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Zusammenfassung 

In dieser Dissertation werden ebene, biokompatible dielektrische und metallische 

Oberflächen untersucht, die unter anderem mit selbstorganisierenden Monoschichten 

und funktionalisierten Gold-Nanopartikeln modifiziert werden. 

Die Adhäsion und die Führung von Zellen (namentlich Neuronen) auf Substraten sind 

wichtige, und herausfordernde Aspekte der Bioelektronik. Die Optimierung und 

Modifizierung der Substrateigenschaften kann den Kontakt zwischen Zellen und 

Oberflächen sowie die Signalübertragung und Überlebensrate der Zellen potentiell 

verbessern. Heutzutage ist klar, dass Zellen über Proteine mit der Umgebung 

wechselwirken. Im Rahmen physikalischer Betrachtung bedeutet dies eine 

elektrostatische Wechselwirkung. Allerdings sind die Proteine (die für die Zelladhäsion 

verantwortlich sind) und die Mehrheit der anorganischen Substrate in Wasserlösungen 

negativ geladen. Dies führt zu elektrostatischer Abstoßung und beeinträchtigt 

dementsprechend die Adhäsion.  

Die Benutzung funktionalisierter anorganischer Nanopartikel erlaubt die Modifizierung 

der Oberflächeneigenschaften verschiedener Materialien und verfeinert die 

Zelladhäsion. Darauf aufbauend sind in dieser Dissertation ebene, biokompatible 

dielektrische und metallische Oberflächen untersucht worden, die mit organischen 

Molekülen und funktionalisierten Gold Nanopartikeln modifiziert wurden. Als 

Messmethode diente eine optimierte Analyse des Oberflächenpotentials in Kombination 

mit unterschiedlichen Hilfsmethoden (z.B. Ellipsometrie, Wasser-

Kontaktwinkelmessungen und Rasterelektronenmikroskopie). Außerdem wurde die 

Beschichtungsanlage für die molekularen Schichten, inklusive einer in-situ Reinigung 

und Aktivierung sowie einer elektronischen in-situ Analyse durch Kapazitiv- und 

Mikrowellenmessungen, entwickelt und getestet. Während dieser Arbeit sind die 

Beschichtungs- und Funktionalisierungsprozesse  von Gold-Nanopartikeln sowie die 

Strömungspotential/Strömungsstrom Experimente für die Analyse des 

Oberflächenpotentials von Substraten und Schichten verbessert und optimiert worden. 

Mit Hilfe unserer pH- und zeitabhängigen Analyse des ζ Potentials, können wir die 

unterschiedlichen Typen „einfacher“ (z.B. verschiedene biokompatible Substrate, 

metallische Schichten, Graphen) und komplexer (z.B. Molekulare Schichten, 

funktionalisierte Gold Nanopartikel) Grenzflächen untersuchen. Für die Modifizierung 

von Oberflächen können wir außerdem die geeignetsten Kandidaten entsprechend ihrer 

Oberflächenladungen (z.B. organische Moleküle mit unterschiedlichen funktionalen 

Gruppen) bestimmen. Unsere weit gefächerte Analyse erlaubt die Stabilität der 

gegebenen Oberfläche zu bestimmen und die Veränderung des Oberflächenpotentials 

aufgrund von Oberflächenmodifizierungen (z.B. Beschichtung von Gold Nanopartikeln) 

zu überwachen. 

  



 

 

Abstract 

In this dissertation, planar biocompatible dielectric and metal surfaces, modified with 

self-assembling organic monolayers and functionalized gold nanoparticles are studied.  

In the field of bioelectronics, adhesion and guiding of cells (especially neurons) on a 

substrate is of great importance, and withal a hard challenge. Optimization and 

engineering of properties of a carrier (biocompatible inorganic substrates) can 

potentially improve the contact between cells and substrates, increase the survival rate 

of cells and improve the signal transfer. Nowadays it is clear, that the cell interacts with 

outer world via proteins, which, following the physical approach, interact with the 

surface via electrostatic interaction. Unfortunately, in aqueous environment, proteins 

responsible for the cell adhesion as well as most inorganic substrates bear a net negative 

surface charge that leads to an electrostatic repulsion and, consequently, impairs 

adhesion. 

The use of functionalized organic molecules or inorganic nanoparticles allows 

engineering the surface properties of various materials in order to facilitate the cell 

adhesion. Therefore, in this dissertation, planar biocompatible dielectric and metal 

surfaces modified subsequently with organic molecules, and functionalized gold 

nanoparticles are characterized via an optimized surface potential analysis in 

combination with other supporting techniques (e.g. ellipsometry, wetting angle and 

SEM). Additionally, a setup for the deposition of molecular monolayers, including in-situ 

cleaning and activation, accompanied by in-situ electronic analysis via capacitive and 

microwave measurements is developed and tested. During this work, the deposition and 

functionalization of AuNPs as well as a streaming potential/streaming current 

experiment for the analysis of the surface potential of the substrates and layers were 

improved and optimized.  

Using especially the time- and pH-dependent analysis of the 𝜁 potential, we can analyze 

the various types of ‘simple’ (e.g. various biocompatible substrates, metallic layers, 

graphene) and complex (e.g. molecular monolayers, functionalized gold nanoparticles) 

interfaces and identify possible candidates for the modification of a given surface with 

respect to their surface potential (e.g. organic molecules with different 

functionalization). Finally, our extended analysis allows us to determine the stability of 

a given surface and monitor the change of the surface potential due to the engineering 

of a surface (e.g. via deposition of gold nanoparticles). 
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I. Introduction 

The properties of the surface represent maybe the most important constrain for the 

formation of any type of sample on the surface. This holds for inorganic (e.g. thin films), 

organic (e.g. molecular layers) as well as biological (e.g. cells) samples. Generally, 

surface is a discontinuity that terminates a phase. The phase may terminate at a vacuum 

or at the surface of another phase. The latter is also called an interface. An “ideal” or 

“free” surface is the interface between a solid or liquid and vacuum. Such a surface can 

be represented by a surface energy, which is a measure of the capacity of unsatisfied 

bonds of the surface (Figure 1). 

 

Figure 1: Schematic representation of the unsatisfied bonding capacity at a free surface 
(Adapted from: [1]). 

At molecular scale, the adhesion of any species to the surface strongly depends on the 

surface properties of the substrate and is defined by the bonding capacity (i.e. surface 

energy). Independently of the type of an atom or molecule, each adhesion event has to 

lead to reduction of the free energy of the surface. Obviously not all incoming atoms or 

molecules fulfill this condition. Therefore, the chemical composition and structure of the 

substrate’s surface play a major role in inorganic thin film growth. Typically, the first 

“layer” deposited on the surface is different from the subsequent layers. Moreover, it 

defines the growth mode, phase, and further properties of the rest of the film. For 

example, films of superconducting cuprate always start with a first layer of copper oxide 

that is then followed up by a complex Perovskite structure. Another example is the 

interfacial layer in SrTiO3/LaAlO3 systems. Depending on the combination of oxide layers 

at the interface (i.e. TiO2/LaO or SrO/AlO2), the interface can be either isolating or 

conducting. 

In recent years, a growing attention for the adhesion of biological material to inorganic 

substrates is observed. This, among others, is triggered by potential bioelectronic 

applications. Moreover, biological active agents such as organic molecules or cells (esp. 

neuronal cells) are of interest not only in biomedical sciences but also in chemistry and 

physics. In case of biological material adhesion to inorganic substrates, the general term 

biocompatibility is used. It describes, for instance, the blood compatibility, 
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thromboresistance, tissue compatibility, foreign body reaction, protein adsorption, 

hemolysis, tissue ingrowth or adhesion to inorganic materials, etc. In general, 

organic/inorganic interfaces represent a wide field for possible applications in molecular 

electronics and bioelectronics. Moreover, the use of organic molecules or other 

biologically active agents allows engineering the surface properties of various materials. 

Finally, adhesion of tissue cells to biomaterials is an important starting point for the 

successful incorporation of implants or the colonization of scaffolds for tissue 

engineering. Although the dominating role of protein adsorption in the regulation of cell 

adhesion has been identified, it is still not completely understood how cells perceive 

information on the characteristics of the substrate through the ‘translation’ by the 

protein overlay readily formed in any bio fluid [2].  

Let us consider the field of bioelectronics in more details. Problems like the adhesion of 

the cell to the surface or guided growth of cells are of huge importance in this field. The 

main building blocks in bioelectronic circuits consist of neuronal cells that convert 

electro-chemical signals to an electronic circuit (reading) or vice versa, react on an 

electric stimulus of an electronic circuit (writing). The signal transfer rate between an 

inorganic electronic circuit and an organic neuronal cell represents one of the major 

challenges in bioelectronics, since most of the signal is lost due to bad contact, bad cell 

adhesion or good electric isolation between cell and electronic circuit. As examples, two 

typical representatives of bioelectronic devices are sketched in Figure 2, i.e. the ion-

sensitive field effect transistor (ISFET) and the multi-electrode array (MEA). It is obvious 

that the better is the adhesion of the object to the surface and the better is the electronic 

signal transfer, the more sensible is the bioelectronic device.  

 

Figure 2: The schematic example of bioelectronic devices: a) ion-sensitive field effect transistor 
(ISFET) and b) multi-electrode array (MEA).  

Cell adhesion is primarily a surface, biophysical phenomenon. Extensive developments 

in surface chemistry and physics of recent years provide a powerful and coherent 

approach for investigation of this phenomenon. The structural nature of the cell surface 

and its precise chemical composition determine the type of adhesion that is formed. 

Conversely, examination of the exact chemical conditions that affect the adhesion can 

help clarifying the structure and composition of the cell surface. There are different cell 
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adhesion mechanisms that are discussed nowadays [3]. They all can be simply divided 

into: 

 Chemical [4]–[6],  

 Topographical [7], [8], 

 Purely biological (e.g. “lock-and-key”) and  

 Physical mechanisms.  

The latter is mainly represented by electrostatic interaction between the cell membrane 

and the substrate’s surface. The cell adhesion phenomena was already treated like a 

physical interaction, for example, in [9]. However, earlier, the adhesion of biomaterial 

was discussed in [1], where the approach, which is used is definitely physical and the 

cell-surface interactions are divided into molecular, protein, cell and tissue levels. 

Although, nowadays there are studies of the biomaterial adhesion at the molecular level 

[10], [11], it is already clear, that the cell interacts with the outer world via proteins. 

Therefore, the cell adhesion phenomena literally means protein-surface adhesion. There 

are special proteins, e.g. integrin, that are responsible for the cell adhesion. On one 

hand, these proteins possess a negative charge and, consequently, most living cells 

bear a net negative charge that leads to a mutual repulsive cell-cell interaction and 

contact between cells requires the formation of thin microvilli by at least one cell to 

overcome this barrier. On the other hand, cell adhesion might occur due to 

electrodynamic attraction, since, in particular, positively charged domains of peptides 

can promote the adhesion of proteins, bacteria [12], [13] and neuronal cells [14]. This 

finding was supported by the observation that positive charges associated with surface-

bound, synthetic molecules containing amino groups can also promote the adhesion and 

growth of neurons [15]–[18].  

Electrostatic interaction can also arise between charged proteins or a cell and a surface. 

In aqueous solution, essentially all interfaces carry electrically charged groups. The 

charge may originate from  

 Association or dissociation of surface groups. This applies if ionizable groups are 

at the surface (e.g. carboxyl, amino, imidazole, and phosphate). For synthetic 

materials (e.g. polymers), the type of charged groups can be chosen by 

controlling the preparation conditions. 

 Specific adsorption of ions from solution. This implies that the adsorption forces 

are (partly) of non-electric nature so that the ions can overcome and create a 

net electrostatic potential. Well-known examples of specifically adsorbing ions 

are ionic surfactants or light ions (e.g. K+, Na+, Cl-). 

From above-mentioned arguments, it is already obvious that in order to control and 

manipulate the growth of inorganic, organic and biological samples, it is essential to 

control and, if possible, tailor the surface of the carrier. One important aspect, for 

instance, for the adhesion of biological objects to an inorganic surface for bioelectronic 

applications, is the analysis and, if necessary, modification of the surface charge of a 
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carrier (substrate) under conditions that are identical or at least comparable to the 

conditions used during deposition or immobilization of the biomaterial.  

The latter represents the one of the main motivations for the current dissertation, i.e. 

the investigation and possible optimization of inorganic surfaces for potential 

bioelectronic applications. Since there are different strategies of interfacing cells, the 

focus of this work lies on the impact of electrostatic cell adhesion. For this purpose, the 

surfaces are modified subsequently with bioactive agents such as organic molecules, 

and functionalized inorganic nanoparticles using and the surface potential 

characterization of planar biocompatible dielectric or metal surfaces in aqueous solution 

is developed, optimized and used as one of a number of techniques to characterize 

abovementioned complex interfaces.  
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II. Theoretical background 

The discovery of electrokinetic phenomena by Reuss in 1808 and further investigations 

that gave rise to the concept of the electrical double layer (see Section II.1) have played 

an important role in understanding of colloidal stability at that time. Nowadays, they 

are widely used for investigation of different types of systems ranging from colloidal 

particles in the suspension to complex interfaces containing biological objects. 

Electrokinetic phenomena are a family of effects in which a liquid moves tangentially to 

a charged surface. Well-known phenomena of this kind are electrophoresis (when 

charged particles move in the applied electric field), electro-osmosis (when liquid moves 

under the influence of applied potential), streaming potential (arises on the surface 

when liquid moves adjacent to it), and sedimentation potential (arising from the 

movement of charged particles under the gravitation). All these phenomena are 

sketched in Section II.3, where we will also go into details about how to evaluate the 

surface charge using streaming potential/streaming current phenomena. In Section II.2, 

the origins of surface charges in aqueous electrolyte solutions are discussed from the 

point of view of chemistry of given surfaces. Sections II.1 and II.2 give a basic 

introduction to the electrical phenomena at interfaces. 

 

II.1 Electrical double layer 

In the contact with a polar medium (e.g. water), the majority of surfaces show a definite 

surface charge as a consequence of ionization, ionic adsorption and ionic dissolution. 

This surface charge influences the arrangement of neighboring ions in the polar medium. 

Ions of opposite sign will be attracted to the surface and ions of equal sign will be 

repelled. Due to mixing, as a consequence of thermic movements and Brown's 

movement, an electrical double layer (EDL) is formed (see Figure 3). 

 

 

Figure 3: A simple model of an electrical double 
layer formed near the surface. The surface, for 
instance, is positively charged, negative ions 
are attracted to the surface and positive ions 

are repelled. 

 



THEORETICAL BACKGROUND 

 

 

6 

This double layer consists of a charged surface and a neutralized surplus of equally but 

oppositely charged ions diffusely spread through the polar medium. The double layer is 

characterized by the ion arrangement and the magnitude of the electrical potential near 

the charged surface.  

 Quincke - Helmholtz - Smoluchowski 

Historically, Georg Quincke was the first, who proposed the idea of the EDL around 

1860. He performed extensive investigations of streaming potential, electroosmosis and 

other, at that time known, electrokinetic phenomena. These discoveries led him to 

postulate the idea of a space charge that exists outside a charged surface and has a 

charge opposite to that on the surface. The existence of this space charge was necessary 

for Quincke to explain qualitatively both the electroosmosis and the streaming potential. 

Quincke's introduction of the space charge was of crucial importance for colloid science 

because it meant the discovery of the EDL. This concept is indispensable for modern 

treatment of colloidal stability [19]. 

