and
Mlb based on the critical path information given from the DAG and to derive the
corresponding upper bounds ubMlb

i in this way. Hence, originally, the algorithm is
applied with Mlb set to cp(G)+2. The authors state that the algorithm runs in time
O(n+ cp(G) ·C) in this case where C is the completion time of the schedule [RJ94].
However, the runtime should include the cardinality of the arc set of G since each
arc needs to be scanned at least once in order to compute the critical path distances.
A correctness proof of the algorithm is given in the original article. However, the
correctness can also be verified by a simple argument. Let si be the clock cycle
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assigned to an instruction i. The optimal value of g is given by the largest difference
si−ub

Mlb

i among all i. Let x be an instruction assigned to sx such that sx−ub
Mlb

x = g.
Suppose now that g is not optimal. Then it would be possible to realize a gap smaller
than g for each instruction, in particular for any instruction that now has a gap of
g. Consider x again. Clearly, a position s′x > sx would result in a larger gap and
cannot be optimal. However, since the instructions are processed in increasing order
of their upper bound values, all clock cycles in the (possibly empty) range [lbx, sx[
are assigned to instructions with a smaller-or-equal upper bound value. Hence,
exchanging any of them with x would also result in a larger-or-equal gap g. This
verifies optimality of g.

In 1996, Langevin and Cerny [LC96] proposed to use the method by Rim and Jain
recursively in a topologically ordered fashion. Their idea is to apply the original
method to each sub-DAG induced by interpreting each predecessor of i as the sink
prior to running the algorithm on the (sub-)DAG with sink i. This way, improved
lower bounds on the issue cycle of all predecessors of each instruction i ∈ I will be
already respected when computing a lower bound on i’s issue cycle. As the authors
report, this leads to better global results in many cases while the runtime observed in
practice increases only moderately since many of the considered sub-DAGs are small.

Within the solution approaches developed in Chapter 3, the recursive method is
applied to DAGs that reflect the already strengthened distance information that is
obtained during a preprocessing phase.

2.4.2.3 A New Result on Rim-Jain Schedules

In the original articles [RJ94, LC96], the authors describe the relaxation in terms of
a negligence of the precedence and latency constraints. However, if the lower and
upper bounds on the issue cycles being input to the algorithm are consistent with
the precedence relation, in fact only the latency constraints will be relaxed when
applying the algorithm. The main reason for this property is that the algorithm
of Rim and Jain assigns positions to instructions in the order of increasing upper
bounds. To prove this formally, we first clarify what is meant with consistency of
bounds w.r.t. precedence relations.

Definition 2.4.2. (Consistency of bounds [BEP+07]). Let I be a set of instructions
and R ⊂ I × I be the precedence relations on I. The lower and upper bounds lbi
and ubi on the issue cycles for all instructions i ∈ I are called consistent (with the
precedence relations R) if lbi + 1 ≤ lbj and ubi ≤ ubj − 1 for each (i, j) ∈ R.

Definition 2.4.2 can be read equally for dependency DAGs G = (V,A). An analogous
definition of consistency could be stated for latencies or distances by simply replacing
lbi+1 ≤ lbj and ubi ≤ ubj−1 by respectively lbi+di,j+1 ≤ lbj and ubi ≤ ubj−di,j−1.
We may now state the main theorem.

Theorem 2.4.3. Let G = (V,A) be a dependency DAG and let σ be a schedule for
G obtained by the greedy algorithm of Rim and Jain using lower and upper bounds
consistent with the precedences given by A. Let σ(v) be the position of each v ∈ V
in σ. Then for each (i, j) ∈ A, it holds that σ(i) < σ(j).
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Proof. Let i, j ∈ I be two arbitrary instructions such that (i, j) ∈ A. Since the lower
and upper bounds are consistent with the precedences given by A, it follows that
ubi ≤ ubj−1 and lbj ≥ lbi+1. Since ubi < ubj , the algorithm processes i before j. It
starts to look for a free cycle c at position lbi < lbj and moves forward until it finds
one. Either a position strictly before lbj can be found or the algorithm proceeds to
find a position greater or equal to lbj and will stop at the first free cycle. So when
j is processed, either c < lbj or the algorithm iterates over the same dense block of
instructions that now contains already i (more precisely, the range [lbj , lbi]). Hence,
in both cases j will be placed after i in σ.

A different way to prove this result is by using the notion of normal schedules.
We first restate the definition of normal schedules from [BEP+07] in terms of our
notation and then proceed with a lemma from the same reference.

Definition 2.4.4. (Normal schedules [BEP+07]). Let σ be a schedule of the instruc-
tions I and σ(i) be the position of i ∈ I in σ. If σ(i) < σ(j) implies that either
ubi ≤ ubj or lbj > σ(i) (or both), then σ is called a normal schedule.

Lemma 2.4.5. ([BEP+07]). If the lower and upper bounds on issue cycles are con-
sistent with the precedence relation, then any normal single-processor schedule that
satisfies the lower and upper bounds must obey the precedence relation.

We may now prove Theorem 2.4.3 via Lemma 2.4.5 by showing that Rim-Jain sched-
ules are normal.

Theorem 2.4.6. Let G = (V,A) be a dependency DAG and σ a schedule for G
obtained by the greedy algorithm of Rim and Jain using lower and upper bounds
consistent with the precedences given by A. Then σ is normal, i.e, for each pair
i, j ∈ I, σ(i) < σ(j) implies that either ubi ≤ ubj or lbj > σ(i).

Proof. Consider two arbitrary instructions i, j ∈ I such that σ(i) < σ(j). If ubi ≤
ubj or lbj > σ(i), there is nothing to show. So assume that both conditions do
not hold. Hence, ubi > ubj and j is processed by the algorithm prior to i. Since
also lbj ≤ σ(i), j is scheduled in cycle σ(i) the latest since i is not processed yet
and hence the cycle must be free at this point. This contradicts the assumption
σ(i) < σ(j) and therefore either ubi ≤ ubj or lbj > σ(i) or both must hold.

This result is interesting in the following sense. The ISP mainly consists of four types
of constraints: A solution must obey the alldifferent property, precedences, distances
and integrality. Relaxing integrality basically amounts to solving the problem as a
linear program. The algorithm of Rim and Jain maintains the alldifferent property
and integrality but relaxes distance constraints. Since one cannot relax precedence
constraints without relaxing distance constraints, it is basically the only other way
to relax the problem at all if clock cycles shall not be assigned multiple instructions.
And it is good news that it can be solved combinatorially by a simple greedy algo-
rithm. One could come to the idea to try to make such a Rim-Jain schedule feasible
for the original problem. Since Rim-Jain schedules do not violate precedences, this
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exactly corresponds to the idea to use the (inverse) order of the instructions as a
priority for the list scheduling algorithm. Then at any time where multiple instruc-
tions are ready, the one that is positioned earlier in the Rim-Jain schedule will be
selected, leading to a feasible schedule with the same order of instructions. While
this is a straightforward idea, it has been observed experimentally that this strategy
frequently leads to solutions that are far from being optimal.

2.4.2.4 A New Way to Further Exploit Rim-Jain Schedules

Suppose the lower bounding algorithm by Rim and Jain is run with global lower
bound Mlb so that no instruction misses its corresponding deadline ubMlb

i , but that

there is some instruction i with lbi 6= ubMlb

i placed exactly at its upper bound. By
the construction of the algorithm, instruction i could not be placed earlier, i.e.,
in the interval [lbi, ub

Mlb

i − 1], due to a dense block of instructions that all have a
smaller-or-equal upper bound.

In fact, the dense block of instructions could even start earlier, say at position x. So
let there be such a dense range [x, ubMlb

i ]. In case that there is an instruction j with

ubMlb

j > ubMlb

i but lbj ∈ [x, ubMlb

i ], like illustrated in Fig. 2.6, then a reduction of

j’s upper bound below ubMlb

i would immediately result in a later position of i and,
therefore, lead to a new larger lower bound.

lbj0 x

i

ubilbi

j

ubj

Figure 2.6: A situation in Rim-Jain schedules that can be exploited to improve
lower bounds.

This immediately leads to the following theorem.

Theorem 2.4.7. Let Mlb be the best lower bound that can be obtained by running
the algorithm of Rim and Jain on a DAG G = (V,A). Further, let σ be the schedule
computed by the algorithm and let σ(v) denote the position of each v ∈ V in σ.
Let i ∈ V be a vertex with lbi < σ(i) = ubMlb

i , and let [x, ubMlb

i ] with x ≤ lbi be a
dense block of instructions in σ that causes i to take position σ(i). If there exists an
instruction j such that ubMlb

j > ubMlb

i and lbj ∈ [x, ubMlb

i ], then the earliest position

of j in any feasible schedule of length Mlb (if it exists) is ubMlb

i + 1.

Proof. Suppose there exists a schedule of length Mlb with all lower and upper bounds
as given except that j’s upper bound is decreased to ubMlb

i . Then, given this input,
the Rim-Jain algorithm must report a lower bound less or equal to Mlb. However,
while the constructed schedule starts equally to σ, the algorithm could now break
the tie between i’s and j’s upper bound such that j is processed before i. In this
case, j will be placed in a cycle c ∈ [lbj , ub

Mlb

i ] with lbj ≥ x. This causes all the other

instructions in the interval [c, ubMlb

i ] of σ (including i) to be shifted one position to
the right. As a consequence, i misses its deadline and the algorithm reports a lower
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bound of at least Mlb + 1. Hence, no schedule of length Mlb can exist if j is enforced
to be scheduled at cycle ubMlb

i the latest. Consequently, if a schedule of length Mlb

does exist, j must be scheduled at cycle ubMlb

i + 1 the earliest.

2.4.3 Improving Bounds on Issue Cycles and Distances

2.4.3.1 Lower Bounds on Distances by Smart Counting

Considering regions as defined in Sect. 2.3.2.2 can help to improve the lower bound on
the distance between two dependent instructions in a different way, e.g., by making
use of the following lemma from [vBW01].

Lemma 2.4.8. ([vBW01]). Let Gs,t = (Vs,t, As,t) be a region of a DAG G = (V,A).
Then it holds that ds,t ≥ min{ds,v | (s, v) ∈ As,t}+|Vs,t|−2+min{dv,t | (v, t) ∈ As,t}.

Correctness of Lemma 2.4.8 is easy to see: After scheduling the source s of the
region, the minimum latency to any successor of s must be respected before any
interior vertex can be issued. Then all |Vs,t| − 2 interior vertices must be scheduled
and, between the last one and the sink t, again at least the minimum latency must
be respected.

Lemma 2.4.8 is a general result not specific to regions. There is a lower bound
technique presented in [TC98] that exploits similar ideas. In fact, it is possible to
obtain a lower bound on the distance di,k between any dependent vertices i ∈ V and
k ∈ V by determining the intermediate vertices Vik = {j ∈ V | i ≺ j and j ≺ k}
and computing the value min{di,j | j ∈ Vik}+ |Vik|+ min{dj,k | j ∈ Vik}.

Observation 2.4.9. The lower bound on a distance di,k using the above formula
might be improved by ignoring some of the intermediate vertices Vik.

This is true since removing a vertex from the set Vik decreases the term |Vik| by one
but may increase one or both of the two computed minima by more than one unit.
This poses a new lower bound optimization problem:

Problem 2.4.10. (Distance Lower Bound Optimization Problem) Given a depen-
dency DAG G = (V,A) and two vertices i, k ∈ V, i ≺ k, compute a set V ∗

ik ⊆ {j ∈
V | i ≺ j and j ≺ k} such that min{di,j | j ∈ V ∗

ik} + |V ∗
ik| + min{dj,k | j ∈ V ∗

ik} is
maximum.

In its preprocessing phase, the CP solver related to [MMvB08] either schedules
regions optimally (if they are small) or applies a parameterized algorithm for the
above problem to them. As far as this is known to the author, the algorithm is
undocumented apart from the openly available source code, so it is briefly described
here.

Consider a region Gs,t = (Vs,t, As,t). For ease of reference, let W = Vs,t \ {s, t} be
the set of interior vertices of the region. For Gs,t, the algorithm calculates the k
smallest distances ds,v1 < ds,v2 < · · · < ds,vk of vertices v ∈ W from the source.
Further, it computes for each ds,vi the number ns,i of vertices with strictly smaller
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distances than ds,vi , i.e., ns,i = |{v ∈ W | ds,v < ds,vi}|. The same is done for the k
smallest distances dv1,t < dv2,t < · · · < dvk ,t of vertices v ∈ W to the sink and the
respective numbers nt,i of vertices with strictly smaller distances than dvi,t. After
that, the index i ∈ {1, . . . , k} with maximum ds,vi + |W | − ns,i is selected. Finally,
if it exists, an index j ∈ {1, . . . , k} is determined such that |W | −ns,i−nt,j > 0 and
ds,vi + dvj ,t + |W | − ns,i − nt,j is maximal (cf. Fig. 2.7).

vis tvj
ds,vi

≤ ns,i instructions

with distance < ds,vi

≤ nt,j instructions

with distance < dvj ,t

≥ |W |−ns,i−nt,j

instructions

dvj ,t

Figure 2.7: Illustration of the different values involved in deriving a lower bound
on the distance ds,t.

The interpretation is that in the first ds,vi cycles after scheduling s at most ns,i

instructions may be scheduled. Similarly, in the dvj ,t cycles immediately before
scheduling t, at most nt,j instructions may be placed. Hence, |W | − ns,i − nt,j is a
lower bound on the number of interior vertices that can be neither scheduled earlier
than ds,vi cycles after s nor later than dvj ,t cycles before t. If this value is smaller
than zero, then it is possible that the intervals defined by s and ds,vi , and dvj ,t and
t overlap in such a manner that summing over these two distances may not result in
a valid lower bound on the distance between s and t. But, if |W | − ns,i − nt,j > 0,
it is clear that there are instructions left that cannot be scheduled in any of the two
intervals and, therefore, that the intervals must be disjoint (do not overlap). So in
this case, at least |W | − ns,i− nt,j instructions need to be scheduled ‘in the middle’
(that is, outside the two intervals) and this value can be added to the two distances
in order to obtain a valid lower bound for ds,t.

The running time of the algorithm as implemented in the CP solver can be bounded
from above by O(k |Vs,t|). There, k is set to four. Since it is effective, a variant
of this method is also incorporated into the preprocessing phase of the approach
developed in Chapter 3. There, the same regions as in the CP solver are computed
from the given input DAG, but regions are never solved exactly irrespective of their
size. The implementation however invests O(k2 |Vs,t|), by testing all index pairs i
and j whether they satisfy |W | − ns,i − nt,j > 0 (instead of fixing an i first) in the
hope to find more regions that can be improved.

2.4.3.2 Improved Issue Cycle Bounds by Smart Counting

Since lower bounds on issue cycles of instructions are directly related to their dis-
tances from the super-source, one can use similar arguments as in the previous
subsection to possibly improve them. The following techniques from [vBW01] can
again be analogously applied to upper bounds on issue cycles.

Lemma 2.4.11. ([vBW01]). Let G = (V,A) be a DAG and let v ∈ V . Then for
any nonempty subset P ′ ⊆ P (v), it holds that lbv ≥ min{lbu | u ∈ P ′} + |P ′| − 1 +
min{du,v | u ∈ P ′}+ 1.
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Correctness can be easily verified by comparing Lemma 2.4.11 with Lemma 2.4.8
and replacing lbv by db,v + 1, lbu by db,u + 1, and then setting s = b and t = v.
Again, we may formulate an associated optimization problem.

Problem 2.4.12. (Issue-Cycle Lower Bound Optimization Problem) Given a DAG
G = (V,A) and a vertex v ∈ V , compute a set P ∗ ⊆ P (v) such that min{lbu | u ∈
P ∗}+ |P ∗| − 1 + min{du,v | u ∈ P ∗}+ 1 is maximum.

In the solver related to [MMvB08], this problem is tackled by the following algorithm.
It is quite similar to another lower bounding technique called tighter ASAP presented
in [PJ00] but, as far as this is known to the author, undocumented apart from the
openly available source code. In the following pseudocode, we assume that we may
reference the lower bounds on the issue cycles and the predecessors of the vertices
by using arrays.

Algorithm 3 Predecessor-based Lower Bound Algorithm

function predLB(DAG G = (V,A), distances d, vertex v, lower bounds lb)
Sort(P (v), lb) # Sort the predecessors of v in increasing order of lb
posd ← 0 # Position of minimum distance predecessor not yet processed
for i← 1 to |P (v)| do

if posd < i then
mind ← large value
for j ← i to |P (v)| do

if mind ≥ dP (v)[j],v then
mind ← dP (v)[j],v

posd ← j

nlb← lb[P (v)[i]] + |P (v)| − i− 1 + mind + 1
if nlb > lb[v] then

lb[v]← nlb

The algorithm first sorts the predecessors of the vertex v ∈ V by their lower bounds.
Then, for each predecessor p ∈ P (v), it constructs a lower bound on v’s issue cycle
by summing up the lower bound of p, the number of predecessors with a greater-or-
equal lower bound, and the minimum distance to v among these.

In fact, Algorithm 3 can quite easily be improved by using the distances dp,v of
predecessors p ∈ P (v) as a second criterion to break ties such that whenever multiple
predecessors of v have the same lower bound, one with the smallest distance to v
will be processed first. As a result, in the next iteration, the term |P (v)| − i − 1
decreases by one, but the value mind might increase by a larger amount, potentially
leading to better lower bounds.

Algorithm 3 runs in timeO(|P (v)|2) in the worst case and the improved version (with
the secondary sorting key) is used within the approaches presented in Chapter 3, too.

2.4.3.3 Improved Issue Cycle Bounds by Interval Considerations

Another method to improve lower bounds on issue cycles and to also remove sym-
metry from the problem can be derived by considering time intervals. Let I(a, b)
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be the set of instructions that can possibly be scheduled in the interval [a, b], i.e.,
I(a, b) = {i | i ∈ I, lbi ≤ b and ubi ≥ a}.

Lemma 2.4.13. ([MMvB06]). If there exists an interval [a, b] such that (i) for all
i ∈ I(a, b) it holds that ubi = b, (ii) for all i ∈ I(a, b), and for all s ∈ S(i) it holds
that lbs − di,s − 1 ≥ b and (iii) |I(a, b)| ≤ (b − a + 1), then the lower bounds lbi of
all the instructions i ∈ I(a, b) can be set to a.

A proof of this lemma with case distinctions can be found in [Mal08]. Exploiting
symmetry conditions, it may also be formulated for upper bounds:

Lemma 2.4.14. ([MMvB06]). If there exists an interval [a, b] such that (i) for all
i ∈ I(a, b) it holds that lbi = a, (ii) for all i ∈ I(a, b) and for all p ∈ P (i) it holds
that ubp + dp,i + 1 ≤ a, and (iii) |I(a, b)| ≤ (b− a + 1), then the upper bounds ubi of
all the instructions i ∈ I(a, b) can be set to b.

The solver related to [MMvB08] uses some fast heuristic tests to check whether
there are intervals that satisfy these conditions. The corresponding routine first
determines sets Ia (Ib) of instructions that satisfy condition (i) for some lower bound
a (upper bound b). A suitable b (a) is then selected based on the size of the respective
Ia (Ib) under consideration and it is tested whether condition (ii) is satisfied. If this
is the case, it is finally tested whether there are other instructions i 6∈ Ia (i 6∈ Ib)
intersecting with the derived interval [a, b]. If not, the upper bounds (lower bounds)
are altered to b (a) if this is an improvement. In the implementations related to the
solver developed in Chapter 3, only the routine for upper bounds is used because
the version for lower bounds is in conflict with the novel symmetry reduction scheme
presented in Sect. 2.4.5.3.

Another useful concept in order to improve bounds based on interval considerations
are so-called Hall intervals having their name from their relation to Philip Hall’s
marriage theorem proved in 1935 [Hal35].

Definition 2.4.15. (Hall interval [Hal35, Pug98, vH01]). Let I∗(a, b) be the set of
instructions that can be scheduled in the interval [a, b] only, i.e., I∗(a, b) = {i | i ∈
I, lbi ≥ a and ubi ≤ b}. The interval [a, b] is called a Hall interval if |I∗(a, b)| =
b− a + 1.

Hall intervals are those intervals where there is a known set of instructions I∗(a, b)
that must consume all the cycles provided by the interval [a, b]. It is easy to see
that, if [a, b] is a Hall interval and i is an instruction that is in I(a, b) but not in
I∗(a, b), then the interval [a, b] can be removed from the scheduling range of i. In
particular, if lbi ∈ [a, b], then lbi can be improved to b + 1. Similarly, if ubi ∈ [a, b],
then ubi can be improved to a− 1.

There exist several algorithms to quickly determine Hall intervals from a given set
of scheduling ranges. If n is the number of ranges, the algorithms by Puget [Pug98]
and Lopez-Ortiz et al. [LOQTvB03] both find all Hall intervals in time O(n log n).
In fact, these algorithms do not only find Hall intervals but also achieve bounds con-
sistency (see Sect. 1.7) of an alldifferent constraint [vH01], i.e., they may reduce
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scheduling ranges accordingly. Mehlhorn and Thiel [MT00] provide an algorithm
that runs in linear time plus the time needed to sort the end points of the schedul-
ing ranges which might also lead to a completely linear time solution. The algorithm
by Lopez-Ortiz et al. could theoretically also be proven to run in linear time when
one may assume that the end points are representable by single memory words. It
is used in the CP solver by Malik et al. [MMvB08, MMvB06] and also in the solver
developed in this thesis. However, an additional run is carried out taking (weak)
lower and upper bounds on the position of NOPs into account. The associated idea
is that we can also treat an interval like a Hall interval if we know that the number
of instructions and NOPs that must be placed in it is exactly equal to its size.

Another filtering algorithm that achieves bounds consistency on an alldifferent

constraint and can also incorporate precedences into the filtering process was pro-
posed by Bessiere et al. [BNQW11]. Following the authors, if implemented using a
sophisticated data structure for disjoint sets that allows for the operations Find and
Union in constant amortized time, the algorithm has a worst case running time of
O(nd) where d is the largest upper bound present in all variable domains. Clearly, d
is a number rather than an input size and d ≥ n. The authors claim that the asymp-
totic running time can be reduced to O(n2) using additional implementation tricks.
However, already the basic algorithm appears to be hard to implement in practice.
Moreover, since the precedences already have an impact on the lower and upper
bounds, they are at least indirectly incorporated by the other algorithms as well.

2.4.4 Obtaining New Precedences by DAG Transformations

Heffernan and Wilken [HW05] present a set of conditions under which additional arcs
(precedences) can be inserted into a DAG without altering the optimal makespan.
One of their most effective transformations is based on sub-DAG isomorphism.

Two graphs G = (V,E) and H = (W,F ) are isomorphic if |V | = |W |, |E| = |F |,
and there exists a mapping φ : V → W such that (u, v) ∈ E holds if and only if
(φ(u), φ(v)) ∈ F . In other words, by relabeling the vertices of one graph, we are
able to obtain the other. For weighted graphs, like our dependency DAGs, we also
force the weights on the mapped edges to coincide.

Theorem 2.4.1. ([HW05]). Let G = (V,E) and H = (W,F ) be two isomorphic
sub-DAGs. Say V = {v1, . . . , vn} and W = {w1, . . . , wn}. If G and H are such that
for all i ∈ {1, . . . , n}

• vi and wi are independent,

• for each predecessor p ∈ P (vi), p 6∈ V , it holds that l(p, vi) ≤ dp,wi
,

• for each successor s ∈ S(wi), s 6∈W , it holds that l(wi, s) ≤ dvi,s, and

• for any arc (wi, vj), it holds that l(wi, vj) ≤ dvj ,wi
,

then adding zero-latency arcs (vi, wi) for all i ∈ {1, . . . , n} preserves the optimal
schedule length of the original DAG.
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The last condition of Theorem 2.4.1 may appear counter-intuitive, because it argues
over arcs that ‘cross’ from one sub-DAG to the other which should be impossible
between two DAGs to be tested for isomorphism. However, as mentioned before, the
theorem refers to induced sub-DAGs of vertex sets of a common larger DAG. This
way, there might exist such arcs between vertices V and W in the complete DAG
and the last condition is then necessary in order to define a safe transformation.

Unfortunately, the detection of isomorphic sub-DAGs is NP-complete [GJ79] (there
is a simple and polynomial transformation of the general subgraph isomorphism to
the sub-DAG isomorphism problem). However, in practice, a lot of small isomorphic
sub-DAGs to which Theorem 2.4.1 may be applied can be found by some rather
simple heuristic tests [Mal08] and the resulting search space reduction justifies the
invested computation time in the constraint programming solver [MMvB08]. Hence,
a similar procedure to the one that is implemented there is used within the solver
implementation presented in Chapter 3, too.

2.4.5 New Ideas to Reduce the Search Space and Break Symmetries

2.4.5.1 New Precedences from Overlapping Intervals

A very simple rule to obtain a new precedence relationship that can however be
applied quite frequently in practice is the following.

Theorem 2.4.16. Let k ∈ I be an instruction with ubk− lbk = 1. Suppose now that
there exist two instructions i, j ∈ I \ {k} such that ubi = ubk and lbj = lbk. Then i
must be a predecessor of j in any feasible schedule of I.

Proof. The situation associated to this lemma is depicted in Fig. 2.8. We consider
the two cases where instruction k might be scheduled. Suppose k is scheduled in
cycle lbk. Then instruction j can be scheduled earliest in cycle lbk + 1 = ubk. Since
ubi = ubk, it follows immediately, that i must be placed before k and, therefore, also
before j. In the other case, k is scheduled in cycle ubk, it is clear that instruction i
must be scheduled at cycle ubk − 1 the latest. Since ubk − 1 = lbk = lbj, it follows
that i must precede j also in this case.

k

i
j

ubklbk

Figure 2.8: Illustration of the instructions i, j, and k of Lemma 2.4.16.

The implication is in a way similar to some of the reasonings summarized by
Viĺım [Vil07, Vil11]. The difference is however that Viĺım considers instructions
with arbitrary processing times that always have some minimum overlap irrespec-
tive of their exact starting times. Accumulating these overlaps, he derives a lower
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bound on the amount of resource usage in certain time intervals. These methods
cannot lead to same result for the depicted situation because there cannot be any
overlap of the instructions. Moreover, if an overlap was implied, then the instance
would clearly be infeasible.

Tests for the condition stated by Lemma 2.4.16 can be done efficiently in practice
if, for any instruction k, the instructions independent from k can be traversed in a
time proportional to their number. All the instructions k with ubk − lbk = 1 can be
found in linear time. For each of them, candidate pairs for i and j must be in the
set of independent vertices since, after properly propagating the distances, for any
successor s of k it must hold that lbs ≥ lbk + 1 and for any predecessor p of k it
must hold that ubp ≤ ubk − 1 (cf. Sect. 2.3.3).

2.4.5.2 New Precedences and Bounds from (Hall) Intervals

Let [a, b] be a Hall interval with instruction set I∗(a, b).

Observation 2.4.17. Let p ∈ I \ I∗(a, b) be a predecessor of one of the instructions
i ∈ I∗(a, b) that is itself not in the interval. Then p is a predecessor of all the
instructions in the set I∗(a, b). The same is true for successors s ∈ I \ I∗(a, b) of
any instruction from the set I∗(a, b).

If a model has a notion of handling NOPs individually, the same observation can be
made concerning NOPs. Moreover, one can restrict the number of NOPs between
any two instructions i, j ∈ I∗(a, b) to zero.

Even in the case where an interval [a, b] is not a Hall interval, one can potentially
derive some useful restrictions from it that can be expressed as constraints. Again,
we consider the associated set of instructions I∗(a, b) that must be scheduled within
[a, b] and the following additional sets:

• I≤ = {v ∈ V \ I∗(a, b) : ubv ≤ b}

• I≥ = {v ∈ V \ I∗(a, b) : lbv ≥ a}

I≤ is the set of instructions that need to be positioned in cycle b the latest but are
not contained in I∗(a, b). Analogously, I≥ is the set of instructions that need to
be positioned at cycle a the earliest, but are not contained in I∗(a, b). The idea is
now to compute, for each i ∈ I∗(a, b), an individual upper bound on the number of
successors from I≤ and on the number of predecessors from I≥.

Theorem 2.4.18. Let [a, b], I∗(a, b), I≤ and I≥ be given as above. Let i ∈ I∗(a, b).
The number of successors of i from the set I≤ can be bounded by min{(b− a + 1)−
|I∗(a, b)|, b− lbi, b−a−|S(i)∩I∗(a, b)|} and the number of predecessors of i from the
set I≥ can be bounded by min{(b−a+1)−|I∗(a, b)|, ubi−a, b−a−|P (i)∩I∗(a, b)|}.

Proof. Since each i ∈ I∗(a, b) itself needs to be placed in [a, b], it is clear that any
successor s 6∈ I∗(a, b) of i with upper bound less or equal to b needs to be in the
interval as well. The first bound b− a + 1− |I∗(a, b)| is valid since it is exactly the
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remaining number of cycles not already occupied by instructions from I∗(a, b). The
number of successors is trivially bounded by b−lbi since i cannot start earlier than in
cycle lbi and hence at most b− lbi cycles remain afterwards. In the third bound, the
number of remaining cycles after placing i, which is b− a, is reduced by the number
of known successors of i from the set I∗(a, b). Summing up, all three bounds are
valid and the smallest of them gives the tightest bound on the number of successors
from I≤. The proof for the predecessors of i from the set I≥ is analogous.

2.4.5.3 Symmetry Breaking with Latest Ready Times

A novel concept to break symmetries considers the latest clock cycle where an in-
struction must be ready (or already scheduled) in any case.

Definition 2.4.19. (Latest Ready Time) Let i ∈ I be an instruction. The value
lrti = max{ubp + ℓ(p, i) + 1 | p ∈ P (i)} is called the latest ready time of i.

The latest ready time (LRT) of an instruction is not to be mixed up with the latest
release time scheduling policy in preemptive scheduling algorithms that is frequently
abbreviated with LRT as well. Following Definition 2.4.19, the latest ready time of
instruction i is given by the maximal sum of an upper bound of a predecessor in-
struction p and its latency to i plus one cycle. For artificial predecessors p (those that
are not given by the instance but added a posteriori by preprocessing techniques),
it is convenient to assume ℓ(p, i) = 0. Although ℓ(p, i) may be only a weak lower
bound on the distance between p and i in an optimum schedule, it is guaranteed that
instruction i must be ready (or already scheduled) at time lrti since all predecessors
are scheduled, too, and all latencies induced by data dependencies must be satisfied.

