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1. Zusammenfassung 
 

Beim Laufen terrestrischer Tiere müssen die Bewegungen der Laufbeine kontinuierlich koordiniert werden um 

eine erfolgreiche Fortbewegung zu gewährleisten. Laufen ist ein zyklischer Prozess, dabei besteht ein einzelner 

Schritt aus einer Stemmphase, die für den Antrieb des Körpers sorgt, und aus einer Schwingphase, die das Bein zur 

nächsten Stemmphasenposition führt. Sensorische Signale, die ihren Ursprung in den sich in den Beinen 

befindenden sensorischen Organen haben, modulieren die rhythmische Aktivität der Motoneurone und damit die 

rhythmische Aktivität der antagonistischen Muskelpaare im Bein. Die Koordination der einzelnen Gelenke und der 

Aktivität der entsprechenden Muskelpaare eines Beins wird als intrasegmentale Koordination bezeichnet. Für das 

Laufen ist nicht nur die Koordination eines Beines essentiell, sondern auch die Koordination der 

gegenüberliegenden, und ipsilateralen Beine. Letzteres wird als intersegmentale Koordination bezeichnet und ist 

ebenfalls stark von sensorischen Einflüssen abhängig.  

In dieser Arbeit stelle ich drei Publikationen (Grabowska et al., 2012; Tóth et al., 2013; Grabowska et al., in rev.) 

und die Ergebnisse einer experimentellen Arbeit vor, die sich mit verschiedenen Aspekten der intra- und 

intersegmentalen Koordination befassen. Ein sehr gut untersuchter Modellorganismus für Fortbewegung ist die 

Stabheuschrecke Carausius morosus. An der Stabheuschrecke habe ich die intersegementale Koordination der Beine 

beim Laufen einerseits durch Videoanalyse des Laufverhaltens und andererseits durch elektrophysiologische 

Experimente zu intersegmentalen Verbindungen untersucht. Des Weiteren wurden experimentellen Ergebnisse zu 

inter- und intrasegmentalen Verbindungen in der Stabheuschrecke in mathematischen Modellen zusammengefasst, 

um das Laufverhalten zu beschreiben und um Hypothesen für bislang unbekannte neuronale Kontrollprozessen 

aufzustellen. 

Als erstes wird eine Studie vorgestellt, die sich mit dem Laufverhalten der Stabheuschrecke befasst (Grabowska et 

al., 2012). Hierfür wurden Laufsequenzen von adulten Stabheuschrecken gefilmt, die auf Untergründen mit 

unterschiedlichen Steigungen geradeaus gelaufen sind. Abhängig von der Steigung, benutzen die Tiere 

unterschiedliche Koordinationsmuster der Laufbeinbewegung . Schließlich wurden Koordinationsmuster von 

Stabheuschrecken untersucht, denen wir Vorder-, Mittel- oder Hinterbeine amputiert hatten. In Abhängigkeit vom 

amputierten Beinpaar erlaubten die Koordinationsmuster der verbliebenen Beine funktionelles Laufen oder nicht. 

Daraus konnten wir schließen, dass afferente Informationen von Sinnesorganen der von laufenden Vorder-, Mittel- 

und Hinterbeine unterschiedlich zur Bildung von koordiniertem Laufen beitragen.  

Der zweite Teil beschäftigt sich mit einem neuromechanischen Modell, das das Anhalten und Starten eines Beines 

der Stabheuschrecke während des Laufens beschreibt (Tóth et al., 2013). Ein bereits bestehendes Modell für ein 

intrasegmentales neuronales Netzwerk des einzelnen Beins der Stabheuschrecke wurde um ein Model des 

Skelettmuskelsystems der Stabheuschrecke erweitert. Der Fokus lag auf der Ansteuerung der Aktivität von 

schnellen und langsamen Muskelfasern verschiedener Muskelpaare eines Stabheuschreckenbeins beim Starten und 

Anhalten während des Laufens. Für die Kopplung der einzelnen Beingelenke und der zugehörigen Muskulatur in 

diesem Modell wurden experimentell gewonnen Einflüsse sensorischer Signale verwendet, die Position und 

Winkelgeschwindigkeit der einzelnen Beingelenke kodieren. Die aus diesen Simulationen gewonnenen Ergebnisse, 
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wie die zeitliche Komponente aktivierter Muskeln beim Anhalten und Starten von Stabheuschrecken, sowie der 

Zeitpunkt wann ein Schritt innerhalb eines Schrittzyklus beendet oder begonnen werden kann, zeigten große 

Ähnlichkeit mit den experimentellen Daten aus der Stabheuschrecke. Daher kann dieses Modell als physiologisch 

relevant angesehen werden und führt zu fundierten Hypothesen über die neuronalen Ansteuerungsprozesse der 

Beinmuskeln beim Starten und Stoppen von laufenden Stabheuschrecken. 

Im dritten Teil dieser Arbeit wurde das zuvor genannte 3-CPG-MN Modell für die laufende Stabheuschrecke 

erweitert, um zu testen, ob es als fundamentaler Baustein für die Simulation von Fortbewegung von Tieren mit acht 

Laufbeinen, wie zum Beispiel bei Krebstieren, dienen kann (Grabowska et al., in rev.). Dazu wurde das 3-CPG-MN 

Netzwerk um ein weiteres segmentales Modul erweitert und es wurden zwei unterschiedliche 

Netzwerkarchitekturen des erweiterten Modelles getestet. Der allgemeine Aufbau der einzelnen Module des 3-CPG-

MN Modells wurde dabei nicht verändert. Die Simulation bestimmten Laufverhaltens (Koordinationsmuster, 

Schrittfrequenz, Übergänge) von Krebstieren ist abhängig von dem Zeitpunkt eintreffender intersegmentaler 

erregender sensorischer Signale innerhalb einer Zyklusperiode des Protraktor/Retraktor-System des beeinflussten 

Segments. Mit Rücksicht auf eine Netzwerkarchitektur des 3-CPG-MN Modells, bei der eine kaudal-rostrale 

intersegmentale Verbindung jedes zweite Segment verbindet, konnte das 4-CPG-MN Modell alle Arten des 

Laufverhaltens von vorwärtslaufenden Krabben und Flusskrebsen reproduzieren. Dieses Modell unterstreicht die 

wichtige Rolle der zeitlichen Komponente der erregenden, sensorischen intersegmentalen Verbindungen in Tieren, 

die sich mit acht Beinen fortbewegen und schlägt mögliche neuronale intersegmentale Verbindungen vor.  

Zum Schluss werden experimentelle Daten vorgestellt, die zeigen, dass der zentrale Mustergenerator des 

Protraktor/Retraktor Systems (Thorax-Coxa Gelenk) im Prothorakalganglion im Rhythmus des laufenden 

ipsilateralen Hinterbeins beeinflusst wird. Diese ipsilaterale Verbindung wurde für das 3-CPG-MN-Modell von 

Daun-Gruhn und Tóth (2011) für die laufende Stabheuschrecke angenommen. Die Experimente haben gezeigt, dass 

ein durch Pilocarpin erzeugter Rhythmus der Protraktor- und Retraktor-Motoneurone im Prothorakalganglion an 

den Rhythmus eines vorwärts- und rückwärst laufenden, ipsilaterlalen Hinterbeins gekoppelt werden konnte. Mit 

diesen Experimenten ergeben sich für die Stabheuschrecke zum ersten Mal Hinweise für eine weit reichende 

intersegmentale Verbindung, die modulierende Signale von einem laufenden Hinterbein zu prothorakalen CPGs 

überträgt.  
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2. Abstract  
 

Movements of the walking legs in terrestrial animals have to be coordinated continuously in order to produce 

successful locomotion. Walking is a cyclic process: A single step consists of a stance phase and a swing phase. In the 

stance phase, the leg muscles provide propulsion of the animal’s body. During the swing phase, the leg is positioned 

to the starting position of the next stance phase. Sensory input, arising from sensory organs in the legs, modulates 

the rhythmic motoneuronal activity and therefore the rhythmic activity of the antagonistic muscles pairs in a leg. 

The coordination of leg joints, and thus of the respective muscle pairs, is called intra-segmental coordination. For 

coordinated walking not only the proper coordination of one leg is important, but also the coordination of 

contralateral and ipsilateral legs. The latter is called inter-segmental coordination and also strongly depends on 

sensory feedback.  

In this thesis I present three publications (Grabowska et al., 2012; Toth et al., 2013; Grabowska et al., in rev.) and 

results of an experimental study focusing on different aspects of intra- and inter-segmental coordination. Starting 

with experimental data on the stick insect Carausius morosus, a well studied model organism for locomotion, I 

analyzed inter-segmental coordination of legs during walking behavior of stick insects by video analysis. I also 

performed electrophysiological experiments that provide insight into the inter-segmental connections of different 

thoracic segments. Furthermore, experimental results were summarized in mathematical models in order to 

reproduce stick insect locomotion and to provide new hypotheses about so far unknown neuronal controlling 

processes. 

First, a study of the walking behavior of the stick insect is introduced (Grabowska et al., 2012). For this purpose, 

walking sequences of adult animals, walking straight on surfaces with increasing and decreasing slopes, were 

recorded. Depending on the slope, the animals used different coordination patterns. Subsequent, walking patterns 

of animals with amputated front, hind or middle legs were analyzed. It became evident that the resulting 

coordination patterns were regular or maladapted, depending on the amputated leg pairs. We therefore assumed 

that afferent information from walking front, middle, and hind legs contribute differently to coordination. 

The second part presents a neuromechanical model that describes starting and stopping of a stick insect leg during 

walking (Tóth et al., 2013). An existing model of the intra-segmental neuronal network of the stick insect leg was 

extended by a model of its musculo-skeletal system. The focus of the model was on the neuronal control of slow and 

fast muscle fiber activity of the three proximal leg muscle groups at start and stop of a leg within a stepping cycle. 

Using the effects of sensory signals that encode position and velocity of the leg joints like the temporal components 

of activated muscles during start and stop, observed in experiments, as well as the timing of starting and stopping 

processes within a step cycle, the simulation results were in good agreement with the observed data of the stick 

insect. Therefore, this model can be regarded as physiologically relevant and leads to hypotheses about the 

neuronal control of the musculo-skeletal system that can reveal details of stop and starting in the walking animals.  

In the third part of this thesis the above mentioned 3-CPG-MN network model, which has been developed based on 

stick insect data, was extended to serve as a basic module for eight-legged locomotion in walking crustaceans 
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(Grabowska et al., in rev.). For this purpose, the existing 3-CPG-MN network model was extended by an additional 

segmental module. The basic properties of the 3-CPG-MN network modules remained unchanged. By testing two 

different network topologies of the new 4-CPG-MN network model, specific walking behavior (coordination 

patterns, stepping frequency, and transitions) of crustaceans could be replicated by only changing the timing of the 

inter-segmental excitatory sensory input on the influenced segment. Considering the topology of the 3-CPG-MN 

network model, namely a caudal-rostral inter-segmental connection connecting every second CPG, the 4-CPG-MN 

network model was able to reproduce all kinds of walking behavior of forward walking crabs and crayfish. This 

network stresses the importance of the timing of excitatory signals that are provided by inter-segmental pathways 

in animals with eight walking legs and four thoracic segments, and proposes possible inter-segmental sensory 

pathways.  

Finally, results of experimental data are introduced showing that the rhythm of protractor/retractor central 

pattern generating networks (thorax-coxa joint) in the prothoracic ganglion can be influenced by a stepping 

ipsilateral hind leg of the stick insect. This inter-segmental pathway was hypothesized in the 3-CPG-MN network 

model of Daun-Gruhn and Tóth (2011) for stick insect walking. The experiments showed that a pilocarpine-induced 

rhythm in the prothoracic protractor and retractor motoneurons could be entrained by an intact forward or 

backward walking hind leg. In stick insects, this is the evidence for a long range ipsilateral inter-segmental 

connection that mediates sensory information from a stepping hind leg to the prothoracic CPGs. 
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3. Introduction 
 

All animals have to use some form of locomotion in order to navigate through the environment. 

Depending on the animal, and the environment the animal lives in, this can be swimming, flying, crawling 

or walking. All these forms of locomotion have in common that they emerge from interactions of 

activities of the nervous system, the sense organs, and the corresponding muscles (Orlowsky et al., 

1999). In particular, rhythm generating networks are responsible for rhythmic behaviors of 

motoneurons (MNs), which induce rhythmic muscular activity. Sensory organs in the locomotor organs 

detect changes in position, load, and velocity and encode this information into sensory signals. These 

sensory signals can be inhibitory or excitatory and modulate the motor network, which consists of 

rhythm generating networks and motoneurons, in time and magnitude. An example of locomotion is 

walking in legged animals. In walking, a step has a stance (retraction) and a swing (protraction) phase, 

and this is valid for all types of walking. During stance phase proper propulsion of the animal’s body 

takes place, during swing phase the leg is moved to a position where stance phase can start. This 

stepping behavior of a single leg is possible due to the activities of antagonistic muscle pairs, and, in turn, 

the activities of the corresponding motoneurons innervating these muscles (Orlowsky et al., 1999). The 

rhythmic activity of the motoneuron pools is controlled by central pattern generators (CPGs) (crickets: 

Grillner, 2003; lamprey: Wallen and Williams, 1984; crayfish swimmerets: Skinner and Mulloney, 1998; 

Manduca crawling: Johnston and Levine, 2002; turtle: Stein, 2008; stick insect: Büschges, 2005). CPGs are 

neural networks situated in the central nervous systems of vertebrates and invertebrates. They are 

capable of generating rhythmic motoneuron activity, and therefore rhythmic muscle activity, in the 

absence of phasic sensory feedback (Büschges, 2005; Grillner, 2003; Pearson, 2000; Calabrese, 1995; 

Grillner, 2006; Harris-Warrick, 1993; Marder and Calabrese, 1996; Marder and Bucher, 2001; Marder et 

al., 2007; Orlowsky et al., 1999; Selverston and Moulins, 1985). Nevertheless, sensory feedback crucially 

affects the function of CPG networks, since sensory input to a CPG can modify the timing and magnitude 

of the CPG’s output (Büschges, 2005; Grillner 2003; Pearson, 2004). Therefore, sensory feedback 

contributes to the interaction of different muscle groups during a proper step of a single leg, thus shaping 

the intra-segmental coordination (Büschges et. al, 2008; Akay et al., 2001; Bässler and Büschges, 1998; 

Akay et al., 2004). It also plays a role in the inter-segmental coordination, i.e. the coordination between 

different legs (Cruse, 1990; Büschges et al., 1995; Dürr et al., 2004; Ludwar et al., 2005; Borgmann et al., 

2007, 2009). 

 

Walking animals typically use a high variety of gaits and coordination patterns and are able to use 

different ones within one walking sequence. In vertebrates, a switch between the different gaits happens 
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due to an increase or decrease in walking speed. Thus, different gaits (walk, trot, or gallop, for instance) 

correlate with different speeds within one species (Alexander, 1989). Invertebrates, such as insects, 

spiders, and crustaceans, can also navigate through different environments using different coordination 

patterns and different speeds. Although, the different coordination patterns can also be associated with 

different walking speeds, the transitions between those are, in contrast to vertebrates (Hoyt and Taylor, 

1981), continuous (Cruse et al., 2009; Wendler, 1964; Wendler, 1966). Concerning the stick insect and 

also other insects (Burns, 1973; Graham, 1972; Hughes, 1952; Wendler, 1964, 1966; Delcomyn, 1971; 

Graham, 1985), three regular coordination patterns are known. Slow walking insects prefer a 

metachronal or wave coordination pattern for locomotion, where one leg of the animal is in protraction 

phase after another in a metachronal order. For fast locomotion, the animals use a tripod coordination 

pattern, where three legs are in swing phase at the same time (Bender et al., 2011; Cruse et al., 2009; 

Graham, 1985). Within this range of walking speeds, there is also an intermediate coordination pattern 

(Hughes, 1952; Wilson, 1966; Graham, 1985; Delcomyn, 1981; Ritzmann and Büschges, 2007). This is the 

so-called tetrapod coordination pattern, where only one leg swings together with a leg diagonally on the 

other side, so that at least four legs at any given time are in their retraction phase (Cruse et al., 2009; 

Graham, 1985). Previous studies mostly analysed walking on a plane surface (Graham, 1972). In nature, 

however, locomotion of insects strongly depends on the environmental conditions, such as the surface 

structure, slope and also the orientation of the body, especially during climbing (Spirito and Mushrush, 

1979; Delcomyn, 1981; Graham, 1985; Duch and P�lüger, 1995; Dürr, 2005; Gruhn et al., 2009; Bender et 

al., 2011). Moreover, previous studies showed a dependency of the developmental stages of the animals 

on the generation of coordination patterns. For example, it was shown that juvenile stick insects 

preferred walking in a strictly regular tripod coordination pattern when walking at higher speeds and in 

a tetrapod coordination pattern when walking more slowly. Adult stick insects, in contrast, exclusively 

walked in a tetrapod coordination pattern (Graham, 1972). In this study only regular coordination 

patterns were taken into account, although the author mentioned incidental occurrences of errors in the 

normal metachronal sequences. These errors were described as additional protractions of the front legs 

during normal locomotion. It is known that stick insects use their front legs to explore the environment 

and they are therefore considered for being mainly used as sensors (Cruse, 1976). Nevertheless, they 

also seem to contribute to regular locomotion. 

In addition to the behavioral studies, insects are often used as model organisms for the analysis of 

walking behavior on the neuronal level because of their easily accessible nervous systems and their 

easily observable walking behavior. The neuronal control of walking in insects was studied extensively 

over the last decades, investigating both the intra- and inter-segmental coordination. In spite of this, 

there are still a lot of unanswered questions related to the generation of walking patterns, and especially 

to the role of inter-segmental coordination in this process. Among other insects (cockroach, cricket), the 

Indian stick insect Carausius morosus is a very suitable model organism to investigate locomotion. The 

stick insect uses its six segmented legs for walking and climbing. The leg movements of a single leg are 
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controlled by antagonistic muscle pairs. The protractor coxae and retractor coxae muscles of the thorax-

coxa (ThC) joint are responsible for forward and backward movements. The levator trochanteris and 

depressor trochanteris muscles of the coxa-trochanter (CTr) joint carry out the upward and downward 

movements of the femur of the leg. Finally, the flexor tibiae and extensor tibiae muscles of the femur-tibia 

(FTi) joint are responsible for flexion and extension of the leg (Graham and Epstein, 1985). During a 

single step cycle, consisting of swing and stance phase, the activities of these muscle pairs are in well-

defined phase relations to each other (Epstein and Graham, 1983; Graham and Epstein, 1985; Büschges 

and Gruhn, 2008). From experimental studies, it is known that these specific phase relations are due to 

sensory information, arising at sensory organs, situated in the stick insect’s leg (Büschges et. al, 2008). 

The sensory organs, femoral and trochanteral campaniform sensilla, provide information to the different 

CPGs about load and force (Bässler, 1977; Akay et al., 2001; Bässler and Büschges, 1998; Akay et al., 

2004). The information about the position of the leg relative to the stick insect’s body is provided by hair 

plates and hair rows (Wendler, 1964; Bässler, 1977). The movement and angular velocity of the leg are 

encoded by the femoral chordotonal organ (Bässler, 1967). 

 

The sensory information deriving from these organs does not only provide proper coordination of a 

single leg, but also the coordination of adjacent legs in order to ensure coordinated walking (Cruse, 1990; 

Büschges et al., 1995; Dürr et al., 2004; Ludwar et al., 2005; Borgmann et al., 2007, 2009, 2011). Previous 

studies of inter-segmental coordination in stick insects have shown that a single stepping front leg 

induces rhythmic in-phase protractor and retractor motoneuron activity in the second thoracic ganglion, 

the mesothoracic ganglion (Borgmann et al., 2009). It also results in a general tonic increase in 

protractor and retractor motoneuronal activity of the last thoracic ganglion, the metathoracic ganglion 

(Ludwar et al., 2005; Borgmann et al., 2007). Furthermore, in a semi-intact preparation, where all legs 

except ipsilateral front and middle legs were amputated, the presence of a single stepping middle leg 

results in a general increase in tonic motoneuron activity in the first thoracic ganglion, the prothoracic 

ganglion, and the metathoracic ganglion. Experiments, where a front and a middle leg were both 

stepping, showed rhythmic protractor and retractor motoneuron activity in the metathoracic ganglion. 

This activity was in phase with front leg steps (Borgmann et al., 2009). Concerning the influence of the 

posterior segments on the anterior segments, the results show that in two thirds of the experiments 

backward stepping in a single hind leg induces a general increase in protractor and retractor 

motoneuron activity and in one third of the experiments rhythmic activity in the mesothoracic ganglion. 

The influence of a forward or backward stepping hind leg on the prothoracic ganglion remains unknown 

(Borgmann et al., 2009). 
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In the case of locomotion, many experimental approaches were made in the past to describe walking 

motor outputs of vertebrate and invertebrate model animals (reviews: Büschges et al., 2008; Büschges, 

2005; Dürr et al., 2004; Orlovsky et al., 1999). Biological phenomena, such as neuronal basis of inter- and 

intra-segmental coordination or the neuromechanical network of the stick insect, for instance, can be 

described by mathematical models in order to learn about the functionality of the system, or about the 

relevance of specific parameters. In general, mathematical models aim to answer questions, and 

formulate hypotheses about the function of the system under investigation. 

