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Zusammenfassung

Zusammenfassung
Diese Arbeit behandelt adaptive Waveletmethoden zur numerischen Lösung semilinearer partieller Dif-
ferentialgleichungen (PDEs) und Randwertprobleme (BVPs) basierend auf solchen PDEs. Semilineare
PDEs sind Spezialfälle aus der Klasse der allgemeinen nichtlinearen PDEs, hier besteht die PDE aus
einem linearen Operator und einem nichtlinearen Störungsterm. Im Allgemeinen werden solche BVPs
mit iterativen Verfahren gelöst. Es ist daher von höchster Wichtigkeit, effiziente als auch konvergente
Lösungsverfahren für die zugrunde liegenden nichtlinearen PDEs zur Verfügung zu haben. Im Gegensatz
zu Finite-Elemente-Methoden (FEM) garantieren die adaptive Waveletmethoden aus [33, 34], dass Lö-
sungen nichtlinearer PDEs mit konstanten Approximationsraten berechnet werden können. Des Weiteren
wurden optimale, d.h. lineare, Komplexitätsabschätzungen für diese adaptiven Lösungsmethoden nach-
gewiesen. Diese Errungenschaften sind nur möglich, weil Wavelets einen neuartigen Ansatz zur Lösung
von BVPs ermöglichen: die PDE wird in ihrer ursprünglichen unendlichdimensionalen Formulierung be-
handelt. Wavelets sind der ideale Kandidat für diesen Zweck, da sie es erlauben sowohl Funktionen als
auch Operatoren in unendlichdimensionalen Banach- und Hilberträumen exakt darzustellen.

Der Zweck adaptiver Verfahren im Lösungsprozess von PDEs ist die Einsetzung von Freiheitsgraden
(DOFs) nur dort wo notwendig, d.h. an Stellen wo die exakte Lösung unglatt ist und nur durch eine
höhere Anzahl von Funktionskoeffizienten präzise beschrieben werden kann. In diesem Zusammenhang
stellen Wavelets eine Basis mit besonderen Eigenschaften für die betrachteten Funktionenräume dar.
Die benutzten Wavelets sind stückweise polynomial, haben kompakten Träger und es bestehen Norm-
äquivalenzen zwischen den Funktionenräumen und den `2 Folgenräumen der Entwicklungskoeffizienten.
Dieser neue Ansatz zieht einige Probleme für das Design der numerischen Algorithmen nach sich, welche
aber durch eine Struktur der Waveletkoeffizienten, genauer gesagt eine Baumstruktur, komplett ausge-
räumt. Diese Baumstruktur bedeutet dabei nur eine geringfügige Einschränkung in der theoretischen
Anwendbarkeit in Bezug auf Funktionenräume. Es stellt sich heraus, dass der aufgezeigte Ansatz genau
auf den funktionalanalytischen Hintergrund nichtlinearer PDEs passt. Die praktische Umsetzung auf ei-
nem Computer erfordert dabei aber eine Einschränkung der unendlichdimensionalen Darstellungen auf
endlichdimensionale Quantitäten. Es ist genau dieser Aspekt, der das Leitmotiv dieser Arbeit darstellt.
Diese theoretischen Vorgaben wurde im Rahmen dieser Arbeit in einem neuen vollständig dimensionsun-
abhängigen adaptiven Waveletprogrammpaket umgesetzt. Dieses erlaubt zum ersten Mal die bewiesenen
theoretischen Resultate zur numerischen Lösung der oben genannten Randwertprobleme zu nutzen. Für
diese Arbeit sind sowohl theoretische als auch numerische Aspekte von höchster Bedeutung.

Großer Wert wurde dabei auf die Optimierung der Geschwindigkeit gelegt, ohne dabei die Möglichkeit
zu verlieren, verschiedene numerische Parameter noch zur Laufzeit verändern zu können. Dies bedeutet,
dass der Benutzer verschiedenste Aspekte, wie z.B. die verwendete Waveletkonstruktion, austauschen und
testen kann, ohne die Software neu kompilieren zu müssen. Der zusätzliche Rechenaufwand für diese Op-
tionen wird während der Laufzeit des Programms durch verschiedene Arten von Zwischenspeichern, z.B.
das Abspeichern der Werte des Vorkonditionierers oder die polynomielle Darstellung der mehrdimensio-
nalen Wavelets, so klein wie möglich gehalten. Die Ausnutzung der Struktur in der Konstruktion der Wa-
veleträume verhindert, dass das Zwischenspeichern eine große Menge im Speicher des Computers belegt.
Gleichzeitig ermöglicht dies sogar eine Erhöhung der Ausführungsgeschwindigkeit, da die Berechnungen
so nur noch ausgeführt werden, wenn sie notwendig sind, und dann auch nur ein einziges Mal. Die essen-
tiellen Randbedingungen in den BVPs werden hier durch Spuroperatoren umgesetzt, was das Problem zu
einem Sattelpunktsproblem macht. Diese spezielle Formulierung ist sehr flexibel; insbesondere wechselnde
Randbedingungen, wie sie zum Beispiel im Rahmen von Kontrollproblemen mit Dirichlet-Randkontrolle
auftreten, können sehr effizient behandelt werden. Ein weiterer Vorteil der Sattelpunktsformulierung ist,
dass nicht-Tensorproduktgebiete durch den „Fictitious Domain“-Ansatz behandelt werden können.

Numerische Studien von 2D und 3D BVPs und nichtlinearen PDEs demonstrieren die Möglichkeiten und
die Leistungsfähigkeit dieser Algorithmen. Lokale Basistransformationen der Waveletbasen senken dabei
die absoluten Konditionszahlen der schon optimal vorkonditionierten Operatoren. Der Effekt dieser Ba-
sistransformationen zeigt sich dabei in Verkürzungen der absoluten Laufzeit der eingesetzten Löser; im
Idealfall kann dabei eine semilineare PDE innerhalb von Sekundenbruchteilen gelöst werden. Dies kann
im einfachsten durch Fall Richardson-Verfahren, wie das Verfahren des steilsten Abstiegs, oder das auf-
wändigere Newton-Verfahren geschehen. Die BVPs werden mittels eines adaptiven Uzawa-Algorithmus
gelöst; dieser erfordert das Lösen einer semilinearen PDE in jedem Schritt. Außerdem wird die Effektivi-
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tät verschiedener numerischer Lösungsverfahren verglichen und es werden die optimalen Konvergenzraten
und Komplexitätsabschätzungen verifiziert. Zusammenfassend präsentiert diese Arbeit zum ersten Mal
eine numerisch wettbewerbsfähige Implementierung dieses neuartigen theoretischen Paradigmas zur Lö-
sung von semilinearen elliptischen PDEs in beliebigen Raumdimensionen einschließlich Konvergenz- und
Komplexitätsergebnissen.
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Abstract

Abstract
This thesis is concerned with the numerical solution of boundary value problems (BVPs) governed by
semilinear elliptic partial differential equations (PDEs). Semilinearity here refers to a special case of
nonlinearity, i.e., the case of a linear operator combined with a nonlinear operator acting as a perturbation.
In general, such BVPs are solved in an iterative fashion. It is, therefore, of primal importance to develop
efficient schemes that guarantee convergence of the numerically approximated PDE solutions towards
the exact solution. Unlike the typical finite element method (FEM) theory for the numerical solution of
the nonlinear operators, the new adaptive wavelet theory proposed in [33, 34] guarantees convergence of
adaptive schemes with fixed approximation rates. Furthermore, optimal, i.e., linear, complexity estimates
of such adaptive solution methods have been established. These achievements are possible since wavelets
allow for a completely new perspective to attack BVPs: namely, to represent PDEs in their original
infinite dimensional realm. Wavelets are the ideal candidate for this purpose since they allow to represent
functions in infinite-dimensional general Banach or Hilbert spaces and operators on these.

The purpose of adaptivity in the solution process of nonlinear PDEs is to invest extra degrees of freedom
(DOFs) only where necessary, i.e., where the exact solution requires a higher number of function coeffi-
cients to represent it accurately. Wavelets in this context represent function bases with special analytical
properties, e.g., the wavelets considered herein are piecewise polynomials, have compact support and norm
equivalences between certain function spaces and the `2 sequence spaces of expansion coefficients exist.
This new paradigm presents nevertheless some problems in the design of practical algorithms. Imposing a
certain structure, a tree structure, remedies these problems completely while restricting the applicability
of the theoretical scheme only very slightly. It turns out that the considered approach naturally fits the
theoretical background of nonlinear PDEs. The practical realization on a computer, however, requires
to reduce the relevant ingredients to finite-dimensional quantities. It is this particular aspect that is the
guiding principle of this thesis. This theoretical framework is implemented in the course of this thesis
in a truly dimensionally unrestricted adaptive wavelet program code, which allows one to harness the
proven theoretical results for the first time when numerically solving the above mentioned BVPs. Both
theoretical and numerical aspects of the implemented adaptive wavelet schemes are of utmost interest.

In the implementation, great emphasis is put on speed, i.e., overall execution speed and convergence
speed, while not sacrificing on the freedom to adapt many important numerical details at runtime and
not at the compilation stage. This means that the user can test and choose wavelets perfectly suitable for
any specific task without having to rebuild the software. The computational overhead of these freedoms is
minimized by caching any interim data, e.g., values for the preconditioners and polynomial representations
of wavelets in multiple dimensions. Exploiting the structure in the construction of wavelet spaces prevents
this step from becoming a burden on the memory requirements while at the same time providing a huge
performance boost because necessary computations are only executed as needed and then only once. The
essential BVP boundary conditions are enforced using trace operators, which leads to a saddle point
problem formulation. This particular treatment of boundary conditions is very flexible, which especially
useful if changing boundary conditions have to be accommodated, e.g., when iteratively solving control
problems with Dirichlet boundary control based upon the herein considered PDE operators. Another
particular feature is that saddle point problems allow for a variety of different geometrical setups, including
fictitious domain approaches.

Numerical studies of 2D and 3D PDEs and BVPs demonstrate the feasibility and performance of the de-
veloped schemes. Local transformations of the wavelet basis are employed to lower the absolute condition
number of the already optimally preconditioned operators. The effect of these basis transformations can
be seen in the absolute runtimes of solution processes, where the semilinear PDEs are solved as fast as
in fractions of a second. This task can be accomplished using simple Richardson-style solvers, e.g., the
method of steepest descent, or more involved solvers like the Newton’s method. The BVPs are solved
using an adaptive Uzawa algorithm, which requires repeated solution of semilinear PDE sub-problems.
The efficiency of different numerical methods is compared and the theoretical optimal convergence rates
and complexity estimates are verified. In summary, this thesis presents for the first time a numerically
competitive implementation of a new theoretical paradigm to solve semilinear elliptic PDEs in arbitrary
space dimensions with a complete convergence and complexity theory.
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Introduction

Problems, Motivations and Applications

At the heart of many systems found in nature and the scientific world lie Partial Differential Equa-
tions (PDEs). The fundamental underlying layer of reality, the quantum world, seems to obey only
mathematical laws and often defies human common sense here in the macroscopic world. The behavior
of elementary particles is best described by the Schrödinger equation [104], which is a partial differential
equation, i.e, it contains derivatives of the solution with respect to the space (and time) coordinate(s).
Although properties like position and velocity of atomic particles are by nature stochastic, i.e., governed
by probabilities, modern quantum theory has made the most accurate predictions and often has the
highest explanatory power of any other physical theory ever devised.

Humankind’s ability to understand and control matter at the atomic level has produced an unparalleled
technological progress during the last century, ranging from the Laser to modern computer chips. The
continuation of this scientific progress in the near and far future hinges on our capability to understand the
nature of the physical world. An example for the work in this field is the simulation of interaction of the
matter within a semiconductor quantum wire when excited by a quantum of light [77,109,111,114].
Understanding these interactions could one day lead to secure quantum communication systems and
revolutionary new quantum computers.

The Black-Scholes partial differential equation, which is used to model the price evolution of pricing
options on stocks in mathematical finance [7, 8], has surprisingly many details in common with the
Schrödinger equation. The volatility, i.e., the apparent random fluctuation of the price of a stock with
time, is modeled and treated as a Brownian motion [18], like the random movement of particles in
fluids. The influence of this random process is usually represented by a stochastic term called theWiener
process [123]. A generalization of this approach leading to the so called Heston model can be found
in [78]. See [102] for up-to-date numerical approaches to these problems. A good introduction and
overview to the numerical treatment of option pricing is the book [135].

As a last example, a number of inverse boundary value problems, originating from various imaging
modalities, make extensive use of (repeated) solutions of boundary value problems. A typical example
with numerous applications to geo- and biomedical imaging is the inverse conductivity problem (a.k.a.
Electrical Impedance Tomography (EIT) [136]), i.e., inferring on the interior structure of unobservable
material from externally applied electric currents and measured voltages. This is an inverse BVP, the
numerical solution of which requires repeated solutions of a partial differential equation. Therein, the
Laplacian PDE describes the potential distribution; conditions enforced by the placement of electrodes
on the body reduces this to a boundary value problem [85–89]. In medical applications, this technology
is now commercially available in intensive care units and in the future its variants may complement other
non-invasive scanning techniques like magnetic resonance tomography, without the need for bulky and
expensive machinery.

As the above examples show, the need to solve a PDE can come from pure necessity, e.g., when no
other way to determine the properties of a physical body is available, to save the costs of running actual
experiments or to simulate conditions that are impossible to reproduce in a laboratory. For any of these
reasons, physicists, biologists and other scientists seek solutions to PDEs using computers by employing
methods and algorithms created by mathematicians and engineers.

Efficient Numerical Solution

The PDE Setting

The most common in applications encountered PDE operators are mathematically categorized into the
groups elliptic, hyperbolic and parabolic [75] and PDEs of mixed and changing types are known.
Each type of equation requires a different theoretical framework and specialized numerical approaches
are necessitated to obtain the numerical solution. The problems considered herein, i.e., operator equations
between the Banach or Hilbert space V and its dual V ′ of the general form

F(u) = f, F : V → V ′,
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are of elliptic type which can be set in a variational form. Given a right hand side f ∈ V ′, the solution
u ∈ V is sought. The model linear operator in this context is the Laplacian ∆ :=

∂2

∂x2
1

+ . . . +
∂2

∂x2
n

,

which will typically account for the linear part of the considered semilinear operators.

The Classical Approach

The classical approach, e.g., using Finite Element Methods (FEM) [19], typically approximates
the continuous operators and infinite dimensional function spaces by finite dimensional (or discretized)
counterparts. This step ensures that these problems accessible by computers, which cannot handle
infinite dimensional objects without approximating these objects. A main concern in this approach is the
question whether choosing ever larger (but still finite) function spaces then results in a series of solution
approximations that converge towards the exact solution of the original PDE in the (infinite dimensional)
function space.
In short, a discretization process is said to “work”, i.e., is called convergent, if, for a grid size h > 0, the
solution uh ∈ Vh ⊂ V computed in the discretized subspace converges towards the exact solution u? ∈ V ,
i.e, ‖uh − u?‖ → 0 for h→ 0. The norm ‖ · ‖ here could be the norm of the space V or a closed subspace
Z ⊂ V . The quality of the solution process is here determined by the rate at which uh → u? depending
on the rate at which h→ 0. We say it has convergence rate p > 0, if ‖uh − u?‖ ≤ C h−p. Such a rate
can be expected (by a-priori estimates) if the function u? is smooth enough and the space Vh is “close”
enough to the space V . In this setting, one cannot expect an error ‖uh − u?‖ smaller than the best
approximation infvh∈Vh ‖vh− u?‖; but it is possible to attain an error in the same order of magnitude.
This is clearly the best result one can expect in case the space Vh is chosen fixed. In a uniform (spatially
evenly) discretization in dimension n, the number of degrees of freedom (DOFs) N is proportional
to h−n.
Discretizations of linear operators are often representable as matrices and functions in finite spaces are
representable by vectors containing expansion coefficients with respect to a basis for Vh. Therefore, the
solution process of a PDE often leads to a linear system of equations that can be solved numerically
yielding the vector of expansion coefficients uh. This coefficient vector, expanded in the basis, produces
the sought approximate solution function uh.
The step from the infinite dimensional problem formulation in V to the discretized finite dimensional
representation using the base of the space Vh introduces a new problem: It is not always automatically
true that the discretized linear systems are well-posed themselves. For certain kind of problems, stability
conditions on the discretizations have to be enforced or one could be unable to solve the resulting linear
systems of equations. Even if the stability of the discretizations is guaranteed, numerical solution methods
could be unable to finish within a reasonable time frame. To accomplish such computations quickly, first
one has to employ an efficient solution strategy, for example, one that is of optimal linear complexity.
In this ideal case, the vector uh is obtained with O (N) operations. Such a solution uh then possesses
only finite accuracy, no more than the discretization error accuracy, which is the highest accuracy
that can be accomplished for any given predetermined basis of the space Vh.
The amount of time and computational complexity a numerical solution method needs to compute the
solution up to discretization error accuracy can be improved upon by employing preconditioners. The
purpose of a preconditioner is to lower the (spectral) condition number of discretized operators up to the
point where it is bounded uniformly, i.e., the condition number is independent of the discretization grid
size h.

Wavelet Discretization

Wavelets have been successfully employed in the realm of signal processing [107], data compression [1],
among others. Their main advantage over other discretization techniques is a strong functional analytical
background. Of interest are two wavelet bases Ψ and Ψ̃ which are biorthogonal, i.e., the inner product
of all functions has the property

〈
Ψ, Ψ̃

〉
= I. The primal base Ψ is needed explicitly as piecewise

polynomials with compact support enabling norm equivalences for a range of values in the positive
Sobolev scale. The (often only implicitly given) dual base Ψ̃ can be chosen to maximize moment
conditions and to assure norm equivalences in the negative Sobolev scale.
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The Riesz-basis property for this range of Sobolev spaces allows for the ability to precondition
discretized operators uniformly [46, 96], i.e., to limit the spectral condition over all levels by a
common (uniform) limit. In numerical experiments, this enables iterative numerical solution methods in
a nested iteration scheme to compute the solution up to discretization error accuracy in a uniformly
limited number of steps. Combined with the ability to execute each step in a complexity proportional to
the number of current unknowns N , this makes possible the computation of solutions in optimal linear
complexity. The norm equivalences over a range of Sobolev spaces also enable to model Sobolev norms
accurately in control problems where norms of traces of functions are employed. The natural norms
on trace spaces are fractional Sobolev spaces and the proper evaluation of these norms is substantial
for meticulous modeling of these problems [122].
If one wishes to extend this theory to problem formulations containing elliptic nonlinear operators
and (locally) unsmooth functions, the classical approach no longer fits the problem well. Nonlinear
operators are by definition not representable accurately by (linear) matrices. Additionally, one cannot
expect high convergence rates for functions of low classical smoothness using linear methods. In this
case, uniform discretization grids would supply a lot of DOFs where they might not be needed because
of locally smooth patches. All these problems can be addressed by going beyond uniform discretizations
and employing adaptive methods.

Adaptive Wavelet Methods – A New Paradigm

To overcome the above described limitations of the classical method, a new approach called Adaptive
Wavelet Method (AWM) was first proposed in [31] for linear problems and was then extended in [33]
to nonlinear problems. The problems considered herein must be set in a variational form, i.e., the
class of nonlinear problems covered does not encompass hyperbolic conservation laws. A good overview
of this complex topic is given in [140], and the current state of the research of fields related to adaptive
wavelet methods is presented in some of the articles of [63]. In this setting, one stays within the infinite
dimensional problem realm, essentially rendering the issue of finite-dimensional stability obsolete. The
individual steps of this new paradigm given in [33] read as follows:

(n1) ensure well-posedness of the given variational problem;

(n2) transformation of the infinite dimensional problem into an equivalent problem in `2 which is well
posed in the Euclidean metric;

(n3) the derivation of an iterative scheme for the infinite dimensional `2-problem that exhibits a fixed
error reduction per step;

(n4) numerical realization of the iterative scheme by an adaptive application of the involved infinite
dimensional operators within some finite dynamically updated accuracy tolerances.

It is important to notice that only in the last stage (n4) actual computations are done, which take place
in the finite memory setting of a computer and can thus only be based upon a finite number of data
points. The first step (n1) is not different from the classical discretization method, and the theory of
the second step (n2) was well established before the development of these methods. The existence of an
iterative scheme mentioned in the third step (n3) actually has to be proven for each problem, since this
is still in the infinite dimensional `2 space.
The shift in thinking is to view the computations, which cannot be done with arbitrary accuracy, as
approximations to the exact (infinite dimensional) computations. The approximation error has to be
controlled in such a way that one essentially operates in the infinite dimensional `2 setting. The obvious
obstacle to this approach is the inability to process any numerical operators with infinite accuracy
using our present computer systems, which implement floating point arithmetic according to a fixed
number of bits [81]. Instead, one emulates here the computations in the infinite dimensional `2 setting
by choosing the DOFs as needed out of the infinite set of DOFs. The determination of this finite set
and the computations on said set are then executed as accurately as possible, preferably without further
approximations. This principle is called adaptive inexact operator application. The main concern
in this scheme is that one could break the assumption of (n3) because the computations of step (n4) are
not done sufficiently precise and the convergence properties are thus not retained.
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Adaptivity in this context means that one only employs DOFs for the computation and representation of
the solution where actually needed. The question how to determine the target index sets was answered by
Cohen, Dahmen and DeVore in [31–34]. It is conceptually similar to an a posteriori error estimator used in
adaptive finite element methods [19,119], as the method tries to predict where the local error is not small
enough and thus the adaptive set has to be enlarged. Based upon the above mentioned locality and norm
equivalence properties of wavelets, the natural data structure in this setup is the tree, i.e., a level-wise
order is imposed upon the wavelet coefficients that construct a mother-daughter relationship. To ensure
optimal convergence rates, successive enlargements of the wavelet indices set during the solution process
must be controlled by a nonlinear vector approximation procedure, called coarsening, introduced in [16].
For linear operators, an iteration scheme exhibiting optimal rates without coarsening was introduced
in [65].
Contrary to the aforementioned classical methods, no discretization space Vh ⊂ V is chosen fixed at any
point. The grid defined by an adaptive wavelet index set is not uniform, i.e., one cannot attribute a single
step size h but a hierarchy of step sizes hj that only apply locally. The quality of the solution process
is thus not measured with respect to h but with respect to the number of wavelet coefficients N , which is
exactly the number of DOFs. Depending on the properties of the PDE, e.g., the domain, right hand side,
differential operator and PDE coefficients, one expects the solution u? to exhibit a smoothness order
s > 0, i.e., inf ‖uN − u?‖V . N−s, where the infimum is taken over all functions uN being describable
by N wavelet coefficients arranged in a tree structure. Because of the connection N−s ≡ ε in the above
estimate, it also states that the number of wavelet coefficients N in the adaptive tree of the solution
required to attain any target accuracy ε > 0 should be proportional to ε−1/s. The metric to gauge a
solution algorithm by is now whether it computes solutions u(ε) with the same optimal rate N−s, i.e.,
‖u(ε)− u?‖V . N−s. An attainable accuracy ε in the solution proportional to N−s is therefore the best
possible result in this adaptive setting.
The application of operators with respect to such adaptive tree structures of wavelet coefficients is
an important step in the whole adaptive inexact operator application [35]. Since nonlinear operators, by
definition, cannot generally be applied to a linear decomposition exactly, a locally unique representation
is sought. Considering the approximation of a function based on wavelets consisting of piecewise polyno-
mials, e.g., B-spline based wavelets, one can represent each wavelet using local polynomials on cells of the
underlying domain. Because of the tree structure of the wavelet expansion coefficients, converting such
a vector to a polynomial representation constructs polynomials consisting of many overlapping pieces
living on different spatial levels. By the local refinement properties of polynomials, this representation
can be converted into an unique adaptive one. The application of the operator to these polynomials now
has a simple structure due to the locality of the polynomials and many types of operators can be applied
exactly to the local polynomials. From these results, the values of the target wavelet index set can be
reconstructed. All these steps can be applied in optimal linear complexity [115,147].
This adaptive strategy has been successfully employed in the context of linear elliptic PDEs [11, 31, 65],
saddle point problems of linear elliptic PDEs [40], nonlinear elliptic PDEs on the L-shaped domain [147],
parabolic evolution problems [29, 133], eigenvalue problems [128], as well as the Stokes problem [55].
These approaches have an enormous potential for complexity reduction for coupled systems of PDEs as
they arise in control problems with PDEs [48,74].
Additionally, linear operators, including trace operators, can be applied adaptively using only the
values of bilinear forms. In [10], an evaluation scheme based on [14, 54] for linear and also for certain
nonlinear operators was introduced. There, the authors, instead of trying to apply the operator on a fixed
index set exactly, approximate the application up to a certain accuracy depending on the accuracy on
the prescribed index set. Furthermore, there is a new approach by Schwab and Stevenson concerning the
fast evaluation of nonlinear functionals of anisotropic tensor product based wavelet expansions, see [134].

Comparison with Adaptive Finite Element Methods

Adaptive Finite Element Methods (AFEM), see [119], solve by iterating the steps

SOLVE −→ ESTIMATE −→ MARK −→ REFINE

until the solution is computed up to a preset target tolerance. However, the system of equations numer-
ically solved in the course of a concrete AWM solution method are a subset of the system of equations
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arising through the reformulation using the full infinite dimensional wavelet basis. Such a “pivot” space
does not exist for finite element methods. In the AFEM setting, the adaptive mesh of the domain
Ω, i.e., a decomposition of the domain Ω into piecewise disjoint patches, and the piecewise polynomials
defined on these patches is the main object in the implementation. In contrast, in the AWM setting, the
main object of theory and implementation is the adaptive tree structure of wavelet coefficients and in
this light the adaptive grid is just a tool used in the evaluation process of the (non-)linear PDE operator.
In fact, if the operator is linear, the grid generation stage can be skipped and the operator evaluation
can be executed using a bilinear form only.
In the SOLVE stage, an iterative solution process, e.g., a step in a Richardson scheme, is executed on a
finite vector by applying the operator representing the PDE. Next, the purpose of the ESTIMATE step is to
determine the places where the error is big and thus where new DOFs should be inserted adaptively. In
the AFEM scheme this translates to an error estimator. This is often done by measuring smoothness
locally, e.g., by computing the jump of function values across the edges of the elements. The equivalent of
the error estimator in AWM is the tree prediction algorithm, which combines information on the vector
and the operator to determine how many DOFs in the form of wavelet coefficients should be inserted.
Thus, MARK and REFINE steps are executed in the `2 setting, which does not entail any of the AFEM
refinement strategies used for meshes, e.g., longest edge bisection or Dörfler marking.
Lastly, the convergence properties of the above explained iterations of course have to be investigated. For
AWM, convergence proofs with guaranteed convergence rates have been established for nonlinear PDEs
in [34] and for linear elliptic operators earlier in [31]. Convergence for AFEM was shown for several linear
operators, see [30,110], and for a class of nonlinear operators [80]. However, results concerning (optimal)
convergence rates on the other hand have only established for a few cases, usually only for the Poisson
problem and similar linear operators [15, 28, 37]. For nonlinear operators, convergence rates of AFEM
have not yet been proven. Furthermore, optimal complexity results, available for linear and nonlinear
operators in the wavelet setting, are only available for special cases in AFEM, see [28,117,139].

Scope of this Thesis
The goal of this thesis is to work out the theoretical details pertaining to boundary value problems based
upon semilinear elliptic PDEs and to present numerical experiments using adaptive wavelet methods. I
will investigate the close intertwining of theory and ingredients and the roles and impacts of numerical
constants and variables on the theoretical estimates in application in arbitrary space dimension for the first
time. To this end, I first summarize some functional analysis details necessary for a good understanding
of the following wavelet methods. After giving a short introduction into classical wavelet methods for B-
spline wavelets on bounded domains, we elaborate on the adaptive wavelet methods presented in [31–34]
and discuss several implementational details of the algorithms presented in those papers and their effect
on actual numerical experiments.
I present several algorithms dedicated to applying linear and nonlinear elliptic PDE and trace operators
on adaptive wavelet vectors in optimal linear complexity. I discuss several solution methods for semilinear
PDEs and boundary value problems based upon said semilinear PDEs and present numerical results for
dimensions n ≥ 2 and varying operators and trace spaces. The goal is to qualitatively confirm and
quantitatively investigate the theoretical results in numerical experiments, i.e., show that the produced
solutions are attained in optimal complexity O (N) with N ∼ ε−1/s. This work serves as a stepping
stone towards adaptive wavelet methods for semilinear elliptic PDE constrained control problems with
Dirichlet boundary control.

The LibWavelets Framework

In the course of this thesis, I developed a C++ software package which is tailored to adaptive wavelet
methods on general tensor product domains. The earlier mentioned match of the theoretical background
and the numerical algorithms essentially forms the perfect basis for the novel approach of dealing with
the semilinear PDE operators in its original infinite dimensional realm. Furthermore, I developed and
implemented algorithms to apply a range of other operators, e.g., trace operators, Riesz operators and
other (linear) PDE operators, within the same theoretical framework. In order to eliminate approxi-
mations of integrals when evaluating operators, i.e., a source of inaccuracy during the inexact operator
equation in the `2-space, a method of exactly evaluating the considered semilinear operators was devised
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for this software (see [115]). For certain linear trace operators, it will be shown how the evaluation of
the bilinear form and thus essentially the application of the operator can also carried out by avoiding
inexact methods. The adaptive code setup also allows for trace operators that use adaptivity in the
determination of the active wavelet coefficients at runtime, thus allowing changes in the trace domain to
be easily implemented and tested.
My software is inherently designed completely independent of any fixed dimension while granting the user
the freedom to choose wavelet configurations independently for every spatial coordinate. This means the
wavelets in each spatial coordinate can therefore differ in smoothness, polynomial order or boundary
conditions. This allows the user to tailor the properties of the wavelets specifically to the problem and
involved operators, e.g., in case of anisotropic PDE operators which could require higher order wavelets
in certain spatial directions. On top of everything, this enables one to model not only simple tensor
product domains, e.g., (0, 1)2 := (0, 1) ⊗ (0, 1), but also to model more complicated domains, e.g., the
periodic domain R/Z ⊗ (0, 1). This can be used to mimic the effect of an infinitely large physical setup
as for the semiconductor setting in [111].
At the same time, a main attention was set onto producing fast and efficient code, i.e., to ensure
that execution times and memory requirements stay proportional to the number of unknowns N . I
took great care to limit the computational overhead for this versatile setup by extensively caching
multidimensional data, e.g., values of the preconditioners or the piecewise polynomial representation
of primal basis functions. The potential drawback of this approach, i.e., the cost for setting up the
multidimensional data, can be minimized by exploiting the repetitive nature of the translated and dilated
basis functions. If optimized correctly, this data can be set up on each program startup without a
noticeable (and often not even measurable) delay.

Remark Proofs of all theorems and statements, which are not given, can be found in the respective
references in detail. A proof may be reproduced herein, even though it was originally published in a
different publication, to emphasize or explain a certain detail or argument.

Outline
This thesis is structured as follows:

Section 1
In Section 1 basic terminology and definitions from functional analysis necessary for a complete
understanding of the subject matter are recollected.

Section 2
This section gives an introduction to wavelets and the theory of multiresolution analysis, the main
tool in this work. The established wavelet theory is extended by remarks on improving its qualities
in applications by enhanced preconditioning and Riesz operators for norm equivalences with precise
constants. This part lays the groundwork for a complete theoretical understanding of the numerical
schemes.

Section 3
Building upon the theory of the previous section, this chapter shows how adaptive methods are
introduced in the wavelet realm. This starts by discussing tree structures and then explains how
expansion vectors based upon tree structured index sets are at the heart of a series of algorithms
implementing the adaptive wavelet methods.

Section 4
This section explains the theory and implementational details of tree based adaptive wavelet meth-
ods. It includes the algorithms to convert wavelet expansion vectors to a piecewise polynomial
representation, the application of a (non-)linear operator and the computation of the values of the
dual wavelet expansion coefficients. I conclude by presenting example problems and the numerical
results when solving these problems using the previously described algorithms.

Section 5
Again building upon the theory and results of the previous section, the family of problems considered
is advanced from a mere (non-)linear PDE to (non-)linear boundary values problems with essential
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boundary conditions governed by such (non-)linear PDEs. While natural boundary conditions
are incorporated into the solution spaces, essential boundary conditions are here enforced using
trace operators. Trace operators allow a very flexible treatment of boundary conditions, which is
used to accommodate changing boundary conditions when iteratively solving control problems with
Dirichlet boundary control. I give an introduction into the general saddle point problem theory
and present theoretical and experimental results for several example problems.

Section 6
I close the thesis with a short review of the results of the previous chapters and an outlook on
possible future work.

Appendix A
Details on the used wavelet bases and the implementation of the local polynomials can be found
in the appendix. This includes refinement and conversion matrices and derivations of the inner
product values for the adaptive application of PDE operators.

Appendix B
This section gives a short introduction into the software source code and its design principles. This
includes a guideline to the installation of the software and a description of the configuration options
available.

Appendix C
Here I list the most important symbols used in this thesis and state some basic definitions.
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1 Fundamentals
In this first chapter, we need to recall some fundamental definitions and propositions from functional
analysis which are needed in the discussion of the (non-)linear elliptic boundary value problems in the
later chapters. This includes function spaces like the Sobolev spaces Hm(Ω) of Section 1.2 used in the
variational weak form of linear elliptic PDEs discussed in Section 1.4. Sobolev spaces Hs(Γ) of fractional
order are important for the enforcement of boundary conditions using trace operators. In the same way,
Besov spaces Bαq (Lp(Ω)) discussed in Section 1.3 are employed in the solution theory of nonlinear elliptic
PDE of Section 1.5.
The contents of the following sections are based on the books [4] and [75]. Other references are stated in
place whenever a result is quoted. The content of this section is partially taken from [122].

1.1 Basic Definitions and Vocabulary
Let X,Y be normed linear spaces over the field R.

Definition 1.1 [Linear Operators and Operator Norms]
We denote all linear operators from X to Y by

L(X; Y ) := {T : X → Y ; T is continuous and linear} . (1.1.1)

For any T ∈ L(X; Y ), the associated operator norm is defined by

‖T‖L(X; Y ) := sup
x∈X, ‖x‖X=1

‖Tx‖Y , (1.1.2)

which is known to be finite for this class of operators (see [4]).

We write L(X) := L(X; X) when X and Y coincide.

Definition 1.2 [Banach Spaces and Equivalent Norms]
A Banach space is a complete vector space B with a norm ‖ · ‖B. A Banach space can have several
norms, e.g. ‖ · ‖B1 and ‖ · ‖B2 , which are called equivalent if they induce the same topology. This is
equivalent to the existence of positive finite constants c and C such that for all v ∈ B

‖v‖B1
≤ c‖v‖B2

and ‖v‖B2
≤ C‖v‖B1

, (1.1.3)

written shortly as

‖v‖B1
. ‖v‖B2

and ‖v‖B2
& ‖v‖B1

or ‖v‖B1
∼ ‖v‖B2

. (1.1.4)

Definition 1.3 [Separable Hilbert Space]
A Hilbert space H is a complete vector space with an inner product (·, ·)H such that the norm is induced
by the inner product as ‖ · ‖H :=

√
(·, ·)H. A Hilbert space is called separable if it contains a countable

dense subset, i.e.,

V = {vi : i = 1, 2, . . .} ⊂ H, such that clos
H

V = H. (1.1.5)

A Hilbert space is always a Banach space, but the converse does not need to hold. Most spaces relevant
for numerical studies are separable since (1.1.5) can equivalently be expressed as

dist(f ;V ) = 0, for all f ∈ H, (1.1.6)

which, in other words, means that every element of H can be approximated analytically or numerically
with arbitrary precision with elements from the space V .

Definition 1.4 [Dual Space]
Let X be a Banach space. The dual space X ′ of X is the space of all linear continuous functions from
X onto the underlying field R. In other words,

X ′ := L(X; R). (1.1.7)

The elements v′ ∈ X ′ are called linear functionals. The dual form is defined as 〈x, x′〉X×X′ := x′(x).
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Section 1. Fundamentals

In the following, let Ω ⊂ Rn be a bounded domain with piecewise smooth boundary ∂Ω and Ω being
locally on one side. The meaning and degree of smoothness of ∂Ω will be specified in Section 1.2.2, for
now ∂Ω just shall be considered “sufficiently smooth”.
Examples of separable Hilbert spaces are the Lebesgue function spaces Lp(Ω), 1 ≤ p < ∞, and the
subspaces H(Ω) of L2(Ω). Note that L∞(Ω) is not separable. Any generic Hilbert space considered in
this thesis will be separable.

1.2 Sobolev Spaces
Most of this section is taken from the books of [2, 75, 105]. Some details, especially the Fourier analysis
notation, are borrowed from the lecture notes [131].

Definition 1.5 [Lebesgue Space L2(Ω)]
The space L2(Ω) is the space of all real-valued square Lebesgue integrable functions on Ω, i.e.,

v ∈ L2(Ω), if and only if ‖v‖2L2(Ω) :=

∫

Ω

v2(x) dµ <∞. (1.2.1)

where µ = µ(x) is the Lebesgue measure. It is equipped with the inner product

(u, v)L2(Ω) :=

∫

Ω

u(x)v(x) dµ, (1.2.2)

and is a Hilbert space.

Functions u, v ∈ L2(Ω) are considered equal if u(x) = v(x) holds almost everywhere, i.e., for all x ∈ Ω\A
and µ(A) = 0.

Remark 1.6 In the following, α := (α1, . . . , αn) ∈ Nn0 is a multi-index. Its definition, along with that
of the classical smoothness spaces Ck, C∞0 (Ω), Hölder spaces Ck,α and Lipschitz spaces Ck,1 can be
found in Appendix C.

Definition 1.7 [Weak Derivative]
We say u ∈ L2(Ω) has the weak derivative v =: ∂αu, if v ∈ L2(Ω) and

(φ, v)L2
= (−1)|α| (∂αφ, u)L2

, for all φ ∈ C∞0 (Ω). (1.2.3)

Remark 1.8 For convenience purposes, we will omit the domain from the scalar product like we did in
(1.2.3), if this does not create confusion.

If such a v exists, it is unique (in the L2-sense). In case u ∈ Cm(Ω), the weak derivative corresponds to
the classical strong derivative and (1.2.3) follows as an application of Green’s formula.
We now introduce Sobolev spaces as subspaces of L2, in which elements possess weak derivatives of
specific orders.

Definition 1.9 [Sobolev Space on Ω]
For m ∈ N we denote by Hm(Ω) the Hilbert space of all functions u ∈ L2(Ω) for which the weak
derivatives ∂αu for all |α| ≤ m exist. The inner product of this space is given as

(u, v)Hm :=
∑

|α|≤m
(∂αu, ∂αv)L2

(1.2.4)

which is associated to the norm

‖u‖Hm :=
√

(u, u)Hm =

√ ∑

|α|≤m
‖∂αu‖2L2

. (1.2.5)

A seminorm is given by

|u|Hm :=

√ ∑

|α|=m
‖∂αu‖2L2

. (1.2.6)
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1.2. Sobolev Spaces

The Sobolev spaces are obviously nested, i.e., Hm+1 ⊂ Hm, with the usual definition H0 := L2. A well
known fact is the following

Corollary 1.10 C∞(Ω) ∩Hm(Ω) is dense in Hm(Ω) for m ∈ N0.

The series of spaces Hm,m ∈ N0, can be extended to a scale of spaces with continuous smoothness indices,
which will be of great importance later. These subspaces of Hm are Sobolev spaces of non-integral order
s /∈ N and cannot be characterized by weak derivatives alone as above. Instead, we use the following
definition:

Definition 1.11 [Fractional Sobolev Spaces on Ω]
For s = m+ σ,m ∈ N0, 0 < σ < 1, we introduce an inner product as

(u, v)Hs := (u, v)Hm +
∑

|α|≤m

(∫

Ω

∫

Ω

|∂αu(x)− ∂αu(y)||∂αv(x)− ∂αv(y)|
|x− y|n+2σ dµ(x) dµ(y)

)
. (1.2.7)

The space Hs(Ω) is the closure of all functions in Hm(Ω) for which the norm

‖u‖Hs :=
√

(u, u)Hs (1.2.8)

is finite. It is thus a Hilbert space.

Remark 1.12 The Definitions 1.9 and 1.11 also hold in case Ω = Rn.

The Sobolev spaces are nested in the following fashion

Hs1 ⊂ Hs2 ⊂ L2, s1 > s2 > 0, (1.2.9)

for any domain Ω ⊆ Rn.

An Alternative Characterization

An alternative approach to define fractional Sobolev spaces is given by means of Fourier Analysis. We
can define for f ∈ L2(Rn) the Fourier transform F(f) ∈ L2(Rn) as the limit in the L2 sense of

∫

|ξ|≤M
exp(±2πix · ξ)f(ξ)dξ, M →∞. (1.2.10)

The Fourier transform is an isomorphism between L2(Rn) and itself, with

‖F(f)‖L2
= ‖f‖L2

,

and the identity

F(∂αf) = (2πi)|α|ξαF(f), for all f ∈ L2(Rn)

holds. From the above-mentioned remarks we obtain an equivalent characterization of Hm as:

Hm(Rn) = {v | ξαF(v) ∈ L2(Rn) for all |α| ≤ m} . (1.2.11)

Obviously, it does not matter in (1.2.11) whether m is an integer or whether it is positive. It may be
easily verified that the characterizations ξαF(v) ∈ L2(Rn) and (1 + |ξ|2)s/2F(v) ∈ L2(Rn) for |α| ≤ s are
equivalent. The latter is predominantly used in the following alternative version of Definition 1.11 for
Ω = Rn.

Definition 1.13 [Fractional Sobolev Space on Rn]
For s ∈ R we define the Sobolev space of order s, Hs(Rn), as

Hs(Rn) :=
{
v | (1 + |ξ|2)s/2F(v) ∈ L2(Rn)

}
, (1.2.12)

which is a Hilbert space when endowed with the inner product:

(u, v)Hs :=
(

(1 + |ξ|2)s/2F(u), (1 + |ξ|2)s/2F(v)
)
L2

. (1.2.13)
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Remark 1.14 In case s ∈ N, the inner products (1.2.4) and (1.2.13) induce equivalent, but not identical,
norms.

For u ∈ Hs(Rn), we can define the restriction operator onto Ω ⊆ Rn,

u→ u|Ω =: restriction of u to Ω, (1.2.14)

which is continuous and linear. In case u ∈ Ck holds, the restriction can be defined pointwise.
The space Hs(Ω) from Definition 1.9 can now be equivalently expressed using the above Definition 1.13
and the following theorem from [105].

Theorem 1.15 Hs(Ω) coincides with the space of restrictions to Ω of the elements of Hs(Rn).

Therefore, for any function u ∈ Hs(Ω), an element ũ ∈ Hs(Rn) can be specified which defines u by means
of local coordinates on the domain Ω. The approach via Fourier transform is in particular applicable for
Sobolev spaces to be defined on periodic domains.

1.2.1 Subspaces Hs
0 ⊂ Hs

The spaces Hs
0(Ω) are normally loosely referred to as elements of the spaces Hs(Ω) with compact support

in Ω. The definition of the spaces Hs
0(Ω) is an extension of Corollary 1.10.

Definition 1.16 [Sobolev Spaces Hs
0(Ω)]

Hs
0(Ω) is defined as the closure of D(Ω) := C∞0 (Ω) with respect to the norm of Hs(Ω), i.e.,

Hs
0(Ω) :=

{
φ | ∃ {φn} ∈ D(Ω) and φn → φ is a Cauchy sequence in ‖ · ‖Hs(Ω)

}
. (1.2.15)

Hence the spaces Hs
0(Rn) and Hs(Rn) are equal. In general, the spaces Hs

0(Ω) are closed subspaces of
Hs(Ω). Specifically, we have

Hs
0(Ω) = Hs(Ω), 0 ≤ s ≤ 1

2
, (1.2.16)

which holds because D(Ω) is also dense in Hs(Ω) for s ≤ 1
2 , cf. Corollary 1.10. In the other cases we

have

Hs
0(Ω) ( Hs(Ω), s >

1

2
, (1.2.17)

which means that Hs
0(Ω) is strictly contained in Hs(Ω). It is shown in [75] and [73] that one can also

characterize the spaces of (1.2.15) as the following family of functions:

Hs
0(Ω) =

{
u |u ∈ Hs(Ω), ∂αu = 0 on ∂Ω, |α| ≤ s− 1

2

}
. (1.2.18)

These spaces also have an important property regarding their dual spaces which will be seen in Sec-
tion 1.2.3. We now have the following relations between the Sobolev spaces of integral orders:

L2(Ω) = H0(Ω) ⊃ H1(Ω) ⊃ H2(Ω) ⊃ . . .
q ∪ ∪

H0
0 (Ω) ⊃ H1

0 (Ω) ⊃ H2
0 (Ω) ⊃ . . .

(1.2.19)

All inclusions in the above diagram are dense and the embeddings continuous.

1.2.2 Trace Spaces Hs(Γ)

Trace spaces and trace operators appear naturally in the treatment of the boundary value problem
considered in Section 5. To this end, we need to recall a definition of trace spaces and the extension of
classical trace operators onto the space Hs(Ω).
The constraint or trace u|∂Ω of a function u ∈ Hs(Ω) cannot simply be defined pointwise because there
is no guarantee that functions in L2 and Hs can be evaluated at specific points x ∈ Ω. It also makes no
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1.2. Sobolev Spaces

sense to define the trace as the continuous limit when approaching the boundary, because firstly, elements
of H1(Ω) are generally not continuous, and secondly, ∂Ω is a manifold in Rn−1 and, thus, its measure in
Rn is zero. This means we could have u = v a.e. for u, v ∈ L2(Ω) but u(x) 6= v(x) for all x ∈ ∂Ω.
The trace of functions in Sobolev spaces is defined through a trace operator and is given in local
coordinates on an open cover of the boundary ∂Ω. This definition depends also on regularity conditions
of the boundary ∂Ω, which we will now formalize.
Let Ω ⊂ Rn be a domain with Lipschitz boundary ∂Ω ∈ Ck,1 to which Ω lies locally on one side. Also,
a fixed section Γ ⊆ ∂Ω should have a positive surface measure. The following local coordinate system is
thus well defined :
For any x ∈ ∂Ω, we can specify a neighborhood V ⊂ Rn with new orthogonal coordinates z = (z′, zn)
where z′ = (z1, . . . , zn−1). Without imposing restrictions, V can be characterized as a cube in these
coordinates, i.e.,

V = {(z1, . . . , zn) | |zj | ≤ 1, 1 ≤ j ≤ n} , (1.2.20)

and the first n− 1 coordinates z′ of z span the space

V ′ := {(z1, . . . , zn−1) | |zi| ≤ 1, 1 ≤ j ≤ n− 1} . (1.2.21)

Let Θ = {Θj | j = 1, . . . , r} be a family of open bounded sets in Rn, covering ∂Ω, such that, for each j,
there exists ϕj ∈ Ck,1(V ′,Θj) with positive Jacobian J(ϕj), 1 ≤ j ≤ r and ϕj is a bijection. Furthermore,
we can arrange to have

ϕj ∈ Ck,1(V+,Θj ∩ Ω), V+ := {(z′, zn) ∈ V | zn < ϕj(z
′)} ,

ϕj ∈ Ck,1(V0,Θj ∩ ∂Ω), V0 := {(z′, zn) ∈ V | zn = ϕj(z
′)} .

because of the preliminary requirements to Ω above. In other words, Ω lies locally below the graph of
each ϕj and the graph of ϕj is the boundary of Ω in the patch Θj . For each j, the pair (ϕj ,Θj) is called
a coordinate patch for the boundary part ∂Ω ∩Θj .

Definition 1.17 [Sobolev Spaces Hs(∂Ω)]
A distribution u on ∂Ω is in Hs(∂Ω) for any real |s| ≤ k + 1, if and only if

u ◦ Φj ∈ Hs(V ′ ∩ Φ−1
j (Θj ∩ ∂Ω)). (1.2.22)

This is a Banach space when equipped with the norm

‖u‖2Hs(∂Ω) :=

r∑

j=1

‖yj ◦ Φj‖2Hs(V ′∩Φ−1
j (Θj∩∂Ω)). (1.2.23)

Remark 1.18 It was proved in [73] that the above definition is independent of the choice of the system
of local maps {ϕj ,Θj}.

The trace space Hs(Γ) ⊂ Hs(∂Ω) can be defined analogously by only considering an open cover Θ of Γ,
which does not intersect with ∂Ω \Γ (except for parts with zero surface measure), then applying the rest
of the definition unchanged.

Remark 1.19 One can exchange ∂Ω ∈ Ck,1 in the above paragraph by ∂Ω ∈ C0 or Ck, the details
remain valid if the maps {ϕj} are adapted appropriately.

Trace Operators

Trace operators which restrict functions u ∈ Hs(Ω) to the boundary can now be constructed as extensions
of the classical trace operators of continuous functions,

u(x1, . . . , xn)|xn=0 := u(x1, . . . , xn−1, 0). (1.2.24)

25



Section 1. Fundamentals

We summarize here the results of this topic; for details see the books of [75], [105] and [73].
We define for any function u ∈ Ck,1(Ω̄) its traces of normal derivatives by

γj(u) :=
∂ju

∂νj

∣∣∣∣
Γ

, 0 ≤ j ≤ k, (1.2.25)

where ν = ν(x) is the outward normal on the boundary of Ω which exists a.e. We will be referring to γ0

when talking about the trace operator.

Theorem 1.20 Assume that s− 1/2 = m+ σ, 0 < σ < 1,m ∈ N0 and s ≤ k + 1. Then the mapping

u 7→ {γ0u, γ1u, . . . , γmu} , (1.2.26)

which is defined for u ∈ Ck,1(Ω̄), has a unique continuous extension as an operator from

Hs(Ω) onto
m∏

j=0

Hs−j−1/2(Γ).

We will make no distinction between the classical trace operators and the extensions to Sobolev spaces. In
later chapters, we frequently need a classical Trace Theorem which holds for domains Ω with Lipschitz
continuous boundary ∂Ω ∈ C0,1.

Theorem 1.21 For any u ∈ Hs(Ω), 1/2 < s < 3/2, one can estimate

‖γ0u‖Hs−1/2(Γ) ≤ cT,Ω‖u‖Hs(Ω). (1.2.27)

Conversely, for every h ∈ Hs−1/2(Γ), there exists some u ∈ Hs(Ω) such that γ0u = h and

‖u‖Hs(Ω) ≤ CT,Ω‖h‖Hs−1/2(Γ). (1.2.28)

As before, cT,Ω and cT,Ω denote positive finite constants, but, as indicated by their subscript, their value
usually depends on properties of the domain Ω.

The range of s extends accordingly if ∂Ω is more regular.

Extension Operators

We can also give estimates which can be seen as a converse counterpart to the above estimate (1.2.27).
These are Whitney-extension results which state that any function u ∈ Hs(Ω) can be extended to a
function ũ ∈ Hs(Rn) such that ũ|Ω = u and

‖ũ‖Hs(Rn) ≤ CE,Ω‖u‖Hs(Ω), s > 0. (1.2.29)

This is also true for traces of functions: for any h ∈ Hs−1/2(Γ), there exists an extension h̃ ∈ Hs−1/2(∂Ω)
such that

‖h̃‖Hs−1/2(∂Ω) ≤ CE,∂Ω‖h‖Hs−1/2(Γ), s > 0. (1.2.30)

Again, CE,Ω and CE,∂Ω denote (domain dependent) positive finite constants.

1.2.3 Dual of Sobolev Spaces

Recall that the dual space of Hs(Ω) will generally be denoted by (Hs(Ω))′. The dual space of L2 is
related to L2 again by the Riesz Representation Theorem, i.e., (L2)′ = L2, and the dual form is
given as

〈u, v〉L2×(L2)′ :=

∫

Ω

u(x) v(x) dµ, u, v ∈ L2. (1.2.31)
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1.2. Sobolev Spaces

Remark 1.22 In the following, we will omit the space specifiers in the dual form and write only 〈·, ·〉 if
the exact dual form can be ascertained unambiguously from the arguments.

Thus, we have trivially

(H0(Ω))′ = (H0
0(Ω))′ = (L2(Ω))′ = L2(Ω) for domains Ω ⊆ Rn. (1.2.32)

In case Ω = Rn we can use Definition 1.13 with arbitrary negative indices to define Sobolev spaces of
negative order on all Rn. These spaces H−s(Rn) are now the dual spaces of Hs(Rn) as the following
result from [105] shows:

Theorem 1.23 For all s > 0 one has

(Hs(Rn))′ = H−s(Rn). (1.2.33)

This is not true when the domain under consideration is bounded. However, we can identify some of
these dual spaces with Sobolev spaces of negative order which we define as follows:

Definition 1.24 [Sobolev Spaces H−s(Ω)]
For Ω ⊂ Rn and s ∈ R+ we define a norm for u ∈ L2(Ω) by

‖u‖H−s(Ω) := sup
v∈Hs0(Ω)

〈u, v〉(L2)′×L2

‖v‖Hs0 (Ω)
, s > 0. (1.2.34)

The closure of L2(Ω) with respect to this norm is termed H−s(Ω) = (Hs
0(Ω))′.

The resulting spaces are obviously bigger than L2(Ω) and also nested, and we get the following line of
inclusions:

. . . ⊃ H−2(Ω) ⊃ H−1(Ω) ⊃ L2(Ω) ⊃ H1
0 (Ω) ⊃ H2

0(Ω) ⊃ . . . . (1.2.35)

1.2.4 Regularity Properties

The following theorems from [2] provide information about the relation of the Sobolev spaces Hm(Ω)
to other function spaces, i.e., a function in a different space can be seen as a representative (in the
Lebesgue sense) of the Sobolev space function.
These embedding theorems must assume some regularity assumptions on the domain Ω ⊆ Rn. One
condition is given for bounded domains Ω by the (strong) local Lipschitz boundary ∂Ω ∈ C0,1. This
requires each point x ∈ ∂Ω to have a neighborhood U(x) ⊂ Rn whose intersection with ∂Ω is the graph
of a Lipschitz continuous function. It entails that Ω lies locally on one side of its boundary.
The scope of the embeddings for the Sobolev space Hm(Ω) depend primarily on the value of the critical
Sobolev number

γ := m− n

2
, (1.2.36)

where the value in the denominator is the order of the underlying Lebesgue space, here L2(Ω). The
embedding theorem (Theorem 4.12 in [2]) now distinguish between γ < 0, γ = 0 and γ > 0.

Theorem 1.25 If Ω ⊂ Rn has a local Lipschitz boundary, then the following embeddings are continuous:

• If γ > 0, i.e., 2m > n, then Hm(Ω) ↪→ Lq(Ω) for 2 ≤ q ≤ ∞.

• If γ = 0, i.e., 2m = n, then Hm(Ω) ↪→ Lq(Ω) for 2 ≤ q <∞.

• If γ < 0, i.e., 2m < n, then Hm(Ω) ↪→ Lq(Ω) for 2 ≤ q ≤ p? := 2n
n−2m .

Furthermore, the embedding Hm+1(Ω) ↪→ Hm(Ω) for m ∈ N0, is compact.

These embeddings are still valid if the domain Ω only satisfies the weaker cone condition, i.e., there
exists a finite cone C such that each x ∈ Ω is the vertex of another finite cone Cx contained in Ω and
congruent to C.
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Remark 1.26 According to comments in Section 6.2 in [2], the above embeddings are also compact for
bounded domains Ω “with the exception of certain extreme cases”. We will not be dealing with any
“extreme” domains in this thesis.

An even stronger result for the spaces Hs
0(Ω) is given by

Theorem 1.27 The embedding Hs
0(Ω) ↪→ Ht

0(Ω), for all s, t ∈ R with s > t, is compact. This holds
especially for the case s = m+ 1, t = m for m ∈ N0.

Of special interest is also the relation of the Sobolev spaces Hs to the classical function spaces Ck. The
Embedding Theorem by Sobolev establishes this connection.

Theorem 1.28 If Ω ⊂ Rn has a Lipschitz boundary, then the embedding Hm(Ω) ↪→ Ck(Ω) is continuous
for k ∈ N0 and m > k + n/2.

Remark 1.29 The Theorems 1.25 and 1.28 are also valid for the subspaces Hm
0 (Ω) ⊆ Hm(Ω).

1.2.5 Tensor Products of Sobolev Spaces

An important way of constructing higher dimensional function spaces is by tensorizing lower dimensional
spaces, which is exactly the method of construction of higher dimensional wavelets employed in Section 2.4.
The notion of tensor product applied to domains is common knowledge, refer to [148] for a strict
mathematical definition of the tensor product of Hilbert spaces.

Remark 1.30 As a convention, we will always read tensor products from right to left, i.e., in de-
scending order.

This construction emphasizes certain structure of the generated functions w.r.t. the lower dimensional
space axes. It has to be investigated under what conditions a higher dimensional Sobolev space Hr(Ω)
of a tensor product domain Ω =

⊗n
i=1 Ii, I1, . . . , In ⊂ R, can be characterized by tensor products of the

Sobolev spaces Hri(Ii), i = 1, . . . , n.
We follow the notation of [71, 72]. Their work is based upon [6, 148]. The book [76] also gives a good
introduction and many details on this topic.
For simplicity, we will only depict the following results in two dimensions, they are easily extended to
higher space dimensions.

Definition 1.31 [Sobolev Space with Dominating Mixed Derivative]
Let I1, I2 ⊂ R be two closed intervals and Ω := I2 ⊗ I1. The Sobolev space with dominating mixed
derivative r1, r2 ∈ N0,

H(r1,r2)
mix (I2 ⊗ I1) := Hr2(I2)⊗Hr1(I1), (1.2.37)

is a Hilbert space with the norm

‖f‖H(r1,r2)
mix

:=

√√√√‖f‖2L2(Ω) +

∥∥∥∥
∂r1

∂xr11

f

∥∥∥∥
2

L2(Ω)

+

∥∥∥∥
∂r2

∂xr22

f

∥∥∥∥
2

L2(Ω)

+

∥∥∥∥
∂r1+r2

∂xr11 ∂x
r2
2

f

∥∥∥∥
2

L2(Ω)

. (1.2.38)

The space H(r1,r2)
0,mix (I2 ⊗ I1) can defined analogously to Definition 1.16.

This space can be highly anisotropic in case r1 and r2 differ greatly in value. If the smoothness indices
are equal, r = r1 = r2, it is obvious this norm is stronger than (1.2.5) for r alone and the resulting space
is thus a (dense) subset of Hr(Ω):

Hr(I2)⊗Hr(I1) ⊂ Hr(I2 ⊗ I1).

The “original” Sobolev space Hr obviously assures smoothness uniformly, i.e., in all directions to the
same extent, but in the sum not beyond the maximum smoothness index, in this sense it is an isotropic
space. This is emphasized by the following results (see [76]).
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Lemma 1.32 For r ∈ N0, the space Hr(Ω) can be characterized as

Hr(I2)⊗ L2(I1) ∩ L2(I2)⊗Hr(I1). (1.2.39)

A version of Definition 1.31 for arbitrary r1, r2 ∈ R can be found in [79]. Analogous results can also be
derived for the spaces Hr

0 (Ω).
It is thus clear that “true” tensor product spaces in the sense of (1.2.37), especially if the individual
smoothness indices differ in value, require anisotropic methods, but the Sobolev space defined by (1.2.5)
can be represented using isotropic techniques.

1.3 Besov Spaces
In the course of the adaptive wavelet theory discussed in Section 3, it will become clear that a more finely
tunable function space definition than Sobolev spaces Hm(Ω) is needed. Besov spaces are a generalization
of Sobolev spaces, i.e., where, instead of employing weak derivatives, smoothness is measured using
finite differences, see [2, 64]. Besov spaces appear in the context of nonlinear approximations, an
introduction to which can be found in [62].
To this end, we define the difference operator for functions u : Ω → R, Ω ⊂ Rn, and the step vector
h = (h1, . . . , hn) ∈ Rn,

∆h(u)(x) := u(x + h)− u(x), x ∈ Rn, (1.3.1)

for which inductively holds for d > 1

∆d
h(u) := ∆d−1

h (∆h(u)) =

d∑

k=0

(−1)d−k
(
d

k

)
u(·+ k h). (1.3.2)

By simple Taylor expansion for a sufficiently smooth function u ∈ Cd(Ω,R), it is easily shown that

|∆d
h(u)(x)| →

∑

|α|=d
hα α! ∂αu(x), with hα := hα1

1 · · ·hαdn , ∂αu(x) := ∂α1
1 · · · ∂αdn u(x),

holds. For unsmooth functions, subspaces can be obtained by placing conditions on how fast ‖∆d
h(u)‖Lp(Ω)

drops to zero as h→ 0. To measure this, we define the moduli of smoothness

ωd(u, t)p := sup
|h|≤t

‖∆d
h(u)‖Lp(Ωdh), for functions u ∈ Lp(Ω,R) and t > 0, (1.3.3)

where Ωdh denotes the line segment [·, ·+dh], which must be contained in Ω. This definition is sufficient
to define Lipschitz-like spaces, e.g. by combining all functions for which for a single α holds

sup
t>0

t−αωd(u, t)p <∞, with d > α. (1.3.4)

Note that this yields exactly the same spaces regardless of the actual value d, as long as d > α holds.
The parameter α thus takes the place of the weak derivative order m of Definition 1.9. To define the
Besov spaces Bαq (Lp), we require another smoothness parameter q ∈ [0,∞), to fine-tune the allowed
growth (or rather decay) rate of the function defined by the parameter t.

Definition 1.33 [Besov Space on Ω]
For 0 < q <∞, the Besov seminorm

|u|Bαq (Lp(Ω)) :=

(∫

t>0

[
t−αωd(u, t)p

]q d t
t

)1/q

, (1.3.5)

defines the Besov space Bαq (Lp(Ω)) as all functions of Lp(Ω) for which the norm

‖u‖Bαq (Lp(Ω)) := ‖u‖Lp(Ω) + |u|Bαq (Lp(Ω)) (1.3.6)

is finite. It can again be shown that the parameter d yields, as long as d > α holds, equivalent norms and
thus the same spaces. For the case q =∞, (1.3.4) is used as seminorm for Bα∞(Lp(Ω)).

29



Section 1. Fundamentals

Proposition 1.34 For fixed p and α, the space Bαq (Lp(Ω)) gets larger with increasing q and it holds

|u|Bαq2 (Lp(Ω)) . |u|Bαq1 (Lp(Ω)), for 0 < q1 < q2 <∞ and u ∈ Bαq1(Lp(Ω)), (1.3.7)

hence it follows Bαq1(Lp(Ω)) ⊂ Bαq2(Lp(Ω)).

The index q is secondary to the indices α, p when it comes to the characterization of the Besov space
Bαq (Lp(Ω)). In fact, many imbedding propositions only depend on α and p and not on q. Besov spaces
can also very elegantly be characterized by wavelet expansion sequences, which we will use in Section 3.

1.3.1 Connection to Sobolev Spaces

As the Besov space characterizes smoothness within the Lebesgue spaces Lp(Ω), there must be some
connections to the Sobolev spaces of Section 1.2.
It was shown in [83] that the Besov spaces Bαq (L2(Ω)) can be characterized by K-functional theory
as intermediate spaces between the spaces L2(Ω) and Sobolev spaces Hk(Ω): If for two spaces X,Y
holds Y ⊂ X, we can define the K-functional for elements f ∈ X as

K(t, f,X, Y ) := inf
g∈Y

(‖f − g‖X + t |g|Y ) , t > 0, (1.3.8)

which is a semi-norm on the space X. We now introduce the intermediate spaces as

[X,Y ] θ
τ ,q

:=
{
f ∈ X | ‖f‖θ/τ,q;K <∞

}
, 1 ≤ q ≤ ∞, 0 < θ < τ, (1.3.9)

with the norm

‖f‖θ/τ,q;K :=



∞∑

j=0

[
2jθK(2−jτ , f,X, Y )

]q



1/q

. (1.3.10)

It is easy to verify that

Y ⊂ [X,Y ]θ/τ,q ⊂ X.

In this setting, the Lp(Ω) spaces are interpolation spaces for X = L1(Ω), Y = L∞(Ω).
Also, it holds for k ∈ N and α < k,

[
L2(Ω), Hk(Ω)

]
α/k,q

= Bαq (L2(Ω)). (1.3.11)

It also follows as a special case for q = 2,

Bα2 (L2(Ω)) = Hα(Ω), for all α ≥ 0. (1.3.12)

The Besov space parameter q thus has no direct equivalent in the Sobolev scale (1.2.19); but Besov spaces
can be used to characterize the fractional Sobolev spaces of Section 1.2.2, see [2]. There are many more
relations of Sobolev, Lebesgue and Besov spaces when using the intermediate spaces construction (1.3.9),
see [62].

Embedding Properties

Common to all cases in Theorem 1.25 is the embedding Hm(Ω) ↪→ Lq(Ω) if m ≥ n q−2
2 q , which generalizes

to other Sobolev spaces exactly as expected for p 6= 2. The main characteristic of the embedding formula
is the space dimension n, because it can be interpreted as the slope when plotting 1/p against m as in
Figure 1.1. For a fixed space Lq(Ω) the family of spaces continuously embedded in it are in the shaded
area including the critical cases on the line with slope n.
By (1.3.11), one can interpret the position of the Besov space Bαq (L2(Ω)) in the same diagram of the
Lebesgue and Sobolev smoothness indices at position (1/2, α/k), and this is easily generalized for other
values of p. Since this holds for all values for the parameter q, each point (1/p, α) in the plane therefore
stands for a whole family of spaces. Not all theoretical results are valid for all values of the secondary index
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Sobolev index k
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Bαq (Lp(Ω))

m

α
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n

Figure 1.1: Sobolev and Besov embedding diagrams, introduced in [62]. On the abscissa is given the
inverse Lebesgue index and on the ordinate axis the order of the weak derivative. The diagram on the
left shows the embedding relations given by Theorem 1.25. All Sobolev spaces in the shaded area and on
the critical line (of slope n) are continuously (and often compactly) embedded in the space Lq(Ω). The
diagram on the right highlights the Besov spaces embedded in the Sobolev space Hm(Ω). Each point
(1/p, α) in the plane stands for a whole range of Besov spaces Bαq (Lp(Ω)) because of the undetermined
parameter q. The spaces Bαq (Lp(Ω)) on the critical line of slope n are generally not embedded in Hm(Ω).
Because of the same slope, the right diagram can be seen as an extension of the left diagram with the
common point (1/2,m).

q, therefore we restrict our further considerations on the special case q ≡ τ , i.e., the spaces Bατ (Lτ (Ω)).
For these spaces hold that for fixed p ∈ (0,∞), and τ , α connected by

1

τ
=
α

n
+

1

p
, (1.3.13)

the following interpolation identity holds,

[Lp(Ω), Bατ (Lτ (Ω))]θ,q = Bθαq (Lq(Ω)), for
1

q
=
θ α

n
+

1

p
. (1.3.14)

Since the Besov spaces characterized by (1.3.13) are all on the line going through (1/p, 0) with slope n,
the result (1.3.14) says that interpolating between any two spaces corresponding to points on the line
produces another space corresponding to a point on the line. Also, these spaces have the advantage that
the embedding property holds for them [62, 124], i.e, the dotted line is solid in Figure 1.1, a property
that will be essential when investigating the smoothness properties of solutions to non-linear PDEs in
Section 3.1.1.
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1.4 Elliptic Partial Differential Equations
At this point, we need to introduce some basic vocabulary from stationary partial differential equations.
The weak formulation of an elliptic PDE will be at the heart of the problems considered in later chapters.
In the following Ω ⊂ Rn will always be a bounded domain with a Lipschitzian boundary ∂Ω.

Definition 1.35 [Partial Differential Equation (PDE)]
Let aα,β ∈ L∞(Ω) be bounded (PDE-) coefficient functions satisfying aα,β = aβ,α for all multi-indices
α, β with |α|, |β| ≤ m. A partial differential equation of order 2m,

Ly = f in Ω, (1.4.1)

is determined by a linear differential operator of order 2m, i.e.,

L :=
∑

|α|,|β|≤m
(−1)|β|∂β(aα,β(x)∂α). (1.4.2)

We associate to (1.4.2) the polynomial in ξ = (ξ1, . . . , ξn) given by

P (ξ, x) :=
∑

|α|=|β|=m
aα,β(x)ξα+β , ξα =

n∏

i=1

ξαii . (1.4.3)

Definition 1.36 [Elliptic Operator]
The operator L is said to be elliptic if (1.4.3) satisfies

P (ξ, x) & ‖ξ‖2m2 , for all ξ ∈ Rn, x ∈ Ω. (1.4.4)

Example 1.37 The Laplacian operator

∆ :=

n∑

i=1

∂2

∂x2
i

(1.4.5)

of order 2 is elliptic. The operator

L = −∆ + a0 I, a0 ∈ R+, (1.4.6)

also satisfies these properties.

It is easily seen that the equation Ly = f for a given right hand side f does not need to have a unique
solution. To ensure uniqueness, we have to impose further constraints on the solution space. This is
typically done by requiring the solution to attain special boundary values. However, the existence or
uniqueness of such boundary values cannot be determined unless we specify which kind of smoothness
we require of our solution.

Definition 1.38 [Classical Solution of an Elliptic Boundary Value Problem]
A function y ∈ C2m(Ω) ∩ C(Ω̄) which solves the elliptic boundary value problem

Ly = f in Ω,
∂iy

∂νi
= ui on ∂Ω, i = 0, . . . ,m− 1,

(1.4.7)

pointwise for given data f and ui is called a classical solution.

The above boundary conditions are generally classified into two types. Especially for the important case
of m = 1, i.e., L is an operator of order 2, for example the Laplace operator (1.4.5), one defines

Definition 1.39 [Dirichlet Boundary Conditions]
Constraints of the form

y = u on ∂Ω (1.4.8)

are called Dirichlet boundary conditions.
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and

Definition 1.40 [Neumann Boundary Conditions]
Neumann boundary conditions are of type

∂y

∂ν
= u on ∂Ω. (1.4.9)

If u = 0, the boundary conditions are called homogeneous, otherwise inhomogeneous.

Example 1.41 The PDE

−∆ y + a0 y = f, in Ω,

y = 0, on ∂Ω,

is called Helmholtz problem. In case a0 = 0 it is called Poisson problem.

The existence of a classical solution cannot be proved for arbitrary right hand sides f ∈ C0(Ω) and
ui ∈ C2i(∂Ω). Therefore, we must extend the solution space of (1.4.7) to spaces which permit solutions
and ensure uniqueness.

1.4.1 Variational Problems

In this section, we recall some facts about bilinear forms and operators in the abstract setting of a general
Hilbert space H and its dual H′. In the next section, we recall how a solution approach of the elliptic
partial differential equation (1.4.1) can be embedded into this setting, thus benefiting from the results
collected here.

Definition 1.42 [Continuous and Elliptic Bilinear Forms]
A symmetric bilinear form a : H×H → R is called continuous, if and only if

a(y, v) . ‖y‖H‖v‖H for all y, v ∈ H. (1.4.10)

A continuous bilinear form is called H−elliptic (or coercive), if and only if

a(y, y) & ‖y‖2H for all y ∈ H. (1.4.11)

Let the operator A : H → H′ be defined by

〈y,Av〉 := a(y, v). (1.4.12)

Obviously, such a bilinear form is equivalent to the norm of the Hilbert space, i.e.,
√
a(y, y) ∼ ‖y‖H :⇐⇒ cA‖y‖H ≤ ‖Ay‖H′ ≤ CA‖y‖H, (1.4.13)

with constants 0 < cA, CA < ∞. By the Theorem of Lax-Milgram (see [4]) it is known that A is an
isomorphism inducing the norm equivalence

‖Ay‖H′ ∼ ‖y‖H′ , y ∈ H. (1.4.14)

A variational problem can now be phrased like this: Given f ∈ H′, find y ∈ H such that

a(y, v) = 〈f, v〉 , for all v ∈ H, (1.4.15)

or, equivalently, in operator notation

Ay = f. (1.4.16)

The Theorem of Lax-Milgram now ascertains a unique solution y = A−1f to problem (1.4.15) which
depends continuously on the right hand side f .
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1.4.2 Weak Formulation of Second Order Dirichlet and Neumann Problems

Let us return to the elliptic partial differential equation (1.4.7) with (inhomogeneous) Dirichlet and
Neumann boundary conditions. The type of problem we will encounter in Section 5 is given in its
classical form as

Ly = f in Ω,
y = u on Γ ⊂ ∂Ω,

∂iy

∂νi
= 0 on ∂Ω \ Γ, i = 1, . . . ,m− 1.

(1.4.17)

We now consider the special case H = Hm(Ω) with given data f ∈ (Hm(Ω))′ and u ∈ Hm−1/2(Γ). If a
classical solution y ∈ C2m(Ω) ∩ C(Ω̄) exists, multiplication of (1.4.17) with a test function φ ∈ C∞(Ω)
yields

〈Ly, φ〉 = 〈f, φ〉 for all φ ∈ C∞(Ω). (1.4.18)

The left hand side is used to define the symmetric bilinear form a(·, ·) from Section 1.4.1 after using
Green’s formula,

a(y, φ) := 〈Ly, φ〉

=
∑

|α|,|β|≤m
(−1)|α|

∫

Ω

φ(x) ∂α(aα,β(x) ∂βy(x)) dµ(x) (1.4.19)

=
∑

|α|,|β|≤m

∫

Ω

aα,β(x) (∂αy)(x) (∂βφ)(x) dµ(x).

After applying partial integration m−times, the boundary integral terms over ∂Ω\Γ vanish here because
of the homogeneous Neumann boundary conditions in (1.4.17). Since these boundary conditions are
therefore naturally built into the weak formulation, they are called natural boundary conditions. The
Dirichlet boundary conditions must be handled explicitly and are therefore called essential bound-
ary conditions. The integral terms over Γ vanish by restricting our test function space to functions
with φ|Γ = 0. Since φ ∈ C∞(Ω), the trace φ|Γ is well defined in the classical sense.
The explicit treatment of inhomogeneous Dirichlet boundary conditions will be the objective of Section 5.
In short, these will be enforced using the trace operator γ0 of Section 1.2.2 and Lagrangian multi-
pliers.
The form a(·, ·) defined in (1.4.19) for functions in C∞(Ω) is obviously bilinear and symmetric. We can
extend the bilinear form a(·, ·) onto Hm(Ω)×Hm(Ω) by Corollary 1.10.
The right hand side of (1.4.18) defines a linear functional on the space Hm(Ω) :

〈f, v〉 =

∫

Ω

f(x)v(x) dµ(x). (1.4.20)

We will for an instant focus the discussion on the invertibility of the bilinear form (1.4.19) alone, for the
special case of homogeneous boundary conditions u = 0. In view of Section 1.4.1, the task is then to find
the element y ∈ Hm(Ω) with y|Γ = 0 such that

a(y, v) = 〈f, v〉 for all v ∈ Hm. (1.4.21)

Definition 1.43 [Weak Solution]
Any function y ∈ Hm(Ω) for which (1.4.21) holds will be called weak solution since it is not necessarily
in the space C2m(Ω) ∩ C0(Ω̄).

Note that the ellipticity of the operator L does not guarantee the ellipticity of the bilinear form a(·, ·).
This can only be ensured by requiring additional conditions of the domain Ω and the coefficients aα,β .
One sufficient criterion for ellipticity (1.4.11) in case m = 1 is a bounded domain Ω and

aα,β = 0, if |α|+ |β| ≤ 1. (1.4.22)

In case m > 1, additional prerequisites to the coefficient functions aα,β are required, see [75].
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Remark 1.44 The Laplacian operator (1.4.5) is of the form (1.4.22) and the induced bilinear form is
thus elliptic. This also holds for the operator (1.4.6).

The other prerequisite of the bilinear form a(·, ·) required for the Theorem of Lax-Milgram is conti-
nuity, which follows directly from the following estimate taken from [75]:

|a(y, v)| ≤
∑

α,β

‖aα,β‖L∞(Ω)‖y‖Hm(Ω)‖v‖Hm(Ω). (1.4.23)

Thus, the homogeneous problem (1.4.17) has a unique solution in Hm(Ω).

Example 1.45 The bilinear form for the Helmholtz Problem (Example 1.41) can be written as

a(y, v) = (∇y,∇v)L2
+ a0 (y, v)L2

, (1.4.24)

where ∇ := ( ∂
∂x1

, . . . , ∂
∂x1

)T denotes the gradient.

1.4.3 Galerkin Method

In the following, let H be a Hilbert Space, a(·, ·) a continuous and elliptic bilinear form on H×H and f
a bounded linear functional on H. With the elliptic PDE (1.4.17) now stated as a variational problem in
weak formulation (1.4.21), we can go on to solve (1.4.21) numerically. Typically one discretizes (1.4.21)
using elements from a finite dimensional closed subspace Sj ⊂ H of level j as trial functions. Let Φj be
a basis for this space Sj := S(Φj) := span {φj,k | k ∈ ∆j} for some ordered finite index set ∆j . The task
is now to find the unique element yj ∈ Sj with

a(yj , vj) = 〈f, vj〉 for all vj ∈ Sj . (1.4.25)

The coefficients in the expansion yj =
∑
k∈∆j

yj,kφj,k are compiled in the vector yj :=
(
(yj,k)k∈∆j

)T .
Choosing vj = φj,k sequentially for all k ∈ ∆j , we obtain the linear system of equations

∑

k∈∆j

yj,k a(φj,i, φj,k) = 〈f, φj,i〉 , i ∈ ∆j . (1.4.26)

Abbreviating Aj := (a(φj,i, φj,k))k,i∈∆j
and fj := 〈f, φj,i〉i∈∆j

this reads shortly as

Aj yj = fj . (1.4.27)

If the bilinear form a(·, ·) is symmetric and elliptic, then if follows that Aj is symmetric positive definite,
i.e., xT Aj x > 0 for all 0 6= x ∈ R#∆j . In particular, this means that Aj is non-singular and a
unique solution yj = A−1

j fj to (1.4.27) exists. Note that the vector yj determines the unique element
yj =

∑
k∈∆j

yj,k φj,k ∈ Sj which is the solution to (1.4.25).

Definition 1.46 [Discretization Error]
We call the level dependent constant

hj := dist(y, Sj) := inf
vj∈Sj

‖y − vj‖H, y ∈ H, (1.4.28)

the discretization error of level j (with respect to Sj).