In combination with the following simple but central observation, we can exploit
LRTs to reduce the search space, especially if we consider a model that captures the
placements of NOPs by variables and constraints as will be the case in Chapter 3.

Observation 2.4.20. Let σ be a schedule of the instructions I with makespan M .
Let M > |I| and suppose that a NOP is placed at cycle c. Let i ∈ I be an instruction
with σ(i) > c that is however ready at c. Then altering σ by scheduling i at c leads
to a schedule σ′ with makespan M ′ ≤M .

Observation 2.4.20 simply states that, at each clock cycle, it is always optimal to
schedule an instruction instead of a NOP if there is at least one ready instruction
at hand. This is obvious since both a NOP and an instruction cover one potential
delay cycle of instructions issued earlier, but an instruction that is scheduled earlier
may release further potential successors earlier whereas scheduling a NOP does not.
The resulting schedule must therefore be as least as good as a schedule where a
NOP is preponed w.r.t. the ready instruction. As a consequence, we may define
the policy that each NOP that shall be placed before instruction i must be placed
before i becomes ready, i.e., in particular before cycle lrti (cf. Fig. 2.9). Conversely,
if we know that a NOP is placed earliest at a time later than or equal to lrti, then
it could be fixed to be after i.
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Figure 2.9: A small instance with labels [lbi, lrti, ubi] at each instruction, assuming
an optimal schedule length of eight cycles. Unlabeled arcs have latency zero. An
optimal schedule contains a NOP either at cycle three or four. The upper bound
of instruction 3 could be further reduced to four since [5, 6] is a Hall interval. The
LRT of instruction 3 however indicates that it is ready already at cycle three and
can therefore be scheduled before the NOP.

2.5 A Novel Efficient Precedence Data Structure

Each instruction scheduler needs some data structures in order to manage prede-
cessor and successor information. Typically, exact schedulers need to access and
manipulate these data structures much more often than heuristic ones since they
usually process a lot of subproblems and apply a series of search space reduction
techniques. Hence, it is crucial to be able to perform the associated operations as
efficiently as possible.

A classical and straightforward implementation is to have a predecessor and a suc-
cessor list for each instruction. These lists allow to add a predecessor or successor
in time O(1), and to traverse all the predecessors and successors of an instruction
i ∈ I in a time that is proportional to their number. For computational efficiency,
such lists are frequently implemented using arrays. Further, they are usually com-
plemented by another, quadratically sized, array to be able to also test in time O(1)
whether a particular precedence exists and to retrieve the corresponding distance.

If predecessor and successor lists are realized using arrays, one would usually need
to allocate two arrays, each of length |I| − 1, for each instruction i ∈ I. This is
because, in principle, any instruction might be predecessor or successor of every other
instruction. In addition, many of the discussed search space reduction techniques
and as well some of the separation algorithms that will be addressed in Chapter 3
may be implemented much faster if independent instructions may be traversed in the
same way as predecessors or successors. This then requires another array, leading
to a total allocation of space for 3|I| − 3 elements.

In fact, however, we know that the total space that is really used across the arrays is
at most |I| − 1. At each point in time, for a fixed instruction i ∈ I, each instruction
j ∈ I \ {i} is either a predecessor of i, a successor of i, or independent from i.



54 2.5. A Novel Efficient Precedence Data Structure

We also know that an instruction becoming a new predecessor (successor) must be
independent before. And, if an instruction j is once a predecessor (successor) of i,
this relation will never change again. These simple facts and the demand for fast
accesses to the independent instructions led the author to the following concept of
using nicely segmented arrays to manage precedence information.

A nicely segmented array (NSA) is a combination of two arrays Am and Ap. The
array Ap has length |I|−1 and k−1 splitters (for the precedence relationship imple-
mentation, k = 3). The splitters partition the array Ap into k segments. The first
segment will comprise the predecessors, the second the independent instructions,
and the third the successors. The first splitter sp1 marks the end of the predecessor
segment and the second splitter sp2 marks the end of the independent instruction
segment. They are to be interpreted like end-iterators in standard programming
languages, i.e., they point one position behind the respective segment. Using these
pointers, efficient traversal of the three segments is possible at any time by inter-
preting the intervals [0, sp1[ as predecessors, [sp1, sp2[ as independent instructions,
and [sp2, |I|[ as successors. Initially, for an instruction i ∈ I, all |I| − 1 instructions
of the set I \ {i} are considered to be independent. The first splitter thus points to
the beginning of the array and sp2 points one element behind it (see Fig. 2.10).

sp1 sp2

Figure 2.10: Illustration of the initial setup of the array Ap.

Adding a successor s is carried out by taking the position of the yet independent s
and moving it to the end of the independent segment (if necessary). That is, the
position of s will be swapped with the element at position sp2 − 1. After the swap
operation, the pointer sp2 is decremented, effectively making s the first instruction
of the successor area (see Fig. 2.11 for an illustration). Of course, a symmetric
operation can be done for independent instructions p that shall become predecessors.
Here, after swapping p with the first independent instruction, the pointer sp1 is
incremented (see Fig. 2.12). Clearly, these are constant time operations.

sp2sp1

sp2

s x

sp1

sp2sp1

x s

x s

Figure 2.11: Making an independent instruction a successor instruction within the
array Ap.
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sp2sp1

sp2sp1

sp2sp1

xp

xp

px

Figure 2.12: Making an independent instruction a predecessor instruction within
the array Ap.

Efficient retrieval of instructions within Ap is done using the second array Am of
length |I|. It implements a mapping of each instruction j ∈ I \ {i} to its position
in Ap. Although the position of i never needs to be retrieved, |I| rather than
|I| − 1 elements are allocated to simplify the accesses. This way, the operations
to add predecessors or successors can still be performed in constant time while
acquiring space to be allocated only for 2|I| − 1 array elements. As another feature,
tests for precedence relations can also be done in time O(1) by a simple position
comparison. A third array can be added to store the distance information, effectively
making the additional quadratically sized array obsolete. Finally, by increasing
k, more specialized partitionings (such as, e.g., into redundant and nonredundant
predecessors/successors) are possible.
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Chapter 3

Novel Integer Programming
Approaches to Sequential
Instruction Scheduling

While the previous chapter laid emphasis on combinatorial search

space reduction techniques that exploit logical implications, this

chapter focuses on the challenges that arise when mathematically

modeling feasible instruction schedules. It then introduces the linear

ordering problem, a well-known combinatorial optimization prob-

lem, as one possible starting point to obtain integer programming

formulations of scheduling problems. After giving an overview on

existing applications of the linear ordering problem in the context of

scheduling, novel integer programming models to tackle the basic-

block instruction scheduling problem for single-issue processors are

presented. Finally, several extensions to this model are discussed

and an experimental evaluation of the resulting approach is given.
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3.1 The Main Challenge in Mathematically Modeling
Sequential Schedules

The main challenge in modeling sequential scheduling problems mathematically is
how to enforce independent instructions to attain different clock cycles. Due to the
lack of a ‘not equal’-relation this is a difficult task especially in linear programming.

In other words, ‘not equal’ means that there must be an absolute difference strictly
greater than zero. So if ti and tj are integer variables expressing the clock cycles of
two independent instructions i, j ∈ I, then it must hold that either tj ≥ ti+1 or tj ≤
ti − 1. While these two inequalities are linear expressions, such disjunctive [BLV95]
constraints are not easy to handle since, at any point in time, only one of them can
be enforced and it is subject to the optimization process to find out which one. The
equivalent expression |tj− ti| ≥ 1 is not a linear inequality and the feasible solutions
to it do not even form a convex set as is illustrated in Fig. 3.1.

tj

ti

1

−1

1−1

tj − ti ≥ 1

ti − tj ≥ 1

Figure 3.1: Illustration of the feasible solution spaces (shaded) associated to the
inequalities tj ≥ ti + 1 and ti ≥ tj + 1.

Of course, it is possible to solve this problem by branching, i.e., to create two
subproblems for each pair of variables where each one is equipped with exactly one
of the two inequalities but this is not a promising strategy for larger instances.

One possible trick to model absolute values is to use the so-called big-M method.
Using the mentioned integer variables ti for the issue cycle of each instruction i ∈ I
and an additional makespan variable Cmax (here obtaining the starting time of the
last instruction) to be minimized, one could formulate the ISP as follows:

min Cmax

s.t. ti ≤ Cmax for all i ∈ I (3.1)

tj − ti ≥ di,j + 1 for all (i, j) ∈ R (3.2)

tj − ti + Mbi,j ≥ 1 for all (i, j) 6∈ R (3.3)

ti − tj + M(1− bi,j) ≥ 1 for all (i, j) 6∈ R (3.4)

ti ∈ N0 for all i ∈ I

Cmax ∈ N0

bi,j ∈ {0, 1} for all (i, j) 6∈ R
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The inequalities (3.1) relate the makespan variable to the largest clock cycle assigned.
In a straightforward fashion, inequalities (3.2) formulate the precedence and distance
constraints. Then, the condition that two independent instructions must not be
assigned the same cycle is modeled by enforcing the absolute difference |tj − ti| ≥ 1
via the inequalities (3.3) and (3.4). The binary variable bi,j controls which of the two
constraints shall be active and the big-M is required to make the respective other
constraint inactive. The scalar M must be chosen such that it is larger or equal to
the maximum of the two maximum possible differences ti − tj and tj − ti, i.e., if
y ≥ tj − ti and z ≥ ti − tj, then M ≥ max{y, z}. If bi,j = 0, then constraint (3.3) is
active and becomes tj−ti ≥ 1, i.e., i will be placed before j. Further, constraint (3.4)
becomes ti− tj ≥ 1−M which is always satisfied due to the choice of M . If bi,j = 1,
then constraint (3.4) is active and constraint (3.3) is always satisfied in an analogous
fashion. Applied like this, the big-M method yields an artificial convexification of
the feasible region. For integer solutions, we are hence guaranteed to respect the
disjunctive constraints. However, when solving the associated linear programming
relaxation, we must expect to obtain solutions that are fractional in the t- and,
especially, b-variables. Hence, we may be stuck in the artificially convexified area
and need to branch as well. For example, for any M ≥ 2, both constraints are
satisfied when setting ti = tj and bi,j = 1

M
. So while this formulation works in

principle, especially if strong lower and upper bounds for the variables ti (and Cmax)
are known, it cannot be expected to be well-solvable for larger and more difficult
instances.

Another common way to derive a simple formulation that does not need a big-M
is to first compute an upper bound Mub on the makespan such that all potentially
necessary clock cycles for an optimum schedule can be expressed as the finite set
T = {0, . . . ,Mub − 1}. This allows for the introduction of decision variables xi,t for
each i ∈ I and all t ∈ T with the meaning that:

xi,t =

{

1, if instruction i is scheduled at time t

0, otherwise

A second model that is a so-called time-indexed formulation (see, e.g., [Sou89]) is
then:

min Cmax

s.t.
∑

t∈T

t xi,t ≤ Cmax for all i ∈ I (3.5)

∑

t∈T

xi,t = 1 for all i ∈ I (3.6)

∑

i∈I

xi,t ≤ 1 for all t ∈ T (3.7)

∑

t∈T

t xj,t −
∑

t∈T

t xi,t ≥ di,j + 1 for all (i, j) ∈ R (3.8)

Cmax ∈ N0

xi,t ∈ {0, 1} for all i ∈ I, for all t ∈ T
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Like in the previous formulation, the first inequalities (3.5) relate the makespan
variable to the largest clock cycle assigned, since t xi,t = t for exactly the clock cycle
that an instruction i is assigned to, and zero otherwise. The constraints (3.6) assure
that each instruction i ∈ I is assigned exactly one clock cycle t ∈ T . Similarly, the
inequalities (3.7) limit the maximum number of instructions assigned to a distinct
clock cycle to at most one. Finally, inequalities (3.8) formulate the precedence and
distance constraints.

Unfortunately, although this is a first viable {0, 1}-IP there are again some weak-
nesses. First of all, one can consider time-indexed formulations to be of pseudo-
polynomial size since the number of required variables is |I| ·Mub with Mub being a
numerical value rather than an input size. Further, the linear programming relax-
ations will typically split instructions over multiple clock cycles and there are several
symmetric ways to do this. Nonetheless, Heffernan, Liu, and Wilken [WLH00] were
able to schedule a considerable number of basic blocks using a similar model. They
also found some useful cutting planes to separate fractional solutions. Still, it was
shown in [vBW01] and [MMvB08] that their method is not competitive to the cur-
rently best-performing constraint programming methods.

In constraint programming models, the complexity to enforce the instructions to at-
tain different clock cycles is usually captured using a special symbolic alldifferent
constraint as it has been introduced in Sect. 1.7. There, it was also discussed that
constraint satisfaction solvers never relax integrality such that the just mentioned is-
sues with fractional solutions do not apply to them. CP solvers interleave branching
and propagation phases. At each subproblem of the branch and bound tree, filtering
algorithms for the respective constraints are used to remove infeasible values from
the domains of not yet fixed variables. The filtering algorithms reach some form of
local consistency, in case of the alldifferent constraint usually bounds consistency,
as is also briefly covered in Sect. 1.7. The whole procedure leads to either the con-
struction of a feasible solution or the detection that none exists with the currently
fixed variable setting such that a backtracking needs to be carried out. For a more
in-depth description of the concepts used in CP solvers, we refer to [vH01].

The central idea of the novel models presented in this chapter is to exploit the insight
that every sequential schedule, independent whether it needs additional NOPs or not,
corresponds to a certain permutation of the instructions. Even more, one may take
the opposite point of view that each feasible permutation induces a corresponding
number of NOPs that are necessary to construct a feasible schedule from it. The
main aim of the newly developed formulations is to be compact in size and especially
independent from the length of (an upper bound on) the optimal makespan. Last
but not least, we strive for a straightforward way to model permutations of the
instructions without any artificial constructions. A common approach to do this is
via linear ordering variables. Indeed, single machine scheduling with precedences
is one of the applications of the linear ordering problem (LOP) mentioned in the
corresponding textbook by Mart́ı and Reinelt [MR11]. However, as far as this is
known to the author, the LOP has never been successfully and practically applied
as a basis to design an integer programming formulation for single machine problems
with the present form of latencies. Nevertheless, linear ordering formulations have
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already been proposed in the context of scheduling, especially but not exclusively,
for (nondelayed) precedence-constrained single machine scheduling with and without
release times and with the objective to minimize the weighted sum of completion
times. In particular, for objective functions other than makespan minimization, an
interesting comparison of LOP-based formulations to completion time variable and
time-indexed formulations has been carried out by Keha et al. [KKF09].

3.2 The Linear Ordering Problem

3.2.1 Formal Definition

A linear ordering of n items {1, . . . , n} is a bijective function π : {1, . . . , n} →
{1, . . . , n}, i.e., equivalently a ranking, linear sequence, or permutation of the items.

Suppose that for any pair of items i, j ∈ {1, . . . , n}, i 6= j, there is an associated
weight (benefit) ci,j that becomes effective if i is ranked before j, i.e., if π(i) < π(j).
Then the linear ordering problem (LOP) on n items is the task to find an order-
ing π∗ such that

∑n
i=1

∑n
j=i+1 cπ∗(i),π∗(j) is maximum. The LOP is an NP-hard

combinatorial optimization problem and has been classified as such by Garey and
Johnson [GJ79]. The following descriptions are based on those in [MR11].

While there are many ways to describe the LOP, it is usually defined on a complete
directed graph Gn = (Vn, An) with arc weights ci,j for each (i, j) ∈ An. In the
graph-based formulation, the LOP is to find a subset T ( An such that (i) for every
pair of vertices i and j either (i, j) ∈ T or (j, i) ∈ T , but not both, (ii) T contains no
directed cycles, and (iii)

∑

(i,j)∈T ci,j is maximum. An arc set T satisfying condition
(i) is called a tournament, and if T additionally satisfies (ii), it is called an acyclic
tournament.

Figure 3.2: A drawing of an acyclic tournament graph with six vertices.

An acyclic tournament T , as depicted exemplarily in Fig. 3.2, can be easily iden-
tified with a linear ordering: There is only one vertex with no entering arc which
corresponds to the one ranked first. The vertex with exactly one entering arc (from
the first) is ranked second and so on. Interpreted like this, π(i) < π(j) holds exactly
for the case that (i, j) ∈ T and vice versa. Hence, the weights ci,j can be directly
associated with the arcs (i, j) ∈ An.

3.2.2 Mathematical Formulation

Relying on the graph-based interpretation, a common way to model the LOP math-
ematically is to define, for each arc (i, j) ∈ An of Gn = (Vn, An), a binary variable:
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xi,j =

{

1, if π(i) < π(j)

0, otherwise

Then, for n ≥ 3, the LOP can be stated as an integer program as follows:

max
∑

(i,j)∈An

ci,jxi,j

s.t. xi,j + xj,i = 1 for all i, j ∈ Vn, i 6= j (3.9)

xi,j + xj,k + xk,i ≤ 2 for all i, j, k ∈ Vn, i < j, i < k, j 6= k (3.10)

xi,j ∈ {0, 1} for all i, j ∈ Vn, i 6= j

As requested, the objective function maximizes the total weight of the selected arcs.
Constraints (3.9) enforce that for each pair of vertices i, j ∈ Vn, i 6= j, either the
arc (i, j) or the arc (j, i) has to be part of the solution, but not both. To exclude
solutions containing directed cycles of three or more vertices, the so-called three-
dicycle inequalities (3.10) are added to the formulation. In total, the model has
n(n− 1) = 2

(
n
2

)
variables and 2

(
n
3

)
nontrivial constraints.

Theorem 3.2.1. Let Gn = (Vn, An) be a complete directed graph and let the above
integer program be formulated w.r.t. Gn. Then the set of integer feasible solutions
x ∈ {0, 1}|An | satisfying inequalities (3.9) and (3.10) exactly corresponds to the set
of acyclic tournaments T ( An of Gn.

Proof. ⇐: Let T ( An be an acyclic tournament of Gn and let x ∈ {0, 1}|An| be a
vector such that xi,j = 1 if (i, j) ∈ T and xi,j = 0 otherwise. Since T is a tournament,
for each pair of vertices i, j ∈ Vn, i 6= j, either (i, j) ∈ T or (j, i) ∈ T , but never
both. Hence, the inequality xi,j + xj,i = 1 must be satisfied for each such pair of
vertices. Since T is also acyclic, the inequality xi,j +xj,k+xk,i ≤ 2 must hold for any
three-dicycle C = {(i, j), (j, k), (k, i) ∈ An | i < j, i < k, j 6= k}. As a conclusion,
the vector x as defined is a feasible solution to the integer program.

⇒: Now let x ∈ {0, 1}|An| be a feasible solution to the integer program w.r.t. Gn and
consider the set T = {(i, j) ∈ An | xi,j = 1}. Since x is integral and xi,j + xj,i = 1
holds for each pair of vertices i 6= j, T must be a tournament. Further, since the
inequality xi,j +xj,k +xk,i ≤ 2 holds for any three-dicycle C = {(i, j), (j, k), (k, i) ∈
An | i < j, i < k, j 6= k}, T cannot contain any three-dicycles. In particular,
the reverse dicycle to C, C ′ = {(i, k), (k, j), (j, i) ∈ An | i < j, i < k, j 6= k},
is exactly covered by the three-dicycle inequality that results from exchanging the
roles of j and k, i.e., xi,k + xk,j + xj,i ≤ 2. It remains to show that T also does not
contain any directed cycles of length k > 3. We prove only the case k = 4 since it
will become apparent that the derived contradiction can be analogously constructed
for a larger k (see also the argumentation in [MR11]). The proof is based on the
observation that because x is integral and xi,j +xj,i = 1 holds, it must also hold that
xi,j = 1− xj,i. Suppose that C4 = {(i, j), (j, k), (k, l), (l, i) | i < j, i < k, i < l} ∈ T
with pairwise different vertices is a directed cycle of length four. Then it follows
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that xi,j + xj,k + xk,l + xl,i = 4. However, this is a contradiction since:

xi,j + xj,k + xk,l + xl,i = xi,j + xj,k + (xk,i − xk,i) + xk,l + xl,i

= xi,j + xj,k + xk,i + (xi,k − 1) + xk,l + xl,i

= xi,j + xj,k + xk,i
︸ ︷︷ ︸

≤2

+xi,k + xk,l + xl,i
︸ ︷︷ ︸

≤2

−1

≤ 4− 1

= 3

3.2.3 Projection

The observation that xi,j + xj,i = 1 implies xi,j = 1 − xj,i for any integral solution
allows for the elimination of half of the n(n− 1) variables. It suffices then to define
the variables

xi,j =

{

1, if π(i) < π(j)

0, if π(j) < π(i)

only for i < j [GJR84]. As a consequence, the three-dicycle inequalities need to be
divided into two parts. The projected formulation is as follows:

max
∑

i,j∈Vn,i<j

(ci,j − cj,i) xi,j

s.t. xi,j + xj,k − xi,k ≥ 0 for all i, j, k ∈ Vn, i < j < k (3.11)

xi,j + xj,k − xi,k ≤ 1 for all i, j, k ∈ Vn, i < j < k (3.12)

xi,j ∈ {0, 1} for all i, j ∈ Vn, i < j

The new objective function coefficients now reflect the (positive or negative) ‘gain’
to set xi,j = 1 instead of xi,j = 0. Hence, compared to the original formulation,
the objective function value differs by the constant

∑

i,j∈Vn,i>j cj,i. The projected

formulation has
(
n
2

)
variables and 2

(
n
3

)
nontrivial constraints.

3.2.4 The Linear Ordering Polytope

Let m =
(
n
2

)
. For n ≥ 3, the linear ordering polytope can be described as Pn

LO =
conv{x ∈ {0, 1}m | x satisfies (3.11) and (3.12)} [GJR84]. The three-dicycle in-
equalities define facets of Pn

LO and completely describe it (together with the trivial
inequalities) up to n = 5. For n ≥ 6, many more valid and facet-inducing in-
equalities are known for Pn

LO that was intensively studied, e.g, in [GJR84, GJR85a,
Fio01]. However, for many of them the associated separation problem is itself NP-
hard [MR11, Fio01] and sometimes even no practical separation algorithm is known
at all. We refrain from going into further detail here, except for mentioning one of
the few exceptional classes of inequalities that indeed have known polynomial-time
separation procedures, namely the so-called k-fence inequalities [GJR84].
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Definition 3.2.2. (k-fence inequalities [GJR84]). Let U = {u1, . . . , uk} and W =

{w1, . . . , wk} be two disjoint sets of vertices of cardinality 3 ≤ k ≤ |V |
2 . Then the

inequalities

∑

i∈{1,...,k}

xui,wi
+

∑

i,j∈{1,...,k},i 6=j

xwi,uj
≤ k2 − k + 1 (3.13)

are called k-fence inequalities.

For n ≥ 6, the k-fence inequalities define facets of Pn
LO [GJR85a]. They are based

on particular orientations of a complete bipartite graph Kk,k, see Fig. 3.3 for an
illustration of the graph corresponding to a three-fence inequality.

u2 u3u1

w2 w3w1

Figure 3.3: Illustration of the DAG associated with a three-fence inequality.

In the literature (e.g. [GJR84, MR11]), the three arcs xui,wi
are sometimes called

pales and the other six ones are called pickets. For each fixed k, an exact separation
of the k-fence inequalities can be carried out in polynomial time even when doing
this in an enumerative fashion. One may, e.g., enumerate over all subsets of k
arcs xui,wi

with no endpoint in common. Interpreting these k arcs as pales implies
the arcs that correspond to the pickets of the associated k-fence inequality and it
can easily be tested whether the inequality is violated by the current LP solution.
However, even when exploiting the restriction that no two pales may share a vertex,
such an approach leads to a high-order polynomial running time of O(n2k) [GJR84].
Nonetheless, the general idea to start with the pales has been proposed for heuristic
separation approaches as well. The article [GJR84] describes a heuristic procedure
for three-fence inequalities that is as follows. Determine three arcs xui,wi

with no
endpoint in common and such that 1

2 − ǫ ≤ xui,wi
≤ 1

2 + ǫ for some ǫ ≥ 0. This
methodology stems from the fact that there are basic feasible solutions to Pn

LO, with
xui,wi

= 1
2 for all i ∈ {1, 2, 3} and xwi,uj

= 1 for all i, j ∈ {1, 2, 3}, i 6= j, that
violate three-fence-inequalities in a maximal way [GJR84]. As we see, a three-fence
inequality can be violated by at most 1

2 , i.e., the left hand side can be at most 7.5.
Let U and W be the ordered sets (u1, u2, u3) and W = (w1, w2, w3) respectively.
Looking at Fig. 3.3 again, we see that for some fixed U and W , the three-fence
inequality associated to U r = (u3, u2, u1) and W r = (w3, w2, w1) has the same arcs
and therefore corresponds to the same inequality. Furthermore, since there are nine
arcs in total and the projection relation xj,i = 1−xi.j holds, the inequality associated
to U ′ = W and W ′ = U is violated if and only if

∑

i∈{1,...,3}

xui,wi
+

∑

i,j∈{1,...,3},i 6=j

xwi,uj
< 9− 7 = 2.
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So while there are six possible orders for the vertices in U for each triple of pales,
we need to consider only three of them and we can perform the test for each of the
resulting inequalities and their reversed counterpart in the same run.

Unfortunately, the described separation procedure could only seldom find violated
three-fence inequalities on the test instances used for the evaluation in Sect. 3.7 even
though ǫ was chosen to be 0.2 (whereas, in the original article, ǫ = 0.1 [GJR84]).
However, besides the heuristic nature of the separator, other reasons for this may
be that it was only invoked if no three-dicycle inequality was violated (which is not
often the case in the first iterations) and only a few cutting plane phases were carried
out before the next branch takes place (see also Sect. 3.6.5).

3.3 Scheduling and Linear Ordering

Since every sequential schedule of a set of jobs corresponds to a permutation of the
jobs, it is a straightforward and not a novel idea to model scheduling problems via
linear ordering variables. As already stated, scheduling on a single machine with
precedences is also one of the applications of the LOP mentioned in the correspond-
ing textbook [MR11]. Perhaps more surprisingly, also the multiprocessor variant of
the precedence constrained problem (without delays and with arbitrary processing
times) was studied intensively in the context of linear ordering formulations by Coll
et al. [CRdS06]. In general, however, it is natural to consider the problem especially
in sequential contexts. The following two subsections shall give an overview of al-
ready existing applications of the LOP as well as further research related to it in the
context of single-machine scheduling. Doubtless, the compiled references are by far
not complete, but should allow for an impression and to find a common thread to
existing literature for interested readers. Afterwards, in Sect. 3.3.3, we will discuss
why the LOP is particularly well-suited to be applied to instruction scheduling.

3.3.1 Single Machine Scheduling and Linear Ordering

The most references to the LOP in terms of scheduling problems can be found
in the context of single machine scheduling with (nondelayed) precedences and
the objective to minimize the weighted sum of completion times, usually denoted
1|prec|

∑
wjCj in the literature. There, the LOP is used as a basis for integer pro-

gramming formulations, e.g., by Potts [Pot80], Boenchendorf [Boe82], Peters [Pet88],
Chudak and Hochbaum [CH99], Wolsey [Wol90], Dyer and Wolsey [DW90], and Cor-
rea and Schulz [CS05]. Nemhauser and Savelsbergh [NS92] proposed a cutting plane
algorithm with linear ordering variables for the same problem but minimizing the
weighted sum of starting times. A different research branch that was later unified
with the already mentioned one arose from Balas who proposed a model for job shop
scheduling problems with (nondelayed) precedences and minimum makespan objec-
tive [Bal85]. Balas introduced disjunctive formulations that use integer variables
for completion times only (similar to the first model discussed in Sect. 3.1, but for
multiple machines, see also [BLV95]). Since nonpreemptive schedules are completely
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determined by job completion times, he studied the facial structure of the associated
set of feasible solutions and coined the name scheduling polyhedron [Bal85]. He also
outlined the relation of certain scheduling polyhedra to the linear ordering poly-
tope whose facial structure had been investigated recently before [GJR84, GJR85a].
Balas’ work on the scheduling polyhedron was complemented for single machines by
Queyranne and Wang [QW91b, QW91a], and Queyranne [Que93]. The different in-
teger programming formulations were frequently subject to the design of approxima-
tion algorithms for the objective to minimize weighted completion times. First, Hall
et al. [HSSW97] derived a four-approximation algorithm based on a time-indexed
formulation. Then, Schulz [Sch96], and Margot, Queyranne and Wang [MQW03],
as well as Chekuri and Motwani [CM99] presented two-approximation algorithms
based on linear programming relaxations with completion time variables. The LP
relaxations associated to the linear ordering formulations by Potts, and Chudak and
Hochbaum have an integrality gap of two and can also be used to construct two-
approximation algorithms [Pot80, CH99, CM99]. For a more comprehensive survey
on these results and additional references, the interested reader is kindly referred
to the survey by Queyranne and Schulz [QS94]. Svensson [Sve11] showed that it is
unlikely that an approximation ratio better than two can be obtained in polynomial
time. Interestingly, it has also been shown that the problem 1|prec|

∑
wjCj is a

special case of the vertex cover problem [AM09]. Unfortunately, and although the
minimization of weighted completion times is a generalization of makespan mini-
mization, most structural results in the yet mentioned references are not very help-
ful in practically solving the specialized problem studied in this thesis. In fact, as
already discussed in Sect. 2.4.1, there are very simple and fast combinatorial two-
approximation algorithms at hand. Moreover, the addition of latency constraints
introduces new difficulties that change the character of the problem considerably.