Existing mathematical models can describe different aspects of locomotion, such as the biomechanical 

properties in walking and running in cockroaches (Holmes et al., 2006), the centrally coupled oscillators 

in locomotion (Ijspeert et al., 2007), the behavioral analysis of coordination (Cruse, 1990), and the role of 

sensory signals contributing to the transition from stance to swing phase (Eckeberg et al., 2004). 

Especially in animals that have a decentralized walking system and that mainly walk very slowly, as it is 

the case in stick insects, for instance, the sensory feedback that is provided through sensory organs 

situated in the insect’s leg plays a crucial role (Cruse, 1990; Büschges et al., 1995; Akay et al., 2001, 2004; 

Ludwar et al., 2004; Borgmann et al., 2007, 2009, 2011). In addition, it was shown that the stick insect 

does not only have one controlling CPG for each leg as it was proposed in models for the cockroach 

(Holmes et al., 2006), but one controlling CPG for each leg joint (Büschges et al., 1995). The CPGs of the 

single joints of one leg are modulated by sensory feedback in order to produce a coordinated single leg 

step (Bässler and Büschges, 1998). 

For the purpose of investigating the aforementioned, mathematical models based on experimental data 

on inter- and intra-segmental influences in the stick insect were constructed that not only could 

reproduce single leg stepping by connecting the three CPGs of the three stick insect leg joints via sensory 

pathways, but also the protractor-retractor CPGs (3-CPG-MN network model) of the three adjacent legs 

(Daun et al., 2009; Daun-Gruhn, 2011; Daun-Gruhn and Tóth, 2011). The model networks consisted of 

Hodgkin-Huxley-type neuron models (Hodgkin and Huxley, 1952). This neuron model comprises 

biophysical properties of neurons that contribute to motor activity during walking. Using a network 

model that comprises the leg joint CPGs and by connecting these by means of specific sensory pathways, 

which mediate sensory information about the position, movements, and load of the leg, coordinated 

stepping of the single leg could be reproduced (Daun-Gruhn, 2011). A second network model, the inter-

segmental 3-CPG-MN network model, is capable of simulating all regular coordination patterns, observed 

in stick insects, namely the tripod, tetrapod, and wave coordination patterns. This is achieved solely by 

adjusting parameters like the phase shift between the (periodic) sensory signal, gating the excitatory 

inter-segmental pathway and the (periodic) activity of the affected protractor-retractor CPG module or 

the tonic excitatory drive deriving from higher centers to increase or decrease the oscillation frequency 

of the CPGs (Daun-Gruhn and Tóth, 2011). Moreover, they could simulate continuous transitions 

between the regular coordination patterns (Daun-Gruhn and Tóth, 2011). In a different model, they 



12 
 

propose a mechanism that contributes to forward and backward movements (Tóth et al., 2012) and 

simulate curve walking in the stick insect (Knops et al., 2012). These models implement the knowledge of 

intra- and inter-segmental coordination and are based on experimental results on the stick insect. 

However, in order to describe certain walking behaviors, such as the transition between coordination 

patterns in the stick insect, additional hypothetical connections had to be added to complete the inter-

segmental 3-CPG-MN network model. One of these hypothetical connections that proved to be crucial for 

the simulation of stick insect coordination patterns, and for stable and continuous transitions between 

the tetrapod and tripod coordination pattern, as it is observed in behavioral walking studies of the stick 

insect, was a sensory pathway providing excitation arising from the third segment (metathoracic 

protractor-retractor CPG) at a specific phase within the oscillation period of the first segment 

(prothoracic protractor-retractor CPG) (Daun-Gruhn and Tóth, 2011; Graham, 1972). In this case, the 

mathematical model leads to new hypotheses regarding the neuronal network of the animal, which can 

now be tested in experiments. 

As mentioned previously, coordinated walking emerges from an interaction of neural networks (CPGs), 

sensory feedback, and the activity of antagonistic muscle groups in the animal’s legs. Therefore, some 

basic actions of coordination, such as stopping, starting, and leg movements, cannot solely be described 

by the network properties controlling the rhythmic MN activity of theses muscles. In these basic actions 

of walking it is also important to consider the specific properties of the musculo-skeletal system. 

It is known that there are two muscle groups that are responsible for the performance of walking, fast 

movements, and posture control. These are the slow and fast muscle fibers. The two types show different 

contraction kinetics and histochemical properties (Bässler et al., 1996; Bässler and Stein, 1996; 

Godlewska, 2012). Godlweska (2012) showed that the presence of fast and slow muscle fibres can not 

only be found in the extensor tibiae muscles of the stick insect (Bässler et al., 1996; Bässler and Stein, 

1996), but also in other muscle groups within a stick insect's leg (Godlewska, 2012). One can therefore 

assume an analogous function of those muscles. 

To construct a mathematical model, describing the neuromuscular properties of the stick insect's leg, and 

the sensory feedback at start and stop of this leg would be appropriate to understand the neuronal 

control of the musculo-skeletal system during different walking behaviors. 

 

Various arthropod species show high variability in the number of legs, from six legs in insects up to 750 

legs in millipedes. Nevertheless, these animals show close similarities in their neuroanatomy and 

muscular systems. Hence, it is reasonable to assume similarities in the inter-segmental coordination in 

these animals. 
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It seems challenging to design a network model that can serve as a basis for the simulation of walking 

behavior in these animals with different numbers of legs. 

The previously mentioned network model of Daun-Gruhn and Tóth (2011) can reproduce stick insect 

locomotion and is based on experimental data of the stick insect. It might, thus, be a good candidate for 

the aforementioned basic module. Consequently, it could be used to first construct a model that 

replicates eight-legged locomotion of crustaceans. 

The leg muscles of crustaceans are known to have approximately the same innervations as those of stick 

insects (Elson, 1966). Due to their greater number of legs, namely eight walking legs, crustaceans are 

capable of using a larger variety of coordination patterns than insects (Wilson, 1966; Graham, 1985; 

Ritzmann and Büschges, 2007; Cruse et al., 2009; Barnes, 1975; Parrack, 1964; Ross, 2013). 

 

In analogy to stick insects, sensory feedback plays an important role in intra- and inter-segmental 

coordination of forward walking crayfish and crabs (Cruse, 1990; Sillar, Clarac and Bush, 1987; Cruse 

and Müller, 1986; Chasserat and Clarac, 1983; Clarac and Barnes, 1985; Bowermann, 1977; Clarac, 1982; 

Jamon and Clarac, 1995). Sensory feedback from proprioceptors, such as the thoraco-coxal muscle 

receptor organ (TCMRO), a single receptor at the base of each limb in crayfish and crabs, affects the 

timing as well as the intensity of the rhythmic output of two or more thoracic ganglia (Sillar, Clarac and 

Bush, 1987). Other sensory organs that contribute to the modulation of rhythmic output and that are 

comparable to chordotonal organs of stick insects are the cuticular stress detectors (CSDs). These are 

stimulated by deformations of the cuticle and provide information about loading of the legs during 

walking (Clarac, Wales and Laverack, 1971; Klärner and Barth, 1986; Klärner and Barnes, 1986). Also, 

contralateral coupling, as in the stick insect, is known to be weaker than the ipsilateral coupling of the 

segments (Jamon and Clarac 1995). 

Walking speed is very important in the development of different coordination patterns. In crabs, stick 

insects, and other insects an increase in walking speed can lead to a phase shift of the CPG activities and, 

therefore, to different coordination patterns. Also, the ratio of the duration of protraction and retraction 

of one leg during a step, changes from 1:3 in the metachronal wave pattern to nearly 1:1 in the 

alternating tetrapod coordination pattern (Barnes, 1974; Müller and Cruse, 1991; Ross, 2013). 

The resemblance of the neuronal functions and anatomy of the thoracic ganglia and the legs make 

forward walking crustaceans an appropriate model organism, on which generalizations of the 3-CPG-MN 

network by Daun-Gruhn and Tóth (2011) can be investigated with regard to their suitability, to describe 

basic and more general modes of arthropod locomotion. 
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In the present thesis, I will discuss works that investigate important aspects of intra- and inter-segmental 

coordination, using three different levels of investigation: behavioral, electrophysiological, and 

theoretical. 

 

The first publication (Grabowska et al., 2012) shows, what effects, changes in the walking environment 

and leg amputations have on the locomotor output of the adult stick insect Carausius morosus. In this 

study, video analysis was used to analyse the walking behavior of intact stick insects and ones with 

amputated front, middle, or hind legs, while they were walking on different slopes or were climbing. This 

paper stresses the role of the front legs, which can be used, either, as part of the coordinated regular 

locomotor behavior, or as tactile sense organs. In addition, it shows that amputation of the middle legs 

leads to loss of coordinated walking.  

 

The second publication (Tóth et al., 2013), presents a neuro-mechanical model that focuses on the 

physiological role of fast and slow muscle fibres of the three antagonistic muscle groups of a stick insect’s 

leg at stop and start of stepping. This model was used for study putative neuronal and muscular 

processes that are not accessible in experiments. This includes sensory signals that encode position and 

velocity of the leg joints as observed in experiments. The simulation results are in good agreement with 

observed data from the stick insect. This model can thus be regarded as physiologically relevant. It has 

led to testable hypotheses that point to details of starting and stopping processes during walking and the 

interaction between the neuromuscular networks of a single leg. 

 

In the third publication (Grabowska et al. 2014, under review), I investigated the suitability of the 3-CPG-

MN network model of Daun-Gruhn and Tóth (2011), which was developed based on stick insect data, to 

serve as a basic module for eight-legged locomotion in walking crustaceans. By using two different 

topologies, I could predict specific walking behavior of crustaceans only by changing the timing of the 

excitatory sensory signals. Basic structural properties of the 3-CPG-MN network model were preserved. 

In addition, I showed that the output of a 4-CPG-MN network model variant with fully cyclical connection 

from the last to the first CPG, as it is the case in the 3-CPG-MN model, is not stable, and its usefulness is 

limited, when simulating crustacean locomotion. However, viewing the topology of the 3-CPG-MN 

network model as one, in which every second CPG is connected caudal-rostrally, a model extension could 

be constructed which could reproduce all coordination patterns observed in forward walking crabs and 

crayfish. This network predicts the importance of the excitatory inter-segmental pathways that can now 

be tested in experiments. 
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The last chapter (Grabowska et al., in prep) validates the hypothetical connection from the metathoracic 

to the prothoracic ganglion in the 3-CPG-MN network model by Daun-Gruhn and Tóth (2011) in the stick 

insect Carausius morosus. It shows that in a semi-intact preparation an intact forward or backward 

walking hind leg is able to entrain a pilocarpine-induced rhythm in the prothoracic protractor and 

retractor motoneurons. This is the first time that evidence for a long range inter-segmental connection, 

spanning across two ganglia, is shown in the stick insect. In addition, it stresses the role of mathematical 

models that may lead to new hypotheses concerning the structure and functionality of a system. The 

hypotheses can then be tested in experiments as in the presented case, where I established the existence 

of an investigated inter-segmental influence from the metathoracic CPGs to the prothoracic CPGs. 
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A network model comprising 4 segmental, interconnected ganglia, 
and its application to simulate multi-legged locomotion in 
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Cologne, Germany 

 

ABSTRACT 

Inter-segmental coordination is crucial for the locomotion of animals. Arthropods show high variability 

of leg numbers, from 6 in insects up to 750 legs in millipedes. Despite this fact, the anatomical and 

functional organization of their nervous systems show basic similarities. The main similarities are the 

segmental organization, and the way the function of the segmental units is coordinated. 

We set out to construct a model that could describe locomotion (walking) in animals with more than 6 

legs, as well as in 6-legged animals (insects). To this end, we extended a network model by Daun-Gruhn 

and Tóth (2011). This model describes inter-segmental coordination of the ipsilateral legs in the stick 

insect during walking. Including an additional segment (local network) into the original model, we could 

simulate coordination patterns that occur in animals walking on eight legs (e.g. crayfish). We could 

improve the model by modifying its original cyclic connection topology. In all model variants, the phase 

relations between the afferent segmental excitatory sensory signals and the oscillatory activity of the 

segmental networks played a crucial role. Our results stress the importance of this sensory input on the 

generation of different stable coordination patterns. The simulations confirmed that using the modified 

connection topology, the flexibility of the model behavior increased, meaning that changing a single 

phase parameter, i.e. gating properties of just one afferent sensory signal was sufficient to reproduce all 

coordination patterns seen in the experiments. 

 

 

Keywords 
Central pattern generator; inter-segmental coordination; network model; locomotion; sensory feedback; 

arthropods. 
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INTRODUCTION 

 The main goal of this work has been to construct a model that is capable of mimicking coordination 

patterns of walking observed in crustaceans. Since the model to be introduced here is based on one that simulates 

coordination patterns of walking in the stick insect, we shall provide first a survey of analogies in the function of the 

nervous systems of crustaceans and stick insects. These analogies will justify our approach in the model 

construction. 

As in other arthropods, the cyclic movements of walking legs of decapods consist of a power stroke (retraction 

/stance phase) and a return stroke (protraction/swing phase) (Wilson 1966; Cruse 1990 (review)). The legs are 

moved by antagonistic muscle pairs, which, in turn, are activated by their individual motoneuron pools. The 

anatomical properties of the antagonistic muscle pairs and their activities are comparable to those of stick insects 

(Elson 1996). In turn, in each thoracic ganglion, the motoneurons (MN) receive direct or indirect input from central 

oscillators (Sillar, Clarac and Bush 1987). Like in stick insects, sensory influences play a crucial role in intra- and 

inter-leg coordination (stick insect: Büschges 2005; Clarac et al. 2000; Pearson 2000; Zill et al. 2004; Hess and 

Büschges 1999; Akay et al. 2001; 2004; 2007; Zill et al. 2009; Cruse 1990; Dürr et al. 2004; Borgmann et al. 2007; 

2009; crustaceans: Cruse 1990; Sillar, Clarac and Bush 1987; Cruse and Müller 1986; Chasserat and Clarac 1983; 

Clarac and Barnes 1985; Bowermann 1977; Clarac 1982; Jamon and Clarac 1995). Proprioceptive feedback can 

modulate the centrally generated rhythm in the walking animal. For example, the thoraco-coxal muscle receptor 

organ (TCMRO), which is a single receptor at the base of each limb of crayfish and crabs, can affect the timing as well 

as the intensity of rhythmic output of two or more thoracic ganglia (Sillar, Clarac and Bush 1987). Other important 

sensory organs that are comparable to those of stick insects are the cuticular stress detectors (CSDs), chordotonal 

organs, which are stimulated by deformations of the cuticle. The sensory input is therefore produced by the loading 

of the legs during walking (Clarac, Wales and Laverack 1971; Klärner and Barth 1986; Klärner and Barnes 1986). 

The next important aspect is the mechanical support of the body during walking. Loading of the legs plays an 

important role during walking since the animal’s weight has to be distributed properly over the legs in order to 

maintain stability of the animal during walking (Cruse 1990; Sillar et al.1986). Without sensory feedback the legs 

would all swing nearly at the same time. As in the stick insect, the ipsilateral coupling between the hemiganglia of 

crustaceans is stronger than the contralateral coupling (Jamon and Clarac 1995). As a result, crabs and crayfish, 

when walking on a treadweel, are capable of using different coordination patterns on each side of the body (Müller 

and Cruse 1985). Until now, the observed coordination patterns could be divided in two major groups: a 

metachronal wave and an “alternating tetrapod pattern” (Jamon and Clarac 1995; Müller and Cruse, 1986; Barnes 

1974; Parrack 1964; Ross and Belanger 2013). Similar coordination patterns could be found in other arthropods, 

such as stick insects and locusta although these animals use six legs for walking (Wilson 1966; Graham 1985; 

Grabowska et al. 2012; Ritzmann and Büschges 2007; Cruse et al. 2009). Speed of walking plays a crucial role in the 

development of different coordination patterns. In crabs, as in stick insects, an increase in walking speed can lead to 

a phase shift of the CPG activities and therefore to different coordination patterns. Also the ratio between the lengths 

of protraction and retraction changes from 1:3 in the metachronal wave pattern to nearly 1:1 in the alternating 

tetrapod coordination pattern (Barnes 1974; Müller and Cruse 1991; Ross and Belanger 2013). 
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In arthropods, like in insects and crustaceans, the muscles have approximately the same innervations, and these 

animals are capable of using many different coordination patterns and also behave differently during walking, 

depending on the number of the legs. It is therefore a challenging task to design a network model that simulates the 

walking behaviour of these different animals. In order to elucidate how locomotor patterns are generated at the 

neuronal level in the stick insect, Daun-Gruhn and Tóth (2011) constructed a neuronal network model using 

experimental data from the stick insect (Cruse 1990; Borgmann et al. 2007; 2009; Büschges 2005; Akay et al. 2001; 

2004; 2007; Ludwar et al. 2005). Each segment of the model network consists of a central pattern generator (CPG), 

a protractor and a retractor motoneuron (MN) and two inhibitory interneurons (IINs). The CPG is connected via the 

IINs to the MNs (Daun-Gruhn 2011; Daun-Gruhn and Tóth 2011). The segmental modules of the network are 

connected via synaptic pathways that are gated by sensory signals changing the phase relations of the CPG 

activities on the ipsilateral side of the stick insect (Daun-Gruhn and Tóth 2011). Other simulation studies on stick 

insect walking also support the idea that sensory feedback from other legs and the same leg serve as gating 

mechanisms for inter-joint and inter-segmental coordination (Ekeberg et al. 2004; von Twickel et al. 2011). The 

close analogies in the organization and function of the nervous system of stick insects and crustaceans, just 

described, sufficiently justify our approach of taking the network model by Daun-Gruhn and Tóth (2011) as the 

starting point for modelling 8-legged locomotion. We extended this basic model as described in later parts of this 

paper. The extended model produced simulated coordination patterns that showed close similarity to their 

biological counterparts. 

 

 

  



48 
 

MATERIALS AND METHODS  

 

The inter-segmental network model 

 The inter-segmental network model used in the present work is an extension of the model by Daun-Gruhn 

and Tóth (2011), which we henceforth will also call the 3-CPG-MN model. The extended model is composed of four 

segmental protractor/retractor neuronal networks (Fig. 1a, b). In each segmental network, two nonspiking 

Hodgkin-Huxley-type neurons that are connected by mutually inhibitory synapses, form the CPG, a half-center 

oscillator (Hodgkin and Huxley 1952; Daun-Gruhn 2011; Daun-Gruhn and Tóth 2011). (The four oscillators of this 

type are: C1-C2, C3-C4, C5-C6, and C7-C8 in Fig. 1a). 

The oscillatory properties of the CPGs can be changed by the descending excitatory input currents Iapp whose 

strengths are set by the conductances gapp1 and gapp2 (Daun-Gruhn 2011; Daun-Gruhn and Tóth 2011). For a 

detailed description of the model and the analysis of its behaviour, see Daun et al. (2009). In the segmental 

networks, the values of the gapps were set such that the CPG neurons were tonically active without mutual inhibition 

(Daun-Gruhn 2011; Grillner et al. 2005). The CPG neurons excite the IINs (IIN1-IIN8), which in turn inhibit the 

corresponding MNs (MN1-MN8). All MNs receive the same permanent central activation (gMN) (Büschges 1998; 

Büschges 2004; Westmark et al. 2009). The four CPG-MN units are coupled cyclically with each other in the 

anterior-posterior direction (Fig. 1a, b). 

Sensory signals from the cyclically preceding leg gate the inter-segmental excitatory pathway, and sensory signals 

from the same leg gate the inhibitory pathway between two neighbouring CPGs. Data on the gating effect of sensory 

signals on inter-segmental connectivity were mainly gathered from experiments done in the stick insect but the 

sensory signals appear to be similar to those in crustaceans (Akay et al. 2004; 2007; Cruse 1985; Borgmann et al. 

2007; 2009; Büschges 2005; Clarac 1982; Cruse and Müler 1985). In the model, excitation and inhibition between 

two neighbouring CPGs is gated by abstract sensory signals via the sensory INs (SINFL, SINML1, SINML2, SINHL, 

pink for excitation and turquoise for inhibition). They represent a combination of ground contact and load signals 

of the leg, which are lumped together in the model. Thus they mainly originate in the levator-depressor neuro-

muscular system of a leg and, hence are themselves periodic. Moreover, they act at a certain phase within the 

period of the protractor-retractor CPG on the excitatory and the inhibitory descending pathways between two 

neighbouring CPGs. Accordingly, let ϕ denote the phase shift between the (periodic) sensory signal gating the 

aforementioned excitatory inter-segmental pathway and the (periodic) activity of the affected protractor-retractor 

CPG. Similarly, let ψ denote the phase shift between the sensory signal that gates the inhibitory inter-segmental 

pathway and the activity of the affected CPG. The value of this phase shift for each inhibitory inter-segmental 

connection is kept constant throughout the whole modelling study. 