Of special importance is the following result:

Lemma 1.47 [Céa− Lemma]
Let y resp. yj denote the solution of the variational problem (1.4.21) resp. (1.4.25) in H resp. Sj ⊂ H.
Then it follows that

‖y − yj‖H . inf
vj∈Sj

‖y − vj‖H. (1.4.29)

35



Section 1. Fundamentals

In other words, the Galerkin solution yj is up to a constant of the same error to the weak solution y as the
best approximation of the trial space Sj . The best approximation error is here exactly the discretization
error (1.4.28). An immediate consequence is the following

Corollary 1.48 Let the subspaces Sj be nested and their union dense in H, i.e.,

Sj ⊂ Sj+1, clos
H

⋃

j

Sj = H, (1.4.30)

then the Galerkin scheme converges, i.e.,

lim
j→∞

‖y − yj‖H = 0.

1.5 Nonlinear Elliptic Partial Differential Equations
We follow the line of [33,34], the basic definitions and proposition can also be found in [130,142], among
others. This means we concentrate on those nonlinear elliptic operator equations which are locally well-
posed. Consider a nonlinear stationary operator

G : H → H′, (1.5.1)

mapping from a Hilbert space H into its dual H′. As before, typical choices of the Hilbert space H are
certain Sobolev spaces, i.e., one can think of H = Hm(Ω) on a domain Ω ⊂ Rn with possibly some
boundary conditions. This operator will be used as a “perturbation”, added to a linear elliptical operator
A : H → H′ from Section 1.4.1, i.e.,

F := A+G, (1.5.2)

which together form a nonlinear partial differential equation. This type of equation is called
semilinear. In weak form, the operator (1.5.2) then leads to the following problem formulation: For
f ′ ∈ H′, find u ∈ H with

〈v, F (u)〉H×H′ := 〈v,Au〉H×H′ + 〈v,G(u)〉H×H′ = 〈v, f〉H×H′ . (1.5.3)

We need to know under which conditions such a PDE is still solvable and, ideally, under which conditions
the solution is unique.

1.5.1 Nemytskij Operators

It is beneficial to look at nonlinear operators in the context of Nemytskij operators, i.e., a wide class of
(possibly non-linear) operators for which a common theory can be derived.

Definition 1.49 [Nemytskij operator]
For a function ϕ : Ω × R → R, the Nemytskij operator Nϕ : (Ω → R) × Ω → R associated to ϕ is
defined by

Nϕ(u)(x) := ϕ(x, u(x)), (1.5.4)

for functions u : Ω→ R and points x ∈ Ω.

Remark 1.50 This definition can obviously be extended to multiple arguments u1(x), . . . , um(x) and to
function values ui(x) ∈ Rn.

Suitable conditions on the function ϕ now guarantee practical smoothness properties of the Nemytskij
operator Nϕ.

Definition 1.51 [Carathéodory conditions]
A function ϕ : Ω× R→ R is said to satisfy the Carathéodory conditions if

(i) ϕ(·, y) : Ω→ R is measurable for every y ∈ R,
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(ii) ϕ(x, ·) : R→ R is continuous for almost every x ∈ Ω.

The following theorem is taken from [127].

Theorem 1.52 Let Ω ⊂ Rn be a domain, and let ϕ : Ω × R → R satisfy the Carathéodory conditions.
In addition, let p ∈ (1,∞) and g ∈ Lq(Ω), with q being the adjoint Lebesgue index to p, be given. If ϕ
satisfies for all x and y

|ϕ(x, y)| ≤ C |y|p−1 + g(x), (1.5.5)

then the Nemytskij operator Nϕ is a bounded and continuous map from Lp(Ω) to Lq(Ω).

1.5.2 Well-posed Operator Problems

The generalization of the standard derivative to mappings between Banach spaces X → Y is called
Fréchet derivative. For F : H → H′, we define the Fréchet derivative DF : H → H′ at z ∈ H by the
duality

〈u,DF (z) v〉H×H′ := lim
h→0

1

h
〈u, F (z + hv)− F (z)〉H×H′ , (1.5.6)

for all u ∈ H. This leads to the following definition, which will be considered again in Section 3.

Definition 1.53 [Well-posed nonlinear operator equation]
We say an operator equation F (v) = w for F : H → H′ is well-posed, if

• F possesses a continuous Frechét derivative DF ∈ C(H,H′).

• There exists a solution u ∈ H to F (u) = f for f ∈ H′ and some constants 0 < cz,F ≤ Cz,F <∞
such that

cz,F ‖v‖H ≤ ‖DF (z) v‖H′ ≤ Cz,F ‖v‖H for all z ∈ H, v ∈ U(u), (1.5.7)

where U(v) denotes some neighborhood of u.

For such nonlinear operator equations, well-posed means a solution is locally unique.

Remark 1.54 The Fréchet derivative of a linear operator A : H → H′ is again A:

lim
h→0

1

h
〈u,A(z + hv)−A(z)〉H×H′ = lim

h→0

1

h
〈u,A(hv)〉H×H′ = 〈u,A(v)〉H×H′ .

Thus, if A is an isomorphism (1.4.14), the equation Av = w for given w ∈ H′ is well-posed.

We now collect some sufficient prerequisites on the operators F to show well-posedness. First, assume
that F is stable in the following sense:

‖F (u)− F (v)‖H′ ≤ CF (max{‖u‖H, ‖v‖H})‖u− v‖H, for all u, v ∈ H, (1.5.8)

where CF (·) is a positive nondecreasing function. This function shall account for the nonlinearity of F ,
property (1.5.8) is obviously a generalization of Lipschitz continuity. Another important aspect required
of the operator to ensure solvability is the following property.

Definition 1.55 [Monotonicity]
We say a mapping F : H → H′ is monotone if

〈u− v, F (u)− F (v)〉 ≥ 0, for all u, v ∈ H. (1.5.9)

If the above inequality is strict for u 6= v, then F is called strictly monotone.

Remark 1.56 Coercive (1.4.11) linear operators A : H → H′ are monotone:

〈u− v,A(u)−A(v)〉 = 〈u− v,A(u− v)〉 = a(u− v, u− v) & ‖u− v‖H ≥ 0.
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The next theorem from [33] now takes the above assumptions and deduces that there exists a unique
solution to problem (1.5.3).

Theorem 1.57 If a nonlinear operator G : H → H′ is stable (1.5.8) and monotone (1.5.9), then the
equation F := A + G = f in weak form (1.5.3) has for every f ∈ H′ a unique solution. Moreover, the
problem is well-posed in the sense of (1.5.7) with constants

cz,F := cA, Cz,F := CA + CG(‖z‖H), (1.5.10)

where cA, CA are the constants from (1.4.13) and CG(·) is the nondecreasing function defined in (1.5.8).

Proof: Since A, being a linear function, is monotone and assumed to be coercive, so is the operator
F := A+G. Then the Browder-Minty Theorem, see [127,149], asserts the existence of a solution.
The coercivity of the linear operator A then guarantees uniqueness: If u, v ∈ H with u 6= v were two
different solutions for f ∈ H′, i.e., for all w ∈ H it holds

〈(A+G)u,w〉 = 〈f, w〉 ,
〈(A+G)v, w〉 = 〈f, w〉 ,

then it follows for w := u− v by subtracting both equations and employing the estimates of (1.4.11) and
(1.5.9),

0 = 〈(A+G)u− (A+G)v, u− v〉
= 〈A(u− v), u− v〉+ 〈G(u)−G(v), u− v〉
& ‖u− v‖2H + 0 > 0

which is a contradiction.
Similarly, well-posedness of F is confirmed. First, by noting that (1.4.11) and (1.4.10) hold with con-
stants cA, CA, respectively, implies

cA ‖v‖H ≤ ‖Av‖H′ ≤ CA ‖v‖H

and sinceDA ≡ A by Remark 1.54, it follows that (1.5.7) and (1.5.8) hold with the same constants cA, CA.
Second, since the operator G is stable (1.5.8), together with definition (1.5.6), we can conclude

1

h
(G(z + h v)−G(z)) ≤ 1

h
CG(max{‖z + h v‖H, ‖z‖H}) ‖h v‖H,

→ CG(‖z‖H)‖v‖H for h→ 0,

which proves, using DF (z) v = (D(A+G))(z) v = Av +DG(z) v, the upper bound constant:

‖DF (z) v‖H′ ≤ ‖Av‖H′ + ‖DG(z) v‖H′ ,
≤ CA ‖v‖H + CG(‖z‖H) ‖v‖H.

The lower bound follows quickly by noting that monotonicity (1.5.9) implies in (1.5.6) for u = v that
〈v,DG(z) v〉 ≥ 0, which then proves

〈v,A v +DG(z) v〉 = 〈v,A v〉+ 〈v,DG(z) v〉 ≥ cA‖v‖2H + 〈v,DG(z) v〉 ≥ cA ‖v‖2H.

This concludes the proof.

Now, all that is left is to identify possible nonlinear operators that are “compatible” in the sense of
Definition 1.53 to our elliptic linear PDE operator A : H → H′.
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1.5.3 Operators of Polynomial Growth

To apply the theory of the previous Section 1.5.2, first a seemingly innocuous assertion has to be
considered: For which subspaces H ⊆ L2(Ω) of a bounded domain Ω ⊂ Rn is G(·) a mapping into
H′? A first simple observation hints at what the result must look like: The more smoothness the space
H possesses, the more unsmooth the result G(u), u ∈ H, can become to still act as a bounded linear
functional on H. Since the effective smoothness (in the Lebesgue scale) of a Sobolev function depends
on the dimension n (it declines in higher dimensions by Theorem 1.25), the maximum smoothness index
must be lower for higher dimensions.
The main result of Section 1.5.1 hints that such a result can be proven by considering the class of operators
that is bounded as described in equation (1.5.5). Therefore, we now specifically look at operators whose
growth is bounded like a polynomial, i.e., operators G(·) which fulfill the following growth conditions
for some r ≥ 0 and s? ∈ N,

|G(s)(x)| ≤ C (1 + |x|)(r−s)+ , x ∈ R, s = 0, 1, . . . , s?, (1.5.11)

where G is interpreted as a function from R to R. Here is set (a)+ := max{0, a}. This condition obviously
applies to G(u) = ur for all s? if r ∈ N and for s? = brc if r > 0 but r /∈ N.
Remark 1.58 A detailed analysis of these operators and their properties as mappings of Lebesgue and
Sobolev spaces on arbitrary domains can be found in [130].

The following result from [34] now shows when such a bounded function is indeed a mapping into the
dual space of Hm(Ω) and when the stability property (1.5.8) holds true.

Theorem 1.59 Assume that G satisfies the growth condition (1.5.11) for some r ≥ 0 and s? ≥ 0. Then
G maps from Hm(Ω) to (Hm(Ω))′ under the restriction

0 ≤ r ≤ r? :=
n+ 2m

n− 2m
, (1.5.12)

when n > 2m, and with no restriction otherwise.
If in addition s? ≥ 1, then we also have under the same restriction

‖G(u)−G(v)‖(Hm(Ω))′ ≤ CG(max
{
‖u‖Hm(Ω), ‖v‖Hm(Ω)

}
)‖u− v‖Hm(Ω), (1.5.13)

where CG(·) is a nondecreasing function.

Proof: The proof can be found in [34], but the first part can also be quickly seen by Theorem 1.25.
Since Hm(Ω) ↪→ Lq(Ω) for 2 ≤ q ≤ 2n

n−2m always (the upper bound goes to infinity for n → 2m), it
suffices to show G(u) ∈ (L 2n

n−2m
(Ω))′ for u ∈ Hm(Ω). The adjoint Lebesgue index to 2n

n−2m is 2n
n+2m and

it thus has to hold by (1.5.11) for s = s? = 0,
∫

Ω

|G(u)| 2n
n+2m dµ .

∫

Ω

(1 + |u|r) 2n
n+2m dµ

!
<∞.

Again, since u is in the space L 2n
n−2m

(Ω), this holds for

r
2n

n+ 2m
≤ 2n

n− 2m
⇐⇒ r ≤ n+ 2m

n− 2m
.

Thus, for 0 ≤ r ≤ r? and fixed w ∈ Hm(Ω), G(w) ∈ L 2n
n+2m

(Ω) can act as a linear functional

w̃(·) :=

∫

Ω

(·)G(w)dµ : Hm(Ω)→ R.

Because u ·G(w) ∈ L1(Ω), by Hölder’s inequality we can bound

sup
u∈Hm(Ω)

〈w̃, u〉
‖u‖Hm(Ω)

≤ sup
u∈Hm(Ω)

‖G(w)‖L 2n
n+2m

(Ω)‖u‖L 2n
n−2m

(Ω)

‖u‖Hm(Ω)

≤ sup
u∈Hm(Ω)

‖G(w)‖L 2n
n+2m

(Ω)‖u‖Hm(Ω)

‖u‖Hm(Ω)

= ‖G(w)‖L 2n
n+2m

(Ω) <∞.
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Thus w̃ ∈ (Hm(Ω))′.
For the proof of the stability property (1.5.13), please turn to [34].

Remark 1.60 A generalized version of the above theorem, e.g., applicable to the whole space Rn, can be
found in [130].

Altogether, if a nonlinear operator G fulfills the monotonicity assumption (1.5.9) and the growth
condition (1.5.11) for s? ≥ 1, then, by the assertions of Theorem 1.59 and Theorem 1.57, we can
conclude (1.5.3) to have a unique solution. The operator F = A+G is also strongly monotone, i.e.,

〈F (u)− F (v), u− v〉H′×H & ‖u− v‖2H, for all u, v ∈ H, (1.5.14)

which is a consequence of coercivity (1.4.11) of the linear part A. Therefore, it is sensible to write

y = F−1(f), with F−1 : H′ → H.
This operator F−1 is also nonlinear, but, because of the above properties of F , strictly monotone, i.e.,

〈
ũ− ṽ, F−1(ũ)− F−1(ṽ)

〉
H′×H > 0, for all ũ, ṽ ∈ H′,

and Lipschitz continuous, see [149].

Example 1.61 We now examine the operator G(u) := u3. It satisfies (1.5.11) for all r, s? and is thus
by Theorem 1.59 stable as a mapping H1(Ω)→ (H1(Ω))′ for dimensions n ≤ 4 (cf. Remark 1.26).
The corresponding function ϕ(x, y) := y3 satisfies the Carathéodory conditions and (1.5.5) for 4 ≤ p <∞.
Thus the Nemytskij operator Nϕ is a bounded and continuous map from L4(Ω) to L4/3(Ω). Since also
H1(Ω) ↪→ L4(Ω) by Theorem 1.25 for n ≤ 4, this means for u, v ∈ H1(Ω) follows

(u− v)(G(u)−G(v)) ∈ L1(Ω).

This means it holds

〈u− v,G(u)−G(v)〉 =

∫

Ω

(u− v)(G(u)−G(v))dµ <∞.

Since for u, v ∈ L2(Ω) holds u2, v2 and (u− v)2 ≥ 0 a.e., it follows

(u+ v)2 ≥ 0 =⇒ u2 + v2 + u v ≥ −u v, a.e.,

u2 + v2 ≥ 0 =⇒ u2 + v2 + u v ≥ u v, a.e.,

=⇒ u2 + v2 + u v ≥ |u v|, a.e..

From this we can deduce monotonicity (1.5.9):
∫

Ω

(u− v)(G(u)−G(v))dµ =

∫

Ω

(u− v)(u3 − v3)dµ

=

∫

Ω

(u− v)2(u2 + v2 + u v)dµ

≥
∫

Ω

(u− v)2|u v|dµ

≥ 0,

=⇒ (u− v)(G(u)−G(v)) ≥ 0 .

Hence, using an appropriate linear operator A, the assumptions of Theorem 1.57 are fulfilled and F =
A+G is well-posed by Definition 1.53.
It is easily verified that the operator G(u) = u3 has the continuous Fréchet derivative DG(z)v = 3 z2 v,
which is for fixed z ∈ H1(Ω) a type of (square-) weighted identity operator. The constants appearing
in estimate (1.5.7) are Cz,F = CA + 3‖z‖2H1 and cz,F = cA.

Remark 1.62 The operator G(u) = u3 does arise naturally in real-life applications, e.g., in the modeling
of physical superconductors [82,142]. This G(u) will be the nonlinearity of choice for our problems in the
later chapters.
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2 Multiresolution Analysis and Wavelets

This section provides an introduction into the theory of wavelets by means of multiresolution analysis.

2.1 Multiscale Decompositions of Function Spaces

The content of this section is based on [45], [99] and [131] and is partially taken from [122]. The function
spaces considered will be living on a bounded domain Ω ⊂ Rn with values in R. We first consider the
univariate case n = 1. In case Ω ⊂ Rn, n > 1, a tensor product approach is often sufficient for simple
domains. We will discuss tensor products and their application in multiresolution analysis frameworks in
Section 2.4.

2.1.1 Basics

Let ∆ be a (possibly infinite) index set and #∆ its cardinality. Then `2(∆) is the Banach space of
elements v ∈ `2(∆) for which the norm

‖v‖`2(∆) :=

(∑

k∈∆

|vk|2
)1/2

(2.1.1)

is finite. The elements v ∈ `2(∆) are always regarded as column vectors of possibly infinite length.
Likewise, we define a (countable) collection of functions Φ in a Hilbert space H as a column vector,
whose elements are sorted accordingly and in a fixed order. This enables us to introduce the following
shorthand notation for an expansion of Φ with a coefficient vector c,

cTΦ :=
∑

φ∈Φ

cφφ. (2.1.2)

Recall from Section 1.1 the dual form 〈v, ṽ〉 := 〈v, ṽ〉H×H′ := ṽ(v). Consequently, for any ṽ ∈ H′, the
quantity 〈Φ, ṽ〉 is interpreted as a column vector and 〈ṽ,Φ〉 as a row vector of expansion coefficients
〈φ, ṽ〉, 〈ṽ, φ〉, φ ∈ Φ, respectively. Furthermore, for any two collections Φ ⊂ H, Θ ⊂ H′ of functions, we
frequently work with (possibly infinite) matrices of the form

〈Φ,Θ〉 := (〈φ, θ〉)φ∈Φ,θ∈Θ. (2.1.3)

For any finite subset Φ ⊂ H the linear span of Φ is abbreviated as

S(Φ) := span {Φ} . (2.1.4)

In order to make a function w ∈ H numerically accessible, its expansion coefficients w in a basis Φ of H
should be unique and stable.

Definition 2.1 [Riesz basis of H]
A family Φ = {φk}k∈Z, of elements of a separable Hilbert space H is called Riesz basis, if and only if
the functions in {φk} are linearly independent and for every c ∈ `2 one has

‖c‖`2(Z) ∼ ‖cTΦ‖H, (S)(2.1.5)

which is called Riesz stability or just stability.

We will later derive conditions under which multiscale wavelet bases are automatically Riesz bases.

2.1.2 Multiresolution Analysis of H
Recalling Definition 1.3, the inner product of H is termed (·, ·) := (·, ·)H, associated with the norm ‖ · ‖H.
The elements of H shall be functions living on a bounded domain Ω ⊂ R with values in R.
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Definition 2.2 [Multiresolution Analysis (MRA) of H]
For a fixed parameter j0 ∈ N0, a multiresolution analysis S of H consists of closed subspaces Sj of
H, called multiresolution spaces, which are nested such that their union is dense in H,

Sj0 ⊂ . . . ⊂ Sj ⊂ Sj+1 ⊂ . . . ⊂ H, clos
H

(
⋃

j≥j0
Sj) = H. (R)(2.1.6)

Specifically, the multiresolution spaces Sj will be of type

Sj := S(Φj), Φj = {φj,k | k ∈ ∆j} , (2.1.7)

each defined by a finite dimensional basis Φj with ∆j being a level dependent finite index set. The bases
(Φj)j≥j0 will be assumed to be uniformly stable in the sense of Definition 2.1, i.e., property (S)(2.1.5)
holds uniformly for every j ≥ j0.

The index j always denotes the level of resolution, refinement level or scale with j0 being the
coarsest level. We shall always deal with functions φj,k which have the locality property, i.e., they are
compactly supported with

diam suppφj,k ∼ 2−j . (L)(2.1.8)

For this reason the collection Φj is termed single-scale basis, since all its members live on the same
scale j. It follows from (S)(2.1.5) with c = ek (the k-th unity vector), that the φj,k must be scaled such
that

‖φj,k‖H ∼ 1

holds. Here, k is called the positional index describing the location of the element φj,k in the space V.
Considering for a moment Ω = R, the basis functions for Φj can be given by translation (by offset k) and
dilation (by factor 2j) of a single function φ called the generator, i.e.,

φj,k(x) := (2j)1/2φ(2jx− k), k ∈ Z, j ≥ j0. (2.1.9)

In the view of the locality condition (L)(2.1.8), (2.1.9) means that diam suppφj+1,k ∼ 1
2 diam suppφj,k

and therefore Φj can model more detail information with increasing level, which was coined by Mallat [106]
in the signal processing context as multiresolution analysis. Herein φ is called the generator of the
MRA (R)(2.1.6).
It is easy to verify that the {φj,k}j≥j0 form a Riesz basis for the space Sj with the same constants as
in the case j = j0. Since the MRA spaces are nested, there exists a special sequence of coefficients
{mk}k∈Z ∈ `2(Z) such that for every x ∈ Ω

φ(x) =
∑

k∈Z
mkφ(2x− k).

Remark 2.3 For the cardinal B-splines, the expansion coefficients can be found in [57], see also
Appendix A.

It follows that such a refinement relation can also be expressed for any of the functions φj,k, j ≥ j0,
leading to the existence of matrices Mj,0 = (mj,0

r,k)r∈∆j+1,k∈∆j
such that the two-scale relation

φj,k =
∑

r∈∆j+1

mj,0
r,kφj+1,r, k ∈ ∆j , (2.1.10)

is satisfied. The sequence mj
k := (mj,0

r,k)r∈∆j+1
∈ `2(∆j+1) is called mask and each element a mask

coefficient. Since every function φj,k has compact support and only a finite number of functions φj+1,k

have support intersecting with the support of {φj,k}, non-zero mask coefficients only appear for these
functions on level j + 1. This means mj

k has a uniformly, i.e., level independent, bounded number of
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non-zero entries. This will be crucial in the application of the fast wavelet transform in Section 2.1.3.
In the sequel, it will be convenient to write (2.1.10) as a matrix-vector equation

Φj = MT
j,0Φj+1. (2.1.11)

Thus, the mj
k constitute the columns of the matrix Mj,0 ∈ R(#∆j+1)×(#∆j). Any family of functions

satisfying an equation of this form will be called refinable. It is known also for Ω ⊂ R that nestedness
(R)(2.1.6) and stability (S)(2.1.5) alone imply the existence of such matrices (see [45]). Obviously, Mj,0

is a linear operator from the space `2(∆j) into the space `2(∆j+1), i.e., recalling Definition 1.1,

Mj,0 ∈ L(`2(∆j); `2(∆j+1)).

This matrix is also uniformly sparse which means that the number of entries in each row or column
are uniformly bounded. Because of the two-scale relation (2.1.10) every c = cTj Φj , cj ∈ `2(∆j), has a
representation c = cTj+1Φj+1, cj+1 ∈ `2(∆j+1), which, in recognition of the norm equivalence (S)(2.1.5)
applied to both Φj+1 and Φj , yields

‖cj‖`2 ∼ ‖cTj Φj‖H = ‖cTj MT
j,0Φj+1‖H = ‖(Mj,0cj)

TΦj+1‖H ∼ ‖Mj,0cj‖`2 ,

and consequently, with the definition of operator norm (1.1.2), it follows that

‖Mj,0‖ = O (1) , j ≥ j0.

Because the spaces Φj are nested and their infinite union S is dense in H, a basis for H can be assembled
from the functions which span the complement of two successive spaces Φj and Φj+1, i.e.,

S(Φj+1) = S(Φj)⊕ S(Ψj), (2.1.12)

if we define

Ψj := {ψj,k | k ∈ ∇j} ⊂ S(Φj+1), ∇j := ∆j+1 \∆j . (2.1.13)

The complement spaces Wj := S(Ψj), j ≥ j0, are called detail spaces.

Definition 2.4 [Wavelets]
The basis functions ψj,k, j ≥ j0, k ∈ Z, of the detail spaces Ψj , j ≥ j0, are denoted as wavelet functions
or shortly wavelets.

There is more than one way to choose a basis for the space Wj . One option would be to use the
orthogonal complement. Of special interests for the case Ω = R are those bases of wavelet spaces which
can be constructed from a mother wavelet ψ by scaling and dilation in the sense of (2.1.9),

ψj,k(x) := (2j)1/2ψ(2jx− k), k ∈ Z, j ≥ j0. (2.1.14)

Thus, if the mother wavelet is compactly supported, the wavelets also satisfy

diam suppψj,k ∼ 2−j . (2.1.15)

Wavelets of this kind entail a similar band-like structure in Mj,1 as seen in Mj,0. For this reason, we
shall restrict all following discussions to the case of compactly supported generators, which we here also
call scaling functions, and compactly supported wavelets. Moreover, we allow only a finite number of
supports of wavelets on one level j to overlap at any fixed point, i.e.,

sup
x∈Ω

# {(j, k) |x ∈ suppψj,k} . 1, for all j ≥ j0, (2.1.16)

where the constant does not depend on the level j.

Remark 2.5 This property is automatically fulfilled by the conventional wavelet space construction via
translation and dilation of a mother wavelet with property (L)(2.1.8).
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Since every ψj,k ∈ Ψj is also in the space Φj+1 it has a unique representation

ψj,k =
∑

r∈∆j+1

mj,1
r,kφj+1,r, k ∈ ∇j , (2.1.17)

which can again be expressed as a matrix-vector equation of the form

Ψj = MT
j,1Φj+1 (2.1.18)

with a matrix Mj,1 ∈ R(#∆j+1)×(#∇j) . Furthermore, equation (2.1.12) is equivalent to the fact that the
linear operator composed of Mj,0 and Mj,1,

Mj := (Mj,0,Mj,1) :
`2(∆j)× `2(∇j) −→ `2(∆j+1)

(c,d) 7−→ Mj,0c + Mj,1d
(2.1.19)

is an invertible mapping from `2(∆j ∪∇j) onto `2(∆j+1). The refinement relations (2.1.11) and (2.1.18)
combined lead to

(
Φj
Ψj

)
=

(
MT

j,0

MT
j,1

)
Φj+1 =: MT

j Φj+1, (2.1.20)

called decomposition identity. This means Mj performs a change of bases in the space Φj+1. Of
course, we want Mj to have positive traits which can be exploited for numerical purposes, such as
sparseness and invertibility.

Definition 2.6 [Stable Decomposition]
If the union {Φj ∪Ψj} is uniformly stable in the sense of (S)(2.1.5), i.e.,

‖c‖`2(∆j+1) ∼ ‖(ΦTj ,ΨT
j )c‖H,

then {Φj ,Ψj} is called a stable decomposition of Φj+1.

Note that Mj as a basis transformation must be invertible. We denote its inverse by Gj , which we
conveniently write in block structure as

M−1
j =: Gj =

(
Gj,0

Gj,1

)
, (2.1.21)

with Gj,0 ∈ R(#∆j)×(#∆j+1) and Gj,1 ∈ R(#∇j)×(#∆j+1). It is known, see [44] for example, that {Φj ∪Ψj}
is uniformly stable if and only if

‖Mj‖, ‖Gj‖ = O (1) , j →∞. (2.1.22)

This condition can be met by any matrix and its inverse with entries whose absolute values are uniformly
bounded, e.g., constant, and which are uniformly sparse, i.e., the number of entries in each row and
column is independent of j. However, the inverses of sparse matrices are usually densely populated
which has made actual construction burdensome in the past. It also draws special attention to the above
mentioned choice of the basis Ψj , which determines Mj,1 through the refinement relation (2.1.17).

Definition 2.7 [Stable Completion]
Any matrix Mj,1 which completes Mj,0 to a square (#∆j+1)×(#∆j+1) matrix, such that Mj is invertible
and (2.1.22) is satisfied, is called stable completion.

In other words, the search for a basis Ψj of space Wj , consisting of compactly supported wavelets, can
be exchanged for the algebraic search of refinement matrices, which are uniformly sparse with uniformly
sparse inverses, too. There is a special type of sparse matrices Mj , whose inverses are automatically
sparse, namely, orthogonal matrices.

Definition 2.8 [Orthogonal Wavelets]
The wavelets are called orthogonal if

〈Ψj ,Ψj〉 = I, (2.1.23)

which is true, if and only if the special situation occurs that Mj is orthogonal, that is,

Gj = M−1
j = MT

j . (2.1.24)
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Remark 2.9 Orthogonality will later be extended by the principle of biorthogonality in Section 2.1.4 .

Considering Gj again, it is clear that applying GT
j on both sides of (2.1.20) results in the so called

reconstruction identity,

Φj+1 = GT
j

(
Φj
Ψj

)
= GT

j,0Φj + GT
j,1Ψj , (2.1.25)

which enables us now to freely change representations of functions between the single-scale basis
Φj+1 and the multiscale basis {Φj ∪Ψj}.
Remark 2.10 In case Ω $ R, definitions (2.1.9) and (2.1.14) can be applied only for a limited range
of the shifting parameter k. At the boundary ∂Ω of Ω it might not be applicable at all. Constructions of
boundary adapted generators (for various boundary conditions) exist and the assertions of the previous
section still hold true in these cases.

2.1.3 Multiscale Transformation

Repeating (2.1.12), starting with a fixed finest level of resolution J up to the coarsest level j0, yields a
multiscale decomposition for the single-scale space SJ := S(ΦJ),

S(ΦJ) := S(Φj0)⊕
J−1⊕

j=j0

S(Ψj). (2.1.26)

Thus, every v ∈ S(ΦJ) with its single-scale representation

v = cTJΦJ =
∑

k∈∆J

cJ,kφJ,k (2.1.27)

can be written in multiscale form

v = dTJΨ(J) := cTj0Φj0 + dTj0Ψj0 + . . .+ dTJ−1ΨJ−1 (2.1.28)

with respect to the wavelet basis

Ψ(J) := Φj0 ∪
J−1⋃

j=j0

Ψj =

J−1⋃

j=j0−1

Ψj , Ψj0−1 := Φj0 . (2.1.29)

We will use the abbreviation

dT ≡ dTJ := (cTj0 ,d
T
j0 , . . . ,d

T
J−1) (2.1.30)

for the multiscale vector and

cT ≡ cT(J) := cTJ (2.1.31)

for the single-scale coefficients, omitting the index J , if it does not create confusion. The transformation
responsible for computing the single-scale coefficients from the multiscale wavelet coefficients is commonly
referred to as the wavelet transform or reconstruction algorithm

TJ : `2(∆J) −→ `2(∆J), dJ 7→ c(J), (2.1.32)

which, in recognition of the decomposition identity (2.1.20), will involve the application of Mj . In fact,
(2.1.19) states

cTj Φj + dTj Ψj = (Mj,0cj + Mj,1dj)
TΦj+1 =: (cj+1)TΦj+1,

which, if iterated starting from level j0 to level J , can be visualized as a pyramid scheme:

Mj0,0 Mj0+1,0 MJ−1,0

cj0 −→ cj0+1 −→ cj0+2 −→ · · · cJ−1 −→ cJ
Mj0,1 Mj0+1,1 MJ−1,1

↗ ↗ ↗ ↗
dj0 dj0+1 dj0+2 · · · dJ−1

(2.1.33)
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By this scheme, the operator TJ can be written as a product of level-wise operators

TJ = TJ,J−1 · · ·TJ,j0 , (2.1.34)

where each factor has the form

TJ,j :=

(
Mj 0
0 I(#∆J−#∆j+1)

)
∈ R(#∆J )×(#∆J ). (2.1.35)

Conversely, the inverse wavelet transform, also known as decomposition algorithm,

T−1
J : `2(∆J) −→ `2(∆J), c(J) 7→ dJ , (2.1.36)

can be written in a similar product structure by applying the inverses of the matrices TJ,j in reverse
order. The inverses of TJ,j can be constructed as

T−1
J,j :=

(
Gj 0
0 I(#∆J−#∆j+1)

)
∈ R(#∆J )×(#∆J ), (2.1.37)

and the inverse wavelet transform now takes on the form

T−1
J = T−1

J,j0
· · ·T−1

J,J−1. (2.1.38)

The corresponding pyramid scheme is

GJ−1,0 GJ−2,0 Gj0,0

cJ −→ cJ−1 −→ cJ−2 −→ · · · cj0+1 −→ cj0
GJ−1,1 GJ−2,1 Gj0,1

↘ ↘ ↘ ↘
dJ−1 dJ−2 · · · dj0

(2.1.39)

Remark 2.11 Since Mj and Gj have only a uniformly bounded number of non-zero entries in each row
and column, each can be applied with a number of arithmetic operations that is of order O (#∆j+1).
This obviously also holds for the operators TJ,j,T−1

J,j. Therefore, the application of operators TJ ,T−1
J

will always be computed by successively applying each operator TJ,j,T−1
J,j. We strongly emphasize that the

matrices given by TJ ,T−1
J are never explicitly computed and stored in computer memory. Such

an action results in a complexity of O (#∆J log(#∆J)) and thus unnecessary computational overhead.

Let

Nj := #∆j (2.1.40)

be the length of the coefficient vector cj on level j. This leads to the following

Proposition 2.12 The cost of applying TJ or T−1
J using the pyramid scheme is of optimal linear

complexity, that is, of order O (NJ) = O (dimS(ΦJ)). This justifies the expression Fast Wavelet
Transform.

For a proof, see [45].

Remark 2.13 In contrast, the discrete Fast Fourier Transform needs an overall amount of
O (NJ log(NJ)) arithmetic operations, see [70].

The fast wavelet transform will play a major part in the representation and fast assembly of operators
between Hilbert spaces with wavelet bases, see Section 2.2.4. It will be essential for preconditioning of
the systems of linear equations in Section 5.
By (R)(2.1.6) and (2.1.26), a basis for the whole space H can be given by letting J →∞ in (2.1.29),

Ψ :=

∞⋃

j=j0−1

Ψj = {ψj,k | (j, k) ∈ I} , I :=

∞⋃

j=j0−1

{{j} × ∇j} , (2.1.41)

recalling Ψj0−1 := Φj0 and ∇j0−1 := ∆j0 . For any element λ := (j, k) ∈ I we define |λ| := j. The
interrelation between TJ and Ψ is displayed in the next theorem, taken from [45].
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Theorem 2.14 The multiscale Transformations TJ ,T−1
J are well-conditioned,

‖TJ‖, ‖T−1
J ‖ = O (1) , J ≥ j0, (2.1.42)

if and only if the collection Ψ defined by (2.1.41) is a Riesz-Basis for H, i.e.,

‖d‖`2(I) ∼ ‖dTΨ‖H, for all d ∈ `2(I). (2.1.43)

This can be concluded from (2.1.22), see [44].

2.1.4 Dual Multiresolution Analysis of H′

Let Φj as before be a Riesz-Basis of a Hilbert space H decomposed into an MRA as in (R)(2.1.6). By
the Riesz representation theorem (see [4]), there exists a dual basis Φ̃j ⊂ H′ in the dual Hilbert space
of H. Of course, this basis Φ̃j is of the same cardinality as Φj and is also a Riesz basis of H′. Moreover,
it is part of a second multiresolution analysis S̃ of H′, and it holds

〈
Φj , Φ̃j

〉
= I. (2.1.44)

We define the spaces

S̃j := S(Φ̃j), Φ̃j :=
{
φ̃j,k | k ∈ ∆j

}
, (2.1.45)

where Φ̃j are designated dual generator bases, or just dual generators. In this setting, we refer to Φj
of (2.1.7) as primal generator/scaling-function bases or primal generators/scaling functions.
Furthermore, Pj : H → Sj and P̃j : H′ → S̃j are projectors onto the spaces Sj and S̃j defined by

Pjv :=
〈
v, Φ̃j

〉
Φj , v ∈ H, (2.1.46)

P̃jv := 〈v,Φj〉 Φ̃j , v ∈ H′. (2.1.47)

These operators have the projector property

PrPj = Pr, P̃rP̃j = P̃r, r ≤ j, (2.1.48)

which entails that Pj+1 − Pj and P̃j+1 − P̃j are also projectors. We can now define the primal and dual
detail spaces employing these projectors as

Wj := Im(Pj+1 − Pj),
W̃j := Im(P̃j+1 − P̃j), j ≥ j0.

(2.1.49)

Setting P̃j0−1 = Pj0−1 := 0, we can write

Sj0 = Wj0−1 = Im(Pj0 − Pj0−1), S̃j0 = W̃j0−1 = Im(P̃j0 − P̃j0−1).

The detail spaces Wj can also be expressed by

Wj = S(Ψj) = Sj+1 ∩ (S̃j)
⊥

and concordantly the dual detail spaces as

W̃j = S(Ψ̃j) = S̃j+1 ∩ (Sj)
⊥.

Nestedness and stability again imply that Φ̃j is refinable with some matrix M̃j,0 similar to (2.1.11),

Φ̃j = M̃T
j,0Φ̃j+1. (2.1.50)
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The main task is now to not only construct wavelet bases
{

Ψ̃j

}
j≥j0

such that

S̃J = S(Φ̃j0) ∪
J⋃

j=j0

S(Ψ̃j)

is an MRA in H′ analogously to (2.1.7), but also to ensure that the following biorthogonality conditions

S(Φj) ⊥ S(Ψ̃j), S(Φ̃j) ⊥ S(Ψj) j ≥ j0,
S(Ψj) ⊥ S(Ψ̃r), j 6= r,

(2.1.51)

are satisfied. The connection between the concept of stable completions, the dual generators and wavelets
is made by the following theorem taken from [27], see, e.g. [99].

Theorem 2.15 Suppose that the biorthogonal collections {Φj}∞j=j0 ,
{

Φ̃j

}∞
j=j0

are both uniformly stable

and refinable with refinement matrices Mj,0, M̃j,0, e.g.,

Φj = MT
j,0Φj+1, Φ̃j = M̃T

j,0Φ̃j+1,

and that they satisfy the duality condition (2.1.44). Assume that M̌j,1 is any stable completion of Mj,0

such that

M̌j := (Mj,0, M̌j,1) = Ǧ−1
j

satisfies (2.1.22). Then

Mj,1 := (I−Mj,0M̃
T
j,0)M̌j,1

is also a stable completion of Mj,0, and Gj = M−1
j = (Mj,0,Mj,1)−1 has the form

Gj =

(
M̃T

j,0

Ǧj,1

)
.

Moreover, the family of functions

Ψj := MT
j Φj+1, Ψ̃j := Ǧj,1Φ̃j+1

form biorthogonal systems
〈

Ψj , Ψ̃j

〉
= I,

〈
Ψj , Φ̃j

〉
=
〈

Φj , Ψ̃j

〉
= 0, (2.1.52)

such that

S(Ψj) ⊥ S(Ψ̃r), j 6= r, S(Φj) ⊥ S(Ψ̃j), S(Φ̃j) ⊥ S(Ψj).

Especially (2.1.44) combined with (2.1.52) implies that the wavelet bases

Ψ =

∞⋃

j=j0−1

Ψj , Ψ̃ :=

∞⋃

j=j0−1

Ψ̃j := Φ̃j0 ∪
∞⋃

j=j0

Ψ̃j , (2.1.53)

are biorthogonal,
〈

Ψ, Ψ̃
〉

= I. (B)(2.1.54)

Definition 2.16 [Biorthogonal Wavelets]
Two such Riesz-Bases, i.e, Ψ of a MRA S ⊂ H and Ψ̃ of MRA S̃ ⊂ H′, with property (B)(2.1.54), are
called biorthogonal wavelets. Ψ are called primal wavelets and Ψ̃ dual wavelets.
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Given biorthogonal Ψ, Ψ̃, every v ∈ H has a unique expansion

v =

∞∑

j=j0−1

〈
v, Ψ̃j

〉
Ψj =:

∞∑

j=j0−1

vTj Ψj =: vTΨ (2.1.55)

and every w ∈ H′ has a corresponding unique expansion

w =

∞∑

j=j0−1

〈w,Ψj〉 Ψ̃j =:

∞∑

j=j0−1

w̃T
j Ψ̃j =: w̃T Ψ̃, (2.1.56)

where (2.1.55) is called primal expansion and (2.1.56) dual expansion. In case H = H′ it follows
that every v ∈ H has two unique expansions

v =

∞∑

j=j0−1

〈v,Ψj〉 Ψ̃j =

∞∑

j=j0−1

〈
v, Ψ̃j

〉
Ψj . (2.1.57)

In this case, also the following norm equivalences hold for every v ∈ H:

‖v‖H ∼ ‖
〈
v, Ψ̃

〉T
‖`2(I) ∼ ‖ 〈v,Ψ〉T ‖`2(I), (2.1.58)

as these expansions satisfy

‖v‖H ∼ ‖
〈
v, Ψ̃

〉T
‖`2(I), ‖v‖H′ ∼ ‖

〈
v, Ψ̃

〉T
‖`2(I). (2.1.59)

Two useful expansions can be derived in this case of H = H′ by applying (2.1.55) for every basis function
of Ψ̃ and (2.1.56) for Ψ,

Ψ = 〈Ψ,Ψ〉 Ψ̃ = (Ψ,Ψ) Ψ̃ =: MHΨ̃, (2.1.60)

Ψ̃ =
〈

Ψ̃, Ψ̃
〉

Ψ =
(

Ψ̃, Ψ̃
)

Ψ̃ =: M̃H′Ψ, (2.1.61)

which, when combined, bring forward an identity for the Gramian matrices MH, M̃H′ ,

MHM̃H′ = (Ψ,Ψ)
(

Ψ̃, Ψ̃
)

= I. (2.1.62)

Similarly to (2.1.32), the dual wavelet transformation is designated as

T̃J : d̃J 7−→ c̃(J) (2.1.63)

and from the biorthogonality equations (2.1.44) and (B)(2.1.54), we can deduct

I =
〈

Ψ̃(J),Ψ(J)

〉
=
〈
T̃T
J Φ̃J ,T

T
JΦJ

〉
= T̃T

J

〈
Φ̃J ,ΦJ

〉
TJ = T̃T

JTJ

or T̃J = T−TJ and, consequently, T̃−1
J = TT

J , see Figure 2.1. It follows that T̃J has the same properties
as TJ , e.g., uniform sparseness and uniformly bounded condition numbers.
In Section 2.2.4 we will show how to apply TJ for preconditioning of linear elliptic operators. To this
end, the assembly of operators is first done in terms of the single-scale functions Φj , and the fast wavelet
transform is used to attain the wavelet representation. Hence, assembly is simple and computation fast.
It should be pointed out that the dual basis functions Φ̃j and wavelets Ψ̃j are not needed explicitly in
this thesis. All which must be known is the dual wavelet transform, which is given by Figure 2.1.
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primal dual

reconstruction
TJ : d 7−→ c

TJ = T̃−TJ

T̃J : d̃ 7−→ c̃

T̃J = T−TJ

decomposition
T−1
J : c 7−→ d

T−1
J = T̃T

J

T̃−1
J : c̃ 7−→ d̃

T̃−1
J = TT

J

Figure 2.1: The primal and dual multiscale transformations.

2.2 Multiresolutions of L2 and Hs

In view of the application of the MRA framework to PDEs, we now need to consider elements of the
Hilbert space H to be functions f : Ω→ R,Ω ⊂ R, lying in the function space L2 or a subspace Hs ⊂ L2.
Let S be a multiresolution sequence of H as in Section 2.1.2, possibly incorporating boundary conditions
from Ω.
Taking H = L2(Ω) conforms to the case H = H′ with the dual pairing

〈f, g〉L2(Ω)×L2(Ω) :=

∫

Ω

f(x)g(x)dµ, for all f, g ∈ L2(Ω).

In case H = Hs, s > 0, recall that H′ = (Hs)′, s > 0, is a significantly larger space than Hs and it holds

Hs(Ω) ⊂ L2(Ω) ⊂ (Hs(Ω))′, s > 0, (2.2.1)

where the embedding is continuous and dense. This identity is an example of a Gelfand triple.

2.2.1 Approximation and Regularity Properties

Approximation properties refer to the ability to reproduce certain classes of functions with linear combi-
nations of Φj . Of special interest are the spaces of polynomials

Πr :=
{∑

aix
i : 0 ≤ i ≤ r − 1

}
. (2.2.2)

It will be important in the sequel that there are constants d, d̃ ∈ N such that the space Πd is contained
in S(Φj0) and accordingly Πd̃ ⊂ S(Φ̃j0), and the following identities hold:

xr =
∑

k

〈
(·)r, φ̃j0,k(·)

〉
φj0,k(x), r = 0, . . . , d− 1, (P)(2.2.3)

xr =
∑

k

〈(·)r, φj0,k(·)〉 φ̃j0,k(x), r = 0, . . . , d̃− 1. (P̃)(2.2.4)

Since the spaces S(Φj), S(Φ̃j) are nested, this also holds true for S(Φj), S(Φ̃j), j ≥ j0. By the biorthog-
onality conditions (2.1.52), this yields the so called moment conditions,

∫

Ω

xrψj,k(x)dµ = 0, r = 0, . . . , d̃− 1, (V)(2.2.5)

∫

Ω

xrψ̃j,k(x)dµ = 0, r = 0, . . . , d− 1, (Ṽ)(2.2.6)

which means that the wavelets ψj,k, ψ̃j,k are orthogonal to all polynomials up to order d̃, d, respectively.
The wavelets ψ, ψ̃j,k are said to have d̃-, d-th order vanishing moments.
Now we turn to regularity properties, commonly referred to as smoothness. We quote from [143] that
every generator φ ∈ L2 of an MRA S is also contained in Hs for a certain range [0, s), s > 0. We define
regularity properties which will play an integral part in the norm equivalence proposition in Section 2.2.2:
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Definition 2.17 [Regularity]
The regularity of the MRAs S and S̃ is characterized by

γ := sup {s |S(Φj) ⊂ Hs, j ≥ j0} , γ̃ := sup
{
s |S(Φ̃j) ⊂ Hs, j ≥ j0

}
. (2.2.7)

It is necessary to find the optimal balance between the three properties regularity γ, γ̃ (2.2.7), poly-
nomial exactness d (P)(2.2.3) and vanishing moments d̃ (V)(2.2.5) of the trial spaces S(Φj) for any
problem at hand. The choice of d, d̃ is not entirely arbitrary. Existence of a compactly supported dual
scaling function Φ̃j was proved in [43] for

d̃ > d, d+ d̃ = even. (2.2.8)

In case of biorthogonal spline wavelets it is known that the support of the generators is linked to the
polynomial exactness (see [36])

suppφj,k = O (d) , supp φ̃j,k = O
(
d̃
)
. (2.2.9)

This in turn determines the length of the mask (2.1.10) and, thus, the constants involving the cost of
applying the fast wavelet transform (2.1.32).
We will see in the following sections that the wavelet discretization of a differential operator
L : H+t → (H+t)′ of order 2t requires γ, γ̃ > |t|.

2.2.2 Norm Equivalences for Sobolev Spaces Hs ⊂ L2

The inner product (·, ·)Hs and norm ‖ · ‖Hs of Sobolev spaces Hs, s ∈ R, cannot be expressed analytically
for arbitrary values of s as in the L2 case. Therefore, we must resort to norm equivalences which we will
introduce and analyze now.
Up to now, Riesz stability is given uniformly for all spaces Sj , j ≥ j0, see Definition 2.2. In general,
this does not immediately imply stability with respect to several levels, as is needed for infinite sums
of elements of these spaces. Results of this kind combined with Theorem 2.14 ensure the Riesz-Basis
properties (2.1.43) and (2.1.59) of Ψ. To this end, regularity and approximation properties are required
of S and S̃, which are formalized in the following theorem from [46], see also [53] and [96].

Theorem 2.18 Let S := {Sj}j≥j0 and S̃ :=
{
S̃j

}
j≥j0

be multiresolution sequences with bases Φj,Φ̃j
satisfying properties Stability (S)(2.1.5), Refinability (R)(2.1.6), Locality (L)(2.1.8) and Biorthogonality
(B)(2.1.54) and let Pj,P̃j be defined by (2.1.46), (2.1.47). If S,S̃ both satisfy the Jackson inequality

inf
vj∈Sj

‖v − vj‖L2(Ω) . 2−sj‖v‖Hs(Ω), v ∈ Hs(Ω), 0 ≤ s ≤ d, (2.2.10)

and the Bernstein inequality

‖vj‖Hs(Ω) . 2sj‖vj‖L2(Ω), vj ∈ Sj , 0 ≤ s < γ, (2.2.11)

for the spaces Sj = Sj , S̃j with order d := d, d̃ and γ := γ, γ̃, respectively, then for

0 < σ := min {d, γ} , 0 < σ̃ := min
{
d̃, γ̃
}

one obtains the norm equivalences

‖v‖2Hs(Ω) ∼
∞∑

j=j0

‖(Pj − Pj−1)v‖2Hs(Ω)

∼
∞∑

j=j0

22sj‖(Pj − Pj−1)v‖2L2(Ω)

∼
∞∑

j=j0−1

22sj‖
〈
v, Ψ̃j

〉T
‖2`2(∇j), s ∈ (−σ̃, σ). (2.2.12)

Note that here we set Hs = (H−s)′ for s < 0.
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Remark 2.19 In particular for s = 0, we regain the Riesz basis property (2.1.58) for H = L2.

Remark 2.20 By interchanging the roles of S and S̃, we obtain

‖v‖2Hs(Ω) ∼
∞∑

j=j0

22sj‖(P̃j − P̃j−1)v‖2L2(Ω), s ∈ (−σ, σ̃).

Remark 2.21 Usually γ < d and γ̃ < d̃ holds, in which case σ = γ and σ̃ = γ̃ follows.

The projectors P = Pj ,P̃j are uniformly bounded in Hs(Ω), i.e.,

‖Pv‖Hs(Ω) . ‖v‖Hs(Ω), for all v ∈ Hs(Ω)

for s up to σ, σ̃, respectively. Theorem 2.18 also implies that the unique wavelet expansions (2.1.55),
(2.1.56) in bases Ψ,Ψ̃ for every v ∈ H+s, ṽ ∈ (H+s)′ satisfy the following norm equivalences

‖v‖H+s ∼ ‖D+sv‖`2(I), v = vTΨ =
〈
v, Ψ̃

〉
Ψ, (2.2.13)

‖ṽ‖H−s ∼ ‖D−sṽ‖`2(I), ṽ = ṽT Ψ̃ = 〈ṽ,Ψ〉 Ψ̃, (2.2.14)

with the diagonal matrices D±s = D±s1 defined by
(
D±s1

)
λ,λ′

:= 2±|λ|sδ(λ,λ′). (2.2.15)

Here we set for any indexes λ = (j, k), λ′ = (j′, k′) with |λ| = j,

λ = λ′ :⇐⇒ j = j′ ∧ k = k′.

Remark 2.22 Other diagonal matrices exist for which the norm equivalences hold. In the following
sections, the diagonal matrices D+s,D−s should be understood as a placeholder for any diagonal matrix
ensuring (2.2.13) and (2.2.14). The choice of the entries of the diagonal matrix is not important for
theoretical considerations, but their impact can be seen in numerical experiments.

Corollary 2.23 For any diagonal matrix D+s,D−s satisfying (2.2.13),(2.2.14), the wavelet bases
Ψs := D−sΨ, Ψ̃s := D+sΨ̃ constitute Riesz bases for H+s, (H+s)′, respectively.

The diagonal scaling can be seen as a smoothing of the wavelet basis for positive Sobolev indices and a
roughening for negative indices. In the context of this thesis, an important consequence of norm equiva-
lences is their ability to prove that operators in properly scaled wavelet discretizations are asymptotically
optimally preconditioned.

2.2.3 Riesz Stability Properties

As we will see in numerical tests, theoretical equivalence relations have substantial impact on the com-
puted solutions in applications. The computational problem arises from the constants inherent in every
norm equivalence which we up to now have gracefully ignored with our convenient short writing symbols
like “∼”. To get a quantitative measurement of the condition of a Riesz basis, we must establish lower
and upper bounds for the equivalence relation (S)(2.1.5). To this end, we define the Riesz bounds for
a Riesz basis Φ ⊂ H,

cΦ := sup
{
c | c‖v‖`2 ≤ ‖vTΦ‖H

}
, CΦ := inf

{
C |C‖v‖`2 ≥ ‖vTΦ‖H

}
, (2.2.16)

with which we can rewrite (S)(2.1.5) to

cΦ‖v‖`2 ≤ ‖vTΦ‖H ≤ CΦ‖v‖`2 , for all v ∈ `2. (2.2.17)
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It follows for a biorthogonal dual Riesz basis Φ̃, that the stability constants of the dual basis take the
values

cΦ̃ =
1

CΦ
, CΦ̃ =

1

cΦ
. (2.2.18)

If λmin (Φj ,Φj) resp. λmax (Φj ,Φj) denote the smallest resp. largest eigenvalue of the Gramian matrix
(Φj ,Φj) := (Φj ,Φj)H, it is known (see [91]) that

cΦj =
√
λmin (Φj ,Φj) ∼ 1, CΦj =

√
λmax (Φj ,Φj) ∼ 1. (2.2.19)

If the basis condition

κΦj :=

(
CΦj

cΦj

)2

(2.2.20)

is a large constant, Φj is said to be ill-conditioned. Unfortunately, the Gramian matrix is not explicitly
computable when H = Hs for arbitrary values of s, and so the quality of the basis cannot be judged
accurately. To improve the constants involved in (2.2.17) when evaluating the norm of any element v ∈ H,
we take on a different approach from [24] which builds on the Riesz Representation Theorem using
Riesz operators, which we will discuss in Section 2.2.6.

2.2.4 Operator Representation

We will describe how the wavelet representation of an operator as a successive application of linear
operators is constructed. For later purposes, it will be convenient to derive this in a very general setting.
Let ΩA, ΩB be two open, bounded domains in Rn, not necessarily distinct, and let A be a linear operator

A : Hs(ΩA)→ (Ht(ΩB))′, A : vA 7→ wB (2.2.21)

from the Sobolev space Hs(ΩA), s ≥ 0, into the dual of the Sobolev space Ht(ΩB), t ≥ 0. Let there be
biorthogonal wavelet bases in both spaces at our disposal, both satisfying the Riesz basis criterion with
diagonal matrices,

Ψs
A := D−sA ΨA (primal) basis of Hs(ΩA),

Ψ̃s
A := D+s

A Ψ̃A (dual) basis of (Hs(ΩA))′,

and accordingly for Ht(ΩB) and (Ht(ΩB))′. Henceforth, all Sobolev norms are only taken for values
which the smoothness of primal and dual bases permit by Theorem 2.18. Now we can express vA and
wB in terms of these wavelet bases as

vA = vTΨs
A :=

〈
v, Ψ̃s

A

〉
Ψs
A, wB = wT Ψ̃t

B :=
〈
w,Ψt

B

〉
Ψ̃t
B ,

and therefore it follows

w =
〈
Ψt
B , w

〉
=
〈
Ψt
B , Av

〉
=
〈
Ψt
B , AΨs

A

〉
v,

which can be seen as a discretized infinite-dimensional operator equation

Av = w, (2.2.22)

upon setting

A :=
〈
Ψt
B , AΨs

A

〉
. (2.2.23)

This is called the standard representation of the operator A in wavelet coordinates. Equation (2.2.23)
can be reformulated as

A =
〈
Ψt
B , AΨs

A

〉
= D−tB 〈ΨB , AΨA〉D−sA = D−tB TT

B 〈ΦB , AΦA〉TAD−sA (2.2.24)
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using the wavelet transform to express the multiscale bases with respect to the corresponding single-
scale bases. It follows that the adjoint operator A′ : Ht(ΩB)→ (Hs(ΩA))′ defined by

〈A′w, v〉(Hs)′×Hs := 〈w,Av〉Ht×(Ht)′ , for all v ∈ Hs(ΩA), w ∈ Ht(ΩB), (2.2.25)

then has the representation

A′ =
〈
Ψs
A, A

′Ψt
B

〉
=
〈
A′Ψt

B ,Ψ
s
A

〉T
=
〈
Ψt
B , AΨs

A

〉T
= AT . (2.2.26)

Remark 2.24 In case A : Hs(ΩA)→ Ht(ΩB) with s, t ≥ 0, the construction process works accordingly.
The role of the primal and dual wavelet bases of Ht(ΩB) should be arranged such that the primal side is
associated with the positive Sobolev scale index and hence with a smoothing of the wavelet basis.

2.2.5 Preconditioning

Assuming A : Hs(ΩA)→ (Ht(ΩB))′ is an isomorphism, e.g.,

‖Av‖(Ht)′ ∼ ‖v‖Hs , for all v ∈ Hs, (2.2.27)

the following theorem can be shown:

Theorem 2.25 The mapping A : `2(I)→ `2(I) from (2.2.24) is an isomorphism on `2(I),

‖Av‖`2(I) ∼ ‖v‖`2(I) ∼ ‖A−1v‖`2(I), for all v ∈ `2(I), (2.2.28)

with bounded spectral condition number

κ2(A) := ‖A‖2‖A−1‖2 = O (1) . (2.2.29)

It is easy to show that with the constants cA, CA of (2.2.27) and cΨ, CΨ of (2.2.17) holds

κ2(A) ≤ C2
Ψ CA
c2Ψ cA

. (2.2.30)

Thus, the multiplication by the diagonal matrices D−tB , D−sA has the capability of undoing the effect of A
in the sense of the Sobolev scale. Hence, the diagonal matrices can be seen as preconditioning of the
discretized linear system.
We will later often skip constants (especially of (2.2.17)) within estimates, so we clarify the constants
buried within (2.2.28) here:

cA :=
CΨ

cΨ
CA, CA :=

cΨ
CΨ

cA. (2.2.31)

These can be easily derived using (2.2.17) and (2.2.18).

Diagonal of the Stiffness Matrix

Numerical studies [108] show that the condition number of the finite discretized differential operators A
preconditioned by the application of D−1

1 of (2.2.15) is indeed uniformly bounded. Its absolute value
can be further reduced by computing the diagonal entries of the unscaled matrix

Da := (a(ψj,k, ψj,k))(j,k)∈I , (2.2.32)

and using the matrix with entries

D−sa :=
(

((Da)j)
−s/2

δ(j,j′)δ(k,k′)

)
(j,k)∈I,(j′,k′)∈I

(2.2.33)

as the preconditioning operator in Theorem 2.25. This operator D−1
a can be understood to precondition

A in the energy norm ‖ · ‖2a = a(·, ·) which explains its effectiveness in applications.
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2.2.6 Riesz Operators for Hs

We describe this for the general case H = H+s,H′ = (H+s)′ with wavelet bases Ψs, Ψ̃s. We are now
interested in constructing Riesz maps RH : H → H′ defined by

〈RHv, w〉 := (v, w)H , for all v, w ∈ H. (2.2.34)

The Riesz Representation Theorem establishes for Riesz maps 〈RHv, v〉H′×H ∼ ‖RHv‖H′‖v‖H, from
which it follows that Riesz operators are, in general, spectrally equivalent to the identity, i.e.,

‖RH‖L(H; H′) ∼ 1. (2.2.35)

Observe that for any v = vTΨs ∈ Hs one has

‖v‖2Hs =
(
vTΨs,vTΨs

)
Hs

= vT (Ψs,Ψs)Hs v = vTMHsv, (2.2.36)

where (Ψ,Ψ)Hs = MHs is the Gramian matrix with respect to the Hs-inner product. Since

‖M1/2
Hs v‖2`2 = vTMHsv ≡ ‖R1/2

Hs v‖2`2 ,

we conclude that the exact discretization of the Riesz map RHs would be RHs = MHs .

Remark 2.26 (i) Recall that the exact Gramian matrix MHs is inaccessible for s /∈ Z.
(ii) Note that RH is symmetric positive definite for any space H and, thus, R

1/2
H is always well defined.

For s ∈ Z, we can represent RH exactly. For example, in the cases s ∈ {0, 1}, it follows with the
definitions of the L2-product (1.2.2) and the H1-product (1.2.4) that we have

RL2
:= ML2

and RH1 := D−1(SH1 + ML2
)D−1, (2.2.37)

where SH1 is the Laplace matrix and ML2
the mass matrix, for further details see [23]. With these

matrices the norm equivalences ‖v‖L2
∼ ‖v‖`2 and ‖w‖H1 ∼ ‖w‖`2 can be obtained with constants equal

to 1 and not of order O (1).

Riesz Operators based on Scaling

Because we will have to deal with fractional Sobolev spaces in Section 5, we use another construction
based on diagonal scaling. Since the Sobolev spaces are nested as in (1.2.9), there is an inclusion operator
ι : Hs → (Hs)′. In wavelet coordinates, this change of bases is merely a diagonal scaling when the
wavelet base of the target space is the same as that of the initial space. This is not the case here, but
the construction can nevertheless be carried out as follows.
By Theorem 2.18 can we interpret D̂+s := D+s

1 as a shifting operator in the Sobolev scale, i.e.,

D̂+s : Ht+s → Ht, (D̂+s)(j,j′)(k,k′) = 2+jsδ(j,j′)δ(k,k′), (2.2.38)

so that

R̂Hs := D̂+2s : Hs → (Hs)′ (2.2.39)

can be used to shift elements of H into H′. Using the formulation of Section 2.2.4, the standard wavelet
representation R̂Hs of R̂Hs is given by

R̂Hs =
〈

Ψs, R̂HsΨ
s
〉
Hs×(Hs)′

(2.2.40)

= D−s
〈

Ψ, R̂HsΨ
〉
Hs×(Hs)′

D−s (2.2.41)

= D−s
〈

Ψ, D̂+sD̂+sΨ
〉
Hs×(Hs)′

D−s (2.2.42)

= D−sD̂+s (Ψ,Ψ)L2
D̂+sD−s. (2.2.43)
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Remark 2.27 Note that the Riesz operator scaling D̂+s and the diagonal scaling D−s could cancel each
other out by the use of D−s = D−s1 . However, this does not occur if we choose D−s differently, e.g., see
Section 2.2.5.

Remark 2.28 The choice D̂+s = D+s
1 is not without reason. By changing D̂+2s, we change the way we

weight functions in the norm equivalences. Although any matrix satisfying the norm equivalence could
potentially be used as D̂+2s, the actual choice has an impact on the quality of numerical experiments,
see [122].

The inverse operator R̂−1
Hs : H−s → H+s is trivially given by D̂−2s and can be represented as the inverse

of (2.2.43),

R̂−1
Hs = D+sD̂−s (Ψ,Ψ)

−1
L2

D̂−sD+s

= D+sD̂−s
(

Ψ̃, Ψ̃
)
L2

D̂−sD+s, (2.2.44)

where we used identity (2.1.62) in the last step. The case s = 0 thus again becomes

R̂L2 = ML2 = (Ψ,Ψ)L2
,

R̂−1
L2

= M̃L2 =
(

Ψ̃, Ψ̃
)
L2

.
(2.2.45)

Numerical tests show, see [122], that using R̂Hs gives better results than using no Riesz operator at all.
This observation can be justified by the following deliberation: Fix 0 < c0, C0 <∞ as the Riesz bounds
of (2.2.17) for H = L2. Then it follows

κL2
:=

(
C0

c0

)2

=
λmax(ML2

)

λmin(ML2
)

= κ2(ML2
) ∼ 1, (2.2.46)

and for H = Hs with constants cs, Cs <∞

κHs :=

(
Cs
cs

)2

=
λmax(MHs)

λmin(MHs)
= κ2(MHs) ∼ 1. (2.2.47)

These can easily be combined to give error bounds for the Hs-norm with respect to the `2-norm of
‖M1/2

L2
v‖`2 , which is not equal to ‖v‖L2 , since the coefficient vector v is scaled by D+s. It holds

cs
C0
‖M1/2

L2
v‖`2 ≤ ‖M1/2

Hs v‖`2 ≤
Cs
c0
‖M1/2

L2
v‖`2 . (2.2.48)

These estimates are not sharp, e.g., for s = 0 we should have equality but only obtain equivalence up to
the value of κL2 , and we witness better results in practice than can be predicted here.

Lemma 2.29 We have for every v = vTΨs =
〈
v, Ψ̃s

〉
Ψs ∈ Hs the following chain of equivalences:

‖v‖Hs = ‖R1/2
Hs v‖`2 ∼ ‖R̂1/2

Hs v‖`2 ∼ ‖R1/2
L2

v‖`2 ∼ ‖v‖`2 , s ∈ (−σ̃, σ). (2.2.49)

In other words, every one of the operators RHs , R̂Hs ,RL2
and I can be used as a Riesz operator for Hs.

Riesz Operators based on Interpolation

The construction of the Riesz operator outlined here was introduced in [23]. We only quote the results
and refer to that work for details.
Since the exact Riesz operator for L2 and H1 are known, these can be used to construct new Riesz
operators by interpolating linearly between them.
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Theorem 2.30 For s ∈ [0, 1], the norm defined by

v = vTΨ ∈ Hs, ‖v‖2s := (1− s) vTD+sRL2
D+sv + svTD+sRH1D+sv, (2.2.50)

or alternatively written in the scaled wavelet basis as

v = vTΨs ∈ Hs, ‖v‖2s = vT
(
(1− s)ML2 + sD−1(SH1 + ML2)D−1

)
v, (2.2.51)

is equal to the standard Sobolev norms for s ∈ {0, 1} and equivalent for s ∈ (0, 1). It can be computed in
linear time.

In the following, we denote this Riesz operator as

R̃Hs := (1− s) RL2
+ sRH1 , 0 ≤ s ≤ 1. (2.2.52)

Just as the summands, the Riesz operator R̃Hs is spectrally equivalent to the identity matrix and thus
uniformly well-conditioned.

Remark 2.31 This construction can be extended for all s ∈ R with exact interpolation for all integer
s ∈ Z, see [23].

These Riesz operators are used in control problems, see [122], to improve the constants in the above
norm equivalences. This will somewhat improve the discrepancy between the original analytical problem
formulation and the discretized wavelet formulation.

Normalization with Respect to Constant Functions

Now note that the wavelet expansion coefficients of constant functions are exactly zero (the vectors dj
in (2.1.28)), except for the single-scale expansion coefficients of the minimum level j0 (cj0 in (2.1.28)).
Thus, the diagonal preconditioner matrix D̂+s can in this case effectively be written as a scaling of the
identity matrix on the lowest level j0,

D̂+s(cj0 ,dj0 , . . . ,dJ−1)T = 2+j0s Ij0 cj0 = 2+j0scj0 .

To counter this effect, we introduce a simple scaling factor into our Riesz operator,

qs = 22j0s, (2.2.53)

and define the normalized Riesz operator

˚̂
RHs := q−sR̂Hs . (2.2.54)

Thus, the higher the lowest level j0 in the MRA, the higher the correction factor for the Riesz operator
R̂Hs to fulfill the norm equivalences of Lemma 2.29 for constant functions. The (for every s) constant
factor q−s obviously does not change the spectral elements of R̂Hs .
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2.3 B-Spline Wavelets on the Interval
In the preceding sections we described general properties of wavelet spaces. There exist several construc-
tions of wavelet for the interval I = (0, 1) which satisfy the list of properties detailed in Section 2.1 and
Section 2.2, i.e.,

(S)(2.1.5) The wavelets form a Riesz-Basis for L2(I), and norm equivalences with respect to Sobolev
spaces Hs(I) for a certain range of the smoothness parameter s hold.

(R)(2.1.6) The wavelets are refinable with masks of uniformly bounded length.

(L)(2.1.8) All generators and wavelets on the primal and dual side have compact support.

(B)(2.1.54) The primal and dual wavelets form a biorthogonal pair.

(P)(2.2.3) The primal MRA consists of spline spaces of order up to d− 1, and thus has polynomial
exactness of order d.

(P̃)(2.2.4) The dual MRA has polynomial exactness of order d̃− 1.

(V)(2.2.5) As a consequence of (P̃), the wavelets have d̃ vanishing moments.

The constants d and d̃ are preassigned such that they satisfy (2.2.8) before the construction process.

2.3.1 B-Spline Wavelets

The wavelet construction begins by setting up a Riesz basis for L2(R), which is then restricted to the
interval (0, 1). Let φd(x) be the cardinal B-spline of order d ∈ N (see Appendix C for the definition).
These B-splines are known to be symmetric and centered around µ(d) := (d mod 2)/2. We will use these
B-splines as primal generators, since they are easy to set up, have finite support,

suppφd = [s1, s2], s1 := −
⌊
d

2

⌋
, s2 :=

⌈
d

2

⌉
, (2.3.1)

and are known to be refinable with mask ad =
{
adk
}
∈ `2, with

adk := 21−d
(

d
k +

⌊
d
2

⌋
)
, k = s1, . . . , s2. (2.3.2)

These scaling functions also offer the advantage of being scaled correctly in the sense of the Riesz basis
property in Definition 2.1. The question whether a refinable dual basis exists for any d ∈ N has been
proved in [36] and we cite this result from [51].

Theorem 2.32 For each φd and any d̃ ≥ d with d + d̃ even, there exists a function φd,d̃ ∈ L2(R) such
that

(i) φd,d̃ has compact support, e.g.

suppφd,d̃ = [s̃1, s̃2], s̃1 := s1 − d̃+ 1, s̃2 := s2 + d̃− 1

(ii) φd,d̃ is also centered around µ(d).

(iii) φd,d̃ is refinable with finitely supported mask ãd =
{
ãdk
}s̃2
k=s̃1

.

(iv) φd,d̃ is exact of order d̃.

(v) φd and φd,d̃ form a dual pair, i.e.,
(
φd, φd,d̃(· − k)

)
L2(R)

= δ(0,k), k ∈ Z.
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(vi) The regularity of φd,d̃ increases proportionally with d̃.

Thus, for d, d̃ fixed, we write φ := φd, φ̃ := φd,d̃ and define the generator bases Φj = {φj,k}, Φ̃j =
{
φ̃j,k

}

according to (2.1.9). We also deduce that S := {S(Φj), j ≥ j0} is a multiresolution analysis of L2.
The primal wavelets can now be constructed from the primal basis functions and the dual mask ã as,
see [36],

ψ(x) :=
∑

k∈Z
bkφ(2x− k), bk := (−1)kãd1−k, (2.3.3)

and in perfect analogy the dual wavelets can be constructed with help of the mask a of the primal
generators as

ψ̃(x) :=
∑

k∈Z
b̃kφ̃(2x− k), b̃k := (−1)kad1−k. (2.3.4)

We now define the bases for the complement spaces Wj , W̃j as

Ψj = {ψj,k | k ∈ Z} , Ψ̃j =
{
ψ̃j,k | k ∈ Z

}
,

with ψj,k, ψ̃j,k defined by (2.1.14) using (2.3.3),(2.3.4) as mother wavelets. Of course these wavelets
could yet be scaled by any factor for numerical purposes.

Corollary 2.33 The bases {Φj0}∪
⋃
j≥J Ψj,

{
Φ̃j0

}
∪⋃j≥J Ψ̃j are indeed biorthogonal wavelet bases

in the multiresolution framework of Section 2.1.

Adaptation to the Interval

With proper scaling functions and wavelets on all of R, we can not simply restrict the collections Φj , Φ̃j to
the interval (0, 1) in the hope of constructing adapted wavelets, as this would violate biorthogonality.
Ruling out any φj,k, φ̃j,k whose support is not fully contained in (0, 1) would lead to primal and dual
bases of different cardinality and thus also break biorthogonality. In addition, the approximation property
(2.2.10) would not longer hold near the ends of the interval. In view of PDEs, last but not least, we also
need to take the boundary conditions themselves into account.
The actual adaptation is done in three steps. First, every function whose support is not fully contained
within (0, 1) is discarded. Then, new basis functions are inserted at the boundaries to compensate for
the reduction. These shall incorporate the boundary conditions and have properties (V) and (Ṽ), thus
preserving the vanishing moments and polynomial reproduction orders d, d̃ for the new basis.
Lastly, the new basis functions are again biorthogonalized by a local basis transformation regarding only
the functions near the boundary. Note that this construction yields

#∇j = 2j , Nj = #∆j = O
(
2j
)
, (2.3.5)

where the exact value of Nj depends on the boundary adaptations.
This construction process was first proposed in [36]. We will not give a detailed description of the process
here, actual implementation results can be found in [51]. A comprehensive overview can also be found
in [23,122] and [126]. We will simply use constructions found in the aforementioned publications.
Details about the later used wavelets can be found in Appendix A.1.

2.3.2 Basis Transformations

Numerical studies show that condition numbers of operators obtained using wavelet discretizations are
indeed uniformly bounded, if preconditioned correctly. The involved constants can nevertheless be quite
high, and condition numbers of magnitude 102−103 are seen encountered. We now show some approaches
to improve the wavelet bases to achieve lower absolute values of condition numbers and thus faster program
executions in applications.
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Reducing Boundary Effects

In general, a boundary adapted single scale basis (shown in Section A.1.1), exhibits higher stability
constants than the basis without the boundary adapted generators. This means that the absolute values
of the condition numbers of differential operators in wavelet discretization of Section A.1.5 are usually
higher than those using free boundaries on the interval. A common approach to remedy the situation is
the application of a basis transform, i.e.,

Φ′j := CjΦj , (2.3.6)

which acts local in the sense that Cj only affects the boundary blocks, i.e.,

Cj :=




C
I#∆j−2m

Cl


 ∈ R(#∆j)×(#∆j), (2.3.7)

and the matrix C ∈ Rm×m is independent of j. Recall (Cl)m−i,m−j := (C)i,j . Obviously, the modified
single-scale basis implies new refinement matrices M′

j,0,M
′
j,1:

M′
j,0 = C−Tj+1Mj,0C

T
j , (2.3.8)

M′
j,1 = C−Tj+1Mj,1. (2.3.9)

The altered multiscale transformation T′J can easily be shown to be of the form (remember, Ψj0−1 = Φj0
and ∇j0−1 = ∆j0)

T′J = C−TJ TJ

(
CT
j0

I#(∆J\∇j0−1)

)
. (2.3.10)

Let L : H → H′ be any operator with bases ΦJ and Ψ(J) in H, e.g., L is the differential operator from
Section 1.4.2. The discretized operator L in standard form (2.2.23) with respect to the wavelet basis
Ψ′(J) = T′J

T
Φ′J has the representation

LΨ′
(J)

=

(
Cj0−1

I#(∆J\∇j0−1)

)
LΨ(J)

(
CT
j0−1

I#(∆J\∇j0−1)

)
, (2.3.11)

thus, the new operator is obtained from the standard operator matrix by the application of the transfor-
mation Cj0−1 on the coarsest level.
A suitable choice for the setup of Cj0−1 can be constructed as follows: We take an upper block

(
LΨ(j0−1)

)
i,j=1,...,m

∈ Rm×m,

withm ≤ b#∇j0−1/2c, thereby not changing all of the basis functions of the generator basis. We compute
the singular value decomposition of this block, i.e.,

(
LΨ(j0−1)

)
i,j=1,...,m

= USUT := U




s1

s2

. . .
sm


UT , (2.3.12)

with an orthogonal matrix U ∈ O(m), and we set for q > 0,

C :=
√
q




1/
√
s1

1/
√
s2

. . .
1/
√
sm


UT . (2.3.13)
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Using this matrix as outlined above yields

LΨ′
(j0−1)

= Cj0−1LΨ(j0−1)
CT
j0−1 =




q Ic ∗
∗ L� ∗

∗ q Ic


 . (2.3.14)

The middle square block L� ∈ R(#∆j+1−2m)×(#∆j+1−2m) of LΨ′
(j0−1)

consists of entries that remain
unchanged with respect to the unmodified wavelet basis Ψ(J). The blocks marked with asterisks contain
new non-zero entries. This basis transformation is particularly cheap in terms of complexity, since it is
only used on the coarsest level. The impact of these blocks on the condition number can be influenced
by the parameter q.

Remark 2.34 A Cholesky decomposition can also be used instead of the singular value decomposition. In
this case the resulting matrix LΨ′

(j0−1)
has fewer non-zero values, but no further decrease of the condition

number is achieved.

Operator Adaptation to Preconditioning

We now introduce a basis transformation specifically designed for lowering the absolute values of the
condition number of the stiffness matrix

AJ := (a(ψλ, ψλ′))λ,λ′∈IJ , (2.3.15)

with the bilinear form defined in (1.4.24). The condition number of this positive definite symmetric
matrix in wavelet discretization depends on the properties of the wavelets as well as on the generator
basis. Of course, the condition κ(AJ) can never be smaller than κ(Aj0). Therefore, we seek a generator
basis adapted to the operator to minimize the absolute value of its condition number.
We make use of an orthogonal transformation matrix O ∈ O(#∆j0) to create a new, albeit completely
equivalent, generator basis for the coarsest level j0:

Ψ′j0−1 := OT Φj0 , (2.3.16)

while leaving the higher level generator bases unchanged by this transformation. The resulting MRA

O : Ψ = {Ψj0−1,Ψj0 ,Ψj0+1, . . .} 7−→ (Ψ)
′

:=
{

Ψ′j0−1,Ψj0 ,Ψj0+1, . . .
}
. (2.3.17)

is also completely equivalent to the original MRA since the orthogonal transformation does not change the
stability constants (S)(2.1.5). This change obviously requires an adaptation of the two-scale relation
(2.1.11) for level j0:

Φ′j0 = (M′
j0,0)TΦj0+1 := (Mj0,0O)TΦj0+1. (2.3.18)

To still ensure biorthogonality, the dual MRA must also be adapted accordingly:

Φ̃′j0 = (G′j0,0)T Φ̃j0+1 := (Gj0,0R)T Φ̃j0+1. (2.3.19)

To fulfill biorthogonality, it follows R = O−T and thus for orthogonal basis transformations R ≡ O.
From now on, the complete change of bases will always be accomplished by using M′

j0,0
instead of Mj0,0

in the course of the wavelet transform (2.1.32). This is no antagonism, because operators are assembled
in the generator base ΦJ and then transform into the wavelet representation by the FWT. This can be
implemented by applying O subsequent to the wavelet transform TJ :

T′J := TJ

(
O

I#(∆J\∆j0
)

)
. (2.3.20)

Theorem 2.14 is still valid as the relations (2.1.42) still hold with the same constants.