Further work that is indirectly related to the LOP considers the facial structure of
the permutahedron (of rank n), a convex polyhedron whose extreme points are in one-
to-one correspondence with the incidence vectors x(π) = (π(1), . . . , π(n)) ∈ Rn of all
permutations π of the set {1, . . . , n} [Bow72, vAFS90]. According to Ziegler [Zie95],
and von Arnim, Faigle and Schrader [vAFS90], the permutahedron was introduced
by Schoute already in 1911 [Sch11] and its name was coined by Guilbaud and
Rosenstiehl [GR63]. It was also studied, e.g., by Gaiha and Gupta [GG77], and
Young [You78]. Queyranne [Que93] showed that there is a certain bounded facet of
the scheduling polyhedron that is isomorphic to the permutahedron. Bowman char-
acterized the permutahedron using linear ordering variables already in 1972 [Bow72]
(without naming them like this), and even gave a proof that, in the corresponding
graph representation, there is a directed cycle of length three whenever there is one
of length greater than three. Of interest is also the connection of the permutahedron
to the alldifferent constraint that is discussed, e.g., in [Hoo00] and [WY01].

A very special single machine scheduling problem where pairs of jobs need to be
processed such that they exactly respect a fixed distance is the coupled task problem.
In a recent article by Békési et al. [BGJ+14], an integer programming formulation
based on linear ordering variables has been presented that has some similarities in
handling distances to the concepts being developed in the following sections. It is
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well conceivable that some of the investigations made here can be translated to the
coupled task problem and help to better solve the respective formulations.

3.3.2 An Interesting Relation To Parallel Machine Problems

Interestingly, a problem that is in essence very similar to instruction scheduling arises
in the context of a general job shop scheduling problem with makespan objective.
For each job, its responsible machine and processing time are known and there
may be precedences between the jobs (that are potentially processed by different
machines). Adams, Balas and Zawack [ABZ88] suggest to tackle this problem using
an approach that is called the shifting bottleneck procedure. Effectively, the method
iteratively solves a series of one-machine sequencing problems [Car82] to optimality.

The interesting aspect is now that the one-machine sequencing problem, though
being NP-hard, could be solved by Carlier quite effectively in practice due to a
combinatorial branching rule that he could derive from heuristic schedules (called
longest tail schedules or Schrage schedules). These schedules are very similar to crit-
ical path list schedules. The rule states that either the current schedule is already
optimal or that a certain job j needs to be either the predecessor or successor of a
certain set of critical instructions. This becomes even more interesting since further
efforts [BLV95, DPL93] were made to identify those cases where Carlier’s branching
rule keeps valid even if delayed precedences come into the scene. In general, process-
ing times cannot be treated like distances since processing times occupy a machine
while distances may be covered by other instructions. However, fixing one machine
conceptually, processing times of dependent jobs on other machines may be consid-
ered to impose distances between instructions on the fixed machine. Unfortunately,
the preconditions necessary to still apply the branching rule when considering arbi-
trary delayed precedences are restrictive and were found to be seldom satisfied on
the large set of test instances used for the experiments in this thesis, so that it was
not further considered for the implementations. Still, this might be a pointer for
other researchers that build up their models using different formulations.

3.3.3 Single-Issue Instruction Scheduling by Linear Ordering

In general, sequentially scheduling a set of jobs mainly consists of the task to de-
termine feasible starting times for each of the jobs. The order of the jobs is then
implied by their starting times. However, it is also true that, if only the order of
a set of jobs has been determined, then it is often easy to compute the (minimum)
corresponding feasible starting times for them based on the input data. In the case
of instruction scheduling, this can, e.g., be done by an algorithm similar to the list
scheduling algorithm discussed in Sect. 2.4.1.1. Assuming that the order of instruc-
tions is already given, no priority queues are necessary and only the updates of
earliest starting times need to be carried out. For a dependency DAG G = (V,A),
the running time of such a simple algorithm can hence be reduced to O(|V |+ |A|).

In principle, computing an ordering of instructions is therefore sufficient to also de-
rive a schedule. However, it is not trivial to model the implications of an ordering
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w.r.t. its (minimum) associated makespan, i.e, the optimization over orderings, in
order to truly optimize over their corresponding schedules, is a difficult challenge.
The first question that arises is how to express the distance constraints. The second
is how to cope with the fact that not all distance constraints can be satisfied by in-
structions only. In particular, a pure LOP integer program with additional distance
constraints will prove infeasible as soon as NOPs are necessary to enforce a certain
distance between any two instructions. Clearly, these issues cannot be resolved by
simply introducing an integer variable ti that must be larger or equal to the number
of predecessors of i in the ordering, and by then enforcing distance constraints on
the t-variables rather than on the LOP variables. This is because in this case, the
‘all different’ property needs to be additionally enforced on the t-variables which
brings us back to the original problem addressed in Sect. 3.1. Indeed, the question
how to model NOPs and distances led to different formulations with varying size
and applicability that are presented in Sect. 3.4.

Besides these issues, there are a number of reasons why the LOP is well-suited to
formulate precedence-constrained problems on single machines and, in particular,
the local instruction scheduling problem for single-issue processors. First of all,
employing the linear ordering variables and inequalities already solves the initially
addressed problem to mathematically enforce solutions to be permutations of the
instructions. Another strong advantage is that a known precedence relation i ≺ j
can be immediately exploited by fixing the variable xi,j to one. Besides removing
symmetry from the problem, variable fixings reduce the size of the LPs to be solved.
Fortunately, due to the transitivity of precedence relationships, we may hope to
be able to fix a large number of variables already based on the initial dependency
DAG. Further, the search space reduction techniques presented in Sect. 2.4 will help
to reduce the number of necessary variables considerably. This is also one reason
why we emphasized on the derivation of new precedences there. Additionally, each
branching decision on a linear ordering variable again imposes new precedences
which may have a large impact and cause transitive fixings. Why this is important
becomes apparent when one considers the success of the constraint programming
approach by Malik et al. [MMvB08, MMvB06]. The authors manage to schedule
basic blocks with more than 1, 000 instructions in a few seconds. For such instances,
it is crucial that the number of (integer) variables used in their approach is linear in
the number of instructions. Hence, to be able to be competitive for similar instance
sizes, an integer programming formulation must make sure that the numbers of
variables and constraints do not become a limitation themselves when it comes
to the necessity of creating and solving (many) LPs in a few (milli)seconds. The
number of variables in the approach presented here is quadratic in the number of
instructions. However, it typically takes strong advantage of the reductions that are
performed prior to solving the first LP. In addition, the LOP allows us to express
constraints on the scheduling ranges of instructions in a straightforward manner.
Similarly, restrictions on the variable sets according to the (potential) predecessors
and successors of an instruction, can be explicitly specified as we will discuss in
Sect. 3.4.2. A related and also covered question is how to express the notion of
‘betweenness’ (intermediate instructions or NOPs (to be) placed between two other
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dependent instructions) within the model. This can be done much better with linear
ordering than with completion time or time-indexed variables. Last but not least,
the LOP is a well-studied problem with profound knowledge about its polytope and
the associated separation procedures for some of its facet-defining inequalities.

3.4 Novel Linear Ordering Formulations for Instruction

Scheduling

3.4.1 Modeling Preliminaries

In the following, we derive new IP formulations for the instruction scheduling prob-
lem based on linear ordering variables. We directly identify the complete directed
graph Gn = (Vn, An) of the LOP with the vertices of the dependency DAG G =
(V,A), i.e., Vn = V . To ease the description, we will assume that all LOP variables
w.r.t. the complete graph are present while stating additional constraints based on
the arcs A of the given dependency DAG. Slightly disrespecting mathematical pre-
cision, we will not always pay attention to the fact that the variable xi,j only exists
for i < j, but assume that the variable is conceptually replaced by 1− xj,i if i > j.
As an example, for summing up over the predecessors of vertex j we will simply
write

∑

i∈Vn,i 6=j xi,j instead of
∑

i∈Vn,i<j xi,j +
∑

i∈Vn,j<i(1− xj,i).

3.4.2 Modeling Distances and Betweenness

For two arbitrary instructions i, k ∈ I, i 6= k, whose relative position is unknown, an
instruction j is between i and k if xj,k = xi,j . This relation is not very helpful when
modeling constraints as it, e.g., does not allow for a proper counting of instructions
that are in between two other instructions. Fortunately, the situation is better when
we already know that i precedes k. In this case, j is between i and k if and only if
j is a successor of i and a predecessor of k, i.e., if xi,jxj,k = 1. This is a quadratic
expression that could be linearized, but there is a preferable way to express the same
information without the need for additional variables and constraints. Clearly, the
product xi,jxj,k is equal to one if and only if the sum xi,j + xj,k is equal to two.
The expression xi,j + xj,k = 2 is equivalent to xj,k + (1 − xj,i) = 2 and therefore to
xj,k − xj,i = 1, stating that j is between i and k, if j is before k but not before i.

Lemma 3.4.1. Let G = (V,A) be a dependency DAG and let an instance of the
LOP be defined w.r.t. G, i.e., xi,k = 1 for all (i, k) ∈ A∗. Let x be an integral
solution to the LOP. Then, for each (i, k) ∈ A∗ and each j ∈ V \{i, k}, it holds that
xj,k − xj,i ≥ 0.

Proof. Clearly, xj,k − xj,i ≥ −1. So suppose that this relation holds with equality,
since otherwise there is nothing to show. Then xj,k = 0 and xi,j = 0, and, by
assumption, xi,k = 1. Hence, the three-dicycle inequality xi,j + xj,k − xi,k ≥ 0
is violated by x which contradicts the assumption that x is a feasible solution to
the LOP.
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For now, let us assume that the problem of modeling NOPs is absent, i.e., all required
distances between two instructions could be realized with other instructions only.
Based on the above relations, we are already able to express three different versions
of distance constraints for dependencies (i, k) ∈ A with distance di,k:

∑

j∈V \{i,k}

xi,jxj,k ≥ di,k for all (i, k) ∈ A (3.14)

∑

j∈V \{i,k}

(xi,j + xj,k) ≥ 2di,k for all (i, k) ∈ A (3.15)

∑

j∈V \{i,k}

(xj,k − xj,i) ≥ di,k for all (i, k) ∈ A (3.16)

While the correctness of the inequalities (3.14) and (3.15) is obvious after the pre-
ceding discussion, validity of inequality (3.16) can be concluded from Lemma 3.4.1
and the observations made before. Clearly, the inequalities (3.15) and (3.16) are
weaker than inequality (3.14) since xi,jxj,k ≤

1
2 (xi,j + xj,k) and the relation holds

strictly as soon as at least one of xi,j and xj,k takes an LP value in ]0, 1[. However,
the quadratic term prohibits us from directly using constraints (3.14) with linear
programming techniques. As already stated, enforcing xi,j + xj,k = 2 is equivalent
to enforcing xj,k−xj,i = 1. However, inequalities (3.16) dominate (3.15) because the
latter does not account for the fact that those instructions j that are not between i
and k also contribute to either

∑

j∈V \{i,k} xi,j or
∑

j∈V \{i,k} xj,k.

Theorem 3.4.2. The distance constraints (3.16) dominate the constraints (3.15).

Proof. First, we write constraint (3.16) slightly differently:

∑

j∈V \{i,k}

xj,k −
∑

j∈V \{i,k}

xj,i ≥ di,k

Substituting (1− xi,j) for xj,i yields then:

∑

j∈V \{i,k}

xj,k −
∑

j∈V \{i,k}

(1− xi,j) ≥ di,k

which is equal to
∑

j∈V \{i,k}

xj,k −
(∑

j∈V \{i,k}

1 −
∑

j∈V \{i,k}

xi,j

)

≥ di,k.

Removing the parentheses yields
∑

j∈V \{i,k}

xj,k −
∑

j∈V \{i,k}

1 +
∑

j∈V \{i,k}

xi,j ≥ di,k

which is finally equivalent to
∑

j∈V \{i,k}

xj,k +
∑

j∈V \{i,k}

xi,j ≥ di,k + |V \ {i, k}|.
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The left hand side of this inequality is the same as the left hand side of (3.15). Now,
in order for the constraint to be feasible at all, it is necessary that |V \ {i, k}| ≥ di,k
(in practice, it will very frequently be much larger) and so the theorem follows.

Exploiting the fact that it is impossible for an instruction to be before i and after k
at the same time, we obtain a fourth way to model a distance constraint. We might
equivalently state that the number of instructions that is either before i or after k
is at most |V | − di,k − 2, i.e.:

∑

j∈V \{i,k}

(xj,i + xk,j) ≤ |V | − di,k − 2 for all (i, k) ∈ A (3.17)

Theorem 3.4.3. The distance constraint (3.17) is equivalent to constraint (3.16).

Proof.

∑

j∈V \{i,k}

(xj,i + xk,j) ≤ |V | − di,k − 2

⇔
∑

j∈V \{i,k}

xj,i +
∑

j∈V \{i,k}

(1− xj,k) ≤ |V | − di,k − 2

⇔
∑

j∈V \{i,k}

xj,i −
∑

j∈V \{i,k}

xj,k ≤ −di,k

⇔
∑

j∈V \{i,k}

xj,k −
∑

j∈V \{i,k}

xj,i ≥ di,k

3.4.3 Lower and Upper Bound Constraints

In the following, we will frequently use the terms lower bound constraints and upper
bound constraints referring to the special distance inequalities where respectively i
is the super source b and k is the super sink e:

∑

j∈V \{b,k}

xj,k ≥ db,k ⇔
∑

j∈V \{b,k}

xj,k −
∑

j∈V \{b,k}

xj,b

︸ ︷︷ ︸

=0

≥ db,k (3.18)

∑

j∈V \{i,e}

xi,j ≥ di,e ⇔
∑

j∈V \{i,e}

xj,e

︸ ︷︷ ︸

=|V |−2

−
∑

j∈V \{i,e}

xj,i ≥ di,e (3.19)

We call inequalities (3.18) lower bound constraints because, by the definition from
Sect. 2.3.3, lbk = 1 + db,k and b itself is exactly the additional vertex preceding k in
addition to those between b and k. Similarly, inequalities (3.19) are upper bound
inequalities since ubi = Mub − di,e − 1 for any upper bound Mub on the makespan
and e is exactly the further subtracted vertex not between i and e.
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3.4.4 Improved Distance Constraints

Let us take a closer look on the just established distance constraints

∑

j∈V \{i,k}

xj,k −
∑

j∈V \{i,k}

xj,i ≥ di,k.

The left hand side considers all the instructions j ∈ V \ {i, k} while, except for
i = b and k = e, clearly not all these instructions are indeed candidates in order
to attain a position between i and k. We will therefore aim at making the left
hand side as sparse as possible such that the right hand side imposes a maximal
restriction on the real candidate instructions. The following techniques will be useful
not only for the formulations presented in this chapter, but for any model that uses
variables permitting to express constraints on the set of instructions placed between
two other instructions. To constitute a first simple observation, we consider lower
bound constraints as special cases of distance constraints.

Observation 3.4.4. Let k ∈ V be an instruction with lower bound lbk. Then there
are at least lbk cycles in the interval [0, lbk−1] to be filled with either instructions or
NOPs (see Fig. 3.4). Any instruction p that is placed at some cycle c ∈ [0, lbk − 1]
must have itself lbp ≤ c since otherwise it could not be placed there.

k

lbk0

lbk NOPs or instructions
p with lbp<lbk

︷ ︸︸ ︷

Figure 3.4: Illustration of Observation 3.4.4.

In other words, while there are potentially many more instructions (and NOPs) that
might be placed before instruction k, there is only a reduced candidate set respon-
sible for establishing the lower bound of k. The same is also true for upper bounds,
i.e., an instruction i with upper bound ubi must have at least Mub−ubi−1 NOPs or
instructions j with upper bound ubj > ubi succeeding it. This can be exploited by
restricting the variables incorporated into the lower bound constraints (3.18) to in-
structions from the set Jk

lb = {j ∈ V \{b} | lbj < lbk} and those incorporated into the
upper bound constraints (3.19) to stem from the set J i

ub = {j ∈ V \ {e} | ubj > ubi}.

A similar observation can be made and exploited for distance constraints between
two instructions whose exact positions are yet unknown. Let i, k ∈ V be a dependent
pair of instructions such that di,k > 0. As a first step, consider the set of instructions
J = {j ∈ V \ {i, k} | j 6≺ i, k 6≺ j, lbj < ubk and ubj > lbi}. Clearly, these
are all the candidates that might be between i and k, even if i and k take their
respective extreme positions lbi and ubk. However, we may go one step further
and again ask for the candidate instructions that are responsible for establishing the
distance di,k between i and k (in the following, we will just say responsible). For
any position σ(k) of k, an instruction j that is responsible can only be in the range
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[σ(k)− di,k, σ(k)− 1]. To be conservative, we need to consider the minimal position
for k which is lbk, so the corresponding candidate set is Jk = {j ∈ V \ {i, k} |
j 6≺ i, k 6≺ j, lbj < ubk and ubj ≥ lbk − di,k}. Similarly, for any position σ(i) of
i, instructions j responsible can only be in the range [σ(i) + 1, σ(i) + di,k]. Here,
we need to consider the maximum possible position ubi such that the corresponding
candidate set is Ji = {j ∈ V \ {i, k} | j 6≺ i, k 6≺ j, lbj ≤ ubi + di,k and ubj > lbi}.

i

lbi0 ubi

k

di,k

di,k

di,k

ubklbk

Ji: lbj ≤ ubi + di,k

Jk: ubj ≥ lbk − di,k

Ji: ubj > lbi

Jk: lbj < ubk

Figure 3.5: Illustration of the case for general distance relationships di,k > 0.

Fig. 3.5 illustrates the clock cycle intervals corresponding to Ji and Jk that must be
intersected by the scheduling ranges of potentially responsible instructions. Again,
the variables to be incorporated into the distance constraints can be reduced accord-
ingly. Moreover, if the candidate sets do not coincide, then it may be beneficial to
add two distance constraints related to Ji and Jk for each precedence relationship.
We want to elaborate to some more extent when this is the case.

We will see that a necessary condition for the sets Ji and Jk to differ and to be
smaller than J is that the distance lower bound di,k must be either not binding for
the lower bound of k, i.e., lbk > lbi + di,k, or not binding for the upper bound of i,
i.e., ubi < ubk − di,k (or both). Then, in general, the intersection Ji ∩ Jk may even
be empty (this is true even in the absence of NOPs while then |Ji ∪ Jk| ≥ di,k is
a necessary condition for feasibility). Look at Fig. 3.6. By further reducing ubi or
di,k, or by increasing lbk in the depicted example, the ranges for the two sets could
be made completely disjoint.

i

lbi0 ubi

k

di,k

di,k

di,k

ubklbk

Ji: lbj ≤ ubi + di,k

Jk: ubj ≥ lbk − di,k

Ji: ubj > lbi

Jk : lbj < ubk

Figure 3.6: An example where there is only a small overlap of the ranges defining
the sets Ji and Jk so that |Ji ∩ Jk| might not be large enough to cover di,k.



74 3.4. Novel Linear Ordering Formulations for Instruction Scheduling

As already indicated, in the other extreme case that the distance di,k is binding in
both directions, i.e., lbk = lbi + di,k + 1 and ubi = ubk − di,k − 1, there will be no
reduction w.r.t. the set J as defined above.

Theorem 3.4.5. Let i, k ∈ V be two dependent instructions such that i ≺ k. If it
holds that lbk = lbi + di,k + 1 and ubi = ubk − di,k − 1, then Ji = Jk = J .

Proof. Consider the definition of Ji = {j ∈ V \ {i, k} | j 6≺ i, k 6≺ j, lbj ≤
ubi + di,k and ubj > lbi}. Using the second equation from the theorem, the term
lbj ≤ ubi + di,k may be replaced by lbj ≤ ubk − 1 which is equal to lbj < ubk and,
hence, the altered Ji matches exactly the definition of J . With the first equation,
Jk can equally be turned into J .

To close the circle to the beginning of this section, we finally remark that the lower
bound constraints resemble a special case of the situation handled in Theorem 3.4.5
since for any instructions k, k 6= b, the distance db,k is binding by definition.

Theorem 3.4.6. Let Jb be the candidate set for b associated to the distance db,k
and let Jk

lb be the candidate set of the lower bound constraint of k. Then Jb = Jk
lb.

Proof. Since lbb = ubb = 0 and no vertex can be a predecessor of b, we may write
Jb as Jb = {j ∈ V \ {b, k} | k 6≺ j, lbj ≤ lbb + db,k and ubj > 0}. Moreover, as
lbb + db,k = lbk − 1, and ubj > 0 holds for any instruction except the source, the set
Jb coincides with Jk

lb = {j ∈ V \ {b} | lbj < lbk}.

There are more special cases that allow for an exploitation during the solution pro-
cess. If the positions of both vertices i and k are fixed, it might still be not clear
which particular instructions are the ones to be in between. However, the distance
inequality then turns into an equation since we exactly know how many instructions
(and NOPs) need to be in between. In this case, all instructions that are known to
be not in between i and k can be enforced to be either a successor or predecessor
of both. Similarly, if the cardinality of a candidate set exactly matches di,k and
it is impossible that NOPs can occur between i and k, it is clear that exactly the
instructions of the set must be those responsible for establishing the distance.

3.4.5 Modeling Idle Cycles

The just derived distance inequalities will serve as a basis to derive complete integer
programming formulations for the basic-block instruction scheduling problem under
the LOP model. Until here, we ignored the fact that NOPs have to be somehow in-
corporated into the model. Indeed, positions of instructions cannot be characterized
by their rank in the permutation only and distance constraints will be infeasible if
the distances cannot be established using additional variables on the left hand side.

The main challenge in modeling NOPs is that the associated variables must allow for
a consistent notion of where the NOPs are placed in the schedule. This is necessary
to be able to count them at all relevant places. At first sight, several possibilities
come into mind. We may, for instance:
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(1) Have an integer variable ni that expresses the number of NOPs placed imme-
diately before or after an instruction i.

(2) Have an integer variable ni that expresses the total number of NOPs placed
before or after an instruction i.

(3) Treat each NOP as an (artificial) instruction such that usual linear ordering
variables are created for them.

The models that will be presented in the following are straightforward applications
of these ideas. Since it is usually easy to transform the interpretations ‘NOPs before’
and ‘NOPs after’ an instruction into each other, we stick to the ‘before’-variant to
avoid superfluity in the following descriptions.

3.4.6 First Model with General Integer NOP Variables

When modeling NOPs based on the first concept, we introduce variables ni ∈ N0

for all instructions i ∈ V with the interpretation that there are exactly ni NOPs
positioned immediately before i.

A good property of this interpretation is that the positions of NOPs are modeled im-
plicitly. This is in contrast to the second approach where it will be necessary to con-
sider multiple variables in order to clarify where the NOPs are placed. However, the
approach appears to be complicated in practice since the position σ(i) of an instruc-
tion i in a schedule σ is given by the expression σ(i) = ni +

∑

j∈V \{i}(1 + nj)xj,i.
The problem here is that we may account for the NOPs placed immediately before
an instruction j only if j itself is before i. Hence, the term expressing the posi-
tion of an instruction contains products of general integer and {0, 1}-variables. This
becomes also apparent in the distance inequalities that can be modeled as follows:

∑

j∈V \{i,k}

(xj,k − xj,i) +
∑

j∈V \{i,k}

(xj,k − xj,i)nj + nk ≥ di,k for all (i, k) ∈ A (3.20)

Theorem 3.4.7. Inequalities (3.20) correctly model the distance constraints.

Proof. Following the discussion related to the distance inequality (3.16), the set of
instructions j ∈ J that are between i and k are correctly identified by the term
∑

j∈V \{i,k}(xj,k − xj,i). The NOPs between i and k are therefore exactly those that
are placed immediately before the instructions of the set J and immediately before
k. Further, by Lemma 3.4.1, xj,k − xj,i ≥ 0 must hold for all j ∈ J due to the
three-dicycle inequalities. Hence, a negative contribution of the NOP variables to
the left hand side is precluded.

The inequalities (3.20) can also be read

nk +
∑

j∈V \{i,k}

(1 + nj)xj,k −
∑

j∈V \{i,k}

(1 + nj)xj,i ≥ di,k.
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Linearization of the products is possible using additional variables and constraints
(cf. Sect. 1.6). Like this, we may introduce variables βi,j = nixi,j, giving the number
of NOPs immediately before i if i is a predecessor of j and zero otherwise. The
distance inequalities (3.20) may then be reformulated as follows:

∑

j∈V \{i,k}

(xj,k − xj,i) +
∑

j∈V \{i,k}

(βj,k − βj,i) + nk ≥ di,k for all (i, k) ∈ A (3.21)

The term βj,k − βj,i adds the NOPs before j to the left hand side if j is before k,
and subtracts them again in the case that j is also before i. Assuming Nub

i to be an
upper bound on the number of NOPs immediately before instruction i, a completely
linearized model of the instruction scheduling problem is:

min
∑

i∈V

ni

s.t. xi,j + xj,k − xi,k ≥ 0 for all i, j, k ∈ V, i < j < k

xi,j + xj,k − xi,k ≤ 1 for all i, j, k ∈ V, i < j < k

xi,k = 1 for all (i, k) ∈ A∗

∑

j∈V \{i,k}

(xj,k − xj,i + βj,k − βj,i) + nk ≥ di,k for all (i, k) ∈ A

βi,j ≤ ni for all i, j ∈ V, i 6= j

βi,j −Nub
i xi,j ≤ 0 for all i, j ∈ V, i 6= j

βi,j −Nub
i xi,j ≥ ni −Nub

i for all i, j ∈ V, i 6= j

ni ≤ Nub
i for all i ∈ V

xi,j ∈ {0, 1} for all i, j ∈ V, i < j

ni ∈ N0 for all i ∈ V

βi,j ∈ N0 for all i, j ∈ V, i 6= j

Using this model, the objective function is easy to express since the total number
of NOPs is just the sum over all the NOPs that are placed immediately before each
of the instructions. Besides the three-dicycle inequalities from the LOP, we have
fixed variables for each precedence (i, k) ∈ A∗ and the distance inequalities as de-
scribed above. The subsequent inequalities involving β-variables are all due to the
linearization. The linearization is expensive in that there will be |V |2 additional
variables and 3|V |2 additional constraints. However, for many instances, a consider-
able number of linearizations is not necessary because the associated linear ordering
variable is fixed. In this case, one may either drop the variable βi,j (if xi,j = 0)
or replace it by ni (if xi,j = 1) at the respective occurrences. Still, computational
experiments [Tep13] revealed that the formulation leads to a relatively high number
of variables in practice and has considerable problems with larger and more difficult
instances. One reason for this and another drawback of the immediate interpreta-
tion is that the NOP variables of different instructions are unrelated to each other.
This makes it difficult to apply logical implications to them and also adds a lot of
symmetry to the model.
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3.4.7 Second Model with General Integer NOP Variables

Following the second way to interpret NOP variables ni ∈ N0 for all instructions
i ∈ V , the variable ni states the total number of NOPs placed before instruction i.

Like this, the position σ(i) of instruction i in the schedule is σ(i) = ni+
∑

j∈V \{i} xj,i.
We now have an important and useful relation between NOP variables in that the
number of NOPs preceding k must be as least as large as the number of NOPs
preceding i if k succeeds i. We first state the full model and then proceed with its
description and a proof of its correctness.

min ne

s.t. xi,j + xj,k − xi,k ≥ 0 for all i, j, k ∈ V, i < j < k

xi,j + xj,k − xi,k ≤ 1 for all i, j, k ∈ V, i < j < k

xi,k = 1 for all (i, k) ∈ A∗ (3.22)

(nk − ni) +
∑

j∈V \{i,k}

(xj,k − xj,i) ≥ di,k for all (i, k) ∈ A (3.23)

nk ≥ ni for all (i, k) ∈ A (3.24)

nk + Mi(1− xi,k) ≥ ni for all i, k ∈ V, i ‖ k (3.25)

ni + Mk(1− xk,i) ≥ nk for all i, k ∈ V, i ‖ k (3.26)

xi,j ∈ {0, 1} for all i, j ∈ V, i < j

ni ∈ N0 for all i ∈ V

The objective function is to minimize the number of NOPs placed before the artificial
sink instruction e ∈ V . Like in the previous formulation, we have the three-dicycle
inequalities from the LOP and fixed variables for each precedence (i, k) ∈ A∗. Fur-
ther, for each (i, k) ∈ A, there is a distance constraint (3.23) that is composed from
constraint (3.16) by adding the NOPs before k and subtracting the NOPs before i,
effectively yielding the number of NOPs in between i and k. Also, for (i, k) ∈ A, we
already know that nk ≥ ni (3.24) must hold. For independent instructions i, k ∈ V
however, we would usually need the following two (nonlinear) constraints in order
to achieve globally consistent solutions:

nk ≥ nixi,k for all i, k ∈ V, i ‖ k

ni ≥ nkxk,i for all i, k ∈ V, i ‖ k

Here we again obtain products of a general integer and a {0, 1}-variable. However,
this time we do not favor linearization by the introduction of additional variables
and constraints. Instead, we prefer a linearization using big-M constraints (3.25)
and (3.26) in this case. Doubtless, the n-variables reintroduce the same disjunc-
tive modeling challenges as with issue cycle variables ti, discussed in Sect. 3.1 and
Sect. 3.3.3. However, we at least move the problem from the only weakly related
issue cycle variables with a large range of possible values to stronger related vari-
ables with smaller ranges. Using lower and upper bounds N lb

i ∈ N0 and Nub
i ∈ N0

for each of the variables ni (that can be determined using the usual lower and up-
per bounds on the issue cycles of instructions), we can hope to compute relatively
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strong M -values. A good choice for Mi (Mk) is an upper bound on the difference
of NOPs between k and i (i and k) in the case that k precedes (succeeds) i. Hence,
Mi should be equal to Nub

i − N lb
k (or greater) and, similarly, Mk ≥ Nub

k −N lb
i is a

valid choice. In the case that k precedes i, it holds that xi,k = 0 and the subtraction
of Mi makes inequality (3.25) trivially satisfied while (3.26) is binding. The other
case is analogous. For later reference, we denote the polytope corresponding to the
inequalities of the integer program for a DAG G = (V,A) with v = |V | and m =

(
v
2

)

by PG
ISP = conv{(x, n) ∈ {0, 1}m × Nv

0 | x ∈ P v
LO and (x, n) satisfies (3.22)-(3.26)}.

We will write just PISP whenever we want to refer to the set of feasible solutions of
the integer program without relation to a distinct graph instance.