In 1879, Hermann von Helmholtz derived a quantitative theory for electrokinetic 

phenomena based on Quincke's idea of EDLs. He published a paper entitled “Studien 

über elektrische Grenzschichten”, in which he formulated a theory for electroosmosis 

and derived an equation, which described the connection between the electroosmosis in 

a tube and the electrical potential on the inner surface of the tube. 

At that time, it was assumed that a capillary contains a net space charge, which starts 

to move if an electric field is applied and which entrains the liquid into which it is 

embedded, to demonstrate the electroosmotic volume flow 𝑄𝑒𝑜. Neither the origin of 

these charges was clear, nor were there concrete suggestions about the charge 

distribution. Even the question whether the double layer was as a whole electroneutral 

or not, was under dispute until eventually the issue was decided in favor of 

electroneutrality. 

Later Helmholtz assumed that the classical hydrodynamic equations would also apply to 

double layer region, i.e. that the flow is laminar and only parallel to the surface and that 

the applied potential can simply be superimposed to that of the EDL. These assumptions 

are nowadays considered to be justified for regular conditions, but at that time, their 

applicability was not obvious. 

Helmholtz’s derivations essentially coincide with the present-day ones, i.e. at each 

position the viscous resistance is equal to the electric force: 

 𝜂∇2𝑣 = 𝐸𝜌, (1) 
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where 𝜂 is the viscosity, 𝑣 is the flow speed and 𝜌 is the electric charge density of the 

volume element where 𝐸, the electric field, is applied. The potential 𝜓 was introduced 

via Poisson’s equation: 

 ∇2𝜓 = −𝜌/𝜀𝜀0, (2) 

where 𝜀 is the relative dielectric constant and 𝜀0 is a vacuum permittivity. Integration 

over the surface area of the potential eventually yielded the potential difference: 

 ∆𝜓 = 𝜓(at the wall) − 𝜓(interior of capillary). (3) 

It should be noted that the approach is very similar to the one used to date, except the 

surface potential ∆𝜓  being replaced by the zeta potential ζ, that characterizes the 

potential at the shear plane. With all of the more recent reinterpretation, the Helmholtz 

equation for electroosmosis finally yields: 

 𝑄𝑒𝑜 = −
𝜀𝜀0𝜌𝐼

 𝜂𝐾𝐿
 (4) 

where 𝐼 is the current density and 𝐾𝐿 is the specific conductivity of the bulk liquid. 

This equation has the same form as the well-known Smoluchowski equation, except that 

Helmholtz neglected the relative dielectric constant. He took 𝜀 = 1. Helmholtz published 

his theory in 1879 and Smoluchowski published an improved version in 1903. 

 

 Gouy-Chapman model 

Louis-Georges Gouy developed his theory for a double layer that includes a diffuse space 

charge in 1910. David Leonard Chapman independently formulated an equivalent theory 

in 1913.  

Both, Gouy and Chapman used the Poisson equation to describe the electrostatic 

attraction of counterions to a surface and the Boltzmann relation to describe the 

statistical tendency of the counterions to diffuse away from a region of high 

concentration. 

In the resulting Gouy-Chapman theory, the potential of the mean force in the Poisson-

Boltzmann equation is replaced by the mean electrostatic potential energy, and all ion-

ion correlations in the EDL are ignored except for the effect of the mean potential. The 
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following assumptions have been used: (a) the surface is planar, infinite and uniformly 

charged, (b) ions in the diffuse part carry a unit charge, (c) the polar medium effects 

the double layer only through its dielectric constant which is unchanged over the whole 

diffuse part of the layer, and (d) the polar medium has the characteristics of a 

symmetrical electrolyte. Thus, this model describes the relation between charge, 

potential and electrolyte concentration, neglecting the ion size. Additionally, ions are 

regarded as hard spheres with embedded point charges, and water is referred to as a 

structureless medium. 

The structure of the more distant diffuse layer is determined by electrostatic interactions 

described by the Gouy–Chapman theory. The electric potential profile within the diffuse 

layer can be obtained from the Poisson equation, which describes the potential–charge 

relationship, and the Boltzmann law, which determines the distribution of ions in an 

electric field [20]:  

 ∇2Ψ = −
𝜌

𝜀𝜀0

= −
𝑒

𝜀𝜀0

∑ 𝑧𝑖𝑛𝑖∞ exp (
𝑧𝑖𝑒Ψ

𝑘𝑇
)

𝑖

, (5) 

where 𝜌 = ∑ 𝑒𝑖 𝑧𝑖𝑛𝑖 is the electric charge density of ions of valence 𝑧𝑖, 𝑛𝑖 - the number 

concentration accumulated within the diffuse layer, Ψ  represents the local electric 

potential and 𝜀 is the dielectric permittivity of the medium. In the absence of specific 

adsorption of ions (later introduced by Stern), the diffuse layer charge is equal to the 

surface charge 𝜎0. Taking into account boundary conditions, i.e. the potential Ψ0 at the 

surface and the potential in the bulk Ψ𝐵 = 0, we obtain: 

 
𝜕Ψ

𝜕𝑛
= −

𝜎

𝜀𝜀0

, (6) 

where n is the normal at the particle surface pointing into the liquid. 

If the potential is low, i.e.: 

 |
𝑧𝑖𝑒Ψ

𝑘𝑇
| ≪ 1, (7) 

equation (5) reduces to the linearized Poisson-Boltzmann equation (Debye-Hückel 

equation): 

 ∆Ψ = 𝜅2Ψ. (8) 
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The Gouy–Chapman model for the diffuse layer gave rise to a very important 

parameter 𝜅, which characterizes the thickness of the diffuse layer: 

 𝜅 = [
1

𝜀𝜀0𝑘𝑇
∑ 𝑒2𝑧𝑖

2𝑛𝑖∞

𝑖

]

1/2

 (9) 

Here 𝑛𝑖∞ is the bulk concentration of the ith ion in the bulk phase and 𝑧𝑖 is its valence. 

𝜅−1 has dimensions of a length and is called the Debye length. It has a fundamental 

importance in the theory for electrokinetic phenomena and is usually used in 

combination with the particle radius 𝑎 as 𝜅𝑎. 

Interestingly, Smoluchowski mentioned Gouy's theory in a footnote but seemed not to 

have utilize this knowledge. 

 

 Gouy-Chapman-Stern-Graham model 

Actually, the Gouy-Chapman model fails for highly charged double layers. In 1924, Otto 

Stern suggested to combine the Helmholtz-Smoluchowski’s theory with the Gouy-

Chapman’s one. In Stern's model, some ions adhere to the electrode as suggested by 

Helmholtz, defining an internal Stern layer, while some form a Gouy-Chapman diffuse 

layer. The Stern layer is the innermost non-diffuse part of the counter layer, which may 

contain adsorbed ions. The diffuse layer is generic while the Stern layer strongly 

depends on the nature of the substances involved. In principle, Stern noticed the 

drawback of neglecting the ion size and therefore proposed a model, which starts from 

the following assumptions: (a) ions possess a finite size, (b) they cannot approach the 

surface to a distance smaller than the magnitude of ionic radius and (c) the possibility 

of specific ion adsorption exists.  

According to the Stern model, the charge is given by: 

 𝜎 = 𝜎𝑠 + 𝜎𝑔 (10) 

where 𝜎𝑔 is the charge given by Gouy's model, while 𝜎𝑠 is the charge of the Stern layer. 

The electric field within the Stern layer can reach a very high strength, which results in 

a modification of the behavior of species (ions, adsorbate, and solvent molecules) that 

build up this layer. Processes that can occur within this compact layer are regulated by 

short-range specific interactions. The electric state of the Stern layer is determined by 

properties of the solvent (dielectric permittivity), the degree of ionization of the surface 

group and/or specific adsorption of species from the solution. Charge formation 

http://en.wikipedia.org/wiki/Otto_Stern
http://en.wikipedia.org/wiki/Otto_Stern
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processes within the Stern layer may proceed at various rates, which, in some cases, 

may lead to time-dependent effects. 

Finally, David C. Grahame modified Stern’s model in 1947 [21]. He proposed that some 

ionic or uncharged species could penetrate the Stern layer, although solvent molecules 

normally occupy the closest approach to the electrode. This could occur if ions lose their 

solvation shell as they approach the electrode. Under the impact of electrostatic and/or 

van der Waals forces ions adsorb on the surfaces and overcome the effect of thermal 

movements. They are called specifically adsorbed ions. Thus, this model proposed the 

existence of three regions (see Figure 4). The inner Helmholtz plane (IHP) passes 

through the centers of the specifically adsorbed ions. The outer Helmholtz plane (OHP) 

passes through the centers of solvated ions at the distance of their closest approach to 

the electrode. Finally, the diffuse layer is the region beyond the OHP, which starts at 

the shear plane.  

 

Figure 4: Schematic structure of the electrical double layer (EDL), according the Gouy-
Chapman-Stern-Grahame (GCSG) theory. 

The charge of the surface (x=0) is partially compensated by the association of charged 

groups with counterions of the opposite charge located at the IHP at distance β, defining 

the potential Ψ𝑖. The potential Ψ𝑑 at the OHP (d-plane) is the potential at the beginning 

of the diffuse part of the double layer. It is usually assumed that hydrodynamic flow 

vanishes at a finite distance from the solid surface. The plane separating the liquid into 

immobile and mobile regions is called the electrokinetic slip plane (or shear plane). 

Within the diffuse layer, the potential at this dek-plane is determined as the electrokinetic 

or ζ-potential, which divides the stagnant from the mobile part of the diffuse layer [22]. 
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Generally, its separation from the d-plane is typically of the order of ∼1-1.5 nm. The 

thickness of the diffuse part of the electrical interfacial layer (Debye length) for water, 

NaCl (10−3 M), and Na2SO4 (10−3 M) at 25 °C are ∼961.8, ∼9.6, and ∼6.1 nm, 

respectively, depending on the electrolyte and its concentration as well. The ζ potential 

characterizes the property of both surface and electrolyte and is widely used in colloid 

chemistry for characterization of the behavior of dispersive systems in liquids [23]. The 

earliest use of the notation ‘ζ potential’ was found in the book by Herbert Freundlich, 

entitled “Kapillarchemie” (second edition), published in 1922 [19]. Freundlich's book on 

surface and colloid science was widely used and considered as a reliable source of 

information. The general use of the symbol ζ for the electrical potential at the slip plane 

is probably derived from his book. 

In conclusion, the surface (i.e. wall) potential Ψ0 and the surface charge density 𝜎0 (see 

figure 4), cannot be determined experimentally. However, the potential at the shear 

plane, the 𝜁 potential, can be measured by electrokinetic methods. The electrokinetic or 

𝜁 potential is frequently assumed to be equal to that at the boundary between the Stern 

and the diffuse layer (i.e. at the OHP): 

 𝜁 ≈ Ψ𝑑. (11) 

In the Stern layer the potential changes linear with the distance x, whereas in the Gouy-

Chapman layer it varies exponentially with x: 

 Ψ(𝑥) = Ψ𝑑𝑒−𝜅(𝑥−𝑑), (12) 

where 𝑥 is the distance, d the thickness of the Stern layer and 𝜅−1 is the Debye length. 

Additionally, the surface charge at the distance 𝑑 is given by: 

 𝜎𝑑 = (𝜀𝜀0𝑛𝑘𝑇)1/2 sinh (
𝑍𝑒Ψ𝑑

2𝑘𝑇
). (13) 

 

 Isoelectric point, point of zero charge  

A scientist with a good insight into the charging process of colloids was the Englishman 

William Hardy, a physiologist working with biological systems such as proteins. In a 

paper from 1905, on globulins produced from oxblood serum, he coined the word 

isoelectric point and defined it as the pH value where the amounts of positive and 

negative electrokinetic charge on a colloidal particle are the same.  
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The net electrokinetic charge is affected by the pH of its surrounding environment and 

depends on the loss or gain of protons (H+). Under the usual conditions, the surface-

charge-determining ions are H+ and OH-. Therefore, the net surface charge is affected 

by the pH of the liquid in which the solid is submerged. Practically, the isoelectric point 

defines the pH at which the 𝜁 potential equals zero. 

However, one has to clearly distinguish between the isoelectric point and the point of 

zero charge. The isoelectric point corresponds to the electrical charge 𝜎𝑒𝑘 (electrokinetic 

charge at the slip plane) at certain pH value. As discussed in previous sections the Stern 

layer consists of specifically adsorbed ions, which give rise to the charge 𝜎𝑑 at the outer 

Helmholtz plane. There are many discussions between physicists and chemists about 

whether 𝜎𝑒𝑘 = 𝜎𝑑. However, for many practical applications this assumption seems to be 

valid [24]. 

Finally, the point of zero charge would refer to the charge 𝜎0 right at the surface, which 

usually is larger compared to 𝜎𝑒𝑘. Although, the point of zero charge cannot be detected 

by standard electrokinetic measurements, it is typically done via potentiometric titration 

method. 

 

II.2 Origins of Surface Charge 

As mentioned in previous sections, interfaces between solids and liquids carry an electric 

charge. There are many origins of this surface charge depending upon the nature of the 

surface and its surrounding medium. Here we will consider the most important 

mechanisms. 

According to Lyklema [25], [26], the origin of charges at interfaces may be attributed 

to 

(i) the dissociation of surface groups, 

(ii) the preferential adsorption of cations or anions,  

(iii) the adsorption of polyelectrolytes,  

(iv) the isomorphic substitution of cations and anions, and  

(v) the accumulation or depletion of electrons (i.e. due to an applied potential).  

Since anions are preferentially adsorbed in a neutral 1:1-electrolyte solution, the 𝜁 

potential of most surfaces is negative. Some of the most prominent mechanisms are 

discussed below. 
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 Ionization of surface groups 

Ionization (dissociation) of acidic groups on the solid surface gives rise to a negatively 

charged surface [27]. Conversely, a basic surface will take on a positive charge. Both 

of these situations are shown schematically in Figure 5. In both cases, the magnitude 

of the surface charge depends on the acidic or basic strengths of the surface groups and 

on pH of the solution. The surface charge can be reduced to zero by suppressing the 

surface ionization by decreasing the pH of the electrolyte in case of negatively charged 

surfaces (Figure 5a) or by increasing the pH of the electrolyte in the case of positively 

charged surfaces (Figure 5b), respectively. 

 

Figure 5: Origins of surface charge: dissociation of (a) acidic surface groups and (b) basic 
surface groups. Adapted from [28]. 

 

 Differential loss of ions from the crystal lattice 

As an example, a crystal of silver iodide placed in water is considered. Ions begin to 

dissolve in the electrolyte. If equal amounts of Ag+ and I- ions would dissolve, the 

surface would be uncharged. However, silver ions dissolve preferentially, leaving a 

negatively charged surface (Figure 6). If Ag+ ions are added, the negative surface 

charge is reduced and finally becomes positive. 

 

Figure 6: Origins of surface charge: differential loss of ions. 
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 Adsorption of charged species (ions and ionic 

surfactants) 

Charged species (ions or ionic surfactants) can be specifically adsorbed on a surface, 

leading, in the case of cationic surfactants, to a positively charged surface (Figure 7a) 

and, in the case of anionic surfactants, to a negatively charged surface (Figure 7b). 

Moreover, inorganic ions can interact with charged surfaces in one of two distinct ways: 

(i) non-specific ion adsorption, where they have no effect on the isoelectric point 

and 

(ii) specific ion adsorption, which will lead to a change of the isoelectric point.  

The specific adsorption of ions onto a surface, even at low concentrations, can have a 

dramatic effect on the 𝜁 potential. In some cases, specific ion adsorption can even lead 

to a charge reversal of the surface [29]. 