Lemma 2.35 Given the original stiffness matrix A, the form of the stiffness matrix A′J in the wavelet
base Ψ′ is, see [122],

A′J =

(
OTAj0O (aO)T

aO AJ\j0

)
(2.3.21)

The block AJ\j0 ∈ R#(∆J\∆j0
)×#(∆J\∆j0

) remains unaffected.
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The basis transform induced by an orthogonal matrix does not change the eigenvalues the operator. The
trick is to choose the orthogonal matrix O ∈ O(#Ij0) such that DO,j0 = OTAj0O is a diagonal matrix.
This is possible because Aj0 is symmetric positive definite. Fixing this matrix O leads to a diagonal
upper block, i.e.,

A′J =

(
� (aO)T

aO AJ\j0

)
. (2.3.22)

The setup allows for an improved optimal preconditioner for this operator, since any diagonal matrix
can easily be preconditioned by its own inverse. The matrix O does not change the spectral elements
of A′J corresponding to the resolution levels j > j0, hence it has no negative impact. Using any other
preconditioner, for example D±s1 of (2.2.15), will usually not result in better preconditioning of the
operator A′J . We define the following diagonal matrix for preconditioning

(
D±s{O,X}

)
λ,λ′

:= δ(λ,λ′) ·





(
(D
−1/2
O,j0

)λ,λ′
)±s

|λ| = |λ′| = j0(
D±sX

)
λ,λ′

otherwise
, (2.3.23)

where D±sX could be any other preconditioner, for example (2.2.15) or (2.2.33).

Remark 2.36 The chosen orthogonal matrix O will be densely populated. In our wavelet construction of
Section A.1.5, the minimum level is j0 = 3 and the application of O will therefore require 81 floating point
multiplications. The wavelet transform TJ,j0 , on the other hand, requires 95 floating point multiplications.
The overhead induced by O can thus lead to slightly higher execution times on level J = j0 + 1, but is
totally negligible on higher levels. Thus, the application of A′J is still linear in time with respect to the
number of unknowns.

As I have shown in [122], this technique can lower the condition number of AJ in 1D by several orders
of magnitude over all levels and still delivers very good results in several dimensions.
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2.4 Multivariate Wavelets
There are several ways to construct wavelets on manifolds in higher dimensions. Of course, a construction
of wavelets could be carried out directly, as was done in [146] for L-shaped domains in R2 and polygonal
domains Ω ⊂ Rn in [138] and [95]. For non-tensor-product domains, domain embedding methods are
available, see [101] for an example of wavelets on the sphere. Another approach is the embedding of such
domains within a hypercube Ω ⊂ (0, 1)n and enforcing boundary conditions using Lagrange multipliers;
this approach will be discussed in Section 5.2.1. Also, many domains can be expressed as a union of tensor
product domains after applying domain decomposition strategies, see [26,53].
Therefore, we focus on the case of Cartesian product domains Ω ⊂ Rn. Here, multivariate wavelets can be
constructed by tensor products of wavelet bases on the interval. This approach has the advantage of being
able to treat the dimension as a variable, i.e., the actual value doesn’t have to be specified beforehand.
Given a MRA for the interval I = (0, 1), we can use it to form a MRA for the n-dimensional hypercube
� := �n := (0, 1)n preserving the regularity γ, γ̃ and moment conditions d, d̃ of Section 2.2.1. Since
any problem given on a generally rectangular domain can be scaled to the standard hypercube, this is
approach is equivalent to constructing multivariate wavelets on said rectangular domains.

Tensor Products

At the heart of our multidimensional constructions stands the tensor product. Tensor products of
domains and Hilbert spaces have already been discussed in Section 1.2.5. One of the advantages of
tensor products is the ease of the generalization of the involved operators to higher dimensions, see [122].
We distinguish here between three different types of tensor products, depending on the objects being
multiplied. The tensor product of functions is the construction of a multidimensional function
φk : Rn → R with the multi-index k = (k1, . . . , kn) ∈ Nn0 by a collection of one-dimensional functions
{φi : R→ R | 1 ≤ i ≤ n} of the form

φk(x) := φkn(xn)⊗ · · · ⊗ φk1
(x1) (2.4.1)

:= φkn(xn) · · ·φk1
(x1). (2.4.2)

This construction can then be extended to sets of functions, e.g. bases, as

Φ⊗Ψ := {φ⊗ ψ |φ ∈ Φ, ψ ∈ Ψ} . (2.4.3)

Independently of this tensor product, given A = (ai,j) ∈ Rm2×n2 and B = (bi,j) ∈ Rm1×n1 , the tensor
product of matrices is

A⊗B :=




. . .
...

...
· · · ai,j B · · ·

...
...

. . .


 ∈ R

(m1 m2)×(n1 n2). (2.4.4)

Again, we will always read tensor products from right to left, i.e., in descending order. The object
associated to the highest dimension is written first, the one associated to the lowest dimension last. Since
the product in (2.4.1) is commutative, it does not matter if the order is reversed, but this is not true
for (2.4.4). Two important rules for the tensor product of matrices are thus

(A⊗B) 6= (B⊗A) (almost always),
(A⊗B)(C⊗D) = (AC)⊗ (BD), for A,C ∈ Rm2×m2 , B,D ∈ Rm1×m1 ,

(2.4.5)

the second identity meaning that matrix multiplications are decoupled in the dimensions. Additional
information about tensor products can be found in [76].

2.4.1 Multidimensional Single Scale Basis

Combining n univariate bases
{

ΦlJ
}
l=1,...,n

into one multivariate basis

Φ�,J := Φ�n,J(x) :=

n⊗

l=1

ΦlJ(xl), x := (x1, . . . , xn), (2.4.6)
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it forms a single-scale basis of refinement level J on the domain �n ⊂ Rn. Each function φ�,J,k ∈ Φ�,J ,
with k = (k1, . . . , kn) now being a multi-index, has approximately a support of 2−J(0, 1)n. If each ΦlJ
is associated with an index set ∆l

J ⊂ Il, we can associate Φ�,J with the index set

∆�
J := ∆1

J × · · · ×∆n
J . (2.4.7)

Remark 2.37 We will usually focus on the special case where all bases functions coincide, e.g.,

Φl1J = Φl2J , for all l1, l2,

and we will write ΦJ instead of ΦlJ .

2.4.2 Anisotropic Tensor-Product Wavelets

Analogously to the above, we can build tensor products of the wavelet basis Ψ(J) of (2.1.29), i.e.,

Ψani
�,(J) := Ψani

�,(J)(x) :=

n⊗

i=1

Ψ(J)(xi). (2.4.8)

Here, functions on different levels in different spatial dimensions are coupled. This construction is thus
called anisotropic.

Remark 2.38 It is possible to choose different levels Ji for each dimension 1 ≤ i ≤ n in the construction
(2.4.8). We will here use J1 = · · · = Jn ≡ J , since it would otherwise complicate the notation even further.

The resulting support of the product function can therefore be quite irregularly distributed in each
direction. The wavelet basis functions ψani

j,k (x) ∈ Ψani
�,(J) are indexed as

ψani
λ (x) := ψani

j,k (x) := ψani
j1,...,jn;k1,...,kn(x) :=

n∏

i=1

ψji,ki(xi). (2.4.9)

The wavelet index is thus generalized into the anisotropic wavelet index λ = (j,k). The tensor
product wavelet space analogous to (2.1.53) will be referred to as

Ψani
� :=

∞⋃

j=j0−1

Ψani
�,j , (2.4.10)

with the infinite index set I, recalling (2.1.53), also given by the external product of the n index sets Ii
of (2.1.41),

I := I� := I1 × · · · × In. (2.4.11)

We can now define the finite linear subspaces Ψani
�,(J) ⊂ Ψani

� by truncation of the index set I� exactly as
in (2.1.29). The definition of the finite index set for tensor product wavelets is now

I�,(J) := {λ ∈ I� | ‖|λ|‖∞ ≤ J} , (2.4.12)

where ‖|λ|‖∞ := max {j1, . . . , jn} is the maximum individual level of the anisotropic index. The connec-
tion to the wavelet basis Φ�,J is established by the wavelet transform T�,J ,

Ψani
�,(J) =

(
Tani

�,J
)T

Φ�,J . (2.4.13)

The tensor product wavelet transform Tani
�,J can be constructed as the tensor product of the univariate

transformations (2.1.32), i.e.,

Tani
�,J := Tani

�,J,J−1 · · ·Tani
�,J,j0 , Tani

�,J,j :=

n⊗

i=1

TJ,j . (2.4.14)
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The multiplicative cascading structure obviously retains the properties of the multiscale transform. In
the same way can this construction process be applied to the dual wavelets and to the inverse wavelet
transform. This construction also preserves the biorthogonality of the primal and dual tensor wavelets.
The diagonal preconditioning operator (2.2.15) has to be modified, since there is no single level j which
is associated to λ = (j,k). The norm equivalence was shown in [71,72] to hold true in this case for

(
D±s1

)
λ,λ′

:= 2±s‖|λ|‖∞δ(λ,λ′). (2.4.15)

From a computational point of view, the fast wavelet transform (2.4.13) is relatively easy to implement
for the full space discretizations of Section 2.5. The tensor product structure allows by (2.4.5) to either
apply the transformation level- or dimension-wise. Also, it is possible to choose different maximal levels
in different dimensions, for example for highly anisotropic elliptic problems as in [71].
On the downside, the anisotropic FWT is computationally more expensive than the isotropic FWT
detailed in Section 2.4.3, because the identity part of the matrices TJ,j , given by (2.1.35), is also
tensorized in (2.4.14). Another drawback are the complicated prolongation and restriction operations
in a nested-iteration scheme [122], because, as seen in Figure 2.2, the new values of higher levels have
to be added in between existing values.

2.4.3 Isotropic Tensor-Product Wavelets

The idea of the isotropic construction is to only tensorize functions that have the same level. To ease the
definition, we introduce another parameter e ∈ {0, 1} and define the one-dimensional isotropic wavelet as

ψiso
j,k,e(x) :=

{
φj,k(x), for e = 0, k ∈ ∇j,0,
ψj,k(x), for e = 1, k ∈ ∇j,1, (2.4.16)

and the type-dependent index sets as

∇j,e :=

{
∆j , for e = 0,
∇j , for e = 1.

(2.4.17)

The multi-dimensional isotropic wavelet ψiso
j,k,e, with k, e multi-indices, is then constructed as follows:

ψiso
j,k,e(x) :=

n⊗

l=1

ψj,kl,el(xl). (2.4.18)

The generalized wavelet index λ := (j,k, e) ∈ Z × Zn × En with En := {0, 1}n thus also carries the
knowledge of the different types of functions present in the multi-dimensional wavelet. In case e = 0 this
means only single-scale basis functions are coupled. In all the other cases, i.e., e ∈ E?n := En\{0}, at
least one wavelet function is present in the product. All wavelet indices on the same level j ≥ j0 are then
combined to form the single wavelet level Ψiso

�,j , i.e.,

Ψiso
�,j :=

⋃

e∈E?n

{
ψiso
j,k,e |k ∈ ∇j,e

}
, ∇j,e := ∇j,e0 × . . .×∇j,en . (2.4.19)

The isotropic wavelet basis up to level J is then

Ψiso
�,(J) :=

{
ψiso
j0,k,0 |k ∈ ∇j0,0

}
∪

J−1⋃

j=j0

Ψiso
�,j . (2.4.20)

Note that the first set of functions here have type “0”, thus this refers to single-scale functions. As only
functions on the same level j are coupled, the structure resembles the single scale wavelet basis more
closely than the anisotropic construction. Taking the limit to infinity, all wavelet coefficients are collected
in the set

I� := {(j0,k,0) |k ∈ ∇j0,0} ∪
⋃

j≥j0

⋃

e∈E?n

{(j,k, e) |k ∈ ∇j,e} . (2.4.21)
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The finite index set of all wavelet indices of the isotropic wavelet levels are thus

I�,(J) := {(j0,k,0) |k ∈ ∇j0,0} ∪
J−1⋃

j=j0

Ij , with Ij := {λ ∈ I | |λ| = j} . (2.4.22)

Of course, now a suitable refinement matrices for this basis have to be constructed from their one-
dimensional components. To this end, define for e ∈ En

Mn
j,e :=

n⊗

l=1

Mj,el ,

with Mj,0,Mj,1 from (2.1.11) and (2.1.18). These rectangular matrices make up the building blocks of
the isotropic refinement matrix Miso

j ,

Miso
j :=

(
Mn

j,(0,0,...,0), Mn
j,(0,0,...,1), . . . , Mn

j,(1,1,...,1)

)
∈ R(#∆j)

n×(#∆j)
n

, (2.4.23)

which is again a square matrix. The fast wavelet transform is now defined analogously to (2.1.34) and
(2.1.35) as

Tiso
�,J := Tiso

�,J,J−1 · · ·Tiso
�,J,j0 , with Tiso

�,J,j :=

(
Miso

j

I(#∆J )n−(#∆j)n

)
, (2.4.24)

which leads to the generalized refinement relation

Ψiso
�,(J) =

(
Tiso

�,J
)T

Φ�,J .

The diagonal preconditioner is unchanged from (2.2.15), i.e.,

(
D±siso

)
λ,λ′

:= 2±|λ|s δ(λ,λ′) . (2.4.25)

Again seen from a computational point of view, the isotropic wavelet construction has a number of
advantages compared to the anisotropic construction of Section 2.4.2.
First, just one level variable needed, which means the space required to explicitly save a level variable of
a wavelet index λ = (j,k, e) is independent of the dimension. The space required to save the variable k
grows proportionally in the number of bits with the dimension, which is always fewer data than required
to save several level variables j. Also, the matrix Tiso

�,J,j consists of tensorized matrices of Mj,0, Mj,1

only, no identity parts are tensorized. But because the tensorized matrices are not square matrices, the
implementation of Tiso

�,J,j for a full-space discretization is not as straight forward as in the anisotropic
case.
Another advantage is the level-wise ordering of the wavelet coefficients as seen in Figure 2.3 which makes
prolongation and restriction operators particularly easy to implement in a nested-iteration scheme.

A Comparison

The anisotropic decomposition over four levels j = j0, . . . , j0 + 3 in 2D of Φj0+3 ⊗ Φj0+3 leads to the
collection

Φj0 ⊗ Φj0 Φj0 ⊗Ψj0 Φj0 ⊗Ψj0+1 Φj0 ⊗Ψj0+2

Ψj0 ⊗ Φj0 Ψj0 ⊗Ψj0 Ψj0 ⊗Ψj0+1 Ψj0 ⊗Ψj0+2

Ψj0+1 ⊗ Φj0 Ψj0+1 ⊗Ψj0 Ψj0+1 ⊗Ψj0+1 Ψj0+1 ⊗Ψj0+2

Ψj0+2 ⊗ Φj0 Ψj0+2 ⊗Ψj0 Ψj0+2 ⊗Ψj0+1 Ψj0+2 ⊗Ψj0+2

of tensor products of wavelets and single scale functions. The decomposition algorithm thereby works on
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a vector of single scale coefficients (here in 2D written as (ΦJ ⊗ ΦJ)) in the following manner:

(ΦJ ⊗ ΦJ)
(Tani

�,J,J−1)
−1

−→




ΦJ−1 ⊗
(

ΦJ−1

ΨJ−1

)

ΨJ−1 ⊗
(

ΦJ−1

ΨJ−1

)




(Tani
�,J,J−2)

−1

−→




ΦJ−2 ⊗




ΦJ−2

ΨJ−2

ΨJ−1




ΨJ−2 ⊗




ΦJ−2

ΨJ−2

ΨJ−1




ΨJ−1 ⊗




ΦJ−2

ΨJ−2

ΨJ−1







(Tani
�,J,J−3)

−1

−→ . . .

In each step, all single scale functions (red) are decomposed until only wavelets and single scale functions
on the coarsest level are left. As can be seen in the vector, the order of the wavelet coefficients has thus
a strong tensor product structure. First, all lower dimensional positional indices are traversed, then, at
each overflow, higher dimensional positions are increased. This is also visualized in the following diagram,
where the entries in the vector are colored according to their position.

On the other hand, the isotropic decomposition applied to the basis Φj0+3 ⊗ Φj0+3 yields the collection

Φj0 ⊗ Φj0 Φj0 ⊗Ψj0 Φj0+1 ⊗Ψj0+1 Φj0+2 ⊗Ψj0+2Ψj0 ⊗ Φj0 Ψj0 ⊗Ψj0

Ψj0+1 ⊗ Φj0+1 Ψj0+1 ⊗Ψj0+1

Ψj0+2 ⊗ Φj0+2 Ψj0+2 ⊗Ψj0+2

The isotropic decomposition algorithm similarly produces the structure

(ΦJ ⊗ ΦJ)
(Tiso

�,J,J−1)
−1

−→




ΦJ−1 ⊗ ΦJ−1

ΦJ−1 ⊗ΨJ−1

ΨJ−1 ⊗ ΦJ−1

ΨJ−1 ⊗ΨJ−1




(Tiso
�,J,J−2)

−1

−→




ΦJ−2 ⊗ ΦJ−2

ΦJ−2 ⊗ΨJ−2

ΨJ−2 ⊗ ΦJ−2

ΨJ−2 ⊗ΨJ−2

ΦJ−1 ⊗ΨJ−1

ΨJ−1 ⊗ ΦJ−1

ΨJ−1 ⊗ΨJ−1




(Tiso
�,J,J−3)

−1

−→ . . .

in a vector, since in each step only pure products of single scale functions (red) are refined. In the
isotropic case, the dominant pervasive structure is the level j, each level then consists of tensor product
bases. This is also visualized in the following Figure 2.3. Here, as in Figure 2.2, each index is colored
according to its position.

Incidentally, the anisotropic and isotropic standard preconditioners (2.4.15), (2.4.25) lead to the same
values in the matrix D±s, only the entries are in different orders. In our numerical experiments for linear
elliptic PDEs, the asymptotic limit for this preconditioner is lower for the isotropic construction than
for the anisotropic construction. The preconditioner D±s can simply here work better for the isotropic
wavelets, even though both constructions promise the same optimal limit O (1). For example results, see
Figure 2.4.
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Figure 2.2: Depiction of the order of anisotropic wavelet coefficients in 2D for levels j = 2, 3, 4. The first
wavelet coefficient has the value 1, the second the value 2, etc, in total there are 332 = 1089 wavelet
coefficients. In the anisotropic construction, first all coefficients in the lower dimension (x1) are traversed,
then coefficients of the higher dimension (x2).
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Figure 2.3: Depiction of the order of isotropic wavelet coefficients in 2D for levels j = 2, 3, 4. The first
wavelet coefficient has the value 1, the second the value 2, etc, in total there are 332 = 1089 wavelet
coefficients. In the isotropic construction, the lower levels are traversed first, then higher levels. Within
each level block, the indices are traversed by going through the lower dimensions (x1) first and with each
overflow the higher dimension (x2) is advanced one step.
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Figure 2.4: Plot of the spectral condition numbers κ2(A) of the H1-stiffness matrix A defined by
the bilinear form (1.4.24). The matrix A is discretized in the standard representation (2.2.24) on
levels j = 3, 4, . . . in 1D and 2D using DKU-24 wavelets (see Appendix A.1.5) . The matrices were
preconditioned using the standard preconditioners (2.4.15), (2.4.25). Although every series of condition
numbers is asymptotically optimally bounded by a constant, the isotropic construction yields lower
absolute condition numbers in this case; the boundedness of the 2D anisotropic condition numbers is
not yet obvious in this graph.
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2.5 Full Space Discretizations
To understand adaptive methods, it is helpful to recapitulate a few details about full space discretizations.
Therefore, we now give a brief introduction into full-grid discretizations. The main emphasis of this work
lies in adaptive methods, see Section 3.
Let Ψ, Ψ̃ be two biorthogonal wavelet bases as in Section 2.1, Section 2.4.2 or Section 2.4.3. The finite
wavelet basis of all levels up to J is denoted by

Ψ(J) :=
{
ψλ ∈ Ψ |λ ∈ I(J)

}
. (2.5.1)

The, according to Theorem 2.18, scaled wavelet base

Ψs
(J) := D−sJ Ψ(J) =

{
(D−s)λ,λ ψλ |λ ∈ I(J)

}
⊂ Hs, (2.5.2)

constitutes a Riesz basis for Hs(Ω). The finite diagonal scaling operator D−sJ is constructed from Ds by
deleting all rows and columns of indexes not in I(J),

D−sJ :=
((

D−s
)
λ,λ′

)
λ∈I(J),λ′∈I(J)

∈ R#(I(J))×#(I(J)). (2.5.3)

Note that the wavelet space Ψ(J) does not need to be the same as Ψ(J) in (2.1.29), for example in a
tensor product setting of Section 2.4. Since definition (2.5.1) extends (2.1.29), it will be used primarily.

Remark 2.39 This technique creates spaces which are linear, which makes them easy to handle in
applications. The linear discretization on uniform grids is the optimal case for smooth given data and
solutions.

We can directly conclude from (2.2.10) the value of the discretization error (1.4.28) with respect to
Ψs

(J) as hJ = 2−sJ .

2.5.1 Best Approximations

An important question in the current setting is to find the best approximation y? := y?J of an element
y ∈ Hs(Ω) in the subspace S(Ψ(J)) ⊆ S(Ψ), or to give error bounds for ‖y− y?‖Hs(Ω) for any valid value
of s. The best approximation y? of y is defined as the element for which (1.4.28) is minimized, i.e.,

‖y − y?‖Hs(Ω) = inf
v∈S(Ψ(J))

‖y − v‖Hs(Ω). (2.5.4)

The natural candidate for y? is obviously the orthogonal projection onto the space Ψ(J) by means of the
projectors Pj of (2.1.46). These projectors are used to show error bounds for (2.5.4) given in the following
theorem.

Theorem 2.40 For y ∈ Hs(Ω), 0 < s ≤ d, and r ≤ s one has

inf
v∈S(Ψ(J))

‖y − v‖Hr . 2−(s−r)J‖y‖Hs(Ω). (2.5.5)

The proof uses only the properties of the projectors PJ and Theorem 2.18 and can be found in [122]. The
above result reads for r = 0:

inf
v∈S(Ψ(J))

‖y − v‖L2
. 2−sJ‖y‖Hs(Ω). (2.5.6)

This means that the convergence speed of the approximation by wavelet spaces (as J → ∞) is directly
linked to the smoothness s > 0 of the function to be approximated.

2.5.2 Stability of the Discretizations

Since we now have optimally conditioned infinite dimensional wavelet-discretized operators at our dis-
posal, we only need to ensure stability when truncating all multiscale bases Ψj above a certain level j > J .
There are two types of criteria relevant for our problems which ensure stability of the finite discretized
systems, both of which we specify now.
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2.5. Full Space Discretizations

Galerkin Stability

We fix a refinement level J at which we wish to find the solution yJ ∈ SJ of an elliptic differential operator
A : H+t → (H+t)′ in a Galerkin scheme (see Section 1.4.3),

〈
Ψt

(J), A yJ

〉
=
〈

Ψt
(J), f

〉
, (2.5.7)

with respect to the wavelet basis Ψs
(J) ⊂ Ψ ⊂ H with the finite index set I(J) ⊂ I.

Definition 2.41 [Galerkin Stability]
The Galerkin Scheme (2.5.7) is called (t,−t)-stable, or Galerkin stable, if

‖PJv‖Ht ∼ ‖P̃JAPJv‖(Ht)′ , v ∈ SJ , (2.5.8)

holds uniformly in J, with the projectors of (2.1.46) and (2.1.47).

Expanding yJ = yTJ Ψt
(J) = yTJD−tJ Ψ(J) and f =

〈
f,Ψt

(J)

〉
Ψ̃t

(J) = fTJ Ψ̃t
(J) = fTJ D+t

J Ψ̃(J) in (2.5.7), we
obtain

AJ :=
〈

Ψt
(J), AΨt

(J)

〉
= D−tJ

〈
Ψ(J), AΨ(J)

〉
D−tJ , (2.5.9)

and analogously to (2.2.22) we can write (2.5.7) as a finite-dimensional discretized operator equation

AJyJ = fJ . (2.5.10)

Galerkin stability thus ensures the stability of the finite-dimensional discretized operator.

Proposition 2.42 If the Galerkin scheme is (t, -t)-stable and it holds

|t| < γ, γ̃,

then the matrices

AJ = D−tJ
〈
Ψ(J), AΨ(J)

〉
D−tJ (2.5.11)

have uniformly bounded condition numbers.

In other words, Galerkin stability entails that AJ is still an isomorphism on `2(I(J)) uniformly in J .

Remark 2.43 Galerkin stability is trivially satisfied if the operator A is given by 〈y,Av〉 = a(y, v) as in
Definition 1.42 since then a(v, v) ∼ ‖v‖2Ht holds. The operator AJ is then called stiffness matrix.

The LBB-Condition

Galerkin stability is sufficient for the homogeneous version of the elliptic PDE (1.4.7). Additional stability
conditions are required during the discretization of an elliptic boundary value problems as saddle point
problems, because this additionally involves a trace operator B : H → K, e.g., H := H1(Ω) and
K := H1/2(Γ) with Γ ⊆ Ω. Choosing finite discretizations V ⊂ H and Q ⊂ K, the Ladysens̆kaya-Babus̆ka-
Brezzi (LBB)-condition, or sometimes called discrete inf-sup condition, is satisfies if there exists a
constant α̃ > 0 for which for the discretized operator B : V → Q holds

inf
q̃∈Q′

sup
v∈V

〈Bv, q̃〉Q×Q′
‖v‖V ‖q̃‖Q′

≥ α̃ > 0. (2.5.12)

The LBB-condition can be interpreted as a way of ensuring that no element q̃ ∈ Q′ is orthogonal to any
element Bv ∈ Q with respect to 〈·, ·〉Q×Q′ and the constant α̃ expresses the magnitude of that orthogo-
nality property.
There are several criteria which ensure the validity of the LBB-condition in case of full space discretiza-
tions. A prominent result shown in [47] states that the LBB-condition is satisfied whenever the level of
discretization is somewhat higher on the domain space V than on the trace space Q.
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Section 2. Multiresolution Analysis and Wavelets

In the case of adaptive wavelet methods, it is no longer necessary to confirm the discrete LBB-
condition, see [40]. Since in this case the concept of “discretization level” does not apply, the LBB-
condition cannot be properly applied. One can think of applying any operator using adaptive wavelet
methods in the infinite `2 setting, thus inheriting the infinite dimensional stability properties of the oper-
ator B. Therefore, we will not go into the details of this topic, details applicable to the current problem
formulation can be found in [122].
This concludes our chapter on basic wavelet methods and we now turn to adaptive wavelet methods.
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3 Adaptive Wavelet Methods based upon Trees

3.1 Introduction

In Section 2 we stated the required properties of the wavelet basis and introduced notations and the
well-posed representation of operators in this wavelet setting. The main focus of the classic full-grid
approach explained in Section 2.5 is laid upon the approximation of smooth functions for which linear
wavelet spaces are the best choice.
Adaptive wavelet methods offer the means to handle nonlinear elliptic operators and unsmooth right
hand sides efficiently. In fact, there are inherent benefits which justify the higher effort of developing
adaptive wavelet techniques.

Remark 3.1 The method described in the following as put forward in [32–34] can generally be applied to
linear, semilinear and general nonlinear PDE operators. In the semilinear case, global convergence
towards the unique solution given in Theorem 1.57 is proven. The theoretical considerations in the general
nonlinear case are more involved, especially since solutions are only locally unique, but the algorithmic
components used to solve these equations are exactly the same used herein for the semilinear PDEs. Hence,
I will not generally distinguish between the semilinear and the general nonlinear case; the important
theoretical component required is a variational formulation of the considered nonlinear PDE operators.

3.1.1 The Why of Adaptive Wavelet Methods

The main conceptual difference of adaptive wavelet methods compared to finite discretization of
Section 2.5 is that one stays formally in the infinite dimensional regime, thus stability concepts, i.e.,
ensuring the system of equations stay well defined and solvable when restricting the space of test functions
to a finite subspace (see Section 2.5.2), are not needed. Instead, the adaptive procedures can be seen as
“self-stabilizing”, i.e., they inherit the stability properties of the infinite dimensional setting.

Remark 3.2 Choosing a fixed finite wavelet basis for discretization of an operator equation can be seen
as taking a finite subset of rows and columns of the infinite dimensional wavelet discretized system. As
no such infinite dimensional discretization exists for finite element methods (FEM), refining a FEM
grid does not correspond to adding a subset of rows and columns of an infinite dimensional matrix.

At the same time, there is also an inherent property stemming from nonlinear approximation theory,
which we cite from [62]. An approximation process is called nonlinear if the space of approximants is
adapted specifically for a given function and not predetermined by some other criteria, e.g., data points
placed on a uniform grid.
Examining the properties of functions capable of being approximated using N piecewise polynomials at
the error rate N−s for some s > 0, these functions can be determined to be contained in classical function
spaces [121,124], e.g., Sobolev and Besov spaces. The main difference is that, using the same number of
degrees of freedom, the function space in the nonlinear case is larger than the function space attained
using linear methods, see Figure 3.1. In functional analytical terms, the approximation error is bound
by a weaker norm in the nonlinear case than in the linear case.
This means that the nonlinear adaptive wavelet methods do not approximate smooth functions at a higher
rate than classical (linear) methods, but that functions with less smoothness can still be approximated
at the same rate. Specifically, assuming the solution u ∈ Hm(Ω) of a PDE for some fixed m ≥ 0, this
gives the metric in which the error is measured. In the simplest case, m = 0, this means the error is
measured using the L2(Ω)-norm. For the Laplace operator, for which holds m = 1 by the remarks from
Section 1.4, one measures in the energy norm H1(Ω).

• Using the linear spaces of Section 2.5, let SN be a space with N DOFs. Then one can expect for
u ∈ Hr(Ω) with r > m by Lemma 1.47 an approximation rate,

inf
uN∈SN

‖u− uN‖Hm(Ω) . hr−m‖u‖Hr(Ω) = N−(r−m)/n‖u‖Hr(Ω),

because of h ∼ N−n. The value of the smoothness index r is generally limited by the polynomial
exactness (P)(2.2.3) of the wavelets employed.
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Figure 3.1: Linear vs. Nonlinear Approximation. Spaces corresponding to linear approximation lie on
the vertical line, i.e., their smoothness increases uniformly in the Sobolev scale. The line with slope n
marks the critical line for continuous embedding in Hm(Ω) and the spaces corresponding to nonlinear
approximation. All spaces in the shaded area are continuously embedded in Hm(Ω), but not the spaces
to the right of the critical line.

• Using adaptive methods, the same rate N−(r−m)/n can be achieved whenever u ∈ Brp(Lp(Ω)) for
r > m and

1

p
=
r −m
n

+
1

2
, =⇒ r = m+

(
1

p
− 1

2

)
n =: m+ s n.

This equation thus again characterizes for fixed dimension n and smoothness index m a line of
slope n, cf. Figure 1.1. Denoting by ΣN the family of sets containing N wavelet coefficients, the
approximation error is then bound by

inf
uN∈ΣN

‖u− uN‖Bm2 (L2(Ω)) . N−(r−m)/n‖u‖Brp(Lp(Ω)).

The spaces Bm+s n
p (Lp(Ω)) are the largest spaces still continuously embedded in Hm(Ω), see Section 1.3.1

and Figure 3.1. In summary, using nonlinear methods, we can expect an asymptotic rate N−s if the
solution to a PDE is in the Besov space Bm+s n

p (Lp(Ω)) for some s > 0, and we could only achieve
the same rate using linear spaces if the solution was in the Sobolev space Hm+s n(Ω). Thus, the extra
complexity in theory and implementation when using adaptive wavelet methods pays off whenever a
function has a higher smoothness in the Besov scale than in the Sobolev scale.

3.1.2 The How of Adaptive Wavelet Methods

The infinite dimensional space `2 poses serious problems for computational schemes because infinite
data structures are not manageable in a finite computer system. The challenge is therefore to devise
finite approximations without losing the inherent properties of the infinite dimensional realm. The first
approach laid out in [32] is based upon compressible matrices and iterations of finitely supported
(best N -term) approximations. I follow here the later works [33, 34], which presented a new paradigm
specifically designed for nonlinear variational problems (cf. page 15).
The wavelet discretization of nonlinear operator equations discussed in Section 1.5 in principle works
exactly as in Section 2.2.4. The following result from [32] shows under what conditions this discretization
is judiciously justified.

Proposition 3.3 Let F : H → H′ be an operator from a Hilbert space H into its dual H′. Suppose that
the problem F (v) = w is well posed, see Definition 1.53, then the reformulated problem F(v) = w is well
posed in `2(I).

Subsequently, the resulting representation of an operator in wavelet coordinates is well conditioned,
see [46], if the mapping property (1.4.14) or (1.5.8) holds.
Adaptivity in this context refers to the process of selecting the wavelet coefficients according to their
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3.1. Introduction

importance which is directly linked to absolute value of the coefficient. The process of choosing the
N coefficients with the highest absolute is called the best N-term approximation and it is a highly
nonlinear process. The set of highest valued wavelet indices is generally very unordered and this makes
any algorithmic processing of this set difficult. The remedy is to enforce more structure by replacing the
general best N -term approximation by the best tree N-term approximation, i.e., a tree structure
is introduced. Unlike the full space discretizations in Section 2.5, the result of an adaptive operator
application to an adaptive vector with tree structure is not directly accessible.
The main implementational obstacle in adaptive wavelet methods is the efficient management of these
tree based sets and the computation of operator applications in optimal linear complexity w.r.t. the
number of wavelet coefficients. The naive idea of inserting all admissible wavelet indices into the input
and output vectors and afterwards selecting the relevant non-zero coefficients defies the purpose of the
adaptive schemes: The overall complexity of such an approach would make the scheme infeasible and
also very quickly impossible to compute in reasonable time. The same argument applies to pseudo-
adaptive methods, where full-grid data structures are used and adaptive procedures are applied to
emulate adaptive data structure computations using thresholding techniques.
The adaptive application of a (non-)linear operator w.r.t. an adaptive wavelet vector based on a tree is
a two step process. First, the output set of the operator application is computed by an algorithm called
PREDICTION. As the name implies, this algorithm will not produce the perfect, theoretical result but an
index set that is just big enough, so that the application of the operator can be applied sufficiently
precise, i.e., up to a user given error bound.
After this output set is computed, the second step is to compute the values of these wavelet coefficients. In
principle, this task could make the whole adaptive scheme infeasible, if the value of any wavelet coefficient
of the output vector would depend on all coefficients of the input vector simultaneously. The remedy
to this problem is simple: No coefficient should depend on all coefficients, but only on those that are
“nearby”.

Definition 3.4 [Local Operator]
An operator F : H → H′ is called local, if elements of H only “interact” through F with other elements
of H if they share support:

supp(v) ∩ supp(u) = ∅ =⇒ 〈u, F (v)〉H×H′ = 0, for all u, v ∈ H. (3.1.1)

Of course the converse does not need to hold, i.e., the value 〈u, F (v)〉 can be zero even if supp(v) ∩
supp(u) 6= ∅. This can easily happen, for example, because of vanishing moments (V)(2.2.5).
Remark 3.5 In the following, we assume that all operators F : H → H′ are local. Many operators,
e.g., differential operators, considered in practical applications are local so this is not a very constraining
assumption.

There are several types of (local) operators considered in this work, split in linear and nonlinear categories.
For nonlinear operators, the polynomial representation of the wavelets (P)(2.2.3) is used to create a
unique local representation living on disjoint cells, cf. (3.4.23). This way, the additive decomposition of
the wavelet expansion is not a problem for applying a nonlinear operator. The same technique could also
be applied to linear operators and the sum of an nonlinear and linear operator is best dealt with this
way. The application of linear operators can be implemented differently by avoiding the polynomial
representation phase. This is, for example, useful for some inverse operators F−1 : H′ → H, where no
polynomial representation is available on H′.

Overview

In Section 3.2.1 we show how to obtain a tree structured wavelet index set, a paradigm that is at
the heart of the mathematical theory and computational implementation. Nonlinear wavelet spaces can
be constructed by best (tree) N-Term approximations, as explained in Section 3.2.2.
For such tree structured index sets, the result of an application of a local operator with certain decay
properties can be computed as recapitulated in Section 3.3. The most important tool is the algorithm
PREDICTION explained in detail in Section 3.3.3. Another algorithm called TREE_COARSE presented in
Section 3.3.2 is very important for proving the optimal linear complexity of the numerical solvers given
in Section 4.1 by limiting the number of wavelet coefficients over the course of the whole solution process.
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In Section 3.4 the transformation of functions in wavelet representation into a representation based on
local polynomials is explained. These techniques will be combined in Section 3.4.3 to prove the efficient
application of nonlinear operators in wavelet coordinates up to any given accuracy in optimal linear
complexity w.r.t. the number of unknowns.
In Section 3.5, a special treatise is dedicated to the topic of applying linear operators based on this
adaptive framework, because these can be crucial to the solution process of nonlinear problems, see
Section 4.4. A special case of linear operators are trace operators which I discuss in Section 3.6.
Lastly, I present my own version of an anisotropic adaptive wavelet method in Section 3.7 which is based
completely on the isotropic algorithms.

3.2 Nonlinear Wavelet Approximation
We will from now on assume to be in the one-dimensional or isotropic multi-dimensional case of Sec-
tion 2.4.3, so I is defined by (2.4.21).

Remark 3.6 The following assertions are independent of the type of wavelet used, as long as the proper-
ties given in Section 2.3 are satisfied. Several wavelet constructions applicable to this matter are available
and have been implemented, for details see Appendix A.1.

Let n ∈ N be the spatial dimension and j0 ∈ N again be the coarsest level in a multi-level hierarchy.

Remark 3.7 To ease notation, we drop the � index representing (0, 1)n from the definitions of Sec-
tion 2.4.3, the symbol � will instead later on refer to a cell in a dyadic refinement of the domain (0, 1)n

(which could coincide with the whole domain).

To recapitulate, each index λ := (j,k, e) ∈ I carries information of refinement level j = |λ|, spatial
location k = (k1, . . . , kn) and type e ∈ {0, 1}n of the isotropic wavelet. Also to shorten the notation,
we abbreviate Sλ := supp(ψλ).

3.2.1 Tree Structured Index Sets

Although the use of tree structured index sets might seem unmotivated, tree structure are naturally
found in adaptive methods, e.g., FEM, as locally refined meshes.
First of all, we have to state some notations and definitions concerning tree structured index sets. These
notions are taken from [16,33,34,111].

Definition 3.8 [Tree]
We call a set T tree if µ ∈ T implies λ ∈ T whenever µ is a descendant of λ. That is,

µ ∈ T , µ ≺ λ⇒ λ ∈ T , (3.2.1)

where µ ≺ λ expresses that µ is a descendant of λ and µ � λ means that either µ is a descendant of λ
or equal to λ. The elements of T are called nodes.

Remark 3.9 A tree is usually understood as having only a single root node, although definitions vary
from subject to subject. In our context, we therefore speak of tree structured sets which means there is
a tree like structure but the overall appearance more closely resembles an arborescence, see [94].

Definition 3.10 [Children and Parents]
The direct descendants µ of a node λ are called children of λ and λ is referred to as their parent. The
set of all children of a node λ ∈ T will be denoted by C(λ), the parent of λ is Π(λ).

Of special interest are of course the extreme cases of the above definition, e.g., parents without children
and nodes without parents.

Definition 3.11 [Roots and Leaves]
The nodes of T which do not have any ancestor, i.e.,

N0(T ) := {λ ∈ T : @µ ∈ T such that λ ≺ µ} . (3.2.2)

are called root nodes. Furthermore, the set of nodes without any children are called leaves and will be
denoted by

L(T ) := {λ ∈ T : @µ ∈ T such that µ ≺ λ} . (3.2.3)
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Combining the above definitions brings us to the notion of a proper tree:

Definition 3.12 [Proper Tree, Subtree, Proper Subtree]
A tree T is called proper tree, if it contains all root nodes. A subtree T ′ ⊂ T of a tree T is called
proper subtree, if all root nodes of T are also contained in T ′. All descendants of a node λ form the
subtree T[λ] := {µ ∈ T |µ ≺ λ}.
As we will later see, it is very important to work with proper trees for both theoretical and practical
purposes. Therefore, we will assume all trees to be proper trees unless mentioned otherwise.
Another useful theoretical property is the notion of

Definition 3.13 [Expansion Property]
A tree T is said to have the expansion property if for λ ∈ T and µ ∈ I holds

|µ| < |λ|
Sµ ∩ Sλ 6= ∅

}
=⇒ µ ∈ T . (3.2.4)

Any tree T ⊂ I can be made into an expanded tree T̃ ⊇ T by a simple scheme: Recursively set
Θk(λ) := {µ ∈ I |Sµ ∩ Sµ′ 6= ∅ for any µ′ ∈ Θk−1(λ)} with Θ0(λ) := {λ}, then

T̃ :=
⋃

λ∈T

|λ|⋃

k=0

Θk(λ), (3.2.5)

is an expanded tree.

Tree Structure of Wavelet Indices

By (2.1.29) and (2.4.20), the index set of all scaling functions on the coarsest level j0 are now set to be

Ij0−1 := {(j0 − 1,k,1) |k ∈ ∇j0,0} . (3.2.6)

Remark 3.14 This definition deviates from the previous definition (2.4.22) for two reasons:

1. The level value j0 − 1 fits better in the tree structure environment.

2. When a basis transformation (2.3.16) is being applied to the coarsest level only, the different
representations (j0 − 1,k,1) and (j0,k,0) of the same indices allow to distinguish between the
different bases Ψ′j0−1 = OT Φj0 and Φj0 , respectively.

The complete index set given by (2.4.22) can then be written as

I := Ij0−1 ∪ {(j,k, e) | j ≥ j0, k ∈ ∇j,e, e ∈ E?n} . (3.2.7)

In the following, we show the natural tree structure within these wavelet index sets. This is most easily
done by constructing a tree structure for the one-dimensional wavelet base Ψ(J) and then applying these
rules coordinate-wise to the isotropic wavelet base Ψiso

(J). We will only state the list of children, since the
determination of the parent is the inverse operation and one just needs to read the definitions from right
to left to determine the parent of an index.
Since the number of wavelet functions #∇j usually is exactly 2j , the default wavelet tree structure
is set up using a dyadic structure. Each wavelet node µ = (j, k, 1) is given the set of children

C((j, k, 1)) := {(j + 1, 2k, 1), (j + 1, 2k + 1, 1)} . (3.2.8)

A visualization of this tree structure can be found in Figure A.2. Since isotropic wavelets also contain
single scale functions on each level, a relation for the bases Φj ↔ Φj+1 has to be established, too.
Because the relation depends heavily on the boundary conditions of the basis, as this determines the
number of functions #∆j , no standard structure can be specified. But it can be noted that the children
of a single scale index (j, k, 0) live on level j + 1 and have type e = 0 again.

77



Section 3. Adaptive Wavelet Methods based upon Trees

Remark 3.15 Details on this mapping for our boundary adapted hat functions can be found in Ap-
pendix A.1.1. For simplicity, one can think of the children of a single scale function as being

C((j, k, 0)) := {(j + 1, 2k, 0), (j + 1, 2k + 1, 0)} . (3.2.9)

Definition 3.16 [Isotropic Wavelet Tree Structure]
Each isotropic wavelet node µ = (j,k, e) ∈ I \ Ij0−1 is associated the set of children

C(µ) :=

n⊗

i=1

C(µi), with µi := (j, ki, ei). (3.2.10)

Having established the tree structure for all wavelet levels, it remains to set the root nodes and connect
them to the rest of the tree structure. The root nodes are of course the indices of the scaling functions,
that is, Ij0−1. These do not fit in Definition 3.16 as they do not contain a single wavelet coefficient, but
their children should naturally be all wavelet indices on the next level, i.e., {(j0,k, e) |k ∈ ∇j0,e, e ∈ E?n}.
Hence, an inheritance relation Φj0 ↔ Ψj0 must be defined. This mapping again depends on the single
scale base and can be found in Appendix A.1.1.

Proposition 3.17 For each λ ∈ C(µ) holds that the level is j+ 1 and the type is the type e of the parent.

We associate now to each root node µ = (j0 − 1,k,1) the children

C(µ) :=
⋃

e∈E?n

n⊗

i=1

C((j0 − 1, ki, ei)), (3.2.11)

with

C((j0 − 1, ki, ei)) :=

{
{(j0, ki, 0)} , if ei = 0,
{(j0, ri, 1) | for some ri ∈ ∇j0} , if ei = 1.

Simply put, the children for each wavelet type e ∈ E?n are computed and then the results combined. The
children for any type e ∈ E?n in any coordinate 1 ≤ i ≤ n are here either the result of the mapping
Φj0 ↔ Ψj0 if ei = 1 or the trivial mapping Φj0 ↔ Ψj0−1 if ei = 0.
For theoretical and practical purposes that will become apparent later on, it is important that the wavelet
tree exhibits the Inclusion Property, i.e.,

µ ≺ λ⇒ Sµ ⊂ Sλ for all µ, λ ∈ I \ I0. (3.2.12)

Due to the locality of the wavelets (L)(2.1.8) and a bound on the number of intersecting wavelets (2.1.16),
one can arrange the tree structure so that the Inclusion property is guaranteed.
Having established the tree structure, we consider T now to be an ordered subset of the wavelet index
set I of (3.2.7) and a proper tree.

3.2.2 The Best (Tree) N-Term Approximation

In nonlinear wavelet methods, as opposed to the linear setting of Section 2.5, the set of all admissible
wavelet coefficients is not fixed given by a highest level J ≥ j0. Instead, the set is aspired to be optimal in
the sense that only relevant indices are included thus voiding any computational overhead that near-zero
coefficient values would entail.
Traditionally, this means that for any given v = (vλ)λ∈I ∈ `2(I), the best N-term approximation,

σN (v) := inf
w∈`2(I)

{
‖v −w‖`2(I) |#S(w) ≤ N

}
, (3.2.13)

has to be computed. Here, S(v) := supp(v) denotes support, i.e., the set of all active wavelet indices. For
any given vector v, the minimizing element (which does not have to be unique) can simply be computed
by rearranging the coefficients of v in a non-decreasing way,

|vλi | ≥ |vλj | for all 1 ≤ i < j ≤ #S(v), (3.2.14)
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and taking the first N elements w := {vλ1
, . . . , vλN }. Since the elements of this set could theoretically

be completely unrelated (although this would be unusual in applications), an approximation preserving
tree structure is sought. This led to the notion of the best tree N-term approximation, where the
support of all approximants must have tree structure:

σtree
N (v) := inf

w∈`2(I)

{
‖v −w‖`2(I) |S(w) is a tree and #S(w) ≤ N

}
. (3.2.15)

Although this tweaked definition helps greatly when considering theoretical problems by introducing a
structure, the determination of the minimizing vector w for given v is not a simple task, since this would
involve searching through all possible subtrees, which would result in exponential complexity w.r.t. #S(v).
Possible strategies to solve this problem will be presented in Section 3.3.2.
The error notion (3.2.15) is now the basis to define approximation spaces:

Definition 3.18 [Tree Approximation Classes Astree]
For s > 0, the space in `2(I) of all vectors which can be approximated at a rate of N−s using a tree of N
elements is denoted by

Astree :=
{
v ∈ `2(I) |σtree

N (v) . N−s
}
, (3.2.16)

which becomes a quasi normed space with the quasi norm1,

‖v‖Astree := sup
N∈N

Nsσtree
N (v). (3.2.17)

The space Astree contains all vectors that can be approximated at rate s using tree-structured index sets.
Conversely, since for any v ∈ Astree and ε > 0 exists a best-tree TN (v) := T (v, ε) such that

σtree
N (v) ≡ ‖v − v|TN (v)‖`2(I) ≤ ε,

the approximation order in (3.2.17) guarantees

N . ‖v‖1/sAstree ε
−1/s. (3.2.18)

This shows, for any element in Astree, one can generally expect for N ∈ N degrees of freedom

convergence rate N ∼ ε−1/s, or accuracy ε ∼ N−s, (3.2.19)

while approximating using finite trees.
Trivially, any finitely supported vector v ∈ `2(I) belongs to Astree for all s > 0.

Remark 3.19 It was pointed out in [33] that the space Astree is the “right” space to consider for wavelet
methods for our class of nonlinear PDE operators, see Section 1.5. This means theoretical results w.r.t.
the norm (3.2.17) are available for complexity and convergence estimates, some of which we will cite in
the next sections.
In case of linear PDEs, the solution is shown to be in the unrestricted space As, where the definition is
analogous to Definition 3.18, just without the tree structure requirement.

Regularity Properties of the Space Astree

The connection of wavelet expansion to smoothness spaces is given by a norm equivalence like Theo-
rem 2.18. For v = vTΨ ∈ H the analogue to (2.2.12) is given by (see [62]),

‖v‖qBαq (Lp(Ω)) ∼
∞∑

j=j0−1

2jq(α+n
2−np )‖vj‖q`2(Ij) (3.2.20)

for t > 0. For p = q = 2 we retain (2.2.12) in accordance with (1.3.12). The question which smoothness
properties the functions of (3.2.16) have to fulfill was answered in [34].

1The triangle inequality is replaced by ‖x+ y‖ ≤ C(‖x‖+ ‖y|) for some C > 1.
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Proposition 3.20 Let v = vTΨ ∈ Hm(Ω) for a n-dimensional domain Ω. If v ∈ Bm+s n
q (Lτ ′(Ω)) for

1

τ ′
< s+ 1/2 and 0 < q ≤ ∞, then v ∈ Astree. Specifically, the assertion hold for the case q ≡ τ ′.

This is a somewhat stricter condition than in the general case of the space As where 1

τ ′
= s+1/2 suffices,

see also [34]. But it still allows for the case q ≡ τ ′ discussed in Section 1.3.1 and Section 3.1. After these
theoretical considerations, we now turn to the actual structures and algorithms used in the setting laid
out here.

3.3 Algorithms for Tree Structured Index Sets
In this section, we describe the basic algorithms needed to apply an operator, e.g., a PDE operator as in
Section 1.4 or Section 1.5, to an adaptive wavelet expansion described in Section 3.2.1.

3.3.1 The Adaptive Fast Wavelet Transform

Sometimes, computations in wavelet coordinates might be implemented more easily in the single-scale
domain. Transforming an adaptive wavelet vector v on the proper tree T by the pyramid algorithm
(2.1.33) starting from the lowest level j = j0 would always produce a full single-scale vector on each next
level j + 1. Since the sparsity of the adaptive wavelet expansion would thus be lost, we have to re-define
what the resulting single-scale vector w = TT v should actually be.
In our context, a single-scale vector should consist only of isotropic single-scale indices, but not
necessarily all on the same level j. There should be, however, be no single-scale coefficients present for
which all children are also present. This results in a distribution of indices not resembling a tree, but the
leaves of a tree.
Such an expansion can of course be easily computed by repeated use of the reconstruction identities
(2.1.11), (2.1.18) in the isotropic form (2.4.23). Here, even the single-scale function factors of the
isotropic wavelets are refined, because otherwise the resulting product of single-scale functions would
not be isotropic.
By (2.1.10) and (2.1.17), the isotropic wavelet (2.4.18) can be expressed as

ψj,k,e =

n∏

i=1

∑

ri∈∆j+1

mj,ei
ri,ki

φj+1,ri =:
∑

r∈∆n
j+1

mj,e
r,kφj+1,r (3.3.1)

This two-scale relation is now the foundation of the adaptive reconstruction algorithm. First we state
a helper algorithm which simply transforms an adaptive wavelet expansion into a expansion of single
scale functions:

Algorithm 3.1 Convert a wavelet vector v on T into vector of single-scale functions w.
1: procedure ADAPTIVE_RECONSTRUCTION(v) → w
2: T ← S(v)
3: j0 ← min {|λ| |λ ∈ T }, J ← max {|λ| |λ ∈ T }
4: w← {} . Initialize empty (or with zeros on coarsest level j0)
5: for j = j0, . . . , J do
6: for all λ = (j,k, e) ∈ Tj do
7: if e 6= 0 then
8: w← w + vλ

∑
r∈∆n

j+1
mj,e

r,kbj+1,r . Refinement Relation, cf. (3.3.1)
9: end if

10: end for
11: end for
12: return w
13: end procedure

Here, bj,r stands for the unit vector in `2 of the coordinate r. By the nested support property (3.2.12),
the support S := S(w) of the resulting vector w would again be a tree w.r.t. the single-scale tree
structure (3.2.9).
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The resulting vector of this algorithm contains many indices for which all refinement indices per (3.3.1)
for e = 0 are also present. These elements can be eliminated to arrive at a truly adaptive and sparse
single-scale representation of a wavelet expansion vector, see Figure 3.2(c), this concept will later be used
in Algorithm 3.10. Such an algorithm has been previously presented in [54].

Theorem 3.21 Algorithm 3.1 finishes in time proportional to the number of input wavelet coefficients
#S(v) and the output satisfies #S(w) . #S(v).

Proof: The number of single-scale functions necessary for reconstruction of a wavelet or single-scale
function is uniformly bounded, see (2.1.10), (2.1.17). If we designate this constant m, the number of
summands in line 8 is bounded by mn. Since the created addends all have type e = 0, they will not be
considered again during execution of the algorithm.

The inverse operation, the adaptive decomposition, should reassemble the wavelet vector from the
single-scale coefficients generated by Algorithm 3.1. Having knowledge only of the single-scale vector w
and its index set T would make the decomposition process inefficient, because a single-scale index could
be part of wavelets not contained in the tree T . So, to reconstruct only the values of wanted wavelet
indices, the target tree T has to be supplied along with the single-scale data w.
Just as the above relation (3.3.1) can be understood as picking correct columns of the matrix Mj (2.1.19),
the adaptive decomposition works by picking the correct columns of the matrix Gj (2.1.21) for every
single-scale index contained in the input data w and adds the resulting values to v for wavelet indices
and to w for single-scale indices, respectively. Mathematically speaking, we use the identity

φj+1,k =

n∏

i=1


 ∑

ri∈∆j

gj,0r,kiφj,ri +
∑

si∈∇j
gj,1si,kiψj,si


 =:

∑

r∈∆n
j

gj,0r,kφj,r +
∑

e∈E?n
s∈∇j ,e

gj,es,kψj,s,e, (3.3.2)

which stems from applying (2.1.25) to the isotropic wavelet (2.4.18).

Algorithm 3.2 Adaptive decomposition of single-scale vector w into vector v in wavelet coordinates on
the proper tree T .
1: procedure ADAPTIVE_DECOMPOSITION(w, T ) → v
2: S ← S(w)
3: j0 ← min {|λ| |λ ∈ S}, J ← max {|λ| |λ ∈ S}
4: vj0 ← 0 . Initialize with zeros on coarsest level j0
5: for j = J, . . . , j0 + 1 do
6: for all λ = (j,k,0) ∈ S do
7: D1

λ ←
{

s ∈ ∇j−1,e, e ∈ E?n | gj−1,e
s,k 6= 0

}
. Determine per decomposition relation (3.3.2).

8: for all s ∈ D1
λ with s ∈ T do

9: v← v + wλ
∑

s∈∇j−1,e
gj−1,e
s,k bj−1,s,e . Apply decomposition relation

10: end for
11: w← w \wλ . Delete index λ
12: end for
13: end for
14: return v
15: end procedure

Again, bj,k,e stands for the unit vector in `2 of the coordinate (j,k, e). This algorithm is only an exact
inverse of Algorithm 3.1, if T = S(v). Since line 9 will produce all possible types e 6= 0 if T = I, some
might not be already present in S(v) and would be created.

Theorem 3.22 Algorithm 3.2 finishes in time proportional to the number of input wavelet coefficients
#S(w) and the output satisfies #S(v) . #S(w).
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Proof: The argument is exactly the same as for Algorithm 3.1, except here all created wavelet indices
have type e 6= 0, but the input data has type e = 0.

Remark 3.23 A few remarks about these algorithms.

1. If the single-scale input data is not already present on the coarser levels, for example as in see
Figure 3.2 (c), an upscaling step can be inserted after line 10 by noting the first part of (3.3.2):

w← w + wλ
∑

r∈∆n
j−1

gj−1,0
r,k bj−1,r,e

This computation will produce the input data for the next coarser level. But this task makes more
sense if no target tree T is given. Because of the exponential decline in cardinality of the involved
index set, the complexity of this variant is still linear w.r.t. the input vector, just as in the complexity
estimate of the pyramid scheme (2.1.33). If the input vector contains only one non-zero coefficient,
the size of the output vector would have a size proportional to the level of the input coefficient, which
can be (in theory) arbitrarily high. This problem is circumvented by again assuming a tree structure
in the input vector.

2. Algorithm 3.2 can also be run with single-scale input data not generated by Algorithm 3.1 by simply
assuming missing values to be zero.

3. To apply the dual reconstruction or decomposition algorithms (see Figure 2.1), one simply has
to choose the matrices M̃j = GT

j and G̃j = MT
j instead of Mj, Gj, respectively.

Sample results of these algorithms can be seen in Figure 3.2.
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(a) Adaptive wavelet vector. (b) Adaptive single-scale vector.
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(c) Adaptive sparse single-scale vector.

Figure 3.2: In the upper left diagram (a), an arbitrary wavelet expansion for the DKU22NB Wavelets is
shown. All non-zero coefficients are shown in blue color. Subfigure (b) shows the result of Algorithm 3.1
using the wavelet expansion depicted in (a) as input. The bottom diagram (c) presents the result after
all indices, for which all refinement indices exist in the vector, were refined. This vector is not based
upon a tree, but resembles the outer hull, i.e., the leaves, of some other vector.

3.3.2 Tree Coarsening

The idea of coarsening is to determine, for a given proper tree v ∈ `2, T := S(v), another, minimally
supported, tree-structured w ∈ `2(I) such that the error is only increased by a given tolerance ε ≥ 0, i.e.

‖v −w‖`2(I) ≤ ε
By the norm equivalences (2.2.12) and (3.2.20), this error estimate immediately translates over to an
error estimate in the considered function spaces. Conceptually, we purge an input vector of too small
values, in particular zero values, to get rid of excess entries. There are several strategies to accomplish
this task, the easiest way is to simply remove all expansion coefficients with a value less than the tolerance
ε. But this naive approach has the drawback of not preserving the tree structure if not only leaves
of the tree T are deleted. Of course any family of wavelet indices can be expanded to become a proper
tree, but then the inserted values for these wavelet coefficients are zero, so in the worst case scenario the
input tree and the output tree are exactly the same, except for some values set to zero.
To quantify what we accept as appropriate coarsened tree, we need the following two definitions:

Definition 3.24 [Best Tree]
For a given proper tree-structured v ∈ `2(I), a tree T ? := T ?(η,v) with η ≥ 0 is called η-best tree, if

‖v − v|T ?‖`2(I) ≤ η, and #T ? = min
{

#T̃ | ‖v − v|T̃ ‖`2(I) ≤ η for any tree T̃
}
. (3.3.3)

Since the above definition is in practical applications too strict, it is relaxed by introducing a constant
C ≥ 1 with which the tree is allowed to grow:

Definition 3.25 [Near-Best Tree]
A tree T ′ := T ′(η, C,v) with η ≥ 0 and C ≥ 1 is called (η, C)-near-best tree, if

‖v − v|T ′‖`2(I) ≤ η, and #T ′ ≤ C#T ?(η/C,v). (3.3.4)
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For large values C � 1, the error η/C → 0 and thus T ?(η/C,v) → T , while the number of possible
nodes in the tree T ′ could go to infinity. Values of C ≈ 1 are thus “better” near-best trees.

The Algorithm

A coarsening algorithm, whose output is a near-best tree, was proposed in [16]. The idea of the
algorithm is not to delete any wavelet coefficients from an input tree, but only to cut whole branches,
e.g., a node and all its children. This approach entails another problem though: the identification of
“unimportant” branches, i.e. branches that can be removed while controlling the error.
To measure the error, we assign the `2-value of the branch at index λ ∈ T ⊂ I, i.e.

e(λ) :=
∑

µ≺λ
|vµ|2, (3.3.5)

then the error of restricting v to a subtree T ′ ⊂ T , i.e. ‖v − vT ′‖`2(I), is simply,

E(v, T ′) :=

√ ∑

λ∈L(T ′)
e(λ). (3.3.6)

Since the coarsened tree is supposed to be minimal in size, it is imperative to find deep branches T[λ]

with a small error e(λ). But (3.3.5) does not weigh in the depth of the branches, so a modified error
functional is sought. In [16], the following error functional was proposed:

ẽ(λ) :=

{
e(λ), if λ ∈ N0(T ),(∑

µ∈C(τ) e(µ)
)

ẽ(τ)
e(τ)+ẽ(τ) , with τ = Π(λ), otherwise. (3.3.7)

The fractional construction of the general term arranges for a monotonous, although not linear, decline
in values over the whole tree. An example of a coarsened tree including the values of e(λ) and ẽ(λ) can
be found in [147]. This functional obviously assigns the same value to each child λ of a node τ , because
the general term does not depend on the index λ directly.
The above construction does leave one detail uncertain: How to handle roots without children. Since
there is only one value associated with such a leaf, i.e. |vλ|, only this value can be used to define an error
indicator. This plausible strategy was proposed in [147] and we include it in Algorithm 3.3. But, since
we always assume to be handling proper trees, it is also a proper strategy to simply always include
all roots of the input vector into the output vector. Since we are only talking about a finite number of
root nodes of a potentially extremely large tree T , both policies do not affect asymptotic bounds w.r.t.
runtime or storage.

Remark 3.26 A few remarks concerning the implementation are to be given:

• The error tree given by (3.3.7) does not need to be assembled. This is because the value ẽ(λ) does
only need local information in the sense that only direct relatives (parents, siblings) are needed to
compute it.

• On the other hand, the error tree given by (3.3.5) needs global information, i.e., the value e(λ)
depends on all the descendants of λ. Assembling each value by each time computing the whole
subtree would be inefficient.

• Finding the maximum element of the sets L,R does not need to be exact. This would require an
exact sorting which would lead to an inefficient scheme. An alternative is presented in the next
paragraph.

The following result from [16,33] shows the result of Algorithm 3.3 is a near-best tree and it is computable
in linear time.
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Algorithm 3.3 Adaptive tree coarsening of a vector v in wavelet coordinates on the proper tree T .
Output is a vector w on tree T ′ with ‖v −w‖ ≤ η.
1: procedure TREE_COARSE(η,v) → (w, T ′)
2: T ← S(v)
3: R ← N0(T ) . List of roots without children
4: L ← {(λ, ẽ(λ)) |λ ∈ N0(T ) \ R} . L is List of elements to refine
5: Compute (3.3.7) for all indices
6: T ′ ← L . Initialize with roots who have children
7: while E(v, T ′) > η do . As long as L 6= ∅ and R 6= ∅
8: (λR, vR)← arg maxµ∈R ẽ(µ)
9: (λL, vL)← arg maxµ∈L |vµ|

10: if vR ≥ vL then
11: T ′ ← T ′ ∪ {λR} . Add element of list R
12: R ← R \ {λR} . Remove λR from list of roots without children
13: else
14: T ′ ← T ′ ∪ {λL} . Add element of list L
15: L ← (L \ {λL}) ∪ {(µ, ẽ(µ)) |µ ∈ C(λL)} . Remove λL from list of elements to refine
16: and add all children C(λL)
17: end if
18: end while
19: w← v|T ′ . Compute coarsened vector
20: return (w, T ′)
21: end procedure

Lemma 3.27 For N := S(v) the computational cost of TREE_COARSE(η,v)→ (w, T ′) is proportional to
O (N). The tree T ′ is (η, C?)-near-best, where C? > 0 is a finite constant.
If for s > 0, u ∈ Astree and ‖u− v‖ ≤ η for #S(v) <∞, then TREE_COARSE(2C?η,v)→ (w, T ′) satisfies

#S(w) . ‖u‖1/sAstree η
−1/s, (3.3.8)

‖u−w‖`2(I) ≤ (1 + 2C?)η, (3.3.9)

and

‖w‖Astree . ‖u‖Astree , (3.3.10)

where the constants depend only on s when s→ 0 and on C?.

The assertions (3.3.8) – (3.3.10) show that the tree coarsening process does not take away any of the
properties of the class Astree: The bound (3.3.10) shows that even a near-best tree of an approximation of
a vector in Astree is still contained in Astree. Estimate (3.3.8) essentially means that the size of the support
of w is proportional to η−1/s, which is optimal in the sense of (3.2.19). Lastly, (3.3.9) follows obviously
after an application of the triangle inequality.

Quasi-Sorting vs. Exact Sorting

The following well known result, see [92], shows that exact sorting using a predicate function cannot
be an optimal complexity process. The argument is quite simple, but usually not taught in mathematical
courses, so I would like to recapitulate it here:

Proposition 3.28 Sorting N ∈ N numbers one needs generally O (N logN) comparisons.

Proof: Let T (N) be the average number of comparisons to sort N numbers. Every decision for
sorting by a predicate function gives either true or false, i.e., two distinct results. Thus, with T (N)
operations one can have 2T (N) different outcomes, and each one corresponds to a different sorting history.
But there are N ! different input configurations for N numbers. Since there must be a way to sort any
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finite set of numbers, the number of possible sorting histories and input configurations must be the same,
i.e., by Stirling’s approximation follows

2T (N) ≈ N ! =⇒ T (N) ≈ log(N !),

≈ log

(
√

2πN

(
N

e

)N)
,

≈ log(NN ) = log(eN logN ) = N log(N).

With Landau symbols, this reads T (N) = O (N logN), proving the assertion.

This detail increases the complexity of any algorithm including an exact sorting predicate by a loga-
rithmic factor. In our framework of adaptive methods, an exact sorting is not required, a quasi-sorting
can suffice. This is in line with replacing the concept of the best tree (3.3.3) with the near-best
tree (3.3.4).
Quasi-sorting, or binary binning as it is called in this context (see [10]), defines exponentially growing
bins which are used to map to elements in an unordered way:

Definition 3.29 [Binary Bins]
Let v = (vλ)λ∈I , vλ ∈ R, be a sequence. The j-th bin is defined by

Bj(v) :=
{
λ ∈ S(v) | 2j−1 < |vλ| ≤ 2j

}
, for j ∈ Z. (3.3.11)

Hence, finding the bin to a value |vλ| requires only a evaluation of the logarithm log2(·). In return, the
bin index j gives an upper and lower bound estimate for the values contained in Bj(v).

Remark 3.30 In practice, it does not make much sense to allow bins for all j ∈ Z.

• The lower bound for any practical bin index is given by the machine precision ε of the used floating
point numbers. Even quasi-sorting for values smaller than ε can be omitted since these values can
be considered being zero for all intents and purposes. If only values lower than η > 0 are sought,
then blog2(η)c − 1 can be used as the lowest bin index.

• Since one usually is, as in this coarsening context, interested in the smallest values, restricting the
upper bound of the index j can be reasonable as well, since this saves memory required to hold bins
and the computation of the bin number can be reduced to checking whether |vλ| > 2J−1 holds for
the largest bin index J .

• In what kind of data structure the indices λ are saved is not very important, as long as insertions,
deletions and any kind of access can be done in (amortized) constant time.

A complete coarsening scheme “bin-thresh” only based on this binary binning principle can be found
in [10]. In Algorithm 3.3 it only serves as a means to alleviate the complexity of the sorting problem.

3.3.3 Tree Prediction

Here we describe the determination of a suitable tree structured index set T ′ which assures that the
operator F : H → H′ can be applied up to a desired prescribed accuracy ε on that index set. That
means, one needs to find a tree structured index set T ′ ⊂ `2(I) such that

‖F(v)− F(v)|T ′‖`2(I) . ε. (3.3.12)

Moreover, in view of the overall computational complexity, the determination of such an index set shall
be arranged in such a way that

a) the set T ′ is as small as possible and

b) the method can be applied as efficiently as possible.
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Such kind of algorithms, in the wavelet context called PREDICTION, are available, see [31, 33, 34]. The
contents of this section are based upon these papers.
Two prerequisites on the wavelet discretized operator F : `2(I)→ `2(I) are needed to use the prediction
scheme. These are generally stated as follows:

• Assumption 1: F is a Lipschitz map from `2(I) into itself, i.e.,

‖F(u)− F(v)‖`2(I) ≤ C1(sup
{
‖u‖`2(I), ‖v‖`2(I)

}
)‖u− v‖`2(I), (3.3.13)

where C1(·) is a a positive nondecreasing function.

• Assumption 2: For every finitely support v ∈ `2(I) and w := F(v), the operator fulfills the
following decay estimate with a parameter γ > n/2:

|wλ| ≤ C2(‖v‖`2(I)) sup
µ:Sµ ∩Sλ 6=∅

|vµ| 2−γ(|λ|−|µ|), (3.3.14)

where λ ∈ I \ N0 and C2(·) is a positive nondecreasing function.

Remark 3.31 Assumption 1 follows directly from (1.5.8). It was shown in Theorem 1.59, that this is
true for a wide class of operators satisfying the nonlinear growth condition (1.5.11).

Assumption 2 is closely related to operator compression, see [32], as (3.3.14) predicts how fast elements
in the (infinite) matrix F will tend toward zero, depending on their level difference, or distance from the
diagonal.

Proposition 3.32 If an operator is composed of a sum of discretized operators, i.e. F :=
∑k
i=1 Fi,

Fi : `2(I) → `2(I), each fulfilling Assumptions 1 & 2 with individual constants γi > n/2 and functions
C1,i(·), C2,i(·), then both assumptions are still valid for F : `2(I)→ `2(I) with

• Assumption 1: C1(·) := k maxi Ci,1(·),

• Assumption 2: γ := mini {γi}, C2(·) := k maxi C2,i(·).

Proof: The assertion for Assumption 1 simply follows from the triangle inequality:

‖F(u)− F(v)‖ = ‖
∑

i

(Fi(u)− Fi(v))‖ ≤
∑

i

C1,i(sup {‖u‖, ‖v‖})‖u− v‖

≤
(∑

i

C1,i(sup {‖u‖, ‖v‖})
)
‖u− v‖ ≤ k max

i
C1,i(sup {‖u‖, ‖v‖})‖u− v‖.

For Assumption 2, it should be noted that in the proof of the prediction theorem in [34], it is always
assumed that |λ| ≥ |µ|, so that the exponent of (3.3.14) is always ≤ 0 since γ > n/2 > 0. This makes
sense as the word “decay” implies a decline of values. Under the assumption |λ| ≥ |µ| it follows that

(F(v))λ =

((∑

i

Fi

)
(v)

)

λ

=
∑

i

(Fi(v))λ

≤
∑

i

C2,i(‖v‖) sup
µ:Sµ ∩Sλ 6=∅

|vµ| 2−γi(|λ|−|µ|)

≤ k max
i
C2,i(‖v‖) sup

µ:Sµ ∩Sλ 6=∅
|vµ| 2−mini γi(|λ|−|µ|)

Even if (3.3.14) must hold for all combinations λ, µ ∈ I, this can be accomplished by adapting the
constants of Assumption 2: Since there are only a finite number of coarser levels for any given wavelet
index µ, e.g., |µ| − j0, and this can be bounded by the maximum level of any index in the finite vector,
e.g., J := maxµ∈S(v) |µ|, it then follows for |λ| < |µ|:

max
µ∈S(v),λ∈S(w)

{|µ| − |λ|} ≤ max
µ∈S(v)

|µ| − min
λ∈S(w)

|λ| ≡ J − j0.
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From this follows

0 ≤ |µ| − |λ| ≤ J − j0 =⇒ 1 ≤ 2γ(|µ|−|λ|) ≤ 2γ(J−j0).

But with this follows for (3.3.14),

|wλ| = C2(‖v‖) 2γ(J−j0) sup
µ:Sµ ∩Sλ 6=∅

|vµ| 2−γ(|λ|−|µ|+(J−j0))

=: C ′2(‖v‖) sup
µ:Sµ ∩Sλ 6=∅

|vµ| 2−γ(|λ|−|µ|+(J−j0)),

where the exponent can now only take on values ≤ 0. The equation (3.3.14) is obviously also satisfied
setting C ′2(‖v‖) := 2γ(J−j0) C2(‖v‖) and the asymptotic behavior for |λ|, |µ| → ∞ is not affected: The
constant term is in effect like a perturbed decay parameter γ′, with γ′ → γ in the asymptotics.
Since Assumption 2 is still valid for C ′2(·), the above deliberations can be utilized using this adapted
function.

The proposition shows what one can understand instinctively: Adding a quickly (γ � 1) and a slowly
(γ ≈ 1) decaying operator, the result is still a slowly decaying operator with a little perturbation. The ap-
plication of this proposition lies in the approach of not handling linear and nonlinear operators separately
when a single vector is being applied (as depicted in [33]), but in handling the sum of such operators as
a single new operator. This saves resources by reusing the output of Algorithm 3.4 and ensures that all
target wavelet coefficients are computed to maximum accuracy.

Remark 3.33 Assumption 1 is trivially fulfilled for a linear bounded operator, Assumption 2 must
be verified nonetheless, e.g., using Theorem 1.59.

The question of how the parameter γ of (3.3.14) can be determined was also answered in [34]:

Remark 3.34 The standard value of the decay parameter from (3.3.14) for many operators F :

Hm(Ω)→ (Hm(Ω))′ and Ω ⊂ Rn using biorthogonal wavelets vanishing moments d, d̃ is given by

γ := r + d+ n/2, (3.3.15)

where d := min
{
d, d̃
}

and

• r := min {m, s?}, if (1.5.11) holds for an s? ≥ 0 and m ≥ n/2,

• r := dmin {m, s?, s}e, if (1.5.11) holds for 0 ≤ s < r? of (1.5.12) and m < n/2 .

The above can be improved upon if the inequality (1.5.11) can be shown to hold without the function (·)+

in the exponent, which then yields r := m.

This concludes the theoretical prerequisites of the scheme, we now describe how the algorithm works.

The Algorithm

Tree Prediction is based upon the idea outlined in Section 3.3.2: Categorize individual wavelet indices
according to their “importance” (given by the error functional) and add more indices in the vicinity of
the more highly regarded indices. The principle line of thought being, that because of the two locality
properties (L)(2.1.8) and (3.1.1), the results of the operator application F (·) must only significantly
influence a limited number of indices which have to be in the vicinity. Additionally, by the norm
equivalence Theorem 2.18, indices which are less significant, i.e., if their tree branch was cut, the error
made would be small, have lesser influence on their vicinity and thus fewer indices in that vicinity are
required in the output tree T .
To this end, the input tree is divided into layers, i.e. non-overlapping sets ∆̂j (not to be confused with
(2.1.7)), where each layer identifies a group of indices of the same significance, which will correspond to
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the same depth of refinement in the construction of the predicted tree. So, first the set of (ε, C?)-near
best trees of the input vector v ∈ `2(I), i.e.

Tj := T
(

2jε

j + 1
,v

)
, (3.3.16)

and the corresponding expanded trees T̃j are computed for j = 0, . . . , J . Since 2jε
j+1 → ∞ for j → ∞,

the index J <∞ denotes the smallest index for which TJ = ∅. It holds J . log2(‖v‖/ε). Then we set

∆̂j := T̃j \ T̃j+1, (3.3.17)

where ∆̂0 contains very few but significant indexes of T and ∆̂J−1 many indexes of lower significance.
For each index λ ∈ ∆̂j , we now compute the Influence set of depth c j ≥ 0, i.e.,

Λλ(c j) := {µ ∈ I |Sλ ∩ Sµ 6= ∅ and |λ| ≤ |µ| ≤ |λ|+ c j} , (3.3.18)

where the constant c is determined by

c :=
2

2γ − n > 0, (3.3.19)

where γ > n/2 is the parameter of (3.3.14). Including indices of lower levels in the Influence set, e.g.,
|µ| < |λ| is unnecessary, as the expansion property (3.2.4) holds. The final predicted tree is then given
by

T ′ := Ij0 ∪
J⋃

j=0

⋃

λ∈∆̂j

Λλ(c j). (3.3.20)

The implementation of the PREDICTION can be summarized in these three steps:

1. Calculate the error functional (3.3.7) for whole input tree,

2. Do a quasi-sorting of the indices and associate the refinement constant (3.3.19) for each element,

3. Set up the predicted tree given by the union of all influence sets (3.3.18).

Algorithm 3.4 Tree Prediction for an operator F (given by γ) and a vector v in wavelet coordinates on
the proper tree T . Output is a tree T ′ with ‖v −w‖ ≤ ε.
1: procedure PREDICTION(ε,v, γ) → T ′
2: T ← S(v)

3: j ← max
{
k ∈ N0 | 2kε

k+1 < ‖v‖
}

. Set maximum admissible value
4: L ← {(λ, ẽ(λ)) |λ ∈ N0(T )} . Error ẽ(λ) defined as in Algorithm 3.3
5: T ′ ← L . Initialize with roots
6: η ← ‖v‖2 −∑λ∈L |vλ|2 . Error up to this point
7: while √η > ε do
8: if √η < 2jε

j+1 then
9: j ← j − 1

10: end if
11: (λ, v)← arg maxµ∈L ẽ(µ) . Choose maximum element
12: T ′ ← T ′ ∪ Λλ(c j) . Compute Influence set
13: L ← (L \ {λL}) ∪ {(µ, ẽ(µ)) |µ ∈ C(λ)} . Remove λ from list and add all children C(λ)
14: η ← η − |vλ|2 . Decrease error value
15: end while
16: return T ′
17: end procedure

The above algorithm can be executed in optimal complexity, as this result (Theorem 3.4, [34]) shows:
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Proposition 3.35 The number of arithmetic and sorting operations needed to determine the prediction
set T ′ using the PREDICTION algorithm can be bounded by a constant multiple of (#T ′ + #S(v)).

Although it is not relevant for the operator application on a given index set itself, for the sake of
completeness we would like to mention that it can be shown that the size of the generated index set
T is optimal in the sense of being the smallest tree for which (3.3.12) holds.
We cite the main result from [34] :

Theorem 3.36 Given any v ∈ `2(I) and T ′ defined by (3.3.20), we have the error estimate

‖F(v)− F(v)|T ′‖`2(I) . ε. (3.3.21)

Moreover, if v ∈ Astree for 0 < s < 2γ−n
2n , the estimate

#(T ′) . ‖v‖1/sAstreeε
−1/s + #(N0) (3.3.22)

holds. Therefore F(v) ∈ Astree and

‖F(v)‖Astree . 1 + ‖v‖Astree . (3.3.23)

The constants in these estimates depend only on ‖v‖Astree , the space dimension n and the smoothness
parameter s.