Theorem 3.4.8. Let G = (V,A) be a dependency DAG, v = |V | and m =
(
v
2

)
. Then

the set of integral solutions to PG
ISP , i.e., the set FG

ISP = {(x, n) ∈ {0, 1}m × Nv
0 |

x ∈ P v
LO and (x, n) satisfies (3.22)-(3.26)} corresponds exactly to the set of feasible

schedules σ of G.

Proof. ⇐: Suppose a feasible schedule σ of G is given. We construct a correspond-
ing solution (x, n) ∈ FG

ISP as follows. For each pair i, j ∈ V , i < j, we set xi,j = 1
if i precedes j in σ, and xi,j = 0 otherwise. Clearly, since σ imposes a total order
on V , x ∈ P v

LO. Because σ is feasible, x must also satisfy the precedence con-
straints (3.22). For each i ∈ V , we set ni to the number of NOPs preceding i in σ.
Hence, the position of i in σ maps exactly to ni +

∑

j∈V \{i} xj,i. Let (i, k) ∈ A∗. By
construction, dσi,k = (nk +

∑

j∈V \{k} xj,k)− (ni +
∑

j∈V \{i} xj,i)− xi,k. Since xi,k is
equal to one and hence contributes only to the first sum, an equivalent expression is
dσi,k = (nk − ni) +

∑

j∈V \{i,k}(xj,k − xj,i). Because σ is a feasible schedule, dσi,k ≥ di,k
and (3.23) is satisfied. For the same reason, constraints (3.24) are satisfied by the
ni variables set as described. If xi,k = 1, constraint (3.25) coincides with (3.24) and,
with the proposed choice of Mk, constraint (3.26) evaluates to ni ≥ N lb

i + nk −Nub
k

which is trivially satisfied. If xi,k = 0, the roles of i and k are exchanged which leads
to an equally feasible situation.

⇒: Now suppose that (x, n) ∈ FG
ISP and we are asked to construct a feasible schedule

σ of G. First, we set the position of each i ∈ V in σ to ni +
∑

j∈V \{i} xj,i. Since

(x, n) ∈ FG
ISP implies x ∈ P v

LO, x imposes a linear ordering on V . Thus, for each
pair i, k ∈ V , i 6= k, it holds that either

∑

j∈V \{i} xj,i <
∑

j∈V \{k} xj,k if xi,k = 1, or
∑

j∈V \{k} xj,k <
∑

j∈V \{i} xj,i if xi,k = 0. Due to constraints (3.24), (3.25) and (3.26),
nk ≥ ni if xi,k = 1, or ni ≥ nk if xi,k = 0. Summing up, either i strictly precedes k
or k strictly precedes i for every pair of vertices i, k ∈ V , i 6= k. So each position of
an instruction i in σ is unique and, due to constraint (3.23), all distances between
dependent instructions are satisfied. Hence, σ is a unique feasible schedule of G.

Since we generally aim at fixing as many linear ordering variables as possible and due
to the mentioned circumstances for the NOP variables, this is a relatively elegant
model. Especially, since it is rather compact in size. However, still the big-M con-
straints harm the strength of the model. For instance, it is possible in fractional
solutions (x, n) ∈ [0, 1]m × Rn

0 that nj < nixi,j. Another weakness is that the po-
sition of NOPs is encoded only implicitly, i.e., we cannot easily improve bounds on
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their positions during the optimization process and exploit them when formulating
constraints. However, despite these issues, we found the model with integer NOP
variables promising in our experiments.

3.4.8 Third Model with NOPs Being Artificial Instructions

Another approach is to model NOPs as what they in fact are - artificial instructions.
With this interpretation, we can simply extend the graph-based LOP formulation
(by setting V = I ∪ N with N being a set of NOP vertices) and this will already
guarantee to obtain a permutation of all instructions and NOPs. The mathematical
formulation of this method is then simply given by the basic LOP model extended
by inequalities (3.16) and variable fixings corresponding to the precedences. We
however again need an upper bound Mub on the makespan in order to apply a
feasible cardinality of the set N . To minimize the number of NOPs needed, one
could, e.g., once more minimize the number of NOPs that are placed before the
artificial sink instruction e ∈ V .

min
∑

n∈N

xn,e

s.t. xi,j + xj,k − xi,k ≥ 0 for all i, j, k ∈ V, i < j < k

xi,j + xj,k − xi,k ≤ 1 for all i, j, k ∈ V, i < j < k

xi,k = 1 for all (i, k) ∈ A∗

∑

j∈V \{i,k}

(xj,k − xj,i) ≥ di,k for all (i, k) ∈ A

xi,j ∈ {0, 1} for all i, j ∈ V, i < j

Besides the simplicity of the model, treating NOPs like instructions has some more
advantages. First of all, the complete formulation is a {0, 1}-integer program that
does not need any artificial linearization at all. Further, since each NOP is an
individual instance in the model, it is easy to compute a lower and upper bound
on its issue cycle. These values can be incorporated into all preprocessing steps,
the calculation of Hall intervals and the exploitation of logical implications at the
subproblems of the branch-and-bound tree. In experiments, this has been proven to
be very effective in practice. Also, a considerable number of the additional variables
may be fixed in advance in order to remove symmetries from the problem. For
instance, it is possible to enforce an order among the NOP vertices themselves.
However, there are also disadvantages. Since the number |N | of NOP vertices to
add depends on (an upper bound on) the optimal schedule length (and therefore on
a number rather than an input size), the size of the problem formulation is pseudo-
polynomial and can become considerably large compared to the others, especially
for instances where |N | > |I|.
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3.4.9 A Short Comparison of the Models

As has already been indicated in the respective subsections, each of the models
has its advantages and disadvantages. The first model with general integer NOP
variables appeared to be computationally inferior to the others. Among the two
others, there is none that is superior for all instances. If the upper bound on the
number of NOPs is small, the pure LOP model from Sect. 3.4.8 is often a good
choice. However, when it comes to instances with several hundreds of NOPs, the
quadratic growth in the number of linear ordering variables becomes a limiting factor
even if many of them may be fixed in advance. To make a decision, the model from
Sect. 3.4.7 is preferred, since it remains of size O(|I|2) in the number of variables and
of size O(|I|3) in the number of constraints, and these numbers are independent from
the number of NOPs necessary to construct a feasible schedule. Still it was found
appropriate to list also those models that are not in favor to be used in practice
since they might trigger further ideas by other researchers. Moreover, we remark
that models with a nonlinear character might become even more interesting in the
future since nonlinear mixed integer programming is an emerging field at the time
writing this thesis. Especially, the pure LOP model can be a good starting point to
design semidefinite programming models since then the strong quadratic form (3.14)
of the distance constraints can be effortlessly used.

The following classes of inequalities and the description of the developed branch-
and-cut solver implementations will be presented w.r.t. the preferred model from
Sect. 3.4.7. If one would like to use the pure LOP model instead, most of the
constraints can be adopted by simply replacing terms with ni-variables by terms
employing a sum over the respective variables of the at most Nub

i NOPs before an
instruction i. To ease the description, we write, e.g., ‘the number of predecessors is
bounded from above by k’ and mean by ‘predecessors’ instructions and NOPs, i.e.,
refer to the real position of an instruction within the schedule.

3.5 Additional New Classes of Inequalities

In this section, further valid inequalities for the integer program from Sect. 3.4.7
are presented. These inequalities are not necessary to obtain a complete description
of feasible schedules by means of integer feasible solutions. However, they may be
added to tighten the formulation or to cut off fractional LP solutions.

3.5.1 Conditional Issue Cycle Bound Constraints

For precedences (i, k) ∈ A, we know that lbk > lbi and ubi < ubk. In contrast to that,
the lower and upper bounds associated to independent pairs of vertices i, k ∈ V are,
in general, unrelated to each other. Nevertheless, a particular relative order may
impose some restrictions on the positions of i and k. For instance, it is clear that
k is forced to attain a position of at least lbi + 1 as soon as xi,k = 1. Similarly, i is
enforced to attain a position smaller or equal to ubk − 1 if xi,k = 1. Let lbi > lbk,
such that the conditional position lbi + 1 is a stronger lower bound than k’s usual
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one. The strict relation also ensures that a lower bound position of lbk + 1 for k is
not already implied by a strengthenend lower bound constraint and xi,k = 1 alone.
For the same reason, let ubk < ubi. Then, with a = lbi − lbk and b = ubi − ubk, we
may formulate the following inequalities:

nk +
∑

j∈V \{i,k}

xj,k ≥ lbk + axi,k for all i, k ∈ V, i ‖ k, lbi > lbk (3.27)

ni +
∑

j∈V \{i,k}

xj,i ≤ (ubi − 1)− bxi,k for all i, k ∈ V, i ‖ k, ubi > ubk (3.28)

Theorem 3.5.1. Inequalities (3.27) are valid for PISP .

Proof. We prove the two cases for the conditional variable xi,k separately.

First, let xi,k = 1. Then π(i) < π(k), so the number of predecessors of k can be
enforced to be at least lbi + 1. In fact, the right hand side of constraint (3.27)
enforces only lbk + lbi − lbk = lbi predecessors. This is correct however since, in the
case xi,k = 1, i is also a predecessor that will not be accounted for on the left hand
side. Now, let xi,k = 0, i.e., π(k) < π(i). Since then i is not a predecessor of k, still
lbk others need to be enforced.

Theorem 3.5.2. Inequalities (3.28) are valid for PISP .

Proof. We consider again the two cases for xi,k separately.

If xi,k = 1, then the number of predecessors of i is bounded by ubk − 1. Clearly, k is
not a predecessor of i in this case. Hence, the number of predecessors of i stemming
from all other instructions (and NOPs) is bounded by ubi−1−(ubi−ubk) = ubk−1.
If xi,k = 0, then k is a predecessor of i and only at most ubi − 1 other instructions
(and NOPs) may precede i.

At this point, it should be shortly noted that the straightforward implication in-
equality nk +

∑

j∈V \{i,k} xj,k ≥ lbixi,k is also valid, but much weaker than inequal-
ity (3.27) for fractional values of xi,k. In contrast to that, the upper bound version
ni +

∑

j∈V \{i,k} xj,i ≤ (ubk − 1)xi,k is not a valid inequality since it imposes invalid
restrictions in the case that xi,k = 0.

We now want to show that the inequalities are not only valid, but can be used as
additional cutting planes for the integer program presented in Sect. 3.4.7.

Theorem 3.5.3. PISP has fractional vertex solutions that violate inequalities (3.27),
i.e., they are nonredundant.

Proof. We prove the claim constructively by showing that there exists a basic feasible
solution to the linear programming relaxation of the integer program from Sect. 3.4.7
that violates inequality (3.27). This can be done by solving the LP relaxation for
a particular instance while maximizing the left hand side of inequality (3.27) in the
objective function. If an optimum solution to this LP has an objective function
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value larger than the right hand side of (3.27), then it must correspond to a basic
feasible solution that violates the inequality.

Fortunately, the instance that we will use for the proof is small and has a simple
structure. It is shown in Fig. 3.7. Basically, it must only be decided which of the
two orders 2−4−3 and 3−4−2 shall be taken. W.l.o.g., for the proof, we consider
the problem as a pure feasibility problem, assuming the upper bound on the number
of NOPs in the integer program to match the optimum (which is zero). Hence, the
NOP variables are all fixed to zero in advance and the goal of the integer program
is just to show that a feasible solution exists. The corresponding lower and upper
bounds on the issue cycles of the vertices are drawn next to them in Fig. 3.7.

2 3

5

00 1

00 1

4

1 [0, 0]

[1, 3] [1, 3][2, 2]

[4, 4]

Figure 3.7: The instance used for the proofs of Theorem 3.5.3 and Theorem 3.5.8.

Let us consider vertices 2 and 3. Both have a lower bound of one and are candidates
to take the places immediately before or after 4. Any vertex that is a successor
of 4 must be placed at a position larger or equal to three. We choose to consider
the corresponding conditional lower bound inequality (3.27) for vertex 3 with a =
lb4 − lb3 = 2− 1 = 1:

n3 +
∑

j∈V \{3,4}

xj,3 ≥ lb3 + 1x4,3

⇔ n3 + x1,3 + x2,3 + x5,3 ≥ lb3 + x4,3

Replacing variables xj,i with j > i by 1− xi,j, we obtain the inequality n3 + x1,3 +
x2,3 + x3,4 + (1 − x3,5) ≥ 2. The only three linear ordering variables that are not
fixed in advance are x2,3, x2,4, and x3,4. By inserting the already fixed values, we
obtain the inequality x2,3 + x3,4 ≥ 1.

Due to its small size, we may write down the linear program completely in Fig. 3.8,
omitting only the trivial inequalities and the already fixed NOP variables. The right
LP in Fig. 3.8 is the reduced form of the left one after fixing also the known values
of linear ordering variables.

An optimum vertex solution to this LP, that is in particular a basic feasible solution,
is x2,3 = 0, x2,4 = 1

2 , and x3,4 = 1
2 . The corresponding binding inequalities are (1b),

(6b), and (14) and the objective function value is x2,3 + x3,4 = 0 + 1
2 = 1

2 < 1.
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min −1 + x1,3 + x2,3 + x3,4 − x3,5

s.t.
(1a): x1,2 + x2,3 − x1,3 ≤ 1
(2a): x1,2 + x2,4 − x1,4 ≤ 1
(3a): x1,2 + x2,5 − x1,5 ≤ 1
(4a): x1,3 + x3,4 − x1,4 ≤ 1
(5a): x1,4 + x4,5 − x1,5 ≤ 1
(6a): x2,3 + x3,4 − x2,4 ≤ 1
(7a): x2,4 + x4,5 − x2,5 ≤ 1
(8a) x3,4 + x4,5 − x3,5 ≤ 1
(1b): −x1,2 − x2,3 + x1,3 ≤ 0
(2b): −x1,2 − x2,4 + x1,4 ≤ 0
(3b): −x1,2 − x2,5 + x1,5 ≤ 0
(4b): −x1,3 − x3,4 + x1,4 ≤ 0
(5b): −x1,4 − x4,5 + x1,5 ≤ 0
(6b): −x2,3 − x3,4 + x2,4 ≤ 0
(7b): −x2,4 − x4,5 + x2,5 ≤ 0
(8b): −x3,4 − x4,5 + x3,5 ≤ 0
(9): x3,2 − x3,1 + x4,2 − x4,1 ≥ 0
(10): x2,3 − x2,1 + x4,3 − x4,1 ≥ 0
(11): x2,4 − x2,1 + x3,4 − x3,1 ≥ 1
(12): x3,5 − x3,2 + x4,5 − x4,2 ≥ 0
(13): x2,5 − x2,3 + x4,5 − x4,3 ≥ 0
(14): x2,5 − x2,4 + x3,5 − x3,4 ≥ 1

min x2,3 + x3,4

s.t.
x2,3 ≤ 1
x2,4 ≤ 1

0 ≤ 0
x3,4 ≤ 1

0 ≤ 0
x2,3 + x3,4 − x2,4 ≤ 1

x2,4 ≤ 1
x3,4 ≤ 1
−x2,3 ≤ 0
−x2,4 ≤ 0

0 ≤ 0
−x3,4 ≤ 0

0 ≤ 0
−x2,3 − x3,4 + x2,4 ≤ 0

−x2,4 ≤ 0
−x3,4 ≤ 0

−x2,3 − x2,4 ≥ −2
x2,3 − x3,4 ≥ −1
x2,4 + x3,4 ≥ 1
x2,3 + x2,4 ≥ 0
−x2,3 + x3,4 ≥ −1
−x2,4 − x3,4 ≥ −1

Figure 3.8: The linear program without trivial inequalities and NOP variables
(left) and its reduced form after fixing the linear ordering variables (right).

The same LP solution also violates the conditional upper bound constraint (3.28)
for vertex 2 with b = ub2 − ub4 = 3− 2 = 1.

n2 +
∑

j∈V \{2,4}

xj,2 ≤ (ub2 − 1)− 1x2,4

⇔ n2 + x1,2 + x3,2 + x5,2 ≤ (ub2 − 1)− x2,4

⇔ 0 + 1 + (1− x2,3) + 0 ≤ 2− x2,4

⇔ −x2,3 + x2,4
︸ ︷︷ ︸

= 1

2

≤ 0

Theorem 3.5.4. PISP has fractional vertex solutions that violate inequalities (3.28),
i.e., they are nonredundant.

Lower and upper bound inequalities may be strengthened using the concepts from
Sect. 3.4.4. They may be even further strengthened by taking fixed instructions
and Hall intervals into account. For instance, if the conditional position lbi + 1 in
inequalities (3.27) is already known to be attained by another instruction (or by
some indeterminate instruction associated to a Hall interval), then the conditional
lower bound of k for the case xi,k = 1 may be increased to the first cycle not already
occupied.
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3.5.2 Transitivity-driven Conditional Bound Constraints

Constraints similar to the usual conditional bound inequalities can be derived by
considering triples of instructions i, j, k ∈ V , i < j < k, where exactly one of the
three associated precedence decisions is already made. Exploiting that transitivity of
precedence relationships must hold, even stronger logical implications on the bounds
of instructions may be imposed using conditional expressions.

We discuss in detail the case where i ≺ j (xi,j = 1) is the only decided relation.
The transitivity of precedence relations (the corresponding three-dicycle inequalities)
w.r.t. i, j, and k would then be violated if and only if xj,k = 1 and xi,k = 0 at the
same time.

By assuming, e.g., xi,k = 0, we can therefore conclude that xj,k has to be zero in
any feasible schedule, too. The corresponding order is π(k) < π(i) < π(j) so that,
in this case, the position of j must be at least lbk + 2 (while lbj ≥ lbi + 1 already
holds since i ≺ j is already decided). If this imposes a new constraint on j, i.e.,
lbk + 2 > lbj , then an inequality of the form

nj +
∑

a∈V \{j}

xa,j ≥ lbj + (lbk + 2− lbj)xk,i (3.29)

can be added to the problem. A remarkable property of this construction is that
the conditional variable xk,i is not related to j. Hence, the inequality imposes
restrictions on the position of j from decisions made on the relative order of two
other instructions. Another valid implication (where this property does not hold
anymore) is that k must be placed at position ubj−2 the latest if xi,k = 0 (xk,i = 1).
This leads to the following inequality:

nk +
∑

a∈V \{i,k}

xa,k ≤ (ubk − 1)− (ubk − (ubj − 1))xk,i (3.30)

While the correctness of constraint (3.29) is easy to verify since it is constructed
very similarly to constraint (3.27), the case of constraint (3.30) needs some formal
explanation.

Theorem 3.5.5. Inequalities (3.30) are valid for PISP .

Proof. If xk,i = 0, the constraint shall not be more restrictive than the usual upper
bound constraint for k. In this case, i is a predecessor of k that is not counted on
the left hand side, so we may enforce only at most ubk − 1 other predecessors.

In the other case that xk,i = 1, i is not a predecessor of k and the position of k
shall be smaller or equal to ubj − 2. Hence, it is correct to limit the number of
predecessors from V \{i, k} (and preceding NOPs) by (ubk−1)− (ubk− (ubj−1)) =
ubk − 1− ubk + ubj − 1 = ubj − 2.

Similar constructions can be done by assuming xj,k = 1. We then know that xi,k
must also be equal to one to not violate transitivity conditions. The corresponding
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order is π(i) < π(j) < π(k) so that i must be positioned at cycle ubk − 2 the latest.
If ubk − 2 < ubi, then we may add an inequality of the form

ni +
∑

a∈V \{i}

xa,i ≤ ubi − (ubi − (ubk − 2))xj,k (3.31)

to the problem. Since the variable xj,k is unrelated to i, it is not necessary to
alter the right hand side like in the case of inequalities (3.30). However, it is again
necessary when considering the opposite implication. The position of k must be
greater or equal to lbi + 2 because xj,k = 1 means that j is a predecessor of k that
is not counted on the left hand side. Hence, the corresponding inequality is:

nk +
∑

a∈V \{j,k}

xa,k ≥ lbk + (lbi + 2− lbk − 1)xj,k (3.32)

Table 3.1 lists the complete set of possible implications when exactly one of the
three precedence decisions associated to the triple i, j, k ∈ V , i < j < k, is known
in advance. Since there are only six possible orders of the three vertices, half of
listed cases are redundant and need not be considered explicitly. We discussed
only the cases for xi,j = 1 in detail since the others can be derived analogously.
Strengthenings of the presented inequalities are possible in the same way as discussed
for the usual conditional bound constraints.

decided assumed implied order conditional restrictions
xi,j = 1 xi,k = 0 xj,k = 0 π(k) < π(i) < π(j) σ(j) ≥ lbk + 2 and σ(k) ≤ ubj − 2
xi,j = 1 xj,k = 1 xi,k = 1 π(i) < π(j) < π(k) σ(i) ≤ ubk − 2 and σ(k) ≥ lbi + 2
xi,j = 0 xi,k = 1 xj,k = 1 π(j) < π(i) < π(k) σ(j) ≤ ubk − 2 and σ(k) ≥ lbj + 2
xi,j = 0 xj,k = 0 xi,k = 0 π(k) < π(j) < π(i) σ(i) ≥ lbk + 2 and σ(k) ≤ ubi − 2
xj,k = 1 xi,k = 0 xi,j = 0 π(j) < π(k) < π(i) σ(j) ≤ ubi − 2 and σ(i) ≥ lbj + 2
xj,k = 1 xi,j = 1 xi,k = 1 π(i) < π(j) < π(k) σ(k) ≥ lbi + 2 and σ(i) ≤ ubk − 2
xj,k = 0 xi,k = 1 xi,j = 1 π(i) < π(k) < π(j) σ(j) ≥ lbi + 2 and σ(i) ≤ ubj − 2
xj,k = 0 xi,j = 0 xi,k = 0 π(k) < π(j) < π(i) σ(k) ≤ ubi − 2 and σ(i) ≥ lbk + 2
xi,k = 1 xj,k = 0 xi,j = 1 π(i) < π(k) < π(j) σ(i) ≤ ubj − 2 and σ(j) ≥ lbi + 2
xi,k = 1 xi,j = 0 xj,k = 1 π(j) < π(i) < π(k) σ(k) ≥ lbj + 2 and σ(j) ≤ ubk − 2
xi,k = 0 xi,j = 1 xj,k = 0 π(k) < π(i) < π(j) σ(k) ≤ ubj − 2 and σ(j) ≥ lbk + 2
xi,k = 0 xj,k = 1 xi,j = 0 π(j) < π(k) < π(i) σ(i) ≥ lbj + 2 and σ(j) ≤ ubi − 2

Table 3.1: The conditional restrictions that can be obtained from considering
different combinations of fixed, assumed, and implied precedence relationships.

3.5.3 Conditional NOP Constraints

Inequalities with a conditional character can also be applied w.r.t. NOPs. Let i, k ∈ I
be two independent instructions such that the lower bound on the number of NOPs
before i, N lb

i , is strictly larger than the corresponding lower bound N lb
k of k.

The inequalities

nk ≥ N lb
k + (N lb

i −N lb
k )xi,k for all i, k ∈ V, i ‖ k,N lb

i > N lb
k (3.33)
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are valid for PISP because, if xi,k = 1, then k is a successor of i and must have at
least as many preceding NOPs as i, and, if xi,k = 0, then an inequality of this form
is no more restrictive than the usual variable lower bound associated to nk.

In addition to that, the big-M notation used in the constraints (3.25) and (3.26)
allows for situations where these constraints may be violated. Let us consider in-
equalities (3.25) written as

nk ≥ ni −Mi(1− xi,k) for all i, k ∈ V, i ‖ k

and assume that xi,k takes some fractional value. Then, for Mi > 0, there will
be some positive amount x = Mi(1 − xi,k) subtracted from the value of ni on the
right hand side while there will be a positive amount y = (N lb

i −N lb
k )xi,k added to

N lb
k on the right hand side of inequalities (3.33). In particular, in any case where

ni − x < N lb
k + y, inequalities (3.33) impose a stronger lower bound on the value

of variable nk. To construct a simple example where a solution that is binding
w.r.t. the big-M constraints is violated by inequalities (3.33), assume further that
ni = N lb

i . Then

ni −Mi(1− xi,k) < N lb
k + (N lb

i −N lb
k )xi,k

⇔ N lb
i −Mi + Mixi,k < N lb

k + (N lb
i −N lb

k )xi,k

⇔ N lb
k + (N lb

i −N lb
k )−Mi + Mixi,k < N lb

k + (N lb
i −N lb

k )− ((N lb
i −N lb

k )(1 − xi,k))

⇔ −Mi + Mixi,k < −(N lb
i −N lb

k ) + (N lb
i −N lb

k )xi,k

holds for any Mi such that Mi > (N lb
i −N lb

k ). This is the usual case in practice since
Mi must be chosen such that it is larger than or equal to Nub

i −N
lb
k (cf. Sect. 3.4.7). A

weakness of inequalities (3.33) is however that they are only helpful in the presence
of LP solutions where the variables ni and nk take values that are close to their
lower bounds.

A symmetric version for NOP upper bounds may be formulated as well:

ni ≤ Nub
i − (Nub

i −Nub
k )xi,k for all i, k ∈ V, i ‖ k,Nub

k < Nub
i (3.34)

3.5.4 Gap Filling cuts

The following inequalities target the frequent cases where an instruction i ∈ I has a
lower bound on its issue cycle but the set of instructions that will ‘fill’ these preceding
cycles is not completely determined. More formally, we consider instructions i ∈ I
with issue cycle lower bound lbi and an upper bound on the number of preceding
NOPs Nub

i such that |P ∗(i)| + Nub
i < lbi. Let g be the corresponding lower bound

gap, i.e., g = lbi − (|P ∗(i)|+ Nub
i ).

By a similar argument as discussed in Sect. 3.4.4, there must be at least g instructions
j currently independent from i that have a lower bound lbj < lbi. Let I< be the set
of such instructions, i.e., I< = {j ∈ I | j ‖ i and lbj < lbi} (cf. Fig. 3.9). We now
change the perspective to the view that each candidate instruction p ∈ I< has on
all the other candidate instructions. The idea is to impose a constraint on each of
these instructions p ∈ I< based on the following simple observation.
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lbi0

︷ ︸︸ ︷

I<

︷ ︸︸ ︷
g|P ∗(i)|+Nub

i

i

Figure 3.9: Illustration of the lower bound gap resulting as the difference between
lbi and the number of known predecessors |P ∗(i)| plus an upper bound on the number
of preceding NOPs Nub

i of i. The predecessors and NOPs need not necessarily be
densely scheduled at the beginning although shown like this in the depicted example.

Observation 3.5.6. Let i ∈ I be an instruction with lower bound gap g > 0 and
let I< = {j ∈ I | j ‖ i and lbj < lbi}. An instruction p ∈ I< must be a gap-filling
instruction (i.e., must attain a position ≤ lbi − 1) if there are strictly less than g
other predecessors of i from the set I< \ {p}.

In other words, we may potentially strengthen the upper bound of each p ∈ I< by
comparing the number of i’s predecessors from the set I< \ {p} with the number g
of necessary ones. Whenever i has less than g predecessors from I< \ {p} closing its
gap, we can conclude that p is needed to close it. This implication works only in this
direction since p may still be gap-filling if i has g or more other predecessors from
I< \ {p}, namely whenever i attains a position strictly later than lbi. Nonetheless,
the observation can be used to construct a very effective separation scheme since we
may exploit that, in any feasible solution and independently from p, i must have
at least g − 1 predecessors from the set I< \ {p}. Let up = ubp − (lbi − 1) be the
individual gap between the original upper bound of p and the upper bound attained
if p was one of the instructions to fill the gap before lbi. Then we may formulate
the following special upper bound constraint for p:

np +
∑

j∈I\{p}

xj,p ≤ ubp − gup + up

(∑

j∈I<\{p}

xj,i

)

(3.35)

Theorem 3.5.7. Inequalities (3.35) are valid for PISP .

Proof. We observe first that inequality (3.35) is equivalent to the usual upper bound
constraint for p if

∑

j∈I<\{p} xj,i = g. In this case, i has exactly g and therefore
sufficient predecessors from the set I<\{p} in order to fill the lower bound gap. Thus,
no stronger than its usual upper bound may be imposed on p. If

∑

j∈I<\{p} xj,i > g,
then i has even more than g predecessors from the set I< \ {p}, i.e., more than
necessary to fill the gap. In this case, constraint (3.35) is dominated by p’s usual
upper bound constraint.

The remaining and interesting case is that
∑

j∈I<\{p} xj,i < g, i.e., there are strictly
less than g predecessors from the set I<\{p}. Then p must be one of the predecessors
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of i responsible to close the lower bound gap. However, since we know that at least
g predecessors from I< must exist, we also know that at least g − 1 predecessors
from I< \ {p} must exist in any valid schedule. Hence, for each feasible solution, it
holds that g −

∑

j∈I<\{p} xj,i ≤ 1 so that at most up is subtracted from p’s usual
lower bound ubp. By construction, ubp − up = lbi − 1 as intended.

The beneficial property of this construction is that, while we exploit that g −
∑

j∈I<\{p} xj,i ≤ 1 holds for any integer feasible solution, LP solutions may have
a difference strictly larger than one in general. The higher the infeasibility of an LP
solution is w.r.t. this relation, the stronger will be the reduction of p’s upper bound,
such that these solutions will frequently be cut off by the inequality. But even for
fractional solutions where 0 < g −

∑

j∈I<\{p} xj,i ≤ 1 holds, the inequality will lead
to a (potentially scaled) reduction of p’s upper bound.

We now want to substantiate more formally that the inequalities are not only valid,
but can indeed be violated by fractional solutions that satisfy all the other inequal-
ities of the integer program presented in Sect. 3.4.7.

Theorem 3.5.8. PISP has fractional vertex solutions that violate inequalities (3.35),
i.e., they are nonredundant.

Proof. The claim can be proved using the same strategy and instance as for the
nonredundancy proof of inequalities (3.27) from Sect. 3.5.1.