Generally, the extent of these processes depends on the chemical composition and 

physical structure of the solid and the composition of the surrounding liquid. Therefore, 

the formation of the EDL and the magnitude and sign of the 𝜁 potential are determined 

by the combination of the solid and the liquid, i.e. the interface. 

 

Figure 7: Origins of surface charge: ions and surfactants adsorption. 

 

II.3 Methods to determine the 𝜁 potential 

The Gouy-Chapman-Stern-Grahame (GCSG) model shows that the 𝜁 potential is a 

consequence of the construction of the double layer and that it is the measurable 

property of a charged interface. However, from the above it is clear that the 𝜁 potential 

is not only property of the surface, but it is also changing according to the changes in 

the solution. Therefore, 𝜁 potential measurements allow analyzing changes that take 
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place in the solution. This makes the measurement of the 𝜁 potential an important aspect 

for analysis of many technical processes.  

 

Figure 8: Classical electrokinetic phenomena. 

Generally, the form of the solid/liquid interface determines the choice of the 

electrokinetic technique (see Figure 8) for the analysis of the 𝜁 potential. For example, 

single particles in dilute colloidal systems are preferentially measured via 

electrophoresis or sedimentation potential measurements, whereas concentrated plugs 

of particles fixed in a defined volume are usually measured using streaming current or 

streaming potential, or alternatively electroosmosis techniques. For macroscopic 

surfaces of simple geometry (capillaries, channels, planar substrates) streaming 

current/streaming potential, electroosmosis are the best choice. 

Electrokinetic equations that describe the motion of charged colloidal particles in a liquid 

electrolyte caused by an external electric field are based on a Navier-Stokes equation 

for liquid flow of ionic species and the Poisson equation connecting the electric potential 

with concentrations of ions. The Navier-Stokes equation for a liquid flow 𝒖(𝒓) around a 

particle is given by: 

 𝜂∇ × ∇ × 𝒖(𝒓) + ∇p(𝒓) + 𝜌𝑒𝑙(𝒓)∇𝜓(𝒓) = 0, 𝑟 > 𝑎 (14) 

where 𝜂 is the viscosity of the electrolyte solution, p(𝒓) is the pressure at position 𝒓, 

𝜌𝑒𝑙(𝒓) is the charge density resulting from the mobile charged ionic species, and 𝜓(𝒓)is 

the electric potential. 

All electrokinetic effects originate from two generic phenomena, namely, the 

electroosmotic flow and the convective electric surface current within the EDL. For non-

conducting solids, Smoluchowski [30] derived equations for these generic phenomena, 

which allowed an extension of the theory to all other electrokinetic phenomena. 

Electroosmosis is the oldest electrokinetic technique, discovered by Gustav Wiedemann 

in 1852 [19]. It represents a measurement of the flow of a liquid through a porous 

membrane in a known electrical field. The speed of electroosmotic flow is proportional 
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to interaction of the external electrical field with the charge of the liquid. Due to the 

potential difference of the two electrodes, electroosmosis causes a pressure gradient, 

which causes the flow of the liquid. 

Electrophoresis appears when a fine (e.g., colloidal) dispersion of, for instance, dielectric 

matter in the electrolytic solution is exposed to an electrical field. Single dispersed 

particles are electrically charged in the dispersion medium and an EDL is formed around 

each of them. If the liquid phase as a whole is prevented from flowing in one direction, 

only charged particles will be kept in motion in the electrical field, and they will travel, 

depending on their charge and the electric field, towards the cathode or anode. The 

velocity of the particle with respect to a medium at rest is proportional to the 𝜁 potential. 

Sedimentation (Dorn) potential is the phenomenon opposite to the electrophoresis. It 

realizes during the movements of electrified particles in gravitational or sedimentation 

fields in centrifuges. This movement causes the potential difference between two 

electrodes, placed at a different level. This method is most rarely used to study the 

electrokinetic phenomena. 

Finally, the streaming potential represents a phenomenon opposite to that of 

electroosmosis. The physicist Georg Quincke first reported about it in 1859, when he 

pumped water through a tube and measured an electrical potential difference between 

the ends of the tube. By mixing different materials, e.g. glass, sand, sulfur, talk, 

graphite, silk, linen, or ivory into the tube, he found that the magnitude of the potential 

difference varied for the different systems whereas the polarity of the potential was 

always the same. This latter results of course from the fact that many natural materials 

tend to be negatively charged in aqueous solution. He also discovered that the potential 

difference was independent of the cross section and the thickness of the channel and 

that the streaming potential varied linearly with the applied pressure. Amongst other 

important observations he found that addition of sodium chloride lowered the streaming 

potential [19]. 

Generally, the streaming potential arises when counter-ion displacement caused by 

hydrodynamic flow along a charged surface is balanced by a reverse conduction current 

that evolves due to a potential difference along a liquid stream. Let us consider a 

capillary with cross-section 𝐴 and length 𝐿 with charged walls. A pressure difference 

between the two ends of the capillary, ∆𝑝, is produced externally to drive the liquid 

through the capillary. Since the fluid near the interface carries an excess of charge equal 

to 𝜎𝑒𝑘, its motion will produce an electric current known as streaming current 𝐼𝑠𝑡𝑟 

 𝐼𝑠𝑡𝑟 = −
𝜀𝜀0𝜁

𝜂

𝐴

𝐿
∆𝑝 (15) 

with 𝜂 and 𝜀 representing the dynamic viscosity and the relative dielectric constant of 

the liquid, respectively. The current 𝐼𝑠𝑡𝑟 can be recorded with measuring electrodes at 
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both ends of the capillary that are connected via a small external resistance (short-

circuit conditions). If this resistance is large (open circuit), transport of ions by this 

current leads to the accumulation of charges of opposite signs between the two ends of 

the capillary and, consequently, to the appearance of a potential difference across the 

length of the capillary i.e. the streaming-potential 𝑈𝑠𝑡𝑟. This gives rise to a conduction 

current 𝐼𝑐: 

 𝐼𝑐 = 𝐾𝐿

𝐴

𝐿
𝑈𝑠𝑡𝑟 (16) 

The streaming-potential is then given by 𝐼𝑠𝑡𝑟 = 𝐼𝑐, and is directly proportional to the 𝜁 

potential according to the equation: 

 
𝑈𝑠𝑡𝑟

∆𝑝
=

𝜀𝜀0𝜁

𝜂𝐾𝐿

 (17) 
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III. Experimental Techniques and Sample 
Preparation 

For bioelectronic applications, it is important to use substrates such as glass or silicon 

that are as well suitable for the biological applications as compatible for electronic 

circuity. In this chapter, we describe the preparation techniques and steps that are used 

to modify the surfaces of given substrates, which include the cleaning routines (Section 

III.1), deposition of self-assembled molecular monolayers (SAMs) (Section III.2 and 

III.3), deposition of graphene layers (Section III.4) and the deposition and 

functionalization of gold nanoparticles (AuNPs) (Section III.5). Furthermore, in the 

second part, we briefly describe the characterization methods, which were used to 

control the quality of the molecular monolayers, such as ellipsometry (Section III.6.1) 

and contact angle measurements (Section III.6.2) and to analyze the surface potential 

of surfaces, namely streaming potential/streaming current experiments (Section 

III.6.3). 

 

III.1 Cleaning and treatment of samples 

In this work, we have mainly used commercial borosilicate glass substrates (“Praezisions 

Glas&Optik GmbH”, Iserlohn, Germany) and p-doped silicon (Si (100) with 1-10𝛺 and 

Si (111), from the “CrysTec GmbH”, Berlin, Germany). The latter possess 3nm native 

oxide and are thermally oxidized (Centrotherm LPCVD System E1200 R&D Furnace in 

clean room environment) to generate an extra 100nm thick SiO2 layer on the surface. 

An additional advantage of these substrates is given by their low dielectric permittivity 

𝜀, which is compared to the permittivity of organic molecules [31] and allows microwave 

and capacitive spectroscopy to detect small changes in the signal due to the deposition 

of molecules. Furthermore, we used r-cut sapphire (“CrysTec GmbH”, Berlin, Germany), 

as a reference substrate especially in the microwave experiments. 

Since our work is focused on the surface properties, the cleaning of the sample surface 

turned to be a very important part of this work because the adhesion of SAMs to the 

surface depends strongly on the surface quality [32], [33]. Furthermore, the streaming 

potential method is extremely sensitive to any pollutant adsorbed on the surface (e.g. 

dust or adsorbed gasses). Therefore, two different protocols were used for the surface 

cleaning. 

Protocol A: Substrates undergo a chemical cleaning procedure, which includes several 

steps:  
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1) Chemical cleaning in acetone for 3 minutes in an ultrasonic bath at 25oC with 100% 

power (320W) at 37kHz frequency, then  

2) Cleaning in isopropyl alcohol (2-Propanol, > 99.8 %, KMF) in ultrasonic bath (for 

3min at 25oC, 320W, 37kHz) and, finally,  

3) Rinsing in double-distilled water and drying with nitrogen. 

Alternatively, for special surface cleanliness, the samples were cleaned using the 

Protocol B in the cleanroom environment (class-10). 

Protocol B: Steps 1) and 2) are identical to the Protocol A. 

3) Rinsing in distilled water cascades for 5 minutes in pre-rinsing and 5 minutes in 

rinsing area (>12M𝛺 resistance). 

4) Drying with nitrogen and 3 minutes soft baking at 120oC in order to remove the 

adsorbed water. 

5) After the cleaning, if needed, the samples were put in the plastic container and 

laminated into the plastic foil in order to minimize the influence of the atmosphere. 

For microwave and capacitive measurements reference substrates were patterned with 

microwave waveguide lines (different variations of coplanar and microstrip lines) and 

interdigitate capacitive structures respectively, using optical lithography and electron 

beam lithography in combination with lift-off technology. The protocol for optical 

lithography was as follows: 

Spin-coating and baking: (1) Spinning LOR3B / 2000rpm, (2) 6 min of soft baking at 

180oC, (3) Spinning nLoff 2020 / 4000rpm and (4) 1min soft baking at 110oC. 

Exposure (for optical lithography): 3.5-4.4s (CP-mode, 305W), using a Cr mask with 

microwave structures and interdigitate electrode pattern. 

Development: (1) Soft backing at 110oC for 1min, (2) Rinsing in MIF for 40-60 and (3) 

Rinsing in DI water for 5min 

Metallization: different thicknesses of Au and Pt 

Lift-off: using LOR3B remover or Acetone. 

The metallization step (evaporation as well as magnetron sputtering deposition) was 

not only used in the lift-off lithographical procedure, but was also applied to obtain 

metallic layers (typically Au, Pt or Cr). 
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III.2 Molecular layers 

Due to of their various functionality, which is achieved via different functional groups, 

self-assembling monolayers (SAMs), as discussed in Section III.2.1, are often used for 

the modification of substrates. The deposition of SAMs onto the surface represents an 

important part of the sample preparation in present work. For preparation of silane 

SAMs on bioelectronic-suitable substrates, we used the physically separated process 

steps, which consisted of the sample cleaning (discussed in Section III.1), surface 

activation via oxygen plasma (Section III.2.2) and silanization through the gaseous 

phase (Section III.2.4) and will be discussed in following sections. Due to the difficulty 

caused by the separation of the different preparation steps, a new device was developed 

as the part of this work. It will be presented in the Section III.3. 

 

 Self-assembled monolayers 

Structurally well-defined organic monolayers on solid surfaces allow experimentalists to 

simplify and model a large variety of interfacial phenomena that are often difficult to 

study at "natural" interfaces due to heterogeneous or poorly defined structure. Organic 

disulfides, thiols, and sulfides on gold surfaces and carboxylic acids and silanes on 

various oxide surfaces have been explored in recent years and widely used as model as 

well as surface active systems and also as molecules, stimulating cell adhesion. For 

example, SAMs of organosilanes have been successfully used to tailor material surfaces 

to obtain control over the molecular composition and the resulting integral properties of 

the surfaces [33]. Recent studies have used SAMs to evaluate the effect of surface 

charge, wettability and topography on protein adsorption and cell behavior using in vitro 

assay systems [2], [18], [34], [35]. The strength of cell adhesion and spreading on 

SAMs has been especially studied. 

SAMs are ordered molecular assemblies that are formed spontaneously by the 

adsorption to the surface. 

 

Figure 9: Schematic structure of self-assembling molecules. 
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The SAMs consist of a head group (Figure 9), which is chemisorbed to a specific 

substrate, the backbone, which can be a chain of isomers (typically alkyl chain), with a 

given length and an end or functional group, which can possess different functionalities, 

e.g. different by charge. The head group reacts with specific sites on the surface creating 

an attachment through a chemical bond. The energies associated with the chemisorption 

are of the order of hundred kJ/mol. Because of the exothermic interaction between 

substrate and head group, molecules try to occupy every available binding site on the 

surface. Chemisorption is very important, because only after molecules are put in place 

on the surface, formation of an ordered and closely packed assembly can start. The 

functional group determines the properties of the SAM surface, e.g. wettability and 

reactivity.  

The most well-known and extensively studied SAMs are alkanethiols on gold. The high 

affinity of the thiol group to gold leads to a spontaneous formation of an Au–S bond. 

The formation of alkanethiols on gold is often presented as a model system of SAMs. 

Organosilanes can be used as a SAM system for hydroxylated substrates or substrates 

with a thin water layer. An appropriate substrate for the formation of silane SAMs is an 

oxidized silicon surface, which will be further discussed in the Section III.2.4. A variety 

of different substrates can be coated with silane SAMs such as Si-wafers, mica, PDMS, 

glass or even metals (e.g. Al with a top oxide layer), allowing for a Si-O bond. SAMs 

prepared on smooth surfaces like Si wafers exhibit extraordinary properties such as 

chemical homogeneity, ultra-low surface roughness and controlled wettability. The latter 

can be varied from hydrophilic to hydrophobic, depending on the end group of the silane. 

Silane layers in particular are mechanically robust, thermally stable up to at least 250°C 

and are not subject to swelling in the presence of solvents. These properties render 

silane-coated substrates ideal model surfaces to study a wide range of physical, 

chemical and biological phenomena such as adhesion, adsorption, friction or nanofluidics 

of thin liquid films. Technical applications also benefit from the unique properties of 

SAMs. They act, for example, as lubrication layers in micro-electro-mechanical-systems 

(MEMS) or as coatings in microfluidic devices. In addition, silane SAMs were applied for 

wetting driven self-assembly processes to fabricate surfaces with well-defined lyophobic 

and lyophilic patterns [32]. 

 

 Activation of the surface 

The oxygen plasma activation is probably the most crucial and important step in the 

process of surface modification by silanization. Not only the removal of organic residues 

is an important issue, but also, and more important, the oxygen plasma treatment 

results in an activation of the sample surface. 

 

III.2.2.1 Activation of the silicon surface 
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When the silicon crystal is cut or cleaved, the bonds between neighboring atoms are 

broken, creating dangling bonds at the surface. The surface energy is lowered by 

reducing the number of dangling bonds by rebonding. Reconstructed silicon surfaces 

evolve for instance with surface dimers. The effect of the activation of the silicon surface 

lies in the reconstruction of the silanol surface bonds and leads to the increase of their 

quantity [36]. Schematically, this process is shown in Figure 10: 

 

Figure 10: Silanol bonds reconstruction, due to e.g. activation via oxygen plasma. Adapted from 
[37]. 