However, we shall change or vary the value of ϕ at the different segments in order to obtain different coordination 

patterns that were described to occur in crayfish and forward walking crabs. To specify exactly which segments are 

meant, ϕ will be subscripted as ϕij to indicate that the inter-segmental connection from segment j to segment i is 

being considered. Changing ϕ thus means that the excitatory influence of the preceding leg on the protractor-

retractor system of the following leg was delayed or advanced. As a consequence, this leads to a prolongation or 

reduction of the retractor activity. 
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In the course of this work, we shall only display the activities of the protractor CPG neurons (C2, C4, C6 and C8). 

Graphs of the corresponding retractor activities will not be shown, since these activities strongly overlap. It is thus 

easier to identify the various (simulated) coordination patterns by just examining the protractor activities. 

 

 
 

 

 

Fig. 1 a: The 4-CPG-MN network (modified after Daun-

Gruhn and Tóth (2011)). The network consists of four 

CPGs, each of them has two neurons (C1-C8) that inhibit 

each other via inhibitory synapses (connections with filled 

circles). The CPG neurons excite (empty triangles) other, 

nonspiking interneurons IIN1-IIN8. These interneurons 

inhibit the protractor motoneurons MN1(P), MN3(P), 

MN5(P), and MN7(P) and the retractor motoneurons 

MN2(R), MN4(R), MN6(R), and MN8(R). The CPG neurons 

(C1,C3,C5,C7) receive gated inhibitory signals from the 

same segment conveyed by the sensory interneurons 

(SINFL, SINML1, SINML2, SINHL in turquoise), and gated 

excitatory input from the cyclically preceding segment by 

the excitatory interneurons (SINHL, SINFL, SINML1, 

SINML2 in pink). In this model, the last CPG is connected 

by the path (green) to the first CPG. The CPG neurons 

receive excitatory synaptic input from higher centers (gapp1 

and gapp2 are the conductances of the excitatory currents). 

The inhibitory interneurons IIN1-IIN8 are inhibited by 

(central) pathways of strengths gd1 to gd8. The motoneurons 

MN1-MN8 receive uniform permanent excitation (of 

strength gMN). b: “Skeleton form” of the 4-CPG-MN network 

topology 1. The filled black circles represent the artificial 

synapses. The black arrows represent the local inhibitory 

input, gating the inhibitory synapses. The empty triangles 

represent the excitatory synapses. The excitation derives 

from the cyclically preceding CPG. 
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Classification of coordination patterns 

 

The classification of the coordination patterns was adopted from, and modified, after Barnes (1975), Parrack 

(1964), and Ross and Belanger (2013), and is summarized in Table 1. The numbers in Table 1 stand for the single 

legs, starting with 4, the last walking leg, and ending with 1, the first walking leg. The chelipeds of crabs and 

crayfish are not counted as legs since, in most cases they don’t contribute to walking. The same applies to the 

swimmeret system in crayfish. The horizontal brackets in Table 1 denote synchronous activity of the enclosed legs. 

The coordination patterns observed in these animals include Coordination pattern 1 (yellow): a wave coordination 

pattern with different orders of leg protraction; Coordination pattern 2 (green): a coordination pattern that is 

characterized by synchronous protractions of two ipsilateral legs followed by alternating protractions of the 

remaining two legs; and Coordination pattern 3 (blue): a diagonal pattern, also called “alternating tetrapod step 

pattern” (Barnes 1975) in which two legs are simultaneously in protraction phase followed by the remaining two 

legs that also move in synchrony.  

 

 

 

 

Table 1 Classes of coordination patterns (modified after Barnes 

1974; Parrack 1964; Ross 2013). On the right hand side, the table 

shows coordination patterns 1, 2, and 3 and the different variants of 

these coordination patterns observed in crayfish and crabs during 

forward walking. The left hand side shows the leg numbers 4-1 

(hind leg to front leg), and the colour code shown will be used in the 

subsequent figures. The brackets indicate the simultaneous 

protractor activities of the individual legs. Coordination pattern 1 

(yellow) is a pattern where one leg after another is in protraction 

phase. Coordination pattern 2 (green) is characterized by 

simultaneous protractions of two legs followed by alternating 

protractions of the two remaining legs. Coordination pattern 3 (blue) 

is a diagonal pattern, also called “alternating tetrapod step pattern” 

(Barnes 1974) where two pairs of ipsilateral legs alternately 

protract. The darker the colour is on the right hand side, the more 

frequently this coordination pattern is observed. 
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In our model, protracting legs were considered to be synchronously active if the overlap of their swing phases was 

more than 50%. Examples for different crayfish coordination footfall patterns are shown in Fig. 2, adapted from 

Cruse and Müller (1986). This figure shows the response of the walking crayfish to perturbations of a single leg 

during its stance phase. In the following, we shall apply the same method of identification of coordination patterns 

to our simulation results. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 2 Coordination of ipsilateral walking legs of a crayfish (modified after Cruse and Müller (1986)). In both panels, the black bars represent 

the protraction phase. The numbers 1-4 represent the single walking legs, starting with the front leg down to the hind leg. The thin red line 

indicates the timing of the perturbation, a: shortened retraction phase, and b: prolonged retraction phase. In both cases, the crayfish returned 

to a stable coordination pattern after a few stepping periods of adjustment. 
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RESULTS 

Simulating different coordination patterns by varying the timing of the sensory 

signal that gates the inter-segmental excitatory synaptic pathway 

 In order to be able to simulate 8-legged locomotion, we extended the 3-CPG-MN network, which could 

reproduce coordination patterns of the stick insect walking, by adding a “second middle leg” to the network. The 

CPG of this new segment had the same properties as the existing ones. In the 4-CPG-MN network model, like in the 

3-CPG-MN one, the most posterior CPG cyclically connects to the most anterior CPG by both excitatory and 

inhibitory synaptic pathways (Fig. 1a, b). In this extended model, too, the sensory signals encoding for ground 

contact and load gate the excitatory inter-segmental pathways from the cyclically preceding leg to the subsequent 

one, especially the synaptic pathway from CPG4 to CPG1 (Fig. 1a, b). We called the topology of this model topology 

1. This distinction was necessary since we later introduced a network model with a different topology. 

The timing of the gating by the sensory signal, as mentioned earlier (cf. Materials and Methods), is expressed by the 

value of the phase variable ϕ. Thus ϕ can take values between 0 and 1, and is a periodic variable. We wanted to find 

values of ϕ for which coordination patterns 1, 2 and 3 could be produced by the extended (4-CPG-MN) network 

model (Table 1). For this to happen, we systematically varied ϕ and examined the simulated activities of the 

segmental CPGs. More precisely, we varied ϕij locally at each segment i with an increment of 0.1 between 0.02 and 1 

and determined whether an experimentally established coordination pattern was produced by the model. We 

called a coordination pattern 'stable' if it was periodic. As an example of this procedure, Fig. 3 displays a colour-

coded plot representing coordination patterns that could be generated by the model when varying ϕ14 (vertical axis 

in Fig. 3) and ϕ21 (horizontal axis in Fig 3). The other ϕ values were fixed, i.e. ϕ32=0.82 and ϕ43=0.62. 

 

 

 
 

 

 

Fig. 3 System output when two segmental ϕ, as 

indicated, are varied. ɸ32 = 0.82 and ɸ43 =0.62 

were fixed. The y-axis shows the values of ϕ14 

and the x-axis shows the values ϕ21. The colours 

in the diagram represent the different 

coordination patterns in Table 1. The red area 

represents a stable, but experimentally not 

observed coordination patterns (observed in 1% 

of the test cases). The grey areas represent 

failures (see text). The proportion of failures was 

about 30% of the test cases. 51% of the test 

cases resulted in variants of coordination pattern 

2 (green). Nevertheless these variants were not 

the one that was most frequently observed in the 

animals. Variants of coordination pattern 1 

(yellow) occurred in 9% of the test cases. But 

here, too, the resulting coordination patterns 1 

were not the most frequently occurring ones in 

the experiments. In 9% of the test cases, we 

observed a variant of coordination pattern 3 

(blue). 
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A metachronal wave coordination pattern (coordination pattern 1, yellow in Fig. 3), a wave-like activity that 

propagates through all segments in the posterior-anterior direction, also shown in Fig. 4a for ϕ14=0.07 and 

ϕ21=0.32 arose in 9% of the test cases. Fig. 4b displays a variant of coordination pattern 2 obtained with the model 

when ϕ14 was 0.07 and ϕ21=0.02. In this case, CPG1 (red) and CPG4 (purple) are in the protraction phase 

simultaneously followed by CPG3 (blue) and CPG2 (green). This pattern occurred in 51% of the test cases (green, 

Fig. 3). The panels on the left of Fig. 4 show the electrical activity of the four protractor CPG neurons for each of the 

three coordination patterns. The panels on the right are the footfall patterns of all four ipsilateral legs. 4 denotes 

the hind leg, 3 and 2 the middle legs, and 1 the front leg. The coloured bars represent the protraction (swing) 

phases of the CPGs. 

 

 
 

 

 

 

 

It was surprising that although it was possible to obtain all different coordination patterns 1, 2, and 3 by varying a 

single ϕ, only (e.g. first row in the (ϕ14, ϕ21)-matrix of Fig. 3), a high proportion of value combinations of ϕij resulted 

in failure (30% of the test cases, grey areas in Fig. 3). This high proportion of failures was also representative when 

other combinations of ϕ were varied. A failure was defined as the state when one of the two CPG neurons remained 

in steady state. In other words, the activity of the protractor or retractor neuron, or both of any of the four CPGs 

became or remained tonically active or was at rest. The other CPGs could still continue exhibiting rhythmic 

Fig. 4 Examples of coordination patterns 1, 2 and 3. a: coordination pattern 1. The time courses of the electrical activity of all four 

protractor neurons are shown on the left hand side. On the right hand side, the successive protractor phases (colour bars) of the 4 legs 

are displayed in the different coordination patterns (4-1 are 4 right legs, 4 being the hind leg etc.) b: coordination pattern 2. In the 

simulations, the overlap between the activities of CPG4 and CPG1 is not perfect. c: coordination pattern 3. As in b, the simulated 

activities of CPG4 and CPG1 as well as CPG3 and CPG2 show a slightly imperfect overlap as in the animal. 
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(periodic) activity. Another form of failure could be that at least two CPGs oscillated independently of each other. 

This can happen due to an increase of the synaptic drive to both CPG cells and therefore lead to different oscillation 

periods of the four CPGs. 

 

We also encountered activities that satisfied the aforementioned criterion for stable coordination patterns but had 

not been observed in experiments. We called such coordination patterns undefined. Fig. 3 shows that such 

coordination patterns could be observed in about 1% of the test cases (red area in Fig. 3). 

With the value combinations of ϕij that are shown in Fig. 3, it was not possible to reproduce the variant of 

coordination pattern 3 that had been most frequently observed in walking crayfish and crabs. The light blue areas 

(9% of the test cases) represent a rather rare variant of coordination pattern 3. To obtain the former (most 

frequent) variant of coordination pattern 3, all four ϕ values had to be changed when starting from coordination 

pattern 1. An example of such a coordination pattern is displayed in Fig. 4c. Here, two pairs of CPGs, CPG4 (purple) 

and CPG1 (red), and CPG2 (green) and CPG3 (blue) are alternately in protraction phase, i.e. each pair of CPGs 

oscillates synchronously. This happened at the following values of ϕ: ϕ14 = 0.05, ϕ21 = 0.64, ϕ32 = 0.04 and ϕ43 = 

0.25. The gap between protraction activities of the CPG pairs (blue and green and purple and red) is due to the 

longer duration of the corresponding retractor activities of these CPGs. In all cases shown, the ratio of the lengths of 

the protractor and retractor activity was 1:3, i.e. the retractor being active in ¾ of the oscillatory period and the 

protractor in the remaining ¼. 

 

Transitions between the different coordination patterns 

 As insects, crustaceans can also exhibit several coordination patterns within one walking sequence by 

switching between them (Ross and Belanger 2013; Barnes 1974). Also short perturbations of a leg in the swing or 

stance phase can change the coordination pattern with a transition time of only a few periods until the new 

coordination pattern sets in (Cruse and Müller 1986). While this always works in (intact) animals, there is no 

guarantee that the transition would also be successful in the simulations. We therefore called a transition 'stable' 

(successful) if, as a result, a stable coordination pattern (of any kind) emerged after a transition time of at most four 

periods of CPG oscillation prior to the transition. Otherwise, it was called 'unstable' or a 'failed transition'. The 

choice of four oscillatory periods is in accordance with experimental observations (Cruse and Müller 1986). 

Indeed, we found in the simulations that the success of a transition from one coordination pattern to another 

crucially depended on when the transition was triggered within the actual oscillatory period of the CPGs. Thus we 

sought to find the phase values (the instants of time within one oscillatory period) at which the transition remained 

stable. The simulation results showed that if the transition was triggered in the last third of the retraction phase of 

the CPG oscillation then the transition proved to be stable for all coordination patterns. Starting the transition in 

phases different from the above, for example in the protractor phase of the oscillatory period, led to unstable 

transitions (data not shown). This was a general result of testing the individual coordination patterns. We now 

present the related simulation results. For triggering of the transition between the coordination patterns 1 and 2, 

we increased ϕ14 =0.17 by 0.7. The transition started with a slight increase of the protractor phase of CPG1, 

followed by a strong extension of the protractor phase of the activity of CPG2. At the end of transition, synchrony 

between the activities of CPG2 and CPG4 ensued. Fig. 5a shows this process. Fig. 5b displays the transition in the 

opposite direction, from coordination pattern 2 to coordination pattern 1. Here, the transition was also triggered in 
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the last third of the retraction phase of the activity of CPG1. The transition could be effected by simply switching 

back ϕ14 to its former value of 0.17. Thus an increase or decrease of the original value of ϕ14 sufficed to bring about 

a stable transition between the coordination patterns 1 and 2 in both directions. The transition from coordination 

pattern 2 to 1 lasted four periods, two periods longer than the transition from coordination pattern 1 to 2. In both 

cases, a prolongation of the protraction phase of the activity of CPG1 and CPG2 could be observed. In Fig. 5b, the 

protraction phase of the activity of CPG1 did not coincide with the protraction phase of that of CPG2, but ended 

together with it. 

With the extended network model introduced above, transition from coordination pattern 2 to a frequent variant of 

coordination pattern 3, or from coordination pattern 1 to a frequently occurring variant of coordination pattern 3 

was not possible by just changing the value of a single ϕ parameter. 

 

 
 

 

 

 

 

Using the central drive to the CPGs for changing the oscillation dynamics 

 Crayfish and crabs can increase their walking speed during locomotion (Ross and Belanger 2013). A change 

in walking speed is often associated with a change in the coordination pattern (Ross and Belanger 2013). In the 

present network model, an increase in oscillation frequency, and a change in the ratio between the protractor and 

retractor phases of the CPG activity can be achieved by changing the value of the conductance gapp of the central 

driving synaptic current. We systematically varied the value of gapp using step sizes from 0.001nS to 0.1nS. To find a 

range in which the coordination patterns were stable, we first varied gapp1 and gapp2 by increasing or decreasing one 

of them, only (see Fig. 1). Then we varied both gapp1 and gapp2 at the same time and amount. 

Fig. 5 Transitions between coordination pattern 1 and 2. a: Transition from coordination pattern 1 to coordination pattern 2. The transition 

with a prolonged protraction phase of the activity of CPG1 (red), followed by an even longer depolarized phase of CPG2 (green). The 

protraction phase of the activity of CPG2 and CPG4 (purple) then ends almost at the same time, and coordination pattern 2 ensues in the 

next cycle. b: transition from coordination pattern 2 to coordination pattern 1. In this case, the transition also begins with a prolonged 

activity of the protractor neurons of CPG1 (red) and CPG2 (green). The transition lasts four periods until coordination pattern 1 is 

attained. 
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An increase in gapp1 led to an increase in relative length of the retractor phase, and an increase in gapp2 in that of the 

protractor phase within the oscillatory regime of the CPG. To attain a 1:3 ratio of the protractor-to-retractor phase, 

we had to choose different values for gapp1 and gapp2: gapp1=0.2500 nS, gapp2=0.1855 nS. However, increasing gapp1 

further beyond this value abolished the oscillation in the CPGs. Similarly, when gapp2 exceeded the value 0.1870 nS, 

the oscillation stopped again. 

We also obtained tonically active CPG neurons when setting gapp1=gapp2 in the interval [0.1855,0.1870] nS. The range 

of oscillations of the CPGs turned out to be rather small: gapp1 ∈ [0.23, 0.25] nS and gapp2 ∈ [0.1855,0.1870] nS. 

Furthermore, stable periodic oscillations occurred only if gapp1 > gapp2. 

In summary, we could simulate the commonly observed coordination patterns 1 and 2 when changing the value of 

the phase shift ϕ14. However, the model could not reproduce the most typical variant of coordination pattern 3. 

Furthermore, we could only make minor changes of the oscillation dynamics, which is, in turn, important for 

determining the walking speed, by increasing or decreasing the values of gapp1 and gapp2. 

 

Modifying the network topology in order to improve the model 

 The basic idea of this study is to show that a 3-CPG-MN network model, mimicking the stick insect's 

walking behaviour, can be extended to simulate 8-legged locomotion. We modified the original network topology 

by first including an additional CPG, and by making connection to this CPG in the same manner as it was done in the 

3-CPG-MN network. That is, the first CPG received sensory input from the last CPG. This connection was crucial in 

the 3-CPG-network model for the reproduction of stable coordination patterns and the transitions between them. 

We performed simulations with this model as reported in the preceding subsections but found serious limitations 

using it as outlined above. As one possible way of remedy, we modified its properties by changing its topology. In 

this modified network model, CPG1 receives a feedback signal from CPG3 and CPG2 one from CPG4 (green 

pathways in Fig. 6). We called this new topology of the modified network model 'topology 2' as opposed to 

'topology 1' of the former version of the model. In functional terms, this means that CPG2 now does not only receive 

sensory information about the ground contact of the front leg, but also from the hind leg, whereas CPG1 now 

receives sensory information from CPG3. Accordingly, this is another specific extension of the 3-CPG-MN network 

model, an embodiment of the basis for more complex network models used in the present work. 

 

 
Fig. 6 Schematic illustration of network topology 2. CPG2 receives two excitatory inputs, one from CPG1, the other from CPG4. This 

topology makes use of the idea of an excitatory feedback from a CPG to the second preceding one, i.e. here from CPG4 to CPG2 and 

from CPG3 to CPG1. This is clearly an extension of the topology of the 3-CPG-MN model by Daun-Gruhn and Tóth (2011). 
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Simulating coordination patterns 1, 2, and 3 with the modified model (topology 2) by 

varying ϕ 

 The modified model having topology 2 could reproduce all coordination patterns that had been described 

for crabs and crayfish (Table 1). Fig. 7 shows one example each of the coordination patterns 1, 2 and 3 that were 

produced by this model. In the left panels, the activities of the protractor neurons of the four segmental CPGs are 

displayed. In Fig. 7a, coordination pattern 1 starts with the activity in CPG4 followed by activities in CPG3, CPG2 

and4 CPG1. In Fig. 7b, during coordination pattern 2, both CPG1 and CPG4 are in protraction phase almost at the 

same time, followed by CPG 3 and CPG2. Fig. 7c shows coordination pattern 3, where CPG4 and CPG2 are 

simultaneously in the protraction phase followed by corresponding simultaneous activities of CPG 1 and CPG3. We 

started testing the network model with topology 2 by varying the system parameter ϕ for each CPG separately, and 

then by changing the values of ϕ of two CPGs and fixing the other values.  

 

 

 
 

 

The three diagrams in Fig. 8 show examples of simulation results that were obtained by varying pairs of ϕ to 

produce different coordination patterns (The colour codes in Fig. 8 match those in Table 1.). Thus in Fig. 8a: ϕ13 and 

ϕ43; in Fig. 8b: ϕ13 and ϕ21 at ϕ32 =0.12, and in Fig. 8c: ϕ13 and ϕ21 at ϕ32 =0.82 were varied. The simulation results 

obviously depend on the chosen pairs of ϕ. This is well illustrated in Fig. 8, where each panel shows a different 

distribution of coordination patterns. Among the simulation results, as these panels witness, there are fewer 

failures than among the results obtained with the previous version of the model having topology 1. Similarly, the 

proportion of failures (grey areas in Fig. 8) is considerably smaller (10%) here than with the previous version 

(33%) (cf. Fig. 5). The darker the colour of the coordination pattern, the more likely it is to appear in crabs and 

crayfish. Fig. 8a and b show the difference a small change in ϕ can make to the whole system. Although the system 

Fig. 7 Examples of coordination 
patterns 1, 2 and 3 produced by 
the 4-CPG-MN model with 
topology 2. a: Coordination 
pattern 1: wave-like activity 
spreading from CPG4 (purple) to 
CPG1 (red) via CPG3 (blue) and 
CPG2 (green). b: Coordination 
pattern 2: CPG1 (red) and CPG4 
(purple) are simultaneously 
active, followed by the activity of 
CPG3 (blue) and then of CPG2 
(green). c: Coordination pattern 
3: CPG4 (purple) and CPG2 
(green) are active at the same 
time, followed by simultaneous 
activity of CPG1 (red) and CPG3 
(blue). 
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was very sensitive to small changes of ϕ, it remained stable. We did not observe more than 10% failed attempts to 

produce coordination patterns. We could also show that the relative frequency of occurrence of a specific 

coordination pattern in our simulations is highly dependent on the combination of the values of ϕ. The diagrams in 

Fig. 8b and c differ only in the (fixed) value of ϕ32 (0.12 in Fig. 8b, and 0.82 in Fig. 8c). As with topology 1, the aim of 

the new simulations using the model with topology 2 was to find a set of values of ϕij with which all three 

coordination patterns could be reproduced. This is illustrated in Fig. 8c. We can thus fix the value of one of the ϕs 

and vary the other one in Fig. 8c to produce the transitions between all different coordination patterns. In 

summary, we can state that the model version with topology 2 can produce a larger proportion of stable results 

when varying ϕ than the one with topology 1. 