Vertex 4 in Fig. 3.7 has a lower bound of two and a lower bound gap g of one
since its only decided predecessor is vertex 1 and no NOPs can precede it. The
corresponding set I< consists of the vertices {2, 3}. For both 2 and 3, the gap up
is equal to 3 − (2 − 1) = 2. We choose vertex 3 as our p ∈ I<. The corresponding
inequality (3.35) for 3 is

n3 +
∑

j∈I\{3}

xj,3 − u3x2,4 ≤ ub3 − gu3

⇔ n3 + x1,3 + x2,3 + x4,3 + x5,3 − 2x2,4 ≤ 3− 1(2)

⇔ n3 + x1,3 + x2,3 + (1− x3,4) + (1− x3,5)− 2x2,4 ≤ 1

⇔ n3 + x1,3 + x2,3 − x3,4 − x3,5 − 2x2,4 ≤ −1

Inserting the already fixed values, and inverting the inequality to consider it as a
minimization objective, we obtain −1− x2,3 + x3,4 + 2x2,4 ≥ 0.

Taking a close look at the reduced linear program in the right of Fig. 3.8, one can
see that the value assignments x2,3 = 1, x2,4 = 1

2 , and x3,4 = 1
2 yield another basic

feasible solution with binding inequalities (1a), (6a), and (14). The corresponding
objective function value is −1−x2,3 +x3,4 +2x2,4 = −1−1+ 1

2 +2 · 12 = −1
2 < 0.

We employ the LP solution from the proof to highlight some central aspects of this
inequality and to give a more intuitive description of its semantics. In the associated
instance, vertex 4 has a lower bound gap g = 1. The two candidates 2 and 3 that
make up the set I< have both upper bound three. However, if one of them is used to
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close the lower bound gap of vertex 4, then it must attain position one (in general,
a position smaller than or equal to one). The inequality for vertex 3 now states that
it must be a gap-filling instruction (i.e., have its upper bound decreased to one) if
less than one other vertex from I< is a predecessor of vertex 4. In this instance,
the other vertex can only be the vertex 2. So suppose there is one predecessor from
I< \{3} (x2,4 = 1). Then vertex 3 is not necessarily needed to close the lower bound
gap of vertex 4 and so its upper bound may not be altered. The right hand side of
inequality (3.35) will then remain equal to three. However, if there is no predecessor
(x2,4 = 0), then vertex 3 itself must be responsible to close the gap. Hence, its upper
bound is decreased to 3 − 2(1) + 2x2,4 = 3 − 2 + 0 = 1. The optimal LP solution
in the proof places vertex 3 at position 2.5. The inequality however forces an upper
bound of 3 − 2(1) + 2x2,4 = 3− 2 + 1 = 2. For this example, adding the inequality
led the simplex algorithm to an integral solution with order 1− 2− 4− 3− 5 when
resolving the associated LP. Hence, to satisfy the inequality, x2,4 was increased to
one which in turn allows to place vertex 3 at position three again.

Theorem 3.5.9. The polytope obtained when adding inequalities (3.27) and inequal-
ities (3.28) to PISP has fractional vertex solutions that violate inequalities (3.35).
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Figure 3.10: The instance used for the proof of Theorem 3.5.9.

Proof. To prove Theorem 3.5.9, it is necessary to show the existence of a basic fea-
sible solution to the linear programming relaxation that violates inequalities (3.35)
but satisfies all inequalities (3.27) and inequalities (3.28). Such a situation is not
easy to find for instances as small as the one used in the previous nonredundancy
proof. A relatively small instance that could be retrieved investing reasonable time
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has 13 vertices and can also be scheduled optimally without NOPs. Its size permits
to print the instance in Fig. 3.10, however, even the corresponding reduced LP (after
removing fixed variables) has too many constraints to be completely displayed in a
sensible way. We therefore refrain from that but, for the sake of reproducibility, give
the LP values of all nonfixed variables and the corresponding binding inequalities
in Fig. 3.11. We select vertex 8 as our target for the inequality. Vertices 8 and 9
together build up the set I< of vertex 10 that has a lower bound gap of one. Further,
vertex 8 has u8 = ub8 − (lb10 − 1) = 10 − 7 = 3. Therefore inequality (3.35) for
vertex 8 is:

n8 +
∑

j∈I\{8}

xj,8 − u8

(∑

j∈I<\{8}

xj,10

)

≤ ub8 − gu8

Replacing again all variables xj,i with j > i by 1−xi,j, plugging in all known values
and fixed variables, and multiplying the inequality with −1, we obtain:

−x7,8 + x8,9 + x8,10 + x8,11 + x8,12 + 3x9,10 ≥ 3

In the basic feasible solution shown in Fig. 3.11, the left hand side of this inequality
is only 2.5 and, therefore, the inequality is violated.

x2,3 = 1
x2,4 = 1
x2,5 = 1
x3,4 = 0
x3,5 = 0
x3,6 = 1
x7,8 = 1
x7,9 = 1
x8,9 = 1

2
x8,10 = 1

2
x8,11 = 1

2
x8,12 = 1

2
x9,10 = 1

2
x10,12 = 1
x11,12 = 1

2

−x2,3 − x2,4 − x2,5 ≥ −3
x8,11 + x8,12 ≥ 1
x8,10 + x9,10 ≥ 1

x8,10 + x9,10 − x10,12 ≥ 0
x2,3 + x2,4 + x2,5 − x7,8 − x7,9 ≥ 1

−x2,3 + x3,4 + x3,5 + x3,6 + x7,8 − x8,9 − x8,10 − x8,11 − x8,12 ≥ −1
−x2,4 + x2,5 − x3,4 + x3,5 ≥ 0

−x2,5 − x3,5 + x7,9 + x8,9 − x9,10 ≥ 0
−x3,6 − x7,8 − x7,9 ≥ −3

−x3,6 + x8,11 − x11,12 ≥ −1
x7,8 + x7,9 + x8,10 + x9,10 − x10,12 ≥ 2

x8,11 + x8,12 ≥ 1
x8,10 − x8,12 + x10,12 ≤ 1

x8,9 − x8,11 ≤ 0
x8,10 − x8,11 ≤ 0

Figure 3.11: A basic feasible solution characterized by its associated LP values
(left) and binding inequalities (right).

A straightforward separation procedure for these constraints can be implemented to
have an asymptotic running time of O(|I|2). For each instruction, the set of candi-
date independent instructions I< needs to be determined which takes O(|I|) time in
the worst case. However, it is possible to derive the value X =

∑

j∈I<
xj,i during the

same run. Now, for each candidate instruction p ∈ I< considered, computing the
value up(

∑

j∈I<\{p} xj,i) is possible in O(1) time since this is simply up(X − xp,i).
Having summed up

∑

j∈I\{p} xj,p +np for each p in a preprocessing step (which can

clearly be done in time O(|I|2)), violation of the inequality can be tested by a simple
comparison.
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The inequalities (3.35) may even be slightly strengthened and the separation pro-
cedure can be improved to potentially find more violations. So far, the property
to be a predecessor (successor) of i is used as a certificate for instructions to be
(not) gap-filling. However, there are other possible certificates. For instance, an
instruction p is also proven (not) to be gap-filling if p is a predecessor (successor)
of any other instruction that has a lower bound greater than or equal to lbi. Let
L = {r ∈ I | lbr ≥ lbi}. Then we may determine, for each j ∈ I< \ {p}, the minimal
xj,r such that r ∈ L and sum up over all these values instead of just over all xj,i.

An analogous version of the constraint can be formulated and separated for upper
bound gaps of an instruction i. In this case, potential successor candidates I> of
i are determined and any s ∈ I> must have its lower bound increased to ubi + 1
if not enough other potential successors are in fact successors of i. The associated
inequality is as follows:

ns +
∑

j∈I\{s}

xj,s ≥ lbs + gls − ls

(∑

j∈I>\{s}

xi,j

)

(3.36)

3.5.5 Interval Filling Cuts

A similar construction as presented in Sect. 3.5.4 can be established also for intervals.
Basically, this is a generalization since the whole concept can be applied as soon as
there is a certain range of cycles where

• it is known how many instructions must be in it (or there is at least a good
lower bound on this number),

• and there is some useful certificate that characterizes instructions placed or
not placed in these cycles and that can be expressed by the variables at hand.

Let us consider an interval [a, b], a < b, of clock cycles. Like in Sect. 2.4.3.3, we
are interested in the sets I∗(a, b) = {i ∈ I | lbi ≥ a and ubi ≤ b} of mandatory and
I(a, b) = {i ∈ I | lbi ≤ b and ubi ≥ a} of potential instructions placed in [a, b].

We know that [a, b] comprises k = b − a + 1 clock cycles. Suppose that we have
an upper bound Nub on the number of NOPs that could be potentially placed in
[a, b]. Then k′ = k −Nub is a lower bound on the number of instructions that must
be placed in [a, b]. Assume further that |I∗(a, b)| < k′, i.e., the set of instructions
that must fill the k′ cycles is not entirely known. Consider now the set I(a, b). By
a similar argument as in Sect. 3.5.4, an instruction i ∈ I(a, b) must be one of the
k′ interval-filling instructions if less than k′ other instructions from I(a, b) \ {i} are
interval-filling. Let ubi > b for some i ∈ I(a, b) and ui = ubi − b be the difference or
gap between the upper bound of i and b. Similarly, for some i ∈ I(a, b) with lbi > a,
let li = lbi − a be the difference or gap between the lower bound of i and a. We
can strengthen the upper (lower) bound of i to b (a) whenever strictly less than k′

instructions from I(a, b)\{i} are in [a, b]. So if ib is an instruction with upper bound
b and ia an instruction with lower bound a, then the following inequalities are valid
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for each instruction i ∈ I(a, b) \ {ia, ib}:

ni +
∑

j∈I\{i}

xj,i ≤ ubi + ui(|I(a, b)| − k′ − 1)− ui

(∑

j∈I(a,b)\{i,ib}

xib,j +
∑

j∈I(a,b)\{i,ia}

xj,ia

)

(3.37)

ni +
∑

j∈I\{i}

xj,i ≥ lbi − li(|I(a, b)| − k′ − 1) + li

(∑

j∈I(a,b)\{i,ib}

xib,j +
∑

j∈I(a,b)\{i,ia}

xj,ia

)

(3.38)

The inequalities have the same character as the gap filling cuts, except that the way
of counting is reversed. Instead of counting the instructions from I(a, b) \ {i} that
are in [a, b], we count those that are not in [a, b]. So in inequality (3.37), we first add
ui(|I(a, b)|−k′−1) to i’s upper bound because a reduction of the upper bound shall
take place only if strictly less than k′ instructions from I(a, b)\{i} are in [a, b] which is
equivalent to the condition that strictly more than |I(a, b)\{i}|−k′ = |I(a, b)|−k′−1
instructions are not in [a, b]. The construction for inequality (3.38) is analogous. The
reversed way of counting simplifies to highlight that we can use two certificates for
an instruction to be not interval-filling at a time, potentially improving the impact of
the inequalities for fractional LP solutions. Each instruction i ∈ I(a, b) is certainly
not contributing to the k′ necessary instructions if it is either a successor of any
instruction ib with lbi ≥ b or a predecessor of any instruction ia with ubi ≤ a. It is
feasible to sum up both xj,ia and xib,j for a particular j ∈ I(a, b) \{i, ia, ib} because,
in any feasible solution, j cannot be before ia and after ib at the same time.

Using the same strengthening principle as in Sect. 3.5.4, the inequalities and also
the separation procedure may be improved by selecting, for each j ∈ I(a, b), the
maximal xib,j (xj,ia) of all instructions ib 6= i, j with upper bound b (ia 6= i, j with
lower bound a).

Again, we consider a small example to show the benefits of these constructions.
Consider a concrete interval [52, 65] with k = 14. Suppose that at most two NOPs
might be in [52, 65], so that at least k′ = 12 instructions must be placed in the
interval. Further, suppose that |I(52, 65)| = 20, and that there is an instruction
i ∈ I(52, 65) with scheduling range [lbi, 67], i.e., ui = 2. Now, let us take a look at
the right hand side of constraint (3.37) for i. Inserting all the known values of this
example, the right hand side limits the number of predecessors of i to 67 + 2(20 −
12 − 1) − 2(X) where X is equal to a number of instructions from I(52, 65) \ {i}
being definitely outside the interval. Twelve of the 20 instructions in I(52, 65) must
be in the interval, hence at most eight might be out of the interval. For X ≤ 7, it
would therefore be feasible for i to be outside the interval and the right hand side of
the constraint would then be greater than or equal to 67 = ubi. For X = 8, we know
that i must be one of the interval vertices. The right hand side of the constraint is
then 65 as intended. For any (infeasible) configuration where X > 8, the constraint
imposes an even stronger restriction on the upper bound of i which often cuts off
the respective solutions. In particular, this example is taken from a real instance
and LP solution such that the left hand side of constraint (3.37) for i was 65 while
there were nine predecessors of ia from I(62, 65) \ {i}. This infeasible solution is,
though i is already scheduled within [52, 65], cut off by the inequality since its right
hand side is only 63.
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3.5.6 Predecessor / Successor Set Constraints

The distance inequalities that implement the lower and upper bound constraints
impose a good restriction on the number of potential predecessors and successors of
an instruction. If they are strengthened using the concepts from Sect. 3.4.4, they
also well restrict the sets of candidate instructions responsible to establish the lower
and upper bounds. However, sometimes it may be beneficial to enforce a certain
bound on the number of predecessors or successors out of a given particular set of
instructions. In a very general fashion with particular predecessor sets P ⊆ P ∗(i)
and successor sets S ⊆ S∗(i), such upper bounding (lower bounding with ‘≥’ instead
of ‘≤’) constraints can be formulated for an instruction i ∈ I as follows:

∑

j∈P

xj,i ≤ k

∑

j∈S

xi,j ≤ k

Lemma 2.4.18 in Sect. 2.4.5.2 provides an example to straightforwardly construct
such inequalities.

3.5.7 Superiority Inequalities

By a superiority inequality we mean a very simple constraint of the form xc,d ≥ xa,b
for some a, b, c, d ∈ V , a 6= b and c 6= d, that has the interpretation xc,d = 1
whenever xa,b = 1, and xa,b = 0 whenever xc,d = 0. In general, the impact of such
inequalities is rather weak. However, if one succeeds in linking rather unrelated
variables due to logical implications, these constraints might help to find solutions
or detect infeasibility more quickly. A practical example where this may be applied
is given subsequently.

3.5.7.1 Superiority Inequalities for Overlapping Intervals

The following idea is strongly related to the one presented in Sect. 2.4.5.1. There,
we were able to derive new precedences from a particular case of overlapping inter-
vals. Here, making weaker assumptions about the relations between the involved
instructions, we are at least able to derive a superiority relationship.

Theorem 3.5.10. Let u, v ∈ V such that lbu ≥ ubv−1. Let i ∈ V be an instruction
that is independent from u and v. Then it holds that i is a successor of v whenever
i is a successor of u, and that i is a predecessor of u whenever i is a predecessor of
v, i.e., xv,i ≥ xu,i.

Proof. The only case where u can precede v is if the above relation holds with
equality and u attains its lower bound position while v attains its upper bound
position. In all other cases, u must be a successor of v and then it is clear that, if i
succeeds u, it must also succeed v and that, if i precedes v, it must also precede u.
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Coming back to the first case: Suppose that i succeeds u. Then the position of i is
at least lbu + 1 ≥ ubv. As a consequence, i must succeed also v. Finally, suppose
that i precedes v. Then the position of i is at most ubv − 1. Hence, i must also
precede u whose position is at least ubv − 1.

3.5.8 Variable Equality Constraints

A variable equality constraint is literally a constraint that enforces the equality of
two linear ordering variables, i.e., xc,d = xa,b for some a, b, c, d ∈ V , a 6= b and c 6= d.

Being very simple, these constraints can have very different modeling semantics
besides their intuitive interpretation. For example, they can be used to model an
exclusive-or relation. So if an expression like xa,b+xc,d = 1 shall be formulated, then
this is equivalent to enforcing xa,b = xd,c. This can be easily proven by applying the
projection relation xc,d = 1− xd,c. Again, we give a practical application.

3.5.8.1 Hall Interval-based Variable Equality Constraints

In Sect. 2.4.5.2, we already made the observation that, for any Hall interval [a, b]
with instruction set I∗(a, b), any instruction j ∈ I \ I∗(a, b) that is a predecessor
(successor) of any instruction i ∈ I∗(a, b) must be a predecessor (successor) of all
the instructions in the set I∗(a, b). Each such predecessor (successor) instruction j
therefore has ubj < a (lbj > b).

Sometimes, we may find instructions j ∈ I \I∗(a, b) being neither a predecessor nor a
successor of any of the instructions in I∗(a, b). It must then hold that [a, b] ⊂ [lbj , ubj ]
since otherwise we could decide which side of [a, b] is the right one for j. In this
case, we can still enforce that j must be either before or after all the instructions
I∗(a, b) by adding the constraints:

xj,u = xj,v for all u, v ∈ I∗(a, b), u 6= v

3.5.9 NOP Difference Constraints

Like for the usual distance constraints, we are sometimes in the situation that we
can derive a minimum, maximum or even exact difference between the number
of NOPs before two dependent instructions i and k. For example, by carefully
building the normal distance constraints using the strengthening principles presented
in Sect. 3.4.4, we may find out that the distance di,k can be covered by at most bubi,k,

bubi,k < di,k, instructions and that therefore at least N lb
i,k = di,k − bubi,k NOPs are

necessary between the two. If all the bubi,k instructions are already decided to be
successors of i and predecessors of k, then the usual distance constraint reduces to
a minimum NOP difference constraint nk − ni ≥ N lb

i,k.

More interesting is the case where the number of instructions known to be fixed
between i and k, blbi,k, is large so that (ubk − lbi − 1) − blbi,k < Nub

k − N lb
i . Then,

the lower bound blbi,k allows to derive a better upper bound on the number of NOPs
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between i and k as is given by the NOP variable upper and lower bounds. While we
cannot improve the variable bounds since we do not know whether N lb

i needs to be
increased or Nub

k needs to be decreased, we may add the inequality nk − ni ≤ Nub
i,k

with Nub
i,k = (ubk − lbi − 1)− blbi,k.

An example where we may apply an exact NOP difference inequality of the form
nk − ni = Ni,k can be obtained in the same fashion as with the variable equality
constraint for Hall intervals following Sect. 3.5.8.1. Since we know for any Hall
interval [a, b] that it is completely filled with instructions, we also know that there can
be no NOP contained in [a, b]. Hence, the number of NOPs preceding or succeeding
any pair of instructions i, j contained in [a, b] must be equal. Again, we do not
necessarily know how many NOPs this will be, but at least, we can make sure that
the values are always equal by adding the inequality.

3.6 The Branch-and-Cut Implementation

3.6.1 Formulation as a Feasibility Problem

In Sect. 2.4, we addressed the fact that upper bounds on the issue cycles of instruc-
tions are strongly related to the global upper bound Mub on the makespan. We
already discussed that we may therefore consider any M in the range [Mlb,Mub] in
order to obtain the corresponding issue cycle upper bounds ubMi = M − di,e − 1
that need to be respected if a schedule of length M shall be realized. A crucial
observation is that new precedences i ≺ j can be obtained as soon as ubMi ≤ lbj
holds for some particular M . These precedences may in turn lead to additional issue
cycle bound improvements and thus to further precedences. So if ubMi and ubM+1

i

are the final upper bounds on the issue cycle of instruction i (after propagating all
transitive precedences and bound information) for assumed schedule lengths M and
M +1 respectively, then it is possible that the difference ubM+1

i −ubMi is larger than
one. Hence, conceptually fixing the current lower bound schedule length and effec-
tively turning the optimization problem into a (series of) feasibility problem(s) can
be very profitable w.r.t. search space reductions and in either finding a schedule of
the current length or proving that none exists. Nevertheless, the objective function
is not obsolete and can be used to steer the optimization process towards good or
even optimal solutions. For instance, it can be observed that schedules being one or
two cycles better than the currently best known one usually do not deviate too much
from each other. Rather, there are some key instructions moved in their position
such that one or more NOPs can be saved. Let σ be the best known schedule so far
and let σ(i) be the position of i ∈ V . In the solver implementation, the linear order-
ing variable xi,j is assigned the cost coefficient ci,j = σ(i)− σ(j) (the NOP variable
coefficients are zero). The corresponding objective function (to be minimized) has
the following properties:

• The coefficients are strictly negative if j succeeds i in σ. Hence, setting xi,j = 1
and therefore placing j after i again will be rewarded by the objective function.
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• The coefficients are strictly positive in the opposite case and with the same
effects.

• The reward depends on how far the two instructions were placed apart before.
In particular, a large distance between two instructions is considered as a
stronger suggestion to keep the order of the two as before.

• No linear ordering variable will have a zero coefficient since no two instructions
can have the same position in σ.

The last property is important in the following sense. While the three-dicycle in-
equalities suffice in order to guarantee a permutation as soon as the solution to the
linear program is integral, they are - in general - quite weak when it comes to en-
forcing integrality. This means that, in practice, solutions to a linear program will
very frequently satisfy all three-dicycle inequalities but be fractional though. Al-
ready for n = 6, the LP relaxation of the projected linear ordering formulation from
Sect. 3.2.3 has 844 basic solutions with fractional variables (of 1560 in total) while
a minimal complete description of P 6

LO has only 720 vertices at all (these numbers
have partially been obtained using Polymake [GJ00]). An objective function where
many variables have zero or, more generally, equal cost coefficients adds symmetry
to the problem and will potentially lead to more fractional variables in solutions that
are optimal w.r.t. this objective function. As an illustrating example, consider the
three-dicycle inequalities xi,j + xj,k − xi,k ≥ 0. If the objective function coefficients
of the three variables are all zero, then, e.g., a binding solution xi,j = xj,k = 1

3 ,
xi,k = 2

3 is equally good as the integral binding solution xi,j = xi,k = 1, xj,k = 0.
So while we cannot guarantee that a nonsymmetric objective function will prefer
integral basic feasible solutions, we can at least avoid the superfluous equivalence of
fractional and integral solutions in terms of their objective function value.

3.6.2 Branching Rules

Several branching rules that were believed to be promising, especially to make ‘the
right’ decisions in order to either find good schedules quickly or prove infeasibility of
the currently assumed schedule length, were implemented. However, despite the fact
that some ideas worked well on some particular instances, none of them proved to be
superior on all instances. In essence, we found that a standard branching rule that
selects variables with LP values close to one half can be outperformed only seldom.
In the final implementation, this branching rule is applied at all subproblems with
depth level less than five. After that, we first try to apply the following rules in the
order of their presentation. If no variable can be found by them, we fall back to the
standard rule again.

3.6.2.1 Branching on Critical NOP Variables

Sometimes it may happen that a certain instruction satisfies its lower bound position
only due to a fraction of NOPs. That is, we are interested in NOP variables ni such
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that
∑

j∈V \{i} xj,i + ni ≥ lbi, but
∑

j∈V \{i} xj,i + ⌊ni⌋ < lbi. If an LP solution
comprises at least one such variable ni, we select the one that causes the largest
violation of the corresponding lbi when it is reduced to ⌊ni⌋. In the first created
subproblem, the upper bound on the variable will be set to ⌊ni⌋ in the hope that it
quickly proves infeasible. In the other one, the lower bound of ni will be set to ⌈ni⌉.

3.6.2.2 Branching on Contradictory Positions

This branching rule deals with all pairs of instructions i, k ∈ V, i 6= k, such that,
considering only the linear ordering variables, i precedes k, but considering also
the NOP variables, i succeeds k in total. In other words, we look for linear order-
ing variables xi,k such that

∑

j∈V,j 6=i xj,i <
∑

j∈V,j 6=k xj,k, but ni +
∑

j∈V,j 6=i xj,i >
nk +

∑

j∈V,j 6=k xj,k. Such a scenario is possible due to the big-M constraints (3.25)
and (3.26). Among all variables satisfying the displayed conditions, we select the
one that has its LP value closest to one half.

3.6.2.3 Branching on Equal Positions

Here, we relax the condition of the previous rule to also consider variables whose
two involved instructions obtain the same position, i.e., ni +

∑

j∈V,j 6=i xj,i = nk +
∑

j∈V,j 6=k xj,k.

3.6.2.4 Branching on Illegal Positions

This is another relaxation. We consider all instruction pairs i, k ∈ V, i 6= k, that have
a contradictory LP value assignment such that

∑

j∈V,j 6=i xj,i <
∑

j∈V,j 6=k xj,k, but
ni ≥ nk (although this neither leads to equal nor contradictory positions in total).

3.6.3 Propagation at Subproblems

Whenever a linear ordering variable is set during the branch-and-bound procedure,
the corresponding decision induces a new precedence in each of the two resulting
subproblems. Before the first LP is solved, we propagate the transitive precedences
and distance updates that result from the set branching variable. The resulting new
distance constraints are added to the LP and those that have become redundant
are removed. In addition, some of the preprocessing steps described in Sect. 2.4
are carried out in order to potentially further improve on the data or to detect
infeasibility of the subproblem.

3.6.4 A Primal Heuristic Based on List Scheduling

In most of the cases, the solved LPs will have either fractional variables or violated
three-dicycle constraints, or both, i.e., the solution is not feasible for the integer
program. In any of these cases, we apply primal heuristics that construct feasible
schedules by employing the current LP solution at hand in order to make decisions.
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More precisely, two forward and two backward list schedules are constructed as fol-
lows. The first forward and backward list schedules obey precedences and latencies
from the initial dependency DAG. The second ones obey all precedences and dis-
tances known in the current subproblem. The priority of each instruction is its
distance to the artificial super sink (backward: super source) in terms of the LP so-
lution, i.e., the corresponding number of successors (instructions and NOPs) in the
forward case, and predecessors in the backward case. Further, since the precedences
change with each branching step, two usual critical path list schedules (again, one
forward, one backward) are carried out once at each subproblem. If a new incumbent
solution is found by any of these list schedules, it is stored, the global upper bound
on the makespan is updated and, if it not does not already match the currently
assumed schedule length, the optimization process is restarted with an updated ob-
jective function (cf. Sect. 3.6.1). The primal heuristics are key in finding good and
optimal schedules quickly. The implementation used is similar to the one discussed
in Sect. 2.4.1.1.

3.6.5 Cutting Plane Separation Strategy

For the experimental evaluation, we considered two different separation strategies.
The first is a minimum configuration, where the separation is mainly restricted to
the three-dicycle inequalities (3CYC). Besides these, there are some constraints that
are always separated as byproducts of other routines, especially of those dealing with
Hall intervals and the addition of distance constraints. These are:

• Variable equality constraints w.r.t. Hall intervals following Sect. 3.5.8.1 (VEC).

• NOP difference constraints exploiting the situations mentioned in Sect. 3.5.9
(NOPD).

The second ‘full’ configuration activates nearly all other separation routines in order
to permit an evaluation of their impact. The additionally separated inequalities are:

• Three-fence inequalities (heuristically as described in Sect. 3.2.4), if no violated
three-dicycle inequalities were found (3FEN).

• Conditional bound constraints from Sect. 3.5.1 (CND).

• Conditional bound constraints exploiting transitivity implications following
Sect. 3.5.2 (CNDT).

• Conditional NOP constraints as discussed in Sect. 3.5.3 (CNOP).

• Gap filling cuts as presented in Sect. 3.5.4 (GAP).

• Predecessor/successor set constraints as described in Sect. 3.5.6 and based on
Lemma 2.4.18 from Sect. 2.4.5.2 (PSB).

• Superior variable inequalities based on overlapping intervals as described in
Sect. 3.5.7.1 (SVC).
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The capital abbreviations in parenthesis will be used in the tables of the evaluation
section. The corresponding separation algorithms are, with the exception of the
three-fence heuristic, all of straightforward enumerative character and of polynomial
time complexity. Separation of interval filling cuts following 3.5.5 was not carried
out because an exact separation routine considering all relevant intervals was found
to be too time consuming. Invocations of the routine for smaller instances however
indicated that these inequalities are violated frequently, like is the case for gap filling
cuts as well. Still they could not be found to have a considerable impact on the hard
instances discussed in Sect. 3.7.

Irrespective whether the minimum or full separation configuration was used, a
branching step is enforced after at most five iterations of interleaved LP solving
and separation or if no violated inequality is found.

3.6.6 Implementation with ABACUS

The solver implementation was carried out using the branch-and-cut framework
ABACUS [Thi95]. The LP solver to be employed can be selected from a list of
supported ones. For the subsequently printed results, we chose CPLEX in version
12.6 [CPL13]. Table 3.2 lists manually set ABACUS parameters (omitted param-
eters were left to their default values, or overridden by own implementations as
discussed in this section).

Parameter value
NBranchingVariableCandidates 1
NStrongBranchingIterations −1 (no strong branching)
ObjInteger true

MaxConAdd 100, 000

Table 3.2: Manually set ABACUS parameters.

The choice of ABACUS permitted us to implement the interleaving of LP solving,
the application of cutting planes, and the propagation at the subproblems of the
branch-and-bound tree in a straightforward and flexible way without the need to
design a complete interface to LP solvers from scratch. However, the ABACUS
branch-and-bound framework is significantly slower in the creation and processing
of subproblems than, e.g., explicitly developed ones (as in case of the CP solver) or
even commercial ones. The reason is that ABACUS is designed to facilitate the im-
plementation of branch-and-cut solvers (with the integration of separation routines,
primal heuristics and so on) for users with only little expertise in mathematical
optimization. It has a lot of functionality and flexibility at the cost of runtime
performance, especially when it comes to the enumeration of a large number of
subproblems.

As another matter, ABACUS does not provide a fine-tuned separation of general
cutting planes for integer programs, such as, e.g. the Chvátal-Gomory cuts addressed
in Sect. 1.4.6.3 which can also be found in commercial tools. Experiments with a
{0, 12}-cut separator developed by Alberto Caprara revealed that several cutting
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planes could indeed be generated from the respective linear programs solved dur-
ing the course. However, the separator was itself based on the solution of integer
programs and therefore too slow in order to help solving the basic block instances
more quickly, while commercial IP solvers often provide fast heuristic separators.
This is a particular disadvantage since it is likely that these would help in detecting
infeasibility of some schedule lengths more quickly, especially because the problem
to be solved w.r.t. the feasibility problems is indeed to prove that a particular poly-
hedron contains no integer point. Even more, some of the more complex classes of
facet defining inequalities of the linear ordering polytope, such as, e.g., the Möbius
ladders [GJR85a], are in fact special cases of {0, 12}-Chvátal-Gomory cuts that could
be recognized this way.