The interaction of silicon surfaces with oxygen gas can lead to either production of a 

silicon oxide film on the surface (passive oxidation): 

 𝑆𝑖(𝑠)  + 𝑂2  →  𝑆𝑖𝑂2 (18) 

or to etching of the surface (active oxidation):  

 𝑆𝑖(𝑠)  + 𝑂 →  𝑆𝑖𝑂 (19) 

Which oxidation process takes place depends on surface temperature and oxygen 

pressure. Active oxidation dominates at high temperatures, while passive oxidation 

dominates at high oxygen pressures [37]. 

The cleaning effect of an oxygen treatment is the result of the oxidation of carbon in 

the organic species, whereas the activation of the surface is related to the oxidative 

effect. Generally, the oxidative effect is related to the electronegativity of the ion. The 

oxygen molecule O2 has an oxidation state equal to zero. This also means that O2 

molecules are weak oxidants. However, atomic oxygen ions are very electronegative, 

which means that they are chemically very active. As pointed out above (see equation 

(19)), in order to achieve an active oxidation of a silicon surface, atomic oxygen is 

needed. Due to the ionization processes, an oxygen plasma generates a lot of atomic 

oxygen. A certain energy of the plasma is needed to overcome the binding energy 

between two oxygen ions in an oxygen molecule (5.12eV) and to produce two separate 

ions. Due to relatively high pressures, used for the plasma activation, the number of 

atomic oxygen ions is very high. The characteristic reaction that takes place during 

ionization is: 
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 𝑒 + 𝑂2 → 𝑂+ + 𝑂 + 2𝑒 (𝐸𝑎𝑝 = 18.69𝑒𝑉) (20) 

where 𝐸𝑎𝑝 is the appearance energy of the resulting species. 

Figure 11 displays an image of the oxygen plasma generator that was used for the first 

experiments. 

 

Figure 11: The oxygen plasma generator. 

The Si samples were mounted on the sample holder inside the plasma generator, which 

subsequently is pumped down to 10-2 mbar. Then the vacuum chamber is filled with 

oxygen at a pressure of 1.4mbar. The plasma is ignited and stabilized to a power of 

200W. The overall time of the oxidation process takes 3 minutes. After the time lapse, 

the chamber is evacuated and samples are taken out. 

 

 Silanization mechanism 

As we already discussed in Section III.2.1, the head group of the molecule always has 

to be considered together with the surface to which this molecule is about to bind. 

Consequently, silanes are the molecules that form the silanol bond (Si-O-Si) at the 

surface. Typically, the head group of silanes is hydrated and easily undergoes a 

chemisorption on an activated surface that also possesses silanol bonds. Schematically, 

the silanization process is shown in Figure 12: 
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Figure 12: Silanization mechanism presented schematically. 

From this figure, it is clear, that if the Si surface is not activated, which means it has 

less open bonds that are inhomogeneously distributed on the surface, the quality of the 

silanes deposition is poor and no monolayer coverage is expected. 

 

 Silanization process 

Directly after a surface activation, samples are transferred into the Glove Box (Figure 

13) for silanization process. The Glove Box is filled with an inert gas (Ar) at overpressure 

to prevent gasses of the atmosphere to enter.  

 

Figure 13: The Glove Box. 

As soon as the samples are transferred into the Glove Box, the silanization process 

starts. For this, a special desiccator is used. The samples are placed inside the desiccator 
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and the silane molecules are first filled into the syringe from the delivery beaker and 

then are poured out into the beaker inside the desiccator. Then the desiccator is closed 

and connected via a tube to a pump, which is located outside the Glove Box. Then the 

pressure inside the desiccator is reduced to a value, which depends on the vapor 

pressure of molecules that are to be silanized. For example, for APTES (3-

aminopropyltriethoxysilane) molecules it equals to 5mbar. The desiccator is kept at that 

pressure for 1 hour before the silanization is finished.  

In summary, the original protocol of SAMs preparation was as follows: the samples were 

cleaned in a chemical lab in one building. Then they were packed into the plastic 

container and transported into a laboratory in the other building where the oxygen 

plasma device is located. In this laboratory, samples were unpacked and mounted into 

the plasma generator for cleaning the sample surface from the organic species and 

activating the surface in order to facilitate the silanization quality. After the oxidation, 

samples were taken out of the plasma generator and were boxed again into the plastic 

container. Then, they were transported into again another laboratory, unpacked and 

placed into the desiccator inside the Glove Box for further silanization. 

Obviously, this procedure has a number of drawbacks like long transportation time in 

the plastic container (reaction with the gas in the container and plastic container itself) 

and questionable reproducibility of the different steps at the different set-ups. We 

noticed that these effects affected the surface quality and consequently the SAMs 

monolayer quality seriously and, therefore, developed a device in which most process 

steps could be performed in-situ. 

 

III.3 Deposition of molecular layers including in-situ 
characterization 

In the Section III.2 we discussed the drawbacks of our standard silanization technique 

using different set-ups in different buildings. In order to overcome this problem, already 

Gilles [38] presented the CASINO concept (Cleaning and Silanization in One), which 

integrates the oxygen plasma generator, shown in Figure 11 with the desiccator that 

can be used for silanization. 

In this chapter, an improved device concept (GLOBUS) will be discussed. It can be 

considered as a second generation of the CASINO device, however being the alone 

standing concept. The cumbersome and expensive microwave generator is replaced by 

a conventional microwave oven and various in-situ techniques for the characterization 

of the molecular layers are added. An overview of the different concept of the device is 

presented in Figure 14: 
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Figure 14: GLOBUS - The novel concept device for deposition of molecular monolayers, 
including in-situ cleaning and activation of substrates as well as in-situ electronic 

characterization of molecular monolayers: a) overview, b) top view. 

 

 Design and features 

The CASINO device [38] proved that the general idea of combining cleaning and 

activation of substrates as well as deposition of molecular monolayers in one closed 

system works well. The GLOBUS device additionally allows monitoring the deposition of 

the molecular layers via in-situ electrical characterization (e.g. microwave and 

capacitive spectroscopy). Moreover, the deposition process can also be repeated when 

taking into account the possibility of removal of organic layers by applying activated 

oxygen for cleaning. 

The main parts of the set-up are: (i) the glass recipient, containing various sample-

holders, (ii) a conventional microwave oven for the generation of the activated oxygen, 

(iii) electronic measuring devices (e.g. network analyzer and LCR meter) that are read 

out via (iv) PC and (v) the pumping and ventilation system. 

The working chamber is made completely of borosilicate glass in order to allow the visual 

control of the process. Evacuation pressure down to 3x10-2mbar is achieved via a 

vacuum pump including a fore vacuum pump, which is low enough for the evaporation 

of most molecules. 

Samples mounted at the central position of the recipient can be cleaned, activated and 

characterized during deposition and until the surface is completely modified. This 

ensures minimization of contamination from the environment and a better 

reproducibility of the measurement. 

The samples are placed in a combination of sample-holders, which consists of at least 

two parts. One is a movable and rotatable holder, which allows an ideal positioning of 
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the sample in front of the flow of molecules and activated oxygen, both impinging at 

45o incidence angle on the substrate (Figure 14b). The second part (see Figure 15) 

represents the customized sample-holder for the electronic characterization of reference 

samples.  

 

Figure 15: The design of the sample holder used for electronic characterization inside the 
GLOBUS device.  

It has the special custom-made part for resistive, microwave (Figure 15-Figure 16), 

capacitive or surface acoustic waves analysis, respectively. 

 

Figure 16: Microwave custom-made sample holders design. There are two different 
configuration for the straight and U-shape lines as well as two variations of the groundplane 

(conductive, dielectic). 

The samples used for the deposition of organic monolayers can have different geometry. 

However, the 10x10mm or 10x20mm size samples are preferable, the wafer-size 

samples can also be used (Figure 17). 
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Figure 17: Wafer-scale deposition of self-assembling organic monolayers possible in GLOBUS 
device. 

The oxygen plasma generator of this device is based on a modified conventional 

microwave oven, which generates a continuous RF-discharge with 700W power. The 

duration of the oxygen treatment is limited by the temperature rise inside the chamber 

(Figure 18a), which depends on the coupling of the microwave to the metallic sample 

holders in the chamber.  

 

Figure 18: (a) Temperature rise inside the chamber with and without using the (b) protective 
net. 

In order to reduce the coupling and to decrease the temperature rise inside the recipient, 

the metallic net is inserted (Figure 18b), which prevents the microwave radiation from 

entering the chamber.  

Finally, for the in-situ electrical characterization, among others, a Network Analyzer 

(Hewlett Packard, 50MHz-20GHz) and a LCR-meter (Sourcetronic, 20Hz-2MHz) are 

used. 
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 Deposition of organic molecular layers using 

GLOBUS device 

The deposition of organic molecules typically works as follows. The cleaned sample is 

placed inside the sample holder and, optionally, reference samples are mounted in the 

microwave and capacitive sample holder respectively. The chamber is evacuated and 

purged several times in order to remove any contaminant gas. Then the chamber is 

filled with pure oxygen gas (99.9%) up to a pressure of about 1.4mbar. After that the 

RF-discharge is applied for 3 minutes to the oxygen flow inside the microwave oven and 

activated oxygen is generated. The activated gas is guided through the glass tube onto 

the substrate. Due to the activated oxygen organic residues are removed from the 

sample and the surface is activated which is implied especially for silanization process. 

Then the deposition process starts. The pressure in the chamber has to be set regarding 

to the evaporating pressure of chosen molecules. The beaker with molecules is 

connected to the chamber and the valve connecting the source of molecules with the 

recipient is opened. Molecules evaporate, follow the gas flow, enter the chamber and 

some of them deposit onto the substrate. Constant pumping partially removes the 

excess of molecular species. All in-situ characterization techniques register any small 

change of the electronic properties of the sample. They are mainly used to indicate start 

and termination of deposition of organic monolayers and to characterize properties of 

these monolayers during and after the deposition. 

 

III.4 Preparation of graphene layers 

For the deposition of graphene layers on different substrates, the cleanroom 

environment is necessary. In this work, we have used the graphene layers, deposited 

on different substrates by a “fishing” method. The preparation procedure is as follows: 

 

Figure 19: The "fishing" method of the deposition of graphene on different substrates. 

1) Starting with Graphene/Cu foil, where the graphene is CVD-grown on both sides; 

2) Spin-coating the PMMA on one side (approximately 400-500nm thickness) and 

anneal at 120-140°C; 
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3) O2 plasma treatment of the back side to etch the backside graphene (300W, 

200sccm, 15-20 sec); 

4) Cutting if necessary; 

5) Etching in ammonium persulfate (NH4)2S2O8 (0.1M solution) overnight; 

6) Washing for 1 hour more in clean ammonium persulfate; 

7) Rinsing in the DI water cascade; 

8) Fishing the graphene out by a substrate as shown in figure 19; 

9) Drying overnight; 

10) Annealing at 150°C for at least 15 minutes; 

11) Cleaning/etching the PMMA in acetone or hot acetone; 

12) Rinsing in IPA (or chloroform); 

13) Annealing in N2 furnace at 300-350°C for at least 2 hours (with a slow ramp). 

 

III.5 Preparation and functionalization of gold 
nanoparticles 

Additional to relatively simple molecular layers, more complex systems have been 

investigated in this thesis. In bioelectronics, besides the chemical contrast, the surface 

topography can act as guiding cue for cell attachment [7], [8]. Even sub-100 nm 

structures are capable of influencing cells. For instance, gold nanoparticles (AuNPs), 

immobilized with defined interparticle spacing on surfaces, can serve as carriers of single 

peptide guidance factors [39]–[43] and functionalized with organic ligands [44], [45]. 

Furthermore, it has been recognized that, in particular, positively charged domains of 

peptides assist the adhesion of neurons[14], [46]. This finding was supported by the 

observation that positive charges associated with surface-bound, synthetic molecules 

containing amino groups can also promote the adhesion and growth of neurons [15]–

[18].  

Therefore, complex surfaces with AuNPs and molecular layers of different charges were 

prepared and characterized with an ex-situ analysis of the surface properties. The 

sample preparation is divided into several steps that are sketched in Figure 20 [46]. 

 

Figure 20: The schematic description of the process steps, i.e. A: Si and Si/SiO2 substrate, B: 
substrate functionalized with APTES, C: immobilization of citrate-stabilized AuNPs, D: removal of 

free citrates and APTES ligands, and E: decoration of AuNPs with aminothiols. For details, see 
text. 
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Step A: The samples are based on Si (100) substrates (n-doped) with a 100nm thick 

SiO2 termination. The substrates are cleaned in clean room environment in several steps 

using the Protocol B. The quality of the Si/SiO2 is controlled via ellipsometry (see Section 

III.6.1). This gives the reference point for further determination of the thickness of 

deposited molecular monolayer. Then, the samples are packed into the plastic container 

and transferred to the other building for the surface activation. Afterwards, the surface 

is activated using an oxygen plasma for 3 minutes at 200W power and 1,4mbar pressure 

in the oxygen plasma generator (Section III.2.2).  

Step B: After the activation, the substrates are transferred to another laboratory, where 

they are functionalized with amino-terminated silane (3-aminopropyltriethoxysilane, 

APTES) leading to a positively charged surface (see Section III.2.4). The positively 

charged molecules are needed to create the electrostatic attraction of the negatively 

charged molecular citrate shell of gold nanoparticles. After one hour of the deposition, 

the samples are transferred back to the clean room building. Again, ellipsometry is used 

to control the properties and quality of the APTES layer. It provides an effective 

thickness of the silane layer, which converts to an effective coverage of the substrate 

with APTES, i.e. sub monolayer, monolayer or more than monolayer coverage can be 

distinguished. The typical thickness of the monolayer of APTES, according to [33] is in 

the range from 0.7 to 1nm. Furthermore, wetting angle measurements also provide 

indications for the coverage of the substrate with molecules (see Section III.6.2). The 

typical contact angle value for APTES molecules lies in the range from 45 to 60°. 

Step C: After the quality of the molecular monolayer is proved by the ex-situ 

characterization via ellipsometry and wetting angle measurements, citrate-stabilized Au 

nanoparticles (AuNPs) are immobilized on the surface utilizing the electrostatic 

interaction between the negatively charged citrate shell and the amino-groups of 

silanes. In the chemical laboratory, in the other building, the samples are cleaned with 

the MilliQ water in order to remove not chemically bound molecules from the silanization 

process. Then all samples are dried and placed into the clean beaker. The conventional 

solution of nanoparticles (Sigma Aldrich), usually 20nm in diameter, is used. Exactly 

111µl of the solution is dropped on each sample surface and left for at least 1 hour. 

After the time lapse, the samples are rinsed with MilliQ water. This concludes the 

immobilization process. At this step, the optical characterization via SEM was used to 

control the density of the particles deposited on the surface. 

Step D: The free citrate ligands and APTES ligands are removed by oxygen plasma (2 

minutes etching at previously mentioned conditions), leaving the bare AuNPs 

immobilized on the surface. After this procedure, the optical characterization via SEM is 

again used to control the etching process. 

Step E: Finally, the AuNPs are decorated with various molecular monolayers (e.g. 

amino-1-undecanethiol) in order to obtain a positively or negatively charged surface 

that could, for instance, be used as an attractive interface for (guided) growth of 

neurons. The functionalization process is as follows. The conventionally prepared 
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molecules are solved in the solvent (typically ethanol) down to 0.05 or 1mM 

concentration. Then the samples with previously immobilized, etched and activated 

nanoparticles are placed into the clean and specially used beaker, where they are 

covered with 1.5ml of the prepared solution of molecules. The functionalization usually 

lasts about 18 hours. At the end of the functionalization, samples have to be cleaned 

with ethanol and MilliQ water in order to remove the residues. The optical 

characterization via SEM is finally applied after the immobilization procedure. 