 

 
 

 

 

 

Fig. 8 Dependence of the coordination patterns on different pairs of ϕ. The colour codes for the different coordination patterns agree 
with the ones shown in Table 1. a: ϕ13 (y-axis) versus ϕ43 (x-axis). The failures amounted to 10% of all test cases, only. All of them 
occurred at ϕ43 =0.02. Coordination pattern 2 was found in 34% of the test cases compared to 9% for coordination pattern 1 and only 
1% for coordination pattern 3. The proportion of undefined coordination patterns was 16%. The remaining ϕ values were: ϕ21 = 0.52, 
ϕ24=0.12 and ϕ32=0.82. b: ϕ13 (y-axis) versus ϕ21 (x-axis). Here, the proportion of coordination pattern 3 was very high: 41%. 
Coordination pattern 2 was present in 26% of the test cases. 25% of the coordination patterns were undefined and only 8% were 
failures. The fixed values of the remaining ϕ were ϕ24=0.12, ϕ32=0.12 and ϕ43=0.62. c: ϕ13 (y-axis) versus ϕ21(x-axis), as in b, but now 
at a changed ϕ32=0.82, the same value as in a. With these settings, no failures were observed. In 46 % of the test cases, coordination 
pattern 2 appeared, in 12% of the test cases, coordination pattern 1, and in 4%, coordination pattern 3. 38% of the test cases yielded 
undefined but stable coordination patterns. 
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Transitions between coordination patterns 1, 2, and 3 produced by the model with 

topology 2 when changing the value of ϕ21 

  

 To produce transitions between the coordination patterns, we proceeded the same way as with the 

previous version of the network model (of topology 1). Using the new topology (topology 2, Fig. 6), we found that, 

for the transitions between the coordination patterns, it now sufficed to change only a single ϕ, namely ϕ21. The 

values of the other ϕ parameters were kept constant: ϕ13 =0.77, ϕ24 =0.12, ϕ32 =0.82, and ϕ43 =0.62. The results are 

summarized in Fig. 8c. We started with coordination pattern 1 (Fig. 7a) at which ϕ21=0.42. In order to trigger the 

transition to coordination pattern 2, ϕ21 was changed to 0.12 (Fig. 9a).  

A further change of this parameter to 0.82 resulted in the transition to coordination pattern 3 (Fig. 9b). The 

transition from coordination pattern 1 to coordination pattern 3 could be achieved by setting ϕ21= 0.82 (Fig. 9c). 

The transitions in the opposite directions took place when the changes of ϕ21 were simply reversed (all panels on 

the right hand side in Fig. 9a-c). As with the model having topology 1, all of these changes of ϕ21 had to be carried 

out during the last third of the retractor phase to produce a stable transition. It is to be noted that, in these cases, it 

sufficed to change one system parameter, only, on a single CPG. The simulations showed that there were different 

ways of producing transitions between the coordination patterns just by changing the value of a single ϕ 

parameter. 
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Fig. 9 Transitions between coordination patterns 1, 2 and 3. a: left: Transition from coordination pattern 1 to coordination pattern 2. The 

transition starts with a prolonged protraction phase of CPG1 (red) and lasts for 3 periods. Right: transition from coordination pattern 2 to 

coordination pattern 1. The transition starts with a longer protraction phase of CPG2 (green), and CPG1 (red) and lasts for 1 period. b: 

left: transition from coordination pattern 2 to coordination pattern 3. The protraction phase of CPG2 (green) is prolonged. The system 

needs 3 periods to attain coordination pattern 3. Right: transition from coordination pattern 3 to coordination pattern 2. An elongated 

protraction phase of CPG2 (green) can be observed at the start of the transition, which lasts for 2 periods. c: left: transition from 

coordination pattern 1 to coordination pattern 3. As in the transition in a, it starts with a prolonged protractor phase of CPG1 (red), and 

lasts for 2 periods. Right: transition from coordination pattern 3 to coordination pattern 1. This transition, too, similarly to the cases in a 

and b, starts with a longer protraction phase of CPG2 (green), and lasts for 2 periods. 
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Network topology 2 ensures stability when changing the central drive to the CPGs 

 In the preceding section, we have showed that the transitions between coordination patterns remained 

stable when using the modified network topology (topology 2).  

We then varied the parameters gapp1 and gapp2 of the central drive to the CPGs in order to see their effect on the 

oscillatory period and the protractor (swing) and retractor (stance) phase. In contrast to the results obtained with 

the network model of topology 1, we could vary both gapps by the same values and still produce stable coordination 

patterns that were observed in crayfish and crabs during walking. Another advantage was the wider range of 

admissible gapp values: gapp1 ∈ [0.19, 0.3] nS and gapp2 ∈ [0.1852, 0.1905] nS.  

During these variations, the relative lengths of the protractor and retractor phase within one CPG period remained 

unaltered. However, the absolute length of the CPG period decreased with increasing drive intensities (values of 

gapps). Change of the gapp values in the opposite direction resulted in an increase of the CPG period. When increasing 

gapp2 alone, we observed a prolonged protraction phase of the CPGs and therefore a shorter retraction phase. When 

increasing gapp1 only, the retraction (stance) phase became longer and the protraction (swing) phase shorter. In all 

of these cases, coordination pattern 3 remained stable. Fig. 10a shows coordination pattern 3 with gapp1=0.25 nS 

and gapp2= 0.1855nS. The ratio of the protractor and retractor phases was, in this case, 1:3. However, that could be 

changed to 1:1 when the conductances of central driving currents were set to gapp1=0.2510 nS and gapp2= 0.1900 nS, 

producing another variant of coordination pattern 3 (Fig. 10b). The relative length of the retractor phase within one 

CPG oscillatory period could even be varied by increasing gapp2, while keeping gapp1 constant (Fig. 10c). This figure 

also shows that the oscillatory period also decreased with decreasing retractor phase. Nevertheless, the protractor 

phase remained constant. This is in good agreement with experimental findings. 

 

 
 

 

  
Fig. 10 Changing the values of gapp1 and gapp2 resulted in a change in the oscillatory period of the CPG units. a: coordination pattern 
3 with a protraction phase of 125ms and a ratio of protractor-retractor phase of 1:3. b: coordination pattern 3 with a protraction 
duration of 250ms and a ratio of protractor-retractor phase of 1:1. Here, gapp2 was increased by 0.0045nS and gapp1 by 0.001nS. c: 
dependence of the CPG period on gapp2 when gapp1=0.25nS was fixed. As it can be seen, the retractor phase of the CPG (red) 
shortened, and the oscillatory period (green) decreased. At the same time, the duration of the protractor phase remained constant 
(blue). 
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DISCUSSION 
  

 

 In this work, we set out to model the coordination patterns that are exhibited by animals walking on eight 

legs, in particular by crayfish and forward walking crabs. The work was inspired by the results on modelling 

coordination patterns of 6-legged animals, in particular of the stick insect (Daun-Gruhn and Tóth 2011). In this 

model, the coordination of the three ipsilateral legs during (normal) walking was simulated. More precisely, the 

electrical activity of the protractor neurons of segmental protractor-retractor CPGs was reproduced in the model, 

and their temporal coordination yielded the coordination patterns tetrapod and tripod. This model was also 

capable of reproducing transitions between the two coordination patterns. 

We used this model for 6-legged locomotion, denoted as the 3-CPG-MN model, and extended it by one CPG-MN local 

network controlling a “second middle leg” but preserved the basic construction principles of the original model, 

first and foremost the cyclic connection of the segmental CPGs in it. With the resulting model, which we called the 

extended model with topology 1, we could reproduce coordination patterns of the ipsilateral legs in animals 

walking on eight legs. As in the original (3-CPG-MN) model, in the extended model, too, the different coordination 

patterns could be generated by varying the phase shifts ϕ between the oscillatory activities of the segmental CPGs 

and the sensory signals from the cyclically preceding segment that modulate the (cyclically) descending excitatory 

connections between the protractor-retractor CPGs. While we could reproduce all three coordination patterns 

listed in Table 1, the failure rate, i.e. the combinations of ϕ values at which no coordination pattern was produced, 

was high (about 30% of the test cases, cf. Fig. 3). In addition, some transitions between the coordination patterns 

could only be reproduced by changing the values of ϕ at all four segments. Furthermore, a considerable proportion 

of the transitions proved to be unstable. 

Trying to remedy these shortcomings of the extended model, we changed its topology. We abolished the connection 

from CPG4 to CPG1 and introduced the connections from CPG4 to CPG2 and from CPG3 to CPG1 (cf. Fig. 6). Here, we 

used another property of the topology of the 3-CPG-MN network model, namely the feedback (ascending) 

connection to the second anterior segment (i.e. from CPG3 to CPG1). We called this version of the extended model 

the model with topology 2. With this version of the extended model, we could reduce the failure rate significantly 

(to 10% of all test cases, cf. Fig. 8). Furthermore, the transition between the coordination patterns in either 

direction now only required the change of one ϕ value (cf. Fig. 8). Thus, this version of the model (i.e. the version 

with topology 2) has proven to be satisfactory for the simulation of the coordination patterns of legs on the 

ipsilateral side of animals walking on eight legs during (normal) walking. 

As with all models of physiological systems, the following question arises here, too: how and to what extent is the 

extended model (with topology 2) supported by physiological findings? To answer it, we first point out that the 3-

CPG-MN network model by Daun-Gruhn and Tóth (2011) was already based on physiological results concerning the 

existence and structure of the local segmental protractor-retractor control network. In addition, physiologically 

reasonable assumptions helped complete their model (For details see Daun-Gruhn and Tóth (2011)). As mentioned 

in the introduction, there are close similarities in the structure and organization of the nervous systems of stick 

insects and crustaceans. It was therefore quite natural to transfer those similarities and analogies between the 

models, too. For example, Clarac (1982) found that proprioceptive feedback seemed to stabilize the centrally 

generated rhythm in intact crayfish (Clarac 1982; Libersat et al. 1987). This underpins the importance of peripheral 
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influences in these biological systems, hence in their models (Cruse 1990; Sillar et al. 1986; Clarac 1982; Libersat 

1987; Cruse and Müller 1991; Jamon and Clarac 1995). In both the original 3-CPG-MN network model and the 

extended 4-CPG-MN models, the peripheral sensory signals that represent ground contact and load play an 

important role in the inter-leg coordination. In these models, they gate (modulate) the excitatory connections 

between the segmental CPGs. In the stick insect, the load signals most likely originate in the campaniform sensilla, 

signals indicating position in proprioceptors, while those encoding for (angular) velocity in chordotonal organs 

(Akay et al. 2001; Bässler and Büschges 1998; Bucher et al. 2003; Borgmann et al. 2007; Borgman et al. 2009). 

Comparable sensory inputs in crayfish and crabs are the thoracic–coxal muscle receptor organ (TCMRO) (Sillar et 

al. 1986), and the cuticular stress detectors (CSDs) (Clarac, Wales and Laverack 1971; Klärner and Barth, 1986, 

Klärner and Barnes 1986). Both sensory organs are responsible for the timing and intensity of rhythmic output of 

two or more ipsilateral ganglia (Sillar et al. 1986; Klärner and Barnes 1986). These are clear physiological analogies 

between the structure and function of the nervous systems of the stick insect and crustaceans. They amply justify 

our approach to the modelling task as outlined above.  

The models with both network topologies revealed that a small change in the timing of the sensory input (ϕ at the 

different segments) had a strong influence on the output of the system. The change of timing resulted in different 

coordination patterns although the synaptic strength of the connections remained the same during the simulations 

(Fig. 8). This is in close agreement with the results of experiments in which the TMCRO was stimulated. There, it 

was found that the timing and intensity of the rhythmic output of the promotor and remotor MN activity in the 

same segment and adjacent segments was strongly affected by the stimulation (Sillar, Clarac and Busch 1987). 

Our extended model could also be tested in the following way. It was shown in experiments that, without sensory 

feedback, the MNs of the ipsilateral ganglia of crustaceans exhibited a strong tendency to burst in phase (Clarac 

1982). Our 4-CPG-MN network model also has this property: by blocking the inter-segmental sensory pathways in 

the model, we observed synchronous activity of all four CPGs (data not shown). 

In constructing the 3-CPG-MN model, Daun-Gruhn and Tóth (2011) could restrict their considerations to an 

ipsilateral side, since experimental evidence showed a negligibly small contralateral influence of leg movements 

(Borgmann et al. 2007; Borgmann et al. 2009; Westmark et al. 2009). In crustaceans, too, the contralateral 

influences that were found also proved to be weak (Cruse 1990; Cruse and Müller 1991; MacMillan 1975). 

The simulation results showed that the model behaviour, the period and the relative lengths of the protractor and 

retractor phases are quite sensitive even to small changes in the intensity of the central drive (the conductance gapp) 

to them. This affects the robustness of the model behaviour. To tackle this point, we should like to point out that the 

two-neuron CPG is most likely a strong reduction (simplification) of the CPG in the animals (stick insect and 

crayfish, crabs). In an ensemble of several neurons, the sensitivity of the (oscillatory) behaviour diminishes, 

because the driving current can be assumed to be distributed between the neurons of the real CPG. We therefore do 

not feel that this type of parameter sensitivity found in the simulations is serious shortcoming of our model. 

Another important point to be tackled is the physiological viability of producing variable phase shifts (values of ϕ) 

between the segmental sensory signals and the periodic oscillations of the segmental CPGs. Here, we can only 

speculate that the sensory signals might pass through polysynaptic pathways of different length within the 

segmental ganglion. By doing so, their delay with regard to a fixed phase of the CPG oscillation is changed. 

Selectively blocking these polysynaptic pathways by central nervous mechanisms, delays of various lengths of the 

sensory signals, corresponding to changing the value of ϕ, might be brought about in the segmental ganglia of the 

nervous system. 
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In summary, our study shows that the 4-CPG-MN network model with topology 2 can successfully be applied to 

simulation of coordinated locomotion in arthropods with more than six legs. The basis for this model, as already 

mentioned, was the model by Daun-Gruhn and Tóth (2011), which was constructed using experimental data from 

the stick insect. The extended 4-CPG-MN model could be obtained without changing the main properties of the 

original model by Daun-Gruhn and Tóth (2011). The results in the present work suggest that coordinated walking 

in arthropods could have a common origin based on the similar architecture of the respective nervous systems. The 

differences arise due to the different number of legs in the individual species but the main principles of inter-

segmental organization do remain the same. One of the most important common properties is the crucial role of 

sensory influences on the coordination of rhythmic activity of the different segments. The simulations proved that 

experimentally observed coordination patterns and the transitions between them could be simulated by changing 

the phase shift between the segmental sensory signals and the oscillatory activity of the affected segmental CPG, 

that is the value of ɸ. Moreover, our model displays a wide variety of coordination patterns by changing the value of 

just a single system parameter ɸ. Even though our model, in its present form, is partly hypothetical, it is logically 

consistent by being able to synthesize experimental evidence and physiologically reasonable assumptions. 

Moreover its assumptions and its predictions based on these assumptions can be tested in suitable experiments. 
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MATERIALS AND METHODS  

 

All experiments were performed on adult female stick insects Carausius morosus (Brunner 1907), at room 

temperature (18°C-23°C) under reduced light conditions. Animals were obtained from a breeding colony 

maintained at the University of Cologne. For the experiments, all legs of the stick insect, except both hind 

legs, were removed by amputating them at mid coxa. The animals were fixed dorsal side up by thin 

minutien pins to a foam platform. In the preparation, the abdomen did not touch the foam platform at any 

time and was able to move freely. The thorax of the stick insect was opened with a sagittal cut along the 

midline of the cuticle from the most rostral point of the prothorax to the most caudal side of the 

mesothoracic ganglion. The gut, as well as the connective tissue, was removed in order to expose the 

prothoracic and mesothoracic ganglia, their connectives, and their lateral leg nerves. The mesothoracic 

ganglion was completely deafferented by cutting all lateral leg nerves on both sides, and the body cavity 

was filled with saline (according to Weidler & Diecke, 1969). On the left side of the prothorax, the lateral 

leg nerves nl2, containing the axons of the protractor coxae motoneurons (MNs), and nl5, containing the 

axons of the retractor coxae MNs (Marquardt, 1940; Graham, 1985), were recorded by means of 

extracellular hook electrodes (modified after Schmitz et al., 1991), and crushed distally to the recording 

site. All other lateral nerves of the prothoracic ganglion were transected. The connectives to the 

suboesophageal ganglion (SOG), and the ones to the mesothoracic ganglion, as well as the connectives 

between the meso- and metathoracic ganglia were left intact. 

For the split bath preparation, the cuticle of the thorax was cut transversally between the prothoracic and 

the mesothoracic ganglia, and a small u-shaped portion was removed. The connectives were left intact. 

The gap was filled by highly viscous silicone grease in order to create a leak-free barrier between the 

prothoracic and mesothoracic segments. The activation of the prothoracic central pattern generating 

networks was achieved by perfusing the prothoracic ganglion with saline containing the muscarinic 

acetylcholine agonist pilocarpine (5x10-3 M) (Büschges, 1995). As a result, rhythmic activity of the 

recorded protractor and retractor MNs was elicited. Due to the split bath preparation, exclusive perfusion 

of the prothoracic ganglion with the pilocarpine-saline solution was ensured. The cavity posterior to the 

silicone barrier, exposing the deafferented mesothoracic ganglion, was filled with saline (Weidler and 

Diecke, 1969). The left hind leg, ipsilateral to the nl2 and nl5 recording site, performed steps on a passive, 

lightweight, low friction treadmill (modified after Gabriel et al., 2003) positioned parallel to the body axis. 

This stepping movement resembles closely kinematics during forward and backward straight walking in 

stick insects (Cruse and Bartling, 1995). Stepping of the hind leg was monitored by electromyograms 

(EMGs) of the flexor activity in the moving leg. The recordings were performed by two thin copper wires 

(40μm) inserted into the flexor. A stance phase of the hind leg led to an acceleration of the treadmill. This 

movement was monitored by a tachometer. A positive amplitude in the tachometer trace represents the 

start of the stance phase of a forward hind leg step. A negative amplitude represents the start of a stance 

phase of a backward hind leg step. The maximum of an amplitude represents the end of a stance phase. 

Stepping sequences were induced by gently touching the abdomen of the animal with a paintbrush until it 
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started to walk. These walking sequences were referred to as “active walking”, and the steps within these 

sequences were named “active” steps. “Passive movements” were sequences in which the hind leg was 

standing on the treadmill and the treadmill was passively moved forward and/or backward. In cases in 

which the treadmill was moved passively forward or backward, providing a stance phase, the leg 

continued with an active swing phase to reposition the leg. In cases of forward and backward movements 

of the treadmill, the leg remained on the treadmill during the whole time, which means that no swing 

phase was present. The experimental results for the inter-segmental influence of the two different kinds 

of passive movements of the treadmill showed no significant difference (weighted and pooled data, 

Wilcoxon rank sum test: p=0.67). Therefore the term “passive movements of the legs” results from both 

kinds of the aforementioned experimental conditions.  

In order to identify the sensory signals that contribute to the modulation of the prothoracic rhythm 

generating networks, an additional experimental setup was introduced in which the femoral and 

trochanteral campaniform sensilla were stimulated. In this preparation, the left hind leg was amputated at 

the femur-tibia joint, and the coxa-trochanter joint was fixed by dental cement (PROTEMP II, ESPE). The 

stump was then moved in a posterior or anterior direction to the stick insect’s body resulting in load 

signals, detected by the femoral and trochanteral campaniform sensilla (Schmitz, 1993). The further 

preparation was performed the same way as the single hind leg/ split bath preparation.  