Despite knowing about these disadvantages, ABACUS was preferred over a com-
mercial IP optimization software because the author did not aim at competing with
the CP solver by means of black-box tools. Clearly, the sustained performance of
the models derived in this chapter could possibly even be better if even more sophis-
ticated integer programming techniques were implemented or by simply profiting
from some closed-source implementation tweaks that we could not properly name.
Using ABACUS, it could be made sure that the results presented in the following
section are achieved by means of the models and techniques that arose from the
research presented in this thesis only.

3.7 Experimental Evaluation

The approach developed in this thesis is evaluated using the same test suite that was
used in the paper presenting the optimal CP approach by Malik, McInnes and van
Beek [MMvB08]. Fortunately, Peter van Beek sent the instances. The set contains
even roughly 17, 000 instances more than were used in their experiments and that we
now solved in addition. In total, the set comprises 369, 861 pre- and post-register-
allocation basic blocks taken from 28 application codes of the SPEC 2000 integer
and floating point benchmarks. When referring to particular instances, the prefix AR

indicates a post-register-allocation block. Solvers presented prior to the mentioned
CP solver failed to solve hundreds of instances from this set. In [MMvB08], the
authors report that they were able to solve all but two instances to optimality
for single-issue processors within a time limit of ten minutes of CPU and system
time. In our repeated experiments, that were run single-threaded on a Debian
Linux system with g++ 4.7.2 and optimization level -O2 on an Intel Core i7-3770T
processor running at 2.5 GHz and with 32 GB RAM, we found only one instance
that timed out with their solver. Within the same time limit, our solver was not
able to solve eleven instances using the minimum separation configuration described
in Sect. 3.6.5.

Table 3.3 categorizes the instances and the computational results w.r.t. the size of
the basic blocks. The third column states the number of instances that could be
solved by the applied preprocessing techniques only, i.e., by proving optimality of
a list schedule without solving an IP. The large numbers reflect the importance
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Branch-and-Cut CP [MMvB08]
Size #DAGs Prep >600s >60s >1s >600s >60s >1s
3 - 5 190, 726 190, 726
6 - 10 96, 807 96, 803
11 - 15 33, 229 33, 166
16 - 25 23, 994 23, 903 1
26 - 50 15, 801 15, 602 2
51 - 100 5, 945 5, 819 3 7 11 17
101 - 250 2, 956 2, 851 3 3 13 16
251 - 500 256 235 1 1 17 38
501 - 1000 105 94 2 3 33 1 2 70
1001 - 2597 42 33 2 11 33 7 41

total 369, 861 369, 231 11 25 109 1 9 183

Table 3.3: Size distribution of the instances, number of instances solved by pre-
processing and timeouts for various time limits.

and the success of these methods for instruction scheduling while being completely
independent from the final exact solution approach. In total, 74 instances more
could be scheduled in less than a second compared to the CP solver. However, there
are also 16 more instances that needed between one and 60 seconds and ten instances
more that could not be solved within a time limit of ten minutes.

Table 3.4 lists all the instances that the solver was not able to solve within ten
minutes of CPU and system time. The optimization was not always stopped exactly
after this time (as is shown in the last column) because the time limit was passed
to the internal timer provided by ABACUS for the IP solution phase. So if the
preprocessing took a long time or multiple IPs were solved, the total time could
exceed the limit given for a single IP. Column ILB gives the initial lower bound
on the makespan (after the preprocessing phase). PLB denotes the lower bound
that the whole solver was able to prove in the time denoted in the last column, and
BEST the best solution it could find. OPT is the optimum makespan (if known)
and IUB is the length of the best initially determined list schedule. We remark that
the DAGs corresponding to the instances AR-12061 and AR-11852 are identical.

Instance AR-4661 is the only one that could be solved by neither of the two methods.
Hence, the optimum makespan is unknown. However, the list scheduler implemented
into the CP solver found a solution of length 1307 and the solver could prove that
no schedule with a makespan smaller than 1306 exists.

Only in a single case (AR-3529), the lower bound proven by the branch-and-cut
solver is optimal, but an optimal solution was not found within the time limit. An
optimal solution was also not found for the instances AR-4661 and AR-9459 but also
without having proved that no better schedule can exist. In all the other cases, the
optimum solution has been found, but the instances could eventually not be solved
because the solver was not able to prove that no better schedule exists.

Disappointingly, this situation does not change when activating the full separation
strategy as described in Sect. 3.6.5. Tables 3.5 and 3.6 show statistical data about
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Basic Block # Instr. ILB PLB OPT BEST IUB Time
crafty/AR-2903 495 876 878 879 879 882 632
crafty/AR-4661 713 1, 301 1, 303 [1, 306, 1, 307] 1, 308 1, 310 773

fma3d/6261 141 250 250 251 251 251 608
fma3d/5417 77 99 101 102 102 107 601
fma3d/6916 149 259 259 260 260 260 607

fma3d/AR-9459 860 923 925 932 938 1, 039 784
jpeg/AR-3529 1, 824 3, 554 3, 554 3, 554 3, 556 3, 561 922

mesa/AR-11436 1, 508 1, 735 1, 736 1, 737 1, 737 1, 739 699
sixtrack/AR-12061 87 93 94 95 95 101 1, 007
sixtrack/AR-11852 87 93 94 95 95 101 1, 007

sixtrack/5960 195 195 195 198 198 210 602

Table 3.4: Instances not solved within ten minutes by the branch-and-cut solver.

the number of subproblems and LPs solved as well as the number of separated in-
equalities for both separation strategies and the timed-out instances. We remark
again that a branching step was enforced after at most five iterations of LP solving
and separation at each branch-and-bound subproblem. The reason for this is that,
due to the large number of generated inequalities, the time spent at one subproblem
can be sometimes very exhaustive. Further, a tailing-off strategy is not promising
because the artificial objective function is not really indicative. Even more, the
impact of the (transitive) implications of a branching step when re-applying some
of the preprocessing techniques was found to be stronger than the impact of the
several classes of inequalities in general. While it is a positive result that a large
number of violated inequalities could be found by the various separation routines,
these inequalities could not prove essential in determining infeasibility of the respec-
tive integer programs. On the contrary, the additional time spent for separation
even led to three more timeouts for the instances fma3d/5416, fma3d/6612, and
vpr/3140. Only for the instance 5960, we can observe that the additional inequal-
ities helped to prove at least the nonexistence of a schedule without NOPs more
quickly. The tables also show that for some of the largest instances only a few sub-
problems and LPs were solved within the time limit. As discussed in Sect. 3.6.6, the
speed of enumeration (as well as loading and unloading LPs etc.) is one of those
weaknesses of the implementation that could easily be alleviated if a practical use
of these methods was to be considered. At this point, it should also be mentioned
that the preprocessing has not been extensively tuned. Especially for very large
instances, an iterative application of the methods described in Sect. 2.4.4 to obtain
new precedences and their transitive propagation could run for hours before reaching
a fixpoint where no more precedences can be derived. The implemented solver has
only very simple rules that stop this way of deriving new precedences if less than
half of a percent of the precedences obtained in the very first run are obtained in
the current iteration. Other preprocessing routines are not all steered and run until
a fixpoint is reached. In contrast to that, the CP solver sets relative time limits for
various subroutines based on the size of the instances. A more intensive tuning of
parameters could therefore lead to being even more competitive.
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Nonetheless, the results indicate that in proving that no schedule of a given length
can exist, the relaxation of integrality ruled out to be rather a disadvantage of the
IP method compared to the enumerative construction character of the CP solver.
Especially for instances with a lot of symmetry, an aggressive fixing and propagation
of instructions to issue cycles can detect infeasibility of all possible configurations
more quickly than the solution of linear programs where it must be proven that no
fractional solution exists that satisfies all the inequalities. Fig. 3.12 shows a typical
symmetric instance with several parallel ‘levels’. The instructions of one level are
candidates to cover the latencies between the instructions on all other levels, and vice
versa. In many cases, the symmetry breaking strategy from Sect. 2.4.4 cannot be
applied because the majority of candidate pairs (or sets) of instructions have at least
one predecessor or successor that violates the criterion to safely add new precedence
arcs. If the lower bound obtained for an instance does not match the length of a
list schedule, then several orders need to be tried in order to prove the nonexistence
of a shorter schedule. Another difference to the CP solver is that the LP-solution-
based branching rules and primal heuristics typically make the branch-and-cut solver
more sensitive to the underlying LP solver, as LPs frequently do not have a unique
optimum solution and, in this case, the objective function further depends on the
reference schedule used. Different solutions, however, may lead to different branching
decisions or results of the primal heuristic, potentially with impact on the solution
process. Nevertheless, the presented method proved to be successful and reliable in
practice for a very large range of instances. The quadratic number of linear ordering
variables turned out to be no severe limitation when it comes to the solution of
larger instances. The disadvantages in this sense appear to be alleviated by the
opportunity to fix many of these variables, to profit from transitive precedence
propagation, and to formulate tighter distance constraints having some notion of
betweenness of instructions and NOPs.
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Figure 3.12: Instance fma3d/5417 (layouted using ‘yEd’, a diagram editor devel-
oped and provided by the german company yWorks GmbH).
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Basic Block IPs SUB LPs 3CYC 3FEN CND CNDT GAP VEC SVC PSB NOPD CNOP Time
crafty/AR-2903.txt 1 112 366 15, 726 0 142 632
crafty/AR-4661.txt 1 15 35 27, 000 0 699 773

fma3d/6261.txt 1 25, 507 60, 456 463, 563 0 0 608
fma3d/5417.txt 2 2, 205 5, 693 132, 268 6 12 601
fma3d/6916.txt 1 23, 411 53, 961 397, 058 2 0 607

fma3d/AR-9459.txt 1 8 9 2, 007 0 1, 628 784
jpeg/AR-3529.txt 1 42 85 1, 221 0 17 922

mesa/AR-11436.txt 1 17 43 3, 841 84 710 699
sixtrack/AR-12061.txt 2 22, 207 71, 521 1, 554, 133 20 25 1, 007
sixtrack/AR-11852.txt 2 22, 268 71, 723 1, 557, 721 20 25 1, 007

sixtrack/5960.txt 1 371 940 163, 691 0 0 602

Table 3.5: Solution and separation statistics for the instances not solved when using the minimum separation configuration.

Basic Block IPs SUB LPs 3CYC 3FEN CND CNDT GAP VEC SVC PSB NOPD CNOP Time
crafty/AR-2903.txt 1 78 316 21, 488 0 1, 287 6, 438 120 0 8, 728 54 135 1, 084 611
crafty/AR-4661.txt 1 6 12 9, 000 0 1, 913 23, 379 37 0 47, 698 6 431 2, 608 629

fma3d/6261.txt 1 16, 004 38, 789 290, 784 15 11, 309 15, 591 1, 349 4 13, 676 4 0 0 608
fma3d/5417.txt 2 1, 863 5, 591 124, 842 300 9, 862 30, 610 1, 024 11 43, 127 100 7 0 603
fma3d/6916.txt 1 14, 523 34, 743 251, 369 27 9, 782 12, 669 1, 991 0 9, 256 8 0 0 608

fma3d/AR-9459.txt 1 10 15 3.194 0 198 1, 068 0 0 113 0 1, 628 0 934
jpeg/AR-3529.txt 1 33 78 1.066 0 312 848 39 121 583 17 24 133 921

mesa/AR-11436.txt 1 4 4 2, 000 0 364 1, 565 29 56 3, 707 0 424 2, 972 853
sixtrack/AR-12061.txt 2 19, 536 62, 959 1, 287, 886 8, 961 97, 269 423, 934 9, 367 80 355, 462 402 16 3 985
sixtrack/AR-11852.txt 2 19, 538 62, 965 1, 287, 926 8, 961 97, 272 423, 945 9, 368 80 355, 479 402 16 3 985

sixtrack/5960.txt 2 237 816 142, 622 0 10, 831 121, 023 635 0 14, 078 36 0 0 680

Table 3.6: Solution and separation statistics for the instances not solved when using the full separation configuration.
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Chapter 4

Offset Assignment

This chapter introduces and motivates the offset assignment problem

which is the second compiler optimization problem intensively dealt

with in this thesis. The offset assignment problem consists of two

particular subproblems whose connection is discussed in detail. The

set of feasible solutions to these subproblems are characterized by

different models and some new transformations of and extensions

to these models are presented. These characterizations build the

basis for the novel exact integer programming approaches to offset

assignment that are presented in the subsequent chapter.
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+/−

imm

c ∈ [−r, r]

imm MRPARP

effective address

imm

AR 1
AR 2
. . .

AR k

MR 1
MR 2
. . .

MR l

Figure 4.1: Schematic depiction of an address generation unit (AGU). It is a close
adaptation of the one shown in [Leu03].

4.1 Motivation

The offset assignment problem has its origin in the field of address code generation
for digital signal processors (DSPs) and was first discussed by Bartley [Bar92] in
1992. In contrast to general purpose processors, the DSPs at that time, such as
e.g. the Motorola DSP56k or the TI TMS320C2x series, often did not provide so-
called base-plus-offset addressing modes. Such addressing modes build the effective
address of a memory operand by adding an immediate offset to a base address that
is stored in a register. By using varying offsets, several spatially close memory
locations can be referenced without the need to issue additional instructions that
change the base address register. However, in this case, the offset has to be explicitly
passed as an instruction operand, i.e., bits need to be reserved for it. Supporting
large offsets therefore results in long instruction widths. This is in conflict with
specialized processor designs that often aim at saving silicon area and, in general,
costs. This causal relationship makes the task to generate optimal address code for
processors with limited indirect addressing capabilities an interesting challenge for
today’s application-specific processor designs as well.

While base-plus-offset addressing is often not supported, DSPs and other specialized
Harvard architectures usually provide an address generation unit (AGU) support-
ing pointer arithmetic to be done in parallel to the main data path. If exploited
properly, the additional hardware, that is schematically depicted in Fig. 4.1, can
help to at least partially compensate for the drawbacks of absent base-plus-offset
modes. It supports instructions that permit to manipulate an address register (AR)
in the same clock cycle as another instruction referencing it. Either, the modifi-
cations are encoded implicitly (effectively moving the encoding of the offset into
the instruction opcode) or the instructions permit to add (subtract) values within
a small architecture-dependent auto-modify range [−r, r] to (from) the address held
in the AR [Leu03]. In the special case r = 1, we will speak about autoincrement
and autodecrement instructions. AR modifications by absolute values larger than r
however still need additional explicit address arithmetic. As a further feature, a pro-
cessor may provide a modify register (MR) file that can be used to add or subtract
values to or from the addresses stored in ARs in parallel to another instruction.
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‘+2’

a

b
c
. . .

. . .
AR1

0x...9
0x...A
0x...B
0x...C
0x...D

0x...A

‘+1’

LDAR AR1,&a

LOAD *(AR1)

ADD *(AR1)(1)

ADD *(AR1)(2)

a

b
c
. . .

. . .
AR1

0x...9
0x...A
0x...B
0x...C
0x...D

0x...CLDAR AR1,&a

LOAD *(AR1)+

ADD *(AR1)+

ADD *(AR1)

Figure 4.2: Indirect addressing in base-plus-offset mode (left) and with autoincre-
ment instructions (right).

However, any change to the value stored in a MR also needs an additional load or
arithmetic instruction.

Let us consider a simple example where three values a, b and c shall be summed up
and the memory layout is like the one depicted in Fig. 4.2. Consider a usual ADD
instruction that adds the value stored at a specified memory address to the accumu-
lator. If base-plus-offset addressing was supported, we can load, e.g., the address of
a into an AR and then reference b and c using offsets one and two, respectively. This
is depicted in the left of Fig. 4.2. Without base-plus-offset addressing (right image),
an AR must always point exactly to the address that shall be referenced. Starting
again at the address of a, we can increment the address immediately after loading
a into the accumulator using an autoincrement version of the instruction (denoted
with suffix +). The same can then be done for b, so that the full computation can
also be done without additional instructions that ever explicitly manipulate the AR.
However, in general, this only works as long as the distances between two variables
that are subsequently accessed by the same AR are within the modify-range r.

With the mentioned specialized instructions at hand, one can consider the complex-
ity of indirect addressing to have been moved from hardware to software, relying
on compilers to exploit the processor’s capabilities for fast memory addressing. In
statically allocated memory, such as a local function’s stack, the storage order of
the program variables may be freely chosen by the compiler. Further, an address
register responsible for each of the accesses needs to be determined. The first task
is literally the ‘real’ offset assignment and the second one is called address register
assignment (ARA). Clearly, these two tasks are interdependent, because the stack
memory layout determines whether a particular access transition of an AR is within
auto-modify range r or not and this determines the quality of a particular ARA.
Optimal exploitation of the processors auto-modify capabilities asks for the opti-
mal solution of both interdependent problems. Conversely, address computation
overhead may result from two main issues. An inappropriate storage layout may ne-
cessitate additional explicit address arithmetic instructions for ‘jumps’ to addresses
that have a distance larger than r. Moreover, if the processor provides multiple ARs,
a poor choice of the ARs responsible for particular accesses may result in superfluous
immediate AR loads and also unnecessary ‘jumps’. Since address calculations make
up a significant part of machine instructions and often need to be done repeatedly
within loop structures [LBM98], optimizing these decisions may considerably reduce
the code size and speed up the program at the same time. Indeed, various experi-
mental studies [HABT11, JM13, Leu03, ML14] show that optimized configurations
lead to significant savings in practice.
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During compilation, the instruction scheduling phase determines the access sequence
to program variables (operands). It can be extracted by simply concatenating the
referenced variables of each three-address-code instruction c = a op b in the order
a b c. For example, the program fragment in the left of Fig. 4.3 refers to the variables
V = {a, b, c, d, e, f, g} that are accessed in the order S = a b c g c f c e c c f d.
Tab. 4.1 shows pseudo machine codes for the code fragment and three potential
stack layouts A, B, and C (now depicted horizontally) of V. Layout A complies
to the order of first use of the variables in S. On a processor with only a single
AR, it would require six explicit address arithmetic instructions (ADAR and SBAR).
An optimized layout (B) already reduces the necessary number of such instructions
to three by increasing the use of autoin-/decrement instructions. If the memory
layout is optimized for a use of two ARs (C) and also an optimal AR assignment is
computed, it becomes possible to cover the access sequence even without any explicit
address arithmetic at all. Assuming unit costs for an immediate AR load and for
an address arithmetic instruction, the optimal total cost with one AR is four, while,
with two ARs, it is two. Notably, layout A and B have no register assignment that
leads to a total cost smaller than three with two or more ARs.

c = a + b;

f = g - c;

c = c - e;

d = c * f;

Figure 4.3: A sample code fragment.

Instruction AR1

LDAR AR1, &a &a

LOAD *(AR1)+ &b

ADD *(AR1)+ &c

STOR *(AR1)+ &g

LOAD *(AR1)- &c

SUB *(AR1)

ADAR AR1,2 &f

STOR *(AR1)

SBAR AR1,2 &c

LOAD *(AR1)

ADAR AR1,3 &e

SUB *(AR1)

SBAR AR1,3 &c

STOR *(AR1)

ADAR AR1,2 &f

MUL *(AR1)

ADAR AR1,2 &d

STOR *(AR1)

A = a b c g f e d

Instruction AR1

LDAR AR1, &a &a

LOAD *(AR1)+ &b

ADD *(AR1)

ADAR AR1,2 &c

STOR *(AR1)- &g

LOAD *(AR1)+ &c

SUB *(AR1)+ &f

STOR *(AR1)- &c

LOAD *(AR1)

ADAR AR1,3 &e

SUB *(AR1)

SBAR AR1,3 &c

STOR *(AR1)+ &f

MUL *(AR1)+ &d

STOR *(AR1)

B = a b g c f d e

Instruction AR1 AR2

LDAR AR1, &a &a

LOAD *(AR1)+ &b

ADD *(AR1)+ &c

STOR *(AR1)

LDAR AR2, &g &g

LOAD *(AR2)- &e

SUB *(AR1)+ &f

STOR *(AR1)- &c

LOAD *(AR1)

SUB *(AR2)

STOR *(AR1)+ &f

MUL *(AR1)+ &d

STOR *(AR1)

C = a b c f d e g

Table 4.1: Pseudo machine codes for the code fragment from Fig. 4.3 assuming
different memory layouts A, B and C and either one (A and B) or two (C) available
address registers.
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4.2 Problem Definitions and Related Work

The General Offset Assignment (GOA) problem is defined for processors with k
address registers, l modify registers and an auto-modify range of r. Given an access
sequence S = {s1, s2, . . . , sm} of program variables V = {v1, v2, . . . , vn}, it asks for
a stack memory layout of the variables, i.e., a permutation π : V → {1, . . . , n},
and an assignment γ : S → {1, . . . , k} of accesses to address registers exploiting the
auto-modify range r such that the number of accesses requiring extra address arith-
metic instructions is minimum. If modify registers are considered, it must further
be decided for each MR, at which points in time it is assigned a new value and when
this value is added to (or subtracted from) one of the address registers. MRs lead to
a larger solution space and to a higher optimization potential but also considerably
increase the modeling complexity. They have been seldom integrated into practical
approaches for address code generation. For k = 1, Wess and Gotschlich [WG97]
preload MRs with static values {−2,−1, 1, 2} that cannot be changed during pro-
gram execution. This is conceptually equivalent to an auto-modify range r of two.
Leupers and David [LD98] provide a concept to incorporate MR optimization into
the fitness function of their genetic GOA algorithm that has however some other
restrictions as will be discussed below.

Most of the literature considers special cases of the problem, where either r = 1,
k = 1 or both. For k = 1, it is called the Simple Offset Assignment (SOA) problem.
It reduces to the task to find a stack memory layout that allows as many accesses
as possible to be performed by auto-modify instructions on the single available ad-
dress register. It was first considered by Bartley [Bar92] in 1992. He proposed to
model the problem using an access graph that we will discuss in Sect. 4.3. Using this
representation, Bartley recognized a close relationship of SOA (with r = 1) to the
Maximum Weight Hamiltonian Path problem and developed a first greedy heuris-
tic to solve SOA in this fashion. In subsequent research, Liao [Lia96] showed that
SOA is equivalent to a Maximum Weight Path Cover problem and gave a formal
proof of its strong NP-hardness. Consequently, the more general problem variants
are equally NP-hard. Based on these results, Liao proposed a simpler and faster
heuristic producing solutions with the same quality as Bartley’s and also a first
exact branch-and-bound procedure. In 1996, Leupers and Marwedel [LM96] pro-
posed to use a tie-break function for access graph edges with equal weights within
Liao’s heuristic. One year later, Leupers and David presented the already men-
tioned genetic algorithm for GOA [LD98] that can also be used for k = 1. Atri et
al. [ARK01] developed an incremental algorithm that tries to successively improve
a known feasible solution. These already mentioned algorithms were subject to an
exhaustive experimental comparison by Leupers [Leu03] in 2003. It revealed only
small differences in the quality of their solutions. However, the performance of the
heuristics relative to the optimum solutions could only be verified for some small
instances using Liao’s branch-and-bound procedure. The corresponding benchmark
set, called OffsetStone, is since then the standard reference for performance mea-
sures. In 2008, another tie-break-heuristic for Liao’s algorithm has been proposed by
Ali et al. [AEBS08] that was later [SEB12] also evaluated with OffsetStone. One of
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the exact methods for SOA presented in this thesis, and prior published in [JM13],
was then the first approach capable to solve larger instances to optimality, so that
the quality of heuristics could be broadly evaluated for the first time.

The general problem variant for multiple ARs has also been studied mostly for the
case r = 1. In principle, the two interdependent subproblems may be solved in any
order. Many of the proposed algorithms first create an ARA by partitioning the
set of program variables w.r.t. the available ARs and solve then the SOA problem
for each of them. This has the advantage that available SOA algorithms can be
reused in order to solve GOA. So while SOA seems to be an oversimplified problem
at the first glance, it reflects a real world problem. However, the described strategy
inherently constrains all accesses to a particular variable to be performed by the
same AR. This may preclude optimal results as is extensively discussed by Huynh
et al. [HABT11]. In the same article, the authors evaluate different combinations
of ARA and SOA algorithms with the approach by Sugino et al. [SINF96] performs
best in their experiments. Sugino et al. partition the variables iteratively by ap-
plying, in each iteration, a minimum-cut heuristic that repeatedly invokes a SOA
algorithm to estimate the quality of the partitioning. As opposed to Bartley’s and
Liao’s greedy constructive methods, their SOA algorithm removes edges from the
access graph until a variable ordering can be trivially derived. The overall procedure
is computationally intensive but the additional effort appears to not pay off in terms
of quality compared to other heuristics on OffsetStone [ML14]. Besides his algorithm
for SOA, Liao [Lia96] also proposed a heuristic for GOA that however needed some
manual parameter specification. In 1996, Leupers and Marwedel [LM96] proposed
a different heuristic that outperforms Liao’s on their random test instances. Their
method was also used to generate initial populations for the genetic GOA algorithm
from [LD98] that, however, also assigns all accesses to a particular variable to the
same AR. The results in [ML14] suggest not to partition the variables a priori, but
to first compute a memory layout for them and an address register assignment after-
wards. The article also contains a correction of the only previous exact approach by
Ozturk et al. [OKT06] that was originally designed for arbitrary auto-modify ranges
r and that can also be extended to deal with MRs. However, as the experiments
in [ML14] show, the (fixed) method is not capable to solve larger instances, even for
r = 1. Also for the original version, the authors reported running times for moderate
instance sizes that do not suggest to use their method in a production compiler. It
suffers from a quickly growing number of variables and constraints and does neither
exploit the combinatorial structure nor symmetries inherent to the problem.

In this thesis, alternative GOA formulations for r = 1 and also for arbitrary r are
presented in Sect. 5.2. Similar to the exact SOA methods that are discussed in
Sect. 5.1, the methods for r = 1 can solve nearly all of OffsetStone’s instances to
optimality within short time frames and were used to evaluate the quality of GOA
heuristics in [ML14]. The method for r ≥ 1 takes advantage of the r = 1 approach
and still remains relatively moderate in size. It is not as successful, but made it
possible to perform the first experiments for r > 1 on a larger set of instances
and to study the effect of exploiting larger auto-modify capabilities on the total
address computation costs [Mal14]. Further, a commonly observed criticism associ-
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ated with GOA is addressed, namely that it is not clear how it relates to operand
reordering techniques such as, e.g, [RP99, ARK00, CK02], which may also result
in reduced address computation overhead. In Sect. 4.4.3, a method to integrate
commutativity-based operand reordering into the address register assignment part
of the optimization process is presented. It has also been published in [Mal14].

We close this section by mentioning some specialized and integrated variants of the
problem that were subject to research but not directly comparable to the methods
developed in this thesis. Lorenz et al. [LKB+01] consider offset assignment in the
context of specialized DSPs with wide memory and where accesses do not refer to
single memory words but to all variables of a previously specified group simulta-
neously. Eriksson [Eri11] proposed a dynamic programming algorithm to integrate
scheduling, AR and offset assignment. However, the algorithm could solve only small
instances. A different idea named variable coalescing is to share storage locations
among variables whose lifetimes do not overlap. Ottoni et al. [OOAL06] presented a
first heuristic which was followed by another one and an ILP formulation by Salamy
and Ramanujam [SR07, SR12]. However, for the exact approach, the instances
solved did again not exceed sizes of about 30 variables due to the running time of
the solver.

4.3 Modeling of (Optimal) Memory Layouts

One part of the problem is to derive a stack memory layout of the variables, the
literal ‘offset assignment’. In case of the Simple Offset Assignment problem, it is
even the only task to do. This is true, since for SOA there is only one AR that must
be used to perform all the accesses. Hence, its series of accesses is predetermined (it
is simply equal to the access sequence) and the cost of each access transition only
depends on the locations of the variables.

For the case k = 1 and r = 1, Bartley [Bar92] proposed to model the problem using
an access graph G = (V,E). The set of vertices V corresponds to the variables V
and there is an edge e = {u, v} ∈ E with weight w(e) = c if the variables u and
v appear subsequently in the access sequence for c > 0 times. Fig. 4.4 shows an
example for the access graph belonging to the access sequence of the code fragment
from Fig. 4.3.
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Figure 4.4: An access graph corresponding to the access sequence
S = a b c g c f c e c c f d of the code fragment from Fig. 4.3.
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4.3.1 Hamiltonian Path and Path Cover Characterizations

For r = 1, an access transition from variable u to variable v can be performed by an
AR using autoin-/decrement instructions if and only if u and v are adjacent in the
memory layout. It is a natural idea to model such adjacencies also by adjacencies
in the access graph, i.e., u and v shall be neighbors in the memory layout if the
edge {u, v} ∈ E is selected. There is an ‘all-or-nothing’ condition in that, if an edge
is selected, all the corresponding access transitions in the access sequence (whose
number is equal to the edge weight) can be performed without the need for additional
instructions. The objective is therefore to maximize the total weight of selected edges
subject to the constraint that they can be combined to form a memory layout (a
linear sequence) of the program variables.

As already stated, Bartley [Bar92] characterized the memory layout as a Hamiltonian
path and Liao [Lia96] as a path cover. A Hamiltonian path P is a simple path visiting
each of the vertices V exactly once. Hence, all but two vertices of P have exactly two
neighbors and the two exceptional end points of P have only one neighbor. P consists
of exactly |V |−1 edges from E. Clearly, it is easy to interpret a Hamiltonian path as a
memory layout by simply arranging the variables V according to the neighborships
of their corresponding vertices in the path P . There is some symmetry however,
because it is possible to traverse P in two directions, i.e., one Hamiltonian path has
two associated memory layouts of the same quality. A path cover C is a cycle-free
collection of edges e ∈ E such that each vertex v ∈ V has at most two neighbors
in C. This definition permits isolated vertices, i.e., vertices do not necessarily need
to be at all ‘visited’ or ‘covered’ by one of the edges. Fig. 4.5 depicts an example
for both characterizations using the access graph from Fig. 4.4. We might interpret
isolated vertices as ‘paths of length zero’, in which case we can say that a path cover
is a collection of paths such that each vertex v ∈ V is covered exactly once. There is
even more symmetry compared to the Hamiltonian path characterization, since each
possible concatenation of the paths of a path cover C can be mapped to a memory
layout of the same quality.
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Figure 4.5: A path cover (left) of the access graph from Fig. 4.4 and a concatenation
of its paths (right, dash-dotted dark additional zero-weight edges) to a Hamiltonian
path that corresponds to memory layout B = a b g c f d e from Sect. 4.1.