The inequality (3.3.21) shows that the resulting tree is big enough such that F(v) can be computed up to
the desired accuracy ε. The estimate (3.3.22) shows that the predicted tree T ′ is not unreasonable big,
i.e., its size depends on the smoothness parameter s of the input vector v and the desired accuracy ε.
The higher s, the fewer indices are required, the lower the tolerance ε, the bigger the tree. Lastly, (3.3.23)
shows that the result is still an element of the smaller class Astree.
At the core of the above Algorithm 3.4 lies the computation of the Influence set (3.3.18). We discuss the
details of this set in the next section.

3.3.4 Approximating the Influence Set

A crucial point in the assembly of the predicted tree of Section 3.3.3 is the computation of a wavelet index
influence set (3.3.18). As mentioned before, this set is highly dependent on the properties of the wavelet,
e.g. polynomial degree, position and level, with boundary adaptations complicating things further. It is
not desirable to have to construct an individual influence set depending on all properties of every wavelet.
From an implementational point of view, a simple, universally applicable construction of the index set is
preferred. A good approximation to the influence set should comply with these requirements:

1. Simple implementation, i.e., mostly independent of wavelet position.

2. Computationally cheap, i.e., very low complexity.

3. No excess, i.e., no wavelet index which is not part of the exact influence set should be included.

There are several policies adhering to these conditions. We propose the following alternatives.

Children Only Only take into account direct descendants of any wavelet index. This leads to the set

Λ1
λ(c) := {µ � λ ∈ I | |λ| ≤ |µ| ≤ |λ|+ c} (3.3.24)

This set is obviously a subset of (3.3.18), but could be very small if the support of the wavelets
is large. The biggest advantage of this policy is its simplicity. As it only depends on data of the
current index, it is very easy to implement.

Children Of Parent To enlarge the former set, a natural approach is to include all children of the
elements’ parent. As so, this set engulfs the former set but also includes a sibling and its children.

Λ2
λ(c) := {µ ≺ Π(λ) ∈ I | |λ| ≤ |µ| ≤ |λ|+ c} (3.3.25)

As the former policy, this one is easy to compute, with just one extra computation, i.e., the
determination of the parent index. A drawback of this approach is that the set is unsymmetric,
i.e., the dyadic structure of the wavelet indices (3.2.8) leads to only one sibling being considered.
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Siblings And Their Children To remedy the unbalance of the previous policy, we can directly
consider the set of siblings of order s ∈ N0 of a wavelet index, i.e.,

Sλ(s) := {(j,k′, e) ∈ I | ‖k− k′‖∞ ≤ s} for λ = (j,k, e), (3.3.26)

and then adding these and their children, i.e.,

Λ3
λ(c) := {µ � Sλ(s) | |λ| ≤ |µ| ≤ |λ|+ c} . (3.3.27)

Here the sibling parameter s has to be chosen in such a way that the set does not grow too large
and unnecessary indices are not included. The actual value of the parameter s has to be determined
from properties of the wavelets being considered. Otherwise, this policy is still easy to implement,
although more involved than the above ones, especially because this set needs to be adapted at the
domain boundaries.

Examples for the sets can be found in Figure 3.3. Additional policies could of course be set up to more
accurately approximate the proper influence set of any given MRA, but the set (3.3.27) gives already a
pretty accurate approximation for our DKU24NB wavelets for s = 1.
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(c) Children of parent (d) Direct siblings and their children

Figure 3.3: Influence set and approximations thereof for the primal wavelet on level j = 4, at position
k = 7 of the DKU24NB MRA. The upper left diagram (a) shows the proper influence set of depth c = 3. In
each image, the wavelet index (4, 7, 1) is shown in red color, sibling are shown in green color, all children
are colored blue. The upper right diagram (b) depicts only the children of this wavelet, the lower left
diagram (c) shows all children of the parent (3, 3, 1). In the last diagram (d), the children of the wavelet
(4, 7, 1) and its siblings (4, 6, 1) and (4, 8, 1) are selected.

Influence Sets in Multiple Dimensions

Formulation (3.3.18) is completely independent of the underlying problem domain. The definition does
not account for the different isotropic types e ∈ {0, 1}n of the wavelet indices (2.4.18). In fact, by
(3.3.18) any wavelet indices µ ∈ I with intersecting support to ψλ for λ = (j,k, e) ∈ I regardless of the
type e must be taken into account. This entails that any number of wavelets, whose supports cover the
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whole domain Ω, would lead to the tree T containing all wavelet indices on the next levels (if the level
difference c is high enough for all λ). In applications, this would almost always lead to very full trees and
is hardly a desired behavior.
Therefore, in higher dimensions, we change the definition (3.3.18) to only include wavelets indices of the
same type, i.e., direct descendants of λ :

Λλ(c) := {µ ≺ λ |Sλ ∩ Sµ 6= ∅ and |λ| ≤ |µ| ≤ |λ|+ c} . (3.3.28)

This setting is also motivated by the idea that the operator F will preserve a certain structure in the
wavelet indices of u into the resulting wavelet vector F(u). This should be the case as long as the operator
does not rotate or permutate the coordinate axes. For such operators, the original influence set should
be considered.
In applications, the tensor product structure of the domain and isotropic wavelet is further used to
simplify the above definition to the easily implementable policy

Λλ(c) :=

{
n⊗

i=1

Λ̃λi(c) |λi := (j,ki, ei)

}
, (3.3.29)

where Λ̃λi(c) is one of the approximations (3.3.24), (3.3.25) or (3.3.27). For this to work, the one-
dimensional rules Λ̃λi(c) have to be extended from wavelets to single-scale functions, which is easily
done. After all, the aforementioned definitions only rely on level and location or support, information
which is available for both function types.
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Figure 3.4: Influence set and approximations thereof for the primal single scale function on level j = 4,
at position k = 7 of the DKU24NB MRA. The upper left diagram (a) shows the proper influence set of
depth c = 3. In each image, the index (4, 7, 0) is shown in red color, sibling are shown in green color,
all children are colored blue. The upper right diagram (b) depicts only the children of this single scale
function, the lower left diagram (c) shows all children of the parent (3, 4, 0). In the last diagram (d), the
children of the function (4, 7, 0) and its siblings (4, 6, 0) and (4, 8, 0) are selected.

The corresponding results of the aforementioned influence sets for the primal boundary adapted hat
functions and their tree structure (Appendix A.1.1) can be seen in Figure 3.4. From the study of these
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images, it is directly evident, that all heuristics except (3.3.24) produce indices outside the exact influence
set, i.e. excess indices.

Remark 3.37 A good balance for the primal isotropic wavelets of type DKU24NB is to choose (3.3.27)
for wavelets and (3.3.24) for single scale functions. This policy will be referred to as Mixed Sib-
ling/ChildrenOnly. In one dimension, it is identical to the Siblings and Their Children (3.3.27)
policy.

Dual Wavelets

The same considerations of the previous paragraph can of course be made for dual wavelets. The tree
structure of Section 3.2.1 is not constricted to primal wavelets. While it is possible to define a different
tree structure for the dual wavelets, there is little reason to do so. The set of primal and dual indices
is exactly the same and if the support inclusion property (3.2.12) is still valid, the tree structure is
best simply preserved. The result of the individual approximation policies is then exactly the same as
depicted in Figure 3.3 and Figure 3.4, except for the exact influence sets (Diagrams (a)). The support of
the dual single scale functions (and therefore the dual wavelets) is by Theorem 2.32 proportional to the
dual polynomial exactness d̃, which can be directly seen in Figure 3.5 and Figure 3.6.

3

4

5

6

7

2

3

4

5

6

7

(a) Proper influence set for primal index (4,7,0) (b) Proper influence set for primal index (4,7,1)

Figure 3.5: Exact influence sets for the dual single scale and wavelet functions of level j = 4, position
k = 7 of the MRA DKU22NB, i.e. d̃ = 2.
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(a) Proper influence set for dual index (4,7,0) (b) Proper influence set for dual index (4,7,1)

Figure 3.6: Exact influence sets for the dual single scale and wavelet functions of level j = 4, position
k = 7 of the MRA DKU24NB, i.e. d̃ = 4.

Runtime Tests

We briefly compare the runtime of each of the refinement policies. This construction of the predicted
tree is just a minor step in the calculation of the result vector in (3.3.12). As such, it should also only
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be a minor computational job and the overall complexity should be linear w.r.t. the resulting vector.
Here, we will now only compare the complexity of the individual refinement policies, i.e., we apply all
the refinement policies to the same input vectors and compare the execution times. This serves just to
show a qualitative comparison, e.g., to estimate the relative complexity of the different policies.
The results depicted in Figure 3.7 and Figure 3.8 were created by filling up a vector on a wavelet level j
and then timing the runtime needed to compute the refinements. As the total number of wavelet indices
grows exponentially with a factor ≈ 2d, the runtime graph on a logarithmic scale is linear. Every index
was marked for refinement of depth c = 3. As one can observe, the runtime of the tree based policies
(3.3.24), (3.3.25), (3.3.27) and Remark 3.37 perform very similarly, with only the exact refinement policy
(3.3.18) being more costly in computational terms. This has the simple reason that the tree based polices
can be applied level-wise, i.e., the tree can simply be traversed from roots to leaves and the elements
refined successively, where the maximum is taken when different refinement values for a single element
are encountered. The tree structure ensures that no child index can be generated more than once.
On the other hand, with (3.3.18) and (3.3.27), the final set of indices has to be made a proper tree again,
since additional indices might be inserted for which the parents are missing in the assembled tree.
The exact refinement policy by support has to compute all indices on all finer levels for a given index
and then insert them directly, since there is no other direct connection between these sets. It cannot
postpone computation of higher level depths to finer levels with depth c decreased by one. This leads
to many indices being inserted several times and explains the increased complexity. The extent of the
performance gap thus heavily depends on the refinement depth, which is smaller for lower values c < 3,
as can be seen in Figure 3.9. Since this is a 2D example, the number of children grows like 22 from one
refinement depth to the next. Hence, c = 4 has to insert ∼ 44 = 256 times as many indices than c = 1,
which can be clearly recognized in the graph.
In conclusion, we can say that all refinement policies, the approximations and the exact support set, are
feasible to use and none is prohibitively expensive.

Now that the first task, the determination of a suitable tree structure for (3.3.12), is completed, we turn
to the calculation of the values of the target indices.
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Figure 3.7: Runtime of the different refinement policies for a full vector in 1D of Level j (x-axis) and
depth c = 3.
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Figure 3.8: Runtime of the different refinement policies for a full vector in 2D of Level j (x-axis) and
depth c = 3.
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Figure 3.9: Runtime of the exact support refinement policy for a full vector in 2D of Level j (x-axis) and
varying depth from c = 1 to c = 4.
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3.4 Application of Semilinear Elliptic Operators

In this section we show how to represent a function in wavelet coordinates in terms of local polynomials
on disjoint cells. The idea for this reformulation is basically taken from [147] and the contents of this
section have already been published in [115].

3.4.1 Adaptive Polynomial Representation

The following discussion is tailored to the specific case of (biorthogonal) spline wavelets, i.e., wavelets
that are piecewise polynomials as described in Section 2.3. We begin by introducing the notion of a
partition of a domain Ω in the present context.

Definition 3.38 [Partition]
A partition P(Ω) of a domain Ω ⊂ Rn is a decomposition of Ω into closed hypercubes, such that the
union of all these subsets is Ω, i.e.,

Ω =
⋃

T∈P(Ω)

T.

Furthermore, any two pairwise different elements T, T ′ ∈ P(Ω) are allowed to either overlap at most in
one vertex or in one shared edge of lower dimensionality.

Of course, a partition can be defined with the aid of other subsets in a similar fashion. For instance,
commonly used meshes in finite element methods consists of triangles or tetrahedrons and yield a partition
in a natural way. In view of our application and due to the fact that we will consider solely domains
consisting of Cartesian products of intervals in R, it suffices to use hypercubes for the partitioning.

Definition 3.39 [Dyadic Partition]
The dyadic partitioning of Ω = [0, 1]n on level j is the set

Dj :=

{
n∏

i=1

[
2−jki, 2

−j(ki + 1)
]
| ki ∈

{
0, . . . , 2j − 1

}
, 1 ≤ i ≤ n

}
(3.4.1)

and its union is denoted by D :=
⋃
j≥j0 Dj, where j0 denotes the coarsest level in I.

This means Dj is the set of all hypercubes with side length 2−j contained in Ω. The set D has a natural
tree structure in the following sense: Associate for each element � ∈ Dj the set of children C(�) as the
set of elements �′ ∈ Dj+1 which are subsets of �, i.e.,

C(�) := {�′ ∈ Dj+1 |�′ ⊂ �} . (3.4.2)

Obviously, each element � has 2n children and �′ ⊆ � with �,�′ ∈ D implies that �′ is a descendant
of � or equal to �, i.e., �′ � �.

Piecewise Polynomial Representation

By property (P)(2.2.3), each primal wavelet and scaling function can be expressed in terms of piecewise
polynomials. Moreover, by (L)(2.1.8), the number of polynomials necessary to represent each function is
uniformly bounded. We can express any wavelet thus as

ψλ =
∑

i

pi|�i , suppψλ =
⋃

i

�i, (3.4.3)

where each pi|�i is locally defined on the domain �i ⊂ Rn. Due to the special relation (2.1.18) of the
wavelets on one level and the scaling functions on the next finer level, these hypercubes have to be on
level |λ|+ 1, i.e., from the set D|λ|+1. For each wavelet, the set of all these support cubes is denoted by

Dλ :=
{
� ∈ D|λ|+1 |� ⊂ Sλ

}
, (3.4.4)
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3.4. Application of Semilinear Elliptic Operators

For a tree structured index set T , we define the set Tj as the set of all indices on level j, that is,

Tj := {λ ∈ T | |λ| = j} . (3.4.5)

Furthermore, the union of supports of all wavelets on level j make up the support of Tj , i.e.,

S(Tj) :=
⋃

λ∈Tj
Sλ, (3.4.6)

which can be expressed as the union of the corresponding dyadic hypercubes, i.e.,

D(Tj) := {� ∈ Dj+1 |� ⊂ S(Tj)} =
⋃

λ∈Tj
Dλ. (3.4.7)

These definition can obviously be extended to the whole tree T . The set

D(T ) :=
⋃

λ∈T
Dλ =

⋃

j≥j0
D(Tj) (3.4.8)

contains all dyadic cubes part of the support of any wavelet index contained in tree T . The support of a
whole tree S(T ) is defined in total analogy by using (3.4.6).
The tree structure (Definition 3.8) combined with the nested support property (3.2.12) of the wavelets
entails that any hypercube of D(T ) is contained within a larger hypercube on the next coarser level in
D(T ), i.e., it generally holds

S(Tj+1) ⊆ S(Tj). (3.4.9)

Thus, the set D(T ) is also a tree in the sense of (3.4.2). This leads to the following statement.

Proposition 3.40 A tree structured set of wavelet indices T ⊂ I induces a tree structure of dyadic
hypercubes D(T ). Moreover, the leaves L(D(T )) form a partition of the domain Ω if T is a proper tree.

To apply assertion (3.4.3) in practice, a polynomial basis to uniquely represent each wavelet must be
chosen. In the following considerations, the explicit polynomial representation is not required, only its
properties, namely the basis and refinement properties. There exist several possible choices for actual
implementation and we refer to Appendix A.3 for details.

Remark 3.41 For simplicity, we call any basis function of a polynomial space a “monomial”, although
it does not need to be a monomial in the strict sense.

Let pt� be a monomial on � ⊂ Rn of order t := (t1, . . . , tn) ∈ Nn0 . Considering only polynomials of order
less than or equal d, the set of possible exponential indices is given by

Mn
d := {t | 0 ≤ ti ≤ d , i = 1, . . . , n} , (3.4.10)

which gives a multitude of (d+ 1)n different monomials. The set of all these monomials forms a basis of
Πn
d on each � and we define the vector consisting of all these monomials by

P� := (pt�)t∈Mn
d
. (3.4.11)

By (3.4.3) therefore exists a vector qλ,� ∈ R(d+1)n for any wavelet ψλ such that holds

ψλ =
∑

�∈Dλ
ψλ|� =

∑

�∈Dλ
qTλ,�P�χ�, (3.4.12)

where χ� denotes the characteristic function on �.

Remark 3.42 If the polynomial basis
{
pt�
}
is constructed from a choice of monomial basis

{
pt
}
of Rn

by scaling and translation onto each domain �, then the coefficients qλ,� only depend on the type of
wavelet and the relative position of � with respect to Sλ.
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3.4.2 Transformation to Local Polynomial Bases

Now we investigate how to represent a function v := vTΨ|T :=
∑
λ∈T vλψλ given its wavelet expansion

w.r.t. a tree-structured index set T by piecewise local polynomials on the cells D(T ).
Considering the function v restricted to the level j, i.e.,

v|Tj := vTj Ψj :=
∑

λ∈Tj
vλψλ, vj := (vλ)λ∈Tj ,

we can derive its polynomial representation by (3.4.12) as
∑

λ∈Tj
vλψλ =

∑

λ∈Tj
vλ
∑

�∈Dλ
qTλ,�P�χ�

=
∑

�∈D(Tj)
χ�

∑

λ∈Tj ,
Sλ⊃�

(vλqλ,�)TP�

=:
∑

�∈D(Tj)
χ�(gj�)TP�. (3.4.13)

In the second step, linearity of the wavelet decomposition enables us to collect the polynomial parts of all
wavelets living on � ∈ D(Tj) into one vector gj� ∈ R(d+1)n . Combining this relation for all coefficients of
vj , we arrive at a linear mapping of the wavelet coefficient vector vj into all the corresponding polynomial
coefficients on D(Tj), e.g.,

gj := (gj�)�∈D(Tj).

This mapping must be representable as a matrix and we denote it as

gj = Gj vj , Gj ∈ R(d+1)n#D(Tj)×#Tj . (3.4.14)

Remark 3.43 One should consider that, for simplicity, we have chosen to designate all wavelet coeffi-
cients on level j of v as vj instead of v|Tj . Also, the polynomial coefficient vectors gj are always to be
taken coupled to the dyadic partitioning D(Tj) ⊂ Dj+1.

Furthermore, since polynomials are refinable one can express each polynomial on a cell � ∈ Dj with
respect to polynomials on the next finer cells �′ ∈ Dj+1 so that (3.4.13) can be expressed on the finer
cells as

χ�(gj�)TP� =
∑

�′∈C(�)

χ�′(M�′,� gj�)TP�′ , (3.4.15)

with a (d + 1)n × (d + 1)n− refinement matrix M�′,�. Again, the matrices M�′,� do not directly
depend on the cells � and �′ but only on the position of the child �′ ⊂ � with respect to �. That is,
there are only #C(�) = 2n different refinement matrices M�′,�. Due to this refinement relation, we can
expand (3.4.13) into a two-level representation, e.g.,

∑

λ∈Tj
vλψλ =

∑

�∈D(Tj)∩L(D(T ))

χ�(gj�)TP�

+
∑

�′∈D(Tj+1)

χ�′(M�′,Π(�′)g
j
Π(�′))

TP�′ , (3.4.16)

where Π(�′) denotes the parent of �′. That means, each polynomial on a cell � ∈ D(Tj) with a
child contained in D(Tj+1) will be refined and expressed in terms of polynomials on these finer subcells.
Considering now two levels, v|Tj∪Tj+1 = v|Tj + v|Tj+1 ,

∑

λ∈Tj∪Tj+1

vλψλ =
∑

�∈D(Tj)∩L(D(T ))

χ�(gj�)TP�

+
∑

�′∈D(Tj+1)

χ�′
(
M�′,Π(�′)g

j
Π(�′) + gj+1

�′
)T

P�′ (3.4.17)
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shows the motivation for the refinement in (3.4.16), namely, the possibility to combine coefficients on
different levels. The representation (3.4.17) is now comprised only of non-overlapping cells. Repeating
this procedure yields an adaptive polynomial representation of the entire function,

v =
∑

λ∈T
vλψλ =

∑

�∈L(D(T ))

χ�gT�P�, (3.4.18)

where the coefficients g� can be computed from the gj� via the recursive application of the refinement
relations (3.4.16) and (3.4.17).
In summary, the multilevel wavelet expansion v =

∑
λ∈T vλψλ can be transformed into a polynomial

representation w.r.t. polynomials living on the leaves of the tree D(T ) only, whose supports are thus
pairwise disjoint.
The overall transformation, which transforms the wavelet coefficients v into the polynomial coefficients
g := (g�)�∈L(D(T )) will be denoted analogously to (3.4.14) by

g = GT v. (3.4.19)

With PT := (χ�P�)�∈L(D(T )) denoting the local polynomial bases on the leaves, it holds

gTPT = (GT v)TPT = vTGT
TPT , (3.4.20)

which means (ψλ)λ∈T = GT
TPT . Finally, we state the algorithm which performs the transformation from

wavelet coordinates into the local polynomial coordinates.

Algorithm 3.5 Transformation from wavelet representation v on T to local unique polynomial repre-
sentation g on D(T ).
1: procedure WTREE_2_PTREE(v) → g
2: T := S(v), j0 ← min{|λ| : λ ∈ T }, J ← max{|λ| : λ ∈ T }
3: Calculate gj0 = Gj0vj0 . According to (3.4.13)
4: g← gj0
5: for j = j0 + 1, . . . , J do
6: Calculate gj = Gjvj . According to (3.4.13)
7: for all � ∈ D(Tj−1) with � 6∈ L(D(T )) do
8: g← g \ (gj−1)� . Considering g as a set
9: for all �′ ∈ C(�) do

10: (gj)�′ ← (gj)�′ + M�′,�(gj−1)� . According to (3.4.15)
11: end for
12: end for
13: g← g ∪ gj
14: end for
15: return g
16: end procedure

An important aspect of course is the efficiency of the algorithm, that is, the computational effort needed
to perform the algorithm. This question is answered by the following proposition cited from [147].

Proposition 3.44 Suppose that the input vector v ∈ `2(I) is finite and that the underlying index set
T := S(v) is a proper tree. Then the number of arithmetic operations needed to compute the output
of Algorithm 3.5 is proportional to the size of the input vector v, i.e., the transformation from wavelet
coordinates into polynomial coordinates can be applied in O(#T ) arithmetic operations.

This result shows that the transformation is of optimal computational complexity, since the computational
effort is linear in the size of data.

Remark 3.45 It should be noted that the size of the coefficient vector of the polynomial representation can
be larger than the coefficient vector of the wavelet representation. Nevertheless, its size can be estimated
to be

#g . #v, gTPT = vTΨ|T ,
with a constant only depending on property (P)(2.2.3) of the wavelet basis.
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3.4.3 Adaptive Nonlinear Operator Application

In the previous section we have seen how to represent a function in wavelet coordinates in terms of local
polynomials. We now show how to apply a nonlinear local operator F : H → H′ on the basis of this
polynomial representation.
In the following, let the wavelet coefficients of v form a proper tree T and let T ′ be another proper
tree, generated by PREDICTION of Section 3.3.3. The task is now the efficient application of the operator
F in wavelet coordinates to v on the given index set T ′. Recalling the definition of the operator F in
Section 2.2.4, we recognize that we need to evaluate dual forms or inner products, depending on the
operator, for all λ ∈ T ′ with the given function v = vTΨ.

Remark 3.46 The first idea that comes to mind to calculate each coefficient 〈ψλ, F (v)〉 is probably
numerical quadrature. This approach might not be optimal since the integrands, i.e., the piecewise
polynomial wavelets, are in general not globally smooth and due to the multilevel structure of the wavelet
basis, point evaluations are quite expensive. Moreover, this obviously could lead to an inexact calculation
of the desired vector (〈ψλ, F (v)〉)λ∈T ′ , which in addition gives rise to theoretical difficulties in the overall
context of adaptive solution methods.

Given Remark 3.46, we pursue a different direction. The idea is to exploit the smoothness of the
polynomials in the polynomial representation and the fact that the construction in Section 3.4.2 yields a
representation w.r.t. polynomials on disjoint cells which do not overlap on different levels.
Using the representation (3.4.13), we obtain for each λ ∈ T ′,

(F(v))λ = 〈ψλ, F (v)〉 = 〈
∑

�∈Dλ
χ�qTλ,�P�, F (v)〉

=
∑

�∈Dλ
qTλ,�〈χ�P�, F (v)〉, (3.4.21)

meaning we can evaluate the operator w.r.t. our monomial basis P� = (pt�)t and then reassemble the
value of the wavelet expansion coefficient using the knowledge of qλ,�. Therefore, recalling the overall
transformations (3.4.19) and (3.4.20), the target vector in wavelet coordinates can be written as

(〈ψλ, F (v)〉)λ∈T ′ = 〈(ψλ)λ∈T ′ , F (v)〉
= 〈GT

T ′PT ′ , F (v)〉
= GT

T ′〈PT ′ , F (v)〉. (3.4.22)

Thus, we have split up the evaluations (〈ψλ, F (v)〉)λ∈T ′ into the simpler
evaluations (〈χ�pt�, F (v)〉)�∈L(D(T ′)),t∈Mn

d
on each cell � combined with an application of the linear

operator GT
T ′ .

Postponing discussion of the operator GT
T ′ till Section 3.4.5, we first handle the computation of the inner

products 〈PT ′ , F (v)〉 for each � ∈ D(T ′). To simplify these calculations, the result of the operator, F (v),
should be expressed in terms of polynomials on the same cells as the polynomials in the left hand side of
the expression, i.e., L(D(T ′)). In other words, although only the input data v is given, F (v) should be
computed on the partition L(D(T ′)) of the output vector.

Remark 3.47 To this end, we possibly have to enlarge the tree T ′ to include T but this is usually
unnecessary because T ⊂ T ′ holds in order to fulfill (3.3.12). From this directly follows D(T ) ⊂ D(T ′)
and we thus can refine the partition determined by T to match the partition of T ′ where needed. The
complexity of the operation obviously depends on the number of children of each cell and the number
of refinement steps. The complexity to refine a single polynomial can be bounded as a constant only
depending on the dimension and polynomial degree, but does not depend on the data itself. Overall, this
step is necessary but can be neglected when estimating the overall complexity of the nonlinear operator
application.

Using the representation (3.4.18) for v on T ′, it follows for any � ∈ L(D(T ′)),

〈χ�P�, F (v)〉 = 〈χ�P�, F (
∑

�′∈L(D(T ′))
χ�′g

T
�′P�′)〉

=
〈
χ�P�, F

(
χ�gT�P�

)〉
, (3.4.23)
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since the cells are disjoint and the operator F is assumed to be local. The advantage of this representation
is that we only have to evaluate the dual forms on disjoint cells � ∈ L(D(T ′)) and only with respect
to our smooth polynomial basis P�. Moreover, we only need to determine the operator application
F (χ�gT�P�) with respect to one local polynomial χ�gT�P� instead of a superposition of several
overlapping wavelets on different levels.

Remark 3.48 For many operators, especially polynomial, e.g., F (u) := u3, and linear PDE operators,
the result F (pt�) is again representable in the basis P�. This has the advantage, that the internal products
of monomials can be calculated analytically and therefore quadrature errors can be avoided. This is
preferred to quadrature rules as their errors can become an impediment for convergence in the overall
context of adaptive solution methods.

It is now apparent that the unique, non-overlapping polynomial representation of Section 3.4.2 easily
enables the exact and fast application of local (non-)linear operators by simply traversing L(D(T ′)) and
using (3.4.23) on each cell.
To conclude, we present the following algorithm implementing the operator application F (v) on the
partition L(D(T ′)) of the domain Ω of the (predicted) proper tree T ′.

Algorithm 3.6 Application of operator F on L(D(T ′)) based upon polynomial representation g of v
computed by Algorithm 3.5 refined to match D(T ′).
1: procedure APPLY_POLY_OP(F ,g) → I
2: for all � ∈ L((D(T ′)) do
3: for all t ∈Mn

d do
4: I�,t ← 〈pt�, F (gT�P�)〉 . Evaluate exactly or by quadrature
5: end for
6: end for
7: return I
8: end procedure

We now elaborate on the computation of the individual operator applications on the hypercubes �.

3.4.4 Reference Element Operator Applications

To actually be able to produce numerical results, we first have to choose a basis for the polynomial space
P� from (3.4.3) for � ∈ Dj defined in (3.4.1). A common approach is to use tensor product constructions,
i.e., for x ∈ �,

pt�(x) :=
∏

1≤i≤n
ptij,ki(xi), t := (t1, . . . , tn) ∈ Nn0 . (3.4.24)

The actual choice of the 1D monomial bases {ptij,ki(xi)} is not important in the following discussion. All
that has to be known about the basis is how to represent given piecewise polynomial functions in it and
the value of integrals of the form

∫

�
F (pt�(x))pr�(x)dx, pt�, p

r
� ∈ P�. (3.4.25)

Suitable constructions can be found in Appendix A.3.

The Nonlinear Operators F (v) := vs

As an example of a nonlinear local operator, we discuss the set up of the operator F (v) := vs, s ∈ N.
We will show how these nonlinear operators can be applied exactly, i.e. how the inner products
〈χ�P�, F (χ�gT�P�)〉 can be calculated analytically. To evaluate the expression 〈χ�P�, F (χ�gT�P�)〉,
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the multinomial theorem can be used to expand the right hand side expression as

(χ�gT�P�)s = χ�

(
m∑

i=1

(g�)i (P�)i

)s

= χ�


 ∑

s1+···+sm=s

s!

s1! · · · sm!

∏

1≤i≤m
((g�)i (P�)i)

si




=: χ�


 ∑

s1+···+sm=s

Y(g�; s; s1, . . . , sm)
∏

1≤i≤m
((P�)i)

si


 , (3.4.26)

with m := #Mn
d = (d+ 1)n and Y(g�; s; s1, . . . , sm) := s!

s1!···sm!

∏
1≤i≤m(g�)sii , where (P�)i and (g�)i

specify the i-th element of P� and g�, respectively. Inserting this expression into the dual forms yields

〈χ�P�, (χ�gT�P�)s〉

= 〈χ�P�, χ�


 ∑

s1+···+sm=s

Y(g�; s; s1, . . . , sm)
∏

1≤i≤m
((P�)i)

si


〉

=
∑

s1+···+sm=s

Y(g�; s; s1, . . . , sm)

〈
χ�P�, χ�

∏

1≤i≤m
((P�)i)

si

〉
. (3.4.27)

That is, one solely needs to calculate the inner products of local monomials of certain degrees depending on
the exponent s and the degree of the polynomials determined by the underlying wavelet basis. Obviously,
these inner products can be calculated independently of the application of the operator itself.

The Laplace Operator

To exemplify that the polynomials representation method is not only applicable to operators that itself
can be expressed as polynomials, we look at the stereotypical PDE operator, the operator −∆, see
formula (1.4.5). In weak form, this leads to the bilinear form a(v, w) :=

∫
∇v · ∇w dµ, which can simply

be transferred to any � ⊂ Ω. There, the gradient acts as a mapping from the polynomial basis P� of
Mn

d to the polynomial basis P� ofMn
d−1. For a local representation gT�P�, probing with another basis

function (P�)i, the linearity of the gradient then leads to

a((P�)t,g
T
�P�) =

∫

�
∇(P�)t · ∇

(
gT�P�

)
dµ

=

∫

�
∇(P�)t · ∇

(∑

m

(g�)m(P�)m

)
dµ

=
∑

m

(g�)m

∫

�
∇(P�)t · ∇(P�)m dµ (3.4.28)

So, as before, the results of the operator w.r.t. the polynomial basis can be precomputed analytically
and only a linear term depending on the input vector g� has to be evaluated. In higher dimensions, the
tensor product structure entails that the operator can not simply be expressed as a tensor product, but
as a sum of tensor products:

∫

�
∇pt�(x) · ∇pm� (x)dµ(x) (3.4.29)

=

∫

�

n∑

i=1


 ∂

∂xi
ptij,ki(xi)

∏

r 6=i
ptrj,kr (xr)

∂

∂xi
pmi

j,ki
(xi)

∏

s6=i
pms

j,ks
(xs)


 dµ(x) (3.4.30)

=

n∑

i=1



∫ 2−j(ki+1)

2−jki

∂

∂xi
ptij,ki(xi)

∂

∂xi
pmi

j,ki
(xi)dxi

∏

r 6=i

∫ 2−j(kr+1)

2−jkr

ptrj,kr (xr)p
mr

j,kr
(xr)dxr


 . (3.4.31)
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Each individual term can then be evaluated according to one-dimensional formulas.

Having computed the result of operator F w.r.t. the polynomial basis on L(D(T ′)), we now need to
compute the expressions 〈ψλ, F (v)〉 w.r.t. all wavelets of the tree T ′.

3.4.5 Reconstruction of Target Wavelet Indices

Assuming a proper tree T ′ and a vector I =
(
pt�, F (gT�P�)

)
� for all � ∈ L(D(T ′)), we now want to to

reconstruct the values 〈ψλ, F (v)〉 of the vector F(v).
Combining the refinement relation (3.4.15) with (3.4.21), we obtain the relation

〈ψλ, F (v)〉 =
∑

�∈Dλ∩L(D(T ′))
qT�,λ〈χ�P�, F (v)〉

+
∑

�∈Dλ\L(D(T ′))
qT�,λ

∑

�′∈C(�)

MT
�′,�〈χ�′P�′ , F (v)〉, (3.4.32)

which shows how to calculate the target values from data given not only on cells � ⊂ Sλ but also from
children �′ ⊂ �, as long as both sets form a partition of Sλ. Repeating the argument gives rise to the
following Algorithm 3.7 performing the transformation from the output of the operator application in
polynomial representation I to the representation in terms of wavelets.

Algorithm 3.7 Decomposition of output data I of Algorithm 3.6 in order to retain wavelet coefficients
for all λ ∈ T ′.
1: procedure DECOMPOSE(I,T ′) → w
2: j0 ← min {|λ| |λ ∈ T ′}, J ← max {|λ| |λ ∈ T ′}
3: for j = J, . . . , j0 do
4: for all � ∈ D(T ′j ) \ L(D(T ′)) do
5: I� ←

∑
�′∈C(�) MT

�′,�I�′ . Upscaling of values, cf. (3.4.32)
6: end for
7: for all λ ∈ T ′j do
8: wλ ←

∑
�∈Dλ qTλ,�I� . Compute coefficient value, cf. (3.4.32)

9: end for
10: end for
11: return w
12: end procedure

In words, the scheme assembles from the dual forms w.r.t. the polynomial basis, the vector of dual forms
w.r.t. wavelets on one level, then constructs the results w.r.t the polynomial basis on the next coarser
level and repeats the process. By (3.4.22), the application of Algorithm 3.7 on the tree T ′ is denoted by
GT
T ′ .

Remark 3.49 As shown, the transformation GT
T ′ can be interpreted as a reverse application of Algo-

rithm 3.5 in some sense. In wavelet terms, Algorithm 3.5 implements the primal direct fast wavelet
transform and Algorithm 3.7 the dual inverse, i.e. transposed, version.

This completes the assemblage of algorithms necessary for the adaptive application of nonlinear operators.

3.4.6 The Nonlinear Apply Scheme

We now state the overall APPLY_NONLINEAR scheme performing the determination of a suitable wavelet
index set combined with the application w.r.t. local polynomials and state a computational complexity
result.
The implementation of the APPLY_NONLINEAR scheme can be summarized in these steps:

1. Depending on an input vector v and target accuracy ε > 0, predict a target set T ′,

2. Assemble the adaptive local piecewise polynomial representation g on D(T ) of v w.r.t. T ′,
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3. Apply the operator F on each � ∈ D(T ′),

4. Reconstruct the output tree wavelet coefficients by decomposing each one.

The complete APPLY_NONLINEAR scheme thus reads as follows:

Algorithm 3.8 Adaptive approximate operator application F on a finitely supported v ∈ `2(I) up to
accuracy ε.
1: procedure APPLY_NONLINEAR(ε, F , γ, v) → w
2: T ′ ← PREDICTION( ε, v, γ ) . Ensure (3.3.12)
3: T ′ ← T ′ ∪ S(v) . Ensure S(v) ⊂ T ′
4: for all µ ∈ T ′ \ S(v) do . Set up v on T ′
5: vµ ← 0 . Insert wavelet coefficients
6: end for
7: g← WTREE_2_PTREE( v )
8: I← APPLY_POLY_OP( F , g )
9: w← DECOMPOSE( I, T ′ )

10: return w
11: end procedure

We now consider the efficiency of the APPLY_NONLINEAR scheme, that is, the computational effort needed
to perform the algorithm.

Theorem 3.50 Suppose that we have a routine PREDICTION according to Proposition 3.35 satisfying
(3.3.12) at hand and that the dual forms 〈pt�, F (gT�P�)〉 can be calculated exactly in a constant number
of arithmetic operations which do not depend on �, then the number of arithmetic and sorting operations
needed to calculate the approximation w by the APPLY_NONLINEAR scheme Algorithm 3.8 applied to v ∈
`2(I) can be bounded by a constant multiple of its output size #S(w). Moreover, it holds that

‖F(v)− F(v)|T ‖`2(I) . ε. (3.4.33)

Proof: The PREDICTION step needsO(#(T \S(v))+#S(v)) = O(#T ) arithmetic and sorting operations,
according to Proposition 3.35, where we have used that the output set T is not yet enlarged in this step.
Applying the transformation to local polynomials in WTREE_2_PTREE as well needs O(#T ) operations
according to Proposition 3.44, since the input vector v is expressed on T , see step 3.
In APPLY_POLY_OP one has to calculate #Mp × #L(D(T )) of the expressions 〈pt�, F (gT�P�)〉, where
each can be calculated in constant time by assumption. Here #Mp is a fixed constant only depending
on the underlying wavelet and its polynomial representation. Moreover, it was shown in [147] that
#L(D(T )) . #T so that APPLY_POLY_OP can be applied in O(#T ) arithmetic operation.
In the DECOMPOSE step, we have to apply the matrices M�′,� a number of #C(�) times on each cell
� ∈ D(T ) \ L(D(T )), where the number of rows and columns are fixed, depending again only on the
underlying wavelet and its polynomial representation. Additionally, we have to calculate qTλ,�I� for each
index λ ∈ T and � ∈ Pλ a total of #Pλ . 1 times. That is, one needs O(#(D(T ) \ L(D(T ))) + #T ) .
O(#T ) operations to perform the DECOMPOSE scheme, where we made use of the fact that #D(T ) .
#L(D(T )) . #T , see [147].
Since each consecutive step of the algorithm can thus be executed in O(#T ) operations, it also follows
for the overall computational complexity, i.e., O(#T ) = O(#S(w)). The estimation (3.4.33) is a direct
consequence of (3.3.12), since the dual forms 〈pt�, F (gT�P�)〉, and therefore the entire operator applica-
tion on the fixed index set T , can be applied exactly.

This result shows that Algorithm 3.8 can be applied with asymptotic optimal computational complexity
and yields an approximation up to a desired accuracy ε. The costs of applying the operators depicted
in Section 3.4.4 and Algorithms 3.5 and 3.7 can be found in Figures 3.10 through 3.12. A more detailed
view of the actual execution can be found in Figure 3.13.

104



3.4. Application of Semilinear Elliptic Operators

105

10−1

100

2 · 104 5 · 104

7 10 15 20 25 30

Number of wavelet coefficients (N)

T
i
m
e
(
s
e
c
)

PREDICT
WTREE 2 PTREE
DECOMPOSE

Level J

105

10−3

10−2

10−1

2 · 104 5 · 104 5 · 105

7 10 15 20 25 30

Number of polynomial patches (�)

T
i
m
e
(
s
e
c
)

F (u) = u

F (u) = −∆u
F (u) = −∆u+ u

F (u) = u3

F (u) = −∆u+ u3

F (u) = −∆u+ u3 + u
Level J

Figure 3.10: Times of the algorithms and PDE operators for the DKU22NB wavelet in 2D. For the
application, a vector on a single level J with three random wavelet coefficients on the highest wavelet
level is made into a proper tree with random coefficient values and then used as the input vector for the
algorithms. In each case, ten such vectors are constructed and the execution time measured. The tree
prediction is run with γ := 4 and ε := 0.001.

105



Section 3. Adaptive Wavelet Methods based upon Trees

105

10−1

100

101

5 · 104

5 10 15 20 25 30

Number of wavelet coefficients (N)

T
i
m
e
(
s
e
c
)

PREDICT
WTREE 2 PTREE
DECOMPOSE

Level J

105
10−3

10−2

10−1

100

5 · 104 5 · 105

5 10 15 20 25 30

Number of polynomial patches (�)

T
i
m
e
(
s
e
c
)

F (u) = u

F (u) = −∆u
F (u) = −∆u+ u

F (u) = u3

F (u) = −∆u+ u3

F (u) = −∆u+ u3 + u
Level J

Figure 3.11: Times of the algorithms and PDE operators for the DKU22NB wavelet in 3D. For the
application, a vector on a single level J with three random wavelet coefficients on the highest wavelet
level is made a proper tree with random coefficient values and then used as the input vector for the
algorithms. In each case, ten such vectors are constructed and the execution time measured. The tree
prediction is run with γ := 6 and ε := 0.001.
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Figure 3.12: Execution times of the algorithms for the DKU24NB wavelet in 2D. The data points were
computed in the same manner as before, the only difference here is the higher order of the dual wavelets.
As this also enlarges the support of the primal wavelets, it entails a higher complexity in the Algorithms 3.5
and 3.7. For comparison, see Figure 3.10. The tree prediction is run with γ := 4 and ε := 0.001. As the
execution time of the polynomial operators F (·) is independent of the wavelets employed, these values
would be en par with the ones displayed in Figure 3.10 and are omitted.

It is clearly noticeable that each algorithm and the PDE polynomial operators are asymptotically linear
in complexity. Of the Algorithms 3.4, 3.5 and 3.7, the prediction algorithm executes the fastest. The
prediction algorithm runs very fast here because the input vector contains only a few hundred, up to
a thousand, wavelet coefficients in any case. The complexity thus stems from the construction of the
Influence set (3.3.18), especially since here the exact sets are constructed. In comparison, the complexity
of the decomposition procedure is here slightly higher than the complexity of the construction of the
adaptive polynomial. This is due to the increased complexity of constructing the adaptive polynomial of
the input vector within the polynomial described by the output vector. To save memory, the combined
vector of Algorithm 3 is never constructed, but it is checked for every wavelet index of the output if
it is contained in the input vector. If the wavelet index exists, its value is used, otherwise the value is
assumed to be zero. This implementation saves the insertion of a lot of zero valued wavelet coefficients
at the expense of a higher execution cost. But if the values were inserted as in Algorithm 3, this step
should also be counted when measuring the complexity of Algorithm 3.5, which would entail the same
computational overhead coupled with the memory overhead, so this approach seems favorable.
In contrast, the application of the PDE operators on the piecewise polynomials is approximately an order
of magnitude faster than the algorithms involving wavelet coefficients. This is due to the design decision
for our code to being able to choose the wavelet type dynamically at runtime, but the type of polynomials
used is chosen at compile time and stays fixed. Hence, computations in the realm of polynomial data
structures are very quickly executable compared to the wavelet realm. But this is also only possible
because of some caching strategies of the multi-dimensional polynomials, the repeated computation of
these tensor products would otherwise seriously impact efficiency.
Studying the PDE operator diagrams, it is clear that the application of linear operators is quicker than
nonlinear operators, which was to be expected. But also, all of the operators show a linear asymptotic
rate.
This concludes the application of nonlinear operators, we now turn to specialized implementations for
the application of linear operator in the present context.
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PREDICTION (10.4%)
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Basis computations (8.7%)
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Basis computations (8.7%)

Relative Complexity of the Components of Algorithm APPLY_NONLINEAR

Figure 3.13: Runtime percentages of the individual algorithms during the execution of APPLY_NONLINEAR
(Algorithm 3.8). The data was gathered during the computation of the solution of Section 4.6 using
valgrind. This tool gathers profiling data on a procedural level, i.e., on functions that the code execution
“jumps into”. The chart does not represent a single execution of APPLY_NONLINEAR, but the accumulated
data of the overall program run. As the presentation only shows relative percentages, the data can also
be interpreted as the average of the individual calls. 100% here refers to the overall execution time and
all percentages are relative to this number.

Remark 3.51 The diagram shows that most work must be invested in constructing the adaptive polyno-
mial representation from the adaptive wavelet vector (Algorithm 3.5), closely followed by the decomposition
of the target wavelet indices from the integral values on the polynomial grid (Algorithm 3.7). The tree
prediction algorithm (Algorithm 3.4) is comparatively quickly computable, but is still beaten by the com-
putation of the bilinear forms (3.4.27) and (3.4.29) during Algorithm 3.6.
The cost of some mathematically relevant sub-procedures of these algorithms are also highlighted. It
is clearly noticeable that computations done upon existing data structures are cheap compared to creat-
ing or destroying said (adaptive) data structures. Some techniques to lower the overhead imposed by
these data structures can be found in Appendix B.3. The basis computations referred to in the recon-
struction/decomposition algorithm have already been streamlined to minimize computational and memory
overhead, but it is simply a fact that the number of polynomial pieces of a wavelet (3.4.12) grows ex-
ponentially in the dimension, due to the tensor product structure (2.4.18). The representation of these
polynomial pieces can be precomputed, but the impact of having to traverse all pieces cannot be avoided.
The unmarked parts of the pie charts above represents all the other commands in the algorithms, e.g.,
auxiliary calculations and operations executed for memory management.
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3.5 Application of Linear Operators
Although the current framework of adaptive wavelet methods was primarily developed for the solution of
nonlinear problems, linear sub- or side-problems could be accommodated as well. Since linear operators
are just a small subset of the larger class of nonlinear operators, the machinery of Section 3.4 is of course
applicable. Apart from these tools, there is a prior generation of adaptive wavelet methods available
specifically designed for linear operators, see [31].

Remark 3.52 Converting an adaptive vector, which only stores non-zero wavelet indices, into a vector
used in full-grid methods, which stores all elements, and using the standard wavelet operator representation
of Section 2.2.4 is usually not feasible. This is because the required memory depends exponentially on the
highest level with a non-zero coefficient. However, this method can be used if the effective level is not too
high. In this case, this approach usually has the advantage to lead quickly to very accurate results, which
is especially tempting for applications of inverse linear operators.

Our main focus here is to not only use as much of the data structures and algorithms developed for
nonlinear operators to minimize overhead, but also to exploit the advantageous properties of a linear
operator during its application.
For example, in case of the control problems discussed in [122], linear operators are encountered in the
following situations:

• First, incorporating Riesz Operators (Section 2.2.6) to control the norm with which to minimize
leads to direct and inverse applications of said operator during the solution process. The exact
Riesz Operators for L2 and H1 given in (2.2.37) are obviously linear. Moreover, they are local
operators (3.1.1) and so is the dual Riesz Operator for L2 given by (2.2.45). This is not true for
the inverse stiffness matrix and thus the inverse of RH1 , therefore, in this context, the application
of R−1

H1 is best done by using a numerical solution method. We will discuss these operators in detail
in Section 3.5.1 and Section 3.5.3.

• Second, in the adjoint problem and the application of Newton’s method to the operator F (u) = u3,
an adaptively weighted mass matrix will emerge. This is an operator based upon the bilinear
form

az(u, v) :=

∫

Ω

z2 u v dµ, for u, v ∈ H,

for a fixed given function z ∈ H. We discuss this operator subsequently after the Riesz operator
section in Section 3.5.4.

• Lastly, the trace operator γ0 : Hs(Ω)→ Hs−1/2(Γ) and its adjoint have to be applied during the
solution process. These operators (distinguishing between the parts Γ ⊂ ∂Ω) do not fall in the same
category as the above, because they do not map from a space into its dual. Instead, these operators
can here be applied by a simple exclusion criteria and a subsequent adaptive wavelet transform.
This will be discussed in Section 3.6.

Common to all approaches mentioned here is the fact, that, for a linear operator, each wavelet coefficient
of the input vector can be considered independently of all other wavelet coefficients and each result
of the operator application can (e.g., as a last step) be combined into a single resulting output vector.
This does not mean that these applications are trivial though, because the result of the operator w.r.t.
to a single wavelet index might depend on any number of other wavelet indices in the input tree, thus
potentially resulting in an overall nonlinear complexity.

3.5.1 Evaluation Algorithms for Linear Operators

We discuss here the application of the Mass Matrix and Stiffness Matrix (2.2.37) and how the other
Riesz Operators of Section 2.2.6 can be applied.
The main deviation from the application of nonlinear operator in Section 3.4.3 is to skip the polynomial
representation altogether and stay in the wavelet domain all the time. This has the advantage, that
also operators can still be applied if employed wavelets are not piecewise polynomial, e.g., if the wavelet
expansion is w.r.t. the dual wavelets of Section 2.1.4. This is for example the case for the inverse Mass
Matrix discussed in Section 3.5.3.
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The General Task of Applying a Linear Operator

Let A : V → V ′ be a linear operator given by the bilinear form a(·, ·) and V be a space on the domain
Ω ⊂ Rn equipped with biorthogonal wavelet bases Ψ, Ψ̃. To compute A v = w, with v ∈ `2 based on
the proper tree T , we still assume that w was generated by predicting the output tree set T ′ as before.
Herein, we are mainly concerned about calculating the values of the entries of the output vector w. The
main idea is to facilitate property (3.1.1) to calculate the entries by the following identity:

(w)λ = a(ψλ,v
TΨ) =

∑

µ∈T :suppψλ∩suppψµ 6=∅
a(ψλ, ψµ). (3.5.1)

In order to iterate over all elements wλ ∈ w, the following steps are executed:

1. Generate the Dependency set, i.e., the set of all coefficients

Υλ(T ) := {µ ∈ T | suppψµ ∩ suppψλ 6= ∅} . (3.5.2)

2. For all µ ∈ Υλ(S(v)), calculate vµ · a(ψλ, ψµ) and add to wλ.

Because of the linearity of the operator A, this amounts to applying A to v. In essence, should the
discretized operator A in wavelet coordinates be directly available (and not by the scheme (2.2.24)), this
process mimics the matrix-vector multiplication using all unit vectors in the full space discretization.

Remark 3.53 The Dependency set looks very similar to the Influence set (3.3.18), but the Influence set
Λλ(c) contains indices on higher levels, whereas the Dependency set will later contain only indices on
lower levels. Moreover, it can be understood as an inverse of the Influence set, because the Dependency
set will be made up of all indices µ, whose (infinite) Influence set contains the index λ.

It should be noted that for T ⊂ I, it holds

Υλ(T ) = Υλ(I) ∩ T , (3.5.3)

which is the actual way of determining Υλ(T ) in applications. This is simply because the set T is usually
not fixed and determined at runtime, whereas I is known beforehand.
As equation (3.5.1) demands, we digress to cover the creation of arbitrary values a(ψλ, ψµ).

Calculating Arbitrary Values for Bilinear Forms

Very often, the manual calculation of bilinear form values a(·, ·) for the linear operator A : H → H′ is
only feasible for same-level single-scale functions due to the high number of possible combinations of
spatial locations, e.g., see Section 3.5.2. But even if the operator is only available on a single level J ,
then all values of all coarser levels j ≤ J can be computed by applying the fast wavelet transform. By
studying (2.1.33) and (2.1.39), it holds

MT
j+1,1 MT

j+2,0 · · ·MT
J,0 〈ΦJ , AΦJ〉 = 〈Ψj , AΦJ〉 . (3.5.4)

Thus, by only applying the fast wavelet transform from the left, all possible combinations
〈Φj , AΦJ〉 , 〈Ψj , AΦJ〉 of the levels j0 ≤ j ≤ J can be computed successively. This can obviously be
extended by applying appropriate terms Mj,0/Mj,1 from the right, but it would usually be unnecessary
for symmetric bilinear forms, except when 〈·, AΨJ〉 is sought.
Assuming the bilinear form to be translation invariant, i.e., the result does not depend on the abso-
lute position of the involved functions but only on their relative positions, the resulting matrix would
contain many repeated values in different columns, and thus only very few columns of these matrices
actually have to be assembled. These columns can be found automatically by categorizing the involved
functions φj,k and then noting their possible positions.

Example 3.54 The boundary adapted piecewise linear hat functions (Appendix A.1.1) are divided into
three types given in (A.1.3).
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Saving the indices and the values of the column bands for all possible combinations of functions is all the
information needed to compute the value of the bilinear form a(·, φJ,k) for any fixed function φJ,k: For
any level difference J − j ≥ 0, the appropriate matrix band has to be loaded (depending on the category
of the function) and the value of the offset k has to be taken into account. Usually, this simply means
that the matrix band is shifted two positions per one offset to the original (assembly) location index.

Remark 3.55 The above deductions have more applications than just the evaluation of single-scale
functions:

• If the bilinear form is local and the converse of (3.1.1) also holds, a non-zero value in a certain row
of a column of the matrix 〈Φj , AΦJ〉 then gives the information that the supports of these functions
must be overlapping. This gives rise to an easily computable Support Operator, which can answer
whether two arbitrary functions share support in O (1) time.

• If the converse of (3.1.1) does not hold and the functions involved are piecewise polynomials, e.g.,
primal functions, and the function on the finer level is a wavelet, then gaps in the band due to
vanishing moments (Ṽ)(2.2.6) will occur. This can only happen if the level difference is high
enough so a wavelet is evaluated w.r.t. to a single polynomial piece of the other function. Since,
by the dyadic construction (2.1.14), the number of functions living a fixed interval on level j grows
like 2J−j, this means the gaps of zeros double from each level J to the next (J + 1).

The Support Operator is useful for Algorithm 3.4 of Section 3.3.3 and Algorithms 3.9, 3.10 below.

Although a fully working version can be derived using the techniques presented in Section 2.5, one should
seek for an alternative implementation plan regarding the details of this paragraph.

A Simple Single-Scale Evaluation Scheme

We assume here to be in the same setting as in Section 3.4.3, that is the input and target trees are
given (the latter one by Algorithm 3.4), and a linear operator A : H → H′ gives a bilinear form a(·, ·).
By (3.5.1) and (3.5.2), the main tasks for implementing this scheme are now:

1. Quick identification of the Dependency set Υλ for any ψλ.

2. Efficient evaluation of the bilinear form a(·, ·) for all necessary functions.

The first task can be done independent of the operator, see the previous paragraph. The second task
depends heavily of the operator under consideration and we will talk about possible strategies for the
different operators in the respective sections later on.

The exactDependency set Υλ(I), as the Influence set, depends on the wavelet type (polynomial degree,
regularity properties, etc) and the level and position of the individual wavelet. Of course this means we
could approximate the Dependency set as we did with the Influence set in Section 3.3.4, but, as we will
later see, this is unnecessary for our operators. We will now rather concentrate on the intrinsic properties
of the Dependency set:
First of all, the set can be quite large and its setup could be infeasible because the number of children,
which, by the Inclusion Property (3.2.12) are always part of the Dependency set, grows exponentially
with the level difference. To remedy the situation, we focus here on symmetric operators A = A′, i.e.,
a(u, v) = a(v, u), which enables us to only consider wavelet indices with equal or lower level than the
wavelet indices in the output data. Since the output tree given by S(w) is a superset of S(v), S(v) can
be expanded to match S(w), just as in Algorithm 3.8. Then, if all possible combinations of input and
output coefficients was evaluated, a(φλ, φµ) and a(φµ, φλ) would be evaluated independently for λ 6= µ.
Since their values are equal by symmetry, we choose to only calculate the value once and apply it to
the coefficients given by λ and µ simultaneously when the other, e.g., λ, turns up while traversing the
Dependency set of one of them, e.g., µ. This means only indices on lower levels have to be considered,
i.e.,

Υλ(T ) := {µ ∈ T with |µ| ≤ |λ| | suppψµ ∩ suppψλ 6= ∅} , (3.5.5)
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and because of the finite intersection property (2.1.16), the number of elements in Υλ would then be
uniformly bounded per level.
By the refinement relation (2.1.18), a wavelet can be expressed on higher levels only by single-scale
functions, not by wavelets. Given input v ∈ H and target w ∈ H′, this then yields by (3.5.1) and
v = vTΨ ≡∑j vTΦ,jΦj with (3.3.1),

(w)λ = a(ψλ,
∑

j

vTΦ,jΦj) =
∑

r∈∆n
j+1

mj,e
r,k

∑

µ:suppφj+1,r ∩ suppφµ 6=∅
a(φj+1,r, φµ).

Remark 3.56 The important detail here is, that, although the output vector w corresponds to a dual
wavelet expansion, the adaptive reconstruction has to be performed w.r.t. the primal wavelet basis, same
as the primal input vector. Of course, if A : H′ → H, then all roles are reversed.

The application of the adaptive wavelet transform (Algorithm 3.1) to both the input and the output
vector has several computational advantages:

1. Primal single scale functions have smaller support, see Section 2.3, and thus the Dependency set
(with respect to the single-scale tree structure, e.g., (3.2.9)) would contain fewer elements.

2. During the second step of evaluating the bilinear form, in wavelet coordinates the bilinear form
has to be evaluated for wavelets and single-scale functions in all combinations. For single-scale
representations only the combinations of single-scale functions is required.

3. Only a single computation of the evaluation data is required to apply an operator w.r.t. wavelets of
different dual polynomial exactness d̃ (of which also the exact form of the primal wavelets depend).

Examples for the Dependency sets in wavelet and single-scale representation can be seen in Figure 3.14(a).

Remark 3.57 Of course, the calculations are feasible for both the single-scale and the wavelet representa-
tion of the vectors. In essence, it is about choosing higher memory requirements (wavelet representation)
or longer computation time (single-scale representation).

After calculating all values of the bilinear form a(·, ·) for all elements of the target vector in single-
scale coordinates, the values of the output vector w in wavelet coordinates have to be reconstructed by
Algorithm 3.2.

Theorem 3.58 Algorithm 3.9 finishes for a vector of size N := #S(w), where w is the output vector,
in time O (N log(N)).

Proof: Since the adaptive reconstruction of line 11 creates a vector with O (N) single scale coefficients
and every coefficient is accessed exactly once in 12, it suffices to show the size of Υλ(S(t)) is O (log(N)).
The result of Algorithm 3.1 can have many functions on different levels intersecting over any given point,
but the number of wavelets or single-scale functions on a single level j intersecting any given point is uni-
formly bounded by (2.1.16). Calling this number m ∈ N, the number of wavelet coefficients in Υλ(S(t)) is
bounded bymn(J−j0), where j0 := min {|λ| |λ ∈ S(t)} and J := max {|λ| |λ ∈ S(t)}. Since #∆n

J ∼ 2nJ ,
follows (J − j0) ∼ log(∆J).

This is a worst case scenario estimate, but because of the tree structure, no levels of r, t will be completely
empty. But since the logarithmic factor will only show up for J � j0 (it could be considered a constant
factor for fixed J) and it is more easily recognizable for vectors with many elements, it should not be
notable in applications with really sparse vectors.

Remark 3.59 A few remarks about Algorithm 3.9.

• The “search phase” of determining the Dependency set Υλ(S(t)) can be shortened by also using the
sparse representation for the input vector v and then further refining it to match the target vector w
more closely. Then, only one or two level differences would have to be checked, which would make
it possible to bound the cost for assembling the Dependency set by a constant (which depends on
the basis functions). The disadvantage would be higher memory cost (for storing the reconstructed
values) and the runtime of the refinement computations. Asymptotically, this would give an optimal
linear complexity estimate. This idea is the basis for the next adaptive algorithm.
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Algorithm 3.9 Simple application of a symmetric linear operator A : H → H′ to a wavelet vector v up
to accuracy ε.
1: procedure APPLY_LINEAR_SINGLE_SCALE_SIMPLE(ε, A, γ, v) → w
2: T ← S(v)
3: T ′ ← PREDICTION( ε, v, γ ) . Ensure (3.3.12)
4: T ′ ← T ′ ∪ T . Ensure S(v) ⊂ T
5: for all µ ∈ T ′ do . Set up w on T ′
6: wµ ← 0 . Insert wavelet coefficients
7: end for
8: t← ADAPTIVE_RECONSTRUCTION( v ) . Create single-scale representation
9: of input vector

10: r← ADAPTIVE_RECONSTRUCTION( w ) . Create single-scale representation
11: of output vector
12: for all λ ∈ S(r) do
13: for all µ ∈ Υλ(S(t)) do
14: rλ ← rλ + tµa(φµ, φλ) . Apply linear operator
15: if |µ| 6= |λ| then
16: rµ ← rµ + tλa(φµ, φλ) . Apply symmetric part of linear operator
17: end if
18: end for
19: end for
20: w← ADAPTIVE_DECOMPOSITION( r, T ′ ) . Assemble vector in wavelet coordinates
21: return w
22: end procedure

• Refining the input vector v can also alleviate another use-oriented concern: Computing the value of
the bilinear form for all possible combinations of functions might prove burdensome. Fewer single-
scale indices means fewer cases to compute. The use of this technique depends heavily upon the
actual bilinear form and cannot be discussed judiciously in general.

All that is left now, is to determine the Dependency set for any single-scale index and the computations
of the value of the linear operator. These two tasks can actually be processed in a single step: By
determining the value of the bilinear form a(·, φλ) for all functions φµ on coarser levels, the Dependency
set Υλ is simply given by the set of indices for which the evaluation of the bilinear form turns out to
be non-zero. This step can be executed once for any bilinear form and the results loaded on program
startup. The cost of accessing a value of the bilinear form can thus be managed by a simple lookup in a
table or similar data structure.
In application, the Dependency set (3.5.5) can thus be replaced by an operator adapted version, i.e.,

Υ
a

λ(T ) := {µ ∈ T with |µ| ≤ |λ| | a(ψµ, ψλ) 6= 0} . (3.5.6)

This change could lower the constants involved in Theorem 3.58 if Υ
a

λ(T ) is much smaller than Υλ(T )
(for example due to vanishing moments (V)(2.2.5)). But the asymptotics and thus the complexity
of Algorithm 3.9 remain unchanged unless the value of the bilinear form turns out to be zero for all
coefficients on most (except for a uniformly bounded number) levels.
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(a) Primal DKU22NB Wavelet Dependency Set (b) Primal DKU22NB Single-Scale Dependency Set
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(c) Dual DKU22NB Wavelet Dependency Set (d) Dual DKU22NB Single-Scale Dependency Set
Number of active coefficients: 68 Number of active coefficients: 94
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(e) Dual DKU24NB Wavelet Dependency Set (f) Dual DKU24NB Single-Scale Dependency Set
Number of active coefficients: 77 Number of active coefficients: 102

Figure 3.14: The diagrams in the left column, (a), (c) and (e), show the Dependency set for the wavelet
coefficient λ = (7, 64, 1), for the primal and dual wavelets of type DKU22NB and DKU24NB. The right
column, diagrams (b), (d) and (f), depicts the Dependency sets of single scale functions for the single-
scale coefficient (7, 62, 0), for the primal and dual single-scale functions of order d = 2 and d̃ = 2, 4 from
top to bottom. The coefficients are each is drawn in red color, all indices of the Dependency set on the
same or lower level are marked in blue color. As expected, the sets grow when the regularity is increased
as this increases the support of the involved functions.
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An Adaptive Single-Scale Evaluation Scheme

A disadvantage of using (3.5.4) to calculate bilinear form values for large level differences J � j0 is the
exponential memory requirement needed for the full vectors. The necessity to use an adaptive scheme to
evaluate the bilinear form is thus obvious. We present here an easily usable algorithm which traverses
the vectors level-wise from root to leaves. This algorithm was independently formulated and presented
in [90], yet in a more general setting.
We assume to have an input v and target isotropic wavelet vector w based on trees T , T ′, converted into
single-scale vectors R, R′, respectively. The whole idea is to ascendingly traverse the target vector R′
level-wise and categorize all its coefficients into these two categories:

• All target functions λ = (j,k) ∈ R′ not intersecting any functions on the next level Rj+1:

Θ(R′j ,Rj+1) :=
{
λ ∈ R′j |S(φλ) ∩ S(φµ) = ∅ for any µ ∈ Rj+1

}
. (3.5.7)

• For the rest of the functions the bilinear form cannot be calculated on the current level. The set of
these functions is designated

Θ(R′j ,Rj+1) := R′j \Θ(R′j ,Rj+1). (3.5.8)

The complexity of having to evaluate the bilinear form w.r.t. to functions on different levels in Al-
gorithm 3.9 is here replaced with the determination whether functions on adjacent levels are sharing
support. The algorithm then consists of the following steps:

(1) All output coefficients of Θ(R′j ,Rj+1) are transferred to the next level using the reconstruction
identity (3.3.1), together with any input data needed to accurately evaluate the bilinear form for
these functions on the next level:

The set Θ(Rj ,Θ(R′j ,Rj+1)) has to be refined.

(2) For all coefficients of Θ(R′j ,Rj+1) holds that the bilinear form can be evaluated exactly w.r.t. φλ.
Here, the bilinear form must only be evaluated w.r.t. functions on the same level j = |λ|, because
any data of coarser levels was refined and thus retained until it was represented on the current level.

(3) The evaluation process is then restarted on the next finer level j + 1 and any reconstructed co-
efficients, which are omitted in step (1), are later reconstructed using the decomposition identi-
ties (3.3.2).

The algorithm hinges on the following property of the involved function representations:

Proposition 3.60 During the execution of the above steps, the support of all functions on any higher
level is a subset of the support of all the functions on the current level, see (3.4.9).

Proof: Proof is done by induction. Since (3.4.9) is valid for a proper isotropic wavelet tree, the nested
support property is still valid after the application of Algorithm 3.1, because the adaptive reconstruction
of an isotropic wavelet ψiso

j,k,e on level j consists only of single-scale functions φj+1,k′ on level j + 1.
The induction step is simply true because the current levels Rj , R′j , are enlarged in the steps (1) and (2)
and never made smaller.

This assertion makes it possible to not need to check all finer level for intersecting functions but only
the next level. One of the main tasks during the execution is thus for λ = (j,k) the determination
of all indices µ = {(j + 1,k′) |k′} for which S(φλ) ∩ S(φµ) 6= ∅ for the refinement steps, and the in-
dices µ = {(j,k′) |k′} for the evaluation of the bilinear form a(φλ, φµ). This is done in O (1) by the
aforementioned Support Operator of Remark 3.55.
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Algorithm 3.10 Adaptive application of a linear operator A : H → H′ to a wavelet vector v up to
accuracy ε.
1: procedure APPLY_LINEAR_SINGLE_SCALE_ADAPTIVE(ε, A, γ, v) → w
2: T ← S(v)
3: T ′ ← PREDICTION( ε, v, γ ) . Ensure (3.3.12)
4: T ′ ← T ′ ∪ T . Ensure S(v) ⊂ T
5: for all µ ∈ T ′ \ T do . Set up v on T ′
6: vµ ← 0 . Insert wavelet coefficients
7: end for
8: for all µ ∈ T ′ do . Set up w on T ′
9: wµ ← 0 . Insert wavelet coefficients

10: end for
11: r← ADAPTIVE_RECONSTRUCTION( w ) . Create single-scale representation
12: of output vector
13: t← ADAPTIVE_RECONSTRUCTION( v ) . Create single-scale representation
14: of input vector
15: R ← S(t), R′ ← S(r)
16: j0 ← min {|λ| |λ ∈ R′}, J ← max {|λ| |λ ∈ R′} . Minimum and Maximum Levels
17: for all j = j0, . . . , J do
18: for all λ ∈ R′j do
19: if λ ∈ Θ(R′j ,Rj+1) then . Coefficient λ can be computed
20: for all µ ∈ Θ(Rj , {λ}) do
21: rλ ← rλ + tµa(φµ, φλ) . Apply linear operator
22: end for
23: else . Coefficient λ must be transferred to the next level
24: t← t + ADAPTIVE_RECONSTRUCTION( Θ(Rj , {λ}) ) . These new coefficients must
25: not be considered in line 19 for the set Rj+1

26: r← r + ADAPTIVE_RECONSTRUCTION( {rλ} ) . Insert with zero value into vector
27: end if
28: end for
29: end for
30: w← ADAPTIVE_DECOMPOSITION( r, T ′ ) . Assemble vector in wavelet coordinates
31: return w
32: end procedure

116



3.5. Application of Linear Operators

The advantage of this more complex evaluation algorithm is clearly shown in the next theorem:

Theorem 3.61 Algorithm 3.10 finishes for a vector of size N := #S(w), where w is the output vector,
in time O (N).

Proof: Because of the results of Theorem 3.21 and Theorem 3.22, it is only necessary to estimate the
number of calls to evaluate the bilinear form in line 21. Without any refinements in line 26, the number
of evaluations during the algorithm is trivially O (N). Calling the constant of (2.1.16) again m ∈ N,
applying the reconstruction identity (3.3.1) creates at most mn coefficients on the next level. This is still
an independent constant and thus at most (if all λ ∈ R′j have to be refined) still O

(
#R′j

)
new coefficients

could be inserted. Repeating this thought, over all levels, this leads to

J∑

j=j0

O
(
#R′j

)
= O (#R′J) = O (N) ,

number of reconstructed coefficients. As all other involved procedures, e.g., checking whether
λ ∈ Θ(R′j ,Rj+1) does hold or not, are applicable in O (1), the overall complexity is O (N).

We compare the results of Theorem 3.58 and Theorem 3.61 in the Figures 3.15 and 3.16. In all cases,the
tree prediction was executed using the exact support, i.e., (3.3.18). Since the support of the dual wavelets
is larger for d̃ = 4 than for d̃ = 2, this policy creates larger vectors for d̃ = 4 if the other parameters to
the algorithm are otherwise chosen equally. This explains the increase in complexity for these wavelets
visible in Figure 3.16.
As is illustrated in these figures, both algorithms behave as proclaimed, but the asymptotics of the loga-
rithmic factor shown in Theorem 3.58 is only visible for very high numbers of coefficients, i.e., for many
levels J � j0. This is probably due to the fact that, for vectors that are full at lower levels but sparse
in higher levels, Algorithm 3.9 will have no “misses” in (3.5.3) on lower levels but Algorithm 3.10 must
refine all coefficients. This explains the first parallel part of the graphs, as Algorithm 3.9 is at its best
efficiency and Algorithm 3.10 is at its worst. In other words, the constants in the Landau notation of
Theorem 3.58 and Theorem 3.61 were changing throughout the tests.
Although Algorithm 3.9 has worse asymptotics, it runs faster for many dimensions n � 1 than Algo-
rithm 3.10, especially for sparse vector. This is understandable as the constant number of single-scale
functions needed to reconstruct a single function in n dimensions rises exponentially (mn) and this must
be reflected in the absolute complexity of the algorithm. On the other hand, as stated for Algorithm 3.10,
for only a fixed number of levels J ≈ j0, the logarithmic factor can be regarded as a constant and this
constant grows linearly w.r.t. the number of dimensions n. Another problem in comparing these algo-
rithms is the computation of the Dependency set Υλ(I) for level differences > 20. The computations
take too long to be made “on the fly” and even precomputing this data becomes unfeasible at some point.
But without this data, the algorithm cannot function and therefore no comparison is then possible.
In summary, Algorithm 3.10 is superior to Algorithm 3.9 in almost any way, except when applying sparse
vectors in high dimensions. Since vectors can be easily checked for these conditions, the application
algorithm can be chosen depending on the vector, in the hope of minimizing execution time.

Remark 3.62 The results of Figures 3.15 and 3.16 cannot be compared to the prior results shown in
Figures 3.10 to 3.12. The timing data were created using different options for the compiler and the
programs ran on different computers. In general, no apply algorithm beats any other algorithm in any
situation. All that should be judged is the performance in typical use cases. For these, Algorithm 3.8
is often superior w.r.t. to execution times. This stems from the fact, that Algorithms 3.9 and 3.10
need to access many more elements directly, which always entails evaluations of hash functions (see
Appendix B.3). In contrast, during Algorithm 3.8, the set of all indices is traversed using iterators, which
works without the hash function. But to again make the point, basing the evaluation of the operator on
the bilinear form, operators can be applied if the employed wavelets are not piecewise polynomials.

We now discuss the evaluation of bilinear forms for the linear operators relevant to the control problem
discussed in [122].

117



Section 3. Adaptive Wavelet Methods based upon Trees

102 103

10−3

10−2

10−1

5 · 102 2 · 103 5 · 103

7 10 15 20 23

T
i
m
e
(
s
e
c
)

MM Dependency Set 1D
MM Adaptive 1D
SM Dependency Set 1D
SM Adaptive 1D
Level J

104 105

10−1

100

101

102

5 · 104 2 · 105

7 10 15 20 23

T
i
m
e
(
s
e
c
)

MM Dependency Set 2D
MM Adaptive 2D
SM Dependency Set 2D
SM Adaptive 2D
Level J

103

104

1.7 · 107 1.8 · 107 1.9 · 107 2 · 107
8 10 15 20 23

Number of wavelet coefficients (N)

T
i
m
e
(
s
e
c
)

MM Dependency Set 3D
MM Adaptive 3D
SM Dependency Set 3D
SM Adaptive 3D
Level J

Figure 3.15: Runtimes of Algorithm 3.9 vs. Algorithm 3.10 for several dimensions for the Mass Matrix
bilinear form (3.5.13) and Stiffness Matrix bilinear form (3.5.16), implemented using DKU22NB wavelets.
For the application, a vector on a single level J with ten random wavelet coefficients on the highest
wavelet level is made a proper tree with random coefficient values and then used as the input vector for
the algorithms. In each case, ten such vectors are constructed and the execution time measured. Each
data point thus corresponds to a single level, but since the vectors are randomized, these vectors are not
full but increasingly sparse w.r.t. dimension and level. Because tree prediction with γ := 4 and ε := 0.001
usually constructs Influence sets with depth 3, the adaptive vectors will be full for levels J ≤ j0 + 3, and
still very much filled up for several levels. The data points for the different operators were not always
calculated using the same vectors, therefore the data points often do not line up perfectly.
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Figure 3.16: Time of Algorithm 3.9 vs. Algorithm 3.10 for several dimensions for the Mass Matrix bilinear
form (3.5.13), implemented using dual DKU22NB and DKU24NB wavelets. For the application, a vector on
a single level J with three random wavelet coefficients on the highest wavelet level is made a proper tree
with random coefficient values and then used as the input vector for the algorithms. In each case, ten
such vectors are constructed and the execution time measured. Each data point thus corresponds to a
single level, but since the vectors are randomized, these vectors are not full but increasingly sparse w.r.t.
dimension and level. The parameters for tree prediction were γ := 10 and ε := 0.1, which leads to very
sparse vectors. In this case, the advantage clearly goes to Algorithm 3.9, it is more efficient for highly
sparse vectors with coefficients, as long as the data of the bilinear form for the respective level difference
is available. The dashed line shows extrapolated values calculated from a linear fit of the five previous
data points.
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3.5.2 Bilinear Forms

We now show how to calculate the exact values of common bilinear forms usable in Algorithms Algo-
rithm 3.9 and Algorithm 3.10.

The Mass Matrix

To calculate the value of the bilinear form of the mass matrix,

a0(v, w) =

∫

Ω

v(x)w(x) dµ(x), (3.5.9)

for all combinations of single-scale functions φλ ∈ Φj1 , φµ ∈ Φj2 , we first note a few facts which will make
this task much easier:

1. The tensor product structure of the multi-dimensional single-scale basis (2.4.6) leads to a decoupling
of the bilinear form w.r.t. the dimension. Therefore, we restrict ourselves here to one-dimensional
considerations.

2. Since the single-scale functions are created by translation and dilation from a mother function
(2.1.9) with a normalization w.r.t. the L2-norm, the value of the bilinear form (3.5.9) only depends
on the difference in location and scale, i.e.,

a0(φj1,k1
, φj2,k2

) = ã0(|j1 − j2|, |2−j1k1 − 2−j2k2|). (3.5.10)

Without loss of generality, we assume j1 ≥ j2 and define the level difference

p := j1 − j2 ≥ 0. (3.5.11)

Since these spaces Φj are set up on a dyadic grid according to (2.1.9), each grid point is also contained
on all finer grids. The spatial distance can thus be measured on the finer grid exactly by counting the
intermediate grid points, which follows from |2−j1k1 − 2−j2k2| = 2−j1 |k1 − 2j1−j2k2| = h|k1 − 2j1−j2k2|
to be

q := |k1 − 2pk2|. (3.5.12)

This also assumes the functions φj,k are symmetric around their center 2−jk, which is true for the
constructions of Section 2.3.

Example 3.63 We consider the case of piecewise linear hat functions (A.1.2) without boundary adapta-
tions. It can then easily be shown to hold

a0(φj1,k1
, φj2,k2

) = ã0(p, q) := 2−
3
2p





2p − 1
3 , q = 0,

2p − q, 0 < q < 2p
1
6 , q = 2p,
0, otherwise.

Looking from the perspective of the function on the higher level j1, the number of hat functions on
coarser levels with overlapping support is bounded by 3, and usually is only 2. The boundary adaptations
complicate the above formula only slightly, e.g., only in the cases where the supports of any function would
partially pass out of the domain.

For higher dimensions, the matrix bands are determined independently for each spatial position and them
combined via tensor product. The values of the bilinear forms are simply multiplied to give the value of
the multi-dimensional bilinear form:

a0(φj,k, φj′,k′) :=

n∏

i=1

a0(φji,ki , φj′i ,k
′
i
). (3.5.13)

In particular, basis functions of different kind can easily be combined here in different spatial directions.

Remark 3.64 The actual implementation of this procedure is a bit more technical because functions with
large supports and boundary adaptations might need special treatment when both levels are very small,
i.e., j ≈ J ≈ j0, and the supports of functions on different sides of the interval intersect. Nevertheless,
the idea is the same.
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The Stiffness Matrix

The bilinear form of the stiffness matrix can be described as a sum of bilinear forms of the kind seen in
the previous paragraph. Precisely, it holds

a(u, v) =

∫

Ω

∇v(x) · ∇w(x) + v(x)w(x) dµ(x), (3.5.14)

Since the mass matrix part is already dealt with, we now focus on the Laplace part

a1(u, v) =

∫

Ω

∇v(x) · ∇w(x) dµ(x). (3.5.15)

By (2.1.9), it follows for two one-dimensional single scale functions

a1(φj1,k1
, φj2,k2

) =

∫

Ω

∇φj1,k1
(x) · ∇φj2,k2

(x) dµ(x)

=

∫

Ω

2j1/22j1φ′(2j1x− k1) · 2j2/22j2φ′(2j2x− k2) dx

= 2j1+j2

∫

Ω

2j1/2φ′(2j1x− k1) · 2j2/2φ′(2j2x− k2) dx

Except for the extra factor of 2j1+j2 , this expression has the same structure as (3.5.10) and can be dealt in
the same way. The factor 2j1+j2 can simply be applied after the value of the integral has been determined.