 

 

 

 

 Fig. 1 Experimental setup and close up of the isolated prothoracic ganglion. A) Photography of the experimental setup. The intact 
hind leg was stepping on the treadmill. Two extracellular monopolar hook electrodes recorded the activity of the lateral nerves nl2 
(axons of protractor MNs) and nl5 (axons of retractor MNs). B) Photography of the isolated prothoracic ganglion. The lateral nerves 
nl2 (red) and nl5 (blue) are marked by the red and blue arrow, respectively.  
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Extracellular recordings and EMGs were amplified (500x-5000x, depending on the recording quality) and filtered 

(250Hz- 5kHz for extracellular recordings, 50Hz-1kHz for EMGs). Finally, the recordings were digitalized by a 

MICRO 1401 A/D converter (sampling rate: 12.5 kHz). For recordings, SPIKE2 data analysis software (version 5.21, 

Cambridge Electronic Design) was used. For a better analysis of noisy data samples, the extracellular recordings 

were rectified and smoothed (τ ∈ [0.008, 0.08]) with the smoothing function of SPIKE2. To analyze the transitions 

between the protractor and retractor MN burst activities depending on the stepping of the hind leg, the 

experimental conditions were divided into active and passive forward stepping, and active and passive backward 

stepping. The results were counted and weighted for all animals. The occurrences of different transitions during 

stepping were compared, and tested for significance (significance levels: p<0.05(*); p<0.01(**); p<0.001(***)) using 

the Wilcoxon rank sum test in MATLAB® (Version: R2011b (7.13.0.564) The MathWorks, Inc.). Phase histograms 

were made using the SPIKE2 analysis software to compare the relative spike distribution of the protractor and 

retractor bursts within a step cycle. Circular statistics for the spike distributions of a step cycle in a unit circle were 

performed using the circular statistics toolbox for MATLAB® (Version: R2011b (7.13.0.564) The MathWorks, Inc.) 

(Berens, 2009). The Rayleigh test (Batschelet, 1981) was used to test whether spikes of the protractor and retractor 

MN activity were randomly distributed or whether a predominant directionality is present (same significance 

levels as for the Wilcoxon rank sum test). For the investigation of the influence of the SOG, perfused with 

pilocarpine, on the prothoracic ganglion, experiments were performed with intact and cut connectives between the 

prothoracic ganglion and the SOG. For the supplementary figure, cross correlations of the rectified and smoothed 

protractor and retractor MN activities in the prothoracic and mesothoracic ganglion were calculated (using SPIKE2 

analysis software for cross correlations). To analyze the influence of the stepping hind leg on the pilocarpine 

induced protractor and retractor MN rhythm in the prothoracic ganglion, phase response curves were calculated. In 

the text and in the figures, N represents the number of animals and n the number of step cycles.
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RESULTS  

 

In former studies an inter-segmental influence between the ipsilateral segmental CPGs of the stick insect’s leg has 

been shown for the anterior to the posterior segments or for to the adjacent segments of the middle leg. For the 

inter-segmental influence from the posterior to the anterior segments, Borgmann et al. (2009) showed that a 

forward stepping hind leg induced a general increase in activity in the prothoracic and mesothoracic protractor and 

retractor MNs, but no rhythmicity. In 2/3 of the experiments, a backward stepping hind leg induced a general 

increase in activity in the mesothoracic protractor and retractor MNs and in 1/3, alternating activity was observed. 

The influence on the prothoracic joint-CPGs was not studied so far.  

In this study, I investigated the influence of a stepping ipsilateral hind leg on a pilocarpine-induced rhythm in the 

prothoracic protractor and retractor MN pools. The animals were stepping on a treadmill in a forward or backward 

direction as well as passive movements of the hind leg.  

In both experimental setups, I observed an entrainment of the pilocarpine-induced rhythm in the prothoracic 

ganglion to the stepping hind leg. In order to get a first insight in the origin of the sensory signals providing the 

inter-segmental influence, I cut the hind leg at the middle of the femur in order to exclude signals from the hind leg, 

encoding position and ground contact.  

 

In the first set of experiments, I investigated the influence of active forward and backward ipsilateral hind leg steps 

on the prothoracic protractor/retractor CPGs.  

Therefore, I recorded the alternating, rhythmic protractor and retractor MN activity extracellularly, using 

monopolar hook electrodes. The rhythmic activity of the prothoracic rhythm generating networks was induced by 

application of a pilocarpine solution (5x10-3 M) on the prothoracic ganglion (Fig. 1, Fig. 2). By gently tickling the 

abdomen of the stick insect, I induced stepping of the hind leg on the treadmill. The stepping of the hind leg was 

monitored by EMGs of the flexor muscle in the femur and by the tachometer trace of the treadmill (Fig. 1, Fig. 2).  

A negative amplitude in the tachometer trace resembles stance phases during backward steps of the hind leg, a 

positive amplitude resembles stance phases during forward steps.  
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Active backward steps  

Fig. 2 shows the influence of the backward stepping hind leg on the ipsilateral protractor and retractor MNs of the 

prothoracic ganglion. The backward steps, that had a higher frequency than the pilocarpine rhythm, entrained the 

alternating activity in the prothoracic protractor and retractor MNs. In addition, the beginning of the stance phase 

of the backward stepping hind leg (red lines in Fig. 2) was in phase with the activity of the retractor MNs in the 

prothoracic ganglion.  

 

 
 

 

 

 

 

Active forward steps  

As for the experiments with the active backward stepping ipsilateral hind leg, active forward steps of the hind 

leg entrained the pilocarpine-induced rhythm in the prothoracic protractor/retractor system (Fig. 3). The red 

lines in Fig. 3 mark the beginning of the stance phases during forward steps of the hind leg (positive amplitude). 

Forward hind leg stepping led to in-phase activity of the burst of the prothoracic protractor MNs and the 

beginning of the stance phase of the hind leg. Note that the tachometer trace is very noisy. This might have been 

the result of a very sensitive adjustment of the treadmill. With this tachometer trace, I could not distinguish 

between the single forward steps. The activity of the flexor provided the information about a proper forward 

step though.  
 

 Fig 2. Active backward stepping entrained the pilocarpine-induced rhythm in the prothoracic protractor and retractor MN pools. The 
amplitudes of the tachometer trace (smoothed: τ= 0.1s) resemble backward steps of the hind leg. The beginning of the stance is marked 
by red lines. The end of the retraction is indicated by the most negative peak in the trace. Additionally, hind leg stepping is monitored by 
flexor muscle activity in the hind leg. This activity increased during stance phase. The irregular pilocarpine-induced rhythm in the 
retractor and protractor MNs in the prothoracic ganglion was entrained by the stepping of the hind leg. Between the third and fourth step, 
no protractor MN burst was observed.  
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A stick insect that lacks both front and middle legs prefers to walk backward than forward (Bässler and Breutel, 

1985). In order to increase the number of walking sequences with a forward stepping ipsilateral hind leg, I 

introduced a second set of experiments, in which the treadmill was moved passively in order to mimic forward and 

backward directed stance phases of the ipsilateral hind leg. 

 

 

 

 

 

 

 

Fig 3. Active forward stepping of the ipsilateral hind leg entrained the pilocarpine-induced rhythm in the prothoracic protractor 
and retractor MN pools. The positive amplitudes of the tachometer trace indicate forward steps. The beginning of the stance 
phase is marked by red lines. During stepping, an increase in flexor activity was observed. The irregular pilocarpine-induced 
rhythm in the prothoracic retractor and protractor MNs was entrained by stepping of the hind leg. Between the fourth and fifth 
step no stepping activity was observed. Before stepping, the protractor burst activity had a frequency of 0.4Hz. During stepping 
the frequency increased to 0.54Hz. 
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Passive forward and backward movements 

The passive movements of the treadmill did not only increase the number of forward directed stance phases of the 

hind leg, they were also beneficial in order to regulate the stepping frequency of the hind leg. In some cases the 

frequency of the pilocarpine-induced rhythm in the prothoracic protractor/retractor MN bursts was close to the 

stepping frequency of the hind leg (Fig. 3). Fig. 4 A) shows the influence of a moved hind leg, on the pilocarpine-

induced rhythm of protractor and retractor MN bursts in the prothoracic ganglion. In this experimental situation, 

the treadmill was moved back and forth, inducing forward and backward directed stance phases in the hind leg 

(hind leg was standing on the treadmill, no protraction was performed) The higher frequency of the hind leg 

movements entrained the slower and irregular pilocarpine-induced rhythm of the prothoracic protractor and 

retractor MNs (grey area). During the hind leg movements, an increase of flexor muscle activity was observed.  

I analyzed the influence of the start of a forward directed stance phase of the ipsilateral hind leg on the pilocarpine-

induced rhythm by calculating a phase response curve. For this purpose, I calculated the mean duration Tp (green 

in Fig. 4 B)) of three prothoracic protractor burst cycles. One cycle was defined by the beginning of a protractor MN 

burst to the next beginning of a protractor MN burst. The time between the beginning of the influenced burst cycle 

and the start of the stimulus (red line, start stance phase) was defined as d (red in Fig. 4 B)). After the stimulation, 

the beginning of the next protractor burst occurred after a certain time T (blue in Fig. 4 B)). Fig. 4 C) shows the 

resulting phase response curve. There the relative changes in pilocarpine-induced prothoracic protractor cycle 

periods [(T/Tp)/Tp] were plotted against the phase of the first, passively induced forward hind leg movement of a 

stepping sequence in the prothoracic protractor burst cycle (d/T) for nine animals and 35 steps (black dots). 

Except of seven data points, where the beginning of the next burst after the stimulation was delayed, the linear 

curve indicates a reset of the pilocarpine-induced rhythm in the prothoracic MN pools. These results are in 

accordance with the calculations of the latencies between the beginning of a forward step (passive) and the 

beginning of a prothoracic protractor burst. These results show that all protractor bursts occurred after a mean of 

0.55s±0.33s (no significant difference between different animals and different stepping sequences (p<0.001, 

Wilcoxon rank sum test).  
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Fig. 4 Passive forward and backward movements of the ipsilateral hind leg entrained the pilocarpine-induced rhythm in the 
prothoracic protractor and retractor MNs. A) The hind leg was standing on the treadmill which was moved forward and backward. 
In this case, the ipsilateral hind leg did not perform a swing phase. The passive forward and backward directed stance phases 
entrained the rhythmic activity of the pilocarpine induced rhythm of the protractor and retractor MN bursts (grey area). B) 
Example for the calculation of a phase response curve (PRC) for the hind leg’s movements occurring during pilocarpine-induced 
rhythm in prothoracic protractor and retractor MN bursts. C) PRC. Relative change in pilocarpine-induced prothoracic protractor 
cycle period [(T /Tp)/Tp] plotted versus phase of first, passively induced forward hind leg movement of a stepping sequence in 
the prothoracic protractor burst cycle (d/T) for nine animals and 35 steps (black dots). The linear curve indicates a resetting of the 
pilocarpine-induced rhythm in the prothoracic MN pools by the hind leg steps. 
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The protractor MN burst activity was entrained by a forward directed 
stance phase of a hind leg step. The retractor MN burst activity was 
entrained by a backward directed stance phase of the hind leg. 

 
For a better comparison of the influence of passive and active leg activity in the ipsilateral hind leg on the 

prothoracic rhythm generators of the protractor/retractor system, I investigated the transitions of the alternating 

protractor and retractor MN bursts and the in-phase activities with the stance phases of the hind leg in the 

particular experimental setup. In order to distinguish between the different influences a forward and backward 

step of a hind leg can have on the ipsilateral ThrC-joint CPG, I investigated the different protractor and retractor MN 

reactions of the prothoracic ganglion in the active (N=9) and passive (N=11) walking situations for all steps. p+r- 

stands for a simultaneous occurrence of activity of the protractor MNs and the stance phase of the hind leg (Fig. 5 

A)), p-r+ for an entrainment of the activity of the retractor MNs to the stance phase of a hind leg step. (Fig. 5 B)), 

p+r+ for a simultaneous activity of both antagonistic MN pools during a stance phase of a hind leg (Fig. 5 C)), and p-

r- for the absence of MN bursts during the stance phase of a hind leg step. This was evaluated for the forward and 

backward steps.  

In the prothoracic ganglion, active forward steps of a hind leg (Fig. 5 D) black bars) (N=3, n=23), resulted in a p+r- 

situation in 65.2%, a p-r+ transition in 17.4%, p+r+ in 13%, and no reaction to the stepping (p-r-) in 4.4% of all 

steps investigated. Passive forward movements (Fig. 5 D) grey bars) of hind legs on the treadmill (N=11, n=225) 

showed a p+r- reaction in 83.6%, a p-r+ transition in 2.7%, simultaneous activity in 9.8% in the prothoracic 

ganglion. In 3.9%, reaction to the stimulus was observed. There was no significant difference between the 

occurrences of transitions between active and passive stepping. For forward steps, p+r- transition occurred 

significantly more often than p-r+, p+r+, and p-r- transitions (p<0.001, Wilcoxon-rank-sum Test).  

Active backward steps (Fig. 5 E), black bars) resulted in 6.5% in a p+r- reaction, in 56.5% in an r-p+ transition. In 

34.8% hind leg stepping entrained the alternating prothoracic protractor-retractor MNs rhythm to the retractor 

MNs (p+r+), and in 2.2% no reaction (p-r-) to the stimulus (hind leg step) was observed (N=9, n=92). 

Passive backward movements (Fig. 5 E), grey bars), led in 3.5% to a p+r- transition, in 69.8% to a p-r+ transition, in 

24.3% retractor and protractor MNs bursts were active at the same time (p+r+). In 2.4% no reaction was observed 

(p-r-). The proportion of p-r+ transitions was higher than p+r+ at a significant level p<0.001. The occurrence of p-

r+ transitions was higher than the occurrence of p-r, and p-r- transitions (p<0.001). The last two situations showed 

no significant difference. Also, there was no significant difference between active and passive forward stepping. 

In both experimental situations (active and passive stepping), the prothoracic protractor MNs were active when the 

ipsilateral hind leg performed a forward step, whereas during a backward step of the ipsilateral hind leg, the 

prothoracic retractor MNs were active. These results are presented in the phase histograms in Fig. 5 for forward 

stepping of the hind leg, and in Fig. 6 for backward stepping of the hind leg. 
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Fig. 5 Protractor MNs are entrained by the beginning of a stance phase of a forward stepping ipsilateral hind leg and retractor MNs 
to the stance phase of backward steps. The tachometer monitors the hind leg movements A) p+r-: The stance phase of a forward 
stepping hind leg activates protractor (nl2) MN burst activity B) p-r+: A backward stepping hind leg entrains the retractor MNs (nl5) 
of the prothoracic rhythm generating networks C) p+r+: During backward stepping of a hind leg both MN pools are active D) 
Distributions of transitions in % between protractor and retractor MNs during active (black, N=4, n=23 steps) and passive (grey, 
N=11, n=225 steps) forward stepping of an ipsilateral hind leg. Active and passive forward steps entrained protractor activity (active 
65.2%, passive 83.6%). In 17.4% of active hind leg steps, no activity of protractor MNs could be observed, but the retractor MNs 
were active. For passive stepping, this was the case in 2.7%. In 13% of the active forward steps, the protractor MNs were active at 
the same time as the retractor MNs. In 9.8%, this was observed during passive forward stepping. In 4.3% (active) and 4% (passive), 
no activity in the protractor and retractor MNs was observed during a forward step (p-r-). The percentage of p+r- transitions was 
significant (p<0.001, Wilcoxon-rank-sum- Test) different to the percentage of p-r+, p+r+ and p-r-. The last three situations showed 
no significant difference. There was also no significant difference between active and passive forward stepping. E) Transitions (%) 
between protractor and retractor MNs during active (black, N=9, n=92 steps) and passive (grey, N=11, n=255 steps) backward 
steps of an ipsilateral hind leg. Active and passive backward steps entrained the protractor MN burst activity (active 6.5%, passive 
3.5%) in the prothoracic ganglion. In 56.5%, retractor MN activity was entrained to active hind leg steps. For passive stepping, this 
was the case in 69.8%.In 24.3% of the active backward steps, the protractor MNs were active at the same time as the retractor 
MNs. In 9.8%, this was observed during passive forward stepping. The portion of p-r+ was significantly different to p+r+ (p<0.01). In 
2.1% (active) and 2.4% (passive), no activity in the protractor and retractor MNs was observed during a backward step. The 
difference of p-r+ transitions to p-r, and p-r- was significant (p<0.001, Wilcoxon-rank-sum- Test). The last two situations showed no 
significant difference. Again, there was no significant difference between active and passive forward stepping. 
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Prothoracic protractor MN bursts were in phase with the stance phase 
of a forward step of the ipsilateral hind leg.   

 
During the stance phase of an active forward step of the ipsilateral hind leg, prothoracic MN activity was observed 

(Fig. 6 A)). The phase histogram in Fig. 6 A shows the alternating activity of both neuron pools (protractor MNs, 

retractor MNs) for one walking sequence with nine cycles for one animal. The circular mean of the spike counts of 

protractor MN bursts (nl2 ,red) was at 112.4° within a hind leg step cycle. The circular mean for the relative spike 

count of the retractor MNs (nl5, blue) was at 335.7° within a hind leg step cycle. The unit circle contains the circular 

means and mean vector lengths of three animals for each stepping sequence (nl2: red; nl5: blue). The Rayleigh test, 

for the significance of the mean direction in a cycle (period) showed a significant directionality (p<0.01 and 

p<0.001) for all data sets (occurrence of the MN spikes within a step cycle), except for one dataset for the retractor 

MN spike distribution within a step cycle (circular mean: 173.9°, vector length: 0.311, p=0.063). The remaining 

circular means were between 47.2° and 343.8° for protractor MN spike distribution and between 170.8 and 335.8° 

for retractor MN spike distribution. Note, that although the statistical tests for the distribution of the protractor and 

retractor MN spikes within an active hind leg step cycle showed a significant directionality, still more experiments 

for active walking have to be performed. Nevertheless, the phase histogram in Fig 6 A) shows alternating activity of 

the MN pools, which is a clue for the kind of influence an active stepping forward leg has on the prothoracic 

protractor-retractor CPGs.  
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Prothoracic retractor MN bursts were in phase with the stance phase 
of a backward step of the ipsilateral hind leg.  

During the stance phase of backward movements of the ipsilateral hind leg (passive) prothoracic retractor MNs 

were active (Fig 7 B). Here the relative spike distributions of protractor and retractor MNs within a step cycle were 

narrower that the ones resulting from  

the active backward stepping. The phase histogram in Fig. 7 B) shows the relative spike count distribution within 

one step cycle for 22 cycles in one animal. The protractor and retractor MN activities were alternating. The circular 

mean for the protractor MN spike distribution was 82.2° and for protractor MN spike distribution 210.7°. Both 

mean directions were significant at a level of p<0.001 (Rayleigh Test). The unit circle shows the mean vectors of 

prothoracic protractor and retractor MN activity within a step cycle for all walking sequences of eleven animals. 

The mean values for the distribution of protractor and retractor MN spike activity during a hind leg step cycle range 

from 82.2° to 196° for protractor MN spikes and between 210° and 8° for retractor MN spikes.  
Active backward walking of the stick insects hind leg was easier to induce than forward walking. The start of a 

stance phase of a backward step entrained the rhythmic activity of the retractor MNs. In some cases, both MN pools 

were simultaneously active during a backward step (Fig. 7 A). The phase histogram in Fig. 7 shows the distribution 

of the relative spike count within a step cycle of twelve cycles in one animal. The mean values for the distributions 

were 300.9° for protractor MNs spikes (red) and 115.9° for retractor MN spikes (blue). In the lower panel, the unit 

circle contains all mean values, and the corresponding vectors for the protractor and retractor MN spike 

distributions within a hind leg step cycle of all walking sequences for nine animals. All mean vectors showed a 

directed distribution at a significance level of p<0.001 (Rayleigh test), except for one mean vector for the 

distribution of protractor MN spikes (circular mean 301.2°, vector length: r=0.0332 p=0.39). The mean values for 

the distributions were between 294° and 10° for protractor MN spikes and between 58° and 188° for retractor MN 

spikes. 

As in the experiments with passive forward movements of the legs, the distribution of relative spike count of 

protractor and retractor MNs, resulting from passive backward movements of the hind leg were narrower 

compared to the active steps. Fig. 7 B) shows the distribution of the relative spike count within a step cycle of 20 

stepping cycles in one animal. The circular mean for the retractor MN values in this histogram was 71.8° and 278.3° 

Fig. 6 Protractor MN burst activity was observed during active and passive forward stepping of an ipsilateral hind leg. A) Upper panel: 
Phase histogram, showing the relative spike distribution of prothoracic protractor MNs (nl2, red) and retractor MNs (nl5, blue) within an 
step cycle of an active forward step of the ipsilateral hind leg (N=1; n=9 step cycles). The protractor and retractor MNs showed 
alternating activity. Lower panel: Distribution of the circular means of three animals (N=3) of protractor MN (red) and retractor MN 
(blue) activity. All mean vectors showed a significant directionality of the protractor MN spike distribution at a significance level of 
p<0.01 (Rayleigh test), except for one mean vector for prothoracic protractor MN spike distribution. The mean values for the distribution 
of protractor and retractor MN activity within a hind leg step cycle were between 47.2° and 343.8° for protractor MNs and between 
170.8° and 335.7° for retractor MNs B) Upper panel: Relative spike distribution of prothoracic protractor (nl2, red) and retractor (nl5, 
blue) MNs during a step cycle of a passive forward step of the ipsilateral hind leg (N=1, n=22 step cycles). As in A), the protractor MNs 
were active during the first 180° of a step cycle and the retractor motoneurons during the last 180°. Both MN pools showed alternating 
activity. Lower panel: The distribution of the circular means of protractor MN and retractor MN spike distribution within a step cycle of 
the hind leg of eleven animals (N=11) shows an opposite directionality. All mean vectors of the distribution of protractor and retractor 
MN spikes, except of one mean vector for the retractor MN spikes, showed a significant directionality (p<0.001, Rayleigh test). The 
mean values for the distributions of protractor and retractor MN activity during a hind leg step cycle were between 94° and 196° for 
protractor MNs and between 246° and 8° for retractor MNs.  
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for the protractor MN spike distribution. The lower plot shows the circular means and vector lengths of protractor 

and retractor MN spike distributions within a hind leg step cycle for all walking sequences for eleven animals. All 

mean vectors showed a significant directionality at a value of p<0.001 (Rayleigh test). The mean values for the 

prothoracic protractor MN spikes were between 278.3° and 89.2° and for retractor MN spikes between 71.8° and 

210.9°. 