The central issue with the Hamiltonian path characterization is that, if only the edges
with weight at least one are present, it is not guaranteed that the graph admits a
Hamiltonian path. This is why Bartley proposed to make the graph complete by
adding zero-weight edges for all the pairs of variables that are never adjacent in the
access sequence. Adding zero-weight edges does not change the set of solutions and
it does also not alter their weighting. Each zero-weight edge contained in a Hamil-
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tonian path exactly corresponds to the concatenation of two paths of a path cover.
However, since the selection of zero-weight edges cannot improve a solution (they
deliver no additional access transitions that can be done with autoin-/decrements),
Liao concluded that it must be possible to encode optimum solution by considering
the nonzero-weight edges only which led to the path cover characterization.

We summarize these observations in the following formal statements.

Lemma 4.3.1. Let G = (V,E) be an access graph and let P be a maximum-weight
path cover of G. If |P| > 1, then for any two end-vertices p, q of different paths
P,Q ∈ P, the number of access transitions between p and q is zero.

Theorem 4.3.2. Let G = (V,E) be an undirected graph and let G′ = (V,E′) be the
complete graph that results by adding a zero-weight edge for every edge that is not in
G. Then there exists a maximum-weight path cover P of weight w(P ) in G if and
only if there exists a maximum-weight Hamiltonian path P ′ of weight w(P ′) = w(P )
in G′.

Proof. Let P be a maximum-weight path cover in G. Clearly, if P consists only of
a single path, then P is also a maximum-weight Hamiltonian path. So let P consist
of k > 1 disjoint paths. By construction, no two paths of P share an end vertex,
since otherwise they would build a larger path. Hence, by Lemma 4.3.1, there exists
an Hamiltonian path P ′ in G′ that consists of P and k − 1 additional edges with
zero weight. By construction, P ′ has the same weight as P . Suppose now that P ′

is not a maximum-weight Hamiltonian path in G′, i.e., there exists a different path
Q with weight w(Q) > w(P ′). However, then Q, without its zero-weight edges, is
also a maximum-weight path cover in G with weight greater than w(P ). This is
a contradiction to the assumption that P is maximum. Conversely, a maximum-
weight Hamiltonian path P ′ in G′ yields (by removing zero-weight edges) directly
a path cover P of the same weight, and there cannot be a better one, because this
would contradict the optimality of P ′.

Both modeling approaches have their advantages and disadvantages. Typically, vari-
ables are involved in rather few and local computations with some particular (but,
in most of the cases, not all) other variables. Hence, it is natural to assume that
access graphs are rather sparse. Algorithms will usually have to consider each vertex
and each edge of the access graph at least once such that their running time directly
depends on the cardinality of the respective sets. Making the graph complete results
in a number of edges that is quadratic in the size of the variable set, even though
the number of nonzero-weight edges could be only linear. This may unnecessarily
slow down algorithms [Lia96]. However, as already indicated, the path cover char-
acterization also adds more symmetry to the set of feasible solutions. This is an
issue especially for exact solution approaches. There is also a significant difference
when formulating integer programs for the two models which will be discussed in
Sect. 5.1.
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4.3.2 Explicit Assignment of Positions

If the processor supports offset ranges r strictly larger than one, simple vertex adja-
cencies are not anymore sufficient in order to decide on the costs of access transitions.
In particular, it is misleading to adjust the edge weights w({u, v}) of the access graph
to the number of occurrences of u and v with distance at most r in the access se-
quence S. Rather, the auto-modify instructions can be applied as soon as there is
a path from u to v of length smaller or equal to r in a memory layout. To assign
weights to paths instead of edges and to then select paths based on these weights is
however not a promising strategy, especially since the possible number of paths to
consider may be exponential in the number of variables.

These conditions make the modeling of the associated optimization problem and the
derivation of integer programming formulations much more complicated. It appears
that it is necessary to explicitly encode the position of each of the program variables
and then to construct and evaluate solutions based on the absolute distances be-
tween them. One way to do this is the famous assignment problem [BDM12]. A very
elegant model for SOA and arbitrary r that is based on the quadratic assignment
problem has been proposed by Wess and Gotschlich [WG97], although they did not
try to solve it exactly. Their method exploits that one useful property persists due
to the k = 1 restriction: For any pair of variables u, v ∈ V , either all or none of the
access transitions (that is still predetermined by the access sequence) can be done us-
ing auto-modify instructions. This preserves the ability to work with the (adjacency
matrix associated to) the access graph and with static cost coefficients. However,
it makes products of variables (and therefore the quadratic objective function) in-
dispensable. The formulation has then Ω(|V |4) variables that become a limitation
for larger instances. The model by Ozturk et al. [OKT06] has an assignment-based
character as well. However, as discussed in [ML14], their formulation was flawed
and is also not applicable to a wider range of instances. In Sect. 5.2, a different
(though still assignment-based) and completely linear formulation for GOA will be
presented that can then also be used for the k = 1 case.

4.4 Optimal Address Register Assignment

The address register assignment problem becomes relevant as soon as the number k
of address registers is larger than one. In this case, the series of accesses performed
by an AR is no longer predetermined by the access sequence. In principle, each AR
may be used for each access and it may be beneficial to use even different ARs for
two accesses to the same variable [HABT11]. As a consequence, two subsequent
accesses performed by the same AR need not be subsequent in the access sequence
anymore. Conversely, two subsequent accesses in the sequence do not necessarily
appear as a real access transition of one of the ARs. So while it remains true that
either all or none of the access transitions between two variables u and v can be
done by auto-modify instructions (since this is just a matter of their distance in the
memory layout), this property is of no more use. This degrades the access graph to
a more or less useless data structure.
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In case that a memory layout of the variables is already given, an optimal assignment
of accesses to registers can be computed in polynomial time. This was shown by
Gebotys [Geb97, Geb99] who provided a minimum-cost circulation algorithm that
we will now discuss in detail. After that, newly developed transformations and
extensions of this model that have been published also in [ML14] and [Mal14] are
presented.

4.4.1 Gebotys’ Circulation Technique

Suppose for now that a memory layout L of the program variables V has already
been fixed and we are now asked to compute an optimal address register assignment
for k address registers w.r.t. L and the input access sequence S.

Gebotys’ circulation network contains a vertex for each access in S and a directed
arc for each pair of accesses u, v such that v succeeds u in S. Let VS be an ordered
set of vertices associated with the accesses in sequence S and consider additional
artificial ‘source’ (s) and ‘sink’ (t) vertices. Then the vertex set VN of the network
N = (VN , A) is given by VN = VS ∪ {s, t} and the flow arc set A is composed as the
union of the arc sets {(s, v) | v ∈ VS}, {(v,w) | v,w ∈ VS , v < w}, {(v, t) | v ∈ VS},
and the circulation arc (t, s).

As a small example, let V = {a, b, c, d}, S = a d c c a b, and assume L = d - a - c - b
(which is optimal for k ≥ 2 ARs). Fig. 4.6 shows the network associated with this
instance.
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Figure 4.6: Minimum cost circulation network for S = a d c c a b assuming
L = d - a - c - b.

The cost of an arc between two accesses is zero if and only if the two associated
variables are equal, or adjacent in L (solidly drawn in Fig. 4.6). Otherwise the cost
cA of an address arithmetic instruction is associated with the arc (drawn dashed).
All costs of arcs leaving s or entering t are also zero and the dash-dotted drawn arc
(t, s) has the cost cL of an immediate address register load.

Each vertex is constrained to receive and supply one unit of flow and the capacity
of all arcs is one, except for the arc (t, s) that has capacity k. Hence, the maximum
possible flow in this circulation network is k units and each unit of flow leaving s
essentially delivers a path of accesses before it proceeds to t. If the selection of these
paths is based on a minimum-cost criterion then each of the resulting paths can be
interpreted as an optimal series of accesses performed by an AR.

Minimum-cost circulations can be established in polynomial time using either com-
binatorial algorithms (e.g. [Tar85]) or linear programming. Optimal LP solutions
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will always be integral due to the unimodularity property of the constraint matrix
associated to minimum-cost circulation problems [Law76].

Gebotys also gave an LP formulation of her approach. Let yu,v be a flow variable
for each arc (u, v) ∈ A and cu,v its associated cost. Gebotys’ LP formulation is then:

min
∑

(u,v)∈A

cu,vyu,v

s.t.
∑

(v,w)∈A

yv,w −
∑

(u,v)∈A

yu,v = 0 for all v ∈ VN (4.1)

∑

(v,w)∈A

yv,w = 1 for all v ∈ VS (4.2)

∑

(u,v)∈A

yu,v = 1 for all v ∈ VS (4.3)

yu,v ≥ 0 for all (u, v) ∈ A, (u, v) 6= (t, s)

yu,v ≤ 1 for all (u, v) ∈ A, (u, v) 6= (t, s)

yt,s ≥ 1

yt,s ≤ k

The restriction of the in- and out-degrees of all vertices v ∈ VS to one by constraints
(4.2) and (4.3) highlights the aforementioned ‘path selection’ character of this model.
Actually, they make the preceding flow conservation constraints (4.1) obsolete for
all vertices except t since any unit of flow sent from s to satisfy the equations must
finally arrive at t and will then be sent back using the circulation arc (t, s). Lower
bounds on the flow on out- (in-) arcs of the source (sink) are not necessary since the
former (latter) must be satisfied due to the in- (out-) degree equation of the first
(last) access vertex.

When using combinatorial algorithms, the restrictions that the incoming and out-
going flows of each vertex v ∈ VS are exactly one need to be enforced using artificial
gadgets like depicted in Fig. 4.7. Each vertex v ∈ VS is modeled by a vertex vi for
the incoming and a vertex vo for the outgoing flow. They are connected by an arc
that has lower bound and capacity one, and cost zero. This leads to a doubling of
the number of vertices and adds |VS | additional arcs.

vi vo
lb = 1, ub = 1

cost = 0

Figure 4.7: Gadget to realize a lower and upper bound of one on the incoming and
outgoing flow of a vertex v ∈ VS .

4.4.2 An Equivalent Minimum-Cost Flow Model

Further inspection of the problem and basic results from network flow theory allow
for a simple transformation of Gebotys’ model into a usual min-cost flow problem
where the circulation arc (t, s) is removed. Its cost (the cost of an immediate AR
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load) can be instead installed on every s-leaving arc (that are now drawn dash-
dotted). This yields the same result that the cost is paid as soon as an additional
register is used to cover the access sequence. The restriction to not use more than k
registers (the former capacity of the arc (t, s)) can be applied over the total flow on
all s-leaving arcs instead. In this manner, the vertices s and t will be a real source
and sink, respectively, and the lower bounds and capacities on all flow arcs are zero
and one. Fig. 4.8 shows the transformed network corresponding to the example from
Fig. 4.6, and Fig. 4.9 depicts an optimal solution (assuming cL = cA).
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d

b

t

a2a1

c1 c
2

Figure 4.8: Minimum cost flow network for S = a d c c a b assuming
L = d - a - c - b.
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Figure 4.9: An optimal solution to the example from Fig. 4.8.

After the transformation, still combinatorial algorithms as well as linear program-
ming can be used in order to obtain integral solutions in polynomial time. When
using a combinatorial algorithm, an additional gadget similar to the one from Fig. 4.7
in Sect. 4.4.1 (with capacity k and no incoming arcs to vi) must be installed to realize
the upper bound on the total flow emanating from the source. The LP formulation
corresponding to the described min-cost flow problem is:

min
∑

(u,v)∈A

cu,vyu,v

s.t.
∑

(v,w)∈A

yv,w = 1 for all v ∈ VS

∑

(u,v)∈A

yu,v = 1 for all v ∈ VS

∑

v∈VS

ys,v ≤ k

yu,v ≥ 0 for all (u, v) ∈ A

yu,v ≤ 1 for all (u, v) ∈ A



120 4.4. Optimal Address Register Assignment

4.4.3 Taking Commutativity Into Account

Sometimes, address computation overhead can also be avoided by simply reordering
the accesses to operands where this is possible due to the commutativity of the
respective operations. For example, assume that variable b was last accessed and c

= a + b is the next instruction. Then it is typically beneficial to access b first if a
and b are not adjacent in the stack layout.

Reordering opportunities can be incorporated into the general approach by Gebotys
and also into the just described flow model. If u and v are the two operands belonging
to a commutative instruction, one can replace the corresponding flow arc (u, v) ∈ A
by a flow edge {u, v} that can be used in both directions (or, equivalently, add a
reversed flow arc (v, u)). Since we may reasonably assume to have three-address-code
instructions only, the model guarantees that each vertex of the network has at most
one neighbor that is adjacent by an edge rather than by an arc. At these particular
vertex pairs, the flow in the network is then permitted to also move ‘backwards’
while the constraints that each vertex must have exactly one incoming and outgoing
unit of flow will preserve the overall feasibility of the model and the correctness of
its solutions.

Suppose the access sequence S = a d c c a b from the previous subsection is stem-
ming from the computations c = a * d; b = c * a. Then both operations are
commutative and the arcs (a1, d) and (c2, a2) in the flow network become edges in
the proposed methodology. Indeed, sending flow backwards along these edges al-
lows for a better solution with one a single AR in use and total cost only one as is
depicted in Fig. 4.10.

s

d

b

t

a2a1

c1 c
2

Figure 4.10: An optimal solution to the example from Fig. 4.8 exploiting commu-
tativity.

4.4.4 Useful Properties of the Model

Gebotys’ technique has some advantages that should be highlighted. First of all, it
does not name registers. This means that it captures the symmetry that, once an
optimal set of access transition paths is determined, each path could be realized by
each AR. As long as the computed paths are assigned to different ARs, it does not
matter which AR is the concrete one to perform the respective series of accesses. This
property also results in the fact, that the numbers of variables, (|S|+2) · (|S|+1)/2,
and nontrivial constraints, 2|S|+1, of the equivalent flow model only depend on the
length of the access sequence S, but are completely independent from the number
of registers k.



Chapter 5

Novel Integer Programming
Approaches to Offset
Assignment

This chapter presents novel exact integer programming approaches

to several variants of the offset assignment problem that are built on

the basic characterizations discussed in the previous chapter. The

various models discussed led to a number of solver implementations

that are presented and evaluated on a large benchmark set. The im-

plementations are also employed to derive first results on the effects

of particular processor capabilities w.r.t. the offset assignment costs.
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5.1 Simple Offset Assignment

In this section, we only consider the case where r = 1, i.e., only autoin-/decrement
instructions are available. For r > 1, we will however develop a formulation for the
General Offset Assignment problem in Sect. 5.2, that can then also be used for the
case of only a single address register.

As discussed in Sect. 4.3.1, we design integer programming formulations in terms
of either path covers of an access graph, or Hamiltonian paths of completed access
graphs. The main commonality in the definition of both, path covers and Hamilto-
nian paths, is their cycle-freedom. This is also reflected in the corresponding integer
programming formulations and the main issue when it comes to their practical per-
formance.

5.1.1 Path Cover Formulation

Let G = (V,E) be an access graph and let us define, for each edge {u, v} ∈ E, its
associated decision variable

xu,v =

{

1, if {u, v} is selected

0, otherwise.

For each variable (edge) xu,v, let wu,v denote its associated weight. Then an integer
programming formulation for the maximum-weight path cover problem can be stated
as:

max
∑

{u,v}∈E

wu,vxu,v

s.t.
∑

{u,v}∈E

xu,v ≤ 2 for all v ∈ V (5.1)

∑

{u,v}∈C

xu,v ≤ |C| − 1 for all cycles C ⊆ E (5.2)

xu,v ∈ {0, 1} for all {u, v} ∈ E

The objective function maximizes the total weight of the selected edges. The degree
inequalities (5.1) enforce each vertex to have at most two incident edges in the cover.
Their number is linear in |V |. The cycle inequalities (5.2) exclude any solutions that
contain cycles from the feasible set. In general, if the edge-set E is not sparse (it
could, e.g., be completely cycle-free), the number of possible cycles C ⊆ E may
be exponential in the size of the input data. This can be easily verified when
considering the number of vertex-subsets W ( V , which is clearly exponential in
|V |. For instance, in a complete graph, it is easy to create one or several cycles for
each subset W of cardinality at least three.
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5.1.1.1 Separation of the Cycle Inequalities

As discussed above, the number of cycle inequalities becomes impossible to be com-
pletely considered in a linear program for larger input sizes. We did not yet discuss
how to separate them. Exploiting that there are exactly |C| summands on the left
hand side, we subtract this value from both sides. This turns inequality (5.2) into:

∑

{u,v}∈C

(xu,v − 1) ≤ −1 for all cycles C ⊆ E

Now multiplying the inequalities with −1 yields the following form.

∑

{u,v}∈C

(1− xu,v) ≥ 1 for all cycles C ⊆ E (5.3)

The last version is more suitable to perform an efficient separation algorithm by
considering the so-called support graph. The support graph is equivalent to the
instance graph in terms of its vertices and edges, but with all the edges having
their LP values assigned as their weights. In this particular case, we however need
to use the ‘inverted’ LP values 1 − xu,v for each edge {u, v} ∈ E. Considering
inequalities (5.3), it is easy to see that a cycle inequality is violated, if and only if
we can find a pair of vertices s 6= t ∈ V such that there is a cycle in the constructed
support graph containing s and t of length strictly smaller than one. Conversely,
there is no violated cycle inequality, if and only if all shortest paths for different
pairs of vertices s, t ∈ V together with their ‘closing’ edges {s, t} do not admit such
a cycle. The separation of the cycle inequalities can therefore be carried out by |E|
shortest path computations [GJR85b].

5.1.2 Hamiltonian Path Formulation

We rely on the same definitions and variable semantics as defined for the path cover
formulation. However, we will now assume that the access graph G = (V,E) has been
completed by adding zero-weight edges. One way to formulate the maximum-weight
Hamiltonian path problem as an integer program would then be the following:

max
∑

{u,v}∈E

wu,vxu,v

s.t.
∑

{u,v}∈E

xu,v ≤ 2 for all v ∈ V

∑

{u,v}∈C

xu,v ≤ |C| − 1 for all cycles C ⊆ E

∑

{u,v}∈E

xu,v = |V | − 1 (5.4)

xu,v ∈ {0, 1} for all {u, v} ∈ E
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The formulation just stated coincides with the path cover formulation except for the
additional equation (5.4). It forces exactly |V | − 1 edges to be selected which is a
necessary condition to obtain a Hamiltonian path. The other inequalities and also
the maximizing objective function do not already impose this condition. This is true
especially for the case that G is not Hamiltonian without the artificially added zero-
weight edges. Then, without the additional equation, any path cover would be a
feasible solution and, the maximally weighted among them, would be even optimum
solutions.

To gain more advantages from the transformation, we strive to replace the cycle
inequalities by the following vertex-set-oriented inequalities.

x(E(W )) ≤ |W | − 1 for all W ⊆ V, |W | ≥ 2 (5.5)

Here, E(W ) is the subset of E consisting of all the edges with both endpoints in
the set W , i.e., E(W ) = {{u, v} ∈ E | u, v ∈ W}. Straightforwardly, x(E(W )) =
∑

{u,v}∈E(W ) xu,v is then the sum of the variables associated to E(W ). Inequali-
ties (5.5) exclude all possible cycles associated with each vertex set W ⊆ V from
the set of feasible solutions [DFJ54]. This is a stronger property than achieved with
the cycle inequalities that forbid exactly one cycle per inequality. There is also
symmetry in that if the inequality for W ⊆ V is satisfied, then it is also satisfied
for V \ W and vice versa. It is a well-known result [Hon72] from investigations
of the Traveling Salesman Problem (TSP) that inequalities (5.5) can be separated
in polynomial time. To use the corresponding separation procedure in practice, it
is however necessary to turn the degree inequalities into equations, i.e., to enforce
each vertex to have exactly two adjacent vertices in a feasible solution. Under these
preconditions, inequalities (5.5) are equivalent to

x(δ(W )) ≥ 2 for all W ⊆ V, |W | ≥ 2 (5.6)

where δ(W ) = {{u, v} ∈ E | u ∈ W and v 6∈ W} [DFJ54]. The violation of
inequalities (5.6) by LP solutions can now be tested by a minimum-cut computation
using the support graph. Looking at the inequalities, it also becomes clear why
it is necessary to have degree equations instead of inequalities. Let P ⊂ E be a
Hamiltonian path and let v ∈ V be some end vertex of P that has thus degree
one. Further, let u be adjacent to v in P . Then, inequality (5.6) is violated for
W = {u, v}, since the only edge in δ(W ) is the one leaving u to its other neighbor.
It is not possible to exclude the end vertices from the constraints, since it is of course
not known a priori which vertices will be end vertices of an optimum Hamiltonian
path. Hence, to circumvent this problem, we need to make sure that there is no
vertex in a solution that has a degree different from two. By replacing the degree
inequalities by equations, we have however turned the Hamiltonian path problem
into a Hamiltonian cycle problem. This has two major consequences. Firstly, we
need to allow cycles of full length, i.e., visiting all the graph’s vertices. This can be
done by restricting inequalities (5.6) to proper subsets W of V . They are then called
subtour elimination constraints (SECs). Secondly, we need to add an additional
vertex z to the graph, and to connect it to all original vertices using zero-weight
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edges. The vertex z then serves as a cutting point for the cycle in order to obtain
the Hamiltonian path that we really want to compute, like illustrated in Fig. 5.1.

u

z

v

u v

Figure 5.1: The role of the additional vertex z when turning a cycle into a path.

Without such a vertex, the cycle would have to be ‘closed’ using an original edge.
Since its weight would contribute to the objective function, this condition could lead
to different optima. It is misleading and not sufficient to simply remove the edge
with the smallest weight from a so computed cycle, since there might be a path
with larger total weight provided that there is no need to construct a cycle from it.
An example is shown in Fig. 5.2. Assuming M > 0, the four edges with weight M
form an optimal Hamiltonian cycle. Removing a minimum-weight edge results in an
Hamiltonian Path of length 3M . Selecting only two of the M -edges (dash-dotted)
permits to use the edge with weight M +1. The cycle must then be closed using the
zero-weight edge. However, after removing it again, we have obtained a Hamiltonian
path of length 3M + 1.

M

M

M

M

M + 1

0

Figure 5.2: A simple K4-counterexample that shows that optimal Hamiltonian
paths cannot always be constructed from Hamiltonian cycles if no additional vertex
is present. The Hamiltonian path consisting of the dotted and dash-dotted edges is
superior to any Hamiltonian path constructed by removing an edge from the optimal
Hamiltonian cycle (dashed and dash-dotted edges).

From now on, we assume that the vertex set V represents the program variables
V and comprises the mentioned additional vertex z. Similarly, the complete edge
set E is assumed to be appended by the zero-weight edges connecting z to all the
original vertices. The corresponding Hamiltonian cycle based integer programming
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formulation is then:

max
∑

{u,v}∈E

wu,vxu,v

s.t.
∑

{u,v}∈E

xu,v = 2 for all v ∈ V

x(δ(W )) ≥ 2 for all W ( V, |W | ≥ 2 (5.7)

xu,v ∈ {0, 1} for all {u, v} ∈ E

This formulation is equivalent to the associated standard formulation of the TSP,
except for the objective function. It has been already mentioned, that the sub-
tour elimination constraints provide stronger restrictions than the cycle inequalities.
Besides that, the transformation into a Hamiltonian cycle problem permits the ap-
plication of several strong inequalities known for the TSP. This, in turn, allows for an
improved separation of fractional LP solutions and might yield much better upper
bounds on the objective function. For a discussion of the many valid and facet-
defining inequalities for the TSP, the interested reader is kindly referred to the vast
pertinent literature, with [GP79a, GP79b, GP85, PR90, ABCC06] being potential
starting points. For our Hamiltonian cycle based solver implementations, we only
consider one additional class of facet-defining inequalities, namely the two-matching
inequalities [Edm65]. Using the same notation as for the SECs, they can be written
as the inequalities

x(E(H)) + x(T ) ≤ |H|+
1

2
(|T | − 1) for all H ( V and for all T ( E (5.8)

where H (typically called ‘the handle’) and T (‘teeth’) satisfy the conditions

(1) |e ∩H| = 1 for all e ∈ T (all teeth share exactly one vertex with the handle),

(2) all edges in T are vertex-disjoint,

(3) and |T | ≥ 3 and odd.

In our implementations, we use an exact and polynomial-time separation procedure
that has been proposed by Padberg and Rao [PR82], see also [PR90].

5.1.2.1 A Short Note on the Trade-Off Between Both Formulations

The main advantage of the path cover formulation is its smaller size for sparse access
graphs while the main advantage of the Hamiltonian path formulation is its stronger
separation potential due to the subtour elimination constraints.

If strong upper bounds are needed in order to prove optimality of a known feasi-
ble solution, then the Hamiltonian path formulation will typically perform better.
However, for smaller instances where the optimum objective function value nearly
matches the upper bound provided by the initial linear programming relaxation
(without any cycle inequalities and SECs respectively), the path cover variant may
well be faster.
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5.2 General Offset Assignment

To solve GOA to global optimality, we need to solve the two interdependent sub-
problems described in Sect. 4.3 and 4.4 in an integrated fashion, i.e., we need to
find a memory layout that will allow us to create the best possible address register
assignment.

A key observation is that the objective function is the only point where the memory
layout influences the concrete ARA network problem to be solved. The cost of an
access transition (u, v) in the network described in Sect. 4.4 is zero if and only if
the variables associated with u and v are equal or neighbors in the memory layout.
Otherwise, a positive cost cA reflecting the overhead of an additional address arith-
metic instruction is assigned. Moreover, there is no reason to not redefine this rule
for r > 1, i.e., to assign arcs (u, v) ∈ A the cost zero if u and v are no more than
r positions apart from each other and cA otherwise. However, in terms of modeling
the feasible solutions of GOA problems, it makes a considerable difference whether
r is equal to one or may be larger. We will now first discuss the approach for r = 1
and then proceed to the more general case.

5.2.1 Models Supporting Autoin-/decrement Instructions

For r = 1, the situation is similar to the one discussed in Sect. 5.1. Concerning
the memory layout, we have basically the same modeling opportunities as in the
SOA case. To avoid redundancy in the following descriptions, we restrict ourselves
to Hamiltonian cycle based formulations as it should be clear from Sect. 5.1 how
to derive the one-to-one-corresponding path cover variants from them. One issue
however should be mentioned: In order to use the path cover formulation for k > 1,
one may have to extend the access graph by zero-weight edges. It is not necessarily
required to make it complete like in the Hamiltonian path version, however, there
has to be a variable xu,v in the integer program for every pair of program variables
u, v such that u precedes v in the access sequence. This is necessary because xu,v will
be used to define the cost of the associated access transition (u, v) as is explained
in the following.

To model GOA completely, we will now always consider two graphs. Firstly, a
complete graph G = (V,E) with a vertex for each of the program variables V and
the additional vertex z ∈ V as described in Sect. 5.1.2. Secondly, we have a network
N = (VN , A) with VN = VS ∪ {s, t} where VS is a vertex set related to the accesses
contained in the input sequence S, just like in Sect. 4.4. Let AS = {(v,w) | v,w ∈
VS, v < w} and A = AS ∪ {(s, v) | v ∈ VS} ∪ {(v, t) | v ∈ VS}. Since all access
vertices in VS are instances of the program variables V represented by vertices of
the set V , we may define a corresponding unique mapping σ : VS → V . For ease of
reference, we further split the set AS into A6=

S = {(u, v) ∈ AS , σ(u) 6= σ(v)}, i.e.,
the set of arcs between accesses that do not refer to the same associated program
variable and, analogously, the set A=

S .
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In addition to the flow arc variables yu,v for each arc (u, v) ∈ A, we associate edge
decision variables xu,v ∈ {0, 1} with the edges {u, v} ∈ E that have no associated
costs. The variable xu,v is equal to one if the edge {u, v} is part of the computed
Hamiltonian cycle (u and v are neighbors in the memory layout), and zero otherwise.
Since G is undirected, the variables xu,v are by convention only defined for u < v.
Slightly disregarding mathematical precision, we write xσ(u),σ(v) when referring to

the associated edge decision variable of yu,v, (u, v) ∈ A6=
S , irrespective of whether

σ(u) < σ(v) or σ(u) > σ(v). Exploiting these variable relationships, we can express

the cost of an access transition yu,v with (u, v) ∈ A6=
S by (1− xσ(u),σ(v))cA while the

cost of each variable yu,v for (u, v) ∈ A=
S is zero. This leads to a first quadratic

integer programming formulation for GOA.

5.2.1.1 Quadratic Formulation

min
∑

(u,v)∈A 6=
S

(1− xσ(u),σ(v))cAyu,v +
∑

v∈VS

cLys,v

s.t.
∑

{u,v}∈E

xu,v = 2 for all v ∈ V

x(δ(W )) ≥ 2 for all W ( V, |W | ≥ 2
∑

(u,v)∈A

yu,v = 1 for all u ∈ VS

∑

(u,v)∈A

yu,v = 1 for all v ∈ VS

∑

v∈VS

ys,v ≤ k

xu,v ∈ {0, 1} for all (u, v) ∈ E

yu,v ∈ {0, 1} for all (u, v) ∈ A

This integer program is essentially the min-cost flow formulation from Sect. 4.4
appended by inequalities from Sect. 5.1.2 enforcing the edge variables to correspond
to a Hamiltonian cycle of G and with a new objective function linking the two
subproblems. The objective function simply sums up the terms (1−xσ(u),σ(v))cA for

all arcs (u, v) ∈ A6=
S and all costs

∑

v∈VS
cLys,v for initial address register loads.