Example 3.65 For the same functions as in Example 3.63 holds here

a1(φj1,k1
, φj2,k2

) = 2j1+j2 ã1(p, q) := 2j1+j2 2−
1
2p





2, q = 0,
0, 0 < q < 2p

−1, q = 2p,
0, otherwise

Any value of the multi-dimensional Laplace operator bilinear form for tensor products of single-scale
functions can simply be calculated by

a1 (φj,k, φj′,k′) :=

n∑

i=1

a1(φji,ki , φj′i ,k
′
i
)

n∏

r=1
r 6=i

a0(φjr,kr , φj′r,k
′
r
). (3.5.16)

Just as before, the comments of Remark 3.64 apply.

Riesz Operators

The Riesz Operator R̃Hs of (2.2.52) can, for s ∈ (0, 1), be implemented easily as a combination of the
bilinear forms (3.5.13) and (3.5.16):

as((φj,k, φj′,k′)) := (1− s) a0((φj,k, φj′,k′)) + s a1((φj,k, φj′,k′))

= s

n∑

i=1

a1(φji,ki , φj′i ,k
′
i
)

n∏

r=1
r 6=i

a0(φjr,kr , φj′r,k
′
r
) + a0 (φj,k, φj′,k′) . (3.5.17)

The normalization w.r.t. constant function of (2.2.53) can also be easily applied, since this is only a single
constant factor.

3.5.3 Inverses of Linear Operators

The application of the inverse of a linear operator is often also sought in applications. Linear operators
share some common properties with their inverse counterparts. For example, the inverses must themselves
be linear operators again and if an operator written in matrix form is symmetric, its inverse must also be
symmetric. There are, however, also properties that do not carry over,e.g., the inverses of sparse matrices
are generally not sparse. Ideally, the inverse of an operator would exhibit all the same properties as the
original operator. In this setting, this situation can arise when the inverse operator of an operator w.r.t.
some wavelet basis Ψ can be expressed w.r.t. the dual basis Ψ̃ of (2.1.44).
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The Dual Mass Matrix

The dual mass matrix is, theoretically, directly available by calculating the values of the bilinear form
(3.5.9). This can be done using a technique called refineable integrals, which was put forth in [52,97].
That theory was designed to compute integrals on whole domain R (even though the involved functions
have compact support) and thus does not deal with specific boundary adaptations. Some boundary
adaptations can be emulated by truncations of the domain, which can be implemented by artificially
inserting a characteristic function into the integral. The refinable integrals theory is thus firstly
applicable to general wavelet construction of Section 2.3.1, which is usually the construction used in case
of periodic boundary conditions.

Remark 3.66 A computer program evaluating these refinable integrals was first implemented in [98]; a
MATLAB implementation was developed recently and is available online [129]. Additionally, a C++ version
is included in the software developed for this thesis.

We here use another, more direct way of calculating the dual mass matrix entries: The idea is that the
single-scale mass matrix M̃ΦJ is a band matrix and the values are exactly reproduced when the FWT
is applied to decompose the matrix once, i.e.,

M̃ΦJ =
(
T̃T
J+1M̃ΦJ+1

T̃J+1

)∣∣∣
∆J×∆J

=

(
M̃ΦJ · · ·
...

. . .

)∣∣∣∣∣
∆J×∆J

. (3.5.18)

The individual entries in the matrix bands can thus be seen as the solution of an “eigenvalue” problem.
Each non-zero matrix entry of M̃J is here considered an unknown and therefore there are exactly as
many unknowns as equations. In the case of periodic boundary conditions, though, the system might
not be uniquely solvable, but another equation can be derived because the sum of any row or column
must be exactly equal to 1. The necessary calculations can easily be executed by a Computer Algebra
System, e.g., Mathematica, and if the entries of T̃J are available exactly as fractions, then the entries
of the mass matrix can be computed as fractions as well. The complexity of these computations can be
significantly reduced when repeating values, e.g., due to symmetry and translation, are recognized and
excluded.
The computed values for our used dual single-scale functions can be found in Appendix A.1.2 and
Appendix A.1.3. Then, with the approach in (3.5.4), any possible value of the bilinear form is computable.
The dual mass matrix is therefore available exactly.

The Dual vs. the Inverse Mass Matrix

The inverse of the mass matrix M−1
H is by (2.1.62) the mass matrix of the dual wavelets MH′ . But this

is no longer true if the finite dimensional mass matrices M̃J , M−1
J are considered. Simply put, if

QJ : `2(I)→ `2(∆J) is the projector that deletes all elements with level > J , then holds

MJ =
(
Ψ(J),Ψ(J)

)
= (QJΨ, QJΨ) = QJ (Ψ,Ψ)Q′J ,

and

M̃J =
(

Ψ̃(J), Ψ̃(J)

)
=
(
QJΨ̃, QJΨ̃

)
= QJ

(
Ψ̃, Ψ̃

)
Q′J ,

so that, because the extension operator Q′J : `2(∆J)→ `2(I) can not be the inverse of QJ as information
is lost, follows

MJ M̃J = QJ

(
Ψ̃, Ψ̃

)
Q′J QJ (Ψ,Ψ)Q′J 6= IJ .

The infinite dual mass matrix is thus the infinite inverse mass matrix, but this is not true in the finite
case. Even worse, the actual values of the inverse mass matrices M−1

J are different for all values of the
level J , i.e., M−1

J+1 is not an exact extension of the matrix M−1
J . Hence, in an algorithmic implementation,

the values of each matrix M−1
J , J = j0, j0 + 1, . . ., would need to be computed and saved separately.

Since the application of the involved projectors in computing M−1
J can be seen as approximating the
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uppermost block
(

Ψ̃j0 , Ψ̃j0

)
(as in (3.5.18)) using functions of up to level J , i.e., Ψ(J), then one can

directly deduce that
(
M−1

J

)∣∣
∆j0×∆j0

→ M̃j0 , for J →∞.

In the application of a theoretically infinite vector, this motivates to use M̃J instead of M−1
J .

Inverses of Stiffness Matrix and Riesz Operators

The inverse A−1
J of the stiffness matrix is not sparse, i.e., a−1

1 (·, ·) is not a local operator, therefore
the storage of the values of this operator is not feasible. Also, since no analytic form for the inverse
bilinear form is available, these operators can only be applied through application of direct or iterative
solvers, see Section 4.1.

3.5.4 A Square Weighted Mass Matrix

Here we refer to the operator based upon the bilinear form

az(u, v) :=

∫

Ω

z2 u v dµ, for u, v ∈ H, (3.5.19)

for a fixed given function z ∈ H, which corresponds to the operator application

Az : `2(I)→ `2(I), Az(u) = v. (3.5.20)

This operator will emerge from the derivative of the nonlinear operator G(v) = v3, needed in the course
of Newton’s method.
We impose here a single constraint on the parameters u, v and z: They shall all be primal, and therefore
piecewise polynomial,functions. Evaluating the bilinear form (3.5.19) for all combinations of functions
u, v, z is theoretically possible but precomputing all these values - even only for single-scale functions as
in Example 3.63 or Example 3.65 - quickly becomes problematic. The task becomes much more feasible
by assuming all functions to live on the same level j, which is all that is necessary for Algorithm 3.10.

Example 3.67 For the same functions as in Example 3.63, setting u = φj,k1
, v = φj,k2

and z = φj,k3
,

the supports of all functions must overlap over an area of non-zero measure. Also, symmetry arguments
further diminish the number of possible combinations. By this process of elimination, three distinct non-
trivial combinations of the positions k1, k2, k3 remain:

k1 = k2 = k3, and k1 = k2 ∧ |k3 − k1| = 1, and |k1 − k2| = 1 ∧ (k3 = k1 ∨ k3 = k2).

For these sets of functions, one can easily verify that holds for z = φj,k3
,

az(φj,k1
, φj,k2

) = 2j





2
5 , k1 = k2 = k3,
1
30 , k1 = k2 ∧ k3 = k1 ± 1,
1
20 , k1 = k2 ± 1 ∧ (k3 = k1 ∨ k3 = k2),

0, otherwise.

Since the value of the inner product of two single scale functions is ∼ 1, the product of four of these
functions must produce a value ∼ 2j.

The main problem in this course is now how to ensure that for any proper trees u,v, z ∈ `2(I), the
evaluation algorithm will have the finest data of the input data, e.g., u and z, while traversing the output
tree, e.g, v. Algorithm 3.10 does solve this problem for two vectors, but not for a third one, by assuming
S(v) ⊃ S(u). A possible strategy is therefore either also assuming S(z) ⊂ S(v) or, if this is not true,
extending S(v) to include S(z) and then, after the application, to drop the additional coefficients.
As it will be shown in Section 4.4.2, we can here assume z is not unrelated to the vectors u,v, but that,
in view of (3.5.20), holds

S(z) ⊆ S(u) ⊆ S(v). (3.5.21)
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Thus, the support of all vectors can be expanded to cover S(v) and Algorithm 3.10 can run with
minor changes, i.e., tracking the information stated by z. Another approach is to use the techniques
of Section 3.4.3, generate the adaptive polynomial representation (3.4.8) S(T ) of the largest vector v
and then construct the information of z and u on the same set of support cubes. Again, this is perfectly
possible as long as (3.5.21) is true. Thus, Algorithm 3.6 can be executed to apply the bilinear form
(3.5.19). Again, as in Section 3.4.4, the reference element application w.r.t. the local polynomial basis
P� (3.4.11) can be expressed as a data dependent and a base dependent part. By denoting g = GT u
and h = GT z for T := S(v) the polynomial coefficients as in (3.4.19), it follows

(χ�hT�P�)2(χ�gT�P�)

= χ�

(
m∑

i=1

(h�)i (P�)i

)2( m∑

i=1

(g�)i (P�)i

)

= χ�


 ∑

s1+···+sm=2

Y(h�; 2; s1, . . . , sm)
∏

1≤i≤m
((P�)i)

si



(

m∑

i=1

(g�)i (P�)i

)
,

=: χ�


 ∑

s1+···+sm=3

Z(g�,h�; 3; s1, . . . , sm)
∏

1≤i≤m
((P�)i)

si


 , (3.5.22)

and thus

〈χ�P�, (χ�hT�P�)2(χ�gT�P�)〉

= 〈χ�P�, χ�


 ∑

s1+···+sm=3

Z(g�,h�; 3; s1, . . . , sm)
∏

1≤i≤m
((P�)i)

si


〉

=
∑

s1+···+sm=3

Z(g�,h�; 3; s1, . . . , sm)

〈
χ�P�, χ�

∏

1≤i≤m
((P�)i)

si

〉
. (3.5.23)

Hence, the inner products of the polynomial basis can be precomputed and only the terms
Z(g�,h�; 3; s1, . . . , sm) have to be computed with the data of u and z.

We now turn to the application of Trace operators, which are local, linear operators, but they require
special treatment nonetheless.
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3.6 Trace Operators
The application of trace operators, although linear operators by Section 1.2.2, does not directly fit into the
framework of the previous section. The trace operator γ0 differs evidently from the operators considered
in Section 3.5.1 since it does not map from a space H = H1(Ω) into its dual H′, but into another primal
space V = H1/2(Γ), which is not even based on the same domain. Here, we assume Ω ⊂ Rn to be a
domain and Γ ⊆ ∂Ω ⊂ Rn−1 to be a part of its boundary. The linear trace operator γ0(·) := (·)|Γ
of (1.2.25) leads to the continuous bilinear form

b(v, q̃) := 〈γ0 v, q̃〉V×V′ =

∫

Γ

(v)|Γ · q̃ ds, (3.6.1)

which is well-defined on H × V := H1(Ω) × (H1/2(Γ))′ . The operator B : H → V and its adjoint
B′ : V ′ → H′ are defined by the bilinear form (3.6.1) according to (1.4.12), i.e.,

〈v,B′q̃〉H×H′ = 〈Bv, q̃〉V×V′ := b(v, q̃). (3.6.2)

Therefore, γ0 is not an operator in the sense of Section 3.3.3 and Algorithm 3.4 is not used here.
Rather, the output of the operator application is calculated directly from the input tree. If this can
be done without the employment of approximation, e.g., quadrature rules, then the the result is not
approximate, i.e., it does not depend on any tolerance ε.

Remark 3.68 There are conceptually at least two ways to compute the trace operator application:

1. The direct approach is to compute for each wavelet index λ the trace ψΩ
λ |Γ, i.e, determine all

wavelets ψ̃Γ for which b(ψΩ
λ , ψ̃

Γ) 6= 0 and save the whole set in a data structure. The application of
the trace operator is then a simple lookup in all these data structures and summing up all values of
the bilinear form. The application of the adjoint operator here means that the wavelet ψ̃Γ is given
and thus the search direction is reversed, but the course of action is the same. This technique is
very flexible w.r.t. complex domains and is used in the example of Section 5.5.

2. The disadvantage of the above direct method is that a lot of data has to be generated and held
available. In special cases, the generation of the trace data, i.e., wavelet indices and bilinear form
values, can be avoided. If the trace ψΩ

λ |Γ is expressible in the wavelet base on the trace space
(maybe after an adaptive decomposition), then the bilinear form can be evaluated exactly. The
disadvantage of this approach is the non-trivial application of the adjoint trace operator because
several wavelets ψΩ

λ might have the same trace. Thus, the set of all applicable wavelets on Ω for
each ψ̃Γ might have to be produced algorithmically.

Of course, a hybrid of these two approaches might also be applicable in certain cases.

3.6.1 Trace Operators Parallel to the Coordinate Axes

We now assume that Ω = �n and γ0 is merely a restriction onto a lower dimension along the Cartesian
product axes, for some coordinate point c ∈ [0, 1], for 1 ≤ i ≤ n. The case Γ ⊂ ∂Ω is then simply the
special case c ∈ {0, 1}.

Adaptive Application

The operator will be applied to a vector v, which shall be supported on the tree T ⊂ `2(I), and since
the operator is linear, we can simply apply it to each individual wavelet index. Then follows for an
n-dimensional isotropic wavelet (2.4.18) of the index λ = (j,k, e),

γ0(ψ(j,k,e)(x)) = γ0 (ψλ1(x1) · · ·ψλn(xn))

= ψλ1(x1) · · ·ψλi−1(xi−1) (γ0ψλi(xi)) ψλi+1(xi+1) · · ·ψλn(xn)

= ψλ1(x1) · · ·ψλi−1(xi−1)ψλi(xi)|Γ ψλi+1(xi+1) · · ·ψλn(xn)

= ψλi(c)

n⊗

`=1
6̀=i

ψ(j,k`,e`)(x`)

=: ψλi(c) ψλ′(x
′), (3.6.3)
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with λi := (j, ki, ei) and λ′ := λ \ λi.
Remark 3.69 The above calculation is done in exactly the same fashion for anisotropic wavelets.

The resulting n−1-dimensional isotropic wavelet index λ′ will inherit valid level and location values from
the index λ, but the index e′ := e \ ei could possibly be all zeros, if ei was the only type coordinate with
a non-zero value. This means e′ /∈ E?n−1 is a possible outcome of this calculation. If j 6= j0 − 1, then ψ′λ
is not a valid isotropic wavelet, but simply a n− 1 dimensional single-scale function. Applying this to
each individual index λ ∈ T , the resulting set of wavelet indices must be sorted w.r.t. the type and all
single-scale functions must be decomposed into proper isotropic wavelet indices, see Algorithm 3.2.
In operator form, biorthogonality (2.1.51) gives

〈
BψΩ

λ , ψ̃
Γ
µ

〉
=
〈
ψλi(c)ψ

Γ
λ′ , ψ̃

Γ
µ

〉
= ψλi(c) δλ′,µ, with δλ′,µ :=

{
1, if λ′ = µ,
0, otherwise. (3.6.4)

The operator B thus simply encodes whether a wavelet ψΩ
λ shares support with a trace space wavelet ψΓ

µ .
The above thoughts gives rise to the following Algorithm 3.11.

Algorithm 3.11 Adaptive application of a trace operator B : H → V to a wavelet vector v.
1: procedure APPLY_TRACE_OPERATOR((*ε*), B, v) → w
2: T ← S(v)
3: j0 ← min {|λ| |λ ∈ T }
4: J ← max {|λ| |λ ∈ T }
5: w← {} . Initialize empty (or with zeros on coarsest level j0)
6: t← {} . Temporary data; Initialize empty
7: for j = j0, . . . , J do
8: for all λ = (j,k, e) ∈ T do
9: ψλi(c)ψ(j,k′,e′) ← Bψλ . Apply Trace Operator

10: if e′ 6= 0 then
11: wλ′ ← wλ′ + ψλi(c) . Add wavelets to w
12: else
13: tλ′ ← tλ′ + ψλi(c) . Add single scale functions to t
14: end if
15: end for
16: end for
17: w← w + ADAPTIVE_DECOMPOSITION( t, I ) . Decompose into wavelets
18: w.r.t. PRIMAL Wavelets
19: Ensure w is a proper Tree
20: return w
21: end procedure

Theorem 3.70 Algorithm 3.11 is applicable in linear time w.r.t. the number of elements in the input
vector v.

Proof: Because of the tree structure of the input vector v, any element with support intersecting the
trace space will have a parent with the same property. Also, the type e of the parent is the same function
type, because this is a prerequisite of the tree structure, see Proposition 3.17. As such, both the vector
t and w will have tree structure after the main loop. The first part of the algorithm will thus finish in
O (#S(v)) steps.
In the worst case, all wavelet coefficients would be put into the single-scale tree t, which therefore must
contain at most #S(v) elements. In any case, its tree structure is determined by the tree structure
of the input vector. The decomposition in line 17 will finish in time O (#S(v)) by Theorem 3.22 and
Remark 3.23. The last step of ensuring the output tree to be a proper tree should only insert few missing
elements, i.e., the root elements. It is in any case a process of linear complexity.
The whole algorithm will thus run in linear time O (#S(v)).
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Remark 3.71 Because any point c ∈ [0, 1] will only intersect a finite amount of single-scale and wavelet
functions on each level j, see (2.1.16), all possible location indices and their trace values can be precom-
puted in constant time for each level j ≥ j0. By looking up into this precomputed list, only the relevant
wavelet indices from the input vector v can be selected, thus voiding the computational complexity of all
non-relevant wavelet indices. By only selecting these indices, the complexity could be super-linear with
respect to the input vector, i.e., linear with a constant factor ≤ 1.

Adaptive Application of Adjoint Operator

The adjoint operator B′ : V ′ → H′, with H = H1(Ω) and V = H1/2(Γ), extends a vector from the
trace space onto the domain space, both w.r.t. dual wavelet expansions. By (3.6.2), all possible (proper)
wavelet indices on the domain space, which are “connected” in the sense of (3.6.4), have to be produced.
This means a dual wavelet on the trace space is expanded with single-scale and wavelet functions, but
a dual single-scale function is only expanded using wavelets, because the result must be a proper dual
wavelet on H′:

B′ψ̃Γ
λ′ = ψλi(c) ψ̃

Ω
λ , for λ′ = (j,k′, e′), k′ ∈ Zn−1, e′ ∈ En−1, (3.6.5)

where the target index λ is any index in the set

Mλ′ :=

{
{(j,k′ ⊗ {ki}, λ′ ⊗ {0}), (j,k′ ⊗ {ki}, λ′ ⊗ {1})} , if e′ 6= 0 or e′ = 0 and j = j0,
{(j,k′ ⊗ {ki}, λ′ ⊗ {1})} , if e′ = 0 and j > j0.

(3.6.6)

As the location indices ki have to be taken those, that, by (3.6.3), have non-zero values in the bilinear
form (3.6.4). This family of indices is simply computed as explained in Remark 3.71.
But this is not the complete application, as then no dual wavelets in H′ could be produced which consist
of single-scale functions on levels j > j0 on the trace space. To create these wavelets, the input vector
has to be reconstructed, see Algorithm 3.1, after the application on each level w.r.t. the dual MRA
to the next higher level. In a sense, the adaptive decomposition of Algorithm 3.11 has to be “undone” (B
and B′ are not inverse to each other).
Therefore, the number of output coefficients produced from a single input wavelet coefficient is theoreti-
cally unlimited. The reconstruction process thus must stop at some point and it is prudent to make the
criteria depend on the input vector data, same as with Algorithm 3.11. In computations, we denote the
maximum level containing a non-zero wavelet coefficient the effective maximum level, and refining
functions beyond this level does not bring new information, as there is none already present on these
levels. This is akin to the situation of the PDE application algorithms, where refinement of the input
vector beforehand is also theoretically possible, but would just blow up the vector and thus increase the
complexity without adding any new information.
But since the refinement step is necessary, it is important to look at the implications: Since we are
assuming to be working with proper trees, and thus all coefficients of the coarsest single-scale level j0
are present, the refinement of this level data of the vector will always fill up the next level completely
with single-scale coefficients. This will make computations impossible for very high levels, therefore it is
imperative to delete all elements of the input vector v during execution that are too small, e.g., below
machine precision, to contribute effectively to the output vector in the forthcoming computations.
This explains all necessary details of the application of B′ and the final scheme is shown in Algorithm 3.12.

Remark 3.72 The fully discretized operator B is not a square matrix, but a highly rectangular matrix
with N : N2 side lengths. Although B is uniformly sparse, see [122], the complexity to apply B or BT

must always be measured w.r.t. to the longer side, which here corresponds to the output vector w.

Theorem 3.73 Algorithm 3.12 is applicable in linear time w.r.t. the number of elements in the output
vector w. If the input vector contains N := #S(v) elements, then the output vector contains at most
O
(
N2
)
elements.

Proof: Assuming the input vector to be sparse, e.g., containing N := O (J − j0) elements, where j0 is
the coarsest level and J the finest level, the application of B′ in line 14 will produce at most 2 wavelet
coefficients by (3.6.5).
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Algorithm 3.12 Adaptive application of the adjoint of a trace operator B′ : V ′ → H′ to a wavelet
vector v.
1: procedure APPLY_TRACE_OPERATOR_ADJOINT((*ε*), B′, v) → w
2: T ← S(v)
3: j0 ← min {|λ| |λ ∈ T } . Minimum level
4: J ← max {|λ| |λ ∈ T } . Effective maximum level
5: w← {} . Initialize empty (or with zeros on coarsest level j0)
6: for j = j0, . . . , J do
7: Tj ← S(vj)
8: for all λ′ ∈ Tj do
9: if |vλ′ | ≤ ε then . ε stands for the machine precision

10: v← v \ vλ′ . Delete coefficients of small absolute value
11: else
12: Mλ′ ← B′ψ̃λ′ . Construct set (3.6.6)
13: for all λ ∈Mλ′ do
14: wλ ← wλ + ψλi(c) . Compute bilinear form (3.6.4)
15: end for
16: end if
17: end for
18: v← v + ADAPTIVE_RECONSTRUCTION( vj , Ij+1 ) . Reconstruct Level j of v
19: w.r.t. DUAL Wavelets
20: end for
21: Ensure w is a proper Tree
22: return w
23: end procedure

In the next step, line 18, a uniformly bounded number of new coefficients will be created through re-
construction on level j + 1, we designate this number m. Thus, in the next iteration of the loop, the
number of coefficients on the next level j + 1 is at most increased by m for any element on level j.
The actual number in application is much lower as some coefficients will already be present and many
may be inserted several times. In the next reconstruction step, the repeated reconstruction will only
produce another finite number of new elements, since the refinement functions of a wavelet share sup-
port, they will also have common refinement functions. Overall, the number of coefficients created by a
single coefficient λ is thus of order O (J − |λ|) and for N input coefficients the output vector will contain
O (N(J − j0)) = O

(
N2
)
elements.

Before going further into the details of solving PDEs using the tools of this section, we discuss how the
isotropic framework can serve as a means of dealing with anisotropic wavelet schemes.
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3.7 Anisotropic Adaptive Wavelet Methods
Although the previous sections only dealt with isotropic wavelet constructions, it is possible to use the
procedures for adaptive anisotropic wavelet constructions. As we shall see, this approach does not yield
algorithms of optimal linear complexity, but it is an easy way to produce results for the anisotropic
case, because it mainly applies already existing proven isotropic algorithms.

3.7.1 A Tree Structure for Anisotropic Wavelet Indices

As explained in Section 2.4.2, we consider the effective level J of an anisotropic level vector
j := {j1, . . . , jn} to be J := max {j1, . . . , jn}.

Remark 3.74 In theory, the function type e ∈ E? can be omitted in the anisotropic case, but in
practice it has several computational advantages to explicitly save it. For example, see the second point
in Remark 3.14. The expended memory is just one bit per dimension and thus carries not much weight.

Then, a tree structure for anisotropic wavelet indices λ = (j,k, e) seems to follow naturally:
The general idea can be easily understood by studying Figure 3.17, where the tree structure (in the
direction of increasing levels) is marked by the blue arrows. The point is, that only components on the
highest level J (which must represent a wavelet) have children on the next level, the other components
remain unchanged. This directly infers the following properties, which coincide with the isotropic tree
structure (compare Proposition 3.17):

• The effective level of a child index is always increased by one.

• The function type (e ∈ E?n) of a children index is the same as the parent index.

• The support inclusion property (3.2.12) is inferred directly from the one-dimensional counter-
parts.

If several components are on the highest level J , the children have to be in all combinations of the children
sets and the wavelet itself. This corresponds to the corner blocks of the wavelet diagrams and is the same
concept as the root node children (3.2.11). In general, if 1 ≤ m ≤ n coordinates are on the highest level
J , then the children live in 2m − 1 different blocks (in the wavelet diagram). Because a strict general
definition is very technical, we will here assume that the first m components of the anisotropic wavelet
index µ = (j,k, e) are on level J .
With the one-dimensional children relation (3.2.8) and

Ci((j, k, e)) :=

{
{(j, k, e)} , for i = 0,
C((j, k, e)), for i = 1,

then we can define the children of µ to be

C(µ) :=




⋃

t∈E?m

m⊗

i=1

Cti(µi)



⊗

n⊗

i=m+1

µi, with µi := (ji, ki, ei). (3.7.1)

Lastly, the root nodes are constructed just as in the isotropic construction, see (3.2.6), and the same
connection to the first wavelet level (3.2.11) is used.

3.7.2 Conversion Algorithms

To apply a nonlinear operator as shown in Section 3.4.3, it is necessary to construct a locally unique
polynomial of a wavelet vector as described in Section 3.4.
The problem is simply that, by definition, an anisotropic wavelet index λ = (j,k, e) can exist on
different levels j = (j1, . . . , jn) in each spatial dimension and thus on very rectangular domains, an
example can be seen in Figure 3.18.
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j0

j0

j0 + 1

j0 + 1

j0 + 2

j0 + 2

Ψj0+2 ⊗ Φj0+2

Φj0+2 ⊗Ψj0+2

Φj0+1 ⊗Ψj0+2

Ψj0+2 ⊗ Φj0+1

Ψj0+2 ⊗Ψj0+2

Ψj0+1 ⊗Ψj0+2

Ψj0 ⊗Ψj0+2

Φj0 ⊗Ψj0+2

Ψj0+1 ⊗Ψj0+1

Ψj0 ⊗Ψj0+1

Φj0 ⊗Ψj0+1

Ψj0+2 ⊗Ψj0+1
Ψj0+2

⊗
Ψj0

Ψj0+2

⊗
Φj0

Ψj0+1

⊗
Ψj0

Ψj0+1

⊗
Φj0

Tree Structure

Algorithm 3.13

Algorithm 3.14

Level j0 + 2

Level j0 + 1

Level j0

Level j0 − 1

Figure 3.17: Anisotropic 2D wavelet diagram with tree structure and algorithmic connections of levels
marked. The blue bases correspond to the tree structure, the red to the two algorithms. Since there
is only limited space, only three blocks are labeled. But these show, that the reconstruction algorithm
produces functions of different type ((0, 1), (1, 0)) which are in this diagram combined into a single level.
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(a) Adaptive anisotropic wavelet of index ((3, 5), (4, 7), (1, 0)). (b) Underlying isotropic grid.

Figure 3.18: An anisotropic DKU-22 Wavelet and the corresponding grid, composed of isotropic square
patches.
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It is not possible to construct a single dyadic partitioning Dj as in (3.4.1) with the same properties for
all combinations of levels. Even if one specific combination (j1, . . . , jn) is chosen, the problem is that all
possible combinations of levels must exist simultaneously on the same domain. Altogether, the compu-
tation of overlappings especially would be really cumbersome.
The construction of a locally unique isotropic polynomial from an anisotropic wavelet tree could either
be done directly, or by an intermediate step where the anisotropic vector is converted into an isotropic
one without loss of information. Both ways depend on the fact that information on a coarser level can
be completely transferred on the next finer level, be it in wavelet or polynomial representation.
The second approach, the construction of an isotropic representation of an anisotropic adaptive wavelet
vector seems favorable, as this does not require the development of new techniques to represent anisotropic
piecewise polynomials. In contrast, the representation of isotropic wavelet indices in the realm of
anisotropic wavelet indices is intrinsically possible, the level multi-index j would then simply be uni-
formly filled: j = (j, . . . , j).

Remark 3.75 The conversion algorithms depicted in this section are meant to serve as a “plug-in” just
before the application of a nonlinear operator F : H → H′ in Algorithm 3.8. Therefore, we assume here
that only a single vector (created by prediction) holds the input data exactly and its elements are the
indices for which the applied operator must be computed.

The idea of the conversion algorithm of an anisotropic vector to an isotropic one is thus very simple: If
an element vλ is not actually isotropic, i.e. j 6= |λ| (component-wise), then those components with j < |λ|
are reconstructed (2.1.17) independently until their level matches |λ| :

M(ψj,k,e, J) :=

{
{ψj,k,e} , if j = J,{
mj,0
r,kψj+1,r,0 | r ∈ ∆j+1

}
, if j < J.

(3.7.2)

This means the complexity of this scheme depends on the maximum level difference

∆J := max {j1, . . . , jn} −min {j1, . . . , jn} , (3.7.3)

which, since max {j1, . . . , jn} = O (J) and min {j1, . . . , jn} = O (1) and J = O (logNJ), because of
(2.3.5), generally gives a logarithmic work complexity for treating each wavelet index.

Algorithm 3.13 Convert an anisotropic wavelet vector v on T into a vector of only isotropic functions u.
1: procedure ANISOTROPIC_TO_ISOTROPIC(v) → u
2: T ← S(v)
3: j0 ← min {|λ| |λ ∈ T }, J ← max {|λ| |λ ∈ T }
4: u← {} . Initialize empty
5: for j = j0, . . . , J do
6: for all λ = (j,k, e) ∈ Tj do . For all components
7: if j 6= j then . If λ is not isotropic
8: v← v + vλ

⊗n
i=1M(ψλi , |λ|) . Refinement with maximum Level, cf. (3.7.2)

9: else
10: µ← (j,k, e) . Convert to isotropic index
11: u← u + (uµ ← vλ)
12: end if
13: end for
14: end for
15: return u
16: end procedure

Remark 3.76 In the algorithm, in line 8, the tensor product of sets of functions must be expanded and
all possible combinations have to be traversed.

The process of operation of Algorithm 3.13 can simply be understood as towards the diagonal blocks in
the wavelet diagrams, see Figure 3.17. The output of the algorithm is not necessarily a proper isotropic
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wavelet vector, because the parents of elements created by the reconstruction operator (3.7.2) might not
also be created by the algorithm. But this is not a problem for Algorithm 3.5, as long as the anisotropic
vector has a tree structure and thus (3.4.9) holds also for the output of Algorithm 3.13.
After the application of the nonlinear operator, the isotropic dual expansion vector ũ must be converted
back into the anisotropic dual vector. To this end, any single scale function must be decomposed back
into wavelets and single-scale functions.

M̃(ψ̃j,k,e) :=





{
ψ̃j,k,e

}
, if e = 1,{

m̃j,0
r,kψ̃j−1,r,0 | r ∈ ∆j−1

}
∪
{
m̃j,1
s,kψ̃j−1,s,1 | s ∈ ∇j−1

}
, if e = 0 ∧ j > j0,{

ψ̃j,k,e

}
, if e = 0 ∧ j = j0.

(3.7.4)

This step is repeated until no component any more contains a single-scale function and as long as the level
is greater than the coarsest level j0. During the process, functions, which are not needed to compute the
desired output, will be computed. This effect can be minimized if the intermediate reconstructed results
of Algorithm 3.13 were saved and the required elements could be identified. On the other hand, since the
decomposition is in the direction of lower levels, the number of possible elements drops exponentially, and
the arguments of Proposition 2.12 could be applied. Overall, the effect is the same as with the previous
algorithm: The overall complexity depends on the maximum level difference (3.7.3) and this introduces
a logarithmic factor w.r.t. the number of indices.

Algorithm 3.14 Reconstruct values from an isotropic wavelet vector ũ into the anisotropic vector ṽ
on T .
1: procedure RECONSTRUCT_ANISOTROPIC_FROM_ISOTROPIC(ũ, ṽ)
2: T ← S(ũ)
3: j0 ← min {|λ| |λ ∈ T }, J ← max {|λ| |λ ∈ T }
4: ṽ← 0 . Set all elements to zero
5: for j = J, . . . , j0 do
6: for all λ = (j,k, e) ∈ (S(ũ))j do
7: if e 6= 1 then . Check if anisotropic wavelet
8: ũ← ũ + ũλ

⊗n
i=1 M̃(ψ̃λi) . Decomposition Identity, cf. (3.7.4)

9: else
10: if λ ∈ S(ṽ) then . Update existing elements only
11: ṽ← ṽ + ũλ
12: end if
13: end if
14: ũ← ũ \ ũλ . Delete index λ
15: end for
16: end for
17: end procedure

The direction of operation of Algorithm 3.14 can be seen in Figure 3.17 as away from the diagonal blocks,
toward the opposing sides.

This concludes the description of the application of operators and we now turn to so far omitted compu-
tational topics about the numerical treatment of adaptive wavelet methods.
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4 Numerics of Adaptive Wavelet Methods
On the next few pages, we discuss some of the numerical details in solving an operator equation
F(u) = f (1.5.3) originating from a nonlinear operator F : H → H′ in the setting of Section 1.5. For
some implementational details, please turn to Appendix B.

4.1 Iterative Solvers
One implementation detail we have not addressed so far is what kind of iterative solvers will be used
in order to solve our (nonlinear) problems in the `2 realm. Direct solvers disqualify because firstly
nonlinear problems cannot be accurately represented using matrices and since the possible number of
wavelet coefficients is only limited by accessible memory, even setting up sparse matrices is prohibitive
by the memory requirements.
The most basic iterative solvers operate on the residual, i.e.,

R(u) := F(u)− f , (4.1.1)

which needs to be made smaller than a given tolerance ε > 0, i.e., ‖R(u)‖`2(I) ≤ ε, to have sufficiently
solved the equation F(u) = f . In its simplest form, a general explicit iterative solver can be written in
the form

ui+1 = ui + Ci(R(ui)), i ∈ N0, (4.1.2)

with a step operator Ci and given initial vector u0 ∈ `2(I). The choice of the step operator Ci is
critical in determining the properties of the resulting numerical scheme and different types of equation
only allow for specific solver types:

• Richardson Iteration Ci := αI, for a constant α ∈ R and all i ∈ N0,

• Gradient Iteration Ci := αiI, for a step dependent αi ∈ R,
• Newton Iteration Ci := DR(ui)−1, where DR(ui) denotes the Fréchet derivative (1.5.6).

One is obviously interested in a convergent iteration, that is, to reduce the exact error, i.e.,

e(ui) := ‖u? − ui‖`2(I), with u? ∈ `2(I) being the exact solution, (4.1.3)

in each step of the iteration, i.e.,

e(ui+1) ≤ ρ e(ui)p, with ρ < 1 and p ≥ 1. (4.1.4)

The case p = 1 is called linear convergence, p > 1 super-linear convergence and p = 2 quadratic
convergence. If (4.1.2) converges for any u0 ∈ `2(I), the scheme is called globally convergent, if u0

has to be sufficiently close to converge to the exact solution u? already, i.e., u0 ∈ U(u?), then it is called
locally convergent. Numerically, the reduction factor

ρi+1,i :=
e(ui+1)

e(ui)
(4.1.5)

can not be determined directly unless u? is available. Instead, one usually computes the residual
reduction factor,

ρ̃i+1,i :=
‖R(ui+1)‖`2
‖R(ui)‖`2

, (4.1.6)

for which holds for a nonlinear stable operator (1.5.8) after wavelet discretization,

‖R(ui)‖`2 = ‖F(ui)− F(u?)‖`2 . ‖ui − u?‖`2 = e(ui),

and thus ρ̃i+1,i is not comparable to ρi+1,i . For a linear stable operator it holds ‖R(ui)‖`2 ∼ e(ui)
by (2.2.28) and thus ρ̃i+1,i ∼ ρi+1,i.
The theoretical considerations of this family of solvers for finite linear problems can be found in any
numerics textbook, e.g., [58, 70]; but for the adaptive, infinite `2-setting, an applicable theory to this
setting was introduced in [33] and further developed in [34].
We briefly review a few of the solvers for our types of (non-)linear equations, the details can be found
in [33,147].
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4.1.1 The General Scheme

In a nested-iteration scheme employed in full-grid discretizations, the first step is usually to gain an
approximate, but very precise, solution on a very coarse discretization level. This can, in case of a linear
problem, usually be very effectively accomplished by assembling the matrix representation of the linear
problem and then solving it using a direct solver, e.g., the QR-/LU-decomposition. After such an initial
solution uj0 has been acquired, the nested-iteration works its way upwards for all levels j = j0 + 1, . . . , J ,
in each step decreasing the level-wise error εi by a constant factor, usually 1

2 . Then, when a certain error
threshold is undershot, i.e., εJ < ε, the nested-iteration stops.
In the adaptive wavelet realm, the iterative solvers in itself can be seen as sets of nested iterations:
The accuracy goal ε > 0 is achieved starting from an initial accuracy ε0 ≥ ε and reducing the value in
each step by a constant factor until ε is achieved. Additionally, a coarsening of the iterands is required
after several steps to prevent an accumulation of too many indices and a bloating of the vectors. In
analytical terms, the vector must be pulled towards the best tree N-term approximation for the
scheme to remain of asymptotically optimal complexity. For linear operators, a solver without coarsening
was devised in [65].
All considered solvers therefore follow a common structure:

(i) Init: Choose a tolerance ε > 0, a finite initial vector u0 ∈ `2(I) and set ε0 := ‖u? − u0‖`2 and
i := 0.

(ii) Loop: While εi > ε, do

(ii.1) Error Reduction: Choose an ε̂i+1 ≤ εi and compute a new solution ûi+1 satisfying

‖u? − ûi+1‖`2 ≤ ε̂i+1.

(ii.2) Coarse: If necessary, delete as many coefficients as possible from ûi+1, but do not significantly
increase the error, i.e., compute ui+1 with

‖ûi+1 − ui+1‖`2 ≤ Cε̂i+1 with a C ∼ 1.

Otherwise, set ui+1 := ûi+1 and continue.

(ii.3) Error Estimation: Compute the error εi+1 := ‖u? − ui+1‖`2 . Set i to i + 1 and continue
from (ii).

(iii) Finish: Return ui.

Since the exact solution u? ∈ `2(I) is usually not available (except for benchmarks), the error ‖u? − ui‖`2
is usually estimated using ‖R(ui)‖`2 or other means. For the actual algorithms we therefore need
algorithms to compute the residual R(ui) and this also requires computations of the right hand side,
hence we discuss these two matter in the next sections.

4.1.2 The Right Hand Side

The right hand side of the (nonlinear) equation F(u) = f must also be constructed in the adaptive wavelet
setting. For a given function f = fT Ψ̃ ∈ H′ and bound ε > 0, we are interested in a way to compute a
best tree N-term approximation of this function, i.e.,

‖f − fε‖`2 ≤ ε. (4.1.7)

The problem here is two-fold:

1. The first step is determining for any function f ∈ H′ a set, preferably a tree structured set T ,
which contains the relevant wavelet indices.

2. The second step is then calculating for any λ ∈ T the wavelet coefficients fλ = 〈f, ψλ〉.
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4.1. Iterative Solvers

Executing the second step is not very difficult once a suitable set T is available. The approach to
determining T depends on the properties of the function f . There are usually two types of right hand
sides: Analytical functions and measured data. The latter is usually given as data points and is thus
already discretized. From this discretization a wavelet representation can be computed and this would
result in a vector f .
For explicitly expressible functions, all individual wavelet coefficients fλ could be computed analytically
and thus exactly. Using quadrature rules especially designed for wavelets, see [12, 13], one can compute
these wavelet expansion coefficients quickly. However, as we will later see, we will need to generate these
wavelet vectors often and for varying values εk. No matter how fast the computation of an individual
wavelet vector is, with increasing number of invocations it becomes more economical to precompute the
vector f once and save it, so that the values do not need to be computed over and over again, but can be
read once from disk into memory.

Remark 4.1 The vector f ∈ `2(I) can potentially contain only a finite number of non-zero wavelet
coefficients. But non-smooth functions, i.e., functions with cusps or discontinuities, will generally have
an infinite number of non-zero wavelet coefficients, since their features cannot be represented exactly using
piecewise polynomial scaling functions φj,k. Since the accuracy of a numerical solution to a problem is
always bound by machine precision, it does not make sense to demand infinitely accurate right hand side
data and thus cutting off at some level is permissive. This cut-off error must simply be so small, that
the sought tolerance of the solution can be achieved. By basic error analysis arguments, it does not make
sense to ask for more accuracy in the solution than is given in the right hand side data.

Construction of Right Hand Side Vectors

A first strategy to set up a wavelet vector is to simply define the values of the wavelet expansion coefficients
directly, i.e.,

fλ := f̂(λ) ≡ f̂(j,k, e), for some function f̂ : I → R and λ := (j,k, e),

which would correspond to a function, but not necessarily to one that is expressible in an explicit way.
Using norm equivalences (2.2.12) and (3.2.20), this is, however, a good approach to construct functions
contained in a specific Sobolev Hs(Ω) or Besov Bαq (Lp) space.
Another way of computing the wavelet expansion coefficients is to use full-grid techniques to compute
the values and then transform them into adaptive data structures. If the wavelet norm equivalences
of Theorem 2.18 are applicable for the function f , we can conclude from (2.2.12) that a full vector
approximation fJ for a level J ≥ j0 of a function f ∈ L2 ⊂ H−1 results in an error of ∼ 2−J . The major
drawback of this approach is, of course, the excessive memory requirements and the exponentially growing
complexity because of the exponentially growing number of single scale functions (2.3.5). Nevertheless, it
is a good way to compute right hand data quickly and reliably, especially for globally smooth functions.
In our context, piecewise polynomial functions, exactly represented using the dyadic grids Dj (3.4.1), are
an interesting special case. Such piecewise functions are hard to accurately describe using the tools of
full-grid code, since there one usually only uses single-scale functions φj,k to set up functions. Piecewise
polynomial right hand side vectors can easily be set up using the techniques developed in Section 3.4.2
and we present a complete adaptive strategy to compute such wavelet vectors next.

Adaptive Assembly for Piecewise Polynomial Functions

A class of functions that commends itself for consideration as right hand sides by the developed techniques
of Section 3.4.1 is the class of piecewise polynomials. This group contains some interesting candidates
for right hand sides, e.g., piecewise constants with discontinuities.
Since the computation of dual values involves evaluating integrals of the form

∫

Ω

f ψλ dµ =

∫

suppψλ

f ψλ dµ =
∑

�∈Dλ

∫

�
f |� qTλ,�P�χ� dµ, (4.1.8)

which again comes back to computing the integrals (3.4.25), just with an “operator” representing the
function f . For piecewise polynomial f , the evaluations of these inner products can again be executed
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Section 4. Numerics of Adaptive Wavelet Methods

exactly by analytically computing the integrals. Using Algorithm 3.7 of Section 3.4.5, it is possible
to construct the values of the dual expansion coefficients of a tree T ⊂ I as long as the adaptive grid
constructed by Algorithm 3.5 w.r.t. the tree T is finer then the grid on which the piecewise polynomial
f is constructed. This has the conceptual advantage of being able to compute the wavelet coefficients of
f = fT Ψ̃ exactly (up to machine precision).
The adaptive determination of the active wavelet coefficients is governed by a simple observation: For
structured data, the distribution of the active wavelet coefficients is not arbitrary but follows the structure
of the data. For piecewise polynomials, the important details are areas with discontinuities and high
gradients. Smooth, e.g., constant or linear, patches are easily exactly representable using single scale
functions on the coarsest level. The set of all relevant wavelet coefficients thus naturally forms a tree
structure.

Remark 4.2 By (2.2.34), the dual wavelet coefficients can also be calculated using a primal expan-
sion of the function and applying the Riesz operator RH : H → H′. Since the Riesz operator by its
definition is a local operator, this also entails that the dual coefficients will mimic the structure of the
primal coefficients.

Thus it is reasonable to directly construct the tree structure of the adaptive wavelet coefficients by only
considering children of already present indices and prioritizing these depending on the absolute value of
the already computed indices. This approach clearly imitates the construction of Algorithm 3.4, the tree
prediction.

Remark 4.3 Since wavelet coefficients are scaled to conform to a specific Sobolev space Hs by norm
equivalences (2.2.12), it suffices to compute the values w.r.t. L2 and apply the proper scaling afterwards.
This way, the values of any function only need to be calculated once for different Sobolev scalings, as long
as the same wavelets are used.

Our approach here can be understood to solve the simple equation u = f , where f ∈ L2(Ω) is known and
u ∈ L2(Ω) is unknown. Since both the primal and dual wavelets constitute Riesz bases for L2(Ω), the
proper application for Algorithm 3.4 would be to assume f to be given as a dual wavelet expansion and
u as a primal wavelet expansion vector. The operator involved in this equation would thus be the Riesz
operator of L2(Ω), the mass matrix. In the next step, then u would be projected onto the dual side again
by means of the dual mass matrix. To save the application of two operators that cancel each other out,
we directly use the predicted tree to compute the dual wavelet coefficients.
Due to the nature of the prediction algorithm, there will be some coefficients very close to zero absolute
value, thus the result should be purged of these values again, i.e., a coarsening step is applied to the
computed output tree.
Another advantage of the piecewise polynomial class of functions is the possibility to exactly calculate
the L2 and H1-norm of the polynomial and use this data to estimate the error w.r.t. a finite approxima-
tion fη ∈ `2(I), e.g.,

∣∣∣‖f‖H − ‖fTη Ψ̃‖H
∣∣∣ ≤ η. (4.1.9)

The terms on the left hand side can be easily and accurately calculated from the data, but one is usually
rather interested in the norm of the difference, not in the difference of the norms stated above. That is,
one is interested in estimates of the form

‖f − fTη Ψ̃‖H ≤ η, (4.1.10)

but this would require knowledge of the uncomputed wavelet coefficients f − fη. It is easily deducible
from the triangle inequality that holds

∣∣∣‖f‖H − ‖fTη Ψ̃‖H
∣∣∣ ≤ ‖f − fTη Ψ̃‖H, (4.1.11)

but the converse, which would be significant in this context, cannot be true universally. The following
Lemma shows that a different equivalence estimate can be accomplished in the wavelet context.

Lemma 4.4 For a finite approximation fTη Ψ̃ ∈ H to a function f ∈ H holds
√∣∣∣‖f‖2H − ‖fTη Ψ̃‖2H

∣∣∣ ∼ ‖f − fTη Ψ̃‖H. (4.1.12)
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Proof: By the norm equivalences (2.2.12) holds with T := S(fη), f = fT Ψ̃ and fλ := 〈f, ψλ〉

‖f‖2H − ‖fTη Ψ̃‖2H ∼
∑

λ∈I
f2
λ −

∑

λ∈T
f2
λ =

∑

λ∈I\T
f2
λ ∼ ‖

∑

λ∈I\T
fλψ̃λ‖2H = ‖f − fTη Ψ̃‖2H,

where the wavelets and coefficients are assumed to be scaled according to the norm of the space H.

Thus, for a finite wavelet vector fη satisfying
√∣∣∣‖f‖2H − ‖fTη Ψ̃‖2H

∣∣∣ . η also holds

‖f − fTη Ψ̃‖H . η. (4.1.13)

The knowledge of the error constant η > 0 will be needed for the final algorithm to accurately construct
tree approximations with accuracy ε ≥ η of f from the vector fη.

Remark 4.5 The norm equivalences in the above proof can be made exact using the Riesz operator RH
of the space H. But, in the proof, this introduces mixed terms of the form fTη RH(f − fη) which do not
necessarily evaluate to zero like fTη (f − fη). Since the norm ‖f‖2H will be evaluated from the piecewise
polynomial and is thus exact, it makes sense to calculate the norm ‖fTη Ψ̃‖2H exactly, too, using the Riesz
operator for the Hilbert space H.
Remark 4.6 The above assertions hold in the wavelet domain without change for dual spaces H′, but
an evaluation of the dual norm for a polynomial ‖f‖H′ is not as easily computable. From the definition
of the norm, see (1.2.34), it follows for f ∈ H that ‖f‖H′ ≤ ‖f‖H holds. Thus, the estimate (4.1.13)
then is also valid for H′ and the computable value ‖f − fTη Ψ̃‖H can be used as an upper bound in the
final algorithm below. This strategy is also justified in the wavelet domain, as the (uncomputed) wavelet
coefficients of the error f − fη will be scaled with values of values ≤ 1, see (2.2.15), when the Sobolev
index is shifted towards higher negative values. Thus, ‖D−s(f − fη)‖`2 ≤ ‖f − fη‖`2 for s ≥ 0 .

The accurate computation of the norm ‖fη‖H and the precursor wavelet vectors leading to become fη
are an important detail of Algorithm 4.1, as this determines when the algorithm finishes. As stated in
Section 2.2.6, the Riesz operators are known and often directly accessible for Sobolev spaces H = Hm(Ω)
of integer orders m ∈ Z. Unfortunately, the work required to accurately determine the norm is higher
than the work required to set up the values of the vector itself. To speed this algorithm up, one can
choose to calculate the norm only after δ ≤ η holds, beforehand it is unlikely that |ξ − τ | ≤ η holds
(except for very smooth functions).
Nevertheless, Algorithm 4.1 can only be executed in “real time”, i.e., within a few seconds, if η & 10−3,
more precise right hand sides should be precomputed and saved for later use. We evaluate the accurateness
and efficiency of Algorithm 4.1 in Section 4.6.

The Final Algorithm

We now assume the computation of the right hand side is completed and the result is given by a finite
vector fη, where η describes the discretization error of the data in the sense of (4.1.7). As shown in the
previous paragraph, such a vector fη can be precomputed for fixed η and loaded on demand in applications.
Then an approximation up to a tolerance β ≥ η of this vector can be computed by Algorithm 3.3,

fη,β := TREE_COARSE(β − η, fη),

which satisfies ‖fη − fη,β‖ ≤ β − η and already has a tree structure. For a given sought tolerance ε > η
then follows

‖ 〈f,Ψ〉 − fη,ε‖`2 ≤ ‖ 〈f,Ψ〉 − fη‖`2︸ ︷︷ ︸
≤ η

+ ‖fη − fη,ε‖`2︸ ︷︷ ︸
≤ ε−η

(4.1.14)

≤ η + ε− η = ε

Of course this estimate also works for many different variations of the involved constants, i.e., the error
could also be equilibrated to ε/2 between the two addends. It should just be noted that one cannot
acquire an accuracy w.r.t. an original function f smaller than η once fη is selected. In case there exists
no fη with η ≤ ε, then simply the whole vector without coarsening is returned.
In summary, our algorithm to set up a right hand side vector is presented in Algorithm 4.2.
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Algorithm 4.1 Adaptive construction of a wavelet vector fξ of the piecewise polynomial function f for
an accuracy η > 0. The returned expansion wavelet vector fξ will obey ξ = ‖f − fTξ Ψ̃‖H . η.
1: procedure ADAPTIVE_CONSTRUCTION_RHS(η, f) → (fξ, ξ)
2: γ ← 4 . Choose a decay parameter value for Algorithm 3.4
3: τ ← ‖f‖H . Compute norm of polynomial
4: // Construct an initial wavelet vector
5: v← {(J,k,0) |k ∈ ∆n

J} . Choose a level J high enough so that the grid given by {ΦJ}
6: is finer than the grid on which f is given
7: g← WTREE_2_PTREE(v) . Construct target grid by Algorithm 3.5
8: CALCULATE_INTEGRALS(g, S(v), f)
9: v← DECOMPOSE(g, S(v)) . Assemble values of wavelet coefficients

10: δ ← 2−J . Initial tolerance for tree prediction
11: σ ← CALCULATE_NORM(δ/2,v) . Calculate norm exactly using Riesz operators
12: while

√
|σ2 − τ2| > η do

13: δ ← δ/2
14: T ← PREDICTION(δ,v, γ) . Apply Algorithm 3.4, T is a tree
15: w← {} . Initialize w empty
16: for all µ ∈ T do . Set up w on T
17: wµ ← 0 . Insert wavelet coefficients
18: end for
19: g← WTREE_2_PTREE(w) . Construct target grid by Algorithm 3.5
20: CALCULATE_INTEGRALS(g, T , f)
21: w← DECOMPOSE(g, T ) . Assemble values of wavelet coefficients
22: v← TREE_COARSE(δ/4,w) . Rid w of very small values; overwrite v
23: σ ← CALCULATE_NORM(δ/2,v) . Calculate norm using Riesz operators
24: end while
25: return (v,

√
|σ2 − τ2|)

26: end procedure
27:
28: // Calculate Integral values in g, see (4.1.8)
29: procedure CALCULATE_INTEGRALS(g, T , f)
30: for all � ∈ L(D(T )) do . Traverse all individual patches
31: for all t ∈Mn

d do . Traverse all basis functions
32: g�,t ← 〈pt�, f |�〉 . Refine polynomial f to match target grid and
33: evaluate exactly or by quadrature
34: end for
35: end for
36: end procedure
37:
38: // Calculate norm of wavelet vector v with an accuracy ε
39: procedure CALCULATE_NORM(ε, v) → ν
40: Set up R, γ . Riesz operator for H
41: w← APPLY(ε,R, γ,v) . Apply Riesz operator using an appropriate algorithm
42: ν ←

√
(v,w) . Calculate scalar product and norm

43: return ν
44: end procedure

Algorithm 4.2 Adaptive set up of a wavelet vector fε of the function f and accuracy ε > 0.
1: procedure RHS( ε, f ) → fε
2: Load fη . With any η ≤ ε
3: fη,ε ← TREE_COARSE(ε− η, fη)
4: return fη,ε
5: end procedure
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4.1.3 The Residual

Of central importance for any solution method is the numerical evaluation of the residual (4.1.1), because
this is the minimization target for many schemes. The evaluation procedure here is based upon the simple
calculation,

‖ 〈R(v),Ψ〉 −R(v)‖`2 = ‖ 〈F (v)− f,Ψ〉 − (F(v)− f)‖`2 ,
≤ ‖(〈F (v),Ψ〉 − F(v))− (〈f,Ψ〉 − f)‖`2 ,
≤ ‖ 〈F (v),Ψ〉 − F(v)‖`2︸ ︷︷ ︸

≤ ε/2

+ ‖ 〈f,Ψ〉 − f‖`2︸ ︷︷ ︸
≤ ε/2

≤ ε,

where the first term corresponds to the function APPLY and the second term to RHS. This evaluation
algorithm thus works for any kind of operator F and right hand side f .

Algorithm 4.3 Adaptive computation of the residual R(v) = F(v) − f for a proper tree v up to
accuracy ε > 0.
1: procedure RESIDUAL(ε, F, f , v) → rε
2: w← APPLY(ε/2,F,v) . APPLY stands for one of the algorithms presented,
3: whichever is appropriate for this F
4: g← RHS(ε/2, f) . g and w are both based on trees, but not
5: necessarily with the same support
6: rε ← w − g . Do not delete canceled out values,
7: then rε is a proper tree
8: return rε
9: end procedure

Since it is the goal of most solvers to solve an equation by minimizing the residual, it is important to be
able to control the output of Algorithm 4.3 in applications.

Theorem 4.7 Algorithm 4.3 is s?-sparse, that is:
Whenever the exact solution u? belongs to Astree for some s < s?, one has for any finitely supported
input v and any tolerance ε > 0 that the output of rε := RESIDUAL(ε,F, f ,v) satisfies

# supp rε . ε−1/s
(

1 + ‖v‖1/sAstree + ‖u?‖1/sAstree
)
,

‖rε‖Astree . 1 + ‖v‖Astree + ‖u?‖Astree ,

where the constant depends only on s when s→ s?. Moreover, the number of operations needed to compute
rε stays proportional to

ε−1/s
(

1 + ‖v‖A1/s
tree

+ ‖u?‖A1/s
tree

)
+ #S(v).

The proof can be found in [33]. It basically just combines the result from Lemma 3.27 and Theorem 3.36.
An important detail is that the limit s? is again given by s < 2γ−n

2n from Theorem 3.36 where γ is the
decay constant in (3.3.14) and n ∈ N represents the dimension. The s?-sparsity property of the solution
u? is transferred through the operator F onto the right hand side by the simple connection of the equation
to solve: F(u?) = f .

4.1.4 Convergence Rates

The importance of all these theorems culminates in the following result from [33]:

Theorem 4.8 Let F = A+G : Hm(Ω)→ (Hm(Ω))′ be a semilinear operator with a linear part A and a
non-linear part G. Suppose that for the operator G holds (3.3.14) for γ > n/2 and the same for A with
σ ≥ γ. If the solution u =

∑
λ∈T uλψλ satisfies u ∈ Astree for some s < s? := 2γ−n

2n , then the approximate
solution uε computed by the algorithms in Section 4.2 and Section 4.4 after finitely many steps satisfies

‖uε − u‖ . ε,
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and it holds

#flops,# supp uε . ε−1/s(1 + ‖u‖1/sAstree),

and

‖uε‖Astree . ‖u‖Astree ,

where the constants depend only on ‖u‖`2 , the constants of (2.2.17), (1.5.8), (2.2.28) and on s when
s→ s?.

The best approximation rate to expect for a semilinear operator is therefore

s? =
2γ − n

2n
=
γ

n
− 1

2
. (4.1.15)

By Proposition 3.32, in a sum different operators, the smallest exponent γi dominates the overall approx-
imation rate.

Besov Regularity

The prerequisite of the wavelet expansion vector u ∈ Astree is by Proposition 3.20 equivalent to the
solution u being in the Besov space Bm+s n

τ (Lτ (Ω)) for τ > (s+ 1/2)−1. Of course the regularity of the
solution can not be known directly, it has to be inferred from the regularity of the right hand side. For
the Laplace’s equation on polygonal domains in Rn, this topic was discussed in [38,41]. In general, it can
be said that one gains smoothness of order 2, just as in the Sobolev scale. For example, the following
inference was shown

f ∈ Hs(Ω), s > −1/2, =⇒ u ∈ Bα+3/2
τ (Lτ (Ω)), 0 < α < s+

1

2
,

1

τ
=
α

2
+

1

2
.

For sufficiently smooth right hand sides, the adaptive scheme will converge automatically at the highest
possible rate, which is here limited by (3.3.15).

Determination of the Decay Parameter γ

The theoretical values of the parameter γ of (3.3.14) were predicted in Remark 3.34. The actual values
can be determined in two ways: A theoretical proof for a specific bilinear form a(·, ·) is of course the
desired source for these values. If a proof is not available, it is relatively easy to construct the formula
for γ(n) if the operator is given by a bilinear form composed of one-dimensional terms. For the linear
operators a0(u, v) =

∫
u v dµ and a1(u, v) =

∫
∇u · ∇v dµ discussed in Example 3.63 and Example 3.65,

the determination of the values of γ seems straightforward: By bilinearity follows from (3.3.1),

a(ψj,k,e, ψj′,k′,e′) =
∑

r∈∆n
j+1

∑

r′∈∆n
j′+1

mj,e
r,km

j′,e′

r′,k′ a(φj+1,r, φj′+1,r′).

Thus, the decay parameter should be ascertainable from noting the decay of the bilinear form w.r.t. single
scale functions, i.e., a(φj+1,r, φj′+1,r′). In Example 3.63, the maximum value of the exponent is γ = 1

2
and this translates to a value of γ = n/2 by (3.5.13) for dimensions n ≥ 1, see Remark 4.9. But this
determination is not accurate as it does not take vanishing moments (V)(2.2.5) of the wavelets into
account, a property single-scale functions lack.
Since the exact value of γ for a bilinear form is not easily proven, we determine the values experimentally:
Fixing one wavelet ψλ, we can calculate the value of the bilinear form for all wavelets ψν ∈ Υ

a

λ(I) with
|ν| = |λ|+p (see (3.5.6)). One has to use the correct scaling D−1

1 (2.2.15) though, and this scaling affects
the asymptotics greatly because each factor of 2−j effectively increases γ by 1, see the asymptotics in
Figure 4.3. By relating the maximum value |a(ψλ, ψν)| in these sets for different values of p, we can
determine an upper limit for the decay parameter γ: Unless all possible wavelets ψλ, λ ∈ I, and all
possible sets Υ

a

λ(I) are checked, the value of γ could be higher or lower in value, but only the smallest
value can be used as a decay constant for all cases.
From the diagrams in Figure 4.1, we deduce the values of Table 4.1.
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4.1. Iterative Solvers

Remark 4.9 It is easily possible to compute the decay parameter γ for multi-dimensional bilinear forms
that are given in terms of one-dimensional bilinear forms. For this, one needs the individual decay
parameters γi,o, i, o ∈ {0, 1}, where each index corresponds to a function type, i.e., using (2.4.16),

a(ψj,k,i, ψj′,k′,o) . 2−γi,o|j
′−j|.

Since the combinations for the types i and o are finite, these values are easily computable from experiments
without ambiguity. To calculate the multi-dimensional decay parameters, one has to note two different
rules:

1. The decay parameters of products of bilinear forms have to be added, i.e.,

a(ψλ, ψν) := a1(ψλ1
, ψν1

) a2(ψλ2
, ψν2

) . 2−γ1||λ1|−|ν1|| 2−γ2||λ2|−|ν2|| = 2−(γ1+γ2)||λ|−|ν||,

where λi and νi are the components as in (3.3.29). This identity comes easily by noting that
|λi| = |λ| and |νi| = |ν| for i = 1, 2.

2. In a sum of bilinear forms, the smallest decay parameter has to be chosen, i.e.,

a(ψλ, ψν) := a1(ψλ, ψν) + a2(ψλ, ψν) . 2−min(γ1,γ2)||λ|−|ν||.

This is a direct consequence of Proposition 3.32.

The only complication in several dimensions n ≥ 1 is that the type e ∈ En = {0, 1}n of the wavelets can
attain up to 2n different states. But the type e = 0 can only be used on the coarsest level j0 and can thus
be ignored.

Example 4.10 For the mass matrix bilinear form (3.5.9), the values are easily ascertainable from Fig-
ure 4.2:

γi,o eo = 0 eo = 1

ei = 0 1/2 3/2

ei = 1 1/2 3/2

Since the multi-dimensional bilinear form of the mass matrix (3.5.13) is a direct product of one-
dimensional bilinear forms, we just have to determine the lowest possible sum of values γi,o for types
eo ∈ E∗n. This is obviously the case if eo,t = 0 for all but one component. Then holds for n ≥ 1,

γ = γ(n) =
3

2
+ (n− 1)

1

2
= 1 +

n

2
. (4.1.16)

These values are exactly the ones depicted in Figure 4.3 and the preconditioner for H1(Ω) increases the
order by 1 as shown in Figure 4.1.

Example 4.11 For the Laplace operator bilinear form (3.5.15), the values from Figure 4.2 are:

γi,o eo = 0 eo = 1

ei = 0 −1/2 −1/2

ei = 1 −1/2 −1/2

To compute γ(n) for the bilinear form (3.5.16), we first note that the sum goes over all possible combi-
nations and, thus, by the first rule of Remark 4.9, only one addend has to be considered. The same line
of thought as in Example 4.10 can thus be applied. For n ≥ 1 hence holds

γ = γ(n) = −1

2
+ (n− 1)

1

2
= −1 +

n

2
. (4.1.17)

Again, applying the preconditioner for H1(Ω) then leads to γ(n) = n
2 as witnessed in Table 4.1. A

theoretical proof for the value γ(1) = 1
2 of the Laplace operator in one dimension can be found in [39].
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Remark 4.12 According to the results of Example 4.11 and (4.1.15), we should expect no specific con-
vergence rate in 2D (n = 2) for the operator F (u) = −∆u+ u3, since γ = min(1, 3) = 1 leads to s? = 0.
But the experimental results shown in Section 4.6 suggest an effective value of γ = 3 (s? = 1) in this
case, as if the linear part was absent. In [11], it was shown that the best approximation rate s? for linear
operators and piecewise polynomial wavelets can be larger than what (4.1.15) promises for the correct
value of γ. But formally, the prerequisites of Theorem 4.8 are not satisfied because the Laplace operator
has a lower decay exponent value than the nonlinear part.

We now turn to a short discussion of the iterative solution algorithms.

Operator u Operator −∆u Operator u3

n = 1 5/2 1/2 5/2

n = 2 3 1 3

n = 3 7/2 3/2 7/2

Table 4.1: Observed values of the decay parameter γ for different PDE operators H1 → (H1)′ for wavelets
with polynomial exactness order d = 2.
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Figure 4.1: Maximum values of the bilinear forms a(u, v) =
∫
u v dµ, a(u, v) =

∫
∇u · ∇v dµ and

a(u, v) =
∫
u3 v dµ in 1D for a fixed wavelet u = ψλ and all wavelets v ∈ {ψν} on level |ν| = |λ| + p for

different wavelet types and dimensions. The wavelet index λ was in each case on level |λ| = 4, position
ki = 4 and type ei = 1 for i = 1, 2, 3.
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Figure 4.2: Maximum values of the bilinear forms a(u, v) =
∫
∇u · ∇vdµ and a(u, v) =

∫
u vdµ for all

DKU22NB wavelets u = ψλ on level |λ| = 4 and all wavelets v ∈ {ψν} on level |ν| = |λ| + p for different
function types ei, eo ∈ {0, 1}.
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Figure 4.3: Maximum values of the bilinear forms a(u, v) =
∫
u vdµ for a fixed wavelet u = ψλ and all

wavelets v ∈ {ψν} on level |ν| = |λ|+ p for different wavelet types and dimensions. The wavelet index λ
was in each case on level |λ| = 4, position ki = 4 and type ei = 1 for i = 1, 2, 3. Here, the preconditioner
was not applied, i.e., the wavelets were scaled according to L2, not H1.
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4.2 Richardson Iteration

The Richardson solver, see Algorithm 4.4, corresponds to the iteration scheme (4.1.2) with Ci := αI.
Although this step operator is practically very easy to compute, there are a lot of parameters in the
algorithm that need to be chosen in accordance with the convergence proof from [33]. This includes
the step size parameter α ∈ R and the number of solver steps K before a coarsening of the iterands is
necessary. For example, the explicit number of K ∈ N depends nonlinearly on the step parameter α, the
spectral radius (4.2.5) and the constant C of (3.3.4), which implicitly turns up in the coarsening step.

Algorithm 4.4 Adaptive computation of the solution F(u) = f up to accuracy ε > 0 by Richardson
Iteration for an initial guess v.
1: procedure SOLVER_RICHARDSON(ε, F, f , v) → uε
2: // Init
3: i← 0 . Step counter
4: u0 ← v . Start vector
5: Choose K ∈ N . Coarsening counter
6: Choose α ∈ R+ . Step size
7: Choose ρ ∈ (0, 1) . Reduction factor
8: ε0 ← ‖F(u0)− f‖`2 . Initial Error, computed on static index set S(u0)
9: ε1 ← 1

2ε0

10: // Loop
11: for i = 1, 2, . . . do
12: // Error Reduction
13: η0 ← εi . Stage dependent error
14: ûi,0 ← ui

15: for l = 1, . . . ,K do
16: ηl ← ρ ηl−1

17: rηl ← RESIDUAL(ηl,F, f , û
i,l−1) . Compute residual using Algorithm 4.3

18: ûi,l ← ûi,l−1 + α rηl . Perform Richardson Iteration
19: end for
20: // Coarsening
21: ui+1 ← TREE_COARSE( 2

5εi, û
i,K) . Coarse the iterand using Algorithm 3.3

22: if εi ≤ ε then
23: uε ← ui+1

24: break . Exit loop
25: end if
26: // Error Reduction: When residual is small enough
27: if ‖rηK‖`2 . εi then
28: εi+1 ← 1

2εi . Set target accuracy for the next iteration step
29: end if
30: end for
31: return uε
32: end procedure
Remark 4.13 To avoid excessive iterations in the inner loop, it is possible to exit before the K steps
have been executed once the residual in line 17 has fallen below ∼ εi. One has to ensure that the
constant involved here is small enough, since a premature exit from the inner iteration will result in
worse convergence rates. The same can happen if the target tolerance ε is not very small, because then,
in the coarsening step Algorithm 21, the factor 2

5 can lead to a important coefficients being coarsed. In
this case, the factor 2

5 can be set to a lower value, e.g. 1
5 , which can reestablish quick convergence.

Our version of the Richardson iteration therefore shows only the general structure of the algorithm, we
discuss the convergence properties of Algorithm 4.4 for linear and nonlinear PDEs in the next sections.
In [33], it was shown, that, with sufficient assumptions to the choice of the parameters, the Richardson
iteration converges:

145



Section 4. Numerics of Adaptive Wavelet Methods

Theorem 4.14 The iterates ui produced by Algorithm 4.4 satisfy in each step

‖u? − ui‖`2 ≤ εi,

so that, in particular, ‖u? − uε‖`2 ≤ ε. The number K ∈ N is uniformly bounded, independent of ε and
the data. Moreover, if RESIDUAL is s?-sparse (Theorem 4.7) for some s? > 0 and if u? ∈ Astree for some
s < s?, then holds

# supp uε . ε−1/s‖u?‖1/sAstree ,
‖uε‖Astree . ‖u?‖Astree ,

where the constants depend only on s as s → s?. The number of operations needed to compute uε is
proportional to ε−1/s‖u?‖1/sAstree .

Restating the proof would entail citing the very technical details, the interested reader can either look it
up in [33] or find a variant of the proof in [147]. We will just briefly state some of the guiding factors in
the determination of the parameters of the algorithm.
The number of steps K before a coarsening operation is necessary is shown to be given by the number

K := min

{
k ∈ N |β (ωk ρ̂+ 4) ρ̂k−1 ≤ 1

2(1 + 2C)

}
, (4.2.1)

with C of (3.3.4), ωk a value of a summable sequence
∑
ωi = 1, β = 1

α c2Ψ cA
for (semi-)linear operators F

with cA from (1.4.13) and ρ̂ is the maximum of the parameter ρ and the true reduction rate ρ of (4.1.4).
In applications, one probably does not know all the values of the of above constants with great precision
and calculating them would be very cumbersome. It would be extremely difficult to accurately determine
the numerical values of all the involved constants. Instead, one applies heuristics and uses meaningful
guesses for most of them.
The only real parameter in (4.2.1), that is the one whose values is not given by the operators or wavelets
at hand, is the value of the Richardson step parameter α ∈ R. The value of α usually has to be determined
through trial and error, since it has to be chosen small enough for convergence but as high as possible
for high convergence speeds.

Example 4.15 Setting the right hand side to 1/10, i.e., C = 2, and assuming ρ̂ = 4/5, ωi = 2−i and
c2ΨcA = 1/100, then K = 39.

It was shown in [147], that, when an error reduction of 1
10 for the inner iterations is sought, the number

K can be expressed in the case of linear operators as

K := min

{
k ∈ N | ρk + αk ρk−1 ≤ 1

10

}
, (4.2.2)

which has the advantage of only depending on the known parameters α and ρ. This simplifies the
calculation so much that we use the above definition also for semilinear operators. Comparing (4.2.1)
and (4.2.2), it is clear that both inequalities have, w.r.t. the unknown variable k, almost the same
structure. A plot of the calculated values can be found in Figure 4.4.

4.2.1 Linear Operators

For this section, we will assume that a linear operator A : `2 → `2 is symmetric positive definite. This
assumption makes the error analysis much easier, but it is not unmotivated. First, many operators are
intrinsically symmetric, because they are based upon symmetric and positive definite bilinear forms,
which itself is often rooted in coercivity (1.4.11).
In the following, for A s.p.d., we denote by

Σ(A) := {λ ∈ R | I− λA is singular } , (4.2.3)

the spectrum and its biggest element

σ(A) := max {λ ∈ R |λ ∈ Σ(A)} , (4.2.4)
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Figure 4.4: Values of K by (4.2.2) for α = 0.02, . . . , 0.98 and ρ = 0.02, . . . , 0.98 both with increments of
0.02. Note the exponentially scaled z-axis. While the value of K depends formally on both parameters,
the parameter α only has a minor influence. When the value of ρ approaches 1, the value increases
exponentially with a super-linear exponent. The color in the diagram only depends on the value of ρ to
mark same values.

is called the spectral radius of A. Analogously to finite dimensional matrices, the Richardson iteration
converges if the step size α is so small, that the step operator is a contraction, i.e.,

σ(I− αA) = max {|1− λmax(αA)|, |1− λmin(αA)|} < 1. (4.2.5)

Since the generalized eigenvalues of A are all positive, λmax(αA) < 2 is a necessary and sufficient condition
for (4.2.5). Thus, the Richardson scheme converges for 0 < α < 2

λmax(A) and the best choice is

αbest :=
2

λmin(A) + λmax(A)
. (4.2.6)

One can then show for the error in step n to hold

‖u? − ui‖`2 ≤
1

cA c2Ψ
‖R(ui)‖`2 , (4.2.7)

with the constants of (1.4.13) and (2.2.17). In particular, the scheme converges for the start vector
u0 := 0 ∈ `2.

4.2.2 Semilinear Operators

As was explained in Section 1.5.2, symmetry and positive definiteness is replaced with monotonicity
for semilinear operators F = A+G. For given starting point u0 ∈ `2(I) holds

‖u0 − u?‖`2 ≤ c−1
A ‖R(u0)‖`2 =: δ0, (4.2.8)

and this iteration converges for step size

0 < α <
2

CA + Ĉ(δ0)
, (4.2.9)

with again CA being the constant from (1.4.13). Specifically, it holds for such α,

%(α) := max
{
|1− cA α|, |1− α(CA + Ĉ(δ0))|

}
< 1,
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and then the following error reduction estimate is true:

‖u? − ui‖`2 ≤ %(α)‖u? − ui−1‖`2 . (4.2.10)

Of course, estimating this range of admissible step sizes (4.2.9) is again just as realistic as the determi-
nation of (4.2.6) in applications: It is theoretically possible, but requires very precise knowledge of all
properties of the involved operators and the wavelet bases.
To avoid the determination of the step size parameter α, we take a quick look at the Gradient Iteration
next.

4.3 Gradient Iteration
The greatest shortcoming of the Richardson Methods is the determination of the optimal step size αbest
(4.2.6), since its value is often not directly computable, because the numerical properties of the operator
are usually not known exactly. By dumping the assumption of a constant step parameter α ∈ R for
all steps, the Gradient Iteration, also known as Steepest Descent Method, computes the optimal step
parameter for a linear operator A by the rule

αA := αA(u) :=
(R(u))T R(u)

(R(u))T A R(u)
. (4.3.1)

This scheme features the same convergence speed as the Richardson scheme with (4.2.6), but needs a
second application of the operator A. It converges for all u0 ∈ `2 and the error in step n can be shown
to abide by

‖u? − ui‖A ≤
(
κ2(A)− 1

κ2(A) + 1

)i
‖u? − u0‖A. (4.3.2)

Since the A-norm is equivalent to the `2-norm by Theorem 2.25, this result is similar to (4.2.7). In
our adaptive setting, it is theoretically possible for two adaptive vectors to be non-empty, but their
scalar product to be zero. This cannot happen here since the support of the result of the computation
Algorithm 3 is assumed to be a superset of the input vector r = R(u), i.e., S(A r) ⊇ S(r). Thus, the
value computed in Algorithm 4 is well-defined unless r = 0. This could feasibly only happen if the right
hand side of the equation F(u) = is also exactly zero. Nevertheless, it should be checked that the return
value of Algorithm 4.5 is not infinite.
According to [33], for a semilinear operator F = A + G, the steepest descent direction is still given by
the residual R(ui) and to obtain the optimal step size α, one has to minimize the function

g(α) = (f −A(u + α r)−G(u + α r))T r. (4.3.3)

Solving this equation can be done using Newton’s method using g′(α) = −rT (A + DG(u + α r))r.
Since g(αA) = −G(u + αAr)T r, the linear value (4.3.1) can either be used as a starting value for the
Newton’s method, or, if the semilinear does not operator “behave” very nonlinear, even as the actual step
parameter. The adaptive wavelet theory and algorithm is very similar to the details given in Section 4.2.
In fact, both solvers are covered by the same theoretical results in [33]. Instead of reiterating the results
already cited in Section 4.2, we will focus here on the the difference in implementation.
This algorithm is then executed before line 18 in Algorithm 4.4 and the return value used for the step
size α in the update of the iteration variable ûi,l. In order for the two extra operator applications to pay
off w.r.t. execution times, convergence must be faster than the Richardson solver in actual applications.
This will be tested in Section 4.6.
To improve on the overall complexity of these solution methods, we discuss the potentially more effective,
but also more involved, Newton’s method.
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Algorithm 4.5 Adaptive computation of the optimal step size parameter for the Gradient Iteration for
the operator F and the residual r.
1: procedure SOLVER_GRADIENT_ITERATION_STEP_SIZE(ε, F, u, f , r) → α
2: w← APPLY(ε/5,F, r) . APPLY stands for one of the algorithms presented,
3: whichever is appropriate for this F or DF

4: α0 ←
rT r

rTw
5: for i = 0, 1, . . . do
6: ∆αi ← rT (RHS(ε/2, f)− APPLY(ε/2,F,u + αi+1r)) /

(
−rT APPLY(ε/2, DF(u + αi+1r), r)

)

7: αi+1 ← αi −∆αi . αi+1 ← αi − (g′(αi))−1g(αi)
8: if ∆αi < 10−3 then exit loop
9: end if

10: end for
11: return αi
12: end procedure

4.4 Newton’s Method
The Newton iteration Ci := DR(ui)−1 is traditionally executed in two steps, that is

Solve DR(ui)wi = −R(ui), (4.4.1)

Step ui+1 = ui + wi, (4.4.2)

where the inversion in the first step is only done approximately, using a solver for linear equations.
The implementation of these two lines in Algorithm 4.6 follows the general scheme Section 4.1.1 closely.
Just as for Algorithm 4.4, the constant C denotes the constant from (3.3.4). The other constant ω̃ will
be explained in Section 4.4.1.