In summary, a caudo-rostral inter-segmental influence was shown, arising at the metathoracic ganglion, induced by 

hind leg stepping in forward and backward direction that influences the CPG rhythm of the prothoracic protractor-

retractor system.  

 

 

 

 

 

 

 

Fig. 7 Retractor MN burst activity was observed during active and passive backward stepping of an ipsilateral hind leg s. A) Upper 
panel: Phase histogram, showing the relative spike distribution of prothoracic protractor MNs (nl2, red) and retractor MNs (nl5, blue) 
within a step cycle of an active forward step of the ipsilateral hind leg (N=1; n=12 step cycles). The protractor and retractor MNs 
showed alternating activity. Lower panel: Distribution of the circular means of nine animals (N=9) of protractor MN (red) and retractor 
MN (blue) activity. All mean vectors showed a significant directionality of the protractor and retractor MN spike distribution at a 
significance level of p<0.01 (Rayleigh test), except for one mean vector for prothoracic protractor MN spike distribution. The mean 
values for the distribution of protractor and retractor MN activity within a hind leg step cycle were between 294° and 10° for protractor 
MNs and between 58° and 188° for retractor MNs B) Upper panel: Relative spike distribution of prothoracic protractor (nl2, red) and 
retractor (nl5, blue) MNs during a step cycle of a passive forward stepof the ipsilateral hind leg (N=1, n=20 step cycles). Both MN pools 
were showed alternating activity. Lower panel: The distribution of the circular means of protractor MN and retractor MN spike 
distribution within a step cycle of the hind leg of eleven animals (N=11) shows an opposite directionality. All mean vectors of the 
distribution of protractor and retractor MN spikes showed a significant directionality (p<0.001, Rayleigh test). The mean values for the 
distributions of protractor and retractor MN activity during a hind leg step cycle were between 279° and 89° for protractor MNs and 
between 71° and 210° for retractor MNs.  

 



13 
 

Unspecific  stimulation of femoral and trochanteral campaniform 
sensilla (backward) entrains the pilocarpine-induced rhythm in the 
prothoracic protractor-retractor system. 

In order to locate the source of the sensory information that arises at the stepping hind leg and modulates the 

pilocarpine-induced rhythm in the prothoracic protractor-retractor system CPG, preliminary stimulation 

experiments were performed.  

For these experiments, the hind leg was fixed at the coxa-trochanter level. In this way the leg could not move in any 

direction at this joint. The leg was cut in the middle of the femur in order to exclude ground contact, and 

information arising from the femoral chordotonal organ. The stump was then bend in forward and backward 

direction, which provided a loading signal of the hind leg, encoded by campaniform sensilla of the stick insect. 

Fig. 8 shows the results of these experiments in 3 animals. Bending the leg in a caudal direction resulted in flexor 

activity in the hind leg and prothoracic protractor MN activity in the pilocarpine-induced rhythm. The protractor 

MN burst occurred directly after the stimulus, which resulted in an advancement of the pilocarpine-induced rhythm 

in response to the stimulus (Fig. 8 B). 

The presented results in this very preliminary data indicate that the sensory signals, modulating the prothoracic 

protractor-retractor CPG could derive from load signals detected by the campaniform sensilla.

 

  

Fig. 8 The pilocarpine-induced rhythm in the 
prothoracic protractor-retractor system was 
entrained by stimulation of the campaniform 
sensilla A) The flexor muscle of the remaining 
hind leg stump was activated during bending. 
A bending in the caudal direction (red line) 
resulted in activity in prothoracic protractor 
MNs (blue line. B) PRC, calculated as Fig3. 
The start of the stimulus is indicated by a red 
line except, the start of the stimulus (red line) 
was the start of flexor activity. The PRC shows 
the values for 14 steps in 3 animals. All 
protractor MN bursts occurred directly after the 
stimulation.  
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6. Discussion 
 

The present work introduces different approaches to the investigation of inter- and intra-segmental 

coordination. I start with the analysis of walking behavior of stick insects in different walking conditions 

(see Grabowska et al., 2012). Next, I will present a neuromechanical model that comprises all three main 

antagonistic muscle pairs of a stick insect leg. This model was applied to describe the neuronal and 

muscular activities of the musculo-skeletal system at start and stop during stick insect locomotion. The 

model emphasizes the differential roles of the slow and fast muscle fibers during these events. Then, I 

will show how the aforementioned 3-CPG-MN network model by Daun-Gruhn and Tóth (2011) was 

extended in order to describe eight-legged locomotion. The purpose of this work was to modify the 3-

CPG-MN network model, based on anatomical and physiological analogies between the stick insect and 

arthropods, in order to model locomotion in crustaceans and other eight-legged animals. Finally, I will 

treat the experiments concerning the caudo-rostral inter-segmental influence between the three 

segmental protractor-retractor CPGs, which are situated in the segmental hemi-ganglia of the stick 

insect. The experiments were performed to test a hypothesis arising from an existing network model for 

locomotion, and possibly validate it. This model describes the activity of the protractor-retractor CPG 

systems of the three segments (pro-, meso-, metathorax) of the stick insect (3-CPG-MN network model) 

during walking.  

 

In the first study (see Grabowska et al., 2012), the influence of different walking situations on the 

coordination in walking stick insects was analyzed. First, the results show that depending on the slope 

the animals walked on, the resulting coordination patterns of the walking legs change during locomotion. 

These results indicate, that a different distribution of load on the walking legs, and therefore different 

sensory information that is encoded by the sensory organs detecting load, leads to different phase 

relations between the single legs during walking. Second, the amputation experiments show that the 

different leg pairs, meaning front, middle and hind legs, may contribute differently to inter-segmental 

coordination. While the front and hind leg amputations result in more regular coordination patterns 

during walking, the amputation of the middle legs lead to an impairment of the coordination. 

Additionally, the front legs can serve as sense organs during walking, and their movements therefore 

lead to irregular coordination patterns (Dürr, 2001; Cruse, 1976). Nevertheless, they can also become 

part of the regular pattern generating mechanism during walking.  
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In the second study (see Tóth et al., 2013), an explanation was provided of how walking in the stick 

insect is stopped and started using a neuromechanical model. This neuromechanical model was 

complemented by making physiologically plausible assumptions with regard to the stopping and starting 

of stepping. In particular, three fundamental assumptions are of importance: the first one postulates the 

differential role of the slow and fast muscle fibers at start and stop. The second assumption is about the 

coordinating roles of sensory signals reflecting position and velocity of the leg’s main joints. This 

assumption relates to the crucial role of sensory feedback in coordinating the activities of the leg’s 

neuromuscular systems during locomotion, standing, and during the transition processes between these 

states. The third important assumption claims that none of the processes at starting and stopping 

interfere with the activities of the three CPGs, which produce the rhythmic activities of the single leg 

joints during locomotion. This study thus formulates physiological relevant hypotheses about the role of 

the slow and fast muscle fibers, and their differential neuronal control at starting and stopping of a stick 

insect leg.  

 

In the third study (Grabowska et al., 2014, under review.) I show that the 3-CPG-MN network model 

(Daun-Gruhn and Tóth, 2011) can serve as a basis for modeling arthropod walking. To demonstrate this, 

the 3-CPG-MN network model was extended by an additional segmental unit in two different ways, 

resulting in two different network topologies. The first topology (topology 1) constituted a clockwise, 

cyclical connection from the last segment to the first segment, as in the case of the 3-CPG-MN network 

model. This topology showed its limits when in the simulations the parameter values of the excitatory 

tonic drive, and the timing of the arriving excitatory signals from neighboring segments were changed. In 

the second topology (topology 2) every second segment was connected by a caudo-rostral inter-

segmental pathway. In this way, segment 1 received excitatory signals from segment 3, as in the 3-CPG-

MN network, and segment 2 received excitatory signals from segment 4. Topology 2 proved to produce 

stable output for a larger range of parameters for the excitatory tonic drive than topology 1, and the 

model became more sensitive to the timing of the excitatory signals arriving from neighboring segments. 

Using this topology, a large variety of walking behavior of crustaceans could be simulated. Additionally, 

this network model emphasizes the importance of excitatory sensory signals for the generation of 

various walking behaviors. Taking the similarities in the neuroanatomy of the thoracic ganglia and in the 

function of the leg muscles of arthropods into account, the 4-CPG-MN network model also proposes 

possible inter-segmental connections that can be tested in experiments.  

In the fourth study (Grabowska et al., in prep), I investigated the caudo-rostral inter-segmental influence 

from the metathoracic ganglion to the prothoracic ganglion in the stick insect. The existence of such an 

inter-segmental pathway was hypothesized by Daun-Gruhn and Tóth (2011), and implemented in their 

3-CPG-MN network model of stick insect locomotion. The results of this study provide evidence for this 

connection. Pilocarpine, a muscarinic agonist of acetylcholine, induced rhythmic activity in the 
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protractor/retractor system of the prothoracic ganglion. This rhythmic activity was entrained by active 

and passive forward and backward steps of the ipsilateral hind leg. In addition, the stance phase during 

hind leg steps could reset the pilocarpine-induced rhythm in the prothoracic ganglion. Preliminary 

findings show the entrainment of pilocarpine-induced rhythm in the prothoracic ganglion by 

stimulations of femoral campaniform sensilla in the ipsilateral hind leg. These results indicate that the 

modulating sensory influence could derive from load signals, as it is proposed in the 3-CPG-MN network 

model.  

 

The common result of all four presented studies is the evidence for the strong influence of sensory 

feedback on segmental rhythm generators of locomotion during walking in the stick insect Carausius 

morosus and in crustaceans, such as crayfish and forward walking crabs. The sensory feedback is 

provided by sensory organs encoding the position of the legs, the velocity of angular movements 

between the leg joints, and the loading of the legs.  

 

Suggestion for a possible gaiting mechanism for the different functions of the 

front legs during locomotion 

 

The behavioral experiments on stick insects that walked on different slopes provided fundamental 

information on how changes in the walking environment affect the walking behavior of stick insects. 

Also, the amputation of leg pairs, and therefore the absence of sensory input arising at the sensory 

organs in the different walking legs, contributes to changes in the motor output of stick insects.  

The neuronal control of leg movements during walking and standing is found within the prothoracic, 

mesothoracic and metathoracic ganglia that control the front, middle and hind legs, respectively (Bässler 

and Büschges, 1998; Pearson and Fourtner, 1975). It is known that the motor pattern in every leg 

emerges from interactions of afferent signals from the leg with the corresponding CPGs that govern the 

action of the three individual leg joints of the stick insect’s leg (Büschges and El Manira, 1998). To control 

the movements of the adjacent leg joints in a leg, sensory signals, as well as central commands, are 

necessary for a proper coordination of the leg (Bässler and Büschges, 1998; El Manira et al., 1991; Hess 

and Büschges, 1999). The rhythm generating networks of the individual legs are also coupled by sensory 

information that come from different sensory receptors, situated within each leg (Akay et al, 2001; 

Borgmann et al. 2009; Borgmann et al. 2011). In chapter 5, I could show that the inter-segmental sensory 

information flow is not only rostro-caudally directed, but also caudo-rostrally, and that the information 

flow may emerge from load sensitive signals in the campaniform sensilla (Fig 7). Behavioral rules by 
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which all six leg movements of a stick insect are controlled, are described by Cruse et al. (1998). 

Nevertheless, a path, or rule, that describes the relation between hind and front leg movements was 

lacking. The experiments in chapter 5 provide a new coordination rule that connects the hind and front 

legs in the caudo-rostrally direction.  

On the one hand, stick insects can use their front legs as searching organs in order to explore their 

environment (Dürr, 2001; Cruse, 1976). In the experimental study presented in this work (see results, 

Chapter 4.1, Grabowska et al., 2012), ignoring the front legs in the analysis of the coordination patterns 

led to a regular quadruped coordination pattern of the middle and hind legs. This means that during 

walking, the animal is able to uncouple the front legs from the locomotor system, and use them as 

searching organs, while the middle and hind legs make regular movements. The touching frequency of 

the front legs did not correlate with the stepping frequency of the walking middle and hind legs 

(Grabowska et al. 2012). However, it was shown for stick insects that the antennal abduction and 

adduction cycle leads to a coupling of the protraction and retraction cycle of the front legs with a stable 

phase shift (Dürr et al., 2001). Therefore, simultaneous antennal activity can be observed during 

searching movements (Dürr, 2011). The sensory information that influences the rhythmic activity of the 

antennal joint and therefore their movements emerges in mechanoreceptors in the antenna (Cappe de 

Baillon, 1936; Weide, 1960; Slifer, 1966). The sensory neurons project in the antennal lobe and to the 

corresponding motor centers. The central complex (CC) of insect brains is a group of midline neuropils in 

the protocerebrum (Williams, 1975; Straußfeld, 1999). It is known to supervise different forms of 

locomotion, like regular walking, turning, and searching movements of the front legs (Ritzmann et al., 

2007). In this area neurons were found that respond to mechanical antennal stimulation. In cockroaches, 

a lesion of the CC affects controlled climbing over blocs due to the lack of processing of sensory 

information from the antennal mechanoreceptors (Ridgel et al., 2007, Ritzmann et al., 2005). 

Additionally, large populations of multisensory neurons in the CC were found that contribute to the 

control of regular locomotion, since electrical stimulations in this brain area evokes changes in 

locomotion (Huber, 1960; genetic studies for Drosophila: Strauß et al., 1992; Martin et al., 1999; Strauß, 

2002). For the cockroach, Ritzmann and colleagues (2007) suggested that antennae provide important 

information in order to supervise climbing behaviors. This information is used by the CC to supervise the 

decisions to climb or use normal locomotion which would lead to the subsequent movements. This 

assumption is supported by lesion experiments with cut connectives from the CC to the suboesophageal 

ganglion (SOG) in the cockroach (Ritzmann, 2005). The experimental results in my thesis show that 

pilocarpine-induced rhythms in the prothoracic ganglion are more irregular than the ones in the 

mesothoracic ganglion (Chapter 5, supplementary Fig. 1). Isolation of the prothoracic ganglion from the 

SOG resulted in more regular pilocarpine-induced rhythms in the prothoracic ganglion. Applying 

pilocarpine on the non isolated prothoracic ganglion resulted in a simultaneous application on the SOG. 

In this case rhythmic antennae movements were also observed. On the one hand, pilocarpine-induced 

rhythmicity of the prothoracic protractor and retractor system in the thoracic ganglion itself. On the 
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other hand, the rhythmic activity of the antennal rhythm-generating networks, also induced by 

pilocarpine, seems to influence the pattern generating networks in the prothoracic ganglion via the SOG, 

which induced irregularities in the prothoracic protractor/retractor system. In the experiments 

described in chapter 5, the prothoracic ganglion was not isolated from the SOG (see irregular pilocarpine 

rhythm in the prothoracic protractor/retractor MN recordings in Fig. 3). Therefore rhythmic movements 

could be observed the whole time during my experiments (personal observation). Nevertheless, this 

irregular rhythm became more regular when entrained by the walking hind leg. In this case, the neural 

control within the thoracic segments seemed to have a larger influence on the locomotion system.  

 

It becomes obvious that also in my experiments, there is a subdivision into local circuits that are 

responsible for the organization of the leg movements, and into higher processing centers in the stick 

insects brain that generate descending connections in order to alter walking behavior (Ritzmann and 

Büschges, 2007).  

In the following paragraph, I will propose a gating mechanism that is supported by feedback from the 

front legs’ sensory organs. This mechanism determines the motor output of the front legs. The motor 

output could produce searching movements of the front legs, phase locked to the antennal movements or 

regular walking behavior of the middle and hind legs.  

The first influence could be, for instance, an increase in load on the front legs, due to changes in the slope 

as it is the case in downward walking. In Grabowska et al. (2012), stick insects used different 

coordination patterns depending on the slope of the walking surface. Walking on plane surfaces or 

surfaces with a slope of 15° resulted in a higher proportion of the tetrapod coordination pattern and 

irregular walking pattern than the tripod coordination pattern. Compared to these walking situations, 

climbing (90°) resulted in an even lower proportion of the tripod coordination pattern. In contrast to 

this, walking on a surface with a 15° downward slope led to a higher rate of observed tripod coordination 

pattern than walking upwards or on a plane surface. One reason for the use of different coordination 

patterns could be the different distribution of load for the single legs during walking. This was also 

reported for locust: there, different walking conditions, such as horizontal walking, climbing and upside 

down walking led to alternations in motor patterns due to changes in posture of the leg and different 

loading of the leg joints (Duch and Pflüger, 1995). Standing or walking on declining surfaces results in an 

enlargement of the component of the gravitational force parallel to the walking direction of the stick 

insect. This explains the increased use of tripod coordination patterns and the decreased amount of 

probing behavior during walking. In this situation, the front legs have to be included in the locomotor 

system to provide stability during walking. The increase in load induces stronger sensory load signals 

that modulate the front legs CPGs. This influence may override central commands arriving from the 
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insect’s brain that normally would induce searching movements. Therefore, the excitatory sensory input 

on the adjacent mesothoracic segment could be stronger. 

 This sensory input originates in the sensory organs of the hind legs during stepping. The stronger 

sensory signals in the front legs may have a higher impact compared to other influencing factors. The 

electrophysiological results presented in this thesis (Chapter 5) prove thus a modulation of the 

pilocarpine-induced rhythmic activity in the prothoracic protractor-retractor CPG.  

The second modulating influence is present during searching or probing and is the sensory feedback 

from the sensory organs of the antenna coupling the front leg rhythm to the antenna movements. For the 

front legs, load differs from feedback during ground contact in the stance phase during regular 

locomotion from the load signals during searching (Zill et al., 2012). The second modulating input 

derives from the central complex of the insect’s brain via the SOG (Ritzmann et al., 2007). It is known that 

during searching movements of the front leg, simultaneous antennal activity can be observed (Dürr, 

2001). These rhythmic antennal movements can alter the normal movement pattern of the front legs 

during locomotion (Dürr, 1999; Dürr et al., 2001). The prothoracic leg CPGs, that normally provide the 

rhythmic activity of the front legs of an animal during walking, could now obtain a stronger influence via 

the SOG than from the sensory input from the metathoracic ganglion and could thereby modulate the 

stepping activity of the front legs. The influence from the SOG could transfer the rhythmic activity of the 

antennal searching movements on the prothoracic CPGs and be stronger than the sensory influence.  

During upward walking of the stick insect, there is a component of the gravitational force, antiparallel to 

the direction of the movement. Now the muscles of the hind legs have to exert larger force than the front 

ones in order to continue upward walking. At the same time, reduction of load in the front legs allows the 

animals to perform more active searching movements with the front legs. This behavior is important in 

the natural habitat of the stick insect during climbing in bushes or on trees where the searching 

movements occur mainly due loss of ground contact. 

I propose that the descending influence of the CC via the SOG is present at any time during locomotion of 

the animals. However, if the load of the front legs exceeds a certain as yet unknown threshold, the central 

descending information will be overwritten by local segmental sensory signals.  

 

Comparison of my studies to different mathematical models  

 

Coordination patterns exhibited by walking insects show great variability, due to the different temporal 

and spatial relations between the activities of the single legs. Stick insects, in particular, show several 

coordination patterns, starting with a metachronal wave coordination pattern, an intermediate tetrapod 
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coordination pattern, up to a very fast tripod coordination pattern (Grabowska et al. 2012). These 

coordination patterns are not rigidly wired in neural structures but can be regarded as emergent 

properties. This behavior was described for crayfish (Cruse and Müller, 1986), but is also legitimate for 

stick insects (Büschges and Gruhn 2008, Fischer et al. 2000). These emergent properties are controlled 

by the specific timing of the leg movements in the different segments. The timing is influenced by 

sensory cues that report on the state of neighboring legs (Cruse, 1990).  

Theoretical models are useful to investigate functions of biological systems, such as the locomotion of 

arthropods. When designing mathematical models, or robots that are able to replicate insect walking 

behavior, results from behavioral experiments on walking and results concerning the neuronal control of 

walking are combined and implemented in the model or robot. In each model or robot, specific 

properties have to be selected that are critical for reproducing walking. In this study, I presented 

experimental data that validate a hypothesized structure in the 3-CPG-MN network model proposed by 

Daun-Gruhn and Tóth (2011). This network model describes rhythmic activity of the ipsilateral 

protractor-retractor rhythm generating systems of the stick insect. In this specific case, an inter-

segmental influence was necessary to generate tetrapod (ipsilateral wave) and tripod coordination 

patterns, and continuous transitions between them. The inter-segmental connections are modulated 

(gated) by segmental sensory signals. These artificial sensory signals act via excitatory sensory 

interneurons (SIN), and represent load signals of the leg, whose source is the depressor activity of the 

adjacent segment. My experimental results (Chapter 5) indicate that the modulation of the pilocarpine-

induced rhythm in the prothoracic protractor-retractor system may derive from load signals of the hind 

legs. These load signals are generated by campaniform sensilla. Comparing the phase response curves 

(PRC) expressing the influence of the stimulations on the mesothoracic protractor-retractor rhythm of a 

forward stepping front leg (Borgmann et al. 2009, Tóth et al., submitted) with my PRCs expressing of the 

influence of the stimulations on the prothoracic protractor-retractor rhythm of a forward stepping hind 

leg (Chapter 4, Fig 4), one finds good agreement between them.  