The above integer program is quadratic in its objective function. We may linearize
it using the standard linearization approach. However, first we simplify. The term

min
∑

(u,v)∈A 6=
S

(1− xσ(u),σ(v))cAyu,v

can also be written as

min
(∑

(u,v)∈A 6=
S

yu,v −
∑

(u,v)∈A 6=
S

xσ(u),σ(v)yu,v
)
cA.
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Following Sect. 1.6, we then need |A6=
S | new variables zu,v = xσ(u),σ(v)yu,v and three

linearization constraints for each of the new variables:

zu,v ≤ xσ(u),σ(v)

zu,v ≤ yu,v

zu,v ≥ xσ(u),σ(v) + yu,v − 1

After this transformation, the objective function becomes:

min
∑

(u,v)∈A 6=
S

cAyu,v −
∑

(u,v)∈A 6=
S

cAzu,v +
∑

v∈VS

cLys,v

Clearly, the number of product variables to be introduced, |A6=
S |, must be strictly

smaller than the total number of flow arc variables which is (|S| + 2) · (|S| + 1)/2.
Hence, in total the linearized version of the above formulation has strictly less than
|V| · (|V| − 1)/2 + ((|S| + 2) · (|S| + 1)/2), i.e., O(|V|2 + |S|2) variables. As already
discussed in Sect. 5.1.2, the number of subtour elimination constraints is exponential
in |V| such that it is preferable to not consider all of them from the beginning. The
number of remaining nontrivial constraints is strictly less than 1 + |V|+ 2(|S|+ 2) +
3((|S|+ 2) · (|S|+ 1)/2), i.e., O(|V|+ |S|2).

Remarkably, due to the properties of the min-cost flow part addressed in Sect. 4.4.4,
all these numbers are independent from the number k of ARs available. The more
access pairs in S refer to the same variable, the less product variables and associated
constraints are needed.

5.2.1.2 Linear Formulation

By further inspection and by exploiting the fact that there are only two cases for
each arc (u, v) ∈ A6=

S , namely that it either has the assigned cost cA or assigned
cost zero, the problem can be linearized inherently, that is without generating any
products that need a subsequent linearization. The main idea is to replace every
variable (arc) between two accesses yu,v, (u, v) ∈ A6=

S by two new variables (arcs) y0u,v
and ycu,v reflecting the two mentioned cases (cf. Fig. 5.3). The set A6=

S is therefore
once more split into the corresponding new arc sets A0

S and Ac
S . For every arc

(u, v) ∈ A=
S , we keep the former variable yu,v with zero cost as before. We also skip

the superscript when referring to flow variables disregarding their costs or if only
one instance exists.

u v
(1− x

σ(u),σ(v))cA
u v

cA

0
⇒

Figure 5.3: Replacing arcs with dynamic costs by two arcs with static costs.

The new network N has now the arc set A = A0
S∪A

c
S∪A

=
S ∪{(s, v) | v ∈ VS}∪{(v, t) |

v ∈ VS}. The new objective is of course to minimize the selected arcs with positive
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costs assigned. This is a linear expression in the set of variables. However, we now
have to restrict the use of zero-cost arcs. As before in the quadratic model, it should
only be possible to use them if the corresponding variables are neighbors in the
access sequence. With the newly introduced variables this can easily be enforced
using the following constraints:

y0u,v ≤ xσ(u)σ(v) for all (u, v) ∈ A0
S

The following constraint is also valid for the model:

ycu,v ≤ 1− xσ(u)σ(v) for all (u, v) ∈ Ac
S

However, since zero-cost arcs are preferred by the objective function, there will never
be a variable ycu,v = 1 in an optimum solution where also xσ(u)σ(v) = 1, even if these
constraints are not present. Therefore, this constraint will also have only marginal
impact on the solution process and can be omitted.

A complete linear IP formulation for GOA with r = 1 is then:

min
∑

(u,v)∈Ac
S

cAy
c
u,v +

∑

v∈VS

cLys,v

s.t.
∑

{u,v}∈E

xu,v = 2 for all v ∈ V

x(δ(W )) ≥ 2 for all W ( V, |W | ≥ 2
∑

(u,v)∈A

yu,v = 1 for all u ∈ VS

∑

(u,v)∈A

yu,v = 1 for all v ∈ VS

∑

v∈VS

ys,v ≤ k

y0u,v ≤ xσ(u)σ(v) for all (u, v) ∈ A0
S

xu,v ∈ {0, 1} for all (u, v) ∈ E

yu,v ∈ {0, 1} for all (u, v) ∈ A

The number of variables is the same as in the quadratic formulation since essentially
for each (u, v) ∈ A6=

S the product variable zu,v is replaced by a second flow arc variable

ycu,v. However, 2|A6=
S | less constraints are needed.

5.2.2 Models Supporting General Auto-Modify Instructions

If the processor supports offset ranges r strictly larger than one, the mathematical
modeling of the associated optimization problem becomes much more complicated
as has already been discussed in Sect. 4.3.2. The only straightforward way to model
the problem correctly appears to be via using assignment variables that encode the
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position of the program variables explicitly. We will now develop a formulation that
has considerably less variables and constraints than previously published assignment-
based formulations [WG97, OKT06] while preserving the advantages of our model
for r = 1.

In the assignment problem, we have variables xi,p that take value one if item i is
placed at position p and zero otherwise. To model the stack memory layout for
n = |V| variables, we need exactly n2 variables, since any variable may be placed at
any position p ∈ P,P = {1, . . . , n}. Clearly, every variable v ∈ V must be assigned
exactly one position p ∈ P and each position p ∈ P must be assigned exactly one
variable v ∈ V. Hence, the corresponding constraints of the assignment problem are:

∑

p∈P

xv,p = 1 for all v ∈ V

∑

v∈V

xv,p = 1 for all p ∈ P

Let xu,a = 1 and xv,b = 1 with u 6= v and a 6= b. Then, an access transition u→ v has
cost zero if and only if |b−a| ≤ r. For the following discussion, we introduce auxiliary
variables ru,v for each pair of different variables u, v ∈ V, expressing whether u and
v are placed within range r or not. We will however not need these variables for the
subsequently developed integer program. With the auxiliary variables at hand, we
may express the following constraints:

ru,v ≥ xu,b + xv,a − 1 for all u < v ∈ V and a < b s.t. |b− a| ≤ r

ru,v ≥ xu,a + xv,b − 1 for all u < v ∈ V and a < b s.t. |b− a| ≤ r

These inequalities force ru,v to become one as soon as the assignment of positions
to u and v is such that their distance is at most r. Further, they never enforce ru,v
to be greater than one. We may also directly combine the constraints as follows:

ru,v ≥ xu,b + xu,a
︸ ︷︷ ︸

≤1

+xv,a + xv,b
︸ ︷︷ ︸

≤1

−1 for all u < v ∈ V and (5.9)

a < b s.t. |b− a| ≤ r

On the other hand, we must make sure that ru,v is never assigned value one if the
two variables are not placed within range r using the following constraints:

ru,v ≤ 2− xu,b − xu,a − xv,a − xv,b for all u < v ∈ V and (5.10)

a < b s.t. |b− a| > r

In total, this would already amount to
(
n
2

)(
n
2

)
constraints, having not yet formu-

lated constraints that restrict the use of the zero-cost flow arc variables. However,
we can still improve on that. First of all, for the same reason as in the linear IP
presented in Sect. 5.2.1.2, we do not need to care about the positive cases that
permit to use a flow arc variable y0u,v but only forbid those cases where the use of
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y0u,v is prohibited. Hence, we can completely omit the constraints (5.9). Now, we
take a closer look on constraints (5.10) again, keeping in mind that each variable
v ∈ V can be assigned at most one position from any proper subset Q of P , i.e.,
∑

p∈Q xv,p ≤ 1 for all v ∈ V and Q ⊂ P . Say variable u is fixed at position a, then
all the positions of v that make the transition u → v have nonzero cost are the
positions p ∈ [1, a − r − 1] and p ∈ [a + r + 1, n]. Hence, by fixing one position, we
can reformulate (5.10) by:

ru,v ≤ 2− xu,a −
a−r−1∑

p=1

xv,p −
n∑

p=a+r+1

xv,p

︸ ︷︷ ︸

≤1

for all u < v ∈ V and a ∈ P

Since we now exactly characterized under which conditions two variables u and v
are not within range r, we can again exploit this to apply the correct restriction on
the use of each zero-cost flow arc variable y0u,v:

y0u,v ≤ 2− xu,a −
a−r−1∑

p=1

xv,p −
n∑

p=a+r+1

xv,p for all (u, v) ∈ A0
S and a ∈ P (5.11)

For any of the at most
(
|S|
2

)
variables y0u,v, there are at most n positions where u

can be fixed at, so we obtain only O(|S|2 · |V|) constraints (5.11) in total. The full
IP formulation is then:

min
∑

(u,v)∈Ac
S

cAy
c
u,v +

∑

v∈VS

cLys,v

s.t.
∑

p∈P

xv,p = 1 for all v ∈ V

∑

v∈V

xv,p = 1 for all p ∈ P

∑

(u,v)∈A

yu,v = 1 for all u ∈ VS

∑

(u,v)∈A

yu,v = 1 for all v ∈ VS

∑

v∈VS

ys,v ≤ k

y0u,v ≤ 2− xu,a −
a−r−1∑

p=1

xv,p −
n∑

p=a+r+1

xv,p for all (u, v) ∈ A0
S and a ∈ P

xv,p ∈ {0, 1} for all v ∈ V and p ∈ P

yu,v ∈ {0, 1} for all (u, v) ∈ A

Being more precise, the model has |V|2 + ((|S|+ 2) · (|S|+ 1)/2), i.e., again O(|V|2 +
|S|2) variables. The number of nontrivial constraints is bounded from above by
1 + 2|V| + 2(|S|+ 2) + ((|S|+ 2) · (|S|+ 1)/2) · |V|, i.e., O(|V| · |S|2).
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5.3 Branch-and-Cut Implementations

The preceding sections give rise to several solver implementations. The following
list provides an overview of the different implemented branch-and-cut algorithms.

• SOA-HC: The SOA solver based on Hamiltonian cycle computations.

• SOA-PC: The SOA solver based on path cover computations.

• GOA-HC: The inherently linear GOA solver based on Hamiltonian cycle com-
putations.

• GOA-PC: The inherently linear GOA solver based on path cover computations.

• GOA-QHC: The linearized (originally quadratic) GOA solver based on Hamilto-
nian cycle computations.

• GOA-QPC: The linearized (originally quadratic) GOA solver based on path cover
computations.

• GOA-ASS: The linear GOA solver based on the assignment problem formulation.

The solvers adhere to the general branch-and-cut scheme as described in Sect. 1.5,
relaxing integrality and the respective classes of inequalities that shall be separated.
We report on the solver-specific details in terms of cutting plane generation and
primal heuristics in the subsequent sections.

Unlike in the case of the scheduling solver implementation (see the discussion in
Sect. 3.6.6, it has been found acceptable to implement and test the presented offset
assignment models using the commercial IP solver CPLEX 12.6 [CPL13], aware
of the fact that the internal mechanisms of a commercial tool may contribute to
their sustained performance. For instance, CPLEX may decide to separate further
general cutting planes for integer programs and uses a set of internal heuristics,
e.g., to select the variables to branch on. We disabled internal presolving techniques
that are not compatible with the application of cutting planes but adopted all other
default parameters.

The difference compared to the situation in the scheduling chapter is that, in the
offset assignment context, the models presented are the very first methods capable to
solve a larger set of instances at all. In this sense, there is no danger that they appear
superior to the rare other existing methods just by means of some black-box features.
In addition, the following experiments do not primarily aim at providing running
time results but are also an evaluation of the impact of certain processor features on
the overall address computation overhead, and of the quality of heuristic solutions.
For these purposes, it is reasonable to look at the implementations rather as an
assessment of the practical applicability of the underlying concepts with emphasis
on exploring how far one can go if fast branch-and-cut frameworks are at hand. This
is sensible as well in terms of obtaining a maximum number of optimal solutions to
the reference benchmark instances, permitting a maximum number of comparisons
to heuristic solutions.
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5.3.1 Cutting Plane Generation

For the path-cover-based solvers, the cycle inequalities are separated as described in
Sect. 5.1.1.1. In case of the Hamiltonian-cycle-based solvers, the separation routine
for subtour elimination constraints is called first. If it finds violated inequalities,
these are added to the LP and the separation procedure terminates. If it does not
find any cuts and the LP solution has fractional components, the exact separation
procedure for two-matching-inequalities [PR82] is invoked.

We also decided to separate inequalities (5.11) from Sect. 5.2.2 in the assignment-
based solver implementation. Although their number is polynomial in the size of
the input data, these inequalities quickly become a limitation for larger instances
due to increased LP solution times. Moreover, typically only a fraction of them is
in fact required (i.e., ever violated) during the solution process.

5.3.2 Primal Heuristics

The implemented methods follow the general idea that variables with an LP value
close to one are likely to be part of a good or even optimal solution. In particular, we
greedily construct a memory layout based on the LP solution. For the SOA solvers,
this is already sufficient. For the GOA cases, we exploit the condition that we can
compute an optimal ARA for a given memory layout relatively quickly in practice.

The pseudocodes that are listed as Alg. 4-6 illustrate the procedures. In case of the
path cover and Hamiltonian-cycle-based solvers, we iteratively select feasible edges
{u, v} in nonincreasing order of the LP values of their corresponding variables xu,v
as long as this is feasible. More precisely, for the SOA variants, we use the LP
values multiplied with the respective cost coefficients. There is nearly no difference
between the two associated procedures since we, also in the path cover version, sim-
ulate a complete graph and assume negative LP values for all the truly nonexisting
edges that only serve for concatenations. This artificially moves them to the end
of the sorted array. For the assignment-based solver, we assign each program vari-
able v ∈ V the free position that is mostly preferred by its assignment variables
xv,p, p ∈ {1, . . . , n}. After constructing an offset assignment like this, the network
flow problem from Sect. 4.4.2 is solved to find an optimal ARA.

5.4 Heuristics

Since quality results of several heuristics in relation to optimum solutions have been
published already in [JM13, ML14, Mal14] and the emphasis in this thesis is on the
exact approaches, only a few heuristics are incorporated in the following experiments.
They are selected in such a way that it is possible to give an impression of how large
the gaps of well-performing heuristic methods on the one hand, and naive ones on
the other, are in practice. A naive approach to SOA is to construct a memory layout
simply by the order of first use (OFU) of the program variables. We will denote
such a method by SOA-OFU. The best performing SOA heuristic in [Leu03, JM13] is
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Algorithm 4 Primal Heuristic Framework

function primalHeuristic(x, N = (VN , A))
OA← ComputeOffsetAssignment(x)
SetCosts(N , OA) # Set arc costs based on distances in OA
ARA← MinCostFlow(N)

Algorithm 5 Memory Layout Subroutine (Hamiltonian Cycle/Path Cover Version)

function computeOffsetAssignment(x)
G = (V,E) # Complete graph
Sort(E, x) # Sort edges nonincreasingly w.r.t. their LP values
InitializeUnionFind(V )
n← |V |, m← |E|
select← ∅, count← 0
for i = 1→ n do

deg(i)← 0 # Initialize degrees to zero

for i = 1→ m do
e = {u, v} ← E[i]
if deg(u) < 2, deg(v) < 2, count < n− 1 and (Find(u) 6= Find(v)) then

select← select ∪ {e}, count← count + 1
deg(u)← deg(u) + 1, deg(v)← deg(v) + 1
Union(u, v)

OA← CreatePath(select) # Join edges at common vertices
return OA

Algorithm 6 Memory Layout Subroutine (Assignment Version)

function computeOffsetAssignment(x)
n← |V|
for p = 1→ n do

pos[p]← free # Initialize all positions p ∈ P = {1, . . . , n} to be unassigned

Xmax ← Array of LP-values max{xv,p | p ∈ {1, . . . , n}} for each v ∈ V
Sort(V , Xmax) # Sort variables V nonincreasingly w.r.t. Xmax

for i = 1→ n do
v ← V [i]
Xv ← Array of LP-values xv,p for each p ∈ {1, . . . , n}.
Sort(P,Xv) # Sort positions p ∈ P nonincreasingly w.r.t Xv

for j = 1→ n do
p← P [j]
if pos[p] is free then

pos[p] = v
OA[v] = p

return OA
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called SOA-INC-TB. It combines an incremental method by Atri et al. [ARK01] with
a tie-breaking that was proposed by Leupers and Marwedel [LM96].

For GOA, it turned out that it is typically more suggestive to first set up a memory
layout and to compute then an optimal ARA for this layout instead to partition the
problem into multiple SOA subproblems [ML14]. For r > 1, this appears to be even
more advisable since most of the existing SOA algorithms used as subroutines are
designed for r = 1 (they iteratively select edges) and it is not trivial to generalize
them. In contrast to that, Gebotys’ network model is easy to adapt for arbitrary
auto-modify ranges as already discussed in Sect. 5.2 and also exploited by our primal
heuristics. We therefore combine the optimal ARA approach with the two above
mentioned heuristics to compute (SOA) memory layouts. The algorithms will re-
spectively be referred to as GOA-OFU-MCF and GOA-ITB-MCF. Called with k = 1, they
produce the same results as their SOA counterparts.

5.5 Experimental Results

5.5.1 OffsetStone

The following experiments are carried out with the OffsetStone benchmark set that
has been extracted from 31 real-world application programs written in ANSI C.
Among them are computationally intensive ones (e.g., audio, video and image com-
pression, Fourier transformation) as well as control-dominated applications (e.g.,
gzip). It has been frequently used in publications dealing with offset assignment
and therefore allows for meaningful comparisons. For details on how the instances
were extracted, we refer to the original paper [Leu03].

We considered all the 2, 785 instances that consist of at least three program variables.
Some statistics about their distribution are given in Fig. 5.4 and Fig. 5.5. For
experiments that are carried out only on subsets of the instances, statistical data
about these will be given separately. The maximum number of variables occurring
is 1, 336 and there is a longest access sequence of length 3, 340 with 678 variables.
However, in general, the instances are such that there are multiple access sequences
associated with one program variable set. Hence, in the GOA case, multiple min-cost
flow subproblems need to be solved per instance, all referring to the same memory
layout. In this sense, the cumulated access sequence lengths depicted in Fig. 5.5 and
Fig. 5.7 are the values obtained by summing up all the sequence lengths that belong
to the same instance. Further, OffsetStone comprises sequences that refer to disjoint
subsets of program variables such that the instances can be decomposed. This has
also been exploited within all (including the heuristic) implementations.

5.5.2 Test System

All experiments were run single-threaded with an Intel Core i7-3770T processor
(2.5 GHz) on a Debian Linux system with 8 GB RAM, g++ 4.7.2, and optimization
level -O2. CPU running times are averaged over five runs.
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Figure 5.4: Distribution of instances among the benchmarks of OffsetStone.
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instances.

5.5.3 Min-Cost Flow Implementation

For all minimum cost flow computations (by the primal heuristics used in the exact
solvers as well as by the usual GOA heuristics), we called the network simplex
algorithm [Orl96] provided by the LEMON C++ library [DJK11] in version 1.3. The
asymptotic running time of the network simplex algorithm strongly depends on the
used pivoting rule. We relied on the default block search rule of the library [KK12]
that has a worst-case time bound of O(nm2) with n = |VN | and m = |A| (since, due
to the assumption cA = cL, we have capacities and costs only zero and one), but
typically performs much better in practice.
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5.5.4 Simple Offset Assignment

We first consider the case r = 1 and compare the two SOA solver implementations
with each other. On our test system, SOA-HC is able to solve all but two instances
to optimality in less than ten seconds of CPU time (cf. Tab. 5.1). One of the
instances, mp3 86, is the one with the largest number of variables and also a very
long access sequence. The other one is also among the few largest instances contained
in OffsetStone. Both can be solved by investing only a little more computation time.
For a few instances, the separation of the two-matching inequalities was crucial for
obtaining this performance. For example, the instance motion 0 (with 280 program
variables and a sequence of length 734) took 35.83 seconds without the additional
cutting planes. However, in this very restrictive case with only a single register and
only autoin-/decrements, they were not critical for whether an instance could or
could not be solved at all.

sequence lengths
instance #vars #seqs min max sum SOA-HC

cavity 0 569 265 1 189 1, 603 10.60
mp3 86 1, 336 169 1 202 3, 640 29.21

Table 5.1: The instances where SOA-HC timed out after ten seconds of CPU time.

In contrast to that, SOA-PC could not solve six instances within 60 seconds of CPU
time (while most of them can be solved in less than a second by SOA-HC) and there
were also three more instances, that needed more than ten seconds (cf. Tab. 5.2).
This could be expected. For some rather small and ‘easier’ instances where the
gap of the LP bounds and the quality of the first solutions found hardly differ, the
path cover formulation is faster in many cases. However, when it comes to proving
the optimality of found solutions in harder instances, the Hamiltonian-cycle-based
formulations perform better since their cutting planes have a stronger impact on
the bounds. Although the bound obtained with SOA-PC is also typically close to the
optimum, it also fails more often in closing the gap entirely.

sequence lengths
instance #vars #seqs min max sum SOA-PC

anthr 36 133 29 1 43 326 10.33
anthr 52 414 95 1 37 1, 059 > 60.00
bdd 68 221 62 1 42 508 > 60.00
f2c 72 290 218 1 19 739 > 60.00
cavity 0 569 265 1 189 1, 603 14.49
mp3 86 1, 336 169 1 202 3, 640 > 60.00
jpeg 293 73 4 1 96 194 > 60.00
jpeg 296 147 70 1 130 395 12.37
motion 0 280 37 1 53 734 32.41
mpeg2 15 184 77 1 71 491 11.82
mpeg2 90 170 100 1 38 402 > 60.00

Table 5.2: The instances where SOA-PC timed out after ten seconds of CPU time.
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Fig. 5.6 shows the average quality of SOA-OFU and SOA-INC-TB on all 2, 785 Off-
setStone instances with at least three program variables. While the naive approach
leads to a significant address computation overhead, the results of the greedy heuris-
tic are already near-optimal. Considering single instances, we recognized maximal
overheads for SOA-INC-TB of 12.5%. The SOA-OFU memory layouts however lead
to sometimes more than twice explicit address arithmetic instructions as necessary.
The SOA results presented here marginally differ from the presentation in [JM13]
which is for two reasons. Firstly, the experiments there were carried out for in-
stances with at least ten program variables. Secondly, the unavoidable cost for the
first initialization of the address register was not counted there, leading to different
quotients when computing the relative quality.
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Figure 5.6: Average Quality of the selected SOA heuristics on OffsetStone.

It is of course possible to use the GOA solvers with k = 1 to solve the SOA prob-
lems. However, the complexity of the integer programs is higher due to the ARA
subproblem parts and the linkage of the two subproblems in the objective function
only will typically lead to weaker bounds than in the case of static cost coefficients.
When GOA-HC (GOA-QHC) is used for the k = 1 case, eleven (thirteen) instances time
out after ten seconds. With GOA-PC (GOA-QPC), thirteen (fifteen) instances time out.
Each time, one further instance, dct unrolled 0, fails to complete due to memory
limitations. The instance has a single access sequence of length 3, 440 leading to a
very large flow network with more than

(3,442
2

)
arc variables.

With a time limit of 60 seconds of CPU time, 2, 859 of the 2, 875 instances could
be solved by all of the solvers except GOA-ASS. The total running times taken by
these solvers as well as by the two heuristics are listed in Tab. 5.3. In total, the
advantages of the Hamiltonian cycle formulation for more difficult instances more
than compensate the slight disadvantages for the smaller ones.
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SOA-OFU SOA-INC-TB SOA-HC SOA-PC GOA-HC GOA-PC GOA-QHC GOA-QPC

1.47 1.97 37.87 79.19 85.29 80.92 146.38 149.54

Table 5.3: The total running times (in seconds) taken by various algorithms for
2, 859 instances.

5.5.5 General Offset Assignment

In the following experiment, we keep r = 1 fixed, but increase k. The precise
numbers of timeouts (after ten seconds) of the exact GOA solvers (except GOA-ASS),
are given in Tab. 5.4. Raising the time limit to 60 seconds again, we found that 2, 709
of the 2, 875 instances could be solved by all of them for all tested numbers of address
registers. The total running times on these instances are given in Tab. 5.5. With
increasing k, the relative performance of the path-cover-based and Hamiltonian-
cycle-based solvers changes. While in the SOA case, the Hamiltonian cycle versions
were typically slightly superior, GOA-PC has less timeouts within ten seconds and
also better running times for k ≥ 2 than GOA-HC. So in these cases, the advantages
that the path-cover-based solvers gain from the sparsity of the OffsetStone instance
(see also the discussion below) dominate the former advantage of the Hamiltonian-
cycle-based solvers with their stronger separation opportunities. One can also see
in Tab. 5.5 that the artificially linearized versions perform recognizably worse than
their inherently linear counterparts. Remarkably, the number of timeouts and also
the running times increase up to k = 4, but then slightly decrease again for k = 8.
This however fits well with the quality results presented in Fig. 5.8, in that the
total addressing cost for the OffsetStone instances can hardly be improved using
more than four address registers. While the lower bounds provided by the LPs do
typically not change significantly when increasing k, the primal heuristics have more
opportunities (symmetric in their cost) to find good solutions. However, considered
in relation, the differences are rather small and in any case (even for GOA-ASS), the
numbers of timeouts increase only moderately with increasing k.

GOA-HC GOA-PC GOA-QHC GOA-QPC

k = 1 11 (0.40%) 13(0.47%) 13(0.47%) 15(0.54%)
k = 2 33 (1.19%) 25(0.90%) 54(1.94%) 35(1.26%)
k = 4 56 (2.01%) 46(1.65%) 95(3.41%) 78(2.80%)
k = 8 54 (1.94%) 45(1.62%) 86(3.09%) 76(2.73%)

Table 5.4: r = 1: Number of instances not solved by exact solvers after ten seconds.

GOA-HC GOA-PC GOA-QHC GOA-QPC

k = 1 40.10 31.73 52.74 43.49
k = 2 194.96 126.52 419.97 267.91
k = 4 276.39 161.88 981.50 572.77
k = 8 226.61 136.99 798.23 500.81

Table 5.5: r = 1: Total running times (in seconds) taken by all the exact GOA
algorithms except GOA-ASS for 2, 709 instances.
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GOA-ASS is not at all competitive to the other exact solvers for r = 1. With a
time limit of ten seconds, it times out on 1, 253 instances (cf. Tab. 5.6). Its primal
heuristic works well, but for many instances the basic constraints of the assignment
problem part do not suffice in order to obtain lower bounds that prove optimality
of known solutions. However, though its considerably worse performance compared
to the other solvers, GOA-ASS solves already 10− 20% more instances for r = 1 than
the implementation of the approach by Ozturk et al. in [ML14] and, except for the
already mentioned instance dct unrolled 0, it never failed to solve a problem due
to memory limitations which was often the case for the latter.

We now consider not only autoin-/decrement instructions, but also larger auto-
modify ranges. Since it can be assumed that the ranges are realized by reserved bits
in the instruction opcode, we consider the cases r = 1, r = 3, and r = 7 associated to
two, three and four bits respectively (each time with one sign bit). With increasing
auto-modify ranges, GOA-ASS performs better which can be similarly explained as its
bad performance for r = 1. With increasing r, the concrete memory layout becomes
less important for an optimal address register assignment since more arcs in the min-
cost flow network can be used without cost in any case. This effect is even stronger
if the access sequence lengths are rather small which is often the case in OffsetStone
as can be seen in Fig. 5.5. Hence, the lower bounds obtained from the LP and the
upper bounds obtained by solutions found by the primal heuristics are much closer
to each other and optimality of the latter can be proven much more often.

GOA-ASS r = 1 r = 3 r = 7
k = 1 1, 253 (44.99%) 924 (33.18%) 472 (16.95%)
k = 2 1, 245 (44.70%) 880 (31.60%) 471 (16.91%)
k = 4 1, 246 (44.74%) 888 (31.89%) 477 (17.13%)
k = 8 1, 252 (44.96%) 881 (31.63%) 477 (17.13%)

Table 5.6: Number of instances not solved by GOA-ASS after ten seconds.

We identified 1, 480 instances with up to 200 program variables that GOA-ASS could
solve to optimality for all tested choices of k and r within the time limit of ten sec-
onds. If an exact solver for arbitrary r is desired for practical application, GOA-ASS
could be improved by several means, e.g., by adding additional cutting planes that
are valid for (quadratic) assignment problems. In general, the quadratic nature of
the problem and its interdependent structure of two subproblems suggests a refor-
mulation as a semidefinite program or the application of Bender’s decomposition
approach. The latter is even more suggestive due to the fact that the min-cost-flow
subproblem is polynomial-time solvable. In this sense, GOA-ASS is to be seen as a
‘proof of concept’ to produce first results for r > 1 that allows to evaluate heuristics
and the effect of exploitation of larger auto-modify ranges on the quality of address
code generation.

Investing more computation time, we derived optimal solutions for 1, 918 of the
2, 785 instances for all mentioned combinations of r and k. For these instances, we
display again the distribution of the number of variables and access sequence lengths
in Fig. 5.7. As already mentioned, the number of longer access sequences is rather
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small which is one of the reasons why the instances become ‘easier’ or faster to solve
for GOA-ASS with increasing r.
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Figure 5.7: Distribution of the number of variables and access lengths across 1, 918
selected OffsetStone instances.
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Figure 5.8: Offset Assignment Costs with varying autoin-/decrement ranges and
numbers of address registers on 1, 918 selected OffsetStone instances.

Fig. 5.8 shows the impact of the various configurations for r and k on the total offset
assignment cost, accumulated over all of the 1, 918 instances. The central observation
is that the amount of address code can be considerably reduced when exploiting
larger auto-modify ranges. At least for the evaluated instances, it appears that the
reduction potential by increasing r is much higher than by increasing k since the
offset assignment costs do not further decrease significantly for k > 2. However, this
is partially also due to the already discussed character of the instances. The results
approve the already in [ML14] observed impression, that the performance loss when
using the proposed heuristics is rather small - also for increasing auto-modify ranges.
Like for the SOA case, the GOA-ITB-MCF-layout is already a considerably better basis
for the ARA part than an order-of-first-use layout. However, there is even more
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potential in achieving near-optimal solutions by generating memory layouts that are
not SOA-oriented but already take larger auto-modify ranges into account. Using
an optimum address register assignment is worthwhile and computationally not too
intensive so that it can be performed in production compilers. Irrespective of the
r-k combinations, the heuristics are fast; their running times sum up to less than
half of a second, although many small min-cost flow problems need to be solved.
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Programming Lang. Implem. and Logic Programming, volume 528 of
LNCS, pages 75–86. Springer, 1991.

[Eri11] M. Eriksson. Integrated Code Generation. PhD thesis, Linköping
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