 

III.6 Ex-situ characterization methods 

Next to the in-situ analysis via resistive, microwave and capacitive spectroscopy or 

surface acoustic wave measurements (see Section III.3), ex-situ characterization of the 

films surface is of importance. Some of these methods are presented in this section. 

The ellipsometry (see Section III.6.1) and water contact angle measurements (see 

Section III.6.2) are the most widely used techniques for the characterization of the 

quality of molecular layers on the surface because of their straightforward and reliable 

analysis. The streaming potential technique (see Section III.6.3) is used for analysis of 

interfaces formed by systems of different complexity and the electrolyte solutions. This 

analysis is very important for observation of the behavior of given systems in the 

biocompatible conditions in aqueous environment. 

 

 Ellipsometry 

Ellipsometry is a very sensitive optical method for determining optical properties of a 

material. When an electromagnetic wave is incident on a medium, only part of it is 

transmitted into the medium. The fraction that is reflected depends on the complex 

refractive index, the angle of incidence, and the polarization state of the wave. For 

layers with different complex refractive indices, the fraction also depends on the layer 

thicknesses.  

The two basic types of polarization are parallel, 𝑝, and perpendicular, 𝑠, polarization. 

The orientation of the electric vector refers to the plane of incidence, which is defined 

by the directions of the incident and reflected waves. The intensity-independent ratios 

of the amplitudes and phases of the reflected and incident p- and s-polarized electric 

fields are described by the complex reflectances 𝑟𝑝  and 𝑟𝑠, respectively.  

The complex reflectance ratio, 𝜌, of the system which is then given by the ratio between 

𝑟𝑝  and 𝑟𝑠: 
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 𝜌 =
𝑟𝑝

𝑟𝑠

= tan(Ψ)𝑒𝑖Δ, (21) 

where tan(Ψ) is the amplitude ratio upon reflection, and Δ is the phase shift.  

Since ellipsometry is measuring the ratio (or difference) of two values (rather than the 

absolute value of either), it is very robust, accurate, and reproducible. Schematically, 

the ellipsometry principle is shown in the figure below: 

 

Figure 21: Ellipsometry measurement principle. The laser light beam is polarized by a polarizer 
and hits the surface. After reflection from the sample surface, the beam follows through the 

analyzer into the detector. 

 

Ellipsometry is an indirect method, i.e. in general the measured Ψ and Δ cannot be 

converted directly into the optical constants of the sample. Normally, a model analysis 

must be performed. Direct inversion of Ψ and Δ is only possible in very simple cases of 

isotropic, homogeneous and infinitely thick films. In all other cases a layer model is 

needed, which considers the optical constants (refractive index or dielectric function 

tensor) and thickness parameters of all individual layers of the sample including the 

correct layer sequence. Using an iterative procedure (least-squares minimization) 

unknown optical constants and/or thickness parameters are varied, and Ψ and Δ values 

are calculated using the Fresnel equations. The calculated Ψ and Δ values, which match 

the experimental data best, provide the optical constants and thickness parameters of 

the sample. 

 

 Contact angle measurements 

The contact angle Θ is the angle, defined by the liquid-vapor interface of a liquid on a 

solid surface (Figure 22). It quantifies the wettability of a solid surface defined by the 

thermodynamic equilibrium of a given system consisting of solid, liquid, and vapor. As 
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such the equilibrium contact angle reflects the relative strength of the liquid, solid, and 

vapor molecular interaction at a given temperature and pressure. Thus, the shape of a 

liquid drop on the surface is effected by the surface free energy and is therefore suitable 

for measuring surface properties.  

 

Figure 22: Contact angle 𝜣 of three-phase solid/liquid/gas system with interfacial energies 𝜸𝑺𝑳, 
𝜸𝑺𝑮, 𝜸𝑳𝑮 of solid/liquid, solid/gas and liquid/gas interfaces respectively. 

If the solid-vapor interfacial energy is denoted 𝛾𝑆𝐺, the solid-liquid interfacial energy is 

𝛾𝑆𝐿 and the liquid-vapor interface energy is 𝛾𝐿𝐺, respectively and assuming the perfectly 

planar surface the equilibrium contact angle can be calculated using Young equation: 

 cos Θ =
𝛾𝑆𝐺 − 𝛾𝑆𝐿

𝛾𝐿𝐺

 (22) 

A water drop spreads completely (absolute wetting case) on extreme hydrophilic 

surfaces. Large water contact angles (Θ > 90°) indicate a hydrophobic surface. The 

contact angle is also the characteristic for the SAMs. For example, for the APTES 

monolayer, the water contact angle depends on the monolayer coverage. For a 

monolayer, the water contact angle at room temperature and atmospheric pressure is 

about 45-60°. For another type of molecules, 1H,1H,2H,2H-perfluorooctyltrichlorosilan 

(FOTCS), the typical contact angle is about 100°. 

In our case the contact angle is determined via the sessile drop method. It is based on 

the investigation of the complete shape of a liquid drop lying on a planar solid surface. 

The image of the drop is captured with a camera and the contact angle is automatically 

recognized. 

 

 Streaming potential/current method 

As discussed in Section II.3, the streaming potential/current method represents one of 

the four major electrokinetic methods used for the study of the so-called 𝜁 potential, the 

electric potential at the plane of shear that is related to the surface properties but cannot 

be determined directly. The streaming potential technique is best suitable for 

investigation of planar samples, especially in bio-liquid environment, and therefore the 

best choice for the analysis of bioelectronic surfaces. 



EXPERIMENTAL TECHNIQUES AND SAMPLE PREPARATION 

 

 

35 

 

III.6.3.1 Electrolytes 

By definition, an electrolyte is a substance that ionizes when dissolved in suitable 

ionizing solvent such as water. In this work, different electrolytes are used, which can 

be divided in two groups: working electrolytes and titration electrolytes. 

As working electrolyte in most experiments the potassium chloride (KCl) in different 

concentrations (1 to 100mM) dissolved in the double distilled water (Bidest) is used, 

since it is a relatively simple and predictable system. Another working electrolyte is 

HBSS (Hank’s Balanced Salt Solution), which is typically used for experiments with cells. 

HBSS consists of NaCl (8.4g), KCl (0.224g), HEPES (2.38g) dissolved in MilliQ water 

(1l). HEPES is a buffering agent with the chemical formula is C8H18N2O4S. The HBSS was 

chosen in order to examine interfaces of the initial environment of the cell growth. 

However, HBSS turned out to be too concentrated and not suitable for the streaming 

potential/current measurements in its original form. The diluted version of HBSS 

electrolyte was approximated with the simple KCl electrolyte, because it was assumed, 

that at low concentrations they have the same behavior. 

As titration electrolyte for the acidic titration, mainly hydrochloric acid (HCl) in different 

concentrations (10-50mM) is used. For the basic titration, mostly the potassium 

hydroxide (KOH) in different concentrations (10-50mM) is used. Other titration 

electrolytes (e.g. H2SO4 (50mM) for the acidic and NaOH(50mM) for the basic titration) 

were used, but the advantage of the choice of KOH and HCl is that in combination they 

produce a salt, which will dissolve again: 

 𝐻𝐶𝑙 + 𝐾𝑂𝐻 ↔ 𝐾𝐶𝑙 + 𝐻2𝑂 (23) 

 

III.6.3.2 Principle of the measurement 

The current in the streaming current experiment is the result of the convective flux of 

ions arising from the thin double layer region adjacent to solid/electrolyte interfaces and 

conveyed by the flow of the electrolyte. The macroscopic flow of the fluid is usually 

provoked by the hydrostatic pressure gradient over the measurement cell. Due to 

charge separation caused by the flow, an electrostatic potential difference (streaming 

potential) appears along the interface, which is proportional to the streaming current. 

Thus, the determination of the 𝜁 potential is based on a measurement of either the 

streaming potential or the streaming current. The magnitude and sign of the zeta 

potential provides conclusions on (a) the chemical, physical or molecular structure of 
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the surface, (b) the composition of the electrolyte solution and (c) the interaction 

between the solid and the liquid. 

The streaming current/potential measurements are performed using a modified ‘SurPass 

Electrokinetic Analyzer’ (Anton Paar GmbH). The set-up is shown in Figure 23: 

 

Figure 23: The overview of the streaming current/streaming potential set-up (electrokinetic 
analyzer (SurPASS)). 

For measurement, a pair of identical samples (10x10 or 10x20mm size) is attached to 

the sample holders using the double-sided adhesive tape (Figure 24a,b). These two 

sample holders are mounted inside the holder (Figure 24c) to form a microfluidic 

channel. The distance between the coplanar surfaces is adjusted to form a channel with 

minimum width for a laminar flow of the electrolyte. The optimum width turned out to 

be between 90 and 150µm. This regime defined by technical requirements of the device 

and physical properties of the microfluidic channel. If the channel height is smaller than 

90µm, a large pressure is needed to generate the flow, which can damage the syringes 

and influence the geometry of the channel. However, if the height of the channel is 

larger than 150µm in order to achieve good resolution, the flow rate will overcome the 

critical value of 600ml/min, which corresponds to the laminar to turbulent flow transition 

in this geometry. Therefore, it is recommended to adjust the height of the microfluidic 

channel to approximately 100µm.  
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Figure 24: The samples are attached to the sample holder (a) or (b) and then placed into the 
holder (c) forming the microfluidic channel. 

Next to the device is the reservoir with the working electrolyte solution (Figure 23). The 

properties of the electrolyte solution are controlled via temperature sensor, the 

conductivity sensor and pH electrode, which simultaneously measure the temperature 

in the range of 20 to 30°C, the conductivity in the range of 0.005-1000 mS/m and the 

pH in the range of 2-12pH, respectively.  

The measurement setup was modified in order to get the reproducible and reliable 

measurements. In [47], we have already introduced the first modification, which was 

the water bath around the beaker with working electrolyte. This allowed the stabilization 

of the temperature of the electrolyte solution, which at the same time effects the 

stability of the 𝜁 potential measurement, as it is recalculated using table values of 

viscosity, permittivity and cell constant, which are dependent on the temperature.  

The second and the most important modification was the nitrogen purger, which is at 

the same time the beaker for the electrolyte, shown in Figure 23&Figure 25.

 

Figure 25: The nitrogen purger: a) the first and 
b) the latest concept. 

 

The necessity of the purging the electrolyte 

solution arises from the dissolution of the 

CO2 in water that is the solvent in all 

electrolytes we use. The solution rate of the 

CO2 in water is around 750cm3/l at 25°C. 

The dissolved CO2 results in formation of 

charged ionic species additional to the 

electrolyte, considered as impurity, because they lead to the unpredictable behavior 

[48]: 



EXPERIMENTAL TECHNIQUES AND SAMPLE PREPARATION 

 

 

38 

 𝐶𝑂2 + 𝐻2𝑂 ↔ 𝐻2𝐶𝑂3;  𝐻2𝐶𝑂3 + 𝐻2𝑂 ↔ 𝐻𝐶𝑂3
− + 𝐻3𝑂+ (24) 

The solution of CO2 has the overall negative effect, because it also leads to the change 

of the pH of the solution. In order to remove the CO2, the inert gas has to be used. The 

argon and nitrogen both are good candidates for this. The nitrogen was chosen because 

of its availability and relatively lower price. The solution rate of the nitrogen in water is 

about 13cm3/l at 25°C, which proves its indifference. Due to simple colloidal effects, the 

system tries to increase the entropy and save the energy, it is more preferable for CO2 

to come to the nitrogen/water interface and to be taken off from the solution. When 

purging with nitrogen, the pH of the solution has to correspond to the pure double 

distilled water pH value.  

The preparation procedure is as follows. Samples are mounted with double-sided 

adhesive tape to the sample holders, which are mounted inside the holder, which is 

connected to the housing with the plug from each side. Each plug contains the pressure 

sensor and the Ag/AgCl electrode to measure the voltage or current, depending on the 

electrical circuit. The empty and dry glass beaker with a magnetic stir bar and with the 

nitrogen purger is prepared. The beaker is filled with the fresh prepared working 

electrolyte (typically, KCl, 1mM concentration). First, the system has to be rinsed with 

the working electrolyte. In order to avoid contaminations in the electrolyte beaker, the 

outlet hose is disconnected from the beaker cover and placed into a second glass beaker, 

which is used as the “waste beaker”. The system is filled with 100ml of working 

electrolyte and afterwards, the electrolyte is poured out to the “waste beaker”. Then the 

outlet hose is again plugged to the beaker cover and the system is now rinsed for 500s 

with the working electrolyte to establish the equilibrium. The height of the measurement 

cell is now adjusted and after the rinsing, the flow check procedure is performed to 

make sure that the system is filled without air and to check the parallel mounting of 

samples. In the case if, the samples are negatively charged at the neutral pH values, 

the acidic pH titration is necessary to achieve the isoelectric point. Therefore, the acidic 

titration electrolyte (e.g. HCl, 50mM) has to be prepared. In other case, the basic 

titration is required and therefore the basic titration electrolyte (e.g. KOH, 50mM) is 

used. 

The measurement procedure is as follows. The pressure gradient is generated via the 

pair of motorized syringes that move synchronically, pushing the electrolyte through the 

measurement cell. There are different variations of the measurement cell for different 

sample geometries available from the company. The movement of a liquid through the 

capillary system creates a streaming potential or streaming current, which, together 

with the pressure, are registered by electrodes and pressure sensors, respectively. This 

data is then processed by the software (Visiolab by Anton Paar GmbH) and is shown as 

in the Figure 26: 
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Figure 26: The measurement of the a) streaming current, recalculated to b) the 𝜁 potential. 

The streaming potential or streaming current vs pressure dependence (e.g. Figure 26a) 

is approximated with the line. The slope of this line is used to determine the 𝜁 potential, 

which is given by [49]: 

 𝜁 =
𝑑𝑈

𝑑𝑝
×

𝜂

𝜀 × 𝜀0

×
𝐿

𝐴 × 𝑅
 (25) 

and 

 𝜁 =
𝑑𝐼

𝑑𝑝
×

𝜂

𝜀 × 𝜀0

×
𝐿

𝐴
 (26) 

where 

𝜁 stands for zeta potential, 
𝑑𝑈

𝑑𝑝
 – slope of the streaming potential versus pressure, 

𝑑𝐼

𝑑𝑝
 - 

slope of the streaming current versus pressure, 𝜂 - electrolyte viscosity, 𝜀0 - vacuum 

permittivity, 𝜀 – dielectric constant of electrolyte, L – length of the streaming channel, 

A – cross-section of the streaming channel, R – Ohm resistance inside the measuring 

cell. 

Using relations (25) & (26) we obtain the values for the 𝜁 potential at the given pH value 

(Figure 26b). If now, we add the titration electrolyte into the working electrolyte 

solution, the initial pH value (usually 5.5 to 7) is changed. Measuring the 𝜁 potential 

(using the recalculation of the streaming current) at each pH value (Figure 27a), reached 

during titration, we obtain the pH dependence of the 𝜁 potential, which is the main 

characteristic dependence for the samples that we examine. The example of such 

dependence, obtained using the pH titration of the initial KCl solution (pH 6.5) with the 

KOH electrolyte (up to pH 9) is shown in Figure 27b: 
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Figure 27: a) The streaming current vs pressure dependence at different pH values, recalculated 
to b) the 𝜁 potential vs pH dependence, which is the characteristic of the examined sample. 