In chapter 4.1, I showed that the amputation of the middle leg leads to maladapted walking patterns. 

These results are in accordance with electrophysiological experiments of Borgmann et al. (2009) where 

the metathoracic ganglion only produced rhythmic activity in the presence of a stepping middle leg. 

Furthermore, the presence of a stepping middle leg led to a tonic increase of motoneuronal activity in the 

prothoracic and metathoracic ganglion, which may be a sign of the middle leg’s stabilizing function. The 

inter-segmental influence from the stepping hind leg to the stepping front leg provides stable 

coordination patterns in 72% of the test cases (Grabowska et al. 2012, Figure 9). These results are also in 

agreement with the electrophysiological experiments in chapter 5.  

The failure of coordination described above, as a result of lacking middle legs was also observed in 

“walknet” simulations (Kindermann, 2002; Schilling et al. 2012; Schilling et al. 2014). “Walknet” is an 

artificial neuronal network for modeling stick insect locomotion, which is also implemented in several 
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robot platforms (Espenschied et al., 1993; Pfeiffer et al., 1995; Schmitz et al., 2008, Paskarbeit et al. 2010, 

Schneider et al. 2011, Schilling et al. 2012). In this model, the coordination rules for locomotion by Cruse 

(1990) (Cruse 1990, Dürr et al. 2004, Schilling et al., 2012) were implemented, in order to control the 

stepping movements of adjacent legs of the stick insect. Using these coordination rules, the model could 

overcome the loss of up to two legs, namely the front and hind legs (Schilling et al., 2012). This behavior 

was also observed in the amputation experiments (cf. Chapter 4.1), where the loss of the front legs, even 

increased the regularity of the stepping pattern of stick insects walking on a horizontal surface (Chapter 

4.1, Grabowska et al. 2012, Fig. 7). The same was observed for hind legs (Chapter 4.1, Grabowska et al. 

2012, Fig. 8). In order to simulate the loss of middle legs in “walknet”, the introduction of a new 

coordination rule connecting hind and front leg is necessary. The findings of the electrophysiological 

experiments reported in chapter 5 provide a basis for this new coordination rule. The beginning of the 

stance phase in a forward stepping hind leg positioned at the anterior extreme position (AEP) of the hind 

leg leads to an entrainment of activity in the prothoracic protractor activity, which is the beginning of a 

swing phase in a forward walking front leg.  

 

The extension of the 3-CPG-MN network of Daun-Gruhn and Tóth (2011) by an additional segmental 

module was successful in reproducing coordination patterns and walking behavior of arthropods 

walking on eight legs (Chapter 4.3, Grabowska et al., under review). There, a caudo-rostral inter-

segmental connection, connecting every second CPG was necessary in order to provide stability of the 

network topology. When considering a truly cyclic inter-segmental connection of the four segmental 

modules of the 4-CPG-MN network only, the model could not reproduce an increase in oscillation activity 

of the coupled protractor-retractor systems in a large enough range. Also, stable transitions between the 

three kinds of coordination patterns observed in forward walking crayfish and crabs could not be 

obtained (Barnes 1974, Parrack 1964, Ross and Belanger 2013). This makes sense though, because it is 

hard to imagine, that movements of a hind leg of the last segment of a millipede, for instance, could 

provide an inter-segmental connection through sensory input on the first segment. The latency until the 

signal would arrive at the first segment would be too long, and this connection therefore is 

physiologically unplausible. In chapter 4.3, I focused mainly on the influence of ɸij. This is the parameter 

that describes the phase shift between the (periodic) sensory signal that gates the excitatory inter-

segmental pathway, and the (periodic) activity of the affected protractor-retractor CPG module. Varying 

this parameter using topology 1 as well as topology 2 led to the reproduction of a large variety of 

coordination patterns observed, since both networks proved to be sensitive to changes in ɸij. Of course, I 

also tested the influence of the phase shift between the (periodic) sensory signal gating the local 

inhibitory pathway and the (periodic) activity of the affected protractor-retractor CPG module of the 

same segment (unpublished data). Varying this parameter led to hardly any changes in the coordination 

patterns. One reason might be that the synaptic strength for the gated inhibitory signal is much weaker 
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than the one for the excitatory pathway. Indeed, the results of a theoretical study in which inter-

segmental connections of the 3-CPG-MN model were investigated suggest that excitatory connections 

must be strong while inhibitory ones can be neglected (Tóth et al., submitted). This underpins my finding 

that the strength of the excitatory connections was crucial for the replication of the coordination 

patterns with the 4-CPG-MN network model (Chapter 4.3, Grabowska et al. under review). 

 

The design of insect robots has gained a lot from the study of animal locomotion. Insects can namely 

successfully adapt to their complex continuously changing walking environment. However, the 

construction of hexapods robots makes mostly use of specific aspects of insect locomotion. These are, for 

instance, the relation between the adjacent walking segments based on walking experiments of insects 

and the dynamics and kinematics of single legs during walking. In chapter 4.2 (Tóth et al. 2013), I 

presented a neuromechanical model that heavily relies on the control of the activity of slow and fast 

muscle fibers of the three main leg muscle pairs within the stick insect’s leg. The model describes their 

activity at start and stop, which are basic phenomena of stick insect locomotion. The coordination of the 

activities of slow and fast muscle fibers in the antagonistic muscle pairs contributes to the high efficiency 

of locomotion in stick insects. If beside the biomechanical properties of the different muscle pairs during 

insect walking (Guschlbauer et al., 2007), the neuronal control of these muscle groups, especially the 

timing of those activities by specific sensory signals, are also taken into account this can considerably 

improve the locomotion properties of hexapod robots.  

 

 

The influence of hind leg stepping on the pilocarpine-induced rhythm in the 

prothoracic protractor-retractor system of the stick insect  

 

The experiments in chapter 5 show that sensory information, which is provided by a stepping hind leg of 

a stick insect, is able to entrain a pilocarpine-induced rhythm in the prothoracic protractor-retractor 

system. As mentioned earlier, this connection was assumed by Daun-Gruhn and Tóth (2011) in their 3-

CPG-MN network model of stick insect locomotion.  

The experimental results emphasize three important points concerning this inter-segmental pathway 

that provides a caudo-rostral influence on the stick insect locomotor system.  

First, the results show that this influence is most likely a modulating one: without the rhythmic activity 

of the rhythm generating networks of the prothoracic protractor-retractor system, induced by 
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pilocarpine, no rhythmic activity could be induced by a stepping hind leg (personal observation). These 

results are in contrast to the results, showing the rostro-caudal influence of a stepping front leg on the 

activity in the mesothoracic ganglion (Borgmann et al., 2007). There, a stepping front leg was able to 

induce rhythmic activity in the mesothoracic protractor-retractor system of the stick insect and a tonic 

increase of metathoracic protractor and retractor MNs. Additionally, this rhythmic activity was in phase 

with the protractor/retractor activity of the stepping front leg (stance phase of front leg in phase with 

retractor MN burst activity in the mesothoracic ganglion). However, front leg stepping had a modulating 

influence on the pilocarpine-induced rhythm in the protractor-retractor CPGs in the metathoracic 

ganglion. There, a stance phase of a front leg entrained the retractor MN burst activity of the 

metathoracic ganglion (Borgmann et al., 2009). In my experiments, however, the stance phase of the 

forward stepping ipsilateral hind leg was in phase with the activity of the protractor MNs of the 

pilocarpine-induced rhythm in the prothoracic ganglion.  

Second, there appears to be no or negotiable inter-segmental influence of the mesothoracic ganglion on 

the modulation of the pilocarpine-induced rhythm in the prothoracic protractor-retractor system by the 

stepping hind leg. In my experiments, the mesothoracic ganglion was completely deafferented. For the 

mesothoracic ganglion, it was shown that a backward stepping hind leg was able to induce rhythmic 

activity in one third of the experiments, and in two thirds an increase in tonic MN activity (Borgmann et 

al., 2009). As mentioned in the preceding paragraph, this finding does not concern the activity of the 

rhythm generating networks of the prothoracic ganglion. For the inter-segmental connection in the 

rostro-caudally direction, the presence of the middle leg, and ,therefore, the afferent signals deriving 

from the middle leg, are important in order to produce rhythmic activity in the metathoracic rhythm 

generating networks (Borgmann et al., 2009). In my experiments this is not the case. In order to entrain 

the pilocarpine-induced rhythm in the prothoracic protractor-retractor system, afferent signals from the 

mesothoracic ganglion were not necessary. I therefore, can conclude that this influencing pathway may 

be a direct one.  

Third, the afferent signals, modulating the activity of the rhythm generating networks of the prothoracic 

protractor-retractor system, may have their origin in the detection of load by the femoral and 

trochanteral campaniform sensilla. My preliminary results, concerning the stimulation of the hind leg’s 

campaniform sensilla by moving the hind leg stump in the posterior direction parallel to the body, also 

show an entrainment of the pilocarpine-induced rhythm. These results are in agreement with previous 

experiments on the inter-segmental coordination of rhythm generating networks in the stick insect 

(Akay et al., 2001; Borgmann et al., 2009). Nevertheless, it has to be kept in mind that this stimulation 

was very unspecific, and more specific experiments will have to be set up for a thorough investigation of 

the effects, the campaniform sensilla may have.  

Also, more aspects of this inter-segmental connection have to be analyzed. First of all, Daun-Gruhn and 

Tóth (2011) hypothesized in their model a gated inter-segmental connection that is excitatory. 



24 
 

Therefore, experiments will have to be designed, which can effectively contribute to answering this 

question. Second, additional experiments will have to be performed in order to verify, if the modulation 

of the pilocarpine-induced rhythm in the prothoracic ganglion is only present in the protractor-retractor 

system, or perhaps in the levator-depressor system, too. Accordingly, I will record, additionally, levator 

and depressor MN activity by means of extracellular electrodes in the prothoracic ganglion. Furthermore, 

the prothoracic ganglion will also be perfused with pilocarpine solution to produce rhythmic activity in 

the prothoracic protractor-retractor system and levator-depressor system. The effect of the stepping 

hind leg on this rhythm will then be analyzed. It was demonstrated that the rhythm generating networks 

of the three main leg joints of a stick insect leg show no constant phase relations when getting activated 

by pilocarpine (Büschges et al., 1995). It will, therefore, be interesting to see, whether the pilocarpine-

induced rhythms in the prothoracic protractor-retractor and levator-depressor systems can be coupled 

in the presence of sensory input deriving from stepping activity of the ipsilateral hind leg.  
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7. Conclusion  
All the different works in my thesis have in common that they reveal new results on the inter-leg control 

of walking stick insects. In particular, the studies stress the effects of intra-segmental modulating 

influences, between the rhythm generating networks in the three main leg joints, and inter-segmental 

modulating influences, between the three thoracic rhythm generating networks. Moreover, my thesis 

combines the results of mathematical models, based on experimental data on stick insect locomotion, 

and experiments, validating these models. Both, the mathematical models, presented here, and my 

experiments indicate an important sensory intra- and inter-segmental influence, modulating the 

rhythmic output of the CPGs, and connecting those. 

Expanding the results of previous experimental studies (Cruse, 1990; Ludwar et al., 2005; Borgmann et 

al., 2007, 2009), my experiments in chapter 5, contribute to the knowledge of modulating caudo-rostrally 

directed inter-segmental influences, between the metathoracic and prothoracic rhythm generating 

networks. These results validate the hypothesized inter-segmental sensory pathway between the 

ipsilateral metathoracic and prothoracic protractor-retractor CPG modules (3-CPG-MN model network 

(Daun-Gruhn and Toth, 2011)). The next attempt for the validation of this mathematical network would 

be to investigate, if the modulating inter-segmental influences, observed in experiments, are of excitatory 

or inhibitory nature. 

Furthermore, I want to emphasize, the fact that an existing model network (3-CPG-MN network model 

(Daun-Gruhn and Tóth, 2011)) for the reproduction of motor pattern of the ipsilateral protractor-

retractor system of a stick insect, can serve as a basis for the rendition of walking behavior of animals 

with eight-walking legs. This study does not only prove the mathematical model, to be flexible enough to 

be expanded by additional segmental modules and still produce stable simulations of the coordination 

patterns of forward walking crayfish and crabs, but also hypothesizes possible neuronal structures for 

the model animals. Additionally, this model points out that excitatory signals, gated by inter-segmental 

pathways, may be crucial for the generation of specific phase relations between the activities of the 

rhythm generating networks, hence, the generation of different coordination patterns in walking 

arthropods. 

  



26 
 

8. Bibliography 
 

Akay, T., Bässler, U., Gerharz, P., Büschges, A. (2001). The Role of Sensory Signals from the Insect 

Coxa-Trochanteral Joint in Controlling Motor Activity of the Femur-Tibia Joint. The American 

Physiological Society, DOI: 0022-3077/01. 

Akay, T., Haehn, S., Schmitz, J., Büschges, A. (2004). Signals from load sensors underlie interjoint 

coordination during stepping. Journal of Neurophysiology, 96, 3532-3537. 

Akay, T., Ludwar, B., Goritz, M. L., Schmitz, J., Büschges, A. (2007). Segment specificity of load signal 

processing depends on walking direction in the stick insect leg muscle control system. Journal of 

Neuroscience, 27, 3285-3294. 

Alexander, R. M. (1989). Optimization and gaits in the locomotion of vertebrates. Physiological 

Reviews, 69, 1199-1227. 

Barnes, W. J. P. (1975). Leg Co-Ordination during Walking in the Crab, Uca pugnax. Journal of 

Comparative Physiology, 96, 237-256. 

Bässler D., Büschges A., Meditz S., Bässler U. (1996). Correlation between muscle structure and filter 

characteristics of the muscle-joint system in three orthopteran insect species. Journal Experimental 

Biology, 199, 2169–2183. 

Bässler U., Stein W. (1996). Contributions of structure and innervation pattern of the stick insect 

extensor tibiae muscle to the filter characteristics of the musclejoint system. Journal Experimental 

Biology, 199: 2185–2198. 

Bässler, U. (1977). Sense organs in the femur of the stick insect and their relevance to the control of 

position of the femur-tibia-joint. Journal of Comparative Physiology A, 121, 99–113. 

Bässler, U. and Büschges, A. (1998). Pattern generation for stick insect walking movements. 

Multisensory control of a locomotor program. Brain Research Reviews, 27, 65–68. 

Bässler, U. (1967). On the regulation of the position of the femur-tibial joint of the walking-stick 

insect Carausius morosus at rest and in motion. Kybernetik, 4, 18–26. 

Bender, J. A., Simpson, E. M., Tietz, B. R., Daltorio, K. A., Quinn, R. D. and Ritzmann, R. E. (2011). 

Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the 

cockroach Blaberus discoidalis. Journal of Exprimental Biology, 214, 2057-2064. 



27 
 

Borgmann, A., Hooper, S. L., and Büschges, A. (2009). Sensory feedback induced by front-leg stepping 

entrains the activity of central pattern generators in caudal segments of the stick insect walking 

system. Journal of Neuroscience, 29, 2972–2983. 

Borgmann, A., Scharstein, H., Büschges, A. (2007). Intersegmental coordination: Influence of a single 

walking leg on the neighboring segments in the stick insect walking system. Journal of 

Neurophysiology, 98, 1685–1696. 

Borgmann, A., Toth, T. I., Gruhn, M., Daun-Gruhn, S., Büschges, A. (2012). Dominance of local sensory 

signals over inter-segmental effects in a motor system: experiments. Biological Cybernetics, DOI: 

10.1007/s00422-012-0473-y. 

Bowerman, R. F. (1977). The control of arthropod walking. Comparative Biochemistry and Physiology 

Part A: Physiology, DOI: 10.1016/0300-9629(77)90190-6.  

Bucher, D., Akay, T., DiCaprio, R. A., Büschges, A. (2003). Interjoint Coordination in the Stick Insect 

Leg-Control System: The Role of Positional Signaling. Journal of Neurophysiology, 89, 1245-1255. 

Burns M. D. (1973). The control of walking in Orthoptera. I. Leg movements in normal walking. 

Journal of Experimental Biology, 58, 45-58. 

Burrows, M., Hedwig, B. (1996). Presynaptic inhibition of sensory neurons during kicking 

movements in the locust. Journal of Neurophysiology, 75, 1221-1232. 

Büschges, A. (1995). Role of local nonspiking interneurons in the generation of rhythmic motor 

activity in the stick insect. Journal of Neurobiology, 27, 488–512. 

Büschges, A. (1998). Inhibitory synaptic drive patterns motoneuronal activity in rhythmic 

preparations of isolated thoracic ganglia in the stick insect. Brain Research, 783, 262–271. 

Büschges, A. (2005). Sensory control and organization of neural networks mediating coordination of 

multisegmental organs for locomotion. Journal of Neurophysiology, 93, 1127–1135. 

Büschges, A., Akay, T., Gabriel, J. P., Schmidt, J. (2008). Organizing network action for locomotion: 

insights from studying insect walking. Brain Research Reviews, 57, 162–71. 

Büschges, A., Gruhn, M. (2008). Mechanosensory feedback in walking: from joint control to locomotor 

patterns. Advances in Insect Physiology, DOI: 10.1016/S0065-2806(07)34004-6. 

Büschges, A., Ludwar, B. Ch., Bucher, D., Schmidt, J., DiCaprio, R. A. (2004). Synaptic drive contributing 

to the rhythmic activation of motoneurons in the deafferented stick insect walking system. European 

Journal of Neuroscience, 19, 1856-1862. 



28 
 

Büschges, A., Manira, A. E. (1998). Sensory pathways and their modulation in the control of 

locomotion. Current Opinion in Neurobiology, DOI: 10.1016/S0959-4388(98)80115-3. 

 Calabrese, R. L. (1995). Half-center oscillators underlying rhythmic movements. In Arbib, M. (Ed.), 

The Handbook of Brain Theory and Neural Networks, pp. 444–447. Cambridge, MA: MIT press.  

Cappe de Baillon, P. (1936). L’organe antennaire des Phasmes. Bulletin biologique de la France et de la 

Belgique, 70, 1-35. 

Cattaert, D., El Manira, A., Marchand, A., Clarac, F. (1990). Central control of the sensory afferent 

terminals from a leg chordotonal organ in crayfish in vitro preparation. Neuroscience Letters, 108, 81-

87. 

Cattaert, D., Le Ray, D. (2001). Adaptive motor control in crayfish. Progress in Neurobiology, 63, 199 –

240. 

Chasserat, C. and Clarac, F. (1983). Quantitative analysis of walking in a decapod crustacean, the rock 

lobster Jasus lalandii. II. Spatial and temporal regulation of stepping in driven walking. Journal of 

Experimental Biology, 107, 219-243. 

Chrachri, A. and Clarac, F. (1989). Synaptic connections between motor neurons and interneurons in 

the fourth thoracic ganglion of the crayfish, Procambarus clarkii. Journal of Neurophysiology, 62, 

1237-1250. 

Chrachri, A., and Clarac, F. (1990). Fictive locomotion in the fourth thoracic ganglion of the crayfish, 

Prorambarus darkii. Journal of Neuroscience, 10, 707-719. 

Clarac, F. (1982). Decapod crustacean leg coordination during walking. In Herreid, C. F. and Fourtner, 

C. R. (Ed.), Locomotion and Energetics in Arthropods, pp. 31-71. New York: Plenum Press. 

Clarac, F., and Barnes, W. J. P. (1985). Peripheral influences on the coordination of the legs during 

walking in decapod crustaceans. In B. M. H. Bush and F. Clarac (Ed.), Coordination of Motor Behaviour, 

pp. 249-269, Cambridge: Cambridge University Press. 

Clarac, F., Cattaert, D., Le Ray, D., (2000). Central control components of a ‘simple’ stretch reflex. 

Trends in Neuroscience, 23, 199-208. 

Clarac, F., Wales, W., Laverack, M. S. (1971). Stress Detection at the Autotomy Plane in the Decapod 

Crustacea II. The Function of Receptors Associated with the Cuticle of the Basi-ischiopodite. Journal 

of Comparative Physiology, 73, 383-407. 

Cruse H., Ehmanns I., Stubner S., Schmitz J. (2009). Tight turns in stick insects. Journal of Comparative 

Physiology A, 195, 299-309. 



29 
 

Cruse, H. (1976). The function of legs in the free walking stick insect, Carausius morosus. Journal of 

Comparative Physiology A, 112, 235-262. 

Cruse, H. (1985). Which parameters control the leg movement of a walking insect? I. Velocity control 

during the stance phase. Journal of Experimental Biology, 116, 343–355. 