Algorithm 4.6 Adaptive computation of the solution F(u) = f up to accuracy ε > 0 by Newton’s
Method for an initial guess v.
1: procedure SOLVER_NEWTON(ε, F, f , v) → uε
2: // Init
3: i← 0 . Step counter
4: u0 ← v . Start vector
5: ε0 ← ‖F(u0)− f‖`2 . Initial Error, computed on static index set S(u0)
6: // Loop
7: for i = 1, 2, . . . do
8: // Error Reduction
9: Choose ηi . Stage dependent error

10: wηi ← SOLVE(ηi, DR(ui),−R(ui)) . Compute (4.4.1)
11: ûi+1 ← ui + wηi . Perform (4.4.2)
12: // Coarsening
13: η̂i ← ω̃ ε2

i + ηi
14: ui+1 ← TREE_COARSE(2C η̂i, û

i+1) . Coarse the iterand using Algorithm 3.3
15: if εi ≤ ε then
16: uε ← ui+1

17: break . Exit loop
18: end if
19: // Error Estimation
20: εi+1 ← (1 + 2C) η̂i . Set target accuracy for the next iteration step
21: end for
22: return uε
23: end procedure

The Algorithm leaves two details unspecified: the determination of the accuracy ηi for which to solve
subproblem (4.4.1) and the algorithm with which this solution is computed. We discuss the first topic

149



Section 4. Numerics of Adaptive Wavelet Methods

now and refer to Section 4.4.2 for the second one.
The whole discussion of convergence of Algorithm 4.6 comes down to proving that, if the tolerances ηi
are chosen appropriately, then a sufficiently good initial vector (u0)TΨ = u0, i.e., u0 ∈ Bδ(u?) for some δ,
will produce iterates for which it also holds that (ui)TΨ = ui ∈ Bδ(u?). The initial condition u0 ∈ Bδ(u?)
has to be verified independently, but the conclusion from this condition w.r.t. the iterates can be assured
by the following limits:
Fixing a positive constant β < 1, and assuming a δ > 0 is chosen to ensure that

δ < min

{
c3Ψ

(1 + 2C)C3
Ψ ω

,
β cΨ

(1 + 2C) ω̃

}
, (4.4.3)

then the condition

ηi ≤ η0 <
δ

2(1 + 2C)CΨ
, for all n = 1, 2, . . . , (4.4.4)

implies that ui ∈ Bδ(u?) for all subsequent iterations. Moreover, if

ηi ≤
εi(β − (1 + 2C) ω̃ εi)

1 + 2C
= εi

β

1 + 2C
− ε2

i ω̃, for all n = 1, 2, . . . , (4.4.5)

then one has for η̂i defined in Line 13,

εi+1 = (1 + 2C) η̂i ≤ β εi, for all n = 1, 2, . . . . (4.4.6)

Using these restrictions, [33] arrive at a similar result as Theorem 4.14:

Theorem 4.16 Assuming that the restrictions (4.4.3)-(4.4.5) hold, then Algorithm 4.6 terminates after
finitely many steps and produces a finitely supported uε satisfying

‖u? − uε‖`2 ≤ ε.

The second part of Theorem 4.14, the estimation of the work complexity, requires a detailed knowledge of
the solution produced by the not yet determined solver in Line 10. We discuss the details of the solution
methods employed to solve (4.4.1) after looking at the necessary requirements of our (nonlinear) PDE
operators for the Newton scheme to be applicable.

Remark 4.17 Since by Remark 1.54 it holds DA = A for linear operators, a single step of the Newton
scheme would result in the exact solution. But first, the solution of (DA)v = f has to be computed,
which is the original problem. Therefore, it does not make much sense to use Newton’s scheme on linear
problems.

4.4.1 Semilinear Operators

Considering semilinear equations (1.5.2) F = A + G, the nonlinear term complicates analysis of the
schemes. Simple continuity (1.4.10) is replaced by the notion of stability (1.5.8), which is transferred to
the wavelet setting as

‖G(u)−G(v)‖`2 ≤ ĈG(max {‖u‖`2 , ‖v‖`2})‖u− v‖`2 , (4.4.7)

where ĈG(·) := C2
Ψ CG(CΨ ·) with the constant CΨ from (2.2.17). For the theoretical proof of convergence,

two more assumptions are required:
Recall R(v) := F (v) − f , then holds DR(v) = DF (v). There exists an open ball U ⊂ H for which it
holds:

(N1) The Fréchet derivative (1.5.6) DR(v) : H → H′ is an isomorphism and there exists ω > 0 such
that for all v ∈ U and y ∈ H such that v + y ∈ U holds

‖(DR(v))−1(DR(v + y)−DR(v))y‖H ≤ ω‖y‖2H. (4.4.8)
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(N2) There exists a solution u? ∈ U and an initial guess u0 ∈ U such that for the ω of (N1) holds

‖u? − u0‖H ≤ δ <
2

ω
, and Bδ(u) ⊆ U . (4.4.9)

With these assumptions, it was shown in [60,61] that the iterates arising from the Newton iteration fulfill

‖u? − ui‖H < δ for i ∈ N0, and lim
i→∞

‖u? − ui‖H = 0. (4.4.10)

Also, the convergence is locally (in U) quadratic, i.e.,

‖u? − ui+1‖H ≤
ω

2
‖u? − ui‖2H, for all i ∈ N0. (4.4.11)

This translates into the wavelet domain as

‖u? − ui+1‖`2 ≤ ω̃‖u? − ui‖2`2 , for all i ∈ N0, with ω̃ :=
C2

Ψω

2cΨ
, (4.4.12)

with the constants cΨ,CΨ from (2.2.17).

Example 4.18 For a linear isomorphic operator, both (4.4.8) and (4.4.9) are obviously true. For non-
linear operators, both assumptions have to be verified. This was done generally in [33] for semilinear
operators of type (1.5.2) with properties (1.5.7) and (1.5.9) as assumed herein.
More specifically, a proof for our case G(u) := u3(x) can be found in [147]. In this case holds
DG(z)(·) : H → H′ with DG(z) := 3 z2, and in wavelet coordinates DG(z) := (

〈
ψλ, 3z

2ψµ
〉
)λ,µ.

Furthermore, the operator DF (z) := DG(z) + A is symmetric positive definite: For the linear part A,
this follows from coercivity (1.4.11). The nonlinear part DG(z) is positive semi-definite by monotonic-
ity (1.5.9):

〈v,DG(z)(v)〉 = lim
h→0

1

h
〈v, F (z + h v)− F (z)〉 ,

= lim
h→0

1

h2
〈z + h v − z, F (z + h v)− F (z)〉 , w := z + h v,

= lim
h→0

1

h2
〈w − z, F (w)− F (z)〉 ≥ 0, for all z, v ∈ H.

In the sum, DF (z), is thus positive definite. For this operator G(u) := u3(x), the bilinear form based
upon the Fréchet derivative DG(z)(·) can be interpreted as a (square-) weighted mass matrix, since
the bilinear form evaluates for fixed z to

az(u, v) :=

∫

Ω

3z2 u v dµ, for u, v ∈ H. (4.4.13)

The application of the operator Az in the wavelet context was discussed in Section 3.5.4.

4.4.2 Solving the Inner System

For simplicity, we will assume that DR(z) = A + DF(z) is symmetric positive definite. This is the
case for our nonlinearity F (u) = u3, so this is not a big restriction, but simplifies the solution process
considerably.

Adaptive Solution Method

This “adaptive solution method” refers to the original proposed method in [33]. Here, the subproblem
(4.4.1) is treated as a separate adaptive linear equation with operator

Q(z)(·) : `2(I)→ `2(I), Q(z)(w) := Aw + (DG(z))(w), (4.4.14)

and right hand side

g(z) := F(z)− f ∈ `2(I), (4.4.15)
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both for a fixed z ∈ `2(I). Although z ∈ `2(I) is a constant in this setting, this is not true for DF(z)
and F(z) until a tolerance for evaluating the functions is chosen. Since the subproblem (4.4.1) is by
construction a linear problem, linear solvers can be employed if an appropriate residual evaluation
procedure like Algorithm 4.3 is available.

Remark 4.19 In order to apply the linear operator theory of Section 4.2, it must be shown that the
operator Q(·, ·) satisfies assumptions (3.3.13) and (3.3.14) for Algorithm 3.4. This only concerns the
nonlinear part G(·), as it changes under the derivative, unlike A. If the nonlinear part G(·) satisfies
(1.5.11) for some r up to s? ≥ 1, then DG(·)(·) trivially satisfies the same growth condition for r − 1 in
the first argument and 1 in the second argument up to s? − 1.

Since both the operator and the right hand side depend on another argument in a non-trivial way, a
separate procedure is warranted and was presented in [33]. This algorithm uses the finite constant Ĉ
which fulfills

‖DR(u)(u? − u) + R(u)‖`2 ≤ Ĉ‖u? − u‖2`2 , (4.4.16)

which is easily proven by Taylor expansion, and assumes ‖u? − u‖`2 ≤ ξ to be so small, that η/4 > Ĉξ2.
This is necessary to ensure convergence of the solution of the approximately solved linear subproblem
towards the solution of the original nonlinear problem.

Algorithm 4.7 Adaptive computation of the residual r := DF(z)(v)− (F(z)− f) for a proper tree v up
to accuracy ε > 0.
1: procedure RESIDUAL_NEWTON_SUB(ε, F, f , z, v) → rε
2: w← APPLY(ε/2, DF(z),v) . APPLY stands for one of the algorithms presented,
3: whichever is appropriate for this DF
4: y← APPLY(ε/4− Ĉζ2,F, z) . Application of operator F to z with
5: whichever algorithm works for F
6: z← RHS(ε/4, f) . Right hand side f can be constructed
7: like any normal function
8: rε ← w − (y − z) . Do not delete canceled out values,
9: then rε is a proper tree

10: return rε
11: end procedure

This variant of Algorithm 4.3 is still s?-sparse:

Theorem 4.20 Let s? := 2 γ−n
2n , where γ is the parameter of (3.3.14) of DF(z)(·) and n is the dimension,

then rε := RESIDUAL_NEWTON_SUB(ε,F, f , z,v) is s?-sparse, i.e.,

# supp rε . ε−1/s
(

1 + ‖v‖1/sAstree + ‖u?‖1/sAstree + ‖z‖1/sAstree
)
,

‖rε‖Astree . 1 + ‖v‖Astree + ‖u?‖Astree + ‖z‖Astree ,

as long as ‖z‖Astree . 1.

The proof is based on the properties of the involved algorithms and the arguments given in Remark 4.19.
It is also shown in [33], that, in addition to (4.4.5), the stage dependent error ηi cannot be chosen too
small, but must obey

ηi &
Ĉ

ρK
ε2
i , (4.4.17)

as the target accuracy for Algorithm 4.4 with ρ from (4.1.4) and K from (4.2.1). The admissible range
for ηi in accordance with the upper limit (4.4.5) and this lower limit allows for

• linear convergence by choosing ηi ∼ εi,

• quadratic convergence by choosing ηi ∼ ε2
i .

152



4.4. Newton’s Method

But as always with Newton’s method, quadratic convergence is only possible when ui is already close to
the exact solution, i.e., (4.4.12) holds.
Altogether, under these assumptions, the second part to Theorem 4.16, the complexity results from [33],
can be stated as follows:

Theorem 4.21 If DR(z)(·) fulfills (3.3.13) and (3.3.14), and if the exact solution u∗ belongs to Astree
for some s < s? = (2 γ − n)/(2n), the output uε of Algorithm 4.6 has the following properties:

# supp uε . ε−1/s‖u?‖1/sAstree ,
‖uε‖Astree . ‖u?‖Astree .

The number of operations needed to compute uε is proportional to ε−1/s‖u?‖1/sAstree .

This result mirrors exactly the properties of the algorithm put forth in Theorem 4.14

Solving on a Fixed Grid

An alternative to the full-blown adaptive strategy of the previous paragraph is fixing the given by the
right hand side, i.e., T ′ := S(R(ui)), and then solve (4.4.1) for a solution vector wi on the same set T ′.
Since the computation of DR(ui) would involve Algorithm 3.4, we can assume T := S(ui) ⊂ T ′ and thus
the operator DR(ui) is well-defined on T ′.
There are two advantages to this approach, i.e., using a fixed support for all `2–vectors:

1. First, one avoids the determination or estimation of the involved constants needed to adaptively
solve the subproblem (4.4.1), as was presented in the previous paragraph.

2. The second advantage is the possibility of employing standard full-grid solver, e.g., the CG method,
see [59].

Both reasons simplify the implementing process of this method compared to the adaptive solution method
considerably. The main disadvantage of this setting is simply that no convergence theory exists in this
case.
Another noteworthy detail to address here is the coarsening step in line 13 of Algorithm 4.6: By defini-
tion, working on a fixed set of wavelet coefficients, the number of wavelet coefficients cannot grow during
the execution of the CG. That means there is really no incentive to apply the coarsening step after the
solution of the inner problem has been determined. Instead, as in Algorithm 4.4, the coarsening should
be applied after the set of coefficients T ′ has been allowed to grow for a number of iterations.
This approach was first tried and implemented in [147].

Before putting all these algorithms to the test, we go into a few details of the implementation not
discussed above.
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4.5 Implementational Details
We present here a few “short cuts”, i.e., deviations from the theoretical results meant to simplify imple-
mentation and program flow.
Technical details about the implementation can be found in Appendix B.

4.5.1 The Maximum Level

Restricting the maximum level J ≥ j0 seems like a counter-intuitive idea in the context of adaptive
wavelet methods. After all, one of the design principles of adaptive methods is the ability to refine
elements wherever needed and to any extent necessary. But in reality, there is no such thing as an infinite
number (of levels) in computer programs. The most common approach is to initialize all possible levels
in an adaptive storage container (explained in Section B.3) on creation of the object. Alternatively, it
is possible to create more levels as needed, e.g., when wavelet indices are being inserted, thus creating
the illusion of an infinite number of levels. This strategy only works up to the maximum number of
levels representable by the data type used for the levels. The naive implementation using an (unsigned)
integer would allow billions of levels but wastes memory, since, as is explained further down, the number
cannot safely grow to even 400. In case of the bit field wavelet coefficients of Section B.3, which are
designed for most efficient memory use, the number of levels never exceeds a few dozen.
In light of the preconditioning values of Theorem 2.18, it is not advisable to allow more than 324 levels
since much higher levels would construct values in the preconditioner that are not representable using
double floating point numbers (and would thus be computed to be zero, see [81]). Actually, numerical
instabilities would be encountered much earlier, probably already around 50 levels, at which point values
close to the machine precision eps are created frequently.
So, in summary, there is no such thing as an infinite number of levels. Restricting the number of levels
arbitrarily actually has a number of advantages:

• The absolute number of wavelet coefficients becomes bounded by #∆�
J = O

(
2nJ
)
of (2.4.7). This

effectively limits the complexity of all involved algorithms, e.g., Algorithm 4.4, and allows extremely
speed-up computations.

• For linear (sub-)problems, the methods of Section 2.5 can be employed. This is only possible if
the effective level is so low that full vectors can be created within the memory constraints of the
employed computer. This approach enables one to employ well-known proven standard algorithms,
especially for the inverses of Riesz operators as in Section 3.5.3.

Of course, the main disadvantage of this approach is the loss of accuracy that can be achieved when using
only a small number of levels. But with sufficiently smooth functions, this effect is not very constrictive.
Once the accuracy of a computed solution can no longer be improved upon, this vector can be used as a
starting point for a calculation involving additional levels.

4.5.2 Starting Solver

Related to the above idea is the notion to use different solution methods, depending on the accuracy
sought. For a linear problem, a direct solver, i.e., QU decomposition, can be chosen if the maximum
levels J ≈ j0. This particular approach is, of course, not directly applicable to nonlinear problems.
But nevertheless, it is still possible to compute a good starting vector for a general iterator solver in this
setting. To this end, we simply restrict the maximum level J of the wavelet discretization to, e.g., j0 + 1
and let an iterative solver run until the discretization error is reached.

4.5.3 Increasing the Decay Parameter γ

The exact value of the decay parameter γ of (3.3.14) as given by theory is not necessarily the optimal
value in application. During operator application, the value of γ regulates the size of the predicted tree
by (3.3.19). The inverse nature of the dependence means that doubling the value of γ means roughly that
the predicted tree will only be refined locally to half the depth. Because of the exponential growth of
the influence sets (3.3.18), only increasing γ by 1 effectively means cutting the growth of the tree in half.
Since most of the computational complexity, as seen in Figure 3.13, stems from the computation of the
polynomial representation and the decomposition of the wavelet coefficient values, increasing γ is a very
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good way to avert long program runtimes. We usually use γ = 7 for our experiments. As Figure 4.17
shows, the increased value is regrettably, but expectedly, not translated into a higher approximation rate
(4.1.15). Otherwise arbitrarily high convergence rates could be achieved by raising the value of γ. At
least the increased value of γ does not lower the observed approximation rate.

4.5.4 Caching Data

Since Algorithm 4.2 has to be called very often where the only difference is the value of the error
tolerance ε. To speed up the computation of the coarsed tree, it is advantageous to assemble and
save the tree given by (3.3.5) and supply this in conjunction with f ∈ `2 to Algorithm 3.3. As explained
in Remark 3.26, the modified error functional ẽ(λ) of (3.3.7) is a local information and can be quickly
calculated for all λ ∈ T and thus needs not be precomputed.
Similarly, the quadratic polynomial 3z2 of operator (3.5.19) needs only be computed once per call to the
solution algorithm of the linear subproblem given by (4.4.14) with right hand side (4.4.15). As long as
(3.5.21) holds, no recomputation of the weight polynomial is necessary. If, after a coarsening step within
the inner solver, (3.5.21) does no longer hold, the easiest way to ensure it is simply to insert all wavelet
coefficients S(z) into the coarsed vector again.

4.5.5 Zero Subtrees in Differences of Vectors

Two vectors are subtracted at many places in different algorithms, e.g., Algorithm 4.3. Subtraction
could yield zero subtrees, i.e., subtrees that contain only almost-zero values (exact zero values cannot be
expected). Hence, an erase of zero valued elements and a downstream tree reconstruction can improve
computation times in some occasions. In case of the residual, convergence would then entail smaller
vector sizes.
This procedure is not advisable if the size of the support of the tree is of paramount importance to
subsequent algorithms, e.g., as in Section 3.5.4.

4.5.6 Estimating The Constants

In the implementation, we tried not to insert arbitrary constants in the equations or estimates where
constants such as (2.2.31) appear. However, this cannot be always avoided to guarantee accuracy or
convergence of the numerical schemes in all circumstances. A different case arises in situation like (4.1.14),
where a term is estimated by splitting it in two parts. In theory, the constants can be distributed in any
way compliant with the theoretical proof. In applications, however, how the individual values are chosen
can make a big influence on the performance or accuracy of the numerical algorithm. Figuring out the
best values is usually only possible by trial and error, unless the constants are known exactly or at least
approximately.

4.5.7 About Runtimes

The target accuracy (3.2.16) and the results like Theorem 4.8 establish that the complexity of acquiring
a solution is proportional to N−s, where s is some fixed constant. It also means that the computation of
a solution of up to accuracy 1

2ε from a solution of accuracy ε will let the vector grow according to

Nε/2 ∼
(ε

2

)−1/s

= 21/sε−1/s ∼ 21/sNε,

Iterating this line of thought, starting from some value ε0 then follows after M halving periods,

ε = 2−Mε0, =⇒ Nε ∼ 2M/sNε0 ,

The runtime of each step w.r.t. the previous one grows exponentially by a factor of 21/s. Just as with the
pyramid scheme of the fast wavelet transform (2.1.33), viewing from the perspective of the last period
then holds for all intermediate steps,

Nε ∼ 2−1/sN2ε ∼ 2−2/sN4ε ∼ . . . ∼ 2−M/sNε0 ,
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which means the complexity of the last step is always as large as the complexity of all the previous
steps combined:

M∑

k=1

2−k/sN2kε =
1− 2−M/s

21/s − 1
Nε ≤

1

21/s − 1
Nε.

Thus, the overall runtime, as seen from the last step, is linear, but the witnessed overall runtime
starting from ε0 grows exponentially, i.e.,

M∑

k=0

2k/sNε0 =
2(M+1)/s − 1

21/s − 1
∼ 2M/sNε0 .

Lost in the last equivalence is the factor attributed to the sum of all the addends, e.g., for s = 1 it would
be a factor of 2. In such an application, this means the computation until an error of, e.g., ε1 = 5× 10−3

could take only a few seconds, but the continued computation until ε2 = 1× 10−4 is reached can take
longer by a factor of 2 ε1/ε2 = 100, increasing the computation times from mere seconds to several min-
utes. If the runtime until ε1 is reached is already in the range of a few minutes, this means the overall
runtime could be in the range of hours. A plot of the runtimes taken from the examples of the next
section can be found in Figure 4.5. It is therefore essential have high approximation rates s? (4.1.15) and
to use efficient preconditioners enabling high convergence rates for iterative solvers, which means fewer
steps and thus operator applications have to be executed.

Next, we put the algorithms of this section to use on a nonlinear PDE.
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∼ ε
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Incremental Runtime
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Figure 4.5: Overall and individual runtimes of the examples discussed in Section 4.6.2 using
MP244NB-SMD-SMOrth wavelets. Note the reverse direction of the abscissa. The approximation rate
seen in Figure 4.17 suggest s? = 1, the slope of which is given here as the black continuous line. Here, it
seems as if the rate is slightly lower than s? = 1, which is probably attributed to overhead in the initial-
ization of data structures and increased complexity due to the handling of the high number of wavelet
coefficients in the unordered associative containers, see Section B.3.
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4.6 A 2D Example Problem
To illustrate the effect of the individual components laid out in the previous section 4.1 – 4.4, we compare
the costs of solving the following nonlinear equation in weak form (1.5.3):

−∆u(x) + u3(x) =





3
2 − 4

3x1,
1
4 ≤ x1 ≤ 5

8 ∧ 5
8 ≤ x2 ≤ 3

4 ,

3
2 − 4

3x2,
5
8 ≤ x1 ≤ 3

4 ∧ 3
8 ≤ x2 ≤ 5

8 ,



 , in Ω, (4.6.1)

∂u

∂ν
= 0, on ∂Ω.

The construction of the right hand side data vector will be performed using Algorithm 4.1. Several result
vectors of the constructions can be seen in Figure 4.7. We are going to compare the solution algorithms
presented in the previous sections to determine which computes the solution more quickly and how to
choose the parameters to optimize the execution times.

Remark 4.22 The reference solution used in the following experiments was obtained numerically by
letting the Richardson solver run until the residual had reached a value of 10−7. We used the same
adaptive data for the right hand side and solution data in all experiments, adjusted to the different
wavelets. One just has to make sure the data is applicable, e.g., same functions used in the primal or
dual wavelet expansions, and adapt it to the employed preconditioner or basis transformation.

A rastered reference solution plot and the wavelet coefficient distribution can be found in Figure 4.6.
We will now present numerical experiments to qualitatively judge and quantitatively determine the best
solution strategy for the above problem.

0
0.2 0.4 0.6 0.8 1 0

0.5

1

0.41

0.42

x1

x2

5.23e− 02

1.00e− 08

Figure 4.6: Plot of the computed reference solution using DKU22NB wavelets and its coefficient distribu-
tion (scatter diagram). The adaptive solution vector consists of roughly 1.5 million wavelet coefficients.
The polynomial plot was generated by rastering with 50 points in each direction because the number of
piecewise polynomials given by all these wavelets cannot be plotted accurately simultaneously. For the
same reason the scatter diagram was filtered to only display values greater than 10−8 and levels up to 7,
because otherwise the whole diagram would have been covered in dots and no distribution would have
been recognizable. This is a limitation of the plotting means.
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• Right hand side function

f(x) =





3
2 − 4

3x1,
1
4 ≤ x1 ≤ 5

8 ∧ 5
8 ≤ x2 ≤ 3

4 ,

3
2 − 4

3x2,
5
8 ≤ x1 ≤ 3

4 ∧ 3
8 ≤ x2 ≤ 5

8 .

• L2-norm:
√

431
6912

• H1-seminorm (piecewise):
√

5
36

• H1-norm (piecewise):
√

1391
6912

6.25e− 02

1.09e− 03

• Number of coefficients: 155

• Number of zero-valued coefficients: 68

• Minimum level: 2

• Maximum level: 3

• Exact up to level: 2

• L2-Error: 7.866 · 10−2

6.25e− 02

7.49e− 08

• Number of coefficients: 9930

• Number of zero-valued coefficients: 80

• Minimum level: 2

• Maximum level: 11

• Exact up to level: 7

• L2-Error: 6.801 · 10−3

6.25e− 02

4.68e− 09

• Number of coefficients: 819431

• Number of zero-valued coefficients: 92

• Minimum level: 2

• Maximum level: 17

• Exact up to level: at least 12

• L2-Error: 7.623 · 10−4

Figure 4.7: A piecewise polynomial right hand side function and the adaptive vectors of dual expansion
coefficients computed by Algorithm 4.1 using DKU-22 wavelets. As the error computed by (4.1.12)
decreases, the number of levels which are exactly computed, i.e., which contain all non-zero wavelet
coefficients of a reference vector computed by full-grid methods up to level 12, grows.
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4.6.1 Solving with Richardson Iteration

This section is entirely about using Algorithm 4.4 to solve (4.6.1). We start by examining the influence of
some parameters on the Richardson iteration and then move to more general topics, e.g., preconditioning.

The parameter ρ

The first parameter we want to discuss is ρ, which the theory of [33] says can be chosen freely in the range
of (0, 1). As such, we expect the overall solution process to be mostly independent of ρ. Fixing otherwise
all parameters and only changing the value of ρ, the results depicted in Table 4.3 show that the influence
on the solution process of this parameter is in fact negligible, except when approaching 1. Neither the
execution time nor the total number of steps fluctuates greatly. The only influence it seems to have is
being able to shift the amount of internal and external steps. Not depicted is the memory usage, which is
hard to capture exactly, but it is usually higher for higher values of K, as then more wavelet coefficients
can be accumulated before the vectors are being coarsened. Therefore it is advisable to choose a value of
ρ with K in the middle range, e.g., ρ = 0.9.

The Preconditioner

The efficiency of the Richardson iteration depends greatly on the value of the step parameter α, which de-
pends on the spectral condition of the operator by (4.2.6) and (4.2.9). For the operator A(u) := −∆u+u,
which leads to the bilinear form exactly representing the H1-norm, it is clear that (2.2.33) is the better
choice than (2.2.15). Further improvements were made by the orthogonal basis transformation (2.3.17)
and this was demonstrated numerically in [122]. Although the operator F (u) := −∆u + u3 is also an
isomorphism from H1 to its dual (H1)′, it is not clear if the same preconditioning strategies will have
the same effects.
To judge the preconditioning, we solve our example problem for D1, Da and D{O,a} (Da with (2.3.17))
using the same settings except for the step size parameter α, which is chosen so the iteration converges
most quickly. The maximum values of α, given in Table 4.2, were here found experimentally. These
values indicate that the condition number of the operator F (u) := −∆u+ u3 is lowest with the configu-
ration MP244NB-SMD-SMOrth, especially it should be much lower than the condition number when using
DKU22NB-P2. The iteration studies presented in Figures 4.8 – 4.10 show clearly that the type of precon-
ditioning has a tremendous influence on the speed of convergence. The preconditioners D1 of (2.2.15)
and Da of (2.2.33) exhibit for all wavelet type the lowest asymptotic rates in the Richardson iteration.
In all cases, the rate of exponential decay of the residual and the `2-error are equal. As shown in [122],
the basis transformation (2.3.17) effectively annihilates the influence of the coarsest level Ψj0−1 on the
condition number of the operator A(u) := −∆u+ u. Although not specifically constructed for the oper-
ator of (4.6.1), the stiffness matrix orthogonalizing basis transformation are very effective for the overall
solution construction process here. So effective indeed, that the solution process is sped up by a factor of
20 in steps in this case. In terms of execution times, the speedup is even higher, bringing computations
that take hours down to minutes and (in conjunction with other implementational devices of Section 4.5)
into the realm of “real time computations”, where the computation can be finished within fractions of
seconds, see Table 4.5. The almost constant per-wavelet computations times in all cases show that there
are no “hidden costs”, i.e., the runtime is solely proportional to the number of treated wavelet coefficients.
It should be noted that DKU22NB-SMD-SMOrth finished about twice as fast as MP244NB-SMD-SMOrth, which

Wavelet DKU22NB DKU24NB MP244NB

P2 1.1× 10−1 8× 10−2 1× 10−1

SMD 5.3× 10−1 5.5× 10−1 6.4× 10−1

SMD-SMOrth 5.3× 10−1 5.5× 10−1 6.4× 10−1

Table 4.2: Maximum values of the Richardson step size parameter α for different preconditioners. See
Section A for details on the names of the wavelet configurations.
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ρ K Max. Reduction ρK Richardson Steps Overall Steps Time (s) ‖u− u∗‖`2
0.1 3 1× 10−3 692 2076 589 0.352
0.2 3 8× 10−3 692 2076 568 0.352
0.3 4 8.1× 10−3 517 2067 638 0.357
0.4 5 1.024× 10−2 414 2066 588 0.357
0.5 7 7.812× 10−3 296 2065 649 0.358
0.6 9 1.007× 10−2 231 2066 604 0.357
0.7 14 6.782× 10−3 149 2065 616 0.358
0.75 18 5.637× 10−3 117 2066 654 0.357
0.8 24 4.722× 10−3 88 2066 552 0.357
0.85 34 3.983× 10−3 63 2066 595 0.357
0.9 56 2.738× 10−3 39 2066 604 0.357
0.95 131 1.207× 10−3 18 2067 627 0.357
0.99 845 2.049× 10−3 5 2066 548 0.357

Table 4.3: Execution statistics for Algorithm 4.4 for varying values of ρ. The values of K were determined
according to (4.2.2). The Richardson scheme was then run to compute the residual to an accuracy of 10−3.
The last column shows the error ‖u− u∗‖`2 of the computed solution to the reference solution depicted
in Figure 4.6. The number of Richardson iterations varies inversely proportional to K, but the execution
time and the overall number of steps, which includes counting the internal steps between coarsenings,
remains roughly constant. This holds even when ρ gets very close to 1, where K grows exponentially (see
Figure 4.4), because the inner iteration can exit prematurely if the residual has already fallen sufficiently,
see Remark 4.13.

is simply a consequence of the larger support of the MP244NB wavelet compared to the DKU22NB wavelet,
e.g., see the wavelet constructions presented in Section A.1.4 and Section A.1.6.

Iteration Histories and Approximation Order

A more detailed analysis of the best cases can be found in Figure 4.11. Here, the internal steps of the
Richardson iteration are also displayed. The effect of the coarsening of the iterand can be observed in
the jumping up of the residual value and dropping down of the number of wavelet coefficients contained
in the adaptive vector. It is noticeable that the number of elements in the iterand grows steadily with
increasing accuracy of the solution. After each coarsening step, the vector fills up again the quicker the
more steps have already been executed.
There are two reasons the iterand ûi,l in Algorithm 17 grows in size: In Algorithm 4.3 a tree prediction in
done within Algorithm 3.8 on the current iterate and a tree coarsening is executed on the right hand side
vector within Algorithm 4.2. As the stage dependent error ηl := εiρ

l with ρ < 1 takes on smaller values
in each step and this value is used as tolerances for the tree prediction and coarsening, both algorithms
will produce larger trees each time as a result. Here, at some point, the tolerance will be so small that
the tree coarsening of the right hand side will simply return the whole vector. As seen in Figure 4.7,
the right hand side vector with an error smaller than 10−3 contains almost 106 wavelet coefficients. The
most important, i.e., of highest absolute value, coefficients are usually within this tree and not on the
leaves. The tree prediction algorithm will then, after several iterations, stagnate and insert no more new
elements.
An important conclusion should thus be that the right hand side data should be very sparse to ensure
sparseness in all the iterands throughout the whole execution of the Richardson scheme.
Lastly, in Figure 4.17, the approximation order, i.e., the relation of the error ε and the number of wavelet
coefficients N , is displayed for all the D{O,a} cases. In this diagram, it can be observed that the accuracy
in all cases drops proportional to N−1, which is expected for γ = 3 as determined in Table 4.1 for the
nonlinear operator G by (4.1.15). It seems that the linear operator A in this application seems to (quite
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unexpectedly, see Remark 4.12) exhibit a value γ ≥ 3 of its own.

4.6.2 Solving with Gradient Iteration

Since the gradient iteration is so similar to the Richardson iteration, we only compare the SMD-SMOrth
configurations. The iteration histories can be found in Figure 4.12. For these, the step size parameter was
chosen according to (4.3.3) as depicted in Algorithm 4.5. The effort to compute the optimal step size value
pays off as the iteration now converges uniformly and reaches the required residual accuracy after several
steps for all wavelet types. As the value of the internal tolerances ηl only attains a value of 0.99 ≈ 0.38
times the starting tolerance ε, the number of active wavelet coefficients does not grow over the course
of the iterations. This effect can also be seen in Figure 4.11, where the number of wavelet coefficients
also stays constant at #N0(T ) for the first few steps. A plot of the approximation rate would thus be
meaningless, as this diagram would only constitute of a vertical line. The runtimes given in Table 4.5
show that this solver finishes first in the SMD-SMOrth configurations of all the evaluated solvers. This is
not true for the other configurations and the runtimes indicate that in those cases the determination of
the ideal step size takes too long, which makes the Gradient iteration inefficient, although it takes fewer
steps to reach the target accuracy than the Richardson iteration.

4.6.3 Solving with Newton Iteration

The main advantage of the Newton iteration compared to the Richardson solver is the potential quadratic
convergence, if the iterand comes into the neighborhood U ⊂ H close to the solution.

Quadratic Convergence

As laid out in Section 4.4, one has to choose ηi ∼ ε2
i in U to achieve quadratic convergence. Determining

whether the iterand has entered the neighborhood U poses a problem similar to determining the optimal
step size parameter α in the Richardson. The most practical approach to start the phase of quadratic
convergence is when the value of the residual ‖r‖`2 drops below a predefined limit. If started before the
residual falls below a certain value, the target tolerance ηi ∼ ε2

i grows too small for the solution of the
subproblem to really be computable to a precision of ηi. In this case, the Richardson solver does not
converge properly and spends a large number of iterations without the value of the residual dropping
below a certain threshold. This prolongs the computation time of the Newton solver considerably and
makes the use of this solver unfeasible. In our studies, the most reliable threshold value was 10−3. As
this means ηi . 10−6, which is probably much smaller than the desired target tolerance ε = 10−4, this
would entail computations to very high precision and thus great computational complexity. Therefore,
the local tolerance ηi should be limited to the value of the target tolerance ε. We can then only expect
one more step in the Newton solver, since an error reduction of a factor of 10 = 10−3/10−4 should be
accomplished within one step with quadratic convergence.

CG on Static Grid vs. Adaptive Solver

The Newton iteration histories where the inner system is solved using CG on the inner grid can be
found in Figure 4.13 to Figure 4.15. Again, as in the case of the Richardson solver in Section 4.6.1, the
convergence speed greatly depends on the employed preconditioner. It is obvious again that the basis
transformation (2.3.17) effectively cuts the complexity of solving the equation by at least one order of
magnitude, and in the best case by several orders of magnitudes. We spare the same iteration histories
for all preconditioners for the Richardson scheme as the inner solver, the results are qualitatively the
same. The iteration histories for the SMD-SMOrth configurations and the Richardson solver on the inner
grid can be found in Figure 4.16. For the subproblem, the Richardson step size parameter % slightly
rounded down values of the ones given in Table 4.2 were chosen.
In the diagrams Figure 4.16, the quadratic convergence phase can hardly be distinguished. In experiments,
disabling the quadratic convergence assumption will reduce the time necessary to decrease the residual
from 10−3 to 10−4, although it increases the number of steps needed. It simply seems a fact that it is
computationally advantageous to execute a few steps to just decrease the residual by a factor of 1

2 several
times instead of trying to aim for a factor of 1

10 or lower directly.
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Turning to Table 4.6, it is fairly obvious that the full adaptive treatment of the Richardson solver for the
solution of the subproblem entails a higher computational cost. As can be seen in Figure 4.16 this even
holds although the convergence rate is higher compared to the respective cases depicted in Figure 4.13
to Figure 4.15.

Approximation Order

The approximation order, i.e., the relation of the error ε and the number of wavelet coefficients N , is
displayed in Figure 4.17. As stated before in Section 4.6.1, the accuracy in all cases drops proportional
to N−1, see Section 4.6.1 and the comments therein.

4.6.4 Conclusions

In the previous sections, we have presented many theoretical estimates including theoretical constants,
representing properties of a wide range of operators and wavelets. It is very time-consuming and often
also numerically difficult to determine the values of all of these constants to a high accuracy. Therefore,
in practical applications, one often uses approximations for some of these constants and focuses on the
generic behavior, e.g., squaring a value in each step. For the solution process, it is very important to
optimize these involved values, especially the coarsening tolerances. Otherwise, the convergence towards
the solution might slow down considerably or the solution might never be attained at all.
From the data displayed in the previous sections, we can draw the following conclusions:

• Because of the outstanding performance improvements of the SMD-SMOrth configurations, we will
use only these configurations from now on.

• In the best cases, all solvers can both output a solution within the time frame of a second. The
per-wavelet computational costs shown in Tables 4.4–4.6 remained roughly constant at ∼ 105/s in
all cases, hence no solver is more efficient than any other.

• The quadratic convergence of the Newton iteration is, theoretically, the quickest way to compute
a solution to a high accuracy. In practice, however, the quadratic tolerances ηi ∼ ε2

i entail such a
great incline in computational complexity that the advantage does not pay off in faster execution
times.

In summary, it is most important to choose a well-conditioned wavelet configuration, but there is no such
thing as a “black box” solver in this setting. The closest to this comes the gradient iteration of Section 4.3,
which gives good results with only minimal manual tuning. In summary, manual optimization of the solver
parameters is always required and often has a high impact on the overall performance.
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Figure 4.8: Richardson iteration histories for the different preconditioners used in conjunction with the
DKU22NB wavelet. The plots depict the norm of the residual ‖F(u)− f‖`2 , the error ‖u− u∗‖`2 (scale on
the left side) and the number of coefficients #S(T ) (scale on the right side). On the x-axis, we plot only
the “outer” steps of the Richardson iteration, i.e., without the K inner steps. Each step thus corresponds
to (at most) K operator applications and one coarsening of the iterands. The full history, including the
inner steps, of the case DKU22NB-SMD-SMOrth can be found in Figure 4.11.

163



Section 4. Numerics of Adaptive Wavelet Methods

0 10 20 30 40 50 60 70 80 90 100 110

10−4

10−3

10−2

10−1

100

101

10−4

10−3

10−2

10−1

100

101

0 10 20 30 40 50 60 70 80 90 100 110

102

103

104

105

106

107

reduction factor 0.933

Richardson Steps

R
e
s
i
d
u
a
l
/
E
r
r
o
r

DKU24NB-P2

N
u
m
b
e
r
o
f
C
o
e
f
f
i
c
i
e
n
t
sResidual `2-error Tolerance ε Size of Iterand

0 10 20 30 40 50 60 70 80

10−4

10−3

10−2

10−1

100

101

10−4

10−3

10−2

10−1

100

101

0 10 20 30 40 50 60 70 80

102

103

104

105

106

107

reduction factor 0.926

Richardson Steps

R
e
s
i
d
u
a
l
/
E
r
r
o
r

DKU24NB-SMD

N
u
m
b
e
r
o
f
C
o
e
f
f
i
c
i
e
n
t
sResidual `2-error Tolerance ε Size of Iterand

0 1 2 3 4
10−5

10−4

10−3

10−2

10−1

100

101

0 1 2 3 4

102

103

104

105

106

107

reduction factor 0.160

Richardson Steps

R
e
s
i
d
u
a
l
/
E
r
r
o
r

DKU24NB-SMD-SMOrth

N
u
m
b
e
r
o
f
C
o
e
f
f
i
c
i
e
n
t
sResidual `2-error Tolerance ε Size of Iterand

Figure 4.9: Richardson iteration histories for the different preconditioners used in conjunction with the
DKU24NB wavelet. The plots depict the norm of the residual ‖F(u)− f‖`2 , the error ‖u− u∗‖`2 (scale on
the left side) and the number of coefficients #S(T ) (scale on the right side). On the x-axis, we plot only
the “outer” steps of the Richardson iteration, i.e., without the K inner steps. Each step thus corresponds
to (at most) K operator applications and one coarsening of the iterands. The full history, including the
inner steps, of the case DKU24NB-SMD-SMOrth can be found in Figure 4.11.
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Figure 4.10: Richardson iteration histories for the different preconditioners used in conjunction with the
MP244NB wavelet. The plots depict the norm of the residual ‖F(u)− f‖`2 , the error ‖u− u∗‖`2 (scale on
the left side) and the number of coefficients #S(T ) (scale on the right side). On the x-axis, we plot only
the “outer” steps of the Richardson iteration, i.e., without the K inner steps. Each step thus corresponds
to (at most) K operator applications and one coarsening of the iterands. The full history, including the
inner steps, of the case MP244NB-SMD-SMOrth can be found in Figure 4.11.
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Figure 4.11: Detailed Richardson iteration histories for all wavelets in conjunction with the D{O,a}
preconditioner.
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Richardson Runtime

Wavelet DKU22NB DKU24NB MP244NB
Preconditioner Overall Per Wavelet Overall Per Wavelet Overall Per Wavelet
P2 6.46× 102 7.97× 10−6 1.26× 103 1.15× 10−5 1.91× 104 1.62× 10−5

SMD 3.98× 103 1.12× 10−5 6.34× 103 1.59× 10−5 7.54× 104 2.10× 10−5

SMD-SMOrth 1.45 6.63× 10−6 2.36 1.01× 10−5 3.93 1.22× 10−5

Table 4.4: Overall runtime and runtime in seconds per treated wavelet coefficient of the Richardson
solver for the different Wavelet configurations. These times were measured from individual runs of the
program with all options disabled that do not contribute to the computation of the solution directly. The
comparison of the increase in runtime per coefficient in case of the more involved SMD preconditioner
compared to the P2 preconditioner hints at the cost of the more involved computations needed to
determine the value of (2.2.32) for each wavelet coefficient. Since the runtime and number of wavelet
coefficients of the SMD-SMOrth are so small, statistical fluctuations impact this configuration the most
and thus the per wavelet coefficient values have the highest associated uncertainty.

Gradient Iteration Runtime

Wavelet DKU22NB DKU24NB MP244NB
Preconditioner Overall Per Wavelet Overall Per Wavelet Overall Per Wavelet
P2 4.44× 103 9.34× 10−6 7.86× 103 1.39× 10−5 1.61× 105 2.02× 10−5

SMD 1.33× 104 1.13× 10−5 1.91× 104 1.67× 10−5 2.55× 105 2.14× 10−5

SMD-SMOrth 9.2× 10−2 1.53× 10−5 9.7× 10−2 1.61× 10−5 8.3× 10−1 4.10× 10−5

Table 4.5: Overall runtime and runtime per treated wavelet coefficient in seconds of the Gradient iteration
for the different Wavelet configurations. The general comments of Table 4.4 also apply here.

Newton Runtime

Wavelet DKU22NB DKU24NB MP244NB
Preconditioner Overall Per Wavelet Overall Per Wavelet Overall Per Wavelet

Newton (CG) Runtime
P2 5.98× 101 7.31× 10−6 1.00× 102 1.09× 10−5 1.50× 103 1.41× 10−5

SMD 4.26× 102 8.66× 10−6 4.12× 102 1.16× 10−5 7.56× 103 1.44× 10−5

SMD-SMOrth 1.30 7.06× 10−6 2.35 1.05× 10−5 4.01 1.28× 10−5

Newton (Richardson) Runtime
P2 3.95× 103 8.04× 10−6 1.05× 104 1.30× 10−5 9.64× 104 1.44× 10−5

SMD 1.31× 103 7.75× 10−6 2.07× 103 1.16× 10−5 1.88× 104 1.30× 10−5

SMD-SMOrth 2.50 6.92× 10−6 8.40 1.09× 10−5 1.07× 101 1.37× 10−5

Table 4.6: Overall runtime and runtime per treated wavelet coefficient in seconds of the Newton solver
for the different Wavelet configurations. The name of the inner (linear) subproblem solver is given in
parentheses in the title. It is directly obvious that the adaptive treatment of the linear subproblem entails
an increase in needed runtime. Also, the larger support of the d̃ = 4 wavelets leads to an increase in
complexity per treated wavelet index. The motivation to use smoother wavelet configurations is of course
the benefit of higher theoretical approximation orders which should translate into higher convergence
orders. The general comments of Table 4.4 also apply here.
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Figure 4.12: Detailed Gradient Iteration histories for all wavelets in conjunction with the D{O,a} precon-
ditioner.
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Figure 4.13: Newton iteration histories with CG as subproblem solver for the different preconditioners
used in conjunction with the DKU22NB wavelet. The plots depict the norm of the residual ‖F(u) − f‖`2 ,
the error ‖u − u∗‖`2 (scale on the left side) and the number of coefficients #S(T ) (scale on the right
side). On the x-axis, we plot the steps of the Newton iteration.
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Figure 4.14: Newton iteration histories with CG as subproblem solver for the different preconditioners
used in conjunction with the DKU24NB wavelet. The plots depict the norm of the residual ‖F(u) − f‖`2 ,
the error ‖u − u∗‖`2 (scale on the left side) and the number of coefficients #S(T ) (scale on the right
side). On the x-axis, we plot the steps of the Newton iteration.
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Figure 4.15: Newton iteration histories with CG as subproblem solver for the different preconditioners
used in conjunction with the MP244NB wavelet. The plots depict the norm of the residual ‖F(u) − f‖`2 ,
the error ‖u − u∗‖`2 (scale on the left side) and the number of coefficients #S(T ) (scale on the right
side). On the x-axis, we plot the steps of the Newton iteration.
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Figure 4.16: Newton iteration histories with Richardson as subproblem solver for the preconditioner
D{O,a} used in conjunction with the DKU22NB, DKU24NB and MP244NB wavelets. The plots depict the
norm of the residual ‖F(u) − f‖`2 , the error ‖u − u∗‖`2 (scale on the left side) and the number of
coefficients #S(T ) (scale on the right side). On the x-axis, we plot the steps of the Newton iteration.

172



4.6. A 2D Example Problem

102 103 104
10−5

10−4

10−3

10−2

10−1

100

∼ N−1

Number of Wavelet Coefficients

R
e
s
i
d
u
a
l

Richardson Iterations Approximation Order

DKU22NB-SMD-SMOrth
DKU24NB-SMD-SMOrth
MP244NB-SMD-SMOrth

102 103 104
10−5

10−4

10−3

10−2

10−1

100

∼ N−1

Number of Wavelet Coefficients

R
e
s
i
d
u
a
l

Newton (CG) Iterations Approximation Order

DKU22NB-SMD-SMOrth
DKU24NB-SMD-SMOrth
MP244NB-SMD-SMOrth

102 103 104
10−5

10−4

10−3

10−2

10−1

100

∼ N−1

Number of Wavelet Coefficients

R
e
s
i
d
u
a
l

Newton (Richardson) Iterations Approximation Order

DKU22NB-SMD-SMOrth
DKU24NB-SMD-SMOrth
MP244NB-SMD-SMOrth

Figure 4.17: Approximation order for the different wavelets using preconditioner D{O,a}. On the abscissa,
the number of wavelet coefficients after each coarsening is plotted against the residual for the coarsed
vector on the ordinate axis.
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4.7 A 3D Example Problem
As the three-dimensional example PDE, we study the nonlinear partial differential equation,

−∆u(x) + u3(x) = f, in Ω, (4.7.1)
∂u

∂ν
= 0, on ∂Ω,

where the right hand side function is given by the piecewise polynomial

f(x1, x2, x3) :=





0, 0 < x1 ≤ 1
2 , 0 < x2 ≤ 1

2 , 0 < x3 ≤ 1
2 ,

1, 1
2 < x1 < 1, 0 < x2 ≤ 1

2 , 0 < x3 ≤ 1
2 ,

2, 0 < x1 ≤ 1
2 ,

1
2 < x2 < 1, 0 < x3 ≤ 1

2 ,

3, 1
2 < x1 < 1, 1

2 < x2 < 1, 0 < x3 ≤ 1
2 ,

4, 0 < x1 ≤ 1
2 , 0 < x2 ≤ 1

2 ,
1
2 < x3 < 1,

5, 1
2 < x1 < 1, 0 < x2 ≤ 1

2 ,
1
2 < x3 < 1,

6, 0 < x1 ≤ 1
2 ,

1
2 < x2 < 1, 1

2 < x3 < 1,

7, 1
2 < x1 < 1, 1

2 < x2 < 1, 1
2 < x3 < 1.

(4.7.2)

Since this function is smooth on each patch but not at the boundaries, we expect most of the wavelet
coefficients to aggregate on the hyperplanes (x1, 0, 0), (0, x2, 0) and (0, 0, x3). This setup is sparse in
three dimensions, but the discontinuities cover the whole of the three two-dimensional hyperplanes. The
three-dimensional scatter diagram of the wavelet coefficients computed by Algorithm 4.1 can be seen
in Figure 4.18. Although the distribution seems perfectly symmetrical, the height of the jump at the
interfaces is different depending on which plane is examined. By construction, crossing the intersection
of the hyperplane xi, i = 0, 1, 2 entails a jump of 2i. As such, the values of the constructed expansion
vector are not equally weighted, there is a slight tendency of the coefficients constructed by Algorithm 4.1
towards the hyperplane (0, 0, x3). But this effect is hardly recognizable in the diagram.
In these tests, we solve the equation (4.7.1) up to ε = 1× 10−3. The references in each case are solutions
computed up to ε = 1× 10−5. A density plot of the pointwise evaluated computed solution can be seen
in Figure 4.19.

4.7.1 Solving with Richardson Iteration

The experimentally found step sizes used can be seen in Table 4.7. The Richardson solver proved very
effective in this case, its simplicity being the predominant reason. Computing in dimension n = 3
entails a substantially higher runtime, simply because there are at least an order of magnitude more
wavelet coefficients in any vector, even by just considering the number of all roots Nn0 (3.2.2) which grows
exponentially in n by the setup (2.4.7).
In Figure 4.24, the approximation rates are displayed for all wavelet constructions. In this diagram, it
can be observed that the accuracy in all cases drops proportional to N−2/3, which is expected for γ = 7

2
and n = 3 as determined in Table 4.1 for the nonlinear operator G by (4.1.15).

Wavelet DKU22NB DKU24NB MP244NB

SMD-SMOrth 2.5× 10−1 2.5× 10−1 2.6× 10−1

Table 4.7: Maximum values of the Richardson step size parameter α for different preconditioners. See
Section A for details on the names of the wavelet configurations.
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Figure 4.18: Wavelet coefficients of the right hand side (4.7.2) expanded in DKU22NB-SMD-SMOrth wavelets.
Due to the high dimension n = 3, only the coefficients of up to level J = 5 are presented. But this
limitation also makes it possible to recognize the structure of the distribution more easily. Except for
the coarsest level coefficients, the wavelet coefficients are gathered at the three hyperplanes (x1, 0, 0),
(0, x2, 0) and (0, 0, x3). The above diagram contains N = 9483 markers for individual coefficients, the
actual vector used in the experiments contains several million wavelet coefficients.
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4.7.2 Solving with Gradient Iteration

Again, the main difference to the prior solver is the computation of the optimal step size α in each step.
In the two-dimensional example, this computation was not very costly to execute and the overall solution
process benefited greatly. But here, each operator application can take several minutes and computing
the optimal step size can thus take dozens of minutes in each case, depending on how many steps are
needed to solve (4.3.3). Since the incurred overhead of computing α is countermanded by the speedup in
convergence, it is not advisable to use this solver when compared to the Richardson solver.

4.7.3 Solving with Newton Iteration

Using CG as the subproblem solver proves to be a very effective way to solve the inner linearized system
in the light of the high number of wavelet coefficients in this example. The downside of this solver is
a rather unsteady convergence history (Figure 4.22) and the expected approximation rate (Figure 4.25)
is just barely recognizable. On the upside, the solutions were acquired very quickly in each case, the
runtimes documented in Table 4.9 are among the lowest for this example.
The overall runtimes for the MP244NB wavelet are in every case more than an order higher than for the
DKU wavelets. The relative (per wavelet coefficients) runtimes show that a factor of ∼ 2 is attributed to
the wavelet, but the absolute values on the abscissa in Figure 4.25 show that the vector contain at least
ten times as many coefficients.
In the case the Gradient Iteration is used as the internal solver, the approximation rate is much more
recognizable, but the execution times grow extensively. Especially the first few Newton steps take a very
long time, although the accuracy in these cases is not lower than 0.1. In fact, for the first 11 of the 16
overall steps, over 80% of the runtime is needed. Ignoring this initial phase, the performance using the
MP244NB wavelet is en par with the DKU244NB wavelet. Once a residual smaller than the initial tolerance
0.1 is achieved, the last 5 steps execute (on average) in accordance with the expected approximation rate.
It thus seems a good strategy to precede the Newton methods by a few steps of another solver, e.g., the
Richardson scheme, to compute a better starting vector.

4.7.4 Conclusions

In three dimensions, a sparse right hand side can contain a non-sparse subset of a two dimensional man-
ifold. This entails a large number of non-zero wavelet coefficients. Although the solution algorithms
behave in accordance with the predictions when it comes to approximation rates and therefore the num-
ber of wavelet coefficients within a working copy vector, the high number of wavelet coefficients entail a
runtime that increases the solution process from mere seconds in the best cases of Section 4.6 to several
minutes at least here. Since the complexity estimates of Theorem 4.8 guarantee that the runtime stays
proportional to the number of computed wavelet coefficients, the only practical way to speed up these
computations considerably is by parallelization techniques, which are not a subject of this work, see
Section 6.2.

As a solution process for a single nonlinear PDE is now established, we turn to boundary value problems
based upon said nonlinear PDEs.
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Figure 4.19: Solution of (4.7.1). The plot shows the isosurfaces of the pointwise evaluation of the
polynomial represented by the vector of wavelet coefficients.
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Figure 4.20: Detailed Richardson Iteration histories for all wavelets in conjunction with the D{O,a}
preconditioner.
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Figure 4.21: Detailed Gradient Iteration histories for all wavelets in conjunction with the D{O,a} precon-
ditioner.
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Figure 4.22: Newton Iteration histories using the CG solver for the linearized subproblem for all wavelets
in conjunction with the D{O,a} preconditioner.
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Figure 4.23: Newton Iteration histories using the Gradient solver for the linearized subproblem for all
wavelets in conjunction with the D{O,a} preconditioner.
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Figure 4.24: Approximation order for the different wavelets using preconditioner D{O,a}. On the abscissa,
the number of wavelet coefficients after each coarsening is plotted against the residual for the coarsed
vector on the ordinate axis.

Richardson and Gradient Iteration Runtime

Wavelet DKU22NB DKU24NB MP244NB
Preconditioner Overall Per Wavelet Overall Per Wavelet Overall Per Wavelet

Richardson Runtime
SMD-SMOrth 5.87× 102 6.07× 10−5 3.03× 102 9.04× 10−5 4.26× 103 1.41× 10−4

Gradient Iteration Runtime
SMD-SMOrth 1.38× 104 7.69× 10−5 1.39× 104 1.40× 10−4 3.91× 104 1.89× 10−4

Table 4.8: Overall runtime and runtime per treated wavelet coefficient in seconds of the Richardson and
Gradient Iteration solver for the different Wavelet configurations. The general comments of Table 4.4
also apply here.
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Figure 4.25: Approximation order for the different wavelets using preconditioner D{O,a}. On the abscissa,
the number of wavelet coefficients after each coarsening is plotted against the residual for the coarsed
vector on the ordinate axis.

Newton Runtime

Wavelet DKU22NB DKU24NB MP244NB
Preconditioner Overall Per Wavelet Overall Per Wavelet Overall Per Wavelet

Newton (CG) Runtime
SMD-SMOrth 1.34× 102 4.36× 10−5 8.72× 101 6.63× 10−5 4.97× 103 1.67× 10−4

Newton (Gradient) Runtime
SMD-SMOrth 1.12× 104 6.22× 10−5 4.34× 104 1.32× 10−4 2.49× 105 1.73× 10−4

Table 4.9: Overall runtime and runtime per treated wavelet coefficient of the Newton solver for the
different Wavelet configurations. The name of the inner (linear) subproblem solver is given in parentheses
in the title. Again, using an adaptive solver for the linear subproblem entails an increase in runtime.
Also, the larger support of the d̃ = 4 wavelets leads to an increase in complexity per treated wavelet
index. The general comments of Table 4.4 also apply here.
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5 Boundary Value Problems as Saddle Point Problems
This chapter gives a short introduction into saddle point problems and especially to formulate elliptic
boundary value problems as saddle point problems.
The theoretical framework of this chapter is generally based upon [47, 99], which itself build upon the
theory put forth in [9] as the Lagrange multiplier method. Here, the space of test functions is chosen
not to incorporate any Dirichlet boundary conditions. Instead, these are supposed to be attained by
the Lagrangian multipliers only where needed. In the wavelet setting, this method allows for optimal
preconditioning and adaptive methods offer automatic stabilization which voids the necessity of the
LBB condition mentioned in Section 2.5.2. Adaptive wavelet methods for saddle point problems have
been developed only recently, the main works being [32, 40, 42, 55]. The following excerpt is based upon
these papers. Also, our main motivation to employ Uzawa algorithms is based upon our previous
numerical results, see [122].

5.1 Saddle Point Problems
Consider Hilbert spaces H and V with their dual spaces H′ and V ′ together with their respective dual
forms 〈·, ·〉H×H′ , 〈·, ·〉V×V′ . We define the product Hilbert space Z and its dual Z ′ as

Z := H× V ′, Z ′ := H′ × V. (5.1.1)

This definition of Z involving V ′ instead of V is more convenient for the specification considered later.
The Z-inner product will be given by

(·, ·)Z := (·, ·)H + (·, ·)V′ , (5.1.2)

inducing the canonical norm on Z as
∥∥∥∥
(
v
q

)∥∥∥∥
2

Z
:= ‖v‖2H + ‖q‖2V′ , for all v ∈ H, q ∈ V ′. (5.1.3)

5.1.1 The Linear Case

Suppose a(·, ·) : H×H → R is a continuous bilinear form with some constant α2 > 0 such that

|a(v, w)| ≤ α2‖v‖H‖w‖H, for all v, w ∈ H, (5.1.4)

and likewise for b(·, ·) : H× V ′ → R holds with some other constant β2 > 0,

|b(v, q)| ≤ β2‖v‖H‖q‖V′ , for all v ∈ H, q ∈ V ′. (5.1.5)

The problem to solve is as follows: Given f ∈ H′ and g ∈ V, find y ∈ H such that,
{

solve a(y, v) = 〈v, f〉 , for all v ∈ H,
under the constraint b(y, w) = 〈g, w〉 , for all w ∈ V ′. (5.1.6)

In this form, the problem formulation is actually not tractable: If the first equation has a unique solution,
it either satisfies the second equation or not. To get a well-defined problem, it has to be reposed as
constrained minimization problem. Under these assumptions on the bilinear forms, it is well known
(see [17, 19, 67]) that the solution y ∈ H of the first equation of (5.1.6) is the unique minimizer of the
quadratic (and thus convex) functional

J(u) =
1

2
a(u, u)− 〈u, f〉 . (5.1.7)

The proper problem formulation is then
{

minimize J(y) = 1
2a(y, y)− 〈y, f〉 ,

for all y satisfying b(y, w) = 〈g, w〉 , for all w ∈ V ′. (5.1.8)
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Section 5. Boundary Value Problems as Saddle Point Problems

The above minimization problem can be solved by appending the linear constraints of the second equation
in (5.1.6) by means of a Lagrangian multiplier q ∈ V ′ to the functional (5.1.7), by defining

K(u, q) := J(u) + b(u, q)− 〈g, q〉 , (5.1.9)

and solving the system of equations resulting from the necessary (and in this case also sufficient) mini-
mization conditions:

∂K(v, p) = 0 ⇐⇒ ∂uK(v, p) = 0 ∧ ∂qK(v, p) = 0.

Explicitly calculating these derivatives leads to the following reformulation of the above problem: Given
(f, g) ∈ Z ′, find (y, p) ∈ Z such that
〈(

v
p

)
, LA

(
y
p

)〉

Z×Z′
:=

{
a(y, v) + b(v, p) = 〈v, f〉H×H′
b(y, p) = 〈g, p〉V×V′

, for all v ∈ H and p ∈ V ′, (5.1.10)

which is written shortly using the operator definitions (1.4.12) and (3.6.2) as

LA

(
y
p

)
:=

(
A B′

B 0

)(
y
p

)
=

(
f
g

)
. (5.1.11)

Loosely speaking, the extra degree of freedom that p ∈ V ′ provides assures to find a solution y ∈ H with
B y = g such that Ay = f − B′ p, i.e., the right hand side has been altered to accommodate for the
constrained solution space.

Remark 5.1 When a(·, ·) is symmetric positive definite, the solution (y, p) of (5.1.10) solves the extremal
problem

inf
u∈H

sup
q∈V′

(
1

2
a(u, u)− 〈f, u〉H′×H + b(u, q)− 〈u, q〉V×V′

)
.

and satisfies

K(y, q) ≤ K(y, p) ≤ K(u, p), for all u ∈ H, q ∈ V ′,

which explains the designation saddle point problem.

The operator LA therefore maps Z into Z ′, and this even bijectively under the following conditions:
Important for the theoretical assertions is the relation of the operator A to the kernel of B, i.e.,

kerB := {v ∈ H | b(v, q) = 0 for all q ∈ V ′} ⊂ H, (5.1.12)

Another prerequisite is given by the inf-sup condition, i.e., let there be some constant β1 > 0 such that
holds

inf
q∈V′

sup
v∈H

b(v, q)

‖v‖H‖q‖V′
≥ β1. (5.1.13)

The inf-sup condition (5.1.13) means that the range of the operator B is closed in V ′. The following
theorem from [21, 100] combines these two and some other properties to show the existence of a unique
solution to (5.1.10).

Theorem 5.2 Let the linear operator A be invertible on kerB, i.e., for some constant α1 > 0 holds,

inf
v∈kerB

sup
w∈kerB

〈Av,w〉H′×H
‖v‖H‖w‖H

≥ α1,

inf
v∈kerB

sup
w∈kerB

〈A′v, w〉H′×H
‖v‖H‖w‖H

≥ α1,

(5.1.14)
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5.1. Saddle Point Problems

and let the inf-sup condition (5.1.13) hold for B.
Then there exists a unique solution (y, p)T ∈ Z to (5.1.10) for all (f, g)T ∈ Z ′. That is, the operator LA
of (5.1.11) is an isomorphism, and one has the norm equivalence

cLA

∥∥∥∥
(
v
q

)∥∥∥∥
Z
≤
∥∥∥∥LA

(
v
q

)∥∥∥∥
Z′
≤ CLA

∥∥∥∥
(
v
q

)∥∥∥∥
Z
, for all (v, q)T ∈ Z, (5.1.15)

where the constants cLA , CLA > 0 are given as

cLA :=

(
1

α1β1

(
1 +

α2

α1

)
+ max

{
2

α2
1

,
1

β2
1

(
1 +

α2

α1

)2

+

(
α2

β2
1

(
1 +

α2

α1

))2
})−1/2

,

CLA :=
√

2(α2
2 + β2

2).

Remark 5.3 The first prerequisite (5.1.14) is trivially fulfilled if A is invertible on all H ⊃ kerB. This
is assured by (5.1.4) with ellipticity (1.4.11), which gives the property (1.4.14).
The second assumption, the inf-sup condition (5.1.13), is also trivially satisfied if B is surjective, i.e.,
rangeB = V ′ or equivalently kerB′ = {0}.

The reason the invertibility of the operatorA is only needed on kerB stems from the homogeneous problem
formulation g ≡ 0. Then, it is obvious that any solution y must fulfill y ∈ kerB. The inhomogeneous
problem g 6= 0 can be reduced to the homogeneous case by the Brezzi splitting trick: Considering
y = yg + y0 with B yg = g and y0 ∈ kerB, the inhomogeneous equations simplify to a homogeneous
problem in the unknown y0: Ay0 = f − Ayg . This trick therefore hinges on the linearity of the
operator A.

The Schur Complement

In the following, we will assume the linear operator A to be invertible, and that also the prerequisites of
Theorem 5.5 holds. Under these conditions, the solution to (5.1.26) can be expressed analytically using
only the operators A and B and the right hand side data. The Schur complement is the operator

S := BA−1B′, S : V ′ → V, (5.1.16)

which is inherits the monotonicity properties of A−1, if B is surjective because of

〈ũ1 − ũ2, S(ũ1)− S(ũ2)〉 =
〈
ũ1 − ũ2, B A

−1(B′ũ1)−B(A−1B′ũ2)
〉
, for all ũ1, ũ2 ∈ V ′,

=
〈
B′ũ1 −B′ũ2, A

−1(B′ũ1)−A−1(B′ũ2)
〉
,

=:
〈
ṽ1 − ṽ2, A

−1(ṽ1)−A−1(ṽ2)
〉
.

In particular, when A is an isomorphism, A−1 then inherits the coercivity property (1.4.11) from A,
and so does S. We can then use (5.1.16) to rewrite (5.1.26) by eliminating y as

S p = BA−1 f − g. (5.1.17)

The above remarks show that S is invertible and can be brought to the other side in this equation.
Substituting p into the first equation of (5.1.26) leads to an explicit representation of y as

y = A−1(f −B′ S−1(BA−1f − g)). (5.1.18)

The importance of the Schur complement goes beyond theoretical transformations, it also determines the
efficiency of the Uzawa algorithm of Section 5.3.
If the operator A induces a norm on the space H, then the Schur complement can be used to define an
energy norm of the operator LA on the space Z as

∥∥∥∥
(
v
q

)∥∥∥∥
2

LA

:= ‖v‖2A + ‖q‖2S = 〈v,A v〉H×H′ + 〈q, S q〉V×V′ . (5.1.19)
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Section 5. Boundary Value Problems as Saddle Point Problems

This follows quickly from under the above conditions, i.e., if B is bounded and the inf-sup condition
(5.1.13) holds, then

‖q‖S ∼ ‖q‖V′ ,

see [42] for a proof. Since already holds ‖ · ‖A ∼ ‖ · ‖H by (1.4.13), the equivalence (5.1.19) follows.
It should be said that the Schur complement is never computed explicitly, as the operator A−1 is never
set up exactly.

5.1.2 The Semilinear Case

This excerpt is based upon [67,149]. In the following, we add a nonlinear term ξ(·) to the symmetric and
coercive bilinear form a(·, ·). This function ξ interpreted as a function ξ : R→ R shall be continuous and
nondecreasing with ξ(0) = 0. The setting is therefore in accordance with Section 1.5. Also, we assume
to possess knowledge of a non-negative, convex and lower semicontinuous functional j : H → R, i.e.,

lim
v→v0

inf j(v) ≥ j(v0), for all v, v0 ∈ H, (5.1.20)

which satisfies

Dj(v;w) = 〈w, ξ(v)〉 , for all v, w ∈ H.

Simply stated: Dj ≡ ξ. Operators with this property are called potential operators and the potential
is given by

j(u) :=

∫ 1

0

〈ξ(t u), u〉 dt. (5.1.21)

The function ξ(·) is convex on H, if and only if the functional j(·) : H → R is monotone, see [149]. It
then follows, because of the symmetry of a(·, ·), that the task to find y ∈ H for given f ∈ H′ for which
holds

a(y, v) + 〈v, ξ(y)〉 = 〈v, f〉 , for all v ∈ H, (5.1.22)

are the Euler equations of the functional

J(u) =
1

2
a(u, u) + j(u)− 〈u, f〉 , (5.1.23)

which means that for the solution u ∈ H of (5.1.22) holds J(u) ≤ J(v), for all v ∈ H. We can then again
consider the constrained minimization problem: Given f ∈ H′ and g ∈ V, find y ∈ H such that,

{
minimize J(y) = 1

2a(y, y) + j(y)− 〈y, f〉 ,
for all y satisfying b(y, w) = 〈g, w〉 , for all w ∈ V ′. (5.1.24)

The optimality conditions with the Lagrangian multiplier p ∈ V ′ then read
{
a(y, v) + 〈v, ξ(y)〉+ b(v, p) = 〈v, f〉 , for all v ∈ H,
b(y, w) = 〈g, w〉 , for all w ∈ V ′. (5.1.25)

Denoting the operator of the form ξ(·) by G(·) as in (1.5.2) and setting F := A + G, then the above
equations can be written as

LF

(
y
p

)
:=

(
F B′

B 0

)(
y
p

)
=

(
f
g

)
. (5.1.26)

Remark 5.4 If the operator F is not symmetric, the problem (5.1.6) is not given as the optimality
conditions of the saddle point problem formulation in Remark 5.1. Therefore, the term saddle point
problem is not exactly fitting here for problem (5.1.24), but is often used regardless.
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5.1. Saddle Point Problems

Theorem 5.5 Let the semilinear operator F be invertible on M := {v ∈ H |B v = g} and let otherwise
hold the hold the assumptions of Theorem 5.2 on M and Theorem 1.57 for the nonlinear part. Then has
the equation (5.1.26) a unique solution (y, p) ∈ H×V ′ for any (f, g) ∈ H′×V. It also fulfills the a priori
estimates

‖y‖H ≤
1

α1

(
1 +

β2

β1

)
‖f‖H′ +

α′2 β2

α1 β2
1

‖g‖V , (5.1.27)

‖p‖H ≤
1

β1
‖f‖H′ +

α′2
β2

1

‖g‖V , (5.1.28)

with α′2 := α2 + CG(‖y‖H) as in (1.5.10).

Proof:

• Existence:
By Theorem 25.C of [149], the functional J : M ⊆ H → R has a minimum inM , ifM is a nonempty
bounded closed convex set in H and J(·) is weakly lower semicontinuous on M .
The set M ⊂ H is nonempty if B is surjective. Since B is linear, M is obviously convex and closed.
It holds ‖y‖ . ‖g‖, for any y ∈ M , which will also be used for the estimates. The weakly lower
semicontinuity is assumed for the nonlinear part j(·) and follows from ordinary continuity for the
other terms. Thus, J(·) has a minimizer on M .
Any local minimum of J(·) in M now satisfies equations (5.1.25): Let y ∈ M be the minimum,
then, because the set M is convex, it holds for and any v ∈M and t ∈ [0, 1],

J(y) ≤ J(y + t(v − y)) =⇒ 0 ≤ J(y + t(v − y))− J(y)

t
.

Expanding the terms and taking the limit t→ 0 gives

0 ≤ a(y, v − y) + 〈ξ(y), v − y〉 − 〈f, v − y〉 ,

which means, because v is arbitrary and v − y ∈ kerB,

0 ≤ a(y, w) + 〈ξ(y), w〉 − 〈f, w〉 , for all w ∈ kerB.

From this follows equality and thus F (y)− f ∈ (kerB)0 ⊂ H′. Since B is injective, B′ is surjective.
Thus, there exists a p ∈ V ′ for that holds

−B′ p = F (y)− f =⇒ F (y) +B′ p− f = 0 ∈ H′,

which shows (5.1.25).

• Uniqueness:
Let (y1, p1), (y2, p2) be two different solutions, i.e., at least y1 6= y2 or p1 6= p2. Subtracting both
sets of equations then yields

{
a(y1 − y2, v) + 〈v, ξ(y1)− ξ(y2)〉+ b(v, p1 − p2) = 〈v, 0〉 , for all v ∈ H,
b(y1 − y2, w) = 〈0, w〉 , for all w ∈ V ′.

From the second equation, we can infer y1 − y2 ∈ kerB. For the first equation thus follows for
v = y1 − y2,

a(y1 − y2, y1 − y2) + 〈y1 − y2, ξ(y1)− ξ(y2)〉+ 0 = 0,

and together with (1.4.11), which here is used simply as a(y1 − y2, y1 − y2) > 0,

〈y1 − y2, ξ(y1)− ξ(y2)〉 < 0,

which is a contradiction to the monotonicity assumption (1.5.9) of ξ(·). Thus, y1 = y2. Reevaluating
the first equation above for y1 = y2 then leads to

b(v, p1 − p2) = 0, for all v ∈ H,

which can only hold for p1 = p2.
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Section 5. Boundary Value Problems as Saddle Point Problems

• Estimates:
The calculation of the upper bounds are mainly just applying the assumptions. The only deviation
is the use of estimate

‖B y‖V = ‖g‖V =⇒ ‖y‖H ≤
1

β1
‖g‖V ,

which requires the closed range theorem, see [21,22]. Then easily follows

β1‖p‖ ≤ ‖B′p‖ = ‖f − F (y)‖ ≤ ‖f‖+ α′2‖y‖ ≤ ‖f‖+
α′2
β1
‖g‖,

which yields (5.1.28). Similarly for y,

α1‖y‖2 ≤ a(y, y) ≤ | 〈f, y〉 − 〈B′p, y〉 | ≤ ‖y‖‖f‖+ β2‖p‖‖y‖,

from which, together with the estimate for ‖p‖, follows (5.1.27).

Of course the estimate (5.1.27) is only properly usable if the value CG(‖y‖) within α′2 can be esti-
mated a priori, too. As the function C(·) is only generally described as being positive and nondecreasing,
this would only be possible under more specific assumptions on the nonlinearity.

Remark 5.6 In the linear case, better a priori estimates, given by the constant cLA in Theorem 5.2,
are achieved again by the Brezzi splitting trick: By acquiring estimates for y = yg + y0 independently for
the components y0 ∈ kerB and yg ∈ (kerB)⊥, several instances of the bilinear form b(·, ·) can be made
to vanish by restricting the first equation (5.1.6) on kerB. This approach does not work for the here
considered nonlinear operators.

By principally the same proof as for Theorem 5.2, the operator LF is stable in the sense of (1.5.8) with
the constant,

CLF (
{

(y1, p1)T , (y2, p2)T
}

) :=
√

2 (C2
F (max {‖y1‖H, ‖y2‖H}) + β2

2). (5.1.29)

Another simple way to derive the upper estimates for the operator LF is to note the structure

LF = LA +

(
G 0
0 0

)
, (5.1.30)

and use the triangle inequality. In particular, it follows for the Fréchet derivative by Remark 1.54

DLF = LA +

(
DG(z) 0

0 0

)
, (5.1.31)

from which immediately follows for the upper constant of (1.5.7) Cz,LF := CLA +Cz,G with the constants
from Theorem 5.2 and (1.5.7) for the nonlinear operator. By the same reasoning as used here and in the
proof of Theorem 1.57 follows cz,LA := cLA .

The Reduced Equation

In the nonlinear case, the reduced equation (5.1.17) reads

B F−1(f −B′ p) = g, (5.1.32)

which cannot be expressed using the Schur complement (5.1.16) because of the nonlinearity of F−1. The
Uzawa algorithm presented in Section 5.3 is a Richardson iteration on the equation

S̃(B,F, f)(p) = g, with S̃(B,F, f)(p) := B F−1(f −B′ p). (5.1.33)

The nonlinearity of this operator does not only come from the operator F−1, but also from the translation
f −B′ p. This could considerably impair the convergence properties in actual applications.
We will now examine how PDE Based Boundary Value Problems fit in the abstract saddle point problem.
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5.2. PDE Based Boundary Value Problems

5.2 PDE Based Boundary Value Problems
In the following, let Ω ⊆ � ⊂ Rn be a domain bounded by the cube � = �n = (0, 1)n. We assume Ω has
a Lipschitz continuous boundary ∂Ω ∈ C0,1 and Γ ⊆ ∂Ω is a subset of ∂Ω with strictly positive surface
measure. For example, if Ω = �n := (0, 1)n, then Γ ⊆ ∂Ω may be an edge or a face of this cube. We
then consider the following general boundary value problem: For given functions fΩ ∈ (H1(Ω))′ and
g ∈ H1/2(Γ), search y ∈ H1(�) satisfying

−∆y + ξ(y) = fΩ, in Ω,
y = g, on Γ,

∇y · n = 0, on ∂Ω \ Γ,
(5.2.1)

where n = n(x) is the outward normal at any point x ∈ Γ. Here, the operator ξ(·) potentially nonlinear,
e.g., ξ(y) = y3, but could also be linear, e.g., ξ(y) = y. In order to apply the theory from Section 5.1, we
transform the above problem into a weak formulation, expressing the equations by (bi-)linear forms.
In the view of Section 5, we choose specifically the spaces H = H1(Ω) and V = H1/2(Γ) as Sobolev spaces
on the bounded domains bounded in Rn. We can formulate the partial differential equation (5.2.1) by
the theory of Section 1.4.2 as follows:
Given fΩ ∈ (H1(Ω))′ and g ∈ H1/2(Γ), find the solution y ∈ H1(Ω), which solves

{
solve aΩ(y, v) = 〈v, fΩ〉Ω , for all v ∈ H1

0,Γ(Ω),

satisfying y|Γ = g,
(5.2.2)

where the space of the test functions is defined as

H1
0,Γ(Ω) :=

{
v ∈ H1(Ω) | v|Γ = 0

}
. (5.2.3)

Here the Neumann boundary conditions on Γ ⊂ ∂Ω were incorporated into the weak formulation and
need not be stated explicitly any more, i.e., they are natural boundary conditions, see Section 1.4.2 for
details. The Dirichlet boundary condition for Γ cannot be integrated into the solution space unless
g ≡ 0. The form aΩ(·, ·) is given by Section 1.4.2 as

aΩ(v, w) :=

∫

Ω

(∇v · ∇w + ξ(v)w) dµ. (5.2.4)

The (possibly) inhomogeneous boundary conditions on Γ are missing from the (bi-)linear form and cannot
generally incorporated into the test space, i.e., they are essential boundary conditions. The next section
explains how we deal with these.