The streaming current/potential technique is often used for determination of an 

important surface characteristic value - the isoelectric point. According to Section II.1.4, 

the isoelectric point corresponds to pH value where the 𝜁 potential turns to zero.  

Practically it means that in the case of the absence of specific adsorption we obtain the 

pH value at which the surface charge is completely compensated by the diffuse layer 

charge and equals to zero 𝜎0 = −𝜎𝑑 = 0, which can supply us with the information on the 

surface composition. However, in the presence of the specific adsorption the isoelectric 

point moves from its original value. Specifically adsorbed anions will change the IEP to 

lower and cations – to higher values. The isoelectric point can be the indicator not only 

for the electrical properties of the surface, but also for hydrophilicity/hydrophobicity, 

the quality of the surface, degree of surface coverage, adhesive strength and effective 

chemical properties [50]. 

Nevertheless, the measurement is automated to some extent and performed using the 

conventional electrokinetic analyzer, it is still a challenge to obtain reliable and 

reproducible results because of many factors ranging from the proper cleaning of 

samples to the using of ultrapure electrolytes under special conditions and special 

measurement procedures. This forced us to introduce some modifications to the 

measurement set-up and measurement procedure, discussed in the following chapter. 

 

B 
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IV. Results and Discussion 

In this chapter, the modification and characterization of different surfaces are discussed, 

starting with simple interfaces (e.g. inert dielectric surface in contact with the aqueous 

electrolytes) continuing with more complicated systems (e.g. self-assembling 

monolayers of organic molecules and conducting noble metals), and ending with 

complex surface modifications (e.g. functionalized nanoparticles) especially for potential 

bioelectronic applications. In the beginning of the chapter, the optimization of the 

streaming current/streaming potential device and measurement procedure is shortly 

given, which was essential to obtain reliable results for the different systems that are 

examined. 

 

IV.1 Streaming potential/streaming current reference 
measurements 

In the first part of this section, the optimization of the measurement is sketched. Not 

all actions that have been taken are described. The discussion is restricted to the impact 

of the solvent (water) quality and optimization of the measuring procedure, using 

measurements on a perfect inert system, polypropylene foil, as a reference. 

Additionally, the hardly-avoidable impact of carbon dioxide, solved in the electrolyte, on 

the surface potential is analyzed and strategies to minimize this impact are developed. 

 

 Optimization of the measurement procedure 

In order to optimize the surface potential experiment, calibrate and verify the full 

functionality of the streaming current/streaming potential setup, validation 

measurements using polypropylene foil (PP foil) as a test sample are performed. 

Polypropylene is an isotactic polymer, which can withstand chemicals that are normally 

used during the measurement. This also means that the surface of the material is inert 

and has no net charge. Furthermore, it is hydrophobic and turns out to give very 

reproducible results that allow an accurate calibration.  

Generally, surface charges at the interface between a hydrophobic solid and an aqueous 

solution are generated by (i) acid-base reactions of surface functional groups and (ii) 

adsorption of water ions (OH- or H3O+). In case of the absence of surface functional 

groups (inert surface), only the second mechanism (adsorption of water ions) applies. 

This leads to a linear dependence of the 𝜁 potential on the pH value and to an isoelectric 

point (IEP) value of 4, at which an equilibrium surface concentration of adsorbed 
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negative water ions (OH-) and positive water ions (H3O+) is obtained [51]. Therefore, in 

titration measurements PP foil should demonstrate a linear dependence of the 𝜁 potential 

on the pH value (behavior of inert surfaces) with an IEP of 4.0±0.2. [52]. Deviation 

from this behavior indicates that there are problems with the setup (e.g. impurities in 

the system) or with the measurement itself. 

The surface potential is affected by many factors. In order to obtain reliable data, 

various factors are analyzed systematically, starting with different types of the solvent 

(water) for the electrolytes. Distilled, double distilled (BiDest) and MilliQ water are 

tested as a single electrolyte. Results, obtained for these measurements are shown in 

Figure 28: 

 

Figure 28: pH dependence of the ζ-potential of polypropylene foil measured with 1mM KCl 
solved in MilliQ (blue circles) and double distilled water (BiDest) (red rectangles). 

None of the measurements yields an IEP of ~4, instead IEPs of 3.35 and 3.65 are 

obtained for MilliQ and for Bidest water, respectively. However, in all reference 

measurements the IEP of the measurement using Bidest was closer to the desired IEP, 

which indicates that the usage of the deionized water is preferable.  

In the next step, potential contaminants of the electrolyte during the measurement are 

considered. Here especially the impact of CO2 that forms carbonates and then might 

modify the surface have to be taken into account. For this, a N2 purger (see Section 

III.6.3.2) that should reduce the amount of carbon in the electrolyte is developed. 

However, due to the safety reasons, the titration electrolyte is not purged with nitrogen, 

which causes CO2 to enter the solution during titration. This means that the purger 

needs time to remove the dissolved CO2 that gets into the working electrolyte with the 

titration electrolyte. This effect can be avoided by introducing additional rinsing and 

measuring steps after each titration step. This improved measurement procedure (using 

BiDest, N2 purger and sufficiently long and repeated purging time to remove carbonates 

from the electrolyte) allows us to reproducibly obtain correct IEP values (red circles in 

Figure 29). 
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Figure 29: 𝜁 potential as a function of pH of a PP foil for improved measurement procedures 

using BiDest water, N2 purger and sufficiently long rinsing pauses in between titration steps. 

In Figure 29 the pH dependence of the 𝜁 potential with only 2 titration steps and 5 

rinsing steps is shown in red circles. One can nicely see how the 𝜁 potential develops 

(increases) with the additional N2 purging. In order to have more precise experimental 

data, more experimental points are needed at different pH values. For this reason, the 

measurement procedure with additional purging and rinsing was optimized with respect 

to measuring and purging time. The black circles in Figure 29 show the pH dependence 

of the 𝜁 potential with sufficient number of titration steps, including additional 2 rinsing 

steps at each measurement step. This curve agrees with the red curve with less titration 

steps perfectly and displays an IEP of 4, as expected for PP foil. 

The removal of CO2 turned out to be of great importance for the titration, as shown in 

the following section. 

 

 Impact of carbon dioxide on the 𝜁 potential 

The titration of the working electrolyte is the important tool to analyze the surface 

potential in streaming current/streaming potential measurements. Via titration, the 

isoelectric point (IEP), can be determined, which represents a characteristic value for 

the surfaces. However, not only the IEP provides important information, also the 

dependence of the ζ-potential on pH value is important [25], [53]. In this section, the 

impact of the carbon dioxide on the pH-dependence of the 𝜁 potential is discussed in 

detail.  

Most of the electrolytes used for streaming potential measurements are water-based 

salt solutions with a pH value of water. Normally, the pH value of a pure water has to 

be approximately 7, which corresponds to the equilibrium of H+ and OH- ions in the 

solution (at 25°C). However, usually this is not the case, since water absorbs gasses 

from the atmosphere. These gasses when dissolved in water influence the properties of 
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the aqueous solution. The important component of the atmosphere that has to be 

considered is carbon dioxide (CO2) which in water leads to the formation of carboxylic 

acid (H2CO3), and subsequently to the formation of carbonates (HCO3
 -). This acid shifts 

the pH value of water to ~5.5. This phenomenon not only affects the pH of the solution. 

Hydrocarbonates can adsorb on the surface therefore modifying the measurement. This 

is demonstrated in the following, using a borosilicate glass (BSG) substrates 

(10x20mm), standard KCl working electrolyte (10mM concentration), but no purger. 

When starting the titration at the initial pH of the electrolyte (i.e. pH 5.5 without N2 

purger), the BSG substrates exhibit the expected inert behavior, with an IEP of ~3.9. 

Separate acidic (HCl) as well as basic (KOH) titration works flawless (see Figure 30). 

 

Figure 30: pH dependence of the 𝜁 potential of borosilicate glass (BSG) substrates using 

separate acidic (using HCl) and basic (using KOH) titration. 

However, interesting effects occur, if a basic titration is added after the acidic titration 

and vice versa. This is the usual procedure to measure the complete pH range in one 

run in order to analyze whether a surface is inert, basic, acidic or amphoteric. 

Figure 31 shows two typical examples. In the first example (Figure 31a), 3.2ml of HCl 

(0.1M) are added to the initial working electrolyte solution of KCl (10mM) to obtain pH 

of 3. Then the working electrolyte is titrated with KOH (10mM) until pH of 10 is reached. 

As usual, other conditions (especially conductivity and temperature of the electrolyte) 

are controlled and kept constant. In the second example (Figure 31b), the starting point 

of the titration is pH of 5.5. Now, the working electrolyte is first titrated with the HCl to 

reach pH of 3 and then it is titrated back with the basic electrolyte (KOH) to pH of 9. 
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Figure 31: pH dependence of 𝜁 potential of borosilicate glass for “complete” titration without N2 

purger. In both cases the experiment starts at pH of ~5.5 with an acidic titration using HCl 

(3.2ml HCl (0.1M) in one step (a) and HCl (10mM) in reasonable number of steps in (b)), 
followed by a stepwise basic titration using KOH (10mM). 

The experimental data in Figure 31b shows that the first titration (acidic titration) of the 

BSG surface with HCl yields the typical behavior of inert surfaces with an IEP of 3.3 that 

correlates with literature data [54], [55]. However, the second titration leads to higher 

𝜁 potentials and an unusual peak in the pH dependence of the 𝜁 potential around pH of 

6. The shape of the curve for the second titration cannot be explained by inert, basic, 

acidic or amphoteric behavior, which leads to the conclusion that there is the chemical 

reaction, taking place at the surface.  

However, we could demonstrate that the peak of the 𝜁 potential at pH of ~6 is a result 

of CO2 dissolved in water. Performing the same experiment as shown in Figure 31b on 

the same sample using the nitrogen purger, the pH dependence of the 𝜁 potential for 

acidic and subsequent basic titration shows that the peak at pH6 is strongly suppressed 

(Figure 32). 

 

Figure 32: pH dependence of 𝜁 potential of borosilicate glass for “complete” titration using N2 

purger. The experiment starts at pH of ~5.5 with an acidic titration using HCl (10mM), followed 

by a stepwise basic titration using KOH (10mM). 
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We conclude that the nitrogen replaces CO2 in the electrolyte solution during purging 

and at the same time does not react at the surface. The small peak at pH of ~6 might 

be caused by remaining carboxylic acid from the titration agents, which are only purged 

after it is added to the working electrolyte. 

Thus, the nitrogen purging is very important in our electrokinetic experiments, due to 

the dissolved CO2, which strongly influences the properties of the electrolyte, surface, 

and consequently the correct measurement of the 𝜁 potential.  

 

IV.2 Simple interfaces: Dielectrics 

In this section, the pH dependence of the 𝜁 potential of ‘simple’ interfaces (typically 

planar, inert, polished, and chemically cleaned substrates) is discussed. As examples, 

the behavior and isoelectric points (IEPs) of borosilicate glass (BSG), different 

orientations of Si and r-cut sapphire are discussed. In the second part, Si (100) surfaces, 

modified with 100nm SiO2 layer and treated with oxygen plasma are presented. 

Si and BSG are maybe ones of the most suitable substrates for bioelectronics. BSG 

consists of silicon dioxide (>80%) with addition of boron oxide (>10%) and some other 

minor oxides. This content makes the BSG surface very similar to the silicon surface 

that possesses 3nm native oxide layer. In this work, silicon is represented by Si (111), 

Si (100) n-doped and, later in this section, SiO2 oxidized Si (100). Sapphire (r-cut) 

represents the substrate, which is widely used in thin film deposition as well as in 

microwave circuits. In this work, it is mainly used as a reference surface to 

biocompatible Si and BSG. 

For investigation of given surfaces, the standard measurement procedure, established 

in Section IV.1.1, is used for acidic titration using hydrochloric acid (HCl, 50mM) as 

titration electrolyte and potassium chloride (KCl, 1mM) as working electrolyte also 

including the N2 purger. The acidic titration allows obtaining the IEPs for all samples 

that are negatively charged at neutral conditions. All samples are 10x10mm in size, 

chemically cleaned using Protocol A (see Section III.1). 

The pH dependences of the 𝜁 potential for BSG, a pair of Si and sapphire samples are 

shown in Figure 33 in comparison to the calibration curve, obtained by using the 

polypropylene foil. 
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Figure 33: a) pH dependence of the 𝜁 potential and b) isoelectric points of ‘simple’ dielectric 

interfaces (i.e. borosilicate glass, silicon (111) and (100) orientation, r-cut sapphire) in 
comparison to the polypropylene foil. The shaded region in (b) marks the regime of hydrophobic 

inert surfaces. 

The pH dependence of the 𝜁 potential of all samples demonstrates that all surfaces are 

inert (no basic or acidic groups dissociating from the surface) (Figure 33a). The main 

difference of investigated surfaces lies in the IEPs (Figure 33b). Starting with Si, 

interestingly, there is a small difference between the two different crystal orientations. 

The (111) orientation seems to be slightly more acidic (i.e. it possesses more negative 

charges on the surface). However, the difference is relatively small. As expected, the 

IEP of the BSG is very similar to that of the silicon surfaces. Actually, it seems to lie 

between the IEPs of the two orientations of Si. All surfaces are hydrophilic and the IEPs 

are in the good agreement with literature data for silicon and silicon oxide surfaces [54], 

[55]. 

The surface potential of r-cut sapphire is generally higher than that of the Si-based 

substrates. The IEP, determined for the r-cut sapphire surface is of 4.39, which is in 

agreement with literature. However, there are also studies with diverging IEP values for 

sapphire. The reason is the different surface structure dependent on the cut [56], [57], 

which can lead to positively charged surface even at neutral and physiological pH. For 

extended characterization of this kind of surface, one should also refer to [47]. 

In further experiments, Si (100) n-doped surfaces are investigated since it is a widely 

used substrate for bioelectronic experiments. Thus, n-doped and SiO2 terminated 

substrates typically represent the starting point of all sample preparations. Although, 

the Si surfaces are well studied by different electrokinetic methods [55], [58]–[63] small 

differences depending on the termination or activation of the surface might be 

important. For this reason, we studied the difference between n-doped Si with a 3nm 

native oxide surface and with a 100nm SiO2, obtained by thermal oxidation. Additionally, 
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the oxidized surface was activated using an oxygen plasma (see Section III.2.2.1). The 

resulting pH dependences of the 𝜁 potential are given in Figure 34. 

 

Figure 34: pH dependence of the 𝜁 potential of n-doped Si (100) after cleaning (blule circles), 

with additional 100nm SiO2 layer (green circles) and additional oxygen activation (red circles). 
The shaded region in (b) marks the regime of hydrophobic inert surfaces. 

All samples show an inert behavior. The original Si surface possesses the smallest IEP 

of 3.56. The slight curvature at low pH values should not be considered. It is always 

present at low pH values due to the large density of counter-ions in the electrolyte and 

can be treated in terms of overcharging effects [29] which is also known for the silanol 

bonds [10]. The SiO2 terminated surface tends to have a slightly higher 𝜁 potential for 

the complete pH regime and therefore a slightly higher IEP of 3.91. This means that 

there is more positive charge on the surface (most likely specifically adsorbed hydrogen 

ions coming from electrolyte solution [64]) and therefore less additional positive charge 

is needed to reach the IEP.  

Finally, the activation of the SiO2 surface in an oxygen plasma leads to a cleaning and 

oxidation of the surface layer of silicon and therefore to increased number of silanol 

bonds. Later, they serve as bonding sites for silane molecules (e.g. FOTCS or APTES). 