Cruse, H. (1990). What mechanisms coordinate leg movement in walking arthropods. Trends in 

Neuroscience, DOI: 10.1016/0166-2236(90)90057-H. 

 Cruse, H. and Müller, U. (1986). Two coupling mechanisms which determine the coordination of 

ipsilateral legs in the walking crayfish. Journal of Experimental Biology, 121, 349-369. 

Cruse, H., Dürr, V., Schilling, M., Schmitz, J. (2009). Principles of insect locomotion. In Arena, P. and 

Patanè, L. (Ed.) Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots, pp. 1-57. 

Berlin: Springer. 

Cruse, H., Dürr, V., Schmitz, J. (2007). Insect walking is based on a decentralized architecture 

revealing a simple and robust controller. Philosophical Transaction of the Royal Society A, DOI: 

10.1098/rsta.2006.1913. 

Cruse, H., Kindermann, T., Schumm, M., Dean., J., Schmitz, J. (1998). Walknet- a biologically inspired 

network to control six-legged walking. Neuronal Networks, 11, 1435-1447. 

Daun, S., Rybak, I. A., and Rubin, J. (2009). The response of a half-center oscillator to external drive 

depends on the intrinsic dynamics of its components: A mechanistic analysis. Journal of 

Computational Neuroscience, 27, 3–36. 

Daun–Gruhn, S. (2011). A mathematical modeling study of inter-segmental coordination during stick 

insect walking. Journal of Computational Neuroscience, DOI: 10.1007/s10827-010-0254-3. 

Daun-Gruhn, S., Toth, T. I. (2011). An inter-segmental network model and its use in elucidating gait-

switches in the stick insect. Journal of Computational Neuroscience, DOI: 10.1007/s10827-010-0300-

1. 

Delcomyn, F. (1971). The locomotion of the cockroach Periplaneta americana. Journal of Experimental 

Biology. 54, 453-496. 

Delcomyn, F. (1981). Insect locomotion on land. In Herreid, C. F. and Fourtner, C. R. (Ed.), Locomotion 

and Energetics in Arthropods, pp. 103-125. New York: Plenum Press. 

Delcomyn, F. (1981). Insect locomotion on land. In Locomotion and Energetics in Arthropods. In 

Herreid, C. F. and Fourtner, C. R. (Ed.), pp. 103-125. New York: Plenum Press. 



30 
 

Duch, C. and Pflüger, H. J. (1995). Motor patterns for horizontal and upside-down walking and 

vertical climbing in the locust. Journal of Experimental Biology, 198, 1963-1976. 

Dürr, V. (1999). Spatial searching strategies of the stick insect, using antennae and front legs 

(abstract). Proc Göttingen Neurobiol. Conf. 27, 212. 

Dürr, V. (2001). Stereotypic leg searching movements in the stick insect: kinematic analysis, 

behavioural context and simulation. Journal of Experimental Biology, 204 , 1589-1604. 

Dürr, V. (2005). Context-dependent changes in strength and efficacy of leg coordination mechanisms. 

Journal of Experimental Biology, 208, 2253-2267. 

Dürr, V., Schmitz, J., Cruse, H. (2004). Behavior-based modelling of hexapod locomotion: linking 

biology and technical application. Arthropod Structure and Development, 33, 237–250. 

Ekeberg, Ö., Blümel, M., Büschges, A. (2004). Dynamic simulation of insect walking. Arthropod 

Structure and Development, 33, 287–300. 

Elson, R. (1996). Neuroanatomy of a Crayfish Thoracic Ganglion: Sensory and Motor Roots of the 

Walking-Leg Nerves and Possible Homologies With Insects. Journal of Comparative Neurology, 365, 1-

17. 

Elson, R. C., Sillar, K. T., and Bush, B. M. H. (1992). Identified proprioceptive afferents and motor 

rhythm entrainment in the crayfish walking system. Journal of Neurophysiology, 67, 530-546. 

Epstein, S., Graham, D. (1983). Behaviour and motor output of stick insects walking on a slippery 

surface: I. Forward walking. Journal of Experimental Biology, 105, 215–229. 

Espenschied, K. S., Quinn, R. D., Chiel, H. J., Beer, R. D. (1993). Leg coordination mechanisms in the 

stick insect applied to hexapod robot locomotion. Adaptive Behavior, 1, 455–468. 

Fischer, H., Schmidt, J., Haas, R., Büschges, A. (2001). Pattern generation for walking and searching 

movements of a stick insect leg. I. Coordination of motor activity. Journal of Neurophysiology, 85, 341–

53. 

Godlewska, E. (2012). The histochemical characterization of muscle fiber types in an insect leg. 

Master Thesis, University of Cologne, Germany. 

Grabowska, M. J, Godlewska, E., Schmidt, J., Daun-Gruhn, S. (2012). Quadrupedal gaits in hexapod 

animals – inter-leg coordination in free-walking adult stick insects. The Journal of Experimental 

Biology, 215, 4255-4266. 

Graham, D. (1972). A behavioural analysis of the temporal organisation of walking movements in the 

1st instar and adult stick insect (Carausius morosus). Journal of Comparative Physiology A, 81, 23-52. 



31 
 

Graham, D. (1977). The effect of amputation and leg restraint on the free walking coordination of the 

stick insect Carausius morosus. Journal of Comparative Physiology A, 116, 91-116. 

Graham, D. (1985). Pattern and control of walking in insects. Adv. Ins. Physiol, 18, 31-140. 

Graham, D., Epstein, S., 1985. Behaviour and motor output for an insect walking on a slippery surface: 

II. Backward walking. Journal of Experimental Biology, 296, 287–296. 

Grillner, S, (2003). The motor infrastructure: from ion channels to neuronal networks. Nature Review 

Neuroscience, 4(7), 573-586 

Grillner, S. (2006). Biological pattern generation: The cellular and computational logic of networks in 

motion. Neuron, 52, 751–766. 

Grillner, S., Markram, H., De Schutter, E., Silberberg, G., and LeBeau, F. E. N. (2005). Microcircuits in 

action—from CPGs to neocortex. Trends in Neurosciences, 28, 525–533. 

Grillner, S., Wallen P. (2002). Cellular bases of a vertebrate locomotor system – steering, 

intersegmental and segmental co- ordination and sensory control. Brain Research Reviews, 40, 92–

106. 

Guschlbauer, C., Scharstein, H., Büschges, A, (2007). The extensor tibiae muscle of the stick insect: 

biomechanical properties of an insect walking leg muscle. Journal of Experimental Biology, 210, 1092-

1108 

Hess, D. and Büschges, A. (1999). Role of proprioceptive signals from an insect femur-tibia joint in 

patterning motoneuronal activity of an adjacent leg joint. Journal of Neurophysiologly, 81, 1856–1865. 

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane current and its 

application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544. 

Hoyt,, D.F., Taylor, C.R. (1981). Gait and the energetics of locomotion in horses. Nature 

292(5820):239-240. 

Huber, F. (1960) Untersuchungen über die Funktion des Zentralnervensystems und insbesondere 

des Gehirns bei der Fortbewegung und Lauterzeugung der Grillen. Journal of Comparative Physiology, 

44:60–132 

Hughes, G. M. (1952). The co-ordination of insect movements. I. The walking movements of insects. 

Journal of Experimental Biology, 29, 167-285. 

Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J. M. (2007). From swimming to walking with a 

salamander robot driven by a spinal cord model. Science, 315, 1416–1420 



32 
 

Izhikevich, E. (2006). Dynamical systems in neuroscience: The geometry of excitability and bursting. 

Cambridge, MA: MIT press.  

Jamom, M., Clarac, F. (1995). Locomotor patterns in freely moving crayfish (Procambarus clarkii). The 

Journal of Experimental Biology, 198, 683–700.+ 

Johnston, R. M., & Levine, R. B. (2002). Thoracic leg motoneurons in the isolated CNS of adult 

Manduca produce patterned activity in response to pilocarpine. Invertebrate Neuroscience, 4, 175–

192. 

Kindermann, T. (2002). Behavior and adaptability of a six-legged walking system with highly 

distributed control. Adaptive Behavior, 9:16–41 

Klärner, D., and Barnes, W. J. P. (1986). The cuticular stress detector (CSD2) of the crayfish. II. 

Activity during walking and influences on the leg coordination. The Journal of Experimental Biology, 

122,161–175. 

Klärner, D., Barth, F. G. (1986). The cuticular stress detector (CSD2) of the crayfish I physiological 

properties. The Journal of Experimental Biology, 122, 149-159. 

Knops, S., To´th, T..I, Guschlbauer, C., Gruhn, M., Daun-Gruhn, S. (2013). A neuromechanical model for 

the neuronal basis of curve walking in the stick insect. Journal of Neurophysiology, 109: 679–691. 

Leise, E. M., Hall, W. M., and Mulloney B. (1987). Functional organization of crayfish abdominal 

ganglia: II. Sensory afferents and extensor motor neurons. Journal of Comparative Neurology, 266, 

495-518. 

Libersat, F., Zill, S., and Clarac, F. (1987). Single-unit responses and reflex effects of force sensitive 

mechanoreceptors of the dactyl of the crab. Journal of Neurophysiology, 57, 1601–1617. 

Ludwar, B. C., Göritz, M. L., and Schmidt, J. (2005). Intersegmental coordination of walking 

movements in stick insects. Journal of Neurophysiology, 93, 1255-1265. 

MacMillan, D. L. (1975). A physiological analysis of walking in the American Lobster (Homarus 

americanus). Philosophical Transactions of the Royal Society B, 270, 1-59. 

Marder, E., Bucher, D. (2007). Understanding circuit dynamics using the stomatogastric nervous 

system of lobsters and crabs. Annual Review of Physiology, 69, 291–316. 

Marder, E., Bucher, D.( 2001). Central pattern generators and the control of rhythmic movements. 

Current Biology, 11 (23), R986–96. 

Marder, E., Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation. Physiological 

Reviews, 76 (3), 687–717. 



33 
 

Martin, J., Raabe, T., Heisenberg, M. (1999). Central complex substructures are required for the 

maintenance of locomotor activity in Drosophila melanogaster. Journal of Comparative Physiology A, 

185:277–288 

Müller, U., and Cruse, H. (1991). The contralateral coordination of walking legs in the crayfish Astacus 

leptodactylus. I. Experimental results. Biological Cybernetics, 64, 429–436. 

Orlovsky, G.N., Deliagina, T.G., Grillner, S.E. (1999). Neuronal Control of Locomotion: From Mollusc to 

Man. New York: Oxford University INC. 322 p. 

Parrack, D.W. (1964). Stepping sequences in the crayfish. PhD. Thesis, University of Illinois. 

Paskarbeit, J., Schmitz, J., Schilling, M., Schneider, A. (2010). Layout and construction of a hexapod 

robot with increased mobility. Proceedings of the 3rd IEEE RAS/EMBS international conference on 

biomedical robotics and biomechatronics (IEEE BIOROB 2010), September 26–29, 2010. Tokyo, Japan, 

pp 621–625 

Pearson, K. G. (2000). Neural Adaptation In The Generation Of Rhythmic Behavior. Annual Reviews in 

Physiology, 62, 723–53. 

Pearson, K. G., Fourtner, C. R. (1975). Nonspiking interneurons in walking system of the cockroach. 

Journal of Neurophysiology, 38 (1), 33–52. 

Pfeiffer F, Eltze J,Weidemann HJ (1995). Six-legged technical walking considering biological 

principles. Robot Auton Syst 14:223–232 

Ridgel, A.L., Alexander, B.E., Ritzmann, R.E. (2007). Descending control of turning behavior in the 

cockroach, Blaberus discoidalis. Journal of Comparative Physiology A, 193:385–402 

Ridgel, A.L., Ritzmann, R.E. (2005). Effects of neck and circumoesophageal connective lesions on 

posture and locomotion in the cockroach. Journal of Comparative Physiology A, 191:559–573 

Ritzmann, R. E., and Büschges, A. (2007). Adaptive motor behavior in insects. Current Opinion in 

Neurobiology, 17, 629-636. 

Ross, R. B., and Belanger, J. H. (2013). Passive Mechanical Properties of Crustacean Walking Legs. 

Poster, Sfn, Annual meeting, San Diego  

Schilling, M., Paskarbeit, J., Schmitz, J., Schneider, A., Cruse, H. (2012). Grounding an internal body 

model of a hexapod walker—control of curve walking in a biological inspired robot. Proceedings of 

IEEE/RSJ international conference on intelligent robots and systems,IROS 2012, pp 2762–2768. 

Schilling, M., Hoinville, T., Schmitz, J. Cruse, H. (2012). Walknet, a bio-inspired controller for hexapod 

walking. Biological Cybernetics, DOI 10.1007/s00422-013-0563-5 



34 
 

Schneider, A., Paskarbeit, J., Schäffersmann, M., Schmitz, J. (2011). Biomechatronics for embodied 

intelligence of an insectoid robot. Proc ICRA, (2)’11, pp 1–11 

Schütz, C. and Dürr, V. (2011). Active tactile exploration for adaptive locomotion in the stick insect. 

Philosophical Transactions of the Royal Society B, 366, 2996-3005. 

Selverston, A. I., & Moulins, M. (1985). Oscillatory neural networks. Annual Review of Physiology, 47, 

29–48. 

Sillar, I. K., Clarac, F., Busch, B. M. H. (1987). Intersegmental coordination of central neural oscillators 

for rhythmic movements of the walking legs in crayfish, Pacifastacus leniusculus. Journal of 

Experimental Biology, 131, 245-264.  

Sillar, K. T., Skorupski, P., Elson, R. C., and Bush, B. M. H. (1986). Two identified afferent neurones 

entrain a central locomotor rhythm generator. Nature, 323, 440-443. 

Sillar, K.T., and Skorupski, P. (1986). Central input to primary afferent neurons in the crayfish, 

Pacifastacus leniusculus, is correlated with rhythmic motor output of thoracic ganglia. Journal of 

Neurophysiology, 55(4), 678-688. 

Skinner, F., Kopell, N., and Marder, E. (1994). Mechanisms for oscillation and frequency control in 

reciprocally inhibitory model neural networks. Journal of Computational Neuroscience, 1, 69–87. 

Skinner, F., and Mulloney, B., (1998). Intersegmental coordination in invertebrates. Current Opinion 

in Neurobiology, 8, 725-732. 

Skinner, K. (1985). The structure of the fourth abdominal ganglion of the crayfish, Procarnbnrus 

clarhzi (Girard). I. Tracts in the ganglionic core. Journal of Comparative Neurology, 234,168-181. 

Skorupski, P., and Sillar, K.T. (1988). Central synaptic coupling of walking leg motor neurones in the 

crayfish: Implications for sensorimotor integration. Journal of Experimental Biology, 140, 355-379. 

Slifer, E. H. (1966). Sense organs on the antennal flagellum of walking stick Carausius morosus 

Brünner (Phasmida). Journal of Morphology, 120, 189-202. 

Spirito, C. P. and Mushrush, D. L. (1979). Interlimb coordination during slow walking in the 

cockroach. Journal of Experimental Biology, 78, 233-243. 

Strausfeld N.J. (1999). A brain region in insects that supervises walking. Progress in Brain Research, 

123:273–284 

Strauss R. (2002). The central complex and the genetic dissection of locomotor behaviour. Current 

Opinion in Neurobiology, 12:633–638 



35 
 

Toth, T.I., Schmidt, J., Büschges, A., Daun-Gruhn, S. (2013). A neuro-mechanical model of a single leg 

joint highlighting the fundamental physiological role of fast and slow muscle fibres of an insect 

muscle system. PLOS ONE, doi:10.1371/journal.pone.0078247. 

Von Twickel, A., Büschges, A., Parsemann, F. (2011). Deriving neural network controllers from neuro-

biological data: implementation of a single-leg stick insect controller. Biological Cybernetics, 104, 95–

119. 

Wallén, P., and Williams, T. L., (1984). Fictive locomotion in the lamprey spinal cord in vitro 

compared with swimming in the intact and spinal animal. Journal of Physiology, 374, 225-239 

Weide, W. (1960) Einige Bemerkungen über die antennalen Sensillen sowie über das 

Fühlerwachstum der Stabheuschrecke Carausius (Dixippus) morosus. Br (Insecta: Phasmida). Wiss Z 

Martin-Luther-Univ Halle-Wittenberg Math-Naturwuss Reihe IX/2, 247-250 

Wendler, G. (1964). Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder 

in den Beingelenken als Glieder von Regelkreisen. Journal of Comparative Physiology, 48(2):198-250. 

Wendler, G. (1966). The co-ordination of walking movements in arthropods. Symposia of the Society 

for Experimental Biology, 20:229-249. 

Westmark, S., Oliveira, E. E., and Schmidt, J. (2009). Pharmacological analysis of tonic activity in 

motoneurons during stick insect walking. Journal of Neurophysiology, 102, 1049–1061. 

Williams, J.L.D. (1975) Anatomical studies of the insect nervous system: a ground plan of the 

midbrain and an introduction to the central complex in the locust Schistocerca gregaria (Orthoptera). 

Journal of Zoology, 176:67–86 

Wilson, D. M. (1966). Insect walking. Annual Review of Entomology, 11, 103-122. 

Zill, S. N., Keller, B. R., Duke, E.R. (2009). Sensory Signals of Unloading in One Leg Follow Stance Onset 

in Another Leg: Transfer of Load and Emergent Coordination in Cockroach Walking. Journal of 

Neurophysiology, 101, 2297-2304. 

Zill, S. N., Schmitz, J., Chaudhry, S. and Büschges, A. (2012). Force encoding in stick insect legs 

delineates a reference frame for motor control. Journal of Neurophysiology, 108, 1453-1472. 

Zill, S., Schmitz, J., Büschges, A. (2004). Load sensing and control of posture and locomotion. 

Arthropod Structure Development, 33, 273-286. 

  



36 
 



37 
 

9. Teilpublikationen 
10.1 List of publications 
Grabowska, M., Tóth, T.I., Smarandache-Wellmann, C. , Daun-Gruhn, S., (2014). A network model 
comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion 
in crustaceans. Journal of Computational Neuroscience (under review) 

Tóth, T.I., Grabowska, M., Schmidt, J., Büschges, A., Gruhn, S., (2013). A neuro-mechanical model 
explaining the physiological role of fast and slow muscle fibers at stop and start of stepping of an insect 
leg. PLOS ONE, DOI: 10.1371/journal.pone.0078246 

Grabowska, M., Godlewska, E., Schmidt, J., Daun-Gruhn, S., (2012). Quadrupedal gaits in hexapod animals- 
Stepping patterns in free-walking adult stick insects. Journal of Experimental Biology 215, 4255-4266 

10.2 Short communications 
Martyna J. Grabowska, Tibor T. Toth, Ansgar Büschges, Anke Borgmann, Silvia Daun-Gruhn, 2014. 
Experimental analysis of an inter-segmental MN-CPG network model and its theoretical analysis with 
different topologies and their application to multi-legged locomotion (n<6). SfN, Annual meeting, 
Washington, USA 

Martyna J. Grabowska, Tibor T. Toth, Ansgar Büschges, Anke Borgmann, Silvia Daun-Gruhn, 2014. 
Theoretical and Experimental Investigations of an Inter-segmental Control Network and its Application 
to Multi-legged Locomotion. Neurovisionen 10, Jülich (Received the Best Poster Award) 

Grabowska, M., Tóth, T.I., Gruhn, S. 2013. Analysis of inter-segmental MN-CPG network models with 
different topology and their application to multi-legged locomotion. Neurovisionen 9, Cologne, Germany 
(Received the Best Poster Award) 

Grabowska, M., Tóth, T.I., Gruhn, S. 2013. Analysis of an inter-segmental MN-CPG network model with n-
CPGs and its application to multi-legged locomotion. SfN, Annual meeting, San Diego, USA 

Grabowska, M., Tóth, T.I., Gruhn, S., 2013. Analysis of an inter-segmental MN-CPG network model with 4 
CPGs. Interdisciplinary College in Günne (Möhnesee), Germany 

Grabowska, M., Godlewska, E., Schmidt, J., Daun-Gruhn, S., 2011. Stepping patterns in free walking adult 
stick insects. Annual meeting of the German Neuroscience Society, Göttingen, Germany  



38 
 

10. Supplementary Figure  

 

Supplementary Fig 1. Cutting the connectives to the SOG during an experiment, results in more regular 
alternating activity of the pilocarpine-induced rhythm in the prothoracic protractor and retractor MN 
pools A) Example of recordings of prothoracic protractor and retractor MN activity after application of 
pilocarpine. Before the red line, that indicates the cut of the connectives to the SO, the rhythm is 
irregular. After the cut, a short disturbance of the pilocarpine-induced rhythm occurs (approx. 6 sec.). 
Then, alternating activity returns and is more regular than the alternating activity before the cut. B) 
Cross correlation of rectified and smoothed recordings of protractor and retractor MN burst activity 
(blue traces in A) τ=0.08s). The correlation coefficient is higher in the cross correlation of the recordings 
after the cut than the one before the cut. This experiment is representative for four animals in which 
always a minimum cycle number of 70 before and after the cut were analyzed.   
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