5.2.1 The Fictitious Domain–Lagrange Multiplier Approach

Including the essential boundary conditions in our weak formulation, a standard approach was introduced
in [9] and is known as the Lagrange multiplier method. We will describe it here in the context of the
fictitious domain scheme.
The motivation for the fictitious domain setup is the idea of solving a PDE on a complex domain Ω ⊂ �
by embedding it into a simple domain � and solving the problem on the larger domain. Under the right
constraints, the solution of computed solution restricted to the domain Ω is then the sought solution. In
this setting, we call � ⊂ Rn the fictitious domain. This approach thus enlarges the range of problems
from simple domains � to complex domains Ω.

Remark 5.7 The fictitious domain procedure bears more difficulties when Γ 6= ∂Ω. Especially when
enforcing mixed Neumann and Dirichlet boundary conditions on different parts of the boundary ∂Ω this
approach can cause problem because of decreased regularity at the interfaces, see [85]. Therefore, for the
fictitious domain assertions Ω ( �, assume Γ = ∂Ω. Regardless, the Lagrange Multiplier Approach
is our preferred approach to deal with the inhomogeneous boundary conditions of (5.2.1).

By extending the problem from the domain Ω onto the fictitious domain �, we first have to discuss under
which conditions the problem stays well-defined. Let the right hand side fΩ ∈ (H1(Ω))′ be expanded
onto the cube � such that

f := f� ∈ (H1(�))′, fΩ = f�|Ω. (5.2.5)
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Moreover, extend the form aΩ(·, ·) to � by defining

a(v, w) := a�(v, w) :=

∫

�
(∇v · ∇w + ξ(v)w) dµ. (5.2.6)

Depending on the (constant) coefficients within (5.2.6), one has to make sure the (bi-)linear form remains
uniformly positive definite and/or symmetric, whatever characteristics the original (bi-)linear form pos-
sessed.
To generate a solution that satisfies the original (Dirichlet) boundary conditions, these have to be enforced
as the essential boundary conditions using the trace operators from Section 1.2.2. The problem setup
could require different boundary conditions on parts of the boundary ∂Ω which would require several
different trace operators, see [86,87] for an example problem.
To express these essential Dirichlet boundary conditions, we employ the trace operator of (1.2.25), i.e.,

γ0v = v|Γ.

The trace is well-defined for any v ∈ H1(Ω) since Γ is Lipschitzian as a subset of ∂Ω and thus holds
γ0v ∈ H1/2(Γ), cf. Theorem 1.21. We define the bilinear form b(·, ·) by setting

b(v, q) := 〈q, γ0v〉(H1/2(Γ))′×H1/2(Γ) =

∫

Γ

v|Γ q ds, for v ∈ H1(Ω), q ∈ (H1/2(Γ))′, (5.2.7)

which is well-defined because of the above remarks. The weak reformulation of (5.2.1) thus takes the
form (5.1.8) (or (5.1.24)): Given f ∈ (H1(�))′ and g ∈ H1/2(Γ), find y ∈ H1(�) such that,

{
minimize J(y) = 1

2a�(y, y)− 〈y, f〉 ,
for all y satisfying b(y, w) = 〈g, w〉 , for all w ∈ (H1/2(Γ))′,

(5.2.8)

which then leads to the optimality conditions
{
a�(y, v) + b(v, p) = 〈v, f〉 , for all v ∈ H1(�),
b(y, w) = 〈g, w〉 , for all w ∈ (H1/2(Γ))′,

(5.2.9)

with p ∈ (H1/2(Γ))′ In this formulation, the essential boundary conditions are not enforced in H1(�),
but appended by the Lagrangian multiplier p ∈ (H1/2(Ω))′.

Remark 5.8 In the view of Remark 5.1, the saddle point problem is given by: For f ∈ (H1(Ω))′ and
g ∈ H1/2(Γ), find the solution of

inf
v∈H1(Ω)

sup
q∈(H1/2(Γ))′

1

2
a�(v, v)− 〈f, v〉(H1(Ω))′×H1(Ω) + b(v, q)− 〈g, q〉H1/2(Γ)×(H1/2(Γ))′ . (5.2.10)

However, a consequence of the nature of the saddle point problem, is that the operator LA is indefinite.
This means that to actually solve (5.1.11), we have to use different iterative solvers than for system with
positive definite operators. The most well-known algorithms for such indefinite symmetric systems are
Uzawa-type algorithms, see Section 5.3 for the implementation details.

By design, this technique allows for a decoupling of the differential operator from the boundary con-
straints. Consequentially, changing boundary conditions or changing boundaries can be treated by up-
dating the right hand side g or by adapting the trace operator γ0 to a new domain. Since these actions
only involve a lower dimensional manifold, this can be done relatively easy compared to the cost a change
of the domain Ω would induce. Specifically, changes to the domain Ω excluding Γ have no effect on the
setup, as long as the domain is still bounded by the same fictitious domain �. The topology of the
fictitious domain is obviously chosen to be as simple as possible to allow for an easy setup and evaluation
of the (bi-)linear form (5.2.6).

Remark 5.9 In the case of the Dirichlet problem, the Lagrange multipliers of the solution
p ∈ (H1/2(Γ))′ can be shown to be the conormal derivative of y at Γ, p = n · ∇y. This is often in-
terpreted as the stress of the solution at the boundary.
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We can now employ the theory from Section 5.1 and derive the optimality conditions of (5.2.10). This
yields the following reformulation of our elliptic boundary value problem: Given (f, g) ∈ (H1(Ω))′ ×
H1/2(Γ), find (y, p) ∈ H1(Ω)× (H1/2(Γ))′ such that holds

a�(y, v) + b(v, p) = 〈f, v〉(H1(Ω))′×H1(Ω) , for all v ∈ H1(Ω),

b(y, q) = 〈g, q〉(H1/2(Γ))′×H1/2(Γ) , for all q ∈ (H1/2(Γ))′.
(5.2.11)

As formulated in the abstract setting from Section 5.1, we can write (5.2.11) in operator form (5.1.11)
or (5.1.26), depending on ξ(·). Hence, the operators A,B and B′ are defined by their roles as functionals
Av ∈ (H1(Ω))′ and B′ q ∈ (H1(Ω))′ acting on elements of the space H1(Ω).

Remark 5.10 Note that this operator A defined by (1.4.12) is self-adjoint, i.e., A′ = A if the bilinear
form (5.2.6) is symmetric.

It remains to answer the question whether the solution y on � is really the solution yΩ when restricted to
the domain Ω. This can be answered positively if Γ = ∂Ω, see [66, 68]. In case Γ ⊂ ∂Ω, this is no longer
automatically valid and still an open question in general. In fact this depends on the way the right hand
side extension is constructed, cf. [116].

5.2.2 The Case Ω = �, Γ = |
Let I = (0, 1) and Ω = � = (0, 1)n ⊂ Rn for a fixed n ≥ 2. We focus here on the case n = 2, since it is
easiest to visualize. This domain has a piecewise smooth boundary ∂Ω, in particular ∂Ω ∈ C0,1.
The task is now to find a solution to the following boundary value problem

−∆y + ξ(y) = f, in Ω,
y = g, on Γ,

∇y · n = 0, on ∂Ω \ Γ,
(5.2.12)

where n = n(x) is the outward normal at any point x ∈ Γ. We assume our Dirichlet boundary Γ to
be one of the sides of the hypercube �. In total, there then are 2n trace operators, i.e., in dimension
1 ≤ i ≤ n onto the faces at k ∈ {0, 1}, the trace operators w.r.t. to the domains

Γi,k := {x = (x1, . . . , xn) ∈ Rn |xi = k, 0 ≤ x1, . . . , xi−1, xi+1, . . . xn ≤ 1} . (5.2.13)

These two faces k ∈ {0, 1} for i = 1 shall be designated ΓW (west) and ΓE (east) respectively, see the
diagram for the case n = 2:

(0,0)

(0,1)

(1,0)

(1,1)

West Boundary ΓW East Boundary ΓEΩ = (0, 1)2

The choices of the Dirichlet boundary edges are completely arbitrary and the symmetry of the domain
permits immediate transfer of any results to the respective boundary value problems with ΓN (north)
and ΓS (south) boundaries. This argument obviously also applies to higher dimensions n > 2.
We can infer from Section 1.2.2 that the trace operators

γW : H1(Ω)→ H1/2(ΓW ), v 7→ v|ΓW , (5.2.14)

γE : H1(Ω)→ H1/2(ΓE), v 7→ v|ΓE , (5.2.15)

are well-defined. In the following, we fix one operator and refer to it with the symbol γ ∈ {γE , γW }.
The Dirichlet boundary Γ ∈ {ΓE ,ΓW } shall be uniquely determined by this operator. The bilinear form
of the trace operator γ is defined by (5.2.7) and the bilinear form of the PDE by (5.2.6).
Thus, all that needs to be checked are the assumptions of Theorem 5.2 and Theorem 5.5 in each case.
The boundedness and coercivity of the bilinear form a(·, ·) have already been discussed in Section 1.4.1.
The trace operator details were given in Section 1.2.2. Remaining are the details of the nonlinear terms.
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Example 5.11 For the nonlinearity ξ(u) := u3, define

Ξ(t) :=

∫ t

0

ξ(τ)dτ,

then the potential functional j : H1(Ω)→ R is given by

j(u) :=

∫

Ω

Ξ(u)dµ =
1

4

∫

Ω

u4dµ.

From the construction, it is obvious that for the Fréchet derivative of j(u) holds

j′(u; v) =

∫

Ω

Ξ′(u; v)dµ = 〈ξ(u), v〉 .

The functional j(·) is obviously non-negative with j(0) = 0 and (lower semi-)continuous. Convexity
follows simply by linearity of the integral and the property t4 ≤ t for t ∈ [0, 1].

Example 5.12 The square-weighted operator ξz(u) := 3z2u is linear in u. Its functional is given by

j(u) :=
3

2

∫

Ω

z2u2dµ,

which is (lower semi-)continuous and convex by the same reasoning as in the previous example. The
non-negativity holds because of the squaring within the integral, but it can hold that j(u) = 0 for u 6= 0
if y = 0 on a domain Λ ⊂ Ω of positive measure. Note that the trace spaces Γ are of measure zero, i.e.,
µ(Γ) = 0.

Since our operator equations are thus in accordance with the theory of Section 5.1.1 and Section 5.1.2,
we discuss the wavelet methods for these problems next.

5.2.3 Wavelet Discretization

We now employ the wavelet theory from Section 2 to our problem. With the background of Section 2, we
have assured the existence of biorthogonal wavelet bases Ψ1

Ω, Ψ̃1
Ω and Ψ

1/2
Γ , Ψ̃

1/2
Γ for the spaces H1(Ω),

H1/2(Γ) and their duals (H1(Ω))′,(H1/2(Γ))′, such that the norm equivalences (2.2.13), (2.2.14) hold
for the required ranges. For all multi-dimensional domains, the isotropic wavelet constructions from
Section 2.4.3 are used.
Hence, in accordance with the notation introduced in Corollary 2.23, a wavelet basis for Z := H1(Ω) ×
(H1/2(Γ))′ is given by

(
Ψ1

Ω, Ψ̃
1/2
Γ

)T
with the index set `2(IΩ)× `2(IΓ). Since writing `2(IΩ)× `2(IΓ) is

too cumbersome every time, we will shorten it to `2, especially on the norm. Likewise, a basis for the

dual space Z ′ = (H1(Ω))′ ×H1/2(Γ) is
(

Ψ̃1
Ω,Ψ

1/2
Γ

)T
.

We can expand the right hand side (f, g)T ∈ Z ′ in these scaled wavelet bases as

(f, g)T =
(
fT Ψ̃Ω,g

T Ψ̃Γ

)T
, with f ∈ `2(IΩ),g ∈ `2(IΓ). (5.2.16)

The solution vector (y, p)T ∈ Z has an analogous expansion

(y, p)T =
(
yTΨΩ,p

T Ψ̃Γ

)T
, with y ∈ `2(IΩ),p ∈ `2(IΓ). (5.2.17)

By Section 2.2.4, the discretized infinite-dimensional operator LF from (5.1.26) is now given by

LF

(
y
p

)
:=

(
F BT

B 0

)(
y
p

)
=

(
f
g

)
. (5.2.18)

In the linear case F ≡ A, where A is an isomorphism (2.2.28), the following result holds.
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Lemma 5.13 Let the operator A : `2 → `2 be an isomorphism. Then LA : `2(IΩ)× `2(IΓ)→ `2(IΩ)×
`2(IΓ), given by

LA

(
y
p

)
=

(
A BT

B 0

)(
y
p

)
=

(
f
g

)
, (5.2.19)

is also an isomorphism, i.e.,
∥∥∥∥LA

(
v
q

)∥∥∥∥
`2

∼
∥∥∥∥
(

v
q

)∥∥∥∥
`2

, for all (v,q) ∈ `2(IΩ)× `2(IΓ). (5.2.20)

The constants in these norm equivalences only depend on the constants cLA , CLA from Theorem 5.2 and
the constants in the norm equivalences (2.2.13) and (2.2.14) for the wavelet bases Ψ1

Ω, Ψ̃1
Ω and Ψ

1/2
Γ ,

Ψ̃
1/2
Γ .

Proof: The proof is imminent from the details of Section 2.2.4 and Theorem 5.2, see also [99].

Remark 5.14 When using discretizations based upon full grids as in Section 2.5, the above lemma says
that the spectral condition κ2(LA) is uniformly bounded and an iterative solution scheme can produce
a solution in optimal time and complexity, i.e., both are linear in the number of unknowns, see [45, 46].
But this presupposes the stability of the discretizations, i.e., the boundedness of the error when going
from an infinite wavelet expansion to a finite one, see Section 2.5.2.

The coefficient vectors f ,g are calculated from functions (f, g) ∈ Z ′ by the primal and dual expansions
(2.1.55), (2.1.56), i.e.,

f =
〈
f,Ψ1

Ω

〉
Ψ̃1

Ω, g =
〈
g, Ψ̃

1/2
Γ

〉
Ψ

1/2
Γ . (5.2.21)

Remark 5.15 The details of the application of the operator F : H → H′ in wavelet coordinates were
presented in Section 3.4.6 and numerical results were provided in Section 4.6. The application of the
linear trace operator B : H → V and its adjoint B′ : V ′ → H′ based upon the bilinear form (3.6.1) was
discussed in Section 3.6.

The following section deals with the adaptive numerical solution of equations of the above types.

195



Section 5. Boundary Value Problems as Saddle Point Problems

5.3 Adaptive Solution Methods
Now we turn to acquiring a solution of the system of equations (5.2.19) numerically.

5.3.1 The Normalized Equation

The standard approach to solve any non-symmetric indefinite (and non-square) equation A x = f is to
minimize the functional

J(u) :=
1

2
‖A u− f‖2,

which leads to the symmetric positive definite (and square) operator equation

Ã u := AT A u = AT f . (5.3.1)

The main problem when employing a simple iterative scheme, e.g., Algorithm 4.4 and Algorithm 4.6, on
the normalized equation is, that the condition number of the operator ATA is approximately squared
compared to the single operator A, i.e.,

κ2(Ã) ∼ κ2(A)2,

which means more iteration steps are necessary to converge to a target tolerance ε. Also, since the
application of the operator Ã takes at least twice as much computational work, the experienced runtime
of the solvers can be much larger than for the original equation.
Therefore, the normalized equations are usually only considered if no other iterative solver can be applied.

5.3.2 A Positive Definite System

An interesting approach to solve the linear boundary value problem was proposed in [32], based upon
ideas put forth in [20]. There, the indefinite saddle point system (5.1.11) is multiplied for 0 < γ < cA
(2.2.27) with

(
γ−1I 0
γ−1B −I

)
,

which transforms it into a positive definite system in the inner product
[(

y
p

)
,

(
v
q

)]
:= vT (A− γI) y + qTp.

This would allow standard solvers which could exhibit fast convergence speeds. Especially promising is
the prospect of not having to solve the inner system explicitly. The disadvantage is that the value of
γ below the upper limit cA has to be determined. The spectral condition of the transformed system
depends (roughly) inversely on cA − γ, so γ has to be chosen as large as possible.

5.3.3 Uzawa Algorithms

The general details of this section can be found in [19], amongst others. Uzawa algorithm are iterative
solvers for saddle point problems (5.2.19). These algorithms generally have a lower complexity than
a general solver applied to the normalized equation (5.3.1) for (5.2.19). They can be derived as simple
solvers applied to the reduced equation (5.1.17). Conceptually, the Uzawa algorithms can be written as

A yi = f −BTpi−1,
pi = pi−1 + αi(B yi − g),

}
i = 1, 2, . . . . (5.3.2)

The step size parameter αi ∈ R has to be chosen small enough to ensure convergence depending on the
spectral properties of A and B. Since it also determines the convergence speed, αi must be chosen as
large as possible in applications. It is known that the upper bound for αi is given by the norm of the
Schur complement (5.1.16) as

αi <
2

‖BA−1BT ‖`2
. (5.3.3)
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Assuming the vector yi is calculated analytically yields the representation for the residual error
∥∥∥∥LA

(
yi

pi

)
−
(

f
g

)∥∥∥∥
`2

= ‖B yi − g‖`2 = ‖µi‖`2 , (5.3.4)

in every step, where the defect is defined as

µi := g −B yi. (5.3.5)

In the case where A is a symmetric positive definite operator, the optimal step size is in each step given
by

αi =
(µi,µi)

(µi,B A−1 BT µi)
=

(µi,µi)

((BT µi),A−1 (BT µi))
. (5.3.6)

This follows by considering the Steepest Descent Method of Section 4.3 applied to equation (5.1.17).
In the full-grid implementation, this value can be computed without extra operator applications by a
simple trick: The solution component A−1f can be computed once and taken out of subsequent steps.
The update of the solution component y is then based upon the relation,

yi − yi−1

αi−1
=

1

αi−1

(
A−1(f −BT pi−1)−A−1(f −BT pi−2)

)
= −A−1(BTµi−1),

which is exactly the term in (5.3.6). Interpreting the relation the other way, it could be used to determine
a value for αi in terms of αi−1. In the adaptive case, this no longer works as the right hand side f in
different steps is determined approximately and thus does not cancel out. Evaluating the right hand side
in every step with a very high accuracy instead so that the above relation still holds would defeat the
purpose of the adaptive procedure.
Even better convergence properties can be obtained by employing conjugate directions, which is a
very effective strategy for conventional discretizations using wavelets, see [122]. In the adaptive wavelet
setting, the convergence speed might increase, i.e., fewer steps are required to obtain a solution, but the
overhead for computing the optimal step size might increase the overall runtime. Especially when an
inverse operator application is involved as it is here, simpler iterations can have a better performance
than more complicated schemes.

An Adaptive Uzawa Algorithm

The first publication of this algorithm in the wavelet domain for linear problems was [40]. The Uzawa
algorithm is designed as a Richardson iteration on the reduced system (5.1.17). But instead of the simple
application of a single operator, one has to solve the first equation in (5.3.2) and then evaluate the
second equation. We treat the Uzawa algorithm here in the framework of Algorithm 4.4, for a complete
description see [40,42,147].

Remark 5.16 In [40], the authors applied a Riesz operator RV′ : V ′ → V (2.2.34) to map the defect
µi ∈ V ′ (5.3.5) from V ′ = (H1/2(Γ))′ to V = H1/2(Γ) to make it more compatible as an update for
the Lagrangian multiplier pi ∈ V. In their setup, the trace operator mapped into V ′, which made this
necessary. In our setup, by the Sobolev space embedding relations (1.2.9), this is not necessary, but it could
still be beneficial in practice. However, we have not found any speed up in numerical experiments but the
additional complexity for computing the application of the Riesz Operator increased runtimes measurably
(although only by a few percent of the overall runtime). For this reason, we did not incorporate the Riesz
operator RV : V→ V′ into the algorithm here.

To calculate yi adaptively, the solvers of Section 4 are employed, we just have to formulate an algorithm
to evaluate the right hand side, i.e., to compute qε satisfying

‖qε − (f −BT pi−1)‖`2 ≤ ε. (5.3.7)
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Lemma 5.17 Let proper trees f ,pi−1 ∈ `2 and ε > 0 be given. Assuming a routine that computes a
vector q1 ∈ `2 such that

‖q1 −BT pi−1‖`2 < ε/2,

for any ε > 0. Then Algorithm 5.1 computes a vector satisfying (5.3.7).

Proof: With the property (4.1.7) of Algorithm 4.2, the estimate is immediate:

‖qε − (f −BT pi−1)‖`2 ≤ ‖q2 − q1 − (f −BT pi−1)‖`2
≤ ‖q2 − f‖`2 + ‖q1 −BT pi−1‖`2 ≤ ε/2 + ε/2 = ε.

Plugging this right hand side into Algorithm 4.3 then gives the convergence results of Theorem 4.8
for the first equation of (5.3.2) since A is assumed to be an operator of the form considered in Section 4.
Algorithm 5.1 enables us to compute the defect (5.3.5), which is, up to the error made in the approximate
inversion of the operator A, equal to the residual because of

∥∥∥∥LA

(
yi

pi

)
−
(

f
g

)∥∥∥∥
`2

= ‖A yi + BT pi − f‖`2 + ‖B yi − g‖`2 ≤ εi + ‖µi‖`2 , (5.3.8)

where εi denotes the step-dependent error to which the first equation was solved. By setting this tolerance
to a lower value than the target tolerance ε to which the overall problem is to be solved, it is reasonable
to use the norm of the defect only as the residual stopping criterion.

Lemma 5.18 Let proper trees f ,g,q ∈ `2 and ε > 0 be given. Assuming a routine that computes a vector
µ2 ∈ `2 such that

‖µ2 −B y‖`2 <
ε

3
,

then Algorithm 5.2 computes a vector satisfying
∥∥µε −

(
g −B

(
A−1(f −BTq)

))∥∥
`2
. ε. (5.3.9)

Proof: The proof of the estimate follows standard lines: Let ỹ be the exact solution of A−1(f −BT q).
Then the promise of SOLVE is

‖y − ỹ‖`2 ≤
ε

3β2
.

The estimate (5.3.9) can then be written as

‖µε − (g −B ỹ)‖`2 = ‖µ1 − g − (µ2 −B ỹ)‖`2 ≤ ‖µ1 − g‖`2 + ‖µ2 −B ỹ‖`2 ≤ ε/3 + ‖µ2 −B ỹ‖`2 .

For the second term follows

‖µ2 −B ỹ‖`2 ≤ ‖µ2 −B y‖`2 + ‖B y −B ỹ‖`2 . ε/3 + β2‖y − ỹ‖`2 ≤ ε/3 +
β2 ε

3β2
= 2 ε/3.

Algorithm 5.1 Construct a vector qε which that satisfies ‖qε − (f −BT p)‖ ≤ ε for ε > 0.
1: procedure SOLVER_UZAWA_SUB_RHS(ε, f ,BT ,p) → qε
2: // Apply Adjoint of Trace Operator
3: q1 ← APPLY(ε/2,BT ,p) . APPLY stands for the routine
4: applicable to this operator BT

5: // Coarsening of f
6: q2 ← RHS(ε/2, f)
7: qε ← q2 − q1

8: return qε
9: end procedure
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Thus holds (5.3.9).

The constants skipped in the above estimates depend only on the Riesz Stability constants given
in (2.2.31). Since this only affects the solution of the first equation, it should suffice to multiply the
target tolerance

ε

3β2
by another constant factor.

Algorithm 5.2 Adaptive computation of the defect µε up to accuracy ε > 0 for the vector p.
1: procedure SOLVER_UZAWA_RESIDUAL(ε,A,B, (f ,g),p) → µε
2: // Init
3: y← 0
4: µ1 ← 0, µ2 ← 0 . Start vectors
5: // First Equation
6: y← SOLVE(

ε

3β2
,A, f −BT p) . Solve A y = f −BT p by whatever algorithm can be employed

7: The right hand side is evaluated by Algorithm 5.1
8: // Residual
9: µ1 ← RHS(ε/3,g)

10: µ2 ← APPLY(ε/3,B,y) . APPLY stands for the routine
11: applicable to this operator B
12: µε ← µ1 − µ2

13: return µε
14: end procedure

Remark 5.19 Within the overall Uzawa algorithm, it is sensible to use the result yi−1 of the previous
step as starting vector for the next call to SOLVE. But since yi is not created from yi−1 by the addition
of an offset, the vector yi will not require coarsening like the normal step vectors of Section 4.1.1.

5.3.4 Convergence Properties – The Linear Case

The subject of the adaptive Uzawa algorithm based upon linear PDEs in the wavelet context has been
discussed in [40,42] and we quote their result in this section. Since their results deal with linear operators,
i.e., matrices, the decay property (3.3.14) was not yet in use. Instead, the essential property required of
operators is compressibility:

Definition 5.20 [s?-Compressibility]
A matrix C is called s?-compressible if for any 0 < s < s? and j ∈ N there exists a real summable
sequence (αj)

∞
j=0 and a matrix Cj with O

(
2j
)
non-zero values in every row and column satisfying

‖C−Cj‖`2→`2 ≤ αj2−j s.

The set of all such matrices is denoted Cs? .

As was pointed out in [31], a local (3.1.1) linear operator satisfying (3.3.14) for some γ > n
2 is in Cs?

for s? = 2γ−n
2n . This is exactly the best approximation rate (4.1.15) and this hints at further results. A

direct characterization of the class Cs? given in [31] concerns the values of the matrix itself.

Definition 5.21 [Quasi-Sparseness]
A matrix B = (bλ,µ) is called quasi-sparse if for σ > n/2 and β > n holds

|bλ,µ| . 2−σ||λ|−|µ||
(

1 + 2min(|λ|,|µ|) dist(Sλ, Sµ)
)−β

.

If the operator is local, i.e., dist(Sλ, Sµ) = 0 for all non-zero matrix entries, only σ > n/2 is necessary for
quasi-sparseness. Then, the matrix B is s?-compressible with s? = n

2 − 1
2 (Prop. 3.5 in [31]).

Proposition 5.22 The matrix generated by any trace operator B : H1(Ω) → H1/2(Γ) is Cs? with (at
least) s? = 1

2 .
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Proof: By the general bilinear form definition (3.6.4) holds for properly scaled wavelets

|bλ,µ| =
∣∣∣b
(

2−|λ| ψΩ
λ , 2

|µ|/2 ψ̃Γ
µ

)∣∣∣ =

∣∣∣∣
∫

Γ

2−|λ|(ψΩ
λ )|Γ 2|µ|/2ψ̃Γ

µds

∣∣∣∣ = 2−|λ| 2|µ|/2
∣∣∣∣
∫

Γ

(ψΩ
λ )|Γ ψ̃Γ

µds

∣∣∣∣ .

Expressing the trace (ψΩ
λ )|Γ in the wavelet base ΨΓ and noting (2.1.14), it follows

|bλ,µ| = 2−|λ| 2|µ|/2
∣∣∣∣∣

∫

Γ

2|λ|/2
∑

λ′

cλ′ψ
Γ
λ′ ψ̃

Γ
µds

∣∣∣∣∣ ≤ 2−|λ|/2 2|µ|/2
∑

λ′

∣∣∣∣
∫

Γ

cλ′ψ
Γ
λ′ ψ̃

Γ
µds

∣∣∣∣ . 2−(|λ|−|µ|)/2,

where we used biorthogonality (B)(2.1.54) in the last step.

Remark 5.23 In reality, the value s? is much larger, especially for the trace operators discussed in
Section 3.6.1. The matrix BT is in this case extremely sparse, the number of non-zero entries per row
is not only bounded by 2j but often by 1. Were it not that the traces of isotropic wavelets can be single
scale functions that have to be decomposed which generates more non-zero values on lower levels, the
matrix BT would essentially be a bloated diagonal matrix with many rows containing only zero values.
Experimentally determined values can be seen in Figure 5.1. These results show that the prerequisite
σ > n/2 of Definition 5.21 is satisfied, although just by an ε.

The importance of the quasi-sparseness is that there is a complete adaptive scheme based upon the
adaptive application of such operators. These results can be found in [31, 32, 55], among others. In that
setting, the adaptive vectors are not trees, the characterization is based solely on the error of an N -term
approximation of order N−s. Specifically, the following subspace of `2 is employed:

Definition 5.24 [Weak `τ -Space]
For any vector v ∈ `2(I), let v′n be the n-largest value of |vm| and v′ be the vector of the rearranged
coordinates (3.2.14). The space of all sequences v ∈ `2 for which the decreasing rearrangement v′

satisfies

‖v‖`ωτ := ‖v‖`2 + sup
n≥1

n1/τv′n <∞, (5.3.10)

for some 0 < τ < 2 is called the weak `τ -space `ωτ .

In fewer words, the values of v can be rearranged so that the values decay like N−1/τ . The elements of
this space can be characterized by the best N-term approximation σN (v) (3.2.13) and the space As
defined analogously to Definition 3.18 is exactly `ωτ for

1

τ
= s+

1

2
, s > 0.

For linear PDEs, results analogous to any given in Section 4 have been established in the norms `ωτ
and As. Since Astree is a subspace of As, the only defining characteristic is the tree structure, the results
given in the norm `ωτ are still valid when considering only vectors with tree structure. The following result
from [40] shows that the overall expectations for the Uzawa algorithm are consistent with the results from
Section 4.1.4.

Theorem 5.25 For matrices A, B ∈ Cs? computes the adaptive Uzawa algorithm an approximate solu-
tion (yε,pε) for any ε > 0 satisfying

‖y − yε‖ . ε, ‖p− pε‖ . ε.

If y,p ∈ `ωτ , i.e., y, p ∈ As for some s < s?, for
1

τ
< s? + 1

2 , then hold the estimates

‖yε‖`ωτ . ‖u‖`ωτ , ‖pε‖`ωτ . ‖p‖`ωτ ,
and the size of the vectors are bound by

# supp yε . ‖u‖1/s`ωτ
ε−1/s, # supp pε . ‖p‖1/s`ωτ

ε−1/s.

Moreover, the computational work needed to compute yε, pε is also of the order ε−1/s.
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Figure 5.1: Maximum of the bilinear form values |b(ψλ, ψ̃ν)| for all |ν| = j0 and |λ| = |ν| + p. The 2D
values seem to decay exactly with rate 1 but the decay rate is slightly increasing for higher levels. Only
considering the last 4 data points, the decay rate is ≈ 1.01 for the DKU24NB and MP244NB wavelets. In
each case, the higher regularity of the dual wavelets make the decay rates approach the threshold n/2
quicker.

In particular, for 0 < s < s?, the asymptotically optimal approximation and complexity rates are achieved.
But the maximum value s? given by the properties of the operators A,B ∈ Cs? can only be achieved if
the solution (y, p) is smooth enough.

Remark 5.26 In our algorithm, the solution of the first equation in (5.3.2) is not used as an update for
yi but it is yi+1. This setup is necessary for the nonlinear operator but could limit the approximation
speed to the value of the used operator, even if the operator is linear.

Besov Regularity

The last step is identifying when the linear boundary value problem admits solutions in u,p ∈ `ωτ . The
problem is generally in the same category as the problems of Section 4.1.4, we can expect the same
regularity u ∈ Bm+s n

τ (Lτ (Ω)), for sufficiently smooth right hand sides f ∈ H−s(Ω), s > −1/2. For the
trace γ0u of such a function u ∈ Bm+s n

τ (Lτ (Ω)) with 1
τ < s+ 1

2 now holds by the trace theorems in [2],

γ0u ∈Bm+s n−1/τ
τ (Lτ (Γ)),

=⇒ γ0u ∈Bm+s n−(s+1/2)
τ (Lτ (Γ)), because − 1

τ
> −(s+

1

2
),

=⇒ γ0u ∈B(m−1/2)+s(n−1)
τ (Lτ (Γ)).

Since Γ is a n − 1-dimensional manifold, this smoothness index has exactly the known pattern for
m′ := m − 1/2 and n′ := n − 1. By Theorem 1.21, it also holds γ0u ∈ Hm−1/2(Γ), so that by
Proposition 3.20 the expansion coefficients of the trace γ0u are in Astree for 1

τ < s + 1
2 . Therefore,

again for sufficiently smooth right hand side data, the same approximation rates should be expected for
both solution components y and p in the Uzawa algorithm.
There are, as of yet, no comparable results concerning the semilinear case discussed in Section 5.1.2. This
is of course an important future research topic, especially if more involved problems are considered. For
instance, control problems involving semilinear PDEs as discussed in Section 6.2.
To test these algorithms, we now solve a few example problems numerically. The standard case of
boundary value problem is given by the setting of Section 5.2.2. Within this, the operator ξ(u) is varied
to be either ξ(u) = u or ξ(u) = u3. The trace operator, which determines the trace boundary Γ ⊂ ∂Ω, is
usually the restriction to one coordinate axis.
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Section 5. Boundary Value Problems as Saddle Point Problems

5.4 A 2D Linear Boundary Value Example Problem
As our first example problem, we seek to solve the boundary value problem,

−∆y + a0 y = 1, in Ω,
y = 0, on Γ,

∇y · n = 0, on ∂Ω \ Γ,
(5.4.1)

with a constant a0 ≥ 0, Ω = (0, 1)2 and Γ ≡ ΓE . This problem has the unique solution, see [122],

y?a0
(x1, x2) :=

1

a0
− cosh(

√
a0x1)

a0 cosh(
√
a0)

, (5.4.2)

which converges for a0 → 0 to the solution,

y?0(x1, x2) :=
1

2
(1− x2

1). (5.4.3)

As these functions are globally smooth, we expect an almost uniform distribution of wavelet coefficients
to be generated by any solution algorithm. Also, in such a case, coarsening is not only unnecessary,
it is outright detrimental to the convergence, i.e., since there are no superfluous wavelet coefficients and
all are equally significant, deletion of wavelet coefficients will always decrease the precision of the vector.
The ideal tree S(y) is in this case not a “thin” and “deep” one, i.e., few wavelet coefficients on all levels,
but a “fat” and “wide” one, i.e., many or all wavelet coefficients on very few levels. Since the curvature
on y?a0

gets larger for x2 → 1, we can expect a slightly higher concentration of wavelet coefficients there
than at x1 → 0, but the effect should be small. Also, since the solution (5.4.2) does not depend on x2,
i.e., it is constant w.r.t. x2, we expect no wavelet coefficients of type e2 = 1, i.e., only the (root) single
scale function coefficients in direction x2 will be needed.

5.4.1 Numerical Results

The reference solution here was computed using full-grid techniques on level J = 10. This means the
expected accuracy of the reference is in the range of 2−10 ∼ 1× 10−3 by Lemma 1.47, which is observed
as the lower limit for the y component in Figures 5.4 to 5.6. The above mentioned wavelet coefficient
distribution can be seen in Figure 5.2. In all cases, the target tolerance is ε = 1× 10−4. The inner
equation is solved using the Gradient iteration outlined in Section 4.3 using the optimal step size (5.3.6).
The maximum values of the step size parameter α for the Uzawa algorithm can be found in Table 5.1.
Coarsening was done with an extra factor of 0.01, because higher values hindered convergence. The
approximation rates of the vectors can be found in Figure 5.7. The rate of the component y is very close
to 1 which corresponds well with the rates in Section 4.6. The rate of the preferred variable p is well
higher, which is probably due to the linear operator and smooth right hand side g ≡ 0.

Wavelet DKU22NB DKU24NB MP244NB

SMD-SMOrth 0.19 0.22 0.51

Table 5.1: Maximum values of the Uzawa step size parameter α for different preconditioners. See
Section A for details on the names of the wavelet configurations.

Wavelet DKU22NB DKU24NB MP244NB
Preconditioner Overall Per Wavelet Overall Per Wavelet Overall Per Wavelet
SMD-SMOrth 5.81× 102 1.56× 10−5 1.48× 103 2.15× 10−5 5.76× 102 2.17× 10−5

Table 5.2: Runtimes of the Uzawa solver for different preconditioners.
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Figure 5.2: Plot of the solution y?1 of (5.4.1) and the isotropic wavelet coefficient diagrams. Details of the
diagrams’ structure can be found in Appendix A.2. The minimum displayed values for the diagrams were
chosen to maximize recognizability of the distribution patterns. Since these diagrams were generated
from full-grid data structures, all coefficients are present and not enforcing the lower limit would result
in plots completely covered in data points. The wavelet vector was similarly thresholded prior to the
generation of the grid to emphasize its structure.
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Figure 5.3: Diagram of the Lagrangian multiplier p for the solution y?1 of (5.4.2). The data was generated
using full-grid data structures. The values on the coarsest level are not symmetrically distributed because
of the basis transformation (2.3.22).
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Figure 5.4: Detail iteration histories for the Uzawa algorithm. The first diagram shows the overall values,
the other two diagrams deal with the components y and p, respectively. Since the starting vectors contain
zero values only and g = 0, the residual in the first step for p is exactly zero, which is not displayed on
the logarithmic scale.
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Figure 5.5: Detail iteration histories for the Uzawa algorithm. The first diagram shows the overall values,
the other two diagrams deal with the components y and p, respectively. Since the starting vectors contain
zero values only and g = 0, the residual in the first step for p is exactly zero, which is not displayed on
the logarithmic scale.
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Figure 5.6: Detail iteration histories for the Uzawa algorithm. The first diagram shows the overall values,
the other two diagrams deal with the components y and p, respectively. Since the starting vectors contain
zero values only and g = 0, the residual in the first step for p is exactly zero, which is not displayed on
the logarithmic scale.
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Figure 5.7: Approximation order for the overall and individual vectors of the Uzawa algorithm for the
different wavelets using preconditioner D{O,a}. On the abscissa, the number of wavelet coefficients after
each coarsening is plotted against the residual for the coarsed vector on the ordinate axis.
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5.5 A 2D Linear PDE and a Boundary on a Circle
The afore discussed boundary value problems are “good-natured” in the sense, that one does not expect
complications from the discretization of the trace operator. This is a consequence of the trace space Γ
being a side of the tensor product domain Ω. Instead, we want to digress shortly and again consider the
linear boundary value problem,

−∆y + y = 1, in Ω,
y = 0, on ∂Ω,

(5.5.1)

where the domain is a disk,

Ω :=
{
x ∈ R2 | ‖x− c‖2 ≤ R

}
. (5.5.2)

By the theory of Section 5.2.1, this is equivalent of embedding Ω into a square domain � and enforcing
the boundary conditions by a trace operator on the disk’s boundary, i.e.,

Γ :=
{
x ∈ R2 | ‖x− c‖2 = R

}
. (5.5.3)

For this example, we center the disk at the point c = ( 1
2 ,

1
2 ) ∈ R2 and set the radius to R = 1

2 , the
fictitious domain is thus given by � = (0, 1)2. This problem has been considered before in the wavelet
context, see [47]. One of the difficulties of this problem using standard discretization techniques lies
in the compliance of the LBB condition, see Section 2.5.2. The discretized saddle point system L is
ill-conditioned, if the discretization level ` on the trace space Γ is too high w.r.t. the discretization level
j on the domain �: If ` > j + 1, then the iterative solver needs significantly more steps than in the
case ` ≤ j + 1, which indicates a violation of the LBB condition. But a fine mesh on the trace space is
necessary to achieve the required accuracy to ensure the boundary conditions. In the adaptive case, this
problem should not arise.
Since Γ is a closed circle, we use one-dimensional periodic wavelets for the discretization. The mapping
κ : [0, 1)→ Γ ⊂ � is given by

κ(t) :=

(
κ1(t)
κ2(t)

)
:=

(
c1 +R cos(2πt)

c2 +R sin(2πt)

)
. (5.5.4)

The trace operator bilinear form (3.6.1) then takes the form

b(v, q̃) =

∫

Γ

v|Γ q̃ dµ =

∫ 1

0

v(κ(t)) q̃(t) dt, for all v ∈ Ψ�, q̃ ∈ Ψ̃Γ, (5.5.5)

where Ψ�, Ψ̃Γ denote primal and dual wavelet bases on � and Γ, respectively. The bilinear form cannot
be evaluated straightforwardly because the trace ψλ(κ(·)) is, unlike ψλ, not a piecewise polynomial. The
approach to calculate the above terms undertaken in [47] was the refineable integrals scheme of [52],
which, by a series of operators approximating the integral, converges towards the exact value. Since here
we only want to do a short example, we use a simpler approximation strategy than that of [52], one that
can be easily implemented using our existing tool set.

5.5.1 Application of the Trace Operator in Wavelet Coordinates

Instead of approximating the integrals, we approximate the trace ψλ(κ(t)) by the primal wavelets ΨΓ

and evaluate the integral exactly. To this end, the trace of each function ψ�
λ intersecting the circle Γ

is discretized by the single scale generators ΦΓ
J for a high level J . This expansion is then adaptively

decomposed using Algorithm 3.2 giving the wavelet vector d ∈ `2. By biorthogonality (B)(2.1.54) and
linearity of (5.5.5) then follows

b

(∑

λ

dλψ
Γ
λ , ψ̃

Γ
ν

)
=
∑

λ

dλ

∫

Γ

ψΓ
λ ψ̃

Γ
ν dµ =

∑

λ

dλδλ,ν = dν , for fixed wavelet index ν.

The result vector ψΩ
λ |Γ is thus directly given by the decomposed wavelet expansion vector d.
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5.5. A 2D Linear PDE and a Boundary on a Circle

Remark 5.27 This resulting set of wavelet coefficients could also be used as a starting point for the
refineable integrals scheme. Having identified the relevant wavelet coefficients this way, determination of
the values of the bilinear form could be delegated to the algorithm of [52].

The application of the trace operator B to a vector y ∈ `2 is then straightforward: Sum up all result
vectors until a specified tolerance ε > 0 is met. Alternatively, sum up all individual vectors and coarse
the result appropriately to obtain a tree of minimal size with an accuracy still smaller than ε.
If the discretization is done on a high enough level J � j0, then the computed values should be at least
accurate to discretization error of the maximum level used. To this end, it can also be prudent to set
an admissible highest level for the adaptive structures, see Section 4.5.1, lower than J . This approach
can be easily implemented by considering the following details:

• Because of (2.1.16), only a finite number of wavelets ψ�
λ on each level intersect with the circle Γ.

On the coarsest level j0, all wavelets can be checked for intersecting with Γ. On the higher levels
j > j0, only the wavelets intersecting the supports of the wavelets on the previous levels have to be
considered. This set can be easily computed using the Support Operator of Remark 3.55.

• Whether a function crosses the circle Γ can easily be determined in the piecewise polynomial
representation (3.4.3). A support cube � ⊂ Sλ (3.4.4) intersects Γ if at least one vertex lies inside
the disk encircled by Γ and at least one lies outside.

• Only those single scale functions of ΦΓ
J have to be considered that actually lie within the support

of ψ�
λ (κ(·)). By determining the support cubes � ⊂ Sλ and the points (x1, x2) of intersection with

Γ, then t = κ−1(x1, x2) gives the minimum and maximum locations k1, k2 ∈ ∆J between which the
support of ψ�

λ (κ(·)) falls. Thus, in general only k2 − k1 + 1 function evaluations are necessary.

The set of wavelet coefficients determined in this manner can be seen in Figure 5.8.

5.5.2 Numerical Results

The following numerical example was using DKU22NB-SMD-SMOrth wavelets on the domain � and
DKU22PB-SMD-SMOrth wavelets on the boundary Γ. The Uzawa algorithm was executed with a tar-
get tolerance of ε = 1× 10−3. Diagrams and plots of the solution are given in Figure 5.9 and Figure 5.10.
As expected, most of the wavelet coefficients of the solution component y are in the vicinity of the trace
boundary Γ. Since the problem has rotational symmetry for every multiple angle of π2 , the wavelet coeffi-
cients are evenly distributed according to this symmetry. As anticipated, the plot of the state component
y constrained to Γ shows that the boundary conditions on Γ are fulfilled up to the target tolerance
1× 10−3. For this, only the coarsest three levels of wavelet coefficients for the vector p are necessary, as
seen in its wavelet diagram.
The iteration histories of the vectors can be found in Figure 5.11. The reference solution was computed
on a maximum level of J = 7 by a QU decomposition, its accuracy is bounded by the discretization
error of ∼ 10−2. With just a few data points, a good estimate of the approximation rate depicted in
Figure 5.12 is very difficult. It seems the approximation rate of component p is slightly larger than the
rate of component y.
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Figure 5.9: Solution of (5.5.1) solved to the accuracy ε = 1× 10−3. The left diagram shows the wavelet
coefficients distribution of the y component, the right diagram the wavelet coefficients of the p component.
The values on coarsest level of p are not symmetrically distributed because of the basis transformation
(2.3.22). Without it, the values follow the periodic nature of the circle w.r.t. the domain �.
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Figure 5.10: Solution of (5.5.1) solved to the accuracy ε = 1× 10−3. The left plot shows the y component,
the right plot the trace y|Γ. The dashed lines indicate the parameter values where the circle touches the
middle of the edges of the square domain �.
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5.5. A 2D Linear PDE and a Boundary on a Circle
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Figure 5.11: Detail iteration histories for the Uzawa algorithm. The first diagram shows the overall
values, the other two diagrams deal with the components y and p, respectively. Since the starting vectors
contain zero values only and g = 0, the residual in the first step for p is exactly zero, which is not displayed
on the logarithmic scale.
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5.6. A 2D Nonlinear Boundary Value Example Problem

5.6 A 2D Nonlinear Boundary Value Example Problem
As our nonlinear two-dimensional example problem, we seek to solve the boundary value problem,

−∆y + y3 = f, in Ω,
y = 0, on Γ,

∇y · n = 0, on ∂Ω \ Γ,
(5.6.1)

with Ω := (0, 1)2 and Γ ≡ ΓE . The right hand side function f is again given as in Section 4.6. This
problem formulation has the advantage of also being able to be formulated as a single nonlinear PDE. Since
the support of the right hand side f is far enough away from the trace boundary Γ, the problem (5.6.1)
can be solved using the tensor product of DKU22NZB and DKU22NB wavelets, enforcing the homogeneous
boundary conditions on Γ in the space of test functions. This allows a verification at least of the first
component y of the computed solutions to (5.6.1). The solution computed in this way can be seen in
Figure 5.13. The wavelet expansion vector of the second component p can then be recovered by using
the system equations (5.2.19) and computing

p = (B BT )−1 B
(
BTp

)
= (B BT )−1 B (f − F(y)) . (5.6.2)

But if the support of the dual wavelets associated to the boundary ΓE is so large that it intersects with
the support of the right hand side f , then the computed solution y would be slightly different and this
short cut does not work.

5.6.1 Numerical Results

In all numerical experiments, the target tolerance is ε = 1× 10−4. The inner equation is solved using
the Gradient iteration outlined in Section 4.3 using the optimal step size (5.3.6). The maximum values
of the step size parameter α for the Uzawa algorithm can be found in Table 5.3. Figures 5.14–5.15 show
the wavelet coefficient distribution of the computed solutions for the DKU22NB-SMD-SMOrth wavelets. The
iteration histories for all wavelet configurations can be found in Figures 5.16–5.18. The approximation
rates in Figure 5.19 show a comparable and even higher rate than in the linear example of Section 5.4.
The relative runtimes presented in Table 5.4 show that the Uzawa solver adds only little complexity to
the inner solver when comparing the runtimes with the results of Table 4.5. But the absolute runtimes
show that a large number of steps is necessary until the target tolerance is met, which is a result of the
small admissible step sizes used in the Uzawa algorithm.
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Figure 5.13: Plot of the solution and the isotropic coefficient diagram of the solution y to the nonlinear
PDE −∆y+ y3 = f with right hand side of (4.6.1) and zero valued boundary conditions on ΓE . We used
the solver of Section 4.3 with a target tolerance ε = 1× 10−4.
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Figure 5.14: Plots of the solution component y of (5.6.1) for the DKU22NB-SMD-SMOrth wavelets and the
isotropic coefficient diagrams. Wavelet coefficients with values below 1× 10−6 were omitted to maximize
recognizability of the distribution patterns. The plot of the function was rastered using 32 points in every
direction.
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Figure 5.15: Diagram of the Lagrangian multiplier p for the solution part p of (5.6.1). The values on the
coarsest level are not symmetrically distributed because of the basis transformation (2.3.22).
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Figure 5.16: Detail iteration histories for the Uzawa algorithm. The first diagram shows the overall
values, the other two diagrams deal with the components y and p, respectively.
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Figure 5.17: Detail iteration histories for the Uzawa algorithm. The first diagram shows the overall
values, the other two diagrams deal with the components y and p, respectively.
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Figure 5.18: Detail iteration histories for the Uzawa algorithm. The first diagram shows the overall
values, the other two diagrams deal with the components y and p, respectively.
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Figure 5.19: Approximation orders of the overall vector (y, p) and the individual components.

Wavelet DKU22NB DKU24NB MP244NB

SMD-SMOrth 5.3× 10−2 4.7× 10−2 4.4× 10−2

Table 5.3: Maximum values of the Uzawa step size parameter α for different preconditioners. See
Section A for details on the names of the wavelet configurations.

Wavelet DKU22NB DKU24NB MP244NB
Preconditioner Overall Per Wavelet Overall Per Wavelet Overall Per Wavelet
SMD-SMOrth 5.87× 103 8.55× 10−6 1.14× 104 1.46× 10−5 2.38× 104 1.28× 10−5

Table 5.4: Runtimes of the Uzawa solver for different preconditioners.
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5.7 A 3D Nonlinear Boundary Value Example Problem
As our nonlinear three-dimensional example problem, we seek to solve the boundary value problem,

−∆y + y3 = f, in Ω,
y = 0, on Γ,

∇y · n = 0, on ∂Ω \ Γ,
(5.7.1)

with Ω = (0, 1)3 and Γ ≡ ΓR := {(1, x2, x3) | 0 ≤ x2, x3 ≤ 1}. The right hand side function f is not
given as in Section 4.7, because of the high number of wavelet coefficients which entails a long runtime.
A reference solution for y can be computed by solving the nonlinear PDE using wavelets with zero
boundary conditions on ΓR, as in Section 5.6. But because the right hand side f has support on the
whole domain Ω, formula (5.6.2) cannot be employed. Hence, we only use a reference for the component
y in our experiments. Because of the runtimes of the experiments conducted in Section 4.7, we use the
Richardson solver Section 4.2 for computing the solution of the PDE.

5.7.1 Numerical Results

In all numerical experiments, the target tolerance is ε = 1× 10−2. The decay parameter (3.3.14) was
increased to γ = 11 and the number of internal steps in the Uzawa algorithm, i.e., the number of
steps before the internal tolerance was reset and a coarsening was applied, was set to 10 to achieve
lower runtimes. The exact Influence set (3.3.18) was used for solving the nonlinear subproblem because
this improved the convergence properties. The maximum values of the step size parameter α for the
Uzawa algorithm can be found in Table 5.5. For the right hand side f , a constructed wavelet expansion
vector, which can be seen plotted on Figure 5.20, was used. This vector was generated by inserting
two random coefficients on a high level and this vector was made into an expanded tree (3.2.5). The
values of the individual wavelet coefficients were then randomized but chosen proportional to ∼ 2−|λ|,
i.e., exponentially decaying by level. The right hand side vectors of the individual wavelet configurations,
e.g., DKU22NB and DKU24NB, are thus not describing the same function. The computed solutions are thus
also not describing the same function, but the similarities in the right hand side functions should suffice
for a qualitative comparison of the Uzawa solver. As can be seen in Figure 5.22, the structure of the
y function is very complicated and it does not represent a classical analytical function. The wavelet
coefficient distribution given in Figure 5.21 shows that a high spatial concentration of wavelet coefficients
can also be found at positions where the right hand side f does not have any wavelet coefficients, an
effect that is expected for nonlinear operators. The distribution of the wavelet coefficients of the solution
component p on the boundary ΓR in Figure 5.27 shows no specific patterns, only a few coordinates with
a higher concentration of coefficients. Figures 5.23–5.25 show the iteration histories of the Uzawa solver
using the step sizes given in Table 5.5. It is again clearly recognizable that higher smoothness of the dual
wavelets has a very positive impact on the efficiency of the Uzawa algorithm in terms of runtimes and
computational complexity. The values of the approximation rates exhibited in the diagrams of Figure 5.26
are at least as high as in the 3D example of Section 4.7. The comment about the runtimes in Section 5.6
applies again when comparing the values in Table 5.6 to the values given in Table 4.8.
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Figure 5.20: Scatter plot of the right hand side f of (5.7.1) for the DKU22NB wavelets.
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Figure 5.21: Scatter plot of the wavelet coefficients of the solution y of (5.7.1) for the DKU22NB wavelets.
The boundary ΓR is the right facing side of the cube.
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Figure 5.22: Contour plot of the solution y of (5.7.1) for the DKU22NB wavelets. The boundary ΓR is the
right facing side of the cube.

Wavelet DKU22NB DKU24NB MP244NB

SMD-SMOrth 2.3× 10−2 2.5× 10−2 3.0× 10−2

Table 5.5: Maximum values of the Uzawa step size parameter α for different preconditioners. See
Section A for details on the names of the wavelet configurations.

Wavelet DKU22NB DKU24NB MP244NB
Preconditioner Overall Per Wavelet Overall Per Wavelet Overall Per Wavelet
SMD-SMOrth 8.47× 105 6.60× 10−5 1.97× 105 1.09× 10−4 2.04× 105 1.32× 10−4

Table 5.6: Runtimes of the Uzawa solver for different wavelet types and preconditioners.
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Figure 5.23: Detail iteration histories for the Uzawa algorithm. The first diagram shows the overall
values, the other two diagrams deal with the components y and p, respectively.
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Figure 5.24: Detail iteration histories for the Uzawa algorithm. The first diagram shows the overall
values, the other two diagrams deal with the components y and p, respectively.
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Section 5. Boundary Value Problems as Saddle Point Problems
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Figure 5.25: Detail iteration histories for the Uzawa algorithm. The first diagram shows the overall
values, the other two diagrams deal with the components y and p, respectively.
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5.7. A 3D Nonlinear Boundary Value Example Problem
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Figure 5.26: Approximation orders of the overall vector (y, p) and the individual components.
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Figure 5.27: Scatter plot of the wavelet coefficients of the solution component p on ΓR of (5.7.1) for the
DKU22NB wavelets. The lower limit of the value of the wavelet coefficients in this plot was set to 1× 10−6.
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6 Résumé and Outlook

6.1 Conclusions

In this thesis I have presented the numerical realization of the theoretical framework on adaptive wavelet
methods put forth in [32–34]. The code works for generic tensor product domains, can employ different
wavelet configurations in different spatial directions and offers high customizability using compile and
command line options.
In [115] we showed that a tree structured set of wavelet indices can be represented using local polynomials
on a partition of standard cubes of the underlying domain. Linear and nonlinear local operators can then
be applied piecewise on this set of disjoint cells and from this the wavelet coefficients of the target
tree can be reconstructed. Both transformations and the operator can be proven to be applicable in
linear time w.r.t. the number of wavelet coefficients, the numerical examples clearly demonstrate the
linear complexity. Extending the family of operators, I implemented the means to adaptively apply
linear operators given only by the values of the bilinear form and trace operators for several two- and
three-dimensional domains.
The runtimes to solve a simple two dimensional nonlinear PDE in the wavelet context was, using the code
of [147], in the realms of hours and could even take more than a day, see [137]. My code can accomplish
the same task within minutes and sometimes even fractions of a second, in part owed to transformations
in the wavelet bases lowering the absolute spectral condition number and in part to optimizations in the
program code. The measured approximation rates and complexity estimates in example problems agree
very well with the theoretical predictions, thus confirming the soundness of the overall adaptive wavelet
method.
For boundary value problems based upon linear PDEs, theoretical results of complexity estimates and
convergence rates extending those presented for PDEs are available. These results are also confirmed in
my numerical experiments. In these computations, because of the implicit inverse operator application,
dual wavelets with higher smoothness yield better performance. This can be understood by interpreting
the inverse operator as an approximation to the dual operator, as is the case with the mass matrix.
The adaptive data structures also allow easy set up of algorithms for trace operators for domains not
parallel to Cartesian coordinate axes, enabling the handling of more complex domains, especially those
encountered in real life problems. In the case of nonlinear boundary value problems, a theoretical proof
has net yet been proven. The numerical results are encouraging, hinting at results similar to the linear
case. A possible remedy to the long runtimes is a scheme similar to the positive definite system explained
in Section 5.3.2. Since in this setting the inner system is not solved explicitly, it can possibly deliver the
solution much faster.
In summary, the numerical experiments confirm the theoretical predictions perfectly, from the linear com-
plexity of operators to uniformly bounded condition numbers due to preconditioners to the approximation
rates when computing the solutions of semilinear PDEs. Still, there are some instances to improve the
results given in this thesis. Most importantly, a more effective algorithm to solve semilinear saddle point
problem has to be devised. Although the linear complexity of the adaptive Uzawa algorithm is clearly
demonstrated and the approximation rates are high, the step size parameters have to be chosen relatively
small to compute the result in just a few iteration steps. This is the main obstacle on the way to more
complex problems based upon nonlinear boundary value problems.

6.2 Future Work

6.2.1 Control Problems Governed by Nonlinear Elliptic PDEs

It was originally envisioned for this work to cover PDE constrained nonlinear elliptic control problems
with Dirichlet boundary control, i.e, problems of the form

Minimize J(y, u) =
1

2
‖y − yΓy‖2Hs(Γy) +

ω

2
‖u‖2Ht(Γ),

under the constraint −∆y + y3 = f in Ω,
y = u on Γ ⊂ ∂Ω,
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with given right hand side f ∈ (H−1(Ω))′, target function yΓy ∈ Hs(Γy) for Γy ⊂ ∂Ω and some ω > 0.
The natural Sobolev smoothness parameters in this case are the values s, t = 1

2 , this fact follows directly
from the solution theory of the PDE and the trace theorems. Considering the necessary and sufficient
conditions of this problem, one has to solve a system of (non-)linear boundary value problems.
The most important future work in this regard is the development of a solver for the nonlinear boundary
value problem that can determine a solution faster than the Uzawa algorithms employed in Section 5. This
goal could be achieved by some other solution method as discussed above, combined with parallelization
strategies to lower execution times.

6.2.2 Parallelization Strategies

A very promising (yet highly complex to implement and execute) approach to speed up numerical
computations is parallelization. That is, utilizing multiple arithmetic computing units at the same
time.
As a first step, assuming that the compiler can identify code segments that can be executed in parallel,
i.e., when consecutive computations do not depend on each others results, a data parallelization
approach may be considered (see also Section B.1.1). This technique is particularly efficient when the
same operation, e.g., a multiplication or an addition, has to be applied to each element in a vector of
data values. Given that proper optimizations are enabled during the compilation process, such concurrent
computations are often automatically detected by modern compilers. Practically however, this is only
feasible if the data, to which the operation is applied, occupies consecutive memory cells. Although this
is not true for the unordered containers employed in the software developed herein (see Section B.3), this
technique is applied at numerous places in the code.
The next avenue which may be explored is the so called (auto-)parallelization. This involves executing
repetitive code segments, e.g., a matrix multiplication, on multiple CPU cores simultaneously. This
can be most easily accomplished using OpenMP directives, where the compiler sets up and dictates the
complete code to (i) start different threads; and (ii) combine the results after each thread has finished its
work, see [120]. The new C++11 and C++14 standards [141], also incorporate support for language based,
and thus portable, asynchronous computations, i.e., thread enabled parallelization techniques. These new
programming language features potentially allow one to harness the complete computational power of all
the cores in a CPU at once, but require very little time and effort on the side of the developer. Such
measures should be implemented as soon as the software support by the compiler developers is tried
and tested.
If applied to the software developed herein, this technique would allow the parallel execution of the
individual phases of the adaptive operator application detailed in Section 3.4.3. In particular, of great
parallelization interest is the operator application Algorithm 3.8. This is due to the fact that this
procedure is at the heart of all solution algorithms and is by far the most computationally involved within
these schemes. By the results given in Figure 3.13, it is clear that the highest speedup can be achieved
by parallelization of Algorithms 3.5 and 3.7, as these steps make up the majority of the complexity of
the adaptive operator application. In effect, these algorithms consider the implementation of the linear
operator (3.4.19) and its transpose. Exactly because these operators are linear, it is possible to compute
the application in parallel and then combine the results, basically by adding up the components. It
is worth underlining that this step requires synchronization of the data for the parallel program flows
(“threads”); concurrent writes to a single variable or memory address can easily lead to race conditions
and undefined behavior, i.e., erroneous data values being generated. On the other hand, synchronization
is far from trivial. It entails a certain amount of computational complexity which in turn may incur a high
computational overhead and hence a low parallel efficiency. However, the need for data synchronization
can be minimized in the framework developed herein as the adaptive vector structures use independent
data containers for each level. This means that an easy parallelization approach could be to assign to
each thread one level of the process.
Lastly, if the combined computing power of the multiple cores in a modern CPU is not sufficient,
full parallelization can be considered, i.e., running multiple instances of a program simultaneously
on different computers not sharing a common memory space. In this setup, the uniform distribution
and synchronization of data over a network is of utmost importance and a great difficulty. A software
specifically designed to provide this function is called MPI [118]. Parallelization using MPI would require
a refactoring of the source code, as in this setup the parallel nature of the program flow must be put first

228



6.2. Future Work

in the development process.
For such a fully parallelized program, a main task is load-balancing, i.e., distributing the data among
all compute nodes in such a way that a comparable amount of complexity is executed by each node while
at the same time minimizing the network traffic required for synchronization among different nodes.
Dynamic load-balancing algorithms for structures based upon trees are already established [25], which
could be a good starting point for a parallel adaptive wavelet code.

6.2.3 Parabolic Partial Differential Equations

As it was pointed out in Section 1.2.5, there are inherently anisotropic tensor product spaces. Such
spaces can turn up in the context of parabolic or Schrödinger-type equations as test- and trial spaces
by using full space-time weak formulations, see [113]. Classical approaches like the method of
lines [132] or Rothe’s method [84], which are essentially time marching methods, only look at a single
point in time and then successively take a step towards the next one. The space-time weak formulation
can treat the whole problem holistically, i.e., the explicit time dependency is eliminated, so that one can
discretize in space and time simultaneously, as if time was an extra dimension in space. This in turn
means that no time stepping is required and a Petrov-Galerkin (where the test and trial spaces are
different) solution can be calculated directly in space and time.
A full space-time weak formulation can thus bring the full power of the adaptive wavelet theory into these
kinds of problems.

Example 6.1 Consider an abstract evolution equation

du(t)

dt
+A(t)u(t) = g(t) in H′, u(0) = u0 in V, (6.2.1)

for t ∈ [0, T ] a.e., initial condition u0 ∈ V and an operator A(t) : H → H′ on the Hilbert space Gelfand
triple H ↪→ V ∼= V ′ ↪→ H′. The right hand side is a mapping g(·) : [0, T ] → H′ which needs to
satisfy certain smoothness criteria. These are given by Sobolev-Bochner spaces, see [6, 56], e.g.,
g ∈ L2(0, T ;H′).
To arrive at the space-time weak formulation, the equation (6.2.1) is tested using a function
v ∈ L2(0, T ;H) and integrated over t ∈ [0, T ]. By additionally taking the initial condition into account,
we arrive at the variational problem of finding a solution

u ∈ X := L2(0, T ;H) ∩H1(0, T ;H′) (6.2.2)

such that

b(u, v) = f(v), for all v = (v1, v2) ∈ Y := L2(0, T ;H)× V, (6.2.3)

with b(·, ·) : X × Y → C defined by

b(u, (v1, v2)) :=

∫ T

0

(〈
du(t)
dt , v1(t)

〉
+ 〈A(t)u(t), v1(t)〉

)
dt+ 〈u(0), v2〉 , (6.2.4)

and right hand side f(·) : Y → C given by

f(v) :=

∫ T

0

〈g(t), v1(t)〉 dt+ 〈u0, v2〉 . (6.2.5)

It was shown in [133] that the operator B : X → Y ′ defined by (Bu)(v) := b(u, v) is boundedly invertible
for bounded and coercive linear operators A(t). Stability results are presented in [5,112].

A slightly different formulation to (6.2.1) was given in [29], where the initial condition is incorporated
as a natural boundary condition instead of an essential one by applying integration by parts to the first
term.
In both formulations, the trial- and test spaces are Sobolev-Bochner spaces, respectively intersections
of them. It is well known, see [6], that Sobolev-Bochner spaces are isometric to Hilbert tensor product
spaces, so that one can identify the spaces of (6.2.2) and (6.2.3) as

X ∼= L2(0, T )⊗H ∩H1(0, T )⊗H′, Y ∼= (L2(0, T )⊗H)× V. (6.2.6)
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That is, here one actually needs to deal with anisotropic tensor products which implies that one needs to
use anisotropic bases for discretization in order to obtain conforming subspaces. It was shown in [72,133]
that wavelets of sufficiently high order d, d̃ (to cover the full smoothness range required) can be rescaled in
such a way that they form Riesz-bases for intersections of tensor product spaces. This is a crucial detail,
as the optimal convergence rate for this problem depends on the type of wavelet basis construction
used. Assuming H = Hm(Ω) and wavelets of orders dt and dx for the time and the n space dimensions,
then, for sufficiently smooth functions, the best possible approximation rate with an isotropic wavelet
basis is

riso := min(dt − 1,
dx −m
n

). (6.2.7)

In contrast, the best possible approximation rate when using anisotropic tensor product wavelet
basis is

rani := min(dt − 1, dx −m), (6.2.8)

which is independent of the dimension n. The kind of inverse dependency of the dimension n as in (6.2.7)
is known as the curse of dimensionality. So one can circumvent the curse of dimensionality here
by using anisotropic tensor product wavelets instead of an isotropic construction, thus ensuring a high
optimal convergence rate for all space dimensions. A more detailed description can be found in [133], see
also the references therein. A good introduction and numerical experiments with isotropic wavelets can
be found in [137].
These techniques could also serve as a basis for adaptive wavelet methods for control problems based
upon parabolic PDEs as devised in [74]. Furthermore, an extension to control problems with elliptic,
parabolic and stochastic PDEs, as developed in [103], is a prospective future application.
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A Wavelet Details
In our software, we have implemented a number of wavelet constructions with varying boundary types
and polynomial orders. It is possible to choose different wavelet types for different dimensions, even at
runtime. The list of one-dimensional wavelet types implemented include:

HAAR11PB Haar Wavelets (orthogonal), d = 1, d̃ = 1, j0 = 1, periodic boundary.

DKU22NB DKU Wavelets, d = 2, d̃ = 2, j0 = 3, boundary adapted.

DKU22ZB DKU Wavelets, d = 2, d̃ = 2, j0 = 3, zero boundary.

DKU22PB DKU Wavelets, d = 2, d̃ = 2, j0 = 3, periodic boundary.

DKU22NZB DKU Wavelets, d = 2, d̃ = 2, j0 = 3, left (x = 0): boundary adapted, right (x = 1):
zero boundary.

DKU22ZNB DKU Wavelets, d = 2, d̃ = 2, j0 = 3, left (x = 0): zero boundary, right (x = 1):
boundary adapted.

DKU24NB DKU Wavelets, d = 2, d̃ = 4, j0 = 3, boundary adapted.

CB24NB DKU Wavelets with scaling (A.1.14), d = 2, d̃ = 4, j0 = 3, boundary adapted.

MP244NB Primbs Wavelets, d = 2, d̃ = 4, j0 = 4 boundary adapted.

DKU33PB DKU Wavelets, d = 3, d̃ = 3, j0 = 3, periodic boundary.

Since we only need boundary adapted wavelets in the course of this work, we present only the details of
these wavelets in the next section.

Preconditioner and Basis Configurations

We use the following textual abbreviations to identify specific wavelet configurations.

DKU22NB-P2 The wavelet details can be found in Section A.1.4, the preconditioner
in (2.2.15).

DKU22NB-SMD Same wavelets, but with preconditioner (2.2.33).

DKU22NB-SMD-SMOrth Additionally to the above, the orthogonal basis transformation (2.3.17) is
employed, resulting in the setup given in (2.3.23).

The names for the wavelet types DKU24 of Section A.1.5 and P244 of Section A.1.6 are constructed in
the same manner. If the boundary conditions are omitted anywhere in this document in the names of
wavelets, it can be assumed to be of type NB.

231



Appendix A. Wavelet Details

A.1 Boundary Adapted Wavelets on the Interval (0, 1)
Here we briefly show all the necessary data needed to use a specific wavelet in a numerical implementation.
The theoretical background can be found in Section 2.3. More details can be found in [122] and in the
references given in the specific sections.
The dual wavelets and generators are here not known explicitly and in particular, are not piecewise
polynomials and thus cannot be plotted directly. Their existence is assured by Theorem 2.32 which
suffices for our purpose. However, by (2.1.60) and (2.1.62), we can project the space S(Ψ̃j) onto the space
S(ΦJ), thus approximating the dual wavelets with piecewise linear functions. Obviously this method is
inexact, but choosing J � j0 and then plotting only dual functions on level j0 leads to a sufficiently
accurate visualization.

A.1.1 Boundary Adapted Hat Functions d = 2

Hat Functions consist of piecewise linear polynomials. The base can be defined for all j0 ≥ 0, and it holds

#∆j = 2j + 1, #∇j = 2j . (A.1.1)

The hat function is given as

ϕj,k(x) :=





2jx− (k − 1), 2jx,∈ [k − 1, k),
−2jx+ (k + 1), 2jx,∈ [k, k + 1],
0, otherwise.

(A.1.2)

The primal generators on level j ≥ j0 are given by

φj,k = 2j/2





ϕ−j,k+1, k = 0,

ϕj,k, k = 1, . . . , 2j − 1,
ϕ+
j,k−2, k = 2j ,

(A.1.3)

where ϕ+
j,k is the first branch of the hat function (with positive slope) and ϕ−j,k the second branch (with

negative slope). The hat function is known to be refinable, and in the form of (2.1.10), the mask is
given by

φj,k =
1

2
√

2
φj+1,2k−1 +

1√
2
φj+1,2k +

1

2
√

2
φj+1,2k+1

which we abbreviate as
{

1

2
√

2
,

1√
2
,

1

2
√

2
; −1

}
for k = 1, . . . ,#∆j − 2, (A.1.4)

identifying the last number as the offset in the position to be added to the index k → 2k to the first
function. Traversing the mask from left to right, the position is increased by one, the offset always added.
It is easy to verify that the boundary generators are refinable with masks

{
1√
2
,

1

2
√

2
; 0

}
for k = 0,

{
1

2
√

2
,

1√
2

; −1

}
for k = #∆j − 1. (A.1.5)

Since the function are piecewise linear, it follows d = 2 for the parameter of (P)(2.2.3). The sparsity of
Mj,0 is thus obvious: we have at most three non-zero values per column. It is well known (see [53]), that
piecewise linear and globally continuous wavelets are contained in the Sobolev space Hs up to s < 3/2,
or, by Definition 2.17 we have γ = 3/2.

Tree Structure

For the tensor product constructions, we need to define two mappings: A mapping between Φj ↔ Φj+1

and one between Φj ↔ Ψj .
Because the number of single scale functions #∆j (A.1.1) grows slightly slower than 2, not every function
can have exactly two children. One just needs to decide how to adapt the tree relation at the boundaries.
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A.1. Boundary Adapted Wavelets on the Interval (0, 1)

We opted for a relation which is based on the tree structure of hat functions with zero boundary
conditions. This means we handle the boundary adapted indices independent of the other indices.
For each index µ = (j, k, 0), k ∈ ∆j the set of children C(µ) is set to be

C(µ) :=





{(j + 1, 0, 0)} , for k = 0,
{(j + 1, 2k − 1, 0), (j + 1, 2k, 0)} , for k = 1, . . . , b#∆j/2c − 1,
{(j + 1, 2k − 1, 0), (j + 1, 2k, 0), (j + 1, 2k + 1, 0)} , for k = b#∆j/2c ,
{(j + 1, 2k, 0), (j + 1, 2k + 1, 0)} , for k = b#∆j/2c+ 1, . . . ,#∆j − 2,
{(j + 1,#∆j+1 − 1, 0)} , for k = #∆j − 1.

(A.1.6)

For the same level mapping Φj ↔ Ψj one has the problem that #∆j = #∇j + 1, thus the number of
parents is actually one less than the number of children. At least one parent can thus have no child.
For symmetry reasons, it should either be the middle index (j, b#∆j/2c , 0) or the two boundary indices
(j, 0, 0) and (j,#∆j − 1, 0). For the boundary value problems of Section 5, where the trace operator
works on a side of the domain (0, 1)n, it seems more appropriate to choose the second variant, i.e., that
the children of the boundary adapted functions are itself boundary adapted functions.

C(µ) :=




{(j, k, 1)} , for k = 0, . . . , b#∆j/2c − 1,
∅, for k = b#∆j/2c ,
{(j, k + 1, 1)} , for k = b#∆j/2c+ 1, . . . ,#∆j − 1,

(A.1.7)

Depictions of these tree structures can be found in Figure A.1. The standard wavelet tree structure
(3.2.8) can be found in Figure A.2. This choice should stimulate the selection of indices of boundary
adapted functions in Algorithm 3.4.

A.1.2 Boundary Adapted Dual Generators d̃ = 2

The dual generators are, except for a constant factor of 1√
2
, given by the masks

{
5

4
,

3

2
,
−1

8
; 0

}
for k = 0,

{−1

8
,

1

4
,

13

8
,

1

2
,
−1

4
; −2

}
for k = 1,

{−1

4
,

1

2
,

3

2
,

1

2
,
−1

4
; −2

}
for k = 2, . . . ,#∆j − 3, (A.1.8)

{−1

4
,

1

2
,

13

8
,

1

4
,
−1

8
; −2

}
for k = #∆j − 2,

{−3

4
,

3

2
,

5

4
; −2

}
for k = #∆j − 1.

Φj0

Φj0+1

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Φj0

Ψj0

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7

Figure A.1: Visualization of the tree structure (A.1.6) on the left and (A.1.7) on the right. The location
index k is given in each rectangle, the basis type is given next to each row.
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Ψj0

Ψj0+1

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure A.2: Visualization of the tree structure (3.2.8). The location index k is given in each rectangle,
the basis is given next to each row.

Plots of these functions can be found in Figure A.3.
The values of the dual mass matrix a(φ̃j,k, φ̃j,m) are (entries numbered for m from left to right):

{
17

4
,
−49

32
,

19

48
,

1

96

}
for k = 0,m = 0, . . . , 3,

{−49

32
,

77

32
,
−221

288
,

71

576
,

1

288

}
for k = 1,m = 0, . . . , 4,

{
19

48
,
−221

288
,

77

36
,
−67

96
,

1

8
,

1

288

}
for k = 2,m = 0, . . . , 5,

{
1

96
,

71

576
,
−67

96
,

77

36
,
−67

96
,

1

8
,

1

288

}
for k = 3,m = 0, . . . , 6,

{
1

288
,

1

8
,
−67

96
,

77

36
,
−67

96
,

1

8
,

1

288

}
for k = 4, . . . ,#∆j − 5,m = k − 3, . . . ,m = k + 3 (A.1.9)

{
1

288
,

1

8
,
−67

96
,

77

36
,
−67

96
,

71

576
,

1

96

}
for k = #∆j − 4,m = #∆j − 7, . . . ,#∆j − 1,

{
1

288
,

1

8
,
−67

96
,

77

36
,
−221

288
,

19

48

}
for k = #∆j − 3,m = #∆j − 6, . . . ,#∆j − 1,

{
1

288
,

71

576
,
−221

288
,

77

32
,
−49

32

}
for k = #∆j − 2,m = #∆j − 5, . . . ,#∆j − 1,

{
1

96
,

19

48
,
−49

32
,

17

4

}
for k = #∆j − 1,m = #∆j − 4, . . . ,#∆j − 1.
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φ̃3,0 φ̃3,1

φ̃3,4

Figure A.3: Dual generators of type DKU22NB, projected onto S(Φ10). This means every function is
approximated by piecewise linear functions of support ≈ 2−10. The recurring function is φ̃3,4, the others
are boundary adapted special cases.

A.1.3 Boundary Adapted Dual Generators d̃ = 4

The dual generators are, except for a constant factor of 1√
2
, given by the masks

{
93

64
,

35

32
,
−5

16
,
−15

32
,

15

64
; 0

}
for k = 0,

{−241

768
,

241

384
,

245

192
,

105

128
,
−93

256
,
−3

32
,

3

64
; −2

}
for k = 1,

{
41

384
,
−41

192
,
−13

96
,

31

64
,

187

128
,

19

32
,
−1

4
,
−3

32
,

3

64
; −4

}
for k = 2,

{−5

256
,

5

128
,

1

64
,
−9

128
,
−67

256
,

19

32
,

45

32
,

19

32
,
−1

4
,
−3

32
,

3

64
; −6

}
for k = 3,

{
3

64
,
−3

32
,
−1

4
,

19

32
,

45

32
,

19

32
,
−1

4
,
−3

32
,

3

64
; −4

}
for k = 4, . . . ,#∆j − 5, (A.1.10)

{
3

64
,
−3

32
,
−1

4
,

19

32
,

45

32
,

19

32
,
−67

256
,
−9

128
,

1

64
,

5

128
,
−5

256
; −4

}
for k = #∆j − 4,

{
3

64
,
−3

32
,
−1

4
,

19

32
,

187

128
,

31

64
,
−13

96
,
−41

192
,

41

384
; −4

}
for k = #∆j − 3,

{
3

64
,
−3

32
,
−93

256
,

105

128
,

245

192
,

241

384
,
−241

768
; −4

}
for k = #∆j − 2,

{
15

64
,
−15

32
,
−5

16
,

35

32
,

93

64
; −4

}
for k = #∆j − 1.