In aqueous environment, the silanol bonds are protonated leading to hydroxyl surface 

functional groups that are highly negatively charged. Consequently, the 𝜁 potential of 

the surface is strongly reduced with respect to the non-activated surface (-70mV 

compared to -40mV at pH of 6). One would expect that an increased number of silanol 

groups, which are acidic, would lead to an IEP in a very acidic region. However, this is 

not the case. Around pH of 5.5 the slope of the pH dependence changes and the IEP 

ends up to be similar to that of the non-activated surface. This is a clear indication of 

the reconstruction of silanol bridges, which was also reported in [36]. 
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IV.3 Metallic surfaces 

The measurement of the surface potential of films with a large surface conductance is 

difficult and only possible in streaming current measurement that excludes the influence 

of surface conduction. Generally, metallic surfaces (noble metals) are of interest for 

bioelectronic applications, since they are used as electrode materials as well as 

substrates for molecular monolayers (e.g. thiol bonding) facilitating cell adhesion. 

Another advantage of using noble metals is their resistance to oxidation and stability in 

physiological conditions. In this section, we will discuss the characterization of metallic 

films of Pt, Au and Cr deposited via thermal evaporation onto the borosilicate glass 

substrates (Figure 35) in the clean room class 100 environment. 

 

Figure 35: SEM images of noble Au (a) and Pt (b) thin (5nm) films evaporated on borosilicate 
glass substrates.  

The toxic to organics metal Cr is chosen as the reference surface to noble and 

biocompatible Au and Pt surfaces. The pH dependence of the ζ-potential measurement 

(Figure 36) is done using our standard measurement procedure for 10x10 samples for 

negatively charged surfaces, i.e. acidic titration. 

 

Figure 36: a) pH dependence of the ζ potential and b) isoelectric points of 5nm thick evaporated 

metallic films (Au, Pt and Cr) on BSG, the substrate (BSG), and inert polypropylene foil. The 
shaded region in (b) marks the regime of hydrophobic inert surfaces. 
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Figure 36 shows that the IEPs of all films are higher compared to that of the substrate. 

All metal surfaces when getting in contact with the aqueous solution can be divided into 

two groups:  

(i) either they immediately form an oxide layer (hydrophilic) 

(ii) or they are inert to water (hydrophobic). 

When measuring metals from the first group, the electrokinetic properties of metal 

oxides are dominant. Cr belongs to this group. It forms a passivation oxide layer, when 

getting in contact with the electrolyte, which leads to a relatively positively charged, but 

still hydrophilic surface. The measured IEP of Cr is of 4.27, which agrees with the 

literature [65]. Typical IEPs of other metals from this group can be found in [55], [61]. 

The second group interacts with ions in the solution via the so-called hydrophobic 

interaction, i.e. the negatively charged OH- groups are specifically adsorbed on the 

surface. As a result an IEP of 4 is expected similar to that of the inert organic polymer 

compound polypropylene. The characterization of gold layers using streaming potential 

method was already performed by different investigators [66], [67]. They obtained IEPs 

ranging from 2.9 to 4.5. In our experiment (Figure 36) the Pt and Au layers show an 

IEP of ~ 3.8, which is slightly lower than expected (IEP of 4 is expected for optimized 

inert, hydrophobic surfaces), but still within the expected region. This result suggests 

that the surfaces of these films might not be perfectly clean, although they were 

evaporated in clean room environment. However, we will show below, that this is most 

likely not the case. It seems that these films are activated during the deposition. 

In order to test the effect of chemical cleaning and plasma activation on metallic 

surfaces, Au film was specially cleaned using protocol A and activated using the oxygen 

plasma. Figure 37 nicely shows the ‘history’ of this series of treatments. It should be 

noted, that in this case acidic titration (first 2 data sets) and basic titration (last 2 data 

sets) have been applied. Starting with the original Au layer (as obtained after deposition 

and stored in a plastic container), a slight amphoteric behavior with a reduced IEP of 

3.76 is observed. Chemical cleaning (protocol A) leads to the inert behavior and 

generally increases the 𝜁 potential. In this case, an optimal IEP of 4 is achieved. 

Activation of the layer (oxygen plasma generator, 120W, 0.8mbar, 5min) leads to the 

expected strong reduction of the 𝜁 potential. Finally, if we immerse the layer in ethanol 

(99.9%, 10min) after the activation, the 𝜁 potential is increased again. It is back to the 

about the same level that was observed before the activation.  
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Figure 37: pH dependence of the 𝜁 potential for a gold surface directly after the deposition 

(red), chemically cleaned (green), activated in oxygen plasma (blue) and immersed into the 
ethanol after activation (black). The dashed line serves as a guide for the eye. It connects the 

final step with the measurement before activation. 

Interestingly, the pH dependence of the 𝜁 potential of the Au surface activated in plasma 

is the exact extension of the pH dependence of the sample, measured directly after the 

preparation. This suggests that the Au surface undergoes some ion treatment (e.g. 

bombardment) or is annealed in oxygen atmosphere during deposition. Moreover, the 

behavior of the activated sample immersed in ethanol represents an extension of data 

for the chemically cleaned sample. This suggests that the immersion of the Au layer in 

ethanol eliminates the activation effect.  

In conclusion, these results tell us that the treatment of the metallic layer play a very 

important role for the surface properties. Even a single monolayer of contaminant or an 

influence of a modification of the surface layer can significantly decrease or increase the 

surface potential. 

 

IV.4 Graphene 

Due to its unique properties (monolayer thickness, good conductance, mechanical and 

chemical stability), graphene represents one of the most interesting new potential 

alternatives for Si/SiO2 in bioelectronic applications. However, graphene, being a thin 

monolayer, has to be supported by a substrate in any application. Therefore, the 

motivation for this set of experiment is to investigate 

(i) the surface potential of graphene itself and  

(ii) the potential influence of the substrate on the surface potential of graphene 

layers.  

The information about the electrical surface properties of the substrate-graphene 

system in an aqueous solution might, for instance, be of great importance for FET 
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biosensor devices. The right choice of the substrate can influence the properties of the 

graphene layer and therefore the adhesion of the biomaterial and consequently the 

performance (i.e. selectivity and sensitivity) of the sensor of FET-based devices. 

The graphene layers are deposited by the ‘Finishing’ method (see Section III.4) in the 

cleanroom environment. Figure 38 represents the pH dependence of the 𝜁 potential for 

graphene on different types of substrates in comparison with the data obtained for the 

original substrates (after chemical cleaning) and substrates chemically cleaned and 

annealed in N2 (350°C, 2 hours). The substrates have been chosen according to their 

potential applicability and IEP values of ~ 4 (Si/SiO2, Kapton), <4 (BSG), and >4 (r-cut 

sapphire). 

 

Figure 38: pH dependence of the 𝜁 potential for graphene (black squares) deposited on different 

substrates. For comparison, the data for the cleaned (green triangles), and in N2 annealed (red 
circles) substrates are shown. 

The coverage of the substrates by graphene is nearly 100% for each substrate. The pH 

dependence of the 𝜁 potential (Figure 38) indicates that the graphene layer is inert. It 

shows a linear behavior over a large pH regime and, moreover, it seems to be 

hydrophobic (see Figure 39), since the isoelectric point obtained for almost all samples 

lies in the “hydrophobic IEP region”, defined by pH of 4±0.2.  
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Figure 39: Comparison of IEPs for graphene layers on different substrates, original substrates 

and N2 annealed substrates. Lines are guides for the eyes. The shaded regime represents the 
regime of IEP for hydrophobic materials. 

The N2 annealing of BSG, Si and Kapton seems to lead to very similar IEPs, whereas the 

IEP of the sapphire is different. However, the N2 annealing influenced all surfaces. 

Generally, it can be noted, that the graphene layer does not lead to a significant 

modification for the hydrophobic surfaces Si/SiO2 and Kapton. Therefore, we conclude, 

that the IEP of graphene itself is about pH of 4. This is supported by the result obtained 

for BSG and sapphire. In both cases the IEP of the graphene layer on these substrates 

is shifted in (sapphire) or towards (BSG) the hydrophobic IEP regime (see Figure 39). 

 

IV.5 Molecular monolayers 

In this section, the surface potential as well as in-situ (microwave and capacitive 

spectroscopy) and ex-situ (contact angle and ellipsometry) characterization of molecular 

layers deposited on BSG and Si are discussed. As example, two silanes are considered: 

1H,1H,2H,2H-perfluorooctyltrichlorosilane (FOTCS) and 3-aminopropyltriethoxysilane 

(APTES), presented in Figure 40. 

 

Figure 40: Chemical structure of (a) 1H,1H,2H,2H-perfluorooctyltrichlorosilane (FOTCS) and (b) 
3-aminopropyltriethoxysilane (APTES). 
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The silanization procedure was done by vapor phase deposition (see Section III.2.4) 

that should produce high-quality self-assembled monolayers compared to the deposition 

from a solution. 

In a first test, we deposited FOTCS to optimize and check the deposition of molecular 

layers in the new device (GLOBUS). FOTCS molecules solution (97%) is inserted into 

the transport beaker in a Glove Box under Ar atmosphere and then it is transported and 

connected to the silanization device (GLOBUS). By reducing the pressure to 45mbar, 

i.e. the evaporation pressure of these molecules, the deposition starts. The pressure of 

45mbar is held for an hour, i.e. long enough for the deposition and formation of a 

monolayer of molecules. 

The deposition is monitored in-situ via microwave and capacitive spectroscopy. 

Furthermore, ex-situ ellipsometry and contact angle measurements are performed to 

verify the deposition of the monolayer. 

 

Figure 41: Contact angle measurements (a) before and (b) after silanization of a borosilicate 
glass with FOTCS in the GLOBUS device. 

Before silanization, the cleaned and activated substrate (BSG) shows a complete wetting 

(Θ<20°) that is indicative of the hydrophilicity due to open silanol bonds (see Figure 

41). After silanization, the surface is hydrophobic, Θ≈103°. The surface properties are 

modified due to the deposition of FOTCS. The thickness of the layer is estimated via 

ellipsometry. Typically, the thickness of the monolayer of FOTCS is about 1-1.2nm. 

Silanization with APTES is nowadays widely used in different scientific areas [10], [33]. 

This molecule is similar to FOTCS and therefore the silanization procedure is very similar. 

The pressure is carefully reduced and the evaporation of APTES sets in at a slightly lower 

pressure of 0.09mbar. It is visible in form of a small increase in pressure up to 

0.22mbar. The silanization time is chosen similar, i.e. 1 hour. The deposition is 

monitored by microwave and capacitance spectroscopy. After deposition, the films are 

characterized ex-situ by contact angle measurements and ellipsometry.  
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Figure 42: Contact angle measurements a) before and b) after the silanization of the 
borosilicate glass surface with APTES in the GLOBUS device. 

The contact angle of the APTES terminated glass surfaces (Figure 42b) is close to the 

angular rate of 45-60° that is reported for APTES [38]. This is an indication of the slightly 

thicker layer (i.e. more than one monolayer). This result is in a good agreement with 

ellipsometry data that revealed a thickness of the molecular layer of 1nm, which is 

slightly larger than the literature value of 0.7±0.2nm for a monolayer of APTES. 

The surface potential determination measurements of APTES are discussed in the 

following chapter. 

 

IV.6 Complex interfaces: Functionalized gold 
nanoparticles and organic molecular monolayers 

Gold nanoparticles (AuNPs) represent an extremely interesting tool that can, for 

instance, be used in bioelectronics since they can be functionalized with molecular 

monolayers, facilitate the protein adsorption and hence, affect and improve adhesion, 

growth and guiding of living cells on a surface. Moreover, they are macroscopic objects 

and therefore can easily be detected using the scanning electron microscopy (SEM), 

which allows the structuring and manipulation of their distribution on a surface [46]. A 

nice example of the guiding of neuronal cells via amino-functionalized AuNPs is 

presented in Figure 43. 
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Figure 43: SEM images of neurons growing on amino-1-undecanethiol covered AuNP structures. 
Arrows indicate anchor points of neurites. Source: [46]. 

The surface potential of a complex surface for potential bioelectronic applications 

consisting of various compounds (i.e. bare substrates, organic molecules with different 

functional groups, and AuNPs) represents a very interesting and demanding object for 

our surface analysis via streaming potential/current technique. 

In this section, a complete process of AuNPs immobilization and different 

functionalizations starting from the bare surface to AuNPs covered with molecular 

monolayers is discussed. It includes detailed analysis of APTES molecular monolayers, 

AuNPs immobilized on Si and BSG surfaces, and functionalization with varies molecular 

monolayers that possess different charges. Additionally, the effect of the concentration 

of AuNPs on the 𝜁 potential of the interface is discussed. 

In order to investigate the modification of the surface potential during the process of 

the immobilization and functionalization of AuNPs, detailed streaming current 

measurements are performed as function of pH and time for each part of the preparation 

process. Since for each preparation step a new set of samples is used, an additional 

control of different process steps is required, i.e. ellipsometry and wetting angle 

characterization are used to monitor the thickness and hydrophilicity of the initial APTES 

layer and electron microscopy (SEM) is used to analyze the AuNP distribution. In nearly 

all cases the ellipsometry revealed a thickness of the APTES layer of (0.7±0.2)nm and 

a wetting angle of (40±4)o. Both values agree reasonable well with the expected value 

for monolayers of APTES [33], [46].  

The pH dependence of the 𝜁 potential data is given in Figure 44a-e, representing 

different steps that are discussed separately. 
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Figure 44: pH dependence of the 𝜁 potential of: (a) bare substrates Si, Si/SiO2 and oxygen 

activated Si/SiO2, (b) after deposition of APTES (measured different time after APTES 
deposition), (c) after deposition of citrate-stabilized AuNPs (different AuNP concentrations are 
given), (d) after removal of free molecules (citrates and APTES) via oxygen plasma, and (e) 

after deposition of amino-1-undecanethiols onto the AuNPs. Each curve represents a different 
pair of samples, however, experiments in the same symbol (and color) belong to one series of 

measurements (e.g. identical density of AuNPs), and excluding step A, which is the same for all. 
Additional lines in (b) and (c) indicate the extrapolation of the measurement that is used to 

obtain an IEP value for some of the measurements. 

Step A, pure substrate: The n-doped and SiO2 terminated substrates represent the 

starting point of all sample preparations. These surfaces are typical representatives of 

‘relatively simple’ interfaces, where only the solid surface and liquid electrolyte are 

brought into contact. The data and discussion of the substrate material was already 

given in Section IV.2 and is shown in Figure 44a for comparison with other 

measurements. However, here we additionally discuss the time dependent 

measurement at a fixed pH of 6 (Figure 45) that demonstrate that the 𝜁 potential of 

non-activated SiO2 terminated Si (black open circles) is unaltered over the complete 

measuring time of ~ 6h. However, the plasma-activated SiO2 surface, as also reported 

elsewhere [60], [68], is unstable in time during dry or wet storage. In our particular 

case, the 𝜁 potential of the activated SiO2 surface is decreasing from -70 to -80mV 

during 4h and then remains stable. This effect is not yet completely understood, but is 

probably the result of the oxygen plasma treatment that increases the quantity of silanol 

groups on the surface, which are reconstructed in time. 
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Figure 45: Time dependence of the 𝜁 potential of Si/SiO2 substrate (open circles), Si/SiO2 

substrate, treated by oxygen plasma (solid circles), positively charged layer of APTES molecules 
(solid squares), positively charged layer of amino-1-undecanethiols pinned on the AuNPs (open 

squares), citrate-stabilized AuNPs on APTES possessing both negative charges from citrate-

molecules on gold and positive charges from APTES (open triangles), and plasma-treated bare 
AuNPs on a bare substrate (solid triangles). All measurements were executed at pH of 6.  

In conclusion, the Si/SiO2 surface of the substrate seems to be stable and inert until it 

is activated with oxygen plasma.  

Step B, APTES: Figure 44b presents the pH dependence of the 𝜁 potential of the silicon 

oxide surface after deposition of a monolayer of APTES molecules. The figure displays 

three sets of data that are recorded after different times that elapsed after the 

deposition of the molecular layer. The ‘fresh’ sample (only 0.5h after deposition, green 

squares) shows an unusual behavior. Starting at neutral pH values, the 𝜁 potential is 

very high (around +60mV at pH of 6). Such high potentials are referred to as unstable 

in [25]. However, the APTES molecules are protonated in the aqueous solution and such 

a high potential is only an indication for high molecular density on the surface. With 

acidic titration, the 𝜁 potential of an inert or ‘standard’ system is expected to increase 

due to the number of protons coming into the solution. However, the 𝜁 potential of fresh 

APTES/SiO2 system first decreases (until pH 4.8) and then starts increasing. The other 

sample, which was stored for a little bit longer time (1h, blue squares) before the 

measurement started, shows a similar behavior, however at a relatively lower level of 

the 𝜁 potential. Interesting, that after a delay time of 12h an inert pH-dependence of 

the potential is observed (red circles). It starts with a negative 𝜁 potential value and 

increases linearly with decreasing pH value. These observations are also supported by 

the time dependent measurement of the 𝜁 potential (Figure 45&Figure 46) for APTES 

sample. Starting with the positively charged surface, the 𝜁 potential decreases strongly 

with time and finally becomes low negative.  

Such behavior, as also reported in [69], is assigned to the loss of the surface groups, 

and the initially positively charged surface becomes even negatively charged at a certain 

point. In our case, this process took 1.5-2h. Additionally, after 6h of measurement time, 
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the 𝜁 potential of the surface is more or less stable, however, it is still positively charged 

compared to the bare substrate. 

Thus, the starting point of the pH-dependent as well as time-dependent measurement 

depends on the time spent after the preparation. During this time, the deposited 

molecules that are not strongly bound to the surface are desorbed. This conclusion is 

also supported by the result, shown in Figure 46, where two samples were prepared 

using the same procedure, but one sample was left longer in the chamber in order to 

pump out the “rest” of the molecules. 

 

Figure 46: (a) Time dependence (measured at a pH of 6) and (b) pH dependence of the 𝜁 
potential of APTES monolayers on Si(100). 

The starting points of both sets are different (15 vs 28mV), however, the saturation 

value is similar, -10mV. The starting point is higher for the surface that is taken out of 

deposition chamber directly after the deposition. 

From this we conclude that molecules are desorbed from the surface during the storage 

as well as during the electrokinetic experiment. The desorption process persists for 

several hours (≈ 6h in our experiment) until a stable state is reached. The surface is 

still more positively charged relative to a bare substrate, which indicates that the 

remaining APTES molecules are sufficiently strongly bound.  

The initial behavior of the pH dependence of the 𝜁 potential of fresh prepared APTES 

layers (Figure 44b) is therefore a combination of  

(i) the decrease of the 𝜁 potential with time due to the desorption of APTES 

molecules and  

(ii) an increase of the 𝜁 potential due to the titration.  

If we now assume that the impact of desorption on the 𝜁 potential decreases strongly 

with time, we can estimate the IEP of the resulting APTES layer from extrapolation of 

the last part of the data that are taken at low pH values. The lines in Figure 44b indicate 
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the extrapolation. The resulting IEPs (Figure 47), therefore, decrease in time after 

deposition. In Figure 47 the extrapolated values of IEPs are shown with squares, 

whereas the measured IEP values are shown with circles. 

 

Figure 47: Resulting IEPs for the different process steps of immobilization and functionalization 

of gold nanoparticles, given in Figure 44. The dashed line shows the resulting modification of 
the 𝜁 potential. Different colors represent the different data sets. 

Nevertheless, we cannot exclude other explanations for this effect, i.e.: 

(i) carbon dioxide that is solved in water [48]. The carbon dioxide is dissolved in 

water forming carbonates and hydrocarbonates, i.e. 𝐶𝑂3
2− + 𝐻20 = 𝐻𝐶𝑂3

− + 𝑂𝐻−. 

The equilibrium pK of this reaction is at pH of 6.5, which is the value of the 

maximum of the surface potential rise. Additionally, hydrocarbonates are known 

to be adsorbed at a variety of different surfaces as it is investigated with e.g. 

radiotracer [70].  

(ii) the plasma activation can also affect the decrease of the 𝜁 potential, however, 

the effect should not be so strong. 

Step C, Citrates: The next process step is the deposition of citrate-stabilized gold 

nanoparticles onto the APTES layer. The pH dependence of the 𝜁 potential of three 

samples with different AuNPs densities is presented in Figure 44c. The particle density 

is investigated by means of SEM and then calculated using an open-source software 

(ImageJ). Corresponding SEM pictures are shown in Figure 48. 
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Figure 48: SEM pictures of different density of citrate-stabilized AuNPs on the SiO2 surface 
covered with APTES.  

The upper curve (green squares) in Figure 44c shows a similar behavior as the freshly 

measured APTES monolayers (Figure 44b), which were already discussed above. Taking 

into account that this set of data belongs to the smallest AuNP density (15/µm2), we 

believe that the behavior of a given curve is dictated by the above-mentioned effect of 

desorption of APTES molecules from the surface during the measurement. Other curves 

in Figure 44c, representing samples with larger AuNP densities reveal no minimum in 

the 𝜁 potential characteristic. 

In general, the 𝜁 potential is reduced because of the presence of the citrate molecules 

(negatively charged functional group) stabilizing AuNPs. Obviously, the IEPs are also 

reduced and, moreover, they depend on the density of AuNPs on the surface (see Figure 

47). The higher is the concentration of gold nanoparticles on the surface the lower is 

the IEP of this system. The time dependence of the 𝜁 potential for this system (Figure 

45, red solid triangles) also shows a decrease in time with a time constant similar to the 

decrease, observed for APTES. We believe that also this decrease is a reminiscence of 

the APTES layer and has nothing to do with the citrate-stabilized AuNPs. Desorption of 

AuNPs would rather lead to an increase of the 𝜁 potential and not a decrease. 

Step D, AuNPs: In the next step, the free (not involved in the bonding of AuNPs) organic 

citrates and APTES molecules are etched away with an oxygen plasma (200W, 2min). 

This leaves two types of activated surfaces: silicon oxide and hydrophobic, inert gold. 

Due to the removal of the molecules (these are more positively charged APTES 

molecules than negatively charged citrates) the 𝜁 potential and consequently the IEPs 

are reduced. However, the oxygen plasma not only removes the free molecules, it also 

activates the SiO2 surface and the Au-surface of the AuNPs. As shown in Sections IV.2 

and IV.3, this activation modifies the surface potential but is not stable, especially in an 

electrolyte. Therefore, the data of this step (pH dependence of the 𝜁 potential in Figure 

44d and IEP in Figure 47 scatter strongly.  

Step E, Aminothiols: In order to identify molecules that would lead to the highest 

positively charged AuNP surface, which would be optimal for bio applications, we 

compared different molecules that could be functionalized onto AuNPs. Since we were 

motivated by the facilitation of cell adhesion, the buffer solution HBSS (Hank's buffered 
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salt solution, which is often used in cell culture) is used as working electrolyte in this 

experiment. The use of HBSS ensures a stable pH of 7.2. Nanoparticles are 

functionalized with different molecules (positively charged aminothiols and negatively 

charged carboxylthiols) following step E of the preparation process. The resulting 𝜁 

potentials are summarized in Figure 49. 

 

Figure 49: Comparison of the 𝜁 potential at a pH 7.2 (in HBSS as electrolyte) for an activated 

Si/SiO2 substrate with AuNPs (step E) functionalized with different molecular monolayers: 11-

mercaptoundecanoic acid (blue), 20-(11-mercaptoundecanylocy)-3,6,9,12,15,18-
hexaoxaeicosane-1-amine (magenta), and 11-amino-1-undecanethiol (green). Additionally, the 

𝜁 potential of the sample (Si/SiO2 with AuNPs) without functionalization is given. 

The 𝜁 potential of the non functionalized sample (Si/SiO2 with AuNPs) is around -24mV. 

Only two of the molecules show a significant increase of the 𝜁 potential in HBSS. The 

strongest increase in observed for 11-amino-1-undecanethiol molecules (green circle), 

which are simpler and known for their close packing. The second molecule, 20-(11-

mercaptoundecanylocy)-3,6,9,12,15,18-hexaoxaeicosane-1-amine (magenta), 

possesses side chains, which reduce the packing density due to interactions. This 

automatically leads to a smaller relative value of the 𝜁 potential. Finally, the negatively 

charged molecules, 11-mercaptoundecanoic acid (blue circle), do not modify the 

negative charge of the surface significantly. Therefore, the 𝜁 potential is hardly changed 

for this functionalization. 

Due to their higher absolute positive charge at the physiological pH, the 11-amino-1-

undecanethiol molecules (abbreviated Aminothiols in the following) are further used for 

the functionalization of AuNPs. The pH-dependence of the 𝜁 potential of the last process 

step (deposition of Aminothiols) is shown in Figure 44e. The surfaces of the AuNPs are 

positively charged, due to the protonation of the amino-groups. The increase of the 𝜁 

potential with respect to the previous step D is visible (see Figure 44e), it is smaller 

compared to step B (deposition of APTES). This is expected, since in this case only a 

small part of the sample (i.e. the AuNPs) is covered with positively charged thiols, 

whereas the complete substrate was covered with the silane (APTES) in step B. 

However, it should be noticed that in this case, the pH dependence is measured after 

the stability test, shown in Figure 45. The latter actually shows that the 𝜁 potential 
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measured for the functionalization with Aminothiols is very similar to that of the 

functionalization of SiO2 with APTES. In addition, the time dependent reduction of the 𝜁 

potential is quite similar. This indicates that maybe the same mechanism is responsible 

for this behavior, i.e. desorption of molecules or reaction with carbonates.  

In summary, we can partially understand the modification and stability of the surface 

potential of a substrate functionalized with various molecules and AuNPs. The change 

of the IEP (Figure 47) generally follows the expected change of the surface charge for 

the different steps. 

The total (integral) surface potential depends on all possible charge sources (substrate, 

AuNPs and molecules) that add to the resulting total charge. Such model might be 

described by 

 𝜁 = ∑ 𝜁𝑖𝐴𝑖

𝑖

, (27) 

where 𝐴𝑖 represents the surface of a given type with a potential 𝜁𝑖. Similar proposals 

are presented in [10], [71]. This approach explains, for instance, why the time-

dependent 𝜁 potential of positively charged molecular layers still has an impact on the 𝜁 

potential measured after the deposition of AuNPs. 

Finally, the measurements provide vital information on the stability and reliability of the 

different process steps (Figure 45). Generally, it seems that both functionalizations with 

molecules lead to an unstable surface potential. In both cases (the silane APTES and 

the thiol Aminothiol) the 𝜁 potential strongly decreases due to desorption of these 

molecules or reaction of the positively charged amino-group with, for instance, 

hydrocarbonates.  

As such, our streaming potential/current technique represents an ideal tool to analyze 

and monitor the complex surfaces and their modification. 
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Summary 

In the field of bioelectronics the optimization of the interface between cells and 

substrates plays a major role. It affects the cell adhesion to a substrate, controls the 

immobilization of neurons and guidance of neurite outgrowths on the surface and can 

establish a well-defined and stable contact between cells and the substrate’s surface in 

order to get the optimal signal transfer in bioelectronic devices. These challenges are 

strongly dependent on the surface chemistry, one important aspects of which is the 

surface charge, caused by the surface nature as well as by specific adsorption from its 

environment e.g. an electrolyte that is vital for the biological components. 

In this dissertation, we tried to demonstrate that the streaming potential/streaming 

current method is the one of the best methods for investigation of the electric properties 

of surfaces that can be applied to complex inorganic as well as organic interfaces used 

for bioelectronic applications. Generally, the surface charging effects not only yield 

extremely small signals, they are also sensitive to any contamination. It became clear 

in this work that the quality of the aqueous media as well as the cleanliness of the 

surface are of great importance in order to perform reliable and reproducible 

measurements. 

During the work, we  

(i) developed and tested a setup for the deposition of molecular monolayers, 

including in-situ cleaning and activation, accompanied by in-situ electronic 

analysis. Using the deposition device, molecular monolayers of different silanes 

(1H,1H,2H,2H-perfluorooctyltrichlorosilan (FOTCS) and 3-

aminopropyltriethoxysilane (APTES)) are deposited onto various biocompatible 

substrates. The deposition is monitored via capacitive and microwave 

measurements, the resulting film is analyzed via ellipsometry and wetting angle 

measurements. Additionally, the deposition of functionalized AuNPs on the 

molecular layer is tested.  

(ii) improved and optimized a streaming potential/streaming current experiment for 

the analysis of the surface potential of the substrates and layers. This method is 

usually used in a qualitative, i.e. comparative way. By introducing various 

modifications (especially an extensive purging of the electrolyte with N2) and by 

optimizing the measuring procedure using an ideal inert and hydrophobic test 

material (i.e. polypropylene) we could establish a reliable quantitative type of 

measurement. 

With the optimized streaming potential/streaming current technique extensive 

studies on different classes of surfaces that might be important for bioelectronic 

applications have been performed, including: 
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(i) various substrates (i.e. Si, borosilicate glass, and sapphire) in the activated and 

original form, 

(ii) metallic layers (Pt, Au, and for comparison Cr), 

(iii) graphene layer on various substrates, 

(iv) molecular layers (various silanes and thiols functionalized with positive or 

negative charge), 

(v) Au-nanoparticles, and 

(vi) combination of different surfaces listed above. 

Using especially the time- and pH-dependent analysis of the 𝜁 potential, we could: 

(i) identify possible candidates for the modification of a given surface with respect 

to their surface potential (e.g. depending on density, stability and functional 

group, the monolayers of organic molecules can possess different 𝜁 potential) 

(ii)  determine the stability of a given surface (e.g. time-dependent measurements 

of 𝜁 potential can reveal the desorption of molecules from the surface or the 

reconstruction of silanol bonds in-situ) 

(iii) identify the surface composition (e.g. using pH-dependent measurements of 𝜁 

potential it is possible to determine the chemistry of the surface, including 

reactive groups, specifically adsorbed ions, etc. depending on the crystal 

orientation or oxidation of a given sample) 

(iv) monitor the change of the surface potential due to the engineering of a surface 

via deposition of inorganic (e.g. graphene or noble metal), organic layers (silanes 

and thiols) or nanoparticles (different densities of AuNPs tailored with organic 

molecules of different charges), or external treatment (e.g. oxidation, annealing 

or activation of the surface) as well as identify the presence of a contaminant. 

Although only a limited number of model systems was discussed, this work 

demonstrates the potential of studying the electrical properties of surfaces in aqueous 

solutions. It demonstrates promising perspectives for the construction of robust and 

reliable devices for molecular electronics, bioelectronics and sensoric, e.g. (IS)FETs, 

MEAs, supercapacitors and crossbar junctions, as well as for purely biological problems, 

e.g. understanding, influencing and facilitating of the adhesion as well as guiding of 

proteins, cells and bacteria on a surface. 
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