The mask length is 9 ≈ 2d̃, which is a direct consequence of (2.3.3) combined with (2.32(i),(iii)). Plots
of these functions can be seen in Figure A.4.
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Appendix A. Wavelet Details

The values of the dual mass matrix a(φ̃j,k, φ̃j,m) are (entries numbered for m from left to right):

{a0,0, . . . , a0,7} for k = 0,m = 0, . . . , 7,

{a0,1, a1,1, . . . , a1,6, a1, a0} for k = 1,m = 0, . . . , 8,

{a0,2, a1,2, a2,2, . . . , a2,6, a2, a1, a0} for k = 2,m = 0, . . . , 9,

{a0,3, a1,3, a2,3, a3,3, . . . , a3,6, a3, . . . , a0} for k = 3,m = 0, . . . , 10,

{a0,4, a1,4, a2,4, a3,4, a7, . . . , a0} for k = 4, . . . ,m = 0, . . . , 11,

{a0,5, . . . , a3,5, a6, a7, . . . , a0} for k = 5, . . . ,m = 0, . . . , 12,

{a0,6, . . . , a3,6, a5, a6, a7, . . . , a0} for k = 6, . . . ,m = 0, . . . , 13,

{a0,7, a1, . . . , a7, . . . , a0} for k = 7, . . . ,m = 0, . . . , 14,

{a0, . . . , a7, . . . , a0} for k = 8, . . . ,#∆j − 9,m = k − 7, . . . , k + 7, (A.1.11)
{a0, . . . , a7, . . . , a1, a0,7} for k = #∆j − 8, . . . ,m = #∆j − 15, . . . ,#∆j − 1,

{a0, . . . , a7, a6, a5, a3,6, a2,6, a1,6, a0,6} for k = #∆j − 7, . . . ,m = #∆j − 14, . . . ,#∆j − 1,

{a0, . . . , a7, a6, a3,5, a2,5, a1,5, a0,5} for k = #∆j − 6, . . . ,m = #∆j − 13, . . . ,#∆j − 1,

{a0, . . . , a7, a3,4, . . . , a0,4} for k = #∆j − 5, . . . ,m = #∆j − 12, . . . ,#∆j − 1,

{a0, . . . , a3, a3,6, . . . , a3,3, a2,3, a1,3, a0,3} for k = #∆j − 4,m = #∆j − 11, . . . ,#∆j − 1,

{a0, a1, a2, a2,6, . . . , a2,2, a1,2, a0,2} for k = #∆j − 3,m = #∆j − 10, . . . ,#∆j − 1,

{a0, a1, a1,6, . . . , a1,1, a0,1} for k = #∆j − 2,m = #∆j − 9, . . . ,#∆j − 1,

{a0,7, . . . , a0,0} for k = #∆j − 1,m = #∆j − 8, . . . ,#∆j − 1,

with the following definitions:

a0,0 :=
6665765124563151867639088393

1836742536536418841421414400
, a0,1 :=

−180522950635150021475645737399

165306828288277695727927296000
,

a0,2 :=
2138552910114357514699300337

5903815296009917704568832000
, a0,3 :=

−33216135061795320582043458053

330613656576555391455854592000
,

a0,4 :=
5790765461324751880387

399885889154850068889600
, a0,5 :=

57625368402443

46634638088601600
,

a0,6 :=
2447177

474392070400
, a0,7 :=

21321

3795136563200
,

a1,1 :=
728885767926046009515034156247

360669443538060427042750464000
, a1,2 :=

−75344609883948280847203025159

122449502435761256094760960000
,

a1,3 :=
1703303494242923977691255987933

9918409697296661743675637760000
, a1,4 :=

−87635150175456101315267

2665905927699000459264000
,

a1,5 :=
733332973252793

559615657063219200
, a1,6 :=

4563943311

18975682816000
,

a2,2 :=
9102770208630960638350027475101

4959204848648330871837818880000
, a2,3 :=

−1261514908182928217865367195607

2479602424324165435918909440000
,

a2,4 :=
7759709295780780783436367

59982883373227510333440000
, a2,5 :=

−101159974306543711

4197117427974144000
,

a2,6 :=
20441015537

10673821584000
,

a3,3 :=
118177743629794844436577567139

66790637692233412415324160000
, a3,4 :=

−1762462517518769957236217

3635326265044091535360000
,

a3,5 :=
116527049496700033

932692761772032000
, a3,6 :=

−6249298745239

256171718016000
,
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a0 :=
21321

18975682816000
, a1 :=

4873033

4743920704000
,

a2 :=
13834149977

56927048448000
, a3 :=

40856239771

21347643168000
,

a4 :=
−12498464767253

512343436032000
, a5 :=

592985214967

4743920704000
,

a6 :=
−82631485669781

170781145344000
, a7 :=

56427081576079

32021464752000
.

φ̃3,0 φ̃3,1

φ̃3,2 φ̃3,3

φ̃3,4

Figure A.4: Dual generators for d̃ = 4, projected onto S(Φ10). This means every function is approximated
by piecewise linear functions of support ≈ 2−10. The recurring function is φ̃3,4, all others are boundary
adapted special cases.
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A.1.4 Boundary Adapted Wavelets d = 2, d̃ = 2, j0 = 3 (DKU)

The following data is taken from [51]. The primal wavelet refinement coefficients can be scaled just as
the coefficients in Section A.1.5. Their values are

{
3

4
,
−7

16
,

3

8
,
−11

16
,

1

4
,

1

8
; 0

}
for k = 0,

{−1

4
,
−1

2
,

3

2
,
−1

2
,
−1

4
; −1

}
for k = 1, . . . ,#∇j − 2, (A.1.12)

{
1

8
,

1

4
,
−11

16
,

3

8
,
−7

16
,

3

4
; −3

}
for k = #∇j − 1.

ψ3,0 ψ3,3

Figure A.5: Wavelets of type DKU22NB, consisting of piecewise linear polynomials. The recurring functions
is ψ3,3, the other is the boundary adapted special case.

Dual Wavelets

The refinement masks of the dual wavelets are

{1,−2, 1; 0} for k = 0,
{

1

2
,−1, 0, 1,

−1

2
; −2

}
for k = 1,

{−1

2
, 1,
−1

2
; 0

}
for k = 2, . . . ,#∇j − 3, (A.1.13)

{−1

2
, 1, 0,−1,

1

2
; 0

}
for k = #∇j − 2,

{1,−2, 1; 0} for k = #∇j − 1.

The dual wavelets can be seen in Figure A.6. Note that in this case holds γ̃ > 0.6584 (see [36]).
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ψ̃3,0 ψ̃3,1

ψ̃3,4

Figure A.6: Dual wavelets of type DKU22NB, projected onto S(Φ10). This means every function is
approximated by piecewise linear functions of support ≈ 2−10. The recurring functions is ψ̃3,4, the
others are boundary adapted special cases.

A.1.5 Boundary Adapted Wavelets d = 2, d̃ = 4, j0 = 3 (DKU)

The following results were first established in [50,51] and further investigated in [23] by using only rational
numbers in the construction process, which avoids rounding errors.
During the latter construction, it became obvious, that a scaling parameter r 6= 0 can be chosen ar-
bitrarily. This parameter scales the primal and dual wavelets w.r.t. the primal and dual single scale
bases respectively. The mask coefficients of the primal wavelets are scaled by r, the mask coefficients of
the dual wavelets by r−1. This scaling can therefore affect computations by having an impact on the
absolute value of the condition numbers of the finite discretized systems. There are two values of r that
have proved to be of value in applications and we will denote them by

rDKU := 1 , rCB :=
√

2 . (A.1.14)

Setting r = rDKU leads to the refinement matrices of [49, 51] and setting r = rCB is the construction
from [23]. With this construction, two wavelets have to be adapted to the interval boundary at either
side of (0, 1). There are therefore five types of wavelets, one is translated in its position and makes up
most of the basis:

{
5

16
,
−185

384
,

139

192
,
−73

128
,

13

96
,

23

384
,
−1

64
,
−1

128
; 0

}
for k = 0,

{
15

32
,
−45

256
,
−105

128
,

345

256
,
−31

64
,
−53

256
,

9

128
,

9

256
; −2

}
for k = 1,

{
3

64
,

3

32
,
−1

4
,
−19

32
,

45

32
,
−19

32
,
−1

4
,

3

32
,

3

64
; −3

}
for k = 2, . . . ,#∇j − 3, (A.1.15)

{
9

256
,

9

128
,
−53

256
,
−31

64
,

345

256
,
−105

128
,
−45

256
,

15

32
; −3

}
for k = #∇j − 2,

{−1

128
,
−1

64
,

23

384
,

13

96
,
−73

128
,

139

192
,
−185

384
,

5

16
; −5

}
for k = #∇j − 1.

We here show the masks for r = 2, which conveniently leaves only rational numbers.
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ψ3,0 ψ3,1

ψ3,3

Figure A.7: Wavelets of type DKU24NB, consisting of piecewise linear polynomials. The recurring functions
is ψ3,4, the others are boundary adapted special cases.

Dual Wavelets

The refinement masks of the dual wavelets are

{1,−2, 1; 0} for k = 0,
{

1

2
,−1, 0, 1,

−1

2
; 0

}
for k = 1,

{−1

2
, 1,
−1

2
; 0

}
for k = 2, . . . ,#∇j − 3, (A.1.16)

{−1

2
, 1, 0,−1,

1

2
; 0

}
for k = #∇j − 2,

{1,−2, 1; 0} for k = #∇j − 1.

The dual wavelets can be seen in Figure A.8. It was pointed out in [36] that in this case, the dual
generators decay in the following fashion:

|φ̃(x)| ≤ C(1 + |x|)−α, α > 1.2777.

With Definition 1.11 this directly translates to γ̃ > 1.2777. Hence, these wavelets satisfy the norm
equivalences of Theorem 2.18 for the range from (H1(I))′ to H1(I).
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ψ̃3,0
ψ̃3,1

ψ̃3,4

Figure A.8: Dual wavelets of type DKU24NB, projected onto S(Φ10). This means every function is
approximated by piecewise linear functions of support ≈ 2−10. The recurring functions is ψ̃3,3, all others
are boundary adapted special cases.

A.1.6 Boundary Adapted Wavelets d = 2, d̃ = 4, j0 = 4 (Primbs)

These wavelets are taken from [126]. The coefficients here shown must also be multiplied with a factor
of 1√

2
.

{−385

512
,

9625

12288
,
−2651

6144
,
−583

4096
,

451

3072
,

737

12288
,
−55

2048
,
−55

4096
; 0

}
for k = 0,

{
165

512
,
−495

4096
,
−1155

2048
,

3795

4096
,
−341

1024
,
−583

4096
,

99

2048
,

99

4096
; −2

}
for k = 1,

{
33

1024
,

33

512
,
−11

64
,
−209

512
,

495

512
,
−209

512
,
−11

64
,

33

512
,

33

1024
; −3

}
for k = 2, . . . ,#∇j − 3,

{
99

4096
,

99

2048
,
−583

4096
,
−341

1024
,

3795

4096
,
−1155

2048
,
−495

4096
,

165

512
; −3

}
for k = #∇j − 2,

{−55

4096
,
−55

2048
,

737

12288
,

451

3072
,
−583

4096
,
−2651

6144
,

9625

12288
,
−385

512
; −5

}
for k = #∇j − 1. (A.1.17)

These wavelets offer the same smoothness and regularity as Section A.1.5, but have proven to produce
very low absolute condition numbers in conjunction with the orthogonal transformation of Section 2.3.2
in previous numerical experiments, see [122].

Dual Wavelets

The dual generators are identical with the DKU24NB construction and can be found in Figure A.4. Although
there are several different wavelets, they all use the same mask:

{−8

11
,

16

11
,
−8

11
; 0

}
for k = 0, . . . ,#∇j − 1, (A.1.18)
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The difference in the dual wavelets stems from the boundary adapted dual generators. The three different
types of wavelets can be seen in Figure A.9.

ψ4,0 ψ4,1

ψ4,7

ψ̃4,0 ψ̃4,1

ψ̃4,7

Figure A.9: Wavelets of type MP-24. The primal wavelets consist of piecewise linear polynomials. The
dual wavelets are projected onto S(Φ10). The recurring wavelet is in each case ψ4,7, the two others are
boundary adapted special cases.
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A.2 Wavelet Diagrams

We briefly explain the types of wavelet diagrams used in this work.

A.2.1 1D Diagram

The one dimensional wavelet coefficients diagrams are set up in a natural way. The horizontal axis in
Figure A.2.1 represents the spatial position k, the vertical axis the level j. The lowermost row contains
the wavelet indices of Ψj0−1. Within each row, the location takes on the values k = 0, . . . ,#∇j from left
to right. Since the number of wavelets double and their support halves from each level to the next, the
width of the cells represent roughly the size of each wavelets support.

j0 − 1

j0

j0 + 1

j0 + 2

Ψj0−1

Ψj0

Ψj0+1

Ψj0+2

Location k

Figure A.10: Standard 1D wavelet diagram for boundary adapted wavelets on the interval (0, 1).

A.2.2 2D Diagrams

Classic

The standard diagram is built according to the multi-dimensional decomposed space structure depicted
in Figure 2.2 and Figure 2.3. Each rectangle or square in Figure A.11 represents the whole domain (0, 1)2,
with the lower left point being the origin. The side lengths are proportional to the number of functions
of each dimension and type (wavelet or single scale). Thus, each wavelet index gets an equal share of the
space for representation.

Level-wise Type Plot

The level-wise type is a different form of arrangement for the isotropic class diagram Figure A.11. One
chooses a type e ∈ {01, 10, 11} and then places all squares with this type and the lowermost left above
each other in a 3-D cube fashion. For this to work, the rectangles have to be stretched to conform in the
picture dimensions. This diagram is particularly well suited to visualize patterns present in the space
coordinates of the same wavelet types.

Scatter Plot

The aforementioned diagrams are not very well suited to display sets of wavelet indices with very high
levels and many zero-valued (or non-existent) coefficients. For high levels, it is more convenient to put all
coefficients into a single diagram representing the complete domain Ω. For this purpose, every wavelet
index λ gets associated with a unique point in Ω. This is usually the center of the support of the function
and the position of its highest value. For tensor products, the point is simply determined by calculating
the unique points in each direction.
Since, for j →∞, the union of all these points in dense in Ω ⊂ R2, the space associated to each coefficient
becomes infinitesimally small. Hence, with this diagram, one cannot determine easily the properties of a
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single pictured coefficient, but the distribution of coefficients hints to locations of important features of
the presented function.

A.2.3 3D Diagrams

To visualize data in three dimensions, one can either select specific slices of coefficients and use 2D
diagrams or visualize all coefficients in a single scatter diagram.

Scatter Plot

The scatter plot for Ω = (0, 1)3 is set up exactly as in two dimensions except for the “depth” information
given by the unique point of the wavelet in x3. Thankfully, most plotting libraries compute the projection
onto a 2D canvas itself and one can directly output location and value data as three-dimensional points
and color information.

Ψj0+2 ⊗Ψj0+2

e = 11

Φj0+2 ⊗Ψj0+2

e = 01

Ψj0+2 ⊗ Φj0+2

e = 10

j0

j0

j0 + 1

j0 + 1

j0 + 2

j0 + 2

Ψj0+2 ⊗Ψj0+2

e = 11

Ψj0+1 ⊗Ψj0+2

e = 11

Ψj0 ⊗Ψj0+2
e = 11

Φj0 ⊗Ψj0+2
e = 01

j0

j0

j0 + 1

j0 + 1

j0 + 2

j0 + 2

Isotropic Decomposition Anisotropic Decomposition

Figure A.11: Classic wavelet diagrams for isotropic and anisotropic decompositions. For the level j0 + 2,
some explicit bases and their types of each segment are given. The lower left squares contain the bases
Ψj0−1 ⊗Ψj0−1.

Ψj0−1 ⊗Ψj0−1

Φj0 ⊗Ψj0

Φj0+1 ⊗Ψj0+1

Φj0+2 ⊗Ψj0+2

j0 − 1

j0

j0 + 1

j0 + 2

Ψiso
(�,J)

ky

kx

kx
ky

k
z

Figure A.12: Left: Isotropic level-wise plot for levels j0 − 1 to j0 + 2 and exemplified type e = 01.
Center: The scatter plot diagram combines all coefficients into a single diagram represented by the
domain (0, 1)2. Right: Scatter plot diagram (box) for the domain (0, 1)3.
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A.3 Local Polynomial Bases
Here, we present three suitable 1D monomial bases for the local polynomial representation (3.4.24) of
Section 3.4.1. For any t ≥ 0, we denote the set of monomial basis functions on a dyadic grid of level j
at location k up to order t as Πt

j,k :=
{
prj,k(x) : r = 0, . . . , t

}
. On the standard interval (0, 1), the step

size on level j of this dyadic grid is h := 2−j and the number of possible cells n := 2j . For simplicity, we
call any basis function of a polynomial space a “monomial”, although it does not need to be a monomial
in the strict sense. Also, for readability, we will omit any factors of the kind χ2−j [k,k+1], as the compact
support of the involved functions should be obvious from the context.

A.3.1 Standard Monomials

The standard monomial basis, e.g., prj,k(x) := xr, is numerically unstable for high levels j � 1. It should
therefore only be used for debugging purposes.
The basis is hierarchically constructed, i.e., Πr+1

j,k := Πr
j,k∪

{
xr+1

}
and it holds prj,k p

s
j,k = pr+sj,k . Therefore,

the only integral values that have to be determined are

∫ 2−j(k+1)

2−jk

prj,k(x) dx =
1

r + 1

(
(2−j(k + 1))r+1 − (2−jk)r+1

)
,

=
hr+1

r + 1

(
r+1∑

i=1

(
r + 1

i

)
ki

)
.

The cause for numerical instability can now obviously be recognized here in the extremely high values
of the exponent. Even for the case of linear polynomials, the nonlinear operator F (u) = u3 requires
the integration of fourth order polynomials and thus the value h5 during the above evaluation. In two
dimensions, integration is done in both coordinate directions and the results are multiplied. Then, values
of the integral get below machine precision even for j = 5.
The polynomial refinement matrices M�′,� defined in (3.4.15) for the standard monomials are simply
the identity matrices I ∈ R(t+1)×(t+1).

A.3.2 Normalized Monomials

Another approach is to shift and scale the monomial basis in same the way wavelets are constructed from
a mother wavelet, i.e.,

prj,k(x) := 2j/2(2jx− k)r. (A.3.1)

This basis is again constructed in a hierarchical fashion. Using this basis, it is easy to represent monomials
of different orders alike, e.g. constant and linear monomials. Evaluation of a polynomial in this representa-
tion can be done efficiently by transforming the point x into the local coordinate µ := µj,k(x) := 2jx−k
and then using the Horner scheme. Lastly, the scaling factor 2j/2 must be applied.
Inner products can be evaluated by substituting µj,k to get

∫ 2−j(k+1)

2−jk

prj,k(x) psj,k(x) dx =

∫ 1

0

µrµs dµ =

∫ 1

0

µr+s dµ =
1

r + s+ 1
. (A.3.2)

The independence of the values of the integrals of the level j and the location k exemplifies the usefulness
of the scaled and shifted monomial basis. For r ≥ 1 holds

d

dx
prj,k(x) =

d

dx

(
2j/2(2jx− k)r

)
= 2j/2 (2jx− k)r−1 r 2j = 2j r pr−1

j,k (x),

which leads for r, s ≥ 1 in one dimension with (A.3.2) to

∫ 2−j(k+1)

2−jk

d

dx
prj,k(x)

d

dx
psj,k(x) dx = 22j r s

∫ 2−j(k+1)

2−jk

pr−1
j,k (x)ps−1

j,k (x) dx =
22j r s

r + s− 1
. (A.3.3)

For either r = 0 or s = 0, the constant polynomial is differentiated, which directly result in a zero value.

245



Appendix A. Wavelet Details

Refinement/Coarsening Operators

Since the polynomial construction is now adapted to the dyadic grid cell, it follows that the polynomial
refinement matrices can no longer be the identity matrices. It even follows, that there must be different
matrices for the left and right subcells, �1,�2 ∈ Dj+1, of a box � ∈ Dj . To calculate these matrices,
each monomial prj,k is restricted to the subcells and the coefficients in the local polynomial basis have to
be computed. For a monomial of order r, follows for the left child (level j + 1, location 2k),

prj,k(x) = 2j/2(2jx− k)r =
1√
2

(1/2)r 2(j+1)/2 (2j+1x− 2k)r =
1√
2

(1/2)r prj+1,2k(x),

and for the right child (level j + 1, location 2k + 1),

prj,k(x) =
1√
2

2(j+1)/2 (1/2)r ((2j+1x− (2k + 1)) + 1)r

=
1√
2

(1/2)r 2(j+1)/2
r∑

i=0

(
r

i

)
(2j+1x− (2k + 1))i1r−i

=
1√
2

(1/2)r
r∑

i=0

(
r

i

)
pij+1,2k+1(x).

The refinement matrices M�1,�,M�2,� ∈ R(r+1)×(r+1) for (A.3.1) are thus

MT
�1,� =

1√
2




1
1
2

1
4

. . .
1
2r



, MT

�2,� =
1√
2




1 1/2 1/4 · · · 1
2r

1/2 2/4 · · ·
...

1/4 · · ·
(
r
i

)
1
2r

. . .
...
1
2r



. (A.3.4)

This reveals that this basis could also suffer from numerical instabilities for high polynomial degrees as
the factor (1/2)r goes to zero for increasing values of r.

Multiplication and Power Operations

Because of the normalization, the product of two monomials is not a monomial of higher order, i.e.,
prj,k p

s
j,k 6= (pr+sj,k ). In fact, it holds

prj,k(x) psj,k(x) = 2j/2(2jx− k)r 2j/2(2jx− k)s = 2j(2jx− k)r+s = 2j/2 pr+sj,k (x),

and, repeating this rule for power operations,
(
prj,k(x)

)s
= 2(s−1)j/2 prsj,k(x).

Hence, except for a (on each level j and in the second case exponent s) constant factor, inner products
of polynomials can yet be reduced to calculations of inner products of basis functions. The nonlinear
operator F (u) = u3 requires calculation of the third power of a polynomial on each cell. Because of the
above identity, the operator F (u) on a normalized monomial first uses the standard algorithm for the
third power to calculate the coefficients of all monomials of third order and then multiplies the result
with the factor 2j .

Conversion to/from Standard Monomials

The transformation matrix exporting a polynomial in the normalized basis into the standard basis is
easily calculated by expanding (A.3.1), i.e.,

prj,k(x) = 2j/2(2jx− k)r = 2j/2
r∑

i=0

(
r

i

)
(2jx)i(−k)r−i.
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This defines the values of the export matrix Cnorm→std. It is important to note that, unlike the refinement
matrices (A.3.4), this operation depends on the level and location of each cell.
Importing a polynomial given in the standard monomial basis on the whole domain (0, 1) or a part thereof
into the normalized polynomial is done by importing the same polynomial for all applicable levels j and
locations k.

Cnorm→std = 2j/2




1
h−1

h−2

h−3

. . .







1 −k k2 −k3 · · ·
1 −2k 3k2 · · ·

1 −3k · · ·
1 · · ·

. . .



.

The local transformation matrix of the import, Cstd→norm, is the inverse of the matrix Cnorm→std, i.e.,

Cstd→norm = 2−j/2




1 k k2 k3 · · ·
1 2k 3k2 · · ·

1 3k · · ·
1 · · ·

. . .







1
h

h2

h3

. . .



.

A.3.3 Normalized Shape Functions

Since spline wavelets usually are made up only from polynomial pieces of maximal order, e.g. are all
linear but not a constant on some part of their support, another typical choice are shape functions,
see [19]. Introducing t+ 1 control points for order t ∈ N0,

x̃{s,t} := 2−j(k + s/t) ∈ 2−j [k, k + 1], s = 0, . . . , t, (A.3.5)

these functions are elements of Πd, constructed such that each attains the value 2j/2 at one point x̃{s,t}
and is zero at all the others. This means the shape function bases are not hierarchically defined as the
standard and normalized monomials, i.e., Πt

j,k * Πt+1
j,k . Thus, a single index r is not sufficient to identify

a particular shape function. We denote the r-th shape function of Πt
j,k, r = 0, . . . , t, as p{r,t}j,k (x). Using

again the local coordinate µ := µj,k(x) := 2jx−k, the first bases can be found, except for the common
factor 2j/2 χ2−j [k,k+1], in Table A.3.3.

r = 0 r = 1 r = 2 r = 3

t = 0 1

t = 1 (−1)(µ− 1) µ

t = 2 2(µ− 1
2 )(µ− 1) (−4)µ(µ− 1) 2µ(µ− 1

2 )

t = 3 − 9
2 (µ− 1

3 )(µ− 2
3 )(µ− 1) 27

2 µ(µ− 2
3 )(µ− 1) − 27

2 µ(µ− 1
3 )(µ− 1) 9

2µ(µ− 1
3 )(µ− 2

3 )

Table A.1: Shape Functions r = 0, . . . , t up to order t = 3 in the local coordinate µ ∈ [0, 1].

Due to the overall w.r.t. the order t quadratically growing number of basis functions, the number of
combinations for the internal product grows even faster. The scaling of the shape functions again results
in the values of the inner product

∫ 2−j(k+1)

2−jk

p
{r1,t1}
j,k (x) p

{r2,t2}
j,k (x) dx (A.3.6)

being independent of the level j and location k. The values corresponding to the above given basis
functions can be read in Table A.2.
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p
{0,0}
j,k p

{0,1}
j,k p

{1,1}
j,k p

{0,2}
j,k p

{1,2}
j,k p

{2,2}
j,k p

{0,3}
j,k p

{1,3}
j,k p

{2,3}
j,k p

{3,3}
j,k

p
{0,0}
j,k 1 1

2
1
2

1
6

2
3

1
6

1
8

3
8

3
8

1
8

p
{0,1}
j,k

1
3

1
6

1
6

1
3 0 13

120
3
10

3
40

1
60

p
{1,1}
j,k

1
3 0 1

3
1
6

1
60

3
40

3
10

13
120

p
{0,2}
j,k

2
15

1
15 − 1

30
11
120

3
20 − 3

40 0

p
{1,2}
j,k

8
15

1
15

1
30

3
10

3
10

1
30

p
{2,2}
j,k

2
15 0 − 3

40
3
20

11
120

p
{0,3}
j,k

8
105

33
560 − 3

140
19

1680

p
{1,3}
j,k

27
70 − 27

560 − 3
140

p
{2,3}
j,k

27
70

33
560

p
{3,3}
j,k

8
105

Table A.2: Values of the inner product (A.3.6) for up to third order shape functions. Since the inner
product is symmetric, only half of the values are presented.

Refinement/Coarsening Operators

Because of its interpolating nature, many mathematical operations with the shape function basis can
often be reduced to evaluation procedures. For the linear shape function p{0,1}j,k , evaluation yields

p
{0,1}
j,k (2−jk) = 2j/2, p

{0,1}
j,k (2−j(k − 1

2
)) =

1

2
2j/2, p

{0,1}
j,k (2−j(k − 1)) = 0.

Since the scaling from each level j to the next j + 1 differs only by a factor of
√

2, it follows in this case

p
{0,1}
j,k (x) =

1√
2

(
p
{0,1}
j+1,2k(x) +

1

2
p
{1,1}
j+1,2k(x) +

1

2
p
{0,1}
j+1,2k+1(x) + 0 p

{1,1}
j+1,2k+1(x)

)
.

Doing the same calculation for p{1,1}j,k , the refinement matrices can thus directly deduced to be

MT
�1,� =

1√
2

(
1 1/2
0 1/2

)
, MT

�2,� =
1√
2

(
1/2 0
1/2 1

)
.

Thus, to assemble the refinement matrices, one only needs to evaluate the shape function on � at the
control points of the left and right subcells �1, �2 ∈ Dj+1, and account for the different scaling on each
level. For the quadratic shape functions, this results in

MT
�1,� =

1√
2




1 3/8 0
0 3/4 1
0 −1/8 0


 , MT

�2,� =
1√
2




0 −1/8 0
1 3/4 0
0 3/8 1


 .

Whereas it is an implementation disadvantage that the refinement matrices are not as easily calculable
as in the prior cases Section A.3.1 and Section A.3.2, the interpolating nature makes other calculations
particularly simple. In general, the value of the refinement matrix in row k and column i is the value of
the monomial p{k,m}j,k (x̂{i,m}), with k = 0, . . . ,m and x̂{i,m} being the i-th control point on either the left
of right subinterval. Since the actual value is, because of the same relative scaling 21/2, independent of
the level j, these values can generally be computed easily in the local coordinate µ: using the unscaled
interpolating polynomial

qk,m(x) :=

m∏

i=0,i6=k
(x− i/m),
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the value is simply the value of the normalized polynomial, i.e.,

qk,m(µ)

qk,m(k/m)
=

m∏

i=0,i6=k

µ− i/m
(k − i)/m =

m∏

i=0,i6=k

mµ− i
k − i .

The relative values of the control points of the left and right subintervals are simply
x̂{·,m} :=

{
i

2m | i = 0, . . . ,m
}
and x̂{·,m} :=

{
i

2m | i = m+ 1, . . . , 2m
}
, respectively.

Multiplication and Power Operations

The nonlinear operator F (u) = u3 requires calculation of the third power of a polynomial on each cell.
For piecewise linear shape functions, the result of the operator is a polynomial of third order and thus
representable in the basis of Π3

j,k. To calculate the coefficients, one simply evaluates the linear function
at the control points of the cubic shape functions and applies the operator F to these values.
Similarly, the required multiplication of a quadratic polynomial u with a linear one v in the operator
application DF (u) v = 3u2v is computed by evaluating the factors at the control points for the cubic
shape functions and then applying the operation.
The values of the shape functions up to t = 3 evaluated at the control points of same or higher order
shape functions can be found in Table A.3.3, again except for the common factor 2j/2.

t = 0 t = 1 t = 2 t = 3

x̃{s,t} any 0 1 0 1/2 1 0 1/3 2/3 1

p
{0,0}
j,k 1 1 1 1 1 1 1 1 1 1

p
{0,1}
j,k 1 0 1 1/2 0 1 2/3 1/3 0

p
{1,1}
j,k 0 1 0 1/2 1 0 1/3 2/3 1

p
{0,2}
j,k 1 0 0 1 2/9 −1/9 0

p
{1,2}
j,k 0 1 0 0 8/9 8/9 0

p
{2,2}
j,k 0 0 1 0 −1/9 2/9 1

p
{0,3}
j,k 1 0 0 0

p
{1,3}
j,k 0 1 0 0

p
{2,3}
j,k 0 0 1 0

p
{3,3}
j,k 0 0 0 1

Table A.3: Point evaluation of the shape functions up to third order on the control points of same or
higher order shape functions.

In higher dimensions, the above mentioned operators are computed by evaluating the higher dimensional
polynomials at all control points of the cell, which is simply the tensor product of the one dimensional
set of control points.

Conversion to/from Standard Monomials

Conversion of a polynomial given in the standard monomial basis is simply done by evaluating the
polynomial at the required control points in 2−j [k, k + 1] and then scaling these values with the factor
2−j/2. This operation can of course be written in matrix form, Ct

std→shpf, and the inverse of this matrix
is then the operator Ct

shpf→std. For the linear case, this yields the matrices

C1
std→shpf = 2−j/2

(
1 k h
1 (k + 1)h

)
= 2−j/2

(
1 k
1 k + 1

)(
1

h

)
,
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C1
shpf→std = 2j/2

(
k + 1 −k
−h−1 h−1

)
= 2j/2

(
1

h−1

)(
k + 1 −k
−1 1

)
,

and for the quadratic case follows

C2
std→shpf = 2−j/2




1 k k2

1 k + 1/2 (k + 1/2)2

1 k + 1 (k + 1)2






1
h

h2


 ,

C2
shpf→std = 2j/2




1
h−1

h−2






2k2 + 3k + 1 −4k(k + 1) k(2k + 1)
−(4k + 3) 8k + 4 −(4k + 1)

2 −4 2


 .

Due to the nature of the construction, each order t requires a completely different transformation matrix,
but the entries in the matrix Ct

std→shpf ∈ R(t+1)×(t+1) for order t are simply given by

(
Ct

std→shpf
)
r,c

= 2−j/2
(
k +

r − 1

t

)c−1

hc−1, for r = 1, . . . , t+ 1, and c = 1, . . . , t+ 1.

That means the matrix is a Vandermonde Matrix with the abbreviation vr := k+ r−1
t , see [70], which

has an explicit inverse with elements

(
Ct

shpf→std
)
r,c

= 2j/2(−h)1−r

∑

0≤m0<...<mt+1−r≤t+1
m0,...,mt+1−r 6=c

t+1−r∏

j=0

vmj

∏

0≤m≤t+1
m 6=c

(vm − vc)

for r = 1, . . . , t+ 1, and c = 1, . . . , t+ 1.

And efficient, i.e., O
(
t2
)
, algorithm to apply the matrix Ct

shpf→std can be found in [125].
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In this chapter, I will lay down and describe some of the principal design and coding details of my
software.

B.1 Compilers and Computers

When writing code in numerics, many students and professionals strive to create the most optimized
code, which is not necessarily the most easily understandable for another person. In fact, this thinking
often creates very obfuscated code that is hard to maintain, even for the original writer and not even
necessarily better or faster than “non-optimized” code. In practice, the compiler is often more adept at
optimizing code than the average developer and the developer should better focus on writing maintainable
and understandable code instead.

To better understand this point, it helps to know a few facts about computer and compilers.

B.1.1 A Few Remarks about CPUs

Many people in applied mathematics and numerics judge a computers’ speed by only looking at the clock
speed. This single number, nowadays in the range of 3GHz = 3 109 /s, can be grossly misleading. Just
noting the maximum distance that any information can travel (with the speed of light) within a single
clock cycle,

∆x = c∆t = 3 108 m/s
1

3 109 /s
= 0.1m = 10 cm,

shows that the physical distance of the main memory to the CPU could be an influence to the systems’
performance. Also note that electrical current only travels with a quarter of light speed and this ignores
the time the logic blocks need to interpret any kind of data and other delaying hardware factors.

In reality, the architecture of a CPU is at least as important to the performance as the clock speed.
A modern CPU goes to great lengths to optimize the code, even during its execution. For example,
out-of-order execution and predicting the results of future commands to load possibly required data in
advance, are very effective - but complex - strategies. Since the memory latency, i.e., the time it takes
to read a single information from the main memory, is limited by the speed of light, the only way out
was to increase the throughput by data parallelization (SIMD - single instruction, multiple data), i.e.,
applying the same (mathematical/floating point) operation to many data points simultaneously.

The floating point unit (FPU) was originally an optional part of a CPU which executes all commands
related to floating point numbers. It can handle single-, double- and extended precision floating point
numbers, i.e., float, double and long double, because it internally uses an 80-bit extended precision
representation, but cannot employ SIMD principles. Therefore, additional floating point execution units
have been included into CPUs by extensions known as MMX, SSE, SSE2, AVX, . . ., which today can
handle single- and double precision commands. The compiler usually chooses the most efficient execution
unit on its own and the programmer can simply rely on the guarantees given by the (updated) IEEE-754
standard, see [69,81].

But the developer has to be aware of many pitfalls of this system. Optimizations and automatically
generated interim results can have unexpected values, especially if the FPU with its internal extended
precision is involved. It is therefore never a bad investment to learn to handle a debugger and understand
assembly code.

Remark B.1 It is important to recognize that long double precision can only be achieved by employing
the FPU, which can slow down mathematical operations considerably because of the missing SIMD features
Using float and double types in conjunction with the FPU, the results can differ from expectation because
of the extended precision interim results. This is not an academic discussion: simple code examples can
be given where FPU and SSE calculations differ and the results of one of them is simply false.
Also, these types have to be converted into (and out of) the internal extended precision format, which is
not straightforward because of denormalized values and other special cases.
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Example B.2 Using the FPU, dividing the smallest representable double by 2 and immediately multi-
plying by 2 again will result in different results depending on whether the FPU or the SSE logic blocks
are used. In the FPU case, the perfectly representable long double value 2.47 ·10−324 is converted to 0.0
when it is converted back into a double. If the value is not read out between steps, the results can differ:

FPU SSE
----------------------- -----------------------

Smallest representable double: 4.9406564584124654e-324 4.9406564584124654e-324
Divided by 2
-> should be zero: 0.0000000000000000e+00 0.0000000000000000e+00

Divided and multiplied by 2
-> should still be zero: 4.9406564584124654e-324 0.0000000000000000e+00

One can argue for either of these behaviors to be “the right one”. Another big complication of this
subject-matter is that the FPU is used by default on i686 Linux installations and SSE by default on
modern x86_64 Linux installations.
Since the FPU with its decade old design lacks modern SIMD features and the internal extended precision
can produce unintuitive results, one should avoid using the long double data type.

B.1.2 About Compilers

A compiler transforms the source code of a program into machine interpretable instructions. It has to
correctly implement the intent of the programmer, i.e., using the appropriate machine language instruc-
tions for the operations in the (high-level) programming language. High-level mathematical operations,
e.g., adding two vectors, have to be expressed using a large number of machine code instructions. On
the other hand, most high-level programming languages do not contain primitives for many machine
instructions, e.g., for bit rotations:

(x >> n) | (x << 8*sizeof(x)-n) ⇔ ror (Rotate Right) .

This explains why different compilers can produce highly differently behaving code, especially w.r.t. the
runtime.
Letting the compiler do the optimizations does not preclude avoiding inefficient code, but it should
be every programmers’ motivation to write working elegant code and let the compiler do much of the
optimization. An example for this can be found under the topic of “bit twiddling”, see [93], which
eliminates the conditional jump (“IF”) from the often used abs() function,

T abs( T x ) { return (x < 0 ? -x : x); } ,

by implementing it for integer types using the highest bit (which indicates the sign) and XOR:

T abs( T x ) { T tmp = x >> (sizeof(x)*8-1); return (tmp ^ x) - tmp; } .

Here, the right shift operator (>>) must preserve the sign of the represented number, so it will fill up with
0’s for a positive and 1’s for a negative number.
The second version is incomprehensible even to most professional developers, but the machine code
generated from both functions would be identical with most compilers, see [145]. The second version is
generally preferred because conditional jumps can be very costly (w.r.t. execution performance) if the
CPU incorrectly predicted (using a jump predictor in the CPU) which branch the code execution will
take.

Used Compilers

I tested the program with three easily available compilers on Linux: GCC >= 4.6, CLang >= 3.2 and
IntelCC 2013.1.117. Although the CLang project is the youngest, it produced the fastest program and I
used it by default. For instructions on how to use a specific compiler, see the file libwavelets/README.
Although it should not be a problem to employ different compilers, I have not tested this and compilation
might fail because of trivial code language details. In the same manner, compilation on non-Linux systems
might or might not be successful.
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B.2 Code Design Rationale
My software consists of several individual components:

libwavelets The main library. It is structured into several subdirectories:

Accessories As the name suggests, this directory includes supplementary code, for example classes
providing command line option parsing, logging and for measuring execution times.

MathStructures This directory contains mathematical machinery used in the other parts, e.g.,
implementations of the polynomial bases of Section A.3, tensor product and tensor vector
structures and a multi-index class.

Int_Full_Grid Here, the full-grid code, first developed for [122], can be found. This code is used
for the generation of the data used in Section 3.5.1 and serves to corroborate the results of the
adaptive code by comparing results for linear operators. The prefix “Int” stands for “Interval”.

Int_Adaptive The adaptive code can be found in this directory. This includes code for the adaptive
data structures explained in Section B.2.4 and the implementations of all the polynomial
operators. The prefix “Int” stands for “Interval”.

Implementations The “Implementations” directories (also found under Int_Full_Grid and
Int_Adaptive) contain base classes used in the other projects, in particular, the “Action”
classes like Assemble, Solve and EigenValues.

wavdata Contains precomputed data. This includes the values of the bilinear forms of Section 3.5.1, i.e.,
computed data of (3.5.4) for different types of single-scale functions. These are loaded at runtime
when needed or generated on-the-fly, which is not always feasible.

wavtools This contains the program wavdiagram, which generates the wavelet diagrams shown in Sec-
tion A.2 and polynomplot, which plots wavelet vectors, both of them using Gnuplot, PostScript or
TEX/TikZ. Apart from these, there are more than a dozen other tools for single purposes, usually
to apply a specific operation to a wavelet vector in a file. This includes various types of coarsening
(Section 3.3.2) and projecting a vector of indices w.r.t. dual wavelets onto a primal (piecewise
polynomial) base as to plot it.

diagassemble Generates an adaptive version of the diagonal of the stiffness or mass matrices, see
Section 2.2.5. This data can quickly be generated for any number of dimensions, levels and wavelet
types by taking into account the translation of wavelets (2.1.14), so that it is not necessary to
precompute this data. It is often faster to recalculate this than to load it from disk. Nevertheless,
the program can write this data to disk and you can load it into a running program later, e.g., for
testing purposes.

linopassemble Generates the data required to apply bilinear forms as described in Section 3.5.1. For
positive or negative level differences up to 10 levels, the generation of the data is usually possible
within a second. Higher level differences should be loaded from disk; the data is supplied in wavdata.

testproblem This project serves mostly to test individual operators of the library. It is split into an
adaptive and a full-grid part, each corresponding to the code of the library used.

boundaryvalueproblem As the name suggests, this project implements the boundary value problem of
Section 5, in both an adaptive and full-grid form.

schurcomplement This project was used in [122] to compute condition numbers of the Schur comple-
ment of a saddle point problem.

controlproblem This project implements the control problem from [122], currently only in full-grid
form.

When installing the software, one should go through the list of projects in the order given above. The
individual projects usually do not have options to configure the internals; these details are all set at
compile time of the library. After installing the library, it saves its configuration alongside the header
files and CMake loads these when building the other projects.
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B.2.1 Library CMake Options

At compile time, a few options have to be chosen which impose limits at runtime:

FP_TYPE Floating point type for computations. Possible values are “float”, “double”,
“long_double”, “long_double_96”, “long_double_128”. The standard choice
“double” should rarely be changed, performance of “long_double(_96/128)”
types is very bad considering the miniscule possible increase in accuracy, see Sec-
tion B.1.1.

MAX_DIM Maximum spatial dimension n: {1, 2, 3, 4, inf}. A finite choice will result in the
use of a data structure laid out in Section B.3. The choice inf leads to dynamic
storage types like vectors and lists being used, which increases memory usage.

MAX_MONOM Maximum polynomial order d of wavelets: {1, 2, 3}, which stands for piecewise
linear, quadratic and cubic, respectively.

MONOM_BASE Local polynomial basis: Possible choices are “StandardMonomials”, “Normalized-
Monomials” and “ShapeFunctions”, see Section A.3.

The complete documentation can be found within the source directory of the software, can be found in
the files README and INSTALL. Also, documentation about the software including example program runs
can be found in [144].

B.2.2 Tensor Products

The guiding principle of my software is the tensor product. In the code, this comes in two forms: First,
a template class TensorProductContainerT<>, which resembles a tensor product of the form (2.4.1).
The purpose of the class is to emulate a high dimensional tensor product object by only saving a few
elements. To achieve this, it always returns the highest available (w.r.t. to dimension) object when any
dimension beyond its highest is requested. This is particularly useful if a tensor product of only one
object is sought.
Secondly, the template class TensorProductT<> can be used to compute tensor products of the
type (2.4.3). Its factors can be of arbitrary type, as long as a policy describing how to construct the
product is given. For example, the factor type could be std::vector<double>, the product type could
be std::vector<double> again or simply double. In the first case, the standard policy (here for two
vectors) is to compute all permutations

{a0, a1, . . . , an} ⊗ {b0, b1, . . . , bm} 7→ {{a0, b0} , {a1, b0} , . . . , {an, bm}} .

A possible policy when the product type is a single double, could be

{a0, a1, . . . , an} ⊗ {b0, b1, . . . , bm} 7→ {a0b0, a1b0, . . . , anbm} .

The only real requirement to the factor types is a direct way of accessing consecutive elements, for which
a bidirectional const_iterator is required. To save memory, the set of all resulting objects is not
computed beforehand, but during traversing all possible states of the tensor product using the class
TensorProductIteratorT<>. In this way, the memory requirement is constant instead of order O (nm)
for the above example. If a complete list of all tensor products is needed, one simply has to traverse the
range using the tensor product iterator type and save the resulting elements in another storage unit.
Since these techniques simplify a big portion of the complexity when coding tensor products, it was easy
to design the software independent of the dimension. Another point in case is the application of trace
operators explained in Section 3.6, which also requires simultaneous use of wavelet indices of different
dimensions. The dimension is therefore usually specified at runtime, although it is possible to set a
maximum possible value at compile time, see Section B.2.1. The point of this feature is to counter
excessive memory usage for dynamic structures like std::vector and std::list by employing constant
size arrays boost::array instead. Since constraining the dimension is not enough to use constant size
arrays in all cases, e.g., for polynomials of unknown orders, it is possible to set limits on other variables
as well, see Section B.2.1.
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Another design rationale was to prescind the details of the wavelets described in Section A from the
abstract use of operators like the mass matrix or nonlinear operator f(u) := u3. Since there are too many
types of variations of wavelets even for a fixed dimension, only a polymorphic approach using virtual
methods in an abstract base classes could achieve this feature. The downside of increased complexity
of virtual function calls can be alleviated by caching often requested data, e.g., mathematical description
of the polynomial representation. Taking into account a translation like (2.1.9), the caches can be set up
extremely quickly and memory requirements can be kept minimal, making efforts to precompute these
(and save them to disk) unnecessary. The advantage of this design is the ability to choose completely
different wavelet types in any spatial direction, with different boundary conditions, polynomial exactness
or moment conditions.

B.2.3 One-dimensional Wavelet Implementations

The mathematical details of the wavelet types implemented in my software are given in Section A. Here,
I just want to state what information is required to add the implement of another wavelet. General
information of course includes the masks (2.1.10), (2.1.17), and their dual counterparts. If one uses the
standard primal or dual single-scale functions, their implementations could already be available.

Int_Full_Grid

The wavelet masks are used to implement the one-dimensional FWT. In the full-grid setting, the appli-
cation of wavelet vectors is reduced to the application of said operators in the single-scale representation.
Therefore, implementations of matrices like the primal and dual mass matrices, Laplace operator and
others have to programmed. Not all of these functions have to be supplied, but calling unimplemented
ones will lead to a runtime error and program abort. All these algorithms must work on arbitrary random
access iterators and therefore have to be supplied as templates.

Int_Adaptive

Based on the theory explained in Section 3, one needs to supply the details of the tree structure laid
out in Section 3.2.1. Because of the construction of wavelets by translation and dilation (2.1.14), the
details of the tree structure mostly depend on the boundary conditions. As long as a wavelet of the same
boundary construction is already present, the types can simply be adopted. As laid out in the previous
paragraph, the implementations of the single-scale bases can be reused if possible.
More importantly, to use any nonlinear operator, the polynomial description (3.4.3) has to be supplied.
Because of the relation (2.1.18), only the exact representation of the single scale functions must provided,
the wavelets can be constructed by the single scale basis using their masks. Also, the individual (wavelet
or single-scale) functions have to be “categorized”, i.e., it has to be provided for which k ∈ Z (2.1.14)
holds. This is important for the quick computation of the diagonal of the stiffness matrix and other data.
These algorithms recognize the repetitions of functions and use this to compute only really unique values
and general data only once.
One important feature not to be forgotten here is the following: Since my code is based upon tensor prod-
ucts, only one-dimensional wavelet information need to be provided. The multidimensional wavelets,
either isotropic as in Section 2.4.3 or anisotropic as in Section 2.4.2, including all operators or data, are
constructed from the one-dimensional types.

B.2.4 Level-wise Storage in Unordered Containers

There are several data structures in the code using the associative containers explained in Sec-
tion B.3. The prime example is of course an adaptive vector, implemented in the template class
AdaptiveVectorT<>. Other use cases are the adaptive polynomials of Section 3.4.1 and an imple-
mentation of the diagonal preconditioner (2.2.33) of Section 2.2.5. All these classes share the same
storage backend, where the data is stored level-wise, i.e., a separate storage unit is used per level.
This has the advantage that all data on a specific level can be accessed directly, which is the very approach
used in many algorithms in Section 3. Since these containers are important for the implementation, I
discuss some details of these next.
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B.3 Adaptive Storage Containers with Amortized O (1) Random Access

The C++ library Boost provides an unordered associative container unordered_map that associates
unique keys (∈ K) with another value. Another container, called unordered_set, only saves the key
without an associated value type.
Within these containers, the elements are organized into buckets. In principle, keys with the same hash
code (∈ H) are stored in the same bucket. Theoretically, this structure promises (amortized) O (1)
complexity for random accesses. After a deletion or insertion of several elements, a rehashing must be
executed, as to continue to guarantee the constant complexity of access operations. This process increases
the time of the individual function call disproportionately, but it is required so rarely that the average
times is constant.

B.3.1 Hash Functions

To employ the above structure, it is necessary to provide a hash function h : K → H which should
not be collision free, i.e., it should be injective. On the contrary, if every bucket only contained a
single element, then an abundance of buckets would be created and a lot of memory would be wasted,
see Figure B.4. Since the search time inside a bucket is linear w.r.t. the number of elements contained,
the buckets should not be filled up too much either. The range of the hash function thus must not be too
small or too large. Conveniently, the bucket occupancy can be controlled by a load factor m defined as

m :=
#Number of Nodes

#Number of Buckets
. (B.3.1)

The strategy of the unordered container is to generate new buckets as soon as the actual load factor
number grows bigger than a user defined maximum load factor mmax.
In practice, the key type K is usually some kind of (an-)isotropic wavelet index, the hash type H is an
16, 32 or 64-bit unsigned integer. The value type, i.e., the type that is actually stored, is independent of
the other two types, it could be a single value or an n-dimensional polynomial.
A hash function should be fast to evaluate, since any kind of random access into a vector will result in
an execution of the hash function. Only a linear but unordered walkthrough using iterators is done
without evaluation of the hash function.
On the other hand, the hash function should ideally depend on all properties of the wavelet index λ. If
it were only to depend on the spatial location of one dimension, the range might be greatly diminished
because the problem might favor indices close to one side and thus with very low location values k.

Division-Remainder Method

If the maximum number of dimensions is not known or set at compile time, wavelet indices are internally
saved (per dimension) in a container of 1D indices, e.g., a list. A standard algorithm to compute hash
values of input data with more bits than the word size is to successively arrange old and new data into
one and then calculate the remainder modulo a constant value, e.g., a prime number. To compute a
32-bit hash value from several 64-bit variables locations, a step in the algorithm is performed in this
way:

U64 key = locations[ 0 ] % prime;
for( d = 1; d < locations.size(); ++d ) {

key <<= 32;
key += ( locations[ d ] & 0x00000000FFFFFFFF );
key %= prime;

}
return U32( key );

The computed hash value from the last step is shifted to the upper 32 bits of the 64-bit variable and
the lower 32 bits are filled from the current 64 bits of data by clipping off the upper half. The modulo
operation then asserts that the hash value really only uses the lower half of bits. The return value
encompasses then usually only the essential lower 32 bits.
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Specialization for Finite Dimensional Indices

In case the maximum number of dimensions is set to a fixed constant, e.g., n = 2, 3, 4, at compile
time, the whole n-dimensional wavelet index is squeezed into a single 64-bit data structure.

0272831

32555660616263

X-Location : Bits 0-27 X-Function Type : Bit 61

Y-Location : Bits 28-55 Y-Function Type : Bit 62

Isotropic Level : Bits 56-60 Dimension : Bit 63

Figure B.1: Diagram for a Packed Isotropic Wavelet Index for up to two dimensions. The single
bit for dimension encodes a one (bit not set) or two-dimensional (bit is set) value. The 5 bits for the
isotropic level can represent up to 32 different levels. But the 28 location bits only allow levels up to 27,
since the location index k on level J can attain values larger than 2J , but not larger than 2J+1.

0171831

3235365354585960616263

X-Location : Bits 0-17 X-Function Type : Bit 59

Y-Location : Bits 18-35 Y-Function Type : Bit 60

Z-Location : Bits 36-53 Z-Function Type : Bit 61

Isotropic Level : Bits 54-58 Dimension : Bits 62-63

Figure B.2: Diagram for a Packed Isotropic Wavelet Index for up to three dimensions. For three
dimensions to encode properly, two bits are needed, but these can hold four different states. Again, the
5 bits for the isotropic level could represent up to 32 different levels, but the 18 location bits only allow
levels up to J = 17.

This is possible since the dimension, level, location and type information are all integer types and their
maximum values - and thus the required bits - can be controlled. The individual field must be chosen
so that the overall distributions make sense, i.e., ideally that any single bit can actually be used. For
example, the level variable should not allow levels of which the maximum location index could not be
represented, see Figure B.1 and Figure B.2. The layouts given in these figures are purely exemplary and
the fields could be rearranged freely to fit any kind of agenda.

Remark B.3 The implementation of such a bit field is possible with C/C++ language intrinsics; no
explicit bit operations need to be employed by the programmer. This is not only much less error-prone,
the compiler can often do a much better job at optimizing this construction than handwritten code.

The advantage is that, on a modern 64-bit computer, this uses the existing memory very efficiently. But
there are also two main disadvantages:
First, there is an increase in runtime since the memory controller in a computer addresses pages and
bytes, nevertheless, extracting the state of a single bit is still a relatively expensive endeavor. Even on
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modern CPUs, comparatively simple tasks, e.g., finding the highest valued set bit, are not implemented
in hardware. This has the unusual and counter intuitive effect that simple bit operations can take several
clock cycles, but - at least on average - floating point operations can be executed in less than one clock
cycle2.
Second, the small space of just 64 Bits limits the possible ranges of the individual variables with increasing
dimensions, thus requiring adaptations for dimensions n > 4, e.g., by using two 64 Bit data blocks.
Thus, it is not a good strategy to first extract the individual data from such a “packed” embodiment
and then apply the hash function of the previous paragraph. Here, it is much more efficient to simply
interpret the 64-bit data structure as an integer and then apply a single modulo operation and use the
return value as the hash value:

return U32( bitfield % prime );

Using a prime number ensures that the result will depend on all bits up the highest bit set. In contrast,
using a power of 2 will void the influence of any bit higher than the exponent of the 2.

B.3.2 Optimization Strategies

Although the theoretical complexity of the unordered_map container is optimal, the memory management
can be improved upon by changing details of the memory management. There are two possible approaches
for optimizations: First, one can tune the load factor (B.3.1). Increasing the load factor entails
potentially longer lookup times since the search within a bucket is linear w.r.t. the number of nodes
and thus the actual load factor. Thus, the load factor should not be too large, or execution times will
increase. Choosing a very small maximum load factor, e.g., the standard value is 1.0, then for each node
containing the actual user data, a separate bucket is created. The node structure containing the user
data also includes a certain amount of management data structure, enlarging the user data structure by
(usually) 2 octets. The buckets also use memory, at least 1 octet. Thus, an overabundance of buckets,
with a load factor of ∼ 1, will have an impact on memory usage. Secondly, the memory management
used in the background to allocate memory for saving buckets and nodes can be replaced, which I address
in the next paragraph.

Memory Management

Here, I exchange the standard allocator std::allocator to a pool allocator, e.g.,
boost::fast_pool_allocator or boost::pool_allocator, which are optimized for fast allocation and
deallocation of many small objects. A pool allocator, instead of calling new/delete for every object,
allocates large chunks of raw memory and then constructs objects inside these memory pools by keeping
track of the used and unused memory blocks itself. This way, calls to allocate/deallocate are as simple
as returning a memory address and a little book keeping. The book keeping can be very simple, using an
(unordered) linked list, which is the approach of the fast_pool_allocator. This unordered approach
has the drawback that adjacent blocks are not recognized and thus an instruction to allocate a multiple
of the block size needs to be taken from almost empty or new memory blocks, where contiguous blocks
are most easily available. Keeping the list of free blocks in an ordered state is not trivial and especially
requires work every time a block is erased. This extra step is done when using the pool_allocator,
which is advisable to use when several contiguous blocks are requested more often than single blocks.
The simple change to a pool allocator can make insertions and removals from the container an order of
magnitude faster. There are a few pitfalls in the standard implementation of the fast_pool_allocator
together with the unordered_map though, which can be comparatively easily evaded:

• In the standard implementation, all instantiations (objects) of any pool allocator use the same
pool by the use of a singleton (see [3]). This seems to be a good idea, but can become a problem
because of the next bullet points.

• To decrease the amount of chunks to allocate, the standard approach of the pool allocator is to
double the block size each time, thus needing fewer calls to the real new/delete in the later program

2This stems from the massive parallelization taking place inside the CPU by the SIMD extensions explained in Sec-
tion B.1.1.
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1 2 3

4 5 6

Used block about to be freed (deleted).

Linked list of free blocks.

1 2 3

4 5 6

Unordered list
(fast pool allocator)

1 2 3

4 5 6

Ordered list
(pool allocator)

Linked lists of free blocks.

Figure B.3: Fragmentation withing a chunk (with 6 blocks) arises when blocks (here number 2) between
occupied blocks of memory are freed.

execution. This quickly leads to extremely large chunks of memory being allocated, the size of which
will overstretch even the largest RAM installations.

• Memory chunks can only be released if all its individual blocks are unused. The larger the chunks
become, the more unlikely it is that any chunks could ever be released. Thus, in the most extreme
case, although only a linear amount of memory is actually used, an exponential amount of memory
could be allocated in the pools.

To remedy these problems, I use the following approaches:

• An upper limit of the size of the chunks is set. To ease memory management for the operating
system in the background, the size of the chunk should be multiples of the page size, usually 4096
bytes. Because of padding of structures in C++, it suffices to choose the chunk size as 1024 blocks
or even smaller powers of 2.

• Even then, a lot of memory fragmentation could occur over time that only very few memory chunks
would ever be freed. To battle fragmentation even more, the pools are no longer shared between
all instances of the adaptive vectors, but each adaptive data structure uses its own pool. The pool
can be shared internally for several unordered_map/unordered_set instances, but the memory is
completely freed once the adaptive storage object is destroyed.

I call the allocator implemented according to these principles “SharedFastPool”. The effects of the above
mentioned optimization strategies can be seen in the Figures B.4 and B.5. Because of these results, I
choose to use my SharedFastPool allocator with a maximum load factor of m = 3, since it only increases
the runtime marginally compared to m = 1, but uses only slightly more memory than higher values of
the load factor.

Other strategies

Another common idea in this setting is not to save actual values in the indices, e.g., j, but instead the
offset w.r.t. the minimal implementation value, e.g., j0 − 1. For the level variables, this implementation
would free only 2 bits for j0 = 3, but particular care must be taken to make sure that the readout of the
variable is properly adjusted under all circumstances. Moreover, the necessary additions and subtractions
of j0 each time the variable is read or written would impose another runtime slowdown, in addition to
all the bit set operations. For these reasons, I chose not to implement this strategy.
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Figure B.4: Comparison of four different allocators together with unordered_map. Each time, a vector
containing 67 million wavelet indices and double values is constructed 5 consecutive times. The nodes
containing the wavelet coefficients and values comprise roughly 2 GB, which is marked by the blue dashed
line. Any allocated memory exceeding the line is thus used internally for the storage management,
foremost for the buckets. Ideally, the times and memory requirements should be constant over the course
of the program run. The fast_pool_allocator, because of the employed singleton and the internal
fragmentation of the pools, needs new memory over time. Since the allocation size of the pools follows an
exponential law, this leads to sudden and huge increases. The last allocator (SharedFastPool) also uses
one pool for all unordered storage containers holding the data level-wise, but it is completely freed when
the data is deleted. The numbers after the name of the allocator denote the value of the maximum load
factor (B.3.1). The default (m = 1) leads to very quick execution times, but the memory requirements
for the high number of buckets is clearly visible. Also, in the last case (m = 10), only very few buckets
were created, reducing the memory requirements significantly, but the execution time required for the
insertion of all elements increases also significantly.

m = 1 m = 2 m = 3 m = 4 m = 5 m = 10
0

1

2

3

4

0

20

40

60

80

U
se
d
M
em

or
y
(G

B
)

T
im

e
(s
)

Used Memory Runtime Insertion of Indices Runtime Deletion of Indices

Figure B.5: Comparison of the SharedFastPool allocator with different values of the maximum load
factors (B.3.1). The scenario is exactly the same as in Figure B.4, except that the unordered_map
storage containers were “prepared” by informing them how many elements are going to be inserted. This
speeds up insertions, because the required number of buckets can be preallocated instead of adaptively
constructing them during the insertions. Since there was very low deviation for each run, I present the
average numbers of the five runs. The decrease in memory requirements but increase in computing time
for higher values of m is clearly recognizable.
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C Notation
The following notations and definitions should hold anywhere in this document unless explicitly specified
otherwise. I have taken care to avoid using any mathematical symbol more than once for different
purposes if possible.

C.1 General Notation
keywords are emphasized

computer the typewriter font indicates programming language or computer reference

a.e. almost everywhere, i.e., valid everywhere except for a domain of measure zero

w.r.t. with respect to

∧,∨ logical and, logical or

!
<,

!
≤, !

=, . . . the exclamation mark designates statements that have to be proven

H a Hilbert space

X,Y, ... spaces are denoted by capital letters

u, v, w, ... elements of spaces

u,v,w, ... elements of sequence spaces, especially of `2

uJ ,vJ ,wJ , ... elements of finite sequence spaces, especially of `2(∆J)

A,B,C, ... discretized operators in wavelet representation, i.e. matrices of possibly infinite size

‖ · ‖, ‖ · ‖X norms in some Banach space X

(·, ·) , (·, ·)X inner product of a Hilbert space X

| · |, | · |X seminorms

| · | the absolute value function in R; any (equivalent) norm in Rn

〈·, ·〉 , 〈·, ·〉X dual form on the space X, i.e. for u ∈ X, v ∈ X ′ : 〈u, v〉X×X′ := v(u)

〈·, ·〉 scalar product of Rn, i.e. for v, w ∈ Rn : 〈v, w〉 := vTw

Ω an open bounded set in Rn with boundary ∂Ω ⊃ Γ

I; �, �n the interval (0, 1); the open unity cube in Rn, (0, 1)n

x1, . . . , xd Euclidean coordinates in Rn

δ(i,j) Kronecker delta for numbers or multi-indices =

{
0, i 6= j,
1, i = j.

χA characteristic function on some interval/domain A

f |A restriction of a function f : Ω→ R to a subdomain A ⊆ Ω

dµ; ds the Lebesgue measure in Rn; surface measure

. (&) lesser (greater) or equal to except for a positive constant which is independent of any
parameters of the arguments, see (1.1.4)

∼ stands for both . and &, see (1.1.4)

# cardinality of a set
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∇ Gradient of a function u : Rn → R: ∇u :=
(
∂u
∂x1

, . . . , ∂u∂xn

)T

∆ Laplacian of a function u : Rn → R: ∆u :=
∑n
i=1

∂2u
∂x2

1

a mod b modulus: remainder of a divided by b: r := arg mins∈N0
{a = m ∗ b+ s |m ∈ N0}

b·c (d·e) Gauss parentheses: the highest (smallest) non-negative integer smaller (higher) than
or equal to the argument

κ(·), κ2(·) (spectral) condition of an operator, matrix or function set

Al matrix whose rows and columns are reversed, i.e. (Al)i,j := (A)n−i,n−j

(α1, . . . , αn) multi-index:
The n-dimensional multi-index α is a n-tuple of non-negative integers αi with
i = 1, . . . , n. Two multi-indices are equal, if and only if all indices are equal. The
length is denoted by |α| := α1 + · · · + αn. For x ∈ Rn we define the shorthand
expressions:

xα = xα1
1 · · ·xαnn ,

∂α = Dα =
∂|α|

∂xα
=

∂α1

∂xα1
1

· · · ∂
αn

∂xαnn
.

O(·),O (·) ,Θ(·) Landau symbols:
Let n be an integer that tends to infinity and x be a variable that approaches some
limit x∗ ≥ x0. Also let g be a positive function and f another function. Then the
Landau symbols are defined as:
f = O (g) :⇐⇒ |f(x)| ≤ k g(x), for all x0 ≤ x ≤ x∗ and a constant k > 0,
f = O(g) :⇐⇒ |f(x)|/g(x)→ 0, for all x0 ≤ x ≤ x∗,
f = Θ(g) :⇐⇒ f = O (g) ∧ g = O (f) .

[t0, . . . , tn] f divided difference:
For any f ∈ Cn and knot points −∞ < t0 ≤ t1 ≤ . . . ≤ tn−1 ≤ tn < ∞ the divided
differences are recursively defined as

[t0] f = f(t0),

[t0, . . . , tn] f = [t1,...,tn]f−[t0,...,tn−1]f
tn−t0 , tn 6= t0,

[t0, . . . , tn] f = f (n)(t0)/n!, t0 = · · · = tn.

φd(x) cardinal B-Spline:
The cardinal B-spline φd of order d ∈ N is given as

φd(x) := d [0, . . . , d]

(
· − x−

⌊
d

2

⌋)d−1

+

,

where xd+ := max
{

0, xd
}
.

C.2 Special Mathematical Symbols

Section 1

F(·), (̂·) Fourier transform, see (1.2.10)

n spatial dimension

s;m+ σ Sobolev smoothness indices: s ∈ R; m ∈ N0, 0 < σ < 1; see Section 1.2.2

γj general trace operator of order j, see (1.2.26)
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∆h(u)(x),
∆d

h(u)
difference operator (1.3.1), n-dimensional difference operator (1.3.2)

ωd(u, t)p moduli of smoothness, see (1.3.3)

L,A linear partial differential operator of order 2m, see (1.4.2)

N(NJ) generic number of unknowns (on resolution level J), may be different in every section

h, hj discretization error on level j, see (1.4.28)

Nϕ(u)(x) Nemytskij operator, see (1.5.4)

DF Fréchet derivative, see (1.5.6)

Section 2

j0 minimum level in a multiresolution analysis (MRA), see (R)(2.1.6)

J maximum level of resolution in a given context, see Section 2.1.3

d (d̃) primal (dual) order of polynomial exactness, see (P)(2.2.3) and (P̃)(2.2.4)

γ (γ̃) primal (dual) regularity, range of smoothness for norm equivalences, (2.2.7)

Sj (S̃j) closed subspace of primal (dual) Hilbert space, see (2.1.7) and (2.1.45)

Φj (Φ̃j) primal (dual) single-scale basis (also called generators), see (2.1.7) and (2.1.45)

∆j index set for single-scale bases Φj and Φ̃j , see (2.1.7) and (2.1.45)

φj,k (φ̃j,k) primal (dual) single-scale function on level j located at position k ∈ ∆j

Wj (W̃j) primal (dual) detail spaces, see (2.1.13) and (2.1.49)

Ψj (Ψ̃j) primal (dual) complement basis for space Wj (W̃j), see (2.1.13)

∇j index set for complement bases Ψj and Ψ̃j , see (2.1.13)

ψj,k (ψ̃j,k) primal (dual) wavelet function on level j located at position k ∈ ∇j , see (2.1.14)

Ψ(J) (Ψ̃(J)) primal (dual) wavelet basis up to level J , see (2.1.29)

S (S̃) primal (dual) multiresolution analysis(MRA) of H (H′), see Definition 2.2

Mj (M̃j) primal (dual) two-level transformation matrix from level j to j + 1, see (2.1.19)

Mj,0 (M̃j,0) left part of Mj(M̃j); matrix of dimensions #∆j+1 ×#∆j , see (2.1.11)

Mj,1 (M̃j,1) right part of Mj(M̃j); matrix of dimensions #∆j+1 ×#∇j , see (2.1.18)

Pj (P̃j) primal (dual) projector onto the space Φj (Φ̃j), see (2.1.46) and (2.1.47)

TJ (T̃J) primal (dual) fast wavelet transform, see (2.1.32) and (2.1.63)

Gj inverse of Mj , see (2.1.21)

Gj,0 upper part of Gj ; matrix of dimensions #∆j ×#∆j+1, see (2.1.25)

Gj,1 lower part of Gj ; matrix of dimensions #∇j ×#∆j+1, see (2.1.25)

I infinite index set, see (2.1.41)

Ψ (Ψ̃) primal (dual) wavelets associated to the index set I, see (2.1.41)
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ΨA (Ψ̃A) primal (dual) wavelets associated to the index set A, see (2.1.41)

MH (M̃H′) primal (dual) mass matrices using the inner product (·, ·) of space H (H′), see
(2.1.60) and (2.1.61)

D±s any diagonal matrix that can be used for shifting wavelet coefficient vectors in the
Sobolev scale by ±s, see (2.2.13) and (2.2.14)

Ψs (Ψ̃s) scaled wavelet bases constituting Riesz bases for H+s ((H+s)′), see Corollary 2.23

D±s1 diagonal matrix consisting of powers of 2, see (2.2.15)

cX , CX lower and upper constants used in norm equivalences, see (2.2.17)

D±sa,J inverse diagonal of stiffness matrix, see (2.2.33)

RH (RH) (wavelet discretized) Riesz operator for space H ∈ {L2, H
s, . . .}, see (2.2.34)

D̂ diagonal matrix used in the construction of Riesz operator R̂Hs , see (2.2.38)

R̂Hs (R̂Hs) specifically constructed (wavelet discretized) Riesz operator for Hs, see (2.2.43)

˚̂
RHs

Riesz operator R̂Hs normalized w.r.t. constant functions, see (2.2.54)

R̃Hs (
˚̃
RHs) wavelet discretized (normalized) interpolating Riesz operator for Hs, see (2.2.52)

Cj basis transformation working on the boundary functions only, see (2.3.7)

M′
j,0; M′

j,1 refinement matrices incorporating basis transformations, see (2.3.8) and (2.3.9)

T′J fast wavelet transform incorporating basis transformations, see (2.3.10)

A (AJ) stiffness matrix (discretized on level J), see (2.3.15)

O orthogonal basis transformation, see (2.3.16)

Ψ′j0−1 transformed coarsest level wavelet basis, see (2.3.16)

D±s{O,X} special preconditioner for basis transformed wavelet bases, see (2.3.23)

Φ(�,j),Ψ(�,J), .. tensor product analogons to their respective 1D objects, see Section 2.4

ψani
λ (x);

Ψani
�,(J)

anisotropic wavelet, see (2.4.9) and Section 2.4.2

En (E?n) set of isotropic types (without type e = 0), see Section 2.4.3

ψiso
λ (x);

Ψiso
�,(J)

isotropic wavelet, see (2.4.19) and Section 2.4.3

ψiso
j,k,e(x); ∇j,e type dependent one-dimensional wavelets and index sets, see (2.4.16) and (2.4.17)

Miso
j (Miso

j,e ) isotropic refinement matrices (of type e ∈ En), see (2.4.23)

λ := (j,k, e) isotropic wavelet index in short notation; |λ| := j for n = 1
|λ| := max {j1, . . . , jn} for n > 1, see Section 2.4.3

Ψs
J wavelet basis basis of all levels up to J , see (2.5.1)

I(J) finite subset of I created by eliminating all indices with | · | > J , see (2.5.2)
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Section 3

T (Tj) tree of wavelet indices (on level j), see Definition 3.8 and (3.4.5)

µ ≺ λ µ is a descendant of λ according to the tree structure, see (3.2.1)

C(λ); Π(λ) children and parents of a node λ, see Definition 3.10

N0(T ); L(T ) roots and leaves of a tree, see (3.2.2) and (3.2.3)

S(v); supp(v) support of the vector v, see Section 3.2.2

σN (·) (σtree
N (·)) best (tree) N -term approximation, see (3.2.13) and (3.2.15)

As (Astree) (tree) approximation classes, see (3.2.16)

T ?; T ?(η,v) η-best tree of vector v, see (3.3.3)

T ′(η, C,v) (η, C)-near-best tree of vector v, see (3.3.4)

e(λ) `2-value of the branch at index λ ∈ T ⊂ I, see (3.3.5)

E(v, T ′) error of restricting v to a subtree T ′, see (3.3.6)

ẽ(λ) modified error functional of index λ, see (3.3.7)

Bj(v) the j-th binary bin of coefficients in v, see (3.3.11)

∆̂j tree prediction layer j, see (3.3.17)

Λλ(c j) influence set of depth c j ≥ 0, see (3.3.18)

Λ1,2,3
λ (c) approximations to the influence sets, see (3.3.24), (3.3.25) and (3.3.27)

Λλ(c) influence set at λ in multiple dimensions, see (3.3.29)

P(Ω) partition of a domain Ω ⊂ Rn, see Definition 3.38

D(Dj) dyadic partitioning of Ω = [0, 1]n (on level j), see (3.4.1)

C(�) set of children of � ∈ D, see (3.4.2)

Dλ support cubes of wavelet λ, see (3.4.4)

S(T ); D(T ) support and dyadic support of T , see (3.4.7) and (3.4.8)

Mn
d possible exponential indices of n-dimensional monomials up to order d, see (3.4.10)

Gj ,GT linear mapping wavelet coefficients to polynomial coefficients, see (3.4.14) and (3.4.18)

PT local polynomial representation on the leaves of T , see (3.4.20)

pt�(x) tensor product polynomial, see (3.4.24)

Υλ(T )
(Υλ(T ))

(lower level) Dependency set, see (3.5.2) and (3.5.5)

Υ
a

λ(T ) Lower level Dependency set w.r.t. bilinear form a(·, ·) (3.5.6)

Θ(X,Y )
(Θ(X,Y ))

set of all wavelets λ ∈ X (not) intersecting with wavelets µ ∈ Y , see (3.5.7) and (3.5.8)

a0(·, ·) mass matrix bilinear form, see (3.5.9)

a1(·, ·) Laplace matrix bilinear form, see (3.5.15)

as(·, ·) bilinear form of Riesz operator R̃Hs (2.2.52), see (3.5.17)

az(·, ·) square weighted bilinear form, see (3.5.19)

b(v, q̃) trace operator bilinear form, see (3.6.1)

B (B′) (adjoint) trace operator, see (3.6.1) and (3.6.2)
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R(u) residual of an equation, see (4.1.1)

un iteration variable in step n of a solution algorithm, see (4.1.2)

u? exact solution of a problem, see (4.1.3)

e(un) exact error of iterand w.r.t. exact solution u?, see (4.1.3)

ρ reduction factor of a convergent iteration, see (4.1.4)

ρn+1,n(ρ̃n+1,n) (residual) reduction factor of steps n and n+ 1, see (4.1.5) and (4.1.6)

s? best approximation rate, see (4.1.15)

Section 5

Z(Z ′) primal (dual) product Hilbert space, see (5.1.1)

LA (LA) linear saddle point operator (in wavelet discretization), see (5.1.11) (see (5.2.19))

LF (LF) nonlinear saddle point operator (in wavelet discretization), see (5.1.26) (see
(5.2.18))

S (S) Schur complement (in wavelet discretization), see (5.1.16)

S̃(B,F, f)(·) Reduced equation operator, see (5.1.32)

aΩ(·, ·) PDE bilinear form on domain Ω, see (5.2.2)

a�(·, ·) PDE bilinear form aΩ(·, ·) extended on fictitious domain � ⊃ Ω, see (5.2.6)

fΩ f� Right hand side f on specific domains Ω and fictitious domain � ⊃ Ω, see (5.2.5)

n = n(x) outward normal at any point x ∈ ∂Ω

Γi,k Trace space in dimension 1 ≤ i ≤ n onto the faces at k ∈ {0, 1}, see (5.2.13)

γW (γE) Trace operator onto the west (east) face of the two dimensional square � = (0, 1)2, see
(5.2.14) (TraceEast)

Ã Operator of the normalized equation to Au = f , see (5.3.1)

µi Defect of the saddle point problem, see (5.3.5)

κ(t) Mapping from [0, 1) to the boundary domain Γ ⊂ �

C.3 Spaces

N the natural numbers = {1, 2, . . .}

N0 the natural numbers including zero = {0, 1, 2, . . .}

Z integers = {. . . ,−2,−1, 0, 1, 2, . . .}

Q the rational numbers

R,Rn the real numbers, the n-dimensional Euclidean Vector space

R+,Rn+ the positive real numbers, {(x1, . . . , xn) |xi > 0 for 1 ≤ i ≤ n}
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`2 sequence space of all sequences for which the `2-norm is finite, i.e.
let c ∈ RN := {x = (xi)i∈N : xi ∈ R for i ∈ N}, then

c ∈ `2 ⇐⇒ ‖c‖`2 :=

(∑

k∈R
|ck|2

)1/2

<∞.

L(X; Y ) linear operators from X to Y , see (1.1.1)

X ′;L(X; R) dual space of space X, see (1.1.7)

Πr polynomials of order ≤ r − 1, i.e., r degrees of freedom, see (2.2.2)

C.4 Function Spaces

Ck(Ω) = {φ : Ω→ R | all derivatives ∂αφ of order |α|≤k are continuous in Ω}

Ck(Ω̄) =
{
φ ∈ Ck(Ω) | all derivatives ∂αφ of order |α|≤k have continuous extensions to Ω̄

}

Ck0 (Ω) =
{
φ ∈ Ck(Ω) | suppφ ⊂⊂ Ω, i.e. φ has compact support fully contained in Ω

}

Ck,1(Ω) Lipschitz continuous functions =
{
f ∈ Ck(Ω) | |Dsf(x)−Dsf(y)| ≤ L|x− y| ∀αmulti-index, |s| ≤ k, 0 < L <∞

}

Ck,α(Ω) Hölder continuous functions of order 0 < α < 1 =
{
f ∈ Ck(Ω) | sup

x 6=y∈Ω

|Dsf(x)−Dsf(y)|
|x− y|α <∞ ∀αmulti-index, |s| ≤ k

}

C∞(Ω) space of infinitely differentiable functions on Ω with values in R =
⋂
k∈N

{
Ck(Ω)

}

D(Ω), C∞0 (Ω) space of infinitely differentiable functions with values in R and with compact sup-
port fully contained in Ω

D′(Ω) dual space of D(Ω) = space of distributions on Ω

L2(Ω) space (equivalence class) of all real valued square Lebesgue-integrable functions on
the domain Ω

Hm(Ω) Definition 1.9: Sobolev space of order m ∈ N =
{
φ ∈ L2(Ω) | ∂φ

∂xi
∈ L2(Ω), . . . , Dαφ ∈ L2(Ω) ∀αmulti-index, |α| ≤ m

}

Hs(Ω) Sobolev space of fractional order s on Ω, see Definition 1.11

Hm
0 (Ω) {φ ∈ Hm(Ω) |Dαφ = 0 on ∂Ω, |α| ≤ m− 1}, see Definition 1.16

H−s(Ω) Dual Space of Hs
0(Ω), see Definition 1.24

H1
0,Γ(Ω) Space of test functions with zero values on Γ, see (5.2.3)

H(r1,r2)
mix (I1 ⊗ I2) Sobolev space with dominating mixed derivative, see Definition 1.31

Bαq (Lp(Ω)) Besov space on Ω, see Definition 1.33
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